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This thesis aims to expose several applications of artificial intelligence (AI) for medical data processing and understanding. Medical imaging is a domain generating massive data, which thus requires more and more time for clinicians to process and analyze them. In this manuscript, we show how generative learning can help in many aspects of the processing, understanding, and modeling of CT images of the inner ear.

First, we develop a deep generative model to solve a commonly encountered problem in CT imaging: the presence of metal artifacts. This model may allow clinicians to better assess the quality of cochlea implant (CI) positioning with a reduced presence of artifacts. To this end, a generative adversarial neural network (GAN) framework equipped with a specially designed loss function is proposed.

That network was trained on a synthetic CT volume dataset resulting from the application of X-ray physics simulations.

Second, since many deep learning segmentation methods fail to cope with explicit shape representations, we propose a Bayesian generative framework that addresses the issues of shape model inference in 3D images. We focus on the balance between shape and appearance through an Expectation-Maximisation (EM) approach.

The method is applied to the segmentation of more than 200 patient CT volumes.

The results show performances that are comparable to supervised methods and better than previously proposed unsupervised ones. Besides, we show how the proposed framework can estimate the uncertainty in the shape parameters. Third, we tackle the issue of the compact representation of CT images through a novel flow-based deep generative network. Generative models can create an implicit distribution of the imaging dataset from which one can generate samples. For a better representation, we proposed a Quasi-symplectic Langevin Variational Autoencoder (Langevin-VAE) that improves the current gradients, flow-based generative models. Finally, we propose an online framework for medical landmarks detection that can cope with the difficulty to manually position landmarks in volumetric images. The one shot training framework includes an offline step that only requires a single annotated image for training and is applied to the annotation of hundreds x of images.
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Résumé

Cette thèse vise à exposer plusieurs applications de l'intelligence artificielle (IA) pour le traitement et la compréhension des données médicales. L'imagerie médicale est un domaine générant des données massives, qui nécessitent donc de plus en plus de temps aux cliniciencs pour être traitées et analysées. Dans ce manuscrit, nous montrons comment l'apprentissage génératif peut aider dans de nombreux aspects pour le traitement, la compréhension et la modélisation des images scanner de l'oreille interne. Tout d'abord, nous développons un modèle génératif profond pour résoudre un problème couramment rencontré en imagerie CT : la présence d'artefacts métalliques. Ce modèle peut permettre aux cliniciens de mieux évaluer la qualité du positionnement des électrodes d'un implant cochléaire avec une présence réduite d'artefacts. Pour cela, un réseau de neurones antagoniste et génératif (GAN) est proposé intégrant une fonction de perte spécifique. Ce réseau a été entrainé sur un ensemble d'images volumiques scanner synthétiques résultant de l'application de simulations de la physique des rayons X.

Deuxièmement, étant donné que de nombreuses méthodes de segmentation d'apprentissage profond ne parviennent pas à gérer explicitement les modèles de forme, nous proposons un cadre génératif bayésien qui aborde les problèmes d'inférence de modèle de forme dans les images médicales 3D. Notre approche permet de faire un compromis entre les informations de forme et d'apparence issus de l'image à travers une approche d'espérance-maximisation (EM). Celle-ci est appliquée à la segmentation de plus de 200 volumes tomodensitométriques de patients. Les résultats indiquent des performances comparables aux méthodes supervisées et meilleures que les méthodes non supervisées proposées précédemment. En outre, nous montrons comment ce cadre méthodologique proposé peut estimer l'incertitude dans les paramètres de forme.

Troisièmement, nous abordons le problème de la représentation compacte des images scanner à travers un nouveau réseau génératif profond basé sur les flux.

Les modèles génératifs peuvent créer une distribution implicite de l'ensemble de données d'imagerie à partir duquel on peut générer des échantillons. Pour une meilleure représentation, nous avons proposé un Autoencodeur Variationnel Quasi-viii symplectique avec une dynamique de Langevin (Langevin-VAE) qui améliore les gradients actuels des modèles génératifs basés sur les flux.

Enfin, nous proposons une méthode pour la détection de points caractéristiques qui permet de s'affranchir de la difficulté de positionner manuellement ces points dans des images volumiques. Cette approche comprend une étape préalable d'apprentissage ne nécessitant qu'une seule image annotée pour l'entrainement.

Elle est appliquée à l'annotation de centaines d'images scanner de l'oreille interne.

Introduction

1 The recent success of deep learning in computer vision promotes also the blooming of research on artificial intelligence (AI) in healthcare. Performances that exceed the level of human expertise are constantly being reported in public AI
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competitions. Yet there is still a lot of discussion about the safety and robustness of medical AI applications in medicine. This thesis is not focused on the comparison of performances between medical doctors and algorithms, but on helping the cooperation between humans and machines around clinical data.

From a collection of human auditory system CT imaging datasets, we explored the feasibility and effectiveness of AI's practical applications in different aspects.

First, we introduce the clinical background of the thesis, the cochlea, and CT imaging. We then present some machine learning concepts about generative learning models which is the main theoretical basis of the thesis. The application of those methods in otology is present in all of this thesis. The organization of the work and contributions are given in the last section of this chapter.
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Clinical context

Auditory system

If life is a magnificent symphony, then the auditory system is a beautiful movement created by nature. Auditory perception is one of the main senses of humans for environmental interaction. Hearing-impaired illnesses are commonly attributed to the abnormal function of the hearing system, a small part is related to nervous system problems or psychological disorders. The structure of human auditory system can be roughly classified as three different parts: outer ear, middle ear and inner ear. 

Cochlea and cochlear implant

The cochlea is an organ located in the inner ear with a spiral structure. The cochlea has three different spiraling substructures: scala vestibuli, scala media, and scala tympani. The cochlea plays a pivotal role in the hearing system that Conventional computed tomography (CT) systems are widely used for inner ear imaging as one of the most widely used screening system. Cochlea and neural diseases usual need CT for clinical diagnosis. Yet, the human cochlea is a small organ (width: 6.53 ±0.35mm, height: 3.26 ±0.24mm [START_REF] Zahara | Variations in Cochlear Size of Cochlear Implant Candidates[END_REF])

which is challenging for conventional CT system imaging. Thus, the problem of extracting clinical information for conventional CT imaging becomes difficult but essential and significant for CI. Chapter 1. Introduction

Machine learning
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The development of learning methods based on Bayesian theory eventually formed

the Bayesian learning, one of the main branches of machine learning.

Bayesian learning

With a given set of dataset X = {x i |x i ∈ R d ; d, i ∈ N}, one wants to describe the data with a probability distribution model p(x|z) which driven by the random variables z. We call the probability distribution of the variables p(z) as 'prior distribution' which means an educated knowledge of the model that is suitable for that dataset. Correspondingly, we call the parameters distribution of the variables being fitted on the dataset X as 'posterior distribution', that is p(z|x). The Bayesian inference is based on the Bayesian formula that reflects the relationships between the prior and the posterior distribution:

p(z|x) = p(x|z)p(z) p(x) = p(x|z)p(z) p(x|z)p(z)dz (1.1)
The posterior distribution p(z|x) can be used for generating new data points by sampling the distribution of the parameters z. In a very common problem setting, the integration part p(x|z)p(z)dz of Eq. 1.1 is intractable due to many reasons such as curse of dimensionality or lack of analytical forms etc. A group of methods introduces some other distributions q(z) as the approximations of the true posterior p(z|x) through maximizing a similarity metric between q(z) and p(z|x). This family of methods is the so called: Variational Inference (VI) which is the theoretical root of chapters 3 and 4 (parametric shape inference) in this thesis.

Variational inference

The variational inference framework aims to find the suitable replacement model of p(z|x). To this end, a metric needs to be selected for measuring this similarity.

The usual metric selected for measuring the similarity between two distributions is the Kullback-Leibler (KL) divergence:

D KL (q(z)||p(z|x)) = q(z)log( q(z) p(z|x) )dz (1.2)
Chapter 1. Introduction
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We can then maximize the similarity metrics 1.2 through the optimization of the θ of variational distribution q(z|θ) which is parameterized by θ to get a variational replacement for the posterior distribution:

argmax θ D KL (q(z|θ)||p(z|x)) (1.3)
To cope with the intractable part p(z) we need to convert this problem into a minimization problem since the maximization of Eq. 1.3 is equivalent to minimizing its lower bound with given log evidence log p(x):

argmin θ z q(z|θ)(log p(x, z) -log q(z|θ))dz (1.4)
The problem becomes tractable as we get rid of the posterior term p(z|x). The above equation is the well known ELBO (Evidence lower bound) which can help us to approximate the posterior distribution. However, in case the posterior distribution is very complex, it is difficult to use an explicit distribution to represent the posterior, the approximation quality of the model will decrease.

Kingma and [START_REF] Diederik | Auto-encoding variational bayes[END_REF] proposed to use a neural network to make the inference of the distribution of the latent parameters. The Variational Auto-Encoder (VAE) is the basis of chapter 4. We introduce an adaptation of VAE for cochlea CT dataset generation.

Variational auto-encoder and deep generative model

The core idea of VAE is that the latent variables distribution is modeled through the posterior approximation of a neural network g neural θ (x) and using reparametrization trick z = q θ (g neural θ (x), ); ∼ N (0, 1) to make the computational graph differentiable. The approximate posterior distribution q(z|x) and the marginal likelihood p(x|z) are modeled through the inference neural network (encoder) and the generator neural network (decoder), respectively (see Fig. 1.4).

From a high-level perspective, the previously introduced approaches are all falling into the branch of Generative Learning. the Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative adversarial networks[END_REF]. The GAN consists of two deep neural networks: the generator neural network G φ and the discriminator neural network D θ . The generator network tries to fool the discriminator by generating fake samples and the discriminator tries to identify the input instances that have been collected from the real dataset or from the ones created by the generator (fake data). This objective can be achieved by optimizing the target function of the GAN:

argmax φ argmin θ E x [log(D θ (x))] + E z [log(1 -D(G φ (z)))] (1.5)
where z is a noise vector sampled from a parametric distribution (often Gaussian).

The practical application of GAN is introduced in chapter 2.

Objective of the thesis

We present many applications of artificial intelligence on cochlea CT images processing and analysis in the remaining chapters. In summary, we study the listed research questions:

• Metal artifacts are commonly found in CT imaging, which can trouble clinicians to perform image examinations. Especially, in inner ear CT imaging, postoperative images are often polluted by the serve metal artifacts introduced by the insertion of an electrode array. Is it possible to learn a representation model between the metal artifacts free images and the metal artifacts spoiled images? How can we employ the learned model to address the metal artifacts reduction task? (Chapter 2)

• Anatomical shape features are important information in medical image analysis, which can be key reference information for many illness diagnoses.

In another aspect, based image segmentation are a usual prior step for object shape analysis, which vastly relies on machine learning in recent.

Can we employ machine learning no only to segment images but also to perform shape inference for understanding the shape attributions of the objects at the same time? (Chapter 3)

• Generative models are effective tools for data modeling that can be used for learning VAE for learning the dataset which can be modeled with a group of latent variables. The modeling quality of the VAE is constrained by the tightness of ELBO. Can we improve the VAE performance further by tightening the ELBO more? (Chapter 4)

• Landmarks in medical images are often expensive to get as the annotation in 3D volume is very time-consuming and the accuracy is hard to guarantee.

Can an algorithm learns how to detect the landmarks automatically with a only one training sample is available? (Chapter 5)

Organization of the thesis

The structure of the thesis is organized as following:

Chapter 2 presents an adapted Generative Adversarial Network for metallic artifacts reduction and predicting the presence of electrode array of CI in postoperative CT images. The work is adapted from [Wang et al., 2019e].

Chapter 3 highlights the Bayesian inference of a shape model for object segmentation which incorporates a parametric shape information into an expectationmaximization algorithm. This chapter is adapted from [START_REF] Wang | A Deep Learning based Fast Signed Distance Map Generation[END_REF]et al., 2020, Wang et al., 2021a].

Chapter 4 shows the use of a gradients informed variational autoencoder for medical volume dataset modeling. The framework allows us to generate samples from a simple distribution. This chapter is adapted from [Wang and Delingette, 2021b].

Chapter 5 introduces an one-shot learning based landmarks detection approach for 3D volume landmarks detection. The proposed approach requires only one Chapter 1. Introduction 10 volume for training and is able to detect hundreds of volumes. This chapter is adapted from [Wang et al., 2020e].

Chapter 6 summarizes the content of the thesis with contributions and perspective. This chapter is partially adapted from [START_REF] Wang | Attention for Image Registration (AiR): A Transformer Approach[END_REF].

Chapter 2 approach can be either supervised or unsupervised, and applied to 3D CT volume artifact reduction. We show quantitatively and qualitatively that the proposed method outperforms other general metal artifact reduction approaches. This chapter is based on a augmented work [Wang et al., 2021b] of our conference paper presented at MICCAI 2019 [Wang et al., 2019d].

Introduction

Computed Tomography (CT) is one of the most widely used imaging techniques in clinical practice. The physical principles of spiral CT lead to the unavoidable creation of artifacts in the reconstructed images in the presence of dense materials, i.e., those composed of atoms with high atomic numbers. Several physical phenomena contribute to the creation of such artifacts, including X-ray beam hardening, X-ray scatter, electronic noise, edge effects and also the geometrical characteristics of metal parts. The artifacts are commonly found in routine clinical postoperative imaging, for instance due to fixation plates in orthopaedics, cochlear electrode implants in otology, contrast agents, etc. These spurious signals in CT images may impair postoperative analysis. For instance, during cochlear implant surgery, an electrode array inserted along the cochlear scala tympani is usually comprised of a metal alloy, for its high electrical conductivity.

The existence of metal artifacts in postoperative CT makes the evaluation of the position of the electrodes along the scala difficult. The knowledge of the relative position of the cochlear implant is one of the main determinants for assessing the success of the surgery and leads to appropriate and more personalized patient care. The 2D network DestreakNet was proposed in [START_REF] Gjesteby | Deep learning methods to guide CT image reconstruction and reduce metal artifacts[END_REF] for streak artifact reduction as a post-processing step in order to recover the details lost Chapter 2. Metallic Artifact Reduction based on Generative Learning 14 after the application of the interpolation-based normalized MAR [START_REF]Normalized metal artifact reduction (nmar) in computed tomography[END_REF] algorithm. [START_REF] Lyu | Dudonet++: Encoding mask projection to reduce CT metal artifacts[END_REF] proposed Dudonet++ for 2D CT metal artifact reduction. Their approach relies on processing the image with artifacts (henceforth referred to as artifact image) in both sinogram and image spaces in order to restore fine details in the image. Their quantitative evaluation shows that the Dudonet++ is effective for artifact reduction on simulated CT images but it lacks a quantitative evaluation on a clinical dataset. Furthermore, the method uses a beam hardening correction [START_REF] Verburg | Ct metal artifact reduction method correcting for beam hardening and missing projections[END_REF], which is not always optimal, for instance in the case of Cochlear Implant MAR (see 2.4).

Augmented MARGAN approach

Recently, generative adversarial networks (GAN) [Chen et al., 2021, Wang et al., 2020a] arouse widespread interest in many research communities. The GAN was also devised for solving MAR problems instead of CNN classification or regression networks, owing to their ability to generate high quality images. Wang et al. [2019a] proposed a conditional GAN (cGAN) approach for CT images with cochlear implants (CI), using a collection of paired and registered postand preoperative cochlear implant volumes to train 2D/3D cGANs for inner ear MAR. A difficulty in this approach is to collect and, most importantly, to register (preoperative) artifact-free and (postoperative) artifact images. This registration problem must be able to cope with the presence of outliers due to the presence of artifacts.

[ [START_REF] Nakao | Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck ct images[END_REF]] also proposed a MAR method based on CycleGANs for artifact reduction in dental filling and neck CT images. The approach is unsupervised and aims to achieve a cross-domain (artifact and artifact-free dataset) style transformation through feature swapping. This approach does not require training on paired datasets, i.e., with and without artifacts, but CycleGAN performance significantly worsens when unpaired data is used [START_REF] Zhu | Unpaired image-to-image translation using cycle-consistent adversarial networks[END_REF] for training instead of paired data. This approach was qualitatively compared with the manual corrections available in commercial CT scans and quantitatively assessed on synthetic datasets. While the output of the CycleGANs seems effective, this method may not be useful for the reduction of tiny artifacts like cochlear implants, due to the difficult separability of artifacts in feature space.

In this chapter, we propose a GAN-based MAR method that relies on simulated This chapter extends the initial work published in [Wang et al., 2019d] in several ways. The artifact simulation model is more sophisticated, including scattering effects and electronic noise of the CT system detectors. The algorithm evaluation is more comprehensive, with the addition of paired CT images, CBCT images and a study of the impact of the Retinex loss. The postoperative electrode position is assessed in a few cases with postmortem photographic views of the cochlea.

The chapter is organized as follows: In section 2.2, we introduce the CI and CI metal artifact simulation procedures (the gray box in Fig. 2.2). In section 2.3, the network implementation is described (the green box in Fig. 2.2). Results

of the MARGAN algorithm are presented in section 2.4. Sections 2.5 and 2.6 discuss the contributions and limitations of the proposed approach.

Simulation of metal artifacts in CT images

The difference between traditional algorithms and learning-based algorithms is the learning method need data to fit. However, the data is quite difficult to get for medical images. Moreover, in our problem, the CT images with metal Chapter 2. Metallic Artifact Reduction based on Generative Learning 19

Simulating the presence of metal parts

The processing pipeline to generate the training set for the MARGANs is displayed in Fig. 2.3. In this section, we consider the case of preoperative CT images of the inner ear prior to cochlear implant surgery. The objective is therefore to simulate, in these preoperative images, the addition of metal electrode arrays associated with the implant.

The 3D CT volumes of the inner ear, written as I(x), are first rigidly registered on a template image by a block matching algorithm [Ourselin et al., 2000a]. The template is a sample CT image that has been manually cropped around the temporal bone. The registration is necessary to cope with the variations of field of view and pose in the input image dataset.

A region of interest (ROI) is then cropped to get a cochlear volume suitable for further processing. We then fit a parametric cochlear shape model [START_REF] Demarcy | Automated analysis of human cochlea shape variability from segmented µ CT images[END_REF] to automatically reconstruct the shape of the cochlea (step (II) of Fig: 2.3). The accuracy required for the registration and segmentation steps is limited.

The signed distance map [Wang and et al., 2020] from the fitted triangular mesh of the parametric shape model is generated as shown in step (III). It is then thresholded (step (IV)) to create a 3D tubular binary mask near the center-line of the scala tympani of the cochlea. This mask corresponds to the probable location of the electrodes after a CI intervention. Finally, in step (V), the voxel values in Hounsfield units (HU) of the mask region are then set to 3071HU which is the maximum detectable HU of the CI metal artifacts. This creates the image I train (x) used for training the GAN network.

Simulation of beam hardening, scattering and electronic noise due to metal parts

The metal parts have large absorption ratios of X-ray energy which is the cause of of the visible artifacts in CT images. It impacts the whole image formation process through several physical effects. Our previous work [Wang et al., 2019d] only considered the simulation of the beam hardening effect, inspired by the work of [START_REF] Zhang | Convolutional neural network based metal artifact reduction in x-ray computed tomography[END_REF]. In this chapter, we improve the realism of the simulated artifacts by also including the X-ray scatter effect through Monte Carlo simulation and the detector electronic noise. The three main physical effects governing the generation of metal artifacts are described below, along with the processing pipeline.

Beam hardening effect For a monoenergetic X-ray source entering a material of thickness δz along direction z at position x, y, the number of photons L(x, y, δz) is given by the Beer-Lambert law : L(x, y, δz) = L 0 e -µ(x,y)δz where L 0 is the initial photon number and µ(x, y) is the linear attenuation coefficient of the material. The attenuation coefficient depends on the energy of the input photon µ(E v ), and therefore for a polychromatic X-ray beam having the energy distribution (or spectrum), φ(E v ), the number of photons received by the entire detector surface is then: µ(x,y,z,Ev)

L = En E 0 (φ(E v )e -
dxdydz + S(E v ))dE v (2.1)
where E 0 and E n are the minimum and maximum energies for a fixed tube peak voltage, and S(E v ) is an additive offset that captures X-ray scattering.

Scattering effect

The Compton effect applies to incoming X-ray photons that interact with the free electrons in the traversed materials. This effect results in random changes (scatter) in the directions of the photons, which may still reach the detector plate despite collimator devices. 

E p (β) = E v (1 + E v /m e c 2 )(1 -cos(β)) dE v (2.2)
where m e is the electron mass and c the speed of light. To estimate the scatter effect inside the cochlea on X-ray detectors, we use the Zubal [START_REF] Zubal | Computerized three-dimensional segmented human anatomy[END_REF] head phantom where metal parts are roughly positioned inside the temporal bone. Based on the MCGPU software [START_REF] Badal | Accelerating monte carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit[END_REF] performing GPU Monte Carlo simulations of photon transport in voxelized geometry, we simulate thousands of X-ray photon trajectories at different energies, positions and orientations through the head and produce both the scatter-free sinogram

F (E v )
and the scatter sinogram offset S(E v ). The scatter sinogram offset is corrected by a scale factor such that the resulting scatter to primary ratio α = mean( S(Ev)) mean(F (Ev)) , falls within the range of 0.1% to 2%, which was experimentally found by [START_REF] Glover | Compton scatter effects in ct reconstructions[END_REF]. This is simply done by randomly picking a ratio α r within 0.1% to 2% and computing

S(E v ) = mean(F (E v )) mean( S(E v )) α r S(E v ) (2.3)
The same ratio α r is used for simulating all sinograms of the same image to obtain spatially consistent artifacts.

