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Résumé

Les tests d'hypothèses distribués ont de nombreuses applications dans la sécurité, la surveillance de la

santé, le contrôle automobile, la détection d'anomalies, où les centres de décision, à l'aide des capteurs

distribués dans le système, doivent distinguer entre la situation normale (hypothèse nulle) et la situation

d'alerte (hypothèse alternative). A chaque centre de décision, on distingue deux types d'erreur : l'erreur

de type-I (correspondant à une fausse alarme) et l'erreur de type-II (correspondant à une détection man-

quée). L'objectif de ces problèmes est de maximiser la décroissance exponentielle des probabilités d'erreur

de type-II tout en préservant les probabilités d'erreur de type-I en dessous de seuils donnés. Plusieurs

travaux théoriques ont étudié les limites de performance de tels systèmes des tests d'hypothèses distribués,

en se focalisant sur les tests contre l'indépendance où les mesures aux di�érents terminaux sont censées

être corrélées en situation normale et indépendantes en situation d'alerte. Dans la plupart des travaux

précédents, chaque système est supposé avoir des ressources réseau dédiées représentées par des contraintes

de taux maximum sur les liens de communication. Dans cette thèse, nous supposons que di�érents systèmes

ou applications partagent les ressources limitées du réseau et nous imposons des contraintes de taux plus

�exibles (taux prévu).

Notre travail établit la première extension du problème de tests d'hypothèses binaires distribués sous

des contraintes de taux prévu à des capteurs multiples et/ou des centres de décision multiples. Nous

caractérisons de nouvelles limites fondamentales sur les exposants d'erreur de type-II aux di�érents centres

de décision, sous réserve de contraintes �xes sur les probabilités d'erreur de type-I et de contraintes de taux

prévu sur la communication entre les di�érents terminaux, pour diverses con�gurations de réseau. Nous

considérons principalement un réseau avec deux capteurs coopérant entre eux et communiquant avec un seul

centre de décision, un réseau avec plusieurs capteurs communiquant de manière multi-saut avec plusieurs

centres de décision, et un réseau avec un seul capteur communiquant sur un lien commun et deux liens

individuels avec deux centres de décision. Nous renforçons également certains résultats précédents sur les
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con�gurations étudiées sous des contraintes de taux maximal en prouvant des résultats de converse forte.

Plus précisément, nous étendons le gain de taux (1 − ε)−1, qui a été démontré pour la première fois

par Salehkalaibar et Wigger pour un seul lien, à tous les liens de communication lorsqu'un seul centre de

décision est présent ou que plusieurs centres de décision ont des probabilités d'erreur de type-I admissibles

égales, chaque fois qu'un seul terminal peut communiquer avec tous les autres terminaux. Nous montrons

que ce gain est réalisable en multiplexant deux sous-schémas : un schéma dégénéré qui déclenche toujours

une alerte en signalant des messages à un seul bit et un schéma de codage optimal pour la con�guration sous

des contraintes de taux maximal et des probabilités d'erreur de type-I qui disparaissent. Sous l'hypothèse

mentionnée de contraintes d'erreur de type-I égales sur tous les centres de décision, nous montrons que les

exposants optimaux d'erreur de type-II à tous les centres de décision peuvent être atteints en même temps.

Pour les con�gurations avec plusieurs centres de décision qui ont des probabilités d'erreur de type-I

di�érentes, nous observons et caractérisons un compromis entre les exposants d'erreur de type-II réalisables

aux di�érents centres de décision qui découle des di�érentes marges à exploiter sous les contraintes de taux

prévu données par les di�érents seuils d'erreur de type-I aux divers centres de décision. Nous caractérisons

l'ensemble de tous les exposants d'erreur de type-II réalisables aux di�érents centres de décision, que nous

appelons la région des exposants d'erreur fondamentaux, pour ces con�gurations. Nous proposons également

une nouvelle stratégie de multiplexage et de partage de taux qui permet d'atteindre les régions d'exposants

fondamentaux dérivés. Cette stratégie n'est pas spéci�que aux con�gurations étudiées et se généralise à

n'importe quelle con�guration avec des contraintes de taux prévu avec des gains prometteurs par rapport

aux résultats sur la même con�guration sous des contraintes de taux maximum. Pour de nombreux cas

dans les con�gurations étudiées, nous simpli�ons davantage la caractérisation de la région des exposants

fondamentaux, ce qui permet de réduire la complexité du schéma de codage optimal pour y parvenir.

Dans cette thèse, nous fournissons de nouvelles méthodes de preuve de converse que nous utilisons pour

prouver de nouveaux résultats de converse pour la caractérisation de la région des exposants fondamentaux

sous des contraintes de taux prévu et pour établir des résultats de converse forte pour les con�gurations

sous des contraintes de taux maximum. Alors que certaines de nos méthodes de preuve sont basées sur des

arguments de changement de mesure, des chaînes de Markov asymptotiques et le lemme du blowing-up,

nous proposons une méthode de preuve plus simple utilisant uniquement des arguments de changement de

mesure et des chaînes de Markov asymptotiques. Cette méthode s'avère être applicable à des problèmes

plus larges que les tests d'hypothèses, tels que les converses fortes pour la compression avec et sans perte,

avec information additionnelle au niveau du décodeur.
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Abstract

Distributed hypothesis testing have many applications in security, health monitoring, automotive car con-

trol, anomaly detection, where the decision centers with the help of the distributed sensors in the system

need to distinguish between the normal situation (null hypothesis) and the alert situation (alternative hy-

pothesis). At each decision center (DC), two types of error are distinguished: type-I error (corresponding

to a false alarm) and type-II error (corresponding to a missed detection). The objective of such prob-

lems is to maximize the exponential decay of the type-II error probabilities while preserving the type-I

error probabilities below given thresholds. Various information theoretic works studied the performance

limits of such distributed hypothesis testing systems with a focus on testing against independence where

the measurements at di�erent terminals are expected to be correlated under normal situation and to be

independent under alert situation. In most of the previous works, each system is assumed to have dedicated

network resources represented by maximum-rate constraints on the communication links. In this thesis, we

assume that di�erent systems or applications share the limited network resources and impose more �exible

expected-rate constraints.

Our work establishes the �rst extension of the distributed binary hypothesis testing problem under

expected-rate constraints to multiple sensors and/or multiple decision centers. We characterize new fun-

damental limits on the type-II error exponents at di�erent decision centers subject to �xed constraints on

the type-I error probabilities and to expected-rate constraints on the communication between the di�er-

ent terminals, for various network setups. Mainly, we consider a network with two cooperating sensors

communicating with a single DC, a network with multiple sensors communicating in a multi-hop way with

multiple DCs, and a network with a single sensor communicating over a common link and two individual

links with two DCs. We further strengthen some previous results on the studied setups under maximum-rate

constraints by proving strong converse results.

More speci�cally, we extend the (1−ε)−1 rate-boost, that was �rst shown by Salehkalaibar andWigger for
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a single link, to all communication links when a single DC is present or multiple DCs have equal permissible

type-I error probabilities, whenever a single terminal can communicate with all the other terminals. We

show that this gain is achievable by multiplexing two subschemes: a degenerate scheme that always raises

an alert by signaling single-bit messages and an optimal coding scheme for the setup under maximum-rate

constraints and vanishing type-I error probabilities. Under the mentioned assumption of equal type-I error

constraints on all DCs, we show that the optimal type-II error exponents at all DCs can be achieved at the

same time.

For setups with multiple DCs that have di�erent permissible type-I error probabilities, we observe and

characterize a tradeo� between the achievable type-II error exponents at the di�erent DCs that stems from

di�erent margins to exploit under expected-rate constraints given by the di�erent type-I error thresholds

at the various DCs. We characterize the set of all achievable type-II error exponents at the di�erent DCs,

which we call fundamental error exponents region, for these setups. We further propose a new multiplexing

and rate-sharing strategy that achieves the derived fundamental exponents regions. This strategy is not

speci�c to the studied setups and generalizes to any setup with expected-rate constraints with promising

gains compared to the results on the same setup under maximum-rate constraints. For many cases in the

studied setups, we further simplify the characterization of the fundamental exponents region which yields

reduced complexity in the optimal coding scheme to achieve it.

In this thesis, we provide new converse proof methods that we use to prove new converse results to

the characterizations of the fundamental exponents region under expected-rate constraints and to establish

strong converse results for the setups under maximum-rate constraints. While some of our proof methods

are based on change of measure arguments, asymptotic Markov chains, and the blowing-up lemma, we

propose a simpler proof method using change of measure arguments and asymptotic Markov chains only.

This method turns out to be applicable for wider problems than hypothesis testing such as strong converses

for lossless and lossy compression with side-information at the decoder.
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Chapter 1

Introduction

1.1 Background and Motivation

We live in a widely connected world where advanced technologies are integrating with all types of human

daily life needs such as health, security, mobility, household tasks, and work-related tasks. In this world,

future Internet of Things (IoT) systems are expected to be present ubiquitously with more than 10 billion

already installed IoT devices and a total of 25 billion devices estimated to be IoT-connected by 2030,

according to Statista. Accurate decision systems for health monitoring, security alerting, anomaly or

incident detection, automotive car control, and other highly sensitive applications are among the main

use cases of widely emerging IoT and sensor networks. With this tremendous number of connected IoT

devices and sensors which have limited network and energy resources, the various decision systems are

required to e�ciently use and share the available resources to achieve the best possible accuracy in their

decisions. This explains the interest of information theoretic works in deriving fundamental limits of the

performance of these decision systems and to suggest optimal strategies for achieving these limits. These

theoretical �ndings also serve as a benchmark to assess the performance of practical implementations and

their margins to the fundamental limits.

Therefore, such future systems aim at maximizing the performance of decision systems with limited

resources. These decision systems are equipped with sensors collecting data and decision centers wishing to

accurately identify the occurring events based on the received information from the sensors. In Information

theory, such a problem is known as hypothesis testing where the decision center has to decide on the joint

distribution underlying the data observed at all terminals. Each event, called hypothesis in the following,

induces a di�erent underlying joint distribution of the observations. In this thesis, we focus on binary
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hypothesis testing where the decision centers have to distinguish between two possible hypotheses (called

null hypothesis and alternative hypothesis). Our main objective is to characterize the performance of the

decision centers in terms of the error probabilities under the two hypotheses.

In alerting applications such as anomaly detection, security breach detection, health monitoring systems,

and automotive car control systems, the null hypothesis usually corresponds to a normal situation, while the

alternative hypothesis corresponds to an alert situation. There are two types of error to distinguish here:

type-I error and type-II error. Type-I error corresponds to a false alarm where the decision center decides

on the alternative hypothesis when the true hypothesis is the null hypothesis. Type-II error corresponds

to a missed detection where the decision center decides on the null hypothesis when the true one is the

alternative hypothesis. Since our interest is in alert systems where a missed detection is more critical than

a false alarm, we require the type-II error probability to decay to 0 exponentially fast, while the type-I error

probability is only required to stay below a given threshold. We aim at maximizing the decay-rate of the

type-II error probability with the number of observed samples.

Most of the information theoretic works studied the binary hypothesis testing problem when there is

a single sensor and a single decision center [1�22]. When the sensor and the decision center (DC) are

co-located, the setup is called centralized hypothesis testing and the decision center has full access to all

measurements in the system. In a centralized setup, the Neyman-Pearson Lemma [23] characterizes the

fundamental tradeo� between the two types of error probabilities. It is achieved via a likelihood ratio

test with an appropriately chosen threshold, where the threshold increases with the desired type-I error

probability and decreases with the type-II error probability. An exact characterization of the set of type-I

and type-II error probabilities that are simultaneously achievable for �nite number of samples (which in

this thesis we denote by n) is not yet available. The Cherno�-Stein Lemma [23, Theorem 11.8.3] however

exactly characterizes the optimal exponential decay-rate of the more critical type-II error probability when

the type-I error probability stays below a given threshold ε > 0. It is given by the Kullback-Leiber

Divergence between the probability mass functions (pmfs) of the observations under the two hypotheses

and does not depend on the allowed type-I error probability ε.

When the sensor and the DC are not co-located, we call the setup distributed hypothesis testing. In this

case, the sensor communicates with the DC over a communication link, which is often modeled as noise-free

but rate-limited link. The communication link can be subject either to a maximum-rate constraint or to

an expected-rate constraint. Under maximum-rate constraint, which is the focus of most of the previous
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CHAPTER 1. INTRODUCTION 3

works, the maximum length of any message sent over the communication link is limited. However, under

expected-rate constraint, which was introduced recently in [20], the expected length of the message sent over

the communication link is constrained. Extensions of the distributed hypothesis testing setup with a single

sensor and a single decision center were considered under maximum-rate constraints to setups with either

multiple sensors [6, 18,24�27], multiple decision centers [28�32], or both of them [33�35]. In this thesis, we

provide the �rst extensions of the distributed hypothesis testing setup under expected-rate constraints to

setups with multiple sensors and/or multiple decision centers.

Speci�cally, in this thesis we focus on the three network structures in Figure 1.1, namely on: a) A

cooperative two-sensor single-DC multi-access-channel (MAC) setup (Figure 1.1a) where the sensors are

close to each other and thus can cooperate in their transmissions to the decision center. For simplicity,

cooperation is assumed to be unidirectional from the �rst sensor to the second sensor. b) A (K ≥ 2)-

hop setup with K sensors and K DCs (Figure 1.1b), where the communication is short-range and thus

only between neighbouring sensors. Such a scenario is motivated by the stringent battery constraints of IoT

devices. c) A single-sensor two-DC broadcast-channel (BC) setup (Figure 1.1c) as relevant for systems where

sensors are reused to serve di�erent DCs such as common tra�c sensors broadcasting to multiple automotive

cars. Though simple, this scenario is interesting because it reveals the tradeo� in the communication from

the sensor to the DCs over a common BC that stems from the di�erent needed information to decide (due

to the di�erent local observations) at the two DCs.

All these setups have previously been studied, and the set of possible type-II error exponents that

are simultaneously achievable at the various DCs when testing against independence or testing against

conditional independence has been characterized under constraints on the maximum communication rates.

In the special case of testing against independence, under the alternative hypothesis, it is either considered

that the observations at the di�erent terminals are independent of each other or that the observations at the

sensors are correlated together but are independent of the observations at the DC, with same marginals as

under the null hypothesis in both cases. For testing against conditional independence, the joint distribution

of the observations under the alternative hypothesis is equal to the product of the conditional marginal

distributions conditioned on a common random variable. Moreover, these works mostly rely on speci�c

Markov properties between the observations at the various terminals, which can be motivated by the

assumption that observations of sensors that are farther away are less correlated than observations of

neighbouring sensors. While in almost all these previous works, except for the two-hop setup [35], the

3
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type-I error probability is required to vanish asymptotically, in this thesis we derive the optimal type-II

error exponents for arbitrary type-I error probability thresholds ε ∈ [0, 1). We consider both maximum-

and expected-rate constraints.

(a) Two sensors cooperating and communicating
with a DC (automotive car).

(c) Single sensor communicating over BC (communi-
cation in red) and two individual links to two DCs
(automotive cars).

(b) Multi-hop network with multiple sensors (including sensors at cars) and multiple DCs (all cars).

Figure 1.1: Di�erent network structure with multiple sensors and/or multiple DCs.
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CHAPTER 1. INTRODUCTION 5

For maximum-rate constraints, our results show that the set of achievable type-II error exponents does

not depend on the permissible type-I error probability thresholds. Such a result is generally referred to as a

strong converse result in information theory. In contrast, for expected-rate constraints, the set of achievable

type-II error exponents depends on the various type-I error thresholds. Moreover, depending on the values

of the di�erent thresholds at the various DCs in the network, our results illustrate tradeo�s between the

type-II error exponents that can simultaneously be achieved at the di�erent DCs. The resulting tradeo�

when di�erent DCs have di�erent type-I error thresholds is �rst of its kind and we exactly characterize it

for the various setups we study.

To prove the achievability results under expected-rate constraints, we propose a new rate-sharing strat-

egy that generalizes the degenerate rate-splitting scheme in [20] to apply to more interesting sets of rates.

That means, we choose di�erent sets of rates for the network and we apply an optimal coding and testing

scheme under maximum-rate constraints for each of the chosen rate-tuples with a certain probability. In

most of our setups, we manage to provide explicit characterizations of the probabilities that should be used

for the rate-sharing: they are determined by the type-I error probability thresholds at the various DCs.

The converse proof methods that we use in this thesis rely on a similar change of measure argument as

in [36�38], where we also restrict to jointly typical source sequences as [37]. No variational characterizations,

or hypercontractivity arguments [39] are required. Instead, we rely on arguments showing that certain

Markov chains hold in an asymptotic regime of in�nite blocklengths and in some steps we resort also to

the blowing-up lemma [40]. Our method to circumvent variational characterizations, or hypercontractivity,

or blowing-up arguments seems to extend also to other converse proofs, see for example the simpli�ed

proof of the well-known strong converses for lossless and lossy compression with side-information at the

decoder [41,42] presented in [43].

1.2 Main Contributions

We present in the sequel the main contributions of this thesis:

� For the Cooperative MAC setup with two sensors and a single decision center:

� We characterize the optimal error exponent of the setup under expected-rate constraints and

under a speci�c Markov chain. To achieve this error exponent, we propose an optimal coding

scheme using the technique of Salehkalaibar and Wigger [20] that chooses a subset of observations
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at the �rst sensor, under which the decision center always raises an alert by communicating a

single-bit over all links, and otherwise applies the optimal coding scheme under maximum-rate

constraints with vanishing type-I error probability.

� For the setup under maximum-rate constraints, we re-establish the weak converse proof in general

and we show a strong converse result under the Markov chain. Under this result, the optimal

error exponent is shown to be independent of the type-I error probability.

� We show that our results extend the rate-gain factor of (1 − ε)−1 in [20] to all communication

links in the cooperative MAC setup. This implies a boost in the optimal type-II error exponent

under expected-rate constraints for any type-I error threshold ε > 0.

� For a network with K hops and K decision centers:

� We provide an exact characterization of the general fundamental exponents region under

expected-rate constraints showing a tradeo� between the exponents at all decision centers with

di�erent type-I error thresholds. The proposed optimal coding scheme to achieve this region,

based on our multiplexing and rate-sharing strategy, combines 2K subschemes each with a certain

probability, and with given rates. To determine the optimal scheme, one needs to optimize over

the probabilities and the chosen rates subject to the available rate budgets.

� We prove that our results simplify for the special cases of K = 2 or K = 3 hops, where the sim-

pli�ed optimal coding scheme is formed of K+ 1 subschemes only. In this simpli�ed scheme, the

probabilities of the subschemes are determined by the type-I error thresholds and no optimization

over them is needed. A conjecture for the K hops is proposed.

� We further provide a strong converse result showing that the fundamental exponents region is of

a rectangular form under maximum-rate constraints, which means that all DCs can achieve their

optimal error exponents at the same time. For the converse proofs, we propose an alternative

method using change of measure arguments and asymptotic Markov chains.

� For K = 2, we also analyze the case when a more �exible sum-rate constraint (i.e. a constraint

on the total rate in the system R = R1 + R2) is considered instead of the strict individual rate

constraints.

� For a BC with a single sensor and two decision centers:

6
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� We provide an exact characterization of the general exponents region under expected-rate con-

straints. This region shows an additional tradeo� element, stemming from di�erences in the

admissible type-I error thresholds at the DCs, compared to the tradeo� under maximum-rate

constraints, stemming from the competition on the resources of the common BC link to the two

DCs. The proposed optimal coding scheme to achieve this region consists of four subschemes,

where the available rate at each link is distributed among these subschemes.

� We further provide a strong converse result for the setup under maximum-rate constraints show-

ing that the fundamental exponents region is independent of the type-I error thresholds.

To summarize, in this thesis, we present the �rst results on the extended distributed binary hypothesis

testing setup under expected-rate constraints with multiple sensors and/or multiple DCs. We propose a new

rate-sharing strategy that multiplexes di�erent subschemes with vanishing type-I error probabilities. Each

subscheme is applied with a given probability and a rate choice, subject to the constraints on type-I error

probabilities and available rates, to serve a subset of the DCs and maximize their type-II error exponents.

To the best of our knowledge, we are the �rst to observe a tradeo� between the type-II error exponents at

the di�erent DCs when they have di�erent type-I error thresholds. We show that our strategy is optimal

when the applied subschemes resemble the optimal coding schemes for the targeted subset of the DCs under

maximum-rate constraints. However, our proposed strategy is not speci�c to any setup, nor to the case

when optimal coding schemes exist. As a result, this rate-sharing strategy can be generalized to other

setups under expected-rate constraints and can be applied with given generic coding schemes of vanishing

type-I error probabilities under maximum-rate constraints, and it is still expected to introduce the same

comparable gains. Furthermore, we propose new proof methods for converse and strong converse results

which use change of measure arguments and asymptotic Markov chains with or without the blowing-up

lemma. Although these methods require certain setup-speci�c steps to establish our converse proofs, they

seem to be extendable to other setups, not necessarily related to hypothesis testing [43].

1.3 Organization of Thesis

In Chapter 2, we present the state of the art for the distributed binary hypothesis testing problem with a

single sensor and a single decision center (DC), and we review the main results and tools that exist in the

literature in the special case of testing against independence on which we focus in this thesis. In Chapter 3,

7
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we study the �rst extension of the problem under expected-rate constraint to multiple sensors and derive

the optimal coding schemes and error exponents for two variations of the multi-sensor setup with single

DC: cooperative MAC and two-hop networks. In Chapter 4, we introduce multiple DCs into the problem,

�rst for the two-hop network and then for the extended K-hop network. A new rate-sharing strategy is

proposed for optimal coding schemes under expected-rate constraints. The fundamental exponents region

is exactly characterized for both models, and simpli�ed for the special cases of two hops and three hops.

In addition, new converse and strong converse proof techniques are presented. In Chapter 5, we study the

setup with a single sensor communicating with two DCs over a common BC channel and two individual

links. The optimal coding schemes and the fundamental exponents region are characterized for the general

case and simpli�ed for the special case of having only the common BC channel.

1.4 Notation

The set of all real numbers is denoted by R and the set of nonnegative real numbers is denoted by R+
0 .

For other sets, we use calligraphic letters, e.g. Y. Random variables are denoted by uppercase letters, e.g.

Y and their observations by lowercase letters, e.g. y. For the tuple of random variables (Y1, Y2, . . . , Yn) we

write Y n and yn for the tuple of n-samples of the observations (y1, y2, . . . , yn). We further use T0 and T1

for Transmitters, R1, R2, R3, and RK for Receivers or Relays.

We use sans serif font for the bit-strings: M for a random and m for a deterministic bit-string. We let

len(m) and dec(m) denote the length and the corresponding positive integer of the bit-string m. For any

positive integer, we let bin(m) denote the length dlog2(m)e binary (bit-string) representation of the index

m.

In addition, T (n)
µ denotes the strongly typical set given by [44, De�nition 2.8], H(·) denotes the entropy

function, I(·) the mutual information quantity, hb(·) the binary entropy function, andD(P‖Q) the Kullback-

Leibler divergence between two probability mass functions (pmfs) on the same alphabet. For any positive

integer K, we denote by P(K) the power set of all subset of {1, . . . ,K} excluding the emptyset which is

denoted by ∅.
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Chapter 2

Preliminaries: Single-Sensor Single-DC

Networks

2.1 Introduction

In this chapter, we review the previous results on binary hypothesis testing system with a single sensor and

a single decision center (DC), which are related to our work. We �rst present a general overview of the state

of the art for di�erent setups. Then we describe the distributed hypothesis testing setup, when the goal is

to maximize the type-II error exponent for a given type-I error threshold and when the communication is

over a noiseless link. In Sections 2.4 and 2.5, we review the existing optimal type-II error exponents and

coding schemes for the special case of testing against independence under maximum-rate constraints and

under expected-rate constraints, respectively.

2.2 State of the Art

Several information theoretic works investigated the problem of distributed binary hypothesis testing for

a single sensor and a single DC under various assumptions [1�22]. In this section, we focus on the works

maximizing the type-II error exponent, in noiseless or noisy communication environments, and under various

rate constraints (single-bit, zero-rate, and positive-rate).

For the special case of testing against independence under maximum-rate constraint over a noiseless link,

Ahlswede and Csiszàr [1] characterized the optimal type-II error exponent for testing against independence.

They also showed that the optimal error exponent is independent of the type-I error threshold ε > 0 for
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general hypothesis testing, i.e., for arbitrary pmfs underlying the two hypotheses, and provided a lower bound

to the optimal error exponent. Later, Han [2] and Shimokawa, Han, and Amari (SHA) [5] improved their

lower bound for general hypothesis testing. The coding scheme in [5] uses quantization and unstructured

binning at the encoder and a minimum empirical entropy decoder. The SHA scheme was shown to be

optimal in the special case of testing against conditional independence [6].

The problem of general binary hypothesis testing for a single sensor and a single DC has been an open

problem for long time and the SHA scheme was known to be the best achievable scheme for this problem.

However, the very recent works of Haim and Kochman [9] and Watanabe [22] proved the suboptimality of

the SHA scheme in some cases. The work of Haim and Kochman [9] extended the results of the SHA scheme

and showed that using nested codes for the quantize and bin strategy in the special case of doubly-symmetric

binary sources (DSBS) at least recovers the performance of the SHA scheme and slightly improves over it

for speci�c values of correlation between the sources. Furthermore, Watanabe [22] presented a sequential

scheme that clearly improves over the SHA scheme in the special case of having sources as a product of

DSBS. This sequential scheme is a modi�ed version of the SHA scheme that no longer uses naïve random

binning.

For zero-rate constraints in the general hypothesis testing problem, Han [2] characterized the optimal

type-II error exponent when the sensor communicates a single-bit to the decision center. Shalaby and Papa-

marcou [4] extended the work of Han to messages consisting of a sublinear (in the number of observations)

number of bits. They proved that the optimal error exponent coincides with that obtained by Han [2],

that is if the sensor is subject to asymptotically zero-rate constraint, then single-bit messages are enough

to achieve the optimal exponent at the DC.

Moreover, for a positive-rate communication over a noisy discrete memoryless channel (DMC), Sreeku-

mar and Gündüz [12,14,17,26] and Salehkalaibar and Wigger [18] studied the setup for general hypothesis

testing and derived optimality results in the special cases of testing against independence, testing against

conditional independence, and generalized testing against conditional independence. The results are based

on joint source-channel coding and show that for generalized testing against conditional independence, the

optimal type-II error exponent depends only on the capacity of the channel but not on its transition law.

This seems to be di�erent for general testing.

Recently, Salehkalaibar and Wigger [20] introduced the distributed hypothesis testing setup under an

expected-rate constraint. They showed that this �exible rate constraint leads to a boost in the optimal error

10
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exponent as a function of the type-I error threshold ε, in contrast to the result of [1] under maximum-rate

constraints where the optimal error exponent is independent of ε. They also provided optimality results in

the special case of testing against independence when the communication is over a noiseless link or over a

noisy channel with a stop-feedback that informs the sensor to stop transmission. Their proposed scheme

uses variable-length coding in a simple manner � it either sends single-bit messages or uses the �xed-length

coding scheme as in the optimal coding scheme under maximum-rate constraint � which is proved to be

enough and optimal.

Related are also the variable-length coding works by Salehkalaibar and Tan [21] and by Inan et al. [45].

Salehkalaibar and Tan considered a sequential hypothesis testing problem with zero-rate communication

and showed that limiting the expected number of transmission requests from the DC does not increase the

error exponent compared to a �xed-length hypothesis testing setup with zero-rate compression as in the

work of Shalaby and Papamarcou [4]. Inan et al. derived a new lower bound on the feasible error exponents

region for a non-cooperative MAC setup with memoryless quantization. They showed that the bound can

be approached closely at high rates by lattice quantization.

In the following sections we present the system models, optimal coding schemes, and main results, under

maximum-rate and expected-rate constraints, on which we build our work in this thesis.

2.3 The Setup with Noiseless Links of positive Rates

Figure 2.1: Single sensor node and single DC node.

Consider the distributed hypothesis testing problem in Figure 2.1. In the general binary hypothesis

testing problem, depending on the binary hypothesis H ∈ {0, 1}, the pair of measurements (Y n
0 , Y

n
1 ) is

distributed as:

under H = 0 : (Y n
0 , Y

n
1 ) i.i.d. ∼ PY0Y1 ; (2.1a)

under H = 1 : (Y n
0 , Y

n
1 ) i.i.d. ∼ QY0Y1 ; (2.1b)

for given probability mass functions (pmfs) PY0Y1 and QY0Y1 .

11



12 2.3. THE SETUP WITH NOISELESS LINKS OF POSITIVE RATES

In the remainder of this thesis, we focus on testing against independence where

QY0Y1 = PY0PY1 (2.2)

for PY0 and PY1 denoting the marginals of the pmf PY0Y1 .

The sensor node T0 observes Y n
0 , while the decision node R1 observes Y n

1 . The sensor node informs

the decision node about its observations over a positive rate-limited communication link by sending the

bit-string message M = φ(n)(Y n
0 ) to R1, where the encoding function is of the form φ(n) : Yn0 → {0, 1}?.

Two types of rate constraint are distinguished: maximum-rate constraint and expected-rate constraint. For

a maximum-rate constraint, the maximum length of any communicated bit-string message M is upper-

bounded as

len(M) ≤ nR, (2.3)

where R is the maximum available rate of communication. For an expected-rate constraint, as introduced

by Salehkalaibar and Wigger in [20], only the expected length of the communicated bit-string message M

is upper-bounded:

E[len(M)] ≤ nR. (2.4)

Receiver R1 guesses hypothesis H using its observation Y n
1 and the received bit-string message M. I.e.,

using a decision function g(n) : Yn1 × {0, 1}? → {0, 1}, it produces the guess:

Ĥ = g(n) (Y n
1 ,M) ∈ {0, 1}. (2.5)

The type-I error probability, which corresponds to a false alarm, is given by

αn , Pr[Ĥ = 1|H = 0]. (2.6)

The type-II error probability, which corresponds to a missed detection, is given by

βn , Pr[Ĥ = 0|H = 1]. (2.7)

The goal is to design encoding and decision functions such that their type-I error probability stays below

a given threshold ε > 0 and the type-II error probability decays to 0 with largest possible exponential decay

while respecting a given rate constraint on the bit-string message M.

De�nition 1. Fix a maximum type-I error probability ε ∈ [0, 1] and rate R ≥ 0. The type-II error exponent

θ is called ε-achievable if there exists a sequence of encoding and decision functions {φ(n), g(n)}n≥1 satisfying:

12
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lim
n→∞

αn , lim sup
n→∞

αn ≤ ε, (2.8a)

lim
n→∞

1

n
log

1

βn
, lim inf

n→∞

1

n
log

1

βn
≥ θ, (2.8b)

and

len(M) ≤ nR, (2.8c)

for the setup under maximum-rate constraint, or

E[len(M)] ≤ nR, (2.8d)

for the setup under expected-rate constraint.

De�nition 2. The supremum over all ε-achievable type-II error exponents θ is called the ε-optimal error

exponent and is denoted θ∗max(R, ε) for a maximum-rate constraint setup and θ∗(R, ε) for an expected-rate

constraint setup.

2.4 Maximum-Rate Constraint

In this section, we present the optimal coding scheme [2] and the characterization of the optimal error

exponent for the distributed binary hypothesis testing problem of Figure 2.2 under maximum-rate constraint

[1].

Figure 2.2: Point-to-point setup under maximum-rate constraint [1].

2.4.1 Optimal Error Exponent

Theorem 1 (Theorems 2&3 in [1]). The ε-optimal error exponent in the special case of testing against

independence under maximum-rate constraint θ∗max(R, ε) is independent of ε and is given by

θ∗max(R, ε) = η1(R) := max
PU|Y0 :

R≥I(U ;Y0)
U→Y0→Y1
|U|≤|Y0|+1

I (U ;Y1) . (2.9)

13



14 2.4. MAXIMUM-RATE CONSTRAINT

Lemma 1. The function η1(·) is continuous, concave and monotonically non-decreasing on its entire domain

R
+
0 .

Proof: See Appendix A.1.

2.4.2 Optimal Coding Scheme

We present this coding scheme, which we refer to as �Han's scheme� in the rest of this manuscript. Han's

scheme is based on quantization and typicality checks. The set of observations at the transmitter are �rst

quantized and compressed into a codebook of rate R. The transmitter selects the entry of the codebook

that best represents its observation and sends the binary representation of this entry to the receiver. The

receiver performs a typicality check between its local observations and the corresponding entry of the

received message in the codebook. Details of the coding scheme are as follows.

Fix a blocklength n and choose the following parameters:

� a small positive number µ > 0; and

� a conditional pmf PU |Y0 to generate PY0Y1U = PY0Y1PU |Y0 ,

where all mutual information quantities are evaluated according to the joint pmf PY0Y1U .

Randomly generate the codebook

CU ,
{
un(m) : m ∈

{
1, . . . , 2n(I(U ;Y0)+µ)

}}
, (2.10)

by drawing all entries i.i.d. according to the marginal pmf PU .

Transmitter: Assume it observes Y n
0 = yn0 . Then, it looks for indices m satisfying the condition that

the pair (un(m), yn0 ) lies in the strongly jointly typical set T (n)
µ (PUY0), randomly picks one of these indices,

and sends its corresponding bit-string

M = [bin(m)]. (2.11)

If no such index m exists, then T0 sends

M = [0]. (2.12)

Receiver: Assume it observes Y n
1 = yn1 and receives the bit-string message M = m.

If m = [0], then it declares

Ĥ = 1. (2.13)

14
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Else it setsm = dec(m), and checks if (un(m), yn1 ) ∈ T (n)
µ (PUY1). It declares Ĥ = 0 if the check succeeds,

and Ĥ = 1 otherwise.

2.5 Expected-Rate Constraint

2.5.1 Optimal Error Exponent

As mentioned earlier in this chapter, expected-rate constraints were �rst considered in the framework of

distributed hypothesis testing by Salehkalaibar and Wigger [20]. In their work, the authors derived the

ε-optimal error exponents for testing against independence in the setup of a single-sensor node with a

single-decision node. They obtained a direct rate-boost by the factor (1− ε)−1 showing thus that the type-

II error exponent is dependent on the type-I error threshold ε under expected-rate constraint, in contrast

to the case under maximum-rate constraint. Their main result is stated in the following theorem.

Theorem 2 (Theorem 1 in [20]). The ε-optimal error exponent θ∗(R, ε) in the special case of testing against

independence under expected-rate constraint is given by

θ∗(R, ε) = η1

(
R

(1− ε)

)
:= max

PU|Y0 :

R≥(1−ε)I(U ;Y0)
U→Y0→Y1
|U|≤|Y0|+1

I (U ;Y1) , (2.14)

where η1(R) is de�ned in (2.9).

2.5.2 Optimal Coding Scheme

The optimal coding scheme achieving the optimal exponent in Theorem 2 multiplexes two subschemes,

depending on the observations Y n
0 of the transmitter T0. In one subscheme, the decision center at R1 tries

to correctly guess the hypothesis H by applying Han's scheme, which is reported in Subsection 2.4.2, while

in the other subscheme, it directly declares Ĥ = 1.

The structure of this coding scheme is illustrated in Figure 2.3. The main idea is to choose a subset D∅

of the set of observations Yn0 with the following probability in the limit as n→∞

lim
n→∞

Pr[Y n
0 ∈ D∅] = ε. (2.15)

Then whenever the observation Y n
0 lies in the set D∅, a degenerate subscheme is applied with

M = [0] and Ĥ = 1. (2.16)

15
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Figure 2.3: Structure of the optimal coding scheme for point-to-point setup under expected-rate constraint.

Otherwise, Han's scheme is applied with a maximum-rate constraint R̃ = R/(1− ε). Since in Han's scheme,

the type-I error probability tends to 0 as n → ∞, the type-I error probability of the overall scheme is

upper-bounded by ε in the limit as n → ∞. The expected-rate constraint is satis�ed where a single-bit

does not change the communication rate as the blocklength n grows large. Note that the type-II error

probability in the degenerate subscheme is equal to 0, and thus the type-II error exponent of the overall

scheme is determined by that of Han's scheme for a boosted maximum-rate R̃ = R/(1− ε). This achieves

the desired error exponent in Theorem 2.

2.6 Numerical Comparison

The gain resulting from an expected-rate constraint compared to a maximum-rate constraint is illustrated

in the following example.

Example 1. Let Y0 and T be independent Bernoulli random variables of parameters pY0 = 0.5 and pT = 0.9

and set Y1 = Y0 ⊕ T .

For this example, Figure 2.4 shows the optimal error exponents under expected-rate and maximum-rate

constraints, given by functions η1

(
R

1−ε

)
and η1(R), when ε = 0.1 as a function of the rate R. The �gure

illustrates the bene�ts of expected-rate constraints and the concavity and monotonicity of the function η1(·).

16
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Figure 2.4: Optimal exponents under expected-rate and maximum-rate constraints for Example 1 when
ε = 0.1.

2.7 Summary and Discussion

In this chapter, we surveyed the existing works in the literature on the problem of distributed binary

hypothesis testing for a single sensor and a single DC. We focused on testing against independence when

the communication is assumed noise-free, and presented the main existing results on the problem either

under maximum-rate constraint or under expected-rate constraint. We further highlighted the main gain of

expected-rate constraints for positive rate and type-I error threshold ε is the rate-gain of the factor (1−ε)−1

as proved in [20]. We are thus interested in exploring if this rate-gain extends to other setups with multiple

sensors as we investigate in the next chapters.

17





Chapter 3

Multi-Sensor Single-DC Networks

3.1 Introduction

In this chapter, we address the testing-against-independence problem, for example to detect if the measure-

ments in a smart vehicle are independent from other measurements in the environment which might indicate

that the vehicle is failing or being hacked. For this problem, we consider two setups with two sensors and

a single decision center under expected-rate constraints which represent the �rst extensions of the work by

Salehkalaibar and Wigger in [20] to multi-sensor networks. In the �rst setup, illustrated in Figure 3.1, the

�rst sensor communicates over a shared link to both the second sensor and the DC, and after receiving its

message, the second sensor communicates with the DC. We refer to this setup as �Cooperative MAC�. The

two sensors observe the sequences Y n
0 and Y n

1 , respectively, and the DC observes Y n
2 , where we assume that

the Markov chain

Y n
0 → Y n

1 → Y n
2 (3.1)

holds under the null hypothesis H = 0 whereas under the alternative hypothesis H = 1, Y n
2 is independent

of the pair (Y n
0 , Y

n
1 ). In the second setup, illustrated in Figure 3.2, the �rst sensor cannot communicate

directly with the distant DC (due to low energy constraints for instance) and the second sensor is also

acting as a relay to convey the �rst sensor's message. The observations at the transmitter Y n
0 , the relay Y n

1 ,

and the DC Y n
2 , form again the Markov chain (3.1) under H = 0, while all observations are independent

from each other under H = 1.

For both setups, we characterize the optimal type-II error exponents under expected-rate constraints.

Similarly to the single-sensor result in [20], we show that the optimal error exponent depends on the accepted

type-I error threshold ε. Indeed, we show that the variable-length coding allows to boost the rates over all

18
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Figure 3.1: Cooperative MAC with two sensors and a single decision center.

Figure 3.2: Two-hop setup with a single decision center.

the communication links in the network by the factor (1− ε)−1 over an optimal �xed-length coding under

maximum-rate constraints. Furthermore, under maximum-rate constraints, we prove a strong converse

results for the two setups, i.e., we show that under maximum-rate constraints, the optimal type-II error

exponents are independent of the accepted type-I error threshold ε, and thus the best exponents can be

achieved with vanishing type-I error probabilities. The strong converse for the two-hop network was already

proved in [35]; our proof is shorter and seems simpler.

3.2 Related Works

Distributed binary hypothesis testing has been studied for various network scenarios. We review in this

section the prior works related to MACs and multi-hop networks.

3.2.1 MAC

In MAC networks, multiple sensors communicate directly with the single DC. In our cooperative MAC,

there is an additional shared link from one sensor to the other. In the sequel, we refer to the MAC setups

without this shared link as �Non-cooperative MAC� (Figure 3.3). This setup is the most widely studied

MAC setup in the literature.

The non-cooperative MAC, with or without local observations at the DC, was studied in [2, 4, 6, 9,

24] under maximum-rate constraints. In [2], Han �rst established a lower and an upper bound on the

19
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Figure 3.3: Non-cooperative MAC setup with two sensors and a single decision center.

optimal error exponent for general binary hypothesis testing. Rahman and Wagner [6] further highlighted

the bene�ts of using binning and improved the lower bound obtained by Han using a quantize-bin-test

scheme. In the special case of testing against conditional independence, they characterized the optimal

error exponent. Haim and Kochman [9] studied the setup for symmetric-rate constraints, where both

messages have equal rates, using Körner-Marton coding [46]. Zhao and Lai [24] studied the special case of

testing against independence and provided a lower and an upper bound on the optimal error exponent.

In the special case of complete data compression, where communication is of a single bit, Han [2]

characterized the optimal error exponent. Shalabi and Papamarcou [4] extended this result of Han to the

more general case of asymptotically zero-rate compression. In this latter case, the messages sent by either

one or both of the two sensors do not necessarily need to be of a single-bit only, but their communication

rates tend to zero in the limit as the number of samples grows to in�nity. Shalabi and Papamarcou proved

that the optimal error exponent region coincides with that of the complete data compression obtained by

Han [2], i.e., if one of the two sensors is subject to zero-rate data compression, then single-bit messages are

enough for both sensors to achieve the optimal error exponent at the decision center. Zhao and Lai [24]

extended the study to an arbitrary number of sensors with zero-rate compression under an exponential

constraint, instead of a constant constraint, on the type-I error, i.e., when the type-I error is required to

decrease exponentially fast to 0, and characterized the optimal type-II error exponent under such constraint.

For the non-cooperative MAC with noisy communication, Sreekumar and Gündüz [26] studied the setup

when communication takes place over orthogonal DMCs and characterized the optimal error exponent

in the special case of testing against conditional independence. In addition, Salehkalaibar and Wigger

characterized in [27] the optimal error exponent in the special case when the observations of the sensors are

independent under both hypotheses for testing against independence and where the communication occurs
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over a general memoryless MAC. In [18], Salehkalaibar and Wigger derived similar results for generalized

testing against conditional independence when the communication occurs over a MAC that decomposes into

two DMCs. The general problem of testing against independence over memoryless MACs remains open

even for noiseless communication.

Our main interest in this thesis is on MAC setups with an additional communication link from one sensor

to the other. For such a cooperative MAC setup, Zhao and Lai [25] studied the problem of distributed binary

hypothesis testing under maximum-rate constraints. They proposed a coding scheme using superposition

coding and showed that it is optimal in the special case of testing against independence for vanishing type-I

error probability. We present the coding scheme and main result of [25] in Section 3.3.2. In our work on

the cooperative MAC setup, we prove a strong converse to this result under maximum-rate constraints

and derive the optimal error exponent under expected-rate constraints [47]. We present our results in

Sections 3.3.2.3, 3.3.3, 3.3.4, and 3.4.

3.2.2 Two Hops

Salehkalaibar, Wigger, and Wang [33] studied the two-hop relay network with two decision centers, where

the relay takes a decision too. They proposed a �decision forwarding� strategy where the relay performs a

joint typicality check between its observations and the decoded message received from the �rst sensor. Then

it forwards this decision with its message to the decision center. This strategy is proved to be optimal in the

special case of testing against independence under maximum-rate constraints and where a Markov chain

is formed between the observations at the sensor, the relay, and the decision center. In this chapter, we

consider a special case of the two-hop setup with only one decision center, see Figure 3.2. Thus, we present

a special version of the optimality results of [33] under maximum-rate constraints and the corresponding

strong converse result derived in [35] in Section 3.5.2. In this thesis, we simplify the proof of the strong

converse result in [35]. We also provide the optimal coding scheme and the optimal type-II error exponent

under expected-rate constraints. We present our results in Sections 3.5.3 and 3.5.2.2.

3.3 The Cooperative MAC Model

3.3.1 The Setup

Consider the distributed hypothesis testing problem in Figure 3.1 under the Markov chain (3.1) and in the

special case of testing against independence between the observations at the sensors and the observations
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at the decision center. Depending on the binary hypothesis H ∈ {0, 1}, the tuple (Y n
0 , Y

n
1 , Y

n
2 ) is thus

distributed as:

under H = 0 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0Y1 · PY2|Y1 ; (3.2a)

under H = 1 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0Y1 · PY2 (3.2b)

for given pmfs PY0Y1 and PY2|Y1 and where PY0 , PY1 , and PY2 denote the marginals of the joint pmf PY0Y1Y2 :=

PY0Y1PY2|Y1 .

