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General introduction 

With a production of 75.5 billion euros, France was the leading agricultural producer in 

the European Union in 2020 according to the statistical analysis of INSEE (National Institute 

of Statistics and Economic Studies). Agricultural activities produce not only an important 

source of food for humans but also feed for livestock and provide raw materials for many 

industrial sectors (biofuels, bioplastics, biomaterials, cosmetics, health, etc.). The major 

challenge for agriculture today and in the future is to improve the yield of plant productions and 

maintain the quality of the harvested products while being more environmentally friendly. To 

develop sustainable agriculture, French government projects such as “Ecophyto II+” aim to 

reduce the use of crop protection chemicals by 50% by 2025. Elimination of glyphosate was 

planned by the end of 2020 for its main uses and by 2022 for all kinds of uses 

(https://agriculture.gouv.fr/ecophyto). In addition, the cooperation of the French Institute 

INRAE and its German counterpart enabled the development of the “European Green Deal” 

project in 2020. One of the pillars of this project is the “2030 Biodiversity Strategy”, one of the 

main challenges  is to build agriculture free of chemical pesticides 

(https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en). In an agricultural 

region like Normandy where agriculture and agri-food industry are sectors with great potential, 

the demand for natural crop protection products is increasing day by day. In the context of 

reducing the use and risk of chemical pesticides, the characterization of the mechanisms 

involved in the natural defense systems of plants is necessary for the development of sustainable 

alternatives to the use of synthetic products in agricultural areas 

(https://world.businessfrance.fr/nordic/2020/06/09/the-future-of-agriculture-is-organic-and-in-

normandy/). 

While the defense mechanisms against pathogens have been well studied, this question 

has been largely investigated regarding the aerial parts of the plants, knowledge regarding the 

root system is still scarce (Chuberre et al., 2018). Differences were reported between immune 

responses in leaves and roots which makes it difficult to extrapolate data from the aerial part to 

the below-ground system. It is thus necessary to get a better understanding of the root system 

defense (Millet et al., 2010; Mauch-Mani et al., 2017). 

The rhizosphere is a privileged area of interactions between microbial flora and roots. 

More especially atypical living cells called “Root Border Cells” or root “associated, cap-derived 

cells (AC-DCs) embedded in their surrounding mucilage play a key role in root-soil borne 

microorganisms (Driouich et al., 2019). Root border cells are specialized in the production of 

https://agriculture.gouv.fr/ecophyto
https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en
https://world.businessfrance.fr/nordic/2020/06/09/the-future-of-agriculture-is-organic-and-in-normandy/
https://world.businessfrance.fr/nordic/2020/06/09/the-future-of-agriculture-is-organic-and-in-normandy/
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anti-microbial molecules including proteins and secondary metabolites. Interestingly, the 

mucilage released from the root cap of many plant species has been shown to act in conjunction 

with AC-DCs to form a structure defined as Root Extracellular Trap (RET) by analogy with the 

Neutrophil Extracellular Trap (NET) involved in mammalian immunity (Driouich et al., 2013). 

The RET has been shown to play a key role in root-microbe interactions (Hawes et al., 2000; 

Cannesan et al., 2012; Driouich et al., 2013; Hawes et al., 2016; Tran et al., 2016). Molecular 

characterization of the RET showed that polysaccharides such as pectins, mannans, 

glycoproteins (extensins), and proteoglycans (arabinogalactan proteins) are major components 

(Willats et al., 2001 ; Knee et al., 2001; Cannesan et al., 2012; Driouich et al., 2013; Plancot et 

al. 2013 ; Castilleux et al. 2018).  

The number of border cells produced and the composition of the mucilage were shown 

to be impacted in response to elicitors (flagellin 22, chitosan, peptidoglycan…) suggesting that 

a modulation of the RET is probably part of root immunity (Chuberre et al., 2018; Driouich et 

al., 2019). 

The evaluation of the role of plant- or microbial-derived carbohydrates in plant 

immunity has recently led to the concept of "Sweet-Immunity" (Bolouri Moghaddam and Van 

den Ende, 2013; Trouvelot et al., 2014; Tarkowski et al., 2019; Svara et al., 2020). Among 

carbohydrates capable of eliciting a defense response, fructans, which are water-soluble 

polymers of fructosyl residues linked by β-(2,1) and/or β-(2,6) linkages with one external or 

internal glucosyl residue, are considered as multi-functional molecules involved in the tolerance 

and resistance of plants against abiotic and biotic stresses (Vijn and Smeekens 1999; Ritsema 

and Smeekens 2003). Indeed, fructans, either of plant  or microbial (Versluys et al. 2017) origin 

were shown to activate plant immune responses. In plants, the synthesis of fructans is carried 

out from sucrose thanks to different fructosyltransferases (FTs) and their degradation by fructan 

exohydrolases (FEHs). Due to the phylogenetic proximity between FEHs and Cell Wall 

Invertase (CW-INV) which both belong to the glycoside hydrolase 32 (GH32) family, 

functional characterization of purified proteins shown that some of these genes initially 

identified as encoding CW-INVs actually encode proteins with FEH activity. Interestingly, 

some studies shown the presence of genes encoding enzymes with FEH activity in the genome 

of several non-fructan plants such as Beta vulgaris (Van den Ende et al. 2003b), Arabidopsis 

thaliana (At6&1FEH and At6-FEH; De Coninck et al. 2005), and Zea mays (Zhao et al. 2019). 

The role of these FEHs is unclear and one hypothesis is that these FEHs are defense-related 

proteins that play a role in plant-microorganism interactions by contributing to the production 
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of the Pathogenesis/Microbial-associated molecular pattern (P/MAMPs) from extracellular 

microorganism levans and/or by weakening the bacterial biofilm (Van den Ende et al., 2005). 

This hypothesis was recently supported by the fact that the FEH identified in maize (Zm-6&1-

FEH1) is localized in the apoplast, which would allow a direct action on microbial extracellular 

fructans (Zhao et al., 2019). It is also possible that following injury or pathogen attack causing 

disruption of the plasma membrane and/or tonoplast, vacuolar FEHs are discharged into the 

apoplast compartment. The FEHs thus present in the cell wall would be able to degrade the 

microbial fructans, leading to (i) a modification of the properties of the biofilm which could 

reduce virulence, and (ii) the release of fructose and fructooligosaccharides (FOSs) which could 

play the role of P/MAMPs. These P/MAMPs would be recognized by Pattern Recognition 

Receptors (PRR) thus triggering plant primary innate immunity (Pathogenesis Triggered 

Immunity, PTI). As a result, signaling cascades involving salicylic acid (SA), jasmonic acid 

(JA), and/or ethylene (ET) pathways would lead to the initiation of defense responses such as 

the synthesis of compounds with antimicrobial activity (Thakur and Sohal 2013; Rejeb et al., 

2014).  

In this context, one objective of my thesis work is to characterize the RET of perennial ryegrass 

and to determine whether fructans are part of the RET of the fructan-producing plants. For this, 

perennial ryegrass (Lolium perenne) was used as a fructan-producing plant model to 

characterize the biochemical composition of the RET using cytochemical approaches. In order 

to study the localization of fructans within the root system, it was first necessary to obtain 

antibodies specifically dedicated to fructan epitopes. Indeed, only two studies have reported the 

use of anti-fructan antibodies to localize fructans in plant tissues (Röber et al., 1996; Pilon-

Smits et al., 1996). In these two cases, antibodies were used for the immunolocalization of 

levans produced in transgenic potatoes through the expression of a bacterial levansucrase gene. 

Pilon-Smits et al. (1996) used mAbs produced in mouse (2-l-3mAb; Hall et al., 1990) while in 

the case of Röber et al. (1996), the provenance of the anti-levan antibody was not given. In both 

cases, the cellular localization of the fructans was investigated via immunofluorescence and 

shown the presence of fructans in the intercellular space instead of the expected vacuolar 

localization. To our knowledge, apart from these two studies which focused on transgenic plant 

producing fructans, the immunolocalization of fructans has not been reported, either in 

transgenic or in native fructan plant species. Moreover, no anti-fructan antibodies are currently 

available. Due to the absence of commercially available anti-fructan antibodies, we initiated 
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collaboration with the company BIOTEM to generate and characterize two new monoclonal 

antibodies (mAbs) directed against fructan epitopes. 

The specificities of these were analysed by dot blot on a wide range of oligo- and 

polysaccharides at the different steps of production. 

Besides, to clarify the roles of FEHs in non-fructan producing plants, we tested the 

hypothesis according to which FEHs are defense-related proteins whose synthesis is induced 

during the immune response in two non-fructan species, rapeseed (Brassica napus) and 

Arabidopsis thaliana. To do this, defense responses were stimulated by treatments of the roots 

with phytohormones or their precursors, namely SA, methyl jasmonate (MeJA), and the 

precursor of ethylene, the 1-aminocyclopropane-1-carboxylate (ACC) and gene expression of 

FEHs was measured. In addition, to assess the roles of plant FEHs and bacterial fructans 

(levans) in plant-microorganism interactions, we performed preliminary experiments with 

knock-out mutants of A. thaliana lacking FEH genes inoculated with two strains of the non-

pathogen root-colonizing bacterium Pseudomonas brassicacearum (strains with or without the 

levansucrase gene encoding the enzyme synthesizing levans). 

The experimentations were financially supported by Normandy County council and the 

European Union (in the framework of the ERDF-ESF operational program 2014-2020) through 

three regional research projects (EPURE, Enhancing Plant nutRition and Health, 2017-2019; 

NPT, Normandy Plant Tech, 2018-2021; and BEER, Bactéries, Exsudats Et Rhizodépôts, 2019-

2022). These projects were elaborated in collaboration by the three academic partners of the 

Normand federative research structure “NORVEGE” (SFR Normandie Végétal FED 4277FD) 

which are University of Caen Normandy (UMR INRAE 950 EVA), University of Rouen 

Normandy (UPRES-EA4358 Glyco-MEV and EA4312 LMSM) and UniLaSalle Polytechnic 

Institute (UP2018.C101 AGHYLE). These projects aim to improve crop production in terms of 

yield and quality through sustainable agroecological solutions that would eliminate (or at least 

limit) chemical inputs in agricultural practices. More precisely, these projects aim to contribute 

to a better knowledge of the mechanisms involved in plant nutrition and in root defense. The 

studies are carried out at different scales (whole plant, cell and molecular levels) and focus on 

plants of regional interest (notably rapeseed, pea, potato, and ryegrass) and a model plant 

(Arabidopsis thaliana). 

As a contribution to these research objectives, my thesis focused on three plants, 

rapeseed (Brassica napus), perennial ryegrass (Lolium perenne), and Arabidopsis thaliana. The 
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experimental work was carried out in two laboratories, one at the University of Caen Normandy 

(UMR INRAE 950 EVA “Ecophysiologie Végétale, Agronomie et nutrition N.C.S”) and one at 

the University of Rouen Normandy (UPRES-EA 4358 Glyco-MEV “Glycobiology and Plant 

Extracellular Matrix”) on the basis of the expertise of each research team. During the two first 

years of my thesis, my research was done at the University of Caen Normandy in EVA 

laboratory, within the FEAST (Fructans, Environment And Sugar Transport) team. It has 

focused on the studies of the role of FEHs in plant defense. In parallel, collaboration with 

BIOTEM was initiated to produce anti-fructan antibodies and I tested the specificity of sera and 

cell culture supernatants during the different stages of antibody production. During the third 

year of my thesis, my research has been achieved at the University of Rouen Normandy in 

GlycoMEV laboratory. The main topic of my work there was the characterization of the RET 

of perennial ryegrass as well as the analysis of specificity of the two anti-fructan mAbs 

produced by BIOTEM. 

During my thesis, I also had the opportunity to collaborate with the « Laboratoire 

d'Écologie Microbienne de la Rhizosphère et de l'Environnement Extrême » (LEMiRE, CEA, 

Cadarache). I spent two months (Oct-2019 to Dec-2019) under the supervision of Dr. Wafa 

Achouak who has the expertise to study the adaptive responses of bacteria to environmental 

fluctuations, as well as the regulation and expression of phytobeneficial traits of bacteria 

associated with plant roots. This expertise allowed me to perform Pseudomonas 

brassicacearum inoculation assays on A. thaliana seeds (wild-type and FEH knock-out 

mutants) and to monitor the effect of inoculation on root morphology and on root colonization 

by confocal microscopy. Before this research internship, I checked the homozygosity of the T-

DNA insertion mutants obtained at the Nottingham Arabidopsis Stock Centre (NASC, 

Nottingham UK. In addition, I had the opportunity of a short technical training (Feb-2020) on 

the crossing of A. thaliana by Dr. Magalie Uyttewall at the Jean-Pierre Bourgin Institute (IJPB, 

Versailles) to be able to generate double mutant lines. 

The agronomic perspective of this work is to provide new insights on the role of the 

fructan degrading enzymes FEHs in non-fructan accumulating species in particular and in plants 

in general, which could lead to the development of innovative strategies for crop protection. 

This manuscript is organized into five chapters: 

- A "literature review" on the plant defense mechanisms involving the Root 

Extracellular Trap (RET) model and on the metabolism of fructans in plants. This chapter is 
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completed by the presentation of the detailed objectives of this thesis and the different 

techniques used to achieve them. 

- A chapter on “materials and methods” introduces a detailed description of the 

biological materials and experimental conditions used in the microscopic analyses, 

biochemistry and molecular biology techniques. 

- The third chapter, organized in four parts, presents the "results" obtained during my 

thesis work and the three first parts are presented in the form of research articles. The first part 

presents the results on the new anti-fructan antibodies. The second part regroups the work on 

the characterization of the mucilage secreted and root border cells of perennial ryegrass (Lolium 

perenne). The third part concerns to the assessment of FEH as defense genes. Finally, the fourth 

part consists on additional promising results obtained at the CEA of Cadarache on the impact 

of FEHs in root defense via the degradation of bacterial fructans. 

- The last chapter on " discussion and perspectives” presents the key results of this 

work are compared to data from the literature with the major conclusions of this project and the 

hypothesis proposed for future work. 
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I. Literature review 

A. Plant cell wall - A constitutive defense barrier in plant immunity  

In their natural environment, plants have their own strategy to defend against numerous from 

biotic and abiotic threats (Panstruga et al., 2009; Miedes et al., 2014). Plant defense responses 

depend first on the innate immunity of each cell and from the systemic signals deriving from 

the infection sites (Dangl et al., 2001; Ausubel, 2005). Thus, as the first barrier facing the 

attacks, the wall that surrounds each plant cell plays an essential role in plant immunity to 

determine the penetration of the aggressor (Wan et al., 2021). These plant cell walls are mainly 

rich in polysaccharides but also contain proteins which promote the growth and development 

of the plant and also the protection from adverse environmental conditions (Fangel et al., 2012; 

Sakamoto et al., 2018; Calderan-Rodrigues et al., 2019). The composition and architecture of 

plant cell walls are modified according to developmental environments, plant species, organs, 

tissues and the stage of development (Showalter, 1993; Knox, 2008; Pattathil et al., 2015; Hofte 

and Voxeur, 2017). However, the multiplicity of cell walls architecture / composition 

organization is related to relative proportion and mutual arrangement of fundamental 

macromolecules such as polysaccharides, including cellulose, hemicelluloses, pectins, and 

proteins. Basically, plant cell walls are divided into two classes which have their own chemical 

composition and arrangement of their constituting polymers. The primary cell wall is a thin, 

dynamic layer developed during cell expansion that is fundamental for plant morphogenesis, 

and the secondary cell wall is a thicker layer deposited when cells stopped growing and play 

reinforce functions like forming vessel or fiber cells (Fangel et al., 2012; Miedes et al., 2014).  

1. Primary cell walls 

Primary cell walls are synthesized during growth and have been formed by three interconnected 

networks which create thin, pliant, highly hydrated structures (Fig. I-1) (Cosgrove and Jarvis, 

2012). The first network contains cellulose microfibrils cross-linked with hemicelluloses (Pauly 

et al., 2013; Park and Cosgrove, 2015). These microfibrils are tightly interconnected via 

hemicelluloses, this network being embedded in a second network enriched in pectic 

polysaccharides (Andème-Onzighi et al., 2000; Gibson, 2012; Malinovsky et al., 2014). These 

pectins are also cross-linked with structural proteins from the hydroxyproline-rich 

glycoproteins (HRGPs) family such as extensins and arabinogalactan proteins (AGPs) (Carpita 

and McCann, 2000; Nguema-Ona et al., 2013b; Tan et al., 2010; Miedes et al., 2014). 

Depending on the plant species, the amounts of each component present in the cell wall might 
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differ and will be clarified in the following section. Generally, primary cell walls of 

dicotyledonous plants contain mostly 30–50% pectic polysaccharides, followed by 20–30% 

hemicelluloses (xyloglucans), 15–40% cellulose (Cosgrove and Jarvis, 2012; Joseleau et Pérez, 

2016), and 10-15% proteins (Nguema-Ona et al., 2014). In the monocotyledonous plant species 

such as grasses, studies have shown that their primary cell walls are composed of approximately 

20–40% hemicelluloses including mixed-linkage glucans (MLGs) characteristic of the Poaceae 

family, 20–30% cellulose, and 5–10% pectins (Cosgrove, 1997; Vogel, 2008; Scheller and 

Ulvskov, 2010). 

 

 

 

Xyloglucan  

Arabinoxylan 

Homogalacturonan 

Rhamnogalacturonan II 

Rhamnogalacturonan I 

Cellulose microfibrils 

CELL WALL 

PLASMA MEMBRANE 

Arabinogalactan 

proteins (AGPs) 

Xylogalacturonan 

Figure I-1. Structure and composition of the primary wall of plants.  

Hemicellulosic compounds including xyloglycan, arabinoxylan and mixed linkage β-glucans, bind to the 

surface of the cellulose microfibrils. Pectins form a hydrated gel between the cellulose-hemicellulose 

network and consists of four pectin domains: homogalacturonan (HGA), xylogalacturonan (XGA), 

rhamnogalacturonan I (RGI), and rhamnogalacturonan II (RGII). Arabinogalactan proteins (AGPs) are 

interlinked with pectins and can be anchored to the plasma membrane. Modified from Cosgrove (2005) and 

Lampugnani et al. (2018). 
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2. Secondary cell walls 

Secondary walls are not present in all plant cells. However, in both leaves and stems of grasses, 

the secondary cell walls comprise at least 50% of the cell wall mass (Jung, 2003).  

Secondary cell walls are the additional layers deposited between the primary cell wall and 

plasmalemma when cells stopped growing (Joseleau and Pérez, 2016). These cell walls are not 

extensible but provide rigidity and thickness thus allowing plants to grow upright, and transport 

water efficiently (Dupuy et al., 2010). The major components of these cell walls are cellulose, 

hemicellulose such as xylan, and lignin (Cosgrove and Jarvis, 2012; Loix et al., 2017). Among 

all of them, the complex polyphenolic network of lignin plays a principal role to provide 

strength and rigidity in plant tissues, especially in the walls of the xylem vessels, fiber cells of 

woody tissues, and sclerenchyma (Alberts et al., 2002; Vogel, 2008; Wang et al., 2013). Like 

the primary wall, the proportion of these polymers also show variations between cell types and 

species (Kumar et al., 2016). Typical secondary cell walls are composed of cellulose (40–80%), 

hemicellulose (10–40%), lignin (5–25%), and cell wall proteins (Kumar et al., 2016). Studies 

have shown that a higher proportion of cellulose and less pectic polysaccharides are present in 

the secondary wall as compared to primary wall (Pattathil et al., 2015). Moreover, the major 

hemicellulose which is xylan has a different structure in dicots and grass secondary cell walls 

(Vogel, 2008; Gao et al., 2020). In addition, the abundantly distribution of rhamnogalacturonan 

I (RG I)-associated epitopes, as well as galactan and arabinan epitopes are found over the 

secondary wall of mature flax fibers (His et al., 2001; Gorshkova and Morvan, 2006). 

3. Plant cell wall distinction between eudicots and grasses 

Based on the significant compositional differences, primary cell walls of flowering plants have 

been classified into two types: type I and II (Fig. I-2) (Carpita and Gibeaut, 1993; Carpita, 

1996). The main component present in both types of plant cell walls is cellulose microfibrils 

(Yulia and Yusriana, 2006).  

The type I primary wall is present in all dicots, gymnosperms, and non-commelinoid monocot 

plants such as aroids, alismatids, and lilioids (Carpita and McCann, 2000; Fry, 2004; Yokoyama 

and Nishitani, 2004; Yulia and Yusriana, 2006; Vogel, 2008). Arabidopsis thaliana and 

Brassica napus are perfect representative models for the type I wall. Apart from cellulose, type 

I wall is predominantly composed of hemicellulose xyloglucan (XyG) with the matrix of pectin 

and comprises two fundamental polymers, homogalacturonan and rhamnogalacturonan I (RG-

I) (Carpita and McCann, 2008). Besides that, some hydroxyproline-rich glycoproteins (HRGPs) 
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are also present as extensins, proline-rich proteins (PRPs), glycine-rich proteins (GRPs), and 

arabinogalactan proteins (AGPs) (Carpita and McCann, 2000; Yokoyama and Nishitani, 2004). 

The type II primary wall, found only in the commelinoid monocots (e.g. grasses, sedges, rushes, 

and gingers), contain cellulose microfibrils encased in hemicellulose consisted mostly of 

glucuronoarabinoxylan (GAX) (Nishitani and Nevins, 1991, Carpita and Gibeaut, 1993), and 

small proportions of pectin, xyloglucans and structural proteins (Carpita, 1996; Yokoyama and 

Nishitani, 2004; Harris, 2006). In addition, the cell walls of grasses (family Poaceae – e.g. 

Lolium perenne) and some related families in the order Poales contain significant quantities of 

β-(1,3),(1,4)-D-glucans (mixed linkage β-glucans - MLG) (Smith and Harris, 1999). Moreover, 

the GAXs are largely cross-linked by the phenylpropanoid network when cells stop expanding 

to reinforce the wall into the final shape (Iiyama et al. 1990; Carpita, 1996). The presence of 

phenolic compounds like ferulic and p-coumaric acid esterified with arabinosyl residues of 

GAX is also reported in grasses cell walls (Ishii, 1997; O’Neil et al., 2004; Penning et al., 2019).  

Besides, the plant cell-wall loosening proteins which involve in cell wall expansion and various 

abiotic stresses including α-expansins and β-expansins have been found but the number of β-

expansins in the monocotyledonous is much greater than dicotyledonous plants (Zhu et al., 

2014; Han et al., 2019).  

Type I cell wall Type II cell wall 

Figure I-2. The model of type I and type II primary walls. 

These models are presented in Arabidopsis thaliana and rice (Oryza sativa) cell walls, 

respectively. From Yokoyama and Nishitani (2004). 
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As mentioned previously, the secondary walls of dicots and grass are composites mainly of 

cellulose, xylan, and lignin (Fig. I-3). Interaction of these three polymers occurs mainly through 

xylans (Kang et al., 2019). Interestingly, further study showed that members from both eudicots 

and grasses synthesize mannan and glucomannan (Liepman et al., 2007). 

 

Figure I-3. Composition of secondary cell wall of eudicots and grasses. 

Modified from Kozlova et al. (2020). 

The approximate composition (% dry weight) of typical eudicot and grass primary and 

secondary cell walls are resumed in Table I-1. 
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Table  I-1. Approximate composition (% dry weight) of typical eudicot and grass primary and 

secondary cell walls. 

Modified from Vogel (2008). 

Cell wall component Primary wall Secondary wall 

 Dicot Grass  Dicot Grass  

Cellulose microfibrils 15–30c,d,e 20–30b,c 45–50c 35–45c,f 

Hemicelluloses     

Xyloglucan (XyG) 19–25g,j 1–5c,d,g Minor a,k Minor a,k 

Glucuronoarabinoxylan (GAX) 4-5e,j 20-40a,i Unknown i 40-50i 

MLG Absent a 10–30d Absent a Minor a 

Xylans 5c 20–40d 20–30c,g 40–50c,g 

Mannans and glucomannans 5–10d Minor a,i 3–5g Minor a,i 

Pectins 20–35d 5-10c,h 0.1c 0.1c 

Structural proteins 10d,e 1d Minor a Minor a 

Ferulic acid and p-coumaric acid Minor (except order 

Caryophyllales) a 

1–5c,d Minor (except order 

Caryophyllales) a 

0.5–1.5c 

Lignin Minor a Minor a 7–10c 20c 

a Numbers in this table were taken from several sources to provide rough approximations of generalized cell wall composition 

from typical dicots and grasses. Some of the numbers are averages or ranges based on multiple sources (Vogel, 2008). 

b (Mitchell et al., 2007) 

c (Ishii, 1997) 

d (O’Neil and York, 2003) 

e (Zablackis et al., 1995) 

f (Hatfield et al., 1999) 

g (Ebringerová et al., 2005) 

h (Scheller and Ulvskov, 2010) 

i (Joseleau and Pérez, 2016) 

j (Darvill et al., 1980) 

k (Carpita and Gibeaut, 1993)  

 

4. Cell wall composition and biosynthesis 

As illustrated in Fig. 2 and 3, the plant cell wall is a complex and dynamic structure, where the 

various components fulfilled a diverse array of functions throughout the plant lifecycle. Here, 

I will only focus on the main components of dicot and grass cell walls related to my research 

topic.  

(a) Cellulose  

Cellulose is the most abundant water-insoluble polymer found in nature. Whether primary or 

secondary, the plant cell walls are built on the cellulose network organized around the cellulose 

microfibril units (MF) (Joseleau and Pérez, 2016). Cellulose consists of β-(1,4) linked D-

glucose units that make up long and rigid microfibrils, which become interconnected by 

hemicelluloses and pectins and thus formed the load-bearing structures in the walls (Fig. I-4) 

(Nishiyama, 2009; Lampugnani et al., 2018). Cellulose accounts for 15–30 % dry weight of the 

primary cell wall and up to 35-50 % of the secondary walls (Zablackis et al., 1995; Ishii, 1997). 

This linear polymer is synthesized by the plasma membrane-localized cellulose synthase 
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complexes (CSCs) consisting of plant cellulose synthase (CESA) proteins organized in a rosette 

shape either in primary or secondary cell wall (Lerouxel et al., 2006; Gigli‑Bisceglia et al., 

2020). There are two phases of cellulose present in the plant cell walls: crystalline cellulose 

which is highly ordered and paracrystalline cellulose which lack high degree of hydrogen 

bonding, thus giving it a dynamic and malleable structure while facilitating the privileged link 

with the hemicelluloses (Park and Cosgrove, 2015). 

Celluloses from primary cell walls have low degree of crystallinity and less ordered regions 

(Thomas et al. 2013, Cosgrove, 2014). In contrast, celluloses from secondary cell walls have 

much higher crystallinity and may aggregate into larger ordered structures (Park and Cosgrove, 

2015). 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Hemicelluloses 

Unlike cellulose which is a homogeneous polysaccharide, hemicelluloses are heterogeneous 

branched polysaccharides composed of β-(1,4) linked sugar backbones in an equatorial 

configuration (Scheller and Ulvskov, 2010). While CESA proteins are involved in cellulose 

biosynthesis, the family of cellulose synthase like (CSL), which includes eight other gene 

families, named CslA to CslH, are considered to be good candidates for the synthesis of the 

Figure I-4. Association of cellulose molecules in the plant cell wall. . 

 From Heinze and Liebert (2012). 
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backbone of hemicellulose that is localized in Golgi apparatus. Hemicellulosic polymers are 

synthetized in Golgi stacks and then delivered to the cell wall by exocytosis (Richmond and 

Sommerville, 2000; Cosgrove, 2005; Lampugnani et al., 2018). 

Studies show that the CslF and CslH families are unique to the grasses whereas CslB and CslG 

are unique to the dicots (Vogel, 2008). This specialization leads to produce different classes of 

hemicelluloses including xyloglucans, xylans, mannans, and glucomannans, and β-(1,3),(1,4)-

glucans (Scheller and Ulvskov, 2010). The presence and proportion of each class vary 

according to species, organs, and even cell types (Pauly et al., 2001; Schultink et al, 2014).  

The major hemicelluloses in dicot species are the xyloglucans (XyGs) (Fig. I-5), composed of 

β-(1,4)-linked glucose residues that have α (1,6)-linked xylosyl side chains (Lampugnani et al., 

2018). Recent data have shown that xyloglucan plays an important role in the interaction with 

cellulose, which allows conveying biomechanical stability to the wall, especially on the distinct 

regions along the microfibril, referred to as hotspots (Park and Cosgrove, 2015). The 

biosynthesis of xyloglucan requires glycosyltransferases including α-1,6-xylosyltransferase, β-

1,2-galactosyltransferase and α-1,2-fucosyltransferase activities responsible for the addition of 

xylose, galactose and fucose residues to the side chains within the Golgi compartments 

(Chevalier et al., 2010).  

 

Figure I-5. Xyloglucan [β-D-Glcp-(1 4)]n backbone substituted with side chains as seen in pea 

and Arabidopsis. . 

The arrow indicates the typical β-glucanase cleavage site. "Ac" stands for acetyl groups. From 

Scheller and Ulvskov (2010). 
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In addition, xylans are major noncellulosic polysaccharides of plant cell walls after cellulose 

and are mostly present in secondary cell walls. The backbone of xylan is composed of β-(1,4)-

linked xylose residues which can be decorated with, for example, glucuronic acid to produce 

glucuroxylan (Pauly et al., 2013). Their role is similar to XyGs in primary walls, can also cross-

link cellulose microfibrils (Simmons et al., 2016). Xylan biosynthesis seems to also occur in 

the Golgi based on localization data for the family of GT43 glycosyltransferases (Saulnier et 

al., 1995). The GT43 proteins have been implicated in the synthesis of xylan backbones during 

secondary cell wall formation in Arabidopsis (Faik, 2010).  

In grass cell walls, glucuronoarabinoxylan (GAX) is the major hemicellulose and is composed 

of a β-(1,4)-linked xylose backbone with single arabinose (Araf) and glucuronic acid (GlcAp) 

or methylglucuronic acid (MeGlcAp) side chains primarily attached at the O-3 and O-2 

positions, respectively (Fig. I-6) (Vogel, 2008; Scheller and Ulvskov, 2010). The Araf residues 

of GAX in Poaceae primary and secondary cells walls are often esterified with ferulic or 

coumaric acids (Buanafina, 2009). Like XyG, GAX is synthesized within Golgi stacks and 

transported to the cell surface in secretory vesicles (Yulia and Yusriana, 2006). 

 

 

Figure I-6. Glucuronoarabinoxylan (GAX) typical of commelinid monocots. 

 "Ac" stands for acetyl groups; “Fer” represents esterification with ferulic acid (3-methoxy-4-

hydroxycinnamic acid), which is characteristic of xylans in commelinid monocots and “OMe" 

represents the O-  methyl group. From Scheller and Ulvskov (2010). 
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Moreover, β-(1,4)-linked glucans with interspersed β‐(1,3)‐glucosyl linkages are well known 

in grasses (Fig. I-7). In general, MLGs are dominated by cellotriosyl (DP3) and cellotetrasyl 

(DP4) units linked by β-(1,3) linkages, but longer β-(1,4)-linked segments also occur (Stone 

and Clarke, 1992; Scheller and Ulvskov, 2010). The MLGs are a key distinguishing feature of 

the grasses in which they are distributed almost exclusively within the Poaceae since they have 

not been found in dicots (Fry et al., 2008; Fincher, 2009). CslF and CslH family members are 

the groups of proteins that synthesize this polymer (Burton et al., 2006; Doblin et al., 2009). In 

fact, the expressing rice CslF6 can target the plasma membrane (PM) suggests a PM location 

for the synthesis of MLG by CslF6 (Wilson et al., 2015). Their presence extensively in primary 

walls of coleoptiles and found in the secondary walls of mature stems of rice, suggesting that 

they may have a structural and mechanical role (Vega-Sanchez et al., 2013; Joseleau and Pérez, 

2016). 

Besides that, the mannans and the glucomannans have been found in dicot cell walls. The 

skeleton of mannans is formed by a succession of β-(1,4)-linked mannose residues, whereas the 

glucomannans are organized into a β-(1,4)-linked D-glucose and D-mannose backbone. 

Mannans and glucomannans are often acetylated (Scheller and Ulvskov, 2010). Mannans have 

been studied mainly for their role as reserve polysaccharides in seeds (Dhugga et al., 2004), but 

they are also present in varying amounts throughout the cell wall (Schröder et al., 2009; 

Ropitaux et al. 2020). Glucomannans are presented in minor quantities in the primary walls of 

dicots and grasses (Joseleau and Pérez, 2016). 

Figure I-7. Mixed linkage β-glucan. 

[β-D-Glcp-(1 4)]n-β-D-Glcp-(1 3)-[β-D-Glcp-(1 4)]m, where n and m are 3 or 4; typical of 

Poales. From Scheller and Ulvskov (2010). 



29 

 

(c) Pectins 

Pectins are heterogeneous group of complex polysaccharides in plant cell walls (Scheller and 

Ulvskov, 2010). They are rich in galacturonic acid (GalA), approximately 70%, that can form 

a gel-like configuration. All the pectic polysaccharides contain galacturonic acid linked at the 

O-1 and the O-4 position (Mohnen, 2008; Palin and Geitmann, 2012). They are synthesized in 

the Golgi and inserted into the extracellular matrix by vesicle-mediated exocytosis (Yulia and 

Yusriana, 2006). Pectins are negatively charged, and can bind to Ca2+, forming a hydrogel 

network that stabilizes the cell wall (Tan et al., 2013). Pectins consist of four polysaccharide 

domains: homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RGI), and 

rhamnogalacturonan II (RGII) (Fig. I-8). Approximately 67 glycosyltransferase, 

methyltransferase, and acetyltransferase activities might be required for pectin synthesis 

(Mohnen, 2008). 

 

Homogalacturonans (HGs) are the most abundant pectic polysaccharide of primary walls, 

formed by agalacturonic acid (GalA) chains linked in α-(1,4) with a degree of polymerization 

of 100/150 residues and form the main backbone of pectins (Coenen et al., 2007). The 

homogalacturonan parts of the polymer are referred to as ‘smooth’ regions of pectin (Pérez et 

al., 2000). Several GalA residues within the backbone may have their carboxyl group at C-6 

Figure I-8. Schematic structure of pectin showing the four pectic polysaccharides. 

Homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RG-I) and 

rhamnogalacturonan II (RG-II) linked to each other. The representative pectin structure 

shown is not quantitatively accurate, HG should be increased 12.5-fold and RG-I increased 

2.5-fold to approximate the amounts of these polysaccharides in walls. From Mohnen (2008). 
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methyl esterified and may be acetyl esterified at O-2 and/or O-3 positions, depending on the 

plant origin (O’Neill et al., 1990). HGs with more than 50% methyl esterified residues are 

known as high methyl-esterified HGs (Joseleau and Pérez, 2016). The carboxyl groups of the 

HGs chains vary in their degree of methyl esterification which influences their ability to form 

a gel upon addition of gelling agents such as Ca2+ (Proseus and Boyer, 2007). HGs with low 

degree of methyl esterification can be crosslinked by these ions, resulting in a matrix with 

increased rigidity (Palin and Geitmann, 2012).  

Xylogalacturonan (XGA) is a polymer of α-D-galacturonic acid, highly substituted with O-3-β-

D-xylose (Jensen et al. 2008). XGA is found in seeds, root cap cells and mucilage of A. thaliana 

root (Zandleven et al., 2007; Durand et al., 2009; Mravec et al., 2017). XGA was reported to 

confer enhanced resistance to degradation by endopolygalacturonases produced during 

pathogen attack (Jensen et al., 2008).   

Rhamnogalacturonan-I (RG-I) consists of alternating residues of galacturonic acid and 

rhamnose, has additional side chains containing individual, linear, or branched -L-Araf and 

-D-Galp residues (Fig. I-8) (Mohnen, 2008; Palin and Geitmann, 2012). RG-I represents 20–

35% of pectin. The 10% of pectin makes up of rhamnogalacturonan-II (RG-II) which is a 

complex pectin domain that contains 11 different sugar residues and forms dimers through 

borate esters (Fig. 9) (Caffall and Mohnen, 2009; Jarvis, 1984). Data indicated that mutations 

causing even minor modifications to RG-II structure will lead to reduced RG-II dimer formation 

and severe growth defects such as dwarfism, suggests that the dimerization of RG-II in the wall 

is crucial for normal plant growth and development (Mohnen, 2008). 

(d) The HRGPs (Hydroxyprolin Rich GlycoProteins) 

In addition to other polysaccharides, plant cell walls are also composed of proteins and 

glycoproteins, which generally comprise less than 10% of the dry weight of the primary wall 

(Bacic et al., 1988). These complex components are known to be implicated in the maintenance 

of the physical and biological functions of the plant extracellular matrix, and have been 

suggested to be involved in recognition and signaling (Showalter, 1993; Johnson et al., 2003). 

as arabinogalactan proteins (AGPs), proline-rich proteins (PRPs), hydroxyproline-rich 

glycoproteins (HRGPs), or extensins have been identified (Showalter, 1993).  

In this manuscript, I will focus on hydroxyproline-rich glycoproteins (HRGPs) belonging to the 

group of cell wall glycoproteins, including arabinogalactan proteins (AGPs) and extensins 

(EXTs). AGPs are known as a large heterogeneous family of HRGPs found both within the cell 
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and on the surface of plant cells (Fincher et al., 1983; Nguema-Ona et al., 2012). They typically 

bound to the plasma membrane through a glycosylphosphatidylinositol (GPI) anchor (Marzec 

et al., 2015). In general, AGPs are soluble and highly glycosylated (Showalter and Varner, 

1989).  

These proteins are characterized by being rich in proline/hydroxyproline residues in their 

backbone with the surrounding amino acids such as alanine (A), serine (S), threonine (T), and 

the large branched-glycan chains accounting for about 90% of their total mass (Fig. I-9) (Ellis 

et al., 2010; Nguema-Ona et al., 2013b; Ma et al., 2018). Glycosyl residue analysis showed that 

the glycan part mainly included β-(1,3)-galactose, but also of β-(1,6)-galactose and α-(1,3)-

linked, α-(1,5)-linked, or β-(1,3)-linked arabinoses (Nothnagel, 1997; Showalter, 2001; 

Nguema-Ona et al., 2013b).  

AGP glycosylation is initiated by the action of hydroxyproline O-β-galactosyltransferase 

(GalT), which places the first galactose residue onto hydroxyproline residues in AGP protein 

backbone. Eight genes encoding this activity are known including GALT2, GALT3, GALT4, 

GALT5, and GALT6 (Basu et al., 2013, 2015a, b). The other three Hyp-O-galactosyltransferase 

(HPGT) genes were found by sequencing proteins selected by affinity chromatography with an 

AGP peptide and by heterologous expression coupled with an enzyme assay and by genetic 

mutant analysis, named HPGT1, HPGT2, and HPGT3 (Ogawa-Ohnishi and Matsubayashi, 

2015). These genes form two small gene families within GT31 (Tan et al., 2012; Showalter and 

Basu, 2016). 

Specific sets of hydroxyproline O-β-Gal-T such as β-(1,3), β-(1,6)- galactosyltransferase; α-

(1,3),α-(1,5)-arabinosyltransferase (Ara-T), β-glucuronosyltransferase (GlcAT), and α-(1,2)- 

fucosyltransferase (Fuc-T) would be also required for the glycosylation of AGPs (Wu et al., 

2010; Nguema-Ona et al., 2014; Showalter and Basu, 2016). It was reported that AGP 

glycosylation mainly occurs in Golgi (Oka et al., 2010; Basu et al., 2013; Showalter and Basu, 

2016). 

AGPs are synthesized in almost all root cell types including epidermal, cortical, absorptive hair 

cells of all species studied, but also in the living root border cells/border-like cells (BCs/BLCs). 

AGPs are present in the root cap mucilage, root exudates and are secreted into the rhizosphere 

(Hawes et al., 1998, 2000; Durand et al., 2009; Cannesan et al., 2012; Nguema-Ona et al., 
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2013b). However, the structure and composition of AGPs vary among species and conditions, 

reflecting the diversity of their functions including embryogenesis, pollen tube orientation, cell 

growth, cell proliferation, pattern formation, and reproduction (Showalter, 2001; Borderies et 

al., 2004; Seifert and Roberts, 2007; Ellis et al., 2010; Goellner et al., 2013; Duchow et al., 

2016). In addition, AGPs have been implicated in defense response to various biotic and abiotic 

stresses (Nguema-Ona et al., 2012; 2013b; Pereira et al., 2015). The detection of AGPs in 

tissues has been facilitated by using the specific monoclonal antibodies (mAbs) and the β-D-

glucosyl Yariv reagent (β-Glc Yariv), which specifically binds and precipitates AGPs (Yariv et 

al., 1967; Kitazawa et al., 2013). 

As mentioned previously, extensins (EXTs) also belong to HRGPs found in the cell walls of 

higher plants. Their structure is rich in hydroxyproline and serine with the repeating of 

pentapeptide sequences characteristic of a serine followed by hydoxyproline Ser(Hyp)4 then are 

O-glycosylated with one to four arabinosyl residues and with a single galactose unit 

(Kieliszewski and Lamport, 1994; Velasquez et al., 2015; Hijazi et al., 2014; Showalter and 

Basu, 2016; Dehors et al., 2019). The hydrophobic part, on the other hand, will be characterized 

by the combination of the amino acids such as Valine-Tyrosine-Lysine or Tyrosine-X-Tyrosine 

sequences (X = Tyrosine, Lysine) which will be the site of "cross-linking" (Fig. I-10) 

(Showalter et al., 1993; Lamport et al., 2011; Velasquez et al., 2012). 

Figure I-9. Structure of arabinogalactan proteins (AGPs) . 

They are heavily glycosylated cell wall proteins and their glycans predominantly consist of 

arabinose and galactose. Minor sugars, such as glucuronic acid or rhamnose, are also present. 

The backbone of the protein is enriched in hydroxyproline residues. AGPs can be anchored to 

the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. Note the high 

heterogeneity in the structure of the glycan chains. From Nguema-Ona et al. (2013b). 
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EXTs synthesis starts in the ER and continues in the Golgi (Basu et al., 2013; Knoch et al., 

2014) (Figure 11). In the ER, proline residues are hydroxylated to hydroxyprolines (HyP) by 

prolyl-4- hydroxylases (P4Hs) (Velasquez et al., 2011; Fragkostefanakis et al., 2014), followed 

by the insertion of a galactose residue as an α-(1,4) on a serine by serine galactosyltransferase 

1 (SGT1) (Saito et al., 2014). Subsequently, in the Golgi apparatus, several arabinoses will be 

successively grafted onto the Hyp residues using the enzymes shown in Figure 11. In the cell 

wall, EXTs play an important role in development, and cross-linking of EXTs is generally 

associated with cell expansion and growth since several studies show that EXT-related mutants 

have shorter root hairs (Cannon et al., 2008; Ringli, 2010; Lamport et al., 2011; Velasquez et 

al., 2011; Johnson et al., 2017). 

5. Role of the cell wall in root defense 

The plant cell wall is a natural barrier whose composition and organization vary significantly 

due to its essential functions at the levels of the cell and of the whole plant. At first, it plays a 

morphological role providing a physical barrier to maintain cell shape, resists internal turgor 

pressure, regulates cell differentiation and growth, and mediates bio-molecule transit (Knox, 

2008; Collinge, 2009; Xia et al., 2014).  

Figure I-10. Classical structure of extensins complemented by the enzymes responsible of their 

formation. 

Proline (Pro) residues are first hydroxylated to hydroxyprolines (Hyp) by Prolyl-4- 

Hydroxylases (P4Hs). A D-galactose unit is then transferred to the serine residue (Ser) and 

several arabinosyl residues are transferred to the Hyp residues. The type of binding and enzymes 

involved in the glycosylation of extensin are indicated. SGT1: Serine GalactosylTransferase 1; 

HPAT1-3: Hydroxyproline ArabinosylTransferase 1 to 3; RRA1-3: Reduced Residual Arabinose 

1 to 3; XEG113: XyloEndoGlucanase 113; ExAD: Extensin Arabinose Deficient transferase. 

From Showalter and Basu (2016). 
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In addition, the cell wall is the first cell structure on which interactions between plants and a 

wide range of other organisms, including insects, nematodes, pathogenic or symbiotic micro-

organisms. It is highly dynamic and can be the source of oligosaccharide fragments that have 

hormone-like action, especially in defense mechanism against pathogen infection, inducing 

reaction against the attack (Bellincampi et al., 2014).  

Most of researches are dedicated to defense mechanisms involving leaf-pathogen interaction. 

Due to the general inaccessibility of root, the role of root cell wall components during root-

infecting pathogen invasion still needs to be elucidated (Chuberre et al., 2018). The inducible 

defenses were evoked by wounding, elicitors, and pathogens which lead to the transcriptional 

activation of genes encoding proteins involved in defense mechanism (Lamb et al., 1989; 

Bradley et al., 1992).  

The presence of an extracellular glycoprotein was found in the intercellular spaces of legume 

roots and nodules, and nodule-infection threads (Vandenbosch et al., 1989). Since, several 

studies have reported the potential involvement of EXTs in the attachment of Rhizobium 

leguminosarum to legume root nodules which were detected by the presence of LM1 epitopes 

(associated with extensins) in infected nodules (Reguera et al., 2010; Sujkowska-Rybkowska 

and Borucki, 2014). EXTs were also shown to accumulate in roots interacting with pathogenic 

microbes (Velasquez et al., 2011, 2012; Xie et al., 2011; Hirao et al., 2012). In roots of A. 

thaliana and Linum usitatissimum (flax), following elicitation by bacterial flagellin 22 (flg22), 

LM1 labeling almost completely disappeared which could be explained by a significant 

reorganization of EXTs containing LM1 epitopes, making them inaccessible to the antibody in 

cell-wall (Plancot et al., 2013; Castilleux et al., 2018). This result proposed that extensins have 

a role in strengthening the cell wall during infection in order to limit pathogen invasion.  

AGPs have also been shown to play a prominent role at the root surface during root colonization 

by pathogenic and symbiotic microbes (Vicré et al., 2005; Gaspar et al., 2004; Xie et al., 2012). 