The computation of the scatter offset is dependent on the X-ray energy, position, and orientation but is independent of the input image as it relies on the digital head phantom augmented with metal parts next to the temporal bone. Only the scatter to primary ratio varies between different volumes. This implies that the scatter sinograms can be precomputed, thus alleviating the computational load when generating images with metal artifacts.

Detector Noise Once photons hit the x-ray detector, the scintillator transforms the deposited energy into visible light, while a photomultiplier translates
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this light into an electric signal. In this process, some electronic noise is introduced which can be modeled by a zero mean Gaussian distribution [Benson and Man, 2010] with standard deviation σ e : N (0, σ 2 ). The signal measured in each sinogram L final can then be written as:

L final = L + N (0, σ 2 e )
where L is the energy deposited as described Eq. 2.1 and σ 2 e = 0.04.

Simulation pipeline

The overall metal artifact simulation pipeline is described in Fig. 2.5. In the first step, we use an X-ray energy spectrum φ(E v ) extracted from a CT manufacturer dedicated site1 for a tungsten anode tube at 140 kV p.

The spectrum is sampled at five sample energies from which attenuation maps The difference between simulated images with and without scattering noise is shown in Fig. 2.6 with a subtraction map. We see that scattering and electronic noise can introduce significant new artifacts.

µ(x, y, z, E v i ) are

GAN-based Metal Artifact Reduction

Given pairs of preoperative and simulated postoperative images, we aim to train a network that generates the former given the latter as a way to reduce metal artifacts. The use of a GAN to tackle the MAR issue is motivated by the successful use of 2D and 3D GANs such as SRGAN [Ledig et al., 2017, Sanchez and[START_REF] Sanchez | Brain mri super-resolution using 3d generative adversarial networks[END_REF] to solve imaging Super-Resolution (SR) problems. 

Network Architecture

The generator network architecture is similar to U-Net with convolution and deconvolution layers, skip connections and batch normalization layers to improve the training efficiency (see Fig 2 .2). Moreover, unlike [START_REF] Sanchez | Brain mri super-resolution using 3d generative adversarial networks[END_REF] which is patch based, the input to the network consists of full 3D images as it is compatible with GPU memory. The number of filters increases gradually from 1 to 512, the maximum number of feature maps that will fit on an 11 Gb video-memory GPU card. The discriminator network follows that of [START_REF] Sanchez | Brain mri super-resolution using 3d generative adversarial networks[END_REF] with eight groups of convolution layers and batch normalization layers combined sequentially.

Loss Functions

Discriminator Loss The discriminator network, D w d , is trained using output images from the generator network, I M AR = G wg (I m ), and images without any metal artifacts, I nm . Following [START_REF] Sanchez | Brain mri super-resolution using 3d generative adversarial networks[END_REF], the discriminator loss enforces the ability of the discriminator network to distinguish the artifact-free images, I nm , from the generated ones, I M AR : arg max

w d L D = E x∼I nm log (D w d (x)) + E y∼I m log 1 -D w d (G wg (y))
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Generator Loss The objective of the generator network is to produce an image,

I M AR = G wg (I m )
, as close as possible to the target image, I train . This is why the first loss term is the mean square error (MSE),

L mse = E y∼I m (|I train -G wg (y)| 2 ),
to encourage a similarity between generated and target voxels. But using only the MSE loss leads to blurred MAR images with a lack image detail at high frequencies.

To avoid this excessive smoothing, we propose a new loss term based on Retinex theory [START_REF] Land | Lightness and retinex theory[END_REF]]. This theory is mostly used to improve images seriously affected by environmental illumination. The Retinex theory assumes that a given image can be considered as the product of environmental brightness (or illumination), L(x, y), and the object reflectance, R(x, y). This reflectance map contains high frequency details and is unaffected by the illumination condition, a property referred to as the color constancy phenomenon. The objective of Retinex-based algorithms is to recover the reflectance image from the original one. In single-scale Retinex approaches [START_REF] Zhang | A ultrasound liver image enhancement algorithm based on multi-scale retinex theory[END_REF], the environmental brightness is simply a Gaussian blur version of the input image and therefore

log(R(x, y)) = log(I(x, y)) -log(I(x, y) * N (0, σ))
where N (0, σ) is a Gaussian function of standard deviation σ, and * is the convolution operator. This leads us to introduce the following Retinex loss to make its illumination part as close to 1 as possible :

L retinex = E Y ∼I m |G wg (Y ) -e log Gw g (Y )-log Gw g (Y ) * N (0,σ) | |Y | (2.4)
where the expectation is taken over the image domain. This loss definition ensures numerically stable evaluations and enforces salient features in the image that would otherwise be attenuated. Combining it with the adversarial term [START_REF] Sanchez | Brain mri super-resolution using 3d generative adversarial networks[END_REF], the full optimization target of the generator is:

L adv = 1 2 |D w d (G wg )-1| 2 as in
arg min wg L generator = α • L retinex + L mse + L adv (2.5)
where α is a parameter controlling the influence of the Retinex loss. 
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Results

Dataset

Training data The cochlea dataset was collected from the Radiology Department of the Nice University Hospital with a GE LightSpeed CT scanner without any metal artifact reduction filters. The preoperative dataset includes 1000 temporal bone images (493 left and 597 right) from 597 patients. The original CT volumes are registered to a sample image by a pyramidal block-matching algorithm in order to spatially normalize all images, then they are resampled with 0.2 × 0.2 × 0.2mm 3 voxel size. They were then cropped to volumes of 60 × 50 × 50 voxels around the cochlea region. We then simulated on all volumes, the insertion of CI electrodes and the generation of metal artifacts as described in section 2.2.

This created a set of 1000 pairs of images, with and without metal artifacts.

Evaluation Data

The evaluation dataset #1 includes 33 cadaver temporal bone CT images collected from the same site from different bodies. The imaging protocol was the same as for the training dataset but was performed before and after the implantation of CI, thus leading to 33 pre-and postoperative image pairs.

The temporal bones were ground by an ENT (ear, nose and throat) surgeon, approximately along a plane perpendicular to the cochlear modiolar axis at the bottom of the scala tympani as shown in Fig. 2.12. Pictures of the ground bones were acquired in order to visualize the electrode array.

Finally, the second evaluation dataset includes 8 postoperative images that were acquired on a Carestream 9600 cone beam CT (CBCT) following the CI surgery. These images were resampled, registered and cropped following the same processing pipeline as the training set. 
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Implementation details

Artifact simulation A polychromatic X-ray source was simulated with MC-GPU v1.3, a GPU-based Monte Carlo simulator of photon transport in voxelized geometry [START_REF] Badal | Accelerating monte carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit[END_REF]. To simulate the scatter effects, we simplified the contents of the human head by assuming it consists of air, water, soft tissue, bone, muscle and unalloyed titanium. Cochlear CT voxel values were converted to MC-GPU v1.3 units based on the material mapping in Table 2.2. The simulation of scatter was performed offline on a GPU parallel computing cluster. The beam hardening maps and the final simulation volumes were computed with Matlab 2017a on a Dell Mobile Workstation with Intel(R) Core(TM) i7-7820HQ @ 2.90GHz CPU.

Neural Networks

The networks were trained with a RMSprop optimizer [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] with learning rate l r g = 1e-4 for the generator and l r d = 1e-3 for the discriminator. The MARGAN was implemented with Tensorflow and the weight of Retinex loss was set to α = 5e-5.

Clinical Evaluation

Qualitative Study Fig. 2.9 shows the output of the MARGAN network for four patients on two selected slices together with pre-and postoperative CT images.

The streak artifact patterns were largely suppressed by the MARGAN algorithm.

As shown inside the yellow boxes, the artifact patterns were significantly reduced compared to postoperative images. The cochlear structures that were slightly 

Quantitative Comparison with other MAR algorithms Similar to Zhang

et al. [START_REF] Zhang | Convolutional neural network based metal artifact reduction in x-ray computed tomography[END_REF], we compared our approach with three open source MAR algorithms: MAR with projection linear interpolated replacement (marLI) [Kalender et al., 1987b], beam hardening correction (marBHC) [START_REF] Verburg | Ct metal artifact reduction method correcting for beam hardening and missing projections[END_REF] and NMAR [START_REF] Meyer | Normalized metal artifact reduction (nmar) in computed tomography[END_REF]. The visual assessment of the different MAR algorithms is shown in Fig. 2.7. The MARGAN approach clearly outperforms the other three MAR methods in its ability to decrease the texture changes of artifacts and peak signal to noise ratio (PSNR), were computed between the preoperative images and the MAR images generated by the three comparison methods and our proposed approach. These three indices are reported in Table 2.4 and capture the preservation of visible structures, the errors and the quality of the reconstructed images. Our method outperforms the other MAR methods for all three metrics (lowest RMSE and largest SSIM and PSNR). In Fig. 2.8, the same indices were computed for all patient #1 image slices to evaluate the spatial consistency of the reconstruction. Clearly the MARGAN approach exhibits the best performance, with a lower mean value and much lower variance. This can be explained by the fact that it is the only MAR algorithm working directly on 3D images.

Impacts of methodological contributions

We assess the importance of our methodological contributions by evaluating their impact on the generated MARGAN images when they are removed from the computational pipeline. More precisely, we consider the following two contributions:

• Retinex Loss When zeroing the Retinex scale factor α = 0 (instead of setting α = 5e-5) during the MARGAN training, only the L mse loss term is used, which is equivalent to minimizing the L2 norm between the generated and ground truth images. We also include in the ablation study the replacement of L mse with the L1 norm involving |I train -G wg (I m )| terms.

• Simulation of scatter and electronic noise in artifact simulation We simulated the image training set with only the beam hardening effect (as in [Wang et al., 2019d]) or with the full pipeline as described in section 2.2.2.

In Table 2.5, we used the three similarity measures PSNR, RMSE and SSIM with respect to the preoperative images as a way to quantify the impact of those contributions.

Table 2.5 shows that both the addition of scatter and electronic noise in the simulation and the addition of the Retinex loss can improve the performance of MAR for all three different metrics. We also see that using a single L1 loss function performs worse than the proposed loss combination approach. A 

Out-of-sample Test

To assess the generalization ability of this MARGAN approach, we explore its performance on 8 postoperative CBCT images, noting that the network was trained on CT images.

In Fig. 2.11, we see that metal artifacts in CBCT are more extensive and complex than in CT images. Yet, the MARGAN can cope well with those CBCT images and is able to recover most of the cochlear structures.

CI Electrode Position Prediction

The positioning of CI electrodes in postoperative imaging provides important information for establishing a hearing prognosis [START_REF] Kós | Measurements of electrode position inside the cochlea for different cochlear implant systems[END_REF][START_REF] Ingo | Evaluation of cochlear implant electrode position after a modified round window insertion by means of a 64-multislice ct[END_REF] and can be used to improve the cochlear implant programming strategy [START_REF] Noble | Clinical evaluation of an image-guided cochlear implant programming strategy[END_REF]. The proposed MARGAN algorithm output images where the electrode centers are outlined by voxels in hypersignal as shown in Fig. 2.9 and 2.7. To qualitatively evaluate the positional accuracy of those electrode centers in generated MARGAN images, we use pictures of the cochlea acquired after the dissection and grinding of post-mortem temporal bones following CI surgery ( see Fig. 2.12(b)).

On each generated MARGAN image, a slice having roughly the same position and (5) (1) 

(6) (2) (7) (3) (8) (4)
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orientation as the dissection picture has been manually extracted (Fig. 2.12(a)).

Semi-transparent red circles have been manually positioned on the MARGAN slice at high intensity voxels while green dots have been positioned by an ENT surgeon on the electrodes visible in dissection pictures. Furthermore, those two images have been registered with an affine transform estimated after selecting two corresponding electrodes. The two registered images are fused in Fig. 2.12(c) thus showing the good overlap between green and red circles. This experiment shows that information about the position of the electrodes causing the artifacts was kept after the application of the MARGAN algorithm.

Discussion

Our MARGAN approach combines an artifact simulation pipeline with a 3D GAN network that generates augmented preoperative images from postoperative images. The artifact generation algorithm relies on three physical phenomena: beam hardening, scatter and electronic noise. The scatter and noise effects clearly have less impact on the output image compared to beam hardening. Yet, these effects were shown in Table 2.5 to improve the realism of the output of MARGAN when compared to preoperative images. The simulation pipeline could easily be refined in many ways, for example, using a more hardware-specific energy spectrum, increasing the number of sample energies in the approximation, or including more application-dependent scatter to primary ratios. This approach could also be extended to other imaging systems, such as cone beam CT, dual energy CT or trimodal low-dose X-ray tomography [START_REF]Trimodal low-dose x-ray tomography[END_REF]. The use of 3D GANs allowed us to generate MAR images with spatial coherence across neighboring slices, which is not guaranteed when using 2D slice-by-slice MAR methods. Furthermore, Retinex loss was introduced to improve the sharpness of the MAR images. We show in Tab. 2.5 that the Retinex loss can improve the performance of the MARGAN with a scale coefficient α = 5e-5. However, an inappropriate α value can introduce distortions in the MARGAN output.

Furthermore, the influence of other hyperparameters in the simulation pipeline on the artifact reduction needs to be further investigated.

The MARGAN approach is both data driven (for the generation of MAR images) and model driven (for the generation of training image pairs). This is in contrast to purely data-driven MAR methods that either rely on pairs of pre-and postop- A good overlap of green and red squares is observed.
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erative images [Wang et al., 2019b] or on non-paired data [START_REF] Nakao | Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck ct images[END_REF].

The collection of image pairs, with and without artifacts, is mostly restricted to images acquired before and after an intervention such as CI insertion. The use of such pairs makes the 3D GAN fairly effective at removing artifacts in postoperative images. However, the collection of those images may be difficult by image processing were also considered in [START_REF] Nakao | Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck ct images[END_REF], for instance, but they are computationally intensive to reach sufficient realism. Physical anthropomorphic phantoms are a useful alternative for MAR assessment [START_REF] Bolstad | Metal artifact reduction in ct, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants[END_REF] but are limited by the number of phantoms considered.

Conclusion

In this chapter, we have introduced a simulation-based 3D GAN to attenuate metal artifacts in CT images. The network is trained on a thousand regular CT images without any artifacts and their corresponding images where metal artifacts have been simulated. We have demonstrated the introduction of scatter and electronic noise effects in addition to beam hardening in an efficient computational pipeline.

The complexity of scatter simulation has been alleviated by precomputing the impact of scatter on a generic head phantom where metal parts have been This framework is applied to the segmentation of cochlea structures from clinical CT images constrained by a 10 parameter shape model. It is evaluated on three different datasets, one of which includes more than 200 patient images. The results show performances comparable to supervised methods and better than previously proposed unsupervised ones. It also enables an analysis of parameter distributions and the quantification of segmentation uncertainty including the effect of the shape model. This chapter is based on our preprint journal article [START_REF] Wang | Attention for Image Registration (AiR): A Transformer Approach[END_REF] which is under peer review.

Introduction

Several anatomical structures have a typical shape, such that a medical expert can easily recognize them from their three-dimensional representation. This is for instance the case of basal ganglia within the brain [Ashburner and Friston, 2005a], but also of abdominal structures, such as the liver or kidneys. Another emblematic example is the cochlea which is a small organ within the inner Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 43 ear having a remarkable spiraling configuration where mechanical waves are transformed into electrical stimulation of the auditory nerve. The cochlea shape is complex as it completes around two and a half turns with its centerline closely resembling a logarithmic spiral helix [Baker, 2008[START_REF] Lawrence T Cohen | Improved and simplified methods for specifying positions of the electrode bands of a cochlear implant array[END_REF]. Its segmentation from CT images of the temporal bone is challenging since those images have low resolution with respect to the anatomy of the cochlea: the cochlea dimension is about 8.5x7x4.5 mm 3 while the typical CT voxel size is larger than 0.2 mm which is weakly visible for the fine structures of the chambers.In addition, the cochlea is filled with fluids that can be found in the vestibular system and other neighbouring structures, with similar appearance in CT images.

Supervised learning (e.g. Deep Learning) is an effective way to perform image segmentation or processing in many cases. Specifically, in inner ear CT imaging analysis, many works achieved impressive results [START_REF] Alshazly | Ensembles of deep learning models and transfer learning for ear recognition[END_REF][START_REF] Heutink | Multi-scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution ct images[END_REF], Li et al., 2021[START_REF] Lv | Automatic segmentation of temporal bone structures from clinical conventional ct using a cnn approach[END_REF][START_REF] Hussain Raabid | Automatic segmentation of inner ear on ct-scan using auto-context convolutional References 138 neural network[END_REF], Wang et al., 2019c[START_REF] Wang | One-shot Learning Landmarks Detection[END_REF][START_REF] Zhang | Convolutional neural network based metal artifact reduction in x-ray computed tomography[END_REF]. However, supervised learning methods have also many limitations. First, creating dataset annotations is time consuming, possibly preventing the creation of massive training datasets. In the cochlea case, a well trained ENT surgeon would need at least ten minutes to segment each 3D cochlea volume. Second, due to the potential overfitting related to the limited training set, the output of such supervised algorithm is likely to fall outside the shape space of the structure of interest.

Shape-based image segmentation can overcome the above limitations since the optimization of the model can be done in an unsupervised or weakly supervised way. Besides, the recovered shape parameters make a natural compact representation that is useful for shape analysis and even clinical applications. In this chapter, we consider shapes that are either defined as an explicit S(θ S ) ∈ R d or implicit S(θ S , x) = 0 parametric shape models where θ S is a set of shape parameters and x ∈ R d , is any point in space (d = 2, 3). may also be optimized. This iconic shape fitting principle is typically used in the classical active shape model [START_REF] Cootes | Active Shape Models-Their Training and Application[END_REF][START_REF] Heimann | A shapeguided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation[END_REF] and their extensions [START_REF] Cremers | Shape Statistics in Kernel Space for Variational Image Segmentation[END_REF]. Various generic image terms may be considered for instance as those explored in [Tsai et al., 2003]. A second set of methods uses the shape model S(θ S ) as a shape prior instead of a shape space. Several shape constraints have been introduced within several image segmentation frameworks including level-sets [START_REF] Chan | Level set based shape prior segmentation[END_REF]Zhu, 2005, Cremers, 2003], free-form deformation space [Rueckert et al., 2003a] or implicit template deformation [START_REF] Prevost | Incorporating Shape Variability in Image Segmentation via Implicit Template Deformation[END_REF]. While those methods have greater shape flexibility for delineating structures, it is often difficult to set the coefficients and Friston, 2005b, Pohl et al., 2006a] defined generative image and shape models and performed statistical variational inference to optimize their parameters and hyperparameters. Priors on the deformation space based for instance on minimal elastic energy [Van Leemput, 2009], were applied on triangular or tetrahedral mesh templates. Other shape priors were defined as restricted Boltzmann machines [START_REF] Agn | A modality-adaptive method for segmenting brain tumors and organs-at-risk in radiation therapy planning[END_REF] or as shape-odds [START_REF] Elhabian | Shapeodds: Variational bayesian learning of generative shape models[END_REF]. In most cases, optimal shape parameters (e.g. mesh vertex positions) are obtained as maximum a posteriori but not their posterior probability. Uncertainty quantification of image registration algorithms has been tackled in some research papers [START_REF] Le Folgoc | Quantifying registration uncertainty with sparse bayesian modelling[END_REF][START_REF] Ivor | Probabilistic inference of regularisation in non-rigid registration[END_REF][START_REF] Wang | Efficient References 142 laplace approximation for bayesian registration uncertainty quantification[END_REF] based on a low dimensional representation of deformation space and Laplace approximation.

In this chapter, we propose a novel Bayesian framework for shape constrained image segmentation based on parametric shape models (instead of parametric spatial transformations) where the output segmentation is driven by a shape model but without restricting it to a low dimensional space. The proposed approach is The main contributions of this chapter are:

-A novel framework for image segmentation that combines probabilistic appearance and shape models. It is generically defined for parametric shape functions rather than parametric space transformations. The trade-off between the appearance and shape models is governed by an interpretable parameter : the reference length.

-A Gauss-Newton optimization method of the shape parameters which also produces a posterior approximation of those shape parameters.

-A method for uncertainty quantification of image segmentation which takes into account the shape uncertainty.

-A segmentation method of the cochlea in clinical CT images which provides Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 46 state-of-the-art results and interpretable shape parameters.

We present below the framework of the logistic shape model (section 3.2), the shape and intensity models used specifically for cochlea segmentation (section 3.3), and the segmentation results on 3 clinical and pre-clinical datasets (section 3.4).

Method

Shape-based Generative Probabilistic Model

We consider an observed image I consisting of N voxels I n ∈ R, n = 1, . . . , N , for which we seek to solve a binary segmentation problem guided by a shape model.

That model is defined either as in a parametric form as

S(θ S ) ∈ R d , d = 2, 3
or in an implicit form as S(θ S , x) = 0. In the case of parametric shape models, one can define an associated implicit function SDM(S(θ S ), x) = 0 as the signed distance map defined at point x. Therefore, we propose to unify notations for both parametric and implicit cases by stating the existence of a shape function S(θ S , x) ∈ R whose zero level defines a shape and whose sign indicates if a point is inside (positive) or outside (negative). Note that with this hypothesis, a shape corresponds to a (smooth) manifold of co-dimension 1 without borders, thus defining a partition of the image into inside and outside regions.

A binary label variable Z n ∈ {0, 1} is defined at each voxel specifying if voxel n belongs to the background or foreground regions. A probabilistic intensity distribution model is defined for each region p(I n |Z n = k, θ k I ), k = 0, 1 controlled by the intensity parameter array θ k I . The arrays for background (k = 0) and foreground (k = 1) are concatenated into the intensity parameter array θ I . This appearance model can be either supervised , e.g. a trained convolutional neural network, or unsupervised, e.g. a Gaussian mixture model. In the remainder, we assume the latter case and therefore we define mechanisms to optimize the appearance parameters θ I . In the supervised case, the steps involving the update of θ I should be ignored.

