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Résumé

Les méthodes d’apprentissage statistique se sont implantées dans de nombreux secteurs de l’industrie.
Ces algorithmes génèrent des modèles complexes qui peuvent avoir des conséquences concrètes
sur notre vie quotidienne. Par exemple, les modèles produits par ces algorithmes peuvent influer
sur l’acceptation d’un crédit immobilier ou sur un tarif d’assurance. Il est donc essentiel que nous
puissions comprendre la chaîne de décisions logiques de ces modèles ou du moins avoir des éléments
pour les interpréter. En particulier, pour l’actuaire, expliquer ces modèles complexes permet de
découvrir de nouvelles connaissances scientifiques. Cela permet aussi d’expliquer à un public non-
expert les décisions d’un modèle sophistiqué. Ainsi, dans cette thèse, nous examinons plusieurs
méthodes qui fournissent des explications de modèles pour des publics cibles expérimentés ou non.
Nous montrons à travers trois problématiques indépendantes l’intérêt des méthodes d’explicabilité
pour l’apprentissage statistique en science actuarielle.

Nous commençons ce manuscrit par un chapitre introductif. Bien que le thème de l’interprétabilité
des modèles statistiques ait fortement stimulé la recherche ces dernières années, ce sujet reste pour le
moment assez peu développé par la communauté actuarielle. Ainsi, nous proposons une brève revue
historique permettant de retracer les étapes importantes qui structurent aujourd’hui la recherche
sur ce point. Nous mettons de cette manière en évidence que les différentes communautés qui ont
contribué à l’apprentissage statistique ont des besoins propres en matière d’interprétabilité. Par
exemple, pour un modèle de vision assistée par ordinateur, il n’est souvent pas possible d’expliquer
simplement la chaîne de décisions qui entraîne une prédiction pour une image donnée. Par con-
séquent, les experts du domaine proposent des explications sous la forme d’images où les zones
responsables d’une prédiction sont colorées, ou encore en affichant les filtres ajustés pour le modèle.
Avec ces mécanismes, pour chaque image une explication est générée. L’explication n’est donc
valable que pour cette image, ce qui ne permet pas d’avoir une vision globale du modèle. Ce type
d’explication ne peut dès lors pas convenir à toutes les communautés. En particulier, les actuaires
emploient rarement ce genre de méthodes. Ces statisticiens, experts du risque, préféreront souvent
un modèle interprétable par nature. Un modèle interprétable par nature est, par exemple, un
modèle linéaire généralisé ou un arbre de régression. Dans le cas où le modèle utilisé n’est pas
interprétable par nature, comme pour un ensemble d’arbres, il est courant d’utiliser des graphiques
présentant l’importance des variables ou d’autres quantités d’intérêt. Nous montrons ainsi qu’il
n’y a pas de consensus et que la notion d’interprétabilité rassemble de nombreuses approches et
méthodes. Néanmoins, il est possible d’harmoniser les travaux des différentes communautés en
établissant une taxonomie des méthodes pour expliquer des modèles complexes, nommés boîtes
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noires. Parmi les classifications proposées, nous en retenons une qui est composée de quatre groupes
de méthodes et qui tient compte du type d’explication proposé par une méthode d’explicabilité
donnée. Conséquemment, elle tient compte de l’audience cible de l’explication. Pour chaque classe
de méthode d’explicabilité, nous décrivons le public visé par l’explication fournie, et les limites de ces
méthodes. Nous terminons ce chapitre en montrant qu’il est très difficile de quantifier une notion
que l’on peine à définir comme l’interprétabilité. Bien qu’il n’y ait actuellement pas de consensus
sur la manière de mesurer l’interprétabilité d’un modèle par rapport à un autre, il est tout de même
possible d’évaluer la fidélité et la stabilité de l’explication par rapport au modèle à expliquer.

Les deux chapitres suivants se concentrent sur deux méthodes qui extraient une explication depuis
un ensemble d’arbres appelé boîte noire. Dans les deux cas, cette explication prend la forme d’un
arbre de régression qui reproduit fidèlement les prédictions de l’ensemble d’arbres tout en étant plus
simple. Ainsi, nous conservons la performance prédictive du modèle boîte noire, mais nous pouvons
expliquer ses prédictions grâce à notre arbre de régression. Nous illustrons ces techniques sur deux
problématiques différentes.

Dans le chapitre 2, nous construisons un modèle de fréquence sinistre avec un Poisson random forest.
C’est une approche data-driven que nous implémentons sur des données télématiques. C’est ce
modèle de fréquence sinistre qui est notre boîte noire et dont nous voulons extraire une explication.
Or, un ensemble d’arbres crée une partition de l’espace des covariables en rectangles de dimension
d, où d est la dimension de l’espace des variables explicatives. Pour chacun de ces rectangles, une
unique valeur est prédite. Par conséquent, une approche assez intuitive consiste à agréger ces trop
nombreux rectangles pour en fournir un ensemble parcimonieux. Cet ensemble de rectangles devient
alors un modèle de substitution permettant d’expliquer la boîte noire. Pour effectuer cette agrégation,
il existe une méthode nommée DefragTrees. Cette méthode consiste à exprimer la distribution de
couples (rectangle, prédiction) en fonction de paramètres à estimer. Grâce à cela, il est possible
de formuler le problème d’agrégation comme un problème de maximisation de la vraisemblance
dont nous pouvons obtenir une solution numérique avec l’algorithme espérance-maximisation. Une
fois les paramètres optimaux obtenus, nous avons à disposition un ensemble de rectangles et
donc de règles qui expliquent la boîte noire. Toutefois, si aucune contrainte supplémentaire n’est
imposée, un individu peut être caractérisé par deux règles différentes, car deux règles peuvent
se chevaucher. L’explication est dans ce cas plus compliquée à comprendre. C’est pourquoi nous
modifions cette méthode pour qu’elle produise un arbre de régression plutôt que des règles. Cela
facilite l’interprétation. Grâce au modèle de substitution que nous extrayons, nous pouvons ensuite
expliquer les prédictions du modèle de fréquence sinistre en fonction des variables télématiques. De
cette manière, nous pouvons découvrir de nouvelles relations intéressantes du point de vue actuariel.
Dans notre étude de cas, nous mettons en évidence que les jeunes assurés qui ne conduisent pas
régulièrement dans l’année ont une fréquence sinistre significativement plus élevée que les autres.

Dans le chapitre 3, nous voulons estimer l’indice de queue qui mesure l’importance d’un évènement
extrême. Pour cela, nous supposons que ce paramètre prend un nombre fini de valeurs sur une
partition de l’espace des variables explicatives. Nous proposons une stratégie en deux étapes. La
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première étape consiste à ajuster un modèle gamma gradient boosting, notre boîte noire, pour
obtenir une estimation de l’indice de queue en fonction des variables explicatives. Puis, nous
agrégeons les nombreux rectangles générés en utilisant une méthode de classification ascendante
hiérarchique avec une contrainte spatiale. La contrainte spatiale permet de tenir compte de la
proximité entre les rectangles dans l’espace des covariables. Ainsi, nous obtenons notre partition
de l’espace en un nombre fini d’indices de queues en fonction des variables explicatives. Toutefois,
ce modèle n’est pas interprétable puisque la forme des régions créées par l’agrégation est trop
complexe pour être compréhensible par un humain. Notre seconde étape consiste donc à extraire
un modèle de substitution pour interpréter les prédictions de la boîte noire. Nous adoptons une
stratégie similaire à celle du chapitre précédent c’est-à-dire que nous voulons agréger des rectangles
contigus pour en former de plus larges. Pour ce faire, nous créons une méthode originale qui
permet de produire une suite d’arbres de régression emboîtés qu’il suffit d’élaguer pour obtenir un
modèle de substitution et donc une explication de la profondeur souhaitée. Nous commençons
par déterminer la partition générée par le croisement de tous les arbres de l’ensemble. Puisque
nous pouvons connaître la prédiction de la boîte noire pour chacun de ces rectangles, nous avons
une connaissance complète des prédictions de la boîte noire sur tout l’espace des covariables. Pour
agréger ces rectangles, nous modifions un algorithme d’apprentissage d’arbre de régression en
restreignant ses seuils de coupe possibles à ceux déjà effectués par l’ensemble d’arbres. En entrées
de ce nouvel algorithme, nous fournissons un point par rectangle de la partition et la prédiction
de la boîte noire associée. De cette manière, l’algorithme génère une suite d’arbres de plus en plus
profonds jusqu’à atteindre l’arbre maximal. Cet arbre réplique parfaitement la partition initiale,
mais est trop profond. Il suffit de l’élaguer pour trouver un meilleur compromis entre la fidélité par
rapport à la boîte noire et la profondeur de l’arbre qui est notre modèle de substitution. Grâce à
cette méthode, nous expliquons les prédictions du gamma gradient boosting ajusté sur un jeu de
données qui contient les coûts estimés des ouragans aux États-Unis depuis les années 50. Cela nous
permet de comprendre les caractéristiques qui génèrent un indice de queue faible ou élevé et donc
de comprendre les caractéristiques d’ouragans qui génèrent des sinistres plus ou moins graves. Dans
ce cas particulièrement simple, l’explication est en ligne avec l’intuition. Cela confirme l’intérêt de
l’approche pour extraire efficacement des connaissances depuis ces données.

Notre dernier chapitre se distingue des deux précédents puisque nous nous intéressons cette fois-ci à
un type de modèle différent et donc à une représentation interne différente. En effet, nous étudions
ici des modèles paramétriques d’apprentissage statistique, dont les paramètres sont fixés a priori
puis sont estimés par la suite. Parmi ces modèles, nous trouvons les modèles linéaires généralisés,
et les réseaux de neurones. Ici, nous considérons que notre boîte noire est un réseau de neurones.
Contrairement aux deux premiers chapitres, nous n’avons plus accès à une représentation interne qui
maille l’espace des variables explicatives et que nous pouvons exploiter pour donner une explication
globale des prédictions de la boîte noire. Dès lors, expliquer devient plus compliqué. C’est pourquoi
nous changeons d’objectif par rapport aux deux chapitres précédents et ne cherchons que des
explications valables au voisinage d’une prédiction à expliquer. Nous nous plaçons dans un cadre de
classification binaire et proposons une méthode pour expliquer une prédiction pour une observation
donnée de l’espace. La stratégie que nous suggérons ici est d’identifier des points influents pour une
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prédiction. Ces points, peu nombreux, permettent de localiser la frontière de décision au voisinage
de la prédiction à expliquer. Ensuite, nous développons un algorithme qui permet de construire un
hyperplan tangent à la frontière de décision au voisinage de la prédiction à expliquer. Cet hyperplan
est un modèle de substitution local qui permet d’expliquer une prédiction à la fois. Nous présentons
donc des explications sous la forme de modèles linéaires. Nous perdons ainsi la vision globale du
modèle, mais nous pouvons toutefois employer cette approche pour comprendre des phénomènes sur
une sous-partie de l’espace. Nous illustrons cette stratégie avec des données d’assurance automobile.
Nous créons un problème de prévention dans lequel notre objectif est de trouver les profils les plus
susceptibles de faire une déclaration de sinistre à horizon 1 an. En appliquant notre méthodologie,
nous sommes capables d’extraire des explications fidèles aux voisinages des prédictions que nous
voulons expliquer. Toutefois, dans ce cadre, nous ne pouvons pas extraire de nouvelles connaissances
scientifiques puisque nous n’avons plus de vision globale.

Mots-clés : Apprentissage statistique; Apprentissage statistique intelligible; Explicabilité; Modélisa-
tion de la fréquence sinistre; Indice de queue

Abstract

Machine learning methods have become established in many industry sectors. The related algorithms
generate complex models that can have concrete consequences on our daily lives. For example,
models produced by these algorithms can influence the acceptance of a loan or an insurance premium.
Therefore, it is essential that we can understand the logical decision chain of such a model or at least
have ways of interpreting it. In particular, for actuaries, explaining the relevant complex models can
lead to discoveries of new scientific knowledge. Interpretability also makes it possible to explain the
decisions of a sophisticated model to a non-expert audience. Thus, in this thesis we examine several
methods that provide model explanations for both experienced and non-expert target audiences.
We also illustrate, considering three independent aspects, the appeal of explainability methods for
machine learning in actuarial science.

We begin this manuscript with an introductory chapter. Although there has been a strong stimulus to
research the topic of machine learning model interpretability in recent years, this subject remains
relatively undeveloped by the actuarial community at the moment. Thus, we perform a brief
historical review to trace the important steps that structure research on this topic today. In doing
so, we highlight that the different communities that have contributed to machine learning have
their own needs in terms of interpretability. For example, for a computer vision model, it is often
impossible to simply explain the decision chain that leads to a prediction for a given image. Therefore,
experts in the field offer explanations that are images where the areas responsible for a prediction
are colored, or display the filters fitted for the model. With these mechanisms, an explanation is
generated for each image. The explanation is therefore only valid for that image, which prevents
having a global vision of the model. Hence, this type of explanation cannot be appropriate for all
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communities. In particular, actuaries rarely use such methods. As statisticians and experts of risk
assessment, they often prefer inherently interpretable models. An inherently interpretable model is,
for example, a generalized linear model or a regression tree. In cases where the model used is not
inherently interpretable, such as a set of trees, it is common to use graphs showing the variables’
importance or other quantities of interest. We thus show that there is no consensus and that the
notion of interpretability brings together many approaches and methods. Nevertheless, it is possible
to harmonize the approaches of different communities by establishing a taxonomy of methods used
to explain complex models referred to as black-boxes. Among the proposed classifications, we retain
that composed of four groups of methods. This taxonomy takes into account the type of explanation
proposed by a given explainability method. Consequently, it considers the target audience of the
explanation. For each class of explanation methods, we describe the audience for the explanation
provided, and the limitations of the respective methods. We conclude this chapter by showing that it
is very difficult to quantify the notion of interpretability because it is difficult to define. Although
there is currently no consensus on how to measure the interpretability of one model compared to
another, it is still possible to assess the fidelity and stability of the explanation for a model to be
explained.

The next two chapters focus on two methods that extract an explanation from a tree ensemble.
Such a set of trees is referred to as a black-box. In both cases, this explanation takes the form of a
regression tree that faithfully reproduces the predictions of the tree ensemble while being simpler.
Thus, we preserve the predictive performance of the black-box model while being able to explain its
predictions using our regression tree. We illustrate these techniques on two different use cases.

In chapter 2, we construct a claim frequency model with a Poisson random forest. It is a data-driven
approach that we implement on telematic data. The claim frequency model is our black-box, and we
want to extract an explanation from it. A tree ensemble creates a partition of the covariate space
into rectangles of dimension d, which is also the dimension of the explanatory variables’ space. For
each of such rectangles, a unique value is predicted. Therefore, an intuitive approach is to aggregate
such numerous rectangles to provide a parsimonious set. This set of rectangles then becomes a
surrogate model used to explain the black-box. To perform this aggregation, a method named
DefragTrees can be used. It consists of expressing the distribution of pairs (rectangle, prediction)
as a function of parameters to be estimated. As a result, it is possible to formulate the aggregation
problem as a maximum likelihood problem from which we can obtain a numerical solution with the
expectation-maximization algorithm. Once the optimal parameters have been obtained, we have
at our disposal a set of rectangles and therefore rules that explain the black-box. However, if no
additional constraint is imposed, an individual can be characterized by two different rules because
two rules may overlap. The explanation in this case is more complicated to understand. This is
why we modify this method so that it produces a regression tree rather than rules, which eases
the interpretation. Using the substitution model we extract, we can then explain the predictions of
the claim frequency model as a function of telematic variables. In this way, we can discover new
actuarially interesting relationships. In our case study, we show that young policyholders who do not
drive regularly during the year have a significantly higher claim frequency than do others.
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In chapter 3, we want to estimate the tail index that measures the importance of an extreme event. To
do so, we assume that this parameter takes a finite number of values on a partition of the explanatory
variables’ space. To perform estimation under this assumption, we propose a two-step strategy. The
first step consists of fitting a gamma gradient-boosting model, our black-box, to obtain an estimate of
the tail index as a function of explanatory variables. Then, we aggregate the numerous rectangles
using an ascending hierarchical classification method with a spatial constraint. The latter allows us
to take into account the proximity between the rectangles in the covariates’ space. Thus, we obtain
our partition of the space into a finite number of tail indexes as a function of explanatory variables.
However, this model is not interpretable since the shape of regions created by the aggregation is
too complex to be understood by a human. Therefore, our second step is to extract a surrogate
model to interpret the variations of the black-box. We adopt a strategy similar to that of the previous
chapter; i.e., we want to aggregate contiguous rectangles to form larger ones. To this end, we create
an original method that produces a sequence of nested regression trees. To obtain a surrogate model
and thus an explanation of the desired depth, the sequence of trees simply needs to be pruned.
We start by determining the partition generated by crossing all the trees in the set. Since we can
determine the black-box prediction for each of these rectangles, we have a complete knowledge of
black-box predictions over the entire covariates’ space. To aggregate these rectangles, we modify a
regression tree learning algorithm by restricting its possible split points to those already made by the
tree ensemble. We provide as inputs to this new algorithm one point per rectangle of the partition
and the prediction of the associated black-box. As a result, the algorithm generates a sequence of
trees that becomes increasingly deeper until the maximum tree depth is reached. This tree perfectly
replicates the initial partition but is too deep. We merely have to prune it to attain a better trade-off
between the fidelity with respect to the black-box and the depth of our surrogate model. Using this
method, we explain the predictions of the gamma gradient boosting model fit on a dataset that
contains the estimated costs of hurricanes in the United States over the last 50 years. This allows us to
comprehend the characteristics that generate a high or low tail index. Thus, we can understand the
characteristics of hurricanes that generate more or less severe claims. In this particularly simple case,
the explanation is consistent with intuition. This confirms the appeal of the approach to effectively
extracting knowledge from such data.

Our last chapter differs from the two previous chapters because in it we are interested in a different
type of model and therefore a different internal representation. Indeed, we study parametric machine
learning models with parameters that are set a priori and then estimated afterwards. Among these
models, we find generalized linear models and neural networks. Here, we presume that our black-box
is a neural network. Contrary to the first two chapters, we no longer have access to an internal
representation that meshes the space of explanatory variables. Hence, we cannot exploit the internal
representation to provide a global explanation of the black-box predictions. Consequently, explaining
becomes more complicated. This is why we change our objective compared to the two previous
chapters and only look for explanations that are valid close to a prediction to be explained. We
study a binary classification framework and propose a method to explain a prediction for a given
observation of the space. The strategy we suggest here is to identify influential points for a prediction.
These points, which are few in number, make it possible to locate the decision boundary near the
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prediction to be explained. Then, we develop an algorithm that allows us to construct a hyperplane
tangent to the decision boundary in the vicinity of the prediction to be explained. This hyperplane
is a local surrogate model that allows explaining one prediction at a time. Therefore, we present
explanations in the form of linear models. Thus, we lose the global vision of the model but can,
however, use this approach to understand phenomena on a subset of the space. We illustrate this
strategy with car insurance data. We create a prevention problem in which our objective is to find the
profiles most likely to file a claim within 1 year. By applying our methodology, we are able to extract
locally faithful explanations for the predictions we want to explain. However, within this framework,
we cannot extract new scientific knowledge since we no longer have a global vision.

Keywords : Machine Learning; Interpretable Machine Learning; Explainability; Claim Frequency
Modeling; Tail-Index
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1Introduction

„There is no true interpretation of anything; interpretation
is a vehicle in the service of human comprehension. The
value of interpretation is in enabling others to fruitfully
think about an idea.

— Andreas Buja

1.1 Historical context

What we call machine learning today includes, among other things, computer science and statistics.
Thus, several communities of researchers have helped develop models that learn from data. According
to Breiman (2001b), each of these communities is trying to model a complex phenomenon with a
different strategy. Statisticians often use data models, i.e., parametric equations to fit a model to
the data. In contrast, computer scientists do not make assumptions about the underlying process
generating the data. To be concise, these two cultures have divergent goals; statisticians want
to extract information from their models, while computer scientists are driven by performance of
prediction. Therefore, the simplest models, such as linear models or trees, have been preferred in the
statistical community. This is still so in, for example, the actuarial science.

However, recent successes of more sophisticated methods are of interest to statisticians and actuaries.
We offer a brief history of methods developed by various communities. We will observe that
interpretability is intrinsically linked to the development of machine learning models. The early
methods of explainability appeared a few years after the first opaque models, which outperformed
the interpretable models of the time. Moreover, this historical review shows that the adoption of
machine learning in actuarial sciences has been slower than in other fields. This was partly due to
the lack of interpretability. Several approaches attempting to integrate machine learning models into
actuarial topics have been developed in recent years. However, as we shall observe, interpretability
issues remain relatively little addressed.

In this introduction and in the manuscript, we limit our study to generalized linear models, tree
ensemble models and neural networks produced by supervised learning algorithms. These models
are the most commonly used by the machine learning community and by actuaries. In this part
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dedicated to the historical context, we systematically present a brief history of each method. Then,
we show how the methods are used in an actuarial framework.

Through this short historical overview, we aim to provide the reader an insight into interpretable
machine learning and various approaches that have been developed through years. Considering the
very large number of articles and the multiplicity of strategies, this overview cannot be exhaustive.

Parametric methods

Let us begin with parametric models such as linear models, neural networks and support vector
machines. The first statistical learning method was described by Gauss and Legendre in the early
19th century for astronomy applications. The scholars’ work on the least squares method has
been seminal in the theory of linear models. Thereafter, the development of linear models has
spanned nearly 200 years. Among the proposed adaptations of the linear model are the logit model
introduced by Berkson (1944) in biostatistics, the probit model presented by Bliss (1934) and the
ridge regression, a penalized regression proposed by Hoerl and Kennard (1970). Later, J. A. Nelder
and Wedderburn (1972) unified these approaches, introducing generalized linear models (GLM) to
have a common framework and a similar learning method for all types of linear models. The above
study drew much interest from the statistical community. Then, McCullagh and J. Nelder (1989)
synthesized research related to generalized linear models in their influential book. Afterwards,
research on generalized linear models continued with attempts to find ways to improve performance
without losing intelligibility. To keep these models simple and transparent, penalized regression
methods such as LASSO proposed by R. Tibshirani (1996) were developed. As to performance, the
structure of linear models is often too simple to capture nonlinear relationships with the target.
Hence, Hastie and R. J. Tibshirani (1990) proposed generalized additive models to further extend
generalized linear models. In this framework, a linear dependence in predictors is replaced by a
linear dependence in unknown smooth functions of predictors. In some cases, this greatly improves
predictive power without sacrificing intelligibility.

Generalized linear models have gradually matured and now have solid theoretical foundations.
Their applied uses have expanded from the mid-1990s, particularly in regard to insurance, with
the influential studies of Brockman and Wright (1992), Daykin et al. (1994) and Haberman and
Renshaw (1996) and the deregulation of car insurance pricing. A comprehensive overview can be
obtained from Ohlsson and Johansson (2010), Wuthrich and Buser (2017) and Denuit et al. (2019).
Today, generalized linear models and generalized additive models still have a definitive presence in
insurance companies due to their ease of implementation and their interpretability.

In contrast to linear models that have quickly become established in the scientific community, neural
networks have experienced a more chaotic development. A timeline is proposed in Fig. 1.1. The
current formalization of such networks is a result of numerous trials and failures. The first machine
learning methods were developed in the early 1940s. McCulloch and Pitts (1944) created an original
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Fig. 1.1: Important milestones of neural networks’ development.

3



mathematical model inspired by biological neurons and conceived an artificial neuron. Following
this study, many researchers suggested topologies for artificial neural networks and methods to
train these models. Nearly a decade later, Rosenblatt (1958) set a milestone with a single-layer
perceptron. Due to the perceptron’s ability to recognize simple patterns, it caught the interest of the
computer science community. The cited study stimulated research around the early forms of neural
networks for a while. Afterwards, the book by Minsky and Papert (1969) pointed out the impossibility
for a single-layer neural network such as the perceptron to separate nonlinearly separable classes.
Indeed, the researchers showed the necessity to add a hidden layer to solve, for example, the XOR
(exclusive or) problem. Nevertheless, at that time no algorithm could train such a model. This
led to a period of a declining interest in neural networks. That gloomy period ended in 1982 with
the self-organizing map introduced by Kohonen (1982) and Hopfield (1982) with a formulation
of a recurrent network based on energy functions. Nevertheless, the interest in neural networks
only returned fully with the study by Rumelhart et al. (1988). This influential article proposed the
backpropagation algorithm for training multilayer neural networks. Hence, that algorithm provided a
generic method of training many architectures of neural networks and solved the problem highlighted
by Minsky and Papert (1969). Unfortunately for interpretability, adding a hidden layer makes a neural
network difficult or impossible to interpret in most cases. In fact, the weights of the hidden layer
have no meaning by themselves in contrast to generalized linear models where weights correspond
directly to a variable.

This was a beginning of success for neural networks since shortly afterwards, LeCun et al. (1989)
and Lecun et al. (1998) proved that neural networks could perform well on images and real-world
data. Neural networks have also been shown to be efficient on textual data after the introduction
of long-short-term memory (LSTM) cells by Hochreiter and Schmidhuber (1997). In 2012, neural
networks powered by a growing computing capacity have made it possible to achieve considerable
performance gains on image classification tasks (Krizhevsky et al. (2017)) and optical character
recognition (Graves (2012)). Since then, performance of these neural networks has increased to
approach the human performance on simple classification tasks. The synergy between research
and industry has recently helped generalize the use of neural networks for tasks such as character
recognition for postal sorting, image classification, and automatic text translation.

In the actuarial literature, neural networks have been used for pricing in the tutorial by Noll
et al. (2018) focusing on French automobile third-party liability data, to extract covariates from
telematic data in M. V. Wüthrich (2017), Gao and M. V. Wüthrich (2018) and Gao, Meng, et al. (2018)
and to classify drivers based on telematic data with a convolutional neural network in Gao and
M. Wüthrich (2019). These papers illustrate a diversity of neural networks’ architectures, considering
feed-forward networks, auto-encoders and convolutional neural networks. The promising results of
these techniques show that there is room for these methods in actuarial science.
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Nonparametric methods

We now present a short history of nonparametric methods such as tree-based methods developed
from the mid-1980s onwards. A timeline is proposed in Fig. 1.2. In his well-known book Breiman,
Friedman, et al. (1984), Leo Breiman proposed an original method called classification and regression
trees (CART). This is currently the most widely used form of tree in machine learning. Furthermore,
it is the weak learner of many tree-ensemble methods. Other kinds of trees have been suggested,
such as C4.5 trees by Quinlan (1992), but did not achieve the same popularity. CART stimulated the
research community, and such trees were also implemented in a concrete use case by Breiman himself
as a consultant. However, despite the popularity of this method, researchers identified numerous
drawbacks, including its low precision and lack of robustness. Indeed, if the learning sample is
slightly modified, the built tree can be significantly different according to Breiman (1996). These
problems have since been studied, and a significant number of solutions have been proposed. This is
the starting point of interpretability problems for tree-based models.

Quickly thereafter, the idea of combining several trees appeared. Nevertheless, the formulation of tree
aggregation as we know it today came few years later with the articles of Robert E. Schapire (1990), Y.
Freund (1995) and Yoav Freund and Robert E Schapire (1997) laying the foundations of boosting, and
Breiman (1996) suggesting the basics of bagging (bootstrap aggregating). These tree-based ensemble
methods produced promising results but the gain in performance and robustness came at the price
of models’ understandability. Hence, solving one problem raised another: the intelligibility of these
models. While a (shallow) tree is intelligible and its output understandable, a tree aggregation is
extremely complex to grasp for a human. Later, Breiman (2001a) and Friedman (2001) concurrently
presented methods known as random forest and gradient boosting. Even though the learning
algorithms were different, in Quinlan et al. (1996) and Breiman (2001a) a connection between these
two methods is highlighted. Few years later, extremely randomized trees was presented in Geurts
et al. (2006) and Bayesian additive regression trees were described in Chipman et al. (2010). The first
method tried to improve the predictive accuracy of the "sum of trees" models generating trees with
little correlation between them, while the second constrained trees of the ensemble with Bayesian
methods. Recently, Chen and Guestrin (2016) and Ke et al. (2017) proposed fast implementations
of gradient boosting. Hence, research on tree ensembles seemed to focus more on the accuracy
and scalability of models and less on their intelligibility. Several authors indeed mentioned the
intelligibility problem, but few suggested methods to increase intelligibility of models.

In actuarial science, several studies have tried an approach relying on tree-based methods to model
claim frequency or severity. Among them, Henckaerts, Coté, et al. (2020) model claim frequency
and severity with tree-based methods and try to obtain an insight from the related models, and Noll
et al. (2018) propose a tutorial with a comparative approach to different machine learning methods.
As established in Wuthrich and Buser (2017) and Henckaerts, Coté, et al. (2020), the classical L2 loss
is not well suited for insurance data since such data features an excess of zeros for claim frequency
and a long tail for claim severity. Thus, the authors propose changing the splitting criterion of base
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learners to a deviance-based splitting criterion. An overview of these approaches is available in
Wuthrich and Buser (2017) and Denuit et al. (2020).

Explainability methods

If we ignore models that are inherently interpretable, early studies of interpretability of machine
learning models appeared shortly after the emergence of neural networks. Indeed, after Rumelhart
et al. (1985) and LeCun et al. (1989), the first concrete use cases of neural networks were developed.
This empirical confirmation of neural networks’ performance raised concerns about their use in
industry, and the lack of interpretability was pointed out. Indeed, in contrast to symbolic AI, neural
networks do not have a simple structure that would allow translating their internal logic into an
explanation. Consequently, the early 1990s witnessed the progression of the first methods for
interpreting machine learning models such as neural networks.

In a survey, Andrews et al. (1995) reported a significant diversity of methods and strategies. However,
the majority of methods tried to translate a neural network into a sparse set of simple rules. This was
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probably the legacy of symbolic AI. In addition, the researchers suggested the first taxonomy of these
approaches. The paper distinguished between decompositional and pedagogical approaches. The
former rely on characteristics such as the architecture of the neural network model to be explained.
In contrast, pedagogical methods rely not on specific characteristics but only on inputs and outputs
generated by the black-box model to be explained. This terminology can still be used today. However,
it seems that the terms model-agnostic (rather than pedagogical) and model-specific (instead of
decompositional) are currently preferred. Among the studies of the time, a basic and important
idea emerged for model-agnostic methods: the validity domain of a black-box model is the entire
covariates’ space.

Thus, it is possible to query the model anywhere in space and as many times as desired. This is
a considerable asset since any amount of data can be generated as needed. That is the reason a
black-box model is sometimes called an oracle. Mark W. Craven and Jude W. Shavlik (1994) and
Mark W Craven and Jude W Shavlik (1996) developed this notion, extracting, respectively, the rules
and a tree representative of the underlying black-box model. In interpretable machine learning, the
model mimicking the predictions of the black-box is called a surrogate. Since this approximation is
made on the whole space, the surrogate is global. Soon after tree-based ensemble methods were
introduced, the same interpretability problem arose with respect to them as in the case of neural
networks. Shortly thereafter, Breiman and Shang (1996) used the idea of Craven and Shavlik to
extract a tree surrogate from tree ensemble models.

A few years later, tree-based ensemble methods were mature. To extract information from such
complex models, Breiman (2001a) and Friedman (2001) proposed, respectively, the variable impor-
tance and the partial dependence plots. These two methods, which are now widely used, have been
studied and criticized; relevant studies include those by Molnar (2020), Strobl, Boulesteix, Zeileis,
et al. (2007) and Hooker and Mentch (2019). Other methods have also been developed: for example,
by Apley and Zhu (2020). Noting that tree-based ensemble models were often very efficient on
tabular data, several authors recommended methods that built an intrinsically interpretable model
based on a tree-based ensemble model. This was the case for a rule ensemble proposed by Friedman
and Popescu (2008) and the node harvest by Meinshausen (2010). The latter used d-dimensional
rectangles generated by a set of trees to create a parsimonious set of rules. The objectives of the
two methods were similar; however, the approaches differed. Meinshausen (2010) formulated a
quadratic optimization problem, while Friedman and Popescu (2008) used penalized regressions.
Other methods have also been proposed, such as evtree developed by Grubinger et al. (2014) that
learns a tree model with an evolutionary algorithm and SLIM by Ustun and Rudin (2015) who
formulate a mixed-integer programming problem, learning a tree representation. Nevertheless, these
methods significantly increase the computational time.

Although researchers have been interested in interpretability since the early 1990s, few studies
have suggested a rigorous framework for it. Thus, each community proposed its own approach.
Since the beginning of the study of interpretability, relatively little attention has been paid to the
target audience or the objective of an interpretability method: debugging, trust, knowledge, etc.
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Consequently, the majority of the tested procedures consisted of models that were interpretable by
design or methods for extracting models that were inherently interpretable. This was in fact the
most natural way to proceed. After 2015, with the growing interest in interpretability methods, more
emphasis was placed on techniques that had been underexploited until then. This was so for local
methods that explain only one prediction at a time, and thus an explanation is only valid in the
vicinity of the prediction to be explained. For this, a local surrogate is fitted near the instance of
interest. One of the influential articles on the subject introduced the locally interpretable model
explanation (LIME) method by M. Ribeiro et al. (2016). This, however, was not the first study of local
explanation since Strumbelj and Kononenko (2010) suggested a technique based on game theory.
Later, the SHapley Additive exPlanations (SHAP) method introduced by Lundberg and Lee (2017)
unified the cited studies. These methods can perform a fit to any black-box model, and therefore are
model-agnostic.

Currently, studies are trying to establish the structure of interpretable machine learning. Thus, several
articles describe the desirable properties of a transparent model. The article by Lipton (2018) has
been one of the most influential for this task. Over the preceding decade, the strong growth in
the number of studies has led to a step toward the development of a more rigorous framework for
interpretability Doshi-Velez and B. Kim (2017). The field is maturing but it is not yet fully developed.
Although there is no consensus on the definition of interpretability and how to measure it, we can
now characterize and classify techniques with the help of the numerous literature reviews, including
those by Guidotti et al. (2019), Burkart and Huber (2021), Carvalho et al. (2019) and Molnar
et al. (2020). By now, many methods have been produced. Example surveys include those by Guidotti
et al. (2019), Adadi and Berrada (2018) and Arrieta et al. (2020). However, no method seems to
have become a dominant one for everyone, and presently studies must be done to ensure the fidelity
of the explanations provided, and their quality and usefulness.

In actuarial science, research on interpretability has been rare and very recent. Until now, the
approaches of inherently interpretable models such as GLM and GAM were privileged. However, we
note that Henckaerts, Coté, et al. (2020) and Henckaerts, Antonio, et al. (2020) tried to open the
black-box and integrate their insights into generalized linear models. A tutorial that applies various
techniques described by Molnar (2020) was developed by Lorentzen and Mayer (2020). So far, only
already existing techniques such as variable importance, partial dependence plots, LIME and SHAP
have been illustrated in these articles, and the limits of these methods in terms of intelligibility and
the risk of misleading the end user remain underexplored.

Thus, history shows that the earliest statistical learning models are inherently interpretable. Indeed,
statisticians have been using them for a long time and have contributed to building a solid theoretical
foundation. However, these methods are unsuitable for modeling some complex and highly nonlinear
phenomena. This is why various research communities introduced other methods such as tree-based
methods or neural networks. These methods often showed significant gains compared to linear
models; nonetheless, this improvement in performance came at the expense of interpretability. Hence,
part of the scientific community has been trying to create models that are interpretable by design and

9



that perform as their black-box equivalents when possible. When the task is too difficult, interpretable
elements are provided, but the model is no longer transparent. Hence, we observe a diversity of
approaches to making models interpretable. This diversity makes the notion of interpretability
difficult to define as we will in Sect.1.4.

Complex models empirically provide an upper bound on the performance that any model can
achieve. Thus, the objective of research on interpretability is to reach performance comparable to
that of black-box models while remaining understandable. For a long time, inherently interpretable
models remained the standard. Consequently, most approaches consisted of developing a model
that was interpretable by nature or extracting one from a black-box. Although these techniques
are reasonable, it is not always possible to extract a simple global surrogate from a sophisticated
model. Hence, the increasing complexity of neural network architectures has popularized other
methods for interpretability, including local methods. Since 2015, studies of interpretability have
been growing rapidly and have implemented previously underexploited methods. This profusion of
ideas and techniques needs a structure to move forward. This is the current challenge of this recent
discipline.

