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“However difficult life may seem, there is always something you can

do, and succeed at. It matters that you just don’t give up"

Stephen Hawking
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Abstract

In current wireless communication systems, the knowledge of the instantaneous

channel coefficients or the so-called Channel State Information (Channel State In-

formation (CSI)) is required in order to adapt the transmitter and receiver to the

current channel conditions. It is usually carried out through the transmission of

pilot/training symbols to the receiver side for a reliable channel estimation. Never-

theless, CSI acquisition is not free of charge, and achieving accurate CSI estimation

is a challenging task in practice. This is due to two major obstacles, i.e.,. fast varia-

tion of the channel conditions causing impaired channel estimation, and significant

overhead in training sequence with the increase of the number of antennas in a

Multiple-input Multiple-output (Multiple-Input Multiple-Output (MIMO)) system,

which takes up a large portion of the available spectral and power resources. In

this context, non-coherent systems, which do not require channel knowledge at nei-

ther transmitter nor receiver become an attractive solution for the above mentioned

issues. Differential schemes are commonly used for non-coherent systems ; among

those are differential space-time modulation (DSTM) schemes.

It is within this context that this thesis aims to explore the possibilities of en-

hancing the performance of DSTM systems in terms of spectral efficiency and error

performance through a thorough analysis of different constellations used for this

scheme. The first part of the thesis introduces non-coherent systems, the advantages

they offer and the challenges they face. More specifically, it surveys systems based

on differential modulation and how the research community participated in studying

and enhancing existing solutions.

The contributions of this thesis are divided into three parts. In the first part, the

thesis investigates differential group codes and the use of the the multiplicative Weyl
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group of unitary matrices in a DSTM MIMO system having two transmit antennas.

In the efforts of enhancing the error performance of the mentioned system, and given

that the distance between the information matrices is used as a performance metric,

the thesis thoroughly studies the distance spectrum of the information matrices

employed, and a selection algorithm is proposed. In addition, optimal mapping based

on the distance between selected information matrices and the Hamming distance

between binary data vectors is proposed. Moreover, in the aim of increasing the

maximum achievable spectral efficiency of the proposed DSTM system, a simple

and double extension of the Weyl group are proposed and their performance is

studied.

The second part handles the expansion of the DSTM MIMO system from two

transmit antennas to four and eight transmit antennas through the use of the Kro-

necker product of matrices of the Weyl group. This is followed by the performance

study of the DSTM system in a more realistic continuously fading channel model.

The final part of the thesis studies the performance of the two transmit antennas

DSTM system analytically, and proposes the pairwise error probability as a new

metric for the selection of the optimal matrices, which then leads to the conception

of an optimal matrix selection algorithm and an optimal mapping strategy based on

PEP and Hamming distance.
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Résumé en Français

Aujourd’hui les techniques multi-antennaires MIMO (Multiple Input Multiple

Output) et Massive MIMO sont très présentes dans les différents systèmes de com-

munications sans fils. Cependant, ces schémas nécessitent de disposer en réception

d’une estimation de la réponse de chaque canal entre chaque antenne d’émission et

de réception, ce qui, dans beaucoup de cas, peut diminuer fortement l’efficacité spec-

trale finale de ces systèmes. Cette thèse a pour but d’explorer une solution alterna-

tive reposant sur l’utilisation de schémas de modulation différentielle espace-temps

(DSTM) pour ces systèmes MIMO non cohérents ne nécessitant pas de disposer

d’une estimation de la réponse du canal en réception.

Dans cette thèse, nous nous concentrons sur les performances des systèmes non

cohérents, plus spécifiquement, nous étudions les schémas de modulation différen-

tielle espace-temps (Differential Space-Time Modulation (DSTM)) pour les systèmes

MIMO.

Le groupe multiplicatif de Weyl se presente comme un ensemble approprié pour

être employé par le schéma DSTM, étant donné la nature unitaire des matrices qui le

composent. Nous décrivons d’abord l’utilisation du groupe de Weyl dans le schéma

DSTM pour les systèmes MIMO ayant deux antennes d’émission. Ensuite, afin de

résoudre le problème de l’efficacité spectrale limitée réalisable que ce groupe offre,

nous proposons d’utiliser une extension simple et double en appliquant des rotations

sur l’ensemble des matrices du groupe considéré. Les groupes générés sont ensuite

analysés en profondeur, et un algorithme de recherche est conçu, sélectionnant les

matrices d’ information à employer en fonction de la métrique de distance entre

les matrices candidates, et une stratégie de mapping optimale basée sur la distance

entre les matrices d’informations et la distance de Hamming des vecteurs binaires
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qui est suivie d’une analyse des performances d’erreur du système étudié.

Par la suite, nous avons cherché à augmenter le nombre d’antennes d’émission

du système DSTM MIMO afin d’augmenter la robustesse du système. Pour ce faire,

on a conçu d’autres matrices unitaires, de taille 4 × 4 ou 8 × 8 en appliquant le

produit Kronecker, ce qui a permis de produire des matrices adaptées aux schémas

DSTM à quatre et huit antennes de transmission. Néanmoins, l’augmentation du

nombre d’antennes d’émission a réduit l’efficacité spectrale maximale réalisable du

système DSTM. Nous abordons ce problème en appliquant les extensions simples et

doubles sur les groupes nouvellement générés. L’algorithme de recherche est utilisé

pour sélectionner les matrices d’information des groupes nouvellement générés et la

performance d’erreur du système est analysée.

Dans la suite, le système DSTM pour deux, quatre et huit antennes d’émission est

étudié dans un modèle de canal à évanouissement continu, plus réaliste, plutôt que

dans le modèle de canal pas à pas classique, utilisé dans la littérature et les études

précédentes sur les performances d’erreur. Le modèle de canal décrit un scénario de

cas réel, où le canal varie légèrement avec chaque colonne de la matrice transmise

(durée du symbole). L’effet de la variation de la matrice de canal et du temps de

cohérence sur les performances du système est analysé.

Au final, nous utilisons les résultats analytiques d’une précédente étude sur les

systèmes DSTM, afin d’évaluer la probabilité d’erreur exacte par paire (Pair-Wise

Error Probability (PEP)) et la limite supérieure de la PEP. Les résultats de simu-

lation produits sont validés par l’étude analytique. Cela a conduit à la conception

d’un algorithme de sélection optimale de matrices, ayant comme mesure de perfor-

mance la valeur exacte de la PEP entre les couples de matrices. Les performances

d’erreur du système MIMO DSTM dans le cadre du nouvel algorithme de sélection

sont supérieures aux résultats obtenus avec la méthode de sélection précédente.

Le résumé en français présente une synthèse des principaux résultats obtenus par

chacun des chapitres.
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Chapitre 1 : Etat de l’art

Les systèmes MIMO sont apparus comme une technologie susceptible d’amé-

liorer considérablement les taux d’erreur réalisables par un système "Single-Input

Single-Output" Single-Input Single-Output (SISO), et des travaux approfondis sur

cette technologie ont commencé à la fin des années 1990 avec des efforts pour dé-

velopper des techniques de codage et de traitement du signal pouvant s’approcher

de la capacité des canaux MIMO. Cependant, ces éléments nécessitent de disposer

en réception voire à l’émission d’une estimation de la réponse de chaque canal entre

chaque antenne d’émission et chaque antenne de réception pour la mise en oeuvre de

la démodulation cohérente. Le nombre de séquences pilotes devant dans ce cas être

insérées pour l’estimation du canal est proportionnel au nombre d’antennes utilisées

à l’émission, ce qui diminue fortement l’efficacité spectrale finale du système. Une

solution alternative repose sur l’utilisation de schémas MIMO différentiels. Toute-

fois, lorsque ces conditions s’avèrent difficiles à estimer, le système peut effectuer

une détection non cohérente.

Nous nous concentrons sur une famille de codes inspirés des DSTM (Differential

Space-Time Modulation), appelés groupes de codes différentiels (DGC). Les schémas

DGC sont basés sur des matrices de signaux qui forment un groupe mathématique

sous l’opération de multiplication. Au cours des dernières années, les schemas dif-

ferentieles ont a été intégrés aux schémas de modulation spatiale afin de tenter de

réduire les complexités excessives rencontrées dans les DGC et les "Differential Li-

near Dispersion Codes" DLDC. De plus, le concept de transmission différentielle

a été intégré dans la modulation spatiale qui a été développée pour inclure une

constellation de signaux "Quadrature Amplitude Modulation" QAM. Ensuite, afin

d’obtenir une diversité de transmission bénéfique, un schéma de "Differential Spatial

Modulation" DSM en "Radio Frequency" RF unique est conçu.
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Chapitre 2 : DSTM utilisant des extensions du groupe

Weyl

Dans ce chapitre, nous développons l’utilisation du groupe de Weyl multiplicatif

de matrices unitaires de 2× 2 pour le système DSTM.

Génération du groupe Weyl

Le groupe de Weyl est composé de 192 matrices unitaires qui forment le groupe

sous operation de multiplication. Le groupe multiplicatif de Weyl est désigné par

Gw2 et comporte 12 cosets {C0, C2 . . . , C11}, chacun contenant 16 matrices unitaires

(donc inversibles).

Pour un groupe P donné, l’efficacité spectrale maximale est donnée par :

Rmax = (1/M)blog2|P|c bps/Hz (1)

où |P| désigne la cardinalité du groupe. Ainsi le groupe Weyl atteint une efficacité

spectrale maximale de 3.5 bps/Hz.

Extension simple

Dans le but d’augmenter l’efficacité spectrale maximale, nous proposons de gé-

nérer un nouveau groupe multiplicatif, que nous appelons Gwe2. Nous effectuons une

rotation optimale des matrices du groupe Gw2 en les multipliant par e
jπ
8 . Le groupe

de Weyl étendu Gwe2 améliore l’efficacité spectrale maximale à 4 bps/Hz pour un

système MIMO avec 2 antennes d’émission :

Gwe2 = Gw2 ∪ Gw2e
jπ
8 (2)

Double extension

En suivant la même méthode et afin d’augmenter encore l’efficacité spectrale

maximale réalisable, nous proposons une double extension du groupe de Weyl en
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multipliant Gwe2 par e
jπ
16 qui correspond à la constellation 32-PSK. Ainsi, l’effica-

cité spectrale maximale devient égale à 4,5 bps/Hz pour un système MIMO avec 2

antennes d’émission :

Gwee2 = Gwe2 ∪ Gwe2e
jπ
16 (3)

Algorithme de sélection matricielle

Dans ce travail, un algorithme de sélection des matrices est proposé, maximisant

les distances entre les matrices sélectionnées afin d’obtenir le meilleur sous-ensemble

S à utiliser pour une efficacité spectrale donnée où nous devons utiliser K = 2n ma-

trices sélectionnées dans le groupe P (n étant la longueur du vecteur d’information

binaire). L’algorithme de sélection des matrices est le suivant :

1. La première matrice M1 du groupe P , qui est en fait la matrice d’identité

IM (ici M = 2), est insérée dans l’ensemble S comme référence (S1 = M1)

où S1 ∈ S. S est de taille K qui est déterminée par l’efficacité spectrale

souhaitée.

2. La distance D(M1,Mi) est calculée pour toutes les matrices Mi ∈ P \ {M1},

puis Dmax = maxD(M1,Mi). S2 est inséré dans S comme la matrice avec

D(M1,Mi) = Dmax. Si plusieurs matricesMi ont la même distance maximale

Dmax avecM1, alors on en choisit une au hasard pour l’insérer dans S comme

S2.

3. Pour chaque matrice non sélectionnée Mi ∈ P \ {S}, on calcule le vecteur

DMi
= [D(Mi, S1) . . . D(Mi, Sk)], où k est le nombre de matrices déjà sélec-

tionnées pour l’ensemble S.

4. Les valeurs du vecteur DMi
sont triées par ordre croissant.

5. Nous retenons les vecteurs DMi
qui ont la valeur minimale maximale. Si un

seul vecteur DMi
est retenu, alors Mi est ajouté à S. Si plusieurs vecteurs

DMi
sont retenus, alors les secondes valeurs des vecteurs retenus sont compa-

rées et celles ayant la seconde valeur la plus élevée sont retenues. Si un seul

vecteur DMi
est retenu, alors Mi est ajouté à S. Si plusieurs vecteurs DMi
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sont retenus, alors les troisièmes valeurs des vecteurs retenus sont comparées.

Cette comparaison peut se poursuivre jusqu’aux dernières valeurs des vec-

teurs DMi
. Si, au final, toutes les valeurs des vecteurs DMi

sont identiques,

on en choisit une au hasard. Enfin, un nouveau vecteur Mi est ajouté à S.

6. Les étapes 3 à 5 sont itérées pour obtenir l’ensemble S ayant des matrices K

sélectionnées dans le groupe P .

Le processus d’extension et l’algorithme de recherche appliqués permettent, pour

une efficacité spectrale similaire, de sélectionner des matrices plus performantes en

termes de distance dans les nouveaux groupes. Cela est évident lorsque l’on examine

dans figure 1 les performances du système 2 × 2 DSTM pour la même efficacité

spectrale de 3.5 bps/Hz mais pour des différents groupes.

Figure 1 – Performance of the selected sets of matrices for Gw2 and Gwe2 (or

Gwee2) for 3.5 bps/Hz

Résultats de la simulation

Le taux d’erreur binaire (TEB) en fonction du rapport signal/bruit (SNR) du

système MIMO DSTM utilisant des antennes d’émission M = 2 et des antennes de
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réception N = 2 pour les efficacités spectrales 1, 2, 3, 4, 4,5 bps/Hz et utilisant Gwee2
est présenté sur la figure 2.

SNR (dB)
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1 bps/Hz Gwee2

2 bps/Hz Gwee2

3 bps/Hz Gwee2

4 bps/Hz Gwee2

4.5 bps/Hz Gwee2

Figure 2 – Performances BER du système DSTM MIMO 2 × 2 pour différentes

efficacités spectrales

Chapitre 3 : Systèmes DSTM utilisant 4 et 8 antennes

Dans ce chapitre, nous étendons le système DSTM MIMO de 2 × 2 à 4 × 4 et

8 × 8 grâce à l’utilisation du produit Kronecker sur le groupe Weyl. De plus, nous

appliquons des extensions aux groupes multiplicatifs de matrices unitaires nouvel-

lement générés de 4 × 4 et 8 × 8 dans le but d’augmenter leur efficacité spectrale

maximale réalisable.

Système DSTM utilisant 4 antennes de transmission

Afin d’étendre notre système DSTM MIMO à 4 antennes de transmission, l’opé-

ration du produit Kronecker est appliquée sur Gw2.
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Expansion de Gw2 à Gw4

Pour un système MIMO utilisant 4 antennes d’émission et avec l’hypothèseM =

T en place, nous devons utiliser des matrices d’émission de taille 4 × 4. Lorsque

le produit Kronecker est appliqué à Gw2, un groupe de matrices unitaires de 4 × 4

Gw4 = Gw2⊗Gw2 est obtenu. Ainsi, pour un système MIMO de 4 antennes d’émission,

l’efficacité spectrale maximale est réduite à Rmax = 1
4
blog24608c = 3 bps/Hz.

Simple extension de Gw4

En effet, cette diminution de l’efficacité spectrale devient plus sévère avec une aug-

mentation supplémentaire du nombre d’antennes de transmission. C’est pourquoi il

devient important d’étendre le groupe Gw4 dans le but d’augmenter l’efficacité spec-

trale maximale réalisable. Nous proposons d’utiliser une extension du groupe Gw4 en

utilisant :

Gwe4 = Gw4 ∪ Gw4e
jπ
8 (4)

Gwe4 est capable d’améliorer l’efficacité spectrale maximale à 3,25 bps/Hz par rap-

port à l’efficacité spectrale maximale de 3 bps/Hz pour Gw4.

Double extension de Gw4

En essayant d’augmenter encore l’efficacité spectrale réalisable, nous appliquons

la double extension à travers :

Gwee4 = Gwe4 ∪ Gwe4e
jπ
16 (5)

Ce qui porte l’efficacité spectrale maximale réalisable à 3,5 bps/Hz.

Analyse des performances d’erreur

La figure 3 montre les simulations de taux d’erreur binaire par rapport aux SNR

des systèmes 4× 4 utilisant Gwee4 pour différentes efficacités spectrales.
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Figure 3 – BER performance of DSTM MIMO 4× 4 system for different spectral

efficiencies

Système DSTM utilisant 8 antennes de transmission

En adoptant la même méthode que celle utilisée pour générer les matrices uni-

taires 4× 4, nous appliquons le produit Kronecker entre Gw2 et Gw4 afin de produire

des matrices de taille 8 × 8 adaptées aux systèmes MIMO employant 8 antennes

d’émission. Le groupe généré Gw8 = Gw4 ⊗ Gw2 a son efficacité spectrale maximale

encore plus réduite à Rmax = 1
8
blog2110592c = 2 bps/Hz.

Simple et double extension de Gw8

Pour un système à 8 antennes d’émission, l’efficacité spectrale maximale est ré-

duite de 3,5 bps/Hz en employant le groupe Gw2 dans les systèmes à 2 antennes

d’émission à 2 bps/Hz. Dans le but de résoudre la question d’une diminution impor-

tante de l’efficacité spectrale, et de manière similaire aux extensions précédemment

effectuées, nous étendons le Gw8 à travers :

Gwe8 = Gw8 ∪ Gw8e
jπ
8 (6)
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puis

Gwee8 = Gwe8 ∪ Gwe8e
jπ
16 (7)

permettant une augmentation à 2,25 bps/Hz pour Gwee8.

Analyse des performances d’erreur du système DSTM à 8 an-

tennes de transmission

La figure 4 présente ensuite la simulation du TEB par rapport au SNR pour les

systèmes MIMO DSTM ayant M = 8 et N = 8 et utilisant les matrices du groupe

Gwee8 et intervalle de cohérence normalisé L = 120 pour les efficacités spectrales 0,5,

1, 2 bps/Hz.
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100

B
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Figure 4 – Performance TEB du système DSTM MIMO 8 × 8 pour différentes

efficacités spectrales utilisant Gwee8

xiv



Chapitre 4 : Performances des systèmes DSTM dans

un canal variant dans le temps

Dans ce chapitre, plutôt que d’utiliser le modèle classique "step channel", où

le canal reste constant durant la transmission d’une trame et change aléatoirement

d’une trame à l’autre, nous proposons un nouveau modèle de canal sélectif dans le

temps pour lequel nous étudions les performances du système DSTM. Le nouveau

modèle de canal représente un scénario de cas réel.

Modèle de canal sélectif dans le temps

D’après le théorème d’échantillonnage de Nyquist, on sait que si le canal est

échantillonné avec une fréquence au moins égale au double de la composante de

fréquence maximale du signal, la réponse impulsionnelle du canal peut être recons-

truite par les points échantillonnés. Cette méthode est utilisée dans le modèle de

canal conçu.

Description du modèle

On considère un système MIMO M ×N , transmettant une matrice T ×M , où

T est le nombre de symboles dans une matrice transmise par chaque antenne et

T = M est supposé. On considère que L est le temps de cohérence normalisé, ce

qui signifie que Nm = L
M

symboles sont transmis pendant l’intervalle de cohérence.

Ensuite, les L − 1 matrices de canaux, H(1), H(2), . . . , H(L − 1) sont interpolées

entre 2 matrices successives générées de façon aléatoire R(K) et R(K + 1) au lieu

de considérer une matrice constante R(K). Le processus est décrit comme suit :

1. 2K de matrices distribuées de Rayleigh sont générées, c’est-à-dire,R(1), R(2), . . . , R(2K).

2. En utilisant la formule de Nyquist, L− 1 matrices de canal sont générées.

Les matrices aléatoires de Rayleigh R(K) agissent comme les échantillons d’une

matrice de canal continuH séparés par le temps de cohérence de cohérence T0 = Tc =

L × Ts. Avec les matrices générées aléatoirement 2K, on obtient par interpolation
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t=0 

R(0) R(1) 

T0=LTs T0=LTs 

R(2) 

t=LTs t=2LTs 

… 
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… 

H(1) 
Hi 

MTs 

Ts Ts Ts 
… 

H(2) 

H(M+1) 

Initialization 

… 

R(K+1) 

(K+1)LTs 

H(M) 

Transmission of  
the first matrix 

… Ts Ts Ts 

H((Nm-1)MTs) 

Transmission of 
the last matrix 

… 

R(2K) 

Figure 5 – Modèle de canal Rayleigh continu

L− 1 matrices de canal entre R(K) et R(K + 1) :

H(1) = R(K) (8)

H(i+ 1) =
2K∑
k=1

R(k)
sinπ(f0t− k)

π(f0t− k)

=
2K∑
k=1

R(k)
sinπ(K + i

L
− k)

π(K + i
L
− k))

où,

f0t(i) = K +
i

L
(9)

Dans ce modèle, les matrices Hi(l), où l = 1,M , sont utilisées pour initialiser le pro-

cessus différentiel (émission de la matrice identité) . Les matrices Hi sont multipliées

avec la colonne l de la matrice identité., et sont obtenues comme suit :

Hi(l) =
2K∑
k=1

R(k)
sinπ(K − (M+1)−l

L
− k)

π(K − (M+1)−l
L

− k))
(10)

l = 1,M

Cette procédure est illustrée dans la figure 5.

Analyse des performances

Analyse des performances des systèmes à 2, 4 et 8 antennes

d’émission

La figure 6 présente les résultats des simulations du TEB en fonction du rap-

port signal/bruit (SNR) du système DSTM pour les systèmes comportant 2, 4 et 8
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(a) 2 antennes d’émission (b) 4 antennes d’émission

(c) 8 antennes d’émission

Figure 6 – Performances TEB des systèmes DSTM MIMO 2× 2, 4× 4 et 8× 8 en

fonction du temps de cohérence normalisé
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antennes d’émission pour différents valeurs du temps de cohérence normalisé noté

L.

Chapitre 5 : Analyse du système DSTM avec une

nouvelle métrique d’optimisation

Dans ce chapitre, inspirés du travail analytique réalisé en [1], nous menons une

analyse analytique des matrices du groupe de Weyl afin de produire des expressions

de la limite supérieure et exacte de la probabilité d’erreur par paire (PEP). Les ré-

sultats théoriques sont ensuite comparés aux résultats de simulation pour validation.

