
HAL Id: tel-03826174
https://theses.hal.science/tel-03826174

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The investigation of phonon lifetime and thermal
transport mechanisms in complex and disordered

crystalline systems by means of inelastic neutron and
X-ray spectroscopy

Shelby Rae Turner

To cite this version:
Shelby Rae Turner. The investigation of phonon lifetime and thermal transport mechanisms in
complex and disordered crystalline systems by means of inelastic neutron and X-ray spectroscopy.
Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes [2020-..], 2021. English. �NNT :
2021GRALI086�. �tel-03826174�

https://theses.hal.science/tel-03826174
https://hal.archives-ouvertes.fr


THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES 

Spécialité : 2MGE : Matériaux, Méchanique, Génie civil, 
Electrochimie 

Arrêté ministériel : 25 mai 2016 

Présentée par 

Shelby Rae TURNER 

Thèse dirigée par Marc DE BOISSIEU et codirigée par Stéphane 
PAILHÈS, Valentina GIORDANO, Frédéric BOURDAROT, et Helmut 
SCHOBER 

préparée au sein de l’Institut Laue-Langevin, au Laboratoire des 

Science et Ingénierie des Matériaux et Procédés, et à l’Institut 
Lumière Matière 
dans l'École Doctorale I-MEP2 - Ingénierie - Matériaux, Mécanique, 
Environnement, Energétique, Procédés, Production 

L'étude des temps de vie des phonons et des mécanismes 
de transport thermique dans les systèmes cristallins 
complexes et désordonnés par spectroscopie inélastique 
des neutrons et des rayons X  

The investigation of phonon lifetime and thermal transport 
mechanisms in complex and disordered crystalline 
systems by means of inelastic neutron and X-ray 
spectroscopy 

Thèse soutenue publiquement le 22 octobre 2021, 
devant le jury composé de :  

Monsieur Olivier DELAIRE 
Associate Professor, Duke University (Rapporteur) 

Monsieur Matthieu LE TACON 
Professeur des Universités, Karlsruhe Institute of Technology (Rapporteur) 

Madame Virginie SIMONET 
Directrice de recherche CNRS, Institut Néel (Examinatrice, Présidente du jury) 

Madame Jelena SJAKSTE 
Chargée de recherche CNRS, Laboratoire des Solides Irradiées (Examinatrice) 

Monsieur Marc DE BOISSIEU 
Directeur de recherche CNRS, Laboratoire des Science et Ingénierie des 
Matériaux et Procédés (Membre) 

Monsieur Stéphane PAILHÈS 
Chargé de recherche CNRS, Institut Lumière Matière (Membre) 

Madame Valentina GIORDANO 
Chargée de recherche CNRS, Institut Lumière Matière (Invitée) 

Monsieur Frédéric BOURDAROT 
Ingénieur chercheur, Institut de Recherche Interdisciplinaire de Grenoble (Invité) 

Monsieur Helmut SCHOBER 
Professeur, Université Grenoble Alpes et Institut Laue-Langevin (Invité) 



Abstract

Interest in the engineering of thermal process mechanisms has grown significantly in recent
years, particularly for applications involving thermal functionalization of a material for use as
a thermal barrier, thermoelectric converter, thermal diode, etc., which requires the control of
thermal conductivity. The thermal manipulation and design of a material in turn requires
knowledge of the fundamental transport properties of the elementary heat carrier particle, the
phonon.

This is easier said than done, however, since models that would allow us to comprehend
heat transport in complex materials are still under development, and because we lack system-
atic energy and temperature dependencies of experimentally measured phonon dispersions and
lifetimes on a wide range of materials. This presents a barrier to our understanding of more
complex and disordered systems, which are typically the ones needed to produce the thermal
conductivity spectrum for the applications listed above. With the introduction of the many
more atoms per unit cell and/or the disorder, we must now connect the dots between the effects
of increasing structural complexity and defects on the phonon spectrum, and, ultimately, on
thermal conductivity.

Within the context of overcoming these challenges, I present the phonon spectra in three
families of materials that exhibit different types of structural disorder and complexity. These
contributions include the inorganic type-I clathrate Ba7.81Ge40.67Au5.33, defined by its cage struc-
ture and many atoms per unit cell; the equimolar high-entropy alloy FeCoCrMnNi, represented
by a simple and averaged monatomic FCC unit cell with significant chemical disorder; and cubic
Yttria-Stabilized Zirconia, characterized by an extended and correlated defect structure brought
on by the inclusion of oxygen vacancies. Towards this end, I have experimentally measured their
phonon dispersions, lifetimes, and mean free paths using inelastic neutron and X-ray scattering
techniques found at large-scale facilities.

My results confirm the use of the ab-initio self-consistent phonon method calculations for
clathrates, emphasizing the importance of quartic anharmonic terms in our understanding of
both the hardening of the lowest-lying optical branch with increasing temperature, and in the
reproduction of the weak temperature dependence of the lattice thermal conductivity. The Fe-
CoCrMnNi alloy study establishes the lattice dynamics of a random five-element alloy, demon-
strating that the factor limiting phonon lifetimes is associated to force-constant fluctuations.
Finally, I revisit the lattice dynamics of cubic Yttria-Stabilized Zirconia with higher resolution
measurements, bringing new insight into the acoustic-optic interaction within the phonon spec-
trum, and to the linewidth broadening that results from the extended defect structure in this
material.

Through each of my case studies, I provide the energy dependence of a specific type of
phonon scattering mechanism. Then, by methodically detailing these features in each system,
we can work upwards from their microscopic phonon properties to their macroscopic material
properties, bringing us one step closer to understanding heat transport in complex and disor-
dered crystalline systems.

Keywords: lattice dynamics, phonon lifetime, clathrates, high-entropy alloys, yttria-stabilized
zirconia, inelastic neutron and X-ray scattering
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Résumé

L’intérêt pour le développement et l’ingénierie des systèmes cristallins pour les applica-
tions thermiques s’est fortement accru ces dernières années notamment pour des applications
nécessitant la fonctionnalisation de la thermique des matériaux à utiliser comme barrière ther-
mique, convertisseur thermoélectrique, diode thermique etc. qui nécessitent le contrôle de la con-
ductivité thermique. Le contrôle et design de la thermique d’un matériau nécessite de connâıtre
les propriétés fondamentales de transport des porteurs élémentaires de la chaleur, les phonons.

C’est plus facile à dire qu’à faire, cependant, car des modèles qui nous permettraient de
comprendre le transport de chaleur dans ces matériaux complexes sont encore en cours de
développement. De plus, nous manquons d’études expérimentales systématiques sur une large
gamme de matériaux des dépendances en énergie et en température des dispersions et des temps
de vie des phonons. Cela représente un obstacle à notre compréhension des systèmes plus
complexes et désordonnés, qui sont généralement ceux nécessaires pour produire le spectre de
conductivité thermique pour les applications mentionnées ci-dessus. Avec l’introduction d’un
grand nombre d’atomes dans la maille élémentaire et/ou du désordre, nous devons maintenant
faire le lien entre les effets de l’augmentation de la complexité structurale et des défauts sur le
spectre des phonons, et, finalement, sur la conductivité thermique.

Pour cela, je présente les spectres de phonons dans trois familles de matériaux qui présentent
différents types de désordre structurel et de complexité. Ces contributions comprennent le
clathrate inorganique de type-I Ba7.81Ge40.67Au5.33, défini par sa structure en cage et de nom-
breux atomes par maille élémentaire ; l’alliage à haute entropie équimolaire FeCoCrMnNi, décrit
par un réseau FCC moyen mono-atomique avec un désordre chimique important ; et la zircone
cubique stabilisée par l’yttria, caractérisée par un désordre étendu et corrélé, provoqué par
l’inclusion de lacunes d’oxygène. À cette fin, j’ai mesuré expérimentalement les dispersions,
temps de vie et libres parcours moyens des phonons en utilisant des techniques de diffusion
inélastique des neutrons et des rayons X disponibles dans des très grandes infrastructures de
recherche.

Mes résultats confirment les calculs théoriques ab initio avec une approche self-consistante
pour les clathrates, soulignant l’importance des termes anharmoniques quartiques qui déterminent
le durcissement de la branche optique de plus basse énergie quand la température crôıt, ainsi
que une faible dépendance en température de la conductivité thermique. L’étude de l’alliage
FeCoCrMnNi établit la dynamique de réseau d’un alliage aléatoire à cinq éléments et démontre
que le facteur limitant le temps de vie des phonons est associé aux fluctuations des constantes
de force. Enfin, je revisite la dynamique de la zircone cubique stabilisée par l’yttria avec des
mesures à plus haute résolution, apportant un nouvel aperçu sur l’interaction acoustique-optique
dans le spectre des phonons et je montre que leur temps de vie résulte de la structure étendue
des défauts dans ce matériau.

A travers chacune de mes études de cas, je fournis la dépendance en énergie d’un type
spécifique de mécanisme de diffusion de phonons. Ensuite, en détaillant méthodiquement ces
caractéristiques dans chaque système, nous pouvons passer des propriétés microscopiques des
phonons aux propriétés macroscopiques des matériaux, nous rapprochant ainsi de la compréhension
du transport de chaleur dans les systèmes cristallins complexes et désordonnés.

Mots clés: dynamique de réseau, temps de vie des phonons, clathrates, alliages à haute entropie,
zircone stabilisée par l’yttria et diffusion inélastique des neutrons et des rayons X
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General Introduction

There has been a great push in recent years towards utilizing more renewable and sustainable
energy sources as mankind begins to understand the full impact that it has had, and continues
to have, on its environment. Energy consumption in our society is ever-increasing, and the
U.S. Energy Information Administration predicted in their recent International Energy Out-
look presentation that, between the years 2012 and 2040, there will be a 48% increase in the
consumption of energy worldwide. This problem is global, which is why scientists, researchers,
engineers, politicians, and activists alike are all joining together to work on this issue.

There are many green energy solutions, each in various stages of development and production,
and they are the key to expanding and diversifying our energy resources. One of these potential
solutions is thermoelectricity, which is the conversion of heat into electricity [1, 2]. The history
of thermoelectricity involves famous, household names within the scientific community such
as Thomas Seebeck, Jean Charles Athanase Peltier, and William Thomson, and the credit
to the first thermoelectric generator (TEG) goes to Abram Fedorovich Ioffe in 1948 [3, 4].
Unfortunately, however, there was a slight dip in interest just after the discovery of TEGs since
their efficiencies were low, and therefore the lack of practicality of such devices as replacements for
current methods halted the momentum of this work. Fast forward to the Space Race, and TEGs
were once again starting to be recognized for their reliability and longevity in environmental
conditions that were either extreme or did not allow for frequent maintenance, such as in space,
which helped create new niche markets for TEGs [5].

Now, with the renewed push for more environmentally-friendly products and production
methods, TEGs have begun to find additional markets, from power generation for sensors,
biosensors, and microelectronics, to heat loss recovery, and even sonic filtration [6–10]. One of
the now more classic examples are TEGs that are being designed to convert the excess heat from
a gasoline combustion engine into electricity for a more “green” vehicle [5], and, in general, the
scalability, low maintenance requirements, and reliability of TEGs make them ideal solutions to
many of our current energy concerns.

There is much potential for TEGs in particular around the application of heat loss, both
within the transportation industry but in all energy production facilities as well. For context,
Lawrence Livermore National Laboratory and the USA’s Department of Energy reported in
their annual energy flow chart for 2020 that approximately two-thirds of the energy produced
for consumption ends up as “rejected energy,” otherwise known as heat lost in the process of
creating energy. TEGs offer the potential to convert this excess heat back into electricity, and
to reduce the waste that occurs during this processing.

As for the materials that are being used as TEGs, those that are currently on the market
are typically made of toxic or otherwise harmful compounds such as bismuth and lead telluride.
Now, however, materials such as clathrates, skutterudites, tetrahedrites, half-Heusler alloys,
calcium and strontium oxides, and organic TEGs are proving to be both more environmentally-
friendly and perhaps more efficient in their heat to electricity conversion, and will hopefully
replace some of the more toxic TEGs that are currently on the market in the future [5]. The
need for thermoelectric devices is growing, and the practicality and usefulness of such research
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will surely aid mankind’s inevitable transition to greener energy in the years to come.
Even though this new generation of materials shows great potential for improved and diversi-

fied thermoelectric devices, they present new challenges in our understanding of heat propagation
in materials. Their unique and complex structural characteristics go beyond the models that
we currently have in place, and their microscopic properties often test the limits of our highest
resolution experimental methods as well. Over recent decades, therefore, scientific research has
begun to address this need for understanding heat propagation in what I will term “non-simple
systems” throughout this thesis.

While the macroscopic properties and application-specific outcomes for many such complex
and disordered materials are largely known, the microscopic mechanisms behind their intriguing
and sometimes mysterious thermal transport properties have been the subject of many continued
studies, and for this we turn to the study of the quasiparticle responsible for heat propagation:
the phonon. So much interest revolves around microscopic thermal transport, in fact, that dis-
tinct research communities have formed around the study of such properties in glasses, aperiodic
crystals, complex metallic alloys, and other crystalline systems with complex atomic structures
and many atoms per unit cell. Experimentally, the crystalline system communities have focused
largely on phonon dispersions, phonon linewidths, and thermodynamic properties such as the
phononic density of states of simple crystalline phases, intermetallics, and quasicrystals. The
glasses community, on the other hand, has concentrated primarily on phonon group velocities,
phonon linewidth broadening, and the relation of this broadening to the excess of vibrational
states known as the Boson peak.

In terms of theory, until now solid state physics and materials science has been based largely
on theories and models that have been derived for simple crystalline materials with only a few
atoms per unit cell. The recent advancement and progress of ab-initio theory and the availability
of more realistic interatomic-level Hamiltonians has given rise to the study of systems with
increasing complexity, and, in particular, is beginning to uncover the links between crystalline
structure, phonon lifetimes, and macroscopic thermal transport. For instance, theoreticians have
proven that the incorporation of disorder and/or anharmonicity due to three-phonon scattering
processes can help us understand heat propagation in rock-salt thermoelectric compounds, Ag-
based conductors, quasicrystals, clathrates, oxides, glasses, and semiconductors in general.

There exists a certain disconnect, however, in how we use these results to comprehensively
and systematically study the specific phononic behaviors brought about by complexity in non-
simple systems in a way in which we can then use all of that information to draw global conclu-
sions about phonons in complex and disordered systems and their impact on thermal conduc-
tivity. In other words, these studies are what will allow us to link the micro and macroscopic
properties of such materials, and, for the moment, many questions globally remain unanswered.

To these studies and others I add my thesis work as a contribution to the overall story of
thermal transport in complex and disordered crystalline systems. My thesis takes four seem-
ingly very different materials and shows how, by uncovering their particular phonon behaviors
and scattering processes, we can understand macroscopic material properties such as thermal
conductivity, heat capacity, and Grüneisen parameter. Furthermore, and more importantly, my
work pushes our global understanding of heat transport in complex and disordered systems. I
show how we must understand heat transport by building up from properties of the phonon.
By experimentally uncovering the particular scattering behaviors of each of my materials, I me-
thodically show that complexity brings about certain comparisons that can be made across a
large range of disordered, non-simple systems. By publishing this work, I have probed different
aspects of complexity and disorder with the systems that I have studied, and I bring us closer
not only to a unified understanding of heat propagation in such materials, but, more globally,
to the commercialization of novel thermally engineered materials.
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Table of Contents

This thesis is divided into the following chapters: In Chapter 1, I will further define com-
plexity as it pertains to crystalline systems and introduce my four systems of interest that each
serve as case study examples of structural complexity in disordered crystalline systems. I will
then explain the reasoning behind choosing these systems by giving context to the global and
state-of-the-art investigations occurring on complexity that have already been published within
the community.

Chapter 2 then provides the reader with the tools and language to discuss heat transport
in disordered and complex systems through the current macro and microscopic theoretical un-
derstanding, focusing on properties of the phonon. Chapter 3 details the experimental methods
used to measure phonon properties, focusing exclusively on techniques found at large-scale facil-
ities, namely inelastic neutron and X-ray scattering. Chapter 4 introduces each of my published
(and future published) works, which should be viewed as case studies, linked under the umbrella
of studying complexity and disorder in crystalline systems. Those articles include:

� Impact of temperature and mode polarization on the acoustic phonon range
in complex crystalline phases: A case study on intermetallic clathrates
Shelby R. Turner, Stéphane Pailhès, Frédéric Bourdarot, Jacques Ollivier, Stéphane Ray-
mond, Thomas Keller, Yvan Sidis, John-Paul Castellan, Pierre-François Lory, Holger Eu-
chner, Michael Baitinger, Yuri Grin, Helmut Schober, Marc de Boissieu, Valentina M. Gior-
dano
State of the article: Phys. Rev. Research 3, 013021 (2021).

� Phonon behavior in a random solid solution: A lattice dynamics study on the
high-entropy alloy FeCoCrMnNi
Shelby R. Turner, Stéphane Pailhès, Frédéric Bourdarot, Jacques Ollivier, Yvan Sidis,
John-Paul Castellan, Jean-Marc Zanotti, Quentin Berrod, Florence Porcher, Alexei Bosak,
Michael Feuerbacher, Helmut Schober, Marc de Boissieu, Valentina M. Giordano
State of the article: submitted to an international peer-reviewed journal for review.

� Revisiting the Lattice Dynamics of Cubic Yttria-Stabilized Zirconia
Shelby R. Turner, Stéphane Pailhès, Leila Ben Mahfoud, Christian Carbogno, Marc de
Boissieu, Frédéric Bourdarot, Helmut Schober, Yvan Sidis, John-Paul Castellan, Andrea
Piovano, Alexandre Ivanov, Valentina M. Giordano
State of the article: manuscript.

Finally, I will provide some conclusions and thoughts on how my thesis work advances our
knowledge not only on complexity but also on heat transport in crystalline systems. As the
articles listed above represent the bulk of my Ph.D. work, their text and figures will be referenced
throughout the following thesis chapters. The articles themselves have been integrated into
Chapter 4 for the reader’s convenience.
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CHAPTER 1

Heat Propagation in Complex and
Disordered Systems

The increasing demand for green energy methods and technologies is driving research commu-
nities to develop new and innovative ways to meet these needs [10, 11], giving renewed attention
to thermoelectricity. Thermal design of materials has taken center stage for applications such
as thermoelectric converters, thermal diodes, thermal barriers, etc. This is also the reason that
heat transport is often discussed in the context of thermoelectric materials. Much is already
understood about the macroscopic properties, such as thermal and electrical conductivity, of the
materials that are currently on the market. However, if we want to look beyond what is already
commercially available, next-generation thermal devices require a deeper level of understanding.

1.1 Optimization of the dimensionless figure of merit

Customizing or tuning the properties of a thermoelectric device requires optimization of the
dimensionless figure of merit, ZT . A derivation of ZT through the use of a basic thermoelectric
generator can be found in the Appendix A. In general, a large Seebeck coefficient, S, and
electrical conductivity σ, and a small thermal conductivity, κ, help raise ZT towards the Carnot,
or maximum, efficiency for a given temperature range of T [1], as shown in eq. 1.1.

ZT =
S2σ

κ
T (1.1)

Fig. 1.1 summarizes the temperature dependence of ZT for materials that are currently the
focus of thermoelectric applications. At the time of writing, the highest ZT coefficient of these
sets of materials is ∼2.

G. A. Slack famously developed the Phonon Glass Electron Crystal (PGEC) concept in the
1990s [12] as a way of suggesting several directions that the scientific community should take in
order to engineer better thermoelectric materials with a higher ZT . As the name suggests, a
PGEC should exhibit glasslike thermal conductivity and crystalline or semiconductor-level elec-
trical conductivity in order to maximize the effects on the ZT coefficient. As we will discuss later
in this chapter, the term glasslike refers to the signature plateau and temperature independence
of the thermal conductivity in glasses, and therefore for PGECs it represents the need to find
semiconducting materials that replicate this behavior.
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1.1 Optimization of the dimensionless figure of merit

Figure 1.1: Temperature dependence of the figure of merit, ZT . A sampling of (a) p-type and
(b) n-type materials that exhibit a promising figure of merit, ZT , are plotted with temperature. Current
state-of-the-art materials exhibit a maximum of ZT ∼ 2. Notable materials that will be referred to in this
thesis are Bi2Te3 and Sb2Te3 based materials, skutterudites, and clathrates. Figure comes directly from
Ref. [13].

There are therefore two main methods of optimizing ZT for a given material that have
developed especially since the debut of Slack’s PGEC concept: maximizing the thermoelectric
power factor, S2σ, and minimizing κ [14, 15]. The first school of thought towards maximization
of S2σ is centered around PbTe, Bi2Te3, and Sb2Te3 based materials [16–18], as these have
been proven to have a high ZT coefficient, even up to 1.8 [19], and therefore provide a starting
place for further enhancement or materials engineering. They have been termed as benchmark
thermoelectric materials for this reason. Research has shown that the ZT coefficient of these
materials can be increased by focusing on engineering charge carrier concentration [20, 21] and/or
blocking minority charge carriers [22], and by band convergence of the valence or conduction
bands [19].

The second main school of thought for the optimization of ZT is to concentrate on limit-
ing κ in the material [23, 24], and materials such as clathrates and skutterudites [25–30] with
ZT∼1.35 − 1.7 [13] fit into this category. Thermal conductivity, κ, is made up of two com-
ponents: electronic, κelect, and lattice, κL, thermal conductivity. As a first approximation, the
electronic component of thermal conductivity can be described by the Wiedemann-Franz-Lorenz
Law, shown in eq. 1.2, which depends on σ, and where L(T ) is the Lorenz number, and T is
temperature [30].

κelect = LTσ (1.2)

There is an important implication associated to the κelect formula, which is that it depends
on σ, which is also found in the numerator of the equation for ZT . This means that electrical
and thermal conductivities can never be truly decoupled. Rather, we must search for a material
that is dominated by the lattice component of thermal conductivity in order to decrease the
influence of σ on κ.

The lattice component of thermal conductivity, on the other hand, depends on the heat
capacity of the material, CV , and on the group velocities, vg, and the lifetimes, τ , of the phonons
in the material, and is integrated across the full energy range [24].

κL =
1

3

∫ ωmax

0
CV (ω, T )v2g(ω)τ(ω, T ) dω (1.3)
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1.1 Optimization of the dimensionless figure of merit

The lattice component is therefore dependent upon properties of the quasiparticle responsible
for heat transport, the phonon. Chapter 2 will delve into phonon theory and detail the relevant
phonon parameters that we concentrate on measuring and simulating in order to understand
thermal transport properties in complex and disordered systems. However, in order to introduce
the four systems relevant to my Ph.D. work in the following sections of this chapter, I will give
a brief introduction here based on the components of eq. 1.3.

The phonon, or the quantized form of a lattice vibration, is a collective traveling plane wave
that has a distinct wavevector q, vibrational frequency ω, and polarization ξ [31]. Together,
phonons form a dispersion relation, ω(q), within a given energy spectrum (usually in the tens of
meV range). The group velocity in eq. 1.3 is therefore the local slope of the dispersion relation,
vg(ω) = ∂ω

∂q , in a given direction.
Continuing with definitions for the terms given in eq. 1.3, heat capacity is defined as the

amount of energy required to change the temperature of a material by one degree Kelvin. Group
velocity and heat capacity are determined by the phonon dispersions and Bose-Einstein statis-
tics, which in turn are needed to calculate all thermodynamic phonon properties. Thermody-
namic properties out of equilibrium, however, require the energy and temperature dependence
of phonon lifetime, τ(ω, T ). Phonon lifetime is the amount of time phonons propagate through
a lattice before being scattered. It therefore defines the thermal resistance of a given material,
and is dependent upon the chemical structure of said material.

Phonon lifetime and phonon scattering processes will remain a theme throughout this thesis,
as we must first understand how microscopic heat transport is either successfully conducted
or limited in a given material if we are to understand how we can manipulate or tune the κL
value for an overall improved ZT coefficient. Towards this end, P. G. Klemens and J. Callaway
derived simplified equations for the temperature and energy dependencies of the common types
of phonon scattering mechanisms for crystalline systems in the 1950s [32, 33], which were then
added onto by W. A. Kamitakahara and B. N. Brockhouse in the 1970s [34]. When working in
the microscale, we must consider what can scatter a phonon, and these potential mechanisms
usually come from the interactions of a phonon with other phonon(s), with other particles such
as electrons, with a defect in the crystal, with a grain boundary in the material, and/or from
the mass and force-constant fluctuations in the lattice.

Assuming that all of the above mentioned scattering processes are independent of one an-
other, the total phonon lifetime can be calculated using the Matthiessen rule, as seen in eq. 1.4,
where A is the concentration of defects in the material, B is a constant that depends on the
Debye temperature (see Section 2.2) of the material, vs is the sound velocity, L is the length
between boundaries in the material or sample, V is the volume of the unit cell, and g(ω) is the
vibrational density of states. The τ−1

M and τ−1
FC terms also include summations based on the

fractional contribution of atom type i in the unit cell, its mass mi and force constant Fi, and
the average mass m and force constant F in the unit cell.

τ−1
tot = τ−1

d + τ−1
U + τ−1

b + τ−1
e−ph + τ−1

M + τ−1
FC

= Aω4 + B(T )Tω2 + vs/L + C
λ⟨ω2⟩
T

+
πV ω2g(ω)

6

∑

i

fi

(
m−mi

m

)2

+
πV ω2g(ω)

3

∑

i

fi

(
F − Fi

F

)2
(1.4)

Relaxation time of Umklapp (τU ), point defect (τd) processes are energy (ℏω) dependent, and
Umklapp processes are also temperature (T ) dependent. Relaxation time of grain boundaries
(τb) depends on the grain size and is therefore related to the microstructure of the material. The
formula for electron-phonon coupling relaxation time (τe−ph) depends on the second moment of
Eliashberg’s spectral function [35], λ⟨ω2⟩, as seen in eq. 1.4, and on the constant C, but the use
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1.1 Optimization of the dimensionless figure of merit

of T in the function varies slightly with application. For many years, the two-temperature model
(TTM) was used, which describes two main temperature ranges, the electron temperature (Te)
and lattice temperature (Tl) [36–38]. The key assumption in this model is that τe−ph >> τe−e,
where τe−e are electron-electron relaxation times. In this case, T = Te. For regions where it
cannot be assumed that τe−ph >> τe−e, T = Tl [39]. Finally, the relaxation times for mass (τ−1

M )
and force constant (τ−1

FC) disorder can be used when there is a random distribution of atoms in
the lattice. We will keep these in mind for Section 1.3.4, in which a random solid solution alloy
is discussed.

The temperature dependence of the majority of these scattering mechanisms are plotted
against thermal conductivity for a typical crystalline solid in Fig. 1.2. As seen in the figure,
phonon scattering by grain boundaries, electron coupling, and impurities (point defects) domi-
nate at low temperature while phonon-phonon scattering takes precedence at higher temperature.
At low temperature, the thermal conductivity is expected to vary with T 3 due to the fact that
the heat capacity has a T 3 dependence at low temperature, and close to a temperature of zero
the heat capacity term of thermal conductivity dominates. This is also called the specific heat
effect [31, 40]. Next, the peak in thermal conductivity, often called the Umklapp peak, comes
from the dominance of Umklapp, or phonon-phonon, scattering processes, along with the con-
tribution of phonon-impurity scattering. Finally, the 1/T dependence typical of crystals at high
temperature comes from the Slack relation that says that high temperature thermal conductivity
is dominated by three-phonon scattering processes [40, 41].

Figure 1.2: Temperature dependence of phonon scattering processes within thermal conduc-
tivity. The regions of importance for the phonon scattering mechanisms discussed in eq. 1.4 are depicted
for the thermal conductivity of a typical crystalline solid. Figure comes directly from Ref. [40].

As we will see in Fig. 1.3 of Section 1.3, the complex and disordered materials that are
the subject of my thesis tend to stray from these particular signatures of crystalline thermal
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1.2 Defining Complexity

conductivity, namely the Umklapp peak at low temperature and 1/T dependence at high tem-
perature. This points towards enhanced phonon scattering mechanisms that further limit the
thermal conductivity in these systems.

While these equations for the major phonon scattering mechanisms in crystals provide a
guide, they rarely are able to perfectly demonstrate the full, complete description of phonon
scattering processes in non-simple systems. In fact Klemens clearly defines the range of ex-
pected operation for these formulas as being limited to monatomic and diatomic lattice systems.
I reiterate from the General Introduction chapter of this thesis that we lack enough systematic
experimental data to draw such general conclusions for more complex and disordered systems,
especially when more than one type of phonon scattering mechanism is usually at play. The
remaining sections of this chapter will focus on systems which have complex or otherwise dis-
ordered chemical structures that limit phonon propagation, and specifically the four specific
systems that were studied during my Ph.D. work.

1.2 Defining Complexity

For clarity and consistency within this thesis, I will attempt to define complexity and disorder
as they pertain to crystalline systems. These will be by no means exhaustive definitions, but
they are merely meant to provide context and set the stage for the discussions proposed in the
later text. I will purposefully try to keep these definitions as general and broad as possible,
knowing that these terms are open to different interpretations within the scientific community.

One of the more straightforward ways to define structural complexity in the case of periodic
crystals is to categorize it by the number of atoms per unit cell. If we consider the nearest-
neighbor atomic interactions in a 1D chain of atoms which has alternating atoms of different
mass, we know this to cause two phonon branches, one acoustic and one optic, with a gap in
between the two branches [31] (see Section 2.1 for an example). As we add more atoms per
unit cell and expand to a 3D model, we add more optical branches and decrease the size of the
gaps between the branches. This effectively compresses the acoustic regime responsible for the
heat-carrying phonons. With this overly simplified explanation, we can begin to see how we can
impact lattice thermal conductivity simply by increasing the number of atoms per unit cell.

To this hand-waving explanation I add one for structurally complex systems. If we imagine
the extreme case of N = 50+ atoms per unit cell, we not only compress the acoustic regime, but
the rest of the available phase space is then taken up with N-1 optical branches with little gap
in between each branch. With so many flattened, closely-packed branches, we expect phonon-
phonon scattering mechanisms to become more relevant. This is the method behind the study of
skutterudites, tetrahedrites, and clathrates as thermoelectric materials. (This will be discussed
in more detail in Section 1.3.3.) Yet another extreme case is that of aperiodic crystals such as
quasicrystals, which have an infinite number of atoms per unit cell while still maintaining long-
range order [42]. They too have a succession of dispersionless and broad optical-like branches.

A large number of atoms per unit cell is therefore one form of structural complexity. I will
also attempt to explain structural complexity through the possible “ingredients” of complexity
that we see in different types of crystalline systems. Having many atoms per unit cell is one form
of complexity not only because there are many branches packed closely together that create a
continuum of optical branches, but also because atoms of different masses within the system
may contribute unevenly both in phase and momentum space. In other words, moving from a
one-element system to a multi-element system creates complexity.

Other sources of complexity include making atomic substitutions, inducing vacancies, and
otherwise doping a structure. Furthermore, these sources can cause structural and chemical
disorder in the form(s) of lattice distortions, strain, or chemical short-range ordering. Lattice
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1.3 Case Studies for the Effect of Structural Complexity on Phonon Behavior

distortions and strain can cause certain atoms to be displaced from their equilibrium position,
disrupting the ability of lattice vibrations to propagate, while chemical short-range ordering
can be responsible for changing the local atomic environment, even if the global chemical and
crystallographic structure is maintained. We must furthermore consider the local, microscopic
disorder caused by chemical short-range ordering since it plays a role in how the lattice vibrations
cope in this local environment, which also changes with the wavelength of the lattice vibration
in consideration.

These sources of complexity impact the phononic momentum phase space and also change
the way that phonons are scattered in a material, defining the scattering processes of said
system. Looking again at the phonon lifetime formulas in eq. 1.4, vacancy or impurity scattering,
grain boundary scattering, and electron-phonon scattering are all possible phonon scattering
mechanisms that are usually considered in non-simple crystalline systems. Furthermore, having
many atoms per unit cell increases the number of phonon branches in the optical phonon region,
and this is then often associated with the Umklapp phonon-phonon scattering mechanism since
there are more phonons available for phonon-phonon scattering interactions. More globally, we
must also assume that when multiple phonon scattering processes exist, they add to the overall
temperature and momentum dependence of phonon scattering in perhaps unconventional ways.

My Ph.D work is focused on isolating the effects that different types of complexity have on
phonon lifetime. The goals are two-fold: (1) we need to increase the available experimentally-
measured phonon lifetime data on all types of systems (simple, non-simple, and complex) in order
to track patterns and draw conclusions on how specific phonon scattering mechanisms influence
thermal conductivity, and (2) we need to complement these experiments with sufficient atomistic
models that can explain these experimental findings. However, there are current limitations, both
experimentally and theoretically, to these tasks. In Section 1.4, I provide this state-of-the-art,
and enumerate the directions experimentalists and theoreticians are taking to overcome current
limitations. First however, in Section 1.3, I would like to elaborate on the different families of
systems that can exhibit forms of complexity, and, in particular, introduce the four systems that
will be the focus of this thesis work.

1.3 Case Studies for the Effect of Structural Complexity on
Phonon Behavior

As mentioned in the General Introduction of this thesis, there has been particular interest
in recent decades on the heat propagation in glasses, aperiodic crystals, and complex metallic
alloys, as these materials pose both unknowns in terms of their microscopic thermal transport
mechanisms and have the potential for thermal-related applications.

As shown in Fig. 1.2, crystalline materials usually have a large peak in thermal conductivity
centered around 10 K known as the Umklapp peak, which is associated with the multiphonon
scattering mechanism. They are also characterized by a vibrational density of states that gen-
erally follows the Debye model, or an energy squared dependence [31]. Glasses, on the other
hand, have a plateau in this same region of thermal conductivity, which can be understood in
terms of a strong phonon lifetime reduction at energies of a few meV [43]. It was also observed
in glasses, however, that there is often a peak that appears in the vibrational density of states,
normalized by the Debye law, at these energies as well, emphasizing a strict departure from the
Debye model prediction [44, 45] (see Section 2.2 for explanation of the Debye relation). This
peak became widely known as the Boson peak.

The nature of the Boson peak found in glasses has since been a central debate within the
glasses community, as it represents an anomaly and excess in the expected number of vibra-
tional states [46]. Chumakov et al. [47] were able show experimental evidence that there was a
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correlation between the van Hove singularity in the transverse acoustic phonon branch in crys-
tals and the location of the Boson peak in glasses, which was a concept previously proposed
by Taraskin et al. [48]. They found that the Boson peak of a Na2FeSi3O8.5 glass corresponded
to the energy of the flattening of the transverse acoustic phonon branch in the polycrystalline
version NaFeSi2O6. This has continued to spark much debate within the community, and in
particular has attracted scientists from other communities for disordered systems to contribute
towards this particular explanation and to “demystifying” the Boson peak in glasses [46, 49–53].
At the time of writing, the conversation is still hotly debated, but, globally, has turned towards
the importance of the inclusion of disorder in explaining such phenomena [54–56], once again
circling back to the study of complexity for thermal transport.

This prompted the use of the term “glasslike” within the complex crystalline systems com-
munities, as this plateau in the thermal conductivity of glasses exemplified the target of tuning
PGEC crystalline systems into having a low and temperature-independent lattice thermal con-
ductivity. There is the idea that, on the spectrum between completely harmonic crystals and
completely disordered glasses, there exist anharmonic crystals and harmonic glasses, which con-
tain certain properties or characteristics from the opposing side of the spectrum, respectively.
Such is the case for type-I clathrates, which have a large temperature-independent region of
thermal conductivity [30]. This term, glasslike, comes from the likeness of this temperature-
independent region of thermal conductivity to glasses, and has promoted cross-communication
between these respective communities as we search for a unified explanation of thermal transport
that functions for both glasses and crystals. However, separating the impacts of anharmonic-
ity, lattice substitutions, and the guest/host cage structure of such systems has proven to be
quite the challenge for the community [25–30]. I will detail the main conclusions that the
community has been able to draw up to the moment of writing this thesis in Section 1.3.3,
and then further elaborate on the topic with my newly published work on the type-I clathrate
Ba7.81Ge40.67Au5.33 [57].

Glasslike thermal conductivity is not limited to PGECs alone, however. In fact, in order to
tackle complex crystalline systems, we should also analyze the disorder-induced glasslike thermal
conductivity of simpler systems. In the effort to understand complexity from all angles, therefore,
I entreat the reader to also allow me to reference other systems such as Barium Fluoride with
Lanthanum substitutions (Section 1.3.1) and Yttria-Stabilized Zirconia (Section 1.3.2), which
also have glasslike thermal conductivity behaviors. In these cases, the complexity comes from
substitutions made to the lattice and the resulting chemical short-range ordering. These systems
are of particular interest because they allow us to distort the original simple systems, Barium
Fluoride and Zirconia, and study the resulting complexity and glasslike thermal conductivity
which is dominated by chemical short-range ordering. By analyzing the impact of complexity
firstly on simple systems that have been strategically distorted, we can then attempt to build
up to an understanding of systems such as clathrates.

Yet another lens with which we can view the types of complexity is by analyzing systems
that fall along the spectrum between a perfectly ordered crystalline structure and a completely
disordered glass. The logic follows that if we want to induce glasslike properties onto crystalline
systems, we need to choose crystalline systems that imitate the types of disorder seen in glasses.
For example, high-entropy alloys (HEAs) are a subcategory of alloys that are considered to be
random solid solutions. They have no one principle element, and instead have an equimolar,
random distribution of four or more elements. This brings in to question the validity of Bloch’s
theorem, and what, if any, phonon propagation would be allowed in such a system. HEAs
provide a plethora of potential study groups, with potential complexities ranging from atomic
size and mass differences, to chemical short-range ordering, and force-constant fluctuations. By
choosing elements for an HEA that can help bring out or isolate one of these types of complexity,
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Figure 1.3: Thermal conductivities of the four materials of interest. The thermal conductivities
for each of my four materials of interest are plotted, including the high-entropy alloy FeCoCrMnNi (blue
stars) [58], the type-I clathrate Ba7.81Ge40.67Au5.33 (orange triangles) [27], Ba0.67La0.33F2.33 (green cir-
cles) [59], and (ZrO2)0.92(Y2O3)0.08 (purple squares), also called Yttria-Stabilized Zirconia. The Yttria-
Stabilized Zirconia represents the combined data of Schlichting et al. [60] and Ackerman et al. [61], both
of which used samples with 8 mol% Yttria.

we can cocktail our own specific complexity study and begin to engineer properties of glasses
onto crystals (Section 1.3.4).

To this end, I have chosen these four materials that each have specific types of complexity
that contribute to their unique thermal conductivities. In the following subsections, I will briefly
describe each material that I have worked on and give the context for studying each system,
particularly emphasizing how their κ dependencies can be manipulated or engineered through
an understanding of the disorder and phonon scattering mechanisms at play in each case. With
this method in mind, I have probed different aspects of complexity and disorder within the
systems studied, bringing us as a scientific community closer to a unified understanding of heat
propagation and thermal transport in complex and disordered crystalline systems.

The thermal conductivities of my systems have also been plotted together in Fig. 1.3 for refer-
ence. The Ba7.81Ge40.67Au5.33 [27], Ba0.67La0.33F2.33 [59], and Yttria-Stabilized Zirconia [60, 61]
all show large temperature-independent regions of thermal conductivity close to 1 Wm−1K−1.
FeCoCrMnNi [58], on the other hand, being a concentrated metallic alloy, has an electronic com-
ponent of thermal conductivity that is considerably higher than those of the other three systems,
which accounts for the near-linear increase in thermal conductivity at higher temperatures.

1.3.1 Lanthanum-doped Barium Fluoride

In order to understand how we can manipulate the glasslike thermal conductivity behavior
that is seen in complex crystalline systems such as clathrates, it is useful to also study doped
fluorides, in which this glasslike behavior is also present. Heat transport in amorphous solids
has been a topic of discussion for decades [43, 62, 63]. In this particular example, random
La substitutions for Ba atoms are made in the fluoride BaF2, following the chemical equation
(BaF2)1−x(LaF3)x [64, 65], as seen in Fig. 1.4. This causes an excess interstitial F−1 for every
La3+ that replaces a Ba2+ on the lattice [63]. As detailed by Andersen et al. [62], when substan-
tial amounts of substitutions have been made, such as when x = 0.33, the thermal conductivity
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Figure 1.4: Crystallographic structure of Ba0.67La0.33F2.33. On the left, the pure BaF2 structure
is presented, with F (yellow) and Ba atoms (orange) forming an FCC structure with a lattice parameter
of 6.20 Å. On the right, a symbolic representation of random La substitutions (brown) being made to the
lattice, following the formula (BaF2)1−x(LaF3)x for x=0.33, with a lattice parameter of 6.09 Å. Further
information about the placement of the resulting F interstitials can be found in Andersen et al. [62] and
Cahill and Pohl [63].

drops from 10 Wm−1K−1 to 1 Wm−1K−1 at room temperature. This phenomenon is, in fact,
common to Yttria-Stabilized Zirconia, another fluorite structured crystal that will be discussed
in Section 1.3.2, as well as other similarly disordered solids [59].

Figure 1.5: Example of a 222 Clus-
ter in (BaF2)1−x(LaF3)x. A Ba2+ site
(empty circle) get replaced by La3+ (large
black circle) according to the amount of
substitutions defined by x in the chemical
formula (BaF2)1−x(LaF3)x, and this re-
sults in an excess interstitial F−1 (small
black circle), forming the particular pat-
tern known as the 222 cluster [66]. Figure
has been taken directly from Ref. [62].

In the case of Ba0.67La0.33F2.33, the substitutions
cause inherent changes to the 222 clusters found in the
pure BaF2 form. While the 222 clusters in pure BaF2

are due to vacancies, in Ba0.67La0.33F2.33 the clusters
are associated with the charge balance that occurs be-
tween F interstitial and La substitutional atoms [66].
This seems to balance the clusters, stabilizing them and
making them order themselves and form aggregates.

Therefore, these atomic replacements in going from
the pure BaF2 lattice to Ba0.67La0.33F2.33 manifest
themselves as aggregates of these clusters, a type of
chemical short range ordering on the lattice. The
Ba0.67La0.33F2.33 structure is therefore markedly differ-
ent, and distorted, from the pure one. This, in turn,
is thought to be at the root of the glasslike thermal
conductivity of Ba0.67La0.33F2.33. This defect structure
manifests itself in the diffraction pattern of the mate-
rial by the occurrence of broad and intense elastic dif-
fuse scattering [62]. In terms of the effect on phonon
behavior, it is a signature that the Bloch theorem is no
longer completely valid, and it causes additional phonon
broadening and/or weakening for phonons dispersing
from Bragg peaks near these satellites (Turner et al.,
unpublished).
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Figure 1.6: Crystallographic structures of Zirconia. From left to right and by increasing tempera-
ture: ZrO2 is monoclinic at room temperature, tetragonal between temperatures of 1440 and 2640 K, and
cubic (FCC) above 2640 K. Zr atoms are represented in green and O atoms in red.

1.3.2 Yttria-Stabilized Zirconia

Zirconia is a ceramic material of great interest for applications such as electrochemical cells,
catalytic converters, and thermal barrier coatings. It is often used in high temperature situa-
tions due to its high fracture toughness, stability, and low thermal conductivity [67, 68]. These
properties can be improved upon with the doping of rare-earth elements such as Mg or Ca,
or with Yttria, Y2O3 [69] (chemical structure given in Fig. ??). Pure Zirconia is monoclinic
at room temperature, and becomes tetragonal at 1440 K, and then cubic at 2640 K, as seen
in Fig. 1.6. However, doping with rare-earth elements stabilizes the cubic phase at room tem-
perature. Particularly with the doping of Yttria as well, the thermal conductivity becomes
glasslike, and applications focus on thermal barrier coatings and ion conductors in solid oxide
fuel cells [70, 71]. More than 4 mol.% Yttria forces the cubic structure to stabilize at room
temperature through oxygen vacancies that form due to the mismatch in charge between Zr and
Y ions, giving this chemically disordered system the name Yttria-Stabilized Zirconia (YSZ) [72].
These oxygen vacancies are the key to the glasslike thermal conductivity of Yttria-Stabilized
Zirconia, since they act as an extended defect structure and scatter phonons [67, 73].

These oxygen vacancies are created in order to maintain the overall charge balance of the
lattice when one Y3+ ion replaces two Zr4+ ions [72]. The lattice balances itself according
to the following equation, where charge balance is determined by the original ZrO2 lattice:
Y2O3 → 2Y ′

Zr + VÖ + 3O x
O . For every two Y3+ ions that enter the lattice on Zr4+ sites, two

Zr4+ ions are replaced (Y ′
Zr). Additionally, there are 3 O2− ions (O x

O ). This imbalance in charge
between Zr and Y, however, causes an oxygen vacancy, VÖ [67, 69].

Interestingly, it appears that there is a certain molar concentration of Yttria that creates a
minimum of thermal conductivity for a temperature range of 300-800 K, after which point the
thermal conductivity begins to increase again for higher doping concentrations. That point falls
at 10 mol.% Yttria doping [73]. The idea proposed by Welberry et al. [74–76] and then further
developed by Goff et al. [77] is that below 10 mol.% Yttria doping, the oxygen vacancies form
divacancy clusters that are rather isolated from one another. As the name implies, a divacancy
cluster is a VÖ → Zr4+ → VÖ pattern that forms. Above this Yttria concentration, however, the
oxygen vacancy clusters form into aggregates that order themselves, creating a local periodic
field. It is within this change in defect structure that the distinction in thermal conductivity
lies. It should be noted as well that, although the divacancy clusters with 10 mol.% Yttria
concentration are labeled as isolated defects, we cannot consider them as producing a “textbook”
point defect phonon scattering mechanism. The exact vacancy placements on the lattice, even
at low Yttria concentrations, should be considered as chemical short-range ordering, which then
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1.3 Case Studies for the Effect of Structural Complexity on Phonon Behavior

induces significant lattice distortions and gives rise to intense diffuse scattering corresponding to
defects extended onto several atomic distances, the characteristics and sizes of which have been
extensively documented by Welberry et al. [74–76] and Goff et al. [77].

Figure 1.8: Thermal diffuse scattering in Yttria-Stabilized Zirconia. The experimentally-
measured diffuse scattering for (ZrO2)1−x(Y2O3)x containing 9.5 mol.% Y2O3 at 300 K have been plotted
for the scattering plane [100][010] in (a) and [110][001] in (b) using the diffractometer on the ID28 beam-
line at the ESRF, an incoming wavelength of λ = 0.697 Å, and a typical beam size of about 40 µm FWHM.
A 360◦ rotation with a step size of 0.25◦ was achieved using the PILATUS3 1M detector in shutterless
mode, which was placed 244 mm away from the sample with elevations of both 19◦ and 48◦ above hori-
zontal. CrysAlis software (Rigaku Oxford Diffraction) was used to refine the experimental geometry and
orientation matrix, and locally developed software was used for high-resolution 2D reconstructions. Data
are represented in a mixed lin-log scale using Albula by Dectris.

An example of such diffuse scattering is shown in Fig. 1.8 for (ZrO2)1−x(Y2O3)x with a 9.5
mol.% Y2O3 concentration. The [100][010] scattering plane shown in (a) contains an arc pattern
that appears more intense near the (400) Bragg peak series. In the [110][001] scattering plane
shown in (b), however, the diffuse scattering creates quite a complex pattern that varies much
more with direction and Q, noting as well that the sizes, shapes, and intensities of the diffuse
satellites vary greatly. It is easy to see the reflected disorder of this system with these maps
as they indicate that there is intense diffuse scattering that appears in every high-symmetry
direction.

Coming back to this idea of isolated defects that turn into a form of chemical short-range
ordering dependent upon the level of doping: it is supported by the derivation given by Févre et
al. [73], in which the distance between two oxygen vacancies (d) can be related to the molar
concentration of Yttria (x) and the lattice parameter of Yttria-Stabilized Zirconia (a=5.16 Å):

d =
a

2

[ x

2(1 + x)

]−1/3
(1.5)

Following this equation, the distance between oxygen vacancies is 1.5a for 10 mol.% Yttria-
Stabilized Zirconia, but it quickly drops inverse-exponentially. As molar concentration of Yttria
increases and the oxygen vacancy clusters begin to order themselves into aggregates, the isolated
defect scattering mechanism will give way to a dependency related to the ordering of the vacancy
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aggregates, causing the thermal conductivity to slightly increase. Goff et al. [77] confirmed
that the oxygen vacancies order themselves differently according to Yttria concentration, and
Cousland et al. [72] further defined that the oxygen vacancies align along the [111] direction
for Yttria concentration of 9 mol.%, and form an O → VÖ → Zr4+ pattern along the [112]
direction (a slightly modified ordering opposed to that of Goff et al. [77]). Naturally, there
were extensive lattice dynamics studies [72, 78–80] being contributed in parallel to this story
line which gave information about how phonons were affected by this defect structure. In my
unpublished manuscript, Turner et al. [81], we provide new insight into the evidence of disorder-
induced low-lying optical phonon branches for the same 9.5 mol.% Y2O3 concentration sample
whose diffuse scattering patterns are shown in Fig. 1.8.

1.3.3 Type-I Clathrates

Figure 1.9: Crystallographic structure of
the type-I clathrate Ba7.81Ge40.67Au5.33.
Cages are formed by Ge atoms (light grey)
with Au substitutions (gold) such that the cages
are slightly distorted or compacted. Ba atoms
(green) near the center of the cages have a slight
off-centering due to the number and placement
of the Au substitutions on the cage. Despite
the complex structure, type-I clathrates form
simple cubic structures with a lattice parameter
of 10.8 Å. Figure has been taken directly from
Fig. 1(a) in Turner et al. [57].

As was introduced in Section 1.2, clathrates
and other systems with many atoms per unit cell
fall into the category of Slack’s PGECs. A wide
range of publications have also shown us that these
materials are extremely customizable in terms of
affecting κL and the Seebeck coefficient [30]. For
instance, Suekuni et al. [82] have shown that chang-
ing the Ge content in Sr8Ga16Si30−xGex alters the
size of the cages, which in turn lowers and flat-
tens κL. Ye et al. [83] as well were able to pro-
duce n- and p-type samples, with both positive
and negative Seebeck coefficients, and crystal-like
and glasslike lattice thermal conductivities simply
by changing the amount of Au substitutions to
the clathrate series Ba8AuxGa16−3xGe30−2x. Such
publications are perfect examples of how we can
engineer complexity and disorder onto materials in
order to manipulate thermal conductivity.

Type-I clathrates specifically have a cage struc-
ture in which a host network of atoms surrounds a
guest atom at the center of each cage. They consist
of 2 dodecahedrons and 6 tetrakaidecahedrons per
unit cell [84]. The cages of clathrates have an elec-
trical conductivity on the level of a highly-doped
semiconductor, while the atoms at the cage centers
remain only loosely bonded to the cage, which disrupts the propagation of phonons, allowing
clathrates to maintain a low and almost temperature-independent thermal conductivity.

In the case of the clathrate chosen for my Ph.D work, Ba7.81Ge40.67Au5.33, the Germanium
cage maintains the electrical conductivity of a highly-doped semiconductor, while the Barium
“rattler” atom disrupts the phonon propagation and therefore thermal conductivity. The rattler
atom causes low-lying optical modes to cut off the acoustic phonon dispersion, limiting the
available phase space for propagating, heat-carrying acoustic phonons. Since this is such a
defining characteristic in the lattice thermal conductivity of clathrates, we can actually rewrite
eq 1.3 as the following [57], where Eν

1 (T ) marks the energy of the first optical mode, i.e. the
cut off of the acoustic phonon regime. (The ρν(ωq) term refers to the mode-specific phononic
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density of states, and will be defined in Section 2.2.)

κacL (T ) =
∑

ν

∫ Eν
1 (T )

0
κac,νL (ωq)ρν(ωq)dω (1.6)

This, along with the anharmonicity of the system due to atomic substitutions and a flattening
of the cage structure, control the temperature independent regime of thermal conductivity (50-
300 K [27]). Even though the optical branches do not participate in heat transport, the presence
of a large number of optical branches leads to a very large energy and momentum phase space
for the three-phonon scattering mechanism, thus impacting κL [85].

In order to design a clathrate for the purpose of using it as a thermoelectric material, the
clathrate must be semiconducting. This is done by making transition metal substitutions that
follow the general formula Ba8TMxGe46−x, for Ge-based clathrates. This formula comes from
the Zintl-Klemm Rule, which ensures that the clathrate will be both semiconducting and chem-
ically stable [86, 87]. This is a rule generalized for the entire class of so-called “Zintl materials,”
not just clathrates, that says that electropositive atoms should provide electrons to the elec-
tronegative atoms in order to balance the charge of the material [1, 88].