We enforce a spatial correlation between the label of each voxel by specifying their a priori dependence on the shape model S(θ S , x). More precisely, we define Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 47 a prior probability for voxel n to belong to the foreground region as follows: 

p(Z n = 1|θ S ) = σ S(θ S , x n ) l ref (3.1) p(Z n = 0|θ S ) = 1 -p(Z n = 1|θ S ) = σ - S(θ S , x n ) l ref where σ(x)

Logistic Shape Model Framework

With the proposed generative model, given an image, the objective is to infer the most probable values of the intensity θI and shape parameters θS which will lead to the estimation of the posterior label probabilities given by :

p(Z n = 1|I n , θ I , θ S ) = p(I n |Z n = 1, θ 1 I )p(Z n = 1|θ S ) 1 k=0 p(I n |Z n = k, θ 1 I )p(Z n = k|θ S ) (3.2)
That posterior probability is clearly a compromise between shape information stored in the prior p(Z n = 1|θ S ) and appearance information stored into the likelihood p(I n |Z n = 1, θ 1 I ). The segmented region of interest (SROI) then

Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 48 corresponds to voxels for which p(Z n = 1|I n , θ I , θ S ) ≥ 1 2 . In addition, the logistic shape model framework recovers the most likely shape parameters θS that corresponds to the segmented shape instance (SSI) which is the best fit of the shape model in that image. Finally, we will show that we can approximate the posterior shape parameter p(θ S |I) in order to capture the uncertainty in the shape parameter estimation.

The optimization of the intensity and shape parameters is done by maximizing the the log-joint intensity and parameters probability :

( θS , θI ) = arg max θ S ,θ I log p(I, θ S , θ I ) = arg max θ S ,θ I L(θ S , θ I ) L(θ S , θ I ) = log p(I|θ S , θ I ) + log p(θ S ) + log p(θ I ) = N n=1 log 1 k=0 p(I n |Z n = k, θ I ) p(Z n = k|θ S ) + log p(θ S ) + log p(θ I ) (3.3)
In the log-joint probability L(θ S , θ I ) we have marginalized out the hidden label variables Z n and used the conditional independence of variables I n given θ S .

Expectation-Maximization Inference

The direct optimization of L(θ S , θ I ) can be done by any optimization toolbox but it is difficult due to the possible encountered overflows/underflows caused by the log-sum-exp expressions.

This is why we propose to follow the Expectation-Maximization (EM) algorithm which relaxes that optimization problem into several optimizations over simpler problems. We proceed by introducing N variables u n that are surrogates for the posterior label probability p( 

Z n = 1|I n , θ S , θ I ) such that u n ∈ [0, 1]. Writing U = {u n },
L * (θ S , θ I , U ) = N n=1 1 k=0 u k n log(p(I n |θ S , θ I )p(Z k n = k|I n , θ S , θ I )) - N n=1 1 k=0 u k n log u k n + log p(θ S ) + log p(θ I ) = Q(U, θ S , θ I ) + N n=1 H(u n ) + log p(θ S ) + log p(θ I )
where 

Q(U, θ S , θ I ) = E U (log p(I, Z|θ S , θ I ))
I , k = 0, 1 of L k I = -N n=1 D KL (u k n ||p(I n |Z n = e k , θ k I )) + log p(θ k I |β k ).
For certain well chosen intensity models such as Gaussian mixture models, this optimization leads to closed-form updates of θ I .

Finally, we perform the MS-step corresponding to the maximization over shape variables θ S which is equivalent to the maximization of L S :

L S = -D KL (U ||p(Z|θ S )) + log p(θ S |α)
We can see that the EM algorithm preserves an interesting symmetry between shape and appearance information. Indeed, the iterative application of the E, 

Optimization of shape parameters p(θ S |I)

The functional L S is a non trivial function of the parameters θ S as it combines 2 non-linear functions : the sigmoid σ() and the shape function S(θ S , x n ):

L S = - N n=1 u n log σ S(θ S , x n ) l ref + (1 -u n ) log σ - S(θ S , x n ) l ref + log p(θ S |α) + cst (3.4)
The functional gradient ∇ θ S L S cannot be written in closed form since it requires the computation of the gradient of the scaled shape function at each voxel :

d n = ∇ θ S S(θ S ,xn) l ref ∈ R |θ S | .
Those gradient vectors may be computationally costly to compute, for instance when the shape function is based on a signed distance map of parametric shape models S(θ S , x) = SDM(S(θ S ), x). In that case, the d n values are computed by a costly finite difference approximation except for translation and rotation parameters for which they can be computed efficiently (see 3.10.1). After combining all d n terms in a gradient matrix d ∈ R |θ S |×N , the functional gradient can be simplified as

∇ θ S L S = -d(u -µ) + ∇ θ S log p(θ S |α) where u = (u 1 . . . u N ) T ∈ R N and µ = σ S(θ i S ,x 1 ) l ref . . . σ S(θ i S ,xn) l ref T ∈ R N .
Thus, a first approach for optimizing the shape parameters is to use any quasi-Newton optimization method such as the BFGS algorithm (similarly to [START_REF] Demarcy | Segmentation and study of anatomical variability of the cochlea from medical images[END_REF]), since it only requires the computation of the functional gradient and iteratively estimates the Hessian matrix. Yet, this generic optimization was found to be fairly time consuming and sometimes unstable.

Instead, we propose to adopt a Gauss-Newton optimization approach where we approximate the Hessian matrix by ignoring the term involving second order derivatives. More precisely, the Hessian of the functional is computed as

H = ∇ 2 θ S L S = -∇ θ S d ⊗ (u -µ) -d ⊗ ∇ θ S µ + ∇ 2 θ S log p(θ S |α).
After dropping the first term, we get the following approximate Hessian

H ≈ H = -d ⊗ ∇ θ S µ + ∇ 2 θ S log p(θ S |α).
When inserting the expression of the gradient of the prior, we get :

H = d Diag(µ • (1 -µ)) d T + ∇ 2 θ S log p(θ S |α)
where • is the element-wise product between two vectors. This approximate Hessian matrix is positive definite Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 51 by construction and is then used to perform several Newtons steps.

The sketch of the MS step is shown as algorithm 1 where the shape parameter prior p(δθ i S |α) is arbitrarily chosen as a zero mean Gaussian distribution with covariance Σ 0 θ S . It consists of two intertwined loops, the innermost performing iteratively the Newton updates and updating the mean, gradient and Hessian values. The outer loop updates the shape function gradient which is potentially a costly step. In line 15 of the algorithm, the U variable is updated in an E-step in order to speed-up the convergence of the overall EM algorithm. Since the parameter range is bounded, we perform in practice a truncated Newton step as proposed in [START_REF] Stephen | Newton-type minimization via the lanczos method[END_REF]. This Gauss-Newton approach was inspired by the iterative re-weighted least squares algorithm [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] developed for solving logistic regression (LR) problems. Indeed the first term of L S is similar to the log likelihood of LR after replacing u n with a binary variable and linearizing the shape function. The proposed approach is also related to the Fisher scoring algorithm (see [START_REF] Sourati | Intelligent labeling based on fisher information for medical image segmentation using deep learning[END_REF] as an example in medical image analysis) when the point-wise Hessian matrix of the log likelihood is replaced by its expectation thus leading to more stable evaluation. In this particular case, the approximate Hessian is not the expectation of the Hessian since the first term of L S is the expectation of the log-prior with respect to binary variable U instead of Z.

Finally, the proposed algorithm also outputs a Laplace approximation of the shape parameter posterior p(θ S |I) as a Gaussian distribution where the mean is the optimized shape parameter θ S and the covariance is the inverse approximate Hessian matrix Σ θ S = ( H) -1 .

The overall optimization finally consists in iterating a series of outer loop, each loop consisting in optimizing the shape parameters as in Alg. 1 then followed by a series of MI-steps until the relative change of intensity parameters is less than a threshold. The stopping criterion for the outer loop is the relative change of foreground intensity parameters as it is the most impactful parameter.

Influence of the characteristic length l k ref

Based on Eq.3.2.5 and Eq.3.1, it is easy to see that for infinitely small value of the characteristic length l ref → 0, then the label prior becomes more and more sharp Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 52 Algorithm 1 MS step to compute p(θ S |I)

i ← 0 u n = p(Z n = 1|I, θ S ) // E-Step, Update U repeat V ← S(θ i S ,xn) l ref ∈ R N // Shape function d ← ∇ θ S S(θ i S ,xn) l ref ∈ R |θ S |×N
// Shape function gradient 

δθ 0 S ← 0, t ← 0 repeat µ ← σ(V + d T δθ t S ) // Current Prior probability g ← -d(u -µ) -(Σ 0 θ S ) -1 δθ t S // Functional Gradient H ← d Diag(µ • (1 -µ)) d T -(Σ 0 θ S ) -1 // Approximate Functional Hessian Σ ← ( H) -1 // Covariance δθ ← -Σ g // Truncated Gauss Newton Update δθ t+1 S ← δθ t S + δθ, t ← t + 1 // Update shape parameters until δθ / θ < u n = p(Z n = 1|I, θ S ) // E-Step, Update U θ i+1 S ← θ i S + δθ t+1 S , i ← i + 1 // end inner loop until δθ t+1 S / θ t+1 S < θ S ← θ i S , Σ θ S = Σ //
(Z n = 1|θ S , θ I , I n ) -→ p(I n |Z n = 1, θ 1 I )/(p(I n |Z n = 0, θ 0 I ) + p(I n |Z n = 1, θ 1 I ))
. Therefore the characteristic length controls the relative influence of the shape and appearance information in the probability of assigning a label.

Since it is scaling the signed distance function, l ref can be interpreted as controlling how far the resulting shape given by p(Z n = e 1 |θ S , θ I , I n ) = 0.5 is allowed to deviate from the reference shape given by S(θ S ). More precisely, assuming a uniform distribution of the appearance label probability between 0 and 1, one can compute the expectation of the posterior probability for a voxel located as a 

E(p(Z n = 1|θ S , θ I , I n )) = 1 0 tS(∆ n ) tS(∆ n ) + (1 -t)(1 -S(∆ n )) dt = 1 -∆ n e -∆n -e -∆n (e -∆n -1) 2 , ∆ n = d n l ref
Based on the graph of Fig. 3.1, a voxel located at least at 4l ref inside the boundary of the reference shape S(θ S ) (p < -4) will have in average at least 95% probability to be classified as belonging in the object.

Application to Cochlea Shape Recovery

Cochlea shape model

We use a parametric cochlea shape model which is controlled by a set of 4 

Cochlea Appearance model

Appearance models describe the intensity patterns inside the foreground and the background classes and can be built in a supervised, semi-supervised or unsupervised manner. Many simple generative models such as Gaussian mixture models (GMM) with spatial corrections [Ashburner andFriston, 2005b, Pohl et al., 2006a] have been proposed in the literature to describe tissue intensity distributions. For the cochlea segmentation in CT images, we propose an unsupervised approach based on mixture of mixtures of Student's t-distributions, i.e.

each background and foreground regions are described as mixtures of Student's t-distributions. Those t-distributions are generalized Gaussian distributions with heavy tails and lead to more robust estimations than GMM since they are less sensitive to extreme intensity values [START_REF] Peel | Robust mixture modelling using the t distribution[END_REF]. In this context, the probability of observing intensity I n knowing the label Z n is parameterized as : parameters of the Student's t-distribution defined as:

p(I n |Z n = k, θ I ) = M k m=1 π k m t(I n |µ k m , σ k m , ν k m ) , ( 3 
t(I n |µ, σ, ν) = Γ ν+1 2 Γ ν 2 1 √ πνσ 1 + (I n -µ) 2 σ 2 ν -( ν+1 2 ) , (3.6)
where Γ(•) is the gamma function. To write the likelihood of this Student's t-distribution mixture of mixtures, we introduce a new categorical variable τ nkm which is a binary 1-of-Mk encoding such that τ nkm = 1 if voxel n belongs to the m-th component of region k, and M k m=1 τ nkm = 1. The likelihood then writes as:

p(I n |Z n , τ n ) = 1 k=0 M k m=1 t(I n |µ k m , σ k m , ν k m ) τ nkm Z nk
The inference is performed with closed-form updates of all parameters [Bishop, 2006, Peel and[START_REF] Peel | Robust mixture modelling using the t distribution[END_REF] after writing the Student's t-distribution as a Gaussian scale mixture. The total number of parameters to estimate is then 

|θ I | = 4(M 0 + M 1 ).

Results

Synthetic Images

We provide a 2D synthetic example to illustrate the influence of the reference length l ref in the proposed segmentation algorithm. We consider the segmentation of an ellipse with Gaussian intensity distribution on both background and foreground (see Fig. 

Inner Ear Datasets

The evaluation of the proposed approach is studied on 3 different datasets. The cochlea and its two scala have been segmented on both CT and µCT images by an ENT surgeon with a semi-interactive tool [START_REF] Criminisi | GeoS: Geodesic Image Segmentation[END_REF]. The high resolution µCT masks serve as ground truth information for the location of the cochlea.

Dataset

Dataset #3 is a human bony labyrinth dataset [START_REF] Wimmer | Human bony labyrinth dataset: Coregistered ct and micro-ct images, surface models and anatomical landmarks[END_REF] which includes 22 bony labyrinth CT images and their corresponding µCT images having isometric voxel size respectively of 0.1562mm and 0.0607mm. Those images were preprocessed and reformatted as for dataset #2 and also contains manually segmented cochlea masks.

Quantitative evaluation of segmentation on post-mortem µCT /CT datasets #2 and #3

Baseline Approach: We have implemented a 3D atlas based segmentation approach and applied it on dataset #2 and #3 to get a baseline accuracy in terms of Dice score. To this end, we randomly select one image from each dataset as template image and for each input image we perform a multiscale demons deformable registration [Vercauteren et al., 2007b] (as implemented in SimpleITK 3) and the stopping condition is ∆θ θ < 0.1, thus stopping when parameter updates are less than 10% of the parameter values.

Computational efficiency:

We analyze the computational cost of several alternative formulations of our algorithm. More precisely, in Table 3.1 we compare the computational time of three different implementations of our approach that differ by the choice of the quasi-Newton optimization method in the MS-step (BFGS vs Gauss-Newton) and by the algorithm used for generating signed distance maps ( VTK based vs deep learning based). The various algorithms was applied on the 9 images of dataset #2 and ran on a Dell Precision 7520 computer. It is clear that the Gauss-Newton method described in Algorithm 1 is far more efficient since it uses a much better approximation of the Hessian matrix than in the generic quasi Newton approach. Furthermore, as expected, the trained deep learning method leads to a speedup factor greater than 3. [0.05mm, 0.25mm] has a relatively small influence on the Dice score. To minimize the time of computation, we do not optimize the reference length through a greedy search but simply set its value to 0.1 for dataset #1 and #2 and 0.3 for dataset #3 for shape fitting. To compute the final hard segmentation we use a fixed reference length of 0.25.

Influence of the reference length

Robustness analysis

To study the robustness of the method, we randomly initialize the cochlea shape parameters by performing a random uniform sampling within their defined value range. Based on 10 initial random samples, we computed the average Dice score for one image of dataset #2 and obtained a mean Dice 

Comparison with the state-of-the-art

We consider below the prior work on cochlea segmentation evaluated on clinical CT images while discarding the literature on the segmentation of µCT images [START_REF] Hans Martin Kjer | Semi-automatic anatomical measurements on microCT 3D surface models[END_REF], Ruiz Pujadas et al., 2016a,b] or of the scala tympani and vestibuli located inside the cochlea [START_REF] Jack H Noble | Statistical shape model segmentation and frequency mapping of cochlear implant stimulation targets in CT[END_REF][START_REF] Jack H Noble | Image-Guidance enables new methods for customizing cochlear implant stimulation strategies[END_REF]. 

Discussion

The proposed approach relies on the definition of a generic shape function S(θ S , x)

which can be for instance a statistical shape model, a deformation image template, or an implicit shape equation. In the case of the cochlea, it was defined as a signed distance function of a parametric shape model SDM(S(θ S ), x). This specific choice makes the computation of the shape function and its gradient fairly costly, despite the use of a fully supervised dedicated neural network (DLSDM). There are several ways to optimize its computation time. One could for instance use a supervised appearance model such as a trained neural network which would remove all MI steps in the EM algorithm and would decrease by at least a factor 2 the time of computation. Another way is to use an implicit shape model S(θ S , x) = 0 for instance based on statistical level sets [Tsai et al., 2003]. The cochlea segmentation example provided in this chapter relies on a fully interpretable intensity and shape parameters at the expense of its computational

efficiency. Yet, one could train a deep neural regressor for predicting cochlea shape parameters and segmentation by using the segmentations generated by the proposed framework as training set.

For the cochlea segmentation, excellent results were obtained on cadaveric CT images similarly to the supervised methods. Furthermore, to the best of our knowledge, we introduced a first semi-quantitative assessment of cochlea segmentations on clinical CT images acquired on more than 200 patients. However, for a complete study, one would need to assess thoroughly the inter-rater variability of those manual segmentations and ideally combine them with other high resolution image modalities. Finally, an interesting extension of this work would be to segment the scala vestibuli and tympani in addition to the cochlea.

Accelerating parametric shape representing through

Deep Learning

Signed distance map (SDM) is a common representation of surfaces in medical image analysis and machine learning. The computational complexity of SDM for 3D parametric shapes is often a bottleneck in many applications, thus limiting their interest. In this chapter, we propose a learning based SDM generation neural network which is demonstrated on a tridimensional cochlea shape model Therefore, the proposed approach achieves a good trade-off between accuracy and efficiency. While there exist fast (linear complexity) sweeping methods Maurer et al. [2003] for computing SDM from binary shapes, the naive computation of an SDM from triangular meshes has complexity O(N n T ) where N is the number of image voxels and n T is the number of triangles describing the shape. An example of a generic computation of SDM from meshes is available in VTK Baerentzen and Aanaes [2005], [START_REF] Quammen | Boolean operations on surfaces in vtk without external libraries[END_REF] through the vtkImplicitPolyDataDistance class. Since many algorithms are relying on the SDM generation, it is critical to optimize its computation time in various ways Jia et al. [2018]. In medical image analysis, the naive approach leads to poor performances due to the fact that volumetric images and complex shapes are considered. To improve the performance of the SDM calculation, several authors [START_REF] Roosing | Fast distance fields for fluid dynamics mesh generation on graphics hardware[END_REF], [START_REF] Wu | A double layer method for constructing signed distance fields from triangle meshes[END_REF] proposed 2D and 3D SDM computation methods that take advantage of graphics processing units (GPU) in order to accelerate the computation. Yet, there does not exist any generic library for fast computation of SDM on GPU, and the availability of specific GPU at test time is a significant limitation for machine learning applications. [2001] were introduced with triangles structured into 3D grids cells.

Signed Distance Map

Fast approximations of SDM was proposed in [START_REF] Wu | Piecewise linear approximation of signed distance fields[END_REF] based on structured piece-wise linear distance approximation. Those approaches often require a significant pre-computation stage that can override their computational benefits at later stage. Despite those prior works, there does not exist any generic and efficient way to compute SDM from a triangular mesh on a grid on CPU resources. In this chapter, we propose an alternative method for fast computation of SDM based on Convolutional Neural Network (CNN) which does not rely on the rasterization of mesh triangles and does not require any hardware acceleration at test time. Results showed that our approach reduces the SDM computational time complexity significantly without any significant impact on the accuracy of shape recovery.

Recent works of

Methods and Evaluation

The cochlea is an organ that transforms sound signals into electrical nerve stimuli to the cortex. Cochlea lesions can lead to hearing loss that can be improved by inserting Cochlear Implant(CI) on patients at a middle stage of the disease.

Cochlea shape recovery from images is a pivotal step for CI, and the work of Demarcy [2017a] is a state-of-art method for cochlea shape analysis which makes a computationally intensive use of SDM computations inside Expectation-Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 72 Maximization loops.

Cochlea Shape Model and Dataset

We rely on a parametric cochlea shape model that represents the shape variability of the human cochlea. It is represented as a generalized cylinder around a centerline having four shape parameters a, α, b, φ, two of them for the longitudinal (resp. radial) extent of the centerline. To compute the SDM of the shape model, the parametric surface was discretized as triangular meshes whose edge lengths are approximately 0.30±0.15 mm Demarcy [2017a]. The SDM was then generated by using VTK library and the vtkImplicitPolyDataDistance class which implements a naive SDM algorithm based on point-to-triangle distance computations.

For training the neural network, we generated a static dataset consisting of 625

(5 × 5 × 5 × 5) cochlea SDM datasets of size 50 × 50 × 60 by uniformly sampling the 4 deformation parameters within user specified ranges. In addition, we performed random data augmentation, by generating online SDMs during the training stage through a random sampling of the 4 shape parameters.

Signed Distance Map Neural Network

Our SDM Neural Network (SDMNN) is an encoder-decoder network with merged layers, its structure being inspired by the well known U-net Ronneberger et al. [2015a]. The SDMNN has the four shape parameters as input and generates as output a 50 × 50 × 60 signed distance map (see Fig. 3.10).

Experiments and Evaluation

The SDMNN was trained on one NVIDIA 1080Ti GPU with both static 625 datasets and online random SDMs with a Mean Square Error (MSE) loss for 168 hours. After training, we generated 100 test SDMs with the naive mesh-based VTK code that are associated with random shape parameters. Those were compared to the SDMs generated by the SDMNN for the same shape parameters and the average MSE on the whole images were MSE = 0.006mm which is small given that the range of a SDM is (-0.2mm, 1.3mm).

Qualitative results are shown in isocontours associated with the zero (red) and 1mm (yellow) level sets. We see that the isocontours from the SDMNN match closely the ones generated from the mesh. Some small and smooth distorsions appear for the yellow contours.

