
HAL Id: tel-03827530
https://theses.hal.science/tel-03827530

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edge-labellings, vertex-colourings and combinatorial
games on graphs

Foivos-Sotirios Fioravantes

To cite this version:
Foivos-Sotirios Fioravantes. Edge-labellings, vertex-colourings and combinatorial games on graphs.
Discrete Mathematics [cs.DM]. Université Côte d’Azur, 2022. English. �NNT : 2022COAZ4053�. �tel-
03827530�

https://theses.hal.science/tel-03827530
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Étiquetages d’arêtes, colorations de
sommets et jeux combinatoires sur des

graphes

Foivos-Sotirios FIORAVANTES
Université Côte d’Azur, CNRS, Inria, I3S, France

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Nicolas NISSE, Inria Research
Officer, Inria Sophia Antipolis
Co-encadrée par : Julien BENSMAIL, Asso-
ciate professor, Université Côte d’Azur
Soutenue le : 26-09-2022

Devant le jury, composé de :
Olivier TOGNI, Professor, Burgundy Uni-
versity
Éric SOPENA, Professor, LaBRI, Université
de Bordeaux
Mariusz WOŹNIAK, Professor, AGH Uni-
versity of Science and Technology
Julien BENSMAIL, Associate professor, I3S,
Université Côte d’Azur
Nicolas NISSE, Inria Research Officer, Inria
Sophia Antipolis
Théo PIERRON, Associate professor, LIRIS,
Université Claude Bernard Lyon 1
Olivier TOGNI, Professor, LIB, Université
de Bourgogne

ÉTIQUETAGES D’ARÊTES, COLORATIONS DE SOMMETS ET JEUX
COMBINATOIRES SUR DES GRAPHES

Edge-labellings, vertex-colourings and combinatorial games on graphs

Foivos-Sotirios FIORAVANTES

./

Jury :

Président du jury
Olivier TOGNI, Professor, Burgundy University

Rapporteurs
Éric SOPENA, Professor, LaBRI, Université de Bordeaux
Mariusz WOŹNIAK, Professor, AGH University of Science and Technology

Examinateurs
Julien BENSMAIL, Associate professor, I3S, Université Côte d’Azur
Nicolas NISSE, Inria Research Officer, Inria Sophia Antipolis
Théo PIERRON, Associate professor, LIRIS, Université Claude Bernard Lyon 1
Olivier TOGNI, Professor, LIB, Université de Bourgogne

Directeur de thèse
Nicolas NISSE, Inria Research Officer, Inria Sophia Antipolis

Co-encadrant de thèse
Julien BENSMAIL, Associate professor, Université Côte d’Azur

Université Côte d’Azur

Foivos-Sotirios FIORAVANTES

Étiquetages d’arêtes, colorations de sommets et jeux combinatoires sur des graphes
xi+202 p.

Étiquetages d’arêtes, colorations de sommets et jeux combinatoires
sur des graphes

Résumé
Cette thèse considère deux familles de problèmes définis sur des graphes : les étiquetages d’arêtes propres et les jeux combinatoires. Nous traitons ces problèmes de façon
similaire (et classique) : nous montrons que les problèmes considérés sont difficiles à résoudre, puis nous trouvons des algorithmes efficaces sur des instances restreintes.
Nous nous concentrons d’abord sur des problèmes concernant des étiquetages propres de graphes. Pour un entier k fixé, un k-étiquetage d’un graphe G est une fonction
associant à chaque arête de G une étiquette parmi {1, . . . , k}. Un k-étiquetage induit une coloration des sommets de G, où chaque sommet reçoit comme couleur la
somme des étiquettes de ses arêtes incidentes. Un k-étiquetage est propre si, dans la coloration induite, deux sommets adjacents de G reçoivent des couleurs différentes.
D’après la Conjecture 1-2-3, tout graphe connexe d’ordre au moins 3 admet un 3-étiquetage propre. Nous considérons trois variantes de cette conjecture. Nous étudions
les k-étiquetages propres équilibrés, pour lesquels les étiquettes assignées apparaissent dans les mêmes proportions. La deuxième variante concerne les étiquetages propres
qui minimisent la somme des étiquettes utilisées. Enfin, nous nous intéressons aux 3-étiquetages propres qui minimisent le nombre de fois où l’étiquette 3 est attribuée.
Le choix d’étudier ces variantes est naturel. En effet, une version équilibrée de la Conjecture 1-2-3 est que presque tous les graphes G admettent un 3-étiquetage propre
équilibré. En outre, la somme des étiquettes d’un tel étiquetage est au plus égale à 2|E(G)| et associe l’étiquette 3 à au plus un tiers des arêtes de G. Nous prouvons que
les problèmes d’optimisation introduits sont NP-difficiles. Grâce à des résultats structurels et algorithmiques, nous sommes amenés à proposer de nouvelles conjectures pour
ces problèmes, que nous vérifions sur quelques classes de graphes (complets, bipartis, réguliers, 3-chromatiques, etc.). Notre travail renforce l’idée que des variantes plus
fortes de la Conjecture 1-2-3 pourraient être vraies. Nous terminons en considérant le problème consistant à trouver un plus grand sous-graphe induit d’un graphe donné qui

admet un 1-étiquetage propre. Il est prouvé que ce problème est difficile à résoudre et qu’il n’est pas approximable à un facteurO(|V (G)|1−
1
c) près pour tout entier c.

Néanmoins, nous fournissons des algorithmes paramétrés efficaces.
La deuxième partie de la thèse introduit le jeu du plus grand sous-graphe connexe Maker-Breaker, joué par deux joueurs, Alice et Bob, sur un graphe G, initialement non
coloré. Les joueurs colorent à tour de rôle les sommets de G, chacun avec sa couleur, jusqu’à ce que tous les sommets soient colorés. Alice est la gagnante si, à la fin, le plus
grand sous-graphe connexe de G induit par sa couleur est d’ordre au moins k, un entier fixé. Sinon, Bob gagne le jeu. Nous considérons aussi une version Score du même
jeu, dans laquelle le gagnant est le joueur dont la couleur induit le plus grand sous-graphe connexe de G à la fin du jeu. Nous prouvons que décider de l’issue de ces deux
jeux est PSPACE-difficile et nous fournissons des algorithmes efficaces pour le cas où le jeu se déroule dans certaines familles de graphes (chemins, cycles, cographes,
(q, q − 4)-graphes, etc.). En comparant ces deux jeux, la principale différence que nous observons est que Bob ne peut jamais gagner la version Score (si Alice joue de
manière optimale). Pour une valeur de k égale à la moitié de l’ordre de G, remarquons que si Alice peut gagner la version Maker-Breaker alors elle peut aussi construire un
sous-graphe connexe du même ordre dans la version Score ; de tels graphes sont nommés A-parfaits. Nous étudions les graphes réguliers qui sont A-parfaits et prouvons
que tout graphe 3-régulier A-parfait a au plus 16 sommets. Nous terminons en fournissant des conditions suffisantes pour qu’un graphe soit A-parfait.

