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Résumé: Aprés la découverte du boson de Higgs
en 2012 par ATLAS et CMS au LHC, les mesures
de précision et le couplage du Higgs sont im-
portants pour la validation du modéle standard
(SM), mais aussi pour la recherche de nouvelle
physique au-dela du modéle standard (BSM), car
toute déviation a la prédiction du SM peut indi-
quer la présence de nouvelle physique.

Cette thése présente un travail sur |'étalonnage du
calorimétre électromagnétique d'ATLAS. En util-
isant la masse du boson Z connue, avec une pré-
cision de 2 x 107° autour de 91 GeV, I'énergie du
calorimétre est calibrée avec un facteur d'échelle
d'énergie et un terme constant de résolution.
Ce travail contribue a la recommandation finale
du Run 2 d'ATLAS, importante pour la mesure
de la masse du Higgs dans sa désintégration en
deux photons. La linéarité du calorimétre est
mesurée, en tant que facteur d'échelle dépendant
de I'énergie, qui est ensuite utilisée pour contrain-
dre la systématique de I'échelle d'énergie. Sa per-

formance est testée sur I'analyse de masse du Higgs
avec le canal en deux photons. Les données de
139 fb~! du Run 2 devraient mesurer la masse
du boson de Higgs avec une incertitude statistique
d’environ 125 MeV et une incertitude systématique
expérimentale d'environ 260 MeV. Bénéficiant de
cette contrainte de linéarité, |'incertitude systé-
matique expérimentale est réduite d'un facteur de
I'ordre de 1.5.

La recherche de la double production de Higgs per-
met de sonder le potentiel de Higgs et de I'auto-
couplage du Higgs. Cette thése exploite cette dou-
ble production via la désintégration de HH en bbyy
avec les données du Run 2 d’ATLAS. La limite ob-
servée (attendue) de la section efficace de produc-
tion de di-Higgs est de 4,2 (5,7) fois la prédiction
SM a un niveau de confiance de 95%. Le modifi-
cateur d’'auto-couplage de Higgs k) est contraint
entre -1,5 et 6,7, tandis que la contrainte attendue
estde —2,4 < k) < 7,7.
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Abstract: After the Higgs discovery in 2012 by
ATLAS and CMS at LHC, precision measurements
and Higgs couplings are important for validation of
the Standard model (SM), but also for search of
new physics Beyond the Standard Model (BSM),
as any deviation from the SM prediction can indi-
cate the presence of new physics.

This thesis presents a work on the calibration of
the ATLAS electromagnetic calorimeter. Using the
known lineshape of the Z boson peaked around
91 GeV with a precision of 2 x 1075, the energy
response of the calorimeter is calibrated with an
energy scale factor and resolution constant term.
This work contributes to final calibration recom-
mendation of ATLAS Run 2, which is important
for the Higgs mass measurement with H — ~~ de-
cay mode. The linearity of the calorimeter is mea-
sured, as energy-dependent scale factor, which is
afterwards used to constrain the energy scale sys-

tematics. The performance of such constraint is
tested on the H — ~v mass analysis. The 139
fb~! Run 2 data is expected to measure the Higgs
boson mass with a statistical uncertainty around
125 MeV and an experimental systematic uncer-
tainty around 260 MeV. Benefiting from the con-
straint with linearity, the experimental systematic
uncertainty is reduced by around 1.5.

The search for the Di-Higgs production probes
the Higgs potential and the Higgs self-coupling.
This thesis exploits the Di-Higgs production via
the HH — bbyy decay with the ATLAS Run 2
data. The observed (expected) limit of the Di-
Higgs production cross section is set to 4.2 (5.7)
times the SM prediction at 95% confidence level.
The Higgs self-coupling modifier k) is constrained
to be between -1.5 and 6.7, while the expected
constraint is —2.4 < k) < 7.7.
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Résumé étendu en francais

Le modéle standard est une théorie décrivant les particules élémentaires et leurs interactions. Il comprend
trois générations de quarks et de leptons, les bosons de jauge (gluon, bosons W et Z) et le boson de Higgs.
Il comprend différentes théories, telles que la chromodynamique quantique et I'interaction électrofaible. Le
mécanisme dit de Higgs prédit I'existence du boson de Higgs qui génére la masse des particules par une
brisure spontanée de symétrie.

La découverte du boson de Brout-Englert-Higgs (boson de Higgs) d'une masse d'environ 125 GeV par
les expériences ATLAS [1] et CMS [2] au Large Hadron Collider (LHC) constitue la piéce manquante de la
génération de masse dans le modéle standard et inspire de nombreuses analyses pertinentes de physique.

Grace aux performances impressionnantes des détecteurs ATLAS et CMS, la masse du boson de Higgs
a été mesurée avec une précision d'environ 0,2%, en combinant les canaux H — yy et H — ZZ* — 4l
en utilisant les données de Run 1 de LHC. L'une des étapes suivantes consiste a améliorer la précision des
mesures du boson de Higgs, comme la masse, le couplage, etc. Ces mesures fournissent des informations
pour tester le modéle standard et les modéles de physique au-dela du modéle standard.

Parmi les diverses propriétés du boson de Higgs, la masse est I'une des plus importantes & mesurer. La
masse du boson de Higgs n’est pas prédite par le modéle standard, sa valeur est requise pour le calcul précis
de la section efficace de production de Higgs et sa désintégration. Outre la masse, le boson de Higgs est une
particule se couplant a elle-méme. L'auto-couplage du Higgs est prédit par le potentiel de Higgs a travers
le mécanisme de Brout-Englert-Higgs, qui joue un réle important dans la stabilité de |'univers. Cette thése
contribue & un travail d'amélioration de la précision de la masse du boson de Higgs et a une recherche de
double production du boson de Higgs permettant d'explorer son auto-couplage.

Le document est organisé comme suit :

Le chapitre 1 présente briévement le modéle standard et le mécanisme de Brout-Englert-Higgs, avec un
état des lieux des limites du modéle standard. La production, la désintégration et les mesures de la masse
du boson de Higgs au LHC sont résumées.

Les méthodes statistiques sont présentées au chapitre 2, ol les bases de la probabilité, de I'estimation
des paramétres, des tests d'hypothéses et de la combinaison de données sont introduites. En particulier, la
méthode asymptotique pour le test basé sur la vraisemblance est introduite, qui est une approche largement
utilisée et puissante pour déterminer la fonction de densité de probabilité de la fonction statistique de test
dans ATLAS.

Le chapitre 3 décrit le dispositif expérimental, notamment le LHC et le détecteur ATLAS, avec leur évolution
pour le LHC a haute luminosité. La conception du détecteur ATLAS est introduite, avec la reconstruction,
I'identification des électrons, des photons et des jets. Ce chapitre donne une description dédiée du calorimétre
électromagnétique d'ATLAS, notamment la gerbe électromagnétique, |'électronique et la reconstruction des
électrons et des photons.

1M1
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Le coeur des analyses correspond aux chapitres 4, 5, 6. Le chapitre 4 décrit une recherche de la dou-
ble production de Higgs dans le canal de désintégration bby~y, ou la stratégie de sélection et les résultats
statistiques sont présentés. La combinaison avec d'autres canaux et les perspectives du LHC a haute lumi-
nosité sont données. Une étude de performance sur |'étalonnage du calorimétre électromagnétique d'ATLAS
est décrite au chapitre 5. La derniére partie (chapitre 6) correspond a une analyse de la mesure de la masse
du Higgs dans le canal diphotons, ot |'incertitude systématique expérimentale dominante pour I'énergie du
photon est résumée, et un modéle d'ajustement global lié au travail d'étalonnage du chapitre 5 est présenté.

Double production du boson de Higgs

Le mécanisme de Higgs prédit le boson de Higgs et aussi son autocouplage qui était mal connu avant les
résultats de LHC. Explorer |'autocouplage du boson de Higgs permet d'étudier la forme réelle du potentiel
de Higgs ainsi que la stabilité de |'univers. L'autocouplage du boson de Higgs est accessible grace a la
double production du boson de Higgs. Dans cette thése, une recherche de cette production est effectuée ot
la section efficace de la production et le modificateur d'autocouplage de Higgs «) sont étudiés. L'analyse
explore I'état final bby~y ot un boson de Higgs se désintégre en une paire de quarks b et |'autre se désintégre
en deux photons. Par conséquent, les événements de collision avec deux photons de bonne qualité et deux
jets de saveur b sont sélectionnés, bénéficiant des algorithmes efficaces de reconstruction, d'identification
et d'étiquetage de saveur dans ATLAS.

Les événements sont également tenus de passer une sélection supplémentaire basée sur I'analyse multi-
variée (MVA). L'analyse utilise des arbres de décision boostés (BDT) pour mieux séparer le signal et le
bruit de fond. Pour le signal, puisque la masse invariante du systéme des deux bosons de Higgs (mps)
reconstruite avec les deux jets b et deux photons est trés sensible au modificateur d'autocouplage de Higgs
kx, un BDT est utilisé dans la région de masse my,, élevée pour cibler le signal avec de petites ), un autre
a faible masse pour les grands k). Un tel algorithme d'optimisation améliore la sensibilité pour différents
k. Finalement avec la masse my,, et les scores de BDT, quatre catégories sont définies. Aprés toutes les
sélections, le fond dominant est le processus avec deux photons et jets, le fond dit continu. Il y a aussi une
contribution sous-dominante de la production d'un seule boson de Higgs.

L'ajustement de maximum de vraisemblance est effectué sur la variable de masse invariante des deux
photons m.,, ou la section efficace de production de signal est ajustée, avec k) fixé a la prédiction du
modéle standard. Les données actuelles n'indiquent pas I'existence de signal. La limite supérieure observée
(attendue) de la section efficace du signal est 4,2 (5,7) fois la prédiction du modéle standard a un niveau
de confiance de 95%, en supposant que k) est égal a 1. L'autocouplage de Higgs ) est contraint entre
-1,5 et 6,7 avec les données observées, et entre —2,4 < k) < 7,7 pour les limites attendues.

Ce canal est combiné avec d'autres analyses portant sur différents états finaux, tels que bbbb et bbrT.
La limite supérieure combinée observée (attendue) de la section efficace du signal est 2,4 (2,9) fois la
prédiction du modéle standard. L'intervalle limite combiné observé (attendu) est de —0,6 < k) < 6,6
(2,1 < k) <T,8).

Outre la recherche directe de la double production de bosons de Higgs, |'autocouplage de Higgs peut
apparaitre dans la production d'un seul boson de Higgs via des boucles d'autocouplage de Higgs. Par con-



13

séquent, les productions de Higgs double et seule sont combinées pour améliorer la contrainte sur k.

De plus, 'analyse actuelle basée sur les données du Run 2 est extrapolée au futur LHC a haute lumi-
nosité ou il est possible de trouver ce type du signal de double Higgs. Une significativité de 3,2 du signal
de la double production du boson de Higgs dans le cas du modéle standard est attendue aprés combinaison
des canaux de bby~y et bbr7 dans ATLAS. Le modificateur d'autocouplage de Higgs .y devrait &tre mesuré
avec une précision de 50%.

Etalonnage du calorimétre électromagnétique

Le calorimétre électromagnétique (ECAL) dans ATLAS est un calorimétre a échantillonnage utilisant du
plomb comme absorbeur de la gerbe électromagnétique, et de I'argon liquide comme matiére active pour le
signal électronique. Il a une large couverture spatiale (27 dans I'angle azimutal ¢, et jusqu'a 4,9 pour la
pseudorapidité 7). De plus, il est composé de plusieurs couches ce qui permet d'accéder aux informations
longitudinales de la gerbe électromagnétique. L'ECAL est utilisé pour mesurer |'énergie des électrons et des
photons. Un étalonnage précis de sa réponse énergétique est donc crucial pour les analyses utilisant des
électrons ou des photons, comme la mesure de la masse du boson de Higgs dans I'état final a deux photons.

L'étalonnage est précédé de plusieurs étapes. La premiére étape est une régression multivariée, qui re-
construit I'énergie des particules a partir des informations enregistrées dans ECAL, telles que I'énergie
mesurée dans chaque couche et les positions spatiales. Afin de maintenir la méme réponse énergétique dans
chaque couche du calorimétre, une intercalibration est effectuée. Au final, la réponse énergétique est enfin
calibrée a I'aide du pic de résonance de masse bien connu du boson Z. En outre, les réponses des différents
gains électroniques sont calibrées a I'aide de Runs spéciaux dédiés. Des corrections supplémentaires sont
appliquées afin de couvrir I'étalonnage électronique résiduel et la non-uniformité de la réponse énergétique
dans I'angle azimutal ¢.

L'étalonnage basé sur la masse du boson Z est appelé étalonnage in-situ, en utilisant le pic de masse
Z autour de 91 GeV comme référence. L'étalonnage se compose des facteurs d'échelle utilisés pour corriger
la différence d'échelle d'énergie entre les données et la simulation, et du terme constant qui absorbe la
différence de résolution d’énergie a I'aide d'un étalement gaussien. L'étalonnage in-situ se fait en fonction
de n, pour chaque année des données collectées . Les facteurs d'échelle sont différents dans la région endcap
d'une année a |'autre, ce qui est dii & |'évolution de la température de I'argon liquide et de la haute tension.
Il existe des différences a termes constants dues & la mauvaise modélisation du bruit d'empilement dans le
calorimétre.

La réponse énergétique des électrons d'impulsion transverse (E7) proche de 40 GeV (moyenne de Ep
des électrons issus de la désintégration du boson Z) est bien calibrée. Cependant, une erreur d'étalonnage
est possible a une plage d'impulsion transverse différent de 40 GeV. Afin d’estimer un tel défaut d'étalonnage
possible, le facteur d'échelle d'énergie est mesuré en fonction de Er, appelé linéarité. Cette linéarité peut
étre due aux effets systématiques réels de |'énergie provenant du mauvais calibrage résiduel et de la modéli-
sation des erreurs dans la simulation. Par conséquent, il peut étre considéré comme une mesure des effets
systématiques et utilise comme données d’entrée d'un modéle d'ajustement global, qui donne ['estimation
des systématiques et contraint les incertitudes.
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Les contraintes obtenues sur les incertitudes systématiques peuvent &tre appliquées sur |'analyse de la
mesure de la masse du boson de Higgs dans |'état final a deux photons, ce qui améliore la précision de la
masse.

Masse du boson de Higgs mesurée dans le canal a deux photons

Dans le Run 1, avec les données 25 fb~!, la masse de Higgs a été mesurée a 125,09 4 0,24 GeV [3]
avec la combinaison d'ATLAS et de CMS dans les canaux de two photons et de quatre leptons, ot |'erreur
statistique est 0,21 GeV, |'erreur systématique est 0,11 GeV.

e e e L e e e e e e i B e e e o e e B LA e o
ATLAS and CMS i Total Stat. =3 Syst.
LHC Run1 Total  Stat. Syst.

ATLAS H - yy H——s——+ 126.02 £0.51 (+0.43 £ 0.27) GeV
CMS H —yy ——— 124.70 £ 0.34 (£ 0.31 0.15) GeV
ATLAS H-ZZ 4l e 124,51+ 0.52 ( + 0.52 + 0.04) GeV
CMS H -2ZZ -4l ——— 125.59 + 0.45 (+ 0.42 £ 0.17) GeV
ATLAS+CMS yy l—Ela—l 125.07 +0.29 (+0.25 + 0.14) GeV
ATLAS+CMS 4l H}E—i 125.15 + 0.40 (+ 0.37 £ 0.15) GeV
ATLAS+CMS yy+4l i—?—i 125.09 +0.24 ( +0.21+0.11) GeV
e by b e e b b ey )y
123 124 125 126 127 128 129
my, [GeV]

Figure 1: Résumé des mesures de masse du boson de Higgs a partir des analyses individuelles d’ATLAS
et de CMS et de l'analyse combinée utilisant les données de 25 fb~! du Run 1 [3].

Au début de Run 2, la masse du boson de Higgs publiée précédemment par ATLAS dans le canal a deux
photons a été mesurée a 124,93 4 0,40 GeV en utilisant les données de 36 fb~!, ou I'erreur statistique est
0,21 GeV, l'erreur systématique est 0,34 GeV. L'étude actuelle vise a améliorer la précision de la mesure
en utilisant les données complétes de Run 2, ainsi que les contraintes sur les incertitudes systématiques

provenant des mesures linéarité.

L'analyse cible le signal du boson de Higgs a partir de différents modes de production, tels que la fusion
gluon gluon, la fusion du boson vecteur, la production associée avec deux quarks top, etc. Les événements
sont d’'abord filtrés par un ensemble de sélection de photons sur la qualité d'identification, d'isolement,
d'impulsion transverse, etc. Ensuite, les événements sont divisés en quatorze catégories, afin de minimiser
I'incertitude de masse mesurée. Un ajustement du maximum de vraisemblance est effectué simultanément
avec les quatorze catégories, en utilisant la masse invariante du diphoton comme variable discriminante. Les
formes de masse des signaux avec différentes masses de boson de Higgs sont modélisées par une fonction
de Cristal-Ball, ou le paramétre du pic pucp est déterminé en fonction de la masse du boson de Higgs.

L'analyse actuelle en cours pour |'ensemble du Run 2 montre une incertitude attendue de la masse du boson
de Higgs de 209 MeV, qui comprend une incertitude statistique d'environ 124 MeV et une composante systé-
matique d'environ 168 MeV. Bénéficiant d'une luminosité plus élevée et d'un calibrage amélioré par rapport
a I'analyse avec les données de 36 fb~! de Run 2, la précision de la masse est améliorée d'un facteur autour
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de 2. L'incertitude systématique sur la masse du boson de Higgs est dominée par les incertitudes sur I'échelle
de I'énergie des photons, qui proviennent principalement de I'étalonnage du calorimétre électromagnétique,
par exemple, l'incertitude due a la non-linéarité de la réponse énergétique du calorimétre, les fuites latérales
de gerbe pour les photons, |'étalonnage des couches et les effets de matiére.

Le modéle d'ajustement global donne une prédiction de I'échelle d'énergie résiduelle des photons dépen-
dant de I'impulsion transverse et de la incertitude réduite correspondante a I'énergie des photons. La sortie
d'ajustement global peut étre directement appliquée a la vraisemblance de I'analyse de masse actuelle du
boson de Higgs. Aprés |'avoir appliqué sur les photons, la composante systématique de |'incertitude de masse
attendue est réduite de 168 MeV a 102 MeV, ce qui donne une amélioration d'un facteur de I'ordre de 1,7,
la valeur centrale de la masse est décalée d'environ 130 MeV, ce qui est encore comparable a l'incertitude
de masse.

L'analyse est encore préliminaire et doit encore étre approuvée. Le modéle d'ajustement global va étre
vérifié avec les événements Jiy — ee, ou |'échelle d'énergie électronique est mesurée a faible impulsion
transverse autour de 10 GeV. Les résultats seront extrapolés afin de vérifier la cohérence avec le facteur
d'échelle mesuré avec Jy — ee. Une validation similaire sera également effectuée a I'aide d'événements
Z — .

Contribution de I'auteur

Le groupe ATLAS offre un merveilleux environnement enrichi d'une collaboration fructueuse dans les
différents groupes d'analyse. Les analyseurs travaillent sur des sujets similaires ou différents et s'impliquent
dans I'étude des autres par de communications réguliéres. La contribution personnelle de I'auteur est ré-
sumée ci-dessous :

Concernant I'analyse de production de double Higgs dans la désintégration bby~y, I'auteur a travaillé sur
I'interprétation statistique des résultats, qui inclut la construction de la fonction de vraisemblance préservée
dans un workspace. Il a une contribution notamment a la définition de la limite pour la section efficace de
di-Higgs et I'auto-couplage de Higgs, qui est dérivée a I'aide de deux méthodes différentes. L'une d'elles
est une approche d'approximation, c'est-a-dire la formule dite asymptotique pour le test de maximum de
vraisemblance, qui est une méthode puissante et validée dans de nombreux cas. L'autre est basée sur des
pseudo-expériences (toys), qui sont censées donner des estimations plus précises des limites de cette analyse
en raison du faible nombre d'événements observés.

L'auteur est I'un des principaux contributeurs pour I'étalonnage en énergie du calorimétre électromagné-
tique d'ATLAS. Le travail porte principalement sur |'étalonnage et la mesure in-situ du facteur d'échelle
dépendant de I'énergie (linéarité). Il a étudié un modéle d'ajustement global avec les idées d'experts sur
le calorimétre électromagnétique d'ATLAS. Ce modéle d'ajustement global aide a limiter I'incertitude de
I'échelle d'énergie pour les électrons et les photons.

Pour I'analyse de la masse des bosons de Higgs dans le canal diphotons, I'auteur a contribué a I'application
du modéle d'ajustement global afin d’améliorer encore la précision de la mesure de la masse des bosons
de Higgs. Le résultat du modéle d'ajustement global est implémenté dans la vraisemblance de I'analyse de
masse. La performance est estimée a |'aide de données Asimov attendues.






Introduction

The exciting discovery of the Brout-Englert-Higgs boson (Higgs boson) with a mass of around 125 GeV
by the ATLAS [1] and CMS [2] experiments at the Large Hadron Collider (LHC), makes up the missing
piece of mass generation in the Standard Model, and inspires enormous relevant physics analyses.

Thanks to the outstanding performance of the ATLAS and CMS detectors, the Higgs boson mass has
been measured in the combination with a precision around 0.2% in the H — ~v and H — ZZ* — 4l
channels using the Run 1 data. One of the next steps is to improve the further precision on Higgs boson
measurements, sush as mass, width, coupling, etc. These measurements provide useful information for
testing the Standard Model and models of physics beyond the Standard Model.

Among the various Higgs boson properties, the mass is one of the most important to be measured. The
Higgs boson mass is not predicted by the Standard Model, its value is required for the precise calcula-
tion of the Higgs production cross section and its decay. Apart from the mass, Higgs boson is a particular
self-coupling particle. The Higgs self-coupling is predicted by the Higgs potential through the Brout-Englert-
Higgs mechanism, which plays an important role in the stability of the universe. This thesis contributes to
a work for improving the Higgs boson mass precision and a search of double Higgs boson production which
can explore the Higgs boson self-coupling.

The document is organized as follows:

Chapter 1 gives a brief introduction of the Standard Model and the Brout-Englert-Higgs mechanism, with
a debriefing on the limitations of the Standard Model. The Higgs boson production, decay and mass mea-
surements at LHC are summarized. The basic statistical methods are presented in Chapter 2.

Chapter 3 describes the experimental setup, including the principle of the LHC and the ATLAS detec-
tor, with their upgrade for the high-luminosity LHC. The design of the ATLAS detector is introduced, with
the reconstruction, identification of electrons, photons and jets. This chapter gives a dedicated description
of the ATLAS electromagnetic calorimeter, including the electromagnetic shower, electronics and recon-
struction of electrons and photons.

The core of analyses corresponds to Chapters 4, 5, 6. Chapter 4 describes a search for the double Higgs
production in the bbyy decay channel, where the selection strategy and the statistical results are presented.
The combination with other channels and the prospects for the high luminosity LHC are given. A perfor-
mance study about the ATLAS electromagnetic calorimeter calibration is described in Chapter 5. The last
part (Chapter 6) corresponds to an analysis of the Higgs mass measurement in the diphoton channel, where
the dominant experimental systematic uncertainty for the photon energy is summarized, and a global fit
model connected to the work of calibration in Chapter 5 is presented.
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Contribution of Author

The ATLAS working group provides a wonderful environment enhanced with fruitful collaboration in the
various patterns of analysis. Analysers are working on similar or different topics, and get involved to others’
study through regular communications. Personal contribution of the author is summarized below:

For the bbyy double Higgs production analysis, the author has worked on the statistical interpretation
of the results, which includes the construction of the full likelihood model stored in a so-called workspace,
the maximum likelihood fit with the observed data and studies relevant to the impact of systematic un-
certainty. He has a main contribution to the limit setting for the di-Higgs cross section and the Higgs
self-coupling, which is derived using two different methods. One of them is an approximation and analytical
approach, the so-called asymptotic formula for likelihood-based test, which is a powerful method validated
in many cases. The other is based on pseudo-experiments (toys), which is supposed to give more accurate
estimations of limits for this analysis due to the low observed number of events.

The author is one of the main contributors for the energy calibration of ATLAS electromagnetic calorimeter.
The work is mainly about the in-situ calibration and measurement of the energy-dependent scale factor
(so-called linearity). He has studied a global fit model with the ideas originated from experts on ATLAS
electromagnetic calorimeter. This global fit model helps to constrain the energy scale uncertainty for elec-
trons and photons.

For the Higgs bosons mass analysis in the diphoton channel, the author contributes to the application
of the global fit model (described above) in order to further improve the precision of Higgs boson mass
measurement. The output of the global fit model is implemented in the likelihood of the mass analysis, the
performance is estimated using an expected Asimov data.



1 - Theoretical Aspects

1.1 Standard Model in a Nutshell

The Standard Model (SM) is the current paradigm describing particle physics in terms of fundamental
particles and interactions. It is described by a theory containing the local symmetry

GISU(3)CXSU(2)LXU(1)Y (1.1)

with SU(3)¢ for the strong interaction, and SU(2)1, x U(1)y for the electroweak interaction which is a uni-
fied theory of the weak and electromagnetic interactions developed by Glashow, Salam and Weinberg in the
1960s. The interactions are mediated by gauge bosons: the massless gluons (GY,) for the strong interaction,
with a running from 1 to 8; the gauge bosons (W}, B),) for the SU(2), x U(1)y electroweak interaction
with 4 running from 1 to 3. After the spontaneous symmetry breaking SU(2); x U(1)y — U(1)em, the
(W; B,,) gauge bosons are transformed into three massive vector bosons (W, Z) and a massless vector
boson, the photon ~.

According to Noether's theorem, for each continuous symmetry, there is a corresponding conservation law.
Hence the SM symmetry G corresponds to the conservation of the following quantum numbers: SU(3)
colour, SU(2) weak isospin I and U(1) weak hypercharge Y (Q = T3 + 1Y), where Q is the electrical
charge and T3 is the third component of the weak isospin.

In addition to the gauge bosons, the SM contains matter fermions and a scalar Higgs boson, which can be
organized in the following representation:

Vi

€;

Leptons: ;1 = ( ) : (1,2)3’:—17 €iR : (171)Y:—2
L

Uj

Quarks: g1, = <d> 1(3,2)y=1/3, wir:(3,1)y=4s3, dir:(3,1)y—_2/3
i/ L

J’_

Higgs: ® = <§0) 1 (1,2)y=1

where the first number (a) inside the bracket (a,b). stands for the color triplet for quarks, singlet for leptons
and Higgs; the second term (b) represents the weak isospin doublet for left-handed fermions and Higgs,
while singlet for right-handed fermions; the lower number (c) is the weak hypercharge associated to the
U(1) symmetry.

There are 3 generations for leptons (e, u,7) and (ve,vy,vr), and 3 generations for quarks (u,c,t) and
(d, s,b), among those only the left-handed components are interacting with the SU(2) weak gauge bosons
Wlﬁ while the U (1) gauge boson B,, is coupling to both left-handed and right-handed particles. No evidence
of the right-handed neutrino has yet been found, therefore they are ignored in the current formalism.

An overview of the particle content in the SM is presented in Fig. 1.1, including the spin-0 Higgs bo-
son, spin-3 matter fermions and spin-1 gauge bosons (g, W*, Z and 7).
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Standard Model of Elementary Particles

three generations of matter three generations of antimatter interactions / force carriers
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Figure 1.1: Particle content of the Standard Model [4].

In the following, the basic quantum field theories used to describe the SM particles and their interactions
are briefly formulated, which involve the quantum chromodynamics (QCD), electroweak (EW) interaction,
Higgs sector and Yukawa coupling. A historical review of the construction of the SM can be found in Ref. [5]

(also in [6]).

Quantum chromodynamics is a Yang-Mills theory with SU(3)c symmetry described by the following La-
.
grangian-:

1 _
EQCD = _ZGZVGgV + q’y“D“q (1.2)
with
a a a abe c - )\a a
GY, = 0,G% — 9,G% + g f*"GLGS,  Dyug = <8M + zgSZG#> q (1.3)

The first term in Eq. 1.2 is the kinetic term for gluon fields, the second one is the Dirac Lagrangian for
quarks and their interactions with gluons. GY,,, is the gluon field strength tensor, where index a runs from 1
to 8. g is the strong coupling constant. £ is the structure constant of SU(3). q is the quark Dirac field
for both left-handed and right-handed chiralities, and for all the six quark flavours. v* are the Dirac matrices
and D, is the gauge covariant derivative. /\—2“ are the SU(3) generators, with the Gell-Mann matrices A®.
The strong coupling constant is vanishing at high energy or short distance according to the asymptotic
freedom of QCD, which leads to the phenomenon of quark confinement.

The electroweak interaction is described by a SU(2), x U(1)y Yang-Mills theory with Lagrangian described
as:

1__ . 1 _ _
Lew = —ZWZLVW;W — ZBW,BMV + \IJLZ")/'“DH\I’L + \IJRZ")/'U“DM\I/R (1.4)

'The convention of Minkowski metric n = diag(1,—1,—1,—1) is used.
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with
W;iu = 8MW; - 8VWZL + geijngWja Buu = 8;,LBV - al/B;u

D,V = <3u + ZQ%WZL + Z'g/};BM> vy, D,Vg= (8u + ig/§3u> Up. (1)
—iWZVVVﬁV — 1B, B" represent the kinetic terms of the SU(2) x U(1) gauge fields, where W/iy is the
field strength density of SU(2) gauge bosons, B, is the one of U(1). €“* is the structure constant of
SU(2). g and ¢ are respectively the weak coupling constants associated with SU(2) and U(1) group. ¥,
and Uy correspond to the left-handed and right-handed components of leptons and quarks fields. o; are
the Pauli matrices. Y stands for the weak hypercharge operator. As mentioned above, only ¥ is coupled
to the SU(2) fields W, while B,, interacts with both ¥, and V.

nr

The Higgs sector is expressed by a scalar Lagrangian including a quadratic potential V' (®):

Liiges = | D ®> — V() (1.6)

with
Q@:<@+wgwgmy?30¢ (1.7)
V(®) = 1 20Td 4+ \(0Td)? (1.8)

The Higgs field @ is a SU(2) complex doublet, which includes a charged complex component ¢, a neutral

complex component qbo.
¢+
¢:<W> (1.9)

Because of the negative sign of 12 in the SM, non-zero vacuum states emerge in the minimum of the Higgs
potential, which violates the SU(2) x U (1) symmetry and predicts the existence of the Brout—Englert-Higgs
boson (or Higgs boson as we call it from now on) and massive weak gauge bosons. This corresponds to the
Brout—Englert—Higgs mechanism, which will be described in the next section.

On the other hand, as for fermion mass generation, a Yukawa term is used to describe the coupling between
fermionic fields and the Higgs field:

Ly ukawa = —Y5Gruir® — yiGirdir® — ySilirejr® + h.c. (1.10)

yg‘jde are the Yukawa coupling matrices respectively for the up-type, down-type quarks and leptons (except

- . 70
for neutrinos). ® is the charge-conjugate Higgs field defined as ® = ioy®* = <_¢¢+>.

1.2 Spontaneous Symmetry Breaking

According to the Goldstone theorem, if the vacuum state is not invariant under the action of symmetry,
then the symmetry is broken along with the appearance of a massless Nambu-Goldstone boson for each
broken generator. In the SM, the Higgs mechanism is a spontaneous symmetry breaking theory, which
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predicts the Higgs bosons and generates the mass of particles.
As shown in Eq. 1.6, the SM Higgs potential reads as

V = 12070 + \(®TD)? (1.11)

The Higgs scalar potential looks like a Mexican hat as sketched in Fig. 1.2 with non-zero and degenerate
vacuum bound states lying on a ring in the horizontal plane. Each bound state is asymmetric under an
arbitrary rotation along the z-axis, which indicates broken symmetry. If u? were positive, the potential would
be parabolic, subsequently, the global minimum would be null and the symmetry would be preserved.

Figure 1.2: Higgs potential in SM [7].

With the choice of ;2 < 0 in the SM, the Higgs potential is minimized at

112

!‘I’I=%= 5 (1.12)

where v represents the vacuum expectation of Higgs field, that is fixed by the Fermi constant G g with the
relation v = (\/§GF)_1/2 = 246 GeV. Among the infinite set of vacuum states, once a vacuum is fixed,
the SU(2), x U(1)y symmetry is broken to a U(1)en, symmetry. In the following, the one with vanished
charged component (¢* = 0) is chosen:

0
q)bound = v (1 A 3)
V2
Considering infinitesimal excitations around this vacuum, the field can be expanded as
B o, 0" 0
<I>—exp< ” ><\}§(v—i—h)> (1.14)

where 1 runs from 1 to 3 corresponding to the three fields 6%, 6 and 63, o, are the Pauli matrices, h is a
real scalar field. The 6 and h correspond to the perturbations around the chosen vacuum.
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If now we introduce this new form into the Higgs Lagrangian, by ignoring the gauge interactions and
higher order terms, it gives

1 1
Lhiggs = 50uhd"h - (—p?)h® + §(auelaﬂ91 + 0,0%0"0% + 0,0°0"6°) + .. (1.15)

It reveals a massive scalar boson h of mass v/2|u| which is the Higgs boson, and three massless Goldstone
bosons. As predicted by the Goldstone theory that the number of massless Goldstone bosons equals the
number of broken generators, the SU(2) xU(1)y — U(1)en symmetry broken corresponds to three broken
degrees of freedom, hence three Goldstone bosons appear.

1.3 Higgs Coupling, Weak Mixing Angle and Mass Generation

A gauge transformation is performed to eliminate the Goldstone bosons whose additional degrees of
freedom are eaten by the electroweak gauge bosons, hence acquiring longitudinal polarization:

) —to,0t 1 0
= ' = oxp(— )(b_\/i otk (1.16)
Subsequently, the Higgs potential can be expressed with only one scalar field h:
h)? h)4

V:;ﬁ(vz ) +A(”+4 ) (1.17)

A 4 2,,2 2 3\ 2 A
=2 BT L o+ )k + (B 22 R 4 aokd 4 Skt (1.18)

4 2 2 2 4

vt A

- —% — W21+ Xoh® + S (1.19)

Apart from the mass term —u2h?, the Higgs potential predicts also tri-linear and quartic Higgs self-couplings,
corresponding to the last two terms. Since the vacuum expectation value v is fixed by the Fermi constant
G, in addition with the Higgs mass measured at LHC (m; = 125.09 GeV) [3], the SM prediction of
self-coupling constant A is:

NG 2N’

By injecting ® in the covariant derivative in Eq. 1.7, this gives

2 2
(” Y L Y m%) SMoy = 2013 (1.20)

P Y] 1 0
D,® = (9, + ig%WfL + ig'TLBM)— <v+h>

2 V2
Ou+i§WE+i% B, i§(W—iW}) v (1.21)
_ . ) ) 0 v+h .
(W, +iW?) O —i5W; +i5 By, \J/%

3
Wu
g WE—iW2

_ < X 25 \/5 (U+h) h>
T50uh — 5(gW;3 — g'B)*;

thus

2 1 1
|D,®* = %(v +h) W — W2+ 5Ouh"h+ (v + h)*(gW — g'By,)? (1.22)
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The Higgs Lagrangian is now re-expressed as

1 v? .
Lhiggs = 50uh0"h — (—p*)h* + = [g?|W, —iWi* + (W] — 9 Bp)’] (1.23)
1 .
+ g(h2 + 2vh) [92|Wl} - 2W3[2 + (ng - g'BH)Q] (1.24)
A
— (\wh?® + Zh“) (1.25)

The first line is interpreted as Lagrangian of Higgs bosons of mass v/2|u|, plus additional terms of W and
B fields. Rotation transformations are performed to obtain the mass eigen-fields Wjﬁ Z, and A,. The
gauge fields I/VlfE are defined as a combination of the first two charged gauge fields W/} and I/Vﬁ of SU(2)r,
and neutral gauge fields A, and Z,, are the two mixing states between Wj’ and B,,.

1 12
wt = Ty (1.26)
f :
V2
4, =TT (1.27)
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The so-called Weinberg weak mixing angle 6y is hence defined to describe the rotation between WS and

B,:
Ay\ [ cosBy  sinfy B,
<Zu> - <— sin Oy, cos Oy Wff (1.29)
such that
g in o g (1.30)
cos Oy = , sinfy = —— .
9 +g" Vo +g?
Hence the Higgs Lagrangian can be derived as
1 v?g? _ 12
LHiggs = §8uha#h — (—p*)h* + TgW+W + 52(92 + 9/2)‘Zu‘2 (1.31)
1
+ S (02 +200) [26°W W + (6% + 7)1 2,7 (1.32)
— (\h? + 2}#) (1.33)

The spontaneous symmetry breaking gives three massive vector gauge bosons (W*, Z0), with masses:

v v
mw = % mz = 5\ ¢ +9” (1.34)

The photon remains massless since the U (1), symmetry is still preserved.

The second line of the Lagrangian represents the coupling between vector bosons and Higgs, which is
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proportional to the square of the vector boson mass and is crucial to maintain the unitarity of the theory.
The coupling of weak bosons to Higgs mass is:

2 2
m m
gwwn = 16—, gzzn = 8= 2 (1.35)
2 2
m m
gwwhn = 8—3", gzzhn = 4—% (1.36)
() (%

The gauge bosons masses are successfully generated by the Higgs mechanism, but the mechanism has
no effect on fermions. The Yukawa interaction described in Eq. 1.10 is used to solve the fermion mass
generation through interaction between fermions and the Higgs field. After symmetry breaking, the Yukawa
term in Eq. 1.10 can be rewritten as:

v+ h _ - _
Ly ukawa = _W(y;'ujuiLujR + yg]jdiLde + y5;€iLejr) + h.c. (1.37)
Hence the fermion mass is:
v
mij = v (1.38)
The coupling between Higgs boson and leptons is proportional to the fermion mass:
my
gun = — (1.39)
v

Charged, Neutral and Electromagnetic Currents

Using the mass eigen-states Wf Z, and A, the interaction term of the electroweak Lagrangian can
be derived to deduce the charged and neutral currents.

. _ O . Y _ Y
£lEnI£V == \IIL’YM(QEZWIZ + QIEB/L)\I/L — \I/R7ug,§BH\I/R
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Let's define
o4+ = 01 T 109 (1.41)
e = gsinf, = ¢’ cosby, (1.42)
Y g3 Y
=T34+ — = =+ — 1.43
Q 3+ 5 5 + 5 (1.43)

where e is the elemental electric charge, Q is the electric charge operator.
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Hence the Lagrangian can be rewritten as

Ly = —E‘PL’Y“ jE‘I’LWi cosgﬁ (UL TV — sin® 0, VL p V' QU LR) Zy — eV Ly QU LRA,
w
g . - g .
= \/‘ gc—l-WJr \/ing—W/l - COS@ jncZ e]gmAH

(1.44)

where charged (j..), neutral (jhc) and electromagnetic (jim) currents are defined below, which describes
the fermion pairs that couple to weak gauge bosons.

. — g
Jher = V'L (1.45)
gh = VIrY"QV R (1.46)
jﬁc = \IIL’Y'U‘TB\IIL - SiHQ ijgm
: : 1-9° 0 s . 1447
= UyH(T3 — Qsin?6,,) 27 U 4 UyH(—Qsin? 0,,) Ty (1.47)
1_
= 50" (Cy = Can)¥
with Cy =Ty —2Qsin?6,, Cs=T; (1.48)

For neutral current, Cyy and C'4 represent the vector and axial couplings of fermions to the Z boson.
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1.4 Higgs Boson at the Large Hadron Collider

Since the discovery of the Higgs boson with a mass of ~ 125 GeV by the ATLAS [I] and CMS [2]
experiments at the Large Hadron Collider (LHC) in 2012, the various production and decay modes of the
Higgs boson have been explored in order to measure its properties. The main production modes of the
Higgs boson (Fig. 1.3) are the gluon-gluon fusion (ggF), vector boson fusion (VBF), associated production
with a vector boson (VH), associated production with a pair of top or bottom quarks (t£H or bbH) or with
a single top quark tHq. The corresponding cross sections for the various Higgs productions are shown in
Fig. 1.4a.

g
H
g
(a)
g ---H 9 00000 —— ¢
t pfffH
9 4 9 osoro—— 1

Figure 1.3: Main leading order Feynman diagrams for the Higgs production, via (a) ggF, (b) VBF, (c) VH
from a quark-quark interaction, (d) ZH from a gluon-gluon interaction, (e) ttH, (f-g) t Hq processes [&].

The Higgs boson has a mean lifetime of ~ 10722 seconds, which will immediately decay into pair of final
state fermions or bosons. For the Higgs boson with a mass of around 125 GeV, the main decay products are
a pair of bb quarks with a branching ratio around 58.2% and W+~ bosons with a branching ratio around
21.4%, as illustrated in Fig. 1.4b. According to the evolution of branching ratio with the Higgs boson mass,
one sees that the branching ratio BR(H — ZZ) is known with a relative uncertainty around 1%, if the
Higgs boson mass is known with an uncertainty of 100 MeV. Hence a precise measurement of the Higgs
boson mass is useful to have accurate theoretical prediction of the BR(H — ZZ) when comparing it to
other decay modes.

The latest Run 2 combination results of the Higgs production cross section and branching ratio by the
ATLAS experiment are presented in Fig. 1.5a, that observations for the main production and decay channels
are all within 1o standard deviation of the SM prediction.

The Higgs boson mass measured in the H — ~v and H — ZZ — 4l channels using the Run 1 and
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Figure 1.4: (a) SM Higgs boson production cross section as a function of the center of mass energy /s
for pp collisions. The VBF production is labelled as pp — qqH. (b) Branching ratios of the main decays
of the SM Higgs boson near my=125 GeV. The error bands indicate the theoretical uncertainty. [9].

the latest Run 2 data by the CMS experiment is summarized in Fig. 1.5b, of which the current most precise
measurement from CMS gives a central value of 125.38 GeV with a precision of 0.11%, after combining the
Run 1 and 2016 results (see Appendix A for the Higgs boson mass measurement at LHC up to now).

1.5 Limitations of the Standard Model and Physics Beyond

As described in Eq. 1.31, the Higgs mechanism predicts the Higgs mass and its self-couplings.

1 1
L= 5aﬂhaﬂh — 5mih2 — grnnh® — gpranh? (1.49)
In the case of the SM: \
mi = —20%, ghnn = NV, Ghhnh = 1 (1.50)

The quartic coupling constant A has an effect on the vacuum stability. Concerning the renormalized Higgs
potential after countering for the corrections from ttH and HHH loops [12], it is possible that at some
energy scale, A will turn to be negative and lead to an unbounded vacuum. Fig. 1.6a shows the instability
scale depending on the mass of the Higgs boson, calculated at top mass fixed at 173.1 GeV. With the
current Higgs mass around 125 GeV, the vacuum starts to decay at a scale near 10 ~ 10'* GeV. The
instability energy scale as a function of the top mass and Higgs mass is presented in Fig. 1.6b, it tells that
we are living in a meta-stable universe under the nature of SM. Optimistically, this meta-stability can be
considered as an indication of new particles below the instability scale, which would regularize the vacuum
to be stable. Because of this, the measurement of X is not only important for proving the validity of the
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Figure 1.5: (a) Combined Higgs production cross sections and branching ratios by ATLAS, normalized
to the SM predictions, for the main production and decay modes. The vertical red line with a grey
band corresponds to the SM prediction with its theoretical uncertainty [10]. (b) Summary of the Higgs
mass measurement inthe H — vy and H — ZZ — 4l channels and their combination by CMS using
Run 1 and part of Run 2 data at LHC. The vertical red line with a grey band corresponds to the Run
1+2016 measurement [11].

SM, but also as a possible hint to new physics.

Another concern about the Standard Model is the hierarchy problem, that the electroweak scale of O(100)
GeV is far away from the Plank scale of Mp = é ~ 1.22 x 10" GeV. Similar to Eq. 1.11, consider the bare
Lagrangian as

»Cbare C _N%areqﬂq) - )\bare((I)T(I))Q (1 -51)

that the physical Higgs mass after renormalization is m; = —2u2, . — Am?, where dm? is a counterterm
representing the quantum radiative correction. A generic fermion loop as shown in Fig. 1.7 contributes to

a correction as )
Y
Am} = —8—752 [2A% + 6m?c In(A/my)] + ...

where y is the Yukawa coupling to the fermion, and m is the fermion mass.

(1.52)

Such correction is quadratically divergent with the cutoff scale A, hence if the Standard Model remains
valid at the Plank scale, the radiative correction would be ~ 1034 times larger than the square of the
physical Higgs mass (around 125 GeV). The only solution is that the bare parameter u?, . has a similar
divergence with A as the radiative correction. This leads to the so-called fine-tuning problem.

Such kind of problem can be instead resolved by imaging that it exists other heavy particles at high energy
that couple to the Higgs boson, for instance, a scalar boson S that is shown in Fig. 1.7b. It yields a
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Figure 1.6: Stability of vacuum. (a) Instability scale for different Higgs mass hypotheses of SM, the
vacuum starts to decay at some scale from 10'° to 10! GeV. (b) Meta-stability of the universe. Dotted

lines show the instability scales [12].

correction similar to the fermions:

(1.53)

1622 [A2 + 2m% In(A/mg)] + ...

where \g is the quartic coupling of S to Higgs.
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Figure 1.7: One-loop quantum corrections to the mass-squared of the Higgs boson due to (a) the loop
of a generic fermion f, (b) a generic scalar S [7].

The quadratic term of A can be cancelled for each fermion f, if there exists a scalar boson S satisfying the

following relationship

As = 22 (1.54)

The most popular theory having such kind of property is the supersymmetry theorem, which predicts a
spin-0 sfermion as a superpartner of a fermion, for example, stop is the sfermion for the top quark.

There is also the problem of the unification of the gauge coupling constants (Fig. 1.8), where the uni-
fication is not reached for the SM but is obtained with the supersymmetric extension of the SM (MSSM).
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As well, the neutrino is massless in the Standard Model, while the neutrino oscillation provides experimental
evidence of its mass. Besides, the SM cannot explain the problem related to dark matter and dark energy.

1 4

o o

604 ~ Standard Model 60 ~ Minimal
\\ supersymmetric

50 50 oc1\ extension of

40 40 \\Standard Model

30

20

10

0 ——— 0 ——

1 10° 100 10" 1 10° 100 10"
llustration: Typafarm Energy, GeV Energy, GeV

Figure 1.8: Evolution of the inverse of the three gauge coupling constants (ay, ae and a3 are respec-
tively the electromagnetic, weak and strong coupling constants) in the Standard Model (left) and the
supersymmetric extension of the SM (MSSM) (right). Only in the latter case unification is obtained [13].

All these problems imply the weakness of the Standard Model and motivate physicists to search for new
physics beyond the Standard Model.

1.6 Conclusion

In this chapter, the aspects of the Standard Model are introduced, including quantum chromodynamics,
electroweak theory and the Higgs mechanism. The so-called spontaneous symmetry breaking predicts the
existence of massive vector bosons and the Higgs boson. The Higgs boson is crucial for the mass generation
of particles, which can interact with massive particles including itself. Hence, the study of the Higgs boson
is not only important for the validation of properties of the SM theory but also meaningful for the search
for new physics.






2 - Statistical Methods

In this chapter, the statistical formalism used for data modelling, parameter estimation and hypothesis
testing is introduced. All are based on a frequentist statistic approach. The conventions and notations follow
the ones of the statistical data analysis book from G. Cowan [14] and the asymptotic formula paper [15].

2.1 Basic formalism

One could consider a set of data ¥ = {z;} collected with a given experiment and a given model or
hypothesis H which predicts a probability density function (pdf) depending on a parameter 6:

x ~ P(x|6) or P(x|H) (2.1)

Typical implementation examples of pdfs are Gaussian or Poisson distributions, where 6 are the parameters
describing the average or spread of the distribution. There are also cases where the data points ¥ are
modelled by some functional forms, like polynomials and exponential functions. In practice, the objective of
a statistical test is to estimate parameters or to test hypotheses, using the observed data. This is usually
done by defining a test statistic

tg(f) = f(a:l,xg,...,a:n) (22)

The test statistic ty(Z) is a function of the measurements Z, where each z; follows a probability density
function P(z|f). Consequently, the test statistic is also a random variable, usually with an unspecified
analytical expression of probability. Some classic test statistic methods such as likelihood and least square
are introduced in the following.

2.2 Parameter Estimation

The test statistic ty(Z) that can be used to estimate the truth value 6 of a given parameter @ is called an
estimator. It is quite often simply denoted as #. A good estimator usually has several important properties:

* unbiased: the average of the estimator is equal to the truth value, i.e. E [é] =0y + b with b= 0.