The system consists of two transmitters T0 and T1, and a receiver R2. The transmitter T0 observes the

source sequence Y n
0 and sends its bit-string message M1 = φ

(n)
0 (Y n

0 ) to both T1 and R2, where the encoding

function is of the form φ
(n)
0 : Yn0 → {0, 1}? and satis�es the rate constraint. For a maximum-rate constraint,

the maximum length of M1 satis�es

len(M1) ≤ nR1, (3.3)

whereas for an expected-rate constraint, the expected length of M1 satis�es

E [len (M1)] ≤ nR1. (3.4)

The second transmitter T1 observes the source sequence Y n
1 and with the message M1 received from T0, it

computes a bit-string messageM2 = φ
(n)
1 (Y n

1 ,M1) using some encoding function φ(n)
1 : Yn1×{0, 1}? → {0, 1}?

that satis�es the rate constraint. For a maximum-rate constraint, the maximum length of M2 satis�es

len(M2) ≤ nR2, (3.5)

whereas for an expected-rate constraint, the expected length of M2 satis�es

E [len (M2)] ≤ nR2. (3.6)

Then, T1 sends M2 to the receiver R2, which guesses hypothesis H using its observation Y n
2 and the received

messages M1 and M2, i.e., using a decision function g(n) : Yn2 × {0, 1}? × {0, 1}? → {0, 1}, it produces the

guess:

Ĥ = g(n) (Y n
2 ,M1,M2) ∈ {0, 1}. (3.7)

The goal is to design encoding and decision functions such that their type-I error probability

αn , Pr[Ĥ = 1|H = 0] (3.8)

stays below a given threshold ε > 0 and the type-II error probability

βn , Pr[Ĥ = 0|H = 1] (3.9)

22



CHAPTER 3. MULTI-SENSOR SINGLE-DC NETWORKS 23

decays to 0 with largest possible exponential decay.

De�nition 3. Fix a maximum type-I error probability ε ∈ [0, 1] and rates R1, R2 ≥ 0. The type-II

error exponent θ ≥ 0 is called ε-achievable if there exists a sequence of encoding and decision functions

{φ(n)
0 , φ

(n)
1 , g(n)}n≥1 satisfying

lim
n→∞

αn ≤ ε, (3.10a)

lim
n→∞

1

n
log

1

βn
≥ θ, (3.10b)

and

len(Mi) ≤ nRi, i ∈ {1, 2}, (3.10c)

for the setup under maximum-rate constraints, or

E[len(Mi)] ≤ nRi, i ∈ {1, 2}, (3.10d)

for the setup under expected-rate constraints.

De�nition 4. The supremum over all ε-achievable type-II error exponents θ is called the ε-optimal error ex-

ponent and is denoted θ∗MAC,max(R1, R2, ε) for the cooperative MAC setup under maximum-rate constraints

and θ∗MAC(R1, R2, ε) for the cooperative MAC setup under expected-rate constraints.

3.3.2 Maximum-Rate Constraints

3.3.2.1 Optimal Coding Scheme under Maximum-Rate Constraints

The main feature in the optimal coding scheme proposed in [25] is the superposition coding where the

codebook at T1 is superposed on the message M1 received from T0. Since T0 transmits its message M1

over the direct link to R2, the receiver can decode M1 using the adequate codebook. The coding scheme is

described as follows.

Fix a large blocklength n, small numbers µ′ < µ′′ < µ′′′, and conditional pmfs PU1|Y0 and PU2|U1Y1

satisfying the maximum-rate constraints

R1 ≥ I(U1;Y0) (3.11)

R2 ≥ I(U2;Y1|U1) (3.12)

where mutual information quantities are calculated with respect to

PU1U2Y0Y1Y2 , PU1|Y0PU2|U1Y1PY0Y1PY2|Y1 . (3.13)
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Randomly generate a codebook

CU1 ,
{
un1 (m1) : m1 ∈

{
1, · · · , b2nR1c

}}
, (3.14)

by drawing all entries i.i.d. according to the marginal pmf PU1 . For each codeword un1 (m1), generate a

codebook

CU2(m1) ,
{
un2 (m2|m1) : m2 ∈

{
1, . . . , b2nR2c

}}
, (3.15)

by drawing the j -th entry of each codeword according to the conditional marginal pmf PU2|U1
.

This superposition construction of the codebooks is illustrated in Figure 3.4.

Figure 3.4: Superposition construction of the coodebooks CU1 and CU2(m1) with rates R1 and R2 respec-
tively.

T0: Assume it observes the sequence Y n
0 = yn0 . Then it looks for indices m1 ≥ 1 satisfying

(un1 (m1), yn0 ) ∈ T nµ′(PU1Y0),

randomly picks one of these indices, and sends its corresponding bit-string to both T1 and R2. Otherwise,

it sends

M1 = [0]. (3.16)

T1: Assume it observes the sequence Y n
1 = yn1 and receives the message M1 = m1 from T0. If m1 = 0, then
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T1 forwards the message

M2 = [0] (3.17)

to R2. Else, it sets m1 = dec(m1) and looks for an index m2 ≥ 1 satisfying

(un1 (m1), un2 (m2|m1), yn1 ) ∈ T nµ′′(PU1U2Y1).

It randomly picks one of these indices and sends the bit-string message

M2 = [bin(m2)] (3.18)

to R2. Otherwise, it sends

M2 = [0]. (3.19)

R2: Assume it observes the sequence Y n
2 = yn2 and receives messages M1 = m1 and M2 = m2. If any of the

messages m1 or m2 equals [0], it declares

Ĥ = 1. (3.20)

Else, it sets m1 = dec(m1), m2 = dec(m2), and checks if

(un1 (m1), un2 (m2|m1), yn2 ) ∈ T nµ′′′(PU1U2Y2)

then it declares

Ĥ = 0. (3.21)

Otherwise, it declares

Ĥ = 1. (3.22)

This coding scheme achieves the following optimal exponent.

3.3.2.2 Optimal Error Exponent

Theorem 3 (Theorems 1&2 in [25]). The ε-optimal error exponent under the maximum-rate constraints

(3.10c) and for vanishing type-I error probability is

lim
ε↓0

θ∗MAC,max(R1, R2, ε) = η (R1, R2) := max
PU1|Y0 ,PU2|U1Y1

:

R1≥I(U1;Y0)
R2≥I(U2;Y1|U1)
|U1|≤|Y0|+2
|U2≤|U1||Y1|+1

I (U1U2;Y2) (3.23)

where the mutual information quantities are calculated with respect to the joint pmf PU1U2Y0Y1Y2 :=

PU1|Y0PU2|U1Y1PY0Y1Y2.

Proof: Achievability is proved in [25]. A converse proof, which corrects the converse in [25], is
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presented in Appendix A.2.1 The bounds on the cardinalities of U1 and U2 can be shown by standard

applications of Carathéodory's theorem, see [48, Appendix C].

3.3.2.3 Strong Converse Result

Theorem 3 shows the optimal error exponent for the general cooperative two-sensor single-DC setup without

the Markov chain (3.1) under maximum-rate constraints and vanishing type-I error probability. Here, we

strengthen that result in the special case when the Markov chain (3.1) holds.

This is the �rst result of this thesis.

Theorem 4. The optimal error exponent under maximum-rate constraints (3.10c) and in the presence of

the Markov chain (3.1) is independent of ε ∈ [0, 1) and given by:

θ∗MAC,max(R1, R2, ε) = η(R1, R2) (3.24)

Proof: Achievability follows directly from Theorem 3. The strong converse is proved in Appendix A.3.

It is similar to the converse under expected-rate constraints presented in Section 3.4 ahead but where

inequality (3.72), i.e., ∆H(M̃i) ≤ nRi

(
1 + hb

(
∆
nRi

))
, is replaced by the trivial inequality H(M̃i) ≤ nRi.

Notice that θ∗MAC,max(R1, R2, ε) is independent of ε, and thus we can abbreviate it as θ∗MAC,max(R1, R2).

In the following section, we present our optimal coding scheme under expected-rate constraints which

builds on the optimal coding scheme under maximum-rate constraints described in Subsection 3.3.2.1.

3.3.3 Expected-Rate Constraints

3.3.3.1 Optimal Coding Scheme under Expected-Rate Constraints

In the optimal coding scheme under expected-rate constraints, the three terminals T0, T1, R2 multiplex two

di�erent subschemes, and the choice of which subscheme to use depends on the transmitter T0's observations

Y n
0 . In one subscheme, R2 attempts to correctly guess the hypothesis H, while in the other subscheme it

simply declares Ĥ = 1. The main structure of the coding scheme is illustrated in Figure 3.5.

1In the converse proof of [25, Theorem 2], the second line in the lower bound to R1 relies on the identity
H(Y0,iY1,i|M1Y

i−1
0 Y i−1

1 ) = H(Y0,iY1,i|M1Y
i−1
0 Y n1,i+1) which does not necessarily hold. In fact, the "=" has to be replaced

with "≥" and in some cases the inequality is strict, which poses problems in the converse. Note that we replace the notation
of X1 and X2 in [25] by Y0 and Y1 in this thesis.
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Figure 3.5: Optimal coding scheme for Cooperative MAC setup under expected-rate constraints using the
optimal coding scheme under maximum-rate constraints with boosted rates on all links.

We partition the set Yn0 into subsets D∅,D{2} ⊆ Yn0 so that under PnY0 the probability of subset D{2} is

as large as possible but satis�es

Pr
[
Y n

0 ∈ D{2}
]
≤ 1− ε. (3.25)

As a consequence

Pr [Y n
0 ∈ D∅] ≥ ε. (3.26)

Notice that as n→∞ the above inequalities turn into an equalities.

Remark 1. The subscript of the subset D indicates the set of decision centers trying to correctly guess

the hypothesis while the others directly declare Ĥ = 1. Since receiver R2 is the only decision center, the

subscript could be either the empty set or the single-element set containing 2 as the index of R2.

Depending on whether Y n
0 lies in D∅ or D{2}, the three terminals follow a di�erent subscheme.

If Y n
0 ∈ D∅: In this case, T0 and T1 both send the single-bit string messages

M1 = M2 = [0] (3.27)

and R2 simply declares

Ĥ = 1. (3.28)

This implies that the type-I and type-II error probabilities in this case are given by αn = 1 and βn = 0.

If Y n
0 ∈ D{2}: In this case, R2 attempts to correctly guess H based on the transmitted messages. Specif-

ically, T0, T1, R2 all apply the encoding/decision functions of the optimal hypothesis testing scheme in

Subsection 3.3.2.1 with vanishing type-I error probability and respecting maximum-rate constraints R{2},1

27
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and R{2},2 on the two links, where these rates are chosen to satisfy

(1− ε)R{2},1 ≤ R1 (3.29a)

(1− ε)R{2},2 ≤ R2. (3.29b)

Notice that as per Remark 1, the �rst subscripts in R{2},1 and R{2},2 follow the subscript of the set D{2}.

Analysis: By (3.25), (3.27), (3.29), and since the transmission of a single bit hardly changes the rate for

su�ciently large blocklengths, the overall scheme satis�es the expected-rate constraints R1 and R2 on the

two links. Appendix A.4 proves that when the hypothesis testing scheme in Subsection 3.3.2.1 with vanishing

type-I error probability [25] is employed for Y n
0 ∈ D{2}, then the overall scheme meets the permissible type-I

error probability ε and achieves the error exponent given by Equation (3.30) of Theorem 5.

3.3.3.2 Optimal Error Exponent

Theorem 5. For any ε ≥ 0, the ε-optimal error exponent under expected-rate constraints (3.4), (3.6), is

θ∗MAC(R1, R2, ε) = η(R1/(1− ε), R2/(1− ε)) (3.30)

Proof: Achievability is based on the above scheme and is analyzed in Appendix A.4. The converse

is proved in Section 3.4.

3.3.4 Numerical Comparison

By Theorems 4 and 5, we can observe the gain in the optimal error exponent induced by the expected-rate

constraints:

θ∗MAC(R1, R2, ε) = θ∗MAC,max(R1/(1− ε), R2/(1− ε)). (3.31)

This result shows that the rate-boost under expected-rate constraints reported in [20] (see Theorem 2

in this thesis) for a single-link setup extends to networks with multiple links, where all the communication

rates are boosted by the factor (1− ε)−1 simultaneously.

We further examine this gain at considering example.

Example 2. Let Y0, S, T be independent Bernoulli random variables of parameters pY0 = 0.4, pS = 0.8, pT

and set Y1 = Y0 ⊕ T and Y2 = Y1 ⊕ S.

For this example, Figure 3.6 shows the optimal error exponents under expected-rate and maximum-

rate constraints, θ∗MAC(R1, R2, ε) and θ∗MAC,max(R1, R2), when pT = 0.8, ε = 0.05 and both links are of

same rates R1 = R2. Figure 3.6 also presents the optimal error exponent under expected-rate constraints
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θ∗MAC(R1 = 0, R2, ε) when R1 = 0, i.e., when the �rst sensor is not present or cannot communicate. The

�gure thus illustrates the bene�ts of expected-rate constraints (the gap between the solid blue line and the

dash-dotted red line) and of the �rst sensor T0 (the gap between the dashed green line and the solid blue

line).
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Figure 3.6: Optimal exponents under expected-rate and maximum-rate constraints for Example 2 when
pT = 0.8 and ε = 0.05.

Remark 2. Even under the Markov chain (3.1), the direct link between the �rst terminal T0 and the

decision center R2 is bene�cial for the optimal error exponent. To verify this fact, consider the case when

Y1 = Y0, then T0 and T1 can be seen as a combined terminal. In the absence of a direct link between T0

and R2, the resulting optimal error exponent is identical to that of a single sensor with a single decision

center and a communication rate R2, i.e. η1(R2/(1− ε)). In the presence of the direct link between T0 and

R2, we can achieve an error exponent equal to η1

(
R1+R2
(1−ε)

)
by having a uni�ed codebook at the combined

terminal with total communication rate R1 +R2. By the non-decreasing monotonicity of the function η1(·)

(see Lemma 1, Appendix A.1), we can deduce that

η1

(
R1 +R2

(1− ε)

)
≥ η1

(
R2

(1− ε)

)
. (3.32)

For veri�cation, a numerical simulation is presented in Figure 3.7 for Example 2 when pT = 1, ε = 0.05
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and R1 = R2.
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Figure 3.7: Optimal exponents under expected-rate constraints for Example 2 when Y1 = Y0, pT = 1, and
ε = 0.05.

3.4 Converse Proof to Theorem 5

3.4.1 Outline of the Converse Proof

In this converse proof, we provide �rst an equivalent characterization of (3.23), then we propose a lemma

that uses the change of measure arguments, the blowing-up lemma, and one asymptotic Markov chain. In

addition, we use other arguments such as laws of probability on expectation and standard inequalities and

steps to derive lower bounds on the rate constraints and an upper bound on the optimal error exponent.

The proof is concluded with continuity and convergence arguments.

3.4.2 Equivalent Characterization

Notice �rst that the Markov chain U2 → (U1, Y1)→ (Y0, Y2), used in Theorem 5, and de�ned in Theorem 3

for the characterization of the error-exponent (3.23), can be replaced by the weaker Markov chain U2 →
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(U1, Y1)→ Y2 because the right-hand side (RHS) of (3.23) does not depend on the joint pmf of U2 and Y0.

In other words, we have the equivalence⋃
U1,U2:

U1→Y0→(Y1,Y2)
U2→(U1,Y1)→(Y2,Y0)

(I(U1U2;Y2), I(U1;Y0), I(U2;Y1|U1)) =
⋃

U1,U2:
U1→Y0→(Y1,Y2)
U2→(U1,Y1)→Y2

(I(U1U2;Y2), I(U1;Y0), I(U2;Y1|U1)).

(3.33)

Since the two objective functions coincide and the constraints on the left-hand side (LHS) are more stringent,

it su�ces to show that the RHS is included in the LHS. To this end, �x U1, U2 satisfying the constraints

on the LHS, i.e., the Markov chains U1 → Y0 → (Y1, Y2) and U2 → (U1, Y1) → Y2. Then, construct Ũ1, Ũ2

such that

PŨ1|Y0Y1Y2(u1|y0, y1, y2) = PU1|Y0(u1|y0) (3.34)

PŨ2|Ũ1Y0Y1Y2
(u2|u1, y0, y1, y2) = PU2|U1Y1(u2|u1, y1), (3.35)

and thus satisfying the Markov chains on the RHS: Ũ1 → Y0 → (Y1, Y2) and Ũ2 → (Ũ1, Y1)→ (Y2, Y0).

The proof is concluded by noting that

I(Ũ1;Y0) = I(U1;Y0), (3.36)

I(Ũ2;Y1|Ũ1) = I(U2;Y1|U1), (3.37)

I(Ũ1Ũ2;Y2) = I(U1U2;Y2), (3.38)

where equations (3.36) and (3.37) hold trivially by construction, and (3.38) holds because PŨ1Y1
= PU1Y1

and PŨ2Y2|Ũ1Y1
= PU2|U1Y1 · PY2|Y1 = PU2Y2|U1Y1 .

We proceed to show that

θ ≤ η̃(R1/(1− ε), R2/(1− ε)) (3.39)

where η̃(·, ·) is de�ned as

η̃ (R1, R2) := max
PU1|Y0 ,PU2|U1Y1

:

R1≥I(U1;Y0)
R2≥I(U2;Y1|U1)
|U1|≤|Y0|+2
|U2≤|U1||Y1|+1

I (U1U2;Y2) (3.40)

with the auxiliary random variables U1 and U2 satisfying the Markov chains U1 → Y0 → (Y1, Y2) and

U2 → (U1, Y1)→ Y2.
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3.4.3 Change of Measure, Blowing Up, and Asymptotic Markov Chain

Consider a sequence (in n) of encoding and decision functions {(φ(n)
1 , φ

(n)
2 , g(n))} satisfying the constraints

on the expected rates and error probabilities in (3.10). The following lemma is the heart of our converse

proof.

Lemma 2. Fix a small number η > 0, a blocklength n, and a set D ⊆ Yn0 × Yn1 . Let the tuple

(M̃1, M̃2, Ỹ
n

0 , Ỹ
n

1 , Ỹ
n

2 ) follow the pmf

PM̃1M̃2Ỹ n0 Ỹ
n
1 Ỹ

n
2

(m1,m2, y
n
0 , y

n
1 , y

n
2 ) , PY n0 Y n1 Y n2 (yn0 , y

n
1 , y

n
2 ) · 1{(y

n
0 , y

n
1 ) ∈ D}

PY n0 Y n1 (D)

·1{φ(n)
1 (yn0 ) = m1} · 1{φ(n)

2 (yn1 , φ
(n)
1 (yn0 )) = m2}. (3.41)

Further, de�ne

U1 , (M̃1, Ỹ
T−1

0 , Ỹ T−1
1 , T ), (3.42)

U2 , (M̃2, T ), (3.43)

Ỹi , Ỹi,T , i ∈ {0, 1, 2}, (3.44)

where T is uniform over {1, . . . , n} and independent of all previously de�ned random variables. Notice the

Markov chain U2 → (U1, Ỹ1)→ Ỹ2. The following (in)equalities hold

H(M̃1) ≥ nI(U1; Ỹ0) + logPY n0 Y n1 (D), (3.45)

H(M̃2) ≥ nI(U2; Ỹ1|U1), (3.46)

I(U1; Ỹ1Ỹ2|Ỹ0) = ø1(n), (3.47)

where ø1(n) is a function that tends to 0 as n→∞.

If

Pr[Ĥ = 0|H = 0, Y n
0 = yn0 , Y

n
1 = yn1 ] ≥ η, ∀(yn0 , yn1 ) ∈ D, (3.48)

then

− 1

n
log βn ≤ I(U1U2; Ỹ2) + ø2(n), (3.49)

where ø2(n) is a function that tends to 0 as n→∞.

Proof: See Appendix A.5.

To obtain the above lemma, we condition on a joint set of observations at the two sensors that yield

a positive probability of avoiding type-I error at the DC. We intersect this set with the set of jointly

typical sequences at the two sensors. For the intersection set, we apply change of measure arguments to
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restrict to random variables in this set, on which the blowing-up lemma is then applied to show that the

probability of avoiding type-I error tends to 1 under the blown-up set in the limit as n → ∞. A sequence

of standard inequalities is then used to upper-bound the type-II error exponent under this set. The lower-

bound expressions on the rates are derived using the laws on expectation. For the desired Markov chains,

the �rst one is proved asymptotically in the limit as n→ 0, while the second one holds by construction.

With this lemma, we can prove the desired outer bound on the exponents region as follows.

3.4.4 Bounds on Optimal Error Exponent and Rate Constraints

Fix a positive η > 0. Set µn = n−1/3, and de�ne the sets

B(η) , {(yn0 , yn1 ) : Pr[Ĥ = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] ≥ η}, (3.50)

D(η) , B(η) ∩ T (n)
µn (PY0Y1). (3.51)

Further de�ne for each n the probability

∆ , PY n0 Y n1 (D(η)), (3.52)

and notice that by the constraint (3.10a) on the type-I error probability

1− ε ≤
∑
yn0 ,y

n
1

Pr[Ĥ = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (3.53)

≤
∑

(yn0 ,y
n
1 )∈B(η)

PY n0 Y n1 (yn0 , y
n
1 ) +

∑
(yn0 ,y

n
1 )/∈B(η)

Pr[Ĥ = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (3.54)

≤ PY n0 Y n1 (B(η)) + η(1− PY n0 Y n1 (B(η))). (3.55)

Thus we have

PY n0 Y n1 (B(η)) ≥ 1− ε− η
1− η

. (3.56)

Moreover, by [44, Remark to Lemma 2.12], the probability that the pair (Y n
0 , Y

n
1 ) lies in the strongly jointly

typical set T (n)
µn (PY0Y1) satis�es

PnY0Y1

(
T (n)
µn (PY0Y1)

)
≥ 1− |Y0| |Y1|

4µ2
nn

, (3.57)

and since for any two events A and B,

Pr(A ∩B) ≥ Pr(A) + Pr(B)− 1, (3.58)

then by (3.51), (3.52), (3.56), and (3.57), we obtain

∆ ≥ 1− ε− η
1− η

− |Y0||Y1|
4µ2

nn
. (3.59)
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We thus conclude that in the limit n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

∆ ≥ 1− ε, (3.60a)

lim
η↓0

lim
n→∞

∆ ≤ 1. (3.60b)

We proceed by applying Lemma 2 to the set D(η) with ∆ ≥ η. This allows to conclude that there exists

a pair (U1, U2) satisfying the Markov chain U2 → (U1, Ỹ1)→ Ỹ2 and the (in)equalities

H(M̃1) ≥ nI(U1; Ỹ0) + logPY n0 Y n1 (D), (3.61)

H(M̃2) ≥ nI(U2; Ỹ1|U1), (3.62)

ø1(n) = I(U1; Ỹ1Ỹ2|Ỹ0), (3.63)

and

− 1

n
log βn ≤ I(U1U2; Ỹ2) + ø2(n), (3.64)

where the functions ø1(n), ø2(n) ↓ 0 as n→∞ and the random variables Ỹ0, Ỹ1, Ỹ2, M̃1, M̃2 are de�ned as

in the lemma, when applied to the set D(η).

To simplify exposition, we assume η very small and ∆ ≥ η. Otherwise the proof is similar but omitted here.

Further, de�ne the following random variables

L̃i , len(M̃i), i ∈ {1, 2}. (3.65)

By the rate constraints (3.4) and (3.6), and the de�nition of the random variables L̃i, we obtain for i ∈ {1, 2}

nRi ≥ E[Li] ≥ E[L̃i]∆. (3.66)

Moreover,

H(M̃i) = H(M̃i, L̃i) (3.67)

=
∑
li

Pr[L̃i = li]H(M̃i|L̃i = li) +H(L̃i) (3.68)

≤
∑
li

Pr[L̃i = li]li +H(L̃i) (3.69)

= E[L̃i] +H(L̃i), (3.70)

which combined with (3.66) establishes

∆H(M̃i) ≤ ∆E[L̃i] + ∆H(L̃i) (3.71)

≤ nRi
(

1 + hb

(
∆

nRi

))
, (3.72)

where (3.72) holds by (3.66) and because the entropy of the discrete and positive random variable L̃i of

34



CHAPTER 3. MULTI-SENSOR SINGLE-DC NETWORKS 35

mean E[L̃i] ≤ nRi
∆ is bounded by nRi

∆ · hb
(

∆
nRi

)
, see [23, Theorem 12.1.1].

Then by combining (3.72) for i ∈ {1, 2} with (3.61) and (3.62), noting (3.59), and considering also

(3.64), we have proved so far that for all n ≥ 1 there exists joint pmf PU1U2Ỹ0Ỹ1Ỹ2
= PU1|Ỹ0Ỹ1PU2|U1Ỹ1

PỸ0Ỹ1Ỹ2

(abbreviated as P (n)) so that the following conditions hold (where IP indicates that the mutual information

should be calculated according to a pmf P ):

R1 ≥
(
IP (n)(U1; Ỹ0) + g1(n)

)
· g2(n, η), (3.73a)

R2 ≥
(
IP (n)(U2; Ỹ1|U1)

)
· g2(n, η), (3.73b)

θ ≤ IP (n)(U1U2; Ỹ2) + g3(n), (3.73c)

g4(n) = IP (n)(Ỹ1Ỹ2;U1|Ỹ0), (3.73d)

for some nonnegative functions g1(n), g2(n, η), g3(n), g4(n) with the following asymptotic behaviors

lim
n→∞

g1(n) = 0, (3.74)

lim
n→∞

g3(n) = 0, (3.75)

lim
n→∞

g4(n) = 0, (3.76)

lim
η↓0

lim
n→∞

g2(n, η) ≥ 1− ε. (3.77)

We next observe that by Carathéodory's theorem [48, Appendix C] for each n there must exist random

variables U1, U2 satisfying (3.73) over alphabets of sizes

|U1| ≤ |Y0| · |Y1|+ 3, (3.78)

|U2| ≤ |U1| · |Y1|+ 1. (3.79)

Then we invoke the Bolzano-Weierstrass theorem and consider an increasing subsequence of positive num-

bers {nk}∞k=1 such that the following subsequences converge:

lim
k→∞

P
(nk)

Ỹ0Ỹ1Ỹ2U1U2
= P ∗Y0Y1Y2U1U2

. (3.80)

Considering further an appropriate sequence of diminishing η-values, we conclude by (3.73a)�(3.73c) and

(3.60) that:

R1 ≥ (1− ε)IP ∗(U1;Y0), (3.81)

R2 ≥ (1− ε)IP ∗(U2;Y1|U1), (3.82)

θ ≤ IP ∗(U1U2;Y2). (3.83)
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Notice further that since for any k, the pair (Ỹ
(nk)

0 , Ỹ
(nk)

1 ) lies in the jointly typical set T (nk)
µnk

(PY0Y1), we

have |PỸ0Ỹ1 − PY0Y1 | ≤ µnk and thus the limiting pmf satis�es P ∗Y0Y1 = PY0Y1 . Moreover, since for each

nk the random variable Ỹ2 is drawn according to PY2|Y1 given Ỹ1, irrespective of Ỹ0, the limiting pmf also

satis�es P ∗Y2|Y0Y1 = PY2|Y1 . We also notice that under P ∗Y0Y1Y2U1U2
the Markov chain

U2 → (U1, Y1)→ Y2, (3.84)

holds because U2 → (U1, Ỹ1)→ Ỹ2 forms a Markov chain for any nk. Finally, by continuity considerations

and by (3.73d), the following Markov chain must hold under P ∗Y0Y1Y2U1U2
:

U1 → Y0 → (Y1, Y2). (3.85)

Using the de�nition of the function η̃(·, ·) in (3.40), we thus proved that all achievable error exponents

θ are upper-bounded by the error exponent given in (3.39). This concludes our converse proof.

3.5 The Two-Hop Model

3.5.1 The Setup

Consider the distributed hypothesis testing problem for the two-hop setup with a single decision center in

Figure 3.2. It consists of a transmitter T0, a relay R1, and a receiver R2. Unlike the Cooperative MAC

setup of Section 3.3, there is no direct link between T0 and R2. The communication occurs over two hops

from T0 to R1, and from R1 to R2. All the terminals T0, R1, and R2 have their own observations Y n
0 , Y

n
1

and Y n
2 , respectively, forming the Markov chain

Y n
0 → Y n

1 → Y n
2 (3.86)

under both null and alternative hypotheses. In this case, the testing problem is a testing-against-

independence of all observations. It di�ers from the previous Cooperative MAC setup where under the

alternative hypothesis the observations at the sensors T0,T1 are correlated together but are independent

of the observations at the receiver R2. This two-hop setup is motivated by systems in which terminals are

correlated in a serial manner. In this case, if the observations at any two adjacent terminals are independent

then all observations are independent from each other. In other words, in the two-hop setup, in the special

case of testing against independence, depending on the binary hypothesisH ∈ {0, 1}, the tuple (Y n
0 , Y

n
1 , Y

n
2 )

is distributed as

under H = 0 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0Y1 · PY2|Y1 , (3.87a)
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under H = 1 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0 · PY1 · PY2 , (3.87b)

for given pmfs PY0Y1 and PY2|Y1 and where PY0 , PY1 , and PY2 denote the marginals of the joint pmf PY0Y1Y2 :=

PY0Y1PY2|Y1 .

The transmitter T0 observes the source sequence Y n
0 and sends its bit-string message M1 = φ

(n)
0 (Y n

0 ) to

R1, where the encoding function is of the form φ
(n)
0 : Yn0 → {0, 1}? and satis�es the rate constraint. For a

maximum-rate constraint, the maximum length of M1 satis�es

len(M1) ≤ nR1, (3.88)

whereas for an expected-rate constraint, the expected length of M1 satis�es

E [len (M1)] ≤ nR1. (3.89)

The relay R1 observes the source sequence Y n
1 and with the message M1 received from T0, it computes

a bit-string message M2 = φ
(n)
1 (Y n

1 ,M1) using some encoding function φ(n)
1 : Yn1 × {0, 1}? → {0, 1}? that

satis�es the second rate constraint. For a maximum-rate constraint, the maximum length of M2 satis�es

len(M2) ≤ nR2, (3.90)

whereas for an expected-rate constraint, the expected length of M2 satis�es

E [len (M2)] ≤ nR2. (3.91)

Then R1 sends M2 to the receiver R2, which guesses hypothesis H using its observation Y n
2 and the received

message M2, i.e., using a decision function g(n)
2 : Yn2 × {0, 1}? → {0, 1}, it produces the guess

Ĥ2 = g
(n)
2 (Y n

2 ,M2) ∈ {0, 1}. (3.92)

The goal is to design encoding and decision functions such that their type-I error probability

α2,n , Pr[Ĥ = 1|H = 0] (3.93)

stays below a given threshold ε2 > 0 and the type-II error probability

β2,n , Pr[Ĥ = 0|H = 1] (3.94)

decays to 0 with largest possible exponential decay.

De�nition 5. Fix a maximum type-I error probability ε2 ∈ [0, 1] and rates R1, R2 ≥ 0. The type-II

error exponent θ2 is called ε2-achievable if there exists a sequence of encoding and decision functions
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{φ(n)
0 , φ

(n)
1 , g

(n)
2 }n≥1 satisfying

lim
n→∞

α2,n ≤ ε2, (3.95a)

lim
n→∞

1

n
log

1

β2,n
≥ θ2, (3.95b)

and

len(Mi) ≤ nRi, i ∈ {1, 2}, (3.95c)

for the setup under maximum-rate constraints, or

E[len(Mi)] ≤ nRi, i ∈ {1, 2}, (3.95d)

for the setup under expected-rate constraints.

De�nition 6. The supremum over all ε2-achievable type-II error exponents θ2 is called the ε2-optimal

error exponent and is denoted θ∗Two-Hop,max(R1, R2, ε2) for the two-hop one-DC setup under maximum-rate

constraints and θ∗Two-Hop(R1, R2, ε2) for the two-hop one-DC setup under expected-rate constraints.

In the rest of this chapter, let ε := ε2.

3.5.2 Maximum-Rate Constraints

3.5.2.1 Optimal Coding Scheme under Maximum-Rate Constraints

In this section, we present a simpli�ed version of the optimal coding scheme suggested by [33] for the

two-hop setup. This coding scheme can achieve the optimal error exponent θ∗Two-Hop,max(R1, R2, ε) for any

ε ≥ 0. The optimal coding scheme uses the Han's scheme, described in the previous chapter in Section

2.4.2, in the following manner.

Han's scheme is �rst applied between T0 and R1. If R1 decides locally on hypothesis H = 1, then R1 sends

the single bit M2 = [0] to R2, and R2 declares Ĥ2 = 1. If R1 decides locally on hypothesis H = 0, then R1

and R2 run a separate Han scheme, and R2 produces the guess Ĥ2 indicated by this second Han scheme.

Details of the coding scheme are as follows.

Fix a blocklength n and choose the following parameters:

� a small positive number µ > 0; and

� conditional pmfs PU1|Y0 and PU2|Y1 leading to PY0Y1U1 := PY0Y1PU1|Y0 and PY1Y2U2 := PY1Y2PU2|Y1 ,
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where all mutual information quantities are evaluated according to the joint pmfs PY0Y1U1 and PY1Y2U2 .

Randomly generate the codebooks

CU1 ,
{
un1 (m1) : m1 ∈

{
1, . . . , 2n(I(U1;Y0)+µ)

}}
(3.96)

CU2 ,
{
un2 (m2) : m2 ∈

{
1, . . . , 2n(I(U2;Y1)+µ)

}}
, (3.97)

by drawing all entries i.i.d. according to the marginal pmfs PU1 and PU2 .

T0: Assume it observes Y n
0 = yn0 . Then, it looks for indices m1 satisfying

(un1 (m1), yn0 ) ∈ T (n)
µ (PU1Y0),

randomly picks one of these indices, and sends its corresponding bit-string

M1 = [bin(m1)]. (3.98)

If no such index m1 exists, then T0 sends

M1 = [0]. (3.99)

R1: Assume it observes Y n
1 = yn1 and receives the bit-string message M1 = m1.

If m1 = [0], then it forwards the single-bit message

M2 = [0]. (3.100)

Else it checks if

(un1 (m1), yn1 ) ∈ T (n)
µ (PU1Y1). (3.101)

If the check fails, it sends M2 = [0]. If the check is successful, R1 next looks for indices m2 satisfying

(un2 (m2), yn1 ) ∈ T (n)
µ (PU2Y1), randomly picks one of them and sends

M2 = [bin(m2)] (3.102)

to R2.

If no such index m2 exists, R1 directly sends the single-bit message

M2 = [0]. (3.103)

R2: Assume it observes the sequence Y n
2 = yn2 and receives message M2 = m2.

If m2 = [0], it declares Ĥ2 = 1.

Else it sets m2 = dec(m2), and checks if

(un2 (m2), yn2 ) ∈ T (n)
µ (PU2Y2).
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40 3.5. THE TWO-HOP MODEL

It declares Ĥ2 = 0 if the check succeeds, and Ĥ2 = 1 otherwise.

3.5.2.2 Optimal Error Exponent

Recall the de�nition of the optimal error exponent of Han's scheme in Theorem 1 considering a point-to-

point setup with a single T0�R1 link as

η1 (R1) := max
PU1|Y0 :

R1≥I(U1;Y0)
U1→Y0→Y1
|U1|≤|Y0|+1

I (U1;Y1) , (3.104a)

and de�ne similarly the optimal error exponent considering a point-to-point setup with a single R1�R2 link

as

η2 (R2) := max
PU2|Y1 :

R2≥I(U2;Y1)
U2→Y1→Y2
|U2|≤|Y1|+1

I (U2;Y2) , (3.104b)

where the mutual information quantities are calculated with respect to the joint pmfs PY0Y1U1 and PY1Y2U2 ,

respectively. As stated in [1], in above maximization problems it su�ces to consider auxiliary random

variables U1 and U2 over alphabets of sizes |Y0|+ 1 and |Y1|+ 1 by standard applications of Carathéodory's

theorem, see [48, Appendix C].

Lemma 3. The functions η1 and η2 are continuous, concave and monotonically nondecreasing on their

entire domain R+
0 .

Proof: Analogous to the proof of Lemma 1 and thus omitted.

Theorem 6. For any ε ≥ 0, the optimal error exponent under the maximum-rate constraints (3.95c) of the

two-hop setup is

θ∗Two-Hop,max(R1, R2, ε) = η1(R1) + η2(R2). (3.105)

Proof: The achievability proof can be obtained as a special case of the proof in [33] by disregarding

the decision at the relay and thus removing the corresponding error probability analysis. The strong converse

can be obtained also as a special case of the strong converse of [35], or in a simpli�ed manner as a corollary

of the simpli�ed strong converse proof for the two-hop with two DCs setup (to be presented in the next

chapter) in Appendix B.1.

Notice that the optimal error exponent θTwo-Hop,max(R1, R2, ε) does not depend on the permissible type-I

error probability ε. Thus, we abbreviate it as θ∗Two-Hop,max(R1, R2).
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By de�nition, note that η1(R1) determines the optimal exponent in a point-to-point system where R2

is not present and R1 is a decision center, and η2(R2) determines the optimal exponent in a point-to-point

system where T0 is not present [1]. In the studied two-hop setup, the receiver R2 thus accumulates the

optimal exponents achieved over the two links. As we see next, the gains under expected-rate constraints,

that were shown for the setups of single sensor and of cooperative two sensors with a single DC, are extended

here for the two-hop setup with a single DC. First, we show the optimal coding scheme under expected-rate

constraints for the two-hop setup with a single DC.

3.5.3 Expected-Rate Constraints

3.5.3.1 Optimal Coding Scheme under Expected-Rate Constraints

The main idea of this optimal coding scheme is similar to that of Section 3.3.3.1 where here the three

terminals T0, R1, R2 multiplex two di�erent subschemes, and the choice of which subscheme to use depends

on the transmitter T0's observations Y n
0 . In one subscheme, R2 attempts to correctly guess the hypothesis

H, while in the other subscheme it simply declares Ĥ2 = 1.

The structure of the coding scheme is illustrated in Figure 3.8. We partition the set Yn0 into subsets

D∅,D{2} ⊆ Yn0 so that under PnY0 the probability of subset D{2} is as large as possible but satis�es

Pr
[
Y n

0 ∈ D{2}
]
≤ 1− ε. (3.106)

As a consequence

Pr [Y n
0 ∈ D∅] ≥ ε. (3.107)

Notice that as n→∞ the above inequalities turn into equalities.

Depending on whether Y n
0 lies in D∅ or D{2}, the three terminals follow a di�erent subscheme.

If Y n
0 ∈ D∅: In this case, T0 and R1 both send the single-bit string messages

M1 = M2 = [0] (3.108)

and R2 simply declares

Ĥ = 1. (3.109)

Here, α2,n = 1, β2,n = 0 by (3.109), and R1 = R2 ≈ 0 by (3.108) since the transmission of single-bit

messages can hardly change the communication rate for large values of n.

If Y n
0 ∈ D{2}: In this case, R2 attempts to correctly guess H based on the transmitted messages. Specif-
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Figure 3.8: Optimal coding scheme for two hops with a single decision center under expected-rate constraints
using the optimal coding scheme under maximum-rate constraints with boosted rates on all links.

ically, T0, R1, R2 all apply the encoding/decision functions of the optimal hypothesis testing scheme in

Subsection 3.5.2.1 with vanishing type-I error probability and respecting maximum-rate constraints R{2},1

and R{2},2 on the two links, where these rates are chosen to satisfy

(1− ε)R{2},1 ≤ R1 (3.110a)

(1− ε)R{2},2 ≤ R2. (3.110b)

Analysis: By (3.106) and the choices of the rates in each of the two subschemes, the overall scheme

satis�es the expected-rate constraints R1 and R2 on the two links for large values of n. Following similar

steps as in Appendix A.4, we can prove that when the hypothesis testing scheme in Subsection 3.5.2.1 with

vanishing type-I error probability is employed for Y n
0 ∈ D{2}, then the overall scheme meets the permissible

type-I error probability ε and achieves the optimal error exponent given by Equation 3.111 of Theorem 7.

3.5.3.2 Optimal Error Exponent

Theorem 7. For any ε ≥ 0, the optimal error exponent under the expected-rate constraints (3.95d) is

θ∗Two-Hop(R1, R2, ε) = η1(R1/(1− ε)) + η2(R2/(1− ε)). (3.111)

Proof: Follows as a corollary from the more general result in Theorem 9 ahead.
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3.6 Summary and Discussion

In this chapter, we studied testing against independence for two setups with two sensors and a single

decision center: the cooperative MAC and the two-hop network. We derived the optimal error exponents

under expected-rate constraints showing a rate-gain of (1− ε)−1 on all communication links, thus extending

the single-link result in [20]. To achieve this gain, we propose optimal coding schemes that multiplex

two subschemes, one of them is a degenerate scheme where the communication is of zero-rate and the

decision center always declares Ĥ = 1, and the other one is the optimal coding scheme for the setup under

maximum-rate constraints and for vanishing type-I error probability.

Notice that for the overall scheme to respect the expected-rate constraints, it su�ces that the second

subscheme respects the rate constraints R{2},1 and R{2},2 on expectation. However, as a consequence of our

main results in Theorem 5 and Theorem 7, under vanishing type-I error probabilities, the same type-II error

exponents are achievable under both expected- and maximum-rate constraints. There is thus no bene�t

in multiplexing schemes with expected rates R{2},1 and R{2},2, but possibly larger maximum rates. This

technical note holds also for the next two chapters.

The proposed multiplexing strategy can achieve a rate-boost of (1− ε)−1 on any generic network with a

single DC and where all terminals can coordinate the multiplexing, i.e., for example when one terminal can

send a zero-rate message to all other terminals in the network. This implies that the suggested strategy is

general, simple and practical with promising gains for setups with one DC, and it leads to optimal results

when the optimal coding scheme under maximum-rate constraints and vanishing type-I error probability

exists. For setups with more than one DC, as we show in next chapters, this strategy might not be su�cient

and thus we propose new strategies based on a rate-sharing concept.

In our converse proofs, we used change of measure arguments, the blowing-up lemma, asymptotic Markov

chains, and probability laws under expectation. Our proof methods can also be used to establish strong

converse results for the cooperative MAC setup under maximum-rate constraints and under the Markov

chain (3.1). Recall that strong converse results show that the optimal error exponent is independent of the

type-I error probability threshold ε (Theorem 4). For the two-hop network, a similar strong converse result

existed already in the literature [35] (Theorem 6 in this chapter). However as we show in the next chapter

(see Sections 4.3.2.2,4.4.2.3), our strong converse proof method is simpler.
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Chapter 4

Multi-Hop Networks with Multiple DCs

4.1 Introduction

In this chapter, we consider multi-hop networks with multiple decision centers and derive the optimal type-

II error exponents region that all DCs can simultaneously achieve under expected-rate constraints. We �rst

characterize the exponents regions for the special case of the two-hop network with two DCs and show that

the exponents region under expected-rate constraints is boosted compared to the region under maximum-

rate constraints. The exponents region has a rectangular shape under maximum-rate constraints, where

both DCs can achieve simultaneously their optimal error exponents. A similar exponents region shape is

obtained under expected-rate constraints if the two DCs have equal permissible type-I error probabilities,

extending thus the rate-gain observed in previous setups with one DC to multiple DCs with equal type-I

error thresholds. However, when the DCs have di�erent permissible type-I error probabilities, a tradeo�

appears between the di�erent exponents at the DCs because all the DCs are competing for the same

communication resources. We generalize all these results to the K-hop network with K DCs. In the special

cases of two and three hops, we further simplify the characterizations of the fundamental exponents region.

This allows to propose optimal coding schemes with signi�cantly reduced complexity.

4.2 Related Works

The problem of distributed hypothesis testing in a multi-hop network was considered in [33�35]. The

authors in [33] focused on the special case of two-hop network with two DCs, while in [34] they presented

some extensions to the general K-hop network with K DCs. In addition, the authors in [35] established a
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strong converse proof to the optimality result in [33].

For the two-hop network, the authors in [33] proposed two coding schemes, one with binning and one

without binning. In the general hypothesis testing setup, binning was shown to improve the characterization

of the exponents region. Interestingly, the authors further showed that under a Markov chain between the

measurements at the sensor, the relay, and the DC, Y n
0 → Y n

1 → Y n
2 , their coding schemes decouple into two

point-to-point coding schemes. Moreover, in the special cases of testing against independence and testing

against conditional independence, their schemes without and with binning, respectively, are optimal under

maximum-rate constraints and for vanishing type-I error probabilities. In [35], it was further proved that

the optimal error exponent for the two-hop network in the special case of testing against independence and

under maximum-rate constraints, is independent of the type-I error probability. For the K-hop network,

the authors in [34] extended the no-binning scheme to K hops and showed that it is optimal under the

Markov chain Y n
0 → Y n

1 → Y n
2 → · · · → Y n

K in the special case of testing against independence under

maximum-rate constraints and for vanishing type-I error probabilities.

In our work, we study testing against independence for the two-hop setup where the maximum-rate

constraints are replaced by expected-rate constraints [49, 50]. For the K-hop setup, we derive a strong

converse to the previous result under maximum-rate constraints [43]. In addition, we describe the optimal

coding scheme and characterize the error exponents region under expected-rate constraints [51]. In the

sequel, we present our main results on the two-hop setup in Section 4.3 and on theK-hop setup in Section 4.4.

4.3 The Two-Hop Model

4.3.1 The Setup

Consider the two-hop hypothesis testing setup of Section 3.5 with a transmitter T0, a relay R1, and a

receiver R2. Here, R1 also takes a decision Ĥ1 as shown in Figure 4.1 , i.e., R1 observes the source sequence

Figure 4.1: Cascaded two-hop setup with two decision centers.