Par conséquent, la PEP exacte est utilisée comme nouveau critère d’optimisation

dans la sélection optimale des matrices d’information, ce qui conduit à des amélio-

rations des performances d’erreur du système DSTM.

D’après [1], l’expression pour la PEP exacte du DSTM dans des canaux à éva-

nouissements rapides (les coefficients de canal changent avec chaque matrice trans-

mise) spatialement indépendants est donnée par :

P (Si,Sj) =
1

π

∫ π
2

0

L∑
l=1

µl∑
p=1

cp,l
( sin2θ

sin2θ + 1
2
γλl

)p
dθ

=
1

2

{ L∑
l=1

µl∑
p=1

cp,l

−
L∑
l=1

µl∑
p=1

cp,l

√
γλl

2 + γλl

p−1∑
q=0

(
2q

q

)( 1

4 + 2γλl

)q}
=

1

2
− 1

2

L∑
l=1

√
γλl

2 + γλl

µl∑
p=1

cp,l

p−1∑
q=0

(
2q

q

)( 1

4 + 2γλl

)q (11)

Canaux à évanouissements lents spatialement indépendants

Les canaux à évanouissement lent spatialement indépendants peuvent être consi-

dérés comme un cas particulier des canaux à évanouissements rapides spatialement

indépendants où le taux d’évanouissement fDTB = 0 où fD est la fréquence Doppler

maximale et TB est la durée pour transmettre une matrice. Dans ce cas d’évanouis-
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sement lent, A = IMN , G = 0MN , et Zk−1 = IMN . Par conséquent, la PEP exacte

est toujours donnée par (11) avec γ se réduit maintenant à

γ =
E2
s

2σ2
v(2Es + σ2

v)
(12)

Borne supérieure de la PEP

Il est à noter que la borne de Chernoff peut être dérivée de cette approche basée

sur le "Moment Generting Function" MGF. En substituant l’expression susmen-

tionnée de γ et en fixant θ = π
2
, on peut observer que la PEP dans des canaux à

évanouissements lents spatialement indépendants peut être limitée par

P (Si,Sj) ≤
1

2

L∏
l=1

( 1

1 + E2
s

4σ2
v(2Es+σ2

v)
λl

)µl (13)

Cas particulier

En dérivant la PEP exacte du couple de matrices du groupe de Weyl et de

ses extensions, nous étudions la condition des valeurs propres de leur matrice de

distance : si pour la matrice de distance, il y a une seule valeur propre, on utilise le

cas particulier dans (14). Et sur cette base, nous dérivons la PEP soit selon le cas

particulier dans (14), soit selon le cas général dans (11) où il y a plusieurs valeurs

propres pour la matrice de distance.

P (Si → Sj) =
1

2

{
1−

√
γλ

2 + γλ

µ−1∑
q=0

(
2q

q

)( 1

4 + 2γλ

)q} (14)

Interprétation des résultats théoriques de la PEP

Afin de valider les expressions de PEP énoncées dans la section précédente, nous

produisons les valeurs théoriques (limite exacte et limite supérieure de la PEP) pour

les couples de matrices appartenant au groupe de Weyl. Ensuite, nous produisons

les résultats de simulation de la PEP exacte et de la limite supérieure des couples

de ces matrices dans le but de comparer les résultats théoriques et les résultats de

simulation. L’analyse des performances est donnée dans la figure 7.
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Figure 7 – Résultats théoriques et de simulation de la borne exacte et supérieure

sur PEP du couple de matrices (M6,M1) et (M7,M1) qui ont des distances similaires

Nouvel algorithme de recherche optimal basé sur la

valeur exacte de la PEP

Au lieu d’utiliser la distance entre les couples de matrices dans notre recherche

des matrices d’information optimales à employer dans le système DSTM, nous pro-

duisons toutes les valeurs PEP exactes entre les couples de matrices d’un groupe

donné selon les expressions de formes fermées conçues précédemment. Ensuite, en

utilisant les valeurs PEP générées, nous appliquons un algorithme de recherche op-

timal pour sélectionner les meilleures matrices possibles dans le but d’améliorer les

performances d’erreur du système.

L’algorithme de recherche optimal est le suivant : Soit P le groupe de matrices

candidates à la recherche, et S l’ensemble de matrices optimales à sélectionner.

1. La première matrice V1 de P est ajoutée à S comme première entrée (S1).

2. La deuxième matrice Vx2i à sélectionner (V2i ∈ P, V2i /∈ S) a la plus petite

valeur exacte de PEP (calculées pour une valeur SNR donnée) vers S1 :

Min(PEP (V2i → S1)). S’il existe plusieurs matrices ayant la plus petite
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valeur exacte de PEP, nous invoquons la recherche par arbre décrite dans

l’étape 6.

3. Pour la matrice suivante à ajouter à l’ensemble optimal S, nous produisons

l’ensemble P de valeurs PEP : P3i = [PEP (V3i → S1), PEP (V3i → S2)], où

V3i ∈ P, V3i /∈ S. Ce qui signifie qu’un ensemble P3i est créé pour chaque

matrice V3i . (P3 = [P31 ,P32 , . . . ]).

4. Les ensembles P3i sont triés par ordre décroissant, dans le but de sélectionner

la matrice appartenant à l’ensemble P3i ayant les valeurs maximales de PEP

les plus basses. Pour le faire, on compare les valeurs de PEP après avoir trié

l’ensemble par ordre croissant et choisi la première valeur la plus petite de

l’ensemble. Si les premières valeurs sont identiques, la deuxième valeur PEP

est vérifiée, et ainsi de suite jusqu’à la fin de l’ensemble.

5. Dans le cas où il reste un ensemble P3i (ayant un ensemble unique de PEPs

correspondant au "critère maximal le plus bas"), on choisit la matrice V3i qui

lui est associée.

6. Sinon, si plusieurs P3i ont le "critère maximal le plus bas", nous utilisons une

recherche par arbre.

(a) Supposons que les deux ensembles P31 et P32 correspondent au "critère

maximal le plus bas" et correspondent effectivement

(b) Nous effectuons une recherche optimale selon un "Tree Search" en ajou-

tant les matrices V31 (associées à P31) et V32 (associées à P32) à deux

ensembles optimaux temporaires Sα et Sβ respectivement.

(c) Nous exécutons l’algorithme de recherche de l’étape 3 dans les deux en-

sembles optimaux temporaires, pour chaque matrice ajoutée à chaque

ensemble, nous comparons à la fois Sα et Sβ de la même manière que

l’étape 4.

(d) Nous sélectionnons l’ensemble auquel la meilleure matrice a été ajoutée

(en termes de "critère maximal le plus bas"), nous voyons à quel ensemble

P31 ou P32 est lié et nous passons à l’étape 5.
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(e) Si pour les deux matrices ajoutées, les ensembles Sα et Sβ correspondent

toujours, nous continuons en relançant la recherche à partir de l’étape 3, et

ainsi de suite. Cette opération est répétée jusqu’à ce que nous atteignions

la taille requise de l’ensemble optimal. Dans ce cas, et si les ensembles Sα

et Sβ continuent de correspondre, nous en sélectionnons un au hasard et

nous poursuivons à partir de l’étape 5.

7. La matrice V3i est ensuite ajoutée à l’ensemble S, et nous répétons la re-

cherche à partir de l’étape 3 jusqu’à ce que nous atteignions la taille requise

en fonction de l’efficacité spectrale choisie.

Comparaison métrique de distance et métrique PEP

pour différentes efficacités spectrales

Sur la figure 8, on peut remarques que les performances observées avec la mé-

trique PEP sont bien meilleures que celle obtenue précédemment en utilisant la

métrique de distance. Si pour les efficacités spectrales de 3 et 3.5 bps/Hz la diffé-

rence est faible, elle devient bien plus intéressante pour les schémas à faible efficacité

spectrale de 1 et 2 bps/Hz.

Conclusion

Dans notre travail, le groupe de Weyl multiplicatif de matrices unitaires 2 × 2

Gw2 est utilisé comme constellation codée espace-temps du schéma DSTM. Dans un

premier temps, la taille de Gw2 est étendue par rotation optimale, produisant ainsi

le nouveau groupe multiplicatif de matrices unitaires Gwe2. Cette opération a pour

but d’augmenter l’efficacité spectrale maximale réalisable de Gw2 de 3,5 bps/Hz à

4 bps/Hz. Dans le même but, le premier groupe étendu Gwe2 est encore étendu par

rotation optimale au groupe multiplicatif de matrices unitaires Gwee2, augmentant

ainsi encore l’efficacité spectrale maximale réalisable à 4,5 bps/Hz. Dans cette par-

tie, nous avons utilisé la distance entre les couples de matrices comme mesure de

performance et un algorithme de sélection des matrices d’information ainsi qu’un
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Figure 8 – Comparaison entre la métrique de la distance et la métrique PEP pour

différentes efficacités spectrales en Gw2.

mappage optimal sont produits dans le but d’améliorer la performance d’erreur du

système qui est analysé par des résultats de simulation.

Dans un deuxième temps, Gw2 est étendu par l’utilisation de l’opérateur de pro-

duit de Kronecker, produisant le groupe multiplicatif Gw4 de matrices unitaires de

4×4. Ce groupe, comme précédemment, est étendu à Gwe4 et Gwee4, augmentant ainsi

l’efficacité spectrale maximale réalisable de 3 bps/Hz à 3,25 bps/Hz et 3,5 bps/Hz

respectivement. Le spectre de distance des groupes générés est étudié, ce qui conduit

à une analyse des performances de leurs résultats de simulation. En outre, le groupe

Gw8 de matrices unitaires 8× 8 est produit par l’utilisation du produit de Kronecker

de manière similaire, ce qui est suivi par la génération de ses extensions Gwe8 et Gwee8
qui augmentent encore l’efficacité spectrale maximale réalisable de 2 bps/Hz à 2,125

bps/Hz et 2,25 bps/Hz respectivement. Ces schémas sont ensuite étudiés dans un

modèle de canal à évanouissement continu plus réaliste.
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Ce travail de thèse se termine en utilisant le travail analytique de [1] pour dé-

terminer la performance des schémas DSTM proposés en utilisant des expressions

de probabilité d’erreur par paire (PEP). Ceci a conduit à un nouvel algorithme op-

timal de sélection des matrices d’information, ayant comme mesure de performance

la valeur exacte de la PEP entre des matrices. En particulier, il est montré que la

performance de la probabilité d’erreur des systèmes MIMO DSTM ainsi obtenus est

supérieure aux résultats obtenus avec les schémas précédents qui utilisent la distance

entre les matrices comme mesure de performance, et offre donc des perspectives in-

téressantes.
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Introduction

In this chapter, an overview of the thesis is presented through an explanation

of the context of the work achieved and a detailed interpretation of the motivation

behind this work, along with the contributions made to the subject. This part ends

with the thesis organization and a list of the publications.

Context

All animal species have perfected a system of communication, but humans are

the only species capable of spoken language. Effective communication is essential for

a variety of reasons. It serves to inform, motivate, establish authority and control,

and allows for emotive expression. For humans in particular, communication is also

vital for creating a sense of social cohesion. Just as mankind has evolved over the

centuries, our means of communication have followed suit. What began as primitive

cave paintings and signed language has morphed into an endless variety of ways to

express oneself to other humans.

The history of wireless communication began with the understanding of mag-

netic and electric properties, which was laid out by the work of James C. Maxwell

in 1864, as he formulated the classical theory of electromagnetic radiation, bring-

ing together electricity, magnetism and light as different manifestations of the same

phenomenon, which was then demonstrated by Heinrich Hertz in 1880 and 1887.

Basically, the theory demonstrates the potential to transfer information using elec-

tromagnetic waves and the help of electronic devices at the transmitter and receiver

sides. This work laid the foundation for Guglielmo Marconi to invent the first means

of radio communication through radiotelegraphy in 1895. Following the development
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of integrated circuits, electromagnetic wireless communication grew enormously as

radio and television broadcasting became widespread worldwide. The iconic work of

Claude Shannon in 1948 paved the way for the evolution from analog signal trans-

mission to digital signal transmission using bits. Mobile wireless systems have been

evolving from one generation to the next nearly every decade since the 1980s, each

generation featuring new regulations and technologies. Following the first generation

(First Generation of Wireless Cellular Technology (1G)) analog communication sys-

tems featuring only basic phone calling and fax services at high prices, the second

generation (Second Generation of Wireless Cellular Technology (2G)), which was

based on Global System of Mobile Communication (The Global System for Mobile

Communications (GSM)), was launched in the early 1990s in Europe and offered

improved phone calls, short messaging service (Short Message Service (SMS)) and

low rate data services such as email. The third generation (Third Generation of

Wireless Cellular Technology (3G)) was introduced in the 2000s after the advances

offered in Code Division Multiple Access (Code-Division Multiple Access (CDMA)),

providing higher-rate data services such as video conferencing, TV streaming fol-

lowing the spread of smart phones with applications demanding ever increasing

internet access. The spectral-efficient Orthogonal Frequency Division Multiplex-

ing (Orthogonal Frequency-Division Multiplexing (OFDM)) was the key enabler

of Fourth Generation of Wireless Cellular Technology (4G) Long-Term evolution

(Long-Term Evolution (LTE)) in the 2010s, which achieved a high speed in both

downlink and uplink, and facilitates a wide range of services. The fifth genera-

tion New Radio Fifth Generation New Radio (5G-NR) has been under development

since the early 2010s following recent digital and analog circuit breakthroughs in

processing massive-bandwidth millimeter Wave (mm-Wave) signals.

Current wireless standards rely on the knowledge of the instantaneous channel

coefficients or (CSI), which enables a reliable communication link through adapting

the transmitter and the receiver to the current channel conditions. The CSI is ob-

tained through training/pilot symbol sequences transmission between transmitter

and receiver, which take a non-negligible amount of resources, specially with the

increase of the number of transmit antennas, creating channel impairments. As a
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consequence, non-coherent systems, where the CSI is not known at either the trans-

mitter or receiver have been proposed in literature as a solution for the occurring

problems in coherent systems.

Motivation and objectives

Coherent communication relies on the knowledge of CSI in order to perform

adequately. In practice, because the channel matrix is random and fades over time

and frequency, its value is not given a priori and must be measured. Typically,

channel estimation is carried out by sending reference symbol sequences, so-called

pilot symbol sequences, known to the receiver. The receiver then estimates the

channel using the known pilots symbol sequences, then inter/extrapolates them to

infer the channel gains of the remaining channel uses within the coherence time.

The estimates of the channel gain are used in the reception process of the remaining

channel uses of the coherence time in what is called coherent communication. The

cost of channel estimation and channel estimation error must be taken into account

for a proper analysis of system performance.

Pilot symbol sequences do not carry any information to the receiver, rather

they occupy a large portion of the spectral (time/frequency) resources with the

increasing number of antennas. In a MIMO channel with M transmit antennas and

N receive antennas, M × N Single-Input Single-Output SISO channels need to be

estimated. In a highly mobile environment where the channel state changes rapidly,

the coherence time is short, and the fraction of pilot symbol sequences transmission

can be disproportionate to data transmission, especially if the number of antennas

is large.

Channel error estimation has a negative effect on the efficiency of both channel

throughput and error. On one hand, if one treats the channel estimate as the true

channel and disregard any inaccuracy, the optimal detector under this assumption

is a mismatched detector for the channel with channel estimation error, and the

channel throughput is determined by the mismatched rate. On the other hand, even

if the statistics of the channel estimation error is taken into account, this residual
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error imposes a secondary noise which increases the total noise power and reduces

the channel capacity for a given signal power.

When the cost of channel estimation becomes inconvenient/impossible, it might

be beneficial to refrain from doing it by using a communication scheme that does

not rely on the knowledge of CSI. Non-coherent communication accounts for such a

scheme.

In this thesis, we focus on the performance of non-coherent systems. More

specifically, we investigate Differential Space-Time Modulation (DSTM) schemes

for MIMO systems.

Contributions

In this thesis, we first provide a detailed survey on differential detection schemes,

as a proposed solution in the face of channel estimation challenges. These schemes

are first described for the single antenna environment. Then we identify the signif-

icant schemes conceived for the multiple antennas environment. More specifically,

we focus on DSTM schemes for MIMO systems. The advantages of these schemes

are discussed to identify the opportunities they provide, along with the challenges

they face.

The multiplicative Weyl group is shown to provide a suitable set to be employed

by DSTM schemes, given the unitary nature of the matrices therein. We first de-

scribe the use of the Weyl group in the DSTM scheme for MIMO systems having

two transmit antennas. Then, in order to solve the issue of the limited achievable

spectral efficiency this group offers, we propose to use a simple and double extension

through applying rotations on the studied group. The groups generated are then

analyzed thoroughly, and a search algorithm is conceived, selecting the informa-

tion matrices to be employed based on the distance metric between the candidate

matrices, which is followed by an error performance analysis of the system studied.

Subsequently, we aimed at increasing the number of transmit antennas of the

DSTM MIMO system. This was achieved through generating new matrices by ap-

plying the Kronecker product, thus producing matrices suitable for four and eight
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transmit antenna DSTM schemes. Nonetheless, the increase of the number of trans-

mit antennas decreased the achievable maximum spectral efficiency of the DSTM

system. We address this issue through applying the simple and double extensions

on the newly generated groups. The search algorithm is used to select the informa-

tion matrices from the newly generated groups and the system error performance is

analyzed.

Thereafter, the DSTM systems for two, four and eight transmit antennas is stud-

ied in a more realistic continuously fading channel model, rather than the conven-

tional step channel model used in literature and previous error performance studies.

The channel model depicts a real case scenario, where the channel varies slightly

with each column of the transmitted matrix (symbol duration). The effect of the

channel model on the error performance of the studied system is then analyzed.

Finally, we study the performance of the DSTM system analytically inspired

by the work done in [1], leading to closed form expressions evaluating the exact

Pair-Wise Error Probability (PEP) and the upper bound on PEP. The produced

simulation results are validated by the analytical study. This led to the conception

of an optimal matrix selection algorithm, having the exact PEP value between two

matrices as the performance metric. Moreover, and for the sake of making an optimal

choice of matrices, a tree search is integrated within the new selection algorithm.

The error performance of DSTM MIMO system under the new selection algorithm

outperforms the results under previous selection metrics.

Thesis organization

The thesis is organized in 5 chapters excluding this introduction and the conclu-

sion.

In chapter 1, notions of wireless propagation and MIMO systems are addressed.

First we investigate the key elements in MIMO technology, and how they make a

corner stone in all current and future wireless systems, along with the challenges

they face. Then we discuss the concept of coherent communication systems, the

advantages they offer, and the cost behind them, which leads us to the alternative,
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non-coherent systems. The most popular standards of these methods, the chal-

lenges and pitfalls of each are presented, with the solution proposed by the research

community, with focus on differential space-time modulation systems.

In Chapter 2, the multiplicative Weyl group of 2 × 2 unitary matrices is de-

scribed to be used in DSTM MIMO systems of 2 transmit antennas. Additionally,

new simple and double extensions of the Weyl group are performed based on opti-

mal rotations of the matrices of the group, thus increasing the maximum achievable

spectral efficiency of the DSTM scheme. The distance spectrum of the matrices of

the generated groups is studied, and an information matrices selection algorithm is

proposed based on the distance metric aiming at improving error performance. This

is followed by an optimal mapping strategy between binary vectors and informa-

tion matrices. Finally, the performance of the DSTM system employing the newly

generated extensions is simulated and analyzed.

In Chapter 3, the multiplicative Weyl group is enlarged using the Kronecker

product. This is done in the aims of employing DSTM MIMO schemes having 4 and

8 transmit antennas. Additionally, extensions of the 4×4 and 8×8 newly generated

groups are performed through optimal rotations with the same aim of increasing the

maximum achievable spectral efficiency. Distance spectrum analysis of the newly

generated groups is performed, followed by the search algorithm from the previous

chapter, which is used to select the information matrices. Finally, the system error

performance is analyzed through simulation results.

In Chapter 4, a comparative analysis is conducted on the DSTM MIMO scheme

employing 2, 4, and 8 transmit antennas in two channel model scenarios. The first

case is the conventional step channel model used in literature and previous error per-

formance studies. The second model is a more realistic continuously fading channel

model, depicting a real case scenario. In the new continuously fading channel model,

the channel varies slightly with each column of the transmitted matrix (symbol du-

ration). The effect of the channel model on the error performance of the studied

system is then analyzed.

In Chapter 5, a new error performance metric is introduced, which is the PEP.

An analytical study is conducted based on [1], producing closed form expressions
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of the exact PEP and upper-bound on PEP. Furthermore, the simulation results

are validated through the analytical study. This has led to the conception of a new

optimal information matrix selection algorithm based on the exact PEP value as

a metric rather then the distance between the matrices. The error performance of

DSTM MIMO system under the new selection algorithm is compared to the results

under the previous selection metric.

Finally, in the conclusion, the main contributions of the thesis are summarized

and future perspectives are proposed.
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Chapter 1

State of the art review

1.1 Introduction

The ever increasing demand for data throughput and reliability in wireless com-

munication has made MIMO technology a corner stone in most current wireless

communication systems, and will most probably be present in most future systems

as well. This is due to the ability of MIMO systems to achieve impressive increases in

overall system performance. MIMO systems can be regrouped into two categories:

coherent systems, which require the instantaneous channel knowledge in order to

operate, and non-coherent systems, which do not need the CSI neither at trans-

mitter nor receiver. Due to channel impairments between transmitter and receiver

in fast fading scenarios, and since MIMO systems experience pilot overhead with

the increase of the number of transmitting and receiving antennas, non-coherent

systems become an attractive solution for the mentioned issues. In this chapter we

present background notions of wireless propagation and key elements of the MIMO

technology along with the challenges faced to achieve its potential. We then survey

recent scientific advances in non-coherent schemes with focus on DSTM systems.

1.2 Wireless propagation

In this section, we start with background material on signal transmission and

the channel characteristics.
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1.2. WIRELESS PROPAGATION

1.2.1 Signal propagation

An electromagnetic wave is emitted by an antenna at the transmitter side. The

wireless radio channel where this electromagnetic wave propagates does not present

itself as a reliable medium for high speed communication, rather it faces multiple

challenges, among which are noise, interference and other channel impairments chal-

lenges which also vary in time due to user movement and changes in environment.

The variation of the received signal power over distance is characterized by path loss.