Terminology

As we have just observed, researchers in interpretable machine learning have developed a specific
vocabulary since the creation of the first methods. The terms of this vocabulary are useful for
characterizing and classifying explainability methods. In the literature, there is a consensus on the
main terms to be used to describe these methods. We define these terms below.

post hoc: Interpretability is developed after the training of a black-box model. This means that the
latter has been learned, and we want to extract information from it. For example, if we fit a random
forest model and apply a method to extract the importance of variables to the model, such a method
is post hoc.

ante-hoc: Interpretability is built-in from the beginning of model creation. In contrast to post hoc
methods, for ante-hoc methods interpretability has been created beforehand. This means that the
learning algorithm has been designed to produce a model that is interpretable by nature. For example,
generalized linear models and decision or regression trees are derived from ante-hoc methods.

model-specific: The explainability method is tied to a specific class of models. For example, a
method that applies only to tree-ensemble models but not to neural networks is a method that is
model-specific.

model-agnostic: In contrast to model-specific methods, model-agnostic methods do not make
assumptions about the model to be explained. Therefore, they can be applied to any machine
learning model.
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local: The explanation only holds for an instance and a close vicinity.

global: The explanation holds over the whole space.

data-dependent: A data-dependent method generates new data to construct an explanation. Since a
black-box model can predict any point in space, many methods randomly generate new observations
that are labeled by the black-box. Using this new learning sample, it is possible to fit an explanatory
model for the black-box.

data-independent: The explainability method works without additional data. Unlike data-dependent
methods, these methods do not generate new data to create an explanation.

surrogate model: This is a model that is a local or global substitute for the black-box. For example, to
globally explain a random forest, we can fit a regression tree that faithfully reproduces the predictions
of the black-box. This regression tree is a surrogate model. It serves as a global explanation for the
complex model.

Some authors suggest other terms such as expressive power, portability, translucency and algorithmic
complexity to describe properties of explainability methods. Carvalho et al. (2019) and Molnar
et al. (2020) provide the relevant overviews. In this thesis, for simplicity, we prefer not to introduce
these terms.

1.2 Motivations for interpretable machine learning

A recurring question when discussing interpretability is as follows: why do we need interpretable
models? Before answering this question and to be fair, let us remark that interpretability is not
systematically required. As pointed out by Doshi-Velez and B. Kim (2017), in at least two situations
interpretability is not needed: when there are no critical consequences of wrong results and when the
problem has been well studied and validated in real-world applications. To illustrate the first case,
we consider an image classifier developed by a programmer for own use. This classifier is supposed
to help sort through vacation photos. If the model is bad and incorrectly classifies images, the
repercussions are not severe. In contrast, an image classifier implemented by Google that confuses a
black person with a gorilla1 can have a significant impact on the company’s reputation and therefore
on its business. Another real-life example of what could go wrong with a complex model involves
Amazon. Indeed, the company’s model trained to help human resources in recruitment discriminated
against women.2. Let us consider, as the last example, an optical character recognition3 model that
extracts ZIP codes and addresses from envelopes. After years of improvement, the technique has
been mastered and validated in real-life conditions. Even if the model is imperfect, it is more efficient

1https://www.theguardian.com/technology/2018/jan/12/google-racism-ban-gorilla-black-people
2https://fortune.com/2018/10/10/amazon-ai-recruitment-bias-women-sexist/
3This example has been suggested by Molnar (2018).
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than a human and makes fewer mistakes. Furthermore, the knowledge we could obtain from this
model is not particularly useful. Therefore, in this case, interpretability is not required.

Questions about interpretability arise from an incompleteness problem, as mentioned by Doshi-Velez
and B. Kim (2017). The reason stems from our inability to encode the entirety of a problem in a
model. For example, ethics and fairness are two notions that are difficult to formalize. Therefore,
introducing them into a model is a complex task. For the moment, the best-performing models
only optimize a metric. However, a single scalar cannot capture all the subtleties of a real-world
problem. Thus, by making the model interpretable, we benefit from a high-performance model while
maintaining control over it, and can therefore make more informed decisions. We detail below the
different motivations for more interpretable models.

Human curiosity

For decades, we have been training models to automate repetitive tasks to achieve near-human
performance. Today’s computer vision and NLP or scoring models are powerful enough to be used in
companies. This explains why they are widespread in our society. Since these models are currently
used in our daily life, they can have an impact on the acceptance of a credit application or on
getting a new job. According to Miller (2019), as human beings, we have the natural need to
understand models or at least to understand model-driven decisions. Authors such as Miller (2019)
and Molnar (2020) agree that we all have a mental model that we update to conform to unexpected
events that occur. For example, when a prospect subscribes to a car insurance policy, the insurer
is, for now, capable of detailing its tariff. However, if the insurer changes to a black-box pricing
model, the explanation becomes much more complicated to provide and probably to understand.
For instance, the prospect might not be able to understand why that prospect’s rate is higher than
that of another person with approximately the same characteristics. Beyond the frustration related
to the lack of a satisfactory answer, the prospect cannot even know how to adapt to lower the cost.
This is also true for binary models, for example, for real estate loan acceptance. An interpretable
model allows one to understand why a loan application is refused and what needs to be changed for
it to be accepted. These motivations concern a non-expert audience, i.e., one with no knowledge of,
for example, machine learning or actuarial science. Other motivations may exist for a more expert
audience. We detail them below.

Scientific findings and knowledge discovery

Facing increasingly complex problems containing thousands of variables, scientists have opened up to
machine learning techniques. Indeed, methods such as random forests, gradient boosting and neural
networks do not require a priori knowledge of the data. Therefore, they are often implemented
in data-driven approaches. Additionally, they are capable of handling large and high-dimensional
datasets. Hence, these are interesting candidates for scientists who deal with challenging data and
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want to provide solutions to difficult problems. Nevertheless, scientific findings remain hidden if the
model is a black-box that only provides predictions without explanations, according to Molnar (2020).
To discover new scientific knowledge from these models, it is then necessary to extract understandable
explanations. Finding a plausible explanation is not a guarantee of a useful discovery. Nevertheless,
as mentioned by Lipton (2018), if we can clearly formulate a hypothesis based on what we learn
from a black-box, we can test that hypothesis to confirm or reject it.

Consider a model that is accurate enough to predict if one will be diagnosed with cancer in the next
decade. Once fitted, the model becomes a source of knowledge. Extracting knowledge from this
black-box and testing hypotheses for causality will help mitigate the risks for a single person and can
be of great value in conducting effective healthcare campaigns. This justifies the need for a simple
and clear model to provide an explanation of a black-box model. In actuarial sciences, interpretable
machine learning applied to original datasets could lead to the identification of new risk factors. For
example, several articles demonstrate the utility of telematic data in car insurance risk evaluation.
Such particularly relevant studies are those by Boucher et al. (2017) and Verbelen et al. (2018) in the
pay-as-you-drive framework and those by M. V. Wüthrich (2017), Gao, Meng, et al. (2018) and Gao
and M. Wüthrich (2019) in the pay-how-you-drive framework. The first two articles implement GLM
and GAM to show that predictive power increases when telematic data is added. These inherently
interpretable models can be used to explain phenomena observed in insurance. A notable example is
the difference in claims frequency between men and women, who have different behavioral patterns
according to Verbelen et al. (2018). However, models such as GLM or GAM require the model to
be stated a priori. As a result, it is difficult to discover new relationships per se. Alternatively, we
can fit the best available model in the first step and can then learn an explainable representation of
that model in the second step. Hence, we could bring together the best of both approaches described
in Breiman (2001b). At the time of writing, few articles in the actuarial sciences have tried this
strategy.

Regulation

The General Data Protection Regulation (GDPR) replaced in April 2018 the Data Protection Directive
of 1995. This update of the regulation was mandatory to allow the laws to reflect the current issues.
Indeed, our personal data are being collected on a very large scale through our connected devices,
and decision-making algorithms are being implemented in an increasing number of business areas.
Hence, we need rules to establish a framework. This regulation poses two problems for the machine
learning community, as Goodman and Flaxman (2017) pointed out. First, the subjects of the data,
i.e., the people to whom the data is related, can ask for an explanation when an algorithm has made
a decision concerning them (pertaining to, for example, credit acceptance or insurance pricing).
Second, data subjects have the right to non-discrimination. Among other things, this means for
the machine learning community that one should be very careful in the choice of predictors and
one should not introduce sensitive predictors such as race, gender or wealth. Additionally, since
predictors may be correlated with each other, removing sensitive variables may not be sufficient.
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While interpretability is not the miracle answer to these two problems, it can clearly contribute to the
solution. Indeed, interpretable machine learning methods can provide explanations for decisions
made by an algorithm. These explanations are often partial, but represent a good starting point
for opening the black-box. Moreover, obtaining explanations about what drives a model to make a
decision makes it easier to identify the important predictors and their relationships in decision-making.
As a result, it becomes easier to detect possible biases and discrimination.

Social acceptance, trust and ethics

In explaining, we naturally favor interactions with humans. Indeed, for decisions that affect us we
prefer explanations and have more confidence in something we understand than in something we do
not. Additionally, we place more trust in explanations that are consistent with our knowledge. These
ideas are reflected in studies by Miller (2019), Martens et al. (2011) and Elomaa (1994). Therefore,
methods that increase our understanding of a model allow us to raise our confidence in such models,
according to M. Ribeiro et al. (2016). Moreover, as we established earlier, the ethical issues raised
by machine learning models are prominent today. Without being the only option to deal with this
problem, interpretability can help highlight discriminatory biases (with respect to gender, race, sexual
orientation, etc.). A clear explanation of what makes the algorithm predict one value instead of
another puts the stress on the variables the black-box relies on. Hence, we can more easily identify a
variable or a combination of variables discriminating against a protected group. For instance, in car
insurance pricing, we can no longer use gender as a variable. Nevertheless, removing the gender
variable from the dataset might not be sufficient since a combination of other variables can act as a
proxy of this variable. Furthermore, identifying such biases is important to avoid training a model
that repeats mistakes made by humans. Let us suppose that our tariff silently discriminates against a
population by assigning that population a rate higher than the market rate. Then, it would seem
reasonable that the portfolio gradually becomes distorted and that such a population will disappear
from the portfolio. In contrast, if a tariff segment is accidentally favored, the portfolio could acquire
bad risks and progressively deteriorate. This is called adverse selection. Notably, discrimination and
ethics are current topics, and the general population is increasingly concerned by these issues. Failure
to take into account such considerations of ethics, social acceptance and trust could lead to a lack of
confidence among policyholders. For an insurance company, this can result in a reputation problem
or significant portfolio distortions.

Safety

Machine learning algorithms are already used in situations where the environment is nonstationary.
Models are also deployed in settings where their use might alter the environment. Due to inter-
pretability, it is also possible to improve the safety of machine learning systems. Indeed, interpretable
machine learning models can be tested, debugged and audited more easily. Caruana et al. (2015)
provide us with an instructive case study, where the authors compare intelligible and non-intelligible
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machine learning models trained to predict the mortality rate of patients suffering from pneumonia.
The objective is to determine whether it is possible to send the least risky patients home and treat
them outside the hospital. This is not a new task, as the authors retroactively review studies per-
formed years earlier based on similar data. These studies highlight, considering an intelligible model,
a counterintuitive pattern in the data: patients with asthma have a lower risk than do those without.
Indeed, for safety reasons, doctors systematically send patients with asthma to intensive care. Thus,
such patients’ mortality rate is low. Nevertheless, if this pattern had not been demonstrated with an
intelligible model and a black-box model had recommended sending asthmatic patients home, the
results would have been catastrophic for the patients. The study by Caruana et al. (2015) highlights
potential new patterns of the same type with GAMs. The appeal of having an intelligible model in this
case is to be able to explain the decision chains of the models and thus to identify dangerous patterns
in the data. Once these patterns have been recognized, it is possible to modify and correct them,
i.e., to perform debugging. This can be accomplished by replacing the variables in the data or by
acting directly on the model. In insurance, risks are related to financial risks incurred by the company.
Thus, a poorly segmented automobile insurance rate can have considerable financial consequences
for the business. As mentioned by Lipton (2018), when a model is deployed in a non-stationary
environment, e.g., to price a car insurance product, it is preferable to understand precisely what the
model does. In fact, if an event occurs and the distribution of claims or policyholders is perturbed, it is
important to know precisely how the model will react to prevent undesirable behavior. Furthermore,
in a concurrent market, the model itself can alter the environment where it is deployed (adverse
selection). This is not the only critical area. Indeed, reserving is another field with high stakes. It
seems natural in these domains to have a model with understandable decisions. A sample relevant
study is that by Andrews et al. (1995). Rudin (2019) goes further by stating that it is preferable to
use only intrinsically interpretable models in high-stake domains.

1.3 Stakeholders in the insurance industry

In the motivations we have just provided, several target audiences for explanations appeared. Now, in
a simplified insurance framework, we explicitly define the stakeholders of a machine learning system.
As we have observed, motivations for interpretable models can vary according to the target audience.
In the remaining part of this introduction, we develop an example of claim frequency modeling for
car insurance. This example is interesting because it details the complete chain of stakeholders from
the early stages of modeling to deployment. We can identify at least three main stakeholders: the
actuary, the machine learning expert and the policyholder.

Actuaries are domain experts. They have a thorough knowledge of risks and statistical models.
However, they are not necessarily familiar with sophisticated machine learning models. Their
objective is to fit the best model consistent with their risk assessment. To do so, they may use data
and their experience. Actuaries are responsible for the pricing model. Therefore, they need to be
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confident in it. Additionally, they must be able to explain their model in simple terms to members of
the board of directors and the management. This requires a deep understanding.

Machine learning experts and data scientists are experts in machine learning models. Generally,
they do not have an in-depth knowledge of the business domain they work with. Instead, they
master techniques for data preprocessing, imputation, exploration and modeling. Their objective is
to propose a model that is more accurate than that already in place. During the modeling process,
they may implement explainability methods. However, since they are not responsible for the model,
they apply these methods to debug or improve the performance of the model.

Policyholders are lay users. We assume that they do not have specialized knowledge of statistical
learning models. They want to understand the decision imposed by the system.

Remark 1 Members of the executive board and the management can be either domain experts or lay
users. However, they do not directly interact with the model. Thus, it is the actuary who must explain the
model to them. In addition, the actuary may also have skills in machine learning.

1.4 What is interpretability?

If no one asks me, I know it; if I try to explain it to the one who questions me, I no longer
know it. Saint-Augustin.

According to Lipton (2018), although the first methods of interpretability originate from the early
1990s, the notion of interpretability has long remained without a precise definition. With the
appearance of the first complex models, the first explainability methods were developed. A sample
survey of rule-based explanations for neural networks is provided by Andrews et al. (1995) . Most
often, articles proposed methods for creating interpretable models without providing a definition of
interpretability probably because the notion of interpretability seems so familiar to us. Over time,
methods have accumulated, revealing significant diversity in the descriptions of interpretable models.
As noted by Lipton (2018), the definitions of interpretability are sometimes discordant. Hence,
this suggests that interpretability is not universal and refers to more than one concept. Since then,
multiple definitions of interpretability have been suggested in the literature. Biran and Cotton (2017)
define machine learning systems as interpretable if their operations can be understood by a human
either through introspection or through produced explanations. Doran et al. (2017) further define an
interpretable system as a system where a user can not only observe but also study and understand
how inputs are mathematically mapped to outputs. This definition is close to that of a transparent
model by Lipton (2018). Another definition is proposed by Miller (2019), who defines interpretability
of a model as the degree to which an observer can understand the cause of a decision. This definition
is slightly different, as it introduces the notion of causality into an explanation and a fictitious degree
of understandability. From this, we observe that the formal definition of explanation remains elusive.
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Krishnan (2019) goes further and states that the difficulty of defining interpretability involves the
question of what the notion is supposed to capture.

Hence, the concept of interpretability is ill-defined. Furthermore, as mentioned by Adadi and
Berrada (2018) and Arrieta et al. (2020), sometimes the terms interpretability, explainability, un-
derstandability and comprehensibility are used interchangeably in the literature. We agree that
in some contexts it may be useful to distinguish between these terms. However, the aim of this
thesis is not to feed the semantic debates but to study the problem of interpretability and to propose
concrete solutions to it. Consequently, in this manuscript we use the terms interchangeably. We now
define interpretability pragmatically, as suggested by Doshi-Velez and B. Kim (2017) and Guidotti
et al. (2019).

Interpretability is the ability to explain or present a concept in terms that are understandable to a
human.

Interpretability is therefore based on the concept of explanation, which is defined as follows by
Guidotti et al. (2019).

Explanation is an interface between humans and a machine that, at the same time, both is an
accurate proxy of the decision-maker and is comprehensible to humans.

An explanation in machine learning is a very subjective concept. According to Ruping et al. (2006),
some prefer explanations in the form of graphs, while others prefer concise textual explanations. Still
others prefer a formal model based on data, while others are more comfortable with a limited set of
representative examples. Additionally, as humans, we do not all have the same ability to analyze and
synthesize many graphs or rules, and neither do we have the same knowledge of a specific domain
such as medicine, finance or commerce. Hence, each stakeholder of a machine learning system
requires a different type of explanation. Considering the concept discussed by Woodward (1979),
T. W. Kim (2018) suggests a distinction between pragmatic and non-pragmatic theories of explanation.
For non-pragmatists, there exists only one correct explanation for a given event. In this approach,
there is no consideration of the audience, and regardless of the complexity of the explanation and the
level of knowledge required, there is only one correct explanation. In practice, only domain experts
can understand complex explanations since they both have the knowledge and are used to reasoning
regarding their topics. Moreover, depending on our level of education, we may be able to grasp
concepts such as vector spaces, statistical graphs such as boxplots, or formal logic. Freitas (2014) and
later Bibal and Frénay (2016) go further in their survey: an overly simplistic model can be rejected
by a domain expert, e.g., a doctor or an actuary. In contrast, lay users (non-experts) such as patients
or policyholders prefer simple explanations according to Miller (2019). Therefore, the pragmatic
theory of explanations states that an explanation must be tailored to the audience. In Fig. 1.4, we
provide a conceptual representation of what Guidotti names the "open the black-box problem". This
is why we choose the definition suggested by Guidotti et al. (2019). In an extensive review of the
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literature, the cited study proposes one of the first classification of explainability methods based on
the form of explanations provided, e.g., graphs, text, a set of weights, a set of rules, trees, etc.

Human Interface Machine

Extract a representative tree

Gaspard, 18 years old,...

Fig. 1.4: Black-box explanation problem. How can a human learn from a learned black-box?

To summarize, we think that the definition proposed by Guidotti et al. (2019) is relevant. Indeed,
it is close to the common definition.4 Moreover, it is oriented toward the target audience due to
some flexibility in the proposed explanation. It suffices to change the interface by using a tree rather
than a graph to change the explanation and thus adapt to another audience. Moreover, for the same
interface, for example a tree, it is possible to increase the complexity depending on the person who
receives the explanation, also called the explainee.

1.4.1 Focusing on what makes a good explanation

Before we present these approaches, we think that it is a good idea to consider how humans deliver
explanations to each other. An interesting study on this topic has been proposed by Miller (2019).
This article synthesizes the work of many fields of research such as philosophy, psychology and social
sciences to derive insight into how people define, generate, select, evaluate and present explanations.
An agent is called an explainer; this is the person who explains something to the explainee. The
review highlights four important facts about explanations:

1. Explanations are contrastive. An explanation is often sought in response to particular counter-
factual cases. This means that most of the time if we ask a "why" question, we would rather
ask why a particular event occurred instead of another. For example, if we ask "why does this
one have cancer?", we mean to say "why does this person have cancer instead of not having

4Merriam-Webster dictionary, accessed 2020-07-27.
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cancer?" Hence, this implies trying to compare characteristics that cause one person to have
cancer while another does not. This point is also supported in machine learning by Wachter
et al. (2017).

2. Explanations are selected (with a bias). For a real-world event, there may be dozens or
hundreds of causes. Nevertheless, the human brain cannot handle so many causes. Hence,
we naturally prefer to select a small subset of them. However, the selection is influenced by
certain cognitive biases such as abnormality or intentionality. Indeed, explanations highlighting
abnormal events seem to have more impact on the explainee. Thus, if a complete explanation is
based on approximately 20 causes, we tend to select the events that seem abnormal in relation
to a reference scenario rather than other causes. To illustrate this, Miller considers the example
of the Challenger shuttle that exploded in 1986. Part of the full explanation is that a chemical
compound reacted with oxygen in the air, resulting in an explosion of the shuttle. However, as
humans, we prefer to say that the cause was related to a faulty seal. Indeed, the shuttles did
not explode in most missions. However, oxygen is always present in the atmosphere. On the
other hand, all shuttles did not have a faulty seal. In addition, the intentionality bias causes
people to favor explanations that reflect an intention, e.g., driving fast, buying powerful cars,
etc.

3. For an explanation, probability can be understood in two ways. The probability that an
explanation is true, or the use of statistics and probability in the explanation itself. Miller (2019)
observed that referring to probabilities or statistical relationships was not as effective as we
might expect. This means, on the one hand, that using a level of likelihood for an explanation is
not as convincing as an explanation exhibiting causes. Saying, for example, that the explanation
we propose is 95% true is not enough to convince the explainee. On the other hand, using
probabilities as elements of an explanation for an explainee is unsatisfactory. Miller proposed
the following example: "a student coming to their teacher to ask why they only received 50%
on an exam. An explanation that most students scored around 50% is not going to satisfy the
student. Adding a cause for why most students only scored 50% would be an improvement.
Explaining to the student why they specifically received 50% is even better, as it explains the
cause of the instance itself.".

4. Explanations are social. An explanation is essentially a transfer of knowledge between two
persons. According to Miller (2019), explanations are presented relative to the explainer’s
belief about the explainee’s knowledge or beliefs on the topic. It is also the idea underlying the
distinction between pragmatic and non-pragmatic explanations, supported by T. W. Kim (2018),
De Graaf and Malle (2017) and Páez (2019) in machine learning. Thus, it is very important to
assess a lay user’s knowledge and beliefs to provide a credible explanation.

From these four propositions, we can infer that it is preferable to look for short explanations while
not degrading their truthfulness or at least likelihood. Such explanations become even more accepted
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when they are consistent with the knowledge of the explainee and allow the latter to build one’s own
mental model of reasoning using counterfactual cases. Hence, domain experts are not in the best
position to assess the relevance of an explanation to a lay user. The idea behind this is that different
levels of expertise require different explanations.

As Miller (2019) points out, there may be divergences between the expectations of a lay user and
those of a domain expert. For the moment, many researchers build explanatory models (global
or local surrogates) for themselves, rather than for the intended users. Miller (2019) refers to
this phenomenon as "the inmates running the asylum". According to Mittelstadt et al. (2019),
explanations in the machine learning sense are closer to scientific models than is an explanation in
the Miller’s sense. Indeed, for domain experts and machine learning experts, a surrogate model offers
more information than does a single explanation. A surrogate model allows experts to rationalize, ask
questions, and obtain counterfactual explanations. Furthermore, a scientist using machine learning
methods to find new knowledge is unlikely to have the same selection bias. As Freitas (2014)
mentions, an expert domain may in some cases select more complex models. This is also supported
by Páez (2019) who states that scientific experts will be able to master the best possible explanations
of the phenomena within their field of study. Thus, depending on the target audience, a good
explanation may have a different meaning. However, we think that a carefully chosen surrogate can
provide useful information for experts and be queried to offer good explanations for a lay user.

1.4.2 Desiderata of transparent models

Before presenting the taxonomy we have chosen, it appears important to us to present the desiderata
of transparent models formulated by Lipton (2018). By showing the mechanisms of transparent
models, we can easily highlight by contrast what is missing from black-boxes that prevents them
from being interpretable.

• The notion of simulatability proposed by Lipton (2018) refers to a model simple enough for a
human to take the input data together with the parameters of the model and, in a reasonable
time, step through every calculation required to produce a prediction.

• The second notion of transparency introduced by Lipton (2018) is decomposability. A model
is said to be decomposable if it (its inputs, parameters, and calculation) admits an intuitive
explanation.

• The final notion of transparency is algorithmic transparency. It relates to the extent a learning
algorithm is transparent.

We illustrate these on models recognized as transparent, such as GLM or CART. This application to
models familiar to actuaries allows us to highlight explanation mechanisms of these models and what
we would like to identify in more sophisticated models. To be more concrete, we use existing models
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already fit to real-world data in Noll et al. (2018). Since in this thesis our goal is to illustrate the
mechanisms of interpretation of these models, we do not redevelop the parts related to their fitting.
For each model, we show that it is transparent in the sense of Lipton (2018). Then, we highlight
the type of explanations each model can provide. A list of common explanation types in machine
learning can be found in Mohseni, Zarei, et al. (2018).

For theoretical results and developments on GLM, the interested reader can refer to McCullagh
and J. Nelder (1989). Practical applications to actuarial problems are developed in Ohlsson and
Johansson (2010), Wuthrich and Buser (2017) and Denuit et al. (2019). For CART, the reference
for theoretical elements is Breiman, Friedman, et al. (1984), while applications are implemented in
Wuthrich and Buser (2017) and Denuit et al. (2020). Finally, for an overview of the interpretable
mechanisms related to these models, the reader can refer to Molnar (2020).

Generalized linear models

As mentioned above, we illustrate these properties on a fitted Poisson GLM model with a log-link
function. We are uninterested in the learning process, and presume that an algorithm provides us
with this model. Once the weights β = {β0, . . . , βd} have been fit, the equation that makes it possible
to predict is of the form

log (μi) = β0 + β1xi,1 + . . . + βdxi,d (1.1)

where μi is the estimated mean for policyholder i = 1, ..n, and xi,j is the value of the j-th variable
for the i-th policyholder. Hence, the dependence structure between the response and covariates is
completely specified a priori. This plays a major role in the ease of interpretation.

If there is a reasonable number of variables, then the model is observable all at once. Even though
the term "reasonable" is not rigorous, we cannot do better since it depends on the cognitive capacity
and experience of the user. In our example in Tab. 1.3, we have approximately 50 weights. We think
this number is manageable. Apart from this consideration, if we want to calculate the output for a
specific instance, we only need to multiply the exponential value of the product of input values and
weights to compute it. This may require some time if the model has many variables but is rather
easy. Hence, this model is simulatable. If the number of weights is too high, for example, 10, 000, the
model loses simulatability and hence cannot be considered transparent.

If our predictors are not built from complex feature engineering, we can presume that the model is
decomposable since each input is understandable by itself and is related to a unique weight. This
means that the parameters could be described as representing the strengths of association between
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each feature and the label. If a model contains complex feature-engineered variables, it is no longer
transparent, as we do not know what the weights relate to.

Finally, the learning algorithm can be proven to converge and is considered transparent. In this thesis,
we do not explore algorithmic transparency further. Instead, we focus on what we can learn from a
fitted model.

Now, let us examine the types of explanations and information this transparent model can provide.
Due to simulatability and decomposability, we can easily interact with the model.

Tab. 1.1: Policyholder to be explained.

VehPower VehAge DrivAge BonusMalus VehBrand VehGas Area Density Region
11 0 54 50 B12 Diesel C 291 Midi-Pyrenees

Tab. 1.2: Standardized policyholder to be explained.

VehPower VehAge DrivAge BonusMalus VehBrand VehGas Area Density Region
11 -1.24 0.6 -0.62 B12 Diesel C -0.38 Midi-Pyrenees

"Why" explanation

For a random policyholder in the training set, we can calculate the claim frequency and decompose
the effect of each variable. This provides an explanation for a given policyholder. Since the model
is fit on standardized data, we can provide policyholders’ characteristics in Tab. 1.1 because they
are quantities understandable to humans, and show in Tab. 1.2 the standardized policyholders’
characteristics used to compute the output. We only need 10 (9 variables + intercept) coefficients to
obtain the annual predicted claim frequency for this observation. These coefficients are presented in
Tab. 1.3. The following formula gives the predicted annual claim frequency for this policyholder:

e−2.63e0.17×1e−1.24×(−0.22) . . . e0.00×(−0.38)e−0.15×1 ≈ 10.96%

The predicted claim frequency for this policyholder is approximately the same as the annual empirical
claim frequency on the whole dataset, 10.06%. The above equation clearly shows that the brand new
car of this policyholder increases the predicted claim frequency of the latter by 32% (e−1.24×(−0.22) =
1.32), all other things being equal. In contrast, the bonus equal to 50 lowers the prediction by 19.63%
(e−0.62×0.35 = 0.8036), all other things being equal. Applying this reasoning to every variable, we
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can understand for this individual which characteristics increase or decrease the predicted claim
frequency.

Tab. 1.3: Summary of the Poisson GLM.

Feature Estimate Std. Error z value P r(> |z|)
(Intercept) -2.63 0.09 -28.30 3.89e-176
VehPower5 0.15 0.02 7.78 7.43e-15
VehPower6 0.18 0.02 9.46 3.14e-21
VehPower7 0.11 0.02 5.88 4.12e-09
VehPower8 -0.05 0.03 -1.72 8.49e-02
VehPower9 0.29 0.03 9.95 2.47e-23
VehPower10 0.24 0.03 8.35 6.93e-17
VehPower11 0.17 0.04 4.45 8.55e-06
VehPower12 -0.01 0.06 -0.11 9.15e-01
VehPower13 -0.01 0.09 -0.06 9.50e-01
VehPower14 0.17 0.10 1.72 8.62e-02
VehPower15 -0.09 0.10 -0.91 3.61e-01
VehAge -0.22 0.01 -31.77 1.53e-221
DrivAge 0.09 0.01 15.74 7.60e-56
BonusMalus 0.35 0.01 69.21 0.00e+00
VehBrandB10 0.05 0.04 1.16 2.45e-01
VehBrandB11 0.13 0.04 3.11 1.89e-03
VehBrandB12 0.19 0.02 10.21 1.74e-24
VehBrandB13 0.01 0.04 0.28 7.76e-01
VehBrandB14 -0.10 0.08 -1.24 2.14e-01
VehBrandB2 0.00 0.02 -0.29 7.71e-01
VehBrandB3 0.00 0.02 0.09 9.29e-01
VehBrandB4 -0.02 0.03 -0.51 6.09e-01
VehBrandB5 0.07 0.03 2.74 6.16e-03
VehBrandB6 -0.03 0.03 -1.09 2.76e-01
VehGasRegular 0.06 0.01 5.14 2.68e-07
AreaB 0.06 0.02 2.73 6.28e-03
AreaC 0.10 0.02 5.33 9.84e-08
AreaD 0.20 0.02 9.56 1.17e-21
AreaE 0.23 0.03 8.40 4.60e-17
AreaF 0.18 0.09 1.90 5.75e-02
Density 0.00 0.02 0.15 8.82e-01
RegionAquitaine -0.11 0.09 -1.22 2.22e-01
RegionAuvergne -0.31 0.12 -2.60 9.35e-03
RegionBasse-Normandie -0.01 0.10 -0.12 9.02e-01
RegionBourgogne -0.02 0.10 -0.17 8.68e-01
RegionBretagne 0.06 0.09 0.67 5.00e-01
RegionCentre 0.04 0.09 0.49 6.25e-01
RegionChampagne-Ardenne 0.11 0.12 0.93 3.50e-01
RegionCorse 0.06 0.11 0.50 6.18e-01
RegionFranche-Comte -0.14 0.17 -0.82 4.13e-01
RegionHaute-Normandie -0.07 0.11 -0.67 5.03e-01
RegionIle-de-France -0.03 0.09 -0.34 7.37e-01
RegionLanguedoc-Roussillon -0.05 0.09 -0.57 5.69e-01
RegionLimousin 0.14 0.11 1.28 2.00e-01
RegionMidi-Pyrenees -0.15 0.10 -1.58 1.14e-01
RegionNord-Pas-de-Calais -0.19 0.09 -2.01 4.42e-02
RegionPays-de-la-Loire -0.04 0.09 -0.42 6.78e-01
RegionPicardie 0.03 0.10 0.33 7.38e-01
RegionPoitou-Charentes -0.07 0.10 -0.71 4.80e-01
RegionProvence-Alpes-Cotes-D’Azur -0.03 0.09 -0.32 7.46e-01
RegionRhone-Alpes 0.06 0.09 0.61 5.41e-01
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Why not? A contrastive explanation

In this model, the prediction for any individual is considered with respect to a reference policyholder.
As explained by Molnar (2020), if all predictors have been standardized, the reference policyholder is
represented by the mean of each numerical predictor and the reference category of each categorical
predictor. For this individual, the predicted annual claim frequency is eβ0 . Therefore, we can propose
a form of contrastive explanation by comparing the characteristics that differ with respect to this
reference individual. We answer the following question: why is our policyholder riskier than the
reference?

Generally, in insurance the goal is to create tariff cells Ohlsson and Johansson (2010). Thus, continu-
ous predictors are often discretized to create categorical ones, and the final model is only composed
of categorical predictors. This makes it easier to create a meaningful reference policyholder.

"What if" explanation

We can also ask ourselves, for a given policyholder, what would happen if one or more characteristics
were different. For example, if the policyholder lived in Limousin instead of Midi-Pyrenees, the
response of the model would have been 14.7%. In this case, changing this attribute increases
significantly the predicted annual claim frequency, all other things being equal. We can also perform
this analysis, altering numerical predictors, and more than one value at a time.

"How to" explanation

Additionally, we can ask a slightly different question: how do we alter a characteristic of an individual
to obtain a given output? To this end, we only need to solve a simple equation. Thus, it is easy to
explain to a non-expert the conditions under which that individual could obtain a better tariff. Let us
consider an actionable variable such as vehicle age. A policyholder could ask the following question :
what vehicle age could lower that person’s annual claim frequency to 8%? Using the equation and
weights, we can tell the policyholder that an 8-year-old vehicle could lower the predicted annual
claim frequency to 8%.

"What else" explanation

The last type of explanation consists of finding other instances that generate the same output as
does the policyholder we try to explain. For our policyholder, buying a car with VehPower = 14 does
not change the prediction. In the case of numerical variables, we could find an infinite number
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of points that predict the same output. Nevertheless, as humans, we cannot process too many
points. In contrast, in the case of a categorical variable there is only a finite set of predictions.
Hence, if the number of variables and categories is reasonable, as is the case for pricing models,
we can exhaustively describe all predictions. Therefore, we can find all instances with the same
predictions.

We have just reviewed how we can extract an explanation at an individual level. We have also shown
that provided explanations are short and can be clearly formulated.

The model can also be used to extract scientific knowledge. Let us go back to equation (1.1). We can
write the expected claim frequency as a function of predictors by applying an exponential function
on both sides of the equation:

μi = eβ0
d∏

j=1
eβjxi,j .

Assuming that the j-th variable is continuous, increasing xi,j by one unit leads to

μi = eβj

⎛
⎝eβ0

d∏
j=1

eβjxi,j

⎞
⎠ .

Hence, increasing xi,j by one unit multiplies the response by a factor of eβj . In our concrete example,
increasing the driver’s age by one unit increases the annual claim frequency by 9.68%, all other things
being equal.

Assuming that the j-th variable is categorical, the interpretation is slightly different. The response
is multiplied by eβj if the individual has the modality represented by variable j instead of the
reference category, all other things being equal. In our example, if a policyholder has a vehicle with
VehPower = 11, then the annual predicted claim frequency increases by 18.71%, all other things
being equal. If this vehicle has the reference level 4, the predicted claim frequency is unchanged.
Due to this, we can conclude that in this model it is riskier to have a car with VehPower = 11 than a
car with VehPower = 4. Unfortunately, we cannot conclude that the more powerful the car is, the
riskier the policyholder is because this variable is considered categorical, and the relationship with
the target is not monotonic.

Finally, an important advantage of GLM models is that they assess the importance of a predictor in the
model. It is indeed possible to test whether a coefficient is significantly different from 0 according to
the z-statistic. There also exist procedures to select models with a parsimonious set of covariates.
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Remark 2 We recall that correlation is not causation. The relationships identified by the model are
not guaranteed to be causal. However, they can be useful to a scientist (for example, an actuary) to
understand various phenomena. We can then test their causality.

