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DÉTECTION D’ACTION POUR LES VIDÉOS PAR LES RÉSEAUX DE

NEURONES PROFONDS
Rui Dai

Directeur de thèse: François Brémond
STARS, Inria Sophia Antipolis, France

RÉSUMÉ

La compréhension du comportement humain et de ses activités facilite l’avancement de nom-
breuses applications dans le monde réel et est essentielle pour l’analyse vidéo. Malgré les progrès
des algorithmes de reconnaissance d’actions dans les vidéos découpées, la majorité des vidéos du
monde réel sont longues et non découpées avec des régions d’intérêt denses. Un système effi-
cace de compréhension d’actions dans le monde réel devrait être capable de détecter des actions
multiples dans de longues vidéos non découpées. Dans cette thèse, nous nous concentrons princi-
palement sur la détection d’actions temporelles dans les vidéos non découpées, qui vise à trouver
les occurrences d’actions dans le temps dans la vidéo. Plus précisément, les méthodes de détec-
tion d’actions temporelles font face à trois défis principaux : (a) modéliser dans une vidéo les
dépendances temporelles entre les actions, y compris les actions composites et co-occurrentes, (b)
apprendre la représentation d’actions à grain fin ainsi que (c) apprendre une représentation à
partir de modalités multiples.

Dans cette thèse, nous présentons tout d’abord un important benchmark de détection d’actions
en intérieur : Toyota Smarthome Untrimmed, qui fournit des activités spontanées avec des an-
notations riches et denses pour aborder la détection d’activités complexes dans des scénarios du
monde réel. Ensuite, nous proposons plusieurs nouvelles approches pour la détection d’actions
dans les vidéos non découpées. Ces approches visent à relever les trois défis susmentionnés :
Premièrement, nous étudions la modélisation temporelle pour la détection d’actions. Plus précisé-
ment, nous étudions comment améliorer la représentation temporelle en utilisant des mécanismes
d’auto-attention. Les méthodes que nous proposons permettent de traiter des vidéos à long terme
et de raisonner sur les dépendances temporelles entre les images vidéo à plusieurs échelles de
temps. Deuxièmement, nous explorons comment reconnaître et détecter des actions à grain fin
en utilisant la sémantique de l’objet et de l’action contenus dans la vidéo. Dans ce travail, nous
proposons un cadre général de raisonnement sémantique. Ce cadre se compose principalement
de deux étapes : (1) l’extraction de la sémantique de la vidéo pour former une représentation
vidéo structurelle ; (2) l’amélioration de la représentation vidéo par le raisonnement sur la séman-
tique extraite. La stratégie de raisonnement sémantique proposée améliore la détection d’actions
à grain fin et montre son efficacité dans les tâches de reconnaissance et de détection d’actions.
Troisièmement, nous nous attaquons au problème de la représentation d’une vidéo non découpée
en utilisant plusieurs modalités pour la détection d’actions. Nous proposons deux lignes de base
multimodales basées soit sur le mécanisme d’attention, soit sur la distillation des connaissances.
Les deux méthodes tirent parti des modalités supplémentaires pour améliorer la représentation de
la vidéo RVB, ce qui se traduit par de meilleures performances en matière de détection d’action.

Nos méthodes ont été évaluées de manière approfondie sur des repères de détection d’action
difficiles. Les méthodes proposées sont plus performantes que les méthodes précédentes, ce qui
fait progresser de manière significative la détection d’actions temporelles dans les déploiements du
monde réel.

Mots clés: Reconnaisance d’action, Traitement de video, Vision par ordinateur
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ABSTRACT

Understanding human behaviour and its activities facilitate the advancement of numer-
ous real-world applications and is critical for video analysis. Despite the progress of action
recognition algorithms in trimmed videos, the majority of real-world videos are lengthy
and untrimmed with dense regions of interest. An effective real-world action understand-
ing system should be able to detect multiple actions in long untrimmed videos. In this
thesis, we focus mainly on temporal action detection in untrimmed videos, which aims
at finding the action occurrences along time in the video. Specifically, temporal action
detection methods face three main challenges: (a) modelling in a video the temporal de-
pendencies between actions, including composite and co-occurring actions, (b) learning
the representation of fine-grained actions as well as (c) learning a representation from
multiple modalities.

In this thesis, we first introduce a large indoor action detection benchmark: Toyota
Smarthome Untrimmed, which provides spontaneous activities with rich and dense anno-
tations to address the detection of complex activities in real-world scenarios. After that, we
propose multiple novel approaches towards action detection in untrimmed videos. These
approaches are targeting the aforementioned three challenges: Firstly, we study temporal
modelling for action detection. Specifically, we study how to enhance temporal repre-
sentation using self-attention mechanisms. Our proposed methods allow for processing
long-term video and for reasoning about temporal dependencies between video frames
at multiple time scales. Secondly, we explore how to recognize and detect fine-grained
actions using semantics of object and action contained in the video. In this work, we
propose a general semantic reasoning framework. This framework consists of mainly two
steps: (1) extracting the semantics from the video to form a structural video representa-
tion; (2) enhancing the video representation by reasoning about the extracted semantics.
The proposed semantic reasoning strategy improves the detection of fine-grained actions
and shows its effectiveness in action recognition and detection tasks. Thirdly, we tackle
the problem on how to represent untrimmed video using multiple modalities for action
detection. We propose two cross-modality baselines based either on attention mechanism
or on knowledge distillation. Both methods leverage the additional modalities to enhance
RGB video representation resulting in better action detection performance.

Our methods have been extensively evaluated on challenging action detection bench-
marks. The proposed methods outperform previous methods, significantly pushing tem-
poral action detection to real-world deployments.

Keywords: video understanding, action detection, temporal modelling, semantic reason-
ing, multiple modalities.
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Chapter 1

Introduction

Computer vision is a field of artificial intelligence that focuses on mimicking parts of

the human visual system and enabling computers to derive information from images,

videos, and other inputs. Nowadays, smartphone and various cameras continually pro-

duce tremendous video and media content from individuals every day. Therefore, video

understanding and analysis has become one of the essential research subjects in computer

vision. Video analysis can be defined as a combination of understanding the scene, ob-

jects, actions, events, attributes, and concepts [8] from a series of frames (i.e., a video).

Although deep learning techniques have accomplished remarkable performance in many

computer vision tasks (e.g., image classification, object detection), video understanding

is still far from ideal. Among the topics in video understanding, analysis of action in the

video is one of the most critical and challenging tasks. In fact, human beings play an

prominent role in the video. Statistics show that 35%, 34%, and 40% of pixels in movies,

TV and YouTube videos are related to humans [9]. Hence, studying the human actions

and behaviour in a video can help to understand its contents. As an important element

of video analysis, action understanding facilitates the progress of numerous real-world

applications, such as smarthome, sport analysis system, or human-robot interaction.

In the action understanding domain, action recognition is the fundamental task,

it aims at classifying the action categories of trimmed video. In this thesis, we define

trimmed videos as "pre-segmented" video clips, where each video contains only a single

action instance. In other words, the context of the action, i.e., moments before or af-

ter the action are not included in the trimmed video. Therefore, action recognition only

needs to classify the action categories without the need to detect starting and ending

timestamps. However, the majority of videos in the wild (i.e., recorded in unconstrained

environments), are naturally untrimmed. Untrimmed videos are long unsegmented videos

which may contain several action instances along with the moments before or after each

action (i.e., temporal background). The action instances in one video can belong to sev-



2 Chapter 1. Introduction

Figure 1.1: Temporal action detection aims to localize action instances in time and to rec-
ognize their categories. Here is an example of an untrimmed video that includes multiple
action instances of interest with various lengths and categories. Moreover, action instances
can overlap.

eral action classes. Besides, action instances may occur at any time of the video and may

have various duration. Moreover, overlapping can exist between action instances (i.e., co-

occurring actions). An example of the real-world untrimmed video is shown in figure 1.1.

The task of detecting actions in untrimmed videos is called temporal action detection.

Temporal action detection can be defined as the ability to localize the action instances

in time and to recognize their categories. This task has received a lot of attention re-

cently, as it can provide information on: what are the actions and when do the actions

happen? The moments right before or right after an action may be very similar in ap-

pearance to the start or end of the action, which makes the localization of action intervals

very challenging. Previous studies on temporal action detection mainly focused on actions

of high-level semantics and videos with a sparse set of actions [10, 11, 12]. However,

the action may occur "densely" in real-world scenarios. Besides, low-level "fine-grained"

actions can also be important for many applications. For instance, collaborative robots

need to recognize how a human partner completes the job in sub-steps to cope with the

variations in the task, and sport analysis systems must comprehend fine-grained game ac-

tions to report commentaries of live activities, etc. In this thesis, we focus on the temporal

action detection that targets fine-grained actions and videos with dense occurrence of

actions. While the temporal action detection task has been studied in both full and limited

supervision settings, for the action detection in video with dense action occurrence, the

methods still highly rely on full supervision. This is because of the complex temporal rela-

tions among action instances, dense action regions, and numerous action categories in the

videos. Hence, in this thesis, we only studied fully supervised action detection methods.

The goal is to predict action labels at every frame of the video [2, 13, 7].

Temporal action detection has drawn much attention in recent years and has broad

applications in video analysis tasks. With the cameras, an automatic detection system

may help the deployment of an indoor vision intelligence system system, such as human
less store and smarthome. Take smarthome as an example: a temporal action detection
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Figure 1.2: The difference between action recognition and temporal action detection tasks.
f indicates the network of each task. For action recognition task, its network maps a video
clip into an action category label. For temporal action detection task, its network maps a
series of frames of untrimmed video into a series of frame-level predictions.

module can detect the behavior of the human subject in real-time and send this informa-

tion to the support robot (e.g., Partner Robot-HSR [14]), to better interact with the user

in the smarthome. Also, suspicious events (e.g., falling down) can be detected automati-

cally by the action detection module and reported to the caregivers. Another application

is instructional videos. With the growing popularity of social media, many people follow

tutorials online to learn cooking or assembling furniture. The instructional videos are usu-

ally untrimmed and they include several steps for a main task. Temporal action detection

may help detect the main action steps to facilitate the learning process.

The rest of the introduction is organized as follow: firstly, we define the problem

statement of action recognition and detection in Sec. 1.1. Secondly, we introduce the ap-

plications for action understanding in Sec. 1.2. Then, we describe the scientific challenges

in the task of action recognition and detection in Sec. 1.3. Finally, we summarize our

contribution in Sec. 1.4. The structure of the thesis is outlined in Sec. 1.5.

1.1 Problem Statement

This thesis involves mainly two tasks: Action Recognition and Temporal Action Detection.

Action recognition aims at the classification of clipped action instances. Compared to the

vanilla action recognition task, temporal action detection is more challenging. This is

because locating the instances in the video is also required in action detection task. An

overall difference between action recognition and temporal action detection is shown in

Fig. 1.21. Below, we provide the problem statements and their definition for these two

tasks.

1Action figures are taken from: https://www.pinterest.fr/pin/1688918602463243/
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1.1.1 Action Recognition

Action recognition, also known as action classification, is a specific task in video classifi-

cation, which aims at recognizing the actions in trimmed video sequences. Normally, the

video clips are short (e.g around 10 sec./clip) and a video clip contains only a single action

without context. The action category (i.e., label) is composed of verb, noun and adverb.

Task Definition: Given a set of videos V and a set of the corresponding action categories

C. Each video V ∈ V contains one label cV ∈ C. Hence the objective of action recognition

is to predict the label cV based on a video representation of video V . This statement could

be extended for multiple action instances in a video clip, where cV ∈ C is a set of action

categories (i.e., multi-label video classification).

1.1.2 Temporal Action Detection

Temporal action detection is an extension of the action recognition problem. Besides

recognizing the action categories, temporal action detection task consists in localizing the

action instance in the untrimmed video as well. The untrimmed video can be complex:

a video may contain one or more action instances and the action instances can overlap

(i.e., concurrent actions). Normally, (1) the task designed for videos with a sparse set

of actions [11, 12] is referred to as "temporal action localization" [15]. (2) the task that

focuses on fine-grained actions can be referred to as temporal action detection [16, 13, 17,

18] or segmentation [5, 19]. In this thesis, we focus on the fine-grained action detection

for videos with dense occurrence of actions. As a result, we follow the naming convention

in [13], using the term "temporal action detection".

Task Definition: Formally, for a video sequence of length T , each time-step t is associated

with a ground-truth action label yt,c ∈ {0, 1}, where c ∈ {1, ..., C} indicates an action class.

For every time-step, an action detection network predicts class probabilities ỹt,c ∈ [0, 1].

Similar Tasks: there are many similar tasks to temporal action detection. We present

below their definitions along with the differences compared to temporal action detection.

• Temporal Action Proposal Generation: This task evaluates the ability of algorithms

to generate high-quality action proposals. The goal is to produce a set of candidate

temporal segments that are likely to contain a human action. Unlike temporal action

detection, temporal action proposal generation is a class-agnostic task. This task

usually acts as a sub-task of event-level action detection.

• Untrimmed Video Classification: This task aims at recognizing all the actions that

appear in an untrimmed video. Unlike temporal action detection, untrimmed ac-
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tion classification does not need to predict the temporal boundaries of the action

instances.

• Spatio-temporal Action Localization: This task is intended to evaluate the ability

of algorithms to localize human actions in both space and time. Unlike temporal

action detection, this task also needs to detect the spatial location of the subject who

performs the action.

• Online Action Detection: Unlike previous tasks, the goal of online action detection

is to detect an action as it happens and ideally even before the action is fully com-

pleted. Being able to detect an action at the time of the occurrence can be useful in

many real-world practical applications.

We claim that for an effective and efficient real-world action understanding system,

the system should be able to detect multiple actions in long untrimmed videos. In this

thesis, we focus mainly on temporal action detection in untrimmed videos, which aims at

finding the action occurrences along time in the videos. Nevertheless, we also evaluate

some proposed methods on trimmed action recognition task for validating the model gen-

eralization. For convenience and with a slight abuse of terms, hereafter in this thesis, we

often refer to action detection as the problem of temporal action detection. Also, we may

utilise "activity" to indicate "action" in this thesis.

1.2 Applications

Temporal action detection bears a significant potential for numerous real-world applica-

tions. In the following, we introduce four representative applications.

Smarthome: With the ageing population issue, a Smarthome system could relieve the

dramatic need of caregiver workforce. With such a smart indoor camera-based system,

the elderlies can live better alone at home. Such a system can work with a partner robot.

The real-time information is sent to the robot to better interact with the older adult and

helps them. Moreover, such a system can help detect and report potentially dangerous

situations to caregivers if necessary. It can also analyse daily living actions to improve life

quality. For example, how much water is drunk a day, or how much time is spent reading
or using electronic devices. In such a system, the temporal action detection module can be

seen as the core component for detecting actions from those streaming videos.

Video Summarization: The goal of video summarization is to produce a compact visual

summary that encapsulates the key components of a video (i.e. highlight moments). Its

main value is to turn hours of video into a short summary that can be interpreted by a
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human viewer in seconds. Creating visual diaries and video highlights are popular usages

of video summarization. As humans play an important role in human recorded videos,

action detection can help to retrieve the key points from the untrimmed videos. The video

summarization has already been used in real-world applications, such as video highlights

in smartphone albums.

Skill Assessment: Many domains now require to analyze the quality of a person’s activi-

ties and to assess whether the action is being performed correctly. Such skill assessment

is, for example, relevant for progress assessment in physical rehabilitation, or for coaching

in some sports (e.g., basketball, tennis). Skill Assessment allows athletes to take a critical

look at their performance in order to improve their skills and prevent injuries. As an action

can composed of several atomic actions, learning the occurrences of such atomic action

relies on temporal action detection techniques.

Human-Robot Interaction: Ability to perceive human actions plays a key role in many

human-robot interaction scenarios. With the development of action recognition and de-

tection, a robot is able to recognize actions or gestures done by a user and to trigger

appropriate feedback. Such solutions have been already introduced to some human as-

sistant robots or autonomous vehicles. For example, smart car systems rely on action

detection systems to understand human’s gestures, such as change the music or answer a
call.

1.3 Scientific Challenges

Over the past years, deep learning has led to huge success in image and video analysis.

Among video analysis tasks, temporal action detection is a novel but important research

problem. Many unanswered questions keep this problem challenging.

1.3.1 Video Representation Learning

The input of action detection model is an untrimmed video, which is a sequence of frames

of a scene at a given frame rate. Processing long-term videos is challenging as the input

data can be very large. For example, a 5 minutes video with 24 fps and VGA resolution

(i.e., 640 × 480) contains more than 2.2 billion pixels. Detecting actions in a video

relies on the capacity of the model that extracts the action related information from the

video. Therefore, how to effectively and efficiently model the representation of the video

is challenging and crucial in temporal action detection. To tackle this challenge, previous

methods utilized a two-stage framework [20, 17, 21]: Firstly, extracting the features of the

local video snippets using a visual encoder (e.g., 3D Convolutional Network [22, 23] or
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Transformer [24, 25]). The visual encoder is used to model the spatio-temporal relations

in the short-term video snippet. Secondly, after stacking the extracted features along

time, temporal models (e.g., LSTM [26] or TCN [5]) are used to explore the long-term

temporal dependencies. This framework effectively reduces the computation cost. In

this thesis, similarly to previous work, we follow a two-stage framework. Our focus for

video representation learning lies in the second stage: how to effectively model long-term

temporal information?

Recently, some researchers have found that the temporal model performance is limited

by the visual encoder. Because of the dissociation with the visual encoder, the temporal

model can not take full advantage of the spatial information of the video to model tem-

poral dependencies. To tackle this issue, some researchers firstly improve visual encoder

by leveraging the attention mechanism [27, 28] to filter more salient spatial information

from the video. Secondly, few recent methods [29, 30] utilize the momentum updated

memory bank to connect the visual encoder and the temporal model, so that they can

train jointly the two stages in a latent manner. As the training process is costly and not

all the data is necessary used to train the model, we keep the framework in a two-stage

fashion in this thesis. Studying long-term spatial-temporal modelling will be one of our

future works.

1.3.2 Supervision-level

Supervision-level indicates how much ground truth labels we need for learning the dis-

criminative representation for a specific task. The challenge consists in using as few an-

notations as possible. The annotation process is complex and costly, especially for large

datasets. Therefore, the model that relies on less annotations is essential but challenging.

There are some propositions in the community for designing algorithms with less anno-

tations. For example, weakly-supervised action detection learns the model using only

video-level labels to detect actions from untrimmed videos. However, current methods for

this task highly rely on a filter that can distinguish the foreground and background ac-

tions [31, 32]. Therefore, those models are evaluated on simple videos with sparse action

regions. For the videos with a dense occurrence of actions, current methods still highly

rely on full supervised annotation. The situation is even more severe for a model that has

lesser supervision (e.g., unsupervised action detection).

As we focus on analysing videos with dense action occurrences, we provide full ground

truth to our model in this thesis. However, with supervised setting, it is still challenging

to get high performance. How to learn the representation of untrimmed video with less

supervision is our future work.
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1.3.3 Cross-dataset Generalization

The ultimate goal for temporal action detection is to detect action instances from arbitrary

real-world videos. This objective requires the model to be general enough to cope with

various environments and scenarios. To tackle this point, a new task is proposed in the

community. This task requires the model to be trained dataset-by-dataset and prevent

the model performance from decreasing on the previous dataset. In the training phase,

the new dataset may introduce new action classes, which makes the task more challeng-

ing [33]. In other words, if a dataset represents the source domain and another dataset

represents the target domain, we want the knowledge learned by the model from the

source domain can be generalized to the target domain [34, 35]. Such an action detection

system requires the model to learn a robust representation of different scenarios and envi-

ronments. Limited by the annotation issue, current methods [34, 33, 35] have been tried

only in trimmed video clip for video classification. As the action detection task input is

the untrimmed videos for which action instances are not pre-segmented, generalising the

representation for action detection across different domains is more challenging. In this

thesis, we keep the same domain for the training and testing sets of our method. How-

ever, we evaluate these methods on multiple large datasets to show the generalization and

robustness of our methods.

1.3.4 Class-imbalance

In the real world, action distribution is in general highly imbalanced with a long-tail dis-

tribution [36], with a few categories covering most of the data (so-called head of the dis-

tribution), and the rest having only a few samples per category (so-called tail). Training

the model with imbalanced data is challenging, as it is difficult to learn the representa-

tion of tail action classes while training along with the head action classes. To train on

imbalanced data, some methods firstly introduced focal loss [37] to reassign the impor-

tance of different samples. Nevertheless, giving more focus on the rare samples led the

model to focus more on the outliers and may cause over-fitting. Secondly, some meth-

ods [38, 39, 40] used the sampling and data augmentation techniques to re-balance the

number of samples for each class. However, limited by the imperfect synthetic samples

(i.e., data generation), the few sampled class detection is not getting effectively improved.

In this thesis, we pre-trained our visual encoder on large balanced action datasets (i.e.,

kinetics [41]) and fine-tuned the visual encoder on the training set of the target dataset.

This strategy helps the model better learn the few-sampled action representation and al-

leviates the class imbalance issues to some extent.
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Figure 1.3: Complex temporal relations in untrimmed videos. On the left, we show a
set of actions performed in a sequential manner in a video. On the right, we present two
examples of co-occurring actions. The sampled frames are taken from Charades dataset.

1.3.5 Filming Setting

Videos are captured in the open world with variant filming settings. The subject can be far

away from the camera or close to it, resulting in various sizes of the subject in the video.

Furthermore, the video may not be recorded by a cameraman but by a fixed camera, thus

the subject can be partially not in the centre of the frame and can occur anywhere in the

frame even outside. Moreover, the subject can be captured in diverse camera views (not

frontal) and can be partially occluded by objects in the environment. How to make the

representation robust to different filming settings is crucial for designing a model for the

real world. In this thesis, we introduce a large indoor dataset: Toyota Smarthome, which

comprises multiple camera views along with a real-world filming setting. We evaluated

our models in both settings: We utilize the popular benchmarks which have Lab settings

to compare our models with SoTA methods. In addition, we experiment with Toyota

Smarthome which features a new setting to evaluate our models in real-world conditions.

1.3.6 Complex Temporal Relations

By contrast to trimmed videos, untrimmed ones contain rich semantics with complex tem-

poral relations. As mentioned earlier, in the standard two-stage temporal action detection

framework, the untrimmed video needs to be partitioned into shorter clips for feature

extraction. Processing these shorter clips independently can lead to loss of information

corresponding to the temporal or semantic dependencies between video segments. There-

fore, temporal modelling is critical to capture these dependencies, in order to benefit from

the video context to refine the clip representation. Effective reasoning across time can help

predict the action category of the clip and predict the action completeness. Modelling tem-

poral dependencies is essential especially for videos with complex temporal relations. For

example, a set of actions that occur together often follow a well defined temporal pattern.

As shown in figure 1.3, when "making breakfast", the sub-actions "opening fridge", "taking
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Figure 1.4: Semantic reasoning helps action detection. (1) Object semantics: Knowing the
existence of the action relevant objects (onion, hands) and the "motion" between them
can help determine action peeling onion. (2) Action semantics: knowing the existence
of action taking a book can help predicting its relevant action reading book. The red
arrows represent the relation between the semantics. Sampled frames are taken from
EPIC-KITCHENS [1] and Charades [2] datasets.

food" and "make sandwich" can be performed in a sequential manner. Besides, both short-

term and long-term actions may occur at the same time in the same video. For example,

performing the short action eating snack while playing smartphone (i.e., long action). To

detect the actions in such complex videos, it is important to model both short-term and

long-term temporal dependencies of the actions. Therefore, temporal modelling is one of

the focus in this dissertation.

1.3.7 Fine-grained Actions

Knowing fine-grained details of the action is critical for some context-aware scenarios.

For example, while cooking, knowing cutting either "beef " or "onion" can provide clues

for learning a better model for cooking instructional videos. However, recognizing and

detecting fine-grained actions from videos is challenging, as there are subtle inter-class

variations among the fine-grained action categories (e.g., drink from bottle or can). Hence,

detecting such actions needs to capture both the relevant semantic information and the

cross-semantic relationships in the video. For example, as shown in Figure. 1.4, modelling

the relation between different "object" semantics such as hand and onion can help detect

the fine-grained action instance (e.g., peeling onion). Also, one untrimmed video may

contain multiple action instances. Detecting an action in the video may rely on the rep-

resentation of other relevant action instances in this video. For example, knowing "taking
the book" action can help detect "reading book" action in the same video, and vice versa.

In this thesis, we propose a semantic reasoning framework for detecting actions in the

aforementioned challenging scenarios.
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Figure 1.5: Complementary nature of different modalities. Here we take an example of
actions taking on and off glasses with RGB and optical flow. The sampled frames are taken
from PKU-MMD [3] dataset.

1.3.8 Multi-modalities

While recording a scene, data can be captured by different sensors to have different modal-

ities, such as RGB, depth, audio, etc. Those modalities can be complementary for recog-

nizing complex actions. For example, taking on and taking off glasses are similar in RGB

frames while the difference can be salient in the optical flow frames (see figure 1.5).

Thanks to the complementary nature between modalities, learning from multiple modali-

ties can improve the action detection performance. While two-stream networks [42] have

become a conventional setting in the action detection framework, how to fuse the differ-

ent modalities remains a challenging and worthy research problem.

The sensors for capturing the modalities are costly. With the development of recent al-

gorithms, additional modalities can be extracted from RGB videos in a "post-processing"

step (e.g., optical flow, skeletons). However, extracting those modalities from RGB is

quite computationally expensive. The difficulty remains in effectively leveraging multiple

modalities of an untrimmed video with reasonable computation cost. In this thesis, we

introduce two methods for leveraging additional modalities to enhance the RGB represen-

tation, in a light-weighted manner.

1.4 Contributions

Our contributions are motivated by the complex challenges involved in real-world videos.

To address these challenges, we made four key contributions. The first contribution in-

cludes a real-world indoor dataset containing action videos performed in a spontaneous

manner. Our second contribution are three temporal models that leverage attention mech-

anisms for enhancing the temporal representation. Our third contribution is a semantic

reasoning framework that can learn the relationships among video semantics for fine-

grained action understanding. Our fourth contribution is two multi-modal strategies to
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take the benefits of multiple modalities into account for detecting actions. Below, we

briefly describe these contributions.

1.4.1 Smarthome Dataset

In this thesis, we introduced a real-world indoor dataset: Toyota Smarthome Untrimmed

(TSU), which contains daily-living activities performed in a natural manner and captured

from multiple non-optimal viewpoints. Activities performed in a spontaneous manner

lead to many real-world challenges that are often ignored by the vision community. This

includes composite action detection, concurrent action detection, low camera framing,

action-class imbalance, and occlusions. We provide rich and dense annotations of TSU

dataset to address the detection of complex actions in real-world scenarios.

1.4.2 Temporal Relational Reasoning

Temporal modelling is important for processing sequential data, including videos. As

mentioned earlier, it is essential to model the temporal dependencies between different

time steps (i.e., snippet) in a video. In this dissertation, we proposed three effective

temporal modelling networks for action detection:

Self-Attention Temporal Convolutional Network (SA-TCN): SA-TCN is an attention-

based model which features an encoder-decoder structure to shrink the temporal reso-

lution. Between the encoder and decoder, a self-attention block is used to capture the

non-local dependencies between different time-steps in the video. We argue that such

an architecture design can help model long-term temporal dependencies in untrimmed

videos.

Pyramid Dilated Attention Network (PDAN): similar to SA-TCN, PDAN also relies on

attention mechanism. The basic component Dilated Attention Layer (DAL) allocates

attentional weights to neighbouring features in the kernel, which enables it to learn better

local representation across time. PDAN is built upon DALs, which can model short-term

and long-term temporal relations simultaneously by focusing on local segments at the level

of low and high temporal receptive fields. This property enables PDAN to handle complex

temporal relations between different action snippets in long untrimmed videos.

Multi-Scale Temporal ConvTransformer (MS-TCT): Benefiting from the Transformer and

Temporal Convolution architecture, we proposed a ConvTransformer based architecture

for the action detection task. This network comprises a Temporal Encoder module which

extensively explores global and local temporal relations at multiple temporal resolutions.
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Then, a Classification module is used to learn the instance center-relative position and to

predict the frame-level classification scores.

1.4.3 Semantic Relational Reasoning for Action Detection

Videos may contain rich semantic information such as objects, actions, and scenes.

Relationships among different semantics are high-level knowledge which is critical for

understanding the video content. Therefore, semantic relational reasoning can help

determine the action instance occurrences and locate the actions in the video. To leverage

semantic for action understanding, we proposed two semantic modelling networks: CTRN

is designed to capture the "inter-action" relations for action detection and THORN aims at

modelling the "intra-action" relations for action recognition.

Class-Temporal Relational Network (CTRN) is a network for the action detection task.

This network targets modelling the complex action relations in a video and refining ac-

tion detection precision based on the learned global action relationships. In other words,

CTRN enhances the action detection performance by exploring the inter-action class rela-

tionships. In practice, CTRN filters the action class-specific representation from the mixed

representations and then models the action class and temporal relations alternatively.

With CTRN, we can effectively detect the actions in complex videos with dense action

regions. CTRN has achieved competitive state-of-the-art performance in challenging ac-

tion detection datasets.

Temporal Human-Object Relational Network (THORN) is a network for action recogni-

tion, which can be seen as a continuation of CTRN, and which explores the intra-instance

semantic relationship. Unlike CTRN which aims to model the action relations across time,

THORN focuses on exploring the object semantics in the spatio-temporal space. In prac-

tice, we extract the object representation from the spatio-temporal representation and we

model the cross-object relations to predict the action. THORN has achieved competitive

state-of-the-art performance in egocentric-view action recognition datasets.

1.4.4 Multi-Modal Learning

Recognizing and detecting actions in videos involves understanding different cues. The

cues that are computed from different modalities are complementary in their feature

space. Thus, fusing them in a common feature space enables a classifier to learn even more

discriminative features compared to their classification in an individual feature space.

Therefore, to incorporate the effectiveness of each modality, we propose two strategies to

learn a multi-modal representation for action detection.
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Attention Guided Network (AGNet): For leveraging multiple modalities, we firstly pro-

pose to utilize the additional modality to guide the RGB stream based on the attention

mechanism. The goal of this method is to leverage the complementary nature of the dif-

ferent modalities (e.g., Optical Flow, 3D Poses) to guide the RGB stream for better action

detection. The main contribution is the attention module, which utilizes additional modal-

ities to generate the attention weights at multiple temporal scales and which indicates the

region of interest of the action in the video. AGNet is the baseline proposed in Toyota

Smarthome Untrimmed for the action detection task.

Knowledge distillation for action detection: The two-stream structure is effective for

action detection. However, using such a setting is contingent upon the availability of

multiple modalities and of expensive processing resources. To handle this, we propose a

knowledge distillation framework that can encourage the RGB stream to learn both local

and global video information from additional modalities. With this new framework, the

distillation is realized at both atomic and sequence levels. The result is an Augmented-

RGB stream that achieves competitive performance as the two-stream network while using

only RGB at inference time.

1.5 Thesis Structure

In the following chapters: Firstly, we review methods related to this thesis, especially the

state-of-the-art methods in action detection in chapter 2. Then, we introduce our proposed

dataset and methods:

• In chapter 3, we introduce a challenging indoor dataset Toyota Smarthome

Untrimmed [43] for action detection. We also compare this dataset with other re-

lated datasets to highlight the challenges featured by Toyota Smarthome Untrimmed

dataset.

• In chapter 4, the methods aiming at modelling temporal relations in the video are in-

troduced. In this chapter, we describe three networks: SA-TCN [44], PDAN [45] and

MS-TCT [46], which combine self-attention with temporal convolution to capture

both local and global temporal dependencies in untrimmed videos.

• In chapter 5, we present a semantic reasoning framework for action understand-

ing. To study that this framework can model both spatial and temporal semantics,

experiments are conducted on both action detection [47] and recognition [48] tasks.

• In chapter 6, we focus on the multi-modal framework. We introduce two meth-

ods that leverage the attention mechanism [43] and knowledge distillation [49] for

multi-modal action detection.
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Finally, we summarize the thesis contributions and we describe several perspectives as

future work in chapter 7.
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2022. [43]
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Chapter 2

Literature Review

In this chapter, we overview how previous methods address action detection task. Firstly,

we discuss the framework and relevant methods for the temporal action detection task.

We then introduce the principle loss function, evaluation metrics and datasets that we

utilized in this task. More fine-grained related work to each contribution will be discussed

in the corresponding chapters respectively.

2.1 Action Detection Methods

Action detection involves representing an untrimmed video. To model the video represen-

tation, most recent action detection frameworks involve two steps: (1) Extracting frame

or snippet level features using a model trained for the action classification task, we call

this step visual encoding or video encoding; (2) Modelling the temporal relation across

the snippet-level features. After that, the prediction heads detect the action instance with

the obtained video representation. Below we revise the relevant methods for each of these

two steps.

2.1.1 Visual Encoding

Learning representations for video has been popular over the years [42, 56, 22, 23, 57,

58]. As mentioned earlier, an untrimmed video consists of a huge number of pixels,

thus an effective and efficient manner is required to light-weight the computation cost.

Modelling a video into a sequence of snippet-level features is the conventional way of

processing long untrimmed videos [5, 59, 60, 21, 15, 17, 18, 19]. More specifically, in

this step, frame or snippet level features are extracted using a model which is trained

on action clips. These features are further input to a model which is trained for the

task of action detection. Thus, the efficiency of the detection task highly relies on the
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quality of the extracted features or, in other words, on the learned representations of

the action classification models. These classification models vary based on the input data

modality. For instance, 3D human poses are generally processed by sequential networks or

graph convolutional networks, whereas RGB images and optical flow images are generally

treated by 3D convolutional networks.

3D human pose is a popular modality which provides the location of the key joints of a

subject for every frame [61]. This modality is also dubbed the human skeleton data. Skele-

ton data attracted considerable attention due to their strong adaptability to dynamic mo-

tion and complicated background [62, 63, 64]. Conventional deep learning based meth-

ods manually structure the skeletons as a sequence of joint-coordinate vectors [65, 62].

However, representing skeleton data as a vector sequence can not fully express the de-

pendency between correlated joints. Recently, graph convolutional networks (GCNs) have

been applied to model the skeleton data [66, 67, 52, 68, 69]. Yan et al. [66] have con-

structed a spatial graph based on the natural connections of joints in the human body.

Inspired by [66], Shi et al. [67] have proposed a two-stream GCN to better model the

spatial information within a short period of time. Most recently, Duan et al. [70] proposed

to utilise 3D heatmap volume instead of a graph sequence as the base representation of

human skeletons. Compared to GCN-based methods, their method is more effective in

learning spatio-temporal features and more robust against pose estimation noises. Skele-

tons can be effective for representing the pose of the person performing an action and

capturing human-centred motion. But what about contextual information like environ-

mental details (e.g. sink for clean dishes with water), encoding object information (e.g.

glasses)? For that, we need RGB frames.