Mots-clés : Graphe, Coloration, Conjecture 1-2-3, Jeux combinatoires, Complexité.

vi

Edge-labellings, vertex-colourings and combinatorial games on
graphs

Abstract
In this thesis, we consider two families of computational problems defined on graphs: proper edge-labellings and combinatorial games. We attack these problems in a similar
(and classical) way: we show that they are computationally hard, and then find efficient algorithms for instances with specific structure.
First we focus on problems related to proper labellings of graphs. For some natural number k, a k-labelling is a weight function on the edges of a graph G, assigning
weights, called labels in this context, from {1, . . . , k}. A k-labelling induces a vertex-colouring of G, where each vertex receives as colour the sum of the labels of its
incident edges. A k-labelling is proper if the induced vertex-colouring is proper, i.e., such that any two adjacent vertices of G are assigned different colours. According
to the so-called 1-2-3 Conjecture, any connected graph of order at least 3 should admit a proper 3-labelling. We consider three variations of this conjecture. We look into
equitable proper k-labellings, for which the assigned labels appear an equal number of times. We then focus on proper labellings that also minimise the sum of labels
being used, and finally, proper 3-labellings that also minimise the number of times that the label 3 is assigned. The choice to study these variations is natural. Indeed, an
equitable version of the 1-2-3 Conjecture claims that almost every graph G should admit an equitable proper 3-labelling. Also, the sum of labels of such a labelling would
be at most 2|E(G)| and it would assign label 3 to at most one third of the edges of G. We prove that the introduced optimisation problems are NP-hard. Furthermore,
through structural and algorithmical results, we propose new conjectures for the upper bounds of the parameters that we study, which we verify for specific graph classes
(e.g. complete, bipartite, regular, 3-chromatic, etc.). Interestingly, our work gives further evidence that stronger variations of the 1-2-3 Conjecture could hold. We close our
study of proper labellings by considering the problem of finding a largest induced subgraph of a given graph that admits a proper 1-labelling. This problem is proven to be

computationally hard and not approximable within a ratio ofO(|V (G)|1−
1
c) for every natural number c. Nevertheless, we provide efficient parameterised algorithms.

In the second part of the thesis, we introduce and study the Maker-Breaker largest connected subgraph game. This game is played by two players, Alice and Bob, on a
shared, initially uncoloured graph G. The two players take turns colouring the vertices of G, each one with their own colour, until there remains no uncoloured vertex.
Alice is the winner of the game if, by the end, the largest connected subgraph of G induced by her colour is of order greater than k, where the natural number k is also given
at the start of the game. Otherwise Bob wins the game. We also consider a Scoring version of the same game, played in the same way, but in which the winner is the player
whose colour induces the largest connected subgraph of G by the end of the game. We first prove that deciding the outcome of both of these games is PSPACE-hard, and
then proceed by providing efficient algorithms when the games are played on particular graph classes (e.g. paths, cycles, cographs, (q, q− 4)-graphs, etc.). Comparing the
behaviour of these games, one of the main differences we observe is that Bob can never win the Scoring version (if Alice plays optimally). Nevertheless, if Alice can win
the Maker-Breaker version when playing on G for a value of k equal to half the order of G (the best outcome she can hope for), then she can build a connected subgraph of
the same order for the Scoring version; such graphs are called A-perfect. We then study regular graphs that are A-perfect and prove that any 3-regular A-perfect graph has
order at most 16. We finish by providing sufficient conditions for a graph to be A-perfect.

Keywords: Graph, Colouring, 1-2-3 Conjecture, Combinatorial games, Complexity.

vi

Acknowledgements

Here is the part where I will try, and most probably fail, to thank everyone who has played a
significant role in my life up to this point. I stress the word try, because I consider this to be an
almost impossible task.

So I will start with the easy part, which is, of course, to thank my two supervisors Julien
Bensmail and Nicolas Nisse, or Nicolas Nisse and Julien Bensmail (I cannot decide who to name
first, and don’t want to go by alphabetical order). Both of you have helped me immensely during
the last 3.5 years, something for which a will always be grateful, especially considering how
particular most of these past years have been (I refrain from sullying my manuscript with the
cause of the particularity of the last years). Both of you have taught me many many many things
(just one many was indeed not enough here), a good part of which does not relate to computer
science or mathematics.

The next easy part is of course to thank all the members of my jury: Théo Pierron, Olivier
Togni, and, especially, Éric Sopena and Mariusz Woźniak who did me the immense honor of
reviewing this document and offered some most valuable feedback on my work. Thank you all for
being interested by my work and accepting to take part in what will surely be a very interesting
experience (the defense).

Another easy part: the people with which I had the joy of sharing my office these past years:
Thibaud and Lucas. There are many happy moments that come to mind with each of you two, from
the “souffleur” that was not working when Thibaud was present, to Lucas suffering from Tarsi’s
Conjecture.

And now starts the hard par: all the remaining COATIs. Please do not be mad at me if I don’t
mention your name. If I mentioned all the good memories I have with most of you, the amazon
would not have enough trees remaining after I printed this manuscript. I will nevertheless mention
at least Thomas and the rabbits, Francesco and walking and pizzas, Igor and the great nights out,
Michel and the 6 cylinders, Christelle and the Foivó, Majus and the Brooks Theorem, Joanna and
the “let’s take the long way to come down from the mountain”, David and driving to and from
la Rochelle (with some great music), Aurora and the tiramisu, and the list goes on and on. And
of course Fionn and Brussels (also for the fun times we spent working together). I will also have
to reserve a special place for Jean-Claude Bermond, without which I wouldn’t even have found
myself in Nice, let alone get to know all of you.