Classification and regression trees

We have just described one of the most widely used transparent models in actuarial science. GLM
models belong to the family of parametric models. This means that the structure must be defined
a priori before the parameters are estimated. From the interpretability point of view, this is a
considerable asset since we can introduce our beliefs into the structure of the model, and hence are
more willing to accept it. However, it is unlikely that this model correctly reflects reality. It may
therefore be interesting to adopt a data-driven approach to create a model from the data. For this, it
is common to use nonparametric models and in particular those of the CART type. Here, we fit a
Poisson CART model on the same data as that used for the Poisson GLM. The documentation 5 for
the rpart package and a tutorial 6 are both available online. The theoretical elements and a use case
are developed in Wuthrich and Buser (2017) and Denuit et al. (2020). The only difference is that we
do not need to standardize data since the learning algorithm is not sensitive to the scale effect. The
resulting Poisson regression tree is displayed in Fig. 1.5.

In regard to GLM, we show that a tree with a reasonable number of leaves has the three desirable
properties of a transparent model. First, a tree of a reasonable depth is observable all at once. An
example is shown in Fig. 1.5. It is very easy to compute a prediction for a given individual since it is
sufficient to check at each node whether the individual satisfies the condition. Depending on the
result, the individual is placed in the right or left node. Following the chain of conditions from the
root to the leaf (a terminal node), we obtain the rule and the prediction for that individual. Thus,
the model is simulatable.

Tab. 1.4: Another policyholder to be explained.

VehPower VehAge DrivAge BonusMalus VehBrand VehGas Area Density Region
7 5 39 58 B1 Diesel A 24 Centre

5https://cran.r-project.org/web/packages/rpart/rpart.pdf
6https://cran.r-project.org/web/packages/rpart/vignettes/longintro.pdf
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Fig. 1.5: Regression tree predicting the annual claim frequency.

Nodes are the components of a CART model. These are nothing more than d-dimensional rectangles
in the covariates’ space. The rectangles are expressed as a combination of conditions in the form of
(variable, threshold) pairs. In this sense, we can state that the model is decomposable since each
node (an elementary component of the model) has a simple explanation: that a characteristic is
above or under a specific threshold. For example, all individuals of the first child node on the left
satisfy VehAge >= 0.5. Once again, the learning algorithm can be proven to converge. Therefore, a
tree with a reasonable depth is considered transparent.

Let us now examine the type of explanations and information that can be extracted from such a
model.

"Why" explanation

Above, we have already shown the mechanism for individual explanations. Let us follow the path
for the policyholder in Tab. 1.4. As VehAge above 0.5, the policyholder is placed on the left node.
Because BonusMalus is between 57.5 and 95.5, the policyholder is successively moved to the right
and left node. Finally, since DrivAge greater than 38.5, the policyholder ends up at the right leaf.
This path can be converted into a rule:

If VehAge ∈ [0.5, ∞) and BonusMalus ∈ [57.5, 95.5) and DrivAge ∈ (38.5, ∞) then 16.31%.

This rule serves as a "why" explanation.
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Why not? A contrastive explanation

Here, we again can offer contrastive explanations. For example, if we consider the individual in
Tab. 1.4, the predicted claim frequency is approximately 16.31%. Going back to the first ancestor of
this leaf, we observe that if the individual were younger than 38.5 years of age, then that person’s
claim frequency would decrease to 10.38%. This answers the question of why the claim frequency
is 16% rather than 10%. We can also ask the following: why is our policyholder riskier than the
three leaves at the bottom left? The answer is as follows: because BonusMalus >= 57.5. Another
question could be as follows: why is our policyholder riskier than the less risky profiles? The reason is
that BonusMalus >= 57.5 and VehAge < 12.5. A binary tree naturally provides a form of contrastive
explanations.

"What if" explanation

For a given policyholder, we can alter the conditions one-by-one and monitor the cell in which the
policyholder is placed. In our example, if VehAge = 0, then the predicted claim frequency decreases to
12.67%. Changing the VehBrand has no effect on the predicted claim frequency for this policyholder.
We can also change multiple conditions, VehAge = 20 and BonusMalus = 50, and the response will
be 5.17%.

"How to" explanation

Since all outputs are directly visible on the tree, we can very easily answer the following question:
how can a given variable be modified to obtain a prediction? For instance, how can the lowest
predicted annual claim frequency, i.e., 5.17%, be obtained? By driving one more year without filing a
claim and being at fault, our policyholder would reach a predicted claim frequency of between 5%
and 8%. However, after one year, the driver’s age will be 40. To ensure that the lowest predicted
claim frequency, the policyholder will need a vehicle that is over 12.5 years old.

"What else" explanation

In this analysis, we want to find instances with similar predicted values. Let us recall that a leaf is a
d-dimensional rectangle containing points with the same output. This rectangle can be translated to
a rule: for example,

If VehAge ∈ [0.5, ∞) and BonusMalus ∈ [57.5, 95.5) and DrivAge ∈ (38.5, ∞) then 16.31%.
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Finding instances with the same output is easy. From this rule, we can either create a fictitious
policyholder that belongs to the cell, or finding instances in the training or testing set.

Furthermore, due to the tree’s simple and hierarchical structure, we can quickly identify variables
that impact predictions and those that do not. For example, variables Area, Region, VehPower and
Density do not appear in our tree, and the prediction does not depend on them. Therefore, altering
these variables has no impact on predictions.

In addition, we can instantly identify the leaves with the highest or lowest predicted values. In
our example in Fig. 1.5, the color codes correspond to higher or lower claim frequencies. We can
therefore follow the reverse path, i.e., starting from a leaf, and infer the characteristics necessary
to reach it. This is very useful for understanding phenomena on a global scale. Indeed, we can
determine a set of conditions that leads to a high or low predicted annual claim frequency, which
is valuable knowledge for the actuary’s risk assessment. Therefore, scientific knowledge can be
extracted from such a model.

If the hierarchical structure does not suit us, we can transform the partition into a set of rules. To
evaluate the importance of a rule, we estimate the proportion of individuals covered by it. The
advantage of a rule is that we can switch conditions and present them in a suitable order. However,
presenting information in this way can make the analysis complex, as the tree size and hence the
number of rules increases.

We have presented the mechanisms and properties that help interpret transparent models, i.e., to
explain a model globally or to provide an explanation for an individual. Next, we will explore
the extraction of interpretable elements from models that are no longer transparent, such as the
models produced by a random forest, gradient boosting or deep learning. To this end, many methods
have been proposed since the advent of the first explainability methods in the early 1990s. These
different approaches to the "open the black-box" problem attempt to mimic some of the properties
of transparent models. For example, the notion of variable importance that is present in GLM
and a CART tree has been proposed by Breiman (2001a) to help in the interpretation of random
forest models. Local methods such as LIME by M. Ribeiro et al. (2016) or SHAP by Lundberg and
Lee (2017) attempt to reproduce the ability to obtain an explanation for a given individual. Other
methods such as TREPAN by Mark W Craven and Jude W Shavlik (1996) or "born again trees" by
Breiman and Shang (1996) provide a global explanation of the model by approximating a black-box
model with a simpler model. At this time, none of these approaches can transform an opaque model
into a transparent one. However, by mimicking some desirable properties of transparent models,
such approaches can make black-box models more interpretable or at least provide insights. In the
following section, we propose the taxonomy we have chosen to classify the approaches.
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1.4.3 Taxonomy of methods for interpretability

To take into account the latest explainability methods, several classification schemes have recently
been proposed in the literature. Let us mention in particular those of Carvalho et al. (2019),
Molnar (2020), Adadi and Berrada (2018), Arrieta et al. (2020), Guidotti et al. (2019) and Burkart
and Huber (2021). We prefer the classification of Guidotti et al. (2019). The latter is based on four
different problems presented in Fig. 1.6.

Fig. 1.6: Different machine learning model intelligibility approaches. Source: Guidotti et al. (2019).

At the highest level, "open the black-box" problems can be split into two categories. On the one hand,
there are problems related to the explanation of a trained black-box (a black-box explanation); on
the other hand, there are problems related to the design of a model that is transparent by nature (the
transparent box design). Black-box model explanations can be further divided into three subproblems:
the problems that consist of exhibiting the internal logic of a black-box model (model explanation),
problems with solutions that consist of finding an explanation for a particular instance (outcome
explanation), and finally the model inspection problems with the objective of studying how the
outputs of a black-box vary when the input is perturbed.

To clarify this taxonomy, we provide the formulation of each problem as proposed by Guidotti
et al. (2019). Then, we illustrate this taxonomy with popular explainability methods and discuss the
limitations and the targeted audience of these methods.

Inspection methods

The model inspection problem consists of providing a representation (visual or textual) for under-
standing some specific property or predictions of a black-box model.

For example, variable importance of Breiman (2001a) and partial dependence plots (PDP) of
Friedman (2001) are among the most well-known methods among black-box inspection methods.
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More recently, Goldstein et al. (2015) suggested using individual conditional expectation (ICE) plots
to refine PDP, and Apley and Zhu (2020) described the use of accumulated local effects (ALE) plots
to obtain a better representation of PDP in the presence of highly correlated predictors. Another
prototype of this class is a generalization of variable importance proposed in Fisher et al. (2019).
The interested reader can refer to Molnar (2020) for an overview of these methods.

For the purpose of illustration, we apply inspection methods to the Poisson GBM model created in
Noll et al. (2018). The data and hyperparameters are described in the cited article. The code to
reproduce the model is available7 online. We presume here that we only have access to the black-box
Poisson GBM and the data. We want to explain the variability of this black-box. A set of explanations
provided by these methods is displayed in Fig. 1.7.

Fig. 1.7: Most common inspection methods applied to Poisson GBM.

Top left: a variable importance plot for the Poisson GBM. Variables are sorted from the most
influential to the least influential.

Top right: a partial dependence plot for driver’s age. We can observe the mean response of the model
as a function of driver’s age.

7https://github.com/JSchelldorfer/ActuarialDataScience
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Bottom left: an ICE plot for 5 individuals. This plot shows for each individual the response of the
model as a function of driver’s age. Note that we cannot represent 600,000 trajectories on the same
graph because it would not be readable.

Bottom right: a 2D partial dependence plot representing the interaction between driver’s age and
vehicle’s age. We can observe the mean response of the model as a function of driver’s age and
vehicle’s age.

Remark 3 As noted in the limitations below, these methods provide less reliable results when variables
are correlated. This is the case in our dataset. For example, the linear correlation coefficient between
Bonus-Malus and driver’s age is −0.48.

Limitations and target audience

One of the most widespread forms of interpretability among machine learning community is black-box
inspection. A look at Kaggle’s forums can convince the reader of this. Methods such as variable
importance and partial dependence plots are almost systematically used to analyze trained black-
boxes. The success of inspection methods is mostly due to their ease of implementation and the
simplicity of reading the graphs provided.

Nevertheless, we believe that these methods are not very well suited to a lay user audience. According
to Miller (2019), a lay user is not very comfortable with explanations in the form of probabilities or
statistics in general. Furthermore, Wachter et al. (2017) state that these forms of explanation are
arguably more difficult to use and understand for a non-expert.

Moreover, many criticisms of reliability of these methods in the presence of correlated predictors
have appeared in the literature. Strobl, Boulesteix, Zeileis, et al. (2007) compare three different
methods of obtaining variable importance from a random forest, namely, selection frequency, Gini
importance, and permutation importance. The study shows that all of these measures are unreliable
and underscores that permutation importance is biased toward correlated features. This bias is also
highlighted by Strobl, Boulesteix, Kneib, et al. (2008) in bioinformatics. A more general critical
analysis is provided by Hooker and Mentch (2019). Indeed, the latter point out that a partial
dependence plot and individual conditional expectation plots increase in variability in some cases
if features are correlated. The paper concludes that these methods can be highly misleading in the
presence of statistical dependence between predictors. Some recent methods such as the accumulated
local effects plot introduced in Apley and Zhu (2020) propose an alternative to a partial dependence
plot to resolve these issues. However, it often comes at a price of a more difficult plot to interpret.
The pros and cons of these methods are discussed by Molnar (2020). In light of these criticisms, we
believe that to correctly interpret these graphs, it is necessary to have some experience with machine
learning.
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Finally, the provided level of information is low. For example, a variable importance plot only offers
an estimate of important variables for the model, while a partial dependence plot provides a mean
response effect as a function of one or two variables at a time. Nevertheless, for high-dimensional
models with high-order interactions, analyzing a black-box with univariate or bivariate graphs does
not suffice for obtaining a concise idea of what is happening in the black-box. Inspection methods
are therefore fundamentally limited in the amount of information they can graphically convey. It is
impossible for a human to understand the inner logic of a black-box or to comprehend how the latter
computes predictions. Consequently, it is unfeasible to measure the faithfulness of an explanation. It
is also implausible to observe the big picture with a method of this kind or even to obtain a holistic
view described in Lipton (2018). However, despite these numerous criticisms, these methods can be
very useful for a machine-learning technician. Indeed, they allow debugging a model and confirming
that variables are as important in the model as we think they are in reality. This can be done only
from a univariate or bivariate point of view.

Outcome explanation methods

Given a black-box and an input instance, the outcome explanation problem consists of providing
an explanation for the outcome of the black-box on that instance. It is not mandatory to explain
the whole logic underlying the black- box, and only the reason for the prediction on a specific input
instance is required.

An intuitive method is to fit a decision tree in the vicinity of x, the instance for which we want
an outcome explanation. The latter could be the path in the decision tree followed by attribute
values in x as in our approach in Sect. 1.4.2. Nevertheless, in practice the most relevant methods
belonging to this class are probably the locally interpretable model explanation (LIME) introduced
by M. Ribeiro et al. (2016) and SHAP presented by Lundberg and Lee (2017). Some refinements
of these methods have been proposed recently. For example, the Anchors technique suggested by
M. T. Ribeiro et al. (2018) tries to improve LIME, and TreeSHAP and KernelSHAP attempt to increase
the computational efficiency of SHAP.

Tab. 1.5: Policyholder to be explained.

VehPower VehAge DrivAge BonusMalus VehBrand VehGas Area Density Region
11 0 54 50 B12 Diesel C 291 Midi-Pyrenees

Similarly to inspection methods, we illustrate outcome explanation methods with two of the best-
known methods of this class. Hence, we apply LIME and SHAP to our Poisson GBM and require an
explanation of the outcome for the policyholder in Tab 1.5. The results are shown in Fig. 1.8.

33



Fig. 1.8: Left: LIME explanation for the observation in Tab. 1.5. The value predicted by the local model is
10%, and the true value is 16.7%. For the local fit, R2 = 0.285. Right: SHAP explanation for the
same observation.

The two explanations for the same point are different. We have little confidence in the LIME
explanation since the quality of the local fit is very low. For SHAP, the explanation is valid only for
that point. Therefore, it is very difficult to have hindsight.

Limitations and target audience

Outcome explanation methods recently popularized by LIME and SHAP have also been highly
appreciated by the machine learning community, and interest in them has been growing since their
introduction. The basic idea is to note that in the absence of a global explanation of the model, we
can at least provide an explanation for a given instance. This explanation will only be valid in the
vicinity of the point to be explained. Consequently, the explanation may be inconsistent with the
true global explanation. Several studies such as those by Páez (2019) and Mittelstadt et al. (2019)
compare this to scientific models. Nevertheless, compared to scientific models, most local methods
provide little or no information about the validity domain of the explanation. For example, the
Newton’s law is applicable to explaining the collapse of a bridge but is not valid in quantum physics.
Similarly, locally interpretable models should provide a clear validity domain and highlight their
limitations. The authors of LIME propose an exponential kernel to weight observations, which
represents their definition of the neighborhood. We do not think that a mathematical tool of this
kind is easily comprehensible to a lay user. Therefore, using such methods could be misleading for
the user if their limitations are not fully understood. For example, the user could draw erroneous
conclusions from the explanations provided by the methods of this class.

Another, more general, argument commonly used against outcome explanation methods is that
understanding a model with a collection of pointwise explanations is hardly conceivable. A method
of this type is therefore not suitable for a user seeking a global view of the model. This is also not
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appropriate for discovering scientific knowledge and detecting bias or discrimination, as mentioned
by Wachter et al. (2017).

A synthesis of responses to the French "Autorité de Contrôle Prudentiel et de Régulation" (ACPR)
consultation8 shows concerns about the stability and reliability of explanations provided by these
methods. A more detailed version is also available. 9 Alvarez-Melis and Jaakkola (2018) show that
some of these approaches (at least LIME and SHAP) are locally not sufficiently stable. The idea
behind stability is that for an explanation to be usable correctly, it should be coherent locally, i.e.,
its neighbors should have similar explanations if they have the same predictions by the black-box.
Laugel, Renard, et al. (2018) show that creating a too stable local surrogate could lead to a local
explanation that is not faithful to the initial model. Hence, there is a tradeoff between stability and
fidelity. Such stability and fidelity issues are critical. Indeed, as Lipton (2018) points out, we are
inclined to believe plausible explanations. Unfortunately, plausible does not mean true. If we want to
avoid misleading the end user, we must provide stable and highly faithful explanations.

Even though using a local explanation has many drawbacks, these methods can convey more
information than can black-box inspection methods. Most outcome explanation methods use a local
surrogate model to provide an explanation. Hence, an explanation is a set of weights, a path in a tree
or a set of rules. We think this gives clearly formulated and concise explanations. Therefore, we can
measure the fidelity of an explanation. This is an important improvement compared to inspection
methods because we can assess whether we can trust an explanation. Furthermore, for a domain
expert or a machine learning technician with a deep knowledge of the limitations of a local model, an
approach of this kind allows debugging a model or understanding the local behavior of a black-box
model.

Due to the local surrogate, in some cases it is also possible to obtain counterfactual explanations. An
explanation of this kind is required for the lay user according to Miller (2019), Wachter et al. (2017)
and Laugel, Lesot, et al. (2019). More research has to be done to ensure that these methods provide
stable and locally faithful explanations. If such a method were available, it could therefore be suitable
for explaining the prediction of an instance to both a lay user and a more knowledgeable audience.

Model explanation methods

The black-box explanation problem consists of providing a global explanation of the black-box model
through a transparent model. The latter should both be able to mimic the behavior of the black-box
and be understandable by humans. In other words, an interpretable model approximating the
black-box must be globally interpretable.

8https://acpr.banque-france.fr/sites/default/files/medias/documents/20201215_analyse_gouvernance_
evaluation_ia.pdf

9https://acpr.banque-france.fr/sites/default/files/medias/documents/20201215_synthese_gouvernance_
evaluation_ia.pdf
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Remark 4 The model explanation problem differs from the inspection problem since it requires the
extraction of an interpretable global predictor. Recall that the inspection problem focuses on the analysis
of specific properties of the black- box without requiring a global understanding of it.

Unfortunately, few methods of this class are as well-known as inspection and outcome explanation
methods. However, we can mention TREPAN by Mark W Craven and Jude W Shavlik (1996) and
born again trees by Breiman and Shang (1996). Both propose extracting the structure of a tree
from a learned black-box. Generally, training a CART model on the predictions of a black-box model
produces a global explanation. We illustrate methods of this type with one that is among the simplest
to implement. We first create a new database from our learning database. To do so, we replace the
number of claims by the claim frequency predicted by the Poisson GBM and remove the offset. At
this point, the target is the predicted annual claim frequency. We fit a regression tree on these data.
The resulting tree – our global surrogate – is presented in Fig. 1.9.

Fig. 1.9: Global surrogate for a Poisson GBM.

We evaluate the fidelity with the R2 score between the predictions of the Poisson GBM and those of
our surrogate tree. On the training set, R2 = 85.7%; on a 7-fold cross-validation, R2 = 85.7%, and
on the test set, R2 = 87.5%. This explanation is faithful and allows us to observe which policyholders
are considered risky by the Poisson GBM model.

Remark 5 We do not evaluate the stability of this explanation. However, as CART trees are not robust,
if we change our training set, the resulting explanation could be different.
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Limitations and the target audience

Providing a simple explanation for an entire and complex model is a challenging task. The most
powerful methods such as tree-ensemble methods and neural networks create models with a very
large number of trees, rules or weights. This complexity generally improves performance. This is
where the black-box model explanation and transparent box design approaches diverge. In the case of
model explanation, the objective is to find a surrogate model. The latter has to mimic the predictions
of the trained black-box over the entire space. Thus, there are two distinct models: one used to
predict, and the other used to explain. This keeps performance intact since the complex model
produces predictions without any parsimony constraints. The second model, simpler, integrates a
parsimony constraint that makes it less accurate but more interpretable. Once again, the criticism
formulated by Lipton (2018) holds. Indeed, if the surrogate model is not sufficiently faithful and does
not capture the correct interactions between variables, it can mislead the user about the predictions
of the black-box. Nevertheless, compared to outcome explanation methods, we do not need to worry
about the validity domain of the surrogate since it is global.

Compared to outcome explanation methods, model explanation methods can result in unstable
explanations. Indeed, if a method generates data to learn the interpretable model, there is a risk
of instability in the explanation. Let us consider the simplest possible example: we want to mimic
our black-box with a CART tree. To do so, we build a learning base from the available data and
create a target variable with our oracle (the black-box model). CART trees are known for their low
robustness. Therefore, the choice of the initial learning sample changes the explanation. Bastani
et al. (2017) mention this stability problem not only for their proposed method but also for born
again trees by Breiman and Shang (1996) and consequently for TREPAN by Mark W Craven and
Jude W Shavlik (1996). However, the definition of stability is different from that proposed for a local
approach. Indeed, here stability is in a sense close to robustness. In the methods we study in chapters
2 and 3, we are confronted with this problem. We can also safely state that this problem is present
for most data-dependent methods. For the moment, few studies assess stability. In particular, Bastani
et al. (2017) propose a metric without going into detail.

Maintaining a simple model while approaching a complex one is not easy. As a result, the explanations
provided may be less accurate than local explanations. However, this should not be generalized.
Suppose now that we can extract a stable and faithful tree. This surrogate can be used not only
to explain global variations of the black-box but also to approximate predictions of the latter. An
explanation of this type can therefore be used by all types of users: lay users, domain experts, and
machine learning experts.
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Transparent design methods

The transparent box design problem consists of directly providing a model that is locally or globally
interpretable.

Among the methods that belong to this class, there are generalized linear models of J. A. Nelder
and Wedderburn (1972), classifications and regression trees of Breiman, Friedman, et al. (1984),
and generally the penalization methods such as LASSO by R. Tibshirani (1996). We have already
illustrated models of these kinds in Sect. 1.4.2.

Limitations and the target audience

Creating a model that is transparent by design is the second approach to obtaining a global explanation
of the model. There are several ways to do this; examples include making a priori assumptions about
the target distribution and the structure of the model (linear), generating a tree with complexity
constraints, generating a set of rules with length and number constraints, introducing a penalty term,
etc. Since intelligibility is introduced beforehand in the model, the target audience can naturally be
taken into account. As we have demonstrated in Sect.1.4.2, a policyholder (a lay user) can calculate
own premium from the GLM coefficients and an actuary (an expert user) can also extract relevant
information such as risk factors. Since the model that provides predictions is also the model that
provides explanations, there is no risk of making a different interpretation of a prediction. There
is also no stability problem. When the stakes are high, Rudin (2019) suggests using only models
that are transparent by nature. This seems obvious at first sight, and this is why this approach has
long prevailed in interpretable machine learning. However, performance is often degraded by the
imposition of constraints during learning, and it is quite rare to see simple models such as GLM or
CART winning in machine learning competitions. This, however, does not mean that these models
always perform worse than their black-box alternatives.

Synthesis

In this taxonomy, explainability methods are thus classified according to the problem to which they
provide a solution. The latter takes different forms depending on the problem. Hence, the solution
may

• explain the model,

• explain the outcome,
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• inspect the black-box internally, or

• provide a transparent solution.

Here, the answer to the problem provides an interface between humans and machines. Consequently,
it is the nature and the extent (global or local) of the interface that allow these methods to be classified.
The target audience is implicitly taken into account in this taxonomy. Even if the limitations we have
pointed out are not exhaustive and do not systematically apply to all methods of the same class, this
should guide the reader in the selection of an explainability method. Moreover, we are convinced
that even if some methods are more suitable for certain tasks than others, it is preferable to conceive
interpretability at multiple levels.

1.5 Evaluation

Evaluating the interpretability of a machine learning model is necessary to be able to compare models
with each other. It is a step toward a more rigorous approach to interpretability in machine learning,
as mentioned by Doshi-Velez and B. Kim (2017). However, assessing interpretability of models is not
an easy task.

First, there are several aspects of interpretability evaluation, as discussed by, for example, Mohseni,
Block, et al. (2018). In particular, when contemplating post hoc interpretability, it seems important
to assess the quality (fidelity and stability) and the usability for a target audience. To some extent,
we can quantify fidelity and stability with several metrics, but usability is much more difficult to
measure. An explanation that did not satisfy the first two criteria would be useless. Even worse, it
could mislead the end user. When post hoc methods are used, Lipton (2018) recommends the utmost
caution. Indeed, insufficient local or global fidelity could result in the end user of the explanation
being misled. Recent studies also point in this direction: for example, Schneider et al. (2020) show
that it is possible to create false explanations that deceive humans.

An interpretable model should allow a human to answer different types of questions correctly within
a limited time. Unfortunately, evaluating interpretability of a model on a task that can be performed
by a human is expensive and complex. Doing so requires one to carefully select a panel, prepare a set
of questions to study the understanding of each participant and analyze the results. Consequently,
few authors provide such studies to evaluate their explainability methods. As Doshi-Velez and
B. Kim (2017) state, the majority of articles assess interpretability via a proxy such as the tree
depth. In a recent paper, Páez (2019) confirms that too few articles propose genuine evaluations of
interpretability of their models.

Some interesting research has already been done to evaluate interpretability of models such as
trees for different target audiences. In several studies, participants were asked to directly assess the
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interpretability of the model they used with a score. However, interpretability is a subjective notion
that depends on the individual, and one’s experience and level of knowledge. Therefore, results may
vary depending on the target audience, namely, domain experts, lay users, machine learning experts,
etc. In Piltaver et al. (2016), tree-structured models are presented to experts and non-experts to the
purpose of performing tasks such as classifying an instance, explaining a prediction, validating an
assertion or discovering new relationships. For each task, the accuracy of results and the response
time are measured. The study shows that data-mining experts perform better and faster on the
proposed tasks. The study also shows that the structure of the proposed tree affects the response time
for all audiences, and in particular the number of leaves increases it. Nevertheless, as mentioned by
Allahyari and Lavesson (2011), trees that are too shallow can be regarded as not very interpretable
because they do not provide enough information to the user. This is also the opinion of Freitas (2014)
for domain experts. Huysmans et al. (2011) compare different ways of presenting information:
decision trees, decision tables and rules. It is indeed possible under certain conditions to switch from
one representation to the other. Subject to these hypotheses, the article shows that non-expert users
of its panel preferred decision tables to trees or rules. Other authors such as Martens et al. (2011)
propose a justifiability metric to evaluate and compare interpretability of models. Overall, the appeal
of these studies could entail having proxies that make it possible to quantify for each target audience
and for each model the level of interpretability of the latter.

Synthesis of the introductory chapter

This introduction allows us to present the notions necessary to understand the contemporary con-
cept of interpretable machine learning. We show that there is no consensus on the definition of
interpretability. Consequently, many approaches have been developed since the beginning of inter-
pretable machine learning in the early 1990s. In addition to discussing the vocabulary, we present
a taxonomy to classify methods according to the type of explanations they provide and the target
audience. Moreover, for the insurance industry, we suggest a simplified description of stakeholders
for a machine learning model. This simplified vision should enable the reader to better understand
which methods are to be applied to provide explanations for different stakeholders and problems.
Finally, we point out the difficulties related to the evaluation of interpretability methods. It is quite
challenging to quantify a notion that is hard to define. However, we show that interpretable machine
learning is trying to structure itself. If it is impossible, at this time, to measure interpretability, we can
at least evaluate the quality of the provided explanations by using the notions of fidelity and stability.
This manuscript is mainly interested in explainability methods that provide global explanations for
tree ensemble models. These models often perform well on tabular data. Moreover, we believe that
obtaining a global explanation allows both extracting scientific knowledge and providing explanations
to a non-expert audience. Chapters 2 and 3 are dedicated to the presentation of two such methods.
Nevertheless, we also want to study interpretability of neural networks. The latter are gaining in
popularity and can be interesting in some cases, as we showed in the beginning of this introduction.
However, by losing the strong structure imposed by trees in the space, we also lose explanatory
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capability. Therefore, we weaken the problem of interpretability and limit ourselves to local methods
in the last chapter of this thesis.

1.6 Our contributions

To conclude this general introduction, we now summarize the contributions resulting from this thesis.
They will be detailed later in chapters 2-4.

Chapter 2: Toward an explainable machine learning model for claim frequency

This chapter corresponds to the article by Maillart (2021b) published in the European Actuarial
Journal in 2021. We propose a claim frequency model based on a tree-ensemble model that we
make interpretable. In the context of car insurance pricing, tree-based methods are an interesting
alternative to generalized linear models. Indeed, these methods require little data preprocessing and
perform as well as or better than generalized linear models without too much hyperparameter tuning.
Nevertheless, these methods generate black-box models, which constrains their deployment. Some
methods that allow extracting interpretable elements from tree ensembles such as variable importance
and partial dependence plots already exist. However, they do not provide a clear understanding of
what is happening inside the black-box. There are also methods explaining locally any observation
of any black-box model. These methods can therefore be used on tree ensembles. Nevertheless,
these methods make it difficult to grasp a black-box model all at once. Few methods specifically
aim at providing a global explanation of a tree-based model. Such methods include born again
trees developed by Breiman and Shang (1996), the node harvest suggested by Meinshausen (2010),
and DefragTrees proposed by Hara and Hayashi (2018). All of these techniques attempt to create
a model that is interpretable by nature using only predictions of the tree such as done by Breiman
and Shang (1996) or predictions of the tree and the tree structure as done by the node harvest and
DefragTrees. Our approach is different since we propose extracting a surrogate model from the tree
set to explain this black-box model globally. Hence, we retain the performance of the black-box
model while improving its interpretability.

To obtain our global surrogate, we modify DefragTrees, the method developed by Hara and Hayashi.
This method allows extracting a set of rules from a tree ensemble model, i.e., a random forest,
gradient boosting, etc. To do so, the authors propose using the structure of trees contained in the
tree ensemble. Indeed, the d-dimensional rectangles generated by the trees can be written as a
probabilistic model depending on parameters. Thus, this is possible to express with parameters the
probability distribution of pairs (prediction, rectangle). Therefore, we can express the likelihood
and attempt to maximize it. In practice, we use the EM algorithm to obtain a numerical solution of
this problem. The approach of Hara and Hayashi produces a parsimonious set of rules used both to
predict and to explain. We differ from this approach since our strategy is to keep two models, one to
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predict and the other to understand. As a result, we do not reduce the performance of our best model.
Additionally, the DefragTrees method creates rectangles that may overlap or leave gaps in space. In
other words, it does not induce a partition of space. Therefore, a point can have many explanations if
it belongs to several rectangles simultaneously. We propose a modification of DefragTrees that allows
generating a partition of the space and obtaining a unique explanation for each individual. We think
this is preferable from the interpretability perspective.

From the actuarial science point of view, we develop a method we can use to extract scientific
knowledge from a tree-based model. Tree-ensemble methods learn the structure of the model from
data without a human prior and are data-driven methods. Thus, when we do not have a priori
knowledge about the data, such a method provides a strategy for extracting scientific knowledge
from the data. We illustrate this on telematic data already studied by Verbelen et al. (2018). The
latter use an approach based on generalized additive models. The structure of the model is thus
additive. In our case, we make no hypothesis about the structure of the model and let the algorithm
learn from data. In the second step, we extract knowledge from our black-box, which is a Poisson
random forest. As a result of this strategy, we highlight a relationship that was not pointed out by
Verbelen et al. (2018): young drivers who do not drive regularly during the year have a significantly
higher claim frequency than do others.

In addition, we propose an alternative strategy. This consists of extracting knowledge from a
tree-ensemble model and injecting it into a model that is easier to deploy. To do so, we integrate
the interactions created by the leaves of the surrogate tree into a generalized linear model. This
significantly improves the performance of the latter while remaining within a known framework.
This approach also has the advantage that it can be deployed quickly and at no additional cost to the
insurance company.

Chapter 3: Tail-index partition-based rules extraction

This chapter corresponds to Maillart and Robert (2021). Here, we propose modeling the tail index
function with a gamma gradient-boosting machine. The tail index is an important parameter that
measures how often extreme events occur. In many applied fields, this index depends on explanatory
variables. In this chapter, we assume that it takes a finite number of values over a partition of the
explanatory variables’ space. To produce this simpler model, we aggregate the small rectangles
created by the gamma gradient-boosting model with an ascending hierarchical clustering method with
a spatial constraint. Hierarchical clustering is performed on the predictions of the gamma gradient
boosting within the rectangles, and the spatial constraint takes into account proximity between
rectangles. Thus, close rectangles with approximately the same predicted values are grouped early in
the process. We obtain our final model by selecting an appropriate number of classes. Nevertheless,
this model is not easy for a human to interpret because the shapes of regions are no longer rectangular
and become too complex to understand in a high-dimensional space. Therefore, in this chapter
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we introduce an original approach to extracting a surrogate from the partition created by the tree
ensemble. This idea is similar to that in the previous chapter. Indeed, we note that too many small
rectangles fragment the covariate space. Thus, we want a method that aggregates these rectangles
to form larger ones while maintaining a good level of fidelity. To this end, we rely on being able
to easily access the partition generated by each tree in the set. Furthermore, we can determine the
cross-partition for the set of partitions, and can query the unique prediction of the tree ensemble
within each rectangle of the cross partition. Thus, we have the knowledge of the tree ensemble
at any point in space. However, there is too much information (d-dimensional rectangles) for a
human to interpret this model. Consequently, we modify the CART learning algorithm so that it splits
only where the tree ensemble has already split. Finally, we provide as input to this new algorithm
a database composed of a unique observation within each rectangle of the cross-partition and the
corresponding black-box predictions. Hence, the algorithm learns to clone the cross-partition. The
created maximum tree perfectly reproduces the cross-partition but is not interpretable. To make
it interpretable, we only need to prune the tree to a depth that suits us. The pruned tree is our
surrogate model.

From the interpretability point of view, this method stands out in several aspects. Proceeding with
a regression tree to learn the cross-partition, we obtain a set of nested trees. Hence, each split
creates a deeper tree that is included in the previous one. This is a form of consistency between
each pair of nested trees and thus between explanations. This is what allows us to transform the
interpretability problem into a tree pruning problem. Choosing a tree consists of measuring the
fidelity for each nested tree and selecting the trade-off between fidelity and complexity that suits
us. Another consideration is that most explainability methods provide either a global explanation
or a local explanation but not both. Although this was not the initial objective, our method can
also extract local explanations that are faithful to a set of trees. Moreover, our method differs from
other global interpretability methods for tree ensembles because we measure fidelity not on a few
observations, but over the whole space. Finally, our method is deterministic. It is therefore much less
sensitive to stability problems than is, for example, DefragTrees.

From an actuarial point of view, our nonparametric approach allows us to obtain an estimate of the
tail index as a function of covariates. The value of this index plays a fundamental role in the pricing
of XS reinsurance contracts. Similarly to Goegebeur et al. (2021), we can obtain an estimator of the
conditional reinsurance premium. Goegebeur et al. (2021) propose a local estimation method. This
means that only the observations with covariate values that are close to the value considered for
pricing are retained. Our method allows obtaining an estimator over the whole covariate space and
handling many covariates because it does not suffer from the dimensionality curse problem.
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Chapter 4: Black-box inspection via robustness analysis

This chapter corresponds to Maillart (2021a) and was published in the Bulletin Français d’Actuariat
in 2020. In this chapter, we explore interpretability of parametric models such as generalized linear
models and neural networks. Our starting point is the method proposed by Koh and Liang (2017). It
identifies points in the learning sample that are influential for a given prediction. To this end, the
authors develop three indicators that approximate the removal or a perturbation of a point from the
training sample. These indicators are derived from influence functions used in robust statistics. The
first measures the variation of the black-box’s parameters following the deletion of a point from the
learning sample. The second approximates the loss variation in prediction resulting from the removal
of a point. The last indicator quantifies the loss variation in prediction after the perturbation of a
point in the learning sample. These yardsticks only depend on gradients and the Hessian that can be
computed using deep learning frameworks such as TensorFlow or PyTorch. This avoids refitting the
black-box model each time a point in the learning sample is modified. As a result, this technique is
feasible for real-world datasets.