For clathrates, that means that the total charge of the guest atoms should balance the total
charge of the substitution atoms. Inserting guest atoms to the center of the cage structure is
much like inserting an ion into an otherwise inert system. The transition metal substitutions
must be made to balance the charge of these ions. Predictions about stable type-I clathrates
and elements that contribute to creating those stable clathrates have been established in litera-
ture [87]. Additionally, it is known that these substitutions prefer to fill the 6c sites in the host
lattice [89] (see Fig. 1.9 and explanation in the following paragraphs). A preference for other
sites over 6c is unlikely to occur since this requires more energy, and it leads to a less optimal
configuration of the cage [90].

Therefore, for Ba7.81Ge40.67Au5.33, the number of Au substitutions for Ge lattice atoms
must balance the charge of the 8 Ba atoms, which have a total charge of +16. The charges of
different transition metals are given as nominal charges, ∆q, where ∆q is the difference between
the valence electrons of the transition metal and of Ge. In other words, moving left across
the Periodic Table of Elements away from Ge, one is subtracted from ∆q with each passing
column, i.e. Au is three columns away from Ge, giving ∆q = −3. Therefore, 6 Au substitutions
can be made, giving the formula Ba8Ge40Au6 [91]. However, it was found that Ba8Ge40Au6

produced a metallic behavior [91, 92]. This was corrected by Zhang et al. [84], who proved that
a semiconducting behavior could be engineered by inducing vacancies and applying the formula
Ba8AuxGe46−x−y□y, resulting in the final form of Ba7.81Ge40.67Au5.33.

The chemical structure of Ba7.81Ge40.67Au5.33 is given in Fig. 1.9. The host atoms occupy
Wyckoff sites 6c, 24k, and 16i, while the guest atoms are located at the 2a and 6d sites,
accounting for 54 atoms per unit cell, all contained into a simple cubic lattice structure (a =
10.8 Å), space group Pm3̄n [27, 83, 84, 92]. As seen in Fig. 1(d)-(f) of Lory et al. [27], the number
and placement of the Au substitutions onto the Ge cage determines the slight off-centering of
the caged Ba atom at the center. In Ba7.81Ge40.67Au5.33, there are opportunities for 1, 2, or
3 substitutions on a given cage, each resulting in a different local off-centering, which in turn
result in the off-centered, four-fold-hollow-site motions of the Ba atoms in the tetrakaidecahedral
cages [27]. On the macroscale, however, there is no ordering to these substitutions, meaning that
the average crystal symmetry is still preserved, and that these types of off-centering should be
considered more as point defects than as a kind of short-range ordering [27]. This off-centering
is small in comparison to the size of the cage, but has a very large impact on the properties of
clathrates [85].

In terms of the phonon scattering mechanisms mentioned above, the structural complexity in
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clathrates comes from their cage structure and 54 atoms per unit cell. Then, Ba7.81Ge40.67Au5.33

has additional chemical disorder due to Au substitutions that are made on the 6c site of the
cages [84] and the vacancies that are engineered according to the formula Ba8AuxGe46−x−y□y.
Finally, we must also consider anharmonicity, due to the large amount of phonon-phonon scat-
tering that takes place in this system. Specifically for this third concern, the recent use of the
self-consistent phonon (SCP) method by Tadano and Tsuneyuki [93] led to a more accurate cal-
culation of anharmonicity in clathrates. This novel theoretical method will be discussed in more
detail in Section 1.4.1. However, for now I reflect on the fact that this SCP method has pro-
vided improved results for a wide range of complex systems that require special attention given
to anharmonicity [94–99], and that my recent results [57] confirm that the amount of quartic
anharmonicity attributed to clathrates by the SCP method matches experimental findings. This
conversation between theoreticians and experimentalists provides necessary checkpoints when
introducing novel theoretical methods, and promotes the inclusion of different communities that
see the potential for use of, for example, the SCP method in explaining their systems of interest.

1.3.4 High-Entropy Alloys

High Entropy Alloys (HEAs) are equimolar alloys containing four or more elements that
are evenly dispersed in the lattice, also known as single-phase random solid solutions. They
are attributed to the publications of Yeh et al. [100] and Cantor et al. [101] in 2004, and have
drawn a significant amount of research interest since their discovery. As opposed to simple
alloys, HEAs have no single principle element, and it is believed that this high entropy mixing of
many elements is the reason that HEAs have improved mechanical strength, high-temperature
capabilities, and many other unique characteristics. The selection of certain combinations of
elements has led to applications in corrosion resistance, superconductivity, and even in hydrogen
storage [102–105]. They are also often compared to bulk metallic glasses (BMGs), although
they are principally different, with HEAs having long-range order and BMGs, being amorphous
alloys, having no long-range order. (A detailed comparison between HEAs and BMGs is given
in my submitted work, Turner et al. [106]).

The strict definition of what constitutes an HEA is still under debate within the community.
However, in order to ensure that a random solid solution is actually the preferred formation of the
system, also preferable over the formation of a bulk metallic glass or intermetallic compound, we
look to the Hume-Rothery rule, which says that (1) the amount of mixing enthalpy and (2) the
atomic size differences involved in a given alloy determine the outcome of a solid solution [107,
108]. From thermodynamics,

∆Gmix = ∆Hmix − T∆Smix. (1.7)

In other words, at the phase formation stage, all elements are mixed at temperature T , and
the entropy of mixing, ∆Smix, is subtracted from the enthalpy of mixing, ∆Hmix, to obtain the
Gibbs free energy of mixing, ∆Gmix.

As their name suggests, HEAs are made possible due to their high amount of entropy. In
order to encourage the formation of a random solid solution, the mixing entropy needs to be
large enough to counteract the want for the system to form either a compound due to negative
mixing enthalpy, or a segregated state due to positive mixing enthalpy [109]. For HEAs, that
mixing enthalpy is defined as [110–112]

∆Hmix =
n∑

i=1,i ̸=j

4∆Hmix
ij cicj , (1.8)

where, for n elements, ∆Hmix is the sum of the molar ratios ci and cj multiplied by the mixing
enthalpy for each interaction of elements i and j.
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There are usually four types of entropy at play, namely configurational, vibrational, magnetic
dipole, and electronic randomness, but the mixing entropy of HEAs is almost completely due to
configurational entropy. Configurational mixing entropy, Sconf, can be defined from Boltzmann’s
equation for thermodynamic entropy, where kB is Boltzmann’s constant, and w is the number
of ways that the energy of the system can be distributed among the particles of a gas, or, in this
case, among the atoms of the lattice:

∆Sconf = kB lnw. (1.9)

By relating kB to the gas constant, R, eq. 1.9 can be rewritten as

∆Sconf = −R

n∑

i=1

Xi lnXi, (1.10)

where there are n components in the system, each with a mole fraction Xi. As stated before,
HEAs are equimolar materials by definition, and therefore the equation can be reduced to

∆Sconf/mol = −R lnn, (1.11)

where Sconf per mole is dependent only on the gas constant and the number of elements in the
system. An equimolar system with n = 5 elements, for instance, has a ∆Sconf/mol = 1.61R. In
practice, it is accepted that ∆Sconf/mol ≥ 1.5R is typically enough mixing entropy to overcome
formation enthalpies of intermetallic compounds and cause a random solid solution to form
within a given temperature range in a metastable state. The random alloy will be stable as
long as prolonged exposure to high temperature does not promote atomic diffusion and, by
consequence, phase segregation.

As for the second criteria, the atomic size differences, we look to the parameter Delta,
δ [107, 108]

δ =

√√√√√
n∑

i=1

ci

(
1 − ri(∑n
i=1 ciri

)
)2

, (1.12)

which also depends on parameters listed above, in addition to the average atomic radius, r̄ =∑n
i=1 ciri, averaged from each atomic radius ri for elements n.
These two parameters, ∆Hmix and δ, determine the chance that a solid solution is formed

over the chance of a BMG or intermetallic phase. In general, a higher ∆Hmix and lower δ than
those of BMGs are needed to ensure a solid solution (see Fig. 2 from Ref. [107] and Fig. 1 from
Ref. [113]).

Once we have ensured a solid solution, we can also predict whether the HEA will form an
FCC or BCC structure. Once again, in general, FCC HEAs have a higher ∆Hmix and lower
δ than those of BCC HEAs (see Fig. 2.5 from Ref. [109]). In addition, elements Ni, Mn, Cu,
and N tend to force an FCC phase, while elements Cr, Mo, Si, and Nb tend towards a BCC
phase [108, 114]. Further methods by Guo et al. [115] exist that integrate the density of states of
valence band electrons, predicting that a value less than 6.8 gives a BCC structure, while a value
above 8 gives FCC. Finally, He et al. [110] were able to experimentally prove that simply by
changing the amount of Al concentration, they were able to move the base HEA FeCoCrMnNi,
originally an FCC structure, to a BCC structure. I also note that, at the time of writing, HCP-
structure HEAs are currently in development (private communication with M. Feuerbacher).

From a lattice dynamics perspective, HEAs pose an interesting question as they are com-
pletely chemically disordered systems, as seen in Fig. 1.10, meaning that Bloch’s theorem no

18



1.4 The Study of Complexity within the Research Community

Figure 1.10: The evolution of reaching the crystallographic structure of FeCoCrMnNi. In
order to grasp the idea of a random solid solution, such as the high-entropy alloy (HEA) FeCoCrMnNi,
we start with the FCC structure of pure Ni. The evolution of Ni, to equimolar NiFe, to equimolar
FeCoCrMnNi provides a visual representation of the disorder produced by forming an HEA. Despite the
lattice distortions and strain caused by creating a five-element HEA, all three structures shown maintain
an FCC lattice with a lattice parameter of 3.6 Å.

longer holds since there is no translational symmetry [116, 117]. Determining if and how phonons
propagate in such a system could help us understand the influence of extreme disorder on long-
range ordered crystals. Indeed, by forcing 5 or more elements into this random solid solution,
it is thought to cause local lattice strain, since the lattice is trying to compensate for the
many different-sized atoms that are randomly assorted in the system [108, 118, 119]. Further-
more, according to the combination of elements proposed, atomic size difference, mass difference,
force-constant fluctuations, and chemical/magnetic short-range ordering are all possible types
of disorder that can play roles in HEAs. All of this chemical disorder should make itself known
in the phonon behavior of these materials.

The phononic density of states have been experimentally measured for a series of HEAs by
Lucas et al. [120, 121], proving that there is still long-range ordering and an overall crystalline
lattice structure with propagating phonons. My submitted work on the Cantor-Wu HEA Fe-
CoCrMnNi, however, marks the first complete lattice dynamics study of a five-element HEA. This
article provides a first look at the phonon dispersions and intrinsic linewidths of FeCoCrMnNi,
and puts the results in the context of other highly disordered crystals.

1.4 The Study of Complexity within the Research Community

The above sections displayed the way that I am applying the definition of complexity from
Section 1.2 to actual categories of materials. I will now try to globally summarize the current
methods that the scientific community is using to model (Section 1.4.1) and measure (Sec-
tion 1.4.2) different types of complexity and disorder. These methods all track the ongoing story
of having a unified explanation of thermal transport for complex and disordered systems.

1.4.1 Theoretical Contributions

One of the driving forces right now in the story of unified heat transport in complex and
disordered systems is the struggle to explain the deviation from 1/T at higher temperature in
the lattice thermal conductivity of many such systems [27, 85, 96–98, 122]. As shown at higher
temperatures in Fig. 1.3, a glasslike thermal conductivity plateaus and remains temperature
independent, rather than following the expected 1/T decay. The distinction lies in the disorder
of these types of systems, and calculations that use ordered model structures, even ones that
incorporate three-phonon scattering processes, cannot fully replicate this behavior. Therefore,
two key avenues of interest for theoreticians at the moment are to (1) incorporate disorder into
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their models for better matching with experimental results and (2) move beyond the harmonic
and quasiharmonic approximations to anharmonic perturbation theory in order to explain certain
important anharmonic effects in these materials.

To elaborate on the inclusion of disorder, a pertinent example is that which was done for the
quasicrystal approximant o-Al13Co4 [122]. The authors found that by randomly removing several
Al atoms from the generated supercell in order to simulate vacancies, the model with vacancies
had a lower minimum-energy atomic configuration than the ordered model. This disordered
model then provided a better match to the experimental phonon dispersions, confirming the
significance of using a model that includes a representation of the disorder in the system.

From recent studies like these, we could say that we have in fact barely scratched the surface
when it comes to treating complexity and disorder through current theoretical means. While
major breakthroughs are directing us towards possible solutions, we still globally lack a large
enough library of case studies to accurately predict the methods needed for treating new and
emerging systems. However, the promotion of the use of disordered structure models for complex
and disordered systems will lead us to being able to decouple the effects of local chemical disorder,
polarization mixing/dependence, and other significant components of disorder.

As for the second key avenue of interest, i.e. moving towards the consideration of anhar-
monic effects in such systems through the use of anharmonic perturbation theory, I will refer to
the example of type-I clathrates. As another route to treating the deviation from the typical
1/T behavior at higher temperature, ab initio calculations for the type-I clathrate Ba8Ge30Ga16
using the self-consistent phonon (SCP) method were published in 2018 [93]. These calculations
are based on the ideas that not only must we include the quartic anharmonicity term to the
Hamiltonian, but also that these anharmonicity terms are significant enough to be treated non-
perturbatively. (These concepts will be further defined in Chapter 3, Section 2.3.1.2.) This use
of the SCP method brought about a closer alignment to experimental lattice thermal conduc-
tivity for Ba8Ge30Ga16, particularly between 10-300 K. This method has also been tested for
other complex and disordered crystals with strong anharmonicity, with encouraging results [94–
98, 123, 124]. Current SCP method calculations, such as those for Ba8Ge30Ga16, also neglect
important parameters such as polarization mixing, which the community agrees plays quite an
important role in complex systems [125–129]. Therefore, there are still significant challenges to
overcome, given that these additional considerations are often computationally expensive.

Lastly in the story of a unified understanding of heat transport in complex and disordered
systems, I would like to reference the works of Simoncelli et al. [130] and Isaeva et al. [131].
In recent years, theoreticians have attempted to bridge the gap between the main theoretical
methods used for thermal transport in glasses and crystals, namely the Allen-Feldman [132]
and Peierls-Boltzmann [133] theories, respectively. Ideally, these methodologies would converge,
allowing us to have one explanation for heat propagation in all solids, but disordered, anharmonic
crystals and harmonic glasses, in particular, lie in somewhat of a gray area in which neither of
the current two theoretical methods can fully explain. Though they use fundamentally different
approaches, the work of these two research groups represents a new age of theories that will fill
the gaps in the previous theoretical methods, some of which are now almost a century old. I
emphasize that it is equally important to question and redefine, if necessary, the major equations
and definitions of heat transport, at both the levels of phonon lifetime and κ, as it is to develop
more sophisticated methods for calculating local atomic disorder and complexity.

1.4.2 Experimental Contributions

One of the main challenges for experimentalists is the collection of experimental phonon life-
time data. We are lacking lifetime measurements of almost all types of systems, both simple and
complex. The difficulties remain that not only do we need to have access to phonon dispersions
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and lifetimes at THz-range frequencies, but we also need them in a wide range of momentum.
This makes X-ray and neutron scattering techniques the techniques of choice, however this al-
ready limits data collection sources to the few synchrotrons and nuclear reactor facilities that
currently exist in the world for science. (For more information see Chapter 3.)

Many phonon lifetimes are or could be within the instrumental resolution of state-of-the-art
X-ray and neutron scattering techniques, and while we are step-by-step beginning to understand
the mysteries behind glasslike thermal conductivity in complex systems through these studies
focused on intrinsic phonon lifetimes, the scientific community also needs to make a deep-dive
into the study of intrinsic lifetimes of simple systems as well, in order to have proper comparisons.
This is the only way that we will uncover the bridge between simple and complex systems. To
give an example, in my recently submitted work Turner et al. [106], we have published the first
experimentally measured intrinsic phonon linewidths for an HEA. While we are able to make
experimental and theoretical comparisons to other binary and ternary alloys [134], we could not,
to the best of our knowledge, find experimentally measured elemental linewidths, such as for
Cr or Ni. This is critical if we are to truly follow the disorder induced in going from a single
element to a five-element random solid solution alloy.

To give another example, experimental intrinsic phonon lifetime measurements for clathrates
are beyond almost all state-of-the-art inelastic neutron and X-ray scattering techniques, making
it difficult to see the trends of this parameter with momentum and temperature in this material,
and therefore its direct influence on κL. However, the recent publication by P.-F. Lory and
co-authors [27] used the Neutron Resonance Spin Echo (NRSE) technique (see Section 3.1.9) to
prove that acoustic phonons in clathrates have remarkably long lifetimes, traveling even 100x
the length of the unit cell. This is in conflict with the previously held theory that it was
the anharmonic vibrations of the guest atoms that caused short-lived phonons and therefore
limited the overall lattice thermal conductivity. While this was a tremendous step forward in
our understanding of heat propagation in clathrates, a much larger data collection is needed in
order to understand temperature and energy dependencies of phonon lifetime.

Experimental limitations to neutron- and X-ray-based phonon measurements aside, there can
also be limitations in synthesis techniques. Neutron-based phonon measurements require quite
large crystals (∼1 cm3), and both neutron and X-ray techniques depend on having extremely
high quality single crystals with small mosaic spreads for maintaining a high resolution and easy
alignment of the sample. Certain elements are also too absorbing to be measured with neutrons,
or too light to be measured by X-rays (see Chapter 3). For example, coming back to the study
of HEAs once again, large single crystal growth of an HEA by Bridgman technique was reported
by Feuerbacher et al. [135] in 2016, and this has since opened the door for neutron-based studies
that allow us to measure phonons, such as in my submitted work, Turner et al. [106]. As well for
the NRSE measurements mentioned above, these were only made possible due to the excellent
crystal quality and small sample mosaic. However, the perfection of synthesis techniques for
such complex systems remains a difficult task, and if we as a research community are to push
for the use of these novel materials in real-life applications, we first need to meet this essential
proof-of-concept step by successfully synthesizing them.
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CHAPTER 2

The Theory of Lattice Dynamics in Complex
Crystals

In order to understand macroscopic thermal properties such as heat capacity and thermal
conductivity of a semiconductor or dielectric material, the microscopic lattice properties must
first be considered. Macroscopically, we think of a crystal as a solid, while microscopically we
know that this solid is actually made up of a large number of atoms, typically on the order of
Avogadro’s number (1023), that are strung together by chemical bonds to form a lattice structure.
The vibrations of these 1023 atoms are described by a set of plane waves, which correspond to
specific quantized states in quantum mechanics. Each state, therefore, is a channel through
which heat is transported in a given material.

In order to describe phonons, or these quantized lattice vibrations, we must attempt to define
these vibrational waves in a way that reflects the crystal structure and unit cell of a given system.
A common analogy which will be expanded upon throughout this chapter is to think of a lattice
structure as a 3D set of atoms that are bonded by springs, such that the interactions can be
considered by Hooke’s Law with a plane wave solution [31], which then allows us to relate the
individual displacement of each atom to the force being acted upon on that given atom [136–
138]. Hooke’s Law states that the force used to stretch a spring is related to the distance the
spring is stretched multiplied by the elastic spring constant.

This chapter will detail the harmonic oscillations of atoms at both 1D and 3D scales (Sec-
tion 2.1). I will then use this foundation to discuss phonon properties in and outside of equi-
librium (Section 2.2). Finally, I will provide examples of how these concepts are used to model
complex and disordered crystalline systems, and in particular anharmonicity, using molecular
dynamics and density functional theory simulations (Section 2.3).

2.1 Lattice Dynamics in the Harmonic Approximation

We can first consider that the atoms in a crystalline material oscillate about their equilibrium
points due to the thermal energy in the system. The total potential energy would therefore be
the sum of the potential energy of each atom at equilibrium, and the potential energy due to
each atom’s small displacement from equilibrium.

Under the adiabatic approximation [139], we can assume that the total energy of such a
lattice can be described by the kinetic and potential energies of ions found in the nuclei and

22



2.1 Lattice Dynamics in the Harmonic Approximation

their valance electrons. We will concern ourselves, however, only with the kinetic energy of
the crystal as a whole, and of the potential energy of all ionic displacements from equilibrium
within that crystal. In other words, we neglect the impact of the dynamics of electrons. This
assumption comes from the fact that electrons are said to follow the slower motions of the
much heavier ions (as viewed from the electron’s point of view) in a way that is progressive and
gradual, or adiabatic. This means that the dynamics can be reduced to a system of ions that
are connected by an effective ion-ion pair potential [136].

The potential energy can be written as a Taylor expansion series [140, 141], and, within the
harmonic approximation, these potential energies of displacements can be defined with Hooke’s
law in which the chemical bonds between the atoms act as springs [136, 137].

E = E0 +
∑

n

1

n!

∂nE

∂un

∑

s

(us − us+1)
n (2.1)

The E0 term is the total energy when the system is at rest, n is a non-zero positive integer,
and s represents the location of a reference atom. The displacements of the atoms, us, us+1, ...,
are then defined by the masses of the atoms and the spring constants of the chemical bonds.
The n = 1 term cancels out since the first derivative of E is zero, or, in other words, because
the forces compensate at equilibrium.

In the harmonic approximation, we only include elements of the Taylor expansion series
through n = 2, and therefore eq. 2.1 becomes

E = E0 +
1

2

∂2E

∂u2

∑

s

(us − us+1)
2 (2.2)

As the name suggests, each atom acts as a harmonic oscillator. For the moment we will put
aside elements that include the higher-order terms such as n = 3 and n = 4, and we will return
to this topic in Section 2.3, as these pertain to anharmonic motions of atoms. As one might
suppose, however, these terms have proven relevant to the explanations of the motions of atoms
in complex and disordered systems such as the ones discussed in this thesis.

Through the use of sophisticated computer programming techniques developed within the last
decade or two, the harmonic approximation can now be calculated quite successfully, accurately,
and quickly for many materials. Although this was not the direct topic of this thesis work, a
brief overview of these developments will be given in Section 2.3. We will first, however, spend
time on a simplified harmonic approximation model represented by a linear chain of atoms in
order to present the relevant concepts and set the stage for this discussion. This model will
then be compared to experimental results measured during my thesis work in order to provide
evidence that we can still gain significant information on complex and disordered systems from
the use of only the harmonic approximation.

Many derivations for the dispersion relation solutions to monatomic and diatomic linear
chains of atoms exist in literature [31, 136, 140, 142]. Therefore, I prefer to focus on a more
relevant example, namely one that represents the type-I clathrate cage and caged atom system.
This derivation will follow similar derivations for cage structures that can be found in Refs. [24,
142], and in the Supplementary Material of Ref. [25], the latter of which contains a specific
derivation for the type-I clathrate Ba8Ga16Ge30. More advanced versions of this concept have
also been developed by N. Nakayama, Y. Liu, and co-authors [125, 143], proving that this simple
approach has merit.

2.1.1 A simplified linear chain of atoms model for clathrates

Recalling from Section 1.3.3 that, structurally, clathrates have cages made of host atoms
with guest atoms at the center of the cages, the motions of atoms in a clathrate system can be
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2.1 Lattice Dynamics in the Harmonic Approximation

described with the simplified model sketched in Fig. 2.1 in which two host atoms (black circles)
are bonded together and a guest atom (empty circle) is bonded to each of those two host atoms.
The host atoms and the guest atom have masses of M1 and M2, respectively. The elastic spring
constant between the two host atoms is denoted as K1, and those between the guest atom and
a host atom are K2. The distance between two host atoms is defined as a. We will come back
to the importance of a, or the lattice parameter, for the 3D lattice throughout this chapter. For
this simplified 1D model, however, it represents the distance taken up by one unit, or cell, and
we assume that Fig. 2.1 is repeated many times in order to create a chain, with a representing
the minimum distance at which we can find the next repeated cell.

Figure 2.1: Linear Chain of Atoms Model for Clathrates. The host-host and guest-host inter-
actions within a clathrate cage are described with the given schematic. Host atoms (black circles) have
mass M1 and the guest atom (white circle) has mass M2. The elastic spring constant between two host
atoms is K1, and between a guest and a host atom is K2. The atoms are labeled with s and s + 1 in
order to distinguish between the naming of individual atoms. The distance between two host atoms is the
lattice parameter a (∼10.8 Å for type-I clathrates [144]). H(t) and G(t) represent the time-dependent
displacements of the host and guest atoms, respectively, from their equilibrium positions.

With this configuration, both the interactions of the lattice network (host-host) and the in-
teraction between the guest and host atoms (guest-host) are described. The interaction between
two guest atoms (guest-guest) will be ignored in this model, however, because we will only ana-
lyze the nearest-neighbor atomic interactions. Furthermore, as a first approximation, the guest
atom subsystem can be considered as a network of independent atoms only loosely bonded to
their host atom cages, making them act as independent harmonic oscillators like those described
in the Einstein model [31].

With these concepts in mind, the two equations of motion that describe the linear chain
of atoms in Fig. 2.1 can be written in terms of the nearest-neighbor interactions and Hooke’s
Law. The force on a given atom is the force due to the interaction with the atom on its right,
subtracted by the force due to the interaction with the atom on its left. In the following two
equations, we describe the interactions on host atom Hs as FH and the interactions on guest
atom Gs as FG. For the host atom Hs, it is necessary to consider the interactions with the guest
atom on either side, separated by a spring with K2, and and interactions with the host atom on
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2.1 Lattice Dynamics in the Harmonic Approximation

either side, separated by a spring with K1.

FH = K1

[
Hs+1(t) −Hs(t)

]
−K1

[
Hs(t) −Hs−1(t)

]
+ K2

[
Gs(t) −Hs(t)

]
−K2

[
Hs(t) −Gs−1(t)

]

FG = K2

[
Hs+1(t) −Gs(t)

]
−K2

[
Gs(t) −Hs+1(t)

]

(2.3)

The equations of motion, FH and FG, are equal to M1
d2H(t)
dt2

and M2
d2G(t)
dt2

. Using this relation
and simplifying, we have the following. At this point I will also remark that eq. 2.4 reduces to
the monatomic linear chain of atoms when K2 ≪ K1, or to the diatomic linear chain of atoms
when K1 ≪ K2.

M1
d2H(t)

dt2
= K1

[
Hs−1 + Hs+1 − 2Hs

]
+ K2

[
Gs−1 + Gs − 2Hs

]

M2
d2G(t)

dt2
= K2

[
Hs + Hs+1 − 2Gs

]
(2.4)

We can consider that the displacements in Fig. 2.1 can be described by the solution to a
plane wave, such as those given in eq. 2.5. These equations quantify the wave and its complex
conjugate. H(t) and G(t) refer to these two solutions, where H(t) refers to the solution for host
atoms, and G(t) refers to the solution for guest atoms. The amplitudes of motion are given the
variable names A1 and A2 for host atoms and guest atoms, respectively. The letter s refers to
the position of any given atom relative to the equilibrium position of the reference atoms, Hs

and Gs. Finally, q refers to the wave-vector, t refers to time, and ω refers to the vibrational
frequency of the propagating wave.

H(t) = A1

[
cos(qsa− ωt) + i sin(qsa− ωt)

]
+ c.c. = A1e

i(qsa−ωt) + c.c.

G(t) = A2

[
cos(qsa− ωt) + i sin(qsa− ωt)

]
+ c.c. = A2e

i(qsa−ωt) + c.c.

(2.5)

The system of equations of motion from Eq. 2.4 becomes:




M1ω
2A1 = 4K1A1 sin2

(1

2
qa
)
−K2A2

(
1 + e−iqa

)
+ 2K2A1

M2ω
2A2 = −K2A1

(
1 + eiqa

)
+ 2K2A2

(2.6)

Next we define the Dynamical Matrix of the equations of motion, D, and ξ as the polarization
vector matrix of the waves. Together these can be related to the equations of motion, as shown
in eq. 2.7. Note that the polarization vector includes the two amplitudes, A1 and A2. We will
return to the importance of the polarization vector in Section 2.1.2.

w2ξ = Dξ, where ξ =



√
M1A1

√
M2A2


 (2.7)

The Dynamical Matrix, therefore, is written as follows:

D =




4K1
M1

sin2
(
1
2qa
)

+ 2K2
M1

−K2√
M1M2

(
1 + e−iqa

)

−K2√
M1M2

(
1 + eiqa

)
2K2
M2


 (2.8)
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2.1 Lattice Dynamics in the Harmonic Approximation

In order to solve the system of equations in eq. 2.7, we set the determinant equal to zero and
diagonalize the Dynamical Matrix in order to obtain the eigenvalues:

∣∣D− ω21
∣∣ = 0 (2.9)

The two solutions can be written in terms of the matrix D positions D11, D12, D21, and D22:

ω2 =
D11 + D22 ±

√
(D11 + D22)2 − 4(−D12D21 + D11D22)

2
(2.10)

The dispersion relation is then written as the following1:

ω2 = K2
M1 + M2

M1M2
+

2K1

M1
sin2

(1

2
qa
)
± 1

M1M2
×

√(
K2(M1 + M2) + 2K1M2 sin2

(1

2
qa
))2

−M1M2

(
2K2

2 − 2K2
2 cos(qa) + 8K1K2 sin2

(1

2
qa
))

(2.11)

2.1.1.1 Dispersion Relation from the Linear Chain of Atoms Model for Clathrates

We can take the two solutions to eq. 2.11 and plot them in order to view change with wave-
vector, q, of the vibrational frequency, ω, of the waves, as shown in Fig. 2.2. The following
paragraphs will detail the fit that was made to actual ω dependencies for the type-I clathrate
Ba7.81Ge40.67Au5.33, which was introduced in Section 1.3.3. Therefore, the experimentally-
measured, longitudinally-polarized phonon dispersion at 300 K for Ba7.81Ge40.67Au5.33 has also
been plotted in the figure for comparison alongside the linear chain of atoms model for reference.

The two solutions to our linear chain of atoms model in eq. 2.11 form the two types of
phonon modes: acoustic and optical phonon modes. There is meaning in these two definitions
in that acoustic modes refer to traveling waves in which all atoms are moving in phase with
each other, otherwise known as a sound wave, while optical modes refer to out of phase motions
of the linear chain [141]. I would like to take a moment to emphasize the importance of these
definitions as this is the most trivial way to understand one of the main themes of this thesis:
the phonons that are responsible for transporting heat in solids are the acoustic phonons, since
these phonon modes displace the center of mass of each unit cell and therefore cause the sound
wave to travel or disperse across multiple unit cells and through the lattice. Briefly recalling the
formula for κL (eq. 1.3), an acoustic phonon with a given energy and velocity will carry some
unit of heat through the lattice for a given distance before being scattered. Therefore, in the
case of minimizing κL for the optimization of the ZT coefficient, these are the phonons that
must be scattered quickly in order to limit the propagation of heat.

Optical phonon modes, on the other hand, do not displace the center of mass of the unit
cell, and therefore stay centered at a given energy with zero velocity. They cannot, therefore,
contribute to the propagative component of κL. They do, however, contribute to the heat
capacity, which will be discussed in Section 2.2. (Note that there can be exceptions to this rule
in some extreme situations in which there are highly dispersive optical phonon modes, and/or
an interaction between acoustic and optical modes. In these cases the optical phonons could
contribute in some way to the propagative component of thermal conductivity.)

1This formula includes a correction to an error in the Ref. [142] version of this derivation.
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Figure 2.2: Dispersion relation for the clathrate linear chain of atoms model. This dispersion
relation, or vibrational frequency ω vs wave-vector q, has been derived from a linear chain of atoms model
for a 1D clathrate system (see text). The model (solid black line) is compared to experimental data for
the type-I clathrate Ba7.81Ge40.67Au5.33 (black triangles and crosses) taken at 300 K [57]. The center of
the Brillouin zone is marked as the Γ point and the end is marked by a dashed blue line at π/a. The
sound velocity, vs, is 26 meV.Å. The gap of 0.54 meV between the acoustic and optical branches that is
calculated using the linear chain of atoms model is shaded in gray.

Now looking again at Fig. 2.2, acoustic phonon modes form dispersive branches that are
defined by having ω = 0 at q = 0, followed by a linear dependence in ω at low q, and therefore
this mode is the lower frequency mode of the two shown in Fig. 2.2. That linear dependence
of the slope is called the sound velocity. This can be found by considering the group velocity,

vg(ω) = ∂ω
∂q , at the acoustic limit when q goes to zero, or

(
dω
dq

)
q→0

:

vs =
(dω
dq

)
q→0

= a

√
2K1 + K2

2(M1 + M2)
(2.12)

The sound velocity based on this 1D linear chain of atoms model is 26 meV.Å, or 3,926 m/s.
As we have fit this model to experimental data for the type-I clathrate Ba7.81Ge40.67Au5.33, this
is also the value found in Turner et al. [57]. The third defining characteristic of the acoustic
mode is that there is a bending of the mode that occurs at higher q, leading to a decrease in
vg(ω), until the moment that vg(ω) = 0 at q = π/a. This is known as the van Hove singularity,
and we will return to this concept in Section 2.2. Optical phonon modes, on the other hand,
form almost non-dispersive branches that stay centered at or near a given non-zero energy, and
they too have vg(ω) = 0 at q = π/a. This mode is the higher frequency mode of the two shown
in the figure.
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2.1 Lattice Dynamics in the Harmonic Approximation

These behaviors are repeated for a selection of reciprocal space that contains all of the
useful information, otherwise known as the first Brillouin zone, and is defined by q = −π/a
to q = π/a [140]. This is because the solutions to eq. 2.11 will result in the same vibrational
frequencies no matter what integer n the wave-vector q is multiplied by. As seen in Fig. 2.2,
the end of the Brillouin zone at q = π/a has been marked by a dashed line. The center of the
Brillouin zone at q = 0 has another significance, since it corresponds to the point of repetition
of the reciprocal lattice vector, G. For more information on this, please see Section 3.1. It is
also called the Gamma point, Γ.

Let us now turn our attention to the values of M1, M2, K1, and K2, that gave us the fit of the
experimental data shown in Fig. 2.2. These parameters determine the characteristics of this plot.
For the relationship between the masses, we will assume that, rather than using the model in
Fig. 2.1 to represent strictly one atom of the host structure and one atom of the guest structure,
M1 and M2 will represent the ratio of host and guest atoms within a 54-atom unit cell. There
is more than one style of cage within the unit cell of type-I clathrates, namely dodecahedrons
and tetrakaidecahedrons (see Section 1.3.3), and many of the host atoms are actually shared
between cages. It is more prudent, therefore, to try to represent masses M1 and M2 as weighted
contributions of the host and guest atoms, respectively, within the 54 atoms of the unit cell, as
was suggested by Christensen et al. [25]. For the type-I clathrate Ba7.81Ge40.67Au5.33, therefore,
we will assume that M2 = 8mBa and M1 = 40mGe + 6mAu in order to represent the ordered
structure Ba8Ge40Au6.

Next, we fit the relationship between K1 and K2 such that they best represent what we know
to occur experimentally. From Fig. 3(a) of Turner et al. [57], we see that the lowest lying optical
branch, EBa, has an energy of 4.85 meV at the Gamma point Γ116 at 300 K (see also the black
cross in Fig. 2.2). Similarly, the second lowest optical branch, EAuBa, has an energy of 6.39 meV
at Gamma point Γ007 (see also the black triangle in Fig. 2.2). Therefore, tuning K1 and K2

to this region of interaction between the acoustic branch and these low-lying optical branches,
we find that K2 = 0.99 N/m and K1 = 3.25K2 = 3.22 N/m. The resulting gray shaded region
with a width of 0.54 meV in Fig. 2.2 represents the region of expected interaction between the
low-lying optical branches and the approaching acoustic mode. This interaction region can also
be viewed through the changes in displacement amplitudes of the acoustic and optical branches
in Fig. 2.4, which will be addressed in the next section.

We find, therefore, that our linear chain model is able to replicate a simplified version of the
interaction between the acoustic mode and the low-lying optical branches in clathrates fairly
well. The main conclusion to draw from Fig. 2.2 is that the intense curving of the acoustic mode
and decrease in vg(ω) occurs at approximately q = π/2a, meaning that the acoustic mode is only
allowed to disperse, unhindered, a fraction of what it should have dispersed to. This deviation
from linearity of the dispersion mode corresponds to its loss of pure acoustic character, meaning
that the atoms are no longer moving coherently all together. This is related to the notion of
phonon participation ratio, which is detailed in Refs. [26, 85] for type-I clathrates.

We now know that the true interaction between the acoustic and optical branches in type-
I clathrates is quite complex, even showing an experimentally-measured polarization depen-
dence [57]. More globally speaking, the aim with clathrates and other similar cage-style systems
is to be able to tune this gray shaded region in the figure, since, as shown in eq. 1.6, the onset
of this interaction largely defines the lattice thermal conductivity of the material. Therefore, we
can consider what would allow us to decrease the energy at which the acoustic mode disperses
to. In other words, how to further suppress the acoustic, dispersive phonons.

For instance, we could consider tuning the K2 parameter. The elastic spring constant K2

controls the energy at the Γ point at which the optical modes begin (see blue arrows in Fig. 2.2).
Decreasing K2 decreases this energy, meaning that we can further limit the acoustic phonons in
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Figure 2.3: Investigation of mass and spring constant relationships. In all four subplots, the
black lines represent the same linear chain of atoms calculation for the type-I clathrate Ba7.81Ge40.67Au5.33
as the one plotted in Fig 2.2. In (a), elastic spring constant K2 has been varied. The resulting group
velocities of the variation are shown in (b). In (c), K1 has been varied. Finally, in (d), the masses have
been adapted to replicate the mass ratios in type-I clathrates Ba8Ge30Ga16 and Ba8Si46.

this material by decreasing the elastic spring constant between the host and guest atoms, leading
to a decrease in the overall lattice thermal conductivity. This is what is shown in Fig. 2.3(a), in
which two smaller values of K2 have been plotted along with the original. Experimentally this
has actually been investigated as well by increasing the size of the cages [82].

The elastic spring constant K2 also determines the width of the interaction region, because
the values of both the acoustic mode at q = π/a and the optical mode at q = 0, which define the
shaded region shown in Fig. 2.2, depend only upon K2, not K1. Decreasing K2 also decreases
the sound velocity of the material, meaning that the phonons that are dispersing through the
material travel with a lower velocity [24]. This is emphasized in (b), in which the numerical
derivative, or group velocity vg, of (a) is plotted so that the reader can more visually see this
change. It also helps emphasize that a decreased K2 appears to result in a more dispersive
optical mode.

It is perhaps interesting to also develop the relationships between M1 & M2 and K1 & K2 a
bit further in order to understand their impacts on eq. 2.11, and consider other ways we could
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Figure 2.4: Amplitudes of Displacement for Guest and Host Atoms. Amplitudes A1 and A2 are
described across half of the first Brillouin zone for the acoustic phonon mode in (a), and for the optical
phonon mode in (b) for the dispersion relation of the linear chain of atoms example for a clathrate plotted
in Fig. 2.2. A1 and A2 represent host and guest atom contributions, respectively.

tune thermal conductivity in clathrates. Turning our attention to Fig. 2.3(c), in order to isolate
the influence of the ratio of K1 to K2, I have kept the M1, M2, and K2 values the same as
the original values, but have chosen a K1 both larger and smaller than the original value. We
can see that this relationship has no influence on the width of the interaction region, but rather
impacts the energy of the optical mode at q = π/a, suggesting that the ratio of force constants
controls the dispersive nature (or lack thereof) of the optical mode.

In Fig. 2.3(d), I have kept the original values of K1, K2, and M1 values, but re-plotted
eq. 2.11 assuming that M2 = 30mGe + 16mGa and M2 = 46mSi in order to represent the mass
ratios found in the type-I clathrates Ba8Ge30Ga16 and Ba8Si46, respectively. We can clearly see
that in both cases, the energies of the optical mode at q = 0 and q = π/a have both increased
with respect to Ba8Ge40Au6, widening the interaction region, and suggesting that the ratio of
the masses also helps control the width of said interaction region. I emphasize, however, that
these are not realistic simulations of the experimental dispersions found in these two additional
clathrates, but rather just a way to discuss the impact of the weighted mass ratios between host
and guest atoms. The K1 & K2 would need to be refit to experimental data in order to provide
a true comparison. Nevertheless, this also tells us that the K1 & K2 spring constant strengths
vary between type-I clathrates.

2.1.1.2 Amplitudes of the Dispersion Relation from the Linear Chain of Atoms
Model for Clathrates

We can also further investigate the amplitudes of atomic displacements, A1 and A2, first
seen in eq. 2.5, both for the acoustic and optical phonon solutions to eq. 2.11. We recall that
A1 and A2 represent amplitudes of motion for host and guest atoms, respectively. As we will
see, the relative contributions of the guest and host atoms to the resulting dispersion changes
with q. In other words, for each quantized energy state of the acoustic and optical dispersions, a
certain amount of guest atom and host atom displacements contribute, which also changes over
the course of the first Brillouin zone.

We can rewrite the equations found in eq. 2.11 to solve for two ratios of amplitudes, which
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will be called α1 and α2. The term α1 therefore depends on M1, and α2 depends on M2:

α1 =
−K2(e

−iqa + 1)

M1ω2 + 2K1(cos(qa) − 1) − 2K2

α2 =
−M2ω

2 + 2K2

K2(eiqa + 1)

(2.13)

Next, if we define a normalized vector A based on the ratio we have defined (A1 = αA2), we
can redefine amplitudes A1 and A2 as:

A =

(
A1

A2

)
=

(
α√
1+α2

1√
1+α2

)
(2.14)

Recalling that the dispersion relation has two solutions, the acoustic and optical solutions,
we can plot A1 and A2 for each of the two solutions. Fig. 2.4(a) represents the contributions of
A1 and A2 within the acoustic branch. In order to preserve the translational symmetry of the
material, the guest and host atoms contribute in equal amounts at q = 0. Closer to q = π/a,
however, the guest atoms increase their amplitude of displacement and dominate in contribution
to the acoustic phonon dispersion.

Fig. 2.4(b), on the other hand, represents the contributions of A1 and A2 within the optical
branch. The guest atoms contribute a much larger amplitude of displacement at q = 0 than the
host atoms do. However, at the region of interaction that begins at approximately q = π/2a
(see Figure 2.2), there is a spectral weight transfer between the acoustic and optical modes. As
the contribution of the host atoms to the acoustic branch decreases, their contribution to the
optical branch increases, and the spectral weight transfer is made.

2.1.2 Generalization into 3D

In reality, we are not working with a linear chain of atoms but a complete 3D lattice struc-
ture. There are therefore three degrees of freedom, or directions, in which the plane waves can
propagate through the lattice. In order to illustrate these motions, let us first look at the two
motions possible in a 2D lattice. These are shown in Fig. 2.5, in which we have zoomed in on
three neighboring atoms along one of the two given directions within a larger plane of atoms.

In both examples shown in the figure, we assume that a wave is propagating in the direction
of the blue arrow that is defined by q. In the top example, this wave causes the atoms in
the chain to displace parallel to the direction of propagation, or the blue arrow. This is called
longitudinal displacement. In the bottom example, on the other hand, we assume a similar
wave is propagating, but this causes atomic displacements that are perpendicular to the linear
chain. This is called transverse displacement. Since there are two remaining directions in 3D in
which a perpendicular displacement can occur, there are two possible transverse displacement
directions. Given their definition, it follows that transverse displacements are possible only in
2D and 3D space, where coupling between chains of atoms occur perpendicular to the direction
of propagation. We are therefore considering the interactions of planes of atoms instead of a
1D linear chain such as in a 1D lattice. Together with the longitudinal displacement definition,
these two types of displacement account for the three directions of 3D space.

The blue arrows shown in the examples represent the direction of propagation, q, which
is also called the wave-vector. The red arrows drawn to the right of the examples, on the
other hand, are called polarization vectors. The ξL and ξT , represent longitudinal or transverse
displacements, respectively. These two types of displacements are the basis for longitudinal
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2.1 Lattice Dynamics in the Harmonic Approximation

Figure 2.5: Longitudinal and Transverse Displacements. This is a sketch of longitudinal and
transverse displacements for a 2D lattice. Black circles represent the atoms at their equilibrium positions
and gray circles represent the atoms after displacement. Longitudinal displacement occurs parallel to the
direction of propagation, q, and has a polarization vector ξL. Transverse displacements occur perpendic-
ular to the direction of propagation and has a polarization vector ξT .

and transverse phonon modes. There will be more discussion of polarization vector selection in
Fig. 3.4.

We will now imagine that we have now taken a 1D chain of atoms to a 3D scale, still within
the harmonic approximation. Following P. Bruesch’s derivation [136], we assume that the force
of each atom κ with mass m in unit cell ℓ is displaced u in direction α (= x, y, z) due to the
sum of the negative potential energies of displacement in direction β of atoms κ′ in unit cells ℓ′.
The Φαβ(ℓℓ

′
κκ′) terms are called the interatomic force constants (IFCs).

mκüα(ℓκ) = −
∑

ℓ′κ′β

Φαβ(ℓℓ
′

κκ′)uβ(ℓ
′
κ′) (2.15)

Now that we have expanded this concept to a 3D material, let us imagine what longitudinal
and transverse wave displacements on a simple cubic lattice might look like [31, 140]. In order to
apply this model in 3D, we will assume that the dispersion is isotropic in all directions. Let us
first assume that there is a longitudinal wave u in the x-direction, acting on cross-sectional area
A of a material with a volume V , a mass m, and a subsequent density of ρ = m/V . (This is also
referred to as the [100] direction.) This wave will cause a force of F (x + dx) on the area which
is proportional to displacement dx from its original position x. By the definition of longitudinal
displacement in Fig. 2.5, we then assume that a longitudinal wave u in direction x displaces the
lattice by dx in the same direction as u:

müx = −
∑

Φxux. (2.16)

Then we define σxx as the compression stress and ϵxx the deformation tensor caused by u
such that

ρüx =
∂σxx
∂x

, where σxx = C11ϵxx. (2.17)

From here the longitudinal wave equation can be solved as before, where the resulting sound
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2.1 Lattice Dynamics in the Harmonic Approximation

velocity, vLA, depends on ρ and elastic constant C11:

vLA =

√
C11

ρ
. (2.18)

On the other hand, there are two possible transversal displacements in a 3D lattice, as
mentioned previously, and we recall that these are displacements perpendicular to the plane
of motion. Therefore, following the sketch in Fig. 2.5, let us assume that there is a similar
x-direction wave u that causes displacement dy.

ρüx =
∂σyy
∂x

, where σyy = C44ϵyy (2.19)

This results in a sound velocity dependent upon the elastic constant C44:

vTA =

√
C44

ρ
. (2.20)

As the same solution would result assuming displacements dz, the two transverse modes will
have the same sound velocity, and therefore they are known as degenerate modes.

The terms C11 and C44 are two out of three unique elastic constants that are found in the
elastic stiffness matrix Cij for a cubic lattice [145–147]:

Ccubic =




C11 C12 C12 · · ·
C12 C11 C12 · · ·
C12 C12 C11 · · ·
· · · C44 · ·
· · · · C44 ·
· · · · · C44




(2.21)

The sound velocities for the longitudinal and transverse plane waves derived above represent
the solutions in the [100] direction of propagation. The third elastic constant, C12, can similarly
be derived by considering waves traveling in the [110] direction. Table 2.1 summarizes the sound

velocities, v =
√

Ceff
ρ , for the three phonon modes in the three high symmetry directions that

are derived by using elastic constants Ceff.

Table 2.1: The elastic constant values, or Ceff, for longitudinal and transverse phonons in each of the
three high symmetry directions in a cubic lattice, are derived using the three unique elastic constants
found in the elastic stiffness matrix for a cubic lattice, C11, C12, and C44. The sound velocities, v, in

each direction can then be calculated using the formula v =
√

Ceff

ρ , where ρ is the density of the material.

Mode q ∥ [100] q ∥ [110] q ∥ [111]

LA C11 (C11 + C12 + 2C44)/2 (C11 + 2C12 + 4C44)/3

TA1 C44 C44 (C11 − C12 + C44)/3

TA2 C44 (C11 − C12)/2 (C11 − C12 + C44)/3

Examples of the use of the relation between the elastic stiffness matrix and phonon sound
velocities can be found in Turner et al. [57] and Turner et al. [106].

There are also certain verifications that ensure the stability of the lattice which are called
the Born elastic stability conditions. For a cubic lattice, they are defined as [140]

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. (2.22)
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2.2 Properties of the Phonon Gas

The stiffness matrix is the bridge between microscopic phonon behavior and macroscopic
material constants such as compressibility, χ, and resistance to compressibility, also called the
Bulk modulus B = 1/χ, and these micro/macroscopic relations allow us to discuss the impact
of complexity at both lengthscales.

B =
1

χ
=

√
C11 + 2C12

3
(2.23)

An example of the use of this relationship can additionally be found in Turner et al. [57].

2.2 Properties of the Phonon Gas

It is also necessary to understand how phonons quantum-mechanically fill the acoustic and
optical branches in the phonon dispersion relation. Phonons are bosons, which means that there
is no limitation to the number of them that occupy a given quantum or energy state, unlike
electrons, for example, which are fermions and are therefore limited by the Pauli exclusion
principle [140]. The lowest energy state is equal to E0 = 1

2ℏω, ℏ being Planck’s constant, and
subsequent energy states are filled accordingly such that the harmonic phonon energy is

E =
∑

q,i

ℏω(q, i)
(1

2
+ n(ω, T )

)
, (2.24)

where i is an integer branch number and n(ω, T ) is the Bose-Einstein distribution,

n(ω, T ) =
1

exp(ℏω(q, i)/kBT ) − 1
, (2.25)

which depends on Boltzmann’s constant. It describes the average number of phonons occupying
the energy level with energy ℏω.

Next, we must hypothesize about how, at a given temperature, the phonons are going to fill
the available energy states. This is called the vibrational density of states, g(ω), in which we
integrate over energy surface Sω, for volume, V , of the Brillouin zone in reciprocal space, which
is V/8π3.

g(ω) =
V

8π3

∫
dSω

vg(ω)
dω (2.26)

We also make note now of the fact that the group velocity is in the denominator, since it
will become important later in this section.

We can then rewrite eq. 2.24 to include g(ω):

E =

∫ (1

2
+ n(ω, T )

)
(ℏω)g(ω)dω. (2.27)

Heat capacity, on the other hand, is defined as the amount of energy required to change
the temperature of a material by one degree at constant volume, or CV =

(
∂U
∂T

)
V

. Following
eq. 2.27, it is therefore written as

CV =
∂

∂T

∫
n(ω, T )(ℏω)g(ω)dω. (2.28)

From this point there are two main pathways for calculating heat capacity: the Debye and
Einstein methods. Similar to the way that we have treated the linear chain of atoms model,
Einstein hypothesized that each atom could be treated as a simple harmonic oscillator, and he
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assumed that all atoms vibrate at the same mean frequency, ωE . He then derived a simple density
of states equation based on the fact that each oscillator would have three possible directions of
oscillation. Assuming n oscillators in the unit cell, each with a frequency ℏωE with a small
fluctuations around that central frequency described by the delta function, the density of states
function for the Einstein model is

gE(ω) = 3nNAδ(ℏω − ℏωE). (2.29)

Then, with the help of eq. 2.28, the heat capacity for the Einstein model is

CV = 3nNAkB

(
ℏωE

kBT

)2 exp
(
ℏωE/kBT

)
[
exp(ℏωE/kBT ) − 1

]2 . (2.30)

Heat capacity can be defined by several ranges of temperature. At high temperatures, it
reaches an upper limit which is known as the Dulong-Petit limit:

CV = 3nNAkB. (2.31)

This tells us that for cubic Yttria-Stabilized Zirconia, with four atoms per unit cell in its
FCC lattice, the maximum heat capacity should be 99 J.mol−1.K−1. For clathrates, on the other
hand, with 54 atoms per unit cell, the value is 1346 J.mol−1.K−1. Indeed, these values hold well
with experimental data [148, 149].

At very low temperatures, however, eq. 2.30 decreases with an exp
(
ℏωE/kBT

)
relationship.

This does not correspond to what we see experimentally, and this is due to the fact that, close
to zero, the only filled energy states will be those of the acoustic modes, which are far from
the small fluctuations from ωE described by δ(ℏω − ℏωE). They are therefore not very well
reproduced with this particular model.

While Einstein’s approach cannot completely describe all temperature ranges, it is, however,
well suited for describing the optical phonon modes of a complex system: While Einstein does
not account for the fact that the acoustic phonons disperse in energy, nor for the fact that
they do not actually remain centered around a given frequency, he did find an accurate way
to describe the optical phonon modes, which do stay centered around a given frequency. It is
important to note that since acoustic and optical phonons contribute in different ways to the
heat capacity of a material, we should not necessarily expect them to be treated with the same
formula.

This leads us to the next model for calculating the density of states and heat capacity: the
Debye model. Debye understood that atoms were more than simple harmonic oscillators, and
he looked for a way to describe the dispersive nature of acoustic phonons. He concluded that
each material has an intrinsic sound velocity, vs, and that phonons disperse at this rate until a
maximum frequency called the Debye frequency, ωD.

