
HAL Id: tel-03827333
https://theses.hal.science/tel-03827333

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implantation sûre d’applications temps-réel critiques sur
plateforme pluri-coeur

Matheus Schuh

To cite this version:
Matheus Schuh. Implantation sûre d’applications temps-réel critiques sur plateforme pluri-coeur.
Autre [cs.OH]. Université Grenoble Alpes [2020-..], 2022. Français. �NNT : 2022GRALM014�. �tel-
03827333�

https://theses.hal.science/tel-03827333
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : VERIMAG

Implantation sûre d'applications temps-réel critiques sur plateforme
pluri-coeur

Safe Implementation of Hard Real-Time Applications on Many-Core
Platforms

Présentée par :

Matheus SCHUH
Direction de thèse :

Claire MAIZA
MCF,

Directrice de thèse

Pascal RAYMOND
 CNRS

Co-encadrant de thèse

Rapporteurs :
EDUARDO TOVAR
Professeur, School of Engineering ISEP-IPP
CLAIRE PAGETTI
Ingénieur de recherche, ONERA

Thèse soutenue publiquement le 31 mai 2022, devant le jury composé de :
CLAIRE MAIZA
Maître de conférences, GRENOBLE INP

Directrice de thèse

EDUARDO TOVAR
Professeur, School of Engineering ISEP-IPP

Rapporteur

CLAIRE PAGETTI
Ingénieur de recherche, ONERA

Rapporteure

FREDERIC PETROT
Professeur des Universités, GRENOBLE INP

Président

JOËL GOOSSENS
Professeur, Université Libre de Bruxelles

Examinateur

ISABELLE PUAUT
Professeur des Universités, UNIVERSITE RENNES 1

Examinatrice

Invités :
PASCAL RAYMOND
Chargé de Recherche, CNRS DELEGATION ALPES
BENOÎT DINECHIN
Ingénieur docteur, KALRAY

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ
UNIVERSITÉ GRENOBLE ALPES

Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Matheus SCHUH

Thèse dirigée par Claire MAIZA, MCF
co-encadrée par Pascal RAYMOND, CNRS
et co-encadrée par Benôıt DINECHIN, Kalray

préparée au sein du Laboratoire VERIMAG, de l’entreprise Kalray
et de l’École Doctorale Mathémathiques, Sciences et
Technologies de l’Information, Informatique

Implantation sûre d’applications temps-réel
critiques sur plateforme pluri-cœurs

Safe Implementation of Hard Real-Time
Applications on Many-Core Platforms

Thèse soutenue publiquement le 31 mai 2022,
devant le jury composé de :

Madame CLAIRE MAIZA
Mâıtre de conférences, Grenoble INP, Directrice de thèse
Monsieur EDUARDO TOVAR
Professeur, ISEP-IPP, Rapporteur
Madame CLAIRE PAGETTI
Ingénieur de recherche, ONERA, Rapporteure
Monsieur FRÉDÉRIC PÉTROT
Professeur des universités, Grenoble INP, Président
Monsieur JOËL GOOSSENS
Professeur, Université Libre de Bruxelles, Examinateur
Madame ISABELLE PUAUT
Professeur des universités, Université de Rennes, Examinatrice

S A F E I M P L E M E N TAT I O N O F H A R D R E A L - T I M E
A P P L I C AT I O N S O N M A N Y- C O R E P L AT F O R M S

matheus schuh

An Integrated Implementation Workflow with Execution Models,
Allocation Methods and Interference Analysis

PhD Candidate
Verimag / Kalray

Université Grenoble Alpes

May 2022

Matheus Schuh: Safe Implementation of Hard Real-Time Applications on Many-Core Platforms,
An Integrated Implementation Workflow with Execution Models, Allocation Methods and
Interference Analysis, May 2022

A B S T R A C T

Hard real-time systems are designed to be functionally correct, but also require the
guarantee of timing constraints. Completing the task at hand within a given deadline is
part of the specification and failing to accomplish this can lead to serious consequences.
Some examples of such systems are the central command of an airplane, electronic control
units inside a car and a power plant monitoring room.

Multi/many-core architectures tend to be used in such systems. On top of having
multiple cores that can run programs concurrently, these SoCs may contain several cache
levels, local and global shared memories, buses or interconnections for communication.
Moreover, the cores themselves have dynamic components in their pipeline such as branch
prediction or instruction reordering. All these features are extremely useful to boost the
average performance, but raise huge problems for hard real-time systems, as they introduce
timing unpredictability.

The predictability of these systems is directly connected to being able to compute
the worst-case response time of an application on a given architecture. Additionally, on
multi/many-core architectures, when numerous cores access shared hardware resources at
the same time, they interfere with each other, mutually slowing them down. To guarantee
the respect of timing constraints of a real-time system, the interference sources must be
identified and taken into account.

The use of multi/many-core architectures on safety-critical real-time systems is increas-
ing in the industry, as well as being an intense topic of research. This thesis provides
solutions and comparative studies on several problems raised by the implementation of
critical applications on such platforms. We focus on providing an integrated approach
in order to confidently use multi/many-core architectures for hard real-time systems.
This integrated workflow covers the choice of an execution model, a strategy to map and
schedule tasks and a hardware model to provide safe bounds on the response time.

The critical application to be analyzed is represented in the form of a Directed Acyclic
Graph (DAG), with precedence constraints between nodes and explicit communication.
This application can be issued from synchronous data flow languages or any other language
or model-based development environment providing a DAG at the end of the compilation
process. Most of our case studies come from the SCADE tool, some of them being industrial
case studies.

The target architecture, the Kalray MPPA3 is a COTS processor but with interesting
characteristics that make it a good candidate for real-time systems. At the core level, it has
in-order pipeline and private caches with a predictable replacement policy. At the cluster
level, it provides low latency scratchpad memory and predictable arbitration policies.
At the SoC level, it provides an AXI bus connecting the different clusters with constant
traversal time.

We present and explore several execution models that help to provide a predictable
execution on multi-core platform. They are applied to the many-core processors Kalray
MPPA2 and MPPA3 and compared to enlighten the best approach in terms of task phased
execution and memory access restrictions. We show that in our context, the isolation of
tasks executed concurrently is too expensive in terms of response-time. The best execution

v

model corresponds to a development process where interference analysis between task
memory accesses are integrated in the implementation step.

An additional improvement that has a significant impact on the overall response time of
a program is the task mapping and scheduling on a given platform. With a high number
of cores and clusters, it has become essential to provide a good positioning and ordering,
at the risk of under utilizing the potential parallelism. Therefore we provide an initial work
with multiple steps, taking into account the local memory use, communication cost and
clusterization. We show that our memory use criteria is a good one to be used in future
work.

The Kalray MPPA3 is the main target architecture of this work and for its use in hard
real-time systems, the arbitration points and shared resource access delay have been
analyzed. A hardware model of intra and inter-cluster memory accesses is developed,
combined with a response time analysis framework.

Throughout this thesis several extensions and improvements were made to different
industrial and academic tools: SCADE code generator, a multi-core interference analysis
and a high-level hardware model.

vi

R É S U M É

Les systèmes temps-réel critiques sont conçus pour garantir non seulement les fonctionna-
lités mais aussi des contraintes temporelles. En effet, garantir la fin d’exécution d’une tâche
avant une date limite donnée fait partie de la spécification de tels systèmes, où toute erreur
d’exécution peut porter atteinte à une vie humaine. Parmi ces systèmes, nous pouvons
citer le domaine des transports (avionique, automobile, ferroviaire) mais aussi le domaine
médical ou celui de l’énergie, en particulier nucléaire.

Cette dernière décennie, ces systèmes ont été mis en œuvre sur des plateformes com-
plexes telles que des plateformes multi/pluri-cœurs. Ces plateformes présentent l’intérêt
d’avoir plusieurs unités d’exécution et donc un parallélisme d’exécution qui rend leur
utilisation plus efficace. Cependant, cette efficacité est possible grâce à l’utilisation de
ressources partagées (mémoire, canaux de communication, ...). Lorsque plusieurs cœurs
accèdent à une ressource partagée simultanément, l’accès génère des délais d’attente que
l’on appelle interférences. Pour garantir l’exécution d’applications temps-réel critique sur
de telles plateformes, il faut garantir que toute interférence est identifiée et a un effet
borné dans le temps. La prédictibilité de ces systèmes est garantie par le calcul de temps
d’exécution pire-cas pour une application et une plateforme données. Dans le cas de
plateformes multi-cœurs, les coûts des interférences doivent être pris en compte dans les
phases d’analyse pour garantir les contraintes temporelles.

L’utilisation de plateformes multi/pluri-cœurs pour les systèmes temps-réel critiques
est de plus en plus répandue dans l’industrie, et elle est un sujet d’étude bien représenté
dans le monde de la recherche. Cette thèse fournit des solutions et études comparatives
concernant plusieurs points clés de l’implémentation d’applications temps-réel critiques
sur plateformes multi/pluri-cœurs. En particulier, nous proposons une approche qui
intègre les phases d’implémentation et d’analyse temporelle (délai d’interférence, calcul
de temps de réponse). Notre flot de conception se concentre en particulier sur le choix de
modèles d’exécution, sur le placement des tâches sur les cœurs et en mémoire ainsi que
leur ordonnancement, et sur une modélisation de la plateforme cible et des interférences
qu’elle induit. Au final, le flot proposé permet d’obtenir une implémentation sûre des
applications critiques, avec des bornes garanties sur leurs temps de réponse.

Les applications temps-réel critique que nous étudions sont celles qui peuvent être
représentées sous forme de graphe dirigé acyclique (Directed Acyclic Graph, DAG), où
les nœuds correspondent au code fonctionnel (tâches), et les arrêtes représentent des
contraintes de précédence et/ou des communications de données. Ce type de représenta-
tion est typique des typique de ce que produisent les environnement de développement
de haut-niveu utilisés dans l’industrie. En particulier, dans cette thèse nous étudions
majoritairement des applications générées par l’outil SCADE, dont des études de cas
directement extraites, ou largement inspirées d’applications industrielles.

Dans le cadre de cette thèse, la plateforme cible est le processeur Kalray MPPA (gé-
nération 2 et 3) qui offre des caractéristiques intéressantes vis-à-vis de la prédictibilité.
Les cœurs ont des architectures simples avec pipeline à exécution dans l’ordre et des
mémoires caches privées avec politique de remplacement prédictible. Cette architecture
est pluri-cœurs, c’est-à-dire qu’elle offre deux niveaux de parallélisme : un ensemble

vii

de cœurs de calculs parallèles forme un multi-cœur (cluster), et l’ensemble des clusters
parallèles forme la plateforme complète. Au niveau d’un cluster (multi-cœur), on retrouve
un mémoire à accès rapide de type scratchpad avec des arbitres prédictibles. Au niveau de
la plateforme complète, les communications entre clusters peuvent s’effectuer par un bus
AXI qui offre un temps constant de traversée.

Dans cette thèse, nous étudions différents modèles d’exécution qui permettent d’obtenir
plus de prédictibilité sur des plateformes pluri/multi-cœurs. Une méthode d’implémen-
tation de ces différents modèles sur Kalray MPPA2 et MPPA3 est proposée, qui permet
de les comparer en terme de type de modèle (exécution phasée) et d’implémentation en
isolation complète ou partielle (avec prise en compte des délais d’interférence). Ces travaux
ont montré qu’il était, dans notre contexte, plus intéressant de ne pas utiliser une isolation
complète mais de modéliser de façon précise les interférences et leurs effets.

Pour les phases de placement sur les cœurs et la mémoire ainsi que l’ordonnancement
qui ont un effet important sur le temps de réponse global d’une application, nous avons
mis l’accent sur l’utilisation mémoire et les coûts de communication. Un algorithme
préliminaire nous permet de montrer que ces deux facteurs sont primordiaux et devraient
être centraux pour les travaux futurs.

L’utilisation d’une nouvelle plateforme (Kalray MPPA3) a nécessité une modélisation fine
des temps d’accès aux ressources partagées, ainsi que le développement d’une méthode
de calcul des délais dûs aux interférences. Un modèle des communications (intra et
inter-clusters) a été développé et couplé à un outil d’analyse de temps de réponse.

Pour tous ces travaux, des extensions d’outils académiques et industriels ont été réalisées :
modèle du MPPA3 pour l’analyse temporelle (Multi-Core Interference Analysis, MIA)
et le développement d’applications (SHIM), génération du code de communication et
d’orchestration pour les applications produite par SCADE.

viii

P U B L I C AT I O N S

Some ideas and figures contained in this thesis have appeared previously in the following
publications:

[1] Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire Maiza.
Scaling Up the Memory Interference Analysis for Hard Real-Time Many-Core Systems
(Full Version). Tech. rep. TR 2019-1. Verimag Research Report, 2019.

[2] Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire Maiza.
“Scaling up the memory interference analysis for hard real-time many-core sys-
tems.” In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2020, pp. 330–333.

[3] Matheus Schuh. “Implementation of Real-Time Data-Flow Synchronous Programs
on a Many-Core Architecture.” In: ACACES 2019 Poster Abstracts. HiPEAC (High
Performance, Embedded Architecture, and Compilation), July 2019, pp. 151–154.
isbn: 978-88-905806-7-3.

[4] Matheus Schuh. Time Critical Computing on the MPPA processor. Tech. rep. KETD-417.
Kalray S.A info@kalray.eu, Nov. 2019.

[5] Matheus Schuh, Claire Maiza, Joël Goossens, Pascal Raymond, and Benoît Dupont
de Dinechin. “A study of predictable execution models implementation for indus-
trial data-flow applications on a multi-core platform with shared banked memory.”
In: 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE. 2020, pp. 283–295.

ix

A C K N O W L E D G M E N T S

In this short piece of text I would like to deliver my deepest gratitude towards everyone
that has been at my side throughout these 3 years and 3 months of thesis.

First of all, to my academic thesis supervisors: Claire and Pascal. Thanks for the guidance
and patience even on the most difficult moments. Your scientific knowledge and experience
has pushed me forward and allowed me to deliver this work with relevant contributions
to the real-time systems community. It was a pleasure working besides you and I hope we
can collaborate together again shortly.

To my industrial thesis supervisor Benoît, who gave me the opportunity of an internship
at Kalray in 2016 and then trusted me again with this CIFRE thesis. Thanks for all your
technical expertise and for always supporting and highlighting the importance of research,
even on an industry environment.

My gratitude goes also to the jury who accepted to evaluate my PhD thesis and on their
decision to entitle me with the Doctor degree. I thank Claire and Eduardo for reviewing my
thesis and also Frédéric, Joël and Isabelle for being examiners.

Thanks to all my colleagues at Verimag, in special the ones at the Shared Resources team
with whom I interacted the most scientifically: Lionel, Erwan, David and Florence. To all PhD
candidates and post-docs that I have meet along the way, who became friends through
uncountable lunches and coffee breaks: Hadi, Vincent, Hamzah, Aina, Thomas, Akshay, Hakim,
Marie.

The implementation of everything that is presented in this thesis would not have been
possible without the expertise of everyone at Kalray. A special thanks to Vincent and
Arnaud for all the hardware discussions and also to Julien and Pierre for their software and
debug knowledge with low-level code.

Aos meus pais João e Claise, devo tudo o que eu sou e me tornei hoje à vocês. Obrigado
por entenderem e incentivarem minhas ambições pessoais e profissionais, mesmo que isso
tenha significado ficar longe de vocês por tanto tempo. Obrigado por estarem sempre ao
meu lado nas inúmeras ligações que tivemos e por compreenderem os momentos difíceis
que atravessei durante a tese. Essa conquista é tanto minha quanto de vocês!

Aos amigos brasileiros próximos geograficamente: Gabriel, William, Pedro, Lucas, Igor, João,
Vinícius e aos que estão longe mas sempre perto: Felipe, Bruno, Guilherme, Sara. Obrigado
por aguentarem todas as vezes em que o assunto tese era trazido à mesa e por todas as
palavras de incentivo ao longo desses anos.

Um agradecimento especial à Gabriela, que embarcou nessa aventura comigo, trazendo
sempre toda sua alegria, positividade e apoio incondicional. Guardo um carinho eterno
por ti, pois sei que meu voo teria sido bem menor sem a tua presença.

xi

C O N T E N T S

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Summary of Contributions . 2
1.3 Thesis Outline . 3

I State-Of-The-Art
2 Background: Real-Time 7

2.1 Real-Time Systems . 7
2.1.1 Reactive and Time Triggered Systems 8
2.1.2 Requirements . 8
2.1.3 Certification . 9

2.2 Synchronous Languages . 10
2.2.1 Data Flow, Control Flow and Graphical View 10
2.2.2 Lustre . 11
2.2.3 SCADE . 11
2.2.4 Other languages . 12

2.3 Code Generation . 13
2.3.1 Sequential Code Generation . 13
2.3.2 Parallel Code Generation . 13

2.4 Execution Models for Real-Time Systems . 14
2.4.1 Memory Partitioning . 14
2.4.2 Memory Interference . 15
2.4.3 Applicability to a broader scope . 15

2.5 Conclusion . 16
3 Background: Multi/Many-Core 17

3.1 Multi/Many-Core Hardware Architectures 18
3.1.1 Processor architecture in real-time systems 18
3.1.2 Challenges on transitioning to multiple cores 19
3.1.3 State-of-the-art of Predictable Architectures 22

3.2 The Kalray MPPA3 . 23
3.2.1 Cores . 23
3.2.2 Compute Cluster . 25
3.2.3 Memory System . 25
3.2.4 On-Chip Interconnects . 26
3.2.5 Synchronization components . 28
3.2.6 Clock components and performance measurement 29

3.3 Response Time Analysis . 30
3.3.1 Temporal Isolation . 30
3.3.2 Shared Resources Interference Analysis 30
3.3.3 Comparison . 30

3.4 Mapping and Scheduling . 31
3.4.1 Mapping and Partitioning . 31
3.4.2 Scheduling . 32

xiii

contents xiv

3.4.3 Mixed approaches . 32
3.5 Conclusion . 33

II Contributions
4 Workflow Overview 37

4.1 General Idea . 37
4.2 Memory Phases Generation . 37
4.3 DAG Mapping and Scheduling . 39
4.4 Timing Analysis . 39
4.5 Orchestration Code Generation . 40
4.6 Comparison with existing workflow . 40

5 Execution Models For Real-Time Systems 41
5.1 Traditional Software Models . 42

5.1.1 Context . 42
5.1.2 Memory access uncertainty . 42
5.1.3 Divide to better analyze . 43

5.2 The studied execution models . 44
5.2.1 Model parameters and memory organization 44
5.2.2 Models overview . 44
5.2.3 Schedule Analysis . 45

5.3 Scheduling Algorithms . 47
5.3.1 Background concepts . 47
5.3.2 Overview and shared utilities . 48
5.3.3 Algorithms presentation . 49
5.3.4 Termination proofs . 52
5.3.5 Complexity Analysis . 52

5.4 Generalization to different software and hardware platforms 52
5.4.1 Single Shared Memory . 52
5.4.2 Cache privatization . 53
5.4.3 Distant DDR memory . 53
5.4.4 Multi-Cluster applicability . 53
5.4.5 Software generalization . 54

5.5 Conclusion . 54
6 DAG Mapping and Scheduling 55

6.1 System Model . 56
6.2 Hypotheses . 57
6.3 Problem Formulation . 57

6.3.1 Definitions . 57
6.3.2 Communication cost . 58
6.3.3 Total time . 58

6.4 Existing solution for DAG mapping and scheduling 58
6.4.1 Static Level Computation . 59
6.4.2 HLFET List Scheduling Algorithm . 59

6.5 Proposed solution for DAG mapping and scheduling 60
6.5.1 Step 1: Node to virtual processor assignment 60
6.5.2 Step 2: Virtual core to virtual cluster assignment 61
6.5.3 Step 3: Virtual to physical cluster assignment 63

contents xv

6.6 Conclusion . 63
7 Timing Model of an Industrial Many-Core Architecture 65

7.1 Intra-Cluster Arbitration . 65
7.1.1 Level 1 . 66
7.1.2 Level 2 . 66

7.2 Inter-Cluster Arbitration . 67
7.3 Conformant Execution Model . 67

7.3.1 Architecture Configuration . 68
7.3.2 System Design . 69
7.3.3 Software Framework . 70

7.4 Response-Time Analysis . 71
7.4.1 Main Concept . 71
7.4.2 Additional Definitions and Simplifications 72
7.4.3 Intra-Cluster Interference . 72
7.4.4 Inter-Cluster Interference . 74

7.5 Non-Conformance with the Execution Model 75
7.5.1 Architecture Configuration . 75
7.5.2 System Design . 77
7.5.3 Software Framework . 77

7.6 Conclusion . 78

III Evaluation
8 Tool Extensions 81

8.1 Multi-Core Interference Analysis (MIA) . 82
8.1.1 Response Time Analysis . 82
8.1.2 Problem Statement . 82
8.1.3 Original Algorithm . 84
8.1.4 Proposed Algorithm . 85
8.1.5 MPPA3 Arbitration Model Implementation 90

8.2 Parallel Code Generation and Orchestration 90
8.2.1 From sequential to parallel code generation 90
8.2.2 Parallel Code Generation overview 91
8.2.3 Integration . 93

8.3 Software-Hardware Interface for Multi/Many-Core (SHIM) 97
8.3.1 SHIM main characteristics . 97
8.3.2 MPPA3 SHIM Model . 99

8.4 Conclusion . 102
9 Experiments 105

9.1 Applications presentation . 106
9.1.1 Simple Data Flow . 106
9.1.2 Avionics Case Study . 107
9.1.3 Automotive Industrial Program . 107

9.2 Phased Execution Models experiments . 108
9.2.1 Evaluation context . 109
9.2.2 Results . 110
9.2.3 Discussion . 114

9.3 Mapping and Scheduling experiments . 114

contents xvi

9.3.1 DAG generation . 115
9.3.2 Comparative methodology . 115
9.3.3 Results . 116

9.4 Performance improvement on MIA . 118
9.4.1 Bus Arbiter Function . 118
9.4.2 Results . 119
9.4.3 Discussion . 121

9.5 Conclusion . 121
10 Conclusion and Prospects 123

10.1 Contributions . 123
10.1.1 Execution Models for Real-Time Systems 123
10.1.2 DAG Mapping and Scheduling . 124
10.1.3 Timing Model of an Industrial Many-Core Architecture 124
10.1.4 Tool Extensions . 124

10.2 Future Work . 125

IV Appendix
a Kalray MPPA3 Hardware Diagrams 129
b SCADE Platform Dependent Code 135

b.1 Initialization Code . 135
b.2 Task and Communication Code . 139

Bibliography 145

L I S T O F F I G U R E S

Figure 2.1 Reactive system diagram and code 8
Figure 2.2 SCADE example program . 12
Figure 3.1 Memory system arbitration path . 19
Figure 3.2 kv3 Core Pipeline – © Kalray . 24
Figure 3.3 MPPA3 Cluster overview . 25
Figure 3.4 AXI Crossbar endpoints – © Kalray 27
Figure 3.5 Response Time Analysis Methods . 31
Figure 4.1 From Data-Flow to Critical-Code workflow 38
Figure 5.1 Example Data-Flow Graph (DFG) . 42
Figure 5.2 Single-Phased Model Schedule . 43
Figure 5.3 2-Phased: Execute-Write . 44
Figure 5.4 3-Phased: Read-Execute-Write with Shared Bank 45
Figure 5.5 Memory-Centric 3-Phased with Master Core 45
Figure 5.6 Example of scheduling for the 2-Phased model with interference cost 46
Figure 5.7 Example of scheduling for the isolated 2-Phased model 46
Figure 5.8 Example of scheduling for the 3-Phased model with interference cost 46
Figure 5.9 Example of scheduling for the isolated 3-Phased model 46
Figure 5.10 Example of scheduling for the isolated Memory-Centric model . . 47
Figure 6.1 Workflow from DAG to time-triggered execution 56
Figure 7.1 Intra-Cluster Arbitration . 66
Figure 7.2 Inter-Cluster Arbitration . 67
Figure 7.3 Cache bypass worst-case . 73
Figure 8.1 DAG under analysis . 83
Figure 8.2 Initial schedule for DAG under analysis 83
Figure 8.3 Final schedule for DAG under analysis 84
Figure 8.4 Equivalence between diagrams for interference calculation 86
Figure 8.5 Snapshot of the new algorithm cursor mechanism 87
Figure 8.6 Simple SCADE Model diagram . 92
Figure 9.1 Simple data-flow graph and preliminary mapping 106
Figure 9.2 ROSACE data-flow graph and preliminary mapping 107
Figure 9.3 Automotive industrial data-flow graph and preliminary mapping . 108
Figure 9.4 Simple Data-Flow MPPA2 . 110
Figure 9.5 Simple Data-Flow MPPA3 . 111
Figure 9.6 ROSACE MPPA2 . 111
Figure 9.7 ROSACE MPPA3 . 111
Figure 9.8 Automotive MPPA2 . 112
Figure 9.9 Automotive MPPA3 . 112
Figure 9.10 Random DAG generation method from Tobita and Kashara [138] . 115
Figure 9.11 s35 application graph . 116
Figure 9.12 tg18 application graph . 117
Figure 9.13 MIA old and new version benchmark results 120
Figure A.1 SMEM data and control path diagram 130

xvii

Figure A.2 Multi-Cluster data and control path diagram 131
Figure A.3 SMEM to AXI Bridge . 132
Figure A.4 Multi-Cluster Outbound and Return path arbiters 133

L I S T O F TA B L E S

Table 3.1 AXI traversal cost between clusters 28
Table 9.1 Mapping and Scheduling results (in cycles) 117
Table 9.2 nx complexity comparison . 119

L I S T I N G S

Listing 8.1 Simple SCADE Model . 91
Listing 8.2 F1_task channels . 92
Listing 8.3 F1_task context . 92
Listing 8.4 F1_task cycle function . 93
Listing 8.5 root task cycle function . 93
Listing 8.6 Event-triggered code example . 95
Listing 8.7 Time-triggered code example . 95
Listing 8.8 Portion of the MPPA3 SHIM Model of Cluster 0 100
Listing 8.9 Portion of the MPPA3 SHIM Model of the complete System On

Chip (SoC) . 100
Listing B.1 Initialization template code . 135
Listing B.2 Initialization generated code . 137
Listing B.3 Auxiliary functions for the task and communication template code . 139
Listing B.4 Task and communication template code 140
Listing B.5 Task and communication generated code 141

L I S T O F A C R O N Y M S

AER Acquisition Execution Restitution 14, 43, 94
AET Actual Execution Time 54
ALU Arithmetic and Logic Unit 23
APIC Advanced Programmable Interrupt Controller 28, 94
ASAP As Soon As Possible 32
AXI Advanced eXtensible Interface 22, 23, 25–27, 29, 53, 67, 69, 74, 75, 78, 90, 116, 123–125

xviii

List of Acronyms xix

BCU Branch and Control Unit 24
BF Best-Fit 32

CC Compute Cluster 23, 25–27
CCR Computation-Communication Ratio 106–108, 113
COTS Commercial Off-The-Shelf 9, 20, 23, 41, 43, 53, 68, 123

DAG Directed Acyclic Graph 2, 3, 17, 31, 32, 55–61, 63, 70, 71, 77, 82–84, 105, 114–116,
118–121, 123–125

DAL Design Assurance Level 13
DC Data Cache 24, 66, 73
DDR Double Data Rate 26, 68, 69, 72, 76
DFG Data-Flow Graph xvii, 39, 40, 42, 44, 47, 51
DMA Direct Memory Access 25, 27, 69, 76, 77, 98, 126
DRR Deficit Round-Robin 67, 74, 78, 90
DSU Debug Support Unit 25

ECU Electronic Control Unit 109
EDF Earliest Deadline First 32

FAA Federal Aviation Administration 9
FIFO First In First Out 20
FP Fixed Priority 66, 72, 73, 77, 90
FPU Floating-Point Unit 23
FSM Finite State Machine 10

GPR General Purpose Register 24

HLFET Highest Level First with Estimated Time 59

I/O Input/Output 27
IC Instruction Cache 24, 66, 72, 73, 77
ILP Instruction Level Parallelism 23, 33
IMA Integrated Modular Avionics 32
ISA Instruction Set Architecture 66

KCG Qualified Code Generator 90, 91

LET Logical Execution Time 15
LRU Least Recently Used 20, 24
LSU Load/Store Unit 24, 69
LUF Largest Utilization First 33

MAU Multiply-Accumulate Unit 23
MCG Multi-Core Code Generator 13, 33, 40, 55, 58, 64, 90, 91, 93, 94, 102, 115, 125
MIA Multi-Core Interference Analysis 37, 39, 40, 47, 53, 56, 65, 71, 78, 81, 82, 90, 95, 100,

102, 105, 110, 112, 117, 118, 121, 124, 125
MMU Memory Management Unit 76
MPPA Multi-Purpose Processor Array 66, 75
MRTA Multi-Core Response Time Analysis 39, 71, 84
MRU Most Recently Used 20

List of Acronyms xx

NoC Network-On-Chip 22, 23, 25–27, 32, 53, 56, 69, 76, 90, 98, 126

OS Operating System 14

PCI Peripheral Component Interconnect 23, 69
PE Processing Engine 23, 25, 28, 29, 65, 94–96, 99
PFB Prefetch Buffer 24, 66, 72
PLRU Pseudo Least Recently Used 20
PREM PRedictable Execution Model 14, 33, 41, 43, 44

QoS Quality of Service 69

RDMA Remote Direct Memory Access 26
REW Read Execute Write 14, 15, 33, 43, 94
RM Resource Manager 25, 28, 29, 32, 96, 99
RR Round-Robin 66, 67, 73, 75, 77, 78, 90, 118, 119

SAP Smart Arbitration Policy 66, 77
SHIM Software-Hardware Interface for Multi-Many-Core 81, 97–100, 102, 103, 125
SIC Simplified Instructional Computer 23
SL Static Level 59
SMEM Shared MEMory 25–27, 39, 65, 66, 68–70, 72, 76, 113
SMT Satisfiability Modulo Theories 33
SoC System On Chip xviii, 1, 17, 19–21, 23, 26, 56, 63, 99, 100, 102, 123, 124
SPM Scratchpad Memory 68

TCM Tightly Coupled Memory 21, 22, 25, 26
TDMA Time Division Multiple Access 21, 22, 32
TLB Translation Lookaside Buffer 76

UML Unified Modeling Language 97

VLIW Very Long Instruction Word 23

WCA Worst-Case Number of Accesses 30, 39, 56, 109, 115, 116, 119
WCET Worst-Case Execution Time 1, 9, 10, 13, 18–20, 22, 30, 31, 33, 39, 56, 59, 64, 71, 75, 77,

82, 83, 86, 90, 109, 112, 115–117, 119
WCRT Worst-Case Response Time 15, 19, 22, 27, 45, 54, 56, 57, 77, 78, 81–85, 87, 110, 112,

113, 121
WCTT Worst-Case Traversal Time 22, 27, 32, 76, 77
WF Worst-Fit 32

XML Extensible Markup Language xx, 97
XSD Extensible Markup Language (XML) Schema 97

1
I N T R O D U C T I O N

1.1 context and motivation

Our lives are becoming increasingly digital and we are surrounded more and more by
computational systems. They are ubiquitous in our houses, transportation and are the
main productivity tool for knowledge workers [47].

These systems are designed to be functionally correct, but some of them also require
respecting certain timing constraints. They are called real-time systems. Completing the task
at hand within a given deadline is part of the specification and failing to accomplish this
can lead to serious consequences. Some examples of such systems are the central command
of an airplane, electronic control units inside a car and a power plant monitoring room.

They can be classified into soft, firm or hard real-time systems, according to the impact
that a functional failure or timing deviation may provoke in terms of human lives or
financial losses. If missing a deadline incurs into serious consequences, the system is
categorized as hard real-time or safety-critical. This thesis is inserted into this category. If
the outputs should be discarded once the deadline has expired and the system can possibly
continue to work, the system is said to be firm. If meeting the deadline is only a desirable
feature but missing it does not incur into serious problems, the system is considered to be
soft real-time.

The given examples (airplanes, cars, power plants) belong to the Safety-Critical Cyber-
Physical domain, as the computing systems act as controllers to actuators and sensors,
processing the readings and then outputting values through algorithms. These algorithms
are coded, then compiled and executed on processors. Historically the architectures used
had a single core and were extremely simple, as we have had such systems since the
invention of the first microprocessors [44]. However, nowadays with complex embedded
systems such as self-driving cars, takeoff and landing helpers for planes, the processing
requirements have grown immensely.

At the same time, multi/many-core architectures have appeared. On top of having
multiples cores that can run programs concurrently, these System On Chips (SoCs) may
contain several cache levels, local and global shared memories, buses or interconnections for
communication. Moreover, the cores themselves have dynamic components in their pipeline
such as branch prediction or instruction reordering. All these features are extremely useful
to boost the average performance, but raise huge problems for hard real-time systems as
they introduce timing unpredictability.

The predictability of these systems is directly connected to being able to compute the
Worst-Case Execution Time (WCET) of an application on a given architecture. Additionally,
on multi/many-core architectures, multiple cores can access shared hardware resources at
the same time, interfering with each other and mutually slowing them down. To guarantee
the respect of timing constraints of a real-time system, the interference sources must be
identified and taken into account. Note that in this thesis, we consider that we are in a
context of timing compositionality (no timing anomaly, see Chapter 3).

General-purpose processors are designed to be optimized for the average use. Thus,
they contain several characteristics previously presented that may introduce unexpected

1

1.2 summary of contributions 2

delays for programs at runtime. Using these processors in hard real-time systems is an
active research topic and various solutions have been proposed. One of them is by defining
strict software execution models to construct the system. They are a broad term in computing,
but here we are interested in models that express guidelines for constructing applications
where the memory accesses are decoupled from the overall computation part, isolating the
main source of interference from the rest of the program.

Transitioning from one core to hundreds of them allows a huge degree of parallelism
by spreading the computation among them. Safety-critical systems are mainly design
to provide time consistency instead of raw performance. However a clever mapping of
an application that is able to efficiently use the available cores in a platform can greatly
improve the overall execution time. Within a single core, a good scheduling of the tasks that
must be executed into it may also provide a substantial time improvement, as finishing
early one of these tasks may unblock another on a distinct core.

An engineer designing a real-time system will be mainly focused on the functional
aspect of the program. The specification about the timing requirements is important but
only at a later stage when the target processor is also defined. Synchronous languages
have been invented to efficiently program these systems [26] as they abstract away the
timing aspect, providing an idea of instantaneous reaction from input to output. These
programs can also be seen as Directed Acyclic Graphs (DAGs) where each node is a
computational task, with its dependencies and communication. The parallel code generation
from these languages to multi/many-core platforms is a challenge as when this is done
the implementation must respect the specification as well as be adapted and properly
exploiting the features from the target architecture.

The contributions of this thesis revolve around the last introduced topics and specifically
targeting safety-critical cyber-physical systems: interference analysis, software execution
models, DAG mapping and scheduling combined with parallel code generation. Indeed,
the main hypothesis that we aim to validate with this work is that starting with a code
generated from a synchronous language we are able to provide a safe implementation (in
terms of timing) in a target multi/many-core platform. To achieve this we will explore and
improve the state-of-the-art in terms of execution models, DAG mapping and scheduling
and response time analysis.

1.2 summary of contributions

The basis for this work came from two previous theses: the first focused on the timing
analysis [116] and the second one on the code generation and implementation [64]. Both of
them targeted the industrial many-core processor Kalray MPPA2 (Bostan). Some of the
core ideas in these works were used here, as our target platform is the new generation
of the same family of processors i. e. Kalray MPPA3 (Coolidge). This thesis also aims to
expand and explore topics that were assumed to be given as inputs previously.

The first contribution is indeed in the timing analysis of the MPPA3 processor, with
some parts published in [53]. It includes:

• A Model of a Many-Core complete arbitration path: a mathematical model was
developed with multiple arbiters for shared resources, mainly with Round-Robin
and Fixed-Priority policies. The complete path from a core in a cluster until another
core situated on a distinct cluster was explored;

1.3 thesis outline 3

• A SHIM Model: the description of the MPPA3 processor in the Software-Hardware
Interface For Multi-Many-Core (SHIM), an IEEE standard intended to help program-
mers to efficiently use and program any architecture;

• The improvement of a timing analysis tool: a complete algorithm was rewritten
from an existing tool, reducing the original complexity from O(n4) to O(n2) and
therefore allowing it to scale to thousands of tasks.

The second contribution is a study on different software execution models, published
in [127], featuring:

• Multiple models: 2-Phased, 3-Phased and Memory-Centric 3-Phased models were
studied and compared with diverse applications;

• Isolation versus Interference: analysis on the impact that running memory phases in
complete isolation may introduce on the system against estimating the interference
that they will generate when running simultaneously.

The third contribution is in the field of DAG mapping and scheduling on a many-core
processor and was submitted for publication. Different algorithms were compared to
evaluate them and the consequence on the global response time. A new algorithm has also
been developed to take into account the organization of the MPPA3 into multiple clusters.

The fourth contribution is a parallel code generation framework that profits from all the
previous contributions in order to generate code from synchronous data-flow languages,
map and schedule the tasks, provide differente execution models and finally estimate
the interference in the target platform. This framework is a deliverable of the european
collaboration ES3CAP [140] program.

1.3 thesis outline

This document is organized in three parts.

Part I introduces the state-of-the-art of required topics to understand the rest of the
document:

• Chapter 2 gives a background on real-time systems and synchronous data-flow
languages;

• An overview on multi/many-core architectures, on the execution models for these
platforms and on the applicable mapping/scheduling techniques is given in Chap-
ter 3.

The main content of the thesis is presented in Part II:

• A high-level overview of the framework developed is in Chapter 4;

• Chapter 5 presents the contributions in the study of software execution models for
critical applications;

• Chapter 6 contains our DAG mapping and scheduling algorithm;

• Chapter 7 provides the mathematical timing model of the MPPA3 architecture.

1.3 thesis outline 4

The implementation and evaluation aspects are shown in Part III:

• Chapter 8 describes the improvements done on existing tools for interference analysis,
parallel code generation and multi/many-core modeling;

• Chapter 9 expands on the brief experiments from Part 2, showing the impact of the
work developed there.

The conclusions and possible future work are contained in Chapter 10.

Part I

S TAT E - O F - T H E - A RT

2
B A C K G R O U N D : R E A L - T I M E

2.1 Real-Time Systems . 7
2.1.1 Reactive and Time Triggered Systems 8
2.1.2 Requirements . 8
2.1.3 Certification . 9

2.2 Synchronous Languages . 10
2.2.1 Data Flow, Control Flow and Graphical View 10
2.2.2 Lustre . 11
2.2.3 SCADE . 11
2.2.4 Other languages . 12

2.3 Code Generation . 13
2.3.1 Sequential Code Generation . 13
2.3.2 Parallel Code Generation . 13

2.4 Execution Models for Real-Time Systems . 14
2.4.1 Memory Partitioning . 14
2.4.2 Memory Interference . 15
2.4.3 Applicability to a broader scope . 15

2.5 Conclusion . 16

This background chapter introduces base knowledge from the real-time systems domain
and the particularities of this kinds of systems. We focus more specifically on the design
and implementation aspects of this discipline.

Section 2.1 begins with a general introduction on what characterizes a real-time system
and the execution paradigms that distinguish them from general computational systems
that are tuned towards raw performance and executing as fast as possible.

When developing critical systems, the choice of languages reflects the focus on func-
tionality in order to deliver correct outputs. But as we also target real-time systems,
the implementation timing is another key requirement during the development process.
Section 2.2 investigates some of the programming languages used to reach these goals,
pointing out their origin, current development state and future directions.

Historically, real-time systems were designed to run on single-cores. The industry shift
to multiple cores in a processor pushed the community to create mechanisms to generate
parallel code from synchronous languages, as can be seen in Section 2.3.

Finally, Section 2.4 focuses on the implementation of these systems through different
execution models that have a direct impact on the overall runtime and predictability.

2.1 real-time systems

This sections enlarges some common concepts from the field of Real-Time systems that
distinct them from general computing systems. We also cover the requirements and

7

2.1 real-time systems 8

certification, which are important parts of the design process to ensure the respect of
timing constraints.

2.1.1 Reactive and Time Triggered Systems

Programming real-time systems means dealing with the extra-functional requirements
of time at some point in the development process. This is strongly dependent on the
application model at hand and may be solved by two different approaches: reaction to
program inputs or time triggered static scheduling.

Reactive systems [74] are constantly waiting on an input from the environment, to then
perform their programmed computation steps and finally output actions to an actuator
or even another system. This is depicted graphically in Figure 2.1a and with a pseudo-
algorithm in Figure 2.1b. The input to output delay is the reaction time that should respect
the specification deadline. Time Triggered systems first arrange the execution of all the tasks
composing a system and make a static deployment of them at precise times, regardless
of any external interaction. These release dates are calculated to respect the specification
deadline.

Environment

OutputsControllerInputs
ActuatorsSensors

(a) Reactive System General Diagram

1 while True do
2 Inputs = ReadFromSensors();
3 Outputs = Compute(Inputs,

Memory);
4 WriteToActuators(Outputs);

(b) Reactive System Pseudo-Code

Figure 2.1: Reactive system diagram and code

The synchronous paradigm that gave origin to several programming languages is well
suited for both of these approaches. It helps a system engineer with a good abstraction
level and leverages a programming model that is ideal to conceive and visualize the inner
working of such complex systems.

2.1.2 Requirements

As any system, during the design phase real-time systems have a document listing the
specification of the project, and in particular functional and extra-functional requirements.

2.1.2.1 Functional Requirements

For any computation that runs on a processor, the first vital aspect is that it outputs the
correct result given the implemented function and inputs. This correct result must be
guaranteed by extensive functionality test or formal verification of the implementation
through abstract interpretation [43] and model checking [38], for example. There have been
numerous cases of bugs either in software or hardware that incurred in terrible accidents
with the losses of human lives or elevated financial cost.

2.1 real-time systems 9

The Ariane 5 [54] satellite launcher is a famous incident where a wrong cast type from
a 64-bit floating point to a 16-bit signed integer resulted in an overflow that made it
explode in air 40 seconds after launch. More recently two crashes involving the Boeing
737-max [81] that were a combination of a design flaw in a flight stabilizing program
and loose certification by authorities, resulted in human and financial losses pushing a
complete revision on Boeing’s conception process and the Federal Aviation Administration
(FAA) requirements for such critical systems.