In contrast to Koh and Liang (2017), who use this method for image classification, we apply it to
tabular data. We demonstrate that the first two indicators can be used to efficiently spot points
considered abnormal by the black-box model. Thereby, it is possible to implement this approach
in a data quality procedure. This is not the only asset of these indicators. In fact, we show in the
chapter that the points identified as influential for the model are mainly located around the decision
boundary. Thus, we can locate the decision frontier and consequently the points for which it is
interesting to have an explanation. However, for tabular data it is not easy to extract clear information
from a set of influential points. Indeed, such points for a model are distributed along the decision
boundary. As a result, we obtain a set of points with heterogeneous characteristics belonging to
both classes. Therefore, we suggest using the points not as prototypes for a specific explanation, but
rather as elements that help construct hyperplanes tangent to the decision frontier. Accordingly, we
provide local explanations – our hyperplanes – that are faithful to the black-box’s decision boundary.
Hence, our main contribution consists of providing an algorithm taking influential points and the
black-box model and returning a locally faithful explanation in the form of a hyperplane. Finally, we
demonstrate exclusively for numerical data that it is possible to use the last indicator to determine a
direction in which to perturb a point to maximize the loss variation in prediction. It turns out that
this direction is in fact a normal vector to the decision surface and can therefore be used directly as a
local explanation for a given point.

After illustrating on a two-dimensional dataset the appeal of each indicator for the extraction of
faithful explanations, we apply them to insurance data. To this end, we consider data used in car
insurance pricing. However, in this chapter, we study a binary classification problem. Hence, we
transform the problem into a prevention problem to fit in a binary classification framework. We
examine predicting risky profiles to make preventive recommendations. On this high-dimensional
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dataset, we show that we are able to extract local explanations that are faithful to the original
black-box model. We verify that for a generalized linear model, the method always returns the same
explanation. This confirms empirically that the explanations are consistent with the global decision
frontier within the known framework of generalized linear models. Then, we apply this method to
extract explanations from a neural network. Our fidelity measures show that the explanations are
faithful to the initial decision frontier. This does not allow for a global understanding of the neural
network’s variations. Nevertheless, it can be useful for providing an explanation for a subgroup of
policyholders. At the time of writing this manuscript, there is very little research on this subject in the
actuarial literature. This study makes a contribution by introducing a novel technique of interpretable
machine learning in actuarial sciences.
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2Toward an explainable machine learning
model for claim frequency : a use case in
car insurance pricing with telematics data

„We’re drowning in information and starving for
knowledge.

— Rutherford D. Rogers

Abstract

In this paper, we suggest an explainable machine learning approach to model the claim frequency
of a telematics car dataset. In fact, we use a data-driven method based on tree ensembles, namely,
the random forest, to create a claim frequency model. Then, we present a method to build a tree
that faithfully synthesizes the predictions of a tree ensemble model such as those derived from the
random forest or gradient boosting. This tree serves as a global explanation of the predictions of the
black-box. Thanks to this surrogate model, we can extract knowledge from a black-box tree ensemble
model. Then, we provide an application to improve the performance of a generalized linear model.
Indeed, we integrate this new knowledge into a generalized linear model to increase the predictive
power.

Keywords: Pay-as-you-drive insurance, Usage-based insurance, Risk classification, Explainability,
Interpretability, Random forest, Gradient boosting, Black-box model explanation

2.1 Introduction

For many years, the actuary’s understanding of risk was restricted to a set of simple and fairly static
variables such as gender, license seniority, age, areas or vehicle information. Although this approach
already provides differentiated pricing, risk assessment can be improved with telematics. Typically,
trips are recorded by sequences of GPS coordinates for such data. These coordinates are often
enriched with other data collected at the same frequency such as the engine velocity, for example.
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Alternatively, trips can be stored as metadata. For example, these metadata can be the number
of kilometers driven, the time spent in a speed zone, and the kilometers driven on a road. GPS
coordinates are more suited to pay-how-you-drive (PHYD) insurance, while metadata is preferred in
pay-as-you-drive (PAYD) insurance. While PHYD insurance focuses on driving style, PAYD insurance
focuses on driving habits. The first one requires more details and is outside the scope of our study.
We will focus on PAYD insurance and the behavior of policyholders.

Telematics have improved the understanding of risk exposure. Indeed, before its use, actuaries could
only measure it with duration of observation. The time exposure characterizes the intra-annual
coverage period of a policyholder. However, a policyholder may be covered without driving regularly.
Therefore, the insurer carries a different risk. This idea, initially developed by Vickrey (1968),
has since been supported by numerous studies. These include Tselentis et al. (2016), Boucher
et al. (2017), and Verbelen et al. (2018) more recently. All of these works highlight the potential of
telematics data for PAYD insurance. The generalized linear model (GLM) is most often applied to
gain insight of telematics data. It is still widely used in the research community and in insurance
companies because it is easy to interpret and has been extensively studied in the actuarial literature.
However, it is not well suited to these data. Indeed, when the relationship between the variables
and the target (claim frequency), for example, is not linear, it becomes necessary to discretize the
continuous variables; see, e.g., Henckaerts, Antonio, et al. (2018), Ohlsson and Johansson (2010),
and Frees et al. (2016). There are some procedures to automate variable splitting. Nevertheless,
expert judgment is most often used in companies. However, we have little experience with telematics
data. Therefore, it seems difficult to discretize the variables without prior knowledge. Furthermore,
nothing guarantees the optimality of the breaks. In addition, the embedded devices produce many
variables. It can be hard to manage in day-to-day company business.

In contrast, machine learning algorithms manage continuous variables, interaction effects and
colinear predictors very well. This makes them good candidates to model a claim frequency problem
with these data. Unfortunately, the latter are often difficult to interpret. Authors interested in
these methods generally focus only on performance; see, e.g., Yang et al. (2017), Wuthrich and
Buser (2017), and Noll et al. (2018). The first works to increase intelligibility in actuary concentrate
on methods that provide a local perspective (LIME in Ribeiro et al. (2016) and SHAP in Lundberg
and Lee (2017)) or too little information to obtain an overview of the model (variable importance
Breiman (2001) or partial dependence plots J. H. Friedman (2001) or SHAP). In Henckaerts, Coté,
et al. (2020), a methodology is proposed to gain an insight into machine learning models.

In this paper, we introduce a method to provide an explanation for a tree-based black-box such as the
random forest (RF) or gradient boosting (GBM). The explanation is global, which means here that it
explains the entire behavior of the model in the form of a regression tree. Thanks to this tree, we
can extract knowledge from a tree-based model and then inject this new knowledge in a generalized
linear model to boost its performance. To do so, we propose to adapt DefragTrees, a method initially
developed by Hara and Hayashi (2016) and then extended in Hara and Hayashi (2018). The latter
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suggests defragging the highly fragmented covariate space generated by the tree ensemble model to
produce a parsimonious set of rules.

The article is organized as follows. In Sect. 2.2, we present Poisson regression trees, which are the
basic elements of our frequency models. Then, we fit and compare different claim frequency models
based on tree ensemble methods to our data. We also fit a reference GLM to benchmark performances
and hence measure the increase in performance due to telematics variables. In Sect. 2.3, we develop
theoretical elements of DefragTrees. This method allows us to obtain a faithful tree from the tree
ensemble model. In addition, we suggest an alternative method to generate outputs as a tree and not
as rules. We apply the method on the black- box predictions of our fitted claim frequency models and
analyze extracted knowledge. Finally, we integrate this new knowledge into our benchmark GLM to
improve its performance.

2.2 Machine learning approach for frequency modeling

Nonlife insurance is mainly based on the law of large numbers. Indeed, it is extremely difficult to
predict whether a policyholder will have a claim over a year. However, it is easier to provide a good
approximation of the portfolio’s total loss within a year. This idea makes it possible to define the
pure premium as the expected amount that the insurer will have to pay for the risk transferred to it.
In practice, since crash conditions depend on the policyholder, insurers seek to refine their ratings
by segmenting their population according to the frequency and intensity of claims. Hence, they can
provide a rating that is more representative of the policyholder’s risk. Of course, the challenge of this
segmentation is to create subgroups that are broad enough to apply the law of large numbers and
sufficiently homogeneous so that policyholders belong to an identifiable class of risk. This is what
motivates the construction of statistical models for pricing.

2.2.1 The basics of pricing in car insurance

A classical way to estimate pure premium is to consider a frequency/severity model. In this context,
we must fit two models, one for the claim severity and the other for the claim frequency. Here, we
only focus on the second one. We denote by Ni and N , respectively, the number of claims recorded
for the individual i over the observation period ωi and the total number of claims over the total
observation period ω. The observation period is also called time exposure. It allows individuals
to be weighted according to their observation time. Hence, uncertainty decreases as the exposure
increases.

We want to model the ratio Y = N/ω according to the variables available in the database, i.e., we
want to fit a model to estimate E [Y |X = x]. We will assume that each Ni has a Poisson distribution.
The choice of a Poisson distribution is motivated by the fact that the claims process is a Poisson
process. See Ohlsson and Johansson (2010) and Beard et al. (1984) for more details. Therefore, we
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assume that there exists an expectation of the claim frequency denoted by λi > 0 and an exposure
ωi > 0 such that:

∀k ∈ N, P [Ni = k] = e−λiωi
(λiωi)k

k! .

Remark 6 We work under the assumption that policies are independent. Hence, at an aggregated level,
in a tariff cell, for example, the number of claims still has a Poisson distribution.

In this section, we try two different approaches to fit a claim frequency model. The first one is
classical. We fit a parametric model, namely, a Poisson GLM to the data. The second one is a
data-driven approach. In this case, we fit a nonparametric tree ensemble model to the data. We need
a metric to compare these models with each other. Therefore, we recall the definition of the mean
Poisson deviance loss as follows :

D(N, λ) =
n∑

k=1
2Nk

[
λωk

Nk
− 1 − log

(
λωk

Nk

)]

where n is the number of observations and the k-th term is set to 2λkωk if Nk = 0. The interested
reader can refer to chapter 1 of Wuthrich and Buser (2017).

2.2.2 Use case in telematics car insurance pricing

Since we want to show the contribution of telematics data in assessing claim frequency, we divide
our dataset into two parts. The first one contains only the policy variables, while the second one
contains the policy variables and the telematics variables. Tab. 2.7 in Appendix 2.5.2 describes the
available variables. We train the random forest and gradient boosting methods on the first dataset
and a GLM to create a reference score. This provides a benchmark of methods before the contribution
of telematics data. Then, we train the random forest and gradient boosting methods on the second
dataset. This allows us to measure the contribution of telematics data. Subsequently, by extracting
the knowledge acquired by the random forest, we will be able to strengthen our GLM model.

Remark 7 Since we have the number of kilometers driven by the policyholder, we have the choice of the
exposure variable. Fig. 2.25 in Appendix 2.5.2 shows the claim number average by buckets of width
of 0.05 year. As we can see, the relationship between the average number of claims and the duration
seems to be linear (R2 = 0.92). In contrast, if we choose the kilometers by buckets of 5, 000 kilometers in
Fig. 2.26 in Appendix 2.5.2, the relationship is not linear. Those results are consistent with Boucher
et al. (2017). We decide to set the time as exposure because we do not want to introduce another
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difficulty at this step. We leave the impact analysis of a change in exposure variable for a future study.
The interested reader can refer to Boucher et al. (2017) and Verbelen et al. (2018) for more detailed
articles on time and distance as exposure variables.

2.2.3 Exploratory data analysis

The dataset comes from a Belgian portfolio. It contains motor third-party liability (MTPL) insurance
data. This insurance is mandatory and covers any damage caused to a third party. The MTPL
insurance we are studying here is specific since the data were collected on a portfolio of very young
policyholders. See Fig. 2.1 and Fig. 2.2.

Fig. 2.1: Exposure by ages Fig. 2.2: Exposure by license seniority

Indeed, this population is considered risky and is often assigned very high premium levels. To
encourage these individuals to set an embedded device in their vehicle, the insurer offered discounted
premiums. Nevertheless, it is worth noting that policyholders knew the data would not be used to
change their future premium. The embedded device in the vehicle permanently collects statistics on
the driver’s habits, particularly on the roads used, the kilometers driven and the time slots of the
trips. However, it does not collect information on driving style such as acceleration, speed, braking
frequency or intensity.

Tab. 2.1: Reported claim rates

Claims Number of policies Years at risk Driven distance (x 10 000 km)

0 11967 6337.53 9412.14
1 565 345.68 572.67
2 23 16.29 29.77

The data collected by the embedded device are preprocessed by the data provider. We did not have
access to the raw data but only to an aggregated version. The latter contains the kilometers driven by
the policyholder and the details concerning the type of roads and the durations of all the trips. These
data were linked by the insurer to policy variables such as Age, Gender, License seniority and
the reported claims number. Policyholders are observed for a maximum of one year. If the observed
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period is less than a year, it means that something evolved in their policy, for example, a change of
residence, vehicle or guarantee. There are 7 levels of coverage available in the data. We decide to
focus on the minimal mandatory guarantee because this is the most represented. By doing so, we end
up with a dataset containing 4, 718 policyholders observed between January 1, 2010 and December
31, 2015. It represents a total of 6, 700 policy years observed or 100 million kilometers driven. For
these 12, 555 observations, only 611 claims were reported at fault (see Tab. 2.1 for details). It means
that considering the time as exposure, the whole portfolio has a claim rate of 9.12%.

In Fig. 2.3, we illustrate the observed marginal log claim frequencies of the continuous policy
features. We can see that these variables have a nonlinear relationship with the claim frequency.
Based on these graphs, we can observe that the most informative feature is License seniority. In
the policy variable subset, we have two categorical variables Gender and Area. Globally, men tend to
have a higher claim frequency than women. In fact, the observed claim frequency for men is 10.46%
and 7.55% for the women. The variable Area does not exist in the dataset; however, we build it to
give sense to GPS coordinates. Hence, we transform the GPS coordinates of the insured home cities
with a variable containing eleven modalities. These modalities represent the 10 provinces of Belgium
and the capital Brussels, which is treated separately. We represent the observed claim frequency
inside this administrative division of Belgium in Fig. 2.4.

Fig. 2.3: Observed log claim frequencies.

58



Fig. 2.4: Claim frequency map

2.2.4 Encoding variables and fitting models

GLM and tree-based methods require different data encoding for numeric variables. Indeed, GLM
cannot handle nonlinearities efficiently. This is why, in practice, continuous variables are discretized.
In contrast, tree-based methods handle numerical variables very well, whether linear or not. It may
be necessary to scale the numerical variables to help the gradient descent of the GBM, for example.
As far as categorical variables are concerned, both the GLM and the tree-based methods have a
mechanism to manage them. Thus, we can integrate them without preprocessing them.

Parametric approach: GLM

To discretize our variables, we fit a Poisson regression tree for each variable to discretize. The target
variable is the claim number, the offset is the log of the exposure variable and the explanatory variable
is the variable to discretize. We impose that the tree does not exceed two levels of depth and set the
complexity parameter to cp = 0.0001. Hence, the Poisson regression tree is forced to grow until a
maximum of four leaves. We do this because we have very few data points, so we do not want too
many modalities by variable in our GLM to avoid overfitting. Therefore, we do not want too many
leaves in our tree. The Age registration variable is not retained in the rest of the analysis because
it leads to a discretization that is too thin (i.e., with too many levels). This is due to a low predictive
power of this variable. We end up with the variables presented in Tab. 2.2.

To select the best GLM model, we exhaustively search among the possible models with our variables
subset. The resulting model is called GLM policy in Tab. 2.3.
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Tab. 2.2: Description of the policy variables for the GLM and their modalities after discretization

Variable Description Modalities

Age Driver’s age (18, 24], (24, 32]
License seniority The duration since the license

was obtained
(0, 2.6], (2.6, 7.5], (7.5, 12]

Area The provinces of Belgium and
the capital Brussels

Antwerp, East Flanders, Flem-
ish Brabant, Limburg, West
Flanders, Hainaut, Liège, Lux-
embourg, Namur, Walloon Bra-
bant, Brussels-Capital Region

Fuel Fuel type diesel, petrol
Gender Gender of the insured male, female
Kwatt Power of the vehicle (21, 42] (42, 160]

Tab. 2.3: Best GLM models with policy variables

GLM policy
(Intercept) −2.29 (0.15)∗∗∗

Gender male 0.32 (0.08)∗∗∗

Flemish Brabant 0.24 (0.22)
Walloon Brabant 0.16 (0.21)
West Flanders −0.24 (0.19)
East Flanders −0.14 (0.19)
Hainaut −0.24 (0.15)
Liège 0.04 (0.16)
Limburg −0.12 (0.21)
Luxembourg −0.61 (0.33)
Namur −0.34 (0.22)
Brussels-Capital 0.26 (0.20)
License seniority [2.6, 7.5) −0.38 (0.09)∗∗∗

License seniority [7.5, 12) −1.40 (0.42)∗∗

AIC 4895.89
BIC 5014.89
Log-likelihood -2431.94
Deviance 3673.77
5-fold strat. CV - Poisson deviance Loss 0.2952532
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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2.2.5 Nonparametric approach: tree-based models

The random forest proposed by Breiman (2001) and boosted trees, such as gradient boosting J. H.
Friedman (2001) and XGBoost Chen and Guestrin (2016), rely on the same weak learner: the
regression tree. Nevertheless, in car insurance pricing, the target is a counting variable; therefore,
it may be useful to adapt these methods to a Poisson distribution. The Poisson regression tree is
implemented in the rpart package Therneau, Atkinson, et al. (2015). A comprehensive study of
Poisson tree ensemble methods is proposed by Wuthrich and Buser (2017). The methods we are
interested in use Poisson regression trees as base learners, which is not particularly common. This is
why we develop hereafter some theoretical elements.

2.2.6 Poisson regression trees

Let xi = (x(1)
i , . . . , x

(p)
i ) be a vector of characteristics for an individual i with xi ∈ X = R

p. We
assume all variables are numerical and yi ∈ Y = R

+ is our numerical target. If this is not the
case, we can encode our variables to bring us back to this case. As mentioned above, we assume
that the number of claims for each observation (Ni, xi, ωi), i = 1, .., n follows a Poisson law with
expectation:

E[Ni] = f(xi)ωi

where f : X −→ Y is a regression function to be determined. Regression trees do not make
assumptions about the structure of the function f . Indeed, the regression tree recursively splits the
variable space X into I regions (Ri)i∈{1,..,n}. A region can be seen as a p-dimensional rectangle of
the space. These rectangular regions form a partition of X , meaning that ∀i �= i′, Ri

⋂
Ri′ = ∅ and⋃I

i=1 Ri = X . For each region, a frequency λi is estimated and will be the predicted value by the tree
in that region. By denoting R = {Ri}I

i and Λ = {λi}I
i , it becomes possible to define a regression

function over the entire space:

f(xi; R, Λ, I) =
{

X −→ Y
xi −→ ∑I

i=1 λi1xi∈Ri .

The Poisson regression tree uses a different objective function from the classical regression tree
described by Breiman et al. (1984) to perform its splits. Each node of a tree is associated with
a p-dimensional rectangular cell. At each node Rl, the algorithm looks for the variable and the
threshold z ∈ R that minimize the Poisson deviance resulting from the split:
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min
(j,z)∈CRl

⎡
⎢⎣min

λ0≥0

∑
{k=1,..,n s.t xk∈Rl, x

(j)
k

<z}
D∗(Nk, λ0) + min

λ1≥0

∑
{k=1,..,n s.t xk∈Rl, x

(j)
k

≥z}
D∗(Nk, λ1)

⎤
⎥⎦

where j represents the index of the split variable at node Rl, CRl
the set of all possible cuts in node

Rl and D∗(Nk, λ) is the Poisson deviance loss for a single observation. It can be expressed as:

D∗(Nk, λ) = 2(lN (Nk) − lN (λ))

with the log-likelihoods lN (λ) = ∑
k [−λωk + Nk log (λωk) − log(Nk!)] and lN (Nk) = −λωk+Nk log (λωk)−

log(Nk!). The region Rl is split into two subregions Rl,0 = {x ∈ Rl s.t x(j) < z} and Rl,1 = {x ∈
Rl s.t x(j) ≥ z} whose claim frequencies λl,0 and λl,1, respectively, can be calculated explicitly by
maximum likelihood methods. Let τ = {0, 1}; then:

λl,τ = arg min
λτ ≥0

∑
{k=1,..,n s.t xk∈Rl,τ }

D∗(Nk, λτ ) =
∑

{k=1,..,n s.t xk∈Rl,τ } Nk∑
{k=1,..,n s.t xk∈Rl,τ } ωk

.

It is possible to view this problem as the search for the split that minimizes the sum of deviances
D∗

Rl,0
(N, λl,0) + D∗

Rl,1
(N, λl,1), where the Poisson deviance loss inside the regions Rl,τ , τ = {0, 1}

generated by the split is:

D∗
Rl,τ

(N, λl,τ ) =
∑

{k=1,..,n s.t xk∈Rl,τ }
2Nk

[
λl,τ ωk

Nk
− 1 − log

(
λl,τ ωk

Nk

)]

where the right-hand side is set equal to 2λl,τ ωi if Ni = 0.

2.2.7 Fitting tree ensemble models

Multiple packages for random forest and gradient boosting exist. For example, gradient boosting
is implemented in XGBoost, CatBoost, LightGBM, h2o GBM or gbm (R packages). Each of these
packages has its own subset of specific features but relies on an aggregation of tree learners. In
this article, we focus on claim frequency modeling, and we want to implement it using a Poisson
distribution with tree-based methods. We also require an implementation that handles an offset
variable. Hence, we choose the R packages RfCountData1 for random forest and h2o.gbm (package
h2o) for gradient boosting.

1https://github.com/fpechon/rfCountData
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For the random forest and the gradient boosting, we replace the values of numerical variables by
their rank divided by the number of rows in the dataset. Hence, each predictor is between 0 and
1. The preprocessing helps tree ensemble methods to learn and is useful for the extraction method.
Furthermore, it partially anonymizes data and results. We do not apply other preprocessing since
these methods have a mechanism to deal with nonlinearity. Moreover, the implementations we have
chosen automatically manage categorical variables. As with GLM, we transform our GPS coordinates
into a variable indicating in which administrative region of Belgium the policyholder lives.

Hyperparameter search for machine learning models

Telematics data are fairly recent and often have a high number of predictors. It is therefore interesting
to use tree-based methods to explore them and extract new knowledge. Indeed, tree-based method
learning mechanisms handle interactions between predictors and make it possible to process a large
volume of predictors without being sensitive to the correlation between them. Moreover, in most
cases, these methods require few hyperparameters to be tuned for performance. In our case, however,
we will perform a grid search for hyperparameters. This consists of defining a set of possible values
for each hyperparameter we want to tune and then testing all possible combinations. This means that
the number of models to test is equal to the product of the number of elements of each set. This will
help us to obtain good models with respect to our metric.Tab. 2.8 and Tab. 2.9 in Appendix 2.5.3
indicate that we have to test, respectively, 576 random forest models and 2520 gradient boosting
models.

2.2.8 Evaluation setup

We evaluate the models with the mean Poisson deviance loss. To select the best model among
those proposed on the grids, we perform a 5-fold stratified cross validation. The Poisson deviance is
evaluated on the holdout samples. Chapter 1 of Wuthrich and Buser (2017) explains the procedure
in detail. Each model of the grids, including the reference GLM, is evaluated with this process. First,
we apply this methodology on the dataset containing only policy variables to find policy models.
Subsequently, we evaluate with the same principle only the random forest and gradient boosting on
the dataset containing policy variables and telematics variables. The results are shown in Tab. 2.4.
RF policy has a lower performance than GLM policy but GBM policy is slightly better than GLM
policy. With few numerical variables, tree-based methods do not perform well. This can partially
explain why the tree-based methods do not systematically outperform GLM policy. In the following
section, after presenting the surrogate extraction method, we will display the rules learned by the
model. We observe that with more explanatory variables, tree-based models are significantly better
than the reference GLM. There is therefore a signal in the telematics variables, and it is easily captured
by tree-based models. Once again, we will use the surrogate extraction method to display the new
knowledge acquired by tree-based models.
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Remark 8 In Tab. 2.4, we only display the parameters that override the default parameters.

Tab. 2.4: Table of allowed hyperparameters for grid search.

Model name Description Hyperparameters 5-fold strat. CV (×10−2)
GLM policy Reference GLM fitted

exclusively on policy
variables

None 29.52532

RF policy A random forest fitted
exclusively on policy
variables

nodesize = 1200,
ntree = 50,
maxnodes = 32,
mtry = 1

29.57799

GBM policy A gradient boosting
machine fitted exclu-
sively on policy vari-
ables

learn_rate_opt =
0.01,
max_depth_opt = 5,
sample_rate_opt =
0.8, min_rows =
2000,
col_sample_rate_opt =
0.3, ntree = 400

29.51324

RF policy +
telematics

A random forest fitted
on policy and telemat-
ics variables

nodesize = 800,
ntree = 30,
maxnodes = 12

28.98369

GBM policy +
telematics

A gradient boosting
machine fitted on
policy and telematics
variables

learn_rate_opt =
0.03,
max_depth_opt = 1,
sample_rate_opt =
0.9, min_rows =
2500,
col_sample_rate_opt =
0.8, ntree = 400

28.84483

2.2.9 Limitations of existing explainability methods

Before describing the surrogate extraction method, we present the limitations of the currently used
methods to interpret the models. We only introduce the most commonly used methods in insurance
companies. Now, let us take a look at the most widely used method among practitioners, the so-called
variable importance. Different definitions of the variable importance plot exist. We use the one that
consists of fitting a tree-based model and then for each variable, randomly swap values for each
observation and measure the difference between the mean Poisson deviance loss before and after
the perturbation. The latter gives us a first idea of the variables that seem relevant to the model.
Unfortunately, it does not provide information about the influence of predictors on the outcome of
the black-box. For example, it is impossible to know the impact of a change in a predictor’s value. We
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present the variable importance plots for the random forest fitted on policy variables in Fig. 2.5 and
on policy variables and telematics variables in Fig. 2.6.

Fig. 2.5: Variable importance for RF policy
Fig. 2.6: Variable importance for RF policy +

telematics

The variable importance plot of RF policy is consistent with our exploratory data analysis. The
most influential predictors are License seniority, Age, Gender and Area. Considering now the RF
policy + telematics variable importance plot, we see that among the 9 most influential predictors,
RF policy + telematics mostly relies on telematics variables but we cannot tell more from these
plots.

Let us continue the analysis with a second common analysis tool: the partial dependence plot (PDP).
It was first described in J. H. Friedman (2001). In its univariate version, all variables are fixed
except one. A first dataset is created by replacing all the values of this variable of interest by the
first value of a range, often the min and max of this variable. Then, the black-box model predicts on
this dataset, and the mean of the responses is taken. The process is repeated with the next values of
the range. Thus, it is possible to visualize the mean response of the black-box model as a function
of this variable. We represent these plots for License seniority as a variable of interest for our
two fitted random forests in Fig. 2.7 and Fig. 2.8. We are seeing an already observed effect on the
data. The claim frequency decreases with License seniority on both plots. It is consistent with
our univariate analysis and our general knowledge in motor insurance, but this cannot help us to
display a clear decision chain from our two random forest models. We could have represented the
response of our black-box models based on the crossover of two variables, but we could not have
gone much further in understanding these models. Indeed, if we want to be exhaustive, we would
need p graphs from the univariate point of view and p(p − 1)/2 from the bivariate point of view. It
means 28 graphs for the simple model on policy variables and 1891 graphs on policy and telematics
variables. It quickly becomes prohibitive because it is not parsimonious. Furthermore, we cannot
represent more than two variables all at once.

Another criticism that can be made of PDPs is that they mask the variability associated with the
remaining variables. Indeed, our random forest models predict not only with the License seniority
but also with the rest of the "frozen" predictors. The ICEplot method from Goldstein et al. (2015)
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Fig. 2.7: Partial dependence plot of RF policy
Fig. 2.8: Partial dependence plot of RF policy +

telematics

tries to add some supplemental information. However, it suffers from the same parsimony problem
as the PDPs. Therefore, PDPs complement the variable importance. Nevertheless, the information
provided by this method is still very incomplete.

From this, we conclude that currently used methods in insurance companies bring us insights on our
models but are not sufficient. Indeed, they fail to extract a transparent and parsimonious set of rules
describing the tree-based model’s variations. From now on, we will focus on clarifying the main rules
identified by the fitted Poisson random forest.

2.3 Extracting a surrogate

A practical application of Poisson random forests has been developed in Sect. 2.2.2. At this point,
how can we explain the fitted tree-based model? The problem we are trying to solve is a specific
approach to the larger "open the black-box problem". We begin this section by presenting the general
problem of machine learning model interpretability and explain our specific approach. Then, we
present the necessary theoretical elements of the surrogate extraction method.

2.3.1 Basic notions of intelligibility

According to Guidotti et al. (2019) and Doshi-Velez and Kim (2017), the word "interpret" in machine
learning means to explain or to provide the meaning of some concept in understandable terms to a
human. An explanation is then an interface between humans and the machine that is an accurate
and comprehensible proxy of the black-box. In practice, each community has its own definition of
explanation. This means that an explanation can take a wide variety of forms depending on how
the models are used. For example, in computer vision, the explanation often takes the form of an
image on which red or green pixels are overlaid according to their contribution to the prediction. In
contrast, for medical decision support applications, physicians want to understand the full reasoning
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behind the model. The explanation is therefore often sought in the form of weights, rules or trees.
For pricing actuaries, it is important to have a thorough understanding of the pricing model as the
impact of a poorly priced product could be significant for the company. According to each definition
of explanation, four different approaches have emerged to tackle the "open the black-box problem".
They are summarized in Fig. 2.9.

Fig. 2.9: Different machine learning model intelligibility approaches, Source: Guidotti et al. (2019)

The method presented below is used to answer either the "black-box model explanation problem"
or the "transparent box design problem". We only deal with the first one here. Thus, we look
for a surrogate model (our explainer) that reproduces as much as possible the predictions of our
black-box Poisson tree-based model. From the definitions above, the surrogate model has to fulfill
two objectives:

• be understandable by humans. In our case, it is equivalent to setting a limited number of
regions denoted by K. This will be represented by a decision tree with only K leaves.

• be faithful to the black-box Poisson tree-based model. In machine learning model intelligibility,
this is called fidelity. We want to measure this fidelity to be confident about the quality of the
explanation. If we denote by fbb and fsur, respectively, the black-box regressor and its surrogate
and ȳbb the mean of the black-box response, we evaluate the fidelity as:

fidelity = 1 −
∑n

i=1 (fbb(xi) − fsur(xi))2∑n
i=1 (fbb(xi) − ȳbb)2 .

Remark 9 This is the R2 metric between predictions of the black-box Poisson tree-based model and the
predictions of the surrogate with K leaves.
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2.3.2 Additive tree models

As mentioned above, the regression tree is the basic component of many efficient methods but also
more sophisticated. This is why we have detailed it in Sect. 2.2.6. Now, we describe additive tree
models following the definition of Cui et al. (2015). This abstraction layer gives a common formalism
to most tree-based methods. Since the surrogate extraction method applies to ATMs, we will be able
to explain a large number of models.

Definition 1 An additive tree model is a set of regression or classification trees that are combined in an
affine manner. Mathematically, an ATM takes the following form:

F : xi −→ w0 +
T∑

t=1
wtft(xi; Rt, Λt, It)

where ft(xi; Rt, Λt, It) is the output of the tree t = 1, .., T for the observation xi and wt ∈ R is the
weight of the tree t among the tree ensemble. We recall that Rt is the t-th partition, Λt is the set of
predicted values associated with Rt and It is the number of regions in Rt.

Remark 10 There are several references with similar names to additive tree models in the literature.
These include chapter 10 of Hastie et al. (2009) and J. Friedman et al. (2000) and J. H. Friedman (2001).
These are closely related concepts. However, these references are only associated with tree-based boosting
methods such as multiple additive regression trees (MART) and gradient boosting machines, for example.
We need a more general definition that can also include models derived from bagging, such as random
forest or extremely randomized trees Geurts et al. (2006). In Chipman et al. (2010), the authors refer to
the concept we need in terms of "sum of trees" models and establish a link with additive models. In this
article, we are interested in a method of post hoc interpretability, i.e., it considers that the black-box
model is already fitted. Therefore, we are not interested in how the methods learn and combine trees but
just in the result of this aggregation. This is why we choose to follow the proposed Definition 1.

This definition formalizes and generalizes the classical point of view about tree-based methods.
Indeed, we can see that each prediction of an ATM is a weighted sum of tree predictions.

Now, we slightly change our point of view to build the framework for the surrogate extraction method.
First, it is worth noting that a binary tree is a partition of the covariate space R

p. From this, we
can see an ATM as the crossing of T partitions of the same space R

p and a linear combination of T

68



Fig. 2.10: The first two partitions of R2 are crossed to form Rc = {Rc,i}Ic
i=1.

predictions (one for each tree). A two-dimensional example is displayed Fig. 2.10. The first two
partitions are crossed to form the last. Thus, we need to define what crossing two partitions is.

Definition 2 (Cross-partition)

Let us define R1 = {R1,i}I1
i=1, R2 = {R2,i}I2

i=1 two partitions of the same space R
p. We define the

cross-partition by the collection:

Rc = R1 ∩ R2 = {R1,i ∩ R2,k | i = 1, .., I1, k = 1, .., I2}\{∅}.

Remark 11 The cross-partition is a partition. See Appendix 2.5.1

Let xi ∈ R
p, and Rc = {Rc}C

c=1 and Λc = {λc}C
c=1, respectively, be the cross-partition containing

C regions and the predicted values inside each region. The previous lemma means that after the
fitting step, an ATM is a partition of Rp. Hence, we can write the prediction for xi similar to a tree
prediction

F (xi) =
C∑

c=1
λc1xi∈Rc .

Let us denote by Rc′ the hyperrectangle to which xi belongs. By construction, Rc′ = ⋂T
t=1 Rt,kt .

Then, for each t = 1, .., T , there exists kt such that xi ∈ Rt,kt and ft(xi; Rt, Λt, It) = λt,kt . Hence,
from the classical point of view, we can alternatively express the prediction for xi as follows

F (xi) =
T∑

t=1
ωtft(xi; Rt, Λt, It) =

T∑
t=1

ωtλt,kt .
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Therefore, if we set λc
′ = ∑T

t=1 ωtλt,kt , it is easy to see that obtaining the ATM’s prediction for xi is
equivalent to finding the cell containing xi in the cross-partition and predicting a linear combination
of tree predictions.

Remark 12 If we combine multiple ATMs linearly, which means that the predicted values within the
cross-partition’s regions can be expressed as a linear combination, the result is still an ATM. This is
interesting because we can combine a random forest and gradient boosting linearly and keep ATM
properties. Hence, we could use the technique that we will describe in Sect. 2.3.3 to explain the resulting
model.

2.3.3 Defragmenting the space

One of the main difficulties when trying to explain the results of an ATM is that the number of trees
leads to a significant increase in the number of regions and therefore in the number of rules. By
approximating the set of trees by a small number of larger regions we should be able to obtain a
simple surrogate model that is faithful to the black-box model.

Problem

Knowing the G regions generated by the crossing of the partitions of the fitted Poisson ATM R =
{Rg}G

g=1 and its predicted values Λ = {λg}G
g=1 in these areas, we want to find K << G regions

R′ = {R
′
k}K

k=1 and their predicted values Λ′ = {λ
′
k}K

k=1 so that

R2 = 1 −
∑n

i=1 (fbb(xi) − fsur(xi))2∑n
i=1 (fbb(xi) − ȳbb)2

the value characterizing the percentage of variations explained by the surrogate is as high as possible.
The parameter K is arbitrarily chosen by the user. To address this problem, we adopt an approach
developed by Hara and Hayashi (2016) and Hara and Hayashi (2018).