Path loss is caused by dissipation of the power radiated by the transmitter as well

as effects of the propagation channel, and occurs over very large distances. Whereas

shadowing is related to the attenuation of the signal due to obstacles present in the

environment, through absorption, reflection, scattering and diffraction and occurs

over distances proportional to the length of the obstructing object.

For analytical simplicity, the propagation channel is modeled using a complex

frequency response i.e., real modulated and demodulated signals are often repre-

sented as the real part of a complex signal to facilitate analysis. This gives rise to

the complex baseband representation of bandpass signals.

The transmitted signal is modeled as [2]:

s(t) = <{u(t)ej2πfct}

= <{u(t)}cos(2πfct)−={u(t)}sin(2πfct)

= x(t)cos(fct)− y(t)sin(2πfct)

(1.1)

where u(t) = x(t) + jy(t) is a complex baseband signal with in-phase component

x(t) = <{u(t)}, quadrature component y(t) = ={u(t)}, bandwidth Bu, and power

Pu. The signal u(t) is called complex envelope or complex low pass equivalent signal

of s(t). This is a standard representation for bandpass signals with bandwidth B <<

fc, as it allows signal manipulation via u(t) irrespective of the carrier frequency. The

power of the transmitted signal s(t) is Pt = Pu/2. And the form of the received signal

is as follows:

r(t) = <
{
v(t)ej2πfct

}
(1.2)

where the complex baseband signal v(t) will depend on the channel through which

s(t) propagates.
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1.2.2 Statistical multipath fading channel

As mentioned in section 1.2.1, in the case of the multipath channel, the receiver

antenna receives a superposition of the various multipaths. Thus, a pulse trans-

mitted over a multipath channel is received as multile replicas of the trasnmitted

signal. Each pulse in the train corresponding either to the Line-of-Sight (Line-

of-Sight (LOS)) component, or to a distinct multipath associated with a distinct

scatterer. This phenomenon is called time delay spread and is described as the time

delay between reception of the first signal component (LOS component) and the last

received signal component (multipath component).

1.2.2.1 Time-varying channel impulse response

We consider the transmitted signal as in equation 1.1:

s(t) = <{u(t)}cos(fct)−={u(t)}sin(2πfct) (1.3)

where u(t) is the complex envelop of s(t) with bandwidth Bu and fc is its carrier

frequency. In the case of a time-varying channel impulse response, the received signal

would amount to the sum of the LOS component and all the resolvable multipath

components [2]:

r(t) = <


N(t)∑
n=0

αn(t)u(t− τn(t))ej(2πfc(t−τn(t))+φDn )

 (1.4)

where αn(t) is the complex channel gain of path n at a time t. n = 1 corresponds to

the LOS component, and N(t) corresponds to the number of resolvable multipath

components. τn(t) is the delay of the n-th path at time t and φDn the Doppler phase

shift. The received signal can also be expressed as:

r(t) = <
{(∫ ∞

−∞
c(τ, t)u(t− τ)dτ

)
ej2πfct

}
(1.5)

where,

c(t, τ) =

N(t)∑
n=0

αn(t)e−jφn(t)δ(τ − τn(t)) (1.6)

is the channel impulse response at a time t and delay τ , i.e., the response of the

channel at a time t to an impulse transmitted at t− τ . And

φn(t) = 2πfcτn(t)− φDn (1.7)
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is used in order to simplify r(t).

Since the environment is random in nature, channel gain αn(t), the delay τn(t),

and the number of paths N(t) are random. And in the case of non LOS (Non-Line-

of-Sight (NLOS)) environment, the channel impulse response c(t, τ) is modeled as

realization of a complex random variable (which has uniformly distributed phase and

a Rayleigh distributed magnitude) when the number of multipath components Np(t)

is large, by evoking the central limit theorem [3]. In such situation, the channel is

said to be Rayleigh fading.

1.3 Multiple antenna systems

MIMO systems emerged as a result of the increasing demand for capacity in

cellular and wireless local area networks. The feasibility of implementing MIMO

systems and their associated signal processing algorithms was possible because of

the increase in computational power of integrated circuits.

1.3.1 Receive diversity

As mentioned in 1.2.2, the propagation environment varies with time, the chan-

nel gain can sometimes be so small that the channel becomes useless. In order

to resolve this problem, diversity was employed, which comes to transmitting the

same information over multiple channels which fade independently of each other.

Types of diversity include time diversity and frequency diversity, which amounts to

transmitting the same information either in different time instances or different fre-

quencies. Antenna diversity exploits the fact that the fading is (partly) independent

between different points in space. An efficient way of exploiting antenna diversity

is equipping the receiver with multiple antennas, which yields considerable gain in

performance, mainly in terms of co-channel interference. This is due to the diversity

gain created at the receiver, because of the independent fading of the signal received

by multiple receive antennas. An example of the use of receive diversity was in

(GSM) [4] where the (Base Station (BS)) is equipped with two receive antennas,

improving the quality of the uplink (from the mobile to the base station). Receive
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diversity is characterized by the number of independent fading branches or paths,

which are also known as diversity order and are equal to the number of receive

antennas. The overall receive Signal-to-Noise Ratio (SNR), is increased through

proper combination of the received replicas of the transmitted signals, which also

mitigates destructive fading. The combination methods at the receiver included

selection combining, switching combining and equal combining [5, 6]

1.3.2 Transmit diversity and MIMO technology

After the gains achieved with receive diversity, it was only logical to next try

to reproduce these gains in transmit diversity, through the employment of multiple

transmit antennas at the transmitter side. This interest and development in transmit

diversity started in the 1990’s and since then have grown rapidly. This is because at

the mobile end for instance, a performance enhancement is possible without adding

extra antennas, power consumption or complexity. In fact this increase in error

performance and data rates offered by transmit diversity and MIMO technology has

made it a corner stone in most future wireless communication systems.

It is generally known that there exists a trade-off between bit rate and Bit Error

Rate (Bit Error Rate (BER)) performance. The channel capacity is defined as the

maximum possible transmission rate such that the probability of error can be made

small by appropriate encoding and decoding. The pioneering work of Shannon [7]

demonstrated that the capacity of a SISO perturbed by Additive White Gaussian

Noise (Additive White Gaussian Noise (AWGN)) is a function of the average received

SNR and the bandwidth.

MIMO systems emerged as a technology that could offer significant improvement

to the achievable rates by a SISO system, and extensive work on this technology be-

gan in the late 1990’s with efforts to develop coding and signal processing techniques

that can approach the MIMO channel capacity.
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1.3.3 MIMO trade-offs

In general there exists three MIMO design trade-offs that arise throughout the

conception of MIMO techniques. The use of MIMO codes in order to increase the

data rate through multiplexing was presented mainly with the work of Foschini in

Bell Laboratories Layer Space-Time (Bell Laboratories Layer Space-Time (BLAST))

techniques [8] in 1996 and later with [9, 10]. These techniques use M transmit an-

tennas to transmit M independent data streams, which leads to a linear increase

in capacity rather than a logarithmic increase, with the number of antennas. Al-

though, the simultaneous transmission of multi-stream signals imposes inter-antenna

interference (Inter-Antenna Interference (IAI)), resulting in Maximum-Likelihood

(Maximum Likelihood (ML)) detection complexity growing exponentially with the

number of transmit antennas. In order to solve the previously mentioned issue,

BLAST detectors are conceived to strike a performance/complexity trade-off,

either with the work in [11, 12] imposing an excessive complexity ML scheme, or

with Sphere Decoders (SD) in [13, 14], or with the popular Minimum Mean Square

Error (Minimum Mean Square Error (MMSE)) arrangement in [15–17] , and finally

with the decision feedback techniques [18, 19].

A second class of MIMO codes aims at enhancing the quality of link, represented

mainly by Alamouti’s Space-Time Block Codes (Space-Time Block Codes (STBC))

[20] conceived in 1998. The spacial resources of multiple transmit antennas have

been exploited for the sake of achieving diversity gain, giving rise to a multiplex-

ing/diversity trade-off between BLAST schemes and STBC schemes. Indeed, mul-

tiple replicas of the modulated symbols are transmitted by multiple transmit anten-

nas over multiple symbol periods as in Orthogonal STBC’s (Orthogonal Space-Time

Block Codes (O-STBC)) in [20],[21–24]. Owing to the orthogonality of these designs,

the multiple data streams may be decoupled at the receiver, eliminating the IAI.

On the other hand, because of replica transmission, the MIMO bandwidth efficiency

is undermined by the STBC design. To solve this issue and improve the through-

put, the family of Quasi-Orthogonal STBC’s (Quasi-Orthogonal Space-Time Block

Codes (QO-STBC)) [25–31], has been conceived, only to face the problem of IAI

again because of the compromise on the orthogonality.

16



CHAPTER 1. STATE OF THE ART REVIEW

It was shown in [32] that it is possible to obtain both diversity and multiplexing

gain in a single scheme, which inspired the conception of Linear Dispersion Codes

(Linear Dispersion Codes (LDC)) [33, 34]. These codes can achieve the full BLAST

throughput (multiplexing gain), and the full STBC diversity (diversity gain). In

fact, according to [34], the MIMO signals transmitted by M transmit antennas over

T symbol periods are modeled as S =
∑Q

q=1 SqAq, where Q modulated symbols are

dispersed by Q dispersion matrices {Aq}Qq=1 of size (T ×M).

A third MIMO design trade-off arises with the increase of the number of transmit

antennas that occurs at both the BS and the User Equipment (UE). Indeed, it be-

comes more complex to assign a dedicated RF chain to all antenna elements, as

in BLAST, STBC and LDC. A solution to this problem is Index Modulation (In-

dex Modulation (IM)) techniques, proposing a variety of single-RF and reduced-RF

MIMO schemes [35–46]. Spatial-Modulation (SM) is a single RF scheme proposed in

[37] that has attracted a lot of research attention, since it’s advantages were shown in

[39]. More specifically, in an SM scheme, two blocks of source bits are separately as-

signed for modulating a M-PSK/Quadrature Amplitude Modulation (QAM) symbol

and an activation index. By doing so, one out of M transmit antennas is activated.

In addition, Space-Time Shift Keying (Space-Time Shift Keying (STSK)) [47] is a

technique proposed for achieving diversity gain, where the IM bits are assigned to

activate a single one out of Q LDC dispersion matrices. Indeed, these techniques

reduce power consumption through the use of a single Radio Frequency (RF)-chain,

regardless of the number of transmit antennas used. The problem lies with the

spectral efficiency of SM and STSK schemes not being able to reach that of BLAST

and LDC [48]. Some solutions to solve this issue were the use of reduced-RF Gener-

alized SM and Generalized STSK [42],[49–52], striking the third trade-off being the

full/reduced/single-RF trad off of MIMO systems.

Since their conception, MIMO systems have become a part of wireless communi-

cation technologies, such as 3G with Code Division Multiple Access (CDMA) using

Alamouti’s diversity scheme [53], the IEEE 802.11n Wireless Local Area Network

(WLAN)[54], 802.20 (mobile broadband wireless access system), the 3rd Generation

Partnership Project (3GPP) LTE in wide band CDMA [55] and recently in 5G-NR,
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m

n
nm

Figure 1.1 – A MIMO channel with M transmit and N receive antennas

where MIMO systems are required to support the diverse requirements of the NR

platform.

1.3.4 MIMO system model

We consider MIMO systems having M transmit antennas and N receive anten-

nas. At a time t, the antenna n receives the symbol:

yn =
M∑
m=1

hn,mxm + wn,m (1.8)

where hn,m is the path gain of the channel from transmit antenna m to receive an-

tenna n, which are independent and identically distributed (iid), complex Gaussian

distributed. It is common for practical purposes to model the channel as frequency

flat whenever the bandwidth of the signal is smaller than the inverse delay spread

of the channel. xm is the signal transmitted from antenna m at a time t, and wn,m

is the noise term, which is spatially white circular Gaussian random variable with

zero mean and variance σ2:

wn,m ∼ CN (0, σ2) (1.9)

which is AWGN. This system model is shown in Fig.1.1.

The equation 1.8 can be expressed in a matrix framework. Let x of size M

and y of size N , be the vectors containing the transmitted and received symbols,
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respectively. The channel gain matrix is defined as the N ×M :

H =


h1,1 . . . h1,M

...
...

hN,1 . . . hN,M

 (1.10)

which amounts to

y = Hx + w (1.11)

where w = [w1 . . . wN ]T is a vector of noise samples. The matrix form of equation

(1.8) is:

Yτ = HτXτ +Wτ (1.12)

where Xτ is theM×T transmission matrix, Hτ is the channel matrix of size N×M

and Yτ is the N×T received matrix. Wτ is the additive white Gaussian noise of size

N × T . T denotes the number of columns of the transmitted matrix and T ≤ L.

Here, the elements of the channel matrix H are complex Gaussian random variables

with zero mean. This assumption is normally used in an environment with local

scatterers and no LOS components. Consequently the magnitudes of the channel

gains |hm,n| have a Rayleigh distribution.

For each receive antenna, the Signal to Noise Ration (SNR), is defined as:

SNR =
E[|ynt − wnt|2]

E[|wnt|2]
(1.13)

1.3.5 Capacity of MIMO Systems

The MIMO systems can be studied by the evaluation of the information-theoretic

(Shannon) capacity. Considering the MIMO system in Fig. 1.1, the capacity of such

a system for a flat fading channel is given by

C = log2

[
det

(
I +

P

N0

HQHH

)]
(1.14)

where Q ∈ CM×M = E{xxH}, E{} is the expectation and . P is the total trans-

mitter power, I is N ×N identity matrix, and N0 is the noise spectral density. The

analysis of MIMO systems in step Rayleigh-fading channels is presented in [56], and
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a Gaussian approximation to the capacity distribution is studied in [57]. These anal-

ysis show that MIMO systems can potentially provide enormous Shannon capacities

in uncorrelated Rayleigh fading channels.

1.3.6 Challenges in channel estimation

As previously mentioned, a signal received at the output of a wireless commu-

nication channel is conventionally a faded and noise contaminated replica of the

transmitted signal.

In this context, a receiver is referred to as being coherent, when the CSI is

estimated prior to detection at the receiver. This requirement led to the development

of channel estimation techniques such as [11, 58, 59].

Coherence bandwidth and coherence time

Factors that may determine the capacity and integrity of the wireless commu-

nication link are the specific distribution of the multipath fading and the Doppler

frequency, which is proportional to the carrier frequency, as well as the vehicular

speed. Which in their turn affect the length and shape of the channel impulse

response (Channel Impulse Response (CIR)).

— When all the diffracted and reflected multipath components arrive almost si-

multaneously within a symbol period, non-dispersive fading is encountered,

represented by a dirac-delta CIR, leading to near constant frequency-domain

channel transfer function across the signal bandwidth.

— When the time-domain delay-spread of the multipath components exceeds the

symbol period, the system is faced with inter-symbol interference, leading to

a frequency-dependent channel transfer function.

The coherence-bandwidth defines the range of frequency over which the frequency-

domain channel transfer function is near-constant, which in its turn is inversely

proportional to the delay spread.

Coherence-time is a concept used to quantify the Doppler effect, which in its

turn describes the change in the channel. Coherence-time is inversely proportional
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Figure 1.2 – Insertion of pilot symbol sequences in data frame

to the Doppler frequency, and it characterizes the time over which fading channel

envelope may be deemed near constant.

When long coherence-time with reference to symbol duration are encountered,

the channel gains remains constant over a set of symbol transmissions. If so, CSI

estimation could be carried out by transmitting training symbol sequences that are

known to the receiver at the beginning of the signal frame. On the other hand, if the

vehicular speed (outdoor case) or the movements of people (indoor case) is increased

, coherence time is reduced and the fading changes more rapidly over time, leading

to more frequent insertion of pilot symbols in the data frame.

The scheme shown in Fig. 1.2 is a time and frequency domain pilot-based estima-

tion technique in the case of OFDM frame for MIMO system having two antennas.

When applying coherent demodulation in fading channels, information about the

channel frequency response for any sub-carrier of any OFDM symbol is required

and has to be estimated by the receiver. The basic principle of pilot symbol aided

channel estimation is to multiplex reference symbols, so-called pilot symbols into the
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data stream in order to sample the channel frequency directions. The pilot symbols

are then scattered in time and frequency on OFDM frames.

In [60], the authors observed that the use of training is optimal for obtaining

accurate CSI estimation for the high SNR values in the case of a long coherence

time, although if these simulations are done in low SNR region, estimates become

less reliable. Which confirms that the use of training for channel estimation is

challenging when the noise power is high i.e. SNR is low.

The cost of acquiring CSI

Since pilot symbol sequences are already known at the receiver side, they do not

carry any user information, rather they occupy the available time/spectral resources.

In a fast fading channel environment, the coherence interval becomes short, which

leads to disproportionate transmission of pilot symbols with respect to data symbols.

1.4 Overview of non-coherent techniques

In this section we review the non-coherent techniques conceived in literature,

for single-antenna systems as well as multiple-antenna systems. The use of these

techniques is also explored for modern communication systems.

1.4.1 Non-coherent receivers history

As was mentioned in section 1.3.6, CSI estimation could become extremely chal-

lenging in high mobility scenarios, which require insertion of a prohibitive number

of pilot symbols for accurate channel estimation. On the other hand, when the re-

ceiver does not have knowledge of the CSI, non-coherent reception is encountered.

These methods rely on blind CSI estimation techniques, that take advantage of the

correlation between the consecutively received signals. This correlation is in fact

imposed by the channel memory.

One of the most well-known optimization criterion firstly conceived is presented

by the Maximum Likelihood Sequence Estimation (Maximum Likelihood Sequence
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Estimation (MLSE)), which is a technique capable of performing channel estimation

and data detection jointly, and was conceived by Kailath dating back to 1960 [61].

Channel estimation is performed on each possible combination of the data carry-

ing sequence. This method faced an exponential increase in complexity with the

increase of the message length, this is why it was proposed by Forney to invoke the

Viterbi algorithm with MLSE in 1972 [62]. In this case, the number of trellis states

that determined the MLSE complexity increased exponentially with the channel’s

memory rather than the message length. In 1979, Morely and Snider [63] demon-

strated that MLSE is capable of tackling any form of channel memory, regardless

whether the memory is imposed by frequency-selective or time-selective channels

such as correlated Rayleigh, Rician and log-normal fading.

Differential receivers

In analogy to the channel memory concept, the philosophy of "modulation with

memory" was first explored by Lawton [64, 65] in 1960, with the classic Differ-

ential Phase Shift Keying (DPSK). At the DPSK transmitter, the data-carrying

M-Ary Phase Shift Keying (MPSK) symbol xn−1 is mapped onto the difference be-

tween the consecutive transmitted symbols as sn = xn−1sn−1. In the presence of

a AWGN channel or in a non-dispersive slow fading channel, the received symbol

would amount to

yn = snhn + vn (1.15)

where hn refers to the channel gain, and vn refers to the AWGN. Through the use

of DPSK, the need for channel estimation is eliminated, and a simple correlation

operation is used as in

zn−1 = yny
∗
n−1 (1.16)

zn−1 may be directly demapped to bits using and M -PSK demapper as in Fig. 1.3

which portrays the DPSK transceiver. This low complexity non-coherent detection

at the receiver side is termed as Conventional Differential Detection (CDD). In fact,

CDD is a special case of MLSE, where the channel memory is truncated to a window

length of Nw = 2.
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Figure 1.3 – DPSK transceiver

It was demonstrated by Cahn in [66] that CDD aided DPSK scheme suffers from

a 3 dB performance penalty compared to its coherent MPSK counterpart (having

perfect CSI). In addition, an irreducible error floor is encountered when the fading

channel fluctuates rapidly [67].

With the aim of reaching the optimal performance of the MLSE, the groundbreaking

Multiple-Symbol Differential Detection (MSDD) is conceived for DPSK operating in

AWGN channels by Wilson et al. in [68]. As an attempt to improve the performance

of CDD, the MSDD extends the CDD’s observation window from Nw = 2 to Nw ≥ 2

observations, where a total number of (Nw − 1) data carrying symbols are jointly

detected, which is portrayed in Fig. 1.4. This MSDD design that was conceived

for DPSK was extended to operate in Rayleigh fading channels in [69]. In addition,

the MSDD techniques conceived for DPSK and Differential Quadrature Amplitude

Modulation (DQAM), operating both in AWGN and Rayleigh fading channels were

shown to be able to reduce the performance penalty imposed by the use of CDD

[70] and also attenuate the error floor experienced in fast fading channels [69, 70].

The issue faced with the use of MSDD was that the complexity increased exponen-

tially with the length of Nw. For an M -Level DPSK scheme the complexity order

is given for the detection of a single symbol by O[MNw−1/(Nw − 1)]. Attempts to
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resolve this complexity issue were conceived by [71], where an efficient algorithm was

created for MSDD in AWGN with a detection complexity of O(logNw) by detecting

a single symbol through tracking the phase changes over the Nw samples.

In fact, the MSDD’s complexity problem is the result of jointly detecting Nw − 1

data symbols. In the aim of separately detecting the data symbols, decision-feedback

is introduced, and is called Decision-Feedback Differential Detection (DFDD) [72,

73], where a total of Nw − 2 data carrying symbols are detected from the previous

detection windows, while only a single data symbol has to be detected in the current

detection window, which is described in figure 1.5.

Since only a single data symbol is detected in a detection window, the complexity

of DFDD is given simply by O(M). Nevertheless, the imperfect decision feedback

given by DFDD results in a performance loss compared to MSDD. With the aim

Figure 1.4 – MSDD non-coherent detection schematic

Figure 1.5 – DFDD non-coherent detection schematic
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of resolving this issue, Multiple-Symbol Differential Sphere Detection (MSDSD) is

conceived by Lampe et al. in [74] for DPSK operating in Rayleigh fading channels.

This technique is based on transforming the problem of optimizing the MSDD de-

cision metric into a shortest vector search problem, so that Sphere Detection (SD)

may be described for MSDSD as follows:

1. SD radius is set to be sufficiently large.

2. Initial SD index is set to be v = 1.

3. M M -PSK candidates are examined for detecting a single symbol for each

SD index v.

4. The SD index v is increased when the best candidate is chosen.

5. The search is repeated until v = Nw is reached where a valid MSDSD output

is found and the SD’s radius may be updated accordingly.

6. Afterwards, the SD index v is reduced so that the next best candidate may

be examined.