Since in surface reconstruction problems, the main focus of SDM is on the zero level set, the errors of the yellow isocontours are likely not to entail any major reconstruction errors. To verify the accuracy of the zero level isocontour, we have extracted the zero isosurface by the marching cubes algorithm associated with the standard shape values and compared that reconstructed surface with the original triangulated mesh model (the one used to generate the mesh SDM).

In Fig. 3.11 (II) the 2 surfaces are overlaid showing that the SDMNN isosurface is as smooth as the original mesh and that the 2 surfaces are very close indeed.

The proposed approach is evaluated quantitatively in three ways. First, we compare the computation times between VTK mesh-based SDM generation and the SDMNN-based generation. All evaluations were performed on a Dell Mobile Workstation with Intel(R) Core(TM) i7-7820HQ @ 2.90GHz CPU. We show in Table 3.6 that the SDM neural network is about 66 times more efficient to generate a SDM than the classical method. Second, the performance was also compared for fitting a cochlea shape model on a clinical CT image as in Demarcy [2017a] which requires several hundreds of evaluations of signed distance maps. In such case, the speedup was shown to be about 11 times faster than the mesh-based alternative. We also implemented the DeepSDF and IM-NET Chen and Zhang

[2019], [START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF] for the generation of SDM of the cochlea with 4 shape parameters. For a fair comparison, we run DeepSDF (which is very similar to the IM-NET) to test its computational efficiency to fill a (60, 50, 50) SDM grid in one batch. The resulting computing time is 28s as shown in Table 3.6 which is even worse than the default VTK algorithm. This shows that there is high price to pay to have a point-based network rather than a image-based network.

Furthermore, we found the accuracy in terms of signed distances of both networks to be significantly worse than our proposed SDMNN. Thirdly, we evaluated the difference in terms of estimated shape parameters after fitting 9 clinical CT cochlea volumes using both mesh-based and SDMNN methods.

This lead to recover the 4 shape parameters a, α, b, φ on each of the 9 cochleas Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 75 that are stored in vector P mesh when using mesh-based SDM generation method and vector P SDM N N with SDMNN. The errors in shape parameters P err = P mesh -P SDM N N are reported in Table 3.8 showing negligible discrepancies given that the parameters magnitude (see head of Table 3.8).

Conclusion

In this chapter, we have presented a new probabilistic generative approach for combining shape and intensity models for image segmentation. The resulting segmentation is an interpretable compromise between a fidelity to a parametric shape space (captured in the prior distribution) and an appearance model (captured in the likelihood distribution). The proposed method goes well beyond the concept of shape fitting since it also provides an approximation to the posterior distribution of shape parameters. The use of a logistic shape model allows to control the trade-off between appearance and shape with a single parameter: the reference length. When applied to the recovery of cochlea structures from CT images, we were able to provide accurate segmentations with meaningful shape parameter distributions. Furthermore, we have shown how the approximate shape parameter posterior distribution can be exploited to provide realistic uncertainty maps. An interesting application of the proposed approach is to perform model selection with Bayes factors, in order to estimate the optimal complexity of a parametric shape model for a given image segmentation task.

In addition, we have proposed a deep learning-based fast signed distance map generation method. We showed quantitatively and qualitatively that it can generate 3D SDM in less than 300 ms, while having an accuracy suitable for shape-recovery, with no noticeable changes in recovered shape parameters. This CNN based SDM generation model can be used for any parametric shape model for SDM generation and does not require any GPGPU resources after training, which is compatible with a clinical environment. While other point-based approaches such as DeepSDF and IM-NET have been also proposed recently, the time overhead to fill a regular grid appears to be fairly large. The current approach is probably suitable only when the number of shape parameters is small since the number of SDMs in the training set should grow quadratically with the number of shape parameters.

Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 76

Future work will look at additional strategies to speed-up the training stage and improve the output accuracy. Future work will also explore the application of this framework to other shape representations than explicit parametric shape models in order to find a reasonable trade-off between computational efficiency and interpretability of shape parameters. For instance, in statistical deformation models [Rueckert et al., 2003b], the computation of shape function gradient ∇ θ S S(θ S , x) is straightforward, but its shape parameters may not be meaningful besides the first modes. In this section, we detail the computation of the shape function gradient ∇ θ S S(θ S , x)

when rigid and deformable shape parameters are considered. More precisely, writing the parameters controlling the non-rigid deformation as θ SD , the shape function writes as S(θ SD , Rx n + t). The rotation matrix R is parameterized with rotation vector r, whose norm is the rotation angle and whose direction is the rotation axis. The gradients with respect to the translation and rotation vectors are then given in closed form as :

∇ t S(θ SD , Rx n + t) = ∇ x S(θ SD , Rx n + t) ∇ r S(θ SD , Rx n + t) = -RS xn rr T + ((R) T -I 3 )S r ) r 2 T ∇ x S(θ SD , Rx n + t)
where ∇ x is the spatial gradient, S x is the 3x3 anti-symmetric matrix associated with vector x. For a deformable parameter θ SD , if the shape function is not

given in an analytical form as it is the case for parametric shapes, the shape function gradient can be computed with finite differences based on a parameter increment δθ i SD :

∇ θ i SD S(θ SD , Rx n + t) = 1 2δθ i SD S(θ SD + δθ i SD ), Rx n + t) -S(θ SD -δθ i SD , Rx n + t)

Cochlea Shape Model

We are interested in the cochlea structure in CT images which is defined as a generalized cylinder, i.e. as cross-sections swept along a centerline.

Centerline

The centerline is parameterized in a cylindrical coordinate system by its radial r(θ c ) and longitudinal z(θ c ) components. The range of polar angle θ c is [0, θ max ] where θ max is the maximum polar angle controlling the total number of cochlear turns.

The radial component is defined piecewise with a polynomial function and a
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r(θ c ) =    p 2 θ 2 c + p 1 θ c + p 0 if θ c < θ 0 ae -bθc if θ c ≥ θ 0 (3.7)
where θ 0 = 5π/6 and p 0 = 5 mm. Furthermore to obtain a continously differentiable curve, we set :

p 2 = C 1 θ 0 -C 2 + p 0 θ 2 0 p 1 = -C 1 θ 0 + 2C 2 + 2p 0 θ 0 C 2 = ae -bθ 0 C 1 = -C 2 b .
(3.8)

The longitudinal component of the centerline is the sum of an exponentially damped sinusoidal and a linear function:

z(θ c ) =    αe -βθc cos(θ c + φ) + q 1 θ c if θ c < θ 1 a 2 θ 2 c + a 1 θ c + a 0 if θ c ≥ θ 1 , ( 3.9) 
where β = 0.2 rad -1 , q 1 = 0.225 mm.rad -1 and θ 1 = θ max -π. The polynomial function is used to flatten out the last half turn so that dz(θ)/dθ| θ=θmax = 0 and similarly a 2 , a 1 , a 0 are set to obtain a continuously differentiable curve.

Cross-Sections

The cross-sections are modeled by a closed planar shape on which a varying affine transformation is applied along the centerline. The scala tympani and the scala vestibuli are modeled with two half pseudo-cardioids while the cochlear cross-section corresponds to the minimal circumscribed ellipse of the union of the tympanic and vestibular cross-sections. The affine transform of cross-sections is parameterized by a rotation, and a width and height scalings.

All cross-sectional parameters are fixed because their variability was found to be small compared to the variability of the centerline.

Shape parameter vector

We have chosen a compact description of the cochlea shape to limit as much as possible the correlation between the shape parameters and therefore make them uniquely identifiable. Finally, only 10 free parameters are considered in θ S :

• 6 translation and rotation parameters : t = (tx, ty, tz), r = (rx, ry, rz)
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• 2 radial component parameters of the centerline, a and b

• 2 longitudinal component parameters, α and φ

Note that there are no free cross-section parameters which implies that θ S can be used to define uniquely the cochlea.

The prior probabilities on the 10 shape parameters were modeled as being an uniform distribution (uninformative prior) such that all regularization terms log p(θ S |α) can be ignored.

Initialization of intensity parameters

The 4 * 6 = 24 initial intensity parameters for the mixture of Student's t distributions in datasets #1 and #3 are presented in Table 3.7.

Chapter 4

Quasi-Symplectic Langevin Variational

Inference for unsupervised learning Carlo (MCMC) is an effective approach to tighten the ELBO for approximating the posterior distribution. In particular, Hamiltonian Variational Autoencoder (HVAE) is an effective MCMC inspired approach for constructing a low-variance ELBO that is amenable to the reparameterization trick. In this paper, we propose a Langevin dynamics flow-based inference approach that incorporates the gradients information in the inference process through the Langevin dynamics which is a kind of MCMC based method similar to HVAE. Specifically, we employ a quasi-symplectic integrator to cope with the prohibit problem of the Hessian computing in naive Langevin flow. We show the theoretical and practical effectiveness of the proposed framework in comparison with other methods, as it reaches the best negative log-likelihood on benchmark dataset. This chapter is adapted from a preprint paper [Wang and Delingette, 2021b].

Introduction

Variational Autoencoder (VAE) is a popular generative neural model, which is applied in a vast number of practical cases to perform unsupervised analysis or to modeling a dataset. It has the advantages of offering a quantitative assessment of generated model quality and being less cumbersome to train compared to Generative Adversarial Networks (GANs). One of the key factors influencing the performance of VAE models is the quality of the marginal likelihood approximation in the corresponding evidence lower bound (ELBO).

A common method to make the amortized inference efficient is to constraint the posterior distribution of the latent variables to follow a given closed-form distribution, often multivariate Gaussian [START_REF] Wolf | Variational inference with hamiltonian monte carlo[END_REF]. However, this severely limits the flexibility of the encoder. To increase the flexibility of the posterior modeling, the Hamiltonian Variational Inference (HVI) is proposed to remove the requirement of an explicit formulation of the posterior distribution by forwarding sampling a Markov chain based on Hamiltonian dynamics [START_REF] Salimans | Markov chain monte carlo and variational inference: Bridging the gap[END_REF].

It can be seen as a type of normalizing flows (NFs) [START_REF] Rezende | Variational inference with normalizing flows[END_REF] where repeated transformations of probability densities are replaced by time integration of space and momentum variables. To guarantee the convergence of • The proposed MCMC method is a Langevin-flow-based asymptotic low variance unbiased lower bound estimator.

• Different from prior Langevin normalizing flow, this approach is a generalized Langevin flow-based inference framework, which avoids computing the Hessian.

• The method shows comparable quantitative performance with conventional VAE frameworks on benchmark and real-world datasets.

Preliminary

Variational Inference and Normalizing Flow

Variational Inference One core problem in the Variational Inference (VI) task is to find a suitable replacement distributions q θ (z) of the posterior distribution p(z|x) for optimizing the ELBO: argmax θ E q [log p(x, z) -log q θ (z)]. To 

log(p(z i )) = log(p(z 0 )) -Σ i 0 log det ∂T i ∂z i-1 (4.1)
where the non-zero Jacobian |det ∂T i ∂z i-1 | of each transformation ensures the global volume invariance of the probability density. The positivity of each Jacobian terms is guaranteed by the invertibility of each transformation T and consequently by the reversibility of normalizing flows.

Hamiltonian Flows

The Hamiltonian dynamics in HVAE can also be seen as a type of NFs, for which Eq: (4.1) also holds. Briefly, HVAE employs an I steps Hamiltonian transformation process: H I to build an unbiased estimation of posterior q(z) by extending p(x, z) as p(x, H I (z 0 , ρ 0 )) leading to: p(x) := p(x,H I (z 0 ,ρ 0 ))

q(H I (z 0 ,ρ 0 )) , where: p(x, z I , ρ I ) = p(x, H I (z 0 , ρ 0 )) = p(x, z I )N (ρ I |0, I). In particular, the HVAE enables the use of the reparameterization trick during inference thus leading to efficient ELBO gradients computation. The Hamiltonian dynamics is such that the distribution of phase space (z, ρ)1 remains constant along each trajectory according to Liouville's theorem (symplectic) [START_REF] Fassò | Integrable almost-symplectic hamiltonian systems[END_REF]. When using the leapfrog integrator with step size t for discretizing the Hamiltonian dynamics, the Jacobian remains to 1 (ignoring numerical rounding errors) with |det ∂H i ∂z i | -1 t = 1. This property simplifies the Jacobian calculations at each discretization step [START_REF] Caterini | Hamiltonian variational auto-encoder[END_REF]. In HVAE, the posterior approximation is constructed by applying I steps of the Hamiltonian flow:

q I (H i (θ 0 , ρ 0 )) = q 0 (H i (θ 0 , ρ 0 )) I i=1 |det∇Φ i (H i (θ 0 , ρ 0 ))| -1
, where Φ i represents the leapfrog discretization transform of Hamiltonian dynamics. When combined with the reparameterization trick, it allows to compute an unbiased estimator of the lower bound gradients ∇ θ L.

Langevin Monte-Carlo and Langevin Flow

A Langevin dynamics describes a stochastic evolution of particles within the particle interaction potential U (x) that can be treated as a log probability density, it has recently attracted a lot of attention in the machine learning community [Giro-lami and Calderhead, 2011, Mou et al., 2020[START_REF] Stuart | Conditional path sampling of sdes and the langevin mcmc method[END_REF][START_REF] Welling | Bayesian learning via stochastic gradient langevin dynamics[END_REF] for the stochastic sampling of posterior distributions p Φ (z|x) in Bayesian inference. Langevin Monte-Carlo methods [START_REF] Girolami | Riemann manifold langevin and hamiltonian monte carlo methods[END_REF] rely on the construction of Markov chains with stochastic paths parameterized by Φ based on the discretization of the following Langevin-Smoluchowski SDE [START_REF] Girolami | Riemann manifold langevin and hamiltonian monte carlo methods[END_REF] related to the overdamped Langevin dynamics :

δΦ(t) = 1 2 ∇ Φ log(p(x, Φ))δt + δσ(t) (4.2)
The stochastic flow in Eq (4.2) can be further exploited to construct Langevin dynamics based normalizing flow and its derived methods for posterior inference [START_REF] Kobyzev | Normalizing flows: An introduction and review of current methods[END_REF][START_REF] Wolf | Variational inference with hamiltonian monte carlo[END_REF]. The concept of Langevin normalizing flow was first briefly sketched by [START_REF] Rezende | Variational inference with normalizing flows[END_REF] in their seminal work. To the best of our knowledge, little work has explored practical implementations of Langevin normalizing flows. In [Gu et al., 2019], the authors proposed a Langevin normalizing flow where invertible mappings are based on overdamped Langevin dynamics discretized with the Euler-Maruyama scheme. The explicit computation of the Jacobians of those mappings involves the Hessian matrix of log(p Φ (x)) as follows :

log det ∂L i ∂z k-1 -1 ∼ ∇ z ∇ z log(p(x, z)) + O(z) (4.3)
Yet, the Hessian matrix appearing in Eq (4.3) is expensive to compute both in space and time and adds a significant overhead to the already massive computation of gradients. This makes the method of [Gu et al., 2019] fairly unsuitable for the inference of complex models. In a more generic view, in the Langevin flow, the forward transform is modelled by the Fokker-Plank equation and the backward transform is given by Kolmogorov's backward equation which is discussed in the work of Kobyzev et al. and is not detailed here.

Quasi-symplectic Langevin and Corresponding Flow

Trivial Jacobian by Quasi-symplectic Langevin Transform To avoid the computation of Hessian matrices in Langevin normalizing flows, we propose to revert to generalized Langevin dynamics process as proposed in [START_REF] Tomovski | Generalized langevin equation. Fractional Equations and Models[END_REF]. It involves second order dynamics with inertial and damping terms:

δΦ(t) = Kδt δK(t) = - ∂ln(p(x, Φ)) ∂Φ δt -νK(t) + δσ(t) (4.4)
where Φ(t) and K(t) are the stochastic position and velocity fields, and ν controls the amount of damping. We can see that the Langevin-Smoluchowski type SDE of Eq.:(4.2) is nothing but the special case of high friction motion [START_REF] Tomovski | Generalized langevin equation. Fractional Equations and Models[END_REF] when Eq.: (4.4) has an over-damped frictional force (proof is in 4.5.1).

To get simple Jacobian expressions when constructing Langevin flow, we need to have a symplectic Langevin transformation kernel. To this end, we introduce a quasi-symplectic Langevin method for building the flow [START_REF] Milstein | Symplectic integration of hamiltonian systems with additive noise[END_REF]. The quasi-symplectic Langevin differs from the Euler-Maruyama integrator method which diverges for the discretization of generalized Langevin SDE. Instead, the quasi-symplectic Langevin method makes the computation of the Jacobian tractable during the diffusion process and keeps approximate symplectic properties

for the damping and external potential terms.

More precisely, the quasi-symplectic Langevin integrator is based on the two state variables (K i , Φ i ) that are evolving according to the mapping Ψ σ (K i , Φ i ) = (K i+1 , Φ i+1 ) where σ is the kernel stochastic factor. It is known as the second order strong quasi-symplectic method (4.5) and is composed of the following steps for a time step t:

K II (t, φ) = φe -νt K 1,i = K II ( t 2 , K i ); Φ 1,i = Φ i - t 2 K 1,i K 2,i = K 1,i + t ∂ log(p(x, Φ 1,i )) ∂Φ 1,i + √ tσξ i ; ξ i ∼ N (0, I) K i+1 = K II ( t 2 , K 2,i ); Φ i+1 = Φ 1,i + t 2 K 2,i (4.5) 
where initial conditions are K 0 = κ 0 ; Φ 0 = φ 0 .

The above quasi-symplectic integrator satisfies the following two properties:

Property 1. Quasi-symplectic method degenerates to a symplectic method when ν = 0.
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|∂Ψ 0 (K i , Φ i )| = ∂Φ i+1 ∂Φ i ∂K i+1 ∂K i - ∂Φ i+1 ∂K i ∂K i+1 ∂Φ i = exp(-νt) (4.6)
The first property shows that the VAE constructed based on the Quasi-Symplectic Langevin (QSL) dynamics is conceptually equivalent to a HVAE in the absence of damping ν = 0. The second property implies that the Langevin-VAE integrator leads to transformation kernels that are reversible and with trivial Jacobians.

The proofs of those two properties can be found in appendix 4.5.2 and more discussion about the quasi-symplectic integrator can be found in [START_REF] Milstein | Quasi-symplectic methods for langevin-type equations[END_REF].

The advantage of the QSL flow compared to the regular Langevin flow is that it avoids computing the Hessian of the log probability, which is a major advantage given the complexity of the Hessian computation.

We give below the formal definition of the quasi-symplectic Langevin normalizing flow.

Definition 1. An I steps discrete quasi-symplectic Langevin normalizing flow

L I is defined by a series of diffeomorphism, bijective and invertible mapping Ψ 0 : σ A -→ σ B between two measurable spaces (A, σ A , µ α ) and (B, σ B , µ β ):

L I µ α (S A ) :Ψ i • µ α (S A ) = µ α (Ψ -1 i-1 (S B )), ∀S A ∈ σ A , S B ∈ σ B , i = {1, ..., I}. (4.7)
where σ (•) and µ (•) are the σ-algebra and probability measure for set (•) respectively, Ψ i is the i th quasi-symplectic Langevin transform given by Eqs:(4.5).

Example for single step quasi-symplectic Langevin flow

We illustrate below definition 1 of a quasi-symplectic Langevin normalizing flow in case of a single transform applied on a single random variable. We consider a probability measure p(x) of random variable set x ∈ X. Then a single step Langevin flow transforms the original random variable x to a new random variable y = Ψ 0 (x), y ∈ Y . According to definition 1, the new probability measure q(y) of random variable y is given by:

q(y) = L 0 p(x) : Ψ 0 • p(x) = p(Ψ -1 0 (y)) (4.8)
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q(y) = p(x) • |det ∂Ψ 0 ∂x | -1 (4.9)
The defined quasi-symplectic Langevin flow is a generalization of the Langevin flow with a quasi-symplectic structure for the parameters phase space. The quasi-symplectic Langevin normalizing flow has a deterministic kernel Ψ 0 when the kernel stochastic factor σ = 0, and degenerates to a symplectic transition when ν = 0.

Lower Bound Estimation With Langevin-VAE

In the quasi-symplectic Langevin-VAE, we use an augmented latent space consisting of position φ I and velocity κ I variables of dimension ζ : z = (φ I , κ I ). The objective of the autoencoder is to optimize its parameters as to maximize the evidence lower bound L:

log p(x) = log Ω p(x, z)dz ≥ Ω log p(x)q(z|x)dz ≡ L (4.10)
where Ω is the measure space of the latent variables and as p(x) is an unbiased estimator for p(x). The lower bound is equal to the evidence when the posterior approximation is equal to the true posterior. Thus maximizing the lower bound is equivalent to minimize the gap between the true posterior p(z|x) and its approximation q(z|x) [START_REF] Blei | Variational inference: A review for statisticians[END_REF].