Last (for the english part), but not least, most (again many will unavoidably be missing here)
of the people who, in some sense, have also contributed in me being who I am today: Vanjul,
Michelangelo, Guilherme, Sara, Antonia, Andrea, Alessio, Piergiorgio, Washy, and again the list
goes on and on.

Kαι τώρα ήρθε η ώρα για λάθη oρθoγραφίας. Πρώτα πρώτα θα ευχαριστ ήσω
τoυς γoνείς µoυ,Σπυρoβασίλειo και Eλένη, καθώς και την θεία µoυ,Παρασκευή. Ó, τ ι
και να σχoλιάσω, ó, τ ι και να ευχαριστ ήσω, θα είναι πoλύ λίγo. Ύστερα θα αναφερθώ
στo τρίo στoύτζες, τα άλλα δυo µέλη τoυ oπoίoυ είναι o Θεóφιλoς και o Nίκoς.
Πρoφανώς θα ευχαριστ ήσω και τoυς Áρη Παγoυρτζή και Στάθη Zάχo , αλλά και τoν
µεγάλo ∆άσκαλoAλέξανδρo Παπαιωάννoυ, χωρίς τoυς oπoίoυς δεν θα είχα αγαπήσει

vii

ίσως πoτ έ τα διακριτά µαθηµατικά/θεωρητική πληρoφoρική και, πιo συγκεκριµένα,
την Θεωρία γραφηµάτων. Mετά θα αναφερθώ στην oµάδα “απoγεύµατα Kυριακής”:
∆ηµήτρης, Σωτήρης, Kαθoλική, Θεóφιλoς και Γιάννης, και τις πoλλές και ιδιαίτερα
δηµιoυργικές ώρες πoυ περάσαµε µαζί τα τελευταία χρóνια. Kαι τ έλoς ήρθε η
στιγµή πoυ θα αραδιάσω oνóµατα, χωρίς σε καµία περίπτωση αυτó να σηµαίνει óτι
oι ακóλoυθoι δεν έχoυν επηρεάσει, o καθένας µε τoν τρóπo τoυ, καθoριστικά την
ζωή µoυ : Ελεoνώρα, Mαρία, Πέτρoς, Γιάννα, Kώστας,Παρασκευή, Τάσoς, Bέρα,
Kωστής, Aλεξάνδρα, Γεωργία, Aντώνης,Γιάννης κτλ.

Σας ευχαριστώ óλoυς. I thank each and every one of you. Un grand merci à vous tous.

Contents

1 Introduction 1
1.1 Colouring and playing combinatorial games on graphs 1
1.2 1-2-3 Conjecture . 4

1.2.1 Variations with additional optimisation 7
1.2.2 Locally irregular graphs . 9

1.3 The largest connected subgraph games . 9
1.3.1 Connection and Scoring games . 10
1.3.2 Maker-Breaker games . 11

1.4 Results and layout of this thesis . 13
1.4.1 Proper labellings . 13
1.4.2 Combinatorial games . 14

Variations of proper labellings

2 Three new conjectures, useful tools and graphs 19
2.1 Definition of three variations and their interplay 19
2.2 Useful techniques . 23

2.2.1 Proper labellings through stable sets . 23
2.2.2 Dynamic programming on nice tree-decompositions 25

2.3 Useful graphs . 26
2.3.1 Odd multi-cacti . 27
2.3.2 Useful gadgets . 28

3 Equitable proper labellings 33
3.1 Hardness result . 34

3.1.1 Initiator gadget . 35
3.1.2 Corrector gadget . 37
3.1.3 Main result . 39

3.2 Bipartite graphs G with χΣ(G) < χΣ(G) . 44
3.2.1 Bipartite graphs G with χΣ(G) = 3 . 44
3.2.2 Bipartite graphs G with χΣ(G) = 2 . 47

3.3 Equitable proper labellings of regular bipartite graphs 52
3.4 Conclusion . 55

4 Minimising the sum of assigned labels 57
4.1 First observations and classes of graphs . 59

4.1.1 First observations and remarks . 59
4.1.2 Simple classes of graphs . 60

4.2 Complexity aspects . 63
4.2.1 A negative result for bipartite graphs . 63

ix

x TABLE DES MATIÈRES

4.2.2 A positive result for graphs with bounded treewidth 66
4.3 Particular behaviours of the problem . 69

4.3.1 Minimising the maximum colour versus minimising the sum of labels . . 69
4.3.2 Using larger labels can be arbitrarily better 72

4.4 Bounds . 74
4.4.1 Graphs with large chromatic number . 74
4.4.2 Bipartite graphs . 75

4.5 Conclusion . 81

5 Minimising the number of edges labelled 3 83
5.1 Preliminary results . 84
5.2 Tools for establishing bounds on mT and ρ3 . 86

5.2.1 Weakly induced subgraphs – A tool for lower bounds 86
5.2.2 Partitioning into stable sets – A tool for upper bounds 89

5.3 The parameters mT and ρ3 for some graph classes 91
5.3.1 Connected graphs needing lots of 3s . 92
5.3.2 Bounds for connected cubic graphs . 94
5.3.3 Bounds for connected planar graphs with large girth 95
5.3.4 Bounds for connected cacti . 98

5.4 Bounds for other graph classes . 105
5.4.1 Outerplanar graphs . 105
5.4.2 Halin graphs . 107

5.5 Conclusion . 109

6 Finding a largest locally irregular induced subgraph 111
6.1 Preliminaries . 113
6.2 (Classical) complexity . 114

6.2.1 Polynomial cases . 114
6.2.2 Hard cases . 116

6.3 (In)approximability . 122
6.4 Parameterised complexity . 125

6.4.1 Two FPT algorithms: size of the solution/treewidth and maximum degree 126
6.4.2 W-hardness . 130

6.5 Conclusion . 134

Largest connected subgraph games

7 Preliminaries, first results and hardness 139
7.1 Preliminaries . 140
7.2 Possible outcomes for the Scoring game, and reflection graphs 142
7.3 Both games are PSPACE-hard . 145

7.3.1 The Maker-Breaker game on planar graphs 145
7.3.2 The Maker-Breaker game on bipartite and split graphs 147
7.3.3 The Scoring game on bipartite graphs 149

7.4 Conclusion . 152

x

CONTENTS xi

8 Playing on simple graphs 155
8.1 Paths and cycles . 155
8.2 The Scoring game on cographs . 163
8.3 The Maker-Breaker game on (q, q − 4)-graphs 167
8.4 Conclusion . 175

9 A-perfect graphs and regularity 177
9.1 Preliminaries . 177
9.2 A-perfect regular graphs . 178

9.2.1 Regular graphs reaching the bounds of cg 178
9.2.2 The peculiar case of cubic graphs . 180

9.3 Sufficient conditions for graphs to be A-perfect 182
9.3.1 Graphs with large degrees . 182
9.3.2 Graphs with large size . 182

9.4 Conclusion . 188

Conclusion and perspectives

10 Conclusion 191

Bibliography 195

xi

CHAPTER 1
Introduction

All these difficulties are but consequences of our refusal to see
that mathematics cannot be defined without acknowledging its
most obvious feature: namely, that it is interesting.