Y n
1 and with the message M1 received from T0, it produces a guess Ĥ1 of the hypothesis H using a decision
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46 4.3. THE TWO-HOP MODEL

function g(n)
1 : Yn1 × {0, 1}? → {0, 1}:

Ĥ1 = g
(n)
1 (Y n

1 ,M1) ∈ {0, 1}. (4.1)

We de�ne R1's type-I error probability as

α1,n , Pr[Ĥ1 = 1|H = 0] (4.2)

and its type-II error probability as

β1,n , Pr[Ĥ1 = 0|H = 1]. (4.3)

Recall, from Section 3.5, that R2 produces a guess Ĥ2 of the hypothesis H using a decision function

g
(n)
2 : Yn2 × {0, 1}? → {0, 1}:

Ĥ2 = g
(n)
2 (Y n

2 ,M2) ∈ {0, 1}, (4.4)

and its type-I and type-II error probabilities are de�ned as

α2,n , Pr[Ĥ2 = 1|H = 0], (4.5)

β2,n , Pr[Ĥ2 = 0|H = 1]. (4.6)

De�nition 7. Fix maximum type-I error probabilities ε1, ε2 ∈ [0, 1] and rates R1, R2 ≥ 0. The expo-

nent pair (θ1, θ2) is called (ε1, ε2)-achievable if there exists a sequence of encoding and decision functions

{φ(n)
0 , φ

(n)
1 , g

(n)
1 , g

(n)
2 }n≥1 satisfying ∀i ∈ {1, 2}:

lim
n→∞

αi,n ≤ εi, (4.7a)

lim
n→∞

1

n
log

1

βi,n
≥ θi, (4.7b)

and

len(Mi) ≤ nRi, (4.7c)

for the setup under maximum-rate constraints, or

E[len(Mi)] ≤ nRi, (4.7d)

for the setup under expected-rate constraints.

De�nition 8. The closure of the set of all (ε1, ε2)-achievable exponent pairs (θ1, θ2) is called the fundamen-

tal (ε1, ε2)-exponents region and is denoted E∗Two-Hop,max(R1, R2, ε1, ε2) for the setup under maximum-rate

constraints and E∗Two-Hop(R1, R2, ε1, ε2) for the setup under expected-rate constraints.
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4.3.2 Maximum-Rate Constraints

In this section, we review the fundamental exponents region E∗Two-Hop,max(R1, R2, ε1, ε2) derived in [33, 35]

and the optimal coding scheme that can achieve it.

4.3.2.1 Optimal Coding Scheme under Maximum-Rate Constraints

Apply the same two-hop scheme as in Section 3.5.2.1, but where here, R1 produces Ĥ1 = 1 if M1 = [0] or

the typicality check (3.101) fails, and it produces Ĥ1 = 0 otherwise.

4.3.2.2 The Exponents Region

Theorem 8 (Theorem 2 in [35]). Fix ε1, ε2 ∈ [0, 1]. The fundamental exponents region under the maximum-

rate constraints (4.7c) is

E∗Two-Hop,max(R1, R2, ε1, ε2) = {(θ1, θ2) : θ1 ≤ η1 (R1) , θ2 ≤ η1(R1) + η2(R2)}, (4.8)

where the functions η1(·) and η2(·) were de�ned in Equations (3.104) in Section 7.

Proof: Achievability is proved in [33], and the strong converse in [35]. We present a simpli�ed strong

converse proof in Appendix B.1.

We notice that the fundamental exponents region does not depend on the permissible type-I error

probabilities ε1 and ε2. We will therefore abbreviate E∗Two-Hop,max(R1, R2, ε1, ε2) by E∗Two-Hop,max(R1, R2).

In the studied two-hop setup, R2 thus accumulates the optimal exponents achieved over the two links.

Since the exponents region is a rectangle, each of the two DCs, R1 and R2, can simultaneously achieve their

optimal exponents, no tradeo� occurs between the two exponents. We shall see that this is not always the

case under expected-rate constraints.

4.3.3 Expected-Rate Constraints

4.3.3.1 Optimal Coding Scheme under Expected-Rate Constraints

The optimal coding scheme under expected-rate constraints depends on whether ε1 = ε2, ε1 < ε2, or

ε1 > ε2. The general idea of all the three schemes is that the three terminals T0, R1, R2 multiplex two

or three di�erent subschemes, and the choice of which subscheme to use depends on the transmitter T0's

observations yn0 . To inform all terminals about the choice of the subscheme, T0 adds one or two �ag-bits

to its message, which the relay R1 forwards to the receiver R2.
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The main distinguishing feature of the di�erent subschemes is the choice of the subset of terminals�

either only R1 or only R2, both R1 and R2, or neither of them�which exploit the information in the

transmitted messages to produce a guess of hypothesis H. The other terminals ignore this communication

and simply declare Ĥ = 1. The di�erent subschemes use di�erent communication rates, and as we shall

see in Section 4.3.3.2, the allocation of the rates has to be chosen in function of the desired tradeo�

between the exponents θ1 and θ2. In this section, we formulate the subschemes based on the optimal

hypothesis testing schemes for the two-hop network [33] (see Section 4.3.2.1 in this thesis) and the single-hop

network [2] (see Section 2.4.2 in this thesis) with vanishing type-I error probabilities and under maximum-

rate constraints, which attains the optimal error exponents presented in Theorem 9 ahead. Note, however,

that this multiplexing and rate-sharing strategy can be applied for generic schemes with vanishing type-

I error probabilities and respecting given rate constraints and can still show improvement compared to

applying one version of the generic schemes alone.

4.3.3.1.1 The case ε1 = ε2 = ε

We combine two subschemes, where in one subscheme both R1 and R2 attempt to correctly guess the

hypothesis H and in the other subscheme both simply declare Ĥ = 1. To this end, we partition the set Yn0

into subsets D∅,D{1,2} ⊆ Yn0 so that under PnY0 the probability of subset D{1,2} is as large as possible but

satis�es

Pr
[
Y n

0 ∈ D{1,2}
]
≤ 1− ε. (4.9)

Notice that as n→∞ the inequality turns into an equality.

Depending on whether Y n
0 lies in D∅ or D{1,2}, the three terminals follow a di�erent subscheme. The

main structure of the optimal coding scheme is illustrated in Figure 4.2.

If Y n
0 ∈ D∅: In this case, none of the terminals attempts to correctly guess the hypothesisH. Speci�cally,

T0 and R1 both send

M1 = M2 = [0] (4.10)

and R1and R2 simply declare

Ĥ1 = Ĥ2 = 1. (4.11)

If Y n
0 ∈ D{1,2}: In this case, both R1 and R2 attempt to correctly guess H based on the transmitted

messages. Speci�cally, T0, R1, R2 all apply the encoding/decision functions of the optimal two-hop hy-

pothesis testing scheme with vanishing type-I error probabilities and respecting maximum-rate constraints
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Figure 4.2: Optimal coding scheme for the two-hop network with two DCs of equal type-I error thresh-
olds, ε1 = ε2 = ε, under expected-rate constraints using the optimal coding scheme under maximum-rate
constraints with boosted rates on both links.

R{1,2},1 and R{1,2},2 on the two links, where these rates are chosen to satisfy

(1− ε)R{1,2},1 ≤ R1 (4.12a)

(1− ε)R{1,2},2 ≤ R2. (4.12b)

To inform all the terminals about the event Y0 ∈ D{1,2} and consequently about the employed scheme, T0

and R1 append the [1]-�ag at the beginning of their messages M1 and M2.

Analysis: By (4.9) and (4.12), and because transmission of single bits hardly changes the communication

rate for large blocklengths, the overall scheme satis�es the expected-rate constraints R1 and R2 on the two

links. Appendix B.2 proves that when the optimal two-hop hypothesis testing scheme with vanishing type-I

error probability [33] is employed for Y n
0 ∈ D{1,2}, then the overall scheme meets the permissible type-I

error probability ε and achieves the error exponent given by Equation (4.23) of Theorem 9, page 53.

4.3.3.1.2 The case ε1 < ε2

We combine three subschemes, where in each subscheme either no terminal, only R1, or both R1 and

R2 attempt to correctly guess H. To this end, we partition the set Yn0 into three disjoint subsets

D∅,D{1},D{1,2} ⊆ Yn0 so that under PY0 the two sets D{1} and D{1,2} have largest possible probabilities but

limited by

Pr
[
Y n

0 ∈ D{1}
]
≤ ε2 − ε1 (4.13a)

Pr
[
Y n

0 ∈ D{1,2}
]
≤ 1− ε2. (4.13b)
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As a consequence,

Pr [Y n
0 ∈ D∅] ≥ ε1. (4.13c)

Notice that as n→∞, the three inequalities (4.13) can hold with equality.

Choose also nonnegative rates R{1},1, R{1,2},1, R{1,2},2 satisfying

(ε2 − ε1)R{1},1 + (1− ε2)R{1,2},1 ≤ R1 (4.14a)

(1− ε2)R{1,2},2 ≤ R2. (4.14b)

Depending on whether Y n
0 lies in D∅, D{1}, or D{1,2}, the three terminals apply a di�erent subscheme

satisfying a di�erent pair of maximum-rate constraints, where the subscript I of set DI indicates the set

of relays that attempt to correctly guess H in the event Y n
0 ∈ DI . To communicate which of the three

subschemes is used, T0 adds a two-bit �ag at the beginning of its message M1 to R1, which forwards this

�ag at the beginning of its message M2 to inform R2. The main structure of the optimal coding scheme is

illustrated in Figure 4.3.

Figure 4.3: Optimal coding scheme for the two-hop network with two DCs of smaller type-I error threshold
at the relay, ε1 < ε2, under expected-rate constraints using Han's scheme and the optimal two-hop scheme
under maximum-rate constraints.
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If Y n
0 ∈ D∅: T0 and R1 send only the �ag-bits

M1 = M2 = [0, 0] (4.15)

and R1 and R2 decide on

Ĥ1 = Ĥ2 = 1. (4.16)

If Y n
0 ∈ D{1}: T0 and R1 apply Han's scheme with vanishing type-I error probability and expected-rate

constraint R{1},1 for the bit-string message M1. Moreover, M1 is preceded by �ag-bits [0, 1], and the relay

R1 forwards these �ag-bits to R2:

M2 = [0, 1]. (4.17)

Upon reception of these �ag-bits, R2 declares

Ĥ2 = 1. (4.18)

We observe that, as indicated by the subscript {1} of set D{1}, only terminal R1 attempts to correctly

guess H. Receiver R2 produces the trivial guess in (4.18) because of its higher admissible type-I error

probability ε2 > ε1. Notice also that no communication rate is required for message M2 in the limit as

n→∞.

If Y n
0 ∈ D{1,2}: T0, R1, R2 apply the optimal two-hop hypothesis testing scheme with vanishing type-I

error probabilities and satisfying the expected-rate constraints R{1,2},1 and R{1,2},2.

Analysis: By (4.13) and (4.14), and because transmission of two bits hardly changes the rate for su�-

ciently large blocklengths, the proposed overall scheme respects the expected-rate constraints R1 and R2 for

large values of n. Appendix B.3 proves that when the optimal single-hop and two-hop hypothesis testing

schemes under maximum-rate constraints R{1},1 and (R{1,2},1, R{1,2},2) with vanishing type-I error proba-

bility [2, 33] are used, then the overall scheme satis�es the type-I error constraints ε1 and ε2 and achieves

the error exponents in Equation (4.24) of Theorem 9.

4.3.3.1.3 The case ε1 > ε2

We combine three subschemes, where in each subscheme either no terminal, only R2, or both R1 and

R2 attempt to correctly guess H. To this end, we partition the set Yn0 into three disjoint subsets

D∅,D{2},D{1,2} ⊆ Yn0 so that under PY n0 the two sets D{2} and D{1,2} have largest possible probabilities

but limited by

Pr
[
Y n

0 ∈ D{2}
]
≤ ε1 − ε2 (4.19a)
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Pr
[
Y n

0 ∈ D{1,2}
]
≤ 1− ε1. (4.19b)

As a consequence,

Pr [Y n
0 ∈ D∅] ≥ ε2. (4.19c)

Notice that as n→∞, the three inequalities (4.19) hold with equality.

Choose also nonnegative rates R{2},1, R{1,2},1, R{2},2, and R{1,2},2 satisfying

(ε1 − ε2)R{1},1 + (1− ε1)R{1,2},1 ≤ R1 (4.20)

(ε1 − ε2)R{2},2 + (1− ε1)R{1,2},2 ≤ R2. (4.21)

Depending on whether Y n
0 lies in D∅, D{2}, or D{1,2}, the three terminals apply a di�erent subscheme.

The subscript I of set DI again indicates the set of terminals that attempt to correctly guess H in the

event Y n
0 ∈ DI , and RI,1, RI,2 indicate the maximum rates of the subscheme employed under Y n

0 ∈ DI .

(An exception is the event Y n
0 ∈ D∅, where both rates are 0.) Flag-bits are used at the beginning of the

messages M1 and M2 to inform R1 and R2 about which of the subschemes is employed. The main structure

of the optimal coding scheme is illustrated in Figure 4.4.

Figure 4.4: Optimal coding scheme for the two-hop network with two DCs of larger type-I error threshold
at the relay, ε1 > ε2, under expected-rate constraints using two versions of the optimal two-hop scheme
under maximum-rate constraints.
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If Y n
0 ∈ D∅: All three terminals, T0, R1, and R2 apply the degenerate scheme in (4.15)�(4.16).

If Y n
0 ∈ D{2}: As indicated by the subscript of set D{2}, only R2 makes a serious attempt to correctly

guess H, while R1 always declares

Ĥ1 = 1, (4.22)

irrespective of the received message and its observations. This implies that under this subscheme, α1,n = 1

and β1,n = 0. Besides this decision, T0, R1, and R2 apply the optimal two-hop distributed hypothesis testing

scheme with vanishing type-I error probabilities and respecting the maximum-rate constraints R{2},1 and

R{2},2 for messages M1 and M2. Moreover, both T0 and R1 append the two-bit �ag [0,1] at the beginning

of these two messages to inform all the terminals about the employed scheme.

Notice that in the optimal two-hop hypothesis testing scheme (see Section 4.3.2.1), the relay R1 computes

a tentative decision based on M1 and Y n
1 , which in�uences the message M2 sent to R2 and allows the latter

to improve its type-I error probability. Here we propose that R1 itself ignores its tentative decision, because

the naive decision (4.22) is su�cient to satisfy the constraint ε1 on its type-I error probability and is also

the most-favorable decision to maximize the type-II error exponent.

If Y n
0 ∈ D{1,2}: Both DCs at R1 and R2 attempt to correctly guess H. Speci�cally, T0, R1, and R2 apply

the optimal two-hop hypothesis testing scheme with vanishing type-I error probabilities and respecting the

maximum-rate constraints R{1,2},1 and R{1,2},2 for messages M1 and M2. Moreover, both T0 and R1 append

the two-bit �ag [1,1] at the beginning of these two messages to inform all the terminals about the employed

scheme.

Analysis: Similarly to the case ε1 < ε2, it can be shown that the described scheme respects the expected-

rate constraints (4.7d) on both links. Appendix B.4 further shows that when the optimal two-hop scheme [33]

is employed, then the described scheme achieves the error exponents in Equation (4.25) of Theorem 9.

4.3.3.2 The Exponents Region

The fundamental exponents region E∗Two-Hop(R1, R2, ε1, ε2) has a di�erent form, depending on the three

cases ε1 = ε2, ε1 < ε2, or ε1 > ε2.

Theorem 9. Given ε1, ε2, R1, R2 ≥ 0.

If ε1 = ε2 = ε, then E∗Two-Hop(R1, R2, ε, ε) is the set of all nonnegative (θ1, θ2) pairs satisfying

θ1 ≤ η1(R1/(1− ε)) (4.23a)

θ2 ≤ η1(R1/(1− ε)) + η2(R2/(1− ε)). (4.23b)
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If ε1 < ε2, then E∗Two-Hop(R1, R2, ε1, ε2) is the set of all nonnegative (θ1, θ2) pairs satisfying

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(4.24a)

θ2 ≤ η1

(
R{1,2},1

)
+ η2 (R2/(1− ε2)) , (4.24b)

for some rates R{1},1, R{1,2},1 ≥ 0 so that

R1 ≥ (ε2 − ε1)R{1},1 + (1− ε2)R{1,2},1. (4.24c)

If ε1 > ε2, then E∗Two-Hop(R1, R2, ε1, ε2) is the set of all nonnegative (θ1, θ2) pairs satisfying

θ1 ≤ η1(R{1,2},1) (4.25a)

θ2 ≤ min
{
η1(R{1,2},1) + η2

(
R{1,2},2

)
, η1

(
R{2},1

)
+ η2

(
R{2},2

)}
, (4.25b)

for some rates R{1,2},1, R{2},1, R{1,2},2, R{2},2 ≥ 0, so that

R1 ≥ (ε1 − ε2)R{2},1 + (1− ε1)R{1,2},1 (4.25c)

R2 ≥ (ε1 − ε2)R{2},2 + (1− ε1)R{1,2},2. (4.25d)

Proof: Achievability is based on the schemes in Section 4.3.3.1, see Appendices B.2, B.3, B.4 for

their analyses. The converse is proved in Section 4.3.5.

4.3.4 Comparison between Maximum- and Expected-Rate Constraints

We observe from Theorem 9, that for ε1 = ε2 = ε, the fundamental exponents region E∗Two-Hop(R1, R2, ε, ε)

is a rectangle. Also, compared to the fundamental exponents region under maximum-rate constraints, here

the rates are boosted by a factor (1− ε)−1:

E∗Two-Hop(R1, R2, ε, ε) = E∗Two-Hop,max
(

R1

(1− ε)
,

R2

(1− ε)

)
. (4.26)

In particular, for ε1 = ε2 = 0 the fundamental exponents regions under maximum- and expected-rates

coincide:

E∗Two-Hop(R1, R2, 0, 0) = E∗Two-Hop,max(R1, R2). (4.27)

For ε1 6= ε2, the fundamental exponents region E∗Two-Hop(R1, R2, ε1, ε2) is not a rectangle, as can be

veri�ed by the numerical results in Figures 4.5, 4.6, and 4.7 in the next subsection. In fact, one observes

a tradeo� between the two exponents θ1 and θ2, which is driven by the choice of the rates RI,1, RI,2

for I ∈ P(2) where P(2) is the power set of all subsets of {1, 2} excluding the emptyset, i.e. P(2) =
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{{1}, {2}, {1, 2}}. More speci�cally, for ε1 < ε2 the choice

R{1,2},1 = R1/(1− ε2) (4.28a)

R{1},1 = 0 (4.28b)

maximizes exponent θ2, which then evaluates to

θ2 = θ2,max := η1 (R1/(1− ε2)) + η2 (R2/(1− ε2)) , (4.29)

but completely degrades θ1 to θ1 = 0. However, such a choice is not necessarily needed to maximize

exponent θ2, if we can �nd a smaller rate R∗{1,2},1 such that

R∗{1,2},1 := min {R : η1(R) = η1,max} < R1/(1− ε2), (4.30)

where

η1,max := max
R

η1(R).

In this case, we can still have a positive rate choice for R{1},1 given by

R{1},1 = R′{1},1 :=
R1 − (1− ε2)R∗{1,2},1

ε2 − ε1
. (4.31)

This leads to a positive degraded exponent θ1 given by

θ1 = θ1,deg := η1

(
R′{1},1

)
> 0. (4.32)

On the other hand, the choice

R{1},1 = R{1,2},1 = R1/(1− ε1) (4.33)

maximizes exponent θ1, which then evaluates to

θ1 = θ1,max := η1 (R1/(1− ε1)) , (4.34)

but it degrades θ2 to

θ2 = θ2,deg := η1 (R1/(1− ε1)) + η2 (R2/(1− ε2)) < θ2,max. (4.35)

Varying the rate R{1,2},1 between the choices in (4.28) and (4.33), (and accordingly varying also rate

R{1},1 to meet (4.24c)) achieves the entire Pareto-optimal boundary of the fundamental exponents region

E∗Two-Hop(R1, R2, ε1, ε2).

For ε1 > ε2 the choice

R{1,2},1 = R1/(1− ε1) (4.36a)
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R{2},1 = 0 (4.36b)

maximizes exponent θ1, which then evaluates to

θ1 = θ1,max, (4.37)

and degrades θ2 to

θ2 = θ′2,deg := min
{
η1 (R1/(1− ε1)) + η2(R{1,2},2), η2(R{2},2)

}
, (4.38)

for R{2},2 and R{1,2},2 satisfying (4.25d). In a similar manner to the case ε1 < ε2, sometimes we might �nd

a smaller rate R∗{1,2},1 that maximizes exponent θ1, such that

R∗{1,2},1 := min {R : η1(R) = η1,max} < R1/(1− ε1). (4.39)

In this case, we can still have a positive rate for R{2},1:

R{2},1 = R′{2},1 :=
R1 − (1− ε1)R∗{1,2},1

ε1 − ε2
. (4.40)

This leads to a degraded but possibly better exponent θ2 given by

θ2 = θ′′2,deg := min
{
η1

(
R∗{1,2},1

)
+ η2(R{1,2},2), η1

(
R′{2},1

)
+ η2(R{2},2)

}
, (4.41)

≥ min
{
η1 (R1/(1− ε1)) + η2(R{1,2},2), η2(R{2},2)

}
, (4.42)

= θ′2,deg, (4.43)

for R{2},2 and R{1,2},2 satisfying (4.25d). Here, (4.42) holds by the monotonicity of the function η1(·), and

(4.43) holds by (4.38).

On the other hand, the choice

R{2},1 = R{1,2},1 = R1/(1− ε2) (4.44a)

R{2},2 = R{1,2},2 = R2/(1− ε2) (4.44b)

maximizes exponent θ2, which then evaluates to θ2 = θ2,max, but it degrades θ1 to

θ1 = θ1,deg := η1 (R1/(1− ε2)) . (4.45)

Varying the rate R{1,2},1 between the choices in (4.36) and (4.44) (and varying the rates

R{1},1, R{1,2},2, R{1},2 accordingly), achieves the entire Pareto-optimal boundary of the fundamental ex-

ponents region E∗Two-Hop(R1, R2, ε1, ε2).

Notice that in our two-hop system with expected-rate constraints, exponents θ1,max and θ2,max de�ned in

(4.34) and (4.29), are the largest possible exponents achievable at the two DCs, irrespective of the ordering
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of ε1 and ε2. By Theorem 8, they coincide with the optimal exponents under maximum-rate constraints

R1/(1− ε1) and R2/(1− ε1) for the two links in case of (4.34), and maximum-rate constraints R1/(1− ε2)

and R2/(1 − ε2) in case of (4.29). We thus observe that whenever ε1 6= ε2, the rate-boosts that expected -

rate constraints allow to obtain over maximum-rate constraints depend on the permissible type-I error

probabilities and also on the tradeo� between the two exponents θ1 and θ2. In this view, notice that when

the focus is on maximizing θ2, then for ε1 < ε2 one might have to entirely sacri�ce θ1, whereas for ε1 > ε2

positive θ1-exponents are possible but the rate-boost experienced by θ1 is reduced from (1 − ε1)−1, which

is the boost experienced for its maximum θ1,max, to the smaller factor (1− ε2)−1.

4.3.4.1 Numerical Simulations

We illustrate the bene�ts of exploiting the relaxed expected-rate constraints in (4.7d) compared to the

more stringent maximum-rate constraints (4.7c) at hand of some examples. We also show for ε1 < ε2,

the bene�ts of �Rate-sharing� on the �rst link and the corresponding tradeo�, where the rate R1 is split

into (ε2 − ε1)R{1},1 and (1 − ε2)R{1,2},1 as in (4.24), instead of restricting to a single rate choice for the

communication on the �rst link R{1,2},1 = R1/(1− ε1). For ε1 < ε2, �Rate-sharing� on the second link does

not have any added value. However, for the case ε1 > ε2, we illustrate the bene�ts of �Rate-sharing� on

both links and the resulting tradeo� from varying the choices of the rates R{1,2},1, R{2},1, R{1,2},2 and R{2},2

that satisfy (4.25), which stems from multiplexing three coding subschemes among which we have two full

versions of the basic two-hop scheme and one degenerate subscheme as explained in Subsection 4.3.3.1.3.

Throughout this section we consider the following example.

Example 3. Let Y0, S, T be independent Bernoulli random variables of parameters pY0 = 0.4, pS = 0.8, pT =

0.8 and set Y1 = Y0 ⊕ T and Y2 = Y1 ⊕ S.

We �rst consider the case ε1 = 0.05 < ε2 = 0.15, and plot the fundamental exponents region

E∗Two-Hop(R1, R2, ε1, ε2) in Figure 4.5 for symmetric rates R1 = R2 = 0.5. We note a tradeo� between

the type-II error exponents θ1 and θ2, which is not present neither for the case ε1 = ε2, nor for the same

setup under maximum-rate constraints. (This tradeo� occurs because both exponents have to be optimized

over the same choices of rates R{1},1, R{1,2},1.) The �gure also shows a sub-optimal version of the exponents

region in Theorem 9, where we set R{1},1 = R{1,2},1 but still optimize over all choices of R{1,2},1. We

observe that using two di�erent rates R{1},1 and R{1,2},1 (i.e., two di�erent versions of the basic two-hop

scheme) allows to obtain a better tradeo� between the two exponents. Finally, for comparison, Figure 4.5
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also shows the exponents region E∗Two-Hop,max(R1, R2) under maximum-rate constraints, so as to illustrate

the gain provided by having the relaxed {expected}-rate constraints instead of maximum-rate constraints.
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E∗Two-Hop(R1, R2, ε1, ε2).
E∗max,Two-Hop (R1/(1− ε1), R2/(1− ε2))
E∗max,Two-Hop(R1, R2)

Figure 4.5: Exponents regions for Example 3 when ε1 = 0.05 < ε2 = 0.15 and R1 = R2 = 0.5.

We then consider the case ε1 = 0.15 > ε2 = 0.05. Here we distinguish two categories for the rates of

the two links: symmetric rates R1 = R2, and asymmetric rates R1 6= R2. For the �rst category we consider

the sub-case R1 = R2 = 0.5R, while for the second category we consider a sub-case when R1 has the larger

portion of the total rate R (we consider R1 = 0.75R and R2 = 0.25R), and a sub-case when R2 has the

larger portion of the total rate R (here we consider R1 = 0.25R and R2 = 0.75R). In the three mentioned

sub-cases, we set the total rate R = R1 +R2 = 1.

We plot the optimal exponents region E∗Two-Hop(R1, R2, ε1, ε2) in Theorem 9, for the �rst sub-case, in Fig-

ure 4.6 and we compare it with the exponents region under maximum-rate constraints E∗Two-Hop,max(R1, R2)

together with sub-optimal regions that are achievable under expected-rate constraints. In these sub-optimal

regions, we either set R{1,2},1 = R{2},1 for which the exponents region coincides with the rectangular region

E∗Two-Hop(R1, R2, ε2, ε2) = E∗Two-Hop,max
(

R1
(1−ε2) ,

R2
(1−ε2)

)
, or R{1,2},2 = R{2},2 for which we have a tradeo�

between the type-II error exponents due to rate-sharing on the �rst link. We observe that rate-sharing on

both links (i.e., having two full versions of the basic two-hop scheme) allows to further improve the tradeo�

between the two exponents.
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Figure 4.6: Exponents regions under expected- and maximum-rate constraints for Example 3 when ε1 =
0.15 > ε2 = 0.05 and R1 = R2 = 0.5.
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Figure 4.7: Exponents regions under symmetric and asymmetric expected-rate constraints for Example 3
when ε1 = 0.15 > ε2 = 0.05 and R = 1.
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For the other sub-cases corresponding to the asymmetric rates, we plot their optimal exponents region

E∗Two-Hop(0.75R, 0.25R, ε1, ε2) and E∗Two-Hop(0.25R, 0.75R, ε1, ε2) in Figure 4.7 where we compare them to

the optimal exponents region for symmetric rates E∗Two-Hop(0.5R, 0.5R, ε1, ε2). It is clear that having larger

portion of the total rate R dedicated for R1 leads to larger θ1 values. However, having larger portion of the

total rate R dedicated for R2 does not necessarily lead to larger θ2 values.

We mainly observe that in the second sub-case θ1 values are boosted compared to both other sub-

cases and θ2 values are very close to those of the third sub-case, but are degraded compared to the

ones of symmetric rates. In addition, the whole exponents region corresponding to the third sub-

case, E∗Two-Hop(0.25R, 0.75R, ε1, ε2) is totally included in the exponents region of the symmetric rates

E∗Two-Hop(0.5R, 0.5R, ε1, ε2). These observations are in fact justi�ed by the assumed parameters in this

example, where one can verify that η2(·) is only slightly larger than η1(·). Thus, allocating the larger por-

tion of the total rate (0.75R) to the second link will only lead to a slight increase in the θ2 values compared

to the second sub-case. In fact, the maximum achievable exponents given by the each communication link

are given by η∗1(R1) = I(Y0;Y1) = 0.26766 and η∗2(R2) = I(Y1;Y2) = 0.27433, see Figure 4.8. Recall also

that the θ2 error exponent is an accumulation of the error exponents given by both functions η1(·) + η2(·).

The very close values of the two functions for the same rate r, η1(r) and η2(r) (r ∈ [0, 1]), together with the

concavity and monotonicity of these functions, induce that to obtain the largest θ2 values in this example,

the total rate needs to be distributed almost equally between both links. In addition, θ1 error exponent

is only dependent on rate R1 and thus the higher R1 we have, the higher the values of θ1 can be. All of

the above explains the superiority of the error exponent region obtained when R1 = R2 = 0.5 over the

one obtained when R1 = 0.25, R2 = 0.75, and the tradeo� between the exponents regions of the sub-cases

R1 = R2 = 0.5 and R1 = 0.75, R2 = 0.25.

Remark 3. Note that when η1(r) ≥ η2(r), one would expect that both exponents will be boosted by having

higher available rate at the �rst link R1, but that might not be true due to the concavity of the functions

η1(·) and η2(·). In this case, the error exponent at the relay θ1 will be boosted because it only depends on R1.

However for the error exponent at the receiver θ2, distributing the total rate between R1 and R2 is better

than allocating all the rate to R1 in some cases. See Figures 4.9 and 4.10 for an example when η1(r) > η2(r)

but distributing the total rate into R1 = R2 = 0.5R or R1 = 0.7R,R2 = 0.3R yields larger error exponents

θ2 than allocating all of the rate to R1.

As we can see in the above remark, an interesting question arises when we have freedom to arbitrarily
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Figure 4.8: Functions η1(r) and η2(r) for Example 3.
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Figure 4.9: Functions η1(r) and η2(r) for Example 3 when pY0 = 0.6, pS = 0.75, and pT = 0.8.

61



62 4.3. THE TWO-HOP MODEL

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28
0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

θ1

θ 2

E∗Two-Hop(0.7R, 0.3R, ε1, ε2)
E∗Two-Hop(0.5R, 0.5R, ε1, ε2)
E∗Two-Hop(R, 0, ε1, ε2)

Figure 4.10: Exponents regions under expected-rate constraints subject to di�erent distributions of the
total rate R = R1 +R2 = 1 for Example 3 when pY0 = 0.6, pS = 0.75, pT = 0.8 and ε1 = 0.15 > ε2 = 0.05.

distribute the total rate to the two links: �What is the best rate distribution to maximize the error exponents

θ1 and θ2?� While the answer for maximizing θ1 is obvious in allocating all the rate to R1, the answer is

not obvious for θ2 and requires solving the following optimization problem when ε1 > ε2

max
R1,R2,R{2},1,R{2},2,R{1,2},1,R{1,2},2≥0:

R1+R2=R
R1≥(ε1−ε2)R{2},1+(1−ε1)R{1,2},1
R2≥(ε1−ε2)R{2},2+(1−ε1)R{1,2},2

min
{
η1(R{1,2},1) + η2

(
R{1,2},2

)
, η1

(
R{2},1

)
+ η2

(
R{2},2

)}
. (4.46)

However when ε1 ≤ ε2, the optimization problem simpli�es into:

max
R1,R2≥0:
R1+R2=R

η1 (R1/(1− ε2)) + η2 (R2/(1− ε2)) . (4.47)

Remark 4. In the special case when η1(r) = η2(r) for all r ∈ [0, 1], allocating the total rate R to R1 allows

to maximize θ1, while distributing the total rate R equally between R1 and R2, i.e. R1 = R2 = 0.5R allows

to maximize θ2. Varying the rate distribution between these two choices of total rate distribution yields

the entire Pareto-optimal boundary of the fundamental exponents region when optimizing over sum-rate

constraints. These observations follow by concavity and monotonicity arguments of the functions η1(·) and

η2(·) .
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4.3.5 Converse Proof to Theorem 9

4.3.5.1 Outline of the Converse Proof

The main idea of this proof is to divide the set of strongly jointly typical sequences T (n)
µn (PY0Y1) into four

subsets by conditioning on whether the probability of correctly guessing the null hypothesis H = 0 at each

decision center is greater or smaller than a small positive number η , and then to apply parallel change of

measure arguments under each subset to obtain di�erent lower and upper bounds on the rates and error

exponents, see Figure 4.11. To obtain the lower bounds on the rates, we use single-letterization steps

under each subset followed by probability laws on expectation to combine the di�erent terms. For the

upper bounds on the error exponents, under each subset, we use the blowing-up lemma for each DC with

probability of correctly guessing H = 0 larger or equal to η followed by standard single-letterization steps.

Then the general upper bound at each DC is given by the minimum between the resulting expressions at each

DC. During the process, we choose auxiliary random variables to map the mutual information quantities

with the η(·) functions, where the auxiliary random variables need to satisfy some Markov chains. However,

the change of measure arguments lead to the loss of the initial i.i.d.ness properties that are usually used to

prove the required Markov chains. In fact, one Markov chain still holds by construction while we prove the

other one holds asymptotically in the limit as n→∞.

Figure 4.11: Sketch of partitioning T (n)
µn (PY0Y1) and applying parallel change of measure arguments in the

converse proof to Theorem 9.

To simplify the presentation of the proof, we �rst propose, in Subsection 4.3.5.2, the auxiliary Lemma 4
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(proved in Appendix B.5) that uses the change of measure arguments and the blowing-up lemma to get the

bounds on the rates and exponents. Then we apply this lemma under the di�erent subsets of T (n)
µn (PY0Y1)

to derive a general outer bound on the exponents region (this lemma does not apply to the set in which

both DCs have probability of guessing correctly H = 0 below η). This general bound is valid for all values

of ε1, ε2 and is characterized in Proposition 1. In Subsection 4.3.5.3, we simplify the general outer bound

depending on the three cases ε1 = ε2, ε1 < ε2, or ε1 > ε2 by showing the optimal values of the probabilities

of the di�erent subsets. Indeed, the subset where the DC with larger ε-margin is the only one that guesses

correctly H = 0 with non-vanishing probability (as η → 0), vanishes (see Figure 4.12 for an illustration in

the special case when ε1 > ε2).

Figure 4.12: Sketch of the simpli�cation in the converse proof to Theorem 9 when ε1 > ε2.

4.3.5.2 An Auxiliary Lemma and a General Outer Bound

Consider a sequence (in n) of encoding and decision functions {(φ(n)
1 , φ

(n)
2 , g

(n)
1 , g

(n)
2 )} satisfying the con-

straints on the expected rates and error probabilities in (4.7).

Lemma 4. Fix a small number η > 0, a blocklength n, and a set D ⊆ Yn0 × Yn1 of probability exceeding η.

Let the tuple (M̃1, M̃2, Ỹ
n

0 , Ỹ
n

1 , Ỹ
n

2 ) follow the pmf

PM̃1M̃2Ỹ n0 Ỹ
n
1 Ỹ

n
2

(m1,m2, y
n
0 , y

n
1 , y

n
2 ) , PY n0 Y n1 Y n2 (yn0 , y

n
1 , y

n
2 ) · 1{(y

n
0 , y

n
1 ) ∈ D}

PY n0 Y n1 (D)

·1{φ(n)
1 (yn0 ) = m1} · 1{φ(n)

2 (yn1 , φ
(n)
1 (yn0 )) = m2}. (4.48)
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Further, de�ne

U1 , (M̃1, Ỹ
T−1

0 , Ỹ T−1
1 , T ) (4.49)

U2 , (M̃2, Ỹ
T−1

0 , Ỹ T−1
1 , T ) (4.50)

Ỹi , Ỹi,T , i ∈ {0, 1, 2}, (4.51)

where T is uniform over {1, . . . , n} and independent of all previously de�ned random variables. Notice the

Markov chain U2 → Ỹ1 → Ỹ2. The following (in)equalities hold:

H(M̃1) ≥ nI(U1; Ỹ0) + logPY n0 Y n1 (D), (4.52)

H(M̃2) ≥ nI(U2; Ỹ1) + logPY n0 Y n1 (D), (4.53)

I(U1; Ỹ1|Ỹ0) = ø1(n), (4.54)

where ø1(n) is a function that tends to 0 as n→∞.

If

Pr[Ĥ2 = 0|H = 0, Y n
0 = yn0 , Y

n
1 = yn1 ] ≥ η, ∀(yn0 , yn1 ) ∈ D, (4.55)

then

− 1

n
log β2,n ≤ I(U1; Ỹ1) + I(U2; Ỹ2) + ø2(n), (4.56)

and if

Pr[Ĥ1 = 0|H = 0, Y n
0 = yn0 , Y

n
1 = yn1 ] ≥ η, ∀(yn0 , yn1 ) ∈ D, (4.57)

then

− 1

n
log β1,n ≤ I(U1; Ỹ1) + ø3(n), (4.58)

where ø2(n), ø3(n) are functions that tend to 0 as n→∞.

Proof: See Appendix B.5.

With this lemma, we can prove the desired general outer bound on the exponents region.

Proposition 1. Given ε1, ε2, R1, R2 ≥ 0. The fundamental exponents region E∗Two-Hop(R1, R2, ε1, ε2) is

included in the set of all (θ1, θ2) pairs satisfying

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)}, (4.59a)

θ2 ≤ min
{
η1(R{1,2},1) + η2(R{1,2},2), η1(R{2},1) + η2(R{2},2)

}
, (4.59b)

for rates R{1},1, R{1,2},1, R{1,2},2, R{2},1, R{2},2 ≥ 0 and numbers σ{1}, σ{2}, σ{1,2} ≥ 0 so that σ{1} + σ{2} +
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σ{1,2} ≤ 1 and

σ{1} + σ{1,2} ≥ 1− ε1 (4.59c)

σ{2} + σ{1,2} ≥ 1− ε2 (4.59d)

σ{1,2} ≥ max{1− ε1 − ε2, 0}, (4.59e)

and so that the following rate constraints are satis�ed:

R1 ≥ σ{1}R{1},1 + σ{1,2}R{1,2},1 + σ{2}R{2},1, (4.59f)

R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2. (4.59g)

It can be shown that the outer bound on the fundamental exponents region given in this proposition is

tight. We however only need and prove the converse result here.

Proof: Fix a positive η > 0. Set µn = n−1/3, and de�ne the sets

B1(η) , {(yn0 , yn1 ) ∈ T (n)
µn (PY0Y1) : Pr[Ĥ1 = 0|Y n

0 = yn0 , Y
n

1 = yn1 ,H = 0] ≥ η}, (4.60)

B2(η) , {(yn0 , yn1 ) ∈ T (n)
µn (PY0Y1) : Pr[Ĥ2 = 0|Y n

0 = yn0 , Y
n

1 = yn1 ,H = 0] ≥ η}, (4.61)

D{1,2}(η) , B1(η) ∩ B2(η), (4.62)

D{1}(η) , B1(η)\D{1,2}(η), (4.63)

D{2}(η) , B2(η)\D{1,2}(η). (4.64)

Further de�ne for each n the probabilities

∆I , PY n0 Y n1 (DI(η)), I ∈ P(2), (4.65)

and notice that by the laws of probability

∆{1,2} + ∆{1} = PY n0 Y n1 (B1(η)) (4.66)

∆{1,2} + ∆{2} = PY n0 Y n1 (B2(η)) (4.67)

∆{1,2} ≥ PY n0 Y n1 (B1(η)) + PY n0 Y n1 (B2(η))− 1. (4.68)

Now by the type-I error probability constraints (4.7a), we have for j ∈ {1, 2}:

1− εj ≤
∑
yn0 ,y

n
1

Pr[Ĥj = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (4.69)

=
∑

(yn0 ,y
n
1 )∈T (n)

µn

Pr[Ĥj = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 )

+
∑

(yn0 ,y
n
1 )/∈T (n)

µn

Pr[Ĥj = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (4.70)
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≤
∑

(yn0 ,y
n
1 )∈T (n)

µn ∩B̄j(η)

Pr[Ĥj = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 )

+
∑

(yn0 ,y
n
1 )∈Bj(η)

PY n0 Y n1 (yn0 , y
n
1 ) +

(
1− PnY0Y1(T (n)

µn )
)

(4.71)

≤ η(1− PY n0 Y n1 (Bj(η))) + PY n0 Y n1 (Bj(η)) + PnY0Y1(T (n)
µn ). (4.72)

Moreover, by [44, Remark to Lemma 2.12], the probability that the pair (Y n
0 , Y

n
1 ) lies in the jointly strong

typical set T (n)
µn (PY0Y1) satis�es

PnY0Y1

(
T (n)
µn (PY0Y1)

)
≥ 1− |Y0| |Y1|

4µ2
nn

, (4.73)

Thus, by (4.72) and (4.73):

PY n0 Y n1 (Bj(η)) ≥ 1− εj − η
1− η

− |Y0||Y1|
(1− η)4µ2

nn
, j ∈ {1, 2}, (4.74)

and we thus conclude that in the limit n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

(∆{1,2} + ∆{1}) ≥ 1− ε1 (4.75a)

lim
η↓0

lim
n→∞

(∆{1,2} + ∆{2}) ≥ 1− ε2 (4.75b)

lim
η↓0

lim
n→∞

∆{1,2} ≥ max{1− ε1 − ε2, 0} (4.75c)

lim
η↓0

lim
n→∞

∑
I∈P(2)

∆I ≤ 1. (4.75d)

We proceed by applying Lemma 4 to subset DI for all I ∈ P(2) with ∆I ≥ η. This allows to conclude that

for any I ∈ P(2) with ∆I ≥ η there exists a pair (UI,1, UI,2) satisfying the Markov chain UI,2 → ỸI,1 → ỸI,2

and the (in)equalities

H(M̃I,1) ≥ nI(UI,1; ỸI,0) + logPY n0 Y n1 (DI), I ∈ P(2), (4.76)

H(M̃I,2) ≥ nI(UI,2; ỸI,1) + logPY n0 Y n1 (DI), I ∈ {{1, 2}, {2}}, (4.77)

øI,1(n) = I(UI,1; ỸI,1|ỸI,0), I ∈ P(2), (4.78)

and

− 1

n
log β1,n ≤ I(UI,1; ỸI,1) + øI,2(n), I ∈ {{1}, {1, 2}}, (4.79)

− 1

n
log β2,n ≤ I(UI,1; ỸI,1) + I(UI,2; ỸI,2) + øI,3(n), I ∈ {{2}, {1, 2}}, (4.80)

where for each I the functions øI,1(n), øI,2(n), øI,3(n)→ 0 as n→∞ and the random variables ỸI,0, ỸI,1,

ỸI,2, M̃I,1, M̃I,2 are de�ned as in the lemma, when applied to the subset DI .

To simplify exposition, we assume η very small and ∆I ≥ η for all sets I ∈ P(2). Otherwise the proof
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is similar but omitted here.

To summarize:

− 1

n
log β1,n ≤ min

{
I
(
U{1},1; Ỹ{1},1

)
; I
(
U{1,2},1; Ỹ{1,2},1

)}
+ ø2(n), (4.81)

− 1

n
log β2,n ≤ min

{
I(U{1,2},1; Ỹ{1,2},1) + I(U{1,2},2; Ỹ{1,2},2);

I(U{2},1; Ỹ{2},1) + I(U{2},2; Ỹ{2},2)
}

+ ø3(n), (4.82)

where ø2(n) and ø3(n) are functions tending to 0 as n→∞.

Further, de�ne the following random variables

L̃I,j , len(M̃I,j), j ∈ {1, 2}, I ∈ P(2). (4.83)

By the rate constraints (4.7d), and the de�nition of the random variables L̃I,j , we obtain by the total law

of expectations:

nR1 ≥ E[L1] ≥
∑
I∈P(2)

E[L̃I,1]∆I . (4.84)

Moreover,

H(M̃I,1) = H(M̃I,1, L̃I,1) (4.85)

=
∑
lI

Pr[L̃I,1 = lI ]H(M̃I,1|L̃I,1 = lI) +H(L̃I,1) (4.86)

≤
∑
lI

Pr[L̃I,1 = lI ]lI +H(L̃I,1) (4.87)

= E[L̃I,1] +H(L̃I,1), (4.88)

which combined with (4.84) establishes∑
I∈P(2)

∆IH(M̃I,1) ≤
∑
I∈P(2)

∆IE[L̃I,1] + ∆IH(L̃I,1) (4.89)

≤ nR1

1 +
∑
I∈P(2)

hb

(
∆I
nR1

) , (4.90)

where (4.90) holds by (4.84) and because the entropy of the discrete and positive random variable L̃I,1 of

mean E[L̃I,1] ≤ nR1
∆I

is bounded by nR1
∆I
· hb

(
∆I
nR1

)
, see [23, Theorem 12.1.1].