Interestingly, pretreatment of Arabidopsis roots with β-Glc Yariv reagent caused the disruption 

of Agrobacterium attachment, which can be explained by the physical barrier built from the 

crosslinking of many different AGPs by β-Glc Yariv at the cell surface. This system helps to 

prevent the binding of the bacterium and/or entry of the T-DNA into the cell (Gaspar et al., 

2004). AGPs extracted from pea root cap and root cap cells prevent in vitro zoospores 

germination of Aphanomyces euteiches through their “decoy” function which could attract and 

immobilize the oomycete. This could explain the reduced infection that is perceptible on the 

root cap compared to other root zones (Cannesan et al., 2012). 
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B.  Concepts of plant immunity  

Plants have developed their own way of defending pathogenic attacks which is adaptable to 

their lack of adaptive immune system (Henry et al., 2012). Facing potentially infectious agents, 

plants often rely on the innate immunity of each cell by using their physicochemical barriers of 

the cell wall, the first line of defense that prevents the penetration of the microorganisms or at 

least reduce and slow down their progression. 

This is done by a rigidification of cell wall with the deposition of structural molecules such as 

callose or lignin (Underwood, 2012) but also the intervention of other molecules such as EXTs 

or AGPs as mentioned previously. 

If a microorganism manages to cross these constitutive physical barriers, the second line of 

defense will be induced. For preventing the aggressor from growing and proliferating in 

infected plant tissue, the first strategy relies the recognition of elicitors by transmembrane 

receptors known as Pattern Recognition Receptors (PRRs). These elicitors are conserved 

molecular pattern originated from pathogenic microorganisms for Pathogen-Associated 

Molecular Patterns (PAMPs) (Dodds and Rathjen, 2010; Arraño-Salinas et al., 2018), or from 

various microorganisms for Microbe-Associated Molecular Pattern (MAMPs) (Boller and 

Felix, 2009; Newman et al., 2013). In some cases, the plant cell is also able to produce 

endogenous elicitors released from the degradation caused by microbes. The so-called Damage-

Associated Molecular Pattern (DAMPs) includes plant cell wall fragments, oligogalacturonides 

(OGs), ATP, and nicotinamide adenine dinucleotide (NAD) (Darvill and Albersheim, 1984; 

Davidsson et al., 2013; Ferrari et al., 2013; Tanaka et al., 2014; Gust et al., 2017). Plant PRRs 

are often receptor-like kinases (RLKs) or receptor-like proteins (RLPs) (Boller and Felix, 2009; 

Schwessinger and Ronald, 2012; Böhm et al., 2014).  

Several PAMPs/MAMPs/DAMPs have been widely characterized including polysaccharides 

such as fungal chitin (Felix et al., 1993) and oomycete glucans (Zipfel, 2008), peptides like 

bacterial flg22 (Gómez-Gómez and Boller, 2002); elf18 epitope of the bacterial elongation 

factor-Tu (EF-Tu) (Kunze et al., 2004) and peptidoglycan (PGN), lipopolysaccharide (LPS) 

from gram-negative bacteria (Boller and Felix, 2009), glycoproteins (Boller and Felix, 2009) 

and even DNA (Duran-Flores and Heil, 2017).  

After detection through PRR receptors, the information is transmitted through signal 

transduction (Fig. I-11). This will allow the establishment of an early immune response called 
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PAMP-triggered immunity (PTI) or MAMP-triggered immunity (also called pattern-triggered 

immunity-PTI) (Jones and Dangl, 2006; Jourdan et al., 2008; Yazawa et al., 2013).  

PTI includes immediate events such as the production of reactive forms of oxygen, or ROS 

(Reactive Oxygen Species), which play a role in both signal transduction and the early immune 

response (Apel and Hirt, 2004; O'Brien et al., 2012) (Fig. I-11). The oxidative burst triggers 

several complex mechanisms in order to act as signal molecules, enhance genes regulation or 

to reinforce the cell wall integrity (Durrant and Dong, 2004; Nicaise et al., 2009). Nitric oxide 

(NO) production, calcium Ca2+ influx, and induction of different protein kinases, namely MAP 

kinases (MAPKs) and calcium-dependent protein kinases (CDPKs) are also part of the early 

events of the PTI (Jones and Dangl, 2006; Ingle et al., 2006; Zhang and Zhou, 2010; Henry et 

al., 2012). 

These defense reactions also include the synthesis of defense compounds such as low-

molecular-weight secondary metabolites (phytoalexins; Hammerschmidt, 1999) and 

pathogenesis-related (PR) proteins including pathogen wall degrading enzymes or proteins with 

antimicrobial activity (van Loon et al. 2006) (Fig. I-11). Many research has shown that 

P/M/DAMPs activate a signaling network that includes the accumulation of defense-related 

phytohormones such as salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) (Persello-

Cartieaux et al., 2003; An and Mou, 2011; Thakur and Sohal, 2013; Caarls et al., 2015; 

Ramirez-Prado et al., 2018). These signaling molecules can induce systemic protection and 

increase the expression of PR genes in a variety of dicotyledonous and monocotyledonous 

plants (Shah and Klessig, 1999; Mayers et al., 2005; Atsumi et al., 2009; Makandar et al., 2010). 

For example, the LPS purified from Burkholderia cepacia inoculated on tobacco leaves 

(Nicotianae tabacum) induced an accumulation of various PR proteins and contribute to an 

enhanced defensive capacity in the Nicotianae tabacum - Phytophthora nicotianae interaction 

(Coventry and Dubery, 2001). A recent study showed that the well-known SA-responsive genes 

such as PR1 and WRKY70 were upregulated in rutabaga (Brassica napus subsp. Napobrassica) 

and rapeseed (Brassica napus) inoculated with Plasmodiophora brassicae (Galindo-González 

et al., 2020). 

Nevertheless, PTI can in some cases be defeated by pathogens through the release of highly 

specific effectors activating Effector-Triggered Susceptibility (ETS). In return, the cell will not 

be helpless since it can recognize and counteract these effectors thanks to intracellular 

receptors: cytoplasmic resistance (R) proteins. This response constitutes the second strategy of 

the immune system by producing effector-triggered immunity (ETI) (Fig. I-11), which is similar 
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to PTI but faster and more specific (Pieterse et al., 2009; Jones and Dangl, 2006; Katagiri and 

Tsuda, 2010). By using resistance (R) proteins, ETI detect effectors called avirulence factors 

(Avr) from some pathogenic microorganisms (Dangl and Jones, 2001; Jones and Dangl, 2006; 

Henry et al., 2012). This process takes place largely inside the cell and intracellular effectors 

are perceived by nucleotide binding with leucine rich repeat receptors (NLRs) (Jones and 

Dangl, 2006; Zhou and Zhang, 2020). 

ETI might lead to a hypersensitive response (HR) that is characterized by programmed cell 

death (Jones and Dangl, 2006; Ramirez-Prado et al., 2018; Nguyen et al., 2021) (Fig. I-11). The 

compatibility of the effectors and these R-proteins results from the coevolution of the plant and 

pathogen (Jones and Dangl, 2006; Katagiri and Tsuda, 2010; Gouveia et al., 2017). 

Figure I-11. Schematic view of plant defense signaling.  

The first layer of induced immunity, called PTI (indicated by black arrows), is activated by the 

recognition of PAMPs/MAMPs or DAMPs through pattern recognition receptors (PRRs). 

Several PTI signaling events occur, such as activation of the mitogen-activated protein kinases 

(MAPK) kinase cascades, an influx of Ca2+ into the cytosol, and production of reactive oxygen 

species (ROS). Antimicrobial compounds are produced and the defense genes are activated. 

Endogenous phytohormone synthesis, such as that of salicylic acid (SA), jasmonic acid (JA), 

and ethylene (ET), is also induced and contributes to plant immunity.  However, to suppress 

PTI, the pathogens deploy effectors. When they are recognized by nucleotide-binding (NB) and 

leucine-rich-repeat (LRR)- containing receptors (NLRs), the second immune layer, called ETI 

(indicated by blue arrows), takes place. NLRs directly or indirectly perceive pathogenic 

effectors, leading to a conformational change, which together with several intracellular 

signaling events, ultimately trigger the hypersensitive response (HR) and systemic acquired 

resistance (SAR). Surprisingly, the most recent studies reported that PTI and ETI are mutually 

linked and together potentiate the immune response (indicated by red arrows). Modified from 

Nguyen et al. (2021) and Ramirez-Prado et al. (2018). 
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Interestingly, recent studies revealed crosstalk and cooperation between ETI and PTI through a 

substantial linkage between PRR-mediated PTI and NLR-mediated ETI (Fig. I-12) (Ngou et 

al., 2021; Yuan et al., 2021; Nguyen et al., 2021). In two separate Arabidopsis mutants which 

lack PRR or PRR co-receptor challenged with Pseudomonas syrinage, it was shown that the 

secreted bacterial effector protein AvrRpt2 did not elicit effective ETI and a lesser leaf tissue 

collapse associated with hypersensitive-response7h after bacterial infiltration was observed. In 

contrast, in Col-0, AvrRpt2-triggered immunity was increased in response to flg22 (Yuan et al., 

2021). Moreover, the absence of PRR co-receptors leads to the inactivation by phosphorylation 

of PTI components such as Respiratory Burst Oxidase Homologue D (RBOHD), which causes 

the lack of ROS production and defective ETI. Additionally, Ngou et al. (2021) found a higher 

accumulation of ROS in plants with co-activation of PTI and ETI compared to those with 

activation of PTI alone enabling a stronger immune response. These findings revealed that ETI 

signals through PTI and increases the accumulation of PTI signaling components such as ROS 

and callose production. Simultaneously, PTI also enhances ETI and is functionally essential for 

the ETI response (Fig. I-12A; Nguyen et al., 2021). The synergistic cooperation of PTI and ETI 

provides a robust immunity to confront pathogenic invasion and updates the "zig-zag" model 

proposed by Jones & Dangl (2006) (Fig. I-12B; Ngou et al., 2021). 

Figure I-12. Model of crosstalk and cooperation between ETI and PTI . 

(A) Co-activation of both PTI and ETI (PRR and NLR) increases the accumulation of PTI signaling 

components (ROS production and callose deposition), enabling a stronger immune response. (B) 

Updated version of the ‘zig-zag’ model of Jones and Dangl (2006). In this scheme, the ultimate 

amplitude of disease resistance or susceptibility is proportional to [PTI – ETS+ETI]. In phase 1, plants 

detect microbial/pathogen-associated molecular patterns (MAMPs/PAMPs) via PRRs to trigger PAMP-

triggered immunity (PTI) (indicated by red arrows). In phase 2, successful pathogens deliver effectors 

that interfere with PTI, or otherwise enable pathogen nutrition and dispersal, resulting in effector-

triggered susceptibility (ETS) (indicated by green arrow). In phase 3, when one effector is recognized 

by an NB-LRR protein, activating effector-triggered immunity (ETI), an amplified version of PTI that 

often passes a threshold for induction of hypersensitive response (HR). ETI enhances PTI (indicated by 

yellow arrow) to produce a robust immune response. Modified from Ngou et al. (2021). 
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C. Plant roots: A specialized underground defense system  

As the underground part of the plant, roots play a vital role in maintaining plant survival in their 

natural environment. Their main functions are to provide anchorage, mineral nutrition, and 

water uptake (Petricka et al., 2012). Moreover, the root system is the privileged zone in constant 

interaction with a multitude of microorganisms which play a crucial role in plant health 

(Berendsen et al., 2012).  

Besides the beneficial microorganisms in the rhizosphere, telluric pathogens are a real threat to 

the plant and major actors in agricultural production losses. The fact that the roots are 

underground makes disease more difficult to control as compared to the aerial parts of the plant 

(Raaijmakers et al., 2008). Thus, the question about the defense mechanisms against pathogens 

has been largely investigated regarding the aerial parts whereas the knowledge regarding the 

root system is still scarce (Chuberre et al., 2018). 

1. Specificity of root defense: Organ-specific and tissue-specific responses 

Differences in plant immune responses were reported between leaves and roots and it is 

speculative to extrapolate data from the aerial part to the below-ground system (Balmer and 

Mauch-Mani, 2013). Indeed, the inoculation of the oomycete Hyaloperonospora parasitica at 

the Arabidopsis leaf level induces various defense responses such as an oxidative burst and a 

hypersensitive response (HR), whereas these responses are not detected at the root level which 

is inoculated with the same pathogen (Hermanns et al., 2003). A difference in transcription 

level between leaves and roots was also found to occur in maize attacked by Spodoptera 

littoralis on the leaves (Erb et al., 2009) and in rice after inoculation with the fungus 

Magnaporthe oryzae (Marcel et al., 2010). Furthermore, in response to Phytophthora citrocola, 

genes were shown to be differently activated between roots and leaves (Schlink, 2009).  

In leaves, it has been demonstrated that the change from biotrophy to necrotrophy is followed 

by a switch from SA- to JA-mediated responses during infection (Glazebrook, 2005). However, 

the transcription level of SA- and JA- marker genes have shown a temporary accumulation 

during penetration of Phytophthora parasitica and fungus Fusarium oxysporum in Arabidopsis 

roots (Berrocal-Lobo and Molina, 2008; Attard et al., 2010). This difference in the antagonistic 

interactions of the two hormones SA and MeJA has been also reported in leaves and roots by 

applying the signaling compounds SA and MeJA exogenously in A. thaliana and the two other 

plants Brassica oleracera and Brassica rapa (Badri et al., 2008; Tytgat et al., 2013; 

Papadopoulou et al., 2018). Balmer et al. (2013) showed a late and continuous overexpression 
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of PR1 in leaves of maize infected by the ascomycete Colletotrichum graminicola while the 

reponse is brief and precoce in roots. The same result has been shown in rice root and leaf 

tissues upon Magnaporthe oryzae infection (Marcel et al., 2010). 

Additionally, numerous studies show that plant immune response is not only organ-specific but 

also tissue-specific in roots (Chuberre et al., 2018). Since 2010, Millet et al. revealed that A. 

thaliana root elicited with flg22 and peptidoglycan produces a strong response with callose 

deposits at the elongation zone (EZ) while chitin triggers the callose deposition at the 

differentiation zone (DZ). At the root level, it has been shown that the elongation zone is often 

the preferred entry zone for pathogens such as Arabidopsis thaliana - Phytophthora parasitica 

(Attard et al., 2010) or Pisum sativum - Aphanomyces euteiches pathosystems (Cannesan et al., 

2011). Following A. euteiches infection a high concentration of a phytoalexin, pisatin, in the 

DZ were recorded compared to other root zones (Cannesan et al., 2011). 

After flg22 treatment, Ca2+ signals were induced in the EZ of the root and further spread across 

root tissues in A. thaliana (Keinath et al., 2015; Stanley et al., 2018). Besides that, microscopic 

analysis of root developmental zones by using YFP (yellow fluorescent protein) marker lines 

showed that early MAMP-signalling marker (WRKY11), ET/JA signaling marker (HEL/PR4), 

and ROS markers (ZAT12, PER5) were induced in the transition zone (TZ) and DZ of 

Arabidopsis root treated with flg22 and a plant-derived PTI elicitor AtPep1 (Poncini et al., 

2017; Rich-Griffin et al., 2020).  

All of these results pointed out that the strategy of invading pathogen by choosing the EZ as the 

major entrance site (Gunawardena and Hawes, 2002; Wen et al., 2006). Interestingly the root 

tip is often deprived of early infection, probably due to the presence of a defense role created 

by border cells (BCs) and border-like cells (BLCs) surrounding the root cap periphery and the 

thick mucilage at this level. 

2. Root Associated, Cap-Derived Cells (AC-DCs) – The population of root border 

cells (BCs) and border-like cells (BLCs) 

(a) Origin of BCs and BLCs in plant roots 

One on the particularity of the root system is the presence of special cells at the interface 

between root and soil. Sloughed root cap cells release in the rhizosphere was first reported as 

desquamation of dead cells from the root allowing a passive release of carbon by the process of 

rhizodeposition (Hawes and Pueppke, 1986; Haberlandt, 1914; Lynch and Whipps, 1990). 
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However, their function has been revisited and these cells were renamed “root border cells” 

(BCs) by Hawes and Lin in 1990.  

Root border cells are defined as detached cells that are released individually into the rhizosphere 

from the periphery of the root cap (RC) in the presence of water (Hawes et al., 2003) (Fig. I-

13A). To date, the presence of BCs has been reported in more than 35 species belonging to 11 

different families, with the number of BCs varying from approximately fifty in the Solanaceae 

to more than 11,000 in the Pinaceae (Hawes and Pueppke, 1986; Hawes et al, 2003). The 

production and detachment of BCs are finely regulated by both endogenous and environmental 

signals (Brigham et al., 1995; Gunawardena and Hawes, 2002; Driouich et al., 2007). These 

cells are viable and have an active metabolism with the presence of many intracellular 

organelles such as mitochondria, numerous Golgi stacks, vacuoles, and others, testifying to 

their important metabolic activity (Cannesan et al., 2011; Wang et al., 2017) (Fig. I-13B, C). 

However, their viability also varies according to plant species and families with more than 95% 

viable BCs in the Fabaceae and the Gramineae, whereas in the Solanaceae they are only 

between 50 and 70% viable. The BCs can remain alive for several days after detachment 

(Hawes and Pueppke, 1986; Plancot et al., 2013).  

  

Figure I-13. Microscopical characterization of pea (P. sativum) border cells.  

 (A) Root border cells (BCs) are released from the root cap as individual cells. (B, C) 

Observations by transmission electron microscopy of isolated border cells released from pea 

root; in (B) the presence of large secretory vesicles in close vicinity to the cell wall, some of 

which appear to fuse with the plasma membrane (indicated by black arrows) and in (C) 

numerous Golgi stacks and secretory vesicles in the cytoplasm. BC, border cells; CW, cell wall; 

G, Golgi stack; M, mitochondria; RC, root cap; SV, secretory vesicles; V, vacuole. Scale bars: 

(A) = 50 µm; (B, C) = 0.7 µm. Modified from Cannesan et al. (2011, 2012). 
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Moreover, different populations of BCs were found to be released by the root tip of pea (Pisum 

sativum) and soybean (Glycine Max) including small spherical cells, intermediate-size cells, 

and elongated cells (Cannesan et al., 2011; Ropitaux et al., 2020) (Fig. I-14). 

Interestingly, BCs were reported to be absent in several Brassicaceae species including A. 

thaliana (Hawes and Pueppke, 1986; Brigham et al. in 1998; Hawes et al, 2003). Vicré et al. 

(2005) described for the first time the presence of BC with different properties detaching from 

the root cap in A. thaliana (Fig. I-15A), and later in other species such as rapeseed (Brassica 

napus), Brussels sprout (Brassica oleraceae), mustard (Sinapis alba), and radish (Raphanus 

sativus) (Driouich et al., 2007, 2010, 2012). These cells are atypical as they remain associated 

together into small groups of cells and organized in a sheath-like pattern after release from the 

root tip and adhere to the root apex unlike BCs (Vicré et al., 2005; Durand et al., 2009; Driouich 

et al., 2007). Based on their organization pattern and their detachment, they were named 

“border-like cells” or BLCs. The root tip of some plant species from Linaceae and Fabaceae 

families was also found to produce BLCs such as flax (Linum usitatissimum) and Acacia 

mangium (Endo et al., 2011; Plancot et al., 2013). BLCs can reach very impressive sizes, 

ranging from 1 to 3 mm in the roots of Acacia mangium (Endo et al., 2011). By using vital dyes 

and cell imaging techniques, Vicré et al. (2005) showed the viability of these BLCs as well as 

an important metabolic activity revealed by the abundant presence of mitochondria and Golgi 

stacks in their cytoplasm (Fig. I-15B, C). 

 

Figure I-14. Root border cell morphotypes from pea (P. sativum) root tip.  

 Three morphotypes were released and defined as (A) small spherical cells, (B) intermediate-

size cells and (C) elongated cells. Scale bars = 5 µm. From Cannesan et al. (2011). 
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Three morphotypes of BLCs have been observed in flax (Linum usitatissimum) root tip 

including spherical border-like cells (sBLC), elongated border-like cells (eBLC), and 

filamentous border-like cells (fBLC) (Plancot et al., 2013) (Fig. I-16). Since 2019, BCs and 

BLCs have been renamed in a simplified term as root-associated, cap-derived cells (AC-DCs) 

by Driouich et al. 

A recent study of three Sahelian woody species in northern Senegal (Balanites aegyptiaca, 

Acacia raddiana, and Tamarindus indica) by optical and transmission electron microscopies 

Figure I-15. Microscopical characterization of Arabidopsis root border-like cells.  

 (A) Root border-like cells (BLCs) are released from the root cap of 2-week-old seedlings. 

Arrowheads indicate the cell layers where border cell files came from. (B, C) Micrograph 

illustrating in (B) the general morphology of a BLC from a root prepared by HPF and FS. Note 

the abundance of Golgi-derived vesicles filled with opaque electron material and in (C) the 

high magnification view of cytoplasmic content of a BLC prepared HPF/FS. BLC, border-like 

cells; CW, Cell wall; ER, endoplasmic reticulum; G, Golgi stack; M, mitochondria; mvb, multi-

vesicular bodies; TGN, trans golgi network; SV, secretory vesicles; V, vacuole. Scale bars: 

(A)=100 µm; (B)=1 µm; and (C)=300 nm. Modified from Vicré et al. (2005). 

Figure I-16. Microscopical characterization of root border-like cells (BLCs) from flax (L. 

usitatissimum)  

 (A) Calcofluor staining of the root tip shows BLC organization in flax with three distinct 

populations of root BLCs occur: spherical border-like cells (sBLC), elongated border-like cells 

(eBLC), and filamentous border-like cells (fBLC). (B) Micrographs showing the morphology of 

the spherical border-like cells and the elongated border-like cells released from the root tip 

and (C) the filamentous border-like cells along the root surface. RC, Root cap. Scale bars: (A)= 

100 µm; (B)=20 µm; and (C)=40 µm. Modified from Plancot et al. (2013). 
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show that plant species Acacia raddiana and Tamarindus indica release both BCs and BLCs 

(Carreras et al., 2020). 

(b) Production of AC-DCs in plant roots  

AC-DCs (BCs/BLCs) production and their mode of detachment from the root tip are dependent 

on the type of root apical meristem (RAM). This is the region within the root tip from which 

all primary root tissues and the root cap are derived (Hamamoto et al., 2006).  

More precisely, AC-DCs cells come from the central and lateral initials forming the cap 

meristem (Woo and Hawes, 1997; Arnaud et al., 2010). After several divisions, these cells will 

form the columella (COL) and lateral root cap (LRC) cells, whose primary function is to protect 

the RAM during growth. The cells will progress within the cap and differentiate into cells with 

specific functions (Brigham et al., 1998; Kumpf and Nowack, 2015) (Fig. I-17). The last 

differentiation that takes place is the detachment of the outermost layer of the root cap which 

will release the AC-DCs (Hawes et al., 2003).  

 

Figure I-17. Root cap structure and development.  

 As cell division occurs in the meristem of the root cap, cell tiers are displaced toward the 

periphery of the cap. In the columella region, cell tiers exhibit distinct morphologies reflecting 

their specialized physiological functions. As each cell tier is displaced, previous functions 

cease and new functions are initiated within the progressively differentiating cells. From 

Brigham et al. (1998). 
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Border cells production and detachment are finely regulated by both endogenous and 

environmental signals (Brigham et al. 1995; Gunawardena and Hawes 2002; Driouich et al. 

2007). The production and of these cells is variable depending on the species (from zero to 

several thousand per root), but remain constant for related plant species within the same family 

(Groot et al., 2004; Hawes et al., 2003; Hamamoto et al., 2006) (Fig. I-18).  

 

The RAM is described as a key player in the production of these cells since, depending on the 

RAM organization, the type and the number of border cells vary between plant species but 

conserve at the family level (Driouich et al., 2007, 2012). 

In eudicotyledonous angiosperms three types of RAMs have been observed: closed, open and 

intermediate RAMs (Fig. I-19) (Groot et al., 2004; Rost, 2011). It has been described that 

species with open RAM release significantly more BCs than species with closed RAM (Groot 

et al., 2004; Hamamoto et al., 2006). For example, the open RAM observed in pea (P. sativum) 

produces about 4500 BCs per day. In carrot (Daucus carota), approximately 2500 BCs per day 

are produced (Hawes et al., 2003; Groot et al., 2004). About 5000 BCs per day have been 

Plants   Number of BCs 

Daucus carota  2300-2500  

Glycin max  3000-4000  

Zea mays  2500-4000  
Pisum sativum 3000-5000 

Gossypium hirsutum 8000-10000  

Arabidopsis thaliana 0 

Figure I-18. Evidence of border cells in several 

plant species.  

The number of border cells (BC) produced varies 

between plant species. A) BC of Carrot, B) 

Soybean, C) Maize, D) Pea, E) Cotton, and F) 

Arabidopsis. From Hawes et al. (2003). 
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released from wheat (Triticum aestivum) root tip while the number of BCs discharged from rice 

(Oryza sativa) is 2100 BCs per day and 4000 BCs per day from maize (Zea mays) root tip 

(Hawes et al., 2003). 

In contrast to open and intermediate RAMs that produce and release BCs, closed RAMs in 

Brassicaceae such as rapeseed, mustard and A. thaliana release border cell-like cells (BLCs) 

(Vicré et al. al., 2005; Driouich et al., 2007). 

It has been demonstrated that some cell wall polysaccharides such as pectin homogalacturonan 

(HG) could involve in BLC detachment of A. thaliana root (Bouton et al., 2002; Durand et al., 

2009; Mravec et al., 2014) or the inhibition of pectin methylesterase (PME) expression also 

alters BC release in pea (Wen et al., 1999). Moreover, Mravec et al. (2017) highlighted the 

involvement of HRGPs families, such as EXTs, in the process of BC detachment. In this study, 

the signal observed in the walls of BCs from the pea root cap is oriented towards the outside of 

the root. This result is similar to the signal observed for xyloglucan (XyG)-associated epitopes. 

After the BCs detachment, this signal in the cell wall decreases significantly.  

Figure I-19. Organization of the root apex of eudicotyledonous angiosperm plants. 

(a) Longitudinal section of a root apex of Linum grandiflorum (flax). The RAM shows a closed 

organization. b) Longitudinal section of a root apex of Pisum sativum (pea). The RAM shows 

an open organization. c) Longitudinal section of a root apex of Daucus carota (carrot). The 

RAM shows an intermediate organization. C: cortex, R: rhizodermis, RAM: root apical 

meristem, RC: root cap, VC: vascular cylinder. Scale bars: 50 μm (a, b and c). From Groot et 

al. (2004). 
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In A. thaliana RAM, numerous specific transcription factors are involved in border cells release 

(Fig. I-20) such as WUSCHEL-RELATED HOMEOBOX 5 (WOX5) or CYCLING DOF 

(DNA-binding One Zinc Finger) FACTOR 4 (CDF4), whose opposing concentration gradients 

sculpt the RAM (Pi et al., 2015; Ruta et al., 2020). WOX5 is an additional element required in 

the QC to maintain columella stem cells by maintaining the initial cells in a proliferating and 

undifferentiated state (Perilli et al., 2012). WOX5 expression is maintained by SCARECROW 

(SCR) (Sarkar et al., 2007). The WOX5 gradient decreases when the cells derived from the 

initials move away from the QC and allows the expression 

of CDF4 that drives cell differentiation (Rahni et al., 2016).  

Other players are involved in this columella differentiation, 

such as the small signaling peptide CLAVATA3 

(CLV3)/EMBRYO SURROUNDING REGION 40 

(CLE40) (Stahl et al., 2009; Stahl and Simon, 2009; 

Berckmans et al., 2020). CLE40 inhibits WOX5 expression 

and promotes columella cell differentiation and the position 

of the QC through receptor kinases ARABIDOPSIS 

CRINKLY4 (ACR4) and CLAVATA1 (CLV1) (Perilli et 

al., 2012; Stahl et al., 2013; Rahni et al., 2016; Berckmans 

et al., 2020). Besides that, three transcription factors, 

BEARSKIN 1 (BRN1) and BEARSKIN 2 (BRN2) with 

SOMBRERO (SMB) are involved in cell differentiation, 

promoting cap cell maturation while allowing border cell 

separation (Bennett and Scheres, 2010; Shi et al., 2018; 

Kumar and Pascuzzi, 2020). BRN1 and BRN2 are also 

involved in mucilage accumulation (Maeda et al., 2019) 

and can activate a gene encoding a polygalacturonase, named ROOT CAP 

POLYGALACTURONANSE (RCPG) which promote the separation of the outermost layer of 

the columella and the lateral cap through individual detachment of these cells (Bennett et al., 

2014; Kamiya et al., 2016).  

In addition, a new transcription factor called NIN-LIKE PROTEIN7 (NPL7) was discovered 

by Karve et al. (2016) playing a role in border cell release. The root of Arabidopsis npl7 mutant 

releases BCs rather than BLCs (Karve et al., 2016). These different studies have highlighted 

the importance of wall components in the genesis and release of AC-DCs. 

Figure I-20. Involvement of 

different transcription factors and 

signaling peptides in Arabidopsis 

root cap development and BLC 

release.  

 Arrows and barred lines indicate 

positive and negative regulation, 

respectively. From Kumar and 

Pascuzzi (2020). 
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3. Root mucilage 

The root mucilage is revealed using India ink staining showing the presence of a white halo 

surrounding the root tip (Fig. I-21A) and the AC-DCs (Fig. I-21B-F) (Wen et al., 2007a; Cai et 

al., 2013; York et al., 2016; Ropitaux et al., 2020). This mucilage is mainly composed of 

polysaccharides, glycoproteins, and proteoglycans (Vicré et al., 1998; Bais et al., 2006; Badri 

and Vivanco, 2009; Driouich et al., 2013; Baetz and Martinoia, 2014; Bacic et al. 1986; 

Chaboud 1983; Chaboud and Rougier 1984; Moody et al. 1988).  

Since 1981, a study by Rougier highlighted the carbohydrate nature of the high molecular 

weight compounds coating the AC-DCs of maize. These results are confirmed latterly in rice, 

maize, and soybean with the abundant presence of glucose, galactose, xylose, arabinose, fucose, 

and mannose (Bacic et al., 1986; Moody et al., 1988; Knee et al., 2001; Timotiwu and Sakurai, 

2002; Dennis et al., 2010).  

The polysaccharides are usually synthesized and transported through Golgi stacks and Golgi-

derived secretory vesicles to the cell wall (Battey and Blackbourn, 1993; Bertin et al. 2003; 

Badri and Vivanco, 2009; Driouich et al., 2012), which scatter throughout the cytoplasm of 

AC-DCs from the cap of A. thaliana, pea, and alfalfa (Medicago sativa) (Vicré et al., 2005; 

Cannesan et al., 2011; Wang et al., 2017). Moreover, this secretory activity in the AC-DCs of 

root cap is significantly more frequent compared to the cells of the apical meristem and 

columella (Wang et al., 2017) suggesting the intense activity of these cells. 

During their detachment from the root cap, AC-DCs excrete complex pectic-type 

polysaccharides such as HGs (Vicré et al., 2005; Durand et al., 2009; Mravec et al., 2017), 

XGAs (Jensen et al., 2008; Mravec et al., 2017; Wang et al., 2017) or RG-I (Mravec et al., 

Figure I-21. Visualization of secreted mucilage using India ink staining.  

(A) Light microscopy images showing an abundant slimy mucilage present around the root tip 

and embedding border cells (indicated by white arrows). (B-F) images showing different cell 

types and their secreted mucilage (stained with India ink and delimited by a dashed line). sBC, 

spherical border cells; iBC, intermediate border cells; eBC, elongated border cells. Scale bars: 

(A)=300 µm; (B-F) = 40 µm. Modified from Ropitaux et al. (2020). 
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2017). Furthermore, numerous parietal glycoproteins belonging to the HRGPs family have also 

been described by other works such as AGPs in pea mucilage (Knee et al., 2001; Durand et al., 

2009; Cannesan et al., 2012; Koroney et al., 2016) or Fasciclin-like AGPs (FLAs) in maize 

mucilage (Ma et al., 2010). More recently, EXTs have been identified in potato and pea 

mucilage (Koroney et al., 2016; Castilleux et al., 2018).  

In maize mucilage, the protein content has been estimated in the range of 1-6% but about 2848 

unique proteins have been identified (Ma et al., 2010). Interestingly, the mucilage proteome has 

been highly conserved between monocot and dicot species such as rapeseed, A. thaliana, pea, 

and maize with the presence of many protein homologs (Basu et al., 2006; Wen et al., 2007b; 

Ma et al., 2010). 

Furthermore, some proteins involved in carbohydrates and enzymes metabolism such as 

endoxyloglucan transferases, invertases, β-galactosidases, cellulases, α-mannosidases, and 

oligosaccharyl transferase have been identified (Wen et al., 2007b; Ma et al., 2010; Rocha et 

al., 2015). Other research also found the presence of well-known peptides and antimicrobial 

proteins, e.g. defensins, PR proteins, chitinases, peptidases, and glucanases (Basu et al., 2006; 

Wen et al., 2007b; De-la-Peña et al., 2008; Badri and Vivanco, 2009; Driouich et al., 2013; 

Weiller et al., 2016).  

Interestingly, the data also show that mucilage in pea root contained extracellular DNA 

(exDNA) and H4-type histones (Wen et al., 2007b; 2009). This result has been confirmed in 

soybean mucilage with the presence of pectin, cellulose, exDNA, histones, and two 

hemicellulosic polysaccharides, xyloglucan, and heteromannan (Ropitaux et al., 2020).  

4. Action of border cells and root mucilage in root defense 

(a) Role of AC-DCs  

As mentioned previously, it has been shown that over half of the root exudates are produced by 

the root AC-DCs (Griffin et al. 1976; Hawes et al. 2011). Together, their activity is influenced 

positively or negatively in interactions with microbial communities within the rhizosphere 

(Pierret et al., 2007; Badri and Vivanco, 2009; Dennis et al., 2010; Galloway et al., 2017).  

In response to these various stresses, the AC-DCs have a suitable adaptation for the number of 

cells produced, their morphology, and their biological activity depending on the plant species 

(Hawes et al., 2003; Driouich et al., 2007; 2012; Endo et al., 2011; Plancot et al., 2013). The 

different morphotypes of AC-DCs have been found to play the specific roles, e.g. the spherical 
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cells and intermediate-size cells have a strong secretory activity, releasing mucilaginous 

molecules that would allow the root lubrication against abrasion by soil particles (Iijima et al., 

2000; 2003; 2004), and would have a role as a trap against pathogenic microorganisms. The 

number of spherical morphotypes AC-DCs in pea root tip increased in presence of A. euteiches 

compared to the intermediate and elongated morphotypes (Cannesan et al., 2012). In addition, 

the elongated cells (isolated or attached as a stack), is reminiscent of the "fibrous tissue" of AC-

DCs observed in Acacia mangium (Endo et al., 2011) and which are more viable than other 

morphotypes of AC-DCs, would form a physical barrier that could reduce the mechanical stress 

between the root and the soil particles to promote root elongation.  

The AC-DCs play a considerable role in root protection against abiotic and biotic stresses 

(Hawes et al., 2000; 2003) since they are specialized in the production of antimicrobial 

molecules such as anthocyanins with antioxidant properties or phytoalexins with antibiotic 

properties, and enzymes intended to destroy pathogens (Wen et al., 2007b; 2009; Cannesan et 

al., 2011; 2012). Recent studies highlight the importance of these cells in interactions with 

beneficial and/or pathogenic microorganisms (Gunawardena et al., 2005; Xie et al., 2012; 

Cannesan et al., 2012). A study by Zhao et al. (2000a) found that in atmospheres containing 

increased carbon dioxide, more than twice as many AC-DCs accumulate from pea root. These 

AC-DCs could attract and induce quiescence of the root-knot nematode Meloidogyne incognita 

(Hawes et al., 2000; Zhao et al.,2000b). After 30 minutes in contact with the AC-DCs, the 

nematodes stop moving and become rigid (Fig. I-22A, B, C).  

Similarly, when pea root tip is inoculated with the fungal pathogen Nectria haematococca, the 

AC-DCs are rapidly covered with a mantle of hyphae and detached from the rest of the root, 

leaving the root tip free of infection (Hawes et al., 1998). These observations suggest that the 

AC-DCs function specifically as a host to inhibit N. haematococca and protect the root cap and 

root meristem from infection (Wen et al., 2007b). More recently studies have revealed that the 

increase of AC-DCs produced as well as increased production of pisatin, an isoflavonoid known 

to inhibit in vitro pathogen growth, in response to A. euteiches infection could prevent 

anchorage of encysted zoospores at the pea root cap surface (Cannesan et al., 2011). 

Furthermore, in response to Pseudomonas aeruginosa and Fusarium solani f. sp. pisi (Fsp), 

AC-DCs from pea root cap have been found to produce more mucilage (Driouich et al., 2013) 

(Fig. I-22D, E, F). 
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(b) Role of root mucilage  

As mentioned previously, the AC-DCs are coated by dense mucilage and various high and low 

molecular weight compounds, which together form a structure of their own (Driouich et al, 

2013). Studies indicated that root mucilage can stabilize soil aggregates by adhering to soil 

particles and sticking them together (Guckert et al., 1975; Morel et al., 1991; Watt et al., 1993; 

McCully, 1995; Traoré et al., 2000). It has been suggested that mucilage might transfer 

gravitropism signaling from the root cap to the root tip (Moore et al. 1990). 

Along with the AC-DCs, the mucilage also contributes to the protection of the root apex against 

abiotic stresses by lubricating the apex to limit soil abrasion (Iijima et al., 2004; Rabbi et al., 

2018), promote soil aggregation (McCully, 1999; Galloway et al., 2017) and limit the toxicity 

of some heavy metals such as aluminum, cadmium, and copper (Deiana et al., 2003; Cai et al., 

Figure I-22. Role of root AC-DCs in the various stresses.  

(A) Attraction and immobilization of the root knot nematode in pea roots. No accumulation 

of nematodes occurred in the roots with AC-DCs removed prior (left) but within 5 min, an 

accumulation of nematodes was apparent at the root tip periphery of roots with AC-DCs 

present (right). (B) High concentration of actively motile nematodes were found to be 

associated with clumps of detached AC-DCs. (C) Within 30 min, most of the nematodes 

within clumps of detached border cells had assumed a rigid, stick-like posture and had 

ceased movement. (E) Visualization of AC-DCs and their mucilage surrounding the root cap 

using India ink (dashed lines). Increased mucilage production (D) of maize AC-DC (black 

arrows) in response to Pseudomonas aeruginosa and (F) of pea AC-DC to the presence of 

germinating spore of Fusarium solani f. sp. pisi. BC, border cell; RC, root cap; Bars: 20 µm. 

Modified from Hawes et al. (2000) and Driouich et al. (2013). 
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2013). Moreover, AC-DCs with their high and low molecular weight secretions have a key role 

in root defense. Indeed, high molecular weight compounds, including many antimicrobial 

proteins such as peptidases, chitinases, peroxidases, glucanases, and 14-3-3 proteins have also 

been shown to be involved in root defense (Grudkowska and Zagdańska, 2004; Gohel et al., 

2005; Ma et al., 2010). A study by Wen et al., (2007b) found that blocking the 14-3-3 protein 

with a specific antibody considerably increases the severity of disease and suppresses the 

resistance of the plant to fungal attacks. Besides that, defensins have been described in the 

mucilage of Heliophila coronopifolia (L.) (Weiller et al., 2016) and Arabidopsis halleri (L.), 

are known for their antifungal properties, for example, to limit infection by Botrytis cinerea 

(Pers.) (Nguyen et al., 2014).  

For the major compounds of mucilage like polysaccharides, which play not only a structuring 

role but are also thought to be involved in root defense. For example, the action of 

polygalacturonases produced by some plant pathogens would be limited by the presence of 

xylose substitutions (Jensen et al., 2008). In addition, xylogalacturonan (XGA) which is 

secreted abundantly by AC-DCs and by the root, resisted to degradation by pathogens (Jensen 

et al., 2008; Mravec et al., 2017).  

Among the molecules present in the mucilage, AGPs are also involved in the regulation of 

plant- microorganism interactions (Cannesan et al. 2012; Nguema-Ona et al. 2013b; Koroney 

et al. 2016). It has been shown that AGPs purified from the root cap of pea will be able to attract 

A. euteiches zoospores by chemotaxis, accelerate encystment and prevent their germination 

(Cannesan et al., 2012). AGPs have also been found in root exudates of several plants such as 

pea (Xie et al., 2012; Knee et al., 2001; Laloum et al., 2021), soybean (Glycine max L.) 

(Timotiwu and Sakurai, 2002), Arabidopsis (Vicré et al., 2005; Durand et al., 2009) and maize 

(Ma et al., 2010).  

By studying the rat1 (resistant to agrobacterium transformation 1) mutant of A. thaliana 

deficient in AGP17, Gaspar et al. (2004) showed that AGPs influence root interactions with 

microbes since the absence of AtAGP17/RAT1 expression in the mutant suppresses the 

colonization of Arabidopsis root by Agrobacterium tumefaciens. To colonize the root, several 

soil microorganisms can hydrolyze and metabolize AGPs, thus providing them a source of 

nutrients for their growth in the rhizosphere (Knee et al., 2001). 

Recently, the action of exDNA and H4-type histones (Wen et al., 2007b) in root defense has 

been reported (Wen et al., 2009; Ropitaux et al., 2020). Enzymatic degradation of exDNA 
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structure would increase root colonization by the soil-borne fungus Nectria haematococca 

(Berk. & Broome) (Wen et al., 2009). A significant increase in the amount of exDNA after 

treatment with several elicitors, such as flg22, and following infection with the soil-borne 

pathogen Ralstonia solanacearum (Tran et al., 2016) were also described. 

Some low molecular weight compounds secreted into the rhizosphere, terpenes and phenolic 

compounds such as flavonoids, also have a role in plant defense. For example, pisatin which is 

well known for its antifungal activity has been found as a major metabolite in pea root exudates 

(Dewick, 2009; Evidente et al, 2010; Cannesan et al., 2011). At the root level, the monoterpene 

1,8-cineole (Eucalyptol) is a plant-derived volatile compound secreted by A. thaliana roots 

could help defense against multiple phytopathogens, such as Pseudomonas syringae pv tomato 

DC3000 (Steeghs et al., 2004; Chen et al., 2004; Baetz and Martinoia, 2014). 

5. The Root Extracellular Trap (RET) model 

The studies on the role of AC-DCs and their secretions in root defense has led to a model named 

the Root Extracellular Trap (RET) (Driouich et al., 2013) (Fig. I-23), by comparison with the 

Neutrophil Extracellular Trap (NET) model of mammals (Brinkmann et al., 2004). Many 

similarities in composition and function have been highlighted between these two models, such 

as the presence of exDNA forms filamentous structures within pea mucilage (Wen et al., 2009; 

Hawes et al., 2016; Wen et al., 2017), comparable to those of neutrophils (Von Köckritz-

Blickwede and Nizet, 2009; Halverson et al., 2015). It has also been described the presence of 

antimicrobial peptides, such as defensins (Weiller et al., 2016), glycoproteins and proteoglycans 

(Bacic et al., 1986; Knee et al., 2001), H4-type histones (Wen et al., 2007b), reactive oxygen 

species (ROS) (Plancot et al., 2013), and various antimicrobial proteins and enzymes in AC-

DCs secretions (Ma et al., 2010), bringing RET closer to NET (Bowdish et al., 2005; Urban et 

al., 2009).  

As explained previously, the RET is probably part of root immunity which functions as an 

immune defense mechanism through repulsion and killing of microbial pathogens (Driouich et 

al., 2013; 2019). The RET regulate generally the positive and negative interactions around the 

root. A large number of studies have clarified the effect of RET on the mobility, germination, 

and growth of pathogenic oomycete Aphanomyces euteiches (Cannesan et al. 2012) or the 

bacterium Pectobacterium astrosepticum (Koroney et al. 2016). Recently, Ropitaux et al. 

(2020) showed that the soybean RET prevented zoospores of Phytophthora parasitica from 

reaching and colonizing root tissues or inducing their lysis. 
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Figure I-23. Schematic model of RET.  

(A) Comparison model of Neutrophil extracellular traps (NETs) and root extracellular traps 

(RETs) formation and function. Formation and release of both NETs and RETs are stimulated 

by pathogens, via pathogen-associated molecular patterns (PAMP) and damage-associated 

molecular patterns (DAMPs). RETs can also be released constitutively. Both traps contain anti-

microbial proteins and exDNA and are able to trap and neutralize pathogens. (B) Functional 

model of the RET (Root Extracellular Trap). The RET is formed by border cells and secreted 

antimicrobial components, arabinogalactan proteins, exDNA, etc. Experiments have shown that 

RET is able to alter the aggression of various pathogens (-), while promoting exchanges with 

beneficial soil bacteria (+) and generally ensures root protection. AC-DCs, border cells; 

exDNA, extracellular DNA; PR proteins, pathogenesis-related proteins; PGPR, plant growth 

promoting rhizobacteria; RC, root cap. From Driouich et al. (2013; 2019). 
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D. Fructans and the concept of "Sweet Immunity" 

The secreted components of RETs including cell wall-derived polysaccharides, various classes 

of anti-microbial compounds, and glycoproteins have been proved to play a fundamental role 

in root immunity (Driouich et al., 2013; 2019; 2021; Hawes et al., 2016).  

In addition, researchers proposed recently a new concept consisting the role of plant- or 

microbial-derived carbohydrates in plant immunity. This concept is called "sweet immunity" 

or "sugar-enhanced defence" which suggests that sugar metabolism and signaling pathways 

involved in plant immunity are interconnected (Bolouri Moghaddam and Van den Ende, 2013; 

Trouvelot et al., 2014; Tarkowski et al., 2019; Svara et al., 2020). This concept postulates that 

the soluble carbohydrates that come directly from microorganisms, plant metabolism, or that 

are released during the degradation of extracellular compounds of microorganisms and plants 

are part of the MAMPs/PAMPs/DAMPs and contribute to the PTI response of plant defense. 

Among these soluble carbohydrates, fructans which are water-soluble fructosyl polymers 

synthesized by certains plants and microorganisms (Hendry, 1993; Velázquez-Hernández al., 

2009) could play a particular role. 

1. Fructans in microorganisms and plants 

In living organisms, the carbohydrate reserves accumulate under various biochemical forms. 

Some organisms synthesize, in addition to the two most common carbohydrate reserves which 

are glycogen or starch (Ball et al., 2011), another form of carbohydrate reserve polymers, the 

fructans. Fructans are water-soluble polymers of fructosyl residues linked by β-(2,1) and/or β-

(2,6) linkages with one external or internal glucosyl residue (Vijn and Smeekens, 1999; Ritsema 

and Smeekens, 2003).  