Remark 13 If the surrogate has only one leaf that predicts the mean response of the black-box, i.e.,
fsur = ȳbb, then R2 = 0. Furthermore, if the surrogate predicts exactly the predictions of the black-box
model, then R2 = 1. Nevertheless, this metric is not lower bounded by 0. As a consequence, a bad
surrogate can generate a negative R2.
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Informal description of the objective

The idea of the method we present is based on generative models. These models try to provide the
joint probability distribution of the pair (Yi,bb, Xi), where Yi,bb is a random variable representing the
ATM’s black-box prediction and Xi is a random vector of characteristics. Realizations of Yi,bb and Xi

are denoted by yi,bb and xi respectively. In our case, we want to express a slightly different probability
distribution. We need to introduce s(xi), the binary representation of xi. We denote by Si the
random vector of this binary representation. This representation will be detailed in Sect. 2.3.3. Hence,
we aim to express the probability distribution of (Yi,bb, Si) as a function of the ATM’s parameters. For
this, we will use a mixture of experts model introduced by Robert A. Jacobs, Michael I. Jordan, and
Barto (1991) and Robert A. Jacobs, Michael I. Jordan, Nowlan, et al. (1991). A mixture of experts
consists of a set of specialized models each of which is responsible for a particular region of the
input space. The concept was extended to hierarchical mixture of experts by Michael I Jordan and
Robert A Jacobs (1992) and M. Jordan and R. Jacobs (n.d.) For an overview see McLachlan and
Peel (2000). In this setting, we suppose that the probability distribution of (Yi,bb, Si), denoted by g,
can be written in the form :

g(yi,bb, s(xi); Π) =
K∑

k=1
αkgk(yi,bb, s(xi); θk) (2.1)

where gk(yi,bb, xi; θk) is a probability distribution parametrized by the vector of parameters θk,
Π = {α1, . . . , αK , θ1, . . . , θK} is the set of unknown parameters, and αk are nonnegative quantities
that sum to one, i.e.,

K∑
k=1

αk = 1.

Hence, in a mixture of experts model, there are two types of components. The first ones are the K

modules also called experts. These last approximate the probability distribution of (Yi,bb, Si) within
each region of the covariate space. It is assumed that different experts are appropriate in different
regions of the covariate space. Thus, by modifying these modules, it is possible to adapt this method
to a wide variety of problems. According to our developments in Sect. 2.2.6, it seems appropriate
to search for regions in the form of rectangles of dimension p. Hence, the experts’ parameters θk

are taken to characterize the region indexed by k and the prediction within. The second type of
component is a module to identify for any s(xi) the expert module whose output is most likely
to approximate the probability distribution of (Yi,bb, Si). This is the role of the mixing proportions
αk, the probabilities that an instance s(xi) belongs to the region k. Once the components of the
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model are expressed as a function of the parameters, we can formalize the problem as a maximum
likelihood problem to obtain the parameters of our mixture of experts, i.e.,

max
Π

log (g(yi,bb, s(xi); Π)).

In this kind of situation, it is quite common to use the EM algorithm. Before developing the elements
related to the EM algorithm framework, we have to propose an expression for the expert probability
distributions. This is the purpose of the next sections.

Binary expressions of the regions and the observations

Before going into the detail of the mixture of experts, we need to introduce the binary representation
of regions and observations. Suppose that the tree ensemble generated a set of Lj splits for each
variable j ∈ {1, .., p}. We denote by L the total number of splits for the tree ensemble:

p∑
j=1

Lj = L.

To simplify notation, we re-index the thresholds by zl with l ∈ {1, .., L} and introduce dl as the index
of the variable split at zl. According to Sect. 2.3.2, these trees form a partition of the space. It
means that a region Rg ∈ R can be uniquely characterized by a binary vector η̃g ∈ {0, 1}L. The l-th
component of this vector η̃gl

is equal to 1 if all xi that fall into Rg satisfy the statement xi,dl
> zl,

and η̃gl
= 0 otherwise. This is illustrated in Fig. 2.11. The thresholds of the splits are denoted by

zl, l ∈ {1, 4}. The first element of the binary vector η̃2 is equal to 1 because there are only x2 and
x10 in R2 and they both satisfy x.,1 > z1. The second element is 0 because x.,1 ≤ z2 and so on.

We now need a similar expression to characterize whether an observation is inside a region or not.
Let us define by s(xi) ∈ {0, 1}L the binary expression of an observation xi where the l-th element sl

is equal to 1xi,dl
>zl

. This is also represented in Fig. 2.11. Now, if we want to determine whether an
observation is inside a specific region Rg, it is equivalent to comparing the two vectors s(xi) and η̃g.
This is useful to represent the region shapes of the (deterministic) ATM, but we are not able to derive
a generative model if we do not make this representation more flexible.

In fact, we want to express the probability of a binary representation for an observation as a function
of the shape parameters. Therefore, for any macro region Rk, we want to express the probability to
observe a binary representation of xi. This is because now, the region Rk contains a mix of binary
representations for xi. See Fig. 2.12. The region Rk can "generate" different binary representations
for the observations it contains. The idea to extend the definition of shape parameters to fit our needs
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Fig. 2.11: Binary expression of an ATM’s regions

Fig. 2.12: Binary expression of an arbitrary region Rk. The component ηk,1 is equal to 6
13 because six points

are above the threshold z1. Note that the vector component does not sum to one.

is based on the fact that in Rk, some xi satisfy the statement xi,dl
> zl, while some others do not. We

denote by ηk this extended version of the vector of parameters. We can naturally think of ηkl as a
probability for an xi to meet the condition xi,dl

> zl. Therefore,

• if all xi ∈ Rk satisfy the statement xi,dl
> zl, then ηkl = 1;

• if no xi ∈ Rk satisfy the statement xi,dl
> zl, then ηkl = 0, which is the case for thresholds z2

and z4 in Fig. 2.12;

• if some xi ∈ Rk satisfy the statement xi,dl
> zl, then ηkl = P (xi,dl

> zl). It is the case for
thresholds z2 and z3 in Fig. 2.12.
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As proposed by Hara and Hayashi (2018), we choose a Bernoulli distribution for Si the random
vector of binary representations s(xi). We denote by b this probability distribution:

b(s(xi); ηk) =
L∏

l=1
ηsl

kl
(1 − ηkl

)(1−sl)

where ηkl
= P (sl = 1) = P (xi,dl

> zl). Now, we have a generative model for the binary representa-
tion of xi as a function of ηk.

Probabilistic expression of the experts

We have just defined the probability distribution of the binary expression of an observation as a
function of the parameters ηk. To complete our mixture of experts expression, we have to introduce
φk as the parameters on which the surrogate’s prediction depends within a region indexed by k.
Hereafter, θk is written as (ηk, φk). Considering this, we can rewrite equation (2.1):

g(yi,bb, s(xi); Π) =
K∑

k=1
αkgk(yi,bb, s(xi); ηk, φk).

Let us introduce Ui as a binary random vector such that the k-th element of this vector is 1 if the i-th
observation belongs to the region k. We denote by Ui,k the k-th element of the random vector Ui:

Ui,k =
{

1 if xi ∈ Rk

0 elsewhere.

Suppose that the conditional probability distribution of (Yi,bb, Si) given Ui = ek is the component
distribution gk(yi,bb, s(xi); φk, ηk), where ek denotes a binary vector taking the value 1 in it is k-th
component and 0 elsewhere. With this natural idea, we can generate (yi,bb, s(xi)) from our mixture
of experts. Thanks to this binary representation, we can write the probability for an observation to be
inside a region as a function of the mixing proportions:

P (Ui = ui)
def= p(ui; α) =

K∏
k=1

α
ui,k

k .

The introduction of Ui allows us to fit our likelihood maximization problem into the framework
of the EM algorithm. We now want to express the complete data log-likelihood, i.e., the observed
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variables and the unobserved random vectors. These latent vectors allow us to express the joint
probability distribution (Yi,bb, si, Ui) as a function of the parameters φk, ηk, α. This expression can
be decomposed in the following way:

h(yi,bb, s(xi), ui; φk, ηk, α) = g(yi,bb, s(xi)|ui; φk, ηk)︸ ︷︷ ︸
(a)

× p(ui; α)︸ ︷︷ ︸
(b)

.

Next, we need to select a distribution for Yi,bb. We choose a Gaussian distribution, meaning that
φk = {λk, σ2

k}. We denote by q the probability distribution:

q(yi,bb; λk, σk) = 1
σ

√
2π

e
− 1

2 (
yi,bb−λk

σk
)2

.

Remark 14 Thanks to this flexibility on the distribution of Yi,bb, we can theoretically adapt the method
to find a surrogate of an ATM that performs Tweedie regression for example.

We make the assumption that Yi,bb and Si are conditionally independent given Ui = ui, where
ui = ek, so we can rewrite (a):

g(yi,bb, s(xi)|ui; φk, ηk, α) = q(yi,bb|ui; φk) × b(s(xi)|ui; ηk).

By definition of Ui,k we can further rewrite:

g(yi,bb, s(xi)|ui; φk, ηk, α) =
K∏

k=1
[q(yi,bb; φk) × b(s(xi); ηk)]ui,k .

Finally, we obtain our probabilistic expression for the ATM. We denote by h the probability distribution
of (Yi,bb, Si, Ui):

h(yi,bb, s(xi), ui; λk, σk, ηk, α) =
K∏

k=1
[q(yi,bb; λk, σk) × b(s(xi); ηk) × αk]ui,k

where each probability distribution is expressed as a function of parameters Π = {φ1, . . . , φK , η1, . . . , ηK , α1, . . . , α

From this expression, we can write the complete data likelihood for our problem and solve it with
the EM algorithm. We detail the calculation in Sect. 2.3.3.
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Solve the maximum likelihood problem with the EM algorithm

The random vector Ui allows us to formulate the problem as an incomplete data problem. Thus, we
can fit into the EM framework. Our observations Δ = {(y1,bb, s(x1)), . . . , (yn,bb, s(xn))} are seen as
incomplete since the associated Ui vectors are not observable. Recall that in this framework, we
assume that each observation comes from an expert module once fitted. It is the vector Ui that
encodes the belonging of an observation to a module. The complete observations are therefore
{(y1,bb, s(x1)), . . . , (yn,bb, s(xn)), u1, . . . , un}. We can now write the complete data log-likelihood:

Lc(Π) =
K∑

k=1

n∑
i=1

ui,k [log (αk) + log (q(yi,bb; λk, σk)) + log (b(s(xi); ηk))].

Now, we apply the EM algorithm considering ui,k are missing data. This method first introduced
by Dempster et al. (1977) alternates between two steps, the expectation step denoted by E and
the maximization step denoted by M to solve the log-likelihood maximization problem. In the
E step, the algorithm tries to find a lower bound given the current parameter estimation Π(t) =
{φ1

(t), . . . , φK
(t), η1(t), . . . , ηK

(t), α
(t)
1 , . . . , α

(t)
K }. The superscript t indicates the states at the t-th

iteration. The M step searches for the parameters Π(t+1) that maximize the lower bound found in the
E step.

E step

In the E step, we take the conditional expectation of the complete data log-likelihood given the
observed data Δ using the current fit Π(t). Let us denote by Q the lower bound we try to find in this
step. This can be written :

Q(Π; Π(t)) = EΠ(t) [log (Lc(Π)) | Δ].

To obtain the lower bound at step (t + 1), we only need to calculate the conditional expectation
of Ui,k given Δ. By noting that the complete data log-likelihood is linear in ui,k, this calculation
expectation simplifies as:
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EΠ(t) [Ui,k | Δ] = PΠ(t)(Ui,k = 1 | Δ)

= α
(t)
k

gk(yi,bb, s(xi); λ
(t)
k , ηk

(t))∑K
m=1 α

(t)
m gm(yi,bb, s(xi); λ

(t)
m , ηm

(t))
.

def= τk(yi,bb, s(xi); Π(t)).

The last quantity we defined, τk(yi,bb, s(xi); Π(t)), is the posterior probability that the observation
(yi,bb, s(xi)) belongs to the i-th module of the mixture of experts. We can now rewrite the lower
bound:

Q(Π; Π(t)) =
K∑

k=1

n∑
i=1

τk(yi,bb, s(xi); Π(t)) [log (αk) + log (q(yi,bb; λk, σk)) + log (b(s(xi); ηk))].

M step

To obtain the updated parameters Π(t+1) from this step, we need to maximize Q(Π; Π(t)) with respect
to Π. We can observe that this maximization problem can be broken into three simpler maximization
problems. On the one hand:

⎧⎨
⎩ max

α

∑K
k=1

∑n
i=1 τk(yi,bb, s(xi); Π(t)) log (αk)

s.t
∑K

k=1 αk = 1.

On the other hand:

⎧⎪⎨
⎪⎩

max
φ

∑K
k=1

∑n
i=1 τk(yi,bb, s(xi); Π(t)) log (q(yi,bb; λk, σk))

max
η

∑K
k=1

∑n
i=1 τk(yi,bb, s(xi); Π(t)) log (b(s(xi); ηk)).

We can find admissible solutions for the first maximization problem with the Lagrange multiplier
method. The last two problems can be classically solved by maximum likelihood. Finally, we obtain
the updated parameters ∀l ∈ {1, .., L}, ∀k ∈ {1, .., K}:
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α
(t+1)
k = 1

n

n∑
i=1

τk(yi,bb, s(xi); Π(t)), λ
(t+1)
k =

∑n
i=1 τk(yi,bb, s(xi); Π(t)) × yi,bb∑n

i=1 τk(yi,bb, s(xi); Π(t))

η
(t+1)
k,l =

∑n
i=1 τk(yi,bb, s(xi); Π(t)) × si,l∑n

i=1 τk(yi,bb, s(xi); Π(t))
, (σ2

k)(t+1) =
∑n

i=1 τk(yi,bb, s(xi); Π(t))(yi,bb − λ
(t+1)
k )2∑n

i=1 τk(yi,bb, s(xi); Π(t))
.

Remark 15 The objective function is not concave. As a result, the algorithm may get stuck in a local
maximum. This is why, in practice, we restart the method several times with a randomly defined starting
point.

We can observe that the regions no longer form a partition. This can cause several problems. On the
one hand, if two rectangles overlap, observations can belong to both at the same time. This can be
challenging in explaining the results. In fact, it is easier to understand a set of simple rules forming
a hard partition rather than a soft partition. By a soft partition, we mean that a point belongs to a
region with a given probability as opposed to a hard partition where a point belongs to only one
region with certainty. Furthermore, if there are empty spaces in this soft partition, an observation that
has never been seen can have any assigned area. In DefragTrees, this problem is handled by imputing
the average value of the ATM’s predictions to the new instance. However, this is unsatisfactory since
it does not provide information about the class to which this observation belongs. Therefore, it does
not provide an explanation. The problems we point out are related to the fact that DefragTrees
creates a soft partition of the space. However, to be easily explained, as humans, we prefer a hard
partition. This is why we propose an alternative version of DefragTrees in which we try to rebuild a
hard partition of space from the soft partition. To accomplish this, we use a modified version of the
classical regression tree. This version differs from the standard classification tree because the tree
is forced to choose its splits only among those created by the ATM, and the tree must have only K
leaves.

2.3.4 Extracting a tree from the fitted black-box claim frequency model

In Sect. 2.2.2, we fitted four claim frequency models with Poisson ATM. We checked these models
with classic tools at our disposal. Now, we want to go further in the explanations and extract
faithful trees from these last ones. In this article, we only focus on the two Poisson random forest
models, RF policy and RF policy + telematics, but the method presented above also works for
GBM policy and GBM policy + telematics. By extracting a tree surrogate, we want to understand
the predictions of RF policy to eventually detect problems. We also want to highlight what was
learned by RF policy + telematics to discover new interesting relationships between explanatory
variables and claim frequency.

In DefragTrees Hara and Hayashi (2018), the method we use and adapt to fit our needs, the only
parameter left to the user is K, the region number of our surrogates. This is why we fit this
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method with several arbitrary values of K ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16]. Hence, we are able to
evaluate the trade-off between the fidelity of the K region surrogates and the parsimony represented
by K. Since the objective function is not concave, the method can find local maxima for some random
initial states. Hence, we restart the algorithm 20 times for each K with a different seed. Then, we
select the most faithful model for each K.

Surrogate for RF policy

In Fig. 2.13, we present the fidelity/parsimony trade-off for RF policy. The R2 fidelity metric is
described in Sect. 2.3.3 and is evaluated on soft partitions. We compare these results to the ones
evaluated on hard partitions in Fig. 2.14. In this second case, it gives us the percentage of black-box
RF policy variations explained with only K leaves. As we can see, the results are not as good as
expected but not so bad considering that the 5-region surrogate captures approximately 75% of the
black-box prediction variability.

Fig. 2.13: Trade-off of Fidelity/Parsimony with RF
policy (soft partition)

Fig. 2.14: Trade-off of Fidelity/Parsimony with RF
policy (hard partition)

Remark 16 Intuitively, the more we add regions in the surrogate, the more we can accurately describe
the black-box variations. We see such a trend in the graphs, but we could not perform the calculations
for the maximum of regions because there are at least 12, 100 different regions in RF policy. Moreover,
it would be of little interest since we want to be parsimonious to ensure the explainability.

There is no recommended method to choose the number of regions. It is possible to use a kind of
elbow method thanks to the globally concave profile of the curves. Indeed, we can pick each method
that preserves as much as possible the fidelity with a parsimony constraint on K. Here, we choose
the 5-region surrogate that gives the best level of fidelity (approximately 75%) with the minimum
number of leaves (rules). Now, we may further be interested in representing the errors of RF policy’s
surrogate predictions within each region. This is presented in Fig. 2.16. The relative errors made
by the 5-region surrogate are inferior at 10% in absolute value for most of the observations. Even
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Fig. 2.15: RF policy’s predictions by region.
Fig. 2.16: RF policy’s relative errors by region.

though the surrogate makes mistakes when predicting the RF policy’s predictions because of its
small number of regions, it is faithful to the black-box predictions.

Fig. 2.17: The 5-region surrogate for the RF policy model. Each leaf represents a region numbered from 1
to 5. Please note that Fig. 2.15 and Fig. 2.16 refer to these regions.

The examination of these plots makes us confident of the faithfulness of our surrogate. We show in
Fig. 2.17 the surrogate as a tree. On this tree, we can clearly see that RF policy relies on Age and
License seniority, which are two correlated predictors. Unlike the GLM, we do not have to take
care of correlated predictors since trees, and therefore the random forest, are known to be insensitive
to correlated variables. Nevertheless, if we include those predictors in the training set, the random
forest creates many splits because of the sampling mechanisms on Age and License seniority.
Because of this, the space is unnecessarily fragmented and therefore harder to understand. We can
also observe that Area is not present in the surrogate. This is because this variable is not as important
as displayed predictors to explain black-box variability. Nevertheless, if we had selected a deeper
tree, we would have observed this predictor. From this surrogate tree, we can see that the RF policy
relies on variable/threshold couples that are relevant for actuaries. Unfortunately, in this case, we
cannot diagnose precisely the performance problem. To go further, it would be necessary to inspect
the RF policy’s predictions and compare them with those of the GLM.
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It is also interesting to note that the regions determined by the surrogate separate the RF policy’s
predictions relatively well as a function of the predicted claim frequency. We can see in Fig. 2.15
that individuals who fall into region 5 have a high predicted claim frequency compared to other
groups, for example. Hence, a surrogate is helpful to identify combinations of variables that can
explain the predicted claim frequency. In other words, it is useful to isolate the characteristics of
good and bad risks.

Surrogate for RF policy + telematics

In regard to the RF policy, we test different values for K to identify a good surrogate candidate. To
choose the parameter K of the surrogate, we use Fig. 2.18 and Fig. 2.19.

Fig. 2.18: Trade-off for the RF policy and
telematics (soft)

Fig. 2.19: Trade-off for the RF policy and
telematics (hard)

As we can see, finding an appropriate surrogate is now a more complex task because of the dimension
of the problem and the complexity of the random forest model. In fact, we need a deeper surrogate
tree to capture the variability of the black-box. For this one, we set K = 12 because it yields a
better fidelity score (approximately 63%) with the lowest number of regions. We display the tree
representing the surrogate in Fig. 2.22. We also represent a boxplot of errors by region in Fig. 2.21
and a boxplot of RF policy + telematics predictions in Fig. 2.20. We also show in Tab. 2.5
the predicted claim frequencies and the observed claim frequency in each region identified by the
surrogate model.

Remark 17 To implement the explainability models developed above, we modified the DefragTrees2 code.

According to the surrogate, the model seems to rely mostly on telematics variables. This surrogate
is completely explicit but hard to understand because we have relatively little experience with

2https://github.com/sato9hara/defragTrees
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Fig. 2.20: RF policy + telematics’s relative errors
by region.

Fig. 2.21: RF policy + telematics’s predictions by
region.

Fig. 2.22: The 12-region surrogate for RF policy + telematics model. Each leaf represents a region
numbered from 1 to 12. Please note that Fig. 2.20 and Fig. 2.21 refer to these regions. Furthermore,
regions 1 to 5 in the surrogate for RF policy are not the same as regions 1 to 5 in the surrogate
for RF policy + telematics.

Tab. 2.5: Predicted vs observed claim frequency by region.

Region Surrogate Random forest Observed claim frequency
1 6.69% 5.87% 3.75%
2 6.82% 6.83% 5.54%
3 8.35% 8.06% 8.82%
4 8.44% 8.51% 7.80%
5 8.82% 8.82% 7.47%
6 8.88% 8.83% 8.15%
7 9.12% 9% 9.50%
8 10.19% 9.86% 9.98%
9 11.82% 11.78% 12.98%

10 12.02% 12.07% 12.27%
11 12.79% 12.8% 14.73%
12 16.47% 16.69% 25.28%

telematics data and few general conclusions have been given in the literature. Hence, from an
actuarial point of view, it is hard to unequivocally accept this model.Indeed, humans tend to more
easily accept explanations that are in line with their knowledge. This phenomenon is explained
in Miller (2019). However, we can see that intuitive predictors such as the proportions of meters
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traveled between 19 h and 22 h meters_low2 or in a specific month intervene on part of the tree. In
the light of this knowledge extracted from RF policy + telematics, we were able to check that
there are drivers in the database who do not drive uniformly over the year. These drivers have very
high proportions of kilometers driven in certain months, in particular January, May, June, August,
September and December. In the remaining months of the year, these same drivers drive very little.
This, together with the driving slot, reflects occasional driving behavior. Given that the portfolio
is very young, it is likely that a significant portion of the portfolio is composed of students. These
students may occasionally use their car to drive home on weekends or vacations. Therefore, they do
not drive continuously. This may explain the lack of experience and consequently the claim frequency.
Thanks to the surrogate model, we were able to quickly extract knowledge and build a hypothesis.
Furthermore, we can observe that meters_low2 systematically discriminates riskier profiles. The
surrogate tree helps to discriminate between riskier and less risky profiles. These relationships are
free from variables such as License seniority. Hence, it would be interesting to integrate these
in an a posteriori tariff. Therefore, it can help reduce premiums for some individuals in this risky
population and, consequently, be more competitive.

Inspecting regions

Thanks to the surrogate, we have a partition of the feature space and we know approximately the
black-box predicted value inside. However, the surrogate does not necessarily use all the available
variables because of its shallow depth. As a consequence, some actuarially important variables
such as Gender and License seniority in the surrogate do not appear. This does not mean that
they are not used by the black-box model but that they are less useful for characterizing black-box
variations than those appearing in the surrogate. In fact, telematics variables occur higher up in the
surrogate tree. Therefore, they are more discriminating for RF policy + telematics than License
seniority. However, License seniority has not disappeared from RF policy + telematics and
is not useless. We represent in Fig. 2.23 the mean response of RF policy + telematics conditional
on the surrogate’s leaves. We thus seek to determine whether there remains explanatory power
carried by License seniority in each of the leaves. There is still a trend indicating that the more
experienced the driver is, the lower the frequency predicted by RF policy + telematics. However,
we can see that in leaves 1 to 5, this trend is very clearly attenuated. Thus, without using the License
seniority variable, the model isolates the riskiest profiles from the less risky ones. In the higher-risk
leaves, some explanatory power remains in the License seniority variable. However, it no longer
seems very useful in leaves 1 to 5.

In Fig. 2.24, we represent the proportion of male and female inside each leaf. We can observe that
in the surrogate regions associated with the highest claim frequencies, the proportion of males is
more important than the proportion of females. In contrast, the lowest predicted claim frequencies
are associated with a higher proportion of females. Each leaf represents a pattern in driving habits.
Thus, we see that there is a correlation between the less risky driving habits and a higher proportion
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of women. This would tend to confirm that the Gender variable is a proxy for more or less risky
behavior patterns. This had already been highlighted by Verbelen et al. (2018).

Remark 18 This analysis can also help to detect whether a black-box model discriminates according to
a particular variable. Hence, it can be useful for ethical challenges.

Fig. 2.23: Mean License seniority by areas for the RF policy + telematics model

Alternatively, we can decide to extract the patterns found by the surrogate to integrate them in a
classic GLM. In fact, many insurers are not ready to move to a fully data-driven strategy for car
insurance pricing. Here, we propose a simple alternative that consists of integrating the 2- or 3-level
interactions displayed in the surrogate and include them in a GLM.

Export new knowledge to GLM

Insurance companies are still very supportive of the GLM. Indeed, the lack of confidence in new
machine learning methods associated with IT systems that are often complex and costly to modify
does not encourage insurers to develop new technologies. This is why we propose an intermediate
technique that does not require the modification of an insurance company’s IT infrastructure. Since
we have a decision tree that faithfully replicates RF policy + telematics’s predictions, we have
high-order interactions at our disposal. We create a new variable that indicates the leaf an observation
falls into. Then, we add this variable to our GLM policy. To evaluate the relevance of this new
variable, we use a stratified cross-validation as before. In addition, we have a limited number of
variables at our disposal. Consequently, we can make an exhaustive search for the best model
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Fig. 2.24: Gender by areas for the RF policy + telematics model

among all possible combinations. We present the best models for GLM policy and GLM policy +
telematics in Tab. 2.3.

The integration of these new interactions in the GLM has made it possible to significantly reduce
the mean Poisson deviance loss. Moreover, the GLM policy + telematics model confirms the
interest of the identified interactions. Indeed, the variable containing the leaves was selected in the
best model. Moreover, we can see that leaves 7 to 11, which code for high claim frequencies, are
considered significant by the GLM policy + telematics model.

Thus, by integrating these new interactions, we have improved the GLM policy frequency model by
approximately 2% according to the Poisson deviance loss. This may not seem to be much, but tariff
variables generally have a fairly low predictive power. Thanks to DefragTrees, we were able to find
significant interactions for the GLM and thus enrich it. This makes it an efficient extraction process
since it requires little human intervention.
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Tab. 2.6: Statistical models

GLM Policy GLM Policy + telematics
(Intercept) −2.29∗∗∗ (0.14) −3.17∗∗∗ (0.36)
Gender male 0.32∗∗∗ (0.08) 0.26∗∗ (0.08)
Flemish Brabant 0.24 (0.22) 0.27 (0.22)
Walloon Brabant 0.16 (0.21) 0.19 (0.21)
West Flanders −0.24 (0.19) −0.17 (0.19)
East Flanders −0.14 (0.19) −0.12 (0.19)
Hainaut −0.24 (0.15) −0.21 (0.15)
Liège 0.04 (0.16) 0.04 (0.16)
Limburg −0.12 (0.21) −0.05 (0.21)
Luxembourg −0.61 (0.33) −0.53 (0.33)
Namur −0.34 (0.22) −0.29 (0.22)
Brussels-Capital 0.26 (0.20) 0.25 (0.20)
License seniority [2.6, 7.5) −0.38∗∗∗ (0.08) −0.40∗∗∗ (0.08)
License seniority [7.5, 12) −1.40∗∗∗ (0.41) −1.38∗∗∗ (0.41)
Leaf1 0.50 (0.35)
Leaf2 0.87∗ (0.39)
Leaf3 0.68 (0.36)
Leaf4 0.82∗ (0.36)
Leaf5 0.68 (0.35)
Leaf6 0.90∗ (0.38)
Leaf7 1.07∗∗ (0.37)
Leaf8 1.12∗∗ (0.36)
Leaf9 1.13∗∗ (0.41)
Leaf10 1.39∗∗∗ (0.35)
Leaf11 1.90∗∗∗ (0.36)
AIC 4897.47 4824.36
BIC 5001.60 5010.31
Log-likelihood −2434.73 −2387.18
Deviance 3679.35 3584.25
Num. obs. 12555 12555
5-fold strat. CV - Poisson deviance Loss 0.2952532 0.2898846
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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2.4 Conclusion

In this article, we introduced DefragTrees, a method for extracting a surrogate model from a large
class of black-box models, namely, additive tree models. We modified the initial method to produce a
tree-like output that is easier to understand for a human. Furthermore, we believe that this method
is more consistent than the current standards used in insurance companies such as the variable
importance and partial dependence plots. Indeed, DefragTrees tries to produce a tree that is faithful
to the ATM black-box while respecting the splits already made by the set of trees.

Through our case study, we managed to show that it is a useful tool to understand an ATM black-
box. Indeed, by displaying a clear decision chain for a human, it becomes easier to understand
tree-ensemble models. Moreover, this method is very useful in the case of new data such as telematics
data. These kinds of data often contain many numerical predictors that are often nonlinearly related
to the target. If we wanted to introduce them into a GLM model, for example, it would require
considerable analysis and discretization to achieve the best out of them. By extracting a clear
surrogate from our Poisson random forest fitted on the totality of the data, we were able to both
understand the relationships found by the ATM black-box and to reinject these relationships into a
GLM model to improve its performance. Finally, we audited the various regions that form the gross
partition of our surrogate model. Focusing on predictors known to actuaries, we found that gender
appears as a proxy for behavioral variables. This could potentially be used to create more ethical
models.
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2.5 Appendix

2.5.1 Results on partitions

Proof 1 The proof is organized in two parts. First, we prove that the reunion of R̃g elements covers Rp,
i.e.,

• For each x ∈ R
p, there exists i ∈ {1, .., I1} and k ∈ {1, .., I2} such that x ∈ R̃1,i ∩ R̃2,k.

Subsequently, we prove that the elements of R̃g are pairwise disjoint, i.e.,

• if R̃g,1 ∈ R̃g and R̃g,2 ∈ R̃g then R̃g,i1 ∩ R̃g,i2 = ∅.

Let x ∈ R
p, R̃1 be a partition of Rp, so there exists i ∈ {1, I1} such that x ∈ R̃1,i. Symmetrically, there

exists k ∈ {1, I2} such that x ∈ R̃2,k. Hence, x ∈ R̃1,i ∩ R̃2,k. It means that R̃1,i ∩ R̃2,k �= ∅ and prove
the first point.

Now, let us suppose that R̃g,1 ∈ R̃g and R̃g,2 ∈ R̃g. There exists i1, i2 ∈ {1, I1} and k1, k2 ∈ {1, I2}
such that R̃g,1 = R̃1,i1 ∩ R̃2,k1 and R̃g,2 = R̃1,i2 ∩ R̃2,k2 where R̃1,i1 , R̃1,i2 ∈ R̃1 and R̃2,k1 , R̃2,k2 ∈ R̃2.
Suppose that R̃g,1 ∩ R̃g,2 �= ∅, then there exists x ∈ R

p such that

x ∈ R̃g,1 ∩ R̃g,2 = (R̃1,i1 ∩ R̃1,i2) ∩ (R̃2,k1 ∩ R̃2,k2)

It means that x ∈ R̃1,i1 ∩ R̃1,i2 and hence that R̃1,i1 ∩ R̃1,i2 �= ∅. However, R̃1 is a partition. Therefore,
the only way that R̃1,i1 ∩ R̃1,i2 = ∅ is that R̃1,i1 = R̃1,i2 . The same argument holds for R̃2,k1 ∩ R̃2,k2 . It
follows directly that R̃g,1 = R̃g,2. Hence, we prove that if two elements of R̃g are not disjoint, they are
equal. This concludes the proof.
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Tab. 2.7: Table of predictors

Claims information

Claims Number of MTPL claims reported at fault during the policy period

Policy variables

Exposure The fraction of the year during which the insured was observed (at most
1)

Age Driver’s age
License seniority The duration since the license was obtained
Area The provinces of Belgium and the capital Brussels
Fuel Fuel type (diesel or petrol)
Gender Gender of the insured (male or female)
Kwatt Power of the vehicle

Telematics variables

Distance Distance driven by the insured during the policy period (in meters)
Yearly distance Rescaled Distance to a full year (in meters)
Trips Number of trips of the insured during the policy period
Average distance Distance driven on average by trip (Distance/Trips)
Road type Division of Distance into 4 road types (motorways, urban areas, abroad,

and other). We also have the proportion of meters within each type of
road.

Time slot Division of the Distance into 5 time slots (22h-6h, 6h-9h30, 9h30-16h,
16h-19h and 19h-22h). We also have the proportion of meters within each
time slot.

Month Division of the Distance into 12 months (january to december).
Season Division of the Distance into 4 seasons (spring, summer, fall, winter).
Week/weekend Division of Distance into week (monday to friday) and weekend (saturday

to sunday)

2.5.2 Exploratory data analysis

Exposure variable selection

To visualize the relationships between the claim frequency and explanatory variables, we represent a
scatter plot of the log claim frequency as a function of each continuous policy predictor: License
seniority, Age, and Age registration. Those graphs allow us to see immediately that there is
no log-linear relationship between these variables and the target. Hence, we need to discretize
continuous predictors to utilize the complex relationship between predictors and the target. As we
can see, there is a clear trend for License seniority: the more experienced the driver is, the lower
the claim frequency. This is less obvious for Age and Age registration. This is why we choose to
discretize our variables with a tree- based method described below.
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Fig. 2.25: Time as exposure Fig. 2.26: Distance as exposure

Remark 19 This dataset contains very few points. Sometimes, for the highest values of continuous
predictors, the claim frequency is null because no claim was reported. To represent this in Fig. 2.3, we
remove those points because the log is not defined for these observations. Moreover, the Kwatt variable
has too many zeros to be useful in a scatter plot. Therefore, we decided to represent only the discretized
variable.

2.5.3 Grid search

Tab. 2.8: Table of allowed random forest hyperparameters for grid search.

Hyperparameter Set of values

nodesize {50, 500, 800, 1000, 1200, 2000}
ntree {30, 50, 100, 200}
maxnodes {2, 4, 8, 12, 16, 32}
mtry {p ∗ 0.1� , p ∗ 0.3� , p ∗ 0.5� , p ∗ 0.7�}

Tab. 2.9: Table of allowed gradient boosting hyperparameters for grid search.

Hyperparameter Set of values

learn_rate_opt {0.01, 0.03, 0.1}
max_depth_opt {1, 2, 3, 4, 5}
sample_rate_opt {0.7, 0.8, 0.9, 1.0}
min_rows {50, 100, 500, 1000, 2000, 2500}
col_sample_rate_opt {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}
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3Tail-index partition-based rules extraction

„When solving a problem of interest, do not solve a more
general problem as an intermediate step. Try to get the
answer that you really need but not a more general one.

— Vladmir Vapnik

Abstract

The tail index is an important parameter that measures how extreme events occur. In many applied
fields, this tail index depends on covariates. In this paper we assume that it takes a finite number of
values over a partition of the covariate space. This article proposes a tail-index partition-based rules
extraction method that is able to construct estimates of the partition subsets and estimates of the tail
index values. The method combines two steps: first an additive tree ensemble based on the Gamma
deviance is fitted (which includes random forest and gradient tree boosting), second a hierarchical
clustering with spatial constraints is used to estimate the subsets of the partition. We also propose a
global tree surrogate model to approximate the partition-based rules while providing an explainable
model from the initial covariates. Our procedure is illustrated on simulated data. A real case study
that is valuable for insurance of wind damage caused by tornadoes is also presented.

Keywords: Tail index, Additive tree ensembles, Partitioning methods, XAI.