In a similar way, we obtain

∑
I∈{{1,2},{2}}

∆IH(M̃I,2) ≤ nR2

1 +
∑
I∈

{{1,2},{2}}

hb

(
∆I
nR2

) . (4.91)

Then by combining (4.90) and (4.91) with (4.76) and (4.77), noting (4.66) and (4.74), and considering
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also (4.81) and (4.82), we have proved so far that for all n ≥ 1 there exist joint pmfs PUI,1ỸI,0ỸI,1 =

PUI,1|ỸI,0PỸI,0ỸI,1 (abbreviated as P (n)
I,1 ) for I ∈ P(2), and PUI,2ỸI,1ỸI,2 = PUI,2|ỸI,1PỸI,1ỸI,2 (abbreviated

as P (n)
I,2 ) for I ∈ {{1, 2}, {2}} so that the following conditions hold (where IP indicates that the mutual

information should be calculated according to a pmf P ):

R1 ≥
∑
I∈P(2)

(
I
P

(n)
I,1

(UI,1; ỸI,0) + gI,1(n)
)
· gI,2(n, η), (4.92a)

R2 ≥
∑

I∈{{1,2},{2}}

(
I
P

(n)
I,2

(UI,2; ỸI,1) + gI,1(n)
)
· gI,2(n, η), (4.92b)

θ1 ≤ min

{
I
P

(n)
{1},1

(U{1},1; Ỹ{1},1, IP (n)
{1,2},2

(U{1,2},1; Ỹ{1,2},1)

}
+ g1,3(n), (4.92c)

θ2 ≤ min
{
I

(n)
P{1,2},1

(U{1,2},1; Ỹ{1,2},1) + I
(n)
P{1,2},2

(U{1,2},2; Ỹ{1,2},2),

I
(n)
P{2},1

(U{1,2},1; Ỹ{2},1) + I
P

(n)
{2},2

(U{2},2; Ỹ{2},2)

}
+ g2,3(n), (4.92d)

gI,4(n) = I
P

(n)
I,1

(ỸI,1;UI,1|ỸI,0), I ∈ P(2), (4.92e)

for some nonnegative functions gI,1(n), gI,2(n, η), gk,3(n), gI,4(n) with the following asymptotic behaviors:

lim
n→∞

gI,1(n) = 0, ∀ I ∈ P(2), (4.93)

lim
n→∞

gk,3(n) = 0, ∀ k ∈ {1, 2}, (4.94)

lim
n→∞

gI,4(n) = 0, ∀ I ∈ P(2), (4.95)

lim
n→∞

(
g{1},2(n, η) + g{1,2},2(n, η)

)
≥ 1− ε1 − η

1− η
, (4.96)

lim
n→∞

(
g{1,2},2(n, η) + g{2},2(n, η)

)
≥ 1− ε2 − η

1− η
, (4.97)

lim
η↓0

lim
n→∞

g{1,2},2(n, η) ≥ max{1− ε1 − ε2, 0}. (4.98)

We next observe that by Carathéodory's theorem [48, Appendix C] for each n there must exist random

variables U{1},1, U{1,2},1, U{2},1, U{1,2},2, U{2},2 satisfying (4.92) over alphabets of sizes

|UI,1| ≤ |Y0| · |Y1|+ 2, I ∈ P(2), (4.99)

|UI,2| ≤ |Y1|+ 1, I ∈ {{1, 2}, {2}}. (4.100)

Then we invoke the Bolzano-Weierstrass theorem and consider an increasing subsequence of positive num-

bers {nk}∞k=1 such that the following subsequences converge:

lim
k→∞

P
(nk)

ỸI,0ỸI,1UI,1
= P ∗YI,0YI,1UI,1 , I ∈ P(2), (4.101)

lim
k→∞

P
(nk)

ỸI,1ỸI,2UI,2
= P ∗YI,1YI,2UI,2 , I ∈ {{1, 2}, {2}}. (4.102)

Considering further an appropriate sequence of diminishing η-values, we conclude by (4.92a)�(4.92d) and
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(4.75) that:

R1 ≥ σ{1} · IP ∗{1},1(U{1},1;Y{1},0) + σ{1,2} · IP ∗{1,2},1(U{1,2},1;Y{1,2},0) + σ{2} · IP ∗{2},1(U{2},1;Y{2},0), (4.103)

R2 ≥ σ{1,2} · IP ∗{1,2},2(U{1,2},2;Y{1,2},1) + σ{2} · IP ∗{2},2(U{2},2;Y{2},1), (4.104)

θ1 ≤ min
{
IP ∗{1},1(U{1},1;Y{1},1), IP ∗{1,2},1(U{1,2},1;Y{1,2},1)

}
, (4.105)

θ2 ≤ min
{
IP ∗{1,2},1(U{1,2},1;Y{1,2},1) + IP ∗{1,2},2(U{1,2},2;Y{1,2},2),

IP ∗{2},1(U{2},1;Y{2},1) + IP ∗{2},2(U{2},2;Y{2},2)
}

(4.106)

for some numbers σ{1}, σ{2}, σ{1,2} > 0 satisfying σ{1} + σ{2} + σ{1,2} ≤ 1 and

σ{1} + σ{1,2} ≥ 1− ε1, (4.107a)

σ{1,2} ≥ max{1− ε1 − ε2, 0}, (4.107b)

σ{2} + σ{1,2} ≥ 1− ε2. (4.107c)

Notice further that since for any I ∈ P(2) and any k the pair (Ỹ
(nk)
I,0 , Ỹ

(nk)
I,1 ) lies in the jointly typical

set T (nk)
µnk

(PY0Y1), we have |PỸI,0ỸI,1 − PY0Y1 | ≤ µnk and thus the limiting pmfs satisfy P ∗YI,0YI,1 = PY0Y1 .

Moreover, since for each nk the random variable ỸI,2 is drawn according to PY2|Y1 given ỸI,1, irrespective

of ỸI,0, the limiting pmfs also satisfy P ∗YI,2|YI,0YI,1 = PY2|Y1 . We also notice for all I ∈ {{1, 2}, {2}} that

under P ∗YI,1YI,2UI,2 the Markov chain

UI,2 → YI,1 → YI,2, (4.108)

holds because UI,2 → ỸI,1 → ỸI,2 forms a Markov chain for any nk. Finally, by continuity considerations

and by (4.92e), the following Markov chain must hold under P ∗YI,0YI,1UI,1 for all I ∈ P(2):

UI,1 → YI,0 → YI,1. (4.109)

Using the de�nitions of the functions η1(·) and η2(·), we thus proved that for any pair of achievable exponents

(θ1, θ2) there exist rates R{1},1, R{1,2},1, R{2},1, R{1,2},2, R{2},2 > 0 satisfying

θ1 ≤ min
{
η1(R{1},1), η1(R{1,2},1)

}
, (4.110a)

θ2 ≤ min
{
η1(R{1,2},1) + η2(R{1,2},2), η1(R{2},1) + η2(R{2},2)

}
, (4.110b)

and numbers σ{1}, σ{2}, σ{1,2} > 0 satisfying σ{1}+σ{2}+σ{1,2} ≤ 1, Inequalities (4.107), and the following

two rate constraints:

R1 ≥ σ{1} ·R{1},1 + σ{1,2} ·R{1,2},1 + σ{2} ·R{2},1, (4.110c)
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R2 ≥ σ{1,2} ·R{1,2},2 + σ{2} ·R{2},2. (4.110d)

4.3.5.3 Simpli�cation of the Outer Bound in Proposition 1

We proceed to simplify the outer bound in Proposition 1 depending on the cases ε1 = ε2, ε1 < ε2, or ε1 > ε2.

To this end, �x an exponent pair (θ1, θ2) in E?(R1, R2, ε1, ε2), rates R{1},1, R{1,2},1, R{1,2},2, R{2},1, R{2},2 ≥ 0

and numbers σ{1}, σ{2}, σ{1,2} ≥ 0 summing to less than or equal to 1 and satisfying constraints (4.59).

4.3.5.3.1 The case ε1 = ε2 = ε

By (4.59):

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)} (4.111)
(a)

≤
σ{1}η1(R{1},1) + σ{1,2}η1(R{1,2},1)

σ{1} + σ{1,2}
(4.112)

(b)

≤ η1

(
σ{1}R{1},1 + σ{1,2}R{1,2},1

σ{1} + σ{1,2}

)
(4.113)

(c)

≤ η1 (R1/(1− ε)) , (4.114)

where (a) holds because the minimum is never larger than any linear combination; (b) holds by the concavity

of the function η1(·); and (c) holds by the monotonicity of the function η1(·) and because by (4.59) we have

σ{1}R{1},1 + σ{1,2}R{1,2},1 ≤ R1 and σ{1} + σ{1,2} ≥ 1− ε.

Following similar steps, one can prove that

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
, η1

(
R{2},1

)
+ η2

(
R{2},2

)}
(4.115)

(d)

≤
σ{2}η1

(
R{2},1

)
+ σ{2}η2

(
R{2},2

)
σ{2} + σ{1,2}

+
σ{1,2}η1

(
R{1,2},1

)
+ σ{1,2}η2

(
R{1,2},2

)
σ{2} + σ{1,2}

(4.116)

(e)

≤ η1

(
σ{2}R{2},1 + σ{1,2}R{1,2},1

σ{2} + σ{1,2}

)
+ η2

(
σ{2}R{2},2 + σ{1,2}R{1,2},2

σ{2} + σ{1,2}

)
(4.117)

(f)

≤ η1 (R1/(1− ε)) + η2 (R2/(1− ε)) , (4.118)

where (d) holds again because the minimum is never larger than any linear combination; (e) holds by the

concavity of the functions η1(·) and η2(·); and (f) holds because by (4.59) we have σ{2}R{2},i+σ{1,2}R{1,2},i ≤

Ri, for i ∈ {1, 2}, and σ{2} + σ{1,2} ≥ 1− ε.

This concludes the converse proof to (4.23).
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4.3.5.3.2 The case ε1 < ε2

Choose nonnegative numbers a1, a1,2, b1, b1,2, c1,2 satisfying

a1 + a1,2 ≤ σ{1} (4.119a)

b1 + b1,2 ≤ σ{1,2} (4.119b)

c1,2 ≤ σ{2} (4.119c)

a1,2 + b1,2 = b1,2 + c1,2 = 1− ε2 (4.119d)

a1 + b1 = ε2 − ε1. (4.119e)

Notice that this set of (in)equalities is equivalent to the two equalities a1,2 = c1,2 = 1 − ε2 − b1,2 and

a1 = ε2 − ε1 − b1 and the three inequalities:

1− ε1 − b1,2 − b1 ≤ σ{1} (4.120a)

b1 + b1,2 ≤ σ{1,2} (4.120b)

1− ε2 − b1,2 ≤ σ{2}. (4.120c)

Through the Fourier-Motzkin Elimination (FME) Algorithm it can be veri�ed that above three inequalities

(4.120) have a nonnegative solution pair (b1, b1,2) with corresponding nonnegative values for a1,2, c1,2, a1,

whenever

0 ≤ σI , I ∈ P(2), (4.121a)

1− εi ≤ σ{i} + σ{1,2}, i ∈ {1, 2}, (4.121b)

0 ≤ ε2 − ε1, (4.121c)

which hold by assumption, see (4.59). The existence of the desired nonnegative numbers a1, a1,2, b1, b1,2, c1,2

satisfying (4.119) is thus established.

With the chosen numbers, we form

R̃{1,2},1 := max

{
a1,2R{1},1 + b1,2R{1,2},1

1− ε2
,
b1,2R{1,2},1 + c1,2R{2},1

1− ε2

}
, (4.122a)

R̃{1,2},2 :=
b1,2R{1,2},2 + c1,2R{2},2

1− ε2
, (4.122b)

R̃{1},1 :=
a1R{1},1 + b1R{1,2},1

ε2 − ε1
. (4.122c)

We show that exponents (θ1, θ2) and rates R̃{1},1, R̃{1,2},1 and R̃{1,2},2 satisfy constraints (4.24). To this
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end, notice that

θ1 ≤ min{η1(R{1},1), η1(R{1,2},1)} (4.123)
(a)

≤
a1η1(R{1},1) + b1η1(R{1,2},1)

ε2 − ε1
(4.124)

(b)

≤ η1

(
a1R{1},1 + b1R{1,2},1

ε2 − ε1

)
(4.125)

(c)

≤ η1

(
R̃{1},1

)
, (4.126)

where (a) holds because the minimum is smaller than any linear combination and because a1 + b1 = ε2− ε1;

(b) holds by the concavity of the function η1(·); and (c) holds by the de�nition of rate R{1},1. In a similar

way we have:

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(4.127)

≤
a1,2η1

(
R{1},1

)
+ b1,2η1

(
R{1,2},1

)
1− ε2

(4.128)

≤ η1

(
a1,2R{1},1 + b1,2R{1,2},1

1− ε2

)
(4.129)

≤ η1

(
R̃{1,2},1

)
, (4.130)

where the last step holds by the monotonicity of the function η1(·) and because by de�nition R̃{1,2},1 ≥
a1,2R{1},1+b1,2R{1,2},1

1−ε2 . Thus, by (4.126) and (4.130):

θ1 ≤ min
{
η1

(
R̃{1},1

)
, η1

(
R̃{1,2},1

)}
. (4.131)

We continue to notice

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
, η1

(
R{2},1

)
+ η2

(
R{2},2

)}
(4.132)

(d)

≤
b1,2η1

(
R{1,2},1

)
+ b1,2η2

(
R{1,2},2

)
1− ε2

+
c1,2η1

(
R{2},1

)
+ c1,2η2

(
R{2},2

)
1− ε2

(4.133)

(e)

≤ η1

(
b1,2R{1,2},1 + c1,2R{2},1

1− ε2

)
+ η2

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε2

)
(4.134)

(f)

≤ η1

(
R̃{1,2},1

)
+ η2

(
R̃{1,2},2

)
, (4.135)

where (d) holds because the minimum is smaller than any linear combination and because b1,2+c1,2 = 1−ε2;

(e) holds concavity of the functions η1(·) and η2(·); and (f) holds by the de�nitions of rates R{1,2},1 and

R{1,2},2 and by the monotonicity of the function η1(·).

From the rate constraints in (4.59), we further obtain

R1 ≥ σ{1}R{1},1 + σ{2}R{2},1 + σ{1,2}R{1,2},1 (4.136)
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(g)

≥ (a1 + a1,2)R{1},1 + c1,2R{2},1 + (b1 + b1,2)R{1,2},1 (4.137)

= (ε2 − ε1)

(
a1R{1},1 + b1R{1,2},1

ε2 − ε1

)
+ (1− ε2)

(
a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1

1− ε2

)
(4.138)

(h)

≥ (ε2 − ε1)R̃{1},1 + (1− ε2)R̃{1,2},1 (4.139)

and

R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2 (4.140)
(g)

≥ b1,2R{1,2},2 + c1,2R{2},2 (4.141)

= (1− ε2)

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε2

)
(4.142)

(h)
= (1− ε2)R̃{1,2},2, (4.143)

where inequalities (g) hold because a1 + a1,2 ≤ σ{1}, c1,2 ≤ σ{2}, and b1 + b1,2 ≤ σ{1,2}, see (4.119); and (h)

holds by the de�nitions of rates R̃{1},1, R̃{1,2},1, and R̃{1,2},2 and because

a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1 ≥ max{a1,2R{1},1 + b1,2R{1,2},1, b1,2R{1,2},1 + c1,2R{2},1}. (4.144)

The desired converse result to (4.24) then follows by combining (4.131), (4.135), (4.139), and (4.143),

and by noticing that by the monotonicity of the function η2(·) there is no loss in optimality to restrict to

rates R̃{1,2},2 = R2/(1− ε2).

4.3.5.3.3 The case ε1 > ε2

The proof is similar to the case ε1 < ε2. We present it here for completeness.

Choose nonnegative numbers a1,2, b2, b1,2, c2, c1,2 satisfying

a1,2 ≤ σ{1} (4.145a)

b2 + b1,2 ≤ σ{1,2} (4.145b)

c2 + c1,2 ≤ σ{2} (4.145c)

a1,2 + b1,2 = b1,2 + c1,2 = 1− ε1 (4.145d)

b2 + c2 = ε1 − ε2, (4.145e)

which is equivalent to the three equalities a1,2 = c1,2 = 1 − ε1 − b1,2 and c2 = ε1 − ε2 − b2 and the three

inequalities

1− ε1 − b1,2 ≤ σ{1} (4.146a)

b2 + b1,2 ≤ σ{1,2} (4.146b)
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1− ε2 − b2 − b1,2 ≤ σ{2}. (4.146c)

Through FME it can be shown that a nonnegative pair (b2, b1,2) satisfying (4.146) exists and the corre-

sponding values for a1,2, c1,2, c2 are nonnegative whenever

0 ≤ σI , I ∈ P(2), (4.147a)

1− εi ≤ σ{i} + σ{1,2}, i ∈ {1, 2}, (4.147b)

0 ≤ ε1 − ε2, (4.147c)

which hold by assumption, see (4.59).

De�ne the new rates

R̃{1,2},1 := max

{
a1,2R{1},1 + b1,2R{1,2},1

1− ε1
,
b1,2R{1,2},1 + c1,2R{2},1

1− ε1

}
, (4.148)

R̃{1,2},2 :=
b1,2R{1,2},2 + c1,2R{2},2

1− ε1
, (4.149)

R̃{2},i :=
b2R{1,2},i + c2R{2},i

ε1 − ε2
, i ∈ {1, 2} (4.150)

We show that the exponents θ1, θ2 and the rates R̃{2},1,R̃{2},2, R̃{1,2},1 and R̃{1,2},2 satisfy constraints (4.25).

To this end, notice that by similar arguments as in the preceding subsections:

θ1 ≤ min
{
η1

(
R{1},1

)
, η1

(
R{1,2},1

)}
(4.151)

≤
a1,2η1

(
R{1},1

)
+ b1,2η1

(
R{1,2},1

)
1− ε1

(4.152)

≤ η1

(
a1,2R{1},1 + b1,2R{1,2},1

1− ε1

)
(4.153)

≤ η1

(
R̃{1,2},1

)
. (4.154)

Moreover,

θ2 ≤ min
{
η1

(
R{1,2},1

)
+ η2

(
R{1,2},2

)
, η1

(
R{2},1) + η2(R{2},2)

}
(4.155)

≤
b1,2η1

(
R{1,2},1

)
+ b1,2η2

(
R{1,2},2

)
1− ε1

+
c1,2η1

(
R{2},1

)
+ c1,2η2

(
R{2},2

)
1− ε1

(4.156)

≤ η1

(
b1,2R{1,2},1 + c1,2R{2},1

1− ε1

)
+ η2

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε1

)
(4.157)

≤ η1

(
R̃{1,2},1

)
+ η2

(
R̃{1,2},2

)
(4.158)

and

θ2 ≤
b2η1

(
R{1,2},1

)
+ b2η2

(
R{1,2},2

)
ε1 − ε2

+
c2η1

(
R{2},1

)
+ c2η2

(
R{2},2

)
ε1 − ε2

(4.159)

≤ η1

(
b2R{1,2},1 + c2R{2},1

ε1 − ε2

)
+ η2

(
b2R{1,2},2 + c2R{2},2

ε1 − ε2

)
(4.160)
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≤ η1

(
R̃{2},1

)
+ η2

(
R̃{2},2

)
. (4.161)

Combining (4.158) and (4.161) we obtain:

θ2 ≤ min

{
η1

(
R̃{1,2},1

)
+ η1

(
R̃{1,2},2

)
, η1

(
R̃{2},1

)
+ η1

(
R̃{2},2

)}
. (4.162)

From the rate constraints in (4.59), inequalities (4.145), and the de�nitions of the rates

R̃{2},1, R̃{2},2, R̃{1,2},1, R̃{1,2},2, we obtain:

R1 ≥ σ{1}R{1},1 + σ{1,2}R{1,2},1 + σ{2}R{2},1 (4.163)

≥ a1,2R{1},1 + (c2 + c1,2)R{2},1 + (b2 + b1,2)R{1,2},1 (4.164)

= (ε1 − ε2)

(
b2R{1,2},1 + c2R{2},1

ε1 − ε2

)
+ (1− ε1)

(
a1,2R{1},1 + c1,2R{2},1 + b1,2R{1,2},1

1− ε1

)
(4.165)

≥ (ε1 − ε2)R̃{2},1 + (1− ε1)R̃{1,2},1 (4.166)

and

R2 ≥ σ{1,2}R{1,2},2 + σ{2}R{2},2 (4.167)

≥ (b2 + b1,2)R{1,2},2 + (c2 + c1,2)R{2},2 (4.168)

= (1− ε1)

(
b1,2R{1,2},2 + c1,2R{2},2

1− ε1

)
+ (ε1 − ε2)

(
b2R{1,2},2 + c2R{2},2

1− ε1

)
(4.169)

= (1− ε1)R̃{1,2},2 + (ε1 − ε2)R̃{2},2. (4.170)

Combining (4.154), (4.162), (4.166), and (4.170) establishes the desired converse result in (4.25).

4.4 A system with K-hops

We generalize our two-hop setup and results to K hops, i.e., to K − 1 relays. We �rst describe the setup

in Section 4.4.1. Then, we review the optimal coding scheme and exponents region under maximum-

rate constraints in [34] for vanishing type-I error probabilities and we give our strong converse result in

Section 4.4.2. In Section 4.4.3, we present our results on the general optimal coding scheme and exponents

region under expected-rate constraints followed by simpli�cation results for the special case K = 3 in

Section 4.4.4.

76



CHAPTER 4. MULTI-HOP NETWORKS WITH MULTIPLE DCS 77

4.4.1 The Setup

Consider a system with a transmitter T0 observing the source sequence Y n
0 , K − 1 relays labeled

R1, . . . ,RK−1 and observing sequences Y n
1 , . . . , Y

n
K−1, respectively, and a receiver RK observing sequence

Y n
K .

The source sequences (Y n
0 , Y

n
1 , . . . , Y

n
K) are distributed according to one of two distributions depending

on a binary hypothesis H ∈ {0, 1}:

under H = 0 : (Y n
0 , Y

n
1 , . . . , Y

n
K) i.i.d. ∼ PY0Y1···YK ; (4.171a)

if H = 1 : (Y n
0 , Y

n
1 , . . . , Y

n
K) i.i.d. ∼ PY0 · PY1 · · · · · PYK (4.171b)

for a given pmf PY0Y1···YK and where PY0 , PY1 , . . . , PYK denote the marginals of the joint pmf PY0Y1···YK .

Figure 4.13: Cascaded K-hop setup with K DCs.

Communication takes place over K hops as illustrated in Figure 4.13. The transmitter T0 sends a

message M1 = φ
(n)
0 (Y n

0 ) to the �rst relay R1, which sends a message M2 = φ
(n)
1 (Y n

1 ,M1) to the second relay

and so on. The communication is thus described by encoding functions

φ
(n)
0 : Yn0 → {0, 1}? (4.172)

φ
(n)
k : Ynk × {0, 1}? → {0, 1}?, k ∈ {1, . . . ,K − 1}, (4.173)

so that the produced message strings

M1 = φ
(n)
0 (Y n

0 ) (4.174)

Mk+1 = φ
(n)
k (Y n

k ,Mk), k ∈ {1, . . . ,K − 1}, (4.175)

satisfy either the maximum-rate constraints

len (Mk) ≤ nRk, k ∈ {1, . . . ,K}, (4.176)

or the expected-rate constraints

E [len (Mk)] ≤ nRk, k ∈ {1, . . . ,K}. (4.177)
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Each relay R1, . . . , RK−1 as well as the receiver RK , produces a guess of the hypothesis H. These

guesses are described by guessing functions

g
(n)
k : Ynk × {0, 1}? → {0, 1}, k ∈ {1, . . . ,K}, (4.178)

where we request that the guesses

Ĥk,n = g
(n)
k (Y n

k ,Mk), k ∈ {1, . . . ,K}, (4.179)

have type-I error probabilities

αk,n , Pr[Ĥk = 1|H = 0], k ∈ {1, . . . ,K}, (4.180)

not exceeding given thresholds ε1, ε2, . . . , εK > 0, and type-II error probabilities

βk,n , Pr[Ĥk = 0|H = 1], k ∈ {1, . . . ,K}, (4.181)

decaying to 0 exponentially fast with largest possible exponents.

De�nition 9. Given maximum type-I error probabilities ε1, ε2, . . . , εK ∈ [0, 1] and rates R1, R2, . . . RK ≥ 0.

The exponent tuple (θ1, θ2, . . . , θK) is called (ε1, ε2, . . . , εK)-achievable if there exists a sequence of encoding

and decision functions
{
φ

(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , g

(n)
2 , . . . , g

(n)
K

}
n≥1

satisfying for each k ∈ {1, . . . ,K}:

lim
n→∞

αk,n ≤ εk, (4.182a)

lim
n→∞

1

n
log

1

βk,n
≥ θk, (4.182b)

and

len(Mk) ≤ nRk, (4.182c)

for the setup under maximum-rate constraints, or

E[len(Mk)] ≤ nRk, (4.182d)

for the setup under expected-rate constraints.

De�nition 10. The fundamental exponents region is de�ned as the closure of the set of

all (ε1, ε2, . . . , εK)-achievable exponent pairs (θ1, θ2, . . . , θK) for given rates R1, R2, . . . , RK ≥

0. It is denoted E∗K-Hop,max(R1, R2, . . . , RK , ε1, ε2, . . . , εK) under maximum-rate constraints, and

E∗K-Hop(R1, R2, . . . , RK , ε1, ε2, . . . , εK) under expected-rate constraints.
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4.4.2 Maximum-Rate Constraints

In this section, we present the optimal coding scheme suggested by [34] for the K-hop setup. This

coding scheme can achieve the optimal error exponent θ∗K-Hop,max(R1, R2, . . . , RK , ε1, ε2, . . . , εK) for all

ε1, ε2, . . . , εK ∈ [0, 1]. Our strong converse result is presented in Section 4.4.2.3.

4.4.2.1 Optimal Coding Scheme under Maximum-Rate Constraints

In a similar manner to the two-hop network, the optimal coding scheme for K-hops uses Han's scheme in

the following manner.

Han's scheme is �rst applied between T0 and R1. If R1 declares Ĥ1 = 1, then it informs R2 of this event

by sending the single-bit message M2 = [0], and R2 declares Ĥ2 = 1. However if Han's scheme between T0

and R1 results in R1 declaring Ĥ1 = 0, then R1 and R2 run a separate Han's scheme, and R2 produces the

guess Ĥ2 indicated by this second Han's scheme.

The same strategy applies to all next relays Rk (k ∈ {2, . . . ,K − 1}). If the decision taken by Rk is

Ĥk = 1, the single-bit message Mk = [0] is forwarded to Rk+1 informing it to declare Ĥk+1 = 1, otherwise a

separate Han's scheme is run between Rk and Rk+1. Note that for k = K − 1, the next node is the receiver

RK .

For completeness, we describe the details of the coding scheme as follows. Fix a blocklength n and

choose the following parameters:

� a small positive number µ > 0; and

� conditional pmfs PUk|Yk−1
for all k ∈ {1, . . . ,K} leading to PYk−1YkUk := PYk−1YkPUk|Yk−1

,

where all mutual information quantities will be evaluated according to the joint pmfs PYk−1YkUk as de�ned

above.

Randomly generate the codebooks for all k ∈ {1, . . . ,K}

CUk ,
{
unk(mk) : mk ∈

{
1, . . . , 2n(I(Uk;Yk−1)+µ)

}}
(4.183)

by drawing all entries i.i.d. according to the marginal pmfs PUk .

T0: Assume it observes Y n
0 = yn0 . Then, it looks for indices m1 satisfying

(un1 (m1), yn0 ) ∈ T (n)
µ (PU1Y0),
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randomly picks one of these indices, and sends its corresponding bit-string

M1 = [bin(m1)]. (4.184)

If no such index m1 exists, then T0 sends

M1 = [0]. (4.185)

Rk (∀k ∈ {1, . . . ,K − 1}): Assume it observes Y n
k = ynk and receives the bit-string message Mk = mk.

If mk = [0], then it produces

Mk+1 = [0], and Ĥk = 1. (4.186)

Else it sets mk = dec(mk) and checks if

(unk(mk), y
n
k ) ∈ T (n)

µ (PUkYk). (4.187)

If the check fails, it follows the degenerate scheme in (4.186). However, if the check is successful, Rk declares

Ĥk = 0, looks for indices mk+1 satisfying
(
unk+1(mk+1), ynk

)
∈ T (n)

µ (PUk+1Yk), randomly picks one of them,

and sends

Mk+1 = [bin(mk+1)] (4.188)

to Rk+1.

If no such index mk+1 exists, it directly sends the single-bit message

Mk+1 = [0]. (4.189)

RK : Assume it observes the sequence Y n
K = ynK and receives message MK = mK .

If mK = [0], it declares ĤK = 1.

Else it sets mK = dec(mK), and checks if

(unK(mK), ynK) ∈ T (n)
µ (PUKYK ).

It declares ĤK = 0 if the check succeeds, and ĤK = 1 otherwise.

4.4.2.2 Optimal Exponents Region

The fundamental exponents region of this setup was only established for vanishing type-I error probabilities,

i.e., when all type-I error thresholds ε1, . . . , εK ↓ 0 in [34]. This result is presented in this subsection and

we strengthen it by our strong converse result in Section 4.4.2.3.
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De�nition 11. For any ` ∈ {1, . . . ,K}, de�ne the function

η` : R+
0 → R+

0 (4.190)

R 7→ max
PU|Y`−1

:

R≥I(U ;Y`−1)

I (U ;Y`) . (4.191)

The functions η1, . . . , ηK are concave and monotonically non-decreasing. The proof is analogous to

the proof of Lemma 1 presented in Appendix A.1, and omitted for brevity. Notice further that in the

maximization determining η`(R) it su�ces to consider distributions PU |Y`−1
on alphabets of sizes |Y`−1|+1,

see [1]. In the following, we abbreviate the expression limε1↓0,ε2↓0,··· ,εK↓0 E∗K-Hop,max(R1, . . . , RK , ε1, . . . , εK)

by E∗K-Hop,max(R1, . . . , RK , 0, . . . , 0).

Theorem 10 (Proposition 5 in [34]). The fundamental exponents region under the maximum-rate con-

straints (4.182c) and vanishing type-I error constraints satis�es

E∗K-Hop,max(R1, . . . , RK , 0, . . . , 0) =

{
(θ1, . . . , θK) : θk ≤

k∑
`=1

η`(R`), k ∈ {1, . . . ,K}

}
(4.192)

Notice that in this K-hop setup, each decision center accumulates all the error exponents on the various

links from the transmitter to the decision center. The fundamental exponents region is thus given by a

K-dimensional hyper-rectangle. That means, each decision center can simultaneously achieve its optimal

error exponent independently from the other DCs in the system.

4.4.2.3 Strong Converse Result

Theorem 11. The fundamental exponents region under the maximum-rate constraints (4.182c) is indepen-

dent of the tuple (ε1, ε2, . . . , εK) for all ε1, ε2, . . . , εK ∈ [0, 1]:

E∗K-Hop,max(R1, . . . , RK , ε1, . . . , εK) = E∗K-Hop,max(R1, . . . , RK , 0, . . . , 0) (4.193)

Proof: Achievability follows by setting ε1 = ε2 = · · · = εK = 0. The strong converse proof is in

Appendix B.6.

Due to the above theorem, we abbreviate E∗K-Hop,max(R1, . . . , RK , ε1, . . . , εK) by E∗K-Hop,max(R1, . . . , RK).

4.4.3 Expected-Rate Constraints

4.4.3.1 Optimal Coding Scheme under Expected-Rate Constraints

Similarly to the two-hop scheme, the terminals multiplex di�erent subschemes depending on the sequence Y n
0

observed at the transmitter T0. To this end, partition the set Yn0 into disjoint subsets D∅ and {DI}I∈P(K)
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so that the probabilities

σI := Pr[Y n
0 ∈ DI ] (4.194)

satisfy

1−
∑
k∈S

εk ≤
∑

I∈P(K) :
S⊆I

σI , S ⊆ {1, . . . ,K}, (4.195a)

∑
I∈P(K)

σI ≤ 1. (4.195b)

The main structure of the coding scheme is illustrated in Figure 4.14.

Figure 4.14: Illustration of the general optimal coding scheme for the K-hop setup with K DCs under
expected-rate constraints using the optimal coding scheme under maximum-rate constraints.

In our multiplexed schemes, the index I of DI indicates that if T0's observation Y n
0 lies in DI , then all

terminals Rk, for k ∈ I, attempt to correctly guess hypothesis H, while all terminals Rk, for k /∈ I, simply

declare Ĥk = 1. If Y n
0 ∈ D∅, then all terminals R1, . . . , RK simply declare Ĥ = 1.

The transmitter T0 adds K �ag-bits to its message M1 to inform R1 about the set DI containing its

observation Y n
0 , and thus about the choice of the employed coding scheme. These �ag-bits are forwarded

by all relays R1, . . . , RK−1 at the beginning of their messages M2, . . . ,MK so as to pass the information to

all terminals in the network.

We describe the di�erent multiplexed coding schemes in more detail. Let `∗I be the largest index in set

I:

`∗I := max
k∈I

k, (4.196)

and choose a set of rates

{RI,` : I ∈ P(K), ` ∈ {1, . . . , `∗I}} (4.197)
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satisfying

R` ≥
∑

I∈P(K) :
`∗I≥`

σI ·RI,`, ` ∈ {1, . . . ,K}. (4.198)

We will see that the choice of the various rates determines the tradeo� between the di�erent exponents

θ1, . . . , θK . Rates {RI,` : ` ∈ {1, . . . , `∗I}} are used in the subscheme employed when Y n
0 ∈ DI , where under

this event only the messages on the �rst `∗I links have positive rates, while messages on the last K − `∗I

links are of zero rate. The reason is that terminals R`∗I+1, . . . , RK simply declare Ĥ = 1 and thus messages

M`∗I+1, . . . ,MK only have to convey the zero-rate information that Y n
0 ∈ DI .

Subscheme for Y n
0 ∈ D∅: All terminals T0 and R1, . . . , RK−1 send the length-K all-zero bit string over the

respective communication links:

M1 = · · · = MK = [0, 0, . . . , 0]. (4.199)

Upon receiving this all-zero �ag, relays R1, . . . , RK−1 and receiver RK all declare

Ĥ1 = · · · = ĤK = 1. (4.200)

Communication is thus only used to inform the relays and the receiver about the scheme to employ, or

equivalently the event Y n
0 ∈ D∅, without providing any further information about the correct hypothesis.

Subscheme for Y n
0 ∈ DI , for I ∈ P(K): In this case, only terminals Rk, for k ∈ I, attempt to correctly

guess hypothesis H; all other terminals Rk, for k /∈ I, directly declare Ĥk = 1.

Terminals T0, R1, . . . , R`∗I apply a given `∗I-hop hypothesis testing scheme with vanishing type-I error

probabilities and respecting the maximum-rate constraints RI,1, . . . , RI,`∗I on the �rst `∗I links. To inform

all relays and the receiver about the scheme to use, terminals T0, R1, . . . , RK−1 append a K-length �ag

sequence describing set I at the beginning of their messages. We propose that this �ag sequence shows bit

1 at all positions k ∈ I and bit 0 at all positions k /∈ I. Notice that Messages M`∗I+1, . . . ,MK consist of

only the �ag sequence.

All terminals Rk with k ∈ I declare the hypothesis indicated by the employed multi-hop hypothesis

testing scheme. The remaining terminals Rk with k /∈ I simply declare

Ĥk = 1, k /∈ I. (4.201)

Analysis: By (4.194) and (4.198), and because transmission of K bits hardly changes the rate for su�-

ciently large blocklengths, the proposed overall scheme respects the expected-rate constraints R1, . . . , RK on
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the K links for large values of n. Appendix B.7 proves that when the optimal multi-hop hypothesis testing

schemes with vanishing type-I error probability [34] are used as the various subschemes, then the overall

scheme satis�es the type-I error constraints ε1, . . . , εK and achieves the error exponents in the following

Theorem 12.

4.4.3.2 Optimal General Exponents Region

Theorem 12. The fundamental exponents region E∗(R1, . . . , RK , ε1, . . . , εK) is equal to the set of all non-

negative tuples (θ1, . . . , θK) satisfying

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

η`(RI,`), (4.202a)

for some nonnegative rates {RI,1, . . . , RI,`∗I}I∈P(K) and nonnegative numbers {σI}I∈P(K) satisfying

Rk ≥
∑

I∈P(K) :
k≤`∗I

σI ·RI,k, k ∈ {1, . . . ,K}, (4.202b)

max

{
0, 1−

∑
k∈S

εk

}
≤

∑
I∈P(K) :
S⊆I

σI , S ⊆ {1, . . . ,K}, (4.202c)

∑
I∈P(K)

σI ≤ 1. (4.202d)

Proof: Achievability is based on the coding scheme presented in the previous subsection and analyzed

in Appendix B.7. The converse is proved in Section 4.4.3.4.

4.4.3.3 Discussion of the Bene�ts of Expected-Rate Constraints

Similar observations apply to the general Theorem 12 as for K = 2. In particular, irrespective of the

ordering of the permissible type-I error probabilities, the largest exponent achievable at a decision center k

is given by

θk,max :=

k∑
`=1

η`

(
R`

1− εk

)
, (4.203)

which intuitively can be obtained when we have to satisfy only the type-I error constraint at the decision

center k and utilize the available resources to maximize its exponent as if it is the only DC in the system.

It coincides with the optimal exponent under maximum-rate constraint and vanishing type-I error proba-

bilities, see Theorem 10, but where the rates are boosted by the factor (1 − εk)−1. In fact, θk = θk,max is
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achieved by choosing the �rst k rates as:1

RI,` =
R`

1− εk
, I 3 k, ` ∈ {1, . . . , k}. (4.204)

This choice imposes that σIRI,` = 0 for all I not containing k and all ` ∈ {1, . . . , k}. As a consequence,

the optimal performance for a decision center Rk′ , for k′ < k, is

θk′ =
k′∑
`=1

η`

(
R`

1− εk

)
, if εk′ > εk (4.205)

θk′ = 0, if εk′ < εk, (4.206)

where the performance in (4.205) is obtained by setting σI = 0 for all I containing an index k′ < k with

ε′k > εk and by setting the corresponding rates to in�nity. Notice that σI cannot be chosen equal to 0 for all

sets I containing index k′ < k when εk′ < εk because Constraint (4.202c) implies that at least one of these

σ-values is positive, which by σIRI,` = 0 implies that the corresponding rates RI,` = 0, for all ` = 1, . . . , k,

causing θk′ to degrade to 0. We conclude that under (4.203), for any k′ < k, when ε′k ≥ εk then exponent

θk′ is degraded from its maximum value because all rates are only boosted by the factor (1− εk)−1 and not

by the larger factor (1− εk′)−1, and when ε′k < εk the exponent θk′ completely degrades to 0.

With appropriate choices for the rates on the last (K−k) links, di�erent tradeo�s between the exponents

θk+1, . . . , θK can be achieved. In particular, it is possible that an exponent θk′ , for k′ > k, experiences its

maximum rate-boost (1 − εk′)−1 on some of these links. On the �rst k links, any exponent θk+1, . . . , θK

experiences a rate-boost of (1 − εk)−1 if the corresponding εk′ > εk, whereas the contributions of the �rst

k links completely degrade to 0 if εk′ < εk.

Further notice the following property of the region in Theorem 12.

Lemma 5. Consider a set of nonnegative numbers {RI,1, . . . , RI,`∗I}I∈P(K) and {σI}I∈P(K) satisfying

(4.202) for exponents (θ1, . . . , θK). Let I ′, I ′′ ∈ P(K) and Γ ∈ [0, σI′′ ] be so that

I ′ ⊆ I ′′ (4.207)

and

max

{
0, 1−

∑
k∈S

εk

}
+ Γ ≤

∑
I∈P(K) :
S⊆I

σI , S ⊆ I ′′,S * I ′. (4.208)

Then, the new nonnegative numbers

σ̃I′ = σI′ + Γ (4.209)

1This choice assumes that the ordering (4.216) is strict, i.e., no two ε-values coincide. Moreover, when some of the available
rates R1, . . . , Rk are su�ciently large so as to saturate the functions η`(R`), then other choices are possible.
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σ̃I′′ = σI′′ − Γ (4.210)

σ̃I = σI , I ∈ P(K)\{I ′, I ′′}, (4.211)

and rates,

R̃I′,` =
σI′ ·RI′,` + Γ ·RI′′,`

σ̃I′
, ` ∈ {1, . . . , `∗I′}, (4.212)

R̃I,` = RI,`, I ∈ P(K)\{I ′}, ` ∈ {1, . . . , `∗I}. (4.213)

also satisfy (4.202) for exponents (θ1, . . . , θK).

Proof: Above rate-de�nitions essentially only shift the term Γ · RI′′,` from σI′′RI′′,` to σ̃I′R̃I′,`,

and therefore the rate-constraints (4.202b) remain valid also for the new numbers. Similarly, constraint

(4.202d) remains valid since the sum of all σ-values is preserved. Notice further that the σ-values included

in Constraint (4.202c) for S * I ′′ remain unchanged by (4.211) and for S ⊆ I ′ their sum is preserved

by (4.209) and (4.210). For S * I ′ but S ⊆ I ′′, Constraint (4.202c) is satis�ed by Assumption (4.208).

It remains to check the validity of (4.202a) for the new rate-values. By (4.213) the constraint remains

unchanged for all k /∈ I ′. For k ∈ I ′, we notice that by (4.207) the minimum in (4.202a) includes both sets

I ′ and I ′′ and this minimum cannot be smaller for the new rates because:

min

{
k∑
`=1

η`
(
RI′,`

)
,

k∑
`=1

η`
(
RI′′,`

)}
≤ min

{
k∑
`=1

(
σI′

σ̃I′
η`
(
RI′,`

)
+

Γ

σ̃I′
η`
(
RI′′,`

))
,
k∑
`=1

η`
(
RI′′,`

)}
(4.214)

≤ min

{
k∑
`=1

η`

(
R̃I′,`

)
,

k∑
`=1

η`

(
R̃I′′,`

)}
, (4.215)

where the �rst inequality holds because the minimum of two numbers cannot exceed any convex combination

of the numbers, and the second inequality holds by the concavity and monotonicity of the functions {η`(·)}`.

Above lemma indicates that when evaluating the fundamental exponents region

E∗(R1, . . . , RK , ε1, . . . , εK) in Theorem 12 one can restrict to sets of parameters {σI} that satisfy

some of the constraints (4.202c) with equality and set certain σ-values to 0. In fact, we conjecture that the

simpli�ed expression for the exponents region E∗(R1, . . . , RK , ε1, . . . , εK) in Conjecture 13 ahead holds,

where we de�ne a permutation π : {1, . . . ,K} → {1, . . . ,K} that orders the ε-values in decreasing order:

επ(1) ≥ επ(2) ≥ · · · ≥ επ(K), (4.216)

and sets επ(0) := 1. We observe that the expression in Conjecture 13 is obtained from Theorem 12 by setting

σ{π(i),···,π(K)} = επ(i−1) − επ(i), i ∈ {1, . . . ,K}, (4.217)
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and all other σ-values to 0, and by renaming rates R{π(i),···,π(K)},` to Ri,` and `
∗
{π(i),···,π(K)} to `

∗
i . The region

in Conjecture 13 is thus an achievable exponents region, but we conjecture it is optimal.

Conjecture 13. The fundamental exponents region E∗(R1, . . . , RK , ε1, . . . , εK) is the set of all exponent

tuples (θ1, . . . , θK) that satisfy

θk ≤ min
i∈{1,...,π(k)}

[
k∑
`=1

η` (Ri,`)

]
, k ∈ {1, . . . ,K}, (4.218a)

for some nonnegative rates {Ri,`} satisfying

R` ≥
∑

i∈{1,...,K} :
`∗i≥`

(
επ(i−1) − επ(i)

)
Ri,`, ` ∈ {1, . . . ,K}, (4.218b)

where

`∗i := max
`
{` : ` ∈ {π(i), . . . , π(K)}}. (4.218c)

Linking this conjecture to the coding scheme in the previous Subsection 4.4.3.1, we observe that if it

holds, then the optimal coding scheme only multiplexes K + 1 coding schemes (instead of 2K schemes as

implied by Theorem 12), where the i-th scheme is applied with probability επ(i−1) − επ(i) and is intended

only for the DCs with (K−i+1)-th smallest type-I error constraints. The structure of the simpli�ed coding

scheme is presented in Figure 4.15.

Figure 4.15: Illustration of the conjectured simpli�ed optimal coding scheme for the K-hop setup with K
DCs under expected-rate constraints using the optimal coding scheme under maximum-rate constraints.
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4.4.3.4 Converse Proof to Theorem 12

Here we propose a new proof method that has some di�erences compared to the proof method that we

presented in Section 4.3.5. The main di�erence is that this new proof method does not require the

blowing-up lemma as we now partition the set of strongly jointly typical sequences among all observa-

tions T (n)
µn (PY0Y1···YK ) into 2K subsets by considering all possible combinations of the decisions taken at the

di�erent DCs. This indicates that the probabilities are now either 1 or 0 and thus there is no need for the

blowing-up lemma, see Figure 4.16 for an illustration when K = 2. Another di�erence in this method is

that now by conditioning on all sequences we lose all the i.i.d.ness properties and thus we need to prove

that all the Markov chains hold asymptotically in the limit as n→∞. We next present the technical details

of the proof.