The presence of fructans in plants was discovered in the root of Inula helenium as a white 

material that was distinct from starch (Rose, 1804). Since then, fructans have been found in 

some bacteria, fungi, algae, land plants (Hendry, 1993). These polymers have been found 

present in more than 15% of Angiosperms (Hendry, 1993) and in microorganisms, such as 

beneficial (Gluconacetobacter diazotrophicus; Hernández et al., 2000) or pathogenic bacteria 

(Erwinia amylovora; Öner et al., 2016) and fungi (Aspergillus and Rhodotorula; Trollope et al., 

2015). More recently they were found in some Archaea (Kirtel et al., 2019). Thus, some bacteria 

and fungi accumulate both glycogen and fructans while some green algae and land plants 

accumulate both starch and fructans. This suggests that in the living kingdom fructans can be 

synthesized independently of that of starch and glycogen. 
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(a) Structure of fructans 

Different types of fructans are distinguished according to the nature of the linkage connecting 

the fructosyl residues, the position of the glucosyl residue (internal or external), the presence or 

absence of branches, and the chain lengths (Pollock and Cairns, 1991; Cochrane, 2000; Peukert 

et al., 2016). Fructan types are formed by the lengthening of the fructosyl residue chain from 

the three tri-saccharides of DP3, i.e. 1-kestotriose (or 1-kestose) in which the fructosyl residue 

is β-(2,1)-linked to the fructosyl residue of sucrose; 6-kestotriose (or 6-kestose) in which the 

fructosyl residue is β-(2,6)-linked to the fructosyl residue of sucrose; and 6G-kestotriose (or 

neokestose) in which the fructosyl residue is bound to the C6 position of the glucosyl residue 

of sucrose (Vijn and Smeekens, 1999; Ritsema and Smeekens, 2003; Cimini et al., 2015; 

Peukert et al., 2016; Fig. I-24 

Four distinct types of fructans ca be distinguished (Fig. I-24) (Cimini et al., 2015): 

- Inulin-type fructans: linear chain synthesized from 1-kestotriose in which the fructosyl 

residues are linked together by β-(2,1) linkages. 

- Levan (or phlein) type fructans: linear chain synthesized from 6-kestotriose in which the 

fructosyl residues are linked together by β-(2,6) linkages.  

- Neoserie-type fructans: linear chain synthesized from 6G-kestotriose in which the glucosyl 

residue is in the internal position and the fructosyl residues are linked together by β-(2,1) 

linkages (neo-inulin type) or β-(2,6) linkages (neo-levan type). In Agave species, another class 

of highly branched neofructans with β-(2,1) and β-(2,6) linkages, named agavins, has been 

proposed (Mancilla-Margalli and López, 2006; Mellado-Mojica et al., 2017).  

- Graminan-type fructans: branched-chain synthesized from 1,6-kestotetraose (bifurcose) 

containing both β-(2,1) and β-(2,6) linkages. 

Fructans can also be distinguished by their degree of polymerization (DP) into high DP fructans 

(generally higher than DP10) and low DP fructans (generally less than DP10; called 

fructooligosaccharides (FOS). 
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In microorganisms, the DP of fructans can be above 100 and up to 10000, although FOS may 

also occur (Velázquez-Hernández et al., 2009; Van den Ende, 2013). The levan-type fructans 

are synthesized in both Gram-positive and Gram-negative bacteria (Sarilmiser et al., 2015; Öner 

et al., 2016). Some Gram-positive bacteria, including species of the genera Streptococcus, 

Leuconostoc and Lactobacillus, synthesize inulin-type fructans (Chambert et al., 1974; Homann 

et al., 2007; Song and Jacques, 1999; Velázquez-Hernández et al., 2009). 

Fungi contain inulin-type FOS with generally DPs between 3 and 8 (Trollope et al., 2015). 

Fructans are found in many genera including Aspergillus, Penicillium, Claviceps, Fusarium 

(Van Balken et al., 1991; Yun et al., 1997; Heyer et al., 1998; Banguela and Hernández, 2006).  

6-kestotriose 1-kestotriose 

6G-kestotriose 

Figure I-24. Schematic representation of the different types of fructans.  

 Fructans are synthesized starting from sucrose. They are linear or branched polysaccharides. 

In higher plants, fructans are classified into four structurally distinct major categories 

depending on the position of the glucosyl unit and on the type of glycosidic linkage between 

fructosyl residues: inulin, levan, graminan and neoseries fructan can be discerned. From Cimini 

et al. (2015). 
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In plants, the DP of fructans is usually between 30 and 150, but in some cases can reach 300 

(Van den Ende, 2013). Inulin-type fructans are present mainly in Asteraceae (such as Cichorium 

intybus and Taxaracum officinalis; Van Laere and Van den Ende, 2002; Van den Ende et al., 

2000) and in other eudicots such as in Boraginaceae (Myosotis secunda) and Campanulaceae 

(Campanula rotundifolia L.) (Brocklebank and Henry, 1989). Levan-type fructans have been 

found in the Poaceae family such as Phleum pratense (Cairns and Ashton, 1993; Cairns et al., 

1999) and Dactylis glomarata (Chatterton et al., 1993; Hendry, 1993). In the Liliaceae family, 

Asparagus officinalis and Allium cepa contain neoserie-type fructans (Suzuki and Cutcliffe, 

1989; Shiomi, 1989; Vijn et al., 1997). These neo-types occur also in Agave species (Mancilla-

Margalli and López, 2006; Mellado-Mojica et al., 2017; Pérez-López et al., 2021). Moreover, 

some plants can contain a mixture of several types of fructans such as Triticum aestivum 

(graminans and inulins; Kawakami et al., 2005) and Lolium perenne (neoseries, levans and 

inulins; Pavis et al., 2001). Some other examples of the presence of different types of fructans 

in plants and microorganisms are resumed in Table I-2. 

Table  I-2. Examples of occurrence found in literature of different types of fructans in plants and 

microorganisms. 
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(b) Roles of fructans 

Fructans are multifunctional molecules in plants and microorganisms. They are not only a form 

of carbon storage in the plant but also contribute to the resistance to abiotic stresses such as 

cold, drought and salinity (Parvanova et al., 2004; Livingston et al., 2009; Bie et al., 2012; Van 

den Ende, 2013). The role of fructans in tolerance to these abiotic stresses is due to their water 

solubility that allows them to contribute to the regulation of osmotic potential, and their ability 

to insert and stabilize membranes (Hincha et al., 2007). These abilities improve plant endurance 

during freezing or drought-related dehydration (Livingston et al., 2009). Fructans are also able 

to control reactive oxygen species (ROS) produced in excess during stress (Stoyanova et al., 

2011; Matros et al., 2015). 

In addition, as part of the concept of “sweet immunity”, some studies shown that the pre-

application of plant-derived FOS extracted from Arctium lappa (BFOs: Burdock Fructo-

Oligosaccharides) reduced the infection of plants by pathogens. A pre-treatment with BFOs on 

Lactuca sativa leaves reduced the infection caused by Botrytis cinerea (Tarkowski et al., 2019) 

(Fig. I-25A). The use of 1-methylcylopropene, a well-known inhibitor of the ethylene signaling 

pathway, has shown that the induction of the immune response following exposure to BFOs 

was dependant to ethylene (Tarkowski et al., 2019). Pre-treatment with BFOs on Cucumis 

sativus leaves prior inoculation with Colletotrichum orbiculare (the agent of anthracnose of 

Cucurbitaceae) reduced disease impact and increased SA levels (Zhang et al., 2009) (Fig. I-

25B).  
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Recently, a study by Svara et al. (2020) showed that the application of Dactylis glomarata 

levans by spraying on apple leaves limits the development of the fungal pathogen Venturia 

inaequalis at a level similar to that of treatment with the inorganic compound fosetyl-aluminum 

(F-Al). 

In bacteria, fructans play also an important role in the resistance to abiotic stresses by increasing 

water availability during water deficit (Bogino et al., 2013). They are involved in adhesion 

mechanisms by participating in the formation of biofilms (Morris and Monier, 2003) and 

interactions between bacteria (Velázquez-Hernández et al., 2009). They also contribute to 

bacterial pathogenicity. Pathogenic bacteria of the genera Erwinia and Pseudomonas secrete 

levans that form layers separating the bacteria from the plant cell wall during the early phase of 

infection, resulting in an inability for the plant to recognize the pathogen (Hettwer et al., 1995). 

Indeed, the disruption of the gene encoding the fructan-synthesizing enzyme in Erwinia 

amylovora (fire blight agent of the Pomoideae) increases the incubation period for symptom 

Figure I-25. Role of fructans in plant immunity.  

(A) Comparison of the effect of spraying water ("mock", negative control), Burdock Fructo-

Oligosaccharides (BFOs) (5 g/L), Cichorium intybus inulin ("Inulin") (5 g/L) and 

Oligogalacturonides (OGs) (positive control) (0,5 g/L) at 3 days post inoculation with Botrytis 

cinerea, on reducing development of the disease and Botrytis lesions area on 45-day-old lettuce 

leaves (bars = 1cm). Asterisks indicate significance against mock (water) at p < 0,01 according to 

non-parametrical, two-tailed, Mann–Whitney u-test (n=3). From Tarkowski et al. (2019). 

(B) BFO (5 g ⁄ L) induced changes in the amounts of SA in local cucumber leaves and reduced the 

lesions area on the treated cucumber leaves. Error bars represent ±SD (n = 3), asterisks denote a 

significant difference from the control at p ≤ 0,05 and p ≤ 0,01 using the t-test. From Zhang et al. 

(2009). 
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onset in pear compared to plants treated with untransformed strains (Geier and Geider, 1993). 

In addition, their degradation products could have signaling functions in pathogenic or 

symbiotic interactions between plants and microorganisms (Versluys et al., 2017). 

2. Fructan metabolism in plant and microorganisms 

Based on the Carbohydrate-Active Enzymes database (CAZy), the fructan metabolizing 

enzymes belong to the Glycoside hydrolase (GH) family which hydrolyze the glycosidic bond 

between two or more carbohydrates or between a carbohydrate and a non-carbohydrate moiety 

(Yuan et al., 2012; http://www.cazy.org).  

(a) Fructan synthesis and localization 

In plants, the fructan metabolizing enzymes belong to the glycoside hydrolase family 32 

enzymes (GH32) (Van den Ende et al. 2002; Cantarel et al., 2009; Lombard et al. 2014) (Table 

I-3).  

 

The synthesis of inulin or levan type requires the action of at least two fructosyltransferases 

(FTs), and three or four FTs are needed to synthesize more complex mixtures of fructans. 

(Lammens et al., 2009; Van Arkel et al., 2013; Fig. I-26): 

- The sucrose: sucrose 1-fructosyl transferase (1-SST) (EC 2.4.1.99) catalyses the transfer of a 

fructosyl residue from one donor sucrose to the C1 of fructosyl residue of acceptor sucrose, 

producing 1-kestotriose and a glucose molecule (Van Laere and Van Den Ende, 2002; Van den 

Ende et al., 2005). 

Table  I-3. The occurrence of GH32 enzymes in plants.  

The preferential donor and acceptor substrates are indicated. For more details and side 

activities see Vijn and Smeekens (1999) and Van Laere and Van den Ende (2002) and 

references therein. *6G-FFT transfers the fructose unit to the glucose moiety of 

sucrose/fructan. FBE: fructan biosynthetic enzymes; NA: not allocated. From Lammens et al. 

(2009). 
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- The fructan: fructan 1-fructosyltransferase (1-FFT) (EC 2.4.1.100): is responsible for the 

elongation of 1-kestotriose to higher DP inulin. The 1-kestotriose serves as both donor and 

acceptor for inulin synthesis (Van den Ende et al., 2006). 

- The sucrose: fructan 6-fructosyl transferase (6-SFT) (EC 2.4.1.1 0): transfers the fructosyl 

residue of donor sucrose to the C6 of fructosyl residue of acceptor sucrose (6-SST activity), 

producing 6-kestotriose. The 6-kestotriose can then be polymerized by 6-SFT leading to the 

levan synthesis. In addition, 6-SFT activity in the presence of a donor sucrose and an acceptor 

1-kestotriose will form 1,6-kestotetraose (or bifurcose). The bifurcose can then be extended by 

6-SFT and 1-FFT leading to the synthesis of graminan-type (branched) fructans (Duchateau et 

al., 1995; Sprenger et al., 1995; Lasseur et al., 2011). 

- The fructan: fructan 6G-fructosyl transferase (6G-FFT) (EC 2.4.1.243): transfers the fructosyl 

residue of a donor 1-kestotriose to the glucosyl residue of an acceptor sucrose, producing 6G-

kestotriose (also called neokestose). From 6G-kestotriose, the formation of neo-inulin type 

fructans can be produced by the action of 1- FFT or neo-levan type fructans by 6-SFT activity 

(Shiomi, 1989). 

At the tissue level, the accumulation of fructans occurs in specialized storage organs of many 

plant species such as tubers, corms, or bulbs (Hendry, 1993). Fructans can also be found in 

leaves, stems, roots, and other non-reserve organs in case where the supply of substrates 

Figure I-26. Model of fructan biosynthesis in plants.  

Starting from sucrose (Suc), structurally different fructan molecules can be produced by the 

concerted action of different fructosyltransferases. From Livingston et al. (2009). 
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exceeds the demand of sucrose (Stumpf and Conn, 1980; Peukert et al., 2014; Cimini et al., 

2015). In Agave species, fructans are found in all tissues including roots, rhizomes, leaves, and 

flowers although they accumulate to the highest levels in the oversized stem (Wang and Nobel, 

1998; Mellado-Mojica et al., 2017; Pérez-López et al., 2021). In temperate Poaceae such as 

perennial ryegrass (Lolium perenne), fructans accumulate during the vegetative phase, 

especially at the base of the aerial parts consisting of the sheaths of mature leaves and the base 

of growing leaves, preferentially at the elongating zones (Pavis et al., 2001). FT activities were 

also highest in these tissues with a spatial correlation between enzyme activities and fructan 

storage (Pavis et al., 2001). Fructan stored in the leaf elongation zone serve as short-term 

storage for use in the development of the secondary wall (Allard and Nelson, 1991; Pollock and 

Cairns, 1991) and are used for regrowth after defoliation (Morvan-Bertrand et al., 2001). In 

wheat and barley, fructans are also stored in the stems during flower development and are 

hydrolyzed to provide carbon for grain filling (Bonnett and Incoll, 1993; Schnyder, 1993).  

At the subcellular level, fructans are synthesized in the vacuole (Vijn and Smeekens, 1999; 

Ritsema and Smeekens, 2003) (Fig. I-27). Pollock and Chatterton (1988), citing Molisch 

(1921), reported the presence of inulin spherocrystals in the vacuole after precipitation with 

ethanol. This vacuolar localization of fructans and fructan synthesis has been confirmed later 

(Wagner et al., 1983). Vacuolar fructan synthesis leads to a decrease in cellular sucrose 

concentration and prevents sugar-induced feedback inhibition of photosynthesis (Vijn and 

Smeekens, 1999). However, some authors also mention an apoplastic localization of fructans. 

Fructan and its hydrolysis products have been localized in the apoplast in crown tissue and in 

leaf guttated liquid of oat after cold hardening (Livingston and Henson, 1998). The hypothesis 

regarding their apoplastic localisation is that fructans once synthesized in the vacuole could be 

transported via a vesicle-mediated mechanism, leading to apoplastic localization (Valluru et al., 

2008). Fructans have also been found in the phloem of Agave deserti (Wang and Nobel, 1998) 
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and 6-kestotriose has also been found in the phloem of transgenic in potato expressing a yeast-

derived invertase (Zuther et al. 2004). 

In bacteria, fructans can be synthesized by three classes of extracellular enzymes which belong 

to the GH68 family (Cantarel et al. 2009; Lammens et al., 2009). Bacterial levans are produced 

extracellularly from sucrose by the action of levansucrase (EC 2.4.1.10) which catalyzes 

different reactions including the hydrolysis of sucrose, the synthesis of 6-kestotriose from 

sucrose, and the polymerization of levans using sucrose as a fructosyl donor (Martínez-Fleites 

et al., 2005). Levans can also be synthesized by fructosyltransferase that belongs to the same 

class of enzymes as levansucrase (EC 2.4.1.10; Srikanth et al., 2015) and bacterial inulins are 

synthesized by inulinosucrase (EC 2.4.1.9) which are only present in lactic acid bacteria 

(Velázquez-Hernández et al., 2009;). 

In bacteria fructans and their synthetic enzymes are extracellularly localized (Velázquez-

Hernández et al., 2009; Dogsa et al., 2013). Bacterial fructans are thus part of the 

exopolysaccharides (EPS) that contribute to biofilm formation, an assembly of microorganisms 

adhering to each other and/or to a surface and embedded in an EPS matrix (Morris and Monier, 

Figure I-27. Schematic representation of carbohydrate metabolism in a plant cell.  

 High photosynthetic activity is associated with high rates of carbon export from the chloroplast 

to the cytoplasm, resulting in an increase of intermediates for Suc synthesis. The synthesized 

Suc is either distributed to the vacuole (storage) or to the apoplast (export). In the vacuole, Suc 

can be converted into fructans by fructosyltransferases (1) or hydrolyzed into Glu and Fru by 

invertase (2). From Vijn and Smeekens (1999). 
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2003; Lembre et al., 2012). In fungi, similarly to bacteria, FOS are produced from sucrose by 

the action of a single enzyme which may be a β-fructofuranosidase (EC 3.2.1.26) or a 

fructosyltransferase (EC 2.4.1.9) (Trollope, 2015). 

(b) Fructan degradation 

In plants, fructan degradation is carried out by fructan exohydrolases (FEHs) that hydrolyze the 

O-glycosidic linkage of the fructosyl unit at the end of fructan to release fructose according to 

the reaction formula below (Simpson and Bonnett, 1993; De Roover et al., 1999; Lothier et al., 

2007; Yoshida, 2021).  

G-F-Fn → G-F-F (n − 1) + F (n ≥ 1) 

As FTs, they are glycoproteins which belong to the GH32 family (Lammens et al., 2009). Two 

main types of FEHs can be distinguished, the 1-fructan exohydrolases (1-FEHs) and 6-fructan 

exohydrolases (6-FEHs) which preferentially hydrolyze the β-(2,1) and β-(2,6) linkages, 

respectively (De Coninck et al., 2007). The FEHs sensus strictus are strictly specific to fructans 

and do not hydrolyze sucrose. However, sucrose acts as an inhibitor on some FEH isoforms (De 

Roover et al., 1999; Van Riet et al., 2008). 

1-FEHs have been characterized in wheat (1-FEHw1, w2 and w3; Bancal et al., 1991; Van den 

Ende et al., 2003a; Van Riet et al., 2008), barley (Henson and Livingston, 1998), chicory (1-

FEH I; 1-FEH IIa and 1- FEH IIb; De Roover et al., 1999; Van den Ende et al., 2001), Jerusalem 

artichoke (Marx et al., 1997b), perennial ryegrass (Lothier et al., 2007), Bromus pictus, a cold-

tolerant Patagonian Poaceae (Del Viso et al., 2009) and Arctium lappa, an Asteraceae (Ueno et 

al., 2011). 

6-FEHs, which preferentially hydrolyze β-(2,6) linkages, have been characterized in barley 

(Henson and Livingston, 1996), perennial ryegrass (Marx et al., 1997a; Lothier et al., 2014), 

wheat (Van Riet et al., 2006), and timothy (Tamura et al., 2011).  

In addition, 6&1-FEHs that can hydrolyze both β-(2,1) and β-(2,6) linkages have been identified 

in cocksfoot (Yamamoto and Mino, 1985), annual ryegrass Lolium rigidum (Bonnett and 

Simpson, 1995), and wheat (Kawakami et al., 2005). More specific FEHs preferentially 

degrading kestotrioses (KEHs) have been identified in onion (1-KEH; Benkeblia et al., 2005) 

and wheat (6-KEH; Van den Ende et al., 2005). 

As FTs, FEHs activities have been observed in vacuoles isolated from Jerusalem artichoke 

(Helianthus tuberosus L.) protoplasts, so the vacuolar compartment is considered to be the site 
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of both fructan synthesis and degradation (Frehner et al., 1984). However, as fructans, the 

presence of FEH activity has been also demonstrated in the apoplast in oat after cold hardening 

(Livingston and Henson, 1998). Phylogenetic proximity between FEHs and cell-wall invertases 

(Cw-INVs). 

In bacteria, fructans can be degraded by levansucrases when they use water as a fructosyl 

acceptor and thus act as hydrolases. In addition, bacteria possess levanases (exo- and endo-

levanase) and inulinases (exo- and endo-inulinase) which belong to the GH32 family, as well 

as non-specific β-fructosidases which can also hydrolyze fructans (Fuchs et al., 1985; Vijn and 

Smeekens, 1999; Lammens et al., 2009). Similarly, endo-inulinases are also present in fungi 

(Vijn and Smeekens, 1999). While plant FEHs are unifunctional enzymes, degrading fructans 

but not sucrose (Van Laere and Van den Ende, 2002), microbial exo-inulinases can degrade 

sucrose as well (Le Roy et al., 2007a).  

E. FEHs in non fructan-plants 

In a phylogenetic tree based on protein sequences, FTs are grouped with vacuolar invertases 

(V-INVs) while FEHs are grouped with the cell wall invertases (Cw-INVs) (Fig. I-28). FEHs 

would derive directly from an ancestral Cw-INV and would subsequently acquire a vacuolar 

addressing signal peptide (Van den Ende et al., 2002) while the FTs would derive after a few 

mutations from an ancestral V-INV (Vijn and Smeekens, 1999), which itself would derive from 

an ancestral Cw-INV (Sturm, 1999). 
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Figure I-28. Phylogenetic tree of FEH, cell wall invertases (Cw-INV), fructosytransferases 

(FT) and vacuolar invertases (V-INV) of plants based on predicted amino acid sequences 

(ClustalW/Drawtree).  

 FEH: Arabidopsis thaliana 6-FEH (AB029310); Arabidopsis thaliana 6&1-FEH (AY060553); Arctium lappa 1-

FEH (AB611034); Beta vulgaris 6-FEH (AJ508534); Bromus pictus 1-FEH (GQ247882); Campanula 

rapunculoides 1-FEH (AJ509808); Cichorium intybus 1-FEH (Y11124); Cichorium intybus 1-FEHI (AJ242538); 

Cichorium intybus 1-FEHIIa (AJ295033); Cichorium intybus 1-FEHIIb (AJ295034); Lolium perenne 1-FEHa 

(DQ016297); Lolium perenne 6-FEHa (EU219846); Phleum pratense 6-FEH1 (AB583555); Triticum aestivum 1-

FEHw1 (AJ516025); Triticum aestivum 6-FEH (AM075205); Triticum aestivum 6&1-FEH (AB089269); Triticum 

aestivum 6-KEHw1 (AB089271); Triticum aestivum 6-KEHw2 (AB089270); Vernonia herbacea 1-FEH 

(AM231149) Cw-INV: Agave tequilana Cw-INV1 (JN790057); Asparagus officinalis Cw-INV (AB244731); 

Arabidopsis thaliana Cw-INV1 (X74514); Beta vulgaris Cw-INV2 (AJ277458); Chenopodium rubrum Cw-INV 

(X81792); Daucus carota Cw-INV1 (M58362); Fragaria ananassa Cw-INV (AF000521); Hordeum vulgare Cw-

INV1 (AJ534447); Lolium perenne Cw-INV (DQ073969); Oryza sativa Cw-INV1 (AY578158); Oryza sativa Cw-

INV2 (AY578159); Oryza sativa Cw-INV4 (AY578161); Oryza sativa Cw-INV5 (AY578162); Pisum sativum Cw-

INV (AF063246); Solanum lycopersicum Cw-INV5 (AJ272304); Triticum aestivum CwINV (AF030420); Vicia 

faba Cw-INV2 (Z35163); Zea mays CwINV2 (AF050128); Zea mays Cw-INV4 (AF043347) FT: Agave tequilana 

1-SST (DQ535031); Allium cepa 1-SST (AJ006066); Allium cepa 6G-FFT (Y07838); Asparagus officinalis 6G-

FFT (AF084283); Bromus pictus 6-SFT (FJ424612); Festuca arundinacea 1-SST (AJ297369); Hordeum vulgare 

6-SFT (X83233); Lolium perenne 1-SST (AY245431); Lolium perenne 6-SFT (AF494041); Lolium perenne 6G-

FFT (AF492836); Phleum pratense 6-SFT (BAH30252); Poa ampla 6-SFT (AF192394); Triticum aestivum 1-SST 

(AB029888); Triticum aestivum 1-FFT (AB088409); Triticum aestivum 6-SFT (AB029887) V-INV: Allium cepa 

V-INV (AJ006067); Asparagus officinalis V-INV (AF002656); Lolium perenne V-INV (AY082350); Oryza sativa 

V-INV (AF276703); Triticum aestivum V-INV (AJ635225); Zea mays V-INV (P49175). From Lothier et al. 

(2014). 
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To our knowledge, more than ten FEHs have been purified to homogeneity (De Coninck et al., 

2007; Ould-Ahmed, 2013) and many genes have been cloned in various eudicot and monocot 

(Table I-4). For these genes, the FEH activities of the corresponding recombinant proteins 

produced by heterologous expression in the yeast Pichia pastoris have been demonstrated 

Indeed, because of the phylogenetic proximity, the distinction between FEHs and Cw-INVs 

based on their protein sequence analysis is not possible. 

Therefore, in non-fructan-accumulating species, the genes whose nucleotide sequences show 

high homologies with Cw-INVs sequences are generally classified by default as genes encoding 

Cw-INVs. However, functional characterizations of purified proteins and/or corresponding 

recombinant proteins produced in heterologous systems have shown that some of these genes 

identified as encoding Cw-INVs actually encode proteins with FEH activity. In Arabidopsis, 

the enzymes originally named AtcwINV3 and AtcwINV6 (Arabidopsis thaliana cell wall 

invertase 3 and 6) have been identified as FEHs that hydrolyse β-(2,6) or both β-(2,1) and β-

(2,6) linkages, respectively (De Coninck et al., 2005; Table I-4). They were thus re-named At6-

FEH and At6&1FEH, respectively. In addition, the presence of a 6-FEH was discovered in the 

taproots of the non-fructan plant Beta vulgaris (Van den Ende et al., 2003b). Recently, three 

Cw-INV-related enzymes named Zm-6&1-FEH1 (Zhao et al., 2019), Zm-6-FEH (Huang et al., 

2020) and Zm-6&1-FEH2 (Wu et al., 2021), displaying FEH activity, were identified in maize 

(Table I-4).  

This discovery has led to the hypothesis that they could act as defense-related proteins in plant-

microorganism interactions by hydrolyzing levan-containing slimes surrounding endophytic or 

phytopathogenic bacteria such as Pseudomonas or Erwinia (Hettwer et al., 1995; Bereswill et 

al., 1997). Since levans form a separating layer between bacteria and plant cell wall polymers 

during the early stages of plant-pathogen interaction, the expression of FEHs might have a 

crucial role by preventing levan formation and pathogen infection (Hettwer et al., 1995; Van 

den Ende et al., 2004). Moreover, FEHs have been proposed to be involved in stabilizing the 

symbiosis between plants such as sugar beet (Tallgren et al., 1999) or sugar cane (Hernández 

et al., 2000) and fructan-producing beneficial bacteria (Van den Ende et al., 2004). 
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Furthermore, this hypothesis is supported by the fact that the FEHs identified in maize (Zm-

6&1-FEH1 and Zm-6&1-FEH2) are localized in the apoplast, which would allow it to act 

directly on microbial extracellular fructans (Zhao et al., 2019; Wu et al., 2021). It is also 

possible that following an injury or pathogen attack that disrupts the plasma membrane and 

tonoplast, vacuolar FEHs are discharged into the apoplast compartment. The FEHs thus present 

in the cell wall would be able to degrade the microbial fructans (Fig. I-29), leading to (i) the 

modification of the properties of the biofilm which could reduce virulence, and (ii) the release 

of fructose and FOS which could play the role of MAMPs/PAMPs. These MAMPs/PAMPs 

would be recognized by a PRR triggering PTI as mentioned in section B, which will induce the 

defense response by signaling cascades involving phytohormones such as SA, JA, and ET 

(Rejeb et al., 2014). An argument in favor of this hypothesis is that exogenous application of 

SA and MeJa (Methyl Jasmonate, a JA derivative) leads to increased expression of FEHs in 

agave (Agave americana) which is known as a fructan accumulator plant (Suárez-González et 

al., 2016). Moreover, the recent discovery of a 6-FEH that degrades microbial levans in 

Cichorium intybus, a plant species that accumulates only β-(2,1)-linked fructans (inulins) 

strengthens the hypothesis of the role of certain FEHs in plant-microbial interaction (Versluys 

et al., 2021).  

Figure I-29. Schematic representation of FEHs potential roles during biotic stress.  

Some FEHs would be apoplastic, others vacuolar and could be released into the apoplast following 

a rupture of the tonoplast and the plasma membrane. In both cases, these FEHs could degrade the 

microbial fructans and the consequences would be: 1) to modify the properties of the biofilm, which 

could reduce virulence; 2) to release FOS that could act as MAMPs/PAMPs whose recognized by 

a PRR receptor triggering the signal transmission (SA/JA/ET in particular) and the defense 

response. Modified from Versluys et al. (2017) and Rejeb et al. (2014). 
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Table  I-4. Summary of selected cDNAs from FEHs of plants.  

Completed from De Coninck et al. (2007) and Ould-Ahmed (2013). 
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F. Objectives 

My research work focused on the evaluation of the role of glycomolecules in root defense with 

particular emphasis on fructans and fructan metabolizing enzymes in two non-fructan 

Brassicaceae, the model species Arabidopsis thaliana and the species of agronomic interest 

Brassica napus, and in a fructan plant, Lolium perenne, a Poaceae of regional interest due to 

its role as a grassland fodder plant. 

The main objectives were: 

- To characterize the RET of perennial ryegrass (L. perenne). This work aims to fill the lack of 

knowledge on the polysaccharide composition of AC-DCs and their associated mucilage in 

Lolium perenne in particular and in fructan plants in general. 

- To clarify the roles of FEHs in two non-fructan accumulating plants, rapeseed (Brassica 

napus) and Arabidopsis thaliana. The purpose of this work is based on the hypothesis that these 

FEHs are defense-related proteins that are part of the immune response. To do so, the work was 

divided into three parts: 

The first part concerned the characterization of two new monoclonal antibodies (mAbs) directed 

against fructans which were produced in collaboration with the company BIOTEM. Antibody 

specificities have been studied using dot blot on a wide range of carbohydrates. Microscopic 

observations by immunocytochemistry with the two anti-fructans mAbs were carried out on the 

surface and on high-pressure frozen sections of root tips of perennial ryegrass and of A. thaliana 

for comparison. The results are presented in the form of a scientific publication corresponding 

to section II of the "Results" which is entitled: “Generation and characterization of two 

monoclonal antibodies that recognized β-(2,1) and β-(2,6)-fructan epitopes:  new tools to 

unravel the functions and subcellular localizations of fructans in plants”. 

The second part consisted to examine the occurrence of cell-wall glycomolecules in AC-DCs 

and mucilage of perennial ryegrass root using immunocytochemistry. The microscopical 

analysis was done on the root tips of not only perennial ryegrass but also of two other monocots, 

timothy (Phleum pratense) and wheat (Triticum aestivum), as well as on the root tips of A. 

thaliana for comparison. The response of the RET of ryegrass to the presence of flagellin22 

(flg22) and water stress were also being investigated. The results are presented in the form of a 

scientific publication corresponding to section I of the "Results" which is entitled: 
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“Microscopical characterization of the root extracellular trap (RET) of perennial ryegrass 

(Lolium perenne), a fructan producing plant”. 

The third part contains two subsections. The first subsection corresponds to the study of the 

expression profiles of defense marker and FEHs genes in B. napus and A. thaliana treated at 

the root level with phytohormones involved in defense responses which are SA, MeJA, and 

precursor of ethylene, the 1-Aminocyclopropane-1carboxylic acid (ACC). Based on the 

sequences of the two FEH genes of A. thaliana (At6-FEH and At6&1-FEH; De Coninck et al., 

2005), four genes encoding a putative 6&1-FEH and two genes encoding a putative 6-FEH 

were identified in Brassica napus. The results are presented in the form of a scientific 

publication corresponding to section III of the "Results" which is entitled: “Salicylic acid 

upregulates fructan exohydrolases (FEH) together with defense-marker genes in non-fructan 

plants. 

The second subsection aimed to study the involvement of FEHs in root defense by using knock-

out mutants of A. thaliana lacking FEH genes. Seeds of wild-type and FEH mutant lines were 

inoculated with two strains (with or without the levansucrase gene encoding the enzyme 

synthesizing levans) of the non-pathogen root-colonizing bacterium Pseudomonas 

brassicacearum. The preliminary results are presented in section IV of the "Results" which is 

entitled: “Involvement of bacterial levans and plant fructan exohydrolases (FEHs) in 

Arabidopsis thaliana root colonization by Pseudomonas brassicacearum”. 

Thus, with regards to fructan plants, my thesis work makes it possible to fill the currently 

limited knowledge relating to the characterization of the RET and the localization of fructans 

in the root of perennial ryegrass, and to answer the following questions: 

- Is there production of root border cells and mucilage at the root tip of perennial ryegrass? 

Which types of root border cells are released? 

- Which glycomolecules predominate in the RET, root border cells and root sections of 

perennial ryegrass? 

- How does the RET of perennial ryegrass respond to the presence of flagellin22 (flg22)? 

With regards to non-fructan producing plants, my thesis work provides answers to the following 

questions: 

- Are the expression profiles of FEH genes similar to those of defense marker genes in response 

to root treatment with SA, MeJA or ACC? 
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- Do responses to SA applied at the root level in B. napus show genetic variability? 

- Are plant FEHs and bacterial extracellular fructans (levans) involved in the plant-bacteria 

interactions? 
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II. Materials and methods 

A. Seed sterilization and plant growth conditions  

1. Seed sterilization 

Arabidopsis thaliana ecotype Colombia-0 (Col-0) and timothy (Phleum pratense var. Aturo) 

seeds are placed in a sterile vial under sterile conditions in a horizontal laminar flow hood. A 

solution of 70% (v/v) ethanol is added to the seeds for 5 min. Then, ethanol is removed and 

replaced with commercial sodium hypochlorite (9.6 % chlorine bleach) diluted to 0.9% (v/v 

sterile distilled water) for 2 min. The sodium hypochlorite is then removed and the seeds are 

rinsed 6 times with sterile distilled water.  

Perennial ryegrass (Lolium perenne var. Delika) seeds are surface sterilized with commercial 

sodium hypochlorite (9.6 % chlorine bleach) for 2 min under sterile conditions in horizontal 

laminar flow hoods (Heath et al., 1998). Then the seeds are washed 6 times with sterile distilled 

water before sowing.  

Wheat (Triticum aestivum var. Chevignon) seeds are sterilized with 70% (v/v) ethanol for 10 

min in horizontal laminar flow hoods. After removing all of the ethanol, commercial sodium 

hypochlorite (9.6 % chlorine bleach) diluted to 0.9% (v/v sterile distilled water) is added to the 

seeds for 10 min. Finally, the seeds are washed 6 times with sterile distilled water before being 

soaked in sterile distilled water overnight in the dark. 

For the in vitro root colonization experiments with Pseudomonas brassicacearum, A. thaliana 

seeds (wild-type Col-0 and FEH knock-out mutants) are placed in a 2 mL sterile Eppendorf 

tube. 2 mL of a sterilization solution containing 1 mL 2.5 % chlorine bleach, 9mL ethanol 

absolute, and 3 drops of Tween 80 (Sigma-Aldrich-V000749) is added to the seeds for 6 min. 

Then seeds are washed 4 times with absolute ethanol and dried naturally in a Petri dish under 

sterile conditions in horizontal laminar flow hoods before sowing.  

2. Plant growth 

(a) In vitro in square Petri dishes. 

 Perennial ryegrass and timothy 

Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) (Duchefa Biochemie) is 

solubilized in distilled water (4.33 g/L) and supplemented with 1% (w/v) agar (European 

Bacteriological Agar-A01254). The medium (pH 5.8) is autoclaved and then poured into several 
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square Petri dishes (120x120 mm, Fisher Scientific) with a proportion of 50 mL of medium per 

dish. After cooling, the sterilized seeds of perennial ryegrass and timothy are placed on the MS 

medium (10 seeds per plate) (Fig. II-1B, D). The seeds are gently placed into the agar with 

sterile tweezers to maintain their position when the plates are upright. Also, in this way, the 

radicle of the seeds will grow downwards. The dishes are then sealed with surgical tape 

(Anapore-135321), wrapped with aluminum foil to maintain darkness, and placed vertically to 

avoid the loss of border-like cells in a phytotron at 21 °C. After 48h in the dark to synchronize 

the germination, the seeds are grown for 10 days under a photoperiod of 16h day/8h night at 

21°C.  

 Arabidopsis thaliana 

Arabidopsis medium (Duchefa Biochemie) is prepared in distilled water containing 11.82 g/L 

and 1% (w/v) agar supplemented with 2mL of 1M Ca(NO3)2. After being autoclaved, 50mL of 

medium (pH 5.8) is poured into square Petri dishes and cooled before sowing. In each dish, 10 

sterilized seeds are sown by using a sterilized pipette tips 10µL (Fig. II-1C).  The dishes are 

then sealed with surgical tape (Anapore-135321), wrapped with aluminum foil to maintain 

darkness, and placed vertically to avoid the loss of border-like cells in a phytotron at 21 °C. 

After 48h in the dark to synchronize the germination, the seeds are grown for 10 days under a 

photoperiod of 16h day/8h night at 21°C for 10 days.  

 Wheat 

MS medium diluted to 1:2 in distilled water (2.17 g/L) is prepared with 1% (w/v) agar 

supplemented. The MS ½ medium is autoclaved and poured into square Petri dishes (120x120 

mm). For each dish, 6 sterilized seeds are lightly pressed into the agar with sterile tweezers 

under sterile conditions in a laminar flow hood (Fig. II-1E). Then, the dishes are sealed with 
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surgical tape and are placed vertically in phytotron at 21°C under a photoperiod of 16h day/8h 

night for 4 days.  

 

(b) In hydroponics 

 Arabidopsis thaliana and Brassica napus 

Arabidopsis thaliana ecotype Colombia-0 (Col-0) and Brassica napus rapeseed (five varieties; 

‘Aviso’, ‘Tenor’, ‘Darmor-bzh’, ‘Yudal’, ‘Bristol’ provided by the BrACySol biological 

resource center, INRAE Ploudaniel, France) are used. Seeds of both species are soaked in 

darkness for 48 hours at 4°C in 0.1% (w/v) agar solution to synchronize germination. Each seed 

is individually sown on the top of a 1.5 mL (B. napus) or 0.5 mL (A. thaliana) microtube pierced 

at the bottom and filled with 0.7% (w/v) agarose (Fig. II-2A). Each microtube containing a 

seedling is transferred to a plastic tank (fifteen plants per tank) containing 10L of Hoagland ¼ 

nutrient solution. The composition of nutrient solution is detailed in the table. II-1. A. thaliana 

is grown in a plant growth chamber with a PAR (Photosynthetically Active Radiations) of 110 

μmol photons⋅m-2⋅s-1 under a photoperiod of 16 h and a thermoperiod of 20/18°C day/night. B. 

napus is grown weeks in a greenhouse with natural light supplemented by high-pressure sodium 

lamps (Philips, MASTER GreenPower T400W) with a PAR (Photosynthetically Active 

Radiations) of 450 μmol photons⋅m-2⋅s-1 at canopy height with a photoperiod of 16 h and a 

D B C E 

Sterilized seeds  

Square Petri dish 

(120x120 mm) containing 

culture medium 

A 

Figure II-1. In vitro plant growth in dishes.  

 (A) Schematic representation of the culture dish in agar medium. Photographs of 10-d-old 

perennial ryegrass seedlings (B), 10-d-old Arabidopsis seedlings (C), 10-d-old timothy seedlings 

(D), 4-d-old wheat seedlings (E). 
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thermoperiod of 20/17°C day/night. The nutrient solution is aerated and renewed every 7 days. 

When the fourth leaf (B. napus) or the eighth leaf (A. thaliana) has emerged, the microtubes 

were transferred in 150mL pots (five plants per pot) containing 50 mL of nutrient solution 

supplied with 0.5 mM SA, 50 µM MeJA, 20 µM ACC (Sigma-Aldrich, Saint-Louis, MO, USA) 

or without supplement (control) for 3, 6, 12, and 24 h according to the experiment. At the end 

of the treatment period, plants were collected. The shoot was separated from the root, and each 

tissue was frozen in liquid nitrogen and stored at -80°C. Before RNA and protein extractions, 

plant tissue was ground in liquid nitrogen in a precooled mortar and pestle until a fine powder 

was obtained and the frozen powder was stored at -80°C.   

 Perennial ryegrass  

Perennial ryegrass (L. perenne var. Delika) seeds are soaked in darkness for 48 hours at 4°C in 

0.1% (w/v) agar solution to synchronize germination. Each seed is individually sown on the top 

of a 5 mL microtube pierced at the bottom and filled with 0.7% (w/v) agarose (Fig. II-2B). Each 

microtube with one seedling is transferred to a plastic pot (two plants per pot) containing 700 

mL of ‘EVA’ nutrient solution (Table II-2). Plants are grown for 7 weeks in a plant growth 

chamber with high-pressure sodium lamps (Philips, MASTER GreenPower T400W) provide a 

PAR (Photosynthetically Active Radiations) between 10 and 150 μmol photons⋅m-2⋅s-1 under a 

photoperiod of 16 h and a thermoperiod of 21/18°C day/night. The nutrient solution is aerated 

and renewed every 7 days.   
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A 

Plastic box with 

root separation 

Seedling 

0.7% agar 

5mL tube PVC tube 

foam 

Air bubble 

tube 

Air bubble 

tube 

Air pump 

Root separation 

B 

Seedling 

0.7% agar 

Figure II-2. Experimental design for seedling production.  

 After being soaked for 48 hours at 4°C in 0.1% (w/v) agar solution. (A) Rapeseed (Brassica napus) and 

Arabidopsis thaliana seedlings are grown for 2.5 - 4 weeks in a hydroponic system at 20°C under a photoperiod 

of 16h day/8h night. (B) Perennial ryegrass (Lolium perenne) seedlings are grown for 7 weeks in a hydroponic 

system at 21°C under a photoperiod of 16h day/8h night. 
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Table  II-1. Composition of the Hoagland ¼ nutrient solution used for the culture in 

hydroponics of Arabidopsis and rapeseed (Brassica napus).    

 

Table  II-2. Composition of the ‘EVA’ nutrient solution used for the culture in hydroponics of 

perennial ryegrass (Lolium perenne).    

 

B. Study of the RET in perennial ryegrass 

1. Selection and collection of root tips 

Plant growth and root tip collection collection methods are key steps for RET preservation. 

Root tips are collected from plants grown in square Petri dishes. In the case of perennial 
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ryegrass, Arabidopsis and timothy, the plants used are those whose roots have developed on the 

surface of agar without penetrating it and which do not detach from it (Fig. II-3A). For wheat, 

the roots remained in contact with the culture medium without leaving it. This ensures intact 

RET with optimal hydration. The selected roots are excised with ultra-fine tweezers and placed 

on the appropriate surface for observation, without touching other surfaces, in order to limit the 

loss of RET (Fig. II-3B).  

For these observations, roots are removed with ultra-fine tweezers (Fig. II-3A) and placed on 

Superfrost microscope slides (Thermo Scientific). Then, 30 µL of distilled water are added to 

the root apex and two deposits of 30 µL are placed at each end of the slide (Fig. II-3). 

A coverslip (50x60mm, Thermo Scientific) is placed on the sample and then taped to the slide 

with anapore tape. The amount of liquid is adjusted by capillary action from the ends towards 

the center of the sample. The samples are then observed under an inverted bright-field 

microscope (Leica DMI6000B, Wetzlar, Germany). For this experiment, 24–30 roots are 

observed to ensure representativity for each set of observations. 

2. Water deficit treatment 

This experiment is performed by the addition of various amounts of polyethylene glycol (PEG) 

(molecular weight 8000; Sigma, St Louis, MO) to the growth medium following the protocol 

described by van der Weele et al. (2000) and Verslues et al. (2006). Initially, 300 g of PEG are 

added to 1L of autoclaved MS ½ liquid medium (2.17 g/L MS medium, pH 5.7) with stirring. 

Then, 45mL of MS ½ liquid medium containing PEG is poured on the top of 30mL solidified 

MS ½ medium with 1% agar prepared previously in a square Petri dish (120x120 mm). During 

30µL distilled water   

Superfrost microscope slide 

dissected root tip 

A B 

Figure II-3. Schematic representation of root preparation for microscopic observation.  

(A) 10-d-old perennial ryegrass grown in dishes (B) The root tip is cut and collected with a ultra-

fine tweezer and is deposited in the liquid on the microscope slide 10 min before observation. 
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approximately 12-15h (overnight), the PEG diffuses into the solidified MS ½ medium thus 

lowering its water potential. After one night the solution on the top of the plate was removed 

and the dish is used for experiments.  

The 6-d-old perennial ryegrass seedlings are transferred on the dish containing 30mL of 

solidified MS ½ medium mixed with 45mL of liquid MS ½ medium without PEG for the “well-

watered” control medium, which gives a water potential of approximately -0.10MPa, whereas 

other 6-d-old seedlings are transferred on the plate soaked with PEG (300g L-1).  

Then, all dishes are sealed with surgical tape and placed vertically in phytotron at 21 °C under 

a photoperiod of 16-h-day/8-h-night until 12 days. The 12-d-old roots are collected for mucilage 

observation and immunocytochemistry experiment.  

3. Visualization of mucilage by counterstaining with India ink 

India ink (Black star Hi-Carb, 1.0 oz) produced from carbon black is used as a negative stain to 

visualize mucilage (Curlango-Rivera et al., 2013). The root tips are collected and placed on 

Superfrost microscope slides (Thermo Scientific) (Fig. II-3). Two deposits of 30 µL of distilled 

water are placed at each end of the slide and then 30 µL are added to the root apex. A coverslip 

(50x60 mm, Thermo Scientific) is placed on the sample and sealed to the slide with anapore 

tape. A 0.05% (w/v) India ink solution is added by capillary action between the slide and the 

coverslip from the ends to the center of the sample. After 10 min, the samples are observed 

under an inverted bright field microscope (DMI6000B). For this experiment, 4 to 5 technical 

replicates and 6 biological replicates are performed. 