RGB images are the commonest modality which is utilized by many effective methods in

order to model the appearance information. Few works [56, 71] learn appearance features

from the frame-level classification of actions, using 2D CNNs [72, 73]. 3D CNNs are the

natural evolution of their 2D counterparts [23, 22, 57, 74]. Tran et al. [23] have proposed

3D CNNs (C3D) to capture spatio-temporal patterns from a sequence of 8 RGB frames.

In the same vein, I3D [22] inflates the kernels of ImageNet pre-trained 2D CNN to jump-

start the training of 3D CNNs. While these methods are effective for the recognition of

fine-grained and object-based actions with a short temporal extent, they are too rigid and

computationally expensive to handle minute-long videos [28, 75]. In order to effectively

learn temporal localization of actions in long videos, the existing action detection methods

process the videos on top of the aforementioned 2D or 3D CNNs. As Optical Flow and

Depth videos have the similar data structure as RGB (i.e., Height × Width × Time ×
Channel), these modalities follow an RGB-like fashion for visual encoding.

Recently, many transformer-based models [25, 24, 76] are proposed in video classi-

fication task that outperformed the state-of-the-art 3D CNNs performances. Those video
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Figure 2.1: A typical action detection framework. There are two types of predictions: (1)
event-level and (2) frame-level prediction.

transformers can model the spatio-temporal information from the video clips in an effec-

tive manner, and hence can be utilized as the visual encoder in future work.

2.1.2 Temporal Action Detection

The second step is to utilise the encoded visual features for temporally detecting the ac-

tions. As shown in Fig. 2.1, there are principally two types of prediction [77]: event-

level (i.e., instance-level) and frame-level predictions. The prediction head is relevant

to the prediction type. For video with sparse action regions [78, 11, 12], extracting the

foreground events from the background is straightforward. As a result, after the tempo-

ral modelling, a typical framework is composed of two main components as prediction

head: an event proposal generator to generate the potential event regions and a classifier

to recognize the action labels for the proposed event. Actionness [59, 79, 80] and an-

chor [81, 15, 82] based proposal generation are wildly used for generating the action pro-

posals. When processing densely labelled videos with fine-grained actions [83, 84, 2, 13],

the prediction head is formulated as learning a mapping function that maps a series of

temporal features to a series of predictions. For the feature at every time step (i.e., frame

or snippet), the prediction head predicts its action labels. In this dissertation, we focus on

the frame-level prediction in videos with dense action occurrences. Below, we present the

aforementioned techniques in detail.

2.1.2.1 Proposal-based Methods

Inspired by the proposal-based object detection [85], recent action detection methods with

sparse action occurrences are proposal-based methods which possess a proposal generator

in their framework. There are principally two types of proposal generators: actionness-

based and anchor-based generators.
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Actionness-based methods [59, 86, 87, 88] composed of two classifiers. In these meth-

ods, one binary classifier provides the actionness score (i.e. foreground action or back-

ground) for each frame to generate the action proposals, while another classifier predicts

the action class of these proposals. The actionness detection can also be decomposed

of the detection of the action-start and action-end [87] or the composition of action-start

and action end[89, 60, 90]. Actionness detection is similar to the object location heat-map

in anchor-free object detection methods [91]. However, different from the class-specific

heat-map in object detection, the actionness detector is class-agnostic. Therefore, an ad-

ditional classifier is required to classify the proposals. As the standard actionness-based

methods rely on the binary classifier to filter the foreground actions from the background,

this strategy can not handle the videos with dense foreground action regions.

Anchor-based architecture [81, 15, 82, 92, 21] is inspired by two-stage object detection

framework [85], which leverages a set of predefined anchors to generate action proposals

along with another classification stage. The proposals are the multi-sized windows centred

at the anchor. An NMS post-processing is normally used to filter the high overlapped

action proposals. However, anchor-based methods require a large number of anchors for

generating the proposals and the computation increases exponentially with the increase

of the number of anchors. Moreover, the anchor-based methods with NMS may fail on

detecting the co-occurring action pairs. Hence, anchor-based methods normally fail in

densely labelled datasets [81, 92].

Recently, with the advances of Transformer architectures, proposal-based methods

can handle more complex videos. RTD-Net [93] is built based on transformer decoder

DETR [94] for generating action proposals in videos. However, this network relies on

boundary attentive representations to detect the action boundaries. Similar to the pre-

vious mentioned actionness strategy, such module can not work on a densely annotated

dataset which does not have clear foreground and background boundaries. Similarly,

Nawhal et al. [77] propose an encoder-decoder transformer: Activity Graph Transformer.

This model also follows a structure similar to DETR. Activity Graph Transformer repre-

sents video in a graph structure and utilises graph attention to learn the video’s global

context. After that, with the learned global context, this model transforms a set of queries

into contextual embedding. These embeddings are then used to provide predictions of

action instances. However, limited by the fixed number of queries (i.e., proposals), the

model struggles in densely labelled videos where there is a large variation in the number

of action instances in the video.
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2.1.2.2 Sequence-to-Sequence Model

To handle the issues in anchor-based techniques for processing densely labelled videos,

some methods [5, 18, 95, 96, 19] borrow the Seq2Seq framework from Natural Language

Processing (NLP) [97] to apply it to frame-level action detection. This process is also

similar to image semantic segmentation as both aim to classify every single instance, i.e.,

frames in the temporal domain versus pixels in the spatial domain.

After the visual encoding, Seq2Seq methods feature an efficient temporal module to

model the temporal information and a classifier to perform the frame-level action detec-

tion. This framework "interprets" the image sequence into a sequence of prediction scores.

In other words, frame-level action detection can be seen as a class-specific actionness de-

tector. To compare with the proposal-based methods and evaluate with sparsely labelled

datasets, by referring to advances in "actionness" detection, the action proposals (i.e., dis-

crete detection instances) can be further generated from the frame-level detection results

via a post-processing manner [13, 18, 96]. Below, we briefly introduce some represen-

tative sequence-to-sequence models; a more detailed representation is provided in the

related work of chapter 4.

Recurrent Neural Networks (RNNs) [13, 98, 99, 96] have been popularly used to model

the temporal relations between frames. In this network, connections between nodes form

a directed or undirected graph along a temporal sequence. This allows it to exhibit tem-

poral dynamic behaviour. However, RNNs only implicitly capture relationships between

certain actions with high motion. Furthermore, due to the vanishing gradient problem,

RNN-based models can only capture a limited amount of temporal information and short-

term dependencies.

Temporal Convolutional Networks (TCNs) [5, 100, 101, 19, 102] are another group of

temporal processing methods, which is a one dimensional convolutional network [103].

Contrary to RNN-based methods, TCNs can process long videos thanks to the fact that

kernels share weights for all the time steps. However, the translation invariance and

Pooling layers may lead the convolution network to ignore the relationship between the

part and the whole [104]. Moreover, the shared kernel allocates the same weights to

each local feature in the kernel. This property prevents TCN from extracting the key

information efficiently from videos. As a result, current methods can only process datasets

with videos characterized by simple temporal relations [84, 83].

Transformers: inspired by the advanced methods in the NLP domain, some re-

searchers [7, 71, 105, 106] leverage the Transformer architecture and the self-attention

mechanism [107] for temporal modelling in action detection. Transformer architectures

feature general modelling capability, which can model all token-to-token relationships

in sequence-to-sequence tasks. Besides, unlike the aforementioned local operations, the
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transformer can model the temporal dependencies by attending to the entire sequence

information, which is a global operation. Moreover, this architecture is scalable to large

models and large data. For the above reason, Transformers are getting more and more

popular in the computer vision domain and become dominant in many sequence-to-

sequence tasks.

2.2 Loss Function

In this thesis, we focus on fully supervised frame-level action detection. Full supervision is

a process to train a network (i.e., algorithm) to map the input data into prediction labels,

where each training data has its corresponding ground truth label. In the task of temporal

action detection, full supervision employs the labels of the training set that contains the

action category labels and the corresponding temporal annotation information, i.e., action

occurrences for each category at each time step.

Videos with dense action occurrence contain co-occurring actions, i.e., multiple in-

stances occurring at the same time. Since the video has been embedded into a sequence

of frame-level or snippet-level features by the visual encoder, detecting actions from such

temporal features can be seen as multi-label classification task on top of these features.

Hence, sequence-to-sequence action detection frameworks utilize the binary cross entropy

loss (LBCE) [108]:

LBCE = − 1

T

T∑
t=1

C∑
c=1

ytclog(Ptc) (2.1)

Where T is the number of the frames or snippets, C is the number of action classes and

P is the predicted score. In other words, after temporal modelling, we perform a binary

classification for each frame or snippet feature and for every action class. This loss term is

the main loss for frame-level action detection in this thesis.

2.3 Evaluation Metrics

In this section, we revise the common action detection evaluation metrics. We first revise

the basic concepts for the evaluation of the detection task, and then we revisit the main

evaluation metrics in the event-level and frame-level action detection.

2.3.1 Basic Concepts

For each class c ∈ 1, 2, ..., C in the dataset, we denote TP c, FP c, TN c and FN c the num-

ber of True-Positive, False-Positive, True-Negative and False-Negative frames, respectively.
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Figure 2.2: Confusion matrix. "P" indicates the Positive (i.e., with action) and "N" indicates
the Negative (i.e., without action).

These four parameters are used to calculate many kinds of performance evaluation met-

rics. The logical details of these four parameters are shown in Fig. 2.2. By utilizing these

parameters we can compute the following two measures:

(1) Precision (P c) is the percentage of the predicted real positive samples in predicted

results. The formula is as follows:

P c =
TP c

TP c + FP c
(2.2)

(2) Recall (Rc) is the coverage of predicting correctly. Specifically, recall corresponds

to how many real positive samples in the testing set were identified. The formula is as

follows:

Rc =
TP c

TP c + FN c
(2.3)

(3) Intersection over Union (t − IoU) can be understood as the overlap between the

predicted instance by the model and the ground truth instance for the action detection in

an untrimmed video. The calculation formula is the intersection of Detection Result and

Ground Truth compared to their union. IoU is used to check whether the IoU between the

predicted results and the ground truth is greater than a predicted threshold.

2.3.2 Event-level Evaluation

The datasets that contain videos with sparse action occurrences leverage the event-level

(i.e., instance-level) evaluation. There are two main evaluation metrics: (1) Average Re-

call (AR) summarises the distribution of recall across a range of overlap thresholds, which

is the principle evaluation metric for temporal action proposals generation. Because pro-

posal generation is irrelevant to category classification, i.e., it only focuses on finding the

action instance boundaries. AR are often used to measure the completeness of generated

temporal proposals, which is critical for proposal generation models. Normally, AR is de-

fined as the mean of all recall values using tIoU thresholds between 0.5 and 0.95 with a
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step size of 0.05. (2) Mean Average Precision (mAP ) [109] is the evaluation metrics

which is the most commonly used in the community. This metrics is similar with metrics

used in object localization task. The general definition for the Average Precision (AP ) is

finding the area under the precision-recall curve. mAP is the average of AP over all action

class categories.

2.3.3 Standard Frame-level Evaluation

In order to evaluate videos with dense action occurrences, previous methods chose frame-

wise metrics [110, 13, 83, 2]. One of the common metrics is the Frame-wise Accuracy

(FA1), which represents the ratio of correctly classified frames to all frames in the dataset.

Frame-wise accuracy is defined as:

FA1 =

∑
c TP

c∑
cNc

(2.4)

where Nc is the number of the frames in the dataset for class c. Note that this metrics is

sensitive to the class distribution but provides an intuitive measure of the algorithm ability

to recognize actions. A second metrics is the F-Score, which combines precision (P c) and

recall (Rc) for each class c and is defined as the harmonic mean of these two values:

F − Score =
2

|C|
∑
c

P c ×Rc

P c +Rc
(2.5)

where P c and Rc are precision and recall metrics of class c respectively. As the focus of our

work is to evaluate the model performance with real-world dense labeling videos, we eval-

uate our models using Average Precision (AP ) measured on our frame-level labels [13].

For every action class c, we compute its own average precision AP c. Frame-level mean

average precision (F −mAP ) is the mean value of AP c for all the classes (C).

F −mAP =
1

C

∑
cεC

AP c (2.6)

This metric can handle the case where one frame contains multiple labels.

2.3.4 Action Dependency Metrics

As mentioned earlier, the problem of temporal action detection consists in predicting the

action, or actions, occurring at each time-step of a video. The standard metrics for evalu-

ating temporal action detection performances, such as F −mAP , treats each time-step as

an individual sample. More specifically, F −mAP measures the performance of each class

independently, and averages their scores, but it overlooks the measure if models learn
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the relationships between these classes. This issue is not unique to F −mAP . Other per-

frame action detection metrics or multi-label classification metrics [111, 112, 113] also do

not consider the relationships between different action classes or time-steps, which makes

them unsuitable to evaluate how well action dependencies are modeled. Such property is

important to evaluate if the model can handle the complex temporal relation among dif-

ferent action instances in a video. To this end, Tirupattur et al. [7] propose a set of action

detection metrics which measure the ability to model both co-occurrence dependencies

and temporal dependencies of the proposed method.

We first introduce the Action Conditional Precision and Recall. As presented in the

basic concepts, the standard precision and recall measure a model performance in indi-

vidual classes. However, they do not take into account the relationships and dependencies

between these classes. Action-conditional precision and recall can solve this issue. For an

action class ci, we measure its action conditional precision and recall when another action

(cj) is present within a temporal window τ [7] following:

PAC(ci|cj , τ) =
Ncorrect(ci|cj)
Npredict(ci|cj)

(2.7)

RAC(ci|cj , τ) =
Ncorrect(ci|cj)
Ngt(ci|cj)

(2.8)

These metrics measure the precision and recall of an action ci, given that action cj was

present within the last τ time-steps. We also want cj not to be present within the current

time-step as this condition ensures that it measures only temporal dependencies and not

co-occurrence dependencies. For a given video k and at time-step t, we formulate such

condition as:

y
(k)
t,cj

= 0
⋂
∃y(k)t∗,cj

= 1, t∗ ∈ [t− τ, t) (2.9)

Therefore, the action-conditional precision (PAC) and recall (RAC) can be computed with

the following equations:

Ncorrect(ci|cj , τ) =
∑
k,t

1[y
(k)
t,ci

= ỹ
(k)
t,ci

= 1]1[X ] (2.10)

Npredict(ci|cj , τ) =
∑
k,t

1[ỹ
(k)
t,ci

= 1]1[X ] (2.11)

Ngt(ci|cj , τ) =
∑
k,t

1[y
(k)
t,ci

= 1]1[X ] (2.12)

Here, X is the condition in equation 2.9. PAC and RAC can measure the precision and

recall of an action class ci when cj is present within the given time-step and these metrics
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are not symmetric.

For measuring the capacity for handling the co-occurrence relationship, we compute

the formulation with τ = 0. In practice, when τ = 0, we replace the 1[X ] with 1[ỹ
(k)
t,cj

= 1]

in Eq. 2.10, Eq. 2.11 and Eq. 2.12. After that we can measure the capacity of the proposed

model for detecting two actions occur within the same time-step.

Since some actions never co-occur or follow each other, the overall metrics is computed

by averaging all action pairs (ci, cj), i ̸= j, such that Ngt(ci|cj , τ) > 0. More complex per-

formance metrics like F1-score and mAP can also be computed using the action-conditional

precision and recall metrics.

2.3.5 Conclusion

Frame-level metrics are robust to annotation ambiguity [13, 2]. However, event-level

evaluation metrics enable us to get a better insight into action detection as this metric

is not biased by action duration. Moreover, event-level evaluation measures the con-

tinuity and completeness of the action prediction, which are overlooked in frame-level

metrics. For this reason, although most action detection methods on densely annotated

datasets [13, 2, 83] still rely on frame-level metrics [16, 17, 18, 7, 19], we believe that

future action detection algorithms should focus more on event-level evaluation.

2.4 Datasets

In this section, we describe the datasets that are used to evaluate our method in this

dissertation. More discussion about action detection datasets in the community is provided

in chapter 3.

2.4.1 Untrimmed datasets

Depending on the density of annotations, there are two kinds of datasets for action de-

tection: (1) Sparsely labelled [11, 78, 64, 12] and (2) Densely labelled [13, 2, 83, 84]

datasets. Densely labelled datasets contain more foreground action instances and may

include fine-grained actions occurring concurrently. As they are more challenging and

closer to real-world scenarios [13], more and more attention is given to densely labelled

datasets. In this thesis, we focus on the densely annotated datasets.

Charades [114] was recorded by hundreds of people in their private homes. This dataset

consists of 9848 videos across 157 actions. The actions are mainly object-based daily

living actions performed at home. Each video is about 30 seconds containing complex co-

occurring actions. In our experiments, we follow the original Charades settings for action
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detection [114] (i.e. Charades v1 localize evaluation). The performances are measured in

terms of mAP by evaluating per-frame prediction.

DAHLIA [110] is a large ADL dataset for detection. Contrary to some widely used datasets,

in which labelled actions are very short and with low-semantic level, DAHLIA focuses on

high-semantic level longer actions. It contains 8 ADL action classes performed by 51

subjects on 3 camera views. The duration of videos ranges from 24 mins to 64 mins. In

each video, an average of 6.7 actions are performed. The mean duration of actions is 6

mins. By default, we performed experiments using the cross-subject protocol. The final

result is obtained as the average of the results on the 3 camera views.

Breakfast [83] features over 1.7k video sequences of cooking in a kitchen environment.

The overall duration is 66.7h. The dataset contains 48 action classes. In each video, an

average of 4.9 actions are performed. The mean duration of actions is about 30s. Actions

are thus shorter than those in DAHLIA, but they are more diverse. We performed our

experiments using the protocol described in [100].

PKU-MMD [64] covers a wide range of complex human actions with well annotated in-

formation. This dataset contains 1076 long video sequences in 51 action categories, per-

formed by 66 subjects. PKU-MMD provides multi-modality data sources, including RGB,

depth, Infrared Radiation, and Skeleton. Following the original paper of PKU-MMD, the

performances are evaluated in terms of event-based mAP in Cross-Subject protocol (CS).

THUMOS14 [11] and MultiTHUMOS [13]: Different from the aforementioned daily liv-

ing action datasets, THUMOS datasets contain sport videos form YOUTUBE. There are

two version of THUMOS datasets in the community (see Fig. 2.3), we choose MultiTHU-

MOS as the main dataset in this thesis, which is an enhanced version of the THUMOS14

dataset with dense annotations. This dataset consists of 65 action classes, compared to 20

in THUMOS14, and contains on average 10.5 action classes per video and 1.5 labels per

frame and up to 25 different action labels in each video. THUMOS14 and MultiTHUMOS

consists of YouTube videos of various sport actions like baseball games or cliff diving.

2.4.2 Trimmed datasets

In this thesis, it involves several datasets for action recognition tasks. Note that, there are

multiple tasks for EPIC-Kitchen [1] and EGTEA Gaze+ [115] datasets. In this work, we

utilizes only the trimmed version of these datasets for action recognition task.

NTU RGB+D [62] is acquired with a Kinect V2 camera and consists of 56880 video sam-

ples with 60 action classes. The actions were performed by 40 subjects and recorded from

80 viewpoints. For each frame, the dataset provides RGB, depth, and a 25-joint skeleton
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Figure 2.3: THUMOS dataset. (1) THUMOS14: the sparsely annotated version and (2)
MultiTHUMOS: the densely annotated version.

of each subject in the frame.

EPIC-KITCHENS 55[1] is an egocentric dataset which contains 55 hours of recording of

32 different kitchens in 4 cities. This dataset focuses on fine-grained cooking actions with

a total of 125 verbs and 352 nouns.

EGTEA Gaze+ [115] is an egocentric dataset which contains 28 hours of cooking actions

from 86 unique sessions of 32 subjects, with over 10k video clips of 106 fine-grained

egocentric actions.

2.5 Conclusion

In our literature survey we have observed that current action detection methods rely on an

effective visual backbone to extract the spatio-temporal features and on a temporal mod-

ule to model the temporal dependencies among different temporal features. The main

focus for current action detection methods lies in the second step, i.e., how to effectively

model the temporal relations in the long-term video. Recently, 1D temporal convolutional

networks have become an obvious choice for temporal modelling in videos but with ad-

ditional functionalities to address the complex temporal relations in densely annotated

videos. However, limited by the local operation of convolution, how to model the com-

plex temporal relations and how to model both local and global dependencies remain

challenging for temporal convolutional networks. To tackle this issue, we study different

directions to enhance the vanilla temporal convolutional network in the following chap-

ters by: (1) self-attention mechanism in chapter 4, (2) semantic reasoning in chapter 5,
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and (3) additional modalities in chapter 6.

In the next chapter, we propose a novel dataset Toyota Smarthome Untrimmed to

include the challenges in real-world indoor action detection. We further compare this new

dataset with current benchmarks in the next chapter.





Chapter 3

Toyota Smarthome Untrimmed:
Real-World Untrimmed Videos

In this chapter, we introduce a challenging indoor dataset: Toyota Smarthome Untrimmed

(TSU) that features many real-world challenges for action (i.e., activity) detection. Con-

structing this dataset is part of a Toyota project that aims at developing a "Smarthome"

indoor video understanding system for the elderly living alone at home. This system is

intended to work with a partner robot - Toyota HSR. The real-time information will be

sent to the robot to better interact with the older adult and to facilitate their life. With

TSU, researchers can develop novel approaches to promote Smarthome activity detection

systems in the wild. This work has been accepted by IEEE Transactions on Pattern Analysis

and Machine Intelligence (T-PAMI) [43].

3.1 Introduction

According to a recent report of the United Nations [116], the global population aged 60+

is projected to grow from 0.9 billion in 2015 to 1.4 billion in 2030. This demographic

trend results in a dramatic need for an increase of the workforce in healthcare. A great

support to the healthcare workforce could come from activity detection systems, which

help monitor the health state of older patients and could early detect potential physical or

mental disorders. For instance, monitoring patients’ eating habits allows doctors to track

the state of a patient and to react before serious health conditions arise. Thanks to such

systems, seniors could stay longer at home without the need of being hospitalized, which

would greatly improve their comfort and quality of life. Building such activity detection

systems requires fine-grained understanding of long untrimmed videos.

In recent years, numerous datasets for activity classification in trimmed videos have

been proposed [62, 63, 41], whereas very little has been done for activity detection in



32 Chapter 3. Toyota Smarthome Untrimmed: Real-World Untrimmed Videos

untrimmed videos. By activity detection, we mean predicting the activity labels as well

as their temporal boundaries within an input video. This detection task has to cope with

important open challenges: i) handling the combinatorial explosion of activity propos-

als while detecting accurate temporal boundaries in long video sequences, ii) managing

concurrent activities, and iii) distinguishing between background and foreground activ-

ities (e.g. standing still/using telephone). In this work, we focus on untrimmed videos

of Activities of Daily Living (ADLs). These videos contain activities that usually occur

in the daily lives of older people. Typically ADLs feature activities with similar motion

(e.g. eating/drinking), activities with high temporal variance (e.g. putting on glasses in 5

sec./ reading for 10 min.), or subtle motions (e.g. stirring the coffee).

Most of the untrimmed video datasets that are widely adopted in the literature do

not focus on ADLs. These datasets are often collections of videos from the web [78, 11,

117, 118, 13, 12]. For instance, ActivityNet [78] and MultiTHUMOS [13] are collections

of a large number of videos encompassing sports and outdoor activities. These activities

are often characterized by high inter-class variation due to large and distinctive motions.

Other datasets contain movie excerpts or instructional videos [119, 120]. The videos

in these datasets retain only the key part of the activity and are mostly recorded by a

cameraman from a frontal viewpoint, with nearly no occlusions.

Some ADL datasets have been proposed in the past few years [2, 64, 110]. These

datasets share common characteristics: i) Subjects usually follow a rigid script, which

results into unnatural movements; ii) Videos and thus activities are usually short; iii) Sub-

jects are usually centered in the middle of the frame and perform activities facing the

camera (i.e. high camera framing). These characteristics do not reflect the spontaneity of

human activities in real-world scenarios.

Motivated by the shortcomings of current datasets, we introduce Toyota Smarthome

Untrimmed (TSU). TSU provides realistic untrimmed videos with diverse spontaneous hu-

man activities and real-world settings. We invited 18 volunteers to a recording session

in a smart home. The volunteers are senior people in the age range of 60 to 80 years.

Their daily lives were recorded by multiple cameras in the apartment. The resulting data

consists of 536 long RGB+D videos with 51 annotated activity classes. This dataset is an

extension of our previously published dataset [50], which was designed for the classifi-

cation task of clipped videos. Unlike most previous datasets in the community, the TSU

videos are unscripted. Activities are annotated with both coarse and fine-grained labels.

This dataset poses several challenges: high intra-class temporal variance, high class im-

balance, composite and elementary activities, and activities with similar motion. In our

data acquisition process, each participant was recorded continuously for 8 hours. We be-

lieve that this setup reduced camera awareness in the participants, leading to increased

spontaneity. Consequently, in TSU, the participants may commit errors, search for items,
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Figure 3.1: Overview of the challenges in TSU.

and repeat several times the same activity before succeeding. The fact that activities are

performed in a spontaneous manner also amplifies other challenges such as low camera

framing and high temporal variance.

Some of the challenges in TSU dataset are illustrated in Fig. 3.1. In this figure, on

the left part, we present challenges related to spontaneous behaviours: For the first

two examples, we present the activity following a strict script on the left, and the same

activity performed spontaneously in TSU on the right: i) In Charades [2], using drawer
is performed quickly once per video, in TSU, using drawer may be repeated several times

in a video, and the subject may keep several drawers open at the same time to facilitate

finding things. ii) In PKUMMD [64], the subject shortly uses the telephone while looking

at the camera. In contrast in TSU, the subject is deeply involved with his telephone and

the activity may last several minutes instead of few seconds. iii) In TSU, subject may stay

seated or stand up to cut the bread in an easier manner.

Besides the spontaneous behaviours, we also illustrate on the right part the follow-

ing real-world challenges: 1) Camera framing: subject is not in the middle of the image

and can be even outside the field of view. 2) Object-based activities: similar activities

can be performed while interacting with different objects. 3) Multi-views: activities look

differently from different view points. 4) Composite activity: composite activities can be

split into several elementary activities (e.g. instead of having breakfast, we may cut bread,

spread butter and eat at the table). Moreover, these complex composite activities can last

a long period of time. Large variations of appearance make the recognition challeng-

ing, requiring to understand the composition of elementary activities to better recognize

the composite activities. 5) Concurrent activities: activities can be performed concur-
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rently (e.g. take note while having a phone call). 6) High temporal variation: in the same

untrimmed video, we may have short activities (e.g. taking on glasses) and long ones (e.g.

playing tablet). Different instances of the same activity class can also be short or long (e.g.

writing) corresponding to high intra-class temporal variance. In section 3.3, we analyse in

detail the characteristics and novelty of the proposed dataset.

Experimentally, we find out that state-of-the-art activity detection methods fail to ad-

dress the aforementioned real-world challenges offered by TSU. We also find that the

model trained on the untrimmed TSU outperforms the same model trained on the trimmed

version [50], reflecting the difficulty of handling background actions.

In general, the low performance achieved by activity detection methods on TSU high-

lights the many challenges that are yet to be addressed. To promote the development of

novel activity-detection methods that can better address such challenges, we have released

TSU to the research community.

3.2 Related Work

In this section, we give an overview of publicly available untrimmed activity detection

datasets.

Dataset Spontaneous Camera Object-based Multi- Composite Concurrent Var. activity Temporal View Video
behaviour framing activities view activities activities duration annotation type type

MEVA[121] High Low Yes No No No Low Precise Monitoring Surveillance
ACTEV/VIRAT[122] High Low Yes No No No Low Precise Monitoring Surveillance

DALY[118] Medium High No No No Yes Low Precise Shooting Web
HACS[12] Medium High Yes No No No Medium Precise Shooting Web

YouTube’8M-Segments[117] Medium High No No No No Low Noisy Shooting Web
ActivityNet-200[78] Medium High Yes No No Few Medium Precise Shooting Web

THUMOS14[11] Medium High No No No No Low Precise Shooting Web
MultiTHUMOS[13] Medium High No No No Yes Medium Precise Shooting Web

AVA[119] Medium High No No No Yes Low Precise Shooting Movie
How2[123] Low High Yes* No - - - Noisy Shooting Instructional

HowTo100M[120] Low High Yes* No - - - Noisy Shooting Instructional
Coin[124] Low High Yes No No No Medium Noisy Shooting Instructional
ADL[125] High High Yes No No No Low Precise Egocentric ADL

Charades-ego[126] Medium High Yes No No No Low Precise Egocentric ADL
50 Salades[84] Medium High Yes No No No Low Precise Top-view Cooking

EGTEA Gaze+[127] Medium High Yes No No No Low Precise Egocentric Cooking
EPIC-KITCHENS[1, 128] High High Yes No Few Yes High Precise Egocentric Cooking

MPII Cooking 2[129] Low High Yes No woT No Medium Precise Shooting Cooking
Breakfast[83] Medium Medium Yes Yes woT No Medium Precise Shooting Cooking
CAD-120[130] Low High Yes No Yes No Low Precise Shooting ADL
DAHLIA[110] High Low No Yes No No High Precise Monitoring ADL
PKU-MMD[64] Low High No Yes No No Low Precise Shooting ADL
Charades[2] Low High Yes No No Yes Low Precise Shooting ADL

Toyota Smarthome Untrimmed High Low Yes Yes Yes Yes High Precise Monitoring ADL

Table 3.1: Untrimmed dataset comparison along the seven real-world challenges. *Indicates that
the activity labels are provided in terms of caption. With ’woT’ we indicate that the composite
labels are provided without the corresponding temporal boundaries. Although MPII Cooking 2
was recorded in multi-camera scenario, the authors have released only a single view version.

The availability of videos replicating real-world challenges is crucial to design robust

activity detection algorithms. Among existing datasets, only few of these challenges are

properly addressed. To understand the limitations of currently available datasets, we in-

troduce the following 7 real-world challenges.
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Spontaneous behaviour: activities in the real-world are performed naturally. However,

most existing datasets are acquired by providing the subjects with a strict script. Besides,

as the subjects are aware that their activities are being recorded, they often overact. To

quantify spontaneous behaviour, we define a heuristic that considers three aspects: (i)

Scripted or unscripted: The datasets following a strict script always have lower spon-

taneity. We assign the datasets that follow strict script 1 point; the datasets following

a coarse script (e.g. cooking a specific meal in a video) 0.5 point; unscripted 0 point.

(ii) Camera Awareness: Camera awareness also affects spontaneity. We assign 1 point to

the datasets recorded by the cameraman/self-recorded/wearable sensor. We assign 0.5

point to datasets with continuous videos that were recorded for a long duration (at least

30 minutes). For monitoring datasets recorded for a long duration, we assign 0 point.

(iii) Environment: it is also an important factor for spontaneity. Activities are often more

spontaneous when performed in a familiar environment. Here, we assign a dataset that

is recorded in an unfamiliar location 1 point, in a familiar location (e.g. home) 0 point.

Datasets with continuous videos that were recorded for a long duration in the same envi-

ronment are given 0.5 point, as people get accustomed to the location. Following these

criteria, we re-evaluate all datasets. The datasets with less than 1 point are considered as

featuring high spontaneity, more than 2 points obtained low spontaneity, the others are

rated with medium spontaneity.

Camera framing: when videos are recorded by a cameraman, subjects mostly appear in

the middle of the image and facing the camera (high camera framing). On the other hand,

when videos are recorded automatically by a monitoring system using fixed cameras, sub-

jects can often be offset from the center, occluded or partially outside the field of view

(low camera framing).

Object-based activities: similar activities that can be performed while interacting with

different objects (e.g. drinking from cup or from bottle) are more challenging to classify.

In Table 3.1, object-based activities indicates the availability of object level fine-grained

annotation for these activities.

Multi-views: activity detection methods need to be robust against view-point variations.

Therefore, benchmark datasets should provide samples of the same activities recorded

from different views.

Composite activities: Some complex ADLs can be decomposed into several elementary

activities. For example, having breakfast may contain elementary activities like cutting
bread, spreading butter and eating at table. In Table 3.1, the composite activities column

indicates whether the dataset provides annotation for both composite activities and their

respective elementary activities.

Concurrent activities: activities, such as making a phone call and taking notes may be

performed simultaneously. The appearance of activities can drastically change when mul-
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tiple activities are performed at the same time. In Table 3.1, concurrent activities indicates

whether the dataset provides samples and annotations in which activities are performed

simultaneously.

Variation of activity duration: this property indicates the level of variation in the length

of activities in the dataset. In this table, the high variation indicates that the average

duration of an activity class is more than 80 times larger than the one of the lowest activity

class. The low variation indicates that the highest average duration of an activity class is

less than 30 times than the one of the lowest activity class.

To be noted that, activity detection methods need precise temporal annotation (i.e.

start time and end time) for each activity. We consider that a dataset features Noisy anno-

tation when: (i) the dataset provides temporal annotation only for part of the activities in

the video [117], or (ii) the dataset only provides caption of the video [120, 123].

Table 3.1 summarizes the comparison of most used public untrimmed video datasets

based on the above challenges. Below, we detail how these untrimmed datasets differ

from our proposed TSU.

3.2.1 Surveillance Datasets

Surveillance datasets, such as VIRAT and MEVA [122, 121], have fixed camera views and

are designed to monitor human activities in the wild. These datasets are collected in

natural scenes showing people performing normal activities in standard contexts, most

of the time outdoors. Besides, activities look natural as they are performed by actors

following a light script. For these datasets, only few simple human activities are annotated

(i.e. crouching, standing...) along with the object information (i.e. carrying a box). These

datasets thus differ from TSU as the complexity of surveillance activities is significantly

lower than the one from daily-living activities, for example, no concurrent & composite

activities.

3.2.2 Web & Youtube & Movie Datasets

A large number of datasets are collected from YouTube or movies [118, 117, 12, 78, 11,

13, 119]. Most of these videos are self-recorded or recorded by a cameraman from a single

view, which causes the subject to be centered within the image frame (i.e. high camera

framing), facing the camera and with limited occlusions. These videos are carefully se-

lected and only the key parts of the activities are retained, in which the subjects always

perform the activities smoothly without hesitation in front of the camera (i.e. reduced

spontaneity). Thus, these videos are less representative of real-world scenarios compared

to TSU videos.
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3.2.3 Instructional Videos

Similar to the above category of datasets, instructional videos [123, 120, 124] are col-

lected from internet sources. These videos provide intuitive visual examples for learners

to acquire knowledge to accomplish different tasks. In contrast to TSU, these instructional

videos have noisy annotations which are often text descriptions [123, 120] and follow

strict temporal ordering of the activities [124]. Similar to web videos, the subjects al-

ways perform the activities smoothly without hesitation in front of the camera [124, 120].