« efficient: the variance of the estimator converges asymptotically to the minimum Cramér-Rao bound.
* robust: the estimator is insensitive to the dedicated choice of the probability density function.

One of the most wildly used estimators is the maximum likelihood estimator. The likelihood function is
equal to the probability to observe a set of data & when the truth value of the parameter is 6, that is, the
likelihood is a function of the parameter rather than a probability.

£(0) =[] P(xil0) (2.3)
The maximum likelihood estimator (MLE) 6, is the value of § which maximizes the likelihood function.
0 = arg max £(0) (2.4)
0

33
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The MLE is unbiased if the likelihood has an exponential form. It is not robust since it requires the explicit
form of the pdf, and it is asymptotically efficient. According to Cramér—Rao bound, the variance of an
unbiased estimator satisfies the inequality

V() > (2.5)

1
Iy
where I(0) is the so-called Fisher information, which is expressed with the likelihood function at a large
sample limit:

d?In P(x|0) 0?In L(6)
Ipy=-—n-F — 2.
o=" { 62 90} noo  00;00; ‘g (2.6)
In the case of multi-dimensional parameters @, the Fisher information appears as
0?In L(9)
lIg=—-F|——= 2.7
6 [ 26,00, u (2.7)

Because of the asymptotic minimum variance bound, for unbiased MLE, the covariance matrix of the
estimators are converging to
1
> (2.8)
6

Another important estimator is the least square estimator, which is quite often used in regression analysis.
Suppose that data & is modelled by a function f(@), with uncertainty o(6), the least square function x?(6)

is constructed as )
R AT ()
2(0) = Z <ai(0) > (2.9)

The least square estimator (LSE) is defined as the parameters which minimize the least square function.

0%In L(6)

MURE ( 06:00;

6 = arg min x*(8) (2.10)
0

The LSE is not always unbiased and efficient, except when the model f(@) is linear as well as the uncertainties
o; are independent on any hypothesis 8. We will keep this situation to ease the illustrations in the following.
In the particular case of Gaussian, that is x; ~ G(u, o), with known o, considering the model as (0), the
least square is equivalent to a likelihood test, and in addition, it follows a chi-square law with the degree of
freedom equal to K = n — r, where r is the dimension of 6:

n PR . 2
X2 (0) = Z <mz'uz(0>> = —21In £(0) + constant (2.11)
- o
X*(0) ~ x*(n —7) (2.12)

If the data points are not independent but follow a multi-dimensional Gaussian distribution with a known
covariance matrix V, the least square can be smoothly generalized to:

Y2(0) = (Z — i(0))" V' (Z — i(0)) = —2In L() + constant (2.13)

In the same principle, the covariance of LSE is defined with the second derivatives of least square similar to

" ; PR )
Vi) =2 < 96,00, )9)

(2.14)
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2.3 Systematic Uncertainties and Profile Likelihood Ratio

An expression says that all the models are wrong, but some are useful. When fitting data using a specific
model f(u) with a parameter of interest y, it is not surprising that with more and more data, the model is
typically less and less accurate and the goodness-of-fit degrades. In this case, including nuisance parameters
can improve the description of the model. In particle physics, nuisance parameters are often assigned to the
systematic uncertainties, and they are constrained using auxiliary measurements independent of the primary
ones.

The likelihood including nuisance parameters computed with both primary and auxiliary measurements
is in the form as

L(1,0) = [ [ P(ailn.0) - P(6016) (2.15)

where the first term represents the likelihood with the new model with the systematics effects, and the
second is the auxiliary term for systematic uncertainties. They can be some experimental systematics, such
as photon energy scale calibration, jet energy resolution, or some theoretical systematics, for example, the
parton distribution function uncertainty, QCD renormalization and factorization scales. For some analyses,
the auxiliary term can also be the background modelling constraint with measurements in specific control
regions.

In order to deal with the additional degrees of freedom associated with the nuisance parameters, the widely
used method is the profile likelihood ratio A(x), which maximizes the likelihood by profiling the nuisance
parameters for each hypothetical value of the parameter of interest (POI) p.

AGu) = £000) (2.16)

L(j1,0)
where

© i, 6 are the maximum likelihood estimators for i and 6.

. é(u) are the profiled values of @ which maximize the likelihood for a fixed assumption of f.

é(u) = argmax L(u, ) (2.17)
0

The numerator is a conditional likelihood with fixed POl where nuisance parameters are profiled. The
denominator is an unconditional likelihood with both POl and nuisance parameters inferred with data. It is
often transformed to a slightly different function ¢, which has the advantage to be asymptotically distributed
as a x? distribution:

t, = —2InA(n) (2.18)

When ¢,=0, it implies a good agreement between data and the tested hypothesis p.

The presence of systematic uncertainties degrades the sensitivity of POl as illustrated in Fig. 2.1. The
t, scans over different Higgs masses for the combined Higgs mass measurement with H — ~v and
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Figure 2.1: t, = —2In X as a function of my for H — v, H — ZZ* — 4l and their combination using

36 fb~! Run 2 data. The dashed lines show the mass measurement uncertainties assuming statistical
uncertainties only. The dotted curves are the t,, scan over different Higgs masses with fixed system-
atic nuisance parameters, such that all of the systematic effects are suppressed, with only statistical
uncertainty remaining, while the solid curves represent a full model including systematics [16].

H — ZZ* — 4l channels using 36.1 fb~! Run 2 data. Adding the systematic uncertainties increases
the uncertainty of the measurement and degrades the sensitivity.

The separation between the statistical and systematic uncertainties can be realized by repeating the fit after
fixing all the systematic nuisance parameters, which gives the statistical error. Subsequently, the systematic
uncertainty is deduced to be the square root of the quadratic difference between the total and stat-only
errors.

2.4 Hypothesis Testing

A statistical test can be used to evaluate the agreement between observation and a given hypothesis.
Formally, the null hypothesis (Hp) and the alternative hypothesis (H;) are always defined and assessed at
the same time. The null hypothesis stands for the one to be tested and often to be tentatively excluded.
The alternative hypothesis is defined as the one to be against the null hypothesis. One hypothesis can be
not only one parameter value but also nested with a set of hypothetical values.

A typical example is the search of a new particle, with a parameter of interest u representing the sig-
nal strength:
* Hy: background-only, i.e. = 0.

* Hj: signal+background, i.e. p > 0.
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In contrast, for the exclusion limit setting of a signal, the two hypotheses are:
* Hy: signal+background, i.e. p > 0.
« Hy: background-only, i.e. p=0.

Let's consider a test statistic ¢(Z) defined in a phase space, and its probability density functions for the two
hypotheses f(t|Hp) and f(t|H1). According to Neyman, the critical region w is defined as the space where
there is a low probability to be found if Hy is true, but high if Hy is true. The null hypothesis is rejected
when observing t(Z) in the critical region with a given confidence level. Hence one could further define the
size and the power of the test with the help of the critical region:

* size of test: a = P(t € w|Hy), with « the type | error probability to wrongly reject Hy when it's
true.

* power of test: 1 — 3 = P(t € w|H;), with 3 the type Il error probability to wrongly accept Hy
when it's false.

A test with a small size and a much larger power is usually a confident test for a physics discovery, which
states a higher probability to reject Hy when it is false than the case when it is true. Let's take the example
of LEP as shown in Fig. 2.2a, where a log-likelihood ratio using Neyman-Pearson lemma is taken as the
test statistic, the blue dotted curve is the pdf of the background-only hypothesis, the dotted brown is the
signal+background hypothesis, and the data gives an observed test statistic value as shown by the red
vertical line.

In order to claim a discovery, then Hj is the background-only hypothesis, and H; is the signal+background
hypothesis. Hence the critical region is located at a low value of the log-likelihood ratio where there is
a higher probability to find the alternative than the null hypothesis. If we take the test statistic values
lower than observation as the critical region, then the yellow area corresponds to the size of the test «,
and the green area is the type Il error probability 3. For the purpose of discovery, the yellow area with a
probability of « is also called the significance level of the test (consistent with the definition of p-value).
The formal statement is that the null hypothesis is excluded at a significance level of « by the observed data.

If the purpose is to test the existence of a signal, then Hj is signal+background, and H; is b-only, ac-
cordingly with the roles reversed between yellow and green areas. However, when the two hypotheses are
similar to each other, as shown in Fig. 2.2b, the test statistic is not sensitive to distinguish the two hy-
potheses. Therefore when observing a small size test as shown in the green area, it is not convincing to
exclude the null hypothesis. The alternative proposition is to use the CLs method [17], which is defined as

CLs+b
CL, =
CLy

(2.19)

where
* CLsyp: the size of the test «, referring to the green area.

* CLy: the power of the test 1 — 3, referring to the complementary pattern of the yellow area.
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The null hypothesis will be excluded when CL; is smaller than some threshold ', which defines the confidence
level as 1 — o’. The typical choice in particle physics is o/ = 0.05, i.e. 95% confidence level (CL). The
advantage of the CL; method is that in case of low sensitivity (Hp similar to H;), an observation in the
critical region will exclude Hy with the CL,,; method, but not with the CL; method. Explicitly it always
requires a much larger probability to accept H; when considering rejecting Hy. More aspects of the limit
setting will be introduced in the next section.
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Figure 2.2: (a) Results from the combined Higgs search with all the four experiments at LEP. Pdfs of
the likelihood ratio for background-only hypothesis (blue) and signal+background hypothesis (brown)
and observed value (red) are shown. (b) Separate contribution from the DELPHI experiment, where
the two hypotheses are less discriminant [17].
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2.5 Asymptotic formula for likelihood-based test

The remaining challenge is about how one could acquire the pdf f(¢|H) of a given test statistic ¢ under
a hypothesis H. Probably the most straightforward way is to generate a sufficient amount of pseudo-
experiments (toys) under hypothesis H, with which we obtain a sampling distribution of ¢. Despite the
that toys reflect realistic statistic behavior, however along with the increase of nuisance parameters, regions
of interest and complexity of the model, the study can be very time-consuming. Alternatively, the most
popular approach is the asymptotic formula for the likelihood-based test from Cowan, Cranmer, Gross and
Vitells [15]. The method is based on Wald approximation and Wilks' theorem, which simplify the profile
likelihood ratio and demonstrate that it follows a x? law with the degree of freedom of 1.

't = vV 2.2

o2

with /i follows a Gaussian distribution with a mean at truth value i/ and standard deviation o.

* Wilks’ Theorem: the pdf of ¢,, is asymptotically a x? distribution with a degree of 1.

t, ~x*(1) (2.21)

As that was fruitfully described in the asymptotic paper [15], only the main conclusions will be introduced
in this thesis. The asymptotic paper introduces several powerful test statistics depending on the purpose of
the analysis, considering the 4 as the tested signal strength, and 1/ as the true value associated to a given
hypothesis.

2.5.1 Test statistic for the discovery of a positive signal

The purpose is to claim the significance of the discovery of a signal. In this case, Hy is the background-
only hypothesis (1 = 0). The objective is to reject the p = 0 hypothesis, in presence of a positive signal.
For that purpose, the gg test statistic is defined:

[ —2mA0) a0,
qo0 = { 0 0 <0, (2.22)
The vanished value for i < 0 is because typically only data with positive signal strength is concerned for
discovery?.
It could be simplified with Wald approximation:
A2/ 92 ~
_ [ pf/e f1 >0,
qo = { 0 0 <0, (2.23)

with /i follows a Gaussian distribution centered at /' and with a standard deviation o.
The asymptotic pdf of gy under hypothetical value 4/ is

Flaolw') = (1 . (’;)) 5(qo) + ;\/12?;0 exp [—; (ﬁ - ‘;)2] (2.24)

'Search for enhancement simplifies the problem, but deficit can be also adapted.
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where @(%) is the cumulative distribution function (cdf) of a normal random variable, d(qp) is a delta
function at 0.
The corresponding cdf of gq is in a clear form as

!/

Fgol') = (Vi — &) (2.25)

The median of qq is thus equal to (%/)2 corresponding to an observed ji = p'.
For the special case of the null hypothesis with 1/ = 0, it's simply

f(q00) = %5(%) - ;\/12? exp (—%0) (2.26)
F(qo|0) = ®(\/q0) 2.27)

where the pdf f(go|0) is just a sum of a delta function and a x? distribution with 1 degree of freedom, with
half weight per each.
As presented by the light blue area in Fig. 2.3, for a given observed qq, the p-value for the null hypothesis is

p-value =1 — F'(¢o|0) =1 — ®(1/q0) (2.28)

which corresponds to an observed significance of

Z =& (1 — p-value)) = /qo (2.29)

' f(a, )

/ u
/ p-value

q

w

Figure 2.3: lllustration of p-value corresponding to the median of ¢, assuming a signal strength p’ [15].

One may notice that the observed significance can be sensitive to statistical fluctuation in data, therefore,
a reference value is favoured for the reliable test, which is given by the expected significance. The expected
value is determined by assuming data behaves exactly as the alternative hypothesis i/ (typically x/ = 1).
Thanks to the asymptotic formula, it's easy to deduce that there is a one-to-one mapping between the
quantile of pdf of /i and the quantile of pdf of ¢y, between the quantile of pdf of gy and the one of pdf of
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7. According to Eq. 2.23 and Eq. 2.29, Z follows a normal distribution with a lower boundary at 0, that
under the assumption of u':

/

med[Z|] = % (2.30)
Z(' + No) = med[Z|y'] + N (2.31)
Z() — No) = max (med[Z|y/] — N, 0) (2.32)

where med[Z|/] is the median expected significance, [Z (' — No), Z(yu' + No)| is the expected No band
of significance.

2.5.2 Test statistic for signal upper limit setting

The purpose is to derive a limit interval of u such that the coverage probability for the truth value is
equal to a given confidence level. For a typical limit setting, the null hypothesis is the S+B hypothesis with
positive signal strength 1, and the alternative is the b-only hypothesis. An alternative test statistic g, is
recommended

—21n L(p0(1) (M)) ﬂ <0,
o £(0, 9(0)) 5
Ww=9 _omp (( (:))) 0<i<p, (2.33)
0 > s

Since the objective to derive an upper limit after observing a measurement i, the region of interest corre-
sponds to the values of u higher than fi. This is the reason why the test statistic vanishes when i > p.
The Wald approximation simplifies the statistic as:

L-2E i<,
Gu=q Lp- 0<pi<p, (2.34)
0 p> p,

With the same principle as g, the pdf of §,, under hypothetical value /' is

F ) = 2 1)5(G,)

g
2
1 1 (G2 =2up)/0?)’ ; Y (2.35)
Vamonre) P |72 2n/o) Gu > p2/o?,

One obvious feature is that the data in favor of a smaller /i holds a larger g, value. Specifically, the delta
function 4(q,) corresponds to the case when i > 4, the second piece with 0 < g, < u?/0? is mapped to
0 < i1 < p, and the last piece is referring to negative i, which leads to an enhanced tail at a large value of
Qu-

The corresponding cdf of G, under hypothetical value ;' is

O( /G5 — b= 0<d, < ulo
F@mw—{ W ) = = nle (2.36)

(12— ) o2 B
@(W) Gy > p2/o?



42 CHAPTER 2. STATISTICAL METHODS

Using the mapping between /i and §,,, the cdf can be reformulated in the function of /i:

F(gu(p)) = o1 (2.37)

2

For typical positive signal hypothesis 1/ > 0, the median of g, is equal to (H%M>2
For the special case of = y/, the pdf and the cdf are:

Hal) = Lo + | 2V TP 0< G < /o,
qulpt) = z0(qu) + (Gutp?/o2)? 5 (2.38)
? Tatznge) P H% Gu > 12 /0,
(/) 0 < G < /02,
FQulm) =\ gattie®y (2.39)
(Gulpe) { @(%) G > 12/)0?,

For limit setting based on the CLs method, denoting Hy = i and Hy = p/, with an observed test statistic

Ju» the CLg value is accordingly:

CL, = CLs+b _ 1- F(Q}LLU’)
CLy 1- F((Zu‘:u/)

Presumably, when 1 is close to 1/, CL; is close to 1, that the null hypothesis  is not excluded. As the

tested p varies far away from p/, the value of C'Lg,;, decreases more rapidly than C'L;, subsequently for a
given confidence level 1 — «, the exclusion will be made when a hypothetical  gives CL; < «.

(2.40)

Similar to the expected significance, the expected limit can be calculated within the same principle. Under
an assumption of 1/, the N-th quantile of pdf of [ is bijective to minus N-th quantile of pdf of g,, and
bijective to N-th quantile of pdf of the upper limit jyp4+n. According to Eq. 2.37 and Eq. 2.40, puptn
satisfies the relationship:

o

1— & (uup+N*ﬂ)
CLs(puptn) = - <u’—ﬂ>

o (2.41)

g
with i = u' + No
1_q)(”up+7N*“/_N>

= CLs(puptN) = (V) = (2.42)

= puptn = f + 0 (@71 (1 — a®(N)) + N) (2.43)

In practice, the wildly studied situation is the limit when assuming the b-only hypothesis, i.e. 1/ =0, thus
fuptn =0 (@71 (1 — a®(N)) + N) (2.44)

One caveat is that this formula is based on the parabolic likelihood assumption, however for a realistic test,
this is not always held, often one needs to run over different values of 1 to construct a CLg scan for different
quantile of the alternative hypothesis pdf f(g,|x'), and obtain the expected limit and its variance bands as
the intersection to the threshold «.

Asimov data for expected results
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For determination of the expected results, the so-called Asimov data is studied. As one may notice, the
remaining missing material of a test with asymptotic formula is the standard deviation o for [i. And the Asi-
mov data provides an estimation. Consider a signal region with 1/S(6s) expected signal and B(6) expected
background, an observable x is chosen to be the discriminator and its pdf for signal and background are
respectively fs(x;0s) and fy(x;60p), where 5 and 6y are nuisance parameters. The Asimov data is a binned
dataset for which each bin yields exactly the same events as the model prediction. Suppose a histogram
n = (ny,...,ny) arranged in x stores the Asimov data, the histogram values n; are defined as

n; = /L/Si (03) -+ Bl(eb) (2.45)

where S;(6s) and B;(6p) are respectively the expectation values of signal and background in i-th bin of z:

Si(6s) = S0s)- | folw:;0s)dz, (2.46)

bin %
Bi(0y) = B - fo(x;0p)dx (2.47)
bin 4
Therefore, the model consists of one parameter of interest i/ and nuisance parameters (B, 6s,05).
In practice, for a pure frequentist approach, the Asimov data should also involve the auxiliary observations

0o which are defined as the same values of @ in the definition of n;. Presumably, if fitting the model with
the Asimov data, the inferred parameters will exactly equal to the same values as those used for generation.

i= 4, (2.48)
B = B,bs = 05,0, = 6, (2.49)

In order to estimate the standard deviation of the estimator fi, the classical way is passing to the Fisher

information. While thanks to the asymptotic formula, the profile likelihood ratio ¢, is simply written as
)2 . . .

ty = (“075) Accordingly, the estimate of o is given by

(p— ')

(2.50)
ty,A

o =
where i = 1/ by definition of Asimov data, ¢, 4 = —2In A4 (1) is the profile likelihood ratio computed with
the Asimov data.

One important point is about the validity of the asymptotic formula. The approach has its successful
and powerful usage to ease the definition of the pdf of likelihood-based statistic and the calculations of
the p-value. Still, one needs to pay attention to when the Gaussian approximation would potentially fail
in case of low number of events. In order to justify the accuracy of the asymptotic results, usually toy
MC is proposed, by generating pseudo-experiments to obtain a more realistic pdf of the test statistic. Ac-
cording to Ref. [15], the asymptotic approximation remains to have good description with at least five events.

The asymptotic formula is a useful and powerful approach for hypothesis testing, it significantly eases the
implementation and stays with its validity in most practical cases. On the other hand, pseudo-experiments
(toys) preserve their reliability once the asymptotic formula becomes risky in situations with few events. For
this thesis, the toy-based test is implemented for the HH — bbyy analysis for the limit setting, which will
be introduced in Ch. 4.
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2.6 Data Combination

Once several results are available for a given interesting physics parameter, a combination of these re-
sults can be used to further improve the accuracy of the measurement. The best way is to combine the
original data of each result, using a likelihood-based method, which includes the full data information and
the correlations of the systematic uncertainties. This corresponds to the case of the Higgs mass combination
using the H — vy and H — ZZ* — 4l data as shown in Fig. 2.1. However, combining the full likelihoods
can be a lot of work and sometimes unfeasible, in particular when combining across different experiments.
In the following, other methods for data combination are introduced.

In the simple case of uncorrelated measurements, the least square method can be used for combination.
Assuming n measurements y; + o; for a physical quantity y, the combination corresponds to one which
minimizes the least square defined as

) =Y (y ;y>2 (2.51)

i
The combined value §comp is expressed as a weighted average of every single measurement:

ZZ‘ W;iYi

] mb — 2.52
Ycomb Z@ w; ( )
where the weights w; are obtained by minimizing the x?(y)
1
w; = — (2.53)
9
Hence the combined uncertainty o¢omp Satisfying the relationship
1 1
== (2.54)
Ugomb ZZ: 02‘2

which is at least as good as the best individual uncertainty.

The method assumes no correlation between the various y;, i.e. uncorrelated uncertainty, the typical exam-
ple is when o; are the statistical uncertainties. However, when a systematic effect is presented, for instance,
when combining two results from two different experiments, combining with only the statistical errors can
lead to wrongly estimated combined uncertainty. Also, the presence of systematic uncertainty can induce
potential correlation, which is not taken into account by this method.

In the case of correlated measurements, the method of best linear unbiased estimate (BLUE) [18] can
be considered, which is interpreted as

+ Best: smallest variance after combination.
* Linear: the combination gpr,ug has a linear dependence on the inputs, i.e. YpLUE = ) _; WiYi.

* Unbiased: the sum of weight w; is equal to one, i.e. Y, w; = 1.
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Assuming the measurements y; is related by a covariance matrix V/, hence the variance of the BLUE
combination is derived as
ol=w" V-w (2.55)

where w is the vector of BLUE weights.

The weights can be deduced using the Lagrangian multiplier method, in which the Lagrangian function
is constructed as

E('w,/\):'wT-V-'w—F)\‘(Zwi—l) (2.56)

where the first term is the combined variance to be minimized, and the second one is the constraint on the
sum of weights.

Hence the weights are obtained as
-1
_ 2V
= -1
Vi

where V! is the inverse matrix of the covariance matrix V.

(2.57)

Wy

It is equivalent to minimize the least square function, since the least square estimator reaches the min-
imum variance band for a linear model:

W) => w—v) Vi (y—v) (2.58)
ij
A Vit
YLSE = zl: ﬁvjj_l “Yi (2.59)

The variance of the BLUE estimator is hence equal to

-1

op=|> V' (2.60)
ij

A similar example as Ref. [18] is used to illustrate the simple BLUE combination of two measurements
Y4 = 1.007 = 04 and Yg = 1.005 & o of a single quantity Y, where o4 and op are respectively the
corresponding uncertainties. The covariance matrix V' is defined with the correlation p between the two

uncertainties: )
V= 0A POATB (2.61)
POACE 0']25 )

According to the BLUE method, the combination Y = wsY4 +wpYp are given by

2 _
wy = —B P75 (2.62)
04+ 0% —2posop

2 _
wp = A __P7ATE (2.63)
04+ 05 —2poaoB
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The combined variance is . )
2 0305(1 —p°)

2 2.64
g 0124 + 0123 — 2p0 A0 ( )

Y

Respectively for the uncertainty ratio op/o4 = 1, 1,1, 2, 10, the evolution of wg, 0327/0124 and Y in function
of the correlation p is shown in Fig. 2.4.
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Figure 2.4: Evolution of BLUE weight wp (left), combined variance normalized to the one of measure-
ment A o2 /0'31 (middle), and the BLUE weighted average Y (right) as a function of the introduced cor-
relation p, for different ratios of o5 /0 4. The grey band in the right plot indicates the range [Yz, Y] of
the initial measurements before the combination.

The combined variance is bounded up to the lowest one among the initial measurements (oy < 04), and
the maximum bound is reached when the correlation satisfies p = 0 4/0p. It also corresponds to the case
that wp is null and the combined Y is equal to the Yy, the one with smaller initial uncertainty. And when
p > oa/op, wp starts to be negative, and the strong correlation extrapolates the combination to be outside
the range of the initial measurements, i.e. Y ¢ [Yp,Y4]. For the special case when 04 = o, the obtained
weights are always equal to one half, hence the combined value is centered between the two initial ones.

The BLUE method can also manage the combination of correlated measurements of several physical quan-
tities.

Consider N physical quantities (observables) X, = {X1, Xo,..., Xy} with n measurement y; with co-
variance V. Each y; corresponds to the measurement of one of the quantities X, and each quantity is
measured at least once.

Let's define the identification matrix U, which is a n x N matrix used to match each y; to the corre-
sponding quantity:

| 1, if y; is a measurement of X,
Uia: = { 0, else (2.65)
Subsequently, the least square function is expressed as
n N N
(X)) =Y (y - Z%)@) v (yj - Z%)@) (2.66)
i a a
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Then the BLUE estimate of each physical quantity X« is given by

Xo =) Wil (2.67)
where the weights are calculated as
al 1
wai = Y (UTVTU) UV, (2.68)
B

with 4" the transpose of the identification matrix, V! the inverse of the covariance matrix.

The covariance for the BLUE estimates is
PPN =1
cov (X, X5) = @TV7U) 5 (2.69)

The BLUE method is a powerful tool for data combination, which is fast and friendly to be implemented by
providing the single measurements and their uncertainties, although it is highly sensitive to the assumptions
on correlations, which may be poorly known in practice.

2.7 Conclusion

In this chapter, some basic notations about frequentist statistic have been introduced, including pa-
rameter estimation, hypothesis testing, asymptotic formula for likelihood-based test and data combination.
These are the crucial elements for the statistical interpretation of most of the analyses.






3 - Experimental Aspects

Benefiting from the high center-of-mass energy at 13 TeV, the Large Hadron Collider (LHC) and ATLAS
detector provide a great platform to investigate general physics programs. The experimental setup used in
the offline physics analysis is introduced in this chapter including the description of the LHC and the ATLAS
experiment.

3.1 Large Hadron Collider

The Large Hadron Collider (LHC) is a proton double-ring superconducting collider integrating the func-
tions of accelerating and colliding particles, located on the border of Switzerland and France. It is the
most energetic and powerful collider in the field of particle physics research. Based on the hadron-hadron
collisions, there are four main experiments making use of different detectors with different functionalities
for different physical goals. The physics goals of the ATLAS and CMS experiments are to improve the
understanding of the Standard Model and to search for new physics beyond the Standard Model. After the
discovery of the Higgs, another important physics motivation of these experiments is to study the Higgs
physics. The main physics goal of the LHCb experiment is to measure the charge and parity (CP) violation
and to search for new physics with B hadrons. The main goal of the ALICE experiment is dedicated to
heavy-ion physics, for the purpose of studying the physics of strongly interacting matter at an extreme
energy density, where a phase of matter called quark-gluon plasma appears.

The construction of the LHC collider [19] uses the tunnel of the previous LEP [20] collider, which is
about 26.7 kilometers long and installed about 100 meters underground. The basic structure is shown in
Fig. 3.1. The perimeter of the LHC can be divided into eight arcs and eight straight lines, where each
arc is about 2.8 kilometers long, and each straight line is about 528 meters long. The straight line area
is used to install detectors and control systems. It undertakes the role of hadron beam input and output
which is usually called IR (insertion region) or IP (interaction point). The ATLAS and CMS detectors are
installed at IP1 and IP5; while IP2 and IP8 are not only installed with the LHCb and ALICE detectors but
also serve as injection areas for the two proton beams, one is in a clockwise direction and the other is in
a counterclockwise direction; two collimation systems designed to protect the machine from the damaging
beam loss are installed at IP3 and IP7; two radio frequency systems (RF) for two beams are installed at 1P4,
which mainly focus on providing RF power to the beam for acceleration to the highest energy and tightly
gathering protons to form proton bunches ensuring the high luminosity at the collision point; IP6 is the
beam recovery area called beam dumping system.

The protons needed for the LHC collider are produced with the ionization of hydrogen in a device called
Duoplasmatron, where an electrical filed breaks down hydrogen gas into protons and electrons. In order to
achieve the target instantaneous luminosity (as will be defined later) of 103 cm~2s~!, the number of pro-
tons contained in each bunch N, is designed to be about 1.15x10, with a time interval of 25 ns between
the adjacent proton bunches, which corresponds to a spatial distance near 3x10%m/s x 25 x 107%s = 7.5m
for protons with 6.5 TeV energy close to the speed of light. In the LHC ring with a circumference of
27km, a maximum of 27 x 103/7.5 = 3600 proton bunches can be injected. However, in the actual
operation, it is necessary to reserve a certain space for the purpose of beam stability, so the number

49
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Figure 3.1: Layout of the Large Hadron Collider, including the four main experiments and the two
proton rings (red and blue lines). The arrows of the rings indicate the direction of the proton beam.

of proton bunches in each beam is designed to be approximately 2808, and the two proton beams con-
tain 2808 x 1.15 x 10" x 2 ~ 6 x 10 protons in total. A small hydrogen cylinder contains about
5kg hydrogen (2500 moles), and the number of hydrogen atoms is 2 x 2500 x Ny ~ 3 x 1027 (N4 is
Avogadro constant). Considering the efficiency of hydrogen ionization of around 70%, and the proton
bunches in the LHC ring being filled every 10 hours, then this 5 kg hydrogen can be theoretically used for
3 x 1027 x 0.7/(6 x 10'* x 24 x 365/10) ~ 4 x 10 years without recycling of the used protons.

Before protons are accelerated and collided in the 27 km LHC ring, they need to pass through several
pre-acceleration rings to form a bunch of protons at certain energy:

* Through the RF four-dipole system [21] (QRF), the protons are tightly bunched together to form a
proton bunch, and a certain speed is obtained,;

* Through the linear accelerator LINAC2, the proton bunches with a certain primary velocity reach an
energy of 50 MeV;

* Through the Proton Synchrotron Booster (PSB), the proton bunches reach the energy of 1.4 GeV ;
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* Through the Proton Synchrotron (PS), the proton bunches reach the energy of 26 GeV;
* Through the Super Proton Synchrotron (SPS), The proton bunches reach the energy of 450 GeV.

The relative positions of each acceleration system are shown in Fig. 3.2.
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Figure 3.2: An overview of the structure of the accelerator complex at CERN. Protons pass through the
linear accelerator LINAC2, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the
Super Proton Synchrotron (SPS), and finally enter the LHC [22].

Such a chain of proton injectors allows the flexibility of the proton bunch structure [23, 24]. The main
bunching filling scheme used in LHC Run 2 is the so-called batch-compression-merging-splitting (BCMS)
beam with trains of 48 bunches at extraction from the SPS. It starts with 8 bunches in the PSB, which are
injected into the PS, where the RF manipulations are performed to merge compress and split the bunches.
Pairs of bunches are merged together, following a triple splitting at 2.5 GeV then twice double splitting
at 26 GeV extracted from the PS, hence the total number of bunches is 8/2 x 3 x 2 x 2 = 48. BCMS
is the main bunch filling scheme used in Run 2, except in the fall of 2017, where the alternative 8b4e (8
bunches @ 4 empty buckets) beams were used mainly to reduce the electron cloud effects. This scheme
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allows mitigating the electron cloud effect since every 8 bunches are spaced by 4 empty buckets. Different
to BCMS, 7 bunches are filled from PSB to PS, which pass a double splitting at 2.5 GeV and then twice
double splitting at 26 GeV. Hence the total number for 8bde is 7 x 2 x 2 x 2 = 56. A sketch of the BCMS
and 8b4e bunch filling schemes is shown in Fig. 3.3.

0 500 1000 1300 2000
s

300 1000 1500 2000

25 ns BCMS 8b4e standard

Figure 3.3: BCMS and 8b4e bunching filling schemes at the LHC. The x-axis represents the bunching
spacing time, y-axis shows the bunch evolution from the PSB 1.4 GeV bunches to the 2.5 GeV splitting
in PS [23].

In order to make the proton bunches run according to the pre-determined orbit when entering the LHC
collider, a magnetic dipole that is used to generate a magnetic field [25]. A total of 1232 magnetic dipoles
are installed on the eight arcs of the LHC ring, each dipole is about 14.7 meters long, and its cross section
is shown in Fig. 3.4. At 11800 A, these magnetic dipoles can generate a uniform magnetic field of about 8.3
T in the ring, working at a temperature of 1.9 K using superfluid helium. In addition to these dipoles, there
are some quadripoles (392) to focus the proton beam, accelerate and stabilize the proton energy, hexapoles
to correct the energy-magnetic field dependence, and octopoles to stabilize the cluster are also included. In
total, more than 8000 magnetic multipoles are used in the LHC to control the energy and trajectory of the
proton bunches in the beam. These magnetic multipoles work at a temperature of about 1.9 K through a
cryostat system, making the proton beams enter the LHC ring and reach the target energy of 6.5 TeV after
about 20 minutes of acceleration. The speed of the protons after the acceleration is close to the speed of
light, so each proton bunch has an energy of about 1.29 x 10° J, and each beam has an energy of 360 MJ.

Luminosity (L) is an important quantity to evaluate the performance of the collider machine. Its value is a
measurement of the number of collisions per square centimeter per second in the detector. The larger the
value of L, the larger the number of collisions. Collision here refers to deep inelastic scattering that creates
new particles or new physics processes. The total cross section of pp collisions on the LHC is 110 mbarns,
of which the one for the inelastic collisions is 60 mbarns, and the one for elastic collisions are 40 mbarns, the
rest corresponds to single diffraction. Luminosity and cross section have the following relationship:

Nevent/sec = L(t> * Oevent, (3.1
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Figure 3.4: Schematic cross section of a magnetic dipole at the Large Hadron Collider [26].

where L(t) is the instantaneous luminosity, with a designed value of 1034 cm~2s~! at the LHC, characterized

by the beam structures:

I = Nanbfrev'Y
dre,B*

with N, the number of protons in each proton bunch, ny the number of proton bunch per proton beam, frey
the LHC revolution frequency, v the Lorentz boost factor, €, the normalized emittance, 5* the 3 function at
the collision point, and F' the geometric luminosity reduction factor derived from the crossing angle between
the beams at the interaction point.

(3.2)

The accumulated luminosity is the integral of the instantaneous luminosity within a certain period of time,
expressed as

L= / L(t)dt. (33)
to

At the target luminosity of the LHC, on average, about 20-40 inelastic scattering processes are generated
for each collision (up to around 70), which means that the physics processes we are interested in are often
accompanied by about 30 other processes. This value is called pileup (PU).

The total luminosity integrated on the LHC running time and the profile of the average pileup are shown
for Run 2 (2015-2018) in Fig. 3.5: a total integrated luminosity of 147 fb~! is recorded by ATLAS, which
corresponds to a mean number of pileup of around 34.
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Figure 3.5: (a) Cumulative luminosity at LHC Run 2. (b) Average interactions per bunch crossing (pileup)
for the full Run 2 and individual years [27].

A detailed drawing which shows the past and future evolution of the run conditions in LHC and the so-called
high-luminosity LHC (HL-LHC) can be found in Fig. 3.6. The LHC started to work at Run 1 (2010-2012)
with a center of mass energy of 7 or 8 TeV, corresponding to a total integrated luminosity of 30 fb~!; The
Run 2 (2015-2018) was operated at a higher center of mass energy of 13 TeV and yielded a cumulative
luminosity of 156 fb—!; After several upgrades on both accelerators and detectors, the Run 3 has been
started from the spring of 2022, which is designed to be running at 13.6 TeV and expected to arrive a
cumulative luminosity of 450 fb—1.

After Run 3, in order to further increase the discovery potential, an upgrade project called high-luminosity
LHC is proposed to construct a more powerful LHC with a ten times larger luminosity around 3000-4000
fb=!. The HL-LHC will allow more accurate physics measurements and improve the sensitivity to rare
events, for instance, the rare decays of the Higgs boson (Higgs boson into light quarks and leptons) and the
double Higgs production.
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Figure 3.6: LHC/HL-LHC run conditions plan [28].

ATLAS detector

A Toroidal LHC ApparatuS, abbreviated as ATLAS [29], is one of the general experiments having a
high luminosity in the LHC (the other one is CMS), which has multi-physics motivations to exploit the
operation of the LHC as much as possible. In order to solve or pave the way for many aspects of the physics
projects including the high precision tests of QCD, electroweak interactions, and flavour physics, ranging
from measurements of Standard Model parameters to the search of the Beyond Standard Model, the ATLAS
detector should meet many strict requirements as follows:

Require high detector granularity with large acceptance in pseudorapidity with almost full azimuthal
angle coverage, fast response of the electronics, and radiation-hard sensors aiming at a large amount
of the particle fluxes;

Require good momentum precision and reconstruction for charged particles, and good position res-
olution to measure the secondary vertices reconstructed by the vertex detector for offline tagging of
T-leptons and jets from b quark;

Require an excellent electromagnetic calorimeter to reconstruct and identify the electron and photon
with high efficiency, and a full-coverage hadronic calorimeter for accurate jet and missing transverse
energy measurements;

Require accurate muon measurements including good momentum precision over a wide range of
momenta and the capability to discriminate the muon charge with high pr;

Require adequate background rejection for objects with low pr to reach high trigger efficiency and
to achieve an acceptable trigger rate for interesting physics processes.
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The ATLAS detector has a nominally symmetric structure surrounding the interaction point, consisting of
different sub-detectors with different functionalities. The overall layout of the ATLAS detector slice is shown
in Figure 3.7. The dimensions are 25 m in height and 44 m in length. The total weight of the detector is
approximately 7000 tons, where the shielding and magnet systems occupy most of the weight. The magnetic
field is 2 T corresponding to the axial direction provided by a solenoid for the inner detector and is about 0.5
and 1 T with toroidal direction provided by a barrel toroid and two endcap toroids for the muon detectors
in the central and endcap regions, respectively.
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/
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7
7
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Transition
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Figure 3.7: Schematic of the profile slice of the ATLAS detector [30].

The z-y-z coordinate can be built in the ATLAS detector system, where the nominal interaction point is
defined as the origin of the coordinate and the z-axis is along the beam direction, pointing counter-clockwise.
The x — y plane is perpendicular to the z-axis, where the y-axis is upward, and the z-axis corresponds to
the direction from the interaction point to the center of the LHC ring.

The azimuth angle ¢ in the polar coordinate system is in the z-y plane where ¢ = 0 corresponds to
the positive direction of the z-axis and ¢ = 7 corresponds to the positive direction of the y-axis. The polar
angle 6 is the angle from the z axis. In order to describe the angle between the direction of particle motion

and beams, the pseudorapidity n = —In [tan (g)} is used. For example, the variation of 7 is from 400 —0,
when 0 from 0— 7. More important, in the direction of the beams, the difference of pseudorapidity is

E+p-.
E+p.

as jets, with F and p, respectively the energy and the longitudinal momentum along the beam axis. The
distance AR in the pseudorapidity-azimuthal angle space is defined as AR = \/An? + A¢?2, where An and

A¢ are respectively the angular difference in the 1 and ¢ direction. The widely used variables, such as the

Lorentz invariant for massless particles. The rapidity y = %ln ( ) is also used for massive objects, such
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transverse momentum pr, the transverse energy ET, and the missing transverse energy EMsS are defined
in the z-y plane unless specified otherwise.

From inside to outside, the sub-detectors making up the ATLAS detector are the Inner Detector, Elec-
tromagnetic Calorimeter, Hadronic Calorimeter, and Muon Spectrometer. These sub-detectors and the
magnet and trigger systems are introduced in the following sections.

3.2.1 Inner Detector

The inner detector (ID) is located in the center of the ATLAS detector, that is the nearest to the inter-
action point, which suffers very large particle fluxes. The main goal of the ID is to measure the tracks left by
the charged particles bending in the magnetic field, which are used for momentum measurement and vertex
reconstruction. As far as the physics motivations of the ATLAS detector are concerned, the ID needs to
guarantee the good precision of the momentum and vertex measurements that are used in the combination
of different types of sub-detectors. As shown in Fig. 3.8 and Fig. 3.9, in the inner region with small radii (up
to 514 mm) of the ID, silicon pixel layers (Insertable B-Layer and pixel detector) and stereo pairs of silicon
microstrip (SCT) layers make use of the discrete space-points to achieve high-resolution pattern recognition
capabilities. At larger radii (from 554 mm to 1082 mm) is located the transition radiation tracker (TRT),
which includes many layers of gaseous straw tube elements interleaved with transition radiation material.
The ID is immersed in a 2 T magnetic field generated by the central solenoid magnets, which extends over
a length of 5.3 m with a diameter of 2.5 m.

The Insertable B-Layer (IBL) is closest to the beam pipe where particle collisions occur in the very heart
of ATLAS. In fact, it is an additional pixel layer installed in May 2014 during the first time long shutdown
prepared for the higher instantaneous and integrated luminosity to maintain and improve the robustness and
performance of the ATLAS tracking system. IBL consists of 14 carbon fibre staves whose width and length
are respectively 2 cm and 64 cm. The locations of these 14 staves face the beam pipe and are inclined
in ¢ by 14°, with a radius of 33.5 mm and coverage of || < 3. In order to satisfy the required radiation
tolerance and read-out efficiency in an environment of much intensive hit rate and radiation doses, the new
front-end read-out chip, the FE-14 was developed, which is different from the FE-I3 front-end chip of the
Pixel detector. Two types of sensors (planar and 3D) are installed in the IBL as shown in Figure 3.10.
In these sensors, a total of 32 FE-14 read-out chips are equipped, in which 24 FE-14 read-out chips are
bump-bonded to 12 double-chip planar n-in-n sensors and 8 FE-I4 read-out chips are bump-bonded to 8
single-chip 3D sensors. The detailed parameters of the IBL are shown in Tab. 3.1. Taking the stave tilt and
the overlap between staves into account, the IBL radiation length averaged over ¢ is estimated to be 1.88%
Xy for tracks produced in the z-y plane at z = 0.

By providing more accurate hit information near the interaction point, the mitigation of the effect of the
multiple scattering in the detector material on the track extrapolation improves the measurement of the im-
pact parameter resolution in both the transverse (dy) and longitudinal (zp) projections, which is particularly
important for the tagging of jets from b-quark, in which the long lifetime B meson usually leaves a displaced
vertex. On the other hand, the smaller pixel pitch of the IBL in the longitudinal direction contributes to the
resolution in zy throughout a pretty complete pr range.

Outside the IBL, there are the pixel and SCT trackers comprising many layers of silicon pixels and strips,
covering the region |n| < 2.5. In the barrel region, they are arranged on concentric cylinders around the
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Figure 3.8: Layout of the Inner Detector in the ATLAS [31].
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Figure 3.9: Layout of the ATLAS inner tracking detector position. According to the position in the
pseudorapidity, the various ID components are divided into a barrel and two endcaps regions. [32].

z-axis (beam direction) while in the endcap regions they are located on disks perpendicular to the z-axis.
There are 1744 sensors in the pixel detector and every sensor is made up of 47232 pixels with a pitch of
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Figure 3.10: Longitudinal layout of planar and 3D modules on a stave for the IBL[32].

ltem Value
Number of staves 14
Number of physical modules per stave 20 (12 planar, 8 3D)
Number of FEs per stave 32
Coverage in 7, no vertex spread In| <3.0
Coverage inn, 20 (122 mm) vertex spread In|< 2.58
Active |z| stave length (mm) 330.15

Stave tilt in ¢ (degree) 14
Overlap in ¢ (degree) 1.82

Center of the sensor radius (mm) 33.5

Table 3.1: Main layout parameters for the IBL detector [32].

50 um in the R-¢ direction and 400 pum in the z direction, which corresponds to a total of 46080 readout
channels. There are 4088 sensors in the SCT tracker where 2112 of them are in the barrel with 80 um pitch
micro-strip and the remaining 1976 are in the endcaps with a variable pitch of 70 pm to 95 um, which leads
to 6.2 million readout channels. The pixel tracker consists of 3 cylindrical layers in barrel and 2 x 3 disks in
the two endcaps regions, and the SCT involves 4 cylindrical layers in barrel and 2 x 9 disk in endcap.

Outside the pixel and SCT trackers, the TRT detector, containing polyimide drift (straw) tubes of 4 mm
diameter filled with a Xe/C'O2/O2 gas mixture (in design condition), is installed up to || = 2.0. The TRT
contains up to 73 layers of straws interleaved with fibres (barrel) and 160 straw planes interleaved with foils
(end-cap). The barrel TRT is divided into three rings of 32 modules each. The TRT endcaps each consist
of two sets of independent wheels with 12 and 8 wheels from inside to outside.

All tracks with |n| < 2.5 are measured with six precision space-points and about 36 straws, except for
a slight degradation across the barrel to the endcap transition region (0.8 < |n| < 1.0) with pp > 0.5 GeV,
where this number decreases to a minimum of 22 crossed straws. The total number of TRT readout chan-
nels is approximately 351000. Although the precision is lower than the inner pixel and SCT, with the largely
increased number of hits and longer measured track length, the TRT also contributes significantly to the
momentum measurements. The particular function of the TRT is to enhance the electron identification
by the detection of transition radiation photons in the straw tubes, which allows discriminating between
electrons and charged pions [33].

3.2.2 LAr Electromagnetic Calorimeter
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The essential objective of the electromagnetic calorimeter (ECAL) is to measure the total energy of
electrons and photons, part of the energy of jets and contribute to the particle identification and the mea-
surement of EXSS. The measurement is based on the electromagnetic interactions with dense matters,
that generates electromagnetic showers as cascades of electrons and photons produced in the calorimeter.
The measured energy is then used to reconstruct the particle decaying to an electron or a photon. For
instance, the processes relevant to the Higgs boson H — vy and H — ZZ in which at least one of the
Z bosons decays to dielectron, are very important to characterize the production and decay of the Higgs
boson. Therefore, the accuracy of basic quantities measurement of these elementary particles is important
to reach the goods of the ATLAS experiment.

In general, the segmentation of the ECAL should be as fine as possible, the typically achieved energy
resolution has to reach the level of AE/E = 11.5%/VE @ 0.5% (E in GeV) and the resolution on the
polar direction of a shower should meet the requirement of A = 50 mrad/vE (E in GeV).

The energy measurement of e/7 exploits the characteristic interaction with the material of the detector
constituting the key to detection and identification. When particles pass through the detector, four main
kinds of electromagnetic interaction could happen: interaction with atomic electrons, interaction with the
atomic nucleus, and two long-range collective effects, Cherenkov and transition radiations. Interactions
with atomic electrons lead to ionization and excitation, and interactions with the nucleus lead to Compton
scattering, bremsstrahlung, and pair production (for photons). Mostly, the principal source of energy loss
for electrons and photons with energy of more than several MeV is the bremsstrahlung and pair production,
respectively. Through these interactions, one incoming particle can produce many secondary and tertiary
particles which are called particle showers. Fig. 3.11 illustrates the electromagnetic shower development for
an incoming electron, which is similar to the shower development for incoming photons.

The shower composition and dimension depend on the particle type and the detector material. The radia-
tion length X is usually used to estimate longitudinal shower length. The definition is the length that an
electron passes through when the electron energy is 1/e of its primary energy:

ae B
dX X

For photons, the mean free path is 9/7 X, over which the probability of converting a photon into a ete™
pair is 1-1/e and the probability of not converting is 1/e.

(3.4)

The radiation length depends on the properties of material, and satisfying the following relationship for
material with a given atomic number Z and mass number A:

716.4A L
: 3.5
Z2(Z+ O(2s7/vz) ° 5>

The shower development continues until the critical energy E., below which the dominating process is
ionization. Hence for an electron with initial energy Fj, the maximum longitudinal shower depth is given by

In (Ey/E,)
In2

The shower depth increases logarithmically with initial energy Ejy and linearly with radiation length Xy. The
crucial energy E. is basically decreasing with the increase of atomic number Z.

Xo =

X = X, (3.6)
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Figure 3.11: Electromagnetic shower development for a high-energetic electron in radiation length
Xo [34].

With the electron continuously losing its energy, the effect of the Coulomb scattering becomes dominant
which leads to the shower expanding in the transverse dimension. The Moliére Radius R is used to esti-
mate the transverse shower length. By definition, it is the radius of a cylinder containing on average 90%
of the shower's energy deposition. Two Moliére radii contain 95% of the shower's energy deposition. It is
related to the X by the approximate relation:

Ry = 0.0265X0(Z + 1.2) (3.7)

The Xy and R); are related to the intrinsic characteristic of the detector material. A smaller Xy means
strong stopping power and fully energy deposition. A smaller Rj; represents better shower position resolu-
tion and better shower separation due to a smaller degree of shower overlaps. Tab. 3.2 shows the values of
Xo, Ry, and E, for different materials, where lead shows an excellent radiation length and small Moliére
Radius, hence it is chosen as the dense material in the ATLAS ECAL.