ω = vsq (2.32)

The density of states for the Debye model then becomes

gD(ω) =
3V ω2

2π2v3s
dω. (2.33)

However, we recall from eq. 2.26 that there is a van Hove singularity [40] when vg(ω) goes to
zero. This point is never reached in the Debye approximation since the sound velocity remains
constant and does not reflect the curvature of the dispersion relation which can usually be
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approximated by a sine() function. Also recalling from eq. 2.26 that we are concerned with the
entire Brillouin zone, we can solve for ωD in a given material:

ωD = vs
3

√
6nπ2

V
. (2.34)

Again, as a point of reference, the Debye frequency for clathrates should therefore be ωD =
36 meV, using the sound velocity of the linear chain of atoms example above. However, as we have
already demonstrated in Fig. 2.2, the acoustic regime is stopped approximately 8 times sooner
than this value. We therefore already see the limitations of this model as well for describing
complex and disordered systems.

Finally, heat capacity for the Debye model is given as

CV = 9nNAkB

(
kBT

ℏωD

)2 ∫ ωD

0

(
ℏω
kBT

)4 exp
(
ℏω/kBT

)
[
exp(ℏω/kBT ) − 1

]2 . (2.35)

The Debye model also respects the Dulong-Petit limit at high temperatures, in addition
to exhibiting a T 3 behavior at very low temperatures. The term Debye temperature, θD, is
often coined to represent this low-temperature dependence in the Debye model. On the surface,
therefore, and to the eye, a Debye model fit appears to work rather well. However, the description
does not match the true microscopic meaning in complex and disordered systems, as per the
limitations given above.

The Debye model can, however, be used to approximate acoustic phonon modes of a complex
system because, at least at low q, acoustic phonons disperse linearly. If we combine this with
the Einstein model’s ability to replicate the behavior of optical modes, we have a heat capacity
formula that is more adapted to the microscopic understanding in clathrates, in which there
are very few Debye-style acoustic modes with a renormalized ωD to match the acoustic mode
filtering, and a continuum of many Einstein-style optical modes across a large frequency range.
This phenomenological model is detailed in Lory et al. [27].

Now that we have a basic understanding of phonons and their properties, and since thermal
conductivity and its formulas have already been discussed extensively in the previous chapter in
Section 1.1, we will move on to detailing the theoretical models that are currently available to
simulate the properties discussed throughout this chapter.

2.3 Theoretical simulations through the advancement of com-
puter science

The following sections of this chapter will be dedicated to the advanced calculations that
we use to more accurately model complexity and disorder in crystalline systems. The harmonic
approximation, which was the focus in Section 2.1, can be reasonably expected to reproduce
phonon spectra quite accurately, even for instances in complex and disordered systems in which
anharmonicity can be treated as only a perturbation of the harmonic approximation, as shown
in Turner et al. [57]. However, it is not enough for calculating physical properties, since phonons
within the harmonic approximation have infinite lifetimes, and because lattice thermal expansion
is not taken into account. This creates a domino effect, causing thermal properties such as
thermal conductivity to be infinite.

Thankfully, new doors have now been opened due to developments in computer science
and computing power. Theoreticians have had improved results in heat propagation calcula-
tions through the incorporation of disorder and/or anharmonicity for rock-salt and Bi2Te3-based
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thermoelectric compounds [150–158], Ag-based materials [159–162], quasicrystals [122, 163–166],
clathrates [85, 93, 167–169], oxides [94, 98, 170], and semiconductors in general [171–181], just
to name a few examples.

There are two main divisions of theoretical models that will be discussed in these sections,
namely Density Functional Theory (DFT) and Molecular Dynamics (MD). In order to discuss
DFT, I will first mention developments that enhance the harmonic approximation, then I will
introduce the quasiharmonic approximation which includes the effect of lattice expansion with
temperature. Finally, I will highlight anharmonic perturbation theory, which is used for an-
harmonic crystals, or crystals with strong and/or locally concentrated anharmonicity. The MD
section will cover several case study examples of how the inclusion of this method to computer
simulations has brought about closer matching to experimental results.

One of the main differences between DFT and MD to keep in mind throughout the following
sections is that DFT is limited in its ability to account for disorder in the structural model.
Molecular Dynamics, on the other hand, tracks the interaction between atoms and has the
advantage of being able to implement disorder into the structural model, even if it does not
include quantum effects. We will come back to this concept momentarily.

2.3.1 Density Functional Theory Calculations

To date, several well-known coding structures such as Quantum ESPRESSO and VASP exist
as packages that can be used for DFT calculations. At the time of writing, The Materials Project
website has also gathered ab-initio calculations of an incredibly wide range of materials, creating
a database of open-source information for the scientific community. Several incredibly thorough
review articles have already summarized the state-of-the-art for such techniques [182–184], and
therefore I will attempt to describe just a few relevant case studies for different types of DFT
calculations.

2.3.1.1 The harmonic approximation

The harmonic approximation, first given in eq. 2.2, has been the focus of this chapter up
until this point, and we have already seen the power in using even a simple linear chain of atoms
model within the harmonic approximation to describe features of type-I clathrates. Indeed, full
harmonic approximation simulations for the type-I clathrate Ba8Si46 fit well with experimental
results [85]. Several research teams have made the community aware, however, of the fact that
ab initio harmonic approximation calculations made on multiple different ordered models of Ge-
based clathrates seemed to require a scaling factor multiplied to the phonon dispersions in order
to meet the energies of the experimentally measured ones [27, 167, 185], while this was not the
case for Si-based clathrate simulations [85].

One recent advancement in harmonic approximation calculations, therefore, is atom-specific
developments, such as what has been done for Ge-based clathrates: In 2019, H. Euchner and
A. Groß applied the strongly constrained and appropriately normed (SCAN) meta-generalized-
gradient (meta-GGA) functional [186] to a series of Ge-based clathrates [169] and found a much
closer matching to experimental results without the need for any scaling factor. The difference
appears to lie in the details of the exchange-correlation energy for the transition metal substitu-
tions for semiconducting clathrates, which plays a more significant role in the energy phase space
for these Ge-based clathrates. The findings were further confirmed in Turner et al. [57] for the
clathrate Ba7.81Ge40.67Au5.33. Preliminary results on disordered models of Ba7.81Ge40.67Au5.33

using the SCAN meta-GGA functional also suggest that this method could help interpret the
polarization dependence of the low-lying optical branches as well.
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2.3.1.2 Treating anharmonicity

The following subsections will focus on the inclusion of anharmonicity, or the higher-order
terms from the Taylor expansion series in eq. 2.1. While the harmonic approximation can
provide us with a baseline or starting point for describing the quantized vibrations in a lattice,
it works within a temperature-, pressure-, and volume-independent setting. To be more precise,
this means that the IFCs from eq. 2.15 have no temperature dependence, and that thermal
expansion cannot be considered. This acts as a domino effect on phonon behavior, since there
are no phonon scattering mechanisms (see eq. 1.4) in the equation that would limit phonon
lifetime or mean free path (MFP), and no temperature dependence that might change the
influence of said scattering mechanisms. Therefore, the harmonic approximation is not quite
enough to simulate phonon lifetimes or thermal conductivity in any system.

In order to study phonon lifetime, we must bring the infinite phonon lifetimes of the harmonic
approximation towards finite lifetimes that are determined by the relevant phonon scattering
mechanisms for a given crystalline structure. This is done by considering the higher-order
anharmonic terms.

The quasiharmonic approximation still works within a constant temperature regime, in which
the equation of state is P = −

(
∂F
∂V

)
T

[136], but we quantify the anharmonic effect of the
lattice moving from its equilibrium lattice parameter and the consequential phonon frequency
renormalizations. In other words, the oscillators are volume-dependent, allowing us to track
the thermal expansion of the lattice [187]. This method is often used in conjunction with
perturbation theory (see the next paragraphs) in order to simulate the temperature dependence
of thermal properties.

To now speak more generally, anharmonicity is defined as the deviation from harmonic oscil-
lation. In other words, we are considering oscillators that do not oscillate strictly according to
their simple harmonic potential. Anharmonic perturbation theory tells us that if these anhar-
monic effects are small in comparison to the harmonic components of the system, we can consider
them as a perturbation of the original harmonic approximation calculation [95, 136, 140]. We
are therefore returning to the inclusion of the n = 3, 4, ... terms of eq. 2.1, given at the beginning
of this chapter. Some examples of systems that require anharmonic perturbation theory are
TiO2 [124] and ScF3 [188].

The n = 3 and n = 4 terms are interatomic force perturbations of the harmonic approx-
imation that represent the ionic displacements from equilibrium within the crystal pertaining
specifically to three- and four-phonon scattering processes, respectively, or the cubic and quar-
tic anharmonicity terms. Fig. 2.6 summarizes these processes. Sketches (a) and (b) describe
three-phonon scattering processes in which a phonon is either annihilated or created, respectively.
Sketches (c)-(e) represent four-phonon scattering processes in which similar creation/annihilation
processes are found through a combination of four phonons.

In terms of the representation of anharmonic processes in DFT, however, these are typically
described by the Feynman diagrams of anharmonic self-energy [189–192]. Some of the relevant
diagrams are shown in Fig. 2.7. The phonon propagator (solid lines) has a third or fourth-order
interaction described by the vertices of each diagram (open circles) [193]. The tadpole in (a) and
bubble (c) diagrams are associated with the cubic term, where the tadpole diagram contributes
to phonon frequency renormalizations and the bubble diagram mainly brings about changes in
phonon linewidth. Furthermore, (a) actually represents the optical component of the tadpole
diagram. The tadpole diagram is also composed of an acoustic component, seen in (b), which is
how thermal expansion (TE) is calculated [193]. An important limitation to current anharmonic
perturbation theory is that thermal expansion cannot be calculated directly, because the acoustic
dispersions, represented by the spring in diagram (b), diverge at low q. The quartic anharmonic
term, on the other hand, contains the loop diagram in (e), which also contributes to phonon
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Figure 2.6: Sketches of three and four phonon scattering processes. (a) and (b) describe three-
phonon scattering processes, and (c)-(e) the four-phonon scattering processes. In (a), two lower frequency
phonons scatter on each other, resulting one higher frequency phonon. Similar processes are sketched in
(b)-(d). Figure has been adapted from Ref. [142].

frequency renormalizations [189], and two other second order diagrams (not shown). We will
come back to Fig. 2.7(d) momentarily.

Figure 2.7: Feynman diagrams of anharmonic self-energy. Feynman self-energy diagrams re-
ferring to three- and four-phonon scattering process diagrams, (a-d) and (e), respectively. (d) refers to
the bubble diagram specific to the self-consistent phonon (SCP) method. Solid lines represent the phonon
propagator and open circles represent the three and four phonon interaction vertices.

Many intriguing advancements in ab initio theory have been made in recent years which cen-
ter largely around the inclusion of third-order anharmonic phonon processes to calculations for
semiconductors. For instance, the importance of electron-phonon [194] and phonon-phonon [171]
scattering mechanisms in GaAs have been detailed in order to provide much-needed insight into
the lifetimes of such processes in a widely-used semiconductor. The calculations were even able to
differentiate between different phonon-phonon scattering processes, or Herring and non-Herring
processes as termed in the article, in order to discuss the dominate scattering process within
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different regimes of the energy-momentum phase space. This is an important theme which will
be revisited in Turner et al. [106] and in Fig. 3.16 in the following chapter.

Figure 2.8: Frequency dependence of phonon attenuation in GaAs. Figure comes directly from
Ref [171]. The attenuation of longitudinal acoustic phonons propagating along the [100] direction has
been calculated by ab-initio methods and compared to experimental data at 50 K.

In addition to these studies, there is a variation to perturbation theory called the self-
consistent approach [195] that has proved useful in calculating properties for complex and dis-
ordered systems. In this case we solve in steps: the harmonic approximation is calculated, along
with the anharmonic perturbations, and then the calculation is self-consistently renormalized
until it converges on a solution.

One example of this approach that is relevant to this thesis are the self-consistent calculations
made for the type-I clathrate Ba8Ge30Ga16 by T. Tadano et al. [93, 95], which self-consistently
renormalize phonon frequencies through what is called the self-consistent phonon (SCP) method.
These calculations are distinct from the self-consistent harmonic approximation (SCHA) because
both self-consistent and perturbation theories have been applied in order to fully grasp the
anharmonicity of clathrates. As seen in Fig. 2.9(a), using the SCP method (solid red lines)
causes phonon frequency renormalizations which match the frequencies of the Raman-active
low-lying optical branches as opposed to the harmonic approximation calculations (dashed gray
lines). This brought about a much closer matching to lattice thermal conductivity, as seen in
Fig. 2.9(b).

An extensive comparison of the phonon frequencies calculated by the SCP method to exper-
imental results can be found in Turner et al. [57]. In addition, T. Tadano and co-authors have
proven that the SCP method can be applied to other systems that exhibit strong anharmonic-
ity [94, 96–98] as well.

I would also like to highlight a few interesting key features of these Ba8Ge30Ga16-specific SCP
calculations: (1) Since calculations were done self-consistently, the self-consistently-calculated
Bubble term resembles the diagram in Fig. 2.7(d), rather than the Bubble term in the harmonic
approximation. (2) The thermal expansion component that comes from acoustic tadpole Feyn-
man diagram was not included, since it cannot be calculated directly. Instead, MD simulations
of the fully ordered Ba8Ge30Ga16 structure were used to calculate the lattice parameter at given
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Figure 2.9: Self-consistent phonon method calculations for the type-I clathrate
Ba8Ge30Ga16. Figures come directly from Ref [196]. (a) The phonon spectra along a given high sym-
metry direction, calculated using the ab-initio self-consistent phonon method (red solid lines). The red
and black crosses at the center of the Brillouin zone mark the energies of the Raman active T2g mode.
(b) These phonon spectra are used to calculate the lattice thermal conductivity (κL), which has a much
closer matching to the experimentally measured κL (open black circles, triangles, and squares- references
for which can be found in Ref [196]). The particular lattice constant used to calculate the phonon spectra
in (a) corresponds to the orange ‘opt.’ curve in (b).

pressures, and then the temperature-dependent Grüneisen parameter was calculated from the
cubic free energy constants in order to indirectly account for thermal expansion.

2.3.2 Molecular dynamics for complex and disordered crystals

In recent years, MD simulations have provided much needed insight into the anharmonic
effects found many of the materials I have mentioned in the preceding sections. MD tracks
the evolution of a group of interacting particles over time through their position and velocity
trajectories in phase space. MD has been largely used to calculate the temperature dependence
of κ, although re-interpretation of specific phonon behaviors with MD simulations alone has
proven difficult [197]. The main advantage to MD simulations is that all anharmonic terms are
included, allowing us to finitely model the strong and/or localized anharmonic effects known to
exist in the types of materials that have been our focus. With the following two examples, I
hope to demonstrate the usefulness of this technique in simulating complexity and disorder.

The first example is that which was done for the quasicrystal approximant o-Al13Co4 [122].
The authors found that by randomly removing several Al atoms from the generated supercell
in order to simulate vacancies, the model with vacancies had a lower minimum-energy atomic
configuration than the ordered model. This disordered model then provided a better match to
the experimental phonon dispersions. As seen in Fig. 2.10(a), the disordered model simulation
was able to much more closely match the experimental phonon signal, even reproducing the
Lorentzian-like tail. For the κ shown in Fig. 2.10(b) as well, the disordered model was able to
replicate a similar plateau region at higher temperature, confirming the significance of using a
model that includes a representation of the disorder in the system.
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Figure 2.10: Ordered and disordered model simulation results for the quasicrystal approx-
imant o-Al13Co4. Figures come directly from Ref [122]. (a) An example energy scan of a transverse
acoustic phonon mode measured experimentally by inelastic neutron scattering (solid black circles) and
theoretically using both ordered (solid blue line) and disordered (solid red line) models. (b) The lattice
thermal conductivity measured experimentally (solid red line) and theoretically using both ordered (solid
black circles) and disordered (solid blue circles) models. (Note that the colors of the models have switched
between the two figures. Please refer to the legends within the figures for clarification.)

The second example comes from a recently published article on the perovskite SrTiO3 [170].
Experimental evidence, in the form of inelastic neutron scattering measurements, was given for
the disappearance of transverse acoustic phonon branches at low temperature, below the phase
transition/distortion that begins at 105 K in the material. AIMD, or ab initio MD, simulations
were used extract to renormalized force constants at 3 relevant temperatures for this system,
allowing for the tracking of this intriguing occurrence with temperature, as seen in Fig. 2.11.

Figure 2.11: AIMD simulations for the perovskite SrTiO3. Figures come directly from Ref [170]
and its corresponding Supplementary Material. (a) AIMD and TDEP method simulations at three tem-
peratures for the point Q = [22L] in reciprocal space. (b) By computing AIMD trajectories initialized with
experimental lattice constants, the phonon dispersions along high symmetry directions were calculated at
three temperatures. For comparison, the harmonic approximation calculation is also shown, which con-
tains unstable frequencies.
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2.3 Theoretical simulations through the advancement of computer science

There are many other equally pertinent examples of the use of MD simulations that could be
included here, and I refer the reader to a few of these now: Refs [152, 155, 164, 187, 198–200].
The main limitations to MD, however, remain that it is extremely computationally intensive.
This limits both the size of the simulated system and the length of time for which we want to
observe its interactions. However, as computing power increases in the coming years, we will
surely see correspondingly impressive developments in the field of MD simulations.

With these tools an concepts in mind, we will now move on to experimental methods for
measuring phonon properties, with a focus on inelastic neutron and X-ray scattering techniques.
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CHAPTER 3

Inelastic Scattering Techniques for Phonon
Measurements

The dispersions, group velocities, response function intensities, mean free paths, lifetimes,
and density of states are just a few properties of phonons that can be measured experimentally.
When discussing phonon behavior, we are usually referring to an meV-scale, meaning that the
types of instruments that can measure phonon properties must have extremely high resolution
and precision. The focus of this chapter will be on inelastic scattering methods, namely inelastic
neutron and X-ray scattering (INS, IXS) techniques, which are highlighted in Fig. 3.1. However,
other complementary techniques include Brillouin scattering, Raman scattering, optical pump
probe techniques, and X-ray transient grating spectroscopy.

The following sections on INS, Section 3.1, and IXS, Section 3.2, provide detailed explana-
tions as to why neutrons and X-rays can be made into probes for measuring phonons, and the
variety of instruments available for making these measurements.

3.1 Inelastic Neutron Scattering

Experimentally measuring the properties of phonons requires instruments with extremely
high resolution. To elaborate, propagative acoustic phonon energies occur in the meV range and
have lifetimes that are in the tens of µeV range, with the full phonon spectrum usually covering
an energy range of a few tens of meV. Neutrons are ideal for measuring phonons in these ranges
since one, their wavelengths are on the same order of magnitude as interatomic distances in a
crystal lattice, and two, they have energies in the range of a few tens of meV, therefore making
them sensitive to coherent lattice vibrations. If we can track this small change in energy of the
neutron before and after scattering it onto a sample, we can measure a phonon excitation or
annihilation.

This is easier said than done, however, since this means that we need to be able to capture
energy shifts on the order of ∼1 meV. There are several different types of neutron spectrometers
that make this kind of experiment possible, and I will discuss each in detail in this chapter. I
will first, however, cover a typical neutron scattering experiment, and explain the different types
of information we can gain from it. The following derivations come from those in literature
detailed by G. L. Squires [201], Shirane et al. [202], H. Schober [203], and S. Pailhès et al. [204].
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3.1 Inelastic Neutron Scattering
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Figure 3.1: A comparison of inelastic neutron and X-ray scattering techniques. The time,
length, and energy transfer scales of different types of neutron and X-ray probe techniques that are suitable
for measuring phonons are shown in the figure. These include inelastic X-ray scattering (IXS), triple-
axis spectroscopy (TAS), time-of-flight (TOF) spectroscopy, and Neutron Spin-Echo (NSE). The TAS
and TOF shaded regions focus on thermal neutron ranges. The neutron resonance spin-echo (NRSE)
technique, not shown, will also be discussed in this chapter, and while it overlaps with TAS, it gives us
access to a much higher energy resolution.

Figure 3.2: Generalized example of a scattering event. An incoming beam of probe particles with
incident energy Ei and wave-vector ki strikes a sample, and said interaction causes the scattered beam to
have an energy Ef and wave-vector kf with an angle 2θ relative to the incident beam. A portion of all
scattered probe particles are then collected in solid angle dΩ.

A scattering event, like the general case presented in Fig. 3.2, is controlled by momentum
and energy conservation laws, seen in eqs. 3.1-3.3. In the case of INS, an incident neutron beam
with incoming energy Ei and wave-vector ki = 2π/λi is scattered onto a sample such that the
outgoing beam has energy Ef and wave-vector kf with an angle 2θ relative to the incident beam.

Q = ki − kf (3.1)
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3.1 Inelastic Neutron Scattering

Q2 = k2i + k2f − 2kikf cos(2θ) (3.2)

ℏω = Ei − Ef =
ℏ2

2mn
(k2i − k2f ) (3.3)

In addition, there are two possible cases in which energy is conserved. The first is the case
in which there is no energy exchange between the sample and incoming neutrons, Ei = Ef ,
and, by extension, |ki| = |kf |, resulting in an elastic neutron scattering event in which the
interaction with the sample is purely momentum-based. Furthermore, when eq. 3.1 becomes
Q = kf − ki = G, we call this the Bragg condition, in which G is the reciprocal lattice vector
defined by dHKL, the lattice spacing: |G| = 2π/dHKL. Then, using eq. 3.1 and again the relation
k = 2π/λ written above,

|G| = 2|ki| sin(θ) = 2π/dHKL, (3.4)

leading to the formula for Bragg’s law, where n is an integer that represents the Bragg reflection
order:

nλ = 2dHKL sin(θ). (3.5)

The second case in which energy is conserved occurs when some of the energy of the neutron
is transferred to (or taken from) the sample, creating (or annihilating) an excitation such as a
phonon, causing Ei ̸= Ef , and, again by extension, ki ̸= kf of the neutron. This is an inelastic
neutron scattering event. We denote this small momentum transfer as q, which, in our case of
a phonon, is also called the phonon wave-vector, such that eq. 3.1 becomes

Q = G + q. (3.6)

Using eq. 3.3 in the case where ℏω = ℏ2
2mn

(k2i−k2f ) > 0, the neutron gives energy to the sample,

creating an excitation. This is called Stokes scattering. Conversely, when ℏω = ℏ2
2mn

(k2i −k2f ) < 0,
the neutron gains energy from the system, annihilating an excitation. This is called Anti-Stokes
scattering.

By choosing a specific point Q in reciprocal space and energy transfer ℏω, and ensuring
that the condition in eq. 3.3 is still met when making our Q = G + q definition, we can probe
the entire phase space of a material, tracking the quantized phonon excitations/annihilations
dictated by the material’s lattice and atomic configuration.

3.1.1 The Measurable Quantity of a Neutron Scattering Event

Referring once again to the general scattering event described in Fig. 3.2, after directing a
spectrometer towards a certain point in phase space by using the known kf and ki to complete
a scattering triangle defined by eq. 3.3, we measure the amount of flux of the initial neutron
beam, Φ, that has been scattered into the solid angle element of interest, dΩ. We define the
cross-section, σ, as the number of neutrons scattered per second out of the number of incident
neutrons per cm2 per second. Then, only the neutrons that scatter with an angle of 2θ relative
to the incident beam and that have a final energy between Ef and Ef + dEf are captured in

solid angle dΩ, creating the double differential cross-section for neutron scattering, d2σ
dΩdEf

.

In order to derive d2σ
dΩdEf

, we must consider the sum of the changes in quantum state of the

sample from λi to λf caused by the interaction between the neutron and the sample defined by
ki → kf . From the conservation of energy, it then follows that

Ei + Eλi
= Ef + Eλf

(3.7)
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3.1 Inelastic Neutron Scattering

We then use w(ki,λi)→(kf ,λf ) to represent the probability density of a transition from (ki, λi)
to (kf , λf ). This is otherwise known as Fermi’s golden rule, we can relate this to the density of

final states, ρkf
(Ef ) =

mkf
ℏ2 , and the interaction potential of the neutron with the sample, V .

w(ki,λi)→(kf ,λf ) =
2π

ℏ
ρ(Ef ) |⟨kf , λf |V |ki, λi⟩|2 (3.8)

Then in terms of the double differential cross-section, we have the following, in which δ((Ef−
Ei) − (Eλi

− Eλf
)) is a Dirac delta function that selects the more probable scattering events,

coming from Fermi’s golden rule.

(
d2σ

dΩdEf

)

(ki,λi)→(kf ,λf )

=
kf
ki

(2π)4m2

ℏ4
|⟨kf , λf |V |ki, λi⟩|2 δ((Ef − Ei) − (Eλi

− Eλf
)) (3.9)

However, this gives us ( d2σ
dΩdEf

)(ki,λi)→(kf ,λf ), the double differential cross-section over a given

transition λi → λf . There are two more steps before arriving at the final form of ( d2σ
dΩdEf

). The

first is that we define pλi
as the statistical weight for each state λi such that

∑
λi
pλi

= 1 through
the partition function, Z, and the Boltzmann distribution.

pλi
=

1

Z
e

(
−Eλi
kBT

)
, Z =

∑

λi

e

(
−Eλi
kBT

)
(3.10)

The second step involves the summation of the interactions of the incident neutron with each
nucleus for N total nuclei in the sample. Let us assume that vector r and vector Rj give the
positions of the neutron and the jth nucleus with respect to an arbitrary origin in the sample’s
lattice, respectively. We then define the interaction potential as

V (r) =
N∑

j=1

Vj(r−Rj). (3.11)

Then, by making the Fourier transform of the interaction potential, we define the form factor
Vj(Q) of the jth scatterer’s potential Vj(r) as

Vj(Q) =

∫
eiQ·rVj(r)d3r =

2πℏ2

m
bj , (3.12)

where bj is the neutron scattering length. This parameter will become important in Section 3.1.2.
With these extra considerations, and the use of the closure relation

∑
λf

|λf ⟩⟨λf | = Iλ [203], we
arrive at

(
d2σ

dΩdEf

)
=

kf
ki

1

2πℏ
∑

λi

p(λi)

N∑

j,j′=1

bjb
∗
j′

∫ ∞

−∞
⟨λi|e−iQ·Rj′ (0)eiQ·Rj(t)|λi⟩e−iωtdt

=
kf
ki

S(Q, ω)

(3.13)

This is known as the master equation of scattering [203]. Of equal importance is the scattering
function, S(Q, ω), since it is the term by which we set all instrumental parameters for a neutron
scattering experiment. In particular for an inelastic experiment designed to measure phonons,
the scattering function tells us the probability that one of the particles in the incoming beam
loses/gains the exact energy needed to produce a given phonon excitation/annihilation, allowing
us to detect this exchange. The usefulness of S(Q, ω) will be discussed in Subsection 3.1.3.
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3.1 Inelastic Neutron Scattering

3.1.2 Coherent and Incoherent Scattering

The double differential cross-section for neutron scattering given in eq. 3.13 is made up of
coherent and incoherent scattering components, and they explain correlated atomic movements,
or when j ̸= j′, and individual atomic movements, or when j = j′, respectively.

( d2σ

dΩdEf

)
tot

=
( d2σ

dΩdEf

)
coh

+
( d2σ

dΩdEf

)
inc

(3.14)

Assuming that we have a very large number of nuclei in the sample, we average these inter-
actions such that the bjb

∗
j′ term in eq. 3.13 becomes bjb∗j′ . This leads to the definition of the

coherent and incoherent scattering components:

( d2σ

dΩdEf

)
coh

=
kf
ki

1

2πℏ
∑

λi

p(λi)
N∑

j,j′=1

bjb∗j′

∫ ∞

−∞
⟨λi|e−iQ·Rj′ (0)eiQ·Rj(t)|λi⟩e−iωtdt (3.15)

( d2σ

dΩdEf

)
inc

=
kf
ki

1

2πℏ
∑

λi

p(λi)

N∑

j

(b2j − (bj)
2)

∫ ∞

−∞
⟨λi|e−iQ·Rj′ (0)eiQ·Rj(t)|λi⟩e−iωtdt (3.16)

The coherent, σcoh, and incoherent, σinc, scattering cross-sections in the monatomic lattice
limit are defined as follows. The scattering length of an element is isotopic and spin dependent,
meaning that different isotopes will have different coherent scattering lengths. In the case which
a natural element contains different isotopes (or spins, such as for H), their random distribution
in the studied sample will also lead to a Laue scattering.

σcoh = 4π
(
⟨b⟩2

)
(3.17)

σinc = 4π
(
⟨b2⟩ − ⟨b⟩2

)
(3.18)

When conducting a neutron scattering experiment it is important to have an idea of the
amount of coherent and incoherent scattering you can expect from a given sample. Scattering
cross-sections are usually given in barns (1 barn = 10−24 cm2) and neutron scattering lengths
are given in femtometers (1 fm = 10−13 cm), and the values can be found in literature [201, 205].
An example of the importance of the weighted coherent and incoherent scattering components
can be found in the Appendix of Turner et al. [106], in which it can be shown that approximately
70% of the total neutron scattering cross-section can be expected to be incoherent scattering.

3.1.3 The Scattering Function

Coming back to the importance of the scattering function, we will consider both the coherent
elastic and inelastic components, respectively. Coherent elastic scattering can be separated into
the Bragg component, which gives us information on the nuclear (and magnetic, when applicable)
structure, and the diffuse scattering component, which is related to the disorder. The latter is
important in characterizing the nature of atomic disorder in a given system. The inelastic
scattering signal is generally separated into the quasielastic signal, which is centered around
E = 0 and is related to relaxation processes (atomic diffusion, cluster reorientation, etc.), and
the coherent inelastic scattering, which is related to information about correlated motions of
atoms, i.e. excitations such as phonons or magnons.

In order to derive the coherent elastic case, we recall that an elastic scattering event implies
that Q = G and also that there is no energy exchange in the scattering event. Therefore, the
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3.1 Inelastic Neutron Scattering

double differential cross-section simplifies to

( d2σ

dΩdEf

)
coh,el

= Nc
(2π)3

Vc
|Fel(Q)|2

∑

G

δ(Q−G) · δ(ℏω), (3.19)

which tells us that the condition for coherent elastic scattering is only met when Bragg’s law
holds. This depends on the volume of a unit cell, Vc (not to be confused by V , the interaction
potential seen previously); Nc, the number of unit cells in the sample; and the elastic nuclear
form (also called structure) factors, Fel(Q):

Fel(Q) =
∑

j

bje
−Wj(Q)eiQ·dj . (3.20)

The Debye-Waller factor, W , encompasses the displacements from equilibrium of atoms
at atomic positions dj within the unit cell. Generally speaking, atomic parameters can be
deduced from such an experiment through neutron diffraction in which we would obtain intensity
corresponding to reciprocal lattice vectors G, scaled by their corresponding nuclear structure
factors.

In the coherent inelastic case, however, we consider an energy exchange between the neutron
and the sample that results in a phonon creation/annihilation. Given that we have N atoms in a
unit cell, the system will be characterized by 3N phonon modes, each with a distinct wave-vector
q, energy E, and polarization ξij following the quantized number. The scattering function then
becomes

S1-ph
coh (Q, ω) =

1

2

∑

i

|F i
inel(Q)|2
ωi(q)

([(
1+n(ωi,q)

)
δ
(
ω−ωi(q)

)]
+
[
n(ωi,q)δ

(
ω+ωi(q)

)])
, (3.21)

for which we introduce n(ωi,q) = 1/(eℏωi(q)/kBT − 1), the Bose-Einstein occupation factor for
phonon mode with ωi, and F i

inel(Q), the inelastic structure factors. We denote M for the masses
of the atoms, and all other parameters carry from previous definitions above. The dot product(
Q · ξij(Q)

)
is called the polarization term, which we will circle back to momentarily.

F i
inel(Q) =

∑

j

bj√
Mj

e−Wj(Q)e−iQ·Rj(0)
(
Q · ξij(Q)

)
(3.22)

The two bracketed terms in eq. 3.21, 1 + n(ωi) and n(ωi), are proportional to excitation
creation and annihilation, respectively. We can therefore write the following relation

S(−Q,−ω) = e
−ℏω
kBT S(Q, ω), (3.23)

which is called the detailed balance condition of the scattering function. Given the temperature
dependence of the equation, it therefore follows that there will not be an equal chance of having
an excitation annihilation/creation at all temperatures. As temperature increases, the statistical
probability of excitation annihilation remains lower than excitation creation. This appears in the
intensity of Anti-Stokes and Stokes measurements, discussed at the beginning of this chapter.
An example of this effect, along with a summary of the different types of elastic and inelastic
scattering discussed so far, are shown in Fig. 3.3.

The
(
Q ·ξij(Q)

)
dot product in eq. 3.21 acts as a selection rule for the polarization of phonon

that is measured. The transverse polarization vector, ξT , is always perpendicular to q, while the
longitudinal polarization vector, ξL, is parallel. The selection rule, or dot product, dictates that

49



3.1 Inelastic Neutron Scattering

Figure 3.3: Example of elastic and inelastic X-ray scattering as seen by S(Q,ω). An example
is shown of a longitudinally-polarized constant-Q energy scan (open black circles) at Q = G + q = (6
0 0) + (0.232 0 0) = (6.232 0 0) for the type-I clathrate Ba8Cu4.8Ge39.8□0.2Ga, measured at 300 K
on the inelastic X-ray scattering beamline ID28@ESRF. The longitudinal acoustic (LA) phonon mode is
indicated, along with an optical branch centered at 10 meV. (See Section 2.1.1.1 for an explanation of
acoustic and optical phonons.) The LA mode and optical branch are fit as damped harmonic oscillators
and convoluted with the instrumental resolution of ID28@ESRF, the total resulting fit being the solid red
line. At energy ω = 0 the elastic line is depicted, its contribution to the total fit being the thin blue line.
Finally, the phonon annihilation (neutron energy gain) side is referred to as the Anti-Stokes region, while
the phonon creation (neutron energy loss) side is called the Stokes region.

the polarization vector parallel to Q will always be selected. Since we generally work at large Q,
we can assume that Q ∼ G. In terms of phonon measurements, the phonon dispersion relation
can be measured when the selection rule applies. Furthermore, the identification of a mode’s
polarization is embedded in the intensity distribution of the measured signal, and therefore it is
not possible to directly extract the polarization of the mode. Rather, comparing the intensity
allows one to discriminate between different modes.

Fig. 3.4 provides an example of this concept for a both a longitudinal and transverse mode
that can be found in the scattering plane ([HH0];[00L]). In (a), the reciprocal lattice vector G
brings us to the (222) Bragg peak and the small phonon vector q is parallel to G. Since ξL is
always parallel to q, longitudinal phonons will be measured. In (b), however, G is on the (006)
Bragg peak and q is perpendicular to the direction of G. Transverse phonons will be measured
because ξT is parallel to G in this case. When discussing different phonon branches, we typically
write them in terms of their propagation and polarization directions. For example, phonons in
Fig. 3.4(b) would be from a transverse acoustic (TA) phonon branch, from the (006) Bragg peak,

propagating along [110], polarized along [001]. This is written in shorthand as TApolarization
propagation =

TA001
110.
Finally, while coherent one-phonon scattering allows us to track the energy dependence of

phonons in reciprocal space, incoherent one-phonon scattering provides us with the generalized
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3.1 Inelastic Neutron Scattering

Figure 3.4: Illustration of the phonon polarization selection rule. The scattering plane
([HH0];[00L]) is portrayed with black circles that are proportional to the elastic nuclear structure factors
for the type-I clathrate Ba7.81Ge40.67Au5.33. According to the selection rule controlled by the (Q · ξij(Q))
polarization term in eq. 3.21, longitudinal phonons will be measured in (a), while transverse phonons will
be measured in (b).

vibrational density of states (GVDOS), where the GVDOS depends on the sum of the contribu-
tions from each mode, gj(ω):

( d2σ

dΩdEf

)1-ph
inc

=
kf
ki

Q2 N

8π
e−2W (Q)GVDOS(ω)

ω
(1 + n(ω)),

where GVDOS(ω) =
∑

j

1

Mj
(b2j − (bj)

2)e−2Wj(Q)gj(ω).
(3.24)

If we assume that there is more than one type of atom in the primitive lattice, then the
GVDOS is in fact a sum of individual atomic contributions and is therefore dependent upon the
neutron scattering lengths of the different types of atoms, making eq. 3.24 inherently “neutron-
weighted,” as it is dependent upon this type of probe. There is also often a necessary multi-
phonon scattering correction that must be made to such GVDOS calculations. Multi-phonon
scattering describes the scattering events in which a neutron simultaneously creates/destroys
two (or more) phonons, and is further discussed in Section 3.1.7.2.

Examples of the experimentally-measured, neutron-weighted GVDOS calculations made dur-
ing my thesis work can be found in Turner et al. [57] and Turner et al. [106], and is discussed
from a data analysis point-of-view in Section 3.1.7.2.

3.1.4 Introduction to Instrumental Resolution

In the following sections, I will show how the scattering function is applied to the common
types of neutron spectrometers that are used to measure the various properties of phonons. In
Sections 3.1.6 and 3.1.7, I will describe the instruments used to measure the energy position
of phonons, GVDOS, and, resolution permitting, phonon linewidth. Then, in section 3.1.9, I
will describe the instrument that can go beyond common resolution limits of other neutron
spectrometers in order to measure even smaller phonon linewidths (longer phonon lifetimes).

Throughout the following discussions of techniques, details of the particular instrumental
resolution of each spectrometer will be given. We must keep in mind that the intensity collected
through a scattering experiment is in fact the convolution of the scattering function and the
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3.1 Inelastic Neutron Scattering

instrumental resolution of the given technique, R(Q, ω), in which the instrumental resolution is
a set volume within 4D space [206]:

I(Q, ω) = S(Q, ω) ⊗R(Q−Q0, ω − ω0) (3.25)

Once S(Q, ω) has been properly extracted, we can analyze the intrinsic phonon properties
of the sample. We can also use the normalized intensity of S(Q, ω) to determine the acoustic
character of a given phonon mode. It can be shown that for an acoustic phonon, the normalized
dynamic structure factor, DSFi,q(Q, ω, T ), is constant, where the integral is taken over the
measured phonon peak [122, 201, 206–208].

DSFi,q(Q, ω, T ) =
ωi(q)

Q2 · n(ωi,q)

∫
Si,q(Q, ω, T )dω (3.26)

This works in the long-wavelength limit, |q| ≪ |Q| and given that ℏω ≪ kBT . Examples
of the use of DSFi,q(Q, ω, T ) in my thesis work can be found in Turner et al. [81] and in the
Supplementary Material of Turner et al. [106].

3.1.5 Neutron Thermalization and Neutron Guides

In order to prepare the following sections on different neutron techniques, I will briefly
describe the process of neutron collection and transport from the source to the experimental
measurement zones. Neutron spectrometers are categorized by the energy range of neutrons that
they are set up to receive from the neutron source. It is a primary and defining instrumental
parameter for a given spectrometer.

A fission reaction at a reactor will produce neutrons that have energies in the MeV range.
These initial “source” neutrons are brought down to the thermal neutron range, or ∼25 meV
(2,200 m/s), through moderators in a process called thermalization. Cold neutrons are further
moderated to ∼5 meV. Some reactor sites, such as the National Institute of Standards and Tech-
nology, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, and the Institut Laue-Langevin,
have designated cold neutron sources [209, 210].

These neutrons are then sent to the instruments through neutron guides that supply a range
of wavelengths that each instrument can filter as needed for each experiment. In more detail, all
of these particular instruments are placed in proximity to the nuclear reactor such that neutrons
that are ejected from the fission reaction can be sent via neutron guides to the designated
instrument space. Neutron guides limit the loss of neutrons while they are traveling from the
reaction site to the instrument, sometimes a distance of 100 m or more, through the use of
supermirrors. For a given wavelength range, supermirrors use total reflection to limit these
losses and provide a maximum amount of flux at the sample possible.

Other instrument-specific features can be placed in the neutron guide to further customize the
neutron wavelength, pulse, or monochromatization that can be done in advance of the neutrons
arriving at the instrument site, and these will be discussed in the following sections. Neutron
guides are also important since they determine the initial vertical and horizontal divergence at
the monochromator, in the case of Triple-Axis Spectrometers described in Section 3.1.6, or at
the sample, in the case of Time-of-Flight instruments described in Section 3.1.7.

3.1.6 Triple-Axis Spectrometers (TAS)

Triple-axis spectrometers are considered to be the workhorse technique for phonon measure-
ments. As such, there are many variations of TAS instruments at different neutron sources, such
as Thales, IN8, IN12, and IN22 at the Institut Laue-Langevin (ILL); PANDA and PUMA at the
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Figure 3.5: Example of a Triple-Axis Spectrometer (TAS). Neutrons travel down a neutron guide
before being monochromatized at the monochromator (in green) and scattered onto the sample (in orange).
Scattered neutrons according to the scattering triangle shown are then registered at the analyzer (in blue)
before reaching the detector (in blue). The three main angles of importance are also labeled for reference
as 2θM , 2θS, and 2θA, for monochromator, sample, and analyzer, respectively.

Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM-II); and, formally, 4F, 1T, and 2T at
the Laboratoire Léon Brillouin (LLB). (The LLB has since shutdown, however these instruments
were vital to my Ph.D. work and therefore I mention them here.) As the name suggests, they
function on three main axes: the monochromator, the sample, and the analyzer, as depicted in
Fig. 3.5. By manipulating the configuration of the instrument, different regions of S(Q, ω) in a
given scattering plane are accessible. This type of instrument is therefore primed for following
the full energy range of a phonon dispersion along a given polarization with high precision.

Briefly speaking, and following Fig. 3.5, the desired incoming neutron energy (Ei) is chosen at
the monochromator. Then, after interacting with the sample, the neutrons come to the analyzer,
where the final energy (Ef ) is selected, and then they are counted at the detector. The principle
of a TAS spectrometer relies on the scattering triangle, also shown in Fig. 3.5. The instrument
can measure at a given point and energy in reciprocal space when the scattering triangle is
closed. Recalling the momentum and energy conservation laws from eqs. 3.1-3.3, we navigate to
the point of interest using eq. 3.3. This is done by fixing either ki at the monochromator or kf

at the analyzer, and adjusting the other in order to match to the correct transfer of energy, or
ℏω = Ei −Ef . I will now focus on each of the components from Fig. 3.5 in more detail using an
example of a fixed-kf TAS configuration.

The neutron beam that reaches the instrument still contains a distribution of neutron wave-
lengths, and this “untreated” beam is usually referred to as a white beam. The selection of one
wavelength is made possible through Bragg reflection at the monochromator. The monochro-
mator is a single crystal with lattice plane spacing dM, and, through Bragg’s law, the neutrons
with wavelength λi will be reflected off of the monochromator at a glancing angle θM:

ki =
2π

λi
=

π

dM sin(θM)
(3.27)

The alignment of the three angles of the TAS spectrometer are then set up such that when
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a similar Bragg reflection is made at the analyzer,

kf =
2π

λf
=

π

dA sin(θA)
, (3.28)

we are able to measure ℏω = Ei − Ef at Q = ki − kf in reciprocal space.

Figure 3.6: Example of
Söller slit collimation. Pic-
ture taken on 1T@LLB. Thin
blades of a neutron absorbing
material placed, in this case,
directly after the monochroma-
tor and before the sample. The
blades are spaced equidistant
from one another in such a way
as to provide 20’ collimation ac-
cording to eq. 3.29.

The monochromator and analyzer are usually each a series
of co-aligned crystals made of pyrolytic graphite (PG), Si, Ge, or
Cu that are cut along a certain plane (h, k, l). These elements are
chosen for their reflectivities, as maintaining high flux at the sam-
ple is of priority; for their specific mosaic spreads, which play a
role in the instrumental resolution of the spectrometer and there-
fore in eq. 3.25; and for their small incoherent scattering cross-
sections. To elaborate on the mosaic spread, the crystals chosen
for monochromator crystals are what are called “mosaic crystals”
or imperfect crystals. When a crystal is too perfect, i.e. a mosaic
spread smaller than 1’ [202], their resulting reflectivity is usually
too low, causing one to forfeit intensity of the incident beam onto
the sample. This is also called primary extinction [211]. This is
compensated for by either co-aligning many small crystals in such
a way that there is “controlled misalignment” or by heating and
purposefully deforming the crystal several times [202].

A correction that is also often put into place when using single
crystal monochromators and analyzers is to eliminate (as much
as possible) the higher-order harmonics that are also reflected us-
ing Bragg reflection. When the wavelength λ is reflected using
crystal plane (h, k, l), wavelengths λ/2, λ/3, etc. are also reflected
from crystal planes (2h, 2k, 2l), (3h, 3k, 3l), etc. This is the rea-
son that an Si111 monochromator is sometimes chosen, as the 222
reflection is extinct and therefore poses no potential λ/2 contam-
ination [212]. Neutron beam filters, such as a Be polycrystalline
filter maintained at low temperature of 77 K, can also act at low-
pass filters, cutting off neutrons below a certain wavelength [213],
which is 4 Å in the case of the Be filter [202]. This option was made possible at the 4F2@LLB
beamline, for instance. Another common adaptation, designed for higher energy measurements,
is the use of a PG filter before the analyzer. This filter specifically cuts λ/2 and λ/3 harmonics,
but also restricts the Ef values to particular values such as kf = 2.662 Å−1. Finally, a specific
type of ferromagnetic crystal is used for polarized neutron experiments and it will be discussed
in Section 3.1.9.4.

Detectors on TAS instruments are usually proportional gas counters that contain 3He or
10BF3 gas under pressure. This acts as a cathode, with the anode being a wire attached to a
high voltage. The 3He gas reacts with the neutron that is scattered onto the detector tube such
that the reaction products result in ionization which is measured in a wire. With significantly
high voltage, the anode attracts a number of ionized electrons that is proportional to the reaction
rate expected in the gas to the point of reaching an avalanche effect. The limitation to these
gas counters is their response time, which is roughly 10,000 counts per second, meaning that a
plexiglass attenuator is usually placed before the analyzer/detector for moments when extremely
high count rates are expected, such as during a sample alignment when a scan across a Bragg
peak is taking place [213].

Collimation can also be added to TAS in order to further enhance the resolution of the
instrument. Söller-slit collimators, for example, are a series of thin vertical blades with coatings

54



3.1 Inelastic Neutron Scattering

made of a neutron-absorbing material, such as Gadolinium. Söller-slit collimators limit the
horizontal divergence of the beam, and they can be placed before and after the monochromator,
and before and after the analyzer. In other words, onto ki and kf , respectively.

An example of Söller-slit collimation is shown in Fig. 3.6. Each absorber blade is a rectangle
with a length of L = 40 cm. The resulting angular divergence, α, can then be calculated by
knowing the length of the gap between each blade, d = 0.12 cm [214]:

α =
2d

L
=

2 × 0.12 cm

40 cm
= 0.006 rad = 20 min of arc (3.29)

This is often referred to as 60’/20’/20’/60’ collimation, since 20 min collimation is placed
just before and just after the sample, as described above. The use of collimation, however, is
a trade-off between resolution and intensity, since we forfeit neutrons to the absorber blades in
exchange for a lower allowed divergence.

The choice of fixed-kf value for an experiment is tied to many parameters, such as the avail-
able monochromators and analyzers, the inelastic energy range of interest, flux at the instrument,
and the neutron energy range that the instrument has been set-up to receive, i.e. cold or thermal
neutrons. In addition to collimation, decreasing the size of the scattering triangle is typically one
way to improve resolution. However, simple calculations should be made beforehand to ensure
that Bragg peaks and directions that you hope to measure at during a TAS experiment can be
reached. An example of different fixed-kf phonon measurements is discussed in my unpublished
manuscript, Turner et al. [81], where it is shown that with the improved resolution of using a
smaller fixed-kf , a new interpretation of the phonon dispersions in 9.5 mol.% Yttria-Stabilized
Zirconia can be made.

3.1.6.1 Resolution of Triple-Axis Spectrometers

For triple-axis spectrometers, the resolution has an inclined and elongated ellipsoid shape due
to the fact that Q and E resolutions are coupled, and it has a slope of approximately 3000 m/s,
depending on the settings of the spectrometer [204]. Due to the inclination of the ellipsoid, we will
have more narrow and intense measured intensity when the slope of the instrumental resolution
most closely matches the local group velocity of the phonon dispersion. As seen in Fig. 3.7, when
the elongated axis of the resolution ellipsoid is parallel to the dispersion velocity (focused), the
resulting intensity is higher and narrower than if the ellipsoid is close to perpendicular to the
dispersion (defocused). This is also called the focusing condition [202, 215, 216].

The derivation of TAS resolution has been detailed by M.J. Cooper and R. Nathans [217],
B. Dorner [218], and M. Popovici [219], and additional information can be found in litera-
ture [202, 204, 216, 220]. Programs such as Takin [221] and ResCal (from Hargreave and Hullah,
1979) allow the user to input the necessary parameters in order to analytically calculate the reso-
lution ellipsoid for a given set of experimental conditions. Such an example using Takin is shown
in Fig. 3.8 for the type-I clathrate Ba7.81Ge40.67Au5.33 in the scattering plane [110][001]. In order
to simulate the resolution ellipsoid as seen for a 1 cm3 cylindrical sample of Ba7.81Ge40.67Au5.33,
I have input all relevant spectrometer parameters (distances between monochromator, sample,
and analyzer, mosaics of the monochromator and analyzer, etc.) for the 2T@LLB spectrometer
with a fixed-kf = 2.662 Å−1 according to those given by P.F. Lory [206] (see pg 86, Table 4-1).
Assuming 60’ (standard) collimation, Figs. 3.8(a-c) describe the shape and size of the resolution
ellipsoid as seen by a transverse phonon at position (0.2 0.2 6) with an energy of 5 meV in terms
of ∆Q∥ (longitudinal) and ∆Q⊥ (transverse) projections.

Fig. 3.8(d) emphasizes the role that the local slope of the phonon dispersion has on the
effective energy resolution for the standard and high resolution setups, or 60’ (standard) and 20’
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(high) collimation. As seen in the figure, a resolution of only 0.2 meV can be reached using a
local slope of 11 meV.Å at the phonon position (0.2 0.2 6).

Figure 3.7: Focusing condition of a triple-axis
spectrometer. On the left, the TAS resolution el-
lipsoid is overlaid onto an example phonon disper-
sion, showing that, in this case, the resolution ellip-
soid is more closely aligned with the sound velocity of
the dispersion when moving along q = 0→0.5, also
called the “focusing” side, than from moving along
q = 0→−0.5, or the “defocusing” side. Dashed hor-
izontal lines highlight the position of the center of
the ellipsoid. The right-hand side shows the inten-
sity that would result from a constant Q scan that
crosses the phonon dispersion using the focused side
(solid line) and the defocused side (dashed line). Fig-
ure taken directly from [215].

During my thesis work, I used the pro-
gram ‘afitv,’ an analysis tool developed by
B. Hennion and P. Bourges at the LLB [222]
specifically for the data analysis of TAS exper-
iments, in order to analyze my TAS measure-
ments. Afitv calculates the resolution ellipsoid
of the given TAS instrument, accounts for the
phonon position, group velocity, and sample
mosaicity, and finally deconvolutes the phonon
peak from the instrumental resolution in or-
der to allow us to extract the intrinsic phonon
position, intensity, linewidth, and group ve-
locity. I emphasize the importance of using
rigorous programs like afitv that are refined,
well-tested, and founded upon the derivations
of the resolution ellipsoid listed above. With
programs like afitv, we can have confidence in
the interpretation of our measurements.

While afitv takes care of the convolution of
the measured intensity, it still takes an experi-
enced user to ensure that the program is con-
verging onto a solution that makes sense and
could be applicable to the experimental condi-
tions at hand. There are many parameters at
play that are still left up to the user to input,
including but not limited to the background
(and background slope) in the scan, the type
of phonon peak fit (Gaussian, damped har-
monic oscillator, etc.), and whether or not we
make the fit assuming a localized linear dis-
persion fit (ω = vgq) or by calculating the cone of dispersion. All of these parameters impact
the resulting phonon position, intensity, linewidth, and group velocity. Furthermore, we use the
resulting normalized intensity values of the fits (see eq. 3.26) as a guide for determining when
we are fitting an acoustic mode, or possibly a band of modes.

3.1.7 Time-of-Flight (TOF) Spectrometers

Examples of TOF INS spectrometers include IN5 and IN6-SHARP at the Institut Laue-
Langevin; MAPS at the ISIS Neutron and Muon Source; and SEQUOIA at the Spallation
Neutron Source (located at Oak Ridge National Laboratory).