These characterizations of the instructional videos are not adequate for real-world activity

detection task.

3.2.4 Activities of Daily Living (ADL)

Activities of daily living are performed in indoor environments such as homes or labs.

These activities are usually characterized by low inter-class variation and subtle motion.

Below, we discuss the ADL datasets categorized by their camera viewing angle.

Egocentric view datasets: In Egocentric datasets [1, 128, 126, 127, 125], the videos are

recorded with a wearable camera (i.e. reduced spontaneity) or from a top view [84] that

captures the scene directly in front of the user at all times, in which only hands are vis-

ible in the center of the camera view (i.e. high camera framing). Egocentric videos are

designed to study the activities, where the user’s hands are manipulating various objects.

However, the egocentric paradigm can only collect the activity information from a very

restricted viewpoint. This restricted viewpoint makes the appearance of egocentric activ-

ities very different from third person view datasets like TSU (e.g. poses are unavailable)

and prevent the recording of those activities that cannot be observed from this viewpoint

(e.g. making a phone call). Due to these characteristics, our comparison mainly focuses

on third-view datasets.

Third person view datasets: Many of the ADL datasets [83, 129, 131] are limited to

kitchen activities. MPII Cooking 2 [129] and Breakfast [83] contain only cooking ac-

tivities (like preparing recipes or making breakfast). The subject is asked to cook a single

dish (i.e. composite activities) in each video in these datasets. However, there are no

temporal boundaries (i.e. no ground truth timestamps) for the composite activities as

they correspond to a whole video. Besides, some of the composite activities occur only

once in the dataset. In these datasets, subjects are asked to prepare a specific recipe in

a video clip, therefore the activities are performed in rapid succession without hesitation

or mistake (reduced spontaneity). Moreover, the dataset lacks the presence of secondary

activities irrelevant to cooking (e.g. drinking water) but often occurs in real-life. In MPII

Cooking 2, the subjects follow strict scripts (i.e. low spontaneity) and are always in the

center of the frame (i.e. high camera framing). Although the videos are recorded from 8
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camera views, only a single view is released for this dataset. In Breakfast, the hands of the

subjects and the objects used are always at the center of the frame without much occlu-

sion (i.e. medium camera framing). Moreover, the number of views are not fixed, even in

the same kitchen (from 2 to 5). As mentioned, the subjects in these two datasets perform

the activities quickly without much hesitation, which means the datasets are character-

ized by medium temporal variation and no concurrent activities. So, in the following, we

present the datasets that encompass a larger variety of ADLs which are not only restricted

to kitchen activities and where not only the top body part can be observed.

CAD-120 [130] is a small dataset (about 60 K frames in total). This dataset comprises

of 20 different activities (including composite and object-based activities) performed by

four people in different rooms. The subjects are always in the center of the scene perform-

ing short sub-activities following a script (i.e. high camera framing & no spontaneity).

Because of the simplicity of activities, current state-of-the-art methods [132, 133] can

already achieve excellent results on this dataset. DAHLIA [110] is recorded in a single

room in a lab with 44 subjects. Each subject has about 40 min recording from 3 fixed

camera views (i.e. high spontaneity, low camera framing). The dataset contains only 8

coarse activity classes, thus it does not have the challenges of concurrent, composite and

object-based activities. In PKU-MMD [64], the videos are recorded from 3 camera views.

The activities are performed in the center of the scene by the subjects following a strict

script. Besides, there are pauses in between the activities which makes the problem of

distinguishing between an activity and background easier compared to real-world scenar-

ios. Thus, this dataset lacks spontaneity & concurrent activities in addition to high camera

framing. Charades [2] explores object-based activities and concurrent activities. The

videos are recorded by hundreds of people in their private homes following strict scripts.

Although Charades depicts large numbers of environment diversity, these self-recorded

activities are very short (30 sec./video, 10 sec./activity) with low variation of activity du-

ration and in general performed in unnatural manner (overacted), in the center of the

camera view (high camera framing). All in all, current ADL datasets address only partially

the 7 aforementioned challenges of real-world scenarios. This motivates us to propose

TSU.

3.3 Toyota Smarthome dataset

In this section we describe the main features of Toyota Smarthome Untrimmed dataset.

Our goal is to create a large scale dataset with daily-living activities performed in sponta-

neous manner.
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3.3.1 Data Collection

3.3.1.1 Collection Setup

We use 7 Microsoft Kinect sensors in the recording phase. The apartment plan and camera

locations are shown in Fig. 3.5. Cameras 1 and 2 cover the dinning room area, 4 and 5 the

living room, 3, 6 and 7 the kitchen. Thus, we have a coverage over the entire apartment

from at least 2 distinct viewing angles. The videos are recorded at 20 frames per second,

the size of RGB is VGA (640×480), the standard resolution in most real-world scenarios.

The dataset offers 3 modalities: RGB, depth and 3D skeleton (i.e. pose) (see fig. 3.2).

For the skeleton modality, we fine-tune LCR-Net++ [134] on TSU and then extract

the 2D skeletons. As the video recording is unconstrained, the subject may be partially

occluded by the objects or equipment in the scenarios. For this reason, we utilise our

SSTA-PRS [52] to refine the prediction of 2D skeletons. Finally these 2D skeletons are

processed through VideoPose3D [135] to extract the 3D skeletons. We observe that this

mechanism extracts 3D poses of better quality compared to those obtained using depth or

LCRNet++ [52].

3.3.1.2 Data Collection Protocol

One of the key applications of daily-living activity detection is older patient monitoring.

Thus, in our dataset, we invited 18 volunteers to our dataset recording sessions. The age

of the volunteers ranges between 60 and 80 years old. Each volunteer was recorded for

8 hours in one day starting from morning at 9 a.m. until afternoon at 5 p.m.. On the

day of recording, the volunteer arrived in the apartment at 8 a.m. and had a visit to

get acquainted with the place and to learn how to use the household equipment such as

coffee machine, television, remote control, etc.. The volunteers also received an informal

description of what it was expected with reference to having meals and interacting with

anything in the apartment as it was a normal day at home. No further guidance was

provided about how the activities should be performed.

In total, we recorded hundreds of hours of video data. Based on these data we pre-

pared two datasets: Toyota Smarthome dataset [50], previously published, and Toyota

(1) RGB (3) Depth (2) 3D Skeleton

Figure 3.2: Available modalities in Toyota Smarthome Untrimmed. Note: in the sub-figure
of RGB modality, we also mark the 2D skeleton joints.
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Figure 3.3: An example of annotation on TSU dataset. ’←’ and ’→’ indicate respectively
the start and end of an activity.

Smarthome Untrimmed dataset that is introduced in this paper.

3.3.2 Toyota Smarthome Trimmed dataset

Toyota Smarthome Trimmed [50] has been designed for the activity classification task.

It consists of 16K short RGB+D clips of 31 activity classes. Each clip is about 12.5 sec.

long and contains only one activity. Unlike previous datasets [62, 63], activities were

performed in a natural manner. As a result, the dataset poses a unique combination of

challenges: high intra-class variation, high class imbalance, and activities with similar

motion and high duration variance. Activities were annotated with both coarse and fine-

grained labels. These characteristics differentiate Toyota Smarthome Trimmed from other

datasets for activity classification.

3.3.3 Toyota Smarthome Untrimmed dataset

Toyota Smarthome Untrimmed and Toyota Smarthome Trimmed are obtained from the

same recording footage. Different from the Toyota Smarthome Trimmed, TSU is targeting

the activity detection task in long untrimmed videos. Therefore, in TSU, we kept the entire

recording when the person is visible. The dataset contains 536 videos with an average du-

ration of 21 mins. Since this dataset is based on the same recording as Toyota Smarthome

Trimmed version, it features the same challenges and introduces additional ones. In sec-

tion 3.3.3.1, we describe the annotation protocol. Then, we present the properties of the

TSU dataset in section 3.3.3.2, we present its challenges in section 3.3.3.3, and finally

we compare this untrimmed version of the dataset (i.e. TSU) with its trimmed version in

section 3.3.3.4.
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3.3.3.1 Annotation Protocol

TSU is designed particularly for the activity detection task. With the support of a medical

staff, we have identified 51 activities of interest to annotate. A team of annotators man-

ually annotated the videos using the open-source toolkit ELAN [136]. The videos were

annotated individually without relying on the fact that some camera views overlap. The

annotation process took more than 6 months, including verification and quality checks.

We performed the quality check with the help of 5 annotators. We estimated the precision

of the annotation by considering the same 50 long videos annotated by different annota-

tors. These 50 videos are randomly chosen and cover all the subjects and camera views.

The precision of annotation of those 50 videos is 96.8%. Additionally, we reviewed, nor-

malized and corrected the 25 hours of annotation by checking again the videos where the

methods were achieving low activity detection performance. Fig. 3.3 shows an example of

the annotation. This example corresponds to composite activity cooking. While cooking,

the subject abruptly stops cutting vegetables and starts heating water in a pot so that she

can have boiled water after cutting the vegetables. After setting up the stove, she resumes

cutting the vegetables. This process does not follow a strict temporal order and reflects

the spontaneous behaviour of the participant.

3.3.3.2 Dataset Properties

The result of the extensive annotation process is a rich corpus of activities. Fig. 3.4

presents the diversity of activities in this dataset. The activities are categorized into com-

posite and elementary activities. Composite activities are the complex activities that are

composed of several elementary activities that may or may not follow a temporal order-

ing. TSU contains 5 composite activities which are relatively long. Elementary activities

are atomic activities which may be performed concurrently in time. These activities may

or may not be part of a composite activity. TSU contains 46 elementary activities and these

activities may be long or short. In Fig. 3.4 (c), we illustrate the composite activity cooking,

with its elementary activities. In Fig. 3.4 (a) and (b), the composite and its corresponding

elementary activities are marked with the same color.

TSU contains a rich diversity of elementary activities. We present three challenging sce-

narios that might occur while attempting to recognize these activities. Firstly, the dataset

contains pose-based activities for which poses could be sufficient for classification. In con-

trast, the appearance information may not improve the recognition of these activities. In

Fig. 3.4 (d), we provide 8 such pose-based activities. For example, sit down only needs the

3D poses to be distinguished, whereas the books and laptop around the subject may mis-

lead an appearance-based classifier to recognize an activity related to those objects, such

as reading. Secondly, TSU contains many elementary activities characterized by similar
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Figure 3.4: On the top row, we divide the 51 activities in TSU into (a) composite and (b)
elementary activities. Then, we analyze the activities along four properties: (c) highly
related composite and elementary activities, (d) pose-based activities, (e) similar mo-
tion/activities, and (f) activities with subtle motion.

motions and interactions with objects. These objects provide strong clues to distinguish

an activity. However, a reliable detection of the object while processing the whole video is

a challenge. Sometimes, the objects are occluded within the hands of the subject, like in

the case of grasping a cup while drinking. As a result, these activities with similar motion

are often miss-classified amongst each other. In Fig. 3.4 (e), we provide 22 such activities.

For example, the subjects performing use fridge and use cupboard have very similar poses.

A fine understanding of the object information (e.g. fridge and cupboard) may facilitate

the recognition of these activities. Finally, the dataset contains fine-grained activities char-

acterized by subtle motions, which presents additional challenges for the recognition task.

In Fig. 3.4 (f), we describe 7 such activities. For example, subjects who perform the ac-

tivity Stir coffee/tea move only slightly their wrist and forearm. Compared to activities

with pronounced motions, such as sitting down, learning discriminative representations

for these activities with subtle motions is very challenging.

We further analyze the distribution of the activities in TSU in Fig. 3.5. We first provide

a pictorial representation of the apartment along with the camera placements. TSU fea-
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Figure 3.5: On top row (from left to right): we provide the 7 camera locations (C: camera);
activity distribution along the different (a) environments, (b) duration and (c) temporal
variance. Remark: (a) is per activity instance, (b),(c) are per activity class. On bottom
row: we provide the (d) instance frequency and corresponding (e) temporal variance heat
map (e.g. the lighter the larger variance), (f) distribution of performing environment for
each activity.

tures multi-view settings, as all the activities are captured by more than one camera. Then,

we provide 6 statistics pertaining to the activity distribution in the dataset. Fig. 3.5 (a)

depicts a distribution of activity instances across the different rooms. Most activities occur

in the living room, then kitchen and dinning room. This is similar to real life distribution

as we spend most of our time in the living room. Correspondingly, Fig. 3.5 (f) presents

the distribution of environment for each activity. We find that 51% of the activities are

environment independent. For instance, we can eat snack or work with laptop in all these

three environments. However, activities that rely on specific equipment occur in the same

environment, such as using oven in the kitchen. Fig. 3.5 (b) shows the activity distribution

across the activity duration. We find that in TSU, most activities are short activities, fol-

lowed by medium and long activities. This is because long activities have few occurrences

but longer duration. Interestingly, short activities are often more challenging to detect

compared to the longer ones [137]. Fig. 3.5 (c) shows the distribution of activities based

on their intra-class temporal variance. We notice that 22% of the activities have high tem-

poral variance (i.e. vary more than 500 sec.). Correspondingly, Fig. 3.5 (e) provides the

heat map of the temporal variance of these activities. The lighter grey means that the tem-
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Figure 3.6: Spatial Distribution of the person location in normalized image coordinates
for 3 datasets, dark regions correspond to high frequency areas of the person position.
The green bounding boxes embrace the high frequency locations. From the size of the
bounding box, we find that TSU exhibits the largest spatial scatter, indicating the low
camera framing property.

poral variance is higher. Such intra-class variance within the same activity class further

complicates the task of detection. Finally, Fig. 3.5 (d) provides the occurring frequency

for every activity in the dataset. We have a non-uniform distribution of activities following

the Zipf’s law [36]. This long-tail distribution characterizes the real-world scenarios [38].

In addition, we leverage the spatial distribution of the person location to illustrate

the camera framing property. We use the key-joint locations of Poses to compute the

coordinates of the human position. Fig. 3.6 shows the spatial distribution of the person

center location in different views. Compared to other similar datasets, TSU exhibits a

significantly larger spatial scatter for all camera views. In most cases, the subjects move

along the edge of the camera coverage area. Consequently, we consider TSU to have

relatively low camera framing.

3.3.3.3 Challenges

TSU provides the 7 real-world challenges which are discussed in Section 3.2. (1) Spon-

taneous behaviour: TSU is an untrimmed ADL dataset where people are recorded while

performing activities in a spontaneous manner. This property defines the uniqueness of

TSU dataset. (2) Low camera framing: because of the long duration of the recording,

the subjects do not pay attention to the fixed cameras. Therefore, activities can be per-

formed very far, very close or out of view of the camera. Activities can also be partially

occluded by furniture. (3) Object-based activities: The annotations in TSU include the

fine-grained details of activities performed using different objects (e.g. drinking from a
cup, can or bottle). TSU contains 7 object-based activities. (4) Multi-views: TSU fea-
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tures 7 camera views. As shown in Fig. 3.5, the camera placement enables 2-3 camera

views for each environment. In this work, we use these different views for increasing

the view diversities in order to design view-invariant methods. (5) Composite activities:

TSU contains 5 composite activity classes and 16 related elementary activity classes. (6)

Concurrent activities & dense annotation: TSU contains up to 4 concurrent activities

for a single frame. About 10% of the frames contains more than one activity label. On

an average, there are about 76 activity instances per video. (7) High temporal variance:

This new dataset offers a large variation of activity duration and intra-class temporal vari-

ance. TSU features short activities (e.g. taking on glasses), long activities (e.g. reading
book), and instances of the same class that can be long or short (e.g. writing ranges from

3 seconds to 10 minutes). As a result, handling temporal information is critical to achieve

good detection performance on TSU.

3.3.3.4 Toyota Smarthome Trimmed Vs Untrimmed dataset

The Toyota Smarthome Trimmed dataset contains only a single activity instance per video.

In contrast, TSU dataset is composed of untrimmed videos and these videos are intermixed

with multiple activity instances and backgrounds. The complexity of the problem is in-

creased by the presence of concurrent activities and composite activities. Learning the

dependencies across such activity instances is an important prospect for video understand-

ing which was not considered in the previous trimmed version of Smarthome. Both the

trimmed version and TSU feature spontaneous behaviours. As untrimmed videos con-

tain multiple activities, the degree of spontaneity is also enhanced by the dependencies

among the activities. For example, with spontaneous behaviour, the order of the elemen-

tary activities in composite activities can vary largely in untrimmed videos. For intra-class

temporal variance, activity recognition methods on trimmed videos can handle this issue

easily by sampling a fixed number of frames from different videos. However, in untrimmed

videos where the task involves predicting the activity occurring at each timestamp, sam-

pling mechanisms could lead to imprecise detection of activity boundaries. Thus, learning

an activity classifier for untrimmed videos which is robust to intra-class temporal invari-

ance is a real-world challenge and is often ignored in trimmed scenarios. Concerning data

size, as shown in Table 3.2, TSU is 1.6 times larger in terms of activity classes compared

to the previous version of the dataset, 2.8 times larger in terms of activity instances, and

3.5 times larger in terms of total number of frames.

3.3.4 Benchmark Evaluation

In TSU, we define 2 evaluation protocols: Cross-Subject and Cross-View. We provide also

two evaluation metrics (frame-based and event-based mAP). For frame-based evaluation,
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Table 3.2: Comparison between the two versions
of Toyota Smarthome.

Dataset Smarthome Smarthome
Version Trimmed [50] Untrimmed
Task Recognition Localization
#Classes 31 51
#Instances 16 K 41 K
#Frames 3.9 M 13.8 M

we adapt the protocol of [114] to evaluate the same mAP metric on single frames. This

way of evaluating detection is robust to annotation ambiguity. For event-based evaluation,

we adapt the protocol of [64]. This metric enables us to get a better insight into activity

detection as not biased by activity duration.

Cross-Subject (CS): For cross-subject evaluation, we split the 18 subjects into training and

test sets. To balance the number of videos for each activity category, we use 11 subjects for

training and the 7 remaining ones for testing. This protocol considers all the 51 activities.

Cross-View (CV): For cross-view evaluation, the training set contains the videos from

cameras 1, 3, 4, 6, 7. The remaining cameras (2, 5) are reserved for testing. The training

set contains all the 51 activities and the testing set contains 32 activities from these two

camera views.

3.4 Experiments

The goal of these experiments is to verify that the TSU dataset provides the novel chal-

lenges that are not yet addressed by the state-of-the-art algorithms. We evaluate 9 popular

methods on TSU dataset, which represent the state-of-the-art on other densely-annotated

datasets [2, 13]. Note that we have also proposed a multi-modal baseline method along

with the dataset. This multi-modal method is introduced in section 6.3 with more analysis

on TSU.

3.4.1 Implementation Details

3.4.1.1 Video Encoding

We use three types of encoders to extract the encoding of the input videos. For AGCN [67]

and I3D [22] (pre-trained on Kinetics [41]), we fine-tune them on TSU and then the

features are extracted. Besides, we also evaluate this dataset on frame-level feature. We

use Inception V1 [73] pre-trained on ImageNet [138] to extract the features. The channel

size of I3D and Inception V1 is 1024, channel size of AGCN is 256.
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3.4.1.2 State-of-the-Art Methods

Nine activity detection methods are evaluated on our dataset, namely, bottleneck, Non-

local network [28], LSTM [26], Bidirectional-LSTM [139], Dilated-TCN [5], R-I3D [23],

Super-event [17], TGM [18] and MS-TCN [19]. The method using Bottleneck has only

one dropout layer (with dropout probability 0.5) followed by a bottleneck layer as the

classifier. Non-local [28] has one non-local block applied on the features of the whole

video before the classifier. LSTM [140] has one LSTM layer with 512 hidden units and one

dropout layer (with dropout probability 0.5). Similarly, for Bidirectional-LSTM [139], we

have two opposite direction 512 hidden units LSTM layers. The features are concatenated

before the classifier. R-I3D [81] uses I3D [22] as its SD-TCN. We set the anchor scale

value to [0.3, 0.6, 1.0, 1.5, 2, 2.5, 2.75, 3, 3.5, 4, 4.5, 5,5.5, 6, 6.5, 7, 7.5, 8, 10, 12, 14,

16, 18, 20, 24, 28, 32, 38, 42, 50, 58, 66, 78, 84, 90, 96]. For TGM [18], we add one

layer to have a 4-layer structure. All the methods use the same video encoding and they

are trained with binary cross-entropy loss with sigmoid activation [108]. The unspecified

parameters are similar to the original papers.

3.4.2 Comparative Study on TSU

CS CV
AGCN+Bottleneck [67] 10.1 12.6
AGCN+LSTM [140] 17.0 14.8
Inception+Bottleneck [73] 11.5 5.2
Inception+LSTM [140] 13.2 5.3
R-I3D [81] 8.7 -
I3D (Trimmed)+Bottleneck [22] 7.4 4.3
I3D+Bottleneck [22] 15.7 9.2
I3D+Non-local block [28] 16.8 9.6
I3D+Super event [17] 17.2 10.9
I3D+LSTM [141] 22.6 12.9
I3D+Bidirectional-LSTM [139] 24.5 15.1
I3D+Dilated-TCN [5] 25.1 13.9
I3D+MS-TCN [19] 25.9 13.1
I3D+TGM [18] 26.7 13.4

Table 3.3: Frame-level mAP on TSU dataset.

Table 3.3 provides the results of the considered activity detection methods on TSU.

Here, we focus on the comparison of performance of the representative baselines on

TSU. The comparative study is conducted with the I3D RGB features. The first method

is a proposal-based method that adopts R-C3D [81] with I3D base network (we call this

method R-I3D). This method fails to generate precise proposals for long activities with

dense labels due to high computational cost. Consequently, it yields the worst detec-
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CS CV
IoU Threshold (θ) 0.3 0.5 0.7 0.3 0.5 0.7

Bottleneck [22] 5.0 2.5 0.5 2.3 1.1 0.2
Non-local block [28] 4.9 2.2 0.6 1.6 0.7 0.1

Super event [17] 5.7 2.8 0.7 1.8 0.9 0.1
LSTM [140] 11.6 6.4 2.2 6.0 3.2 0.7

Bidirectional-LSTM [139] 13.3 7.9 3.5 9.0 5.4 1.2
Dilated-TCN [5] 12.8 6.9 3.0 5.8 3.3 0.8

MS-TCN [19] 13.2 7.6 3.0 5.3 3.1 0.4
TGM [18] 15.1 9.4 4.2 5.5 3.2 0.4

Table 3.4: Event-based mAP (%) for different IoU thresholds for the TSU dataset. Note
that, the input are I3D feature from RGB stream.

tion performance on TSU. The second and the third methods are the Bottleneck [22] and

the Non-local block [28]. We find that the non-local block can provide the information

of one-to-one temporal dependency to the local features (+ 0.9% w.r.t. Bottleneck on

TSU-CS), however, Non-local block is not effective enough. Similarly, Super-event [17]

utilizes temporal structure filters to model latent representation of composite activities

and then compute their affinity with each frames (+4.2% w.r.t. Bottleneck on TSU-CS).

However, videos in TSU are long and complex, thus it is hard to model latent representa-

tion of composite activities in this dataset. We need the temporal filter to gradually embed

the information of the local frames to the current frame. LSTM [140] and Bidirectional-

LSTM [139] are RNN based methods. These methods can model short temporal relations

(up to +8.8% w.r.t. Bottleneck on TSU-CS), but fail to model the long temporal rela-

tionships in the complex activities of TSU. Dilated-TCN [5], TGM [18], MS-TCN [19] use

temporal Gaussian/Convolutional filters which better capture the temporal relationships

in long activities (up to +13.5% w.r.t. Bottleneck on TSU-CS). Thanks to the effective

temporal filters, these methods can process long-term temporal relations.

We then show that the method trained on the trimmed version (i.e.

I3D(Trimmed)+Bottleneck) fails to generalize to the untrimmed version. Firstly,

we train an I3D model with the trimmed version of TSU (51 class version). Secondly,

we leverage a sliding window framework to utilize the I3D model to predict the action

class for each window, in which the classifier is fine-tuned for the frame-level action

detection task. Note that I3D (Trimmed)+Bottleneck is very close to the I3D+Bottleneck

model. The difference mainly lies in the I3D training process. For this baseline I3D

(Trimmed)+Bottleneck, I3D is trained with the clipped action instances, whereas I3D +

Bottleneck is trained with random snippets that may include action instances or even a

mix of actions and background. From Tab. 3.3, we find that this baseline trained on the

trimmed version under-performs in detecting actions in TSU. This is due to the lack of

contextual relationships present among the action instances in the trimmed version and

hence the baseline fails to generalize over the untrimmed scenario.
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Figure 3.7: Histogram of activity instance duration in Smarthome and Charades. X axis
represents the duration in seconds, Y axis represent the number of instances in log scale.

In table 3.4, we present the event-based evaluation of the baselines. The overall low

performance indicates that current methods are far from addressing real-world situations.

3.4.3 Comparative Analysis between TSU & Charades

The results of the activity detection methods on different datasets provide us valuable

insights into the key properties of the datasets themselves. Closely related to TSU, we

choose the Charades dataset to perform a comparative study. Both datasets focus on daily

living activities. They are densely annotated containing many concurrent activities and

object-based activities. However, these datasets differ on several points. (1) In Charades,

due to the self-recorded video settings, the activities are fast and the camera framing

is high, and as a consequence, the subject is always in the center of the camera view.

In contrast, in TSU, the subjects performing the activities have high spontaneity leading

to higher intra-class variability and lower camera framing. (2) In Charades, the larger

number of activity classes originates from the combination of only 33 verbs with different

objects (e.g. holding some food, holding a sandwich). In comparison, the 51 activities

in TSU originate from 35 different semantic verbs. Therefore, the Charades dataset has

more activity classes relative to objects while having less semantic verbs of daily living

activities. (3) TSU has longer videos (20 mins on average), compared to the on average

30 second clips in Charades. As a result, Charades does not have long activities, and the

temporal variance of activity instances is low in this dataset. Fig. 3.7 presents the temporal

duration of activity instances in Charades and Smarthome. We find that Smarthome has
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TSU-CS Charades
Human Center Human Center

I3D + Bottleneck [22] 15.7 10.8 15.8 15.6
I3D + Super event [17] 17.2 12.1 18.4 18.6

Table 3.5: Address the camera framing challenge

c

SSD
Center

Figure 3.8: SSD & Center crops

larger scope and higher temporal variance for the activity duration.

To quantify the level of camera framing in TSU as compared to Charades, we evaluate

three baseline methods trained/tested using crops around the human body or crops in the

middle of the images (Fig. 3.8). The crops around the human body are extracted using

SSD [142]. The results are reported in Table 3.5. To evaluate the performance on Cha-

rades, we measure the frame-based mAP for activity detection [114, 17]. For Charades,

the methods using human crops and center crops obtain similar results, suggesting that

Charades has high camera framing—that is, the subject in the videos is usually centered

within the frames. On the other hand, in TSU, the use of human crops improves per-

formance significantly (+5.1%). Indeed, TSU has low camera framing—that is, subjects

often perform activities at the image borders.

3.5 Conclusion

In this chapter, we introduce a novel untrimmed benchmark: Toyota Smarthome

Untrimmed (TSU) that features spontaneous behaviors and several real-world challenges

for activity detection. This dataset contains hundreds of hours of videos of elderlies’ daily

life recorded in indoor smart home scenarios. Our comparative study shows that the ac-

tivity detection performance for the SoTA methods on TSU is still low, highlighting the

remaining open issues related to real-world conditions. Currently, TSU dataset is licensed
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for academic research purposes1. This will allow researchers to develop novel action un-

derstanding approaches for smart home scenarios.

However, the TSU dataset still remains some limitations, such as the lack of general-

ity to new locations and annotation bias of the manual annotations. We will refine the

annotation quality and enrich the environmental diversity in the future.

Along with the dataset, we have also proposed a multi-modal baseline method: At-

tention Guided Network (AGNet). This network leverages multiple modalities provide in

TSU. More experimental analysis of TSU, especially the analysis of modalities, is given in

section 6.3.

1TSU Dataset is available at: https://project.inria.fr/toyotasmarthome

https://project.inria.fr/toyotasmarthome




Chapter 4

Temporal Relational Reasoning for
Action Detection

Temporal relational reasoning – the ability to link meaningful transformations of objects

or entities over time – is a fundamental property of intelligent species. In this chapter,

we introduce three neural networks for temporal reasoning in untrimmed videos. All

three networks enhance temporal modelling by self-attention mechanism. Thanks to the

different temporal modelling and self-attention strategies, the three proposed networks

focus on different challenges in temporal modelling. The works in this chapter have been

published in IEEE International Conference on Advanced Video and Signal Based Surveil-

lance (AVSS) 2019 [44], IEEE/CVF Winter Conference on Applications of Computer Vision

(WACV) 2021 [45] and IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR) 2022 [46].

4.1 Introduction

The capacity to reason about the relations between entities over time is crucial for intel-

ligent decision-making, such as action recognition and detection tasks. A single action

can consist of several temporal relations at both short-term and long-term timescales. For

example, the composite action "making sandwich" contains the sub-actions with long-term

temporal relations of cutting bread, spreading the butter and putting bread together. Short-

term temporal relations are also needed to capture the correlations between different

states of the sub-actions in a video sequence. Temporal relational reasoning allows the

model to analyze the current situation relatively to the past and to formulate hypotheses

on what may happen next. The detection decision at each frame should be done consider-

ing both short-term and longer-term temporal structures. This is critical especially when

processing data with multiple actions occurring concurrently over different time spans.
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More specifically, in the current action detection framework, the long-term videos are

encoded into snippet-level features. Those snippet-level features are fed into the tempo-

ral module and then into a classifier for the action detection task. Because a snippet is

often shorter than the action instance and action instances are usually highly relevant in

an untrimmed video. Therefore, the action detection models rely on the temporal mod-

ule that explores the contextual information of snippet sequences. With such temporal

reasoning across snippets, action detection models can learn discriminative action repre-

sentation and then recognize the action label for each snippet-level feature in the video. To

this end, in this work, we focus on how to effectively perform temporal reasoning across

the snippet-level features.

Following the recent advances of Recurrent Neural Networks (RNNs) in processing

sequence data, numerous approaches are using RNN-based model to model temporal re-

lations for action detection [143, 144, 96, 13]. Memory cells help RNNs capture temporal

information from video sequences [26], while forgetting cells drop information that is ir-

relevant for the long-term encoding. Therefore, RNNs can only capture a limited amount

of temporal context in videos, which is not suitable to process long-term data.

Temporal Convolutional Networks (TCNs) utilize one-dimensional convolutions and

are another way to compute features encoded across time. Contrary to RNN-based meth-

ods, TCN computations are performed layer-wise: that means that at every time-step the

network weights are updated simultaneously, which allows TCN to process long-term se-

quences. In this work, we choose Temporal Convolutional Network as the base temporal

network.

There have been already several applications of TCN in action detection [5, 100, 19].

However, recent studies focus on short-term action datasets as [84, 145], where the mean

action duration is less than 30 seconds. This cannot be straightforwardly generalized to

ADL datasets, where actions can last dozens of minutes [110]. Because of the limited re-

ceptive field of CNN kernels, TCNs still have limitations when dealing with dependencies

between long-range patterns in videos. As a result, we firstly introduce Self-Attention

- Temporal Convolutional Network (SA-TCN) for modelling long-term temporal rela-

tions. SA-TCN is a TCN-based model embedded with a temporal self-attention block.

This network features an encoder-decoder architecture where the temporal information

is abstracted by the temporal convolutions and an attention block extracts a global tem-

poral attention mask from the hidden representation laying between encoder and de-

coder. Thanks to TCN structure and self-attention block, our proposed attention mech-

anism can better focus on long temporal patterns and their dependencies. In this work,

we used DAHLIA [110] as the main dataset to evaluate our proposed method, along with

a medium-term dataset, Breakfast [83], to show the robustness of the framework. Our

proposed method achieves state-of-the-art performance on both datasets.
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Figure 4.1: An example of complex temporal relation in a video. The actions occur densely
in a video. The point indicates the center of the action instance. We provide the sampled
image for each action center.

Besides the long-term temporal dependencies, there are many other challenges related

to complex temporal relation in untrimmed videos (see Figure 4.1), including: (i) manage

concurrent actions occurring at the same time. For example, eating snack while playing
smartphone, and (ii) model both long-term and short-term dependencies in the video.

For example, short-term dependencies from action ‘playing smartphone’ and long-term

dependencies from action ‘taking snack’ can both provide contextual information to detect

the action ‘eating snack’.

To handle the challenges of complex temporal relation, we firstly propose the Pyramid

Dilated Attention Network (PDAN), which is composed of a series of Dilated Attention

Layers (DAL). The main novelty of this architecture is how the attention weights are allo-

cated to local frames at multi-temporal scales. A standard temporal convolution layer fea-

tures shareable kernels which allocate the same importance to local frames in the kernel.

This property prevents the temporal convolutional kernels from selecting the key informa-

tion. This is a limitation especially when large temporal receptive fields are required for

modeling long untrimmed videos. To overcome this limitation, we build a novel attention

mechanism to explore the local context inside the kernel. The kernel ultimately processes

the entire video, but at each time step the inputs are only those frames comprised in the

kernel (i.e., a small window). DAL explores the relations between the center frame and the

neighbouring frames in the kernel (called local context). This local attention mechanism

enables the proposed framework to learn representations for short actions. Additionally,

by introducing dilation in the aforementioned temporal attentional operations, we build a

Pyramid Dilated Attention Network (PDAN) which consists of a hierarchy of DALs. These

DALs are configured with different dilation rates to increase exponentially the size of the

filter receptive field. This hierarchical structure allows PDAN to allocate attention weights

to different temporal resolutions using the different DAL layers. This structure design is

instrumental for the action detection of densely annotated videos. We evaluate PDAN us-

ing three densely annotated action detection datasets: Charades [2], MultiTHUMOS [13],
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and our TSU. PDAN achieves competitive state-of-the-art performance on all the datasets.

PDAN is an effective manner for modelling complex temporal dependencies in a video.

However, convolution-based methods as PDAN are limited by their kernel size and can

only directly access to local information in a video. Thus, such methods fail to model

long-range interactions between segments (i.e., snippets) which may be important for ac-

tion detection. With the success of Transformers [107, 94, 146, 25] in natural language

processing and more recently in computer vision, recent methods [7, 93] have leveraged

multi-head self-attention (MHSA) to model long-term relations in videos for action detec-

tion. Such attention mechanisms can build direct one-to-one global relationships between

temporal segments (i.e., temporal token) of a video to detect highly-correlated and com-

posite actions. However, existing methods rely on modeling such long-term relationships

on input frames themselves. In this case, a temporal token covers only a few frames, which

is often too short w.r.t. the duration of action instances. Moreover, transformers need to

explicitly learn strong relationships between adjacent tokens which arise due to tempo-

ral consistency, whereas it comes naturally for temporal convolutions (i.e., local inductive

bias). Therefore, a pure transformer architecture may not be sufficient to model complex

temporal dependencies for action detection.