2.1.2.2 Extra-Functional Requirements

These requirements are the ones often considered as optional during the development
process: maximum temperature of the system, power consumption and execution time.
However for safety-critical embedded systems they are also extremely important, and in
particular the timing constraints. This thesis explores methods to perform static timing
analysis that provides safe bounds on the execution times when the system becomes
operational. With an accurate model of the hardware and software contained in the system,
no dynamic runtime behavior may generate violations on the deadline specified as an
extra-functional requirement.

2.1.3 Certification

Naturally, safety-critical real-time systems imply that before being utilized and going
into production, they must pass through a process of certification that guarantees the
conception, development and validation according to strict standards. In the avionics
industry this is the DO-178 process, that was latest revised in 2005 to include formal
verification as a pertinent method to replace traditional testing [103]. The DO-178 standard
has multiple assurance levels, according to the consequences that a failure in the system
may generate. Levels A and B are used to certify hard-real time systems, where an eventual
failure leads to, respectively, the loss of human lives or serious injuries.

In 2014, the CAST-32A document was first released with informational content on how to
use multi-core processors in an avionics environment. Due to the complex nature of these
architectures, the certification process is significantly harder and the appliance of these
guidelines can be extremely difficult in Commercial Off-The-Shelf (COTS) processors [4].
This new hardware must also be thoroughly analyzed to obtain the interference delay
when accessing shared resources that must be added to the Worst-Case Execution Time
(WCET) for single-core.

The automotive industry follows a different standard called ISO-26262 [87] that provides
guidelines for vehicle safety in several different fields, including computational and more
recently autonomous systems. The number of injuries involved in a single car accident is
obviously smaller than in a single plane incident, however the accumulated injury numbers
of the automotive industry surpasses the avionics, which leverages the importance of such
document and certification in this field as well.

Other industries that are subject to such rigorous certification are nuclear energy power
plants and medical equipment. Though they have different standards that guide their
development, the principles remain the same.

2.2 synchronous languages 10

2.2 synchronous languages

Synchronous languages have been introduced to efficiently program reactive systems [26].
They remove the timing problem burden from the developer, assuming an instantaneous
propagation of signals throughout all the computation nodes of the program. This is
something intrinsically hard for general purpose languages such as C and is one of the
reasons why they are not used directly for safety-critical applications. The instantaneous
reaction is achieved with a global discrete logical clock that triggers all computations and
is not affected by the speed of the system where it is running. Several other features of
these languages are well suited for real-time systems and will be explored in this section.

Once we talk about the implementation of such languages on concrete systems, the
abstract time hypothesis receives another meaning. The deadline is described in the system
specification, more or less strict according to the domain, varying from miliseconds to
seconds. The instantaneous hypothesis is transformed into the following requirement:

WCET < Specificationdeadline

Respecting the deadline is important, but giving the correct output is equally crucial for
a real-time system. Being deterministic means that for the same sequence of inputs and an
initial memory state, an application will always yield the same output sequence. This is
crucial for testing and validating a given program and even more when certifying such
systems. Synchronous languages have well defined semantics that ensure determinism
and language compilers must preserve these semantics when generating code.

The languages’ semantics are behind another important concept, the model-based design,
where the code can be conveniently written, tested and verified in a high level paradigm
and the developer can be sure that the generated code will hold the same characteristics.
The verification of such programs can be done with model checkers such as Lesar [114]
and SCADE Design Verifier [86].

Cyber-physical systems usually run on resource constrained devices. When code is
generated from synchronous languages they do not perform dynamic memory allocation,
mitigating any memory shortage problem. Moreover the loops are statically bounded,
avoiding unpredictable execution times. This makes the code suitable for any WCET
analysis which is an important characteristic when the reaction time between input and
output must remain within a given deadline.

2.2.1 Data Flow, Control Flow and Graphical View

The synchronous languages have two distinct programming styles: data flow or control
flow. They are basically different ideas of how to describe an application, similar to the
concept of programming paradigms.

Indeed, the control flow style is tightly related to imperative programming, where one
uses statements that are executed in sequence or in parallel, changing consecutively a
program’s state. They can be graphically represented with states and transitions between
them, triggered by data or time changes, in a similar way to concurrent Finite State
Machines (FSMs). On the other hand, the data flow style is more related to declarative
programming. The program is divided into nodes, and furthermore into subnodes, that are
the language computation and compilation units. These nodes are interconnected through
their data exchange using inputs and outputs. In this case, concurrency is implicit.

2.2 synchronous languages 11

In general synchronous languages are textual, nonetheless visualizers do exist, as the
automatic diagram recovery tool in the Kieler project [68]. There are also some alternatives
that provide a direct graphical development environment such as SCADE [28] (data
flow) or Argos [101] (control flow), that helps users with a visual editor of nodes, their
functionality and the overall program. In the next subsections we will dive a little bit
deeper into some of these languages.

2.2.2 Lustre

A well-known academical and industry adopted data flow synchronous language is
Lustre [73]. One of its main goals was to construct verifiable programs with its temporal
logics semantics and also facilitate the adoption by being similar to tools that were already
being used for reactive system design by control engineers.

Lustre programs are composed of entities interconnected through their communication.
They are functionally independent nonetheless, making them the minimal execution and
compilation unit. These entities are more commonly called nodes and they contain a
declarative set of equations: logic or arithmetic data manipulation or delay operations. The
variables are called flows due to their value being directly tied to the point in time where
they are evaluated.

In a program there is a root node, possibly composed of subnodes that form a network.
The compilation process takes each node separately, compiles and then schedules them
respecting the data dependencies of the network. The classical compilation process gener-
ates sequential code to be run on a single core platform, but due to the entities’ isolation,
communication phases can be easily extracted and the program becomes parallelizable.

Since its appearance, it has inspired the creation and evolution of several other languages.
In the next section we will introduce SCADE that was heavily inspired on Lustre’s
simplicity while also adding important features within an industrial point of view relevant
to the system design and certification of the generated code.

2.2.3 SCADE

Using Lustre version 3 as base, a synchronous language to comply with avionics and
nuclear plants requirements appeared. Named SCADE, it was initially a more friendly
development environment for Lustre with minor feature additions and a graphical visual-
ization. A strong differential was the creation of KCG, a certified code generator able to
comply with avionics and automotive standards such as DO-178C and ISO 26262. This
allowed system designers to be confident that the final code would be equivalent to the
original SCADE model.

To incorporate more advanced functionalities while still maintaining the formalisms and
semantics from its original Lustre core that allowed its use in safety-critical applications,
SCADE 6 [40] was built from the ground up. The base language was RELUC [41] with the
addition of control flow programming style, called SCADE automata, functional arrays
and iterators and mixing all of this in a consistent and safe way.

In Figure 2.2 we show a SCADE sample program with the textual and graphical version
side to side for comparison. In Section 8.2 we explore the challenges of generating code for
multi-core architecture for parallel execution of SCADE programs.

2.2 synchronous languages 12

(a) SCADE example program diagram

function N0(i:int64) returns (o:int64)

let

o = i * 3;

tel

function N1(i:int64) returns (o:int64)

let

o = i + 6;

tel

function N2(i:int64) returns (o:int64)

let

o = i + 6;

tel

node root(i:int64) returns (o:int64)

var x, y:int64;

let

x = N0(i);

y = fby(x; 1; 0);

o1 = N1(x);

o2 = N2(y);

tel

(b) SCADE example program code

Figure 2.2: SCADE example program

2.2.4 Other languages

In this section we briefly introduce other languages that were important for the con-
solidation of the synchronous paradigm but took different approaches than Lustre or
SCADE.

Esterel [29] is the oldest synchronous language, published originally in 1983 and con-
ceived to provide a control flow programming style. For this reason it was widely adopted
for circuit conception using state machines.

SIGNAL [27] was published in 1991 following the same data flow style as Lustre. It is
relatively similar in its principles, but tackles the problem with a relational paradigm, in
contrast to the equational nature of Lustre. Some operators are different, such as delay,
undersampling, merge and of course, its keywords and general construction.

KIELER is a research project that offers a graphical model-based design environment [58]
for its user and internally has an original synchronous language called Sequentially
Constructive Charts (SCCharts) [76], derived from SyncCharts [10], itself inspired by
StateCharts [79].

There is also a whole family of derived languages that followed the principles of Lustre
and Esterel. Instead of creating a new language from the ground up, they extended existing
languages with the reactive paradigm. Some examples are Reactive C [31] and Reactive
ML [100].

2.3 code generation 13

More recently, industry researchers from Bosch developed Blech [67], an imperative
synchronous programming language. It aims at solving some of the problems that the first
synchronous languages did not set out to deal with, such as: built-in concurrent execution,
easy composition of large projects through subprograms and productivity and code quality
in general. It is still in early stages of development but seems to have a good future due to
its open source nature, as well as real use cases from its conception.

2.3 code generation

Generating code from synchronous programs in a safe and semantic preserving way is
an intrinsically challenging task. The target platforms in the early days of synchronous
languages were single cores, so the compilation to low-level code has been optimized and
done in a sequential way.

Lustre and SCADE for instance, which follow the data-flow programming style, have
a clear parallel visualization of the entities that compose the program. Nonetheless,
decoupling the nodes to generate parallel code is not as trivial as it seems, even more
when taking into account time operators or complex array structures.

2.3.1 Sequential Code Generation

SCADE provides an automatic generation of embedded C code through the KCG compiler.
This compiler is certified at Design Assurance Level (DAL) A on the avionics DO-178
guideline and SIL 4 on the automotive IEC 61508 guideline. This means that the low-level
C code that is generated can be considered correct-by-construction with regard to the
SCADE source specification [28]. However the code that it generates is sequential and can
only be deployed on single-core processors.

In the original Lustre paper [113] it was also demonstrated how to generate efficient
sequential code from the language semantics. Even with the evolution of the language
later on, it remained mainly an academic language and no certified compiler was created.

2.3.2 Parallel Code Generation

SCADE 6 rebuilt the language from the ground up and allowed the later development
of a Multi-Core Code Generator (MCG) [39]. This code generator relies on annotations,
added by the developer, to indicate that a node may be executed in parallel. With this
knowledge, structures are put in place to allow these nodes to communicate, even if they
are mapped to multiple cores. These structures are called communication channels, and their
implementation is specific to each target platform. The functional code inside each node is
then generated as usual, similar to the sequential code generation process.

Other works from the real-time community have proposed different solutions to generate
parallel code from synchronous languages. Graillat et. al [66] starts from a Lustre program
and a mapping onto a platform, generating code suitable to be run on this multi/many-
core platform. Pagetti et. al [105] combines functional nodes from Lustre and uses Prelude
for assembling and automatically generate a WCET-aware mapping and scheduling of
programs. Yuan et. al [145] constructs a similar framework but directly by compiling Esterel

2.4 execution models for real-time systems 14

applications targeting multicore systems with or without a manager Operating System
(OS).

2.4 execution models for real-time systems

Traditional software has a generic execution model that allows the mix of instructions
related to the execution of the program with instructions that access the memory, either to
perform a load or a store. For real-time systems, the incertitude about when a memory
access will be performed leads to overly pessimistic results from a response time analysis.

In order to precisely determine when a memory access will happen, the idea to split
a task into execute and memory phases appeared. This way, a mapping and scheduling
algorithm could decide how to place and order each individual phase of a given task,
reducing the unexpected delays that happen with a generic model.

In this section we present a short survey on research work on these phased execution
models, sometimes called predictable, and tailored specifically for real-time systems. We
split these works into two categories, according to what method they are using to improve
the time-predictability. They are:

• Memory partitioning: the use of memory banks to place and reserve code and data
that will be use by a specific core during runtime, as well as the decoupling of tasks
into multiple phases;

• Memory interference: either allowing interference in the system and estimating it or
enforcing isolation.

The term PRedictable Execution Model (PREM) comes from original works developed
on mono-core systems in [102, 109, 139]. However we enlarge the use of this term to the
research showed in the survey as they all target real-time systems and ways to make them
more predictable, but not necessarily using the same techniques.

2.4.1 Memory Partitioning

Regarding the memory partitioning, related work can be classified as follows:

• 2-Phased model: a model with execute and write phases. The execute phase has
embedded read operations and for this model to work properly it is important to
have some memory privatization mechanism to partition and reserve memory spaces
to specific cores. This implementation model is only used in some works [66, 118] and
is mostly applied to architectures that provide these bank or memory privatization
features, such as the MPPA2 and MPPA3 processors.

• 3-Phased model: a model with read, execute and write phases. With this phased
execution model it is possible to completely run the memory phases in isolation with
a careful schedule, without any need of additional hardware support for memory
partitioning. This model is the most used in related work, with the terminology
Acquisition Execution Restitution (AER) [98] or Read Execute Write (REW). The
shared resource to read/write is not always a memory and the model may be used
for I/O access [90]. The shared memory may be DRAM main memory [7, 119, 143]

2.4 execution models for real-time systems 15

or scratchpad local memory [22, 55, 105, 120, 121]. It may also take into account the
DMA load/unload [132]. In some articles, the architecture is not realistic but the
focus is on the bus access model [60, 94].

• Memory-Centric 3-Phased model: a model with read, execute and write phases but
with a dedicated core to manage the memory phases. This model is useful for
architectures and systems with an intensive use of the global memory or external
resources, where a core would be blocked during these read/write phases. This model
is studied in [23, 119, 143, 144].

2.4.2 Memory Interference

Concerning the memory interference, related work can be classified as follows:

• no interference: In [22, 119, 144], the mapping/scheduling ensures no interference
by isolating memory phases. The isolation may be enforced by scheduling the task
phases and may be combined to partitioning. This partitioning is used to isolate
execution phases from memory access phases. The partitions may be based on time-
division [33, 90, 105, 132] or round-robin software partitions. Also, the partition may
be preemptive and combined with a priority promotion technique.

• analyzed interference: The interference delay is estimated and taken into account as
part of the Worst-Case Response Time (WCRT) in [60, 94]. In some related work, the
interference is taken into account as a parameter to improve the scheduling on each
core or the global mapping of tasks onto cores [7, 23, 120, 144]. In [121], the memory
phases are even fragmented to improve the precision of the interference analysis. The
scheduling may use a software partitioning to get a preciser interference analysis
(less interfering tasks) [9, 61, 143].

2.4.3 Applicability to a broader scope

A few works also address the challenge of producing phased code as part of the code
generation/compilation step [57, 105, 132] or in the operating system [119]. A distinct
approach is to provide predictable execution using different models, such as the Logical
Execution Time (LET) in [108] where synchronization points are used for write phases and
the read phases are always executed at the beginning of a task’s period.

Scheduling algorithms for the memory phases of tasks when they run in isolation have
been extensively developed. A comparison of the efficiency of such algorithms is presented
in [15] but in a dynamic runtime and without precedence constraints between the tasks.
Rouxel et. al [120] presents a forward list scheduling algorithm but their REW task model
is said to be contiguous, limiting the flexibility of the schedule.

Implementation of data-flow industrial applications to multi-core platforms were pre-
sented in [55, 105]. These papers target different platforms than the Kalray MPPA2 or
MPPA3, but with similar local shared memory. In both of these papers, isolation between
memory access phases is implemented through hardware isolation (TDMA bus [105]) or
software isolation [55].

2.5 conclusion 16

2.5 conclusion

In this background chapter we presented an overview on root concepts from the real-
time systems domain. The reactive and time-triggered paradigms found in safety-critical
applications motivated the creation of synchronous data-flow languages. The compilation
and code generation from these language is a vital step that must preserve the semantics
even when targeting multi/many-core platforms. Finally, we present the literature on
execution models that can drastically improve the execution time or predictability of a
real-time system.

The following chapter complements the information provided here by showing the
challenges of applying these approaches and techniques to multi/many-core architectures
in order to obtain time predictability.

3
B A C K G R O U N D : M U LT I / M A N Y- C O R E

3.1 Multi/Many-Core Hardware Architectures 18
3.1.1 Processor architecture in real-time systems 18
3.1.2 Challenges on transitioning to multiple cores 19
3.1.3 State-of-the-art of Predictable Architectures 22

3.2 The Kalray MPPA3 . 23
3.2.1 Cores . 23
3.2.2 Compute Cluster . 25
3.2.3 Memory System . 25
3.2.4 On-Chip Interconnects . 26
3.2.5 Synchronization components . 28
3.2.6 Clock components and performance measurement 29

3.3 Response Time Analysis . 30
3.3.1 Temporal Isolation . 30
3.3.2 Shared Resources Interference Analysis 30
3.3.3 Comparison . 30

3.4 Mapping and Scheduling . 31
3.4.1 Mapping and Partitioning . 31
3.4.2 Scheduling . 32
3.4.3 Mixed approaches . 32

3.5 Conclusion . 33

This background chapter presents the research and important concepts on the multi
and many-core class of processors and their interaction with surrounding areas that are
important for real-time systems.

Section 3.1 starts with a short history on single-core microprocessors and the transition
to multiple cores for critical systems. This is followed by a study on past and current
multi/many-core architectures that are particularly suitable for time-critical systems,
highlighting what characteristics they possess that leverage computation determinism. The
Kalray MPPA2 is among these architectures and was the target of some of our experiments
due to its availability at the time when they were conducted. Section 3.2 is however
dedicated to the main target platform of this thesis, the many-core Kalray MPPA3. It
contains details about the microarchitecture and System On Chip (SoC) features that are
exploited later on in the thesis.

Any processor is subject to suffering from contention when accessing shared resources,
even with specialized features and configurations to reduce time variation. Section 3.3
provides clarity on how timing analysis is done to provide a safe bound on execution
times, how it started on single-cores and how it evolved on modern multi-core platforms.

Finally, running applications on systems that contain multiple cores require clever
placement and ordering between the tasks. Section 3.4 investigates well known algorithms
on Directed Acyclic Graph (DAG) mapping and scheduling, as this is the expected

17

3.1 multi/many-core hardware architectures 18

application format in our context, providing a common ground for the new developed
methods on Part II.

3.1 multi/many-core hardware architectures

3.1.1 Processor architecture in real-time systems

The first single-core microprocessors appeared in the early 1970’s [12] and brought the first
major breakthrough that allowed computers to get known by the general public, outside
academia or industry. Since then, microprocessors have evolved tirelessly. The complexity
in terms of pipeline stages, instruction set, number of cores and functionality per chip
area increased exponentially turning them into much more than the calculation machines
they were initially set out to be [44]. This evolution has turned the modeling and analysis
of their internal structures in an active research field for diverse purposes. In the next
sections we explore the impact of this evolution, specially from the safety-critical domain
perspective.

3.1.1.1 Single-Core Processors

The first processors used in any computing system had a single core. In real-time systems,
single-core processors continue to being used, even nowadays, due to their simplicity and
execution predictability. These architectures were thoroughly studied, resulting in accurate
models that can precisely compute the Worst-Case Execution Time (WCET) of a given
application using tools such as OTAWA [17] and Heptane [78] or the industrial aiT [56]
by AbsInt. The industry has been struggling to find viable and safe alternatives, as using
single-core processors become more and more difficult due to their low performance and
availability scarcity.

definition 1 (worst-case execution time): Given an application that runs on a specific
architecture, its WCET is an upper bound on the execution time of this code in isolation [141]. For
a single-core processor, without access to external resources and without overhead due to dynamic
scheduling (preemption or event-triggered execution), this is sufficient for a response time analysis.
For multi/many-core processors, the delays due to the on-chip communication and the interfence
they generate must be taken into account.

3.1.1.2 Multi and Many-Core Processors

Once Moore’s law settled down and the increase in clock frequency was not sufficient
anymore to keep improving microprocessors performance, hardware designers started
increasing the number of cores and unfolding the potentials of parallelism. The new
architectures that came from this were indeed more powerful than the single-core ones, as
long as the software keeps up with the newly established programming models [32].

Furthermore, with concurrent execution and access to shared resources, such as the
memory, the firmly established WCET methodology to ensure bounds on computation
time was not sufficient anymore. In order to properly estimate a worst-case on the runtime
of the whole system, the shared resources accesses (e. g. shared memory) should now
be precisely modeled. Figure 3.1 illustrates the access path to the system’s memory in a
single-core with an optional arbiter (Figure 3.1a) and multi-core platform (Figure 3.1b).

3.1 multi/many-core hardware architectures 19

We can see that there are multiple cores going through the same arbiter, which generates
unexpected timing delays called interference.

definition 2 (interference): An interference happens when multiple cores send a request
to the same shared resource at the same time. An arbiter receives these requests one at a time and
schedules them according to a certain policy. During the time that the shared resource serves the
request that was first elected, the other cores are blocked waiting. The delay perceived by them will
be longer than simply the time that it would have taken to access the resource in isolation.

C0 bus arbiter memory system

(a) Single-Core

C0

C1

Cx

bus arbiter memory system

...
(b) Multi-core

Figure 3.1: Memory system arbitration path

The advancements in the manufacturing process of integrated circuits allowed the
appearance of SoCs. They combine into a single chip the functionality that was found
in traditional computers with separate motherboard, memory and graphical processor.
A SoC therefore contains a microcontroller or microprocessor (nowadays with multiple
cores), a high speed memory, coprocessors or graphical accelerators and other auxiliary
peripherals for input/output.

3.1.2 Challenges on transitioning to multiple cores

With the rise of multi and many-core architectures, a slow transition and change in the
real-time systems community were introduced. In an architecture with multiple cores, the
WCET of a program was not enough anymore to provide safe bounds of runtime [45].
The Worst-Case Response Time (WCRT) [9] concept started being used to account for the
complex nature of these architectures.

definition 3 (worst-case response time): Given an application that runs on a specific
multi/many-core architecture, its WCRT is an upper bound on the execution time of this code,
taking into account the interferences generated by concurrent execution of code on other cores, more
specifically their requests to shared resources [126]. It also considers delays due to task preemptions
or migrations.

When multiple initiators try to access the same shared component at the same time, the
hardware must decide which one goes first. They generate interference, possibly slowing
each other down. If we have a timing compositional [72] hardware running the program,
we can add up the delays coming from different sources, on top of the WCET in isolation
and obtain a bounded response time for the application.

A naive, yet effective solution would be to temporally isolate the access to the shared
resources on the system, so that interference is not possible by construction. This eliminates

3.1 multi/many-core hardware architectures 20

the need of any hardware models or even specialized hardware, allowing Commercial
Off-The-Shelf (COTS) processors to be used for safety-critical systems.

Another concern that appeared with concurrent accesses is the presence of timing
anomalies [59], where a local best case scenario may lead to a global worst-case scenario.
These are usually edge cases, hard to identify and predict, and they automatically violate
the timing compositional assumption for a given hardware [8].

In the next sections we investigate hardware components that have a huge impact on
the time predictability and response time analysis of a SoC containing a multi/many-core
processor.

3.1.2.1 Core

The core is the main processing element of the system. For general purpose applications,
they tend to be optimized for the average use-case and include components that may
introduce dynamic behavior to improve performance, such as out-of-order execution and
branch prediction. For predictability, it is desirable to privilege in-order execution without
any sort of speculation [80]. It is also a requirement for timing analysis frameworks that
the cores are fully timing compositional.

3.1.2.2 Memory System

In modern and complex SoCs the memory system tends to be also complicated, multi-level
and heterogeneous. There are different memory types with distinct purposes at each level
of the platform.

cache The cache memory is the closest memory to the core and usually has the smallest
capacity, holding a few kilobytes in its first level up to a few megabytes in the last level.
Even more important than the size of the cache is its replacement policy. The WCET
analysis uses information about data locality to decide upon the delay when loading or
writing data to the memory. If the cache replacement policy is complex, an analysis of
the whole execution history of a program may be needed to determine if data is in the
cache or not. This leads to a high complexity and sometimes unfeasible WCET estimation.
Measurement based techniques can also be used in these complex or random replacement
policies [1].

The true Least Recently Used (LRU) replacement policy is known to offer good per-
formance and predictability at once, even for multi-level caches [77]. The Pseudo Least
Recently Used (PLRU) and the First In First Out (FIFO) replacement policies lead to ex-
tremely pessimistic WCET estimation, while the Most Recently Used (MRU) replacement
policy, used in several industrial architectures, was shown to lead to similar results in
terms of analysis precision as compared to the LRU policy [70].

Having a private cache for data and instruction also increases the microarchitectural pre-
dictability. The separation eliminates dependencies between data accesses and instruction
prefetch. This eases the analysis and can also speed up the execution, allowing the private
instruction cache to be connected to a prefetch buffer, for example.

Another important source of unpredictability in cache memories is the coherency proto-
col. The coherency is used in multi-core architectures to synchronize the memory state
between the private caches of these multiple cores once one of them performs a write
operation to a higher cache level or the main memory. It helps the development of parallel

3.1 multi/many-core hardware architectures 21

applications by transparently handling the propagation of update commands to all the
private caches.

However, these hardware coherency protocols are kept proprietary by most vendors,
have multiple transient states and introduce additional delays in memory operations [2]
that are impossible to estimate without proper documentation. Therefore, for real-time
systems it is preferred to bypass this mechanism either by deactivating it or by placing
shared data only in the shared cache levels or the main memory [19], and controlling the
accesses at the application level.

tightly coupled memory After the cache memory, in an heterogeneous system, it is
typically found a Tightly Coupled Memory (TCM), a fast, low latency memory that can
act as a scratchpad [18] or even another cache level. In embedded systems with hardware
constraints, a TCM might be the only available memory.

An important difference between the TCM and the cache, is that the former does not
contain any mechanism to buffer frequently used code or data. Therefore the memory
accesses time to the TCM should always be constant. However, as the TCM is shared
between multiple cores, the access may suffer from interference delay, which is directly
determined by the arbitration logic [21]. The cache has a bigger access time variability
according to the locality of the data: either it is fast if the data is already in cache (hit) or
the hardware must perform an upper-level access (miss) and sometimes even perform
eviction.

A solution to improve the predictability of the TCM access is to decouple them into
memory banks that are independently arbitrated. These banks can then be privatized to
a specific core or group of cores, so that the accesses to private data and code can be
performed in isolation [123]. Similar techniques can be found for locking and partitioning
in shared cache [134] or DRAM memory controllers [115].

distant memory A global distant memory is usually available in SoCs, with bigger
size providing a huge pool of memory for large data and code. However, this is typically
SDRAM, which does not provide constant access time due to refresh mechanisms managed
by a controller. On top of this variable access time, the global memory is also a shared
resource subject to arbitration in the system.

Nonetheless, research has shown that it is possible to use SDRAM in real-time systems.
One solution is to customize the controller [5] in order to provide guaranteed minimum
bandwidth and a bounded maximum latency in the response time. A different perspective
is to manage the static schedule of tasks in the system so that the access patterns [6] to the
SDRAM are predictable and analyzable by a response time analysis tool.

3.1.2.3 Arbiters

Typically, there are several points of arbitration in a multi or many-core system. The most
relevant for this thesis are in the memory access and communication bus paths. This
memory can be a scratchpad, local to a group of cores or even a global one, and the
implemented arbitration mechanisms can have a huge impact on the response time of
an application. For time-critical systems, arbitration algorithms that privilege a fair share
between the different initiators should be used. Some commonly known examples are
Time Division Multiple Access (TDMA) [117] and Round-Robin [46].

3.1 multi/many-core hardware architectures 22

3.1.2.4 Inter-Core communication

Another key point impacting the performance and being a source of timing uncertainty is
the communication between different cores. In a multi-core setup, the memory is usually
close to the cores and the communication can happen through this memory, without the
need of a complex network to provide core-to-core communication.

In a many-core chip, the global memory can be far from the cores, serving requests with
a high latency. These cores are commonly subdivided into clusters (sometimes called tiles)
with a local TCM memory. Because of this, inter-cluster communication mechanisms such
as a Network-On-Chip (NoC) [82] and Advanced eXtensible Interface (AXI) [34] must be
used to reduce latency of inter-cluster accesses. These components must be well configured
and have their timing models incorporated into the total response time of the system as
the Worst-Case Traversal Time (WCTT) [14].

definition 4 (worst-case traversal time): Given a communication packet that must
traverse a certain network or bus, its WCTT is an upper bound on the time needed for this packet to
go from source to destination [128].

3.1.3 State-of-the-art of Predictable Architectures

Section 3.1.2 has exposed the challenges raised by the transition to multi and many-core
inside the real-time systems domain. The key components that dictate the predictability
of the system have been discussed in the literature, resulting in guidelines to build
architectures that are time-predictable by design [42] and, therefore, friendly for WCET
and WCRT analysis [124]. With this knowledge, the community has developed several
such architectures that are investigated here.

The PRET (Precision-Timed) processor [97] is a SPARC-based architecture, single-core
but multi-threaded, that provides predictable timing and extensions to the instruction set in
order to manage the timing control. The rationale behind this architecture is to reduce the
complexity from modern processors, that aims at average-case performance, and dedicate
the same amount of effort into building a processor that has temporal characteristics in
pair with its functionality. A high-level language with explicit timing features is also part
of the contributions.

The T-CREST project [125] delivered a multi-core (but extensible to many-core) time-
predictable architecture that is optimized for the worst-case execution instead of the
average. Several hardware components were developed: the PATMOS processor, core-to-
core TDMA arbitrated NoC interconnect and a predictable memory controller. Software
tools for efficient programming and analysis were also a contribution, with a dedicated
compiler and WCET analyzer. A distinguish feature is the method and stack caches that
provide more predictable buffering and replacement of data, which eases the response
time analysis.

The CompSoC [75] and CoreVA-MPSoC [13] projects are architectures created mainly for
mixed-criticality use, relaxing in some of the guidelines proposed for time-predictability,
in favor of performance and energy consumption, for example. Nevertheless, they still
maintain several key features useful for real-time systems, such as TCM memories and
TDMA NoC.

3.2 the kalray mppa3 23

MINOTAur [69] is a recent contribution taking the open-source RISC-V core, modifying
it to make it provably time-predictable, following the Simplified Instructional Computer
(SIC) processor approach [71]. It also explores how to allow speculative execution while
still maintaining the predictability. Though this is still only the core microarchitecture, it
can be the basis for a future multi/many-core RISC-V SoC.

The Kalray MPPA3 is a COTS many-core processor that succeeds the MPPA2, maintain-
ing the main features that made it a great fit for safety-critical systems. Being the main
target of the experiments carried out in this thesis, this processor is described with more
details in Section 3.2.

In this thesis we consider that the target platform is timing compositional. Note that in a
particular configuration, the MPPA2 may exhibit a timing anomaly [85], but we are not
concerned by this configuration, thus maintaining our timing compositionality assumption.
No proof of timing compositionality exists until now. As seen in Section 3.1.2, any work
that supposes a penalty for a worst-case scenario, including interference, is based on the
timing compositionality hypothesis.

3.2 the kalray mppa3

This section outlines the MPPA3 architecture, covering its main characteristics for general
purpose use, while highlighting the key details that make it a good candidate for use in
real-time applications.

The third generation of Kalray Many-Core processors [51] called MPPA3–80 or Coolidge
features 80 Processing Engines (PEs) distributed into 5 Compute Clusters (CCs) running
at up to 1200 MHz. The clusters are interconnected by a NoC and an AXI fabric. The
external connection is provided through its Ethernet subsystem and Peripheral Component
Interconnect (PCI) Express interface.

3.2.1 Cores

The Kalray core family has been renamed to kvx, with x being the number of the generation.
Thus for Coolidge the core is called kv3 and it implements a 32-bit and 64-bit 6-issue Very
Long Instruction Word (VLIW) architecture with an 8-stage in-order pipeline.

3.2.1.1 Predictability and Simple Hardware

The VLIW design philosophy goes against the more traditional architectures, x86 or arm
for example, that usually contain complex dynamic mechanisms such as out of order
execution and branch prediction.

Instruction Level Parallelism (ILP) ensures the good performance and predictability of
VLIW architectures. At compile time instructions are grouped into bundles, which are
executed concurrently in the cores. The compiler must try to use as much of the available
execution units most of the time. The burden of complexity is taken away from the core
and delegated to the compiler [129], which greatly simplifies the hardware design and
analysis.

The kv3 core accepts bundles of up to 5 instructions and deploys them to two Arithmetic
and Logic Units (ALUs), a Multiply-Accumulate Unit (MAU)/Floating-Point Unit (FPU),

3.2 the kalray mppa3 24

a Load/Store Unit (LSU), and a Branch and Control Unit (BCU). Figure 3.2 shows this
organization.

Figure 3.2: kv3 Core Pipeline – © Kalray

The kv3 core is associated with a coprocessor that operates as a tightly-copuled accel-
erator (TCA), mainly used for deep learning computation. It has its own specific set of
instructions, datapath and registers, but can be used together with the main core to offload
and speed up operations.

3.2.1.2 Registers and other components

There are 64 General Purpose Registers (GPRs) of 64-bits that can be associated in pairs or
quadruples to ease and speed up data loading and storing. There is also a Prefetch Buffer
(PFB) of 64-bytes responsible for feeding the execution units with instructions from the
cache ahead of time.

3.2.1.3 Cache

Each kv3 core contains private caches for instructions and data. They are 4-way set
associative, true LRU with 64-byte lines and 16KB of size.

The Data Cache (DC) is write-through and no write-allocate. This means that a store
will update the target address when cached, but when it is not the case, it will just write to
the main memory without allocating a line for the data.

At cluster level, the DC is coherent. This is ensured by a hardware cache coherency
protocol. It guarantees that two cores of the same cluster will perceive the same data at a
certain address after the store has been finished plus a fixed number of cycles. The fence

instruction stalls the core until the coherency protocol has finished.
The Instruction Cache (IC) does not implement any hardware coherency protocol. For

DC and IC there are special instructions that globally invalidate the cache and can be used
to create a software-based coherency protocol. They are dinval and iinval, respectively.

3.2 the kalray mppa3 25

3.2.2 Compute Cluster

Each CC comprises a secure and a non-secure zone, tied by a local interconnect. The secure
zone contains a Resource Manager (RM) core, a 256KB secure memory bank and up to
two dedicated cryptographic accelerators.

The non-secure zone contains 16 application PEs and 16 memory banks of 256KB with
32-byte words composing the 4MB of local memory. It also has Direct Memory Access
(DMA) receive (Rx) and transmit (Tx) engines connected to the NoC, a dual channel AXI
read and write interface, a Debug Support Unit (DSU) and may contain the cryptographic
accelerators if they are not reserved to the secure zone during the boot. An overview of all
these components can be seen in Figure 3.3.

NoC Tx

NoC Rx

RM DSU

PE0 PE1

PE2 PE3

PE8 PE9

PE10 PE11

AXIRead

AXIWrite

Crypto

Accel1

Crypto

Accel2

PE4 PE5

PE6 PE7

PE12 PE13

PE14 PE15

Local
Memory

4MB

Figure 3.3: MPPA3 Cluster overview

3.2.3 Memory System

There are 3 levels of memory hierarchy on the architecture. The first one is the core private
data and instructions caches, as described in Section 3.2.1.3. They provide transparent
cached accesses to the second level but can also be bypassed through load and store
instruction modifiers, or completely deactivated.

The second level is called the Shared MEMory (SMEM), a high-bandwidth and low-
latency cluster-wide accessible memory. As stated in Section 3.2.2, it is composed of 16
memory banks of 256KB providing 4MB of memory for each cluster. It is able to provide
up to 32-bytes of throughput per cycle per bank.

In its default interleaved mode, data is spread out between all the banks at a 64-byte gran-
ularity, which is great for the average use case of accesses. In its banked mode, contiguous
addresses are all directed to the same bank. By reversing a bank to a single core and well
placing code and data the amount of interference can be greatly reduced.

These 4MB of SMEM can be configured in three different ways:

1. 4MB of TCM;

3.2 the kalray mppa3 26

2. 3MB of TCM and 1MB of L2 cache;

3. 2MB of TCM and 2MB of L2 cache.

The first configuration is the prefered one if the computation is exclusively done inside
the cluster. The L2 cache can be extremely handy for bigger programs that need to interact
with the global memory. There is a supplied firmware for the L2 cache protocol that uses
some hardware features to speed up its software nature. This cache is 16-way set-associative,
read allocate and write-back.

The third level is composed by the SMEM of other clusters and the main global memory,
implemented with two DDR3/4 subsystems and shared by the whole processor.

3.2.3.1 SMEM Access Latency

There is a relatively long path from the core to the memory bank that stores the data. This
path is filled with 2 slots FIFO buffers in order to reduce the critical path of the circuit and
reach a higher core clock frequency. If the core must stall due to a dependency on a data
access, in case of a L1 cache hit, the latency is 2 cycles and in case of a L1 cache miss it is
22 cycles. This is a load use penalty, meaning that the latency is expressed in terms of the
difference in number of cycles between when the data is ready to be used and when it was
requested. For instance, in the cache hit scenario, the data request is issued at E1 of the
execution pipeline (see Figure 3.2) and the data is ready to be used at E3. For the cache
miss, the answer arrives at E23 (20 cycles later).

Figure A.1 in Appendix A details the elements composing this path from core to
SMEM. This diagram does not aim to be complete and neither translate perfectly what is
synthesized in hardware, but rather gives the arbitration path from the point of view of a
single core. In particular the boxes Tree from MS to Bank and Tree from Bank to MSR show
only part of the tree structure from cores to memory banks and vice-versa.

3.2.3.2 Global Memory Access Latency

There are two SDRAM DDR controllers in the MPPA3, providing 2GB of memory in
the SoC, extensible up to 32GB of external memory. These memories can operate on a
frequency from 600 to 3200 Megatransfers per second. The main goal of the SDRAM is to
provide high density of information in a small area, if compared to the SRAM technology
used in the cluster SMEM. On top of that, the requests are sent to a controller that can
reorder them (if they do not target the same address) and that must respect certain timings
defined in the DDR protocol.

Therefore, the accesses to the global memory can have an important and variable latency.
For real-time systems this is a huge issue. Some works [88, 112] integrate the DDR into their
timing analysis process. In this thesis we consider that all code and data of applications fit
into the set of clusters SMEMs

3.2.4 On-Chip Interconnects

CCs can communicate through two global interconnects, the Remote Direct Memory Access
(RDMA) NoC and the AXI bus.

The NoC is of wormhole switching type, designed primarily to serve the two 100 Gbps
Ethernet controllers located on the chip. It is more suited to carry out asynchronous RDMA

3.2 the kalray mppa3 27

operations targeting high-performance use, even though works [52] have shown that it can
be used for time-critical purposes.

The AXI fabric is the new interconnect introduced in the MPPA3, a full crossbar of
buses that connects the CCs, the external DDR memory controllers and the Input/Output
(I/O) controllers with direct, memory mapped access to one another. An overview of the
available connections can be seen in Figure 3.4.

Once a core accesses a memory space that is comprised into the memory space of
another cluster, it automatically uses the AXI. On the other hand, to use the NoC, the core
must go through a DMA request that is subject to a thread request pool. Therefore, even if
an AXI request is subject to arbitration between cores of the same cluster, it is more suited
to time-critical systems as it does not rely on a DMA mechanism.

Figure 3.4: AXI Crossbar endpoints – © Kalray

On top of allowing direct access to the bus fabric between CCs, the AXI provides
constant traversal times once a data packet has passed the source cluster arbiter. Thus,
instead of using WCTT and network time calculus, a response time analysis framework
can incorporate these traversal times with the arbiter models to provide a global WCRT,
already accounting for multi-cluster communication level. This will be later explored
in Section 7.4.

The AXI traversal times were measured in a MPPA3 processor with a carefully coded
benchmark. Starting from the cluster where the program is running, the remaining clusters
are targeted in ascending order, writing a random value at the address space of this target
cluster. The target address also changes at each iteration in order to stimulate the different
SMEM memory banks. This operation is repeated 1 000 times for each target before moving
on to the next cluster and the maximal value is retrieved. Table 3.1 presents the results.

The results show that the traversal times are constant and symmetrical, but change
according to the source and target cluster. This is due to the physical placement of the CCs

3.2 the kalray mppa3 28

Source

Target
Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 0 23 108 100 92 100

Cluster 1 108 23 124 116 92

Cluster 2 100 124 23 92 116

Cluster 3 92 116 92 23 108

Cluster 4 100 92 116 108 23

Table 3.1: AXI traversal cost between clusters

in the MPPA3 chip and the inherent cost to traverse portions of the bus in the circuit with
different lengths.

3.2.5 Synchronization components

The Kalray MPPA3 has several internal and external interrupt sources that are useful
for various purposes. In this section we are interested in detailing the 4 Advanced Pro-
grammable Interrupt Controller (APIC) interrupt lines and how to use them to efficiently
implement synchronization protocols between PEs of the same, or even another cluster.
The APIC is a module responsible for routing and dispatching the different interrupt
sources to the RM and PEs.

This module is directly connected to the mailbox system. The mailbox is a smart memory
location that is configurable through different input and trigger functions. There are 128
mailboxes per cluster, each one with 8 bytes. The available trigger functions are:

• Doorbell: raises an interrupt anytime the mailbox is written;

• Match: raises an interrupt when the content of the mailbox matches exactly a config-
ured mask;

• Barrier: same as the match function but clears the content of the mailbox when the
interrupt is raised;

• Threshold: raises an interrupt when the content of the mailbox reaches or goes over a
configured value.

The input functions are:

• Write: the value is directly written in the mailbox and the previous value is lost;

• Or: the value is logically ORed with the content of the mailbox (m = pre v ∨ v);

• Add: the value is added to the content of the mailbox (m = pre v + v).

Through a proper configuration of the mailboxes trigger and input functions, and
by attaching their interrupt generation mechanisms to the 4 APIC lines, it is possible
to create a set of synchronization methods. Some examples are individual PE to PE

3.2 the kalray mppa3 29

notification channels, barriers between PEs or the RM of the same cluster, or even from
other clusters through the direct memory access provided by the AXI. Section 8.2.3.2
explores these components to generate initialization and communication code required for
the implementation of critical software in the MPPA3.

3.2.6 Clock components and performance measurement

The RMs and PEs of the MPPA3 have multiple components that can be used to measure
time or various events (clock cycles or cache misses for example) that happen at the
microarchitecture level.

3.2.6.1 Timers

Each core contains two 64 bit general purpose timers. Their current values can be obtained
by accessing the $t0v and $t1v registers. These registers are reset to 0x0 at boot time.

Timers can be controlled by the Timer Control Register ($tcr), and in particular be
started or stopped. When a timer is enabled, it is decremented on each tick of the core
clock, until it reaches 0. When this happens, the respective reset values of each timer ($t0r
and $t1r) are loaded to the current values registers and a corresponding status bit is set.

The hardware automatically catches this status bit change corresponding to a timer
underflow and, according to an interrupt enable bit ($t0ie and $t1ie), a pulse on the
corresponding interrupt line is generated.