Figure 4.16: Sketch of partitioning T (n)
µn (PY0Y1Y2) and applying parallel change of measure arguments in the

converse proof to Theorem 12 when K = 2.

Fix an exponent-tuple (θ1, . . . , θK) in the exponents region E∗(R1, . . . , RK , ε1, . . . , εK), and a sequence

(in n) of encoding and decision functions {(φ(n)
0 , φ

(n)
1 , . . . , φ

(n)
K , g

(n)
1 , . . . , g

(n)
K )}n≥1 achieving this tuple, i.e.,

satisfying constraints (4.182).

Our proof relies on the following lemma (which generalizes Lemma 4 to K ≥ 2).

Lemma 6. Given a small number η > 0. Fix a blocklength n and a set D ⊆ Yn0 × Yn1 × · · · × YnK of

probability exceeding δ, and let the tuple (M̃1, M̃2, . . . , M̃K , Ỹ
n

0 , Ỹ
n

1 , . . . , Ỹ
n
K) follow the pmf

PM̃1M̃2···M̃K Ỹ
n
0 Ỹ

n
1 ···Ỹ nK

(m1,m2, . . . ,mK , y
n
0 , y

n
1 , . . . , y

n
K) ,

PY n0 Y n1 ···Y nK (yn0 , y
n
1 , . . . , y

n
K) ·

1{(yn0 , yn1 , . . . , ynK) ∈ D}
PY n0 Y n1 ...Y nK (D)

· 1{φ1(yn0 ) = m1}
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·1{φ2(yn1 , φ1(yn0 )) = m2} · · · · · 1{φK(ynK−1, φK−1(ynK−2, φK−2(· · · , φ1(yn0 ))) = mK}. (4.219)

Further, de�ne the auxiliary random variables

Uk , (M̃k, Ỹ
T−1

0 , Ỹ T−1
1 , · · · , Ỹ T−1

K , T ), k ∈ {1, . . . ,K}, (4.220)

Ỹk , Ỹk,T , k ∈ {0, 1, . . . ,K}, (4.221)

where T is uniform over {1, . . . , n} and independent of the tuple (M̃1, M̃2, . . . , M̃K , Ỹ
n

0 , Ỹ
n

1 , . . . , Ỹ
n
K).

For any k ∈ {1, . . . ,K}, the following (in)equalities hold:

H(M̃k) ≥ nI(Uk; Ỹk−1) + logPY n0 Y n1 ...Y nK (D), (4.222)

I(Uk; Ỹk|Ỹk−1) = ø1,k(n), (4.223)

where ø1,k(n) is a function that tends to 0 as n→∞.

If

Pr[Ĥk = 0|H = 0, Y n
0 = yn0 , . . . , Y

n
K = ynK ] ≥ η, ∀(yn0 , . . . , ynK) ∈ D, (4.224)

then

− 1

n
log Pr[Ĥk = 0|H = 1, (Y n

0 , . . . , Y
n
K) ∈ D] ≤

k∑
`=1

I(U`; Ỹ`) + ø2,k(n), (4.225)

where ø2,k(n) are functions that tend to 0 as n→∞.

Proof: See Appendix B.8.

We continue to prove Theorem 12. Fix a small positive number η > 0 and set µn = n−1/3. De�ne for

each index k ∈ {1, . . . ,K} the set

Bk(η) , {(yn0 , . . . , ynK) ∈ T (n)
µn (PY0···YK ) : Pr[Ĥk = 0|H = 0, Y n

0 = yn0 , . . . , Y
n
K = ynK ] ≥ η}, (4.226)

and for each subset I ∈ P(K) the set

DI(η) ,
{

(yn0 , . . . , y
n
K) ∈ T (n)

µn (PY0···YK ) :

∀k ∈ I, Pr[Ĥk = 0|H = 0, Y n
0 = yn0 , . . . , Y

n
K = ynK ] ≥ η,

and ∀k /∈ I, Pr[Ĥk = 0|H = 0, Y n
0 = yn0 , . . . , Y

n
K = ynK ] < η

}
. (4.227)

Notice that the sets {DI(η)}I are disjoint and⋃
I∈P(K) :

k∈I

DI(η) = Bk(η). (4.228)

We continue to notice in a similar manner to steps (4.69)�(4.74) that by [44, Remark to Lemma 2.12]
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and the type-I error probability constraints in (4.182a), for any k ∈ {1, . . . ,K}:

PY n0 Y n1 ···Y nK−1
(Bk(η)) ≥ 1− εk − η

1− η
− |Y0| · · · |YK |

(1− η)(4µ2
nn)

. (4.229)

De�ning

∆I := PY n0 Y n1 ···Y nK (DI(η)), (4.230)

we conclude by (4.228), by standard laws of probability, and the disjointness of the sets {DI(η)}I , that in

the limit as n→∞ and η ↓ 0, for any subset S ⊆ {1, . . . ,K}:

lim
η↓0

lim
n→∞

∑
I∈P(K) :
S⊆I

∆I ≥ max

{
1−

∑
k∈S

εk, 0

}
. (4.231)

We now apply Lemma 6 to every subset DI , for I ∈ P(K) with ∆I ≥ η. This allows to con-

clude that for any such I there exist random variables {UI,1, . . . , UI,`∗I} so that the random variables

(M̃I,1, M̃I,2, · · · , M̃I,`∗I , Ỹ
n
I,0, Ỹ

n
I,1, · · · , Ỹ n

I,K) de�ned in the lemma satisfy for any k ∈ {1, . . . ,K} the

(in)equalities

H(M̃I,k) ≥ nI(UI,k; Ỹk−1) + log ∆I , (4.232a)

I(UI,k; ỸI,k|ỸI,k−1) = ø1,I,k(n), (4.232b)

and for indices k ∈ I moreover:

− 1

n
log Pr[Ĥk = 0|H = 1, (Y n

0 , . . . , Y
n
K) ∈ DI ] ≤

k∑
`=1

I(UI,`; ỸI,`) + ø2,I,k(n), (4.232c)

where for each (I, k) the functions ø1,I,k(n) and ø2,I,k(n)→ 0 as n→∞.

In the sequel we assume that η is very small and ∆I ≥ η for any I. Otherwise the proof is similar but

omitted for brevity.

We continue with the total law of probability to obtain:

− 1

n
log βk,n ≤ min

I∈P(K) :
k∈I

k∑
`=1

I(UI,`; ỸI,`) + ø3(n), (4.233)

where ø3,k(n) is a function that tends to 0 as n→∞. We further de�ne the following random variables for

I ∈ P(K) and k ∈ {1, . . . , `∗I}:

L̃I,k , len(M̃I,k). (4.234)

By the rate constraints (4.177) and the total law of expectations:

nRk ≥
∑

I∈P(K) :
`∗I≥k

E[L̃I,k]∆I , (4.235)
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and, similarly to (4.91), we obtain

∑
I∈P(K) :
`∗I≥k

∆IH(M̃I,k) ≤ nRk

1 +
∑

I∈P(K) :
`∗I≥k

hb

(
∆I
nRk

) .

(4.236)

Then combining (4.236) with (4.232a) and (4.233), and taking n→∞ and η ↓ 0, we obtain that

Rk ≥
∑

I∈P(K) :
`∗I≥k

∆∗I · I(U∗I,k; Ỹ
∗
k−1), (4.237a)

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

I(U∗I,`; Ỹ
∗
I,`) (4.237b)

for some random variables (Ỹ ∗0 , . . . , Ỹ
∗
K) ∼ PY0Y1···YK and {U∗I,1, . . . , U∗I,`∗I}I that by (4.232b) satisfy the

Markov chains

U∗I,k → Y ∗k−1 → Y ∗k (4.238)

and nonnegative numbers {∆∗I}I that by (4.231) satisfy for any subset S ⊆ {1, . . . ,K}:∑
I∈P(K) :
S⊆I

∆∗I ≥ max

{
1−

∑
k∈S

εk, 0

}
. (4.239)

4.4.4 The Special Case K = 3

4.4.4.1 Simpli�ed Optimal Coding Scheme and Exponents Region under Expected-Rate

Constraints

In this simpli�ed coding scheme, the terminals multiplex four di�erent subschemes depending on the se-

quence yn0 observed at the transmitter T0 instead of eight subschemes as in the general coding scheme in

Section 4.4.3.1. To this end, partition the set Yn0 into four disjoint subsets D0,D1,D2,D3 so that the subsets

D1,D2,D3 are of largest possible probabilities but not exceeding

Pr [Y n
0 ∈ Di] ≤ επ(i−1) − επ(i), i ∈ {1, 2, 3}. (4.240a)

Since D0, . . . ,D3 form a partition:

Pr [Y n
0 ∈ D0] ≥ επ(3), (4.240b)

where all inequalities (4.240) turn into equalities as n→∞.

We describe the coding scheme in detail, and in particular the employed subschemes for the various sets
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D0, . . . ,D3. To this end, choose a set of rates

{Ri,` : i ∈ {1, 2, 3}, ` ∈ {1, . . . , `∗i }} (4.241)

satisfying

R` >
∑

i∈{1,2,3} :
`∗i≥`

(
επ(i−1) − επ(i)

)
Ri,`, ` ∈ {1, 2, 3}, (4.242)

where recall that `∗i is the largest index in the set {π(i), . . . , π(3)}.

Subscheme for Y n
0 ∈ D0: All terminals T0, R1, and R2 send the two-bit zeros-string over the respective

communication links:

M1 = M2 = M3 = [0, 0]. (4.243)

Upon receiving this all-zero �ag, terminals R1, R2, and R3 all declare

Ĥ1 = Ĥ2 = Ĥ3 = 1. (4.244)

Subscheme for Y n
0 ∈ Di, for i ∈ {1, 2, 3}: In this case, only terminals Rπ(i), . . . ,Rπ(3) attempt to correctly

guess hypothesis H; all other terminals directly declare Ĥ = 1.

Terminals T0, R1, . . . , R`∗i apply the optimal `∗i -hop hypothesis testing scheme with vanishing type-I

error probabilities and respecting the maximum-rate constraints Ri,1, . . . , Ri,`∗i on the �rst `∗i links. To

inform all relays and the receiver about the scheme to use, terminals T0, R1,R2 append the two-length

binary description of the index i to their messages. In particular, Messages M`∗i+1, . . . ,M3 contain only

these �ag-bits.

Terminals with indices {π(i), . . . , π(3)} declare the hypothesis indicated by the employed multi-hop

hypothesis testing scheme. All other DCs simply declare

Ĥπ(1) = · · · = Ĥπ(i−1) = 1. (4.245)

The overall scheme, by (4.240), (4.242) and because transmission of two bits hardly changes the rate for

su�ciently large blocklengths, satis�es the expected-rate constraints, the type-I error constraints ε1, ε2, ε3,

and achieves the error exponents in the following proposition.

Proposition 2. Conjecture 13 holds for K = 3.

Proof: As already mentioned in Section 4.4.3.3, achievability of the region in (4.218) for any value

of K follows by specializing the region in Theorem 12 to the parameter choice in (4.217) and setting all

other σ-values to 0, and by renaming rates R{π(i),...,π(K)},` as Ri,`. The converse for K = 3 is proved in
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Section 4.4.4.2.

4.4.4.2 Converse Proof to Proposition 2

We start with two auxiliary lemmas.

Lemma 7. Let K = 3. In Theorem 12 it su�ces to consider values {σI}I∈P(3) so that

σ{1,2,3} + σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(1)} = 1− επ(1) (4.246)

σ{π(1),π(2)} + σ{π(2)} ≥ σ{π(1),π(3)} (4.247)

Proof: See Appendix B.9.

We thus continue with nonnegative numbers {σI}I∈P(3), and {RI,1, . . . , RI,`∗I}I∈P(3) satisfying (4.202)

for K = 3 as well as (4.247). The proof of the desired proposition follows by the next lemma (which holds

for any positive integer K) and by an appropriate choice of parameters {cJ }, see (4.268) ahead.

Lemma 8. Let

{cJ : J ∈ P(K)}, (4.248)

{δI,J : I,J ∈ P(K) and I ∩ J 6= ∅} (4.249)

be sets of nonnegative integers satisfying∑
J∈P(K) :
I∩J 6=∅

δI,J ≤ σI , I ∈ P(K), (4.250)

and ∑
I∈P(K) :

k∈I

δI,J ≥ cJ , ∀k ∈ J , J ∈ P(K). (4.251)

Then, the rates

R̃J ,k := max
j∈J :
j≥k

∑
I∈P(K) :

j∈I

δI,J
cJ

RI,k, k ≤ `∗J ,J ∈ P(K), (4.252)

satisfy the following inequalities:

θk ≤ min
J∈P(K) :

k∈J

k∑
`=1

η`

(
R̃J ,`

)
, k ∈ {1, . . . ,K}, (4.253)

and

Rk ≥
∑

J∈P(K) :
k≤`∗J

cJ · R̃J ,k, k ∈ {1, . . . ,K}. (4.254)
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Proof: We start by proving (4.253). By (4.202a), for any k ∈ {1, . . . ,K} and any set J ⊆ P(K)

containing index k:

θk ≤ min
I∈P(K) :

k∈I

k∑
`=1

η`(RI,`) (4.255)

(a)

≤
∑

I∈P(K) :
k∈I

δI,J∑
I∈P(K) :

k∈I
δI,J

·
k∑
`=1

η`(RI,`) (4.256)

(b)

≤
k∑
`=1

η`

 ∑
I∈P(K) :

k∈I

δI,J∑
I∈P(K) :

k∈I
δI,J

·RI,`

 (4.257)

(c)

≤
k∑
`=1

η`

 ∑
I∈P(K) :

k∈I

δI,J
cJ
·RI,`

 (4.258)

(d)

≤
k∑
`=1

η`(R̃J ,`), (4.259)

where (a) holds because the minimum of a set of numbers is never larger than any convex combination of

these numbers; (b) holds by the concavity of the functions η1(·), . . . , ηk(·); (c) holds by assumption (4.251)

and by the monotonicity of the functions η1(·), . . . , ηk(·); and (d) holds by the de�nition of R̃J ,k in (4.252)

because k ≥ ` and k ∈ J thus ` ≤ `∗J .

To prove (4.254), �x k ∈ {1, . . . ,K} and for each subset J ⊆ P(K) with `∗J ≥ k pick an index jJ ∈ J

so that jJ ≥ k. Then, by (4.202b):

Rk ≥
∑

I∈P(K) :
k≤`∗I

σI ·RI,k, (4.260)

(e)

≥
∑

I∈P(K) :
k≤`∗I

∑
J∈P(K) :
I∩J 6=∅

δI,J ·RI,k (4.261)

=
∑

J∈P(K)

∑
I∈P(K) :
k≤`∗I
I∩J 6=∅

δI,J ·RI,k (4.262)

(f)

≥
∑

J∈P(K) :
k≤`∗J

∑
I∈P(K) :
k≤`∗I
I∩J 6=∅

δI,J ·RI,k (4.263)

(f)

≥
∑

J∈P(K) :
k≤`∗J

∑
I∈P(K) :
k≤`∗I
jJ∈I

δI,JRI,k (4.264)
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(g)
=

∑
J∈P(K) :
k≤`∗J

∑
I∈P(K) :
jJ∈I

δI,JRI,k (4.265)

=
∑

J∈P(K) :
k≤`∗J

cJ ·

∑
I∈P(K) :
jJ∈I

δI,JRI,k

cJ
, (4.266)

where (e) holds by Assumption (4.250); inequalities (f) hold because we consider less summands and each

summand is nonnegative (recall that jJ ∈ J ); and �nally (g) holds because the two conditions jJ ≥ k and

jJ ∈ I imply that `∗I ≥ k.

The proof of the lemma is concluded by recalling the de�nition of rate R̃J ,k in (4.252) and noting that

Inequality (4.259) holds for any set J containing k whereas Inequality (4.266) holds for any index jJ ∈ J

larger than k.

To obtain the desired simpli�cation in Proposition 2 from Theorem 12, de�ne the subsets

Jk := {π(k), . . . , π(K)}, k ∈ {1, . . . ,K}, (4.267)

and the values π(0) := 0 and ε0 := 1. Applying above Lemma 8 to the choice

cJ :=


επ(k−1) − επ(k), J = Jk,

0, otherwise,

(4.268)

establishes the converse to Conjecture 13 for general values of K, if one renames rates R̃Jk,` as R̃k,`. The

proof is concluded by showing that above parameter choice is permissible, i.e., that there exist nonnegative

numbers {δI,J } satisfying conditions (4.250) and (4.251) for {cJ } in (4.268). For general values of K this

seems cumbersome.

For K = 3, this can be achieved by means of the Fourier-Motzkin Elimination algorithm [52], which

shows the existence of nonnegative numbers {δI,J } satisfying conditions (4.250) and (4.251) for {cJ } in

(4.268), whenever (redundant conditions are omitted)

σ{1,2,3} + σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(1)} ≥ 1− επ(1) (4.269a)

σ{1,2,3} + σ{π(1),π(2)} + σ{π(2),π(3)} + σ{π(2)} ≥ 1− επ(2) (4.269b)

σ{1,2,3} + σ{π(1),π(3)} + σ{π(2),π(3)} + σ{π(3)} ≥ 1− επ(3) (4.269c)

and

2σ{1,2,3} + 2σ{π(1),π(2)} + σ{π(1),π(3)} + σ{π(2),π(3)} + σ{π(1)} + σ{π(2)} + σ{π(3)} ≥ 1− επ(1) + 1− επ(3).

(4.269d)
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Since Conditions (4.269a)�(4.269c) are satis�ed by Assumption (4.202c) and Condition (4.269d) is implied

by (4.269a), (4.269b), and (4.247), this concludes the proof for K = 3 and thus establishes Proposition 2.

4.5 Summary and Discussion

Introducing multiple decision centers to the multi-hop network in this chapter led to exploring another

dimension of the distributed hypothesis testing problem: the tradeo� between the maximum simultaneously

achievable error exponents at di�erent centers. While no tradeo� appears neither in the setup under

maximum-rate constraints nor under expected-rate constraints with identical type-I error constraints, we

show in this chapter that an interesting tradeo� arises in the setup under expected-rate constraints between

the decision centers that have di�erent type-I error constraints. The expected-rate constraints give an

additional dimension with di�erent margins to exploit for positive acceptable type-I error thresholds at the

di�erent decision centers.

In order to obtain the best tradeo� between all decision centers, we proposed a multiplexing and

rate-sharing strategy that can achieve the fundamental exponents region under expected-rate constraints.

The idea is to multiplex di�erent versions of the best available coding schemes for the same setup under

maximum-rate constraints, while varying the distribution of the available rate for the communication links

between these di�erent versions depending on the favorable decision centers and on the allowed type-I error

probabilities. Since the optimal coding schemes for any number of hops under maximum-rate constraints

with vanishing type-I error probabilities already exist, we showed that this proposed strategy achieves the

fundamental exponents region. However this strategy can still be applied with generic schemes and it can

still achieve remarkable gains compared to the achievable exponents region by the given generic schemes.

Moreover, to prove that the achievable region by our proposed strategy is the fundamental exponents

region for the two-hop network, a novel converse proof method is proposed that builds up on the techniques

used in the previous chapter such as change of measure arguments, asymptotic Markov chains, blowing-up

lemma, and laws of probability on expectation, but also applies other new features. The distinguishing

feature here is dividing the set of all observations at all terminals (except the receiver) into disjoint sets

where each set corresponds to the observations that yield a positive probability of avoiding type-I error

at a certain subset of the decision centers. Change of measure arguments are then applied to restrict to

random variables in the given set with positive probability, on which the blowing-up lemma is then applied

along with standard inequalities that yield the minimization expressions in the upper-bounds on the error
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exponents of the related DCs. For the lower bounds on the rates of any given link, the laws of probability on

expectation for all the related sets (i.e. the sets that require communication over the given link) are applied.

Finally for the desired Markov chains, the �rst one is proved asymptotically in the limit as n → ∞, while

the second one holds by construction. These techniques can also be used under maximum-rate constraints

for a simpler strong converse proof than the existing one in [35].

For the K-hop setup, we can generalize the same proof method for the desired converse and strong con-

verse results under expected-rate and maximum-rate constraints, respectively. However, we further provide

an alternative and simpler proof without using the blowing-up lemma. In this case, the set conditioning

is done over all observations at all terminals including the receiver. Thus, we do not need the blowing-up

lemma but yet we do not directly get the last Markov chain, but we still can prove this Markov chain

asymptotically. Notice that since we already need the same proof steps to prove the K−2 previous Markov

chains which are di�erent from the proof of the �rst Markov chain, then for the K hops it is de�nitely

simpler to consider this alternative proof. As we show in our very recent work in [43], this method can be

promising for the strong converse proofs of other setups even in the source coding problems.
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Chapter 5

Single Sensor to Multiple DCs

5.1 Introduction

In this chapter, we consider an instance of the distributed binary hypothesis testing problem with multiple

DCs. A single sensor communicates to the DCs over a common broadcast link and over individual links

to each of them. This problem has been studied under various assumptions in the literature, and we re-

view these previous results in the next section. The work most related to ours is [28] that establishes the

fundamental type-II error exponents region under maximum-rate constraints and for testing against inde-

pendence when the type-I error probabilities vanish. In this chapter, we establish a strong converse result

to this problem and also characterize the fundamental exponents region under expected-rate constraints.

In the special case of having only a common broadcast link, we provide a simpli�ed representation of the

exponents region which also simpli�es the required optimal coding scheme to achieve it.

Our main results in this chapter, which are presented ahead in Section 5.5.2, show that the fundamental

exponents region is boosted under expected-rate constraints in comparison with the region under maximum-

rate constraints, and where a tradeo� is present between the type-II error exponents at the di�erent DCs.

The main di�erence to the multi-hop setup in the previous chapter is that a tradeo� was already present in

the setup under maximum-rate constraints. This tradeo� is induced by the common BC channel which has

to serve all DCs at the same time. The other type of tradeo� that is present in this chapter is similar to

that of the previous chapter, and stems from having di�erent type-I error thresholds resulting in competing

margins to be exploited by the di�erent DCs. The �ndings in this chapter are shown for two DCs for

simplicity, however they can be extended to any number of DCs.
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5.2 Related Works

Distributed hypothesis testing with a single sensor communicating to multiple DCs has been studied in

several works [28�32] under the assumption of maximum-rate constraints. The work in [28] is most related

to ours [53], and we review it at the end of this section. We �rst present an overview of other related

works under two instances of the problem: �coherent detection� and �concurrent detection� as termed by

the authors in [32]. Under coherent detection, the di�erent DCs need to maximize their error exponents

under the same hypothesis; they share the same goal and classi�cation of critical events. However under

concurrent detection, di�erent DCs have to maximize their error exponents under di�erent hypotheses.

For coherent detection, the work of [28] focused on having a single sensor communicating with two DCs

over three noise-free links: one common broadcasting link to both DCs, and two individual links dedicated

for each decision center. In the special case of testing against independence, the authors in [28] exactly

characterized the fundamental error exponents region which shows a tradeo� between the type-II error

exponents of the two DCs. Their work is extended in [29] to testing against conditional independence when

the communication occurs over one common and two individual noise-free links or over a noisy broadcast

channel. Under noise-free communication, the authors in [29] derived the fundamental error exponents

region for some special cases of the problem where a tradeo� also arises between the type-II error exponents

at the DCs. The setup was further studied with a cooperative link from the �rst decision center to the

second decision center in [31, 32]. In addition to the derivation of inner bounds to the exponents region,

the authors provided an exact characterization of the exponents region when testing against independence

with zero-cooperation rate between the two DCs [31, 32]; a tradeo� arises in this case between the error

exponents at the two decision centers. The authors also characterized the fundamental exponents region

for the general binary hypothesis testing setup when the communication from the sensor to the two DCs is

limited by asymptotically zero-rate constraints; in this case, the exponents region is rectangular and thus

both DCs can maximize their type-II error exponents simultaneously.

For the setup with concurrent detection, the authors in [30�32], considered only noise-free communica-

tion links in their works with and without a cooperative link. In the absence of the cooperative link under

concurrent detection, the setup is extended to K decision centers in [30] where both simple and composite

M -ary hypothesis testing are studied. In addition to the derivation of inner bounds to the exponents region

for all the mentioned scenarios, their main results include exact characterizations of the exponents region

when the communication from the sensor to the decision centers is limited by asymptotically zero-rate con-
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straints. In this case, a tradeo� between the error exponents arises whenever the number of communicated

bits is not larger than log2 |H|, where |H| denotes the number of possible hypotheses, and otherwise all

decision centers can maximize their error exponents simultaneously. In [32], the authors derived another

optimality result for a special case under the cooperative concurrent detection with two DCs. In this special

case, the marginal distribution of the sensor's observations is di�erent under the two hypotheses and no

tradeo� is present between the error exponents of the two DCs.

As mentioned in the beginning of this section, the most related work to ours is the work of Wigger

and Timo [28]. The main di�erence in our work is having the expected-rate instead of the maximum-rate

constraints for the setup of distributed binary hypothesis testing against independence. We consider a

single sensor communicating over a common BC channel and two private links with two decision centers

under coherent detection, i.e. both decision centers wish to maximize their error exponents under the same

hypothesis. While a tradeo� already arises in the work of Wigger and Timo [28] under maximum-rate

constraints, mainly due to broadcasting common information to both decision centers at the same time, the

di�erent type-I error thresholds contribute to an additional tradeo� under expected-rate constraints. We

present the system model under both types of rate constraints in the next section followed by the existing

optimal coding scheme and exponents region under maximum-rate constraints, see Sections 5.4.1, 5.4.2. In

Section 5.4.3, we provide a strong converse result to the main result of [28]. Our work and main results

under expected-rate constraints are then presented in Section 5.5.

5.3 The Setup

Consider the distributed hypothesis testing problem in Figure 5.1 in the special case of testing against

independence, i.e., depending on the binary hypothesis H ∈ {0, 1}, the tuple (Y n
0 , Y

n
1 , Y

n
2 ) is distributed

as:

under H = 0 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0 · PY1Y2|Y0 ; (5.1a)

under H = 1 : (Y n
0 , Y

n
1 , Y

n
2 ) i.i.d. ∼ PY0 · PY1Y2 (5.1b)

for given pmfs PY0 and PY1Y2|Y0 and where PY1Y2 denotes the marginal of the joint pmf PY0Y1Y2 :=

PY0PY1Y2|Y0 .

The system consists of a transmitter T0, and two receivers R1 and R2. Transmitter T0 observes the

source sequence Y n
0 and computes three bit-string messages (M0,M1,M2) = φ(n)(Y n

0 ), where the encoding
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Figure 5.1: Distributed hypothesis testing with a single sensor and two remote decision centers with inte-
grated sensors.

function is of the form φ(n) : Yn0 → {0, 1}?×{0, 1}?×{0, 1}?. Message M0 is sent to both receivers R1, R2,

while message M1 only to receiver R1 and message M2 only to receiver R2. The messages have to satisfy the

given rate constraints. For maximum-rate constraints, the maximum length of any message should satisfy

len (Mi) ≤ nRi, i ∈ {0, 1, 2}, (5.2)

whereas for expected-rate constraints, the expected length of the messages should satisfy

E [len (Mi)] ≤ nRi, i ∈ {0, 1, 2}. (5.3)

Receiver Ri, i ∈ {1, 2}, observes the source sequence Y n
i and with messages M0,Mi received from T0, it

produces a guess Ĥi of the hypothesis H using a decision function g(n)
i : Yni × {0, 1}? × {0, 1}? → {0, 1}:

Ĥi = g
(n)
i (Y n

i ,M0,Mi) ∈ {0, 1}, i ∈ {1, 2}. (5.4)

The goal is to design encoding and decision functions such that their type-I error probabilities

αi,n , Pr[Ĥi = 1|H = 0], i ∈ {1, 2}, (5.5)

stay below given thresholds εi > 0, i ∈ {1, 2}, and the type-II error probabilities

βi,n , Pr[Ĥi = 0|H = 1], i ∈ {1, 2}, (5.6)

decay to 0 with largest possible exponential decay.

De�nition 12. Fix maximum type-I error probabilities ε1, ε2 ∈ [0, 1] and rates R1, R2 ≥ 0. The expo-

nent pair (θ1, θ2) is called (ε1, ε2)-achievable if there exists a sequence of encoding and decision functions
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{φ(n), g
(n)
1 , g

(n)
2 }n≥1 satisfying:

lim
n→∞

αi,n ≤ εi, i ∈ {1, 2} (5.7a)

lim
n→∞

1

n
log

1

βi,n
≥ θi, i ∈ {1, 2}, (5.7b)

and

len(Mi) ≤ nRi, i ∈ {0, 1, 2}, (5.7c)

for the setup under maximum-rate constraints, or

E[len(Mi)] ≤ nRi, i ∈ {0, 1, 2}, (5.7d)

for the setup under expected-rate constraints.

De�nition 13. The closure of the set of all (ε1, ε2)-achievable exponent pairs (θ1, θ2) is called the fundamen-

tal (ε1, ε2)-exponents region and is denoted E∗BC,max(R0, R1, R2, ε1, ε2) for the setup under maximum-rate

constraints and E∗BC(R0, R1, R2, ε1, ε2) for the setup under expected-rate constraints.

5.4 Maximum-Rate Constraints

In the following subsection, we present the optimal coding scheme suggested by [28] that can achieve the

fundamental exponents region E∗BC,max(R0, R1, R2, ε1, ε2). Wigger and Timo [28] have derived a tight upper

bound for this region in the limit ε1, ε2 ↓ 0. Their result is reported in Subsection 5.4.2. However, as we

show later in Theorem 15 in Subsection 5.4.3, we strengthen this result by providing a strong converse that

shows that this exponents region is independent of the type-I error probability thresholds ε1, ε2, and thus

it is tight even for non-vanishing type-I error probabilities.

5.4.1 Optimal Coding Scheme under Maximum-Rate Constraints

The optimal coding scheme proposed by [28] for single-sensor two-DCs setup communicating over a common

broadcast link and two individual links applies superposition coding on the common messageM0 sent to both

decision centers. Three codebooks are present at T0, a common codebook and two superposed codebooks

for which, each one intended to a DC. The details of the coding scheme are as follows.

Fix a large blocklength n, small numbers µ′ < µ′′, and conditional pmfs PU0|Y0 , PU1U2|U0,Y0 satisfying
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the maximum-rate constraints

R0 ≥ I(U0;Y0) (5.8)

R1 ≥ I(U1;Y0|U0) (5.9)

R2 ≥ I(U2;Y0|U0) (5.10)

where mutual information quantities are meant with respect to

PU0U1U2Y0Y1Y2 , PU0|Y0 · PU1U2|U0Y0 · PY0 · PY1Y2|Y0 . (5.11)

Randomly generate a codebook

CU0 ,
{
un0 (m0) : m0 ∈

{
1, · · · , b2nR0c

}}
(5.12)

by drawing all entries i.i.d. according to the marginal pmf PU0 . For each codeword un0 (m0), generate the

codebooks

CUi(m0) ,
{
uni (mi|m0) : mi ∈

{
1, . . . , b2nRic

}}
, i ∈ {1, 2}, (5.13)

by drawing the j -th entry of each codeword according to the conditional marginal pmf PUi|U0
.

All codebooks are revealed to all terminals.

T0: Assume it observes the sequence Y n
0 = yn0 . Then it looks for a tuple of indices (m0,m1,m2)

satisfying

(un0 (m0), un1 (m1|m0), un2 (m2|m0), yn0 ) ∈ T nµ′(PU0U1U2Y0),

randomly picks one of these tuples, and sends the corresponding bit-string messages M0, M1 to R1, and M0,

M2 to R2. Otherwise, it sends over all links

M0 = M1 = M2 = [0]. (5.14)

R1: Assume it observes the sequence Y n
1 = yn1 and receives the messages M0 = m0 and M1 = m1 from T0.

If m0 = 0, then R1 declares the decision

Ĥ1 = 1. (5.15)

Else, it sets m0 = dec(m0), m1 = dec(m1) and performs the typicality check

(un0 (m0), un1 (m1|m0), yn1 ) ∈ T nµ′′(PU0U1Y1).

If the check is successful, then it declares

Ĥ1 = 0, (5.16)

103



104 5.4. MAXIMUM-RATE CONSTRAINTS

and otherwise it declares

Ĥ1 = 1. (5.17)

R2: Assume it observes the sequence Y n
2 = yn2 and receives messages M0 = m0 and M2 = m2. If

m0 = [0], it declares the decision

Ĥ2 = 1. (5.18)

Else, it sets m0 = dec(m0), m2 = dec(m2), and performs the typicality check

(un0 (m0), un2 (m2|m0), yn2 ) ∈ T nµ′′(PU0U2Y2).

If the check is successful, then it declares

Ĥ2 = 0, (5.19)

and otherwise, it declares

Ĥ2 = 1. (5.20)

In the next subsection, we recall the fundamental exponents region obtained by this coding scheme for

the setup under maximum-rate constraints.

5.4.2 The Exponents Region

Under the maximum-rate constraints (5.2), the exponents region E∗BC,max(R0, R1, R2, ε1, ε2) in the

limit as ε1, ε2 ↓ 0 was given by the following theorem. In the following, we abbreviate

limε1,ε2↓0 E∗BC,max(R0, R1, R2, ε1, ε2) by E∗BC,max(R0, R1, R2, 0, 0)

Theorem 14 (Theorem 1 in [28]). In the limit as ε1, ε2 ↓ 0, the fundamental exponents region

E∗max(R0, R1, R2, 0, 0) is the set of all exponent pairs (θ1, θ2) satisfying:

θi ≤ I(U0Ui;Yi), i ∈ {1, 2}, (5.21a)

for some conditional pmfs PU0|Y0, PUi|Y0 satisfying

R0 ≥ I(U0;Y0), (5.21b)

Ri ≥ I(Ui;Y0|U0), i ∈ {1, 2}, (5.21c)

and where mutual information quantities are meant with respect to the joint pmf

PU0U1U2Y0Y1Y2 , PU0|Y0 · PU1U2|U0Y0 · PY0 · PY1Y2|Y0 . (5.21d)
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Proof: See [28].

Notice that the auxiliary random variable U0 is present in the upper bound expressions for both error

exponents. This indicates that a tradeo� might arise between the two error exponents depending on the

choice of U0 in the codebook construction for the communication over the common BC link. The intuition

behind this tradeo� stems from the fact that there are di�erent observations present at the two DCs, and

thus choosing U0 in a way that maximizes the mutual information quantity I(U0Ui;Yi) for one DC might

lead to a compromise in the quantity at the other DC depending on the problem parameters. We provide

a numerical example later in Section 5.6.1 where we can visualize this tradeo�.

5.4.3 Strong Converse Result

In the limit ε1, ε2 ↓ 0, the exponents region E∗max(R0, R1, R2, ε1, ε2) was determined in [28] and is presented

here in this thesis in Section 5.4.2. In our work, we strengthen this result by providing a strong converse

result.

Theorem 15. Under the maximum-rate constraints (5.2), the exponents region E∗max(R0, R1, R2, ε1, ε2) is

independent of (ε1, ε2) for all ε1 + ε2 < 1, and equals the set of (θ1, θ2) pairs satisfying:

θi ≤ I(U0Ui;Yi), i ∈ {1, 2}, (5.22a)

for some conditional pmfs PU0|Y0 , PUi|Y0 satisfying

R0 ≥ I(U0;Y0), (5.22b)

Ri ≥ I(Ui;Y0|U0), i ∈ {1, 2}. (5.22c)

Proof: Achievability is proved in [28]. The converse is proved in Appendix C.3.

5.5 Expected-Rate Constraints

We present in the next subsection our optimal coding scheme followed by the fundamental exponents region

for the setup under expected-rate constraints. The scheme is based on multiplexing di�erent versions of

the optimal coding scheme of the previous section that achieves the fundamental exponents region under

maximum-rate constraints, and by the rate-sharing strategy proposed in the previous chapter.
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5.5.1 Optimal Coding Scheme under Expected Rate Constraints

In the optimal coding scheme under expected-rate constraints, the three terminals T0, R1, R2 multiplex four

di�erent subschemes, and the choice of which subscheme to use depends on the transmitter T0's observations

Y n
0 . To inform all terminals about the choice of the subscheme, T0 adds two �ag-bits to its messages.

The main distinguishing feature of the di�erent subschemes is the choice of the subset of terminals�

either only R1 or only R2, both R1 and R2, or neither of them�which exploits the information in the

transmitted messages to produce a guess on the hypothesis H. The other terminals ignore this communica-

tion and simply declare Ĥ = 1. The di�erent subschemes occupy di�erent communication rates, and as we

shall see in Section 4.3.3.2, the allocation of the rates has to be chosen in function of the desired tradeo�

between the exponents θ1 and θ2.

To this end, we choose random variables U{1,2},0, U{1,2},1, U{1,2},2, U{1},0, U{1},1, U{2},0, U{2},2, rates

R{1,2},0, R{1,2},1, R{1,2},2, R{1},0, R{1},1, R{2},0, R{2},2, and probabilities σ{1,2}, σ{1}, σ{2}, so that

σ{1,2} + σ{1} + σ{2} ≤ 1, and the following conditions are satis�ed for i ∈ {1, 2} and I ∈ P(2):

R0 ≥ σ{1,2}R{1,2},0 + σ{1}R{1},0 + σ{2}R{2},0, (5.23)

Ri ≥ σ{1,2}R{1,2},i + σ{i}R{i},i, (5.24)

RI,0 ≥ I(UI,0;Y0), (5.25)

R{1,2},i ≥ I(U{1,2},i;Y0|U{1,2},0), (5.26)

R{i},i ≥ I(U{i},i;Y0|U{i},0), (5.27)

σ{1,2} + σ{i} ≥ 1− εi, (5.28)

σ{1,2} ≥ max{1− ε1 − ε2, 0}. (5.29)

Then we partition the set Yn0 into four disjoint subsets D∅,D{1},D{2},D{1,2} ⊆ Yn0 so that under PY0

the three sets D{1}, D{2} and D{1,2} have largest possible probabilities but limited by

Pr
[
Y n

0 ∈ D{1}
]
≤ σ{1} (5.30a)

Pr
[
Y n

0 ∈ D{2}
]
≤ σ{2} (5.30b)

Pr
[
Y n

0 ∈ D{1,2}
]
≤ σ{1,2}. (5.30c)

As a consequence,

Pr [Y n
0 ∈ D∅] ≥ 1− (σ{1} + σ{2} + σ{1,2}). (5.30d)
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Notice that as n→∞, the four inequalities (5.30) can hold with equality.

Depending on whether Y n
0 lies in D∅, D{1}, D{2}, or D{1,2}, the three terminals apply a di�erent

subscheme, where the subscript I of set DI indicates the set of receivers that attempt to correctly guess H

in the event Y n
0 ∈ DI . To communicate which of the four subschemes is used, T0 adds a two-bit �ag at the

beginning of its common message M0 to R1 and R2. The main structure of the coding scheme is illustrated

in Figure 5.2.

Figure 5.2: Optimal coding scheme for the setup with a single-sensor and two decision centers under
expected-rate constraints using the optimal coding scheme under maximum-rate constraints.

If Y n
0 ∈ D∅: Transmitter T0 sends only the �ag-bits

M0 = [0, 0] (5.31)

over the common link and nothing over the individual links M1 = M2 = ∅. Upon receiving these messages,

both decision centers R1 and R2 decide on

Ĥ1 = Ĥ2 = 1. (5.32)

If Y n
0 ∈ D{1,2}: T0, R1, and R2 all follow the coding scheme with vanishing type-I error prob-

ability as described in Section 5.4.1 with the choice of auxiliaries U{1,2},0, U{1,2},1, U{1,2},2 and rates

R{1,2},0, R{1,2},1, R{1,2},2. Additionally, T0 adds [0,1]-�ag bits to the common messages M0 to indicate
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to R1 and R2 that Y n
0 ∈ D{1,2}.

If Y n
0 ∈ D{1}: T0 and R1 follow a special case of the coding scheme with vanishing type-I error probability

described in Section 5.4.1, where no message is sent over the individual link to R2, i.e., M2 = ∅. This coding

scheme is applied with the choice of auxiliaries U{1},0, U{1},1 and rates R{1},0, R{1},1. Additionally, T0 adds

[1,0]-�ag bits to its common messages M0 to indicate to R1 and R2 that Y n
0 ∈ D{1}. We observe that, as

indicated by the subscript {1} of set D{1}, only terminal R1 attempts to correctly guess H. Receiver R2

produces the trivial guess

Ĥ2 = 1. (5.33)

If Y n
0 ∈ D{2}: Now, T0 and R2 follow another special case of the coding scheme with vanishing type-I

error probability described in Section 5.4.1, where no message is sent over the individual link to R1, i.e.,

M1 = ∅. This coding scheme is applied with the choice of auxiliaries U{2},0, U{2},2 and rates R{2},0, R{2},2.

Additionally, T0 adds [1,1]-�ag bits to its common messages M0 to indicate to R1 and R2 that Y n
0 ∈ D{2}.

As indicated by the subscript {2} of set D{2}, only terminal R2 attempts to correctly guess H, thus R1

produces the trivial guess

Ĥ1 = 1. (5.34)

In summary, this means that for each set DI (I ∈ P(2)), we apply the optimal coding scheme under

maximum-rate constraints in [28] as described in Section 5.4.1, but for each set DI we construct di�erent

codebooks and use di�erent auxiliaries UI,0, UI,1, UI,2. In particular, we chose U{1},2 and U{2},1 constants,

indicating that when Y n
0 ∈ D{i} then only messages (M0,Mi) are sent, for i ∈ {1, 2}. When Y n

0 ∈ D{1,2},

then all three messages M0,M1,M2 are sent.

5.5.2 The Exponents Region

Our main results are a complete characterization of the fundamental exponents region E∗BC(R0, R1, R2, ε1, ε2)

under the expected -rate constraints in (5.3) which is presented in this section, in addition to a strong converse

result under the maximum-rate constraints (5.2), which was presented in Section 5.4.3. A main observation

to our results, is the new element in the tradeo� between the error exponents of the decision centers θ1 and

θ2. While in the previous chapter we highlight the resulting tradeo� from having multiple decision centers

with di�erent type-I error constraints, here we have an additional tradeo� due to the common broadcast link

from the transmitter to both decision centers. As shown in the previous results presented in Section 5.4.2, in

this case even under maximum-rate constraints with vanishing type-I error probabilities, there is a tradeo�
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between the decision centers. In the following two subsections, we present our results on the exponents

region in the general case with individual and common communication links, and in the special case of

having only a common communication link. In the later case, the fundamental exponents region is denoted

by E∗BC(R0, 0, 0, ε1, ε2), for which we prove that the expression of its characterization simpli�es and thus the

optimal coding scheme simpli�es as well.

5.5.2.1 Individual and Common Communication Links

Theorem 16. The fundamental (ε1, ε2)-exponents region E∗(R0, R1, R2, ε1, ε2) is the set of all (θ1, θ2) pairs

satisfying

θi ≤ min
{
I
(
U{1,2},0U{1,2},i;Yi

)
, I
(
U{i},0U{i},i;Yi

)}
, i ∈ {1, 2} (5.35a)

for some nonnegative numbers σ{1,2}, σ{1}, σ{2} with sum ≤ 1 and conditional pmfs PU{1,2},0|Y0, PU{1},0|Y0,

PU{2},0|Y0, PU{1,2},1|U{1,2},0Y0, PU{1},1|U{1},0Y0, PU{1,2},2|U{1,2},0Y0, PU{2},2|U{2},0Y0 satisfying

R0 ≥ σ{1,2}I(U{1,2},0;Y0) + σ{1}I(U{1},0;Y0) + σ{2}I(U{2},0;Y0), (5.35b)

Ri ≥ σ{1,2}I(U{1,2},i;Y0|U{1,2},0) + σ{i}I(U{i},i;Y0|U{i},0), i ∈ {1, 2}, (5.35c)

and σ{1,2} + σ{i} ≥ 1− εi, i ∈ {1, 2}, (5.35d)

σ{1,2} ≥ max{1− ε1 − ε2, 0}, (5.35e)

and where the mutual information quantities are calculated according to the joint pmfs

PY0Y1Y2U{1,2},0U{1,2},1U{1,2},2 , PY0Y1Y2PU{1,2},0|Y0PU{1,2},1U{1,2},2|U{1,2},0Y0 (5.36)

PY0Y1Y2U{i},0U{i},i , PY0Y1Y2PU{i},0|Y0PU{i},i|U{i},0Y0 , i ∈ {1, 2}. (5.37)

Proof: The achievability is based on the coding scheme presented in Section 5.5.1 and analyzed in

Appendix C.1. The converse is proved in Section 5.7.

5.5.2.2 Only a Common Communication Link

For R1 = R2 = 0, i.e., without individual communication links, we can simplify the expression for

E∗(R0, R1, R2, ε1, ε2).

De�nition 14. De�ne the two functions

ηi
(
R{i},0

)
:= max

PU{i},0|Y0
:

R{i},0≥I(U{i},0;Y0)

I
(
U{i},0;Yi

)
, i ∈ {1, 2}, (5.38)
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where the mutual information quantities are calculated with respect to the joint pmf PU{i},0Y0Y1Y2 ,

PU{i},0|Y0PY0Y1Y2 .