By rethinking the manner of combining convolutions and self-attention, we propose

Multi-Scale Temporal ConvTransformer (MS-TCT). In this network, we use convolutions

in a token-based architecture to promote multiple temporal scales of tokens, and to blend

neighbouring tokens imposing a temporal consistency with ease. In fact, MS-TCT is built

on top of temporal snippets encoded using a 3D convolutional backbone [22]. Each tem-

poral snippet is considered as a single input token to MS-TCT, to be processed in multiple

stages with different temporal scales. These scales are determined by the size of the tem-

poral segment (i.e., snippet), which is considered as a single token at the input of each

stage. Having different scales allows MS-TCT to learn both fine-grained relations between

atomic actions (e.g. ‘open fridge’) in the early stages, and coarse relations between com-

posite actions (e.g. ‘cooking’) in the latter stages. To be more specific, each stage consists

of a temporal convolution layer for merging tokens, followed by a set of multi-head self-

attention layers and temporal convolution layers, which model global temporal relations

and infuse local information among tokens, respectively. As convolution introduces an

inductive bias [147], the use of temporal convolution layers in MS-TCT can infuse po-

sitional information related to tokens [148, 149], even without having any positional

embeddings, unlike pure transformers [146]. Followed by the modeling of temporal re-

lations at different scales, a mixer module is used to fuse the features from each stage

to get a unified feature representation. Finally, to predict densely-distributed actions, we

introduce a heat-map branch in MS-TCT in addition to the usual multi-label classification

branch. This heat-map encourages the network to predict the relative temporal position
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Figure 4.2: Relative temporal position heat-map (G∗): We present a video clip which
contains two overlapping action instances. The Gaussians indicate the intensities of tem-
poral heat-maps, which are centered at the mid point of each action in time.

of instances of each action class. Fig. 4.2 shows the relative temporal positions, which are

computed based on a Gaussian filter parameterized by the instance center and its dura-

tion. It represents the relative temporal position w.r.t. the action instance center at any

given time. With this new branch, MS-TCT can embed a class-wise relative temporal posi-

tion in token representations, encouraging discriminative token classification in complex

videos.

To summarize, our contributions in this chapter: (i) We introduce SA-TCN, which

leverages encoder-decoder architecture to abstract the salient temporal information of the

video and utilizes the self-attention mechanism to model dependencies across time for

long videos. (ii) We design PDAN, which can effectively learn the dependencies between

action instances by applying DAL at different temporal scales. The DAL inside PDAN can

improve the quality of the local feature representation across time. (iii) We propose MS-

TCT, which is an effective and efficient ConvTransformer for modeling complex temporal

relations in untrimmed videos. Moreover, we introduce a new branch to learn the position

relative to instance-center, which promotes action detection in densely-labelled videos.

In the following sections, we first revise the related work in temporal modelling and

attention mechanism. After that, we introduce the three model structures and experiment

for each method.

4.2 Related Work

In this section, we review how previous works learn temporal relations and utilize atten-

tion for action detection.
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4.2.1 Temporal Modelling

After encoding the video, action detection can be seen as a sequence-to-sequence problem.

Inspired by the advancement in natural language processing, there are three principle

branches for sequential modelling in recent years: Recurrent Neural Networks, Temporal

Convolution Networks, Transformers. We will revise these techniques below.

Recurrent Neural Networks (RNNs) [13, 98, 99] have been popularly used to model

the temporal relation between the action instances. Singh et al. [144] feed per-frame

CNN features into a bi-directional long short-term memory network (LSTM) model and

apply non-maximal suppression to the LSTM output. MultiLSTM [13] extends the vanilla

LSTM for handling videos with dense action regions. This method expands the temporal

receptive fields at both input and output to be a window length of frames. Moreover,

a soft-attention weighting is learned over the input window to select the action related

frames. Huang et al. propose Although the above methods is LSTM methods only implic-

itly capture relationships between certain actions with high motion. Furthermore, due to

the vanishing gradient problem, RNN based models can only capture a limited amount of

temporal information and short-term dependencies.

Temporal Convolutional Networks (TCNs) are another group of temporal processing

methods. In contrast to RNN based methods, TCNs can process long videos due to the

kernels sharing weight for all the time steps. The result is a feature vector preserving

the spatio-temporal information, along with contextual information from the neighbor-

ing frames. Some recent variants of TCNs for action detection include ED-TCN, Dilated

TCN [5] and MS-TCN [19]: Lea et al. [5] design two temporal convolutional networks

for action segmentation and detection task, transforming successful approaches from nat-

ural language processing. ED-TCN uses pooling and up-sampling to efficiently capture

long-range temporal patterns whereas Dilated-TCN increases the temporal reception field

by using dilated convolutions to model long temporal patterns. Dilated-TCN is extended

by MS-TCN [19] which stacks multiple Dilated-TCNs to construct a multi-stage structure,

where each stage refines the prediction of the previous one. In addition, Temporal Aggre-

gation Network (TAN) [102] consists of dedicated temporal aggregation blocks, which is

designed to encode multi-scale spatio-temporal patterns, and larger temporal context can

be captured by dilated convolutions effectively. However, standard convolutions allocate

the same importance to each local feature in the kernel. This property prevents tempo-

ral convolution kernels from extracting the key information efficiently from long complex

untrimmed videos.

With the introduction of datasets like MultiTHUMOS [13] and Charades [2] having

dense labelling and concurrent actions (i.e. multi-label), more and more methodological

attempts to model complex temporal relations between action instances have been made.
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There are also some temporal operations in the community that can be seen as variants

to temporal convolution. Piergiovanni et al. proposed a global representation, namely

super-event [17]. In this model, Cauchy distribution based filters process the video across

time to learn a latent contextual representation of the actions on particular sub-intervals

of the video. The set of filters are summed by a soft attention mechanism to form the

global super-event features. During prediction, the local I3D features are used with the

super-event features to better model the global context. Similarly, Piergiovanni et al. [18]

introduced Temporal Gaussian Mixture (TGM) layers. In contrast to standard convolution

layer, TGM computes the filter weights based on Gaussian distributions, which enables

TGM to learn longer temporal structures with a limited number of parameters. Although

the above methods [17, 18] achieve state-of-the-art results in modeling complex temporal

relations, the non-adaptive receptive field limits the ability of the models to capture the

dynamics for both short and long patterns.

4.2.2 Self-Attention Mechanisms

Self-attention mechanisms focus on the salient part of a scene relative to a target task,

which was proposed by Transformer Networks [107] for natural language processing.

This operation enforces a network to establish one-to-one relations to understand the

dependencies between their local representations. Employing self-attention mechanisms

has gained popularity for different downstream tasks: Ramachandran et al. [150] pro-

posed “fully attentional network", which achieves competitive prediction results on image

classification tasks. This model replaces the standard 2D convolution layer with local

attention layer in ResNet [72]. This layer learns the representation based on the rela-

tive position of the spatial features in the kernel. Similar to [107], Girdhar et al. [58]

proposed the Action Transformer model for the task of action detection. This model in-

herits the transformer-style architecture to modulate features with attention weights from

the spatio-temporal context within a video. This attention mechanism emphasizes the

region-of-interest (e.g. actors’ hands, faces), which are often crucial to recognize an ac-

tion. However, Action Transformer is embedded in I3D [22] as the base network, which

restricts its input size to only short video clips (i.e. 64 frames). Our target is to detect

both long and short actions in a long video, far beyond 64 frames. Thus, we need a better

attention mechanism that is dedicated to model temporal relations. Wang et al. [28] de-

signed a Non-Local (NL) layer that achieves SOTA performance in action recognition task.

This block leverages the self-attention mechanism to learn an attention map representing

the spatial-temporal one-to-one dependencies of the 3D features. Extending NL layer, Cao

et al. [151] introduced Global Context (GC) layer, which has same performance as the

NL layer but with fewer parameters. While adapting NL layer and GC layer for action
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detection task, the receptive field of the layer is always the full video. The fixed global

receptive field introduces more noise of the irrelevant actions in the attention map, thus

can not provide effective attention information especially for the videos that concurrently

have both multiple long and short actions.

4.2.3 Video Transformer

Recently, with the advent of Vision Transformer [146], Transformer architectures have

been successful in both image and video domain [94, 25, 152, 153, 154, 155, 156, 24,

157, 76, 27]. Although Vision Transformers [25, 24, 76], such as TimeSformer [76] can

consider frame-level input tokens to model temporal relations, it is limited to short video

clips which is insufficient to model fine-grained details in longer real-world videos. As

a compromise, recent video understanding methods use multi-head self-attention layers

on top of the visual segments encoded by 2D/3D convolutional backbones [22]: Video

Transformer Network [71] builds on top of a given 2D convolutional network and feeds

the encoded feature to the transformer encoder for temporal modelling. VidTr [158] is an-

other Transformer model features pooling layers for attention. This operation drops non-

informative features along temporal dimension thus achieve better performance in video

understanding with higher efficiency. MTCN [159] is a multi-modal Transformer model,

which benefits from the temporal context of action and labels to enhance the action predic-

tions using a Transformer encoder. TQN [30] is designed for recognizing fine-grained ac-

tions. TQN factorizes categories into pre-defined attribute queries to predict fine-grained

actions with a Transformer Decoder. However, all these methods are designed for ac-

tion recognition and not trivial to extend them to action detection in untrimmed videos.

Regarding untrimmed video: LSTR [160] employs a long- and short-term memory mecha-

nism to model streaming data. This model consists of an encoder that obtains coarse-scale

historical information, together with an LSTR decoder to model the fine-scale characteris-

tics of the data. However, similar to the drawback of LSTM, this method only benefits from

the previous time-steps of the current time, and thus is utilized for online action detec-

tion. RTD-Net [93], an extension of DETR [94], uses a transformer decoder to model the

relations between the proposal and the tokens. However, this network is designed only for

sparsely-annotated videos [11, 78], where only a single action exists per video. In dense

action distributions, the module that detects the boundaries in RTD-Net fails to separate

foreground and background regions. MLAD [7] learns class-specific features and uses a

transformer encoder to model class relations at each time-step and temporal relations for

each class. However, MLAD struggles with datasets that has complex labels [2], since it is

hard to extract class-specific features in such videos.

In the following sections, we introduce the proposed temporal models in detail.
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4.3 Self-Attention - Temporal Convolutional Network (SA-TCN)

In this section we propose our model: the Self-Attention - Temporal Convolutional Net-

work (SA-TCN), which retains the encoder-decoder architecture of ED-TCN to capture

long-range patterns and embeds a self-attention mechanism to capture the long range de-

pendencies between those patterns. The overview of this architecture is shown in Fig. 4.3

and consists of 3 main components: visual encoding, encoder-decoder TCN, and self-

attention block.

Figure 4.3: SA-TCN model. Given an untrimmed video, we represent each non-
overlapping snippet by a visual encoding over 64 frames. This visual encoding is the input
to the encoder-TCN, which is the combination of the following operations: 1D temporal
convolution, batch normalization, ReLu, and max pooling. Next, we send the output of
the encoder-TCN into the self-attention block to capture long-range dependencies. After
that, the decoder-TCN applies the 1D convolution and up sampling to recover a feature
map of the same dimension as visual encoding. Finally, the output will be sent to a fully
connected layer with softmax activation to get the prediction.

4.3.1 Visual Encoding

The first step in our architecture is the extraction of a visual encoding. As opposed to

the other TCN-based methods [5, 100] that use multi-modal inputs (i.e. RGB+flow), we

attempted to use RGB only. To reduce the redundancy coming from extracting background

features, we apply SSD [142] to detect the subjects and crop patches based on those

detections. The patches are then resized to 224 × 224 and fed into an Imagenet pre-
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trained Resnet-152. We extract features from the penultimate layer of Resnet-152. We

group 64 contiguous extracted feature sets per snippet. The temporal context of the video

is handled by the aggregation operator using max and min pooling across the snippets.

This pooling mechanism helps to choose salient values from the feature map. The visual

encoding that we obtain from this step will be the input of encoder-TCN.

4.3.2 Encoder-Decoder TCN

SA-TCN retains the encoder-decoder architecture of [5], with the addition of some points

of improvement.

As shown in Fig. 4.4, we have k layers for both the encoder and the decoder. In the

encoder part, each layer consists of temporal convolutions, batch normalization, ReLU

activation, and a temporal max pooling. We set a fixed convolution kernel size for all the

layers. First, we applied temporal convolution (Conv-1D) to extract high-level features.

Second, differently from ED-TCN, we applied batch normalization to avoid vanishing or

exploding gradients. Third, we added a spatial dropout layer along with a ReLU non-

linearity to help controlling over-fitting and to speed up convergence. Finally, we max

pool the feature map across time to halve the temporal dimension. Pooling enables us to

efficiently compute activations over long temporal windows.

Our decoder is similar to the encoder, except for the fact that we replace the pooling

operation with up sampling. This up sampling step is similar to [5]: each entry is repeated

twice. After that, another temporal convolution is performed to reduce the aliasing effect

of up sampling. Finally, a snippet-wise fully-connected layer with softmax activation is

used to generate the class probabilities at each time step.

4.3.3 Self-Attention Block

In this section, we introduce our temporal self-attention block. We construct this temporal

attention mechanism based on the scoring system presented in [107].

The purpose of attention block is to build a one-to-one association between all the tem-

poral moments. We do not rely on any outside information, so it is called self-attention.

To implement this, the input I is branched out into three copies Query, Key and V alue.

Through the calculation of similarity between Query and each Key, we can get the atten-

tion score s, which is the importance of different temporal moments. This attention score

is then normalized by softmax to have a mask α. Finally, we multiply the V alue by this

mask to have the attention-weighted feature, and then, add back the input to have our

output result O.

Fig. 4.5 shows a diagram of the self-attention block, where I ε RC×T denotes the input

features from the previous hidden layer. I is first transformed into two feature spaces
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Figure 4.4: Encoder-decoder architecture. This figure represents the network structure
of (a) encoder-TCN and (b) decoder-TCN. As the architecture has k layers, it will have k
iterations.

Figure 4.5: Structure of self-attention block between encoder-TCN and decoder-TCN.

Query, Key, where Query(I) = WQueryI , Key(I) = WKeyI. Both WQuery and WKey ε

RC×C
8 . In this work, V alue is computed from I with a 1 × 1 convolution layer. Thus we

have V alue(Ii) = WV alueIi, where WV alue ε RC×C . The number of filters of V alue is same

as the channel size of I. Query and Key are similar to V alue, except for the fact that the

number of filters is one-eighth of V alue. If αj,i indicates the extent to which the model
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attends to the ith location when synthesizing the jth region, we have:

αj,i =
exp(sij)∑T
i=1 exp(sij)

, (4.1)

where sij = Query(Ij)Key(Ii)
T .

Then the output of the weighted attention map is Att = (Att1, Att2, ..., Attj , ..., AttT ) ε

RC×T , where,

Attj =
T∑
i=1

αj,iV alue(Ii) (4.2)

Finally, we add back the input feature map to assign weight to non-local evidence. There-

fore the output Oi is given by:

Oi = γ ×Atti + Ii (4.3)

where γ represents a learnable parameter. The output O will be fed into decoder-TCN.

4.3.4 Experiments

In this work, we performed experiments mainly on DAHLIA [110], which is a dataset

contains long-term video and long-range temporal dependencies. We also evaluate on

Breakfast [83] dataset to show the robustness of our method. In the following, we

describe the baseline methods used in our study. We provide a comparative analysis

of our method against other action detection architectures. In all experiments, frame-

wise accuracy(FA1), F-score, Intersection over Union(IoU) and mean Average Preci-

sion(mAP) [5] are reported.

4.3.4.1 Implementation Details

We implemented our model in Keras 2.0.8 with Tensorflow as back-end. The experiments

were performed on a GTX 1080 Ti GPU with 11 GB memory. For the visual encoding, we

performed experiments using both Resnet-152 [72] and I3D [22] as the feature extractor.

With Resnet, we extracted the features as described in detail in section 3.1 leading to 8192

features per snippet. With I3D, we chose the Kinetics pre-trained I3D. First, we added a

fully connected layer with 1024 units before the classification layer. Secondly, we fine-

tuned the architecture on the NTU-dataset[62] and extracted features from the new fully

connected layer (1024 features per snippet). We ran experiments with both Resnet-152

and I3D on DAHLIA. The results obtained with the two feature extractors are similar. On

the Breakfast dataset, we use the features provided on the dataset’s website. The length

of these features is 64/snippet.

In our model, the attention operation does not change the dimension of the feature
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map. Besides, we assign the parameters of the encoder-decoder TCN so that the size of

the feature map before the first encoder layer is the same as the output of the last decoder

layer: we set the pooling and up sampling rate to 2, the number of filters in the three

layers to {48, 64, 96} and {96, 64, 48} for encoder and decoder respectively. Finally, we

compared several kernel sizes for the 1D convolution, and found that a size of 25 for every

layer gives the best results.

The training was conducted with RMSprop with a learning rate of 0.001 and batch size

8 for both DAHLIA and Breakfast datasets. On DAHLIA, we split the train and validation

set with 15% validation rate. We trained the model for 100 epochs and measured detection

performance on the test set.

Model FA1 F-score IoU mAP
DOHT [161] 0.803 0.777 0.650 -
GRU∗ [4] 0.759 0.484 0.428 0.654
ED-TCN∗ [5] 0.851 0.695 0.625 0.826
Negin et al. [6] 0.847 0.797 0.723 -
TCFPN∗ [100] 0.910 0.799 0.738 0.879
SA-TCN 0.921 0.788 0.740 0.862

Table 4.1: Action detection results on DAHLIA dataset with the average of view 1, 2 and
3. ∗marked methods have not been tested on DAHLIA in their original paper.

Model FA1 F-Score IoU mAP
GRU [4] 0.368 0.295 0.198 0.380
ED-TCN [5] 0.461 0.462 0.348 0.478
TCFPN [100] 0.519 0.453 0.362 0.466
SA-TCN 0.497 0.494 0.385 0.480

Table 4.2: Action detection results on Breakfast dataset.

Actions Background House work Working Cooking
AP 0.36 0.65 0.95 0.96

Actions Laying table Eating Clearing table Wash dishes
AP 0.90 0.97 0.80 0.97

Table 4.3: Average precision of ED-TCN on DAHLIA.

4.3.4.2 Results Analysis

In this section, we analyze the results of our method and of the other state-of-the-art

baselines.
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Model FA1 F-score IoU mAP
TCFPN [100] 0.910 0.799 0.738 0.879
SA-TCFPN 0.917 0.799 0.748 0.894

Table 4.4: Combination of attention block with other TCN-based model: TCFPN. (Evalu-
ated on DAHLIA dataset)

Figure 4.6: Detection visualization. The detection visualization of video ’S01A2K1’ in
DAHLIA: (1) ground truth, (2) GRU [4], (3) ED-TCN [5], (4) TCFPN [6] and (5) SA-TCN.

Table 4.1 and 4.2 show the results of all the methods considered on DAHLIA and

Breakfast datasets, respectively. Our method achieves state-of-the-art performance on both

datasets.

DOHT and Negin et al.’s method, which train a SVM with deep or hand-crafted feature

encoding, do not perform well on DAHLIA. This is because approaches based on a sliding

window can only capture window-size patterns. Although a post-processing step is used

to filter noise, these approaches still fail at capturing long temporal information.

Compared to TCN-based networks, GRU does not perform well on DAHLIA. Fig. 4.6 shows

that GRU fails at distinguishing short actions performed between long actions (i.e. laying

table and clearing table). Moreover, GRU produces noise while detecting long actions due

to the fact that RNN-based networks can not focus on long temporal information.

ED-TCN lacks precision in detecting the action boundaries. As CNNs have a limited recep-

tive field for each layer, they fail in detecting the dependencies between long-distanced

features. The results obtained by ED-TCN on DAHLIA are reported in Table 4.3. The low

precision achieved on the ’Background’ action is due to the shorter duration of this action

compared to the others, which results in a lower number of training samples.

Both TCFPN and our SA-TCN outperform ED-TCN. The pyramid structure with lateral

connections helps TCFPN to make use of both low-level and high-level features. The tem-
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poral attention block of our SA-TCN enables a better understanding of the dependencies

between the different actions performed in the video.

To understand if our solution can be integrated with other temporal models, we em-

bedded our temporal self-attention block in TCFPN to obtain SA-TCFPN. As reported in

Table 4.4, SA-TCFPN outperforms TCFPN on all the metrics on DAHLIA. This shows that

our temporal attention block is general and can be effectively integrated with other tem-

poral models.

4.4 Pyramid Dilated Attention Network (PDAN)

In this section, we introduce Pyramid Dilated Attention Network (PDAN), an end-to-end

model for action detection. The main goal is to learn frame-level feature representation

that encodes spatio-temporal information so that the model can effectively exploit infor-

mation from multiple temporal scales to predict the actions for each frame. The basic

building block in PDAN is a Dilated Attention Layer (DAL) followed by ReLU activation

and a bottleneck with residual connection. Note that in this work, bottleneck indicates

the 1D convolution that processes across time and kernel size is 1. Different from pre-

vious dilated-TCN layers [5, 19], DAL computes adaptable probabilistic scores for each

local feature of the kernel through a self-attention mechanism. Thanks to multiple DALs

with pyramid dilation setting, PDAN weights local input feature to capture their saliency

at several temporal scales, which enables the model to capture meaningful temporal rela-

tionships between complex atomic actions. Our intuition for the design of PDAN is that

using attention, dilation and residual connections together can capture salient segments

of an action at several temporal resolutions and provide a robust representation against

temporal variation of actions. An overview of the proposed PDAN is shown in Fig. 4.7.

The RGB and the Flow stream have similar structure, the only difference is the input to

the 3D CNN. When both modalities are available, we apply a late fusion of their prediction

logits. In the following sub-sections, we elaborate our model.

4.4.1 Video Feature Extraction

Similar to most action detection models, our model can process on top of video segment

representations (usually from frame-level or segment-level CNN features). In this work,

we use spatio-temporal features extracted from the RGB and Flow I3D networks [22] to

encode appearance and motion information respectively. To achieve this, a video is divided

into T non-overlapping segments, each segment consisting of 16 frames. The inputs to the

RGB and Flow deep networks are the color images and corresponding Flow frames of a

segment respectively. We stack the segment-level features along temporal axis to form a
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Figure 4.7: Overview of the Pyramid Dilated Attention Network (PDAN). In this figure, we
present the structure of PDAN for one single stream. Note that RGB and Flow stream have
same structure inside PDAN. Two streams are connected by late fusion operation before
classification. DAL indicates the dilated attention layer, in which, KS is the kernel size, D is
the dilation rate.

T × C1 dimensional video representation where 1× C1 is the feature shape per segment.

This video representation denoted as F0 is further input to the RGB or Flow stream in our

architecture. Below, we detail the basic component of our proposed PDAN, which is DAL.

4.4.2 Dilated Attention Layer (DAL)

As earlier said, standard temporal convolution layer assigns the same importance to all the

input features of the kernel. However, with multi-scale receptive fields, providing relevant

attention weights can benefit modelling of complex temporal relationships. To this end,

we propose DAL with multiple dilation rates that inherently learns the attention weights

at different temporal scales. As most temporal filters [18, 17], DAL processes the feature

maps across the temporal domain only to preserve spatial information.

As shown in Fig. 4.8, the input features are processed in two steps in each kernel of

DAL. Take the ith block as an example: First, the elements (i.e. segment) around a center

element fit at time t ∈ [1, T ] are extracted to form a representative vector f
′
it. This feature

representation is based on the kernel size: ks and dilation rate at ith block. Note that: fea-

ture fit ∈ R1×C2 , f
′
it ∈ Rks×C2 . Second, the self-attention scoring system [107] is invoked

by projecting the representative vector f
′
it to a memory embedding (Key: Ki and Value:

Vi) using 2 independent bottleneck convolutions: Ki(f
′
it) = WKif

′
it, Vi(f

′
it) = WVif

′
it, both

WKi and WVi ∈ RC2×C2 . Then, fit is projected to the Query Qi using another bottleneck

convolution: Qi(fit) = WQifit and WQi ∈ RC2×C2 . The output of the attentional opera-

tion for the tth time step is generated by a weighted sum of values Vi, with the attention
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Figure 4.8: Dilated Attention Layer (DAL). In this figure, we present an example of a
computation flow inside the kernel at time step t (kernel size ks is 3, dilation rate is 2).
Note: in this figure, the subscript of block i should be 2.

weights obtained from the product of the query Qi and keys Ki:

ai(fit) = Vi(f
′

it)[softmax(Qi(fit)Ki(f
′

it))]
T (4.4)

In contrast to the previous work [28] where the authors calculate one-to-one correlation

between all the elements, the attention mechanism in DAL computes the correlation inside

the kernel between the center element and the other local elements, which significantly re-

duces the number of parameters. Finally, the output of a DAL is obtained by concatenating

the outputs for all the time steps t of the video.

attentioni(Fi) = [ai(fi1)
T, ai(fi2)

T, ..., ai(fiT )
T] (4.5)

where Fi is the input feature map of DAL at the ith block.

4.4.3 Comparison with Non-Local layer

Transformer [107] is not directly applicable to action detection. Its extension to video,

Action-Transformer [58] can only process short video clips (i.e. 64 frames) and its at-

tention mechanism is not designed to model temporal relations. Non-Local (NL) [28]

has a similar structure to that of the attention head in Transformer, and is used in action

detection task. Hence, we only compare DAL with the NL layer. The 1-dimensional NL

layer’s receptive field corresponds to the full video. These filters learn an attention map of

dimension T × T reflecting the one-to-one dependency for every frame in the full video.

On the other hand, DAL’s receptive field at each time step t covers only the neighbour-

ing frames in the kernel. The kernel ultimately processes the entire video, but at each

time step t, the input are only those frames included in the kernel (of size KS). Thus,

DAL learns an attention map of dimension T ×KS, i.e. it explores the relations between

the center frame and its KS neighbouring frames in the kernel. Moreover, by stacking
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Figure 4.9: On the left, we visualize the attention map for DAL for four layers (i ∈[1,4]).
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connection between the corresponding frames provided by DAL. The bounding box in the
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multiple layers with different dilation rates, the receptive field is expanded gradually in

higher layers to model longer actions. Consequently, both DAL and NL layers explore

the whole content of the video. Real-world untrimmed videos [13] have long duration,

large temporal variance, and concurrent actions. While processing such videos, the fixed

global receptive field of the NL layer implies that information linked to irrelevant actions

happening potentially far away from the current frame will introduce noise to the repre-

sentation of the current frame. In contrast, DAL reformulates the attention mechanism for

detecting long and short actions in a sparse and hierarchical manner. This design enables

the attention mechanism at each layer to focus on actions of different temporal lengths,

thus providing better context information and filtering irrelevant information from the

distant actions. Our ablation study confirms the effectiveness of DAL. In Fig 4.9, we give

an example where DAL assigns different attention weights for local frames at every time

step and at multi-temporal scales. The efficiency and effectiveness of NL layer and DAL

is discussed in Sec. 4.4.5.3. In the following section, we describe how we use DALs at

multiple-temporal scales.

4.4.4 Pyramid Structure of Temporal Layers

Applying self-attention on multi-temporal scale is an essential ingredient for modeling

complex temporal relations. PDAN is based on a pyramid of DALs with same kernel size

and different dilation rates. The pyramid increases exponentially the size of the receptive

field of the model. This structure allows the network to model short and long action

patterns by focusing on the local segments at the level of low and high temporal receptive
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fields.

As shown in Fig. 4.7, the input feature F0 ∈ RT×C1 is firstly fed to a bottleneck layer

to lightweight the model by reducing the channel size from C1 to C2. Then, N blocks are

stacked, each block i is a cascade of a DAL with ReLU activation, bottleneck convolution

and a residual link. This structure allows the receptive field to increase exponentially

while keeping the same temporal length T as the input. In our experiment, we set the

kernel size (ks) to 3 for all blocks, dilation and padding rate to 2i−1, thus the reception

field is up to 2i+1 for the ith block. The set of operations in each block can be formulated

as follow:
Fi+1 = Fi +Wi ∗ReLU(attentioni(Fi)) (4.6)

where Fi indicates the input feature map of the ith block. In the attention layer attentioni

the dilation rate varies with i. Wi ∈ RC2×C2 indicates the weights of the bottlenecki.

Finally, we compute per-frame binary classification score for each class (i.e. prediction

logits). Therefore, the N th block is followed by a bottleneck convolution with sigmoid

activation:
P = sigmoid(WBN+1

FN+1) (4.7)

where P ∈ RT×C3 is the prediction logits and WBN+1
∈ RC3×C2 , C3 corresponds to the

number of action classes. To learn the parameters, we optimize the multi-label binary

cross-entropy loss [108].

4.4.5 Experiments

The goal of these experiments is to verify that our proposed method can effectively model

complex temporal relations. First, we perform an ablation study to validate the design

choice of our model. Second, we compare our model with the current SOTA models on 3

densely annotated datasets to prove its effectiveness.

4.4.5.1 Evaluation datasets

We evaluate our PDAN on three challenging datasets: MultiTHUMOS, Charades and Toy-

ota Smarthome Untrimmed (TSU) dataset. All these three datasets are densely annotated

with concurrent actions, allowing us to validate the effectiveness of PDAN in handling

complex temporal relations. For all these datasets, we follow the original evaluation set-

tings for the action detection task (i.e., frame-level mAP).

4.4.5.2 Implementation details

In PDAN, we set N = 5 blocks, C1 = 1024 and C2 = 512 (see Fig. 4.7). For each DAL

in the aforementioned blocks, the kernel and stride size are set to 3 and 1, respectively.
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Dilation
Residual DAL in block

Charades TSU
link 1 2 3 4 5

Simple(STCL) × × × × × × × 17.8 15.0
Simple(DAL) × × ✓ ✓ ✓ ✓ ✓ 18.9 16.1

Dilation (STCL) ✓ × × × × × × 21.8 24.0
Dilation (DAL) ✓ × ✓ ✓ ✓ ✓ ✓ 23.2 26.1
Residua (STCL) × ✓ × × × × × 21.8 24.3
Residua (DAL) × ✓ ✓ ✓ ✓ ✓ ✓ 23.5 26.5
PDAN (STCL) ✓ ✓ × × × × × 24.1 29.0
PDAN(Low) ✓ ✓ ✓ ✓ × × × 25.3 30.1
PDAN(High) ✓ ✓ × × × ✓ ✓ 25.4 30.1
PDAN (DAL) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 26.5 32.7

Table 4.5: Frame-based mAP (%) to show the effectiveness of the components in PDAN.
The ✓ indicates that we use this component in all the PDAN blocks. PDAN (DAL) is our
proposed PDAN.
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Figure 4.10: The frame-based mAP performance for Short and Long actions on Charades
with (1) different levels of attention, (2) different numbers of PDAN Blocks.

The dilation and padding rates are set to 2(i−1) for block i ∈ [1, N = 5]. We use Adam

optimizer [162] with an initial learning rate of 0.001, and we scale it by a factor of 0.3

with a patience of 10 epochs. The network is trained on a 4-GPU machine for 300 epochs

with a mini batch of 32 videos for Charades, 8 videos for MultiTHUMOS and 2 videos

for TSU dataset. Depending on the available modalities within the datasets, we use RGB-

stream only for TSU dataset and two-stream structure for Charades and MultiTHUMOS

datasets. Mean pooling of the prediction logits has been performed to fuse the RGB and

Flow streams.

4.4.5.3 Ablation studies

In this section, we demonstrate the effectiveness of each component of our PDAN.

Block components:

In Table 4.5, we first alternatively apply or remove dilation, residual link and DAL in all
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Figure 4.11: Qualitative analysis of the attention map. On the top, we visualize the atten-
tion map of DAL for 5 layers (C2 × T × 3 for each layer). On the bottom, we present the
corresponding ground truth and PDAN detection for this video.

the blocks to show the effectiveness of these components (see Fig. 4.7). We test three

configurations: (1) Simple: no residual link and no dilation1 in any PDAN’s block. (2) Di-

lation: no residual link but dilation in all the blocks. (3) Residual: no dilation but residual

link in all the blocks. We indicate between the brackets when DAL or Standard Temporal

Convolution Layer (STCL) is used in the blocks. Note that, DAL and STCL have the same

kernel size and dilation rate. Results show that for both datasets dilation and residual link

lead to similar improvements (+4.0% on Charades). When accompanied by the resid-

ual link (i.e. PDAN (STCL)), dilation boosts the action detection performance by up to

2.3% on TSU w.r.t. dilation only. Using DAL in all the layers, PDAN outperforms all these

ablation baselines (+1.1%, +2.1%, +2.2% and +3.7% w.r.t. Simple, Dilation, Residual

and PDAN (STCL) on TSU). These results suggest that DAL is a more effective temporal

filter than STCL and that dilation with residual link help boost DAL’s performance. We

then study to which block, attention should be integrated. We apply attention mecha-

nism on different blocks to build four ablation baselines: PDAN (STCL), PDAN (Low),

PDAN (High) and PDAN (DAL). Low and high indicates that instead of using STCL, we

apply DAL in the first two blocks and last two blocks, respectively. PDAN (Low) and

PDAN (High) correspond to a low (< 5.6 sec.) and high (> 24.8 sec.) receptive field re-

spectively. Table 4.5 shows that both baselines can improve the performance (up to 1.3%

w.r.t. Residual+Dilation on Charades). In Fig. 4.10 (1), we show that PDAN (Low) can

better detect short actions, and PDAN (High) can better detect the Long actions. PDAN

incorporates the attention mechanism on all the blocks and achieves the best performance

1No dilation indicates that all the blocks are set with dilation rate 1.
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Num. Blocks Temp. Field Charades TSU
3 15 23.3 29.4
4 31 25.0 30.3
5 63 26.5 32.7
6 127 25.6 30.5

Table 4.6: Ablation study to determine the number of blocks in PDAN. "Temp. Field"
indicates the length of temporal reception field (expressed in seconds) for the kernel at
the last block.

for both long and short actions (+2.4% w.r.t. PDAN (STCL) on Charades dataset). In

Fig. 4.11, we present the attention map of DAL for 5 layers (on top), and the correspond-

ing ground truth vs PDAN detection results (on the bottom). In area (A), with only long

actions (e.g.work at table), only the higher layers allocate high attention weights to the

frames in the kernel. This reflects that the higher layers are more sensitive to long-term

actions. In area (B), with both long and short actions, both higher and lower layers al-

locate high attention weights to the frames in the kernel. In area (C) (at the bottom),

while detecting short actions, DAL allocates high attention weights at the lower layer,

corroborating that the lower layer is particularly sensitive to short actions.