7. In the case where no more valid candidates can be found within the SD radius,

v is reduced until reaching 1. In which case the SD process is terminated.

The MSDSD complexity order imposed by detecting a single symbol is then lower-

bounded by O(M).

Following this, Pauli et al. proposed the soft-decision-aided MSDSD for DPSK com-

municating in Rayleigh fading channels in 2006 [75], so that MSDSD may be invoked

in turbo detection. In 2012, Wang and Hanzo [42] proposed to invoke MSDD and

MSDSD for detecting the Differential Amplitude Phase Shift Keying (DAPSK) am-

plitudes and phases. The use of both techniques leads to the exchange of decisions

amongst them, in order to achieve a near-optimum MSDD performance in coded

systems. More recently Xu et al. proposed dynamic MSDSD/DFDD algorithms

in [76, 77], that facilitate the estimation of the QAM-amplitude dependent chan-

nel correlation matrix with hard and soft decision MSDSD solutions achieving the

optimal MSDD performance at reduced complexities.
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1.4.2 MIMO detection techniques

It has been shown in [60] that the increase in the number of antennas used is

responsible for a pilot overhead in coherent detection for MIMO schemes. This is

why it was inevitable that non coherent detection schemes would extend to MIMO

systems.

One of these schemes are the family of DSTM that are capable of ridding themselves

from the prohibitive process of channel estimation, which is why it attracted a lot

of research interest.

1.4.2.1 Differential Space-Time Modulation Schemes

One of the first schemes proposed in DSTM, was in fact an extension of the

famous Alamouti STBC scheme in [20], and was called Differential STBC (DSTBC)

[78], which employed the same signal structure as Alamouti’s scheme. DSTBC was

further extended to be able to function using multiple transmit antennas [24, 79],

and star/square QAM constellations [80–82]. More explicitly, the DSTM schemes

operate based on the matrix-based differential encoding process portrayed by:

Xτ = Vl(τ)Xτ−1 (1.17)

whereXτ is the (M×T )-element signal matrix, and Vl(τ) is the (M×M)-element data

signal matrix carrying the source information. For any coherence interval T and any

fixed number of receiver antennas, the capacity obtained with M > T transmitter

antennas equals the capacity obtained with M = T transmitter antennas [83]. In

order for the transmitted signal matrix Xτ to retain orthogonal columns, and in

the aim of conserving an average signal power over differential encoding in the time

domain, the authors of [83, 84] proved that Vl(τ) should be designed to be unitary

i.e. V H
l(τ)Vl(τ) = Vl(τ)V

H
l(τ) = I, where H denotes the conjugate transpose and I the

identity matrix.

1.4.2.2 Differential Group Codes

Throughout this thesis work, we focus on a family of codes inspired from the

DSTM philosophy, called Differential Group Codes (DGC), which were originally
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proposed in [83, 84]. DGC schemes are based on signal matrices that form a mul-

tiplicative group under the multiplication operation. Indeed, a group X is a set of

matrices X i ∈ X , meaning that the matrices of this group must satisfy the following

conditions:

1. If Xi, Xj ∈ X , XiXj ∈ X .

2. If Xi, Xj, Xk ∈ X , (XiXj)Xk = Xi(XjXk).

3. I ∈ X

4. If Xi ∈ X , (Xi)
−1 ∈ X

The class of group codes includes poly-phase codes [85], permutation codes [86],

block-circulant unitary codes [87] and all binary linear codes with Binary Phase

Shift Keying (BPSK) modulation [88],[89]. This means that group codes can be

constructed for any number of transmit antennas and any constellation C.

Spatial modulation using differential transmission

In recent years, the differential transmission philosophy was integrated with spa-

tial modulation schemes in an attempt to diminish the excessive complexities en-

countered in DGCs and Differential Linear Dispersion Code (DLDC)s. More explic-

itly, Suguira et. al conceived the Differential Space-Time Shift Keying (DSTSK) in

[47], which was further extended to QAM constellations in [90] and the DLDC’s Cay-

ley transform was eliminated in [91] since the DSTSK’s dispersion matrices {AQq=1}

are directly generated to be unitary, which is due to the absence of DLDC’s matrix

summation. Moreover, Bian et. al integrated the differential transmission concept

in spatial modulation [92, 93] which was developed to include a star QAM constel-

lation in [94, 95]. Furthermore, in order to achieve a beneficial transmit diversity,

a single-RF DSM scheme is conceived in [96, 97]. Recently, in 2017, Rajashekar et

al. [97] proposed Field Extension based Differential Spatial Modulation (FE-DSM)

as a diversity aided DSM scheme (operating using single-RF). Ishikawa et al. [98]

proposed a rectangular DSM scheme for open-loop massive MIMO scenarios which

was later extended in [99] to support an arbitrary number of activated RF-chains.

This led to the design of Differential Generalized Spatial Modulation scheme used
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in high mobility millimeter wave communications.

1.5 Conclusion

Adaptivity in modern wireless communication systems is of high importance.

Which means that a system should be able to adapt to different channel conditions

and remain capable of providing reliable communication. If the conditions for a non-

prohibitive channel estimation process are met, the system is called coherent and

perform channel estimation accordingly. Although, when these conditions prove to

be difficult for channel statistics acquisition, the system could perform non-coherent

detection. Modern techniques to provide blind CSI-estimates are proposed in the

research community recently in the aim of solving channel estimation issues, among

which are DSTM schemes that range from differential STBC schemes, DGCs, and

differential spatial modulation techniques. In our work we focus on DGCs and how

we can improve their throughput while maintaining their performance.
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Chapter 2

DSTM Using Extensions of the Weyl

Group

In this chapter, we use the multiplicative Weyl group of 2 × 2 unitary matrices

for DSTM system. More explicitly, we study the composition and the method of

generation of the Weyl group and propose extensions to it, in order to improve

the throughput of the DSTM system employing the obtained groups of larger size.

We propose a selection algorithm of the sets of information matrices to be used

for a given value of the spectral efficiency along with an optimal mapping strategy

between binary vectors and information matrices. This aims at improving the overall

error performance of the system, which is evident in simulation results produced and

analyzed for MIMO systems having 2 transmit antennas employing the Weyl group

and its extensions.

2.1 The general model of the DSTM scheme

The differential MIMO system model is based on the model portrayed in section

1.3.4 in the first chapter and the encoding process is described in relation (1.17).

In fact, a differential space-time modulation scheme maps a vector of information

bits onto a matrix V that belongs to a candidate group P according to a specific

mapping rule that maximises error performance. The differential encoding process

is described next and the nature of the candidate group used by the DSTM scheme
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is described later in this chapter.

The transmission matrix X is of dimension M × T , M being the number of

transmit antennas and T the number of symbols for one transmitted matrix. For

simplicity, we set T = M , since according to [56], having T < M or T = M would

not modify the capacity of a non-coherent system. Naturally this scheme can be

extended to MIMO systems with T > M or T < M . This extension introduces

some complications since the groups used in this work are multiplicative and thus

have T = M . Consequently this extension will not be addressed here.

2.1.1 Differential encoding process

The differential encoding process for the multi-antenna communication system

is very similar to the standard single-antenna DPSK as previously mentioned. Since

signals are transmitted set-by-set, it is convenient to use τ = 0, 1, . . . to denote the

indexes of the transmitted matrices.

Let us denote theM×M matrix transmitted overM antennas as X. At the start of

the transmission, the transmitter sends a reference matrix X0 = V0 during τ0, which

is usually the identity matrix X0 = IM . Thereafter, data are differentially encoded

according to

Xτ = Vl(τ)Xτ−1 (2.1)

where Vl(τ), with l(τ) ∈ {0, 1, . . . , K−1}, is theM×M data matrix at time τ which

is selected from a set S of size K. S is a set of matrices chosen from a multiplicative

group of unitary matrices P , i.e., Vl(τ) ∈ S. Therefore, each matrix Vl verifies the

relation{Vl|V H
l Vl = VlV

H
l = IM , l = 0, 1, . . . , K − 1}. Indeed, the first vector of the

information bits is mapped onto the information matrix Vl(1) and the second vector

is mapped onto Vl(2). Therefore, at the transmitter end, the sequence of transmitted
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matrices is:
X0 = V0

X1 = X0Vl(1) = V0Vl(1)

...

Xτ = Xτ−1Vl(τ) = V0Vl(1)Vl(2) . . . Vl(τ)

...

(2.2)

At the receiver side, the N antennas receive a stream of matrices of the form

Y0, . . . , Yτ , Yτ+1, obtained with the following relations:

Yτ = HXτ +Wτ (2.3)

for the signal obtained with matrix time τ , and

Yτ+1 = HXτ+1 +Wτ+1 (2.4)

for the matrix received afterwards.

The differential equation (2.2) is used to produce:

Yτ+1 = HXτ+1 +Wτ+1

= YτVl(τ+1) +W ′
τ+1 (2.5)

where W ′
τ+1 = Wτ+1 −WτVi(τ+1).

2.1.2 Differential demodulation

Given that the receiver has knowledge of the received matrices at times τ and

τ + 1, it would then be simple to use the maximum likelihood decoder to retrieve

the transmitted information matrix:

V̂i(τ+1) = argminV ∈S ||Yτ+1 − YτV ||

= argminV ∈STr{(Yτ+1 − YτV )H(Yτ+1 − YτV )}

= argmaxV ∈STr{Re(Y H
τ+1YτV } (2.6)

Once the information matrix is obtained, the binary vector is acquired through the

inverse mapping rule, thus recovering the information bits.
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2.2 Constellation design for MIMO systems with 2

transmit antennas

For a given group P , the maximum spectral efficiency is given by:

Rmax = (1/M)blog2|P|c bps/Hz (2.7)

where |P| denotes the cardinality of the group.

As the information matrices are selected from the multiplicative group P , each

transmitted matrix also belongs to P . For Lv bits, each transmitter antenna sends

M symbols. The corresponding spectral efficiency is:

R = Lv/M

In our scheme, the information matrices are selected from the mathematical Weyl

group [100].

2.2.1 Weyl Group Generation

The Weyl group is composed of unitary (hence invertible) matrices that form

the group under multiplication. The multiplicative group of Weyl is denoted by Gw2

and has 12 cosets {C0, C2 . . . , C11}, each one containing 16 matrices. The first coset

C0 is defined as:

C0 =

α
1 0

0 ±1

 , α

 0 1

±1 0


with α ∈ {+1,−1,+i,−i}. All the 12 cosets are derived from C0 as follows:

Ck = AkC0 ∀k = 0, 1, . . . , 11

where Ak can be grouped into two sets, the first one being {A0, A1, . . . , A5} where:

A0 =

1 0

0 1

 A1 =

1 0

0 i

 A2 =
1√
2

1 1

1 −1


A3 =

1√
2

1 1

i −i

 A4 =
1√
2

1 i

1 −i

 A5 =
1√
2

1 i

i 1


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The second set {A6, A7, . . . A11} is given by:

Ak+6 = ηAk, with η = (1 + i)/
√

2 ∀k = 0, 1, . . . , 5, leading to a total of 192 unitary

matrices numbered as M0,M1, . . . ,M191. The matrices of the Weyl group can be

seen as points distributed on the complex matrices sphere and the distance between

two matrices Ma and Mb is given by:

D(Ma,Mb) = ‖Ma −Mb‖ (2.8)

Here, the norm used is the Frobenius norm, because it is induced by a natural matrix

inner product:

〈A,B〉 = tr(ATB) =
∑
i

∑
j

AijBij (2.9)

that is,

‖A‖ =
√
〈A,A〉 =

√∑
i

∑
j

A2
ij (2.10)

This is directly analogous to how the dot product:

〈x, y〉 = xTy =
∑
i

xiyi (2.11)

induces the Euclidean norm:

‖x‖ =
√
xTx =

√∑
i

x2
i (2.12)

In fact, the Frobenius norm is precisely the Euclidean norm applied to the vectorized

version of a matrix (where all the rows or columns of the matrix are concatenated

to produce a single vector).

In addition, D(Ma,Mb) = D(Mb,Ma), meaning that there are 191 × 192
2

= 18336

values D(Ma,Mb) with 0 ≤ a < b ≤ 191. The 191 values of D(Ma,Mb) for a fixed

a where b 6= a, is the same for any a, which is shown in Table 2.1.

Regarding the distance spectrum of each coset of Gw2 individually, if A is an

n× n unitary matrix, i.e., AHA = AAH = In, the Frobenius norm of A is

‖A‖ =
√
Tr(AAH) =

√
Tr(AHA) =

√
n (2.13)

In addition, ∀Ma,Mb ∈ C0,

‖Ma −Mb‖ =
√
Tr[(Ma −Mb)H(Ma −Mb)] (2.14)
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Table 2.1 – Distance values D(Ma,Mb) for a given matrix Ma in Gw2

Distance Occurrence√
4− 2

√
2 8

√
2 20√
4−
√

2 16

2 102√
4 +
√

2 16
√

6 20√
4 + 2

√
2 8

2
√

2 1

Total 191

Since all the cosets are generated from C0 by multiplying special unitary matrices

Ak, the distance between AkMa and AkMb is

‖AkMb − AkMb‖ =
√
Tr[(Ma −Mb)HAHk Ak(Ma −Mb)]

=
√
Tr[(Ma −Mb)H(Ma −Mb)]

= ‖Ma −Mb‖ (2.15)

which means that the distance spectrum of each coset of the Weyl group is exactly

the same as the spectrum of C0 in Fig. 2.1. The distance spectrum of the whole

group Gw2 is shown in Figure 2.2

2.3 Extensions of the Weyl group

In studying the construction of the Weyl group, we found that it presents an

interesting symmetry: if a matrix M ∈ Gw2, then e
jkπ
4 M ∈ Gw2 for k = 0, 1, ..., 7.

This property is shown in the construction of C0 (a sub-group of Gw2):

C0 = P ∪ e
jπ
2 P ∪ e

j2π
2 P ∪ e

j3π
2 P (2.16)

where P is the set of 4 real matrices

1 0

0 ±1

 ,
 0 1

±1 0

 mentioned in section 2.2.1.

The elements of the matrices of C0, are the constellation points of 4PSK ∪ {0}, as
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Figure 2.1 – C0 distance spectrum

shown in Fig. 2.3a . The first 6 cosets of the Weyl group form a set E of 96 matrices

which satisfy a similar relation to (2.16):

E = Q ∪ e
jπ
2 Q ∪ e

j2π
2 Q ∪ e

j3π
2 Q, (2.17)

where the set Q is:

Q =
5⋃

k=0

AkP (2.18)

and Ak, ∀k = 0, 1, . . . , 5, is the set of matrices mentioned in 2.2.1. The elements

of the matrices in E are shown in Fig. 2.3b. And thus, the remainder of the Weyl

group is constructed by multiplying the set E by e
jkπ
4 which belongs to 8PSK

constellation:

Gw2 = E ∪ e
jπ
4 E

=
7⋃

k=0

e
jkπ
4 Q (2.19)

The elements of the matrices in Gw2 are shown in Fig. 2.3c.
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Figure 2.2 – Distance spectrum of Gw2

2.3.1 Simple extension

Using two transmit antennas (M = 2), a matrix is transmitted during two symbol

durations suiting the size of the matrices of the Weyl group. According to (2.7),

Gw2 achieves 3.5 bps/Hz maximum spectral efficiency using 2Rmax×M = 23.5×2 = 128

matrices:

Rmax =
1

M
blog2Kc

=
1

2
blog2 192c = 3.5 bps/Hz

(2.20)

With the aim of increasing the maximum achievable spectral efficiency, we pro-

pose to generate a new multiplicative group, which we call Gwe2. The generation is

inspired by the relation (2.19), where we perform an optimal rotation of the matrices

in Gw2 through multiplying it with e
jπ
8 :

Gwe2 = Gw2 ∪ Gw2e
jπ
8 (2.21)

The non-nul elements of the matrices in the newly generated group belong to

a 16-PSK constellation. The extended Weyl group Gwe2, composed of 384 distinct

unitary matrices, obeys the power constraint (having unitary matrices) and upgrades
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Figure 2.3 – Elements of matrices sets from Gw2 represented on constellation diagram
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the maximum spectral efficiency to 4 bps/Hz for a MIMO system with 2 transmit

antennas.

2.3.1.1 Optimal rotation

The relation in 2.21 can be rewritten in the form of:

Gwe2 = Gw2 ∪ Gw2e
jπ
8

=
15⋃
k=0

e
jkπ
8 Q

=

{ 7⋃
k=0

e
jkπ
4 Q

}
∪
{⋃

l

e
jlπ
8 Q, l = 1, 3, 5, 7, 9, 11, 13, 15

}
= Gw2 ∪

{⋃
l

e
jlπ
8 Q, l = 1, 3, 5, 7, 9, 11, 13, 15

}
(2.22)

An optimal rotation means that the newly generated matrices have elements that

are inserted within an equal footing of the already existing matrices elements. This

is evidently performed in the generation of Gwe2, where the elements of the matrices

newly added belong to a 16PSK constellation thus of equal footing to the already

existing elements belonging to 8PSK as in relation 2.22. An illustration of the

newly added elements are shown in Fig. 2.4.

The distance spectrum of Gwe2 is presented in Fig. 2.5 showing clearly how the

additional number of matrices provides larger scope of search for matrices along with

higher distances amongst them. In fact, D(Ma,Mb) = D(Mb,Ma), which means that

there are 383× 384
2

= 73586 values D(Ma,Mb) with 0 ≤ a < b ≤ 383.

2.3.1.2 Group properties

It is important that the newly generated set Gwe2 is a group under the multipli-

cation operation. The group property ensures that the transmitted matrices after

differential encoding will still belong to the group, thus are unitary. This means that

the total transmit power will remain constant, which ensures a good functioning of

the RF (Radio Frequency) amplifiers, avoiding non-linearity issues.

Indeed, the Weyl group Gw2 is not commutative under multiplication, though it

satisfies all other group properties mentioned in section 1.4.2.2:
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Figure 2.4 – Gwe2 matrices elements, showing new elements inserted with equal

distance from already existing elements of Gw2

1. If Ma,Mb ∈ Gw2, MaMb ∈ Gw2.

2. If Ma,Mb,Mc ∈ Gw2, (MaMb)Mc = Ma(MbMc)

3. I ∈ Gw2

4. If Ma ∈ Gw2, (Ma)
−1 ∈ Gw2

In fact, Gwe2 satisfies these conditions as well:

1. The identity element is indeed in Gwe2 since:

I ∈ Gw2, Gwe2 = Gw2 ∪ Gw2e
jπ
8 (2.23)

2. Gwe2 is indeed a closed group under multiplication:

— The multiplication of two matrices Ma,Mb ∈ Gw2:

MaMb ∈ Gw2 =⇒ MaMb ∈ Gwe2 (2.24)

— The multiplication of a matrix Ma ∈ Gw2 with a matrix Mi ∈ Gw2e
jπ
8 :

MaMi = Ma(Mbe
jπ
8 ), Mb ∈ Gw2

= (MaMb)e
jπ
8

= Mce
jπ
8 , Mc ∈ Gw2

= Mj ∈ Gwe2 (2.25)
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Figure 2.5 – Gwe2 distance spectrum

— The multiplication of two matrices MiMj ∈ Gw2e
jπ
8 :

MiMj = (Mae
jπ
8 )(Mbe

jπ
8 ), Ma,Mb ∈ Gw2 (2.26)

= (MaMb)(e
jπ
8 e

jπ
8 )

= Mce
jπ
4 = Md ∈ Gw2

3. The inverse of any matrix Mi ∈ Gw2e
jπ
8 is Mj:

Mi
−1 = {Mae

jπ
8 }−1, Ma ∈ Gw2 (2.27)

= Ma
−1e

−jπ
8

= Mbe
15jπ
8

= Mj ∈ Gwe2

4. Associative property is a general property of the product of square matrices

thus applies here.
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2.3.2 Double extension

Following the same method and in order to further increase the maximum achiev-

able spectral efficiency, we propose a double extension of the Weyl group by multi-

plying Gwe2 with e
jπ
16 which corresponds to 32-PSK constellation.

Gwee2 = Gwe2 ∪ Gwe2e
jπ
16 (2.28)

Thus, the amount of matrices is increased in Gwee2 to 768 and set the maximum

spectral efficiency to 4.5 bps/Hz for a MIMO system with 2 transmit antennas.

This new extension, which we denote by Gwee2, corresponds to an optimal rotation

of the matrices in Gwe2. Indeed, the elements of the new extension Gwe2e
jπ
16 are

inserted within an equal footing of the already existing matrices elements of Gwe2,

as in section 2.3.1.1:

The relation (2.28) can be rewritten in the form of:

Gwee2 = Gwe2 ∪ Gwe2e
jπ
16

=
31⋃
k=0

e
jkπ
16 Q

=

{ 15⋃
k=0

e
jkπ
8 Q

}
∪
{⋃

l

e
jlπ
16 Q, l = 1, 3, 5, 7, 9, . . . , 31

}
= Gwe2 ∪

{⋃
l

e
jlπ
16 Q, l = 1, 3, 5, 7, 9, . . . , 31

}
(2.29)

An illustration of the newly added elements are shown in Fig. 2.6. In addition,

Gwee2 is a group under the multiplication operation following the same reasoning in

section 2.3.1.2.

The distance spectrum of Gwee2 is presented in Fig. 2.7. The double extension

provides larger scope of search for matrices along with higher distances amongst

them, as is explained in the next section. In fact, D(Ma,Mb) = D(Mb,Ma) as in the

Gw2 and Gwe2 case, which means that there are 767× 768
2

= 294528 values D(Ma,Mb)

with 0 ≤ a < b ≤ 767. In addition, following the same reasoning of section 2.3.1.2,

Gwee2 is indeed a group under the multiplication operation.