The ATLAS ECAL is a sampling calorimeter consisting of plates of dense, passive material alternating with
layers of sensitive material. The whole calorimeter is globally divided into four main layers (Fig. 3.12), with
one Presampler layer in front of the three accordion-like layers which contain most of the EM shower.

In front of the accordion, a thin Presampler (PS) detector is suited in the range of |n| < 1.8 for correcting
energy losses due to the upstream material from ID, solenoid magnets, cryostats, cables, etc.). The PS is a
1 cm (5 mm) liquid argon (LAr) active layer instrumented with electrodes roughly perpendicular (parallel)
to the beam axis in the barrel (endcap). The PS plays a very important role in the transition region of
1.37 < |n| < 1.52 between the two cryostats, due to the impact of more material in front of the calorimeter.
Above |n| = 1.8, the PS is no longer necessary given the limited amount of dead material and the higher
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material Xyo/cm Ry/cm  E./MeV

Cu 1.43 1.5 24.8
Pb 0.56 1.6 9.51
Liquid Ar  14.2 9.5 30.5
Fe 1.76 1.7 21

Plastic 42.9 - 100

Table 3.2: Xy, Ry, and E. for different materials.
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Figure 3.12: Schematic representation of the ATLAS liquid argon calorimeter (left). The segmentation
of the super-cells of the EM calorimeter (right) [35].

energy of particles for a given pr. The PS is made of 32 sectors in ¢, and two sectors are fixed to one
calorimeter module.

The main body of ECAL is installed behind the PS, for which the lead is used as the dense and passive
absorber because of its large atomic number and density, and the liquid argon (LAr) is used as the active
sampling material for its intrinsic linear behaviour, stability of response over time, and intrinsic radiation-
hardness. Fig. 3.13 shows the lead absorbers in a Liquid Argon bath at an operating temperature of 88K
(-185°C), which is glued between two stainless steel, and the cooper electrodes at high voltage (HV) located
in the middle of 2 x 2 mm gap between two absorbers.

The absorbers and electrodes have an accordion geometry (Fig. 3.12 left) which guarantees a full ¢ cov-
erage, following an original idea of D. Fournier [38]. The absorbers made of lead plates are glued to two
stainless-steel sheets of 0.2 mm thickness. The lead plates in the barrel have a thickness of 1.53 mm for
In| < 0.8 and 1.13 mm for |n| > 0.8, where the change in lead thickness at |7| = 0.8 limits the decrease of
the sampling fraction as || increases. In the endcaps, the plates have a thickness of 1.7 mm for |n| < 2.5
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Figure 3.13: (left) Accordion structure with a small sector of the barrel calorimeter in a plane transverse
to the LHC beams, and a zoom on the electrode structure in the bottom showing the liquid argon,
lead absorber and copper electrode [36]. (right) lllustration of shower development and ionisation
collection [37].

and 2.2 mm for || > 2.5. The readout electrodes are located in the gaps between the absorbers and consist
of three conductive copper layers separated by insulating polyimide sheets where the two outer layers are
at the high-voltage potential and the inner one is used for reading out the signal via capacitive coupling.
Each barrel gap between two absorbers is equipped with two electrodes, one type for || < 0.8 and another
for || > 0.8. Similarly, each endcap gap between two absorbers is equipped with one type of electrode for
In| < 2.5 and another for |n| > 2.5.

The total ECAL can be divided into one barrel (|n| < 1.475) and two endcaps (1.375 < |n| < 3.2) covering
the pseudorapidity range of |1| < 3.2 contained in their corresponding cryostats. The barrel cryostat is 6.8 m
long, with an outer radius of 2.25 m, and an inner radius of 1.15 m. The vessels are made of aluminium
with vacuum insulation. The solenoid, sharing the vacuum insulation, has 44 mm thickness and amounts
to 0.63 Xy. The endcap cryostats are built out of aluminium and are vacuum insulated. The outer ra-
dius of the cylindrical warm shell is the same as the barrel (2.25 m), and the length of one cryostat is 3.17 m.

The barrel ECAL is made of two half-barrels with each one made up of 1024 accordion-shaped absorbers
centred around the z-axis and interleaved with readout electrodes. One half-barrel covers the region with
z >0 (0 < n < 1.475) and the other one covers the region with z < 0 (—1.475 < n < 0). The length
of each half-barrel is 3.2 m with weighs 57 tons and the inner and outer diameters of 2.8 m and 4 m. As
mentioned above, the barrel ECAL is complemented with a liquid-argon PS detector, placed in front of its
inner surface, over the full barrel 7 range. Each half-barrel has been divided into 16 modules, and each
module is segmented in longitudinal dimension with three sampling layers, which covers a A¢ = 22.5°.
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A module with three layers in depth is depicted in Fig. 3.12. The first layer (front) is made of narrow
strips corresponding to a very fine granularity in 1 which provides precise position measurements and ~y /7"
separation contributing to the high jet rejection capability required to obtain a very pure v spectrum for
Higgs studies. The front layer is read out at the low-radius side of the electrode. The second layer (middle)
consists of quadratic cells (squares) of 0.025 in both 7 and ¢. As the layer with the longest length of
approximately 16-18 X, it absorbs most of the shower energy of the particles. The third layer (back) is
arranged in larger towers of 0.05 in 77 and 0.025 in ¢ used to recover high energy tails and helps to separate
hadronic to electromagnetic particles. Both the middle and back layers are read out at the high-radius side
of the electrode. The fine granularity in 1 of the ECAL enables a measurement of the angle of the incoming
electromagnetic particle and hence the primary vertex using the pointing method [39, 40].

The endcap ECAL has two parts covering the region of 1.375 < |n| < 3.2, one on each side of the
barrel ECAL. Each endcap ECAL consists of two co-axial wheels corresponding to an inner wheel with a
radius of 330 mm and an outer wheel with a radius of 2098 mm and both wheels are 63 cm thick with
a weight of 27 tons. There are 768 absorbers interleaved with readout electrodes in the outer wheel and
256 absorbers in the inner wheel. The boundary between the inner and the outer wheel is 3 mm wide
and located at |n| = 2.5 with the filling of mostly low-density material. Each endcap wheel is further
divided into eight wedge-shaped modules without introducing any discontinuity along the ¢ thanks to the
accordion geometry. The electrodes are positioned in the middle of the gaps by honeycomb spacers. As for
the barrel ECAL, the precision region in the endcap ECAL (1.5 < |n| < 2.5) is divided in depth into three
longitudinal layers. The front layer, about 4.4 X thick, is segmented with strips along the n direction.
The transverse size of the projective cell in the middle layer is the same as defined in the barrel ECAL,
An x A¢ = 0.025 x 0.025. The back layer has a twice coarser granularity in 1. The outermost region
In| < 1.5 of the outer wheel and the inner wheel (2.5 < |n| < 3.2) are segmented in only two longitudinal
layers and have a coarser transverse granularity. The n-granularity in the front layer varies with 7 in order
to keep the copper strip width larger than a few mm. The ¢-granularity is obtained by collecting the signals
from adjacent electrodes. Each module contains 3984 readout channels, including the 96 channels in the PS.

The readout granularity of the different layers, the number of layers, and the number of readout chan-
nels, are summarized in Table 3.3.

The input electron passes through a plate of the lead absorbers, making an EM shower in the calorimeter
which then produces ionisation electrons (green arrows in Fig. 3.13 right). These ionisation electrons are
drifted by the HV and induce an electric current, which is transferred from the electrodes to the electronic
readout. In total, taking the PS cells into consideration, there are 173312 channels to be read out.

Fig. 3.14 shows the cumulative material up to a given layer of the ECAL. The depth of the front layer
ends up being 6 X (including dead material and PS). The end of the middle sampling is 24 X. The depth
of the back layer varies from 2 to 12 X (for || less than about 0.6, the depth of the second sampling is
limited to 22 Xy, in order to have at least 2 X in the third sampling). So the total thickness of a module
is at least 22 X, increasing from 22 X to 30 X between || = 0 and |n| = 0.8 and from 24 X, to 33
Xo between |n| = 0.8 and || = 1.3. The total active thickness of an endcap ECAL is greater than 24 X
except for |n| < 1.475. The thickness increases from 24 to 38 X as || increases from 1.475 to 2.5 (outer
wheel) and from 26 to 36 X as || increases from 2.5 to 3.2 (inner wheel).
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Detector Barrel Endcap
n| coverage Number of Tayers [n] coverage Number of layers
Presampler n| < 1.52 1 1.5 < |n] < 1.8 1
n| < 1.35 3 1.375 < |n| < 1.5 2
ECAL 1.35 < |n| < 1.475 2 1.5 < |n| < 2.5 3
2.5 < |n| <3.2 2
n| coverage An X A¢ |n| coverage An X A¢p
Presampler n] < 1.52 0.025 x 0.1 1.5<[n] <138 0.025 x 0.1
n| < 1.40 0.025/8 x 0.1 1.375 < |n| < 1.425 0.050 x 0.1
1.40 < |n| < 1.475 0.025 x 0.025 1.425 < |n] < 1.5 0.025 x 0.1
1.5 < |n] < 1.8 0.025/8 x 0.1
Front layer 1.8 < |n| < 2.0 0.025/6 x 0.1
2.0 < |n| < 2.4 0.025/4 x 0.1
2.4 < |n|l <25 0.025 x 0.1
2.5 < |n| < 3.2 0.1 x 0.1
[n] < 1.40 0.025 x 0.025 1.375 < |n| < 1.425 0.050 x 0.025
Middle layer 1.40 < |n| < 1.475 0.075 x 0.025 1.425 < |n] < 2.5 0.025 x 0.025
25 < In <3.2 0.1 x 0.1
Back layer In] < 1.35 0.05 x 0.025 1.5 < |n] <25 0.050 x 0.025
Number of readout channels
Presampler 7808 1536
ECAL 101760 62208

Table 3.3: Main parameters of the electromagnetic calorimeter system [29].
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Figure 3.14: Cumulative amount of passive material, in units of radiation length X, and as a function
of |n|, in front of and in the electromagnetic calorimeter. [41].

The ECAL energy resolution og can be parametrized as

UE_aEB
E VE

b
E

Dc

(3.8)

where the symbol @ indicates that the terms are added quadratically, a is the sampling term which cor-
responds to the stochastic nature of an EM shower, b is the noise term that describes the contribution of
electronic noise of the readout electronics and of the pileup noise, and ¢ is the constant term arising from
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spatial inhomogeneities of the LAr calorimeter structure or of dead material. The term b depends on the
cluster size and its typical value is from 200 to 300 MeV. All of them are n-dependent parameters.

The sampling term a covers stochastic fluctuations of the electromagnetic cascade during energy depo-
sition. It is the leading term in the resolution for electrons with low or medium energy. It can be measured
using the J/v width where J/¢) — eTe™ provides low-energy electrons whose energy measurement reso-
lution is completely dominated by a. The sampling term spreads mostly from 10% to 15% with 1. The
sampling term depends on the choice of the material used for the absorber and the active material as well as
the thickness of the sampling layers. The sampling fluctuations can be reduced by increasing the sampling
fraction fsamp:
Erz;citive
fsamp = [pactive + pEabsorber (3.9)

mip mip

where Eﬁﬁ'g"e and E;?;‘”ber denote the energy deposited by a minimum ionizing particle in the active and
absorber materials, which means that the increase of the amount of active material for the shower devel-
opment can reduce the sampling fraction and hence the sampling term. Most sampling calorimeters with
a resolution better than 10%/+/E have a large sampling fraction exceeding 15%. Alternatively, the homo-
geneous calorimeter (for example, lead tungstate scintillating crystals in CMS ECAL) usually has a better
energy resolution because of the full shower collection, although no information on the longitudinal shower
shape is recorded.

The noise contribution % increases with the decrease of the energy of the incident particles, which means
that this term may become dominant at energies below a few GeV. Therefore, the noise equivalent energy is
usually required to be much smaller than 100 MeV per channel. On the other hand, in sampling calorimeters,
the noise term can be decreased by increasing the sampling fraction, because the larger sampling fraction
corresponds to the larger signal from the active medium, therefore, a higher signal-to-noise ratio can be
obtained.

The constant term ¢ includes contributions which do not depend on the energy of the particle. For ex-
ample, the non-uniformity of the calorimeter response caused by instrumental effects induces additional
smearing to the measured energy. Non-uniformity can also originate from the detector geometry, such as
the irregular shapes of the absorber and active layers, imperfections in the detector containing the me-
chanical structure and readout system, temperature gradients, detector ageing, radiation damage, boundary
effect between modules, etc. All these effects are supposed to be manifested in the constant term. With
the increase of energy, the constant term becomes more and more dominant. Tight construction tolerances
are therefore imposed on the mechanics and readout system of modern calorimeters, for instance, LHC
calorimeters. Typically the constant term of an ECAL should be within the level of 1% .

3.2.3 Hadronic Calorimeter

In order to measure the energy of hadrons with good resolution (AE/E = 50%/E @ 3%) and linearity
(1-2% up to TeV scale), the Hadronic Calorimeter (HCAL), a sampling calorimeter was developed using
the iron (passive) and plastic scintillator (active material) in the ATLAS detector. It is driven by the aim to
reconstruct the decay W — jet+jet at high pr, therefore, the transverse granularity of HCAL is designed
to be Anp x A¢ = 0.1 x 0.1 in the range of || < 2.5 and An x A¢ = 0.2 x 0.2 beyond the range of
In| = 2.5. The total HCAL can be divided into three parts including the tile calorimeter, the liquid-argon
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hadronic endcap calorimeter (HEC), and the liquid-argon forward calorimeter (FCal) corresponding to dif-
ferent pseudorapidity coverage shown in Figure 3.15.

ATLAS Calorimen’y EM Accordion

) ) Calorimeters
Hadronic Tile
Calorimeters

Forward LAr
\ Calorimeters
Hadronic LAr End Cap
Calorimeters

Figure 3.15: Schematic view of the calorimeters in the ATLAS detector [42].

The tile calorimeter is installed in the barrel region of || < 1.7 containing three parts, in which two parts
are located symmetrically in the region of 1.55 < |n| < 1.7 with the length of 2.6 m, the inner radius of
2.28 m, and the outer radius of 4.25 m. The third part is in the central barrel covering |n| < 1.55 with 5.8
m in length. Each barrel tile HCAL consists of 64 modules or wedges of size A¢ ~ 0.1, made of steel plates
and scintillating tiles. In the longitudinal direction, the calorimeter modules are segmented into three layers
of 1.5, 4.1 and 1.8 X\ (effective nuclear interaction length) in the central barrel and 1.5, 2.6, 3.3 X in the
extended two barrels, which corresponds a total radial depth approximately of 7.4\. There are approximately
5000 cells and 10000 channels in the tile calorimeter.

The Hadronic Endcap Calorimeter (HEC) is made up of flat copper as absorber plates and liquid-argon as ac-
tive medium for its robustness against the high radiation levels in the pseudorapidity range of 1.5 < |n| < 3.2.
There are two wheels with 32 identical modules contained in the HEC. The front HEC1 and rear HEC2
wheels are placed in the cryostat for each endcap, where the cryostat is shared with the electromagnetic
endcap (EMEC) and forward (FCal) calorimeters. The length of HEC1 (HEC2) is 0.82 m (0.96 m). The
thickness of the copper absorber plates is 25 mm for HEC1 and 50 mm for HEC2, with the first plate being
half of this normal thickness in either case which is at least 10 interaction lengths (\) including the ECAL
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in front of the HEC, in order to satisfy the requirement of the linearity of the energy response measured has
to stay within 2%.

The forward calorimeters (FCal) are located in the same cryostats as the endcap calorimeters and pro-
vide coverage over 3.1 < |n| < 4.9, which is at a distance of approximately 4.7 m from the interaction
point with the exposure of high particle fluxes. The FCal thus consists of three layers (Fig. 3.16), where
the layer closest to the interaction point called FCall is a Cu/LAr calorimeter designed for electromagnetic
calorimetry, FCal2 and FCal3 are hadronic W/LAr calorimeters, and behind FCal3 is a passive layer of brass.

FCal1 FCal2 FCal3 Plug3

Figure 3.16: The cut-away view of the FCAL installation with multi-layers [43].

The choice of tungsten as the absorber in the hadronic FCal2 and FCal3 modules limits the transverse
hadronic shower spread, which is especially important for 1 determination in the forward region since a
fixed distance here covers a larger 1 interval. An FCal readout cell consists of several neighbouring FCal
electrodes read out together. Fewer electrodes are grouped close to the inner edge, which ensures an 7-¢
granularity of about 0.1x0.1 or better for most of the electromagnetic layer.

3.2.4 Muon Spectrometer

The muon spectrometer is the outermost sub-detector of ATLAS. As the name implies, it is designed
to detect the muon with two purposes: an independent muon trigger and high-quality standalone muon
reconstruction over a wide range in transverse momentum, pseudorapidity, and azimuthal angle, where the
muon pr should be measured in the pseudorapidity range of |n| <2.7 and the triggers should be fired in
the region |n| < 2.4. The driving performance goal is a standalone transverse momentum resolution of
approximately 10% for 1 TeV track, which translates into a sagitta along the z-axis of about 500 pm,
to be measured with a resolution less than 50 um. Based on these goals and the condition of the muon
spectrometer, it was devised to include three large superconducting air-core toroids, the precision-tracking
chambers for accurate momentum resolution, and an effective trigger system based on chambers with fast
response. Fig. 3.17 shows the cross-section of the muon system.

The toroid in the barrel is formed by eight superconducting coils, each of them with a coil area of 5 x 26m?2.
The magnetic field extends between the inner and the outer tracking stations, and is in the range of 0.5
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Figure 3.17: Cross-section of the muon system in a plane containing the beam axis (bending plane) [44].
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to 2 T. In each endcap, the magnetic field is provided by eight superconducting coils, located between the
first and the second station of tracking chambers. The field is in the range of 1 to 2 T. The performance
of the toroid in terms of bending power is characterised by the field integral [ Bdl, where B is the field
component normal to the muon direction and the integral is computed along an infinite-momentum muon
trajectory, between the innermost and outermost muon chamber planes. The barrel toroid provides 1.5 to
5.5 Tm of bending power in the pseudorapidity range 0 < |n| < 1.4, and the endcap toroids approximately
1 to 7.5 Tm in the region 1.6 < |n| < 2.7. The bending power is lower in the transition regions where the
two magnets overlap (1.4 < |n| < 1.6).

For the precision-tracking chambers, because of the different rates in the barrel and in the endcap, two
different detectors have been designed. In the barrel region, there are three layers of stations arranged in
three concentric cylindrical shells around the beam axis at radii of approximately 5 m, 7.5 m, and 10 m.
The innermost stations consist of the Monitored Drift Tube (MDT) directly after the HCAL. The stations
of the second layer are composed of one MDT chamber and two Resistive Plate Chambers (RPC) on each
side of the MDT. The outer stations are outside the magnetic field and composed of an MDT chamber and
an RPC on the outer side of the MDT. the first layer of stations sits in front of the magnet. In the two
endcaps, there are also three layers perpendicular to the z-axis and located at distances of |z| ~7.4 m, 10.8
m, 14 m, and 21.5 m from the interaction point. The stations of the inner layer are in front of the magnet,
where multi-wire proportional chambers Cathode Strip Chambers (CSC) are installed in the region closest
to the beam pipe with 2 < |n| < 2.7 and MDT chambers provide the remaining coverage. The second
layer is installed behind the endcap magnet where stations are one layer of MDT chambers and two layers
of Thin Gap Chambers (TGC) that can provide the trigger signal. The outer station layer is equipped with
MDT chambers.

The trigger chambers of the muon system provide fast information on muon tracks traversing the de-
tector, allowing the L1 trigger logic to recognise their multiplicity and approximate energy range. The
trigger system should satisfy requirements as follows:

+ discrimination on muon transverse momentum;
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* bunch-crossing identification;
« fast and coarse tracking information to be used in the high-level trigger stages;

+ second coordinate measurement in the non-bending ¢-projection to complement the MDT measure-
ment;

* robustness towards random hits due to n/~y-background in the experimental hall.

Two different types detectors have been used for barrel (|n| < 1.05) and endcap (1.05 < [n| < 2.4)
regions. In the barrel, RPCs are used due to good spatial and temporal resolution as well as adequate
rate capability. In the endcap regions, TGCs are selected, operating on the same principle as multi-wire
proportional chambers, which provides good time resolution and high rate capability.

3.2.5 Magnet system

The magnet system in the ATLAS detector consists of one solenoid and three toroids (one barrel and
two endcaps). In total, four superconducting magnets provide the magnetic field over a volume of approx-
imately 12000 m? in the areas of the four main sub-detectors of the ALTAS. In order to reach the strict
environment of superconducting, and in the condition of very high energy stored in the magnet with the
nominal operating current of more than several kA, the cold mass and cryostat integration is necessary. On
the other hand, an outside return yoke is used to strengthen the magnetic field and confine it to a definite
region. The overall spatial arrangement of the coil windings is shown in Fig. 3.18.

Figure 3.18: Geometry of magnet windings and tile calorimeter steel [29].

The central solenoid is aligned on the beam axis and provides a 2 T axial magnetic field for the inner
detector while it also needs to minimize the radiative thickness in front of the barrel ECAL. Therefore, it
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was carefully optimised to keep the material thickness in front of the calorimeter as low as possible. In
order to reach this criterion, the solenoid windings and LAr calorimeter share a common vacuum vessel,
thereby eliminating two vacuum walls. An additional heat shield consisting of 2 mm thick aluminium panels
is installed between the solenoid and the inner wall of the cryostat. The solenoid assembly contributes a
total of ~0.66 radiation lengths at normal incidence. The inner and outer diameters of the solenoid are 2.46
m and 2.56 m with an axial length of 5.8 m. The single-layer coil is wound with a high-strength Al-stabilised
NbTi conductor, specially developed to achieve a high field with low thickness, inside a 12 mm thick support
cylinder of Al. The coil mass is 5.4 tons and the stored energy is 40 MJ. The stored-energy-to-mass ratio of
only 7.4 kJ/kg at the nominal field, clearly demonstrates the compliance with the requirement of design for
an extremely lightweight structure successfully. The flux is returned by the steel of the ATLAS HCAL and
its girder structure. The solenoid is charged and discharged in about 30 minutes. In the case of a quench,
the stored energy is absorbed by the enthalpy of the cold mass which raises the cold mass temperature to
a safe value of 120 K maximum. Re-cooling to 4.5 K is achieved within one day.

A barrel toroid and two endcap toroids produce a toroidal magnetic field of approximately 0.5 T and 1
T for the muon detectors in the central and endcap regions, respectively, with a working point temperature
of 4.7 K. The barrel toroid consists of eight coils encased in individual racetrack-shaped, stainless-steel
vacuum vessels. The coil assembly is supported by eight inner and eight outer rings of struts. The overall
size of the barrel toroid system as installed is 25.3 m in length, with inner and outer diameters of 9.4 m and
20.1 m, respectively. The conductor and coil-winding technology are based on winding a pure Al-stabilised
Nb/Ti/Cu conductor into pancake-shaped coils, followed by vacuum impregnation. The two endcap toroids
are used to generate the magnetic field required for optimising the bending power in the endcap regions of
the muon spectrometer system. They are supported off and can slide along the central rails, which facilitates
the opening of the detector for access and maintenance. Each endcap toroid consists of a single cold mass
built up from eight flat, square coil units and eight keystone wedges, bolted and glued together into a rigid
structure to withstand the Lorentz forces. The conductor and coil-winding technology are the same as the
barrel toroids.

3.2.6 Trigger system

With the high luminosity of the LHC (up to 2.1 x 103* ecm~2s7!) and the high bunch crossing rate
(40 MHz), it is difficult to save all events information, the trigger is thus important to filter events and
decrease the event rate. The trigger system [45] has been substantially upgraded with respect to Run 1,
and it consists of two levels of event selection: Level-1 (L1) and High-Level Trigger (HLT) as shown in
Fig. 3.19. The L1 trigger is hardware-based, implemented using custom-made electronics, while the HLT is
almost entirely based on commercially available computers and networking hardware.

The L1 trigger searches for signatures from high-p muons, electrons/photons, jets, and 7-leptons decaying
into hadrons. It also selects events with large missing transverse energy (EMi) and large total transverse
energy. The L1 trigger uses reduced-granularity information from a subset of detectors: the RPC and TGC
for high-pr muons, and all the calorimeter sub-systems for electromagnetic clusters, jets, 7-leptons, Emiss,
The L1 trigger decision is formed by the central trigger processor (CTP in Fig. 3.19). The maximum L1-
accepted event rate is reduced to 100 kHz in Run 2 within a latency of 2.5 us.

The HLT proceeds the signatures accepted by the L1 trigger, benefiting from further information from
ID, calorimeters and MS. The HLT reconstruction can be seeded by either Regions-of-Interest (Rol) from
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Figure 3.19: Schematic of the ATLAS Trigger system [46].

L1 or the full detector space.

3.3 Object Reconstruction and Identification in ATLAS

Most of the particles produced by the proton-proton collisions of the LHC have a limited lifetime, which
means only a fraction of them live long enough to be detected by ATLAS. Actually, most of them decay or
cascade into lighter and more stable particles before interacting with the detector. Based on the well-known
particle characteristics, the elementary or composite particles having a mean free path greater than 500 pm,
which can interact with the detector material and be detected, are muons (u™, ™), electrons (e™, ™),
photons (), ™ mesons (7", 77), K mesons (K*, K—, K?), protons (p*, p~), neutrons (n), and other
hadrons. Besides, quarks and gluons hadronize to produce color-neutral hadron bound states (some of which
are mentioned above), producing a highly collimated conical particle shower in the detector, called a jet. Jet
containing b hadrons can be identified through unique properties as b-jet. For neutrinos, since they are only
involved in the weak interactions corresponding to extremely small cross sections, their existence can only
be detected by a specific detector, such as Super-Kamiokande, rather than ATLAS or CMS. Their transverse
energy is denoted as EX in the ATLAS experiment, inferred by the conservation of transverse momentum.
In order to perform analyses with high accuracy, the reconstruction and identification of these basic objects
are important. The following sections 3.3.1 and 3.3.2 will introduce the techniques and methods used in
the object reconstruction and identification of electrons, photons and jets.

3.3.1 Electron and Photon

Electrons and photons interact with the lead absorber of the LAr calorimeter to form an EM shower.
The EM shower ionizes the LAr between the absorbers, and the ionized electronic signal is proportional to
the energy deposition of the physics object. The energy deposited is measured by the signal amplitude in
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the calorimeter unit. The calorimeter cells forming the clusters of deposited energy serve as seeds for the
cluster reconstruction algorithm in the ATLAS experiment.

ECAL electronics and cell energy estimate

During an EM shower, the ionization current received in the electrodes (Fig. 3.13 right) is sent to the
electronic readout. A schematic of the the electronic readout of the ATLAS LAr calorimeters is shown in
Fig. 3.20, which is divided into a Front End (FE) system of circuit boards mounted on the detector cryostats,
and a Back End (BE) system of VME-based boards located outside the detector hall.
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Figure 3.20: Schematic of the overall architecture of the ATLAS LAr readout electronics, the LAr detec-
tors are located at the bottom [36].
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The FE system includes Front-end boards (FEB), which are used to amplify, shape and digitize the received
raw electric current in the electrodes. Three versions of preamplifiers with different impedance and maximum
input currents are used to match the detector capacitances and dynamic ranges of the calorimeter sections.
The amplified signal is then passed through the shaper chips to produce three overlapping linear gain scales,
which is 1 for low gain (LG), 9.9 for medium gain (MG) and 93 for high gain (HG). The different gains with
a ratio ~ 10 is used to recover the full dynamical range.

The input electric current has a triangle shape with a maximum drift time ¢4 &~ 450 ns (Fig. 3.21). Since
this charge collection time of 450 ns is longer than the time difference between two bunch crossings at the
LHC (25 ns), it will integrate several bunch crossings and include a lot of pileup events. In order to mitigate
such an effect, the signals are passed through a bipolar filter which shapes them to a more peaked pulse
(Fig. 3.21 curve with dots). The bipolar filter decreases the long tails at large drift time and reduces the
bandwidth of the pulse, hence brings larger tolerance to pileup noise.
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Figure 3.21: Typical triangle and shaped electronic pulse signal in one LAr cell. The dotted curve is the
shaped signal pulse, after sampled with a separation of 25 ns [37].

The shaped signals are sampled at the LHC bunch crossing frequency of 40 MHz (25 ns) and stored in analog
in the switched-capacitor array (SCA) analog pipeline chips. The analog signal is then digitized using a
12-bit Analog to Digital Converter (ADC), based on which the Gain Selector chips choose the relevant gain
for each channel. Specifically, a high gain, medium gain, and low gain are used respectively for ADC counts
lower than 1300, between 1300 and 3900 and very high ADC.

Read Out Driver (ROD), the primary component of the Back End electronics, is used to reconstruct the
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pulse amplitude A in unit of ADC:
A=Y "a;(ADC; - P) (3.10)

where ADC; is the ADC counts of recorded sample 7, P is the pedestal defined as the mean value of the
sample when no signal is presented, a; are the optimal filter coefficients (OFCs) [47] used to estimate the
pulse amplitude, which is optimized with minimum electronic and pileup noise, depending on the choosen
gain in the cell.

The total energy deposited in a LAr calorimeter cell is then reconstructed as

Mcal

Mphy

E = Fua ey - -R-Y a;(ADC; - P) (3.11)

where

* R is the the electronic gain from ADC counts to ionization current (ADC — pA), which is determined
with dedicated electronics calibration runs.

]]yf—c}fl corrects for bias due to the different shapes between calibration and physics signals.
prhy

* Fj,a—mev converts the ionization current to the total deposited cell energy.

Definition and reconstruction of the topo-cluster

The reconstruction algorithm making use of the clusters of energy deposits measured in topologically con-
nected EM and hadronic calorimeter cells has been developed and used since 2017, where these clusters are
denoted as topo-clusters [48]. Before 2017, cluster reconstructions used a fixed energy window algorithm
due to technical limitations. The topo-cluster reconstruction relies on the cell energy significance denoted
as ( qem and computed as,

EEM
= ||, (3.12)
noise,cell

where |Eq| is the absolute energy of the calorimeter cell and aﬂ{'se el is the cell noise including the
electronics and pileup noises. In general, the definition of the topo-cluster obeys the following steps:

» Form the proto-clusters which is the collection of cells with (E) > 4;

« Add neighbouring cells with cEe'}f' > 2 where the qualified neighbour cell becomes a seed cell in the

next iteration, collecting each of its neighbours in the proto-cluster.

EM

il = 0 into the clusters built in the above two steps.

+ Combine nearby cells with

The topo-cluster algorithm is the default ATLAS software. In practice, the reconstruction of the topo-cluster
is not limited to one region of the detector: cells of a single topo-cluster could be from both the LAr and
Tile calorimeters. In order to allow for future improvements to topo-cluster-based isolation calculations,
as well as the potential for adoption of a detector-wide particle flow reconstruction algorithm, the same
topo-cluster is commonly used as the initial cluster in different object reconstruction algorithms such as the
jet, leptons, and etc. Therefore, in the reconstruction of electron and photon whose workflow is shown in
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Fig 3.22, these initial clusters must be modified to consider cells from the EM calorimeter only. The initial
cut on the cluster energy within the EM calorimeter for each cluster on the EM fraction, fgm, is applied
and calculated as

1, 1.37<|n| < 1.63
0, otherwise

(3.13)

Er, + Ep, + By +w - (Eps + Eps)
Jem = , W=

Ecluster

where the Ep , , is the cluster energy in layers 1, 2 or 3 of the calorimeter. The term (Eg, + Eps) is only
considered for clusters within the transition region of 1.37 < |n| < 1.63, since electrons and photons in
that 7 region tend to deposit non-negligible amounts of energy in the pre-sampler and E4 scintillators. The
latter term is excluded in other detector regions to decrease noise. Hadronic contributions to the cluster
are suppressed by removing the hadronic calorimeter cells from each cluster, leaving only cells belonging to
the LAr calorimeter, the presampler, and the E, scintillators. The threshold of the fgnm is determined by
the simulation and optimised at a value of 0.5 which can reject 60% of pileup clusters without limiting the
efficiency for selecting true electron topo-clusters. Moreover, only clusters with deposit energy of more than
400 MeV are considered to reject clusters from pileup interaction or 70 — 7.

Select topo-clusters
Refit tracks loosely
matched to clusters

Match tracks vertices
to topo-clusters Match conversion
vertices to topo-clusters

Prepare tracks and clusters

Seed electron superclusters
from track-matched
topo- clusters

Seed photon superclusters
from topo-clusters

—

Add secondary clusters J Build superclusters

Apply calubratlons/
corrections
I

—

correctlons

Match conversion vertices

Add secondary clusters }
to photon superclusters }

[ Apply calubratlons/ J

Match tracks to electron
superclusters

o~
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—

\

[ Build and callbrate analysis ] Build analysis objects

electrons and photons

Calculate discriminating variables,
particle identification

Figure 3.22: Algorithm workflow diagram for the electron and photon reconstruction [49].

The main advantage of topo-clusters in the latest algorithm is its ability to recover the low-energy deposition
of bremsstrahlung photons and associate them with electron clusters to form the so-called superclusters
(Fig. 3.23).
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Figure 3.23: The illustration of an example supercluster showing an electron (blue) and
bremsstrahlung photon (red) [49].

Supercluster reconstruction

Based on the topo-clusters and reconstructed track, the matching can be done by extrapolating the track to
the cluster in the second layer of the ECAL. If the 7 and ¢ of the track and cluster satisfy An < 0.05, and
—0.1 < gcharge * (Prrack — Peluster) < 0.05, the match is successful. In some cases, electrons have large energy
loss due to the bremsstrahlung, and momentum correction is needed to improve the track-cluster matching
efficiency. On the other hand, if multiple tracks match the same cluster, the track with the smallest AR to
the cluster is selected. Meanwhile, the vertices from photon conversion are also reconstructed by the algo-
rithm using tracks with silicon hits (denoted Si tracks) and tracks reconstructed only in the TRT (denoted
TRT tracks). Two-track conversion vertices are reconstructed from two tracks forming a vertex consistent
with that of a massless particle, while single-track conversion vertices are essentially tracks without hits in
the innermost sensitive layers. If multiple conversion vertices are matched to a cluster, double-track con-
versions with two silicon tracks are preferred over other double-track conversions, followed by single-track
conversions. Within each category, the vertex with the smallest conversion radius is preferred. According to
the track-cluster matching, the electron, the converted photon, and the unconverted photon are classified
in the ATLAS experiment.

The next step is the reconstruction of “superclusters’, which is independently applied for photons and
electrons with different requirements. In summary, there are two stages: In the first stage, topo-clusters
are used for evaluation as seed cluster candidates, which are the cornerstone of superclusters; in the second
stage, clusters near the seed candidates are identified as satellite cluster candidates, which may emerge from
bremsstrahlung radiation or topo-cluster splitting as shown in Fig 3.24.

If satellite clusters pass the necessary selection criteria, they are added to the seed candidates to form the fi-
nal superclusters. The electron seed cluster candidates from a list of topo-clusters are required E1 > 1 GeV,
and could be matched to a track having more than 4 hits in the silicon tracking detector. The seed clus-
ter with higher energy deposits is preferred if there is more than one candidate. The photon seed cluster
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candidates must have an energy greater than 1.5 GeV, due to the absence of a matching track. Then for
the satellite finding stage, it aims to add all possible idle clusters that are from the same initial electron or
photon to the seed cluster. This step proceeds in the window of An x A¢ = 0.075 x 0.125 around the seed
cluster barycenter for both electron and photon, as these cases tend to represent secondary EM showers
originating from the same initial electron or photon. There are two extra criteria for electron and photon,
respectively. For electrons, a larger window An x A¢ = 0.125 x 0.3 around the seed cluster barycenter is
also used to perform the satellite finding. In this strategy, a cluster is considered a satellite if it has more
than one matched track, which means that this satellite and its seed cluster share the same best-matched
track. This special step in the electron supercluster reconstruction relies more on tracking information to
discriminate distant radiative photons from pile-up noise, or other unrelated clusters.

For converted photons, the conversion vertices are used to test if a cluster can be matched to a track
that is one track of the conversion vertex associated with the seed cluster, or if this cluster has the same
matched conversion vertex as the seed cluster. The conversion vertex is built before the supercluster con-
struction. By default, only the best-matched tracks and conversion vertices are used for the matching.
Furthermore, only tracks that contain silicon hits, and conversion vertices made up only of tracks containing
silicon hits, are used for satellite cluster matching. The iteration of the satellite finding is applied in the
cluster list in the order of the cluster pr to seek all clusters that are possible to be satellites, where one
cluster can be regarded as a satellite once. The iteration continues until all available clusters have been
examined.

+ . o
All e*, v: Electrons only:
Add all clusters within 3 x 5 window Seed, secondary cluster
around seed cluster. match the same track.

O .

5x0.025

12 x 0.025

3% 0.025 5x0.025

Converted photons only:

Add topo-clusters that have the same conversion  Add topo-clusters with a frack match that is part of
vertex matched as the seed cluster. the conversion vertex matched to the seed cluster.

Figure 3.24: Diagram of the superclustering algorithm for electrons and photons. Seed clusters are
shown in red, and satellite clusters in blue [49].
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After superclusters are formed by all seed clusters and their associated satellites, the final step is to select
the cells of a supercluster by combining the list of cells associated with each individual cluster to make a
final list for the supercluster, denoted as “cell summation”. This step only includes cells from the first three
LAr calorimeter layers, as well as the pre-sampler, and the E4 scintillators in the transition region. It is well
known that the electron or photon shower tends to have a shape with narrow 7 and wide ¢. So as a final
step prior to calibration, the size of each constituent topo-cluster is restricted to three (five) cells across in
the 7 direction in the barrel (end-cap) region, with respect to the cluster barycenter by removing cells from
the cluster falling in a region outside of the threshold in 7. However, in order to include cells containing
energy from interactions between the primary electron or photon, and the detector material, no restrictions
are applied in the ¢-direction. The n-restriction does not significantly have an impact on the electron and
converted photon reconstruction, as the magnetic field in the ID ensures that the separation of the electron
and bremsstrahlung photons (or the converted photon tracks) occurs mainly in the ¢ direction. As shown
in Fig. 3.25, the change in the average shower containment for 7-restricted superclusters is equivalent to
clusters built using the sliding window algorithm. As the calibration will be introduced in Chapter 6, no
further details are given here.

Ambiguity Resolution for Electron and Photon

After the electron and photon superclusters are built, initial energy calibration and position correction are
applied to them. But since electron and photon superclusters are built independently, a given seed cluster
can produce both an electron and a photon. In such cases, as shown in Fig. 3.26, the ambiguity resolution
procedure for the electron and photon should be applied where the trajectory information from the tracker
can be used. Tracks are matched to electron superclusters and conversion vertices to photon superclusters.
The matching is performed in the same way that the matching to EM topo-clusters was performed, but
using the superclusters instead. The final output is that if a particular object can be easily identified only as
a photon (a cluster with no good track attached) or only as an electron (a cluster with a good track attached
and no good photon conversion vertex), then only a photon or an electron object is created. Otherwise,
both an electron and a photon object are created and these cases are marked explicitly as ambiguous,
allowing the final classification of these objects to be determined based on the specific requirements of each
analysis. It means that the sample of electron or photon candidates is still highly contaminated with photon
conversions or low pr electrons. Dedicated cuts to reject the latter are necessary which can be achieved by
the foundation of electron and photon identification.

Electron and photon identification

The purpose of electron and photon identification is to select pure primary electron and photon samples
from collision vertices. The identification algorithm should be able to suppress the radiated particles from
the hadronic process. The algorithm makes use of the longitudinal and transverse shower profiles of the
candidate particles that are consistent with the expected EM showers of electron photons. The input
variables for electron and photon identification are summarized in Tab. 3.4.

The identification of electrons relies on a likelihood discriminant constructed from quantities based on the
ID track and lateral/longitudinal development of the EM shower [50].

Lspp) = HPs(b),i(xi), (3.14)
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Figure 3.25: Average shower containment as a function of true shower energy for simulated electrons
reconstructed via a sliding window and supercluster-based approaches. Included also are superclus-
ters built using topo-clusters which are allowed unrestricted growth in the n-direction [49].

where Z is the vector of discriminating variable values and P ;(z;) is the value of the signal probability
density function of the i variable evaluated at z;. In the same way, P, ;(z;) refers to the background
probability function. Then the signal and the background are fitted by using the Kernel Density Estimation
method [51] included in the TMVA software package [52], and finally, a discriminative variable d; = ﬁsﬁfﬁg
that can distinguish the signal and the background is obtained. Samples of MC simulation of dijet, Z— ee,
and W— ev, are used to determine likelihood function and extract electron efficiencies in bins of pt and
n as shown in Fig. 3.27, which are measured with samples of Z— ee and J/i¢) — ee. Based on these
efficiencies, three working points are defined as Tight, Medium, and Loose, corresponding to 80%, 90%
and 98% efficiencies, respectively. The uncertainties of the electron identification efficiency are 7% at
Et = 4.5GeV and decrease with transverse energy, reaching better than £1% for 30 < Et < 250 GeV.
The systematic uncertainties in the measurements are dominated by background subtraction uncertainties
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Figure 3.26: Flowchart showing the logic of the ambiguity resolution for particles initially reconstructed
both as electrons and photons [49].

Category Description Name Usage
Hadronic leakage Ratio of Er in the first layer of HCAL to the one of EM cluster (|| < 0.8 and 5| > 1.37) Riad, e/y
Ratio of £ in HCAL to the one of EM cluster (0.8 < |5| < 1.37) Rpad e/y
EM third layer Ratio of energy in the third layer to the total energy in ECAL fs e
EM second layer Ratio of sum of energies in the 3 x 7 to the one in the 7 x 7 x ¢ rectangle centered around the most energetic cell R, e/y
Lateral shower width \/(Z En2)/(X E) — (X Emi)/(X Ei))?, within a window of 3 x 5 cells wy, e/
Ratio of sum of energies in the 3 x 3 to the one in the 3 x 77 x ¢ rectangle centered around the most energetic cell Ry e/
EM first layer Total lateral shower width /(3" Ei(i — imax)?)/ (3 E;), within a window of Az & 0.0625 where i, is the index of the highest-energy cell  wy, e/
Lateral shower width /(3" Ei(i — imax)?) /(Y- E:), within a window of 3 cell around the most energetic W3 5
Energy fraction outside core of three central cells, within seven cells feide vy
Difference between the energy of the second maximum cell, and the energy of the smallest cell between the first and second maxima ~ AE; 5
Ratio of the energy difference between the first and second maximum cells in clusters to the sum of theses energies Eatio e/
Ratio of the energy measured in the first layer to the total energy of the ECAL fi e/
Track conditions Number of hits in the innermost pixel layer Ninnermost e
Number of hits in the pixel detector NPixel e
Total number of hits in the pixel and SCT ng; e
Transverse impact parameter relative to the beam-line dy e
Significance of transverse impact parameter w.r.t. its uncertainty |do/o(dy)] e
Momentum loss by the track between the perigee and the last measurement point divided by the momentum at perigee Ap/p e
Likelihood probability based on transition radiation in the TRT eProbabilityHT e
Track-cluster matching An between cluster position in the first layer of ECAL and the extrapolated track Ay e
A¢ between the cluster position in the second layer of ECAL and the momentum-rescaled track Ares e
Ratio of the cluster energy to the measured track momentum E/p e

Table 3.4: Discriminating variables used for electron and photon identification. The usage column
indicates if the variables are used for the identification of electrons, photons, or both [49].

at low E. For larger values of Et, additional systematic uncertainties of +0.5%, £1.0%, £1.5% assigned
due to variations in the electron efficiency with F1 for Loose, Medium and Tight identification, respectively,
limiting the precision. Besides, the ratio of efficiency measured by data and simulation is calculated as scale
factors to be applied in the offline analysis.

The identification of photon is based on a set of selection on several discriminating variables related to
the longitudinal and lateral shower development in the EM calorimeter, and the shower leakage to the
hadronic calorimeter. These variables take advantage of the fact that prompt photons tend to produce a
narrower shower and smaller leakage to the HCAL compared to photons from hadronic jets and 7% — ~+.
The photon identification criteria are optimized using MC simulation of y+jet, vy, H— ~v, as well as
the sample of background photons in QCD dijets events. Three working points defined as Tight, Medium,
and Loose are provided by the ATLAS experiment. The Loose working points are typically used for one-
photon and two-photon triggering and are defined by several shower shape variables. The Medium working
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Figure 3.27: The electron identification efficiency in Z— ee events in data as a function of Er (left)
and as a function of 7 (right) for the Loose, Medium and Tight operating points. The efficiencies are
obtained by applying data-to-simulation efficiency ratios measured in J/1) — ee and Z— ee events to
Z— ee simulation. The inner uncertainties are statistical and the total uncertainties are the statistical
and systematic uncertainties in the data-to-simulation efficiency ratio added in quadrature. For both
plots, the bottom panel shows the data-to-simulation ratios [49].

points include all selection requirements of the Loose working point in addition to a loose choice of Fiatio
(the ratio of the energy difference between the largest energy deposition and the second largest energy
deposition in the cluster to the sum of the two energies) for triggering, which is mainly used in the case
of the high pileup. The Tight working points are mainly used for the offline analysis. It uses the full
granularity information of the calorimeter including the fine structure information of the first sampling layer.
Moreover, a multivariate algorithm is used to optimize the power of the discrimination and the optimization
is applied separately for both converted and unconverted photons (the Loose and Medium working treat
the converted and unconverted photons identically). The main difference between the shower shapes of
the converted and unconverted photon is the opening angle of the converted eTe™ pair, which is amplified
under the magnetic field and also has additional reactions with the upstream material of the calorimeter.
The efficiency of photon identification is measured by using data and simulated samples with three different
methods: photons from final state radiation of the Z boson decay (Z— ¢¢~); photons from an exclusive
photon sample with a matrix method; photons emulated by the electron shower shape of Z— ee. These three
methods of efficiency measurement are performed using different processes, with different event topologies
that may impact the photon efficiency. Fig. 3.28 shows the Tight identification efficiencies for unconverted
and converted photons for these three methods. The data to MC scale factors are also shown for each
measurement separately. Within their statistical and systematic uncertainties, results agree with each other.
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Figure 3.28: Photon identification efficiency, and the ratio of data to MC efficiencies, for unconverted
photons (left) and converted photons (right) with the requirement of Loose isolation applied as pre-
selection, as a function of Er in the region of || < 0.6. The combined scale factor obtained using
a weighted average of scale factors from the individual measurements is also presented; the band
represents the total uncertainty [49].
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Electron and photon isolation

Hadrons in jets which leave active signal in the detector, can be misidentified as electrons or photons, while
the signature from real electrons and photons is more discrete and clean. In order to further improve the
false signal rejection rate, the candidates are required to have less surrounded activities, which are quantifies
by the isolation variables.

The isolation variables are generally defined with the charged tracks or calorimeter clusters near the candi-
date. The calorimeter isolation E%onEQO (40) represents the sum of transverse energy of the clusters in the
cone size of AR = 0.2(0.4) around the electron or photon, and the track isolation p$°"®2° represents the
sum of the transverse momentum of the tracks in the cone size of AR = 0.2 around the electron or photon
where tracks matched to the electron or converted photon are excluded, and p¥"©"¢20 represents the sum
of the transverse momentum of the tracks in the cone size of AR = min(10/pT,0.2) around the electron

or photon. They are computed as follows:

E_ci-_one20 = -IF?E,SV - ET,core - ET,Ieakage(ET7 n, AR) - ET,piIeup(na AR) (3.15a)
pgronego _ Z ptT . p’eftrack p%?nverted ~,cluster (3'15b)
tEcone

where the EiTsf’raW is the raw calorimeter isolation, ET core is the energy of the EM calorimeter cells contained
ina An x A¢ = 5 x 7 (in EM-middle-layer units) rectangular cluster around the barycentre of the EM

particle cluster.

For electrons, different isolation working points are shown in Table 3.5. For photons, the requirements
of different isolation working points are shown in Table 3.6. The working point of most of the photon
analyses is the loose.

Working point Calorimeter isolation Track isolation
Gradient € = 0.1143 x pr + 92.14% (with F£"2Y) € = 0.1143 x py + 92.14% (with pyareone0)
HighPtCaloOnly  E%°" < max(0.015 x pr, 3.5 GeV) -
Loose Eene20 /pn < 0.20 pyarcone20 /1 < 0.15
Tight Eone20 /pr < 0.06 pyarcene20 /i < 0.06

Table 3.5: Definition of the electron isolation working points and isolation efficiency e. In the Gradient
working point definition, the unit of pt is GeV. All working points use a cone size of AR = 0.2 for
calorimeter isolation and ARmax = 0.2 for track isolation.