The timers are used for the time-triggered execution method detailed in Section 8.2.3.2.
Each task that is scheduled in a processor has a defined release date, calculated statically
prior to the execution. There are two options to obtain the desired behavior:

1. Set a start of time reference value and then actively query the current timer value
until the difference corresponds to the defined release date (polling);

2. Set the timer value to the computed release date and put the core in a sleep state.
Once the timer expires, an interrupt wakes up the core and the execution proceeds
with the task call.

3.2.6.2 Performance Counters

Each core contains four 64 bit counters that allow to monitor various architectural events,
optionally triggering interrupts on overflow. The values of these counters are accessed
by the registers $pm0, $pm1, $pm2, $pm3. If the event they are configured to measure
happens, they are incremented by one or more units.

The performance counters are configured through the Performance Monitor Control
Register ($pmc). In particular, a 6 bit value is used to define the code of the event mea-
sured by each counter ($pm0c, $pm1c, $pm2c, $pm3c). Some relevant events that can be
measured are:

• Processor Clock Cycle (PCC): +1 at every clock cycle, even during idle modes;

• ICache Miss Event (ICME): +1 for each ICache miss. Does not increment on uncached
accesses;

3.3 response time analysis 30

• DCache Miss Event (DCME): +1 for each DCache miss in the L1 data cache. Does
not increment on uncached accesses.

These performance counters are used in our workflow Chapter 4 to measure the WCET
and Worst-Case Number of Accesses (WCA) as there is no formal model of the MPPA3
core to estimate these values. The Processor Clock Cycle event can also be used to measure
time in a time-triggered execution method.

3.3 response time analysis

Section 3.1.2 gave a general overview of key points of multi or many core architectures
that need to be closely looked upon when using them in safety-critical systems. It also
introduced the concepts of execution in isolation and interference. In this section we
go deeper into these topics. A typical response time analysis method starts with a set
of tasks Γ = {τ1, τ2, · · · , τn}, their data dependencies (that are inherent in a data-flow
program). Then, either using a given mapping [118] or also performing this step [112],
the method wants to find suitable release dates and response times for all tasks in Γ such
as the deadline is respected and all tasks are scheduled. The WCET in isolation of the
tasks is needed and also the knowledge of the hardware to be able to compute or avoid
interference.

3.3.1 Temporal Isolation

To schedule a set of tasks avoiding interference either they have to be run in completely
isolation, which breaks the parallelism and drastically reduces performance, or the tasks
should be divided into execution and memory phases [92]. These memory phases are
a read before execution, to fetch data, and a write after execution, to output data. The
scheduling framework should then avoid any concurrent memory phases on the system,
temporally isolating accesses to this shared resource, such as in [109].

3.3.2 Shared Resources Interference Analysis

This approach [9, 118] tries to conciliate and bound multiple accesses to the memory. It
aims to be more efficient than the isolation method and needs the number of accesses to the
memory of a given task on top of its WCET in isolation. With knowledge of the hardware,
it uses mathematical models to account for the worst-case in terms of interference from all
running tasks on the system at that moment. The difficulty here is similar to the WCET
computation problem: we want to give safe bounds but not overestimate them so we
do not lose performance and are still able to schedule the task set. In terms of resource
utilization this method usually yields best results, but if the models are inaccurate it can
lead to pessimistic bounds or even worse, too optimistic bounds that do not correspond to
the real execution.

3.3.3 Comparison

Figure 3.5 shows the difference in release dates and response time from imposing temporal
isolation or allowing concurrent execution with interference. It reuses the example program

3.4 mapping and scheduling 31

from Figure 2.2, removing the fby operator. We remind here that tasks N1 and N2 have a
data dependency towards task N0. The proposed mapping is tasks N0 and N1 to C0 of a
multi-core platform and task N2 to C1 of the same platform. It is also worth mentioning
that the tasks are not decoupled into memory phases and we can see more clearly the huge
impact in performance that temporal isolation can incur. If well computed, the interference
analysis allows parallel execution while still providing safe and predictable runtime.

N0

C1

C0 N1

N2

(a) Isolation

N1

C1

C0 InterN2

N2 InterN1

N0

(b) Interference

Figure 3.5: Response Time Analysis Methods

3.4 mapping and scheduling

DAGs are a common abstraction that is used to represent systems or programs that need
to be parallelized in a given platform. A DAG is composed of several nodes, that represent
the tasks of a system, and the edges connecting them, exposing their dependencies and
enforcing a certain degree of sequentialization. According to the precise methods exploring
the DAG they can also be enriched with additional information: timing constraints,
deadline, WCET, memory size.

The actual allocation of a DAG to a processor is a well researched topic. The allocation
process involves the mapping, i.e. the assignment of a node to a core, and the scheduling, i.e.
the order of execution within a certain core. Papers containing these allocation techniques
for real-time systems ranges from surveys [49, 99], in depth comparisons [96] or proposing
new methods [93]. We are interested here in works that follow our defined task model: a
task set obtained from a DAG and the mapping and scheduling process being static and
prohibiting preemption.

Our focused scope reduces the amount of related work, but we still found diverse
approaches to solve the problem of mapping and scheduling an application to a many-core
platform. In this section our goal is to categorize them into pure mapping techniques
(assigning tasks and memory space to cores), scheduling methods (that may take contention
into account) or mixed approaches combining both of them. Note that in the mixed
approach we consider only work that combine both steps; most approaches rely on two
separated steps (first mapping and second scheduling) that we take into account in each
respective category.

3.4.1 Mapping and Partitioning

This section aims to present the state of the art on DAG mapping on multi or many-core
platforms through papers that either focus solely on them or at least provide a clear
distinction between the mapping and the scheduling phases.

3.4 mapping and scheduling 32

Task mapping can be seen as a form of the bin-packing problem, where we have t
tasks of different sizes (in execution time and memory space) to be packed into a finite
number of cores with a certain memory capacity. In a multi-core system, a recurrent
solution is to employ an As Soon As Possible (ASAP) allocation [50], while respecting
the dataflow dependencies, in order to increase the system utilization. Then, the task at
hand is mapped to the core that provides the earliest possible end date. For a many-core
platform, often the goal is to minimize the number of clusters used. This is motivated by the
larger communication delay between different clusters in comparison with communication
through the local memory. The work presented in [35] reflects this, first partitioning the
tasks into groups and then assigning each group to an island (cluster), while trying to
minimize the number of occupied islands.

An extension of classical bin-packing heuristics, such as Best-Fit (BF) and Worst-Fit (WF),
is proposed in [24], to incorporate the particularities of allocating real-time DAG task on
NoC-based architecture using TDMA for message passing.

Also some recent publications [20, 133] grasp ideas from genetic algorithms, such as the
Single-objective and Particle Swarm Optimization and adapt them for the real-time task
mapping problem. The target platforms have a RTNoC, which is a special type of NoC
tailored for real-time systems, aiming to improve routing and topology to reduce the
WCTT.

3.4.2 Scheduling

The scheduling of real-time applications is a well researched topic for single as well as multi
processor systems [16, 93, 96]. Nevertheless, there is always room for innovation, making
novelties in scheduling methods and applications constantly appear in the community.
For critical-systems we are mostly focused on static scheduling methods that come after
a mapping step, in order to increase the predictability. In our scheduling related work
research we have found that either the mapping is assumed to be given or it is the first
step on a bigger framework. In either case, the scheduling is decided upon a set of tasks
for each core of the system. When the task model comes from a DAG, generally a list
scheduling based algorithm is employed [20, 33, 50]. .

In opposition to the static scheduling methods, when the task model allows it, dynamic
scheduling can be used to increase the flexibility, at the expense of software overhead and
loss of predictability. Without any DAG model, there is a higher deegree of freedom on the
execution order and a classical dynamic scheduling may be used, such as Earliest Deadline
First (EDF) [24, 37] and RM [35].

When the real-time system requires temporal isolation some solutions such as the
Integrated Modular Avionics (IMA) concept may be employed leveraging a more complex
problem. In [90] 2 techniques for scheduling applications partitions in cores are studied: (i)
constraint programming and; (ii) random distribution refined with adaptive search.

3.4.3 Mixed approaches

The mapping and scheduling procedures in a system are intrinsically connected. A subop-
timal output in any of these steps will incur in under-utilization of the platform or even
deadline misses. That is why a lot of works focus on taking a combined approach and
solving these problems together.

3.5 conclusion 33

A first category of mixed solutions for this problem employs constraint programming to
obtain an optimal solution given a set of constraints. An ILP formulation is used in [135]
where the memory partitioning and data allocation are part of the problem. ILP is also
seen in [22, 23] where the tasks are split into Read Execute Write (REW) phases, following
the PRedictable Execution Model (PREM) approach. Targeting industrial solvers, such as
IBM CPLEX, there is a complete WCET-aware code generation and multi-core deployment
framework presented in [105] and the works [111, 112] that provide temporal isolation
between tasks during their communication phases. Finally Satisfiability Modulo Theories
(SMT) are applied in [131] with additional improvements iterative phases to compute the
final solution.

The second category, on the other hand, uses global heuristic methods. One of them is
the well-known list scheduling. This is the default allocation in SCADE’s Multi-Core Code
Generator (MCG) [39]. In [136] the list scheduling results are compared against an exact
solution from SMT. A worst-fit partitioning of tasks is done in [36] followed by a Largest
Utilization First (LUF) allocation. Some approaches are based on the critical path in the
DAG as a priority to be scheduled [132, 146].

A rather distinct algorithm in [62] starts with a random assignment of tasks to cores with
later refinement by simulated annealing, which searches for the best neighbor solution
candidates. Finally several publications that use the PREM task model use some kind of
code orchestration either through the schedule [22, 23], within an operating system [119]
or at compiler level [132].

3.5 conclusion

Real-time systems are using more and more multi/many-core architectures as their target
platforms. The state-of-the-art study presented here provides the reader with knowledge
about the problems that appear when resources are shared between multiple cores. A
precise model of the hardware is required to confidently perform a response time analysis
on the software that will be executed. A review on mapping and scheduling strategies is
given, leveraging their importance for an efficient use of the platform.

Finally, the Kalray MPPA3 processor is detailed in this section, being the main target of
this thesis. In particular, we analyze key components important for real-time systems as the
memory hierarchy, on-chip communication and timing and synchronization components.

Part II

C O N T R I B U T I O N S

4
W O R K F L O W O V E RV I E W

4.1 General Idea . 37
4.2 Memory Phases Generation . 37
4.3 DAG Mapping and Scheduling . 39
4.4 Timing Analysis . 39
4.5 Orchestration Code Generation . 40
4.6 Comparison with existing workflow . 40

The thesis until this point introduced background knowledge on several topics that are
required to understand the methodology in order to generate code for real-time systems
on a multi/many-core architecture. The workflow presented in this chapter receives an
application, in the form of a data-flow graph, and transforms it into time-critical code for
the many-core MPPA3, which is our target.

The chapter starts by presenting an overview of this workflow, supported by a quick
introduction on each step that is explored with more details in the following chapters. It
concludes with a comparative evolution from a similar workflow that existed with the
Kalray MPPA2 as the target.

4.1 general idea

A graphical representation of the workflow is shown in Figure 4.1. The main contributions
of this thesis appear in the red blocks that define each major step of the workflow. There
is also a strong contribution on the MPPA3 arbitration model used by the Multi-Core
Interference Analysis (MIA) tool.

The initial input of this methodology is provided through an external multi-core code
generator that receives a data-flow application and generates: (i) the functional code from
each of the application nodes, (ii) a data-flow graph with precedence constraints and
(iii) the definition of memory transactions (communication) to be implemented later on.
The rest of the methodology will explore these intermediate data in conjunction with the
chosen partitioning and interference model, as well as mapping and scheduling algorithms
to generate the additional code to run the application in the platform.

4.2 memory phases generation

The Step 1 of this workflow consists in generating the code for the memory transactions.
Based on the description of the data structures used for communication (also called
channels), the communication graph and the execution model, the code for each memory
transaction is produced. The kind of execution model determines the number of phases
that are generated, as explained in Section 2.4. The 2-Phased model only has a write phase,
while the 3-Phased and Memory-Centric models (3-Phased with a master core for memory
management) have read and write phases.

37

4.2 memory phases generation 38

Data-Flow
Application

Multi-Core Code
Generator

Purely

Functional
Code

Memory
Transaction
Definition

Initial
DFG

Step 1: Memory Phases Generation
Memory

Partitioning
Model

Memory
Phases
Code

Timing Analyser

WCET WCA

Step 2: Mapping and Scheduling

Memory
Interference

Model

Algorithm
Selection

Annotated
DFG Core and Memory

Mapping

Global
Scheduling

MIA

Release
Dates

Step 3: Orchestration Code Generation

MPPA3
Model

Orchestration

Code

Our Tool

External Tool

Architecture / Execution Model

Intermediate Data

Code

Used by

Produces

Figure 4.1: From Data-Flow to Critical-Code workflow

4.3 dag mapping and scheduling 39

Chapter 5 presents in detail this step, enumerating all the studied phased-execution
models and illustrating their differences through examples. It also discusses the implemen-
tation methodology taking into account some specificities from the data-flow synchronous
language used (SCADE) and also the target processor (MPPA3). In particular we take
advantage of its cluster banked Shared MEMory (SMEM) to reduce the interference or
enforce isolation.

After this step the code for the memory phases is ready. A timing analyser is then used
to obtain the Worst-Case Execution Time (WCET) and Worst-Case Number of Accesses
(WCA) of the functional and memory phases code of each task contained in the application.
The WCA corresponds to the worst-case number of memory accesses generated by data
and instruction cache misses, which are potential sources of interference that must be
taken into account later on in the process, during the response time analysis.

4.3 dag mapping and scheduling

The Step 2 of the method is responsible for taking the initial Data-Flow Graph (DFG)
representation and deciding on a mapping of tasks to cores and a global scheduling
between all tasks that respects the initial dependencies and communication constraints.
The core mapping also intrinsically defines a memory mapping as the placement of data
and code from each task is done in specific SMEM memory banks.

The code and data privatization techniques for each core, as well as shared data place-
ment strategies are explored in the memory interference models presented in Chapter 5.
This chapter also presents new scheduling algorithms to define ordering between tasks
within the proposed memory partitioning and interference models.

With a higher degree of freedom, Chapter 6 contains the work done in creating and
exploring algorithms for the mapping and scheduling process, without any restriction
due to previously established task or memory partitioning. The goal is to improve upon
classical list-scheduling algorithms in order to benefit from the multiple cores and clusters
of the target platform.

The final output of this step is an annotated DFG: a file that summarizes all necessary
information to be given to the MIA tool. It incorporates all components tagged with a
star in Figure 4.1: the initial DFG for precedence constraints, the mapping that provides
task to core awareness, the global scheduling and the timing information. Additional
dependencies between memory transactions can be added to enforce isolation.

MIA is then used at this point to generate release dates that respect the information
contained in this annotated DFG: the mapping, the scheduling and the dependencies. The
tool also verifies if the global response time after interference and release date calculation
satisfies the deadline, i. e. if the DFG is schedulable with the given timing constraints.

4.4 timing analysis

The response time analysis tool used in our framework is MIA, developed originally
in [116], based on the Multi-Core Response Time Analysis (MRTA) framework [9]. This
tool allows the user to define architecture models to compute the interference generated
when several cores access the memory at the same time or traverse a communication bus.

Chapter 7 displays a study on the different arbitration levels contained in the MPPA3
processor, which culprits in mathematical models of the interference delay expected at

4.5 orchestration code generation 40

these convergence points of the system. The implementation of these mathematical models
in MIA is detailed in Section 8.1.5.

Even though MIA is considered an external tool within this framework, an improved
version is a contribution of this work. Details of the new algorithm that allows the analysis
to be scaled to thousand tasks in feasible time is in Section 8.1.4.

4.5 orchestration code generation

In Step 3 we generate the platform-specific code to orchestrate the application. The
release dates are incorporated in this code with one orchestration function per core. Note
that a cluster in the MPPA3 processor is mesochronous, thus we use a global barrier
synchronization during an initialization phase to ensure that afterwards the execution flow
and timings are respected.

The adaptations required in the Multi-Core Code Generator (MCG) script from SCADE
Suite, particularly to produce the different code blocks from Figure 4.1, are described
in Section 8.2. The section contains the process to go from a synchronous data-flow program
to low-level C code and how the target platform influences the generated code, particularly
in the initialization, communication and orchestration code.

4.6 comparison with existing workflow

A similar workflow existed [64] with the Kalray MPPA2 processor as a target with several
differences that are highlighted here.

First of all, it is worth insisting on the fact that the existing workflow gave an original
contribution on the generation of parallel code from Lustre/SCADE through an intermedi-
ate representation and parallelism extraction. This step has disappeared from our version
since it has been developed in the industry as the SCADE MCG [39]. As a consequence,
we directly use the result of MCG: the application functional code and an initial DFG.

Steps 1 and 2 of our workflow present contributions that were not in the existing tool.
We offer the possibility of different memory partitioning and interference models, as well
as several mapping and scheduling strategies. All of this was assumed to be given as input
in the previous work.

Finally as the Kalray MPPA3 is our target, we implemented its new arbitration model,
used in this workflow through the MIA tool from [116]. The previous workflow did not
implement such model, it simply used the Kalray MPPA2 model that was already included
in MIA. The Step 3, which produces the system and communication code for each specific
target, is a common implementation in both workflows.

5
E X E C U T I O N M O D E L S F O R R E A L - T I M E S Y S T E M S

5.1 Traditional Software Models . 42
5.1.1 Context . 42
5.1.2 Memory access uncertainty . 42
5.1.3 Divide to better analyze . 43

5.2 The studied execution models . 44
5.2.1 Model parameters and memory organization 44
5.2.2 Models overview . 44
5.2.3 Schedule Analysis . 45

5.3 Scheduling Algorithms . 47
5.3.1 Background concepts . 47
5.3.2 Overview and shared utilities . 48
5.3.3 Algorithms presentation . 49
5.3.4 Termination proofs . 52
5.3.5 Complexity Analysis . 52

5.4 Generalization to different software and hardware platforms 52
5.4.1 Single Shared Memory . 52
5.4.2 Cache privatization . 53
5.4.3 Distant DDR memory . 53
5.4.4 Multi-Cluster applicability . 53
5.4.5 Software generalization . 54

5.5 Conclusion . 54

Software written with performance and general purpose processors in mind presents
several problems when applied to the safety-critical real-time domain. Some of these
inconveniences are for example, memory accesses spread throughout the whole makespan
of the program, variable execution times due to synchronization mechanisms and disregard
about the delay that shared resource accesses can take.

However this kind software can be adapted or rewritten following some specific execu-
tion models that improve significantly the predictability of the system. One of the most
famous is the PRedictable Execution Model (PREM), which proposes the decoupling of
memory access phases from the rest of the program and their execution in isolation.

We expand on the idea of the original PREM and performed a study on different software
execution models that allow one to use Commercial Off-The-Shelf (COTS) processors
in hard real-time systems. The main idea of all models is to coordinate the memory
transactions so that there is no interference possible in the system or it is severely reduced.
The results of the study are in Section 9.2.

This chapter starts with Section 5.1 describing in detail the problems behind regular
software targeted for general purpose applications. Section 5.2 then introduces the selected
execution models for our comparison study and Section 5.3 presents new scheduling
algorithms developed to better place the memory and execution phases generated with
this method. Section 5.4 generalizes everything that was seen here to other hardware

41

5.1 traditional software models 42

and software contexts. Section 5.5 concludes the chapter and provides some future work
perspectives.

5.1 traditional software models

First we show the software execution models that are historically used in multi-purpose
programs, their flaws and how execution models targeted for real-time systems addresses
and solves them.

5.1.1 Context

As stated in previous chapters, the implementation of critical applications must satisfy
timing constraints, therefore it must bound the execution time and communication delays
of its tasks through interference estimation. Implementation on multi-core processors
classically uses spatial and temporal isolation to ensure the absence of interference. Any
interference causes a potential delay that requires bounding. Ten years ago, this was seen
as a main issue for time-predictability [42]. However, recent work has shown that such
interference could be taken into account without scalability issues [118].

This discovery has pushed the community into adopting response time analysis as a
viable solution to understand how generic programs behave in a multi-core processor
and the amount of interference delay that this change generates. Another branch of
research [109] continued to investigate how one could mitigate interference and have a
predictable execution without any interference. This was done through specific software
models that avoid concurrent memory accesses on systems with multiple initiators. In
order to do that efficiently these models must identify and eventually separate these
accesses from the rest of the program.

5.1.2 Memory access uncertainty

Let us start with an example of a Data-Flow Graph (DFG) that will be used throughout
this chapter to show how the different models work.

example 1 (data-flow graph): We use a simple data-flow application to illustrate the
implementation of the execution models under study. Figure 5.1 shows the DFG: each square
represents a task (Ni for Node i in data-flow terminology); each edge represents a communication
(data transfer) and thus a precedence constraint.

N0

N1

N2

N3

N4

Figure 5.1: Example DFG

5.1 traditional software models 43

In a single-phased execution model, each task Ni is considered an indivisible execution
unit, assuming also that no preemption is allowed in this model. Therefore the memory
accesses that must be done by the nodes to communicate with each other are mixed in this
single unit. When we apply a response time analysis technique or implement isolation we
are faced with the uncertainty about when there are memory accesses being made and
therefore the analysis must assume that they are possible at any time. Figure 5.2 shows a
possible schedule from the application in Example 1 mapped to two cores.

Interfence
N0

N2

Core 0

Core 1 InterN1

N1 InterN2

N3

Isolation

N0

N2

Core 0

Core 1

N1

N3

N4

N4

Figure 5.2: Single-Phased Model Schedule

We can see that when N1 and N2 run in parallel, the response analysis must assume that
interference can happen throughout their whole duration. This leads to overly pessimistic
results. Similarly, if we schedule the system aiming for complete isolation when accessing
the memory, task N2 can only start after the completion of task N1, thus hugely penalizing
the execution time, making it equal to a single-core schedule.

5.1.3 Divide to better analyze

Phased execution models appeared as a solution to the problem presented in the last section:
not being able to distinguish the different parts of a task, in particular its execution and
memory access phases. They also appeared from the observation that some applications
already follow a phased structure with memory phases split from the main execution part.
The proper introduction of phased execution models enabled time-predictable execution
of applications on embedded systems that used COTS processors.

The main characteristics of phased execution models are:

• division of jobs into a sequence of non-preemptive scheduling intervals;

• time-predictable execution of some of these scheduling intervals by splitting them
into shared memory access phases and local execution phases.

The original phased execution model work appeared with PREM and was motivated
by the issue of distant and long-latency shared memory accesses with a lot of potential
interferences. Further work has applied the PREM ideas to multi-core processors that
include multiple on-chip local memories, in particular the Acquisition Execution Restitution
(AER) model [55], which is a variant of 3-Phased execution models, also known as Read
Execute Write (REW).

5.2 the studied execution models 44

5.2 the studied execution models

The following section contains details about the phased execution models that were
selected for implementation in this work, with schedule examples at each step for easier
understanding of their particularities.

5.2.1 Model parameters and memory organization

Inspiration was taken from the initial PREM works [55, 109] to investigate different software
execution models by varying the following parameters: (i) a timing analysis that takes into
account the delays of shared memory interference, versus an implementation with isolated
phases to avoid any memory access interference; and (ii) the mapping of the inter-task
communication buffers into the on-chip shared memory either distributed to memory
banks assigned to the cores, or centralized into a dedicated memory bank.

The implementation of these models was tailored to multi-core processors: clusters of the
Kalray MPPA. We used the MPPA2 at the beginning of the experiments due its availability
but later on we ported the work to the MPPA3 when it was released. The important feature
that appears in both of them is the shared multi-banked on-chip memory with a dedicated
bus arbiter to access each memory bank with service guarantees. Taking advantage of
these features enables higher performance while enforcing time-predictability through
software-defined privatization of the local memory banks. Nevertheless the techniques
seen here can also be applied to other memory systems by broadening the interference
scope.

Remember that we use SCADE MCG (see Section 8.2) to generate parallel code from the
DFGs of our applications. This generator performs an initial schedule between some of the
phases that restricts the amount of flexibility that we can have in the final schedule. When
this is the case we explain and justify the choices in text.

5.2.2 Models overview

In this section we present the execution models, inspired by PREMs [55, 109], that we
selected for our study. We compare their implementation according to two criteria: memory
partitioning and memory interference.

• Memory partitioning

1. a 2-Phased model with execute and write phases, see Figure 5.3. The memory is
partitioned such that each partition is local to a core and the tasks may access
another partition only during the write phases, to send the shared data. This
way any read of shared data is done in the local memory during the execute
phase.

Core Bank
(Local Memory)

Core Bank
(Local Memory)

Figure 5.3: 2-Phased: Execute-Write

5.2 the studied execution models 45

2. a 3-Phased model (read, execute and write phases) with a local partition for
each core accessed during the execution phase and one global shared partition
accessed by each task during read and write phases, see Figure 5.4.

Core

Bank
(Shared Memory)

Bank
(Local Memory)

Core Bank
(Local Memory)

Figure 5.4: 3-Phased: Read-Execute-Write with Shared Bank

3. a Memory-Centric 3-Phased model with a local partition for each core accessed
during the execute phase and a global shared partition managed by a dedicated
core that orchestrates the read and write phases for all tasks, see Figure 5.5.

Core

Bank
(Shared Memory)

Bank
(Local Memory)

Core Bank
(Local Memory)

Master
Core

Figure 5.5: Memory-Centric 3-Phased with Master Core

• Memory interference

a- no interference: the mapping and scheduling ensures no interference by a
software isolation between memory phases;

b- analyzed interference: an architecture model is used to estimate the interference
delay and take it into account as part of the Worst-Case Response Time (WCRT).

5.2.3 Schedule Analysis

Recall Example 1 from Section 5.1.2. We are interested now in showing the differences that
can occur when splitting and scheduling this example on a system with two cores using the
models presented in the previous section. The schedules presented in the following figures
do not aim to properly represent time. The diagram scale may change to accommodate a
higher number of node phases, without necessarily meaning that a schedule in particular
takes more or less time due to this representation form. The evaluations about the models
and algorithms are in Section 9.2.

Figures 5.6 to 5.10 give a possible schedule for the 5 execution model implementations:
in white are the execute phases (ExNx), in green the write phases (WNx), in yellow the
read phases (RNx), and in red the delays due to interference. In all of the phases names,
Nx represents the node identifier associated with that phase.

5.2 the studied execution models 46

Figures 5.6 and 5.7 represent two final schedules for the 2-Phased model where each
task reads data locally and writes data to the reader memory. We observe that when
interference is considered (Figure 5.6) there may be additional delay to take into account.
Here, the write phase of task N1 and N2 interfere due to the fact that they both write in
the local memory of task N4. In the isolated implementation model (Figure 5.7) these two
write phases cannot occur simultaneously, to prevent any interference. We see that WN2

starts after WN1 has finished.

ExN0 WN0

ExN2 WN2

PE0

PE1 InterN1

ExN1 WN1 InterN2

ExN3 WN3 ExN4 WN4

Figure 5.6: Example of scheduling for the 2-Phased model with interference cost

ExN0 WN0

ExN2 WN2

ExN1 WN1

ExN3 WN3 ExN4 WN4

PE0

PE1

Figure 5.7: Example of scheduling for the isolated 2-Phased model

For the 3-Phased execution models (Figures 5.8 and 5.9), there are the additional read
phases as each task reads from the shared memory. We observe that there is additional
interference in the read phases of tasks N1 and N2 (Figure 5.8). We also see that a scheduling
algorithm is required to achieve temporal isolation: here a priority is given to task N1 to
start its read phase RN1 before task N2 (Figure 5.9).

ExN0 WN0

ExN2 WN2

PE0

PE1 InterN2

ExN1 WN1 InterN2

ExN3 WN3

RN0 RN1 InterN2

RN2 InterN1 RN3 ExN4 WN4RN4

Figure 5.8: Example of scheduling for the 3-Phased model with interference cost

ExN0 WN0

ExN2 WN2

PE0

PE1

ExN1 WN1

ExN3 WN3

RN0 RN1

RN2 RN3 ExN4 WN4RN4

Figure 5.9: Example of scheduling for the isolated 3-Phased model

5.3 scheduling algorithms 47

For the Memory-Centric execution model implementation (Figure 5.10), there is no
possibility of interference due to the fact that each memory transaction is done by the same
core. Thus, the isolated schedule given is the only one possible for this example. Here we
also observe that a scheduler is required: for instance, the read phase of task N2 (RN2) is
scheduled before the read phase of task N1 (RN1).

ExN0

WN0

ExN3

WN3

PE0

PE1

WN1RN0 RN1 RN3 RN4

ExN4

WN4Master
(PE2)

RN2

ExN2

WN2

ExN1

Figure 5.10: Example of scheduling for the isolated Memory-Centric model

In all schedules we observe that there is the same sequence of execute tasks on core
PE0 and on core PE1: this is to illustrate that we work from an initial schedule given by
SCADE that must be preserved. The freedom in the schedule is only between the memory
phases. Note that these new schedules (isolated 3-Phased and Memory-Centric) are global
because they must take into account the global data-dependencies and they are constrained
by what is executed on other cores. For instance, in Figure 5.9 tasks RN1 and RN2 are
executed on two distinct cores but must be executed in isolation nevertheless.

5.3 scheduling algorithms

This section presents 3 global scheduling algorithms to isolate the memory transactions of
the memory phases. The general goal of these algorithms is to anchor the order between
these transactions across all cores. This execution order is then incorporated into the DFG
in the form of additional dependencies and priority information. Later on, this enriched
DFG is given to Multi-Core Interference Analysis (MIA), a response analysis tool that will
take into account the graph, dependencies and communication information to compute
release dates for each task and verify the global schedulability. These release dates are used
for a time-triggered execution that can ensure temporal isolation, if the model requires,
between any task that access the memory of the system.

5.3.1 Background concepts

Before introducing the general principle of the algorithms and their listings, we recall and
properly define some terms that will be used onward.

In Section 5.2.2 memory transactions and phases have been introduced and it is important
to clarify their difference: a transaction is an indivisible task that access the memory, while
a phase can be composed of multiple distinct transactions. The algorithms presented here
perform the schedule at the transaction level but must respect precedence constraints at
the phase level.

The definition of a dependent memory transaction is strongly related to a typical
data-flow task dependency, with some small particularities. A memory transaction m is

5.3 scheduling algorithms 48

constituted of a memory operation: either read or write, respectively mr and mw. It also
has two compute transactions associated with it, here called c1 and c2. Each transaction
has an associated release (rel) and end (end) date.

The definition then depends on the memory partitioning model:

• For the 2-Phased model: there are only write operations, so given a memory trans-
action mw from c1 to c2, it is dependent on c1 being finished, which imposes that
relmw ≥ endc1 . There is no newly developed algorithm for this model as the optimal
ordering is always obtained by scheduling the write phase right after the execute. By
doing this, the task dependent on this write phase is unblocked as early as possible.

• For the 3-Phased and Memory-Centric models: there are read and write operations.
Given a memory transaction mw from c1 to c2, it is dependent on c1 being finished,
which imposes that relmw ≥ endc1 . Given a memory transaction mr from c2 to c1, it is
dependent on its mirror write transaction, e.g. mw, which imposes that relmw ≥ endmr .

5.3.2 Overview and shared utilities

All algorithms have the same input and output. The starting point is a set ℓ composed of
read and write phases, ordered in the scope of a core, following the initial mapping and
scheduling.

The general idea is to pick transactions from ℓ and put them in the set g, which is the
globally ordered set of memory transactions across all the cores. We start with the first
transaction from the first phase of the first core, which always perform a write operation,
meaning that we consider data-flow applications which are either closed (they do not
require external inputs) or already initialized. Then, according to the execution model
and the algorithm, we either continue scheduling the other transactions from this phase
or start looking for other transactions that can be scheduled because their dependencies
are satisfied. The algorithms end as soon as all memory transactions are scheduled: either
if ℓ and g have the same number of elements, or if we have already iterated through all
memory transactions in ℓ. Remember that the set g contains the scheduled transactions
and in the end it must be equivalent in size to the set ℓ.

In the algorithms we assume the existence of certain utility functions used in the listings
and that have their core functionality explained here:

• DepOk(t) — checks if all the dependencies of a transaction t are already in g;

• AreOnSameCore(t1, t2) — returns true if t1 and t2 are mapped to the same core;

• GetWrPhase(t) — returns the write phase associated with the execute task t;

• GetRdPhase(t) — returns the read phase associated with the execute task t;

• GetMirror(t) — returns the mirrored t transaction, i.e. for a write transaction between
N1 and N0, its mirror transaction is a read transaction between N0 and N1. Note
that in case of a mirror transaction the read is only subject to the precedence of
the corresponding write. Thus, it is eligible for scheduling as soon as the write
transaction ends.

5.3 scheduling algorithms 49

5.3.3 Algorithms presentation

For the 3-Phased execution, the memory phases belonging to a task are run on the same core
as the execute phase. This restricts the algorithm, as they must be sequentially placed in
this core due to the intrinsic SCADE execution model. Any memory transactions belonging
to other tasks of the same core cannot be interleaved as they would violate the initial
mapping and scheduling. To explore the impact of this restriction, while also proposing a
solution, we introduce two variants of an algorithm for this 3-Phased model.

Algorithm 1 shows the first variant. As in [120, 121], the 3 phases (REW) are considered as
a contiguous entity, without any idle time between the memory or execute transactions. The
algorithm follows the general idea from Section 5.3.2 but it always schedules the remainder
of a write phase after placing a write transaction on g (Line 5). Each write transaction
unblocks its mirror read, which will only be scheduled if all other read transactions of the
same phase are also unblocked. Otherwise, this read transaction waits in a leftover set.

Algorithm 1: 3-Phased contiguous memory phases, referred to as Cont in Section 9.2

1 w_sched = list(); r_leftover = list();
2 foreach t in ℓ do
3 if ‘write’ in t and t not in g then
4 g.append(t); w_sched.append(t);
5 foreach t2 in GetWrPhase(t) do
6 g.append(t2); w_sched.append(t2);

7 foreach t2 in w_sched do
8 if DepOk(t2) then
9 foreach t3 in GetRdPhase(t2) do
10 g.append(t3);
11 if t3 in r_leftover then r_leftover.remove(t3);

12 foreach t3 in GetWrPhase(t2) do
13 g.append(t3);

14 else r_leftover.append(t2) ;

15 w_sched.clear();

16 foreach t2 in r_leftover do
17 if DepOk(t2) and t2 not in g then
18 g.append(t2);
19 if t2 in r_leftover then r_leftover.remove(t2);

example 2: To illustrate the difference of behavior between the 3 algorithms we will use the
program in Figure 5.1. We consider that the scheduling algorithm is at the point of deciding
about the schedule of the write phase of the task N0. This phase is composed of two transactions:
N0_write_N1 and N0_write_N2. We also know that N0 and N1 are mapped to the same core (PE0)
and N2 is mapped to a distinct core (PE1). Algorithm 1 would globally schedule the transactions:
N0_write_N1→ N0_write_N2→ N1_read_N0→ N2_read_N0. Note that with Algorithm 1 the
PE1 remains stuck until N1_read_N0 finishes, even though the data dependency has already been
satisfied.

5.3 scheduling algorithms 50

Algorithm 2 shows the second 3-Phased variant. We flexibilize the contiguous schedule
constraint by adding the possibility of introducing idle time between memory transactions
of the same task and give priority to scheduling read transactions. This allows to unblock
execute phases earlier than the previous algorithm and have a smaller response time. We
use a double-ended queue (abbreviated here as deque) for the scheduling candidates
that are popped at each iteration. Intuitively, once a transaction is scheduled, its mirror
transaction may be:

• A read or write that needs to be placed contiguously with the transactions of the
same phase;

• A read transaction belonging to another core that may be scheduled directly and
unblocks this other core from an idle state.

Thus, according to the mirror transaction operation and mapping, it is placed at different
positions in the deque to be scheduled in the next iterations.

Algorithm 2: 3-Phased with idle memory phases, referred to as Opt in Section 9.2

1 sched_cand = deque(first_task_write_transactions);
2 while ℓ.size() ̸= g.size() do
3 c← sched_cand.popleft();
4 if c not in g then
5 if DepOk(c) then
6 g.append(c);
7 m← GetMirror(c);
8 if ‘write’ in c then
9 tr ← GetWrPhase(c) + GetRdPhase(c);
10 idx← −1 ;
11 foreach c2 in sched_cand do
12 if c2 in tr then idx← c2.idx();

13 if idx ̸= −1 then sched_cand.insert(idx + 1, m);
14 else
15 if AreOnSameCore(c,m) then sched_cand.append(m);
16 else sched_cand.appendleft(m);

17 else if ‘read’ in c then
18 foreach t in ℓ do
19 if m in t then sched_cand.append(t);

20 else sched_cand.append(c);

example 3: For our illustrative program in Figure 5.1 and the moment of scheduling the write
phase of the task N0, Algorithm 2, instead of blindly sequentially scheduling all write transactions,
searches for unblocked read transactions (mirror) mapped to another core. Due to SCADE code
generation restrictions the algorithm cannot break the initial ordering between the transactions and
interleave them if they belong to the same core. However, it introduces idle time and give priority
to scheduling read tasks of other cores. Therefore, the global schedule given here is N0_write_N1

5.3 scheduling algorithms 51

→ N0_write_N2→ N2_read_N0→ N1_read_N0. This allows PE1 to start running the execute
phase of node N2 earlier, which gives an overall shorter response time.

Remember that both algorithms respect the SCADE semantics and preserve the DFG
order as well as other constraints. The only optimization done in Algorithm 2 is to allow
idle slots between memory and execute transactions.

For the Memory-Centric execution model, the sequential constraint of SCADE is loosened
as memory transactions are mapped to a different core. Thus, there is room for a lot more
flexibility when scheduling these memory transactions: we have the possibility to arrange
them in any order as the execute phase will not happen on the same core. We can freely
add idle intervals or not, interleave read/write transactions from other tasks and the
execute phases will naturally follow the master core local scheduling due to the data-flow
dependencies.

Algorithm 3 presents the method used. It follows the overview methodology but uses
the mirror searching as in the Algorithm 2 to schedule read transactions as they are ready
(Line 8), accelerating the parallelism deployment throughout all cores. If the dependencies
for the read transactions are not satisfied they are placed in a leftover list that is revised in
Line 13 before searching for the next write transaction in ℓ.

Algorithm 3: Memory-Centric isolation scheduling

1 sched_leftover = list();
2 foreach t in ℓ do
3 if ‘write’ in t and t not in g then
4 if DepOk(t) then
5 g.append(t);
6 m← GetMirror(t);
7 if DepOk(m) then
8 foreach t2 in GetRdPhase(m) do
9 g.append(t2);
10 if t2 in sched_leftover then sched_leftover.remove(t2);

11 else sched_leftover.append(m) ;

12 else sched_leftover.append(t) ;

13 foreach t in sched_leftover do
14 if DepOk(t) then
15 g.append(t);
16 if t in sched_leftover then sched_leftover.remove(t);

example 4: Coming back at the program in Figure 5.1 and the moment of scheduling the write
phase of the task N0, Algorithm 3, after scheduling a write transaction, searches for unblocked read
transactions (mirror) mapped initially to any core (due to the dedicated core for memory transactions,
the SCADE code generation restrictions are no longer applicable). Therefore, the global schedule
is N0_write_N1→ N1_read_N0→ N0_write_N2→ N2_read_N0. As the memory operations are
mapped to a single core, this algorithm tends to behave worse than Algorithm 2.

5.4 generalization to different software and hardware platforms 52

5.3.4 Termination proofs

• Algorithm 1: terminates because its main loop iterates over the elements of the finite
set ℓ, which contains the memory transactions.

• Algorithm 2: terminates when g equals the size of ℓ, the initial set of memory
transactions, meaning that it has successfully defined a global schedule for all tasks.
There is also an auxiliary structure c that contains schedule candidates. At each
iteration we pop one candidate from c and it is either added to g or put back into c.
If it is added to g one or more transactions from ℓ are then added to c as candidates.
The insertion process avoids any duplication. As the number of transactions is finite,
once all candidates in c have been scheduled, the termination point is reached.

• Algorithm 3: terminates due to the same reason as Algorithm 1, its main loop iterates
over the finite set ℓ

5.3.5 Complexity Analysis

The complexity is given in terms of n which is the number of transactions to be scheduled.

• Algorithm 1: O(n3), as there are up to three nested loops (Line 2, Line 7 and Line 9)

• Algorithm 2: O(n2), as there are up to two nested loops (Line 2 and Lines 11;18)

• Algorithm 3: O(n2), as there are up to two nested loops (Line 2 and Lines 8;13)

To provide a comparison baseline we looked at the complexity of algorithms developed or
referenced by [30] and [63]. Our three algorithms stay under O(n3) which is reasonable for
an offline scheduling method. Moreover, similar algorithms found in these two references
range between linear and cubic complexity, which reinforces for the NP-hardness nature
of the mapping/scheduling problem on multi-core architectures. In terms of scalability,
[53] has showed that thousands of tasks can be scheduled in a reasonable time with an
O(n2) complexity, which is the case for the majority of our algorithms.

5.4 generalization to different software and hardware platforms

This sections aims to give guidelines on porting the presented execution models to
platforms that do not have the same characteristics as the MPPA. In particular a different
memory hierarchy that requires a different analysis than the one presented until here. It also
explores the adaptability to software environments outside of the SCADE programming
language.

5.4.1 Single Shared Memory

Throughout the chapter we have shown that a multi-banked shared memory can greatly
reduce the interference potential during the access to this resource. It is not a required
feature to implement phased execution models though, the biggest difference being that
one cannot assume that the execute phase of a task will run in isolation, as there is no
memory bank privatization scheme.

5.4 generalization to different software and hardware platforms 53

Therefore, the response time analysis tool used must be able to take this into account
to compute the appropriate delays. The MIA tool, which will be presented with more
details in Section 8.1, has a single-bank option that in brief considers all memory accesses
as possibly conflicting if they can happen at the same time.

To implement isolation, even the execute phases must run solely in the hardware. This
could be improved if there is a guarantee that the data needed by the execute phase fits
the private cache level available and it is preloaded.

5.4.2 Cache privatization

Several works [104, 134] have explored cache privatization techniques that allows a system
to mimic the idea of a multi-banked memory as long as there is enough cache available to
implement it correctly. This enables a platform that does not have independent arbiters
to the memory bus to provide to its cores a way to run execute phases of the presented
models in isolation.