Number of blocks:

Table 4.6 reports the performance while using different numbers of blocks in PDAN. This

performance depends on the size of the temporal receptive field and the average action

length in the videos. With more blocks, PDAN can have a larger temporal reception field.

Here, 5 block structure indicates that PDAN’s reception field explores up to 63 segments

(i.e. about 1 min), which can satisfy the requirements of both datasets. In Fig. 4.10 (2), we

analyse the performance of the number of PDAN blocks for actions with different duration.

5-blocks structure achieves the best performance for frame-based mAP (up to 2.4% w.r.t. 4

block structure on TSU). While increasing to 6-blocks improves the performance for long

actions (+0.4%), it deteriorates the performance for short actions. This can be explained

by the fact that having more layers tends to diminish the importance of local context.

DAL & NL layer:

. In Table 4.7, we measure the efficiency of DAL compared to the Non-Local (NL)

layer [28]. While replacing all the DALs by STCLs in the PDAN block, we obtain

PDAN (STCL) (see Fig. 4.7). We have tried two different ways of integrating the NL

layer. NL-T1 indicates that we add one NL layer before the classifier in PDAN (STCL);

NL-T2 indicates that we replace the DAL layer by a STCL and a NL layer in every PDAN

block (see Fig. 4.7). As mentioned in Sec. 4.4.2, PDAN (STCL) and PDAN have similar

parameters. Besides, DAL outperforms both NL-T1 and NL-T2 with large margin (+1.9%

and +2.4% w.r.t. NL-T1 and NL-T2 on Charades), while having less parameters and less

operations (i.e. FLOPs). This result reflects that DAL is more efficient and effective than
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#Param (M) FLOPs (GMac) Charades TSU
PDAN (STCL) 5.9 0.59 24.1 29.0

PDAN (STCL)+NL-T1 6.4 0.65 24.6 29.2
PDAN (STCL)+NL-T2 8.5 0.88 23.9 28.5

PDAN (DAL) 5.9 0.62 26.5 32.7

Table 4.7: Frame-based mAP (%) to show the effectiveness of the components in PDAN.
PDAN (STCL) indicates that we replace DAL in the PDAN block by the standard tem-
poral convolution layer. NL-T1 indicates that we add one Non-Local layer before the
PDAN (STCL) classifier. NL-T2 indicates that we add one NL-layer after every STCL in
PDAN (STCL).

#Param FLOPs Charades TSU
I3D+Timeception (STCL) 4.8 M 0.46 G 21.8 27.0
I3D+Timeception (DAL) 4.8 M 0.47 G 23.0 29.3

Table 4.8: Frame-based mAP (%) to show the effectiveness of DAL integrated in Timecep-
tion structure.

NL layer for action detection in densely annotated videos.

Timeception + DAL:

Finally, we embed DAL in another structure based on temporal convolution [75] to confirm

the effectiveness of DAL. Different from PDAN, Timeception [75] utilizes several tempo-

ral convolutions in parallel with different dilation rates. This design enables Timecep-

tion to explore multi-temporal scales in one layer. However, Timeception is designed

for multi-label action classification, not for action detection. So, it applies max pooling

to aggregate the temporal information and halve the temporal resolution at every layer.

Hence, we remove the max pooling from the original Timeception structure to utilize the

temporal information for the action detection task (i.e. Timeception (STCL)). Based on

this new structure, we replace the standard temporal convolution with our proposed DAL

(i.e. Timeception (DAL)) to demonstrate that DAL can be combined with other architec-

tures. In Table 4.8, we report the mAP performance of 3-layer Timeception. We find out

that Timeception (DAL) improves the base network performance (up to +2.3% on TSU

w.r.t. Timeception (STCL)), but it under-performs compared to PDAN.

4.4.5.4 Comparison with State-of-the-Art Methods

The proposed PDAN is compared with previous methods on the MultiTHUMOS, Charades

and TSU (CS) datasets in Table 4.9, Table 4.10 and Table 4.11. To be noticed, the I3D

baseline (i.e. I3D in the tables) used for comparison is a classifier on top of the segment-

level I3D features. Unlike the other SOTA, I3D baseline does not have further temporal

processing after the visual encoding part. Thus, this method cannot model long temporal
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mAP
Two-stream [13] 27.6
Two-stream+LSTM [13] 28.1
Multi-LSTM [13] 29.6
SSN [59] 30.3
I3D [18] 29.7
I3D + LSTM [18] 29.9
I3D + temporal pyramid [18] 31.2
TAN [102] 33.3
I3D + Dilated-TCN* [5] 43.2
I3D + 3 TGMs [18] 44.3
I3D + MS-TCN* [19] 45.3
I3D + 3 TGMs + Super event [18] 46.4

I3D + PDAN 47.6

Table 4.9: Performance of the state-of-the-art methods and our approach on MultiTHU-
MOS. I3D model is two-stream, using both RGB and optical flow input. Note: cited papers
may not be the original paper but the one providing this mAP results. *indicates the re-
sults obtained by running the available code.

Modality mAP
Two-stream [114] RGB + Flow 8.9
Two-stream+LSTM [114] RGB + Flow 9.6
R-C3D [81] RGB 12.7
Asynchronous Temporal Fields [114] RGB + Flow 12.8
I3D [17] RGB 15.6
I3D [17] RGB + Flow 17.2
I3D + 3 temporal conv.layers [18] RGB + Flow 17.5
TAN [102] RGB + Flow 17.6
I3D + WSGN (supervised) [163] RGB 18.7
I3D + Stacked-STGCN [164] RGB 19.1
I3D + Super event [17] RGB + Flow 19.4
I3D + 3 TGMs [18] RGB + Flow 21.5
I3D + 3 TGMs + Super event [18] RGB + Flow 22.3
I3D + Dilated-TCN* [5] RGB + Flow 23.5
I3D + MS-TCN* [19] RGB + Flow 24.2
I3D + PDAN RGB 23.7
I3D + PDAN RGB + Flow 26.5

Table 4.10: Per-frame mAP on Charades, evaluated with the Charades localization setting.
Note: cited papers may not be the original paper but the one providing this mAP results.
*indicates the results obtained by running the available code.

mAP
R-I3D [81] 8.7
I3D+Dilated-TCN [5] 25.1
I3D+MS-TCN [19] 25.9
I3D+TGM [18] 26.7
I3D+PDAN 32.7

Table 4.11: Frame-level mAP on TSU dataset (CS protocol).

information, which is crucial for action detection. In contrast, the other action detection
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Figure 4.12: Handling 2 challenges related to complex temporal relations on Charades
dataset: (1) Multi-tasking, (2) Short and long temporal duration. We calculate the mAP
for each group of actions for each challenge.

baselines as [17, 18, 13] focus on the temporal processing. The improvement over I3D

baseline reflects the effectiveness of modeling temporal information. PDAN consistently

outperforms the prior methods [13, 164, 17, 102, 18] for action detection on all the three

challenging datasets. For Dilated-TCN and MS-TCN, PDAN improves the performance with

a large margin. In the community, some researchers have also applied the proposed PDAN

in egocentric fine-grained action segmentation and revealed promising results [165].

We then study how our proposed method can tackle complex temporal relations.

We perform this comparison with I3D baseline [22], and TGM + Super event [18]. In

Fig. 4.12, we first study the performance along the multi-tasking challenge on Charades

dataset and for detecting both long-term and shot-term temporal duration on TSU dataset

with the appropriate metrics. To study the ability of the different approaches to han-

dle concurrent actions, we created 3 groups of actions depending on the number of co-

occurring actions per frame. Sparse: 1-5 concurrent actions, Medium: 6-9 concurrent

actions and Dense: more than 10 concurrent actions. We compute the mAP for these

three groups and find out that PDAN consistently achieves the best performance (see

Fig. 4.12 (2)). Secondly, we study the performance along different temporal lengths of

the actions. High intra-class temporal variance indicates the actions where the temporal

variance is larger than 10 seconds. We then separate the remaining actions into short

actions (≤10 sec) and long actions (> 10 sec). We find out that PDAN outperforms TGM

+ Super event for all these action types reflecting better handling of both short-term and

long-term duration. Thanks to the use of the dilated attention layers with multi-temporal

scales, PDAN can deal with actions of variable length. This comparison with SOTA meth-

ods confirms that PDAN can better handle complex temporal relations for actions from

densely annotated untrimmed videos.
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4.5 Multi-Scale Temporal ConvTransformer

First, we define the problem statement of action detection in densely-labelled settings.

Formally, for a video sequence of length T , each time-step t contains a ground-truth ac-

tion label yt,c ∈ {0, 1}, where c ∈ {1, ..., C} indicates an action class. For each time-step, an

action detection model needs to predict class probabilities ỹt,c ∈ [0, 1]. Here, we describe

our proposed action detection network: MS-TCT. As depicted in Fig. 4.13, it consists of

four main components: (1) a Visual Encoder which encodes a preliminary video represen-

tation, (2) a Temporal Encoder which structurally models the temporal relations at differ-

ent temporal scales (i.e., resolution), (3) a Temporal Scale Mixer, dubbed as TS Mixer,
which combines multi-scale temporal representations, and (4) a Classification Module
which predicts class probabilities. In the following sections, we present the details of each

MS-TCT component.

4.5.1 Visual Encoder

The input to our action detection network: MS-TCT, is an untrimmed video which may

span for a long duration [43] (e.g. multiple minutes). However, processing long videos

in both spatial and temporal dimensions can be challenging, mainly due to computational

burden. As a compromise, similar to previous action detection models [7, 18], we consider

features of video segments extracted by a 3D CNN as inputs to MS-TCT, which embed

spatial information latently as channels. Specifically, we use an I3D backbone [22] to

encode videos. Each video is divided into T non-overlapping segments (during training),

each of which consists of 8 frames. Such RGB frames are fed as an input segment to the

I3D network. Each segment-level feature (output of I3D) can be seen as a transformer

token of a time-step (i.e., temporal token). We stack the tokens along the temporal axis to

form a T ×D0 video token representation, to be fed in to the Temporal Encoder.

4.5.2 Temporal Encoder

As previously highlighted in Section 5.1, efficient temporal modeling is critical for under-

standing long-term temporal relations in a video, especially for complex action compo-

sitions. Given a set of video tokens, there are two main ways to model temporal infor-

mation: using (1) a 1D Temporal Convolutional layer [5], which focuses on the neigh-

boring tokens but overlooks the direct long-term temporal dependencies in a video, or

(2) a Transformer [107] layer that globally encodes one-to-one interactions of all tokens,

while neglecting the local semantics, which has proven beneficial in modeling the highly-

correlated visual signals [166, 167]. Our Temporal Encoder benefits from the best of

both worlds, by exploring both local and global contextual information in an alternating
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Figure 4.13: The Multi-Scale Temporal ConvTransformer (MS-TCT) for action detection
is composed of four main parts. (1) Visual Encoder, (2) Temporal Encoder, (3) Temporal
Scale Mixer (TS Mixer) and (4) Classification Module. Note that TC indicates the 1-
dimensional convolutional layer with kernel size k.

Figure 4.14: A single stage of our Temporal Encoder consists of (1) a Temporal Merging
Block and (2) ×B Global-Local Relational Blocks. Each Global-Local Relational Block
contains a Global and a Local Relational Block. Here, Linear and TC indicates the 1D
convolutional layer with kernel size 1 and k respectively.

fashion.

As shown in Fig. 4.13, Temporal Encoder follows a hierarchical structure with N

stages: Earlier stages learn a fine-grained action representation with more temporal to-

kens, whereas the latter stages learn a coarse representation with fewer tokens. Each stage

corresponds to a semantic level (i.e., temporal resolution) and consists of one Temporal

Merging block and ×B Global-Local Relational Blocks (see Fig. 4.14):

Temporal Merging Block is the key component for introducing network hierarchy, which

shrinks the number of tokens (i.e., temporal resolution) while increasing the feature di-

mension. This step can be seen as a weighted pooling operation among the neighboring

tokens. In practice, we use a single temporal convolutional layer (with a kernel size of k,
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and a stride of 2, in general) to halve the number of tokens and extend the channel size

by ×γ. In the first stage, we keep a stride of 1 to maintain the same number of tokens as

the I3D output, and project the feature size from D0 to D (see Fig. 4.13). This is simply a

design choice.

Global-Local Relational Block is further decomposed in to a Global Relational Block and

a Local Relational Block (see Fig. 4.14). In Global Relational Block, we use the standard

multi-head self-attention layer [107] to model long-term action dependencies, i.e., global

contextual relations. In Local Relational Block, we use a temporal convolutional layer

(with a kernel size of k) to enhance the token representation by infusing the contextual

information from the neighboring tokens, i.e., local inductive bias. This enhances the

temporal consistency of each token while modeling the short-term temporal information

corresponding to an action instance.

In the following, we formulate the computation flow inside the Global-Local Relational

Block. For brevity, here, we drop the stage index n. For a block j ∈ {1, ..., B}, we represent

the input tokens as Xj ∈ RT ′×D′
. First, the tokens go through multi-head attention layer in

Global Relational Block, which consists of H attention heads. For each head i ∈ {1, ...,H},
an input Xj is projected in to Qij = WQ

ij Xj , Kij = WK
ij Xj and Vij = W V

ij Xj , where WQ
ij ,

WK
ij , W V

ij ∈ RDh×D′
represent the weights of linear layers and Dh = D′

H represents the

feature dimension of each head. Consequently, the self-attention for head i is computed

as,

Attij = Softmax(
QijK

⊤
ij√

Dh

)Vij . (4.8)

Then, the output of different attention heads are mixed with an additional linear layer as,

Mj = WO
j Concat(Att1j , ..., AttHj) +Xj , (4.9)

where WO
j ∈ RD′×D′

represents the weight of the linear layer. The output feature size of

multi-head attention layer is the same as the input feature size.

Next, the output tokens of multi-head attention are fed in to the Local Relational Block,

which consists of two linear layers and a temporal convolutional layer. As shown in

Fig. 4.14, the tokens first go through a linear layer to increase the feature dimension

from D′ to θD′, followed by a temporal convolutional layer with a kernel size of k, which

blends the neighboring tokens to provide local positional information to the temporal to-

kens [149]. Finally, another linear layer projects the feature dimension back to D′. The

two linear layers in this block enable the transition between the multi-head attention layer

and temporal convolutional layer. The output feature dimension remains the same as the

input feature for the Local Relational Block. This output is fed to the next Global Relational

Block if block j < B.

The output tokens from the last Global-Local Relational Block from each stage are

combined and fed to the following Temporal Scale Mixer.
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Figure 4.15: Temporal Scale Mixer Module: The output tokens Fn of stage n is resized
and up-sampled to T ×Dv, then summed with the tokens from the last stage N .

4.5.3 Temporal Scale Mixer

After obtaining the tokens at different temporal scales, the question that remains is, how
to aggregate such multi-scale tokens to have a unified video representation? To predict the

action probabilities, our classification module needs to make predictions at the original

temporal length as the network input. Thus, we require to interpolate the tokens across

the temporal dimension, which is achieved by performing an up-sampling and a linear

projection step. As shown in Fig. 4.15, for the output Fn from stage n ∈ {1, ..., N}, this

operation can be formulated as,

gn(Fn) = UpSamplingn(FnW
n) , (4.10)

where Wn ∈ RDv×γn−1D with an upsampling rate of n. In our hierarchical architecture,

earlier stages (with lower semantics) have higher temporal resolution, whereas the latter

stages (with high semantics) have lower temporal resolution. To balance the resolution

and semantics, upsampled tokens from the last stage N is processed through a linear layer

and summed with the upsampled tokens from each stage (n < N). This operation can be

formulated as,
F ′
n = gn(Fn)⊕ gN (FN )Wn , (4.11)

where F ′
n is the refined tokens of stage n, ⊕ indicates the element-wise addition and

Wn ∈ RDv×Dv . Here, all the refined token representations have the same temporal

length. Finally, we concatenate them to get the final multi-scale video representation

Fv ∈ RT×NDv .
Fv = Concat(F ′

1, ..., F
′
N−1, FN ) . (4.12)

Note that more complicated fusion methods [168, 169] can be built on top of these multi-

scale tokens. However, we see that the simple version described above performs the best.
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The multi-scale video representation Fv is then sent to the classification module for

making predictions.

4.5.4 Classification Module

Training MS-TCT is achieved by jointly learning two classification tasks. As mentioned in

Section 4.1, in this work, we introduce a new classification branch to learn a heat-map of

the action instances. This heat-map is different from the ground truth label as it varies

across time, based on the action center and duration. The objective of using such heat-

map representation is to encode temporal relative positioning in the learned tokens of

MS-TCT.

In order to train the heat-map branch, we first need to build the class-wise ground-truth

heat-map response G∗ ∈ [0, 1]T×C , where C indicates the number of action classes. In this

work, we construct G∗ by considering the maximum response of a set of one-dimensional

Gaussian filters. Each Gaussian filter corresponds to an instance of action class in a video,

centered at the specific action instance, in time. More precisely, for every temporal location

t the ground-truth heat-map response is formulated as,

G∗
c(t) = max

a=1,...,Ac

Gaussian(t, ta,c;σ) , (4.13)

Gaussian(t, ta,c;σ) =
1√
2πσ

exp−
(t−ta,c)

2

2σ2 . (4.14)

Here, Gaussian(·, ·;σ) provides an instance-specific Gaussian activation according to the

center and instance duration. Moreover, σ is equal to 1
2 of each instance duration and

ta,c represents the center for class c and instance a. Ac is the total number of instances

for class c in the video. As shown in Fig. 4.13, heat-map G is computed using a temporal

convolutional layer with a kernel size of k and a non-linear activation, followed by another

linear layer with a sigmoid activation. Given the ground-truth G∗ and the predicted heat-

map G, we compute the action focal loss [170] which is formulated as,

LFocal =
1

A

∑
t,c

(1−Gt,c)
2log(Gt,c) if G∗

t,c = 1 ,

(1−G∗
t,c)

4(Gt,c)
2log(1−Gt,c) if G∗

t,c ̸= 1; ,
(4.15)

where A is the total number of action instances in a video.

Similar to the previous work [7], we leverage another branch to perform the usual

multi-label classification. With video features Fv, the predictions are computed using

two linear layers with a sigmoid activation, and Binary Cross Entropy (BCE) loss [108]

is computed against the ground-truth labels. Only the scores predicted from this branch

are used in evaluation. Input to both the branches are the same output tokens Fv. The

heat-map branch encourages the model to embed the relative position w.r.t. the instance

center in to video tokens Fv. Consequently, the classification branch can also benefit from
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such positional information to make better predictions. The overall loss is formulated as a

weighted sum of the two losses mentioned above, with the weight α is chosen according

to the numerical scale of losses.

LTotal = LBCE + α LFocal . (4.16)

4.5.5 Experiments

Datasets: Similar to PDAN, we evaluate our framework on three challenging multi-label

action detection datasets: Charades, TSU and MultiTHUMOS.

Implementation Details: In the proposed network, we use number of stage N = 4 the

number of Global-Local Relational Blocks B = 3 for each stage. Note that for small

dataset as MultiTHUMOS, B = 2 is sufficient. The number of attention heads for the

Global Relational Block is set to 8. We use the same output feature dimension of I3D

(after Global Average Pooling) as input to MS-TCT, and thus D0 = 1024. Input features

are then projected in to D = 256 dimensional feature using the temporal merging block

in the first stage. We consider feature expansion rate γ = 1.5 and θ = 8. Kernel size k of

temporal convolutional layer is set to be 3, with zero padding to maintain the resolution.

The loss balance factor α = 0.05. The number of tokens is fixed to T = 256 as input

to MS-TCT. During training, we randomly sample consecutive T tokens from a given I3D

feature representation. At inference, we follow [7] to use a sliding window approach to

make predictions. Our model is trained on two GTX 1080 Ti GPUs with a batch-size of 32.

We use Adam optimizer [162] with an initial learning rate of 0.0001, which is scaled by a

factor of 0.5 with a patience of 8 epochs.

4.5.5.1 Ablation Study

In this section, we study the effectiveness of each component in the proposed network on

Charades dataset.

Importance of Each Component in MS-TCT: As shown in Table 4.12, I3D features with

the classification branch only, is considered as the representative baseline. This baseline

consists in a classifier that discriminates the I3D features at each time-step without any

further temporal modeling. On top of that, adding our Temporal Encoder significantly

improves the performance (+ 7.0%) w.r.t. I3D feature baseline. This improvement re-

flects the effectiveness of the Temporal Encoder in modeling the temporal relations within

the videos. In addition, if we introduce a Temporal Scale Mixer to blend the features

from different temporal scales, it gives a + 0.5% improvement, with minimal increase

in computations. Finally, we study the utility of our heat-map branch in the classifica-

tion module. We find that the heat-map branch is effective when optimized along with
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Temporal TS Heat-Map Classification mAP
Encoder Mixer Branch Branch (%)
× × × ✓ 15.6
✓ × × ✓ 23.6
✓ ✓ × ✓ 24.1
✓ ✓ ✓ × 10.7
✓ ✓ ✓ ✓ 25.4

Table 4.12: Ablation on each component in MS-TCT: The evaluation is based on per-
frame mAP on Charades dataset.

Temporal Global Local mAP
Merge Layer Layer (%)
✓ ✓ × 24.0
✓ × ✓ 20.9
× ✓ ✓ 22.7
✓ ✓ ✓ 25.4

Table 4.13: Ablation on the design of a single stage in our Temporal Encoder, evalu-
ated using per-frame mAP on Charades dataset.

the classification branch, but fails to learn discriminative representations when optimized

without it (25.4% vs 10.7%). The heat-map branch encourages the tokens to predict the

action center while down-playing the tokens towards action boundaries. In comparison,

the classification branch improves the token representations equally for all tokens, despite

action boundaries. Thus, when optimized together, both branches enable the model to

learn a better action representation. While having all the components, the proposed net-

work achieves a significant + 9.8% improvement w.r.t. I3D feature baseline validating that

each component in MS-TCT is instrumental for the task of action detection.

Design Choice for a Stage: In Table 4.13, we present the ablation related to the design

choices of a stage in the Temporal Encoder. Each row in Table 4.13 indicates the result

of removing a component in each stage. Note that, removing the Temporal Merge block

indicates replacing this block with a temporal convolutional layer of stride 1, i.e., only the

channel dimension is modified across stages. In Table 4.13, we find that removing any

component can drop the performance with a significant margin. This observation shows

the importance of jointly modeling both global and local relations in our method, and the

effectiveness of the multi-scale structure. These properties in MS-TCT make it easier to

learn complex temporal relationships which span across both (1) neighboring temporal

segments, and (2) distant temporal segments.

Analysis of the Local Relational Block: We also dig deeper in to the Local Relational

Block in each stage. As shown in Fig. 4.14, there are two linear layers and one tempo-

ral convolutional layer in a Local Relational Block. In Table 4.14, we further perform
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Feature Expansion Temporal mAP
Rate (θ) Convolution (%)

8 × 22.3
× ✓ 22.4
1 ✓ 24.2
4 ✓ 24.9
8 ✓ 25.4

Table 4.14: Ablation on the design of Local Relational Block: Per-frame mAP on Cha-
rades using only RGB input. × indicates we remove the linear or temporal convolutional
layer. Feature expansion rate 1 indicates that the feature-size is not changed in the Local
Relational Block.

Backbone GFLOPs Charades MultiTHUMOS TSU
R-C3D [81] C3D - 12.7 - 8.7
Super-event [17] I3D 0.8 18.6 36.4 17.2
TGM [18] I3D 1.2 20.6 37.2 26.7
PDAN [45] I3D 3.2 23.7 40.2 32.7
Coarse-Fine [16] X3D - 25.1 - -
MLAD [7] I3D 44.8 18.4 42.2 -
MS-TCT I3D 6.6 25.4 43.1 33.7

Table 4.15: Comparison with the state-of-the-art methods on three densely labelled
datasets. Backbone indicates the visual encoder. Note that the evaluation for the methods
is based on per-frame mAP (%) using only RGB videos.

ablations of these components. First, we find that without the temporal convolutional

layer, the detection performance drops. This observation shows the importance of mix-

ing the transformer tokens with a temporal locality. Second, we study the importance of

the transition layer (i.e., linear layer). When the feature size remains constant, having

the transition layer can boost the performance by + 1.8%, which shows the importance

of such transition layers. Finally, we study how the expansion rate affects the network

performance. While setting different feature expansion rates, we find that temporal con-

volution can better model the local temporal relations when the input feature is in a higher

dimensional space.

4.5.5.2 Comparison to the State-of-the-Art

In this section, we compare MS-TCT with the state-of-the-art action detection methods (see

Table 4.15). Proposal based methods, such as R-C3D [81] fail in multi-label datasets due

to the highly-overlapping action instances, which challenge the proposal and NMS-based

methods. Superevent [17] superimposes a global representation to each local feature

based on a series of learnable temporal filters. However, the distribution of actions varies

from one video to the other. As super-event learns a fixed filter location for all the videos

in the training distribution, this location is suitable to mainly actions with high frequency.
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τ = 0 τ = 20 τ = 40
PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC

I3D 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3
CF 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0
MLAD [7] 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8
MS-TCT 26.3 15.5 19.5 30.7 27.6 18.4 22.1 37.6 27.9 18.3 22.1 36.4

Table 4.16: Evaluation on the Charades dataset using the action-conditional metrics:
Similar to MLAD, both RGB and Optical flow are used for the evaluation. PAC - Action-
Conditional Precision, RAC - Action-Conditional Recall, F1AC - Action-Conditional F1-
Score, mAPAC - Action-Conditional Mean Average Precision. τ indicates the temporal
window size.

TGM [18] and PDAN are methods based on temporal convolution of video segments. Nev-

ertheless, those methods only process videos locally at a single temporal scale. Thus, they

are not effective in modeling long-term dependencies and high-level semantics. Coarse-

Fine Network [16] achieves 25.1% on Charades. However, this method is built on top of

the visual encoder X3D [57], which prevents the usage of higher number of input frames.

Moreover, it relies on a large stride between the frames. Therefore, it fails to model

fine-grained action relations, and can not process long videos in MultiTHUMOS and TSU.

MLAD [7] jointly models action class relations for every time-step and temporal relations

for every class. This design leads to a huge computational cost, while under-performing

on datasets with a large number of action classes (e.g. Charades). Thanks to the com-

bination of transformer and convolution in a multi-scale hierarchy, the proposed MS-TCT

consistently outperforms previous state-of-the-art methods in all three challenging multi-

label action detection datasets that we considered. We also compare the computational

requirement (FLOPs) for the methods built on top of the same Visual Encoder (i.e., I3D

features), taking as input the same batch of data. We observe that the FLOPs of MS-TCT

is higher with a reasonable margin than pure convolutional methods (i.e., PDAN, TGM,

super-event). However, compared to a transformer based action detection method MLAD,

MS-TCT uses only 1
7 th of the FLOPs.

We also evaluate our network with the action-conditional metrics introduced in [7] on

Charades dataset in Table 4.16. These metrics are used to measure a method’s ability to

model both co-occurrence dependencies and temporal dependencies of action classes. Al-

though our network is not specifically designed to model cross-class relations as in MLAD,

it still achieves higher performance on all action-conditional metrics with a large margin,

showing that MS-TCT effectively models action dependencies both within a time-step (i.e.,

co-occurring action, τ = 0) and throughout the temporal dimension (τ > 0).

Finally, we present a qualitative evaluation for PDAN and MS-TCT on the Charades

dataset in Fig. 4.16. As the prediction of the Coarse-Fine Network is similar to the X3D

network which is limited to dozens of frames, thus we can not compare with the Coarse-
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Figure 4.16: Visualization of the detection results on an example video along time axis.
In this figure, we visualize the ground truth and the detection of PDAN and MS-TCT.

Fine network on the whole video. Here, we observe that MS-TCT can predict action

instances more precisely compared to PDAN. This comparison reflects the effectiveness of

the transformer architecture and multi-scale temporal modeling.

Table 4.17: Study on stage
type showing the effect of hav-
ing both convolutions and self-
attention.

Stage-Type mAP
Pure Transformer 22.3
Pure Convolution 21.4
ConvTransformer 25.4

Table 4.18: Study on σ
showing the effect of scale
of Gaussians in heat-maps.

Variance: σ mAP
1/8 duration 24.6
1/4 duration 24.8
1/2 duration 25.4

4.5.5.3 Discussion and Analysis

Transformer, Convolution or ConvTransformer? To confirm the effectiveness of our

ConvTransformer, we compare with a pure transformer network and a pure convolution

network. Each network has the same number of stages as MS-TCT with similar settings

(e.g. blocks, feature dimension). In pure transformer, a pooling layer and a linear layer

constitute the temporal merging block, followed by B transformer blocks in each stage.

A transformer block is composed of a multi-head attention layer, norm-add operations

and a feed-forward layer. A learned positional embedding is added to the input tokens

to encode the positional information. This pure transformer architecture achieves 22.3%

on Charades. In pure convolution-based model, we retain the same temporal merging

block as in MS-TCT, followed by a stack of B temporal convolution blocks. Each block

consists of a temporal convolution layer with a kernel-size of k, a linear layer, a non-

linear activation and a residual link. This pure temporal convolution architecture achieves

21.4% on Charades. In contrast, the proposed ConvTransformer outperforms both the

pure transformer and the pure convolutional network by a large margin (+ 3.1%, and

+ 4.0% on Charades, respectively. See Table 4.17). It shows that ConvTransformer can

better model the temporal relations of complex actions.
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Figure 4.17: Heat-map visualization along time axis: On the top, we show the ground
truth heat-map (G∗) of the example video. On the bottom is the corresponding learned
heat-map (G) of MS-TCT. As the heat-map is generated by a Gaussian function, the lighter
region indicates closer to the center of the instance.

Heat-map Analysis: We visualize the ground truth heat-map (G∗) and the corresponding

predicted heat-map (G) in Fig. 4.17. We observe that with the heat-map branch, MS-

TCT predicts the center location of the action instances, showing that MS-TCT embeds

the center-relative information in to the tokens. However, as we optimize with the focal

loss to highlight the center, the boundaries of the action instance in this heat-map are less

visible. We then study the impact of σ on performance. As shown in Table 4.18, we set

σ to be either 1
8 , 1

4 or 1
2 of the instance duration while generating the ground-truth heat-

map G∗. MS-TCT improves by + 0.5%, + 0.7%, + 1.3% respectively w.r.t. the MS-TCT

without the heat-map branch, when G∗ set to different σ. This result reflects that a larger

σ can better provide the center-relative position. We investigate further by adding a heat-

map branch to our PDAN (see Sec. 4.4). Although the heat-map branch also improves

PDAN (+ 0.4 %), the relative improvement is lower compared to MS-TCT (+ 1.3 %). Our

method features a multi-stage hierarchy along with a TS Mixer. As the heat-map branch

takes input from all the stages, the center-relative position is embedded even in an early

stage. Such tokens with the relative position information, when fed through the following

stages, benefits the multi-head attention to better model temporal relations among the

tokens. This design makes MS-TCT to better leverage the heat-map branch compared to

PDAN.

Number of Tokens T . As mentioned in the implementation details, we randomly select

consecutive T tokens for each video in the training phase and utilize the sliding window at

inference. Here, we have studied how the number of tokens T affects the action detection

performance. When T is set to 128, 256 and 512 tokens, MS-TCT achieves 25.0%, 25.4%
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and 25.5% on Charades. There is no significant difference in the action detection perfor-

mance while changing the number of input tokens. However, increasing the number of

tokens T in MS-TCT increases the FLOPs. For the trade-off between the computation cost

and performance precision, we set T to 256 tokens, which corresponds to 2048 frames

(about 86 sec.) of video.

Temporal Positional Embedding: We further study whether the Temporal Encoder of

MS-TCT benefits from positional embedding. We find that the performance drops by 0.2%

on Charades when a learnable positional embedding [146] is added to the input tokens

before processing them with the Temporal Encoder. This shows that the current design

can implicitly provide a temporal positioning for the tokens. Adding further positional

information to the tokens makes it redundant, leading to lower detection performance.

4.6 Conclusion

In this chapter, we study different strategies for modelling temporal dependencies in

untrimmed videos. Our focus lies in how to leverage the attention mechanism to enhance

temporal modelling.

Firstly, we introduce the SA-TCN. This network features an encoder-decoder architec-

ture along with a self-attention block in-between the encoder and decoder to model the

temporal dependencies in long-term videos. However, the encoder network shrinks the

temporal features into a low-resolution status and the decoder network then recovers the

information. Limited by the low temporal resolution in the middle stage, SA-TCN can not

effectively detect the fine-grained short actions from the video and the region with co-

occurring actions. As SA-TCN aims at processing temporal relations in long-term videos,

we evaluate this model with DAHLIA dataset, which has an average video duration of

40 mins. SA-TCN achieves competitive performance with respect to the state-of-the-art

methods.

For detecting actions with variant length and dense occurrence, we propose PDAN,

which is a temporal convolutional network. PDAN features temporal kernels which are

adaptive to the input data based on the proposed kernel-level attention mechanism. This

property makes PDAN able to model the complex temporal relations across snippets in

videos. Although PDAN achieves state-of-the-art performance in modelling complex tem-

poral relations, the distant cross-snippet relations can only be obtained based on the result

of low-level layers. We still need a framework that can model the long-term temporal re-

lations more effectively and directly. Recently, we propose the MS-TCT, which inherits a

transformer encoder architecture, while also gaining benefits from temporal convolution.

With the hierarchy structure, our method can model temporal dependencies both globally

and locally at different temporal scales. Moreover, the heat-map branch that introduce
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in MS-TCT can help model the action centre location and predict the action occurrence,

especially for videos with dense action occurrence. Both PDAN and MS-TCT outperform

state-of-the-art methods on the multi-label action detection benchmarks. As MS-TCT can

further model the temporal dependencies in multiple temporal scales, it provides a more

precise detection than PDAN.



Chapter 5

Semantic Relational Reasoning for
Action Understanding

As explained in the previous chapters, one of the major challenges in video analytic in-

volves detecting fine-grained actions in the video. We argue that learning the semantic

relations in the video can help to learn the representation of the challenging fine-grained

actions. Consequently, in this chapter we propose two models following a similar frame-

work aiming to be effective for fine-grained action recognition and detection. The work

presented in this chapter has been published as full conference papers in The British Ma-

chine Vision Conference (BMVC) in 2021 [47] and International Conference on Pattern

Recognition (ICPR) in 2022 [48].