— Michael Polanyi, [102] (p.188).

This thesis treats problems arising in graph theory. In particular, we consider two families
of combinatorial problems defined on graphs. First, we consider proper labellings of graphs, a
notion which falls under the general domain of graph colouring. Then, we introduce and study
a new combinatorial game in which the players strive to build a largest connected subgraph of a
given graph.

1.1 Colouring and playing combinatorial games on graphs

The first part of this thesis focuses on finding proper labellings of graphs. On a high level
description, such labellings are weight functions on the edges of a given graph G, which can be
used in order to distinguish the adjacent vertices of G. In other words, these labellings can help
us to put colours on the vertices of G, so that no two adjacent vertices of G have the same colour.
Constructing such colourings falls in a classical domain of graph theory, that of graph colouring.

In the setting of graph colouring, the usual task is to construct colouring functions, which
assign natural numbers, usually referred to as colours, on some elements of a given graph, such
that the colours verify some desired property. For example, given a graphG = (V,E), one problem
could be to find a colouring c : V → {1, . . . , k} (for any k ∈ N) such that for every edge v1v2 ∈ E,
c(v1) 6= c(v2). Such a colouring is usually referred to as a proper k-vertex-colouring of G. It is
fairly easy to see that one can always find a proper k-vertex-colouring of a graph G, for some
k ∈ N, as it suffices to have c assign a unique colour to each vertex of G. Things however become
way more interesting when the task is to, given a graph G, find the minimum k such that G admits
a proper k-vertex-colouring, usually called the chromatic number of G and denoted as χ(G).

The problem of calculating the chromatic number of a graphG is among the most fundamental
problems of computer science. The decision version of this problem, i.e., given a graph G and a
natural number k ≥ 3, decide if χ(G) ≤ k, is NP-complete, even if G is planar [74], while it is
polynomial for the case k = 2, properly 2-colourable graphs being all bipartite, a property that is
easy to detect. Moreover, this is one of the most well-known problems of graph theory, mainly due
to the so-called four colour theorem, stating that any planar graph has chromatic number at most
4.

The four colour theorem was initially proposed as a conjecture by Francis Guthrie in 1852.
After an initial failed proof by Alfred Kempe (which was not completely without importance as

1

2 CHAPITRE 1 — Introduction

it inspired Heawood to prove the “five colour theorem” in [76]), the theorem was finally proven
by Appel and Haken in [8, 9]. However, their proof received a lot of criticism from the scientific
community, as it is one of the first examples of a computer-aided proof. It is worth noting that,
although improved versions of the proof by Appel and Haken have been proposed, e.g. in [110],
up to this day there exists no proof of the four colour theorem which does not require the use of a
computer.

Graphs G that verify χ(G) ≤ 3 are of great importance for some of the results presented in
this thesis (see Section 2.2.1 for more details). However, deciding if a graph verifies this property
is infeasible in general (unless P=NP). It is thus important to identify classes of graphs that do
indeed verify this property. One such family, according to Grötzsch’s Theorem [75], is that of
triangle-free planar graphs.

Up to this point, the focus was on constructing colouring functions that distinguish the adjacent
vertices of a given graph. But it is worth noting that this is not the only interesting problem that
can be defined in the field of graph colouring. Another example of a problem in this setting could
be to, given a graph G = (V,E), find a colouring c : E → {1, . . . , k} (for any k ∈ N) such
that for every pair of edges e1, e2 ∈ E, if e1 and e2 share a vertex in V then c(e1) 6= c(e2). Such
a colouring is usually referred to as a proper k-edge-colouring of G. The minimum k such that
G admits a proper k-edge-colouring is called the chromatic index of G, and usually denoted as
χ′(G).

The problem of finding an optimal, i.e., which utilises the minimum number of distinct co-
lours, proper edge-colouring of a graph, behaves in a similar way as that of finding an optimal
proper vertex-colouring. Nevertheless, proper edge-colourings are somewhat better understood
than proper vertex-colourings, as can be attested by the Vizing’s Theorem [117], stating that for
every graph G with maximum degree ∆, ∆ ≤ χ′(G) ≤ ∆ + 1. Note that this theorem does not
provide a complete characterisation of which graphs have chromatic index equal to ∆ or ∆ + 1,
but almost all graphs belong in the first case [66].

We are now ready to return to the notion of proper labellings of graphs. In a nutshell, a
k-labelling of a graph G is a function that takes numbers, called labels in this context, from
{1, . . . , k} and assigns them on the edges of G. A k-labelling is said to be proper if the vertex-
colouring where each vertex receives as a colour the sum of the labels of its incident edges, is itself
a proper vertex-colouring of G. By χΣ(G) we denote the minimum k so that there exists a proper
k-labelling of G. In some sense, a proper labelling can be viewed as a (not necessarily proper)
edge-colouring from which a proper vertex-colouring is produced. We stress at this point that a
proper labelling of a graph G is not necessarily a proper edge colouring of G.

The first major family of problems studied in this thesis revolves around the χΣ parameter.
The authors of [81] propose an intriguing conjecture, according to which any nice graph G, i.e.,
a connected graph of order at least 3, should verify χΣ(G) ≤ 3. Informally, this conjecture could
be interpreted as: “it should always be possible to find a proper vertex-colouring of any nice
graph, only by combining the natural numbers 1, 2 and 3 in a smart way”. The interested reader
is invited to see Section 1.2 for a formal definition of this conjecture, which is known as the
1-2-3 Conjecture. Already, the fact that χΣ(G) is claimed to be upperly bounded by a constant
number, let alone a number equal to 3 (in complete contrast to χ(G) which according to Brooks’
Theorem [40] can be of the same order as the maximum degree of the graph), is quite astounding.