By using this technique the assumptions made in the chapter about code and data priva-
tization can be sustained and the interference scope is still greatly reduced. Nevertheless,
using cache mechanisms in real-time systems must be taken cautiously, the refill policy
should be analyzed so that no unexpected delays are introduced in the system.

5.4.3 Distant DDR memory

It is typical for COTS nowadays to only have access to a distant and long latency DDR
memory that acts as a global contention point for the multiple cores in the processor.
In [110] the authors explore the use of the DDR memory in the MPPA2 processor and how
to manage the memory accesses through the NoC to ensure time-predictability.

For a generic system, the biggest chance is that the memory phases tend to be larger
and become the main bottleneck of the system. A good scheduling algorithm is therefore
even more important than in other scenarios. The literature presents the timing problems
involved in using DDR memory [107], as well as task scheduling techniques that efficiently
solve them [91].

5.4.4 Multi-Cluster applicability

The Kalray MPPA family of processors appears as a friendly target for time-critical systems,
and in particular for phased execution model implementation, as the multi-banked memory
of a compute cluster is large enough for the applications studied. Using more than one
cluster is possible and has been exploited through the use of the NoC and network time
calculus in [65]. However, inter-cluster data transfers introduce additional latency, leading
to longer memory transactions. Inside a cluster, the memory transactions are identical
to the ones exploited in this chapter, but each inter-cluster data transfer may enlarge the
memory transaction and lead to different results.

For our target, the MPPA3, the AXI transfer should be the preferred method as it
is directly accessible by the cores and leads to a more deterministic communication
method than the NoC. Additional details as well as the traversal times can be found
in Section 3.2.4 and Table 3.1.

5.5 conclusion 54

5.4.5 Software generalization

Our work may be generalized out of the SCADE context. It may be applied to any data-flow
application, as Simulink ones for example. The minimal initial information for our method
is a data-flow graph, a definition of the communication data (the structure size and which
task access what) and an initial mapping/scheduling. For the initial scheduling/mapping,
we could use any state-of-the-art method if it is not supplied with the code. Finally, a
difference with minor impact is that the generated C code from SCADE is not identical to
the generated C code by other data-flow languages, which may require modifications on
the generated orchestration code.

5.5 conclusion

As we have seen in this chapter, predictable execution with reasonable response times and
easier analysis can be obtained by incorporating phased execution models into a workflow
that produces low-level C code from data-flow programs. Among the available models
we have seen that each one may be more adapted for a specific scenario. For example
the 2-phased model for architectures that allow remote write and interference-free read
operations; the Memory-Centric for architectures that only contain distant memories.

Possible extensions to this work are:

• Use a large external DDR memory. With this configuration, further work is needed
as the memory phases may last significantly longer than the execute phases, unlike
in our study.

• Incorporate runtime adaptation of the generated time-triggered schedule, as proposed
in [130]. Such mechanism can reduce the pessimism introduced by computing bound
WCRT looking at the Actual Execution Time (AET) of tasks, regardless of their
phases.

6
D A G M A P P I N G A N D S C H E D U L I N G

6.1 System Model . 56
6.2 Hypotheses . 57
6.3 Problem Formulation . 57

6.3.1 Definitions . 57
6.3.2 Communication cost . 58
6.3.3 Total time . 58

6.4 Existing solution for DAG mapping and scheduling 58
6.4.1 Static Level Computation . 59
6.4.2 HLFET List Scheduling Algorithm . 59

6.5 Proposed solution for DAG mapping and scheduling 60
6.5.1 Step 1: Node to virtual processor assignment 60
6.5.2 Step 2: Virtual core to virtual cluster assignment 61
6.5.3 Step 3: Virtual to physical cluster assignment 63

6.6 Conclusion . 63

Many-core platforms provide a huge parallel computational power but are inherently
subject to interference. The concurrent use of the available clusters and communication
mechanisms leads to resource sharing and bottlenecks. These architectures provide a
great opportunity for performance increase, but for real-time systems, they still require
rigorous methods to ensure respect to timing constraints and provide a deterministic and
predictable runtime behavior.

Performance improvement on many-core architectures is also expected for safety-critical
applications, and one important step that can greatly impact the overall execution time is
the mapping and scheduling of tasks onto these multiple cores and clusters. This chapter
aims to investigate, analyze and propose solutions for this challenge.

We set out to solve the problem of mapping and scheduling a partially ordered group of
tasks on a many-core platform. This group of tasks can be abstracted by a Directed Acyclic
Graph (DAG), where each node or vertex represents one task. These terms are equivalent
and used interchangeably in this chapter. The whole DAG is executed periodically on
the system, repeating itself, and must respect a global deadline. The hard real-time
requirements favor an offline mapping and non preemptive scheduling methodology
that lacks flexibility. In contrast, it allows the framework to have a higher computational
complexity, containing for example solvers or high degree polynomial algorithms.

The chapter starts by defining the system model, aiming to be as generic as possible,
only supposing a many-core architecture organized into a fixed number of clusters. Then
we clarify the general hypotheses assumed for the system, applications and the solutions
proposed. The problem formulation follows with theoretical definitions on the DAG
application structure and the overall communication cost between nodes when applied to
the system model.

Algorithms to solve the formulated problem are then presented. We start with a classical
list-scheduling algorithm [3], included in the SCADE Multi-Core Code Generator (MCG).

55

6.1 system model 56

A new algorithm is then introduced, taking into account several aspects that the existing
one ignores: memory use, communication cost and cluster organization. It is an initial
work to provide an heuristic-based solution that can be applied to many-core platforms.

6.1 system model

The target platform is composed of M clusters × N cores, meaning that it has M clusters,
each one grouping together N cores. Thus, each cluster has the same number of cores, local
memory size and contains the same architectural components. Moreover, the cores within
a cluster are also identical and have the same delay when accessing the local memory.

The communication between tasks can be intra-cluster, using only the local memory,
or inter-cluster, using a specialized bus or some kind of Network-On-Chip (NoC). The
platform is topological in this aspect, i. e. intra-cluster or inter-cluster communication
have different delay values. This should be taken into account during the mapping
and scheduling process to improve over a naive approach that ignores this difference.
Furthermore, we consider a constant delay for intra-cluster communication that fits the
System On Chip (SoC) topology.

The task model comes implicitly from the DAG definition. For each task, their Worst-
Case Execution Time (WCET) and Worst-Case Number of Accesses (WCA) can be estimated
using a tool or benchmarked on the real hardware. This information is later used and
refined to compute the Worst-Case Response Time (WCRT) of each task and of the DAG,
to guarantee the respect of the timing requirements of the specification. It is important to
state that on top of the global deadline of the DAG, each task has a constrained deadline
that it is strictly smaller than the task’s period. In our model, this is actually defined by
the release date of the next task.

We employ the Multi-Core Interference Analysis (MIA)1 tool for WCRT computation.
Our method aims to provide a good input for this tool: a fixed mapping and the order of
the tasks on each core of the platform. MIA having a description of the target architecture
is then capable of computing the interference cost and outputting safe and correct release
dates for each task, to later on orchestrate a time-triggered execution.

A visual representation of the system model and the steps required to move from the
initial problem to a final schedule can be seen in Figure 6.1. This chapter is strongly focused
on the Step 1 depicted in the figure.

Time-Triggered Partitioned Schedule with Interference Delay

Partial Schedule

Cluster m

Platform
M clusters x N cores

DAG

Cn+2 Cn+3

Cn

Cn+1

N0 N1 I

N2

Step 1
Mapping and

Ordering

N0

N2

N1

Step 2
MIA

N3

N4
Cn+1 Cn Map

N0 N1Order N2 N3 N4

I N3 N4

t

t

relN0 relN1

relN2 relN3 relN4

Figure 6.1: Workflow from DAG to time-triggered execution

1 Open source software under the CeCILL-C license and available at https://gricad-gitlab.

univ-grenoble-alpes.fr/verimag/synchrone/mia

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/mia
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/mia

6.2 hypotheses 57

6.2 hypotheses

In order to clearly define the scope of this work we assume a certain number of hypotheses
regarding the application, the platform and our method. They are:

1. Mono-periodic system at the DAG level, possibly expanding different task periods to
their least common multiplier. A multi-periodic mode can be seen as an improvement
for future work.

2. The local memory is sufficient for the data and code size required by each task
belonging to the application. This should be verified and ensured during the mapping
process.

3. We perform a partitioned scheduling, which is a static offline map and schedule that
does not allow migration of tasks between cores or clusters at runtime.

4. The schedule is non preemptive, which means that once a task is released it executes
until its completion.

6.3 problem formulation

Our final goal is to map and schedule all nodes from a DAG onto an arbitrary platform
composed of M clusters × N cores. We also want to do this while minimizing the WCRT
of the system. In this section we will develop a set of functions and equations allowing us
to give an expression of the time that an individual task will take to execute on the system.

6.3.1 Definitions

We begin by precisely defining our DAG named G, which is composed of a set of vertices
(or nodes) V and a set of edges E:

G = (V, E)

E ⊆ V ×V

We classicaly note succ(i) = {j ∈ V/(i, j) ∈ E} the set of successors of node i in the graph.
For any node v in the set V of G we are given the following information:

∀v ∈ V

Sv memory size (instruction + data)

Wv execution time in isolation
(6.1)

In an analog manner, for any edge e = (i, j) in the set E of G, connecting nodes i and j
we have an implicit data exchange:

∀(i, j) ∈ E : Qi,j size of the data exchange between i and j (6.2)

The placement of any given node v on the system is given by a tuple (m, n) where m
identifies the cluster index and n identifies the core local index:

P : v→ { (mv, nv) | max (mv) = M and max (nv) = N } (6.3)

6.4 existing solution for dag mapping and scheduling 58

6.3.2 Communication cost

Given two nodes i and j from G, the number of data blocks that are exchanged between i
and j in memory units is given by Qi,j, as introduced in Section 6.3.1.

Therefore, the time delay associated with the memory phase of a task i communicating
with j is given by the number of data blocks multiplied by the time to transport each
individual block plus the interference (if taken into account at this moment):

Di,j = Qi,j × CM
i,j + Ii,j (6.4)

The interference value Ii,j depends directly on the mapping of i and j and also on
concurrent tasks being executed on the system. In this work its precise computation will
be done by the MIA tool, specialized in interference analysis. Nonetheless we keep I in
this equation and in Equations (6.6) and (6.7) because an approximate interference value
can help in the mapping process.

The cost of each individual block C is constant and expressed according to the mapping
of the source i and target j, either local or external:

CM
i,j =

Cℓ if i, j are on the same cluster

Cx if i, j are on different clusters
(6.5)

Note that Cx depends on the topology of the platform.

6.3.3 Total time

Using the previously definitions and functions from Sections 6.3.1 and 6.3.2 we are able to
compute the total execution time of a vertex from the DAG. For a given node i this time is:

Ti =Wi +

∑
j | i,j∈V
mi=mj

Qi,j × Cℓ + Ii,j +

∑
j | (i,j)∈V

mi ̸=mj

Qi,j × Cx + Ii,j

(6.6)

Which, using Equation (6.4), can be simplified to:

Ti = Wi + ∑
i,j∈V

Di,j (6.7)

6.4 existing solution for dag mapping and scheduling

The investigated existing solution for the mapping and scheduling of a DAG is the list
scheduling integrated into the SCADE MCG script. It uses the same definitions introduced

6.4 existing solution for dag mapping and scheduling 59

in Section 6.3.1, but focuses only on the Wv (the execution time in isolation of a node
v). The algorithm deliberately ignores Sv (the memory size of a given node) and Qi,j
(communication cost associated with edges connecting two nodes i and j).

The list scheduling is a family of algorithms that keep a priority queue of schedulable
tasks. The task with the highest priority is mapped to the core which allows the earliest
start date for this task. Once this task is scheduled, its successors may become schedulable
and eventually are put into the priority queue. This process is repeated until all tasks are
mapped. If two tasks are mapped to the same core, they are scheduled in the same order
as their allocation.

The methods for application of the list scheduling algorithm only differ in the choice
of the priority function for the queue. With the Highest Level First with Estimated Time
(HLFET) heuristic [3], the priority of a task is defined by its Static Level (SL), which is the
length of the longest path from the task to an exit node (a node with no successors in the
task graph).

6.4.1 Static Level Computation

The general idea of the algorithm is to start from a DAG and first compute the static level
of all tasks to use as the priority for the queue. This static level is computed using the
WCET in isolation as a cost function. For a task τi with WCET Wi, its static level is given
by:

SL(τi) = Wi + max
τj ∈ succ(τi)

SL(τj) (6.8)

6.4.2 HLFET List Scheduling Algorithm

The priority queue is initialized with the entry node of the application, always unique, and
its static level as the priority value (Algorithm 4, Line 6). While the queue is not empty, the
task with the highest priority is dequeued and mapped to a core. The core which allows
the earliest start time is chosen (Algorithm 4, Line 10). This can be computed from the end
time of dependencies of the task and the end time of the last tasks allocated to each core.
And to conclude, the algorithm adds in the priority queue all task which dependencies
have been scheduled (Algorithm 4, Line 19).

notations and variables
• ComputeStaticLevels: computes the static level of each node in the DAG according

to Equation (6.8)
• entry is the unique entry node of the DAG
• PRIO_QUEUE is the priority queue of nodes sorted by static level
• getCoreWithStartTime: returns the core structure with the start time given as param-

eter
• earliestStartDate: returns the minimum time between the start time of cores, taking

into account the node dependencies
• succ(x) is the set of the successors of x in the DAG

6.5 proposed solution for dag mapping and scheduling 60

Algorithm 4: List-Scheduling algorithm

1 cores = [{‘index’: i, ‘stime’: 0, ‘tasks’: []} for i in range(NumberCores)];
2 endTimes = ∅;
3 sLevels = ComputeStaticLevels(allNodes);
4 foreach i in allNodes do
5 remDeps[i] = len(i.deps)

6 enqueue(PRIO_QUEUE, (entry, -sLevels[entry]));
7 while (PRIO_QUEUE <> empty) do
8 x = dequeue(PRIO_QUEUE);
9 minDate = earliestStartDate(x, cores);
10 core = getCoreWithSartTime(cores, minDate);
11 core[‘tasks’] += x;
12 nodeEndTime = earliestStartDate(x, cores) + x.WCET;
13 endTimes[x] = nodeEndTime;
14 core[‘stime‘] = nodeEndTime;
15 SuccSet = succ(x);
16 foreach i in SuccSet do
17 remDeps[i] -= 1;
18 if remDeps[i] == 0 then
19 enqueue(PRIO_QUEUE, (i, -sLevels[i]));

6.5 proposed solution for dag mapping and scheduling

This section presents an initial work in proposing an algorithm to solve the DAG mapping
and scheduling problem, taking into account the memory use and the communication cost.
Our allocation algorithm is composed of 3 phases and is based on the DAG semantics:

• 2 nodes in sequence in the DAG are never executed concurrently due to precedence
constraint;

• an arrow in the DAG represents a communication: our algorithm will look for a
minimization of the communication costs.

6.5.1 Step 1: Node to virtual processor assignment

We introduce the following notations in addition to those presented in Section 6.4.2.

notations and variables
• f (core) = ∑j∈core Sj (memory size), where j ∈ V is a node in the DAG that is mapped

to a virtual core
• entry is the unique entry node of the DAG
• Πj is the set of nodes mapped to the virtual core j
• FIFO is the queue of nodes to proceed
• MAXMEM is the maximal memory size for a set of nodes mapped to a core

6.5 proposed solution for dag mapping and scheduling 61

• assigned(x) is a Boolean, true if the node x ∈ V is already assigned to a core, false
otherwise (initially assigned(i) is false ∀i ∈ V)

• NumberCores: maximal number of cores in the platform (80 in our case)

Our first algorithm, Algorithm 5, maps the nodes to virtual cores. The main structure
of the algorithm is based on the two previous DAG semantics points. First, we start with
the entry node (Algorithm 5, Line 3) of the DAG and we assign in a depth-first order, as
much as possible the following successors. The criteria to select the nodes is the cost of the
communication: larger is the communication size, better it is to place on the same core (no
additional communication cost) — Algorithm 5, Line 17. On each core, we assign nodes
until the local memory is full (or the next node can not fit entirely in it — Algorithm 5,
Line 14). The following nodes to restart the process described above is the next unassigned
node in FIFO order, Algorithm 5, line 31 (among the followers of the start node, in the
second iteration, if any). In this FIFO, are also added all successors of nodes already
assigned to a core. A node without successor is assigned alone to a core, which has no
influence on the global computation time, but tends to use more cores than necessary.
Note that this is the main point to be refined in future work.

6.5.2 Step 2: Virtual core to virtual cluster assignment

This step of the algorithm takes as input the Step 1 output (node to processor assignment)
and the original DAG. It takes as parameter the NbMaxCorePerCluster: the maximal number
of processors per cluster (16 in our case). Finally the goal is to assign virtual cores to
virtual clusters to prepare the last step of the algorithm.

pre-processing . Build an undirected positive weighted graph based upon Phase 1
and the original DAG:

• ignore edges which connect the same core;

• merge (and sum the weights) of edges which connect the different cores.

We introduce the following notations in addition to those presented in Section 6.4.2
and Section 6.5.1.

notations and variables
• LVC = List of Virtual Cores to be mapped
• NumberClusters = number of clusters
• NbMaxCorePerCluster = number of cores in each cluster
• MaxComNeighbour(j) = one virtual core with the largest communication size with

the virtual cluster x ∈ LVC
• neighbour(j) = the set of virtual cores with at least one communication with a virtual

core mapped to cluster j

6.5 proposed solution for dag mapping and scheduling 62

Algorithm 5: Step 1: Mapping algorithm

1 j=0;
2 Πj = ∅;
3 enqueue(FIFO, entry);
4 while (FIFO <> empty) && (j < NumberCores) do

/* invariant: Πj = ∅ */

5 x = dequeue(FIFO);
6 if f(x)>MAXMEM then
7 Exception;

8 Πj = {x};
9 if succ(x)==∅ then
10 j++;
11 Πj = ∅;

12 else
13 StopProc=false;
14 while f(Πj) < MAXMEM && !StopProc do
15 SuccSet = succ(x);
16 maxQ = 0;
17 foreach i in SuccSet do
18 if f(Πj)+f(i) ≤ MAXMEM && !assigned(i) then
19 if Qx,i>maxQ then
20 SuccMax=i;
21 maxQ=Qx,i;

22 if maxQ>0 then
23 assigned(SuccMax)=true;
24 add(Πj, SuccMax);
25 SuccSet -= SuccMax;
26 if SuccMax in FIFO then
27 FIFO -= SuccMax;

28 x = SuccMax;

29 else
30 StopProc = true;

31 foreach w in SuccSet do
32 if !assigned(w) then
33 enqueue(FIFO, w);

34 j++;
35 Πj = ∅;

6.6 conclusion 63

The second phase, Algorithm 6, based on the undirected weighted graph will compute
a partitioning of the virtual cores to virtual clusters. First, we check if the current cluster
is not full otherwise we “open” a new (empty) cluster and assign an arbitrary core to
start (Algorithm 6, lines 5-9). Then we add a neighbour core unassigned with the maximal
communication cost with the cores already assigned in the current cluster (the function
MaxComNeighbour Algorithm 6, line 12). We repeat the same procedure until we have
assigned all the virtual cores to a virtual cluster.

Algorithm 6: Step 2: Clustering algorithm

1 j=0;
2 Clj = ∅;
3 while LVC <> ∅ do
4 if |Clj| == NbMaxCorePerCluster then
5 j++;
6 Clj = ∅;

7 if Clj == ∅ then
8 Clj = {c ∈ LVC};
9 LVC = LVC \ c;

10 else
11 if neighbour(j) <> ∅ then
12 c=MaxComNeighbour(j);

13 else
14 c = e ∈ LVC ;

15 Clj+ = c;
16 LVC = LVC \ c;

6.5.3 Step 3: Virtual to physical cluster assignment

The final step consists in assigning virtual clusters and cores to real ones. For this we take
into account the different communication delay between clusters for the MPPA3 platform.
The traversal times can be found in Table 3.1 and we can see that they vary according to
the source and target cluster due to the physical SoC placement. From the topology of
the AXI communication, we explore all possibilities. As there are only 5 clusters in the
Kalray MPPA3, this approach is feasible. We compute a communication cost from the
multiplication of the traversal time and the amount of transfers. The physical attribution
is done choosing the permutation that gives the lowest communication cost. The virtual
cores can be assigned to physical cores in any order without impact on the response time.

6.6 conclusion

A preliminary work proposing a new algorithm for the DAG mapping and scheduling
problem on many-core platforms has been presented in this chapter. We defined our system
model, problem and the hypotheses assumed before solving the allocation question.

6.6 conclusion 64

A classical list-scheduling algorithm taken from SCADE MCG was presented, using
the WCET and earliest start date as metrics for task placement. It completely ignores the
memory use in the system, which is unrealistic, and also does not take into account the
heterogeneous communication delays found in modern multi/many-core architectures.

Our proposed solution takes both of these metrics into account to propose an algorithm
split into multiple steps. The first step assigns nodes to virtual cores, trying to group
together a node and its successors, without violating the maximum memory constraint
for each core. The second step places these virtual cores onto virtual clusters, looking to
minimize the inter-cluster communication amount. The third and last step attributes virtual
to physical clusters in our target platform, the Kalray MPPA3, exhausting the possibilities
and choosing the one with less communication overhead.

This chapter presents an initial work with a single solution to challenge the traditional
list-scheduling method. Future works may explore different algorithms and strategies such
as a node coloring step, different heuristic for grouping nodes to virtual cores, and even
exact solutions using an ILP solver. In step 1 we suppose an unlimited number of virtual
cores as a starting method that needs to be refined to regroup together isolated nodes. In
step 2 an improvement path is to use a clustering approach based on a balanced graph
partitioning [11].

7
T I M I N G M O D E L O F A N I N D U S T R I A L M A N Y- C O R E A R C H I T E C T U R E

7.1 Intra-Cluster Arbitration . 65
7.1.1 Level 1 . 66
7.1.2 Level 2 . 66

7.2 Inter-Cluster Arbitration . 67
7.3 Conformant Execution Model . 67

7.3.1 Architecture Configuration . 68
7.3.2 System Design . 69
7.3.3 Software Framework . 70

7.4 Response-Time Analysis . 71
7.4.1 Main Concept . 71
7.4.2 Additional Definitions and Simplifications 72
7.4.3 Intra-Cluster Interference . 72
7.4.4 Inter-Cluster Interference . 74

7.5 Non-Conformance with the Execution Model 75
7.5.1 Architecture Configuration . 75
7.5.2 System Design . 77
7.5.3 Software Framework . 77

7.6 Conclusion . 78

This chapter presents the timing model of the Kalray MPPA3 processor, which is the
target platform of the workflow introduced in Chapter 4. The implementation of this
theoretical analysis is in the Multi-Core Interference Analysis (MIA) tool as one of the
available shared resource interference models. The outline of this chapter is as follows:
Section 7.1 contains the arbitration details inside a cluster of the processor, while Section 7.2
explores the arbitration when accessing other clusters. In Section 7.3 we precise the valid
execution model for this analysis to work and in Section 7.4 the timing model is presented.
If the execution model is not respected Section 7.5 shows the changes and adaptations
required. Section 7.6 contains the conclusion.

7.1 intra-cluster arbitration

We recall the information given about the memory system and hierarchy in Section 3.2.3.
Now the focus is on understanding the path and components a Processing Engine (PE)
must go through to reach the cluster memory. The analysis is split into two levels, one for
each arbiter up until arriving at the Shared MEMory (SMEM). A diagram overview can be
seen in Figure 7.1.

65

7.1 intra-cluster arbitration 66

7.1.1 Level 1

Leaving the core, the first level is composed of a Fixed Priority (FP) arbiter between the
Data Cache (DC) and the Instruction Cache (IC). The DC has the priority over the IC,
implying a possible starvation for the IC. Write operations and special instructions in the
Instruction Set Architecture (ISA) of the MPPA that bypass the cache also have preference
over the IC when accessing the memory.

Thus, this starvation is limited by the number of program instructions that the core is
able to process until it must stall to load more code. The hardware component responsible
for this limit is the Prefetch Buffer (PFB) [137] that issues requests to the IC and then
forward these instructions to the execution pipeline.

7.1.2 Level 2

The SMEM introduced in Section 3.2.3 is composed of multiple banks, each one with its
own arbiter. The existence of multiple arbiters helps to minimize the interference between
initiators, if each one is associated with a bank. This configuration is explored later on
Section 7.3.1.2, but a summary is that a memory access to one bank has no impact on
the access time to another bank. An initiator is defined as any element that may issue a
request to an arbiter, in this case by accessing the SMEM.

The arbiter is a special Round-Robin (RR)1. We divide the initiators into two groups:

• Cores (G1c): Pi, for i = 0 . . . 15

• Others (G1o): RM, DSU, CryptoAccel1, CryptoAccel2, NoC Tx, NoC Rx, AXIWrite, AXIRead

IC0

DC0

LD.U

STORE

FP

pr
io

rit
y

IC15

DC15

LD.U

STORE

FP

pr
io

rit
y

Level 1

PE0

PE15

RM

DSU

Crypto

Accel1

Crypto

Accel2

NoC Tx

NoC Rx

AXIWrite

AXIRead

SAP

Level 2

Shared
Memory

Bank

Figure 7.1: Intra-Cluster Arbitration

1 The arbiter is called Smart Arbitration Policy (SAP) and it is basically a configurable RR. The configurable
value is n, providing n + 1 consecutive grant rounds to each entry.

7.2 inter-cluster arbitration 67

7.2 inter-cluster arbitration

We recall here the information given about the on-chip interconnects in Section 3.2.4 and
in particular about the AXI fabric. At the endpoints of the AXI crossbar, the arbitration
policy is a Deficit Round-Robin (DRR)2 and the initiators are also divided into two groups
(see Figure 3.4):

• Compute Clusters (G2cc): CCi for i = 0 . . . 4

• Others (G2o): DDR0, DDR1, PCIe, SoC Peripheral

As the arbitration inside the cluster, the arbitration interference between them may also
be seen as a problem that can be split into multiple levels (cf. Figure 7.2):

1. An intra-cluster arbitration, seen in Section 7.1, from the source cluster (Level 1)

2. A DRR arbitration at the edge of the arrival cluster (Level 2)

3. Inside the arrival cluster another intra-cluster arbitration to access the destination
memory bank (Level 3)

PE0

PE15

AXIWrite

AXIRead

SAP
AXI

virtual
bank

Level 1: CC0

CC1

CC2

DRR

PE0

PE15

AXIWrite

AXIRead

SAP
Target

memory
bank

Level 3: CC3Level 2: AXI

Figure 7.2: Inter-Cluster Arbitration

Note that a simplification done in our model is to treat the DRR arbiter as a regular
RR due to two reasons. The first reason is that the Advanced eXtensible Interface (AXI)
protocol supports bursts that may count as a single access from the arbiter point of view.
The second reason is that the hardware implementation of the DRR has a problem, the
arbitration is actually performed on the address and not on the data. This means that the
deficit counter never reaches zero for any initiator and therefore the behavior is identical
to a RR. The initiators are always able to send the totality of the data in their buses.

7.3 conformant execution model

This section describes the proposed system design and processor configuration for the
time-critical domain targeted in this thesis. We detail what and how specific components of
the architecture are used and also leverage hypotheses about the software, communication
and source code generation methods.

2 A generalization of the round-robin arbitration scheme where each initiator at a given round is allowed to
send at most Qi bytes (quantum) and the remaining, if any, is reported to the next round. At the beginning of
each round the initiator refills its deficit counter by one quantum.

7.3 conformant execution model 68

7.3.1 Architecture Configuration

For general systems, raw speed is really important and the key metric of optimization is
most times the average performance of the program. Being an average, this ignores the
variation that can be observed between the slowest and fastest runtimes. On the other hand,
for real-time systems, raw speed is not that relevant. What matters is the predictability that
the system shows, i. e. the execution time of the tasks must be as constant as possible. That
is why some mechanisms that are great for general purpose performance are not used
or, if possible, configured in a different manner when using Commercial Off-The-Shelf
(COTS) processors [42] for safety-critical systems.

7.3.1.1 Cache Configuration

The hardware implemented L1 cache coherency protocol is deactivated in our configuration.
This avoids unexpected performance throttles when updating data used by multiple cores.
The responsibility of managing cache coherency is thus delegated to the programmer (as
it was the case with the MPPA2): special instructions such as DINVAL, IINVAL and FENCE

must be used at a convenient time to keep correct assumptions between memory values
that may be present in the data/instruction cache of distinct cores.

The MPPA3 has a L2 firmware system where part of the cluster internal memory is
used as a L2 cache. This is also deactivated in this configuration, as another memory level
introduces more latency and it is also a source of unpredictability within the response
time analysis of the system. The majority of the computation of a real-time system is
performed within the same local memory space and a L2 cache for the MPPA is mainly
used to provide better average response times when accessing global memory spaces such
as the Double Data Rate (DDR). If sharing memory spaces between different clusters, the
same data/instruction cache maintenance instructions must be used in the software to
ensure coherence.

7.3.1.2 SMEM Configuration

The SMEM of the cluster can be configured in banked or interleaved mode. We use the
SMEM of the cluster in its banked mode. The default configuration of the platform is the
interleaved mode. For general use cases, this tends to be better as it balances the requests
from all cores to different memory banks, effectively distributing the workload between
multiple arbiters. This avoids possible bottlenecks when accessing contiguous blocks of
memory. The interleaved mode incurs in access patterns that are difficult to predict, model
and may introduce a lot of interference. The banked mode allocates contiguous memory
addresses to the same bank, and linking the data and code that a core will use to this bank
ensures its isolation and minimize interference.

Within the time-critical context of this study, we will assume the use of the SMEM
as a Scratchpad Memory (SPM), with contiguous memory areas in the banks where the
cores may work independently. We also suppose that the program’s data and code fit
inside a memory bank and more generally into the cluster memory and that everything
is previously loaded from the high-latency and hard to predict DDR memory or directly
injected into the SMEM when loading the program.

7.3 conformant execution model 69

7.3.1.3 Memory Access Model

When computing the response time of a program, we can consider that the memory
accesses issued from a core are either blocking or non-blocking, according to the architectural
state when the access was made. In particular, for the MPPA we are interested in knowing
if the access has properly exited the Load/Store Unit (LSU) and the core pipeline may
continue to charge further instructions.

The definition of non-blocking access is intuitively simple: it is an access that may slow
down other cores, but does not block the issuing core. If the system is not overcharged, a
write access is non-blocking, but if the FIFOs between the core and the SMEM are full, it
becomes a blocking access.

The additional wait time provoked by this FIFO saturation cannot be bigger than the
scenario where all accesses are blocking. With blocking accesses, they do not leave the LSU
and stall the core directly for the 22 cycles of latency.

Therefore, we have two options when modeling the memory accesses:

• Assuming that all accesses block, which leads to safe but overestimated bounds;

• Considering non-blocking accesses, which leads to tighter but still safe bound.
Improving the estimation can be achieved by modeling the FIFOs in the SMEM path.

We stick with all blocking accesses as a first approach to the problem to abstract the
analysis of the access return path.

7.3.1.4 Inter-Cluster Communication

As seen on Section 3.2.4, there are two ways to connect a cluster with the others on the
platform, to the global memory (DDR), or to the external interfaces (Ethernet, Peripheral
Component Interconnect (PCI)). They are the Network-On-Chip (NoC) and the AXI.

In order to send data through the NoC in the MPPA3, a thread must be created in the
Direct Memory Access (DMA) controller and then arbitrated. The implemented policy
may introduce unfairness and unexpected delays and should be avoided for time-critical
applications. Nonetheless, the NoC is extremely well suited to handle Ethernet and
PCI traffic. It also has builtin Quality of Service (QoS) parameters to ensure system
responsiveness.

The AXI is a great choice for real-time systems due to its simplistic approach of directly
connecting a cluster with all the others in a constant traversal time. Moreover, the memory
of the system is flatted out and when reading from or writing to a particular address
outside of the current cluster memory zone, the AXI is indirectly used to perform the
operation. All of this avoids some NoC related problems such as route definition and
packets deadlock. In conclusion, the AXI is more predictable, allows to use a simpler
multi-level arbitration model and for these reasons is taken as a first approach.

7.3.2 System Design

This section mainly explores the system details that require attention when designing
programs, writing code or linking compiled objects to a final binary. These details define
recommendations to improve the predictability of the system in the platform.

7.3 conformant execution model 70

7.3.2.1 Code and Data Alignment

Code should be always aligned on a 8-byte boundary to avoid additional delays that can
be created when accessing the memory. The SMEM bus size is 256-bit and if a memory
access is near this boundary and misaligned, the hardware protocol will actually split this
access into two, damaging performance.

Data also should be naturally aligned, according to its type. Their address must be a
multiple of the type size, as computed by the sizeof operator in C language. This ensures
that dealing with data accesses will not generate the same split behavior as the code.

7.3.2.2 Reading versus Writing

We expect the time-critical applications to be divided into individual tasks with inputs and
outputs. These tasks can also eventually communicate with each other. Their schedule is
static and does not allow migration, i. e. one task will always run on a unique and identical
core. This matches the kind of code that is usually generated from synchronous data-flow
programs.

The aforementioned communication between the tasks can be done by either reading
from or writing to the memory. The path of this operation strongly depends on the
mapping of the source and target tasks. Three situations can occur:

• Source and target tasks are mapped to the same core: they cannot execute concurrently,
and the communication will happen on the same memory bank;

• Source and target tasks are mapped to different cores of the same cluster: the commu-
nication will go through distinct memory banks of the cluster;

• Source and target tasks are on different clusters: the communication will go through
the AXI bus.

Hereby we assume only writing operations between the tasks, i. e. a bank that belongs
to another task, either on the same cluster or on another, is never read, only written. This
simplifies the interference model as there is no need to compute the read time completion.
Also this helps to provide a consistent code generation guideline.

7.3.3 Software Framework

The application code is generated from Data-Flow Synchronous languages, SCADE being
the most well-known industrial language constructed upon this paradigm. Kalray provides
an integration script with SCADE Suite that generates C code with the required low-level
code for synchronization and time-triggered execution of the tasks. These tasks are periodic
and non-preemptive, running until completion.

The reader must keep in mind that a general purpose program cannot be easily fitted
into this analysis. The application should have a clear separation in tasks, with additional
information about the precedence and the communication scheme between them. In other
words, there must be a way to represent the program as a Directed Acyclic Graph (DAG).

This special kind of graph does not allow cycles between the vertices and the edges
are directed from one vertex to the other. This ensures that the graph can always be
topologically ordered, which is essential for the response time analysis and C code

7.4 response-time analysis 71

generation. Moreover for data-flow programs, DAGs are a convenient way to represent
connected and repetitive operations. They also also expose the possibility of parallel
computation that can be exploited when implementing the program.

All these DAG characteristics are used in the next section to properly compute the
response time of these well behaved and organized applications.

7.4 response-time analysis

The MIA tool [118] was built upon a generic framework called Multi-Core Response Time
Analysis (MRTA) by Davis et al. [48] with its capability for instantiating different hardware
components, memory models, bus arbitration policies and application use cases. The
MPPA3 is an eligible hardware architecture to be used with this framework due to its fully
timing compositional nature. This section revisits the main concepts of the framework
with some additional notations and optimizations allowed by the software model in the
first two subsections, while the last three subsections introduce the actual new interference
equations for the MPPA3 and their implementation.

7.4.1 Main Concept

The framework receives a set of n periodic tasks Γ = {τ1, . . . , τn}, where each task τi has
a period Ti, a deadline Di and is statically assigned to a core P. With these information
the framework is capable of calculating the response time Ri taking into account the
interference suffered at different hardware points throughout the task τi execution time.

From now on we use Px to denote the core under analysis and Γx the subset of tasks
mapped to this core Px. In contrast, we use Py to denote other cores than the one under
analysis and Γy to indicate the subset of tasks mapped to this core Py.

The tasks are represented as a set of ordered traces leveraging the demands issued to
distinct hardware resources, such as processor or memory. This is then used to compute
the response time Ri of task τi running on core Px with the following equation:

Ri = Wi + IBUS(i, x, Ri) (7.1)

where Wi is the processor demand, i.e. the Worst-Case Execution Time (WCET) of the
task in isolation and IBUS is the interference on the bus calculated using a mathematical
model. The original generic MRTA framework had also terms that accounted for preemp-
tion interference and DRAM memory refreshes, which does not apply in our scenario
as we assume in Section 7.3 that tasks run until completion and fit in the cluster local
memory.

All the necessary inputs for the framework are obtained either during the code generation
or by an external tool. The dependencies between the tasks are extracted when generating
C code, either from Lustre or SCADE. The mapping and scheduling is an orthogonal work
and it can be automatically done by the integration script mentioned in Section 7.3.3. The
WCET of tasks in isolation can be estimated by tools such as OTAWA [17] or Heptane [78]
as long as they have implemented a model of the core architecture in analysis. If that is
not the case, an approximate value can be obtained by measurement with an additional
step in the framework.

7.4 response-time analysis 72

7.4.2 Additional Definitions and Simplifications

We add up to the main concept the notion of a release date reli for each task τi as an offset
from the start of a program’s period. The set of release dates is given by Θ = {reli | i ∈ Γ}
and the set of upper bound on response times by R = {Ri | i ∈ Γ}.

Using these new terms, Equation (7.1) becomes:

Ri = Wi + IBUS(i, x,R, Θ) (7.2)

We recall here that the tasks run on their isolated memory space due to the SMEM
banked memory mode, introduced in Section 7.1.2. They may access each others’ banks
only when communicating. The bus interference function is therefore given by:

IBUS(i, x,R, Θ) = ∑
b∈βi

BUSb(i, x,R, Θ)× d (7.3)

where βi is the set of memory banks accessed by task τi, BUSb(i, x,R, Θ) is a function that,
according to the arbitration policy, gives an upper bound on the number of accesses to
memory bank b which may delay task τi and, finally, d is the time to perform a memory
access (bus latency) on the worst-case. We recall here Section 3.2.3.1 where the d value for
the MPPA3 platform is given. When a memory access is needed, as we target the SMEM
and not the DDR, we are in a L1 cache miss scenario, thus d = 22 cycles.

In the next sections, we will focus on calculating this bus function. For the memory
demand of a task τi on memory bank b we will use the notation Sx,b

i (R). For the upper
bound on the number of accesses by all tasks running on core Py ̸= Px during the response
time of task τi on memory bank b we will use Ay,b

i (R, Θ).

7.4.3 Intra-Cluster Interference

In Section 7.1 we have divided the memory access path into two levels. These levels are
hereby reproduced helping to divide the modeling problem into smaller parts that are
later on composed together.

7.4.3.1 Level 1

The analysis will be further split into cached and cache bypassed accesses as they change
the actual behavior of the FP arbiter.

cache bypass Within this context, the worst-case happens when an IC access is always
delayed by uncached loads until the PFB is empty. The PFB holds a maximum of 16
instructions and 1 instruction is issued each cycle. Moreover, the uncached instructions that
may already be in the execution pipeline must be also considered, adding up a maximum
of 4 instructions. A first approximation is to consider the total interference as the number
of IC accesses from a task τi multiplied by 20 cycles, as formulated in Equation (7.4). These
20 cycles account for the 16 instructions in the PFB plus the 4 instructions on the pipeline.

BUSL1U
b (i, x,R, Θ) = 20×

SICx ,b
i

∑
k=0

lk (7.4)

7.4 response-time analysis 73

Figure 7.3 exposes this worst-case scenario in detail.

DC

IC

FP

0

bypass

PE

1

PFB
512b

16 LD.U
=

16 cycles

Worst-case
of IC access

blocking

RR E1 E2 E3

LD.U
LD.U

LD.U

LD.U

IC demand
LD.U LD.U LD.U LD.U

x4 x16

IC demand

Figure 7.3: Cache bypass worst-case

With a static code analysis method, it is possible to minimize this worst-case. For instance,
with the knowledge of the maximum number of uncached loads in sequence from a given
task τi, the factor of multiplication would be reduced. Note that this is orthogonal work
that we do not explore in this thesis.

cached access When instructions that use the cache are issued, there are two possible
cases at the FP arbiter when there is a DC request:

1. Cache Hit: IC may be granted access afterwards, as the DC already has the data
required by the processor and as the cache latency is of 2 cycles, no other DC request
may be issued before this time elapses;

2. Cache Miss: IC is blocked at most 2 cycles due to the no hit under miss3 policy and
the 2 accesses needed to retrieve a cache line.

These restrictions and details on when the requests from DC and IC are sent and what
happens next actually modify the behavior of the FP arbiter. It brings it to a RR arbitration
from the point of view of the DC and a RR with duplicated DC entries from the IC point
of view, which is the worst-case. The interference is thus given by the doubled minimum
between the IC and DC memory demand:

BUSL1C
b (i, x,R, Θ) = 2×min

(
SICx ,b

i , SDCx ,b
i

)
(7.5)

7.4.3.2 Level 2

From now on the level 1 arbitration problem will be shortened into Sx,b
i , which can

either use BUSL1U
b (i, x,R, Θ) or BUSL1C

b (i, x,R, Θ). The choice depends on the available
information in terms of instruction use and cache misses. At level 2, the interference is
given by the RR arbitration formula introduced in [116], a sum of the minimum between

3 The pipeline will stall either with another DC request or if a subsequent instruction has a data dependency on
the missed access

7.4 response-time analysis 74

the core issuing a memory request and any other initiator. Specifically here, the first line
computes the interference after level 1 and any other core (G1c) of the same cluster. The
next two lines continue the sum, but considering the other initiators group (G1o). Precisely,
the AXI interfaces Write or Read requests (dual-channel protocol) that may come from
other clusters, targeting the memory bank b:

BUSL2
b (i, x,R, Θ) = ∑

y∈G1c ∧y ̸=x
min

(
Ay,b

i (R, Θ), Sx,b
i (R)

)
+ min

(
AAXIWrite,b

i (R, Θ), Sx,b
i (R)

)
+ min

(
AAXIRead,b

i (R, Θ), Sx,b
i (R)

) (7.6)

7.4.4 Inter-Cluster Interference

In Section 7.2 we have also divided the interference problem between multiple clusters into
three levels as illustrated in Figure 7.2. A scenario is created here with a task τi running on
core Px in CCu that communicates via AXI with a task τj running on core Pw in CCv.