5.1 Introduction

Real-world videos contain rich semantic information. For instance, understanding the

relation between knife and vegetables can help to detect the action cutting vegetables. Also,

knowing the existence of the action class "open the book" can help detect the action "reading
book" in a video. Such semantic information can help represent the challenging fine-

grained actions as these actions always feature low inter-class motion variations and fine-

grained object details (e.g., drink from bottle and eat snack).

As introduced in the previous chapter, existing methods have mostly focused on mod-

elling the variations of visual cues (i.e., features extracted by visual encoder) across time

locally [5] or globally [17] within a video. However, these methods only take into account

the temporal information without any further "semantics". Real-world videos contain

many complex actions with inherent relationships between action classes at the same time

steps or across distant time steps (see Fig. 5.1). Modelling such class-temporal relation-

ships can be extremely useful for locating actions in those videos. Moreover, a sequential
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Figure 5.1: Class-temporal relation. In a densely labelled video, there are dependencies
between action classes (1) across different time steps in black arrows and (2) at the same
time step (i.e. co-occurring actions) in green arrows.

processing model is problematic when the action instances in a video have non-sequential

dependencies or non-linear temporal ordering: for example, overlapping action instances

or re-occurrence of action instances over the course of the video [77].

To this end, we introduce a Class-Temporal Relational Network (CTRN) to harness

the relationships among the action classes in a video to enhance action detection. To

explore such relations, CTRN first filters the class-specific representations from the input

features at each time step in a video. Then, the transformed per-class representation is

utilized for modelling the inter-class relations. (1) Across different time steps, a graph-

based layer is proposed to learn the dependencies between different action classes of the

video. This learned relation map is shared between all the time steps to refine the action

features of the related actions (e.g. open the book and read book). Then, a temporal layer

is used to aggregate features from the same class over time to allow the graph-based layer

to explore both short-term and long-term class dependencies. (2) At the same time step,

a graph-based classifier is proposed to leverage the privileged co-occurring action proba-

bilities to improve co-occurring action detection. We evaluate our model on challenging

densely labelled datasets such as Charades and MultiTHUMOS for the action detection

task. Our method outperforms state-of-the-art results using fewer parameters and FLOPs.

Due to the limitation of computation resources, offline action detection methods are

built on top of pre-extracted flattened 1-dimensional features (i.e., snippet-level feature).

Although those features still preserve the spatial video information latently, the dissoci-

ation between the visual encoder and the temporal module limits the action detection

model to directly model the appearance and spatial semantics in the video. To verify that

our method can be generalized to extract the spatial-temporal semantics and to model

their relationships (see Fig. 5.2), we construct a semantic-reasoning enhanced visual en-

coder, Temporal Human Object Relation Network (THORN), for action recognition.

THORN follows a similar framework as CTRN, but it aims at modelling the relations of

object semantics in the video clips. The main difference lies in the semantic extraction
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part: THORN extracts the semantics of the objects from the spatial-temporal representa-

tion of the visual encoder. To ensure the object-specific semantics, those extracted object

representations are supervised by the pseudo-labels generated by an pre-trained object

classifier. With the semantic extraction module, THORN can enhance the human or object

representation (i.e., noun) and capture the relation across the human and the objects in

the videos (i.e., verb), which results in better representing the fine-grained actions and

categorizing them. To show the robustness of THORN, we evaluate it on EPIC-KITCHENS

55 and EGTEA Gaze+, two challenging first-person datasets with many human-object in-

teractions. THORN achieves competitive state-of-the-art performance on both datasets.

In the following sections, we review the previous semantic reasoning methods for

action detection and we introduce the proposed methods in detail.

Figure 5.2: An example of the Human-Object Interactions of wash plate in an first-view
video. Green arrows represent interactions at the same time step (i.e., spatial relation)
while black arrows represent interactions across time. In practice, the model captures all
the detected objects. For simplicity reasons, here we highlight only the relevant objects
related to wash plate. The sampled frames are taken from EPIC-KITCHENS.

5.2 Related Work

In this section, we review the methods that designed to model the relations between

different semantics. Recently, graphs have been a popular way for modelling relation

between the semantics in the video [96, 171, 15, 172].

In action understanding, Lan et al. [173] propose to represent videos by a hierarchy

of mid-level action elements (MAEs), where each MAE corresponds to an action-related

spatio-temporal segment in the video in an unsupervised manner. This method is capable

of distinguishing action-related segments from background segments and representing
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actions at multiple spatio-temporal resolutions. Sigurdsson et al. [114] propose a fully-

connected temporal CRF model for reasoning over variant intent of videos. The intent

are defined as the clustering of similar activities (e.g., actions, object) in a video. Fully-

connected CRFs are applied as a post-processing of per-frame CNN features and object

features. Although these approaches can structural the video using semantics, they do not

learn the explicit temporal structure, nor are they learned in an end-to-end fashion.

In recent years, Wang et al. [174] propose to utilize the graph to represent the video

and modelling the interaction between objects and humans via graph reasoning. The

method is built on top of I3D features and formulates the node representation by ROI

alignment and via an object detector. However, the method that defines its nodes by using

ROI-Align from the encoded feature is not optimal. This is because multiple objects are

present at the scene and some of them are very close to each other in most cases. As a

result, the projected coordinates of different objects tend to be in the same feature patch

(a set of pixels). Therefore, extracting an object’s specific feature from a feature map with

low resolution becomes difficult. For this reason, they can not extract the object semantics

precisely. Likewise, Ghosh et al. [164] proposed a method based on Graph Convolutional

Network (GCN), namely stacked-STGCN, which extend STGCN [171] for action detection.

Different from standard STGCN where the nodes of a graph represent the body joints,

in stacked-STGCN, the nodes represent different elements related to the actions such as

actors, objects, etc. Nodes are connected along the spatial and temporal dimensions to

form the edges of the graph. Such a graph representation characterizes better the complex

object-based actions in videos. But the challenge of handling actions over a long range of

time still persists. Moreover, the ROI Align issue also exists in stacked-STGCN. Recently,

Zhang et al. [175] extract action-specific feature descriptors for each action and learn

action correlations using an attention mechanism. However the framework roots in video-

level multi-label classification as the mechanism is designed for summarizing the video

content. Therefore this method is not trivial to extend to action detection tasks. Most

related to our research direction, Tirupattur et al. [7] introduced MLAD that can explore

the class-temporal relations with a set of self-attention layers: an inter-class attention map

for every time step and an inter-time attention map for every action class. However, the

large number of attention maps leads to huge computational costs for long untrimmed

videos and hence, limits the model to learn the discriminative relations among the action

classes.

To tackle this, we propose CTRN, which is a graph-based model. Different from MLAD,

CTRN explores the action class relation shared by all the time steps but in different tempo-

ral scales. This design enables CTRN to effectively handle both short-term and long-term

action relations simultaneously. We also extend CTRN’s framework in visual encoder level

(i.e., THORN) to show the generalization of this framework. In the following sections, we
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introduce the proposed networks.

5.3 Class Temporal Relational Network

In this section, we formulate the proposed end-to-end model Class-Temporal Relational

Network (CTRN) for action detection. As shown in Fig. 5.3, our model is composed of four

major components. The Visual Encoder encodes the video into a sequence of snippet-level

spatio-temporal representation. This representation is fed to a Class-temporal Relational

Network (CTRN) that predicts the action labels at each time instant. The sub-components

in CTRN consist of the following: Firstly, a Representation Transform Module, which

transforms the mixed visual representation into a class-wise representation. Secondly, a

Class-Temporal Module explores the action class relations across different time steps and

at different temporal resolutions. Finally, a G-Classifier which classifies the class-temporal

features into action categories. Unlike previous binary classifiers [17, 18] that overlook

the dependencies between the action classes, G-Classifier leverages the privilege class

dependencies within the training data, thus improving the co-occurring action detection

performance. In the following, we introduce these modules in details.

5.3.1 Visual Encoder

Similar to most action detection models [5, 17], our model processes the features on

top of video snippet representations extracted from 2D/3D CNNs. In this work, we use

spatio-temporal features extracted from RGB and Optical Flow (OF) I3D networks [22]

to encode appearance and motion information respectively. Then, a video is divided

into T non-overlapping snippets, each snippet consisting of 16 frames. The inputs to

the RGB and Flow deep networks are either the color images or the corresponding OF

frames of a snippet. We stack the snippet-level features along the temporal axis to form

a T × D1 dimensional video representation, denoted as X. The action instances in X

are always longer than a snippet and their visual representation mixes information of all

action classes. As a result, X is not discriminative enough, and needs both temporal and

class modelling. To this end, we develop the class-temporal relationship from the input

representation X within CTRN which is described in the following. Note that the model

architecture remains the same for both RGB and OF streams.

5.3.2 Representation Transform Module

The input X is first fed into the Representation Transform Module (RTM). The goal of

this module is to transform the input to a class-specific representation and to lightweight

the channel size to facilitate the following computation (see Fig. 5.4). In practice, RTM
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Figure 5.3: Overall structure. The model composed of a Visual Encoder, a Representation
Transform Module, a Class-Temporal Module (with C-GCN and TCN) and a G-Classifier
(i.e. G-Clf). Note: Two G-Clfs are sharing the weights.

Figure 5.4: The RTM extracts the class-specific information of action from the I3D feature.
The semantic extraction is supervised by the action occurrence of each snippet.

duplicates the input features C times into a new dimension representing the action classes

followed by a channel-mixer MLP with non-linear activation and dropout. MLP is the lin-

ear transformation layer [176] to do the linear projection. The equation can be formulated

as:

X ′
i = ReLU(MLP (X)) (5.1)

X ′ = DropOut([X ′
1, X

′
2, ...X

′
C ])) (5.2)

where X ′ ∈ RT×C×D2 is the output representation of RTM. D2 = D1
β in which β is larger

than 1 to shallow the channel size. In order to learn class-specific representation, we em-

bed an auxiliary branch with a G-classifier that maps X ′ to the action labels (see Fig. 5.3).

This transformed feature representation is further exploited to explore the class and tem-

poral relations in the subsequent modules of the network. The computation flow is given

in Fig. 5.5.
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Figure 5.5: Computation flow of RTM.

5.3.3 Class-Temporal Modeling

The Class-Temporal Module (CTM) is the key component of CTRN that exploits the class-

temporal relations of its input feature. Inspired by the recent success of Graph Convolu-

tional Network (GCN) in relational reasoning [177, 15, 96, 178], we build this module

with GCN. The objective of this component is to update the feature representations by

propagating the information across different classes and across different time steps. For

modelling the action class relations, we introduce a Class-GCN (C-GCN) layer while the

traditional Temporal Convolutional Network (TCN) layer [5] is utilized to aggregate the

temporal information. The combination of C-GCN and TCN enables CTM to capture the

class semantic information along different temporal hierarchies. Thanks to the learnable

graph structure, C-GCN is adaptive with the temporal scale set by TCN.

In the following, we first introduce how we map the feature representation to the

graph structure and then we introduce the CTM components.

5.3.3.1 Representation-to-Graph Mapping

For GCN to process the action relations, the data is to be converted into a graphical struc-

ture. As we have transformed the representation into the class-specific format, thus each

vertex of the graph represents an action class at a time step with an embedding vector

belonging to RD2 . In total, the graph consists of C × T vertices whose topology is defined

by an adjacency matrix (AC). This matrix determines whether there are connections (i.e.

relations) and its weights determine the intensity of the connections.

5.3.3.2 Class-GCN (C-GCN)

Class-GCN aims at performing the cross-class reasoning over the constructed graph repre-

sentation. The relations between the many action instances are complex and are different

across videos. Besides, multiple C-GCNs are stacked in CTM through which C-GCNs cap-

ture different levels of semantic information. Consequently, the graph adjacency AC learns

from the data itself for it to be adaptive across different temporal scales.
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Figure 5.6: Computation flow of C-GCN.

In practice, AC ∈ RC×C is parameterized and is optimized together with other parame-

ters in the training process. Moreover, to differentiate the class relations owing to different

videos, the adjacency matrix AC learns the inter-dependencies among the classes using a

self-attention mechanism. For this, the input feature XCin ∈ RD2×T×C is first embedded

using bottleneck convolutional layer (i.e. 1 × 1). After that, the output feature maps are

rearranged into RD2T×C and RC×D2T followed by a matrix multiplication. The value of

the resultant matrix is then normalized by a softmax activation. Now, the superimposed

adjacency matrix A′
C can be formulated as:

A′
C = AC + softmax(W⊤

1 X⊤
Cin

W2XCin
) (5.3)

where XCin is the input of the C-GCN, and W1 and W2 are the weights of the bottleneck

convolutions. Each value in this matrix can be seen as a soft edge between two vertices.

The learned graph is shared across different time steps but unique for different layers

and videos. This design choice can capture the inter-class dependencies in a video and

makes C-GCN scalable across different temporal scales. Finally, we perform the graph

convolutional operation with the formulation in [177]:

XCout
= A′

CXCin
W3 (5.4)

where W3 ∈ RD2×D2 is the learnable weight matrix. The operation with A′
C and with W3

represents the message passing and vertex feature updating, respectively. Finally, XCout is

rearranged to RD2×T×C . A computation flow of a C-GCN block is given in Fig. 5.6.

5.3.3.3 CTM Block

As shown in Fig. 5.3, there are L blocks in CTM, each block is composed of a C-GCN and

a TCN layer along with batch normalization and non-linear activations. To stabilize the

training, two residual connections are added in each block.

As mentioned earlier, TCN [5] aggregates the features across the temporal dimension

while increasing the size of the temporal receptive field. In this work, we set a fixed kernel
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Figure 5.7: Thanks to the hierarchical structure of CTM, the Class-GCN can focus on short-
term action-dependencies in lower blocks and long-term action dependencies in higher
blocks.

size K for all the TCNs. Thanks to the hierarchical structure of CTM, C-GCN can focus

on short-term action-dependencies in lower blocks and long-term action dependencies in

higher blocks (See Fig. 5.7). The refined feature representation from the last block is fed

into G-Classifier for the snippet-level classification.

Note that such a hierarchical structure is close to PDAN’s pyramid structure that is

introduced in Chapter 4.4. The main difference is that PDAN features the novel dilated

attention layer and modelling only the dependencies across time (i.e., snippets). CTM

utilises the standard temporal convolutional layers and explores the dependencies among

extracted semantics (i.e., action classes) in multiple temporal levels.

5.3.4 G-Classifier

Finally, we introduce a graph-based G-Classifier to perform the final snippet-level classi-

fication. In action detection, multiple actions could happen simultaneously; thus, prior

knowledge of inter-dependencies among different action classes can benefit in making

precise predictions. To this end, inspired by [179, 180] in multi-label image recognition,

we introduce a GCN-based classifier in action detection. Compared to the standard bi-

nary classifier for multi-label classification, G-Classifier has an additional message passing

step between the potential co-occurring action pairs, thus improving the co-occurring ac-

tion detection performance. Different to C-GCN, G-Classifier focuses only the actions that

occur simultaneously (i.e., in a snippet-level feature).

In practice, we follow the similar computation process as [180]. Firstly, we compute

the co-occurrence probabilities of all the action pairs in the training snippets. Mij indicates

the concurring times for action class Ci and Cj . Then, the conditional probability matrix
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Pij = P (Cj |Ci) is given by:
Pij = Mij/Ni (5.5)

where Ni indicates the occurrence times of Ci in training set, and Pij ∈ RC×C indicates

the probability of class Cj given that Ci occurs at the same time. In fine-grained action

datasets, some rare co-occurrences may add noise for detecting other common actions,

and the number of co-occurrences from training and test set may not be completely con-

sistent. In this work, we perform a thresholding operation to binarize the conditional

probability matrix to filter the noisy edges and make the classifier more robust to incon-

sistent action classes. If Pij ≥ θ, ASij is assigned 1, otherwise 0, where θ is the threshold.

The computed co-occurrence matrix AS is a binary correlation matrix which in turn de-

fines the adjacency matrix of the graph for G-Classifier. The feature of a node is computed

by the weighted sum of its own features and the adjacent nodes’ features. However, the

binary correlation matrix may change the feature scale [177] and make the node feature

over-smoothed [181]. To alleviate this problem, we normalized the AS following the re-

weighted scheme in [179]. Different to the learnable adjacency matrices in C-GCN, AS is

fixed during training. The formulation of this G-Classifier is given below [180]:

S = σ(ASX
LWS) (5.6)

where S is the prediction score, σ is the sigmoid activation. XL is the output feature from

the last block of the Class-Temporal Module, and WS ∈ R1×D2 are the learnable weights

of the G-Classifier.

To learn the parameters, we optimize the multi-label binary cross-entropy loss with the

prediction results from the RTM and CTM. The total objective is formulate as:

Ltotal = LCTM + αLRTM (5.7)

where α is a weighting factor. Thus, by jointly optimizing both the entropy losses, the

model learns the relevant action labels per segment along with learning the class-specific

semantics across the Representation transform module.

5.3.5 Experiments

5.3.5.1 Datasets

To evaluate the capacity of the model for handling the complex fine-grained action re-

lations in the video, we choose three densely labelled action detection datasets: Cha-

rades [114], TSU and MultiTHUMOS [13]. We follow the original settings of these

datasets for action detection. By default, all these datasets are evaluated by the per-frame

mAP.
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5.3.5.2 Implementation

To have a fair comparison with previous works [7, 17], our network is built on top of

I3D, where D1 is 1024 and D2 is 64. Dropout probability is 0.3. For CTM, we choose a

5-block (L) structure. For C-GCN, the adjacency matrix is initialized by 1 and normalized

by columns. In TCN, the kernel size K is 9 and padding rate is 4. For G-Classifier, θ is

set to 0.05. While learning the parameters, the weighting factor α is 1.2 and the random

seed is fixed. We use Adam optimizer [162] with an initial learning rate of 0.001, and we

scale it by a factor of 0.3 with a patience of 10 epochs. The network is trained on a 4-GPU

machine for 300 epochs. For two-stream network, a mean pooling is performed between

the prediction logits of the RGB and Flow streams.

5.3.5.3 Comparison with State-of-the-Art Methods

The proposed CTRN is compared with previous state-of-the-art methods on the Charades,

TSU and MultiTHUMOS datasets in Table 5.1. Our proposed method outperforms current

state-of-the-art methods on all three datasets. For example, +6.9% (relatively +37.5%)

w.r.t. MLAD [7] on Charades while using only RGB. We then show the ability of CTRN

capturing action co-occurrence, we evaluate with the action-conditional metric [7] in Ta-

ble 5.2. Compared with state-of-the-art methods, our method achieves higher perfor-

mance on all action-conditional metrics showing that CTRN effectively models action de-

pendencies both within a time-step (i.e. co-occurring action, τ = 0) and throughout time

(τ > 0).

To confirm the advancement of our method, we present further comparisons with

MLAD. We compare the model efficiency and complexity. MLAD is about 2 times larger in

parameters and 3.5 times larger in FLOPs than CTRN while processing the same batch of

videos. Hence, our method is more lightweight and computationally efficient than MLAD.

This is because MLAD predicts an inter-class attention map for every time step and predicts

an inter-time attention map for every action class. For CTRN, we construct a temporal

hierarchy structure. In each temporal scale, CTRN learns a single global class relational

graph shared by all time steps. Therefore, CTRN is more lightweight and efficient.

5.3.5.4 Ablation Study

In Table 5.3, we study the complementation of the components in the proposed network on

the Charades dataset. We first discuss how RTM leads to a better feature representation of

the input spatio-temporal feature map from I3D. RTM is an essential pre-step before class-

temporal modelling. Thanks to RTM that filters the class-specific feature, the model can

slightly improve the detection performance (+0.5%). We then explore how the different
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Model Modality Charades TSU MultiTHUMOS
R-C3D [81] RGB 12.7 8.7 -
I3D + TAN [102] RGB+OF 17.6 - 33.3
I3D + Superevent [17] RGB 18.6 17.2 36.4
I3D + TGM [18] RGB 20.6 26.7 37.2
I3D + TGM [18] RGB+OF 21.5 - 44.3
I3D + TGM + Superevent [18] RGB+OF 22.3 - 46.4
I3D + MLAD [7] RGB 18.4 - 42.2
I3D + MLAD [7] RGB+OF 22.9 - 49.6
I3D + CTRN RGB 25.3 33.5 44.0
I3D + CTRN RGB+OF 27.8 - 51.2

Table 5.1: Comparison with the State-of-the-art on three densely labelled datasets. The results
are given in per-frame mAP (%). RGB +OF indicates the late fusion performance.

τ = 0 τ = 20 τ = 40
PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC PAC RAC F1AC mAPAC

I3D 14.3 1.3 2.1 15.2 12.7 1.9 2.9 21.4 14.9 2.0 3.1 20.3
CF 10.3 1.0 1.6 15.8 9.0 1.5 2.2 22.2 10.7 1.6 2.4 21.0
MLAD [7] 19.3 7.2 8.9 28.9 18.9 8.9 10.5 35.7 19.6 9.0 10.8 34.8
CTRN 23.9 8.0 11.9 29.7 21.7 9.1 12.9 36.8 23.0 9.3 13.2 35.5

Table 5.2: Evaluation on the Charades dataset using the action-conditional metric [7].
PAC - Action-Conditional Precision, RAC - Action-Conditional Recall, F1AC - Action-
Conditional F1-Score, mAPAC - Action-Conditional Mean Average Precision. τ indicates
the temporal window size. τ = 0 corresponds to the actions occuring at the same time.

components in CTM affects the action detection performance. We find that both C-GCN

and TCN improve the performance w.r.t. a model with only RTM (+23.6, and 32.9%

relatively). The action detection performance is further improved by the combination of

both C-GCN and TCN, thus reflecting the complementary nature of both the operations.

Finally, we study the performance with/without G-Classifier. With the proposed classifier,

RTM and RTM+CTM further improve the action detection performance by +2.3% and

+0.6% respectively. Note that for the baseline without G-Classifier, similar to the previous

work [17], we utilize a 1 × 1 convolution as the classifier. These results show that the

different components of CTRN contribute to the overall performance of our network.

5.3.5.5 Qualitative Study

In Fig. 5.6, we show the adjacency matrix of G-Classifier in Charades (157 classes), which

provides the information of all the co-occurring action pairs with high probabilities. For

example, holding a vacuum & tiding something on the floor and fixing hair & watching in
a mirror are the actions always occur at the same time. Prior access to such privilege

knowledge is crucial for detecting the co-occurring actions in the densely labelled videos.

In CTM, TCN is used to aggregate the temporal information which enables C-GCN

to explore action relations at different temporal scales. To validate the usage of these

layers, in Fig. 5.9, we visualize the learned adjacency matrix of C-GCN from three different
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CTRN Components Charades
RTM C-GCN TCN G-Classifier Per-frame mAP
× × × × 15.6
✓ × × × 16.1
✓ ✓ × × 19.9
✓ × ✓ × 21.4
✓ ✓ ✓ × 24.7
✓ × × ✓ 18.4
✓ ✓ ✓ ✓ 25.3

Table 5.3: Ablation study on Charades
dataset using only RGB.

Figure 5.8: The adjacency matrix of the G-
Classifier AS .

Figure 5.9: Visualization of the learned C-GCN adjacency matrix A′
C for different layers.

Here, we visualize the 1st, 3rd and 5th block’s adjacency matrices. For simplicity, we
provide only the relevant action classes in the example video.

blocks. We find that in Block 1, C-GCN focuses on capturing the contextual information

pertaining to locally related action classes. For example, eat sandwich & hold sandwich
and drink water & hold cup are always occurring closely in the video. Then we find that,

Block 3 has increased the temporal receptive field, thus, C-GCN can capture the long-

term dependencies between distant action classes. For example, Pour water and Drink
water. Finally, Block 5 possess the largest receptive field where each local snippet feature

contains the whole video information. Therefore, C-GCN in this block models all the

potential action relations in the video, resulting in many activated links in the adjacency

matrix.

5.3.5.6 Additional Studies

In the following, we provide more studies of CTRN. This includes the number of blocks,

the design choice of the adjacency matrix in CTM, and results with different modalities.

Number of Blocks

We first explore the impact of the number of blocks (L) of CTM in CTRN. As mentioned

in the proposed method, TCN is used to aggregate the temporal information. Thus, with

more blocks, CTRN can model high level temporal information while expanding the scale

across time for very long videos. Table 5.4 shows the results on Charades with different

blocks, we find that CTRN achieves similar performance for 5 and 6 blocks. Thus, 5-block

is sufficient for encoding the temporal information in complex untrimmed videos.
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#Blocks 4 5 6
Performance (%) 24.2 25.3 25.3

Table 5.4: Study on number of blocks L of CTM in CTRN. We evaluate on Charades dataset
for action detection using only RGB.

Adjacency Matrix A′
C

As mentioned earlier, C-GCN’s graph is composed of a learnable adjacency matrix AC and

an attention mask which is superimposed on the former. Here we further analyze that both

the components are complementary. In Table 5.5, we find that the performance declines

in the absence of either AC or the attention mask in C-GCN, reflecting both components

are crucial for learning the the graph structure.

Adjacency Matrix AC Attention Mask mAP (%)
× × 21.4*
✓ × 24.3
× ✓ 24.5
✓ ✓ 25.3

Table 5.5: Study on adjacency matrix in C-GCN. We evaluate on Charades dataset for
action detection using only RGB. * indicates the results of CTM w/o C-GCN but only a
TCN.

Modalities

Our model can be used with both RGB and Optical Flow (OF). Here, we provide the results

with RGB and OF. For a fair comparison, similar to the previous works [17, 18], we fuse

the two modalities through a late-fusion of the logits. From Table 5.6, we find that: (1)

For sport actions in MultiTHUMOS, Optical Flow stream yields better performance than

RGB stream (+4.3%). (2) For object-based actions with low motion in Charades, RGB

stream achieves better performance (+3.8% w.r.t. Optical Flow stream), which indicates

that RGB can better model the object appearance information, especially for low motion

frames.

5.4 Temporal Human Object Relation Network

CTRN is a two steps method, which is built on top of pre-extracted flattened 1-dimensional

features. The dissociation between the visual encoder and temporal module makes

the model overlook the appearance and spatial information in the video. To validate

that the proposed mechanism can also perform effective semantic reasoning on the

spatio-temporal representation, we propose Temporal Human-Object Relation Network

(THORN). This model can leverage such semantic relation modeling mechanism for ac-
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Modalities RGB OF RGB+OF
Charades 25.3 20.3 27.8

MultiTHUMOS 44.0 47.5 51.2

Table 5.6: Study on RGB and optical flow. RGB+OF indicates the late fusion.

Figure 5.10: THORN architecture contains three main components: (1) a Visual encoder
(i.e., X3D) encodes the input RGB clip into a primary spatio-temporal representation. (2)
The obtained representation is fed to the Object Representation Filter, which maps the
previous representation into object-class representation. To ensure a discriminative object
representation, an object classifier is added on top of the object-class representation. This
classifier is trained with the pseudo-object ground truth provided by an object detector.
(3) The object-class representation is also sent to the Class-Temporal Module to model
the temporal-object relation in a dissociated manner. Finally, two classifiers are used to
predict the verbs and nouns relevant to the action.

tion recognition to extract detailed action semantics (e.g. object, verb) in an end-to-end

manner (as shown in Fig. 5.2). THORN features a similar semantic reasoning framework

as CTRN. Firstly, a 3D Visual Encoder which encodes the video into a spatio-temporal em-

bedding. Then, the previously extracted embeddings are passed to the Object Represen-

tation Filter (ORF). This filter extracts class-specific features. Finally, the Class-Temporal

Module computes the relation between the different objects to predict the "verb" of action.

This module also refines the node representation to predict the "noun" of action. Fig. 5.10

provides an overview of the model.

In the following, we detail the architecture of THORN, especially, the difference be-

tween the THORN and CTRN.

5.4.1 Visual Encoder

Different from CTRN, the visual encoder in THRON is trained end-to-end with the follow-

ing modules, thus can better extract the primary spatial-temporal representation. In this

work, we utilized X3D [57] as the visual encoder. The lightweight property of X3D can

help to train the Visual Encoder jointly with the proposed modules. In practice, the input to
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the visual encoder is a series of frames. Different from CTRN, the visual encoder outputs a

spatio-temporal representation F of shape T ×H ′×W ′×D1, where: H ′ = W ′ = 7, D1 =

432, while T is the same as the input. This embedding carries both spatial and temporal

information. The spatial information is important, as it provides object-related informa-

tion, such as its appearance, shape and position (e.g. drawers usually appear at the bottom

of the image). That is why instead of using the X3D final output of shape T × 2048 to con-

struct our nodes, we use a finer spatial representation of shape T × 7 × 7 × 432, making

nodes of our graph contain more and finer information about the objects.

5.4.2 Object Representation Filter

Our main objective through THORN is to have object-based reasoning. This objective re-

lies on obtaining effective object representation in scene representations. Therefore, we

developed the Object Representation Filter module, capable of extracting semantic rep-

resentation specific to each object class from the previous overall representation. This

module serves as a filter to obtain the object-specific representation from the output of the

visual encoder. Note that this module is similar to Representation Transform Module (see

Sec. 5.3.2) in CTRN. The difference mainly lies in that the semantics are extracted from

spatio-temporal feature maps and the semantics represent objects.

In practice, firstly, we reshape the representation F from the visual encoder to shape

T ×H ′W ′D1. After that, we duplicate the reshaped features F ′ for Co times, where Co in-

dicates the number of object classes in the dataset. For each class, we use a channel-mixer

MLP (i.e., linear transformation layer), followed by non-linear activation and dropout. We

argue that each MLP layer learns to extract features specific to a certain object class. The

equations in this module can be formulated as:

F ′
i = ReLU(MLP (F )) (5.8)

F ′ = DropOut([F ′
1, F

′
2, F

′
3...., F

′
Co
]) (5.9)

where F ′ ∈ RT×Co×D2 . D2 is smaller than D1 to shallow the channel size. Here F ′′

∈ RT×Co×1. To ensure the object-specific representation, we add a frame-level object

classifier on F ′′.

F ′′ = ReLU(MLP (F ′)) (5.10)

As the frame-level object label is not provided by the dataset, the object classifier is trained

with the pseudo label provided by an object detector (i.e. Fast-RCNN [85]). Note that,

we are not relying on the location information of the object (i.e., only the existing object

categories). In the video, multiple objects can appear in a frame, thus, we train the object
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classifier with binary cross-entropy loss: Lclip−objects. Finally the ORF module outputs

a representation for each object-class. We still need to correlate and refine these object

representations to explore their interactions and model the actions.

5.4.3 Class-Temporal Module

In order to learn the relations between the extracted object semantics, THORN has a simi-

lar graph reasoning module as CTRN. This module sequentially stacks graph convolutional

layers and temporal convolutional layers to model the semantic-temporal relation in the

video clip. The architecture of this model has been provided in Sec. 5.3.3. This module

can help to refine the node representation from the related nodes and can also capture the

correlation between the nodes.

5.4.4 Prediction

The predictions are based on the learned nodes and adjacency matrix. In the evaluated

datasets, fine-grained actions are composed of verbs and nouns. For this reason, we use

the learned adjacency matrix for predicting the verb and the learned nodes for noun

prediction. This is because the adjacency carries more information about how different

objects interact with each others, while the nodes carry a refined object representations,

after been processed through the Class-Temporal Module. As shown in Fig. 5.10, the

output of CTM is sent to two classifiers: one projecting the output representation from

RD2×Co to R1×Co , and the other classifier projecting A′
Co

from RCo×Co into R1×Cv , where

Co and Cv stand for the number of object classes and verb classes respectively.

As shown in Fig. 5.10, our objective is a sum of three losses and can be formulated as :

Ltotal = Lverbs + Lnouns + Lclip−objects (5.11)

Where Lverbs and Lnouns are the negative log-likelihood losses (since each action is com-

posed of one verb and one noun). As described earlier, the Lclip−objects is the binary

cross-entropy loss to ensure the semantic of the object representation.

5.4.5 Experiments

5.4.5.1 Dataset

We evaluate our model on two of the largest and challenging datasets for first-view

and human-object interaction action recognition. EPIC-KITCHENS 55[1] and EGTEA
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Gaze+ [115]. In both datasets, each action is a combination of a verb and a noun. Ac-

tions are relevant to different steps of preparing food (e.g. cleaning the kitchen, cutting
vegetables, preparing table).

5.4.5.2 Implementation

We implement our method using X3D as the visual encoder where D1 = 432, H ′= W ′=

7 and D2 is 128. We input a clip of 16 RGB frames for EPIC-KITCHENS and 25 frames

for EGTEA Gaze+. We use a dropout probability of 0.3. For the Class-Temporal Module,

NBlock is 5 blocks. We utilise a kernel size of 9 for temporal convolution in Class-Temporal

Module. In training phase, we utilized Adam [162] to optimize the model with an initial

learning rate of 0.00005. We scaled the learning rate by a factor of 0.1 with the patience

of 5 epochs. The network was trained on a 4-GPU machine for 30 epochs. We evaluated

our model using Top-1 and Top-5 accuracy on verbs and nouns for EPIC-KITCHENS, while

for EGTEA Gaze+ we evaluated directly on actions using top 1 accuracy.

5.4.5.3 Ablation Study

In this section, we validate our model design for the modules in the THORN. The evalua-

tion is conducted on the EPIC-KITCHENS dataset. We propose different settings and see

how each setting can improve the performance. The results are shown in table 5.7

Firstly, we compare our baseline model X3D with THORN. Note that, in THORN, the

graph nodes can be constructed either using the output of the last layer of X3D (temporal

nodes) or using its intermediate layer (spatio-temporal nodes). Here, we first compared

X3D with THORN (temporal nodes), i.e., we construct the nodes by the features in shape

of T × 2048. In this setting, nodes would serve to predict both verbs and nouns. In this

scenario, we improve nouns prediction by +5.6%, while, the verbs accuracy increased by

+9.3% . Proving the importance of the cross-object reasoning, compared to only capturing

visual information from 3D-CNNs.

Secondly, we study the importance of the adjacency matrix for predicting the verbs. To do

so, we use the adjacency matrix (ADJ-matrix) to predict verbs, while keeping the nodes

to predict the nouns. In this setting, the verb prediction improves by +4.5% compared to

the previous setting and by +13.8% to the baseline X3D. This is because the adjacency

matrix captures the object interaction, hence, it is more suitable for verb prediction.