4. MAMPs 

The MAMPs used in this study include the synthetic peptide flg22 (Felix et al., 1999) 

synthesized by Dr. J. Leprince (PRIMACEN platform, University of Rouen). MAMP 

preparations were made from mycelium extracts of Fusarium oxysporum (Hano et al., 2006). 

Flg22 were used at 1 µM (Millet et al., 2010). 

5. Surface immunolabeling of root border cells, mucilage and root tips 

In order to label the polysaccharides, glycoproteins, and proteoglycans present in the cell wall 

of root border cells and in the mucilage, an indirect surface immunolabeling method has been 

developed. This protocol was recently described by Castilleux et al. (2020). 
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Roots of 10-d-old seedlings are placed onto sterile 10-welled diagnostic microscope slides 

(Thermo Scientific, ER-208B-CE24) (Fig. II-4A, II-4B). The wells are then filled up with 30 

µL of phosphate-buffered saline (PBS) for 5 min to initiate detachment of root border cells. 

Next, the liquid is removed using an Eppendorf micropipette (P200), by taking from the severed 

end of the root (Fig. II-4B). The root samples are fixed for 40 min in 4% (w/v) PFA 

(paraformaldehyde), in 50 mM PIPES pH 7 (piperazine- N, N’-bis [2-ethanesulfonic acid], Alfa 

Aesar, A16090) containing 1 mM CaCl2. Roots are washed 4 times for 10 min at room 

temperature (RT) in PBS 1x containing 1% (w/v) bovine serum albumin (BSA; AURION, 

Wageningen, The Netherlands) to remove as much PAF as possible and to allow saturation of 

the non-specific sites in the sample. 

After removing the last washing solution, 30 μL of primary antibody solution (Ac.I: 

PlantProbes, Leeds, UK) diluted to 1:5 in the solution of PBS+1%BSA  are added and incubated 

overnight at 4 °C in a humid chamber (Fig. II-4C). The primary antibody solution is removed 

(Fig. II-4B) before performing four washes with PBS+1% BSA at RT for 10 min. 

 

The goat anti-rat IgG secondary antibody conjugated to Alexa Fluor 594 (Invitrogen) is diluted 

to 1:50 in the solution of PBS+1%BSA and incubated with the samples for 2 h at 25°C in the 

dark. Four washes with PBS+1% BSA are then carried out at RT for 10 min to remove the 

secondary antibody, followed by a final wash with PBS at RT for 10 min. To avoid 

BCs + M 

pipette tip 

dissected root tip 

microscope slide 

Petri dish 

Whatman 

filter paper 

soaked with 

distilled water  

A B C 

Figure II-4. Schematic representation of root preparation for immunolabeling experiment.  

(A) 10-d-old perennial ryegrass roots containing root border cells (BCs) and mucilage (M). (B) The 

root tip is cut and collected with a ultra-fine tweezer and is deposited in 10-welled diagnostic 

microscope slide. The liquid is gently and slowly removed from the well with a pipette to avoid 

disruption of the RET. (C) Photograph of the humid chamber used to maintain sample humidity during 

the experiment. 
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photobleaching, citifluor (Agar scientific, AF2 R1320) is delicately deposited on the sample 

using a pipette tips 200µL. The slides are then stored in a humid chamber in the dark at 4°C. 

The samples are observed under an epifluorescence microscope (Leica DMI6000B, Wetzlar, 

Germany; λExcitation: 591 nm; λEmission: 614 nm). For this experiment, 3 to 4 technical replicates 

and 4 to 6 biological replicates are carried out. 

6. High-Pressure Freezing/Freeze Substitution (HPF) sample preparation 

Dissected 12-d-old root tips of Arabidopsis and perennial ryegrass were transferred into the 

cavity of copper cupules (100 µm depth; 0.6 mm diameter and 200 µm depth; 0.6 mm diameter, 

respectively). For the perennial ryegrass, the outermost senescent leaf sheaths are discarded 

from the shoot and a 10-mm long segment is dissected from the basal point of attachment of 

the leaves including mature leaf sheaths and elongating leaf bases. 0.5mm long sample of leaf 

bases are dissected from the 10 mm long segments and are also transferred into the cavity of 

two copper cupules (300 µm depth; 0.6 mm diameter). The cupules are coated with soybean 

(Glycine max) lecithin (100 mg mL-1 in chloroform) (Fig. II-5). The excess medium is removed 

using filter paper. The sample carriers were securely attached to the sample holder pod using a 

horizontal loading station. Then, samples arre frozen using a high-pressure freezing HPF-EM 

HPM 100 (Leica Microsystems) with a maximum cooling rate of 20,000°C s-1, an incoming 

pressure of 7.5 bars, and a working pressure of 4.8 bars. Cupules containing frozen samples are 

stored in liquid nitrogen until the freeze-substitution procedure is initiated. 

After high-pressure freezing, samples are transferred to a freeze-substitution automate (AFS, 

Leica Microsystems) precooled to −140°C. Samples are substituted in anhydrous acetone with 

0.5% uranyl acetate at −90°C for 96 h (Ovide et al., 2018). Using a gradient of +2°C h−1, the 

temperature is gradually raised from −90 to −15°C with two intermediate steps at −60 and 

−30°C. Samples are washed twice at RT with fresh anhydrous acetone. Resin infiltration is 

processed at −15°C in a solution of ethanol/London Resin White (LRW) with successive ratios 

of 2:1 overday; 1:1 overnight and 1:2 overday followed by a final step in a pure LRW solution 

renewed twice during 48 h. The LRW is finally polymerized into the AFS apparatus at −15°C 

under ultraviolet light for 48 h. Using a Leica ultramicrotome EM-UC7 (Leica Microsystems), 

semithin sections (0.5 µm) were cut and adhered onto 10-welled diagnostic microscope slides 

(Thermo Scientific, ER-208B-CE24) pre-coated with Poly-L-Lysine (EMS-19320-B, dilution 

1:10 in filtered water). The HPF sections are stained with toluidine blue to highlight 

components.  
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7. Immunolabeling of HPF sections of root border cells, mucilage and root tips 

Semithin sections (0.5 µm) of 12-d-old roots and leaf bases on 10-welled Teflon microscope 

slides coated with Poly-L-Lysine (Fig. II-5) are blocked in PBS 1x with 0.1% (v/v) Tween 20 

(PBST) containing 3% (w/v) BSA and normal goat serum (NGS-dilution 1:20) for 30 min at 

RT. Then, sections are carefully washed 5 times for 5 min with 0.1 % PBST containing 1% 

BSA. After washing, sections are incubated overnight at 4°C with primary antibody (dilution 

1:2 in 0.1% PBST containing 1% BSA and NGS (diluted 1:20)). On the next day, sections are 

washed 5 times for 5 min with 0.1 % PBST containing 1% BSA before being incubated with 

secondary goat anti-rat IgG antibody conjugated to Alexa Fluor 594 (Invitrogen) at1:200 

dilution in 0.1% PBST containing 1% BSA and NGS (diluted 1:20) for 2 h at 25°C. Sections 

are rinsed 5 times at RT for 5 min with 0.1 % PBST containing 1% BSA and two final washes 

Figure II-5. Schematic representation of high-pressure freezing/freeze substitution (HPF) sample preparation.  

(A) Sample preparation in the cupule coated with soybean (Glycine max) lecithin. (B) Freezing sample 

preparation by using a high-pressure freezing HPF-EM PACT I and freeze-substitution automate (AFS). (C) 

Semithin sections (0.5 µm) are cut off by using a Leica ultramicrotome EM-UC7. 
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for 5 min at RT with ultrapure water. Then, a droplet of ultrapure water is added to the section 

in each well. Epifluorescence of the immunostained tissue sections is observed on an 

epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 

614 nm). Controls are performed by omission of primary antibodies. For this experiment, 3 

technical replicates and 4 biological replicates are performed.  

8. Ultrastructural and immunogold analyses using transmission electron 

microscopy 

Ultrathin sections (90 nm; EM UC6 Leica microsystems) of ryegrass root tips from HPF 

samples prepared previously are collected on nickel formvar-coated grids. For immunogold 

analysis, sections are blocked in PBS 1X containing 3% BSA for 30 min at RT. Sections are 

then incubated with the primary antibody (JIM13, PlantProbes, Leeds, UK; dilution 1:2 in PBS 

1x containing 0.3% BSA for overnight at 4 °C in a humid chamber. After washing in PBS 1x 

containing 0.3% BSA, grids are incubated for 1 h at 37 °C with the goat anti-rat secondary 

antibody conjugated to 10 nm gold particles (dilution 1/20 inPBS 1x containing 0.3% BSA; 

British Biocell International). Before transmission electron microscopy observation, all sections 

are stained with classical staining using uranyl acetate (0.2% in methanol) and lead citrate 

(Delta microscopies, ref: 11.000) and Reynolds lead citrate (Delta microscopies, ref: 11.300). 

Observations are made with a FEI Tecnai 12 Biotwin transmission electron microscope 

operating at 80 kV, with ES500W Erlangshen CCD camera (Gatan). 

9. Primary antibodies table 

Primary antibodies with epitopes associated with different parietal polysaccharides are mainly 

provided by PlantProbes (University of Leeds, UK) and Biosupplies Australia 

(http://www.biosupplies.com.au). A summary table of the antibodies used in this project as well 

as the epitopes recognized by the antibodies and their associated references are presented in 

table II-3.  

10. Statistical and image analysis 

Microscope images were acquired by counterstaining with India ink and measurements made 

using ImageJ 1.53p. The RET surface obtained was determined on by measuring the total 

surface of the RET containing the root cap and then subtracting the surface of the root cap. Data 

were analyzed with R software version 4.0.0. Statistical significance was calculated by using 

the Kruskal–Wallis test and the statistical effect is considered significant with P<0.05. 
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Table  II-3. Primary antibodies and associated epitopes of different cell wall polysaccharides used in this 

project. 
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C. Characterization of two new monoclonal antibodies against β-(2,1) and β-(2,6)-plant 

fructans 

1. Antibody generation 

The company BIOTEM (Apprieu, France) produced the mAbs by immunising mice with 

antigenic compounds prepared from two purified plant fructans, inulins from Cichorium 

intybus and levans from Phleum pratense, both supplied by Megazyme (Wicklow, Irland) under 

references P-INUL and P-LEV, respectively. After the immunizations, hybridoma preparation 

and cloning were performed by BIOTEM while we were in charge of screening the hybridoma 

and sub-clones for the presence of antibodies reacting with inulins and levans by immune-dot 

blot.  

Five mice (Oncins France 1 strain) were injected three times at three-week intervals with inulins 

and levans conjugated to bovine serum albumin (BSA). The first injection was made 

subcutaneously and intraperitonealy with complete Freund’s adjuvant and the two others 

intraperitonealy with incomplete Freund’s adjuvant. Ten days after the third immunization, the 

levels of serum immunoglobulins anti-inulins and anti-levans conjugated or not to BSA were 

tested by indirect competitive ELISA. The mice were injected again three times intraperitonealy 

the same antigens and incomplete Freund’s adjuvant at three-week intervals and ten days after 

the sixth immunization, the levels of serum immunoglobulins anti-inulins and anti-levans 

conjugated or not to BSA were again tested. Three month later, the mice were injected again 

two times intraperitonealy of free inulins and levans and incomplete Freund’s adjuvant at two-

week intervals and ten days after the eighth immunization, the levels of serum immunoglobulins 

anti-inulins and anti-levans conjugated or not to BSA were again tested by ELISA and also by 

immune-dot blot against free inulins and levans. One month after the last injection, a selected 

mouse was given an intravenous injection of free inulins and levans without adjuvant. Three 

days after the boost injection, the mouse was sacrificed and the spleen was taken for 

lymphocytes isolation. The lymphocytes were fused with Sp2/0-Ag14 myeloma cell line using 

standard hybridoma preparation. The hybridoma supernatants from the fusion were screened 

for the presence of antibodies reacting with inulins and levans by immune-dot blot. Two 

hybridomas were selected for subcloning by dilution. Crude hybridoma supernatants were used 

as the source of two monoclonal antibodies (mAbs) named BTM9H2 and BTM15A6. The 
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determination of the immunoglobulin isotypes revealed that both antibodies are IgG (IgG1  

for BTM9H2 antibody and IgG2a  for BTM15A6). 

This study was carried out in strict compliance with French and European animal protection 

policy. BIOTEM received the approval of the “Direction Départementale de la Protection des 

Populations de l’Isère (38)” under the number D 38 013 10 001. The animal protocol has been 

reviewed and approved by the BIOTEM ethics committee. 

2. Carbohydrate samples 

Commercially available carbohydrates were purchased and prepared as detailed in Table S1.  

For preparation of water soluble carbohydrate (WSC) extracts and purification of fructans from 

perennial ryegrass (Lolium perenne var. Bravo; 0-5 cm shoot base), plants were grown 

hydroponically in green-house for 8 weeks as described in Lothier et al. (2014). WSC extraction 

and quantification and fructan purification were carried out to the methods described by Benot 

et al. (2019) and Morvan et al. (1997), respectively 

For preparation of WSC extracts of cocksfoot (Dactylis glomerata; 0-3 cm shoot base) and 

dandelion (Taraxacum officinalis; roots), tissue was sampled from wild plants taken from the 

green spaces of the campus of University of Caen. Water soluble carbohydrate (WSC) 

extracts were prepared and quantified according to the method described by Benot et al. (2019). 

3. Immuno-dot blot assay 

The immuno-dot blot technique is used to detect the binding capacity of the anti-fructan mAbs 

on circular deposits of a wide range of carbohydrates to test the specificity of anti-fructan 

antibodies. The list of the carbohydrate used for this study is given in Appendix 1. The protocol 

is adapted from Li et al. (2010) and Manceur et al. (2017). 

The sheets of Bio-Dot filter paper and nitrocellulose membrane (0.2 µm-Amersham protran- 

ref.10600006) are pre-wet in TBS 1x (Tris-buffered saline: Tris 20mM and NaCl 500mM), pH 

7.5). For each carbohydrate solution, a serial dilution is done with ultrapure water to obtain five 

quantities of each carbohydrate solution (5, 25, 50, 125, 250 µg) in 50 µL. For each dilution, 

50 µL are loaded into the dot-blot wells in duplicate. Ultrapure water is used as a negative 

control. By suction through the 96-well dot-blotting equipment (DHM96, Scie-Plas), samples 

were blotted onto the nitrocellulose membrane.  

The membrane is then blocked in the TBS 1x containing 0.1% Tween 20 (0.1% TBST) for 2 h 

at RT with shaking, followed by overnight incubation at 4˚C with 5μg.mL-1 anti-fructan 
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antibodies diluted in 0.1% TBST blocking buffer. After 3 washes 10 min each with 0.1% TBST, 

the membranes are incubated for 2 h at RT with Horseradish Peroxidase (HRP)-conjugated 

secondary antibody diluted 1:3000 in 0.1% TBST blocking buffer. Then, three washes 10 min 

each with 0.1% TBST and one wash 10 min with TBS 1x are performed. Secondary antibodies 

are detected using a chemiluminescent substrate kit (SuperSignal™ West Pico PLUS-ref. 

34580). After 5 min incubation, the image of the blot is captured with VILBER 

chemiluminescence imaging system (Fusion FX - ref. Imager E-box CX5 EDGE) (Fig. II-6). 

Control membranes are performed by omission of primary antibodies. Two secondary 

antibodies are used which are goat anti-mouse IgG (H+L), HRP conjugate (A16078-

Invitrogen), and chicken anti-mouse IgG (H+L), HRP conjugate (A15981-Invitrogen). The 

change in the secondary antibody was due to a significant binding of goat anti-mouse secondary 

antibody on fructan extracted from perennial ryegrass without the presence of anti-fructans 

antibodies (control membranes).  

 

4. Immuno-dot blot analysis 

The immune-dot blot image analysis were performed using Fiji, an image processing package 

of ImageJ2 (Schindelin et al., 2012; https://imagej.net/software/fiji/) following the dot-blot 

analysis method described on the ImageJ website (https://imagej.nih.gov/ij/docs/examples/dot-
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Figure II-6. Illustration of immuno-dot blot 

assay of the binding of anti-fructan antibodies 

to a series of fructans and other water soluble 

carbohydrate (WSC) extracts. 

 Samples were applied to nitrocellulose 

membrane (50µL per dots) at concentration 

allowing to depose from 5 to 250 µg. 

https://imagej.nih.gov/ij/docs/examples/dot-blot/index.html
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blot/index.html). The integrated density of luminescence was determined on each dot by 

measuring the grey level of the pixels (volume) inside the circular selection of the dot. The 

integrated density of each dot was normalized against the integrated density obtained with 250 

µg of levans from timothy.  

5. Localization by immunofluorescence of fructan epitopes 

The localization of epitopes recognized by anti-fructan mAbs is performed on root tips 

according to the protocol described previously in section B.5 of materials and methods (Fig. II-

4). A donkey anti-mouse IgG secondary antibody (Ac. II) conjugated to Alexa Fluor 594 

(Invitrogen) (diluted to 1:50 in the solution of PBS+1%BSA) is used for this experiment since 

two anti-fructan mAbs is produced in mouse.  

 In addition, immunolabeling on the HPF sections of 12-d-old ryegrass and Arabidopsis roots 

as well as perennial ryegrass leaf bases (Fig. II-5) is also realized by using the protocol 

corresponding in section B.7 for the two anti-fructan mAbs. Normal donkey serum (NDS-

dilution 1:20) and donkey anti-mouse IgG secondary antibody conjugated to Alexa Fluor 594 

(Invitrogen) at 1:100 dilution in 0.1% PBST containing 1% BSA and NDS (diluted 1:20) is 

used to bind to mouse anti-fructan mAbs.  

6. Statistical analysis 

All data obtained were analyzed with R software version 4.1.2 using the “Rcmdr” package (R 

Core Team, 2021). Data are expressed as means ± standard error for three to five biological 

replicates. The effect of carbohydrate quantity was tested with the Kruskal-Wallis non-

parametric test. Statistical significance was set at P<0.05. Chi-squared (χ2) and p-values are 

detailed in Appendix 2 and 3 for BTM9H2 and BTM15A6 antibodies, respectively. 

D.  Salicylic acid upregulates fructan exohydrolases (FEH) together with defense-marker 

genes in non-fructan plants. 

1. Plant treatment with phytohormones 

When the fourth leaf (B. napus) or the eighth leaf (A. thaliana) has emerged, the microtubes are 

transferred in 150mL pots (five plants per pot) containing 50 mL of Hoagland ¼ nutrient 

solution supplied with 0.5 mM SA, 50 µM MeJA, 20 µM ACC (Sigma-Aldrich, Saint-Louis, 

MO, USA) or without supplement (control) for 3, 6, 12, and 24 h according to the experiment 

(Fig. II-7). At the end of the treatment period, plants are collected. The shoot is separated from 

the root, and each tissue is frozen in liquid nitrogen and stored at -80°C. Before RNA and 

https://imagej.nih.gov/ij/docs/examples/dot-blot/index.html
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protein extractions, plant tissue is ground in liquid nitrogen in a precooled mortar and pestle 

until a fine powder was obtained and the frozen powder was stored at -80°C. 

 

2. RNA extraction 

The frozen powder (approx. 200 mg) was transferred to a tube containing 750 µL extraction 

buffer (0.1 M LiCl, 0.1 M Tris-HCl, 0.01 M EDTA, 1% (w/v) SDS, pH 8.0) mixed with 750 

µL of hot phenol (80°C, pH 4.3), which was reheated to 80°C. After vortexing for 40s, 750µL 

chloroform/isoamyl alcohol (24:1 v/v) was added. The tube was mixed vigorously and 

centrifuged at 20 888 g for 5 min at 4°C. The supernatant was transferred into 750 µL LiCl 4M 

and incubated overnight at 4°C. A white pellet containing RNA was visible after centrifuging 

for 20 min at 20 888 g at 4°C. Then, the supernatant was removed and the pellet was suspended 

in 100 µL RNase free water. 

Purification of RNAs including a step of DNA digestion by DNAse treatment was performed 

using RNeasy mini kit according to the manufacturer’s protocol (Qiagen, Courtaboeuf, France). 

Purified RNA was diluted in 20 µl distilled water. Absorbance at 260 nm and the 260/280 nm 

ratio were measured with an RNA BioPhotometer (Eppendorf, Hamburg, Germany) and used 

to calculate the total RNA concentration and to check the RNA purity. RNA integrity was 

visualized by separation of 1 μg of total RNAs on a 1.2% (w/v) standard agarose gel containing 

ethidium bromide (0.5 μg.ml-1) (Fig. II-8). 

Treatment 

solution 

containing 

SA, MeJA or 

ACC 

Air 

bubble 

tube 

Air pump 

Figure II-7. Experimental design for 

exogenous supply of phytohormones at 

the root level.  

Plants are treated in 150mL pots (five 

plants per pot) containing 50 mL of 

nutrient solution supplemented with 

phytohormone: 0,5 mM salicylic acid 

(SA), 50 µM methyl jasmonate (MeJA) or 

20 µM 1-Aminocyclopropane-1-

carboxylic acid (ACC) for 3, 6, 12, and 

24 h. The shoots and the roots were 

harvested separately, stored at -80°C 

before RNA or protein extraction. 
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3. RT-qPCR analysis 

Total RNA was reverse transcribed to cDNA by using iScript™ cDNA Synthesis Kit (Biorad, 

France) with 2 µL iScript reaction mix (5X) and 0.5 µL iScript reverse transcriptase. Real-Time 

qPCR experiments were performed using 4 μL of 1:200 dilution of first-strand cDNA on a 

Biorad CFX96 connect real-time PCR (Chromo4®, Biorad, France). The PCR mix comprised 

0.75 μL forward and reverse primers and 7.5 µl of iQ SYBR Green supermix (BioRad, France) 

in a 15 μL total volume. qPCR was performed using the following program: 95 °C for 3 min 

followed by 40 cycles of 95 °C for 15 s and 60 °C for 40 s. The description of the gene-specific 

primers was given in Table II-4. FEHs primer pairs were designed with Primer3 software 

(https://primer3plus.com/cgi-bin/dev/primer3plus.cgi) from the nucleotide sequences available 

on the National Center for Biotechnology Information-NCBI and by comparing FEH 

sequences. Each primer chosen contains about 20 nucleotides with at least 50% GC content and 

optimal Tm at 60°C, raising to PCR products of 100-300 bp length. For each gene, the 

25S 
18S 

5S 

25S 
18S 

5S 

Figure II-8. Separation by 1.2% agarose gel electrophoresis of total RNAs. 

1 µg deposited per extract from roots treated with SA (0.5 mM), MeJA (50 µM), ACC (20 µM) 

and only Hoagland ¼ solution for control plants (T). The quality is controlled by observing 

the migration of 25S, 18S and 5S RNAs to ensure that the extraction and purification steps 

are carried out correctly. 
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specificity of PCR amplification was validated by monitoring the presence of the single peak 

in the melting curves and by sequencing the PCR product. For relative transcript level 

determination, two reference genes were selected (BnGAPDH and BnEF1 for B. napus and 

AtActin and AtEF1α for A. thaliana). For each pair of primers, a threshold value and PCR 

efficiency (%) were determined using a cDNA preparation diluted >10-fold. The PCR 

efficiency of each pair of primers, ranging from 94.7 to 118.1 %, was used to calculate the 

relative gene expression using a delta threshold cycle (Ct) method derived from that described 

by Hellemans et al. (2007). For each target and reference genes of a data series, the relative 

quantity (RQi) of the corresponding transcript in each sample (i) was calculated as follow: 

RQi = E-ΔCti, min 

where E is (1+ efficacity)/100 and ΔCti, min is the difference between Cti and the lowest Ct of 

the series (Cti, min). The RQi of the target genes are normalized (NRQi) with the geometric 

average of the RQi of the two reference genes as follow: 

NRQi = RQi / (√(RQi, ref1 x RQi, ref2)) 

Then, the NRQi are rescaled (rescaled-NRQi) by comparison with that of the control sample 

NRQctrl as follow: 

rescaled-NRQi = NRQi / NRQctrl 
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4. Statistical analysis 

All data obtained were analyzed with R software version 4.0.3 using the “Rcmdr” package (R 

Core Team, 2021). For each treatment and time, the data correspond to five biological replicates 

(five individual plants). The comparison of control versus treated plants was done using the 

Wilcoxon nonparametric test (rank-sum test). The comparison of more than two sets of data 

was done using the Kruskal-Wallis nonparametric test followed by a post-hoc multi-comparison 

ranking test (with the “pgirmess” and the “multcompView’ packages). For each test, the 

Table  II-4. Primers used for qRT-PCR in this study.  

F: forward; R: reverse. Bn: B. napus genes and At: A. thaliana genes. 
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statistical effect is considered significant with P<0.05. The principal component analysis was 

performed with the “FactoMinR” package using the relative expression of seven genes in the 

roots of the five genotypes with five biological replicates for each genotype (n=25).  

E. Involvement of bacterial levans and plant fructan exohydrolases (FEHs) in Arabidopsis 

thaliana root colonization by Pseudomonas brassicacearum 

1. Bacterial strains  

The strains are red or green fluorescent protein-tagged bacteria corresponding to the reference 

strain for genome-based analysis (Ortet et al., 2011) which contains the levansucrase gene 

encoding the levan synthesizing enzyme (NFM421-I::rfp or NFM421-I::gfp; later named 

NFM421) and the corresponding levansucrase knock-out mutant strain (NFM421-I::Δlev, later 

named Δlev) (Achouak et al., 2004). The levansucrase knock-out mutant strain Δlev was 

obtained by Sylvain Fochesato (Laboratoire d'Écologie Microbienne de la Rhizosphère et de 

l'Environnement Extrême - LEMiRE, Institut de Biosciences et biotechnologies d’Aix-

Marseille – BIAM, CEA, Cadarache).  

2. Arabidopsis T-DNA mutant  

At6-FEH (At1g55120) and At6&1-FEH (At5g11920) Arabidopsis thaliana knock-out mutants 

were selected from the Colombia (Col-0) SALK T-DNA collection of the Nottingham 

Arabidopsis Stock Centre (NASC, Nottingham UK) (Table II-5). The three 6-feh mutant lines 

are N675754-SALK 073323C (further named 6-feh-S073), N671758-SALK 097556C (further 

named 6-feh-S097) and N672154-SALK 134791C (further named 6-feh-S134). The two 6&1-

feh mutant lines are N655172-SALK 127864C (further named 6&1-feh-S127) and N655201-

SALK 152299C (further named 6&1-feh-S152). 

For mutant genotyping, A. thaliana seeds (wild-type Col-0 and FEH knock-out mutants) were 

stratified for 48 h in 0.1% agar at 4°C in the dark and then sown in pots (9x9x10cm) filled with 

vermiculite with a 1cm layer of soil on top (Fig. II-9A). The pots were placed in a plastic tank 

containing Hoagland ¼ nutrient solution which was renewed every 3-4 days. Plants were grown 

for approximately 8 weeks in a plant growth chamber with a PAR (Photosynthetically Active 

Radiations) of 110 μmol photons⋅m-2⋅s-1 under a photoperiod of 16 h and a thermoperiod of 

20/18°C day/night. 

FEH knock-out mutants were tested by PCR-based genotyping to confirm the T-DNA insertion 

localization and homozygosity. The PCR primers used for genotyping are listed in Table II-5. 
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DNA is extracted from 100 mg of fresh young leaves using NucleoSpin™ Plant II kits 

(Macherey-Nagel, 740770.50). PCR was performed according to a protocol modified from 

O’Malley et al. (2015) using 3µL of DNA extract. Initial denaturation step at 94°C for 2 min 

was followed by 40 cycles including a denaturing step at 94°C for 30s, a primer hybridization 

step at various temperatures according to each pair of primers for 1 min and an amplification 

step at 72°C for 1 min. Each PCR reaction was finished with a final step at 72°C for 10 min. 

Then, PCR products were separated by electrophoresis on 1.2% agarose gel in TAE 1X 

containing 50µL de BET (0.5 mg. mL-1) and revealed by illumination with UV-light using a 

Gel-Doc TM EZ Scanner (Bio-Rad, Marnes-la-Coquette, France) (Fig. II-9B). In addition, FEH 

transcript level was also verified by using quantitative RT-PCR on the RNA extracted from 

leaves. The protocol is detailed in sections D.2 and D.3 of the M&M chapter. Seeds of 

homozygous plants were collected in 1.5 ml tubes and stored at 12°C.  

 

The two 6&1-feh mutant lines (6&1-feh-S127 and 6&1-feh-S152) are homozygote for the T-

DNA insertion but At6&1-FEH transcript is detected in 6&1-feh-S152 (Table II-6). Two 6-feh 

mutant lines are homozygote for the T-DNA insertion (6-feh-S097 and 6-feh-S134) while the 

other is heterozygote (6-feh-S073). For the three 6-feh mutant lines, the At6-FEH transcript is 

not detected (Table II-6). 

 

  

Table  II-5. T-DNA specific primers for SALK insertion mutant collection and primers used for 

plant genotyping. 
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Table  II-6. Characteristics of FEH knockout mutants. 

Fresh young leaves collected 

for DNA and RNA 

extractions      

Col0 S127 S073 S134 S097 S152 

At 6&1-
FEH 

At 6-FEH  

Mut - Wt Mut - Wt Mut - Wt Mut - Wt Mut - Wt Mut - Wt 

A 

B 

Figure II-9. Arabidopsis T-DNA mutant genotyping. 

(A) FEH knock-out A. thaliana mutants growing on plant racks in the growth chamber. (B) Electrophoresis 

gel after PCR for the genotyping of A. thaliana FEH knock-out mutants to select the homozygous plants. 

Mut: Mutant primers; Wt: Wild type primers. 
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3. Bacterial inoculation 

For the in vitro root colonization experiments with P. brassicacearum, A. thaliana seeds (wild-

type Col-0 and FEH knock-out mutants) were placed in a 2 mL sterile Eppendorf tube. 2 mL of 

a sterilization solution containing 1 mL 2.5 % chlorine bleach, 9mL ethanol absolute, and 3 

drops of Tween 80 (Sigma-Aldrich-V000749) were added to the seeds for 6 min. Then seeds 

were washed 4 times with absolute ethanol and dried naturally in a Petri dish under sterile 

conditions in horizontal laminar flow hoods before sowing. Two P. brassicacearum strains 

(NFM421 and Δlev) were grown in 10-fold-diluted tryptic soy broth (TSB/10; Difco 

Laboratories, Detroit) at 30°C for 24h. The optical density (OD) at 600 nm of overnight 

bacterial cultures was measured before the experiment to obtain approximately 200-1000 

bacteria per plate culture. Bacterial suspensions were added to 150mL of half-strength 

Hoagland (Hoagland ½) medium containing 3.5g agar per liter (Arnon and Hoagland, 1940) 

and poured as a band where the seeds were sown. 7 sterile seeds were sown in a squared dish 

(15 x 15 cm) filled with Hoagland ½ medium and 0.4% phytagel (Sigma, St. Louis) (Fig. II-

10A). The dishes were sealed with micropore tape (3M, St. Paul, MN, U.S.A.) and incubated 

vertically at 21°C for 21 days with 16 h of light and 18°C at night (approximately 100 photons 

m–2 s–1). Control experiments were performed by omission of bacteria. For this experiment, 9 

technical replicates and 3 biological replicates were performed. 

4. Monitoring root colonization by P. brassicacearum using bacterial colonies 

counting 

The roots of five 21-d-old plants inoculated with one of the two strains (NFM421 or Δlev) were 

collected and ground in mortar in 1mL of 0.85% potassium chloride (KCl). Then, three dilutions 

of the ground root were plated on a 10-fold-diluted tryptic soy agar (TSA/10) medium. After 3 

days at 25°C in the bacterial incubator, the bacterial colonies of the 3 most diluted points were 

counted (Fig. II-10B). For this experiment, 5 biological replicates were performed. 
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Figure II-10. Schematic representation of the experiments to study the interaction between A. thaliana FEH 

knock-out mutants and P. brassicacearum.  

 (A) In vitro root colonization experiments. (B) Quantification of P. brassicacearum colonization (NFrfp 

and Δlevrfp strains) 21 days after inoculation by counting the colonies on the 3 most dilute points 

(approximately 103 bacteria/root) using ImageJ. 
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5. Monitoring root colonization by P. brassicacearum using fluorescent 

microscopy 

The roots of 14-d-old plants inoculated with one of the two strains (NFM421 or Δlev) were 

observed using a confocal scanning light microscopy (CSLM, Olympus) equipped with a 

krypton-argon laser, detectors, and filter sets for RFP monitoring. Shadow projections and 

optical sections were generated using the Fluoview software package. The observation was 

realized in three compartments of root including the basal part (1.5- to 2-cm), apical part (1-

cm), and median part (variable lengths) (Achouak et al., 2004).  For this experiment, 4 technical 

replicates and 3 biological replicates were done.  

6. Observations of P. brassicacearum exopolysaccharide (EPS) production 

Bacterial exopolysaccharide (EPS) production was observed using a fluorescent Concanavalin 

A probe (ConA, Texas Red™ Conjugate, Molecular Probes- C825, 1 mg/ml). A colony of P. 

brassicacearum NFM421 expressing a plasmid-borne GFP (NFM421-I::gfp) was scraped from 

the agar surface and deposited on a slide. 100µL of 1 mg/ml ConA was added and the slide was 

stored 15 min in the dark. The ConA solution was then discarded and the slide is rinsed 2 times 

with 40 mL of PBS for 15 min. Finally, a droplet of citifluor was delicately deposited on the 

sample and a coverslip is mounted to the slide before observing by CSLM. In addition, the roots 

of 14-d-old plants inoculated with the P. brassicacearum NFM421-I::gfp strain were removed 

from the plate and incubated into 100µL of ConA solution for 1h in the dark in the microscope 

slide. After discarding the ConA solution, roots were washed 2 times with 40 mL of PBS for 

15 min. The roots were then observed in a droplet of citifluor after being covered with a 

coverslip by CSLM equipped with a krypton-argon laser, detectors and filter sets for 

simultaneous monitoring of GFP and RFP. For this experiment, 3 technical replicates and 2 

biological replicates were performed.   

7. Analysis of root system morphology  

The morphology of root system of at least five plants of each genotype (Col-0 and FEHs knock-

out mutant) was studied by analyzing scanned images. WinRHIZO Pro version 2007d (Regent 

Instruments, Canada) (Fig. II-11B) was used to measure two root traits which are indicators for 

a potential uptake of water and nutrients (Himmelbauer et al., 2004; Gruber et al., 2013), the 

total root length (cm) and surface area (cm2).  They were measured in the total root system of 

each plate and then divided by the number of plants to obtain the root length per plant (cm. 

plant-1) as well as surface area per plant (cm2.plant-1). Moreover, the Fiji (Fiji is Just ImageJ), 
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an image processing package of ImageJ2 (Schindelin et al., 2012; 

https://imagej.net/software/fiji/) was used to measure the total primary root length per plate 

(cm) and the lateral root number (Fig. II-11A, B). Lateral root density (number/cm primary 

root) was calculated by dividing the total number of visible lateral roots in one plate by the total 

length of primary root (Lima et al., 2010; Gruber et al., 2013). 

 

ImageJ 

analysis 

Obtained through ImageJ  
- The total primary root (PR) length (cm) 

- The lateral root (LR) number  

A 

B 

Obtained through WinRHIZO 

- The total root length of the root system (cm) 

- The surface area (cm 2) 

Figure II-11. Schematic representation of image analysis of root system morphology.  

(A) Images obtained are first analyzed using ImageJ to retain only the root system. (B) Two image processing 

packages ‘WinRHIZO’ and ‘ImageJ’ are then used to collect the chosen indicators of root system morphology. 
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8. Statistical analysis 

Data were analyzed with R software version 4.0.3 using the “Rcmdr” package (R Core Team, 

2021). For each inoculation, the data correspond to five biological replicates (five individual 

plants). The comparison of control versus inoculated plants was undertaken using a one-way 

ANOVA with pairwise comparisons made using a Tukey test. Before ANOVA, a Shapiro–Wilk 

test and a Bartlett test were performed on each set of data to assess data normality and 

homogeneity of variances, respectively. For each test, the statistical effect is considered 

significant with P<0.05. 
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III. Results 

1. Generation and characterization of two monoclonal antibodies that recognized β-(2,1) 

and β-(2,6)-fructan epitopes:  new tools to unravel the functions and subcellular 

localizations of fructans in plants 
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Abstract 

Fructans are water-soluble fructose polymers containing one glucose residue. Fructose residues 

are bound together by β-(2,1) and/or β-(2,6) linkages. Beside their role as storage carbohydrates 

in many crop and fodder species, fructans fulfill additional functions and contribute to biotic 

and abiotic stress resistance. They are synthesized and stored in the vacuole of plant cells but 

have also been surprisingly reported in the apoplast. Fructan antibodies therefore represent 

powerful tools to unravel the functions and subcellular localizations of fructans in plants but 

they are not yet available. Here, we report the production of two monoclonal antibodies (mAbs) 

using mice immunized with a mixture of antigenic compounds prepared from two fructan plant 

species, inulins from Cichorium intybus and levans from Phleum pratense. Their specificity 

towards β-(2,1) and/or β-(2,6) linkages of fructans was demonstrated by immune-dot blot 

assays on a wide range of carbohydrates including various oligosaccharides and 

polysaccharides. The two mAbs were used for in situ immunolocalization of fructans by 

epifluorescence microscopy in three fructan plant species, perennial ryegrass (Lolium perenne), 

timothy (Phleum pratense) and wheat (Triticum aestivum) and in the non-fructan plant 

Arabidopsis thaliana as a control. Fructans were specifically detected in fructan plants, at the 
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surface of the root tips or inside the cells of the roots and mature leaf sheaths, suggesting an 

apoplastic and vacuolar localization, respectively. The two mAbs provide new tools to explore 

the fructan secretion mechanisms and decipher the fructan involvement in stress resistance and 

in plant-microorganism interactions. 

Introduction 

Some organisms including bacteria, fungi, algae and land plants are known to synthesize 

fructans in addition to the two most common carbohydrate reserves that are glycogen and starch 

(Hendry, 1993; Ball et al., 2011). Fructans are produced by some beneficial bacteria such as 

Gluconacetobacter diazotrophicus (Hernández et al., 2000), pathogenic bacteria such as 

Erwinia amylovora (Öner et al., 2016), fungi such as Aspergillus sp. (Trollope et al., 2015) and 

some Archaea (Kirtel et al., 2019) and by more than 15% of angiosperms (Hendry, 1993). 

Fructans are water-soluble polymers of fructose residues linked by β-(2,1) and/or β-(2,6) 

linkages with one external or internal glucose residue (Ritsema and Smeekens, 2003). Four 

different fructan types are distinguished according to the nature of the linkage connecting the 

fructose residues (β-(2,1) or β-(2,6)), the position of the glucose residue (internal or external) 

and the presence or absence of branches (Ritsema and Smeekens, 2003). Inulins are linear 

chains with β-(2,1) linkages and an external glucose residue. Levans are linear chain with β-

(2,6) linkages and an external glucose residue. Neoserie-type fructans have an internal glucose 

residue and β-(2,1) (neo-inulin type fructans) or β-(2,6) (neo-levan type fructans) linkages. 

Graminan-type fructans are branched-chains containing both β-(2,1) and β-(2,6) linkages and 

an external glucose residue. In plants, the degree of polymerization (DP) is generally between 

30 and 150, but in some cases, it can reach 200 (Van den Ende, 2013). In microorganisms, the 

DP of fructans can be above 100 and up to 10000 (Velázquez-Hernández et al., 2009). Fructans 

with a DP below 10 are called fructooligosaccharides (FOS). Inulins are mainly found in 

Asteraceae such as Cichorium intybus (Van Laere and Van den Ende, 2002); Taxaracum 

officinalis (Van den Ende et al., 2000) and in other eudicots such as in Boraginaceae (Myosotis 

secunda) and Campanulaceae (Campanula rotundifolia L.) (Brocklebank and Henry, 1989). 

Levans are found in Poaceae such as Phleum pratense (Cairns and Ashton, 1993; Cairns et al., 

1999) and Dactylis glomarata (Chatterton et al., 1993; Hendry, 1993). Neoserie-type fructans 

are found in monocots such as Asparagus officinalis, Allium cepa (Shiomi, 1989) and Agave 

sp. (Mancilla-Margalli and López, 2006). Some plants contain a mixture of several types of 

fructans such as Triticum aestivum (graminans and inulins; Kawakami et al., 2005) and Lolium 

perenne (neo-inulin type, neo-levan type and inulins; Pavis et al., 2001). In bacteria, fructans 
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are mainly of the levan type while some bacteria, specifically in species from the three genera 

Streptococcus, Leuconostoc and Lactobacillus, synthesize inulins (Öner et al., 2016). 

At the subcellular level, plant fructans are synthesized and stored in the vacuole (Wagner et al., 

1983). However, some studies also mention an apoplastic localization, in crown tissues of oat 

after cold hardening (Livingston and Henson, 1998) and in the phloem of Agave deserti (Wang 

and Nobel, 1998). In bacteria, fructans and their synthetic enzymes (levan- and inulosucrases) 

are extracellular so that fructans are part of the exopolysaccharides (EPS) that contribute to 

biofilm formation, an assembly of microorganisms adhering to each other and/or to a surface 

and embedded in an EPS matrix (Öner et al., 2016). 

In plants, fructans are not only a form of carbon storage but also contribute to the resistance to 

abiotic stresses such as cold, drought, and salinity (Parvanova et al., 2004; Livingston et al., 

2009; Bie et al., 2012; Van den Ende, 2013). The role of fructans in tolerance to abiotic stresses 

is due to their water solubility that allows them to contribute to the regulation of osmotic 

potential, and to their ability to stabilize membranes (Hincha et al., 2007). These abilities 

improve plant endurance during freezing or drought-related dehydration (Livingston et al., 

2009). Fructans are also able to control reactive oxygen species (ROS) produced in excess 

during stress (Stoyanova et al., 2011; Matros et al., 2015). In addition, fructans are involved in 

plant immunity as signaling molecules (Bolouri Moghaddam and Van den Ende, 2013) as 

shown by the reduction of plant infection following the pre-application of exogenous plant 

fructans (Zhang et al., 2009; Tarkowski et al., 2019; Svara et al., 2020). However, it is not clear 

if the involvement of fructans as membrane protector during dehydration and as signaling 

molecules in the defense responses relies on their active secretion or on passive leakage from 

the vacuole to the apoplast (Valluru et al., 2008; Versluys et al., 2017). Thus, to deepen the 

understanding of the mechanisms of action of fructans in the resistance of plants against abiotic 

and biotic stresses, their precise localization at tissue and cellular level in various environmental 

conditions need to be elucidated. Monoclonal antibodies (mAbs) such as those developed 

against various cell-wall polysaccharides (Knox, 2008) are thus essential.  

Only two studies reported the use of anti-fructan antibodies to localize fructans in plant tissues 

(Röber et al., 1996; Pilon-Smits et al., 1996). In these two cases, antibodies were used for the 

immunolocalization of levans produced in transgenic potatoes through the expression of a 

bacterial levansucrase gene. Pilon-Smits et al. (1996) used mAbs produced in mouse (2-l-

3mAb; Hall et al., 1990) while Röber et al. (1996) did not mention the provenance of the anti-

levan antibody. In both cases, the cellular localization of fructans was investigated via 

immunofluorescence and showed the presence of fructans in the intercellular space instead of 
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the expected vacuolar compartment. To our knowledge, apart from these two studies which 

focused on transgenic plant producing fructans, the immunolocalization of fructans has not been 

reported, either in transgenic or in native fructan plant species. Moreover, no anti-fructan 

antibodies are commercially available.  

Thus, we produced mAbs using mice immunized with a mixture of antigenic compounds 

prepared from two fructan-plant species, inulins from Cichorium intybus and levans from 

Phleum pratense. Two new anti-fructan mAbs, named BTM15A6 and BTM9H2, were selected 

because of their binding to inulins and levans used for the antigenic preparation. We 

demonstrated their specificity towards fructans by immune-dot blot assays on a wide range of 

carbohydrates including various oligosaccharides and polysaccharides. The two mAbs were 

used for in situ immunolocalization of fructans by epifluorescence microscopy in three fructan 

plant species perennial ryegrass (Lolium perenne), timothy (Phleum pratense) and wheat 

(Triticum aestivum) and in the non-fructan plant model Arabidopsis thaliana. 

Materials and Methods 

Antibody generation 

The company BIOTEM (Apprieu, France) produced the mAbs by immunising mice with 

antigenic compounds prepared from two purified plant fructans, inulins from Cichorium 

intybus and levans from Phleum pratense, both supplied by Megazyme (Wicklow, Irland) under 

references P-INUL and P-LEV, respectively. After the immunizations, hybridoma preparation 

and cloning were performed by BIOTEM while we were in charge of screening the hybridoma 

and sub-clones for the presence of antibodies reacting with inulins and levans by immune-dot 

blot.  

Five mice (Oncins France 1 strain) were injected three times at three-week intervals with inulins 

and levans conjugated to bovine serum albumin (BSA). The first injection was made 

subcutaneously and intraperitonealy with complete Freund’s adjuvant and the two others 

intraperitonealy with incomplete Freund’s adjuvant. Ten days after the third immunization, the 

levels of serum immunoglobulins anti-inulins and anti-levans conjugated or not to BSA were 

tested by indirect competitive ELISA. The mice were injected again three times intraperitonealy 

the same antigens and incomplete Freund’s adjuvant at three-week intervals and ten days after 

the sixth immunization, the levels of serum immunoglobulins anti-inulins and anti-levans 

conjugated or not to BSA were again tested. Three month later, the mice were injected again 

two times intraperitonealy of free inulins and levans and incomplete Freund’s adjuvant at two-

week intervals and ten days after the eighth immunization, the levels of serum immunoglobulins 
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anti-inulins and anti-levans conjugated or not to BSA were again tested by ELISA and also by 

immune-dot blot against free inulins and levans. One month after the last injection, a selected 

mouse was given an intravenous injection of free inulins and levans without adjuvant. Three 

days after the boost injection, the mouse was sacrificed and the spleen was taken for 

lymphocytes isolation. The lymphocytes were fused with Sp2/0-Ag14 myeloma cell line using 

standard hybridoma preparation. The hybridoma supernatants from the fusion were screened 

for the presence of antibodies reacting with inulins and levans by immune-dot blot. Two 

hybridomas were selected for subcloning by dilution. Crude hybridoma supernatants were used 

as the source of two monoclonal antibodies (mAbs) named BTM9H2 and BTM15A6. The 

determination of the immunoglobulin isotypes revealed that both antibodies are IgG (IgG1  

for BTM9H2 antibody and IgG2a  for BTM15A6). 