Working point Calorimeter isolation Track isolation
Loose Eone20 < 0.065 x Ep pene /Br < 0.05
Tight ELM40 < (0,022 X Ep +2.45GeV  pso" /B < 0.05

TightCaloOnly Fne0 < (.022 x Er + 2.45GeV -

Table 3.6: Definition of the photon isolation working points.

The efficiencies of the corresponding isolation working points for electrons and photons are shown in Fig. 3.29,
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Figure 3.29: Efficiency of the different isolation working points for electrons and photons from inclu-
sive Z— ee and Z— (/- events as a function of the electron Er (top left), electron 7 (top right), and
converted or unconverted photon Er (bottom). The lower panel shows the ratio of the efficiencies
measured in data and in MC simulations. The total uncertainties are shown, including the statistical
and systematic components [49].

3.3.2 Jet Reconstruction and Flavour Tagging

Jets, as the product of the hadronization of quarks or gluons, consist of collimated charged and neutral

hadrons. It is an essential piece of the physics program due to its frequent presence in signal processes and
various backgrounds. A jet has fruitful activity in both the inner detector and the calorimeters, where the
charged hadrons deposit energies in ID, and the hadronic shower is in the calorimeters with most of them
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in HCAL.

In order to reconstruct the jet, calorimeter cells are first clustered into topo-clusters (similar to electron
and photon in Sec. 3.3.1) and the anti-k; algorithm [53] with a radius parameter of R = 0.4. The anti-k;
algorithm relies in the distance measures:

11 A

d;j = min (kifz’ k’%) R] (3.16a)
1

dip = 2 (3.16b)
ti

where d;; and d;p are respectively the distance between entities (particles, pseudo-jets) and the one between
entity ¢ and the beam (B), A?j = (yi — yj)2 + (¢i — ¢j)2 and ky;, y; and ¢; are respectively the transverse
momentum, rapidity and azimuthal of entity 1.

According to the definition of d;;, between hard and soft particles, its value is exclusively determined
by the transverse momentum of the hard one, hence the two particles will be combined if they are within
the same core of a given radius R (i.e. dij; < dip where index 1 corresponds to the hard particle). Such
kind of jets exploring only the calorimeter information is called EMtopo jets.

Then combining both the tracking and calorimeter information, the PFlow jets are reconstructed based
on the particle flow algorithm [54]. Specifically, energy deposited in the calorimeter by charged particles
is subtracted from the observed topo-clusters and replaced by the momenta of tracks that are matched to
those topo-clusters [55]. For all tracks up to pitk = 100 GeV, the subtraction is performed unless the energy

E°S in a cone of size AR = 0.15 around the extrapolated particle satisfies

Eclus_ < Edep >
(Edep)

> 33.2 x log;o(40 GeV /pik) (3.17)

where < Eyep > is the expected mean energy deposit by pions and o(Eqep) its expected standard deviation.

Consequently, for low track momenta, where the track resolution is supposed to be better than the one of
the calorimeter, the subtraction is often performed, unless the deposited energy in the calorimeter is very
high. While with the increased calorimeter resolution at large momenta, the algorithm slowly tends to retain
the calorimeter information. Above pifk = 100 GeV, the subtraction is no longer performed which makes

the PFlow identical to EMtopo one.

Such treatment improves the jet energy and angular resolution, reconstruction efficiency and stability with
respect to pileup.

Jets (with |n| < 2.5) can be classified as light flavour (light quarks and gluon) jets, c-jets or b-jets. The
b-jet can be used to study some specific processes, for instance, the Higgs to bb decay. The b-hadrons from
the b-jet usually lead to displaced vertices and significant features on the impact parameters of tracks. The
jet flavour is determined using a deep-learning neural network named as DL1r, which is trained with fruitful
features from tracks and calorimeters, such as jet transverse momentum and pseudorapidity, likelihood ratios
between different flavour hypotheses (b, ¢, light), variables associated to a secondary vertex (number of
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tracks, invariant mass of tracks, distance between secondary and primary vertices, etc.).

The performance of the b-tagging is evaluated with an inclusive ¢ MC. Fig. 3.30 shows the b-tagging
efficiency versus the rejection rate for light flavour and c-jets. Different working points are thus defined as
the thresholds on the DL1r output discriminant, which give fixed b-tagging efficiency, for instance, 85%,
77%. 70% and 60%.

c AL L L L AL R L L AL I c LIS B L L B B B B B N ) N R B B L B B B
2 o5 ATLAS Simulation 2 | ATLAS Simulation ]
@ E - — MV2 3 @ - — MV2
> E (s=13TeV, tt DL 3 ® - {s=13TeV, tt bt .
o 104;.Jet p; 220 GeV,|<25 ... p3D B 3 102L Jetp; 220 GeV, <25 - iP3D |
3 g — - SV1 E ° B —- SV1 E
3 5 —oo JefFitter 7 NS - JetFitter
£ 10%k = = - B
= - E
— ] [ !
7 RN <
10%E E 10 ‘\\\\ N =
3 £ e 3
r e 7 C \\\N n
RN r e B
10 5 T 1
1k oo b b e b by Ty J [ IR Lo o b o by by
N 2 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T N 2 T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T
> E > E
s 1.5; e E s 1.5; ____________ E
g T = e — E
o 05F R — - 3 Q 058 e - E
KS' 0 LR ety et S e TR A0 Akt i Akt Mk W AR H Y N WO E 0 1“7“1 col v by b
o o
0.5 0.6 0.7 0.8 0.9 1 0.5 0.6 0.7 0.8 0.9 1
b-jet tagging efficiency b-jet tagging efficiency

Figure 3.30: (left) light-flavour jet and (right) c-jet rejections versus the b-jet tagging efficiency for the
various b-tagging algorithms evaluated on the baseline t¢ events [56].

The state-of-art DL1r algorithm achieves a better b-tagging performance with a higher rejection on other
flavours at the same efficiency for b-jets, with respect to the others used in the past.

The working point used in the HH — bbyy analysis [57] corresponds to an efficiency of 77% for jets
containing b-hadrons, and the mis-identification rate is 1/130 (1/4.9) for light flavour (charm) jets. Scale
factors are applied to the simulated events, to correct for differences in b-tagging efficiency between data
and simulation. There scale factors are measured as a function of the jet pr using a likelihood-based method
in a sample with enhanced ¢t events [56].
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3.4 Upgrade for HL-LHC

As mentioned in Fig. 3.6, the current LHC will be upgraded to a high luminosity version after the long
shutdown 3 in 2029. In order to achieve the target integrated luminosity of 3000 fb~! which is twenty
times as the current recorded one of Run 2, the main parameters foreseen for the HL-LHC [58] are listed in
Tab. 3.7, respectively for different bunch filling schemes. As compared to the design of the current LHC,
the HL-LHC benefits from a doubled number of protons per bunch Ny, which brings a nearly doubled beam
current, reduction on the /3 function and normalized emittance €,. In addition, the crab-cavity modules
used to compensate for the bunch crossing angle can further improve the luminosity. All these upgrades
contribute to the improvement of luminosity at the HL-LHC.

Nominal HL-LHC HL-LHC  HL-LHC

Parameter LHC 25 ns 25 ns

(design report) (standard) (BCMS) (8b4e)
Beam energy in collision [TeV] 7 7 7 7
Ny [1011] 1.15 2.2 2.2 2.3
np 2808 2748 2604 1968
Beam current [A] 0.58 1.09 1.03 0.82
Minimum B* [m] 0.55 0.2 0.2 0.2
en [um] 3.75 2.50 2.50 2.20
e, [eVs] 2.50 2.50 2.50 2.50
Total reduction factor Ry without crab cavities at min. 8* 0.836 0.369 0.369 0.369
Total reduction factor Ry without crab cavities at min. g* (0.981) 0.715 0.715 0.740
Peak luminosity with crab cavities Lpeax X R1/Ro [10%* ecm~2s71] (1.18) 12.6 1.9 1.6
Levelled luminosity for = 140 [1034 cm 257 1] - 5.32 5.02 5.03
Events/crossing u (with levelling and crab cavities) 27 140 140 140
Maximum line density of pile-up events during fill [events/mm] 0.21 1.3 1.3 1.3

Table 3.7: High Luminosity LHC main parameters for proton collisions and comparison with respect
to the nominal LHC design [58].

Apart from the upgrade on collider, the experiments also need to be upgraded to suit the new high luminosity
environment.

For the project of the ATLAS detector upgrade [59, 60], all the pixels and strips in the inner detector
are going to be replaced by an all-silicon inner Tracker (ITK) [61], in order to satisfy the largely increased
signal intensity and device occupancy, as well as the hardness to the much higher radiations. With the new
ITK, the coverage on 7 is extended from 2.5 (current) to 4. In order to separate vertices from different pp
collisions in a very high pileup environment (~ 140), a High Granularity Timing Detector (HGTD) [62] will be
used to track the Zj information of vertices, which will be installed in the forward region (2.4 < || < 4.0).
Other upgrades include the new sub-detectors in the muon chamber, improved electronics, trigger and data
acquisition system.

For the upgrade project of the CMS detector [63], the tracker [64] will consist of about 200 m? sili-
con modules, with increased granularity and extended 7 acceptance up to 3.8. A MIP Timing Detector
(MTD) [65] will be installed to give timing information for MIPs with 30-40 ps resolution, which helps to
assign charged tracker to the correct interaction vertices. The readout electronics of the calorimeter will
be replaced in order to cope with increased pileup events and to provide the needed timing resolution. The
muon systematics and the triggers will be also upgraded.
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3.5 Conclusion

In this chapter, an overview of the large hadron collider and the ATLAS detector has been presented.
In particular, the structure and functions of the ATLAS ECAL are presented, as well as the relevant recon-
struction and identification of electrons and photons. The upgrade project for HL-LHC and the ATLAS and
CMS detectors are also introduced.






4 - Search for Higgs pair production in the bbyy final state

4.1 Double Higgs Production

As described in Eq. 1.31, the Higgs mechanism predicts the existence of the Higgs boson which has
self-coupling interactions:

1 1
L= §8uh(9“h — im%[hQ — gk = grannh? (4.1)

In case of the SM: \
m¥ = =20, grhn = NV, Ghhhh = (4.2)

4
The quartic coupling is nearly out of reach with the current data recorded in LHC. Nevertheless, the direct
measurement of trilinear coupling is possible by probing the Higgs pair production. At leading order (LO),
the Higgs pair production is mainly produced via gluon-gluon fusion (ggF), with two representative Feynman
diagrams (Fig. 4.1). The so-called triangle diagram includes the trilinear Higgs coupling and produces two
on-shell Higgs bosons, with an intermediate off-shell Higgs originating from a triangle quark loop dominated
by top quark. The second diagram, the so-called box, involves a quark loop and produces also two on-shell
Higgs bosons. The theory predicts a destructive interference between the triangle and the box diagrams,
resulting in a total cross section of 31.02 fb computed at next-to-next-to-leading-order (NNLO) for 13 TeV
center of mass energy and for a Higgs boson mass of around 125 GeV.
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Figure 4.1: Feynman diagrams for the dominant Higgs pair production via gluon-gluon fusion, with (a)
trilinear coupling, (b) box diagram. x, is the Higgs self-coupling modifier [57].

A secondary contribution to Higgs pair production is the vector boson fusion (VBF) process with three main
diagrams (Fig. 4.2). Under the assumption of the SM, the diagrams (a) and (c) compensate at the tree
level, eventually, the production is dominated by the tri-linear diagram (b). The total cross section predicted
by the SM is 1.73 fb calculated at next-to-next-to-next-to-leading order (N3LO).

The Higgs self-coupling modifier k) is defined as the ratio between the measured trilinear coupling and the
SM prediction.

KX = hhi/Ghih (4.3)
The VBF production includes also a diagram with the VV HH coupling, from which one can define the

relevant coupling modifier xoy. In this analysis, xovy is fixed to 1, as the SM model prediction. Some on-
going study is currently preceding in the group in order to study the oy coupling, and will be published soon.

91
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Figure 4.2: Feynman diagrams for the vector boson fusion production processes: (a) VV H H vertex,
(b) trilinear coupling, and (¢) VV H vertex [57].

Although the cross section of the SM di-Higgs production is small (32.75 fb) which is almost one thousand
times smaller than the single Higgs production, significant growth in the production rate can appear with
anomalous Higg self-coupling ) (Fig. 4.3), and increases the sensitivity to search for such kind of di-Higgs
signal.

| I I | I
HH production at 14 TeV LHC at (N)LO in QCD
M,,=125 GeV, MSTW2008 (N)LO pdf (68%cl)
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Figure 4.3: Evolution of di-Higgs production cross section with x [66].

Among the various Feynman diagrams, the triangle one prefers a softer di-Higgs mass (Fig. 4.4) due to the
intermediate off-shell Higgs boson, while the ggF box one as well as the VVHH and VV H ones via VBF
production are more enhanced at high mass. This indicates a possibility to maximize the sensitivity of the
Higgs self-coupling by exploring the low di-Higgs mass region.
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Figure 4.4: Sketch of the variant di-Higgs mass spectrum for gluon-gluon fusion process in SM [67].

Such kind of signal leaves no steep peak in the di-Higgs invariant mass spectrum, hence is called non-
resonant production or signal in the context of this analysis.

In addition to the non-resonant HH signal, the analysis has also an interest in exploring new resonant
particles, which are indeed predicted by the many BSM theories. In this analysis, a new CP-even scalar
heavy particle similar to the Higgs is explored, which decays into two on-shell SM Higgs, as shown in Fig. 4.5.
Such kind of new heavy scalar is predicted by several BSM theories, for instance, the two Higgs Doublet
Model (2HDM) which extends the Higgs sector by a CP-even scalar heavy Higgs, two charged Higgs, and a
CP-odd pseudoscalar [68]. In some theories, di-Higgs production can be enhanced through the presence of a
graviton or radion, however current experimental limits [69] exclude these models for low-mass resonances.

g H

Figure 4.5: Feynman diagram of resonant HH production with a new scalar as intermediate parti-
cle [57].

4.2 Qverview of Channels
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The Higgs pair production can be explored with various channels according to the decays of the Higgs
pair (Fig. 4.6). Reviews of status and perspectives can be found in Ref. [70, 71] . The following channels
have been probed using the full Run 2 data:

« ATLAS: bbyy [57], bbr7 [72][73], bbbb [74][75][76], bblviy (WW, ZZ, T7) [77].
« CMS: bbyy [78], bbrT [79][80], bbbb [81][82], bb+leptons (WW, 77, ZZ) [83][84], multi-leptons [85].

bb WWwW T zZZ YY
e
ww 25% 4.6%
TT 7.3% 2.7% 0.39%
44 3.1% 1.1% 0.33% | 0.069%

Figure 4.6: HH production channels and branching ratios.

This analysis studies both the non-resonant and resonant HH production via the bby~y channel which benefits
from both the largest branching ratio of H — bb and the good resolution from the H — ~v mass peak.
For the non-resonant signal, the production rate and the Higgs self-coupling modifier k) are studied, while
for the resonant signal, the production rate as a function of the resonant mass hypotheses are also studied.
Some update of the non-resonant bbyy channel is foreseen with further analysis (Ref. [36]), with emphasis
n measurement/limit on koy. A limit on Koy deduced by the ATLAS bbbb group can be found in Ref. [75].
CMS has explored oy and excluded koy = 0 [87].

4.3 Data and Simulation Samples

The analysis [57] uses the full Run 2 pp collision data collected by the ATLAS experiment from 2015 to
2018 at a center of mass energy of /s = 13 TeV. After data quality requirements, the full dataset represents
an integrated luminosity of 139 4+ 2.4 fb~!, with an averaged number of inelastic pp collisions per bunch
crossing of 34.2.

The Monte Carlo samples (Tab. 4.1) are simulated for both signal and background. The background is
mainly made of the continuum diphoton and single Higgs processes, where the continuum diphoton back-
ground includes v+, vj and jj components with jet misidentified as a photon. The fractions of components
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are estimated using a data-driven technique [38].

Process Generator PDF set Showering Tune
non-resonant ggF HH Powheg Box v2 +FT PDFLHC Pythia 8.2 A14
non-resonant VBF HH MadGraph5_aMC@NLO NNPDF3.0nlo Pythia 8.2 A4
Resonant ggF HH MadGraph5_aMC@NLO NNPDF2.3lo Herwig 7.1.3 H7.1 - Default
ggF H NNLOPS PDFLHC Pythia 8.2 AZNLO
VBF H Powheg Box v2 PDFLHC Pythia 8.2 AZNLO
WH Powheg Box v2 PDFLHC Pythia 8.2 AZNLO
qq - ZH Powheg Box v2 PDFLHC Pythia 8.2 AZNLO
gg — ZH Powheg Box v2 PDFLHC Pythia 8.2 AZNLO
ttH Powheg Box v2 NNPDF3.0nlo Pythia 8.2 A14
bbH Powheg Box v2 NNPDF3.0nlo Pythia 8.2 A14
tHq MadGraph5_aMC@NLO  NNPDF3.0nlo Pythia 8.2 A14
tHW MadGraph5_aMC@NLO NNPDF3.0nlo Pythia 8.2 A4
yytjets Sherpa 2.2.4 [57] NNPDF3.0nnlo Sherpa 2.2.4 -
ttyy MadGraph5_aMC@NLO NNPDF2.3lo Pythia 8.2 -

Table 4.1: Summary of samples used for nominal Higgs boson pair signal and single-Higgs-boson back-
ground, split by production mode, and continuum background. The generator used in the simulation,
the PDF set, and the set of tuned parameters (tune) are also provided [57].

The ggF non-resonant HH signal is generated at next-to-leading-order accuracy in QCD with finite top-
quark mass in both the real and virtual corrections (NLO FT) [89], using the Powheg generator with the
PDF4LHC15 parton distribution function (PDF) set.

The Pythia 8 generator is used for parton showering, hadronization and underlying-event simulation. Herwig
7 is used as an alternative generator to estimate the theory uncertainty from the parton shower generator.
Samples are generated for coupling modifier values k) = 1 and 10. A reweighting technique [90], which
will be described in the next section, is used to generate any x) signal sample by a linear combination of a
basis of samples with ) = 0, 1, 20.

For events from VBF HH production, MadGraph5 aMC®@NLO is used to generate events at leading or-
der (LO), interfaced with Pythia 8 for parton showering. Samples are generated at LO for four values of the
coupling modifier k) = 0,1,2 and 10 and with all the other couplings equal to the SM predictions, such
as koy and Ky, the VVHH and VV H coupling modifiers. The cross section of the VBF HH process is
evaluated at N3LO in QCD, and the N3LO-to-LO cross-section ratio at the SM value is calculated and this
factor is applied to the VBF HH cross section.

The cross sections used for the HH signal generations are parameterized as a function of k) with a second
order polynomial, as shown in Fig. 4.7 where the values are taken from the LHC HH cross section working
group [91]. GeV [16].
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Figure 4.7: Cross section in the function of «, for HH production via ggF and VBF.

The dominant background is the continuum, including v, ~jet and dijets with additional jets. The two
last correspond to the final states with jets misidentified as photons. The fractions of these components are
estimated using a data-driven technique [38] based on photon identification and isolation. The v + jets
background is simulated with the Sherpa generator. QCD NLO-accurate matrix elements for up to one
parton, and LO-accurate matrix elements for up to three partons, are calculated. These are calculated
in the five-flavour scheme including b-quarks in the massless approximation and merged with the Sherpa
parton shower. Within the parton shower, b-quarks were then treated as being massive. Events from tty~y
processes are produced with MadGraph5 aMCG@NLO in the four-flavor scheme.

Production of single Higgs bosons via ggF, VBF, WH, ZH (q¢ — ZH and g9 — ZH), ttH, bbH, and tH
(tHg and tHW) is modelled using the set of MC generation configurations in Tab. 4.1.

For both single Higgs boson production and di-Higgs signal, a Higgs boson mass of 125.09 GeV is as-
sumed. The analysis assumes a branching ratio of 0.227% for the Higgs boson decay into two photons and
a branching ratio of 58.2% for the Higgs boson decay into two b-quarks. The inclusive cross sections of
these processes are normalized to the most precise available theoretical values.

The pileup effect is simulated in the MC, and the differences between the simulated and observed dis-
tributions of the number of interactions per bunch crossing are corrected for by applying pileup scale factors
to simulated events. A full simulation of the ATLAS detector based on Geant4 is used to reproduce the
detector response to single-Higgs-boson processes. The continuum background and signal samples are pro-
cessed by AtlFastll [92], a fast simulation of the ATLAS detector response which is shown to be able to
accurately simulate diphoton events.

4.4 ky-reweighting Technique for Signal Sample Generations
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In order to avoid generating numerous MC samples for various k), a reweighting technique is used to
produce signal samples with a different hypothesis of k). The sample is obtained by applying correction
weights to the SM variation of the ggHH production, as a function of the truth di-Higgs invariant mass
mpp. As shown in Fig. 4.1, at LO, the total amplitude A(ky) for a given value of k) is the sum of the
triangle (T) and the box (B) diagrams, which can be simply expressed as:

A(ky) =B+ r\T (4.4)
Hence the total cross section is expressed in the function of x:
o(pp = HH) ~ |B]” + kx(B*T + TB*) + r3|T? (4.5)

The basis of three generated samples x) = 0,1, 20 is used to derive the coefficients:

A(ky=0) = A(0) = B
Alky=1)=A1)=B+T (4.6)
A(ry = 20) = A(20) = B + 20T

Therefore the total cross section for a given k) signal can be calculated through a linear combination of the
three samples:

k2 399 40 2 K2 — Ky
A 2o (142 -2 A(0)]? — Ry — —r2 | A2+ 22 A(20)]? 4.7
|A(kp)| ( +55 380’“)' (0)] +< K\ k) 1A+ 350 | A(20)| (4.7)

The method is also applied on the differential cross section, by deriving weights in the function of truth
mpp, for each k) value. It is validated by comparing the event yields and diphoton mass m.., distributions
between the generated sample at x) = 10 and the reweighted sample from k) = 1 to k) = 10. A systematic
uncertainty of 3%-4% is assigned to the reweighting technique, by taking the maximum difference observed
in this validation. More details will be introduced in the section on systematic uncertainties. The reweighting
technique can be easily generated with additive degrees of x modifiers, such as ; [90].

4.5 Event selection

4.5.1 Selection

Events are required to satisfy several photon-relevant selection:

+ Events are required to pass triggers, requiring two reconstructed photon candidates with a minimum
transverse energy of 35 GeV and 25 GeV respectively for the leading and subleading photons. The
trigger also requires photon candidates to pass a loose quality photon identification criteria for 2015
and 2016, while for 2017-2018, due to the increased luminosity, a medium criteria is used.

+ Events should contain at least two photons satisfying both the tight identification criteria and the
Loose isolation criteria.

* The transverse momentum of the (sub)leading photon is required to be above 35% (25%) of m.,.
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* A neural network (NN) is trained to identify the diphoton vertex, and the one with the best NN score
among the reconstructed vertices is selected. This NN gathers information about the longitudinal
shower in the LAr calorimeter of the two photons, the scalar quadratic sum of the track transverse
momentum associated with a vertex, and the azimuthal angle distance A¢ between tracks of this
vertex and the diphoton system. Two NNs are trained respectively for the case with two unconverted
photons, and the case with at least one converted photon. This specific diphoton vertex chosen
algorithm leads to a better diphoton mass resolution as compared to the usual algorithm of ATLAS.

* The diphoton mass m., reconstructed by the two leading photons is required to belong to the range
[105, 160] GeV.

Another selection for jets and leptons is summarized below:

* Events should have exactly two b-tagged jets passing the 77% efficient working point. Jets are firstly
ranked by their b-tagging scores then ranked by their transverse momentum. Any event with more
than two such b-tagged jets is vetoed in order to be statistically orthogonal to the HH — bbbb
channel.

* No electrons or muons are present, in order to suppress the top background.

* At most six jets should be present in the central region (|| < 2.5) of the detector, which reduces
mainly the ttH background, with hadronically decayed top quarks.

Events satisfying the above selection are plotted in m., range from 105 GeV to 160 GeV in Fig. 4.9.

The background is dominated by the v+, vjet and dijets events, where the first corresponds to the genuine
diphoton process, while the rest corresponds to events with either one or two jets misidentified as photons.
The fractions of this component are estimated with a data-driven method called 2 x 2D sideband method,
which counts the number of photons and jets passing or failing the photon tight ID and loose isolation
criteria. The phase space is divided into regions of leading/sub-leading photon, tight/non-tight ID and
isolated /non-isolated, which gives one signal region (both photons are isolated and passing tight ID) and 15
control regions (Fig. 4.8). A loose identification is pre-requested for photons in all the 16 categories. The
method solves the equations for the 16 categories, to obtained variables such as jet fakes tight ID photon,
or isolated photon, etc. Of these variables, the efficiencies for the real photons are based on Monte Carlo
simulation. Eventually the method extrapolates the fraction of fake photons within the signal region from
the composition of the various control regions.

After the selection, in the m.,, sideband defined outside the signal mass region 120 GeV < m., <130 GeV,
(85 £ 3)% of the events are genuine diphoton events, with the remaining (15 + 4)% consisting of y—jet
events and a negligible number of dijet events. The total background is normalized to the data sideband,
and the single Higgs background and the di-Higgs signal are scaled to the SM predictions. At this stage, no
significant discrepancy is observed between the data and the MC prediction.

4.5.2 Multivariables Selection and Categorization
*
bbyy
invariant mass 1, and the two objects invariant masses m,; and m.,, is used to improve the di-Higgs
mass resolution:

A modified di-Higgs invariant mass m benefiting from the correlations between the four bodies

Mg = My — gy — My + 250 GeV (4.8)
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Figure 4.8: Signal region and 15 control regions in the 2 x 2D sideband method based on photon
identification and isolation, where A, B, C, D respectively refer to passing/failing the tight or isolation
photon selection [93].

The mZBw distributions under different k) hypotheses for both gluon-gluon fusion and vector boson fusion
productions are shown in Fig. 4.10. For large x) signals, the production is dominated by the trilinear di-
agram, which is enhanced more in the soft mass region due to the off-shell intermediate Higgs boson, in

contrast, small k) ones are more distributed at high mass.

A further selection is optimized for the non-resonant signals, using boosted decision trees (BDT). In order
to prevent over-training, the MVA guideline of the analysis is to split the events into a training sample, a
public test sample and a private test sample, which contain respectively 50%, 25% and 25% fractions of
the events. The 50% training sample is designed to have sufficient events for the MVA model training, and
the public test sample is used for the model hyperparameters optimization. Once the MVA model is frozen,
its performance is evaluated with the rest 25% private test sample.

For the non-resonant signal, as seen in Fig. 4.10, there is a clear dependency of the di-Higgs mass on
kx. Hence two BDTs have been trained respectively in high mass (mZEw > 350 GeV) and low mass

(mzl;W < 350 GeV) regions. For high mass BDT, the SM (k) = 1) sample is considered as the signal for
training, while k) = 10 signal is used for low mass BDT. The input training variables are listed in Tab. 4.2.

The single topness exploits the agreement of the system of jets with the W and ¢ masses:

2 2
Xm:mmVCWmmw>+<mmmmﬁ7 4.9)
mw me
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Figure 4.9: Diphoton invariant mass m.., distribution for events after the preselection. The black dots
correspond to the data, the v+, 77 and jj events are scaled by the data-driven scale factors and the
total continuum background is normalized to the data sideband, while the single Higgs and HH signal
are scaled to the SM prediction [57].
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Figure 4.10: Invariant mass distributions of two photons and two b-jets under different s hypotheses,
via gluon-gluon fusion (a) and via vector boson fusion (b) [57].



4.5. EVENT SELECTION

101

Variable

Definition

Photon-related kinematic variables

PT/m'y'y
nand ¢

Transverse momentum of each of the two photons divided by the diphoton invariant mass m. -,

Pseudorapidity and azimuthal angle of the leading and subleading photon

Jet-related kinematic variables

b-tag status
pr.,mand ¢
PY . my5 and ¢5
Mpp

Ht

Single topness

Tightest fixed b-tag working point (60%, 70%, or 77%) that the jet passes

Transverse momentum, pseudorapidity and azimuthal angle of the two jets with the highest b-tagging score

Transverse momentum, pseudorapidity and azimuthal angle of the b-tagged jets system
Invariant mass of the two jets with the highest b-tagging score
Scalar sum of the p of the jets in the event

Variable to identify top quark as defined in Eq. (4.9)

Missing transverse momentum variables
E,IIX_‘IISS and d)mISS

Missing transverse momentum and its azimuthal angle

Table 4.2: Variables used in the BDT for the non-resonant analysis. All vectors in the event are rotated
so that the leading photon ¢ is equal to zero, while their relative azimuthal angular differences are
kept unchanged [57].

which is a useful variable to suppress the top background events.

The output BDT score is shown in Fig. 4.11 for different k) signals, backgrounds and observed data.
Signal-enhanced regions are considered for the final results, by cutting the BDT scores above certain thresh-
olds. A simultaneous 2D scan is performed to locate the thresholds giving the best sensitivity. The two
dashed vertical lines referring to the thresholds divide the spectrum into a tight score and a loose score
category, while the low score events are discarded. With both high mass and low mass BDT, four categories
are obtained for non-resonant signals. The thresholds for BDT categorization are shown in Tab. 4.3.
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Figure 4.11: Distributions of non-resonant BDT output, for (a) low mass region, and (b) high mass
region [57].

The m.,, distributions in the four signal categories are shown in Fig. 4.12. The data-derived fractions of
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Category Selection criteria

High mass BDT tight mlfl?’y’y > 350 GeV, BDT score € [0.967, 1]

High mass BDT loose m:l_wv > 350 GeV, BDT score € [[0.857,0.967]
Low mass BDT tight mil-)w < 350 GeV, BDT score € [0.966, 1]

Low mass BDT loose mZB,W < 350 GeV, BDT score € [0.881, 0.966]

Table 4.3: Definition of the four non-resonant categories defined by the mZTm regions and the BDT
score thresholds [57].

non-resonant 7y, yjet and dijet background are applied and the total background is normalized to the data
sideband. Most probably due to statistical fluctuations, only two events have been observed in the mass
window 120 GeV < m., < 130 GeV in the most sensitive high mass BDT tight category.
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Figure 4.12: Distributions of m., in various categories for the non-resonant HH analysis: (a) high mass
BDT tight, (b) high mass BDT loose, (c) low mass BDT tight, (d) low mass BDT loose. [57].
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4.6 Signal and Background Modelling

The single Higgs yields are fixed to the SM predictions, which are given by the MC simulation. The
sum of yields for all the single Higgs processes is listed in Tab. 4.4, as well as the HH signal for both ggF
and VBF productions at k), = 1. In the high mass BDT tight category, the single Higgs production has
a comparable yield with respect to the one of the di-Higgs process, while its contamination on signal is
significantly increased in the three other categories, under the hypothesis of k) = 1.

Yields High Mass BDT tight High Mass BDT loose Low Mass BDT tight Low Mass BDT loose
ggFHH (k) =1) 0.8733 0.3585 0.0471 0.0735
VBF HH (ky = 1) 0.0128 0.0165 0.0033 0.0071
Sum of single Higgs 0.6668 1.6140 0.2348 1.5247

Table 4.4: Table of the di-Higgs (k) = 1) and the single Higgs yields in the non-resonant BDT categories.

In order to interpolate between different k), a second order polynomial is used to parametrize the signal
yields in the function of k) (Tab. 4.5), respectively for ggF HH and VBF HH in each signal category.

Category Yields ggF HH Yields VBF HH

High Mass BDT tight ~ 1.56276 — 0.80348ky + 0.12113x%  0.04610 — 0.04709x, + 0.01376x32
High Mass BDT loose  0.69522 — 0.39900k + 0.06464x3  0.03877 — 0.03045k, + 0.00811x32
Low Mass BDT tight ~ 0.19526 — 0.20606x + 0.05781x3  0.01885 — 0.02444k + 0.00889x3

Low Mass BDT loose  0.32765 — 0.36127x + 0.10695x3  0.03575 — 0.04573k + 0.01712+3

Table 4.5: Yields parametrization in the function of x) for ggF HH and VBF HH signal in the four non-
resonant BDT categories.

After normalizing the yields with respect to the luminosity and the theoretical cross sections as shown in Fig.
4.7, the efficiency! of the ggF HH signal in each category is shown in Fig. 4.13 for the various ) hypotheses.
The blue curves are the efficiencies obtained with the x)-reweighted samples, where the statistical errors
are plotted. The red points correspond to the generated ) = 10 sample, with a generally good agreement
with respect to the reweighted k) = 10 sample. The largest discrepancy of around 6% is observed in the
high mass tight category, which is considered as systematic uncertainty from the reweighting technique.

The striking evolution of efficiencies in the function of k) is mainly due to the 350 GeV ngw split-
ting and the signal hypothesis used for the BDT training. First of all, the events from x) = 1 and 10 are

respectively used as signals for the training of the high mass and the low mass BDTs, therefore one expects

them to have high efficiencies of the BDT cuts. As well as the kinematic dependency of ngw in function

"It is actually acceptance times efficiency, for simplicity, the word efficiency will be used in all the following
text.
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of k), that for large absolute value of k), the di-Higgs production is dominated by the trilinear diagram

which is softer in the ngw spectrum. This leads to the decrease of efficiency in the high mass categories
when k) is far from zero, as well as the increase in efficiency in the low mass categories.
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Figure 4.13: Efficiencies of the ggF HH signal in the four non-resonant BDT categories. Using the SM
(k)) reweighted to any k), with overlap of the generated ) = 10 sample [93].

The analysis uses the diphoton invariant mass m.., as a final discriminate variable. The shape modelling is
derived from simulation, in particular, for 4 continuum background, a dedicated spurious signal criteria is
used to choose its shape.

4.6.1 HH signal and single H modelling

The HH signal and single Higgs m.., distributions are modelled with a double-sided crystal ball function
(DSCB) following the definition:

—MNLow
ALow - {352:: (bLow - t)] s t < —QLow
2
fosen(t) =N -4 exp (—5i ), € [~aLow, anig] (4.10)
ich o —MNHigh
AHigh . [%ii(bHigh — 75)] , t> OoHigh
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where

o« t = MyyTHOB

e with my, and o¢cp the center and the width of the Gaussian.

2
¢ Alow = exp (—QL;W), with —ap,0w the lower intersection of the point-wise function.

2
* Apigh = exp (—%) with apigh the higher intersection of the point-wise function.
* brow = ZEJ — QLow, With nrow the order of power law on the left tail.
* bHigh = DOHigh _ QHigh, With nign the order of power law on the right tail.

QHigh

* N is a normalization factor of the distribution.

The parameters of the function are derived by fitting to the MC of both ggF HH and VBF HH processes
with k) = 1. Since there is no significant dependency of the function form on k) for the non yet excluded
values, the shape modelling obtained with k) = 1 signal samples is used for all the ) hypotheses. The fit
results of the signal modelling are shown in Fig. 4.14 respectively in each of the four categories defined by
the non-resonant BDTs. After the DSCB fit, the my, parameter is further shifted by +0.09 GeV to account
for the fact that the MC samples were generated with kinematics assuming a Higgs boson mass of 125 GeV,
while the best ATLAS measurement of the Higgs boson mass is 125.09 GeV [3].

It is also proved that applying the HH signal modelling to the single Higgs process will not bias the fi-
nal result, therefore, a common modelling is used for both HH and single Higgs production.

4.6.2 Diphoton Continuum Background Modelling

The 4+ continuum background is modelled by an analytical function, with a fixed form of a fixed number
of degrees of freedom. The improper choice of the function may lead to potential bias in the results, for
instance, functions with high degrees of freedom have the risk to absorb the real signal, while those with low
degrees of freedom may result in poor fits and create artificial signals with the residual unfitted background.
The function form and its associated bias are determined using the so-called spurious signal test. The
spurious signal refers to the potential signal bias, obtained by fitting the smooth background distribution to
a function describing both signal and background.

The first step is to prepare a statistically enhanced background template, which represents the background
shape. In this analysis, the template is constructed by the vy+jets MC. The shape modification due to the
presence of the y+jet and the dijets events was approximately estimated using a linear reweighting. The
m.~ distribution of the templates and the data sideband are plotted in Fig. 4.15. The impact of shape
correction from the y+jet and the dijets events was checked to be negligible, therefore for the spurious
signal test, the MC templates with only the yvy+jets events are used. The templates are further normalized
to the data sideband.

Then a signal plus background model is fitted to the background template, where the background model
is the function to be evaluated, and the double-sided crystal ball function (Eq. 4.10) is taken for the signal
modelling. In order to evaluate the bias in the full mass range where the signal appears, the parameter ucp
representing the mass peak position is varying in intervals of 1 GeV in a range from 121 GeV to 129 GeV.
During the test for a given background functional form, the signal modelling is fixed, and for each value of
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Figure 4.14: m.,, signal modelling, by fitting double-sided crystal ball function to the ggF+VBF HH signal
MC at k) = 1 respectively in each of the four signal categories. The black dots are the MC events, and
the fitted double-sided crystal ball functions are shown by the blue curve, with the fitted parameters
displayed on the top right of each plot [57].

io B, the signal events, the background events and background function parameters are fitted. The largest
fitted signal among the different ucp values is defined as the spurious signal N, for this functional form.

The typical spurious signal test requires the background function to satisfy at least one of the following
criteria:

max(Ngp/Ngexp)| < 10%, where Ng ey, represents the expected signal events predicted by the SM
in the current category, which corresponds to the sum of ggF HH and VBF HH yields shown in Tab.
4.4,

* |max(Ngp/05)| < 20%, where og is the statistical uncertainty of the fitted number of signal events
obtained from the spurious signal test.

However, due to the low number of expected signal, the typical criteria is not satisfied in all the categories.
In this case, a relaxed criteria is used by accommodating the spurious signal N, with 20 local statistical
fluctuation of the background template. A new variable £, is defined to replace the role of Ny, to pass the
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reweighted MC templates (red) in the non-resonant categories. The MC templates are normalized to
the data sideband [93].

typical spurious signal criteria:

Ngp + 200c, Ngp + 200mc < 0
sp =19 Nsp—20mc, Ny —20mc <0 (4.11)
0, otherwise

where o is the local statistical fluctuation of the background template calculated in the signal modelling
window. Finally, the function passing the criteria with the smallest spurious signal Ny, and the lowest

degrees of freedom is selected for the background modelling. The corresponding value of Ng, is taken to
be the systematics that represents this spurious signal.

In fact, due to the poor statistics of the MC templates, the spurious test has no clear preference for the
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evaluated function forms, including exponential function, polynomials, power law, and other more sophis-
ticated functions. In consequence, the exponential function is chosen for simplicity. The detailed spurious
signal test scanned over the signal mass range is shown in Fig. 4.16. The black curves show the fitted signal
events as a function of the Higgs mass parameter my, used in the signal modelling for fit. The blue bands
stand for the statistical uncertainty of signal yields 0. The typical criteria fail in all four categories due to
the poor statistics, so the relaxed one is applied. The envelopes of the fitted signal are taken as the final
spurious signal, as shown in Tab. 4.6. With respect to the HH signal yields shown in Tab. 4.4, the spurious
signal is obviously a remarkable systematics of the background modelling, the striking values are induced by
the statistical fluctuations due to the limited statistics in the MC template.
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Figure 4.16: The spurious signal (black) in function of my in the non-resonant categories [93].

On the other hand, since the background modelling was arbitrarily chosen without following exactly the
criteria, a Wald test on the blinded data was proposed and confirmed there was no preference for higher
degree functions with respect to the chosen exponential function. The test is done with a likelihood ratio
by comparing the hypothesis of exponential function and the one of function with an additional one degree
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Category  High Mass BDT tight High Mass BDT loose Low Mass BDT tight Low Mass BDT loose

Nep 0.688 0.990 0.594 1.088
Nep/Niexp 078 2.64 11.79 13.50
Nop/0 0.394 0.384 0378 0.272

Table 4.6: Spurious signal test results for the exponential function in the various non-resonant cate-
gories.

of freedom. The likelihood ratio is written in the form

L(exp)

" L(exp+1dof) (4.12)

q0 = —

where L(exp) is the likelihood computed with the exponential functions obtained from the spurious signal
test, L(exp-+1dof) is the one computed with the same exponential family of L(exp) but with one more
degree of freedom. In order to check whether the background can be properly described by the simple
exponential function, one considers it as the null hypothesis Hy, under which gy follows asymptotically a
chi-square law of one degree of freedom. The p-value is computed with the observed ¢y using the data
sideband, which shows that data doesn’t prefer a higher order exponential function. The study was also
repeated with toys generated from the exponential hypothesis, which was used to obtain the pdf of ¢y and
gave the same conclusion as the asymptotic case.

4.7 Systematic Uncertainties

Although the current analysis for this rare signal is highly statistically dominated, the systematic uncer-
tainties are carefully taken into account. In the following, the theoretical and experimental systematics will
be introduced, especially, for their effects on the yields and shape modelling.

4.7.1 Theoretical Uncertainties

For HH signal and dominant samples of single Higgs (t#H and ZH) processes?, the effect of the QCD
theoretical scale uncertainties due to missing higher-order corrections to the cross section are estimated by
varying the factorization () and renormalization (ug) scales up and down with respect to their nominal
values by a factor of 2. Six relative variations of (ug, p1r) are used to evaluate the effect on cross section,
specifically (0.5,0.5),(0.5,1),(2,1),(1,2),(1,0.5),(2,2), where the nominal case is (1,1). The enveloping
effect is taken as the final scale uncertainty. The uncertainties are both evaluated for the inclusive cross
section and the efficiencies (eff) in each category. In particular, for ggF HH, the scale uncertainty was
investigated for various k) signal samples in the range between -10 and 10, and the maximum effect was
taken as the final uncertainty. The uncertainties on cross section due to the PDF+q; systematic and the
missing NNLO finite top quark effect within the FTapprox are also taken into account. For the PDF+ag
systematic of the ggF HH signal, similarly to the QCD scale uncertainty, the maximum values over different
k) scenarios are considered. The uncertainty related to the parton showering model is evaluated by com-
paring the predictions by two generators, Pythia 8 and Herwig 7, respectively for the different processes.

2For the single Higgs ggH process, the heavy-flavour systematic, described later in the paragraph, already
takes into account the QCD theoretical scale uncertainty.
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For ggF HH signal, the difference between the two generators is evaluated respectively with the k) = 1 and
10 signal, of which the maximum is taken as the final uncertainty.

In addition, specifically for the ggF HH signal, since the MC samples are generated using the k) reweighting
technique, a systematic uncertainty is assigned to this approach. The uncertainty is evaluated by comparing
the yields predictions between the generated sample at k) = 10 and the reweighted sample from k) =1 to
ky = 10. Finally, a 13:32% uncertainty for the Higgs decay branching ratio of H — 7+ is assigned to the
HH signal and all the single Higgs processes, and a ﬂ?g% uncertainty for the Higgs decay branching ratio

of H — bb is assigned to the HH signals.

For the single Higgs process via ggF, VBF, and the production associated with a W boson, an additional
100% uncertainty is assigned in order to take into account the heavy-flavor modelling, as motivated by
the studies of heavy-flavor production in association with top-quark pairs and of W boson production in
association with b-jets. This heavy-flavor uncertainty is not presented for the ttH and ZH productions,
which already contain two b quarks at LO. For other unmentioned single Higgs processes, the theoretical
systematic is negligible.

The theoretical uncertainties of the ggF HH signal, ttH and ZH are listed in Tab. 4.7, where the un-
certainties are evaluated respectively for cross section and efficiency (eff) for the HH signal, while simply
on yields for the single Higgs. The reason to assign uncertainties respectively on the HH cross section and
efficiency is that depending on the parameter of interest, different uncertainties are used. For instance, when
exploring the signal strength u, both uncertainties on cross section and efficiency are taken into account,
while for the purpose of measuring HH cross section, the uncertainty on cross section is no longer needed.
In case of single Higgs, since only the yields are of interest, one doesn't need to distinguish uncertainty
between cross section and efficiency.

4.7.2 Experimental Uncertainties

The uncertainty in the integrated luminosity of the full Run 2 data set is 1.7%, obtained using the
LUCID-2 detector for the primary luminosity measurements, which is applied to the production rates of the
HH and all the single Higgs processes.

The uncertainty of di-photon trigger efficiency was evaluated to have an effect of around 1% on the expected
production rates in the non-resonant categories. The pileup modelling systematic is also presented for the
expected yields. The systematics raised from the photon identification and isolation efficiency, and from
jet flavour tagging efficiencies are also evaluated on the yields. Besides, uncertainties from the jet energy
scale and the jet energy resolution affect the my, distribution, consequently affecting the efficiency of b-jet
relevant selection. Other systematics relevant to the jet vertex tagging efficiency and the b-jet momentum
correction accounting for the presence of muons and neutrinos are found to be negligible.

For the m.. shape modelling of HH and single Higgs, it is established that the photon energy scale sys-
tematic shifts the mass peak of Higgs, and the effect from photon energy resolution systematic smears the
distribution. Hence a clean treatment of the shape systematics is made by accounting for only the photon
energy scale and resolution effect, of which the effects are respectively estimated for different processes in
different categories. However, different to the H — ~7 mass analysis (Sec. 6.2.5) where the shape uncer-
tainty is evaluated using the mean and inter-quartile of the m..,, distribution, this analysis directly computes
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Uncertainty (%) QCD PDF+as Mtop PS K \-RW Uncertainty (%) QCD PDF+a s PS
. +4.78 . +0.03

Cross section 546 +3.00 +2.6 - - Cross section 004 +2.10
(ef)High Mass BDT tight +4.91 +1.26 - +7.27 | £2.71 (ef)High Mass BDT tight - - +7.81
(ef)High Mass BDT loose +3.40 +1.00 - +0.93 +4.61 (ef)High Mass BDT loose - - +5.04
(ef)Low Mass BDT tight +4.17 +2.08 - +6.62 +3.87 (ef)Low Mass BDT tight - - +8.27
(ef)Low Mass BDT loose +£5.43 +1.89 - +3.95 | £3.13 (ef)Low Mass BDT loose - - +5.63

Uncertainty (%) QCD PDF+ag PS Uncertainty (%) QCD PDF+as PS

(yieldS)High Mass BDT tight | £7.28 | £9.96 | +3.54 yieldS)High Mass BDT tight | +£10.37 | +2.55 | +10.16

( )
(yieldS)High Mass BDT loose | £7.60 | £9.90 | +6.62 (yieldS)High Mass BDT loose | £10.38 | +£2.23 +5.84
(yieldS)Low Mass BDT tight +8.68 | +£10.91 | +1.05 (yieldS)L,ow Mass BDT tight +4.76 +2.95 | +43.93
(yieldS)Low Mass BDT loose | +8.78 | £10.55 | +4.40 (yieldS) Low Mass BDT loose +5.28 +4.66 +7.83
ttH ZH

Table 4.7: Theoretical uncertainties for the ggF HH and VBF HH signals, including effects from the
QCD scale, PDF+ay, top mass (myop), parton showering generators (PS) and x-reweighting technique
(kx-RW). The theoretical uncertainties of ttH, Z H single Higgs background are shown as well. The
unfilled cells represent the in-applicability or negligible values.

the uncertainty variation on the shape modelling parameter ucp and oop.

In particular, for ggF HH signal, the uncertainties are chosen to be the maximum evaluations among the
kx = 1 and 10 samples. The table of the dominant experimental systematics on the expected yields of the
ggF HH signal is shown in Tab. 4.8. For the shape modelling, there is 0.19% uncertainty coming from the
LHC Higgs mass measurement and the photon energy scale systematics which affect the Higgs mass peak
parameter my, and the resolution parameter o is driven by the photon energy resolution systematics. The
uncertainties of the ggF HH signal modelling are summarized in Tab. 4.9.