Corollary 1. Let π : {1, 2} → {1, 2} be a permutation ordering the ε-values in decreasing order:

επ(1)≥επ(2). (5.39)

Then E∗(R0, 0, 0, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θπ(1) ≤ I
(
U0;Yπ(1)

)
, (5.40a)

θπ(2) ≤ min
{
I
(
U0;Yπ(2)

)
, ηπ(2)

(
R{π(2)},0

)}
, (5.40b)

for some conditional pmf PU0|Y0 and rate R{π(2)},0 satisfying

R0 ≥
(
1− επ(1)

)
I(U0;Y0) +

(
επ(1) − επ(2)

)
R{π(2)},0. (5.40c)

Proof: See Appendix C.4.

5.6 Comparison between Maximum and Expected Rate Constraints

Theorem 16 shows a tradeo� between the two achievable exponents θ1 and θ2. (Figure 5.3 ahead illustrates

this tradeo� at hand of a numerical example in the special case R1 = R2 = 0.) The tradeo� stems

technically from the common random variable U{1,2},0 that is included in the exponent constraint (5.35a)

for both i ∈ {1, 2}, and from the rate-sharing of the optimal coding scheme under maximum-rate constraints

presented in Subsection 5.4.1 for three di�erent choices of (σI , UI,0, UI,1, UI,2), for I ∈ P(2).

To see the e�ect of the expected-rate constraint in (5.3), we compare the fundamental exponents

region E∗BC(R0, R1, R2, ε1, ε2) with the fundamental exponents region E∗BC,max(R0, R1, R2, ε1, ε2) under

the more stringent maximum-rate constraints (5.2). To this end, notice that (5.22) is obtained from

(5.35) by setting σ{1,2} = 1 and thus σ{1} = σ{2} = 0, which allows us to freely choose the aux-

iliaries U{1},0, U{2},0, U{1},1, U{2},2 to maximize the exponent terms corresponding to them by setting

U{i},0 = U{i},i = Yi. This is feasible because setting σ{1} = σ{2} = 0 in (5.35b) and (5.35c) removes

any constraints on the choice of the auxiliaries U{1},0, U{2},0, U{1},1, U{2},2. The notation is then updated by

removing the subscript �{1, 2}� from the remaining terms. Now, due to the strong converse result in The-

orem 15, we notice that the fundamental exponents region under maximum-rate constraints for any values

of (ε1, ε2) is equal to the fundamental exponents region under expected-rate constraints with zero type-I

error thresholds (ε1, ε2) , i.e. E∗max(R0, R1, R2, ε1, ε2) = E∗(R0, R1, R2, 0, 0). Since E∗(R0, R1, R2, ε1, ε2) is
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generally increasing in (ε1, ε2), we conclude that expected-rate constraints allow to boost the exponents re-

gion compared to maximum-rate constraints. This conclusion is illustrated in the next subsection at hand

of an example for a special case when only the common link between the transmitter and both receivers is

present.

5.6.1 Numerical Simulation

The following example illustrates the bene�ts of expected-rate constraints versus maximum-rate constraints,

and the tradeo� between the two exponents in the special case when R1 = R2 = 0.

Example 4. Consider the following joint pmf PY0Y1Y2:

(Y1, Y2)

Y0 (0, 0) (0, 1) (1, 0) (1, 1)

0 0.05 0.05 0.15 0.083325
1 0.05 0.15 0.05 0.08335
2 0.15 0.05 0.05 0.083325

For this pmf, Figure 5.3 shows the optimal exponents regions under maximum- and expected-rate con-

straints when R0 = 0.1 and ε1 = 0.15 > ε2 = 0.05. The �gure illustrates the boost in the exponents region

due to the expected-rate constraints. It also emphasizes the bene�ts of sharing the rate in (5.40c) between

two summands, which relate to the fact that depending on the observation Y n
0 we use two variants of the

coding scheme in [28](see Section 5.4.1), one with auxiliary U0 and the other with an auxiliary U{π(2)},0 that

satis�es I(U{π(2)},0;Y0) ≤ R{π(2)},0 and I(U{π(2)},0;Y1) = ηπ(2)(R{π(2)},0). Restricting to a single auxiliary

U0 in (5.40) (i.e., no rate-sharing is applied and setting R{π(2)},0 = I(U0;Y0)) results in an exponents re-

gion, denoted Eno-RS (R0, 0, 0, ε1, ε2) which coincides with E∗BC(R0, 0, 0, ε2, ε2) (i.e. when the type-I threshold

ε1 is restricted to be equal to ε2 and thus to be smaller) and with E∗BC,max
(
(1− ε2)−1R0, 0, 0, ε1, ε2

)
which

corresponds to the optimal error exponent under a boosted maximum-rate constraint by the factor (1−ε2)−1.

Note that in this example, π(2) = 2 since ε1 > ε2.

5.7 Converse Proof to Theorem 16

Fix an exponent pair in E∗BC(R0, R1, R2, ε1, ε2) and a sequence (in n) of encoding and decision functions

{(φ(n), g
(n)
1 , g

(n)
2 )} satisfying the constraints on the rate and the error probabilities in (5.7). Our proof relies

on the following lemma:
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Figure 5.3: Optimal error exponents regions of the BC setup under expected- and maximum-rate constraints
for R0 = 0.1, ε1 = 0.15, ε2 = 0.05.

Lemma 9. Fix a blocklength n and a set D ⊆ Yn0 of positive probability, and let the tuple

(M̃0, M̃1, M̃2, Ỹ
n

0 , Ỹ
n

1 , Ỹ
n

2 ) follow the pmf

PM̃0M̃1M̃2Ỹ n0 Ỹ
n
1 Ỹ

n
2

(m0,m1,m2, y
n
0 , y

n
1 , y

n
2 ) , PY n0 Y n1 Y n2 (yn0 , y

n
1 , y

n
2 ) · 1{y

n
0 ∈ D}

PY n0 (D)
· 1{φ(n)(yn0 ) = (m0,m1,m2)}.

(5.41)

Further, de�ne U0 , (M̃0, Ỹ
T−1

0 , T ), U1 , M̃1, U2 , M̃2, Ỹi , Ỹi,T (for i ∈ {0, 1, 2}), where T is uniform

over {1, . . . , n} and independent of all other random variables. Notice the Markov chain (U0, U1, U2) →

Ỹ0 → (Ỹ1, Ỹ2). Then the following inequalities hold:

H(M̃0) ≥ nI(U0; Ỹ0) + logPY n0 (D), (5.42)

H(M̃i) ≥ nI(Ui; Ỹ0|U0), i ∈ {1, 2}. (5.43)

Let η > 0 be arbitrary. For i ∈ {1, 2}, if

Pr[Ĥi = 0|H = 0, Y n
0 = yn0 ] ≥ η, ∀yn0 ∈ D, (5.44)
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then

− 1

n
log βi,n ≤ I(U0Ui; Ỹi) + øi(n), (5.45)

where øi(n) is a function that tends to 0 as n→∞.

Proof: See Appendix C.2.

We now proceed to prove the converse to Theorem 1. Fix a positive η > 0. Denote for each blocklength

n, the set of strongly typical sequences in Yn0 by T (n)
µn (PY0). Set µn = n−2/3 and de�ne for i ∈ {1, 2}, the

sets

Bi(η) , {yn0 ∈ T (n)
µn (PY0) : Pr[Ĥi = 0|Y n

0 = yn0 ,H = 0] ≥ η}, (5.46)

D{1,2}(η) , B1(η) ∩ B2(η), (5.47)

D{i}(η) , Bi(η)\D{1,2}(η). (5.48)

Further de�ne for each n the probabilities

∆I , PY n0 (DI(η)), I ∈ P(2), (5.49)

and notice that by the laws of probability

∆{1,2} + ∆{i} = PY n0 (Bi(η)), i ∈ {1, 2}, (5.50)

∆{1,2} ≥ max{PY n0 (B1(η)) + PY n0 (B2(η))− 1, 0}. (5.51)

By (5.7a), it can be shown that

1− εi ≤ η(1− PY n0 (Bi(η))) + PY n0 (Bi(η)) + PnY0(T (n)
µn ). (5.52)

Thus, by (5.52) and [44, Lemma 2.12]:

PY n0 (Bi(η)) ≥ 1− εi − η
1− η

− |Y0|
(1− η)2µnn

, i ∈ {1, 2}, (5.53)

and we conclude that in the limit n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

(∆{1,2} + ∆{i}) ≥ 1− εi, i ∈ {1, 2} (5.54a)

lim
η↓0

lim
n→∞

∆{1,2} ≥ max{1− ε1 − ε2, 0} (5.54b)

lim
η↓0

lim
n→∞

∑
I∈P(2)

∆I ≤ 1. (5.54c)

We proceed by applying Lemma 9 to the set DI for any I ∈ P(2) with ∆I ≥ 0, and conclude that there
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exists a tuple (UI,0, UI,1, UI,2) satisfying

H(M̃I,0) ≥ nI(UI,0; ỸI,0) + logPY n0 (DI), I ∈ P(2), (5.55)

H(M̃I,i) ≥ nI(UI,i; ỸI,0|UI,0), i ∈ {1, 2}, I ∈ P(2), (5.56)

and for i ∈ {1, 2}, I ∈ {{1, 2}, {i}}:

− 1

n
log βi,n≤ I(UI,0UI,i; ỸI,i) + øI,i(n), (5.57)

where all for all i ∈ {1, 2} and I ∈ {{1, 2}, {i}}, the function øI,i(n) ↓ 0 as n→∞ and the random variables

ỸI,0, ỸI,i, M̃I,0, M̃I,i are de�ned as in the lemma applied to the subset DI .

To summarize:

− 1

n
log βi,n ≤ min{I(U{1,2},0U{1,2},i; Ỹ{1,2},i) , I(U{i},0U{i},i; Ỹ{i},i)}+ øi(n), (5.58)

where øi(n) is a function tending to 0 as n→∞.

De�ne the following random variables for i ∈ {1, 2} and I ∈ P(2)}

L̃I,i , len(M̃I,i). (5.59)

By the rate constraints (5.3), and the de�nition of the random variables M̃I,i, we obtain by the total law

of expectations

nR0 ≥ E[L0] ≥
∑
I∈P(2)

E[L̃I,0]∆I . (5.60)

Moreover,

H(M̃I,0) = H(M̃I,0, L̃I,0) (5.61)

=
∑
lI

Pr[L̃I,0 = lI ]H(M̃I,0|L̃I,0 = lI) +H(L̃I,0) (5.62)

≤
∑
lI

Pr[L̃I,0 = lI ]lI +H(L̃I,0) (5.63)

= E[L̃I,0] +H(L̃I,0), (5.64)

which combined with (5.60) establishes∑
I∈P(2)

∆IH(M̃I,0) ≤
∑
I∈P(2)

∆IE[L̃I,0] + ∆IH(L̃I,0) (5.65)

≤ nR0

1 +
∑
I∈P(2)

hb

(
∆I
nR0

) , (5.66)

where (5.66) holds by (5.60) and because the entropy of a discrete and positive random variable L̃I,0 of
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mean E[L̃I,0] ≤ nR0
∆I

is bounded by nR0
∆I
· hb

(
∆I
nR0

)
, see [23, Theorem 12.1.1].

In a similar way we obtain for i ∈ {1, 2}

∑
I∈{{1,2},{i}}

∆IH(M̃I,i) ≤ nRi

1 +
∑

I∈{{1,2},{i}}

hb

(
∆I
nRi

) . (5.67)

Notice that when ∆I = 0, the trivial choice UI,i = Ỹ{I, i} satis�es the inequalities (5.58), (5.66), and

(5.67). Therefore, above conclusions hold for (UI,0, UI,1, UI,2) for any I ∈ P(2).

Combining (5.66) and (5.67) with (5.55) and (5.56), noting (5.50) and (5.53), and considering also

(5.58), we have proved so far that for all n ≥ 1 there exist joint pmfs PUI,0UI,1UI,2ỸI,0ỸI,1ỸI,2 =

PỸI,0PỸI,1ỸI,2|ỸI,0PUI,0UI,1UI,2|ỸI,0 (abbreviated as P (n)
I ) for I ∈ P(2) so that the following conditions hold

for i ∈ {1, 2} (where IP indicates that the mutual information should be calculated according to a pmf P ):

R0 ≥
∑
I∈P(2)

(
I
P

(n)
I

(UI,0; ỸI,0) + gI,1(n)
)
· gI,2(n, η), (5.68a)

Ri ≥
∑

I∈{{1,2},{i}}

(
I
P

(n)
I

(UI,i; ỸI,0|UI,0)
)
· gI,2(n, η), (5.68b)

θi ≤ min{I
P

(n)
{1,2}

(U{1,2},0U{1,2},i; Ỹ{1,2},i) , IP (n)
{i}

(U{i},0U{i},i; Ỹ{i},i)}+ g{i},3(n), (5.68c)

for some nonnegative functions gI,1(n), gI,2(n, η), g{i},3(n) with the following asymptotic behaviors:

lim
n→∞

gI,1(n) = 0, ∀I ∈ P(2), (5.69)

lim
n→∞

g{i},3(n) = 0, ∀i ∈ {1, 2}, (5.70)

lim
n→∞

(
g{1,2},2(n, η) + g{i},2(n, η)

)
≥ max

{
1− εi − η

1− η
, 0

}
, ∀i ∈ {1, 2}. (5.71)

By Carathéodory's theorem [48, Appendix C], there exist for each n, random variables

U{1,2},0, U{1},0, U{2},0, U{1,2},1, U{1},1, U{1,2},2, U{2},2 satisfying (5.68) over alphabets of sizes

|U{1,2},0| ≤ |Y0|+ 3, (5.72)

|U{i},0| ≤ |Y0|+ 2, i ∈ {1, 2}, (5.73)

|UI,i| ≤ |UI,0| · |Y0|+ 1, i ∈ {1, 2}, I ∈ {{1, 2}, {i}}. (5.74)

Then we invoke the Bolzano-Weierstrass theorem and consider for each I ∈ P(2) a sub-sequence

P
(nk)

UI,0UI,1UI,2ỸI,0ỸI,1ỸI,2
that converges to a limiting pmf P ∗UI,0UI,1UI,2YI,0YI,1YI,2 . For these limiting pmfs,

which we abbreviate by P ∗I , we conclude by (5.68a)�(5.68c) and (5.54) that for all i ∈ {1, 2}:

R0 ≥ σ{1,2} · IP ∗{1,2}(U{1,2},0;Y{1,2},0) + σ{1} · IP ∗{1}(U{1},0;Y{1},0) + σ{2} · IP ∗{2}(U{2},0;Y{2},0), (5.75)
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Ri ≥ σ{1,2} · IP ∗{1,2}(U{1,2},i;Y{1,2},0|U{1,2},0) + σ{i} · IP ∗{i}(U{i},i;Y{i},0|U{i},0), (5.76)

θi ≤ min{IP ∗{1,2}(U{1,2},0U{1,2},i;Y{1,2},0), IP ∗{i}(U{i},0U{i},i;Y{i},i)}, (5.77)

where numbers σ{1,2}, σ{1}, σ{2} > 0 satisfy σ{1,2} + σ{1} + σ{2} ≤ 1 and

σ{1,2} + σ{i} ≥ 1− εi, i ∈ {1, 2}, (5.78a)

σ{1,2} ≥ max{1− ε1 − ε2, 0}. (5.78b)

Notice further that since for any I ∈ P(2) and any k, the sequence Ỹ nk
I,0 lies in the typical set T (nk)

µnk
(PY0), we

have for all I ∈ P(2), |PỸI,0 − PY0 | ≤ µnk and thus the limiting pmf satis�es P ∗YI,0 = PY0 . Moreover, since

for each nk the pair of random variables (ỸI,1, ỸI,2) is drawn according to PY1Y2|Y0 given ỸI,0, the limiting

pmf also satis�es P ∗YI,1YI,2|YI,0 = PY1Y2|Y0 . We also notice for all I ∈ P(2) that under P ∗I the Markov chain

(UI,0, UI,1, UI,2)→ Y0 → (Y1, Y2) holds. This concludes the converse proof.

5.8 Summary and Discussion

In this chapter, another network architecture for multiple DCs was studied where a single sensor commu-

nicates with two DCs. Communication is assumed to be over two types of noiseless links: common BC

and individual links. Due to the competition between both DCs on the communicated information from

the sensor over the common BC, the available resources at the sensor have to be distributed between the

two DCs and a tradeo� arises between their error exponents even under maximum-rate constraints or for

equal type-I error thresholds. This tradeo� is di�erent from the tradeo� that arises due to the rate-sharing

strategy that we proposed in the previous chapter. However, both types of tradeo� are shown to be present

for the setup when expected-rate constraints are considered with di�erent type-I error thresholds at the

two DCs.

The optimal coding scheme to achieve the fundamental exponents region for the above setup is also

based on the rate-sharing strategy as in the previous chapter, where here we multiplex four subschemes

using one degenerate scheme and three di�erent versions of the optimal coding scheme under maximum-rate

constraints for vanishing type-I error probabilities. The probabilities of these subschemes are subject to

some optimization. In the special case of having only the common BC, we showed that the characterization

of the fundamental exponents region simpli�es and thus the optimal coding scheme simpli�es too; it su�ces

to use only three subschemes with already given probabilities. We conjecture that similar simpli�cations

are possible in the general case. The general results (without simpli�cation) are also extendable to the
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setup with K DCs, one common BC, and K individual links.
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Chapter 6

Summary and Outlook

6.1 Summary

In this thesis we focused on deriving the fundamental limits for distributed hypothesis testing against

independence for networks with multiple sensors and/or multiple decision centers. In addition to establishing

new optimality results, we highlight the following conclusions:

� We extended the rate-gain factor of (1−ε)−1 to all communication links in multiple-sensors single-DC

networks, where there is a single terminal that can communicate directly or through multiple hops to

all other terminals in the network.

� The same conclusion holds for networks with multiple DCs that have identical type-I error thresholds

equal to ε.

� For networks with multiple DCs that have di�erent type-I error thresholds, we can obtain di�erent

rate-boosts on the di�erent communication links. In fact, the di�erent type-I error thresholds lead to

di�erent margins for the multiple DCs to exploit in order to increase their type-II error exponents. We

thus observe and characterize a tradeo� in the fundamental exponents region between the di�erent

DCs. This tradeo� is the �rst of its kind. We propose a new rate-sharing and multiplexing strategy

to achieve this tradeo�.

� For some networks with K DCs, we can show that it su�ces to multiplex only K + 1 schemes, with

one scheme being the degenerate scheme of sending single-bit messages and raising alert at all DCs,

instead of 2K schemes as in the general case. We can further identify the multiplexing probabilities
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as a function of the given type-I error thresholds. This simpli�es the optimal coding schemes and the

expressions of the characterizations of the fundamental exponents regions for these networks.

� For BC networks with multiple DCs, a tradeo� was already observed as the di�erent DCs are com-

peting for the shared information over the BC. Our new tradeo� adds up on this tradeo� when the

DCs have di�erent type-I error thresholds under expected-rate constraints.

� To prove our converse results, we propose new proof methods combining change of measure arguments

with blowing-up lemma and/or our new tool �asymptotic Markov chains�. We observe that in some

cases, this new tool su�ces and the blowing-up lemma is not required. In addition, our method can

be used to prove converse results for other problems that are not necessarily related to hypothesis

testing.

� Our converse proof methods also allow one to prove new strong converse results under maximum-rate

constraints, or to simplify existing proofs.

6.2 Outlook on Interactive Communication

The single-sensor single-DC setup was studied under interactive communication and maximum-rate con-

straints in [7,8,10]. In these works, an optimal error exponent is derived when testing against independence

under vanishing type-I error probability. As we explained previously, under expected-rate constraints, a

(1 − ε)−1 rate-gain can be obtained on all links when a type-I error probability of ε is tolerated. While

this gain is achievable, with our converse proof methods we could not establish the corresponding converse.

The problem here is that we could neither use the blowing-up lemma, after applying the change of measure

arguments, nor prove the desired asymptotic Markov chains.

6.3 Outlook on Non-Cooperative MAC

The non-cooperative MAC setup remains open even for the special case of testing against independence

under maximum-rate constraints. Many works obtained partial results in [2,4�6,9,18,24,26,27]. Our interest

is in the maximum gain achievable under expected-rate constraints compared to results under maximum-

rate constraints. Using our converse proof methods, we can establish a converse result showing that no

better gain than (1 − ε)−1 factor could be achieved. However, as we explained before, in order to achieve

this rate-gain on all links, we need at least one terminal that communicates with all other terminals in the
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network informing them when to apply or not the degenerate scheme, which is not the case in this setup.

We thus conjecture for the setup with two sensor-DC links, that the best achievable rate-gain is (1− ε1)−1

and (1− ε2)−1 where ε1 and ε2 correspond to the probabilities of two arbitrary subsets of the observations

at the �rst and the second sensor, respectively, such that their joint probability is less than or equal to ε.

The question would be then, �what are the highest individual probabilities that can be obtained by each

set and the impact of the tradeo� between them?�. A new converse proof method is needed to prove this

is the best possible gain.

6.4 Extensions to Noisy Communication Channel

The studied setups in this manuscript are of main interest to establish their fundamental limits and un-

derstand the gains from expected-rate constraints. However, it is important to build up on them for more

practical scenarios where the communication between the di�erent nodes in the system could be over noisy

channels. Salehkalaibar and Wigger [20] had proved such an extension for the point-to-point setup over

noisy DMC under an expected-rate constraint. The multi-sensor setups studied in this thesis have previously

been considered with noisy communication channels but only under maximum-rate constraints [18,26,29].

6.5 Extensions to General Hypothesis Testing

The special case of testing against independence in a binary hypothesis testing environment is of signi�cant

relevance in distributed control and anomaly detection systems, where observations are correlated in normal

situation, but become uncorrelated in case of incident or system failure. However, in other decision systems,

used for instance for binary classi�cation, observations are not independent under the alternative hypothesis

but follow some other arbitrary distribution. This problem of �general distributed hypothesis testing� seems

much more challenging, and as we have mentioned previously is even open in the single-sensor single-DC

setup under the standard maximum-rate constraint. Another interesting direction for future research is the

study of M -ary hypothesis testing problems, which is widely open except for zero-rate communication. We

conjecture that under expected-rate constraints, the proposed multiplexing and rate-sharing strategies can

achieve similar gains for general binary hypothesis testing and forM -ary hypothesis testing as we proved for

binary hypothesis testing in the di�erent communication scenarios. However it would be very challenging

to prove optimality of such strategy under expected-rate constraints without having the optimality results

for the analogous setups under maximum-rate constraints.
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6.6 Setups with Privacy and Security Constraints

In this thesis, our focus was on maximizing the error exponent at a given DC. In decision systems with

sensitive data observed at the sensors, another goal is to protect the privacy of this data from the legitimate

DC which is expected to learn only the joint distribution of the data at other terminals but not their private

sensitive information. Several works exist on the distributed hypothesis testing problem with privacy

constraints and under maximum-rate constraints (for instance, see [54, 55] and references therein). An

interesting perspective would be to investigate this problem when expected-rate constraints are considered

instead of maximum-rate constraints. One would like to check if the same gains could be achieved as without

the privacy constraints or if any new type of tradeo� could arise. Another aspect of the problem under

security constraints is studied when an eavesdropper or an adversary attacker try to learn the hypothesis

test carried out by a given DC as in [56]. In this case, several security and privacy metrics can be studied

and one main concern would be to determine the maximum achievable error exponent at the DC when the

error exponent at the attacker should be minimized under expected-rate constraints on the communication

links.

6.7 Finite-Blocklength and Machine Learning

Establishing the fundamental limits for the problem of distributed hypothesis testing in the asymptotic

regime (as the blocklength n → ∞), as we do in this thesis for various setups, is essential to understand

the impact of di�erent constraints on the optimal performance of the decision centers in a given setup.

However when it comes to applications, the sensors in some IoT networks are expected to have limited

number of samples, and thus the optimal strategy in the in�nite-blocklength regime might not necessarily

remain optimal in the �nite-blocklength regime. Establishing the fundamental limits for the problem of

hypothesis testing in the �nite-blocklength regime is very challenging as an exact characterization of the

optimal error exponent even in the centralized or simplest point-to-point setup remains an open problem

for all kinds of hypothesis testing.

In general, two types of problems have to be solved in distributed hypothesis testing problems: compress

the information at the sensors and take a decision at the DCs. To achieve desired compression rates, one

could use existing quantization algorithms which might be limited for small rates (in scalar quantization),

or computationally infeasible for non-short blocklengths (very long running time in vector quantization).

An alternative approach would be to explore deep learning algorithms such as Autoencoders to perform
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such compression. Then for the decision rules, typicality checks are shown to be optimal in the in�nite-

blocklength regime, which we can substitute with correlation tests between the received message(s) at the

DC and its local observations in �nite-blocklength regime. A simple test would rely on a data-driven

correlation factor under null hypothesis, and whenever the testing correlation factor di�ers by an arbitrary

margin from the data-driven one, an alert would be raised. But what if deep neural networks could learn

better testing criteria or correlation factor? Intuitively, replacing the whole coding scheme with a neural

network responsible for quantization, compression, and decision-rule making, seems to be a promising

research topic.

Other interesting research directions that could be analyzed with machine learning tools arise in sequen-

tial hypothesis testing problems or in multi-hop multi-DC networks. For example, in sequential hypothesis

testing problems, machine learning could be used to determine at which number of observations a sensor

should stop sampling and start communicating with the sensor. In multi-hop systems, machine learning

could help in identifying in the �nite-blocklength regime after how many hops to take the decision so as

to save communication bandwidth for other applications. For example, if a certain lower bound on the

fundamental exponents region is required and is enough, then �what is the required number of samples to

stop sampling and take a �nal decision?� Or in the case of a multi-hop setup, �at which relay testing should

stop and the �nal decision should be forwarded to the receiver?�, so that the available rate at the next

communication links would be saved for other applications sharing the same bandwidth.
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Appendix A

Proofs for Chapters 2 and 3

A.1 Proof of Lemma 1: Concavity and Monotonicity of the Function η1

The function η1(R) is monotonically non-decreasing because larger values of R imply larger optimization

domains. Continuity follows simply by the continuity of mutual information.

The concavity of η1(R) follows by the following arguments. Consider rates R and R̃, and let U∗ and

Ũ∗ be the corresponding solutions to the optimizations in the de�nition of η1. Pick any λ ∈ [0, 1], de�ne

Q ∼ Bern(λ) independent of (Y0, Y1, U
∗, Ũ∗), and set

U∗Q =


U∗ if Q = 0

Ũ∗ if Q = 1.

(A.1)

De�ning the random variable V := (U∗Q, Q), we obtain

λ · η1(R) + (1− λ) · η1(R̃) = λI(U∗;Y1) + (1− λ)I(Ũ∗;Y1) (A.2)

= I(U∗Q;Y1|Q) (A.3)

= I(U∗Q, Q;Y1) (A.4)

= I(V ;Y1) (A.5)

≤ η1(I(V ;Y0)) (A.6)

≤ η1(λR+ (1− λ)R̃) (A.7)

where (A.4) holds because Q is independent of Y1, (A.6) holds by the de�nition of the function η1, and

(A.7) holds by the monotonicity of the function η1 and the following set of (in)equalities:

I(V ;Y0) = I(U∗Q, Q;Y0) = I(U∗Q;Y0|Q) (A.8)
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= λI(U∗;Y0) + (1− λ)I(Ũ∗;Y0) (A.9)

≤ λR+ (1− λ)R̃. (A.10)

�

A.2 Converse to Theorem 3

In this proof, we replace the notation of serif font for the messages Mi used in [25] by the sans-serif font Mi

(for i = 1, 2) and the notation of X1, X2 in [25] by Y0, Y1.

Following the weak converse in [25], we can obtain the upper bound for the error exponent as

lim
ε↓0

θmax(R1, R2, ε) ≤ lim
n→∞

1

n
I(M1M2;Y n

2 ) (A.11)

Moreover, we can lower bound the rate constraints as

nR1 ≥ H(M1) ≥ I(M1;Y n
0 Y

n
1 ) (A.12)

=
n∑
i=1

I(M1Y
i−1

0 Y i−1
1 ;Y0,iY1,i) (A.13)

≥
n∑
i=1

I(U1,i;Y0,i), (A.14)

where U1,i = (M1, Y
i−1

0 , Y i−1
1 ). We note that the Markov chain U1,i → Y0,i → (Y1,i, Y2,i) holds. Similarly,

nR2 ≥ H(M2) ≥ I(M2;Y n
0 Y

n
1 |M1) (A.15)

=

n∑
i=1

I(M2;Y0,iY1,i|M1Y
i−1

0 Y i−1
1 ) (A.16)

≥
n∑
i=1

I(U2,i;Y1,i|U1,i), (A.17)

where U2,i = M2 and we also note that the Markov chain U2,i → (Y1,i, U1,i)→ (Y0,i, Y2,i) holds.

Then we single-letterize the upper bound of the error exponent as follows:

I(M1M2;Y n
2 ) =

n∑
i=1

I(M1M2Y
i−1

2 ;Y2,i) (A.18)

≤
n∑
i=1

I(M1M2Y
i−1

0 Y i−1
1 Y i−1

2 ;Y2,i) (A.19)

=

n∑
i=1

I(M1M2Y
i−1

0 Y i−1
1 ;Y2,i) (A.20)

=

n∑
i=1

I(U1,iU2,i;Y2,i), (A.21)
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where (A.20) holds by the Markov chain Y i−1
2 → (M1,M2, Y

i−1
0 , Y i−1

1 )→ Y2,i. Our proof is then concluded

by de�ning the time-sharing random variable Q uniform over {1, . . . , n} independent of all other random

variables, and by de�ning U1 , (U1Q, Q), U2 , (U2Q, Q), Y0 , Y0Q, Y1 , Y1Q, and Y2 , Y2Q.

A.3 Strong Converse Proof to Theorem 4

Notice �rst that the Markov chain U2 → (U1, Y1) → (Y0, Y2) needed for the validation of the distribution

of the joint pmf PU1U2Y0Y1Y2 = PU1|Y0PU2|U1Y1PY0Y1Y2 , can be replaced by the weaker Markov chain U2 →

(U1, Y1)→ Y2 because the right hand-side of (3.23) does not depend on the joint pmf of U2 and Y0.

We proceed to show that

θ ≤ η̃(R1, R2) (A.22)

where η̃(·, ·) is de�ned as follows

η̃ (R1, R2) := max
PU1|Y0 ,PU2|U1Y1

:

R1≥I(U1;Y0)
R2≥I(U2;Y1|U1)

I (U1U2;Y2) (A.23)

with the auxiliary random variables U1 and U2 satisfying the Markov chains U1 → Y0 → (Y1, Y2) and

U2 → (U1, Y1)→ Y2.

Consider a sequence (in n) of encoding and decision functions {(φ(n)
1 , φ

(n)
2 , g(n))} satisfying the con-

straints on the rates and error probabilities in (3.10) for maximum-rate constraints setup.

In the following, we use Lemma 2 which is presented in the main text, speci�cally in the converse proof

of Theorem 5 in Section 3.4, in order to prove the desired outer bound on the exponents region.

Fix a positive η > 0. Set µn = n−1/3, and de�ne the sets

B(η) , {(yn0 , yn1 ) : Pr[Ĥ1 = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] ≥ η}, (A.24)

D(η) , B(η) ∩ T (n)
µn (PY0Y1). (A.25)

Further de�ne for each n the probability

∆ , PY n0 Y n1 (D(η)), (A.26)

and notice that by the constraint (3.10a) on the type-I error probability:

1− ε ≤
∑
yn0 ,y

n
1

Pr[Ĥ = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (A.27)

≤
∑

(yn0 ,y
n
1 )∈B(η)

PY n0 Y n1 (yn0 , y
n
1 ) +

∑
(yn0 ,y

n
1 )/∈B(η)

Pr[Ĥ = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (A.28)
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≤ PY n0 Y n1 (B(η)) + η(1− PY n0 Y n1 (B(η))). (A.29)

Thus we have

PY n0 Y n1 (B(η)) ≥ 1− ε− η
1− η

. (A.30)

Moreover, by [44, Remark to Lemma 2.12], the probability that the pair (Y n
0 , Y

n
1 ) lies in the strongly jointly

typical set T (n)
µn (PY0Y1) satis�es

PnY0Y1

(
T (n)
µn (PY0Y1)

)
≥ 1− |Y0| |Y1|

4µ2
nn

, (A.31)

and since for any two events A and B,

Pr(A ∩B) ≥ Pr(A) + Pr(B)− 1, (A.32)

then by (A.25), (A.26), (A.30), and (A.31), we obtain

∆ ≥ 1− ε− η
1− η

− |Y0||Y1|
4µ2

nn
. (A.33)

We proceed by applying Lemma 2 to the set D(η) with ∆ ≥ η. This allows to conclude that there exists

a pair (U1, U2) satisfying the Markov chain U2 → (U1, Ỹ1)→ Ỹ2 and the (in)equalities

nR1 ≥ H(M̃1) ≥ nI(U1; Ỹ0) + logPY n0 Y n1 (D), (A.34)

nR2 ≥ H(M̃2) ≥ nI(U2; Ỹ1|U1), (A.35)

ø1(n) = I(U1; Ỹ1Ỹ2|Ỹ0), (A.36)

and

− 1

n
log βn ≤ I(U1U2; Ỹ2) + ø2(n), (A.37)

where the functions ø1(n), ø2(n) → 0 as n → ∞ and the random variables Ỹ0, Ỹ1, Ỹ2, M̃1, M̃2 are de�ned

as in the lemma, when applied to the set D(η).

To simplify exposition, we assume η very small and ∆ ≥ η. Otherwise the proof is similar but omitted

here.

For all n ≥ 1, we abbreviate the joint pmf PU1U2Ỹ0Ỹ1Ỹ2
= PU1|Ỹ0Ỹ1PU2|U1Ỹ1

PỸ0Ỹ1Ỹ2 as P (n) and observe

that by Carathéodory's theorem [48, Appendix C] for each n there must exist random variables U1, U2

satisfying (A.34)�(A.37) over alphabets of sizes

|U1| ≤ |Y0| · |Y1|+ 3, (A.38)

|U2| ≤ |U1| · |Y1|+ 1. (A.39)

Then we invoke the Bolzano-Weierstrass theorem and consider an increasing subsequence of positive num-
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bers {nk}∞k=1 such that the following subsequences converge:

lim
k→∞

P
(nk)

Ỹ0Ỹ1Ỹ2U1U2
= P ∗Y0Y1Y2U1U2

. (A.40)

Considering further an appropriate sequence of diminishing η-values, we conclude that:

R1 ≥ IP ∗(U1;Y0), (A.41)

R2 ≥ IP ∗(U2;Y1|U1), (A.42)

θ ≤ IP ∗(U1U2;Y2), (A.43)

where IP ∗ indicates that the mutual information should be calculated according to the pmf P ∗Y0Y1Y2U1U2
.

Notice further that since for any k the pair (Ỹ
(nk)

0 , Ỹ
(nk)

1 ) lies in the jointly typical set T (nk)
µnk

(PY0Y1), we

have |PỸ0Ỹ1 − PY0Y1 | ≤ µnk and thus the limiting pmf satis�es P ∗Y0Y1 = PY0Y1 . Moreover, since for each

nk the random variable Ỹ2 is drawn according to PY2|Y1 given Ỹ1, irrespective of Ỹ0, the limiting pmf also

satis�es P ∗Y2|Y0Y1 = PY2|Y1 . We also notice that under P ∗Y0Y1Y2U1U2
the Markov chain

U2 → (U1, Y1)→ Y2, (A.44)

holds because U2 → (U1, Ỹ1)→ Ỹ2 forms a Markov chain for any nk. Finally, by continuity considerations

and by (A.36), the following Markov chain must hold under P ∗Y0Y1Y2U1U2
:

U1 → Y0 → (Y1, Y2). (A.45)

Using the de�nition of the function η̃(·, ·) in (A.23), we thus proved that all achievable error exponents

θ are upper-bounded by the error exponent given in (A.22). This concludes our converse proof.

A.4 Analysis of the coding scheme in Subsection 3.3.3.1

Consider the cooperative two-sensor single-DC scheme employed when Y n
0 ∈ D{2}, and let Ĥ{2} denote the

guess produced at R2 when employing this scheme for any Y n
0 ∈ Yn0 . Notice that by assumption the type-I

error probability of this scheme tends to 0 as n→∞:

lim
n→∞

Pr[Ĥ{2} = 1|H = 0] = 0. (A.46)

Noticing that when Y n
0 ∈ D∅, then Ĥ = 1, and applying the total law of probability, we can have for

the type-I error probability of the overall scheme

αn = Pr[Ĥ = 1|H = 0] (A.47)

127



128 A.5. PROOF OF LEMMA 2

= Pr[Ĥ = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ = 1, Y n

0 ∈ D{2}|H = 0] (A.48)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{2} = 1, Y n

0 ∈ D{2}|H = 0] (A.49)

≤ Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{2} = 1|H = 0] (A.50)

Combining these inequalities with (A.46), and because in the limit n→∞ Inequality (3.25) turns into

an equality, we conclude that the overall scheme satis�es the type-I error constraint:

lim
n→∞

αn ≤ ε. (A.51)

For the type-II error probability of the overall scheme, we have

βn = Pr[Ĥ = 0|H = 1] (A.52)

= Pr[Ĥ = 0, Y n
0 ∈ D∅|H = 1] + Pr[Ĥ = 0, Y n

0 ∈ D{2}|H = 1] (A.53)

= Pr[Ĥ = 0, Y n
0 ∈ D{2}|H = 1] (A.54)

= Pr[Ĥ{2} = 0, Y n
0 ∈ D{2}|H = 1] (A.55)

≤ Pr[Ĥ{2} = 0|H = 1]. (A.56)

The type-II error exponents of the overall scheme are thus given by the error exponents of the cooperative

two-sensor single-DC scheme employed under Y n
0 ∈ D{2}. By [25], for vanishing type-I error probability

and under the rate-constraints R{2},1 and R{2},2, the exponents in (3.30) are proved achievable.

A.5 Proof of Lemma 2

Note �rst that by (3.41):

D(PỸ n0 Ỹ n1
||PnY0Y1) ≤ log ∆−1

n , (A.57)

where we de�ne ∆n , PY n0 Y n1 (D).

Further de�ne

Ũ2,t , M̃2 (A.58)

Ũ1,t , (M̃1, Ỹ
t−1

0 , Ỹ t−1
1 ), (A.59)

and notice that

H(M̃1) ≥ I(M̃1; Ỹ n
0 Ỹ

n
1 ) +D(PỸ n0 Ỹ n1

||PnY0Y1) + log ∆n (A.60)

= H(Ỹ n
0 Ỹ

n
1 ) +D(PỸ n0 Ỹ n1

||PnY0Y1)−H(Ỹ n
0 Ỹ

n
1 |M̃1) + log ∆n (A.61)
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≥ n[H(Ỹ0,T Ỹ1,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)]−
n∑
t=1

H(Ỹ0,tỸ1,t|Ũ1,t) + log ∆n (A.62)

= n[H(Ỹ0,T Ỹ1,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)−H(Ỹ0,T Ỹ1,T |Ũ1,T , T )] + log ∆n (A.63)

≥ n[H(Ỹ0,T Ỹ1,T )−H(Ỹ0,T Ỹ1,T |Ũ1,T , T )] + log ∆n (A.64)

= n[I(Ỹ0Ỹ1;U1)] + log ∆n (A.65)

≥ n
[
I(Ỹ0;U1) +

1

n
log ∆n

]
. (A.66)

Here, (A.60) holds by (A.57); (A.62) holds by the super-additivity property in [36, Proposition 1], by the

chain rule, and by the de�nition of Ũ1,t and by de�ning T uniform over {1, . . . , n} independent of all other

random variables; (A.65) holds by the non-negativity of the Kullback-Leibler divergence; and (A.65) by the

de�nitions of U1, Ỹ0, Ỹ1 in the lemma.

We can lower bound the entropy of M̃2 as follows

H(M̃2) ≥ I(M̃2; Ỹ n
0 Ỹ

n
1 |M̃1) (A.67)

=
n∑
t=1

I(Ũ2,t; Ỹ0,tỸ1,t|Ũ1,t) (A.68)

= nI(Ũ2,TT ; Ỹ0,T Ỹ1,T |Ũ1,TT ) (A.69)

≥ nI(U2; Ỹ1|U1). (A.70)

Here, (A.67) holds since M̃2 is function of Ỹ n
1 and M̃1; (A.68) holds by the chain rule, the de�nitions of Ũ1,t

and Ũ2,t; and (A.70) holds by the de�nitions of U2, U1, Ỹ1 in the lemma.

We next upper bound the error exponent at the receiver. To this end, �x a sequence of real numbers

{`n}∞n=1 satisfying limn→∞ `n/n = 0 and limn→∞ `n/
√
n =∞. De�ne

AY2(m1,m2) , {yn2 : g(n)(m1,m2, y
n
2 ) = 0}, (A.71)

and its Hamming neighborhood

Â`nY2(m1,m2) , {ỹn2 : ∃ yn2 ∈ AY2(m1,m2) s.t. dH(yn2 , ỹ
n
2 ) ≤ `n}. (A.72)

Since by Condition (3.48),

PỸ n2 |Ỹ n0 Ỹ n1
(AY2(m1,m2)|yn0 , yn1 ) ≥ η, ∀(yn0 , yn1 ) ∈ D, (A.73)

the blowing-up lemma [40] yields

PỸ n2 |Ỹ n0 Ỹ n1
(Â`nY2(m1,m2)|yn0 , yn1 ) ≥ 1− ζn, ∀(yn0 , yn1 ) ∈ D, (A.74)

for real numbers ζn > 0 such that lim
n→∞

ζn = 0.
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De�ne

AY2 ,
⋃

(m1,m2)∈M1×M2

{(m1,m2)} × AY2(m1,m2), (A.75)

Â`nY2 ,
⋃

(m1,m2)∈M1×M2

{(m1,m2)} × Â`nY2(m1,m2), (A.76)

and notice that

PM̃1M̃2Ỹ n2

(
Â`nY2

)
=

∑
(yn0 ,y

n
1 )∈D

PỸ n0 Ỹ n1
(yn0 , y

n
1 ) · PỸ n2 |Ỹ n0 Ỹ n1 (AY2(φ1(yn0 ), φ2(φ1(yn0 ), yn1 )))|yn0 , yn1 ) (A.77)

≥ (1− ζn). (A.78)

Then we can write

PM̃1M̃2
PỸ n2

(
Â`nY2,n

)
≤ PM1M2P

n
Y2

(
Â`nY2,n

)
∆−2
n (A.79)

=
∑

(m1,m2)∈M1×M2

PM1M2(m1,m2)PnY2

(
Â`nY2(m1,m2)

)
∆−2
n (A.80)

≤
∑

(m1m2)∈M1×M2

PM1M2(m1,m2)PnY2 (AY2(m1,m2)) · enhb(`n/n)|Y2|`nk`nn ∆−2
n (A.81)

= β2,ne
nδn , (A.82)

where δn , hb(`n/n)+ `n
n log(|Y2|·kn)− 2

n log ∆n and kn , min
y2,y′2:

PY2 (y′2)>0

PY2 (y2)

PY2 (y′2)
. Here, (A.82) holds by [44, Proof

of Lemma 5.1].

Combining (A.82) with (A.78) and standard inequalities (see [20, Lemma 1]), we then obtain

− 1

n
log βn ≤ −

1

n
log
(
PM̃1M̃2

PỸ n2

(
Â`nY2

))
+ δn (A.83)

≤ 1

n(1− ζn)
D(PM̃1M̃2Ỹ n2

||PM̃1M̃2
PỸ n2

) + δn +
1

n
(A.84)

=
1

n(1− ζn)
I(M̃1M̃2; Ỹ n

2 ) + δn +
1

n
. (A.85)

We further upper-bound the term I(M̃1M̃2; Ỹ n
2 ) as follows

I(M̃1M̃2; Ỹ n
2 ) ≤

n∑
t=1

I(M̃1M̃2Ỹ
t−1

0 Ỹ t−1
1 Ỹ t−1

2 ; Ỹ2,t) (A.86)

=

n∑
t=1

I(M̃1M̃2Ỹ
t−1

0 Ỹ t−1
1 ; Ỹ2,t) (A.87)

=

n∑
t=1

I(Ũ1,tŨ2,t; Ỹ2,t) (A.88)

= nI(Ũ1,T Ũ2,T ; Ỹ2,T |T ) (A.89)

≤ nI(U1U2; Ỹ2), (A.90)
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where (A.87) holds by the Markov chain Ỹ t−1
2 → (M̃1M̃2, Ỹ

t−1
0 Ỹ t−1

1 ) → Ỹ2,t; (A.88) follows by the

de�nitions of Ũ1,t and Ũ2,t; and (A.90) follows by the de�nitions of T , U1, U2, and Ỹ2 in the lemma.

We observe that the Markov chain Ũ2,t → (Ũ1,t, Ỹ1,t)→ Ỹ2,t holds for any t, and thus U2 → (U1, Ỹ1)→ Ỹ2

holds as mentioned in the lemma.