Starting at the first arbitration level, inside of the departure cluster (CCu), using Equa-
tion (7.6) to access the AXI virtual bank (either read or write):

INTERFSAP1 = BUSL2
AXI(i, x,R, Θ) (7.7)

Moving on to the second arbitration level, at the edge of the AXI bus on the arrival
cluster (CCv) the DRR arbitration is applied to any access from a core outside of the
concerned clusters (CCu and CCv) targeting any memory bank inside CCv:

INTERFDRR = ∑
y/∈G1CCu,v

b∈Bv

min
(

Ay,b
i (R, Θ), Sx,b

i (R)
)

(7.8)

Finally, at the third and last arbitration level, we will account for the interference
accessing the destination bank b inside the cluster:

INTERFSAP2 = ∑
y∈G1CCv

min
(

Ay,b
i (R, Θ), Sx,b

i (R)
)

(7.9)

To take into account the complete interference perceived by the core in analysis during
the outbound of the AXI path, we must sum up the previous equations:

INTERFOutboundAXI = INTERFCCu
SAP1

(i, x,R, Θ)+ (7.10)

INTERFCCu
DRR(i, x,R, Θ)+ (7.11)

INTERFCCu
SAP2

(i, x,R, Θ) (7.12)

7.5 non-conformance with the execution model 75

7.4.4.1 Inter-Cluster Return Path

For completeness sake, the delay perceived throughout the return path of a core waiting
for data or an acknowledgement after performing an inter-cluster access will be analyzed
here. Nonetheless, this analysis is only required if write operations are not followed by a
fence instruction4 or if read operations are being performed, which is against the system
design proposed in Section 7.3.2.2.

A detailed view of the AXI connection diagram can be seen in Figure A.2 in Appendix A
and specifically the return arbitration points that we are interested in are the 3 RRs traversed
during the return path of either an AXI Read data or AXI Write acknowledgement.

The use-case explanation about each RR is provided in Figure A.4 in Appendix A along
with a path overview of an AXI transaction in the system. In particular we will investigate
only the RR1 and RR2 arbiters, as the RR3 blocks the core pipeline and must be taken into
account during the WCET measurement.

For the equations developed here, the same scenario from the previous section will
be used: a task τi running on core Px in CCu that communicates via AXI with a task τj
running on core Pw in CCv. These generic identifiers are realized into concrete tasks, cores
and clusters in Figure A.4.

The interference at the RR1 arbiter is created by 2 or more different banks of the target
cluster (CCv) that are sending an answer (either Write ACK or Read DATA) back to any
cluster after they performed an AXI access.

INTERFRR1return = ∑
y/∈CCv∧y ̸=x

b∈BCCv

min
(

Ay,b
i (R, Θ), Sx,b

i (R)
)

(7.13)

The interference at the RR2 arbiter is generated by 2 or more different clusters that are
sending an answer (either Write ACK or Read DATA) back to the depart cluster (CCu).

INTERFRR2return = ∑
y∈G1CCu∧y ̸=x

b/∈BCCu

min
(

Ay,b
i (R, Θ), Sx,b

i (R)
)

(7.14)

7.5 non-conformance with the execution model

This section exposes the work that has to be done if one wants to use a different hardware
configuration, or another processor that does not have the same capabilities as the MPPA.
It also covers the adaptations needed if one decides to follow a distinct system design
concept. Now that we have explored the response time analysis in the previous section, we
will go through all the points in Section 7.3 giving the necessary modifications.

7.5.1 Architecture Configuration

We discuss here what needs to be changed on the models to accommodate the possible
temporal perturbations or anomalies created when privileging performance over time-
predictability.

4 This instruction ensures that all issued memory operations are committed and visible to other cores before
unblocking the pipeline

7.5 non-conformance with the execution model 76

7.5.1.1 MMU

The MPPA3 has a Memory Management Unit (MMU) that provides virtual to physical
memory address translation and assumes an unified address space for instruction and data.
It can be activated through setting a specific bit on the Processing Status (PS) register. On
top of address translation, it is also used to ensure memory protection between processes
and different caching policies for each virtual page.

These features are typically used in richer OS that deal with multiple processes and
typically will also use the Level 2 cache, discussed in the next section. In our framework
the MMU is disabled to avoid any timing jitter introduced by Translation Lookaside
Buffer (TLB) page lookups, which are heavily dependent on the number and size of pages.
Certain configurations and features of the MMU [25] can indeed be used to provide virtual
addresses while maintaining time predictability. Static mapping, for example, provide
flexibility with low timing impact. For other scenarios, a statistical analysis of the different
parameters could be done to estimate the introduced jitter.

7.5.1.2 Level 2 Cache

Using part of the SMEM as a L2 cache is a valid configuration on the MPPA3 and can be
used to increase performance. For time critical applications, activating the L2 cache comes
at the expense of requiring a cache hit or miss analysis to only then apply the appropriate
SMEM latency values.

The L2 cache controller is implemented through an optional firmware in the MPPA3
and thus, its software should be analyzed to see if it cannot introduce unexpected timing
variations to the response time. Another possibility is to use a richer OS enabling the use
of cache partitioning techniques [89] in order to reduce the interference without requiring
any additional hardware support.

7.5.1.3 Cluster Memory

The L2 cache utilization reduces the amount of available memory inside the cluster. This
may have an impact on the assumption that all of the code and data of a program fit inside
this space. Therefore, if DDR accesses are required, the controller and arbitration on this
memory level needs to be modeled, as well as its access latency [142]. Defining precise
rules for DDR accesses [110] such that the system is predictable is also a valid option, even
if there is a loss in performance.

If the program’s size is reasonable, its execution can remain within the cluster bound
memory. However, if the interleaved mode is used, or there is no concept of independent
memory banks, the amount of interference will increase significantly, as all the access from
all the cores will pass through the same arbiter.

7.5.1.4 Inter-Cluster Communication

The NoC can also be used to perform accesses to the SMEM belonging to other clusters. In
this case, the Worst-Case Traversal Time (WCTT) needs to be calculated [65] using real-time
network calculus and a route planning algorithm. The DMA mechanism used to issue
NoC packets works differently than the MPPA2 version and must be taken into account.

7.5 non-conformance with the execution model 77

In order for a packet to be sent, the user must create a thread in a DMA queue that
will be scheduled later on. This implies that the scheduling policy needs to be modeled to
tightly estimate and then add this time to the WCTT.

7.5.2 System Design

Some software restrictions were established in Section 7.3.2 and now the analysis will be
opened up to more general purpose written programs.

7.5.2.1 Alignment and Access Size

Code compiled without care regarding the recommended 8-byte alignment can incur into
duplication of accesses and more latency when interacting with the memory.

Firstly, as already stated in Section 7.3.2.1, a misaligned load near the 256-bit boundary
and that crosses it by more than 2 bytes will trigger a micro expansion creating two
accesses for this load instruction. In consequence, this blocks the IC grant at most 2 cycles,
because the expansion is done after the caches but before the FP arbiters. In particular, for
the cache bypass worst-case (Figure 7.3) this doubles the IC starvation time, reaching at
most 40 cycles. Further on it will require 2 grants from the SAP.

Different types of accesses can trigger a Read/Modify/Write behavior after the SAP
arbiter, just before entering the memory bank. They are: any sub size access (less than 32b),
any access that is not 8-byte aligned, and any write operation bigger or equal to 8-bytes,
even if it is aligned. This R/M/W operation normally happens only if a load operation
returns with a checksum error or when performing atomic instructions. This behavior
adds 4 cycles in latency and 1 cycle in bandwidth.

7.5.2.2 Reading versus Writing

General purpose programs interact in more diverse ways than our proposal of only reading
from its own memory bank while writing could be done to any bank. If the memory is in
interleaved mode, this assumption is already false.

So if the interleaved mode is used or reading operations are done outside of a task’s
own memory bank, the interference model must take into account the return path and its
arbitration to the target core. There is a RR arbiter receiving the response from different
memory banks, as can be seen in Figure A.1 in Appendix A.

7.5.3 Software Framework

A generic program could be fitted into this analysis if it is at least divided into distinct
tasks that we can analyze and extract their communication patterns and dependencies
and deploy to different cores. In other words, the program should be translatable to
a DAG format and enriched with communication information. Without this particular
organization, we can not compute the program’s Worst-Case Response Time (WCRT), only
its WCET, which is not sufficient for a multi or many-core architecture.

7.6 conclusion 78

7.6 conclusion

An in-depth analysis of the MPPA3 architecture has been presented, highlighting the
needed components in order to tightly compute the possible interference in all arbitration
points of the system. This description was then transformed in mathematical models and
implemented in MIA, a part of the bigger framework from Chapter 4. MIA is responsible
for estimating the WCRT and provide appropriate release dates for the applications.

Some possible improvements in the presented analysis for time-critical computing on
the MPPA3 are:

• Modeling the memory access by taking into account the transaction pipelining and
not only the worst-case between the start and end of a transaction, i. e. consider
non-blocking accesses;

• Improving the AXI DRR arbiter modeling, as we have considered it as a regular RR
due to the burst nature of the protocol.

Part III

E VA L UAT I O N

8
T O O L E X T E N S I O N S

8.1 Multi-Core Interference Analysis (MIA) . 82
8.1.1 Response Time Analysis . 82
8.1.2 Problem Statement . 82
8.1.3 Original Algorithm . 84
8.1.4 Proposed Algorithm . 85
8.1.5 MPPA3 Arbitration Model Implementation 90

8.2 Parallel Code Generation and Orchestration 90
8.2.1 From sequential to parallel code generation 90
8.2.2 Parallel Code Generation overview 91
8.2.3 Integration . 93

8.3 Software-Hardware Interface for Multi/Many-Core (SHIM) 97
8.3.1 SHIM main characteristics . 97
8.3.2 MPPA3 SHIM Model . 99

8.4 Conclusion . 102

The presentation of the workflow developed throughout this thesis in Chapter 4 put
in evidence the interaction and requirement of additional software tools to construct an
efficient and safe framework for the generation of safety-critical real-time systems. The
context of this work is at the boundary of the hardware and low-level software, which
means that according to the platform and the type of code that we want to generate, the
tools that will be used need to be extended, improved or adapted.

This chapter presents the improvements and extensions done on tools that existed before
this thesis or developments based on standards that were already public. The first one
is the Multi-Core Interference Analysis (MIA) tool in Section 8.1, which is used in our
framework to estimate the global Worst-Case Response Time (WCRT) of applications
and verifiy their schedulability. An improved core algorithm was developed that reduces
significantly the complexity and allows better scalability of the tool. An arbitration model
of our target platform, the Kalray MPPA3 was implemented in this new version and is
used in Chapter 9 for the experiments.

Initialization and communication code needs to be generated to integrate the functional
code obtained after the compilation of synchronous data-flow languages. This integration
code is strictly platform dependent and Section 8.2 describes the complete code generation
process and the changes required for our framework and target.

Hardware abstraction models are extensively used in the academic and industry to
speed up the generation of code for a variety of platforms at the same time. With the
hardware knowledge of the Kalray MPPA3 obtained during this thesis, in Section 8.3
we develop a Software-Hardware Interface for Multi-Many-Core (SHIM) model of this
processor that is composable and reusable, following a established IEEE standard.

81

8.1 multi-core interference analysis (mia) 82

8.1 multi-core interference analysis (mia)

This section highlights the improvements made on an existing tool called MIA. First a
context on the response time analysis problem and the software is given, what motivated
its revision, the new proposed algorithm and the implementation of the Kalray MPPA3
models introduced in Chapter 7.

8.1.1 Response Time Analysis

Due to the nature of safety-critical real-time systems, they must be rigorously verified.
This verification covers not only the functionality of the program but also if it delivers the
correct responses on time. At the same time, the embedded industry is also transitioning
from single to multi/many-core processors. Having multiple cores on a system also means
that they will be in concurrency when accessing shared resources, such as the memory.
This concurrency problem is solved by arbiters implemented in hardware. Their role is
to decide the order in which the data traffic requests will go through. The algorithm
implemented in each arbiter is what ultimately impacts the predictability and performance
of these accesses.

Therefore in order to construct a complete response time analysis there are multiple
steps to be followed, described in richer detail in Section 3.3. The first one is to compute
or estimate the Worst-Case Execution Time (WCET) in isolation of the program. For
multi/many-core platforms, when multiple cores access the memory at the same time,
they are arbitrated and slow each other down. This delay is called interference and must be
taken into account. Once this is considered we talk about WCRT of a program, instead of
just WCET. The WCRT defines the time between the release date until the end of the task
execution, taking into account the interference delay. The final goal of this analysis is to
be part of a time-triggered execution, where each task within a program is deployed at a
specific point in time. Thus, the release dates of the tasks must also be computed using the
WCRT and the global map and schedule.

8.1.2 Problem Statement

Let us now formulate the problem that we aim to solve with the response time analysis
technique. As previously stated, we are within a time-triggered schedule that gives us the
precise time when each task of a program will be released. This time is strictly respected
during the execution, even if all the task’s dependencies were already satisfied and the
task could eventually start earlier.

The notion of release date is essential for the interference computation. A given task τ1,
running on core C1, with a release date relτ1 and a response time Rτ1 can only interfere
with another task τ2, running on core C2, with a release date relτ2 and a response time Rτ2

if there is an overlap in their execution time, i. e. [relτ1 + Rτ1] ∩ [relτ2 + Rτ2]. If they do
not overlap, we can guarantee the absence of interference between τ1 and τ2.

Our objective is that, given a Directed Acyclic Graph (DAG) of tasks with their intrinsic
dependencies and communication, their WCET in isolation, their memory accesses, an
initial mapping and scheduling and a bus arbiter model, we are able to compute release
dates for each one of the tasks and the total WCRT of the graph. Optionally the tasks may

8.1 multi-core interference analysis (mia) 83

have minimal release dates that forbid them from being scheduled before that date, even if
the tasks that they depend upon have already finished.

The challenge in solving this problem is that the WCRT of each task (the WCET in
isolation plus the interference) is directly influenced by the release date of the task itself
and of the others that may overlap with it. Therefore, changing the release dates of tasks
may also alter the amount of interference and WCRT, which can impact the release dates
of tasks that will be scheduled later on. From a global point of view, this creates a circular
dependency problem that increases the complexity of the algorithm trying to solve it.

To concretely understand the problem an example is given here, containing a DAG with
its initial and final schedule. The final schedule takes interference into account and shows
how it changes the WCRT of the program.

example 5 (response time analysis of a dag): The task set Γ is composed of 4 tasks:
n0, n1, n2, n3, n4. Their WCET in isolation is respectively 2, 2, 1, 3 and 2. The tasks also have
minimal release dates: t = 0 for n0, n3 ; t = 2 for n1 ; t = 4 for n2, n4. The tasks that communicate
with each other write only 1 unit of data to their target and they are n0 → n1 ; n0 → n2 ;
n3 → n2 ; n3 → n4. These values can be seen on the edges between the nodes in Figure 8.1.

n0

n1

n2

n3

n4

1

1

1

1

1

Figure 8.1: DAG under analysis

We suppose the execution of this DAG on a platform with 4 cores. The mapping of these tasks
to the available cores follows: n0 7→ C0 ; n1, n2 7→ C1 ; n3 7→ C2 ; n4 7→ C3. An initial schedule is
given in Figure 8.2. Time starts at t = 0 and each vertical dashed line represents 1 unit of time.

C0

C1

C2

C3

n0

n1 n2

n3

n4

t = 0 t = 6

Figure 8.2: Initial schedule for DAG under analysis

This schedule is valid as it respects the minimal release dates and the dependencies from the tasks
that are communicating. The response time of the whole application is t = 6. However this analysis

8.1 multi-core interference analysis (mia) 84

does not consider the interference when tasks are writing data to the same shared memory. The final
schedule is given in Figure 8.3.

C0

C1

C2

C3

n0 + I03

n1 + I13 n2

n3 + I03 + I13

n4

t = 8t = 0

Figure 8.3: Final schedule for DAG under analysis

There is interference between tasks n0 and n3 (represented as I03 in Figure 8.3) as their response
time overlap and they write to the same target n2. The same applies to tasks n1 and n3 (represented
as I13) as they both write to n4. This increases each task response time, and in particular delays the
release date of task n4 to t = 6. The WCRT of the application is thus t = 8.

8.1.3 Original Algorithm

Previous work has solved the analysis problem that was introduced in Section 8.1.2. A
general and extensible framework for computing a bound on the delay due to interference
is presented in [48] under the name Multi-Core Response Time Analysis (MRTA). It is
extensible as, multiple architectures with different arbitration policies to shared resources
and distinct memory systems, can be modeled in it. One major contrast with the problem
statement in Section 8.1.2 is that this work allows preemption and supposes sporadic tasks
with minimum inter-arrival times, without dependencies.

A derived work appears in [118] as an extension of the MRTA framework by modeling
the arbitration system of an industrial processor and its memory bank scheme. Another
change is the limitation of the application scope to a DAG based model with precedence
constraints and communication, allowing only periodic tasks and no preemption, which is
aligned with our problem description.

A simplified version of the general algorithm is presented in Algorithm 7. By knowing
the minimal release dates and initial response times of the task set, the algorithm uses
two fixed-point iterations to solve the response time analysis. As discussed before, these
fixed-point iterations are required as altering the release dates may also alter the response
time and vice-versa.

The function ComputeResponseTimes (Line 3) uses the shared resource arbiter model
to compute the response times of tasks {τ1, . . . , τn}, with the release date set Θ, while
bounding the interference from co-runners. This is the first-fixed point iteration as the
function stops once the response times of the tasks are constant.

Function UpdateReleaseDates (Line 4) verifies and updates the release date set based
on the current response time set and the tasks dependencies. The second fixed-point
iteration occurs at the end of the while loop (Line 6): in order to finish the algorithm the
release dates must be constant between two different iterations.

8.1 multi-core interference analysis (mia) 85

Algorithm 7: Original scheduling algorithm
Input: Set of release dates Θ = {rel1, . . . , reln},

set of response times R = {R1, . . . , Rn},
set of deadlines D = {D1, . . . , Dn} of tasks {τ1, . . . , τn}

Output: schedulable, Θ, R OR unschedulable

1 l ← 0, Θl ← InitRel(), Rl ← ⊥;
2 do
3 Rl+1 ← ComputeResponseTimes(Θl);
4 Θl+1 ← UpdateReleaseDates(Θmin, Θl ,Rl+1);
5 l ← l + 1;
6 while Θl ̸= Θl−1;
7 if ∀i : (Θ[i]l +R[i]l ≤ Di) then
8 return "schedulable", Θ, R;

9 else
10 return "unschedulable";

The complexity of this algorithm was proved to be O(n4) [116] where n is the number
of tasks to schedule. This raises scalability issues as soon as n starts to go over hun-
dreds of tasks. The complexity mainly comes from the two functions in Lines 3 and 4.
ComputeResponseTimes reaches O(n3): n iterations to converge, n iterations to calculate
the response time of all tasks and n− 1 iterations to compute the interference function.
UpdateReleaseDates reaches O(ne): iterates over all tasks and its dependencies, which
are the graph edges.

The emergence of modern real-time systems with an ever increasing set of functionality
raises the urge for a more efficient algorithm to compute the WCRT. The new algorithm
proposed here is inspired by the termination proof in [116], where a time cursor is used to
show that at each iteration a new task gets its definitive release date. Instead of aiming for
fixed-point computation as in Algorithm 7, the cursor is used to iterate through the finite
task set and their dependencies.

8.1.4 Proposed Algorithm

This section investigates how Algorithm 7 was reformulated to reduce the complexity,
allowing it to be applied to huge real-time systems.

8.1.4.1 Approximations and Hypotheses

Before diving into the new algorithm, it is important to put in evidence some of its
assumptions. We assume the following constraint: adding a new task to the program can
only increase the interference received by other tasks. It can seem as an intuitive statement,
but it is required for the proof of correctness on Section 8.1.4.4. In order to be more general
we assume that the interference might be non additive, i. e. the interference between n tasks
is not necessarily the sum of the interferences between all pairs of tasks. If a bus arbiter do
have this additive property, exploiting it could simplify and even speed up the algorithm,
but this is not the general case.

8.1 multi-core interference analysis (mia) 86

When multiple tasks are mapped to the same core, we assume the hypothesis that
they can be treated as a single big task, summing their WCETs and memory accesses. No
timing overlap analysis between tasks is done, which may lead to more pessimistic results.
This incurs that if any task accesses the memory bank privatized to a certain core it will
provoke interference. Figure 8.4 shows two diagrams that are topologically equivalent
when considering a task set where n1 and n2 interfere with n0. They are perceived as one
big task by n0 as the diagram on the right shows.

C0

C1

C2

C3

n0

n1 n2

n3

n4

≡

C0

C1

C2

C3

n0

n1 + n2

n3

n4

Figure 8.4: Equivalence between diagrams for interference calculation

8.1.4.2 Core idea

Given the task set and initial release dates, the proposed algorithm works incrementally,
by adding tasks one by one to the schedule. The algorithm works with a time cursor t,
starting from t = 0 and progressing forward. The tasks are divided into three groups:

• Closed (C): t is after their finish date. These tasks have both their final release date
and response times computed.

• Alive (A): t is between their release and finish date. These tasks have their final
release date, but their response time may be influenced by tasks not yet added to the
schedule.

• Future: t is before their release date, neither the release date nor their response time
is computed.

At each iteration, the cursor t jumps to the nearest end date of the current alive tasks or
the minimal release of future tasks, whichever is smaller. New available tasks, i.e. with
all dependencies satisfied, are then scheduled, and the interferences that they add to and
receive from the current alive tasks are computed. They cannot interfere with dead tasks,
because they do not overlap, and their interferences with future tasks will be computed
later in the algorithm, when those are added to the alive group.

With this approach, when a task is scheduled, its release date is definitively set and, as
previously discussed, will not be changed with future tasks.

Figure 8.5 captures a snapshot of the algorithm being executed. The vertical dashed red
line represents the current time cursor position. Only the solid boxes are considered alive
tasks. The dotted boxes on the left are the dead tasks, and the dashed ones on the right are
the future tasks.

8.1 multi-core interference analysis (mia) 87

C0

C1

C2

C3

n0 n1 n2

n3 n4

n5 n6 n7

n8 n9 n10

t

Figure 8.5: Snapshot of the new algorithm cursor mechanism

8.1.4.3 Detailed Algorithm

The proposed algorithm is given in Algorithm 8 as pseudo code, and detailed below. The
inputs are a task set Γ, an initial set of release dates Θ and response times R, the number
of cores c available in the platform, the mapping of tasks to cores and a shared memory,
which may have distinct arbitrated banks reserved for each core to minimize interference1.

In the example from Figure 8.5, we have Γ = {n0, . . . , n10}, c = 4 and the mapping is as
follows: n0, n1, n2 7→ C0, n3, n4 7→ C1, n5, n6, n7 7→ C2 and n8, n9, n10 7→ C3.

The time cursor begins at t = 0, with A, the set of current alive tasks, initially empty. The
following steps are then repeated until all the tasks are scheduled (at each step we give the
corresponding state in the example from Figure 8.5 and the lines from the Algorithm 8):

1. C (closed) is the set of tasks ending at time t. It is simply computed by scanning the
current alive tasks, and determining if the end of the task (rel + WCRT) is less than
or equals to t. These tasks are then removed from their reverse dependencies list,
allowing tasks depending on these closed ones to start.

Algorithm: Line 3 to Line 6, Example: C = n6

2. A (Alive)← A − C
Algorithm: Line 7, Example: A = n0, n4, n9

3. O (Opening) is the set of tasks opening at time t. It is computed by scanning the
head of the stack of scheduled tasks for each core, and determining whether its
dependencies are satisfied and if its minimal release date is smaller than or equal to
t.

Algorithm: Line 9 to Line 15, Example: O= n7

4. A ← A ∪ O
Algorithm: Line 16, Example: A = n0, n4, n7, n9

5. For any destination task in A and for any source task in A, which have accesses to the
same memory bank, we determine if the source task has already been accounted for

1 If the memory is composed of only one bank (or the banks are interleaved and memory accesses cannot be
reliably associated to a bank), the loop iterating over banks on Line 17 to Line 23 of Algorithm 8 iterates over
only one element and can be simplified. However, while the analysis is simplified, the worst-case interference
is increased as all access from all cores, even to their private code and data, may be delayed by others.

8.1 multi-core interference analysis (mia) 88

Algorithm 8: Proposed scheduling algorithm
Input: Set of release dates Θ = {rel1, . . . , reln},

set of response times R = {R1, . . . , Rn},
set of deadlines D = {D1, . . . , Dn} of tasks {τ1, . . . , τn}

Output: schedulable, Θ, R OR unschedulable

1 forall k, Sk ← stack of tasks scheduled on core k; A ← ∅; t← 0;
2 while t < +∞ do
3 C ← {τ ∈ A | (relτ +Rτ) ≤ t};
4 for τ ∈ C do

// τ.rev_deps→ tasks that depend on τ

5 for τ′ in τ.rev_deps do
6 τ′.deps.remove (τ);

7 A ← A− C;

8 O← ∅;
9 for k ∈ list of cores c = {0, . . . , c− 1} do
10 if Sk is not empty then

// get top of stack without removing

11 τ_next← Sk.peek();
12 if τ_next.deps is empty AND

min_rel of τ is ≤ t then
13 O← O∪ {τ};
14 relτ ← t; // updates release date

15 Sk.pop(); // removes top of stack

16 A ← A∪O;

17 for τ_dest ∈ A do // task target of mem access

18 for τ_src ∈ A do // task source of access

19 for bank b in banks B do
20 if τ_dest and τ_src both access b then
21 if τ_src not in τ_dest.interfers_with[b] then
22 τ_dest.interfers_with[b].add(τ_src);

// updates response time

23 τ_dest.interferences[b]← IBUS(τ_dest, τ_dest.interfers_with[b], b);

24 t_next← +∞;
25 for τ ∈ A do
26 t_next← min(t_next, relτ +Rτ);

27 for min_rel in minimal release of future tasks do
28 t_next← min (t_next, min_rel);

29 t← t_next;

30 if ∀i : (Θ[i]l +R[i]l ≤ Di) then
31 return "schedulable", Θ, R;

32 else
33 return "unschedulable";

8.1 multi-core interference analysis (mia) 89

in the interferences received by the destination. If not, that interference is recomputed
by the specified bus arbiter function (see Section 8.1.5), after adding the source of the
list of nodes that the destination interferes with. Notice that at least one of the source
and destination task must be in O , otherwise it would already have been accounted
for. The interferences are computed separately for each memory bank access from
the task τ. The total interference received by the task τ is the sum of those values.

Algorithm: Line 17 to Line 23

6. t is updated to the minimal value between the next smallest release date of future
tasks and the next finish time of alive tasks.

Algorithm: Line 24 to Line 29

8.1.4.4 Termination and Correctness

termination Except the outermost loop iterating over t, all the other loops iterate over
finite sets, which by definition ensures that they will end. The main while loop finishes
too, as there are at most 2n possible values for t_next: each jump of t is to the beginning
or end of a task, and those, once visited, will never change later.

correctness We give here an intuition on the formal proof of the algorithm. Assume
the algorithm is correct when scheduling the n− 1 first tasks. When the n-th task is added,
its release date is definitively set and it may still only interferes the alive tasks. Once the
interference computation is done, the algorithm finishes and, by recurrence, all previous
dependencies and release dates are respected, providing a correct and final schedule for
the task set.

equivalence According to the results of the tests performed, this algorithm is conjec-
tured to be equivalent to the original one. This remains to be formally proven though.

8.1.4.5 Complexity Analysis

The concepts seen in Section 8.1.4.2 and in the Algorithm 8 are important to understand
the complexity analysis in this section. In particular, we recall here the definition of the set
of alives tasks A: the cursor t used in the algorithm is between the release date and the
finish date of any task contained in this set.

The size of the set of alive tasks A is bounded by the number of cores, as there can be
only one alive task per core at a given time. Therefore, we access the linear IBUS function
(Line 23 of Algorithm 8) a bounded number of times for each progression of t. This
IBUS function contains the implementation of the model that computes the interference in
a given bus. The possible values for t are the tasks finish dates and their minimal release
dates, making it at most 2n. The two nested loops then give an overall complexity, with n
tasks, b banks and c cores:

O(c2 · b · n2) (8.1)

For a given processor, b and c are constants, so Equation (8.1) may be simplified to
O(n2).

8.2 parallel code generation and orchestration 90

8.1.5 MPPA3 Arbitration Model Implementation

The Kalray MPPA3 arbitration model described in Chapter 7 was implemented in the new
python version of the MIA tool2 presented in Section 8.1.4. We describe here the main
contributions to the tool when writing this new model.

8.1.5.1 Intra-Cluster Arbitration

level 1 The cache Fixed Priority (FP) arbiter detailed in Section 7.1.1 and the proposed
models to incorporate it into the response time analysis step of our workflow are a new
addition to MIA. The implemented versions are still experimental and vary according to the
model. They also suppose a static code analysis to obtain the amount of uncached access
and their frequency. In practice, in our workflow we suppose that the cache arbitration
delay is incorporated into the WCET of a task.

level 2 The arbiter detailed in Section 7.1.2 is essentially a configurable Round-Robin
(RR). This configuration applies to the amount of consecutive grant rounds provided to
each initiator. The implementation of this model is straightforward and similar to the
MPPA2 that was ported to this new MIA version.

8.1.5.2 Inter-Cluster Arbitration

The major contribution added to MIA by modeling the MPPA3 is the implementation of
the inter-cluster arbitration as a multi-level problem. This is detailed in Section 7.2 and
the summary is: an intra-cluster arbitration from the source, a Deficit Round-Robin (DRR)
arbitration at the edge of the arrival cluster and another intra-cluster arbitration to access
the destination memory bank.

The MPPA2 model had additional tasks Tx and Rx to represent the communication
through the NoC. This new model using the AXI greatly simplifies the implementation,
only requiring to sum, on top of interference computed by the arbiters, the constant
traversal time between clusters (see Table 3.1) multiplied by the number of data blocks
exchanged (see Equation (6.4)).

8.2 parallel code generation and orchestration

The workflow introduced in Chapter 4 contains a code generator step identified as Multi-
Core Code Generator (MCG). This tool is part of the SCADE Suite [40] and will be
described in finer details in this section, as well as the modifications done in the integration
script to target the MPPA3 processor.

8.2.1 From sequential to parallel code generation

The original code generator contained in SCADE version 6 is called Qualified Code
Generator (KCG). It is certified at high levels for critical industries [28]: avionics at Level
A of DO-178B, automotive at SIL 3 level of the IEC 61508 standard. However the code

2 Its code is available at the following link: https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/

synchrone/mia

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/mia
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/mia

8.2 parallel code generation and orchestration 91

produced is not suitable for multi-core execution. All SCADE programs have intrinsically
a root operator that manages inputs and outputs and encompass all other nodes of an
application. KCG generates a single sequential function for the root operator.

Some workarounds outside the SCADE model where possible, but lead to problems due
to manual code requiring to be written. These workarounds are also hard to automate as
the inner task model also requires changes that is out of the scope of a typical SCADE user.
MCG in its turn introduces a new C:task pragma to the language, that allows a developer
to indicate that an instace of an operator should be extracted into a separate task. The code
generation process then produces, instead of a single sequential function, a set of tasks
that communicate through one-to-one channels.

8.2.2 Parallel Code Generation overview

MCG therefore generates the functional tasks code as well as a decoupled communication
model through individual channels. One task executes the root operator of the model.
Then, for each annotated operator in the input model, one task is generated. This task
receives data on an input channel, calls the operator and then sends the result on an output
channel. The implementation of isolated tasks that communicate through message passing
is a common technique for multi-core execution, in particular for safety-critical systems.

Each task has a context that contains: memory structures, outputs, several methods and
probes to inspect internal state. These methods are reset and init as well as one or several
cycle methods. The cycle method in itself can be split into several other methods, which
is not possible with KCG. In order to communicate with other tasks each cycle method has
input and output channels. Methods of the same task can communicate directly through
its context element.

For each channel used for communication a structure type is generated, containing
the data to be transmitted in this channel. The channel is basically a FIFO of size one,
connected to one sender and one receiver. The sender writes to and the receiver read from
a field in the task’s context, which is a pointer to the structure type of the channel. The
actual allocation and implementation of the channel is part of the integration code.

example 6 (scade model and generated code): To exemplify the code generation
process Listing 8.1 SCADE Model is used, containing only two tasks:

function F1 (i1 : int32) returns (o1 : int32)

o1 = i1 * i1 ;

function F2 (i2 : int32) returns (o2 : int32)

o2 = (i2 -1)*(i2 +1);

function root (i : int32) returns (o : int32)

o = #pragma kcg C : task F1_task #end F1 (i)

- #pragma kcg C : task F2_task #end F2 (i);

Listing 8.1: Simple SCADE Model

8.2 parallel code generation and orchestration 92

Figure 8.6 illustrates this model graphically:

root_1

F1

F2

root_2i o

Figure 8.6: Simple SCADE Model diagram

Listings 8.2 and 8.3 show, respectively, the channel structure and task context code that
is generated for the F1_task:

/* channel types */

typedef struct kcg_tag_F1_task_in_ch_type {

kcg_int32 i1 ;

} F1_task_in_ch_type ;

typedef struct kcg_tag_F1_task_out_ch_type {

kcg_int32 o1 ;

} F1_task_out_ch_type ;

Listing 8.2: F1_task channels

/* context type */

typedef struct {

/* ---------------- no memorised outputs ---------------- */

/* ------------------ no local probes ------------------ */

/* ------------------ no local memory ------------------ */

/* -------------------- channels ----------------------- */

F1_task_in_ch_type * /* o=(F1)/ */ F1_task_in_ch;

F1_task_out_ch_type * /* o=(F1)/ */ F1_task_out_ch;

/* --------------- no sub nodes’ contexts --------------- */

/* ------------ no clocks of observable data ------------ */

} outC_F1_task;

Listing 8.3: F1_task context

Listing 8.4 shows the body of the cycle function of the F1_task. It is possible to identify
that it calls the F1 method using the contents of the input channel F1_task_in_ch and
writes the results to the output channel F1_task_out_ch, by using the associated context
fields.

The code generated for the root operator is similar, but due to the #pragma kcg C:task

F1_task #end and #pragma kcg C:task F2_task #end annotations, this operator is split
in two: root_1 and root_2.

8.2 parallel code generation and orchestration 93

/* cycle function */

void F1_task (outC_F1_task * outC)

{

(* outC->F1_task_out_ch).o1 = /* o =(F1)/ */

F1 ((* outC - > F1_task_in_ch). i1);

Listing 8.4: F1_task cycle function

void root_1 (inC_root * inC , outC_root * outC)

{

(* outC - > F2_task_in_ch). i2 = inC - > i ;

}

void root_2 (outC_root * outC)

{

outC - > o = (* outC - > F1_task_out_ch). o1 -

(* outC - > F2_task_out_ch). o2 ;

}

Listing 8.5: root task cycle function

8.2.3 Integration

In itself the generated code for the tasks is simply a high level structure that needs to
completed so that it can be properly executed in a given hardware architecture. Therefore
there is an integration step that must be done to run the program on a concrete platform.

8.2.3.1 Platform-agnostic part

This section presents the code generation that must be performed independetly of the
target platform and that is thus mostly generic and portable following the C standards.
The generation structure described here was extracted from the examples supplied by the
SCADE library and this structure was simply replicated for our platform. Section 8.2.3.2
describes the specificities required by the Kalray MPPA3 hardware.

task allocation The assignment of the generated tasks to the available comput-
ing resources constitutes the allocation process. The same core that runs a set of tasks
sequentially is called worker. The order in which the methods are called in a given worker,
i. e. initial scheduling, is determined by the data-flow dependencies coming from channels
and additional dependencies between methods if they belong to the same task. This
problem is not specific to MCG and was explored in details in Chapter 6. At the end of
the code generation, MCG supplies a mapping file that is used to help understand the
dependencies in order to provide a valid allocation.

program structure The final integration code (typically the main in a C program)
must perform several tasks for the uppermost (root) level:

1. Allocate the context of the root operator

2. Allocate the input and output structure of the root operator

8.2 parallel code generation and orchestration 94

3. Initialize the context by invoking the init method

4. For each step of the operator:

a) Set the inputs

b) Call the cycle function

c) Read the outputs

Additionally as the code for the workers is generated independently, MCG integration
code must perform more tasks:

1. For each worker, allocate the context of its tasks

2. For each worker, initialize the context by calling the init method

3. For each step:

a) Set the inputs

b) For each worker, call the methods in a valid order according to the dependencies.
For each method:

i. Receive the data on input channels

ii. Call the method

iii. Send the data on output channel

c) Read the outputs

From the steps described here, the Acquisition Execution Restitution (AER) or Read
Execute Write (REW) phased patterns introduced in Section 2.4 and explored in Chapter 5
can be easily retrieved. In particular when dealing with the inputs and outputs from each
operator and the data receival and sending process in channels.

8.2.3.2 Platform dependent part

SCADE Suite provides a helper script and a Python library to ease the integration with
MCG generated code. The script uses the Mako template library3 for code generation. It
provides an easy way to access the information contained on tasks, methods and channels
in order to output C code.

All the implementation details described in this section concern the code geeneration
of our target hardware, the Kalray MPPA3. For a different platform these need to be
reworked. This platform dependent implementation is required to have an executable code,
integrated with the platform agnostic generation part presented in Section 8.2.3.1. For the
Kalray MPPA3 we have defined two execution modes targetting general purpose and hard
real-time use, respectively. They are the event-triggered and time-triggered modes.

The event-triggered mode uses the hardware synchronization mechanisms described
in Section 3.2.5: Advanced Programmable Interrupt Controller (APIC) and mailboxes.
They are configured so each Processing Engine (PE) to PE connection has a dedicated
mailbox configured and when a synchronization event must occur, the target PE receives
an interruption. As a given PE may receive multiple interrupts, sometimes out of order,

3 Documentation available at https://www.makotemplates.org/

8.2 parallel code generation and orchestration 95

tokens are used to verify that the data corresponding to a certain communication channel
has indeed arrived. There is no response time analysis made on this code, but it is used as
a functional reference of the application. An example of the event-triggered code for a task
is given in Listing 8.6.

char stack_PE1[PE_STACK_SIZE] __attribute__((section(" . data_bank1"), aligned(8)));

void *thread_PE1(void *arg)

{

size_t i;

outC_N1_task outCtx_N1_task;

/* initialize context fields for channels */

(&outCtx_N1_task)->N1_task_out_ch = &N1_task_out_ch;

(&outCtx_N1_task)->N1_task_in_ch = &N1_task_in_ch;

N1_task_reset((&outCtx_N1_task));

for(i=0; i < NB_STEPS; i++) {

/* call N1_task */

while (!N1_task_in_ch_ready) {

wait_apic_it_and_clear(PES_IT_NUM);

}

N1_task_in_ch_ready = 0;
__kvx_builtin_fence();

N1_task((&outCtx_N1_task));

N1_task_out_ch_ready = 1;
__kvx_builtin_fence();

mailbox_notify(SYNC_CL0_CO0_RX_ID, __kvx_get_cpu_id());

}

eot_exit_pe();

return NULL;

}

Listing 8.6: Event-triggered code example

The time-triggered mode uses the hardware timers described in Section 3.2.6 to precisely
start each task of the application at their computed release date. These release dates and the
general schedulability are the responsibility of MIA. Typical synchronization mechanisms
are just used at the initialization to ensure that all PEs and Clusters have the same start of
time reference. No additional data tokens are required in this mode. An example of the
time-triggered code for a task is given in Listing 8.6.

char stack_PE1[PE_STACK_SIZE] __attribute__((section(" . data_bank1"), aligned(8)));

void *thread_PE1(void *arg)

{

size_t i;

outC_N1_task outCtx_N1_task;

uint64_t origin_of_time_PE1;

/* initialize context fields for channels */

(&outCtx_N1_task)->N1_task_out_ch = &N1_task_out_ch;

(&outCtx_N1_task)->N1_task_in_ch = &N1_task_in_ch;

8.2 parallel code generation and orchestration 96

N1_task_reset((&outCtx_N1_task));

__kvx_timer64_setup(UINT64_MAX, UINT64_MAX, 0, TIMER_0);

wait_apic_it_and_clear(RM_PES_IT_NUM);

origin_of_time_PE1 = __kvx_timer64_get_value(TIMER_0);

for(i=0; i < NB_STEPS; i++) {

/* call N1_task */

while(origin_of_time_PE1 - __kvx_timer64_get_value(TIMER_0) <= i *
reaction_period + rel_N1_task)

;

N1_task((&outCtx_N1_task));

}

eot_exit_pe();

return NULL;

}

Listing 8.7: Time-triggered code example

initialization code Each target platform and execution model may have a different
initialization sequence. In particular for the MPPA3 this code is executed in the Resource
Manager (RM) core and it changes if we are in a event-triggered or time-triggered model, as
well as if we exceed the limits of a single-cluster.

Generally we initialize the channel tokens, if any, configure the RM to wait until all PEs
have finished their execution and then we configure the mailbox event system and barriers,
either for synchronization (in the case of event-triggered) or for other clusters startup. Then
finally we started each PE (worker) that has a set of tasks assigned to it and then wait for
the program to finish before exiting.

An example of the initialization template and the final code can be found in Ap-
pendix B, Listings B.1 and B.2.

communication implementation The implementation of the communication
between channels of size one is a well known multicore programming problem called the
bounded producer-consumer. For the MPPA3, the code that must be generated changes in
the same way as for the initialization.

If we are in a event-triggered model, a channel reader must block itself and wait for the
arrival of an event, to then verify that the data has arrived using a token. A channel writer
must perform the store operation and then send this event signal to the corresponding
worker.

If we are in a time-triggered model, this process is simplified as we are sure, through the
static analysis made before execution, that once the release date for that has arrived, the
data will be ready. So we can simply read or write data directly without having to worry
about synchronization.

An example of the communication template and the final code within a task following
the time-triggered model can be found in Appendix B, Listings B.3 to B.5.

8.3 software-hardware interface for multi/many-core (shim) 97

8.3 software-hardware interface for multi/many-core (shim)

This section introduces the SHIM model, what motivated its creation, the main hardware
features that it covers and an overview of the model created for the MPPA3 architecture.

8.3.1 SHIM main characteristics

SHIM is an IEEE standard [84] that appeared to tighten the gap between hardware
manufacturers and software developers that want to effectively use these platforms. Instead
of relying exclusively on libraries or proprietary tools supplied by the manufacturers, with
a SHIM model a developer could properly understand the architecture and write efficient
code for it. Indeed, the main target of SHIM models are tools that automatically generate
code for multiple platforms, such as the Model-Based Parallelizer [83].