1.1 – Colouring and playing combinatorial games on graphs 3

Nevertheless, the 1-2-3 Conjecture seems rather plausible, with χΣ(G) ≤ 5 for every nice graph
G having been proven in [79] ∗.

Chapters 3, 4 and 5 of this thesis deal with three more restricted variations of the χΣ parameter.
Apart from the individual interest that the study of these variations has, they are also interconnec-
ted, meaning that each one of these variations leads naturally to the definition and study of the
next one. More importantly, our work on these variations supports the idea that, even if the 1-2-3
Conjecture were to eventually be proven correct, depending on how this was supposedly achieved,
we could still be far from fully grasping the notion of proper labellings of graphs. These varia-
tions, as well as their interplay, are formally presented in Chapter 2, along with some important
techniques that we will employ throughout the first part of this thesis. The first part of the thesis
closes with Chapter 6, which is about finding a largest induced subgraph G′ of a given graph G,
so that χΣ(G′) = 1.

The second part of this thesis introduces and studies two new combinatorial games on graphs.
As concrete examples of such games, consider the following two games that deal with graph
colouring, introduced in [37]. In both two-player games, both players take turns colouring the
vertices of a common graph in a prespecified order, using colours from a predefined set of colours
and making sure that the newly coloured vertex does not share its colour with any of its neighbours.
The difference between these two games lies in the goal of the players: for the first game, the first
player that is unable to colour a vertex loses the game, while for the second game, the first player
wins if and only if all the vertices of the graph are coloured by the end of the game. The second
one of these games is particularly interesting as, if we drop the requirement on the players to
colour vertices in a pre-specified order, it studies the scenario where we try to construct a proper
vertex-colouring of a graph, all the while somebody else is maliciously colouring vertices in order
to stop us. A first version of this game, known as the Colouring construction game, had already
been introduced in [111].

The Colouring construction game can be used to study the problem of constructing a proper
vertex-colouring of a given graph G, when roughly half of the colours are chosen in an arbitrary
way. The interesting parameter which is considered here is the minimum number of colours such
that the first player can always win this game when played on a given graph G, named the game-
chromatic number of G. It is proven in [37] that the game-chromatic number of any tree is at most
5, while it is left as a conjecture that there exists a constant c such that any planar graph has game-
chromatic number at most c, which would be the combinatorial game theoretic equivalent to the
four colour theorem. This conjecture was proven to be correct in [84] for c = 33, which was later
improved, with the best known upper bound being c = 17 [123], while we know that there exist
planar graphs in which the first player requires 11 colours in order to win [122].

Games like the Colouring construction game belong to the family of two-person perfect-
information games ,i.e., games played by two players on the same structure (usually represented by
a graph), where both players have full knowledge of their adversary’s moves, and no move is done
in a random way (or depends on luck). Such games are studied in the domain of combinatorial
game theory.

Another very well-known example of a combinatorial game, is the game of tic-tac-toe, which
is rather beloved by young students around the world. However, after playing for some time, most

∗. Recently, a new work has appeared on arXiv, in which it is claimed that χΣ(G) ≤ 4 is proven for every nice
graph G [82]. As far as the author can tell, the result seems correct. Keep in mind, however, that this work has not yet
passed the peer reviewing process.

4 CHAPITRE 1 — Introduction

people lose their interest in playing this game. This is because, for some seemingly inexplicable
reason, after having played a decent number of games against their friends, no one seemed to be
able to win any more; most of the games of tic-tac-toe seemed to lead to a draw. Actually, this
is something that can be mathematically proven, using relatively simple arguments. We refer the
reader to [35] for an excellent analysis of this game.

One of the main motivations behind studying such games, is that they are a source of com-
putationally hard problems. Even and Tarjan claim that «This result suggests that the theory of
combinatorial games is difficult» [67]. The result they are referring to is that deciding who wins in
the Shannon switching game (a variation of the well known board game named Hex) is PSPACE-
complete when played on the vertices of a given graph. Such games are discussed in more length
in Section 1.3.1. These are just some of the combinatorial games which are PSPACE-complete,
with many more appearing, e.g. in [111].

In Chapters 7, 8 and 9, we introduce and study the largest connected subgraph game. This
game is played on a shared graph G, in which both players strive to create the largest connected
subgraph of G. We also introduce a variation of this game, in which the goal of the first player is
the same as above, but the second player tries their best to stop the first player from achieving their
goal. Both variations of this game are natural problems to propose which, surprisingly, no one had
done up to this point.

We proceed now to formally introduce the notions treated in this thesis.

1.2 1-2-3 Conjecture

We start by properly introducing the notations and the notions concerning the χΣ parameter.
For notions and definitions on graph theory not explained here, we refer the reader to [59]. From
now on, whenever we talk about a proper colouring of a graph, we mean a proper vertex-colouring.
Also, unless mentioned otherwise, any graph we mention is assumed nice.

Let G = (V,E) be a graph. A function ` : E → {1, . . . , k} is called a k-labelling of G. In this
thesis, we are more particularly interested in proper labellings, which are defined as follows. For
any v ∈ V , denote by c`(v) the colour of v that is induced by `, being the sum of labels assigned
to the edges incident to v. That is,

c`(v) =
∑

u∈N(v)
`(vu),

whereN(v) = {u ∈ V : uv ∈ E} is the neighbourhood of v. The labelling ` is said to be proper if
the resulting c` is a proper vertex-colouring of G, i.e., for every edge uv ∈ E, c`(u) 6= c`(v). Note
that a graph admits a proper labelling only if it contains no K2 as a connected component [81].
Indeed, consider the graph K2, i.e., a graph with only two vertices u, v connected through a single
edge uv. Let ` be an arbitrary labelling of K2. It follows that c`(u) = c`(v), and this is regardless
of what label was assigned to the edge uv. Therefore, proper labellings can only be defined on nice
graphs, i.e., graphs without any connected component isomorphic to K2. It is clear that for every
(not necessarily proper) labelling ` of G and for every v ∈ V , c`(v) ≥ d(v) with c`(v) = d(v) if
and only if all edges incident to v are assigned label 1. It follows thatG admits a proper 1-labelling
if and only if for every edge uv ∈ E(G), d(u) 6= d(v). As an example for such a graph, consider
P3, the path on three vertices. Graphs that verify this property are named locally irregular and form

1.2 – 1-2-3 Conjecture 5

an important family in this domain (more details on these graphs can be found in Section 1.2.2).
The problem treated in Chapter 6 focuses on locally irregular graphs.