Systematic uncertainty (%) [ High Mass BDT tight [ High Mass BDT loose | Low Mass BDT tight | Low Mass BDT loose
Event-based PRW +1.18 +1.25 +1.87 +2.14
Trigger +0.97 +0.98 +0.95 +0.95
PH_PES +0.38 +0.50 +0.95 +1.03
Photon PH_PER +0.17 +0.31 +0.73 +0.16
PH_EFF_ID +1.38 +1.55 +1.63 +1.75
PH_EFF_Isol +1.37 +1.52 +1.53 +1.63
JET_JES +2.05 +2.68 +3.04 +2.61
Jet JET_JER +2.82 +3.64 +4.42 +1.92
FT_EFF_B +2.47 +2.82 +2.83 +3.25
Flavour tagging | py pep ¢ <0.1 <0.1 <01 <0.1
FT_EFF_Light +0.29 +0.39 +0.31 +0.39

Table 4.8: Summary of the dominant systematic uncertainties affecting ggF HH expected normaliza-
tion in the four BDT categories.
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Systematic uncertainty (%) | High Mass BDT tight | High Mass BDT loose | Low Mass BDT tight | Low Mass BDT loose
+0.53 +0.52 +0.45 +0.44

Mh PH_PES —0.53 —0.52 —0.44 —0.45
+16.00 +12.65 +12.86 +10.92

9 PH_PER —10.76 —10.90 —9.45 —7.61

Table 4.9: Summary of systematic uncertainties affecting ggF HH shape modelling in the four BDT
categories.

For the continuum background, which is fitted directly on the data, there is only the spurious signal sys-
tematic. The spurious signal described in Tab. 4.6, represents the systematic uncertainty of the modelling
of the ~~ continuum background. It is implemented as special additive systematics on the signal events,
which are uncorrelated between the categories. The exact implementation will be described in the Sec. 4.8.

4.8 Statistical Model and Interpretation

The statistical results are obtained with an unbinned maximum profile likelihood fit. The likelihood is
the product of the extended likelihood of the four categories, and prefit constraint terms for systematic
uncertainties. The extended likelihood contains the part of the diphoton mass m.. pdf and the extended
Poisson term of the yields. The parameter of interest in this analysis is either the signal strength p or the
Higgs self-coupling modifier k).

4

L= H(Pms (ne| N, (11, 15,0 ch me o |w, ko, )>.g(90|0) (4.13)

c=1
where

* Pois (n¢|N¢ (i, k), 80)) is an extended term describing the Poisson probability to observe n. events in
a given category ¢, with an expectation value of N, (u, ky,0) depending on p, k), and 6.

Ne (i, 5x,0) = - NTH (55, 0) + N2 (0) + NJ7 + N25s° (4.14)
Nsys
NFH(iy,0) = NI# (k) - T - (1 + o Ff o) (4.15)
k
Nsys

Z LT -+ o 0k) (4.16)
k

with N5 (5, 0) and N2 (6) respectively the expected number of events for HH signal and single
Higgs background in a given category ¢, including the dependency on ) for the HH signal and the
relevant systematic uncertainties, as represented by the nuisance parameters 8. N (x)) is the
constant HH signal yields of a given x) hypothesis in the category c, af,f{ is the corresponding
relative uncertainty from the systematic source k. ij is the expected yields of the single Higgs
process j in the category c as predicted by the SM, afj’k is the relevant systematic uncertainty.
NZ7 is the event number of v+ continuum background, which is going to be fitted with data. N¢ is
the spurious signal of a given category ¢ as shown in Tab. 4.6, with 65, the corresponding nuisance
parameter, which is uncorrelated to the ones of spurious signal in the other categories.
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* fe (ml, |, rx,0) represents the joint probability density function of 1., for all the physics processes
in a given category c, which is evaluated on the discrete data points. The m., pdf depends on the
parameters u, k), 6.

f (m'iy'y|y“7’<'>\70) :[ (:U’ : NC}IH(ﬁkao) + Ngs 083) : HH( ‘mHH(0)7UHH(0))
+N@) - 17 (mfy'y‘mh (9)7‘71{(‘9)) (4.17)

1
NIV Y (ml _
+ c fc (m'y'y)] Nc(,u,/‘i)\,o)
]\/vsy‘s Neys
miH () = miTH . H +ofHgy), o (9) = o1H . H 1+0fHg,)  (4.18)
Nsys Nsys
my! (0) =mf - [[ (A +of'6r), o™(0) =™ - T (1 + o}6k) (4.19)
k k

where fHH (ml_|m;™H(8), 5 (8)), fH (m?,|m}!(8),0"(8)) are the m,, pdf of the HH and single
Higgs production, which are described by a double-sided crystal function, as shown in Fig. 4.14. The
same m.~ pdf is taken for the HH and single Higgs production. Similarly to the yields, the systematic
uncertainties on the shape modelling are applied as well to the parameters of the peak position my,
and the width o. fJ”(m,) is the exponential function used to model the 7~ continuum background,
where the slope parameter will be fitted by data. The joint pdf is eventually normalized by the total

yields of all the processes.

G(00]@) stands for the constraints of nuisance parameters 8 with auxiliary measurement (or global
observables) 6. The constraint is usually a normal or log-normal distribution. And 6 are convention-
ally set to 0 by assuming all the theoretical computations, MC simulation and detector calibrations
are perfect. For nuisance parameter 6, associated with a given systematic k, it can have an impact
on several quantities, for instance, the yields and shape modelling of various physics processes, which
actually assumes a 100% correlation of its systematic effects, which will later be pulled or constrained
by data. One technical remark is that in case that a negative quantity is forbidden, e.g. vyields,
resolution, a log-normal constrain is favored rather than a Gaussian. This is technically implemented

by replacing (1-+ oy - 6x) by exp ( In(1+03)- Hk), where the later exponential follows a log-normal
law if 6 follows G(0;1).

Eventually, a simultaneous profile maximum likelihood fit to data in all the four categories is performed,
where the parameter of interest, either signal strength 1 or k), and the nuisance parameters including the
background events NJ7, the slope of the exponential A and all the systematic NPs @ are fitted.
Unfortunately as shown in Fig. 4.12, only two events are observed in the high mass BDT tight category
which is supposed to be the most sensitive one to the SM HH signal. Such a deficit in data leads to a
negative fitted signal strength 1 when assuming ) equals 1.

4.9 Results

A free fit is performed with the signal strength 1 and all the nuisance parameters as free parameters,
meanwhile assuming the SM Higgs self-coupling k) = 1. In addition, taking into account the observed
deficit in data, a background-only fit is done by fixing the signal strength to 0. The profile likelihood scans
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are also studied, respectively for p when setting k) = 1, and for ), with u fixed to 1. No evident signal
was observed, hence the limits on HH signal strength and on k) are derived. The NP ranking which shows
the pulls and constraints of the systematic uncertainties is also presented below.

4.9.1 Signal+background Fit

Assuming the SM Higgs self-coupling k) = 1, a signal plus background fit is performed with the observed
data simultaneously in the four categories. Due to the deficit in the high mass BDT tight category, the
best-fit of y is equal to —2.1. The maximum profile likelihood scan on p is shown in Fig. 4.17.

The black curve is the likelihood scan when fitting all the collected data. The other curves are the ones
when fitting with part of the data, where the sensitivity is highly dominated by the contribution from the
high mass BDT tight category.

— 3
£ [ATLAS Internal
S r 4
' ” {s=13 Tev, 139 fb
25—
- All categories
- High mass BDT tight
5 B High mass BDT loose
L Low mass BDT tight
- Low mass BDT loose
= High mass
~ Low mass
15 —
11—
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O L ‘ Il L ‘ \ Il ‘ Il
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Figure 4.17: Maximum profile likelihood scan on the HH signal strength . assuming x) = 1 when fitting
to the inclusive data and to data collected in different categories. The High mass curve represents the
fit with both tight and loose categories defined by the high mass BDT, and the Low mass curve is the
one defined by the low mass BDT [93].

The likelihood scans fitting with all the categories, high mass BDT tight only and high mass only, behave
almost as a straight line, which is mainly driven by the deficit in data. For the inclusive fit, the fitted 1.,
distributions are shown in Fig. 4.18, where the one in the high mass BDT tight category reaches zero near
125 GeV, due to the absence of events in data

This phenomenon can be explained by a local Poisson behavior around the signal peak. For the mass region
around the Higgs peak of the high mass BDT tight category, considering the expected signal yields \S;,. and
the total background By, then its contribution to the full statistic test can be approximated by a likelihood
function defined by a Poisson distribution with expected yields of 1(Sioc + Bioc):

€x - Soc+Boc : Soc“_BochoC
C(: Nioy) = P (—(1S lNi) '(M ! loc) (4.20)
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Figure 4.18: Signal+background fit in four categories of non-resonant analysis. The little bumps that
appeared in the total background curves represent the single Higgs background [93].

where Ny, is the observed data near the Higgs peak in the high mass BDT tight category.

In case no event is observed (Nj,. = 0), the likelihood is reduced to

E(M; Nloc) = exp (_(,usloc + Bloc)) (4.21)

Consequently the log-likelihood becomes linear in function of 1, and the MLE i is set to — S“’“ so that the
inclusive events remain positive. It explains the negative value of /i and the fact that the m.,, distribution
of the high mass BDT tight category touches the bottom as shown in Fig. 4.18.

The detailed fit results are shown in Tab. 4.10. For the signal+background fit, since the log-likelihood
is almost linear, the Fisher information is difficult to be calculated, therefore only the post-fit central values
are presented. Since the signal strength 1 is an unconstrained free parameter, the fit preferred to pull u
to match the deficit in the high mass BDT tight category rather than the systematic nuisance parameters,
then the effects in the other categories due to change of 1 were balanced by the spurious signal.

4.9.2 Background-only Fit



116 CHAPTER 4. SEARCH FOR HIGGS PAIR PRODUCTION IN THE BB~~ FINAL STATE

A background-only fit (Fig. 4.19) is also performed by fixing signal strength y to zero. The little resonant
bumps in the total background curves represent the single Higgs background. No clear discrepancy has been
observed against the background-only hypothesis.
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Figure 4.19: Background-only fit in four categories of non-resonant analysis [57].

The detailed fit results are shown in Tab. 4.10. In this case, since u is forced to be 0, the observed deficit
in the high mass BDT tight categories is covered by a negative pull of the spurious signal, and the fitted
continuum background remains similar to the signal plus background. In absence of the HH signal, the
photon energy scale systematic (6py prs) is still present on the single Higgs background, and it is shifted
due to more data observed in the signal region with diphoton mass between 120 and 125 GeV.

4.9.3 Likelihood Scan on k)

A maximum profile likelihood scan (Fig. 4.20) is performed on k) by considering it as a free parameter
in the fit while setting p to 1. The observed and expected scans are respectively done with the observed
and the Asimov data, that the latter is generated with signal hypothesis (k) = 1, = 1) and nuisance
parameters profiled from the background-only fit as shown in the B-only fit column of Tab. 4.10.
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Parameter name S+B fit B-only fit
N}jﬁgh mass BDT tight 21.63 20.96 4 4.59
Nyiih mass BDT loose 53.09 52.03 4 7.48
low mass BDT tight 19.67 19.55 £ 4.51
N oss BDT loose 111.41 111.41 4+ 10.60
slopehigh mass BDT tight | —3-33 X 1072 | (—3.32 £ 1.49) x 10~ 2
slopehigh mass BDT loose | —2-06 x 1072 | (—2.03 £ 0.90) x 10~ 2
sIopelow mass BDT tight —4.72 x 1072 | (—4.73 +1.66) x 102
SI0Pelow mass BDT loose —2.06 x 1072 | (—2.06 + 0.62) x 102
}S;isgh mass BDT tight h —0.57 £ 0.99
0555k mass BDT loose 0.54 0.45 + 0.94
055 mass BDT tight 0.22 0.19 £ 0.91
lsosw mass BDT loose -0.39 —0.42+0.98
0pH PES - —0.22 4+ 0.99

Table 4.10: Summary of the post-fit nuisance parameters of the signal+background fit and
background-only fit. The background parameters and the systematic nuisance parameters with the
largest pull are shown. The unfilled cells correspond to systematic nuisance parameters with a pull
less than 10%.
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Figure 4.20: (a) Maximum profile likelihood scan xy assuming p = 1. The best fit k) is 2.7 with the
observed data. The 68% CL range is [0.53, 4.70] for observed, and [-1.41, 6.42] for expected. (b) The
sensitivity on k) of each category estimated with the Asimov dataset generated at k) = 1, a double
minimum occurs when fitting with only the high mass BDT tight category, and fitting with categories
optimized with different « values helps to mitigate the ambiguity [93].

The expected likelihood scan gives a measurement of k) = 13:3. Since it is derived with an Asimov dataset
generated at k) = 1, the sensitivity is dominated by the high mass BDT tight category, where the double
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minimums of the likelihood are due to the same expected yields between ) = 1 and k) ~ 5.3, according
to Tab. 4.5. Eventually after combining with all the four categories, a local minimum emerges near k) = 4.
However, for the observed result, the measured ) is 2.77%1. That is because around k) = 2.7 the HH
signal has the smallest cross section as shown in Fig. 4.7, which is more compatible with respect to the

deficit in data.

4.9.4 Systematic Ranking

Although the current sensitivity is mainly driven by limited statistics, it is still useful to know the impact
on the final results from systematic uncertainties.

For each systematic nuisance parameter 6y, its pull is computed as the difference between the post-fit
value 6, and the corresponding global observable 09, the impact on the POl is the change on POl when
fixing 0y to 0, & o), where o}, can be the pre-fit or post-fit uncertainty of 8. Due to the observed deficit
signal under the assumption of the SM, the fit of the signal strength 1 is obtained by preventing negative
yields in the signal region, which makes it hard to estimate uncertainties of parameters in the statistical
model, hence the systematics pulls and impacts are studied with only Asimov data generated at 4 =1 and
nuisance parameters profiled from the background-only fit. The ranking of systematics is shown in Fig. 4.21.

According to the definition of Asimov data, the post-fit parameters are equal to the values used for the
generation, hence the same as the global observables. Therefore all the systematics nuisance parameters are
not pulled. The error bar of the pull stands for the post-fit uncertainty, where the spurious signals (named
with "BIAS") and the photon energy scale (EG_SCALE ALL) systematics are slightly constrained. The
largest impacts are carried by the spurious signal from the high mass BDT tight category, heavy flavour of
ggH and the spurious signal from the high mass BDT loose category. The nuisance parameters having a
positive (negative) impact when varied by +0 (—o) is shown in blue, on the contrary in green. Since the
events in Asimov data are preserved, when the spurious signals or the single Higgs are increased, a negative
impact is foreseen on the signal. While the photon energy scale is applied to the peak position, both up and
down variations will shift the peak in a similar way, bringing a negative impact on u to cover the induced
gap between the shifted peak and the Asimov data.

On the other hand, the pull is defined as the relative NP shift normalized to its uncertainty, the shift

is defined as 6 — 6°, with its uncertainty equal to /02, — 02,

where oy, = 1 is the pre-fit uncertainty,
Opost IS the post-fit uncertainty obtained from the fit. The advantage of such a definition is that the pull
follows a normal distribution, such that if the pull is much larger than 1, it implies a larger significance of
the NP pulls fitted with data. However, when the NP is not constrained, the computation of pull often

suffers from the fit accuracy and could give an expected large pull, hence this definition is not used here.

4.9.5 Limits

Since no obvious signal was observed, the 95% CL upper limits on SM HH signal strength and on «) are
derived using the asymptotic formula and the C'Lg method using the g, statistic as described in Sec. 2. The
limits are obtained by excluding signal hypotheses when C'Lj; is lower than 5%, assuming no observation of
signal. Hence the null hypothesis Hj is the case with background and signal of a given p, the alternative is
background-only.

A background-only Asimov data was generated at p = 0 with all the nuisance parameters profiled at
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Figure 4.21: Pulls of the systematic uncertainties and their impacts on . made on Asimov dataset. The
impact is calculated as the change in the POI after varying the systematic NP by +1¢ from its post-fit
value. Parameters increasing the POI value when varied by +10 are shown in blue, while others is
shown in green [93].

p = fr, which is used to estimate the variance of /i and the pdf of the test statistic ¢, according to Eq. 2.50
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and Eq. 2.35. A maximum unconditional profile likelihood fit is then performed with this Asimov data,
where [i is fitted to O by definition.

A CLg scan is performed by looping over different null hypotheses, that for each hypothetical value p,
the following steps are proceeded:

« Maximum conditional profile likelihood fit to the b-only Asimov data and to the observed data, where
L is fixed to a given value, and all the nuisance parameters are profiled.

* Compute the test statistic ¢, exp and ¢, obs With both Asimov and observed data.

+ Estimate the variance o2 with the Asimov profile likelihood ratio, and construct the asymptotic pdfs

f(Gulp) and f(gyl0).
+ Compute the median, +10 and +£20 quantile of the alternative pdf f(g,|0) according to Eq. 2.36.

* Compute the C'L; values corresponding to the observed G, ons and the expected quantile estimated
with the Asimov data.

The fact that the variance of ji is estimated at different fixed values of u is in order to take into account
any potential non-parabolic likelihood shape. The o estimated with the b-only Asimov data is also used to
establish the null hypothesis pdf f(g,|u). As shown in Eq. 2.38, at low ¢, values the pdf is described by
the sum of a Dirac function and a chi-square distribution which is independent of o. The relevant part of
qu > 12 /o? corresponds exactly to the case when /i < 0, hence using the b-only Asimov data for estimation
is approximately valid.

The asymptotic-based C'Ls scan on the signal strength u is shown in Fig. 4.22. The observed curve is
drawn with the C'L; computed with the observed data, the expected curves correspond respectively to the
median, as well as the +10 and +20 bands of the u limits. The 95% CL limits are defined as the inter-
sections at 1-C'L;=0.95. These results are obtained corresponds to the first version of publication, in the
latest results [57] after using a more conservative top mass theoretical uncertainty, the observed (expected)
limit becomes 4.2 (5.7) times the SM prediction.

The stat-only results are also derived by fixing all the systematic nuisance parameters to the ones profiled
at /i, the full model and stat-only limits are shown in Tab. 4.11. The sensitivity is currently driven by the
limited statistics, the impact of systematic is around 12% (5%) on the observed (expected) limit.

KUlimit obs —20 —1lo med +1lo +20
stat+sys 4.1 2.5 3.6 5.5 8.6 13.5
stat-only 3.6 2.5 3.5 5.2 8.1 12

Table 4.11: Summary of limit on HH signal strength assuming x) = 1, the sensitivity is mostly statisti-
cally dominated, the impact of systematic uncertainties is around 10% in maximum.

The impact from different sources of systematics on the sensitivity is studied by fixing the relevant nuisance
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Figure 4.22: The C'L, scan on the HH signal strength u using the asymptotic formula with the assump-
tion of ky = 1. The shrinkage of the +1¢ and +2¢ bands at low p is because the -1 and -2 quantile of
f(G,|0) overlap at g, = 0.

parameters to their best-fit values to data, with all the remaining nuisance parameters floated, re-evaluating
the likelihood-based test, and computing the change on the expected upper limit. The breakdown of sys-
tematic impact is shown in Tab. 4.12. The largest impact comes from the spurious signal, which affects the
sensitivity by around 3%.

Relative impact of the systematic uncertainties [%]

Source Type non-resonant analysis
HH
Experimental
Photon energy resolution Norm. + Shape 0.4
Jet energy scale and resolution Normalization <0.2
Flavor tagging Normalization < 0.2
Theoretical
Factorization and renormalization scale  Normalization 0.3
Parton showering model Norm. + Shape 0.6
Heavy-flavor content Normalization 0.3
B(H — v, bb) Normalization 0.2
Spurious signal Normalization 3.0

Table 4.12: Breakdown of the dominant systematic uncertainties. The impact of the uncertainties cor-
responds to the relative variation of the expected upper limit on the cross section when re-evaluating
the profile likelihood ratio after fixing the nuisance parameter in question to its best-fit value, while
all remaining nuisance parameters remain free to float.
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For the Higgs self-coupling «,, the limit interval is obtained by computing the upper limits of the HH
production cross section under difference k) assumptions, using the same approach described above for the
upper limit of signal strength u. Fig. 4.23 shows the pp — H H cross section upper limits in the function
of ky including both the ggF and VBF productions. The observed (expected) x) limit interval is [-1.5,
6.7] ([-2.4, 7.7]) defined as the range with cross section upper limit lower than the theoretical prediction.
Since the POl is now the cross section, the theoretical systematic on the cross section of the HH signal as
described in Tab. 4.7 was removed, but included in the theory prediction values.
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Figure 4.23: Cross section upper limits of non-resonant di-Higgs production in function of ). The
range of s, with upper limits below the theory is defined as the 95% CL limit interval [57].

4.9.6 Limits Estimated With Pseudo Experiments (Toys)

Clearly, the asymptotic approach relies on the sufficient sample size such that the Wald approximation
and the Gaussian assumption still hold, while it starts to fail when data is small. For this analysis, since only

two events are observed in the signal area of the most sensitive high mass BDT tight category, checking the
statistical results with pseudo-experiments is important.

In alternative to the analytical asymptotic approach, the distributions of the test statistic f(g,|x) and
f(G,|0) are obtained with a large number of toys, where each toy is randomized from the pdf of the studied
observables and used to compute the value of the test statistic.

In order to obtain the distribution f(g,|x') with 1’ equal to p or 0, the detailed procedure is summa-
rized below:

* Maximum conditional likelihood fit by fixing POI 1 to the hypothetical value i’ with the observed
data, the profiled nuisance parameters are denoted as 9Obs(u) in which the subset for systematic NPs

are ésys,obs (M) .
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* Generate a large amount of toys, each including a set of the m.,, data randomized according to the

pdf f (|1, 1,0,05(12)) in Eq. 4.17, and the auxiliary measurements randomized from a Gaussian
distribution centered around the conditional best-fit value of systematic nuisance parameters and with

width of 1, i.e. G(Bsysobs(i2), 1).

+ Compute the test statistic G, for each toy and consider the obtained sampling distribution as the
toy-based estimation of f(g,|x').

The generation flow is repeated for different hypotheses . ranging from 2 to 13 with a step size of 0.1, 100k
toys generated for p € [3.5,6.5] as they are close to the asymptotic limits, 35k toys for the rest.

Toys example generated under the hypothesis of ;/ = 5.5 is taken for further illustration. As described
above, the first step is to compute the profiled values of NPs at u = p’ with the observed data, the values
are summarised in Tab. 4.13. Then these values are considered as the truth value for generation, one
hundred thousands toy are generated, and each toy is performed with an unconditional maximum likelihood
fit. The best-fit values of the main parameters pulled by the observed data are plotted in Fig. 4.24. The
top plots show the distribution of the global observables which follows well the normal distribution centered
at the truth value. The best-fit values of the systematic nuisance parameters are consistently randomized
around the truth values as shown in the bottom plots.

Systematic NP profiledat © = 5.5
hi : -0.570
gl}ggh mass BDT tight
high mass BDT loose 0.298
o - 0.110
lsosw mass BDT tight
low mass BDT loose -0.472

OLHCmass -0.281

OpH PES -0.817

0QCcD HH -0.279

OpPS geFHH -0.292

Table 4.13: Systematic nuisance parameters profiled at 4 = 5.5 with the observed data. Only the one
with the largest pulls is shown.

The obtained sampling distributions of the ¢, statistic in the specific cases of u = 4.1 and u = 5.5 are
shown in Fig. 4.25. For comparison, the analytical pdf estimated with the asymptotic approach is drawn as
the continuous curve. Some discrepancies between the asymptotic and pseudo-experiments approaches are
observed, but remain at an acceptable level.

The CLg scan on p assuming k) = 1 based on pseudo-experiments approach is shown in Fig. 4.26.
The 95% CL limits are shown in Tab. 4.14. The discrepancy between the asymptotic and pseudo-experiment

approaches is around 7% for the median expected limit and 2% for the observed limit, which shows the
asymptotic approach is still validated with sufficiently good accuracy in this analysis. The extension of the
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Figure 4.24: Distribution of the global observables (top) and the unconditional maximum likelihood fit
results (bottom) and for the systematic nuisance parameters. The truth values used for generation are
shown by the vertical red lines and pave text in the middle. The mean value and standard deviation
of the plotted parameter are shown in the top right statistic box. The toys which failed to converge

for the unconditional maximum likelihood fit are discarded (one toy).
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Figure 4.25: Comparison of the g, distributions obtained with pseudo-experiments (histograms) and
the asymptotic formula (continuous functions). The blue (red) curves represent the null (alternative)
hypothesis. The green area is the p-value defined with ¢, higher than the median of alternative toy
distribution.

toy-based limit intervals is due to the higher coverage probability of Poisson distribution than the one of
Gaussian.

Hlimit

obs

—20

—1o

med

+1lo

+20

Toys

4.2

3.4

4.2

5.9

8.6

12.7

Table 4.14: Summary of toy-based limits on HH signal strength assuming ) = 1.
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1-CLs

Figure 4.26: C' L, scan on the HH signal strength 1 obtained with pseudo experiments, assuming k) =
1[93].
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4.10 Resonant Analysis

The resonant analysis has been performed by searching for new spin-0 particles with mass in the range
between 251 GeV and 1 TeV, under a narrow width approximation. The signal is denoted as resonant.

The resonant analysis uses the same pre-selection as the non-resonant one, with further selection opti-
mized with a dedicated BDT algorithm. BDTs are trained simultaneously for all the signals with different
mass hypotheses. Different resonant signals are merged and reweighted to have the same ngw profile as
the background events. This specific reweighting approach is used to eliminate the discriminant power of
the mZEw variable, hence preventing conflicts between different mx signals in the training. Two BDTS are
optimized respectively against the vy continuum and the single Higgs background, which are subsequently
combined in quadrature to define the final BDT output. The combined BDT score distribution is shown
in Fig. 4.27 for the mass hypothesis of 300 GeV and 500 GeV. The signal region is defined for each mx
scenario by the cut threshold on the combined BDT score and a m x-dependent mass window cut on m?

bbyy
optimized to have the maximum sensitivity.
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Figure 4.27: BDT outputs for resonant signals with mx = 300 GeV an mx = 500 GeV [57].

The upper limits of the cross section for resonant signals are presented in Fig. 4.28. The observed (expected)
upper limits are in the range 640-47 fb (390-43 fb) for 251 < mx < 1000 GeV.

4.11 Conclusion of bbyy Analysis

Searches for non-resonant and resonant Higgs boson pair production are performed in the bbyy final
state using 139 fb~! of 13 TeV pp collision data collected with the ATLAS detector at the LHC. No sig-
nificant excess above the Standard Model background expectation is observed. A 95% CL upper limit of
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Figure 4.28: Resonant HH cross section upper limits in function of mx [57].

130 fb is set on the non-resonant production cross section, where the expected limit is 180 fb. The ob-
served (expected) limit corresponds to 4.2 (5.7) times the cross section predicted by the Standard Model.
Constraints on the Higgs boson self-coupling are also derived and limits of —1.5 < k) < 6.7 are obtained,
where —2.4 < k) < 7.7 is expected. For resonant production of a scalar particle X — HH — bby~y, upper
limits on the production cross section are obtained for the narrow-width hypothesis as a function of mx.
The observed (expected) upper limits are in the range 640-47 fb (390-43 fb) for 251 < mx < 1000 GeV.
Compared to the previous ATLAS result based on 36 fb~! of 13 TeV pp collisions [94], a general factor of
5 times improvements has been seen, which benefits from the increase of luminosity, the improvement on
flavour tagging and the selection optimization.

Similar searches in the bbyy final state [78] are performed by the CMS experiment at the LHC using
137 fb~! of 13 TeV pp collision data. The results are similar between the two experiments. For CMS,
the observed (expected) upper limit of the non-resonant production cross section with the HH — bbyy
branching ratio is determined to be 0.67 (0.45) fb, which corresponds to 7.7 (5.2) times the standard model
prediction. Assuming all other Higgs boson couplings are equal to their values in the standard model, the
observed (expected) coupling modifiers of the trilinear Higgs boson self-coupling x is constrained within
the ranges —3.3 < k) < 8.5 (—2.5 < k) < 8.2) at 95% confidence level, as shown in Fig. 4.29.

4.12 Di-Higgs Combination of bby~y, bbbb and bbr7 Channels in ATLAS

As illustrated in Fig. 4.6, apart from HH decay fipaJ state in bgyy, there are other important channels.
The current ATLAS Run2 publication includes the bbbb [74][76], bbr7T [72] channel for both non-resonant
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Figure 4.29: 95% CL upper limits on the product of the HH production cross section and BRIHH —
bby~y) obtained for different values of x, with all other couplings fixed to SM predictions. [78]

and resonant searches.

bbr7 channel: at least one 7 decaying into hadrons and the other with either hadronic or leptonic de-
cays with dedicate ThaqThad and ThadTiep triggers. A RNN-based 7 identification criteria are used.

* Non-resonant: the observed (expected) upper limits are set at the 95% confidence level on the non-
resonant Higgs boson pair production cross-section of 4.7 (3.9) times the Standard Model prediction,
assuming Standard Model kinematics. The observed (expected) Higgs self-coupling ) is constrained
to be between -2.4 and 9.2 (-2 and 9).

* Resonant: the observed (expected) upper limits on cross-section are set between 23 and 920 fb (12
and 840 fb), depending on the heavy resonance mass.

bbbb channel: with four b-jets in the final state which are paired using dedicated criteria in order to
reconstruct the two Higgs boson candidates. The main background is from the QCD multi-jets and top
processes.

* Non-resonant: the signal is produced by both ggF and VBF modes. The 95% CL observed (expected)
upper limit on the cross section for non-resonant Higgs boson pair production is determined to be
5.4 (8.1) times the Standard Model prediction. The observed (expected) Higgs coupling modifier k)
is determined to be [-3.9, 11.1] ([-4.6, 10.8]) at 95% CL.

* Resonant: It targets heavy resonance of spin-0 with mass ranging from 251 GeV to 3000 GeV produced
by VBF production. In the resolved case when mx < 1500 GeV, the standard jet reconstruction with
AR = 0.4 is used, while for very high resonances with 900 GeV < mx < 3000 GeV, the decay products
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will be highly boosted and lead to the merging of two jets, hence a large radius jet reconstruction
algorithm with AR = 1 is applied to reconstruct the two b-jets in the same time. The signal region
is defined in the 2D map of the invariant mass of the two reconstructed Higgs candidates from the
four b-tagged jets using the 77% working points.

The ATLAS combination [95, 96] of different channels has been performed using a likelihood-based ap-
proach by taking into account the proper correlations of systematic uncertainties. The combined limits of
the non-resonant analysis are shown in Fig. 4.30, and Fig. 4.31 for the resonant.
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Figure 4.30: Observed and expected 95% CL upper limits on the signal strength for SM HH production
(a) and the limit interval on the Higgs self-coupling modifier ) (b) in the bby~y, bbrT and bbbb searches,
and their combination. The expected limits assume no HH production. [96].

For the non-resonant SM di-Higgs production, the combination of the bbyy, bbbb and bbr7 channels gives
an observed (expected) 95% CL limit on the HH production cross section equal to 2.4 (2.9) times the SM
prediction. For the Higgs self-coupling k), the combination further constrains its value to be within an
observed (expected) limit interval of [-0.6,6.6] ([—2.1,7.8]) at 95% CL.

For the resonant part, the combined result benefits from the sensitivities of the three channels in different
mx ranges, and arrive to further constrain the upper limit of the resonant production cross section. The
largest excess between the observed and expected results is found at myxy = 1.1 TeV and it corresponds to

a local (global) significance of 3.10 (2.10).

The CMS Di-Higgs combination can be found in Ref. [87].

4.13 Combination of Di-Higgs and Single Higgs for «, constraint
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Figure 4.31: Expected and observed 95% CL upper limits on o(X — HH) for a spin-0 resonance as
a function of its mass mx in the bbyy, bbr7 and bbbb searches, and their statistical combination. The
discontinuities in the limit visible in the range mx < 400 GeV are caused by the partial availability of
the different analysis limits on a point-by-point basis, which are provided only for the bby~y search at
the weakest limit points [95].

The Higgs self-coupling can emerge not only in the double Higgs production but also in the single
Higgs production through additional loops. The examples of diagrams with one additional loop are shown
in Fig. 4.32 respectively for the single Higgs production via ggF, VBF, VH and ttH modes. These Higgs
self-coupling loops can modify the production cross section as well as the Higgs decay branching ratios.
Hence both the double and single Higgs production can be parameterized with k), hence contributing to
its constraint.

The individual and combined constraint on x) of the di-Higgs and single Higgs channels are presented in
Fig. 4.33, that the combination constrains the Higgs self-coupling to be in the range [—0.4,6.3] for the
observed and [—1.9, 7.5] for the expected at 95% CL. It brings a slight improvement on the HH combination
constraint as shown in Fig. 4.30.
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Figure 4.32: Examples of one loop A\,,,-dependent diagrams for the ggF (a), VBF (b), VH (c), and ttH
(d) modes. The self-coupling vertex is indicated by the filled circle. [96].
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Figure 4.33: : Observed (a) and expected (b) value of the profile likelihood ratio, as a function of the
k) parameter for the single-Higgs (blue) double-Higgs analyses (red), and their combination (black)
derived from the combined single-Higgs and double-Higgs analyses with all other coupling modifiers
fixed to unity. The combined result for the generic model (free floating «y, ks, kv, k) is also superim-

posed (green curve). [96].

4.14 HL-LHC and Future Colliders Prospects
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For the future upgraded high luminosity LHC, a total of 3000 fb—! is designed which is around twenty
times larger than the currently available data. On the other hand, the center of mass energy of the pp
collision will increase from 13 to 14 TeV, which enhances the di-Higgs production by around 18%.

The current 139 fb=! [95] ATLAS Run 2 non-resonant analysis after combining the bbyy and the bbr7
channels is extrapolated to the 3000 fb~ HL-LHC [97], taking into account the change on cross section
of the various signal and background processes, and the potential improvements on the systematic uncer-
tainties. The revisions of the systematic uncertainties are performed by applying scale factors as shown in
Tab. 4.15, according to the recommendations of the ATLAS conventions for HL-LHC projections [98]. In
particular, for the most important systematics of the current bby~ analysis, the spurious signal, a scale factor
of zero is applied since a sufficient MC simulation is expected to perform the ~~ continuum background
modelling. In the same principle, the MC statistical uncertainties of the bbr7 channel are expected to be
null when extrapolating to HL-LHC.

Source Scale factor  bbyy  bbTT
Experimental Uncertainties
Luminosity 0.6 * *
b-jet tagging efficiency 0.5 * *
c-jet tagging efficiency 0.5 * *
Light-jet tagging efficiency 1.0 * *
Jet energy scale and resolution, E%liss 1.0 * *
K reweighting 0.0 * *
Photon efficiency (ID, trigger, isolation efficiency) 0.8 *
Photon energy scale and resolution 1.0 *
Spurious signal 0.0 *
Value of m gy 0.08 *
Thad efficiency (statistical) 0.0 *
Thag efficiency (systematic) 1.0 *
Thad €nergy scale 1.0 *
Fake-1454 estimation 1.0 *
MC statistical uncertainties 0.0 *
Theoretical Uncertainties 0.5 * *

Table 4.15: Summary of HL-LHC scale factors for relevant systematic uncertainties. A"*" indicates that
the uncertainty is considered by the corresponding analysis [99].

In order to predict the sensitivity for the discovery of the double Higgs production, the expected HH sig-
nificance and precision of signal strength (Tab. 4.16) are estimated with a signal and background Asimov
data, under the SM hypothesis (1 = 1 and k) = 1). In the case with only the statistical uncertainty, a 4.6
o combined significance and +23% signal strength precision are expected. The baseline corresponding to
the revised systematic recommendation described in Tab. 4.15, gives an expected significance of 3.2 ¢ and
precision of fg;‘gﬁ while a lower sensitivity is expected if extrapolating with the current Run 2 systematics.
This more than 3 o expected sensitivity lightens the possibility to probe the double Higgs production with

HL-LHC.
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Significance [o] Combined signal
Uncertainty scenario bby~y bbrT Combination strength precision [%]
No syst. unc. 2.3 4.0 4.6 -23/+23
Baseline 2.2 2.8 3.2 -21/+34
Theoretical unc. halved 1.1 1.7 2.0 -49/+51
Run 2 syst. unc. 1.1 1.5 1.7 -57/+68

Table 4.16: HL-LHC prospects of the expected sensitivity for SM HH production, under different as-
sumptions of the systematic uncertainties [99].

The likelihood scan is also performed with the signal and background Asimov data, by considering ) as
a free parameter while fixing the signal strength p. The likelihood-based 1 o confidence interval of k) is
[0.5,1.6] for the baseline setup and [0.6,1.5] for the case with only statistical uncertainty. It implies an
expected accuracy of around 50% of the x) measurement.
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Figure 4.34: HL-LHC prospects of the expected negative log-likelihood scan on the Higgs self-coupling
modifier under different assumptions of the systematic uncertainties. The dashed gray horizontal
lines correspond to the 1 o and 2 ¢ confidence intervals [99].

On the other hand, the projection to HL-LHC is also studied for limits of HH cross section and ), assuming
no observation of HH signal. A background-only Asimov data is generated for this study. As shown in
Fig. 4.35, for the baseline case, the expected upper limit of the HH signal strength is 0.56, and the expected
limit interval of k) is [2.0,4.1] at 95% confidence level. The expected results exclude the SM HH production
with = 1 and k) = 1 under an assumption of no HH signal, hence if the SM HH signal exists, a large
excess between the observed and expected results is expected. CMS has similar results [97].
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Figure 4.35: HL-LHC projections of the 95% expected upper limit of HH signal strength assuming SM
Higgs self-coupling (a) and the 95% expected limit interval of k) [99].

Contrary to the hadron colliders, where the double Higgs production is dominated by gluon-gluon fusion
(99 — HH), at lepton colliders, it proceeds via double Higgs-strahlung (ete™ — ZH H) particularly rele-
vant at low energy, or via vector boson fusion (e*e™ — H Hv,1.), more important at center-of-mass energy
of 1 TeV or above. For instance, CLIC at /s = 3 TeV or ILC at /s = 1 TeV can get k) with a precision
of about 10%, while FCC-hh is expected to reach 5% [100]. Information on potential of HE-LHC can be
found in Ref. [101].

4.15 Conclusion

In this chapter, the latest ATLAS result of the double Higgs production using Run 2 data in the bbyy
channels is presented, including searches for both non-resonant and resonant signals. The obtained results
are very similar to the one in the same channel from CMS. Results of ATLAS from other channels are
also presented, involving bbbb and bbr7, a combination is performed for the three decay channels where a
significant improvement on the sensitivity is obtained. The combination between double and single Higgs
production, as well as the prospects for HL-LHC, are introduced.



5 - Calibration of the LAr electromagnetic Calorimeter

ATLAS made an electromagnetic calorimeter calibration paper with the Run-1 data [102] and another
one [103] with the first 36 fb~! Run 2 data (2015 and 2016). Then new algorithms for electron and photon
reconstruction were used, including the change of clustering algorithm (from fixed-size cluster to super-
cluster) [48], the calibration done with the changes is described in Ref. [49], with an integrated luminosity
of about 81 fb~! (2015-2017). The calibration to be presented in the following corresponds to the final
recommendation of calibration using the full Run 2 139 fb~!) data (2015-2018), which will be published
soon.

5.1 Overview of ECAL Calibration

Electrons and photons, whose energy is measured from the electromagnetic calorimeter, are important
signatures for many analyses, in particular for the Higgs mass measurement in the two photons channel.
Early Higgs mass measurement with LHC Run 1 data using both the H — vy and H — ZZ* — 4l channels
achieves an impressive result of 125.09+0.24 GeV [3], where the H — ~7 channel experimental uncertainty
is dominated by the photon energy scale systematics. In this sense, accurate calibration of the calorimeter
is important for precise measurements.

The complete procedure of ATLAS ECAL calibrations is illustrated in Fig. 5.1.

Starting from the reconstructed cluster energy in the LAr calorimeter, a multivariate (MVA) regression
based on simulation is performed in order to recover energy loss outside the LAr calorimeter. In parallel,
the relative energy response of the LAr longitudinal layers is calibrated before applying the MVA regression
to the data. Additional corrections are applied in order to improve the uniformity of the energy response
in data, including the uniformity in azimuthal angle as well as residual electronic non-linearity from an
analogue-to-digital converter (ADC) and layer 2 electronic gains (L2Gain). Afterwards, the so-called in-situ
calibration which corrects both the energy scale and resolution using the Z boson mass peak is performed.
Specific correction for photons is applied for the purpose of recovering the lateral energy leakage outside
the cluster [105]. Eventually, validation of the whole calibration is done with the J/¢ — ee and Z — liy
events, which check the energy response respectively for electrons at very low energy and for photons which
have different signals in the LAr calorimeter.

5.2 MVA Calibration

The energy of electrons and photons are reconstructed mainly based on the LAr calorimeter cluster, which
does not include energy lost due to the upstream material, leakage outside the cluster to the neighbour
cells and longitudinal downstream leakage. All these effects are calibrated using a multivariate regression
from reconstructed to truth energy, which is called the MVA calibration. Boosted decision trees (BDT)
are trained with full simulated single particle samples without pileup, optimized respectively for electron,
converted photon and unconverted photon in regions of |n| and |Ep| of the particle. The input variables
for training include 7 and ¢ of the cluster, total energy deposited in the accordion (strips, middle, back),
and longitudinal shape variables including the ratio of energy between the presampler and the accordion,
and the one between the first and second layer (E1/E2). For the converted photon, additional variables are
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Figure 5.1: Calibration flow of the ATLAS electromagnetic calorimeter [104].

included, such as conversion radius and conversion track variables. In the transition region between barrel
and endcap, the information stored in the E4 scintillator is used to mitigate the degradation of resolution
due to the increased amount of upstream material in this region. A shift in energy is also applied to keep
Ereco/ Eprutn centered at one.

The performance of the MVA calibration is shown in Fig. 5.2. The energy resolution is better at high
energy due to the reduced stochastic uncertainty and noise. The response is similar between electron and
converted photon due to a similar shower from the electron in the LAr calorimeter. The performance is
slightly better for the unconverted photon.

The MVA regression is trained on the MC simulation, hence any mis-modelling in MC can lead to different
energy responses when applying it to data. In order to correct for these effects, additional calibrations are
needed.

5.3 Layer Calibrations

The longitudinal shower development is taken as an input variable for the MVA calibration, including
the ratio of energy between PS and accordion and the one between the first and second layers. Therefore
if the layer energy response is different between data and MC, the energy response after MVA calibration
will be also different. Hence a calibration of PS using muons and an inter-calibration of layer 1 and layer 2
using both muons and electrons are used to adjust the relative layers' energy responses between data and
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Figure 5.2: Calibrated relative energy resolution in function of n and truth Er for electron (a), converted
photon (b) and unconverted photon (c) [103].

MC.

5.3.1 Presampler Energy Scale

The presampler is used to measure the early longitudinal shower segmentation induced by the material
before the accordion. The presampler energy is calibrated with muons from Z and W bosons decay using
the low pileup data at a center-of-mass energy of 13 TeV, with a total luminosity of 0.33 fb~! collected in
2017 and 2018 [106]. Benefiting from the blindness of muon to the upstream material, the energy scale
factor is simply calculated as the ratio of the PS energy between data and MC:

E(c]lata
aps = — A (5.1)
EMC
The scale factor is calculated with the mean values of the PS energy distributions in bins of 7, where the
PS energy is calculated as the energy deposit in the cells closest to the one matched to the muon track.
Since the low-mu data is used for calibration, the pileup noise effect for muon is neglected.

5.3.2 E1/E2 Energy Scale

The layer 1 and layer 2 inter-calibration allows the adjustment of the differences in the relative layer
energy response, due to mis-modelling of the upstream material before layer 1, electronic miscalibration,
cross-talk effect and misalignment between layers. This difference is absorbed by the E1/E2 scale factor
defined as the double ratio of energy measured in the two layers between data and MC:

Etliata/Egata
This scale factor is derived independently with Z — uu and Z — ee events, and respectively with two
different methods for each.

Muon, the so-called minimum ionized particle, induces a compact shower of very low energy (hundreds
of MeV) in the LAr calorimeter and is insensitive to the upstream material. Two methods are used to
extract the E1/E2 scale factor with muons [107]. One is a fit method, which fits respectively the energy
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Figure 5.3: Presampler scale factor deduced with low pileup data using muons from Z and W de-
cay [104].

profiles in the two layers by a convolution of Landau function and noise template, where the noise template
is obtained from zero-bias events in order to describe the noise due to pileup and electronics effect. Af-
terwards, the most probable value (MPV) of the fitted function is used to calculate the scale factor. The
other method is called truncated mean (TM), which calculates the mean values of E1 and E2 in a truncated
window, hence is much less sensitive to noise and no noise template is needed. For both methods, the
MPV and the TM of the layer energy are computed in intervals of  and pileup, and further extrapolated
to zero pileup in order to get rid of the pileup noise, before computing the final E1/E2 scale factor for muons.

As opposite to muon, electron produces a real electromagnetic shower in the LAr calorimeter and is much
less affected by the pileup noise, although it is more sensitive to the material in front of the calorimeter.
The scale factor is determined by respectively exploiting the dielectron mass me.. and the ratio of energy
and momentum E/p in intervals of E1/E2 [108]. The scale factor which eliminates the dependency on
E1/E2 of the ratio of data and MC is taken as the value for electrons. The electron results was used only for
cross check in early calibration recommendation [49], now it is used to reduce the extrapolation systematic
uncertainty of E1/E2 calibration from muon to electron.

A combination using the best linear unbiased estimator (BLUE) method is performed [109] to firstly combine
results obtained with different methods for a given particle channel, followed by a combination of the muon
and electron channels. The combination is shown in Fig. 5.4. Subsequently the combined E1/E2 scale
factor is applied to correct the layer 2 energy in data, and the combined uncertainty is considered as the
final systematic uncertainty of E1/E2 calibration.

5.4 Uniformity Corrections

The signal in the front-end readout boards is amplified and shaped by three linear electronic gains, de-
pending on the ADC counts, in order to accommodate the same required dynamic range. High gain (HG),
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Figure 5.4: Combined E1/E2 scale factors (a) and uncertainties (b) for electron, muon and elec-
tron+muon channels[104].

medium gain (HG), and low gain (LG) are used respectively for ADC counts lower than 1300, between 1300
and 3900 and very high ADC.

For each electronic gain, a linear function is used to convert the ADC counts to input ionization current
(DAC) for the standard reconstruction, which is determined from dedicated electronics calibration ramp
runs. However residual difference between the injected current and the linear ramp has been observed in
particular at low ADC values, as shown in Fig. 5.5a. A fifth order polynomial function is used to parametrize
the residual after the linear ramp, respectively for the MG and HG, in different 7 regions. The impact of the
fitted residual is then estimated in the cluster energy level, and defined as the ADC non-linearity correction
as a function of n and Ep as shown in Fig. 5.5b. This correction is applied to data.
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Figure 5.5: (a) Example of electronic ramp runs. The discrete points represent the injected current
(DAC) as a function of the ADC counts. The red curve is a linear ramp fit. The blue curve corresponds
to the fifth order polynomial for parametrization of the residual. (b) Relative cluster energy correction
from the residual ramp as a function of the Er for electrons and photons[104].
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Apart from the ADC non-linearity, the three electronic gains are required to be properly intercalibrated,
in order to avoid possible non-linearity energy response when switching from one to another. For example,
the in-situ calibration (described in Sec. 5.5) studies the electrons from Z boson decay, where most of
them have HG cells, while a large fraction of the photons from Higgs decay is in MG. Hence miscalibration
between MG and HG will lead to a non-linearity effect when extrapolating the in-situ calibration to the
Higgs decay photons. A relative inter-calibration of the MG and HG in layer 2 of the LAr calorimeter is
performed, using the special runs recorded in 2017 and 2018, where a much lower ADC threshold is used
to move from HG to MG [?, 110]. The MG/HG scale factor is extracted between the MG-dominant special
runs and the HG-dominant standard runs, by exploiting the dielectron mass of the Z — ee events in bins of
1. The ADC non-linearity correction is applied before scale factor extraction. As shown in Fig. 5.6, the MG
and HG responses are different by an order of O(1073), but since the fractions of MG and HG cells evolve
with the particle energy, this difference can lead to a large non-linearity of the energy response. Hence the
MG/HG scale factor is used to derive a correction as a function of 7 and Ep applied on data to suppress
this non-linearity effect.
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Figure 5.6: MG/HG scale factor derived between the standard and special runs using Z — ee
events[104].

In the previous recommendation [49], there are already the uniformity corrections as a function of ¢, in
order to recover the energy loss near barrel calorimeter modules and the effect of high voltage inhomogene-
ity [103]. A new uniformity correction is applied to correct the so-called sagging effect that the calorimeter
is deformed by its gravity and gives different energy response in the ¢ direction. The correction is derived
by comparing the mean value of the electron energy profile between data and MC. The improvement of
the azimuthal uniformity is shown in Fig. 5.7, where the performance in function of the azimuthal angle is
drawn. Before the correction, there is a non-uniformity effect varying as a function of the azimuthal angle,
with a magnitude up to 0.3%, and the correction is able to achieve a nearly flat response. This correction
does not modify the inclusive average mass and improves the resolution of data.