Some of the achievable spectral efficiencies for the DSTM system for 2 transmit

antennas using the Weyl group and its extensions are summarized in Table 2.2.
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Figure 2.6 – Gwee2 matrices, showing new matrices inserted with equal distance

from already existing matrices of Gwe2

Figure 2.7 – Gwee2 distance spectrum

Theoretically, we can keep generating new groups through optimal rotations, but

since the resulting matrices grow closer with every extension, further extensions

would affect the error performance of the system.
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Table 2.2 – Parameters of Gw2, Gwe2 and Gwee2

Gw2 Gwe2 Gwee2
192 distinct

matrices

384 distinct

matrices

768 distinct

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

2 16 2 16 2 16

2.5 32 2.5 32 2.5 32

3 64 3 64 3 64

3.5 128 3.5 128 3.5 128

- - 4 256 4 256

- - - - 4.5 512

2.4 Enhancing Error Performance

2.4.1 Near Optimal Matrix Selection

The information matrices are not randomly chosen, rather they follow a de-

sign criterion of the DSTM system studied here, which is maximizing the distances

among the chosen matrices. The matrices of the Weyl group can be seen as points

distributed on the surface of a high dimension sphere, where the largest distance

between two matrices represents the diameter of this sphere. Accordingly, when

expanding Gw2, the matrices newly generated would be inserted on the same sphere,

thus offering for a given spectral efficiency a largest scope of search.

Since the metric used for error performance is the distance between the information

matrices selected, this implies that the selection process must use this metric with

the aim of enhancing error performance. In this work, a matrix selection algorithm

is proposed, maximizing the distances between the matrices selected in order to

obtain the best subset S to be used for a given spectral efficiency where we need to

use K = 2n matrices selected from the group P (n being the length of the binary

information vector). A summary of the possible values of K and n for given spectral
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Table 2.3 – Summary of the possible values of K and n for given spectral efficiencies

from Gw2, Gwe2 and Gwee2

R

(bps/Hz)

K

(Matrices)

n

(bits)

1 4 2

2 16 4

3 64 6

3.5 128 7

4 256 8

4.5 512 9

efficiencies are presented in Table 2.3. The matrix selection algorithm is as follows:

1. The first matrix M1 of the group P , which is in fact the identity matrix IM

(here M = 2), is inserted into the set S as a reference (S1 = M1) where

S1 ∈ S. S is of size K which is determined by the desired spectral efficiency.

2. The distanceD(M1,Mi) is computed for all matricesMi ∈ P\S, thenDmax =

maxD(M1,Mi). S2 is inserted in S as the matrix with D(M1,Mi) = Dmax. If

multiple matrices Mi have the same maximum distance Dmax with M1, then

we choose one randomly to be inserted in S as S2.

3. For each non selected matrixMi ∈ P the vectorDMi
= [D(Mi, S1) . . . D(Mi, Sk)]

is calculated, where k is the number of already selected matrices for the set

S.

4. The values of vector DMi
are sorted in ascending order.

5. We retain the vectors DMi
which have the maximum minimum value. If only

one vector DMi
is retained, then Mi is added to S. If several vectors DMi

are

retained, then the second values of the retained vectors are compared and

those having the largest second value are retained. If only one vector DMi
is

retained, thenMi is added to S. If several vectors DMi
are retained, then the

third values of the retained vectors are compared. This can continue to the

last values of the vectors DMi
. If in the end all the values of the vectors DMi
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are identical, we choose a random one. Finally, a new vector Mi is added to

S.

6. Steps 3-5 are iterated to obtain the set S having K matrices selected from

the group P .

The goals of the proposed extensions are listed as follows:

— Increasing the maximum spectral efficiency achievable through the expansion

of the candidate group.

— Enlarging the search scope for the optimal matrices selected for a given spec-

tral efficiency.

This information matrices selection algorithm’s performance is analyzed for Gw2,

Gwe2, and Gwee2 for different spectral efficiencies. The sets selected for different cases

are summarized in table 2.4.

Table 2.4 – Sets produced by the selection algorithm

Spectral efficiency (bps/Hz)

Group
1 2 3 3.5 4 4.5

Gw2 S1A S2A S3A S3.5A - -

Gwe2 S1A S2A S3B S3.5B S4A -

Gwee2 S1A S2A S3B S3.5B S4A S4.5A

For the spectral efficiencies 3 bps/Hz and 3.5 bps/Hz, the selection algorithm

produces different sets, S3A and S3.5A for Gw2, then S3B and S3.5B for Gwe2 and

Gwee2. This result leads to the assumption that the newly generated groups Gwe2
and Gwee2 offer better spaced matrices than the ones in Gw2 for the mentioned spec-

tral efficiencies. In order to verify this, we study the distance spectrum and error

performance of the mentioned sets.

2.4.1.1 3 bps/Hz case

When comparing the distance values between the selected matrices between Gw2

and Gwe2 (or Gwee2 since the selected matrices are the same) in table 2.4.1.1 and

the histograms in 2.8, it is found that the Gw2 set presents the smallest distance of
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1.0824 which has an occurrence percentage of 1.58%. On the other hand, the set for

Gwe2 does not present the value 1.0824 and has the lowest distance of 1.1777 with an

occurrence rate of 3.17%. Since the smallest distances between the matrices play the

largest role in the error performance of the system, this leads to the conclusion that

for the same spectral efficiency of 3.5 bps/Hz, the set of selected matrices for Gwe2
should perform better than the set of Gw2. This is verified when reviewing the BER

performance of these two cases in Fig. 2.9 (simulation environment is described in

section 2.5). Indeed, in the high SNR region, the smallest distance affects the error

performance the most, where the set of Gwe2 outperforms that of Gw2 starting 15

dB, to reach a difference of 2 × 10−5 for 26 dB. The difference in performance is

explained by the fact that we search for 64 matrices (required to achieve 3 bps/Hz

spectral efficiency) among 192 in Gw2, whereas for Gwee2 we enlarge the search scope

to 768 matrices, which allows the search algorithm to select better spaced matrices.

2.4.1.2 3.5 bps/Hz case

The same analysis as in section 2.4.1.1 is conducted for the sets of Gw2 and Gwe2
for the 3.5 bps/Hz case. The histograms in Fig. 2.10 and table 2.4.1.2 show that

the smallest distance in the Gw2 set is equal to 1.0824 and constitutes 3.54% of the

distance values, in contrast to only 0.78% of the distances of Gwe2. When comparing

Figure 2.8 – Distance spectra of the sets selected for 3 bps/Hz in the case of Gw2

and Gwe2 or Gwee2
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Table 2.5 – Distance analysis of selected sets for 3 bps/Hz in Gw2,Gwe2 and Gwee2

R=3 bps/Hz Gw2 Gwe2 or Gwee2
Distance Value Occurrences amount Occurrence percentage (%) Occurrences amount Occurrence percentage (%)

1.0824 64 1.58 - -

1.1777 - - 128 3.17

1.4142 256 6.34 128 3.17

1.4671 - - 256 6.34

1.608 768 19.04 256 6.34

1.7081 - - 128 3.17

1.7985 - - 256 6.34

2 1792 44.44 1664 41.26

2.183 - - 256 6.34

2.2544 - - 128 3.17

2.3268 768 19.04 256 6.34

2.4182 - - 256 6.34

2.4495 256 6.349 128 3.17

2.5716 - - 128 3.17

2.6131 64 1.58 - -

2.8284 64 1.58 64 1.58

Figure 2.9 – Performance of the selected sets of matrices for Gw2 and Gwe2 (or

Gwee2) for 3 bps/Hz
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the performance of the selected matrices from Gw2 versus the ones selected from Gwe2
for a DSTM MIMO system employing 2 transmit antennas and the same spectral

efficiency of 3.5 bps/Hz, it is evident from Fig. 2.11 that the matrices selected

from the extended group perform better for high SNR values (above 15 dB). This

performance analysis proves the importance of the selection algorithm employed in

the selection of the best information matrices to use.

Figure 2.10 – Distance spectra of the sets selected for 3.5 bps/Hz in the case of Gw2

and Gwe2 or Gwee2

2.4.2 Optimal mapping rule

With the aim of further enhancing the error performance, it is crucial to adopt a

mapping strategy between the information matrices Viτ ∈ S and the binary vectors.

For a given spectral efficiency, the matrices in the set S that are the farthest from

each other in distance, are again sorted so that they are closest in distance. There-

after, the strategy adopted is based on mapping these matrices which are the closest

in distance to the binary vectors having the smallest Hamming distance. Because

the closest matrices are the most prone to error, the error occurring would not be as

critical. If multiple binary vectors have the same Hamming distance, one is assigned

randomly to the corresponding matrix.
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Table 2.6 – Distance analysis of selected sets for 3.5 bps/Hz in Gw2,Gwe2 and Gwee2

R=3.5 bps/Hz Gw2 Gwe2 or Gwee2
Distance Value Occurrences amount Occurrence percentage (%) Occurrences amount Occurrence percentage (%)

1.0824 576 3.54 128 0.78

1.1777 - - 768 4.72

1.4142 1536 9.44 1024 6.29

1.4671 - - 512 3.14

1.608 1792 11.02 512 3.14

1.7081 - - 768 4.72

1.7985 - - 512 3.14

2 8320 51.18 7680 47.24

2.183 - - 512 3.14

2.2544 - - 768 4.72

2.3268 1792 11.02 512 3.14

2.4182 - - 512 3.14

2.4495 1536 9.44 1024 6.29

2.5716 - - 768 4.72

2.6131 576 3.54 128 0.78

2.8284 128 0.78 128 0.78

Figure 2.11 – Performance of the selected sets of matrices for Gw2 and Gwe2 (or

Gwee2) for 3.5 bps/Hz
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2.5 Performance of DSTM MIMO system using 2

transmit antennas

In this section we present the performance results of the DSTM MIMO systems

for 2 transmit antennas employing the double extension of the Weyl group (Gwee2)

since according to table 2.4, Gwee2 selected matrices are similar to those of Gwe2 for

all spectral efficiencies, and different than that of Gw2 for 3 and 3.5 bps/Hz.

2.5.1 Simulation environment

The information matrices are transmitted through a Rayleigh channel charac-

terized by the H channel matrix of dimension 2 × 2. The elements of the channel

matrix are independent complex random variables whose real and imaginary parts

are Gaussian random variables of mean zero and variance σ2 = 1
2
. The variance of

the noise is inversely proportional to the SNR value by (1.13).

Each received matrix is disturbed by a noise matrix whose elements are also com-

plex. Their real and imaginary parts are also Gaussian random variables, with zero

mean and standard deviation which is determined according to the SNR. In addi-

tion, constraints are put on the number of errors encountered (1000 error bits) for

simulation for a given SNR value that will impose a quality of the results of BER.

We consider that the channel matrix remains constant during the transmission of

L = Tc
Ts

= 100 symbols, thus 50 matrices. Then another random draw is performed

to have another channel matrix.

2.5.2 Simulation results

The BER versus SNR of the DSTM MIMO system employing M = 2 transmit

antennas and N = 2 receive antennas for the spectral efficiencies 1, 2, 3, 4, 4.5

bps/Hz and using Gwee2 is presented in Fig. 2.12 where for a fixed value of SNR, the

stop condition is encountering 10000 errors before continuing to the next SNR value.

As expected, when the spectral efficiency increases, more matrices are employed

that are closer in distance, thus increasing the error rate of the DSTM system. For
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instance, the 1 bps/Hz systems attains BER=10−5 at 25 dB, whereas the 4.5 bps/Hz

systems attains it for SNR higher than 30 dB.

SNR (dB)

0 5 10 15 20 25 30

B
E

R

10-5

10-4

10-3

10-2

10-1

100

1 bps/Hz Gwee2

2 bps/Hz Gwee2

3 bps/Hz Gwee2

4 bps/Hz Gwee2

4.5 bps/Hz Gwee2

Figure 2.12 – BER performance of DSTM MIMO 2× 2 system for different spectral

efficiencies

2.6 Conclusion

In this chapter, we propose DSTM MIMO schemes for 2 transmit antennas based

on the extensions of the multiplicative Weyl group of unitary matrices with the aim

of increasing the maximum spectral efficiency. In addition, we thoroughly study

the distance spectrum of the proposed groups and introduce a new matrix selection

algorithm and adopt an optimal mapping strategy between binary information vec-

tors and selected matrices to improve the error performance of the overall system.

Simulation results illustrate the two main advantages of the use of this new double

extension of the Weyl group for DSTM schemes. First, it enlarges the search scope

of the matrices, allowing better results for a given spectral efficiency. Secondly, the

extensions performed increase the maximum achievable spectral efficiency by the

Weyl group.
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Chapter 3

DSTM Scheme Employing 4 and 8

Transmit Antennas

In this chapter, we expand the DSTM MIMO system from 2 transmit antennas

to 4 and 8 transmit antennas through the use of the Kronecker product on the Weyl

group. Furthermore, we apply extensions to the newly generated 4 × 4 and 8 × 8

multiplicative groups of unitary matrices with the aim of increasing their maximum

achievable spectral efficiencies. The distance spectrum of the generated groups is

studied and the information matrices are selected through the selection algorithm

conceived in the previous chapter. BER performance results are presented and

analyzed.

3.1 DSTM System using 4 Transmit Antennas

In order to expand our DSTM MIMO system to 4 transmit antennas, the Kro-

necker product operation is applied on Gw2.

The Kronecker product is an operation on two matrices of arbitrary size resulting

in a matrix of expanded size. More explicitly, if A is an m × n matrix and B is a

p× q matrix, then the Kronecker product A⊗B is the pm× qn block matrix:

A⊗B =


a1,1B · · · a1,nB

... . . . ...

am,1B · · · am,nB

 (3.1)
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The Kronecker product has the following properties:

1. A⊗B is invertible if and only if A and B are invertible:

(A⊗B)−1 = A−1 ⊗B−1 (3.2)

2. The operation of transposition is distributive over the Kronecker product:

(A⊗B)T = AT ⊗BT (3.3)

3. The Kronecker product is linear:

A⊗ (αB + βC) = αA⊗B + βA⊗ C (3.4)

4. The Kronecker product is associative:

(A⊗B)⊗ C = A⊗ (B ⊗ C) (3.5)

5. The Kronecker product is not commutative:

A⊗B 6= B ⊗ A (3.6)

In [101], the author attempts to link the distance between two matrices with the

Kronecker product and presents the following theorems:

Theorem 3.1. Consider the complex matrices A, B of size p× q and M a complex

matrix of size m× n. If ‖M‖ is the Frobenius norm of the matrix M , i.e.,

‖M‖ =

√√√√ m∑
i=1

n∑
j=1

mijm∗ij

and D(A,B) = ‖A−B‖, then:

D(M ⊗ A,M ⊗B) = ‖M‖.D(A,B). (3.7)

Proof :

D(M ⊗ A,M ⊗B) = ‖M ⊗ A−M ⊗B‖ = ‖M ⊗ (A−B)‖

=

√∑
ij

∑
kl

[mij(akl − bkl)][mij(akl − bkl)]∗

=

√∑
ij

mijm∗ij
∑
kl

[(akl − bkl)][(akl − bkl)]∗

= ‖M‖.‖A−B‖ = ‖M‖.D(A,B)
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Theorem 3.2. If M is a non-null complex matrix of size m×n and A,B,C,D are

complex matrices of size p× q, then

D(A,B) < D(C,D)⇒ D(M ⊗ A,M ⊗B) < D(M ⊗ C,M ⊗D) (3.8)

Proof :

If D(A,B) < D(C,D) and ‖M‖ > 0, using theorem 3.1, we have:

D(M ⊗ C,M ⊗D)−D(M ⊗ A,M ⊗B) = ‖M‖.D(C,D)− ‖M‖.D(A,B)

= ‖M‖(D(C,D)−D(A,B)) > 0

3.1.1 Expansion of Gw2 to Gw4

For a MIMO system using 4 transmit antennas and with the assumption M = T

in place, we need to use 4×4 transmission matrices. When the Kronecker product is

applied to Gw2, a 4× 4 group of unitary matrices Gw4 = Gw2 ⊗Gw2 is obtained. The

Kronecker product gives 192 × 192 = 36864 matrices, among these only 4608 are

distinct. Thus, for a MIMO system of 4 transmit antennas, the maximum spectral

efficiency is reduced to Rmax = 1
4
blog24608c = 3 bps/Hz using relation (2.7) from

chapter 2.

3.1.1.1 Group properties

Similarly to the extension of Gwe2, it is important that the newly generated set

Gw4 is a group under the multiplication operation.

Indeed, Gw4 also satisfies the group conditions mentioned in section 1.4.2.2:

1. The identity element is indeed in Gw4 since:

I ∈ Gw2, Gw4 = Gw2 ⊗ Gw2

I2 ⊗ I2 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = I4 ∈ Gw4

(3.9)
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2. Gw4 is indeed a closed group under multiplication, because if we suppose

Mi,Mj ∈ Gw4, then:

MiMj = (Ma ⊗Mb)(Mc ⊗Md)

= (MaMc)⊗ (MbMd)

= Me ⊗Mf = Mk ∈ Gw4

(3.10)

3. The inverse of any matrix Mi in Gw4 is indeed in Gw4, since:

(Mi)
−1 = (Ma ⊗Mb)

−1 , (Ma,Mb) ∈ Gw2

= M−1
a ⊗M−1

b

= Mc ⊗Md

= Mj ∈ Gw4

(3.11)

In addition, the matrices in Gw4 are unitary. Indeed, since the operation of

transposition is distributive over the Kronecker product:

(Ma ⊗Mb)
T = MT

a ⊗MT
b (3.12)

then the matrices in Gw4 are unitary, because if we suppose that Ma,Mb ∈ Gw2 and

Mi ∈ Gw4, then:
MiM

T
i = (Ma ⊗Mb)(Ma ⊗Mb)

T

= (Ma ⊗Mb)(M
T
a ⊗MT

b )

= (MaM
T
a )⊗ (MbM

T
b )

= I2 ⊗ I2 = I4

(3.13)

3.1.1.2 Distance analysis of Gw4

The distances occurrences between the matrices of the generated group Gw4 are

presented in table 3.1 and Fig. 3.1. Indeed, a multiplication of the distances values

of the matrices in Gw2 is
√

2. The 8 values in table 2.1 multiplied by
√

2 are in table

3.1 amongst other values.
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Table 3.1 – Table of distance occurrences between matrices of Gw4

Distance 1.5307 2 2.2741 2.4495 2.5663 2.8284 3.0683 3.1623 3.2907 3.4641 3.6955 4

Occurrence percentage (%) 0.30 1.64 4.34 5.55 2.77 70.71 2.77 5.55 4.34 1.64 0.30 0.02

3.2 Simple Extension of Gw4

Indeed, this decrease in spectral efficiency becomes more severe with an additional

increase of the number of transmission antennas, according to relation (2.7). This

is why it becomes important to extend the Gw4 group with the aim of increasing

the maximum achievable spectral efficiency. We propose to use an extension of Gw4

using:

Gwe4 = Gw4 ∪ Gw4e
jπ
8 (3.14)

which produces 4608 × 2 = 9216 distinct matrices. Gwe4 is able to upgrade the

maximum spectral efficiency to 3.25 bps/Hz compared to the maximum spectral

efficiency of 3 bps/Hz for Gw4.

3.2.1 Group properties and optimal rotation of Gwe4

Following the same analysis conducted in chapter 2 section 2.3.1.2, we conclude

that Gwe4 satisfies the group conditions:

1. The identity element is indeed in Gwe4 since:

I ∈ Gw4, Gwe4 = Gw4 ∪ Gw4e
jπ
8 (3.15)

2. Gwe4 is indeed a closed group under multiplication:

— The multiplication of two matrices Ma,Mb ∈ Gw4:

MaMb ∈ Gw4 =⇒ MaMb ∈ Gwe4 (3.16)

— The multiplication of a matrix Ma ∈ Gw4 with a matrix Mi ∈ Gw4e
jπ
8 :

MaMi = Ma(Mbe
jπ
8 ) = (MaMb)e

jπ
8 = Mce

jπ
8 = Mj ∈ Gwe4 (3.17)
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Figure 3.1 – Distance spectra of Gw4 and Gw2

— The multiplication of two matrices Mi,Mj ∈ Gw4e
jπ
8 :

MiMj = (Mae
jπ
8 )(Mbe

jπ
8 ) (3.18)

= (MaMb)(e
jπ
8 e

jπ
8 )

= Mce
jπ
4 = Md ∈ Gw4

3. The inverse of any matrix Mi ∈ Gw4e
jπ
8 :

Mi
−1 = {Mae

jπ
8 }−1 (3.19)

= Ma
−1e

−jπ
8

= Mbe
15jπ
8

= Mj ∈ Gwe4

4. The product of the matrices of Gwe4 is an associative operation which is a
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general property of square matrices.

In addition, the matrices belonging to Gwe4 are unitary since:

MiM
H
i = (Mae

jπ
8 )(Mae

jπ
8 )H (3.20)

= MaM
H
a e

jπ
4 = Ie

jπ
4

which is a multiple of the identity matrix. And in the case that Mi is in Gw4, since

it is a group, then the inverse of Mi exists in Gw4 thus in Gwe4

3.2.2 Optimal rotation

Furthermore, this extension also represents an optimal rotation of Gw4, since:

Gw4 = Gw2 ⊗ Gw2 (3.21)

=
7⋃

k=0

e
jkπ
4 (Q⊗Q)

and

Gwe4 = Gw4 ∪ Gw4e
jπ
8 (3.22)

=
7⋃

k=0

e
jkπ
4 (Q⊗Q) ∪

{ 7⋃
k=0

e
jkπ
4 (Q⊗Q)

}
e
jπ
8

=

{ 7⋃
k=0

e
jkπ
4 (Q⊗Q)

}
∪
{⋃

l

e
jlπ
8 (Q⊗Q), l = 1, 3, 5, 7, 9, 11, 13, 15

}
= Gw4 ∪

{⋃
l

e
jlπ
8 (Q⊗Q), l = 1, 3, 5, 7, 9, 11, 13, 15

}
which means that the newly generated matrices have elements that are inserted

within an equal footing of the already existing matrices elements. This is evidently

performed in the generation of Gwe4, where the elements of the matrices newly

added belong to a 16PSK constellation thus of equal footing to the already existing

elements belonging to 8PSK.