Finally, we proceed to prove the Markov chain U1 → Ỹ0 → (Ỹ1, Ỹ2) in the limit as n→∞. To this end,

notice the Markov chain M̃1 → Ỹ n
0 → (Ỹ n

1 , Ỹ
n

2 ), and thus

0 = I(M̃1; Ỹ n
1 Ỹ

n
2 |Ỹ n

0 ) (A.91)

≥ H(Ỹ n
1 Ỹ

n
2 |Ỹ n

0 )−H(Ỹ n
1 Ỹ

n
2 |Ỹ n

0 M̃1) +D(PỸ n0 Ỹ n1 Ỹ n2
||PnY0Y1Y2) + log ∆n (A.92)

≥ n[H(Ỹ1,T Ỹ2,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T Ỹ2,T ||PY0Y1Y2)] + log ∆n −H(Ỹ n
1 Ỹ

n
2 |Ỹ n

0 M̃1) (A.93)

≥ n[H(Ỹ1,T Ỹ2,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T Ỹ2,T ||PY0Y1Y2)] + log ∆n −
n∑
t=1

H(Ỹ1,tỸ2,t|Ỹ0,tỸ
t−1

0 Ỹ t−1
1 M̃1) (A.94)

= n[H(Ỹ1,T Ỹ2,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T Ỹ2,T ||PY0Y1Y2)] + log ∆n −
n∑
t=1

H(Ỹ1,tỸ2,t|Ỹ0,tŨ1,t) (A.95)

≥ n[H(Ỹ1,T Ỹ2,T |Ỹ0,T )−H(Ỹ1,T Ỹ2,T |Ỹ0,T , Ũ1,T , T )] + log ∆n (A.96)

≥ nI(Ỹ1Ỹ2;U1|Ỹ0) + log ∆n, (A.97)

where (A.93) holds by the super-additivity property in [36, Proposition 1]; (A.94) by the chain rule and

since conditioning reduces entropy; (A.95) by the de�nition of Ũ1,t and by recalling that T is uniform over

{1, . . . , n} independent of all other random quantities; (A.96) by the non-negativity of the Kullback-Leibler

divergence; and �nally (A.97) holds by the de�nitions of U1, Ỹ0, Ỹ1 in the lemma.
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Appendix B

Proofs for Chapter 4

B.1 Alternative Strong Converse Proof to Theorem 8

Notice that this proof depends on Lemma 4 stated in Section 4.3.5 and proved ahead in Appendix B.5.

Fix an exponent pair in E∗Two-Hop,max(R1, R2, ε1, ε2) and a sequence (in n) of encoding and decision

functions {(φ(n)
1 , φ

(n)
2 , g

(n)
1 , g

(n)
2 )} satisfying the constraints on the rate and the error probabilities in (4.7a),

(4.7b), (4.7c).

Fix a positive η > 0 and a blocklength n andchoose µn = n−1/3. De�ne for i ∈ {1, 2}, the sets

Bi(η) , {(yn0 , yn1 ) ∈ T (n)
µn (PY0Y1) : Pr[Ĥi = 0|Y n

0 = yn0 , Y
n

1 = yn1 ,H = 0] ≥ η}, i ∈ {1, 2}, (B.1)

D(η) , B1(η) ∩ B2(η). (B.2)

Further de�ne the probability

∆ , PY n0 Y n1 (D(η)), (B.3)

and notice that by the laws of probability

∆ ≥ max{PY n0 Y n1 (B1(η)) + PY n0 Y n1 (B2(η))− 1, 0}. (B.4)

By (4.7a), it can further be shown that for i ∈ {1, 2}:

1− εi ≤
∑
yn0 ,y

n
1

Pr[Ĥi = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (B.5)

≤
∑

(yn0 ,y
n
1 )∈T (n)

µn (PY0Y1 )

Pr[Ĥi = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 )

+
∑

(yn0 ,y
n
1 )/∈T (n)

µn (PY0Y1 )

Pr[Ĥi = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 ) (B.6)
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≤
∑

(yn0 ,y
n
1 )∈T (n)

µn (PY0Y1 )∩B̄i(η)

Pr[Ĥi = 0|Y n
0 = yn0 , Y

n
1 = yn1 ,H = 0] · PY n0 Y n1 (yn0 , y

n
1 )

+
∑

(yn0 ,y
n
1 )∈Bi(η)

PY n0 Y n1 (yn0 , y
n
1 ) + (1− PY n0 Y n1 (T (n)

µn (PY0Y1))) (B.7)

≤ η(1− PY n0 Y n1 (Bi(η))) + PY n0 Y n1 (Bi(η)) + PY n0 Y n1 (T (n)
µn (PY0Y1)). (B.8)

Thus, by (B.8) and [44, Lemma 2.12]:

∆ ≥ max

{
1− ε1 − ε2 − η

1− η
− |Y0||Y1|

(1− η)2µ2
nn
, 0

}
, (B.9)

and we conclude that in the limit as n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

∆ ≥ max{1− ε1 − ε2, 0}. (B.10)

We proceed by applying Lemma 4 to the set D(η) when it has positive probability ∆ > 0, otherwise the

proof is similar and omitted for brevity. By this Lemma 4, and using also the maximum-rate constraints

(4.7c), alongside the trivial inequality nRi ≥ H(M̃i), for all i ∈ {1, 2}, we conclude that there is a pair

(U1, U2) satisfying the Markov chain U2 → Ỹ1 → Ỹ2 and the (in)equalities

nR1 ≥ H(M̃1) ≥ nI(U1; Ỹ0) + logPY n0 Y n1 (D(η)), (B.11)

nR2 ≥ H(M̃2) ≥ nI(U2; Ỹ1),+ logPY n0 Y n1 (D(η)), (B.12)

ø1(n) = I(U1; Ỹ1|Ỹ0) (B.13)

and

− 1

n
log β1,n≤ I(U1; Ỹ1) + ø2(n), (B.14)

− 1

n
log β2,n≤ I(U1; Ỹ1) + I(U2; Ỹ2) + ø3(n), (B.15)

where the functions ø1(n), ø2(n) ↓ 0 as n → ∞ and the random variables Ỹ0, Ỹ1, Ỹ2, M̃1, M̃2 are de�ned as

in the lemma (Lemma 4) applied to the set D(η).

Thus we have proved so far that for all n ≥ 1 there exist joint pmfs PU1Ỹ0Ỹ1
(abbreviated as P (n)

1 ) and

PU2Ỹ1Ỹ2
= PỸ1Ỹ2PU2|Ỹ1 (abbreviated as P (n)

2 ) so that the following conditions hold

R1 ≥ IP (n)
1

(U1; Ỹ0) + g1(n), (B.16a)

R2 ≥ IP (n)
2

(U2; Ỹ1) + g1(n), (B.16b)

g2(n) = I
P

(n)
1

(U1; Ỹ1|Ỹ0) (B.16c)

θ1 ≤ IP (n)
1

(U1; Ỹ1),+g3(n), (B.16d)

θ2 ≤ IP (n)
1

(U1; Ỹ1),+I
P

(n)
2

(U2; Ỹ2) + g4(n), (B.16e)
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for some nonnegative functions g1(n), g2(n), g3(n), g4(n) tending to 0 in the limit as n→∞.

The rest of the proof follows the same steps as the proof of the converse in Section 4.3.5.

By Carathéodory's theorem [48, Appendix C], there exist for each n random variables U1, U2 satisfying

(B.16) over alphabets of sizes

|U1| ≤ |Y0||Y1|+ 2, (B.17)

|U2| ≤ |Y1|+ 1. (B.18)

Then we invoke the Bolzano-Weierstrass theorem and consider an increasing subsequence of positive num-

bers {nk}∞k=1 such that the following subsequences converge:

lim
k→∞

P
(nk)

Ỹ0Ỹ1U1
= P ∗Y0Y1U1

, (B.19)

lim
k→∞

P
(nk)

Ỹ1Ỹ2U2
= P ∗Y1Y2U2

. (B.20)

Considering further an appropriate sequence of diminishing η-values, and noticing that since the pair

(Ỹ
(nk)

0 , Ỹ
(nk)

1 ) lies in the jointly typical set T (nk)
µnk

(PY0Y1), we have |PỸ0Ỹ1 − PY0Y1 | ≤ µnk and thus the

limiting pmfs satisfy P ∗Y0Y1 = PY0Y1 . Moreover, since for each nk the random variable Ỹ2 is drawn according

to PY2|Y1 given Ỹ1, irrespective of Ỹ0, the limiting pmfs also satisfy P ∗Y2|Y0Y1 = PY2|Y1 . We also notice that

under P ∗Y1Y2U2
the Markov chain

U2 → Y1 → Y2, (B.21)

holds because U2 → Ỹ1 → Ỹ2 forms a Markov chain for any nk. Finally, by continuity considerations and

by (B.16c), the following Markov chain must hold under P ∗Y0Y1U1
:

U1 → Y0 → Y1. (B.22)

By the above observations, by (B.16a)�(B.16e), and using the de�nitions of the functions η1(·) and η2(·),

we thus conclude the strong converse proof.

B.2 Analysis of the coding scheme in Subsection 4.3.3.1.1 for ε1 = ε2 = ε

Consider the two-hop scheme employed when Y n
0 ∈ D{1,2}, and let Ĥ{1,2},1 and Ĥ{1,2},2 denote the guesses

produced at R1 and R2 when employing this scheme for any Y n
0 ∈ Yn0 . Notice that by assumption the

type-I error probabilities of this scheme tend to 0 as n→∞:

lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}. (B.23)
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Noticing that when Y n
0 ∈ D∅, then Ĥ1 = Ĥ2 = 1, and applying the total law of probability, we can

write for k ∈ {1, 2}:

αk,n = Pr[Ĥk = 1|H = 0] (B.24)

= Pr[Ĥk = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥk = 1, Y n

0 ∈ D{1,2}|H = 0] (B.25)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1,2},k = 1, Y n

0 ∈ D{1,2}|H = 0] (B.26)

≤ Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1,2},k = 1|H = 0] (B.27)

Combining these inequalities with (B.23), and because in the limit n → ∞ Inequality (4.9) turns into

an equality, we conclude that the overall scheme satis�es the type-I error constraints:

lim
n→∞

αk,n ≤ ε, k ∈ {1, 2}. (B.28)

For the type-II error probabilities of the overall scheme we observe for k ∈ {1, 2}:

β1,n = Pr[Ĥk = 0|H = 1] (B.29)

= Pr[Ĥk = 0, Y n
0 ∈ D∅|H = 1] + Pr[Ĥk = 0, Y n

0 ∈ D{1,2}|H = 1] (B.30)

= Pr[Ĥk = 0, Y n
0 ∈ D{1,2}|H = 1] (B.31)

= Pr[Ĥ{1,2},k = 0, Y n
0 ∈ D{1,2}|H = 1] (B.32)

≤ Pr[Ĥ{1,2},k = 0|H = 1]. (B.33)

The type-II error exponents of the overall scheme are thus given by the error exponents of the two-

hop scheme employed under Y n
0 ∈ D{1,2}. By [33] and because the two-hop scheme has vanishing type-I

error probabilities and respect the rate constraints R{1,2},1 and R{1,2},2, the exponents in (4.23) are proved

achievable.

B.3 Analysis of the coding scheme in Subsection 4.3.3.1.2 for ε2 > ε1

Consider the two-hop scheme employed when Y n
0 ∈ D{1,2}, and let Ĥ{1,2},1 and Ĥ{1,2},2 denote the guesses

produced at R1 and R2 when employing this scheme for any yn0 ∈ Yn0 . Similarly, let Ĥ{1},1 and Ĥ{1},2

denote the guesses produced at R1 and R2 when employing the scheme for Y n
0 ∈ D{1}, where we again

extend the scheme to the entire set Yn0 .

By assumption, the type-I error probabilities of these schemes tend to 0 as n→∞:

lim
n→∞

Pr[Ĥ{1},k = 1|H = 0] = 0, k ∈ {1, 2} (B.34a)
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lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}. (B.34b)

Notice that for Y n
0 ∈ D∅ both R1 and R2 decide on Ĥ1 = Ĥ2 = 1. Applying the total law of probability,

we can write

α1,n = Pr[Ĥ1 = 1|H = 0] (B.35)

= Pr[Ĥ1 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{1}|H = 0] + Pr[Ĥ1 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.36)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1},1 = 1, Y n

0 ∈ D{1}|H = 0] + Pr[Ĥ{1,2},1 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.37)

≤ Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1},1 = 1|H = 0] + Pr[Ĥ{1,2},1 = 1|H = 0] (B.38)

Combining this inequality with (B.34), and because in the limit n → ∞ Inequality (4.13c) turns into an

equality, we conclude that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α1,n ≤ ε1. (B.39)

Similarly we have:

α2,n = Pr[Ĥ2 = 1|H = 0] (B.40)

= Pr[Ĥ2 = 1, Y n
0 ∈ (D∅ ∪ D{1})|H = 0] + Pr[Ĥ2 = 1, Y n

0 ∈ D{1,2}|H = 0] (B.41)

= Pr[Y n
0 ∈ (D∅ ∪ D{1})|H = 0] + Pr[Ĥ{1,2},2 = 1, Y n

0 ∈ D{1,2}|H = 0] (B.42)

≤ Pr[Y n
0 ∈ (D∅ ∪ D{1})|H = 0] + Pr[Ĥ{1,2},2 = 1|H = 0]. (B.43)

Combining this inequality with (B.34), and because in the limit n → ∞ Inequalities (4.13a) and (4.13c)

turn into equalities, we conclude that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α2,n ≤ ε2. (B.44)

For the relay's type-II error probability in the overall scheme we observe:

β1,n = Pr[Ĥ1 = 0|H = 1] (B.45)

= Pr[Ĥ1 = 0, Y n
0 ∈ D∅|H = 1] + Pr[Ĥ1 = 0, Y n

0 ∈ D{1}|H = 1] + Pr[Ĥ1 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.46)

= Pr[Ĥ1 = 0, Y n
0 ∈ D{1}|H = 1] + Pr[Ĥ1 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.47)

= Pr[Ĥ{1},1 = 0, Y n
0 ∈ D{1}|H = 1] + Pr[Ĥ{1,2},1 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.48)

≤ Pr[Ĥ{1},1 = 0|H = 1] + Pr[Ĥ{1,2},1 = 0|H = 1]. (B.49)

The relay's type-II error exponent of the overall scheme is thus given by the minimum of the error exponents

of the single-hop scheme employed under Y n
0 ∈ D{1} and of two-hop scheme employed under Y n

0 ∈ D{1,2}.
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By [2] and [33] and because these schemes have vanishing type-I error probabilities and respect the rate

constraints R{1},1 and (R{1,2},1, R{1,2},2), respectively, the exponent θ1 in (4.24) is proved achievable.

It remains to analyze the receiver's type-II error exponent:

β2,n = Pr[Ĥ2 = 0|H = 1] (B.50)

= Pr[Ĥ2 = 0, Y n
0 ∈ (D∅ ∪ D{1})|H = 1] + Pr[Ĥ2 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.51)

= Pr[Ĥ2 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.52)

= Pr[Ĥ{1,2},2 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.53)

≤ Pr[Ĥ{1,2},2 = 0|H = 1]. (B.54)

The receiver's type-II error exponent of the overall scheme is thus given by the error exponent of the

two-hop scheme employed under Y n
0 ∈ D{1,2}. By [33] and because this scheme has vanishing type-I

error probabilities and respects the rate constraints (R{1,2},1, R{1,2},2), the exponent θ2 in (4.24) is proved

achievable.

B.4 Analysis of the coding scheme in Subsection 4.3.3.1.3 for ε1 > ε2

Now consider the two-hop scheme employed when Y n
0 ∈ D{1,2}, and let Ĥ{1,2},1 and Ĥ{1,2},2 denote the

guesses produced at R1 and R2 when employing this scheme for any yn0 ∈ Yn0 . Similarly, let Ĥ{2},2 denote

the guess produced at R2 when employing the scheme for Y n
0 ∈ D{2}, where we again extend the scheme to

the entire set Yn0 . Note that in this case, i.e. when Y n
0 ∈ D{2}, the guess produced by R1 is Ĥ{2},1 = 1.

By assumption, the type-I error probabilities of these schemes have the following limits:

lim
n→∞

Pr[Ĥ{2},1 = 1|H = 0] = 1, (B.55a)

lim
n→∞

Pr[Ĥ{2},2 = 1|H = 0] = 0, (B.55b)

lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}. (B.55c)

Notice that for Y n
0 ∈ D∅ both R1 and R2 decide on Ĥ1 = Ĥ2 = 1. Applying the total law of probability,

we can write

α1,n = Pr[Ĥ1 = 1|H = 0] (B.56)

= Pr[Ĥ1 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{2}|H = 0] + Pr[Ĥ1 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.57)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Y n

0 ∈ D{2}|H = 0] + Pr[Ĥ{1,2},1 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.58)
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≤ Pr[Y n
0 ∈ D∅|H = 0] + Pr[Y n

0 ∈ D{2}|H = 0] + Pr[Ĥ{1,2},1 = 1|H = 0] (B.59)

Combining this inequality with (B.55), and because in the limit n → ∞ Inequalities (4.19a) and (4.19c)

turn into equalities, we conclude that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α1,n ≤ ε1. (B.60)

Similarly we have:

α2,n = Pr[Ĥ2 = 1|H = 0] (B.61)

= Pr[Ĥ2 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ2 = 1, Y n

0 ∈ D{2}|H = 0] + Pr[Ĥ2 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.62)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{2},2 = 1, Y n

0 ∈ D{2}|H = 0] + Pr[Ĥ{1,2},2 = 1, Y n
0 ∈ D{1,2}|H = 0] (B.63)

≤ Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{2},2 = 1|H = 0] + Pr[Ĥ{1,2},2 = 1|H = 0] (B.64)

Combining this inequality with (B.55), and because in the limit n → ∞ Inequality (4.19c) turns into an

equality, we conclude that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α2,n ≤ ε2. (B.65)

For the relay's type-II error probability in the overall scheme we observe:

β1,n = Pr[Ĥ1 = 0|H = 1] (B.66)

= Pr[Ĥ1 = 0, Y n
0 ∈ (D∅ ∪ D{2})|H = 1] + Pr[Ĥ1 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.67)

= Pr[Ĥ1 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.68)

= Pr[Ĥ{1,2},1 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.69)

≤ Pr[Ĥ{1,2},1 = 0|H = 1]. (B.70)

The relay's type-II error exponent of the overall scheme is thus given by the error exponent of the two-

hop scheme employed under Y n
0 ∈ D{1,2}. By [33] and because this scheme has vanishing type-I error

probabilities and respects the rate constraint R{1,2},1, the exponent θ1 in (4.25a) is proved achievable.

It remains to analyze the receiver's type-II error exponent:

β2,n = Pr[Ĥ2 = 0|H = 1] (B.71)

= Pr[Ĥ2 = 0, Y n
0 ∈ D∅|H = 1] + Pr[Ĥ2 = 0, Y n

0 ∈ D{2}|H = 1] + Pr[Ĥ2 = 0, Y n
0 ∈ D{1,2}|H = 1] (B.72)

= Pr[Ĥ2 = 0, Y n
0 ∈ D{2}|H = 1] + Pr[Ĥ2 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.73)

= Pr[Ĥ{2},2 = 0, Y n
0 ∈ D{2}|H = 1] + Pr[Ĥ{1,2},2 = 0, Y n

0 ∈ D{1,2}|H = 1] (B.74)
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≤ Pr[Ĥ{2},2 = 0|H = 1] + Pr[Ĥ{1,2},2 = 0|H = 1]. (B.75)

The receiver's type-II error exponent of the overall scheme is thus given by the minimum of the error

exponents of the two-hop schemes employed under Y n
0 ∈ D{2} and under Y n

0 ∈ D{1,2}. By [33] and because

these schemes have vanishing type-I error probabilities and respect the rate constraints (R{2},1, R{2},2) and

(R{1,2},1, R{1,2},2), the exponent θ2 in (4.25b) is proved achievable.

B.5 Proof of Lemma 4

Note �rst that by (4.48):

D(PỸ n0 Ỹ n1
||PnY0Y1) ≤ log ∆−1

n , (B.76)

where we de�ned ∆n , PY n0 Y n1 (D).

Further de�ne

Ũ2,t , (M̃2, Ỹ
t−1

0 , Ỹ t−1
1 ) (B.77)

Ũ1,t , (M̃1, Ỹ
t−1

0 , Ỹ t−1
1 ), (B.78)

and notice:

H(M̃1) ≥ I(M̃1; Ỹ n
0 Ỹ

n
1 ) +D(PỸ n0 Ỹ n1

||PnY0Y1) + log ∆n (B.79)

= H(Ỹ n
0 Ỹ

n
1 ) +D(PỸ n0 Ỹ n1

||PnY0Y1)−H(Ỹ n
0 Ỹ

n
1 |M̃1) + log ∆n (B.80)

≥ n[H(Ỹ0,T Ỹ1,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)]−
n∑
t=1

H(Ỹ0,tỸ1,t|Ũ1,t) + log ∆n (B.81)

= n[H(Ỹ0,T Ỹ1,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)−H(Ỹ0,T Ỹ1,T |Ũ1,T , T )] + log ∆n (B.82)

≥ n[H(Ỹ0,T Ỹ1,T )−H(Ỹ0,T Ỹ1,T |Ũ1,T , T )] + log ∆n (B.83)

= n[I(Ỹ0Ỹ1;U1)] + log ∆n (B.84)

≥ n
[
I(Ỹ0;U1) +

1

n
log ∆n

]
. (B.85)

Here, (B.79) holds by (B.76); (B.81) holds by the super-additivity property in [36, Proposition 1], by the

chain rule, and by the de�nition of Ũ1,t and by de�ning T uniform over {1, . . . , n} independent of all other

random variables; and (B.84) holds by the de�nitions of U1, Ỹ0, Ỹ1 in the lemma.

We can lower bound the entropy of M̃2 in a similar way to obtain:

H(M̃2) ≥ n
[
I(Ỹ1;U2) +

1

n
log ∆n

]
. (B.86)

We next upper bound the error exponent at the receiver. To this end, �x a sequence of real numbers
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{`n}∞n=1 satisfying limn→∞ `n/n = 0 and limn→∞ `n/
√
n =∞. De�ne

AY2(m2) , {yn2 : g2(m2, y
n
2 ) = 0}, (B.87)

and its Hamming neighborhood:

Â`nY2(m2) , {ỹn2 : ∃ yn2 ∈ AY2(m2) s.t. dH(yn2 , ỹ
n
2 ) ≤ `n}. (B.88)

Since by Condition (4.55),

PỸ n2 |Ỹ n0 Ỹ n1
(AY2(m2)|yn0 , yn1 ) ≥ η, ∀(yn0 , yn1 ) ∈ D, (B.89)

the blowing-up lemma [40] yields

PỸ n2 |Ỹ n0 Ỹ n1
(Â`nY2(m2)|yn0 , yn1 ) ≥ 1− ζn, ∀(yn0 , yn1 ) ∈ D, (B.90)

for real numbers ζn > 0 such that lim
n→∞

ζn = 0.

De�ne

AY2 ,
⋃

m2∈M2

{m2} × AY2(m2), (B.91)

Â`nY2 ,
⋃

m2∈M2

{m2} × Â`nY2(m2), (B.92)

and notice that

PM̃2Ỹ n2

(
Â`nY2

)
=

∑
(yn0 ,y

n
1 )∈D

PỸ n0 Ỹ n1
(yn0 , y

n
1 ) · PỸ n2 |Ỹ n0 Ỹ n1 (AY2(φ2(φ1(yn0 ), yn1 )))|yn0 , yn1 ) (B.93)

≥ (1− ζn). (B.94)

De�ning

QM̃2
(m2) ,

∑
yn1 ,m1

PM̃1
(m1)PỸ n1

(yn1 ) · 1{φ2(m1, y
n
1 ) = m2}, (B.95)

we can write

QM̃2
PỸ n2

(
Â`nY2,n

)
≤ QM2P

n
Y2

(
Â`nY2,n

)
∆−3
n (B.96)

=
∑

m2∈M2

QM2(m2)PnY2

(
Â`nY2(m2)

)
∆−3
n (B.97)

≤
∑

m2∈M2

QM2(m2)PnY2 (AY2(m2)) · enhb(`n/n)|Y2|`nk`nn ∆−3
n (B.98)

= β2,ne
nδn , (B.99)

where δn , hb(`n/n)+ `n
n log(|Y2|·kn)− 3

n log ∆n and kn , min
y2,y′2:

PY2 (y′2)>0

PY2 (y2)

PY2 (y′2)
. Here, (B.99) holds by [44, Proof

of Lemma 5.1].

Combining (B.99) with (B.94) and standard inequalities (see [20, Lemma 1]), we then obtain:
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− 1

n
log β2,n ≤ −

1

n
log
(
QM̃2

PỸ n2

(
Â`nY2

))
+ δn (B.100)

≤ 1

n(1− ζn)
D(PM̃2Ỹ n2

||QM̃2
PỸ n2

) + δn +
1

n
. (B.101)

We continue to upper bound the divergence term as

D(PM̃2Ỹ n2
||QM̃2

PỸ n2
) = I(M̃2; Ỹ n

2 ) +D(PM̃2
||QM̃2

) (B.102)

≤ I(M̃2; Ỹ n
2 ) +D(PỸ n1 M̃1

||PỸ n1 PM̃1
) (B.103)

= I(M̃2; Ỹ n
2 ) + I(M̃1; Ỹ n

1 ) (B.104)

=
n∑
t=1

I(M̃2; Ỹ2,t|Ỹ t−1
2 ) + I(M̃1; Ỹ1,t|Ỹ t−1

1 ) (B.105)

≤
n∑
t=1

I(M̃2Ỹ
t−1

0 Ỹ t−1
1 ; Ỹ2,t) + I(M̃1Ỹ

t−1
0 Ỹ t−1

1 ; Ỹ1,t) (B.106)

=
n∑
t=1

I(Ũ2,t; Ỹ2,t) + I(Ũ1,t; Ỹ1,t) (B.107)

= n[I(Ũ2,T ; Ỹ2,T |T ) + I(Ũ1,T ; Ỹ1,T |T )] (B.108)

≤ n[I(Ũ2,TT ; Ỹ2,T ) + I(Ũ1,TT ; Ỹ1,T )] (B.109)

= n[I(U2; Ỹ2) + I(U1; Ỹ1)]. (B.110)

Here (B.103) is obtained by the data processing inequality for KL-divergence; (B.105) by the chain rule;

(B.106) by the Markov chain Ỹ t−1
2 → (Ỹ t−1

0 Ỹ t−1
1 ) → Ỹ2,t; and (B.107)�(B.110) by the de�nitions of

Ũ1,t, Ũ2,t, U1, U2, Ỹ1, Ỹ2.

Following similar steps, we now prove the desired upper bound on the relay's error exponent. De�ne

the acceptance region at R1 as

AY1 , {(m1, y
n
1 ) : g1(m1, y

n
1 ) = 0}. (B.111)

Notice that for any given (yn0 , y
n
1 ) the pair (m1 = φ0(yn0 ), yn1 ) lies inside the acceptance region AY1 with

probability either 0 or 1. Thus, for any η > 0 Condition (4.57) implies that for all pairs (yn0 , y
n
1 ) ∈ D the

corresponding pairs (m1, y
n
1 ) lie in AY1 with probability 1:

PM̃1Ỹ n1
(AY1) = 1. (B.112)

Following similar steps as in the analysis of the receiver's error exponent:

PM̃1
PỸ n1

(AY1) ≤ PM1PY n1 (AY1) ∆−2
n (B.113)

= β1,n∆−2
n . (B.114)
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Combining (B.112) and (B.114) with standard inequalities (see [20, Lemma 1]), we further obtain

− 1

n
log β1,n ≤ −

1

n
log
(
PM̃1

PỸ n1
(AY1,n)

)
− 2

n
log ∆n (B.115)

≤ 1

n
D(PM̃1Ỹ n1

||PM̃1
PỸ n1

) + δ′n (B.116)

where δ′n , − 2
n log ∆n + 1

n and tends to 0 as n→∞.

We continue to upper bound the divergence term as

D(PM̃1Ỹ n1
||PM̃1

PỸ n1
) = I(M̃1; Ỹ n

1 ) (B.117)

=
n∑
t=1

I(M̃1; Ỹ1,t|Ỹ t−1
1 ) (B.118)

≤
n∑
t=1

I(M̃1Ỹ
t−1

0 Ỹ t−1
1 ; Ỹ1,t) (B.119)

=

n∑
t=1

I(Ũ1,t; Ỹ1,t) (B.120)

= n[I(Ũ1,T ; Ỹ1,T |T )] (B.121)

≤ n[I(Ũ1,TT ; Ỹ1,T )] (B.122)

= n[I(U1; Ỹ1)]. (B.123)

Here (B.118) holds by the chain rule and (B.120)�(B.123) hold by the de�nitions of Ũ1,t, U1, Ỹ1.

Finally, we proceed to prove the Markov chain U1 → Ỹ0 → Ỹ1 in the limit as n → ∞. To this end,

notice the Markov chain M̃1 → Ỹ n
0 → Ỹ n

1 , and thus:

0 = I(M̃1; Ỹ n
1 |Ỹ n

0 ) (B.124)

≥ H(Ỹ n
1 |Ỹ n

0 )−H(Ỹ n
1 |Ỹ n

0 M̃1) +D(PỸ n0 Ỹ n1
||PnY0Y1) + log ∆n (B.125)

≥ n[H(Ỹ1,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)] + log ∆n −H(Ỹ n
1 |Ỹ n

0 M̃1) (B.126)

≥ n[H(Ỹ1,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)] + log ∆n −
n∑
t=1

H(Ỹ1,t|Ỹ0,tỸ
t−1

0 Ỹ t−1
1 M̃1) (B.127)

= n[H(Ỹ1,T |Ỹ0,T ) +D(PỸ0,T Ỹ1,T ||PY0Y1)] + log ∆n −
n∑
t=1

H(Ỹ1,t|Ỹ0,tŨ1,t) (B.128)

≥ n[H(Ỹ1,T |Ỹ0,T )−H(Ỹ1,T |Ỹ0,T , Ũ1,T , T )] + log ∆n (B.129)

≥ nI(Ỹ1;U1|Ỹ0) + log ∆n, (B.130)

where (B.126) holds by the super-additivity property in [36, Proposition 1]; (B.127) by the chain rule and

since conditioning reduces entropy; (B.128) by the de�nition of Ũ1,t and by recalling that T is uniform over
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{1, . . . , n} independent of all other random quantities; (B.129) by the non-negativity of the Kullback-Leibler

divergence; and �nally (B.130) holds by the de�nitions of U1, Ỹ0, Ỹ1.

B.6 Strong Converse Proof of Theorem 11

This strong converse proof relies on the method of change of measure arguments and asymptotic Markov

chains similarly to the one explained in more detail in Section 4.4.3.4. The main idea here is to apply the

change of measure arguments at each DC by restricting to observations in the intersection set between the

jointly typical sequences (of all observations until the current DC) and the acceptance region at the DC.

This leads to lower bounds on the rates of all links prior to the DC and to an upper bound on the error

exponent of the current DC. Since the di�erent bounds have di�erent distributions, the proof is concluded

by continuity and convergence arguments in the limit as n→∞ where the required Markov chains are also

shown to hold asymptotically. The technical proof is presented below.

Fix an exponent-tuple (θ1, . . . , θK) in the exponents region E∗(R1, . . . , RK , ε1, . . . , εK), and a sequence

(in n) of encoding and decision functions {(φ(n)
0 , φ

(n)
1 , . . . , φ

(n)
K−1, g

(n)
1 , . . . , g

(n)
K )}n≥1 achieving this tuple, i.e.,

satisfying constraints (4.182) for maximum-rate constraints.

Fix an arbitrary k ∈ {1, . . . ,K} and set µn = n−1/3. Let Ak denote the acceptance region of Rk, i.e.,

Ak := {(yn0 , . . . , ynk ) : g
(n)
k (mk, y

n
k ) = 0}, (B.131)

where we de�ne recursively m1 := φ
(n)
0 (yn0 ) and

m` := φ
(n)
`−1(m`−1, y`−1), ` ∈ {2, . . . , k}. (B.132)

De�ne also the intersection of this acceptance region with the typical set:

Dk , Ak ∩ T (n)
µn (PY0···Yk). (B.133)

By [44, Remark to Lemma 2.12] and the type-I error probability constraints in (4.182a),

∆k := PY n0 Y n1 ···Y nk (Dk) ≥ 1− εk −
|Y0| · · · |Yk|

4µ2
nn

, (B.134)

and thus limn→∞∆k ≥ 1− εk > 0 as n→∞.

Let (Ỹ n
0 , Ỹ

n
1 , . . . , Ỹ

n
k ) be random variables of joint pmf

PỸ n0 ,Ỹ n1 ,...,Ỹ nk
(ỹn0 , ỹ

n
1 , . . . , ỹ

n
k ) =

PY n0 ,Y n1 ,...,Y nk (ỹn0 , ỹ
n
1 , . . . , ỹ

n
k )

∆
· 1{(ỹn0 , ỹn1 , . . . , ỹnk ) ∈ Dk}. (B.135)

Let also M̃` = φ
(n)
`−1(M̃`−1, Ỹ

n
`−1) and T be uniform over {1, . . . , n} independent of
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(Ỹ n
0 , Ỹ

n
1 , . . . , Ỹ

n
k , M̃1, . . . , M̃k), and de�ne Ỹ` := Ỹ`,T for ` ∈ {1, . . . , k}.

Lemma 10. There exist random variables {U1, . . . , Uk} satisfying the (in)equalities

nR` ≥ H(M̃`) ≥ nI(U`; Ỹ`−1) + log ∆k, ` ∈ {1, . . . , k}, (B.136a)

I(U`; Ỹ`|Ỹ`−1) = ø1,`(n), (B.136b)

and

− 1

n
log Pr[Ĥk = 0|H = 1, (Y n

0 , . . . , Y
n
k ) ∈ Dk] ≤

k∑
`=1

I(U`; Ỹ`) + ø2(n), (B.136c)

where the functions {ø1,`(n)}k`=1 and ø2(n) all tend to 0 as n→∞.

Proof: Similar to the proof of Lemma 6 which is presented later in Appendix B.8, in addition to the

trivial inequality nR` ≥ H(M̃`).

The desired bound on θk in (4.192) is then obtained from above lemma by taking n→∞, as we explain

in the following. By Carathéodory's theorem [48, Appendix C], for each n there must exist random variables

U1, . . . , Uk satisfying (B.136) over alphabets of sizes

|U`| ≤ |Y`−1| · |Y`|+ 2, ` ∈ {1, . . . , k}. (B.137)

We thus restrict to random variables of above (bounded) supports and invoke the Bolzano-Weierstrass

theorem to conclude the existence of a pmf P (`)
Y`−1Y`U`

over Y`−1 ×Y` ×U`, also abbreviated as P (`), and an

increasing subsequence of positive numbers {ni}∞i=1 satisfying

lim
i→∞

PỸ`−1Ỹ`U`;ni
= P

(`)
Y`−1Y`U`

, ` ∈ {1, . . . , k}, (B.138)

where PỸ`−1Ỹ`U`;ni
denotes the pmf at blocklength ni.

By the monotone continuity of mutual information over �nite pmfs, we can then deduce that

R` ≥ IP (`)(U`;Y`−1), ` ∈ {1, . . . , k}, (B.139)

θk ≤
k∑
`=1

IP (`)(U`;Y`), (B.140)

where the subscripts indicate that mutual informations should be computed according to the indicated

pmfs.

Since for any blocklength ni the pair
(
Ỹ ni
`−1, Ỹ

ni
`

)
lies in the jointly typical set T (ni)

µni
(PY`−1Y`), we have∣∣PY`−1Y`;ni − PY`−1Y`

∣∣ ≤ µnk and thus the limiting pmfs satisfy P (`)
Y`−1Y`

= PY`−1Y` . By similar continuity
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considerations and by (B.136b), for all ` ∈ {1, . . . , k} the Markov chain

U` → Y`−1 → Y`, (B.141)

holds under P (`)
Y`−1Y`U`

.

By the de�nitions of the functions {η`(·)} and by (B.139)�(B.141):

θk ≤
k∑
`=1

η`(R`), (B.142)

which concludes the proof.

B.7 Analysis of the coding scheme in Section 4.4.3.1

Consider the `∗I-hop hypothesis testing scheme employed when Y n
0 ∈ DI , for I ∈ P(K). For any I ∈ P(K),

let ĤI,1, . . . , ĤI,`∗I denote the guesses produced at terminals 1, . . . , `∗I when employing this scheme, where

`∗I is de�ned in (4.196).

By assumption, the type-I error probabilities of these decisions tend to 0 as n→∞ for any I ∈ P(K):

lim
n→∞

Pr[ĤI,k = 1|H = 0, Y n
0 ∈ DI ] = 0, k ∈ I. (B.143)

Recalling that decision center k declares Ĥk = 1 whenever Y n
0 ∈ D∅ or Y n

0 ∈ DI for a set I not containing

k, and applying the total law of probability, we can write

αk,n = Pr[Ĥk = 1|H = 0] (B.144)

=
∑

I∈(P(K)∪∅)

Pr[Ĥk = 1, Y n
0 ∈ DI |H = 0] (B.145)

= Pr[Y n
0 ∈ D∅|H = 0] +

∑
I∈P(K) :

k/∈I

Pr[Y n
0 ∈ DI |H = 0] +

∑
I∈P(K) :

k∈I

Pr[Ĥk = 1, Y n
0 ∈ DI |H = 0] (B.146)

≤ Pr[Y n
0 ∈ D∅|H = 0] +

∑
I∈P(K) :

k/∈I

Pr[Y n
0 ∈ DI |H = 0] +

∑
I∈P(K) :

k∈I

Pr[ĤI,k = 1|H = 0, Y n
0 ∈ DI ] .(B.147)

Combining this inequality with (B.143), and by Inequalities (4.195), we conclude that the overall scheme

satis�es the type-I error constraints:

lim
n→∞

αk,n ≤ εk, k ∈ {1, . . . ,K}. (B.148)

For the type-II error exponent at a decision center k we observe:

βk,n = Pr[Ĥk = 0|H = 1] (B.149)
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=
∑

I∈(P(K)∪∅)

Pr[Ĥk = 0, Y n
0 ∈ DI |H = 1] (B.150)

=
∑

I∈P(K) :
k∈I

Pr[ĤI,k = 0, Y n
0 ∈ DI |H = 1] (B.151)

≤
∑

I∈P(K) :
k∈I

Pr[ĤI,k = 0|H = 1, Y n
0 ∈ DI ]. (B.152)

De�ning

θk,I := lim
n→∞

− 1

n
log Pr[ĤI,k = 0|H = 1, Y n

0 ∈ DI ], (B.153)

we conclude by (B.152) that the exponent

min
I∈P(K) :

k∈I

θk,I (B.154)

is achievable at decision center k. This proves in particular that when applying an instance of the multi-hop

scheme in [34] for each set I ∈ P(K), the exponents θ1, . . . , θK in (12) are proved achievable.

B.8 Proof of Lemma 6

Note �rst that by (4.219):

D(PỸ n0 ···Ỹ nK
||PnY0···YK ) ≤ log ∆−1

n , (B.155)

where we de�ned ∆n , PY n0 ···Y nK (D).

Further de�ne Ũi,t , (M̃i, Ỹ
t−1

0 , . . . , Ỹ t−1
K ) for i ∈ {1, . . . ,K} and notice:

H(M̃i) ≥ I(M̃i; Ỹ
n

0 · · · Ỹ n
K) +D(PỸ n0 ···Ỹ nK

||PnY0···YK ) + log ∆n (B.156)

= H(Ỹ n
0 · · · Ỹ n

K) +D(PỸ n0 ···Ỹ nK
||PnY0···YK )−H(Ỹ n

0 · · · Ỹ n
K |M̃i) + log ∆n (B.157)

≥ n[H(Ỹ0,T · · · ỸK,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )]−
n∑
t=1

H(Ỹ0,t · · · ỸK,t|Ũi,t) + log ∆n (B.158)

= n[H(Ỹ0,T · · · ỸK,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )−H(Ỹ0,T · · · ỸK,T |Ũi,T , T )] + log ∆n (B.159)

≥ n[H(Ỹ0,T · · · ỸK,T )−H(Ỹ0,T · · · ỸK,T |Ũi,T , T )] + log ∆n (B.160)

= n[I(Ỹ0 · · · ỸK ;Ui)] + log ∆n (B.161)

≥ n
[
I(Ỹi−1;Ui) +

1

n
log ∆n

]
. (B.162)

Here, (B.156) holds by (B.155); (B.158) holds by the super-additivity property in [36, Proposition 1], by the

chain rule, by the de�nition of Ũi,t and by de�ning T uniform over {1, . . . , n} independent of the previously

de�ned random variables; and (B.161) by the de�nitions of Ui, Ỹi, Ỹi−1 in the lemma. This proves Inequality
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(4.222) in the lemma.

We next upper bound the type-II error exponent at Rk, for k ∈ {1, . . . ,K}. To this end, de�ne the

acceptance region at Rk

AYk , {(mk, y
n
k ) : gk(mk, y

n
k ) = 0}. (B.163)

Since for any tuple of sequences (yn0 , · · · , ynK−1), the corresponding pair (mk, y
n
k ) either lies inside or outside

the acceptance region AYk , for any k ∈ {1, . . . ,K − 1}, Condition (4.224) implies

PM̃kỸ
n
k

(AYk) = 1, (B.164)

De�ne for any k ∈ {1, . . . ,K}:

QM̃k
(mk) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PỸ n0
(yn0 ) · · ·PỸ nk−1

(ynk−1) · 1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)}, (B.165)

and

QMk
(mK) ,

∑
yn0 ,y

n
1 ,...,y

n
k−1

PY n0 (yn0 ) · · ·PY nk−1
(ynk−1) · 1{mk = φk(φk−1(· · · (φ1(yn0 ) · · · )), ynk−1)}. (B.166)

We then have:

QM̃k
PỸ nk

(AYk) ≤ QMk
PnYK (AYK ) ∆−(k+1)

n (B.167)

= βk,n∆−(k+1)
n . (B.168)

By (B.164), (B.168), and standard inequalities (see [20, Lemma 1]), we further obtain

− 1

n
log βk,n ≤ −

1

n
log
(
QM̃k

PỸ nk
(AYk)

)
− (k + 1)

n
log ∆n (B.169)

≤ 1

n
D(PM̃kỸ

n
k
||QM̃k

PỸ nk
) + δ′n, (B.170)

where δ′n , −
(k+1)
n log ∆n + 1

n and tends to 0 as n→∞.

We continue to upper bound the divergence term as

D(PM̃kỸ
n
k
||QM̃k

PỸ nk
) = I(M̃k; Ỹ

n
k ) +D(PM̃k

||QM̃k
) (B.171)

≤ I(M̃k; Ỹ
n
k ) +D(PỸ nk−1M̃k−1

||PỸ nk−1
QM̃k−1

) (B.172)

≤ I(M̃k; Ỹ
n
k ) + I(M̃k−1; Ỹ n

k−1) +D(PỸ nk−2M̃k−2
||PỸ nk−2

QM̃k−2
) (B.173)

...

≤
k∑
i=1

I(M̃i; Ỹ
n
i ) (B.174)

=

k∑
i=1

n∑
t=1

I(M̃i; Ỹi,t|Ỹ t−1
i ) (B.175)
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≤
k∑
i=1

n∑
t=1

I(M̃iỸ
t−1

0 · · · Ỹ t−1
K ; Ỹi,t|) (B.176)

=

k∑
i=1

n∑
t=1

I(Ũi,t; Ỹi,t) (B.177)

=

k∑
i=1

nI(Ũi,T ; Ỹi,T |T ) (B.178)

≤ n
k∑
i=1

I(Ui; Ỹi). (B.179)

Here (B.172) is obtained by the data processing inequality for KL-divergence; (B.175) by the chain rule;

and (B.177)�(B.179) by the de�nitions of Ũi,t, Ui, Ỹi and T .

Combined with (B.170) this establishes Inequality (4.225) for any k ∈ {1, . . . ,K}. Finally, we proceed

to prove that for any k ∈ {1, . . . ,K} the Markov chain Uk → Ỹk−1 → Ỹk holds in the limit as n→∞. We

start by noticing the Markov chain M̃1 → Ỹ n
0 → (Ỹ n

1 , · · · , Ỹ n
K), and thus:

0 = I(M̃1; Ỹ n
1 · · · Ỹ n

K |Ỹ n
0 ) (B.180)

≥ H(Ỹ n
1 · · · Ỹ n

K |Ỹ n
0 )−H(Ỹ n

1 · · · Ỹ n
K |Ỹ n

0 M̃1) +D(PỸ n0 ···Ỹ nK
||PnY0···YK ) + log ∆n (B.181)

≥ n[H(Ỹ1,T · · · ỸK,T |Ỹ0,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )] + log ∆n −H(Ỹ n
1 · · · Ỹ n

K |Ỹ n
0 M̃1) (B.182)

≥ n[H(Ỹ1,T · · · ỸK,T |Ỹ0,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )] + log ∆n

−
n∑
t=1

H(Ỹ1,t · · · ỸK,t|Ỹ0,tỸ
t−1

0 · · · Ỹ t−1
K Ỹ n

0,t+1M̃1) (B.183)

= n[H(Ỹ1,T · · · ỸK,T |Ỹ0,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )] + log ∆n

−nH(Ỹ1,T · · · ỸK,T |Ỹ0,T Ỹ
T−1

0 · · · Ỹ T−1
K Ỹ n

0,T+1M̃1T ) (B.184)

≥ nI(Ỹ1,T · · · ỸK,T ; Ỹ T−1
0 · · · Ỹ T−1

K Ỹ n
0,T+1M̃1T |Ỹ0,T ) + log ∆n (B.185)

≥ nI(Ỹ1 · · · ỸK ; Ũ1|Y0) + log ∆n, (B.186)

where (B.182) holds by the super-additivity property in [36, Proposition 1]; (B.183) by the chain rule;

(B.185) by the non-negativity of the Kullback-Leibler divergence.