This study was carried out in strict compliance with French and European animal protection 

policy. BIOTEM received the approval of the “Direction Départementale de la Protection des 

Populations de l’Isère (38)” under the number D 38 013 10 001. The animal protocol has been 

reviewed and approved by the BIOTEM ethics committee. 

Plant material 

Arabidopsis thaliana (ecotype Columbia) seeds were surface sterilized with 70% (v/v) ethanol 

(5 min), then with 0.9% (v/v) sodium hypochlorite (2 min), washed 6 times in sterile water 

before being sown onto Arabidopsis medium (Duchefa Biochemie) containing 1% (w/v) Bacto 

Agar (ref. A01254) (Durand et al., 2009). Timothy (Phleum pratense var. Aturo) seeds were 

surface sterilized with 70% (v/v) ethanol (5 min), then with 0.9% (v/v) sodium hypochlorite (2 

min), washed 6 times in sterile water before being sown onto Murashige and Skoog (MS - 

Duchefa Biochemie) medium containing 1% (w/v) Bacto Agar. Perennial ryegrass (L. perenne 

var. Delika) seeds were surface sterilized with 9.6% as active chlorine (2 min), washed 6 times 

in sterile water before being sown onto Murashige and Skoog medium containing 1% (w/v) 

Bacto Agar (ref. A01254). Wheat (T. aestivum var. Chevignon) seeds were sterilized with 70% 

(v/v) ethanol 10 min), then with 0.9% (v/v) sodium hypochlorite (10 min), washed 6 times in 

sterile water before being sown onto ½ Murashige and Skoog medium containing 1% (w/v) 

Bacto Agar. Petri dishes with seeds were placed vertically to avoid the roots penetrating the 

agar and the subsequent loss of border and border-like cells and grown in continuous light (120 

µE m-2 s-1) at 21°C in 16-h-day/8-h-night as described by Vicré et al. (2005). Freshly root tips 

were harvested from 10-d-old seedlings of Arabidopsis, perennial ryegrass, timothy, and wheat 
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for testing. The root sections for immunocytochemistry and HPAEC-PAD profile were 

collected from 12-d-old Arabidopsis and perennial ryegrass seedlings. 

Leaves were collected from mature plants grown in hydroponic conditions. Seeds from 

perennial ryegrass (L. perenne var. Delika) were soaked in darkness for 48 hours at 4°C in 0.1% 

(w/v) agar solution individually sown on the top of a 5 mL microtube pierced at the bottom and 

filled with 0.7% (w/v) agarose. Each microtube was transferred to a plastic pot (two plants per 

pot) containing 700 mL of nutrient solution: K2SO4 (1mM), NH4NO3 (1mM), KH2PO4 (0.4 

mM), K2HPO4 (0.15 mM), CaCl2.2H2O (3mM), MgSO4.7H2O (0.5 mM), EDTA-2NaFe.3H2O 

(0.2 mM), H3BO3 (14 μM), MnSO4.H2O (5 μM), ZnSO4.7H2O (3 μM), CuSO4.5H2O (0.7 μM), 

(NH4)6Mo7O24 (0.7 μM), CoCl2 (0.1 μM). Nutrient solution was aerated continuously and 

replaced every week. Plants were grown for 7 weeks in a plant growth chamber with a PAR 

(Photosynthetically Active Radiations) between 10 and 150 μmol photons⋅m-2⋅s-1 provided by 

high-pressure sodium lamps (Philips, MASTER GreenPower T400W) under a photoperiod of 

16 h and a thermoperiod of 21/18°C day/night. The outermost senescent leaf sheaths were 

discarded. A 10-mm long segment was dissected from the basal point of tiller attachment and 

included mature leaf sheaths and elongating leaf bases. 

Wild plants of cocksfoot (Dactylis glomerata) and dandelion (Taraxacum officinalis) were 

collected on the green space of the University of Caen Normandie.  

 

Carbohydrate samples 

Various sources of carbohydrates and plant cell wall polysaccharides were used for the 

characterization of BTM9H2 and BTM15A6 mAbs specificity using dot blot analysis. 

Commercially available carbohydrates were purchased and prepared as described in Table S1. 

Fructans from L. perenne were purified from the 0-5 cm shoot base according to the method of 

Morvan et al. (1997). Water soluble carbohydrate (WSC) extracts of perennial ryegrass (Lolium 

perenne; 0-5 cm shoot base), cocksfoot (Dactylis glomerata ; 0-3 cm shoot base) and dandelion 

(Taraxacum officinalis ; roots) were prepared according to the method described by Benot et 

al. (2019).  

 

Immunodot blot assays 

Immuno-dot blot assays were performed to screen serum, hybridoma supernatants and mAbs 

for their specificity towards a wide range of carbohydrates listed in Appendix 1. The protocol 

was adapted from Li et al. (2010) and Manceur et al. (2017). Sheets of Bio-Dot filter paper and 

nitrocellulose membrane (0.2 µm-Amersham Protran- ref.10600006) were pre-moistered in 
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TBS 1x (Tris-buffered saline with 20 mM Tris and 500 mM NaCl at pH 7.5). For each 

carbohydrate solution, a serial dilution was done with ultrapure water to obtain five quantities 

in the 50µL deposited (5, 25, 50, 125, 250 µg). For each concentration, 50 µL was loaded into 

the dot-blot wells in duplicate, along with the two antigens, inulins from chicory and levans 

from timothy. Ultrapure water was used as a negative control for each carbohydrate. By suction 

through the 96-well dot-blotting equipment (DHM96, Scie-Plas, Cambridge, UK), samples 

were blotted onto nitrocellulose membrane. The membrane was then blocked in the TBS 1x 

containing 0.1% Tween 20 (0.1% TBST) for 2 h at room temperature with shaking, followed 

by overnight incubation with 5μg.mL-1 anti-fructan mAbs diluted in 0.1% TBST blocking 

buffer at 4˚C. After three washes of 10 min each with 0.1% TBST, the membranes were 

incubated for 2 h at room temperature with Horseradish Peroxidase (HRP)-conjugated 

secondary antibody diluted (1:3000) in 0.1% TBST blocking buffer. Next, three washes of 10 

min each with 0.1% TBST and one wash of 10 min with TBS 1x were performed after 

incubation periods. Secondary antibodies were detected using a chemiluminescent substrate kit 

(SuperSignal™ West Pico PLUS-ref. 34580, Thermo Fischer Scientific, Waltham, USA). After 

5 min incubation, the image of the blot was captured with VILBER (Marne-La-Vallée, France) 

chemiluminescence imaging system (Fusion FX - Imager E-box CX5 EDGE) (see 

Supplemental Fig. SIII-3). Control membranes were performed by omission of primary 

antibodies. Two secondary antibodies were used, namely goat anti-mouse IgG (H+L), HRP 

conjugate Invitrogen, Thermo Fischer Scientific, Waltham, USA), and chicken anti-mouse IgG 

(H+L), HRP conjugate, respectively reference A16078 and A15981 (Invitrogen, Thermo 

Fischer Scientific, Waltham, USA). 

 

Immuno-dot blot image analysis 

The immune-dot blot image analysis were performed using Fiji, an image processing package 

of ImageJ2 (Schindelin et al., 2012; https://imagej.net/software/fiji/) following the dot-blot 

analysis method described on the ImageJ website (https://imagej.nih.gov/ij/docs/examples/dot-

blot/index.html). The integrated density of luminescence was determined on each dot by 

measuring the grey level of the pixels (volume) inside the circular selection of the dot. The 

integrated density of each dot was normalized against the integrated density obtained with 250 

µg of levans from timothy.  

  

https://imagej.nih.gov/ij/docs/examples/dot-blot/index.html
https://imagej.nih.gov/ij/docs/examples/dot-blot/index.html
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Immunofluorescence localization of fructans epitopes 

Roots of 10-d-old seedlings were placed onto sterile 10-welled diagnostic microscope slides 

(Thermo Scientific, ER-208B-CE24) and fixed for 40 min in 4% (w/v) PFA 

(paraformaldehyde), in 50 mM PIPES (piperazine- N,N’-bis [2-ethanesulfonic acid]), pH 7, 

containing 1 mM CaCl2. Roots were washed 4 times for 10 min each wash at room temperature 

(RT) in phosphate-buffered saline PBS 1x containing 1% (w/v) bovine serum albumin (BSA) 

(Bovine Serum Albumin; AURION, Wageningen, Holland) and then incubated overnight at 

4◦C with the primary antibody (dilution 1:5 and 1:20 for 9H2-R2-2B1 and 15A6-R2-3E6, 

respectively in 1x PBS containing 1% w/v BSA). Roots were carefully washed 4 times at RT 

with PBS 1× and 1% BSA for 10 min, then were incubated with secondary donkey anti-mouse 

IgG antibody conjugated to Alexa Fluor 594 (Invitrogen) at 1:50 dilution in PBS 1x and 1% 

BSA for 2 h at 25°C. After 4 washes at RT in PBS 1x containing 1% w/v BSA and 1 final 

rinsing with PBS 1x for 10 min, roots were finally mounted in anti-fading solution (Agar 

scientific, Ref. AF2 R1320) then covered with a coverslip and observed using an 

epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; 

λEmission: 614 nm). Controls were routinely performed by incubation of the roots with the 

secondary antibody only. For this experiment, 3 to 4 technical replicates and 4 to 6 biological 

replicates were performed. 

Semithin sections (0.5 µm) of 12-d-old roots and leaf bases on 10-welled Teflon microscope 

slides coated with Poly-L-Lysine were blocked in PBS 1x with 0.1% (v/v) Tween 20 (PBST) 

containing 3% (w/v) BSA and normal donkey serum (NDS-dilution 1:20) for 30 min at RT. 

Then, sections were carefully washed 5 times for 5 min with 0.1 % PBST containing 1% BSA. 

After washing, sections were incubated overnight at 4°C with primary antibody (dilution 1:2 in 

0.1% PBST containing 1% BSA and NDS (diluted 1:20) for two anti-fructan mAbs). On the 

next day, sections were washed 5 times for 5 min with 0.1 % PBST containing 1% BSA before 

being incubated with secondary donkey anti-mouse IgG antibody conjugated to Alexa Fluor 

594 (Invitrogen) at1:100 dilution in 0.1% PBST containing 1% BSA and NDS (diluted 1:20) 

for 2 h at 25°C. At RT, sections were rinsed 5 times for 5 min with 0.1 % PBST containing 1% 

BSA and two final washes for 5 min at RT with ultrapure water. Then, a droplet of ultrapure 

water was added to the section of each well. Epifluorescence of the immunostained tissue 

sections was observed on an epifluorescence microscope (Leica DMI6000B, Wetzlar, 

Germany; λExcitation: 591 nm; λEmission: 614 nm). Control experiments were performed by 

omission of primary antibodies. For this experiment, 3 technical replicates and 4 biological 

replicates were performed. 
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High-pressure freezing/freeze substitution sample preparation 

Dissected 12-d-old root tips of Arabidopsis and perennial ryegrass were transferred into the 

cavity of copper cupules (100 µm in depth; 0.6 mm in diameter and 200 µm in depth; 0.6 mm 

in diameter, respectively). For the perennial ryegrass leaf bases, 0.5-mm long samples were 

dissected from the 10-mm long segment sampled and were transferred into the cavity of two 

copper cupules (300 µm in depth; 0.6 mm in diameter). All of the cupules were coated with 

soybean (Glycine max) lecithin (100 mg mL-1 in chloroform). The excess medium was removed 

using filter paper. The sample carriers were tightened securely to the pod of sample holder by 

using a horizontal loading station. Then, samples were frozen using a high-pressure freezing 

HPF-EM PACT I (Leica Microsystems) according to a maximum cooling rate of 20,000°C s-1, 

an incoming pressure of 7.5 bars, and a working pressure of 4.8 bars. Cupules containing frozen 

samples were stored in liquid nitrogen until the freeze-substitution procedure was initiated. 

After high-pressure freezing, samples were transferred to a freeze-substitution automate (AFS, 

Leica Microsystems) precooled to −140°C. Samples were substituted in anhydrous acetone with 

0.5% uranyl acetate at −90°C for 96 h (Ovide et al., 2018).  Using a gradient of +2°C h−1, the 

temperature was gradually raised from −90 to −15°C with two intermediate steps at −60 and 

−30°C. Samples were washed twice at room temperature with fresh anhydrous acetone. Resin 

infiltration was processed at −15°C in a solution of ethanol/London Resin White (LRW) with 

successive ratios of 2:1 overday; 1:1 overnight and 1:2 overday followed by a final step in a 

pure LRW solution renewed twice during 48 h. The LRW was finally polymerized into the AFS 

apparatus at −15°C under ultraviolet light during 48 h. Using a Leica ultramicrotome EM-UC7 

(Leica Microsystems), semithin sections (0.5 µm) were cut and adhered onto 10-welled 

diagnostic microscope slides (Thermo Scientific, ER-208B-CE24) pre-coated with Poly-L-

Lysine (EMS-19320-B, dilution 1:10 in filtered water).  

 

HPAEC-PAD analysis 

HPAEC-PAD profiles of 12-day-old Arabidopsis root tips; 12-day-old ryegrass root tips and 

30 mm long segments of perennial ryegrass leaf bases (Supplemental Fig. SIII-5) were carried 

out as described in Volaire et al. (2020).  

Statistical analysis 

Immuno-dot blot data were analyzed with R software version 4.1.2 using the “Rcmdr” package 

(R Core Team; 2021). Data are expressed as means ± standard error for three to five independent 

replicates. The effect of carbohydrate concentration was tested with the Kruskal-Wallis non-

parametric test. Statistical significance was accepted at P < 0.05. 
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Figure III-1. Immuno-dot blot quantification using BTM9H2 mAb with goat anti-mouse secondary antibody.  

The assays included antigens used for mouse immunization (A), commercial fructans (B), WSC extracts (C), 

tri, di and mono-saccharides (D) and polysaccharides (E). The integrated density of each dot was normalized 

against the integrated density obtained with 250 µg of levans from Phleum pratense. Data are expressed as 

means ± standard error for three to five independent replicates. The effect of carbohydrate concentration was 

tested with the Kruskal-Wallis non-parametric test. *P < 0.05; **P < 0.01; ND, not detected. 
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Results 

The selection of two mouse hybridoma clones using inulins from C. intybus and levans from P. 

pratense led to the purification of two monoclonal antibodies named 9H2-R2-2B1 (named 

BTM9H2) and 15A6-R2-3E6 (named BTM15A6) for full characterization. 

1. BTM9H2 and BTM15A6 epitope characterization 

The specificity of BTM9H2 and BTM15A6 was investigated by immune-dot blot assay (Fig. 

III-1 to III-4, supplemental Fig. SIII-3) against a set of oligosaccharides representing common 

sub-structures found in fructans as well as water soluble carbohydrate (WSC) extracts of 

fructan-accumulating plants (see Appendix 1 and Fig. III-1).  

BTM9H2 detected 25µg of timothy (P. pratense) levans (β-(2,1)-linked-fructans) and 25µg of 

chicory (C. intybus) inulins (β-(2,1)-linked-fructans). The reaction increased with the amount 

of antigen deposited (25 to 250 µg) (Fig. III-1A). BTM9H2 bound weakly to 250µg of fructo-

oligosaccharides (FOS) from chicory (β-(2,1)-linked-fructans from DP3 to 10), 1,1-

kestotetraose (DP4) and 1-kestotriose (DP3). No binding was detected to bacterial levans from 

Erwinia herbicola (β-(2,6)-linked fructans from DP100 to 10000) (Fig. III-1B). In addition to 

commercial purified fructans, WSC extracts from fructan-accumulating plants were also used 

to assess BTM9H2 binding (Fig. III-1C, Supplemental Fig. SIII-1). BTM9H2 showed a strong 

reactivity with 250 µg of WSC extracts from perennial ryegrass, cocksfoot, and dandelion. 

Altogether, these data indicate that BTM9H2 bound strongly to fructans with both β-(2,1) or β-

(2,6) linkages from diverse plant species and also, but less strongly, to small purified fructans 

(DP3-10). Moreover, no binding of BTM9H2 was detected with a wide range of tri-, di- and 

mono-saccharides except a weak binding to 250 µg of maltose and D-arabinose (Fig. III-1D). 

Weak binding of BTM9H2 to L-arabinose was observed but was independent of the amount 

deposited. 

BTM9H2 binding was also investigated towards starch and cell wall polysaccharides which do 

not contain the two consecutive fructose residues that characterize fructans (Fig. III-1E). 

BTM9H2 did not bind to compounds containing β-(1,4) linkages like citrus pectin, lupin seed 

galactan, rye arabinoxylan and xyloglucan from tamarind seed, when deposited at up to 250µg 

per dot. No reaction was detected either with arabinan (α-1,5 linked-arabinose units) from sugar 

beet pulp. A very low binding to wheat starch and larch wood arabinogalactan was detected. 

As for L-arabinose, BTM9H2 bound weakly to gum arabic and wheat arabinoxylan but the 

binding was independent of the amount deposited.  
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Figure III-2. Immuno-dot blot quantification using BTM15A6 mAb with goat anti-mouse secondary antibody.  

The assays included antigens used for mouse immunization (A), commercial fructans (B), WSC extracts (C), 

tri, di and mono-saccharides (D) and polysaccharides (E). The integrated density of each dot was normalized 

against the integrated density obtained with 250 µg of levans from Phleum pratense. Data are expressed as 

means ± standard error for three to five independent replicates. The effect of carbohydrate concentration was 

tested with the Kruskal-Wallis non-parametric test. *P < 0.05; **P < 0.01; ND, not detected. 
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As shown in Figure III-2A, BTM15A6 detected approximately 25 µg of timothy levans and 5 

µg of chicory inulins. This reaction increased according to the concentration of the antigen 

which confirms that the epitope recognized by BTM15A6 includes β-(2,1) and β-(2,6) linkages 

in fructans. In addition, BTM15A6 also bound weakly to diverse fructans from plants such as 

chicory FOS, 1,1-kestotetraose, and 1-kestotriose, but not to bacterial levans from Erwinia 

herbicola (Fig. III-2B). BTM15A6 bound strongly to WSC extracts from perennial ryegrass, 

cocksfoot, and dandelion (Fig. III-2C). These data confirmed that BTM15A6 binds strongly to 

β-(2,1) and β-(2,6) linkages of fructans from diverse plant species. Further immuno-dot blot 

assays were realized with a range of tri-, di- and mono-saccharides and with major 

polysaccharide classes found in plants including pectins and hemicellulosic polysaccharides 

which contains β-(1,4)-linked backbones. The results showed that BTM15A6 did not detect any 

of tri-, di- and mono-saccharides except a weak reaction with 250 µg of maltose, galactose, D-

arabinose, and L-arabinose (Fig. III-2D). No reaction of BTM15A6 with citrus pectin, rye 

arabinoxylan and tamarind xyloglucan was observed (Fig. III-2E), supporting the notion that 

the epitopes recognized by BTM15A6 do not include β-(1,4)-linkages. BTM15A6 showed no 

reaction with 250 µg larch wood arabinogalactan. Moreover, the binding obtained with wheat 

starch, lupin galactan, and sugar beet arabinan was extremely weak and was not proportional to 

the amount deposited. As illustrated in figure III-2E, BTM15A6 was found to react slightly 

with gum arabic and wheat arabinoxylan but the binding was independent of the amount 

deposited.  

Negative controls were performed using the secondary antibody (goat anti-mouse IgG-alexa) 

without the presence of primary anti-fructans antibodies (see Supplementary Fig. SIII-4). A 

strong binding was observed between goat anti-mouse secondary antibody and WSC extracted 

from perennial ryegrass and this binding was all the higher as the amount deposited increased 

(see Supplementary Fig. SIII-4).  
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Figure III-4. Immuno-dot blot quantification using BTM15A6 mAb with chicken anti-mouse secondary antibody.  

The integrated density of each dot was normalized against the integrated density obtained with 250 µg of levans 

from Phleum pratense. Data are expressed as means ± standard error for three to five independent replicates. The 

effect of carbohydrate concentration was tested with the Kruskal-Wallis non-parametric test. *P < 0.05; **P < 0.01; 

ND, not detected 

Figure III-3. Immuno-dot blot quantification using BTM9H2 mAb with chicken anti-mouse secondary antibody.  

The integrated density of each dot was normalized against the integrated density obtained with 250 µg of levans 

from Phleum pratense. Data are expressed as means ± standard error for three to five independent replicates. The 

effect of carbohydrate concentration was tested with the Kruskal-Wallis non-parametric test. *P < 0.05; **P < 0.01; 

ND, not detected 
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Another secondary antibody (chicken anti-mouse secondary antibody) allowing to abolish the 

non-specific labeling was used for subsequent analyses. It is worth noting that when using 

chicken anti-mouse secondary antibody, strong binding of BTM9H2 still occured to timothy 

levans and perennial ryegrass WSC extracts (Fig. III-3) although weakly to chicory inulins. As 

expected, BTM9H2 reacted strongly with purified fructans and WSC extract from perennial 

ryegrass, and no reaction was observed with beechwood xylan and xylose. The specificity of 

BTM15A6 was also clearly confirmed with timothy levans, chicory inulins, and fructans from 

perennial ryegrass by using chicken anti-mouse secondary antibody (Fig. III-4). A slight 

binding was detected with 125 µg of perennial ryegrass WSC extract and 250 µg of beechwood 

xylan. No reaction of BTM15A6 with xylose was observed.  

Altogether, these results show the specificity of BTM9H2 and BTM15A6 towards the β-(2,1) 

and β-(2,6) linkages of fructans and towards diverse fructan types from plant species. 
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Figure III-5. Immunofluorescence detection of fructans on root tips of A. thaliana, timothy, wheat and perennial 

ryegrass using the monoclonal antibodies BTM9H2 and BTM15A6.  

Observations are made with an epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 

591 nm; λEmission: 614 nm). (A, D, G, K) control experiments were performed only with secondary antibody. 

(B, E, H, M) fluorescence images showing labeling with the mAb 9H2 at dilution 1:5. (C, F, I, L) fluorescence 

images showing labeling with the mAb 15A6 at dilution 1:20. For each plant, 27 to 30 roots were observed. 

BLC: Border-like cell; BC: Border cell; RT : Root tip ; M: Mucilage. Scale bars = 100 µm. 
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2. BTM9H2 and BTM15A6 epitope immunolocalization 

BTM9H2 and BTM15A6 were further used to look for fructans in the root tips of three fructan-

accumulating plants, timothy, wheat and perennial ryegrass. A. thaliana root tips were used as 

control since A. thaliana is a non-fructan plant (De Coninck et al., 2005).  

Indirect immunofluorescence analysis of BTM9H2 at the root surface indicated a slight signal 

surrounding the root tip of perennial ryegrass and timothy and a more intense fluorescence at 

the surface of the meristematic and elongation zones (Fig. III-5E, M). Only a very faint signal 

was detected at the root surface of wheat (Fig. III-5H). The root surface of perennial ryegrass, 

timothy and wheat, was specifically and strongly labelled by BTM15A6 mainly at the 

meristematic and elongation zones (Fig. III-5F, I, L). No labeling was observed at the cell 

surface of the control root tip without BTM9H2 and BTM15A6 antibodies (Fig. III-5D, G, K). 

The surface of the root tip of A. thaliana were deprive of labeling with both BTM9H2 and 

BTM15A6 indicating that the epitopes were obviously specific to fructan-accumulating plants 

(Fig. III-5B, C). 

In order to localize mAbs epitopes inside tissues, immunofluorescence labeling with BTM9H2 

and BTM15A6 was performed on section of roots and leaves of perennial ryegrass and A. 

thaliana prepared by high pressure frozen/freeze-substituted (HPF) (Supplemental Fig. SIII-2). 

The analysis of sections of resin-embedded material confirmed the specific recognition of 

BTM9H2 epitopes in perennial ryegrass root tips as well as in the base of mature leaf sheaths 

while the labelling was very low in elongating leaf bases (Supplemental Fig. SIII-2G, H). In 

root tips, the labelling was detected not only in elongation and meristematic area but also in 

root cap (Supplemental Fig. SIII-2H). At the cellular level, the fluorescence was uniformly 

distributed inside each cell suggesting cytoplasmic localization of the epitopes (Supplemental 

Fig. III-2H). In mature leaf sheath section, the labelling was observed in mesophyll and 

parenchyma bundle sheath cells (Supplemental Fig.SIII-2G). At the cellular level, the 

fluorescence was not uniformly distributed and appeared to surround and leak from some cells 

(Supplemental Fig.III-2H). In contrast with perennial ryegrass, BTM9H2 labeling is absent 

from the Arabidopsis sections (Supplementary Fig.SIII-2I). Analysis of WSC extracts from the 

same plant materials used for cryofixation confirmed the presence of fructans in perennial 

ryegrass leaf bases and root tips (Supplemental Fig. SIII-5A, B) while no fructans were detected 

in Arapidopsis root tips (Supplemental Fig. SIII-5C). 

A strong labeling was detected with BTM15A6 on section of root tip and mature leaf sheaths 

of perennial ryegrass (Supplementary Fig. SIII-2J, K). As for BTM9H2, BTM15A6 epitopes 

were less detected in the deeper section compared to the shallower section (Supplemental Fig. 
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SIII-2E, F). Similar to BTM9H2, the fluorescence was uniformly distributed inside each root 

cell suggesting that the epitopes were localized in cytoplasm (Supplemental Fig. SIII-2K). In 

mature leaf sheath sections, the labelling was mainly observed in mesophyll and parenchyma 

bundle sheath cells and appeared to surround and leak from some cells (Supplemental Fig.III-

2G, 2J). In contrast, no BTM15A6 epitope was detected in Arabidopsis root tip sections 

compared to root and leaf tissues of perennial ryegrass (Supplementary Fig.SIII-2K, L).  

Discussion  

Following hybridoma production, a pre-selection of mAb producing lines was carried out using 

immuno-dot blot assay. This technique has been proved to be a useful technique in a lot of 

studies for epitope mapping and allows the screening of antibodies for target specificity across 

many samples at once (McCartney et al., 2005; Manceur et al., 2017, Cheng et al., 2019). In 

this study, this leads to the characterization of two new mAbs (BTM15A6 and BTM9H2) with 

high specificity against β-(2,1) and β-(2,6)-fructans from plants. To our knowledge, this is the 

first report on the characterization of highly specific anti-fructan mAbs and their application for 

immunocytochemical analyzes in different types of plant tissues. 

The specificity of BTM15A6 and BTM9H2 was demonstrated by a strong binding at low 

concentration with levans (β-(2,6)-linked fructans) from timothy (Phleum pratense) and inulins 

(β-(2,1)-linked fructans) from chicory (Cichorium intybus) as well as with WSC extracts 

obtained from fructan-accumulating plants grasses (perennial ryegrass, Lolium perenne and 

cocksfoot, Dactylis glomerata) and from the Asteraceae dandelion (Taraxacum officinalis). 

Both mAbs did not bind or showed a weak insignificant reaction even at the highest 

concentration with other carbohydrates representing major mono-, di-, oligo- and 

polysaccharides found in plants including starch, pectins, proteoglycans and hemicellulosic 

polysaccharides. The binding profiles are very similar between the two mAbs.  

Moreover, the absence of binding with bacterial levans from Erwinia herbicola also contribute 

to confirm the specificity of BTM15A6 and BTM9H2 for β-(2,1) and β-(2,6)-linked fructans 

from plants. The very high DP of bacterial levans, which is above 100 and up to 10000 

(Velázquez-Hernández et al., 2009) compared to the average DP of about 75 for levans from 

timothy (P-LEVAN, Megazyme) could explain this specificity. 

To confirm the specificity of recognition of fructans by the two mAbs, their binding on tissues 

of fructan- and non-fructan-accumulating plants tissues was tested by fluorescence microscopy. 

This technique is widely used with anti-glycan antibodies directed against cell-wall 

polysaccharides to study cell wall structures within complex tissues (Knox, 2008) and also to 
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analyze the composition of the mucilage produced by root tip (Durand et al., 2009) or seeds 

(Voiniciuc et al., 2015). Recently, mAbs against starch have been successfully developed and 

used to localize starch granules in pea root cap (Rydahl et al., 2017). Here, we first used the 

two anti-fructans mAbs to localize their epitopes on root tip surface as was done to localize 

other polysaccharides such as xyloglucan, pectic polysaccharides and arabino-galactan-proteins 

(AGP) at the surface of roots and root border cells and in the root mucilage (Durand et al., 

2009). 

Our observations showed convincingly that BTM9H2 and BTM15A6 epitopes are present at 

the surface of the root tips of the fructan-accumulating plants tested, perennial ryegrass, timothy 

and wheat while they are not detected at the surface of root tips of the non-fructan plant tested, 

Arabidopsis. In all three species, which accumulate distinct fructan types (Ritsema and 

Smeekens, 2003), labelling was higher with BTM15A6 than with BTM9H2. The difference 

was particularly high with wheat which accumulates branched fructans (graminans), suggesting 

that the two mAbs do not have exactly the same specificity towards fructans of differents types. 

In addition, the immunofluorescence labeling of both mAbs was found on the cryofixed and 

freeze-substituted, which are the best techniques for epitope preservation (Chevalier et al., 

2010). Labeling was specifically detected on sections of perennial ryegrass root tip and leaf 

bases but not on root section of Arabidopsis, confirming once again their specificity towards 

plant fructans. 

The fact that BTM15A6 and BTM9H2 epitopes were found at the surface of the elongation and 

meristematic zones of the root tips indicates that fructans are present outside the cells and 

suggests that a mechanism of secretion from their synthesis localization (i.e. vacuole; Wagner 

et al., 1983) to the apoplast operates in these tissues. Apoplastic localization of fructans has 

been reported in crown tissues of oat after cold hardening (Livingston and Henson, 1998) and 

in the phloem of Agave deserti (Wang and Nobel, 1998) but, to our knowledge, this is the first 

report of fructans outside the cells at the root level. 

In the root and mature leaf sheath sections, the labelling was mainly found inside the cells, 

consistent with the vacuolar localization of fructans. Their localization in mature leaf sheaths 

is also consistent with their detection in large amount in leaf sheath water soluble extracts 

(Lothier et al., 2014) where they serve as carbon storage for regrowth after defoliation (Morvan-

Bertrand et al., 2001). The very low labelling detected in elongating leaf bases is unexpected 

because high fructan levels are usually found in the leaf elongation zone where they serve as 

short-term storage for use in the secondary cell wall development (Allard and Nelson, 1991; 

Pollock and Cairns, 1991). This could be due to fructan leakage during tissue fixation, as seen 
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from some cells in the leaf sheath section, but which could be greater for young cells than for 

mature cells. This indicate that cryofixation and freeze-substitution protocols need to be 

improved for these fragile tissues. 

In addition to the wide range of techniques used for the characterization and quantification of 

fructans (Matros et al., 2019), the mAbs BTM15A6 and BTM9H2 provide new tools that will 

be powerful for the specific localization of fructans in different plant tissues and cells. Their 

use as fructan probes will deepen the understanding of the mechanisms of fructans involvement 

in plant metabolism and in their interaction with microorganisms. More broadly, these two 

mAbs enrich the family of antibodies against structural and non-structural polysaccharides 

already available for plant research (Rydahl et al., 2017; 2018). 
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Figure S III-1.  HPAEC-PAD profiles of levans from timothy (A; P-LEVAN Megazyme), inulins from chicory 

(B; P-INUL Megazyme), fructans from WSC extracted from 8-week-old perennial ryegrass 0-5cm-leaf bases 

(C), purified fructans of high DP from 8-week-old perennial ryegrass 0-3cm-leaf bases (D); fructans from 

WSC extracted from cocksfoot 0-5cm-leaf bases (E); fructans from WSC extracted from dandelion roots (F). 

DP3-7, retention time 10-22 min; DP8-20, retention time 22-30 min; DP21-40, retention time 30-40 min; 

DP>40, retention time 40-50 min. 
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Figure S III-2. Toluidine blue staining (A-C) and immunofluorescence labeling of fructans epitopes of high pressure 

frozen/freeze-substituted sections of leaf bases of perennial ryegrass grown for 7 weeks (A, D, G, J), root tips of 

perennial ryegrass grown for 12 days (B, E, H, K), and root tips of Arabidopsis grown for 12 days (C, F, I, L)  

Observations are made with an epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 

591 nm; λEmission: 614 nm). Detection of fructan epitopes with BTM9H2 (C, G, K) and BTM15A6 (D, H, L). 

RT: Root tip; RC: Root cap; ML: Mature leaf sheaths; EL: Elongating leaf bases. Scale bars = 100 µm. 
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Figure S III-4. Illustration of immunodot blot assay of 

the binding of secondary antibodies to perennial 

ryegrass WSC extract.  

Samples were applied to nitrocellulose as 50µL dots 

from 250µg to 5 µg. These membranes were performed 

with omission of anti-fructan mAbs. The goat anti-

mouse secondary antibody (left membrane) binds 

strongly to perennial ryegrass WSC extract while the 

chicken anti-mouse secondary antibody (right 

membrane) shows only a weakly signal. 

 

Figure S III-3. Illustration of immunodot blot 

assay of the binding of anti-fructan antibodies to 

a series of fructans and other soluble extracts.  

 Samples were applied to nitrocellulose as 50µL 

dots from 250µg to 5 µg. 
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Figure S III-3. HPAEC-PAD profiles of WSC extracted from sub-samples from the samples used 

for high pressure frozen / freeze substitution fixation of 7-week-old perennial ryegrass 0-3cm-

leaf bases (A). 12-day-old perennial ryegrass 0-1cm root tips (B) 12-day-old Arabidopsis 0-1cm-

root tips (C). 1, glucose; 2, fructose; 3, sucrose; 4, fructans; 5, other oligosacharides. The extracts 

were injected with an equivalent dry matter mass. 
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Abstract 

The root defense remains poorly investigated as compared to the aerial part of the plant. In 

roots, atypical protection is provided by the « Root Extracellular Trap » or RET specifically 

dedicated to the root tip defense. The composition of the RET and the structural organization 

of the different polymers are essential to provide root defense against pathogen attacks. The 

RET is mainly composed of polysaccharides (pectins, xyloglucan), proteoglycans such as 

arabinogalactan-proteins (AGPs), extracellular DNA and defense proteins such as defensin. 

The precise role of the different compounds in root protection remains to be clearly established. 

Our study aims to characterize the RET composition of perennial ryegrass (Lolium perenne) 

using cell imaging techniques and a wide range of monoclonal antibodies directed against 

epitopes from cell wall polymers. Moreover, since L. perenne produces high level of fructans 

which constitute the main carbohydrate reserve and which act in plant protection against abiotic 

and also biotic stresses, we evaluated if fructans are present in the RET. Interestingly, we found 

that both mucilage and cell wall surface of border cells were enriched in AGPs epitopes. An 

increase amount of the AGP-containing mucilage was produced by L. perenne root tip in 

response to both elicitor and water stress. Our hypothesis is that AGPs play an essential role in 

root protection in L. perenne. Fructan epitopes were not detected within the RET, but are present 

at the surface and inside the cells of meristematic and elongation zones and also inside the cap 

cells. This suggest that these carbohydrates may be also involved in root protection against 

biotic and/or abiotic stresses.       
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Introduction 

The root system plays a vital role in maintaining plants health and survival in their natural 

environment. Although their main functions are to provide anchorage, mineral nutrition, and 

water uptake (Petricka et al., 2012), roots are also an area in constant interaction with a myriad 

of microorganisms (Berendsen et al., 2012). Soil-borne pathogens pose a real threat to the plant 

and are often major problems agriculture resulting in sever production losses. Due to their 

belowground localization, diseases caused by root infecting pathogens are often more difficult 

to control as compared to the aerial parts of the plant (Raaijmakers et al., 2008). While the 

defense mechanisms against pathogens have been largely investigated for the aerial parts of the 

plants, knowledge is still scarce regarding the root system (Chuberre et al., 2018). Differences 

were reported between immune responses in leaves and roots and it is hazardous to extrapolate 

data from the aerial part to the below-ground system. It is thus necessary to get a better 

understanding of the root system defense (Millet et al., 2010; Mauch-Mani et al., 2017; Poncini 

et al., 2017). Furthermore, it is always a challenge for the root system to discriminate beneficial 

microbes from harmful pathogens (Yu et al., 2019). Root immune suppression is supposed to 

be a key event for the establishment of mutualistic relationships with beneficial microbes, 

including rhizobia and arbuscular mycorrhiza. It is thus an exciting field of research to decipher 

the defense mechanisms allowing the root system to selectively ward off pathogens (Zhou et 

al., 2020). 

It is now well recognized that a particularity of the root system is to rely on atypical cells termed 

root “border cells” providing protection specifically dedicated to the root tips. Due to their 

localization at the interface between root and soil, border cells act in the rhizosphere by either 

promoting or inhibiting interactions with microbes. BCs are defined as detached cells that are 

released individually into the rhizosphere from the periphery of the root cap (RC) in the 

presence of water (Hawes et al., 2003). To date, the presence of BC has been reported in more 

than 35 species belonging to 11 different families (Hawes et al., 2003; Cannesan et al., 2011). 

Different populations of BCs are found to be released by the root tip of a single plant species, 

i.e. pea (Pisum sativum) and soybean (Glycine Max) including small spherical cells, 

intermediate-size cells, and elongated cells (Cannesan et al., 2011; Ropitaux et al., 2020).  

Vicré et al. (2005) described for the first time the presence of cells that remain associated 

together into small groups of cells and organized in a sheath-like pattern after release from the 

root tip in Arabidopsis thaliana and which adhere to the root apex unlike BCs. Based on their 

organization pattern and their detachment, they were named “border-like cells” or BLCs (Vicré 
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et al., 2005; Durand et al., 2009; Driouich et al., 2007). The presence of BLCs were then 

discovered in other species belonging to Brassicacea family including rapeseed (Brassica 

napus), Brussels sprout (Brassica oleraceae), mustard (Sinapis alba), and radish (Raphanus 

sativus) (Driouich et al., 2007, 2010, 2012). This type of BLC organization was also reported 

in flax (Linum usitatissimum) where three morphotypes were described: spherical border-like 

cells (sBLC), elongated border-like cells (eBLC) and filamentous border-like cells (fBLC) 

(Plancot et al., 2013). For simplification, the term root-associated, cap-derived cells (AC-DCs) 

was proposed by Driouich et al. (2019) to include all the different type of cells previously 

described (Hawes et al., 2000, 2003; Driouich et al., 2007, 2010; Endo et al., 2011; Karve et 

al., 2016; Wang et al., 2017). 

AC-DCs are surrounded by a thick layer of mucilage enriched in cell wall polysaccharides and 

proteoglycans including homogalacturonan, xylogalacturonan, arabinogalactan-proteins 

(AGPs) and xyloglucan (Knee et al., 2001; Durand et al 20009; Cannesan et al., 2012; Mravec 

et al., 2017; Ropitaux et al., 2019). Xyloglucan was reported as an important compound and 

was shown to be part of the scaffold of this mucilage providing a dense fibrillary network 

surrounding border cells. This mucilage together with AC-DCs form a protective structure 

defined as the Root Extracellular Trap (RET) by analogy with the Neutrophil Extracellular Trap 

(NET) involved in mammalian immunity (Bowdish et al., 2005; Urban et al., 2009; Driouich et 

al. 2013). The RET is characterized by the presence of diverse anti-microbial molecules such 

as proteins (Ma et al., 2010; Weiller et al., 2016), glycoproteins, proteoglycans (Bacic et al., 

1986; Knee et al., 2001), H4-type histones, extracellular DNA (exDNA) (Wen et al., 2009; Tran 

et al., 2016) and reactive oxygen species (ROS) (Plancot et al., 2013). The role of the RET in 

immune defense mechanism is thought to occur through a wide range of mechanisms including 

either attraction, repulsion or neutralization of microbial pathogens (Driouich et al., 2013; 

2019). In the case of the pathogenic oomycete Aphanomyces euteiches, the RET from Pisum 

sativum interfere with the mobility of zoospores and cyst germination (Cannesan et al. 2012). 

Ropitaux et al. (2020) showed that the RET from soybean acts as a physical (or even chemical) 

barrier preventing zoospores of Phytophthora parasitica from reaching and colonizing the root 

cap. The involvement of RET in the root protection towards abiotic environmental stresses, e.g. 

toxicity of some heavy metals such as aluminum, cadmium, and copper (Deiana et al., 2003; 

Cai et al., 2013) or drought, is also studied (Carreras et al., 2020). Although the protective role 

of the RET is clearly demonstrated, the molecules involved in such mechanisms and providing 

a correct RET functioning remained to be clearly established.  
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Lolium perenne or perennial ryegrass is a Poaceae of agronomic interest due to its role as a 

grassland forage plant. In addition, perennial ryegrass is one of the species that accumulate 

carbon reserves mainly in the form of fructans, which are water-soluble polymers of fructosyl 

residues linked by β-(2,1) and/or β-(2,6) linkages with one external or internal glucosyl residue 

(Hendry, 1993, Vijn and Smeekens, 1999; Ritsema and Smeekens, 2003). It was previously 

reported that fructans could play a particular role in the concept of ‘sweet immunity’ or ‘sugar-

enhanced defense’ which supports the idea that sugar metabolism and signaling involved in 

plant immunity are tightly interconnected (Bolouri Moghaddam and Van den Ende, 2013; 

Trouvelot et al., 2014; Tarkowski et al., 2019; Svara et al., 2020). The RET of perennial ryegrass 

in particular and more generally the involvement of fructans in the RET has never been 

investigated. In this article, we provide the first detailed characterization of the occurrence of 

cell-wall glycomolecules in root BCs and mucilage of perennial ryegrass using 

immunocytochemistry. The microscopical analysis was done on the root tips of not only 

perennial ryegrass but also of two other monocotyledonous fructan-accumulating species, 

timothy (Phleum pratense) and wheat (Triticum aestivum), as well as on the root tips of A. 

thaliana for comparison. The response of the RET of ryegrass to the presence of the bacterial 

elicitor flagellin22 (flg22; Millet et al., 2010) was also investigated. The most important 

findings are: (i) ryegrass root tip released different BC types showing different morphologies 

and an abundant mucilage production; (ii) mucilage secretions consisted predominantly of cell 

wall polymers, especially, AGPs that have never been reported previously in perennial ryegrass 

root secretions; (iii) flg22 elicitation and water deficit by PEG treatment trigger modifications 

of AGPs epitopes in perennial ryegrass root mucilage.   

Materials and Methods 

Plant material and growth conditions  

Perennial ryegrass (Lolium perenne var. Delika) and timothy (Phleum pratense var. Aturo) 

seeds were surface sterilized and sown onto Murashige and Skoog (MS) medium (Murashige 

and Skoog, 1962) (Duchefa Biochemie) containing 1% (w/v) agar (European Bacteriological 

Agar-A01254). Wheat (Triticum aestivum var. Chevignon) seeds were sown on the MS ½ 

medium (MS medium diluted 1:2) supplemented with 1% (w/v) agar after being sterilized (6 

seeds per plate). For comparison, Arabidopsis thaliana (Col0) seeds were sterilized at the same 

time and sown on Arabidopsis medium (Duchefa Biochemie) containing 1% (w/v) agar 

supplemented with 2mL Ca(NO3)2. All of the Petri dishes with seeds were then placed vertically 

in continuous light (120 µE m-2 s-1) at 21°C in 16-h-day/8-h-night, to avoid the roots penetrating 
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the agar and the subsequent loss of border and border-like cells, as described by Vicré et al. 

(2005).  

 

Morphotypes and location of root border cells 

For this technique, root tips from 10-d-old perennial ryegrass seedlings were selected with ultra-

fine tweezers and mounted on microscope slides Superfrost (Thermo Scientific) in a drop of 

water for examination directly for morphological analyses using an inverted bright-field 

microscope (Leica DMI6000B, Wetzlar, Germany). For this experiment, 24–30 roots are 

observed to ensure representativity for each set of observations. 

 

Water deficit treatment 

The 6-d-old perennial ryegrass seedlings (with same root length) are transferred on the plate 

containing 30mL solidified MS ½ medium soaked with 45mL of MS ½ liquid medium 

containing polyethylene glycol (PEG) (300g L-1) (molecular weight 8000; Sigma, St Louis, 

MO) prepared approximately 12-15h before the experiment following the protocol described 

by van der Weele et al. (2000) and Verslues et al. (2006). Other 6-d-old ryegrass seedlings were 

sown on the 30mL solidified MS ½ medium mixed with 45mL of MS ½ liquid medium without 

PEG for the “well-watered” control medium. Then, all the plates are sealed with surgical tape 

and placed vertically in a phytotron at 21 °C under a photoperiod of 16-h-day/8-h-night until 

10 days. The 12-d-old roots will be collected lately for visualizing mucilage and for the 

immunolabeling experiment.  

 

Visualization of mucilage by counterstaining with India ink 

India ink (Black star Hi-Carb, 1.0 oz) produced from carbon black, is used as a negative stain 

to visualize mucilage (Curlango-Rivera et al., 2013). The root tips are collected and placed on 

microscope slides Superfrost (Thermo Scientific). A 0.05% (w/v) India ink solution is added 

by capillary action between the slide and the coverslip from the ends to the center of the sample. 

After 10min, the samples are observed under an inverted bright field microscope (DMI6000B). 

For this experiment, 4 to 5 technical replicates and 6 biological replicates are performed.  

 

MAMPs 

The MAMPs used in this study include the synthetic peptide flg22 (Felix et al., 1999) 

synthesized by Dr. J. Leprince (PRIMACEN platform, University of Rouen). MAMP 
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preparations were made from mycelium extracts of Fusarium oxysporum (Hano et al., 2006). 

Flg22 were used at 1 µM (Millet et al., 2010). 

 

Immunolabeling of root border cells and mucilage on the surface of root tips 

To label the polysaccharides, glycoproteins, and proteoglycans present in the cell wall of root 

border cells and the mucilage, an indirect surface immunolabeling has been developed. This 

protocol was recently described by Castilleux et al. (2018). 

Roots of 10-d-old seedlings are placed onto sterile 10-welled diagnostic microscope slides 

(Thermo Scientific, ER-208B-CE24). The wells are then filled up with 30 µL of phosphate-

buffered saline (PBS) for 5 min to initiate detachment of root border cells. Next, the liquid is 

removed using an Eppendorf micropipette (P200), by taking from the severed end of the root. 