3.1 Introduction

A central topic in extreme value statistics is the estimation of the tail index that is directly related to
the tail behavior of random events. It is often assumed that this tail index is a constant independent
on explanatory variables while it is observed in many applied fields that covariates play an important
role in leading to extreme events. In this paper we are interested in the tail index estimation for heavy
tailed (i.e. Pareto-type) models when a multivariate random covariate X is observed simultaneously
with the variable of interest Y . We assume that the tail index function takes a finite number of values
over a partition of the covariate space.
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Non-parametric local estimators of the tail index function using Kernel regression methods and classi-
cal estimators of the tail index without covariables have already been proposed for a decade. Local
Hill type estimators have been introduced and studied in Goegebeur, Guillou, and Schorgen (2013),
Goegebeur, Guillou, and Stupfler (2015), Gardes and Stupfler (2013). Stupfler (2013) considered
the moment estimator introduced in Dekkers et al. (1989) and provided estimators for the three
domains of attraction. Daouia et al. (2010) studied the estimation of extreme quantiles under a
conditional Pareto-type model with random covariates and plugged a fixed number of such quantile
estimates in Pickands and Hill estimators (Pickands (1975), Hill (1975)). Gardes and Girard (2012)
generalized their method to the case when the covariate space is infinite-dimensional. More recently
Farkas et al. (2021) have proposed a regression tree method where the quadratic loss used in the
“growing” phase of the tree has been replaced by a log-likelihood loss based on the likelihood of
Generalized Pareto distributions.

However such previous non-parametric estimators of the tail index function are not able take into
account the assumption that this function only takes a finite number of values over the covariate
space. The aim of this paper is to provide a method to estimate both the partition subsets of the
covariate space as well as the values of the tail index function.

Rule-based methods are a popular class of techniques in machine learning and data mining that share
the goal of finding regularities in data that can be expressed in the form of simple rules. The most
common example is the IF-THEN rule which, from a condition based on the covariate X, provides an
associate estimates value for Y . Regression trees typically generate such rules where the condition is
build from intersections of sub-conditions like “the i-th component of X is larger or smaller than a
specific threshold”. Although these conditional statements can easily be understood by humans, they
generate a partition of the covariate space composed of rectangles that are not necessarily suitable to
depict regularities in data.

In this paper we are interested in a partition-based method which, from a small-size partition of the
covariate space, provides an accurate prediction for Y for any subset of the partition. We propose a
partition-based rules extraction method that combines two steps: first an additive tree ensemble based
on a specific deviance is fitted (which includes random forest and gradient tree boosting), second a
hierarchical clustering with spatial constraints is used to estimate the subsets of the partition.

Although our procedure provides a finite number of subsets of the covariate space and can make
accurate predictions by modeling the complex structure of the partition, it can be viewed as a
black-box model producing predictions without explaining how the partition subsets have been made
from the covariate vector X. Interpretability techniques can then come into play by providing a lens
through which the complex structure of the partition can be viewed. Therefore we also propose a
global tree surrogate model to approximate the partition-based rules while providing an explainable
model from the initial covariates. This surrogate model combines a binary encoder representation of
the additive tree ensemble with a regression tree.
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The rest of this paper is structured as follows. Section 2 presents the model and its assumptions, and
then details the methodology. Section 3 first illustrates our approach on simulated data and then
provides an application to insurance that is valuable for wind damage caused by tornadoes. Section
4 concludes this paper.

3.2 Methodology

The goal of supervised learning is to predict a scalar random variable Y by a covariate vector
X ∈ X where X is called the covariate space and is assumed to be included in R

p. We denote by
P = {Ai : i = 1, . . . , I} a small-size partition of X .

3.2.1 Model

Let Z be a positive, real-valued and heavy-tailed random variable. We assume that its conditional
distributions given X are characterized in the following way

P (Z > z| X = x) = z−α(x)L (z; x) , z > 0, x ∈ X ,

where

α (x) =
I∑

i=1
αiI{x∈Ai} > 0, x ∈ X ,

is the (unknown) tail index function that characterizes the dependence of the tail behavior of Z on
X, and L (z; x) are slowly varying functions in the sense that limz→∞ L (tz; x) /L (z; x) = 1 for any
t > 0 and x ∈ X .

We seek to estimate the Hill index function ξ (x) = α−1 (x) from a set of independent random
variables Dn = {(Zi, Xi)i=1,...,n} distributed as the independent pair (Z, X). To do this, we introduce
a family of positive threshold functions tu (·) = ut (·) with u > 0 and where t : X → R+ satisfies
infx∈X t (x) > 0. We only keep the observations (Zi, Xi) for which Zi > tu (Xi) for a large u. Let
us define Y (u) = ln (Z/tu (X)) given Z > tu (X) and note that the distribution of Y (u) may be
approximated by an Exponential distribution with mean ξ (x) since

lim
u→∞ P (Y (u) > y|X = x) = e−α(x)y, y > 0.

We will therefore work with the set of observations D(u)
n = {(Y (u)

i , Xi) ∈ Dn : Zi > tu (Xi)} in order
to build an estimate ξ

(u)
n : [0, 1]p → R+ of the Hill index function ξ, and we will use an appropriate

loss function adapted to Exponential distributions.

For this purpose, we consider the Gamma deviance. A deviance D is a bivariate function that satisfies
the following conditions: D (y, y) = 0 and D (y, ξ) > 0 for y �= ξ. In statistics, the deviance is used
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to build goodness-of-fit statistics for a statistical model. It plays an important role in exponential
dispersion models and generalized linear models. Let f (y; ξ) be the density function of an Exponential
random variable with mean ξ. The Gamma deviance function is defined by

D (y, ξ) = 2 (ln f (y; y) − ln f (y; ξ)) = 2
[

y − ξ

ξ
− ln

(
y

ξ

)]
, y, ξ > 0.

Note that D (y, ξ) ∼ (y − ξ)2 as y → ξ, and therefore the Gamma deviance and the L2 distance
are equivalent when y is close to ξ. The Gamma deviance is not only more appropriate than the
L2 distance because the observations Y

(u)
i are asymptotically distributed as exponential random

variables, but also because it prevents the estimates ξ
(u)
n from taking negative values.

Thereafter we will consider families of estimators statisfying

ξ(u)
n (·) = arg min

f∈F(u)
n

∑
i∈I(u)

n

D(Y (u)
i , f (Xi))

where I(u)
n = {i : (Y (u)

i , Xi) ∈ D(u)
n } and F (u)

n = Fn(D(u)
n ) is a class of functions f : X → R+ that

may depend on the data D(u)
n .

3.2.2 Tree-based tail index estimators

Tree-based algorithms, such as Classification and Regression Trees (CART) Breiman et al. (1984),
random forests Breiman (2001) and boosted regression trees Friedman (2001), are popularly used
in all kinds of data science problems because they are considered to be one of the best supervised
learning methods. They constitute a class of predictive models with high accuracy, stability and
capability of interpretation.

The CART algorithm is the cornerstone of this class of algorithms. It makes a tree by splitting
the sample into two or more homogeneous sets based on most significant splitter/differentiator in
explanatory variables. Both random forests and boosted regression trees create tree ensembles by
using randomization during the tree creations. However, a random forest builds the trees in parallel
and average them on the prediction, whereas a boosted regression tree creates a series of trees, and
the prediction receives incremental improvement by each tree in the series.

Tail regression trees

A decision tree is derived from a rule-based method that generates a binary tree through a recursive
partitioning algorithm that splits subsets (called nodes) of the data set into two subsets (called sub-
nodes) according to the minimization of a split/heterogeneity criterion computed on the resulting
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sub-nodes. The root of the tree is X itself. Each split involves a single variable. While some variables
may be used several times, others may not be used at all.

For tail index regression, the split criterion will be based on the Gamma deviance. To properly define
it, we let A be a generic node and n(u) (A) be the number of data points of I(u)

n falling in A. A cut in
A is a pair (j, x), where j is an element of {1, ..., p}, and x is the position of the cut along coordinate
j, within the limits of A. Let CA be the set of all such possible cuts in A. Then, for any (j, x) ∈ CA,
the Gamma deviance split criterion takes the form

Ln (j, x) = 1
n(u) (A)

∑
i∈I(u)

n

D
(
Y

(u)
i , Ȳ (A)

)
I{Xi∈A} − 1

n(u) (A)
∑

i∈I(u)
n

D
(
Y

(u)
i , Ȳ (AL)

)
I{Xi∈A,X

(j)
i ≤x}

− 1
n(u) (A)

∑
i∈I(u)

n

D
(
Y

(u)
i , Ȳ (AU )

)
I{Xi∈A,X

(j)
i >x},

where AL = {x ∈ A : x
(j)
i ≤ x}, AL = {x ∈ A : x

(j)
i > x}, and Ȳ (A) (resp., Ȳ (AL), Ȳ (AU )) is the

average of the Y
(u)

i ’s belonging to A (resp., AL, AU ). Note that Ln (j, x) simplifies in the following
way

Ln (j, x) = ln
(
Ȳ (A)

)
− n(u) (AL)

n(u) (A)
ln

(
Ȳ (AL)

)
− n(u) (AU )

n(u) (A)
ln

(
Ȳ (AU )

)
.

At each node A, the best cut (j∗
n, x∗

n) is finally selected by maximizing Ln (j, x) over CA. The best cut
is always performed along the best cut direction j∗

n, at the middle of two consecutive data points.

Let us denote by T (u)
n = {A

(u)
i,n : i = 1, . . . , I

(u)
n } the partition of X obtained where I

(u)
n is the total

number of leaf nodes in the tree. Then the estimate of ξ takes the form of a piecewise step function

ξ(u)
n (x;T (u)

n ) =
I

(u)
n∑

i=1
Ȳ (A(u)

i,n )I{x∈A
(u)
i,n },

where I{x∈A
(u)
i,n }is the indicator function that x is in leaf node A

(u)
i,n of the tree partition.

Decision tree output is very easy to understand and does not require any statistical knowledge to
read and interpret it. Decision tree is one of the fastest way to identify most significant variables
and relationships between two or more variables. One of the most practical issues is overfitting. A
first way to solve it is to set constraints on model parameters: the users may e.g. fix the minimum
number of observations which are required in a node to be considered for splitting, or the maximum
depth of the tree (the number of edges from the root node to the leaf nodes of the tree), or else
the maximum number of terminal nodes or leaves in the tree. A second way is to use pruning that
consists in reducing the size of the decision tree by removing sections of the tree that are non-critical.
By reducing the complexity, pruning improves predictive accuracy and mitigates overfitting.
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Tail random forest Maillart and Robert (2021))

A random forest is a predictor consisting in a collection of several randomized regression trees. Let
Θ be a random variable independent of D(u)

n that will characterize the set of covariates among the
components of X = (X(1), ..., X(p)) and the set of observations among D(u)

n that will be used to
build a tail regression tree. Let Θ1, . . . , ΘM be independent random variables, distributed as Θ and
independent of D(u)

n . For the j-th tree in the collection T (u)
n (Θj), we denote by ξ

(u)
n (·;Θj , D(u)

n ) the
estimate of ξ.

For our tail index regression problem, the trees will be combined through a harmonic mean to form
the forest estimate

1
ξ

(u)
M,n(x;Θ1, . . . , ΘM )

= 1
M

M∑
j=1

1
ξ

(u)
n (x;Θj , D(u)

n )
, (3.1)

or equivalently

α
(u)
M,n(x;Θ1, . . . , ΘM , D(u)

n ) = 1
M

M∑
j=1

α(u)
n (x;Θj , D(u)

n )

where α
(u)
M,n and α

(u)
n denote the respective tail index estimates. Note that such an aggregation is

different from the one done for the usual random forest and ensures that the Gamma deviance
loss of ξ

(u)
M,n will be smaller than the average of the individual Gamma deviance losses of the ξ

(u)
n ’s

(see Maillart and Robert (2021)). Let us denote by R(u)
n = {B

(u)
j,n : j = 1, . . . , J

(u)
n } the partition of

rectangles of X obtained from crossing the partitions of the regression trees T (u)
n (Θ1) , . . . , T (u)

n (ΘM ).
The tail random forest estimate of ξ also takes the form of a piecewise step function

ξ
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J
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I{x∈B
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As for the usual random forests, the algorithm needs two additional parameters: the number of
pre-selected covariates for splitting, the number of sampled data points in a tree. Tail random forests
can be used to rank the importance of variables in a natural way as described in Breiman’s original
paper Breiman (2001). Tail random forests achieve higher accuracy than a single tail regression tree
and suffer less from the overfitting issue, but they sacrifice the intrinsic interpretability present in
decision trees and may can appear as a black-box approach for statistical modelers.
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Tail gradient tree boosting

Tail gradient tree boosting combines weak tree “learners” (small depth tail regression trees) into a
single strong learner in the following iterative way:

- Initialize the model with a small depth tail regression tree ξ
(u)
0,n. Let M be an integer.

- For m = 1, . . . , M , compute the pseudo-residuals

r
(u)
i,m = − ∂D (yi, ξ)

∂ξ

∣∣∣∣
ξ=ξ

(u)
m−1,n(xi)

, i ∈ I(u)
n .

- At the m-th step, the algorithm fits a regression tree h
(u)
m,n (x) to pseudo-residuals (r(u)

i,m)
i∈I(u)

n

such that
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K
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},

where G(u)
m,n = {C

(u)
k,m,n : k = 1, . . . , K

(u)
m,n} is the associated partition of the tree and (ck,m)

k=1,...,K
(u)
m,n

are the predicted values in each region.

- The model update rule is then defined as
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)
.

One of the outputs of this algorithm is a partition of rectangles of the covariate space: G(u)
n = {C

(u)
j,n :

j = 1, . . . , K
(u)
n } such that the gradient tree boosting estimate of ξ takes the form of a piecewise step

function

ξ
(u)
M,n(x;) =

K
(u)
n∑

j=1
cjI{x∈C

(u)
j,n }.

The number of gradient boosting iterations M appears as a regularization parameter. Increasing
M reduces the error on training set, but setting it too high may lead to overfitting. An optimal
value of M is often selected by monitoring prediction error on a separate validation dataset. At each
iteration of the algorithm, it is also possible to only consider a subsample of the training set (drawn
at random without replacement) to fit the weak tree learner. Friedman (2001) observed a substantial
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improvement accuracy with this modification in the case of the usual gradient boosting. Subsampling
may introduce randomness into the algorithm and help prevent overfitting, acting also as a kind of
regularization. Another useful regularization techniques for gradient boosted trees is to penalize
model complexity of the learned model. The model complexity is in general defined as the number
of leaves in the learned trees.

3.2.3 Hierarchical clustering with spatial constraints

The tail random forest as well as the tail gradient tree boosting provide as outputs large-size partitions
of the covariate space that divide it into a very fine structure which does not however reflect the
partition P = {Ai : i = 1, . . . , I} on which is defined the Hill index function ξ. We must now gather
subsets of these too fine partitions to reveal the partition P.

Many methods have been proposed to find a partition according to a dissimilarity-based homogeneity
criterion, but in our case it is necessary to impose contiguity constraints (in the covariate space).
Such restrictions are needed because the objects in a cluster are required not only to be similar to one
other, but also to comprise a contiguous set of objects. How to create contiguous set of objects?

A first approach consists in defining a contiguity matrix C = (cij) where cij = 1 if the i-th and the
j-th objects are regarded as contiguous, and 0 if they are not. A cluster C is then considered to be
contiguous if there is a path between every pair of objects in C (the subgraph is connected). Several
classical clustering algorithms have been modified to take into account this type of constraint. A
survey of some of these methods can be found in Murtagh (1985) and in Gordon (1996). When
considering the ordinary hierarchical clustering procedure as a particular case, the relational con-
straints introduced by the contiguity matrix can however lead to reversals (i.e. inversions, upward
branchings in the tree). It was proven that only the complete link algorithm is guaranteed to produce
no reversals. Recent implementation of strict constrained clustering procedures are available in the R
package constr.hclust (Legendre (2011)).

A second approach consists in introducing soft contiguity or spatial constraints. It has been proposed
to run clustering algorithms on a modified dissimilarity matrix which would be a combination of
the matrix of spatial distances and the dissimilarity matrix computed from non-spatial variables.
According to the weight given to the spatial dissimilarities in this combination, the solution will have
more or less spatially contiguous clusters. A typical example is the Ward-like hierarchical clustering
algorithm including spatial/geographical constraints proposed in Chavent et al. (2018). The authors
introduce two dissimilarity matrices D0 and D1 and consider a convex combination as the criterion
to minimize. The first matrix gives the dissimilarities in the feature space and the second matrix gives
the dissimilarities in the spatial space. The value of the weight parameter γ ∈ [0, 1] is determined to
increase the spatial contiguity without deteriorating too much the quality of the solution based on
the variables of the feature space. The procedure is available in the R package ClustGeo (Chavent
et al. (2018)).
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It is noteworthy that packages which implement tree additive ensemble methods do not provide the
large-size partition, but only the set of generated trees. When the number of trees increases, the
number of rectangles generated by the intersections of the tree partitions increases tremendously. In
practice, a naive approach which consists in testing the crossing of each rectangle with all the other
rectangles is computationally too heavy. Another approach is required: we used a classical method
from computational geometry known as segment trees. By constructing a tree composed of segments
that represent the edges of rectangles, it is possible to infer very efficiently what the rectangles with
a non-empty intersection are. This method is described in Zomorodian and Edelsbrunner (2000). An
implementation in C++ is available in the CGAL library (The CGAL Project (2021)).

3.2.4 Equivalent tree: a tail tree surrogate

Our procedure described in the previous subsections provides a small-size partition of the covariate
space and ultimately makes accurate predictions by modeling the complex structure of the partition.
However it is not able to explain easily how the partition subsets have been made from the covariate
vector X, and then it can be viewed as a black-box model producing predictions. Therefore we attach
to our procedure a global tree surrogate model that approximates the partition-based rules while
providing an explainable model using the initial covariates. This surrogate model combines a binary
encoder representation of the additive tree ensemble with a regression tree. It is called the equivalent
tree model.

Let us denote by Rg a rectangle of the partition of the covariate space obtained from the additive
tree ensemble. We are interested in a binary representation of Rg. We assume that the additive tree
ensemble has L internal nodes/splits of the form Xil

> zl for l = 1, . . . , L. The rectangle Rg may
then be represented by the binary vector ηg ∈ {0, 1}L such that x ∈ Rg if xil

> zl for l = 1, . . . , L.
Fig. 3.1 illustrates this representation on a simple example where p = 2 and L = 4.

Fig. 3.1: A simple example of the binary representation of the rectangles of the covariate space obtained from
an additive tree ensemble.
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We now propose an alternative partition based on a regression tree and proceed as follows:

1. we associate to each rectangle Rg its predicted value (as a new label), its binary representation
(as a new feature vector) and a weight corresponding to the proportion of the observations
(Y (u)

i , Xi) such that Xi belongs to it;

2. we build a maximal regression tree from these new data.

By choosing an appropriate depth we obtain an approximation of the large-size partition of the
additive tree ensemble with a reasonable explanation. Note that the fidelity measured by the R2

measure (i.e. the percentage of variance that our surrogate model is able to capture from the additive
tree ensemble) increases at each split. Since the regression tree method is applied to binary predictors
that are linked to the splits made by the tree-based model, it divides the covariate space from the
same rectangles as the tree-based model. The regression tree method thus provides a nested set of
trees that approximates faithfully the large-size partition.

It should be noted that additive tree ensemble models natively provide local model interpretations
for analyzing predictions. Actually the vector of covariates associated to a prediction belongs to a
unique rectangle of the large-size partition whose edges are intervals belonging to the support of
the covariate components. Such local explanations can be used to answer questions like: why did
the model make this specific prediction? or what effect did this specific feature value have on the
prediction?. But additive tree ensemble models need additional surrogate models for good global
explanations.

3.3 Numerical experiments

3.3.1 Simulation studies

This section investigates how our approach performs on simulated data. We consider two toy datasets
D(1) and D(2) where p = 2, X = [0, 1] × [0, 1], X1 and X2 are two independent random variables
uniformly distributed over [0, 1], and

P (Z > z| X = x) = z−α(x), z > 1, x ∈ X .

The partitions P(1) and P(2) of X are of size 4 and are depicted in the following figure

Since the slowly varying functions of the family of conditional survival distribution functions of Z

are equal to 1, it is not necessary to choose a family of thresholds for these datasets and to select
observations whose values are higher than the thresholds. The sizes of the datasets are equal to
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Fig. 3.2: Partitions P(1) and P(2) of X with their associated tail index values.

n = 50, 000. On Fig. 3.2, each point represents an observation (the color of a point is given by the
value of its associated observation).

We choose the tail gradient tree boosting method to build the large-size partitions. The gradient
tree boosting combines 100 weak tree learners. We have performed a grid-search with a 5-fold
cross-validation to find a set of good parameters. We evaluate the performance of the models with the
negative Gamma log-likelihood. We have simulated test datasets with the same size to understand
how the models generalize. The performances are presented in Tab. 3.1.

Tab. 3.1: Performance comparison between models.

Model name Description Hyperparameters 5-folds CV (×10−2)

GBM Gamma D1 Gamma Gradient Boosting
fitted on D1.

col_sample_rate = 0.9
learn_rate = 0.1
max_depth = 4
sample_rate = 0.7
distribution = "gamma"

-0.35

GBM Gamma D2 Gamma Gradient Boosting
fitted on D2.

col_sample_rate = 0.9
learn_rate = 0.1
max_depth = 4
sample_rate = 0.7
distribution = "gamma"

-14.81

Fig. 3.3 provides the large-size partitions obtained for D(1) and D(2). The color inside a rectangle
is the value of the prediction of the tail index for this rectangle. The tail gradient tree boosting
model performs well on D(1) which is not surprising because the subsets of the partition P(1) are
characterized by intersections of conditions that only depend on X1 or X2, but not both. The learning
task is more difficult and challenging for D(2) because the subsets of the partition P(2) depend on an
intricate way of X1 and X2.
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Fig. 3.3: Tail gradient tree boosting partitions for D(1) and D(2).

We then run ClustGeo to gather the rectangles of the tail gradient tree boosting partitions in order to
reveal the partitions P(1) and P(2). The matrix D1 which gives the dissimilarities in the spatial space
is defined in the following way: if two rectangles are adjacent, the distance value is set to 0.1 and if
this is not the case, the distance value is set to a large value d = 9.106. Fig. 3.4 shows the fidelity
curves (R2 measure) between the aggregated partition and the initial partition created by the tail
gradient tree boosting for different values of the weight parameter γ ∈ [0, 1]. Based on these curves,
we choose γ = 0.3 for D(1) and γ = 0.1 for D(2), while fixing the size K of the small-size partitions to
4. The fidelity is then equal to 94.91% for D(1) and 91.18% for D(2).

Fig. 3.4: Fidelity curves for D(1) and D(2).

Fig. 3.5 provides the estimated small-size partitions for D(1) and D(2). For D(1), we observe that the
hierarchical clustering algorithm has some difficulties in separating the region where the tail index is
equal to 0.2 from the one where it is equal to 0.25. This reason is that these values are actually too
close. Moreover it creates a fourth small subset for the partition in the region where the tail index
is equal to 0.25 without providing a very different predicted value. A partition with three subsets
would therefore be sufficient here. Nevertheless the shapes of the estimated subsets of the partition
are close to the shapes of the real subsets. For D(2), we observe that the circular subsets for the tail
indices equal to 0.25, 0.33 and 0.5 are relatively well estimated, but the subset for the value 0.25 is
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the union of two disjoint subsets. We conclude that ClustGeo does a good job for identifying the
small-size partitions.

Fig. 3.5: Estimated small-size partitions for D(1) and D(2).

In Fig. 3.6, QQ-plots compare the distributions of the observations inside each subsets of the
estimated partitions with the Exponential distributions (whose means are equal to the empirical
means). The alignment of the points shows good fits and validates the assumption of Exponential
distributions for log (Z). The tail indices for the orange and yellow subsets are very well estimated.

Fig. 3.6: QQ-plots comparing the distributions of the observations inside each subsets of the estimated
partitions with the Exponential distributions.

Finally, we compare the estimated partitions with the outputs of the equivalent tree model. Fig. 3.7
provides the fidelity curves (R2 measure) between the approximated partition and the initial partition
created by the tail gradient tree boosting. We decide to choose K = 4 subsets for D(1) with a high
fidelity (98.10%) and K = 7 subsets for D(2) with a good fidelity (79.24%). Fig. 3.8 shows the
approximated small-size partitions for D(1) and D(2). The equivalent tree model provides the exact
partition for D(1) doing better than the hierarchical clustering algorithm. Although the approximated
small-size partition differs from the true one for D(2), the explanations that could be made would
be very convincing. In Fig. 3.9, QQ-plots compare the distributions of the observations inside each
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subsets of the approximated partitions with the Exponential distributions (whose means are equal to
the empirical means). The alignment of the points also shows good fits.

Fig. 3.7: Fidelity curves of the equivalent tree models for D(1) and D(2).

Fig. 3.8: Approximated small-size partitions of the equivalent tree models for D(1) and D(2).

Fig. 3.9: QQ-plots comparing the distributions of the observations inside each subsets of the estimated
partitions with the Exponential distributions.
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3.3.2 A case study for the insurance industry

Each year, about 1,200 tornadoes with wind speeds as high as 300 mph touch down in the United
States. They are more frequent than hurricanes and can also cause severe damage over small areas,
as well as many deaths. In the decade 1965-1974, they were responsible for an average of 141 deaths
each year, compared with 57 in the 10 years 1995-2004. The peak of the tornado season is April
through June or July. Spring tornadoes tend to be more severe and strike the Southeast, which is
more densely populated than the Great Plains, thus causing more deaths than those in the summer
months.

Standard homeowners and business insurance policies cover wind damage caused by tornadoes and
severe weather. Homeowner’s insurance policies also provide coverage for additional living expenses
policyholders will need to finance temporary housing costs and other daily necessities. Damage to
vehicles is covered under the comprehensive section of standard auto insurance policies, which is
optional.

We consider a NOAA (National Oceanic and Atmospheric Administration) tornado dataset containing
60, 652 events from 1950 to 2011. The variables that we kept from this dataset are given in Tab. 3.2.
We combine the variables PROPDMGEXP and PROPDMG to a single variable PROPERTY DAMAGE containing
the estimated costs (in dollars) of the damages caused by the tornadoes. We only retain strictly
positive amounts of PROPERTY DAMAGE and end up with 39, 036 observations. We finally extract YEAR
and MONTH from the variable DATE.

Tab. 3.2: Descriptive table of variables.

Variable Description

LENGTH Length of the tornado’s path in miles.

WIDTH Maximum width of tornado’s path in yards.

MAG Hail in inches.

LONGITUDE Longitude where the tornado occurred.

LATITUDE Latitude where the tornado occurred.

STATE State where the tornado occurred.

DATE Start date of the tornado.

PROPDMG Property damage in dollars.

PROPDMGEXP Magnitude of the damages. (H=hundreds, K=thousands, M=millions, B=billions)

We want to characterize the extremal behavior of property damages caused by tornadoes. The
documentation provided with the dataset does not mention whether inflation has been taken into
account to evaluate property damages, but after analyzing the amounts of damages, we concluded
that it was not the case and decided to adjust these amounts for inflation. We also decided to
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add contextual information about the population densities since the damages caused by tornadoes
are correlated to the human constructions in the area they strike. We used a shapefile containing
geographical frontiers of U.S. counties that we linked with the census data to extract population
densities by year and county (DENSITY). We thereafter consider as our variable of interest the
following variable: DAMAGE BY DENSITY=PROPERTY DAMAGE/DENSITY.

Fig. 3.10 illustrates the linear relationships between log (DAMAGE BY DENSITY) with respectively
log (LENGTH) and log (WIDTH), while Fig. 3.11 provides a scatter plot showing that the longer and the
wider a tornado track, the greater the damage will be.

Fig. 3.10: Linear relationships between log (DAMAGE BY DENSITY) with respectively log (LENGTH) and
log (WIDTH).

Fig. 3.11: Scatter plot of log (LENGTH) and log (WIDTH).

Fig. 3.12 displays a map of the United States with the population density per county as well as the
locations of a random subsample of the tornadoes depicted with different colors depending on the
amount of damages.

After a detailed study of the tails of the distributions of the variable DAMAGE BY DENSITY, we con-
cluded that it was necessary to make a deterministic transformation of this variable so that the
observations are compatible with the hypothesis of a Pareto-type distribution. The tails of the distri-
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Fig. 3.12: Population density in the US and tornado locations.

butions are in fact of Weibull-type with a coefficient θ that can be estimated following the approach
developed in Girard (2004). The values of the estimators of the Weibull tail-coefficient θ̂n based on
the kn upper order statistics are given in the left panel of Figure 13. In practice, the choice of the
parameter kn is the key problem to obtain a correct estimation of θ. If kn is too small, the variance
of θ̂n may be high and conversely, if kn is too large, the bias may be important. We have chosen an
approach like in Girard (2004) and have selected the values kn = 5000 and θ̂n = 4. Therefore we
transform the variable DAMAGE BY DENSITY in the following way

Z = exp
(
(DAMAGE BY DENSITY)1/4

)
.

Fig. 3.13 displays a QQ plot comparing the distribution of Y = log (Z) with an exponential distribu-
tion. The good alignment of the points let us expect that an Exponential distribution with a finite
number of values for its parameter is an appropriate choice. We therefore choose to keep all the
observations of Y in the dataset.

Fig. 3.13: Left panel: Weibull tail-coefficient estimator θ̂n; Right panel: QQ-plot comparing the distributions
of the observations with the Exponential distribution.
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The covariates that have been retained for building an additive tree model are: MAG, LENGTH, WIDTH,
LATITUDE, LONGITUDE, YEAR. We divided the observations into two subsets : a training set (80% of
observations) and a validation set (20% of observations). We fitted a tail gradient tree boosting. The
choice of the hyper-parameters are given in the following table.

Tab. 3.3: Selected model.

Model name Description Hyperparameters 5-folds CV

GBM Gamma A Gradient Boosting Machine that
uses the Gamma log-likelihood
criterion.

col_sample_rate = 0.7
learn_rate = 0.1
max_depth = 4
sample_rate = 0.7
distribution = "gamma"

0.89

The grid search for the hyper-parameters was performed with a 5-fold cross-validation. Results are
displayed in Tab. 3.4 in appendix. We selected the model with the smallest Gamma deviance and we
denote by GBM Gamma this model (the Gamma deviance on the train set is equal to 0.8827, on the
validation set 0.8917 and by cross-validation 0.8899).

We then run ClustGeo to gather subsets of the tail gradient tree boosting partition. To help us choose
the mixing parameter γ, we plot the proportions (resp. normalized proportions) of explained inertia
of the partitions in K clusters obtained with the ClustGeo procedure for a range of γ. When the
proportion (resp. normalized proportion) of explained inertia based on D0 decreases, the proportion
(resp. normalized proportion) of explained inertia based on D1 increases. The plots are given in
Fig. 3.14.

Fig. 3.14: Proportions (resp. normalized proportions) of explained pseudo-inertias versus γ in the left panel
(in the right panel).

We also compute the fidelity curves with respect to γ (see Fig 3.15).

On the basis of these plots, we chose γ = 0.2 and K = 12 (R2 measure is equal to 84.95%.). Fig. 3.16
displays box plots of the predicted values by GBM Gamma for each subset of the estimated partition, as
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Fig. 3.15: Fidelity curves versus γ.

well as box plots of their relative differences with their means. For almost every subsets, more than
50% of the predictions have relative differences less than 15% in absolute value.

Fig. 3.16: Left panel: GBM Gamma’s predictions by subset of the partition; Right panel: Relative errors.

We finally provide in the left panel of Fig. 3.17 the QQ-plots comparing the distributions of the
observations inside each subsets of the estimated partitions with the Exponential distributions and in
the right panel the box plots of the predicted values for each subset of the estimated partitions and for
the covariates: LATITUDE, LENGTH, LONGITUDE, WIDTH, YEAR. We note that the empirical distributions
inside the subsets of the estimated partition are not well approximated by Exponential distributions.
We observe that the covariates LENGTH and WIDTH are the covariates are the covariates that most
influence the means of observations through the subsets of the estimated partition.

Instead of taking for D1 the distance value which is set to 0.1 if two rectangles are adjacent and to a
large value if this is not the case, we now take the Euclidean distance between the gravity centers of
the rectangles. We obtain the following results.

On the basis of these plots, we chose γ = 0.2 and K = 12 (R2 measure is equal to 87.50%.). Fig. 3.20
displays box plots of the predicted values by GBM Gamma for each subset of the estimated partition, as
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Fig. 3.17: Left panel: QQ-plots comparing the distributions of the observations inside each subset of the
estimated partitions with the Exponential distributions; Right panel: Box plots of the predicted
values for each subset of the estimated partitions and for the covariates: LATITUDE, LENGTH,
LONGITUDE, WIDTH, YEAR.

Fig. 3.18: Proportions (resp. normalized proportions) of explained pseudo-inertias versus γ in the left panel
(in the right panel).

Fig. 3.19: Fidelity curves versus γ.
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well as box plots of their relative differences with their means. For almost every subsets, more than
50% of the predictions have also relative differences less than 15% in absolute value.

Fig. 3.20: Left panel: GBM Gamma’s predictions by subset of the partition; Right panel: Relative errors.

We finally provide in the left panel of Figure 21 the QQ-plots comparing the distributions of the
observations inside each subsets of the estimated partition with the Exponential distributions and
in the right panel the box plots of the predicted values for each subset of the estimated partitions
and for the covariates: LATITUDE, LENGTH, LONGITUDE, WIDTH, YEAR. The assumption of Exponential
distributions for each subset of the partition is now more convincing. Moreover the box plots provide
evidence of clearer links between the covariates considered and the empirical distributions of the
observations through the subsets.

Fig. 3.21: Left panel: QQ-plots comparing the distributions of the observations inside each subset of the
estimated partitions with the Exponential distributions; Right panel: Box plots of the predicted
values for each subset of the estimated partitions and for the covariates: LATITUDE, LENGTH,
LONGITUDE, WIDTH, YEAR.
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We finally consider the equivalent tree method. Fig. 3.22 displays the fidelity curve which led us to
also choose K = 12 subsets with R2 measure equal to 75.75%.

Fig. 3.22: Fidelity curve.

The tree that led to the approximated partition is depicted in Fig. 3.23.

Fig. 3.23: Surrogate tree (R2 = 75%).

Fig. 3.24 provides box plots of the predicted values by GBM Gamma for each subset of the estimated
partition, as well as box plots of their relative differences with their means.

Fig. 3.25 shows that the approximated partition of the equivalent tree gives distributions of observa-
tions inside each subset that are relatively close to Exponential distributions.

From these different analyses, we can draw the following conclusions:
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Fig. 3.24: Left panel: GBM Gamma’s predictions by subset of the partition; Right panel: Relative errors.

Fig. 3.25: Left panel: QQ-plots comparing the distributions of the observations inside each subset of the
estimated partitions with the Exponential distributions; Right panel: Box plots of the predicted
values for each subset of the estimated partitions and for the covariates: LATITUDE, LENGTH,
LONGITUDE, WIDTH, YEAR.

- The small-size partitions obtained from the additive tree ensemble and the hierarchical cluster-
ing with spatial constraints have a better fidelity than the one obtained with the tree surrogate model
for the same number of classes because they are built in a more flexible way.

- The empirical distributions of the observations within each subset of the partitions are closer to
Exponential distributions for the tree surrogate model while providing natural explanations for the
classes in terms of covariates and a simple division of the covariate space.
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3.4 Conclusions

Estimating the tail index can become highly complex in the presence of covariates in order to gain
a competitive advantage in risk assessment. However providing simple but accurate models is a
key requirement for any high-stakes decision. In this paper we assume that the tail index function
only takes a small number of values over a partition of the covariate space. We propose a tail-index
partition-based rules extraction method that is able to construct estimates of the partition subsets
and estimates of the tail index values.

The method combines two steps: first an additive tree ensemble based on the Gamma deviance is
fitted (which includes random forest and gradient tree boosting), second a hierarchical clustering
with spatial constraints (ClustGeo) is used to estimate the subsets of the partition. The number of
subsets of the partition is selected first by determining a weight coefficient between the dissimilarity
matrices that provides a high degree of spatial contiguity without deteriorating too much the quality
of the solution based only on the predictions of the additive tree ensemble, second by ensuring a
sufficiently high level of fidelity (R2 measure). The quality of the choice of the partition is finally
checked by comparing the fit of the distributions of the observations to Exponential distributions
with QQ plots for each subset of the partition.

Our procedure provides a small number of subsets of the covariate space whose shape may be
however highly complex because they were constructed with constraints to form homogeneous
subsets in terms of predictions but also homogeneous in the covariate space. It may be difficult to
find simple covariate-based explanations for these subsets. We have therefore proposed a global
tree surrogate model to approximate the partition-based rules while providing an explainable model
from the initial covariates. If explanations are to be provided, fidelity should be sacrificed in order to
generate a more “rigid” model with cuts aligned with the covariate axes. Our numerical experiments
as well as the case study show that the drop in quality is actually not that great.