5.5 In-situ calibration with Z — ee Events
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Figure 5.7: Improvement on ® uniformity of the data dielectron mass from Z — ee events. (a) Di-
electron mass is plotted in function of the Z boson ¢ angle. (b) Electron energy response is shown in
function of its ¢ angle[104].

Finally, the in-situ calibration, using the Z boson mass peak as a well-measured reference, calibrates
all the residual energy response differences, with an energy scale factor o and a resolution constant term
¢ [111]. The energy scale factor shifts data to the correct Z mass peak position. The resolution constant
term smears the MC mass distribution to match the same spread as in data.

5.5.1 Data, Simulation and Event Selection

The 13 TeV pp collision data corresponding to an integrated luminosity of 139 fb=! is used for cali-
bration. The data events are required to be of good quality, that is to be belonging to the list of good
lumi-block numbers (GRL) and pass the LAr quality cut. The individual luminosities of data are 3.2 fb~1,
33.0 fb=!, 44.4 fb~! 585 fb~! respectively for 2015, 2016, 2017 and 2018.

The Z — ee Monte Carlo samples are simulated at NLO in QCD using POWHEG-BOX interfaced to
the PYTHIAS8 parton shower model. The background processes, such as tt, Z — 77, W and the di-boson
production, represent less than 1% of the Z — ee events after selection. The background effect on the
in-situ calibration and mass lineshape between 80 and 100 GeV is negligible, hence only the Z — ee is used
for the calibration.

Events are first required to pass the high-level dielectron trigger for each year:

+ 2015: HLT_2e12_1hloose_L12EM10VH

* 2016: HLT_2e17_1hvloose_nod0

» 2017: HLT_2e24_1hvloose_nod0

+ 2018: HLT_2e24_1hvloose_nod0 or HLT_2el17_lhvloose_nod0_L12EM15VHI

Events should have a primary vertex (PV) which should further satisfy the cut on its z position: |zyertex| <
150 mm, in order to suppress the non-collision background (cosmics, etc.).
Events are finally kept if they contain exactly two reconstructed electrons passing the following selection:

* with opposite charges.
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in the center region of detector: |nyack| < 2.47 .

transverse momentum above 27 GeV.

not falling in the bad clusters of the calorimeter (GoodOQ).

passing medium likelihood ID.

dO (the transverse impact parameter with respect to the beam line) significance smaller than 5.
|29 sin 6| (distance between the track and the PV) smaller than 0.5 mm.

passing Loose isolation cut.

invariant mass falling in [80, 100] GeV window.

5.5.2 Principle of Calibration

After applying the MVA, layer calibrations and the uniformity corrections, a quick comparison of Z mass
distributions (Fig. 5.8) shows around 50 MeV difference between data and MC on the peak position and a
few hundred MeV difference on resolution. The remaining differences are supposed to be absorbed by the
energy scale factor o and constant term c.

x10°
> e L L A L L L
& 4000f— ATLAS Internal —— Uncalibrated data
2 - V{s=13TeV, 139 fb* —— Uncorrected MC .
> 3000 “°° -
IS C ]
(D) L _
> - .
@ 2000f -
1000 —
L 1 PRI R TR R | 1 | P 1 1
O J..rlE T T T T _.__.__._-Ou-....-og
S 1.05peeeee T e o E
I T | et S g e 3
0 = | | | | | | | | | 3
'%0 82 84 86 88 90 92 94 96 98 100

M, [GeV]

Figure 5.8: Di-electron invariant mass distribution of the full Run 2 data and the Z — ee MC simulation
before applying the in-situ calibration. A shifted peak and different spread have been observed.

The scale factor « is defined as the relative difference of energy scale between data and MC depending on
the pseudorapidity of the calorimeter cluster!:

Edate — pMC(1 4 a(n)) (5.3)

'In the following, the cluster pseudorapidity will be simply denoted as 7.
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where the energy scale of MC is assumed to be perfectly calibrated.

The constant term c is an additional term used to smear the width of MC mass distribution to the one of

data
' (J(Ejg))dam _ (O(EE)> Mc@ . 5

Elate — EMC (1 4 ¢ () x 2) (5.5)

where the constant term ¢ is smeared with a random variable x following a Normal distribution A/(0, 1).

The « and ¢ parameters are then propagated to the invariant mass me.. Before the Zee in-situ calibration,
the di-electron mass me. expresses as

Mee ~ \/2F1 B3 (1 — cos 1) (5.6)

where F; and Ey are electron (positron)2 energies, and 15 is their opening angle.

After applying « and ¢, the new mass expresses as

mdate = M\ (14 a(m) (1+ )

mdata — mgc (1 + —a(m) —5 a(n;) + O(a2)> (5.7)
mid ~mlC (1 + )

with

.. — olm) + a(n;)
17 2

(5.8)

where i and j are the indices of 7 bins of the two electrons. Assuming that scale factors are much smaller
than 1, the second order term could be neglected.

From the same principle, the effect of the constant term on the mass is

mdate = M1t e () x 20) (1+ e (ny) % ) (5.9)

where x; and x; are two independent Normal random variables. The relative mass resolution is deduced as

() (e g, 510
m data m MC 2
with
2 _ )P0, 5
2

2The positron will be also labelled as the electron in the following document, and the calibration is done
regardless of the charge.
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5.5.3 Template Method

The «;; and ¢;; parameters in couples of bin (4, j) of 1 are simultaneously fitted using the so-called
template method, followed by a x? inversion in order to extract the individual c; and ¢;. For each pair of
7; and 7n; of the calorimeter, a 2D scan is repeated for possible values of «;; and ¢;;, which distorts the
di-electron mass in MC to produce the m.. templates. The generated template mass is in the following
form

mz;eemplate _ mé\gc\/(l 4 Oéi) (1 + Oéj) (1 + c(m) X $z) (1 + C(’I]j) X .CCj) (5.12)

For each template, the x? value of mass distributions between templates and data is calculated

X2 _ i\f: <P(mdata) - P(mtemplate))2
k=1

eek ee,k
(5.13)
where 1 < k < N is the bin index of the invariant mass distribution of di-electron, P(md) and

2
data\2 template
(o)™ + (Uk )

P(mzeen;plate) are respectively the probabilities to have the mass in bin k for data and MC template, and

odate and aiemplate are respectively the statistical uncertainties in this bin. The typical choice of mass bin

size is 1 GeV. An example of the 2D x? scan matrix is shown in Fig. 5.9.

-0.0105 . -0.0095 -0.009

a

Figure 5.9: Distribution of y? between data m.. distribution and MC template, as a function of tested
values of energy scale factor a;; and resolution additional constant term ¢;; [112].

The best a;; and ¢;; correspond to the minimum of the x?2 scan. However, due to the non-trivial correlation
between ;; and c;; as well as the non-parabolic behavior at low ¢;;, a direct 2D fit is poorly converging.
Instead 1D fits are performed to improve the stability of the fit. Firstly the value «;j is profiled at fixed
value of ¢;; as shown in the left plot of Fig. 5.10, the minimum is derived with a parabolic fit to the x?
function: )
(cij — Gij(cij))

- (5.14)

dovg;(ciz)

X (g ¢ij) = aolcsy) +
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where ag is the minimum x? value, &;; and da;; are respectively the profiled value and the corresponding
uncertainty of c;;. The three parameters are calculated in function of different smearing c¢;;, as shown in
the right plot of Fig. 5.10.

Subsequently the x? is plotted in function of ¢;; and the associated profiled a;;. The behavior of x?
is much less symmetric with respect to ¢;;, that is the reason why «;; is profiled while ¢;; is only fitted once
in the end. A third order polynomial function is used to fit the x? curve in function of ¢;;, and the uncer-
tainty is obtained with the intersection Ax? = x?(¢;; £d¢;;) —x%(¢ij) = 1, with &;; the best fit value of ¢;;.
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Figure 5.10: lllustration of fit procedures in the template method. Left: x? as a function of «;j, at a
fixed c;j. Central: x? as a function of ¢;;, at the profiled best-fit «;j. Right: profiled best-fit a;j in
function of ¢;;. [112].

With the measured value of «;j, ¢;; and their uncertainties dcy;, dc;j, the individual values of «; and
¢; are obtained with a y2-based inversion, assuming a;; and ¢;; behave as Gaussian random variables:

) ) cf—i—c?. 2
XQ:Z( 2 ' X2:Z< - _Cij> (5.15)
@ (5052']‘)2 ’ ¢ (502']')2 .

1,5 <i

Because the inversion weights each configuration (i, j) by its uncertainty, for configurations with few events
in the fit range or with bad fit quality, an arbitrary large uncertainty is imposed to have an effective removal
of their impact on the inversion. The correlations between different 7 bins are accessible by computing the
Fisher information of the 2, which might be useful for additional checks and extensive studies.

More details of the method and technical implementation are described in the thesis of Christophe Goudet [112]
and the one of Hicham Atmani [113].

The official in-situ calibration of Run 2 is done with different 1 binning for o and ¢, as shown in Tab. 5.1.
The scale factor « is measured in 68 bins of 7 in order to improve the mass lineshape agreement between
data and MC, while 24 bins are used for c. The wider 7 bin width for constant term measurement aims to
increase the fit stability with a larger number of events because the non-parabolic behavior of the x? curve
at a small value of constant term will lead to a potential bias of the method.

In detail, the extraction is implemented within two steps of the 2D scan, the first done in 68 7 bins, followed
by the other in 24 7 bins for which the o measured in the first step is applied on data.
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) ,0.1,0.2,0.3,04,0.5,06,0.7,0.8,0.9,1,1.1, 1.2, 1.285, ,1.42,1.47,1.51, ,
"1 1.59,1.63, 1.6775, 1.725, 1.7625, 1.8, 1.9, 2, 2.05, 2.1, 2.2, 2.3, 2.35, 2.4, 2.435,

Table 5.1: Absolute values of 7 bin frontiers for energy scale factors (black and brown) and resolution
additional constant terms (brown). The extractions is done with both positive and negative values.

5.5.4 Results of Scale Factor and Constant Term

The scale factors and constant terms for each year of Run 2 are shown in Fig. 5.11, with the statistical
uncertainties shown by the color bands.
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Figure 5.11: Scale factor (a) and constant term (b) obtained with different years of Run 2 data. The
constant terms are weighted by luminosity per year.

The a of each year differs significantly in the endcap region, with a maximum discrepancy of around 2%.
The scale factor is decreasing by year, with the lowest in 2018. The main causes of such dependency are the
increase of liquid Argon temperature and high voltage drop between the gaps during data recording, while it
is stable in simulation. Due to the energy deposit in the calorimeter, the liquid Argon starts to be warmed up
and creates a drop of energy of about —2% /K. Such effect is increasing with the instantaneous luminosity.
On the other hand, the ionization current produced in the shower decreases the high voltage between the
gaps and leads to a smaller drift velocity of the ionized electrons hence a smaller energy response. These
effects were estimated in the past with 2015 and 2016 data [103], as shown in Fig. 5.12 the prediction from
the high voltage and LAr temperature changes is consistent with the observed difference of scale factors
between the two years.

For the constant term ¢, there is almost a 0.5% maximum discrepancy among the years. If the electronic
calibration is perfect, the constant term, which expresses the resolution difference between data and MC, is
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Figure 5.12: Comparison between the energy scale corrections derived from Z — ee events in 2015
and 2016 as a function of . The difference in the energy scales measured in the data is compared with
predictions taking into account the luminosity-induced high-voltage reduction and LAr temperature
changes, as well as the small overall difference in LAr temperature between 2015 and 2016 [103].

expected to be independent of the data-taking periods which have different pileup conditions.

This dependency is caused by the larger pileup noise prediction in the MC, which leads to a worse energy
resolution depending on the pileup and appears differently in the constant term of different years. In
particular, for 2017, the constant term c is found to be globally below the other years. This is because the
alternative 8b4e bunch filling scheme installed in the second period is not simulated in the MC, so the pileup
noise modelling is even worse. The study of dependency of constant term on pileup will be introduced in
Sec. 5.5.7. In this case, the luminosity-weighted average value of all the years is taken as the final constant
term, assuming the statistical uncertainty of the constant term of each year is inversely proportional to the
square root of the corresponding luminosity. The combined constant term and its statistical uncertainty are
calculated with Eq. 5.16. Meanwhile, a dedicated systematic pileup noise mis-modelling is estimated for the
energy resolution.

2 2
C b= 721(1]1 . Ci) g, b = 7'[/2 . O-i
com ZZ LZ ) com ZZ LZ

where ¢; & o; is the constant term with its statistical error measured with a given year i, L; is the relevant
luminosity.

(5.16)

The systematic uncertainties of the scale factor and the constant term had been produced in the previ-
ous EGamma recommendation. A similar exercise is repeated in this analysis: the systematic impact is
estimated by computing the deviations from the nominal results after switching on the systematic variation.
It is done for the systematics of the mass window, electron ID, isolation and bremsstrahlung radiation cut3.

* Mass window: restricted cut of m.. in [87, 94.5] GeV instead of [80, 100] GeV.
* Electron ID: tight likelihood ID quality instead of medium.
3For the official systematics, they include more sources, such as method bias, electroweak background.
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* Isolation: no isolation cut instead of Loose.

* Bremsstrahlung: cutting on the so-called fpyepn, variable to be smaller than 0.5.

(q/p)15t measured
(q/p)out of Inner Dect.

Frrem =1 — <05 (5.17)

where q/p is the ratio of particle charge and track momentum, fp,en represents the relative ratio of
q/p of the last and first measurements in the inner detector, quantifying the momentum loss before
entering the electromagnetic calorimeter. ldeally, if there is low bremsstrahlung radiation, frem is
close to 0.

The breakdown of systematics described above is shown in Fig. 5.13, where the shaded band is the total sys-
tematic uncertainty as a quadratic sum. For both scale factor and constant term, the systematic uncertainty
is dominated by the mass window and electron ID. In the crack and the endcap region with || > 1.37, more
material is present upstream of the ECAL and the trajectory of the particle is extended, hence it induces
more bremsstrahlung radiations and gives a non-negligible systematic effect. Other systematics relevant to
the selection efficiencies, electroweak background and method bias were studied in Ref. [114].
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Figure 5.13: Systematic uncertainties on scale factor (a) and constant term (b), estimated with data
2018 and MC16e. The shaded band is the total uncertainty.

5.5.5 Performance of Calibration

The performance of the calibration is validated by comparing the data and MC m, lineshape. The
scale factors are applied accordingly to each period of data, and the weighted constant term is taken as a
common smearing factor for MC. The calibrated mass distributions are shown in Fig. 5.14. The green band
represents the uncertainty band mass lineshape originating from the scale factor systematics, which covers
nicely the residual discrepancies between data and MC, except at a very low mass around 80 GeV.

The mean and standard deviation of m., distribution after the calibration are shown in Tab. 5.2. In general,
the calibration is able to adjust the relative energy scale difference at the order of O(10~%), and the relative
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resolution difference at the order of O(1073). When looking at electrons both in the barrel (5] < 1.2)
or endcap (1.8 < |n| < 2.47) region, a better mass agreement is observed in the barrel (Fig. 5.14b) with
better matched peak position, better calibrated resolution, and up to 2% difference of lineshape, while the
performance is slightly worse in the endcap region (Fig. 5.14c).
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Figure 5.14: Corrected mass for two electrons in a full range of calorimeter (a), both in barrel (b) and
endcap (c) for the full Run 2 data and MC simulation.

The calibrated mass of the individual year is also presented. As shown in Fig. 5.15, similar lineshape
is observed for 2015, 2016 and 2018, while for 2017 the mass lineshape is improved at low mass, but de-
grades at the peak and high mass. This implies a better resolution in data 2017 as shown with the column
of Data RMS in Tab. 5.2, that mass resolution of 2017 is better than 2018, while the average pileup goes
in the opposite direction.

It is mostly due to the 8b4e bunch filling scheme used in the fall of 2017, which reduced the pileup noise
in the pulse signal because of the four empty spacing. Consequently, it brings a non-trivial resolution effect
that can not be perfectly absorbed with a Gaussian smearing. A previous study by Saskia Falke [49] and
a recent one by Antony Wendels which calibrates separately the BCMS and 8b4e periods of 2017 have
achieved a better understanding of the resolution effect and the mass lineshape.
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year < p> Datamean[GeV] MCmean[GeV] DataRMS[GeV] MCRMS[GeV] Amean[MeV] ARMS [GeV] x?2/ndf \
full Run 2 33.7 90.490 90.499 3.525 3.518 -9.4 0.217 2500/39
full Run 2 barrel 33.7 90.574 90.578 3.392 3.386 4.3 0.206 852/39
full Run 2 endcap 33.7 90.110 90.124 3.541 3.526 -14.4 0.326 3995/39
2015 134 90.442 90.453 3.455 3.433 -11.0 0.391 171/39
2016 25.1 90.479 90.493 3.499 3.485 -13.4 0.312 710/39
2017 37.8 90.498 90.503 3.523 3.529 -5.1 0.194 1198/39
2018 33.7 90.492 90.503 3.545 3.535 -10.4 0.270 1281/39

Table 5.2: Summary of statistic characteristics of the mass distribution of different years of Run 2.
The mean and RMS are calculated in the mass range between 80 and 100 GeV, Amean is the mean
value difference between data and MC, ARMS is the quadratic difference of their RMS. The x? test is
bad due to the current discrepancies of lineshape as well as the tiny statistical uncertainty. The mean
numbers of interactions per bunch crossing are shown [27].
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Figure 5.15: Mass distributions of 2015, 2016, 2017 and 2018 after Zee in-situ calibration. The green
band, taking the same for all the years, represents the scale systematics effect on the mass lineshape.

The performance of the calibrated mass is also plotted in function of the azimuthal angle of the Z bo-
son, the number of reconstructed vertices, time stamp and pileup, as shown in Fig. 5.16. The average
values of me. profile in intervals of the exploited variable which are normalized to the full range average
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are computed respectively for data and MC using the full Run 2 dataset. The calibration achieves to have
a flat distribution of me. as a function of the Z boson ® angle because of the azimuthal uniformity cor-
rection described in Sec. 5.4. The energy response performance remains uniform with the detector running
time, with a maximum deviation with respect to 1 around 0.16% and mostly smaller than 0.1%. A small
dependency on the number of vertices and pileup is observed, the main reason is that the new super-cluster
algorithm used to improve the resolution is however more sensitive to pileup. A sliding window clustering was
used for the 36.1 fb~! release, which gives a more stable performance relevant to pileup [103]. Differences
between data and MC at a big number of vertices and pileup correspond to the high pileup period 8b4e
of 2017, which is calibrated together with the BCMS period and appears to have some non-optimal residual.
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Figure 5.16: Calibrated di-electron mass performance in function of azimuthal angle of the recon-
structed Z boson (a), number of primary vertices (b), LHC running time (c), and pileup up (d). The
error bars represent the statistical uncertainties.

The mean and standard deviation of dielectron mass inside the [80, 100] GeV mass window are calcu-
lated in function of 5 of the leading and sub-leading electrons, as shown in Fig. 5.17. Three 7 ranges are
exploited, barrel (|n|<1.37), extended crack (1.37 < |n| < 1.82) and the rest endcap (1.82 < || < 2.47),
that me. is filled in both positive and negative 7 regions. The best performance is in the barrel, with around
10 MeV residual difference for mean and near 100 MeV for standard deviation, if the two electrons are both
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in the barrel. The energy measurement is also good in the endcap region, although less precise than the
barrel. The extended crack region is less well calibrated, carrying often 50 MeV residual mass difference and
200 MeV tension on resolution.
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Figure 5.17: Mean and standard deviation of m.. in function of pseudorapidity of leading (n;) and sub-
leading (n2) electrons for full Run 2 data (a) and MC (b). The absolute difference of the mean (c) and
the quadratic difference of the standard deviation (d) are shown. The empty bins contain no selected
events.

The differences in the mass shape between data and MC are not perfectly absorbed by the current 7-
dependent scaling and smearing. To further improve the calibration, one possibility is to use an energy-
dependent scale factor for more flexible calibration, named linearity, which is introduced in Sec. 5.6. Another
solution is to implement a non-Gaussian smearing, assuming the residual discrepancies are due to some tails
in the mass distribution, which cannot be absorbed by a symmetrical Gaussian smearing. It was initially
studied in the forward ECAL (|n| > 2.47) calibration by the USTC group and then in 1JCLab by Juan
Tafoya [115] in the central ECAL region (|n| < 2.47). The idea is to have a resolution correction based
on the difference between the reconstructed and the truth energies, which will affect the mass resolution
asymmetrically.
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5.5.6 Impact of ADC, L2Gain and Azimuthal Uniformity corrections

As described in Sec. 5.4, new corrections are applied for the purpose to improve the uniformity of energy
response of the calorimeter. In order to check their individual influence, the three corrections are eliminated
one by one starting from the baseline where all of them are applied before doing the in-situ calibration. The
example of results using 2018 data and MC are used for illustration, which is shown in Fig. 5.18.
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Figure 5.18: Scale factor (a) and constant term (b) obtained with 2018 data respectively for the nomi-
nal pre-stage calibration, and case without the ADC non-linearity, or L2Gain or azimuthal uniformity
correction.

The ADC non-linearity has the largest impact on the calibration, it changes the energy scale by around
0.02% in both barrel and endcap regions, while a maximum effect of around 0.1% is observed in the crack.
This is mainly because the correction itself is simply set to 0 for Ep = 40 GeV rather than the exact mean
value of Z — ee electron E7, therefore it relies on the in-situ calibration to adjust the energy scale.

The L2Gain correction has very little impact on both « and ¢, except at |n| around 1.5, it increases
the energy scale by around 0.02% and improves the resolution by around 0.08%. The reason is that the
L2Gain correction is used to recover miscalibration of the medium gain, while the electrons from Z decay are
dominated by cells at high gain, hence no significant effect is expected on the in-situ calibration. However,
the impact of this correction can be enormous for electrons with transverse energy much higher than the
7 — ee averaged Ep around 40 GeV, which will be discussed in Sec. 5.6.2 of the linearity for the LAr
calorimeter energy response.

After switching off the azimuthal uniformity correction, the scale factor « is almost not changed, and
an up to 0.06% effect on the constant term c is observed, which implies the improvement of resolution from
this correction.
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5.5.7 Impact of Pileup Modelling, Additional Material and Shower Shape Variable Selection

Some additional checks for the purpose of a better understanding of the calibration results were per-
formed. They include the potential mis-modelling of the pileup noise, upstream material and selection of
the shower shape variables, of which the impact on the in-situ calibration is respectively tested. The studies
are based on the previous recommendation of calibrations.

Pileup noise mismodelling

As shown in Fig. 5.11b, the constant term appears to be different from 2015 to 2018 which have different
pileup. Such effect is relevant to the mis-modelling of pileup noise in MC. Fig. 5.19 shows one example
of the noise distribution in the second layer of the LAr calorimeter as a function of the averaged pileup,
for both MC prediction and measurement in data. The noise has two main contributions, pileup and elec-
tronics. The pileup noise is almost linear as a function of /< 11>, while the electronic noise is constant.
The electronics noise can be obtained with the extrapolation of noise curve at < p >= 0, which is nearly
consistent between data and MC. The different slopes imply around 10% [49] larger pileup noise simulated
in MC with respect to data, such difference is proportional to /< iz >, hence in Fig. 5.11b, the pileup
noise is more over-simulated for 2018 than 2016 (2016 than 2015), so that only a smaller constant term is
needed for smearing MC to data. For 2017, due to the presence of the 8b4e filling scheme, the pileup noise
in data is consequently better controlled, accordingly the improved data resolution requires a much smaller
constant term, also it is because this filling scheme was not simulated in MC.

A pileup reweighting approach is used to emulate a correction of the pileup noise mis-modelling, by scaling
< p > with a pileup reweighting scale factor. The standard choice is 1.03 derived from tracking observables,
with which the MC pileup profile is reweighted to one of the data scaled by 1/1.03. However, this is not
sufficient to correct the pileup noise mismodelling in the calorimeter. In order to compensate the observed
10% over-simulation, the pileup needs to be reduced by 20%, since the corresponding noise is linear with
\/Z/L). Hence a reweighting scale factor of 1.2 is considered for the BCMS filling scheme, and 1.3 for 8b4e.
For 2015, 2016 and 2018, the reweighting scale factor of 1.2 is used, and for 2017, the two sub-parts with
different filling schemes are scaled by the corresponding factor. The pileup profile plotted with 2017 events
are shown in Fig. 5.20, as well as the MC reweighted using the standard and alternative scale factors.

The in-situ calibration has been repeated after reweighting the MC with the alternative pileup reweighting
scale factors, the @ and ¢ are re-derived for each year as shown in Fig. 5.21. As compared to Fig. 5.11b,
the dependency of the constant term is significantly suppressed, and the difference as a function of 7 is
mostly covered by the statistical error except for a few discrete bins. Given the improved consistency be-
tween different years, the weighted average constant term is now representative to describe the resolution
smearing of all the years. In general, the obtained « and ¢ are obviously different between Fig. 5.21 and
Fig. 5.11, which is not only because of the application of alternative pileup reweighting scale factor but also
more importantly due to different pre-stage calibrations.

Additional material before the calorimeter

The upstream material in front of the calorimeter is simulated in MC, however if it is not well modelled,
the presence of any additional material in front of the calorimeter will have potential impact on the in-situ
calibration. The impact of additional material is studied with material distorted samples, of which the ad-
ditional material is presented in different regions of the detector. The various configurations are described
in Tab. 5.3.
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Figure 5.19: Evolution of the squared noise as a function of < > in data (red points) and simulation
(blue triangles), for one particular n bin in the second layer of the EM calorimeter. The lines show the
result of linear fits to the points for < x> in [15,45] and the dotted lines show the extrapolation to
higher < p > [49].
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Figure 5.20: Pileup distribution of data 2017, MC reweighted with 1/1.03 and alternative factors using
1/1.2 for BCMS and 1/1.3 for 8b4e. The alternative reweighting is supposed to correct the pileup noise
mismodelling in MC.

In total, six material distorted samples labelled as configA, configIBL, configPPO0, configN, configL and
configFMX, defined with combinations of the additional material configurations, are used to study the im-
pact on the in-situ calibration. The added material for part of the samples is displayed in Fig. 5.22.

The object is not only to check the influence of possible material mis-modelling on the scale factor and
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applying the alternative 1.2 or 1.3 pileup reweighting scale factor for the purpose of correcting the
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Figure 5.22: Amount of added material before the calorimeter for different distorted geometries used
to compute the sensitivities to uncertainties in the material before the calorimeter [1714].

constant term, but also to verify whether the material effect can be corrected using a simple scaling and a
Gaussian smearing.
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Name Description

ConfigA 5% ID material scaling

ConfigL 5% X, of cryostat in barrel

Confige  7.5% X, in SCT/TRT endcap

ConfigF  7.5% X, in ID endplate

ConfigM 5% X, between presampler and calorimeter in barrel
ConfigX  30% X, in barrel-endcap transition region

ConfigN 5% X, between presampler and calorimeter in endcap
IBL 10% IBL material scaling

PPO 25% PPO services scaling

Table 5.3: List of descriptions of different material distorted samples.

Due to the low number of events (10M events ~ 1% of nominal MC ) in the material distorted sam-
ple, the calibration is performed in 12 absolute 7 bins using the orange frontiers in Tab.5.1 for both «
and c extractions. The material distorted samples are taken as pseudo-data to extract the scale factor and
constant term with respect to the nominal MC:

[ppseudo-data _ EMC(l + a(n)) (5.18)
O‘(E) pseudo-data B O‘(E) MC
(") - (%) e >

In practice, except in the 7 regions with a large amount of additional material, the resolution in material
distorted samples is quite similar to the one in nominal MC. A potential problem is when the true value of
the constant term is too small, since it is positively defined, the x? curve will lose its parabolic behavior, and
gives the biased fit result. In order to prevent such potential bias, the electron energy in material distorted
samples is firstly smeared by a sufficiently large constant term of 1%, which is afterwards subtracted from
the measurement as shown in Eq. 5.20.

Clistorted = v/ maz (0, ¢(|n])2 — 0.012) (5.20)

where C(|n]) is the constant term measured between nominal MC and material distorted sample where the
electron energy is relatively smeared by 1%.

The impact of additional material on the calibration is shown in Fig. 5.23. Since the distorted samples
always have more simulated material, the energy scale is hence always reduced and the resolution is worse
than the one of nominal MC.

As shown in Fig. 5.23a, the impact on « is significant and consistent with the amount of added mate-
rial shown in Fig. 5.22. For instance, configFMX has additional material at 7 up to 2.5 with the maximum
amount at 1.5 < |n| < 1.8, hence the energy scale is changed proportionally to material bias in the full
range. As for configN, it introduces more material only near the crack, so the effect on the scale factor is
null elsewhere.

The measurement of the constant term is more affected by the statistical fluctuation due to its pecu-
liar fit behavior. For most of the bins, the effect is tiny or not far away from the statistical error, the most
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visible effect occurs at 1.5 < |n| < 1.8 in particular for configFMX, configA, configEL. The sample configN
has a null impact on constant term near the crack region where additional material is actually presented
is mainly due to the fact the material is added in the last stage between PS and accordion, therefore the
influence is smaller than the ones with material added further from the calorimeter. Another reason is the
fit stability of the constant term.
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Figure 5.23: Changes in energy scale factor (a) and constant term (b) due to the presence of additional
material in different regions of the detector in front of the calorimeter. The colored bands represent
the statistical uncertainty.

The original mass lineshape between the nominal and material distorted MC is shown by the black curve in
Fig. 5.24, where configA. configFMX and configEL change obviously the m.,. shape. The additional material
induces more bremsstrahlung radiation hence the dielectron mass is often smaller than the nominal one.
After the in-situ calibration, the distortion on mass due to additional material is significantly absorbed, the
mass lineshape is almost flat, and no similar trend is found as compared to the residual difference between
standard data and MC as shown in Fig. 5.14 and Fig. 5.15.

Shower shape variable study

The shower shape variables, as characteristics of the electromagnetic shower properties in the LAr calorime-
ter, are important discriminating variables to identify electrons and photons. These intrinsic variables are
not used as inputs of the MVA energy regression for electrons (Sec. 5.2), while they may be helpful to
reduce the non-Gaussian dielectron mass behavior and improve the mass lineshape. Two lateral shower
shape variables have been studied:

* Ry ratio of 3 x 3 to 3 X 717 x ¢ cluster energies at layer 2
* wgop: total lateral shower width at layer 1

The Ry and wso; variables are sensitive to bremsstrahlung radiation, for electrons with no radiated photons,
with less energy deposit in the nearby cells of the most energetic one, R, closer to 1 and smaller wg, are
expected. Hence an n-dependent cut with an efficiency of 85% has been deduced, in order to reduce large
bremsstrahlung radiation.
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Figure 5.24: Mass lineshape between the nominal and material distorted MC before (black) and after
(green) the in-situ calibration. The pseudo-data corresponds to the material distorted sample, which
is calibrated by a and gives the green dot as calibrated data. The corrected MC is defined as the
nominal MC corrected by c. The worse resolution of the green curves with respect to the black ones
is mainly due to the introduced 1% smearing for mitigation of bias of ¢ extraction.

The shower shape variables are not well modelled in the Geant4 detector simulation. In order to cor-
rect this effect, a cell level energy correction has been applied to produce re-weighted clusters with similar
shower shapes as data, which is called shower shape fudging. The fudging preserves the total energy in the
7 x 11 cluster. However, because there is the cell-based medium ID selection, the efficiency of identification
will be affected after modifying the cluster cells.

The distributions of the two shower shape variables as a function of 7 plotted with 2018 datasets are
shown in Fig. 5.25: the shower shape fudging gives relatively good agreement between data and MC. Near
the crack region 1.37 < |n| < 1.55, the increased material and extended track trajectory lead to larger
lateral shower dispersion, hence smaller Ry and worse wso; are observed. While there is less upstream
material in the barrel therefore less bremsstrahlung radiation is produced, and in the endcap region, the
radius is smaller hence the radiated electrons are less affected by the electromagnetic field. In consequence,
the lateral shower shape is more compact for the barrel and endcap.

The 85% 7n-dependent cutting points obtained with data distributions are listed in Tab. 5.4, where Ry is
required to be larger than the cutting points, and wg;; and are selected to be smaller than the values.
The in-situ calibration is re-implemented after applying selection respectively on the two shower shape vari-
ables. The effect on scale factor and constant term is demonstrated in Fig. 5.26, which is negligible in
most of the n regions, except in the crack with 1 around 1.5 where the upstream material is large and the
trajectory of the electron is long.

The impact of the additional shower shape variable selection is shown in Fig. 5.27 plotted with 2018 data
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Figure 5.25: Distributions of the shower shape variables R, (a) and wg: (b) in function of |n|. The
empty circles represent 2018 data, the colored histograms are the corresponding MC simulation. The
distributions are normalized in each bins of |7|.

n°e 10,0.6] [0.6,1] [1,1.38] [1.38,1.55] [1.55,1.82] [1.82,2.47]

R, 0951 0925 0.904 0.880 0.917 0.930
Waor  2.096 2432 2672 2.674 2.685 1.756

Table 5.4: Cutting thresholds on shower variable variables R4 and w.o; with an 85% efficiency respec-
tively in each bin of .

and MC, where the corresponding calibrations are respectively applied for cases with a different selection.
The shower shape cut helps to reduce the discrepancies near the Z peak, while degrading the agreement in
the left and right tails. The impact from wg; cut is more significant with respect to R.

5.6 Linearity Measurement with Z — ec Events

The linearity measurement is not part of the calibrations which is going to be applied on neither data
nor MC, however, it gives an estimation of the residual non-linearity of the LAr calorimeter energy response,
and can be useful for further study of the energy scale systematics.

5.6.1 Overview

Since the in-situ calibration is done with electrons from Z decay, with an average energy of around 40
GeV, electrons with this energy can be considered as successfully calibrated. However, it is not guaran-
teed that the energy response of the calorimeter is still accurate at different energy. For instance, residual
non-uniformity of electronic gains, layer miscalibration and mis-modelling of upstream material can lead
to the potential nonlinear performance of the calorimeter. Such kind of effect could be a challenge for
precise measurement and search of new physics when applying the Z-based calibration on a high energy
scale. Specifically for the Higgs mass measurement in the two photon channel, the non-linearity of the LAr
calorimeter is the dominant systematic uncertainty.
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Figure 5.26: Scale factor (a) and constant term (b) obtained with 2018 data using nominal selection,
and additional cut on shower shape variables Ry, and ws;ot.
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Figure 5.27: Calibrated mass of data 2018 and MC with the nominal selection, and additional cut on
shower shape variables Ry and wy;. The mass lineshape is overlapped in the bottom plot. The
previous Rel. 21 calibrations are applied.

Therefore the measurement of energy linearity using the Z — ee events is performed in order to estimate
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the nonlinear response of the calorimeter as a function of the particle energy which indicates a potential
miscalibration effect. The Z — ee linearity is defined as the energy-dependent scale factor between data and
MC, that represents their residual scale difference after applying the n-only dependent calibrations. Similar
to Eq. 5.3, the linearity can be expressed as

B = EMC(1+ a(n) (1 + o (Inl, Ex)) (5.21)

If the global effect has been perfectly absorbed by the inclusive 7-dependent scale factor, the average lin-
earity in the range of FEr is expected to be zero.

The binning of  and Ep used to measure the linearity is summarized in Tab. 5.5. The 75 bins are
now defined with the absolute value and are much coarser than the ones of the inclusive scale factor. The
choice is made to mitigate the statistical fluctuations and to maintain a symmetric mass distribution in
particular when the two electrons have really different kinematics.

Borders of bins
I 0,0.6,1,1.37,1.55, 1.82, 2.47
Er [GeV] 27,33, 38,44, 50, 62, 100, co

Table 5.5: n and Ep binning for linearity measurement.

5.6.2 Method

The linearity is extracted with the template method, after correcting the scale factor «(n) on data and

the constant term ¢ on MC. However, the typical approach which firstly measures c;; in pair of 1 bins ¢
and j then makes the inversion is not working properly for linearity. The kinematics of electrons from Z
decay prevents the electrons to be located in very different 7 regions, or both having too large or too small
energy. For these cases, the mass distribution is often shaped, sometimes even does not form the Z peak.
An example of the mass distribution when requiring both electrons at very low transverse momentum is
shown by the red curves in Fig. 5.28. In this special phase space, the electrons’ transverse momentum is too
low to reconstruct the Z mass peak which leads to visible asymmetric mass distribution. Since the peak is
often lost within the current mass window between 80 and 100 GeV, the template fit is not always as good
as the normal case.
A trick of event splitting is used to avoid such an issue, which is called the summing criteria. Such criteria
select events with at least one electron belonging to a given n x Ep bin, when measuring the linearity at
this region. This means that the other electron is not necessary to be in the current bin under investigation,
but filling the full space of 7 and E. The mass distributions obtained with the summing criteria are plotted
in black in Fig. 5.28, which fixes the shaping of the distribution and forms a nice Z mass peak in the center.

For events collected with this summing criteria, the di-electron mass is written as

mee'® = mi‘fc\/(l +a/(|nl, E7))(1 + o/ ([nl', £7)) (5.22)
1 1
mee'® & mge” (L4 5o/ (Inl, Br) + 5o/ (Inl', Bx) (5.23)

where &/(|n|, Er) is the linearity from the electron in the common studied bin, while &/(|7/|, E’.) is different
for each event.
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Figure 5.28: (a) Distribution of m.. when leading electron Epr € [33,38] GeV, sub-leading electron
Er € [27,33] GeV (red) and both with |5| < 0.6, the black curve is plotted with the summing criteria
with at least one electron having || < 0.6 and Er € [27,33] GeV. (b) Distribution of m.. when both
electrons having |n| < 0.6 and Er € [33,38] GeV (red), and the black one is with at least one electron
satisfying this selection.

Under assumption that after correcting the inclusive o’(n), the linearity integrated over the full  and Ep
space is assumed to be 0, that < o/(|’|, Ef;) >~ 0. Eq. 5.22 can thus be approximated as:

1
mdate o~ MO (1 4 5o/(|77|, Er)) (5.24)

ee
Templates are generated by introducing a boost factor z, for a candidate linearity value §(|n|, E7):

mtemplate _ mé\gc (1 + xﬁ(‘m,ET)) (5.25)

ee

Since each event is used twice respectively in the according n x Er bins of the two electrons, in order to
preserve the statistical uncertainty, a half-weight is assigned to all the events, when filling them to plot the
mass distribution.

The template method is essentially minimizing difference between md3ta and m!2™P“* thus the best-fit
B(Inl, Br) is an estimator of the truth linearity with a factor 5~

A 1,
B(Inl, Er) = Py (Inl, Er) (5.26)

Hence 3(|n|, Er) extracts a fraction of the exact linearity characterised by the factor 5, which is a kind of
boost factor of the fit convergence. Different boost factors were investigated by David Delgove, who proved
with a closure test that the method is converging with = > % Regarding the convergence rate, z = 1 is
chosen as baseline.
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The best-fit value B(]n\, Er) is then applied to data, where the energy of electron and mass of di-electron
are corrected.

E
B = — (5.27)
data

1+ B(Inl, E)
m

mdataporr _ ee (528)

: AT Bl B (1 + (), Fra)

Then the whole procedure above is iterated until the template fit has converged. The final measurement
of linearity is defined as the sum of all the iterations. Given the unclear correlations between the best-fit
/3 obtained in different iterations, the statistical uncertainty of the final combined o’ is not trivial to be
calculated in an analytical way, hence a bootstrap method is used to evaluate the statistical uncertainty,
which will be described in Sec. 5.6.9.

=z

o/(nl, Br) = T (1+ B'(nl. Br)) —1 (5.29)

i=1

5.6.3 Closure Test

The linearity extraction is based on several assumptions. It is assumed that after requiring one electron
in a given n X Ep bin, the averaged linearity of the other one is zero. However, any residual inclusive scale
factor a(n) would violate this assumption. In addition, due to the kinematics correlation between the two
electrons, once selecting one electron in dedicated phase space, the averaged linearity of the other electron
is not always null. All the ambiguities are supposed to be solved by doing several iterations, and a dedicated
closure test is implemented to estimate the bias of the method. On the other hand, electron migration
between Er bins occurs due to non-zero linearity, and the use of iterations smoothly corrects the electron
E7 and resolves the migration effect.

The closure test starts with the generation of pseudo-data. It is produced by injecting certain well-known
linearity effects in MC. The MC sample mapped to 2018 is used for pseudo-data generation, with linear
functions chosen as truth values of linearity. The linear functions are shown in Tab. 5.6, of which the slopes
are chosen similarly as observation with data and the first term vanishes at 45 GeV (myz/2 chosen rather
than the average Ep around 40 GeV). Pedestals are introduced in order to test the robustness of the method
in presence of a residual inclusive scale.

The injected values are averaged in each n X Ep bins using Zee electron kinematics and then are compared
to the measurements obtained between the pseudo-data and the raw MC. In total, 8 iterations are made,
and for each of them, the cumulative linearity as a function of n and Ep is shown in Fig. 5.29. The truth
linearity described in Tab. 5.6 is displayed by the continuous black curve where the discrete dots represent
the evaluation at the average electron Ep in each bin of nn x Ep. The measured linearity by iterations and
the residual bias with respect to the truth are shown in form of histograms. The residual bias is calculated
as the difference between the measured linearity and the expectation of truth linearity. Since the truth is
linear in E7, the average effect is exactly equal to truth linearity evaluated in the average Er.

The final results of the closure test are shown in Fig. 5.30a, with bias up to 2.107%. The largest ef-
fect appears in the last bin with 100 < Ep < +o0o GeV. It is worthwhile to clarify the importance of
correcting electron Ep after each iteration, which reverses the migration of electrons due to non-zero linear-
ity. Otherwise, the residual bias is increased to 2.5 - 10~% around 45 GeV where more electrons are present
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n bins Truth linearity

In] < 0.6 o’ =3.107°% . (Ep — 45) +5.104
0.6 <|nl<1 o’ =3.107°% . (Ep — 45) + 5.104
1< |n| <1.37 o’ =3.107°% . (Ep — 45) +5.1074
1.37 < |n] <155 | o’ =8.107°%. (Ep —45) +1.1073
1.55 < |n| <1.82 | o/ =8.107° . (Ep —45) +1.10"3
1.82 < |n| <247 | o’ =3.107% . (Ep —45) +5.10™%

Table 5.6: Injection linearity values used for pseudo-data generation. For simplicity, the same linear
functions are respectively chosen for 1.37<|n|<1.82 and other regions. Er is in the unit of GeV.
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Figure 5.29: Closure test results of linearity. The truth injected values are shown by the black curve
which are linear functions, the black dots correspond to the values at average Er in each bin. The
cumulative linearity up to a given iteration is shown by the colored histogram in the top pad, with
residual linearity after subtracting the truth value plotted in the bottom pad.

and the migration effect is, therefore, more obvious.
A perfect closure on the m,. distribution is observed when applying the measured linearity to pseudo-data
and compared with the original MC. As shown in Fig. 5.30b, after linearity correction, the ratio of data and
MC is flat, the residual difference on the average mass is only a few tens of keV, and 5 MeV for the standard
deviation.
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Figure 5.30: (a) Summary of method bias of linearity in function of n and Ep after proceeding 8 it-
erations. (b) Mass distributions of original MC, pseudo-data bias by the injected linearity, calibrated
data after applying the measured linearity. The linearity measurement shows a perfect closure on
the mass.

5.6.4 Correction on Mis-modelling of Z Boson Transverse Momentum

The transverse momentum of Z boson is known to be not perfectly simulated in the Powheg samples.
As shown by Fig. 5.31a, near the peak position around 5 GeV, the discrepancy between data and MC is more
than 2%, and between 10 and 30 GeV, a good agreement is observed, however it starts to explode at larger
pr. The mis-modelling grows up with the rapidity for y bigger than 1.82, and around 10% disagreement
appears at low pr.

Such mis-modelling of Z boson pr is corrected by reweighting the MC events with the data over MC
ratio in Fig. 5.31a depending on pz and y of the Z boson. As a consequence of correcting the Z boson pr,
it also has significant improvement in electron transverse momentum modelling. As shown in Fig. 5.31b, the
electron E7 is still quite different between data and MC after the inclusive Zee calibration. The difference
is around 1% in the range below 50 GeV, while a significantly increased discrepancy occurs at larger Er,
which is compatible with the enhancement of data at large Z boson pp. After performing the Z boson pr
reweighting, the difference on electron Ep is remarkably reduced that in most of the range the residual is
smaller than 1%.

The modelling of the electron transverse momentum has an unignorable impact on the Z — ee linear-
ity measurement. Because of the summing criteria described in Sec. 5.6.2 which is particularly used to
avoid asymmetric mass shape, when exploiting a specific 7 x E7 bin, only one of the two electrons is
forced to be in this bin, and the other one can be in the full phase space. Consequently, the effect of
Z boson pr reweighting is not uniform for different events selected by the summing criteria and depends
on the kinematics of the electron distributed outside the current bin. The impact of such reweighting on
linearity is estimated by doing the measurement with and without the reweighting, which will be introduced
in Sec. 5.6.5.

5.6.5 Results
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Figure 5.31: (a) Mismodelling of the Z boson transverse momentum. Density distributions of Z boson
pr are plotted in function of its rapidity y, the inclusive pr x y phase space is normalized to 1. The
histograms correspond to the MC simulation, and the discrete dots are from the data. (b) Electron pr
distribution comparison between calibrated data and MC. The green curve represents the MC after
applying the Z boson pr reweighting.

The linearity is extracted with the full Run 2 datasets, as well the subset measurements with respectively
201542016, 2017 and 2018 are produced for additional checks. The transverse momentum of the Z boson
is not well simulated in MC and corrected using the reweighting approach described in Sec. 5.6.4. The
final results are shown in Fig. 5.32, where the linearity has a similar shape in different data. The error
bars represent the statistical uncertainty estimated with the bootstrap method described in Sec. 5.6.9. The
bootstrap study is performed using the full Run 2 datasets, the obtained uncertainty is extrapolated to the
subset years' luminosity, which is used as the statistical error of the subset measurement.

The observed non-linearity of electron energy is in order of O(1073), in particular for the center of barrel
(In] < 0.6) and end-plate of endcap regions (1.82 < || < 2.47) where the effect is almost null except at
Ep > 100 GeV. For the other n region, the measured non-linearity response on the energy scale is smaller
than 5.1072 in the E7 range of 27 and 150 GeV, the effect is around 1.10~3 at low E7 and around 3—4.1073
at hlgh Er.

Since the linearity is extracted after calibrating the inclusive 7-dependent energy scale, the linearity is
expected to be null for electrons with E7 around 40 GeV*. The observation agrees with the expectation in
most of the 7 region, except 1.37 < || < 1.55, where a residual effect near 1.1073 appears at 40 GeV. Such
residual inclusive energy scale is also demonstrated by the residual mass difference near the crack region as
shown in Fig. 5.17. One possible reason is that « and ¢ in in-situ calibration are optimized using different
n binning, and due to the large variation of energy scale and resolution in the crack region, the 68 bins

4Z — ee electrons has an average of transverse momentum around 40 GeV, while the Jacobian peak is
located at mz /2.
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Figure 5.32: Measurement of linearity of LAr calorimeter with Z — ee events using 2015+2016, 2017,
2018 and full Run 2 data. The error bars correspond to the statistical errors estimated using the
bootstrap method. The linearity is very similar between different years.

version of « is not optimal with the 24 bins ¢. Another possibility is that the higher order terms on mass
are ignored when extracting « (Eq. 5.7), while as shown in Fig. 5.11a, the measured scale factor reaches
3% near |n| = 1.5 which can lead to bias of the method. Fortunately, in the crack region, the method bias
uncertainty of the in-situ n-depednet scale factor [49] has the same magnitude as the observed residual of
linearity.

5.6.6 Impact of Z boson pr Reweighting on Linearity and Cross-Check with £/p Method

The linearity measured by fitting the m.. distribution with the mass peak is cross-checked by looking
at the E//p variable which is the ratio between the electron energy measured in the LAr calorimeter and the
momentum measured by the inner tracker. The study was done by Aleksei Lukianchuk [116]. Unlike the
mee method which has to deal with the kinematic correlations between the leading and sub-leading electrons
and take care of the me. distribution when looking at energy-dependent measurement, the E/p method
only needs to study the single electron, and no matter which cut is applied on Ep, the E/p is always nicely
peaked at 1.

The E/p distribution is fitted to a Crystal ball function, which is a piece-wise function with a Gaussian
defined for small and medium values, and a power law in a range of big values.

2
fon(t; o, a,n) = N - exp (—57). o t=e (5.30)
A [2b-t)]", t>a

where
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. ¢ = E/p—p

o 1

with 1 and o the center and the width of the Gaussian.