Thirdly, we study the effect of changing the temporal nodes with the spatio-temporal

nodes. Spatio-temporal nodes are the nodes constructed by the middle layer of X3D which

contains the spatial information T × 7 × 7 × 432. With spatio-temporal nodes, THORN

improves +1.8% on nouns. This is because, with spatial dimensions, the ORF can better

capture the object relative locations and the size of the object, then embed them in the
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Verbs Nouns Actions
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

X3D 46.5 79.8 34.3 65.3 21.0 38.7
THORN/temporal nodes 55.8 82.9 39.9 66.4 26.8 44.0

THORN/temporal nodes + ADJ-matrix 60.3 86.0 41.1 66.9 30.1 47.3
THORN/spatio-temporal nodes + ADJ-matrix 61.0 85.9 42.9 67.9 30.5 47.5

Table 5.7: Ablation study on different settings. This evaluation is on EPIC-KITCHENS
dataset. Temporal nodes means using the final output of X3D of size T × 2048 to create
nodes, while spatio-temporal nodes means using a mid layer of size T × 7× 7× 432 with
more spatial information. Finally ADJ-matrix stands for using the adjacency matrix for
predicting the verbs instead of using only nodes for nouns and verbs.

Faster-RCNN THORN Nouns
✓ × 31.5
× ✓ 32.8
✓ ✓ 42.9

Table 5.8: Ablation study on fusing the scores of THORN with the scores from the object
detector (Faster RCNN). This evaluation is on EPIC-KITCHENS dataset. Fusing both scores
brings significant improvement on top-1 accuracy. For the object detector, we use an
average pooling on all the video clip frames object detection scores and add a thresh-hold
of 0.3

node representation. As a result, the noun accuracy improves. This setting also brings

+0.7% improvement on verbs.

Our overall architecture obtains +13.8% improvements on verbs and +8.6% on nouns

w.r.t. vanilla X3D. This reflects the effectiveness of our proposed modules in THORN and

how an object-centric method can improve results on human-object interaction actions.

We then study the components for predicting the nouns in our model. In table 5.8, we

show that fusing scores of object detection and the scores obtained by the THORN nodes

representation works better than using only one of them. We also find that predictions

using only our model are better than the object detector itself. This shows that our model

can refine the objects represented by the other objects (nodes) using our graph-based

module.

5.4.5.4 Comparison with the State-of-the-Art

We then compare our proposed method with the state-of-the-art methods on EPIC-

KITCHENS and EGTEA Gaze+ in table 5.9 and 5.10.

In Table 5.9, we compare our results with the state-of-the-art methods. Among these

methods, Long Features Bank (LFB) [183] proposes to use global as well as local features

for action recognition. To do so, they extract features on both clip and video levels, and
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Model Obj RGB Flow Audio Verbs Nouns Actions
top1 top1 top1

Baradel[182] × ✓ × ✓ 40.9 - -
3D-CNN [22] × ✓ × × 49.8 26.1 19.0

STO[183] ✓ ✓ × × 51.0 26.6 19.5
LFB[183] ✓ ✓ × × 52.6 31.5 22.8

AssembleNET++ ODF+SDF[184] ✓ ✓ ✓ × 60.0 37.1 25.2
THORN ✓ ✓ × × 61.0 42.9 30.5

Table 5.9: Comparing THORN model with other state-of-the-art methods on the validation
set. Even though some of these comparisons are not fair since these models are using
multi-modalities, we still hold the overall best accuracy, which shows the strength of our
model

Two-stream I3D [22] TSN [79] EGO-RNN [185] LSTA [186] SAP [187] THORN
ACC % 43.8 54.2 58.0 62.1 62.0 64.1 67.5

Table 5.10: Comparing THORN model with other state-of-the-art methods on EGTEA
Gaze+ split1. We hold the best accuracy on actions

combine them to have a better understanding of the scene. Nevertheless, this method still

lacks accuracy for the objects. Moreover, LFB is a two step method which trains separately

an object and verb recognizer modules. For our THORN, we train a single model for

predicting both entities. As a result, we have a +8.5% improvement on top 1 nouns and

a +4.9% w.r.t. LFB on action recognition.

Our method achieves the overall best performance. We claim that AssembleNet++

utilizes additional modality such as optical flow in both training and inference time. Even

though, we still have the lead in top 1 accuracy for the verbs, nouns and actions, which

proves again that having an object-centric and specific reasoning on object interactions is

a key solution for having a better action recognition on HOI datasets. Finally, our results

prove that using only RGB with an object-centric model achieves better or similar results

compared to methods relying on heavy multi-modality reasoning.

In table 5.10, we compare our method with the state-of-the-art on EGTEA Gaze+

dataset. We have the best accuracy w.r.t. the others methods, which shows the generaliza-

tion and robustness of our model on actions of HOI.

To sum up, compared to other methods, ours is lightly weighted as we use X3D, while

other methods rely on heavy 3D-CNNs such as I3D. THORN is trained jointly on nouns

and verbs as opposed to other methods such as LFB [183], and we only need RGB frames

and pseudo object labels per frame.
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Figure 5.11: Visualization of the Class Activation Mapping for the object extractors’
weights. The video name is highlighted in green and the extracted object is highlighted in
blue.

Figure 5.12: Visualization of the learned cross-object relations. For the video "washing
knife": the sampled frames is shown on the left, and the learned adjacency matrix of the
graph convolution module is given on the right.

5.4.5.5 Qualitative Study

Firstly, we analyse if the Object Representation Filter can focus on the action related object

region, and if it is robust across frames. In figure 5.11, we show two example videos and

their class activation map [188] of the object classifier in the object representation filter.

For video "washing leaf ", we find that the object region can be extracted effectively with

the proposed module, e.g. object "leaf" and "tap". Also the object are extracted robust

across different frames (e.g., "leaf" across two frames). Similar observation can be found

in video "mix meat".

Secondly, we visualize the learned adjacency matrix. As shown in figure 5.12, the

subject is washing knife. The graph module highlights the correlation between the action

relevant objects, i.e., object "knife" and object "water". Therefore, THORN is able to collect

high inter-class relation to recognize the right "verb" and its relevant "objects". Moreover,

the irrelevant classes such as "fish", "tap" and "sponge" is not interactive with the other
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objects in this example video.

5.5 Conclusion

In this chapter, we propose a generic framework to enhance video representation by mod-

elling the relationships between the different semantics in a video. There are two main

steps for this framework: (1) Extraction of the semantic representation from the video.

This extraction relies on a series of binary classifiers, each indicates whether a certain

semantic exists in the frame or not. (2) After having the semantic representation, we

model the relations across different semantics to have a refined video representation. The

learned representation is then sent to the prediction head for the objective task.

We have evaluated the effectiveness of our method on two principal components in

action detection framework (visual encoder and temporal module). For the visual en-

coder, we propose THORN, which refines the spatio-temporal representation by modelling

inter-object relationships in each video clip. THORN can better represent fine-grained

actions relevant to objects than the vanilla visual encoder. For the temporal module, we

propose CTRN. This neural network enhances the temporal modelling by modelling the

inter-action relationships in untrimmed videos so that CTRN can improve the detection of

a series of correlated actions in the videos.

Although this chapter focused on modelling the action-action and object-object inter-

actions of the videos, the framework developed in this context goes beyond this disser-

tation and can be generalized to other types of semantic relations (e.g. subject-subject

interactions for group activity detection).



Chapter 6

Multi-Modal Representation
Learning for Action Detection

In this chapter, instead of understanding video using a single modality, we propose two

methods that can effectively and efficiently learn the multi-modality video representa-

tion. The fusion-based method AGNet is the proposed baseline method for the Toyota

Smarthome Untrimmed dataset [43], which utilizes an additional modality to generate

the attention weights at multiple temporal scales for improving action detection perfor-

mance. The distillation-based method has been published in IEEE/CVF International Con-

ference on Computer Vision (ICCV) [49] in 2021. This method encourages the RGB stream

to mimic the representation of the additional modality stream in the training phase and

avoids using the additional modality at inference time.

6.1 Introduction

Video can be captured or represented in different modalities, such as RGB, optical flow,

3D Pose, etc.. Each modality gives a view of the video which emphasizes an aspect of the

information in the video, thus the modalities are usually complementary to each other.

For example, RGB focuses more on the appearance of the objects, while optical flow gives

more attention to the motion in the video. Thanks to this complimentary nature between

modalities, learning representation of different modalities has become an effective man-

ner to represent the video content [42], especially for scenarios requiring high precision.

To this end, in the following, we study how to model compact untrimmed video represen-

tation by multiple modalities. Since RGB is the modality that contains the greatest amount

of information, in this chapter we focus on how to infuse information of other modalities

into the RGB branch.

In previous works, to combine multiple modalities, a typical setting, called two-stream
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network [42], consists in combining RGB with additional modalities like optical flow [17,

21] or 3D poses [189, 55] to take into account the complementary nature of modalities. To

further benefit from multiple modalities, firstly, we learn the multi-modal representation

in a fusion manner. In this direction, we propose Attention Guided Network (AGNet),

which builds upon the existing temporal model: SSTCN [19]. This network has two input

modality branches (e.g. RGB and 3D Poses). The main branch inputs the RGB videos

and the attention branch inputs the additional modality. Similar to PDAN, each branch

consists of five blocks and each block represents a temporal level. There are attention

blocks between the two branches at each temporal level. More specifically, the attention

block generates the temporal attention map at each temporal level from the additional

modal stream to guide the RGB stream to predict more precise action boundaries. AGNet

is proposed as the baseline method in Toyota Smarthome Untrimmed dataset and we

evaluate AGNet with RGB and 3D Pose in the datasets. We show that AGNet efficiently

infuses the additional modality information into the RGB branch.

Two-stream architecture can effectively combine different modalities and has become

a typical setting in video understanding tasks. However, using such setting is contin-

gent upon the availability of multiple modalities and of expensive processing resources.

The cost of computing additional modalities could be prohibitive, especially for long

untrimmed videos. These constraints limit the usage of multi-modal action detection

methods for real-world applications.

Previous studies [190, 191] have shown that cross-modal Knowledge Distillation (KD)

is an effective mechanism to avoid the computation of the additional modalities during

test time, while preserving the complementary information from the additional modali-

ties. However, most previous works [192, 193, 194] in the video understanding domain

have investigated solely the classification of short trimmed videos. In these works, each

video corresponds to a single action and the distillation framework infuses the aggregated

knowledge of an action instance from one modality into another. Contrary to trimmed

videos, untrimmed ones contain rich sequential knowledge with complex temporal rela-

tions. Untrimmed videos in real-world scenarios tend to have cluttered background and

multiple correlated actions either in sequence [64] or in parallel [13, 2]. Therefore, distil-

lation mechanisms tailored for classification tasks and extended for detection tasks lack in

capturing fine-grained details along the temporal dimension. Now the question remains,

what should be the right strategy to distillate cross-modal knowledge for action detection

in untrimmed videos?

In this work, we propose a distillation framework to combine cross-modal informa-

tion for detecting actions with high precision and minimal resource. The goal is to reach

the two-stream performance while using only the RGB stream at inference time. The

proposed distillation framework consists of a traditional teacher-student network archi-
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Figure 6.1: Proposed cross-modal distillation framework for action detection. Our dis-
tillation framework is composed of three loss terms corresponding to different types of
knowledge to transfer across modalities. LAtomic: Atomic KD loss; LGlobal: Global Contex-
tual Relation loss; LBoundary: Boundary Saliency loss.

tecture which operates in a Seq2Seq fashion [18, 102], thanks to three new distillation

losses dedicated to the action detection task as illustrated in Fig. 6.1. The first loss in

our formulation is the Atomic KD loss, which enables the RGB student network to mimic

the feature representation of every individual snippet from the teacher network in a con-

trastive manner. This loss-term extends the cross-modal KD mechanism designed for the

classification tasks to the temporal domain [195], by transferring the knowledge only be-

tween one-to-one corresponding snippets of different modalities. As a snippet is often

shorter than the action instance in an untrimmed video, this loss encourages a transfer of

sub-representation [119] of the action, for example, "raising arm" in the "drinking" action.

Here, such sub-representation w.r.t. the entire video corresponds to an atomic piece of

knowledge within the complete action feature distribution. However, an untrimmed video

is composed of a sequence of snippets, distilling only the atomic representation is not suf-

ficient for learning discriminative action representations. Thus, distillation mechanisms

dedicated to represent specifically an action within an untrimmed video are required.

We therefore introduce two loss-terms for sequence-level KD so as to transfer the cross-

snippet relations between different modalities. Firstly, we propose a Global Contextual

Relation loss to transfer the contextual information of the sequence between modalities.

In our work, contextual information is defined as the embedding of the correlation be-
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tween all the snippet features. Thanks to this loss term, every student snippet feature can

learn in the latent space from all the correlated teacher snippets within the untrimmed

video (Fig. 6.1). With this loss-term, detecting one action in a snippet can benefit from

the information in the correlated snippets (corresponding to related actions, e.g. take and
eat sandwich) across modalities, resulting in better action detection performance. Sec-

ondly, we propose another KD loss to distillate the boundary saliency from the teacher to

RGB student network, dubbed Boundary Saliency loss. This ensures a more precise action

boundary detection of the RGB student which is prone to imprecise action boundary de-

tection due to weak temporal signals. In an untrimmed video, the start and end moments

of the action are usually more salient than other parts [196] (see Fig. 6.1). Intuitively,

the feature variation across consecutive snippets in the video can reflect such saliency of

the action boundaries. Therefore, learning this variation from a modality that can better

capture the human movement (e.g. optical flow, 3D poses) which encourages the RGB

stream representation to be more sensitive to the action boundaries.

Contributions: In this chapter, based on multi-layer temporal convolution networks, we

propose two ways to leverage multiple modalities for action detection task. We first in-

troduce AGNet which leverages an additional modality to generate the temporal region of

interest (t-ROI) for the action instance in multiple temporal levels. With these generated

attention masks, AGNet can effectively detect the actions in the video. Secondly, follow-

ing a similar structure, we take a step towards the cross-modal KD for action detection.

More specifically, we build a Seq2Seq KD framework for action detection with a novel

formulation. This formulation consists of an atomic-level KD loss and two sequence-level

KD losses. The three loss terms in our formulation are jointly optimized in an end-to-end

fashion. To the best of our knowledge, we are the first to propose a formulation containing

sequential KD loss for the action detection task.

6.2 Related Work

In this section, we briefly review the methods for combining multi-modalities and methods

for cross-modal distillation in action understanding.

6.2.1 Combining Modalities

With the prevalence of RGB-D sensors, multi-modal video data have become more avail-

able for human action recognition and detection. Combining the advantages of privileged

modalities in order to make use of their complementary discriminative power has been ex-

ploited widely in action recognition domain. Two-stream architectures [42, 197, 22] that

learn separate features from optical flow and RGB modalities, outperform single modal-
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ity approaches. Towards this direction, Ryoo et al. [198, 199] have proposed a Neural

Search Architecture (NAS) to combine both RGB and Optical flow streams. In contrast

to these methods, two complementary strategies are adopted to combine RGB and pose

modalities. One is fusion of both modalities in feature space [200, 201, 202, 203]. How-

ever, these modalities are heterogeneous and must be processed by different kinds of net-

works to show their effectiveness. Combining these heterogeneous features from different

modalities through feature/score fusion introduce noise resulting in a downgraded action

recognition performance [204]. The second is Pose-driven attention mechanisms to guide

the RGB cues for action recognition as in [205, 206, 50]. In [206, 205], the pose driven

attention networks implemented through LSTMs, focus on the salient image features and

the key frames. Then, with the success of 3D CNNs, 3D poses have been exploited to

compute the attention weights of a spatio-temporal feature map. Then, authors in [50]

have proposed a more general spatial and temporal attention mechanism in a dissociated

manner. But all the above methods have the following drawbacks: (i) there is no accurate

correspondence between the 3D poses and the RGB cues in the process of computing the

attention weights; (ii) the attention sub-networks neglect the topology of the human body

while computing the attention weights; (iii) the attention weights in provide identical

spatial attention along the video. As a result, action pairs with similar appearance like

jumping and hopping are mis-classified. Therefore, Das et al. [55] propose a new spatial

embedding to enforce the correspondences between RGB and 3D poses which has been

missing in the state-of-the-art methods. The embedding is built upon an end-to-end learn-

able attention network. The attention network considers the human topology to better

activate the relevant body joints for computing the attention weights. Recently, Duan et

al. [207] propose to leverage a 3D heatmap stack instead of a graph sequence as the base

representation of human skeletons. After that, a Slow-Fast [208] fashioned two-stream

network is utilized to model the spatio-temporal relation jointly using RGB and Pose.

However, all the above approaches are designed for action recognition only. The addi-

tional modalities should provide clues in long-term temporal modelling which is missing in

the short video clip. In action detection, previous methods utilizes the multiple modalities

either in the early phase [7, 32] (i.e., input level) or late fusion [17, 18] (i.e., output pre-

diction score level). There are only a few methods [209, 210, 211] study the multi-modal

fusion in the feature-level for action detection task and all the methods are designed for

the combination of audio and RGB. Consequently, we propose a multi-modal action de-

tection baseline method that enhances the RGB stream by the additional modality-driven

attention mechanism at the feature-level. The additional modality can be modalities such

as 3D poses or optical flow. Different from the previous methods, our baseline method can

generate the temporal region of interest in multiple temporal scales.



118 Chapter 6. Multi-Modal Representation Learning for Action Detection

6.2.2 Knowledge Distillation

The primary goal of Knowledge Distillation (KD) is to distill the information of a model

learned from a teacher network into a student network. Many KD studies [212, 213, 214,

215, 216] explored transferring the knowledge from large complex models to small sim-

pler models, i.e. model compression. In this work, we focus on cross-modal KD, where

the difference between the teacher and student models mostly relies on input modali-

ties rather than network architectures. In the video domain, Garcia et al. [193, 194]

developed a distillation framework for action classification with a four-step process that

hallucinates depth features into RGB frames. Similarly, MARS [192] trains a RGB net-

work in a single step, by back-propagating a linear combination of a OF distillation and

classification losses through the entire network. Recently, Luo et al. [195] proposed a

Graph Distillation (GD) method that can be applied to the action detection task. This

method utilizes sliding windows to process untrimmed videos and distillates the knowl-

edge of every window by minimizing the cosine distance in a mutual learning manner.

GD aims at exploiting the privileged modalities and thus relies on a significant number

of modalities. In contrast, our framework aims at effectively performing the distillation

from the available modalities. Moreover, GD transfers knowledge only between the corre-

sponding snippets (i.e. window), but does not consider the relations across snippets in the

distillation, which is critical for handling a sequence of actions. Thus, to better tackle dis-

tillation for action detection, in this chapter, we introduce two sequence-level distillation

loss terms to transfer the long-range temporal knowledge for action detection. Thanks to

our proposed methods, the network can be effective even with few additional modalities.

Fairly recent, given the advance in Transformer architecture, some methods intro-

duce the class or distillation token in Transformer to fuse knowledge of different modal-

ities [217, 218] or distillate knowledge across modalities [219, 220]. How to leverage

the Transformer to efficiently learn multi-modal representation to benefit action detection

task is our future work.

6.3 Attention-Guided Network (AGNet)

In this section, we introduce an end-to-end baseline method: Attention-Guided Net-

work (AGNet) for action detection which is built upon temporal convolutional net-

works [5]. An overview of the AGNet is shown in Fig. 6.2. The input is the encoding of a

video. The AGNet has two principal components: a stacked dilated temporal convolution

network (SD-TCN) and an attention module. In this work, the input to the base-network

is always the RGB frames. For attention module, the input is another modality, such as

3D human poses or optical flow. For simplicity, in the following, we consider the 3D poses
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Figure 6.2: On the left, we present the overview of the AGNet. In this figure, Bottleneck
indicates the 1D convolution that processes the features across time and which kernel size
is 1. On the right, we present the computation flow for one block. In each block, k is the
kernel size and d is the dilation.

as the input to the attention module. The SD-TCN and the attention module have both a

5-block structure. These blocks have temporal convolution with increased dilation rates

setting, thus the receptive field increases exponentially. The lower-blocks have smaller

reception fields while the higher blocks have larger receptive fields. For every block, the

pose-attention module generates an attention mask that represents the temporal saliency

of human actions in a video. The main contribution is the attention module, which utilizes

3D poses to generate the attention weights at multiple temporal scales. We believe that 3D

poses are complementary to the RGB modality as they help filtering the irrelevant context

in the RGB frames and providing more weight to the pertinent frames of the video. Below,

we detail the video encoding and the model structure of AGNet.

6.3.1 Video Encoding

Similar to most action detection models [17, 18, 5], our model processes the encoding of

video segments. In this work, we use state-of-the-art convolution model (i.e. 2D+T CNN

or (2+1) D+T GCN) to extract appearance features in the video. The RGB encoding is

extracted by a CNN such as Inception [73] or I3D [22]. The pose encoding is extracted by

a GCN such as ST-GCN or 2s-AGCN [67]. We fine-tune the 3D convolution model on the

training set of TSU to better model the spatial information in this dataset.

Training: To fine-tune the feature extraction model, firstly, we divide the video into 100-

frame-long non-overlapping segments. For the RGB modality, to tackle the camera fram-

ing challenge, we apply SSD [142] to extract the human crops (i.e. bounding box) of the

subject, and resize the crop into 224×224. For 3D poses, the subject would always be re-

projected at the center of the screen with a fixed scale by using [135]. We then train the
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classification model [22, 67] with the uni-sampled 16 frames for each segment. For the

RGB modality, we flip all the images in each segment with a probability of 0.5. The inputs

to the RGB or 3D pose convolution model are the RGB human crops and correspond-

ing skeleton of a segment respectively. We optimize the multi-label binary cross-entropy

loss [108] to learn the parameters.

Feature extraction: To extract the features, a video is divided into T non-overlapping

segments, each segment consisting of 16 frames. These segments of RGB human crops or

pose sequences are sent to the fine-tuned spatio-temporal model to extract the segment

representation. We stack the segment-level features along the temporal axis to form a

T ×Cin dimensional video representation where 1×Cin is the feature shape per segment.

This video representation denoted as Fin is further input to the RGB or pose stream in our

architecture.

6.3.2 Model Structure

In this section, we present the structure of the AGNet.

Our stacked-dilated temporal convolution network (SD-TCN) is a TCN-based network.

This network has 5 blocks, each block has one 1-dimensional convolution layer, one

Hadamard product with the attention weights from the attention module and a resid-

ual link. For different blocks, we give different dilation rates to the convolution layer.

With these different settings in dilation, we can model local context in the lower block

and global context in higher blocks. In our experiment, we set the kernel size (k) to 3 for

all convolution layers, dilation (di) and padding rate to 2i−1, thus the reception field is up

to 2i + 1 for the ith block.

In parallel to the SD-TCN, the attention module is another TCN-based model. The

attention module has a similar 5-block structure as the SD-TCN, and also the same kernel

and dilation setting for the convolution inside the block. Thus, the attention module has

the same receptive field as the SD-TCN for each block. However, this module uses sig-

nificantly lower channel capacity to generate the attention weights. For each convolution

layer, it has a ratio of β (β ≤ 1) channels for the SD-TCN. The typical value is β = 1/8

in our experiments, which is much lower than the SD-TCN. In the attention module, after

the convolution layer, we generate the attention map Ai. A bottleneck layer is applied as a

transformation to match the channel size to the SD-TCN. Normalizing the high number of

T attention weights with softmax leads to extremely low values, which can hamper their

effect. To avoid this, we use sigmoid activation to generate the final attention map.

As shown in Fig. 6.2, the input RGB and pose encoding are firstly fed to the bottleneck

layers. The output channel size from the bottleneck layers is C2 and βC2, corresponding

to the SD-TCN and attention module respectively. Then 5 blocks are stacked, the set of
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operations in each block can be formulated as follow:

FA
i+1 = FA

i +ReLU(Conv1D(FA
i , k, di)) (6.1)

Ai = Sigmoid(WiReLU(Conv1D(FA
i , k, di))) (6.2)

FB
i+1 = FB

i +ReLU(Conv1D(FB
i , k, di)) ◦Ai (6.3)

where FB
i and FA

i indicates the input feature map of the ith block of the SD-TCN and

attention module respectively. Ai is the attention mask generated from the ith block.

◦ indicates the Hadamard product. Wi ∈ RC2×βC2 are the weights of the bottleneck

convolution in attention module.

Finally, we compute the per-frame binary classification score for each class (i.e. predic-

tion logits). The classifier is on top of the SD-TCN, which is another bottleneck convolution

with sigmoid activation:

P = Sigmoid(W
′
FB
6 ) (6.4)

where P ∈ RT×C3 are the prediction logits and W
′ ∈ RC3×C2 are the weights of the

bottleneck convolution, C3 corresponds to the number of action classes. To learn the

parameters, we optimize the multi-label binary cross-entropy loss [108].

6.3.3 Comparison with PDAN

Both PDAN (see Sec. 4.4) and AGNet try to decompose the attention map into different

temporal levels. However, there are two main differences: firstly, instead of self-attention

using only RGB, AGNet explores cross-modality attention. Secondly, AGNet utilises the

snippet-level attention, not the kernel-level. we find that the cross-modality model can

not provide fine-grained information as kernel-level attention. Thus different from PDAN,

we choose to learn the attention outside the kernel, which provides the global temporal

region information.

6.3.4 Experiments

As mentioned earlier, AGNet is the proposed baseline of TSU dataset. The goal of these

experiments is to verify that the TSU dataset provides novel challenges that are not yet

addressed by the other state-of-the-art datasets. For that, we show that the state-of-the-art

detection methods perform poorly on TSU and that our AGNet significantly improves the

results on TSU as it is designed to address the targeted real-world challenges. To evaluate

the effectiveness of the AGNet, we compare it on TSU dataset with 9 detection methods,
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CS CV

Po
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3D
+

T AGCN+Bottleneck [67] 10.1 12.6
AGCN+LSTM [140] 17.0 14.8
AGCN+SD-TCN 26.2 22.4

R
G

B

2D

Inception+Bottleneck [73] 11.5 5.2
Inception+LSTM [140] 13.2 5.3
Inception+SD-TCN 22.3 12.1

2D
+

T

R-I3D [81] 8.7 -
I3D+Bottleneck [22] 15.7 9.2
I3D+Non-local block [28] 16.8 9.6
I3D+Super event [17] 17.2 10.9
I3D+LSTM [141] 22.6 12.9
I3D+Bidirectional-LSTM [139] 24.5 15.1
I3D+Dilated-TCN [5] 25.1 13.9
I3D+MS-TCN [19] 25.9 13.1
I3D+TGM [18] 26.7 13.4
I3D+SD-TCN 29.2 18.3

RGB+Pose AGNet 33.2 23.2

Table 6.1: Per-frame mAP (%) on the Fine-grained TSU dataset.

which represent the state-of-the-art on other densely-annotated datasets [2, 13]. We also

perform a comparative study between TSU and the challenging Charades dataset for the

action detection task to better highlight how real-world challenges are addressed by both

datasets.

6.3.4.1 Implementation Details

Video encoding: We use three types of encoders to extract the encoding of the input

videos. As described in section 6.3.1, AGCN [67] and I3D [22] are fine-tuned on TSU and

then the features are extracted. Moreover, we also evaluate this dataset on per-frame fea-

tures. We use Inception V1 [73] pre-trained on ImageNet [138] to extract the features.

The channel size of I3D and Inception is 1024, the channel size of AGCN is 256.

AGNet: We set N = 6 blocks. For I3D and Inception features, the channel size is 1024,

for AGCN pose features, the channel size is 256. C1 is 512 and β is 8. We use Adam opti-

mizer [162] with an initial learning rate of 0.001, and we scale it by a factor of 0.3 with

a patience of 10 epochs. The network is trained on a 4-GPU machine for 300 epochs with

a mini batch of 32 videos for Charades and 2 videos for TSU. The other baselines’ imple-

mentation is mentioned in chapter 3.4.1. As mentioned in 3.4.1.2, the Bottleneck used for

comparison is a Bottleneck on top of the segment-level features. The improvement over

the Bottleneck reflects the effectiveness of modeling temporal information.
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CS CV
IoU Threshold (θ) 0.3 0.5 0.7 0.3 0.5 0.7
Bottleneck [22] 5.0 2.5 0.5 2.3 1.1 0.2

Non-local block [28] 4.9 2.2 0.6 1.6 0.7 0.1
Super event [17] 5.7 2.8 0.7 1.8 0.9 0.1

LSTM [140] 11.6 6.4 2.2 6.0 3.2 0.7
Bidirectional-LSTM [139] 13.3 7.9 3.5 9.0 5.4 1.2

Dilated-TCN [5] 12.8 6.9 3.0 5.8 3.3 0.8
MS-TCN [19] 13.2 7.6 3.0 5.3 3.1 0.4

TGM [18] 15.1 9.4 4.2 5.5 3.2 0.4
AGNet 22.7 15.3 6.0 12.5 7.8 2.9

Table 6.2: Event-based mAP (%) for different IoU thresholds for the TSU dataset. The
AGNet utilizes both pose and RGB modalities and the other methods utilize only RGB.

6.3.4.2 Experimental Analysis on TSU

In this section, we conduct the ablation and data modality analysis on the fine-grained

version of the TSU. In Table 6.1, we firstly compare the three different video encodings:

AGCN pose features, inception RGB features and I3D RGB features. We conduct the exper-

iments on the Bottleneck, LSTM and the AGNet. The AGNet is the SD-TCN (RGB) guided

by a attention module (pose). On one hand, we observe that using I3D RGB features

improves the detection results by up to 11.1% w.r.t. the same method using Inception fea-

tures. This improvement is intuitive because of the higher ability of the 3D convolutional

operations to capture spatio-temporal relations using several datasets for pre-training. On

the other hand, we find that, while using the same method, 2D+T RGB features perform

better than pose features in Cross-Subject protocol. However, pose features perform bet-

ter than RGB features in Cross-View protocol (+4.1% for SD-TCN). This reflects that 3D

skeleton is more stable while changing viewpoints, which is very helpful in multi-view set-

tings as in TSU. Finally, for the AGNet: SD-TCN (RGB) guided by pose attention module,

outperforms RGB and pose SD-TCNs for both CS and CV protocol (+4.0% and +4.9%

w.r.t RGB SD-TCN for CS and CV protocol respectively). We also compared AGNet with

late fusion SD-TCN (RGB + Pose), our AGNet +0.6% w.r.t. late fusion mechanism on TSU

CS protocol. Note that our method lightweights Pose stream while late fusion SD-TCN has

regular streams for both RGB and Pose modals.

In table 6.2, we present the event-based evaluation of the detection methods. The

AGNet provides more precise predictions than the state-of-the-art methods. However,

all these performances are relatively low, indicating that current methods are far from

addressing real-world conditions.

Inspired by Charades, to understand the relation between the number of action sam-

ples and performance, Fig. 6.3 illustrates AP for each action. In this figure, the action

classes are sorted by the number of available samples, together with the name of best per-
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Figure 6.3: Average Precision for the actions in TSU. The classes are sorted by their size.
The mAP is marked by a red line. We can see that while there is a slight trend for smaller
classes to have lower accuracy, many classes do not follow that trend.

(1) Top 10 Skeleton>RGB (2) Top 10 RGB>Pose

AGNet (RGB+Pose)3D skeleton RGB
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Figure 6.4: Frame-based mAP of the AGNet using different modalities: (1) Top 10 actions
where the 3D skeleton stream outperforms the RGB stream for the CV protocol. (2) Top
10 actions where the RGB stream outperforms the 3D Skeleton stream for the CS protocol.

forming classes. The number of samples in a class is primarily decided by the universality

of the action (can it happen in any scene), and if it is typical of household environments.

It is interesting to notice that, while there is a trend for actions with a higher number of

examples to have higher AP, it is not true in general. Activities such as breakfast, and get
water have top-10 performance despite being represented by only few examples.

To understand the advantages of 3D skeleton and RGB modality, in Fig. 6.4, firstly, we

select the top 10 actions where 3D skeleton stream outperforms RGB stream in CV proto-

col. We find that 5 out of the 8 pose-based actions that we defined in Fig. 3.4 (4) are in

these top 10 actions. This confirms that 3D skeleton stream has filtered the unnecessary

context information in the image, resulting in a better model for the posed-based actions.

Secondly, we select the top 10 actions where RGB stream outperforms 3D skeleton stream

in CS protocol. We find 7 out of 10 actions are the similar actions with different objects

that we defined in Fig. 3.4 (5). This confirms that RGB stream provides the object infor-

mation lacking in 3D skeleton, which is critical to detect the actions highly correlated with

objects. Finally, we show that, while using our attention-based baseline, we can handle

both challenges of pose-based actions and similar actions involving different objects.

In Fig. 6.5, we present the attention map of the attention module for 5 layers (on
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Figure 6.5: Qualitative analysis of the detection result and the attention map. On the top,
we visualize the attention map Ai for 5 layers. On the bottom, we present the correspond-
ing ground truth and detection performance for an example video.

Figure 6.6: Qualitative study

top), and the corresponding ground truth vs. action detection results (on the bottom). On

the one hand, in area (A), while detecting short actions, the attention module allocates

high attention weights at the lower layer, corroborating that the lower layer is particularly

sensitive to short actions. On the other hand, in area (B), with long actions (e.g.Read
book), only the higher layers allocate high attention weights to the frames in the kernel.

This reflects that the higher layers are more sensitive to long-term actions.

In Fig. 6.6, we show qualitative visualization results of three model predictions. In

this video, there are one composite long action and 5 elementary actions. We notice that

our AGNet can better tackle the long-term temporal relations, detecting the composite ac-

tion and the related elementary actions simultaneously. Additionally, the AGNet provides

better detection for both elementary (e.g. wipe table) and composite actions (e.g. Clean
dishes) compared to I3D and LSTM. However, the detection precision is not sufficient,

more work is needed to design better models to detect both composite and elementary

actions in untrimmed videos.

In Fig. 6.7, we compare the performance across 4 different action properties of the

AGNet and Bottleneck using both RGB and pose modalities (i.e. I3D+AGCN). Bottleneck

layer is the baseline reflecting the quality of the feature without temporal processing.

Thus, the comparison with the Bottleneck can reflect the improvement from our proposed
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Figure 6.7: We compare the AGNet against the Bottleneck approach across three different
action properties using both RGB and Pose modality. Evaluation is provided on frame-
based mAP on TSU-CS. The Bottleneck performs poorly on all these types of actions,
whereas the AGNet improves the performance on all of them.

methods and the remaining open issues on Fine-grained TSU. In Fig. 6.7 (1), we observe

that the AGNet significantly improves the detection of pose-based actions compared to

Bottleneck. However, the AGNet does not tackle so well similar motion and subtle motion

actions. In Fig. 6.7 (2), we show that longer actions are easier to recognize than shorter

ones, similarly to [221]. The consistent performance gain of the AGNet for actions with

different temporal duration corroborates its effectiveness to adapt to temporal dynamics.

Finally, we show for the AGNet the improvement in the detection of all actions, even of the

ones with small numbers of training samples. We are not applying specific measures in the

AGNet to handle this issue. Adopting strategies like class-weighting, optimizing through

focal loss could be explored in future work.

In summary, we find that the available modalities in TSU are complementary. The

AGNet leverages these modalities to address the challenges in TSU such as multi-views,

pose-based actions and similar motions.