The connection between the labellings of a graph G and its “regularity” has been explored by
several authors, in particular through the notion of irregularity strength of graphs, introduced by
Chartrand et al. in [50]. The irregularity strength of a graph G, denoted as s(G), can be defined
as the smallest k such that G admits a k-labelling ` with the property that for every two u, v ∈ V
(not necessarily adjacent), c`(u) 6= c`(v). One of the main points for studying such labellings `, is
that replacing each edge e of G by `(e) parallel edges, results a multigraph M containing G as a
subgraph, which has a very interesting property: all the vertices of M have different degrees. Such
multigraphs are called irregular. It is fairly known that no non-trivial simple graph G is irregular;
this can be proven through an application of the pigeonhole principle. It is thus legitimate to
wonder how to build a corresponding irregular multigraph M in the above fashion. In their work,
Chartrand et al. regard edge multiplications as an expensive operation and, as such, they want
to limit it as much as possible. This results in the following optimisation problem: for a given
graph G, what is the smallest k such that G can be turned into an irregular multigraph M by
replacing each edge with at most k parallel edges? From the labelling point of view, this smallest
k is precisely s(G).

Another interesting family of graphs to consider in this context, is that of regular graphs as, in
some sense, they lie in the opposite side of irregularity (all their vertices having the same degree).
Formally, for d ≥ 1, a graph G is said to be d-regular if every vertex of G has degree exactly d.
Indeed, this family of graphs was already considered in [68], where it was shown that any d-regular
graph verifies s(G) ≤ dn2 e + 9, where n is the order of G. In the same work, it was conjectured
that there should exist a constant c such that s(G) ≤ dnd e + c, for any d-regular graph G. There
have been some steps towards this conjecture, with s(G) ≤ 16nd + 6 being proven in [103], which
was later improved to s(G) ≤ 6dnd e in [80].

Since the notion of irregularity does not fit with simple graphs, as K1 is the only irregular
simple graph, it is legitimate to consider that this notion is too strong for simple graphs, and
instead consider weaker notions of irregularity. A few such notions have been explored in the
literature, such as the notions of highly irregular graphs [48] or locally irregular graphs [17].

Coming back to proper labellings of graphs, the main parameter that will interest us in the first
part of this thesis, is the minimum k so that a given graph G admits a proper k-labelling, denoted
as χΣ(G). This parameter χΣ is precisely at the heart of one of the most famous conjectures
concerning proper labellings of graphs, the so-called 1-2-3 Conjecture, introduced by Karoński,
Łuczak and Thomason in 2004 [81]:

1-2-3 Conjecture. If G is a nice graph, then χΣ(G) ≤ 3.

In simple words, this conjecture claims that, for every nice graph G, regardless of how large
χ(G) is, it should be possible to assign labels 1, 2 and 3 to its edges in order to define a proper
vertex-colouring of G. There exists a number of results that point towards the correctness of this
conjecture.

First, note that there exist nice graphs G that verify χΣ(G) = 3. For example every nice com-
plete graph Kn has χΣ(Kn) = 3 as shown in [50]. The same holds true for every odd-length cycle
(see upcoming Chapter 4 for a simple proof of this fact). The most famous result that supports
the 1-2-3 Conjecture belongs to Kalkowski, Karoński and Pfender [79], and states that for any

6 CHAPITRE 1 — Introduction

nice graph G, χΣ(G) ≤ 5 †. Another important result is in [105], where it is shown that for every
nice regular graph G, χΣ(G) ≤ 4. A classic result in this domain is in the original paper about
the 1-2-3 Conjecture [81], where it is shown that for every nice 3-colourable graph, χΣ(G) ≤ 3.
The proof of this last result is quite useful, as with just slight modifications of that proof, one can
construct new proper labellings of 3-colourable graphs, that verify additional constraints. For that
reason, one version of that proof will be presented in Section 2.2.1. However, unless the given nice
graph G is locally irregular (in which case χΣ(G) = 1), deciding whether χΣ(G) ≤ 2 holds is
NP-complete [64]. This remains true even if G is assumed to be a cubic graph [58]. Thus, unless
P=NP, there is no “good” characterisation of graphs admitting proper 2-labellings (or, the other
way around, of graphs needing 3s in their proper 3-labellings). Nevertheless, a good characterisa-
tion of nice bipartite graphs G with χΣ(G) = 3, was provided in [116]. This result, together with
the proof that bipartite graphs verify the 1-2-3 Conjecture [81], completes our understanding of
the behaviour of these graphs (at least for the original version of the 1-2-3 Conjecture).

We close this section by mentioning some variations of the problem of finding proper k-
labellings that we find interesting. We refer the interested reader to [112] for even more variations
that are not mentioned here.

We begin by considering the problem of finding proper 2-labellings where we are also allowed
to alter the induced colour of each vertex by increasing it by 1 or 2. More precisely, a proper total
labelling differs from a proper labelling in that in the former the vertices also receive a label that
affects their induced colour. Such labellings are known as total proper k-labellings, and their study
was initiated in [106]. The main motivation behind the introduction of total labellings is that, in
general, using three labels might be too powerful to find a proper labelling, in the sense that two
labels are always “almost enough”. This is supported by results such as the ones in [2], where it is
proven that for any fixed p ∈ (0, 1), the random graph Gn,p (asymptotically) almost surely admits
a proper 2-labelling. It is worth mentioning here that the authors of [106] also propose a conjecture
concerning proper total labellings:

1-2 Conjecture. If G is a nice graph, then G admits a proper total 2-labelling.

To date, no counterexample is known for the 1-2 Conjecture. A break-through result for this
conjecture was proven by Kalkowski [78], who showed that every nice graph G admits a total
proper 3-labelling. It should be noted that this result is actually what made it possible to prove that
χΣ(G) ≤ 5 for every nice graph G [79].