TOF instruments are usually divided into direct and indirect geometry spectrometers. In
direct geometry spectrometers, the incident wave-vector, and therefore energy, of interest from
the white beam is fixed by a set of choppers and the final energy after interaction with the
sample is then measured by the time-of-flight of the scattered neutrons. Indirect geometry
spectrometers work in the reverse: the incoming white beam with various energies is measured
by time-of-flight and the final energy is fixed using an analyzer bank in front of the detector
bank [209]. Note also that, by convention for TOF instrument users, the scattering triangle is
defined as Q = kf −ki rather than as Q = ki −kf , which was written previously in eq. 3.1 and
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Figure 3.8: Description of the TAS resolution ellipsoid. (a-c) describe the shape and size of the
resolution ellipsoid as seen by a transverse phonon at position (0.2 0.2 6) with an energy of 5 meV in
terms of ∆Q∥ (longitudinal) and ∆Q⊥ (transverse) projections. The cross-section of the ellipsoid in the
plane are represented by blue lines, while the projection onto the plane are in green. The ellipsoid was
calculated using Takin [221]. In (d), the effective energy resolution using 60’ (standard resolution) and
20’ (high) collimation are compared across different local dispersion slopes. A minimum occurs for a local
slope of 11 meV.Å. (d) was taken directly from the Supplementary Material of Ref. [27].

follows the TAS user convention.
Fig. 3.9 depicts an example of a direct geometry TOF instrument, modeled in particular after

the cold-neutron TOF instrument IN5@ILL. Three sets of choppers are placed in the neutron
guide which are responsible for creating the monochromatized pulse of neutrons and eliminating
longer-wavelength harmonics from the pulse. The neutrons then impinge on the sample, and the
results are collected in a 2D set of detector banks 4 m from the sample. We will return to each
of these components in detail. However we will first discuss the principle of TOF spectrometers.

The success of a TOF instrument lies in the ability to measure the flight path of neutrons
between the sample and detectors in the case of the direct geometry instruments. As stated
in Section 3.1.5, cold neutrons have an energy of approximately 5 meV, corresponding to a
velocity of ∼1,000 m/s. The time-of-flight of the neutrons can therefore be measured, assuming
significant enough distance between the sample and detector banks is maintained in order to
register individual neutrons coming in at this velocity. This condition is known as frame overlap.
Frame overlap is a main design concern of TOF instruments, as it refers to the minimum time
allowed between pulses. Neutrons from a first pulse must reach the detectors and be counted
before a second pulse arrives in order to correctly measure the total time-of-flight of the neutrons
of the first, and then subsequent, pulses.

Continuing with the direct geometry example, we can deduce the energy and location in
reciprocal space that a given neutron at a given detector came from by time-of-flight and the
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Figure 3.9: Example of a Direct Geometry Time-of-Flight (TOF) Spectrometer. The main
features include choppers (in green) placed along the neutron guide (black line) that define the neutron
pulse that reaches the sample (in orange), before scattering into a 3D detector array (in blue). This
particular schematic has been modeled after the instrument IN5@ILL.

use of the cosine rule for the scattering triangle:

Q2 = k2
i + k2

f − 2kikf cosϕ (3.30)

Since ki and the distance from the last set of choppers to the sample, L, of the incoming
beam are fixed, the time from chopper to sample τi = L/vi for neutrons with velocity vi, and the
energy of the incoming neutrons, Ei, are therefore known. We also know the total time-of-flight
of the neutrons from chopper to detector, τtot, meaning that the time-of-flight of a neutron with
a final wave-vector kf is τf = τtot−τi [209, 212]. Finally, using the inelastic scattering definition
ℏω = Ei − Ef ,

ℏ2Q2

2m
= Ei + Ef − 2

(
EiEf

)1/2
cosϕ (3.31)

ℏ2Q2

2m
= 2Ei − ℏω − 2

[
Ei

(
Ei − ℏω

)]1/2
cosϕ (3.32)

Eq. 3.32 is made possible through the design of the choppers and detector banks. The chop-
pers serve several key functions for TOF instruments, and we will take the example specifically
of the IN5@ILL choppers. From left to right in Fig. 3.9, the first set of choppers defines the pulse
of neutrons. Since IN5@ILL is placed at a steady-state neutron source, it is first necessary to
create the pulse of neutrons. The second set of choppers eliminates longer-wavelength harmonics
from the beam, such as what was described in Section 3.1.6, and ensures that there is no frame
overlap. Their rotation speeds are set according to the minimum and maximum flight times of
the fastest and slowest neutrons, respectively, in a given pulse such that the difference between
the two is still less than the period of the pulse selected by the first set of choppers. Then, the
final set of IN5@ILL choppers monochromatizes the beam to the incoming neutron wave-vector
ki of interest for the experiment [209].

The choppers in the Fig. 3.9 schematic are meant to represent disk choppers. As the name
implies, these are disks made of a neutron absorbing material with only a small slit cut into them
that let neutrons pass through. They are most efficient in pairs, rotating in opposite directions.
This way, the first disk cuts a section of the beam, and then the phase angle and distance
between the first and second disks define the velocity band that is selected [213]. IN5@ILL has a
chopper velocity range of 2,000-17,000 rpm (or an angular speed range of 209-1780 rad/s), with
chopper angle apertures of either 3.25◦ or 9◦. The pulse is then defined based on the distances
between the sets of choppers and the sample, and the ratio between the angular apertures over
the angular speed.
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After the incoming neutron beam interacts with the sample, a radial collimator is often
placed between the sample and the large area detectors in order to prevent parasitic scattering
from reaching the detectors. Due to the wide angular coverage of TOF detectors, there is
more concern than for TAS spectrometers, for instance, that scattering coming from the sample
environment interferes with the intrinsic scattering due to the sample. The radial collimator,
designed after Venetian blinds, absorbs this type of scattering, reducing the background [209].

The detector bank has an effective detection height of 3 m and is made up of position sensitive
3He counters similar to those on TAS instruments, with a key difference: the IN5@ILL detectors
are vertical tubes with a diameter of 2.54 cm, and this vertical form of the gas counter allows for
further precision of the neutron flight path for TOF instruments. The position sensitivity of the
name comes from the fact that the detector is modified to contain a resistive wire with charge
sensitive amplifiers at either end of the vertical tube, q1 and q2. The position, x, of the neutron
along the vertical tube can therefore be calculated using the ratio of the charges measured at
each amplifier: x = q1/(q1 + q2).

3.1.7.1 TOF Data Analysis

The initial data analysis of a TOF experiment is a bit more involved than that of a TAS
experiment. In order to view and work with data from a TOF experiment, several programs
including LAMP [223], Mantid [224], and the Horace functions for Matlab [225] exist for TOF
instrument users. A combination of LAMP or Mantid, plus Horace can be used in order to
process the information collected at each detector for each scan into a single S(Q, ω) 4D dataset.
The four parameters that can then be manipulated to view the neutron scattering intensity are
the two scattering plane axes, the out-of-plane vertical axis, and energy.

Horace allows the user to view selections of the data along energy or a given Q axis. To be
more precise, a slice, or integration in energy, at a given energy transfer can then depict the 2D
inelastic neutron scattering intensity within the scattering plane. Examples of such kinds of 2D
iso-energy plots can be seen in Fig. 5 of Turner et al. [57]. On the other hand, when a slice, in
this case an integration in Q, on one of the two scattering plane axes is made, the energy range
along the second scattering plane axis can be viewed. Such kinds of 2D iso-Q plots can be seen
in Fig. 12 of Turner et al. [57]. Finally, 1D constant-energy and constant-Q plots that integrate
small selections in all but one of the four parameters allows the user to trace the Q range at a
given energy transfer or the energy range at a given Q in reciprocal space, respectively. These
scans most resemble what is typically measured on a TAS instrument. Examples can be found
in Figs. 13-18 of Turner et al. [57].

An in-depth explanation of the instrumental resolution of IN5@ILL as it applied to an ex-
periment made on the type-I clathrate Ba7.81Ge40.67Au5.33 can be found in Appendix A.1 of
Turner et al. [57] as well. Details include the calculation of q and E resolution due to step size
and beam divergence specifically for measurements made on the Bragg peaks (006) and (222) in
the scattering plane [110][001]. The IN5@ILL neutron guide has undergone upgrades since this
particular 2016 experiment, so the reader should be advised that the particular values given in
Appendix A.1 have since changed. Further information on the instrumental resolution of TOF
instruments can be found in Ehlers et al. [226] and Violini et al. [227]

3.1.7.2 TOF Generalized Vibrational Density of States (GVDOS) Measurements

TOF instruments also offer great flexibility for measuring different phonon properties. Going
beyond what can be measured in a given scattering plane for a single crystal measurement,
when a powder sample is measured on a TOF instrument, the neutron-weighted generalized
vibrational density of states (GVDOS) can be calculated from the experimental data as well.

59



3.1 Inelastic Neutron Scattering

(For an introduction to the GVDOS please see eq. 3.24.) For single crystal measurements, this
can similarly be done, but it should be done with caution as we are making the non-trivial
assumption that the given range in reciprocal space that we have measured in a single scattering
plane reflects the behavior that could be measured not only in all other scattering planes but
also in all reciprocal space not reached within the given measurement. It is generally agreed
upon by experimentalists that when a sufficiently large range of reciprocal space, for instance one
quadrant of the scattering plane, of a single crystal is measured, we can reasonably approximate
the GVDOS for a single crystal as well for a symmetry-independent portion of the Brillouin zone.
Furthermore, the fixed ki of such GVDOS measurements should generally be long enough to
reach at least one Bragg peak, as this allows acoustic behavior to be integrated into the GVDOS
calculation, offering further reassurance. TOF instruments are also known for having potential
spurious effects and/or detector accuracy issues in low-Q regions, and reaching the first Bragg
peak can act as a general rule of thumb for ensuring that undue weight is not placed on this less
precise region of Q.

Either Mantid [224] or the MUPHOCOR (MUlti-PHOnon CORrection) routine [228] for
LAMP [223] can each be used to calculate the GVDOS from a TOF measurement. MUPHO-
COR takes several inputs such as the expected neutron scattering cross-section, the atomic mass
of the sample, and other key instrumental parameters and makes a first approximation calcula-
tion of the GVDOS. It then self-consistently corrects for the multi-phonon processes contribution
(See Section 3.1.3), leaving just the desired one-phonon DOS. It is further customizable when
parameters such as the background, absorption correction, and the removal of known bad de-
tectors are included. A further remark in favor of MUPHOCOR is the fact that the resulting
energy scale reflects the natural time-of-flight step of the instrument, which is non-linear, allow-
ing for a GVDOS calculation that is more “true” to the actual dataset collected on the given
TOF instrument. Examples of my MUPHOCOR GVDOS calculations can be found in Turner et
al. [57] and Turner et al. [106].

While Mantid does provide a user-friendly, Python-based environment for live plotting dur-
ing an experiment, it lacks the important features such as the multi-phonon correction and
natural time-of-flight step that make MUPHOCOR the more rigorous method of experimentally
calculating the GVDOS, as least at the time of writing this manuscript.

3.1.8 TAS vs TOF, a comparison for lattice dynamics studies

My Ph.D. work focused largely on the use of TAS and TOF instruments for phonon measure-
ments. Speaking strictly to their advantages/disadvantages in terms of use for phonon behavior
and lattice dynamics studies, it is perhaps relevant to give a brief commentary or comparison of
the two.

If I were to conduct an exploratory measurement of several phonon dispersions at room
temperature, for instance, which is the typical way to begin a new experimental lattice dynamics
study on a given crystalline system, I would expect the experiment to take 2-3 days on a TOF
instrument vs 4-7 days on a TAS instrument. (This is completely generalized of course, as
the length of time depends on flux at the sample and many other parameters.) The 2-3 day
TOF experiment would have the added benefits of (1) a map of reciprocal space at any given
energy within the experimental range, including the elastic scattering map, such as what a
diffractometer could provide, and (2) further analysis results such as the GVDOS, which would
help complete the exploratory lattice dynamics study. Creating similar reciprocal space maps
with TAS are also possible, yet tedious.

In addition, TOF experiments typically explore a large portion of S(Q, ω) 4D space, possibly
allowing one to pinpoint a specific region of interest that can then be further refined using a
TAS instrument. These types of refined measurements, i.e. localized measurements that need to
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be done at a given energy and/or precise direction with excellent statistics, such as the following
of a phonon dispersion, are more optimized for the three-axis design of TAS instruments. TOF
instruments, on the other hand, will collect a slice of reciprocal space that reflects the arc of the
detectors, which will most likely not correspond to the specific direction of interest.

Where TAS instruments truly shine is in extracting intrinsic phonon linewidths with extreme
precision. The TAS instrumental resolution ellipsoid and the programs to model it have been
thoroughly studied by some of the “greats” in neutron scattering, including G. Shirane, S. M.
Shapiro, B. Hennion, and others, and such programs have been tested and verified on a wide
range of materials. Further customization such as the option to add Söller slit collimation,
once the local region of interest is defined, allows users to refine certain characteristics, such as
phonon linewidth broadening, with a more reactive and flexible experimental environment that
can be changed multiple times during the actual experiment. The use of TAS instruments for
measuring phonon linewidths has even led to the development of the Neutron Resonance Spin
Echo technique for TAS, which will be discussed in detail in Sections 3.1.9-3.1.10.

To this I add a comparison of data treatment. The TAS instrument is perhaps more intuitive,
especially for a new neutron facility user, since the user drives the instrument to the area of
interest in phase space and directly scans a series of points with constant-energy or constant-Q.
The data can then be plotted live and preliminary analyses made directly. This can be important
especially in an exploratory experiment since count time and step size can be adjusted based
on preliminary results, making for a much more “dynamic” or on-the-moment experimental
approach. TOF instruments, however, require lengthy data treatments that convert the time-of-
flight data into one 4D S(Q, ω) data set that is on the order of several terabytes, often limiting
the live plotting and interpretation of certain detailed features that can be done during the
actual experiment beamtime.

Finally, a brief mention of the different strategies for sample alignment of single crystals:
Extreme care is taken, in both TAS and TOF cases, to ensure that the crystal has been aligned
into the desired scattering plane at the beginning of the experiment. While TAS instruments
often offer a two-axis goniometer underneath the sample environment with a ∼5-10◦ tilt that can
help bring slightly misaligned samples back into the scattering plane, this is not often the case
for TOF instruments. For a TOF instrument, however, data treatment software like Horace [225]
uses the available Bragg peaks measured within the data set to realign the observed spectrum in
reciprocal space using the orientation matrix and adjust the lattice parameters post-experiment,
at the data treatment stage.

While each type of spectrometer offers its own advantages and limitations, I have found
during my Ph.D. experience that, when possible, a combination of both techniques results in a
more comprehensive lattice dynamics study. In addition, when intrinsic phonon linewidths are
outside the instrumental resolution range of available TAS and TOF techniques, NRSE for TAS
offers improved resolution for exactly such types of measurements. This technique will be the
topic of the following sections.

3.1.9 Neutron Resonance Spin Echo (NRSE) for TAS

Instead of following the change in energy of the neutron through an inelastic scattering
process, like TAS and TOF, Neutron Spin Echo (NSE) uses the properties associated to the
polarization of the neutron to follow the spin rotation of said neutron. This has an incredible
advantage: resolution is not dependent on monochromatization of the beam, since NSE does not
follow the energy change of the neutron, and because spin rotation is also a form of conservation
of energy. This means that the trade-off between higher resolution and lower flux at the sample,
lost through either collimation in the case of TAS or choppers in the case of TOF, does not
apply to NSE.
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Neutron Resonance Spin Echo (NRSE) developed out of the NSE technique in the late 1980’s
and was pioneered by R. Golub and R. Gähler [229, 230]. The NRSE technique applies this con-
cept of following the spin rotation of neutrons to a TAS instrument, allowing us to take advantage
of the TAS instrument’s range in reciprocal space and energy for inelastic measurements while
enhancing the resolution for linewidth measurements through the use of NSE.

In the following subsections, a brief introduction to NSE will be given, followed by a de-
scription of the modifications made to a triple-axis spectrometer that allow us to conduct an
NRSE measurement. Then I will show how I applied these concepts towards the NRSE linewidth
measurements made for the type-I clathrate Ba7.81Ge40.67Au5.33 during my Ph.D work. Finally,
I will present a variation on the NRSE for TAS setup called Neutron Larmor Diffraction.

3.1.9.1 Principles of NSE

The basic principle of NSE depends upon both the Larmor precession and the non-adiabatic
condition. Firstly, Larmor precession is the rotational axis motion of a neutron in the presence
of a magnetic field. Secondly, NSE relies on non-adiabatic transitions in order to pass seamlessly
between designated magnetic field and zero field (or drift) regions. A non-adiabatic transition
refers to when the field abruptly changes, such as in the case that we wish to create in the
drift regions that will be introduced below. Rather than giving the polarization time to adapt
progressively, a non-adiabatic transition forces the immediate precession about the direction
perpendicular to the magnetic field of the coil [136, 220]. Its advantage is that, as a first
approximation, we can neglect any influence of the field on the neutron’s polarization [231].

In NSE, we let a neutron precess through designated magnetic fields that are engineered
with static DC coils, and track its change in precession angle. All the necessary properties of
both the neutron and the magnitude and direction of the magnetic fields are known. Therefore,
any change in precession angle other than that which is due to the magnetic fields must, by
consequence, be due to the change in velocity that occurs during a scattering event between the
neutron and sample. The Larmor precession angle, ϕ, depends on the velocity of the neutron, v,
the static magnetic field B put into place, and the length L of the region for which the neutron
is under the influence of B.

The Larmor precession occurs when neutrons have a polarization component perpendicular
to B. Let us therefore assume that a neutron polarized along the z-direction with velocity along
the y-direction precesses through a magnetic field for time t = L/v, causing a Larmor frequency
precession of ωL in the y-direction due to field B, such that

ϕ = γB
L

v
= ωLt, (3.33)

where the Larmor frequency is defined as ωL = γB and the Larmor constant is γ = 2.916
kHz/Oe [232].

We can start by applying this to a basic NSE configuration in which a polarized neutron
beam precesses through a region with magnetic field of strength B for length L before scattering
on the sample and precessing through a second field of equal and opposite strength for the same
length, such as what is shown in Fig. 3.10. The second field reverses the rotation direction of the
neutrons, and, in the case of an inelastic scattering event, the velocity of the incoming neutrons
vi will be different from the scattered neutrons with velocity vf [233, 234].

This means that the final precession angle, ϕNSE , is the sum of the precession experienced
in the first and second coils, or ϕ1 and ϕ2, respectively.

ϕNSE = ϕ1 + ϕ2 =
γB1L1

vi
− γB2L2

vf
(3.34)
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Figure 3.10: Simplified schematic of an NSE spectrometer. The typical Neutron Spin Echo
(NSE) spectrometer (as if viewed from the top) includes two static DC coils (in gray) of length L1,2,
which are placed before and after the sample (in orange), respectively. They have a field strength of equal
but opposite strength with respect to one another. The DC coils create precession regions in which the
neutron precesses according to its velocity and the strength and length of the field.

At this point we reflect that B1L1 must equal B2L2 in order for the precession caused by
the first coil to be reversed, creating the spin-echo effect, so we will continue the derivation with
B1 = B2 = B and L1 = L2 = L [231]. Then we apply the definition vf = vi + δv, with δv ≪ vf
representing the small change in velocity due to interaction with the sample. Since the change
is so small, we will assume that vf = vi + δv ∼ v:

ϕ = ωLL

(
(vi + δv) − vi

vivf

)
= ωLL

δv

vivf

∣∣∣∣
vf=vi

= ωLL
δv

v2
. (3.35)

Then, recalling that the scattering event will cause the neutron to go from having velocity vi
to velocity vf , we define the energy transfer of the neutron scattering event as ℏω = m

2 (v2i −v2f ) =
mvδv. We therefore obtain

ϕ =

(
ℏωLL

mv3

)
ω = ωτNSE, (3.36)

in which τNSE is the spin-echo time, dependent upon energy transfer, which defines the energy
resolution in the particular scattering event [235].

Continuing with the basic NSE configuration, the final intensity of the scattered beam, I, with
polarization Px is related to the initial intensity of the incident beam, I0, by the following [236]:

I =
I0
2

(1 + ⟨Px⟩). (3.37)

The final polarization, ⟨Px⟩, is the average of the neutron spin component in the direction
of polarization such that

⟨Px⟩ = ⟨cos(ϕNSE)⟩ =

∫
S(Q, ω) cos(ϕNSE)dω =

∫
S(Q, ω) cos(ωτNSE)dω (3.38)

and the dependence of Px on ϕNSE in turn is related to the Fourier transform of the scattering
function, S(Q, ω).

As we are preparing to focus on the NRSE application for inelastic scattering, we can first
describe the NSE tuning condition for dispersionless inelastic scattering as a way of pinpointing
its limitation for the measurement of phonon linewidths. Expanding on the NSE example above,
we want to ensure that ϕNSE is a function of only the energy transfer ℏω, and not of the spread
of incident and scattered velocities dvi and dvf that enter into and exit out of the spectrometer,
respectively. (Note that we define the spread dv differently from the change in velocity due to the
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scattering event with the sample, which is defined above as δv, to avoid confusion of variables.)
We will assume that the spread in velocity is centered around values vi and vf , which correspond
to an energy exchange ℏω0 = m

2 (vi
2 − vf

2) and precession angle ϕ0 [232]. The velocity spreads
are therefore defined as

vi = vi + dvi, vf = vf + dvf . (3.39)

In order for ϕNSE to be independent of the velocity spreads, the following condition must
be met:

γB1L1

vi3
=

γB2L2

vf
3 , (3.40)

and this is accomplished by tuning B1L1 and B2L2 for the given values of vi and vf , respec-
tively [231]. The number of precessions in the DC magnetic field must be matched to create the
proper spin-echo effect.

3.1.9.2 The Development of the RF coil

The problem with this NSE tuning condition for inelastic scattering, however, is that it only
allows for field tilt angles of up to 10◦, which severely restricts the range of dispersive excitation
group velocities that are measurable with NSE [234], effectively eliminating the possibility to
measure linewidths of dispersive excitations such as phonons. In order to overcome this, the
NSE DC coils were consequently replaced with RF spin flippers, which allow for a maximum tilt
angle of ∼50-70◦ and therefore encompass a much more practical range of dispersive excitation
group velocities that the coils can be tuned to. Through this innovation, the NRSE technique
began.

Figure 3.11: Explanation of the RF coil used in NRSE. The top panel is a zoom onto one of the
two DC coils in an NSE spectrometer (see Fig. 3.10). In the bottom panel, the DC coil is replaced by two
RF coils for the NRSE technique that still contain static field B but also have a time-varying field BRF .
In between the two RF coils, where there would still normally be static field B in the NSE spectrometer,
there is instead no magnetic field.

For NRSE, the boundaries of the precession fields are defined by RF spin flippers, also called
π−flippers, instead of DC coils. They each produce a static field B and resonant, time-varying
field BRF perpendicular to B. As seen in Fig. 3.11, for the same length L, we replace the long
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solenoid of the NSE technique with two RF coils that rotate along their vertical axes in order to
match the tilt angle to the dispersion slope (we will come back to this concept using Fig. 3.12
shortly). The emphasis, therefore, is on controlling the frequency of rotation rather than on
maintaining a homogeneous static field, and, as the following paragraphs will demonstrate, the
use of a set of RF coils produces a precession angle which is twice that of the NSE DC coil
setup [231].

Figure 3.12: Operation of the RF coil. (a) Each RF spin flipper has a time-varying field BRF in
the xy plane that varies according to ωRF and a static field B in the z direction. (b) Each time a neutron
passes through an RF spin flipper with initial polarization P0 at arbitrary time t0, it rotates for π about
the time-varying field, coming out and back into the xy plane as shown in (b), and then it exits after time
t1 with final polarization P1. A sketch of these vectors within the xy plane is shown in (c).

Let us assume that an incoming neutron beam is first polarized into the xy-plane. We will
consider each of the two π-flippers in Fig. 3.11 to be of length d and to produce both a static
field B in the z-direction and a time-varying field BRF perpendicular to B in the xy-plane, such
as what is shown in Fig. 3.12(a).

There are two resonance conditions that the RF spin flipper must meet [231]:

ωRF = γB and γBRFd/v = π, where BRF =
πv

γd
. (3.41)

The neutron enters the π-flipper at arbitrary time t0 with initial polarization P0 and preces-
sion angle ϕ0 with respect to the xy-plane, and with arbitrary precession angle ϕRF with respect
to the time-varying field BRF . In order for a rotation of π about BRF to occur, a precession for
time tπ = t1 − t0 = d/v will pass before the neutron exits at time t1. This causes the neutron
to have a final precession angle of ϕ′

RF = ωRF tπ = ωRF (d/v) with respect to the time-varying
field upon exiting the first coil. The polarization of the neutron at this point, P1, will therefore
correspond to a new precession angle, ϕ1, following Fig. 3.12(c):

ϕ1 = ϕRF + ϕ′
RF + (ϕRF − ϕ0) = 2ϕRF + ωRF

(d
v

)
− ϕ0. (3.42)

This marks the end of the passage through the first coil. If we continue to follow the diagram
in the bottom panel of Fig. 3.11, however, the neutron next passes through the zero magnetic
field drift region without change to the polarization vector, meaning that, at the entrance to the
second RF coil, the precession angle is still equal to ϕ1. However, some time has passed in the
zero drift region that is equal to L/v, meaning that the new precession angle upon entering the
second coil, ϕ′′

RF , is equal to ϕRF +ωRF

(
L
v

)
. Using these guidelines, we follow the same formula
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as in eq. 3.42 in order to pass through the second coil, noting that the second RF coil is tuned
to the same Larmor frequency as the first (with synchronized BRF fields) [231]:

ϕ2 = 2ϕ′′
RF + ωRF

(d
v

)
− ϕ1

= 2
[
ϕRF + ωRF

(L
v

)]
+ ωRF

(d
v

)
− 2ϕRF − ωRF

(d
v

)
+ ϕ0

= 2ωRF

(L
v

)
+ ϕ0

(3.43)

We can see from eq. 3.43 that, by using the set of RF coils instead of the one long DC coil,
the precession angle doubles in comparison, and therefore also increases the resolution of the
technique.

With the use of the RF coils came the ability to apply the field tilt angles to a much
wider range of dispersive excitation group velocities. The RF coils can be tilted up to ∼50◦ on
TRISP@FRM-II [237] and ∼70◦ for the ZETA option on IN22@ILL (NRSE instruments that
will be formally introduced in Section 3.1.9.4), allowing them to be focused to the incline of the
local slope on a linear dispersion. More specifically, the spin-echo phonon focusing condition is
designed so that the boundaries of the precession fields with precession angle ϕNRSE are parallel
to the dispersion curve [234], such as in Fig. 3.13(c).

Figure 3.13: The tilt of the boundaries of the RF coil. (a) Several closely located points along
a given dispersion (orange, green, and red points) are centered around a phonon at (q0, ω0). (b) The
scattering triangle that results from this configuration for a phonon at (q0, ω0) on the dispersion curve.
(c) A partial schematic of the sample and second precession region, showing that the boundaries of the
RF coil (with normal vector nf ) are tilted with angle θf to match the slope of the dispersion surface of
the phonon dispersion, depicted with a black dashed line.

To illustrate phonon focusing for NRSE, we will take an arbitrary point on a linear phonon
dispersion curve at (q0, ω0) that has a local group velocity of ∇qω(q0). (We denote group
velocity this way to avoid confusion between the phonon velocity and the neutron velocities that
are defined in Fig. 3.13.) The RF coils before and after the sample are tilted with angles θi,f ,
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respectively, forming normal vectors ni,f with the coil surfaces. The non-zero linewidth of the
phonon peak at (q0, ω0) causes a spread in ϕNSE to the first order, such that

ϕ− ϕ0 = τNSE

(
ω − ω0(q)

)
= τNSE

(
ω −

[
ω0(q0) + (q− q0) ·∇qω(q0)

])
. (3.44)

This means that the coil surfaces must be tuned according to the spread (centered around
the green point with velocity va in Fig. 3.13) as seen by the mean neutron velocities [233],

ni,f ||
(
vi,f −∇qω0(q0)

)
, (3.45)

such that

cos(θi,f ) =
vi,f

(
vi,f −∇qω0(q0)

)

|vi,f ||vi,f −∇qω0(q0)|
. (3.46)

This ensures that the scattered neutrons have the same travel time in the field: Looking
again at Fig. 3.13(c), we see that the neutron with velocity vb travels slightly longer in the field
than either va or vc. If we assume that vb > va > vc, then we can tune the tilt such that all
neutrons still pass through the field while taking time t1 [231].

It then follows that

(ωLL)i,f
(vi,fni,f )2

ni,f = τNSE
m

ℏ

(
vi,f −∇qω0(q0)

)
, (3.47)

in order to arrive at the final expression for the spin-echo focusing condition:

τNSE =
ℏ(ωLL)i

mv2i cos(θi)|vi −∇qω0(q0)|
=

ℏ(ωLL)f
mv2f cos(θf )|vf −∇qω0(q0)|

. (3.48)

The significance of this focusing condition is that the polarization measured during the
experiment is no longer coupled to the already existing, or intrinsic, TAS resolution ellipsoid
nor to the energy spread in the dispersion surface for the given dispersive excitation, giving us
confidence that the measured inverse-exponential decay of the beam with increasing τNSE is due
only to the interaction with the sample [206].

3.1.9.3 The bootstrap method upgrade

There are currently two TAS spectrometers in use that perform NRSE measurements, namely
the ZETA option for IN22@ILL and TRISP@FRM-II, and their characteristics will be detailed
in Section 3.1.9.4. However, before turning to the instrumentation of these spectrometers and,
keeping in line with this explanation of the RF coil, there has been a second revolutionary
upgrade to the NRSE technique that first deserves attention.

Both the ZETA option for IN22@ILL and TRISP@FRM-II can take advantage of what is
called the bootstrap method, which was first proposed by R. Gähler and R. Golub [230] as a way
of enhancing the instrumental resolution of the NRSE technique even further. This is done by
turning each RF coil into a set of bootstrap RF coils that each consist of two π-flippers with DC
fields that are opposite relative to each other (↑↓) [231, 234, 238]. We directly impact resolution
since we increase the precession angle by sending the neutron through eight coils instead of four,
and the final precession angle is doubled again in comparison to eq. 3.43. (The derivation can
be found in Ref. [231]):

ϕbootstrap = 4ωRF

(L
v

)
+ ϕ0. (3.49)
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This method also helps create a more closed magnetic field environment, eliminating the field
corrections usually needed in order to cancel out stray fields [239]. The two halves of a bootstrap
coil are joined together in the case of TRISP@FRM-II, as seen in Fig. 3.14(a), while there is a
small distance between the two halves of the coil that can be adjusted in the case of the ZETA
option for IN22@ILL. Additional information on the bootstrap coils for the ZETA option for
IN22@ILL and for TRISP@FRM-II can be found in Ref. [231] and Ref. [236], respectively.

Figure 3.14: RF and DC coils on TRISP@FRM-II. (a) Examples of the RF bootstrap coils
placed after the sample on the neutron resonance spin echo triple-axis spectrometer TRISP@FRM-II.
This particular RF mode allows for measurements in a range of 50-300 kHz. (b) The addition of a DC
coil both before and after the sample and in between the two sets of RF coils in each case allows for
measurements below 50 kHz.

Fig. 3.14(a) shows examples of the RF coils on TRISP@FRM-II in the “arm” after the sample,
and Fig. 3.14(b) shows an additional mode on TRISP@FRM-II in which a DC coil is inserted in
between the two sets of RF bootstrap coils, allowing for a different range of measurement (see
figure caption). These will be referred to as RF and DC+RF modes in future sections. The RF
coils are designed such that operation with and without the bootstrap method can be conducted
by simply adding the second RF coil in parallel or routing a relay that avoids this second coil,
respectively [231].

3.1.9.4 NRSE for TAS Instrumentation

As mentioned in the previous section, there are currently two instruments capable of perform-
ing NRSE measurements: the ZEro field spin echo and Three Axis (ZETA) option on IN22@ILL,
and TRISP@FRM-II. Both instruments are thermal-neutron triple-axis spectrometers that have
been modified for NRSE measurements. These options make use of polarization neutron TAS
set-ups with the addition of RF coils to create the NRSE environment. An NRSE spectrometer
consists of four sets of RF spin flippers, C1−4, each of length l, and two drift regions of lengths
L1,2, such as the ones shown in Fig. 3.15.

The coils C3,4 have a static field of equal but opposite strength with respect to coils C1,2

(↑↓), meaning that precessions for a given neutron velocity cancel across the spectrometer, again
creating what is otherwise known as the spin-echo effect. More information including detailed
walk-throughs of each step and resulting precession angle for an NRSE spectrometer can be
found in Refs. [229, 231, 236].

For polarized neutron experiments, a specific type of ferromagnetic crystal, usually a Heusler
alloy, is used for both the monochromator and analyzer. NRSE requires a crystal that not only
monochromatizes the incoming neutron beam, but also spin-polarizes it. A beam is said to be
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Figure 3.15: Example of a triple-axis spectrometer set up for the neutron resonance spin
echo technique. The main features include the spin-polarizing monochromator (in green) and analyzer
(in blue) and the series of bootstrap RF coils (in gray) on either side of the sample (in orange) that are
aligned anti-parallel with respect to each other. This combination allows the change in the neutron’s spin
trajectory due to interaction with the sample to be measured.

completely polarized when the nuclear and magnetic structure factors are equal [209]. The (1,1,1)
scattering reflection of the Heusler alloy Cu2MnAl provides high neutron reflectivity for both
magnetic and nuclear scattering, usually making it the top choice for such experiments [212].
The third important component to working with polarized neutrons during an NRSE experiment
is a spin-flipper, which causes a 180◦ change in the polarization direction and was introduced
previously [209, 212].

Due to IN22’s multiple setups that need to be maintained at the spectrometer, the ZETA
components need to be removable in order to re-obtain the other variations of IN22. Therefore,
the IN22 ZETA option polarizes the incoming white beam with a Heusler monochromator,
defining a fixed kf of 1.64, 1.97, 2.662, 3.87, or 4.15 Å−1, and it supports a Heusler analyzer
as well. TRISP, however, is an instrument permanently set up for NRSE measurements, and
therefore has not only a velocity selector, allowing the instrument to have a ki range of 1.3 -
7.0 Å−1, but also a polarizing supermirror bender placed in the guide, which can be manually
turned on or off at the spectrometer. Since the bender polarizes the beam, TRISP can then
work with a Pyrolytic Graphite monochromator. It also supports a Heusler analyzer to analyze
the polarization.

Turning our attention to the setup of the coils once again, it can be helpful to take advantage
of both the RF and DC+RF modes on the spectrometer TRISP@FRM-II that were introduced
previously, since together they help provide us with a larger accessible range of τNRSE values.
On TRISP@FRM-II, the minimum range in RF mode is ∼50 kHz, since at lower frequency the
instrumental performance (also known as the flipping ratio) decreases. This limits the accessible
τNRSE range. The DC coils alone, on the other hand, form the “classical” NSE configuration with
relatively small fields that bridge the gap between τNRSE = 0 and the minimum τNRSE of the
RF coils, but with the limitation of having an inclination angle of zero. To achieve the phonon
focusing condition with finite inclination, we apply the DC+RF mode: we switch the (inclined)
RF coils on and pole the DC coils negative to subtract the field integral. This means that we
start with the minimum τNRSE of the RF coils, and go towards τNRSE = 0 with increasing DC
current. The inclination angle of the RF coils varies with the DC current, but the effective angle
remains constant.

There is another vital difference between the NRSE configuration and the regular TAS mea-
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surement configuration, which is that we put the TAS spectrometer into the defocused condition
(see Fig. 3.7). We are limited by the maximum tilt angles of the NRSE spectrometer, and
therefore in order to minimize the tilt angle parameter, this often means altering the scattering
triangle and also forfeiting some intensity in the process [231]. This does, however, result the
intersection between the dispersion surface and resolution ellipsoid being much smaller, allow-
ing us to locally assume that the dispersion is linear, once again fulfilling the phonon focusing
condition.

Finishing out our step through of the spectrometer schematic in Fig. 3.15, the intensity is
registered at the detector, and in order to extract the polarization Px from intensity I, we recall
eq. 3.37. From the spectrometer point of view, this is done by translating RF coil C4 through
distance ∆L, starting from a given offset L0. This causes the intensity to oscillate with period
Lper = 2πvf/ωL [237, 238].

I(∆L) = I0

(
1 + Px cos

(
2π

∆L + L0

Lper

))
(3.50)

Usually one period of Lper is enough to extract Px for a given τNRSE, and an example of such
a scan is shown in Fig. 3.17(a), the experimental context of which will be discussed in the next
section. When several scans such as the one in Fig. 3.17(a) are taken for different τNRSE values
at a given point on the phonon dispersion, the exponential decay of polarization vs τNRSE can
be used to extract linewidth, such as what is shown in Fig. 3.17(b).

Finally, in terms of data interpretation, there are three corrections that are made to the
raw polarization data: instrumental, curvature, and mosaic spread corrections. These must
be carefully accounted for during the data treatment process, as they can cause additional
depolarization of the beam that are unaffiliated to the interaction with the sample that we want
to measure [206]. The instrumental correction involves mapping the depolarization of the direct
beam with frequency for a given fixed kf . We must also account for the Bloch-Siegart effect,
which introduces additional depolarization at low frequency due to the experimental constraint
of not being able to create a true rotating field, but rather only a sinusoidal oscillating field.
(For more information, see Ref. [240].)

The curvature function, on the other hand, is calculated using the value of ∇qω(q0) at the
point of interest on the dispersion and the program SEResCal(). It is meant to account for
lattice imperfections that cause curvature of the dispersion surface near the point of interest and
lead to depolarization of the beam [241]. SEResCal() uses the Hessian matrix, Ĥ, to calculate
the second-order term of the spin-echo phase due to this curvature of the dispersion surface, and
the program also calculates the phase shift at the specific reciprocal lattice vector G of interest
due to the mosaic spread of the sample. The mosaic spread of the sample can also be measured
using the NRSE for TAS technique, and will be discussed in Section 3.1.10. The mosaic spread,
along with the instrumental parameters for the TAS instrument are used as input parameters
to SEResCal() in order to calculate the intrinsic TAS resolution and effect of mosaic spread as
well. More information on the SEResCal() program, developed by K. Habicht, can be found in
Refs. [237, 241].

3.1.9.5 Application to the Type-I Clathrate Ba7.81Ge40.67Au5.33

I will now give a brief example of how NRSE measurements can be applied to phonon
linewidths that remain resolution-limited using standard TAS and TOF measurements. In the
context of my thesis, the overall goal of this study was to experimentally measure transverse and
longitudinal acoustic (TA, LA) phonon linewidths in different polarizations and in a range of
temperature for the type-I clathrate Ba7.81Ge40.67Au5.33 in order to understand how the different
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Figure 3.16: Example of intrinsic phonon linewidths measurements by Neutron Resonance
Spin Echo (NRSE). The intrinsic phonon linewidths of a transverse acoustic (TA) phonon branch
from the intense (006) Bragg peak propagating along [110], polarized along [001] are shown for the type-I
clathrate Ba7.81Ge40.67Au5.33. Measurements have been made on the two European instruments for NRSE,
IN22-ZETA@ILL (blue stars) and TRISP@FRM-II (black circles). The IN22-ZETA@ILL linewidths were
taken from Lory et al. [27]. They are compared to the TA linewidth calculations for the type-I clathrate
Ba8Ge30Ga16, made with the ab initio self-consistent phonon method [93].

phonon scattering mechanisms at play change with momentum and temperature. Furthermore,
the use of the ab initio self-consistent phonon (SCP) method to calculate phonon frequency
renormalizations in type-I clathrates by Tadano and Tsuneyuki [93] was experimentally con-
firmed in Turner et al. [57]. This, however, is only one half of the story needed to explain the
low and temperature independent region of lattice thermal conductivity, κL, in clathrates. The
phonon linewidths, not only the phonon frequencies, calculated by the SCP method also need
to be experimentally confirmed in order to fully validate this method for explaining κL.

Fig. 3.16 summarizes the intrinsic phonon linewidths of the TA001
110 phonon branch from the

intense (006) Bragg peak propagating along [110], polarized along [001] for Ba7.81Ge40.67Au5.33.
The new datapoints coming from TRISP@FRM-II are part of a continuation of the linewidths
measured using IN22-ZETA@ILL and published in Lory et al. [27], which are also shown in
Fig. 3.16. In this system, acoustic linewidths within this energy range are resolution-limited for
measurements on a TAS instrument (see Fig. 5 from Ref. [27]), making Ba7.81Ge40.67Au5.33 an
excellent candidate for NRSE measurements.

As seen in Fig. 3.16, the TA001
110 linewidths calculated by the SCP method match beautifully

with those experimentally measured at IN22-ZETA@ILL and TRISP-FRM-II. There appears to
be a strong energy dependence before a break into a weaker dependence at higher energy, even
into a plateau. Evidence of multiple regimes such as this have been shown to occur in other
complex and disordered systems, and, for more information, please see the discussion section of
my recently submitted work, Turner et al. [106]. Fig. 3.16 is also a wonderful example of the
repeatability between IN22-ZETA@ILL and TRISP-FRM-II, which I emphasize is no small feat
considering the extreme complexity of the NRSE configuration.

Diving into more details of the experiment, Fig. 3.17(a) is an example of the translation of
RF coil C4 through distance ∆L for a period of Lper, measured with τNRSE = 1.79 ps, for the
point q = (0 -0.143 -0.143) on the TA001

110 dispersion (see Appendix B, Fig. B.1 for a plot of
the experimentally-measured dispersion). The polarization is then extracted using eq. 3.50 and
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Figure 3.17: Example of an NRSE measurement for the type-I clathrate Ba7.81Ge40.67Au5.33.
(a) shows the translation of RF coil C4 through distance ∆L for a period of Lper for τNRSE = 1.79 ps
for the point q = (0 -0.143 -0.143) on the TA001

110 phonon branch from the intense (006) Bragg peak
propagating along [110], polarized along [001]. The data has been fit with a cosine() function and an
arbitrary background set to zero, as described in the text. (b) The τNRSE in (a) and others all measured at
the same q point are plotted (blue circles and solid line) and then corrected for the instrumental resolution
(purple dashed-dot line) and for curvature of the dispersion surface (orange dotted line), resulting in the
corrected data (green circles and dashed line). The intrinsic phonon linewidth is then extracted, which is
13.81 µeV in this case.

plotted in Fig. 3.17(b) along with the other τNRSE values measured at that particular dispersion
point q = (0 -0.143 -0.143). The position at τNRSE = 0 was measured in DC+RF mode, while
all other points were measured in RF mode. Those points are then corrected according to the
instrumental and curvature corrections explained in Section 3.1.9.4, and the phonon linewidth
is extracted from the exponential fit of the corrected data. This process was repeated for seven
total q positions along the TA001

110 dispersion, and raw data and fits are provided in Appendix B.

In order to provide the reader with a visual meaning to the difficulty that we as experi-
mentalists face in measuring intrinsic phonon linewidths in systems such as clathrates, I have
re-plotted the experimentally-measured linewidths of Fig. 3.16 alongside the energy resolution
of the cold-neutron time-of-flight spectrometer IN5@ILL in Fig. 3.18. With this one figure, one
can instantly grasp both the experimental limitation of TAS and TOF techniques, and also
fully appreciate the improved resolution that comes with the application of NRSE. The intrinsic
linewidths, which can be captured by NRSE, are a full 1-2 orders of magnitude below the en-
ergy resolution of IN5@ILL for the given experimental conditions used in the TOF experiment
described in Turner et al. [57].

I would also like to point out several difficulties faced during the data analysis and treatment
stage of this particular NRSE experiment in order to highlight the different methods one can
take in interpreting such data. These mainly pertain to (1) the interpretation of the background,
(2) the balance between count time and the number of points on the exponential curve, and (3)
the use of both RF and DC+RF mode points on the exponential curve.

Firstly, concerning the background, caution must be made when comparing polarization at
τNRSE = 0 ps, as the background was not fit during these particular measurements and was
arbitrarily set to zero. This means that polarization at τNRSE = 0 ps is not consistent from
q to q point. This is not a concern, however, since a phonon linewidth is extracted from an
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Figure 3.18: Visual representation of the improved energy resolution with the NRSE tech-
nique. The experimentally-measured intrinsic linewidths of the type-I clathrate Ba7.81Ge40.67Au5.33
shown in Fig. 3.16 are plotted against the energy resolution of the cold-neutron time-of-flight instru-
ment IN5@ILL (purple solid line). This energy resolution was originally plotted in Fig. 8 of Turner et
al. [57], and the experimental conditions used to calculate this resolution can be found in Appendix A.1
of the article.

exponential decay of points all taken at the same q point. Alternatively, the background could
have been estimated by measuring the background near the phonon peak in TAS configuration,
and then the polarization of NRSE data subtracted from this background can be assumed to be
constant and fixed in the fitting procedure, allowing polarization at τNRSE = 0 ps to be compared
across q points and even fixed within the fits. This is what has been done for the linewidths
measured on IN22-ZETA@ILL in Lory et al. [27].

Secondly, it should be noted that a minimum count time must be reached if a reasonable
phonon lifetime is to be extracted. While this might seem obvious, it is important to remember
that there are multiple analysis steps between the raw data and resulting linewidths like those
shown in Fig. 3.16. If sufficient count times are not given to each τNRSE, then due to the
propagation of error through these steps, the resulting phonon linewidth will be left with a large
uncertainty. Specifically for this experiment, 11 points were measured within the period of ∆LP

at each τNRSE value in order to make a sufficient cosine() fit and extract polarization, like for
the cosine() fit shown in Fig. 3.17(a). There was also less intensity at higher τNRSE values, and
therefore the scans made between ∼20-25 ps were repeated for better statistics (see Figs. B.2-
B.8). A compromise must also be made between the time spent measuring each τNRSE value
and the total number of τNRSE values measured. Looking again at Fig. 3.17(b), we found during
the experiment that the fit of the exponential decay also became much more stable with the
inclusion of 12 total points instead of the original 6 points measured during the first few days of
the experiment.

Lastly, I remind the reader that TRISP@FRM-II has three modes of operation: RF, DC+RF,
and DC modes. DC mode, which was not used in the results shown above, is a setup in which the
RF coils are ramped down completely such that the neutron passes through the RF coils without
influence from any field other than that caused by the DC coils. In terms of the data analysis, it
is obvious that one can group and fit several τNRSE values measured using RF mode for the same
q point with the same exponential curve, but one must be cautious with how to include τNRSE

values measured using DC+RF and/or DC mode. DC+RF mode values can be added and fit
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using the same exponential curve once the separate DC+RF mode instrumental correction has
been made. The polarization extracted in DC mode, however, is not directly correlated to the
polarization extracted in RF (or DC+RF) mode. Furthermore, there is a strong Gaussian-type
decay in the low DC mode range that is not due to the phonon itself, meaning that there is not
one single exponential decay function for all ranges of τNRSE. This should therefore be a point
of consideration when planning an NRSE experiment.

3.1.10 Neutron Larmor Diffraction (NLD)

This NRSE for TAS setup is actually quite diverse in application, as it was proven by
M. T. Rekveldt et al. [242] in 2001 that Larmor precession could also be used to measure
changes in lattice spacing and the mosaic spread of crystalline samples through Neutron Larmor
Diffraction (NLD).

Figure 3.19: Example of Neutron Resonance Spin Echo (NRSE) spectrometer in Larmor
Diffraction (LD) mode. The instrumental configuration follows that of a NRSE for TAS spectrometer,
shown in Fig. 3.15. However, in (a) the spectrometer is sensitive to lattice spacing dHKL and can track
changes to dHKL with temperature, for instance, while in (b), the mosaic spread of the sample can be
measured through the tilting of angle α.

NLD works off of the principle that the two arms of the spectrometer are within precession
field B in a parallel configuration (↑↑), meaning that the precessions for a given neutron velocity
add rather than cancel across the spectrometer [234], such as in Fig. 3.19. We still have four
sets of RF bootstrap coils, but they have been removed from these subplots in order to simplify
the description. The bootstrap coils set the boundaries of the precession regions, and, following
Fig. 3.19(a), when G = 2π/dHKL meets the condition for Bragg’s law with angle θ and the
boundaries of field B are parallel to the diffracting crystal planes, the instrument is sensitive to
the spread of lattice spacing dHKL.

If, instead, the two spectrometer arms are in an anti-parallel configuration (↑↓) while the
boundaries of B0 are still parallel to the diffracting crystal planes and when angle α = 0, then the
instrument is sensitive to the mosaic spread of the crystal, like in Fig. 3.19(b). The measurement
is taken with the diffracting crystal planes tilted with angle α such that Bragg angle θ varies
with phase [243]. Finally, an additional instrumental correction for Larmor diffraction mode is
also made by measuring a perfect Ge single crystal at several fixed ki values and interpolating
the data for ki values in between.

To expand on the lattice spacing condition in Fig. 3.19(a), the Larmor phase in the NLD
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condition is defined as

ϕLD =
4mωLL

G
=

2mωLL

πℏ
dHKL. (3.51)

Any temperature-dependent phase shift of dHKL in Larmor phase ϕLD is tracked as

∆ϕLD = ϕLD
∆dHKL

dHKL
(3.52)

through the final beam polarization, PLD(ϕLD), at the analyzer such that

PLD(ϕLD) = ⟨cos(∆ϕLD)⟩ =

∫
D
(∆dHKL

dHKL

)
cos

(
ϕLD

∆dHKL

dHKL

)
d
(∆dHKL

dHKL

)
, (3.53)

where D
(
∆dHKL
dHKL

)
is a normalized distribution function [238, 243].
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Figure 3.20: Neutron Larmor Diffraction (NLD) measurement for lattice spacing.
TRISP@FRM-II was placed into NLD mode, sensitive to dHKL. The spectrometer was aligned onto
the (006) Bragg peak, and (a) the phase shift was measured between 5 (blue solid line and markers) and
300 K (orange dotted line and markers) with increments of 5 K for the single crystal sample of the type-I
clathrate Ba7.81Ge40.67Au5.33. (b) The polarization, PLD, was extracted from fits of the phase shift at each
temperature, leading to the calculation of (c) the rate of thermal expansion, ∆a/a, and (d) the volumetric
thermal expansion coefficient, αV . Subplots (c,d) were taken from Turner et al. [57], Fig. 2(a,b).

The sensitivity to lattice spacing is particularly useful when measured with temperature, as
it then allows for the rate of thermal expansion of the lattice to be characterized. An example
of such a measurement can be found in Turner et al. [57], Fig. 2(a,b), for the type-I clathrate
Ba7.81Ge40.67Au5.33. Going step-by-step with how this figure was obtained, an example of the
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phase shift between 5 and 300 K is shown in Fig 3.20(a). The measurable quantity, PLD(ϕLD), is
extracted from the fit of the phase shift at each temperature, shown in Fig 3.20(b), and is then
used to calculate ∆dHKL

dHKL
using eq. 3.53. The resulting plot of ∆dHKL

dHKL
vs temperature is shown in

Fig.3.20(c). Finally, the linear thermal expansion coefficient, αL, is the numerical derivative of
∆dHKL
dHKL

:

∆dHKL

dHKL
=

dHKL(T1) − dHKL(T0)

dHKL(T0)
=

dHKL(T1)

dHKL(T0)
− 1

αL =
∂

∂T

(
dHKL(T1)

dHKL(T0)
− 1

)
=

1

dHKL(T0)

∂(dHKL(T1))

∂T

(3.54)

This can also be written as the volumetric thermal expansion coefficient, αV = 3αL, such
as in Fig. 3.20(d). In terms of the example of Ba7.81Ge40.67Au5.33, αV was used to give a
quantitative value to the amount of anharmonicity seen in the system in terms of the material
constant known as the Grüneisen parameter.

I would also like to briefly draw the reader’s attention once again to Fig. 3.20(b). A sudden
change in polarization, such as the one at 180 K, usually refers to a phase transition in a
material. While a full interpretation of this finding is outside the scope of this thesis, I will
propose several interpretations that can be explored in the future. Firstly, studies of phase
transitions of type-I clathrates with temperature and/or under high pressure are widely covered
topics in literature, with evidence of phase transitions in K8Si46 [244], Cs8Sn44□2 [245], Si46-
I [147], Ba8Si46 [246, 247], Ba8Ga16Sn30 [248, 249], and I8Sb8Ge38 [250], among others. Notably,
however, no phase transition temperature appears to be found for Ba8Ge43□3 [251], nor for
Ba8Ge40.7Au5.3 [84], and therefore further investigation would need to be made in order to
understand the potential evidence of a phase transition seen in Fig. 3.20(b).

A second avenue of interpretation could have to do with the off-centering of the guest atoms,
as it has been shown that the Ba guest atoms in Ba7.81Ge40.67Au5.33 are off-centered in three
possible locations [27]. At low temperature, we can expect that each of the Ba atoms freeze in
a given off-centering position, and perhaps in this Larmor diffraction measurement, we witness
the increased thermal motions (the so-called “rattling”) of the guest atoms as they unfreeze with
increasing temperature.

Coming back now to the second use of Larmor diffraction in which we are sensitive to mosaic
spread instead of lattice spacing, such as in Fig. 3.19(b), the following Larmor phase is tracked
and used to extract polarization, similarly to eq. 3.53. Respecting the usual formulation, α here
refers to the angle shown in Fig. 3.19(b), but note that it is not related to the thermal expansion
coefficient described above [243].