Since ∆n is bounded, 1
n log ∆n tends to 0 as n→∞, and we can conclude that

lim
n→∞

I(Ỹ1 · · · ỸK ; Ũ1|Ỹ0) = 0, (B.187)

thus proving (4.223) for k = 1.

Notice next that for any k ∈ {2, . . . ,K}:

I(Uk; Ỹk|Ỹk−1) ≤ I(UkỸ0 · · · Ỹk−2; Ỹk|Ỹk−1) (B.188)
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= I(Uk; Ỹk|Ỹ0 · · · Ỹk−1) + I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1). (B.189)

In the following we show that both quantities I(Uk; Ỹk|Ỹ0 · · · Ỹk−1) and I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1) tend to 0 as

n→∞, which establishes (4.223) for k ∈ {2, . . . ,K}.

To prove that I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1) tends to 0 as n→∞, we notice that for any k ∈ {2, . . . ,K}:

D(PỸ0···ỸK ||PY0···YK )

≥ D(PỸ0···Ỹk ||PY0···Yk) (B.190)

= D(PỸ0···Ỹk ||PY0···Yk−1
PYk|Yk−1

) (B.191)

= D(PỸ0···Ỹk ||PỸ0···Ỹk−1
PỸk|Ỹk−1

) + EPỸk−1

[
D(PỸk|Ỹk−1

||PỸk|Ỹk−1
)
]

+D(PỸ0···Ỹk−1
||PY0···Yk−1

) (B.192)

≥ D(PỸ0···Ỹk ||PỸ0···Ỹk−1
PỸk|Ỹk−1

) (B.193)

= I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1). (B.194)

Since the tuple (Ỹ0 · · · ỸK) lies in the jointly typical set T (n)
µn (PY0···YK ):

|PỸ0···ỸK − PY0···YK | ≤ µn. (B.195)

Recalling that µn ↓ 0 as n → ∞, and by the continuity of the KL-divergence, we conclude that

D(PỸ0···ỸK ||PY0···YK ) tends to 0 as n → ∞, and thus by (B.194) and the nonnegativity of mutual infor-

mation:

lim
n→∞

I(Ỹ0 · · · Ỹk−2; Ỹk|Ỹk−1) = 0. (B.196)

Following similar steps to (B.180)�(B.185), we further obtain:

0 = I(M̃k; Ỹ
n
k · · · Ỹ n

K |Ỹ n
0 · · · Ỹ n

k−1) (B.197)

≥ H(Ỹ n
k · · · Ỹ n

K |Ỹ n
0 · · · Ỹ n

k−1)− H(Ỹ n
k · · · Ỹ n

K |Ỹ n
0 · · · Ỹ n

k−1M̃k) + log ∆n

+ D(PỸ n0 ···Ỹ nK
||PnY0···YK ) (B.198)

≥ n[H(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )] + log ∆n

−H(Ỹ n
k · · · Ỹ n

K |Ỹ n
0 · · · Ỹ n

k−1M̃k) (B.199)

≥ n[H(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T ) +D(PỸ0,T ···ỸK,T ||PY0···YK )] + log ∆n

−
n∑
t=1

H(Ỹk,t · · · ỸK,t|Ỹ0,t · · · Ỹk−1,tỸ
t−1

0 · · · Ỹ t−1
K Ỹ n

0,t+1 · · · Ỹ n
k−1,t+1M̃k) (B.200)

≥ nH(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T ) + log ∆n

−nH(Ỹk,T · · · ỸK,T |Ỹ0,T · · · Ỹk−1,T Ỹ
T−1

0 · · · Ỹ T−1
K Ỹ n

0,T+1 · · · Ỹ n
k−1,T+1M̃kT ) (B.201)

149



150 B.9. PROOF OF LEMMA 7

≥ nI(Ỹk,T · · · ỸK,T ; Ỹ T−1
0 · · · Ỹ T−1

K M̃kT |Ỹ0,T · · · Ỹk−1,T ) + log ∆n (B.202)

= nI(Ỹk · · · ỸK ;Uk|Ỹ0 · · · Ỹk−1) + log ∆n. (B.203)

Since ∆n is bounded, 1
n log ∆ tends to 0 as n→∞, and we can conclude that

lim
n→∞

I(Ỹk · · · ỸK ; Ũk|Yk − 1) = 0. (B.204)

Combined with (4.66), (B.196), and the nonnegativity of mutual information, this proves (4.223) for k ∈

{2, . . . ,K}.

B.9 Proof of Lemma 7

To show su�ciency of (4.246), start by �xing any set of nonnegative numbers {σI}I∈P(3), and

{RI,1, . . . , RI,`∗I}I∈P(3) satisfying (4.202) for K = 3, (and possibly violating (4.246)). Choose new nonneg-

ative numbers σ̃{1,2,3}, σ̃{π(1),π(2)}, σ̃{π(1),π(3)}, σ̃{π(1)} satisfying

σ̃I ≤ σI , ∀I : π(1) ∈ I, (B.205)

σ̃{1,2,3} + σ̃{π(1),π(2)} ≥ 1− επ(1) − επ(2) (B.206)

σ̃{1,2,3} + σ̃{π(1),π(3)} ≥ 1− επ(1) − επ(3) (B.207)

and

σ̃{1,2,3} + σ̃{π(1),π(2)} + σ̃{π(1),π(3)} + σ̃{π(1)} = 1− επ(1). (B.208)

The existence of the desired numbers can be checked by applying the Fourier-Motzkin Elimination algorithm

[52] and by noting Constraints (4.202). Further choose for any set I containing π(1) and ` ∈ {1, . . . , `∗I}

the rate:

R̃I,` := RI,`, (B.209)

and for any set I not containing π(1) and ` ∈ {1, . . . , `∗I}:

σ̃I := σI + σIπ(1) − σ̃Iπ(1) (B.210)

R̃I,` :=
σI
σ̃I
RI,` +

σIπ(1) − σ̃Iπ(1)
σ̃I

RIπ(1),`, (B.211)

where we de�ned Iπ(1) := I ∪ {π(1)}.

By Lemma 5, the new set of numbers {σ̃I}I∈P(3), and {R̃I,1, . . . , R̃I,`∗I}I∈P(3) also satis�es Constraints

(4.202), which proves that one can restrict to numbers {σI}I∈P(3) satisfying (4.246). Since επ(1) ≥ επ(2)
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and

σ{1,2,3} + σ{π(1),π(2)} + σ{π(2),π(3)} + σ{π(2)} ≥ 1− επ(2), (B.212)

this further implies that one can restrict to numbers {σI}I∈P(3) satisfying

σ{π(2),π(3)} ≥ σ{π(1),π(3)} + σ{π(1)} − σ{π(2)} (B.213)

≥ σ{π(1),π(3)} − σ{π(2)} − σ{π(1),π(2)}. (B.214)

We next show that one can further restrict to nonnegative numbers satisfying also (4.247). To this end,

assume that (4.247) is violated and de�ne

a := σ̃{π(1),π(3)} − σ̃{π(2)} − σ̃{π(1),π(2)} > 0. (B.215)

De�ne also the new parameters

σ′{1,2,3} := σ̃{1,2,3} + a (B.216)

σ′{π(3)} := σ̃{π(3)} + a (B.217)

σ′{π(1),π(3)} := σ̃{π(1),π(3)} − a (B.218)

σ′{π(2),π(3)} := σ̃{π(2),π(3)} − a (B.219)

σ′I := σ̃I , π(3) /∈ I, (B.220)

and the new rates

R′{1,2,3},` =
a
(
λ`R̃{π(1),π(3)},` + (1− λ`)R̃{π(2),π(3)},`

)
σ′{1,2,3}

+
σ̃{1,2,3}R̃{1,2,3},`

σ′{1,2,3}
, ` ∈ {1, 2, 3}, (B.221a)

R′{π(3)},` =
a
(

(1− λ`)R̃{π(1),π(3)},` + λ`R̃{π(2),π(3)},`

)
σ′{π(3)}

+
σ̃{π(3)}R̃{π(3)},`

σ′{π(3)}
, ` ∈ {1, . . . , π(3)} (B.221b)

R′I,` = R̃I,`, I ∈ P(3)\{{1, 2, 3}, {π(3)}}. (B.221c)

Notice that by the de�nition of a in (B.215) and by (B.214), the parameters {σ′I} are all nonnegative, and

it is easily veri�ed that they continue to satisfy (4.202) for any choice of λ1, λ2, λ3 ∈ [0, 1].

We next choose the parameters λ1, λ2, λ3 ∈ [0, 1] in function of the rates {R̃I,`} and the ordering π(·),

and show that for the proposed choice of rates in (B.221), the exponents θ1, θ2, θ3 are only increased. We

distinguish three cases.

For notational simplicity we assume π(1) < π(2). (The proof for π(1) > π(2) is analogous.) This implies

that

1 = π(1) < π(3) or 1 = π(3) < π(2) = 2 (B.222)
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and

2 = π(2) < π(3) = 3 or π(3) < π(2) = 3. (B.223)

Case 1: If

η1

(
R̃{π(1),π(3)},1

)
≤ η1

(
R̃{π(2),π(3)},1

)
, (B.224)

choose

λ` = 0, ` ∈ {1, . . . , π(3)}, (B.225)

λ` = 1

{
R̃{π(1),π(3)},` ≥ R̃{π(2),π(3)},`

}
, ` ∈ {π(3) + 1, . . . , 3}. (B.226)

Using the same proof steps as in Lemma 5, it can be shown that for this choice of the λs the new rates in

(B.221) still satisfy Constraint (4.202a) for θπ(3) because λ1 = · · · = λπ(3) = 0.

To see that they satisfy (4.202a) also for θπ(1), notice that:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.227)

≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}
η1

(
R̃{π(2),π(3)},1

)
+

a

σ′{1,2,3}
1 {π(1) = 2} ·max

{
η2

(
R̃{π(1),π(3)},2

)
, η2

(
R̃{π(2),π(3)},2

)}

+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.228)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) . (B.229)

where the second inequality holds by Assumption (B.224) and the third inequality holds by the de�nitions

of the rates {R′{1,2,3},`} and by the concavity and monotonicity of the functions {η`(·)}.

Similarly, we notice for θπ(2):

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (B.230)

≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

min{π(2),π(3)}∑
`=1

η`

(
R̃{π(2),π(3)},`

)
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+
a

σ′{1,2,3}

π(2)∑
`=π(3)+1

max
{
η`

(
R̃{π(1),π(3)},`

)
, η`

(
R̃{π(2),π(3)},`

)}

+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (B.231)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) , (B.232)

where notice that the sum in the second line of (B.231) is empty when π(2) ≤ π(3). Here, the last

inequality holds by the de�nitions of the rates {R′{1,2,3},`} and by the choice of the λs and the concavity

and monotonicity of the functions {η`(·)}`.

Case 2: If
2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
≤

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
, (B.233)

choose

λ` = 1, ` ∈ {1, . . . ,max{2, π(3)}}, (B.234)

λ` = 1

{
R̃{π(1),π(3)},` ≥ R̃{π(2),π(3)},`

}
, ` ∈ {max{2, π(3)}+ 1, . . . , 3}. (B.235)

Using similar arguments as in the previous case, one can conclude that the new rates in (B.221) still satisfy

(4.202a). More speci�cally, since λ1 = · · · = λπ(3) = 1 by (B.234), similar proof steps as in Lemma 5 can

be used to show that (4.202a) holds for θπ(3).

To see that (4.202a) holds for θπ(2), recall that π(2) ≥ 2 and notice:

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (B.236)

≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+

a

σ′{1,2,3}
1{π(2) = 3} ·max

{
η3

(
R̃{π(1),π(3)},3

)
, η3

(
R̃{π(2),π(3)},3

)}

+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.237)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) , (B.238)

where the second inequality holds by our assumption (B.233) and since π(2) ≥ 2.
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Finally, (4.202a) holds for θπ(1), because:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.239)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) . (B.240)

where the second inequality holds by the assumption π(1) < π(2) and thus π(1) ≤ 2.

Case 3: Else, i.e., if

η1

(
R̃{π(1),π(3)},1

)
> η1

(
R̃{π(2),π(3)},1

)
(B.241)

and
2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
<

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
. (B.242)

Choose

λ1 = 1, λ2 = λ, and λ3 = 0, (B.243)

for a value of λ ∈ [0, 1] so that the auxiliary rates

R̄{π(1),π(3)},2 := λR{π(1),π(3)},2 + (1− λ)R{π(2),π(3)},2 (B.244)

R̄{π(2),π(3)},2 := (1− λ)R{π(1),π(3)},2 + λR{π(2),π(3)},2 (B.245)

satisfy

η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

)
=

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
(B.246)

η1

(
R̃{π(2),π(3)},1

)
+ η2

(
R̄{π(2),π(3)},2

)
≥

2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
. (B.247)

Existence of the desired choice of λ can be seen as follows. Notice �rst that for λ = 0, relation (B.246)

holds with a “ > ” sign because of Assumption (B.241). For λ = 1, relation (B.246) holds with a “ < ”

sign because of Assumption (B.242). By the continuity of the functions {η`(·)} and the intermediate value

theorem, there is thus a value λ ∈ (0, 1) such that (B.246) holds with equality. Let λ be this value and

notice that by the concavity of the functions {η`(·)}:

η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

)
+ η1

(
R̃{π(2),π(3)},1

)
+ η2

(
R̄{π(2),π(3)},2

)
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≥
2∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+

2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
, (B.248)

which combined with (B.246) implies (B.247).

Now that we established the existence of the desired value λ, we continue to show that for the choice in

(B.243), Constraints (4.202a) remain valid. For θπ(1) this can be veri�ed through the following steps, where

recall that π(1) ≤ 2:

min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.249)

= min


π(1)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{1,2,3}

(
η1

(
R̃{π(1),π(3)},1

)
+ 1 {π(1) = 2} · η2

(
R̄{π(1),π(3)},2

) )

+
σ̃{1,2,3}

σ′{1,2,3}

π(1)∑
`=1

η`

(
R̃{1,2,3},`

) (B.250)

≤ min


π(1)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(1)∑
`=1

η`

(
R′{1,2,3},`

) , (B.251)

where the second inequality holds since π(1) ≤ 2, and by (B.242) and (B.246), and the last inequality holds

by the de�nitions of the rates {R′{1,2,3},`}, the choice of the λs, and the concavity and monotonicity of the

functions {η`(·)}.

To verify that Constraint (4.202a) remains valid for θπ(2), recall that π(2) ≥ 2 and notice:

min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (B.252)

= min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

(
2∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+ 1 {π(2) = 3} · η3

(
R̃{π(2),π(3)},3

))

+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

) (B.253)

= min


π(2)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

(
η1

(
R̃{π(1),π(3)},1

)
+ η2

(
R̄{π(1),π(3)},2

))

+
a

σ′{1,2,3}
1 {π(2) = 3} · η3

(
R̃{π(2),π(3)},3

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(2)∑
`=1

η`

(
R̃{1,2,3},`

)
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(B.254)

≤ min


π(2)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(2)∑
`=1

η`

(
R′{1,2,3},`

) . (B.255)

Here, the second equality holds by (B.246).

Finally, to see that Constraint (4.202a) is also satis�ed for θπ(3), we distinguish two cases. If π(3) = 1,

the proof is similar to the proof of Lemma 5 because λ1 = 1. For the proof in the case π(3) ≥ 2, notice

�rst:

min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

π(3)∑
`=1

η`

(
R̃{1,2,3},`

)
≤ min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{1,2,3},`

) (B.256)

= min


π(3)∑
`=1

η`

(
R̃{π(2),π(3)},`

)
,

a

σ′{1,2,3}
η1

(
R̃{π(1),π(3)},1

)
+

a

σ′{1,2,3}
η2

(
R̄{π(1),π(3)},2

)

+
a

σ′{1,2,3}
1{π(3) = 3} · η`

(
R̃{π(2),π(3)},`

)
+
σ̃{1,2,3}

σ′{1,2,3}

π(3)∑
`=1

η`

(
R̃{1,2,3},`

)
(B.257)

≤ min


π(3)∑
`=1

η`

(
R′{π(2),π(3)},`

)
,

π(3)∑
`=1

η`

(
R′{1,2,3},`

) , (B.258)

where the equality holds by Assumption (B.246).

Notice further that

min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

π(3)∑
`=1

η`

(
R̃{π(3)},`

)
≤ min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
+
σ̃{π(3)}

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{π(3)},`

) (B.259)

≤ min


π(3)∑
`=1

η`

(
R̃{π(1),π(3)},`

)
,

a

σ′{π(3)}
η1

(
R̃{π(2),π(3)},1

)
+

a

σ′{π(3)}
η2

(
R̄{π(2),π(3)},2

)

+
a

σ′{π(3)}
1{π(3) = 3} · η3

(
R̃{π(1),π(3)},3

)
+
σ̃{π(3)}

σ′{π(3)}

π(3)∑
`=1

η`

(
R̃{π(3)},`

)
(B.260)

≤ min


π(3)∑
`=1

η`

(
R′{π(1),π(3)},`

)
,

π(3)∑
`=1

η`

(
R′{π(3)},`

) , (B.261)

where the second inequality holds by (B.247).
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Appendix C

Proofs for Chapter 5

C.1 Analysis of the coding scheme in Subsection 5.5.1

Let ĤI,i denote the hypothesis guessed by Ri, for i ∈ {1, 2}, and RI,i the maximum rate of message Mi,

for i ∈ {0, 1, 2}, when the scheme in [28] is employed with auxiliaries (UI,0, UI,1, UI,2), for I ∈ P(2), to the

present setup. By assumption, the type-I error probabilities of these schemes tend to 0 as n→∞:

lim
n→∞

Pr[Ĥ{1},1 = 1|H = 0] = 0, (C.1a)

lim
n→∞

Pr[Ĥ{2},2 = 1|H = 0] = 0, (C.1b)

lim
n→∞

Pr[Ĥ{1,2},k = 1|H = 0] = 0, k ∈ {1, 2}. (C.1c)

We can then write:

α1,n = Pr[Ĥ1 = 1|H = 0] (C.2)

= Pr[Ĥ1 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{1}|H = 0]

+ Pr[Ĥ1 = 1, Y n
0 ∈ D{1,2}|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{2}|H = 0] (C.3)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1},1 = 1, Y n

0 ∈ D{1}|H = 0]

+ Pr[Y n
0 ∈ D{2}|H = 0] + Pr[Ĥ{1,2},1 = 1, Y n

0 ∈ D{1,2}|H = 0] (C.4)

≤ Pr[Y n
0 ∈ D∅] + Pr[Y n

0 ∈ D{2}] + Pr[Ĥ{1},1 = 1|H = 0] + Pr[Ĥ{1,2},1 = 1|H = 0] (C.5)

Combining this inequality with (C.1), and because in the limit n → ∞ Inequalities (5.30) turn into

equalities, we conclude by (5.28) that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α1,n ≤ 1− σ{1,2} − σ{1} ≤ ε1. (C.6)
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Analogously, we have

α2,n = Pr[Ĥ2 = 1|H = 0] (C.7)

= Pr[Ĥ2 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ2 = 1, Y n

0 ∈ D{1}|H = 0]

+ Pr[Ĥ2 = 1, Y n
0 ∈ D{1,2}|H = 0] + Pr[Ĥ2 = 1, Y n

0 ∈ D{2}|H = 0] (C.8)

= Pr[Y n
0 ∈ D∅|H = 0] + Pr[Ĥ{1,2},2 = 1, Y n

0 ∈ D{1,2}|H = 0]

+ Pr[Y n
0 ∈ D{1}|H = 0] + Pr[Ĥ{2},2 = 1, Y n

0 ∈ D{2}|H = 0] (C.9)

≤ Pr[Y n
0 ∈ D∅] + Pr[Y n

0 ∈ D{1}] + Pr[Ĥ{2},2 = 1|H = 0] + Pr[Ĥ{1,2},2 = 1|H = 0] (C.10)

Again combining this inequality with (C.1), and because in the limit n → ∞ Inequalities (5.30) turn into

equalities, we conclude by (5.28) that the overall scheme satis�es the type-I error constraint:

lim
n→∞

α2,n ≤ 1− σ{1,2} − σ{2} ≤ ε2. (C.11)

For the type-II error probabilities we obtain

β1,n = Pr[Ĥ1 = 1|H = 0] (C.12)

= Pr[Ĥ1 = 1, Y n
0 ∈ D∅|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{1,2}|H = 0]

+ Pr[Ĥ1 = 1, Y n
0 ∈ D{1}|H = 0] + Pr[Ĥ1 = 1, Y n

0 ∈ D{2}|H = 0] (C.13)

= Pr[Ĥ{1,2},1 = 1, Y n
0 ∈ D{1,2}|H = 0] + Pr[Ĥ{1},1 = 1, Y n

0 ∈ D{1}|H = 0] (C.14)

≤ Pr[Ĥ{1,2},1 = 1|H = 0] + Pr[Ĥ{1},1 = 1|H = 0] (C.15)

and analogously

β2,n ≤ Pr[Ĥ{1,2},2 = 1|H = 0] + Pr[Ĥ{2},2 = 1|H = 0]. (C.16)

Taking logarithms, dividing by the blocklength n, and letting n→∞, we then obtain for i ∈ {1, 2}:

lim
n→∞

− 1

n
log βi,n = min

{
lim
n→∞

− 1

n
log Pr[Ĥ{1,2},i = 1|H = 0], lim

n→∞
− 1

n
log Pr[Ĥ{i},i = 1|H = 0]

}
(C.17)

= min
{
I(U{1,2},0U{1,2},i;Yi), I(U{i},0U{i},i;Yi)

}
, (C.18)

where the last equality holds by the error exponents derived in [28] for each employment under the event

Y n
0 ∈ DI (I ∈ P(2)) of the optimal scheme with vanishing type-I error probabilities and respecting

maximum-rate constraints (RI,0, RI,1, RI,2). Note that we set R{1},2 and R{2},1 to be approximately 0

(two bits do not impact the communication rate as the blocklength n grows largely).
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In fact, the expected lengths of the messages are given by

E[len(M0)] ≤ 2 +
∑
I∈P(2)

σI · nRI,0 (C.19)

and for i ∈ {1, 2}

E[len(Mi)] ≤ σ{1,2}nR{1,2},i + σ{i}nR{i},i. (C.20)

Since the chosen random variables U{1,2},0, U{1,2},1, U{1,2},2, U{1},0, U{1},1, U{2},0, U{2},2 and probabilities

σ{1,2}, σ{1}, σ{2} satisfy Conditions (5.23)�(5.24), and since by [28] , for i ∈ {1, 2} and I ∈ P(2)

R̃I,0 = I(UI,0;Y0) + µ, (C.21)

R̃{1,2},i = I(U{1,2},i;Y0|U{1,2},0) + µ, (C.22)

R̃{i},i = I(U{i},i;Y0|U{i},0) + µ, (C.23)

for an arbitrary small µ > 0, we conclude that in the limit n → ∞ and µ ↓ 0 the expected lengths of the

messages satisfy the rate constraints (5.3).

C.2 Proof of Lemma 9

Throughout this section, let hb(·) denote the binary entropy function, and D(P‖Q) the Kullback-Leibler

divergence between two pmfs on the same alphabet. Note �rst that by (5.41):

D(PỸ n0
‖PnY0) ≤ log ∆−1

n , (C.24)

where we de�ned ∆n , PY n0 (D).

Further de�ne Ũ0,t , (M̃0, Ỹ
t−1

0 ) and Ũ1,t , M̃1, Ũ2,t , M̃2 and notice:

H(M̃0) ≥ I(M̃0; Ỹ n
0 ) +D(PỸ n0

‖PnY0) + log ∆n (C.25)

= H(Ỹ n
0 ) +D(PỸ n0

‖PnY0)−H(Ỹ n
0 |M̃0) + log ∆n (C.26)

≥ n[H(Ỹ0,T ) +D(PỸ0,T ‖PY0)]−
n∑
t=1

H(Ỹ0,t|Ũ0,t) + log ∆n (C.27)

= n[H(Ỹ0,T ) +D(PỸ0,T ‖PY0)−H(Ỹ0,T |Ũ0,T , T )] + log ∆n (C.28)

≥ n[H(Ỹ0,T )−H(Ỹ0,T |Ũ0,T , T )] + log ∆n (C.29)

= n[I(Ỹ0;U0) +
1

n
log ∆n]. (C.30)

Here, (C.25) holds by (C.24); (C.27) holds by the super-additivity property in [36, Proposition 1], by the

chain rule, and by the de�nition of Ũ0,t; (C.28) by de�ning T uniform over {1, . . . , n} independent of all
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other random variables; and (C.30) by the de�nitions of U0 and Ỹ0 in the lemma.

We lower bound the entropy of M̃1 and M̃2 for i ∈ {1, 2}:

H(M̃i) ≥ I(M̃i; Ỹ
n

0 |M̃0) (C.31)

≥
n∑
t=1

I(M̃i; Ỹ0,t|M̃0Ỹ
t−1

0 ) (C.32)

= nI(Ui; Ỹ0,T |Ũ0,T , T ) (C.33)

= nI(Ui; Ỹ0|U0) (C.34)

where (C.31) holds since conditioning can only reduce entropy and since M̃i is a function of Ỹ n
0 , and

(C.33)�(C.34) hold by the de�nitions of Ũ0,T , U1, U2, Ỹ0, and U0.

We next upper bound the error exponents at the decision centers. In the following, we note that the

pair (m0,mi) is always determined as a function of yn0 .

De�ne for i ∈ {1, 2}

AYi,n(m0,mi) , {yni : g
(n)
i (m0,mi, y

n
i ) = 0}, (C.35)

and its Hamming neighborhood:

Â`nYi,n(m0,mi) , {ỹni : ∃ yni ∈ AYi,n(m0,mi) s.t. dH(yni , ỹ
n
i ) ≤ `n} (C.36)

for some real number `n satisfying limn→∞ `n/n = 0 and limn→∞ `n/
√
n =∞, and where dH(·, ·) represents

the hamming distance between two sequences. Since by Condition (5.44),

PỸ ni |Ỹ n0
(AYi,n(m0,mi)|yn0 ) ≥ η, ∀yn0 ∈ D, (C.37)

by the blowing-up lemma [40]:

PỸ ni |Ỹ n0

(
Â`nYi,n(m0,mi)|yn0

)
≥ 1− ζn, ∀yn0 ∈ D, (C.38)

for a real number ζn > 0 such that lim
n→∞

ζn = 0.

De�ne

AYi,n ,
⋃

(m0,mi)∈M0×Mi

{m0,mi} × AYi,n(m0,mi) (C.39)

and

Â`nYi,n ,
⋃

(m0,mi)∈M0×Mi

{m0,mi} × Â`nYi,n(m0,mi), (C.40)

and notice that

PM̃0M̃iỸ ni
(Â`nYi,n) =

∑
yn0 ∈D

PỸ n0
(yn0 ) · PỸ ni |Ỹ n0 (Â`nYi,n(m0,mi)|yn0 ) (C.41)
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≥ (1− ζn). (C.42)

Finally, we can write

PM̃0M̃i
PỸ ni

(
Â`nYi,n

)
≤ PM0Mi

PnYi

(
Â`nYi,n

)
∆−2
n (C.43)

=
∑

(m0,mi)∈
M0×Mi

PM0Mi
(m0,mi)P

n
Yi

(
Â`nYi,n(m0,mi)

)
∆−2
n (C.44)

≤
∑

(m0,mi)∈
M0×Mi

PM0Mi
(m0,mi)P

n
Yi (AYi,n(m0,mi)) · enhb(`n/n)|Yi|`nk`nn ∆−2

n (C.45)

= βi,ne
nδn , (C.46)

where δn , hb(`n/n)+ `n
n log(|Yi| ·kn)− 2

n log ∆n and kn , min
yi,y
′
i:

PYi (y
′
i)>0

PYi (yi)

PYi (y
′
i)
. Here, (C.46) holds by [44, Proof

of Lemma 5.1].

Combining (C.46) with (C.42) and standard inequalities (see [20, Lemma 1]), we then obtain:

− 1

n
log βi,n ≤ −

1

n
log
(
PM̃0M̃i

PỸ ni

(
Â`nYi,n

))
+ δn (C.47)

≤ 1

n(1− ζn)
D(PM̃0M̃iỸ ni

‖PM̃0M̃i
PỸ ni

) + δn +
1

n
, (C.48)

where ζn and δn both tend to 0 as n→∞. We continue to upper bound the divergence term as

D(PM̃0M̃iỸ ni
‖PM̃0M̃i

PỸ ni
) = I(M̃0M̃i; Ỹ

n
i ) (C.49)

=
n∑
t=1

I(M̃0M̃i; Ỹi,t|Ỹ t−1
i ) (C.50)

≤
n∑
t=1

I(M̃0M̃iỸ
t−1

0 ; Ỹi,t) (C.51)

= n[I(Ũ0,TUi; Ỹi,T |T )] (C.52)

≤ n[I(Ũ0,TTUi; Ỹi,T )] (C.53)

= n[I(U0Ui; Ỹi)]. (C.54)

Here, (C.50) holds by the chain rule; (C.51) by the Markov chain Ỹ t−1
i → (Ỹ t−1

0 M̃0M̃i) → Ỹi,t; and

(C.52)�(C.54) by the de�nitions of T, Ũ0,t, U0, Ui, Ỹi.

C.3 Strong Converse Proof to Theorem 15

Fix an exponent pair in E∗max(R0, R1, R2, ε1, ε2) and a sequence (in n) of encoding and decision functions

{(φ(n), g
(n)
1 , g

(n)
2 )} satisfying the constraints on the rate and the error probabilities in (5.7a), (5.7b), (5.7c).

161



162 C.3. STRONG CONVERSE PROOF TO THEOREM 15

Fix a positive η > 0 and a blocklength n and choose µn = n−2/3. De�ne for i ∈ {1, 2}, the sets

Bi(η) , {yn0 ∈ T (n)
µn (PY0) : Pr[Ĥi = 0|Y n

0 = yn0 ,H = 0] ≥ η}, i ∈ {1, 2}, (C.55)

D(η) , B1(η) ∩ B2(η). (C.56)

Further de�ne the probability

∆ , PY n0 (D(η)), (C.57)

and notice that by the laws of probability

∆ ≥ max{PY n0 (B1(η)) + PY n0 (B2(η))− 1, 0}. (C.58)

By (5.7a), it can further be shown that for i ∈ {1, 2}:

1− εi ≤
∑
yn0

Pr[Ĥi = 0|Y n
0 = yn0 ,H = 0] · PY n0 (yn0 ) (C.59)

≤
∑

yn0 ∈T
(n)
µn

Pr[Ĥi = 0|Y n
0 = yn0 ,H = 0] · PY n0 (yn0 ) +

∑
yn0 /∈T

(n)
µn

Pr[Ĥi = 0|Y n
0 = yn0 ,H = 0] · PY n0 (yn0 )(C.60)

≤
∑

yn0 ∈T
(n)
µn ∩B̄i(η)

Pr[Ĥi = 0|Y n
0 = yn0 ,H = 0] · PY n0 (yn0 ) +

∑
yn0 ∈Bi(η)

PY n0 (yn0 ) + (1− PnY0(T (n)
µn )) (C.61)

≤ η(1− PY n0 (Bi(η))) + PY n0 (Bi(η)) + PnY0(T (n)
µn ). (C.62)

Thus, by (C.62) and [44, Lemma 2.12]:

∆ ≥ max

{
1− ε1 − ε2 − η

1− η
− |Y0|

(1− η)µnn
, 0

}
, (C.63)

and we conclude that in the limit as n→∞ and η ↓ 0:

lim
η↓0

lim
n→∞

∆ ≥ max{1− ε1 − ε2, 0}. (C.64a)

We proceed by applying Lemma 9 to the set D(η) with positive probability ∆ > 0. By initial condition,

ε1 + ε2 < 1, and thus for η > 0 su�ciently small and n su�ciently large, by (C.64) ∆ is positive and

we can apply Lemma 4 to the set D(η). By this Lemma 9, and using also the maximum-rate constraints

(5.2), alongside the trivial inequality nRi ≥ H(M̃i), for all i ∈ {0, 1, 2}, we conclude that there is a tuple

(U0, U1, U2) satisfying

nR0 ≥ H(M̃0) ≥ nI(U0; Ỹ0) + logPY n0 (D(η)), (C.65)

nRi ≥ H(M̃i) ≥ nI(Ui; Ỹ0|U0), i ∈ {1, 2}, (C.66)
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and for i ∈ {1, 2} :

− 1

n
log βi,n≤ I(U0Ui; Ỹi) + øi(n), (C.67)

where for each i, the function øi(n) ↓ 0 as n→∞ and the random variables Ỹ0, Ỹi, M̃0, M̃i are de�ned as in

the lemma applied to the set D(η).

Thus we have proved so far that for all n ≥ 1 there exists joint pmf PU0U1U2Ỹ0Ỹ1Ỹ2
=

PỸ0PỸ1Ỹ2|Ỹ0PU0U1U2|Ỹ0 (abbreviated as P (n)) so that the following conditions hold for i ∈ {1, 2}

R0 ≥ IP (n)(U0; Ỹ0) + g1(n), (C.68a)

Ri ≥ IP (n)(Ui; Ỹ0|U0), (C.68b)

θi ≤ IP (n)(U0Ui; Ỹi),+g2,i(n), (C.68c)

for some nonnegative functions g1(n), g2,i(n) with the following asymptotic behaviors:

lim
n→∞

g1(n) = 0, (C.69)

lim
n→∞

g2,i(n) = 0, ∀i ∈ {1, 2}. (C.70)

The rest of the proof follows the same steps as the proof of the converse in Section 5.7. By Carathéodory's

theorem [48, Appendix C], there exist for each n random variables U0, U1, U2 satisfying (C.68) over alphabets

of sizes

|U0| ≤ |Y0|+ 3, (C.71)

|Ui| ≤ |U0| · |Y0|+ 1, i ∈ {1, 2}. (C.72)

Invoke the Bolzano-Weierstrass theorem and consider a sub-sequence P (nk)

U0U1U2Ỹ0Ỹ1Ỹ2
that converges to a

limiting pmf P ∗U0U1U2Y0Y1Y2
. For this limiting pmf, which we abbreviate by P ∗, we conclude by (C.68a)�

(C.68c) that for all i ∈ {1, 2}:

R0 ≥ IP ∗(U0;Y0), (C.73)

Ri ≥ IP ∗(Ui;Y0|U0), (C.74)

θi ≤ IP ∗(U0Ui;Yi). (C.75)

Notice further that since for any k, the sequence Ỹ nk
0 lies in the typical set T (nk)

µnk
(PY0), we have |P (nk)

Ỹ0
−PY0 | ≤

µnk and thus the limiting pmf satis�es P ∗Y0 = PY0 . Moreover, since for each nk the pair of random variables(
Ỹ1, Ỹ2

)
is drawn according to PY1Y2|Y0 given Ỹ0, the limiting pmf also satis�es P ∗Y1Y2|Y0 = PY1Y2|Y0 . We also

notice that under P ∗ the Markov chain (U0, U1, U2)→ Y0 → (Y1, Y2) holds.
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This concludes the strong converse proof.

C.4 Proof of Corollary 1

By Theorem 16, E∗(R0, 0, 0, ε1, ε2) is the set of all (θ1, θ2) pairs satisfying

θi ≤ min
{
I(U0;Yi), ηi

(
R{i},0

)}
, i ∈ {1, 2}. (C.76a)

for some nonnegative numbers σ{1,2}, σ{1}, σ{2}, with sum ≤ 1 and satisfying (5.35d) and (5.35e), a condi-

tional pmf PU0|Y0 , and nonnegative rates R{1},0, R{2},0 such that

R0 ≥ σ{1,2}I(U0;Y0) + σ{1}R{1},0 + σ{2}R{2},0. (C.76b)

Notice that without loss in optimality, in the evaluation of above region, we can restrict to tuples(
PU0|Y0 , R{1},0, R{2},0

)
satisfying

I(U0;Yi) ≥ ηi
(
R{i},0

)
, (C.77)

which by the maximum in the de�nition and by the non-decreasing monotonicity of function ηi(·) implies

I(U0;Y0) ≥ R{i},0, i ∈ {1, 2}. (C.78)

In fact, if (C.77) is violated, rates R{1},0 and/or R{2},0 can be reduced without changing (C.76a) and so

that (C.77) holds.

We next show that any exponent pair (θ1, θ2) and tuple (PU0|Y0 , R{1},0, R{2},0) satisfying (C.76), (C.77),

and

I(U0;Y0) ≤ R{π(1)},0 +R{π(2)},0 (C.79)

also satis�es (5.40). The constraints on the exponents (5.40a) and (5.40b) are easily veri�ed. To verify

(5.40c), notice that when σ{1,2} > 1− επ(1):

R0 ≥ σ{1,2}I(U0;Y0) + σ{π(1)}R{π(1)},0 + σ{π(2)}R{π(2)},0 (C.80)

= (1− επ(1))I(U0;Y0) + σ{π(1)}R{π(1)},0 + (σ{1,2} − 1 + επ(1))I(U0;Y0) + σ{π(2)}R{π(2)},0 (C.81)

≥ (1− επ(1))I(U0;Y0) + (επ(1) − επ(2))R{π(2)},0 (C.82)

where (C.82) holds since σ{π(1)}R{π(1)},0 ≥ 0, I(U0;Y0) ≥ R{π(2)},0 by (C.78), and σ{1,2}+σ{π(2)} ≥ 1−επ(2)

by (5.35d).

For σ{1,2} ≤ 1− επ(1), the rate constraint (5.40c) can be veri�ed as follows:

R0 ≥ σ{1,2}I(U0;Y0) + σ{π(1)}R{π(1)},0 + σ{π(2)}R{π(2)},0 (C.83)
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≥ σ{1,2}I(U0;Y0) + (1− επ(1) − σ{1,2})R{π(1)},0 + σ{π(2)}R{π(2)},0 (C.84)

≥ σ{1,2}I(U0;Y0) + (1− επ(1) − σ{1,2})
(
R{π(1)},0 +R{π(2)},0

)
+ (επ(1) − επ(2))R{π(2)},0 (C.85)

≥ (1− επ(1))I(U0;Y0) + (επ(1) − επ(2))R{π(2)},0 (C.86)

where (C.84) holds by (5.35d), indicating σ{π(1)} ≥ 1 − επ(1) − σ{1,2} (C.85) holds because σ{π(2)} ≥

1 − επ(2) − σ{1,2} by (5.35d), and (C.86) holds by (C.79) and by σ{1,2} ≤ 1 − επ(1). This establishes that

(C.76) holds under condition (C.79).

The proof is concluded by showing that for any tuple (θ1, θ2, PU0|Y0 , R{1},0, R{2},0) satisfying (C.76),

(C.77), and

I(U0;Y0) > R{π(1)},0 +R{π(2)},0, (C.87)

we can �nd a pmf PŨ0|Y0 , satisfying (5.40) when U0 is replaced by Ũ0.

To this end, choose a bivariate Ũ0 = (Ũ{1},0, Ũ{2},0) such that Ũ{1},0 → Y0 → Ũ{2},0 forms a Markov

chain and for each i ∈ {1, 2} the new random-variable Ũ{i},0 achieves ηi
(
R{i},0

)
, i.e.,

R{i},0 = I
(
Ũ{i},0;Y0

)
and ηi

(
R{i},0

)
= I
(
Ũ{i},0;Yi

)
. (C.88)

Since for any i ∈ {1, 2} we have I(Ũ0;Yi) ≥ I(Ũ{i},0;Yi) = ηi(R{i},0), the exponents satisfy

θπ(1) ≤ min
{
I
(
U0;Yπ(1)

)
, ηπ(1)

(
R{π(1)},0

)}
= ηπ(1)

(
R{π(1)},0

)
≤ I(Ũ0;Yπ(1)) (C.89)

θπ(2) ≤ min
{
I
(
U0;Yπ(2)

)
, ηπ(2)

(
R{π(2)},0

)}
= ηπ(2)

(
R{π(2)},0

)
(C.90)

= min
{
I
(
Ũ0;Yπ(2)

)
, ηπ(2)

(
R{π(2)},0

)}
, (C.91)

where the equalities in (C.89) and (C.90) hold by (C.77). Similarly,

R0 ≥ σ{1,2}I(U0;Y0) + σ{π(1)}R{π(1)},0 + σ{π(2)}R{π(2)},0 (C.92)

> (1− επ(1))R{π(1)},0 + (1− επ(2))R{π(2)},0 (C.93)

= (1− επ(1))I
(
Ũ{π(1)},0;Y0

)
+ (1− επ(2))I

(
Ũ{π(2)},0;Y0

)
(C.94)

≥ (1− επ(1))I
(
Ũ{π(1)},0;Y0

)
+ (1− επ(1))I

(
Ũ{π(2)},0;Y0|Ũ{π(1)},0

)
+ (επ(1) − επ(2))I

(
Ũ{π(2)},0;Y0

)
(C.95)

= (1− επ(1))I
(
Ũ0;Y0

)
+ (επ(1) − επ(2))I

(
Ũ{π(2)},0;Y0

)
(C.96)

where inequality (C.93) holds by the assumption that I(U0;Y0) > R{1},0 +R{2},0 and by condition (5.35d);

equality (C.94) holds by (C.88); inequality (C.95) holds by the Markov chain Ũ{1},0 → Y0 → Ũ{2},0; and

(C.96) holds by the chain rule and by the de�nition of Ũ0.
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Titre: Partage des ressources pour l'amélioration des tests d'hypothèses distribués

Mots clés: Tests d'hypothèses distribués; Exposants d'erreur; Contraintes de taux moyen; Capteurs; Centres
de décision; Partage du taux

Résumé: Les tests d'hypothèses distribués ont de
nombreuses applications dans la sécurité, la surveil-
lance de la santé, le contrôle automobile ou la détec-
tion d'anomalies. À l'aide de capteurs distribués, les
centres de décision de ces systèmes visent à distinguer
une situation normale (hypothèse nulle) d'une situa-
tion d'alerte (hypothèse alternative). Nous nous con-
centrons sur la maximisation de la décroissance ex-
ponentielle des probabilités d'erreur de type-II (corre-
spondant aux détections manquées), avec un nombre
croissant d'observations, tout en maintenant les prob-
abilités d'erreur de type-I (correspondant aux fausses
alertes) en dessous de seuils �xés. Dans cette thèse,
nous supposons que di�érents systèmes ou applica-
tions partagent les ressources limitées du réseau et
imposent des contraintes de taux moyen sur les liens
de communication. Nous caractérisons les premières
limites fondamentales de la théorie de l'information
sous des contraintes de taux moyen pour les systèmes

avec capteurs multiples et centres de décision multi-
ples. Notre caractérisation révèle un nouveau compro-
mis entre les exposants maximaux d'erreur de type-II
aux di�érents centres de décision qui découle des dif-
férentes marges à exploiter sous des contraintes de taux
moyen correspondant aux di�érents seuils d'erreur de
type-I des centres de décision. Nous proposons une
nouvelle stratégie de multiplexage et de partage du
taux pour atteindre ces exposants d'erreur. Notre
stratégie se généralise également à toute con�guration
avec des contraintes de taux moyen et permet d'obtenir
des gains prometteurs par rapport aux résultats sur la
même con�guration avec des contraintes de taux max-
imal. La méthode de preuve de "converse" que nous
utilisons pour caractériser ces limites théoriques peut
également être utilisée pour dériver de nouveaux résul-
tats de "converse forte" sous des contraintes de taux
maximal. Elle est même applicable à d'autres prob-
lèmes tels que la compression ou le calcul distribué.

Title: Sharing Resources for Enhanced Distributed Hypothesis Testing

Keywords: Distributed hypothesis testing; Error exponents; Expected-rate constraints; Sensors; Decision
centers; Rate-sharing

Abstract: Distributed hypothesis testing has many
applications in security, health monitoring, automo-
tive car control, or anomaly detection. With the help
of distributed sensors, the decision centers (DCs) in
such systems aim to distinguish between a normal sit-
uation (null hypothesis) and an alert situation (alter-
native hypothesis). Our focus will be on maximizing
the exponential decay of the type-II error probabilities
(corresponding to missed detections), with increasing
numbers of observations, while keeping the type-I er-
ror probabilities (corresponding to false alarms) below
given thresholds. In this thesis, we assume that dif-
ferent systems or applications share the limited net-
work resources and impose expected-rate constraints
on the system's communication links. We character-
ize the �rst information-theoretic fundamental limits

under expected-rate constraints for multi-sensor multi-
DC systems. Our characterization reveals a new trade-
o� between the maximum type-II error exponents at
the di�erent DCs that stems from di�erent margins to
exploit under expected-rate constraints corresponding
to the DCs' di�erent type-I error thresholds. We pro-
pose a new multiplexing and rate-sharing strategy to
achieve the error-exponents. Our strategy also gen-
eralizes to any setup with expected-rate constraints
with promising gains compared to the results on the
same setup under maximum-rate constraints. The con-
verse proof method that we use to characterize the
information-theoretic limits can also be used to derive
new strong converse results under maximum-rate con-
straints. It is even applicable to other problems such
as distributed compression or computation.
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