The SHIM interface uses Extensible Markup Language (XML), more specifically the XML
Schema (XSD), to define its structure. XSD is similar to an Unified Modeling Language
(UML) class diagram but in textual format. Each architecture is defined in at least one
SHIM XML file but could be extend to separate files that can contain instruction set
information, power configuration or vendor extensions.

The SHIM description is feature rich, providing a variety of concepts to describe the
core, cluster, memory and communication mechanisms of an architecture. In this section
the main elements of the SHIM standard are introduced to provide a background knowl-
edge for understanding how they were used to model the Kalray MPPA3 architecture
in Section 8.3.2.

8.3.1.1 ComponentSet

The combination of processors and memory devices in a system is called topology in SHIM
language. For many-core architectures it can also represent the cluster concept, which is
a particular group of cores and memory banks that are close and due to this proximity
have a stronger performance affinity. A cluster can be any combination of another cluster,
processor cores and memory components. The root component of a model is always a
cluster. These hardware terms have different names in SHIM terminology:

• ComponentSet: cluster of any level. The outermost cluster is the system boundary
itself

• MasterComponent: Processor core, accelerator or other master devices

• SlaveComponent: Any type of memory

Typically a memory is divided into multiple address spaces that may be used to partition
the memory system or to enforce access control privileges. An address space can also be
further subdivided into multiple subspaces or blocks. These spaces are used to identify
the location of a memory access (a load or a store instruction) and predict the typical
performance that can be expected from this operation. The SHIM terminology defines:

• AddressSpaceSet: group of address spaces

• AddressSpace: address space contained in a given set

8.3 software-hardware interface for multi/many-core (shim) 98

• SubSpace: a subspace of a given AddressSpace

The innermost component SubSpace is tied to a memory device, i. e. SlaveComponent
through an object called MasterSlaveBinding. This object also indicates which MasterCompo-
nent has access to the memory. Using this scheme it is possible to compartmentalize the
spaces to particular cores or accelerators.

8.3.1.2 CommunicationSet

In order to have an useful software running on multiple cores, it must share data between
these cores through some interface and also use a synchronization or trigger mechanism
to coordinate the parallel execution. The SHIM interface provides a class of objects to
represent this called CommunicationSet. Each child in this set contains a ConnectionSet that
includes one or more Connection describing the source and target MasterComponents that
are involved in this type of communication. The SHIM terminology provides multiple
classes of connection:

• SharedRegisterCommunication: Set of registers that can be accessed by multiple cores

• SharedMemoryCommunication: Memory space that can be accessed by multiple cores
but with particular operations (Test and Set, Compare and Exchange, . . .)

• EventCommunication: Register used to raise event signals to other cores based on
specific bitmap values

• FIFOCommunication: Buffers of different sizes that are used for inter processor com-
munication

• InterruptCommunication: interrupt mechanism between processors to invoke an inter-
rupt handler

8.3.1.3 ContentionGroupSet

The advantage of using a multi or many-core platform relies on the fact that the com-
putation of a given program can be distributed throughout different cores. After the
computation has finished on each core, they usually must communicate to exchange
results or receive new inputs. These data transfers are possible through several resources
such as busses, crossbars, Network-On-Chips (NoCs), Direct Memory Access (DMA), . . .

A communication mechanism has a bandwidth that is limited and shared between all
the initiators. Therefore if multiple components use a communication resource at the same
time, and if they reach the maximal bandwidth available, they will create a contention and
mutually slow them down.

The ContentionGroupSet provides a way to define the shared communication resources
in a platform through ContentionGroup objects. These groups only model the resource
utilization and the maximum bandwidth. They do not provide a way to specify more
complex aspects such as buffers, protocols or arbiters. The SHIM model in this sense is
targeted for general performance analysis rather than fine grain timing estimation, in
contrast to the modeling presented in Chapter 7.

The SHIM terminology involved inside a ContentionGroup follows:

• PerformanceSetRef : list all the accesses that make use of the resource in contention

8.3 software-hardware interface for multi/many-core (shim) 99

• PerformanceSet: describes the performance expected by each access in the defined
contention scenario

• DataRate: defines the maximum bandwidth in data per second

• Throughput: defines the maximum bandwidth in data per cycle (in a given frequency)

8.3.1.4 Other sets and terminology

Some other concepts that are modeled by SHIM but are less relevant for the scope of this
thesis are contained in this section. The FrequencyAndVoltageSet contains the specification on
clock frequencies, voltage domains and operating points which are used for performance
estimation. The complete instruction set of a core can be defined in SHIM through a LLVM
IR with the number of cycles taken in average by an instruction. PowerConfiguration is used
to define the expected power consumption within a given OperatingPoint.

Finally, if the SHIM standard does not provide a way to properly represent details about
a given architecture, it can be extended. These vendor extensions should be defined in
separate files and provide a way for the standard to remain concise while still allowing
expansions if required.

8.3.2 MPPA3 SHIM Model

A SHIM model of the MPPA3 processor is available at Github 4. Due to the file size (more
than 45 thousand lines) it is not included in its totality here. This model can be used for
automatic code generation through software such as eSOL eMBP [83] or faithfully represent
the target hardware in SCADE Architect [95]. The advantage of having a comprehensive
hardware model for code generation relies on being able to understand the architecture
characteristics in order to produce code that will actually benefit from them, instead of a
generic software that will not fully explore its capabilities. This section describes how the
elements that were presented until now were used to represent the concrete platform, first
at Cluster level and then at System On Chip (SoC) level.

8.3.2.1 Cluster Model

At the cluster level, the ComponentSet was used to delimitate each one of the clusters of
the architecture. Inside of it, each RM or PE is a MasterComponent, attached to several
references: Cache, frequencyDomain, voltageDomain and operatingPoint. For each of these
components we also define the architecture they belong to, and their endianness.

The MasterComponent also hosts the information about the types of possible memory
accesses and the CommonInstructionSet where the individual processor instructions can
be benchmarked through the LLVM compiler. After all the cores have been defined the
cluster ComponentSet contains SlaveComponents, in our case the local scratchpad memory.
And then finally all the caches (data and instruction) that have been assigned to the cores,
with their respective set of characteristics: size, number of ways, line size, replacement
policy, · · · .

4 Kalray MPPA3 SHIM model repository: https://github.com/kalray/shim-model/

https://github.com/kalray/shim-model/

8.3 software-hardware interface for multi]many-core (shim) 100

Listing 8.8 shows a portion of the elements contained in the model of Cluster 0 of the
MPPA3 with some information omitted or simplified to facilitate the reading of the code
snippet.

<ComponentSet name=" Cluster_00 " id=" cc_00 ">
<MasterComponent name="RM_C00" id=" rm_cc_00 " frequencyDomainRef=" f q r " voltageDomainRef=" vdr " operat ingPointRef=" opr "

arch="KV3" archOption="V1" endian=" LITTLE " masterType="PU" nThread=" 1 " pid=" 3 . 1 ">
<CacheRef>DCache_RM_C00</CacheRef>
<CacheRef>ICache_RM_C00</CacheRef>
<AccessTypeSet>

<AccessType name="AT_B" id=" AT_b_id " rwType="RWX" a c c e s s B y t e S i z e=" 1 " al ignmentByteSize=" 1 "/>
<AccessType name="AT_H" id=" AT_h_id " rwType="RWX" a c c e s s B y t e S i z e=" 2 " al ignmentByteSize=" 1 "/>
<AccessType name="AT_W" id="AT_w_id" rwType="RWX" a c c e s s B y t e S i z e=" 4 " al ignmentByteSize=" 1 "/>
<AccessType name="AT_D" id=" AT_d_id " rwType="RWX" a c c e s s B y t e S i z e=" 8 " al ignmentByteSize=" 1 "/>
<AccessType name="AT_Q" id=" AT_q_id " rwType="RWX" a c c e s s B y t e S i z e=" 16 " al ignmentByteSize=" 1 "/>
<AccessType name="AT_O" id=" AT_o_id " rwType="RWX" a c c e s s B y t e S i z e=" 32 " al ignmentByteSize=" 1 "/>

</AccessTypeSet>
<CommonInstructionSet name="LLVM I n s t r u c t i o n s ">
. . .

</CommonInstructionSet>
</MasterComponent>
<MasterComponent name=" PE00_C00 " id=" pe00_cc_00 " frequencyDomainRef=" f q r " voltageDomainRef=" vdr " operat ingPointRef="

opr " arch="KV3" archOption="V1" endian=" LITTLE " masterType="PU" nThread=" 1 " pid=" 3 . 2 ">
. . .

</MasterComponent>
. . .

<SlaveComponent name="SMEM_00" id="smem_00 " s i z e =" 4 " s i ze Un i t="MiB" rwType="RWX"/>
<Cache name="DCache_RM_C00 " id="DCache_RM_C00 " cacheType="DATA" cacheCoherency="HARDWARE" s i z e =" 16 " s i ze Un i t=" KiB "

nWay=" 4 " l i n e S i z e =" 64 " lockDownType="LINE" p r e f e t c h ="ONMISS" replacement="LRU" w r i t e A l l o c a t e ="NEVER" writeBack="
NEVER"/>

<Cache name=" ICache_RM_C00 " id=" ICache_RM_C00 " cacheType="INSTRUCTION" cacheCoherency="HARDWARE" s i z e =" 16 " s i ze Un i t="
KiB " nWay=" 4 " l i n e S i z e =" 64 " lockDownType="LINE" p r e f e t c h ="ALWAYS" p r e fe t c h D i s t a n c e=" 128 " replacement="LRU"
w r i t e A l l o c a t e ="NEVER" writeBack="NEVER"/>

. . .
<Cache name=" DCache_PE15_C00 " id=" DCache_PE15_C00 " cacheType="DATA" cacheCoherency="HARDWARE" s i z e =" 16 " s i ze Un i t=" KiB "

nWay=" 4 " l i n e S i z e =" 64 " lockDownType="LINE" p r e f e t c h ="ONMISS" replacement="LRU" w r i t e A l l o c a t e ="NEVER" writeBack=
"NEVER"/>

<Cache name=" ICache_PE15_C00 " id=" ICache_PE15_C00 " cacheType="INSTRUCTION" cacheCoherency="HARDWARE" s i z e =" 16 "
s i ze Un i t=" KiB " nWay=" 4 " l i n e S i z e =" 64 " lockDownType="LINE" p r e f e t c h ="ALWAYS" p r e f e t c h D i s t a n c e=" 128 " replacement="
LRU" w r i t e A l l o c a t e ="NEVER" writeBack="NEVER"/>

</ComponentSet>

Listing 8.8: Portion of the MPPA3 SHIM Model of Cluster 0

8.3.2.2 SoC Model

At the SoC level, we have the regroupment of all the clusters represented in their Com-
ponentSets, as well as the global memory in the form of a SlaveComponent. Then the
AddressSpaceSet defines the possible address spaces for the different ComponentSets or
MasterComponents. A possible connection is established through a MasterSlaveBinding with
a respective performance associated, providing the memory latency for that access.

Some of the possible CommunicationSets in the MPPA3 are represented, through shared
memory regions and mailboxes, but this was not modeled exhaustively, as it was out
of the scope of this SHIM model goal. The ContentionGroupSet is what gets the closest
to the interference models found in MIA, though it is merely a throughput and data
rate indication, without any worst-case information. Finally the SoC model ends with
non-functional information through the FrequencyVoltageSet and PowerConfiguration.

Listing 8.9 shows a portion of the elements contained in the model of the complete
MPPA3 SoC with, once again, some information omitted or simplified to facilitate the
reading of the code snippet.
<?xml vers ion=" 1 . 0 " encoding="UTF−8 " ?>
<shim:Shim xmlns:shim=" h t t p : //www. mult icore − a s s o c i a t i o n . org /2017/SHIM2 .0/ " name="KV3 (MPPA3, Coolidge) SHIM A r c h i t e c t u r e

Descr ipt ion " shimVersion=" 2 . 0 ">
<SystemConfiguration>

<ComponentSet name=" C l u s t e r s " id=" c l u s t e r s ">
<ComponentSet name=" Cluster_00 " id=" cc_00 ">
. . .

8.3 software-hardware interface for multi]many-core (shim) 101

</ComponentSet>
<ComponentSet name=" Cluster_01 " id=" cc_01 ">
. . .

</ComponentSet>
<ComponentSet name=" Cluster_02 " id=" cc_02 ">
. . .

</ComponentSet>
<ComponentSet name=" Cluster_03 " id=" cc_03 ">
. . .

</ComponentSet>
<ComponentSet name=" Cluster_04 " id=" cc_04 ">
. . .

</ComponentSet>
<SlaveComponent name="DDR" id=" ddr " s i z e =" 4 " s i ze Un i t=" GiB " rwType="RWX"/>

</ComponentSet>
<AddressSpaceSet>

<AddressSpace name=" AS_Clusters " id=" AS_Clusters ">
<SubSpace name="SS_INTERNAL_MEM" id="SS_INTERNAL_MEM" s t a r t =" 0 " end=" 4194303 " endian=" LITTLE ">

<MasterSlaveBindingSet>
<MasterSlaveBinding slaveComponentRef="smem00"/>
<MasterSlaveBinding slaveComponentRef="smem01"/>
<MasterSlaveBinding slaveComponentRef="smem02"/>
<MasterSlaveBinding slaveComponentRef="smem03"/>
<MasterSlaveBinding slaveComponentRef="smem04"/>

</MasterSlaveBindingSet>
</SubSpace>
<SubSpace name="SS_SMEM_0" id=" ss_smem00 " s t a r t =" 16777216 " end=" 20971519 " endian=" LITTLE ">

<MasterSlaveBindingSet>
<MasterSlaveBinding slaveComponentRef="smem00">

<Accessor masterComponentRef=" rm_c00 ">
<PerformanceSet id=" perf_rm_c00_smem00 ">

<Performance accessTypeRef=" AT_b_id ">
<P i t ch bes t=" 3 . 0 " t y p i c a l =" 2 3 . 0 " worst=" 368 . 0 "/>
<Latency bes t=" 3 . 0 " t y p i c a l =" 2 3 . 0 " worst=" 368 . 0 "/>

</Performance>
. . .

</PerformanceSet>
</Accessor>

</MasterSlaveBinding>
</MasterSlaveBindingSet>

</SubSpace>
<SubSpace name="SS_SMEM_1" id=" ss_smem01 " s t a r t =" 33554432 " end=" 37748735 " endian=" LITTLE ">
. . .

</SubSpace>
<SubSpace name="SS_SMEM_2" id=" ss_smem02 " s t a r t =" 50331648 " end=" 54525951 " endian=" LITTLE ">
. . .

</SubSpace>
<SubSpace name="SS_SMEM_3" id=" ss_smem03 " s t a r t =" 67108864 " end=" 71303167 " endian=" LITTLE ">
. . .

</SubSpace>
<SubSpace name="SS_SMEM_4" id=" ss_smem04 " s t a r t =" 83886080 " end=" 88080383 " endian=" LITTLE ">
. . .

</SubSpace>
</AddressSpace>
<AddressSpace name=" AS_Global " id=" AS_Global ">

<SubSpace name="SS_DDR" id=" ss_ddr " s t a r t =" 4294967296 " end=" 8589934591 " endian=" LITTLE ">
. . .

</SubSpace>
</AddressSpace>

</AddressSpaceSet>
<CommunicationSet>

<SharedMemoryCommunication name="SHMEM_C00" operationType="OTHER" dataS ize=" 4 " dataSizeUnit="MiB" addressSpaceRef=
" a s _ c l u s t e r s " subSpaceRef=" ss_smem_00 ">

<ConnectionSet>
<Connection from=" rm_c00 " to=" pe00_cc_00 "/>

</ConnectionSet>
</SharedMemoryCommunication>
. . .

<EventCommunication name=" Event_APIC_Mailboxes ">
<ConnectionSet>

<Connection from=" rm_c02 " to=" pe02_c03 "/>
</ConnectionSet>

</EventCommunication>
<InterruptCommunication name=" Interrupt_IPI_C00 ">

<ConnectionSet>
<Connection from=" rm_c00 " to=" pe00_cc_00 "/>

</ConnectionSet>
</InterruptCommunication>

</CommunicationSet>
<FrequencyVoltageSet>

<FrequencyDomain name=" FrequencyDomain_Clusters " id=" fdr "/>
<VoltageDomain name=" VoltageDomain_Clusters " id=" vdc "/>
<Operat ingPointSet name=" Operat ingPointSet0 " id=" op0 ">

<OperatingPoint name=" Normal " id=" op0 " frequency=" 800 " frequencyUnit="MHz" vol tage=" 800 " vol tageUnit="mV"/>
<OperatingPoint name=" Turbo " id=" op1 " frequency=" 1000 " frequencyUnit="MHz" vol tage=" 880 " vol tageUnit="mV"/>

</Operat ingPointSet>
</FrequencyVoltageSet>
<ContentionGroupSet>

<ContentionGroup name=" ContentionGroup_SMEM00 " id=" cg_smem00 ">
<Throughput frequencyDomainRef=" fdr " value=" 32 " uni t="B/ c y c l e "/>
<DataRate value=" 32 " uni t=" GiB/s "/>

8.4 conclusion 102

<PerformanceSetRef>perf_rm_c00_smem00</PerformanceSetRef>
. . .

</ContentionGroup>
</ContentionGroupSet>

</SystemConfiguration>
<PowerConfiguration>

<PowerConsumptionSet name=" PowerConsumptionSet_1 " id=" pcs ">
<PowerConsumption operat ingPointRef=" op0 " power=" 10 " powerUnit="W"/>
<PowerConsumption operat ingPointRef=" op1 " power=" 20 " powerUnit="W"/>

</PowerConsumptionSet>
</PowerConfiguration>
<Funct iona lUni tSe t>

<Funct ionalUnit name="BCU"/>
<Funct ionalUnit name="LSU"/>
<Funct ionalUnit name="ALU"/>
<Funct ionalUnit name="MAU"/>
<Funct ionalUnit name="TCA"/>

</Funct iona lUni tSe t>
</shim:Shim>

Listing 8.9: Portion of the MPPA3 SHIM Model of the complete SoC

8.3.2.3 Limitations

The model presented here does not aim to be exhaustive in terms of representing all the
components contained in the Kalray MPPA3 SoC. Even at the cluster level, we chose not
to include the Cryptographic Accelerators, DSU and DMA components (see Figure 3.3),
for example, as they are not relevant for the scope of this work. On top of this, even if the
SHIM standard aims to be generic, it does not provide a lot of features to represent such
components that distance themselves from regular cores.

As seen in Section 8.3.2.2, the only feature provided by the SHIM standard to represent
multiple MasterComponents accessing the same shared resource is through ContentionGroups.
However, it can only be specified the throughput in terms of Bytes per cycle and the data
rate in terms if Gigabytes per second. With this limitation and without any vendor
extension, the base SHIM standard is not adapted for hard real-time systems, were precise
information about the expected delays at runtime should be obtainable statically prior to
execution.

8.4 conclusion

Contributions made to improve, extend or develop new models for existing tools and
standards have been presented in this chapter.

The Multi-Core Interference Analysis (MIA) tool has been rewritten with a new algorithm
that simplifies the response time analysis of tasks and avoids any fixed point iteration,
reducing the complexity from O(n4), in the old version, to O(n2). This is possible with the
simple idea of having a time cursor that only consider the interference delay happening
between tasks that are being executed at a given instant. Further improvement could be
obtained by also taking into account the overlap time among the task that are alive. This
will certainly lead to less pessimistic results than including the whole interval until the
next release or finished date. A better deadline management system could also be added
to return individual node schedulability information.

The SCADE Multi-Core Code Generator (MCG) has been analyzed in depth in this
chapter. In particular it was detailed the platform dependent parts that needs to be adapted
in order to target a new platform after generating the functional code from SCADE. The
implementation choices for the different execution modes targeting the Kalray MPPA3
were described. Future work can include additional execution modes or trying to improve

8.4 conclusion 103

the existing ones. For example, instead of an active timer wait in the time-triggered mode,
the core could be put to sleep and be woken up by a timer interrupt.

The Software-Hardware Interface for Multi-Many-Core (SHIM) is an IEEE standard
that tries to close the gap between hardware models and software that require such
models to automatically produce code or perform analyses. The MPPA3 SHIM model
that was presented in this chapter contains the essential information to understand and
integrate the platform in any software that requires SHIM. Improvements can be done to
include more components from the platform and also complete the CommunicationSet and
ContentionGroupSet elements.

9
E X P E R I M E N T S

9.1 Applications presentation . 106
9.1.1 Simple Data Flow . 106
9.1.2 Avionics Case Study . 107
9.1.3 Automotive Industrial Program . 107

9.2 Phased Execution Models experiments . 108
9.2.1 Evaluation context . 109
9.2.2 Results . 110
9.2.3 Discussion . 114

9.3 Mapping and Scheduling experiments . 114
9.3.1 DAG generation . 115
9.3.2 Comparative methodology . 115
9.3.3 Results . 116

9.4 Performance improvement on MIA . 118
9.4.1 Bus Arbiter Function . 118
9.4.2 Results . 119
9.4.3 Discussion . 121

9.5 Conclusion . 121

This chapter hosts the experiments that put in practice the concepts developed through-
out the contributions seen in Part II, in particular the phased execution models from Chap-
ter 5, the mapping and scheduling algorithm from Chapter 6 and the Multi-Core Interfer-
ence Analysis (MIA) algorithm rework from Section 8.1.

The applications used to evaluate the phased execution models are presented at the
beginning through a brief description, graphical visualization and profiling information.
For this evaluation we stayed within the cluster boundaries, so all of them fit the local
memory limits. Nonetheless, some of them are case-studies or industrial applications and
it is important to establish their characteristics, in order to discuss the results further into
the chapter.

The first experiments are then performed by applying the memory partitioning and
interference models presented before. A quick recap is given before diving into how
the evaluation was performed in two target platforms: the Kalray MPPA2 and MPPA3.
The results are presented raising a broader discussion targeted for the real-time systems
community. This is followed by the experiments used to evaluate the solutions to the
Directed Acyclic Graph (DAG) mapping and scheduling problem. As we are exploring the
multi-cluster feature of the MPPA3, instead of using handmade applications, we generate
random DAGs with tens to hundreds of nodes. This allowed a proper exploration of the
proposed algorithm and the platform. The last evaluation is done on the new algorithm for
response time analysis implemented in MIA. Randomly generated DAGs with the same
arbitration model were used to provide a fair point of comparison with the old version.

From the contributions presented in this thesis, Chapter 7 is the only one that is not
evaluated here. This is justified by the fact that the arbitration model implementation

105

9.1 applications presentation 106

is a direct translation of the mathematical models. However, this implementation is the
foundation for all the experiments performed in this chapter where a MPPA3 model is
required.

9.1 applications presentation

The applications used for the experiments in Section 9.2 are presented here, giving
emphasis on their structure, resource usage and access availability. An important common
point between these applications is that all the code and data fit in a cluster local memory,
avoiding the need for global memory accesses during the execution. An initial mapping
of application tasks to cores is given for each example as the goal is to evaluate only the
phased execution models, scheduling and memory interference impact.

9.1.1 Simple Data Flow

This example application1 is the one used in Chapter 5, more specifically in Example 1 to
illustrate the problems with single-phased execution and how having multiple phases can
help to solve them. During the implementation this application was used to validate our
methodology in terms of scheduling and implementation. As shown in Figure 9.1 the 5
task nodes are initially mapped to 2 cores, with N0 and N3 having no initial dependencies,
while the other nodes are connected to the data-flow that derives from them. The execute
tasks perform basic arithmetic operations.

N0

N1

N2

N3

N4
PE0

PE0

PE1

PE1

PE1

Figure 9.1: Simple data-flow graph and preliminary mapping

Profiling information of this application for the 3-Phased partitioning model is:

• Compute phases — WCET: from 260 to 326 cycles, WCA: from 2 to 7 accesses;

• Read phases — WCET: from 183 to 198 cycles, WCA: from 0 to 3 accesses;

• Write phases — WCET: from 183 to 202 cycles, WCA: from 0 to 3 accesses;

• Computation-Communication Ratio (CCR) — 1 732 compute cycles to 3 041 commu-
nication cycles.

1 Available at https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/

simple-dflow-rtss-2020/

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/simple-dflow-rtss-2020/
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/reproducible-research/simple-dflow-rtss-2020/

9.1 applications presentation 107

9.1.2 Avionics Case Study

ROSACE is an avionics open-source case-study developed by ONERA [106]2. It contains a
multi-periodic flight controller program that aims to be easily executed on a multi/many-
core processor. The original code has been expanded into a hyper-period that normalizes
the multi-periodic nature of the program. The application contains 10 nodes (execute
tasks) and is initially mapped to 8 cores. The corresponding data-flow graph is given
in Figure 9.2.

az_filter_1

V_filter_Vz

Rosace_Simul_1

Rosace_Simul_2

V_filter_Va Vz_control_1

Va_control_1

Rosace_Simul_3

h_filter_1

q_filter_1

PE0

PE0

PE0

PE1

PE2

PE3

PE4

PE6

PE5

PE7

Figure 9.2: ROSACE data-flow graph and preliminary mapping

Profiling information of this application for the 3-Phased partitioning model is:

• Compute phases — WCET: from 624 to 74 343 741 cycles, WCA: from 7 to 195
accesses;

• Read phases — WCET: from 170 to 185 cycles, WCA: from 1 to 2 accesses;

• Write phases — WCET: from 170 to 187 cycles, WCA: from 1 to 3 accesses;

• CCR — 260 214 753 compute cycles to 5 972 communication cycles.

The ROSACE case-study, in comparison with the simple data flow application, has bigger
compute phases in terms of WCET, as well as a CCR revealing that the application is more
compute intensive.

9.1.3 Automotive Industrial Program

The third case-study is an industrial automotive program with 4 765 lines of functional
code (not including the orchestration code). The 9 nodes are initially mapped to 6 cores.
There is one initial task and one final task, the other 7 tasks depend only on the data

2 Available at https://forge.onera.fr/projects/rosace-case-study

https://forge.onera.fr/projects/rosace-case-study

9.2 phased execution models experiments 108

produced by the initial task. This is a common structure found in highly parallel periodic
applications.

calc_ratio_1

MC_Table_1

MC_Table_2

root_smlk_1

MC_Map_2

root_smlk_2

calc_in0_1

MC_Map_3

PE0 PE0PE4

PE5

PE3

PE2

PE1

PE7

calc_in1_1

PE6

Figure 9.3: Automotive industrial data-flow graph and preliminary mapping

Profiling information of this application for the 3-Phased partitioning model is:

• Compute phases — WCET: from 465 to 2 653 cycles, WCA: from 10 to 68 accesses;

• Read phases — WCET: from 187 to 202 cycles, WCA: from 1 to 3 accesses;

• Write phases — WCET: from 187 to 202 cycles, WCA: from 1 to 3 accesses;

• CCR — 12 548 compute cycles to 5 416 communication cycles.

This automotive application sits in between the simple data-flow and the ROSACE case
study in terms of WCET and CCR, being a good candidate to evaluate balanced programs,
more evenly distributed between computation and communication.

9.2 phased execution models experiments

Chapter 5 introduced the different phased execution models that were implemented and
applied to the programs seen in Section 9.1. A brief recall of the different models:

• 2-Phased model with Execute and Write phases. A local partition for each core
allowing write from other tasks in this private partition

9.2 phased execution models experiments 109

• 3-Phased model with Read, Execute and Write phases. A local partition for each core
and one global shared partition

• Memory-Centric 3-Phased model with Read, Execute and Write phases but with a
dedicated core orchestrating the memory phases

Moreover, regarding the memory interference model, we either enforce isolation during
memory phases, or we allow interference and estimate the delay values.

9.2.1 Evaluation context

We evaluate our implementation of the execution models proposed in Chapter 5 with the
applications presented in Sections 9.1.1 to 9.1.3:

1. The simple data-flow example;

2. The ROSACE avionics case-study;

3. An industrial automotive Electronic Control Unit (ECU) program.

The starting programming language of our implementation is SCADE [40], which is
widely used in the industrial context. Our goal with these applications is to evaluate the
final schedule response time with real world scenarios. In particular, we are interested
in comparing the possible timing improvements when taking interference into account
against safe execution models that provide temporal isolation.

The implementation of the code generation steps of the workflow described in Chapter 4
was done in Python with the Mako template library3 for the platform dependent parts,
as explained in Section 8.2.3.2. A bash script then ties together all the necessary steps
of the workflow. The Worst-Case Execution Time (WCET) and Worst-Case Number of
Accesses (WCA) of the execute and memory phases were measured after multiple runs
on the processor, due to the absence of access to a formal analysis of the Kalray MPPA3.
Timing analyzers such as OTAWA [17], Heptane [78] or aiT [56] must be used, instead of
measurement techniques, if strong timing guarantee is required.

For the interference estimation, it is important to know that we target and compare two
platforms in these experiments: the Kalray MPPA2 and MPPA3 processors. The goal of
this comparison is to see if the same result tendencies are seen in both platforms. We do
not aim to compare the performance or global response time of the applications in the
different processors.

An extensive analysis of the arbitration system of the MPPA2 is provided in [118]. A
quick summary follows: a blocking memory access requires 10 cycles to be completed and
the multi-level arbitration system makes the maximal cost to be:

∑
1≤i≤15

(min(I(P0), I(Pi))) + min((Y), (X)) + (Rx) (9.1)

where I gives the interference between specific cores, Y is the interference generated by
any core, X is the interference between other initiators (Tx, RM, DSU) and Rx is the high
priority initiator at the third and final level.

3 Documentation available at https://docs.makotemplates.org/

https://docs.makotemplates.org/

9.2 phased execution models experiments 110

The complete analysis of the MPPA3 arbitration system is provided in Chapter 7. To
summarize, a blocking memory access on the MPPA3 requires 22 cycles to be completed
and the intra-cluster arbitration level from Equation (7.6) makes the maximal cost to be:

∑
1≤i≤15

(min(I(P0), I(Pi))) + min(AXIwrite, Y) + min(AXIread, Y) (9.2)

where I gives the interference between specific cores, Y is the interference generated by
the core in analysis own accesses and AXIwrite/AXIread is the interference generated by
accesses through the AXI communication bus.

Section 8.1 contains more details about how these interference cost functions are used
inside the complete algorithm to obtain the Worst-Case Response Time (WCRT) of the
complete program.

The offline scheduling algorithms presented in Section 5.3 have no significant runtime
overhead in comparison with the time spent executing the whole workflow in the experi-
ments conducted. For reference, the runtime ranges from 239 ms to 525 ms in the explored
programs, while the complete workflow execution can take from 46 s to 1 m 17 s. In this
section we will focus exclusively on the global WCRT computed by MIA and measured on
the MPPA2/MPPA3, for each proposed execution model and application. The algorithms’
runtimes show that their computational cost is reasonable, appropriate for our scenario
and does not significantly impact the performance of the whole workflow.

9.2.2 Results

Experimental results from the MPPA2 arbitration models are displayed in Figures 9.4, 9.6
and 9.8 and from the MPPA3 in Figures 9.5, 9.7 and 9.9. For each case-study and each
implementation we give the estimated WCRT computed by MIA for the code generated
by our workflow and the corresponding Measured execution time (both in nanoseconds
as we compare two processors with different clock frequencies). For the 2-Phased and
3-Phased implementation we give the results with Interference and in all cases the results
for the implementation in Isolation are given. Remember that for the Memory-Centric
implementation there is no interference between memory phases as they are all scheduled
on the same core. Furthermore, we give the results using both isolated 3-Phased scheduling
algorithms: Cont for the contiguous implementation of the three phases (see Algorithm 1)
and Opt for the optimized version with potential idle time slots (see Algorithm 2).

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

5

10

103 nanoseconds

6
21

0 8
91

5

7
86

0 12
29

7.
5

9
90

5

10
26

5

6
52

0 9
32

2.
5

8
16

0 12
64

2.
5

10
31

0

10
57

2.
5

Measured

WCRT

Interference Isolation

Figure 9.4: Simple Data-Flow MPPA2

9.2 phased execution models experiments 111

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

0.5

1

1.5

2
103 nanoseconds

99
8 1
28

4

1
25

4

1
76

4

1
34

9

1
35

8

1
01

3 1
28

8

1
26

0

1
77

4

1
36

2

1
37

0

Measured

WCRT

Interference Isolation

Figure 9.5: Simple Data-Flow MPPA3

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

200

400

600

106 nanoseconds

24
7

83
9

70
0

24
7

84
1

02
0

24
7

84
1

03
2.

5

65
0

55
1

24
0

24
7

84
5

41
5

37
1

75
6

31
0

24
7

84
0

16
5

24
7

84
1

39
5

24
7

84
1

51
5

65
0

55
1

62
0

24
7

84
5

92
0

37
1

75
6

74
2.

5

Measured

WCRT

Interference Isolation

Figure 9.6: ROSACE MPPA2

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

100

200

300

106 nanoseconds

13
6

68
1

25
6

13
6

68
1

38
1

13
6

68
1

35
2

35
8

77
5

82
3

13
6

68
1

77
6

20
5

01
8

21
4

13
6

68
1

35
6

13
6

68
1

55
4

13
6

68
1

46
9

35
8

77
5

96
1

13
6

68
1

87
0

20
5

01
8

37
1

Measured

WCRT

Interference Isolation

Figure 9.7: ROSACE MPPA3

9.2 phased execution models experiments 112

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

20

40

103 nanoseconds

21
61

0

26
27

0

24
08

5

44
20

0

30
18

2.
5

27
47

0

22
70

0

27
22

0

25
11

2.
5

45
18

2.
5

30
60

0

28
69

0

Measured

WCRT

Interference Isolation

Figure 9.8: Automotive MPPA2

2-Phased 3-Phased 2-Phased 3-Phased
(Cont.)

3-Phased
(Opt.)

Memory
Centric

0

5

10

15

20
103 nanoseconds

8
31

6

9
02

2

8
50

8

14
55

5

10
00

6

8
66

4

8
83

9

9
28

3

9
02

3

14
90

3

10
19

0

9
29

4

Measured

WCRT

Interference Isolation

Figure 9.9: Automotive MPPA3

We observe that the WCRT is always close to the measured response time, with a
maximum difference of 1220 ns in the automotive MPPA2 Memory Centric experiment.
This is due to the fact that we use a time-triggered implementation: the difference may
only come from the divergence between the WCET and the actual execution time of the
last task, as the release date of the last task is identical to the one computed by MIA. Note
that in case of interference, the release date of the last task is not the same as in the case of
isolation. Furthermore, the difference between the measured and the bound on the WCRT
may be larger due to potential interference taken into account during the execution of the
last task.

From the Interference and Isolation WCRT values in all 6 figures we observe that taking
into account delays due to interference leads to shorter WCRT than isolating the memory
phases. This is attributable to the memory partitioning model limiting the interference
during memory phases and also to the structure of the MPPA2/MPPA3 processor bus
arbiter. The size of shared data is also small for all case-studies, usually less than the
bus size: in this case a potential interference between two cores is accounted as only one
additional cycle as it is simply a one-cycle wait for the round-robin arbiter. For the simple
data-flow case-study, the additional cost of interference is of 2 cycles in the 2-Phased case
and 3 cycles in the 3-Phased case. This happens because there are few potential interference
points and only 2 cores are used. For ROSACE, in the 2-Phased implementation there is
no additional cost due to interference. Note that ROSACE case-study has long execute
phases and very small memory phases: this limits the probability of interference. For the
3-Phased implementation, the additional cost for ROSACE is of 2 cycles: here at least
one of the additional read phases causes an interference. For the automotive case-study,

9.2 phased execution models experiments 113

the additional cost is of 2 cycles for the 2-Phased implementation and 10 cycles for the
3-Phased one. These low interference costs explains why the WCRT with interference is
shorter: the cost of isolation is much heavier than the cost of interference.

Similarly, reducing the number of phases, limits the number of interference and the
number of tasks to isolate with the global scheduling algorithms: a 2-Phased implementa-
tion is always more efficient than a 3-Phased one. Note that this is also a specificity of
the multi-banked memory that allows to execute locally with a predictable shared data
memory (in contrast to a shared cache memory). The difference between the 2-Phased
and 3-Phased is not only due to the number of phases, but also due to the distributed
shared memory among the banks vs. one shared memory bank. The shared memory bank
seems to be a good idea for better isolation of shared memory access. Nevertheless, our
experiments show that a distribution of the shared memory on all banks is more efficient
for the applications and target processor we use. Therefore, a 2-phase model with execute-
write operations is preferable when it can be applied to the program, the architecture
contains a multi-banked shared memory and the number of generated memory phases
can be controlled.

The Memory-Centric implementation behaves most of the time worse than the 3-Phased
Opt. The reason for this is the mapping of all memory phases to the same core, which
forbids any concurrency between the memory phases. Note that the Memory-Centric
implementation of these phased execution models has been introduced mainly for external
shared memory, where the memory access time is significantly longer.

Our optimized algorithm that introduces idle intervals instead of enforcing con-
tiguous REW phases, yields the best results among the 3-Phased models, except for
the automotive use case. This is a result of read phases being scheduled earlier by this
algorithm and as consequence the execute phase may also start sooner. This is at a price
of inserting idle times between memory transactions, but it is important to reinforce that
the data depencies are still preserved. The exception on the automotive use case is a small
difference (less than 1 000 cycles) and probably comes from its CCR profile. Another possi-
ble reason is a good timing in the scheduling between memory and execution phases that
does not degrade the global execution time, even if the memory transaction are serialized
on one core.

Comparing the MPPA2 and MPPA3 arbitration models and overall response time, the
first aspect to highlight is that, independently of the target platform, the same tendencies
are found for the multiple phased execution and memory interference models. This
strengthens all the observations made until this point. The results were presented in
nanoseconds to provide a fair comparison, as the clock frequency and memory delays
changed from one generation to the other.

If the raw global response time is now analyzed, we perceive an improvement in the
MPPA3, having in average 70% smaller execution time across all the variations of execution
and interference models studied. The increase in clock frequency (from 400MHz to 1GHz)
is responsible for this massive improvement. However, in terms of raw number of cycles,
the MPPA3 shows worst results for applications that perform a lot of memory accesses,
such as the ROSACE case-study. The increase in Shared MEMory (SMEM) latency (from 10
to 23 cycles) is responsible for this effect, which is hindered by the higher clock frequency.

9.3 mapping and scheduling experiments 114

9.2.3 Discussion

In this section we present a broader discussion directed to the real-time systems domain
community, commenting on the results obtained during the experiment.

9.2.3.1 Number of phases

Among our results, the first point we highlight is the interest of the 2-Phased model. This
solution is easy to implement on any processor that provides multi-banked shared memory.
The question raised by this is why the use of these 2-Phased method is so scarce, even if it
appears to be efficient in providing good execution time. We see here two main reasons.
The code may be intrinsically 3-Phased and the 2-Phased implementation would require
changes in the way the code is generated. Similarly, in the real-time community, the theory
usually works with 3 phases independently of the target processor. In case of the MPPA
processor, our study shows that even for SCADE code, a 2-Phased implementation is
more efficient.

9.2.3.2 Interference versurs Isolation

A second point is about the interferences. We observed that the potential of interference is
quite low in our study, so why are they generally avoided instead of analyzed? Likely, the
answer is the hypothesis of a timing compositional processor4. With this hypothesis, the
additional cost due to interference may be added with a guaranteed final estimated bound.
The MPPA processor is assumed to be timing compositional [122]. Unfortunately, for this
processor and all other industrial ones, there exists yet no proof of such compositionality.
This leads to an important open question: is it possible to write such a proof and guarantee
that the compositionality is ensured? A formal proof would be largely beneficial for
certification and thus industrial use of the interference analysis.

What we observed about SCADE intrinsically phased execution is that enforcing a
sequence of REW for each task may have a significant cost and it is better to introduce
idle slots between phases or memory transactions to improve the global response time.
Furthermore, the initial mapping and scheduling may not be optimal in some cases, as
we observed for our simple program (see Figure 5.1) where node N3 could be scheduled
before node N2 without losing any precedence constraints nor functional property.

The Memory-Centric implementation is beneficial mainly when an external memory
with longer memory transactions is used. However, we included it in our study as it
appears as a good solution to isolate the execution of memory phases and execute phases.
Even though this seems to be a reasonable argument for predictability, our experiments
shows that a good mapping of a 2-Phased or 3-Phased implementation delivers better
efficiency even in isolation.

9.3 mapping and scheduling experiments

The mapping and scheduling of a task set represented by a DAG onto a multi/many-core
architecture is the problem studied in Chapter 6. The evaluation performed in this section

4 No timing anomaly or with bounded effects such that any delay may be added without any loss of a
guaranteed global bound.

9.3 mapping and scheduling experiments 115

aims to give an initial perspective on the proposed algorithm and, when possible, compare
it to the classical list-scheduling from SCADE Multi-Core Code Generator (MCG).

9.3.1 DAG generation

In order to provide a fair base of comparison between the mapping and scheduling
algorithms, instead of using the same applications described in Section 9.1, we gener-
ated random DAGs. These DAGs are issued from a method proposed in [138] called
layer-by-layer DAG generation. It aims to output a task graph set for fair evaluation of
multiprocessor scheduling algorithms. Figure 9.10 illustrates how a generic application
may be created by varying the number of layers (NL) and the layer size (LS).

Figure 9.10: Random DAG generation method from Tobita and Kashara [138]

Tasks that are on the same layer do not depend on each other as they do not communicate.
Tasks on different layers have a certain probability of communicating, defined as an input
parameter. Other parameters include minimum and maximum limits for WCET, WCA,
amount of accesses to successor tasks and memory use. Within these limits the final values
for each task are generated randomly. To reproduce more faithfully most of the parallel
programs structure, an initial and final node are added to serve as branching and sinking
points.

A new random DAG generator was developed called Tagada. It mimics a fork-join
structure and has fewer input parameters: the number of tasks, the expected WCET
summing all the tasks in the graph’s critical path and the maximal memory use. The
other profiling information (WCA and successor accesses) are derived from these supplied
parameters to reproduce real use-cases.

9.3.2 Comparative methodology

As explained in Section 6.4, our mapping and scheduling baseline is the list scheduling
algorithm from SCADE MCG. This algorithm takes into account the WCET of the different
tasks and maps and order the tasks into the core that provides the earliest start date.
However, it does not take into account the memory use of the platform (256KB per
memory bank in the Kalray MPPA3) and can therefore produce unfeasible results.

9.3 mapping and scheduling experiments 116

Our goal with the generated DAGs is to provide applications that must spawn over mul-
tiple clusters to fully exploit the MPPA3 platform and observe the inter-cluster interference
and AXI communication cost. If these applications were grouped together into a single
cluster, they would violate the local memory limits.