∆ϕLD(α) = ϕLD(α) − ϕLD(α = 0) ≈ ϕLD

(1

2
+ cot2(θ)

)
α2 (3.55)

The mosaic at the (006) Bragg peak of the same single-crystal sample of Ba7.81Ge40.67Au5.33

was also measured during the experiment on TRISP@FRM-II, finding a mosaic of 7.14×10−3±
2.40 × 10−3 degrees = 0.428 ± 0.144 min. The decay of polarization with phase is shown in
Fig. 3.21, and one can then extract the mosaic spread from the fit.

In summary of all of the neutron techniques that have been discussed in this chapter, it has
been shown that there are a variety of neutron techniques that can aid the measurements of
different properties of phonons. Technique and subsequent instrumental parameter selections
require careful thought and consideration before starting a neutron-based experiment, as once
the instrument has been chosen, the user is locked into the resolution that is available on a given
instrument, which ultimately determines the quality of the data and rate of data collection that
is possible during the allocated beamtime. The final section of this chapter will detail Inelastic
X-ray Scattering.
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Figure 3.21: Neutron Larmor Diffraction (NLD) measurement for mosaic. TRISP@FRM-II
was placed into NLD mode, sensitive to mosaic spread. The spectrometer was aligned onto the (006)
Bragg peak, and the polarization vs phase was used to extract the mosaic. The uncorrected data (blue
solid line and markers) was fit with an exponential curve before using the correction described in the text,
resulting (green dashed line and markers) in a mosaic of 7.14×10−3±2.40×10−3 degrees = 0.428±0.144
min for the single crystal sample of the type-I clathrate Ba7.81Ge40.67Au5.33. Errorbars are within the size
of the markers.

3.2 Inelastic X-ray Scattering

Similar to INS, IXS can provide the extremely high resolution required to measure properties
of phonons. Like neutrons, X-rays also have wavelengths on the same order of magnitude as
interatomic distances, making them an ideal probe for measuring phonons. Unlike neutrons,
however, which have the opportune energy resolution in the thermal range, i.e. ∼1 meV, beam-
lines for X-ray-based phonon measurements must have an energy resolution of 10−7 in order to
match this necessary energy resolution.

This being said, IXS has several distinct advantages over neutron techniques, including the
fact that multiple positions in reciprocal space can be measured at once, as opposed to TAS
spectrometers, which can typically only measure one position at a time (an exception to this is
the FlatCone Multianalyzer design of IN20@ILL). The average sample dimensions for an IXS
experiment are ∼100×100×100 µm3 as well, which can be helpful if a much larger ∼1×1×1
cm3 sample needed for neutron experiments is difficult to synthesize, or to synthesize as a single
grain with a low mosaic spread. IXS is a compliment to neutron techniques in many ways, and
these comparisons will be developed throughout this next section.

Starting again from the same general scattering example given in Fig. 3.2 but using a photon
as a probe particle, a photon with initial energy Ei, wave-vector ki, and polarization ϵi is
scattered into solid angle dΩ after an interaction with a sample causes it to have final energy
Ef , wave-vector kf , and polarization ϵf . Using the adiabatic approximation, changes to the
system between initial state λi with photon population pλi

and final state λf are assumed to
come only from the nuclear component, or from the atomic density fluctuations, and not from
the electronic component [212].

The double differential cross-section for an X-ray probe is written as the following, where
r0 = e2/mec

2 is the radius of an electron in the system, and j refers to each electron and its
position rj . (Note that we will use r and R to refer to the positions of electrons and atoms,
respectively, in this case as opposed to the incident neutron and nucleus as was the case for
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INS.)
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This can be rewritten to contain the X-ray atomic form factor, f , which is related to the
atomic charge density. As a first approximation, when Q = G, the atomic form factor for each
element is defined as f = Z2, where Z is the atomic number, directly from the Periodic Table
of Elements. We then sum over k atoms in the system with their positions Rj , to arrive at:

(
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(3.57)

This leads to another reason that IXS is a complementary technique to INS: the IXS form
factor is dependent upon the atomic number, meaning that it is not limited in measuring a
sample containing neutron-absorbing elements such as cadmium or boron, or to measuring an
element such as vanadium, which has an almost purely incoherent neutron scattering cross-
section. The caveats to this, of course, are that it can be very difficult to measure elements with
a low atomic number, such as hydrogen, and that there is very little contrast between elements
that are close together on the Periodic Table due to their similar atomic numbers [252].

Just as the neutron coherent and incoherent scattering cross-sections in eqs. 3.17-3.18 are
dependent upon the neutron scattering length(s) b, the corresponding X-ray scattering cross-
sections are dependent upon f . The coherent and incoherent X-ray scattering cross-sections,
therefore, are written as follows [253]:

σcoh = ⟨f⟩2 (3.58)

σinc = ⟨f2⟩ − ⟨f⟩2 (3.59)

Incoherent X-ray scattering is usually negligible by comparison to coherent X-ray scattering.
An in-depth example of coherent and incoherent neutron and X-ray scattering cross-section
calculations for the high-entropy alloy FeCoCrMnNi can be found in the Supplementary Material
of Turner et al. [106].

3.2.1 High-Resolution IXS Beamlines

There are currently three IXS beamlines in the world with the resolution necessary to measure
phonon dispersions. This section will focus on beamline ID28 at the European Synchrotron
Radiation Facility (ESRF), however BL35XU at the Super Photon ring-8 GeV (SPring-8) in
Japan and Sector 30 at the Advanced Photon Source in the USA also have similar capabilities.

ID28 is one of approximately 40 beamlines at the ESRF, all of which connect to a single
synchrotron storage ring that is periodically refilled, depending on the total electron current in
the ring and the lifetime of those particles in the ring. The incoming beam from the storage ring
has an energy of approximately 20 KeV, and therefore the challenge for measuring phonons at
IXS beamlines is to detect a ℏω = Ei−Ef difference of approximately 1 meV from an incoming
beam that is on the order of several KeV. Therefore, it is necessary to reach an extremely high
resolution in order to take these measurements.

Fig. 3.22 is a schematic of ID28. The main components of the beamline will be discussed
in terms of how they contribute to the overall resolution such that an energy bandwidth of
∆E/E ≈ 10−7 is reached before the beam scatters on the sample.
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Figure 3.22: Example of a backscattering inelastic X-ray scattering spectrometer. The main
features include the undulators (in yellow), the pre-monochromator, monochromator, and mirror (in
green), which all contribute to the necessary energy bandwidth of ∆E/E = 10−7. The beam then impinges
on the sample (in orange) before reaching the spherical analyzers and detectors (in blue). This particular
schematic has been modeled after beamline ID28 at the European Synchrotron Radiation Facility.

From the main storage ring of the synchrotron, the incoming beam first passes through an
insertion device, which is the reason for the ‘ID’ in the name ID28. The particular insertion
device on ID28 is a periodic series of dipole magnets called undulators, and they are given this
name because they alternate polarity and cause the beam to weakly undulate in the transverse
direction. They cause the emission to form a narrow band with a peak photon energy of E = hνc
such that the energy bandwidth is related to Nu, the number of periods the nth order harmonic
of the beam is subjected to [254]:

∆E/E = ∆hν/hνc ≈ 1/nNu (3.60)

The undulators can be tuned using the undulator parameter, K, which depends on the period
of the undulator, Lu, the magnetic field with field strength B0 of the magnets, the relativistic
mass of an electron, m0, and speed of light, c. The undulator parameter is then related to peak

photon energy by the following, where the relativistic Lorentz factor is γ = 1/
√

1 − v2

c2
, leading

to a ∆E/E ≈ 10−2 in the case of ID28:

hνc ≈ 2γ2
hnc/Lu

1 + K2/2
, where K = eB0Lu/2πm0c (3.61)

From the undulators, the beam moves to the pre-monochromator, which is a Si111 monochro-
mator. The full monochromatization of the beam must be done in two steps using both the pre-
monochromator and monochromator, since the undulators produce a high heat load. In order
to avoid an intense local heating at the monochromator, which must be extremely temperature
sensitive for reasons described below, and to reduce the large energy bandwidth that results from
the use of insertion devices, the pre-monochromator is placed in the path of the beam before
the monochromator. In the case of ID28 the pre-monochromator is actually a pair of parallel
Si111 crystals. Similar to the monochromators described in Section 3.1.6, these crystals are also
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controlled by Bragg’s law with Bragg angle θ, and are separated by gap g such that the vertical
offset between the two crystals is 2g cos θ [255]. At the end of this stage, ∆E/E ≈ 10−4.

Next, the beam reaches the Si111 monochromator, and the key functionality of this monochro-
mator is that it works in a backscattering geometry. The backscattering geometry is chosen since
it provides a very high energy resolution. In this case, the 2θ angle must be as close as possi-
ble to 180◦. Measuring meV-range phonon excitations using Bragg reflection requires a certain
amount of angular acceptance, and working as closely to backscattering as possible allows for
any large amount of divergence that comes from the beam source to be compensated for. Using
backscattering also ensures that the resolution only depends on the quality of the monochroma-
tor. Physically speaking, although the beam is being reflected, in order for the reflected beam
to just miss the incident beam, the monochromator is tilted at an angle of 0.02◦. After this key
stage, the resolution reaches the necessary ∆E/E ≈ 10−7.

Since the silicon monochromator is cut on the (1,1,1) plane, all scattering on ID28 is based
on this series of planes. This is the stage at which the incoming wave-vector ki is defined.
This particular beamline normally works with the (9,9,9), (11,11,11), and (12,12,12) planes, and
energy resolution increases with reflection order [252]. Choosing the plane to work with is a
compromise between flux and resolution. With the (9,9,9), for instance, the incoming beam has
an energy of 17.793 keV and a resolution of 2.8 meV. When using the (11,11,11), the incoming
energy is 21.747 keV with a resolution of 1.5 meV, and finally, when using the (12,12,12), the
incoming energy is 23.724 keV with a resolution of 1.35 meV. The (13,13,13) also exists, with an
energy of 25.701 keV, but this causes an extreme loss in flux. To give perspective to what this
difference means for phonon measurements, IXS measurements for the type-I clathrate Ba8Si46
have been made using the (12,12,12) reflection in Pailhès et al. [26], in which the co-authors
used the high resolution to show the changes in the acoustic phonon dynamical structure factor
with q. On the other hand, only the (9,9,9) reflection was needed in order to extract intrinsic
phonon linewidths in the high-entropy alloy FeCoCrMnNi in Turner et al. [106], proving that
the choice of monochromator reflection remains not only a decision between flux and resolution,
but also a sample-based decision, i.e. taking into account sample mosaicity, expected linewidths
for a given system, etc.

We can use this sensitivity of the monochromator reflection to Bragg’s law to our advan-
tage in order to produce an energy scan at fixed-Q. This is made possible because the silicon
monochromator and the analyzers are all kept at a given initial temperature, T0, which in the
case of ID28 is 22.135 ◦C. The elastic line defines temperature T0, where the temperature of
both the Si monochromator and the analyzers are equal. These temperature-controlled envi-
ronments can then be heated or cooled resistively or with water to adjust the environments of
the monochromator and analyzers on the mK range. This temperature is related to the lattice
spacing of the Si monochromator, which, in turn, can be related to energy in order to create an
energy scan.

In more detail, by changing the temperature of the silicon monochromator, this crystal
slightly expands or contracts. This thermal expansion changes the Bragg lattice spacing, dHKL,
in turn changing the λ that is reflected according to Bragg’s law. The analyzers, however, stay at
the constant temperature T0 in order to compare the change with the monochromator and make
the temperature, and therefore energy, scan through the range defined by thermal expansion.
For more details on thermal expansion, please see Section 3.1.10.

After ki is chosen at the monochromator, the beam is reflected off of a mirror intended to
focus the beam onto the sample. Finally, just before and after the beam impinges on the sample,
vertical and horizontal slits limit the amount of the original full beam that is allowed through in
order to focus the beam to the size of the sample. We will circle back to the importance of the
slits later in this section in order to discuss their influence on the horizontal and vertical ∆Q
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resolution. After the slits, the sample is placed in the direct path of the beam, and is aligned so
that the scattering will highlight phonons in the chosen scattering plane.

After impinging on the sample, and again following the schematic in Fig. 3.22, the analyzers
are set at an angle of 2θ in relation to the incoming beam, and capture solid angle dΩ of
scattering. Each analyzer is an Si111 crystal, similar to the ones designed to be monochromators,
however each analyzer is usually made up of several thousand co-aligned crystals. The analyzers
have a spherical geometry in order to collect a larger solid angle of scattered x-rays and focus
them on the detector. Therefore, rather than stressing one single crystal into a spherical shape
and possibly losing energy resolution in the process, it is much better to glue mm-sized single
crystals into that spherical shape [256].

Specifically, ID28 supports nine analyzers which are mounted 7 m away from the sample.
This 7 m distance refers to the Rowland circle geometry needed to match the angular acceptance
of the spherical analyzers. The analyzer crystals must then all be placed on this arc to follow
the path of the perimeter of the circle. This is the way to maximize the intensity and resolution
that each analyzer is capable of receiving [212].

The analyzers are physically mounted into two rows: a front row with analyzers [6 7 8 9]
and a back row with analyzers [1 2 3 4 5], making the full order of the analyzers [1 6 2 7 3 8
4 9 5]. They are separated from each other by a fixed 2θ angular distance of 1.54◦. The same
backscattering technique is used with the analyzers as well, in order to retain the resolution that
was obtained before scattering.
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Figure 3.23: Visual Representation of Analyzers in the Scattering Plane and Analyzer
Resolution. (a) The nine ID28 analyzers as they are positioned in the scattering plane for the ID28
experiment for the high-entropy alloy FeCoCrMnNi from Turner et al. [106] are plotted to simulate the
four positions that were measured for the longitudinal dispersion near the Bragg peak (002). Each line
represents one setting with the spectrometer, and each analyzer (open red circles) measures an individual
point in Q for that given setting. The visible arc shows the perimeter of the Rowland circle, since each
analyzer sits on this circle, and from bottom to top the analyzer order is [1 6 2 7 3 8 4 9 5]. (b) An
example of the resolution of analyzer 2 using the (9,9,9) Si111 monochromator configuration is shown in
log scale. Resolution is measured using the same experimental conditions on a plexiglass sample that has
been cooled down to 10 K.

Again taking the example of the ID28 experiment for the high-entropy alloy FeCoCrMnNi
from Turner et al. [106], Fig. 3.23(a) is a graph of the nine analyzers as viewed from within the
given scattering plane [001][110]. The red circles represent the nine analyzers, and, from bottom
to top along the y-axis, their order is [1 6 2 7 3 8 4 9 5]. In addition, the gradual arc that
the analyzers follow marks the perimeter of the Rowland circle. Each line, from analyzer 1 to
analyzer 5, provides the positions of the analyzers for a given setting of the spectrometer. In
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this case, four positions were measured for this particular dispersion at 300 K in which analyzer
2 was placed “online,” or at the pure longitudinal position.

It is important to note that the configuration of ID28 is more optimized for measuring
longitudinal phonons than transverse phonons. This is because the analyzers are mounted in
an arc such that Q is close to parallel with G, which denotes the selection of longitudinal
phonons (see eq. 3.21). This can be seen visually in Fig. 3.23(a). It is also possible to measure
transverse phonons using this ID28. However, only one analyzer at a time can be put into the
right trajectory, meaning that all eight other analyzers would have a mix of longitudinal and
transverse polarizations. Fig. 3.23(b) will be addressed in the next subsection.

Finally, continuing on to the last stage of the ID28 schematic in Fig. 3.22, the detection
system for ID28 is in the form of Si diode detectors each containing a reverse-biased diode
and Si sensor [256]. The Si sensors count a scattered photon when a certain threshold value is
reached, and tuning the threshold value allows for the detector to act as a high-pass filter to
keep out unwanted lower-energy background scattering [255].

3.2.2 Resolution of IXS Beamlines

Rather than using a neutron probe which has an incoming energy of roughly the same order of
magnitude as the phonon excitation/annihilation, the photon probe retains an energy of roughly
∼4-5 orders of magnitude larger than the phonon interaction energy, regardless of Q [252]. This
means that, for IXS spectrometers, the Q and E resolution when measuring a phonon has the
shape of a thin vertical rod as opposed to the inclined ellipsoid shape of TAS spectrometers,
because Q and E resolutions are decoupled [26].

The horizontal and vertical Q resolutions, ∆QH and ∆QV , are defined by the horizontal and
vertical apertures of the detector slits, the beam divergence, and the wavelength spread. Due
to the extremely high resolution, the latter can be neglected. The ∆QH and ∆QV are therefore
dependent upon the incoming beam wavelength, λ, which can be calculated from the incoming
energy defined at the monochromator, the radius of the Rowland circle, R, and the horizontal
and vertical slit openings, Hgap and V gap, respectively [206].

∆QLong,Tr
H =

2π

λ

Hgap

R
cos(θ), ∆QV =

2π

λ

V gap

R
(3.62)

The horizontal resolution ∆QH can be calculated for longitudinal and transverse polariza-
tions for which θ = 0 and θ = the angle described in Fig. 3.22 respectively, and these are usually
denoted as ∆QLong

H and ∆QTr
H . Continuing with the example of the ID28 experiment for the

high-entropy alloy FeCoCrMnNi with an incoming wavelength of 0.697 Å, Hgap = 20 mm and
V gap = 55 mm, leading to ∆QLong

H = 0.0258 Å−1 for a longitudinal phonon polarized along [001],
and ∆QV = 0.0708 Å−1.

The energy resolution is defined by two components: the spectrometer energy resolution and
the energy resolution that results from the slits. The spectrometer energy resolution component
is defined by the energy resolution of each of the nine analyzers. This is quantified by measuring
the elastic scattering of a plexiglass sample at 10 K for the given experimental conditions at q
values close to the maximum of the elastic structure factor(s). An example of this is given in
Fig. 3.23(b) for analyzer 2 and the (9,9,9) Si111 monochromator condition. This is then convo-
luted with the energy scans made for this particular analyzer, accounting for the instrumental
resolution.

When measuring a dispersive excitation, a supplementary contribution must be added which
is related to the finite Q resolution. In the case of a longitudinal excitation, the contribution is
evaluated as the following.

∆E = vg∆QH (3.63)
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This is particularly relevant at low q-points in the dispersion, as the intrinsic linewidth is
usually small and the group velocity, vg, is usually strong. As a first approximation, the total
energy resolution can be estimated as the squared sum of each of these two contributions.

In summary, it has been shown that INS and IXS techniques are both extremely relevant and
efficient methods for measuring phonons. Playing to the strengths of both IXS and INS allows
for precise measurements of longitudinal and transverse acoustic phonons, respectively, and a
combination of the two techniques, such as what was done in my submitted work Turner et
al. [106] for the high-entropy alloy FeCoCrMnNi, leads to a more complete lattice dynamics
understanding that can include the GVDOS, elastic scattering maps, and more. This particular
article is also a nice example of the weight of coherent and incoherent scattering in each technique,
and how the information from one technique can help explain the results of the other. With INS
and IXS techniques, we test the limits of resolution for experimental phonon measurements, and
help bring the scientific community closer to quantifying the transport of such quasiparticles in
materials.
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CHAPTER 4

Summary of Articles

I will now present the major contributions of my thesis work in the form of three articles. At
the time of writing, the article on the type-I clathrate Ba7.81Ge40.67Au5.33 has been published,
Turner et al. [57], and the article on the high-entropy alloy FeCoCrMnNi has been submitted
to an international peer-reviewed journal for review. The third article on Yttria-Stabilized
Zirconia is presented as an unpublished manuscript. All three articles have been integrated into
this chapter for the convenience of the reader.

The same general theme of understanding the effects of complexity and disorder on thermal
conductivity through the study of phonons carries through in all of these articles: In each article,
I address the types of complexity and disorder found in each system in order to both reference
what is already understood by the community and give context to my new contributions. Each
material is at a different stage of interpretation within the research community, but the overall
goal remains the same, which is working towards a unified understanding of heat transport in
complex and disordered crystalline systems through case studies of different types of complexity
and disorder.

These articles represent only a selection of the work I completed during my Ph.D program.
Several of my projects, specifically the type-I clathrate and high-entropy alloy projects, are part
of on-going works to which I still have a major contribution. Also note that at the time of
writing, my research and results on La-doped Barium Fluoride have not been drafted into an
article, as we would like to further clarify and complement our results with theoretical models.
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4.1 Impact of temperature and mode polarization on the acous-
tic phonon range in complex crystalline phases: A case
study on intermetallic clathrates

Published in: Physical Review Research, January 8th, 2021 [57]
Authors: Shelby R. Turner, Stéphane Pailhès, Frédéric Bourdarot, Jacques Ollivier, Stéphane
Raymond, Thomas Keller, Yvan Sidis, John-Paul Castellan, Pierre-François Lory, Holger Eu-
chner, Michael Baitinger, Yuri Grin, Helmut Schober, Marc de Boissieu, Valentina M. Giordano

Type-I clathrates have been widely studied over recent decades not only for their potential use
as thermoelectric materials, but also as a case study for interpreting different types of disorder
and anharmonicity. The phonon behavior of such systems has been extensively detailed both
experimentally and theoretically in an effort in particular to understand the interaction between
the lowest-lying optical branches and the acoustic phonon regime [25, 26, 30, 93, 167, 196].
Within the research community, this phenomenon has been accepted as playing a major role in
determining the thermal conductivity behavior in clathrates. With so much available data on
Ge-based clathrates in particular, it was a natural next step to seek out the temperature and
polarization of the low-lying optical branches, which was the topic of my work and the article I
am presenting.

This article is proposed as a case study that validates the self-consistent phonon (SCP)
method [93] for beyond simply the clathrate for which it was published, Ba8Ge30Ga16. The
anharmonicity calculated especially due to the quartic anharmonic term matches well with our
experimental findings for a second Ge-based clathrate, Ba7.81Ge40.67Au5.33, demonstrating the
usefulness of the SCP method for complex and disordered systems that contain anharmonic
features.

We also address the nature of the low-lying optical branches in Ba7.81Ge40.67Au5.33, finding
that the two lowest branches come from different sources of complexity. With the help of ab initio
calculations using the meta-generalized-gradient approximation functional SCAN described in
the paper, the lowest branch, EBa, is found to be associated with the motions of the guest
atom at the center of the cage. The second lowest branch EAuBa, however, is a result of the
hybridized vibrations of the same guest atom with the Au atomic substitutions made on the Ge
cages. Indeed, by attributing certain branches to their corresponding source of complexity, we
come one step closer to engineering and manipulating the glasslike thermal conductivity in such
systems.

This “conversation” between theoreticians and experimentalists that has been quite active
in the last decade is important not only for driving novel theoretical methods based on exper-
imental confirmations, but also for allowing us to use clathrates as case studies to target the
effects of anharmonicity, atomic substitutions, and complex cage structures. The synthesis of
such materials is at an advanced stage [84, 257], meaning that we should take full advantage of
creating a series of such kinds of case studies, allowing us to draw broader conclusions.

Contributions of the Ph.D Candidate:
I played a central role in preparing and conducting the neutron experiments on IN5@ILL,

IN12@ILL, 1T@LLB, and TRISP@FRM-II, and in the complete data analysis of said exper-
iments. I then wrote the paper and developed the comparison to the self-consistent phonon
method calculations for Ba8Ge30Ga16 by T. Tadano and S. Tsuneyuki [93]. Finally, I partici-
pated in all of the discussions that led to the inclusion of the density functional theory ab initio
harmonic calculations that use the meta-GGA SCAN functional, led by H. Euchner [169].
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Perspectives/Further work that can be done:
Although it was not included in this article, my thesis work has also involved the measure-

ment of intrinsic phonon linewidths of Ba7.81Ge40.67Au5.33 at TRISP@FRM-II by the Neutron
Resonance Spin Echo technique, which was a continuation of the linewidths measured on IN22-
ZETA@ILL and published by Lory et al. [27]. This measurement is shown in Fig 3.16. These
intrinsic phonon linewidth measurements continue to be of vital importance as they represent
a necessary second checkpoint, beyond the first checkpoint of confirming the phonon energy
spectrum, that we need in order to make a full experimental confirmation of the use of the
SCP method for type-I clathrates. The linewidths calculated by T. Tadano and S. Tsuneyuki,
shown in the Supplementary Material of Ref. [93], must be matched to experimental data, as
we cannot rely on the correct temperature dependence of the phonon dispersions alone for con-
firming macroscale thermodynamic properties such as lattice thermal conductivity. Only a full
investigation of the energy, temperature, and polarization dependencies of the phonon disper-
sions and phonon lifetimes will determine if the lattice thermal conductivity calculated by the
SCP method can be correctly attributed to clathrates. This remains the next big challenge for
experimentalists in the clathrate community.

Furthermore, the correspondingly grand challenge for theoreticians in the clathrate commu-
nity is to push beyond the current computing limitations so that important features such as
detailed disorder and polarization mixing, two aspects of state-of-the-art calculations that are
often neglected at the moment, are incorporated into novel theoretical calculations such as the
SCP method. The incorporation of disorder made a significant impact to the understanding of
thermal conductivity in the quasicrystal approximant o-Al13Co4 [122], bringing in to question
how much of the picture we are similarly missing in clathrates.
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The low and weakly temperature-varying lattice thermal conductivity, κL (T), in crystals with a complex unit
cell such as type-I clathrates is assumed to originate from a reduced momentum and energy space available for
propagative lattice vibrations, which is caused by the occurrence of low-energy optical phonon modes. In the
context of ab initio self-consistent phonon (SCP) theory, it has been shown that the cubic and quartic anharmonic
interactions result in a temperature-induced energy renormalization of these low-lying optical branches which
contributes to the anomalous behavior of κL (T) in structurally ordered type-I clathrates [T. Tadano and S.
Tsuneyuki, Phys. Rev. Lett. 120, 105901 (2018)]. By means of inelastic neutron scattering, we provide evidence
for this energy renormalization in temperature, which has been resolved for transversely and longitudinally
polarized phonons in the single crystal type-I clathrate Ba7.81Ge40.67Au5.33. By mapping the neutron intensity
in the momentum space, we demonstrate the coherent character of the low-lying optical phonons. The overall
phonon spectrum and dynamical structure factors are satisfactorily reproduced by ab initio harmonic calculations
using density functional theory with the meta-GGA SCAN functional and a fully ordered structure. However, a
polarization-dependent cutoff energy with opposing temperature shifts for longitudinal and transverse acoustic
dispersions is experimentally observed which is not reproduced by the simulations. Anharmonicity affects the
energies of the low-lying optical phonons in the transverse polarization, which compares quantitatively well with
available results from SCP theory, whereas differences are observed for the longitudinal polarization.

DOI: 10.1103/PhysRevResearch.3.013021

I. INTRODUCTION

Tailoring the lattice thermal conductivity, κL, of energy-
efficient semiconductors is a common materials issue in many
applications such as for thermoelectric [1] and photovoltaic
[2,3] conversion, phase change memories [4], and battery
electrodes [5,6]. In the search for low κL, the main strategy
is the use of “complexity” at multiple length scales, from
structural complexity within the crystal unit cell, to disorder,
short-range order, and nanostructuring [7–9]. Crystals with
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Published by the American Physical Society under the terms of the
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a high structural complexity and chemical bonding inhomo-
geneity [10], such as tetrahedrites [11] or type-I clathrates
[12], often have a very low and almost temperature indepen-
dent κL of ∼0.5–2 Wm−1 K−1 in the 50–500 K range. The
current understanding is that the heat conduction is mostly
conveyed by well-defined acoustic phonons, which exist only
in a limited range of the energy and momentum phase space,
delimited by a continuum of nondispersive optical phonon
bands [13–18]. The onset of this continuum at low energy, la-
beled E1, defines the upper energy limit of the acoustic regime
such that it has been associated with a phononic low-pass
acoustic filter [15] or a modified Debye energy [16,19]. E1

can be changed by varying the chemical composition [13] or
the structural topology [20]. Using the Boltzmann transport
equation for phonons, the acoustic contribution of κac

L is given
by a cumulative spectral integral [13,15,19]:

κac
L (T ) =

∑
ν

∫ E ν
1 (T )

0
κac,ν

L (ωq)ρν (ωq) dω, (1)
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where κac,ν
L (ω) is the mode thermal conductivity, ρν (ω)

is the density of states per mode (DOS), ν is the
longitudinal/transverse polarization index and ωq stands for
the phonon relation dispersions. In addition, any variation in
E1 changes the whole phonon-phonon scattering phase space,
thus impacting the acoustic phonon lifetimes entering into
κν

L (ω) [17,21]. Explaining the combined relationship between
the complex crystal structure and related defects, the acoustic
phonon properties, and the nature of E1, remains a fundamen-
tal challenge.

Type-I clathrates contain 46 framework atoms of mostly
group 14 elements which arrange in a 3D covalent host net-
work of face-sharing polyhedral cages that encapsulate alkali
or alkali earth guest cations [12]. The structure is usually
described using the cubic space group Pm3̄n (group 223)
with a lattice parameter of about 1 nm. The cutoff energy E1

is defined as the center of a distribution of optical phonon
modes related to the dynamics of guest atoms located at the
6d-Wyckoff sites in tetrakaidecahedral (51262) host cages.
These modes lead to well-defined peaks in the phonon DOS
[15,17,18,21] which results in a large deviation from the
Debye-like T 3 temperature dependence of the lattice specific
heat (Cp) at low temperature [25,26]. In literature, the tem-
perature at the maximum of the T 3-normalized heat capacity
is commonly referred to as an Einstein temperature and cor-
responds well to E1 in the phonon spectrum which we recall
as the upper limit of the integral in Eq. (1). Recently, a phe-
nomenological universal relation has been revealed in type-I
clathrates between κL and the product of the average sound
velocity and E1 [19]. The nature of the low-lying guest optical
phonons with energies around E1 is particularly intriguing.
These modes are characterized by a very low phonon partici-
pation ratio (�0.1), which is interpreted either as a signature
of localization [27,28] or an effect of mode confinement
[13,14,17]. In this latter case, the phonon is viewed as a Bloch
state confined to a relatively small atomic pattern, the Ba(6d)
atoms in this case, within the large complex unit cell whose
periodic repetitions result in a special character. Moreover, the
flatness of their dispersion and the concomitant high DOS pro-
vides a large momentum- and energy-conserving phase space
for three-phonon scattering processes involving the acoustic
modes [17,21].

The Ba7.81Ge40.67Au5.33 structure [29–31], which will be
dealt with in this paper, is shown in Fig. 1(a). Besides the
structural complexity, the dative Au-Ba bonding of the Au-
substitution in Ba7.81Ge40.67Au5.33 results in an off-centering
of Ba atoms in the tetrakaidecahedral cages [13,32,33]. No
correlation among the off-centering sites has been observed
experimentally, indicating that they can be viewed as point de-
fects. In the type-I structure Ba8Ge40Au6, molecular dynamics
simulations performed at 300 K on a 2 × 2 × 2 supercell
with independent random substitutions of Au atoms found
no evidence for a correlated Au/Ge defect structure, thus no
ordering among the off-centered Ba positions (see the Supple-
mentary Material in Ref. [13]).

All ab initio phonon and κL calculations reported for type-I
clathrates have been carried out on the fully ordered model
structure, with centered Ba atoms and full site occupation
of all sites. The experimental phonon spectrum in type-I
clathrates is qualitatively reproduced quite well by harmonic

FIG. 1. (a) Crystallographic structure of the type-I clathrate
Ba7.81Ge40.67Au5.33 (BGA) The cubic unit cell (space group Pm3̄n)
contains two tetrakaidecahedral (51262) and five dodecahedral (512)
host cages formed by Ge atoms (light gray) with guest Ba (green)
atoms encapsulated inside. One to three Au atoms (gold) substitute
Ge atoms at the Wyckoff site 6c, which results in a slight distortion
of the tetrakaidecahedron and an off-centering of the Ba atoms inside
[13]. (b) The lattice thermal conductivity, κL , for BGA (black circles)
[13] is compared to different experimental measurements of κL for
Ba8Ge30Ga16 (BGG), including those by Avila et al. [22], Sales et al.
[23], May et al. [24], and the theoretical calculations of Tadano and
Tsuneyuki [43]. Black and blue dashed lines show the deviation
of κL from 1/T for both BGA and BGG, respectively, at higher
temperatures.

ab initio calculations [13–15]. Quantitatively, ab initio lattice
dynamics studies of Ge clathrates showed decreased acoustic
and low-lying optical mode energies in comparison to the
experimental data (up to 40%), a discrepancy which has been
recently overcome by the use of the meta-generalized-gradient
approximation (meta-GGA) functional SCAN (strongly con-
strained and appropriately normed) for the exchange and
correlation energy [34]. Ab initio simulations in perturbation
theory, when limited to three-phonon processes, predicts a
1/T temperature dependence for acoustic phonon lifetimes
and κL(T ), which drastically fails to reproduce the experimen-
tal ∼T −0.25 in Ba7.81Ge40.67Au5.33 [13] [see Fig. 1(b)], and
also in other complex crystals like the ∼T −0.1 dependence in
the quasicrystal approximant o-Al13Co4 [35]. For the latter
case, molecular dynamics simulations on an ordered model
structure yield a T −0.5 dependence, whereas the inclusion
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of random disorder results in much closer agreement with
experiment. This points not only to the importance of disorder,
but also to either higher order anharmonicity or the effect
of phonon energy renormalization including the polarization
mixing of phonon eigenvectors, which are included in the
molecular dynamics simulations but not in most ab initio
based calculations.

A significant improvement to the ab initio approach has
been achieved by self-consistent phonon (SCP) theory, which
nonperturbatively treats the effects of anharmonicity [36–42].
An SCP study on an ordered model of Ba8Ge30Ga16 reveals
that the quartic anharmonicity leads to a softening of E1(T )
upon cooling, surpassing the usual hardening effect due to
thermal expansion. Although this softening accounts for less
than 10% of E1(T ) in the 0–300 K range, i.e., about 1 meV ∼
12 K, it leads to a closer κL(T ) matching [43]. This high
sensitivity of κL(T ) to E1(T ) results in the peculiar vibrational
nature of the optical modes at E1(T ). It should be mentioned
here that the Ba8Ge30Ga16 SCP calculations assume that
phonon polarization vectors are not affected by anharmonicity
[43], which is a common approximation in complex crystals
in order to limit the computational cost [38,41].

In this paper, we provide substantial experimental evidence
of the importance of the anharmonic processes (result-
ing from cubic and quartic terms) for the type-I clathrate
Ba7.81Ge40.67Au5.33 by investigating the propagation direc-
tion, and the polarization and temperature dependencies of
the cutoff energy E ν

1 (T ) by inelastic neutron scattering on a
high-quality single crystal. By probing the mode symmetry
in momentum space at different energies, we show that the
distribution of the neutron intensity related to the low-lying
optical vibrations is structured in the momentum space within
a Brillouin zone, and from one Brillouin zone to another. This
distribution of intensity in momentum as well as the overall
phonon energies are satisfactorily reproduced by ab initio har-
monic calculations using the (meta-GGA) functional SCAN
done on a fully ordered structure. We confirm the agreement
between the experimental results and simulations for phonon
dispersions obtained along different high-symmetry directions
and with both transverse and longitudinal polarizations.

However, some differences remain, especially in the re-
gion of the phase space where acoustic and optical phonons
are hybridized. Experimentally, a polarization dependence
of the acoustic-optical phonon coupling is observed such
that the origin and the value of E1 in the longitudinal and
transverse acoustic (LA, TA) polarizations are different and
exhibit opposite temperature dependencies, the effect of opti-
cal mode hardening with increasing temperature being found
only for the lowest mode in the transverse polarization. This
difference, which is not observed in our ab initio harmonic
simulations using a fully ordered model, indicates either an
effect of the particular defect cage structure caused by the
Au substitutions or a more subtle anharmonic effect involving
phonon polarization.

Furthermore, and in light of the recent SCP method cal-
culations on Ba8Ge30Ga16 [43], this experimental case allows
us to quantitatively compare clathrate anharmonicity as found
by both experimental and theoretical approaches. The rate of
change in energy of E1(T ) in Ba7.81Ge40.67Au5.33 was prop-
erly measured in the temperature range 100–550 K. After

FIG. 2. (a) The rate of thermal expansion, �a/a, for
Ba7.81Ge40.67Au5.33 has been measured with Larmor diffraction
on TRISP@FRM-II (black circles) and compared to that of Falmbigl
et al. (empty red squares) [50]. The numerical derivative of �a/a is
the linear thermal expansion coefficient, αL . The volumetric thermal
expansion coefficient, αV = 3αL , is plotted in (b).

the subtraction of the thermal expansion contribution from
this rate of change, the anharmonic contribution in the ther-
mal shift of E1(T ) has been experimentally determined and
directly compared to that of the quartic and cubic terms
of the SCP method calculations for Ba8Ge30Ga16, providing
experimental validation of the SCP method calculations for
determining anharmonic effects in clathrates.

II. METHODS

Inelastic neutron scattering (INS) measurements were per-
formed on the same high-quality single crystal of the type-I
clathrate Ba7.81Ge40.67Au5.33 as in our previous work [13],
whose temperature dependence of the lattice thermal conduc-
tivity, κL(T ), is shown in Fig. 1(b). The structural study, the
chemical disorder caused by Au substitutions, and the ther-
mal characterizations were reported in Ref. [13]. In addition,
we have precisely measured its lattice thermal expansion, as
depicted in Fig. 2, by means of neutron Larmor diffraction
on the triple-axis spectrometer TRISP at the Heinz Maier-
Leibnitz Zentrum (FRM-II, Germany) (see Appendix A 3).
The INS intensity was recorded over a wide range of the
momentum and energy phase space at 150, 300, and 530 K
on the cold-neutron time-of-flight (TOF) spectrometer IN5
at the Institut Laue-Langevin (ILL, France). Details on the
experimental settings, on the TOF instrumental resolution in
momentum and in energy, and on the integration parameters
used to produce the experimental phonon dispersions from fits
of 1D-energy cuts at constant momentum (raw data and fits are
shown in Appendix F), the high resolution Generalized Vibra-
tional Density of States (GVDOS) in Fig. 3, and the mappings
shown in Fig. 5, are given in Appendix A 1. The temperature
dependence of the low-lying optical bands was further investi-
gated on the cold-neutron triple-axis spectrometer IN12 at the
ILL (see Appendix A 2). Preliminary experiments were also
conducted on the triple-axis spectrometer 1T at the Labora-
toire Léon Brillouin (LLB, France). In all INS experiments,
the single crystal was mounted in a cryofurnace and aligned
in the ([110]; [001]) scattering plane such that wave vectors
of the form Q = 2π

a (ζ , ζ , ξ ), with a = 10.7987(1) [13], were
accessible.

Of particular importance in this work is the polarization
term, which appears in the coherent one-phonon scattering
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function, S(Q, ω), which in turn is proportional to the double
differential inelastic neutron cross section (see Appendix A).
In the case of a coherent, one-phonon scattering process by a
phonon of branch i, with energy ωq,i and polarization vector
ξ i
ωq,i

, the neutron scattering function is written as [44]

Sph(Q, ω) = n(ω)

∣∣F i
D(Q)

∣∣2

ωq,i
δ(ω − ωq,i )δ(Q − q − G), (2)

where n(ω) = 1
1−exp(−h̄ω/kBT ) and comes from the detailed bal-

ance factor, and Q = q + G is the scattering vector given by
the nearest reciprocal lattice vector G and the phonon wave
vector q. Usually, phonons are measured in a Brillouin zone
far from the �-point (around Bragg peaks with high Miller
indices) such that |G| � |q| and Q ∼ G. In this work, we
mainly discuss measurements performed around the Bragg
peaks (006) and (222) whose moduli are much higher than
π/a. The function F i

D(Q) in Eq. (2) is called the dynamical
structure factor (DSF) and is defined as [44]

F i
D(Q) =

∑
j

e−Wj (Q) b j√
Mj

eiQ·r j
{
Q · ξ

j
i (Q)

}
, (3)

where b j , r j , Mj , and Wj (Q) are the coherent scatter-
ing length, fractional coordinates, mass, and Debye-Waller
factor of the jth element, respectively. This expression
closely relates to the nuclear structure factor which deter-
mines the Bragg peak intensity. It includes an additional
term, the scalar product {Q · ξ

j
i (Q)} ∼ {G · ξ

j
i (Q)}, which

contains the phonon polarization and can thus be used to
distinguish longitudinal and transversal phonon modes by
choosing the appropriate combination of phonon polarization
wave vector and reciprocal lattice vector. The polarization
vectors of longitudinal and transversal phonons are parallel
and perpendicular to the phonon wave vector q, respectively.

The lattice dynamics were simulated using a fully ordered
model of a type-I clathrate with the Ba8Ge40Au6 composition
in which the gold atoms occupy all the 6c host sites. The
periodic density functional theory (DFT) code VASP [45–47]
was used for structure optimization as well as for the deter-
mination of the harmonic force constants. While the projector
augmented wave method was applied for describing the ionic
cores, the meta-GGA functional SCAN was used to account
for exchange and correlation [34,48]. The SCAN functional
has been recently proven to reproduce the phonon spectrum
in type-I clathrates with a much higher accuracy. The unit cell
was relaxed to the ground state using a k-point mesh (5 × 5 ×
5) centered at the zone center (�) and a convergence crite-
rion of residual forces of less than 10−4 eV/Å using a plane
wave energy cutoff of 500 eV. The lattice parameter of the
optimized structures obtained by the SCAN functional is of
10.78 Å, very close to the experimental value of 10.7987(1) Å
[13]. The Hellmann-Feynman forces were then calculated af-
ter introducing symmetrically non-equivalent displacements
of ± 0.03 Å in the relaxed unit cell. These forces are given as
an input to the Phonopy code [49] for the calculation of the
dynamical matrix.

III. THE GRÜNEISEN PARAMETER

Before discussing anharmonicity at the phononic level, we
first address the Grüneisen parameter, γ , which is a material

constant that gives an idea about the amount of anharmonicity
that exists in a material. This macroscopic property provides
context to our experimental findings in this paper.

The mode specific Grüneisen parameter, γi, for a phonon
mode Ei at molar volume V is defined as γi = − V

Ei
( ∂Ei

∂V )T =
−( ∂ ln Ei

∂ ln V )T . As a first approximation of the experimental
Grüneisen parameter, however, we assume an averaged and
temperature-dependent Grüneisen parameter for all modes,
which, in the quasiharmonic approximation, depends on the
volumetric thermal expansion coefficient αV , the Bulk modu-
lus B, the molar volume V , and the specific heat at constant
volume CV :

γ = αV BV

CV
. (4)

The temperature dependence of CV (T ) was deduced from
the measurement of Cp(T ) as detailed in Appendix C. As dis-
cussed in the introduction, Cp(T ) in type-I clathrates is dom-
inated by the contribution of the optical phonon branches and
mostly by the lowest energy guest modes at E1 such that the
γ extracted from Eq. (4) is mainly specific to the contribution
of the low-lying guest modes. The change in lattice spacing
with temperature in our single crystal of Ba7.81Ge40.67Au5.33

was experimentally measured by neutron Larmor diffraction
on the most intense Bragg peak (006), and is plotted as black
circles in Fig. 2(a). The result is compared to the miniature
capacitance dilatometer measurement made by Falmbigl et al.
[50] of a type-I clathrate with a similar chemical composi-
tion. Figure 2(a) shows the consistency between these two
different experimental methods. The temperature dependence
of the linear thermal expansion coefficient, αL(T), is then the
numerical derivative of �a/a, and the volumetric expansion
coefficient is αV = 3αL [see Fig. 2(b)].

The temperature-dependent molar volume for
Ba7.81Ge40.67Au5.33 has been taken from the conversion
of the coefficient of lattice expansion data in Fig. 2(a)
to the experimental lattice parameter, and since we find
no change in sound velocity within 300 ± 150 K (see
Fig. 3), a temperature-independent B is assumed. For
Ba7.81Ge40.67Au5.33, we find B = 65.60 GPa from our
measurement of the phononic sound velocities. (More details
are given in Appendix B.)

The Grüneisen parameter can then be experimentally de-
duced from Eq. (4). It is found to be temperature independent
in the range of interest for this study, with a value of γ =
1.38. A similar method was used by Ikeda et al. [19] for
Ba8Ge30Ga16 in which γ300K = 1.67 was observed. In liter-
ature, the Grüneisen parameter of type-I clathrates, obtained
by various methods and for different chemical compositions,
is typically found to be in the range of 1.2–2.0 [16,33,50–58].

IV. EXPERIMENTAL RESULTS

A. Polarization dependence of optical branches

The LA and TA phonon dispersions obtained from the
experimental mappings (see Appendix F) of the phonon en-
ergy at 150, 300, and 530 K covering several Brillouin zones
are shown in Figs. 3(a) and 3(b). Measurements have been
performed around the most intense Bragg peak (006) in
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FIG. 3. (a) Transverse and longitudinal phonon dispersion curves
extracted from IN5@ILL at 150 (blue circles), 300 (black triangles),
and at 530 K (red stars) near the (006) Bragg peak. Gray solid
lines depict the calculated dispersion curves. The wave vector q
is referenced from the zone center (006) (�006). Acoustic phonons
with q increasing towards the zone center (116) (�116) are mostly
transversely polarized (left panel). Those with q increasing towards
the zone center (007) (�007) are mostly longitudinal (right panel).
Also shown in gray is the simulated phonon spectrum. (b) Similar
experimental phonon dispersions near the (222) Bragg peak, at the
same three temperatures, and compared to simulations. Starting from
the zone center (222) (�222), the transverse (left panel) polarization
can be traced until zone center (114) (�114), while the longitudinal
(right panel) polarization propagates towards the �333. (c) General-
ized vibrational density of states (GVDOS) obtained on IN5@ILL
at 150 and 530 K, along with the calculated phonon DOS (intensity
has been scaled down by a factor of 3.5). All simulations correspond
to harmonic ab initio DFT calculations using the meta-GGA SCAN
functional.

Fig. 3(a). For propagating wave vectors along the [001] di-
rection, the longitudinal polarization is observed, while the
transverse polarization for which the vibrational polarization
is along the [001] direction is measured along the [110] direc-
tion. For Fig. 3(b), measurements were taken near the (222)
Bragg peak, in which the longitudinal polarization is tracked
along the [111] direction, and the transverse dispersion has
a vibrational polarization along [111] and propagates along
[112].

FIG. 4. Calculated partial phonon density of states (pDOS), us-
ing harmonic ab initio DFT calculations and the meta-GGA SCAN
functional. The site-weighted partial pDOS lines of Wyckoff po-
sitions Ge(16i), Ge(24k), Ba(2a), Ba(6d), and Au(6c) show their
respective contributions in energy as compared to the total pDOS.

The experimental phonon spectra are compared to the
simulated phonon spectrum obtained by DFT calculations
using the SCAN functional (see Methods section), as shown
in Figs. 3(a) and 3(b) (gray lines are the simulated phonon
dispersions). A good agreement is observed on the whole
spectrum especially on the transverse and longitudinal acous-
tic branches which are well reproduced. That corresponds to
a significant improvement in the theoretical approach in com-
parison to the simulations performed with the PBE functional
for which acoustic phonon energies are strongly underesti-
mated [13,15].

For all temperatures and both polarizations, the exper-
imental phonon spectra exhibit an acoustic regime at low
energy, which contains well-defined phonon peaks whose dis-
persions are delimited by low-lying optical bands. The energy

FIG. 5. Two-dimensional inelastic neutron scattering intensity
distribution at fixed energy transfer in the momentum plane
([110]; [001]) for Ba7.81Ge40.67Au5.33 at 300 K, recorded on
IN5@ILL. The first three energy integrations (a)–(c) were taken at
3.5 ± 0.15, 4.8 ± 0.15, and 6.5 ± 0.15 meV, respectively. (d) repre-
sents a larger integration interval of 9.5 ± 2.5 meV. The color bar
reflects a normalized intensity scale. Dashed white grids show the
borders of the Brillouin zones.
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at which the acoustic dispersions are interrupted is higher for
the longitudinal polarization, 6.5 meV than for the transverse
polarization, 4.8 meV. As emphasized by the use of the two
sets of experimental data in Figs. 3(a) and 3(b), this is con-
sistent across [001] and [111] longitudinal polarizations, and
for [110] and [111] transverse polarizations. The cutoff effect
of the acoustic branches by the low-lying optical branches is
also seen in the simulated phonon spectrum. The simulation
perfectly reproduces the TA dispersion, while for the longitu-
dinal polarization, the computed acoustic branch is interrupted
at 4.8 meV and not at 6.5 meV as observed experimentally.

Referring again to the Ba7.81Ge40.67Au5.33 crystal structure
in Fig. 1(a), the motions of Ba(6d) atoms in the soft plane of
the large tetrakaidecahedral cages dominate the optical band
centered at 4.8 meV (EBa) [59], and hybridized vibrations
of Au(6c)-Ba(6d) atoms are thought to dominate the optical
band centered at 6.5 meV (EAuBa) [13,29]. This mode assign-
ment is confirmed by the plot of the partial phonon density
of states (pDOS) shown in Fig. 4. Indeed, only the Ba(6d)
atoms contribute in the energy range around 4.8 meV while
the optical band centered at 6.5 meV contains contributions
of the Ba(6d) and the framework Au(6c) atoms. For energies
higher than EBa,AuBa up to a cutoff energy of around 35 meV,
the phonon spectrum consists of several broad distributions
of optical bands, such as those in the range EBa–15 meV in
Fig. 3(a).

Figures 5(a)–5(c) report the two-dimensional mappings in
the momentum plane ([110]; [001]) of the neutron intensity
recorded at room temperature and at fixed energy of 3.5, 4.8,
and 6.5 meV, respectively. These experimental mappings can
be compared to DFT computed mappings of S(Q, ω) in an
equivalent range of momentum, shown in Figs. 6(a)–6(c).
The section in momentum at 3.5 meV, in Fig. 5(a), is a cut
through the acoustic branches. The Brillouin zones in which
the zone center corresponds to an intense Bragg peak result in
a strong dynamical structure factor of the acoustic modes and
therefore contain two well-defined rings of high intensity. The
intensity along the rings is not homogeneously distributed in
momentum space as it is weighted by the polarization factor
[described by Eq. (3)] such that when the phonon wave vector
(q) is aligned/perpendicular to the Bragg wave vector (G), the
longitudinal/transverse polarization is selected. Thus, looking
at the two rings surrounding the zone center G006, the outer
ring which is intense along the [110] direction (perpendicular
to G006) corresponds to TA phonons, and, reciprocally, the
inner ring with maximum intensity along [001] corresponds
to LA phonons. The intensity maxima along the rings follow
the polarization factor and are rotated by 45◦ between those
surrounding the zone centers �006 and �222. This intensity
distribution is reproduced on the simulated map, shown in
Fig. 6(a), and carries the signature of the coherent character
of the acoustic modes.

The section in momentum at a fixed energy equal to EBa,
shown in Fig. 5(b), reveals the intensity distribution of the
lowest optical band which cuts the TA dispersion. It also
contains the contributions of the LA modes which form the
inner rings closest to the zone centers. The intensity of the
optical band at EBa shows a distinct Q-dependence in momen-
tum space with intensity maxima at the zone boundaries that
can be associated with the Bragg intensity at a zone center,

FIG. 6. Simulated two-dimensional neutron scattering func-
tion, S(Q,ω), at fixed energy transfer in the momentum plane
([110]; [001]) for an ideal ordered model of a type-I clathrate with
the composition Ba8Ge40Au6. The first three energy integrations
(a)–(c) were taken at 3.5 ± 0.15, 4.8 ± 0.15, and 6.5 ± 0.15 meV,
respectively. (d) represents a larger integration interval of 9.5 ±
2.5 meV. The intensity in each map has been normalized to the same
intensity scale, which is reflected in the color bar. Dashed white grids
show the borders of the Brillouin zones.

for instance, (1.5 1.5 6) and (1.5 1.5 3.5) with Bragg peaks
(006) and (222), respectively. The intensities along these max-
ima follow the transverse polarization and are turned by 45◦
between the zone centers �006 and �222 as for the acoustic
modes. This intensity distribution of the outer ring related to
the optical mode at EBa is also reproduced in the simulated
map shown in Fig. 6(b). It confirms the coherent nature of the
optical modes contained in this band which thus cannot be
associated with vibrations of localized and independent Ein-
stein oscillators, in agreement with previous phonon studies
on clathrates [14] and other cage compounds [60]. Indeed,
an isolated Einstein oscillator-type behavior would result in a
Q2-dependent intensity distribution. Note that there are also
intensity maxima at zone centers such as (116) and (114),
which is not seen in the simulated map shown in Fig. 6(b)
simply because the intensity is in the low range of the color
scale.