2. . , L ,
* A =exp(—%), with a the intersection of the point-wise function.

c b= ﬁ — |, with n the order of power law on the right tail.

* N is a normalization factor of the distribution.

The relative difference of mean values of the Gaussian between data and MC is used to estimate the linearity:

Iudata
a0l Br) = e 1 (5.31)

Another important advantage is that the E/p is much less sensitive to the Z boson pr mis-modelling be-
cause the FE/p looks at electrons satisfying the same 7 and Ep cut, which often drives to similar Z boson
transverse momentum, hence its mis-modelling appears nearly as an inclusive normalization, which can be
automatically factorized when normalizing the E/p distribution to unity.

The drawback of E/p is the worse resolution of track momentum at large pr and high 7, which broadens the
distribution and degrades the fit quality and stability. Therefore in these regions, the measured statistical
uncertainty is often large.

Investigating different methods and meanwhile the impact of Z boson pr reweighting, the correspond-
ing linearity results are shown in Fig. 5.33. The results are obtained with 2018 data, based on previous
calibration recommendation where the ADC and L2Gain uniformity corrections are not applied.

The E/p method shows consistent results as compared to the ones exploring me.. The nearly constant
differences between the two methods are originating from the residual momentum scale difference. Results
after correcting the Z boson transverse momentum is also produced using E/p variable, which is almost
identical to the one without correction, hence only one version of E/p results is presented.

One can notice that without correcting the mis-modelling of Z boson pr, linearity with m.. method has
strikingly different values at the third Ep bin (38 GeV< Ep <44 GeV), than the neighbor ones. Such
effect is more evident at large n region, which makes less monotonic linearity curves. After correcting the
Z boson momentum, more similar tendencies are observed between m. and E/p methods (similar slope,
and the difference tends to be flat in E7), except in the last E7 bin where the track momentum resolution
is worse. It provides a cross-check of the current linearity result and the validation of the Z boson mo-
mentum reweighting since E//p is less sensitive to the modelling of Z bons pr. And another advantage of
correcting the Z boson pp is that it brings more monotonic linearity values, which is useful to improve the
goodness-of-fit in the study of global fit (Sec. 6.1.2).

5.6.7 Impact of Uniformity Corrections on Linearity

The uniformity corrections introduced in Sec. 5.4 are promoted to improve the linearity of the LAr
calorimeter. The influences of the ADC and L2Gain corrections are exploited: for each configuration with
different corrections, the inclusive energy scale and resolution differences are calibrated respectively with
standard-alone in-situ calibration. Their impacts on linearity are shown in Fig. 5.34. Without any correction,
the linearity is worse in particular for || < 0.6 and 1.55 < |n| < 1.82, while it improves for 0.6 < |n| < 1.37.

The azimuthal uniformity correction has little influence on the linearity, hence it is not shown.
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Figure 5.33: Measurement of linearity of LAr calorimeter with Z — ee events with and without applying
the Z boson pr reweighting. E/p results are only shown in the barrel, due to its degradation on
precision at high n. Baseline is the one with reweighted Z momentum.

5.6.8 Impact of Linearity Correction on the Mass Lineshape

One remaining issue of the typical LAr calibration is the imperfect Z mass lineshape (Fig. 5.14), the
linearity calibrates the energy scale with an additional degree of freedom of electron transverse momentum,
which may solve this problem. Hence the linearity is applied to data, the obtained mass lineshape is shown
in Fig. 5.35. No obvious effect is observed after applying the linearity as correction, which is mainly because
the ADC and L2Gain non-linearity absorb part of the effect in particular at very low 7, so that the remaining
effect becomes negligible on the dielectron mass.

5.6.9 Uncertainty of Linearity and Study Using the Bootstrap Method

The statistical and systematic uncertainties are estimated for the Z — ee linearity measurements. A
bootstrap method [117] is used to estimate the statistical uncertainties and their correlations between dif-
ferent bins, as well as the statistical significance of the systematic uncertainty estimations. The bootstrap
study is performed using the previous recommendation of LAr calibrations, hence the central values of lin-
earity are different to the ones shown above, but the uncertainties are assumed to be not affected.

Statistical uncertainty

As described in Eq. 5.29, as the final linearity is summed over different iterations, their non-trivial correlations
make it difficult to calculate the statistical uncertainty of linearity. A stringent estimation can be provided
by the bootstrap method [117]. The bootstrap method is a powerful technique to estimate the statistical
uncertainty and correlation between different observables. The basic idea is to use a set of replicas to obtain
a sampling of measurements, of which each replica contains events fluctuated by a random Poisson process.
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Figure 5.34: Influence of the ADC and L2Gain non-linearity corrections on the measurement of LAr
calorimeter linearity with Z — ee events. The baseline corresponds to the case with all the uniformity
corrections applied. The influence of removing L2Gain is shown by the red curve, and the removal of
the summed contribution from both ADC and L2Gain is shown in blue.
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Figure 5.35: Mass lineshape after in-situ calibration (black) and additional correction of linearity
(green). The change from linearity is negligible on mass.

This is done by assigning each event a weight independently generated by a Poisson law with an average
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of 1. Afterwards, the standard deviation for the sampling of measurements is considered as the statistical
uncertainty estimated by the bootstrap method. In case of multi-dimensional observables, the correlations
can be also calculated with the samplings of measurements.

Suppose a set of nominal events denoted as the raw data, gives measurements of some observables a,
which are usually the estimators of some model parameters. A bootstrap replica is a copy of the raw data
with an additional random Poisson weight respectively assigned to each event. The Poisson law has a mean
of unity, which simulates the statistical fluctuation around the raw events. By repeating the independent
generations, an ensemble of replicas is created and used to give the replicas measurements @™, with m index
of replica ranging up to the total number of replicas N. The obtained ensemble of replicas measurements
allows to compute the statistical quantities, such as mean, variance, covariance, etc.

Let's denote the mean and covariance as &; and cov(w;,c; ), which are computed with the ensemble
of replicas measurements:

| X
=~ > o] (5.32)
B
1 X
cov(ai, a5) = > (of ' aj) (5.33)
B
Hence the correlation between «; and «; is defined as
cov(ay, o)
plag, aj) = (5.34)

Veov(ag, oi) - cov(ay, o)

For the study of linearity, 1000 bootstrap replicas have been generated to estimate its statistical uncertain-
ties and correlations, as well as the statistical significance of systematic uncertainty. The complete full run2
data (2015-2018) is bootstrapped, while the MC events remain untouched, because of its large sample size,
which gives a subdominant contribution to the overall statistical uncertainty. In the following, the bootstrap
studies for estimations of the statistical errors and their correlations, as well as the significance of systematic
estimations are going to be summarized.

For the 1000 generated replicas, the nominal linearity scales are measured respectively with each replica,
for each n x Ep bin. The results are shown in Fig. 5.36, each colored curve represents the bootstrap
measurements as a function of the replica seed for one bin of a. These bootstrap measurements correspond
to raw measurements as shown by the 2015-2018 results in Fig. 5.32.

The average and the standard deviation are calculated respectively for each bin using the sets of measure-
ments shown in Fig. 5.36 and compared with the raw measurements. Since the replicas are generated with
statistical fluctuations around the raw dataset, the average of the bootstrap results converges asymptotically
to the raw measurement in the large replicas number limit. A perfect agreement between the bootstrap
average and the raw linearity is shown in Fig. 5.37a.

Fig. 5.37b presents the comparison of the statistical error as the standard deviation given by bootstrap and
one of the last iteration of linearity measured with the raw dataset. A difference of factor near 1.75 is
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Figure 5.36: Bootstrap measurements for nominal linearity for a total number of 1000 replicas. The
lower index of « in the legend on right corresponds to the unrolled n x Ep index, for which each
period of 7 indices corresponds to the 7 Er bins inside one 7 bin.
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Figure 5.37: Comparison between the raw measurements and the bootstrap measurements. (a) shows
the averages of the bootstrap results (blue solid) with the error bars defined as the standard devia-
tion of the bootstrap measurements, and the central value of linearity from the raw measurement
(orange dashed). (b) stands for the comparison between the raw statistic error (orange dashed) and
the standard deviation calculated from bootstrap (blue solid). The vertical bars separate the six |n|
bins, with a small value of || starting from the left. Each |5| bin contains 7 Er bins.

observed. In principle, the bootstrap gives more reliable estimates of the statistical errors, hence, in the
following, they are considered as the genuine statistical uncertainties of the linearity measurement.

Correlation of the statistical uncertainties:
In the usual case, the statistical uncertainties in different bins of the observations are uncorrelated, if no
events are shared among them. Unfortunately, it is not our situation, since the pair of electron-positron
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from one event can enter two different bins, according to the linearity extraction. Such kind of confusion
about the statistical correlations can be solved with Eq. 5.34 with bootstrap.

Starting from the ensembles of replicas measurements stored in Fig. 5.36, the statistical correlations between
each pair of « are calculated. Fig. 5.38 shows relatively small correlations, with a maximum correlation or
anti-correlation of around 20%. These estimates allow us to know the realistic correlations of the statistical
errors. However, from the results, in particular at very large Ep where the statistical error is bigger, no
significant correlation is observed, hence the estimated correlation is expected to have no evident impact
for further study.

Figure 5.38: The statistical correlations between different bins of linearity estimated with 1000 boot-
strap replicas. The maximum (minimum) correlation coefficientis 18% (-21%), in general, the absolute
correlation is within 10%.

Systematic uncertainty and its statistical significance:

Similar systematics as the inclusive scale factor described in Fig. 5.13a are estimated for linearity. The
systematic errors are calculated as a deviation to the nominal one after switching on the systematic variant,
but without changing the inclusive calibration (a(n) and ¢(n)):

of = ol — qrom (5.35)
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where oF is the systematic error of source k measured at bin i, o™ and oF are respectively the nominal

linearity and the linearity after switching on the systematic effect, which is measured with the initial dataset
but passing different selection.

The ideal case is that according to the same nature of systematic, the systematics errors are fully cor-
related between the various bins. However in practice when the statistical fluctuation is high in one bin,
its correlation to the other bins can be contaminated and become less than 1. Therefore, it is useful to
evaluate the level of statistical fluctuation by looking at the significance, which is defined as the ratio of the
systematic error estimation and its statistical uncertainty.

The challenge is that the available measurements are o and a®°™ with their associated statistical uncer-
tainties, but given the same events are used to perform the measurements, due to non-trivial correlations,
it is not easy to directly propagate the statistical uncertainties to the difference of the two measurements.
In this case, the bootstrap method can still be helpful.

Considering af’ﬁ = af’ﬁ — a?om’ﬁ is the systematic error calculated accordingly with the nominal and
the systematic variant linearity with synchronized bootstrap replicas 3, there using the ensemble of mea-
surements with N bootstrap replicas (N=1000), the statistical uncertainty of af’ﬁ is formulated as

b | LN~ (ks k)2
o(oy) = NZ(O-i —0; ) (5.36)
B
L
with &f’B:N Uf’ﬁ
B

After acquiring the statistical uncertainty, one can calculate the statistical significance Z of the estimated
systematic error as

(5.37)

The detailed values are visualised in Fig. 5.39, where for all the four systematic sources, the statistical
significance is drawn for each bin of the measurements.

The +10 are thresholds to justify the significance, such that if the absolute value of Z is less than 1,
the current bin is considered statistically contaminated, therefore the statistical uncertainty a(af’ﬁ) is taken
as the final systematic error for linearity, rather than Uf’ﬁ. For such noisy bins, since the systematic error
is replaced by its statistical fluctuation, its correlation to the other bins is set to null. While for those
with Z bigger than 1, a full correlation is assigned. In general, most of the bins have systematics which
is statistically significant, while for the fg,c systematic more than ten bins are noisy, which is because
the efficiency of the fixed-threshold fp,em cut decreases rapidly where there is a lot of material, and the
statistical fluctuations are more obvious.

Summary of uncertainty for linearity
The final uncertainties of linearity are shown in Fig. 5.40 and summarized in Tab. 5.7. The closure system-
atic corresponds to Fig. 5.30a. The bootstrap method is used to evaluate the statistical uncertainty and
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Figure 5.39: The statistical significance of the estimated systematic errors for the four types of system-
atic sources, which are obtained using the bootstrap method. In each plot, the horizontal gray bars
corresponds to the +1¢ thresholds.

check the statistical significance of the other systematics as described in Sec. 5.6.9.

In general, the systematics have a notable effect near 40 GeV, since the nominal in-situ calibration is
always applied, therefore the systematic of the inclusive scale factor «(n) (Fig. 5.13a) is indeed propagated
to the one of linearity measurement. The dominant uncertainties are systematics from MassWindow, Tight-
Var, and fBremVar, specifically the MassWindow contributes mostly at 1.37 < |n| < 1.55, and fBremVar
has striking effect at 1.55 < || < 1.82 and high Ep regions of 0.6 < |n| < 1 and 1.82 < |n| < 2.47.
The closure and statistical uncertainties arise significantly at very large E which are comparable with other
uncertainties, while for Er < 100 GeV, their contributions are indeed minor. The NolsoVar systematic
remains tiny and hence is less important than the others.

5.7 Conclusion
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Figure 5.40: Uncertainties of Z — ee linearity using full Run 2 data.

In this chapter, the baseline calibration of the LAr calorimeter energy is introduced, including the MVA
regression, layer inter-calibrations, uniformity corrections and a focusing description of the in-situ calibration.
In addition, the energy-dependent scale factor is studied, which represents the residual non-linearity response
of the calorimeter. The linearity is indeed not part of the official recommendation, but it can be used to
constrain the calibration energy scale uncertainty through a global fit model, of which the output can be
easily integrated in the physics analysis. The details of the global fit model will be presented in the next
chapter.
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In| Er [GeV] Statistical Closure  MassWindow TightVar fBremVar NolsoVar Total

[27,33] 39x107° —52x107° 1.9x 1077 1.3 x 1077 1.3x107T —51x107° 27x10~ 1

[33, 38] 3.1x107% —2.7x10°6 1.6 x 10~% 1.4 x10~% 24x107% —1.7x107% 3.2x1074

[0, 0.6] [38,44] 2.2x107° 4.0 x 106 1.6 x 1074 1.4 x 1074 1.9x107% —12x107°> 29x 1074

e [44, 50] 2.2x107° 4.0 x 106 1.0 x 1074 2.3x 1074 76x107° —-3.0x107° 2.6x 1074

[50, 62] 34x107° —1.2x107° 2.5 x 1072 2.5 x 1074 21 %1077 —58x107°% 26x1074

[62,100] 54x107° —1.9x 1076 6.4 x107° 1.3x107% —-3.8x107° 72x1075 1.8x 1074

[100,00] 1.1 x 10~% 1.3 x 1074 1.3 x 1074 6.0 x 107 7.1x107° 8.6x 1079 23x1074

[27,33] 5.1x107° 5.2 x 10~7 3.1x 10712 2.5 x107° 1.8x 10T —45x107° 3.7x 1071

[33,38] 3.5 x 1075 5.4 x 1076 2.1 x 1074 3.2 x 1075 1.0x107* —21x107% 24x10~*

(0.6,1] [38,44] 2.9x107° 4.1x 107 2.1x 1074 1.2 x 107% 2.4 x 1075 2.3%x 1070 25x1074

" [44, 50] 3.2x107° 1.8 x 1076 1.5 x 107* 9.7x 1075 6.0x 1075 —4.1x107% 2.0x107*

[50, 62] 45x107% —1.3x107° 9.8 x 1075 1.4 x 1074 3.7x 1077 —63x107% 1.9x 1074

[62,100] 7.1 x 1072 4.9 x 10~ 7.9 x 10~° 1.3 x10~% 5.9 x 1075 9.0x 1075 20x10~*

[100, oo] 1.6 x 1074 1.6 x 10~% 1.1x 1074 53x 1077 —3.1x10"% 1.9%x 107 4.0x 104

[27,33] 6.2x 107> —3.7x10°° 5.8 x 10~4 2.8 x 1071 55x10~%1  —43x10° 85x 101

[33,38] 4.9x107° 1.3 x 1072 6.3 x 1074 2.9x 1074 34x107% —-59x107% 7.7 x107%

[38,44] 3.5x107° 1.0 x 1072 3.9x 1074 2.9x 1074 22x107% —-29x107% 54x1074

(1,1.37] -5 -6 —4 —4 -4 _ -5 —4
[44, 50] 3.7x 10 1.5 x 10 2.7 x 10 1.8 x 10 2.8 x 10 5.1 x 10 4.3 x 10

[50, 62] 54x107% —2.1x107° 3.2x 1074 7.8 x 1075 28x 1074 —76x107° 44x107%

[62,100] 8.2 x 10~° 5.4 x 1076 2.5x 1074 6.5 x 107 1.2 x 1074 8.6x107° 3.1x1074
[100,00] 1.8 x 10~* 1.9 x 1074 3.1 x 10~4 1.6 x 104 2.1 x 1074 29x1075 48x107*

[27,33] 1.4 x 10~ % 3.8x 1076 1.6 x 10~3 4.8 x 10717 3.0x10-% —1.0x10=% 1.7x10°3

[33,38] 1.1x 10™* 1.2 x 107° 1.9 x 1073 7.7 x 1074 3.7x107% —6.7x107° 21x1073

[1.37,1.55] [38,44] 7.8 x 1075 5.8 x 1075 1.3 x 1073 6.9 x 1074 78x1077  =59x107°  1.5x1073
wh [44, 50 7.8 x107° 4.3 x 107° 1.1 x 1073 3.2 x 1074 83x107° —13x107* 1.1x 1073
[50, 62] 11x107* —4.7x107° 3.0x107% —2.7x10~% 1.2x107%  —24x10* 5.0x10~4

[62,100) 1.8 x 10~* 4.6 x 10~6 3.7x107% —25x107* 2.0 x 104 6.5x1075 52x107*

[100,00] 3.8 x 10~* 6.6 x 1075 1.0x 1078 —2.2x 107* 5% 107" —43x107° 1.2x 1073

[27,33] 8.3 x 1077 1.1x 1076 1.1x 1073 4.9 x 1077 13x10~3 —14x10° 18x107°

[33,38] 7.2 x107° 9.4 x 1076 1.2 x 1073 8.0 x 1074 1.1x 1078  —1.6x107° 1.8 x 1073

[38,44] 5.5 x 107 3.5x 1075 9.0 x 1074 8.1x 1074 1.1x 1078  —-3.6x107° 1.7x 1073

[1.55,1.82] [44, 50] 5.3 x 107° 3.1x107° 7.1x 1074 4.5 x 1074 1.2x107%  —62x107° 1.5x 1073
[50,62] 7.7x107°%  —5.0x107° 6.9 x 1074 2.4 x 1074 14x1073 —1.0x107* 1.6x 1073

[62,100) 1.2x107* —2.1x107° 3.9 x 1074 1.1x107% 1.4 x 1073 50x 1075 1.5x1073

[100,00] 2.7 x 10~* 1.7 x 10~% 75x 1074 —1.3x 1074 1.5x107%  —64x107° 1.7x 1073

[27,33] 50x10°° —32x10°© 2.7x 107 % 26x107 —12x100% —-18x107° 30x10 %

[33,38] 4.7x107° 6.1 x 1076 1.8 x 107% 14x107% -18x107% —-34x1075 3.0x10°%

[1.82,2.47] [38,44] 41x107% —1.1x1076 1.2 x 1074 53x107° —6.1x107° —3.0x107° 15x107*
e [44, 50] 34x107° —-7.3x1077 6.8x107° —2.6x 1074 L1x 1077 —43x107° 28x 1074
[50,62] 6.0x 1075 —22x10~° 51 %1077 =35x107* —1.1x10"* -63x1075 3.8x10~*

[62,100] 9.2 x 107° 9.7 x 106 77 %1077 —14x 1074 1.2 x 1074 55x 1075 23 x1074

[100,00] 2.1 x 10~% 1.3 x 10~4 1.6 x 10—* 85x 1077  —54x107% 1.7x107°  6.2x 104

Table 5.7: Summary of Z — ee linearity uncertainties using full Run 2 data. The signed systematic
uncertainties are shown, for the same source, the negative uncertainty implies a -100% correlation
to those positive values. The brown values correspond to the case of noisy estimation of systematic,
which has a statistical significance of less than 1 and was replaced by its statistical error, in addition,
its correlation is set to O with respect to other bins.



6 - Improvement on the H — 7y mass measurement by
constraining the photon energy scale uncertainty

The Higgs mass was measured in the final states of two photons using ATLAS part of Run 2 data at
36.1 fb=! [16]:
mpy = 124.93 £+ 0.40 (0.21 (stat) = 0.34 (syst)) GeV (6.1)

The main sources of the experimental systematics come from the energy scale of the photon, in particular
the relative calibration between medium and high gain, layer calibration, material mis-modelling and lateral
shower leakage. The need for higher precision on the Higgs mass motivates more accurate calibrations of
the electromagnetic calorimeter. In the following, in addition to improving the calibration, a new approach
is introduced to constrain the scale uncertainties with the Z — ee linearity measurement.

6.1 Constraining electron photon energy scale uncertainty with Z — ee linearity mea-
surement

Given the dominating contribution from electron and photon energy scale systematics to the Higgs mass
measurement in H — ~~ decay, a new approach of constraining the energy scale uncertainties with the
7 — ee linearity has been implemented in order to improve the precision of the mass measurement, following
various ideas (for instance, in Ref. [118]).

6.1.1 Overview of the egamma energy scale uncertainties

The uncertainties from the various calibrations introduced in Ch. 5 can be propagated to the energy
scale of electrons and photons as a function of 7 and the energy of the particle. In addition, due to the
sensitivity of energy responses to the amount of the upstream material and EM shower shape, a possible
wrong description of the detector in the MC can induce uncertainties on the energy scale. The impacts on
the energy scale from different systematic sources are evaluated and then used in the physics analysis.

The uncertainties of the energy scale are evaluated in function of the transverse energy and pseudorapidity,
respectively for electron: and photons:

AEY OEY SEY z
Een (ET777) = Fen (ET,T]) - Fen (<E;( %ee)> 777) (62)
where ‘ngj (E7,n) is the relative impact on electron or photon energy for a given uncertainty variation,

<E;(Z_>ee)> ~ 40 GeV stands for the averaged transverse energy for electron from Z decay. The Z — ee

in-situ calibration described in Sec. 5.5 absorbs all the effect for electron with Eg = <E;(Z_>ee)> and leaves

the residual uncertainty %(ETW).

The study is based on the previous calibration recommendation [49], of which the systematic model is
described by 69 independent nuisance parameters. A brief description of the various uncertainties is sum-
marised in Tab. 6.1. Some systematics are divided into different 7 regions, each of them is uncorrelated by
assigning an independent nuisance parameter. More detailed description of energy scale uncertainties can
be found in Ref. [103].
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* 7 — ee calibration: uncertainty of in-situ calibration depending on 7 but independent of Er.

- EG_SCALE_ ZEESTAT: statistical uncertainty of the in-situ scale factor.

- EG_SCALE_ZEESYST: systematic uncertainty of the in-situ scale factor, including variations of the mass window, electron identification, isolation,
Bremsstrahlung radiation, background processes, method, etc...

* Electronic gain calibration:

- EG_SCALE_L2GAIN: layer 2 MG/HG relative calibration between special and standard runs.
- EG_SCALE_L1GAIN: layer 1 MG/HG relative calibration.

* Layer calibrations: inter-calibration of the PS, Layer 1 and Layer 2 of the calorimeter.

- EG_SCALE_PS: uncertainty associated with the spread of apg? inside a PS module, which has a width of |[An| = 0.2 in barrel and |An| = 0.3
in endcap.

- EG_SCALE_PS_BARREL_BI12: uncertainty associated with the b; /5 in the PS calibration, which estimates the passive material between PS
and layer 1 of ECAL.

- EG_SCALE_S12:uncertainty associated to the spread of a1/ determined using muons2. In total five n regions are divided: |n| < 0.6,

06<|n<14,14<|n <15 1.5<|n| <24and2.4< |n| <2.5.

* LAr-related uncertainties: modelling of the LAr calorimeter internal geometry and layer cross-talk
effect.

- EG_SCALE_LARCALIB: uncertainty accounting for the extrapolation of E1/E2 calibration from muons to electrons. Two 7 regions, i.e. barrel
and endcap are split.

- EG_SCALE_LARUNCONVCALIB: LAr longitudinal shower modelling measured with unconverted photon respectively in the barrel and endcap
up to |n| < 1.8.

- EG_SCALE_LARELECUNCONYV: LAr longitudinal shower modelling difference between an electron and unconverted photon at |n| < 1.8.
- EG_SCALE LARELECCALIB: LAr longitudinal shower modelling measured with the electron at |n| > 1.8.

« Material uncertainties: passive material determined with both data and distorted geometry simulation.
- EG_SCALE MATID: uncertainty from the ID material, divided into 4 decorrelated 7 regions, i.e. || < 1.1, 1.1 < |n| < 1.5, 1.5 < |n| < 2.1
and |n| > 2.1.
- EG_SCALE MATPPO: uncertainty associated to IBL and pixel service in the Patch Panel 0 (PP0), decorrelated between barrel and endcap.

- EG_SCALE_MATCRYO: uncertainty associated to passive material between ID and PS at || < 1.8 (9 uniform 7 bins), and between ID and the
accordion for the rest of endcap (3 7 bins).

- EG_SCALE_MATCALO: uncertainty associated to passive material between PS and the accordion at |n| < 1.8 (9 uniform 7 bins).

* Dedicated uncertainty for photons:
- PH_SCALE_LEAKAGECONYV and PH_SCALE_LEAKAGEUNCONYV: uncertainty from the lateral shower leakage respectively for converted and
unconverted photons.

- PH_SCALE_CONVEFFICIENCY, PH_SCALE_CONVFAKERATE and PH_SCALE_ CONVRADIUS: uncertainty associated with the converted
reconstruction efficiency, fake rate and the conversion radius.

* Other uncertainties:
- EG_SCALE PEDESTAL: residual mis-modelling after pileup-induced energy shift correction, which is observed at about 10 MeV per cluster in
Zero Bias data.
- EG_SCALE_WTOTSL: modelling of the layer 1 lateral shower width.

- EG_SCALE_E4SCINTILLATOR: uncertainty from the E4 scintillators calibration in the transition region 1.4 < |n| < 1.6 which is split into 3 n
bins.

- EG_SCALE_ TOPOCLUSTER_THRES: uncertainty associated with the noise threshold of the supercluster.
- EG_SCALE_G4: different shower shape description in various physics modelling options in Geant4.

- EG_SCALE_AF: uncertainty if the full simulation of the ATLAS detector is not used.

TPS was calibrated with electrons, in the new recommendation it is done with low pileup muons data.
2E1/E2 was calibrated with muons, in the new recommendation it is done with both muons and electrons.
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Source Label Description Number of |n| regions
Z — eTe™ calibration ZEESTAT Statistic uncertainty 1
ZEESYST Systematic uncertainty 1
Lar cell non-linearity L1Gain MG/HG layer1 1
L2Gain MG/HG layer2 1
PEDESTAL Pileup noise shift 1
Layer1/Layer2 calibration S12 oy /o p Measurement 5
LARCALIB o /9 p — e extrapolation 2
Presampler calibration PS Module spread 9
PS_BARREL_B12 by /2 correction 1
B-E gap scintillator (1.4 < |n| < 1.6) E4_SCINTILLATOR Scintillator calibration 3
ID material MATID Material in ID 4
MATPPO Inner most pixel layer description 1
MATPPO Pixel services description 1
Material ID to PS (|n| < 1.8) MATCRYO Measurement with electrons 9
LARELECUNCONV Simulation of longitudinal shower shape electron (|n| < 1.8) 2
Material PS to Calo (|n| < 1.8) MATCALO Material from PS to Calo 12
LARUNCONVCALIB Simulation of longitudinal shower shape unconv-v (|n| < 1.8)
Material ID to Calo (|n| > 1.8) MATCRYO Measurement with electron

All material ID to calorimeter

LARELECCALIB
G4

Simulation of longitudinal shower shape electron (|n| > 1.8)
Variations of GEANT4 physics list

Lateral shower shape WTOTS1 Lateral shower n width (wstot)
LEAKAGECONV Lateral leakage for converted photon
LEAKAGEUNCONV Lateral leakage for unconverted photon
Photon reconstruction CONVEFFICIENCY Conversion efficiency
CONVFAKERATE Conversion fake rate
CONVRADIUS Conversion radius
Detector simulation AF2 Fast simulation of ATLAS

alala o ala o ol 2 wNn

Topo-cluster threshold TOPOCLUSTER_THRES  Topocluster noise threshold

Table 6.1: Descriptions of the e/~ scale uncertainties, classified in different sources. For each class
or sub-class, the number of associated nuisance parameters is given. The uncertainty relevant to
the fast simulation of the ATLAS detector is null since the full simulation samples are used in all the
analyses.

The evolution of energy scale uncertainties as a function of 1 and E7 is shown in Fig. 6.1, respectively for
electrons, converted and unconverted photons.

For electrons, at |n| = 0.3, there is a large impact coming from the MG/HG non-linearity and E1/E2
inter-calibration at high Ep, while at low E7, the energy is more sensitive to PS, E1/E2 calibrations and
material in front of the calorimeter. At Epr = 40 GeV, since any impact on the energy scale has been ab-
sorbed by the Z — ee in-situ calibration, the only remaining effect is the uncertainty of in-situ calibration.
At |n| = 1, the sensitivity is dominated by the MG/HG non-linearity at high E7 and by material effect at
low E7. While for the endcap region (|n| = 2), E1/E calibration and MG/HG non-linearity are the most
important ones.

For photons, there are additional impacts from lateral shower leakage and photon reconstruction. In partic-
ular, for converted photons, the leakage uncertainty has the largest effect in the center of the barrel, since
the electrons from converted photons have a larger probability to escape from the reconstructed calorime-
ter cluster. Specifically, the impact is calculated as the difference between photons and 40 GeV electrons
(Eq. 6.2), due to the larger discrepancy in EM shower between electron and unconverted photon, therefore
a generally higher impact is observed on unconverted photons with respect to converted photons.
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Figure 6.1: Impact on electron and photon energy scale of dominant systematic uncertainties relevant
to the LAr calibration and description of the detector.

The Z — ee linearity measurement based on the previous recommendation |

| is shown in Fig. 6.2. The

largest effect is observed at around 1% for || € [1.55,1.82], in the other 7 regions, the effects remain lower

than 2 x 1073.

In the final Run 2 recommendation (Sec. 5.1), mainly due to the update of layer calibration and the appli-
cation of new cell non-linearity corrections (ADC non-linearity, MG/HG, intercalibration), the corresponding
linearity results are significantly different (2015-2018 curves in Fig. 5.32).

6.1.2 Global fit model for systematic constraint

For the purpose to constrain the ey energy scale uncertainties, the main idea is to consider the Z — ee
linearity as an observation of all these uncertainties effects, which will indicate the pulls and constraints of
different sources of uncertainty.
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Figure 6.2: Measurement of Z — ee linearity with the previous calibration recommendation [49]. The
error bars correspond to the total uncertainty shown in Fig. 5.40.

The linearity is parameterized as a linear combination of the energy scale uncertainties:

y (ET777‘07975> = ag(n) + Y Egk (Er,m)0* (6.3)

where y (ET,n‘&g,§> describes the linearity of an electron for a given transverse energy Er and pseudo-

rapidity 7, depending on parameters &, and g %(ET,U) is the electron scale uncertainty for a given
k

systematic source k, as given in Eq. 6.2 and shown in Fig. 6.1. A nuisance parameter #* is defined for

systematic variant k, with a prior Gaussian constraint with center of 0 and unity width, i.e. G(H’g’&k, 1),

where 98 is the global observable with a value equal to 0 since all the calibrations are applied. Additional
global scale parameters a(7) allow to absorb the residual inclusive scale in regions of 7.

This parametrization is used to fit the Z — ee linearity. Each bin of linearity gives a measurement in
the form «; £ oy, with i the index of n x Ep bin. Subsequently, a multi-dimensional Gaussian likelihood fit
is used to determine the best-fit values of &, and g. In particular, any reduction on the post-fit uncertainty
of 4 will reflect the constraint on the corresponding scale uncertainty.

Mathematical regularization

The Z — ee linearity is measured in 6 x 7 bins of 7 x Ep, such that 6 global scale parameters in 7 are
defined. Concatenation is done between &, and 6 to define the vector of parameters &, in order to facilitate
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the mathematical description:

Ay = (ags . ) (6.4)
0= (6",...,0Nv) (6.5)
7= (dy,0) = (ag,..,ad 0", ... 0Nve) (6.6)

For the same purpose, the n x Ep phase space is unrolled to a single dimension, such that a 42-dimensional
vector of linearity is defined as the form

gz(y<ET,1,|m|>, . (B mi)),

y(Era,n2l), - - - y(Erg|ml),
(6.7)

y(Era ), . . y(ETmnﬁD)

where the lower index represents the  and Ep bins described in Tab. 5.5.

In addition, in order to give a prediction of linearity for each bin, the weighted averages of the energy
scale uncertainties are calculated using Z — ee kinematics as

(o (), =+ 35 (50 o

d>N
AFEe€ ff(nXET)i d77 dET Eek (ET777) dndET (n,E7|Z—ee)
e (Ern) = (6:80)
ik f f xEr dn dEr d”dET‘ (n,Er|Z—ee)

with the average uncertainty (ET, > .. calculated at bin i of  x Er for a given systematic source

k, and dddg the dlfFerentlaI distribution of electrons from Z boson decay. An approximation is
g T (77,ET|Z‘>66)

taken to simplify the calculation, by assuming that the electron is nearly uniform in 7 inside a given 7 bin,
as well as that the expectation of uncertainty is equal to its value at Ep =< Ep >, which is the average
transverse energy in a given bin. These assumptions have been checked with the calculations using the real
Zee kinematics, the obtained averaged uncertainties are very similar.

In order to reduce the number of degrees of freedom, a pruning on scale uncertainties is implemented,
by selecting systematics with considerably un-negligible averaged impact (1 x 107%) in at least one of the
42 bins. Those systematics dedicated to photons that have no impact on electrons are discarded, such as
lateral leakage, photon reconstruction, and photon conversion. Apart from these, since the systematics of
the inclusive scale calibration has no degree of freedom on the transverse energy, there will be no sensitivity
for linearity. In addition, due to the non-trivial correlation between the inclusive calibration and linearity,
the inclusive scale calibration systematic is not involved in the parametrization. Consequently the number
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of systematic sources Ny is decreased from 69 to 52.

The scale uncertainties averaged in bins of 7 and Ep are shown in Fig. 6.3, where the 8 largest sources
are plotted in each n bin. These plots are the averaged versions of the electron systematic in Fig. 6.1.
Hence similarly after averaging, in the barrel region, the uncertainty is clearly dominated by the L2Gain
systematic, with sub-dominant contributions from the layer calibration. The crack region 1.37 < |n| < 1.55
is largely affected by the PS uncertainty and the L2Gain. For the endcap electrons, the L1Gain, the layer
calibration and the lateral shower shape modelling (ws;o¢) are the most important systematics. The dashed
band represents the total systematic uncertainty, which is the sum of all the systematics in quadrature.
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Figure 6.3: The averaged scale uncertainties < ET, > in bins of » and Ep. In each 5 bin, the 8

dominant sources are plotted.

An impact matrix /;3 is defined to as the impact of uncertainty on electron energy scale in 1 x E7 bin i for
a given parameter x3 in Z.

% T7n)>i,8—6 it5>6
Lip = 1 if7(8—-1) <i <73 (6.9)
0 otherwise

where the first case stands for the average uncertainty associated with nuisance parameter g, and the other
cases imply that the impact of the global scale aj is equal to 1 at the 7 bin consistent with its definition,

while the impact vanishes at the other 1 bins.
With the previous notations, the parametrization of linearity can be written as

y(orgg) — Iz (6.10)
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In analogy to Eq. 6.8a, the Z — ee linearity measurements can be also defined in the same format
7= (Eralmh. - - - @B,
O/(ET,la ’772’)7 . . . O/(ET,77 |772|)7
(6.11)
T A )
7 ee

The covariance matrix of §““¢ can be constructed using the uncertainties of measurements shown in Fig. 5.40
and the correlations estimated with the bootstrap method as described in Sec. 5.6.9.

E( Zee’y]Zee ZV Zee’y]Zee) (612)

where X represents the joint 42 x 42 covariance matrix defined by the sum of covariance matrices of all
the uncertainty sources of the Z — ee linearity measurements, V,,, is the covariance matrix corresponding
to a given uncertainty source m of the measurements, including the statistical and systematic uncertainties
shown in Fig. 5.40 and in Tab. 5.7. The construction of the individual and joint covariance matrices will be
described in the section of the correlation model.

A multi-dimensional Gaussian distribution is postulated to describe the model.

G(7%|7,%) = (%); IR (—; (v7 ~y (@, 5))T 27 (v~ y (d, 5))) (6.13)

1

_ ex _1 Zee __ 'JJT 1 (, Zee T
= /0N det(m) p( p W L) B )>

-,

with ¢/ the predicted linearity, 7%¢¢ the observed linearity, and C' the covariance supplied by observed linearity,
N = 42 which is the dimension of linearity defined by the number of 1 x E7 bins.
For simplicity of the solution, a constraint matrix C' is defined to describe the pre-fit constraints of the

parameters -
1 iff=v>6
Coy = { 0 otherwise (6.14)

The first situation corresponds to the G(65|0), 1) constraint of the systematic nuisance parameters g. The
second case is relevant to the global scale parameters o, which are artificially invented different to the
nuisance parameters g, and subsequently have no pre-fit constraint. The zero definition is barely a trick for
easier mathematical implementation so that the product of all the pre-fit constraints can be represented in

a brief formula:
N&ya

1 T
1;[ G(0F|0;, 1) Wexp (2T Cx) (6.15)

where all the 6y are equal to 0.
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Likelihood fit with a multi-dimensional Gaussian

The global fit model consists of a linear model 7 as a function of parameters #, and its observations §%¢¢
with a covariance C, provided by the Z — ee linearity, in addition to the pre-fit constraints of the parameters
Z. The full likelihood model is written as

1 1 T 1 1
L(Z|i77e¢) = ex (— Zee _T.g) Tt (yPe -1z >><ex <—3:TC’3;>
@) = v aem) o\ 2 (v )= ) @nNen P\ 2
(6.16)
1 1
— log L(Z|j7¢¢) = 3 (yzee -1 :z:)T »t (yzee —I-z)+ ixTC'x + constant (6.17)

where
« Y is a 42 x 42 matrix representing the covariance of Z — ee linearity observed in different bins.
« N = 42 corresponds to the 42 n x Ep bins of Z — ee linearity.
* Ngys = 52 corresponds to the number of systematic sources used to parametrize the linearity.
« yZ¢¢ is a 42-dimensional vector of the observed Z — ee linearity.

« Iis a 42 x 58 matrix describing the relative energy impact of parameters & in bins of linearity.

* x is a 58-dimensional vector corresponding the the systematic nuisance parameters g and the 6 global
scale parameters a,.

« (Cis a 58 x 58 matrix describing the pre-fit constraints on 7.
Since a Gaussian probability is assumed, the likelihood essentially coincides with the least square method.

(%) = (yzee -1 az)T »l (yzee -1 a:) + 270z (6.18)
= —2log L(F]77°°) + constant (6.19

The statistical inference is resolved analytically, by vanishing the first derivative of the y? with respect to Z.

1oy

597 = (TS +0)x — T8 y7ee (6.20)

: : 2 . .
By imposin D = 0, V{3, the least square estimators are derived as
y ) Ozg

d= (1T U4 0) Tty (6.21)

The model 3 is linear in Z, and the ¥ is independent of &, therefore, the least square estimator becomes
optimal, which means unbiased and asymptotically reaching the minimum variance band. Subsequently, the
covariance of the estimators can be conveniently extracted by the Fisher information.

02 log L(7)

—lia Ay _ (71Ty—1
% (:cﬁ,xv)_—E[ D, ]—(I ST+ C)y, (6.22)
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6.1.3 Correlation model of the Z — ce linearity uncertainty

The ingredients of the fit model are mostly defined, regarding the x? in Eq. 6.18, the y%°¢ corresponds
to the central values of Z — ee linearity in the 42 bins, I is the impact matrix defined by the ensemble
of energy scale factor systematic (and the global scale factor d), C' is the prefit constraint matrix for the

—

systematic nuisance parameters 6.

However, for the matrix ¥ which describes the covariance between the 42 bins of the Z — ee linearity
measurement, there can be different assumptions of the correlations, depending on the source of uncer-
tainty contributing to the total joint covariance matrix.

As defined in Eq. 6.12, the joint covariance matrix is the sum of individual one, each of them corre-
sponding to one source of uncertainty for the Z — ee linearity measurement. For the various sources
of linearity uncertainties summarized in Tab. 5.7: for the statistical uncertainty, no correlation is assigned
between any 7 and E7p bins; for closure systematic, a 100% correlation is assumed between Ep bins; for
other systematics, given sometimes the uncertainty is replaced by its statistical fluctuation according to the
bootstrap evaluation, such kinds of bins are decorrelated with the others, but for normal case, a typical 100%
correlation is still assigned. In general, only for systematic uncertainties, one can correlate or decorrelate the
uncertainties between different 7 regions, which can have a significant impact on the constraint, but also
on the goodness of fit. In all the cases, the statistical uncertainty remains uncorrelated neither between Er
nor 7.

The effective correlations between different n and E7 bins are demonstrated in Fig. 6.4, respectively in
case when systematic uncertainties are correlated or uncorrelated between different 1 regions. The axis
labels correspond to the  x Ep bin indices which are consistent with the definition of Eq. 6.8a.

In the case when 7 bins are uncorrelated for systematic uncertainties (Fig. 6.4b), all the off-diagonal blocks
are almost null, the remaining tiny correlation around 1% at some specific positions is due to the correlation
of statistical uncertainty given by the bootstrap study. According to Fig. 5.40 and Tab. 5.7: in the range
of |n| < 0.6 (top left square in the plot): the first three E bins are dominated by MassWindow, fBremVar
and TightVar, which are all quite flat® as a function of Er, hence these bins are highly correlated. Similar
behavior appears also for the low E7 range at 1.55 < |n| < 1.82; High correlation can also occur in case that
the same systematic controls several bins, for instance, all the Ep bins at 1.37 < |n| < 1.55 and high Ep
region at 1.55 < |n| < 1.82; Another situation is that when all the systematics or the dominant systematics
have the same profile versus E7%, the correlation of the total uncertainty is also equal to one. It happens for
the two first E7 bins at 0.6 < |n| < 1 when the ratio of uncertainties between these two bins is similar. One
can find that the first situation with flat systematic is a special case of the last one, i.e. same Ep profile.
The high correlation observed in the range of 1 < |n| < 1.37, is mainly due to a mixing effect of all the
three situations described above. The reduction of correlation in the bin of Er > 100 GeV at 0.6 < || < 1
is due to the fact that the most important uncertainty is fBremVar, of which the initial estimation was noisy
according to the bootstrap study, hence was then replaced by a statistical uncertainty. The same argument
is applied as well for the last three Ep bins of 1.37 < |n| < 1.55 for the TightVar systematic. The last 7 bin

. . . 2 . . . .
3S.lmple dgmonstratlon. Vij = ok Vi = Yok OkiPijok; = (Oop0p)dijs if oki = ogj, Vi, j. Jis an all-ones
matrix, referring to a full correlation matrix.

4Simple demonstration: p;; = \/% =1—= Y (onioy —onok;)* =0— % = %,Vk,l.
k Oki 24k Okj
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between 1.82 and 2.47 contains plenty of bins with a noisy estimation of systematic as shown in Tab. 4.10,
in addition, some systematics have a negative correlation, therefore small correlation or anticorrelation often
appears in this 7 region.

As for Fig. 6.4a when systematic uncertainty is assumed to be correlated between 7, the diagonal blocks
remain identical to the ones of the n-decorrelated case, and then the off-diagonal parts are filled according
to the corresponding correlation assumed for each source of uncertainty.

In general, the correlation assumption can have a huge impact on the fit results and the goodness of
fit. Essentially, a high correlation between the two bins implies that the fit will vary them in the same
direction with respect to the data, in contrast, a high anticorrelation would prefer the opposite deviation.
An interesting phenomenon is that when a very high correlation is imposed, the fit will be pulled all on the
same side of the data points. Roughly speaking, high correlation often leads to better constraint, but the
fit quality can be very poor.

(a) n-correlated X (b) n-decorrelated X

Figure 6.4: Effective correlation between n and Er calculated for the joint covariance matrix ¥ of
the Z — ee linearity data, in case when systematic uncertainty is correlated (a) or uncorrelated (b)
between the 6 coarse n bins. The X and Y axis labels correspond to the indices of n x Ep bins. Each
square with blue border stands for the correlation between two 7 bins.

6.1.4 Inference results and constraint on systematic

Respectively for the n-correlated and 7-decorrelated correlation models, the parameters &, and g are
fitted to the Z — ee linearity data. In Fig. 6.5, the cyan band is the prefit uncertainty band, which is unity
for the various systematic NPs 6 and zero for the six global scales g4, since they have no prefit constraint.
The yellow band is the postfit uncertainty band obtained from the fit. Black dots correspond to the shifts
of parameters, of which the square of the error bar is equal to the quadratic difference between the prefit
and postfit uncertainties (Eq. 6.23), while for &, it is equal to the postfit uncertainty.
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Figure 6.5: Pulls and constraints of the parameters in case the covariance matrix X is n-correlated or -
decorrelated. The cyan band is the prefit uncertainty band, the yellow band is the postfit uncertainty
band. Black dots correspond to the shifts of parameters. The central value and uncertainty of @, are
scaled by one thousand.

A~

o6 — 6y) = o?(6p) — o2(0) (6.23)

By comparing the prefit and postfit uncertainty bands, the MG/HG calibration (L1Gain and L2Gain), LAr
modelling (LARCALIB, LARELECUNCONYV) and layer calibration (PS, S12) are the most constrained, which
are also the most important systematics depending on the 7 bins, as shown in Fig. 6.3. It implies a potential
constraint on the energy scale systematic uncertainty.

The pattern in the middle corresponds to the various material systematics. They are much less constrained.
The material effect remains small in most of the 7 region and increases when close to the crack, hence the
relevant NPs in the barrel and endcap only bring small sensitivity to the fit. Apart from that, since they are
split into various NPs that only part of the Z — ee linearity data in the corresponding 7 bins can be used
to constrain them. In contrast, it explains also why L1Gain and L2Gain are so much constrained, which is
not only due to their large sensitivity (large contribution to total uncertainty), but also because only one
NP is defined for all the 7 region.

In general, the constraint on NPs is similar between the two 7 correlation models, and for the n-correlated
case, a better constraint on the global scale parameters is observed.

The layer calibration and LAr modelling NPs are shifted with respect to 0, which are pulled to match
the linearity data at both the low and high E7 range. One useful remark is that the L2Gain systematic
has almost no sensitivity at low E7, hence there is the possibility to tune only this NP to cover tension at
high Ep after matching the low E7p linearity profile with the pulls on layer calibration and LAr modelling
NPs. However, the limitation is that since the L2Gain has only a common NP fully correlated in 7, residual
tensions are still possible to occur.



6.1. CONSTRAINING ELECTRON PHOTON ENERGY SCALE UNCERTAINTY WITH Z — EE
LINEARITY MEASUREMENT 191

—

Using the postfit pulls of the parameters & with « = (&g, #), one can calculate the postfit linearity scale as:
g=1% (6.24)

of which the postfit uncertainty is
o = diag(1-V(2)-17) (6.25)

where I is the impact matrix in the n x Ep phase space defined for different parameters z, V(&) is the
postfit uncertainty of x.

For NP covariance V (&), the corresponding correlation matrix is shown in Fig. 6.6. NPs having similar Ep
profile in the same 7 bin can be correlated after fitting to the linearity data, the examples are S12 ETAQ
and LARCALIB_ETAO at || < 0.6, PS_ETA6 and LARELECUNCOV ETAO0 at 1 < |n| < 1.37, and
S12 ETA3 and S12 ETA4 at 1.82 < |n| < 2.47. Between these NPs, given their similar systematic behav-
ior, a negative correlation is observed, and similarly, if two NPs have similar Ep profile but the sign-inverted
impact, for instance, WTOTS1 and LARELECUNCOV _ETA1, a positive correlation will emerge.

The n correlation imposed in the covariance matrix ¥ has a significant impact on the correlations between
the various global scales, as well as those NPs having an evident impact on several 7 bins, e.g. L2Gain and
L1Gain.

(a) n-correlated X (b) n-decorrelated X

Figure 6.6: Postfit correlation matrix of the fitted parameters in case when input linearity systematic
uncertainty n-correlated or n-decorrelated. The axis labels refer to the name of the 6 global scales
and 52 systematic nuisance parameters.