Therefore in the next section we provide smaller programs, that fit into one cluster, and
bigger programs that cannot be properly allocated by the list scheduling algorithm. For
these situations, we only evaluate the final response time given by our proposed algorithm
and discuss the obtained mapping and scheduling leveraging possible improvement points.

9.3.3 Results

Four applications were generated to evaluate the list scheduling and our proof of concept
algorithm. Two of them were generated with the layer-by-layer method using the following
parameters:

• s35 application: LS = 3, NL = 5, connection probability of 20%, WCET in [300, 2000],
WCA in [10, 100], write accesses to successors in [1, 30] and memory use per task in
[10KB, 50KB]

• s10x10 application: LS = 10, NL = 10, connection probability of 30%, WCET in
[300, 2000], WCA in [10, 100], write accesses to successors in [1, 30], memory use per
task in [10KB, 50KB]

A visual representation of the s35 application is given in Figure 9.11. The amount of
write accesses (communication size) can be seen on the edges connecting the nodes of the
graph. The s10x10 application is not represented in a figure due to the hundreds of nodes
in the program.

Figure 9.11: s35 application graph

9.3 mapping and scheduling experiments 117

The other two programs were generated with Tagada using these parameters:

• tg18 application: number of tasks = 18, critical-path WCET ≃ 10 000, memory use
per task ≃ 80KB

• tg100 application: number of tasks = 100, critical-path WCET ≃ 100 000, memory
use per task ≃ 80KB

A visual representation of the tg18 application is given in Figure 9.12. The tg100 applica-
tion is not represented in a figure due to the high number of nodes. On top of the amount
of write accesses on the edges, we can see inside each node, under its name, its WCET and
memory use in KB.

Figure 9.12: tg18 application graph

All these applications were executed on the list scheduling and our algorithm. For
the list scheduling, only s35 and tg18 did not violate the memory constraints with the
allocation proposed. Therefore we only compare these applications to our algorithm.
Table 9.1 presents the results of the response time analysis run by MIA on the solutions
produced by these algorithms.

s35 s10x10 tg18 tg100

List Scheduling 8 361 - 12 423 -

Our Algorithm 7 835 71 147 12 311 227 870

Table 9.1: Mapping and Scheduling results (in cycles)

9.4 performance improvement on mia 118

From these results we can see that our algorithm performs better than the list scheduling
for the applications that can be compared. This evidences that the first phase of our
solution has interesting heuristic ideas, trying to group together a node with its successors.
In comparison with the list scheduling we tend to use more cores: 8 cores versus 7 for the
s35 application and 10 versus 8 for the tg18 application.

For the bigger applications s10x10 and tg100, for now we only highlight the relevant
impact that spawning more than one cluster has on the execution time. Looking at the
final allocation we have used 3 clusters for the tg100 and 4 clusters for the s10x10. A lot
of the cores contain a single node (that probably has no successors). This should be an
improvement point to reduce the number of clusters and cores used.

9.4 performance improvement on mia

The MIA tool, responsible for the response time analysis in this work has been ameliorated
with an improved algorithm version, as detailed in Section 8.1. Here we are interested in
evaluating this new version by running it through randomly generated DAG scenarios. In
order for MIA to perform a response time analysis on a DAG it needs to target a specific
arbiter model. We start by detailing the bus arbiter that will be used in all tests.

9.4.1 Bus Arbiter Function

The Algorithm 8 discussed in Chapter 8 is designed in a modular way, in order to
support different interference models. This way, the bus arbiter function IBUS(τ,S , b),
called in Line 23, is completely independent from the main algorithm method. The inputs
of this function are a task τ, a set S of tasks it interferes with and the bank b where those
interferences happen. The output of this function is the interference perceived by the task
τ, i. e. the number of cycles that the task τ is delayed by elements of the set S .

The function IBUS abstracts the arbiters found in processors when accessing the memory
or a communication bus. The goal of this section is to compare the versions of the algorithm
seen in Section 8.1: the original one in C++ (Section 8.1.3) and the improved one in Python

(Section 8.1.4). The Round-Robin (RR) arbitration function is implemented in both versions
and used in the performance evaluation to provide a fair comparison. This arbitration
model reflects more faithfully the MPPA2 system, implemented in the old and new
MIA versions. The MPPA3 model was only implemented in the new version, once its
improvements were verified through the experiments.

The RR arbitration was modeled with more details in Section 7.4.3.2. It is a simple
and predictable policy, giving a fair quota of access for each initiator. In opposition
to Equation (7.6), in this formulation we are already at a point in the algorithm were we
are sure that the tasks interfere, thus there is no need to take release dates or response
times as inputs. Here we denote by ab(τ) the number of memory accesses (read or write)
of t ask τ on bank b. The interference received by a task τ is then at most:

IBUS(τ,S , b) = ∑
τ′∈S

min
(
ab(τ

′), ab(τ)
)

(9.3)

In Equation (9.3), the interference is given by a sum of minimums. The left term of the
minimum comes from the fact that τ cannot be halted more than the number of accesses

9.4 performance improvement on mia 119

from the other tasks. The right term of the minimum is justified because τ cannot be
slowed down more than the number of times it accesses the memory.

Refinements can be added to the modeling of the RR based on assumptions from Sec-
tion 8.1.4.1: from the point of view of task τ, tasks running on other cores can be seen
as one long task. Thus, they can grouped together in the minimum computation. With n
cores, and Λ the function that maps tasks to their core:

IBUS(τ,S , b) =
n

∑
i=1

min

 ∑
τ′∈S

Λ(τ′)=i

ab(τ
′), ab(τ)

 (9.4)

Equation (9.4) presents the RR model implemented in the original and proposed algo-
rithms and is used for a fair comparison between these versions, which is realized in the
next section.

9.4.2 Results

Again, we chose to generate random DAGs, using the same method proposed in [138]
and explained in Section 9.3.1. However, instead of relying on external mapping and
scheduling algorithm, we use the layer structure the allocation. Tasks on the same layer
are assigned to the cores in a cyclic way: the n-th task of a layer is assigned to the core
c = (n mod number of cores). Tasks have randomly generated WCET, memory accesses
and write operations on tasks of the next layer:

• WCET in [550, 650];

• WCA in [250, 550];

• Write operations in [0, 100].

Two approaches are used to generate the inputs of the benchmark: fixed NL, in which
the number of layers is constant and the layer size increases, and fixed LS, in which the
layer size stays the same and it is the number of layers that gets enlarged.

The implementation of the original algorithm is done in C++, while the proposed
algorithm is written in Python. This means that there is an interpreter overhead that
negatively impact our results mainly for a small number of tasks.

LS4 LS16 LS64 NL4 NL16 NL64

Python (new) 1.03 1.02 1.10 1.75 1.89 1.91

C++ (original) 3.71 4.39 5.09 4.52 4.64 4.94

Table 9.2: nx complexity comparison

A linear regression computation on a log× log scale from the benchmark values was
done to see if the theoretical complexity goes in hand with the practical outcome. Table 9.2
shows the results, where NL4 represents a fixed number of layers of 4, and LS4 a fixed
layer size of 4. The bus arbiter function used is the RR depicted in Equation (9.4) with a
maximum allocation of the tasks to 16 cores.

9.4 performance improvement on mia 120

The complexity of the proposed algorithm always stay under O(n2), contrary to the
original one which exceeds O(n4) and even seems to reach O(n5) in the NL64 and LS64
cases.

These results are plotted in Figure 9.13, revealing the drastic improvement in computa-
tion time provided by the Python version. The benchmark has an execution timeout that
the C++ version easily reaches for more than 256 tasks.

In particular, as seen in Table 9.2, LS64 and NL64 are the random DAGs configuration
values that showcase the biggest difference between the two versions. For LS64 and 256
tasks, the C++ version took 1121.79s and the Python one took mere 4.13s, or 270 times faster.
For N64 and 384 tasks, the C++ implementation executed for 535.24s and the Python for
only 0.9s, or 593 times faster.

101 102 103 104 105

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

LS4

New (Python)
O(n ˆ 1.03)
Old (C++)
O(n ˆ 3.71)

101 102 103

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

NL4

New (Python)
O(n ˆ 1.75)
Old (C++)
O(n ˆ 4.52)

101 102 103 104

10−1

100

101

102

103

nodes

ti
m

e
(s
)

LS16

New (Python)
O(n ˆ 1.02)
Old (C++)
O(n ˆ 4.39)

101 102 103

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

NL16

New (Python)
O(n ˆ 1.89)
Old (C++)
O(n ˆ 4.64)

102 103 104

10−2

10−1

100

101

102

103

nodes

ti
m

e
(s
)

LS64

New (Python)
O(n ˆ 1.1)
Old (C++)
O(n ˆ 5.09)

102 103 104

10−1

100

101

102

103

nodes

ti
m

e
(s
)

NL64

New (Python)
O(n ˆ 1.91)
Old (C++)
O(n ˆ 4.94)

Figure 9.13: MIA old and new version benchmark results

9.5 conclusion 121

9.4.3 Discussion

The revisited version of the algorithm shows a significant complexity improvement to
O(n2), which translates to 593 times faster runtime in our benchmark, in comparison with
the original version from [118]. This allows to accomplish the requirements of modern
safety-critical real-time systems, scaling to more than 8 000 tasks in our experiments while
maintaining a reasonable execution time.

9.5 conclusion

This section has reunited all the experiments and results from our contributions introduced
in Part II and also the MIA improvement in Part III. Starting with an overview of the
applications used to evaluate the multiple phased execution models and the memory
interference schemes proposed. Then we showed the generation process of random DAGs
to later on assess on two mapping and scheduling algorithms. The chapter finishes with
the complexity analysis and comparison of the new MIA response time analysis algorithm
against its old version.

The Phased Execution Models experiments showed that a 2-Phased model gives a better
result in terms of WCRT than any 3-Phased model. To apply this however, it is desirable
that the platform has a banked memory that allows the Read/Execute phase to be run
in isolation. Moreover, we showed that analyzing the interference instead of enforcing
memory phases isolation provides shorter execution times. The evaluation done here could
be extended to larger applications that require multiple clusters. The impact of intra-cluster
communication with regards to the phased execution model can then be also measured.

The proof of concept algorithm developed for the multi-cluster mapping and scheduling
of DAGs performed well against a classic list-scheduling when they are comparable. This
is a preliminary work that aimed to spark new ideas in the community to better exploit
architectures that present a cluster-based topology. Multiple future work directions can be
investigated here. The first is to evaluate our proposed algorithm against others, outside
the SCADE environment, that take into account the memory use of the platform. As seen
in the results, our solution tends to spread nodes into several cores and clusters. A clear
improvement path is to regroup these nodes more tightly, in order to attain a better overall
platform utilization.

Finally, the improvement in the MIA tool is massive, reducing the complexity from
O(n4) to O(n2), as proved experimentally, and allowing the scalability to complex systems
with hundreds of tasks and cores. Future work include overlap management to provide a
finer upper bound on the interference and thus less pessimistic results. It is based upon
the idea that tasks will only be able to access the memory at the same time and interfere
during their overlap period. Another work path is to develop a method to dynamically
schedule the tasks accounting for interferences. This combines the scheduling, ordering
and response time analyzer steps in the workflow presented in Chapter 4. The initial idea
comes from[120] where it is stated that the lower complexity of the response time analyzer
algorithm might allow it to be merged with a dynamic scheduler to implement predictable
and optimized programs on many-core architectures.

10
C O N C L U S I O N A N D P R O S P E C T S

10.1 Contributions . 123
10.1.1 Execution Models for Real-Time Systems 123
10.1.2 DAG Mapping and Scheduling . 124
10.1.3 Timing Model of an Industrial Many-Core Architecture 124
10.1.4 Tool Extensions . 124

10.2 Future Work . 125

This thesis focused on providing an integrated approach to confidently use multi/many-
core architectures for hard real-time systems. This integrated workflow covers the choice
of an execution model, a strategy to map and schedule tasks and a hardware model to
provide safe bounds on the response time.

The initial application is represented in the form of a Directed Acyclic Graph (DAG),
with precedence constraints between nodes and explicit communication. This application
can be issued from synchronous data flow languages or any other language or model-based
development environment providing a DAG at the end of the compilation process.

The target architecture, the Kalray MPPA3 is a Commercial Off-The-Shelf (COTS) proces-
sor but with interesting characteristics that make it a good candidate for real-time systems.
At the core level, it has in-order pipeline and private caches with a predictable replacement
policy. At the cluster level, it provides low latency scratchpad memory and predictable
arbitration policies. At the SoC level, it provides an AXI bus relying the different clusters
with constant traversal time. This architecture is also said to be timing compositional,
which allows response time analysis tools to be applied to it.

10.1 contributions

This thesis presents four major contributions: (i) the study of several execution models for
real-time systems, (ii) algorithms for the mapping and scheduling of DAGs on multi/many-
cores, (iii) the hardware arbitration model of the Kalray MPPA3 and (iv) the extension and
improvement of existing software tools.

10.1.1 Execution Models for Real-Time Systems

Traditional software is not suited for real-time use. It shows a high degree of uncertainty
regarding the moments when access to shared resources may occur. This justifies the
decoupling of memory access phases from regular execution phases in order to have
precise computation boundaries. These memory phases can then be executed in isolation
on platforms with multiple cores to further increase the predictability.

Our contribution focused on the study of different phased execution models: 2-phased
(with Execute and Write), 3-phased (with Read, Execute and Write) and 3-phased with
a master core coordinating the memory phases. Moreover, the impact on the response

123

10.1 contributions 124

time is analyzed with two variants: running the memory phases in complete isolation,
or allowing concurrent memory accesses and estimating the interference delay. Three
scheduling algorithms are proposed for the 3-phased and 3-phased with master models.

We concluded through this study with multiple applications, including the ROSACE
avionics case-study, that a 2-phased execution model yields the best results for the MPPA2
and MPPA3 platforms. With the banked memory and privatization features provided
by these architecture, a reduced number of phases allows for less contention and easier
scheduling. We also showed that analyzing the interference delay and allowing concurrent
accesses to happen in a system gives better execution times than enforcing isolation
between memory phases.

10.1.2 DAG Mapping and Scheduling

The mapping and scheduling of nodes from a DAG task model is a research topic that
has been well explored in the last decades. We present here an algorithm that takes into
account recent concerns raised by many-core SoCs with heterogeneous memory systems.

This heuristic-based algorithm has 3 phases: (i) grouping and ordering of nodes into
a packet of virtual cores, (ii) clustering of these virtual cores into virtual clusters trying
to minimize the communication cost and (iii) exhaustive exploration of virtual clusters to
physical clusters assignment on the Kalray MPPA3 taking into account the AXI traversal
cost. Our solution is compared against a classical list-scheduling method.

The evaluation has showed that, in the cases were we can compare ourselves with
the classical list-scheduling, our algorithm gives slightly better results. For some of the
randomly generated DAGs, the list-scheduling mapped tasks to cores that already had
their memory full, revealing that this algorithm is not suited for systems with restricted
local memory. We also observed a significant increase in the overall execution time when
spawning the nodes into multiple clusters for larger applications.

10.1.3 Timing Model of an Industrial Many-Core Architecture

An industrial many-core architecture is a complex hardware circuit containing multiple
cores, clusters, memories and the buses relying them. When accessing shared resources,
cores must go through an arbiter to decide which one will go first. Providing an accurate
model to estimate the delay introduced when concurrent accesses are performed is an
important part of a framework for real-time systems.

The multiple Kalray MPPA3 arbitration points were modeled in this contribution. It
starts at the arbiter between data and instruction caches, then moving on to the arbiter to
access the cluster local memory, and then the multi-level arbitration system to access the
memory belonging to another cluster. These models are implemented in the Multi-Core
Interference Analysis (MIA) tool and used for all the evaluation involving this processor
as a target.

10.1.4 Tool Extensions

The MIA tool is a software used for response time analysis in hard real-time systems. It
receives as input a DAG, its mapping, scheduling and an architecture arbitration model.

10.2 future work 125

Then using an algorithm it decides if, for a given deadline, this task set is schedulable or
not. The timing analysis algorithm was rewritten using a simple approach: a time cursor
that only takes into account the interference delay between tasks that are alive at a given
moment. In contrast to the original version, it has no fixed point iteration, which reduces
significantly the final complexity, from O(n4) to O(n2). This results in a reduction from
535 seconds to 0.90 seconds on a benchmark with 384 tasks, i. e. 593 times faster. The MIA
tool becomes a good candidate for response time analysis in huge and complex systems as
it now easily scales for thousands of tasks and cores.

SCADE is a synchronous data-flow language that is used as input in our framework and
in particular for the execution models evaluation. It has a code generator for multi-core
targets that needs to be extended in order to integrate with a specific architecture. We
describe the changes in the integration script to properly initialize the MPPA3, then the
synchronization using the mailbox and interrupt system, the time-triggered method using
timers and the communication implementation using local memory and AXI bus.

Software-Hardware Interface for Multi-Many-Core (SHIM) is an IEEE standard designed
to describe multi/many-core platforms in a way that can be useful for general software.
The goal is to provide a description that can be used to automatically generate code using
the characteristic of the platform or to analyze it regarding instruction and communication
profiling. A Kalray MPPA3 model was conceived, with enough detail to reach such goals.
However, for real-time purposes, the SHIM standard yet lacks mechanisms to describe
worst-case scenarios to provide safe bounds for timing analysis.

10.2 future work

Within the context of the integrated workflow presented in this thesis, from a DAG based
application to a safe real-time implementation on a many-core architecture, there are
several possible future work directions.

SCADE is the proprietary synchronous data flow language used in this work to write the
applications used in the evaluation chapter. Its Multi-Core Code Generator (MCG) was used
to provide the functional code and integration script with the target platform. Nonetheless,
it restricted some of the phased execution models due to an intrinsic contiguous task call
and communication model. For all of these reasons, the starting point of the workflow can
be enlarged to different languages such as Lustre, Simulink or Prelude, as long as they are
able to generate a DAG based task set in the end of a compilation process.

The study on execution models for real-time systems could be extended to even more
models, with more 2 or 3-phased variations. The experiments can be enriched with more
applications, and in particular ones that use multiple clusters, instead of being restricted
to a single one. The mapping and scheduling problem can be further developed with
new heuristic based algorithms or compared to exact solutions with ILP solvers, if the
scalability of the solution allows it.

The Kalray MPPA3 platform has proved to be an excellent candidate for safety-critical
real-time systems. The reasons for that are multiple: predictability at core and cluster level,
point to point cluster communication with constant time and a shared banked memory
with an independent arbiter for each bank. The methodology presented in our workflow is
general enough so that it can be applied to other platforms with similar characteristics.
Another direction of research is to use the global memory of the MPPA3, by modeling

10.2 future work 126

its DRAM controller, or use the NoC for communication, by circumventing the threaded
DMA mechanism.

This thesis presents a first step on a workflow providing all the required steps to have a
real-time system with guarantee bounds on the execution time. Choosing the appropriate
execution model for the targeted platform is fundamental to efficiently explore it. A
good mapping and scheduling strategy can drastically reduce the overall response time.
Finally, knowledge of the hardware and software is extremely important to design models
that reduce the pessimism when estimating the worst-case execution time. For modern
platforms, the tight integration between all of these aspect is vital and must be further
develop to ensure the wide adoption of multi/many-cores for safety-critical systems.

Part IV

A P P E N D I X

A
K A L R AY M P PA 3 H A R D WA R E D I A G R A M S

129

kalray mppa3 hardware diagrams 130

M
as

te
r

S
id

e
R

et
ur

n

Tr
ee

 fr
om

B
an

k
to

 M
S

R

Tr
ee

 fr
om

M
S

 to
 B

an
k

B

M
as

te
r

S
id

e

P
E

0

D
C IC

FP

SAP

P
ro

ce
ss

or
 S

id
e

G
lo
ss
ar
y

S
A

P
: S

m
ar

t A
rb

itr
at

io
n

P
ol

ic
y

F
P

: F
ix

ed
 P

rio
rit

y
F

2:
 F

IF
O

 w
ith

 2
 s

lo
ts

R
F

18
: R

ep
la

y
F

IF
O

 1
8

sl
ot

s
R

B
: R

ep
la

y
B

uf
fe

r
w

ith
 1

 s
lo

t

F
2

F
2

1
R

B

0
R

B

R
F

18
P

at
h

D
ec

od
er

L R

F
2

T

F
2

T B

F
2

F
2

F
2

F
2

F
2

MUX

F
2

F
ro

m
 o

th
er

 M
as

te
rs

To
 o

th
er

 b
an

ks
,

A
X

I,
pe

rip
he

ra
l T

B

F
2

R

L

F
2

L R

F
2

F
2

F
2

F
2 F
2

RR (all banks)

F
2

R
F

18
F

2

B
uf

fe
r

PE15

...

RM

DMA Tx

DMA Rx

DSU

CryptoAc 1

CryptoAc 2

AXI Write

AXI Read

PE1

PE0

B
yp

as
se

d
if

L2
ca

ch
e

is
 n

ot
 u

se
d

(r
ew

rit
es

 o
rig

in
al

m
as

te
r

ac
es

s
id

)

M
od

ifi
es

 m
as

te
r

ac
ce

ss
 id

 to
re

pl
ay

 in
 c

as
e

of
 s

ub
se

qu
en

t m
is

s

A
dd

 fi
el

ds
 in

S
M

E
M

 p
ro

to
co

l

MUX

F
2

U
se

d
fo

r
A

X
I a

nd
 p

er
ip

h
ac

ce
ss

es
C

or
e

P
ip

el
in

e

A
rb

ite
r

S
id

e

M
em

or
y

ba
nkTA

G
re

ad

R
M

W
C

A
M

M
em

or
y

cu
t

E
C

C

D
E

C
C

C
an

ce
l

C
A

M

C
O

M
P

F
IF

O

TA
G

w
rit

e

R
ea

de
r

&
D

irt
y

re
ad

R
ea

de
r

&
D

irt
y

w
rit

e

JO
B

F
IF

O

E
C

C

MUX

D
E

C
C

D
E

C
C

E
C

C

In
va

lid
at

io
n

N
ot

ifi
ca

tio
n

Fi
gu

re
A

.1
:S

M
EM

da
ta

an
d

co
nt

ro
lp

at
h

di
ag

ra
m

kalray mppa3 hardware diagrams 131

A
X

I I
nt

er
co

nn
ec

t
C

C
0

M
as

te
r S

id
e

R
et

ur
n

C
C

2

M
as

te
r S

id
e

R
et

ur
n

M
as

te
r S

id
e

P
ro

ce
ss

or
 S

id
e

A
X

I W
rit

e
D

at
a

MUX
G
lo
ss

ar
y

D

R
R

: D
ef

ic
it

R
ou

nd
 R

ob
in

A

X
I2

S
M

E
M

: T
ra

ns
la

tio
n

co
m

po
ne

nt
 o

f A
X

I
pr

ot
oc

ol
 to

 S
M

E
M

MUX

C
trl

 +
 D

at
a

P
E

0

P
E

15...

A
X

I W
rit

e
Vi

rtu
al

B
an

k

D
at

a
FI

FO
s

S
M

E
M

2A
X

I
B

rid
ge

C
trl

S
A

P

PE15

...

RM
DMA Tx

DMA Rx

DSU

CryptoAc 1

CryptoAc 2

AXI Write

AXI Read

PE1

PE0

D
R

R
(A

rb
itr

at
io

n
at

 a
dd

re
ss

)

CC4

...

PCIe
IO Periph

CC1

CC0

Fr
om

 o
th

er
 M

as
te

rs

Fr
om

 o
th

er
 M

as
te

rs

M
N
S
P

M
as

te
r S

id
e

A
X

I S
la

ve

MUX

B
an

k0

D
at

a
FI

FO
s

S
A

P

PE15

...

RM
DMA Tx

DMA Rx

DSU

CryptoAc 1

CryptoAc 2

AXI Write

AXI Read

PE1

PE0 Fr
om

 o
th

er
 M

as
te

rs

C
trl

 +
 D

at
a

A
X

I W
rit

e
A

C
K

A
X

I2
S

M
E

M

B
rid

ge

RR (all banks)

FI
FO

s

RR (all banks)

FI
FO

s

B
uf

fe
r

C
or

e
P

ip
el

in
e

A
X

I B
us

 to
 C

C
2

DEMUX (RR)

A
X

I B
us

 to
 C

C
1

A
X

I B
us

 to
 C

C
3

...

C
trl

A
X

I W
rit

e
A

dd
re

ss

C
trl

Fi
gu

re
A

.2
:M

ul
ti

-C
lu

st
er

da
ta

an
d

co
nt

ro
lp

at
h

di
ag

ra
m

kalray mppa3 hardware diagrams 132

SMEM2AXI
Bridge

Read SMEM

Write SMEM

RR_addr

R_data

W_addr

W_data

W_ack

Figure A.3: SMEM to AXI Bridge

kalray mppa3 hardware diagrams 133

C
lu

st
er

 0

C
lu

st
er

 2
C

lu
st

er
 0

P
E

1

Ta
sk

 ru
nn

in
g:

N

0_
re

ad
_N

8

S
A

P

N
ee

ds
 to

 p
er

fo
rm

6

R
ea

d
A

X
I a

cc
es

se
s

to
 B

an
k

3
of

 C
lu

st
er

 2

PE15

...
RM

DMA Tx
DMA Rx

DSU
CryptoAc 1
CryptoAc 2

AXI Write
AXI Read

PE0

S
M

E
M

A
X

I

D
R

R

CC4

... PCIe
IO Periph

CC1

S
A

P

PE15

...

RM

DMA Tx
DMA Rx

DSU
CryptoAc 1
CryptoAc 2

AXI Write
AXI Read

PE0

S
M

E
M

A
X

I

B
an

k
3

O
ut

bo
un

d
P

at
h

R
et

ur
n

P
at

h

C
lu

st
er

 2

R
R ...

Bank 15

Bank 0

CC4

...

PCIe
IO Periph

CC1

R
R

R
R ...

Bank 15

Bank 0

AXI Write ACK

P
E

1
pi

pe
lin

e

R
R

1
fr

om
 R

et
ur

n
Pa

th

2
or

 m
or

e
di

ffe
re

nt
 b

an
ks

 o
f a

 g
iv

en

cl
us

te
r (

in
 th

is
 e

xa
m

pl
e

C
lu

st
er

 2
)

th
at

 a
re

 s
en

di
ng

 a
n

an
sw

er
 (e

ith
er

W

rit
e

A
C

K
 o

r R
ea

d
D

AT
A

) b
ac

k
to

 a
ny

 o
th

er
 c

lu
st

er
, a

fte
r a

n
A

X
I

ac
ce

ss
 p

er
fo

rm
ed

 b
y

th
em

R
R

2
fr

om
 R

et
ur

n
Pa

th

2
or

 m
or

e
di

ffe
re

nt
 c

lu
st

er
s

th
at

ar

e
se

nd
in

g
an

 a
ns

w
er

 (e
ith

er

W
rit

e
A

C
K

 o
r R

ea
d

D
AT

A
) b

ac
k

to
 th

e
cl

us
te

r i
n

an
al

ys
is

 (i
n

th
is

ex

am
pl

e
C

lu
st

er
 0

)

R
R

3
fr

om
 R

et
ur

n
Pa

th

2
or

 m
or

e
ba

nk
s

or
 A

X
I r

et
ur

n
da

ta
 th

at
 a

re
 s

en
di

ng
 a

ns
w

er
s

to
 th

e
sa

m
e

P
E

 (i
n

th
is

 e
xa

m
pl

e
P

E
1

fro
m

 C
lu

st
er

 0
)

AXI Read DATA

AXI Write ACK
AXI Read DATA

B
an

k
3

ha
s

N
8

ta
sk

 d
at

a

D
R

R
 fr

om
 O

ut
bo

un
d

Pa
th

2
or

 m
or

e
di

ffe
re

nt
 c

lu
st

er
s

th
at

ar

e
se

nd
in

g
W

rit
e

A
dd

re
ss

 +
 D

at
a

or
 R

ea
d

A
dd

re
ss

 re
qu

es
ts

to

 a
ny

 b
an

k
of

 th
e

sa
m

e
cl

us
te

r
(in

 th
is

 e
xa

m
pl

e
C

lu
st

er
 2

)

Fi
gu

re
A

.4
:M

ul
ti

-C
lu

st
er

O
ut

bo
un

d
an

d
R

et
ur

n
pa

th
ar

bi
te

rs

B
S C A D E P L AT F O R M D E P E N D E N T C O D E

b.1 initialization code

Listing B.1 presents the initialization template code described in Section 8.2.3.2. It mixes
Python and C code to generate the final initialization code at the end. This listing contains
the #include section of a typical C program, global declarations and the main template
code. This template is used by the SCADE helper script that imports the Python library
containing all the the program information: workers, allocation, . . .

<%namespace file="/mako_utils/mc_utils .mako" name=" Utils "/>\
\

#include <stdio.h>

#include <stdlib.h>

/***** Init of MPPA includes ******/

/* Default inc paths */

#include <kv3/boot_c.h>

#include <machine/kv3/mppa3-80/gic.h>

#include <machine/kv3/mppa3-80/mailbox.h>

/* libmppahal inc paths */

#include <libmppahal/kv3/apic_gic.h>

#include <libmppahal/kv3/interrupt.h>

#include <libmppahal/kv3/registers.h>

#include <libmppahal/kv3/power.h>

#include <libmppahal/kv3/diagnostic.h>

#include "sync .h"
#include "timer .h"
#include " releases .h"
/***** End of MPPA includes ******/

/***** Init of SCADE tasks includes ******/

${Utils.print_includes(allocation.get_task_allocation())}\

<%

nonroot_workers = [w for w in allocation.get_task_allocation() if not w.

is_root_worker()]

all_workers = [w for w in allocation.get_task_allocation()]

main_worker = allocation.get_root_worker()

%>\

/***** End of SCADE tasks includes ******/

/***** Init of additional MPPA boilerplate ******/

/*--*/

#define PES_IT_NUM 1

#define GLOBAL_BARRIER_IT_NUM 2

#define GLOBAL_BARRIER_MAILBOX 124

135

B.1 initialization code 136

% for w in all_workers:

#define SYNC_CL0_CO${w.get_index()}_RX_ID ${123 - w.get_index()}

% endfor

// 2KB of stack per PE (enough to perform printf)

#define PE_STACK_SIZE 0x800

/*--*/

/***** End of additional MPPA boilerplate ******/

#define NB_STEPS 1

display the main context in the form of structure

${ip.print_context_def()}

/* Allocate a global variable for each channel */

% for ch in reversed(mf.get_all_channels()):

/* ${ch.get_name()} */

% if ch.get_initial_token():

${ch.get_type().get_name()} ${ch.get_name()}[2] __attribute__((section (" . data_bank${
Utils . get_channel_receiver (ch) } ")));

% else:

${ch.get_type().get_name()} ${ch.get_name()} __attribute__((section (" . data_bank${
Utils . get_channel_receiver (ch) } ")));

% endif

% endfor

int main ()

{

eot_pes_configure(EOT_MODE_USE_WAITIT);

/* Configure global barrier */

mailbox_configure(GLOBAL_BARRIER_MAILBOX);

% for w in all_workers:

mailbox_set_mask(GLOBAL_BARRIER_MAILBOX, ${w.get_index()});

if (apic_gic_init_one_it(${w.get_index()}, GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error configuring GIC\n");
assert(0 && "GIC configuration failed\n");

}

if (apic_gic_connect_it_src_2_it_dest(${w.get_index()}, GLOBAL_BARRIER_MAILBOX,

GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error APIC GIC connect\n");
assert(0 && "APIC GIC connection failed\n");

}

% endfor

% for w in all_workers:
__kvx_start_pe(${w.get_index()}, (void *)thread_PE${w.get_index()}, NULL, &

stack_PE${w.get_index()}[PE_STACK_SIZE - 1]);

eot_mailbox_set_mask_pe(${w.get_index()});

% endfor

eot_wait_pes();

B.1 initialization code 137

printf(" *** All done in RM ***\n");
return 0;

}

Listing B.1: Initialization template code

Listing B.2 presents the generated C code from the template in Listing B.1.

#include <stdio.h>

#include <stdlib.h>

/***** Init of MPPA includes ******/

/* Default inc paths */

#include <kv3/boot_c.h>

#include <machine/kv3/mppa3-80/gic.h>

#include <machine/kv3/mppa3-80/mailbox.h>

/* libmppahal inc paths */

#include <libmppahal/kv3/apic_gic.h>

#include <libmppahal/kv3/interrupt.h>

#include <libmppahal/kv3/registers.h>

#include <libmppahal/kv3/power.h>

#include <libmppahal/kv3/diagnostic.h>

#include "sync .h"
#include "timer .h"
#include " releases .h"
/***** End of MPPA includes ******/

/***** Init of SCADE tasks includes ******/

#include "kcg_consts .h"
#include " root .h"
#include "N0_task .h"
#include "N1_task .h"
#include "N3_task .h"
#include "N2_task .h"
#include "N4_task .h"
/***** End of SCADE tasks includes ******/

/***** Init of additional MPPA boilerplate ******/

/*--*/

#define PES_IT_NUM 1

#define GLOBAL_BARRIER_IT_NUM 2

#define GLOBAL_BARRIER_MAILBOX 124

#define SYNC_CL0_CO0_RX_ID 123

#define SYNC_CL0_CO1_RX_ID 122

#define SYNC_CL0_CO2_RX_ID 121

// 2KB of stack per PE (enough to perform printf)

#define PE_STACK_SIZE 0x800

/*--*/

/***** End of additional MPPA boilerplate ******/

B.1 initialization code 138

#define NB_STEPS 1

typedef struct {

outC_root outC;

inC_root inC;

} WU_root;

/* Allocate a global variable for each channel */

N0_task_out_ch_o2_type N0_task_out_ch_o2 __attribute__((section (" . data_bank2")));
N0_task_out_ch_o1_type N0_task_out_ch_o1 __attribute__((section (" . data_bank1")));
N0_task_in_ch_type N0_task_in_ch __attribute__((section (" . data_bank1")));
N1_task_out_ch_type N1_task_out_ch __attribute__((section (" . data_bank2")));
N2_task_out_ch_type N2_task_out_ch __attribute__((section (" . data_bank2")));
N3_task_out_ch_type N3_task_out_ch __attribute__((section (" . data_bank2")));
N3_task_in_ch_type N3_task_in_ch __attribute__((section (" . data_bank2")));
N4_task_out_ch_type N4_task_out_ch __attribute__((section (" . data_bank0")));

int main ()

{

eot_pes_configure(EOT_MODE_USE_WAITIT);

/* Configure global barrier */

mailbox_configure(GLOBAL_BARRIER_MAILBOX);

mailbox_set_mask(GLOBAL_BARRIER_MAILBOX, 0);

if (apic_gic_init_one_it(0, GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error configuring GIC\n");
assert(0 && "GIC configuration failed\n");

}

if (apic_gic_connect_it_src_2_it_dest(0, GLOBAL_BARRIER_MAILBOX,

GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error APIC GIC connect\n");
assert(0 && "APIC GIC connection failed\n");

}

mailbox_set_mask(GLOBAL_BARRIER_MAILBOX, 1);

if (apic_gic_init_one_it(1, GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error configuring GIC\n");
assert(0 && "GIC configuration failed\n");

}

if (apic_gic_connect_it_src_2_it_dest(1, GLOBAL_BARRIER_MAILBOX,

GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error APIC GIC connect\n");
assert(0 && "APIC GIC connection failed\n");

}

mailbox_set_mask(GLOBAL_BARRIER_MAILBOX, 2);

if (apic_gic_init_one_it(2, GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error configuring GIC\n");
assert(0 && "GIC configuration failed\n");

}

if (apic_gic_connect_it_src_2_it_dest(2, GLOBAL_BARRIER_MAILBOX,

GLOBAL_BARRIER_IT_NUM) != 0) {

fprintf(stderr, "Error APIC GIC connect\n");
assert(0 && "APIC GIC connection failed\n");

}

B.2 task and communication code 139

__kvx_start_pe(0, (void *)thread_PE0, NULL, &stack_PE0[PE_STACK_SIZE - 1]);

eot_mailbox_set_mask_pe(0);
__kvx_start_pe(1, (void *)thread_PE1, NULL, &stack_PE1[PE_STACK_SIZE - 1]);

eot_mailbox_set_mask_pe(1);
__kvx_start_pe(2, (void *)thread_PE2, NULL, &stack_PE2[PE_STACK_SIZE - 1]);

eot_mailbox_set_mask_pe(2);

eot_wait_pes();

printf(" *** All done in RM ***\n");
return 0;

}

Listing B.2: Initialization generated code

b.2 task and communication code

Listing B.3 defines auxiliary functions that are used in Listing B.4 to invoke the actual code
generation for local variables, task calls and channel communication.

<%def name="decl_locals_for_remote_write (w) ">\
/* local copies of channels */

% for mt in w.get_methods():

% for ch in mt.get_input_channels():

% if allocation.get_fifo_size(ch) == 2:

size_t ${ch.get_name()}_r_idx=0;

% endif

% endfor

% for ch in mt.get_output_channels():

% if allocation.get_fifo_size(ch) == 2:

size_t ${ch.get_name()}_w_idx=1;

% else:

${ch.get_type().get_name()} ${ch.get_name()}_l;

% endif

% endfor

% endfor

</%def>\

\

<%def name=" init_context_fields_for_remote_write (w) ">\
<%Utils:iter_channel_fields w="${w} " args=" f , path , ch">\
% if ch.get_initial_token() is None:

% if f.is_channel() == ’ receiver ’:
${path} = &${ch.get_name()};

% else:

${path} = &${Utils.get_channel_var(ch)}_l;

% endif

% else:

% if f.is_channel() == ’ receiver ’:
${path} = &${ch.get_name()}[${ch.get_name()}_r_idx];

% else:

${path} = &${ch.get_name()}[${ch.get_name()}_w_idx];

B.2 task and communication code 140

% endif

% endif

</%Utils:iter_channel_fields>\

</%def>\

<%def name="call_method_for_remote_write(mt, w, debug, indent) ">\
<%Utils:call_method_tt mt="${mt} " w="${w} " debug="${debug} " indent="${ indent} ">
<%def name="begin_send(ch) ">\
% if allocation.needs_blocking_send(ch):

SEM_WAIT(${ch.get_name()}_empty); /* TODO change for cnoc sync */

% endif

</%def>

<%def name="end_send(ch) ">\
/* Virtual write task ${mt.get_name()}_write_${ch.get_receiver().get_name()} */

% if debug:

mppa_tracepoint(${proj_name}, ${mt.get_name()}_w__in);

% endif

memcpy(&${ch.get_name()}, &${ch.get_name()}_l, sizeof(${ch.get_type().get_name()

}));

% if debug:

mppa_tracepoint(${proj_name}, ${mt.get_name()}_w__out);

% endif

% if ch.get_initial_token() is not None:

${ch.get_name()}_w_idx = (${ch.get_name()}_w_idx+1)%2;

% endif

</%def>

<%def name="begin_recv(ch) ">\
</%def>

<%def name="end_recv(ch) ">\
% if allocation.needs_blocking_send(ch):

SEM_SIGNAL(${ch.get_name()}_empty); /* TODO change for cnoc sync */

% endif

% if ch.get_initial_token() is not None:

${ch.get_name()}_r_idx = (${ch.get_name()}_r_idx+1)%2;

% endif

</%def>

</%Utils:call_method_tt>\

</%def>\

Listing B.3: Auxiliary functions for the task and communication template code

Listing B.4 uses the auxiliary functions defined in Listing B.3 to template the code
generation for the main worker of a SCADE program: the root node, usually mapped to
the first available core.