Recall that in a k-labelling of a graph G, all the edges of G are assigned a label from the
set {1, . . . , k}. A different variation of labellings, known as list labellings, is proposed in [15],
according to which a set L(e) of possible labels is defined for every edge e of G, and a labelling
must be constructed so that every edge is assigned a label from its list. If there exists a function `
such that for each edge e of the given graph G, `(e) ∈ L(e) and ` is also a proper labelling, we
say that G admits a proper labelling from L. We will also say that G is k-labelling-choosable if
G admits a proper labelling from every list L with |L(e)| ≤ k for every e ∈ E(G). The authors
of [15] propose the following conjecture:

List 1-2-3 Conjecture. If G is a nice graph, then G is 3-labelling-choosable.

†. We refer the interested reader to [21], Section 2.2, for a clear explanation of the mechanisms that lie behind the
proof presented in [79].

1.2 – 1-2-3 Conjecture 7

It is worth noting that although there had been some steps towards the above conjecture [60],
it was actually not known until recently whether there even exists a constant c such that any nice
graph is c-labelling-choosable. The first such result was proven in [45], and it is for c = 17.
An improved bound (for c = 5) was also proposed in [124]. It is also worth mentioning [121]
and [107] where the authors consider total variations of proper list labellings, and that proper total
labellings also play an important role in both [45] and [124].

The variations mentioned up to now differ from proper labellings by considering different
ways of assigning integers on the vertices/edges of a graph. The last set of variations we would
like to mention differ from proper labellings by instead changing the way that the induced colours
are produced.

The authors of [1] study the problem of k-labellings such that for each pair of adjacent vertices
u and v, the multiset defined by the labels of the edges that are incident to u is different from the
one defined by the labels of the edges that are incident to v. Let us say that a k-labelling verifying
this property is a proper multiset k-labelling. It was shown in [1] that every nice graph admits a
proper multiset 4-labelling. This was improved relatively recently in [118], where it was proven
that every nice graph admits a multiset proper 3-labelling.

Finally, the author of [115] studied k-labellings ` where the induced colour of each vertex is
produced by multiplying the labels of its incident edges (instead of adding them). If the resulting
colouring is proper, we say that ` is a proper product k-labelling. Among other results, it was also
proposed in [115] that every nice graph should admit a proper product 3-labelling. This conjecture
was proved quite recently in [30]. It is worth mentioning that this proof draws inspiration from the
one presented in [118] for the multiset version explained above. Also note that both of the results
proven in [118] and in [30] are tight as there are graphs, for example the complete graphs, that
require at least 3 labels by any proper multiset or product labelling.

1.2.1 Variations with additional optimisation

Recently, there is a new line of research that has started emerging, which is dedicated to stu-
dying optimisation problems related to the 1-2-3 Conjecture which arise when investigating the
existence of proper labellings fulfilling additional constraints. One of the main sources of motiva-
tion here is to further understand the very mechanisms that lie behind proper labellings.

Consider now a graph that is the cycle on four vertices C4. Clearly, χ(C4) = 2. Figure 1.1(a)
illustrates a proper 2-colouring c of C4. Also, C4 is not locally irregular, from which follows that
χΣ(C4) > 1. Moreover, Figure 1.1(b) provides a proper 2-labelling ` of C4. Thus, χΣ(C4) =
2. Observe however that there is an important difference between Figures 1.1 (a) and (b): the
maximum colour used by c is equal to 2, while the maximum colour induced by ` is equal to
4. Also, c uses only two distinct colours, while ` induces three different colours. So the natural
question to be asked here is whether these differences stem from the choice of ` provided above,
or whether it is a more general phenomenon.

In order to better understand the connection between proper labellings and proper vertex-
colourings, the authors of [16, 31] studied proper labellings ` for which the resulting vertex-
colouring c` is required to be close to an optimal proper vertex-colouring (i.e., with the number of
distinct resulting vertex colours being close to the chromatic number). Notably, the authors of [31]
prove that for every nice tree T of maximum degree ∆, the minimum maximum colour that is
induced by any proper 2-labelling of T is a value in {∆,∆ + 1,∆ + 2}, which can be arbitrarily
larger than χ(T) = 2.

8 CHAPITRE 1 — Introduction

1 2

12

(a) A proper colouring of C4,
using two colours.

3 4

32

2

2

1

1

(b) A proper 2-labelling of C4

Figure 1.1 – A proper 2-colouring c and a proper 2-labelling ` of C4. In subfigure (a), the small
numbers in the vertices correspond to the colours assigned by c. In subfigure (b), the small num-
bers on the edges correspond to the labels assigned by `, while the small numbers in the vertices
correspond to the colour of the corresponding vertex induced by `.

Each of these previous investigations led to presumptions of independent interest. In particular,
it is believed in [31], that every nice graph G should admit a proper labelling where the maximum
vertex colour is at most 2∆(G), while our own research (see Chapter 4) seems to suggest that
every nice graph G should admit a proper labelling where the sum of assigned labels is at most
2|E(G)|. One of the main reasons why these presumptions are supposed to hold, is the fact that, in
general, it seems that nice graphs admit 2-labellings that are almost proper, in the sense that they
only need a few 3s to design proper 3-labellings.

It is also worth mentioning that this belief on the number of 3s is actually a long-standing one
of the field, as, in a way, it lies behind the 1-2 Conjecture. One way to interpret the 1-2 Conjecture
is that for any nice graph, it should be possible to design proper 2-labellings if the colour of every
vertex is also allowed to be slightly altered. This local alteration could be achieved by, for example,
assigning label 3 to only a few edges of the graph. As a consequence, to the best of our knowledge
there is no known (non-trivial) graph G with χΣ(G) = 3 for which the three labels 1, 2, 3 must be
used with nearly equal proportion in every proper 3-labelling. As an example, let us mention that
for every nice complete graph Kn, for which χΣ(Kn) = 3, there is a proper 3-labelling assigning
label 2 only once [31]. Also, for every bipartite graph G with χΣ(G) = 3, there exist proper
3-labellings assigning label 3 at most twice (Chapter 4).

It is important to mention a take on those questions by Baudon, Pilśniak, Przybyło, Senhaji,
Sopena, and Woźniak. In [18], they investigated proper labellings in which all labels must be
assigned about the same number of times. A labelling ` is called equitable if, for every two distinct
labels α, β assigned by `, the number of edges assigned label α differs from the number of edges
assigned label β by at most 1. The smallest k such that G admits an equitable proper k-labelling is
denoted by χΣ(G). This parameter χΣ is defined for every nice graph, although this is not trivial
to be shown.