The distance occurrences in Gwe4 are presented in Table 3.2, and show compared

to the distances between the matrices of Gw4, we have more distances, because we

add the distances between a matrix of Gw4 and a matrix of Gw4e
(iπ/8).
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Table 3.2 – Table of distance occurrences between matrices of Gwe4

Distance Occurrence (%)

0.7804 0.02

1.5307 0.15

1.6655 0.26

2 0.82

2.0747 1.12

2.2223 0.02

2.2741 2.17

2.321 2.08

2.4156 0.26

2.4495 2.77

2.4804 1.38

2.5435 1.12

2.5663 1.38

2.6301 2.08

2.6897 1.38

2.8284 65.82

2.9606 1.38

3.0137 2.08

3.0683 1.38

3.0872 1.12

3.1381 1.38

3.1623 2.77

3.1882 0.26

3.2578 2.08

3.2907 2.17

3.3259 0.02

3.4199 1.12

3.4641 0.82

3.6368 0.26

3.6955 0.15

3.9231 0.02

4 0.01
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3.3 Double Extension of Gw4

Attempting to further increase the achievable spectral efficiency, we apply the

double extension through:

Gwee4 = Gwe4 ∪ Gwe4e
jπ
16 (3.23)

generating 9216× 2 = 18438 distinct matrices which upgrades the achievable max-

imum spectral efficiency to 3.5 bps/Hz. Indeed, following previous analysis from

3.2.1 and 3.2.2, Gwee4 forms a group of unitary matrices under the multiplication

operation, and is obtained by an optimal rotation of Gwe4.

The distance spectrum of the newly generated matrices of Gwee4 is presented in

Table 3.3. And the proposed groups and their achievable spectral efficiencies for the

DSTM system employing 4 transmit antennas are summarized in Table 3.4.

3.4 Error Performance of 4 Transmit Antennas DSTM

System

3.4.1 Near-Optimal Matrix Selection Algorithm and Optimal

Mapping

As in the case of the 2 transmit antennas system, the matrices from the generated

groups are selected following a design criterion of maximizing the distances amongst

the selected matrices along with an optimal mapping strategy between binary vectors

and information matrices as in section 2.4.

When the information matrices selection algorithm is applied on Gw4, Gwe4 and

Gwee4, the sets produced are summarized in table 3.5.

For the spectral efficiency 3 bps/Hz, the selection algorithm produces different

sets, S3A for Gw4, then S3B for Gwe4 and Gwee4. The distance spectrum and error

performance of the mentioned sets are studied.
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Table 3.3 – Table of distance occurrences between matrices of Gwee4

Distance Occurrence (%) Distance Occurrence (%)

0.3921 0.01 2.9606 0.69

0.7804 0.01 2.9632 0.56

1.1611 0.01 3.0137 1.04

1.5307 0.07 3.0172 0.13

1.5658 0.13 3.0185 0.69

1.6655 0.13 3.0683 0.69

1.8156 0.13 3.0872 0.56

1.8856 0.01 3.092 0.01

2 0.41 3.0938 1.04

2.0191 0.56 3.1085 0.69

2.0747 0.56 3.1381 0.69

2.162 0.56 3.1562 0.69

2.2039 0.13 3.1623 1.38

2.2223 0.01 3.1882 0.13

2.2741 1.08 3.1972 0.56

2.286 1.04 3.2174 1.04

2.321 1.04 3.2578 1.04

2.3766 1.04 3.2824 1.04

2.4037 0.56 3.2907 1.08

2.4156 0.13 3.3259 0.01

2.4495 1.38 3.3381 0.13

2.4573 0.69 3.3654 0.56

2.4804 0.69 3.4199 0.56

2.5174 0.69 3.453 0.56

2.5355 1.04 3.4641 0.41

2.5376 0.01 3.5277 0.01

2.5435 0.56 3.5642 0.13

2.5663 0.69 3.6368 0.13

2.6247 0.69 3.6808 0.13

2.6261 0.13 3.6955 0.07

2.6301 1.04 3.8278 0.01

2.6869 0.56 3.9231 0.01

2.6897 0.69 3.9807 0.01

2.7291 1.04 4 0.005

2.7586 0.69 - -

2.8284 63.38 - -

2.8966 0.69 - -

2.9243 1.04 - -
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Table 3.4 – Parameters of Gw4, Gwe4 and Gwee4

Gw4 Gwe4 Gwee4
4608 distinct

matrices

9216 distinct

matrices

18432 distinct

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

2 256 2 256 2 256

2.5 1024 2.5 1024 2.5 1024

3 4096 3 4096 3 4096

- - 3.25 8192 3.25 8192

- - - - 3.5 16384

Table 3.5 – Sets produced by the selection algorithm

Spectral efficiency (bps/Hz)

Group
2 3 3.25 3.5

Gw4 S2A S3A - -

Gwe4 S2A S3B S3.25A -

Gwee4 S2A S3B S3.25A S3.5A

3.4.2 3 bps/Hz case

When comparing the distance values between the selected matrices between Gw4

and Gwe4 (or Gwee2 since the selected matrices are similar) in table 3.4.2, we find

that the distance values are fairly close to each other (shown also in histograms of

Fig. 3.2), even for the lowest distance present (1.53 and 1.56). This leads to the

conclusion that the performance of these two sets should be similar to an extent.

This is verified when comparing the performances of these two sets in Fig. 3.3.
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Table 3.6 – Distance values for the selected matrices of Gw4 and Gwee4 for 3 bps/Hz

spectral efficiency

Occurrence

Percentage

Occurrence

Percentage

Distance Gw4 Gwee4 Distance Gw4 Gwee4
1.5307 0.321 0.072688 2.8966 0.607448

1.5658 0.157204 2.9243 1.137057

1.6655 0.146329 2.9606 0.732601

1.8156 0.156441 2.9632 0.517399

2 1.679 0.369734 3.0137 0.836386

2.0191 0.517399 3.0172 0.157204

2.0747 0.596001 3.0185 0.619658

2.162 0.526557 3.0683 2.735 0.787546

2.2039 0.156441 3.0872 0.596001

2.2741 4.319 1.143162 3.0938 1.134005

2.286 1.137057 3.1085 0.619658

2.321 0.836386 3.1381 0.732601

2.3766 1.134005 3.1562 0.607448

2.4037 0.526557 3.1623 5.470 1.462149

2.4156 0.146329 3.1882 0.146329

2.4495 5.470 1.462149 3.1972 0.526557

2.4573 0.607448 3.2174 1.134005

2.4804 0.732601 3.2578 0.836386

2.5174 0.619658 3.2824 1.137057

2.5355 1.134005 3.2907 4.319 1.143162

2.5435 0.596001 3.3381 0.156441

2.5663 2.735 0.787546 3.3654 0.526557

2.6247 0.619658 3.4199 0.596001

2.6261 0.157204 3.453 0.517399

2.6301 0.836386 3.4641 1.679 0.369734

2.6869 0.517399 3.5642 0.156441

2.6897 0.732601 3.6368 0.146329

2.7291 1.137057 3.6808 0.157204

2.7586 0.607448 3.6955 0.321 0.072688

2.8284 70.93 63.63668 4 0.024 0.02442
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Figure 3.2 – Histograms of the distance values of the selected matrices in Gw4 and

Gwee4

3.4.3 Error Performance

The simulation parameters are similar to the ones used for DSTM schemes with

2 transmit antennas. The information matrices are transmitted through a Rayleigh

channel characterized by the H channel matrix of dimension 4 × 4. The elements

of the channel matrix are independent complex random variables whose real and

imaginary parts are Gaussian random variables of mean zero and variance σ2 = 1
2
.

The transmission of each information matrix is disturbed by the channel matrix and

a noise matrix whose elements are also complex. Their real and imaginary parts are

also Gaussian random variables, with zero mean and standard deviation which is

determined according to the SNR in relation (1.13).

We consider that the channel matrix remains observed during the transmission of

L = Tc
Ts

= 100 symbols, thus 25 matrices. Then another random draw is performed

to have another channel matrix. The noise variation is related to the SNR through
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Figure 3.3 – Performance of the two sets of the selected matrices for Gw4 and Gwe4

σ2 = 1
SNR

. The simulation stopping condition is related to reaching 1000 errors

before passing to the next SNR.

In Fig. 3.4, the simulation results of the BER for each SNR value are presented

for DSTM MIMO systems employing M = 4 transmit antennas and N = 4 receive

antennas using Gwee4. To further explain the results in Fig. 3.4, the distance spectra

of the lowest distances between the selected matrices for 2, 3, 3.25, 3.5 bps/Hz

are presented in Table 3.7. The distance 2.82 appears with an identical frequency

of 63% for the 3 systems with spectral efficiencies 3, 3.25 and 3.5 bps/Hz, which

explains why these three curves are close for low SNRs (< 8dB). Indeed, in this area,

the smallest distances are the most vulnerable to generate error events. The 2.82

distance appears the most for the 2 bps/Hz system but with a lower probability of

43% explaining why its BER curve does not match for low SNR with the systems
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with spectral efficiency 3, 3.25 and 3.5 bps/Hz.

In addition, the smallest distances in Table 3.7 explain the error performance of

the 3.25 and 3.5 bps/Hz systems for high SNR values. The smallest distance between

the matrices selected for 3.5 bps/Hz is 0.3921, which is almost 4 times lower than

the smallest distance for the 3 bps/Hz system (1.5307). The same analysis is applied

for the 3.25 bps/Hz system where the smallest distance is 0.7804 and 2 times lower

than that of the 3 bps/Hz system. As previously mentioned, the smallest distances

are the most critical and play the highest role for high SNR values, determining the

degradation in the performance of the 3.25 and 3.5 bps/Hz systems.
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1 bps/Hz Gwee4

2 bps/Hz Gwee4

3 bps/Hz Gwee4

3.25 bps/Hz Gwee4

3.5 bps/Hz Gwee4

Figure 3.4 – BER performance of DSTM MIMO 4× 4 system for different spectral

efficiencies
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Table 3.7 – Occurrences and distances between selected matrices of Gwee4

Spectral efficiency

Distance
2(bps/Hz) 3(bps/Hz) 3.25(bps/Hz) 3.5(bps/Hz)

0.3921 - - - 0.011%

0.7804 - - 0.021% 0.011%

1.1611 - - 0.0% 0.011%

1.5307 - 0.73% 0.080% 0.083%

1.5658 - 0.157% 0.148% 0.128%

1.6655 - 0.146% 0.112% 0.128%

1.8156 - 0.156% 0.148% 0.128%

1.8856 - - 0.0% 0.011%

2 - 0.370% 0.408% 0.438%

... ... ... ... ...

2.162 1.568% 0.527% 0.539% 0.555%

... ... ... ... ...

2.8284 43.13% 63.63% 63.39% 63.57%

3.4.4 Comparison between the performance of 2 and 4 trans-

mit antenna DSTM systems

When comparing the performances of the 2 transmit antennas system employing

Gwee2 and the 4 transmit antenna system employing Gwee4 in Fig. 3.5, we find a large

difference as the 4 transmit antenna system reached BER 10−5 for 10 dB whereas the

2 transmit antennas system reaches the same values for 26 dB. This is in fact due to

the robustness of the 4 transmit antenna system in the face of channel fading along

with the difference in the distances of the matrices employed by both systems as is

shown in Fig. 3.6. More explicitly, it is shown that the 4 transmit antenna system

has matrices with distances ranging from 2 to 4, whereas the maximum distance

between matrices of the 2 transmit antenna system is 2.8.

3.5 DSTM System Using 8 Transmit Antennas

Adopting the same method used to generate the 4×4 unitary matrices, we apply

the Kronecker product between the original Weyl group Gw2 and Gw4 in order to

produce 8× 8 matrices suitable for MIMO systems employing 8 transmit antennas.
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Figure 3.5 – BER performance of DSTM MIMO 2×2 and 4×4 systems for 2 bps/Hz
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Figure 3.6 – Histogram of distance occurrences for 2 bps/Hz for Gwee2 and Gwee4

The generated group Gw8 = Gw4 ⊗ Gw2 contains 110592 distinct 8 × 8 matrices

having its maximum spectral efficiency further reduced to Rmax = 1
8
blog2110592c =
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2 bps/Hz.

3.5.0.1 Group properties

Similarly to the extension of Gw4, it is important that the newly generated set

Gw8 is a group under the multiplication operation.

Indeed, Gw8 also satisfies the group conditions mentioned in section 1.4.2.2:

1. The identity element is indeed in Gw8 since:

I2 ∈ Gw2, I4 ∈ Gw4, Gw8 = Gw2 ⊗ Gw4

I2 ⊗ I4 = I8 ∈ Gw8

(3.24)

2. Gw8 is indeed a closed group under multiplication, because if we suppose

Mi,Mj ∈ Gw8, then:

MiMj = (Ma ⊗Mb)(Mc ⊗Md), Ma,Mc ∈ Gw2, Mb,Md ∈ Gw4

= (MaMc)⊗ (MbMd)

= Me ⊗Mf = Mk ∈ Gw8

(3.25)

3. The inverse of any matrix Mi ∈ Gw8 is indeed (Mi)
−1 = Mj ∈ Gw8:

(Mi)
−1 = (Ma ⊗Mb)

−1

= M−1
a ⊗M−1

b

= Mc ⊗Md

= Mj ∈ Gw8

(3.26)

4. The product of the matrices of Gw4 is an associative operation which is a

general property of square matrices.

In addition, since the operation of transposition is distributive over the Kronecker

product:

(Ma ⊗Mb)
H = MH

a ⊗MH
b (3.27)

then the matrices in Gw8 are unitary, because if we suppose thatMa ∈ Gw2, Mb ∈ Gw4
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and Mi ∈ Gw8, then:

MiM
T
i = (Ma ⊗Mb)(Ma ⊗Mb)

T

= (Ma ⊗Mb)(M
T
a ⊗MT

b )

= (MaM
T
a )⊗ (MbM

T
b )

= I2 ⊗ I4 = I8

(3.28)

3.5.1 Simple and Double Extension of Gw8

For an 8 transmit antennas system, the maximum spectral efficiency is reduced

from 3.5 bps/Hz when employing the group Gw2 in 2 transmit antennas systems to

2 bps/Hz. In the aim of resolving the issue of an important decrease in spectral

efficiency, and similarly to the extensions performed on the 4 transmit antennas and

2 transmit antennas system, we extend the Gw8 through:

Gwe8 = Gw8 ∪ Gw8e
jπ
8 (3.29)

then

Gwee8 = Gwe8 ∪ Gwe8e
jπ
16 (3.30)

allowing an increase to 2.25 bps/Hz for Gwee8 using 442368 distinct unitary matrices.

3.5.2 Group properties and optimal rotation of the exten-

sions of Gw8

Following the same analysis conducted in chapter 2 section 2.3.1.2, we conclude

that Gwe8 (and consequently Gwee8) satisfies the group conditions:

1. The identity element is indeed in Gwe8 since:

I ∈ Gw8, Gwe8 = Gw8 ∪ Gw8e
jπ
8 (3.31)

2. Gwe8 is indeed a closed group under multiplication:

— The multiplication of two matrices Ma,Mb ∈ Gw8:

MaMb ∈ Gw8 =⇒ MaMb ∈ Gwe8 (3.32)
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— The multiplication of a matrix Ma ∈ Gw8 with a matrix Mi ∈ Gw8e
jπ
8 :

MaMi = Ma(Mbe
jπ
8 ) = (MaMb)e

jπ
8 = Mce

jπ
8 = Mj ∈ Gwe8 (3.33)

— The multiplication of two matrices Mi,Mj ∈ Gw8e
jπ
8 :

MiMj = (Mae
jπ
8 )(Mbe

jπ
8 ) (3.34)

= (MaMb)(e
jπ
8 e

jπ
8 )

= Mce
jπ
4 = Md ∈ Gw8

3. The inverse of any matrix Mi ∈ Gw8e
jπ
8 :

Mi
−1 = {Mae

jπ
8 }−1, Ma ∈ Gw8 (3.35)

= Ma
−1e

−jπ
8

= Mbe
15jπ
8

= Mj ∈ Gwe8

4. The product of the matrices of Gwe8 is an associative operation which is a

general property of square matrices.

In addition, the matrices belonging to Gwe8 are unitary since:

MiM
H
i = (Mae

jπ
8 )(Mae

jπ
8 )H (3.36)

= MaM
H
a e

jπ
4 = Ie

jπ
4

which is a multiple of the identity matrix.

In a similar way that Gwe4 is an optimal rotation of Gw4, Gwe8 is also an optimal

rotation, which means that the newly generated matrices have elements that are

inserted within an equal footing of the already existing matrices elements. The

elements of the matrices newly added belong to a 16PSK constellation thus of

equal footing to the already existing elements belonging to 8PSK. This analysis is

extended to Gwee8 in a straightforward manner as in previous sections.

Table 3.8 summarizes the achievable spectral efficiencies of the proposed groups for

8 transmit antennas.
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Table 3.8 – Parameters of Gw8, Gwe8 and Gwee8

Gw8 Gwe8 Gwee8
110592 distinct

matrices

221184 distinct

matrices

442368 distinct

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

Spectral

efficiency

(bps/Hz)

Number of

selected

matrices

0.5 16 0.5 16 0.5 16

1 256 1 256 1 256

2 65536 2 65536 2 65536

- - 2.125 131072 2.125 131072

- - - - 2.25 262144

3.5.3 Error Performance of 8 Transmit Antennas DSTM Sys-

tem

For the DSTM MIMO system having M = 8 and N = 8 and using Gwee8 and

L = 120 transmitted symbols (15 matrices transmitted of size 8×8), and in order to

achieve the low spectral efficiencies of 0.5 and 1 bps/Hz, we need 16 and 256 matrices

respectively according to Table 3.8. Whereas for higher spectral efficiencies of 2,

2.125 and 2.25 bps/Hz, we need 65536, 131072 and 262144 matrices respectively.

Running the search algorithm mentioned in previous sections for this large amount

of matrices becomes prohibitive. This is because for the 2.125 bps/Hz case, 131072

8× 8 matrices are needed, thus in a simulation, a data table of size 92.2 Gigabytes

is required to hold the distance amongst the matrices.

Following this, the BER versus SNR simulation is presented in Fig. 3.7, following

the same stopping condition as previous simulations, for the DSTM MIMO systems

having M = 8 and N = 8 and using Gwee8 and L = 120 transmitted symbols for

the spectral efficiencies 0.5, 1, 2 bps/Hz. The systems with spectral efficiencies 0.5

and 1 bps/Hz attain BER=10−5 for 1 and 3 dB respectively and no partitioning is

needed. Whereas for the 2 bps/Hz spectral efficiency, BER=10−5 is attained for 4

dB.
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Figure 3.7 – BER performance of DSTM MIMO 8× 8 system for different spectral

efficiencies

3.6 Conclusion

In this chapter, we expand the Weyl group from matrices of size 2×2, to matrices

of size 4 × 4 and 8 × 8 in Gw4 and Gw8 respectively using the Kronecker product.

This expansion entails a loss in the maximum achievable spectral efficiencies of the

newly generated groups in comparison to the 2 transmit antenna group. This is lead

to the extension of the newly generated groups in a similar way to the extension

applied to the Gw2 group in chapter 2. In addition, an near optimal matrix selection

algorithm is employed along with an optimal mapping strategy in order to enhance

the error performance of the proposed systems. Simulations of the error performance

are presented.
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Chapter 4

DSTM Under Time Selective

Channel Model

In this chapter, rather than using the conventional step channel model, where

the channel remains constant for one coherence time and changes randomly from

one coherence time to another, we propose a new time selective channel model for

DSTM schemes. The new channel model tries to adopt a real case scenario, where

the channel varies slightly with each column of the transmitted matrix. Then we

evaluate the performance and robustness of the DSTM schemes with 2, 4 and 8

transmit antennas over this time selective channel model using the Weyl group and

its extensions.

4.1 Usual channel model for differential MIMO sys-

tems

The conventional channel model used for DSTM schemes is constant during

one coherence time and changes randomly for the next one. For instance, with the

normalized coherence time L = 100, during the transmission of the first frame of 100

symbols, the same channel matrix Hτ is used. The next channel Hτ+1 is randomly

generated to be used for the next 100 symbols. This is an idealized model since

in a real case, the channel undergoes changes constantly. The use of this channel
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model also means that at the start of every frame, the differential process must be

reinitialized, which is not practical.

In [83, 102], Jakes’ model [103] assumes that each of the channel coefficients hnm,t is

spatially independent but time correlated with auto-correlation function J0(2πfdt)

where J0(.) is the zero-order Bessel function of the first kind and fd is the maximum

Doppler frequency. In fact, Jake’s simulator is a kind of sum-of-sinusoids based

fading channel simulator where the received signal is represented as a superposition

of a finite number of waves. It is a simplified model of Clarke’s Rayleigh fading

model. Clarke’s model is given by [104]:

h(t) =
N∑
n=1

αnexp[j(2πfdtcosθn + φn)] (4.1)

where N is the number of propagation paths, 0 < αn < 1 is the attenuation of the

nth path, fd is the maximum Doppler frequency and θn and φn are, respectively, the

angle of arrival and the random phase of the nth propagation path. Both θn and φn

are uniformly distributed over [−π, π) for all n and they are mutually independent.

Jakes approximates Clarkes’s model by setting equal strength multipath compo-

nents, i.e., αn = 1√
N

and choosing the N components to be uniformly distributed in

angle i.e.,

θn =
2πn

N
, n = 1, 2, . . . N. (4.2)

The normalized low-pass fading process of this model is given by [103]

h(t) =
1√
N

{
√

2

N0∑
n=1

[ej(2πfdtcosθn+φn) + e−j(2πfdtcosθn+φ−n)] (4.3)

+ ej(2πfdt+φN ) + e−j(2πfdt+φ−N )

}
, N0 =

1

2

(
N

2
− 1

)
where φn is given by

φN = φ−N = 0, φn =
nπ

N0 + 1
, n = 0, 1, . . . , N0. (4.4)

4.2 Time selective channel model

In [105], instead of assuming that the channel is constant during a fixed long

time, the channel changes continuously. The narrow-band impulse response h(t) is
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a random process with a Rayleigh distributed envelop, and the flat fading channel

is considered. Aiming to obtain intermediate h(t) values between two successive

Rayleigh samples, h(t) should be sampled with a certain high frequency. From

Nyquist’s sampling theorem, it is known that if the channel is sampled with sufficient

large frequency, the impulse response of the channel can be reconstructed by the

sampled points. This method is used in the conceived channel model.

This channel model is inspired from the Nyquist sampling theorem where a

band-limited signal x(t) can be reconstructed from its samples x(kT0) with the sinc

function as long as the sampling frequency f0 = 1
T0
> 2fm, where fm is the maximum

frequency of the signal:

x(t) =
+∞∑

k=−∞

x(kT0)
sinf0π(t− kT0)

f0π(t− kT0)

=
+∞∑

k=−∞

x(kT0)
sinπ(f0t− k)

π(f0t− k)

(4.5)

With Clarke’s model, the channel impulse response h(t) has auto-correlation:

Rh(τ) = 2σ2J0(2πfdτ) (4.6)

where J0(.) is the zero-order Bessel function of the first kind and σ2 = 0.5
∑

nE[α2
n].