While for the prefit stage, since the parameters are a priori equal to zero and the systematic nuisance param-
eters @ are uncorrelated, therefore the induced linearity is also zero for all the bins, and the corresponding
uncertainty is calculated by summing all the energy scale uncertainties in quadrature. The global scales are
not taken into account since they have no prefit constraint. One caveat is that since the input uncertainties
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of linearity (MassWindow, TightlD, fBremVar, etc...) are evaluated in the same way and with the same
datasets as the inclusive 7-dependent Z — ee calibration uncertainty (ZEE STAT and ZEE SYST), hence
it is equivalent to say that the Z — ee calibration uncertainty is propagated to the global scale @g. In order
to be compatible, the Z — ee calibration uncertainty is also included in the definition of prefit uncertainty,
although only the main sources of uncertainty were propagated by assuming the remaining uncertainty is
negligible.

The energy scale central values and the associated uncertainties for both prefit and postfit stages are plotted
in Fig. 6.7. General reduction of the uncertainty has been observed after having constraints from the Z — ee
linearity data given its fine accuracy. The constraint often reaches a factor around 10 at large E7. Such
evident constraint is mainly due to the constraints on the MG/HG and layer calibration systematics, which
are also the largest uncertainties in most of the 7 regions. At medium and low E7p, the n-correlated scheme
has a much better performance than the one with 7-decorrelated, however Fig. 6.5 and Fig. 6.6 had shown
very similar postfit constraints and correlations for the systematic NPs. The origin of this difference is the
global scale @, as it was shown in Fig. 6.5, much worse uncertainties on these parameters are obtained
when there is no correlation assumed between 1 bins, which indeed become an important contributor to
the total energy scale uncertainty after the dominant systematic sources (MG/HG and layer calibrations)
have been significantly constrained. This is why the difference between the two correlation models is more
obvious around 40 GeV, while it is decreased rapidly at large Ep. In particular for 1.55 < |n| < 1.82, since
the postfit uncertainty of oy is in the level of O(1073) for n-decorrelated case, the total postfit uncertainty
is mostly dominated by oy in the full range of E7p.

Some tensions occur between the central values of the Z — ee linearity data and the postfit, which implies
a possible issue for the goodness of fit. The fit quality is evaluated by a x? test, according to the y? formula
of Eq. 6.18. Since the total x? is calculated in the 6 1 bins, the contributions of each 1 bin can be separated
by decomposing this x? formula into a set of terms which describe the discrepancies between fit and data
only from a given n bin, as well as correlated terms between two different 7 bins. There is a rest term as
the deviation of postfit § from the prefit value of 0. The yx? decomposition is demonstrated below:

(%) = (yzee -1 x)TEfl (yzee —1-z)+ 2T Cx

=Y (W7 —T2), x S5 < (yP—T-2) + ) 6;
7 k (6.26)

:Z Z (yzee—l-x)ixZi_jlx(yzee—f-x)j —l—ZG,%
k

ning | 1€ENJEN;

The first long term is indeed a big matrix in which each of the element stands for the x? contribution be-
tween a pair of (n x Er); and (7 x E7); bins. This x? matrix is shown in Fig. 6.8, where 7 bins are split by
the blue frontiers, then inside each separated square, the y? contribution is further divided into Er bins. For
n-decorrelated scheme: since almost no correlation is introduced between 7 bins, the off-diagonal blocks are
less important than the diagonal ones; inside the diagonal blocks, although big values are often observed for
the diagonal element, because of the high correlation between Ep bins (Fig. 6.4), they are compensated by
the neighboring off-diagonal elements; This is also the reason why the set of postfit energy scale points are
often simultaneously 1o always from the linearity data. For the n-correlated cases, the off-diagonal blocks
have a significant negative contribution, which is due to the correlation between 7 bins. The characteristics
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Figure 6.7: Comparison between the prefit and the postfit energy scale. The prefit (yellow) is centered
at zero, with unconstrained energy scale uncertainty. The postfit (red and cyan) is shifted due to
nonzero NP pulls fitted to the Z — ee linearity data (black dots), the color band corresponds to the
constrained uncertainty. The postfit results with both the two 7 correlation schemes are shown.

of the goodness of fit are summarized in Tab. 6.2, which includes the total x2, its contribution from a single
n bin by ignoring its correlation to other 7 regions (a diagonal block from Fig. 6.8) as well as the one from
NP pulls.

The caveat is that due to the unsatisfying goodness of fit, the obtained constraint on energy scale un-
certainty can be too optimistic, therefore one has to solve this y? issues before applying to any physics
analysis. On the other hand, for the application of the constraint, one should remove the inclusive Z — ee
calibration uncertainty, since it has been already taken into account in the global scale da.

- P : P 7 7 P 7 7z 7
Correlation Models  x~/ndf p-value >k Ok X|n|<o0.6 X0.6<|n|<1 Xi<|n|<1.37  X1.37<|n|<1.55 X1.55<|n|<1.82 X1.82<|n|<2.47
n-correlated 307/36 O(10~%%) 43 363 423 913 835 511 169
n-decorrelated 122/36 O(10~11) 22 25 24 10 20 15 5

Table 6.2: Goodness of fit: x?, degree of freedom, and the corresponding p-value. The decomposition
to the sum of the square of systematic NPs and the x? from a single n bin. Correlated terms between
different n bins are taken into account which has important suppression on the total x2.

6.1.5 Performance on photon energy scale uncertainty

The global fit uses the Z — ee linearity to constrain the electron energy scale uncertainties where in
total 52 NPs are constrained, then the performance of such constraint will be explored on photons, where
one needs to take into account the increase of uncertainty from the difference between photon and electron,
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(a) n-correlated X (b) n-decorrelated X

Figure 6.8: Matrices showing the x? contribution between different pairs of n x Er bins in case the
global fit is done with n-correlated or n-decorrelated correlation models. n bins are separated by the
blue frontiers.

as well as the additional uncertainties from photon leakage and reconstruction.

Since one of the interesting goals is to see how the global fit will constrain the H — ~+ mass uncer-
tainty, the photon energy scale uncertainty is evaluated at a set of |n| and Ep values that as in Tab. 6.3
which are chosen using the HGam photon kinematics. Basically, there are more photons in the barrel than
endcap, and the average transverse energy of photons from Higgs decay is around 60 GeV.

7] 0.1,0.3,0.5,0.7,0.9, 1.1, 1.3, 1.5 (excluded in the HGam analysis), 1.7, 1.9, 2.1, 2.3
Er [GeV] 40, 60, 80, 100, 120

Table 6.3: List of |n| and Ep values used for evaluating photon energy scale uncertainty.

The prefit total uncertainties of unconverted and converted photons are shown in Fig. 6.9. The 69 NPs
associated with the complete energy scale systematic model are involved. For postfit uncertainty, the
constraints and correlations of the 52 NPs and 6 global scale &, used in the global fit model are included
in the calculation, and the two Zee calibration NPs are removed to avoid double counting of the uncertainty.

For an unconverted photon, a general reduction factor around 2 is observed in the barrel, which is even
better when moving to higher E. For a converted photon, the performance is much worse in particular at
low 77, where the dominant systematic is the photon lateral leakage, which is not constrained by Z — ee
linearity. It is useful to clarify that the plots only refer to the constraint at a fixed value of n and Ep, while
in principle there is also an improvement from the correlation of NPs located at different 7 regions that are
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not included at fixed 7 calculations. As was introduced above, the two 7 correlation models have similar
constraints on the systematic NPs, while the difference between them is mainly due to different constraints
on the global scale &;. However the impact from &, becomes much less important for photons, given the
increased uncertainty due to the difference between electrons and photons, and the leakage uncertainty.
Indeed keeping or removing the @, only has an effect in the order of O(1073) on the photon energy uncer-
tainty, which can be probably ignored in practice.

The global fit brings not the only constraint on photon energy scale uncertainty, but also a shift on the
energy scale (Fig. 6.10). Given the NP pulls themselves correspond to the energy scale change on MC,
a minus sign is introduced to each of the NP to have an equivalent impact on data. The change on the
energy scale is often in the order of O(1073), similar to the associated energy scale uncertainty®. The pulls
of the 52 NPs and 6 global scales @, are used to compute the shift on the energy scale. Due to the up
to 1.5 x 1073 relative energy scale shift from the @, these parameters are not negligible in some 1 and
E7 regions, which can have roughly 20 MeV impact on the Higgs mass after integrating over the full phase
space.

w w
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Figure 6.9: Constraint on photon energy scale uncertainty using global fit results from linearity. The
prefit uncertainty is computed with the full 69 systematic NPs in quadrature. The postfit uncertainty is
computed by applying constraints one the 52 NPs and 6 global scales used in the global fit. Each block
corresponds to one Ep value, inside which the evolution of uncertainty in function of 7 is shown.

In conclusion, a global fit model which considers the Z — ee linearity as observation of the electron energy
scale uncertainty has been studied. Doing so, one benefits from the additional constraint on these uncer-
tainties. Such constraint can bring potential reduction of photon energy scale uncertainty, in consequence,
a better precision of the H — v+ mass measurement, which will be discussed in the next section.

>The shift on energy scale can be different with the new calibration recommendation since the non-linearity
is evidently improved with the ADC and L2Gain corrections, hence smaller pulls are expected.
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Figure 6.10: Shift on photon energy scale using global fit results from linearity. The postfit uncertainty
is computed with the pulls on the 52 NPs and 6 global scales used in the global fit. Each block corre-
sponds to one Er value, inside which the evolution of uncertainty as a function of 7 is shown.

6.2 Measurement of Higgs mass with H — v decay

A measurement of the Higgs boson mass in the two photons decay channel is performed using the pp
collision datasets collected by the ATLAS experiment during LHC Run 2, with a total integrated luminosity
of 139 fb~1.

An early study using 36.1 fb~! Run 2 data [16] was performed, which gives a mass measurement of

mp = 124.93 £+ 0.40 (0.21(stat) £ 0.34(syst)) GeV (6.27)
where the systematic uncertainty is dominated by the LAr cell non-linearity response, layer calibrations of
ECAL and passive material effect.

In this new full Run 2 analysis, the latest ECAL calibration is applied in order to improve the uncertainty
associated to the calorimeter. In addition, a global fit model is used to parametrize the linearity measured
with Z — ee events with the various energy scale uncertainties, which brings potential constraint on these
uncertainties and improvement on the Higgs mass precision.

The Higgs signal is exploited with several production modes, including gluon gluon fusion (ggF), vector boson
fusion (VBF), association production with W or Z boson, tZH, bbH, and tH processes. The various signal
samples are generated with the Powheg generator, except the tH production with MadGraph5 aMC®ONLO.
The Higgs to v~ decay is modelled by either Pythia or Herwig parton showering generator.

The irreducible background comes from the QCD ~v, Vv and ttyy productions, which have no reso-
nant peak near the Higgs signal region as a continuum background. The QCD ~+ and V4~ are generated
with Sherpa Monte Carlo, The ttyy samples are generated with MadGraph5 aMC@NLO with Pythia for
the parton showering.



6.2. MEASUREMENT OF HIGGS MASS WITH H — ~~ DECAY 197

6.2.1 Event selection

Similar selections on the two photons as in Sec. 4.5.1 are applied to enrich the signal and reduce the
background:

* pass di-photon triggers, with a minimum transverse energy of 35 GeV and 25 GeV respectively for the
leading and subleading photons.

* at least two photons satisfying both the tight identification criteria and the FixedCutLoose isolation
criteria.

* transverse momentum of the (sub)leading photon above 35% (25%) of m.,.
* Neural network (NN)-based approach to identify the diphoton vertex.
* Diphoton mass m.. required to belong to the range [105, 160] GeV.

6.2.2 Event categorization

For the measurement of the Higgs mass, the statistical uncertainty is proportional to the mass reso-
lution, which depends on the 7 region of the detector and the photon conversion status. For instance,
the central barrel region is better as compared to the transition region between barrel and endcap; as well
the unconverted photon has a generally better resolution than the converted. Hence the relevant photon
kinematics and properties are used for categorization, which include

ng2|: absolute pseudorapidity of the reconstructed photon cluster in the second layer of the LAr
calorimeter.

* Photon conversion status: converted or unconverted photons.

* pj.: the projection of the diphoton transverse momentum in the so-called thrust-axis ¢:

ﬁ’yl _ﬁryQ
pry = |pp xt],  with { = ——"T (6.28)
‘pT —Pr

A sketch of the categorization is shown in Fig. 6.11. The leading and subleading photons are classified as
both unconverted or at least one converted, then split into three |ng2| regions: a central region with both
photons located at |ng2| < 0.75, a transition region with at least one photon satisfying 1.3 < |nge| < 1.75
(the crack region [1.37,1.52] was excluded), and all the other cases labelled as rest. Apart from the division
in |ns2| and photon conversion, a further splitting in the pJ- spectrum is implemented for the central and
rest regions. The cutting thresholds are 70 and 130 GeV which corresponds to the 30% and 10% quantile
of the signal pJ. distribution. Consequently there are in total 14 categories defined according to photon
conversion status, |ns2| and pJ.. The thresholds on |ng2| and pJ. are optimized to have the best expected
accuracy of the Higgs mass.

The expected yields for the various signal production processes under the SM assumption are summarized
in Tab. 6.4, the contribution to the total signal from each production is visualized in Fig. 6.12, which shows
generally large signal fractions from the ggH and VBF modes.
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Figure 6.11: Sketch of mass categorization defined with photon conversion status,  and p.’.

Category ggH VBF WH ZH ggZH ttH bbH tHjb tWH
UU Cen high 2413 9.16 2.66 1.51 0.82 2.80 0.12 0.21 0.11
UU Cen med 67.54 18.97 4.97 2.87 1.13 3.54 0.44 0.35 0.13
UU Cen low 751.50 40.40 11.55 6.54 0.88 4.75 9.02 0.44 0.14
UU Rest high 25.85 9.71 3.06 1.79 0.78 2.40 0.14 0.20 0.10
UU Rest med 114.45 31.86 8.98 5.33 1.69 4.96 0.61 0.65 0.17
UU Rest low 1260.60 66.96 21.30 11.90 1.46 7.03 14.56 1.04 0.22
UU Trans 413.74 32.32 10.57 5.94 0.97 3.63 4.42 0.60 0.10
Conv Cen high 15.41 5.98 1.68 0.91 0.52 1.78 0.06 0.18 0.06
Conv Cen med 42.80 11.95 3.18 1.84 0.67 2.27 0.28 0.24 0.09
Conv Cen low 470.75 24.97 717 4.18 0.53 2.98 5.60 0.29 0.10

Conv Rest high 29.40 11.21 3.80 2.11 0.84 2.66 0.15 0.36 0.12
Conv Rest med 129.32 36.28 10.69 6.30 1.82 5.40 0.72 0.71 0.17
Conv Trans 696.22 54.22 18.41 10.18 1.74 6.02 6.96 1.06 0.19
Conv Rest low 1435.81 76.33 25.39 14.15 1.52 7.58 15.73 1.26 0.19

Table 6.4: Expected SMyields at 139 fb~! for the various Higgs production modes for the mass analysis
categorization

6.2.3 Signal modelling

The analysis is using the diphoton invariant mass m. as final discriminate variable. The shape of signal
M.~ distribution is modelled by a double sided crystal ball function (Eq. 4.10 in Sec. 4.6.1):

—NLow
ALOW : [%Z’X (bLow - t)] s t < —Qlow
2
fosen(t) =N - exp (—z ). t € [~ Lo, Oig] (6.29)
High _ | @Hi ~THigh
Attish . [atish (i — )] > gy

In order to take into account the change on shape modelling due to different Higgs mass values, signal
samples generated at my = 110,122,123,124,125,126,127,130,140 GeV are used to parametrize the
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Figure 6.12: Fractions of different signal production mode with respect to the total number of signal
in each Higgs mass categories.

DSCB function parameters in the following forms:

pes(mu) =mp + By + Apcp - (ma — 125 GeV)
ocp(mu) = Bopy + Aoepy - (mu — 125 GeV)

A Low (mH) = OLow (6.30)

QHigh(MH) = QHigh
NLow(ME) = NLow|125 GeV
naigh(mu) = nmigh|125 GeV

A linear parametrization is chosen for the peak position pcp(mp) and spread oop(mg). A common value
for azow and aprigy is taken to describe signal samples with different m . The power law orders are fixed
to the one obtained with signal MC sample at mpg = 125 GeV. The parameters B, Aucp: Bocy: Acop.
Qrow and apign are simultaneously fitted to the m., of the various signal sample at different mp. The
obtained parameters of each category are summarized in Tab. 6.5. Basically the parameter B,,,, represents
the difference between the reconstructed Higgs peak position and the truth Higgs mass, which is several
tens of MeV in the categories with both two unconverted photon, and in the level of 100 MeV in those with
at least one converted photon.
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Category Bop [MeV] Aucp Bonp [MeV] Ascp QLow  MLowl|125GeV  OHigh  MHighl|125GeV
UU cen high 85.46 -0.000717 1106.20 0.006901 2.04 4.85 1.56 46.34
UU cen med 57.63 -0.001009 1282.85 0.010494 1.93 4.37 1.29 318.76
UU cen low 95.16 -0.000065 1482.59 0.006102 2.18 413 1.48 948.74
UU rest high 52.34 -0.001947 1227.82 0.009361 1.68 9.37 1.48 60.25
UU rest med 42.28 0.000877 1469.85 0.009664 1.87 6.70 1.45 98.09
UU rest low 17.45 -0.000023 1699.53 0.008385 1.90 5.92 1.55 967.05
UU trans -11.16 -0.000076 1988.61 0.009320 1.69 10.91 1.50 882.07
Conv cen high 127.22 0.000588 1117.80 0.006454 1.84 4.57 1.35 110.32
Conv cen med 159.46 0.001894 1380.17 0.007712 1.99 3.19 1.34 134.75
Conv cen low 175.19 -0.002162 1624.65 0.006732 1.96 3.14 1.41 980.93
Conv rest high 143.26 0.001924 1397.29 0.011695 1.65 6.77 1.61 16.19
Conv rest med 150.21 0.000089 1660.08 0.011525 1.60 5.54 1.23 310.14
Conv rest low 136.59 0.000527 1960.41 0.007832 1.70 4.70 1.46 996.35
Conv trans 188.53 0.000087 2315.09 0.010922 1.47 7.74 1.45 963.08

Table 6.5: Parameters that describe the signal shape for each category according to the parametriza-
tion of equation 6.30.

6.2.4 Background modelling

The v+ continuum background is modelled by an analytical function, which is chosen by the spurious
signal criteria described in Sec. 4.6.2. The template is constructed by the combination of 7+, vj and jj
processes, for which the fractions of the components are estimated using a data-driven technique as illustrate
in Fig. 4.8 of Sec. 4.5.1. The template is then scaled to match the same events as data in the control regions
105 < myy < 120 GeV or 130 < m., < 160 GeV (data side bands). Example of the background-only MC
templates are shown in Fig. 6.13.

The candidates of the background modelling functions are:
* Exponential Function: f(m,,) = e“™.
* Exponential Function of 2nd Order Polynomial (ExpPoly2): f(m.) = eCt My Fe2 My
* Exponential Function of 3rd Order Polynomial (ExpPoly3): f(my) = eC1 My Fe2 iy ey My

* Bernstein polynomial of order N: By (m,) = Zfio ¢i - bin, with b, y = (‘7) m%(l — mW)N*i.

* First-Order Power Law Function: f(m,) = mS,.
Then a signal plus background model is fitted to the background template, where the background model is
the function to be evaluated, and the double sided crystal ball function (Eq. 6.29) is taken for the signal
modelling. The parameter ucp representing the mass peak position is varying in intervals of 0.5 GeV in a
range from 123 GeV to 127 GeV. During the test for a given background functional form, the signal mod-
elling is fixed, and for each value of ucp, the signal events, the background events and background function
parameters are fitted. The largest fitted signal among the different ucp values is defined as the spurious
signal N, for this functional form. The function passing the criteria with the smallest spurious signal N,
and the lowest degrees of freedom is selected for the background modelling, with the corresponding spurious
signal N, as the modelling systematic uncertainty.

The chosen functional forms for the various categories are shown in Tab. 6.6: the ExpPoly2 function is
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Figure 6.13: Examples of m,, distributions of the background template (blue) and blinded data (red)
in the categories with both two central unconverted photons and with high (a) or medium (b) p}z
The background templates are normalized to the data sideband. The bottom plots represent their
differences.

preferred for categories with medium or low pJ which have enhanced statistics, while for high pJ. cate-
gories, a simple power law or exponential function is chosen.

6.2.5 Systematic uncertainty

Experimental systematic uncertainties on the signal m., shape modelling include variations of the
photon energy scale (PES) and photon energy resolution (PER), which respectively affect the peak position
and width of the m., distribution. Their systematic effect is respectively incorporated in pcp and ocp
parameters of the DSCB function by introducing additional response functions Fpgrg and Fpgg:

g = (e + my — 125 GeV) - Fpps (6%, 0) (6.31)
orp =o0cn - Fper(d™,0) (6.32)
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Category mg Nsp FF p(XQ) % Nsp/US (%) Nsp/NS exp (%)
UU cen high 123.0 0.953 Pow 15.5 7.28 1.5
UU cen med 126.5 2.99 ExpPoly2 9.44 6.68 1.65
UU cen low 123.0 -28.6 ExpPoly2 68.5 -13.4 -1.69
UU rest high 123.0 -1.06 Exponential 58.9 -12.3 -4.79
UU rest med 127.0 -3.81 ExpPoly2 46.2 -10.9 -4.38
UU rest low 123.0 -51.7 ExpPoly2 47.9 -29.3 -7.26
UU trans 124.5 -14.9 ExpPoly2 69.9 -13.8 -6.41
Conv cen high 127.0 1.85 Exponential 5.93 12.7 2.94
Conv cen med 125.0 -11.7 ExpPoly2 27.2 -22.1 -5.97
Conv cen low 124.0 -57 ExpPoly2 4.13 -21.8 -3.49
Conv rest high 125.5 2.37 Exponential 4.86 22.5 9.35
Conv rest med 123.0 -7.73 ExpPoly2 51.5 -18.2 -7.93
Conv rest low 125.5 -43.4 ExpPoly2 14.8 -21.5 -42
Conv trans 123.0 -28.1 ExpPoly2 28.2 -17.9 -7.24

Table 6.6: Final background modeling decision and the size of spurious signal uncertainties. my is the
mass point of the scan at which the maximum spurious signal is fitted. x? is computed for the MC
template fit, which is transformed to a p-value.

The effect on the other parameters of the modelling is neglected.

nom

bt and 1o variations of a

* For the scale: the mean value of m., is computed for the nominal <m

given PES nuisance parameter (m=?), then the associated uncertainty is evaluated as
ilo’>
m
Sty = (mn?) 1 6.33
108 = L) o

Fig. 6.14 shows the examples of uncertainties induced from the various sources of PES systematics in
two of the categories, and the squared sum of all the PES systematic up variations for each category.
In the central region, the uncertainty is dominated by the L2Gain and E1/E2 calibration, while there
is a striking impact from lateral leakage for converted photons. The total effect of PES on the mass
ranges from around 40.17% in the Conv rest low category to around 40.58% in the UU transition
category. The PES uncertainty is in general larger at high pJ./, at transition or rests 7 regions, and
larger for unconverted photon than converted one.

Given the symmetric uncertainties between the up and down variations, the scale uncertainties are
implemented with a Gaussian constraint using the +10 variation. Therefore the response function
applied to pcop is defined as Fpgs(6%,0) = [V (1 + 67y - Oppsi), where the 69 NPs described
in Sec. 6.1.1 are included.

* For the resolution: the inter-quartile of m.., is computed for the nominal S"°™ and +1o variations of
a given PER nuisance parameter S*17. The inter-quartile is defined as S = nglw(75%)—anwlw (25%),
with I}, is the cumulative distribution function of the m., distribution. The associated uncertainty

is evaluated as
S:I:la

ObER = Grom — 1 (6.34)

Fig. 6.15 shows the examples of uncertainties induced from the various sources of PER systematics in
two of the categories, and the squared sum of all the PER systematic up variation for each category.
The total effect of PER ranges from around +5.3% in the Conv rest low category to around +20%
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Figure 6.14: Examples of +10 PES uncertainties in the categories with two central photons at medium
p%z that both are unconverted (a) or at least one is converted (b). (c) The squared sum of all the PES
uncertainties for the various categories.

in the UU central high category. The effect is in general bigger at high pl). In order to take into
account the difference between +10 and —10 variations, an asymmetric constraint is implemented
for the PER uncertainty, and a linear interpolation between (14 dppg) and (1 + 6p5g) is considered
for the calculation of the response function Fprr (0%, 6) applied on ocp.

Additional uncertainty of the signal shape modelling can arise from the mis-modelling of the signal, which
affects the parameters of the signal model (Eq. 6.30) and then creates potential bias. Such kind of bias is
estimated with a signal injection test, by fitting a sample composed of background Asimov data and the
nominal signal MC at mpy = 125 GeV to the combined pdf of nominal signal and background model. The
background Asimov data is generated with the background functional forms fitted to the data sideband and
extrapolated to the blinded signal region (m., € [120,130] GeV).

The uncertainty is then evaluated as the signal bias, defined as the relative difference between the fit-
ted and injected (mpy = 125 GeV) Higgs mass (Tab. 6.7). In order to evaluate the statistical uncertainty of
the signal bias, one thousand bootstrap replicas are generated for obtaining a set of replicas measurements
of signal bias, which is used to calculate its mean p and standard deviation o. From the table, the signal bias
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Figure 6.15: Examples of +10 PER uncertainties in the categories with two central photons at medium
p%z that both are unconverted (a) or at least one is converted (b). (c) The squared sum of all the PER
uncertainties for the various categories.

is not statistically significant (p is comparable to o) for around half of the categories, and the associated
uncertainty is less than 10% with respect to the total PES uncertainty, consequently, the impact on total
uncertainty is less than 1%.

6.2.6 Statistical model

An unbinned maximum likelihood fit using the m., observable is performed simultaneously with the 14
categories. An extended likelihood function is constructed to describe the models of the various categories
and then fitted to data:

Nc Nec
L =] [ Pois (ne|Ne (1,0)) - T ] fe (mi|mm.,8) | - G(6ol6) (6.35)
c=1 )

where

* Pois (n¢|N¢ (u1,8)) is an extended Poisson term constraining the observed events in a given category
¢, which is modelled by an expectation value:

Ne(p,0) = - N7() + Ny + NP - 93P (6.36)
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Category Nominal fit Bootstrap Comparison with PES
mifted [MeV] bias [MeV] bias [%o] | p [%0] o [%0] L3 0Fpg [%o] Bias size [%]
UU cen high 124966 -34 -0.27 | -0.32 0.07 -4.26 3.36 -8.19
UU cen med 124996 -4 -0.03 | -0.03 0.07 -0.39 2.73 -1.10
UU cen low 124992 -8 -0.06 | -0.07 0.04 -1.80 2.32 -2.85
UU rest high 124985 -15 -0.12 | -0.10 0.08 -1.23 5.09 -2.29
UU rest med 125010 10 0.08| 0.08 0.06 1.31 3.62 2.25
UU rest low 124999 -1 -0.01 | -0.01 0.03 -0.19 3.02 -0.27
UU trans 125009 9 0.07| 0.09 0.07 134 5.81 1.23
Conv cen high 125006 6 0.05| 0.10 0.10 0.96 2.90 1.53
Conv cen med 125002 2 0.02 0.02 0.10 0.20 2.34 0.71
Conv cen low 124996 -4 -0.03 | -0.04 0.06 -0.70 2.04 -1.68
Conv rest high 125027 27 0.22| 023 0.09 254 3.70 5.79
Conv rest med 124966 -34 -0.27 | -0.27 0.07 -4.08 2.30 -11.73
Conv rest low 125002 2 0.02 | 0.01 0.03 0.28 1.75 0.84
Conv trans 124999 -1 -0.01 | -0.02 0.07 -0.32 2.77 -0.32

Table 6.7: Signal bias computed as difference between the fitted and injected (mgy = 125 GeV) Higgs
boson mass. Mean and standard deviation obtained from a bootstrap procedure with 1000 replicas
are reported as well. The significance u/o of the bias for each category is reported. In addition, a
comparison of the signal bias with the quadrature sum of the PES systematic uncertainties is reported,
with “Bias size" computed as the ratio between the nominal signal bias and the quadrature sum of
the scale systematics.

where N!() is the expected events of the Higgs signal, N, is the continuum background and
NZP is the spurious signal with its corresponding nuisance parameter §:F associated for category
c. Uncertainties of luminosity, branching ratio of H — ~~ and the efficiency-times-acceptance are
assigned to N7 ().

fe (m%|mH70) is the joint probability density function of m.,, for all the physics processes in a given

category ¢, which is evaluated on the discrete data m%:

. 1 o .
S (i, 0) = =g [ (- N (@) + NEP - 030) - S22 (1, 0) 4+ Ny - 250 ()|
. 7 (6.37)
where f&* (m!,;mg,0) and bkg (ml.) are respectively the models of signal and background, where

the corresponding uncertainties are applied. The joint pdf is normalized with the total number of
events in the category.

G(60p|0) is the term of systematic constraint for the nuisance parameters 8, which is often a normal or
log-normal function. For normal function, the corresponding response function is F'(,6) = (1+9-6),

2
60 In(1+6

while for log-normal, a different response function F(4,0) = ) is used to emulate a log-

normal variable with 8 follows a normal distribution.

6.2.7 Expected results

Since the analysis is not yet unblinded, the expected results are evaluated using a signal plus background
= 125.09 GeV, background

Asimov data, where the signal strength is set to one, the Higgs mass mpy
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normalization and shape fitted to the data sideband, and all the systematic NP are set to zero. The best
value of the Higgs mass my fitted to the Asimov data is:

my = 125.09010250 GeV = 125.09070 133 (stat.) T 305 (syst.) GeV (6.38)

where a total uncertainty of around 290 MeV is obtained, which includes a statistical component around
124 MeV, and a systematic one of 263 MeV. The statistical error is obtained by fixing all the systematic
nuisance parameters, and the systematic one is calculated as the quadratic difference between the total
and statistical errors. The accuracy of the measurement is dominated by systematic error, where the most
important contribution is the photon energy scale uncertainty. In order to understand better the effect of
different sources of uncertainties, the total uncertainty is decomposed into different groups:

* Layer calibration: inter-calibration of the PS, E1/E2 of the calorimeter; E4 scintillators calibration;
uncertainty from supercluster threshold.

« Lateral shower shape: lateral leakage and lateral shower width modelling.
« LAr cell non-linearity: L1 and L2 gain calibration; pileup noise shift correction.

* Other material (not ID): material between ID and PS (or Calo), between PS and Calo and the
associated LAr modelling systematics.

» Z — ee calibration: in-situ calibration.

+ Conversion reconstruction: photon conversion reconstruction efficiency, fake rate and conversion
radius.

* |D material: material in ID, IBL and PPO.
* Resolution: the photon energy resolution systematics.

The total Higgs mass error is decomposed using a fit on the Asimov data by floating all the systematic NPs
except the ones in a particular group. The corresponding likelihood ratio scan is shown in Fig. 6.16, where
for each curve the relevant group of systematics are fixed. The obtained uncertainty is subtracted from the
total error in order to derive the contribution of this group (Tab. 6.7)°. The biggest contribution is from
the layer calibration uncertainty, with significant effect from lateral shower shape and LAr cell non-linearity.

6.2.8 Improvement with constraints on photon energy scale uncertainty

The global fit (Sec. 6.1.2) introduces constrained, correlated and pulled LAr calorimeter energy scale
uncertainties, which are represented in the obtained covariance matrix V52X52(é) and the NP shift 6 for the
52 NPs included in the model. This information is directly included in the statistical model, by replacing the
relevant Gaussian constraint term G(6,/0) by a multi-dimensional Gaussian distribution whose covariance
matrix is equal to V52X52(9) and the auxiliary measurement 6y is replaced by the NP shift 0.

116 (60,16, 1) — 9(9!0,%2x52(9)) (6.39)
J

6Such decomposition keeps the correlation between different groups, hence the quadratic sum of contribu-
tions is not necessarily equal to the total error, due to potential double counting of the correlated terms.
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Figure 6.16: Scan of the likelihood ratio with the contribution from the various systematic groups,
ordered in descending order of impact.

Impact on my

Systematic group Down Up
Layer calibration 155 155
Lateral shower shape 113 113
Lar cell non-linearity 106 106
Other material (not ID) 80 79
Z — ee calibration 64 64
Conversion reconstruction 51 50
Background model bias 40 40
ID material 24 25
Interference bias 23 23
Signal model bias 9 9
Resolution 7 3
Luminosity 0 0

Table 6.8: Systematic decomposition of the Higgs mass measurement obtained with Asimov dataset.

The global scale @, is ignored in this implementation.

Consequently, this application of global fit affects the Higgs mass measurement, with a potential con-
straint on the experiment uncertainty originating from the photon energy scale, and a shift on the central
value due to non-zero pulls. A signal plus background Asimov data is generated to evaluate its impact on
the expected results, where the signal strength is fixed to 1, Higgs mass my = 125.09 GeV, background
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obtained with a data sideband fit, and the systematic NPs are set to zero, except for the 52 constrained
NPs, which are set to the pull from global fit. This Asimov data is fitted to the modified likelihood model
with the multi-dimensional Gaussian constraint (Eq. 6.39), to evaluate the possible improvement of the
mass uncertainty. Specifically, for the shift on mass central value, the auxiliary measurements g are set
again to zero, hence the induced shift from NP pulls is absorbed in the Higgs mass my, rather than the
systematic NPs.

The resulting systematic uncertainties and shift of the Higgs mass using the two correlation models of
global fit are summarized in Tab. 6.9. These systematic uncertainties are calculated with total mass error
after subtracting the statistical component. The shift is defined as the difference with respect to the original
value of 125.09 GeV. A factor of around 1.5 reductions on the systematic error is observed after applying
the global fit constraint, however, the induced shift on mass is more than 300 MeV.
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myg (MeV) Osys AmH
Prefit 263 0
Postfit: n-correlated 180 372
Postfit: n-decorrelated 182 301

Table 6.9: Prefit and postfit systematic uncertainty. The postfit one is obtained with the modified
multi-dimensional Gaussian likelihood.

6.3 Preliminary results updated with the final Run 2 egamma calibration recommen-
dation

The results described above correspond to the previous official egamma calibration recommendation. In
this section, the preliminary global fit study for the final calibration recommendation will be presented.

The final Run 2 recommendation involves improvement on plenty of materials, such as the new layer
calibrations, the new corrections for residual electronics calibration, layer 2 MG/HG inter-calibration and
photon lateral leakage (Sec. 5.1). The relevant systematic uncertainties are shown in Fig. 6.17, for the final
recommendation: the relative MG/HG response is better calibrated, hence the corresponding uncertainty is
reduced by around 50%; the muon-based layerl/layer2 intercalibration uncertainty ("o " in Fig. 6.17a)
and the associated uncertainty due to the extrapolation from muon to electron (" /ot — €" in Fig. 6.17a)
are replaced by the smaller uncertainty of the new muon-electron combination approach ("o +e" in
Fig. 6.17b); At low energy range, in presence of the new ADC non-linearity correction uncertainty, the total
energy systematic uncertainty is similar with respect to the previous recommendation.

] o e . s s B s B B S e
Total uncertainty Z - ee calib.

r MG/HG gain —— ID material — Lateral leakage |
----- apg calib. «wee Material ID to PS 7
Ao pre  meees Material PS to Calo
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Figure 6.17: Impact on electron and photon energy scale of dominant systematic uncertainties for the
previous (a) and final (b) Run 2 calibration recommendations.

The Z — ee linearity has already been reproduced (Fig. 5.32). With recent studies, the systematic uncertain-
ties relevant to the me. window size, electron ID, isolation, bremsstrahlung radiation level, are estimated
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in a different way. These uncertainties are calculated as the impact on linearity when changing a given
selection:
of = af —apem (6.40)

7

where ¥ is the systematic error of source k measured at bin i, o™ and o are respectively the nominal

linearity and the linearity after switching on the systematic effect, which is measured with the initial dataset
but passing different selection.

In the past, the systematic variant af was always calculated with the same 7-dependent in-situ energy
scale factor () as the nominal measurement af°™. Such estimations of systematic uncertainties involve
not only an Ep dependent impact, but also a non-zero inclusive component. This inclusive component is
has the same definition of the EG_ SCALE SYST systematic for the in-situ scale factor a(n) (Fig. 5.13a),
which is separately taken into account and not constrained in the global fit model. On the other hand, the
uncertainty of Z — ee linearity is used to fit the systematic nuisance parameters as well as the global scale
factors ay in the global fit model. In order to get the information of residual inclusive scale, it is better to
fit the o, parameters using without any highly correlated uncertainties, else, for reaching the minimum x?,
the high correlations will give shifted post-fit scale (Fig. 6.7) with respect to the input Z — ee linearity.

The new proposal is that for the 4 systematics mentioned above, the uncertainty is always computed
after re-calibrating the inclusive energy scale. Specifically, after switching on one systematic, an additional
iteration of in-situ calibration os performed before getting the values of af. The new uncertainty results are
shown in Fig. 6.18, the uncertainty is obviously reduced as compared to Fig. 5.40 and is close to zero at 40
GeV, since the inclusive energy scale is re-calibrated for computing systematic uncertainties.

For the new study, the n-decorrelated correlation scheme for the global fit model is taken to have more
conservative constrains on systematics and better x? quality.

Another improvement is on the calculation of the averaged electron energy scale uncertainty (Eq.6.8).
In the past, it was based on an uniform 7 distribution and took the uncertainty at mean Ep as the average
in the corresponding FEp bin. For the new study, the uncertainty is averaged using the real n — Ep distribu-
tion of Z — ee events, although the difference is almost negligible as compared to the previous approximate
approach.

In order to solve the x? issue, the crack region (1.37 < || < 1.55) is firstly discarded, which decreases
the value of x? by around 90. Subsequently a re-scaling of the input Z — ee linearity uncertainty in order
to reach a better fit quality with more conservative input uncertainty. The increasing factors are shown in
Tab. 6.10.

The re-scaling is based on the fit quality of each individual |n| bin. In order to deduce the n-dependent
rescaling factors, first of all, the global fit is respectively performed with only one || bin, then the increasing
factor is equal to the square root of the x?/ndf value. Subsequently, the re-scaling is applied on the total
uncertainty of Z — ee linearity (Fig. 6.18). The bringing improvement on fit quality is shown in Tab. 6.11.
The final x2/ndf is not necessary equal to 1, due to the fact that the re-scaling does not affect the pre-fit
Gaussian constraint term of the systematics NPs in the same way as the covariance matrix term.

After discarding the crack region and making the uncertainty re-scaling, the new fit results are shown in
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Figure 6.18: Uncertainties of Z — ee linearity using full Run 2 data. The MassWindow, TightVar, fBrem-
Var and NolsoVar systematic uncertainties are computed by re-calibrating the inclusive energy scale.

In| bin [0,0.6] [0.6,1] [1,1.37] [1.55,1.82] [1.82,2.47]
Single |n| bin fit: x*/ndf 12.6/6 24.8/6 20.0/6 19.7/6 5.6/6
Increasing factor 1.4 2.0 1.8 1.8 1

Table 6.10: x2-test when fitting with only one || bin and the factors used to increase the input Z — ee
linearity uncertainty as a function of |n|. The factors are computed as the square root of x?/ndf of
the single |n| bin fit. For the cases with x? /ndf smaller than 1, no re-scaling is performed.

Fit all the 6 |n| bins crack-veto Re-scaled uncertainty + crack veto
x2/ndf 194/36 106/30 47/30
p-value O(107%) 0(10719) 0.025

Table 6.11: Goodness of fit: x? test for different global fit configurations. The crack-veto corresponds
to the case when 1.37 < |n| < 1.55is discarded in the fit; Re-scaled uncertainty is the case when fitting
with increased input Z — ee linearity uncertainty.

Fig. 6.19. A relatively good constrain is observed even the larger input uncertainties are used in the fit.

Some very preliminary results on the HGam Higgs mass measurement have been obtained (Tab. 6.12),
through an analytical calculation in order to emulate an inclusive one-category mass measurement. The
analytical approach propagates the photon energy scale uncertainties to the Higgs boson mass using signal
MC photon kinematics.
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Figure 6.19: Comparison between the prefit and the postfit energy scale. The prefit (yellow) is centered
at zero, with unconstrained energy scale uncertainty. The postfit (red and cyan) is shifted due to
nonzero NP pulls fitted to the Z — ee linearity data (black dots), the red color band corresponds to
the constrained uncertainty. The postfit results are obtained with n-decorrelated correlation scheme.

my (MeV) Osys Ampy
Prefit 169 0
Postfit: n-decorrelated 102 130

Table 6.12: Prefit and postfit systematic uncertainty with the new egamma calibration recommenda-
tion. The postfit one is obtained with the modified multi-dimensional Gaussian likelihood.

With the new calibration recommendation, the prefit mass systematic uncertainty without applying the
global fit constraints is reduced from 263 MeV to 166 MeV. The improvement is mainly because of the
smaller uncertainties for the MG/HG inter-calibration, the E1/E2 inter-calibration and the photon lateral
leakage.

The global fit model with the 7-decorrelated correlation scheme has been tested on the Higgs mass, which
brings a similar reduction on the mass uncertainty as the previous recommendation, and a shift on mass of
130 MeV. The Higgs mass uncertainty with a real analysis statistical test can be better, since this analytical
one-category calculation does not benefit from any constraint brought by the categories of H — ~+ analysis.
The significant change on mass shift as compared to the previous results is due to the fact that part of
the linearity effect has been taken into the new corrections (ADC, L2Gain, etc.), therefore the systematic
nuisance parameters 6 are less pulled and the shift on mass is smaller.
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6.4 Conclusion

In this chapter, a global fit model is introduced to constrain the electron and photon energy scale
uncertainty, using the Z — ee linearity measurement. This model parameterizes the linearity with the
sum of the sensitive energy scale uncertainties, and returns the constraints, correlations and pulls of the
uncertainties. Afterwards, these outputs from the global fit are applied to the Higgs mass measurement in the
diphoton decay mode. For the previous calibration recommendation, the nominal result based on Asimov data
gives an expected measurement of my = 125.09070200 GeV = 125.0907) 125 (stat.) 0503 (syst.) GeV,
and benefiting from the global fit constraint, a near factor two reduction on the systematic uncertainty is
obtained, which is reduced from 263 MeV to around 180 MeV. The induced shift of the mass due to the
systematic pulls returned by the global fit model can be larger than 300 MeV. With the new recommendation,
the systematic uncertainty of Higgs mass is reduced to be around 168 MeV, and can be further reduced to
be 102 MeV benefiting from the global fit constraint, which induces a shift on mass of around 130 MeV.






7 - Conclusion

A search for non-resonant double Higgs production via both ggF and VBF with one Higgs decaying into
a pair of photons and the other decaying into a pair of b-quarks is presented. The non-resonant double
Higgs production allows to directly explore the Higgs self-coupling «), which represents the real shape of
the Higgs potential. The analysis uses the full Run 2 LHC pp collision data at /s = 13 TeV collected with
the ATLAS detector, with an integrated luminosity of 139 fb~!. The final states of two b-quarks and two
photons give an enhanced production rate due to the large branching ratio of Higgs to two b-quarks decay,
and a clean signal environment with the presence of photons. A multi-variant selection based on boosted
decision trees is applied to extract the signal from the background, which is dominated by the diphoton
continuum process, with a subdominant contribution from single Higgs production. The BDT is optimized
respectively for signal with high and low values of the self-coupling x), which maximizes the sensitivity
and constraint. The 95% confidence level observed (expected) limit on the double Higgs production cross
section corresponds to 4.2 (5.7) times the prediction of the Standard Model. This result gives a factor ~
5 improvements as compared to the early Run 2 result [94], due to the near 4 times increased luminosity
and the improved analysis strategy. The Higgs self-coupling ) is constrained at 95% confidence level to
be between —1.5 < k) < 6.7 for the observed, where —2.4 < k) < 7.7 is expected. This result is then
combined with other decay channels including bbbb and bbr7, and also with the single Higgs results for x
where the Higgs self-coupling loops can modify the Higgs production cross section and decay. The combined
result gives an observed (expected) cross section limit equal to 2.4 (2.9) times the SM prediction. With
both double and single Higgs, the Higgs self-coupling is constrained to be —0.4 < k) < 6.3 for the observed
and —1.9 < k) < 7.5 for the expected. For the high luminosity LHC with an designed luminosity of 3000
fb~!, the current combined results of bbyy and bbr7 channels are extrapolated, which gives a possible 3o
hint for the double Higgs signal.

The in-situ calibration for energy scale and resolution of the ATLAS electromagnetic calorimeter is per-
formed with the Z — ee Run 2 data. The calibration makes use of the precise Z boson mass distribution
to calibrating the difference on energy scale and resolution between data and simulation, in function of the
pseudorapidity of electrons. The linearity of the calorimeter, defined as the energy-dependent scale difference
between data and MC is also measured using the Z — ee events. It is afterwards used to constrain the
systematic uncertainties of the energy scale, via a global fit model, which parameterizes the linearity as a
function of the various systematic uncertainties. The obtained constraint is then applied on the Higgs mass
measurement in the two photon channel, of which a precision of 290 MeV is expected with the full Run 2
dataset. The 290 MeV precision includes around 125 MeV statistical uncertainty and 263 MeV systematic
uncertainty, where the systematic uncertainty is dominated by the LAr cell non-linearity and ECAL layer
calibration. After applying the constraint from the global fit model, the systematic uncertainty is nearly
reduced by a factor 2.
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A - ATLAS and CMS measurements of the Higgs boson
mass

Below is presented a short review of the ATLAS and CMS results on the Higgs boson mass measure-
ments. More detailed review can be found in the Scientific Symposium to celebrate the 10th anniversary of
the Higgs boson discovery [119] on July 4th 2022 or at ICHEP 2022 [59].

Run 1 measurements:
The combined ATLAS+CMS Higgs boson Run 1 mass measurement is published in Ref. [3] and is

my = 125.09 £ 0.24 (0.21 (stat) £+ 0.11 (syst)) GeV (A.1)

with the individual masses being

ATLAS H — vy :mpy = 126.02 £ 0.51 (0.43 (stat) 4 0.27 (syst)) GeV (A.2)
CMS H — vy :my = 124.70 4 0.34 (0.31 (stat) = 0.15 (syst)) GeV (A.3)
ATLAS H — 4l :mpy = 124.51 4+ 0.52 (0.52 (stat) £ 0.04 (syst)) GeV (A.4)
CMS H — 4l :mpy = 125.15 £ 0.40 (0.37 (stat) & 0.15 (syst)) GeV (A.5)
(A.6)

Run 2 measurements ATLAS:
The ATLAS experiment has recently published a 4 leptons full Run 2 value [120] of

mpy = 124.99 £+ 0.18 (stat) £ 0.04 (syst) GeV (A7)

This measurement is combined with the corresponding ATLAS measurement using 7 and 8 TeV pp collision
data [121] which has been used in [3], resulting in a Higgs boson 4 leptons mass measurement of

mpy = 124.94 £+ 0.17 (stat) £ 0.03 (syst) GeV (A.8)

which is the current most precise ATLAS measurement.

In addition, using the 201542016 data (36.1 fb~!) of Run 2, a value of the diphoton Higgs boson mass
measurement was shown in Ref. [16]:

mpy = 124.93 +0.40 (0.21 (stat) 4= 0.34 (syst)) GeV (A.9)

It is this result (see also [122]) that we want to improve using the work described in this thesis.

Run 2 measurements CMS:
CMS has published [11] a 2016 data (35.9 fb~!) value of the diphoton Higgs boson mass

my = 125.78 £ 0.26 (0.18 (stat) % 0.18 (syst)) GeV (A.10)
This value is combined with the 2016 4 leptons CMS Higgs boson mass [123] which is
my = 125.26 £ 0.21 (0.20 (stat) = 0.08 (syst)) GeV (A11)
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and gives
my = 125.46 + 0.16 (0.13 (stat) & 0.10 (syst)) GeV (A.12)

This result is then combined with the full CMS Run-1 Higgs boson mass measurement [124] and gives [11]:
mr = 125.38 £ 0.14 (0.11 (stat) + 0.08 (syst)) GeV (A.13)

which is the current most precise Higgs boson mass measurement.

One should note that, the interference between the Higgs boson and the background productions induces
a shift in the diphoton mass peak [125], which is about few tens of MeV [126][127][128], larger than the
widh of the SM Higgs boson (4.07 MeV).
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