Chapter 4. Quasi-Symplectic Langevin Variational Inference for unsupervised learning 89 Algorithm 2 Quasi-symplectic Variational Inference Inputs: Data X, Inference steps I, damping ν, time step t, prior q 0 ω E (φ 0 ) Output: Encoding and decoding parameters ω = (ω E , ω D ) Initialize all parameters, variables Define:

K II (t, p) = pe -νt while NOT ω converged do Get minibatch: X N N ← -X while NOT j = N do x j j ← -X N // Get x j in minibatch. φ 0 ∼ q 0 ω E (φ 0 |x j )
// Sampling latent variable from variational prior

κ 0 ∼ N (0, E ζ )
// Sampling velocity from unit Gaussian. The posterior approximation q(z) is computed through a series of Langevin transformations which is the Langevin flow:

for i = 1; i < I; i + + do // Quasi-symplectic Langevin Transform 22 κ 1,i ← K II ( t 2 , κ i ); φ 1,i ← φ i -t ∂ log(p(x,φ ) ) 2∂φ i ; κ i+1 ← K II ( t 2 , κ 1,i ); φ i+1 ← φ 1,i + t 2 κ 1,i end p * ω ← pω D (x, φ I ) • N (κ I |0, E ζ ) q * ω ← q 0 ω E (φ 0 ) • N (κ 0 |0, E ζ )exp(νt) L * j ← log(p * ω ) -log(q * ω ); // Quasi-symplectic Langevin ELBO j ← j + 1 end L * ← N i=1 L * i /N //
q ω E (z|x) = q I (L I (φ 0 , κ 0 )|x) = q 0 ω E (φ 0 , κ 0 |x) I i=1 |det∇Ψ 0 (φ i , κ i ))| -1 = q 0 ω E (φ 0 , κ 0 |x) exp(Iνt)
, where q 0 ω E (φ 0 , κ 0 |x) is an initial approximation parameterized by ω E which can also be seen as the prior on random variables (φ 0 , κ 0 ).

We then give the lower bound for the quasi-symplectic Langevin-VAE as:

L := Ω q ω E (z|x) • (log p(x, L I (φ 0 , k 0 )) -log(q 0 ω E (φ 0 , k 0 )) + Iνtdz (4.11)

Quasi-symplectic Langevin-VAE

The quasi-symplectic Langevin lower bound L lays the ground for the stochastic inference of a variational auto-encoder. Given a set of dataset X : {x i ∈ X; i ∈ Chapter 4. Quasi-Symplectic Langevin Variational Inference for unsupervised learning

90 X φ I φ 0 Σ ω E µ ω E ω E κ 0 N (0, I) κ I ω D I Figure 4
.1: Graphical model of the Quasi-symplectic Langevin Variational Autoencoder. The multivariate Gaussian parameters µ ω E , Σ ω E defining the variational prior of latent variable φ 0 are determined from the data X and the parameter ω E of the encoding network. The initial velocity latent variable κ 0 has a unit Gaussian prior and is paired by initial latent variable φ 0 . After iterating I times the quasi-symplectic Langevin transform, the latent pair {φ I , κ I } is obtained from the initial variables {φ 0 , κ 0 }. The decoder network with parameters ω D is then used to predict the data from latent variables φ I through the conditional likelihood p(x|φ I ). Variables in diamonds are deterministically computed. Network parameters ω E , ω D are optimized to maximize the ELBO.

N + }, we aim to learn a generative model of that dataset from a latent space with the quasi-symplectic Langevin inference. The generative model p(x, z) consists of a prior on initial variables z 0 = (φ 0 , κ 0 ), q 0 ω E (φ 0 , κ 0 |x) = q 0 ω E (φ 0 |x) • N (κ 0 |0, I ζ ) and conditional likelihood p ω D (x|z) parameterized by ω D . The Gaussian unit prior N (κ 0 |0, I ζ ) is the canonical velocity distribution from which the initial velocity of the Langevin diffusion will be performed. The distribution q 0 ω E (φ 0 |x) is the variational prior that depends on the data x i . Thus the generative model p ω E ,ω D (x, z) is parameterized by both encoders and decoders and the quasisymplectic Langevin lower bound writes as:

argmax ω E ,ω D L * =E φ 0 ∼q 0 ω E (•),κ 0 ∼N ζ (•) (log pω E ,ω D (x, L I (φ 0 , κ 0 ))- log(q 0 ω E (φ 0 , κ 0 )) + Kνt) (4.12)
The maximization of the lower bound (4.12) can be performed efficiently with the reparameterization trick depending on the choice of the variational prior q 0 ω E (φ 0 ). To have a fair comparison with prior work [START_REF] Caterini | Hamiltonian variational auto-encoder[END_REF], we argmax

ω E ,ω D L * =E φ 0 ∼q 0 ω E (•),κ 0 ∼N ζ (•) (log pω E ,ω D (x, L I (φ 0 , κ 0 )) -log(q ω E (φ 0 , κ 0 )) + Kνt - 1 2 κ T I κ I ) + ζ 2 ; ∀φ 0 , κ 0 ∈ R ζ (4.13)
The resulting algorithm is described in Alg.29.

Experiment and Result

We examine the performance of quasi-symplectic Langevin-VAE on the MNIST dataset [START_REF] Lecun | Mnist handwritten digit database[END_REF] based on various metrics. [START_REF] Caterini | Hamiltonian variational auto-encoder[END_REF] have reported that the Hamiltonian based stochastic variational inference outperforms that of Planar Normalizing Flow, Mean-field based Variational Bayes in terms of model parameters inference error. In this paper, we compare the proposed Langevin-VAE with: VAE, HVAE, Importance Weighted Autoencoder (IWAE) [Huang et al., 2019], Deep Belief Networks (DBNs) [START_REF] Hinton | Deep Belief Nets[END_REF], and Deep

Autoregressive Networks (DANs) [START_REF] Gregor | Deep autoregressive networks[END_REF] on MNIST dataset. 

(x i |z i ) = d j=1 Dec ω D (φ)[j] x i [j] (1 -Dec ω D (φ)[j]) 1-x i [j] .

Quasi-symplectic Langevin-VAE on binary image benchmark

Implementation details Following the classical VAE approach [Kingma and [START_REF] Diederik | Auto-encoding variational bayes[END_REF], the encoder network parameterized by ω E outputs multivariate

Gaussian parameters : [START_REF] Caterini | Hamiltonian variational auto-encoder[END_REF] and MCMCVAE [START_REF] Salimans | Markov chain monte carlo and variational inference: Bridging the gap[END_REF] We qualitatively see that the quality and diversity of the sampled images are guaranteed for both autoencoder models. Quantitatively, Table 4.1 shows the performance in terms of the NLL, ELBO, IS scores for different Langevin-VAE and HVAE. In addition, we compare the negative log-likelihood of the flow-based frameworks( HVAE, LVAE) with 3 non-flow based generative models: IWAE, DBNs, and DANs. The IWAE, which achieved a comparable result (82.90 nats) against (82.40 nats) for the Langevin-VAE. Yet, this was the best performance of IWAE [Huang et al., 2019], which achieved through a k-sample (k = 5000) importance weighting MCMC. We notice that the Langivin-VAE reaches the best performance for the 3 evaluation metrics in comparison with the other methods on the MNIST benchmark.

µ ω E (x) ∈ R ζ and Σ ω E (x) ∈ R ζ , such that the variational prior is a multivariate Gaussian q 0 ω E (φ 0 |x) = N (φ 0 |µ ω E (x), Σ ω E (x)
One of the drawbacks of flow-based methods is the time and space overhead of the gradient calculation. The HVAE requires k + 1 or 2 × k times computation of the gradient depending whether the gradients are reused or not. If the gradients are reused as in most implementations, they must be stored and retrieved, which requires a compensation between the memory and time cost. Instead, the Langevin-VAE relies on the computation of k gradient vectors without any requirement to store and retrieve them, which is slightly more efficient. We employ the proposed method for inference of a 3D cochlea CT image dataset.

The human cochlea is an auditory nerve organ with a spiral shape. Some severe hearing impairments can be treated with cochlear implants. The shape of the cochlea is of great significance to the definition of preoperative and postoperative plans. The quantitative analysis of the shape of the cochlea is the focus of several research papers [START_REF] Caversaccio | Robotic middle ear access for cochlear implantation: First in man[END_REF][START_REF] Manley | The Cochlea: What It Is, Where It Came From, and What Is Special About It[END_REF][START_REF] Wang | A Deep Learning based Fast Signed Distance Map Generation[END_REF]. In this experiment, we use the proposed method to create a compact representation of the cochlea shape and appearance.

Dataset and Implementation details

The dataset includes 1080 patients 3D images that collected from the radiology department of Nice University Hospital.

The original slices sequences are with a spacing size of 0.185mm, 0.185mm, 0.25mm.

We used a reference image to register all the images to the cochlea region (FOI) by using an automatic pyramidal blocking-matching (APBM) framework [Ourselin et al., 2000b[START_REF] Toussaint | MedINRIA: Medical Image Navigation and Research Tool by INRIA[END_REF]. The FOI volumes are resampled into isometric spacing size of 0.2mm with volume of (60,50,50) Chapter 4. Quasi-Symplectic Langevin Variational Inference for unsupervised learning 97 shape and appearance. This implies that the Langevin-VAE learns the variance of the cochlea shapes and the diversity of the intensity changes.

Conclusion

In this paper, we propose a new flow-based Bayesian inference framework by introducing the quasi-symplectic Langevin flow for the stochastic estimation of a tight ELBO. In comparison with conventional VAE and other methods, the proposed method achieves better performance on both toy and real world problems.

More specifically, by introducing the quasi-symplectic Langevin dynamics, we also overcome the limitation of the Langevin normalizing flow [Gu et al., 2019] which requires to provide the Hessian matrix ∇∇log(p(x, φ)) to compute the Jacobian.

To the best of our knowledge, the proposed approach is the first Langevin flow based method as a generative model for dataset modeling.

Potential improvements of the quasi-symplectic Langevin inference can arise by investigating the manifold structure of the posterior densities of the latent variables [Barp et al., 2017[START_REF] Girolami | Riemann manifold langevin and hamiltonian monte carlo methods[END_REF][START_REF] Livingstone | Information-geometric markov chain monte carlo methods using diffusions[END_REF] to improve the inference efficiency.

Appendix

Over-damped form of the Generalized Langevin Diffusion

We consider a unit mass m = 1 evolving with a Brownian motion. The velocity part of the generalized Langevin type equation is:

∂Θ(t) = Kdt ∂K(t) = ∂Θ(t) 2 ∂t 2 = ∂ln(p Θ (x)) ∂Θ dt -νΓK(t) + δσ(t) (4.14)
In the case of an over-damped frictional force, the frictional force νK overwhelms the inertial force m • ∂ 2 θ/∂t 2 , and thus 

νK(t)Γ ≈ ∂ln(p Θ (x)) ∂Θ dt + δσ(t)
which is the evolution given in Eq 4.4.

Proof the integrator Eq. 4.5 is quasi-symplectic

Proposition 1. Eq. 4.5 is asymptotic symplectic:

lim ν→0 |∂Ψ 0 (K i , Φ i )| = exp(-νt)
Remark 1. Proposition [1] has propositional equivalences that the exterior power between two integration steps are equivalent as the Jacobian

| partialΨ 0 (K i , Φ i )|
is not dependent on the time step term t. Thus, to prove the proposition 1 is equivalent to proof that:

dK i+1 ∧ dΦ i+1 = dK i ∧ dΦ i .
Proof:

Let, ν → 0, the term K II of the composite integrator Eq. 4.5 goes to: lim ν→0 K II (t, φ) = φ Then, Hamiltonian VAE -[1e-2, 5e-1] 1.5 5e-4 1e-7

dK i+1 = dK i + td( ∂ log(p(x, Φ i + t 2 K i )) ∂Φ i ) = dK i + d[ t∂ log(p(x, Φ i + t 2 K i )) ∂Φ i ](dΦ i + t 2 K i ) dΦ i+1 = dΦ i + t 2 dK i + t 2 d(K i + t∂ log(p(x, Φ i + t 2 K i ) ∂Φ i ) = dΦ i + tdK i + d t 2 ∂ log(p(x, Φ i + t 2 K i ) 2∂Φ i (dΦ i + t 2 K i ) (4.15) Let U = ∂ log(p(x,Φ i + t 2 K i ) 2∂Φ i , thus, dK i+1 ∧ dΦ i+1 = dK i ∧ dΦ i + dK i ∧ tdK i + dK i ∧ t 2 2 dU dΦ i + dK i ∧ t 3 4 dU dK i + tdU (dΦ i + t 2 dK i ) ∧ dΦ i + tdU (dΦ i + t 2 dK i ) ∧ tdK i + tdU (dΦ i + t 2 dK i ) ∧ t 2 2 dU (dΦ i + t 2 dK i ) (4.
According the property of exterior product, therefore:

dK i ∧ tdK i = tdU dΦ i ∧ dΦ i = tdU t 2 dK i ∧ tdK i = 0 (4.17)
Simplifying Eq. 4.16:

dK i+1 ∧ dΦ i+1 = dK i ∧ dΦ i + t 2 dU (dK i ∧ dΦ i ) + t 2 dU (dΦ i ∧ dK i )+ t 4 dU 2 4 (dΦ i ∧ dK i ) + t 4 dU 2 4 (dK i ∧ dΦ i ) = dK i ∧ dΦ i + t 2 dU (dK i ∧ dΦ i ) -t 2 dU (dK i ∧ dΦ i )+ t 4 dU 2 4 (dΦ i ∧ dK i ) - t 4 dU 2 4 (dΦ i ∧ dK i ) = dK i ∧ dΦ i (4.18)
Q.E.D.

Parameters of the Experiment Setting

Tab. 4.3 shows the parameters used for the experiment. Except for the parameter ν that is unique for the Langevin-VAE, all the other parameters are the same as the Hamiltonian-VAE.

Evidence lower bound of Langevin Flow

We consider the log-likelihood: log p(x) with latent variables z, based on Jensen's inequality:

log p(x) ≥ Ω log p(x)q(z|x)dz (4.19)
Chapter 4. Quasi-Symplectic Langevin Variational Inference for unsupervised learning 100

The data prior is given through the Langevin flow where L I (θ 0 , k 0 ) are the I steps Langevin flows with initialization states (θ 0 , k 0 ):

p = p(x, L I (θ 0 , k 0 )) q 0 (L 0 (θ 0 , k 0 )) (4.20)
Therefore, we can get the Langevin flow lower bound: The results show that our one-shot learning scheme converges well and leads to a good accuracy of the landmark positions. This chapter is based on a preprint paper [Wang et al., 2020e] which is under peer review. 

L :≥ Ω q(z|x) • (log p(x, L I (θ 0 , k 0 )) -log q 0 (L 0 (θ 0 , k 0 )))dz = Ω q(z|x) • (log p(x, L I (θ 0 , k 0 )) -log(q 0 (θ 0 , k 0 ) I k=1 |det∇Ψ -1 i (θ 0 , k 0 ))|))dz = Ω q(z|x) • (log p(x, L I (θ 0 , k 0 )) -log(q 0 (θ 0 , k 0 )) - I k=1 log(|det∇Ψ -1 I (θ 0 , k 0 ))|))dz = Ω q(z|x) • (log p(x, L I (θ 0 , k 0 )) -log(q 0 (θ 0 , k 0 )) + I k=1 (νt))dz

Non-Learning based landmarks detection

In [START_REF] Cheung | n-sift: n-dimensional scale invariant feature transform[END_REF] is proposed the augmentation of the scale-invariant feature transform (SIFT) to arbitrary n dimensions (n-SIFT) for 3D-MRI volumes. However, the computation cost for 3D SIFT features is heavy as their complexity is a cubic function of the image size. Wörz et al. [START_REF] Wörz | Localization of anatomical point landmarks in 3d medical images by fitting 3d parametric intensity models[END_REF]] leverage parametric intensity models for image landmarks detection. Ricardo et al. [START_REF] Ferrari | Detection of point landmarks in 3d medical images via phase congruency model[END_REF] use log-Gabor filters to extract frequency features for 3D Phase Congruency (PC) applied to detect head and neck landmarks.

Learning based landmarks detection Probabilistic graphical models were used for bones landmark labelling in [START_REF] Schmidt | Spine detection and labeling using a parts-based graphical model[END_REF] and [START_REF] Corso | Lumbar disc localization and labeling with a probabilistic model on both pixel and object features[END_REF]. Given a target image, the location of the SOI is iteratively estimated by applying the 2D CNN on 3 orthogonal sets of slices. After aligning the orientations of the two SOI on the target and reference images, a non-rigid registration algorithm is applied to propagate the landmarks to the target image. We apply this approach on 200 CT images of the temporal bone to locate 3 cochlear landmarks and show that the positioning error is within the intra-rater variability. To the best of our knowledge, this is the first one-shot learning method for landmark detection which makes it highly applicable for several clinical problems.

Method

Overview

The 

Offline one-shot CNN training

The objective is to train an algorithm that can roughly segment the structure of to overfitting [START_REF] Wu | One shot learning gesture recognition from rgbd images[END_REF]. To this end, we chose to train a shallow 2D U-net f ω segmentation network in order to segment the SOI that surrounds the we need to cope with its possible poor performance. To this end, we propose an iterative method described in algorithm 4 and Fig. 5.3, where the estimation of the translation offset is progressively refined. We write as f ω (I x target [k])[i, j] the output of the CNN applied on the slice k in the X direction of the volumetric image I target which is a 2D probability map. We apply the CNN on the slices of I target extracted along the X,Y,Z directions. To improve the robustness of the center of mass estimation of I target , we combine their output by multiplying the 3 probabilities outputs for each voxel. The joint output of the network at voxel [i, j, k] is then written as :

p[i, j, k] = f ω (I Z target [k])[i, j] • f ω (I Y target [j])[k, i] • f ω (I X target [i])[j, k] (5.1)
The product of the 3 probability maps favors the pixels where the 3 outputs agree. This helps to filter out the false positive pixels produced by the network that are not correlated on the 3 slice orientations. The center of mass C target is then simply estimated as the barycenter of the image voxels weighted by the joint probability p[i, j, k]:

Ctarget= 1 i,j,k p[i,j,k] i,j,k x[i,j,k] * p[i,j,k], i,j,k y[i,j,k] * p[i,j,k], i,j,k z[i,j,k] * p[i,j,k] T (5.2)
The target image is then cropped around the detected center C target which is written as Ptarget . When the translation offset between the target and reference images is large, the CNN segmentation performances tend to degrade since it has been trained with slices roughly centered on the center of S ref . This is why we propose to iteratively apply the same approach on I target after being centered on C target . This way, we expect the centered image to be more and more accurately 

Online Image Patch Registration

After the two previous stages, the estimation of the landmarks L target is achieved by performing a non-rigid registration of the reference image patch P ref onto the target image patch P target . The two image patches have the same size, are both centered on the structure of interest and their orientation roughly coincide. This is a good initialization for applying the standard diffeomorphic demons algorithm Vercauteren et al. [2007a] as implemented in "itk::DiffeomorphicDemonsRegistrationFilter". This algorithm starts with a multi-resolution rigid registration followed by the non-rigid transformation parameterized by a stationary velocity field. It assumes that intensity distribution matches between the two images patches with a sum of square difference as similarity measure. The reference landmarks L ref are then transported to the target image patch P target through the estimated non-rigid transformation. Finally, the landmarks L target on the original target image I target are positioned by inverting the rigid transforms and cropping performed during the first two stages of the method. Fig. 5.4 shows an overview of the entire procedures.

Experiment and Result

Dataset

The dataset consists of 200 volumetric CT images of the left temporal bones acquired by a GE LightSpeed CT scanner at the Nice University Center Hospital.

The image dimensions are (512, 512, 160) in 3D with corresponding spacing of (0.25mm, 0.25mm, 0.24mm). In this case, the structure of interest is the cochlea, a relatively small bone having a spiral shape similar to a snail shell and without any axis of symmetry. The cochlea is easily visible on CT images. Two volumetric images were randomly selected to serve as reference and validation images and their cochlea was then segmented by an expert in a semi-automatic fashion.

Three landmarks corresponding the cochlea top, center and round window were manually set on the reference image as shown in Fig. 5.6.

Network architecture and training details

We use a 2D U-net like network Ronneberger et al. [2015b] for segmenting the cochlea in 2D images. The network structure is shown in Fig: 5.2 and is relatively shallow in order to minimize its complexity. The network input size is [nb, 100, 100, 1] followed with 4 convolutional layers (shape: [nb, 100, 100, 64]) where nb is the number of batches. Feature maps are convoluted with a group of Chapter 5. One-shot Learning based Landmarks Detection 111 halved size layers but doubled in channels (shape: [•, 50, 50, 128]). Up-sampling layer applied to recover the size of the feature maps to merged with the jump concatenates feature maps (shape: [•, 100, 100, 64 + 128]). Finally, 5 convolutional layers (shape:[•, 100, 100, 64], chn = 64 for middle layers, chn = 1 for the last layer) are used for generating the final feature map. An Adam optimizer is used with a learning rate initialized to lr = 0.1 and decreasing with the number of epochs. The neural network was implemented with Tensorflow 2.0 framework and trained on one NVIDIA 1080 Ti GPU. The offline stage of the CNN takes less than 1h for training and the online stages takes around 30s.

Results

The proposed approach was evaluated qualitatively and quantitatively. In Fig: 5.5(a), we show the position of the center of mass of the segmented cochlea C target during three iterations of Algorithm 4. We see that the 3 points are getting closer to each other after each iteration thus demonstrating the convergence of the algorithm. In practice, we found that between 2 to 6 iterations are necessary to get a change of mass center position between two iterations less than 1mm.

For a quantitative assessment of performance, an expert positioned twice the 3 landmarks on 20 additional volumes in order to estimate the positioning error and the intra-rater variability. In Fig: 5.5(d) we show the 3 landmarks generated by our algorithm with the same landmarks positioned by the expert. Clearly those points are very close to each other on the 3 views. In Table 5.1(top), we list the average position error of the 3 landmarks on the 20 images with respect to one set of landmarks manually positioned by an expert. In average, the position error of L target is around 0.6mm which corresponds to a difference of position of 2 to 3 voxels. This result is satisfactory when considering the small size of the cochlea (width: 6.53 ±0.35mm, height: 3.26 ±0.24mm [START_REF] Zahara | Variations in Cochlear Size of Cochlear Implant Candidates[END_REF]) within the full CT volume (128mm × 128mm × 55mm). For a better assessment, we also provide the intra-expert landmark position error in Table 5.1(bottom). It shows that the algorithm error is similar to the intra-expert variability, with a lower error for two (the center and window landmarks) out of the three landmarks.