All of the root tips are fixed for 40 min in 4% (w/v) PFA (paraformaldehyde), in 50 mM PIPES 

pH 7 (piperazine- N, N’-bis [2-ethanesulfonic acid], Alfa Aesar, A16090) containing 1 mM 

CaCl2. Roots were washed 4 times for 10 min each wash at room temperature (RT) in PBS 1x 

containing 1% (w/v) bovine serum albumin (BSA) (AURION, Wageningen, Holland) to 

eliminate the maximum of PFA, and to allow the saturation of the non-specific sites of the 

sample. After having eliminated the last wash, 30 μL of a solution of primary antibody (Ac. I: 

Plant Probes) diluted to 1:5 in the solution of PBS+BSA 1% is added and incubated overnight 

at 4 °C and in a humid chamber. The primary antibody solution is removed before performing 

four washes with PBS+1% BSA at RT for 10 min. 

The goat anti-rat IgG secondary antibody (Ac. II) conjugated to Alexa Fluor 594 (Invitrogen) 

is diluted to 1:50 in the solution of PBS+BSA 1 % and incubated with the samples for 2 h at 

25°C in the dark. Four washes with PBS+BSA 1% are then carried out at RT for 10 min to 

eliminate the secondary antibody, followed by a final wash with PBS at RT for 10 min. To 

avoid photobleaching, citifluor (Agar scientific, AF2 R1320) is delicately deposited on the 

sample using a pipette tips 200µL. The samples are observed under an epifluorescence 

microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). 

For this experiment, 3 to 4 technical replicates and 4 to 6 biological replicates are carried out.  

The fluorescence intensity obtained with the monoclonal antibodies was estimated from the 

epifluorescence microscopy images as described in Supplemental Fig. SIII-6). 

 

High-Pressure Freezing/Freeze Substitution (HPF) sample preparation 

For this experiment, in addition to the in vitro samples, perennial ryegrass (L. perenne var. 

Delika) seeds grown in hydroponics were added to provide the fresh leaf sample. Ryegrass is 
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grown for 7 weeks in a plastic pot (two plants per pot) containing 700 mL of EVA nutrient 

solution (see Materials and Methods Table II-2) in a plant growth chamber with high-pressure 

sodium lamps (Philips, MASTER GreenPower T400W) provide a PAR (Photosynthetically 

Active Radiations) between 10 and 150 μmol photons⋅m-2⋅s-1 under a photoperiod of 16 h and 

a thermoperiod of 21/18°C day/night. The nutrient solution is aerated and renewed every 7 days. 

Dissected 12-d-old root tips of Arabidopsis and perennial ryegrass grown in vitro were 

transferred into the cavity of copper cupules (100 µm in depth; 0.6 mm in diameter and 200 µm 

in depth; 0.6 mm in diameter, respectively). For the perennial ryegrass leaf bases, the 0.5mm 

long sample of freshly elongating leaf grown in hydroponics were dissected from 10 mm long 

segments selected and were also transferred into the cavity of two copper cupules with 300 µm 

in depth; 0.6 mm in diameter. All of the cupules were coated with soybean (Glycine Max) 

lecithin (100 mg mL-1 in chloroform). The excess medium was removed using filter paper. The 

sample carriers were tightened securely to the pod of the sample holder by using a horizontal 

loading station. Then, samples were frozen using a high-pressure freezing HPF-EM HPM 100 

(Leica Microsystems) according to a maximum cooling rate of 20,000°C s-1, an incoming 

pressure of 7.5 bars, and a working pressure of 4.8 bars. Cupules containing frozen samples 

were stored in liquid nitrogen until the freeze-substitution procedure was initiated. 

After high-pressure freezing, samples were transferred to a freeze-substitution automate (AFS, 

Leica Microsystems) precooled to −140°C. Samples were substituted in anhydrous acetone with 

0.5% uranyl acetate at −90°C for 96 h (Ovide et al., 2018). Using a gradient of +2°C h−1, the 

temperature was gradually raised from −90 to −15°C with two intermediate steps at −60 and 

−30°C. Samples were washed twice at room temperature with fresh anhydrous acetone. Resin 

infiltration was processed at −15°C in a solution of ethanol/London Resin White (LRW) with 

successive ratios of 2:1 overday; 1:1 overnight and 1:2 overday followed by a final step in a 

pure LRW solution renewed twice during 48 h. The LRW was finally polymerized into the AFS 

apparatus at −15°C under ultraviolet light for 48 h. Using a Leica ultramicrotome EM-UC7 

(Leica Microsystems), semithin sections (0.5 µm) were cut and adhered onto 10-welled 

diagnostic microscope slides (Thermo Scientific, ER-208B-CE24) pre-coated with Poly-L-

Lysine (EMS-19320-B, dilution 1:10 in filtered water). The HPF sections are stained with 

toluidine blue to highlight components.  

 

Immunolabeling of root border cells and mucilage on the HPF sections 

Semithin sections (0.5 µm) of 12-d-old roots and leaf bases on 10-welled Teflon microscope 

slides coated with Poly-L-Lysine were blocked in PBS 1x with 0.1% (v/v) Tween 20 (PBST) 
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containing 3% (w/v) BSA and normal goat serum (NGS-dilution 1:20) for 30 min at RT. Then, 

sections were carefully washed 5 times for 5 min with 0.1 % PBST containing 1% BSA. After 

washing, sections were incubated overnight at 4°C with primary antibody (dilution 1:2 in 0.1% 

PBST containing 1% BSA and NGS (diluted 1:20)). On the next day, sections were washed 5 

times for 5 min with 0.1 % PBST containing 1% BSA before being incubated with secondary 

goat anti-rat IgG antibody conjugated to Alexa Fluor 594 (Invitrogen) at 1:200 dilution in 0.1% 

PBST containing 1% BSA and NGS (diluted 1:20) for 2 h at 25°C. At RT, sections were rinsed 

5 times for 5 min with 0.1 % PBST containing 1% BSA and two final washes for 5 min at RT 

with ultrapure water. Then, a droplet of ultrapure water was added to the section of each well. 

Epifluorescence of the immunostained tissue sections was observed on an epifluorescence 

microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). 

Control experiments were performed by omission of primary antibodies. For this experiment, 

3 technical replicates and 4 biological replicates were performed.  

 

Immunofluorescence localization of fructans epitopes 

Roots of 10-d-old seedlings were placed onto sterile 10-welled diagnostic microscope slides 

(Thermo Scientific, ER-208B-CE24) and fixed for 40 min in 4% (w/v) PFA 

(paraformaldehyde), in 50 mM PIPES (piperazine- N,N’-bis [2-ethanesulfonic acid]), pH 7, 

containing 1 mM CaCl2. Roots were washed 4 times for 10 min each wash at room temperature 

(RT) in phosphate-buffered saline PBS 1x containing 1% (w/v) bovine serum albumin (BSA) 

(Bovine Serum Albumin; AURION, Wageningen, Holland) and then incubated overnight at 

4◦C with the primary antibody (dilution 1:5 and 1:20 for 9H2-R2-2B1 and 15A6-R2-3E6, 

respectively in 1x PBS containing 1% w/v BSA). Roots were carefully washed 4 times at RT 

with PBS 1× and 1% BSA for 10 min, then were incubated with secondary donkey anti-mouse 

IgG antibody conjugated to Alexa Fluor 594 (Invitrogen) at 1:50 dilution in PBS 1x and 1% 

BSA for 2 h at 25°C. After 4 washes at RT in PBS 1x containing 1% w/v BSA and 1 final 

rinsing with PBS 1x for 10 min, roots were finally mounted in anti-fading solution (Agar 

scientific, Ref. AF2 R1320) then covered with a coverslip and observed using an 

epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; 

λEmission: 614 nm). Controls were routinely performed by incubation of the roots with the 

secondary antibody only. For this experiment, 3 to 4 technical replicates and 4 to 6 biological 

replicates were performed. 

Semithin sections (0.5 µm) of 12-d-old roots and leaf bases on 10-welled Teflon microscope 

slides coated with Poly-L-Lysine were blocked in PBS 1x with 0.1% (v/v) Tween 20 (PBST) 
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containing 3% (w/v) BSA and normal donkey serum (NDS-dilution 1:20) for 30 min at RT. 

Then, sections were carefully washed 5 times for 5 min with 0.1 % PBST containing 1% BSA. 

After washing, sections were incubated overnight at 4°C with primary antibody (dilution 1:2 in 

0.1% PBST containing 1% BSA and NDS (diluted 1:20) for two anti-fructan mAbs). On the 

next day, sections were washed 5 times for 5 min with 0.1 % PBST containing 1% BSA before 

being incubated with secondary donkey anti-mouse IgG antibody conjugated to Alexa Fluor 

594 (Invitrogen) at1:100 dilution in 0.1% PBST containing 1% BSA and NDS (diluted 1:20) 

for 2 h at 25°C. At RT, sections were rinsed 5 times for 5 min with 0.1 % PBST containing 1% 

BSA and two final washes for 5 min at RT with ultrapure water. Then, a droplet of ultrapure 

water was added to the section of each well. Epifluorescence of the immunostained tissue 

sections was observed on an epifluorescence microscope (Leica DMI6000B, Wetzlar, 

Germany; λExcitation: 591 nm; λEmission: 614 nm). Control experiments were performed by 

omission of primary antibodies. For this experiment, 3 technical replicates and 4 biological 

replicates were performed. 

  

Ultrastructural and immunogold analyses using transmission electron microscopy 

Ultrathin sections (90 nm; EM UC6 Leica microsystems) of ryegrass root tips from HPF 

samples prepared previously are collected on nickel formvar-coated grids. For immunogold 

analysis, sections are blocked in PBS 1X containing 3% BSA for 30 min at RT. Sections were 

then incubated with the primary antibody (JIM13, PlantProbes; dilution 1:2 in PBS 1x 

containing 0.3% BSA overnight at 4 °C in a humid chamber). After washing in PBS 1x 

containing 0.3% BSA, grids were incubated for 1 h at 37 °C with the goat anti-rat secondary 

antibody conjugated to 10 nm gold particles (dilution 1/20 in PBS 1x containing 0.3% BSA; 

British Biocell International). Before transmission electron microscopy observation, all sections 

were stained with classical staining using uranyl acetate (0.2% in methanol) and and Reynolds 

lead citrate (Delta microscopies, ref: 11.300). Observations were made with a FEI Tecnai 12 

Biotwin transmission electron microscope operating at 80 kV, with ES500W Erlangshen CCD 

camera (Gatan). 

 

Primary antibodies 

Primary antibodies recognizing epitopes associated with different parietal polysaccharides are 

mainly provided by Plant Probes (University of Leeds, UK) and Biosupplies Australia 

(http://www.biosupplies.com.au). A summary table of the antibodies used in this project is 
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presented in Appendix 4 as well as details of the epitopes recognized by the antibodies and their 

references associated. 

 

Statistical and image analysis 

Microscope images were acquired by counterstaining with India ink and measurements made 

using ImageJ 1.53p. The RET surface obtained was determined on 61 root tips by measuring 

the total surface of the RET containing the root cap and then subtracting the surface of the root 

cap. Data were analyzed with R software version 4.0.0. Statistical significance was calculated 

by using the Kruskal–Wallis test and the statistical effect is considered significant with P<0.05. 

 

Results 

1. Characteristics of ryegrass RET 

Observation of the root tip with a bright-field illumination revealed that ryegrass releases large 

numbers of individual root BCs from the periphery of the root cap in the presence of water 

(Fig.III-6A; all of the figures in this chapter are after the text). Two cell morphotypes based on 

their size and shape were observed depending on their localization at the root tip. Spherical 

border cells (sBC) were the smallest and were abundantly i-6present among of the BC 

population. sBC were mostly observed in the root cap zone (Fig. III-6C, D). The presence of 

few elongated border cells (eBC) with an elongated shape and slightly curved (Fig. III-6B), was 

also found along the meristematic and the elongation zones. The sBC represent around 65%, 

and the eBC 35%. The negative staining with India ink revealed the presence of an abundant 

mucilage along the root tip (Fig. III-7A). Most of the mucilage is concentrated at the root cap 

and meristematic zone (Fig. III-7D), and to a lesser extent in other root zones (Fig. III-7B, C).  

2. Cell-wall polymers distribution in ryegrass root tip 

Using immunocytochemistry and various anti-cell wall antibodies, we investigated the 

occurrence of major non-cellulosic polysaccharides of plant cell walls in perennial ryegrass, 

timothy and wheat in comparison with Arabidopsis root tips. Data related to immunolabeling 

detected in the RET are summarized in Table III-1.  

2.1. Immunolocalization of hemicellulosic epitopes 

We found that xylan epitopes recognize by mAb LM10 and arabinoxylan and low-substituted 

xylan epitopes recognized by mAb LM11 were only slightly detected in the mucilage of the 

three monocots and Arabidopsis. The mAb LM27, which binds to grass heteroxylan epitope, 

was found to label the cell wall of all BC morphotypes of perennial ryegrass, timothy and wheat 
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(Table III-1). This fluorescent labeling on the cell wall of ryegrass BCs is shown in figure III-

8C. In addition, we observed that the intensity of LM27 fluorescence was higher in the BLCs 

of Arabidopsis (Fig. III-8D). This result was confirmed by the observation with LM27 on the 

HPF sections of perennial ryegrass root (Fig. III-9E,). Immunolabeling on leaf sections were 

performed as positive control (Fig. III-9F). No labeling was observed in all control roots and 

control HPF sections omitted primary antibodies (Supplemental Fig. SIII-9, SIII-10). 

Interestingly, the LM12 feruloylated epitope (Pedersen et al., 2012) appeared slightly in the 

mucilage of perennial ryegrass root (Fig. III-9E) but no fluorescence labeling was observed 

with Arabidopsis root (Fig. III-9F). With MLG, which recognized mixed linked glucans, no 

labeling was observed neither in the cell wall nor in the mucilage of perennial ryegrass 

suggesting the absence of the recognized epitope (Table III-1). 

2.2. Immunolocalization of pectin epitopes 

The distribution of pectic polysaccharides was examined in perennial ryegrass root tips and 

compared with timothy, wheat, and Arabidopsis. Our data revealed that only LM5 epitopes 

corresponding to galactan side chains were detected and showed weak fluorescence with the 

cell wall of perennial ryegrass BCs (Table III-1; Fig. III-10E). The other epitopes corresponding 

to low and highly methylesterified homogalacturonans (LM19) and arabinan side chains (LM6) 

were not detected in the RET of perennial ryegrass. However, root surfaces from Arabidopsis 

used as positive control were heavily labeled with the different mAbs specific to pectic epitopes 

(Fig. III-10B, D, F, H). However, observations on perennial ryegrass sections revealed that 

LM20 displayed a very distinct and interesting pattern of cell wall recognition especially in the 

middle lamella junctions or cell corners in the root tip cells (Supplemental Fig. SIII-7). 

2.3. Immunolocalization of extensin (EXTs) epitopes 

In addition to hemicelluloses and pectins, we investigated the occurrence of EXT epitopes in 

the mucilage surrounding border cells using a range of monoclonal antibodies previously 

described in the literature LM1, JIM11, JIM12, JIM19, and JIM20 (Smallwood et al., 1994, 

1995; Knox et al., 1995; Pattathil et al., 2010). The extensin epitopes recognized by these mAbs 

were mostly present at the surface of the meristematic and the elongation zones in perennial 

ryegrass (Fig.III-11A, C, E and Table III-1). However, no labeling or only a faint fluorescence 

was observed at the RET surface of perennial ryegrass (Fig.III-11). Similar data were observed 

in the HPF root sections (Supplemental Table SIII-1). Only the mAb JIM 20 labelled the 

mucilage and border cells present at the surface of meristematic zone in perennial ryegrass 

(Fig.III-11E).   
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Our data showed that all anti-pectin mAbs stained more or less strongly the cell surface of BLCs 

in Arabidopsis, except JIM19 (Table III-1). The fluorescence labeling was also detected at the 

cell surface of BLCs with LM1, JIM11, and JIM20 as shown in figure III-11 (B, D, F).  

2.4. Immunolocalization of arabinogalactan protein (AGPs) epitopes 

To test whether AGPs epitopes are present in the cell walls of BCs or the mucilage in perennial 

ryegrass and the two other monocots by comparison with Arabidopsis, we stained roots with a 

panel of mAbs that have been widely used for immunocytochemical studies of the distribution 

of these proteoglycans (Appendix 4; Knox et al., 1991; Smallwood et al.,1996; Yates and Knox, 

1994; Yates et al., 1996; Pennell et al., 1991).  

Interestingly, these mAbs strongly stained the mucilage of perennial ryegrass as well as timothy 

and wheat root tips, especially the mAbs JIM13 and JIM8 (Table 1). In contrast, JIM13 only 

showed weak labeling in the BLCs of Arabidopsis, or no labeling was detected with JIM8 on 

the surface of Arabidopsis root tip (Fig. III-12D, H). As shown in figure 7, fluorescence labeling 

of JIM13 and JIM8 appeared as a dense structured network surrounding the root cap and the 

meristematic zone (Fig. III-12C, G). In addition, the LM2 associated epitopes were also 

detected in the mucilage of all monocot species (Table III-1) and mostly in the BLCs of 

Arabidopsis (Fig. III-12B, D), whereas JIM16 were restricted to the mucilage of these plants 

(Table SIII-1) suggesting that AGP structure in the mucilage of root tip varies according to 

plant species. 

Likewise, in the HPF sections, the BCs and the mucilage of perennial ryegrass root were 

strongly stained with JIM13 and JIM8, particularly at the root cap and the meristematic zone 

(Fig. III-13C, E). No labeling was observed in leaf sections (Fig. III-13D, F) with these mAbs 

suggesting that AGPs concentrated mainly in the root in perennial ryegrass. The fluorescence 

labeling of LM2 was weakly detected in both HPF sections (Fig. III-13A, B). No labeling was 

observed in control HPF sections when no primary antibody was used (Supplemental Fig. SIII-

10).  
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Considering the strong detection of mAb JIM13 to the mucilage on perennial ryegrass root (Fig. 

III-12C, III-13C), we were interested to assess the immunogold labeling of AGPs using JIM13 

on 12-d-old ryegrass root. As shown in figure III-14, we observed in perennial ryegrass root 

BC the presence of a large number of Golgi stacks which could be actively secreting materials, 

such as complex polysaccharides and glycoproteins to their walls and the surrounding medium. 

It is thus confirmed that the AGP epitopes recognized by JIM13 appear abundant in the 

mucilage associated with the cell wall of BCs (Fig. III-14).  

2.5. Immunolocalization of fructan epitopes 

To test whether fructan epitopes are present in the cell walls of BCs or the mucilage in perennial 

ryegrass, we stained roots with BTM15A6 that recognized specifically to β-(2,6) and β-(2,1) 

linked fructans from plants (Nguyen et al. unpublished). Indirect immunofluorescence analysis 

with BTM15A6 at the root surface indicated labeling at the surface of the meristematic and 

elongation zones while no labeling was observed at the cell surface of BC or RET mucilage 

(Supplemental Fig. SIII-8A). Labeling was also detected with BTM15A6 on root tip section 

where fluorescence was detected not only in elongation and meristematic area but also in root 

cap with an uniform distribution inside each root cell (Supplementary Fig. SIII-8B).  

2.6. Impact of flg22 and PEG treatments 

To investigate the impact of flg22 on AGPs in perennial ryegrass root tip compared with that 

of Arabidopsis, we used three mAbs to examine the distribution of AGPs including LM2, 

JIM13, and JIM8.  

In non-elicited Arabidopsis and as shown in figure 10, the fluorescence labeling was observed 

all over the roots, including root BLCs, with the mAb LM2 (Fig. III-15C). Interestingly, the 

JIM13 labeled only the BLCs (Fig. III-15E) and no labeling was observed with JIM8 (Fig. III-

15G).  When Arabidopsis roots were elicited with flg22, stronger staining was observed in the 

mucilage of elicited roots with LM2 and JIM13 (Fig. III-15D, F). Treatment of Arabidopsis 

roots with flg22 showed no labeling with JIM8 as the non-elicited root (Fig. III-15H). 

In perennial ryegrass, all three mAbs strongly labeled the mucilage which forms a densely 

structured network covering the root cap (Fig. III-16C, E, G). Interestingly, we obtained the 

same fluorescence labeling with LM2, JIM13, and JIM8 in elicited roots (Fig. III-16D, F, H) 

but the labeling is more spread out creating a wider mucilage structure until the elongation zone. 

To explore the change of AGPs distribution in perennial ryegrass root tip under osmotic stress 

induced by PEG treatment, we performed immunolabeling on 10-day-old plants using the LM2, 

JIM13, and JIM8 mAbs (Fig. III-17). Labeling was observed in the mucilage of all the non-

treated roots with all the mAbs tested (Fig. III-17C, E, G). In PEG-treated roots, visualization 
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by counterstaining with India ink shows that the mucilage has dispersed compared to the non-

elicited roots (Fig. III-17A, B). The pattern of labeling was similar between treated and non-

treated roots but the dispersion surface of the mucilage was wider when the PEG treatment was 

performed (Fig. III-17D, F, H). This observation was confirmed by measuring the RET surface 

area on PEG condition compared with the control condition (Fig. III-18).   

Discussion   

The formation and release of RETs from the root cap to the rhizosphere is essential for 

protecting the root against biotic and abiotic stresses (Haichar et al., 2014; Driouich et al., 

2019). In this study, we provide the first in-depth characterization of the RET in perennial 

ryegrass (Lolium perenne), an important grassland forage plant that accumulate fructans. The 

RET from L. perenne consists of individual root border cells embedded in a thick mucilage. 

Different populations of BCs were previously found to be released at the root tip of pea (Pisum 

sativum) and soybean (Glycine max) including small spherical cells, intermediate-size cells, 

and elongated cells (Cannesan et al., 2011; Ropitaux et al., 2020). It was reported that small BC 

were probably the more efficient cells in protecting the root tip against pathogenic oomycetes 

A. euteiches (Cannesan et al., 2012). Here, we found two different morphotypes of border cells 

in perennial ryegrass with small spherical cells (sBC) and elongated cells (eBC). In other plants 

belonging to the Poacee family, including barley, spherical and elongated border cells were also 

reported with a high level of viability (Tamas et al., 2005). In maize only border cells presenting 

a bell-shape morphology were previously described (Canellas and Olivares, 2017). 

Interestingly, the number of border cells released in maize was shown to increase upon exposure 

to humic acid in a dose-dependent manner (Canellas and Olivares, 2017).  

It is worth noting that border cells produced by perennial ryegrass were embedded in an 

abundant mucilage mostly found covering the root cap and the meristematic zone. Such an 

important mucilage was previously reported to occur in pea (Hawes et al., 2003) or the root tip 

of rice, another cereal (Xiao and Lang, 2022). In rice, the production of mucilage increased at 

the root tip in response to both aluminium and silicon exposure (Xiao and Lang, 2022). This 

result suggests that root mucilage from Poaceae might be involved in protecting the root tip 

against abiotic stress. The degree of methylesterification of pectins present within the RET of 

rice was thought to be a key event in such protection against abiotic stress (Xiao and Lang, 

2022). 

It is thus important to unravel the chemical composition of mucilage in perennial ryegrass. In 

this species, the presence of pectins were not or only very faintly detected in both mucilage and 
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cell wall surface of border cells. Such findings were also found in the RET of wheat and 

timothy, two other species from the Poaceae family. Although pectins (and more especially 

homogalacturonans) are central elements for border cells detachment and are abundantly 

reported in the mucilage of eudicots (Durand et al., 2009; Cannesan et al., 2011), they appear 

to be insignificants in the RET of perennial ryegrass. These findings suggest that other polymers 

are expected to be present as major components of the thick root mucilage of this species. As 

xyloglucan epitopes were reported to be part of the scaffold of the RET in eudicots (Ropitaux 

et al., 2020), we investigated the presence of a wide range of hemicellulosic epitopes usually 

found in the cell wall of grasses. The labeling of epitopes from xylans, arabinoxylans and mixed 

linkage glucan (MLG) was scarce in the RET of perennial ryegrass and no difference was 

observed compared to the RET of A. thaliana. These data suggest that pectins and 

hemicellulosic compounds are not abundant in the RET of perennial ryegrass. The presence of 

fructan epitopes was thus investigated. However, the presence of fructan epitopes were not 

detected within the mucilage of perennial ryegrass. These epitopes were found inside the cells 

and at the surface of elongation and meristematic zone and inside the root cap cells 

(Supplemental Fig. SIII-8), consistent with the vacuolar localization of fructan synthesis 

(Wagner et al., 1983). We can speculate that fructans found inside root cap cells could be 

released in the RET upon abiotic and/or abiotic stresses but are not part of a constitutive defense.     

One of the major findings is the abundance of AGPs epitopes detected within the RET of 

perennial ryegrass not only in the mucilage but in the root border cell walls. Although previous 

findings reported the presence of AGPs in the RET of other plant species such as A. thaliana 

and pea, other glycomolecules were also abundantly recognized which is not the case here with 

perennial ryegrass (Durand et al., 2009; Plancot et al., 2013; Cannesan et al., 2012; Ropitaux et 

al., 2019). It appears that the RET of L. perenne is particularly enriched in AGP epitopes as 

compared to other plant species such as A. thaliana. AGPs are heterogeneous proteoglycans 

characterized by a highly complex and diverse carbohydrate moiety, and distinct populations 

of AGPs are found in the root cap (including root border cells) and in the rest of the root system 

(Cannesan et al., 2012). It is tempting to hypothesize that AGPs from the RET of perennial 

ryegrass are highly involved in the RET architecture and cohesion. It was previously reported 

that heteroxylan epitope from Poaceae (oat) cell walls recognized by the mAbs LM27 are likely 

to bind AGPs (Cornuault et al., 2015). Such linkages between heteroxylans and AGPs could be 

involved in the RET of perennial ryegrass and the abundance of AGPs would result in masking 

hemicellulosic epitopes. 
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AGPs are involved in response to various biotic and abiotic stresses (Cannesan et al. 2012; 

Nguema-Ona et al., 2013; Pereira et al., 2015; Koroney et al. 2016). AGPs were shown to play 

a prominent role at the root surface during root colonization by pathogenic and symbiotic 

microbes (Vicré et al., 2005; Gaspar et al., 2004; Xie et al., 2012). Previous studies revealed 

that recognition of MAMPs (Microbe-Associated Molecular Pattern) such as bacterial flagellin 

22 (flg22) trigger the innate immune system in roots (Millet et al., 2010). Interestingly, we 

found that flg22 elicitation increased the quantity of mucilage in perennial ryegrass which forms 

a larger halo at the root tip until the elongation zone. Although, the pattern of labeling for AGP 

epitopes is not altered by flg22 treatment, the presence of fluorescence was detected throughout 

the whole surface of mucilage.  It is likely that AGPs from perennial ryegrass contribute to 

interactions between the root and soil-borne microbes. The alteration of AGPs was found to 

significantly inhibit the attachment of the rhizobium bacteria to the surface of BLC and 

Arabidopsis root tip (Vicré et al., 2005). AGPs were also reported to be involved in the 

susceptibility of root to pathogenic cyst nematode in Arabidopsis (Baum et al., 2000; Bozbuka 

et al., 2018).   

Root tip from perennial ryegrass respond to water stress by producing enhance quantity of 

mucilage and / or changing the adhesion and structure of the mucilage.  AGPs are known as the 

glycoproteins extremely hydroscopic and have a high water-holding capacity (Fincher et al. 

1983; Showalter 2001), the widespread distribution of AGPs epitopes in the mucilage that we 

found supports the role of these proteins toward the root tip in water deficit condition. 

Previously, AGPs have been shown to be involved in the salt adaptation processes (Olmos et 

al. 2017) and low-temperature tolerance (Yan et al. 2015).  

In summary, our findings provide evidence that AGPs are major compounds of the RET in 

perennial ryegrass. This study emphasizes that AGPs could contribute to protect the root tip 

against water deficit stress and strongly support the hypothesis that AGPs are implicated in the 

defense response of plant roots. Further research will be necessary to fulfill their function in 

perennial ryegrass root in microbial interaction.  
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Figures 

  

Figure III-6. Root border cell 

morphotypes. Images showing different 

cell morphotypes using a bright-field 

microscope: (A) localization of different 

cell types along the root tip using a 

bright-field microscope.  

Different root zones are: EZ, elongation 

zone; MZ, meristematic zone; RC, root 

cap. (B) elongated or curved border cells: 

eBC; (C) spherical border cells sBC (D) 

sBC are mostly present at the root tip. 

Scale bars: (A) 100 µm; (B–D) 20 µm. 

Figure III-7. Visualization of secreted 

mucilage (m) using India ink staining.  

(A) localization of different root zones 

along the root tip 10-day-old with a 

stereomicroscope. Different root zones 

are: (B) DZ, differentiation zone; (C) 

EZ, elongation zone; (D) MZ, 

meristematic zone; RC, root cap. (A, 

D) Light microscopy images showing 

an abundant slimy mucilage present 

around the root tip and embedding 

border cells (BCs). Scale bars: (A) 500 

µm; (B, C, D) 100 µm. 
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Table  III-1. Immunolabeling of major glyco-polymer motifs in the RET of perennial ryegrass, timothy, 

wheat and Arabidopsis using immunofuorescence microscopy. 

̶ Fluorescence labeling not detected; + Fluorescence labeling detected weakly; ++ Fluorescence labeling 

detected clearly; +++ Fluorescence labeling detected strongly compared to control roots (See Supplementary 

Figure S2). 
(1) 

Fluorescence labelling detected on the meristematic zone and the beginning of the elongation zone but 

absent from the root cap and the RET. 
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Figure III-8. Immunolocalisation of hemicellulose epitopes on the surface of root tips.  

(A, B) Control root tips without primary antibodies. (C, E) Immunofluorescence labeling of the cell wall and 

extracellular material in 10-d-old ryegrass and (D, F) 10-d-old Arabidopsis root tips. (C, D) the mAbs LM27; 

and (E, F) LM12. Fluorescence labeling appears around the cells and faintly stained the mucilage of perennial 

ryegrass root. Observations are made with an epifluorescence microscope (Leica DMI6000B, Wetzlar, 

Germany; λExcitation: 591 nm; λEmission: 614 nm). BLC: Border-like cell; BC: Border cell; RT : Root tip ; m: 

mucilage. Scale bars:100 µm. 
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Figure III-9. Immunolocalisation of hemicellulose epitopes on the HPF sections.  

Immunofluorescence images showing labeling of the cell wall in (E) 10-d-old ryegrass root section and (F) 

ryegrass leaf section with the mAb LM27. Fluorescence labeling appears around the cells in both types of 

section. (C, D) Control experiments without primary antibody LM27. (A, B) Components of HPF sections 

stained with toluidine blue. Observations are made with an epifluorescence microscope (Leica DMI6000B, 

Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). RT: Root tip; RC: Root cap; ML: Mature leaf 

sheaths; EL: Elongating leaf bases. Scale bars:100 µm. 
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Figure III-10. Immunolocalisation of pectin epitopes on the surface of root tips.  

Immunofluorescence images showing labeling of the cell wall and extracellular material in (A, C, 

E, G) 10-d-old ryegrass and (B, D, F, H) 10-d-old Arabidopsis root tips with (A, B) the mAbs 

LM19; (C, D) LM20; (E, F) LM5; and (G, H) LM6. Observations are made with an epifluorescence 

microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). BLC 

: Border-like cell ; BC : Border cell;  RT : Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure III-11.Immunolocalisation of extensin epitopes on the surface of root tips.  

Immunofluorescence images showing labeling of the cell wall and extracellular material in (A, C, E) 

10-d-old ryegrass and (B, D, F) 10-d-old Arabidopsis root tips with (A, B) the mAbs LM1; (C, D) 

JIM11; and (E, F) JIM20. Observations are made with an epifluorescence microscope (Leica 

DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). BLC: Border-like cell; RT 

: Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure III-12. Immunolocalisation of arabinogalactan proteins (AGPs) epitopes at the surface 

of root tips.  

Immunofluorescence images showing labeling of the cell wall and extracellular material in (A, 

C, E,G) 10-d-old ryegrass and (B, D, F,H) 10-d-old Arabidopsis root tips with (A, B) the mAbs 

LM2; (C, D) JIM13; (E, F) JIM16; and (G, H) JIM8. Fluorescence labeling appears as a dense 

network surrounding the ryegrass root tips. Observations are made with an epifluorescence 

microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). 

BLC: Border-like cell; BC : Border cell;  RT : Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure III-13. Immunolocalisation of arabinogalactan proteins (AGPs) epitopes on the HPF 

sections.  

Immunofluorescence images showing labeling of the cell wall and extracellular material in (A, C, 

E) 10-d-old ryegrass and (B, D, F) ryegrass leaf section with (A, B) the mAbs LM2; (C, D) JIM13; 

and (E, F) JIM8. Fluorescence labeling of JIM13 and JIM8 appears as a dense network 

surrounding the BCs and the mucilage in ryegrass root. Observations are made with an 

epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; 

λEmission: 614 nm). RT : Root tip; RC: Root cap; ML: Mature leaf sheaths; EL: Elongating leaf 

bases. Scale bars:100 µm. 

Perennial ryegrass root Perennial ryegrass leaf 
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Figure III-14. Immunogold labeling of AGPs using mAb JIM13 on 12-d-old perennial ryegrass 

root border cells prepared by HPF and FS.  

Arrowheads indicate the AGP epitopes recognized by JIM13. m: mucilage; mvb, multivesicular 

body; ER, endoplasmic reticulum; PM: plasma membrane; V: vacuole; CW: Cell wall; G, 

Golgi stack; M, mitochondria; P, plastid; s, starch. Scale bars: (A, C, D) 1 µm; (B) 2µm. 
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Figure III-15. Immunostaining of AGPs epitopes at the surface of Arabidopsis 

With (C, D) the mAbs LM2; (E, F) JIM13; and (G, H) JIM8. Roots of Arabidopsis were 

treated with sterilized water only (A, C, E, G), or with 1 µM flg22 (B, D, F H). Note the 

presence of a dense mucilage observed in E and F. Arrows point to BLCs. BLC: Border-

like cell; RT : Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure III-16. Immunostaining of AGPs epitopes at the surface of perennial ryegrass 

With (C, D) the mAbs LM2; (E, F) JIM13; and (G, H) JIM8. Roots of ryegrass were 

treated with sterilized water only (A, C, E, G), or with 1 µM flg22 (B, D, F H). Note the 

presence of a dense mucilage observed in the ryegrass root tip. Arrows point to BCs. 

BC: Border-like cell; RT: Root tip ; m: mucilage. Scale bars:100 µm. 

Non-elicited Flg22-elicited 
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Figure III-17. Immunostaining of AGPs epitopes at the surface of ryegrass 

With (C, D) the mAbs LM2; (E, F) JIM13; and (G, H) JIM8. Roots of ryegrass were 

developed in vitro without PEG (A, C, E, G), or with PEG treated (300g L-1)(B, D, F 

H). Note the presence of a dense mucilage observed in the ryegrass root tip. Arrows 

point to BCs and mucilage. BC : Border-like cell ; RT : Root tip ; m: mucilage. Scale 

bars:100 µm. 
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Figure III-18. Histograms represent quantitative data indicating the proportion of RET surface area 

surrounding the root cap.  

The histogram represents the mesure from 30 roots per condition by counterstaining with India ink. 

Kruskal–Wallis multiple comparisons test used with Bonferroni’s correction. **** P ≤ 0.0001 
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Figure S III-4. Immunolocalisation of pectin epitopes on the HPF sections.  

Immunofluorescence images showing labeling of the cell wall in (A) 10-d-old ryegrass root section 

and (B) ryegrass leaf section with the mAb LM20. Observations are made with an epifluorescence 

microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 614 nm). RT: 

Root tip; RC: Root cap; ML: Mature leaf sheaths; EL: Elongating leaf bases. Scale bars:100 µm. 

Figure S III-5. Illustration of different fluorescence labeling obtained in ryegrass root tips 

 Using an epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; 

λEmission: 614 nm) with the mAbs (A) JIM19 (B) LM12; (C) LM27; (D) JIM13. BC: Border-like 

cell; RT : Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure S III-6. Immunofluorescence detection of fructans in perennial ryegrass using the 

monoclonal antibodies BTM15A6.  

Observations are made with an epifluorescence microscope (Leica DMI6000B, Wetzlar, 

Germany; λExcitation: 591 nm; λEmission: 614 nm). (A) on ryegrass root tips. (B) on the HPF 

sections. BC: Border cell; RT : Root tip ; M: Mucilage; RC: Root cap . Scale bars = 100 µm. 
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Table S III-1. Immunolabeling of major glyco-polymer motifs in HPF sections of perennial 

ryegrass root using immunofuorescence microscopy. 
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Figure S III-7. Observations of the control roots omitted primary antibodies  

With an epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 nm; λEmission: 

614 nm). BLC: Border-like cell ; BC: Border cell; RT : Root tip ; m: mucilage. Scale bars:100 µm. 
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Figure S III-8. Observations of the control roots omitted primary antibodies 

With an epifluorescence microscope (Leica DMI6000B, Wetzlar, Germany; λExcitation: 591 

nm; λEmission: 614 nm). BLC: Border-like cell; BC: Border cell; RT: Root tip ; m: mucilage. 

Scale bars:100 µm. 
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Abstract 

Identification of fructan exohydrolases (FEHs) in non-fructan plants raised the question of their 

roles. We tested the hypothesis that they are defense-related proteins in the model plant 

Arabidopsis thaliana and the genetically related allopolyploid species Brassica napus. By 

sequence homologies with the two known FEH genes of A. thaliana, At6-FEH and At6&1-

FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were 

identified. Plants were treated at root level with salicylic acid (SA), methyl jasmonate (MeJA) 

or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-marker and 

FEH genes were measured after 12 h of treatment. The ability of phytohormones to induce a 

defense response was confirmed by the strong induction of PR1 and WRKY70 by SA, AOS by 

MeJA, PDF1.2 and ERF1/2 by ACC treatments. HEL was up-regulated by the three 

phytohormones and proposed as a generic marker of root defense response. SA increased the 

expression of 6-FEH genes and, to an even higher level, that of 6&1-FEH genes in both species, 

clearly supporting their role as defense proteins in non-fructan plants. A genotypic variability 

of SA-mediated FEH regulation was observed among five B. napus varieties, that may have 

consequences on the susceptibility to fructan synthesizing pathogens.  

Introduction 

Unlike mammals, plants do not have an adaptive immune system but have their own way of 

defending themselves against pathogenic attacks (Henry et al., 2012). Facing potential 

pathogens, plants rely on the innate immunity of each cell to detect the pathogen using 

constitutive transmembrane pattern recognition receptors (PRRs) which recognized 

pathogen/microbial/ damage-associated molecular patterns (PAMPs/MAMPs/DAMPs), 



166 

 

resulting in PAMP-triggered immunity (PTI) (Boller and Felix, 2009). PTI constitutes the first 

layer of plant immunity also called basal resistance (Henry et al., 2012). PAMPs have been 

characterized widely and include flagellin, peptidoglycans, lipopolysaccharides and proteins 

from bacteria, chitin from fungi and -glucans from oomycetes (Newman et al., 2013). PTI 

responses lead to the accumulation of defense-related phytohormones such as salicylic acid 

(SA), jasmonic acid (JA), and ethylene (ET) (Penninckx et al., 1998; Caarls et al., 2015). These 

signaling molecules can induce local and systemic protection through the induction of 

expression of pathogenesis-related (PR) genes (van Loon et al., 2006). A recent study showed 

that SA-responsive genes such as the genes coding for the transcription factor WRKY70 and 

the PR protein PR1 were upregulated in two genotypes of Brassica napus inoculated with 

Plasmodiophora brassicae, a soil-borne pathogen (Galindo-González et al., 2020), as was also 

shown in Arabidopsis (Lemarié et al., 2015). 

Among the large diversity of PAMPs/MAMPs/DAMPs that have been described, the role of 

carbohydrates in plant immunity has recently been demonstrated (Trouvelot et al., 2014; Bacete 

et al., 2018).  Specifically, based on the fact that the supply of soluble carbohydrates to healthy 

plants induces defense responses which protect the plant from subsequent infections, the 

concept of "sweet immunity" also known as “sugar-enhanced defense” has emerged (Bolouri-

Moghaddam and Van den Ende, 2012). Among soluble carbohydrates, fructans, which are 

polymers of fructosyl residues linked by β-2,1 and/or β-2,6 linkages with an external or internal 

glucosyl residue (Ritsema and Smeekens, 2003), may play a particular role in plant-

microorganism interactions since they are synthesized by some plant species (Hendry, 1993) 

and microorganisms (Velazquez-Hernandez et al., 2009). 

In plants, fructans are synthesized and stored in the vacuole (Ritsema and Smeekens, 2003). 

Their degrees of polymerization (DP) vary generally between 30 and 150, but in some cases 

can reach 200 (Van den Ende, 2013). Fructans are divided into four types that are distinguished 

by the nature of the linkage connecting the fructosyl residues, the position of the glucosyl 

residue (internal or external) and the presence or absence of branches: inulin-type (β-2,1 

linkage), levan-type (β-2,6 linkage), graminan-type (β-2,1 and β-2,6 linkages forming 

branches) and neoseries-types (levan or inulin) for which the glucosyl residue carried by the 

precursor molecule (sucrose) is in the internal position. Inulin-type fructans are found mainly 

in Asteraceae plant species such as Cichorium intybus (Van Laere and Van Den Ende, 2002), 

levan-type fructans (also called phleins) are found mainly in Poaceae such as Phleum pratense 

(Cairns et al., 1999) and  neoseries-type fructans in Amaryllidaceae  such as Allium cepa 

(Shiomi, 1989). Some Poaceae produce several types of fructans such as graminan- and inulin-

https://fr.wikipedia.org/wiki/Amaryllidaceae
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types in Triticum aestivum and inulin- and neoseries-types in Lolium perenne (Pavis et al., 

2001). In microorganisms, the DP of fructans can be much higher, from 20 to 10,000 residues, 

and fructans are secreted as exopolysaccharides (Velázquez-Hernández et al., 2009). In 

bacteria, levan-type fructans predominante and are produced by Gram-positive and Gram-

negative bacteria (Öner et al., 2016) while some Gram-positive bacteria synthesize inulin-type 

fructans (Velázquez-Hernández et al., 2009). In fungi, inulin-type oligofructans known as 

fructo-oligoaccharides (FOS) with generally DPs between 3 and 8 are found in several genera 

including Aspergillus and  Penicillium (Trollope et al., 2015). Fructans are multifunctional 

molecules in plants and microorganisms. In plants, they are not only a form of carbon storage 

but also contribute to the resistance to abiotic stresses such as freezing, drought, and salinity 

(Parvanova et al., 2004; Livingston et al., 2009) due to their ability to contribute to the 

regulation of osmotic potential, to insert and stabilize membranes (Hincha et al., 2007) and to 

scavenge reactive oxygen species produced in excess during stress (Stoyanova et al., 2011). In 

bacteria, fructans also play an important role in carbon storage, and abiotic stress resistance by 

increasing water availability during water deficit (Bogino et al., 2013). 

In addition to these roles, there is growing evidence for the role of fructans and their degradation 

products in pathogenic or beneficial interactions between plants and microorganisms. In 

presence of sucrose, the plant pathogenic bacteria Pseudomonas syringae secrete levan-type 

fructans that form a layer between bacteria and the plant cell wall during the early phase of 

infection, preventing the plant to recognize the pathogen (Hettwer et al., 1995). This is 

confirmed by the fact that the disruption of the gene coding for the fructan-synthesizing enzyme 

in Erwinia amylovora (the fire blight agent of the Pomoideae) delayed the onset of symptoms 

in pear, indicating that the synthesis of levans increases the virulence of the bacteria by the 

formation of a protective layer which prevents the plant from perceiving the presence of bacteria 

(Geier and Geider, 1993). Similarly, in the beneficial rhizobacterium Bacillus subtillis, sucrose 

induced the synthesis of levans which increased the thickness and stability of the biofilm (Dogsa 

et al., 2013) and promoted root colonization (Tian et al., 2021). In addition, several studies 

using exogenous supplies of fructans have shown that they can act as elicitors in the plants-

microorganisms interactions (Versluys et al., 2017), triggering defense-related phytohormones 

signaling pathways and reducing the infection. For example, the pre-application of plant-

derived inulin-type fructans to Lactuca sativa leaves reduced the infection caused by Botrytis 

cinerea. The treatment of inulin-treated plant with 1-methylcylopropene (1-MCP), a well-

known inhibitor of the ET signaling pathway, cancelled the effect of the pre-application with 

inulin-type fructans, indicating that a functional ET signaling pathway is needed for the 
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enhanced defense response induced by fructans (Tarkowski et al., 2019). Similarly, the 

treatment of cucumber leaves with inulin-type fructo-oligosaccharides before inoculation with 

Colletotrichum orbiculare, a fungus causing anthracnose in Cucurbitaceae, reduced disease 

impact and increased SA levels (Zhang et al., 2009).  

The detection of fructan degrading enzymes (fructan exohydrolases, FEH) in plants that do not 

accumulate fructans, Beta vulgaris (Van den Ende et al., 2003), Arabidopsis thaliana (De 

Coninck et al., 2005) and Zea mays (Zhao et al., 2019), has led to the hypothesis that these 

proteins could play a role in plant-microorganism interactions by contributing to the production 

of the MAMPs from microbial fructans and/or by weakening the bacterial biofilm (Van den 

Ende et al., 2005). FEHs act by hydrolyzing the O-glycosidic linkage of the external fructosyl 

residue. 1-FEHs and 6-FEHs hydrolyze preferentially the β-2,1 and β-2,6 linkages, respectively, 

and 6&1-FEHs hydrolyze the two types of linkages (Lammens et al., 2009). In fructan 

accumulating plants, FEHs activities have been demonstrated in vacuoles (Frehner et al., 1984) 

but FEH activity has also been detected in the apoplast in response to abiotic stress (cold) in oat 

(Avena sativa; Livingston and Henson, 1998) and wheat (Triticum aestivum; Van den Ende et 

al., 2005). In the non-fructan plant Zea mays, the localization of a FEH (Zm-6&1-FEH1) in the 

apoplast supports the hypothesis of its role in the interaction between plants and 

microorganisms (Zhao et al., 2019). In the case of vacuolar FEHs, it is possible that following 

injury or pathogen attack causing disruption of the plasmalemma and tonoplast, vacuolar FEHs 

are discharged into the apoplast compartment. The FEHs thus present in the cell wall would be 

able to degrade the microbial fructans, leading to (i) a modification of the properties of the 

biofilm which could reduce virulence, and (ii) the release of fructose and small fructans (fructo-

oligosaccharides, FOS) which could play the role of PAMPs. These PAMPs would be 

recognized by a PRR receptor triggering the plant PTI defense response through a signaling 

cascade inducing the biosynthesis of phytohormones such as SA, JA, and ET (Rejeb et al., 

2014). An argument in favor of this hypothesis is that exogenous supply of SA and Methyl 

Jasmonate (MeJA, a JA derivative) led to increased expression of FEHs in agave (Agave 

americana) which is known as a fructan accumulator plant (Suárez-González et al., 2016). 