Moving again in energy to EAuBa in Fig. 5(c), one sees the
maxima of intensity related to the distribution of the optical
band which cuts off the LA dispersion, in addition to the ones
related to EBa which are pinned at the zone boundary. The
intensity distribution to EAuBa around �006 is more spread in
momentum space than that at EBa which is also observed in
the simulated map shown in Fig. 6(c). Looking carefully at the
experimental map, one can distinguish minima along the [110]
direction following the longitudinal polarization factor which
are less obvious to see in the simulated map. The optical
vibrations at EAuBa are much less coherent than at EBa and
exhibit the trend of being polarized longitudinally.
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TABLE I. Isobaric, isochoric, and thermal expansion (TE) rates
of change in energy with increasing temperature of the lowest-
lying optical bands in Ba7.81Ge40.67Au5.33 (BGA) and Ba8Ge30Ga16

(BGG), extracted from the inelastic neutron scattering (INS) data
shown in Figs. 7(a)–7(d), the GVDOS shown in Fig. 3, and the INS
measurements of Ref. [59]. EBa,AuBa and E3,4 correspond to the peaks
labeled in Fig. 7(e), and thermal expansion to the fit TE labeled
in Fig. 7(f). Theoretical values from the Self-Consistent Phonon
method, which includes the cubic and quartic contributions (SCPB),
have been reported [43] and SCPB-based thermal expansion is also
given, all in 1 × 10−4 meV/K.

BGA BGG

INS GVDOS INS SCPB

(∂EBa/∂T )P 7.1 5.4 9.3 11.2
(∂EAuBa/∂T )P – −6.3 – –
(∂E3/∂T )P −7.4 −7.9 – –
(∂E4/∂T )P −7.4 – – –
Thermal expansion −2.6 −2.7 −3.8 −3.6
(∂EBa/∂T )V 9.7 8.1 13.1 14.8

Thus, the energy dispersions and momentum distributions
shown in Figs. 3 and 5 demonstrate that the low-lying optical
bands interact with the acoustic dispersion that is present in a
given polarization. It appears that the TA dispersion couples
largely with the 4.8 meV band (EBa), while the LA disper-
sion couples mainly with the 6.5 meV band (EAuBa). Last,
Fig. 5(d) is a experimental data integration in the interval
7–12 meV, which represents host optical band energies. A
similar momentum map obtained by integrating the simulated
data in the same interval is shown in Fig. 6(d). The intensity
distribution of these modes on the experimental and simulated
maps reveal the coherence of these host bands, which display
mostly longitudinally polarized intensity.

B. Temperature dependence of optical branches

Focusing now on the temperature dependence, and in con-
trast to the acoustic phonon energies for which no change
of their energies in temperature is observed, we clearly see
sizable shifts with temperature of the optical band energies
in Figs. 3(a) and 3(b). For the transverse polarization, the
energy EBa increases upon heating, while the energies of
the other optical bands, including EAuBa, follow the opposite
trend. As a consequence, the temperature-dependent changes
of the energy range for acoustic phonons is opposite for TA
and LA phonons as it is directly related to the temperature
dependence of the optical cutoff bands EBa,AuBa [see Eq. (1)].
This is better seen by comparing the GVDOS between 150 K
and 530 K, depicted in Fig. 3(c). In the low-energy range
below 10 meV, the GVDOS exhibits mostly three peaks at
energies EBa, EAuBa, and E3. Only EBa follows a hardening
shift upon heating, which has been similarly reported in type-
I clathrates of different chemical compositions [59,61–64].
The overall structure of the measured GVDOS is reproduced
well by the phonon DOS obtained from ab initio simulations
using the meta-GGA SCAN functional, as shown in Fig. 3(c).

FIG. 7. (a)–(d) Inelastic neutron scattering (INS) intensity for
constant Q = (113) scans as a function of energy (black circles)
recorded on IN12@ILL between 200–500 K for Ba7.81Ge40.67Au5.33.
The solid red lines are Gaussian fits of the three optical bands whose
energies are referred to as EBa and E3,4. The vertical dotted black
lines indicate their values at 200 K. (e) Temperature dependence of
EBa and E3,4 obtained from the fits shown in panels (a)–(d) (black cir-
cles) and from the EBa,Au and E3 peaks in the generalized vibrational
density of states shown in Fig. 3(c) (purple crosses). Blue trian-
gles show the temperature dependence of EBa in Ba8Ge30Ga16 [59].
In (f), the temperature dependence of EBa for Ba7.81Ge40.67Au5.33

(black circles) and Ba8Ge30Ga16 (blue triangles), corrected for the
thermal expansion (TE), are shown and compared to that of the
Ba8Ge30Ga16 self-consistent phonon theory calculation that includes
cubic and quartic terms (SCPB) [43] (green stars). The rates of TE
of Ba7.81Ge40.67Au5.33 and Ba8Ge30Ga16 by INS and SCPB (same
symbols/colors) are also plotted.

Some differences appear in the energy range between 5 and
7 meV, which might be linked to those observed for the LA
dispersions in Figs. 3(a) and 3(b).

We then more systematically investigated these temper-
ature dependencies by use of a triple-axis spectrometer
between 200 and 500 K. Performing energy scans at constant
wave-vector Q = (113), where the acoustic phonon intensity
is expected to be very low, allows for a more selective study of
the optical branches, as seen in Figs. 7(a)–7(d). EAuBa is not
visible in this polarization. However, following the GVDOS
peaks in Fig. 3(c), we find a similar E3 = 7.5 meV peak, and
a higher energy peak at E4 = 9.8 meV. The energy fits of EBa

and E3,4, along with EBa,AuBa and E3 from the GVDOS, are
then plotted in Fig. 7(e). All bands display linear trends in
the overall temperature range, with only EBa hardening with a
rate of 7.0 × 10−4 meV/K. For comparison, the 9.3 × 10−4

meV/K temperature dependence of EBa for Ba8Ge30Ga16,
measured by inelastic neutron scattering [59], has been in-
cluded as well in Fig. 7(e). The rates of softening of the
other optical bands in Ba7.81Ge40.67Au5.33 are summarized in
Table I.
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V. DISCUSSION

From Eq. (1), it is evident that the reproduction of the
experimentally observed κL(T) can be achieved only if the
temperature dependence of the low-lying phonon modes
is correctly accounted for. Therefore, we now seek direct
comparison of the experimentally observed temperature de-
pendence of the EBa band to results from SCP theory. The
combined cubic and quartic anharmonicity terms give the iso-
choric contribution of the thermal change of phonon energy,
( ∂E
∂T )V , while experimental measurements, such as the ones

presented above, are usually performed at constant pressure
and give access to the isobaric thermal variation, ( ∂E

∂T )P. To the
first order, the thermodynamic relation between those quanti-
ties is given by(∂E

∂T

)
V

=
(∂E

∂T

)
P

+ E (T )αV (T )γ , (5)

where the far right term corresponds to the mode-specific ther-
mal expansion which we have experimentally quantified in
Ba7.81Ge40.67Au5.33 and Ba8Ge30Ga16 through their volumet-
ric thermal expansion coefficients, αV (T), average Grüneisen
parameters, γ , and energies of the mode under investiga-
tion (with the help of αV and inelastic neutron scattering
measurements in Refs. [19,59] for Ba8Ge30Ga16). While ex-
perimentally we cannot further separate the cubic from the
quartic anharmonic term, we discuss a conceptual first approx-
imation in Appendix E. In Table I the isochoric dependencies
of Ba7.81Ge40.67Au5.33 and Ba8Ge30Ga16, shown in Fig. 7(f),
are deduced using Eq. (5) and thermal expansion contri-
butions. For the lowest optical band at EBa, anharmonicity
accounts for 9.7 × 10−4 meV/K for Ba7.81Ge40.67Au5.33, and
13.1 × 10−4 meV/K for Ba6Ge30Ga16. The difference be-
tween Ba7.81Ge40.67Au5.33 and Ba8Ge30Ga16 can be attributed
to difference of the Ba local environment in the tetrakaideca-
hedral cages.

Conversely, for the SCP simulations, the SCP calculation
which includes the quartic and cubic contributions (SCPB)
with a rate of 14.8 × 10−4 meV/K can be used along with
γ SCPB(T ) in order to find the equivalent isobaric rate of
11.2 × 10−4 meV/K. (More details are given for SCPB in
Appendix D.) We therefore find close isochoric matching
between SCPB and experimentally deduced anharmonicity
in Ba8Ge30Ga16, allowing us to experimentally validate the
SCPB method in clathrates.

VI. CONCLUSIONS AND PERSPECTIVES

In summary, we confirm the good agreement between
our measurements and the ab initio harmonic calcula-
tions using the meta-GGA SCAN functional of the overall
phonon spectrum along different directions and for the trans-
verse and longitudinal polarizations on the type-I clathrate
Ba7.81Ge40.67Au5.33. However, experimentally, the TA and LA
branches are delimited by two optical phonon bands of dif-
ferent nature which is not reproduced by our simulations.
While the former hybridizes with transverse optical vibrations
centered at EBa = 4.8 meV associated with the coherent guest
motions of Ba(6d) in the soft plane of the tetrakaidecahedral
cages, the latter is interrupted by the longitudinal optical
band centered at EAuBa = 6.5 meV related to the coherent

hybridized motions of the substituted Au(6c) host and the
Ba(6d) guest atoms. The TA dispersion is perfectly repro-
duced by our ab initio simulation in the whole Brillouin zone.
On the other hand, a difference appears on the longitudinal
branch in the region of the phase space where optical and
acoustic modes hybridize such that the LA branch is predicted
to be cut off at the same energy as the transverse one.

Upon cooling, EAuBa increases, following a rate of change
guided by thermal expansion, while EBa decreases. The ex-
perimental isochoric rate of change of EBa extracted in
Ba8Ge30Ga16, which quantifies the amount of cubic and
quartic anharmonicity, is in good agreement with the SCPB
simulations in Ba8Ge30Ga16. In Ba7.81Ge40.67Au5.33, a much
lower rate of change is found which is assumed to originate
from the difference of the defect structure. On the other hand,
the difference between the transverse and the longitudinal
cutoff energies observed experimentally, which is not seen
in the simulations, indicates a more subtle polarization de-
pendent mechanism involving either the disorder and/or the
anharmonic polarization mixing whose consideration in the
SCP-like approach will surely reveal an improved κL(T ) de-
pendence, especially in the intermediate temperature range as
seen in Fig. 1(b).

Data from inelastic neutron scattering measurements at the
ILL are available at [65], and LLB measurements correspond
to proposal 657.
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APPENDIX A: INELASTIC NEUTRON SCATTERING
MEASUREMENTS

A neutron scattering event involves incident neutrons with
initial energy and wave vector (|Ei, ki〉) impinging on a sam-
ple and being scattered, resulting in scattered neutrons with
(|E f , k f 〉). An inelastic neutron scattering (INS) experiment
measures the amount of flux of the initial neutron beam that
has been scattered into the solid angle element of interest,
d� f , within energy range of interest dE f . The cross section,
σ , is defined as the number of neutrons scattered per second
out of the number of incident neutrons per cm2 per second.
The double differential of σ for neutron scattering, d2σ

d� f dE f
,

can be related to the coherent inelastic scattering function,
S(Q, ω), by d2σ

d� f dE f
= N k f

ki
S(Q, ω), where N is the number of

nuclei [44,67].

1. Time-of-flight spectroscopy

Inelastic neutron scattering measurements depicted in
Figs. 3 and 5 of the main text and Figs. 12–18 in Appendix F
were made using cold-neutron time-of-flight spectroscopy.
The time-of-flight measurements took place on IN5@ILL
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TABLE II. For the given experimental conditions on IN5@ILL,
the components of q resolution are summarized. Values were calcu-
lated for dispersions near the (006) Bragg peak in the momentum
plane ([110]; [001]) and are categorized by horizontal resolutions for
the primary, [110], and secondary, [001], axes of the scattering plane,
followed by the vertical resolution for the out-of-plane direction,
[110]. Pixel/step divergence refers to the divergence due to the size
of the IN5 detector tubes as seen from the sample distance and to the
step size of 0.5◦ chosen for this particular experiment for the [110]
direction. Beam divergence refers to the divergence that occurs due
to the IN5 neutron guide. Values are given in Å−1.

Pixel/step divergence Beam divergence

Along [001] 5.66 × 10−3 9.96 × 10−3

Along [110] 3.06 × 10−2 3.92 × 10−2

Along [110] 1.25 × 10−2 3.29 × 10−2

using an incident neutron wavelength of λ = 3.2 Å and a
cryofurnace. Scans covered an � range of 54◦, with a sample
rotation of 0.5◦ in between each scan. Time-of-flight data
were reduced using Mantid [68] and then processed into a
four-dimensional S(Q, E ) file and further analyzed with the
Horace package [69] under Matlab.

Considerable effort was made to understand q and E res-
olution (dq, dE ) of the instrument in order to make realistic
data integrations with Horace. The overall instrumental reso-
lution is governed by the incoming neutron beam energy and
monochromatization, the beam divergence in horizontal and
vertical directions, the sample mosaic, the receiving slit sizes
in front of the detector, and the final neutron energy [70]. This
then must be compared to the minimum step size that can be
achieved with the instrument, as explained hereafter.

By taking into account the divergence due to the size of the
detector tubes of IN5@ILL and the beam divergence while
in the λ = 3.2 Å condition, we have defined the resolution
for the [001] and [110] directions while near the (006) Bragg
peak. More specifically, detector tubes on IN5 have a diameter
of 2.54 cm, meaning that with a distance of 4 m between
the sample and detectors, there is a beginning divergence of
0.36◦ due to instrumental conditions. To this we add the corre-
sponding horizontal and vertical beam divergences, 0.64◦ and
0.96◦, respectively, due to the incident neutron wavelength
and neutron guide horizontal and vertical super-mirror indices
on IN5 [70]. Using these starting points, we then calculated
the local resolution limits around our Bragg peak of interest,
the (006). These are summarized in Table II.

Next, as a first approximation, we consider that q and E
are decoupled for a time-of-flight spectrometer, unlike on a
triple-axis spectrometer. This means that the effective phonon
energy resolution depends on the effect of energy broad-
ening due to the reciprocal space, �Esound vel, and on the
instrumental resolution for a given energy transfer, �Einstr.
The latter has been calculated using the incident neutron
wavelength, speed of the IN5@ILL choppers (12 000 rpm),
and additional spectrometer parameters [70]. For our given
experimental conditions, Fig. 8 depicts the energy resolu-
tion as it changes with the energy of the scattering event.
The former, on the other hand, refers to �Esound vel = vs�q,
where vs is the sound velocity of the particular dispersion

FIG. 8. The energy resolution, given our specific experimental
conditions, of the cold-neutron time-of-flight spectrometer IN5@ILL
is plotted in the energy range of interest for results discussed in this
article. The calculation is made by considering the incident neutron
wavelength, chopper speed, and other instrumental parameters spe-
cific to IN5. The equation for calculating energy resolution is derived
in Ref. [70].

of interest. For LA001 near the (006) Bragg peak with vs =
25.84 meV Å, the resulting �Esound vel = 0.30 meV, while
for TA001

110 with vs = 16.99 meV Å, �Esound vel = 0.25 meV.
The total effective phonon energy resolution is therefore√

(�Esound vel )2 + (�Einstr )2.
The minimum step size that can be chosen when preparing

the 4D data matrix in Horace is therefore given by the step
sizes due to detector pixel sizes, step rotation, and step size
in energy. These steps are generally smaller than the effective
instrumental resolution. It should be noted that dqT , or the
transversal dq step size, is strongly Q dependent, since it is
equal to �(rotation) × Q, where �(rotation) is the rotation
step size expressed in radians. As stated above, there is a
0.5◦ step size for these experimental data. The final Horace
integration limits are derived from Table II, in which the
overall dq resolution is:

√
(�qstep div. )2 + (�qbeam div. )2.

Figure 12 contains two-dimensional plots showing the en-
ergy spectrum in a given direction within the momentum
plane were cut and then folded along symmetries using the
appropriate Horace functions. For subplots (a), (c), and (e),
dq = 0.018 r.l.u. for 0–5.75 meV, 0.036 r.l.u. for 5.75–
6.3 meV, and 0.072 for 6.3–15 meV, while dE = 0.075 meV
between 0 and 5.75 meV and 0.1 for 5.75–15 meV. For sub-
plots (b), (d), and (f), dq = 0.037 r.l.u., and dE = 0.075 meV
between 0 and 7 meV, and 0.1 meV between 7 and 15 meV.
The energy is then squared in order to display S(q, E ) × E2

in the final subplots of Fig. 12.
The Fig. 5 subplots reflect intensity seen across the mea-

sured part of the momentum plane ([110];[001]) at a given
energy. Each pixel on the surface plot is a 0.03 × 0.03 r.l.u.
square. Subplots (a)–(c) were made using an energy integra-
tion of E ± 0.15 meV, where E is 4.8, 6.5, 7.5 in the cases of
subplots (a)–(c), and for subplot (d), 9.5 ± 2.5 meV. Similar
cut and folded symmetry Horace functions were used.

In Fig. 3(a) 1D scans around the intense (006) Bragg
peak along transverse and longitudinal polarizations (see
Appendix F) were once again cut using Horace functions. A
tight data integration along the propagation axis was chosen
in order to selectively measure along a given polarization
in a focusing condition. For Figs. 13(a), 14(a), and 15(a),
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dq = 0.018 r.l.u. along the propagation axis [ζ ζ0], 0.04 r.l.u.
along [00ξ ], and 0.06 r.l.u. along the out-of-plane axis [ζ̄ ζ0].
For Figs. 13(b), 14(b), and 15(b), dq = 0.037 r.l.u. along the
propagation axis [00ξ ], 0.02 r.l.u. along [ζ ζ0], and 0.06 r.l.u.
along [ζ̄ ζ0].

For the one-dimensional scans around the (222) Bragg
peak in Fig. 3(b), the same procedure as described above
has been completed to reflect the resolution limits near this
new position in reciprocal space. As there is less intensity in
this region, however, integrations slightly larger than those of
the strict minimums were taken: dq = 0.08 r.l.u. along the
propagation axis [ζ ζ0], 0.08 r.l.u. along [00ξ ], and 0.06 r.l.u.
along the out-of-plane axis [ζ̄ ζ0]. The 1D scans used to create
Fig. 3(b) are shown in Figs. 16(a) and 16(b), Figs. 17(a) and
17(b), and Fig. 18(a) and 18(b).

In addition, high-resolution time-of-flight measurements
were taken with λ = 4.8 Å in order to obtain the neutron-
weighted generalized vibrational density of states (GVDOS)
plot in Fig. 3(c), calculated by the MUPHOCOR (MUlti-
PHOnon CORrection) routine [71] in the LAMP program
[72] for single crystal data. Scans covering an � range of
46◦ at 150 K and 34◦ at 530 K, both with sample-rotation
step sizes of 2◦, were used to make the calculation, and the
atomic mass and expected neutron scattering cross section of
Ba7.81Ge40.67Au5.33 were used as initial starting parameters.

2. Triple-axis spectroscopy

Figures 7(a)–7(d) reflect the measurements taken on the
cold-neutron triple-axis spectrometer (TAS) IN12@ILL. The
experiment was conducted with a fixed k f = 1.55 Å−1, and
with the ki velocity selector, k f Be filter, and cryofurnace
options. The three optical bands shown in subplots (a)–(d)
were fitted as Gaussian peaks because the signal is not a single
phonon but a distribution of optical branches.

Preliminary experiments, performed on the triple-axis
spectrometer 1T@LLB with a fixed k f = 2.662 Å−1, were
extremely important in this work. Indeed, the polarization
dependence of the low-lying optical phonon band at EBa was
formerly observed in these experiments.

3. Neutron Larmor diffraction

Neutron Larmor diffraction takes advantage of the neutron
resonance spin echo technique for triple-axis spectrometers in
order to measure the change in lattice spacing with temper-
ature with extreme sensitivity (1.5 × 10−6) [73–76]. Such a
measurement was made on the (006) Bragg peak position be-
tween 3 and 300 K, and is shown in Fig. 9(a) (also see Fig. 2).
Measurements were taken in increments of 5 K with a fixed
ki of 2.13 Å−1 on the thermal-neutron triple-axis spectrometer
TRISP@FRM-II.

APPENDIX B: CALCULATION OF BULK MODULUS
FROM ELASTIC CONSTANTS

Given that we have measured acoustic phonons in several
high-symmetry directions, we can use the sound velocities to
estimate certain mechanical properties such as the bulk mod-
ulus, B. Sound velocities of transverse, vTA, and longitudinal,
vLA, polarizations can be related to the single crystal elastic

FIG. 9. The temperature-dependent Grüneisen parameter (γ ) in
(d) for Ba7.81Ge40.67Au5.33 is calculated using the rate of thermal
expansion (�a/a) in (a), the volumetric coefficient of thermal ex-
pansion (αV ) in (b), the constant volume specific heat in (c), and the
bulk modulus calculated in Appendix B. The rate of thermal expan-
sion has been measured by Larmor diffraction on TRISP@FRM-II
(black circles), and compared to that of Falmbigl et al. (empty red
squares) [50]. Its numerical derivative is used to find αL = αV /3. The
measurement of CP (black circles) from Ikeda et al. [19] was used to
calculate CV (solid blue line).

constants at 0 K, ci j , through the following [16,77–79]:

vLA001 =
√

c11

ρ
, vTA001

110
=

√
c44

ρ
,

vTA111
112

=
√

c11 − c12 + c44

3ρ
. (B1)

For Ba7.81Ge40.67Au5.33, we find vLA001 = 3,926 m/s,
vTA001

110
= 2,582 m/s, and vTA111

112
= 2,234 m/s at 300 K. There-

fore, c11 = 103.15 GPa, c44 = 44.61 GPa, and c12 = 47.49 GPa
at 0 K. Okamoto et al. have experimentally measured ci j for
Ba8Ge30Ga16 and found c300K

i j within 10% of our values [80].
Similar values have been found for other type-I clathrates as
well [81].

Using these elastic constants, we can calculate the material
bulk modulus at 0 K, B, through Eq. (B2), which gives us B =
65.60 GPa. Again, the same value is found for Ba8Ge30Ga16

with almost no temperature dependence [19,80]:

B = 1

χ
=

√
c11 + 2c12

3
. (B2)

APPENDIX C: CALCULATION OF EXPERIMENTAL
GRÜNEISEN PARAMETER (CONTINUED)

This section expands on the experimental Grüneisen pa-
rameter results discussed in the main text, in particular on
Eq. (4). Figures 9(a) and 9(b) have already been presented
in Fig. 2. From Ikeda et al. [19] we have experimental CP

for Ba7.81Ge40.67Au5.33. To calculate CV , we use the relation
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CP = CV + α2
V TV B [82], and this is plotted in Fig. 9(c).

Finally, using the given equation for calculating the aver-
age Grüneisen parameter, γ (T ) is calculated and plotted in
Fig. 9(d). This method of experimental deduction gives γ300K

= 1.38, which is temperature independent within the temper-
ature range of study.

APPENDIX D: COMPARING TO SCP METHOD
CALCULATIONS

There are two different calculations of the EBa optical band
in Ba8Ge30Ga16 that have been summarized by Tadano and
Tsuneyuki in the Supplementary Material of Ref. [43]: (1)
SCP: SCP method calculations in which the real part of the
quartic anharmonic term, or the Loop free energy diagram,
determines phonon frequency renormalizations in the system,
and (2) SCP+Bubble: the same calculation, but made by also
including the real part of the cubic anharmonic term, the
Bubble free energy diagram. (The second calculation will be
referred to as SCPB in this discussion.) We therefore reflect
that the SCPB calculation directly provides us with ( ∂E

∂T )V of
EBa and that the self-energy terms in the SCPB calculation
self-consistently include the renormalized phonon energies
including the effect of the quartic anharmonicity. (This is
an important distinction for Appendix E, as this means that
we cannot extract the harmonic Bubble term but only the
self-consistent Bubble term.)

In order to move between isobaric and isochoric repre-
sentations of the SCPB calculation discussed in the main
text, we have calculated the SCPB-based thermal expansion:
ESCPB(T )αV γ SCPB(T ). In this way, the determination of the
thermal expansion is much more exact than by using the
quasiharmonic approximation for which only the harmonic
phonon energies are considered. As will be shown in the
following paragraphs, γ SCPB(T ) and ESCPB(T ) come from the
information given in the Supplementary Material of Ref. [43],
and as a first approximation we use the experimental αV for
Ba8Ge30Ga16 from Ikeda et al. [19].

The isochoric rate of change in energy of EBa with tem-
perature for the SCP calculation is 17.9 × 10−4 meV/K, and
14.8 × 10−4 meV/K for the SCPB calculation. Next, with the
use of the mode-specific definition of the Grüneisen param-
eter, γi = − V

Ei
( ∂Ei

∂V ) = −( ∂ ln Ei
∂ ln V )T , the SCPB-based Grüneisen

parameter for the EBa mode can be calculated using Fig. 10(b).
The mode-specific Grüneisen parameter for the SCP calcula-
tion [Fig. 10(a)] is 4.71, 2.57, 2.06, and 1.76 for temperatures
of 0, 300, 600, and 900 K, respectively, and in similar fash-
ion for the SCPB calculation [Fig. 10(b)]: 4.81, 2.98, 2.34,
and 1.94. Although these Grüneisen parameters appear to be
slightly larger than the average clathrate experimental values
discussed in the main text, we note that these parameters
reflect the anharmonicity found specifically in the EBa optical
band. With these mode-specific Grüneisen parameter results,
the SCPB thermal expansion shown in Fig. 7(f) was calculated
and, by extension, the isobaric form of the SCPB calculation
was found to have a rate of change of 11.2 × 10−4 meV/K.

We also note that there are experimental rates of change for
Ba8Ge30Ga16 that match the isochoric SCP (no cubic compo-
nent) calculation. The Raman measurements of Takasu et al.
[61–63], with a rate of change of 17.1 × 10−4 meV/K, cause

FIG. 10. Calculations from Table S2 of Ref. [43] are plotted in
order to obtain (

∂E j

∂V )T for the EBa optical band, namely, the rate of
change in volume of Ba8Ge30Ga16 with energy for “SCP” (a) and
“SCP+Bubble” (b).

a discrepancy between Raman measurements of Ba8Ge30Ga16

measured by this group and by those of Christensen et al.
[59]. We emphasize, however, that the isobaric 17.1 × 10−4

meV/K should not be compared to the isochoric quartic-only
calculation.

APPENDIX E: FIRST APPROXIMATION DECOUPLING
OF CUBIC AND QUARTIC ANHARMONICITY

Even though we cannot definitively isolate the cubic and
quartic anharmonicity terms from an inelastic neutron scat-
tering ( ∂E

∂T )P measurement, we will attempt to qualitatively
interpret their weighted importance on EBa.

The generalized vibrational density of states (GVDOS),
as seen in Fig. 3(c), represents the isobaric temperature de-
pendence of Ba7.81Ge40.67Au5.33. However, if the energy axis
of the data at 530 K is scaled by 3% of the original values,
as seen in Fig. 11, then globally, all peaks except for EBa

now align. This is already a powerful conclusion about the
uniqueness of EBa, pointing to the strong anharmonicity that
governs its behavior as opposed to all other higher energy
peaks, for which one scaling factor can explain the complete
temperature dependencies.

This 3% scaling factor can be understood to be made
up of the thermal expansion and cubic components, since

FIG. 11. Generalized vibrational density of states obtained from
the data collection recorded on IN5@ILL at 150 and 530 K. The
energy axis of the data at 530 K has been scaled by 3%, leading to
an alignment of all but the lowest peaks.
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we will assume that the quartic term is localized onto only
EBa as a first approximation. This simplification is supported
by Tadano and Tsuneyuki [43], who find that the quar-
tic anharmonic phonon energy renormalizations of the SCP
(not SCPB; see Appendix D for more details) calculation
are focused onto modes below 9.92 meV (80 cm−1) for
Ba8Ge30Ga16. We therefore extrapolate to say that modes
higher than EBa are controlled by only thermal expansion
and the cubic term, while EBa has contributions from thermal
expansion, the cubic term, and the quartic term.

Let us first look at GVDOS peaks between 10 and 35 meV,
for which we must consider only thermal expansion and cubic
components. To reiterate, by studying the 3% scaling factor,
we are studying the isobaric rate of change for peaks between
10 and 35 meV. We recall that, using Eq. (5), the peak-specific
thermal expansion for each of the GVDOS peaks between 10
and 35 meV in Fig. 11 can be calculated, and the result is that
thermal expansion consistently accounts for 45%–50% of the
total isobaric rate of change. Given our assumption that these
modes are controlled only by the thermal expansion and cubic
terms, this leaves a remaining 50%–55% of the 3% scaling
which must be understood as the rate of change of the cubic
anharmonicity. In this manner, the 3% scaling factor of peaks
between 10 and 35 meV is fully accounted for.

Expanding on this 3% scaling concept to EBa, we recall the
values given in Table I: EBa has an isobaric rate of change of
5.4 × 10−4 meV/K and a thermal expansion rate of change
of −2.7 × 10−4 meV/K, giving the isochoric rate of change
of 8.1 × 10−4 meV/K. However, this time we expect for the
isobaric rate of change to reflect thermal expansion, cubic,
and quartic contributions. As stated above, the rate of thermal
expansion for EBa is already known, leaving the cubic and
quartic contributions, for which we also know the total iso-
choric (cubic and quartic) contribution. However, after the 3%
scaling shown in Fig. 11, the rate of change for EBa becomes
9.4 × 10−4 meV/K. Therefore, the difference between the 3%
scaling factor and isochoric rate of change, which is −1.3 ×
10−4 meV/K, must be due to cubic anharmonicity, meaning
that 9.4 × 10−4 meV/K is the quartic contribution to EBa.

While we cannot directly compare the Bubble contribution
of the “SCP+Bubble” (SCPB) calculation (see Appendix D)
to the cubic contribution using this GVDOS rescaling method,
we note that −1.3 × 10−4 meV/K has the correct sign for the
cubic component [43].

APPENDIX F: INELASTIC NEUTRON SCATTERING
ENERGY SCANS

Figure 12 uses the experiment performed on the cold-
neutron time-of-flight spectrometer IN5@ILL to map the
phonon spectra in a wide range of energy and momentum
at 530 [(a),(b)], 300 [(c),(d)], and 150 K [(e),(f)]. (Further
experimental conditions and data integration parameters are
detailed in Appendix A.) Figures 12(a), 12(c), and 12(e) fol-
low the transverse polarization centered around the intense
(006) Bragg peak in which phonons propagate along [110]
and are polarized along [001]. Figures 12(b), 12(d), and 12(f)
display the longitudinal polarization, again centered around
the (006) Bragg peak, in which phonons propagate along
[001].

FIG. 12. Two-dimensional inelastic neutron scattering intensity
reported as function of the energy transfer and along the [110] [(a),
(c), (e)] and [001] [(b), (d), (f)] directions in Ba7.81Ge40.67Au5.33,
recorded on IN5@ILL. The data have been taken at three tem-
peratures: 530 K [(a), (b)], 300 K [(c), (d)], and 150 K [(e), (f)].
Measurements were centered at the zone center �006 (Q = 3.5 Å−1),
from which the acoustic phonon polarization is longitudinal when the
propagation direction is [001] [panels (b), (d), (f)], and transversely
polarized [001] when the propagation direction is [110] [panels (a),
(c), (e)]. The Brillouin zones are indicated with vertical solid white
lines.

Figures 13–15 depict the energy scans taken on IN5@ILL
(λ = 3.2 Å) around the Bragg peak (006) at 523 K, 300 K, and
150 K respectively. (Experimental conditions and analytical
tools also discussed in Appendix A.) These energy scans are
like the one-dimensional cuts of the mappings in Fig. 12, and
they were used to construct Fig. 3(a). Figures 13(a), 14(a),
and 15(a) follow the transverse acoustic phonon dispersion
polarized along [001], propagating along [110]. Figures 13(b),
14(b), and 15(b) follow the longitudinal acoustic phonon dis-
persion polarized along [001], propagating along [001].

Similarly for Fig. 3(b), Figs. 16–18 depict the energy scans
taken on IN5@ILL (λ = 3.2 Å) around the Bragg peak (222)
at 523 K, 300 K, and 150 K, respectively. Figures 16(a),
17(a), and 18(a) follow the transverse acoustic phonon dis-
persion polarized along [111], propagating along [112].
Figures 16(b), 17(b), and 18(b) follow the longitudinal acous-
tic phonon dispersion polarized along [111], propagating
along [111]. Phonons were fitted as Gaussian peaks with a flat
background.
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FIG. 13. Energy scans taken on IN5@ILL near the (006) Bragg peak with λ = 3.2 Å at 530 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and their fit as a solid red line.
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FIG. 14. Energy scans taken on IN5@ILL near the (006) Bragg peak with λ = 3.2 Å at 300 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and their fit as a solid red line.
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FIG. 15. Energy scans taken on IN5@ILL near the (006) Bragg peak with λ = 3.2 Å at 150 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and the fit as a solid red line.
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FIG. 16. Energy scans taken on IN5@ILL near the (222) Bragg peak with λ = 3.2 Å at 530 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and their fit as a solid red line.
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FIG. 17. Energy scans taken on IN5@ILL near the (222) Bragg peak with λ = 3.2 Å at 300 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and their fit as a solid red line.
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FIG. 18. Energy scans taken on IN5@ILL near the (222) Bragg peak with λ = 3.2 Å at 150 K. Plots reflect a normalized intensity scale,
with data points as empty black circles, and the fit as a solid red line.
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This article has provided a first analysis of the full lattice dynamics study of a five-element
random solid solution. As these are the first results of this kind, I have taken the time to
methodically compare the evolution of chemical disorder from the single element Ni, to the
random binary alloys NiFe and NiCo, and finally the fully disordered, random solid solution high-
entropy alloy (HEA) FeCoCrMnNi itself through experimentally-measured phonon dispersions,
intrinsic linewidths, and the generalized vibrational density of states (GVDOS).

Along with elemental and binary alloy comparisons, this article acts as a critical review of
sorts, with comparisons made across other complex metallic alloys (CMAs) and glasses, and, in
particular metallic glasses which are the forerunner to HEAs. Besides the technical relevance
that this presents, which will be discussed in the following paragraph, it also serves as a call
to these research communities, signaling a pattern that is detailed in this article and that links
these different complex and disordered systems.

There is a visible change in regime in the energy dependence of the intrinsic phonon linewidths
in FeCoCrMnNi that hints at a change in the way phonons interact with the disorder on local
and long-range atomic scales. This change in regime has been evidenced in clathrates [27] (see
also Fig. 3.17 in this thesis), quasicrystals [122, 207, 208, 258], and glasses [259–262]. For glasses,
the change in regime has been widely accepted as linked to the Boson peak, and to the moment
that the phonons go from propagative to diffusive. For clathrates and quasicrystals, it is more
associated to the onset of low-lying optical branches that interact with or otherwise interrupt
the pure acoustic regime. Moreover, in all of these systems, the energy of the crossover is
correlated to the energy in the density of states at which we depart from the Debye regime.
Even if the reasoning is different, the general conclusion between these studies and the one now
of FeCoCrMnNi is that this regime crossover takes place at the wavelength in which the acoustic
phonon becomes sensitive to the local disorder or complexity of each system.

By publishing this work, I acknowledge this pattern, pointing out that this feature should
be checked for in other similarly disordered and complex systems. These kinds of global sim-
ilarities between types of disordered and complex systems will help lead us towards a unified
understanding of their heat transport mechanisms.

Contributions of the Ph.D Candidate:
I played a central role in preparing and conducting the X-ray and neutron experiments on

1T@LLB, 3T2@LLB, IN5@ILL, IN6-SHARP@ILL, and ID28@ESRF. I then made the full data
analysis and wrote the paper.

Perspectives/Further work that can be done:
HEAs provide us with a wide range of elemental combinations that can each emphasize or

reduce certain forms of complexity. Future work should include similar lattice dynamics studies
on a series of HEAs to target different types of chemical short-range ordering, atomic size and
mass differences, and force constant fluctuations. Like clathrates, HEAs should each be viewed as
case studies with which we can build up a large database of in order to draw broader conclusions.
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A further advantage in favor of HEA case studies is the fact that intrinsic phonon linewidths
were measured by Inelastic X-ray Scattering, which is a much more accessible measurement than
Neutron Resonance Spin Echo which was needed for the clathrate Ba7.81Ge40.67Au5.33 linewidths.

Again in comparison with type-I clathrates, which all form simple cubic structures, HEAs
can form three possible lattices: BCC, FCC, and HCP. Therefore, another possible avenue of
interest would be to complete similar lattice dynamics studies for BCC and HCP HEAs: not
only are these structures generally formed with atoms of stronger size and mass contrast, but
they are also characterized by different interatomic distances, therefore changing the possible
lattice distortions in comparison to those of the FCC structure. A first-principles study has
already been published on phonon broadening found in four and five element BCC HEAs [263].
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High-Entropy Alloys (HEAs) are a new family of crystalline metallic alloys which are currently
at the forefront of materials research for their exceptional mechanical properties. They are random
solid solutions containing four or more elements in a simple cubic or hexagonal cell. Despite the
simplicity of the structure, the inherently strong chemical disorder is believed to deeply affect the
physical properties of the material, and, more specifically, to strongly scatter acoustic phonons,
which are responsible for the thermal properties. Similar properties have also been reported in
glasses and some complex metallic alloys, where phonon dynamics are dominated by the topological
disorder and the structural complexity, respectively. As such, HEAs offer a unique opportunity to
shed light on the effect of disorder and increasing complexity on vibrational properties, bridging the
gap between glasses and complex crystalline materials.

Here we present the first experimental investigation of the lattice dynamics in the HEA
Fe20Co20Cr20Mn20Ni20 using inelastic neutron and X-ray scattering. Despite the strong chemi-
cal disorder, well-defined acoustic phonons are found to propagate across the whole Brillouin zone,
with dispersions very similar to the ones of the simple elements composing this HEA. Still, force-
constant fluctuations are found to play a major role in determining phonon linewidths by causing
an increased broadening at the unit cell lengthscale, as predicted by recent theoretical models,. The
global dynamics are found to be very different from both glasses and complex metallic alloys, in
which acoustic phonons can propagate only in a limited (q, ~ω) space. Still, a similar strong phonon
scattering regime is found in some directions and polarizations, which can be ascribed to the force-
constant fluctuations, and which arises simultaneously with the deviation of the acoustic dynamics
from the Debye prediction.

I. INTRODUCTION

In recent years, a new family of crystalline metallic
materials has been discovered and has come to the fore-
front of materials research for their exceptional mechan-
ical properties: High-Entropy Alloys (HEAs), credited
to both Yeh et al. [1] and Cantor et al. [2], who simul-
taneously published in 2004. These materials, obtained
with casting techniques from the melt, are characterized
by improved mechanical strength, high resistance to cor-
rosion, magnetic properties, high-temperature capabili-
ties, and many other unique characteristics [3–6], which
are believed to be the result of the high entropy mix-
ing of many elements. Indeed, HEAs are single-phase,
equiatomic alloys with four or more elements that are
evenly dispersed in an ordered, close-packed, and sim-
ple crystalline structure, forming a random solid solu-
tion [7, 8]. Despite their long range ordered and sim-
ple structure, HEAs exhibit thermal conductivities much
lower than in simple metals, going from some tens of
W/mK [9] down to less than 2 W/mK, corresponding to

a lattice contribution of less than 1 W/mK [10], which
is comparable to non-crystalline materials. Moreover, a
non-monotonic temperature dependence of this latter has
often been reported [9–11], indicating the presence of dif-
ferent mechanisms at play that rule thermal transport
in these materials. Interestingly, an almost temperature
independent thermal conductivity close to room temper-
ature has been recently reported in Ni2CuCrFeAlx [12].

Similar mechanical and thermal properties have pre-
viously been found in two other similar, yet intrinsically
different, families, namely, metallic glasses (MGs) and
complex metallic alloys (CMAs), the former character-
ized by a disordered atomic structure with strong short
range order [13–16] and the latter by a large unit cell
(10 Å or larger) containing a large number of atoms or-
ganized in local (sub)nanostructures and frequently as-
sociated with intrinsic disorder [17–19]. Indeed, both
glasses [20] and many CMAs [19, 21–26] exhibit a low
and weakly temperature dependent lattice thermal con-
ductivity, along with the emergence of a low temperature
plateau. Still, such similar thermal properties have been
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ascribed to very different mechanisms: a strong phonon
scattering due to the presence of elastic heterogeneities
at the nanoscale in glasses [27, 28], and the modification
of the acoustic phonon spectrum due to the presence of
a large number of optic modes in CMAs [29–34].

The question then arises on the position of HEAs in
this context: characterized by a long range order on a
very simple FCC, BCC, or HCP unit cell, they should
in principle belong to the CMAs family, although their
lattice parameter is only a few Å. Still, as random solid
solutions, they present a strong local chemical disorder,
which introduces disorder at a larger lengthscale, disrupt-
ing the translational invariance, and drawing them closer
to glassy materials. The question is then whether they
can be associated to one of these families or whether they
represent a new family of materials whose complexity is
at the frontier somewhere between them.

The aim of this paper is to answer this question by
thoroughly investigating the phonon dynamics in a pro-
totype HEA, and comparing its vibrational properties to
the ones which have been dubbed as responsible for sim-
ilar thermal behavior in glasses and CMAs. As such,
unveiling the effect of the strong chemical disorder on
phonons in HEAs carries the promise of bridging the
gap between complex metallic alloys and fully disordered
glasses, disentangling the effect of three different kinds of
disorder present in random crystalline alloys and which
are responsible for phonon scattering: i) atomic mass, ii)
atomic size, whose differences induce strain in the lat-
tice, and iii) force constants. Even if the effect of atomic
mass difference has been largely investigated in binary
alloys both experimentally and theoretically [35–37], the
effect of force-constant fluctuations, although already ev-
idenced experimentally in a few binary alloys [38, 39], has
been more challenging to calculate [39] and has only re-
cently been explored both theoretically and experimen-
tally in ternary alloys [40, 41]. In this context, HEAs
offer a unique playground for tuning the relative weight
of these different features thanks to the possibility of cus-
tomizing their composition [41, 42].

Here we provide the first experimental investigation
of phonon dynamics in an HEA, made possible by the
recent and successful synthesis of large single-grain crys-
tals for the HEA of composition Fe20Co20Cr20Mn20Ni20
(from now on FeCoCrMnNi) [43]. Built from 5 direct-
neighbor elements in the periodic table, FeCoCrMnNi ex-
hibits large differences in neither atomic mass nor atomic
size [44]. As we will show, this HEA presents simple
phonon dynamics which closely matches those of binary
alloys and simple elements that make up its composi-
tion. However, while its dispersions are close to those
of the single elements, HEA lifetimes are much shorter,
and can be understood in terms of scattering from force-
constant fluctuations, as predicted by recent theoreti-
cal developments [41]. Even if our HEA shares a main
source of scattering with glasses at a lengthscale of a few
tens of Angstroms, the phonons remain well defined and
propagate over the entire Brillouin zone, loosing their

propagative character only at a lengthscale comparable
with the nearest neighbors distance. As opposed to both
glasses and CMAs, the present HEA actually keeps a
large propagative acoustic phase space up to energies of
∼20-30 meV and wavevectors larger than 1 Å−1.

II. SAMPLE CHARACTERIZATION

FeCoCrMnNi is known as the Cantor-Wu HEA, as it
was Cantor et al. [2] that detailed FeCoCrMnNi as a
single-phase, multi-component alloy of FCC structure.
The results in this paper come from the use of both poly-
crystalline and single crystal samples of FeCoCrMnNi,
prepared following the procedure detailed in Appendix A
of the Supplementary Material [45].

The samples were then investigated by Scanning
Electron Microscopy (SEM) using a JEOL 840 mi-
croscope, equipped with an EDAX Energy-Dispersive
X-ray (EDX) system, as seen in Appendix A of
the Supplementary Material [45]. The homogenized
polycrystalline samples had an overall composition of
Fe19.89Co20.97Cr17.82Mn19.54Ni21.78 at.% with a homoge-
neous matrix. Small Cr-rich precipitates of about 1 µm in
diameter were found with a volume fraction far below 1%.
The overall composition of the Bridgman single crystal
was determined to be Fe20.00Co19.64Cr20.33Mn20.10Ni19.94
at.%. Optical microscopy of etched surfaces shows the
presence of a dendritic structure on a 100 µm scale, which
may be due to slight composition fluctuations. The sin-
gle crystalline state and the primary orientation of the
Bridgman crystal was determined using a Philips Mi-
cro X-ray Laue apparatus in back-reflection geometry.
The produced crystal consisted of one dominant single
grain with a volume of about 6 to 7 cm3, and a number
of minor secondary grains, which were cut off by spark
erosion before further preparation. Oriented single crys-
talline samples were cut from the dominant single grain
by spark erosion.

The FCC structure and space group of the polycrys-
talline sample were also confirmed by neutron diffraction
at the Laboratoire Léon Brillouin (LLB). The thermal-
neutron two-axis powder diffractometer 3T-2@LLB with
an incident wavelength λ = 1.225 Å was used to measure
the polycrystalline sample at 300 K. The diffraction pat-
tern is shown in Fig. 1. All available Bragg peaks can
be indexed to an FCC structure within the Fm3m space
group using a pattern matching fit, and the lattice pa-
rameter was found to be 3.595(1) Å, confirming that our
FeCoCrMnNi is a single phase material with no phase
separation.

Possible short range ordering and strain distribution
were investigated by X-ray diffuse scattering at the ID28
beamline of the European Synchrotron Radiation Facility
(ESRF). The observed intensity distribution around the
Bragg peaks corresponds to the sum of the temperature-
dependent thermal diffuse scattering and Huang scatter-
ing, the latter of which is not expected to show a strong
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FIG. 1. ”Color” Neutron diffraction pattern of the polycrys-
talline sample of FeCoCrMnNi used for neutron experiments,
measured at 3T-2@LLB with an incident neutron wavelength
of 1.225 Å at 300 K. All peaks have been indexed to an FCC
structure, space group Fm3̄m. The pattern matching fit is re-
ported as a solid red line. The inset is a visual interpretation
of the FeCoCrMnNi FCC structure (made with VESTA [46])
in which each of the 5 elements has equal chance of occupying
each atomic position, creating a random solid solution.

temperature dependence. The Huang scattering contri-
bution reflects the strain associated with the atomic size
spread in the sample. More details are reported in Ap-
pendix A of the Supplementary Material [45]. In a pre-
liminary neutron diffuse scattering experiment at the D7
beamline of ILL, we could observe weak signatures of
a possible short range ordering on a 10 Å lengthscale.
However, this result needs to be confirmed by further
studies [47].

III. METHODS

We investigated the phonon dynamics by means of in-
elastic X-ray and neutron scattering (IXS,INS) on both
polycrystalline and single crystalline samples. The Gen-
eralized Vibrational Density of States (GVDOS) was
measured using the cold-neutron Time-of-Flight (TOF)
technique at the Institut Laue-Langevin (ILL). The mea-
surements on the polycrystalline sample were performed
on the IN6-SHARP beamline at 100, 200 and 300 K. The
neutron incident wavelength was λ = 5.1 Å, resulting in
a Q range of 0-2.1 Å−1 at S(Q, E = 0).

The measurements on the single crystal, on the other
hand, were performed on the IN5 beamline at 300 K. The
crystal was aligned in the scattering plane ([100]; [010]),
allowing wavevectors of Q = 2π

a (ζ, ξ, 0). The neutron

incident wavelength was λ = 3.2 Å, resulting in a Q range
of 0-3.6 Å−1 at S(Q, E = 0), and encompassing the first
Bragg peak visible in the given scattering plane, (200).
Details on the TOF data integration and treatment for
the resulting GVDOS plots can be found in Appendix B
of the Supplementary Material [45].

The individual phonon dispersions were measured on
two different single crystals, one for INS and one for IXS.

The INS sample, a cylinder rod 10 cm long and 2 cm
wide, was aligned in the scattering plane ([100]; [010]),
and measurements were taken on the thermal-neutron
Triple-Axis Spectrometer (TAS) 1T-1 at LLB at 3, 100,
and 300 K, with a fixed kf = 2.662 Å−1 near the intense
Bragg peaks (020) and (220). The standard cryostat en-
vironment was used for all temperature measurements.
The IXS sample, a ∼ 100µm length needle chemically
etched from the INS one, was aligned in the ([001]; [110])
scattering plane for measurements taken on the ID28
beamline at ESRF at 15, 100, and 300 K with the help
of a displex closed cycle cryocooler. The [999] reflection
of the silicon monochromator was used, resulting in an
incoming X-ray wavelength of 0.697 Å and an energy
resolution of 2.8 meV. More information about the ex-
periment specifics can be found in Appendix B of the
Supplementary Material [45].

IV. GENERALIZED VIBRATIONAL DENSITY
OF STATES

In order to first have a global view of the phonon be-
havior in FeCoCrMnNi, we have measured its GVDOS
using both the polycrystalline and single crystalline sam-
ples. In Fig. 2(a), we report the GVDOS, which is nor-
malized by the Bose-Einstein temperature dependence,
of the polycrystalline sample as measured at 100, 200,
and 300 K. The most striking feature here is the lack of
a clear acoustic regime at low energy: rather than the
usual Debye-like (~ω)2 behavior, we observe a purely lin-
ear dependence up to about 12 meV. Moreover, the sig-
nal in this energy range does not follow the Bose-Einstein
dependence on temperature, increasing in intensity with
decreasing temperature, and we observe the appearance
of a small additional peak at 14 meV at 100 K.

This behavior is in fact due to a dominant magnetic
scattering signal also detected in the neutron TOF exper-
iment when measuring at low Q. Indeed, FeCoCrMnNi
is known to be magnetic and to exhibit a magnetic tran-
sition at low temperature [49–55]. A full interpretation
of magnetism in FeCoCrMnNi is outside the scope of this
article. Still, it may be expected that magnetic fluctua-
tions can also play a role in enhancing phonon scattering
in this HEA, as recently pointed out within the commu-
nity [42, 56].

In order to avoid the magnetic contamination, the mea-
surements were performed with a smaller neutron wave-
length on a single-grain crystal at room temperature.
Here, as specified in Section III, the data collection en-
compasses a larger Q range (up to 3.6 Å−1 as opposed to
2.1 Å−1 for the polycrystalline sample), minimizing the
relative weight of the low Q magnetic scattering in the
average. As shown in Fig. 2(b), the result is that we now
recapture a squared dependence of the acoustic region
between 0-12 meV, confirming the Debye-like behavior
of acoustic phonons in this HEA, and in agreement with
previous calculations on random alloys [57]. This GV-
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FIG. 2. ”Color” Generalized Vibrational Density of States
(GVDOS) of single-crystal and polycrystalline samples of the
HEA FeCoCrMnNi. (a) GVDOS measured on the polycrys-
talline sample at IN6-SHARP@ILL with an incident neutron
wavelength λ = 5.1 Å at three temperatures. (b) GVDOS
measured on the single crystalline sample on IN5@ILL with
a neutron wavelength λ = 3.2 Å, compared to that of the sin-
gle element Ni [48] and the binary alloy NiFe [48]. Insets re-
port the linear and squared dependencies (fits in black dashed
lines) of FeCoCrMnNi in (a) and (b) at 300 K, respectively.

DOS compares very well to those of Ni and NiFe [48],
also reported in the figure.

This progression from a single element, to a binary
alloy, to an HEA has similarly been analyzed for other
binary alloys of the same elements [48, 58–60] and the
HEA FeCoCrNi [55, 61] in Appendix D of the Supple-
mentary Material [45]: the GVDOS of these two HEAs
appear to most closely match that of Ni. This can be ex-
plained by the fact that the neutron coherent scattering
cross section of Ni and Fe are very similar to each other
and almost 5 times the ones of Cr and Mn, and 10 times
the one of Co.

V. INDIVIDUAL ACOUSTIC PHONON
PROPERTIES

In an effort to further understand the acoustic regime
of FeCoCrMnNi, the longitudinal and transverse acoustic
(LA,TA) phonon dispersions in two high symmetry direc-
tions at 300 K have been measured. In Fig. 3, we report
some selected spectra of four measured polarizations,
specifically the TA mode propagating along [100], polar-
ized along [010] (TA010

100
), and the TA mode propagating

along [110], polarized along [110] (TA110
110

) (Fig. 3(a,b)),
as measured by INS and the LA mode propagating along
the [001] direction (LA001) and the TA mode propagating
along [001], polarized along [110] (TA110

001
) (Fig. 3(c,d)),

as measured by IXS. The measurements were performed
around the intense (002) and (220) Bragg peaks. We
remind the reader here that, given the cubic symmetry,

TA110
001

and TA010
100

correspond to the same propagation
direction but different polarizations. Additional scans
of each of these four polarizations, and those of the LA
mode propagating along the [110] direction (LA110) and
the TA mode propagating along [110], polarized along
[001] (TA001

110), can be found in Appendix E of the Sup-
plementary Material [45].

Surprisingly for a system with such a strong chemi-
cal disorder, a well-defined phonon peak (i.e. Γ � ~ω)
is seen propagating in all polarizations until 25-30 meV,
at the Brillouin zone boundary. In the INS scans, the
phonon disperses on top of a broad, textured band in
energy, which is roughly constant at all q within a given
direction, as evidenced by overlaying all scans (see Fig. S8
in the Supplementary Material [45]), but appears to have
slightly different texture and shape in each direction
while still exhibiting two major features centered at 20
and 30 meV, as seen in Fig. 3(a.ii) and (b.iii), for exam-
ple.