When computing the landmark position error with the second set of landmarks made by the expert, or with the average of the 2 annotations, we also found that the algorithm was performing similarly to the expert. Since the intra-rater variability is in most cases lower than inter-rater variability, we believe that the proposed method is an effective way to automate landmark positioning around the cochlea on CT images. Note that the mean landmark position errors reported by [START_REF] Zhang | Detecting anatomical landmarks from limited medical imaging data using two-stage task-oriented deep neural networks[END_REF] also correspond between 2.5 to 3 times the voxel size whereas [START_REF] Grewal | An end-to-end deep learning approach for landmark detection and matching in medical images[END_REF] after training on 168 scans reports errors between 2 to 9 times the voxel size (2 -9mm). 

Conclusion

To the best of our knowledge, the proposed method is the first one-shot learning approach for 3D landmarks detection in volumetric images. We showed that the proposed approach was effective in localizing 3D landmarks in the cochlea from CT images of the inner ear. It relies on a segmentation stage and the registration of a single user-defined image patch which makes it easy explainable and interpretable. The approach is generic and could be applied to the detection of landmarks in CT imaging and other imaging modalities. In the future, we plan to use more complex image similarity measures in the final registration algorithm and to introduce more annotated data (few-shot learning) to address challenging landmark detection problems. Other network architectures proposed in the literature for one-shot deep learning such as [START_REF] Chen | Learning implicit fields for generative shape modeling[END_REF], Jadon and Srinivasan, 2019[START_REF] Gregory | Siamese neural networks for one-shot image recognition[END_REF][START_REF] Shaban | One-shot learning for semantic segmentation[END_REF]] can be explored.

Chapter 6

Conclusion and Perspectives 

Shape Based Medical Image Segmentation: a Bayesian perspective

In chapter 3, we have presented a Bayesian logistic shape inference framework for cochlea CT image segmentation. Specifically, we address the issue of the Bayesian inference of parametric shape models in a purely interpretable way.

We evaluated the proposed framework on 3 different cochlea CT image datasets which include more than 250 patients' CT images. The segmentation results on clinical CT images show performances comparable to supervised deep learning approaches by quantitative evaluation based on Dice score. The major contributions of this chapter lie in: (1) A novel framework for image segmentation that combines probabilistic appearance and shape models. It is generically defined for parametric shape functions rather than parametric space transformations.

The trade-off between the appearance and shape models is governed by an interpretable parameter: the reference length. (2) A Gauss-Newton method of optimizing the shape parameters, which also produces a posterior approximation of those parameters. (3) A method for uncertainty quantification of the image segmentation that takes into account the shape uncertainty. (4) A segmentation method of the cochlea in clinical CT images that provides state-of-the-art results and interpretable shape parameters. 

One-shot Learning for Landmarks Detection

A common flaw of popular used deep learning approaches is the requirement of massive dataset for fitting. However, medical datasets are usually difficult to collect due to many ethical or legal reasons. Massive data collection may require tedious and long procedures to get legal authorizations. Another problem is the annotation of 3D landmarks for a fairly large dataset is very expensive both in terms of time and manpower. Those data barriers limit the potential application of learning approaches in clinical settings. To tackle this problem, in the chapter 5, we proposed a one-shot learning-based landmarks detection approach which allows us to use a single volume to detect landmarks in hundreds of volumes.

The method is applied to a large scale CT cochlea volume dataset for detecting the landmarks of the cochlea. This method solves the problem of lack of training data and reduces the burden of human experts for data annotation.

Clinical Impact

This work shows that deep learning and generative learning can bring new solutions to medical imaging analysis in many different aspects. We see that the introduction of shape information through a Bayesian learning framework The generation of fake cochlea images can be used for data augmentation, case study, knowledge domain transfer etc. The feature space of the generation model can be used for shape analysis and classification.

One-shot learning has the potential to make a major change in the computerized medical image domain due to the barriers in clinical data collection. The application of one-shot learning in landmarks detection can reduce the workload of data annotation. The one-shot learning-based landmarks detection can also be a prior step for building segmentation algorithms and shape analysis frameworks.

Perspectives

Trustable Learning based Computed Medical Data Analysis

The fast development of artificial intelligence brings many advantages in various disciplines. A typical example is the computer vision (CV) community which has seen rapid advances in the state of the art algorithms. Medical image analysis which is largely overlapping the CV community, is also fast evolving in many different directions. However, more and more research attention is focused on the performance of algorithms instead of their clinical applicability. The lack of consideration of clinical applicability is harmful to the computerized medical community and may lead to unpredictable results in clinical practice.
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Typically, the presence of outliers might be a non-threatening issue in many civil

applications, yet may have a significant impact in clinical practice. The use of MARGAN for metal artifacts reduction is an example that a neural network learns from a major group of healthy patients with different degrees of deafness.

We concluded that the MARGAN performs well on the cochlea dataset for metal artifacts reduction. Yet, whether the processing of MARGAN will eliminate important features of unseen lesions is unknown. The study of the reliability of current learning based diagnosing approaches is worthwhile and important for clinical propagation.

Parameters coupling between Parametric Shape model and Deep Latent Model

We have shown that the Langevin-VAE can generate cochlea image volumes from a set of latent variables which can be treated as a group of shape and appearance parameters. The latent parameters of Langevin-VAE are independent representations from the cochlea parametric shape model parameters and may also involve intensity representations. Currently, shape and appearance features are represented jointly by the latent variables for Langevin-VAE. However, the representation space of Langevin-VAE and cochlea parametric shape and appearance models may be coupled to get an unified representation of the shapes and other attributions of the volumes. This can help us to get a geometrical meaningful generative model for generating customizable shape volumes.

Attention in medical image analysis

Since the Attention-based learning models were proposed, it has rapidly expanded from the field of natural language processing (NLP) to the entire machine learning community [Carion et al., 2020a, Vyas et al., 2020[START_REF] Yuan | Tokens-to-token vit: Training vision transformers from scratch on imagenet[END_REF] We detail below the ongoing work of using a Transformer model [Vaswani et al., 2017] for image registration. To feed images to Transformer, they need to be processed as sequence data-points [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF]. To this end, the fixed I f ix and moving I mov images pairs are first divided into i × i (see in Fig . Our primary experiment shows that the Transformer model can learn a deformable representation between two similar shapes for image registration. Yet, the quality of the learnt transformations is not good in the shape details. This problem may due to the Transformer is not good at pixel-level image processing. Our future work will be focused on the improvement of the current framework for solving current issues of the Transformer based registration model.
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  a) Human ear anatomy (adapted from[START_REF] Chittka | Perception space-the final frontier[END_REF]); (b) Cross section of the organ of Corti inside the Cochlea (adapted from[START_REF] Chittka | Perception space-the final frontier[END_REF] 1.2 (a) Cochlea phantom with an electrode array inserted. (adapted from[START_REF] Clark | Graeme Clark-CV Milestones and Achievements[END_REF]); (b) CI electrode array and fold-over of CI electrode array in 3D view. (adapted from[Bento et al., 2016, Dhanasingh and[START_REF] Dhanasingh | Review on cochlear implant electrode array tip fold-over and scalar deviation[END_REF]) 1.3 (a) Cochlea MR imaging reformatted from 3D-DRIVE MR sequence . (adapted from[START_REF] Connor | Ct and mr imaging cochlear distance measurements may predict cochlear implant length required for a 360°insertion[END_REF]); (b) Cochlea Cone beam CT imaging. (c) Cochlea conventional CT imaging. (d) Cochlea microof the MARGAN applied on postoperative images 2.2 The framework of MARGAN for metal artifact reduction. (a) The cochlear implant positioning simulation; (b) CI metal artifact physical simulation. (c) A 3D GAN is trained with simulated and preoperative datasets: The discriminator network aims to identify whether or not the input image is one polluted by artifacts. The generator network accepts an input artifact image and generates a MAR image. 2.3 Cochlear implant electrode positioning simulation; (I) Registration of CT image on a template image; (II) Cochlear shape fitting; (III) Signed distance map generation; (IV) Electrode positioning; (main physical effects are considered for simulating metal artifacts. (Top) Beam hardening. The metal part, shown in gold has nonlinear X-ray energy absorption, thus violating the Beer-Lambert law. This generates an underestimation of the material attenuation ratio located after the metal part. (Middle) Scattering effect. A scattered photon is abnormally detected by the green detector, but would have been detected by the red detector in the absence of scatter. (Bottom) The electronic noise (red) and the corresponding ideal signal (blue). 23 2.5 Pipeline of metal artifact simulation. Given a preoperative image with simulated implants, the simulation starts from the computation of attenuation maps (steps (I) -(II)) for the cochlea ROI volume based on the energy spectrum of the X-ray tube. Step (III) performs fan-beam projection to simulate the sinograms of the attenuation map. (IV) Monte Carlo simulation of scattering effects is performed offline on a head phantom for the generation of the scattering sinograms whose traces in the ROI are randomly chosen, then normalized and added to the combined attenuation map sinograms. (V) Gaussian electronic noise is added and then inverse fan-beam projection is performed to get the final simulated artifact images. 24 2.6 Noise image and beam hardening image. (I) Simulation with scattering effect and electrical noise. (II) Simulation with only beam hardening. (III) The subtraction map between the two simulations. 24 2.7 Metal artifact reduction visualization of MARGAN in comparison with other approaches for patients #1 -5. 29 2.8 The 3D consistency between slices from patient #1 for three different metrics. We see the MARGAN algorithm achieves the best slice consistency in comparison to other approaches. 30 2.9 Results from patients #2 (top left), #3 (top right), #4 (bottom left) and #6 (bottom right) for two middle slices (first and second rows). The four columns correspond to: original postoperative images, output of MARGANs, registered preoperative images with manually positioned electrodes in red and postoperative images with electrodes appearing in yellow. ablation study of Retinex loss effectiveness. The first column is a middle slice of patient #1, the second column is the corresponding outputs of MARGAN with different loss functions and the last column shows subtraction maps between the first two columns. 2.11 Performance of MARGAN on 8 CBCT postoperative images. The yellow box shows three views of postoperative images and MARGANprocessed images for patient #1. 2.12 Evaluation of the electrode position after the application of the MAR-GAN algorithm on 2 subjects (top and bottom); (a) Reformat of a 3D MARGAN image along a plane orthogonal to the modiolar axis. Red circles were manually added at the location of high intensity voxels; (b) Image of the cochlea with electrodes inserted after dissection and grinding of the temporal bone; (c) fusion of images (a) and (b) after an affine transform based on the manual correspondence of the centers of the two circles outlined by black squares. A good overlap of green and red squares is observed. 3.1 Expected label posterior probability as function of the normalized signed distance from the reference shape. 3.2 (a) graphical model for the shape-based generative model; (b) Cochlea segmentation on CT images is shown in solid red with the associated shape model in dashed yellow lines; (c) Evolution of the cochlea shape model during several MS steps shown as 2D contours (from dotted green to solid red) and 3D models. 3.3 Parametric shape model of the cochlea. (Left) Effect of the radial parameters a (red), and b (yellow) are shown with the reference position in purple; (Right) Effect of the longitudinal parameters α (pink) and ϕ (blue) parameters. 3.4 Example of intensity probability distributions 3.5 (I) Input Ellipse image fitted with a circle shape : initial circle (red), final circle (white) and 0.5 isocontour of posterior label probability for optimal value of l ref (yellow);(II) posterior label probability p(Z n = 1|θ S , θ I ) for optimal value of l ref ; (III) Log likelihood as a function of l ref ; visual comparison of imaging resolution between the µCT and conventional CT for cochlea imaging. 3.7 Average surface error of segmentations generated from dataset #1 resulting from the unsupervised quality control. Red contours correspond to the manual ground truth while yellow ones are segmentation outputs. 3.8 (a) Distribution plots for shape parameters variance. (b) Average covariance matrix of the 10 shape parameters. 3.9 Marginal posterior probability p(Z|I, θ I ) (Top) versus posterior probability p(Z|I, θ I , θ S ) (Bottom) computed on patient #1 of dataset #1. 3.10 The structure of the proposed Signed Distance Map Neural Network (SDMNN). 3.11 (Left-I) comparison between isocontours extracted from an SDM generated by the SDM neural network (left) and classical method (right);(Right-II) comparison of reconstructed 0-isosurface between the two methods. 4.2 Generated samples from Langevin-VAE (b) in comparison with HVAE (a). Upper sub-figures are generated samples of HVAE. The lower sub-figures (b) are samples of Langevin-VAE. In both methods, the number of steps in the flow computation is K = 5. 4.3 Qualitative assessment of the generated samples of Langevin-VAE on inner ear CT images dataset. The upper sub-figure shows a Langevin-VAE with latent parameters in 2D: ζ = 2. The lower sub-figures are middle slices (from different views) of 12 samples which generated by the Langevin-VAE. 5.1 Data augmentation for training the CNN. 5.2 The neural network structure. 5.3 Iterative determination of the center of mass of the structure of interest. Steps (1) -(2) show the 2D CNN segmentation of the structure of interest from the 3 set of orthogonal slices; (3) The probability maps of the 3 views are combined; (4) Update of the center of mass from the joint probability maps; (5) The target image is cropped around the center of mass. matching based on inverse rigid and diffeomorphism transformation. Above subfigure shows the rigid transform H: (1) Compute the moments of the inertia of the two volumes. (2) Optimize the alignment position through optimizing the similarity measure metric. Below subfigure shows the diffeomorphism transform D: (1) Compute the diffeomorphism transformation D. (2) Compute the matched landmarks by inverse the displacement field D -1 . 5.5 (a) Positions of the center of mass of the cochlea during 3 iterations of the translation offset determination. The 3 cross marks in red, white, green correspond to the 1st, 2nd, 3rd iterations; Row (b) shows the result of the landmarks detection in the whole image I target ; Row (c) zooms on the detected landmarks before applying the last registration stage; Row (d) zooms on the generated landmarks ('x' marks) after the registration stage and the manually positioned landmarks ('+' marks) by an expert. 5.6 Cochlea landmarks shown with three import coordinates (cochlea top, cochlea center and cochlea round window points) of cochlea model. 6.1 The transformer framework used for deformation attention feature map prediction. The proposed transformer consists of encoder and decoder modules. The encoder module (shown in the green dotted line box) takes the fixed images patches as input and learns the representation of the memory attention features with self-attention mechanism. The decoder module (shown in the purple dotted line box) takes the attention features of the fixed image from the encoder (memory) and the self-attentions features of the moving image as input for predicting the deformable features that can transform the moving image into a fixed image.
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 11 Figure 1.1: (a) Human ear anatomy (adapted from [Chittka and Brockmann, 2005]); (b) Cross section of the organ of Corti inside the Cochlea (adapted from [Chittka and Brockmann, 2005])
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 12 Figure 1.2: (a) Cochlea phantom with an electrode array inserted. (adapted from [AC, 2010]); (b) CI electrode array and fold-over of CI electrode array in 3D view. (adapted from[Bento et al., 2016, Dhanasingh and[START_REF] Dhanasingh | Review on cochlear implant electrode array tip fold-over and scalar deviation[END_REF] 

Figure 1

 1 Figure 1.3: (a) Cochlea MR imaging reformatted from 3D-DRIVE MR sequence . (adapted from [Connor et al., 2009]); (b) Cochlea Cone beam CT imaging. (c) Cochlea conventional CT imaging. (d) Cochlea micro-CT imaging.
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 222 Figure 2.2: The framework of MARGAN for metal artifact reduction. (a) The cochlear implant positioning simulation; (b) CI metal artifact physical simulation. (c) A 3D GAN is trained with simulated and preoperative datasets: The discriminator network aims to identify whether or not the input image is one polluted by artifacts. The generator network accepts an input artifact image and generates a MAR image.
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 23 Figure 2.3: Cochlear implant electrode positioning simulation; (I) Registration of CT image on a template image; (II) Cochlear shape fitting; (III) Signed distance map generation; (IV) Electrode positioning; (V) Image fusion with electrodes.

  generated. This computation is based on the Hounsfield unit formula and the water absorption coefficients as a function of energy. We then perform fan-beam projection (Step III) of the five attenuation maps to produce sinogram-like images representing absorbed energy on the CT detectors. The scattering and attenuation sinograms are precomputed on a head phantom for various orientations and positions of the source. The projection of the ROI of the head where metal parts have been inserted creates a sine trace on the scattering and attenuation sinograms. This trace is randomly sampled, then normalized as in Eq. 2.3 to obtain a plausible scatter to primary ratio. It is then added to the electronic noise and to the weighted sum of the five sinograms (Step IV) and a discretization of Eq. 2.1. Finally, inverse fan-beam projection produces the output image with metallic artifacts (Step V).
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 24 Figure 2.4: Three main physical effects are considered for simulating metal artifacts. (Top) Beam hardening. The metal part, shown in gold has nonlinear X-ray energy absorption, thus violating the Beer-Lambert law. This generates an underestimation of the material attenuation ratio located after the metal part. (Middle) Scattering effect. A scattered photon is abnormally detected by the green detector, but would have been detected by the red detector in the absence of scatter. (Bottom) The electronic noise (red) and the corresponding ideal signal (blue).
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 2526 Figure 2.5: Pipeline of metal artifact simulation. Given a preoperative image with simulated implants, the simulation starts from the computation of attenuation maps (steps (I) -(II)) for the cochlea ROI volume based on the energy spectrum of the X-ray tube. Step (III) performs fan-beam projection to simulate the sinograms of the attenuation map. (IV) Monte Carlo simulation of scattering effects is performed offline on a head phantom for the generation of the scattering sinograms whose traces in the ROI are randomly chosen, then normalized and added to the combined attenuation map sinograms. (V) Gaussian electronic noise is added and then inverse fan-beam projection is performed to get the final simulated artifact images.
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 27 Figure 2.7: Metal artifact reduction visualization of MARGAN in comparison with other approaches for patients #1 -5.
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 28 Figure 2.8:The 3D consistency between slices from patient #1 for three different metrics. We see the MARGAN algorithm achieves the best slice consistency in comparison to other approaches.
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 29 Figure 2.9: Results from patients #2 (top left), #3 (top right), #4 (bottom left) and #6 (bottom right) for two middle slices (first and second rows). The four columns correspond to: original postoperative images, output of MARGANs, registered preoperative images with manually positioned electrodes in red and postoperative images with electrodes appearing in yellow.
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 210 Figure 2.10: Qualitative ablation study of Retinex loss effectiveness. The first column is a middle slice of patient #1, the second column is the corresponding outputs of MARGAN with different loss functions and the last column shows subtraction maps between the first two columns.

Figure 2 .

 2 Figure 2.11: Performance of MARGAN on 8 CBCT postoperative images. The yellow box shows three views of postoperative images and MARGAN-processed images for patient #1.
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 212 Figure 2.12: Evaluation of the electrode position after the application of the MARGAN algorithm on 2 subjects (top and bottom); (a) Reformat of a 3D MARGAN image along a plane orthogonal to the modiolar axis. Red circles were manually added at the location of high intensity voxels; (b) Image of the cochlea with electrodes inserted after dissection and grinding of the temporal bone; (c) fusion of images (a) and (b) after an affine transform based on the manual correspondence of the centers of the two circles outlined by black squares. A good overlap of green and red squares is observed.

Finally a limitation

  common to all MAR methods is the difficulty of evaluating performances quantitatively, due to the lack of ground truth data. The use of paired pre-and postoperative image data enables quantitative comparison through global similarity indices (such as PNSR, RMSE) but is also dependent on the registration quality of the two images. Images with synthetic artifacts created

  introduced. A Retinex loss was introduced to enhance visible edges in the generated images. The MARGAN approach was evaluated on CT and CBCT Chapter 2. Metallic Artifact Reduction based on Generative Learning 40 images of the inner ear with cochlear implants inserted. The proposed approach provided images close to preoperative images and outperformed open source MAR methods. Furthermore, images generated by MARGAN included the location of the electrode centers, which is useful for assessing the quality of implant surgery. The trade-off between the complexity of artifact simulation and MARGAN output requires additional study, and we will also investigate the impact of MARGAN images on the automatic registration of pre-and postoperative images. of shape parameters p(θ S |I) 3.2.5 Influence of the characteristic length l k ref 3 Quantitative evaluation of segmentation on post-mortem µCT /CT datasets #2 and #3 3.4.4 Semi-quantitative analysis of segmentation on clinical dataset #1 3.4.5 Comparison with the state-of-the-.3 Initialization of intensity parameters 80 Incorporating shape information is essential for the delineation of many organs and anatomical structures in medical images. While previous work has mainly focused on parametric spatial transformations applied on reference template shapes, in this paper, we address the Bayesian inference of parametric shape models for segmenting medical images with the objective to provide interpretable results. The proposed framework defines a likelihood appearance probability and a prior label probability based on a generic shape function through a logistic function. A reference length parameter defined in the sigmoid controls the trade-off between shape and appearance information. The inference of shape parameters is performed within an Expectation-Maximisation approach where a Gauss-Newton optimization stage allows to provide an approximation of the posterior probability of shape parameters.