To deepen the understanding of the role of fructans in the plant-microorganism interactions, 

and more precisely the role of FEHs in defense responses, the objective of this study was to 

evaluate the regulation of FEH expression by defense-related phytohormones. We hypothesized 

that the treatment of plants with SA, MeJA, or ACC (1-Aminocyclopropane-1-carboxylic acid, 

a precursor of ethylene synthesis) will induce the expression of known defense-related marker 

genes (see Materiels and Methods Table II.4) together with that of FEH genes. The 
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phytohormone treatments were applied at the root level to investigate defense mechanisms in 

roots which remain largely underexplored (Chuberre et al., 2018). We hypothesized that the 

regulations of FEH genes and defense-related marker genes upon phytohormone treatments at 

the root level differ markedly as compared to plants with leaves treatment. These hypotheses 

have been tested in two non-fructan plant species, the model plant Arabidopsis thaliana and the 

genetically related species Brassica napus. In A. thaliana, two FEHs genes (At6-FEH and 

At6&1-FEH corresponding to At1g55120 and At5g11920, respectively) have been identified 

by De Coninck et al. (2005) using heterologous expression of two genes initially identified as 

cell-wall invertase genes (AtcwINV3 and AtcwINV6). By sequence homology with the two A. 

thaliana FEH genes, we looked for genes coding for putative FEHs in the allopolyploid genome 

of B. napus (Chaloub et al., 2014), a species of agronomic interest which is susceptible to 

several root pathogens (Neik et al., 2020). We identified two genes with complete sequence 

coding for a putative 6-FEH (named Bn6-FEH) and four genes with complete sequence coding 

for a putative 6&1-FEH (named Bn6&1-FEH) (Table 1). Since SA is involved in both plant 

pathogenic and non-pathogenic interactions (Zhang and Li, 2019; Koo et al., 2020), the 

variability of responses to SA treatment could help to identify varieties less susceptible to 

pathogens and/or abler of being colonized by beneficial endophytes. Thus, to test this 

hypothesis, we evaluated five varieties of oilseed rape (‘Aviso’, ‘Tenor’, ‘Darmor-bzh’, 

‘Yudal’, ‘Bristol’) harbouring contrasted behaviour in both pathogenic and non-pathogenic 

interactions (Manzanares-Dauleux et al., 2000; Fopa Fomeju et al., 2015; Daval et al., 2020). 

Materials and Methods 

Plant material and growth conditions 

A. thaliana ecotype Colombia-0 (Col-0) and five varieties of B. napus oilseed rape (‘Aviso’, 

‘Tenor’, ‘Darmor-bzh’, ‘Yudal’, ‘Bristol’) were used in this study. Seeds of both species were 

soaked in darkness for 48 h at 4°C in 0.1% (w/v) agar solution to synchronize germination. 

Each seed was individually sown on the top of a 1.5 mL microtube pierced at the bottom and 

filled with 0.7% (w/v) agarose (Supplementary Fig.SIII-11). The plants were grown in 

hydroponic conditions. Each microtube was transferred to a plastic tank (fifteen plants per tank) 

filled with 10 L of nutrient solution containing: Ca(NO3)2 (1.25 mM), KNO3 (1.25 mM), 

KH2PO4 (0.25 mM), MgSO4 (0.5 mM), EDTA-2NaFe (0.2 mM), H3BO3 (14 μM), MnSO4 (5 

μM), ZnSO4 (3 μM), CuSO4 (0.7 μM), (NH4)6Mo7O24 (0.7 μM), CoCl2 (0.1 μM). A. thaliana 

was grown for 4 weeks in a plant growth chamber with high-pressure sodium lamps (Philips, 

MASTER GreenPower T400W) providing a PAR (Photosynthetically Active Radiations) 



170 

 

between 10 and 150 μmol photons⋅m-2⋅s-1 under a photoperiod of 16 h and a thermoperiod of 

20/18°C day/night. B. napus was grown for 2.5 weeks in a greenhouse with natural light 

supplemented by high-pressure sodium lamps (Philips, MASTER GreenPower T400W) with a 

PAR (Photosynthetically Active Radiations) of 450 μmol photons⋅m-2⋅s-1 at canopy height with 

a photoperiod of 16 h and a thermoperiod of 20/17°C day/night. The nutrient solution was 

aerated and renewed every 7 days.  After the emergence of the fourth leaf in B. napus and the 

eighth leaf in A. thaliana, the microtubes were transferred in 150 mL pots (five plants per pot) 

containing 50 mL of nutrient solution supplied with 0.5 mM SA (Wang et al., 2012), 50 µM 

MeJA (Suárez-González et al., 2016), 20 µM ACC (Liu et al., 2013) (Sigma-Aldrich, Saint-

Louis, MO, USA) or without supplement (control) for 12h or 3, 6, 12, and 24 h depending on 

the experiment. Plants were collected and the shoots were separated from the roots, frozen in 

liquid nitrogen and stored at -80°C. Before RNA and protein extractions, plant tissue were 

ground in liquid nitrogen in a precooled mortar and pestle until a fine powder was obtained and 

the frozen powder was stored at -80°C. 

RNA extraction 

The frozen powder (approx. 200 mg) was transferred to a tube containing 750 µL extraction 

buffer (0.1 M LiCl, 0.1 M Tris-HCl, 0.01 M EDTA, 1% (wv) SDS, pH 8.0) mixed with 750 µL 

of hot phenol (80°C, pH 4.3). After vortexing for 40s, 750 µL chloroform/isoamyl alcohol (24:1 

v/v) was added. The tubes were mixed vigorously and centrifuged at 20 000 g for 5 min at 4°C. 

The supernatant was transferred into 750 µL LiCl 4M, and incubated overnight at 4°C. A white 

pellet containing RNA was visible after centrifuging for 20 min at 20 000 g at 4°C. Then, the 

supernatant was removed and the pellet was suspended in 100 µL RNase free water. 

Purification of RNAs including a step of DNA digestion by DNAse treatment was performed 

using RNeasy mini kit according to the manufacturer’s protocol (Qiagen, Courtaboeuf, France). 

Purified RNA was diluted in 20 µL distilled water. Absorbance at 260 nm and the 260/280 nm 

ratio were measured with an RNA BioPhotometer (Eppendorf, Hamburg, Germany) and used 

to calculate the total RNA concentration and to check the RNA purity. RNA integrity was 

visualized by separation of 1 μg of total RNAs on a 1.2% (w/v) standard agarose gel containing 

ethidium bromide (0.5 μg.mL-1). 

RT-qPCR analysis 

Total RNA was reverse transcribed to cDNA by using iScript™ cDNA Synthesis Kit (Biorad, 

France) with 2 µL iScript reaction mix (5X) and 0.5 µL iScript reverse transcriptase. Real-Time 

qPCR experiments were performed using 4 μL of 1:200 dilution of first-strand cDNA on a 
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Biorad CFX96 connect real-time PCR (Chromo4®, Biorad, France). The PCR mix comprised 

0.75 μL forward and reverse primers and 7.5 µl of iQ SYBR Green supermix (BioRad, France) 

in a 15 μL total volume. qPCR was performed using the following program: 95 °C for 3 min 

followed by 40 cycles of 95 °C for 15 s and 60 °C for 40 s. The description of the gene-specific 

primers is given in table SIII-3. FEHs primer pairs were designed with Primer3 software 

(https://primer3plus.com/cgi-bin/dev/primer3plus.cgi) from the nucleotide sequences available 

on the National Center for Biotechnology Information-NCBI and by comparing FEH 

sequences. Each primer chosen contains about 20 nucleotides with at least 50% GC content and 

optimal Tm at 60°C, raising to PCR products of 100-300 bp length. For each gene, the 

specificity of PCR amplification was validated by monitoring the presence of the single peak 

in the melting curves and by sequencing the PCR product. For relative transcript level 

determination, two reference genes were selected (BnGAPDH and BnEF1 for B. napus, AtActin 

and AtEF1α for A. thaliana). For each pair of primers, a threshold value and PCR efficiency 

(%) were determined using a cDNA preparation diluted >10-fold. The PCR efficiency of each 

pair of primers, ranging from 94.7 to 118.1 %, was used to calculate the relative gene expression 

using a delta threshold cycle (Ct) method derived from that described by Hellemans et al. 

(2007). For each target and reference genes of a data series, the relative quantity (RQi) of the 

corresponding transcript in each sample (i) was calculated as follow: 

RQi = E-ΔCti, min 

where E is (1+ efficacity)/100 and ΔCti, min is the difference between Cti and the lowest Ct of 

the series (Cti,min). The RQi of the target genes are normalized (NRQi) with the geometric 

average of the RQi of the two reference genes as follow: 

NRQi = RQi / (√(RQi, ref1 x RQi, ref2)) 

Then, the NRQi are rescaled (rescaled-NRQi) by comparison with that of the control sample 

NRQctrl as follow: 

rescaled-NRQi = NRQi / NRQctrl 

 

Statistics  

All data obtained were analyzed with R software version 4.0.3 using the “Rcmdr” package. For 

each treatment and time, the data correspond to five biological replicates (five individual plant). 

The comparison of control versus treated plants was done using the Wilcoxon nonparametric 

test  (rank sum test). The comparison of more than two sets of data was done using the Kruskal-

Wallis nonparametric test followed by a post-hoc multi-comparison ranking test (with the 

https://primer3plus.com/cgi-bin/dev/primer3plus.cgi
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“pgirmess” and the “multcompView’ packages). For each test, the statistical effect is considered 

significant with P<0.05. The principal component analysis was performed with the 

“FactoMinR” package using the relative expression of seven genes in the roots of the five 

genotypes with five biological replicates for each genotype (n=25).  

  

Figure III-19. Phytohormone treatments increased the expression of some defense-marker and FEH genes in B. 

napus roots.  

Relative expression of defense marker genes (BnPR1, BnWRKY70, BnHEL, BnDPF1.2, BnERF2, BnAOS) and 

FEH genes (Bn6-FEH_A06; Bn6-FEH_C06; Bn6&1-FEH_A10; Bn6&1-FEH_C09; Bn6&1-FEH_C03 and 

Bn6&1-FEH_A03) in B. napus cv. ‘Tenor’ roots treated with 0.5 mM salicylic acid (SA), 50 µM methyl 

jasmonate (MeJA) or 20 µM 1-Aminocyclopropane-1-carboxylic acid (ACC) during 3, 6, 12 and 24h. For each 

gene, the data were normalized against the control plant sampled after 12 h of treatment. Each data point is the 

average of five independent biological replicates and the bars indicate the standard errors. The statistical 

analyses of the difference between the control and the treated plants are presented in Supplementary Table S1. 
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Results 

Expression profiles of defense marker and FEHs genes in B. napus ‘Tenor’ after root treatment 

with SA, MeJA or ACC 

Based on gene homologies between the sequences of the two known A. thaliana FEH genes 

(Col-0) and the B. napus genome cv. “Darmor-bzh” (Version 4.1; Chalhoub et al., 2014), we 

idendified two genes with complete sequence coding for a putative 6-FEH (named Bn6-FEH) 

and four genes with complete sequence coding for a putative 6&1-FEH (named Bn6&1-FEH) 

(Table 1).  

B. napus seedlings were treated at root level with 0.5 mM SA, 50µM MeJA or 20µM ACC to 

trigger the activation of SA, JA, and ET signaling pathways. To assess plant responses, the level 

of expression of genes known to be involved in the corresponding signaling pathways (defense 

marker genes in table SIII-3) was monitored over 24 h. SA treatment increased the transcript 

level of genes coding for the WRKY70 and ERF2 transcription factors from the first 3 h of 

treatment (Fig.III-19B, E, Supplementary Table SIII-3). After a latency time of 6 to 12 h, it 

increased the transcript level of genes coding for the antimicrobial peptides PR1, HEL, and to 

a lower extent PDF1.2 (Fig.III-19A, C, D). MeJA treatment increased from the first 3 h of root 

treatment the transcript level of BnAOS which codes for the allene oxide synthase, an enzyme 

catalyzing a key step of the biosynthesis of jasmonic acid from membrane lipids (Cheong and 

Choi, 2003) (Fig.III-19F). It also increased the transcript level of the antimicrobial peptides 

HEL (p<0.05) and PDF1.2 (p=0.06) (Fig.III-19 C, D). The treatment with ACC increased the 

transcript level of BnERF2 and BnHEL (Fig.III-19 C, E). Overall, the results indicate that the 

three treatments applied at the root level were able to elicit defense responses characterized by 

the induction of genes involved in the signaling or in the synthesis of antimicrobial peptides. 

The same samples were used to assess whether the treatments were also able to induce the 

expression of FEH genes. 

Following a latency of 3 h, the transcript level of one of the two Bn6-FEH genes (A06; Fig.III-

19G; Supplementary Table SIII-3) was slightly increased after 6 h of SA treatment. With a 

much stronger effect, the transcript level of the four Bn6&1-FEH genes (A10, C09, C03 and 

A03) increased in SA-treated roots (Fig.III-19H, I, K, L) with a maximum after 6 h (A03) or 12 

h (A10, C09, C03) of treatment. In contrast, neither MeJA nor ACC treatments altered the 

transcript level of FEH genes (Fig.III-19). Since the transcript level of the defense marker genes 

and the FEHs genes were strongly induced after 12 h of root treatment, the following 

experiments were carried out using plants treated for 12 h. The repetition of this experiment  
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Figure III-20. Phytohormone treatments increased the expression of some defense-marker and FEH genes in B. 

napus roots and shoots.  

Relative expression of defense marker genes (BnPR1, BnWRKY70, BnHEL, BnDPF1.2, BnERF2, BnAOS) an FEH 

genes (Bn6-FEH_A06; Bn6-FEH_C06; Bn6&1-FEH_A10; Bn6&1-FEH_C09; Bn6&1-FEH_C03 and Bn6&1-

FEH_A03) in B. napus cv. ‘Tenor’ shoots (A) and roots (B) after 12 hours of treatment with 0.5 mM salicylic acid 

(SA), 50 µM methyl jasmonate (MeJA) or 20 µM 1-Aminocyclopropane-1-carboxylic acid (ACC). For each gene, 

the data were normalized against the control plant sampled after 12 h of treatment. Each data point is the average 

of five independent biological replicates and the bars indicate the standard errors. The asterisk indicates a 

statistically significant difference between the treated plants and the control plants (Wilcoxon rank sum test; 

p<0.05). 
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with another independent set of plants treated with SA, MeJA, and ACC during 12 h gave 

similar results (Supplementary Fig.SIII-12). 

To assess whether root treatments also altered gene expression in aerial parts of the plants, the 

transcript levels of the defense maker and the FEH genes were measured in both shoots (Fig.III-

20A) and roots (Fig.III-20B) after 12 h of treatment with SA, MeJA or ACCh. The treatment 

of roots with SA increased the transcript level of BnPR1 (13-fold) and BnWRKY70 (5-fold) in 

shoots (Fig.III-20A) but with a much weaker effect than in roots (Fig.III-20B; 686-fold and 58-

fold for BnPR1 and BnWRKY70, respectively). In contrast, BnHEL expression was much more 

induced by SA in shoots (110-fold) than in roots (25-fold). The main effect of treating the roots 

with MeJA was an increase of the transcript level of BnHEL (87-fold) and BnAOS (37-fold) in 

shoots. The treatment of roots with ACC mainly increased the transcript level of BnHEL in 

shoots. These results indicate that in B. napus, PR1 and WRKY70 are SA-responsive marker 

genes, AOS a MeJA-responsive marker gene, and HEL a SA, MeJA and ACC-responsive 

marker gene. Unlike PR1, WRKY70 and HEL, for which the SA treatment of the roots increased 

the level of expression in the shoots, the transcript level of the FEH genes did increase in 

response to SA in the shoots (Fig.III-20A). To compare the level of FEH gene expression with 

that of defense marker genes, the relative expression level of the different genes in the roots 

and shoots of the SA-treated plants were normalized to that of Bn6&1-FEH_C03 

(Supplementary Fig.SIII-12). The data indicate that among defense marker genes, the highest 

expression level was that of PR1 in shoots and HEL in roots. Among FEH genes, the highest 

expression level in roots was that of Bn6&1-FEH_A10 which level was similar to that of 

BnPR1 (Supplementary FigSIII-12). 
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Figure III-21. Phytohormone treatments increased the expression of some defense-marker and FEH genes in 

A. thaliana roots and shoots.  

Relative expression of defense marker genes (AtPR1, AtWRKY70, AtHEL, AtDPF1.2, AtERF1, AtAOS) and 

FEH genes (At6-FEH and At6&1-FEH) in A. thaliana (Col 0) shoots (A) and roots (B) after 12 hours of 

treatment with 0.5 mM salicylic acid (SA), 50 µM methyl jasmonate (MeJA) or 20 µM 1-Aminocyclopropane-

1-carboxylic acid (ACC). For each gene, the data were normalized against the control plant sampled after 12 

h of treatment. Each data point is the average of five independent biological replicates and the bars indicate 

the standard errors. The asterisk indicates a statistically significant difference between the treated plants and 

the control plants (Wilcoxon rank sum test; p<0.05). 
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Expression profiles of defense marker genes and FEHs genes in A. thaliana after root treatment 

with SA, MeJA or ACC 

In order to determine whether the observed expression profile is species-specific, the expression 

of the homologous defense marker genes and FEH genes was measured in the shoots and roots 

of A. thaliana in response to 0.5 mM SA, 50µM MeJA or 20µM ACC applied to the roots 

(Fig.III-21A-B). As in B. napus, treatment of roots with SA increased the transcript level of 

AtPR1 (107-fold in roots and 169-fold higher in shoots), AtWRKY70 (102-fold in roots and 5-

fold in shoots), and to a lesser extent AtHEL (14-fold in roots and 6-fold in shoots) and AtERF1 

(12-fold in shoots) (Fig.III-20 and III-21). The main effect of treating roots with MeJA was an 

increase of the transcript level of AtERF1 (6.6-fold in shoots) and AtAOS (6.3-fold in roots and 

2.4-fold higher in shoots). Unlike in B. napus, treatment with MeJA did not increase HEL 

expression in shoots, but as in B. napus slightly increased HEL expression in roots (Fig.III-20 

and III-21). As in B. napus, treating the roots with ACC increased the transcript level of HEL 

(14-fold in roots and 5.8-fold in shoots) and ERF1 (9.4-fold in roots and 11-fold in shoots). 

Unlike in B. napus, treatment with MeJA strongly increased PDF1.2 in roots (20-fold higher) 

(Fig.III-20 and III-21). Overall, the results indicate that, as in B. napus, the three treatments 

applied at the root level of A. thaliana were able to elicit defense responses characterized by the 

induction of genes involved in the defense signaling or in the synthesis of antimicrobial 

peptides. Moreover, our results indicate that in A. thaliana, as in B. napus, PR1 and WRKY70 

are root SA-responsive marker genes, AOS a root MeJA-responsive marker gene, and HEL a 

root SA, MeJA, and ACC-responsive marker gene (Fig.III-21). 

The same samples were used to assess whether the treatments were able to induce the expression 

of FEH genes. At6&1-FEH transcript levels were higher in roots (25-fold) of plants treated with 

SA than in roots of control plants and to a lesser extent higher in shoots (2.7-fold) (Fig.III-21). 

At6-FEH transcript level was also up-regulated (12.5-fold) in roots of SA-treated plants. Neither 

of the two FEHs genes was affected by the MeJA or ACC treatment. To compare the level of 

FEH gene expression with that of defense marker genes, the relative expression level of the 

different genes in the roots and shoots of the SA-treated plants were normalized to that of 

At6&1-FEH (Supplementary Fig.SIII-13). The data indicate that among defense marker genes, 

the highest expression level was that of PR1 in shoots and HEL in roots. Among FEH genes, 

the highest expression level in roots was that of At6&1-FEH which level was similar to that of 

AtPR1. 
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Figure III-22. The expression of defense-marker and FEH genes in B. napus roots after SA treatment differed among 

genotypes.  

Relative expression of the defense marker PR1 and FEH genes (Bn6-FEH_A06; Bn6-FEH_C06; Bn6&1-FEH_A10; 

Bn6&1-FEH_C09; Bn6&1-FEH_C03 and Bn6&1-FEH_A03) in B. napus shoots (A) and roots (B) of five genotypes 

(‘Aviso’; ‘Tenor’; ‘Darmor-bzh’; ‘Yudal’; ‘Bristol’) after 12 hours of treatment with 0.5 mM salicylic acid (SA). For 

each gene, the data of each variety were normalized against the average of the control plant data. A value above 1 

indicates an increase of the expression by SA while a value below 1 indicates a decrease of the expression by SA. 

Each data point is the average of five independent biological replicates and the bars indicate the standard errors. 

For each gene and genotype, the asterisk indicates a statistically significant difference between the treated plants 

and the control plants (Wilcoxon rank sum test; p<0.05). Different letters indicate statistically significant differences 

between genotypes (Kruskal-Wallis test followed by a multi-comparison post-hoc rank test; p<0.05). 
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Genetic variability of responses to SA applied at root level in B. napus 

Since among the three phytohormones evaluated, only SA had an effect on the expression of 

FEHs, a treatment with SA applied at root level was used to assess the genetic variability of the 

B. napus. The expression profiles of the SA-responsive gene PR1 and the FEH genes were 

followed in the roots and shoots of the five oilseed rape genotypes (‘Aviso’, ‘Tenor’, ‘Darmor-

bzh’, ‘Yudal’, ‘Bristol’) (Fig. III-22). Treatment with SA for 12 h led to the induction of BnPR1 

expression in shoots and roots of all genotypes tested, with a much stronger effect in roots (200 

to 9000-fold) than in shoots (6 to 22-fold). The most SA-responsive genotype in both shoots 

and roots was ‘Aviso’. The least SA-responsive genotypes were ‘Tenor’ for roots and ‘Bristol’ 

for shoots. However, the extent of the BnPR1 response to SA was not very large, only the 

differences between the most reactive (‘Aviso’) and the least reactive genotype (‘Bristol’ in 

shoot and ‘Tenor’ in root) being statistically significants (p<0.05; Fig. III-22). 

Bn6-FEH_A06 expression slightly increased in four genotypes (‘Tenor’, ‘Darmo-bzh’, ‘Yudal’, 

and ‘Bristol’) in SA-treated roots but not in shoots. The expression of Bn6-FEH_C06 was also 

slightly induced in roots of ‘Yudal’ and in shoots of ‘Yudal’ and ‘Aviso’. Expression of the 

four genes coding for Bn6&1-FEH (A10, C03, C09, and A03) increased in SA-treated roots of 

all five genotypes, except Bn6&1-FEH_ C03 and C09 in ‘Darmor-bzh’. Two of these four 

genes, Bn6&1-FEH_C03 and A03, were strongly induced in the roots of ‘Tenor’ and showed 

great genotypic variability in their level of expression in roots, with ‘Tenor’ as a highly reactive 

genotype, ‘Aviso’, ‘Yudal’ and ‘Bristol’ as moderately reactive genotypes and ‘Darmor-bzh’ 

as non-reactive genotype. Similarly to BnPR1, Bn6&1-FEHs were much less induced in shoots 

than in roots. Among the four genes, Bn6&1-FEH_A10 showed the highest induction by SA in 

‘Bristol’ (14-fold). A principal component analysis (PCA) was performed to assess whether the 

expression profile could discriminate the five genotypes (Supplementary Fig.SIII-14). The first 

two axes accounted for 63.8 % of the total variance observed among genotypes. The relative 

expression in response to SA of Bn6&1-FEH_A03, C03, and A10 were closely correlated with 

the first axis (Supplementary Fig.SIII-14A) with correlation coefficients of 0.89, 0.87, and 0.86, 

respectively (p<10-7). Bn6-FEH_A06 and BnPR1 were also significantly correlated with the 

first axis but with lower coefficients (0.68 and -0.48 with p<0.001 and <0.0.5, respectively). 

Along the first axis, PCA confirms a strong distinction between ‘Tenor’ and the four other 

genotypes (‘Aviso’, ‘Darmor-bzh,’ ‘Yudal’, ‘Bristol’) (Supplementary Fig.SIII-14B). Of these 

four genotypes, ‘Aviso’ was separated from ‘Bristol’ along the second axis. This axis was 

negatively correlated with Bn6&1-FEH_C09 (correlation coefficient of -0.78; p<10-5) and 

positively correlated with BnPR1 relative expression (correlation coefficient of 0.53; p<0.01). 
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Overall, the PCA analysis highlights four different expression profiles of PR1 and FEH genes 

in response to root SA treatment, i) a strong induction of PR1 associated with a low induction 

of FEHs (‘Aviso’), ii) a weak induction of PR1 associated with a strong induction of FEHs 

(‘Tenor’), iii) a strong induction of Bn6&1FEH_C09 (‘Bristol’) and iv) a weak induction of 

PR1 and FEH (‘Yudal’, ‘Darmor-bzh’). 

Discussion 

Identification of root defense marker genes in two Brassicaceae 

Over the past decade, many studies reported the induction of plant defense responses against 

pathogens through the use of exogenous phytohormone application (i.e. SA, JA and ET). These 

studies were mainly based on the changes in the level of expression of defense marker genes 

after phytohormone application at the leaf level, while data are still scarce after phytohormone 

application at root level (Papadopoulou et al., 2018). In the present study, roots of B. napus and 

A. thaliana were treated with SA, MeJA and a precursor of ET. The expression of defense 

marker genes was monitored not only in roots but also in shoots in order to assess the systemic 

response to phytohormone treatments. 

As expected, a strong induction of the expression of the well known SA-responsive genes PR1 

and WRKY70 (Li et al., 2004; van Loon et al., 2006) was observed in B. napus and A. thaliana 

roots after 12 h of SA treatment at the root level. Together with the absence of their induction 

following MeJA and ACC treatments, the results show that PR1 and WRKY70 correspond to 

specific SA-sensitive marker genes in roots of B. napus and A. thaliana. Similar induction of 

PR1 and WRKY70 was reported in the leaves of B. napus (Wang et al., 2012) and A. thaliana 

(Lemarié et al., 2015; Zhang et al., 2020) treated with SA at the leaf level. Here, the fact that 

treatment of SA at root level also increased the expression of these two genes in shoots reveals 

a systemic response in distal tissues most likely through a long-distance transport of SA or SA-

conjugates (Kawano and Bouteau, 2013).  

Exogenous supply of MeJA at root level induced the expression of AOS, which codes for the 

allene oxide synthase involved in JA biosynthesis. The induction was very strong in roots and 

shoots of  B. napus. A similar up-regulation of AOS expression was reported in B. napus MeJA-

treated leaves (Wang et al., 2012). An induction of AOS expression was also reported in leaves 

of A. thaliana treated with MeJA (Jost et al., 2005). Here, the MeJA treatment of A. thaliana at 

root level increased AOS expression in roots and in shoots. AOS expression in both species was 

not induced by ACC and only slightly induced by SA in B. napus. All together, these results 
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demonstrated that AOS is a suitable JA-sensitive marker gene in roots of B. napus and A. 

thaliana. 

ET response factors (ERF) constitute a family of plant-specific transcriptional factors which 

play important roles in response to biotic and abiotic stresses (Huang et al., 2016). Particularly, 

ERF1 has been confirmed as a regulator of ET responses after pathogen attack in A. thaliana 

(Berrocal-Lobo et al., 2002). As expected, the treatment at root level with ACC, a precursor of 

ET synthesis, increased the transcript level of ERF1 in roots and shoots of A. thaliana. A similar 

increase of ERF1 expression was reported after ACC treatment at root level in seedlings of A. 

thaliana (Mao et al., 2016) and in roots of Brassica rapa treated with ethephon, another ET 

precursor (Papadopoulou et al., 2018). In B. napus, ACC treatment at root level induced the 

expression of BnERF2 inroots ans in shoots. These ERF genes were also reported to be induced 

by JA treatment at root level in B. napus (BnERF2, in roots and in shoots) and in A. thaliana 

(AtERF1, in shoots but not in roots) (Lorenzo et al., 2003). However, other experiments have 

shown that is not always the case. Indeed, MeJA-treatment at leaf level down-regulated AtERF1 

expression in shoots of A. thaliana (Caarls et al., 2016) and MeJA-treatment at root level 

decreased BrERF1 expression in roots of B. rapa (Papadopoulou et al., 2018). Interestingly, 

these two genes (BnERF2 and AtERF1) were also induced after root treatment by SA. This was 

not the case in B. rapa treated with SA at shoot or root level (Papadopoulou et al., 2018) while 

similar AtERF1 induction was observed after SA-treatment at leaf level (Caarls et al., 2016). 

These contrasting results indicate that the regulation of ERFs by exogenous phytohormones 

depends not only on the ERF gene considered (Caarls et al., 2016) but also on the species and 

of the treated tissue. Moreover, this induction of BnERF2 and AtERF1 by SA, MeJA and ACC 

support the hypothesis of the role of these ERFs in the cross-talk of SA and ET/JA signaling 

pathways (Li et al., 2019) in B. napus (BnERF2) and A. thaliana (AtERF1). 

HEL codes for a protein with antimicrobial activity (Hevein-like protein also known as PR4; 

Bertini et al., 2012). We observed a strong induction of BnHEL and AtHEL in roots and shoots 

following the SA and ACC treatments at root level and also, but to a lesser extent, following 

the MeJA treatment. Conversely, in the leaves of A. thaliana, Norman-Setterblad et al. (2000) 

showed that HEL was up-regulated by ET but not by SA or JA, while in B. napus leaves, HEL 

expression was induced by MeJA but not by SA (Wang et al., 2012). This suggests that HEL 

regulation depends on the location of signal perception (roots versus shoots). The induction of 

HEL observed in B. napus and A. thaliana following the supply at root level of each of the three 

main defense phytohomones indicates that HEL can be considered as a generic marker gene of 

defense response in the roots. 
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While MeJA treatment of B. napus at leaf level strongly increased the expression of the plant 

defensin BnPDF1.2 (Wang et al., 2012), MeJA treatment at root level had no significant effect 

on  BnPDF1.2 expression in roots. Contrary to its down-regulation in leaves by SA treatment 

at leaf level (Wang et al., 2012), the expression of BnPDF1.2 in roots was induced by SA 

treatment at root level. In A. thaliana, treatment at root level with ACC but not MeJA strongly 

increased the expression of AtPDF1.2 in roots, as already reported by Norman-Setterblad et al. 

(2000). Expression of AtPDF1.2 was induced by a treatment at leaf level with MeJA and ET 

(Penninckx et al., 1998) and repressed by SA (Koornneef et al., 2008). Thus, PDF1.2 regulation 

seems to depend on the location of signal perception (roots versus shoots) and on the species.  

Altogether, our results indicate that the regulation of gene expression by exogeneous 

phytohormone treatment in the aerial parts of the plants can not be extrapolated to the root 

system. Only three of the defense marker genes studied (PR1, WRKY70 and AOS) displayed 

similar responses after root treatments (present results) and after leaf treatments (literature 

data). PR1 et WRKY70 can then be considered as specific marker genes of SA signaling pathway 

and AOS as a specific marker of MeJA signaling not only in shoots but also in roots of both 

Brassicaceae. The three other defense marker genes (ERF1/ERF2, HEL and PDF1.2) were 

differently regulated by phytohomones depending on whether they are applied to the roots (our 

results) or to the leaves (literature data). AtPDF1.2 and AtERF1 can be used as specific marker 

genes of ET signaling pathway in roots of A. thaliana. HEL, which was up-regulated by the 

three defense phytohormones, seems to be a suitable generic marker of root defense responses 

in both Brassicaceae. 

Up-regulation of At6&1FEH and Bn6&1FEH by SA is in favor of their role in plant defense. 

The effect of the phytohormone treatments was assessed by measuring the transcript levels of 

genes coding for putative FEHs in B. napus (four genes coding for Bn6&1-FEH and two genes 

coding for Bn6-FEH) and FEHs in A. thaliana (At6&1-FEH and At6-FEH, De Coninck et al., 

2005). Among the three phytohormones evaluated, only SA had an effect on the expression of 

FEHs. Its exogenous application to the roots of B. napus increased the relative expression of 

the four genes coding for proteins with putative 6&1-FEH activity and of one of the two genes 

coding for proteins with putative 6-FEH activity. In A. thaliana, At6&1-FEH and At6-FEH 

were also specifically induced by SA. Interestingly, the relative amount of Bn6&1-FEH_A10 

transcripts after 12h of root SA treatment was at a similar level to that of BnPR1 in the roots of 

B. napus. Similarly, after 12 h of treatment with SA, the relative amount of At6&1-FEH 

transcripts was at the same level as that of AtPR1 in the roots of A. thaliana. 
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The fact that SA treatment at root level strongly up-regulated all 6&1-FEHs together with PR1 

and HEL, two well-known pathogen-induced antimicrobial proteins, and WKRY70, a marker of 

SA-mediated signaling, in the five varieties of B. napus and in the model species A. thaliana, 

clearly supports the role of FEHs as defense proteins in non-fructan plants. In B. napus, the 

similarity between the kinetics of induction of genes coding for FEHs and for the defense 

proteins PR1 and HEL reinforces this hypothesis. As it is generally accepted that SA is involved 

in resistance to biotrophic pathogens while JA is more specific to the activation of defenses 

against insect herbivores and necrotrophic pathogens (Caarls et al., 2015), the fact that 

6&1FEHs were up-regulated by SA but not MeJA suggests that 6&1FEHs are involved in 

interactions with plant pathogens displaying a biotrophic lifestyle. The comparison of PR1 and 

FEH regulation by SA in five genotypes of B. napus (‘Aviso’, ‘Tenor’, ‘Darmor-bzh’, ‘Yudal’, 

‘Bristol’) highlighted different expression profiles. ‘Aviso’ displayed a strong PR1 induction 

associated with a weak FEH induction, ‘Tenor’ a weak PR1 induction associated with a strong 

FEH induction while in ‘Yudal’ and ‘Darmor-bzh’ the expression of PR1 and FEHs was almost 

not affected by SA. This underlines a genotypic variability of FEH regulation in B. napus that 

could lead to different susceptibility to fructan synthesizing pathogens and raise breeding 

possibilities on this character. 

Conclusions 

Present results show that the regulation of defense-related genes by exogenous phytohormone 

supply at the leaf level cannot be generalized to phytohormone treatments at root level 

confirming that defense signaling differed between roots and shoots (Millet et al., 2010; Mauch-

Mani et al., 2017). Furthermore, we demonstrated that in A. thaliana and B. napus roots, 6-FEH 

and 6&1-FEH genes are SA-responsive genes strongly suggesting that they are involved in 

defense responses and that the proteins derived from their expression correspond to root defense 

proteins. Thus, these results support the hypothesis that FEHs identified in non-fructan plants 

are involved in plant-microorganism interactions and may constitute, together with some cell-

wall invertases, a new family of pathogenesis-related (PR) proteins (Roitsch et al., 2003; van 

Loon et al., 2006). FEHs may play a specific role in these interactions through the production 

of MAMPs from microbial fructans and/or through the weakening of bacterial biofilm (Van 

den Ende et al., 2003). Since FEH activity can release fructose and FOS, their role in plant 

defense suppose that these sugars act as elicitors of defense responses reducing the severity of 

pathogen attack. This has been demonstrated in different species (Bolouri-Moghaddam and Van 

den Ende, 2012; Versluys et al., 2017). This hypothesis is also supported by the transient 
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upregulation of At6&1FEH during the early phase of root infection by Phytophthora parasitica 

(Le Berre et al., 2017). The fact that the corresponding knockout mutant did not show a higher 

susceptibility than the wild type (Le Berre et al., 2017) suggests that At6-FEH could 

compensate for the absence of 6&1FEH. To properly assess the role of FEHs in plant defense, 

At6-FEH_6&1FEH double knockout mutants will be produced and challenged by fructan-

producing rhizospheric microorganisms. 
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Figure S III-9. Experimental design for seedling production and plant screening.  

(A) After being soaked for 48 hours at 4°C in 0.1% (w:v) agar solution, the seedlings were grown for 2.5 weeks in 

a hydroponic system at 21°C with 16h of light and 8h of dark period. (B) Treatment of plant after 18 days of growth 

in 150mL pots (five plants per pot) with 50 mL of nutrient solution containing the phytohormone (0,5 mM salicylic 

acid (SA), 50 µM methyl jasmonate (MeJA) or 20 µM 1-Aminocyclopropane-1-carboxylic acid (ACC) for 3, 6, 12, 

and 24 h. The shoots and the roots were harvested separately, stored at -80°C before ARN or protein extraction. 
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Table S III-2. P-values from Wilcoxon test for comparisons of the treated versus control 

samples for each gene and each sampling time.  

Values in red correspond to gene expression above the control with p-values < 0.05. Values 

in green correspond to gene expression below the control with p-values < 0.05. 
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Figure S III-10. Relative expression of genes in A. thaliana 

shoots (A) and roots (B) after 12 hours of treatment with SA. 

Data are the same as in Fig.3 but were normalized against 

the relative expression level of At6&1-FEH in shoots. 

Defense marker genes: AtPR1, AtWRKY70, AtHEL, 

AtDPF1.2, AtERF1, AtAOS. FEHs genes: At6-FEH and 

At6&1-FEH. Shoots and roots were sampled after 12 h of 

treatment with 0.5 mM salicylic acid (SA). Each data point 

is the average of five independent biological replicates and 

the bars indicate the standard errors. Different letters 

indicate statistically significant differences between genes 

(Kruskal-Wallis test followed by a multi-comparison post-

hoc rank test; p<0.05). 

Figure S III-11. Relative expression of genes in B. napus cv. 

‘Tenor' shoots (A) and roots (B) after 12 hours of treatment 

with SA.  

Data are the same as in Fig.2 but were normalized against 

the relative expression level of Bn6&1-FEH_C03 in shoots. 

Defense marker genes: BnPR1, BnWRKY70, BnHEL, 

BnDPF1.2, BnERF2, BnAOS. FEHs genes: Bn6-FEH_A06; 

Bn6-FEH_C06; Bn6&1-FEH_A10; Bn6&1-FEH_C09; 

Bn6&1-FEH_C03 and Bn6&1-FEH_A03. Shoots and roots 

were sampled after 12 hours of treatment with 0.5 mM 

salicylic acid (SA). Each data point is the average of five 

independent biological replicates and the bars indicate the 

standard errors. ND, not detected. Different letters indicate 

statistically significant differences between genes (Kruskal-

Wallis test followed by a multi-comparison post-hoc rank 

test; p<0.05). 
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Figure S III-12. Principal component analysis performed with the relative expression of the 

defense marker BnPR1 and of the six FEHs genes 

(Bn6-FEH_A06; Bn6-FEH_C06; Bn6&1-FEH_A10; Bn6&1-FEH_C09; Bn6&1-FEH_C03 and 

Bn6&1-FEH_A03) in B. napus roots after 12 hours of treatment with 0.5 mM SA for five 

genotypes (‘Aviso’, ‘Tenor’, ‘Darmor-bzh’, ‘Yudal’, ‘Bristol’) with five biological replicates for 

each genotype (n=25). A: graph of variables. B: graph of individuals. 
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Table S III-3. Primers used for qRT-PCR in this study.  

F: forward; R: reverse. Bn: B. napus genes and At: A. thaliana genes. 
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4. Involvement of bacterial levans and plant fructan exohydrolases (FEHs) in 

Arabidopsis thaliana root colonization by Pseudomonas brassicacearum 

Abstract 

Fructans are fructose polymers present in some plants and microorganisms including beneficial 

or pathogenic bacteria. In bacteria, fructans are mainly levans which are synthesized by 

levansucrases and are the exopolysaccharides. Fructan exohydrolases (FEHs) have been found 

in several non-fructan-accumulating plant species including Arabidopsis thaliana. Their 

discovery has led to the hypothesis that they could act as defense-related proteins in plant-

bacteria interactions by hydrolyzing bacterial extracellular levans which form a protective layer 

and thereby produce fructo-oligosaccharide elicitors. To test this hypothesis, the interaction 

between the non-fructan-accumulating plant A. thaliana and the beneficial levan-producing 

bacteria Pseudomonas brassicacearum was investigated by using A. thaliana Col-0 and FEH 

knock-out mutants inoculated with P. brassicacearum, wild-type (NFM421), and the 

corresponding levansucrase deletion mutant (Δlev).  Strong inhibition of primary root growth 

and stimulation of lateral root production was observed in A. thaliana Col-0 inoculated with 

NFM421. When Col-0 was inoculated with Δlev, root colonization was increased 3-fold and 

the root morphological changes tended to be stronger, indicating that the presence of levans did 

not facilitate the root colonization. Root morphological changes induced NFM421were stronger 

in all five FEH knockout mutants Col-0, indicating that the deletion of one of the two FEHs 

(At6-FEH or At6&1-FEH) reduce plant defense response. These preliminary results confirm 

the role of bacterial levans in plant-bacteria interaction and support the hypothesis of the 

involvement of plant FEHs in this interaction by acting directly on bacterial levans and/or by 

modulating sugar signaling. To confirm these results, 6-feh/6&1feh double- mutants will be 

produced and challenged by fructan-producing rhizospheric microorganisms. 

Introduction 

Fructans are fructose polymers present in more than 15% of Angiosperms (Hendry, 1993) and 

in microorganisms, such as beneficial (Gluconacetobacter diazotrophicus; Hernández et al., 

2000) or pathogenic bacteria (Erwinia amylovora; Öner et al., 2016) and fungi (Aspergillus and 

Rhodotorula; Trollope et al., 2015). In bacteria, fructans are mainly levans which are 

synthesized by extracellular levansucrases (EC 2.4.1.10) belonging to the GH68 family 

(Cantarel et al. 2009; Lammens et al., 2009). Levansucrases catalyze different reactions 

including the hydrolysis of sucrose, the synthesis of 6-kestotriose from sucrose, and the 

polymerization of levans using sucrose as a fructosyl donor (Martínez-Fleites et al., 2005).  
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Bacterial fructans are thus part of the exopolysaccharides (EPS) that contribute to biofilm 

formation, an assembly of microorganisms adhering to each other and/or to a surface and 

embedded in an EPS matrix (Morris and Monier, 2003; Velázquez-Hernández et al., 2009; 

Lembre et al., 2012; Dogsa et al., 2013). Interestingly, enzymes that hydrolyze fructans have 

been found in several non-fructan-accumulating plant species, i.e. Beta vulgaris (Van den Ende 

et al., 2003), Arabidopsis thaliana (De Coninck et al., 2005), and Zea mays (Zhao et al., 2019, 

Huang et al., 2020; Wu et al., 2021). They are fructan exohydrolases (FEHs) belonging to the 

GH32 family that hydrolyze the O-glycosidic linkage of the fructosyl unit at the end of fructan 

to release fructose (Lammens et al., 2009). In A. thaliana, the two FEHs were originally 

identified as invertases, AtcwINV3 and AtcwINV6 (cell wall invertase 3 and 6) based on the 

analysis of their amino acid sequences. Their functional characterization using heterologous 

expression in the yeast Pichia pastoris shows that these FEHs hydrolyze β-(2,6) (AtcwINV3) 

or both β-(2,1) and β-(2,6) linkages (AtcwINV6) (De Coninck et al., 2005). They were thus re-

named At6-FEH and At6&1FEH, respectively.  

The discovery of FEHs in non-fructan accumulating plants has led to the hypothesis that they 

could act as defense-related proteins in plant-microorganism interactions (Van den Ende et al., 

2004) by hydrolyzing levan-containing slimes surrounding endophytic or phytopathogenic 

bacteria such as Pseudomonas or Erwinia (Hettwer et al., 1995; Bereswill et al., 1997). Indeed, 

levans form a separating layer between bacteria and plant cell wall polymers which prevents 

the plant to recognize the pathogen during the early stages of plant-pathogen interaction, 

(Hettwer et al., 1995). The disruption of the levansucrase gene in Erwinia amylovora (the fire 

blight agent of the Pomoideae) delayed the onset of symptoms in pear, indicating that the 

synthesis of levans increases the virulence of the bacteria by the formation of a protective layer 

which prevents the plant from perceiving the presence of bacteria (Geier and Geider, 1993; 

Koczan et al., 2009). Thus, plant FEHs could have a crucial role by preventing levan formation 

and consequently reducing pathogen infection (Van den Ende et al., 2004). Moreover, Van den 

Ende et al. (2004) suggested that plant FEHs could be involved in stabilizing symbiosis 

occurring between plants and fructan-producing beneficial bacteria such as in sugar beet 

(Tallgren et al., 1999) or sugar cane (Hernández et al., 2000). In addition, FEHs could play a 

role in plant-microorganism interactions by contributing to the production of the fructo-

oligosaccharides from microbial fructans which act as elicitors triggering plant defense 

response (Versluys et al., 2017). Indeed, the pre-application of fructo-oligosaccharides reduced 

the impact of Colletotrichum orbiculare infection in cucumber (Zhang et al., 2009) and the 

infection caused by Botrytis cinerea in Lactuca sativa leaves (Tarkowski et al., 2019). 
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To further investigate the role of bacterial levans and plant FEHs in the interaction of plants 

with bacteria, we studied the interaction between the non-fructan-accumulating plant A. 

thaliana and the levan-producing bacteria Pseudomonas brassicacearum. P. brassicacearum is 

a Gram-negative bacterium isolated from the rhizosphere of two Brassicaceae, A. thaliana and 

Brassica napus (Achouak et al., 2000). P. brassicacearum is considered as a non-pathogenic 

commensal bacterium which is studied for its plant-growth promotion (PGP) and biocontrol 

properties (Gislason and Kievit, 2020). 

We hypothesized that the colonization of A. thaliana roots by P. brassicacearum is facilitated 

by i) the production of levan by the bacteria and ii) the suppression of FEH synthesis by the 

plant. To test these hypotheses, we used A. thaliana FEH knock-out mutants and their 

corresponding wild-type Col-0 to study their responses to inoculation with two strains of P. 

brassicacearum, the wild-type strains NFM421 and a mutant strain which do not produce 

levans.  We used two strains used in this study. The red fluorescent protein-tagged bacteria 

correspondto the reference strain for genome-based analysis (Ortet et al., 2011) and possess the 

levansucrase gene encoding the levan synthesizing enzyme (NFM421-I; Achouak et al., 2004). 