We have assigned this to incoherent neutron scattering,
which, as a first approximation, leads to a signal propor-
tional to the density of states multiplied by the square of
the energy. Using a simple elemental neutron scattering
cross-section calculation for FeCoCrMnNi, including the
Laue contribution due to the random atomic distribu-
tion, the incoherent signal is expected to be ∼2.3 times
the coherent one. Further evidence lies in the fact that
the textured band has completely disappeared in the IXS
measurements, where the X-ray incoherent contribution,
which is related to the different atomic scattering fac-
tors of the elements, is negligible, thanks to the similar
atomic numbers found in FeCoCrMnNi. A more detailed
comparison between the expected incoherent signal for
both probes and the experimental spectra is reported in
Appendix B of the Supplementary Material [45].

The temperature dependencies of the observed inelas-
tic excitations are reported in Fig. 4, after normalization
by the expected Bose-Einstein temperature dependence.
It can be seen that, in the INS experiment between 3
and 300 K, both acoustic phonons and the broad band
respect the Bose-Einstein dependence and show no evolu-
tion in their energy position and shape with temperature,
within our instrumental resolution. Concerning the IXS
data measured between 15 and 300 K, the difficulties in
the sample alignment at each temperature do not allow
us to quantitatively compare the intensities at different
temperatures. Still, we can confirm the independence
of the phonons’ energy positions and shape within our
instrumental resolution.

Next, we have fit the data to extract phonon energies,
normalized intensity, and linewidths. For this, we have
modeled the coherent inelastic signal using a damped
harmonic oscillator (DHO) convoluted with the instru-
mental resolution. More details on the calculation and
deconvolution of the latter in the neutrons and X-ray
experiments are reported in Appendices B.2 and B.3 of
the Supplementary Material [45]. First, we can confirm
the acoustic nature of the observed phonon mode, as it
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FIG. 3. ”Color” Longitudinal and transverse acoustic (LA,TA) phonon energy scans measured at 300 K. (a) The TA dispersion
propagating along [100], polarized along [010], and (b) the TA dispersion propagating along [110], polarized along [110]. (c)
The LA dispersion propagating along [001], and (d) the TA dispersion propagating along [001], polarized along [110]. Subplots
in (a,b) have been measured by inelastic neutron scattering (INS), and those in (c,d) have been measured by inelastic X-ray
scattering (IXS). All phonon modes were fit as damped harmonic oscillators (solid red lines). IXS scans represent different
detectors on the instrument ID28@ESRF, and intensities have not been scaled for efficiencies between detectors. (This is
also the reason some subplots have small [ζζ0] components.) The phonon wavevector has been matched across the different
polarizations as best as possible.

keeps a constant normalized intensity over almost all of
the Brillouin zone (more details in Appendix C of the
Supplementary Material [45]). The LA and TA disper-
sions for the [00ζ] and [ζζ0] directions at different tem-
peratures are reported in Fig. 5. We report the sound
velocities extracted from our acoustic dispersions at low
q in Table I, which are in good agreement with the ones
calculated from the experimentally measured elastic con-

stants reported in literature on the same material [64].

Also reported in Fig. 5 are the literature dispersions
of pure Ni [62] and the random binary alloy NiFe [63].
The three materials appear to have similar acoustic
dispersions in each direction. We have also verified
the global agreement with the acoustic dispersions of
Fe [65], Cr [66–68], Ni [62, 69], and binary alloys Fe-
Ni [41, 63, 70, 71], Fe-Mn [72], Fe-Co [73], and Co-
Ni [41, 74], not reported here. This can be understood in
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FIG. 5. ”Color” The energies of the longitudinal and trans-
verse acoustic phonons of FeCoCrMnNi measured in the high
symmetry directions [00ζ] and [ζζ0] seen in Fig. 3 have been
fit (details in Appendix B of the Supplementary Material [45])
and plotted at three temperatures against those of the single
element Ni [62] and equimolar NiFe [63] measured at 300 K.

terms of the similarity of the force constants of the com-
ponent elements, as pointed out by Körmann et al. [75].

We now turn our attention to the phonon linewidth,
ΓFWHM, which is directly related to phonon lifetime, τ =
2~/ΓFWHM, and thus to the phonon mean free path l =
vτ . Unfortunately, we could reliably extract it only from

TABLE I. ”Color” The LA001, degenerate branches TA110
001

and TA010
100

, LA110, TA001
110, and TA110

110
mode sound velocities

of FeCoCrMnNi are given in the table below. In the [ζζ0] di-
rection, TA1 refers to the TA001

110 branch, and TA2 to the TA110
110

mode. They are compared to the sound velocities calculated
using the experimentally measured single-crystal elastic con-
stants from Wu et al. [64], marked by *. Velocities are written
in km/s.

[00ζ] [ζζ0]

LA 4.7(1) 5.7(1)

5.034* 5.834*

TA1 3.8(2) 3.8(2)

3.681* 3.681*

TA2 3.8(2) 2.3(2)

3.681* 2.181*
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FIG. 6. ”Color” Intrinsic phonon linewidths of FeCoCrMnNi,
measured by inelastic X-ray scattering at 300 K for (a) LA001,
(b) TA110

001
, (c) LA110, and (d) TA001

100. Experimental data
on binary NiFe together with SPU calculations predictions
for NiFe and NiFeCo linewidths after Mu et al. [41] are
also reported. (SPU calculations were not made for the Fe-
CoCrMnNi polarization shown in (d).)

X-ray inelastic scattering data, due to the presence of the
strong incoherent scattering in the neutron data and its
entanglement with the acoustic phonon, which made the
fitting procedure challenging in that case. Details on its
extraction in IXS experiments are given in Appendix B.3
of the Supplementary Material [45].

In Fig. 6 we report the phonon linewidths at 300 K
of the LA001 and TA110

001
polarizations in the [ζ00] direc-
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tion (panels a and b), and of LA110 and TA001
110 polariza-

tions in the [ζζ0] direction, (panels c and d). Interest-
ingly, the q dependence of phonon broadening appears to
be anisotropic and polarization-dependent: longitudinal
modes exhibit several regimes, while transverse modes
have a smoother dependence with a monotonic increase.
In more detail, for LA001 we observe a steep increase at
low q, followed by a weaker dependence going into a max-
imum for q ∼ 0.6 r.l.u. For LA110, a plateau at low q then
leads into an increase in the second half of the Brillouin
zone.

VI. DISCUSSION

A. Origin of phonon linewidth in FeCoCrMnNi

The first question to address is about the origin of
the observed phonon broadening. We can immediately
rule out a dominant role of anharmonicity, as well as
scattering from magnetic fluctuations. Indeed, we could
not observe any sizable temperature dependence in either
phonon position and/or shape between our 300 and 15 K
measurements, temperatures which are respectively well
above and below the magnetic transition reported at 25 K
for our HEA [49–51]. The observed broadening should
therefore be related to the other disorder-induced scat-
tering sources associated with the random alloy nature
of our HEA. As such, the enhancement of phonon broad-
ening with respect to the simple-element monatomic ma-
terials is expected to reflect the role of disorder.

Unfortunately, there is very little literature available
on intrinsic phonon linewidths in the simple elements
constituting our FeCoCrMnNi. In the case of Cr [76],
measured by IXS with the same energy resolution as our
study, the broadening remained resolution limited. It is
therefore clear that the disorder intrinsic to HEAs does
increase phonon broadening, which now lies within the
experimental resolution.

It is interesting to note however that, despite the large
number of elements in our HEA, the phonon linewidths
are very similar to the ones reported in random binary
alloys of the same elements, such as FeCo and FeNi, the
latter of which is also reported in Fig. 6 [41].

The difficulty of modeling phonon linewidth in ran-
dom alloys comes from the complexity of taking into ac-
count the quoted three ingredients, i.e. local strain due
to the different atomic sizes, mass fluctuations, and force-
constant fluctuations. A simple analytical model, which
has been successfully used in mass disorder alloys [77], as-
sumes phonon scattering from isolated defects and leads
to the expression ΓFWHM = π/2(~ω)2g(~ω)〈ε2〉, where
g(~ω) is the GVDOS and ε represents the sum of mass,
force-constant, and atomic size fluctuations contribu-
tions [78]. Using this model, we find that the expected
broadening from mass fluctuations in our HEA is neg-
ligibly small, accounting for a broadening of at most
0.2 meV. Ascribing the whole observed linewidth to force-
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FIG. 7. ”Color” Intrinsic phonon linewidths, measured by
inelastic X-ray scattering at three temperatures for (a) LA001,
(b) TA110

001
, (c) LA110, and (d) TA001

100, reported as a function of
energy and compared with a perturbation theory calculation
of the broadening, based on calculated mass fluctuations and
estimated force-constant fluctuations.

constant fluctuations, we find that the global behavior
is reproduced quite well along the [ζ00] direction using
an average force-constant fluctuation ε = 〈∆Fij/Fij〉 ∼
20%. Still, as can be appreciated in Fig. 7, this is not so
along the [ζζ0] direction. The observed anisotropy then
calls for more complex models.

We therefore turn to the very recent advancement
in the theoretical treatment of phonons in random al-
loys by Mu et al. [41]. Using the ab initio supercell
phonon-unfolding (SPU) simulations method, the au-
thors demonstrate that, in weak mass disorder alloys
such as FeNi, FeCo, and FeNiCo, which are made out
of the same constituents of our FeCoCrMnNi, the force-
constant fluctuations play a determining role, being en-
hanced by the random environment of the atomic pairs.
This leads to a significant phonon broadening on the or-
der of 1-2 meV and mainly above q = 0.7 r.l.u, as ob-
served both in IXS experiments and calculations, which
are also reported in Fig. 6. Unfortunately they did not
calculate the same polarization for the transverse mode
along the [ζζ0] direction as we have measured, limiting
a direct comparison. The behavior looks similar in these
materials and our HEA, with different regimes in lon-
gitudinal broadening, including the presence of a maxi-
mum, and a smoother behavior in transverse broadening.
One should note however that the long-wavelength low-q
part of the spectrum could not be reliably reproduced
by the simulation, due to the rather small supercell of
only 64 atoms that was used for the DFT calculations.
Interestingly, the force-constant fluctuations per atomic
pair found from the simulation is between 20 and 50%,
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in nice agreement with our simplistic estimation for Fe-
CoCrMnNi.

As expected, the more advanced theoretical modeling
of Mu et al. [41] presents an anisotropy as well, specif-

ically between TA110
001

and TA110
110. This confirms that it

is intrinsic to the random alloys, and cannot be fully as-
cribed to the presence of a local chemical short range
order (SRO). Other contributions play a role, such as an
anisotropic strain distribution. Finally, we note that, at
high energy, theoretical models [41, 77] predict a signif-
icant phonon lineshape anisotropy with low-energy tails
due to the presence of a continuum of optical excitations
because of the different masses and force constants in-
volved. Within our experimental resolution, we could not
observe any anisotropy, and could reproduce the spectral
shape with a single DHO excitation quite well, even at
high energy. This indicates that phonons remain well-
defined in our HEA and that the effect of mass and force-
constant fluctuations can be treated using perturbative
approaches.

B. Phonon linewidth and mean free path in
FeCoCrMnNi vs glasses and CMAs

We now focus on the energy dependence of phonon
linewidth along the [ζ00] propagation direction, where
we have observed a crossover from a strong to a weak de-
pendence in the longitudinal polarization. In order to an-
alyze this latter in more detail, we report these data as a
function of energy in logarithmic scale in Fig. 8. The first
two broadening regimes in LA001 appear as clear power
laws: at smaller energies the strong dependence is com-
patible with a power law such as ΓFWHM ∼ (~ω)4.5±1,
and is followed until ∼18 meV, at which point there
is a sudden break to a weaker dependence, fit with
(~ω)1.7±0.2.

The crossover from a steep to a weaker energy depen-
dence in the LA001 phonon broadening reminds us of the
(~ω)4− to−(~ω)2 crossover in glasses, typically observed
at lengthscales of a few tens of Angstroms, and which
has been associated to the breakdown of the propagative
nature of the phonon [27, 79–82].

The origin of the (~ω)4 regime in glasses has long been
debated [83–86], and has lately been ascribed to the pres-
ence of a distribution of force-constants at a nanomet-
ric lengthscale, due to the disordered atomic arrange-
ment (the elastic heterogeneities at the nanoscale men-
tioned in the introduction) [27, 79–82, 87–90]. Inter-
estingly, the same phenomenology arises in random ma-
trix approaches, which model the vibrational properties
of a glass through a random network of force-constants
over a regular lattice, quite similarly to the case of our
HEA [85, 86]. This regime is usually found at energies
corresponding to the deviation of the GVDOS from the
Debye behavior and ending at the Boson Peak.

In Fig. 8(a) we display the GVDOS divided by en-
ergy squared, superposed to the attenuation’s logarith-
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FIG. 8. ”Color” Intrinsic phonon linewidths, measured by
inelastic X-ray scattering. Subplots (a,b) show linewidths
measured at three temperatures. For the sake of clarity,
in (a) we report only the first two broadening regimes, up
to 30 meV, for the longitudinal mode, together with (~ω)4.5

and (~ω)1.7 lines (black dashed lines) as a guide to the eye.
The FeCoCrMnNi generalized vibrational density of states
(GVDOS) originally shown in Fig. 2(b), divided by energy
squared and scaled, is plotted in gray in (a) for reference.
Subplots (c,d) are mean free paths (MFPs), calculated from
the intrinsic linewidths at 300 K. Below ∼10 meV the phonon
linewidth could not be resolved with our experimental reso-
lution. This allows us only to estimate an upper limit for
intrinsic linewidth, i.e. a lower limit for lifetime and MFP.
The shaded areas in the figure indicate the region in which,
on this basis, the real MFP lies.

mic dependence: we clearly see that the strong scatter-
ing regime corresponds to the deviation of the GVDOS
from the Debye behavior, and the second regime settles
in when the reduced GVDOS reaches its maximum, very
similarly to glasses, although the corresponding length-
scale is slightly shorter (10 Å in our HEA, as opposed to
∼20-30 Å in glasses). However, a fundamental difference
appears: this crossover usually corresponds to the reach-
ing of the Ioffe-Regel limit (IR) in glasses, identified by
the condition that the phonon mean free path becomes
comparable to the phonon wavelength, l ∼ λ, such that
phonons with smaller wavelengths cannot be considered
as propagative anymore [91]. This is not the case for
FeCoCrMnNi, as can be seen in Fig. 8(c,d), where we
report the longitudinal and transverse mean free paths
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as a function of phonon energy. Focusing on the longi-
tudinal polarization, we see that only for energies above
∼ 30 meV, where the phonon group velocity is still non
zero, is the mean free path comparable with the phonon
wavelength. The IR crossover in our HEA is thus located
at wavelengths on the order of magnitude of the unit cell
size, i.e. one order of magnitude smaller than in glasses.
It is interesting to note the IR crossover may be found at
much smaller lengthscales in metallic glasses as well. In-
deed, in MGs, acoustic modes are found to be persistent,
dispersing over the whole Brillouin zone and well above
the Boson peak [92–95]. Contradictory results have been
reported on the presence of the typical strong scattering
regime in this family of glasses [93, 96, 97]. Interestingly,
and quite similarly to the case of our HEA, the possible
sequence of regimes (~ω)4 − (~ω)2 − (~ω) has been re-
ported [94], with the two crossovers being located at the
Boson Peak position [94] and at the Ioffe-Regel energy,
respectively [93].

A similar strong scattering regime (ΓFWHM ∝ (~ω)4)
has been reported as well in some directions or polar-
izations in the case of some quasicrystals [98–103], and
in the periodic quasicrystal approximant o-Al13Co4 [30].
Phenomenological models and atomic scale simulations
have ascribed its presence to acoustic-optic hybridization,
mode mixing and/or atomic site disorder [30, 101, 102,
104, 105]. Interestingly, in both these CMAs and our
HEA, this regime arises at wavelengths of about 20-30 Å
and extends down to wavelengths of about 12-10 Å. It
is worth noticing that the quasicrystal cluster, the ap-
proximant’s unit cell, as well as our possible indication
for SRO in our HEA have the same order of magnitude,
i.e. about 12-10 Å. Even if this suggests a strong simi-
larity between HEAs and CMAs, a global view of their
dynamics establishes major differences.

First, it is important to underline that the presence
of a strong scattering regime is not characteristic of all
CMAs. Specifically, it is absent in clathrates, where the
lifetimes and mean free paths are also much longer than
in quasicrystals and approximants [33]. Still, all CMAs,
including clathrates, are characterized by the separa-
tion of the phonon spectrum in a reduced acoustic phase
space, which is typically limited to wavevectors smaller
than 0.3-0.5 Å−1 and energies smaller than 8-10 meV,
and a large phase space dominated by dispersionless op-
tic modes. The situation in our HEA is clearly differ-
ent: first, the continuum of dispersionless excitations is
not observed, and second, the acoustic regime extends
to much higher energies and wavevectors, up to 22 and
30 meV for TA and LA respectively, which is very near
the Brillouin zone boundary. Moreover, phonon attenu-
ation, while larger than in clathrates, is not as strong as
in quasicrystals and becomes comparable to these latter
only at much larger wavevectors, in the second half of
the Brillouin zone.

VII. CONCLUSIONS

In conclusion, we have reported the first ever investiga-
tion of the acoustic phonon dynamics in a High-Entropy
Alloy, complemented by the GVDOS survey, at room
and low temperature. FeCoCrMnNi is a 5-element ran-
dom alloy, and, despite the inherent disorder, we have
shown that its phonon dynamics closely resembles that
of the pure elements composing it and the correspond-
ing binary alloys, which is in agreement with the low
mass, atomic size, and force constant contrast existing
among the constituents of this HEA [75]. More specif-
ically, acoustic phonons disperse throughout the whole
Brillouin zone up to energies between 20 and 30 meV,
exhibiting an attenuation which, while stronger than in
simple elements, remains on the same order of magnitude
as in binary alloys. We have shown that the whole at-
tenuation behavior can then be understood in terms of
scattering from force-constant fluctuations, which have
been estimated to amount to ∼ 20% using a simple theo-
retical model, and which is in quite good agreement with
calculations of Mu and co-authors on binary and ternary
alloys made of the same elements.

The analysis of our results thus confirms that, while
they share similar mechanical and, in some cases, thermal
properties with glasses and CMAs, HEAs exhibit specific
phonon dynamics, with marked differences from the ones
of those systems: the acoustic regime is preserved across
the whole Brillouin zone, while in glasses and CMAs it is
reduced in a rather small (q, ~ω) range, except in metallic
glasses. Moreover, despite the strong chemical disorder,
phonon attenuation remains much smaller than in glasses
and quasicrystals, and more similar to that of simple bi-
nary alloys. Still, we have been able to draw a parallelism
with these materials on the basis of the presence in some
polarizations and directions of a strong phonon scattering
regime, ΓFWHM ∝ (~ω)4, which arises simultaneously to
the deviation of the acoustic dynamics from the Debye
behavior.

In order to further understand the effect of increasing
disorder in going from a perfect crystal to random al-
loys, to glasses, we may expect that increasing the force-
constant disorder would bring us a step closer to glasses.
This could be the case for BCC HEAs, which are made
from more dissimilar elements and for which attenuation
is therefore expected to be enhanced [75]. Understand-
ing the way phonon dynamics change along this path is
not only fundamentally interesting, but will also give us
the microscopic understanding necessary for engineering
defects and disorder into materials for thermal applica-
tions. This work is a step in this direction, allowing us
to identify the subsequent challenges.
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APPENDIX A: SAMPLE SYNTHESIS AND
CHARACTERIZATION

The sample material was produced using an
equiatomic composition of high-purity elements Fe, Co,
Cr, Mn, and Ni. The elements were alloyed in an induc-
tively coupled high-frequency levitation furnace. After
several remelting cycles, included to achieve a high ho-
mogeneity, cylindrical ingots were slip cast into a water
cooled copper mold. Pieces of ∼1 cm3 were cut from the
ingots and subjected to a heat treatment of 1200 ◦C for
48 hrs for homogenization. These were used as polycrys-
talline samples for further investigation.

Single crystals were grown using ingots of about 70 g by
means of the Bridgman technique. The pre-alloyed ma-
terial was fit in a cylindrical, alumina crucible of about
10 cm length and an internal diameter of 20 mm and a
30◦ tip-shaped bottom, and inserted in a vertical tube
furnace. The tip of the crucible was placed on a movable
rod equipped with a cold finger to create a defined and
steep temperature gradient. The furnace temperature
was set to 1340 ◦C, which is above the melting tempera-
ture of 1330 ◦C of the alloy, and kept constant during the
growth process. The growth process is carried out under
argon atmosphere of 200 mbar. Solidification is effected
by lowering the crucible vertically out of the hot zone
of the furnace at a velocity of 50 mm/h. Further infor-
mation on similar synthesis procedures for single crystal
HEAs can be found in Feuerbacher et al. [1].

As stated in Section II of the main text, the sam-
ples were investigated by Scanning Electron Microscopy
(SEM) using a JEOL 840 microscope, equipped with an
EDAX Energy-Dispersive X-ray (EDX) system, as seen
in Fig. S1.

Diffraction data were collected at the ID28@ESRF
diffractometer at a wavelength of λ = 0.697 Å with a
typical beam size of about 40µm FWHM. Data were
recorded by the single-photon-counting PILATUS3 1M
detector in shutterless mode over a rotation of 360◦ with
a step of 0.25◦. The detector was positioned 244 mm

away from the sample with a 19◦ elevation above the
horizontal plane, thus covering a scattering angle up to
∼40◦. The experimental geometry and the orientation
matrix were refined using CrysAlis software (by Rigaku
Oxford Diffraction) and locally developed software was
used for high-resolution 2D reconstructions.

There is a clear anisotropic distribution of diffuse scat-
tering located around the Bragg peaks. The usual ther-
mal diffuse scattering (TDS) leads to an anisotropy char-
acterized by a stronger diffuse scattering in the transverse
than in the longitudinal direction. Looking at the diffuse
scattering around the 200 Bragg peaks, shown in Fig. S2,
it is clear that the opposite is true: there is a minimum
of diffuse scattering in the transverse direction.

Such a signal was confirmed by measuring the purely
elastic signal in transverse and longitudinal geometries
during phonon measurements by IXS, shown in Fig. S3.
Here we report the elastic signal from scans made (a)
along 0 0 2+x and x x 2 lines and (b) along 2+x 2+x
0 and 2 2 x lines. The plots clearly show a significantly
larger intensity in the LA directions that, in both cases,
follows 1/q2 decay fit. This is a clear signature of the
so-called Huang scattering. It is beyond the scope of
this paper to provide a full quantitative analysis of it,
but this illustrates the presence of strain induced by the
distribution of atomic size differences of the five elements.

APPENDIX B: METHODS: INELASTIC
SCATTERING MEASUREMENTS

Taking first the example of a neutron scattering exper-
iment, the measured quantity is the double differential

cross-section, d2σn

dΩfdEf
,which is the number of neutrons

out of incident neutrons that are scattered from a sam-
ple and into solid angle element Ωf in a given energy
range Ef . This has coherent and incoherent scattering
components [2] and for incoming wave-vector ki and out-
going wave-vector kf , it is dependent upon the response
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FIG. S1. The left image shows a backscattered-electron image of a polished surface of the FeCoCrMnNi crystal. Apart from
several visible pores (black spots), the gray contrast is homogeneous. This means that the composition is homogeneous. The
right image is an EDAX Energy-Dispersive X-ray (EDX) spectrum of an area corresponding to about the same size as the
lefthand image.

FIG. S2. Diffuse X-ray scattering of the FeCoCrMnNi single crystal sample measured in the HK0 Plane at 90 K (left) and
around the 200 Bragg in the HK0 plane (right). There is a clear anisotropy with a minimum of diffuse scattering intensity
along the 2 x 0 line as compared to the 2+x 0 0 line. This is opposite to the usual thermal diffuse scattering, and is typical for
Huang scattering. Data are represented in a mixed lin-log scale as implemented in Albula by Dectris.
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FIG. S3. Anisotropy of the elastic signal measured around the (002) and (220) Bragg peaks. In (a), elastic signal measured
around the (002) Bragg peak for 0 0 2+x (longitudinal direction, red triangle) and x x 2 lines (transverse direction, blue
crosses). The black dashed line is a 1/q2 decay fit. In (b), elastic diffuse scattering measured around the (220) Bragg for 2+x
2+x 0 (longitudinal direction, red triangle) and 2 2 x lines (transverse direction, blue crosses), with a similar 1/q2 decay fit. All
intensities have been normalized based on efficiencies of the analyzers in order to compare scans across different ID28@ESRF
analyzers.

function, S(Q, ω):

d2σn

dΩfdEf
=

d2σn

dΩfdEf

∣∣∣∣
coh

+
d2σn

dΩfdEf

∣∣∣∣
inc

=
kf
ki
S(Q, ω)

(S1)

Q = G + q being the position in reciprocal space we are
measuring according to reciprocal lattice vector G and
small displacement q.

Coherent scattering and incoherent scattering, also
called self-scattering, explain correlated atomic move-
ments and individual atomic movements, respectively.
When conducting a neutron or x-ray scattering exper-
iment it is important to have an idea of the amount of
incoherent and coherent scattering you can expect from a
given sample. Continuing with the example of a neutron
scattering experiment, we rely on the coherent neutron
scattering length, b, of each element. The coherent, σn

coh,
and incoherent, σn

inc, scattering cross-sections are defined
as the following [3, 4]:

σn
coh = 4π〈b〉2

σn
inc = 4π(〈b2〉 − 〈b〉2)

(S2)

The neutron scattering lengths and scattering cross-
sections for the elements of FeCoCrMnNi are given in
Table S1. For FeCoCrMnNi, σn

coh = 2.465 barns/atom,
and the total (spin, isotopic, and Laue scattering in the
case of FeCoCrMnNi) σn

inc = 2.526 + 3.280 = 5.806
barns/atom, meaning that we expect 2.3× as much inco-
herent scattering as coherent scattering, and that inco-
herent scattering makes up 70% of the total neutron scat-
tering cross-section of the material. In our experiment,

TABLE S1. The neutron scattering lengths, b, and neutron
coherent and incoherent scattering cross-sections, σn

coh and
σn
inc, are provided for the elements present in FeCoCrMnNi.

Scattering cross sections are given in barns (1 barn = 10−24

cm2) and neutron scattering lengths are given in femtometers
(1 fm = 10−13 cm) [3].

b σn
coh σn

inc

Fe 9.45 11.22 0.4

Co 2.49 0.779 4.8

Cr 3.635 1.66 1.83

Mn -3.73 1.75 0.4

Ni 10.3 13.3 5.2

assuming that the phonon modes represent the amount of
coherent inelastic neutron scattering for a given Q scan
and that the observed broad band accounts for the inco-
herent neutron scattering, we find this latter to be ∼2.8
times the coherent phonon signal for TA010

100
and ∼2.1

times for TA110
110

, in very good agreement with the ex-
pected incoherent-to-coherent ratio.

In addition, the measured incoherent component of the
response function, Sinc(Q, ω), is written as

Sinc(Q, ω) = Q2g(ω)(n(ω) + 1)/ω, (S3)

where g(ω) is the generalized vibrational density of states
(GVDOS), and n(ω) is the Bose occupation factor.

Using the measured GVDOS from the main text and
applying the (n(ω)+1)/ω rescaling, the incoherent signal
has been simulated. It is shown as a red line in Fig. S4
where it is compared to the data for two transverse ex-
citations measured at high q positions. The incoherent
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FIG. S4. Comparison between the measured inelastic neutron
scattering intensity for two transverse acoustic (TA) excita-
tion (solid black circles) and the simulated incoherent contri-
bution (solid red line, see text). The top panel is for the TA
phonon (-0.7 2 0) and the bottom panel is for the TA phonon
(1.5 2.5 0).

signal is clearly dominating, noticing, in particular, the
constant intensity observed and simulated at low q. To
be rigorous, however, a multiphonon contribution should
be added at high energy.

The coherent and incoherent X-ray scattering can as
well be calculated by starting again from the double dif-
ferential cross-section for a scattering event, such as the
one given for neutrons in eq. S1. In this case we are
dependent on the radius of the electron, re, and the po-
larization of the incoming (outgoing) photon, ε̂i (ε̂f ) [5].

d2σx

dΩfdEf
= r2

e(ε̂f · ε̂i)2 kf
ki
S(Q, ω) (S4)

Then the coherent and incoherent X-ray scattering cross-
sections, σx

coh and σx
inc, respectively, depend upon the

atomic form factors, f , and are written as follows [6]:

σx
coh = 〈f〉2

σx
inc = 〈f2〉 − 〈f〉2

(S5)

As a first approximation we will take the values at q =
0, i.e. Q = G, meaning that the atomic form factor for
each element is defined as f = Z, where Z is the atomic
number, directly from the Periodic Table of Elements.
Therefore, σx

coh = 676, and σx
inc = 2, confirming that

incoherent X-ray scattering for FeCoCrMnNi is minimal
in comparison to the coherent component.

1. Time-of-Flight Spectroscopy

Time-of-Flight (TOF) spectroscopy was used to mea-
sure the neutron-weighted generalized vibrational density
of states (GVDOS) reported in Fig. 2 from the main text.
A single crystal sample of FeCoCrMnNi (cylinder-shaped
with a height of 1 cm and diameter of 0.8 cm) was mea-
sured on the cold-neutron TOF spectrometer IN5@ILL
with an incident wavelength of λ = 3.2 Å at room tem-
perature with a cryostat environment. The sample was
rotated 0.5◦ after each scan, resulting in a total Ω range
of 43◦.

A polycrystalline sample (2x1x1 cm3, 11.5 g) was taken
to the cold-neutron TOF spectrometer IN6@ILL and
measured with a Be filter and λ = 5.1 Å at 100, 200,
and 300 K, also using a standard cryostat. Empty can
measurements, or measurements that are made in the
same sample environment but without the sample in or-
der to account for non-sample-related scattering captured
at the detectors, were taken at all three temperatures and
subtracted from the sample data.

Both IN5@ILL and IN6@ILL GVDOS plots were pro-
duced using the MUPHOCOR (MUlti-PHOnon CORrec-
tion) program [7] for LAMP [8], in which the expected
neutron scattering cross section and atomic mass of Fe-
CoCrMnNi were used as starting parameters for a self-
consistent multi-phonon scattering correction of the data.

2. Triple-Axis Spectroscopy

The transverse acoustic (TA) mode propagating along
[100], polarized along [010] (TA010

100
), and the TA mode

propagating along [110], polarized along [110] (TA110
110

)

shown in Fig. 3(c,d) of the main text were taken from
Triple-Axis Spectroscopy (TAS) measurements on the
thermal-neutron TAS instrument 1T-1@LLB. A fixed kf
= 2.662 Å−1 (λ = 2.36 Å) and cryostat were used in
order to take constant Q scans at 3, 100, and 300 K.

The TA mode and the textured band were fit using the
program ‘AFITV,’ an analysis tool developed by B. Hen-
nion and P. Bourges at Laboratoire Léon Brillouin [9]. It
takes into account instrumental resolution by using in-
strumental parameters as well as sample characteristics,
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in order to model the shape and size of the experimen-
tal resolution. Indeed, the instrumental resolution is en-
ergy and q dependent and is determined from the experi-
mental setup, the phonon group velocity, and the sample
mosaicity, which is a measure of the quality of a single
crystal. The mosaicity measures the angular distribution
of a given direction in the reciprocal space, deteriorating
the resolution in q and thus in energy. The mosaicity of
our single crystal was about 1◦, which results in a total
energy resolution between 2.2 and 1.3 meV depending on
q.

AFITV makes the convolution of the scattering func-
tion and instrumental resolution function [10], therefore
allowing us to decouple the intrinsic phonon measure-
ment from the distortion caused by the spectrometer.
More details on the use of this software are discussed in
Appendix C.

Unfortunately, the presence of the incoherent scatter-
ing made the fitting procedure particularly challenging,
so that, even if at high energy the phonon linewidth was
not resolution limited, we could not reliably extract it be-
cause of the merging of the phonon with the incoherent
intensity.

3. Inelastic X-ray Scattering

Inelastic X-ray scattering was used to measure the
longitudinal acoustic (LA) modes propagating along the
[001] and [110] directions (LA001 and LA110 ) and and
the transverse acoustic (TA) modes propagating along
[001], polarized along [110] (TA110

001
) and propagating

along [110], polarized along [001] (TA001
110) reported in

Fig. 3 of the main text. Measurements were made at
the IXS ID28@ESRF beamline. The [999] reflection of
the silicon monochromator was used, resulting in an in-
coming X-ray energy of 17.794 keV (or a wavelength of
0.697 Å) and an energy resolution of 2.8 meV. The Joule-
Thomson displex was incorporated for temperature mea-
surements at 15, 100, and 300 K.

The ID28@ESRF beamline has the advantage of be-
ing able to measure 9 points in reciprocal space simul-
taneously, due to the 9 analyzers mounted at fixed 2θ
angular distances of 1.54◦ from each other. The plots in
Fig. 3(a,b) from the main text and Figs. S19-S21 rep-
resent scans from all 9 of these analyzers, and therefore
the intensities should not be compared directly, due to
the fact that each analyzer has its own efficiency as com-
pared to the others. All analyzers were receiving the
scattered intensity through rectangular slits, with hor-
izontal and vertical opening of 20 mm and 55 mm re-
spectively. The horizontal opening fixes the q resolution
which is ∆q = 0.026 Å−1. This q resolution induces an
additional energy broadening as it couples to the slope
of the acoustic dispersion: ∆Eq = vg∆q, where vg is the
group velocity. As such it plays a major role at low q,
before the bending of the acoustic dispersion. As for the
spectrometer energy resolution, this has been measured

for each of the 9 analyzers by measuring the elastic scat-
tering of a plexiglass sample, cooled to 14.5 K, at q val-
ues close to the maximum of the static structure factor,
within the energy range ± 40 meV. Finally, the crystal
used for these measurements had a very small mosaicity
of only 0.1◦, leading to a mosaicity contribution to the
effective resolution of only 0.1 meV.

In order to extract the intrinsic phonon linewidths
shown in Figs. 6,7,8 from the main text, both energy and
q resolution (∆E, ∆q) have been taken into account. For
this, the q distribution over the illuminated area of the
analyzer has been calculated and the experimental spec-
trum has been fit with a superposition of phonon modes
for all q’s within this distribution, then convoluted with
the energy instrumental resolution.

APPENDIX C: ACOUSTIC NATURE OF THE
PHONON MODES

In both INS and IXS experiments we have fit our data
using a delta function for the elastic line, a damped har-
monic oscillator for the phonon mode, and, in the INS
case, a two-part Gaussian distribution for the broad tex-
tured band. The fit was performed using AFITV for INS
data and a home-made Matlab program for IXS. In both
programs the theoretical model was convoluted with the
instrumental resolution function prior to fitting the ex-
perimental data, allowing for the extraction of the intrin-
sic phonon properties (position, intensity and linewidth).
Fitting the different components of the scans in this man-
ner allows us to account for all of the intensity shown in
the scans.

The result of this method of analysis is that we
can track the changes in the normalized intensity of
S(Q, ω, T ), from eq. S1, of the phonon mode to deter-
mine its acoustic character. It can be shown that for
an acoustic phonon, the normalized dynamic structure
factor, DSFi,q(Q, ω, T ), is constant, where the integral
is taken over the measured phonon peak [4, 11–14]. The
response function, S(Q, ω, T ), defined in Appendix B, de-
pends on the thermal occupation factor, n(ωi,q), the po-
larization of the phonon mode, ξi,q, and the Bragg peak
structure factor, FB. This equation works in the long-
wavelength limit, |q| � |Q|, and given that ~ω � kBT .

DSFi,q(Q, ω, T ) =
ωi(q)

Q2 · n(ωi,q)

∫
Si,q(Q, ω, T )dω,

where

∫
Si,q(Q, ω, T )dω ≈ (Q · ξi,q)2|FB|2

n(ωi,q)

ωi(q)
(S1)

In Fig. S5 we report the normalized intensity of the
phonon mode across the Brillouin zone in each direction,
as obtained with the fit of INS data. In order to sim-
plify the analysis, we have imposed a constant energy
position and normalized intensity for the main features
of the broad band across the Brillouin zone for a given
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FIG. S5. Normalized intensity (see eq. S1) of the two phonon
modes (see figure labels) measured by constant-Q inelastic
neutron scattering scans on 1T@LLB at 300 K.

direction. This is justified by the fact that the broad
band looks q independent, as shown in Fig. S8. Above
0.4 Å−1, the normalized intensity of the phonon modes
remain constant within the errorbars up to the Brillouin
zone border, confirming the acoustic nature of the trans-
verse modes throughout the Brillouin zone. A slight de-
crease at smaller q, below 0.4 Å−1, in both directions, is
in fact due to a strong entanglement of the intensities of
TA and broad band with the intense elastic line, mak-
ing these values more uncertain. The constant character
of the phonon normalized intensity supports the conclu-
sion that there is no interference of the phonon with the
broad band. This is different from the case of other com-
plex crystalline systems in which an intensity transfer is
observed between acoustic modes and low-lying optical
modes [15–20].

In Fig. S6 we report the normalized intensity of the
four polarizations measured by IXS. All intensities have
been normalized by the analyzer efficiencies in order to
compare scans across different analyzers. If along the
[110] direction in (c,d) the normalized intensity remains
quite constant, along the [001] direction in (a,b) this is
not so evident. Specifically, a deviation from constant
clearly appears in the longitudinal polarization in (a) at
∼ 0.8-1 Å−1, which coincides with the third regime of
the longitudinal attenuation, described in Fig. 6(a) of
the main text. Still, we can conclude that the acoustic
character is conserved up to at least 1 Å−1.

APPENDIX D: HEA DENSITY OF STATES
COMPARISON

In Fig. S7, Generalized Vibrational Density of States
(GVDOS) of equiatomic FeCoCrNi (FCCN) [21] at 300 K
is plotted against the GVDOS of FeCoCrMnNi, replotted
from Fig. 2(b) from the main text. Both measurements
have been made by INS, and show close matching, in-
cluding in the low energy acoustic region between 0-10
meV. These are additionally compared to elemental GV-
DOS measurements of Fe [22], Ni [23], and Cr [22]. The
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FIG. S6. Normalized intensity (see eq. S1) of the four phonon
modes (see figure labels) measured by constant-Q inelastic X-
ray scattering scans on ID28@ESRF at 300 K. All intensities
have been normalized based on efficiencies of the analyzers in
order to compare scans across different analyzers.
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FIG. S7. The Generalized Vibrational Density of States of Fe-
CoCrMnNi (solid red line), shown first in Fig. 2(b) from the
main text, is compared to the GVDOS of FeCoCrNi (black cir-
cle markers), measured by Lucas et al. with Inelastic Neutron
Scattering, and to several single element GVDOS, including
Fe [22] (blue dash-dotted line), Ni [23] (purple dashed line),
and Cr [22] (green square markers).

GVDOS of FeCoCrMnNi and FeCoCrNi appear to most
closely match that of Ni.
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APPENDIX E: INELASTIC SCATTERING
ENERGY SCANS

All scans used to create Fig. 5 of the main text that
were not already shown in Fig. 3 of the main text have
been included in the following section. The scans taken
during the neutron triple-axis spectroscopy experiment
at 300 K are shown in Fig. S8. For the inelastic neutron
scattering experiment, Figs. S9-S10 depict scans at 100
and 3 K from the TA010

100
dispersion, respectively, and

similarly for Figs. S11-S12 and the TA110
110

dispersion.

For the inelastic X-ray scattering measurements,
Figs. S13-S15 show scans from the LA001 polarization
at 300, 100, and 15 K, respectively, and similarly for the
TA110

001
polarization in Figs. S16-S18. Scans for the LA110

polarization, taken at 300 K, are plotted in Fig. S19. Fi-
nally, the TA001

110 polarization measurements at 300 and
15 K are represented in Figs. S20 and S21, respectively.
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FIG. S8. Plots of the (a) TA010
100

and (b) TA110
110

phonon dis-
persions at 300 K, measured by inelastic neutron scattering,
which emphasize the incoherent scattering seen in all neu-
tron scans. The broad textured band persists through the
entire Brillouin zone in both polarizations. In (a), scans
cover q = 0.1 − 0.6 r.l.u. with a step size of 0.05 r.l.u., and
q = 0.6 − 1.0 r.l.u. with a step size of 0.1 r.l.u. In (b), scans
cover q = 0.1 − 0.5 r.l.u. with a step size of 0.05 r.l.u., and
q = 0.5 − 0.7 r.l.u. with a step size of 0.1 r.l.u.
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[8] D. Richard, M. Ferrand, and G. J. Kearley, Analysis and
visualisation of neutron-scattering data, Journal of Neu-
tron Research 4, 33 (1996).

[9] B. Hennion and P. Bourges, Afitv: Refinement program
for triple axis spectrometer data.

[10] G. Shirane, S. M. Shapiro, and J. M. Tranquada, Neutron
Scattering with a Triple–Axis Spectrometer (Cambridge
University Press, 2015).

[11] M. Boudard, M. de Boissieu, S. Kycia, A. I. Goldman,



8

0 10 20 30 40
Energy (meV)

0

20

40

60

In
te

ns
ity

 (c
ou

nt
s/

60
s) q1 = 0.26 Å 1 

 ( 0.15 2 0)
(i)

0 10 20 30 40
Energy (meV)

0

20

40

60 q2 = 0.52 Å 1 
 ( 0.3 2 0)

(ii)

FIG. S10. Energy scans at 3 K of the transverse acoustic
(TA) mode propagating along the [100], polarized along [010]
(TA010

100
), taken near the (020) Bragg peak. Experiments were

made at 1T@LLB, using a fixed kf of 2.662 Å−1
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B. Hennion, R. Bellissen, M. Quilichini, R. Currat, and
C. Janot, Optic modes in the AlPdMn icosahedral phase,
Journal of Physics: Condensed Matter 7, 7299 (1995).

[12] P.-F. Lory, V. M. Giordano, P. Gille, H. Euchner, M. Mi-
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FIG. S19. Energy scans at 300 K of the longitudinal acous-
tic (LA) mode propagating along the [110] direction (LA110),
taken near the (220) Bragg peak. Experiments were made at
the ID28@ESRF beamline, using the [999] reflection of the
silicon monochromator.
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FIG. S20. Energy scans at 300 K of the transverse acous-
tic (TA) mode propagating along [110], polarized along [001]
(TA001

110), taken near the (002) Bragg peak. Experiments were
made at the ID28@ESRF beamline, using the [999] reflection
of the silicon monochromator.
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FIG. S21. Energy scan at 15 K of the transverse acoustic (TA)
mode propagating along [110], polarized along [001] (TA001

110),
taken near the (002) Bragg peak. Experiment was made at
the ID28@ESRF beamline, using the [999] reflection of the
silicon monochromator.
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Yttria-Stabilized Zirconia represents an ideal example for the study of complexity and dis-
order. By taking the relatively simple structure of Zirconia and doping it with various con-
centrations of Yttria in order to stabilize the cubic structure at room temperature, we induce
disorder in the form of oxygen vacancies. An explanation of the disordered structure due to
oxygen vacancies has been detailed in Section 1.3.2, and the diffuse scattering for the particular
9.5 mol.% Yttria content sample that was used to conduct the experiments in this manuscript
was shown in Fig. 1.8.

As it will be stated in this Yttria-Stabilized Zirconia manuscript, the experimentally mea-
sured phonon dispersions have already been published in the 1980’s. However, by working with
improved instrumental resolution, we were able to uncover the intrinsic energy dependence of
the acoustic phonon linewidths in this material. Through the inclusion of this manuscript I
therefore reiterate one of the main themes of my thesis, which is that we lack a library of the
energy and temperature dependencies of phonon linewidths in simple, complex, and disordered
systems. By publishing this manuscript on the already well-studied Yttria-Stabilized Zirconia
material, I add to the growing database, and emphasize the need to revisit simple materials that
have already considered to be complete in their experimental findings. Yttria-Stabilized Zirconia
remains a complicated material to model as well, due to the chemically disordered structure.
This manuscript will hopefully reignite interest in this pursuit.

Contributions of the Ph.D Candidate:
I played a central role in preparing and conducting the neutron experiments from 1T@LLB,

4F@LLB, and IN8@ILL, and the thermal diffuse scattering experiments on the X-ray beamline
ID28@ESRF. I then made the corresponding data analysis and wrote the article.

Perspectives/Further work that can be done:
The results of this manuscript highlight two fundamental needs for the understanding of

phonon dynamics and thermal transport in cubic Yttria-Stabilized Zirconia: (1) the need for ab-
initio calculations of phonon dispersions that take into account the defect and vacancy structure,
and (2) the need for exhaustive investigations similar to ours at higher concentrations of Yttria,
which would track the evolution of phonon scattering with vacancy content, and, by extension,
the changing vacancy-induced defect structure. We give all the necessary ingredients needed in
order to delve further into the extended defect phonon scattering mechanism that is at play in
this material.

Towards this end, and at the time of writing, we are currently in collaboration with Christian
Carbogno from the Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin, Germany, who
has begun ab-initio calculations on cubic Yttria-Stabilized-Zirconia. Preliminary results reveal
phonon dispersions that are much different than those of the perfect cubic structure, with the
appearance of a large number of optical modes, and specifically one around 9 meV, in very good
agreement with our experimental findings. However, the structure is not yet stabilized, with
several imaginary frequencies still being present. Once the structure is stabilized and the results
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assessed, we will be able to have a more solid and extended discussion of the acoustical-optical
interaction, which will then be incorporated into this Yttria-Stabilized Zirconia manuscript prior
to submission.

On another note, as the thermal conductivity of Yttria-Stabilized Zirconia appears to be
very dependent upon the Yttria content, I also propose that a series of similar experimental
studies be made in the future that include samples that are still within the cubic phase, but
with higher contents of Yttria. As the thermal conductivity at room temperature first decreases
to a minimum at 10 mol.% and then increases with increasing Yttria content, we can hopefully
expect to see a change in the energy dependence and/or broadening of the intrinsic linewidths
across the different samples. As stated in Section 1.3.2, the oxygen vacancies evolve from being
relatively isolated vacancy clusters into ordered aggregates with increasing Yttria content, and
therefore creating a series of such studies would allow us to better understand the detailed
phonon scattering evolution as well.

The first step towards this end is being taken: at the time of writing, we are in collaboration
with Christophe Candolfi and Bertrand Lenoir from the Institut Jean Lamour at the Université
de Lorraine in Nancy, France, and Petr Levinský and Jǐŕı Hejtmánek from the Institute of
Physics at the Czech Academy of Sciences in Prague, Czech Republic, who are conducting
thermal conductivity measurements on our sample of Yttria-Stabilized Zirconia. With these
results we hope to draw conclusions between the microscopic phonon scattering dependencies
and the resulting macroscopic thermal transport in Yttria-Stabilized Zirconia.
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Cubic Yttria-Stabilized Zirconia has long been a ceramic material of interest for its many uses in
thermal-based applications. Its low and weakly temperature dependent thermal conductivity has
been ascribed to its large oxygen vacancies content, which introduces disorder and strongly scatters
phonons. However, the impact of this extended defect structure, which introduces correlated disor-
der, on phonon dynamics is still not fully understood. In this work, we present new findings on the
phonon dispersions of this material, showing, to the best of our knowledge for the first time, exper-
imental evidence of low-energy optical branches outside of the center of the Brillouin zone, which
reduce the momentum and energy phase space available for acoustic phonons. Furthermore, the ob-
served energy dependence of the intrinsic acoustic phonon lifetimes clearly suggests the existence of
competing Mie and Rayleigh scattering mechanisms. Our results allow us to uncover a new phonon
dynamics scenario in cubic Yttria-Stabilized Zirconia, which will help improve our understanding in
this system and, more generally, in systems where the lattice dynamics are dominated by extended
defect structures.

Zirconia (ZrO2) is one of the most studied ceramic
materials due to a number of properties which make
it suitable for many different applications, from a high-
temperature ion conductor in solid oxide fuel cells to a
material designed to be a thermal barrier coating [1–3].
Stable at room temperature in its monoclinic form [4],
Zirconia then transforms to a tetragonal structure at
1440 K [5] and a cubic phase at 2640 K [6].

Its ideal resistance to fracture for a wide tempera-
ture range can be further solidified with the addition of
rare-earth elements, which impacts the phase diagram
and therefore changes the stability regions of the differ-
ent phases. Specifically, at room temperature, Yttria-
Stabilized Zirconia ((ZrO2)1−x(Y2O3)x, YSZ) is mono-
clinic for x ≤∼2 mol.%, tetragonal for ∼2 ≤ x ≤∼8
mol.%, and cubic for ∼8 ≤ x ≤∼20 mol.% [7]. This lat-
ter phase is characterized by a surprisingly low thermal
conductivity, good thermal shock resistance, and a high
melting point: a combination of properties that makes it
ideal for thermal-barrier applications such as for turbine
engines.

The introduction of Yttria gives rise to a highly de-
fective crystal with a large amount of oxygen vacancies,
which is proportional to the Yttria content for charge
neutrality requirements [8, 9]. It follows that for large
Yttria concentrations, strong disorder and large relax-
ations exist due to the presence of structural vacancies,
leading to thermal transport properties that are much
different in YSZ with respect to the ordered, pure Zirco-
nia phase.

Indeed, while pure, monoclinic Zirconia has a room

temperature thermal conductivity of 8.2 W/mK [10]
which decreases with temperature, compatible with an-
harmonic phonon-phonon (Umklapp) processes as a dom-
inant phonons scattering mechanism, the introduction
of Yttria drastically modifies its value and behavior.
Firstly, the thermal conductivity at room temperature
decreases with Yttria content, i.e. the oxygen vacancy
amount, up to x=10 mol.%, where a minimum exists
which is equal to 2 W/mK. It then increases again with
higher concentrations of Yttria [10, 11], which has been
ascribed to a rearrangement of the vacancy clusters into
locally ordered aggregates [9–15]. Moreover, at high
temperature, independent of the Yttria content, the mea-
sured value is about 2 W/mK and almost temperature
independent [11]. This low value corresponds to the min-
imum thermal conductivity calculated on the basis of
the minimum phonon mean free path, like in glasses [8].
Such glass-like thermal transport properties have been
ascribed to a dominant defect-induced phonon scattering
mechanism above room temperature due to the extended
vacancy-defect structure [12–14]. However, a full under-
standing of the role of oxygen vacancies and their impact
on phonon propagation is still missing.

From the theoretical point of view, it is extremely dif-
ficult to calculate ab-initio phonon dynamics in this ma-
terial due to the highly defective structure. Yet, as was
proven with the molecular dynamics simulations of the
quasicrystalline approximant o-Al13Co4 [16], the incor-
poration of disorder into the theoretical model is essen-
tial to our understanding of phonon propagation in dis-
ordered systems. This is especially true for cubic YSZ
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with Yttria content in the 9-10 mol.% range, in which
vacancies are still relatively isolated clusters: this phase
is characterized by the minimum in thermal conductiv-
ity and the impact of vacancies can be thus expected to
be the strongest. Only a few studies have been reported
on the dynamics of this phase, mainly based on molec-
ular dynamics simulations [17, 18] with some DFT cal-
culations [19, 20], which mostly concentrate on phonon
density of states calculations rather than on the full dis-
persions.

On the experimental side, the lattice dynamics of cu-
bic YSZ have been studied by neutron and X-ray scat-
tering and Raman spectroscopy [20–26]. Inelastic scat-
tering studies revealed the presence of acoustic phonons
dispersing up to 20 and 30 meV for transverse and lon-
gitudinal polarizations respectively, exhibiting a strong -
although unanalyzed - broadening, which was ascribed to
the important defect scattering and suggested as respon-
sible for the glass-like thermal transport properties [21].
Surprisingly, no optical modes could be observed, de-
spite the fact that they were reported in Raman stud-
ies [22, 24, 25]. As these modes are due to the out-of-
phase vibrations of the two oxygen sublattices, it was
argued that disorder in these latter would affect the op-
tical modes more than the acoustic ones, such that they
would not be well-defined except at the Γ point [20–22].

In order to definitively understand thermal transport
in cubic YSZ, an exhaustive and high resolution measure-
ment of its phonon dynamics is still needed which specifi-
cally addresses the quantitative measurement of acoustic
phonon lifetime, the key parameter for all thermal con-
ductivity calculations and for elucidating the dominant
scattering mechanisms. This is the aim of this work.
Here we present a combined inelastic neutron and X-ray
scattering (INS, IXS) investigation of phonon dynamics
in a single crystal YSZ with 9.5 mol.% Yttria concentra-
tion.