6.4 Knowledge Distillation for Action Detection

In this section, we first describe the overall architecture of our approach. We then detail

the different losses in the proposed framework.

6.4.1 Overall Architecture

An overview of the architecture is shown in Fig. 6.8. In this work, the knowledge transfer

occurs between the teacher and student networks. Both networks are composed of a visual

encoder and a temporal filter, following the Seq2Seq paradigm. For the visual encoder, we

use I3D [22] to encode the spatio-temporal information of a snippet for RGB and Optical

Flow (OF). Similar to previous action detection methods [19, 60], sequences of 16 frames

are encoded to a single feature vector representation. The encoded feature maps of a video
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Figure 6.8: The proposed distillation framework. On the top, we present an example
of a batch size (B) of 2 untrimmed videos (V) for both student (S) and teacher (T )
networks. In this example, the input includes a pair of positive videos and a pair of
negative videos. The sequence-level distillation and classification losses are employed
only for positive pairs, while atomic-level distillation leverages both positive and negative
pairs. On the bottom, we present the atomic-level distillation.

are then fed to the temporal filter. The choice of the temporal filter is flexible, since we can

choose any well-known temporal model [18, 5, 26]. Here, we set a 5-layer SS-TCN [19] as

default temporal filter, which is based on Dilated-TCN [5]. Both student and teacher have

the same type of temporal filter with the same settings (i.e. dilation rate and channel size).

In the training phase, the knowledge distillation is performed from the output feature of

the teacher network towards the student network. Similar to [18, 102], this output feature

map is further classified and grouped as a class-wise actionness detector for detecting the

actions.

The input of teacher network is flexible to variant costly modalities (e.g. OF, 3D poses).

By default, we chose the teacher network as OF stream, whereas the student network as

RGB stream. In the following sections, we express the feature representation of a video in-

dexed i with Fr(i, t, c), where r ∈{T , S} represents the teacher T and student S; t ∈ [1, T ]

represents the snippet index and T the length of the video in snippets; c ∈ ZC represents
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the channel index, C is the channel size. This expression can be used for representing

feature of a video or a snippet. For example, Fr(i, :, :) and Fr(i, t, :) represent the feature

map of a video i and the feature vector of a snippet for video i at time step t, respectively.

For an augmented RGB representation, the distillation is performed in two levels. First,

we perform distillation at atomic-level to distillate the elementary representation of an

action. Second, we perform a sequence-level distillation to distillate (i) the salient rela-

tions among the snippets, and (ii) the significant temporal variations across the snippets

indicating action boundaries.

6.4.2 Atomic-level Distillation

To transfer the knowledge between two video sequence, firstly, we adapt and integrate

the "representation loss" [195] in our overall formulation, dubbed Atomic KD loss. This

loss term encourages the student to mimic the feature representation of every individual

snippet feature of the teacher network. Our formulation is different from the previous

work [195] that minimizes the cosine distance between the snippet features. Inspired by

the recent success on contrastive learning [222, 223, 224], we build our model using a

contrastive strategy to enhance the atomic-level knowledge imitation.

As shown in Fig. 6.8, let [FS(i, t, :), FT (i, t, :)] represents a pair of training snippets

from same video i at time t but across different modalities for the teacher and student net-

works. Let FT (j, t, :) be another snippet representation from a randomly chosen video j of

the teacher stream and having a different label. We define the pair [FS(i, t, :), FT (j, t, :)]

as positive when i = j, otherwise negative. We aim at pushing closer the representations

FS(i, t, :) and FT (i, t, :), while pushing apart FS(i, t, :) and FT (j, t, :), which can be seen

as a binary classification task that tries to maximize the log-likelihood of the mutual infor-

mation between the student and teacher representations. In practice, the loss is updated

by batches with a batch size B. If N negative pairs exist for each positive pair, then the

number of samples in a batch of P positives is given by B = (N + 1)P (see Fig. 6.8). To

measure the mutual information between the student and the teacher, we compute:

LAtomic =
1

PT

∑
i=j

T∑
t=1

log[
expFT (j,t,:)⊤FS(i,t,:)

expFT (j,t,:)⊤FS(i,t,:) +ϕ
]+

1

T

∑
i ̸=j

T∑
t=1

[log(1− expFT (j,t,:)⊤FS(i,t,:)

expFT (j,t,:)⊤FS(i,t,:) +ϕ
)]

(6.5)

where PT represents total number of positive snippets, ϕ is the ratio of the negative

snippets to the cardinality of snippets in the training set. Note that, this loss term is

accompanied by a linear combination with the other distillation losses and the class-wise

entropy loss (i.e. supervised learning).

As the length of an action instance is often larger than a snippet, with atomic-level
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distillation, the teacher network transfers only the sub-representation of the actions [119].

Next, we propose a novel sequence-level distillation mechanism which has been neglected

in the state-of-the-art methods.

6.4.3 Sequence-level Distillation

Sequence-level distillation transfers cross-snippet knowledge between different modali-

ties in an untrimmed video by incorporating contextual information and taking benefit

from the variations of cross-modal representation along action boundaries. Consequently,

we propose two sequence-level distillation losses: (1) Global Contextual Relation, (2)

Boundary Saliency, to improve action detection performance. Note that both sequence-

level distillation losses are applied only between positive video pairs, corresponding to P
videos.

6.4.3.1 Global Contextual Relation

For sequence-level distillation, firstly, we propose to transfer contextual knowledge be-

tween modalities of the entire video. Intuitively, the detection of one given action could

be supported by the detection of other related actions, which may be distant in the

untrimmed video. Hence, the representation of an action snippet could benefit from the

contextual information across other snippets in the video pertaining to another modality.

But the challenge in modeling such contextual relationships is the high complexity of the

model for taking into account all the snippets in a video in relation with a single snippet.

Therefore, we propose an embedding that projects the student-teacher features in a space

where the global contextual relations among all actions are computed.

For the global contextual relation loss, we compute the Channel Covariance Matrix

(Cov) of the sequence of snippets which projects the entire video into a compact embed-

ding space. Note that the length of untrimmed videos in the dataset may vary a lot, while

the channel size is fixed for all videos. Providing a feature map of the video, Cov en-

codes the variance within each channel and the covariance between all channels over the

whole video. Each element in the matrix reflects the correlation between two channels,

which can characterize the specific activation patterns along time of an action class. Thus,

the covariance matrix captures the relations between snippets along time and indicates

whether a salient relation exists (i.e. which may be related to an action), while being

computationally optimal. Here, the Cov is formulated as:

Covr(i) =
1

T − 1

T∑
t=1

[Fr(i, t, :)− µi][Fr(i, t, :)− µi]
T (6.6)

such that r ∈ {T ,S}, and µi represents the mean value of all the channels in the feature

map Fr(i, :, :) of a video i. The covariance matrix Covr ∈ RC×C is a symmetric matrix and
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thus it is determined by C(C+1)
2 values. We apply a filter mask extracting all the entries on

and above the diagonal of the covariance matrix. We reshape these values in the form of

a vector Gr(i):
Gr(i) = mask[Covr(i)] (6.7)

where mask(.) is the filter mask operation. The obtained feature vector Gr(i) represents

the channel covariance of the video. We then enforce a distillation loss in the embedded

space from the frozen teacher to the student over the positive video pairs (P). This is

performed by minimizing the mean square error, which is formulated as the Global Con-

textual Relation loss:

LGlobal =
1

P

P∑
i=1

||GT (i)−GS(i)||2 (6.8)

The differential property of equation 6.6 enables to train our teacher-student framework

jointly with the other losses.

6.4.3.2 Boundary Saliency

The boundary saliency loss term is used in our formulation to learn comparatively precise

boundaries for action detection. In an untrimmed video, we find that the starting and

ending of the action are more salient than other parts, that brings us crucial information

to detect the transition of an action to another action or background. Intuitively, the sharp

variation across consecutive snippets in the video can reflect such saliency of the action

boundaries, which is a cross-snippet knowledge. Transferring the knowledge of feature

evolution along time encourages the features to be more sensitive at the action start and

end, thus assisting the class-wise actionness detector in the student network to detect

precise boundaries of the action instances. Such an approach is especially effective when

the modality processed at the teacher network provides pertinent boundary information.

For instance, modalities which are sensitive to motion (e.g. OF, 3D poses) are able to

bring a significant benefit from this loss term. In addition, this loss-term also encourages

to retain the temporal consistency across the different modalities.

In practice, we first define the variation between consecutive snippets as V ar(i) for

video i, which is formulated as:

V arr(i) =
1

T − 1

T−1∑
t=1

C∑
c=1

[Fr(i, t+ 1, c)− Fr(i, t, c)] (6.9)

where r ∈ {T ,S}. Then, we define the Boundary Saliency loss as the L1 distance between

the frozen teacher and the student network over the P positive pairs, which is formulated

as:

LBoundary =
1

P

P∑
i=1

|V arT (i)− V arS(i)| (6.10)
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With both sequence-level distillation losses, the student network learns two types of

cross-snippet information from the other modalities. Below, we summarize the training

procedure section.

6.4.4 Training and Testing

To sum up, firstly, we train the teacher networks with the classification (Cls) loss, i.e

cross-entropy. The weights of the teacher network is then frozen followed by training the

student network. During training, multiple distillation losses are jointly optimized with

classification loss for the end task, i.e. action detection. On one hand, the atomic distil-

lation is trained in a contrastive manner (with positive and negative pairs), whereas the

sequence-level distillation losses are performed in a non-contrastive manner by utilizing

only the positive pairs in a batch. The overall objective is formulated as:

Ltotal = LCls + α1LAtomic + α2LGlobal + α3LBoundary (6.11)

where αi are the loss weighting factors determined during the validation step. LCls rep-

resents the cross-entropy classification loss. We call the educated-student network as

Augmented-RGB. During inference time, we only use RGB videos as input to detect the

actions and up-sample the predicted logits to the same temporal resolution as the ground

truth to perform the evaluation.

6.4.5 Experiments

To corroborate the effectiveness of our proposed KD framework, we perform an exhaustive

experimental analysis for the action detection task.

6.4.5.1 Datasets

We evaluate our framework on five action detection datasets: Charades [114], PKU-

MMD [64], TSU [43], THUMOS14 [11], and MultiTHUMOS [13]. These datasets contain

videos of different types: (1) sport and daily living videos, (2) short and long videos, (3)

densely and sparsely labelled videos. Note: there are two settings on Charades: (a) video-

level action classification, (b) frame-level action detection (Charades_v1_localize [114]).

We only target the second one in this paper.

All the datasets are evaluated by the mean Average Precision (mAP). We evaluate the

per-frame mAP on densely labelled datasets following [13, 114].

6.4.5.2 Implementation Details

For extracting the additional modalities, Optical Flow (OF) is obtained using TVL1 [225],

the 3D Poses are extracted using LCRNet++ [134]. In this work, we adapt the 5-layer
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LAtomic LGlobal LBoundary Charades PKU-MMD
Teacher-OF – – – 18.6 68.4
Vanilla-RGB – – – 22.3 79.6
Two-stream – – – 24.8 83.4

Atomic ✓ – – 23.9 82.7

Sequence
– ✓ – 23.8 83.7
– – ✓ 23.4 83.1
– ✓ ✓ 24.2 84.2

Mixture
✓ ✓ – 24.4 84.3
✓ – ✓ 24.2 83.7

Total ✓ ✓ ✓ 24.6 85.5

Table 6.3: Ablation study for the proposed framework on Charades and PKU-MMD (CS)
datasets. For PKU-MMD we consider IoU=0.1.

SSTCN [19] as the temporal filter, the output channel size C is 256. While training

the teacher-student framework, we use Adam optimizer [162] with an initial learning

rate of 0.001, and we scale it by a factor of 0.3 with a patience of 10 epochs. The net-

work is trained for 300 epochs with a mini-batch B of 16 videos for Charades, 8 videos

for PKU-MMD, THUMOS, and 4 videos for the TSU dataset. N is set to 1, P as B
2 and

αi=[300, 100, 5]. We use binary cross-entropy for multi-label classification. For sparsely-

labelled datasets: THUMOS14 and PKU-MMD, following [195, 102], a post-processing

step is performed to generate the action events.

6.4.5.3 Ablation Study

Firstly, we discuss about the effectiveness of the losses proposed in our distillation frame-

work. Tab. 6.3 shows the comparison of action detection performance on Charades and

PKU-MMD (IoU=0.1). This table also shows the impact of progressively integrating the

KD losses in our distillation framework. The vanilla-RGB is the network trained using

only LCls without distillation. Compared to vanilla RGB, while training with LAtomic,

LGlobal, LBoundary independently obtains an improvement of +3.1, 4.1, 3.5% mAP on

PKU-MMD respectively. The action detection performance is further improved by the con-

vex combination of any two losses w.r.t. their individual counter-parts. This shows the

complementary functionalities of the proposed losses. Also, note that the combination of

the sequence losses contributes higher than the atomic loss. This observation supports the

importance of the sequence-level losses for action detection. Finally, when trained with all

the three losses, the student outperforms all the baselines (+2.3%, +5.9% w.r.t. vanilla

RGB stream on Charades and PKU-MMD). These results show that both our design choices

and different losses contribute to the overall performance of our approach.

In Tab. 6.4, we show that our distillation mechanisms perform better at feature-level

than at logit-level. The primary reason behind this trend is that we are performing cross-
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Table 6.4: Feature-level and logit-
level distillation. The student learns
from OF stream. For PKU-MMD, we
set IoU=0.1.

Charades PKU-MMD
Logit 23.7 84.9
Logit+Feature 24.2 85.4
Feature (Ours) 24.6 85.5

Table 6.5: Comparison with cross-modal
KD methods and LAtomic on Charades
and PKU-MMD datasets. For PKU-MMD,
IoU=0.1.

Charades PKU-MMD
Vanilla-RGB 22.3 79.6
+LHall [193] 22.7 81.5
+LMARS [192] 23.5 81.7
+LGD [195] 23.3 82.2
+LAtomic(Ours) 23.9 82.7

Charades PKU-MMD TSU-CS TSU-CV
Teacher-OF 18.6 68.4 29.4 17.5
Teacher-Pose 9.8 65.0 26.2 22.4
Vanilla-RGB 22.3 79.6 29.2 18.9
Two-stream RGB + Pose 23.0 82.9 32.6 23.7
Two-stream RGB + OF 24.8 83.4 33.5 19.5
Pose Augmented RGB 23.2 84.7 32.4 23.6
OF Augmented RGB 24.6 85.5 32.8 19.3
Pose + OF Augmented RGB 24.9 86.3 33.7 23.8

Table 6.6: Ablation for different modalities on Charades, PKU-MMD (CS), TSU-CS and
TSU-CV. For TSU, the reported values are frame-based mAP (%). The IoU threshold for
PKU-MMD is 0.1.

modal distillation, where the frozen teacher may under-perform compared to the student

network (e.g. OF on Charades and PKU-MMD) w.r.t. the different modalities. As the logits

represent the classification scores, they may introduce noise from the weak teacher via KD

into the RGB student.

6.4.5.4 Analysis of our Distillation Framework

In this section, we further analyze our distillation framework in different aspects.

Comparison with popular cross-modal KD methods: Tab. 6.5 presents a comparison of

our extended atomic distillation with state-of-the-art cross-modal KD methods, learning

from OF. These baseline methods [226, 192, 193, 227] using traditional losses like MSE

and cosine distance are actually designed for classification tasks. For the comparative

analysis with our LAtomic, we adapt them following [195] for the task of action detection.

LAtomic consistently outperforms all the baseline methods on Charades and PKU-MMD

datasets (+1.6%, +3.1% w.r.t. vanilla RGB stream on Charades and PKU-MMD).

Analyzing our framework with different modalities: In Tab. 6.6, we validate that our

proposed method is generic and can be effective with different modalities. For experimen-

tation, we perform distillation from OF and 3D Poses. For 3D poses, the teacher consists

of 2s-AGCN [228] as visual encoder followed by the temporal filters for detecting actions.

In datasets like Charades, most actions involve human-object interactions with prominent

motion patterns and in datasets like PKU-MMD, most actions have similar appearance with
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Stream SH NTU-60 NTU-60 NTU-120 NTU-120 N-UCLA
(CS) (CS) (CV) (CS1) (CS2) (V 3

1,2)
#training samples 8.8k 34.7k 37.6k 52.9k 52.2k 1k
RGB 53.4 85.5 87.3 77.0 80.1 86.0
3D Poses 51.5 85.8 93.8 79.6 81.1 78.2
RGB+3D Pose (Late Fusion) 63.0 87.7 94.8 81.1 83.3 87.1
Ours 67.1 90.8 93.8 85.1 87.6 89.1

Table 6.7: Top-1 accuracy of RGB, 3D Poses, and the Augmented-RGB on 4 datasets.

variant motion over time. Thus, OF stream provides more salient information than Pose

stream on these datasets. Whereas 3D Poses are robust to the change of the view-points

and thus, significantly improves the action detection performance in cross-view settings

(see Tab. 6.6). Furthermore, with a multi-teacher network with OF and Poses, the RGB

stream now dubbed as Pose + OF Augmented RGB learns some additional information

(+2.6%, +6.7%, +4.5%, +4.9% w.r.t. vanilla RGB stream on Charades, PKU-MMD, TSU-

CS, TSU-CV respectively).

Can LAtomic generalized to action recognition? As the proposed atomic-level loss is

close to action recognition task. We also conduct the experiment for studying if this loss-

term can benefit the action recognition task. In practice, we distillate the knowledge from

3D poses to RGB stream, where RGB backbone is an I3D model [22] and Pose backbone

is a Graph Convolutional Network [178]. The distillation occurs at the feature-level be-

tween the outputs of the two backbones. In Table 6.7, we compare our distillation model

with uni-modal models and their combinations on SH [50], NTU-60 [62], NTU-120 [229]

and N-UCLA [63] datasets. Following the state-of-the-art trends, RGB and Poses are com-

bined using score level fusion (i.e., late fusion). Our method significantly outperform the

individual modalities. With our contrastive distillation (LAtomic), the Augmented-RGB

outperforms the late fusion strategy of combining RGB and Poses on all the datasets ex-

cept NTU-60 (CV protocol). This experiment shows the generalization and robustness of

our atomic-level distillation method. We have also extexded our Video Pose Network [55]

by this atomic-level distillation loss and further outperform SoTA on multi-modal action

recognition task [54].

Inference time & Complexity: Fig. 6.9 shows the precision vs inference time per video

on Charades dataset. The inference time includes the time of extracting the additional

modalities and the processing time of the visual encoder and temporal filter. We find

that Two stream RGB + TVL1 [225] achieves high precision on Charades, but at the

expense of a high computational cost. In this work, we use TVL1 to obtain the OF modality.

Although there are methods [230, 231] that generate OF at higher speed, these methods

perform significantly worse than TVL1 [192]. Similarly, the computation of accurate 3D

Poses is not real-time, and hence doubles the video processing time [134]. With these
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Figure 6.9: Precision vs Inference time per video on Charades.

Figure 6.10: Channel Covariance. We visualize the Covariance matrix of a video for the
vanilla RGB, vanilla OF, the two-stream RGB+OF, and the Augmented-RGB (LGlobal). For
better visualization, we normalize the matrix to [0,1] and set a threshold of 0.5.

modalities in training phase, our proposed framework avoids estimating these modalities

at test time while keeping the performance of two-stream network. The processing speed

at the inference phase (I3D+SSTCN) is about 140 fps using 4 GPUs, thus can be seen as a

real-time processing.

Concerning complexity, as we have the same type of temporal filter and encoder for

teacher and student, the Augmented-RGB stream retains the same number of parameters

as the vanilla RGB stream at inference time, whereas two stream network doubles the

number of parameters often causing over-fitting [232].

6.4.5.5 Qualitative Analysis

With Global Contextual Relation loss, the student learns the relationships among the ac-

tion instances of the teacher network along with retaining the student’s individual repre-

sentation. As shown in Fig. 6.10, with only LGlobal, the channel covariance representation

of Augmented-RGB is closer to the one of RGB+OF. Hence, the Augmented-RGB achieves

performance close to the one of the two-stream network.

We also compare the performance of RGB stream with Boundary Saliency distillation and

vanilla RGB stream. In Fig. 6.11, we find that the network with LBoundary detects tighter
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Figure 6.11: Action boundary detection: (1) Ground truth indicates if it is action or back-
ground at this frame. (2) The boundaries detected without LBoundary, (3) The boundaries
detected with LBoundary.

Figure 6.12: Difference of Average Precision for two sequence-level distillation losses on
Charades dataset. G: LGlobal, B: LBoundary.

temporal boundaries of the actions compared to the vanilla network. To further show

how two sequence-level distillation losses are complementary, we compare APs for a stu-

dent that is trained with only LGlobal or LBoundary on Charades in Fig. 6.12. We find that

LBoundary improves more the actions with high variation across time (e.g. Throw pillow),

LGlobal improves more the actions with relatively longer duration (e.g. Holding mirror).

While learning from LGlobal+LBoundary, the student improves all action types, reflecting

how these two loss-terms complement each other.

Fig. 6.13 shows the class-wise actionness result of the vanilla-RGB and Augmented-

RGB in a densely labelled video along with the action detection results. We notice that the

Augmented-RGB detects tight action boundary w.r.t. the vanilla-RGB, e.g. use cupboard,
walk. Thanks to our distillation methods, the Augmented-RGB now predicts the use drawer
action which is miss detected in vanilla-RGB.

6.4.5.6 Comparison with the State-of-the-Art

In Tab. 6.8, we compare other action detection methods with our Augmented-RGB

on PKU-MMD. Recall that our distillation mechanisms are build on SSTCN. While one

method [236] using Poses achieves very high performance, this method is skeleton-based

and applicable only for specific datasets (i.e. NTU-RGBD [62], PKU-MMD [64]), where

high quality 3D Poses are available. In contrast, our method is generic and does not rely

on Poses at inference time while being more effective compared to other RGB based SoA

methods, such as Graph Distillation [195] (+2.6%, +2.4%, +4.6% for 0.1, 0.3, 0.5 IoU),
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Figure 6.13: Class-wise actionness with the detection results.

mAP@tIoU (θ)
Method 0.1 0.3 0.5

Te
st

m
od

al
it

y

Po
se

s

JCRRNN [233] 45.2 − 32.5
Convolution Skeleton [64] 49.3 31.8 12.1
Skeleton boxes [234] 61.3 − 54.8
Wang and Wang [235] 84.2 − −
Li et al. [236] 92.2 − 90.4

R
G

B

Deep RGB [64] 50.7 32.3 14.7
Qin and Shelton [237] 65.0 51.0 29.4
GRU+GD [195] 82.4 81.3 74.3
SSTCN+GD 83.7 82.1 76.5
Augmented-RGB 86.3 84.5 81.1

Table 6.8: Event-based mAP on PKU-MMD (CS) dataset. Only the last five rows utilize RGB
at inference time. Note that Graph distillation (GD) learns from more than 4 modalities
while our method learns from OF and Pose.

which utilizes the same temporal filter but more modalities (e.g. depth) at training time

compared to our method.

To show the generalization of our method, we also evaluate our distillation framework

on Charades and TSU-CS, MultiTHUMOS and THUMOS in Table 6.9. For all these com-

parisons, the student network is distilled with teacher pre-trained with OF in the training

phase, as Poses are not always available. For a fair comparison with our Augmented-

RGB, Vanilla-RGB and Two-stream networks are implemented using SSTCN. In this table,

we find that, anchor-based methods (e.g. AFNet) perform decently on sparsely-labelled

datasets, while failing on densely labelled datasets due to the combinatorial explosion of

proposals. On the other hand, Seq2Seq architectures are stable on both types of dataset.

With the help of our proposed distillation method, the Augmented-RGB achieves the com-

petitive Two-stream performance on all the datasets (+2.3, 3.6, 6.8, 7.2 % w.r.t. vanilla-

RGB on Charades, TSU, MultiTHUMOS, THUMOS14 respectively). We observe that the

performance improvement on THUMOS which consists of sport videos, is significant due
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Type Model
Dense Sparse

Charades TSU-CS MultiTHUMOS THUMOS14

Anchor

R-C3D [81] 12.7 8.7 — 28.9
TAL [20] — — — 42.8
G-TAD [21] — — — 40.2
AFNet [92] 13.1 — — 49.5

Seq2Seq

TAN [102] 17.6 — 33.3 46.8
WSGM [163] 18.7 — — 32.8
TGM [18] 21.5 26.7 44.3 53.5
Vanila-RGB [19] 22.3 29.2 37.8 46.1
Two-stream 24.8 33.5 44.4 53.7
Augmented-RGB 24.6 32.8 44.6 53.3

Table 6.9: Comparison with State-of-the-Art action detection methods. Our method learns
only from OF. The cells in white are the two stream results (RGB+OF), while the cell in
orange represents using only RGB at Inference time. We report frame-based mAP and
event-based mAP for the dense and sparse labelled datasets respectively. The IoU is 0.5
for THUMOS14.

to strong motion patterns resulting to an effective OF based teacher network. Thus,

Augmented-RGB while using only RGB at inference, performs on par with Two-stream

network for the task of action detection.

6.5 Conclusion

In this chapter, we have introduced two frameworks for learning cross-modal representa-

tion for the action detection tasks. Both frameworks are built upon a temporal convolution

network. Firstly, we propose AGNet, which is the baseline of TSU dataset. This model is

designed to address many real-world challenges existing in TSU. For instance, for dealing

with large temporal variance, the attention module generates attention masks at differ-

ent temporal scales to help detect actions with different temporal lengths. For multi-view

challenge, we use both RGB and 3D skeleton to better tackle the view variance problem.

This is because 3D skeleton is robust to different view points. We show that our baseline

outperforms the state-of-the-art on all the evaluation protocols of TSU. As a continuation

of AGNet, we build a distillation framework for action detection, which leverages only

RGB at inference time. This distillation framework encourages the RGB stream to learn

three types of knowledge to better benefit from the cross-modal information in untrimmed

videos. Thanks to this framework, we can improve the performance of vanilla RGB net-

works and make it possible to detect actions in real-time with high precision, even in case

of densely labelled datasets. Experiments show that the proposed method can efficiently

infuse different modalities into RGB. For instance, the Augmented-RGB network achieves

a performance similar to the Two-stream network while using only RGB at inference time.
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Discussion and Future Work

In the final chapter, we summarize the contributions of this thesis and depict the future

work directions.

7.1 Contribution Summarization

In this thesis, our work revolves around temporal action detection tasks in real-world

videos (see Fig. 7.1). We have a special focus on analysing the videos with dense action

occurrences and videos with fine-grained actions. Firstly, we introduce a real-world in-

door dataset: Toyota Smarthome Untrimmed (chapter 3). As the name of the dataset

suggests, we aim at providing a large indoor dataset to detect human behaviours in an

ordinary smart-home. This is an important application for action detection with the so-

cietal objective of helping older people to live longer in their preferred environment. To

this end, we recorded the daily life activities of 18 older people and we extensively an-

notated all the human actions that appear in those videos. As the recording process is

unscripted and without constraints, this dataset features many properties that lie in the

"real world" but that are overlooked by the existing datasets. For instance, these properties

include composite actions, concurrent actions, high camera framing, and so on. We com-

pared this dataset with the current state-of-the-art indoor action detection datasets and

we showed the contribution of our dataset in terms of new challenges. We believe that

releasing videos with those properties could help design better action detection methods

for smart-home applications.

Besides the dataset, we introduced multiple approaches for action detection. These

approaches can be divided into three topics, which aim at solving real-world challenges in

action detection in different manners.

(1) Temporal relational reasoning (chapter 4): As the action detection model takes as

input untrimmed videos, one of the primary focuses of this dissertation is on the temporal
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Figure 7.1: Summary of Thesis.

modelling of the video. We proposed three different temporal networks. SA-TCN features

a temporal encoder and decoder structure. The attention module on top of the shrunk

temporal feature in the middle stage enables the model to handle long-term temporal

dependencies. However, the shrunk temporal feature may fail to capture the short-term

temporal dependencies. To model both short-term and long-term temporal dependencies

and complex temporal relations in videos, we propose PDAN and MS-TCT. PDAN is a

temporal convolutional network, with temporal kernels which are adaptive to the input

data. MS-TCT is a ConvTransformer network that leverages both temporal convolutional

layers and multi-head attention layers at multiple temporal scales. Both networks can

capture the different levels of temporal dependencies in a video.

(2) Semantic relational reasoning (chapter 5): Knowledge of action relations or object

relations can be critical to detect actions in a video, especially for complex actions with

long-term dependencies. In this thesis, we proposed a general semantic reasoning frame-

work that can extract the semantic representations (e.g. object, action) from a video and

which uses a graph convolutional network to learn the relations across different semantics.

We evaluated this framework to model the object-object relations in the visual encoder and

action-action relations in the temporal module. As a briefly recap: the aforementioned vi-

sual encoder and temporal module are two main components of the sequence-to-sequence

action detection framework: (a) the visual encoder encodes a series of video frames into

features, and (b) temporal module models the temporal dependencies among the tempo-

ral features. The experiments show that our semantic reasoning framework can effectively

extract the semantic representations and enhance the video representation for recognizing

and detecting fine-grained actions.
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(3) Multi-Modality Representation Learning (chapter 6): The last contribution was to

propose to enhance RGB representation by learning from other modalities in action de-

tection. We firstly proposed AGNet which utilises an additional modality to generate at-

tention masks at multiple temporal scales. Each mask indicates the region of interest of

actions on a certain temporal scale, therefore it can help the RGB model to better detect

the action. However, AGNet still relies on the additional modality in the testing phase.

As a continuation, we proposed a knowledge distillation framework that can transfer the

knowledge from the additional modality and use only RGB at inference time. The exper-

iments show that our method can effectively transfer knowledge from the representation

of the additional modality to the RGB model.

7.2 Limitations and Perspectives

We then analyse the limitations of the current methods and we outline the future work

directions.

7.2.1 Visual Encoding

The recent action detection methods’ [81, 21, 15] performance is not satisfying on the

popular benchmarks, especially for the datasets with dense action occurrences [92, 18],

such as Charades and TSU. Although the proposed temporal models are effective on other

temporal reasoning tasks [107, 140, 103], due to the limitation of an unoptimized spatio-

temporal visual encoder, the final action detection results are still low.

Firstly, the issue lies in the window approach of temporal feature extraction. The

current visual encoders, such as 3D Convolutional Networks [22, 57, 23] and video Trans-

formers [76, 157, 24], are all designed for pre-segmented videos, where each video rep-

resents a complete action instance. The video snippet with the same label should be

represented similarly. However, in practice, the visual encoder extracts video features

from video snippets (i.e., no-overlapping small windows), not from the complete action

instances. Each snippet contains only a tiny part of action information and can be taken

from anywhere in the action instance. These incomplete snippets increase extremely the

data diversity at inference time resulting in an over-fitting issue for the current mod-

els. There are some attempts [238, 239, 240] for introducing additional completeness or

boundary detection sub-tasks in the pre-training phase. However, those methods are tai-

lored for sparsely annotated videos and cannot handle videos with dense action regions.

As a future direction, utilizing masked auto-encoder [241], which encourages the visual

encoder to learn robust action instance representation from randomly masked instances,

may mitigate the over-fitting problem.
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Another way to enhance the visual encoder is to utilise additional object trackers. Cur-

rently, the input to the temporal module is a one-dimensional representation where each

time step corresponds to a single feature vector. This design makes the temporal mod-

ule difficult to capture the spatial or semantic information from the video. To tackle this,

object trackers can extract the object semantics from the video and enrich the input of

the temporal module. For example, we can input the two-dimensional (Object × Time)

feature map to the temporal module to explore the object-temporal relations. However,

current object detection datasets are not generalized enough for full semantic action un-

derstanding. This is because many objects involved in fine-grained actions [2] may not be

included in existing large object detection or image classification datasets. Moreover, the

imperfect object detection performance, especially in the case of low-resolution videos,

make it hard to detect the object precisely from the video.

Furthermore, the disassociation of the visual encoder and temporal module may lead

the visual encoder can not effectively extract features for the final objective task (i.e.,

not end-to-end training). In other words, this disassociation leaves the visual encoding

sub-optimal and restricts the action detection performance. Current visual encoder and

temporal module are not optimized jointly in our current networks, due to hardware

limitations. To link these two modules, a possible approach is to add a momentum memory

bank [29, 30] in-between the visual encoder and temporal module. With this dynamic

bridge between both modules, the temporal module could gradually access the spatial

information of the video. As a result, the visual encoder and temporal module can be

trained end-to-end. Note that the previous approach can be seen as utilizing a frozen

memory bank of the extracted snippet feature, while this new manner provides the model

with a memory bank which is updated dynamically.

7.2.2 Other Challenges

Besides the limitations in visual encoder, we are interesting in tackling other challenges in

action detection tasks.

Firstly, all the methods introduced in this thesis are fully-supervised action detection

methods which require the complete annotation of all action instances (i.e., temporal

boundaries and categories) in training videos. However, such supervised learning strategy

is very time-consuming and costly. To eliminate the need for exhaustive annotations in

the training phase, limited supervision is required. Contrary to full supervision, in lim-

ited supervision, the annotations are unavailable or partially available. In the future, we

want to build a weakly supervised framework for action detection using only the video-

level labels. With video-level labels, the network like STPN [242] can leverage T-CAM to

provide guidance to locate the action instance in the video. T-CAM is a one dimensional
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class-specific activation map in the temporal domain. As T-CAM quality highly relies on

the temporal dependencies, it is possible to extend our architecture to propose a weakly

supervised learning strategy.

Secondly, how to handle long-tailed data for action detection? In this dissertation,

our methods do not have a specific design for the action categories which have only a

few samples. Therefore, the results are not balanced for the "head" categories and the

"tail" ones. To tackle this issue, a possible approach is similar to few-shot learning [133]

that learns the action representation more efficiently with only a few samples. Another

direction can be to pre-train the action representation from similar large datasets and to

transfer the knowledge to the domain of the target dataset. As multiple actions can occur

at the same time, the mix-up augmentation [243] for different action instances during the

pre-training phase can also help to learn the co-occurring action representation.

Finally, how to detect actions that involve multiple subjects? In this thesis, our de-

tection focuses on actions performed by a single subject. Although we also evaluate our

methods on sport datasets such as MultiTHUMOS, the annotation is subject-agnostic. To

detect more complex activities that involve multiple subjects (e.g. actions in basketball

games), a framework is needed to explore the relations across different subjects. Our fu-

ture work is to extend the current semantic reasoning framework: not only modelling the

object-object (i.e., THORN) and action-action (i.e., CTRN) relations but also modelling

the subject-subject relations in the videos. In other words, we want to construct a novel

hierarchical model for complex action detection by combining different types of semantic

reasoning modules.
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