Conventionally, it is assumed that
∑

nE[α2
n] = 1 to ensure that the received signal

power equal to the transmitted signal power which results Rh = J0(2πfdτ). The

function of h(t) has the maximum frequency fd, meaning that attempting to recon-

struct h(t), results that the sampling frequency should be f0 > 2fd and the sample

period T0 <
0.5
fd
. Therefore it is possible to reconstruct the channel response with

independently generated Rayleigh distributed random variables.

4.2.1 Model description

The channel model in [105] is applied in our work with improvements to the ini-

tialization process. L is considered being the normalized coherence interval meaning

that Nm = L
M

matrices are transmitted during the coherence interval. 2K Rayleigh

matrices are generated with K = 30, a number large enough to have a good preci-

sion. Then L−1 channel matricesH(1), H(2), . . . , H(L−1) are interpolated between
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Figure 4.1 – Continuous Rayleigh Channel Model

R(K) and R(K+1). This is done instead of considering one constant matrix R(K).

The process is described as follows:

1. A fix number 2K of Rayleigh distributed matrices is generated, i.e.,

R(1), R(2), . . . , R(2K).

2. Using (4.7), L− 1 channel matrices are generated.

The Rayleigh random matrices R(k) act as samples of a continuous channel matrix

H separated by the coherence interval T0 = Tc = L × Ts. With the 2K randomly

generated matrices, L−1 interpolated channel matrices are obtained between R(K)

and R(K + 1):

H(1) = R(K) (4.7)

H(i+ 1) =
2K∑
k=1

R(k)
sinπ(f0t− k)

π(f0t− k)

=
2K∑
k=1

R(k)
sinπ(K + i

L
− k)

π(K + i
L
− k))

where,

f0t(i) = K +
i

L
(4.8)

In this model, the matrices Hi(l), where l = 1,M , are used for the transmission of

the identity matrix. These Hi matrices are obtained as follows:

Hi(l) =
2K∑
k=1

R(k)
sinπ(K − (M+1)−l

L
− k)

π(K − (M+1)−l
L

− k))
, l = 1,M

This procedure is illustrated in Fig. 4.1. Here, the module of R(k) is Rayleigh dis-

tributed, and as mentioned before, the samples R(k) (k = 1, 2, . . . , K) are separated

by τ0 = LTS.
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4.3 Performance analysis

The performance of the proposed DSTM system using the extension of the Weyl

Group for 2, 4 and 8 transmit antennas is presented in this section using the sug-

gested time varying channel. The results are given for two values of the normalized

coherence interval of the channel, L=100 and L=20 for 2 and 4 transmit antennas

system and L=120 and L=24 for the 8 transmit antennas system. The noise varia-

tion is related to the SNR through σ2 = 1
SNR

. The simulation stopping condition is

related to reaching 1000 errors before passing to the next SNR. .

4.3.1 2 transmit antennas system performance analysis

We present the performance results of DSTM MIMO system with M = 2 and

N = 2 employing the Gwee2 group since it was proved to have the best selected

matrices in comparison to Gw2. The simulation environment is similar to the ones

used in chap 2 and 3, though the channel model used is the continuously fading

model described in this chapter.

Figure 4.2 – BER performance of DSTM MIMO 2× 2 system for different spectral

efficiencies employing Gwee2 under continuously fading channel and Step Channel for

L=100

When comparing the performance of DSTM MIMO scheme under the step chan-
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nel model and the continuously fading model for L = 100 and different spectral

efficiencies in Fig. 4.2, we conclude that the results are similar in the low SNR

region, whereas in the high SNR region, the BER in the step channel model contin-

uously decreases though it is limited under the continuously fading channel, due to

the continuously varying nature of the channel.

Figure 4.3 – BER performance of DSTM MIMO 2× 2 system for different spectral

efficiencies employing Gwee2 under continuously fading channel for L=100 and L=20

On the other hand, Fig. 4.3 provides the BER simulations versus the Signal-to-

Noise-Ratio (SNR) of the DSTM system for 2 bps/Hz up to 4.5 bps/Hz for a co-

herence interval L=100 and L=20. Predictably, the performance decreases with the

spectral efficiency for each set (L=100 and L=20) individually due to the reduction

of the distances between the used matrices. For the same simulation environment,

employing a normalized coherence interval L=20, a reduction of the system perfor-

mance is observed in comparison to the results of L=100, due to the fast variation of

the propagation channel. Hence it is evident that when adopting the more realistic

time varying channel model, the DSTM system’s performance degrades for a fast

varying channel.
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4.3.2 4 transmit antennas system performance analysis

Here, we present the performance results of DSTM MIMO system for M = 4

and N = 4 employing the Gwee4 group since it was proved to have the best selected

matrices in comparison to Gw4. The simulation environment is similar to the previous

section.

Figure 4.4 – BER performance of DSTM MIMO 4× 4 system for different spectral

efficiencies employing Gwee4 under continuously fading channel and Step Channel for

L=100

When comparing the performance of DSTM MIMO scheme under the step chan-

nel model and the continuously fading model for L = 100 and different spectral

efficiencies in Fig. 4.4, we conclude as in the case of the 2 transmit antennas sys-

tem, that the results are similar in the low SNR region, although the results under

the continuous channel begin to degrade as the SNR increases.

In addition, Fig. 4.5 provides the BER simulations versus the Signal-to-Noise-Ratio

(SNR) of the DSTM system for 2 bps/Hz up to 3.5 bps/Hz for a coherence interval

L=100 and L=20. As in the case of the 2 transmit antenna system a reduction

of the system performance is observed in system under L=20 in comparison to the

results of L=100, due to the fast variation of the propagation channel.
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Figure 4.5 – BER performance of DSTM MIMO 4× 4 system for different spectral

efficiencies employing Gwee4 under continuously fading channel for L=100 and L=20

4.3.3 8 transmit antennas system performance analysis

Under the same conditions, the BER performance of the DSTM MIMO system

for M = 8 and N = 8 employing the Gwee8 group is presented.

Figure 4.6 – BER performance of DSTM MIMO 8× 8 system for different spectral

efficiencies employing Gwee4 under continuously fading channel and Step Channel for

L=100

When comparing the performance of the DSTM scheme under the step chan-
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nel model and the continuously fading channel model in Fig. 4.6, we conclude as

previously seen, a degradation in the performance under the continuous channel.

Figure 4.7 – BER performance of DSTM MIMO 8× 8 system for different spectral

efficiencies employing Gwee4 under continuously fading channel for L=100 and L=20

Fig. 4.7 provides the BER simulations versus the Signal-to-Noise-Ratio (SNR) of

the DSTM system for 0.5 bps/Hz up to 2.25 bps/Hz for a coherence interval L=100

and L=20. As in the case of the 2 and 4 transmit antenna system a reduction of the

system performance is observed in system under L=20 in comparison to the results

of L=100.

4.4 Conclusion

In this chapter, the DSTM MIMO scheme is studied under a continuously fading

channel model which is inspired from the Nyquist sampling theorem. More explicitly,

each column of the transmission matrix is multiplied by an interpolated channel

matrix from randomly generated channel matrices. This model has been previously

adopted in [105], we add new improvements to it through adding an initialization

process. The extensions of the Weyl group have been used for 2, 4 and 8 transmit

antennas and the performance results under the new channel model are compared

to the results under the step channel model used in previous chapters which show
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a degradation of the results under the new model in high SNR region due to the

continuous variation of the channel, which depicts a real case scenario. Simulation

results also show how the fast variation of the channel degrades the performance of

the DSTM schemes.

86



Chapter 5

DSTM System Analysis Under New

Optimization Metric

In this chapter, based on the results produced in [1], an analytical study of the

performance of the DSTM system employing the Weyl group is presented, which

leads to closed form expressions of the exact and upper bound of the PEP. Theo-

retical results are then compared to simulation results for validation. Consequently,

the exact PEP is used as a new optimization metric in the optimal selection of

the transmission matrices,leading to improvements in the error performance of the

DSTM system.

5.1 Performance analysis of DSTM

The performance analysis conducted here is inspired from the work achieved in

[1], where the author proposes a generalized framework for the study of the perfor-

mance of DSTM systems. The analysis conducted does not require the information

matrices used to belong to a specific space-time modulated constellation, though

the only restriction is that the constellation should be unitary. In light of this

generalization, the metric employed for the performance analysis is the PEP. The

performance of DSTM system has been analyzed in various Rayleigh fading envi-

ronments, though in our work we are mainly concerned with the slow fading channel

case scenario. In this next section, we remind the work achieved in [1] leading to
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the closed form expressions of the PEP for the DSTM system.

5.1.1 Preliminaries

5.1.1.1 System model employed

A wireless communication system is considered with M transmit antennas and

N receive antennas. At each time t, the encoder produces M outputs x1
t x

2
t . . . x

M
t ,

where xmt ∈ C. These outputs are then simultaneously transmitted by M antennas.

At the receiver, the signal received by the antenna n at a time t is given by

rnt =
M∑
m=1

√
Esh

m,nxmt + vnt (5.1)

where Es is the average transmitted signal energy per symbol period, and vnt are

independent samples of a zero-mean complex Gaussian random variable with vari-

ance σ2
v

2
per complex dimension. The coefficient hm,n is the fading gain for the path

from transmitter antenna m to receive antenna n. It is assumed to be flat Rayleigh

fading and remain constant within T symbol periods. By collecting the transmitted

symbols over T time intervals into a code matrix X ∈ CT×M , the received signals at

antenna n during T symbol periods can be written in a vector form as

rn =
√
EsXhn + vn (5.2)

where hn = [h1,n h2,n . . . hM,n]T and vn = [vn1 v
n
2 . . . v

n
T ]T . In this notation, the mth

column of the matrix X represents the signals sent by the transmitter antenna m

as a function of time. The code matrix X is normalized so that it satisfies the total

transmitted power constraint

tr(XXH) = T (5.3)

By stacking the signals from N receiver antennas into a vector, we obtain

r =
√
EsXh + v (5.4)

where r = vec([r1 r2 . . . rN ]), h = vec([h1 h2 . . .hN ]), v = vec([v1 v2 . . .vN ]), and

X = IN ⊗ X. The additive noise is assumed to be white in space and time (i.e.,

E[vvH ] = σ2
vITN).
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5.1.1.2 Differential space-time encoding

The differential encoding process in [1], is similar to the one described in previous

chapters. Since signals are transmitted matrix by matrix, it is convenient to use

k = 1, 2, . . . to denote the matrix index. Likewise, it is assumed that T = M and

we denote the M ×M code matrix transmitted over M antennas during the kth

matrix as Xk. At the start of the transmission, the transmitter sends the code

matrix X0 = IM . Thereafter, data are differentially encoded according to

Xk = Sl(k)Xk−1 (5.5)

where Sl(k), with l(k) ∈ {0, 1, . . . , S − 1}, is the M ×M information matrix having

index k which is selected from a unitary space-time modulated constellation V of

size S. Fitting this description is the space-time code constellation from the Weyl

group employed from previous chapters.

5.1.1.3 Channel model

Considering a sequence of K transmitted matrices X1, X2, . . . , XK , the received

signal for the kth block over N antennas is given by

rk =
√
EsXk + vk (5.6)

where Xk = IN ⊗Xk.

It has been shown in [106] that the time-varying Rayleigh fading channels can be

well described by a hidden Markov model. As has been done in [107] and [108] for

channel equalization problems, the time varying fading channels can be modeled by

a multi-channel auto-regressive (AR) process of order P

hk =
P∑
p=1

Aphk−p + Gnk (5.7)

where Ap and G are the time-invariant matrices which can be determined from the

second-order statistics of the fading channels and nk is a zero mean complex white

Gaussian noise process with covariance IMN . By postmultiplying (5.7) with hHk−τ

and taking the expectation on both sides, we arrive at

R−τ =
P∑
p=1

ApRp−τ + GGHδ(τ), τ = 0, . . . , P (5.8)
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where Rτ , E[hkhHk+τ ] is the cross correlation matrix of the channels. The matrices

Ap and G can be obtained by solving the aforementioned equations. In [1] the

author considers the time varying channels that can be well approximated by the

first order AR process (i.e., P = 1)

hk = Ahk−1 + Gnk (5.9)

By solving (5.8) for τ = 0, 1, the matrices A and G are given by

A = R−1R−1
0

GGH = R0 −AR1

This channel model is quite general and permits both temporal and spatial correla-

tions in the fading gains. Several channel models widely adopted in literature for the

space-time coded systems can be considered as special cases of this model. In our

work, we are mainly concerned with the slow fading spatially independent channel

model used in [24, 78, 84, 102], the channel cross-correlation matrix Rτ = IMN∀τ

with IMN isofsizeMN ×MN . Consequently, it can be represented by this general

model with A = IMN and G = 0MN .

5.1.1.4 Differential detection

At the receiver , the transmitted signal can be non-coherently demodulated by

using two consecutive observations, rk−1 and rk. By substituting (5.9) into (5.6),

we have

rk =
√
EsSl(k)Xk−1Ahk−1 +

√
EsXkGnk + vk

where Sl(k) = IN ⊗ Sl(k). Since Xk−1 is unitary, the received signal during the kth

block can be rewritten in terms of the received signal of the previous block as

rk =
√
EsSl(k)Xk−1AXH

k−1Xk−1hk−1 (5.10)

+
√
EsXkGnk + vk

= Sl(k)Zk−1rk−1 + zk

where we define Zk−1 , Xk−1AXH
k−1 and zk ,

√
EsXkGnk + vk − Sl(k)Zk−1vk−1.

From (5.10), the transmitted data matrix can be detected according to

Ŝl(k) = argminS∈V ||rk − (IN ⊗ S)Zk−1rk−1||2 (5.11)
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When the fading channel is spatially independent, this minimum Euclidean distance

detector is optimal and is equivalent to the maximum likelihood detector.

5.1.2 PEP analysis

In this section, the PEP of the DSTM system is analyzed. The PEP , denoted

by P (Si → Sj), is the probability that the receiver erroneously selects Sj when Si

is transmitted. By using the Moment Generating Function (MGF) approach, closed

form expressions for the PEP in various fading environments are derived.

With the minimum Euclidean distance detection rule, the receiver will decide in

favor of Sj is

||rk − SiZk−1rk−1||2 > ||rk − SjZk−1rk−1||2

Through simple manipulation, it can be shown that this condition is equivalent to

f 2(Si,Sj) < −2Re{rHk−1ZHk−1ε
H
i,jzk} (5.12)

where f 2(Si,Sj) , rHk−1ZHk−1ε
H
i,jεi,jZk−1rk−1 and εi,j = IN ⊗Ei,j with Ei,j , Si−Sj.

The term y , −2Re{rHk−1ZHk−1ε
H
i,jzk} is a Gaussian random variable. Given that Si

was sent during the kth block, the mean and variance of y conditioned on rk−1 is

given by

m̄y|rk−1
= 2Re{rHk−1ZHk−1ε

H
i,jSiZk−1m̄vk−1|rk−1

} (5.13)

σ2
y|rk−1

= 2EsrHk−1ZHk−1ε
H
i,jXkGGHXH

k εi,jZk−1rk−1

+ 2rHk−1ZHk−1ε
H
i,jSiZk − 1Σvk−1|rk−1

ZHk−1SHi εi,jZk−1rk−1

+ 2σ2
vr
H
k−1ZHk − 1εHi,jεi,jZk−1rk−1 (5.14)

where m̄vk−1|rk−1
and Σvk−1|rk−1

are the mean and covariance of vk−1 conditioned

on rk−1

m̄vk−1|rk−1
=

(
Es
σ2
v

XH
k−1 + IMN

)−1

rk−1 (5.15)

Σvk−1|rk−1
= σ2

vIMN − σ2
v

(
Es
σ2
v

XH
k−1 + IMN

)−1

(5.16)
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We recall that R0 = E[hkhHk ] is the correlation matrix of the channels. From 5.12,

the probability that the receiver erroneously selects Sj when Si was sent will depend

on the variance of y conditioned on rk−1. As from 5.14, this conditional variance

σ2
y|rk−1

is made up of three parts. The first part depends on the fading channel and is

independent of the noise variance σ2
v while the second and third parts depend on the

noise variance σ2
v . In the case of slow fading, we have G = 0. Thus, the conditional

variance σ2
y|rk−1

reduces to the second and third parts. Both of these parts approach

zero as the SNR goes to infinity (i.e., Es
σ2
v
→∞).

Based on (5.12) the conditional PEP is, therefor, given by

P (Si → Sj|rk−1) = Q
(√

(f 2(Si,Sj)− m̄y|rk−1
)2

σ2
y|rk−1

)
(5.17)

where Q(x) is the Gaussian Q-function. To compute the unconditional PEP, we

need to average (5.17) over the probability distribution of rk−1. By making use of

Craig’s formula [109] for the Gaussian Q-function and the MGF-based techniques

in [110], the unconditional PEP can, then, be computed as

P (Si → Sj) =
1

π

∫ π
2

0

MΓ

(
− 1

2sin2θ

)
dθ (5.18)

where MΓ(s) ,
∫∞

0
esΓpΓ(Γ)dΓ is the MGF of

Γ =
(f 2(Si,Sj)− m̄y|rk−1

)2

σ2
y|rk−1

(5.19)

Evaluating the PEP in (5.18) is difficult for the general case since the MGF of Γ

cannot be readily calculated. In the following section the closed-form expression of

the PEP for the fast fading spatially independent case is presented in order to then

produce the special case of slow-fading scenario.

5.1.2.1 Spatially independent fast-fading channels

When the channels undergo spatially independent fast fading, we have R0 = I,

A = αIMN , G =
√

1− α2IMN , and Zk−1 = αIMN where α is given by the Jakes’s

model with α = J0(2πfDTB). Hence, the first order AR model in (5.9) reduces to

hk = αhk−1 +
√

1− α2nk (5.20)
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With R0 = I, the mean and covariance of vk−1 conditioned on rk−1simplify to

m̄vk−1|rk−1
=

σ2
v

Es + σ2
v

rk−1 (5.21)

Σvk−1|rk−1
=

Esσ
2
v

Es + σ2
v

IMN (5.22)

Thus the expression for f 2(Si,Si), m̄y|rk−1
and σ2

y|rk−1
can be rewritten as

f 2(Si,Si) = α2d2(Si,Si)

m̄y|rk−1
=

2α2σ2
v

Es + σ2
v

Re{rHk−1(IMN − SHj Si)rk−1}

=
α2σ2

v

Es + σ2
v

rHk−1(2IMN − SHj Si − SHi Sj)rk−1

=
α2σ2

v

Es + σ2
v

d2
i,j(Si,Sj)

σ2
y|rk−1

= 2α2

(
Es(1− α2) + σ2

v +
α2Esσ

2
v

Es + σ2
v

)
d2
i,j(Si,Sj)

with d2(Si,Sj) , rHk−1ε
H
i,jεi,jrk−1. By substituting m̄y|rk−1

and σ2
y|rk−1

into (5.19),

we have

Γ =
γ

Es + σ2
v

d2
i,j(Si,Sj)

where

γ =
α2E2

s

2(Es + σ2
v)[Es(1− α2) + σ2

v ] + 2α2Esσ2
v

(5.23)

Since d2(Si,Sj) is in the quadratic form, the MGF of Γ can be readily found. By

using the result from [111], the MGF of Γ is, therefor, given by

MΓ(s) =

∣∣∣∣IMN− sγ

Es+σ
2
v

ΩεHi,jεi,j

∣∣∣∣−1

(5.24)

where |.| is the determinant of a matrix and Ω , E[rk−1rHk−1] is the covariance matrix

of the received signal. For this case of spatially independent fading, the covariance

matrix Ω = (Es + σ2
v)IMN thus the MGF of Γ becomes

MΓ(s) =
L∏
l=1

(1− sγλl)−µl (5.25)

where L is the number of distinct non-zero eigenvalues λl of the distance matrix

εHi,jεi,j with multiplicity µl.
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By using (5.18), the exact PEP of the DSTM in spatially independent fast-fading

channels is

P (Si → Sj) =
1

π

∫ π
2

0

L∏
l=1

(
1

1 + 1
2sin2θ

γλl

)µl
dθ (5.26)

By applying the partial-fraction expansion as in [112], the integrand in the afore-

mentioned equation can be rewritten as

L∏
l=1

(
1

1 + 1
2sin2θ

γλl

)µl
=

L∑
l=1

µl∑
p=1

cp,l

(
1

1 + 1
2sin2θ

γλl

)p
(5.27)

where

cp,l =

{
dµl−p

dxµl−p

∏L
n=1,n6=l

(
1

1+λnx

)µ
n

}∣∣
x=−λ−1

l

(µl − p)!λµl−pl

(5.28)

If we set γ = 0, it can be observed from (5.27) that
∑L

l=1

∑µl
p=1 cp,l = 1. Using

(5.26), (5.27), and the following result from [110]

1

π

∫ π
2

0

( sin2θ

sin2θ + ζ

)Q
=

1

2

{
1−

√
ζ

1 + ζ

Q−1∑
q=0

(
2q

q

)( 1

4(1 + ζ)

)q}
we can obtain the following closed form expression for the exact PEP of the DSTM

in spatially independent fast-fading channels

P (Si → Sj) =
1

π

∫ π
2

0

L∑
l=1

µl∑
p=1

cp,l
( sin2θ

sin2θ + 1
2
γλl

)p
dθ

=
1

2

{ L∑
l=1

µl∑
p=1

cp,l

−
L∑
l=1

µl∑
p=1

cp,l

√
γλl

2 + γλl

p−1∑
q=0

(
2q

q

)( 1

4 + 2γλl

)q}
=

1

2
− 1

2

L∑
l=1

√
γλl

2 + γλl

µl∑
p=1

cp,l

p−1∑
q=0

(
2q

q

)( 1

4 + 2γλl

)q (5.29)

5.1.2.2 Spatially independent slow-fading channels

The spatially independent slow-fading channels can be viewed as a special case

of the spatially independent fast-fading channels where the fading rate fDTB = 0

(i.e.,α = 1). In this slow fading case, A = IMN , G = 0MN , and Zk−1 = IMN which
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is the step channel model used in the previous chapters. Consequently, the exact

PEP is still being given by (5.29) with γ now reduces to

γ =
E2
s

2σ2
v(2Es + σ2

v)
(5.30)

5.1.2.3 Upper-bound of PEP

It is noted that the Chernoff bound derived in [84] can also be derived from

this MGF-based approach. By substituting the aforementioned expression of γ into

(5.26) and setting θ = π
2
, it can be observed that the PEP of the DSTM in spatially

independent slow-fading channels can be upper bounded by

P (Si,Sj) ≤
1

2

L∏
l=1

( 1

1 + E2
s

4σ2
v(2Es+σ2

v)
λl

)µl (5.31)

5.2 PEP analysis for the Weyl group and its exten-

sions

In the previous section, expression (5.29) from [1] represents the closed form

expression for the exact PEP in a spatially independent slow fading channel scenario.