We also took advantage of corresponding levansucrase knock-out mutant strain (NFM421-

I::Δlev, later named Δlev) produced by LEMiRE team (Laboratoire d'Écologie Microbienne de 

la Rhizosphère et de l'Environnement Extrême, CEA, Cadarache).  

The colonization of A. thaliana by P. brassicacearum NFM421 leads to a more branched and 

shorter root system as compared to control plant presumably due to a production of bacterial 

auxin (Persello-Cartieaux et al., 2001). The production of auxins by rhizobacteria is indeed a 

PGP trait of many plant-associated bacteria (Gislason and Kievit, 2020). However, besides its 

PGP effect, auxins can suppress the signaling cascade required for plant immunity and allow 

colonization of the plant by avoiding plant defense response (Gislason and Kievit, 2020). Thus, 

we used changes in root morphology as an indicator of plant defense response to bacterial 

colonization, with increased changes indicative of decreased plant defense. Specifically, we 

will assess whether i) P. brassicacearum levan suppression will increase bacterial recognition 

by A. thaliana, leading to an increase of plant defense response as revealed by a decrease of 

root colonization and root morphological changes ii) FEH suppression in A. thaliana will avoid 

P. brassicacearum levan degradation and reduce elicitor production, leading to a reduction of 

plant defense response as revealed by an increase in root morphology changes.  
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Materials and Methods 

Bacterial strains  

The strains are red or green fluorescent protein-tagged bacteria corresponding to the reference 

strain for genome-based analysis (Ortet et al., 2011) which contains the levansucrase gene 

encoding the levan synthesizing enzyme (NFM421-I::rfp or NFM421-I::gfp; later named 

NFM421) and the corresponding levansucrase knock-out mutant strain (NFM421-I::Δlev, later 

named Δlev) (Achouak et al., 2004). The levansucrase knock-out mutant strain Δlev was 

obtained by Sylvain Fochesato (Laboratoire d'Écologie Microbienne de la Rhizosphère et de 

l'Environnement Extrême - LEMiRE, Institut de Biosciences et biotechnologies d’Aix-

Marseille – BIAM, CEA, Cadarache).  

 

Arabidopsis T-DNA mutant  

At6-FEH (At1g55120) and At6&1-FEH (At5g11920) Arabidopsis thaliana knock-out mutants 

were selected from the Colombia (Col-0) SALK T-DNA collection of the Nottingham 

Arabidopsis Stock Centre (NASC, Nottingham UK) (Table II-5 of Materiels and Methods). The 

three 6-feh mutant lines are N675754-SALK 073323C (further named 6-feh-S073), N671758-

SALK 097556C (further named 6-feh-S097) and N672154-SALK 134791C (further named 6-

feh-S134). The two 6&1-feh mutant lines are N655172-SALK 127864C (further named 6&1-

feh-S127) and N655201-SALK 152299C (further named 6&1-feh-S152). 

For mutant genotyping, A. thaliana seeds (wild-type Col-0 and FEH knock-out mutants) were 

stratified for 48 h in 0.1% agar at 4°C in the dark and then sown in pots (9x9x10cm) filled with 

vermiculite with a 1cm layer of soil on top (Fig. 39A). The pots were placed in a plastic tank 

containing Hoagland ¼ nutrient solution which was renewed every 3-4 days. Plants were grown 

for approximately 8 weeks in a plant growth chamber with a PAR (Photosynthetically Active 

Radiations) of 110 μmol photons⋅m-2⋅s-1 under a photoperiod of 16 h and a thermoperiod of 

20/18°C day/night. 

FEH knock-out mutants were tested by PCR-based genotyping to confirm the T-DNA insertion 

localization and homozygosity. The PCR primers used for genotyping are listed in table II-5 of 

Materiels and Methods. DNA is extracted from 100 mg of fresh young leaves using 

NucleoSpin™ Plant II kits (Macherey-Nagel, 740770.50). PCR was performed according to a 

protocol modified from O’Malley et al. (2015) using 3µL of DNA extract. Initial denaturation 

step at 94°C for 2 min was followed by 40 cycles including a denaturing step at 94°C for 30s, 

a primer hybridization step at various temperatures according to each pair of primers for 1 min 
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and an amplification step at 72°C for 1 min. Each PCR reaction was finished with a final step 

at 72°C for 10 min. Then, PCR products were separated by electrophoresis on 1.2% agarose gel 

in TAE 1X containing 50µL de BET (0.5 mg. mL-1) and revealed by illumination with UV-

light using a Gel-Doc TM EZ Scanner (Bio-Rad, Marnes-la-Coquette, France). In addition, 

FEH transcript level was also verified by using quantitative RT-PCR on the RNA extracted 

from leaves. The protocol is detailed in sections D.2 and D.3 of the M&M chapter. Seeds of 

homozygous plants were collected in 1.5 ml tubes and stored at 12°C.  

The two 6&1-feh mutant lines (6&1-feh-S127 and 6&1-feh-S152) are homozygote for the T-

DNA insertion but At6&1-FEH transcript is detected in 6&1-feh-S152 (table II-6 of Materiels 

and Methods). Two 6-feh mutant lines are homozygote for the T-DNA insertion (6-feh-S097 

and 6-feh-S134) while the other is heterozygote (6-feh-S073). For the three 6-feh mutant lines, 

the At6-FEH transcript is not detected (table II-6 of Materiels and Methods). 

 

Bacterial inoculation 

For the in vitro root colonization experiments with P. brassicacearum, A. thaliana seeds (wild-

type Col-0 and FEH knock-out mutants) were placed in a 2 mL sterile Eppendorf tube. 2 mL of 

a sterilization solution containing 1 mL 2.5 % chlorine bleach, 9mL ethanol absolute, and 3 

drops of Tween 80 (Sigma-Aldrich-V000749) were added to the seeds for 6 min. Then seeds 

were washed 4 times with absolute ethanol and dried naturally in a Petri dish under sterile 

conditions in horizontal laminar flow hoods before sowing. Two P. brassicacearum strains 

(NFM421 and Δlev) were grown in 10-fold-diluted tryptic soy broth (TSB/10; Difco 

Laboratories, Detroit) at 30°C for 24h. The optical density (OD) at 600 nm of overnight 

bacterial cultures was measured before the experiment to obtain approximately 200-1000 

bacteria per plate culture. Bacterial suspensions were added to 150mL of half-strength 

Hoagland (Hoagland ½) medium containing 3.5g agar per liter (Arnon and Hoagland, 1940) 

and poured as a band where the seeds were sown. 7 sterile seeds were sown in a squared dish 

(15 x 15 cm) filled with Hoagland ½ medium and 0.4% phytagel (Sigma, St. Louis) (see 

Materials and Methods A.1). The dishes were sealed with micropore tape (3M, St. Paul, MN, 

U.S.A.) and incubated vertically at 21°C for 21 days with 16 h of light and 18°C at night 

(approximately 100 photons m–2 s–1). Control experiments were performed by omission of 

bacteria. For this experiment, 9 technical replicates and 3 biological replicates were performed. 
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Monitoring root colonization by P. brassicacearum using bacterial colonies counting 

The roots of five 21-d-old plants inoculated with one of the two strains (NFM421 or Δlev) were 

collected and ground in mortar in 1mL of 0.85% potassium chloride (KCl). Then, three dilutions 

of the ground root were plated on a 10-fold-diluted tryptic soy agar (TSA/10) medium. After 3 

days at 25°C in the bacterial incubator, the bacterial colonies of the 3 most diluted points were 

counted. For this experiment, 5 biological replicates were performed. 

 

Monitoring root colonization by P. brassicacearum using fluorescent microscopy 

The roots of 14-d-old plants inoculated with one of the two strains (NFM421 or Δlev) were 

observed using a confocal scanning light microscopy (CSLM, Olympus) equipped with a 

krypton-argon laser, detectors, and filter sets for RFP monitoring. Shadow projections and 

optical sections were generated using the Fluoview software package. The observation was 

realized in three compartments of root including the basal part (1.5- to 2-cm), apical part (1-

cm), and median part (variable lengths) (Achouak et al., 2004).  For this experiment, 4 technical 

replicates and 3 biological replicates were done.  

 

Observations of P. brassicacearum exopolysaccharide (EPS) production 

Bacterial exopolysaccharide (EPS) production was observed using a fluorescent Concanavalin 

A probe (ConA, Texas Red™ Conjugate, Molecular Probes- C825, 1 mg/ml). A colony of P. 

brassicacearum NFM421 expressing a plasmid-borne GFP (NFM421-I::gfp) was scraped from 

the agar surface and deposited on a slide. 100µL of 1 mg/ml ConA was added and the slide was 

stored 15 min in the dark. The ConA solution was then discarded and the slide is rinsed 2 times 

with 40 mL of PBS for 15 min. Finally, a droplet of citifluor was delicately deposited on the 

sample and a coverslip is mounted to the slide before observing by CSLM. In addition, the roots 

of 14-d-old plants inoculated with the P. brassicacearum NFM421-I::gfp strain were removed 

from the plate and incubated into 100µL of ConA solution for 1h in the dark in the microscope 

slide. After discarding the ConA solution, roots were washed 2 times with 40 mL of PBS for 

15 min. The roots were then observed in a droplet of citifluor after being covered with a 

coverslip by CSLM equipped with a krypton-argon laser, detectors and filter sets for 

simultaneous monitoring of GFP and RFP. For this experiment, 3 technical replicates and 2 

biological replicates were performed.   
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Analysis of root system morphology  

The morphology of root system of at least five plants of each genotype (Col-0 and FEHs knock-

out mutant) was studied by analyzing scanned images. WinRHIZO Pro version 2007d (Regent 

Instruments, Canada) was used to measure two root traits which are indicators for a potential 

uptake of water and nutrients (Himmelbauer et al., 2004; Gruber et al., 2013), the total root 

length (cm) and surface area (cm2).  They were measured in the total root system of each plate 

and then divided by the number of plants to obtain the root length per plant (cm. plant-1) as well 

as surface area per plant (cm2.plant-1). Moreover, the Fiji (Fiji is Just ImageJ), an image 

processing package of ImageJ2 (Schindelin et al., 2012; https://imagej.net/software/fiji/) was 

used to measure the total primary root length per plate (cm) and the lateral root number. Lateral 

root density (number/cm primary root) was calculated by dividing the total number of visible 

lateral roots in one plate by the total length of primary root (Lima et al., 2010; Gruber et al., 

2013). 

 

Statistical analysis 

Data were analyzed with R software version 4.0.3 using the “Rcmdr” package (R Core Team, 

2021). For each inoculation, the data correspond to five biological replicates (five individual 

plants). The comparison of control versus inoculated plants was undertaken using a one-way 

ANOVA with pairwise comparisons made using a Tukey test. Before ANOVA, a Shapiro–Wilk 

test and a Bartlett test were performed on each set of data to assess data normality and 

homogeneity of variances, respectively. For each test, the statistical effect is considered 

significant with P<0.05. 
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Figure III-24. Exopolysaccharide (EPS) of P. brassicacearum NFM421-I::gfp 

strain visualization using red fluorescent ConA probe.  

(A) in vitro (B) in planta in 14-d-old Col-0 roots. PR: primary root. Scale bars: 5 

µm. 

Figure III-23. Level of Arabidopsis Col-0 root colonization by P. brassicacearum.  

The roots of five 21-d-old plants inoculated with NFM421 or Δlev strains were collected 

and grown for 3 days at 25°C. Bacterial colonies of the three most diluted points were 

counted using ImageJ. * indicates an significant difference between inoculation 

treatments (P < 0.05; Student’s test). 
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Results 

 

EPS production and colonization of Col-0 roots by P. brassicacearum. 

By using a red fluorescent ConA probe, EPS production by P. brassicacearum NFM421 was 

confirmed in vitro (Fig. III-23A) and in planta (Fig. III-23B). Under both conditions, the 

bacteria were visualized by green fluorescence due to the expression of a plasmid-borne GFP 

and appeared embedded in a dense matrix of EPS visualized by red fluorescence. 

The level of root colonization by P. brassicacearum was measured by growing in vitro the 

bacteria collected from the roots of 21-d-old plants inoculated by the levan producing strain 

(NFM421) or the levansucrase deletion mutant (Δlev). Colony counting showed that root 

colonization was approximately 3-fold greater with Δlev than with NFM421 (Fig. III-24). Root 

colonization was confirmed by the observation of red fluorescent bacteria in planta (Fig. III-

25).  

The basal part of the root system was colonized by both strains but Δlev bacteria labeling was 

more visible on the surface of primary root than that of NFM421 (Fig. III-25A, B). Both strains 

were also observed at the median part of primary root, especially at the insertion of LRs (Fig. III-

25C, D). Furthermore, both strains colonized the root tips (Fig. III-25E, F). In this zone, 

NFM421 labeling was much higher than Δlev labeling, especially in meristematic zone (Fig. 

III-25E).  
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Figure III-25. Visualization of Arabidopsis Col-0 root colonization of by red fluorescent protein-

tagged P. brassicacearum NFM421 (wild-type) and Δlev (levansucrase deletion mutant)  

By using a confocal scanning light microscopy. Three root compartments were observed: (A, B) the 

basal part (1.5 to 2 cm); (C, D) median part (variable lengths), and (E, F) apical part (1cm from 

root apice). PR: primary root; LR: lateral root; RT: root tip; RC: root cap. Scale bars: 5 µm. 
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Effects of P. brassicacearum inoculation on root growth, morphology and mucilage production 

in Col-0 

Figure III-26A shows the development of the root system in control conditions, i.e. for wild-

type A. thaliana (Col-0) without inoculation. When Col-0 seeds were inoculated with P. 

brassicacearum strain producing levan (NFM421), root morphology was strongly modified 

(Fig. III-26B). Root system size decreased (Fig. III-26B) and total root length measured by 

image analysis tended to be lower (approximately 5.6 cm shorter than non-inoculated Col-0) 

(Fig. III-27A). The inoculation produced a very shallow and highly branched root system 

(Fig.III-26B, C), the inhibition of primary root growth in inoculated plants was indeed 

accompanied by an increase in the density of lateral roots (Fig. III-27G). 

When Col-0 was inoculated with the mutant bacteria that do not produce levans (Δlev), the total 

root length was significantly reduced compared to the non-inoculated Col-0 and tended to be 

lower than with NFM421 inoculation (approximately 8 cm shorter than non-inoculated Col-0) 

(Fig. III-27A). The total root surface tended to be lower than non-inoculated plant (Fig. III-

27D). The density of lateral roots was significantly enhanced compared to the non-inoculated 

Col-0 and tended to be higher than with NFM421 inoculation (Fig. III-27G). 

The presence of mucilage at the root tip was investigated using negative staining with India ink. 

In non-inoculated Col-0, the dye-free zone around the root tip revealed the presence of mucilage 

surrounding border-like cells (BLCs) at the root cap periphery (Fig. III-28A). Interestingly, the 

presence of mucilage was strongly reduced in Col-0 inoculated with both NFM421 (Fig. III-

28B) or Δlev (Fig. III-28C) P. brassicacearum strains. Moreover, in the presence of P. 

brassicacearum, the BLCs were firmly attached to the root cap and more difficult to observe 

(Fig. III-28B, C). 

 

Effects of FEH deletion in Arabidopsis responses to P. brassicacearum inoculation. 

The root system size (Fig. III-26A, D, G), as well as total root length and surface and lateral 

root density, were similar in Col-0, 6-feh and 6&1feh mutants (control plants without 

inoculation) (Fig. III-27A-I). This indicates that the T-DNA insertion in one of the two FEH 

genes (At6-FEH or At6&1-FEH) did not alter root growth and morphology. 

Inoculation with NFM421 caused a greater root growth inhibition in FEH knockout mutants 

than in Col-0 with a reduction in root length and even more in total root surface (Fig. III-26D, 

E, G, H; Fig. III-27B, C, E, F). Similar root growth reductions were observed in FEH knockout 
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Figure III-26. Arabidopsis Col-0 and FEH knock-out mutants inoculated with P. brassicacearum 

 (A, B, C) Col-0; (D, E, F) 6-feh (a petri dish representative of Arabidopsis 6-FEH knockout mutants); (G, H, 

I) 6&1-feh (a dish representative of Arabidopsis 6&1-FEH knockout mutants). Plants were not inoculated (A, 

D, G) or inoculated with P. brassicacearum NFM421 (B, E, H) or Δlev (C, F, I). These images were used to 

analyse root system morphology by ImageJ and WinRHIZO. 
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mutants inoculated with Δlev (Fig. III-26F, I; Fig. III-27B, C, E, F). By comparison with Col-

0, the total root length and surface were significantly reduced by inoculation with NF421 for 

two 6-feh mutants (S097 and S134) and one 6&1-feh mutant (S127). 

Figure III-27. The effect of P. brassicacearum inoculation on root morphology of Arabidopsis  

Col-0 (A, D, G), Arabidopsis 6-FEH knock-out mutants (B, E, H) and Arabidopsis 6&1-FEH knock-out 

mutants (C, F, I . (A, B, C) total root length, (D, E, F) total rot surface area, (G, H, I) lateral root density. 

Plants were not inoculated or inoculated with P. brassicacearum NFM421 or Δlev. Each data point is the 

average of five independent biological replicates and the bars indicate the standard errors. The asterisk 

indicates a statistically significant differences at P < 0.05 (Student’s test) between the mutant genotype and 

Col0 for the same inoculation treatment. Different letters indicate statistically significant differences 

between inoculation treatments for the same plant genotype (Tukey’s test). 
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Total root length and surface were significantly reduced by inoculation with Δlev for two 6-feh 

mutants (S073 and S097) and the two 6&1-feh mutants (S127 and S152). As in Col-0, the 

inoculation of FEH knockout mutants with NFM421 or Δlev produced a very shallow and 

highly branched root system (Fig III-26E, F, H, I), and the increased lateral root density was 

more pronounced in FEH knockout mutants than in Col-0 and with NFM421 than Δlev 

inoculation (Fig. III-27G, H, I). Thus, the effects of inoculation on root growth and morphology 

were generally more pronounced in FEH knockout mutant lines which appeared to be more 

sensitive to the presence of bacteria than Col-0.  

  

Figure III-28. Visualization by light microscopy of the mucilage forming a halo at the root tip 

(m) using India ink staining.  

(A, B, C) Col-0; (D, E, F) 6-feh (a root representative of A. thaliana 6-FEH knockout mutants); 

(G, H, I) 6&1-feh (a root representative of A. thaliana 6&1-FEH knockout mutants). Plants 

were not inoculated (A, D, G) or inoculated with P. brassicacearum NFM421 (B, E, H) or Δlev 

(C, F, I). BLC: root-border cell; RT: root tip. Scale bars: 200 µm. 
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As in Col-0, the dye-free zone around the root tip revealed the presence of abundant mucilage 

secretions with numerous border-like cells (BLCs) surrounding the root cap periphery in FEH 

knock-out mutants (Fig. III-28D, G). Similar to Col-0, the presence of mucilage was strongly 

reduced in BLCs were firmly attached to the root cap in FEH knockout mutants inoculated with 

both NFM421 (Fig. III-28B, E, H) or Δlev (Fig. III-28C, F, I) strains.  

Discussion  

Many plant colonizing bacteria are capable of producing indole-3-acetic acid (IAA) or effectors 

that promote IAA accumulation (Spaepen et al., 2007; Navarro et al., 2006; Cui et al., 2005; 

Pel and Pieterse, 2013). IAA is the main auxin found in plants and it plays an important role in 

growth and development as well as response to abiotic stress (Benjamins and Scheres, 2008). 

Auxin strongly decelerates root elongation in a wide range of concentrations (Scott, 1972; Pilet, 

2002; Tanimoto, 2005). This inhibition of growth was accompanied by elevated auxin 

accumulation at the root tip and enhanced lateral root elongation as well as initiation of lateral 

roots particularly in the upper zone of the primary root (Muday et al., 2012). 

So, as expected and as previously reported by Persello-Cartieaux et al. (2001), we observed a 

strong inhibition of primary root growth and a stimulation of lateral root production in A. 

thaliana Col-0 inoculated with the wild-type levan-producing P. brassicacearum NFM421. The 

typical mucilage secretions along the root tip and border-like cells (BLCs) surrounding the root 

cap periphery (Vicré et al.,2005) which were observed in absence of bacteria were strongly 

reduced by inoculation with NFM421. 

When Col-0 was inoculated with the levansucrase deletion mutant of P. brassicacearum (Δlev), 

root colonization was increased 3-fold and the root morphological changes tended to be 

stronger. Thus, conversely to that observed in plants inoculated by levansucrase deletion mutant 

of E. amylovora (Geier and Geider, 1993; Koczan et al., 2009) and to our first hypothesis, the 

presence of levans did not facilitate the root colonization. Indeed, suppression of levan synthesis 

in P. brassicacearum not only did not reduce root colonization but even increase it. This 

indicates that in A. thaliana – P. brassicacearum interaction, the absence of levans did not 

increase but decreased plant defense response suggesting that the production of auxins by 

bacteria might have suppressed the regulatory cascade required for plant immunity (Gislason 

and de Kievit, 2020). Moreover, the suppression of levan synthesis modified the pattern of root 

colonization, the levan-producing bacteria was mainly present in root tip meristematic zone as 

previously observed by Persello-Cartieaux et al. (2001) while Δlev preferentially colonized the 

upper part of primary root and the zones of insertion of lateral roots. This suggests that specific 
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root tip defense response was enhanced when A. thaliana is colonized by levan-free P. 

brassicacearum. 

Since the presence or absence of levans in P. brassicacearum led to different patterns of plant 

response and root colonization, we investigated the involvement of plant FEHs in the plant-

bacteria interaction. Indeed, FEHs are fructan degrading enzymes that might reduce bacterial 

levan layer and produce elicitors of plant defense response. In the T-DNA insertion in one of 

the two A. thaliana FEH genes (At6-FEH or At6&1-FEH) did not modify the morphology of 

the roots as long as they are not in contact with P. brassicacearum. We hypothesized that FEH 

suppression might prevent levan degradation and reduce elicitor production, leading to a 

reduction of plant defense response. As expected, root morphological changes induced by 

levan-producing P. brassicacearum were stronger in all five FEH knockout mutants than in 

Col-0, indicating that the deletion of one of the two FEHs reduces plant defense response. 

This suggests that, in Col-0, the presence of the two FEHs allowed efficient hydrolysis of 

bacterial levans producing fructo-oligosaccharides (FOS) which triggered plant defense 

response (Versluys et al., 2017) reducing the effect of auxins. In presence of the levan-free P. 

brassicacearum, the absence of levans did not allow the production of elicitors of defense 

response by FEHs, so the regulation by auxin had continued and the modification of root 

morphology was greater. 

In FEH knock-out mutants inoculated with NFM421 or Δlev, changes in root morphology could 

be explained by auxin regulation which was not antagonized by FOS production or degradation 

of the levan layer. Thus, the regulation by auxin continued resulting in more significant 

morphological changes compared to Col-0 and to non-inoculated plants. Moreover, the fact the 

inoculation with Δlev strain led to a greater total root length reduction in FEH knockout mutants 

than in Col-0 suggests that FEH are involved in other regulatory mechanisms. In the non-fructan 

plant Zea mays, 6&1FEH protein binds to cell-wall invertase (Cw-INV) inhibitor protein which 

may enhance Cw-INV activity (Zhao et al., 2019). The authors have proposed that the 

expression of this FEH at the site of plant-bacteria interaction could not only lead to levan 

degradation but also increase Cw-INV activity and thereby increase apoplastic sucrose 

hydrolysis (Zhao et al., 2019). Such modification of apoplastic sucrose metabolism by FEH 

might modulate plant defense response independently to levan degradation through sugar 

signaling (Ruan, 2014) 

These preliminary results confirm the role of bacterial levans in plant-bacteria interaction and 

support the hypothesis of the involvement of plant FEHs in this interaction by acting directly 

on bacterial levans and/or by modulating sugar signaling. Before going further in result 



207 

 

interpretation, it is necessary to complete these preliminary experiments by measuring FEH 

activity in Col-0 and in the different feh lines. This is particularly needed for the 6&1-feh-S152 

line in which 6&1-FEH transcripts were detected by RT-qPCR but which showed a similar 

response than the other feh lines in response to P. brassicacearum inoculation. Moreover, in 

order to study the effect of the total suppression of FEH activity in response to root colonization 

by microorganisms, 6-feh/6&1feh double- mutants will be produced and challenged by fructan-

producing rhizospheric microorganisms. 
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IV. General discussion and Perspectives 

Characterization of two monoclonal antibodies that recognized β-(2,1) and β-(2,6)-fructan 

epitopes 

Cell imaging and immunolocalisation of epitopes carried by defense molecules are powerful 

tools to unravel the cellular and molecular mechanisms involved in plant response to biotic and 

abiotic stresses. Fructans are promising candidate for the concept of "sweet immunity" (Bolouri 

Moghaddam and Van den Ende, 2013; Trouvelot et al., 2014; Tarkowski et al., 2019; Svara et 

al., 2020) and the localization of their epitopes at tissue and cellular level becomes crucial to 

clarify their mechanisms of action in general and more particularly in root defense. However, 

despite a wide range of existing techniques for the analysis of fructans (Matros et al., 2020), no 

specific antibodies against fructans are currently commercially available. In this thesis, a 

collaboration of the society BIOTEM was initiated to produce antibodies against plant fructans. 

By immunizing mice with a mixture prepared from chicory inulins and timothy levans, two new 

monoclonal antibodies (mAbs) (BTM15A6 and BTM9H2) with high specificity against plant 

fructans with β-(2,1) and β-(2,6) linkages have been characterized. Their specificity was studied 

using immuno-dot blot assay. The two mAbs showed a high specificity for levans (β-(2,6)-

linked fructans) and inulins (β-(2,1)-linked fructans) from various plant species including 

timothy (Phleum pratense), chicory (Cichorium intybus) as well as for WSC extracts obtained 

from fructan-accumulating grasses, i.e. perennial ryegrass (Lolium perenne) and cocksfoot 

(Dactylis glomerata), and from the Asteraceae dandelion (Taraxacum officinalis). Interestingly, 

their specificity towards β-(2,6)-linked fructans from plants was confirmed by the strong 

reaction with levans from timothy which have an average DP of about 75 (P-LEVAN, 

Megazyme) whereas no reaction was detected with bacterial levans from Erwinia herbicola 

(L8647, Sigma-Aldrich) which contains polymers with a DP greater than 100 and up to 10000 

(Velázquez-Hernández et al., 2009). With other mono-, di-, oligo- and polysaccharides (starch, 

pectins, proteoglycans and hemicellulosic polysaccharides) found in plants, a weak 

insignificant reaction at the highest concentration tested or even no reaction was detected. Anti-

glycan antibodies directed against cell-wall polysaccharides are commonly used to study cell 

wall organization in plant tissues (Knox, 2008) and to analyze the composition of the mucilage 

produced by root tip (Durand et al., 2009) or seeds (Voiniciuc et al., 2015) and more recently 

to localize starch granules in pea root cap (Rydahl et al., 2017). We took advantage of these 

previously described protocols to test in this study the fluorescence binding of BTM15A6 and 

BTM9H2 on tissues of fructan- and non-fructan-accumulating plants. The fact that fluorescence 
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labelling of BTM15A6 and BTM9H2 was detected at the root tip surface of the fructan-

accumulating plants tested including perennial ryegrass, timothy and wheat and on sections of 

perennial ryegrass root tip and leaf bases while their epitopes were neither detected at the 

surface of root tips nor on root section of Arabidopsis, a non-fructan plant, confirms once again 

their specificity towards plant fructans. Interestingly, the difference of intensity of labeling 

obtained with the two anti-fructan mAbs when used for immunolocalization in different fructan-

accumulating plants suggests that they have a slight difference in specificity. 

The detection of BTM15A6 and BTM9H2 epitopes at the surface of the root elongation and 

meristematic zones can be explained by secretion from their subcellular localization (i.e. 

vacuole; Wagner et al., 1983) to the cell wall. This observation is consistent with previous 

reports of apoplastic localization of fructans in crown tissues of oat after cold hardening 

(Livingston and Henson, 1998) and in the phloem of Agave deserti (Wang and Nobel, 1998). 

The intracellular detection of the epitopes within root and mature leaf sheath cells on sections 

is consistent with their expected vacuolar localization (Vijn and Smeekens, 1999; Ritsema and 

Smeekens, 2003). The mAbs BTM15A6 and BTM9H2 enrich the family of antibodies against 

structural and non-structural polysaccharides already available for plant research (Rydahl et al., 

2017; 2018) and allow to investigate the mechanisms of fructans involvement in plant 

metabolism and in their interaction with microorganisms.  

The immunofluorescence labeling with BTM9H2 and BTM15A6 performed on roots and 

leaves sections from timothy (Phleum pratense) and chicory (Cichorium intybus) will further 

confirm their specificity since highly purified levans from timothy and inulins from chicory 

have been used to prepare antigenic compounds for producing these mAbs. In addition, to 

investigate in more details the localization of fructans epitopes using BTM9H2 and BTM15A6 

at the subcellular level, immunogold analyses on longitudinal ultrathin sections from perennial 

ryegrass and timothy root tips by transmission electron microscopy should be tested. Besides, 

immunocytochemistry on soluble epitopes is a particularly delicate task as it cannot be excluded 

a re-localization of these epitopes during samples preparation. Cryofixation using high pressure 

freezing followed by freeze-substitution remained the optimal protocol to preserve both 

ultrastructure and antigenicity of plant cells. However, some adaptations of this method might 

be necessary in order to minimize fructan leakage during tissue fixation. 
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Microscopical characterization of the root extracellular trap (RET) of perennial ryegrass 

(L. perenne) 

As mentioned previously, root system and the role of cell wall glycomolecules in the defense 

response constitute the main research focus of the thesis. In plants, the formation and release of 

RETs from the root cap to the rhizosphere are essential for protecting the root against biotic and 

abiotic stresses (Haichar et al., 2014; Driouich et al., 2019). To date, the RET was described in 

many plant species including plants belonging to the Poaceae family such as barley (Tamas et 

al., 2005) or maize (Canellas and Olivares, 2017). Although perennial ryegrass is a Poaceae of 

agronomic interest because of its role as an important grassland forage plant that accumulate 

fructans, research activities focus mainly on the aerial part more than on the roots. In this thesis, 

we provide the first characterization of the RET from perennial ryegrass. In this species, the 

RET comprises two different morphotypes of border cells with small spherical cells (sBC) and 

elongated cells (eBC). This result is consistent with the presence of difference types of border 

cells in barley (Tamas et al., 2005) and maize (Canellas and Olivares, 2017), which also belong 

to Poaceae family. The abundant mucilage surrounding border cells is found to cover the whole 

root cap as well as the meristematic zone of perennial ryegrass. One of the major findings is 

that the RET of L. perenne is particularly enriched in AGP epitopes compared to other plant 

species such as A. thaliana and pea. Although AGPs were present in the RET of these species, 

other glycomolecules such as homogalacturonan (Durand et al., 2009; Plancot et al., 2013) or 

xyloglucan epitopes (Ropitaux et al., 2019) were also detected in their RET. AGPs are known 

to be involved in response to various biotic and abiotic stresses (Cannesan et al. 2012; Nguema-

Ona et al., 2013; Pereira et al., 2015; Koroney et al. 2016) and play a prominent role at the root 

surface during root colonization by pathogenic and symbiotic microbes (Vicré et al., 2005; 

Gaspar et al., 2004; Xie et al., 2012). Our study highlighted that both flg22 elicitation and water 

stress induce by PEG increased the quantity of mucilage in perennial ryegrass which forms a 

larger halo at the root tip. It is likely that AGPs from the RET of perennial ryegrass contribute 

to interactions between the root and soil-borne microbes as well as provide the protection for 

the root tip in water deficit condition. This agrees with previous reports which demonstrate that 

the alteration of AGPs in A. thaliana inhibited rhizobium bacteria attachment (Vicré et al., 

2005) and increased the susceptibility of root to pathogenic cyst nematode (Baum et al., 2000; 

Bozbuka et al., 2018). Previously, their role in the salt adaptation processes (Olmos et al. 2017) 

and low-temperature tolerance (Yan et al. 2015) was also reported.  
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Further investigation about the alteration of AGPs from perennial ryegrass roots in response to 

other elicitors and/or phytohormones will allow to confirm their involvement in root defense. 

Moreover, the detection of fructan epitopes by immunolocalization with the two recently 

characterized mAbs BTM15A6 and BTM9H2 in perennial ryegrass root elicited by flg22, and 

other elicitors, or treated with PEG will be performed to assess the effect of these treatments on 

the potential secretion of fructans located in the cap cells in the RET of perennial ryegrass.  

Evaluation of fructan exohydrolases (FEHs) as root defense genes in non-fructan plants. 

The unknown role of FEHs present in various plant species which do not accumulate fructans 

challenges our curiosity. To date, six FEHs have been characterized in non-fructan plants, At6-

FEH and At6&1FEH in Arabidopsis (De Coninck et al., 2005), Bv6-FEH in Beta vulgaris (Van 

den Ende et al., 2003b), Zm-6&1-FEH1 (Zhao et al., 2019), Zm-6-FEH (Huang et al., 2020) 

and Zm-6&1-FEH2 (Wu et al., 2021) in maize. This led us to study their role in plant defense 

in the model plant A. thaliana and the genetically related allopolyploid species Brassica napus, 

both well-known as non-fructan plants. By sequence homology with the two A. thaliana FEH 

genes At6-FEH and At6&1-FEH previously identified by De Coninck et al. (2005), we 

identified two genes with complete sequence coding for a putative 6-FEH (named Bn6-FEH) 

and four genes with complete sequence coding for a putative 6&1-FEH (named Bn6&1-FEH).  

Plant defense responses against pathogens involve different complex and interconnected 

hormonal pathways including those of SA, JA and ET (Wang et al., 2012; Lemarié et al., 2015; 

Zhang et al., 2020; Caarls et al., 2016; Papadopoulou et al., 2018). As a consequence, 

exogeneous phytohormones application is useful to clarify the hypothesis that FEHs are 

defense-related proteins in A. thaliana and B. napus.  

The ability of phytohormones to trigger defense responses was confirmed by the strong 

induction of the well-known SA-responsive genes PR1 and WRKY70 (Li et al., 2004; van Loon 

et al., 2006) by SA treatment, AOS by MeJA treatment and PDF1.2 and ERF1/2 by treatment 

with the ET precursor ACC. HEL, a recognized marker of root defense response, was up-

regulated by the three phytohormones. Interestingly SA treatment for 12 hours at root level 

strongly up-regulated all 6&1-FEH genes in the five varieties of B. napus and in the model 

species A. thaliana. It should be noted that PR1 and HEL, two well-known pathogen-induced 

antimicrobial proteins, and WKRY70, a marker of SA-mediated signaling were also up-

regulated. Our findings clearly support the role of FEHs as defense proteins in non-fructan 

plants. We can then speculate that FEHs are involved in plant-microorganism interactions and 

may constitute, together with some cell-wall invertases, a new family of pathogenesis-related 
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(PR) proteins (Roitsch et al., 2003; van Loon et al., 2006). FEHs may play a specific role in 

these interactions through the production of MAMPs from microbial fructans and/or through 

the weakening of bacterial biofilm (Van den Ende et al., 2003). A genotypic variability of SA-

mediated FEH regulation was observed among five B. napus varieties, that may have 

consequences on the susceptibility to fructan synthesizing pathogens.  

To further assess the role of FEHs in plant defense, At6-FEH and At6&1-FEH double knockout 

mutants are being produced and will be challenged by fructan-producing rhizospheric 

microorganisms. Besides, to determine whether up-regulation of FEH genes was associated 

with modification of β-fructosidase activities, the invertase (INV) and FEHs activities of the 

vacuolar and cell-wall fractions were measured on protein extracts from roots treated with the 

phytohormonones (i.e. SA, JA and ET) for 24 hours. Our preliminary results showed that 

vacuolar and cell-wall 1-FEH activities measured against plant β-(2,1)-linked fructans tended 

to increase in response to SA treatment and that cell-wall 6-FEH activity measured against plant 

β-(2,6)-linked fructans tended to increase in response to MeJA and ACC treatments. A slight 

increase trend was also observed for vacuolar 6-FEH activity measured against bacteria β-(2,6)-

linked fructans in response to ACC treatment. For further investigation, FEH activities have to 

be monitored in kinetics from 6 to 48 h after the start of phytohormone treatment to optimize 

the detection of treatment effect on FEH activities. 

Involvement of plant fructan exohydrolases (FEHs) and bacterial levans in A. thaliana 

root colonization by P. brassicacearum 

Our results support that FEHs could act as defense-related proteins. We performed preliminary 

investigations on the interaction between the non-fructan-accumulating plant A. thaliana and 

the beneficial levan-producing bacteria Pseudomonas brassicacearum. To this end, we initiated 

a collaboration with W. Achouak. We used A. thaliana Col-0 and FEH knock-out single 

mutants inoculated with P. brassicacearum wild-type (NFM421) and the corresponding 

levansucrase deletion mutant (Δlev).  As previously reported by Persello-Cartieaux et al. (2001), 

we observed a strong inhibition of primary root growth and a stimulation of lateral root 

production in A. thaliana Col-0 inoculated with the wild-type levan-producing P. 

brassicacearum NFM421. Border-like cells (BLCs) and the layer of mucilage surrounding the 

root cap periphery were observed in absence of bacteria as described in Vicré et al., (2005). 

However, the RET of A. thaliana was strongly reduced upon inoculation with NFM421. The 

suppression of levan synthesis in P. brassicacearum increased root colonization. It can be 

hypothesized that the absence of levans in bacterial EPS prevented the production of MAMPs 
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and the effect of auxins produced by bacteria was thus not counteracted by the regulatory 

cascade triggered by MAMPs and required for plant immunity (Gislason and de Kievit, 2020). 

The deletion of one of the two FEHs reduced plant defense response in the interaction with 

levan-producing P. brassicacearum. We observed an increased root morphological changes in 

all five FEH knockout mutants as compared to Col-0. We suggest that the presence of the two 

FEHs allowed efficient hydrolysis of bacterial levans producing fructo-oligosaccharides (FOS) 

which triggered plant defense response (Versluys et al., 2017). This will allow to reduce the 

effect of auxins. In presence of the levan-free P. brassicacearum (Δlev), the absence of levans 

did not allow the production of elicitors of defense response by FEHs. As a consequence, the 

regulation by auxin carried on and the modification of root morphology was increased. 

Moreover, we propose that the expression of FEH at the site of plant-bacteria interaction could 

not only lead to levan degradation but also increase Cw-INV activity by interacting with 

proteinaceous invertase inhibitor (Zhao et al., 2019) and thereby increase apoplastic sucrose 

hydrolysis. Such modification of apoplastic sucrose metabolism by FEH might modulate plant 

defense response independently to levan degradation through sugar signaling (Ruan, 2014).  

Our preliminary results support the hypothesis of the involvement of plant FEHs in 

Arabidopsis-P. brassicacearum interaction by acting directly on bacterial levans and/or by 

modulating sugar signaling. To confirm this hypothesis, the measurement of FEH and INV 

activities in Col-0 and the different FEH knockout mutants inoculated with P. brassicacearum 

is needed. Besides, the 6-feh/6&1feh double-mutants which are being produced will be 

challenged with rhizospheric fructan-producing microorganisms to study the effect of the total 

suppression of FEH activity on the response of plants to root colonization by microorganisms.  

Beyond their fundamental character, these results could lead to the definition of new strategies 

for bio-control and/or bio-stimulation of crop species. 
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V. Appendix 

 

Appendix 1. List of the potential antigens and test oligo/polysaccharides used for this study. 
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Appendix 2. Values of Kruskal-Wallis non-parametric test for immuno-dot blot data obtained with 

BTM9H2 mAb (Fig.1&3 data). *P < 0.05; **P < 0.01; ND, not detected. 
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Appendix 3. Values of Kruskal-Wallis non-parametric test for immuno-dot blot data obtained with 

BTM15A6 mAb (Fig.2&4 data). *P < 0.05; **P < 0.01; ND, not detected. 
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Appendix 4. Primary antibodies and associated epitopes of different cell wall polysaccharides used.  
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Rhizo-sweet: glycomolecules of the rhizosphere and plant defense 

Abstract. To date, root immunity remains poorly investigated as compared to the aerial part. In this thesis, we aimed to 

evaluate the role of glycomolecules in root defense with a particular interest on fructans and fructan metabolizing 

enzymes. Lolium perenne (perennial ryegrass), a Poaceae of regional interest due to its role as a grassland forage plant 

was chosen as fructan accumulating plant. Two non-fructan Brassicaceae were also selected: the plant model Arabidopsis 

thaliana and oilseed rape (Brassica napus) for its agronomical interest. Fructans are water-soluble fructose polymers 

containing β-(2,1) and/or β-(2,6) linked fructose residues found in some plant species and in exopolysaccharides produced 

by some beneficial or pathogenic bacteria. In plants, fructans constitute a carbohydrate reserve and act in the protection 

against abiotic and biotic stresses according to the theory of the « sweet immunity ». To unravel the mechanisms of action 

of fructans, their precise localization at tissue and cellular level in various environmental conditions need to be clarified. 

One of the major task of our study is the production of two novel monoclonal antibodies (mAbs) named BTM15A6 and 

BTM9H2 towards plant fructans with β-(2,1) and/or β-(2,6) linkages. In depth characterization of their specificity was 

performed by immune-dot blot assays using a wide range of carbohydrates including polysaccharides. 

Immunolocalization of fructans by cell imaging confirmed that the recognized epitopes were detected in three fructan 

plant species but not in the non-fructan plant Arabidopsis. Interestingly the presence of fructan epitopes was also detected 

in the root system of perennial ryegrass. The root extracellular trap (RET) is known to be an important actor of root 

protection. By investigating the RET composition of L. perenne, we found that both mucilage and cell wall surface of 

border cells were particularly enriched in arabinogalactan-proteins (AGPs) epitopes. The amount of the AGP-containing 

mucilage was increased in response to treatment with the bacterial elicitor flagellin 22 and the water-stress inducer PEG. 

This suggests that AGPs play an essential role in root protection in L. perenne. Although fructan epitopes were not 

detected within the mucilage, their presence in the root cap cells suggests that they might also be involved in biotic and/or 

abiotic stress protection. In addition, we evaluated the regulation of fructan exohydrolases (FEHs) found in non-fructan-

accumulating plant species including A. thaliana and B. napus in response to root treatment with defense-related 

phytohormones. Salicylic acid increased the transcript level of the two FEHs (6-FEH and 6&1-FEH) in both species. 

These data support a role of these FEHs in root immunity. Furthermore, preliminary results obtained with Arabidopsis 

FEH knockout mutants suggest a role of these enzymes in root interaction with the beneficial bacteria Pseudomonas 

brassicacearum.  

Keywords. Fructans, monoclonal antibodies, border cells, mucilage, Root Extracellular Trap, perennial ryegrass, arabinogalactan-

proteins, fructan exohydrolases, salicylic acid, oilseed rape, Arabidopsis, FEH knock-out mutants, Pseudomonas brassicacearum. 

 

Rhizo-sweet : glycomolécules de la rhizosphère et défense des plantes 

Résumé. L’immunité et la protection racinaire restent encore peu étudiées par comparaison avec le système aérien des 

plantes. Ce travail de thèse porte sur l'évaluation du rôle des glycomolécules dans la défense racinaire avec un accent 

particulier sur les fructanes, et les enzymes les métabolisant. Le ray-grass anglais (Lolium perenne), une Poacée d'intérêt 

régional pour son rôle de plante fourragère prairiale, est choisie comme modèle d’étude de plantes accumulant des 

fructanes. De plus, deux espèces végétales appartenant à la famille des Brassicacées et ne produisant pas de fructanes ont 

été sélectionnées : la plante modèle Arabidopsis thaliana et une espèce d'intérêt agronomique majeur, le colza (Brassica 

napus). Les fructanes sont des polymères solubles de résidus fructosyles liés en β-(2,1) et/ou en β-(2,6) présents chez 

certaines espèces végétales et dans les exopolysaccharides de bactéries bénéfiques ou pathogènes. Chez les plantes, les 

fructanes constituent une réserve glucidique et agissent également dans la protection contre les stress abiotiques et 

biotiques selon le concept de la « Sweet-Immunity ». Pour approfondir la compréhension de leurs mécanismes d'action, 

leur localisation précise au niveau tissulaire et cellulaire dans diverses conditions environnementales doit être élucidée. 

Pour cette étude, deux nouveaux anticorps monoclonaux (mAbs) appelés BTM15A6 et BTM9H2 dirigés contre les 

fructanes portant des liaisons β-(2,1) et/ou β-(2,6) ont été produits. Leur caractérisation a été réalisée par des tests 

d’immuno-dot blot sur une large gamme de glucides incluant de nombreux polysaccharides. Des approches d’imagerie 

cellulaire ont révélé la présence de ces épitopes chez trois espèces de plantes à fructanes. La présence des épitopes associés 

aux fructanes a également été détectée dans le système racinaire de L. perenne. Le Root Extracellular Trap (RET) constitué 

de cellules frontières et de mucilage joue un rôle important dans la défense de la racine. Chez L. perenne, nous avons mis 

en évidence que le RET était particulièrement enrichi en épitopes associés aux arabinogalactane-protéines (AGPs). La 

quantité de mucilage contenant des AGPs est augmentée en réponse à un traitement avec la flagelline 22, un éliciteur 

bactérien, et au PEG, qui induit un stress hydrique. Nous émettons l’hypothèse que les AGPs jouent un rôle essentiel dans 

la protection racinaire chez L. perenne. Bien que les épitopes associés aux fructanes n'aient pas été détectés dans le 

mucilage, leur présence dans les cellules de coiffe suggère qu’ils pourraient être impliqués dans la protection contre les 

stress biotiques et/ou abiotiques. En outre, nous avons évalué la régulation de l’expression des fructanes exohydrolases 

(FEHs) présentes chez les deux espèces végétales A. thaliana et B. napus qui n'accumulent pas de fructanes.  L'acide 

salicylique augmente le niveau des transcrits des deux FEHs (6-FEH et 6&1-FEH) chez les deux espèces suggérant leur 

implication dans la réponse immunitaire. De plus, des résultats préliminaires obtenus avec les mutants knock-out 

correspondant à ces gènes chez Arabidopsis indiquent un rôle des FEHs dans les interactions avec la bactérie bénéfique 

productrice de fructanes Pseudomonas brassicacearum. 

Mots clés. Fructanes, anticorps monoclonaux, cellules bordantes, mucilage, Root Extracellular Trap, ray-grass anglais, 

arabinogalactanes, fructanes exohydrolases, acide salicylique, colza, mutants FEH knock-out, Pseudomonas brassicacearum. 