  Those parametric shape models serve to guide the delineation of such anatomical structures by constraining the shape space of the segmented object. We can roughly split the shape-based image segmentation methods into two sets of methods. A first set optimizes the shape parameters θ S by minimizing the sum of a regularizing term E R (θ S ) and an image term E I (S(θ S ), I, θ I ) : θS = arg min θ S E I (S(θ S ), I, θ I ) + E R (θ S ) where θ I is a set of image parameters that Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 44

  weighting the shape constraint with other image terms. Those two sets of shape based segmentation methods are expressed as energy minimization problems, thus only allowing to have point estimates of shape parameters and not their posterior probabilities. Another common shape representation consists in specifying a parametric spatial transformation T (θ D ) : R d → R d acting on a template shape S(θ 0 ) ∈ R d leading to an indirect shape parameterization : S(θ D ) = T (θ D ) • S(θ 0 ). This formulation of shape modeling based on a deformable template leads to solving a joint segmentation and registration problem. More precisely, several authors [Ashburner
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 3 Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 45 generic as it is suitable for any explicit S(θ S ) and implicit S(θ S , x) = 0 parametric shape models associated with any appearance models representing the intensity distributions inside background or foreground regions. It is based on a logistic shape prior defined as the sigmoid of a shape function (e.g. signed distance map) defined over the image domain. Inferences of shape and intensity parameters are performed by maximizing the joint image and shape parameters probability p(θ S , θ I , I) with an Expectation-Maximization algorithm. We show that this optimization boils down to having the posterior label distribution as close as possible (in terms of Kullback Leibler divergence) from both the likelihood and shape prior distributions. A Gauss-Newton optimization method is introduced to optimize the shape parameters leading to closed form updates similarly to iterative reweighted least squares schemes. It outputs the most probable shape and imaging parameters but also an approximation of the posterior shape parameter probability which is essential for estimating the segmentation uncertainty. This framework is applied to the problem of cochlea segmentation on CT images based on a parametric shape model with 10 parameters, and an imaging model defined as a mixture of Student's t-distributions. It results in the reconstruction of cochlea structures in 2 small datasets consisting of paired CT and µCT postmortem images and one large dataset of nearly 200 patients CT images. We showed that the proposed framework leads to state of the art reconstruction performances as well as the recovery of consistent shape parameter distributions and the estimation of segmentation uncertainty.

  is the sigmoid (or logistic) function, x n is the position of voxel n and l ref is a reference length. With that definition, the prior probability will be close to 1 inside the object, close to 0 outside and equal to 0.5 on the shape boundary. We call this formulation of the label prior, the logistic shape model as it combines shape information into a probability distribution through a logistic function. This definition of the shape prior is related to several prior work in the literature such as probabilistic atlases and LogOdds maps[Pohl et al., 2006b],continuous STAPLE[START_REF] Commowick | A continuous staple for scalar, vector, and tensor images: An application to dti analysis[END_REF], a nd label fusion[START_REF] Mert Sabuncu | A generative model for image segmentation based on label fusion[END_REF].The quantity l ref is a characteristic length which controls the slope of the prior probability next to the object boundary. This parameter also influences the trade-off between intensity and shape information in the segmentation process as discussed in section 3.2.5. The shape parameters θ S are themselves regarded as random variables with a multivariate Gaussian prior controlled by hyper-parameters α: p(θ S |α). The intensity parameters may also optionally be considered as random variables with hyper-parameter β as p(θ I |β). The shape based generative model is summarized in Fig.3.2:(a).

  we introduce a new augmented criterion L * (θ S , θ I , U ) = log p(I, θ S , θ I ) -D KL (U ||p(Z|I, θ S , θ I )) by adding the negative Kullback-Leibler divergence between u n and the posterior label p(Z n |I n , θ S , θ I ).Maximizing (θ S , θ I , U ) over the augmented criterion L * (θ S , θ I , U ) leads to the same optima in (θ S , θ I ) than the maximization of L(θ S , θ I ) but with simpler

  is the conditional expectation of the complete marginal log-likelihood (a.k.a. evidence) and H(u n ) is the entropy of variable u n . The quantity Q(U, θ S , θ I ) is a lower bound of the log-likelihood since H(u n ) > 0. The maximization of the augmented criterion L * (θ S , θ I , U ) is performed by the successive maximization over the U , θ I and θ S variables. The E-step corresponds to the maximization of L * (θ S , θ I , U ) with respect to U which sets the surrogate variable U to the posterior label probability u n = p(Z n = 1|I n , θ S , θ I ). The MI-step optimizes the log-joint probability with respect to the appearance variables θ I , which is equivalent to the maximization of L I = -D KL (U ||p(I|Z, θ I ))+ log p(θ I |β). When the appearance parameters are independent between classes, then log p(θ I |β) = K k=0 log p(θ k I |β k ) and the MI-step splits into 2 independent maximization over θ k

  MS and MI steps makes the posterior labels distribution U as close (in terms of KL divergence) as possible from the likelihood p(I|Z, θ I ) and shape prior p(Z|θ S ) that the minimization of D KL (U ||p(Z|θ S )) + D KL (U ||p(I|Z, θ I )). At convergence, Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 50 the posterior distribution is therefore clearly a compromise between shape and appearance information.

  Gaussian posterior p(Z n = 1|θ S ) → δ SDM(S(θ S ),x)>0 and the label posterior becomes equal to the label posterior : p(Z n = 1|θ S , θ I , I n ) -→ p(Z n = 1|θ S ). Conversely, for infinitely large value of the characteristic length l ref -→ ∞, the label prior becomes uninformative p(Z n = 1|θ S ) -→ 1 2 and the label posterior converges towards the appearance driven label posterior : p
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 31 Figure 3.1: Expected label posterior probability as function of the normalized signed distance from the reference shape.
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 3233 Figure 3.2: (a) graphical model for the shape-based generative model; (b) Cochlea segmentation on CT images is shown in solid red with the associated shape model in dashed yellow lines; (c) Evolution of the cochlea shape model during several MS steps shown as 2D contours (from dotted green to solid red) and 3D models.
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 34 Figure 3.4: Example of intensity probability distributions of the foreground (f g , in red) and the background (b g , in blue) as functions of the Hounsfield unit.

  Fig.3.4 and the exact initialization values are provided in 3.10.3.

  3.5 (Top Left)) by using a circle prior shape S(θ S , x) = x -C 2 -R 2 . It illustrates the frequent case where the parametric model used as a prior is far simpler than the shape visible in the image. The intensity model consists of two Gaussian distributions initialized with mean and variance offsets and the circle is parameterized by its center coordinates and radius. The trade-off between imaging information (leading to an ellipse) and prior shape (leading to a circle) is controlled by the l ref parameter. The loglikelihood as a function of l ref exhibits a single maximum for l ref = l opt = 0.021 (Fig.3.5 (Middle)) corresponding to the white circle in Fig.3.5 (Left) and to the posterior label distribution in Fig.3.5 (Right). The resulting segmentation is the isocontour p(Z n = 1) = 0.5, displayed as a yellow curve in Fig.3.5 (Left), which closely matches the elliptic shape except at its flat part (see arrow). This optimal value of l ref corresponds to a configuration where the area of the circle is roughly equal to the area of the ellipse. A value of l ref < l opt leads to isocontours p(Z n = e 1 ) = 0.5 that fit more closely the ellipse whereas l ref > l opt leads to isocontours that look more like a circle.

  #1 includes spiral CT temporal bone images of 210 patients from the radiology department of Nice University Hospital of size 512 × 512 × 178 corresponding to a voxel size of 0.185mm, 0.185mm, 0.25mm. They have then been registered to a reference image via an automatic pyramidal blocking-matching algorithm[Ourselin et al., 2000b] from the software MedInria[START_REF] Toussaint | MedINRIA: Medical Image Navigation and Research Tool by INRIA[END_REF] followed by an image reformatting around the cochlea to the dimension (60, 50, 50) with isotropic voxel size of 0.2mm. The relatively robust registration provides a rough alignment of the cochlea visible in the input image with a cochlea reference frame. From that dataset, 5 CT images were manually segmented by an ENT surgeon (see section 3.4.4).Dataset #2 includes 9 cadaveric cochlea spiral CT images acquired at the face and neck institute at Nice University Hospital with the same size and voxel spacing as dataset #1. In addition to CT images, high resolution X-ray microtomography (a.k.a. µCT ) images with dimension of (1035, 800, 1095) and isotropic voxel spacing of 0.02479mm were acquired each subject. The 9 µCT and spiral CT images have been registered together as shown in Fig 3.6 and reformatted around the cochlea to the same physical size as for dataset #1 (i.e. 12mm, 10mm, 10mm).
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 033 Figure 3.5: (I) Input Ellipse image fitted with a circle shape : initial circle (red), final circle (white) and 0.5 isocontour of posterior label probability for optimal value of l ref (yellow);(II) posterior label probability p(Z n = 1|θ S , θ I ) for optimal value of l ref ; (III) Log likelihood as a function of l ref ;

  To assess the influence of the hyper parameter reference length: l ref , we analyse the variation of the final Dice score for various reference lengths based on one image of dataset #2. The results are shown in
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 39 Figure 3.8: (a) Distribution plots for shape parameters variance. (b) Average covariance matrix of the 10 shape parameters.

  parameters. The proposed SDM Neural Network generates a cochlea signed distance map depending on four input parameters and we show that the deep learning approach leads to a 60 fold improvement in the time of computation compared to more classical SDM generation methods.

A

  Signed Distance Map (SDM) Tsai and Osher [2003] is a scalar field f (x) giving the signed distance of each point x to a given (closed) surface, which mathematically translates into the relation ∇f = 1. In practise, SDMs are 2D or 3D images storing the distance of each voxel center and are widely used to tackle various problems in computer vision or computer graphics fields. In machine learning, SDMs are useful to encode the probability to belong to a shape through log-odds maps Pohl et al. [2006b]. For instance, given a surface S(θ S ) and a scalar l ref , the probability for a voxel n having position x n to belong to the surface can be provided through the SDM SDM(S(θ S ), x n ) at that voxel as p(Z n = 1) = σ SDM(S(θ S ),xn) l ref where σ(x) is the sigmoid function.

  proposed by various authors Jones et al. [2006] by adopting hierarchical data structures to reach an O(N log n T ) complexity. For instance, Complete Distance Field Representation (CDFR) Jian Huang et al.

  [START_REF] Chen | Learning implicit fields for generative shape modeling[END_REF] and[START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF] developed neural networks for the generation of SDM for various of shapes. They rely on an decoder network that takes as input shape parameters and position, and outputs the SDM at that point. The training of those deep SDFs is based on a continuous regression from random samples involving a clamp loss[START_REF] Park | Deepsdf: Learning continuous signed distance functions for shape representation[END_REF]. Those networks are used for shape inference and are point-based signed distance evaluators (without any convolution operation) rather than being generators of SDM. As discussed later in this chapter, this is a major issue for fast generation of large images of signed distance maps.
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 310 Figure 3.10: The structure of the proposed Signed Distance Map Neural Network (SDMNN).

Figure 3 .

 3 Figure 3.11: (Left-I) comparison between isocontours extracted from an SDM generated by the SDM neural network (left) and classical method (right);(Right-II) comparison of reconstructed 0-isosurface between the two methods.

  Appearance model parameters initialization value. The #1fg refers the foreground appearance model for dataset #1. The #3b g refers the background appearance model for dataset #3.

  HVI to the true posterior distribution, Wolf et al. proposed to add an acceptance step in HVI algorithm. Further more, Caterini et al. [2018] first combined VAE and HVI in Hamiltonian Variational Autoencoders (HVAE) which include a dynamic phase space where momentum component ρ and position component z are integrated. The using of Hamiltonian flow for the latent distribution inference can introduce the target information (gradient flow) into the inference steps for improving the variational inference efficiency. , we propose a novel inference framework named quasi-symplectic Langevin variational auto-encoder (Langevin-VAE) that leads to reversible Markov kernels and phase quasi-volume invariance. The major contributions of this paper are:

  tackle this problem,Ranganath et al. proposed black-box variational inference by estimating the noisy unbiased gradient of ELBO, which performs direct stochastic optimization of ELBO. Kingma and Welling proposed to use some multivariate Gaussian posterior distributions of latent variable z generated by a universal function ω, which makes reparameterization trick is possible. To better approximate potentially complex posterior distributions of latent variables, the use of simple parametric distributions like multivariate Gaussian is a limitation. Yet only a few of distributions are compatible with the reparameterization trick. Normalizing Flows (NFs) is an effective way to deal with this limitation, which constructs a mapping between the complex and simple distributions by gradients transform.Normalizing Flows Rezende and Mohamed proposed the NFs as a way to deal with more general parametric posterior distributions that can still be efficiently optimized with amortized inference[START_REF] Papamakarios | Normalizing flows for probabilistic modeling and inference[END_REF]. Briefly, NFs are a class of methods that use a series of invertible transformations T I ... • ...T 0 to map a simple distribution z 0 into a complex one z i : z i = T I ... • ...T 0 (z 0 ), By applying transformations, the corresponding logarithm prior probability p(z i ) of the transformed distribution becomes:

  -Blackwellization for reducing the variance of the ELBO in the quasi-symplectic Langevin-VAE:

  Given a training dataset X : {x i ∈ X; i ∈ N + } consisting of binary images of size d, x i ∈ {0, 1} d , we define the conditional likelihood p(x|z) as a product of d Bernoulli distributions. More precisely, we consider a decoder neural network Dec ω D (φ) ∈ [0, 1] d that outputs d Bernoulli parameters from the latent variable φ ∈ R ζ where z = (φ, κ). Then the conditional likelihood writes as : p

  ) with diagonal covariance matrix. This choice obviously makes the reparameterization trick feasible to estimate the lower bound. The related graphical model of the quasisymplectic Langevin-VAE is displayed in Fig.4.1. The decoder and encoder

Figure 4 . 2 :

 42 Figure 4.2: Generated samples from Langevin-VAE (b) in comparison with HVAE (a). Upper sub-figures are generated samples of HVAE. The lower subfigures (b) are samples of Langevin-VAE. In both methods, the number of steps in the flow computation is K = 5.

  , both having three layers of 2D convolutional neural networks for encoder and decoder, respectively. The encoder network accepts a batch of data of size (N b × 28 × 28) with N b = 1000. The dimension Chapter 4. Quasi-Symplectic Langevin Variational Inference for unsupervised learning 93 of latent variables is set as ζ = 64 and the damping factor is ν = 0. The discretization step is randomly chosen between ta and tb: t ∈ [t a , t b ]. The training stage stops when the computed ELBO does not further improve on a validation dataset after 200 steps or when the inference loop achieves 2000 epochs. The scale term σ of Langevin dynamics was set to: 2 √ T , where T is the annealing temperature. The initial tempreature is set to: T 0 = 1.5 Both tested models Langevin-VAE and HVAE share the same training and testing parameters except for specific Langevin parameters (detailed in 4.5.3). The stochastic ascent of the ELBO is based on the Adamax optimizer with a learning rate lr = 5e -5. All estimation of computation times were performed on an NVIDIA GeForce GTX 1080 Ti GPU. The experiments were implemented with TensorFlow 2.0 and TensorFlow Probability framework to evaluate the different methods in both qualitative and quantitative metrics. Result on MNIST Both qualitative and quantitative results are studied. The generated samples of Langevin-VAE and HVAE are shown in Fig: (4.2).
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 43 Figure 4.3: Qualitative assessment of the generated samples of Langevin-VAE on inner ear CT images dataset. The upper sub-figure shows a Langevin-VAE with latent parameters in 2D: ζ = 2. The lower sub-figures are middle slices (from different views) of 12 samples which generated by the Langevin-VAE.

  medical images is important for many clinical applications.Learning-based landmark detection is successful at solving some problems but it usually requires a large number of annotated dataset for the training stage. In this paper, we tackle the issue of automatic landmark annotation in 3D volumetric images from a single example based on a one-shot learning method. It involves the iterative training of a shallow convolutional neural network combined with a 3D registration algorithm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes.

Figure 5 . 1 :

 51 Figure 5.1: Data augmentation for training the CNN.

  proposed algorithm requires as input a reference image I ref where a set of landmarks L ref are positioned. In addition, we require that a binary mask of a visible anatomical or pathological structure S ref ⊂ I ref including the landmarks L ref ∈ S ref be provided. Given a target image I target , landmarks L target are estimated by applying an image registration algorithm between an image patch P ref ⊂ I ref centered on the reference landmarks and an image patch P target ⊂ I target extracted on the target image. The main challenge is to automatically extract the target image patch P target such that it is roughly aligned in position and orientation with the reference image patch in order to ease the non-rigid image registration task. To extract the centered target image patch, we first train a 2D CNN (shown in Fig. 5.2) to segment the mask S ref on random slices of the reference image. This stage is performed offline and also requires an additional validation image I val where the same visible structure S val has been segmented. Given a target image, the localization stage extracts the target image patch P target by iteratively applying the segmentation network to find the center of mass of the structure and by aligning its axis of inertia. The last stage applies a registration algorithm to estimate the position of landmarks L target .

Figure 5 . 2 :

 52 Figure 5.2: The neural network structure.

  landmarks. The training set consists of slices of the reference image I ref along arbitrary rotations and translation offsets together with the associated binary masks created by slicing accordingly the reference segmentation S ref . The 2D CNN is trained by minimizing the Binary Cross-Entropy (BCE) loss function. To limit the risk of overfitting, we use a validation set consisting of another volumetric image I val and its segmentation S val . The training is stopped when the segmentation performance of f ω on the 3 orthogonal slices of I val starts to decrease. The details of the training procedure are provided in algorithm 3. The CNN training can be performed offline and the 2D random image slices are Algorithm 3 One-shot training of CNN Inputs: image: I ref , I val , segmentation: S ref , S ref Output: CNN parameters ω Initialize: f ω , ∆T, ∆R while L val decreases do T ← (U (-1, 1)∆ T ) 3 ; // Uniform Random Translation R ← (U (-1, 1)∆ R ) 3 // Uniform Random Rotation I trans ← Resample(I ref , R, T ) // Transformed Image S trans ← Resample(S ref , R, T ) // Transformed Segmentation for i = 1; i < K; i + + do f ω ω ← -I trans [i]|S trans [i] // Train the CNN end L val ← loss(S val , f cnn (I val )) // Validation loss end centered on the center of mass C ref (for T = 0) of the segmented structure of interest S ref . Furthermore, the 2D image size of the CNN input is chosen as to cope with the translation ∆T and rotation ∆R offsets such that random slices do not include any missing pixel values. image I target , we seek to locate the structure of interest S target with the proper translation and orientation offsets in order to ease the last image registration stage. Translation offset estimation To determine the 3D translation offset between I target and I ref , we propose to align the centers of the mass corresponding to the structures of interest S target and S ref . We rely on the trained CNN f ω () to determine S target given I target . However, with the limited training set of f ω (),
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 54 Figure 5.3: Iterative determination of the center of mass of the structure of interest. Steps (1) -(2) show the 2D CNN segmentation of the structure of interest from the 3 set of orthogonal slices; (3) The probability maps of the 3 views are combined; (4) Update of the center of mass from the joint probability maps; (5) The target image is cropped around the center of mass.

  Figure 5.5: (a) Positions of the center of mass of the cochlea during 3 iterations of the translation offset determination. The 3 cross marks in red, white, green correspond to the 1st, 2nd, 3rd iterations; Row (b) shows the result of the landmarks detection in the whole image I target ; Row (c) zooms on the detected landmarks before applying the last registration stage; Row (d) zooms on the generated landmarks ('x' marks) after the registration stage and the manually positioned landmarks ('+' marks) by an expert.

  Position errors of the 3 cochlear landmarks ( centre, top and window) automatically generated landmarks (AUTO) and a second set of manual (MANU) ones.

  Figure 5.6: Cochlea landmarks shown with three import coordinates (cochlea top, cochlea center and cochlea round window points) of cochlea model.

  We have shown in chapter 2 how to make use of GANs for cochlear implant CT metal artifacts reduction. We constructed a training dataset through the simulation of the CI insertion and the metal artifacts. The simulation of electrode array insertion of CI is realized through a cochlea shape model fitting framework which is detailed in chapter 3 and artifacts are simulated by accounting for three typical X-ray physical phenomena: the bean hardening, the detector noise, and the scattering effect. The simulation of the metal artifacts allows us to build artifacts and artifacts free pair volumes for training the GAN. The proposed GAN based method is evaluated on the conventional CT images and preliminary experiments showed to be somewhat effective on cone beam CT images. The result implies that the deep generative models are reasonable robust across different modalities.

  of generative learning is that the learned posterior model can be sampled for generating unseen data. This feature is very useful for medical dataset generation as the data collection is limited. The generative model can better express the target data by dimensionality reduction which can be used for dataset modeling for data sharing. We have shown in the chapter 4 an adapted flow-based variational auto-encoder with practical application in medical dataset modeling. Different from the conventional VAE, the proposed Langevin-VAE introduces the target information by involving the information of the target dataset, which allows us to improve the inference fidelity. A better inference quality results in better modeling of the target dataset and allows us to generate high-quality samples from the latent parameters. The proposed Langevin-VAE is used for cochlea CT images generation for offering high-quality synthetic cochlea CT images.

Chapter 6 .

 6 Conclusion and Perspectives119 can help the human expert to better understand the shape uncertainty of the cochlea which can assist the clinician to reduce the risk of CI electrode array positioning misplacement. The patients' personalized cochlea shape analysis should contribute to overcome the limitations of the traditional used fixed cochlea shape model for CI planning. The personalized cochlea shape analysis is an example of precision medicine. The use of MARGAN for CI postoperative CT images metal artifacts reduction can reduce the metal artifacts significantly in comparison with traditional artifacts reduction methods. The MARGAN can also bring the positioning information of the electrodes array inside the cochlea. This can help the expert to assess the quality of the CI surgery and to know the correlation between the prognosis and CI electrode array position. Variational auto-encoder for cochlea dataset modeling is another example of generative learning applied in medical dataset modeling.