Creation of main thread for root worker (thread0)

uint64_t stack_PE${main_worker.get_index()}[PE_STACK_SIZE] __attribute__((section (" .
data_bank${main_worker. get_index () } ")));

void *thread_PE${main_worker.get_index()}(void *args) __attribute__((section (" .
text_bank${main_worker. get_index () } ")));

void *thread_PE${main_worker.get_index()}(__attribute__((__unused__)) void *args)

{

uint64_t origin_of_time_PE${main_worker.get_index()};

size_t loop;

B.2 task and communication code 141

${Utils.print_context_decl(main_worker) | indent_lines(2)}\

${ip.get_input_ctx()}

${decl_locals_for_remote_write(main_worker)}

/* initialize context fields for channels */

${init_context_fields_for_remote_write(main_worker)}\

/* init and reset functions of the tasks */

${Utils.print_init_call(main_worker) | indent_lines(2)}

__kvx_timer64_setup(UINT64_MAX, UINT64_MAX, 0, TIMER_0);

/* Inter PE sync */

mailbox_notify(GLOBAL_BARRIER_MAILBOX, __kvx_get_cpu_id());

wait_apic_it_and_clear(GLOBAL_BARRIER_IT_NUM);

// Reset PM with RE
__builtin_kvx_wfxl(KVX_SFR_PMC, KVX_SFR_WFXL_VALUE(PMC_PM0C,_KVX_PM_RE));

// Timer use as alternative

origin_of_time_PE${main_worker.get_index()} = __kvx_timer64_get_value(TIMER_0);

// Set PM0 to count for Processor Clock Cycle
__builtin_kvx_wfxl(KVX_SFR_PMC, KVX_SFR_WFXL_VALUE(PMC_PM0C,_KVX_PM_PCC));

/* execute main program loop */

for(loop=0; loop < NB_STEPS; loop++) {

% for mt in main_worker.get_methods():

${call_method_for_remote_write(mt=mt, w=main_worker, debug=debug, indent=4)}

% endfor

}

printf("Perf count duration root PE: %"PRIu64" cycles\n", __builtin_kvx_get(

KVX_SFR_PM0));

printf(" *** All done in root PE ***\n");

eot_exit_pe();

return 0;

}

Listing B.4: Task and communication template code

Listing B.5 shows the generated C code from Listing B.4. Note that this code follows the
time-triggered method described in Section 8.2.3.2.

uint64_t stack_PE0[PE_STACK_SIZE] __attribute__((section (" . data_bank0")));
void *thread_PE0(void *args) __attribute__((section (" . text_bank0")));
void *thread_PE0(__attribute__((__unused__)) void *args)

{

uint64_t origin_of_time_PE0;

size_t loop;

WU_root Wu_Ctx_root;

(&Wu_Ctx_root.inC)->i = 0; //kcg_int32

/* local copies of channels */

B.2 task and communication code 142

N3_task_in_ch_type N3_task_in_ch_l;

N0_task_in_ch_type N0_task_in_ch_l;

/* initialize context fields for channels */

(&Wu_Ctx_root.outC)->N0_task_in_ch = &N0_task_in_ch_l;

(&Wu_Ctx_root.outC)->N3_task_in_ch = &N3_task_in_ch_l;

(&Wu_Ctx_root.outC)->N4_task_out_ch = &N4_task_out_ch;

/* init and reset functions of the tasks */

#ifndef KCG_USER_DEFINED_INIT

root_init(&Wu_Ctx_root.outC);

#else

#ifndef KCG_NO_EXTERN_CALL_TO_RESET

root_reset(&Wu_Ctx_root.outC);

#endif /* KCG_NO_EXTERN_CALL_TO_RESET */

#endif /* KCG_USER_DEFINED_INIT */

__kvx_timer64_setup(UINT64_MAX, UINT64_MAX, 0, TIMER_0);

/* Inter PE sync */

mailbox_notify(GLOBAL_BARRIER_MAILBOX, __kvx_get_cpu_id());

wait_apic_it_and_clear(GLOBAL_BARRIER_IT_NUM);

// Reset PM with RE
__builtin_kvx_wfxl(KVX_SFR_PMC, KVX_SFR_WFXL_VALUE(PMC_PM0C,_KVX_PM_RE));

// Timer use as alternative

origin_of_time_PE0 = __kvx_timer64_get_value(TIMER_0);

// Set PM0 to count for Processor Clock Cycle
__builtin_kvx_wfxl(KVX_SFR_PMC, KVX_SFR_WFXL_VALUE(PMC_PM0C,_KVX_PM_PCC));

/* execute main program loop */

for(loop=0; loop < NB_STEPS; loop++) {

/* Core task call root_1 */

while(origin_of_time_PE0 - __kvx_timer64_get_value(TIMER_0) <= loop*
reaction_period+rel_root_1)

;

root_1(&Wu_Ctx_root.inC, &Wu_Ctx_root.outC);

/* Virtual write task root_1_write_N3_task */

memcpy(&N3_task_in_ch, &N3_task_in_ch_l, sizeof(N3_task_in_ch_type));

/* Virtual write task root_1_write_N0_task */

memcpy(&N0_task_in_ch, &N0_task_in_ch_l, sizeof(N0_task_in_ch_type));

/* Core task call root_2 */

while(origin_of_time_PE0 - __kvx_timer64_get_value(TIMER_0) <= loop*
reaction_period+rel_root_2)

;

root_2(&Wu_Ctx_root.outC);

}

printf("Perf count duration root PE: %"PRIu64" cycles\n", __builtin_kvx_get(

KVX_SFR_PM0));

printf(" *** All done in root PE ***\n");

B.2 task and communication code 143

eot_exit_pe();

return 0;

}

Listing B.5: Task and communication generated code

B I B L I O G R A P H Y

[1] Jaume Abella, Damien Hardy, Isabelle Puaut, Eduardo Quinones, and Francisco J
Cazorla. “On the comparison of deterministic and probabilistic WCET estimation
techniques.” In: 2014 26th Euromicro Conference on Real-Time Systems. IEEE. 2014,
pp. 266–275.

[2] Dennis Abts, Steve Scott, and David J Lilja. “So many states, so little time: Veri-
fying memory coherence in the Cray X1.” In: Proceedings International Parallel and
Distributed Processing Symposium. IEEE. 2003, 10–pp.

[3] Thomas L Adam, K. Mani Chandy, and JR Dickson. “A comparison of list schedules
for parallel processing systems.” In: Communications of the ACM 17.12 (1974), pp. 685–
690.

[4] Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J Cazorla. “On
the tailoring of CAST-32A certification guidance to real COTS multicore architec-
tures.” In: 2017 12th IEEE International Symposium on Industrial Embedded Systems
(SIES). IEEE. 2017, pp. 1–8.

[5] Benny Akesson, Kees Goossens, and Markus Ringhofer. “Predator: a predictable
SDRAM memory controller.” In: Proceedings of the 5th IEEE/ACM international
conference on Hardware/software codesign and system synthesis. 2007, pp. 251–256.

[6] Benny Akesson, Williston Hayes Jr, and Kees Goossens. “Classification and analysis
of predictable memory patterns.” In: 2010 IEEE 16th International Conference on
Embedded and Real-Time Computing Systems and Applications. IEEE. 2010, pp. 367–376.

[7] Ahmed Alhammad and Rodolfo Pellizzoni. “Schedulability analysis of global
memory-predictable scheduling.” In: Proceedings of the 14th International Conference
on Embedded Software. 2014, pp. 1–10.

[8] Coralie Allioux. “Exploration of Timing Anomalies on Simplistic Processor with
Model-Checking.” In: 13th Junior Researcher Workshop on Real-Time Computing. 2019.

[9] Sebastian Altmeyer, Robert I Davis, Leandro Indrusiak, Claire Maiza, Vincent Nelis,
and Jan Reineke. “A generic and compositional framework for multicore response
time analysis.” In: RTNS. 2015, pp. 129–138.

[10] Charles André. “SyncCharts: A visual representation of reactive behaviors.” In: I3S,
Sophia-Antipolis, France, Tech. Rep. RR (1996), pp. 95–52.

[11] Konstantin Andreev and Harald Racke. “Balanced graph partitioning.” In: Theory
of Computing Systems 39.6 (2006), pp. 929–939.

[12] William Aspray. “The Intel 4004 microprocessor: What constituted invention?” In:
IEEE Annals of the History of Computing 19.3 (1997), pp. 4–15.

[13] Johannes Ax, Gregor Sievers, Julian Daberkow, Martin Flasskamp, Marten Vohrmann,
Thorsten Jungeblut, Wayne Kelly, Mario Porrmann, and Ulrich Rückert. “CoreVA-
MPSoC: A many-core architecture with tightly coupled shared and local data
memories.” In: IEEE Transactions on Parallel and Distributed Systems 29.5 (2017),
pp. 1030–1043.

145

bibliography 146

[14] Hamdi Ayed, Jérôme Ermont, Jean-luc Scharbarg, and Christian Fraboul. “Towards
a unified approach for worst-case analysis of Tilera-like and Kalray-like NoC
architectures.” In: 2016 IEEE World Conference on Factory Communication Systems
(WFCS). IEEE. 2016, pp. 1–4.

[15] Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo. “Memory-aware
scheduling of multicore task sets for real-time systems.” In: 2012 IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications. IEEE. 2012,
pp. 300–309.

[16] Felice Balarin, Luciano Lavagno, Praveen Murthy, Alberto Sangiovanni-Vincentelli,
CD Systems, et al. “Scheduling for embedded real-time systems.” In: IEEE Design
& Test of Computers 15.1 (1998), pp. 71–82.

[17] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. “OTAWA:
an open toolbox for adaptive WCET analysis.” In: IFIP International Workshop on
Software Technolgies for Embedded and Ubiquitous Systems. Springer. 2010, pp. 35–46.

[18] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, Mahesh Balakrishnan, and Peter
Marwedel. “Scratchpad memory: A design alternative for cache on-chip mem-
ory in embedded systems.” In: Proceedings of the Tenth International Symposium on
Hardware/Software Codesign. CODES 2002 (IEEE Cat. No. 02TH8627). IEEE. 2002,
pp. 73–78.

[19] Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and
Marco Caccamo. “Reconciling predictability and coherent caching.” In: 2020 9th
Mediterranean Conference on Embedded Computing (MECO). IEEE. 2020, pp. 1–6.

[20] Jessé Barreto de Barros, Renato Coral Sampaio, and Carlos Humberto Llanos. “An
adaptive discrete particle swarm optimization for mapping real-time applications
onto network-on-a-chip based MPSoCs.” In: Proceedings of the 32nd Symposium on
Integrated Circuits and Systems Design. 2019, pp. 1–6.

[21] Daniel Bates, Alex Bradbury, Andreas Koltes, and Robert Mullins. “Exploiting
tightly-coupled cores.” In: Journal of Signal Processing Systems 80.1 (2015), pp. 103–
120.

[22] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nélis,
and Thomas Nolte. “Contention-free execution of automotive applications on a
clustered many-core platform.” In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). IEEE. 2016, pp. 14–24.

[23] Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, and Thomas Nolte.
“Scheduling multi-rate real-time applications on clustered many-core architectures
with memory constraints.” In: 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE. 2018, pp. 560–567.

[24] Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf, and
Giuseppe Lipari. “Task and Communication Allocation for Real-time Tasks to
Networks-on-Chip Multiprocessors.” In: 2020 Second International Conference on
Embedded & Distributed Systems (EDiS). IEEE. 2020, pp. 9–14.

[25] MD Bennett and Neil C Audsley. “Predictable and efficient virtual addressing
for safety-critical real-time systems.” In: Proceedings 13th Euromicro Conference on
Real-Time Systems. IEEE. 2001, pp. 183–190.

bibliography 147

[26] Albert Benveniste, Paul Caspi, Stephen A Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert De Simone. “The synchronous languages 12 years later.” In:
Proceedings of the IEEE 91.1 (2003), pp. 64–83.

[27] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. “Synchronous pro-
gramming with events and relations: the SIGNAL language and its semantics.” In:
Science of computer programming 16.2 (1991), pp. 103–149.

[28] Gérard Berry. “SCADE: Synchronous design and validation of embedded control
software.” In: Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems. Springer, 2007, pp. 19–33.

[29] Gerard Berry, Sabie Moisan, and Jean-Paul Rigault. “Esterel: Towards a synchronous
and semantically sound high-level language for real-time applications.” In: Proc.
IEEE Real-Time Systems Symposium. IEEE Computer Society Press. 1983, pp. 30–40.

[30] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari. “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms.” In: IEEE Transactions
on parallel and distributed systems 20.4 (2008), pp. 553–566.

[31] Frédéric Boussinot. “Reactive C: An extension of C to program reactive systems.”
In: Software: Practice and Experience 21.4 (1991), pp. 401–428.

[32] Matthew Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, and David August.
“Revisiting the sequential programming model for multi-core.” In: 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 2007). IEEE. 2007,
pp. 69–84.

[33] Thomas Carle, Dumitru Potop-Butucaru, Yves Sorel, and David Lesens. “From
dataflow specification to multiprocessor partitioned time-triggered real-time imple-
mentation.” In: Leibniz Transactions on Embedded Systems 2.2 (2015), pp. 01–1.

[34] NY-C Chang, Y-Z Liao, and T-S Chang. “Analysis of shared-link AXI.” In: IET
Computers & Digital Techniques 3.4 (2009), pp. 373–383.

[35] Che-Wei Chang, Jian-Jia Chen, Tei-Wei Kuo, and Heiko Falk. “Real-time task
scheduling on island-based multi-core platforms.” In: IEEE Transactions on Parallel
and Distributed Systems 26.2 (2014), pp. 538–550.

[36] Che-Wei Chang, Jian-Jia Chen, Waqaas Munawar, Tei-Wei Kuo, and Heiko Falk.
“Partitioned scheduling for real-time tasks on multiprocessor embedded systems
with programmable shared SRAMs.” In: Proceedings of the tenth ACM international
conference on Embedded software. 2012, pp. 153–162.

[37] Sheng-Wei Cheng, Che-Wei Chang, Jian-Jia Chen, Tei-Wei Kuo, and Pi-Cheng
Hsiu. “Many-core real-time task scheduling with scratchpad memory.” In: IEEE
Transactions on Parallel and Distributed Systems 27.10 (2016), pp. 2953–2966.

[38] Edmund M Clarke. “Model checking.” In: International Conference on Foundations of
Software Technology and Theoretical Computer Science. Springer. 1997, pp. 54–56.

[39] Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. “Scade 6: From
a Kahn semantics to a Kahn implementation for multicore.” In: 2018 Forum on
Specification & Design Languages (FDL). IEEE. 2018, pp. 5–16.

[40] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “Scade 6: A formal language
for embedded critical software development.” In: 2017 International Symposium on
Theoretical Aspects of Software Engineering (TASE). IEEE. 2017, pp. 1–11.

bibliography 148

[41] Jean-Louis Colaço and Marc Pouzet. “Type-based initialization analysis of a syn-
chronous dataflow language.” In: International journal on software tools for technology
transfer 6.3 (2004), pp. 245–255.

[42] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, Daniel Grund, Claire
Maiza, Jan Reineke, Benoît Triquet, and Reinhard Wilhelm. “Predictability consider-
ations in the design of multi-core embedded systems.” In: Proceedings of Embedded
Real Time Software and Systems 36 (2010), p. 42.

[43] Dennis Dams, Rob Gerth, and Orna Grumberg. “Abstract interpretation of reactive
systems.” In: ACM Transactions on Programming Languages and Systems (TOPLAS)
19.2 (1997), pp. 253–291.

[44] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark Horowitz.
“CPU DB: recording microprocessor history.” In: Queue 10.4 (2012), pp. 10–27.

[45] Dakshina Dasari, Benny Akesson, Vincent Nelis, Muhammad Ali Awan, and Stefan
M Petters. “Identifying the sources of unpredictability in COTS-based multicore
systems.” In: 2013 8th IEEE international symposium on industrial embedded systems
(SIES). IEEE. 2013, pp. 39–48.

[46] Dakshina Dasari and Vincent Nelis. “An Analysis of the Impact of Bus Contention
on the WCET in Multicores.” In: 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference
on Embedded Software and Systems. IEEE. 2012, pp. 1450–1457.

[47] Gordon B Davis. “Anytime/anyplace computing and the future of knowledge
work.” In: Communications of the ACM 45.12 (2002), pp. 67–73.

[48] Robert I Davis, Sebastian Altmeyer, Leandro S Indrusiak, Claire Maiza, Vincent
Nelis, and Jan Reineke. “An extensible framework for multicore response time
analysis.” In: Real-Time Systems 54.3 (2018), pp. 607–661.

[49] Robert I Davis and Alan Burns. “A survey of hard real-time scheduling for multi-
processor systems.” In: ACM computing surveys (CSUR) 43.4 (2011), pp. 1–44.

[50] Keryan Didier, Dumitru Potop-Butucaru, Guillaume Iooss, Albert Cohen, Jean
Souyris, Philippe Baufreton, and Amaury Graillat. “Correct-by-construction par-
allelization of hard real-time avionics applications on off-the-shelf predictable
hardware.” In: ACM Transactions on Architecture and Code Optimization (TACO) 16.3
(2019), pp. 1–27.

[51] Benoît Dupont de Dinechin. “Consolidating High-Integrity, High-Performance, and
Cyber-Security Functions on a Manycore Processor.” In: Proceedings of the 56th
Annual Design Automation Conference 2019. 2019, pp. 1–4.

[52] Benoît Dupont de Dinechin and Amaury Graillat. “Network-on-chip service guaran-
tees on the kalray mppa-256 bostan processor.” In: Proceedings of the 2nd International
Workshop on Advanced Interconnect Solutions and Technologies for Emerging Computing
Systems. ACM. 2017, pp. 35–40.

[53] Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire Maiza.
“Scaling up the memory interference analysis for hard real-time many-core sys-
tems.” In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE. 2020, pp. 330–333.

bibliography 149

[54] Mark Dowson. “The Ariane 5 software failure.” In: ACM SIGSOFT Software Engi-
neering Notes 22.2 (1997), p. 84.

[55] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti,
and Wolfgang Puffitsch. “Predictable flight management system implementation
on a multicore processor.” In: Embedded Real Time Software (ERTS’14). 2014.

[56] Christian Ferdinand and Reinhold Heckmann. “ait: Worst-case execution time
prediction by static program analysis.” In: Building the Information Society. Springer,
2004, pp. 377–383.

[57] Björn Forsberg, Maxim Mattheeuws, Andreas Kurth, Andrea Marongiu, and Luca
Benini. “A Synergistic Approach to Predictable Compilation and Scheduling on
Commodity Multi-Cores.” In: The 21st ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems. 2020, pp. 108–118.

[58] Hauke Fuhrmann and Reinhard von Hanxleden. “Taming graphical modeling.” In:
International Conference on Model Driven Engineering Languages and Systems. Springer.
2010, pp. 196–210.

[59] Gernot Gebhard. “Timing anomalies reloaded.” In: 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik. 2010.

[60] Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele. “Timed
model checking with abstractions: Towards worst-case response time analysis in
resource-sharing manycore systems.” In: Proceedings of the tenth ACM international
conference on Embedded software. 2012, pp. 63–72.

[61] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele.
“Scheduling of mixed-criticality applications on resource-sharing multicore sys-
tems.” In: 2013 Proceedings of the International Conference on Embedded Software (EM-
SOFT). IEEE. 2013, pp. 1–15.

[62] Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, Lothar Thiele,
and Benoît Dupont de Dinechin. “Mixed-criticality scheduling on cluster-based
manycores with shared communication and storage resources.” In: Real-Time Systems
52.4 (2016), pp. 399–449.

[63] Joël Goossens, Shelby Funk, and Sanjoy Baruah. “Priority-driven scheduling of pe-
riodic task systems on multiprocessors.” In: Real-time systems 25.2-3 (2003), pp. 187–
205.

[64] Amaury Graillat. “Code Generation for Multi-Core Processor with Hard Real-Time
Constraints.” Theses. Univ. Grenoble Alpes, Nov. 2018. url: https://tel.archives-
ouvertes.fr/tel-02069346.

[65] Amaury Graillat, Claire Maiza, Matthieu Moy, Pascal Raymond, and Benoît Dupont
de Dinechin. “Response time analysis of dataflow applications on a many-core
processor with shared-memory and network-on-chip.” In: Proceedings of the 27th
International Conference on Real-Time Networks and Systems. 2019, pp. 61–69.

[66] Amaury Graillat, Matthieu Moy, Pascal Raymond, and Benoît Dupont De Dinechin.
“Parallel code generation of synchronous programs for a many-core architecture.”
In: 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
2018, pp. 1139–1142.

https://tel.archives-ouvertes.fr/tel-02069346
https://tel.archives-ouvertes.fr/tel-02069346

bibliography 150

[67] Friedrich Gretz and Franz-Josef Grosch. “Blech, Imperative Synchronous Program-
ming!” In: Languages, Design Methods, and Tools for Electronic System Design. Springer,
2020, pp. 161–186.

[68] Lena Grimm. “From Lustre to Graphical Dataflow Programs.” https://rtsys.

informatik.uni- kiel.de/~biblio/downloads/theses/lgr- mt.pdf. Master’s
thesis. Kiel University, Department of Computer Science, May 2019.

[69] Alban Gruin, Thomas Carle, Hugues Cassé, and Christine Rochange. “Speculative
Execution and Timing Predictability in an Open Source RISC-V Core.” In: 2021
IEEE Real-Time Systems Symposium (RTSS). IEEE. 2021, pp. 393–404.

[70] Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. “WCET analysis with MRU cache:
Challenging LRU for predictability.” In: ACM Transactions on Embedded Computing
Systems (TECS) 13.4s (2014), pp. 1–26.

[71] Sebastian Hahn and Jan Reineke. “Design and analysis of SIC: a provably timing-
predictable pipelined processor core.” In: Real-Time Systems 56.2 (2020), pp. 207–
245.

[72] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. “Towards compositionality in
execution time analysis: definition and challenges.” In: ACM SIGBED Review 12.1
(2015), pp. 28–36.

[73] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The syn-
chronous data flow programming language LUSTRE.” In: Proceedings of the IEEE
79.9 (1991), pp. 1305–1320.

[74] Nicolas Halbwachs. “Synchronous programming of reactive systems.” In: Interna-
tional Conference on Computer Aided Verification. Springer. 1998, pp. 1–16.

[75] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. “CoMPSoC:
A template for composable and predictable multi-processor system on chips.” In:
ACM Transactions on Design Automation of Electronic Systems (TODAES) 14.1 (2009),
pp. 1–24.

[76] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duderstadt,
Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’brien, and Partha
Roop. “Sequentially Constructive Concurrency—A conservative extension of the
synchronous model of computation.” In: ACM Transactions on Embedded Computing
Systems (TECS) 13.4s (2014), pp. 1–26.

[77] Damien Hardy and Isabelle Puaut. “WCET analysis of instruction cache hierar-
chies.” In: Journal of Systems Architecture 57.7 (2011), pp. 677–694.

[78] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. “The Heptane Static Worst-
Case Execution Time Estimation Tool.” In: 17th International Workshop on Worst-
Case Execution Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2017.

[79] David Harel. “Statecharts: A visual formalism for complex systems.” In: Science of
computer programming 8.3 (1987), pp. 231–274.

[80] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm.
“The influence of processor architecture on the design and the results of WCET
tools.” In: Proceedings of the IEEE 91.7 (2003), pp. 1038–1054.

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lgr-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lgr-mt.pdf

bibliography 151

[81] Joseph Herkert, Jason Borenstein, and Keith Miller. “The Boeing 737 MAX: Lessons
for engineering ethics.” In: Science and engineering ethics 26.6 (2020), pp. 2957–2974.

[82] Salma Hesham, Jens Rettkowski, Diana Goehringer, and Mohamed A Abd El
Ghany. “Survey on real-time networks-on-chip.” In: IEEE Transactions on Parallel
and Distributed Systems 28.5 (2016), pp. 1500–1517.

[83] Kentaro Honda, Sasuga Kojima, Hiroshi Fujimoto, Masato Edahiro, and Takuya
Azumi. “Mapping method of matlab/simulink model for embedded many-core
platform.” In: 2020 28th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). IEEE. 2020, pp. 182–186.

[84] “IEEE Standard for Software-Hardware Interface for Multi-Many-Core.” In: IEEE
Std 2804-2019 (2020), pp. 1–84. doi: 10.1109/IEEESTD.2020.8985663.

[85] Mathieu Jan, Mihail Asavoae, Martin Schoeberl, and Edward A Lee. “Formal
semantics of predictable pipelines: a comparative study.” In: 2020 25th Asia and
South Pacific Design Automation Conference (ASP-DAC). IEEE. 2020, pp. 103–108.

[86] Anjali Joshi and Mats PE Heimdahl. “Model-based safety analysis of simulink
models using SCADE design verifier.” In: International Conference on Computer Safety,
Reliability, and Security. Springer. 2005, pp. 122–135.

[87] Peter Kafka. “The automotive standard ISO 26262, the innovative driver for en-
hanced safety assessment & technology for motor cars.” In: Procedia Engineering 45
(2012), pp. 2–10.

[88] Hyoseung Kim, Dionisio De Niz, Björn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar. “Bounding memory interference delay in COTS-based multi-
core systems.” In: 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2014, pp. 145–154.

[89] Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. “A coordinated
approach for practical OS-level cache management in multi-core real-time systems.”
In: 2013 25th Euromicro Conference on Real-Time Systems. IEEE. 2013, pp. 80–89.

[90] Jung-Eun Kim, Man-Ki Yoon, Richard Bradford, and Lui Sha. “Integrated modular
avionics (IMA) partition scheduling with conflict-free I/O for multicore avionics
systems.” In: 2014 IEEE 38th Annual Computer Software and Applications Conference.
IEEE. 2014, pp. 321–331.

[91] Sung Il Kim, Jong-Kook Kim, Hyoung Uk Ha, Tae Ho Kim, and Kyu Hyun Choi.
“Efficient task scheduling for hard real-time tasks in asymmetric multicore proces-
sors.” In: International Conference on Algorithms and Architectures for Parallel Processing.
Springer. 2012, pp. 187–196.

[92] Ondrej Kotaba, Jan Nowotsch, Michael Paulitsch, Stefan M Petters, and Henrik
Theiling. “Multicore in real-time systems–temporal isolation challenges due to
shared resources.” In: 16th Design, Automation & Test in Europe Conference and
Exhibition. 2013.

[93] Yu-Kwong Kwok and Ishfaq Ahmad. “Static scheduling algorithms for allocating
directed task graphs to multiprocessors.” In: ACM Computing Surveys (CSUR) 31.4
(1999), pp. 406–471.

https://doi.org/10.1109/IEEESTD.2020.8985663

bibliography 152

[94] Kai Lampka, Georgia Giannopoulou, Rodolfo Pellizzoni, Zheng Wu, and Nikolay
Stoimenov. “A formal approach to the WCRT analysis of multicore systems with
memory contention under phase-structured task sets.” In: Real-Time Systems 50.5
(2014), pp. 736–773.

[95] Thierry Le Sergent, Adnan Bouakaz, and Guilherme Goretkin. “SCADE AADL.”
In: ERTS 2018. 2018.

[96] Guoning Liao, Erik R Altman, Vinod K Agarwal, and Guang R Gao. “A comparative
study of multiprocessor list scheduling heuristics.” In: 1994 Proceedings of the Twenty-
Seventh Hawaii International Conference on System Sciences. Vol. 1. IEEE. 1994, pp. 68–
77.

[97] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D Patel, Stephen A Edwards, and Edward
A Lee. “Predictable programming on a precision timed architecture.” In: Proceedings
of the 2008 international conference on Compilers, architectures and synthesis for embedded
systems. 2008, pp. 137–146.

[98] Cláudio Maia, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez. “A closer
look into the aer model.” In: 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE. 2016, pp. 1–8.

[99] Claire Maiza, Hamza Rihani, Juan M Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I Davis. “A survey of timing verification techniques for multi-core real-time
systems.” In: ACM Computing Surveys (CSUR) 52.3 (2019), pp. 1–38.

[100] Louis Mandel and Marc Pouzet. “ReactiveML: a reactive extension to ML.” In:
Proceedings of the 7th ACM SIGPLAN international conference on Principles and practice
of declarative programming. 2005, pp. 82–93.

[101] Florence Maraninchi. “The Argos language: Graphical representation of automata
and description of reactive systems.” In: IEEE Workshop on Visual Languages. Vol. 3.
Citeseer. 1991.

[102] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,
and Giorgio Buttazzo. “Memory-processor co-scheduling in fixed priority systems.”
In: Proceedings of the 23rd International Conference on Real Time and Networks Systems.
2015, pp. 87–96.

[103] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and Benjamin
Monate. “Testing or formal verification: Do-178c alternatives and industrial experi-
ence.” In: IEEE software 30.3 (2013), pp. 50–57.

[104] Frank Mueller. “Compiler support for software-based cache partitioning.” In: ACM
Sigplan Notices 30.11 (1995), pp. 125–133.

[105] Claire Pagetti, Julien Forget, Heiko Falk, Dominic Oehlert, and Arno Luppold. “Au-
tomated generation of time-predictable executables on multicore.” In: Proceedings of
the 26th International Conference on Real-Time Networks and Systems. 2018, pp. 104–113.

[106] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. “The
ROSACE case study: From simulink specification to multi/many-core execution.”
In: 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE. 2014, pp. 309–318.

bibliography 153

[107] Marco Paolieri, Eduardo Quinones, and Francisco J Cazorla. “Timing effects of DDR
memory systems in hard real-time multicore architectures: Issues and solutions.”
In: ACM Transactions on Embedded Computing Systems (TECS) 12.1s (2013), pp. 1–26.

[108] Paolo Pazzaglia, Alessandro Biondi, and Marco Di Natale. “Optimizing the func-
tional deployment on multicore platforms with logical execution time.” In: 2019
IEEE Real-Time Systems Symposium (RTSS). IEEE. 2019, pp. 207–219.

[109] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. “A predictable execution model for COTS-based
embedded systems.” In: 2011 17th IEEE Real-Time and Embedded Technology and
Applications Symposium. IEEE. 2011, pp. 269–279.

[110] Quentin Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat, and
Benoît Triquet. “Predictable composition of memory accesses on many-core proces-
sors.” In: 8th European Congress on Embedded Real Time Software and Systems (ERTS
2016). 2016.

[111] Quentin Perret, Pascal Maurere, Eric Noulard, Claire Pagetti, Pascal Sainrat, and
Benoit Triquet. “Temporal isolation of hard real-time applications on many-core
processors.” In: Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE. 2016, pp. 1–11.

[112] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and
Benoît Triquet. “Mapping hard real-time applications on many-core processors.”
In: Proceedings of the 24th International Conference on Real-Time Networks and Systems.
2016, pp. 235–244.

[113] Daniel Pilaud, N Halbwachs, and JA Plaice. “LUSTRE: A declarative language
for programming synchronous systems.” In: Proceedings of the 14th Annual ACM
Symposium on Principles of Programming Languages (14th POPL 1987). ACM, New York,
NY. Vol. 178. 1987, p. 188.

[114] Pascal Raymond. “Synchronous program verification with lustre/lesar.” In: Model-
ing and Verification of Real-Time Systems (2008), p. 7.

[115] Jan Reineke, Isaac Liu, Hiren D Patel, Sungjun Kim, and Edward A Lee. “PRET
DRAM controller: Bank privatization for predictability and temporal isolation.”
In: 2011 Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE. 2011, pp. 99–
108.

[116] Hamza Rihani. “Many-Core Timing Analysis of Real-Time Systems.” PhD thesis.
Université Grenoble Alpes, Dec. 2017. url: https://tel.archives-ouvertes.fr/
tel-01875711.

[117] Hamza Rihani, Matthieu Moy, Claire Maiza, and Sebastian Altmeyer. “WCET
analysis in shared resources real-time systems with TDMA buses.” In: Proceedings of
the 23rd International Conference on Real Time and Networks Systems. 2015, pp. 183–192.

[118] Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I Davis, and Sebastian Altmeyer.
“Response time analysis of synchronous data flow programs on a many-core
processor.” In: Proceedings of the 24th International Conference on Real-Time Networks
and Systems. ACM. 2016, pp. 67–76.

https://tel.archives-ouvertes.fr/tel-01875711
https://tel.archives-ouvertes.fr/tel-01875711

bibliography 154

[119] Juan M Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo. “Implementa-
tion of memory centric scheduling for COTS multi-core real-time systems.” In: 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. 2019.

[120] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. “Tightening contention de-
lays while scheduling parallel applications on multi-core architectures.” In: ACM
Transactions on Embedded Computing Systems (TECS) 16.5s (2017), p. 164.

[121] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. “Hiding
communication delays in contention-free execution for spm-based multi-core archi-
tectures.” In: 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019.

[122] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont de
Dinechin. “The shift to multicores in real-time and safety-critical systems.” In: 2015
International Conference on Hardware/Software Codesign and System Synthesis (CODES+
ISSS). IEEE. 2015, pp. 220–229.

[123] Hassan Salamy and Jagannathan Ramanujam. “An effective solution to task schedul-
ing and memory partitioning for multiprocessor system-on-chip.” In: IEEE transac-
tions on computer-aided design of integrated circuits and systems 31.5 (2012), pp. 717–
725.

[124] Martin Schoeberl. “Time-predictable computer architecture.” In: EURASIP Journal
on Embedded Systems 2009 (2009), pp. 1–17.

[125] Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Ca-
passo, Jamie Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold
Heckmann, et al. “T-CREST: Time-predictable multi-core architecture for embedded
systems.” In: Journal of Systems Architecture 61.9 (2015), pp. 449–471.

[126] Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and Marco
Caccamo. “Worst-case response time analysis of resource access models in multi-
core systems.” In: Design Automation Conference. IEEE. 2010, pp. 332–337.

[127] Matheus Schuh, Claire Maiza, Joël Goossens, Pascal Raymond, and Benoît Dupont
de Dinechin. “A study of predictable execution models implementation for indus-
trial data-flow applications on a multi-core platform with shared banked memory.”
In: 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE. 2020, pp. 283–295.

[128] Zheng Shi and Alan Burns. “Real-time communication analysis for on-chip net-
works with wormhole switching.” In: Second ACM/IEEE International Symposium on
Networks-on-Chip (nocs 2008). IEEE. 2008, pp. 161–170.

[129] Cyril Six, Sylvain Boulmé, and David Monniaux. “Certified and efficient instruction
scheduling: application to interlocked VLIW processors.” In: Proceedings of the ACM
on Programming Languages 4.OOPSLA (2020), pp. 1–29.

[130] Stefanos Skalistis and Angeliki Kritikakou. “Timely Fine-grained Interference-
sensitive Run-time Adaptation of Time-triggered Schedules.” In: 2019 IEEE Real-
Time Systems Symposium (RTSS). IEEE. 2019, pp. 233–245.

[131] Stefanos Skalistis and Alena Simalatsar. “Worst-case execution time analysis for
many-core architectures with NoC.” In: International Conference on Formal Modeling
and Analysis of Timed Systems. Springer. 2016, pp. 211–227.

bibliography 155

[132] Muhammad R Soliman and Rodolfo Pellizzoni. “PREM-based optimal task segmen-
tation under fixed priority scheduling.” In: 31st Euromicro Conference on Real-Time
Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2019.

[133] Lloyd Robert Still and Leandro Soares Indrusiak. “Memory-aware genetic algo-
rithms for task mapping on hard real-time networks-on-chip.” In: 2018 26th Euromi-
cro International Conference on Parallel, Distributed and Network-based Processing (PDP).
IEEE. 2018, pp. 601–608.

[134] Vivy Suhendra and Tulika Mitra. “Exploring locking & partitioning for predictable
shared caches on multi-cores.” In: Proceedings of the 45th annual Design Automation
Conference. 2008, pp. 300–303.

[135] Vivy Suhendra, Chandrashekar Raghavan, and Tulika Mitra. “Integrated scratchpad
memory optimization and task scheduling for MPSoC architectures.” In: Proceedings
of the 2006 international conference on Compilers, architecture and synthesis for embedded
systems. 2006, pp. 401–410.

[136] Jinghao Sun, Feng Li, Nan Guan, Wentao Zhu, Minjie Xiang, Zhishan Guo, and
Wang Yi. “On computing exact WCRT for DAG tasks.” In: 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE. 2020, pp. 1–6.

[137] Wei-Tsun Sun, Hugues Cassé, Christine Rochange, Hamza Rihani, and Claire Maiza.
“Using execution graphs to model a prefetch and write buffers and its application
to the Bostan MPPA.” In: 9th European Congress on Embedded real time Software and
Systems (ERTS 2018). 2018.

[138] Takao Tobita and Hironori Kasahara. “A standard task graph set for fair evalua-
tion of multiprocessor scheduling algorithms.” In: Journal of Scheduling 5.5 (2002),
pp. 379–394.

[139] Saud Wasly and Rodolfo Pellizzoni. “Hiding memory latency using fixed priority
scheduling.” In: 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE. 2014, pp. 75–86.

[140] Bpifrance Press Website. Projet collaboratif ES3CAP, porté par Kalray. Last accessed
26 January 2022. url: https://presse.bpifrance.fr/lancement-du-projet-
collaboratif-es3cap-porte-par-kalray-et-dote-dun-budget-de-222-me-

pour-le-developpement-dune-plateforme-pour-les-systemes-intelligents-

de-demainnbsp/.

[141] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,
Tulika Mitra, et al. “The worst-case execution-time problem—overview of methods
and survey of tools.” In: ACM Transactions on Embedded Computing Systems (TECS)
7.3 (2008), pp. 1–53.

[142] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. “Worst case analysis of DRAM
latency in multi-requestor systems.” In: 2013 IEEE 34th Real-Time Systems Symposium.
IEEE. 2013, pp. 372–383.

[143] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
“Memory-centric scheduling for multicore hard real-time systems.” In: Real-Time
Systems 48.6 (2012), pp. 681–715.

https://presse.bpifrance.fr/lancement-du-projet-collaboratif-es3cap-porte-par-kalray-et-dote-dun-budget-de-222-me-pour-le-developpement-dune-plateforme-pour-les-systemes-intelligents-de-demainnbsp/
https://presse.bpifrance.fr/lancement-du-projet-collaboratif-es3cap-porte-par-kalray-et-dote-dun-budget-de-222-me-pour-le-developpement-dune-plateforme-pour-les-systemes-intelligents-de-demainnbsp/
https://presse.bpifrance.fr/lancement-du-projet-collaboratif-es3cap-porte-par-kalray-et-dote-dun-budget-de-222-me-pour-le-developpement-dune-plateforme-pour-les-systemes-intelligents-de-demainnbsp/
https://presse.bpifrance.fr/lancement-du-projet-collaboratif-es3cap-porte-par-kalray-et-dote-dun-budget-de-222-me-pour-le-developpement-dune-plateforme-pour-les-systemes-intelligents-de-demainnbsp/

bibliography 156

[144] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo.
“Global real-time memory-centric scheduling for multicore systems.” In: IEEE
Transactions on Computers 65.9 (2015), pp. 2739–2751.

[145] Simon Yuan, Li Hsien Yoong, and Partha S Roop. “Compiling esterel for multi-core
execution.” In: 2011 14th Euromicro Conference on Digital System Design. IEEE. 2011,
pp. 727–735.

[146] Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang. “DAG schedul-
ing and analysis on multiprocessor systems: Exploitation of parallelism and de-
pendency.” In: 2020 IEEE Real-Time Systems Symposium (RTSS). IEEE. 2020, pp. 128–
140.

	107683_SCHUH_2022_archivage - Copie.pdf
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	List of Acronyms
	1 Introduction
	1.1 Context and Motivation
	1.2 Summary of Contributions
	1.3 Thesis Outline

	 State-Of-The-Art
	2 Background: Real-Time
	2.1 Real-Time Systems
	2.1.1 Reactive and Time Triggered Systems
	2.1.2 Requirements
	2.1.3 Certification

	2.2 Synchronous Languages
	2.2.1 Data Flow, Control Flow and Graphical View
	2.2.2 Lustre
	2.2.3 SCADE
	2.2.4 Other languages

	2.3 Code Generation
	2.3.1 Sequential Code Generation
	2.3.2 Parallel Code Generation

	2.4 Execution Models for Real-Time Systems
	2.4.1 Memory Partitioning
	2.4.2 Memory Interference
	2.4.3 Applicability to a broader scope

	2.5 Conclusion

	3 Background: Multi/Many-Core
	3.1 Multi/Many-Core Hardware Architectures
	3.1.1 Processor architecture in real-time systems
	3.1.2 Challenges on transitioning to multiple cores
	3.1.3 State-of-the-art of Predictable Architectures

	3.2 The Kalray MPPA3
	3.2.1 Cores
	3.2.2 Compute Cluster
	3.2.3 Memory System
	3.2.4 On-Chip Interconnects
	3.2.5 Synchronization components
	3.2.6 Clock components and performance measurement

	3.3 Response Time Analysis
	3.3.1 Temporal Isolation
	3.3.2 Shared Resources Interference Analysis
	3.3.3 Comparison

	3.4 Mapping and Scheduling
	3.4.1 Mapping and Partitioning
	3.4.2 Scheduling
	3.4.3 Mixed approaches

	3.5 Conclusion

	 Contributions
	4 Workflow Overview
	4.1 General Idea
	4.2 Memory Phases Generation
	4.3 DAG Mapping and Scheduling
	4.4 Timing Analysis
	4.5 Orchestration Code Generation
	4.6 Comparison with existing workflow

	5 Execution Models For Real-Time Systems
	5.1 Traditional Software Models
	5.1.1 Context
	5.1.2 Memory access uncertainty
	5.1.3 Divide to better analyze

	5.2 The studied execution models
	5.2.1 Model parameters and memory organization
	5.2.2 Models overview
	5.2.3 Schedule Analysis

	5.3 Scheduling Algorithms
	5.3.1 Background concepts
	5.3.2 Overview and shared utilities
	5.3.3 Algorithms presentation
	5.3.4 Termination proofs
	5.3.5 Complexity Analysis

	5.4 Generalization to different software and hardware platforms
	5.4.1 Single Shared Memory
	5.4.2 Cache privatization
	5.4.3 Distant DDR memory
	5.4.4 Multi-Cluster applicability
	5.4.5 Software generalization

	5.5 Conclusion

	6 DAG Mapping and Scheduling
	6.1 System Model
	6.2 Hypotheses
	6.3 Problem Formulation
	6.3.1 Definitions
	6.3.2 Communication cost
	6.3.3 Total time

	6.4 Existing solution for DAG mapping and scheduling
	6.4.1 Static Level Computation
	6.4.2 HLFET List Scheduling Algorithm

	6.5 Proposed solution for DAG mapping and scheduling
	6.5.1 Step 1: Node to virtual processor assignment
	6.5.2 Step 2: Virtual core to virtual cluster assignment
	6.5.3 Step 3: Virtual to physical cluster assignment

	6.6 Conclusion

	7 Timing Model of an Industrial Many-Core Architecture
	7.1 Intra-Cluster Arbitration
	7.1.1 Level 1
	7.1.2 Level 2

	7.2 Inter-Cluster Arbitration
	7.3 Conformant Execution Model
	7.3.1 Architecture Configuration
	7.3.2 System Design
	7.3.3 Software Framework

	7.4 Response-Time Analysis
	7.4.1 Main Concept
	7.4.2 Additional Definitions and Simplifications
	7.4.3 Intra-Cluster Interference
	7.4.4 Inter-Cluster Interference

	7.5 Non-Conformance with the Execution Model
	7.5.1 Architecture Configuration
	7.5.2 System Design
	7.5.3 Software Framework

	7.6 Conclusion

	 Evaluation
	8 Tool Extensions
	8.1 Multi-Core Interference Analysis (MIA)
	8.1.1 Response Time Analysis
	8.1.2 Problem Statement
	8.1.3 Original Algorithm
	8.1.4 Proposed Algorithm
	8.1.5 MPPA3 Arbitration Model Implementation

	8.2 Parallel Code Generation and Orchestration
	8.2.1 From sequential to parallel code generation
	8.2.2 Parallel Code Generation overview
	8.2.3 Integration

	8.3 Software-Hardware Interface for Multi/Many-Core (SHIM)
	8.3.1 SHIM main characteristics
	8.3.2 MPPA3 SHIM Model

	8.4 Conclusion

	9 Experiments
	9.1 Applications presentation
	9.1.1 Simple Data Flow
	9.1.2 Avionics Case Study
	9.1.3 Automotive Industrial Program

	9.2 Phased Execution Models experiments
	9.2.1 Evaluation context
	9.2.2 Results
	9.2.3 Discussion

	9.3 Mapping and Scheduling experiments
	9.3.1 DAG generation
	9.3.2 Comparative methodology
	9.3.3 Results

	9.4 Performance improvement on MIA
	9.4.1 Bus Arbiter Function
	9.4.2 Results
	9.4.3 Discussion

	9.5 Conclusion

	10 Conclusion and Prospects
	10.1 Contributions
	10.1.1 Execution Models for Real-Time Systems
	10.1.2 DAG Mapping and Scheduling
	10.1.3 Timing Model of an Industrial Many-Core Architecture
	10.1.4 Tool Extensions

	10.2 Future Work

	 Appendix
	A Kalray MPPA3 Hardware Diagrams
	B SCADE Platform Dependent Code
	B.1 Initialization Code
	B.2 Task and Communication Code

	 Bibliography