This expression assumes that the distance matrix εHi,jεi,j has multiple eigenvalues for

each PEP in a space-time coded constellation. In fact, when analyzing the matrices

of Gw2, Gwe2 and Gwee2, it was found that for multiple distance matrices (εHi,jεi,j) there

are identical eigenvalues, meaning that L, which is the number of distinct non-zero

eigenvalues is equal to 1.

5.2.0.1 Analysis of distinct non-zero eigenvalues of Gw2, Gwe2 and Gwee2

For M the number of transmit antennas and N the number of receive antennas,

the distance matrix between one couple of matrices is

εi,j = IN ⊗ Ei,j

where Ei,j = Si − Sj. L is the number of distinct non-zero eigenvalues λl of the

distance matrix εHi,jεi,j. Table 5.1 shows the percentage occurrences of the values of

L for the couple of matrices in Gw2, Gwe2 and Gwee2.
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Table 5.1 – Percentage occurrences of the values of L for the couple of matrices in

Gw2, Gwe2 and Gwee2

Gw2 Gwe2 Gwee2
L = 1 42% 19.6% 10%

L = 2 58% 80.4% 90%

Since L = 1 for multiple couples of matrices in the mentioned groups, this means

that, for these specific cases, the product operator in expression (5.26), which is

solved by using the partial fraction expansion (5.27) is no longer needed. This is

why for the case of L = 1 we use the PEP relation derived in the next section.

5.2.0.2 Special case of the Weyl group

In this section, we derive a closed expression for the special case of the couples

of matrices of the Weyl group and its extensions having L = 1. Based on (5.24)

Mζ(s) =
∣∣IMN −

sγ

Es + σ2
v

ΩεHi,jεi,j
∣∣−1 (5.32)

and Ω = (Es + σ2
v)IMN . This leads to, based on det(A) =

∏L
l=1 λl, to

Mζ(s) =
L∏
l=1

(1− sγλl)−µl (5.33)

Having L = 1 leads to

Mζ(s) = (1− sγλ)−µ (5.34)

where λ is the single distinct non-null eigenvalue of εHi,jεi,j and µ is the multiplicity

of λ. Now by using expression (5.18), the exact PEP of the DSTM in spatially

independent slow fading channel for the special case of identical eigenvalues is

P (Si → Sj) =
1

π

∫ π
2

0

(
1−

(
− 1

2sin2θ

)
γλ
)−µ

dθ

=
1

π

∫ π
2

0

( sin2θ

sin2θ + γλ
2

)µ
dθ (5.35)

The solution to such an integral is mentioned in the PEP analysis previously, and

is evaluated without the need for the partial fraction expansion, thus solving the
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problem of the product operator issue produced for L = 1

P (Si → Sj) =
1

2

{
1−

√
γλ

2 + γλ

µ−1∑
q=0

(
2q

q

)( 1

4 + 2γλ

)q} (5.36)

Thus, when deriving the exact PEP of the couple of matrices of the Weyl group and

its extensions, we study the condition of the eigenvalues of their distance matrix,

and based on it, we either derive the PEP according to the special case in (5.36) or

the general case in (5.29).

5.3 Interpretation of theoretical results of PEP

In order to validate the PEP closed form expressions stated in the previous

section, we calculate the PEP values for couples of matrices belonging to the Weyl

group. Then, we produce simulation results of the exact and upper bound PEP

of these matrices couples in the aim of comparing the theoretical and simulations

results.

5.3.1 Simulation environment

We consider a MIMO system with 2 transmitting antennas and 2 receiving anten-

nas. On transmission, we consider the equally likely transmission of the information

matrices M1, M6 and M7 through a Rayleigh channel characterized by the H chan-

nel matrix of dimension 2× 2. The elements of the channel matrix are independent

complex random variables whose real and imaginary parts are Gaussian random

variables of zero mean and variance σ2 = 1
2
. It is considered that the channel matrix

remains constant during the transmission of L = 100 symbols, therefore 50 matri-

ces. Then, we perform another random draw to have another channel matrix. The

transmission of each matrixMi is disturbed by a noise matrixWi whose elements are

also complex. Their real and imaginary parts are also Gaussian random variables,

with zero mean and standard deviation, which is determined as a function of the

signal to noise ratio SNR as in relation (1.13).

The matrices M6 and M7 have equal distance of value 2 towards M1, though we

find that their PEP values towards M1 are different. This means that the distance
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between two matrices does not uniquely govern the PEP values hence the BER

performance obtained with the information matrices chosen.

5.3.1.1 Simulation results

For the matrices M1 =

1 0

0 1

, M6 =

0 1

1 0

 and M7 =

 0 1

−1 0

, the

program which allowed their equally likely generation (P (M1) = P (M6) = P (M7) =

1
3
) and the calculation of probabilities of type P (Mi → Mj), considered a number

of minimum 400 errors for all the pairs of matrices (Mi → Mj) separated by the

minimum distance of 2. Except for SNR of 17 dB and 18 dB, we reduced this

number of errors to 300, in order to decrease the calculation time. It was also

verified that the PEP values are not affected by the transmission of two matrices

(P (M1) = P (M6) = 1
2
) or three matrices (P (M1) = P (M6) = P (M7) = 1

3
). For

the simulation, we have considered a Rayleigh channel of the step channel type with

L = 100, therefore the same matrix H of channel for 50 successive matrices emitted.

these simulation results are presented in Fig. 5.1.
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Figure 5.1 – Simulation results of the exact PEP of the couple of matrices (M6,M1)

and (M7,M1)
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Even though the couple of matrices used have the same distance values, the

corresponding PEP values are quite different, as M7 performance is considerably

better than M6, specially in the high SNR region. We then validate these results

with the theoretical ones under the same conditions.

5.3.1.2 Theoretical results

Using the closed form expressions derived in previous sections, we produce the-

oretical results for the exact PEP and upper bound PEP for the matrices couples

studied, and compare these results to the simulation performance in Fig.5.2.
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Figure 5.2 – Theoretical versus simulation results of the exact and upper bound on

PEP of the couple of matrices (M6,M1) and (M7,M1)

The theoretical results of the exact PEP value are a perfect match with the

simulation results. This validates the simulation results produced and inspire us

to adopt a different performance metric than the distance in the selection of the

information matrices, which will be explored in the next section.
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5.4 New optimal search algorithm based on the ex-

act PEP value

Instead of using the distance between couple of matrices in our search for the

optimal information matrices to employ in the DSTM system, we produce all the

exact PEP values between all the couple of matrices of a given group according the

closed forms expressions indicated previously for a fixed SNR (section 5.6). Then,

using the generated PEP values we apply an optimal search algorithm to select the

best possible matrices.

5.4.1 First step of optimal search algorithm

Suppose we employ the group Gw2, the first step is to generate all possible exact

PEP values as is shown in table 5.2.

Table 5.2 – Table of exact PEP values for Gw2

Exact PEP M1 M2 . . . M192

M1 x P (M1,M2) . . . P (M1,M192)

M2 P (M2,M1) x . . . P (M2,M192)
...

...
...

...
...

M192 P (M192,M1) P (M192,M2) . . . x

5.4.2 Second step of optimal search algorithm

The optimal search algorithm is as follows: Let P be the candidate group of

matrices to search, and S the set of optimal matrices to be selected.

1. The first matrix V1 of P is added to S as a first entry (S1 = I).

2. The second matrix V2i to be selected (V2i ∈ P \ S) has the smallest exact

PEP value towards S1: min(PEP (V2i → S1)). If multiple matrices have the

minimum value, the tree search explained later on is used.
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3. For the next matrix to be added to the optimal set S, we produce the set P of

PEP values: P3i = [PEP (V3i → S1), PEP (V3i → S2)], where V3i ∈ P, V3i /∈

S. Meaning a vector P3i is created for each matrix V3i . P3 = [P31 ,P32 ].

4. The vectors P3i are sorted in descending order, with the aim of selecting the

matrix belonging to the vector P3i having the lowest maximum PEP values.

This is done by comparing the PEP values after sorting the set in descending

order and choosing the set with the smallest first value. If the first values are

identical, the second PEP values are checked, and so on until the end of the

vector.

5. In the case where one set P3i remains (having unique set of PEP matching

the "lowest maximum criterion"), we choose the matrix V3i associated with

it.

6. Otherwise, if multiple P3i have the "lowest maximum criterion" and are

indeed matching, we invoke a tree search

(a) Suppose the two sets P31 and P32 match the "lowest maximum criterion"

and are indeed matching

(b) We run a tree search through adding the matrices V31 (associated to P31)

and V32 (associated to P32) to two temporary optimal sets Sα and Sβ

respectively.

(c) We run the search algorithm from step 3 in the two temporary optimal

sets, for each matrix added to each set, we compare both Sα and Sβ in

the same manner as step 4.

(d) We select the set having the better matrix added (in terms of "lowest max-

imum criterion"), we see to which set P31 or P32 is related and continue

to step 5.

(e) If for both added matrices, the sets Sα and Sβ give identical PEP vectors,

we continue by rerunning the search again from step 3, and so on. This is

repeated until we reach the required size of the optimal set. In that case,

and if the sets Sα and Sβ remain matching, we select one randomly and

proceed from step 5.
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7. The matrix V3i is then added to the set S, and we repeat the search from step

3 until we reach the required size according to the chosen spectral efficiency.

5.5 Optimal mapping

After selecting the optimal set of matrices to be employed, and to further enhance

error performance, an optimal mapping strategy is adopted.

For a given spectral efficiency that requires a specific set of matrices optimally chosen

according to the PEP criteria, the closest binary vectors in Hamming distance, are

mapped to the matrices that have the biggest PEP amongst them. By doing this,

the effect of the matrices that are most prone to error on the binary vectors will not

be as critical.

5.6 Choice of SNR value for the generation of the

exact PEP

In this section, the performance of the groups Gw2, Gwe2 and Gwee2 are studied

in light of exact PEP values generated for different SNR values. The aim of this is

to select the SNR value for which the exact PEPs give the best performance, which

will be referred to with χ.

We generate the exact PEP values for χ = 10, 12, 15 and 30 dB and employ

the optimal search algorithm and optimal mapping strategy. This performance is

presented for the maximum spectral efficiency 3.5 bps/Hz of Gw2. In Fig.5.3 is a

comparison between Gw2 and Gwe2 in the previously mentioned scenarios.

It is found that in all of the scenarios in Fig. 5.3, the performance of Gw2 and Gwe2
are similar in the low SNR region up until 10 dB, where Gw2 outperforms Gwe2 slightly

from 10 dB to 20 dB. Afterwards, Gwe2 performs better in the high SNR region. This

is explained by the fact that the PEP closed form expression used is intended for

the high SNR region, which is evident when reviewing the performances in Fig. 5.3.

The question remains on the optimal choice of χ. This is why, the performance for

the same group are compared for PEP values generated at χ in Fig 5.4. It is found
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Figure 5.3 – Comparison between Gw2 and Gwe2 for χ = 10, 12, 15 and 30 dB
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Figure 5.4 – Gw2 and Gwe2 for χ = 10, 12, 15 and 30 dB

that for Gw2 the performance at 3.5 bps/Hz are similar for different χ, whereas in

the case of Gwe2, χ = 15dB perform slightly better at high SNR. This is why this

value is adopted in the generation of the PEPs for different scenarios.

5.7 Comparing the distance and PEP metrics

Here, we compare in Fig. 5.5 the PEP metric in the selection of the optimal

information matrices with the selection using the distance metric for Gw2.

For the low spectral efficiencies of 1 and 2 bps/Hz, a large difference is observed

between the performances using the PEP metric and the distance metric. Indeed,

for the 1 bps/Hz case in Fig. 5.5a, the system using the PEP metric reaches BER

10−5 for 16 dB whereas the one using the distance metric reaches it for 25 dB. In

the case of 2 bps/Hz in Fig. 5.5b the performance with the PEP metric reaches

10−5 for 20 dB, which is explained by the fact that with the increase of the spectral

efficiency, fewer optimal choices are available and the performance using the PEP

metric begins to approach that of the distance metric until the performances match

for the spectral efficiency of 3.5 bps/Hz in 5.5d. As shown in previous section, there

are cases where couple of matrices share the same distance but different PEP values,

which explains the out-performance of the PEP metric.
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Figure 5.5 – Comparison between distance metric and PEP metric for different

spectral efficiencies in Gw2
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5.8 Conclusion

In this chapter, we presented a different metric for the performance study of the

DSTM systems, which is the PEP, rather than the distance metric. The derivation

of the exact and upper bound closed forms of the PEP are presented for different

channel fading scenarios, and a special case closed form expression of the PEP is

presented for the Weyl group and its extensions. The theoretical results are validated

through simulation, leading to the conception of a new optimal information matrix

search algorithm which employs a tree search for optimal results. The performance

results of the DSTM scheme using the PEP metric are better than that of the

distance metric for low spectral efficiencies.
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Conclusion

Today, MIMO and massive MIMO techniques are very present in the different

wireless communication systems. However, these schemes require at the receiver

an estimate of the response of the propagation channel between each transmit and

receive antenna, which in many cases can greatly reduce the final data rate of these

systems. The aim of this thesis is to explore an alternative solution based on the

use of DSTM schemes for these non-coherent MIMO systems that do not require an

estimate of the channel response in reception.

In our work, sets of the multiplicative Weyl group of 2×2 unitary matrices Gw2 is

used as the space-time coded constellation of the DSTM scheme. As a first step, Gw2

is extended in size through an optimal rotation, thus producing the new multiplica-

tive group of unitary matrices Gwe2, having the elements of its matrices belonging to

16PSK constellation. This is done in the aim of increasing the maximum achievable

spectral efficiency of the DSTM system from 3.5 bps/Hz with the matrices of Gw2, to

4 bps/Hz obtained with the matrices of Gwe2. Similarly, and with the same aim, the

first extended group Gwe2 is further extended through another optimal rotation to

the multiplicative group of unitary matrices Gwee2, with the elements of its matrices

belonging to 32PSK constellation, thus further increasing the maximum achievable

spectral efficiency to 4.5 bps/Hz. In this part, we used the distance among couple

of matrices as a performance metric, thus the distance spectrum of Gw2, Gwe2 and

Gwee2 are studied thoroughly. Then an information matrices selection algorithm and

optimal mapping are produced with the purpose of enhancing the error performance

of the system which is analyzed through simulation results.
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As a second step, Gw2 is expanded through the use of the Kronecker product

operator, producing the multiplicative group Gw4 of 4 × 4 unitary matrices. This

group, as before, is extended to Gwe4 and Gwee4, thus increasing the maximum achiev-

able spectral efficiency from 3 bps/Hz to 3.25 bps/Hz and 3.5 bps/Hz respectively.

The distance spectrum of the generated groups are studied and the same search

algorithm and optimal mapping are applied, then simulation results are analyzed.

Furthermore, the group Gw8 of 8×8 unitary matrices is produced through the use of

the Kronecker product similarly, which is followed by the generation of its extensions

Gwe8 and Gwee8 which further increase the maximum achievable spectral efficiency

from 2 bps/Hz to 2.125 bps/Hz and 2.25 bps/Hz respectively.

Afterwards, the DSTM MIMO scheme is studied under a continuously fading

channel model which is based on the Nyquist sampling theorem. More explicitly,

each column of the transmission matrix is multiplied by an interpolated channel

matrix from randomly generated channel matrices. This model has been previously

adopted, we add new improvements to it through adding an initialization process.

The extensions of the Weyl group have been used for 2, 4 and 8 transmit antennas

and the performance results under the new channel model are compared to the

results under the step channel model. This shows a degradation of the results under

the new model in high SNR region due to the continuous variation of the channel,

depicting a real case scenario. Simulation results also show how the fast variation

of the channel degrades the performance of the DSTM schemes.

This thesis work ends with studying the performance of the proposed DSTM

schemes using PEP expressions inspired from the work in [1]. Previous work in-

volving the derivation of closed forms expressions of the exact and upper bound of

PEP in multiple fading scenarios are described. This is followed by a derivation of

a special case closed form expression of the PEP which suits the structure of the

Weyl group and its extensions. Furthermore, a new optimal algorithm for selecting

information matrices, having as a performance measure the exact value of the PEP

between pairs of matrices, is proposed. The optimality of the selected matrices for

a given spectral efficiency is guaranteed by the use of a tree search method in the

selection process. In particular, it is shown that the BER performance of the MIMO
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DSTM systems thus obtained is superior to the results obtained with the previous

schemes that use the distance between couple of matrices as a metric of performance,

and thus offers interesting perspectives.

Perspectives

As it was shown in Chapter 1, the domain of non-coherent communication is

wide and provides numerous opportunities for research. Based on this thesis, many

interesting areas and prospects can be further investigated.

First, theoretically speaking, the optimal rotations applied on the Weyl group can

further be extended to higher order modulations, leading to a greater increase in the

achievable spectral efficiency. For performance enhancement purposes, the system

employing these extensions could make use of suitable channel correcting code that

would compensate the performance loss due to the employment of a larger amount

of matrices. Furthermore, the use of the PEP metric and optimal search algorithm

could be extended for DSTM MIMO systems employing 4 and 8 transmit antennas.

This would enhance the performance of the mentioned systems, under the same

argument that the PEP is a far more suitable performance metric than the distance

between couple of matrices.

Moreover, as was seen in Chapter 1, spatial modulation (SM) schemes are being

widely used in recent research. The Weyl group suits this type of systems, and could

be integrated along with its proposed extensions in the aim of achieving higher rate

than the commonly used SM-STBC and with lower complexity.

Also, regarding the work achieved in chapter 4, a perspective is using a simpler

method for the interpolation of the channel matrices. The natural class C2 cubic

splines could be used instead of using the Nyquist sampling theorem. It would

be also interesting to study the channel coefficients as correlated random variable.

Since the antennas at transmit or receive side could be close to each other, this

would present a more realistic performance.

In addition to this, non-coherent schemes could have contributions in contempo-

rary systems as 5G-NR. More specifically, in the inherent broadcast of channels for
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initial access, also in blind detection in the broadcast and control channels as well

as the benefit of non-coherent detection in high mobility scenarios [48]. In light of

this, DSTM schemes based on the Weyl group and its extensions could play role.
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Titre :  Conception, optimisation et évaluation des performances de schémas MIMO non cohérents pour les 

futurs systèmes sans fil 
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Résumé :  Aujourd’hui les techniques multi-

antennaires MIMO (Multiple Input Multiple Output) et 

Massive MIMO sont très présentes dans les différents 

systèmes de communications sans fils. Cependant, ces 

schémas nécessitent de disposer en réception d’une 

estimation de la réponse de chaque canal entre chaque 

antenne d’émission et de réception, ce qui, dans beaucoup 

de cas, peut diminuer fortement l’efficacité spectrale finale 

de ces systèmes. Cette thèse a pour but d’explorer une 

solution alternative reposant sur l’utilisation de schémas de 

modulation différentielle espace-temps (DSTM) pour ces 

systèmes MIMO non cohérents ne nécessitant pas de 

disposer d’une estimation de la réponse du canal en 

réception. 

Dans un premier temps, des schémas reposant sur l’utilisation 

du groupe multiplicatif de Weyl de matrices unitaires 2×2 sont 

étudiés dans le but de construire des systèmes MIMO de type 

DSTM à 2 antennes d'émission. Puis en utilisant le produit 

Kronecker, étendu aux matrices 4×4et 8×8.Afin d’améliorer 

l’efficacité spectrale de ces schémas, des extensions simples et 

doubles du groupe de Weyl sont proposées. Un algorithme de 

sélection des matrices d'information maximisant la distance 

entre les matrices sélectionnées ainsi qu’un mapping optimisé 

sont ensuite développés. Enfin, une étude analytique des 

performances des schémas DSTM proposés par des expressions 

de la probabilité d’erreur par paire (PEP)est menée. En 

particulier, un nouvel algorithme optimal de sélection des 

matrices d'information, ayant comme mesure de performance la 

valeur exacte de la PEP entre les couples de matrices, est 

optimisé. 
 

 

Title :  Conception, optimization and evaluation of the performance of non-coherent MIMO systems for 

future wireless systems. 

Keywords :  MIMO, DSTM, group Weyl, CSI 

Abstract:  Today the multi-antenna techniques MIMO 

(Multiple Input Multiple Output) and Massive MIMO are 

very present in the various wireless communication 

systems. However, these diagrams make it possible to 

have in reception an estimate of the response of each 

channel between each transmit and receive antenna, 

which, in many cases, can greatly reduce the final spectral 

efficiency of these systems. The purpose of this thesis is to 

explore an alternative solution based on the use of 

differential space-time modulation (DSTM) schemes for 

these non-coherent MIMO systems that does not require 

an estimate of the response of the receiving channel.  First, 

schemes based on the use of the Weyl multiplicative group 

of 2 × 2 unit matrices are studied in the process of building 

DSTM type MIMO building DSTM type MIMO systems 

with 2 transmitting antennas. 

Then using the Kronecker product, extended to 4 × 4 and 

8 × 8 matrices. In order to improve the spectral efficiency 

of these schemes, single and double extensions of the 

Weyl group are proposed. An information matrix 

selection algorithm maximizing the distance between the 

improved matrices as well as an optimized mapping are 

then developed. Finally, an analytical study of the 

performance of DSTM schemes proposed by expressions 

of the pairwise error conversation (PEP) is continued. In 

particular, a new optimal algorithm for selecting the 

information matrices, having as a performance measure 

the exact value of the PEP between the pairs of matrices, 

is optimized. 

 