Figure 6 . 1 :

 61 Figure 6.1: The transformer framework used for deformation attention feature map prediction. The proposed transformer consists of encoder and decoder modules. The encoder module (shown in the green dotted line box) takes the fixed images patches as input and learns the representation of the memory attention features with self-attention mechanism. The decoder module (shown in the purple dotted line box) takes the attention features of the fixed image from the encoder (memory) and the self-attentions features of the moving image as input for predicting the deformable features that can transform the moving image into a fixed image.

  where i = 4) patches with added position embedding to get the position information. The fixed image patches are fed to transformer encoder network which encodes the attention features of the fixed images. The transformer Chapter 6. Conclusion and Perspectives 122 encoder network contains N recursive blocks as shown in the green box of Fig. 6.1. Simultaneously, the moving images patches are fed together with the output attention features to the transformer decoder network (step (c) in Fig. 6.1). The output of the Transformer decoder network is processed with a linear projection layer to generate the deformation attention feature maps.
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	Metal Artifacts pose a common difficulty for post-operative quality assessment
	in computed tomography (CT). A vast body of methods have been proposed to
	tackle this issue for CT imaging. Yet, these methods were designed for regular

CT scans and their performance is usually insufficient for fine imaging of tiny implants. For the clinical requirements of high-resolution detailed CT imaging, we Chapter 2.

  Sketch of the MARGAN applied on postoperative images 1987a]. The efficiency of the approach is related to the ability to recover the projected signals in the absence of metal parts[START_REF] Mehranian | X-ray ct metal artifact reduction using wavelet domain l 0 sparse regularization[END_REF]. In the case of iterative methods, the missing data in image or projection space is estimated on the basis of statistical principles, possibly including prior knowledge.

	Figure 2.1: Aside from Filtered Back Projection (FBP) based methods, Naranjo et al. [2011]
	introduced mathematical morphology algorithms for MAR by converting the
	image to polar coordinates centered on the metal artifact.
	Recently, the field of MAR has been revived by the development of deep learn-
	ing methods that provide supervised mechanisms for extracting relevant image
	features. A number of 2D Convolutional Neural Network (CNN)-based MAR
	methods have been proposed that are summarized in Table 2.1.
	Zhang and Yu [2018] introduced CNNs as prior information in the sinogram
	(projection) space for the inpainting or sinogram completion task using a simulated
	dataset in the training stage. However, this method needs either the original CT
	sinograms (usually unavailable to the typical user) or to project back the input
	image in order to fill-in the missing traces. This limits its application in our
	dataset, and the sinogram-based MAR algorithms tend to generate over-smoothed
	images due to their filtering effect.
	Metal artifact reduction (MAR) methods aim to decrease the extent of such Huang et al. [2018] developed a deep learning network, RL-ARCNN, in image artifacts (see: 2.1). Classical non-learning-based MAR algorithms are divided space to predict residual images (the difference between the images with and into two groups: corrupted projection recovery and iterative image reconstruction-based methods [Mehranian et al., 2013]. In the former case, projections corrupted without artifacts) to remove metal artifacts in cervical CT images.
	by the presence of metal absorbing the X-rays are detected and then replaced
	by predicted or interpolated values, based on prior knowledge [Kalender et al.,
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	training data and is suitable for pre-and postoperative images. To the best of our
	knowledge, our approach is the first MAR algorithm that combines the physical
	simulation of metal artifacts with 3D GAN networks. While classical GAN-based
	methods such as [Wang et al., 2019a] rely on the existence of paired images with
	and without artifacts for training, our approach has several advantages. First, only
	preoperative images (without artifacts) are required for the training stage, because
	the generation of the corresponding artifact image is based on physical simulation.
	This allows a large set of training images (800 images) to be used, without the
	need for registering the pre-and postoperative images. Second, the nature of
	artifacts can be easily modulated by controlling the complexity of the artifact
	simulation model complexity. Third, we introduce the concept of augmented
	metal artifact reduction by optionally adding landmarks in the corrected image
	that indicate the central location of metal parts. More precisely, in this chapter,
	we show that for the postoperative cochlear implant CT images, the location of
	each electrode center can be identified in the corrected image such that ENT
	(ear, nose and throat) surgeons can assess the quality of the implantation surgery.
	Compared to CycleGANs [Nakao et al., 2020], the MARGAN approach allows
	artifacts to be easily disentangled from the background. This is why we believe
	this approach is probably more appropriate to attenuate artifacts created by tiny
	implants. Fourth, MARGAN was evaluated on postoperative, cone beam CT
	images. Finally, MARGAN was developed as a 3D GAN since metal artifacts
	usually vary continuously between slices. A summary of current studies of MAR
	is shown in Tab. 2.1.

Chapter 2. Metallic Artifact Reduction based on Generative Learning 16 Table 2.1:

  

	Chapter 2.											
	Summary of major MAR approaches. (In the data collection column: BH, SC and EN indicate Beam Hardening,	Scattering and Electronic Noise, respectively)	Processing Domain Inner Ear MAR 2D/3D Dataset Collection Quantitative evaluation	on clinical data	marBHC Sinogram NO 2D Non-Learning YES	marLI Sinogram NO 2D Non-Learning YES	NMAR Sinogram NO 2D Non-Learning YES	CNN Prior Zhang and Yu [2018] Sinogram NO 2D Simulation (BH) YES	RL-ARCNN Huang et al. [2018] Image NO 2D Simulation (BH) YES	DestreakNet Gjesteby et al. [2017] Image NO 2D Simulation (BH) YES	DudoNet++ Lyu et al. [2020] Sinogram+Image NO 2D Simulation (BH;SC;EN) NO	CycleGAN Nakao et al. [2020] Image NO 3D Unsupervised NO	cGAN Wang et al. [2019a] Image YES 2D Paired Data YES	Augmented MARGAN (Proposed) Image 3D YES Simulation (BH;SC;EN) YES
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	The MARGAN method is based on two main stages (see Fig.2.2 -2.2). In the first
	stage (Fig. 2.5), given a preoperative image from the training set, one or several
	images with metal artifacts are generated. This requires a rough segmentation of
	the structures of interest, the position of metal parts (e.g., electrode arrays) and
	the simulation of artifacts based on a CT image formation model. Furthermore,
	the location of the electrode arrays is added to the generated images. In the
	second stage (Fig. 2.2), a 3D GAN is trained using preoperative and corresponding
	simulated artifact images. The GAN loss is improved by adding a term based on
	Retinex theory to decrease the image blur in generated images. After training,
	the GAN is applied on a postoperative image without any segmentation or other
	preprocessing. It results in images with attenuated metal artifacts but also with
	landmarks corresponding to electrode centers.
	The MARGAN method was applied to a set of inner ear CT images to reduce the
	artifacts created by cochlear implants. Qualitative and quantitative results are
	provided for 33 paired pre-and postoperative CT images, including a comparison
	with two classical open source MAR algorithms. Qualitative evaluation of cone
	beam CT (CBCT) postoperative images is also provided.
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	this additional scatter is very complex as it depends on the projected plane and
	the material and geometry of the tissue surrounding the metal parts. To this end,
	we use Monte Carlo simulation to estimate the offset value S(E v ) for different
	detector positions and orientations. The governing equation for the simulation
	provides the emission energy E p (β) of a polychromatic ray deviating by an angle
	β from its initial trajectory :
	The Compton scatter is
	enhanced in the presence of metal parts, thus resulting in an offset in the number
	of photons S(E v ) and leading to a reduction in the image contrast. Computing

27 Table 2 . 2 :

 2722 Material Mapping Table for Voxel Conversion to MCGPU File

		air	water bones muscle titanium soft tissue fat
	MC-GPU MATERIAL 1	15	4	2	16	3	6
	DENSITY [g/cm 3 ]	0.001205 1.000 1.990 1.041	4.506	1.038	0.916

28 Table 2 . 3 :

 2823 Dataset Summary: Preoperative and postoperative refer to images collected before and after Cochlear Implant, respectively.

	Dataset	Pre-Operative Post-Operative Photography
	Training	800	0	0
	Validation	200	0	0
	Evaluation CT	33	33	33
	Evaluation CBCT 0	8	0

Table 2 . 4 :

 24 Quantitative evaluation of the MARGAN approach compared to marBHC, marLI and Nmar. Mean value shows the advance of MARGAN, STD metric shows the slice consistency of MARGAN.

	Metric Preoperative marBHC marLI Nmar MARGAN
	PSNR	16.33	11.59	16.53 13.58	18.31
	RMSE	0.15	0.28	0.15	0.52	0.12
	SSIM	0.58	0.56	0.55	0.52	0.64
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	Table 2.5: Ablation Study of Retinex and Physical Simulation
	Dataset	PSNR RMSE SSIM
	MARGAN L1 Scatter	16.67 0.1490 0.56
	MARGAN L2 Scatter	18.17 0.1257 0.64
	MARGAN L2+Retinex No-Scatter Sim 18.02 0.1277 0.63
	MARGAN L2+Retinex Scatter	18.31 0.1242 0.64

visualization of the image difference output obtained using different training loss functions is shown in Fig.

2

.10 with subtraction maps between different output images and the ground truth image. We see from the yellow and red marks in those subtraction maps the effectiveness of the proposed Retinex loss function in comparison with using pure L1 and L2 losses.
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  and an intra-patient image registration is required. The MARGAN pipeline aims at reaching the same efficiency but by replacing the postoperative image with a simulated one. This makes the MARGAN algorithm applicable to a larger set

	required in the simulation pipeline to improve the MARGAN output. Simulating
	the insertion of metal parts can also be complex as it requires a segmentation
	algorithm to locate the region of insertion. But this complexity is rewarded by
	the ability to generate a vast training set accounting for variations in patient
	anatomy or implant design.
	Learning-based MAR methods were shown to outperform traditional sinogram-
	based MAR approaches in several previous works [Wang et al., 2019b,d, Zhang and
	Yu, 2018]. But by design, the performance of those supervised methods depends

of clinical cases where such image pairs cannot be gathered, for instance in the case of hip, shoulder or knee prostheses. The use of CycleGAN on non-paired images as in

[START_REF] Nakao | Regularized three-dimensional generative adversarial nets for unsupervised metal artifact reduction in head and neck ct images[END_REF] 

is very appealing, because it avoids both artifact simulation and collection of paired images. However, it has only been tested to remove large artifacts, such as those caused by dental fillings, and with limited quantitative assessment.

Another advantage of the artifact simulation approach in MARGAN is its ability to augment the generated MAR image with voxels indicating the location of the metal part. In the case of CI postoperative images, it enables visualization in the same image of both the cochlea and the implant electrode centers. Note that the augmentation of the MARGAN image is only optional in this framework, because the metal-free image can replace the augmented image as I train in the loss function of the 3D GAN. Specifically, in the cochlear metal artifact reduction problem, we see from Fig.

2

.7 and Tab. 2.4 that almost all the traditional MAR approaches have degradation problems in terms of reconstruction image quality. It was reported in

[START_REF] Meyer | Normalized metal artifact reduction (nmar) in computed tomography[END_REF] 

and

[START_REF] Felix E Diehn | Ct dental artifact: Comparison of an iterative metal artifact reduction technique with weighted filtered back-projection[END_REF]

] that sinogram inpainting-based methods can introduce new artifacts. These artifacts can have a severe impact on image quality if the metallic parts and artifacts occupy a large area of space in the image, which is typically the case for the CI electrodes discussed here. However, the risk of quality degradation is not applicable for MARGAN as the image domain-based methods do not need to access the sinogram and the Radon transform.

A limitation of MARGAN lies in the relative complexity of implementing the simulation of metal artifacts in CT images. This is especially true for the scatter effect, which only adds a marginal gain in realism to the generated images.

A more thorough study should be performed to evaluate the level of realism Chapter 2. on the chosen training set and they are application-specific algorithms. Their integration into a clinical workflow remains to be demonstrated, in particular due to their potential lack of robustness. The successful application of MARGAN on CBCT images unseen during training is an encouraging sign of the generalization ability of MARGAN, though further studies are required.
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 3 Table 3.3. We see that the reference length within the range

			1: Computational efficiency proposed methods	
				BFGS	VTK SDM DLSDM	
		Mean Comput. Time 12h15min	43min	16min	
	Table 3.2: Performance metrics obtained on dataset #2 and #3.
					Symmetric Hausdorff Distance
	Compared Labels	Dice Score		(voxel size 0.2 mm)
					Dataset #2	Dataset #3
			Dataset #2 Dataset #3	95% 100% 95%	100%
	CT	SSI	0.74 ± 0.02	0.77 ±0.023	0.53	1.04	0.70	1.91
		SROI	0.85 ± 0.011	0.91 ±0.015	0.34	0.82	0.36	1.68
		SSI	0.67 ± 0.024	0.76 ±0.068	0.68	1.48	0.67	1.96
	µCT	SROI	0.81 ± 0.04	0.91± 0.019	0.50	1.31	0.36	1.68
		CT Manual	0.70 ± 0.084	0.93± 0.021	0.50	1.34	0.19	0.74

Table 3 . 3 :

 33 Influence of the hyper parameter: l ref for the segmentation accuracy.

	Ref. Length 0.05 0.1 0.15 0.2 0.25
	Dice Score	0.84 0.85 0.85 0.82 0.84

Table 3

 3 

	Quantitative comparison of performances is not straightforward due to differences
	in image modality (CT, µCT or ultra high resolution CT), in metrics (Dice,
	precision, mean surface error), in subject population (cadaveric vs patient) but also
	in the target anatomical structures (cochlea vs cochlea labyrinth). In most cases,
	cochlea segmentation from µCT images are used as ground truth information
	and a direct comparison between our work with [Raabid et al., 2021] is possible
	since they used a subset of dataset #3 which is a public database [Wimmer
	et al., 2019]. We see that our unsupervised approach performs as well as the
	supervised methods with Dice scores in the range [0.85, 0.91] and outperforms
	previous unsupervised methods.

.5 summarises the relevant publications on cochlea segmentation that are split into unsupervised and supervised methods. The former approaches are mostly based on cochlear shape fitting based on template image registration [Baker and

Barnes, 2005]

, parametric shape model

[Baker, 2008]

. The supervised methods are based on statistical deformation models

[START_REF] Ruiz Pujadas | Random walks with statistical shape prior for cochlea and inner ear segmentation in micro-ct images[END_REF] 

and deep learning

[START_REF] Heutink | Multi-scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution ct images[END_REF][START_REF] Lv | Automatic segmentation of temporal bone structures from clinical conventional ct using a cnn approach[END_REF][START_REF] Hussain Raabid | Automatic segmentation of inner ear on ct-scan using auto-context convolutional References 138 neural network[END_REF]

.
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	Chapter 3.													
	.5: Performances of prior work on cochlea segmentation. NL (resp. NT) indicates the number of training (resp.	testing) images. Unsup (resp. Sup) refers to unsupervised (resp. supervised) learning methods.	Proposed Proposed	method Method Group Study Comparison Metrics method	(Dataset#3 N=22) (Dataset#2 N=9)	0.83 UnSup Baker [2008] CT Precision 0.75 0.72	±0.03 (NT= 4) ± 0.03 ± 0.09	0.063 UnSup Kjer and Paulsen [2015] post-mortem µCT Mean (±1 std) ±0.03 (NT = 2) surface error 0.11 ±0.06 0.22 ±0.17	Sup Kjer et al. [2017] post-mortem CT Dice 0.88	(NL = 18 /NT = 14)	Sup Heutink et al. [2020] Ultra-high Dice 0.90	(NL=48/NT = 75) Resolution CT ± 0.03	Sup Lv et al. [2021] Cochlea Labyrinth Dice 0.90	0.91 (NL=24/NT=6) 0.85	±0.03 Sup ±0.011 Raabid et al. [2021] post-mortem CT Dice 0.90	(NL + NT = 17) ±0.07
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Table 3

 3 

	.6: Different Methods Computational time for SDM generation (h:m:s)
	Generation Time SDMNN Mesh based SDM DeepSDF
	Single SDM	0:00:00.2 0:00:10.7	0:00:28.1
	Shape Fit	1:05:02.1 12:15:45.4	Failed

Table 4 . 1 :

 41 Quantitative evaluation of the Langevin-VAE in comparison with the HVAE, IWAE, DBN, and DAN methods on MNIST benchmark. It includes the comparison of the negative log likelihoods (NLL), the evidence lower bound (ELBO), and Inception Score (IS)[START_REF] Borji | Pros and cons of GAN evaluation measures[END_REF] 

		Langevin-VAE	HVAE	IWAE DAN DBN
	Flow steps	2	5	2	5	-	-	-
	NLL	82.95	82.40	83.10 82.75	82.90	84.13 84.55
	ELBO	-85.37 -84.81	-85.70 -85.29	-	-	-
	IS	7.67	7.76	7.59	7.38	-	-	-
	neural network architectures are similar to the HVAE			

  interest S ref ⊂ I ref . That structure must include the landmarks or must lie in the vicinity of the landmarks L ref . It should also be present in all target images and must be easy to detect in the image with some visible borders. One issue of one-shot learning is the limited amount of training data that can easily lead

	Input	Dropout	Conv 2D	Maxpool	Up sampling	Concatenate
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  by the neural network since it sees slices that resemble more and more to its training set. We stop the process when the changes in the detected center C target become smaller than a threshold. Iterative center of mass localization Inputs: image: I target , CNN: f ω (•) Output: Center of structure in target image C target Initialize: C target ← C ref while |C old -C target | < do Ptarget ← Crop(I target , C target ) // Patch centered on C

	Dropout Conv 2D Maxpool Up sampling Concatenate Algorithm 4 Input fcnn	fcnn Target image Cropping	Joint Probability	Input Dropout Conv 2D Maxpool Up sampling Concatenate	fcnn	Input Dropout Conv 2D Maxpool Up sampling Concatenate
	xz			xy		yz

target while o ∈ {X, Y, Z} do for i = 1; i < K[o]; i + + do 44 out[o][i] ← f omega ( P o target [i]) // apply CNN on slices end end p ← out[X] • out[Y ] • out[Z]

// Combine probability maps as Eq.5.1

C old ← C target C target ← Eq. 5.2 //

Update center of mass end Ptarget ← Crop(I target , C target ) // Patch centered on C target
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score of 0.81 ±0.1 ( respectively of 0.68 ±0.23 ) for the Gauss-Newton method (resp. the BFGS method). This clearly shows the increased robustness with respect to initial shape values obtained by the Gauss-Newton optimization of the MS-step.

Evaluation on CT and µCT images: Datasets #2 and #3 include both CT and µCT images of the same subject that have been registered to each other.

Furthermore the cochlea was manually or semi-automatically segmented by an expert on both modalities such that we can use those two binary maps to evaluate the accuracy of the algorithm applied on the CT image. The cochlea binary map from high resolution µCT images have been downsampled and represent a more reliable ground truth than the manual segmentation performed on the CT images.

The proposed algorithm using Gauss-Newton optimization and deep-learning generation of signed distance maps was applied on the 9 + 22 CT images of the two datasets. Fig. 3.2 (Right) shows the segmented cochlea in red, the associated shape model, and its evolution during the MS step. Clearly, we see that the resulting segmentation is strongly constrained by the shape model.

In Table 3.2, we provide two metrics between pairs of binary masks : the Dice score and the 95% and 100% symmetric Hausdorff distance (HD) (computed as the average of two distances). Furthermore, we compare the segmentations produced by the posterior label probability (SROI for p(Z n |I n , θ S , θ I ) = 0.5) and the ones produced by the shape model only (SSI for p(Z n |θ S ) = 0.5) with both manual segmentations obtained on CT and µCT images. To measure the uncertainty in the manual CT segmentation, we also evaluate the metrics between both CT and µCT manual mask images.

The logistic shape model framework produces good segmentation results on both datasets (Dice scores of 0.81 and 0.91) and even slightly outperforms the manual CT segmentation on dataset#2 (0.81 vs 0.7) which is far more challenging dataset #3. The segmented shape instances produced by the shape model are not as accurate as the SROI for the cochlea segmentation (lower Dice score and larger HD). This confirms that the parametric geometric cochlea model is a simplified representation of the cochlea anatomy. Finally, the metrics between the 2 manual segmentations on dataset #2 (DSC of 0.7 with a 95% HD of 0.5mm) shows the Chapter 3. Bayesian Logistic Shape Model Inference : application to cochlea image segmentation 63 difficulty of performing a manual segmentation of the cochlea due to its limited size and contrast.

Semi-quantitative analysis of segmentation on clinical dataset #1

We ran the segmentation framework (with DLSDM) on the 210 CT of dataset #1 on a Dell 6145 and 6420 CPU clusters.

Unsupervised quality control and semi-quantitative evaluation As manual segmentations of the 210 images are not available, we propose instead an original approach to estimate our algorithm's performance while minimizing the manual annotation effort. First, we apply the unsupervised quality control algorithm of Audelan et al. [START_REF] Audelan | Unsupervised Quality Control of Image Segmentation based on Bayesian Learning[END_REF] on the whole dataset in order to sort the 210 segmentations according to their hypothesized performance.

More precisely, this quality control algorithm computes for each image segmentation, an average distance between the segmentation provided by our algorithm and a segmentation produced by a simple generic probabilistic method. We can then generate an histogram of such average surface error (ASE) in Fig. 3.7.

Segmentations having a low ASE correspond to those having good intensity contrast across their boundaries while those on the right tail of the distributions are considered as more challenging and suspect of including segmentation errors.

The histogram exhibits a bell shape with few outliers on its right and left tails. On this basis, we can extrapolate that the median Dice score over the whole dataset is probably above 0.82. Yet, a more thorough study with far more manual segmentations is necessary to be less speculative about the actual performance on clinical CT data.

Parameter analysis

The application of the algorithm on dataset #1 resulted in the estimation of 10*210 shape parameters with 210 covariance matrices Σ θ S .

In Fig. 3.8(a) the histograms of the 4 deformable shape parameters are displayed in green. Interestingly, the a and α parameters exhibit a bimodal distribution for which a simple explanation may be provided. Indeed, the left highest mode is probably corresponding to straight centerline profiles whereas the rightmost mode may be associated with the "rollercoaster" longitudinal profiles [START_REF] Avci | Variations in microanatomy of the human cochlea[END_REF].

In Fig. 3.8(b) the average 10 × 10 covariance computed as the log-Euclidean mean [START_REF] Arsigny | Geometric means in a novel vector space structure on symmetric positive-definite matrices[END_REF]