117



Appendix
Tab. 3.4: Grid search for the gamma gradient boosting model.

col_sample_rate distribution learn_rate max_depth sample_rate Gamma deviance

0.7 gamma 0.1 4 0.7 0.8898692
0.8 gamma 0.1 4 0.9 0.8899294
0.8 gamma 0.1 4 0.8 0.8899373
0.6 gamma 0.1 4 0.9 0.8905952
0.4 gamma 0.1 4 0.9 0.8918163

0.8 gamma 0.1 3 0.7 0.8939461
0.7 gamma 0.1 3 0.8 0.8939524
0.8 gamma 0.1 3 0.9 0.8941586
0.5 gamma 0.1 3 0.8 0.8943843
0.6 gamma 0.1 3 0.7 0.8947193

0.4 gamma 0.1 3 0.9 0.8951752
0.2 gamma 0.1 3 0.7 0.8980810
0.7 gamma 0.03 4 1.0 0.8986279
0.6 gamma 0.03 4 0.8 0.8991031
0.4 gamma 0.03 4 0.7 0.8999548

0.7 gamma 0.03 3 1.0 0.9032651
0.6 gamma 0.03 3 0.8 0.9034957
0.5 gamma 0.03 3 1.0 0.9037465
0.2 gamma 0.03 4 1.0 0.9065550
0.3 gamma 0.03 4 1.0 0.9065550

0.7 gamma 0.01 4 0.9 0.9228733
0.7 gamma 0.01 4 1.0 0.9229140
0.7 gamma 0.01 3 0.8 0.9294435
0.8 gamma 0.01 3 0.7 0.9294608
0.7 gamma 0.01 3 0.9 0.9294780

0.5 gamma 0.01 3 0.9 0.9302424
0.5 gamma 0.01 3 0.7 0.9302508
0.2 gamma 0.01 4 1.0 0.9378801
0.3 gamma 0.01 3 1.0 0.9440475
0.3 gamma 0.01 3 0.9 0.9441168
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4Black-Box Inspection via Robustness
Analysis

„To deal with a 14-dimensional space, visualize a 3-D space
and say ’fourteen’ to yourself very loudly. Everyone does it.

— Geoffrey Hinton

Abstract

The rise of machine learning models has led insurers to create DataLabs to build models that are more
efficient than existing models. However, for the most critical tasks, some models that are considered
too complex and secretive struggle to go into production. Indeed, for actuaries responsible for risk
assessment, it is difficult to give the same level of confidence to these nebulous models as to more
familiar models such as generalized linear models. There is, therefore, a real need for actuaries
to reduce the gap between what is understood from the model and what the model has learned.
However, providing a general explanation of a black-box predictor, i.e., an explanation of the general
decision-making mechanism of the predictor is one of the most difficult tasks. Therefore, a significant
part of the efforts to increase the intelligibility of models focuses on more affordable tasks, such as
providing a local explanation or visual or textual information on the model’s reactions. This article
proposes to adapt the robustness approach of Koh and Liang (2017) to reconcile the global and local
aspects of intelligibility.

Keywords: Machine Learning, Black-Box Inspection, Interpretability, Explainability, Car insurance

4.1 Introduction

Among machine learning methods, neural networks are the most complex. For a prediction at a
given point, it is often impossible to understand why the model makes one decision rather than
another. This legitimates the development of methods to make sophisticated machine learning models
more intelligible. However, what is meant by intelligible? According to Guidotti et al. (2019) and
Doshi-Velez and Kim (2017), for machine learning models to make intelligible signifies to explain in
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human-understandable terms. However, explaining has a different sense depending on how we use
these methods. If we want to improve or debug our model, information on the importance that the
black box gives to variables can be satisfactory. Nevertheless, if we need a deeper comprehension of
the model to comply with the General Data Protection Regulation (GDPR), simple information about
the variables may not be sufficient. Indeed, we want to be able to, for example, explain the price in
detail to each policyholder. Obviously, the more precise we want the explanation to be, the more
complicated the problem becomes. For an overview of explainability methods in machine learning,
please refer to Guidotti et al. (2019).

In this article, we are interested in a method that lets us highlight influential points on a parametric
machine learning model. We call a parametric method any method that learns a model written as
a set of parameters. These can be neural networks, generalized linear models or support vector
machines. In contrast, nonparametric methods do not make assumptions about the structure of the
model. These include decision trees and tree ensembles such as random forest and gradient boosting.
To estimate the influence of points in the learning sample, a natural approach is to train a reference
model on the entire learning sample and then measure the deviation on quantities of interest. For
example, the difference in estimated parameters before and after removing a point, or the variation
in loss function values before and after removing a point. Using these indicators, it is possible to
know whether a point contributes to improving or deteriorating the performance of a black-box
model. However, this method can be very expensive in calculations for large datasets. In this paper,
we present three indicators based on influence functions. The first allows us to approximate the
effect of removing a point on the estimated parameters. The two others approximate the impact
on any prediction of removing or altering a point from the training sample. If we refer to the
classification of Guidotti et al. (2019), the method we show here is part of the "black-box inspection
problem". In other words, we are looking for visual or textual elements that enable us to learn about
what the model has learned. Known examples of methods belonging to this class are the partial
dependence plots presented in Friedman (2001) and the variable importance plots introduced by
Breiman (2001). This approach is not new since statisticians such as Cook and Weisberg (1982)
were very quickly interested in generalized linear models. Since then, it has been deepened, among
others, in Wojnowicz et al. (2016) and Koh and Liang (2017), which generalize the results and give
a harmonized mathematical framework for parametric models.

Determining the influence of observations on a model does not provide a global explanation of a
black-box model. Nevertheless, it is possible to collect relevant information to debug the model
or to obtain local information. By identifying the influential observations of the learning sample,
we can find the points considered abnormal by the model. Thus, it is possible to clean the data to
address these anomalous individuals. To achieve this, we present methods to compute indicators
that highlight these observations. Moreover, by combining the appropriate indicators with naturally
interpretable models such as generalized linear models, we can extract explanations in the form
of hyperplanes (linear models). The idea is similar to the Local Interpretable Model-Agnostic
Explanations (LIME) Ribeiro et al. (2016) and SHapley Additive exPlanations (SHAP) Lundberg and
Lee (2017) methods that consist of finding a local surrogate model near the point to be explained. In
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the complex case of neural networks, this information is not easy to obtain and is often expensive from
a computational point of view. The methods presented here make it possible to reduce calculation
times by approximating the influence of the points on the model. The main interest is to locate the
areas where it is relevant to have a surrogate model. The second strength of this strategy is to restrict
the number of points to be explained.

We systematically illustrate the indicators on a toy dataset in two dimensions before applying them
to a real insurance dataset. Additionally, we use two types of parametric models to highlight our
findings, a logistic regression model and a neural network. The logistic regression model allows us to
understand how indicators work with a model within the actuary’s comfort zone, while the second
demonstrates the specific interest of the method. In the first part, we present the indicator Iup,params

which determines the variation in the model’s parameters when we delete a point from the learning
sample. This can be useful for generalized linear models, especially to detect outliers. Then, we
derive Iup,loss, which characterizes the loss shift on a given prediction when we remove a point from
the training sample. From the latter, we develop explanations that are locally faithful to the black-box
model. These explanations take the form of hyperplanes. Moreover, we show that this technique
allows us to reduce the number of points to be analyzed. Additionally, we define Ipert,loss, which
gives the direction in which a point must be perturbed to maximize the impact on the black-box
model. Finally, we establish that this indicator can serve as an explanation for a given prediction.

Remark 20 The proofs are in the appendix to make the reading more fluid.

Foreword on influence functions

In Law et al. (1986), influence functions are intuitively the approximated and standardized effect on
a statistic T when adding an observation z given a large sample with a distribution function F . The
influence function of T of an underlying distribution function F in direction z is denoted IF (z, T, F ),
which corresponds to a directional derivative in the F distribution in the direction z.

The notion of influence function is based on the concept of contaminated distribution. It is defined as
follows.

Definition 3 Let F be a distribution function. We define the ε-contaminated distribution at point z by:

Fε,z = (1 − ε)F + εΔz

where Δz is the Dirac measure at point z.
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Remark 21 When ε > 0, it can be interpreted as a mixture.

Definition 4 Let T be a functional, T :
{

F −→ R

F �−→ T (F )
, where F is the set of distribution functions.

We define the influence function by:

IF (z; T ; F ) = lim
ε→0

T (Fε,z) − T (F )
ε

.

Throughout the rest of the article, we study a binary classification problem. Let X = R
p denotes

the space of the explanatory variables and Y denotes the space of the labels. In addition, we have
a dataset D = {zi = (xi, yi) such that xi ∈ X et yi ∈ Y} containing n observations z1, . . . , zn. The
empirical distribution function of the random vector (X1, . . . , Xp) is defined by

Fn :
{

R
p −→ R

(x1, . . . , xp) �−→ 1
n

∑n
i=1 1{X1,i≤x1,...,Xp,i≤xp}.

Intuitively, if we take the empirical distribution function rather than F (F = Fn−1) and ε = 1/n,
we show, for a sufficiently large sample, that the influence function measures n times the variation
in T when adding a point z. In our case, F is a multidimensional distribution function defined
as F : Rp → R and we consider instead the removal of a point from the training sample. This is
equivalent to taking F = Fn and ε = −1/n.

Simple example on expectancy

Let Z be the observed variable. We consider a perturbation at point z ∈ R. Thus, denoting EFε,z (Z)
as the expected value of Z under the contaminated distribution function, we obtain:

EFε,z (Z) =
∫

s d [(1 − ε)F + εΔz] (s),

hence,

EFε,z (Z) = (1 − ε)
∫

sdF (s) + εz.

From this expression, we can easily determine the expression of the influence function.

124



IF (z; E; F ) = z − E(Z)

Remark 22 The influence function of the average depends on the distance from the point z to the
average. Thus, the more distant a point is in absolute value, the greater its influence on the average. Or
if the contamination occurs at point z, and if this point has a high value, then the contamination has
a significant impact on the mean. In contrast, if z is close to the average, then contamination has a
relatively small impact. This is why, for example, the mean is considered not robust compared to the
median.

4.2 Theoretical problem setting and definitions

Machine learning methods such as random forest Breiman (2001) and XGBoost Chen and Guestrin (2016),
and deep learning methods such as neural networks have proven to perform well in some prediction
tasks. As a result, the paradigm of statistical learning has evolved. Now we seek to satisfy two
contradictory concepts: predicting and understanding. Consequently, numerous works have been
undertaken in recent years to overcome the lack of intelligibility. From an operational point of view,
intelligibility can be divided into four approaches according to Guidotti et al. (2019). These are
summarized in Fig. 4.1. Depending on the use of machine learning methods and the target audience,
some interpretation methods are more relevant than others. As an actuary, it is often preferable
to have the maximum level of information. This means to have a model intelligible by nature or
a surrogate model that globally and faithfully reproduces the predictions of the black-box model.
However, this is not always easy. For neural networks, it is difficult for a human to understand the
global decision chain, since it involves too many weights. It may, therefore, be interesting to weaken
the problem and either look for information only valid locally or to extract relevant information to
obtain insight from the model. In the first case, we deal with the "black-box outcome explanation
problem", while in the second we answer the "black-box inspection problem".

4.2.1 Contextual elements

Here, we define the classification problem. Let b : X −→ Y be a black-box predictor, also called a
classifier. The latter is provided by a learning function

Lb :
{

Z −→ (X −→ Y)
D −→ b

,

where Z represents a set of datasets. Thus, for each x ∈ X the predictor b can provide a probability
(or vector of probabilities) of belonging to a class denoted b(x). In the supervised learning framework,
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Fig. 4.1: Different machine learning model intelligibility approaches, Source: Guidotti et al. (2019)

D is divided into two samples: Dtrain and Dtest. The first is used to build the classifier, and the
second is used to evaluate its performance.

In this paper, we present indicators that first answer the "black-box inspection problem". By definition,
for a black box b and a set of instances X, this consists of providing a visual or textual representation
denoted by r. This representation is obtained from b and X using a procedure f : (b, X) −→ r. In our
case, from our black box and the instances, we can extract representations r in the form of boxplots.
These graphs characterize the influence of the points.

It is also possible to use the indicators and properties of the studied parametric models to answer
the "black-box outcome explanation problem". This problem consists of finding an explanation e
that belongs to E , the set of explanations understandable by humans. This explanation is extracted
from a locally intelligible model cl, which is deduced from b and x using a procedure f : (b, x) −→ cl.
The explanation e is extracted from cl and x. In our case, cl is a linear model, and e is the decision
chain (linear combination of weights) for x. The advantage over an inspection method is that we
can measure the quality of the explanations provided. This measure is called fidelity in interpretable
machine learning. Fidelity quantifies how well the surrogate model replicates the predictions of the
black-box model in the vicinity of the point to be explained using usual metrics.

4.2.2 Definitions

We limit our study to tabular data because this is the most common form of data for insurers today.
However, it is also possible to use this method with images or text. The interested reader may refer
to Koh and Liang (2017).
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The methods we study apply only to parametric models. We model the conditional law of Y given X.
For a given parametric model, we denote the set of parameters by Θ. Let z ∈ Dtrain and θ ∈ θ; the
loss function at point z for the parameters of model θ is denoted by L(z, θ). Finally, let us denote
1
n

∑n
i=1 L(zi, θ) as the empirical risk and define the empirical risk minimizer as:

θ̂n = arg min
θ∈Θ

1
n

n∑
i=1

L(zi, θ). (4.1)

We assume in this study that L and ∇θL (where ∇θ is the gradient operator with respect to θ) are
three times continuously differentiable in θ and two times continuously differentiable in x. We
denote by θ0 the vector of true parameters, the one to which θ̂n converges. We further assume that
E(∇θ(Z, θ0)) = 0, E(||∇2

θ(Z, θ0)||) < ∞ and that the matrix E(∇2
θ(Z, θ0)) exists and is not singular.

Furthermore, we assume that E(∇3
θ(Z, θ0)) is bounded in probabilities when n tends toward infinity.

When the loss functions do not verify these conditions, it is possible to adapt the method so that it
remains valid as shown by Koh and Liang (2017).

4.3 Methodology of analysis

In this article, we implement the indicators to empirically verify their quality, then we study their
behavior on different datasets. First, we manipulate these indicators and show their limitations on a
two-dimensional toy dataset. We use the indicators on logistic regression (actuary comfort zone) and
on neural network. In the second step, we apply the same indicators to the same models, but this
time on an insurance dataset.

4.3.1 Simulated data

To test the indicators, we use a two-dimensional simulated dataset, shown in Fig. 4.2. We detail the
process below.

After drawing a sample of 2, 000 points uniformly over the [0, 1] × [0, 1] square,

(x1, x2) ∼ U([0, 1])

we define a theoretical threshold r as a function of x1. The latter represents our true decision
function.
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r(x1) = 0.25 + 0.5
1 + exp (−20(x1 − 0.5)) + 0.05 cos (2πx1)

We add noise near the decision boundary.

⎧⎪⎪⎨
⎪⎪⎩

y = 1 si x2 > r(x1) + ε

y = 0 si x2 < r(x1) − ε

P(y = 1) = 1
2 si |r(x1) − x2| < ε où ε = 0.1

Fig. 4.2: Toy dataset: the solid black line represents the theoretical decision boundary.

4.3.2 The insurance problem

This toy example lets us manipulate the indicators and develop an understanding of them. To
illustrate the interest of the indicators in a more realistic framework, we use data from insurers.
These data have already been exploited for a DataScience challenge: The Pricing Game1 (third
edition). The data2 3 are initially composed of 27 variables that can be used to fit a model. We use
only 8 numerical variables to illustrate the indicators. This is because Ipert,loss requires numerical
and continuous variables. The sample contains 100,000 observations. We center and scale the data
before splitting them into a validation sample and a learning sample. These samples are split into
the following proportions (75%/25%). A total of 9,490 claims are reported in the learning sample

1http://freakonometrics.free.fr/PG3/3rdPricingGame.pdf
2http://freakonometrics.free.fr/PG3/PG_2017_YEAR0.csv containing the explanatory variables
3http://freakonometrics.free.fr/PG3/PG_2017 CLAIMS_YEAR0.csv containing the claims
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and 3,164 in the validation sample. The claims are evenly distributed between the two samples. We
transform the initial pricing problem (severity/frequency model) into a classification problem to
be consistent with the theory developed in the article. To do so, we choose to create a new target
variable from the number of claims. If the insurance policy has at least one claim then the new target
variable contains one, and zero otherwise. In this way, we create a prevention problem. The idea is
to create a model that recommends preventive action toward a driver.

4.3.3 The models

First, we implement the indicators for binary logistic regression. Since, in this case, we have simple
closed formulas for the gradient and the Hessian, we can empirically check the accuracy of the
approximation. Then, we extend to a penalized neural network.

Logistic Regression

For binary logistic regression, we attempt to model the probability for an observation of belonging to
class 1 by

p(xi; β) = P(Y = 1|X = xi) = 1
1 + e−(β0+βᵀxi)

,

where β = (β0, . . . , βp). The coefficients βi of the model are fitted by maximum likelihood, i.e., by
optimizing the loss function

L(zi, β) = − [yi log (p(xi; β)) + (1 − yi) log (1 − p(xi; β))] ,

over all observations zi. Usually, a Newton-Raphson algorithm is used to optimize the parameters.

Remark 23 For the examples developed in this article, we have not penalized logistic regression. However,
it is possible to introduce an L2 penalty term. The loss function at the point zi would then become:

L(zi, β) = − [yi log (p(xi; β)) + (1 − yi) log (1 − p(xi; β))] + α

2 ||β||22.

We have penalized the neural network described below with α = 0.001.
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Neural Network

We use a sufficiently simple and flexible neural network to correctly fit our toy and insurance
datasets. The objective of the article is not the performance of the models. We want explanations
for their outcomes. Hence, we do not seek to improve the performance of our black boxes. For
hyperparameters qm−1 ∈ N and qm ∈ N, we define the layer m of our neural network as follows:

Z(m) =

⎧⎨
⎩ R

qm−1 −→ R
qm−1

Z −→
(
Z

(m)
1 (Z), . . . , Z

(m)
qm (Z)

)′

where neuron j of layer m is written as the following dot product:

Z
(m)
j = Z

(m)
j (Z) = φ

(
β

(m)
j,0 +

qm−1∑
l=1

β
(m)
j,l Zl

)
= φ

(
< β

(m)
j , Z >

)

where β
(m)
j = (β(m)

j,l )0<l<qm−1 ∈ R
qm−1+1 are the weights of the layer m of the neural network. Let

us denote by M the total number of layers (including input and output layers). Then, each of the
m ∈ [[1, M ]] layers is written as:

Z(m:1)(xi) =
(
Z(m) ◦ · · · ◦ Z(1)

)
(xi)

We use the softmax function denoted below by σ:

σ =

⎧⎪⎨
⎪⎩

R
K −→ R

K

Z −→
(

eZ1∑K
k=1 eZk

, . . . ,
eZK∑K

k=1 eZk

)

so that the output layer M returns a probability vector. Finally, the probability for an individual
belonging to class 1 is expressed as follows:

p(xi; β) = Z(M :1)(xi) = σ
(
Z(M−1:1)(xi)

)
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We arbitrarily chose 2 hidden layers for our two neural networks4. In the case of the toy example,
we chose the following hyperparameters: q1 = 2, q2 = 4, q3 = 2, q4 = 2 and φ = tanh. Fig. 4.3
represents the architecture for this neural network.

Fig. 4.3: Neural network architecture for the toy example

For the insurance problem, we chose the following hyperparameters: q1 = 8, q2 = 4, q3 = 2, q4 = 2
et φ = tanh. In this case, we use regularization L2 previously defined. Fig. 4.4 represents the
architecture for this neural network.

Fig. 4.4: Neural network architecture for the insurance problem

4The one applied to the toy example and the one applied to the real example
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4.4 Influence of observations on parameters

The question we focus on in this section is how would our parameters change if we slightly modify
the learning sample? The first form of perturbation we study here is the removal of a point in Dtrain.
Informally, it is not conceivable to retrain a model for each dataset we can create by removing only
one observation at a time. The cost of such a procedure would far exceed the benefits in terms of
intelligibility. However, due to influence functions, it is possible to efficiently obtain an approximation
of this variation on the black-box parameters.

We want to approximate θ̂n − θ̂n,−z, where θ̂n,−z = arg minθ∈Θ
1

n−1
∑

zi 	=z L(zi, θ). Furthermore,
we denote the vector of optimal parameters by θ̂n,ε,−z for the contaminated distribution (Fε,z =
(1 − ε)F + εδz). We restrict our study to the case of the M -estimators Huber (1981). In practice,
they are obtained by minimizing a function depending on the data and the model parameters. The
M -estimators can be seen as a generalization of maximum likelihood estimation.

In the case of an M -estimator, we look for the parameters that verify arg minθ∈Θ (∑n
i=1 ρ(zi, θ)),

where ρ is the function to be minimized over the observations. This can be the log-loss (or log-
likelihood) in the case of binary logistic regression, for example. By setting ρ = 1/n × L we are led
back to our initial problem of empirical risk minimization described in equation (4.1).

Definition 5 We define Iup,params(z) as the variation of the parameters vector θ related to an infinitesi-
mal perturbation ε at point z by

Iup,params(z) = dθ̂n,ε,−z

dε

∣∣∣∣∣
ε=0

.

Iup,params is hardly exploitable. It is better to find a closed formula that is easier to implement. This
is the purpose of the Proposition 1.

Proposition 1
Iup,params(z) = −H−1

θ̂n
∇θL(z, θ̂n),

where ∇θL(z, θ̂n) ∈ R
d is the gradient of the loss function L with respect to the parameters θ and

evaluated at point z for the optimal parameters θ̂n and Hθ̂n
= 1

n

∑n
i=1 ∇2

θL(zi, θ̂n) with ∇2
θL ∈ Md(R)

the matrix containing all the partial derivatives of order two with respect to θ.
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The proposition 1 lets us quantify the impact on the parameters of a diminution of the mass
(ε = −1/n). It now remains to show that this mass fluctuation is equivalent to the removal of the
point z in the learning sample. This is the purpose of the Proposition 2. We first define the notion of
op.

Definition 6 A sequence of random vectors {Zn, n ∈ N} defined on the probabilized space (Ω, A,P)
is infinitely small in probability if Zn converges in probability to 0. This is denoted by Zn = op(1).
Immediately, we have the equivalence

Zn = op(1) ⇐⇒ ∀ε > 0 lim
n−→+∞P(||Zn|| > ε) = 0.

More details can be found in Gourieroux and Monfort (1995).

Proposition 2 Let z be a point of the learning sample, θ̂n and θ̂n,−z the coefficients estimated with and
without z in the learning sample.

θ̂n,−z − θ̂n = 1
n

H−1
θ̂n

∇θL(z, θ̂n) + op( 1
n

).

Due to these two propositions, it is now possible to estimate the influence of the points without
having to remove the points one by one from the learning sample. It is sufficient to calculate the
inverse of the Hessian associated with the loss and a gradient.

Geometrical interpretation

It is possible to see Iup,params as a single step of the Newton-Raphson algorithm applied to the loss
function to minimize it. In other words, it is the direction that minimizes the loss for our model and
for a given dataset. This corresponds graphically to the slope variation in our decision boundary.

4.4.1 Implementation of Iup,params

Graphs and calculations are made with R Team et al. (2013) and the packages tensorflow5, keras
and h2o.

5https://tensorflow.rstudio.com/
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Fig. 4.5: Relative coefficient variations Fig. 4.6: Decision boundary

We are now interested in the information that the Iup,params indicator can bring us. Remember that
Iup,params is a vector containing the variation in each parameter, equivalent to the deletion of z from
Dtrain. For the binary logistic regression that we develop here, this allows us to know which points
are the most influential on a given variable. Nevertheless, for a neural network, it is not so simple
since the weights of the network have no immediate significance. This is why, exceptionally, we do
not apply this indicator to neural networks.

Unlike other intelligibility methods, the output is not directly an explanation of the black-box decision
chain. To obtain useful information, we have to examine the most influential points. This is not
always easy, especially for large-scale datasets. However, the boxplot Fig. 4.5 gives a general overview
of the coefficient’s sensitivity to observations of Dtrain.

On this boxplot, it is possible to see that the model’s intercept coefficient is most sensitive to the
removal of a point from the training sample. If we remove a point corresponding to the extremes
of the blue boxplot, the model’s intercept coefficient increases or decreases by approximately 8.5%.
These two points are represented in green in Fig. 4.6. They correspond to points misclassified by the
model. The model is also very confident in its prediction. This is represented by an orange or dark
blue color.

This first indicator, therefore, provides information on the sensitivity of the black-box parameters to
any observation. In this way, it is possible to point out aberrant or very influential points and analyze
them.
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4.4.2 Identification of atypical points

Let us now apply the Iup,params indicator to our logistic regression fitted on our insurance dataset.
We want to identify the most sensitive variables to the removal of a point in Dtrain. The information
can be synthesized as a boxplot Fig. 4.7. It seems that coefficients related to variables License
seniority 2, Max speed, Vehicle value and Vehicle weight are sensitive to some observations
of Dtrain. Removing a single point among the 74, 983 observations of Dtrain can result in variations
of up to −15%. In contrast, the intercept coefficient seems to be insensitive to the Dtrain points. Note
that the most sensitive variables are consistent with what we can expect from an actuarial point
of view. In fact, the variables identified as relevant for the identification of claims in the actuarial
literature are related to the driver’s experience and the power of the vehicle. These include Ohlsson
and Johansson (2010) and Charpentier (2014) and a study linking conventional data with telematics
Verbelen et al. (2018) data.

Fig. 4.7: Sensitivity of each predictor to the deletion of z ∈ Dtrain

Tab. 4.1: Influential points

Bonus/Malus License seniority 1 License seniority 2 Vehicle age Vehicle power Max speed Vehicle value Vehicle weight Target

7,743 0.50 41 0 19 3,299 270 112,538 1,260 1
49,950 0.57 16 0 51 425 88 1,060 880 1
65,499 0.50 111 0 12 1,598 195 16,770 1,230 1

We can also analyze in detail the points that perturbed the coefficients the most. For example, looking
at Tab. 4.1 we can see that the vehicle responsible for the greatest variation in "Vehicle weight" is
the lightest among the most powerful and most expensive vehicles. This atypical point is, therefore,
more difficult to classify for the model and consequently appears to be very influential. It causes
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the coefficients of Vehicle weight and Vehicle value to vary by +2.95% and −8.57%, respectively.
Another example is the point whose removal most disturbs the estimate of the License seniority
2 coefficient. This policyholder has license seniority of 111 years, which means that the driver is
at least 119 years old. Here, it is likely that it is a mistyped value. Thus, we can easily identify
anomalies in Dtrain or atypical individuals who should be treated afterward.

Limits

For this indicator to be relevant, the parameters need to be directly related to the variables as for
logistic regression. For neural networks, for example, this indicator is not without interest, but what
was developed above no longer holds.

Another important limitation is the difficulty in summarizing the information. We generate a vector
for each point of Dtrain. It is unreasonable to expect a human to manage so much data. Here, we
adopt a graphical approach to overcome this problem.

4.5 Identification of influential points for a prediction

We now want to measure the variation in the loss function evaluated at any ztest if we remove a
point from Dtrain. We, therefore, approximate the difference in loss L(ztest, θ̂n,−z) − L(ztest, θ̂n). We
develop the proof for M -estimators. Identifying influential points according to Iup,loss, the indicator
we develop below, is useful for detecting outliers but also allows locating points close to the decision
boundary. These points allow us to locate the decision frontier and to provide surrogate models
that are locally faithful to the decision boundary. Moreover, Iup,loss is very useful for prioritizing the
points to be analyzed, i.e., those for which it is useful to build a hyperplane to substitute the complex
boundary.

Definition 7 Let z and ztest be points of Dtrain and Dtest, respectively. We define the loss variation at
point ztest related to an infinitesimal variation in ε by

Iup,loss(z, ztest) = dL(ztest, θ̂n,ε,−z)
dε

∣∣∣∣∣
ε=0

.

The underlying idea is approximately the same as for Iup,params: approximate the variation in L at
point ztest when we remove z. We do this by perturbing the distribution function of the observations
upweighting the point z by ε = −1/n. The Proposition 1.3 is a closed formula for this indicator.
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Proposition 3

Iup,loss(z, ztest) = dL(ztest, θ̂n,ε,−z)
dε

∣∣∣∣∣
ε=0

= −∇θL(ztest, θ̂n)ᵀH−1
θ̂n

∇θL(z, θ̂n),

By estimating the inverse of the Hessian and the gradients at the points of interest, we approximate
the effect of removing z on the prediction in ztest.

Geometrical interpretation

For some models, it is possible to show that

φ : (x, y) → xᵀH−1
θ̂n

y

is a dot product. This allows us to provide a geometrical interpretation of this indicator. We consider
here the case of binary logistic regression. To do so, we must show that the linear form associated
with Hθ̂n

is definite and positive. Proposition 1.4 formalizes this.

Proposition 4 In the case of a regularized binary logistic regression, Hθ̂n
is positive definite.

Let us consider a binary logistic regression model with a loss function L2-regularized with parameter
α > 0, and Hθ̂n

the Hessian matrix associated with it. Under these conditions,

Hθ̂n
is positive definite.

By showing that Hθ̂n
is definite positive, we show at the same time that Hθ̂n

is invertible. This proves
that φ exists. It is then quite easy to see that φ is a dot product.

This property is interesting since by calculating φ(z, z), we obtain the gradient’s norm at point z,
which also happens to be Iup,loss(z, z). By doing this, we placed both gradients in the same direction,
which maximizes the projection. This provides a measure of importance for points in Dtrain.
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4.5.1 Implementation of Iup,loss

To understand how the influence varies in the case of log-loss, we use a data set of 5 learning points
and 1 test point. In the first step, logistic regression is fitted on the learning sample. This is our
reference model. Then, the training observations are removed one by one, and logistic regression is
fitted on the resulting samples. Finally, for each model 6 the classes/probabilities are predicted for
ztest. For these models, if the probability is greater than 0.5, the predicted class is 1; otherwise, 0.
Recall that:

Iup, loss(z, ztest) = L(ztest, θ̂n,−z) − L(ztest, θ̂n).

Note that this definition makes the notion of influence, as defined above, consistent with influence,
as we conceive it in everyday life. Indeed, if the removal of a point improves the model (reduces the
loss compared to the reference model), then the influence of this observation is negative. Keeping
this point, therefore, degrades the quality of the model and has a negative influence on it. In contrast,
a point has a positive influence if its removal increases the loss.

6reference model and models without one point
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Fig. 4.8: Reference Fig. 4.9: Without point 2

Fig. 4.10: Without point 3 Fig. 4.11: Without point 4

In this simple case in Fig. 4.8 to Fig. 4.11, it is easy to see that the classifier makes its decisions
according to the position of points with respect to the decision boundary. Removing a point from
the training sample changes the decision boundary and thus the classifier’s prediction (value or
probability). If we look at the reference graph in Fig. 4.8 and Fig. 4.9, we notice that the removal of
point 2 significantly modifies the decision boundary. This new decision boundary separates perfectly
the points of the training sample and by chance the sample from the test point. Hence, the model
predicts the test point as 1 with a high probability since the test point is "inside its zone" and far
from the decision boundary. The loss in this case is lower than that of the reference model for the
test point prediction. Consequently, the influence is negative, as shown in Tab. 4.6 in the appendix.
Similar reasoning can be applied to the rest of the graphs.
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Remark 24 It is interesting to note that for the test point to be predicted (class 1), the points with
the highest positive influence and the highest negative influence are of a different class. This is not an
intuitive result, but it shows us that the method identifies key points for a given model. In the rest of the
article, we will see that the identified points are intrinsically linked to a black-box model.

4.5.2 Identification of outliers

The information provided by Iup,loss is useful for highlighting important points in the learning sample
for a given prediction. This can be very helpful for debugging a model, for example, by determining
that the data have not been mislabeled as suggested by Koh and Liang (2017) or analyzing the
characteristics of the most negatively influential points for a prediction at point ztest. Thus, it is
possible to rectify these observations or delete them if necessary. For a prediction at ztest, every
point of Dtrain is assigned a value of positive or negative influence. Remember that the intensity of
this influence depends on the loss variation evaluated at ztest. Therefore, outliers for a given model
should have one of the highest negative influences.

Fig. 4.12: Linear model Fig. 4.13: Neural network

We now want to determine whether it is possible to identify an outlier using Iup,loss. Additionally, we
seek to illustrate the information provided by this indicator. For this purpose, we create two models
which are shown in Fig 4.12 and 4.13. The color gradient represents the prediction of each model.
The more confident the model is in its prediction, the darker the color. White marks the area where
the model is uncertain, which is the decision boundary. We can already see that the linear model is
not flexible enough to fit correctly to the true decision boundary in the dotted lines. In contrast, the
regularized neural network fits better. We intentionally modify the label of a point at the top left of
the graph. This way, we create an aberrant point. We randomly select a point to predict ztest that
belongs to Dtest. This point is represented by a white halo on the graph. The points circled with a
green circle are the 50 points that have the highest positive influence on this prediction. The red
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points are the 50 points that have the highest negative influence on the prediction. We notice that
the points identified for the two models are not necessarily the same. Nonetheless, they are located
close to the decision boundary of each model. Moreover, our aberrant point on the top left has been
identified by the method. For both models, this is the most negatively influential point. For the linear
model, the influence of this point is 27 times higher in absolute value than the 5% percentile of the
influence distribution. For the neural network, the influence of this point is 9 times higher than the
5% percentile. The indicator can be used for both logistic regression and neural networks. This can
provide a method for efficiently diagnosing outliers for a given model. However, to be exhaustive, as
many distributions as there are test points should be analyzed, which in practice can be difficult.

4.5.3 Extraction of local explanations

We can see that it is hard to extract other relevant information from this indicator since the location
of influential points varies greatly in space. Let us assume that we want to obtain extra information
from the influences. It is reasonable to locally fit a transparent model, such as a regression tree,
for instance, taking as a new target the signed influence of each point. Hence, we can model the
influence of points as a function of predictors and see where influential points are for any prediction.
Nevertheless, negative and positive influences are too mixed up to produce a shallow tree. This
means that our local explanation of the black-box model would be too complex. Therefore, this
technique suggested by Molnar (2020) does not give reliable and interesting results. This remark is
valid for our example in small dimensions and a fortiori in large dimensions.

Example in 2 dimensions

Fig. 4.14: Linear model Fig. 4.15: Neural network
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We, therefore, propose a different approach to extract relevant information to explain our models.
Since the formula Iup,loss is valid for any point ztest, it is also valid for the points in Dtrain. Both
Hessian matrices are definite positive. In this case, Iup,loss(z, z) is a norm for the gradient of the
loss function evaluated at point z. Thus we obtain a distribution of positive influences. Moreover,
we considerably reduced the information since we have only one influence value for each point in
Dtrain. This is easier to interpret. The removal of a highly influential point greatly disturbs the model
while the removal of a null or almost null influence point causes only small modifications on the
predicted values. When Hessian matrices are not definite positive, we can take the absolute value of
the influence values to be able to apply the method described below. We represent for each model
the influential points in descending order in the Fig. 4.14 and 4.15. The choice of a threshold for the
number of influential points is left to the user. We arbitrarily select a threshold of 400 observations
for both models. Points are then represented in the 2 dimensional space. Now, influential points are
identified by a green circle7 As can be seen in Fig. 4.16 and 4.17 the points identified as influential
are different for each model. In addition, they have the interesting property of being located close
to the decision boundary. This is consistent with what we developed above. However, it remains
difficult to extract an explanation from this set of points. Given the location of the points, taking
the average over each of the coordinates is of no use. Nevertheless, we can use the influence as new
information. Contrary to what is proposed by Molnar (2020) we do not fit a model directly on the
influence of each observation but rather use the properties related to these points and the models.

Fig. 4.16: Linear model Fig. 4.17: Neural network

We suggest the following strategy to provide a local explanation only valid in the vicinity of the point
being explained.