The higher resolution obtained with our experimen-
tal setup with respect to previous studies allows us to
uncover a new understanding of the lattice dynamics in
YSZ that was previously hidden by the limited resolu-
tion: here we report the first experimental evidence in
the full Brillouin zone of optical modes in YSZ, which
extend up to ∼35 meV. The lowest-lying optical mode,
centered at 9 meV, is found to interact with the acous-
tic modes, marking a premature end of the pure acoustic
regime. Our findings allow us to revisit the phonon dy-
namics in YSZ and suggests a new interpretation of the
mechanisms leading to its low and temperature indepen-
dent thermal conductivity.

INS measurements were made on a 1 cm3 cube sam-
ple (CrysTec) at the Laboratoire Léon Brillouin (LLB)
and the Institut Laue-Langevin (ILL), using the thermal-
neutron triple-axis spectrometers (TAS) 1T@LLB and
IN8@ILL and a fixed kf = 2.662 Å−1. Söller-slit col-
limation of 60’/20’/20’/60’ was added onto the incident
beam (ki) and scattered beam (kf ) paths of 1T@LLB
as well to improve the resolution (see Appendix B.1 of
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FIG. 1. High resolution energy scans, measured by Inelastic
Neutron Scattering, of the transverse acoustic (TA) phonons
propagating along [100], polarized along [010] are plotted. (a)
shows the low-q part of the dispersion, where the clearly-
defined TA mode disperses until 9 meV. In (b), we see that
the TA mode is cut off by an optical branch at 9 meV. Three
higher energy optical branches are also highlighted using the
fit for the q = 0.45 r.l.u. point, plotted as a solid black line.
Measurements were done on IN8@ILL.

the Supplementary Material [27] for further explanation).
From now on, 20’ will be considered as shorthand for
60’/20’/20’/60’ collimation, and 60’ for 60’/60’/60’/60’.
Further measurements were done at the cold-neutron
TAS 4F2 at the LLB, using a fixed kf = 1.48 Å−1

and the Be filter. IXS measurements were made on a
∼0.001 mm3 sample at the ID28 beamline of the Euro-
pean Synchrotron Radiation Facility (ESRF), using the
[9 9 9] reflection of the silicon monochromator, which
provides an energy resolution of 2.8 meV. More details
on samples and experimental setups can be found in Ap-
pendix A and B of the Supplementary Material [27].

We have performed an exhaustive investigation of
phonon dynamics in YSZ, measuring transversely and
longitudinally polarized modes propagating along the
main symmetry directions of the cubic structure. Raw
data are reported in Appendix F of the Supplementary
Material [27]. In Fig. 1, we report some energy scans
at constant-Q of transverse acoustic phonons propagat-
ing along [100], polarized along [010] (∆(TA) branch),
as representative for our major findings. Here, it may
be seen that the TA mode disperses and broadens until
q = 0.35 r.l.u. Above this value, it no longer disperses,
remaining pinned to the 9 meV energy position and merg-
ing into a continuum of optical modes whose bands are
centered at 9, 17, 27, and 32 meV in this particular po-
larization. We note that this is a marked difference from
the TA dispersion of Argyriou et al. [21], whose phonons
in the same polarization disperse until 20 meV, seemingly
without interference.

This is not an isolated case. As can be seen in Fig. 2,
which reports all of our experimentally measured disper-
sions, we observe a similar cut-off of the acoustic branch
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FIG. 2. Longitudinal and transverse (LA,TA) phonons have
been measured in three high-symmetry directions at 300 K
using a combination of inelastic neutron and X-ray scatter-
ing (INS, IXS) techniques. LA phonons (red circles) have
been measured by IXS on ID28@ESRF, with horizontal lines
representing the energies of the optical branches that were
fixed in position during analysis. TA phonons (blue) have
been measured by INS on 4F2@LLB (diamonds), 1T@LLB
with 20’ collimation (triangles), 1T@LLB with 60’ collimation
(squares), and IN8@ILL (stars). The second TA polarization
in the [ζζ0] direction (green) is similarly a combination of INS
setups (same marker symbols apply). Energies of those mea-
sured by Argyriou et al. [21] are plotted for comparison as
empty gray circles. The errorbars for the left-most points of
the optical branches in the [00ζ] direction depict the typical
energy width of the optical mode, while for the other points
they represent the error on the energy position.

Σ(TA1), polarized along the [001] direction and propa-
gating along the [110] direction, while all measured LA
polarizations and the Σ(TA2), polarized along the [110]
direction and propagating along the [110] direction, ap-
pear to continue dispersing past 9 meV, crossing one or
more optical branches along the way before reaching the
ends of the respective Brillouin zones. The case of the
Λ(TA) polarization in the [111] direction is less clear, in
which the acoustic phonon possibly continues past the
9 meV optic mode and merges with the 17 meV optic
mode.

Our results represent the very first experimental ev-
idence throughout the whole Brillouin zone of optical
modes for this material, which, until now, have been elu-
sive within previous investigations. Moreover, we observe
a premature end of the acoustic phase space for some
transverse branches, where previous studies reported TA
modes dispersing up to ∼20 meV. A very different sce-
nario therefore arises from our data, which can be un-
derstood in terms of an improved experimental resolu-
tion. Previous INS experiments have been performed
using a fixed kf = 4.1 Å−1 [21], in which case the instru-
mental resolution is large, such that when the acoustic
mode approaches the low-lying optical mode, they are not
clearly resolved anymore, but rather appear as a single

2.5 5.0 7.5
Energy (meV)

0

2

4

6

8

10

Bo
se

-c
or

re
ct

ed
 In

te
ns

ity (a) (TA)
q = 0.21 Å 1

2.5 5.0 7.5
Energy (meV)

0

2

4

6

8

10
(b) (TA)

q = 0.31 Å 1

FIG. 3. Temperature dependence of representative energy
scans from the ∆(TA) branch in Fig. 2. Scans have been
made on 4F2@LLB at 300 K (blue) and 50 K (purple) and
have had their intensities corrected according to the Bose-
Einstein distribution.

mode. The intensity transfer among the different optical
bands creates the effect of a dispersive acoustic mode up
to 20 meV. Such an effect of successive intensity trans-
fer while increasing the energy between acoustic phonon
branches and broad distributions of optical modes has
already been evidenced in many complex crystals like
quasicrystals [16, 28, 29] and clathrates [30–35]. Fur-
thermore, we have indeed verified the consistency of our
results with those of Argyriou and co-authors by repeat-
ing the measurements using the same low instrumental
resolution as was used in that work: we too find that the
optical mode is no longer resolved, and we find a good
agreement for the dispersion of the single visible mode
(See Appendix C in the Supplementary Material [27]).

It is worth underlining that the presence of a disper-
sionless mode at 9 meV had already been reported in
previous works, specifically by Cousland et al. [20], who
measured it along the Σ(LA) branch at three Q points.
Interestingly, both in their ab-initio calculations of the
density of states and in the ones of Tojo et al. [17], a
small peak at 8-9 meV is present, confirming the exis-
tence of such a mode in YSZ. Still, the authors did not
propose an optical nature for it but rather identified it as
a soft longitudinal mode which is calculated to have an
imaginary frequency in cubic ZrO2. However, the intro-
duction of anharmonicity stabilizes the structure, thus
stabilizing the phonon branch [36].

The temperature dependence of the phonon dynamics
has been investigated down to 50 K. In Fig. 3 we report
data for the ∆(TA) branch at room and low temperature,
after correction by the Bose factor. The good overlap
confirms a negligible effect of the temperature within our
experimental resolution. Indeed, we have been able to
extract the intrinsic phonon linewidths, which are above
the limit of our instrumental resolution, and find them to
be temperature independent, confirming thus a negligible
role of anharmonicity in this material, and pointing in-
stead to a major role of defects, due to oxygen vacancies,
in determining phonon attenuation.
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In order to definitively shed light onto the dominant
phonon scattering process and also onto the interaction
between the acoustic modes and the newly evidenced op-
tical modes, we report the extracted acoustic intrinsic
linewidths and the normalized intensities in Figs. 4 and 5,
respectively. Unfortunately, we could not analyze these
parameters for the Σ(TA1) and the Λ(TA) modes, due
to resolution limitations. Details on the fitting proce-
dures and the extraction of these quantities are given in
Appendices B and D of the Supplementary Material [27].

In simple structures, it is usually expected that a dom-
inant point defect scattering would lead to a strong de-
pendence of the linewidth on the energy, of the type
Γ ∝ (ℏω)4 [37] (Rayleigh scattering). Still, extended
defect structures could induce more of a Mie-type scat-
tering, with a softer dependence such as Γ ∝ (ℏω)2 [38].
Moreover, works on highly defective crystals such as ran-
dom alloys [39–43] and quasicrystalline approximants [16]
have reported the presence of several regimes which do
not always correspond to clear power laws. In YSZ,
we find quite clear power laws, but power values which
span from the Mie-type to the Rayleigh-type scattering:
Γ = (ℏω)x, x=2.2, 3.3, and 1.8 for the LA polarizations
in subplots (a), (c), and (e) of Fig. 4, respectively, and
x=5.0 and 3.9 for TA polarizations in subplots (b) and
(d), respectively.

It is important to notice however, that no change in the
broadening regime is resolved when approaching the low-
lying optical mode for phonons which are not stopped in
their dispersion, while the strong increase above 9 meV
in the ∆(TA) linewidth is only due to the fact that
above this energy we are in fact measuring the width
of the optical band, and not the pure acoustic one any-
more. Still, an interaction between optical and acoustic
phonons, even when the dispersion is not stopped, can be
unveiled by looking at the normalized acoustic intensity,
which is found to depart from a constant value, which
is associated with purely acoustic character, when ap-
proaching the energy of the optical mode, as can be seen
in Fig. 5. Even if the direction of the observed departure
depends on the polarization and propagation direction of
the acoustic mode (for instance the normalized intensity
decreases for Σ(TA2) in subplot (d) while it increases for
all other branches), it still remains a clear signature of
the end of the pure acoustic phonon regime.

As mentioned in the introduction, optical modes at the
center of the Brillouin zone have already been reported
by Raman spectroscopy. In these studies, it was possible
to observe an optical continuum containing several distri-
butions of optical modes, from few meV up to ∼ 80 meV.
In a perfect cubic structure, only one Raman-active mode
is authorized by the selection rules, but the presence of
defects blurs the polarization of vibrational modes, thus
changing their Raman activity. Specifically, a molecular
dynamics study by Schelling et al. [18] has shown that for
Yttria content larger than 4 mol.%, only phonons with
energies smaller than ∼ 8 meV have a well-defined polar-
ization, while at higher energy their polarization vector

0 20 400

5

10

15

Li
ne

w
id

th
 (m

eV
) (a) (LA)

0 10 200

2

4

6 (b) (TA)

0 20 400

5

10

15

Li
ne

w
id

th
 (m

eV
) (c) (LA)

0 10 20
Energy (meV)

0

2

4

6 (d) (TA2)

0 20 40
Energy (meV)

0

5

10

15
Li

ne
w

id
th

 (m
eV

) (e) (LA)

FIG. 4. When possible according to the different experimental
setups, intrinsic linewidths have been extracted. Colors and
symbols follow from Fig. 2. Dashed lines correspond to the
fit with a power law as detailed in the text.

is less and less defined.

Thanks to this symmetry-breaking, three main bands
could be identified in polarized Raman spectra for a Yt-
tria content of x=9.5 mol.% as belonging to the A1g, Tg,
and Eg irreducible representations of the crystalline sym-
metry group Oh for the cubic fluoride-type structure [24]
(see Table S3 of the Supplementary Material [27]). In
all the polarizations, a well-defined peak at 9-10 meV is
present, while peaks at 18 and 35 meV appear in some
but not all symmetries. Our results are thus consistent
with previous measurements at the Γ point.

It is interesting to comment on the different interac-
tions observed between the lowest-lying optical mode and
the acoustic branches depending upon their propagation
direction and nominal polarization. As seen in Fig. 2,
only the ∆(TA) and the Σ(TA1) are clearly stopped at
9 meV. A first attempt at understanding this can be
made by looking to the nominal polarization direction of
the optical mode and its relation to that of the acoustic
ones. Using the irreducible representations for a perfect
cubic structure, we find that only for these two trans-
verse branches and the ∆(LA), the scalar product be-
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FIG. 5. The normalized intensity at 300 K is plotted in which
colors and symbols follow from Fig. 2. Longitudinal acoustic
(LA) modes have been measured by inelastic X-ray scattering
on ID28@ESRF. All intensities have been normalized based
on efficiencies of the analyzers in order to compare scans
across different analyzers. Transverse acoustic (TA) modes
were measured by various experimental inelastic neutron scat-
tering setups (see text) and have been scaled to match each
other in each polarization.

tween their nominal polarization and the ones of the two
degenerate Eg 9 meV optical modes is non-zero, while
this is not the case for all the other acoustic branches,
for which the scalar product is zero with at least one of
the two degenerate Eg modes.

This would indicate that the acoustic dispersion is
halted only when both Eg polarizations can interact with
the acoustic mode. This however does not apply to the
∆(LA), which, despite it has non-zero scalar product, is
not halted in its dispersion. This can be explained by the
fact that in a defective structure, polarizations and sym-
metry are expected to be modified, and this also depends
on the position in the reciprocal lattice. As such, in or-
der to definitively shed light onto the acoustical-optical
interactions in YSZ, a calculation of the polarization and
symmetry of both optical and acoustic modes throughout

the Brillouin zone would be needed. This is even more
true since our results clearly indicate that previously cal-
culated phonon dispersions in YSZ, similar to the ones of
pure ZrO2, are not reliable, as they do not reproduce the
early end of the acoustic phase space in some directions
and polarizations, nor the existence of low-lying optical
branches.

In conclusion, we have revisited the lattice dynamics
of Yttria-Stabilized Zirconia (x=9.5 mol.%) with high-
resolution INS and IXS measurements, giving new in-
sight into the presence of optical branches throughout
the whole Brillouin zone that interact with the acoustic
phonon modes and that, in some polarizations, cause the
early end of the acoustic branch. Our findings highlight
the need for new ab-initio calculations that consider the
true defect structure of YSZ and that allow us to pre-
dict the correct phonon dispersions, and, more specifi-
cally, the presence of defect-induced optical modes and
the acoustical-optical interaction.

Finally, these results highlight a new understanding of
the phonon spectrum in cubic Yttria-Stabilized Zirconia,
suggesting that a new interpretation of its low thermal
conductivity should be developed. Previously interpreted
as being due to a huge disorder-induced phonon broad-
ening [21], it now appears to be the result of two con-
comitant phenomena at play: not only is there an im-
portant defect-induced scattering, spanning from a Mie-
to a Rayleigh- type, that is dependent upon direction and
polarization, but there is also a significant reduction of
the phase space in which acoustic modes are well-defined
and propagative. Indeed, as we have seen, some trans-
verse modes stop abruptly at 9 meV (instead of the pre-
viously reported 20 meV) and at wave-vectors of about
half the Brillouin zone size.

To go further and to completely understand how the
details of the extended defect structure, its lengthscale,
and the anisotropy affect phonon dynamics and thermal
transport in YSZ, a similar exhaustive investigation as
a function of the Yttria content, combined with a deep
defect structure study and the support of theoretical cal-
culations, will be needed. This work represents a first
important step in this direction and will undoubtedly
inspire new theoretical work on this technologically rele-
vant material.
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APPENDIX A: SAMPLE CHARACTERIZATION

The samples used in the inelastic neutron and X-ray
scattering experiments shown in the main text, which will
be referred to as YSZ in this Supplementary Material,
contain 9.5 mol.% Yttria concentration and follow the
chemical formula (ZrO2)1−x(Y2O3)x, where x = 0.095.
Fig. S1 is an image of the sample used for the inelastic
neutron scattering experiments. It is a 1 cm3 cube man-
ufactured by the company CrysTec with a mosaicity of
0.5◦.

The sample for IXS was a single crystal of volume
0.001 m3, with a mosaic of 0.016◦ along the [110] di-
rection and 0.057◦ along the [001] direction.

APPENDIX B: METHODS: INELASTIC
SCATTERING MEASUREMENTS

This section will further detail the inelastic neutron
and X-ray scattering (INS, IXS) experiments described
in the main text. An inelastic scattering measurement
involves impinging a probe particle, neutrons or photons
in our case, onto a sample and measuring the change in
energy caused by the interaction with the sample. More
specifically, the probe particle will have initial energy and
wave-vector (|Ei,ki⟩) and final energy and wave-vector
(|Ef ,kf ⟩), where the wave-vector kf is scattered at an
angle 2θ relative to the incident wave-vector.

The measurable quantity of the experiment is the dou-

ble differential cross section σ, or d2σ
dΩfdEf

, with dEf

the range of final energies around a certain value, and
dΩf the solid angle within which the scattered intensity
is measured around the scattering direction. In other
words, scattered probe particles with energies within the
range dEf are collected in solid angle element dΩf , and
σ describes the neutrons scattered per second out of the
number of incident neutrons per cm2 per second [1, 2].
This, in turn, is related to the response function, S(Q, ω),

d2σ

dΩfdEf
=

kf
ki

S(Q, ω). (S1)

FIG. S1: Image of the Yttria-Stabilized Zirconia sample
with 9.5 mol.% Yttria concentration that was used for

all inelastic neutron scattering experiments. The sample
measures 1x1x1 cm3.

The scattering event is governed by the conservation
of energy and momentum, eqs. S2-S4, with eq. S2 specif-
ically describing the scattering triangle, which will be-
come important in Section B 1.

Q = ki − kf (S2)

Q2 = k2i + k2f − 2kikf cos(2θ) (S3)

ℏω = Ei − Ef (S4)

In Eq. S4 the probe energy will have a different expres-
sion depending if the probe are neutrons, with a mass,
or photons.

Table S1 provides all of the polarization information
for each of the modes measured in this work and plot-
ted in the main text, allowing the reader to locate the
measured dispersions in reciprocal space. The transverse
acoustic (TA) modes have all been measured by INS, and
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the longitudinal acoustic (LA) modes have been mea-
sured by IXS, which will be covered in the following sub-
sections.

1. Inelastic Neutron Scattering

All INS measurements described in the main text were
made using triple-axis spectrometers (TAS). Table S2
provides a summary of the several different INS setups
that were used to construct the figures in the main
text. The INS measurements were conducted at the In-
stitut Laue-Langevin (ILL) and the Laboratoire Léon
Brillouin (LLB) using the cold-neturon TAS 4F2@LLB
and thermal-neutron TAS 1T@LLB and IN8@ILL. The
“fixed kf” refers to the experimental condition in which
kf remains fixed and ki is adjusted in order to move in
energy and create an energy scan, being, for neutrons,

ℏω = Ei − Ef = ℏ2

2mn
(k2i − k2f ).

Collimation is also listed in Table S2. This refers to
Söller-slit collimation that can be placed before and after
the sample onto ki and kf , respectively. Each neutron-
absorber blade in the Söller-slit collimator has length L,
and the distance between each evenly-spaced blade is d
such that the resulting angular divergence, α is equal
to [3]

α =
2d

L
. (S5)

The collimation formats listed in Table S2 have been
converted into minute-of-arc. On a TAS, Söller-slit col-
limation is placed before and after the monochromator
(still before the sample), and (after the sample) before
and after the analyzer. This is usually written in a stan-
dard notation such as 60’/20’/20’/60’.

Collimation is one way to increase the resolution of the
experiment since we greatly reduce the horizontal diver-
gence of the beam. A second method of increasing res-
olution that was applied to these measurements was the
customization of fixed kf . By reducing the wave-vector,
knowing that k = 2π/λ, we create a smaller scattering
triangle, which is defined by eq. S2.

The instrumental resolutions of each TAS setup listed
in Table S1 were modeled, taking into account instru-
mental parameters such as collimation and sample char-
acteristics (dimensions and mosaicity). This was done
using the analysis tool ‘AFITV,’ which was developed
by B. Hennion and P. Bourges at Laboratoire Léon Bril-
louin [4]. Since the measured quantity in an INS mea-
surement, described by eq. S1, is a convolution of the in-
strumental resolution and the intrinsic phonon measure-
ment, AFITV models the instrumental resolution and
then extracts the intrinsic phonon properties from the
measurement.

2. Inelastic X-ray Scattering

All IXS measurements described in the main text were
made using the backscattering beamline ID28 at the Eu-
ropean Synchrotron Radiation Facility (ESRF). The in-
coming photon energy was 17.8 keV, resulting from the
use of the [9 9 9] reflection of the silicon monochromator,
giving us an energy resolution of 2.8 meV.

There are 9 analyzers on the ID28@ESRF beamline,
each with its own efficiency rating. Therefore, intensities
between the different analyzers should not be compared
directly. Their energy resolutions have been measured
on a plexiglass sample 15 K, at q points close to the
maximum of the static structure factor. This procedure
allows us to minimize the inelastic contribution in the
measured spectra and measure essentially only the elastic
line, whose shape and width reflects on the instrumental
resolution. The intrinsic phonon properties of the mea-
surement are extracted using a homemade MATLAB fit-
ting program written by one of the authors which models
the signal by convolving the theoretical signal with the
experimental instrumental resolution.

APPENDIX C: LOW-RESOLUTION
MEASUREMENTS AND COMPARISON WITH

LITERATURE

Our results, which presented in the main text, unveil a
very different phonon dynamics with respect to previous
reports on YSZ, such as the one of Argyriou et al. [5]. In
particular, Argyriou reports transverse acoustic modes
dispersing up to 20 meV, and no optical modes, while,
for the very same branches, we observe transverse modes
halting at about 9 meV, cut off by a low-lying optical
mode, along with other optical branches at higher ener-
gies. In order to understand the reasons of the disagree-
ment, we have repeated the measurement of the ∆(TA)
(halted branch) and Σ(TA2) (non-halted branch) using
the same experimental setup as Argyriou, i.e. with a
fixed kf of 4.1 Å−1, which translates into a lower energy
resolution. These energy scans are shown in Fig. S2.

As seen in Fig. S2(a), the phonon appears to continue
to disperse until 20 meV with this lower resolution, in
agreement with those that Argyriou and co-authors re-
port, and in disagreement with our high-resolution re-
sults. From this comparison, we can understand that the
intensity seen between 9 and 20 meV in Fig. S2 is in fact
intensity from low-lying optical branches that appear to
be part of the main phonon peak. Results for the non-
halted Σ(TA2) branch in (b), instead, remain consistent
with our high-resolution measurements.
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TABLE S1: Summary of the longitudinal and transverse acoustic (LA, TA) phonon mode polarizations that are
plotted in the main text. The LA modes have been measured by IXS, and the TA modes by INS. A few of the

polarizations were measured using multiple instruments/configurations. The 20’ collimation nomenclature listed in
the table is shorthand for 60’/20’/20’/60’ collimation, or collimation placed before/after the monochromator and

before/after the analyzer, respectively. Similarly, 60’ collimation refers to 60’/60’/60’/60’.

Mode Scattering plane propagation direction polarization direction Bragg peak Instrument(s)

∆(LA) [110][001] [001] [001] (002) ID28

∆(TA) [100][010] [010] [100] (200) 4F2, 1T (20’ and 60’), IN8

Σ(LA) [110][001] [110] [110] (220) ID28

Σ(TA1) [110][001] [110] [001] (002) IN8

Σ(TA2) [100][010] [110] [110] (220) 1T (20’ and 60’), IN8

Λ(LA) [110][001] [111] [111] (111) ID28

Λ(TA) [110][001] [111] [111] (222) IN8

TABLE S2: The different instruments and experimental
parameters for the inelastic neutron scattering

experiments are summarized in the following table. All
experiments were conducted on triple-axis

spectrometers (TAS). Collimation refers to Söller-slit
collimation (see text) and is given in minute-of-arc. The

20’ collimation nomenclature listed in the table is
shorthand for 60’/20’/20’/60’ collimation, or

collimation placed before/after the monochromator and
before/after the analyzer, respectively. Similarly, 60’

collimation refers to 60’/60’/60’/60’.

Facility Instrument TAS configuration collimation

LLB 4F2 fixed kf = 1.48 Å−1 60’

1T fixed kf = 2.662 Å−1 60’, 20’

fixed kf = 4.1 Å−1 60’

ILL IN8 fixed kf = 2.662 Å−1 60’

APPENDIX D: FITTING PROCEDURE AND
ACOUSTIC NATURE OF THE PHONON MODES

In both INS and IXS experiments we have fit our data
using a delta function for the elastic line, a damped har-
monic oscillator for the phonon mode, and one or more
Gaussian functions for the optical modes. As mentioned
in Appendices B 1 and B 2, the fits were performed using
AFITV for INS data and a homemade MATLAB pro-
gram for IXS, which both convolute the theoretical model
with the instrumental resolution function prior to fitting
the experimental data, allowing thus for the extraction of
the intrinsic phonon properties (position, intensity, and
linewidth).

INS data from IN8 could not be fitted with the instru-
mental resolution due to a specific complication of using
the Si monochromator feature of the beamline, and there-
fore we do not have intrinsic linewidths nor intensities. In
the IXS data, on the other hand, the optical modes were
first freely fit, and then, in a second step, and in order to
simplify the procedure, their position was fixed, as it ap-
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FIG. S2: Energy scans of the ∆(TA)(a) and Σ(TA2)(b)
branches made at 300 K on the triple-axis spectrometer

1T@LLB. A fixed kf of 4.1 Å−1 was used in order to
replicate the INS measurements made previously by

Argyriou et al. [5]. The q values given in the legends are
in r.l.u. Narrow, low-lying peaks in (b) are not phonons

coming from the sample but rather spurions, i.e.
artifacts of the measurement.

peared quite constant with q. Such energy positions are
indicated in Figure 2 of the main text as dashed red lines.
Moreover, spectra were first normalized by the analyzer
efficiencies in order to be able to follow the evolution of a
single phonon intensity along the branch, even when said
q values were measured using different analyzers.
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The intrinsic intensity of the phonon mode taken from
these fitting procedures allows us to track changes in the
normalized intensity of the response function (see eq. S1)
for each single phonon. This latter depends on the ther-
mal occupation factor, n(ωi,q), the polarization of the
phonon mode, ξi,q, and the Bragg peak structure fac-
tor, FB. In the long-wavelength limit, |q| ≪ |Q|, and
given that ℏω ≪ kBT , the normalized dynamic structure
factor, DSFi,q(Q, ω, T ), reads [6–10]:

DSFi,q(Q, ω, T ) =
ωi(q)

Q2 · n(ωi,q)

∫
Si,q(Q, ω, T )dω,

where

∫
Si,q(Q, ω, T )dω ≈ (Q · ξi,q)2|FB|2

n(ωi,q)

ωi(q)
(S1)

In the long-wavelength and high-temperature limit,
this should therefore be constant for a given acoustic
phonon. The normalized intensity has been calculated for
five polarizations and is shown in Fig. 5 of the main text.
The deviations from a constant normalized intensity seen
at larger q tell us that at those points, the phonons can
no longer be considered as purely acoustic modes.

APPENDIX E: SYMMETRY ANALYSIS WITHIN
THE Oh SPACE GROUP

The space group for cubic non-defective Zirconia is the
Oh group. Looking to its character table from Silber-
man [11], only the mode T1g should be Raman active.
Still, three modes are observed in defective cubic YSZ
due to the disorder-induced Raman activation (see the
main text). These are the modes A1g,Eg and T1g. Their
character table with the polarization are reported in Ta-
ble S3.

It is important to mention that this table holds for a
perfect cubic structure at the Γ point. The symmetry of
vibrational modes at a given point in the phase space in
a given direction will be reduced and will therefore need
to cope with the local point symmetry.

The polarization direction of our measured acoustic
phonons was already reported in Table S1. It is worth
noticing that by measuring the Λ(TA) branch in the [-
1-11] direction starting from the (222) Bragg Peak, we
did not measure a pure transverse mode, for which we
should have selected the [-110] or [11-2] direction. Still

it is almost fully [11-2] polarized (94%), which is the po-
larization that we consider for the following discussion.

By performing the scalar product between the polar-
ization of our acoustic modes and the ones for the three
irreducible representations, we find that for Σ(TA2),
Λ(TA), LA[111] and LA[110] the value is zero for at least
one of the two polarizations of the double-degenerate
Raman-active Eg mode. This would indicate that the
acoustic dispersion is halted only when both Eg polar-
izations can interact with the acoustic mode. This how-
ever does not apply to LA[100], which has non-zero scalar
products, but is not halted at 9 meV. Still, we have es-
tablished the presence of an interaction with the optical
modes in this polarization all the same through the nor-
malized intensity (see Fig. 5(a) of the main text).

This is only a first attempt at understanding the dif-
ferent kind of acoustic-optical interactions. An ab-initio
calculation of the real dispersions and their symmetry
along the branch within the first Brillouin zone is needed
in order to definitively understand it.

APPENDIX F: INELASTIC SCATTERING
ENERGY SCANS

The INS and IXS energy scans that were used to create
the figures in the main text are plotted in this section for
reference.

Fig. S3 plots the scans made on the cold-neutron triple-
axis spectrometer 4F2@LLB for the ∆(TA) polarization.
Fig. S4 scans were made on the thermal-neutron triple-
axis spectrometer 1T@LLB for the ∆(TA) polarization,
with Fig. S4a having 20’ collimation and Fig. S4b having
60’ collimation. The final configuration for the ∆(TA)
polarization was measured on the thermal-neutron triple-
axis spectrometer IN8@ILL, shown in Fig. S5a.

The Σ(TA1) polarization was measured on IN8@ILL,
and scans are plotted in Fig. S5b.

The Σ(TA2) polarization was measured on 1T@LLB
with 20’ and 60’ collimation, and on IN8@ILL, and scans
are plotted in Figs. S6a, S6b, and S7a, respectively.

The Λ(TA) polarization was measured on IN8@ILL,
and scans are shown in Fig. S7b.

Finally, all LA polarizations were measured on
the backscattering inelastic X-ray scattering beamline
ID28@ESRF. The scans for the ∆(LA), Σ(LA), and
Λ(LA) polarizations are plotted in Figs. S8a, S8b, and S9,
respectively.
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mique dans les alliages métalliques complexes, Ph.D. the-
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as a damped harmonic oscillator and the fit is shown in red.
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FIG. S5: Energy scans at constant Q, measured by inelastic neutron scattering on the thermal-neutron triple-axis
spectrometer IN8@ILL at 300 K, are plotted as open black circles. The phonon was fit as a Gaussian peak and the

fit is shown in red.
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FIG. S6: Energy scans at constant Q for the Σ(TA2) polarization, measured by inelastic neutron scattering on the
thermal-neutron triple-axis spectrometer 1T@LLB at 300 K, are plotted as open black circles. The phonon was fit

as a damped harmonic oscillator and the fit is shown in red.
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FIG. S7: Energy scans at constant Q, measured by inelastic neutron scattering on the thermal-neutron triple-axis
spectrometer IN8@ILL at 300 K, are plotted as open black circles. The phonon was fit as a Gaussian peak and the

fit is shown in red.
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FIG. S8: Energy scans at constant Q, measured by inelastic X-ray scattering on the backscattering beamline
ID28@ESRF at 300 K, are plotted as open black circles. The phonon was fit as a damped harmonic oscillator and

the fit is shown in red.
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polarization, measured by inelastic X-ray scattering on
the backscattering beamline ID28@ESRF at 300 K, are
plotted as open black circles. The phonon was fit as a

damped harmonic oscillator and the fit is shown in red.



General Conclusions

This thesis has included three complete case study examples of how structural and chemical
disorder impact thermal conductivity through the understanding of the phonon behavior of said
crystalline systems.

The three case study systems studied and discussed in this manuscript were the type-I
clathrate Ba7.81Ge40.67Au5.33, the high-entropy alloy (HEA) FeCoCrMnNi, and cubic Yttria-
Stabilized Zirconia. While clathrates are being studied for their potential use as thermoelectric
materials, HEAs are each catered to specific applications for enhanced strength, fracture resis-
tance, temperature resistance, etc., and Yttria-Stabilized Zirconia is well known for its use as
a thermal barrier coating. This proves that the concepts and phonon properties discussed in
this manuscript not only apply to a wide range of thermal-based applications, but also to a
wide range of goals in terms of tuning, restricting, enhancing, and engineering certain thermal
properties of materials for their specific purposes. These three systems were also purposefully
chosen, as, together, they run the spectrum between simple structures with induced disorder
and complex structures with many atoms per unit cell.

The experimental results discussed in this manuscript have been obtained through the use
of inelastic neutron and X-ray scattering (INS, IXS) techniques. INS and IXS are optimized for
measuring the properties of phonons due to their high instrumental resolutions, variation and
customization in terms of instrumental techniques, and their large, accessible range of energy
and temperature phase space in which to measure phonon properties. The details provided in the
thesis on these techniques should be seen as a guide for taking accurate phonon measurements,
while also emphasizing the importance of proper data extraction and interpretation.

By focusing on INS and IXS measurements, I also solidify one of the base themes of this
thesis, which is the need for full momentum and temperature ranges of phonon dispersions and
linewidths in simple, complex, and disordered crystalline systems, by reminding the reader of
the limitations to these techniques faced throughout this thesis. These included the need to
use the neutron resonance spin echo technique in order to view a wider energy range of phonon
linewidths for Ba7.81Ge40.67Au5.33, and the limitations imposed by both the crystal quality and
the large incoherent neutron scattering cross-section for the INS FeCoCrMnNi measurements.

Moving now to the results of each case study, firstly, through my published work on the type-
I clathrate Ba7.81Ge40.67Au5.33, we have shown that there is a polarization dependence at play
between the low-lying optical branches in this material. As the onset of these low-lying branches
represents the end of the purely acoustic and propagative phonon regime, the exact energies of
these branches determine this characteristic. In particular, the rate of hardening of the lowest-
lying optical branch, EBa, with temperature was confirmed to match the one simulated by the ab
initio self-consistent phonon (SCP) theory method. The ability to pinpoint the precise energies
of these modes will hopefully help us control the length of the acoustic regime in clathrates in
the future. This investigation also further emphasized the importance of the quartic anharmonic
phonon scattering process in the control of the plateau region of the lattice thermal conductivity
in clathrates.

These results on Ba7.81Ge40.67Au5.33 have also been compared in light of novel density func-
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tional theory methods, including the ab initio harmonic calculations with the strongly con-
strained and appropriately normed (SCAN) meta-generalized-gradient (GGA) functional and
the ab initio SCP method, with much success. The SCAN functional provided us with improved
phonon dispersions for this Ge-based clathrate that align nicely with the experimental findings.
They also helped enlighten the respective contributions of each Wyckoff position within the
total phonon density of states, leading us to link the specific low-lying optical branches to their
respective atomic vibrations within the cages of the unit cell. The analysis of the SCP method
calculations, on the other hand, quantitatively validated the anharmonic contributions found
by taking into account the cubic and quartic anharmonic terms. These comparisons not only
provide vital confirmations of novel theoretical methods, but they also encourage the continued
development of said methods, pointing out that the inclusion of disorder, i.e. calculations that
go beyond the use of the fully ordered model, and the inclusion of anharmonic terms, lead to a
closer matching of the experimentally-measured lattice thermal conductivity in clathrates.

Secondly, through the conclusions reached with the high-entropy alloy FeCoCrMnNi, we
have gone one step further and analyzed not only the phonon dispersions but also the intrinsic
phonon linewidths of the material. We found that the dispersions showed no change in energy
dependence between the element Ni, random binary alloys such as NiFe and NiCo, and the HEA
FeCoCrMnNi. The phonon linewidths, however, while exhibiting the same order of magnitude of
broadening found in random binary alloys, present a stark shift from a strong to a weak phonon
scattering regime in some polarizations and directions. By isolating force-constant fluctuations
as the dominant phonon scattering mechanism in this material, we were able to confidently
attribute the strong scattering regime and the concomitant deviation of the acoustic phonon
dynamics from the Debye prediction to this specific scattering mechanism. This effect marks
an important similarity to other complex and disordered systems such as glasses, quasicrystals,
and clathrates, which also exhibit multiple scattering regime dependencies.

By adding intrinsic phonon linewidths of an HEA to our database of reference materials, we
have unlocked a certain pattern that is seen across multiple families of disordered materials. We
must continue to develop this pattern with similar case studies in the future, as it is essential to
our understanding of the contributions of different phonon scattering mechanisms. The general
conclusion of this case study also ended as an open invitation to continue similar studies on a
wide variety of HEAs, seeing as, by cocktailing certain elements together to form specific HEAs,
we should be able to promote and suppress different kinds of disorder (mass and atomic size
differences, force-constant fluctuations, etc.) for experimental evaluation.

Thirdly, I reference my work on cubic Yttria-Stabilized Zirconia. This well-studied and well-
applied material has been in use in industry for decades. However, through the application of
improved instrumental resolution, we were able to bring a new understanding of the phonon
behavior in this material to light. We were able to resolve the presence of low-lying optical
branches outside of the center of the Brillouin zone for the first time, to the best of our knowledge.
This in and of itself represents an important result, and to this we have added the measurement of
intrinsic acoustic phonon linewidths such that we contribute to the understanding of the acoustic-
optical interaction and the defect-induced scattering in this material. We can now conclude that
the disorder-induced optical branches and additional phonon broadening are direct correlations
to the chemical disorder caused by the doping of Zirconia with Yttria. With this particular case
study and with these new understandings, we hope to stimulate new theoretical calculations
based on these discoveries. Complementary simulations will help us correlate the impact that
the structural disorder has on phonon linewidth using our experimental results.

In conclusion, by presenting this work, I add to the scientific community’s growing library of
experimental results on phonon properties, and specifically intrinsic phonon lifetimes, with the
confidence that these studies have brought us closer to a unified understanding of heat transport
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in complex and disordered crystalline systems. In each case, I have linked the macro and micro
thermal transport scales by pinpointing the relevant phonon scattering mechanisms at play due
to each system’s unique structural complexity and disorder.

In terms of perspectives, we, as experimentalists, need to continue to add to this database
of phonon lifetimes for simple, complex, and disordered materials alike. This will allow us
to strategically draw conclusions about the ways that specific phonon scattering mechanisms
affect thermal conductivity, and to predict the outcome of said mechanisms in yet unstudied
materials. Only through this understanding will we be able to target certain material properties
and engineer materials for their specific thermal-based applications through induced disorder
and complexity. An increased volume of phonon lifetime measurements will also provide much-
needed references and checkpoints for the novel theoretical methods currently being developed.
In order to have confidence in the rigor and sophistication of these methods, they must be backed
by strong experimental evidence. This will also allow us to trust these models as prediction
methods for materials that have yet to be studied experimentally or for those materials which
present difficulties in terms of high-resolution experimental measurement.

The future of phonon measurements and simulations is bright, as we learn to take full advan-
tage of the increased computing power that has been newly made available in recent years, and
to further push the boundaries of the experimental measurements that are possible. This will
certainly bring about not only novel materials for thermal applications, but also an improved
understanding of heat transport.
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APPENDIX A

The Figure of Merit and the Efficiency of a
Thermoelectric Generator

This Appendix will expand on the concepts introduced in Section 1.1, namely the derivation
of the dimensionless figure of merit, ZT , which quantifies the efficiency of a thermoelectric
generator. This derivation follows those provided in Refs. [264, 265].

Fig. A.1 is a sketch of a simple thermoelectric generator (TEG). This TEG consists of n-
type and p-type semiconductors connected in series. For simplicity’s sake within this derivation,
we will assume that there are only two elements in this TEG: one n-type element and p-type
element. A metal connection links these two elements to a hot junction which has temperature
TH , and we measure the thermal power absorbed into this hot junction and call it QH . The
two elements are also linked to a cold junction which has temperature TC , and we also measure
the thermal power released from this cold junction and call it QC . Finally, the two elements are
also linked to a resistive load, defined with resistance RL.

We can start by making the following definitions from the figure:

rp,n =
l

σp,nA

V = Spn(TH − TC) = Spn∆T

(A.1)

Here, rp,n represents the resistance in each of the two elements which are in turn defined by
their lengths l, and cross-sectional areas A, and respective electrical conductivities σp,n. Voltage
generation is defined by V , where Spn is the difference between the Seebeck coefficients of the
two elements and ∆T is the difference in temperature between the hot and cold junctions. The
Seebeck coefficients relate voltage to a temperature gradient [30].

With these definitions, we can calculate the power of this generator, where IL, current
through the load resistor, is the voltage divided by total resistance by Ohm’s Law. The power
is then the resistance at the load, RL, multiplied by the square of the current.

IL =
Spn∆T

rp,n + RL

W = I2LRL =
S2
pn∆T 2RL

(rp,n + RL)2

(A.2)
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Figure A.1: A basic thermoelectric generator and its efficiency with temperature. An example
of a basic thermoelectric generator (TEG) is shown in the right panel. A hot junction with temperature
TH is separated from a cold junction with temperature TC by n-type and p-type semiconductors. They are
connected in series and create a circuit with current IL and load resistance RL. Thermal power absorbed
at the hot junction is QH and thermal power released at the cold junction is QC . The left panel is the
relationship between the temperature of the hot junction and the resulting efficiency for different values
of the dimensionless figure of merit. TC has been set to 300 K. When Z equals infinity, the Carnot
efficiency, or the maximum efficiency for a TEG, is reached.

We can analyze the efficiency of this thermoelectric generator by considering that efficiency,
η, is the relationship between W and the thermal power absorbed at the hot junction, QH , as
shown in eq. A.3.

η = W/QH (A.3)

The denominator of eq. A.3, QH , depends on three components: the Peltier effect, QP , ther-
mal conductance, QTC , and the Joule effect, QJ . The Peltier effect is the heat energy emitted
due to an electrical current going through the hot and cold junctions, and the Joule effect is the
same heat energy but for a current passing through resistance [30]. The thermal conductance
term depends on the thermal conductance in each of the two elements: kp,n. Thermal conduc-
tance explains how heat flows in a given cross-section of a material. Therefore, the thermal
power absorbed at the hot junction, QH , is the Peltier effect plus the thermal conductance of
the two elements, minus the heat energy at the load resistance.

QH = QP + QTC −QJ = THSpnIL + (kp,n)∆T − rp,nI
2
L

2
(A.4)

Combining the formulas for QC and QH , ηmax becomes:

η =

S2
pn∆T 2RL

(rp,n+RL)2

THSpnIL + (kp,n)∆T − rp,nI2L
2

(A.5)
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The equation for current, IL, can be filled in to achieve our full equation:

η =

S2
pn∆T 2RL

(rp,n+RL)2

THS2
pn∆T

(rp,n+RL)
+ (kp,n)∆T − S2

pn∆T 2rp,n
2(rp,n+RL)2

(A.6)

Next, we simplify this equation and highlight the ∆T/TH term. It has been separated from
the other variables because this describes the Carnot efficiency. The Carnot cycle describes a
thermodynamically reversible process in which the temperatures of the hot and cold junctions
are used to maximize efficiency, and the maximum amount of heat that can be converted into
electrical power is known as the Carnot efficiency. The rest of the equation therefore explains
the imperfections of a real system which keep ηmax from reaching unity. We will come back to
this concept at the end of the derivation.

η =

(
∆T

TH

)
×

RL
(rp,n+RL)

1 +
(kp,n)(rp,n+RL)

THS2
pn

− ∆Trp,n
2(rp,n+RL)TH

(A.7)

The following substitution, m = RL
rp,n

can be made to further simplify the equation:

η =

(
∆T

TH

)
×

m
m+1

1 +
rp,n(kp,n)(m+1)

THS2
pn

− ∆T
2TH(m+1)

(A.8)

We define another new variable, the figure of merit, which is also used to simplify the
equation:

Z =
S2
pn

(rp,n)(kp,n)
(A.9)

Combining eq. A.9 and eq. A.8, we are left with

η =

(
∆T

TH

)
×

m
m+1

1 + m+1
ZTH

− ∆T
2TH(m+1)

. (A.10)

The load resistance, RL, can be used to optimize the efficiency, which will be written as
ηmax. This occurs when RL = rp,n

√
1 + ZT , continuing with the m = RL

rp,n
relationship. The

variable T = TH+TC
2 is the average temperature between the two junctions in this case.

ηmax =

(
∆T

TH

)
×

√
1 + ZT − 1√

1 + ZT + TC
TH

(A.11)

Finally, we can rewrite eq. A.9 in order to view ZT in its more commonly viewed form,
which depends on electrical conductivity instead of resistance, thermal conductivity, κ instead
of thermal conductance, and once again the Seebeck coefficient.

ZT =
S2σ

κ
T (A.12)

The efficiency of a TEG is therefore influenced by ZT , TH , and TC . In the left panel of
Fig. A.1, the relationship between the temperature of the hot junction and the resulting efficiency
for several different values of the dimensionless figure of merit are shown for TC = 300 K. As seen
in the figure, for this given temperature range, efficiency is between 20 and 30% for Z values of
1-2, which is the range of values for most state-of-the-art thermoelectric materials at the time
of writing (see Fig. 1.1). The Carnot efficiency, ∆T/TH , is also plotted for reference.
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APPENDIX B

Raw Data from TRISP@FRM-II Neutron
Resonance Spin Echo Experiment

The raw data from the Neutron Resonance Spin Echo (NRSE) measurements for the type-I
clathrate Ba7.81Ge40.67Au5.33, described in Section 3.1.9.5, are detailed below. Measurements
were taken on the thermal-neutron triple-axis spectrometer TRISP@FRM-II at 300 K and using
a fixed kf = 2.51 Å−1. The single crystal was aligned into the [110][001] scattering plane, and
the measurements focused on the transverse acoustic phonon dispersion polarized along the [001]
direction, propagating along the [110] direction (TA001

110), for phonons stemming from the intense
(006) Bragg peak.

The locations of the 7 points along the TA001
110 dispersion are labeled in Fig. B.1, which has

been adapted from Fig. 3(a) of Turner et al. [57]. Table B.1 summarizes the q-position, energy,
group velocity, and resulting linewidth of each point.

Fig. B.2 displays the raw intensity and their respective cosine fits measured for the given spin-
echo time τNRSE listed in each subplot for ‘q1’ from Fig. B.1. The polarization is extracted from
each fit and then plotted in Fig. B.9(i) as the uncorrected datapoints in blue. Two corrections
are made to the data: the curvature correction (orange) and instrumental resolution correction
(purple). (Please see Section 3.1.9 for more details.) Finally, the half-width-half-maximum of
the linewidth, ΓHWHM, is extracted from the corrected datapoints in green, and this value is used
to plot Fig. 3.16 in Section 3.1.9. This process is repeated for Figs. B.3-B.8 and Fig. B.9(ii)-(vii),
respectively.
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Figure B.1: Reciprocal space location of the 7 TRISP q-points. This figure has been adapted
from Fig. 3(a) of Turner et al. [57]. The transverse acoustic phonon dispersion polarized along the [001]
direction, propagating along the [110] direction and similarly polarized higher-energy optical branches for
the type-I clathrate Ba7.81Ge40.67Au5.33 are shown. Phonons are propagating from the (006) Bragg peak,
labeled Γ006, towards the (116) zone center, Γ116. These, and the Brillouin zone (BZ) are marked by black
solid lines. The 7 q-points of interest for the Neutron Resonance Spin Echo measurement are labeled in
blue by dashed lines.

Table B.1: Summary of experimental parameters of each q point measured from the TA001
110 phonon

dispersion using the Neutron Resonance Spin Echo technique at TRISP@FRM-II. See text for more
details. For each q labeled in Fig. B.1, the phonon wavevector in r.l.u. and Å−1, along with its energy,
group velocity, and resulting half-width-half-maximum linewidth. Note that the r.l.u. values are negative,
reflecting the necessary defocusing condition with respect to a TAS measurement (see Fig. 3.8), while I
have given the absolute value Å−1 values in order for the reader to link these values to the q points on
the dispersion shown in Fig. B.1.

q ( ξ ξ 0) (r.l.u.) q (Å−1) E (meV) vg (meV.Å) ΓHWHM (µeV)

q1 -0.143 0.118 2.000 ± 0.005 16.295 ± 0.044 13.810 ± 2.310

q2 -0.175 0.144 2.437 ± 0.006 15.649 ± 0.165 19.919 ± 2.786

q3 -0.208 0.171 2.846 ± 0.007 14.235 ± 0.300 36.206 ± 2.707

q4 -0.240 0.197 3.159 ± 0.010 13.562 ± 0.049 34.377 ± 3.521

q5 -0.265 0.218 3.478 ± 0.006 13.425 ± 0.289 30.432 ± 3.378

q6 -0.300 0.247 3.848 ± 0.007 12.636 ± 0.277 34.884 ± 4.286

q7 -0.338 0.278 4.214 ± 0.011 11.203 ± 0.284 47.350 ± 4.374
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Figure B.2: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q1 = (-0.143
-0.143 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.3: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q2 = (-0.175
-0.175 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.4: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q3 = (-0.208
-0.208 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.5: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q4 = (-0.240
-0.240 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.6: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q5 = (-0.265
-0.265 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.7: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q6 = (-0.300
-0.300 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.8: Raw intensity of a neutron resonance spin echo (NRSE) measurement for the given spin-
echo times τNRSE (written simply as τ in the plots to save space), reflecting data taken for q7 = (-0.338
-0.338 0) (see Table B.1). Data have been fit with a cosine() function and an arbitrary background set
to zero in order to extract the polarization dependence. Measurement was made on the thermal-neutron
triple-axis spectrometer TRISP@FRM-II for the type-I clathrate Ba7.81Ge40.67Au5.33. See text for more
details.
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Figure B.9: Summary of the polarization dependence vs spin-echo time of each q-point listed in Ta-
ble B.1. Uncorrected datapoints (blue circles) come from the fits made in Figs. B.2-B.8. Datapoints in
green reflect corrections made due to the instrumental resolution (purple dash-dotted line) and the cur-
vature correction (orange dotted line). The uncorrected and corrected data have been fit with exponential
curves, blue solid line and green dashed line, respectively, which are used to extract the half-width-half-
maximum of the phonon linewidth, also given in Table B.1.
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Johnson, H. Schober, Y. Sidis, F. Bourdarot, L. P. Regnault, J. Ollivier, S. Paschen,
Y. Grin, and M. de Boissieu, Nature Communications 8, 491 (2017).

[28] V. Kuznetsov and P. Edwards, ChemSusChem 3, 44 (2010).

[29] Z.-G. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Progress in Natural Science: Materials
International 22, 535 (2012).

[30] T. Takabatake, K. Suekuni, T. Nakayama, and E. Kaneshita, Reviews of Modern Physics
86, 669 (2014).

[31] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons Inc, 2004).

[32] P. G. Klemens, Proceedings of the Physical Society. Section A 68, 1113 (1955).

[33] J. Callaway, Phys. Rev. 113, 1046 (1959).

[34] W. A. Kamitakahara and B. N. Brockhouse, Phys. Rev. B 10, 1200 (1974).

[35] G. M. Eliashberg, Soviet Physics JETP 11, 696 (1960).

[36] V. V. Kabanov and A. S. Alexandrov, Phys. Rev. B 78, 174514 (2008).

[37] C. Gadermaier, A. S. Alexandrov, V. V. Kabanov, P. Kusar, T. Mertelj, X. Yao, C. Man-
zoni, D. Brida, G. Cerullo, and D. Mihailovic, Physical Review Letters 105, 257001 (2010).

[38] C. Gadermaier, V. V. Kabanov, A. S. Alexandrov, and D. Mihailovic, Journal of Applied
Physics 111, 112605 (2012).

[39] P. B. Allen, Physical Review Letters 59, 1460 (1987).

[40] M. Kaviany, Heat Transfer Physics (Cambridge University Press, 2008).

[41] G. A. Slack (Academic Press, 1979) pp. 1–71.

172

https://doi.org/https://doi.org/10.1016/j.mattod.2017.02.007
https://doi.org/https://doi.org/10.1016/j.mattod.2017.02.007
https://doi.org/10.1021/jacs.9b13272
https://doi.org/10.1021/jacs.9b13272
https://doi.org/10.1021/nl504624r
https://doi.org/10.1039/C5CP02900G
https://doi.org/10.1039/c1jm11754h
https://doi.org/10.1039/c1jm11754h
https://doi.org/10.1038/nmat2273
https://doi.org/10.1103/PhysRevLett.113.025506
https://doi.org/10.1038/s41467-017-00584-7
https://doi.org/10.1002/cssc.200900190
https://doi.org/10.1016/j.pnsc.2012.11.011
https://doi.org/10.1016/j.pnsc.2012.11.011
https://doi.org/10.1103/revmodphys.86.669
https://doi.org/10.1103/revmodphys.86.669
https://www.ebook.de/de/product/4290142/charles_kittel_introduction_to_solid_state_physics.html
https://doi.org/10.1088/0370-1298/68/12/303
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRevB.10.1200
https://doi.org/10.1103/PhysRevB.78.174514
https://doi.org/10.1103/PhysRevLett.105.257001
https://doi.org/10.1063/1.4726164
https://doi.org/10.1063/1.4726164
https://doi.org/10.1103/PhysRevLett.59.1460
https://doi.org/10.1017/CBO9780511754586


Bibliography

[42] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).

[43] D. G. Cahill and R. O. Pohl, Physical Review B 35, 4067 (1987).

[44] R. Berman, Phys. Rev. 76, 315 (1949).

[45] R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).

[46] R. Zorn, Physics 4, 44 (2011).

[47] A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer,
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