1. Select an instance to explain that we denote by zexp.

7To keep the graphs simple and consistent with the explanations that follow, we display only the influential points that
are on the opposite side (of the boundary) to the red point.
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2. Among the most influential points, keep only those that are on the other side of the border with
respect to the point to be explained. We can easily obtain this information since we can query
the black-box model over the whole space.

3. Find the intersection point between the decision boundary and the straight lines passing
through the point to be explained and an influential point on the other side of the boundary.
These points are those identified in the previous step. We use a dichotomy method here, which
lets us arbitrarily set the precision.

4. For each point of intersection, locate the hyperplane Hi tangent to the decision surface at that
point. Hyperplanes are the geometric equivalent of linear models in dimension d. Here they
are a set of local explanations that are admissible.

5. Calculate the distance to the point we are trying to explain and the distance to the hyperplane
Hi for each point of step 3. Calculate the sum of these two distances. Use only the minimum
distance. We note this distance dmin. We have found a hyperplane that can be used as an
explanation for the instance we are studying. We now have to evaluate its local fidelity.

6. There are several reasonable methods for defining a neighborhood for the point to be explained.
For example, we can take a ball centered on the point we are attempting to interpret and with
a radius large enough to contain observations of both classes. It is also possible to choose a ball
of the same radius but centered on the point tangent to the decision surface. It is the latter
that we retain. k points8 are pulled uniformly in this d-dimensional ball. These points are new
observations intended to evaluate the fidelity of the explanation with respect to the black-box
model.

7. Assess the fidelity of the explanations predicting the linear surrogate model (our explanation)
and the black-box model on the previously created sample. We can use the accuracy, AUC,
precision and recall to measure the fidelity. This step validates the explanation. If the fidelity is
too low, we reject the explanation.

Fig. 4.16 and 4.17 show an example of an explanation9 for the point surrounded by a red circle
for our two models. According to the accuracy, the explanation is 100% faithful to the linear model
and 99.8% faithful to the neural network in the vicinity of the point to be explained. Of course,
this fidelity score varies according to the explanation and the complexity of the black-box model.
As expected, in the case of the linear model only, the explanation is very close to the true decision
frontier. For the linear model, the local explanation is consistent with the global explanation. For the
neural network, it only appears to be locally good. In higher dimensions, we can only measure the
quality of an explanation with the fidelity measure to assert its quality.

8The choice is left to the user.
9Red dashed line.

143



Insurance problem

Now, we return to our prevention problem on insurance data. We fit a linear model and a neural
network containing two hidden layers. The first hidden layer is composed of 4 neurons, while
the second contains 2 neurons. Generally, for binary classification, one output neuron is sufficient.
However, we use the h2o framework, which imposes the number of output neurons to match the
number of classes. Thus, our network has 44 weights and 8 bias. This requires 52 coefficients to be
estimated. We introduce a regularization of type L2. The value of this hyperparameter is 0.001. The
performances of the two models are detailed in Tab 4.2.

Tab. 4.2: Performance of black-box models

threshold AUC PRAUC precision recall

Linear model 0.114 0.616 0.171 0.158 0.761
Neural network 0.121 0.619 0.174 0.157 0.781

We want an explanation in the vicinity of influential observations for both models. This allows us to
locally compare the way the models make their decision. We illustrate this by giving an explanation
for the first two individuals of the Tab 4.3.

Tab. 4.3: Influential points

Bonus-Malus Ancienneté 1 Ancienneté 2 Age Vehicule Cylindrée Vitesse max Valeur Poids Target

984 0.5 20 0 23 1913 118 19,381 1,480 1
1,619 0.5 60 0 11 1998 230 30,250 1,490 1
32,294 0.5 41 0 28 3,980 126 17,982 1970 1
7,934 0.5 58 0 13 1,396 185 13,568 1,000 0

Applying the strategy proposed above, we obtain a distribution of influences represented in Fig. 4.18
and 4.19. The two most influential points for the linear model are the same as those identified
with the previous indicator. For the neural network, the Hessian matrix is invertible but not definite
positive. This is why we obtain positive and negative influence values. To choose our threshold
of points to keep, we, therefore, take the absolute value of the influences. Note that here again,
some points can be differentiated by their very high influence. These are points 32,294 and 7,934
whose characteristics are given in the Tab. 4.3. Observing Vehicle power and Max speed for point
32,294, we see that there is a consistency problem between Vehicle power and Max speed. This
may explain this strong influence value for the linear model. As we have just shown, in practice,
Iup,loss is very useful for identifying abnormal points. As generalized linear models are still very
widespread among insurers, the use of this indicator can be part of a data quality improvement
approach.

We now want to extract local explanations for the selected points. Based on the Fig. 4.18 and
4.19 we choose 2, 250 points for the linear model and 7, 000 points for the neural network. Giving
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the explanations for the linear model, we want to ensure that in higher dimensions, the provided
explanations are still consistent with the linear model. Fig. 4.20 and 4.21 empirically confirm this.
For the linear model, this observation holds for every point and not only for these two examples. We
checked it but cannot display all the results. For the neural network, we expect different hyperplanes
for the explanations of individuals 984 and 1, 619 since the neural network is nonlinear. This is what
we see in Fig. 4.22 and 4.23. According to the accuracy, the explanation of point 984 for the linear
model is 100% faithful. For the neural network, the fidelity is 97.4%. This remains high enough to
consider that the explanation is reliable near this point.

Fig. 4.18: Linear model Fig. 4.19: Neural network

Remark 25 Often, when a surrogate model is fitted to explain the results of a more complex model,
the nature of the explanation may seem inconsistent with our expectations. As humans, we prefer
explanations that correspond with our expectations. Hence, it can be disturbing to see that Vehicle age
has greater importance than License seniority 1 in predicting the occurrence of a claim. However,
we should consider that we are trying to explain what the model has "understood". A model can perform
well and capture spurious correlations. Thus, a black-box model can be an efficient statistical solution
and produce poor explanations for a human. Although the explanations provided here do not seem to us
to be actuarially consistent, they do explain what the different models have learned locally.
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Fig. 4.20: Explanation for point 984 Fig. 4.21: Linear model

Fig. 4.22: Explanation for point 984 Fig. 4.23: Explanation for point 1,619

4.6 Identification of a maximal perturbation direction

Contrary to the previous indicators, in this section, we are not interested in the variations caused by
the removal of a point. Instead, we are interested in the perturbation of a point. We want to define
the direction in which moving a point of Dtrain maximizes the loss variation for any prediction. Such
an indicator provides a direction in which to find an "adversarial example". This means a fictitious
observation close to the initial observation, which is predicted with a different class by the black box
model. In our framework, this allows us to locate the decision frontier.

This time, the idea is to transfer the mass ε of a point z to a perturbed point zδ = (x + δ, y). We
can decompose this transfer into two steps. The first step is to remove z from Dtrain. Then, in
a second step, a perturbed point zδ is added to Dtrain. We denote by θ̂n,zδ,−z, the empirical risk
minimizer where zδ replaces z in Dtrain and θ̂n,ε,zδ ,−z is the vector of optimal parameters associated
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with the contaminated distribution (Fε,z,zδ
= F − εδzδ

+ εδz). Initially, we do not make any particular
assumptions about the nature of the explanatory variables or about δ.

Definition 8 Let z and ztest be two points belonging to the training sample and the test sample. We
define the loss variation at point ztest related to an infinitesimal mass transfer ε from z to zδ by

Ipert,loss(z, ztest)ᵀ = ∇δL(ztest, θ̂n,zδ,−z)ᵀ
∣∣∣
δ=0

.

Proposition 5 gives a closed formula that is valid even for discrete data. In the rest of the article, we
demonstrate that it is possible to refine the approximation further in the case of continuous numerical
data.

Proposition 5

Ipert,params(z, zδ) = dθ̂n,ε,zδ ,−z

dε

∣∣∣∣∣
ε=0

= Iup,params(zδ) − Iup,params(z).

If some variables are discrete, this makes it possible to set a vector of perturbation δ to evaluate the
loss variation in this direction.

In the case of continuous variables, it is possible to refine the approximation.

Proposition 6 Let z be a point of the training sample and zδ its perturbed version, θ̂n and θ̂n,zδ ,−z are
the coefficients estimated with the original and perturbed versions, respectively, of point z. In the case of
mixed data (continuous and discrete),

θ̂n,zδ,−z − θ̂n = 1
n

H−1
θ̂n

(∇θL(zδ, θ̂n) − ∇θL(z, θ̂n)) + op( 1
n

) + o(||δ||).

in the case of continuous data only,

θ̂n,zδ ,−z − θ̂n = 1
n

H−1
θ̂n

[
∇x∇θL(z, θ̂n)

]
δ + op( 1

n
) + o(||δ||).

where ∇x∇θL(z, θ̂n) ∈ R
p×d
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In the case of continuous numerical data, we can obtain a finer indicator. For a prediction at a test
point, it gives the directions/variables in which the δ perturbations have the greatest impact.

Proposition 7 Let us assume that the explanatory variables are continuous, i.e.,. x ∈ X ∈ R
p and

||δ|| → 0. If L is differentiable with respect to x and θ, then

Ipert,loss(z, ztest)ᵀ = −∇θL(ztest, θ̂n)ᵀH−1
θ̂n

∇x∇θL(z, θ̂n).

This indicator allows us to obtain additional information on the influential variables when making a
prediction.

4.6.1 Implementation of Ipert,loss(z, ztest)ᵀ

We begin by illustrating the information carried by Iᵀ
pert,loss in two dimensions. The formulas are

valid for any ztest and a fortiori for a point of Dtrain. For the same reasons as before, we only calculate
this indicator for the most influential Dtrain points. We can sort points according to their importance
to avoid analyzing the totality of the observations. In Fig. 4.24 and 4.25, we represent the vectors
bearing the direction in which to move the hundred most influential points to perturb the prediction
the most. In addition, we represent in red a point chosen at random among the most influential
points. Since we have a direction pointing to the decision boundary, we have a vector orthogonal to
a set of hyperplanes, one of which is tangent to the decision surface. This is why we can use this
indicator as an explanation. The idea was suggested by Koh and Liang (2017).

Fig. 4.24: Linear model Fig. 4.25: Neural network
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We also display in these figures the hyperplane with a red dotted line for the observation to be
explained. Once again for the linear model, the hyperplane is consistent with the decision boundary.
For the neural network, the approximation is good. However, to check the quality of this approxi-
mation, we must, as before, define a neighborhood for this point and evaluate the fidelity. For this,
we predict each point of the neighborhood with the hyperplane (our explanation of the black-box
model). Then, we measure the fidelity between these predictions and the black-box prediction for
the same predictions. The Tab. 4.4 synthesizes the fidelity measures for these explanations.

Tab. 4.4: Influential points

Model Accuracy AUC F1 Score Precision Recall PRAUC

361 Linear model 1 1 1 1 1 0.998
74,973 Linear model 1 1 1 1 1 0.998
15,540 Neural network 0.915 0.994 0.919 0.998 0.852 0.990
3,973 Neural network 1 1 1 1 1 0.998

Let us now apply this method to our example on real insurance data. With the same technique as
before, we restrict the number of observations for which we want an explanation to 2, 250 for the
linear model and 7, 000 for the neural network. We thus calculate Ipert,loss(z, z)ᵀ for each of these
observations. Therefore, we can define a hyperplane for each influential point. Each hyperplane is an
explanation. Then, we evaluate the quality of the explanations. Since we have a set of explanations,
we can either analyze them one by one or represent the variability of the collection. For this, we
consider, Fig. 4.26 and 4.27. These are the boxplots of the hyperplane’s coefficient distributions. We
previously centered each of the variables. As can be seen, for the linear model, the explanations do not
differ much, which is rather reassuring. In contrast, for the neural network, the hyperplanes fluctuate
more. This is justified by the nonlinearity of the neural network. This variability of explanations is
not directly exploitable. However, it can allow us to define homogeneous groups of explanations
and improve our global understanding of the model, though, this is outside the scope of this study.
The explanations provided are generally faithful. Nevertheless, for the neural network, they are less
accurate than for the linear model as shown in Tab. 4.4.
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Fig. 4.26: Linear model Fig. 4.27: Neural network

Limits

This indicator, therefore, allows us to efficiently define a locally faithful hyperplane for the most
influential points. However, it requires a stronger assumption than for Iup,loss, the continuity of the
explanatory variables. In insurance, there are many categorical predictors. Thus, this indicator is not
always exploitable in practice. However, if it is not possible to use it, we can still use the strategy
developed in the previous section with Iup,loss. This requires more calculations but allows us to have
a faithful explanation under weaker assumptions. Moreover, we noticed during our tests that for
points with a weak influence, the calculation of Iup,loss is less accurate and can give hyperplanes of
lower quality.

4.7 Conclusion and future work

In this article, we presented three indicators based on influence functions. Therefore, it is possible
to efficiently identify observations considered abnormal by a given model or to prioritize points to
be analyzed. Moreover, by combining the information carried by these indicators with properties of
parametric models, we can extract locally faithful explanations for points that we want to analyze. In
practice, we can, therefore, use these indicators in a data quality improvement process. The models
we studied here include generalized linear models, which are still very widespread among insurers.
Finally, it is also possible to use the methods presented in this article to debug a model locally as
with LIME or SHAP. The advantage over the latter is that we can restrict the number of points to be
analyzed.
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It might be relevant to extend this work by adapting the technique for regression. Moreover, as we
have seen in the case of neural networks, we may consider grouping similar explanations together to
reduce their number and thus further improve our understanding of parametric black-box models.
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4.8.1 Data

Tab. 4.5: Data dictionnary

Variable name Description

Bonus/Malus is the Bonus/Malus coefficient of the
policyholder. It is between 0.5 and 3.5. The
lowest is the best. It starts at 1 for young
drivers.

Policy coverage level is the level of coverage of the policy: Mini,
Median1, Median2, Maxi.

Coverage period is the number of years of the policy.
Duration since the last modification represents the seniority of the current policy

since the last change.
Payment frequency is the frequency of payment: annual, biannual,

quarterly, monthly.

Pay-as-you-drive indicates whether the customer has subscribed
to a Pay-as-you-drive offer.

Usage describes the policyholder’s use of its vehicle.
INSEE code is the INSEE code identifying the commune or

department of the policyholder.
Driver’s gender 1 is the gender of the first driver.
Driver’s gender 2 is the gender of the second driver.

License seniority 1 is the license seniority of the first driver.
License seniority 2 is the license seniority of the second driver.
Vehicle age is the age (in years) of the vehicle since its

release.
Vehicle power represents vehicle power.
Fuel type is the fuel type of the vehicle.

Vehicle brand is the name of the vehicle manufacturer:
Renault, Peugeot or Citroen.

Vehicle model is the model of the vehicle.
Max speed is the maximum speed of the vehicle.
Vehicle type tourism, commercial.
Vehicle weight is the mass of the vehicle (en kg).

4.8.2 Proofs

Proof 2 (Proof for proposition 1) Let us show that Iup,params(z) = −H−1
θ̂n

∇θL(z, θ̂n).

Let Z ∼ F , where F is the distribution function for the data and Zε ∼ Fε,z = (1 − ε)F + εδz its
contaminated version. We want to minimize E[L(Z, θ)] i.e., 1

n

∑n
i=1 L(zi, θ), which is minimal in θ̂n,

under the assumption that the minimum is reached where ∇θ is null,
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∇θ[E(L(Z, θ̂n))] = ∇θ

(
1
n

n∑
i=1

L(zi, θ̂n)
)

= 0,

which is rewritten as

E(∇θL(Z, θ̂n)) = 1
n

n∑
i=1

∇θ

(
L(zi, θ̂n)

)
= 0.

Let us denote by θ̂n,ε,−z the vector of optimal parameters for the contaminated distribution. We seek to

calculate dθ̂n,ε,−z

dε . The contaminated distribution of the previous equation is rewritten as

E(∇θL(Zε, θ̂n,ε,−z)) = (1 − ε)
n

n∑
i=1

∇θL(zi, θ̂n,ε,−z) + ε∇θL(z, θ̂n,ε,−z) = 0.

Deriving with respect to ε we have

− 1
n

n∑
i=1

∇θL(zi, θ̂n,ε,−z) + (1 − ε)
n

× dθ̂n,ε,−z

dε
×

n∑
i=1

∇2
θL(zi, θ̂n,ε,−z) + ∇θL(z, θ̂n,ε,−z)

+ ε × dθ̂n,ε,−z

dε
× ∇2

θL(z, θ̂n,ε,−z) = 0.

When ε goes toward 0, then using the nullity condition of the gradient we obtain

Iup,params(z) = −H−1
θ̂n

∇θL(z, θ̂n)

Proof 3 (Proof for proposition 2) It remains to show that θ̂n,−z − θ̂n = − 1
nIup,params(z) + op( 1

n)

Let Z1, . . . , Zn be independent and identically distributed variables. Let us show in the framework of
finite samples that the (asymptotic) influence of the n-ième element can be expressed as follows:

θ̂n,−z − θ̂n = − 1
n

H−1
θ0

∇θL(z, θ0) + op( 1
n

)

We write the first-order of Taylor’s development in θ0.
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0 = 1
n

n∑
i=1

∇θL(Zi, θ0) + 1
n

n∑
i=1

∇2
θL(Zi, θ0)(θ̂n − θ0)

+ 1
2(θ̂n − θ0)ᵀ 1

n

n∑
i=1

∇3
θL(Zi, θ0)(θ̂n − θ0) + o(||(θ̂n − θ0)||2). (4.2)

The same development can be written for θ̂n−1.

0 = 1
n − 1

n−1∑
i=1

∇θL(Zi, θ0) + 1
n − 1

n−1∑
i=1

∇2
θL(Zi, θ0)(θ̂n−1 − θ0)

+ 1
2(θ̂n−1 − θ0)ᵀ 1

n − 1

n−1∑
i=1

∇3
θL(Zi, θ0)(θ̂n−1 − θ0) + o(||(θ̂n−1 − θ0)||2). (4.3)

From equations (4.2) and (4.3) we obtain the following equality:

− 1
n

∇θL(Zn, θ0) = − 1
n(n − 1)

n−1∑
i=1

∇θL(Zi, θ0) + (θ̂n − θ̂n−1)
n − 1

n−1∑
i=1

∇2
θL(Zi, θ0)

+ (θ̂n − θ0)
n − 1

[
1
n

n∑
i=1

∇2
θL(Zi, θ0) − 1

n − 1∇2
θL(Zn, θ0)

]

+ 1
2

[
(θ̂n − θ0)ᵀ 1

n

n∑
i=1

∇3
θL(Zi, θ0)(θ̂n − θ0) − (θ̂n−1 − θ0)ᵀ 1

n − 1

n−1∑
i=1

∇3
θL(Zi, θ0)(θ̂n−1 − θ0)

]

+ o(||(θ̂n − θ0)||2). (4.4)

In the development (4.4), we set Zn = z. The first term of the right member can be rewritten
− 1

n

[
1

n−1
∑n−1

i=1 ∇θL(Zi, θ0)
]
. In this way it is easy to see that the bracketed term multiplied by

√
n

converges in law toward a centered multivariate normal distribution according to the central limit
theorem. This term is, therefore, bounded in probability and is Op( 1

n3/2 ). The second term of the

right member can be written as follows (θ̂n − θ̂n−1)
[

1
n−1

∑n−1
i=1 ∇2

θL(Zi, θ0)
]
, where the term between

brackets converges in probability toward the matrix Hθ0 due to the law of large numbers. It is due to the
hypothesis E[||∇2

θL(Z, θ0)||] < ∞. The third term is op( 1
n) after multiplying by

√
n. The fourth term is a

sum of probability bounded terms. We make the hypothesis that 1
n

∑n
i=1 ∇3

θL(Zi, θ0) = Op(1)

It remains to put the pieces together. We multiply left and right by
√

n to obtain:
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− 1√
n

∇θL(Zn, θ0) = Op( 1
n

) + (θ̂n − θ̂n−1)
√

n(Hθ0 + op(1)) + op( 1
n

)

+
√

n

2

[
Op(1)op( 1

n
) − Op(1)op( 1

n
)
]

︸ ︷︷ ︸
op( 1√

n
)

. (4.5)

Hence,

[
− 1

n
∇θL(Zn, θ0) + op( 1

n
)
] [

H−1
θ0

+ op(1)
]

= (θ̂n − θ̂n−1)

thus,

(θ̂n − θ̂n−1) = − 1
n

H−1
θ0

∇θL(Zn, θ0) + H−1
θ0

op( 1
n

)︸ ︷︷ ︸
op( 1

n
)

− 1
n

∇θL(Zn, θ0)op(1)︸ ︷︷ ︸
op( 1

n
)

+ op( 1
n

)op(1)︸ ︷︷ ︸
op( 1

n
)

θ̂n,−z − θ̂n = − 1
n

H−1
θ0

∇θL(z, θ0) + op( 1
n

)

= − 1
n

H−1
θ̂n

∇θL(z, θ̂n) + op( 1
n

)

Finally,

θ̂n,−z − θ̂n = 1
nH−1

θ̂n
∇θL(z, θ̂n) + op( 1

n) .

Proof 4 (Proof for proposition 3) Let us show that Iup,loss(z, ztest) = −∇θL(ztest, θ̂n)H−1
θ̂n

∇θL(z, θ̂n)

The chain rule is applied to
dL(ztest, θ̂n,ε,−z)

dε
to obtain

dL(ztest, θ̂n,ε,−z)
dε

= ∇θL(ztest, θ̂n,ε,−z)dθ̂n,ε,−z

dε
.

By evaluating in ε = 0, we obtain
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dL(ztest, θ̂n,ε,−z)
dε

∣∣∣∣∣
ε=0

= ∇θL(ztest, θ̂n,ε,−z)
∣∣∣
ε=0

dθ̂n,ε,−z

dε

∣∣∣∣∣
ε=0︸ ︷︷ ︸

=−H−1
θ̂n

∇θL(z,θ̂n)

= −∇θL(ztest, θ̂n)H−1
θ̂n

∇θL(z, θ̂n).

Finally,

Iup,loss(z, ztest) = −∇θL(ztest, θ̂n)H−1
θ̂n

∇θL(z, θ̂n)

Proof 5 (Proof for proposition 4) Let z1 . . . zn be a set of observations such that zi = (xi, yi) with
xi ∈ R

p and yi ∈ {0, 1}. We denote by

P(Y = 1|X = xi) = p(xi, θ) = 1
1 + e−θᵀxi

.

Recall that the loss function in the case of binary logistic regression is the log-likelihood (log-loss)
regularized with a parameter (α > 0). This means,

L(zi, θ) = −
n∑

i=1

[
yi log(p(xi, θ)) + (1 − yi) log(1 − p(xi, θ)) + α||θ||22

]
.

It is easy to show that

Hθ̂n
=

n∑
i=1

p(xi, θ)(1 − p(xi, θ))

⎛
⎜⎜⎝

x2
1,1 · · · x1,1x1,n

...
. . .

...
x1,1x1,n · · · x2

n,n

⎞
⎟⎟⎠

︸ ︷︷ ︸=xix
ᵀ
i

+ 2αIdp.

see page 120 of Hastie et al. (2009). Let us show that Hθ̂n
is positive.

Let a ∈ R
p and show that aᵀHθ̂n

a ≥ 0
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aᵀHθ̂n
a =

n∑
i=1

p(xi, θ)(1 − p(xi, θ))aᵀxix
ᵀ
i a + 2α||a||22.

Let i ∈ {1, . . . , n}; we set bi = xᵀ
i a, then

aᵀHθ̂n
a =

n∑
i=1

p(xi, θ)︸ ︷︷ ︸
>0

(1 − p(xi, θ))︸ ︷︷ ︸
>0

bᵀi bi︸︷︷︸
||b||22

+ 2 α︸︷︷︸
>0

||a||22.

on the one hand,

aᵀHθ̂n
a ≥ 0

on the other hand, aᵀHθ̂n
a = 0 =⇒ a = 0. A sum of positive terms is null if and only if each term is

null.

Remark 26 It is possible to show that Hθ̂n
is definite due to the regularization term.

Proof 6 (Proof for proposition 5) Let us show that Ipert,params(z, zδ) = Iup,params(z)−Iup,params(zδ)

Let Z ∼ F , where F is the distribution function related to the data and Zε,δ ∼ Fε,zδ ,z = F + εδz − εδzδ

its contaminated version. We use the same methodology as for the proposition 1. Necessarily,

∇θ[E(L(Z, θ̂n)] = ∇θ

(
1
n

n∑
i=1

L(zi, θ̂n)
)

= 0.

This can be rewritten as

E(∇θ(L(Z, θ̂n))) = 1
n

n∑
i=1

∇θ

(
L(zi, θ̂n)

)
= 0.

Let us denote by θ̂n,ε,zδ,−z the vector of optimal parameters for the contaminated distribution. We seek to

calculate dθ̂n,ε,zδ,−z

dε . For the contaminated distribution the previous equation is rewritten
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E(∇θ(L(Zε,δ, θ̂n,ε,zδ,−z))) = 1
n

n∑
i=1

∇θL(zi, θ̂n,ε,zδ ,−z) + ε(∇θL(zδ, θ̂n,ε,zδ ,−z) − ∇θL(z, θ̂n,ε,zδ ,−z)) = 0.

Deriving with respect to ε

1
n

× dθ̂n,ε,zδ ,−z

dε
×

n∑
i=1

∇2
θL(zi, θ̂n,ε,zδ ,−z) + A = 0,

with

A = (∇θL(zδ, θ̂n,ε,zδ ,−z)−∇θL(z, θ̂n,ε,zδ,−z))+ε× dθ̂n,ε,zδ ,−z

dε
×(∇2

θL(zδ, θ̂n,ε,zδ ,−z)−∇2
θL(z, θ̂n,ε,zδ ,−z)).

By evaluating in ε = 0, then using the nullity condition of the gradient and simplifying we obtain

Ipert,params(z, zδ) = −H−1
θ̂n

(∇θL(z, θ̂n) − ∇θL(zδ, θ̂n)).

This corresponds to

Ipert,params(z, zδ) = Iup,params(z) − Iup,params(zδ) .

Proof 7 (Proof for proposition 6) Closed formula for θ̂n,zδ,−z − θ̂n

Reusing the result of Proposition 1.2, it comes naturally that θ̂n,zδ ,−z − θ̂n = − 1
n(Iup,params(zδ) −

Iup,params(z)) + op( 1
n).

To show the second part of the result, we use a Taylor development at order 1. Let f : Rp → R be a
function that can be differentiated twice in a point a ∈ R

p. Let us recall that Taylor’s formula allows us
to write

f(a + h) = f(a) + ∇xf(a)h + o(||h||).
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By setting f = ∇θL, a = z and h = δ, we obtain

∇θL(zδ, θ0) = ∇θL(z, θ0) + ∇x∇θL(z, θ0)δ + o(||δ||).

Then,

∇θL(zδ, θ0) − ∇θL(z, θ0) = ∇x∇θL(z, θ0)δ + o(||δ||).

By injecting this new approximation into the previous formula, we obtain

θ̂n,zδ ,−z − θ̂n = 1
n

H−1
θ0

[∇x∇θL(z, θ0)] δ + op( 1
n

) + o(||δ||)

= 1
n

H−1
θ̂n

[
∇x∇θL(z, θ̂n)

]
δ + op( 1

n
) + o(||δ||)

Finally,

θ̂n,zδ ,−z − θ̂n = 1
nH−1

θ̂n

[
∇x∇θL(z, θ̂n)

]
δ + op( 1

n) + o(||δ||)

Proof 8 (Proof for proposition 7) Closed formula for Ipert,loss(z, ztest)ᵀ

Assume that the explanatory variables are continuous, i.e., x ∈ X ∈ R
p and ||δ|| → 0. If L is

differentiable with respect to x and θ then according to the approximation developed in the previous
proof

∇θL(zδ, θ0) − ∇θL(z, θ0) = ∇x∇θL(z, θ0)δ + o(||δ||).

By injecting this into Proposition 1.4, we obtain

dθ̂n,ε,zδ,−z

dε

∣∣∣∣∣
ε=0

= −H−1
θ0

∇x∇θL(z, θ0)δ + op( 1
n

) + o(||δ||).

By definition,
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Ipert,loss(z, ztest)ᵀ = ∇δL(ztest, θ̂n,zδ,−z)ᵀ
∣∣∣
δ=0

.

We apply the chain rule to ∇δL(ztest, θ̂n,zδ ,−z)ᵀ
∣∣∣
δ=0

. We obtain

∇δL(ztest, θ̂n,zδ,−z)ᵀ = ∇θL(ztest, θ̂n,zδ,−z)ᵀdθ̂n,zδ,−z

dδ
.

According to the approximations above we have

dθ̂n,zδ ,−z

dδ
= −H−1

θ̂n
∇x∇θL(z, θ̂n) + op( 1

n
) + o(1).

By evaluating in δ = 0 we obtain

∇δL(ztest, θ̂n,zδ,−z)ᵀ
∣∣∣
δ=0

= ∇θL(ztest, θ̂n,zδ,−z)
∣∣∣
δ=0

dθ̂n,zδ,−z

dδ

∣∣∣∣∣
δ=0︸ ︷︷ ︸

=−H−1
θ̂n

∇x∇θL(z,θ̂n)+op( 1
n

)+o(1)

= −∇θL(ztest, θ̂n)H−1
θ̂n

∇x∇θL(z, θ̂n) + op( 1
n

) + o(1).

This leads to the conclusion that

Ipert,loss(z, ztest)ᵀ = −∇θL(ztest, θ̂n)ᵀH−1
θ̂n

∇x∇θL(z, θ̂n) + op( 1
n) + o(1)
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4.8.3 Figures

Tab. 4.6: Table of estimated coefficients

Removed point Influence
at test point

1 4.77
2 -0.47
3 13.35
4 0.19
5 0.23

Bibliography

Breiman, Leo (2001). “Random forests”. In: Machine learning 45(1), pp. 5–32.
Charpentier, Arthur, ed. (Aug. 2014). Computational Actuarial Science with R. Chapman and Hall/CRC.

DOI: 10.1201/b17230. URL: https://doi.org/10.1201%2Fb17230.
Chen, Tianqi and Carlos Guestrin (Aug. 2016). “XGBoost”. In: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM. DOI: 10.1145/2939672.
2939785. URL: https://doi.org/10.1145%2F2939672.2939785.

Cook, R Dennis and Sanford Weisberg (1982). Residuals and influence in regression. New York:
Chapman and Hall.

Doshi-Velez, Finale and Been Kim (2017). “Towards a rigorous science of interpretable machine
learning”. In: arXiv preprint arXiv:1702.08608.

Friedman, Jerome H. (2001). “Greedy function approximation: A gradient boosting machine.” In:
The Annals of Statistics 29(5), pp. 1189–1232. DOI: 10.1214/aos/1013203451. URL: https:
//doi.org/10.1214/aos/1013203451.

Gourieroux, Christian and Alain Monfort (Oct. 1995). Statistics and Econometric Models. Cam-
bridge University Press. DOI: 10.1017/cbo9780511751950. URL: https://doi.org/10.1017%
2Fcbo9780511751950.

Guidotti, Riccardo, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pe-
dreschi (Jan. 2019). “A Survey of Methods for Explaining Black Box Models”. In: ACM Computing
Surveys 51(5), pp. 1–42. DOI: 10.1145/3236009. URL: https://doi.org/10.1145%2F3236009.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media.

Huber, Peter J. (Feb. 1981). Robust Statistics. John Wiley & Sons, Inc. DOI: 10.1002/0471725250.
URL: https://doi.org/10.1002%2F0471725250.

Koh, Pang Wei and Percy Liang (2017). “Understanding black-box predictions via influence functions”.
In: International Conference on Machine Learning. PMLR, pp. 1885–1894.

Law, John, F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel (1986). “Robust
Statistics-The Approach Based on Influence Functions.” In: The Statistician 35(5), p. 565. DOI:
10.2307/2987975. URL: https://doi.org/10.2307%2F2987975.

161



Lundberg, Scott and Su-In Lee (2017). “A unified approach to interpreting model predictions”. In:
arXiv preprint arXiv:1705.07874.

Molnar, Christoph (2020). Interpretable machine learning. Lulu. com.
Ohlsson, Esbjörn and Björn Johansson (2010). Non-Life Insurance Pricing with Generalized Linear

Models. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-10791-7. URL: https://doi.
org/10.1007%2F978-3-642-10791-7.

Ribeiro, Marco, Sameer Singh, and Carlos Guestrin (2016). ““Why Should I Trust You?”: Explaining
the Predictions of Any Classifier”. In: Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Demonstrations. Association for Com-
putational Linguistics. DOI: 10.18653/v1/n16-3020. URL: https://doi.org/10.18653%2Fv1%
2Fn16-3020.

Team, R Core et al. (2013). “R: A language and environment for statistical computing”. In.
Verbelen, Roel, Katrien Antonio, and Gerda Claeskens (Apr. 2018). “Unravelling the predictive

power of telematics data in car insurance pricing”. In: Journal of the Royal Statistical Society:
Series C (Applied Statistics) 67(5), pp. 1275–1304. DOI: 10.1111/rssc.12283. URL: https:
//doi.org/10.1111%2Frssc.12283.

Wojnowicz, Mike, Ben Cruz, Xuan Zhao, Brian Wallace, Matt Wolff, Jay Luan, and Caleb Crable
(Dec. 2016). ““Influence sketching”: Finding influential samples in large-scale regressions”. In:
2016 IEEE International Conference on Big Data (Big Data). IEEE. DOI: 10.1109/bigdata.2016.
7841024. URL: https://doi.org/10.1109%2Fbigdata.2016.7841024.

162



5Conclusions

The purpose of this concluding section is not to detail once again the contributions of this thesis.
Indeed, they have already been described in the overall summary, the general introduction and in the
conclusions of each chapter. In this general conclusion, we propose some research perspectives that
are in line with the work we presented.

In chapter 2, we study a method named DefragTrees. This method is based on a statistical procedure
that randomly initializes rectangles in the covariates’ space before optimizing their shape to obtain
a global surrogate. Unfortunately, this introduces randomness into the method. Furthermore, the
objective function is not concave. Therefore, if we run the algorithm twice with different seeds,
we may become stuck in local maxima. Hence, we may obtain two different trees and therefore
different explanations. In practice, this is undesirable since we only want one explanation for a model.
However, even if we can say that the explanations are different, i.e., that the trees generated by the
method are different, we are unable to quantify the extent of the differences. We have not proposed
a metric to quantify the difference between two trees, i.e., that between two of our explanations.
However, such a metric may be of considerable interest since it would allow us to measure the
stability of explanations provided by this method. This would not improve the method, but would be
an important step in assessing the quality of explanations for methods of these kinds.

Our chapter 3 proposes an original method for solving a problem similar to that of chapter 2. Although
this method has many advantages, it also has some drawbacks. For instance, the crossing of several
partitions in a high-dimensional space can lead to a very large number of rectangles. This means
that such a number of rectangles will have to be kept track of by the computer, which in practice will
require considerable resources. For the moment, we have found a temporary solution. We only keep
in the cross-partition the rectangles that contain points from the database. This solution allows our
method to always work. However, we no longer have the knowledge of the tree ensemble over the
whole space, and instead only know it on a subset of rectangles. Therefore, it seems interesting to
consider other solutions to better manage complex cases. For example, we could divide the space into
several subparts. Then, for each part of the space, we could generate a regression or classification
tree that would faithfully represent the black-box. Finally, we could aggregate such faithful trees into
a single one.

Moreover, as we show in chapter 3, our method can extract a local explanation that faithfully
represents the black-box. Thanks to this we could compare our explanations with those produced
by other local methods such as LIME or SHAP. The latter has drawn much attention from insurers
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interested in implementing machine learning approaches. We could propose an approach that
performs comparisons between these two methods to validate or reject the SHAP method on a
black-box class for which we can now produce faithful explanations.

Finally, in our last chapter we show how to identify the influential points of a parametric black-box
model. Additionally, we demonstrate how to extract local explanations for these points. However, con-
trary to chapters 2 and 3, this approach does not provide a global vision of the model. Consequently,
it is rather difficult to draw general conclusions about the model from all of these explanations. One
direction for improvement would be to generate the set of explanations for the influential points and
then classify these explanations into K groups. Then, if we could determine the validity domain of
explanations in each of these K groups, we could create a global model that would be valid across
the space. This global model would be composed of valid explanations for each group and the validity
domain of each group in the space.
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