The authors of [18] have investigated several aspects of equitable proper labellings, most of
which are about the relationship between χΣ(G) and χΣ(G) for a given graph G. For a few fami-
lies of graphs G, they have notably established that χΣ(G) = χΣ(G) holds, except for a few ex-
ceptions. In this thesis, we will mainly focus on investigating the graphs G with χΣ(G) < χΣ(G).
Also, it is legitimate to ask whether an equitable version of the 1-2-3 Conjecture is plausible.

1.3 – The largest connected subgraph games 9

1.2.2 Locally irregular graphs

As explained earlier, the class of locally irregular graphs can be seen as an antonym to that
of regular graphs. Recall also that there exist several additional such notions. This is mainly due
to the fact that non-trivial irregular graphs do not exist. Thus, the literature has a multitude of
slightly different definitions of irregularity (see for example [4, 48, 50, 70, 103]). One way to deal
with the nonexistence of irregular graphs, is to restrain the definition of irregularity. Intuitively,
instead of demanding for all vertices of a graph to have different degrees, each vertex v is now
considered separately, and the request is that v and/or the vertices “around” v verify some property
of irregularity. For example, the authors of [5] study graphs with the following property: for every
vertex v of a graph G, no two neighbours of v have the same degree. For an overview of other
interesting notions of irregularity (local or otherwise), we refer the reader to [6]. The main notion
which will be treated in this thesis, and is going to be the main focus of Chapter 6, is that of locally
irregular graphs.

Recall that a graph G is said to be locally irregular, if every two adjacent vertices of G have
different degrees. The notion of locally irregular graphs was first introduced in [17]. The reason
why locally irregular graphs are of interest in this thesis comes from their connection to the 1-
2-3 Conjecture. An obvious connection is that this conjecture holds for locally irregular graphs.
Furthermore, there have been taken some steps towards proving that conjecture, which involve
edge-decompositing a graph into a constant number of locally irregular subgraphs, i.e., given G,
find an edge-colouring of G using a constant number of colours, such that each colour induces a
locally irregular subgraph ofG. This is the main motivation behind [17], and it remains interesting
enough to attract more attention [33, 92, 104].

In the next section, we introduce the main problems studied in the second part of this thesis.

1.3 The largest connected subgraph games

Chapters 7, 8 and 9 present our work on two variations of a certain 2-player combinatorial
game. To define these games, consider the following scenario: two players, Alice and Bob, want to
play a famous card game. Now in order to actually play the game, they have to first construct their
respective decks. To build their decks, they have to use cards from the library, a finite collection
of cards which is common for both of them. To pick cards, the players have to follow a drafting
procedure: they take turns choosing cards from the library to include to their respective decks, with
the obvious constraint that once a card is picked by one of the players, the other no longer has the
right to pick it. Once there are no more cards remaining in the library, Alice and Bob can go on and
play the actual game. It is important to note that not all the cards of the library are “synergistic”,
meaning that some pairs of cards are more useful than other. So this begs the question: how should
Alice or Bob choose their respective cards during the drafting procedure? Should they try to follow
some greedy strategy, always trying to maximise the synergy of the cards they are picking? Should
they follow a more “aggressive” strategy and try to pick cards that their opponent would like to
have? Should they try mixing up these two kinds of strategies?

One way to try to answer the above questions could be through modeling the above situation
as a problem defined on a graph: each card in the initial library (before any card gets picked)
corresponds to one vertex of that graph, and two vertices of that graph share an edge if the corres-
ponding cards are synergistic. This defines the library graph. Now, during each turn of the drafting

10 CHAPITRE 1 — Introduction

procedure, first Alice will colour one uncoloured vertex of the library graph red, and then Bob will
colour one uncoloured vertex blue. Clearly, a vertex being coloured red (blue resp.) signifies that
the corresponding card was picked by Alice (Bob resp.). We now have an important decision to
make, namely how to define a metric for the synergy of a deck so that we can decide which player
did better during the drafting procedure. We chose to count the number of vertices of the largest
connected subgraph of the library graph induced by their colour. This choice defines the rather
natural combinatorial game, where both players strive to build the largest connected subgraph of a
given graph. We stress here that the game we introduce is not a sufficient model to study the above
scenario. We comment more about a possible improvement of the model in the conclusion of this
thesis. Nevertheless, this game, which we named the largest connected subgraph game, had not
been introduced or studied before.

The formal definition of the largest connected subgraph game is as follows. The game is
played on any graph G between the first player, Alice, and the second player, Bob. Initially, none
of the vertices are coloured. Then, in each round, first Alice colours an uncoloured vertex ofG red,
and then, Bob colours an uncoloured vertex of G blue. Note that each vertex can only be coloured
once and, once coloured, its colour cannot be modified. The game ends when all of the vertices of
G have been coloured. The score of Alice (Bob resp.) is exactly the order of the largest red (blue
resp.) connected subgaph of G by the end of the game. The winner of the game is the player with
the highest score at the end of the game. In the case where both players have the same score, the
game is a draw. Observe that in this game, Alice and Bob have the same goal: to achieve the largest
score. Moreover, they both strive to create connected structures. It follows from these observation
that this game is a connection and scoring game in the same time. The details on these families of
games are postponed until Section 1.3.1.

While researching the largest connected subgraph game, it was observed that there are some
graphs of order n, for which Alice can always guarantee a score of dn2 e, which is the highest
score that a player can achieve. In fact, identifying such graphs, said A-perfect, turned out to be
crucial in order to identify good strategies for both players. Motivated by this observation, we
introduced a variation of the largest connected subgraph game, in which Bob’s goal becomes to
minimise Alice’s score, without caring for his own score anymore. This is the Maker-Breaker
largest connected subgraph game. In particular, the interesting parameter here is defined as the
largest integer k such that Alice has a strategy guaranteeing her a score of at least k in the Maker-
Breaker largest connected subgraph game played on the given graph G. Section 1.3.2 contains
more details on Maker-Breaker games.

1.3.1 Connection and Scoring games

As explained above, in the largest connected subgraph game both players strive to create
connected structures. Thus, this game can be placed in the field of study of connection games.
Several of these games are well-known, such as the game of Hex [72]. The game of Hex is played
by two players on a rhombus-shaped board tiled by hexagons, with two of the opposing sides of
the board coloured red and the other two coloured blue. In each round, the first player colours an
uncoloured hexagonal tile red, and then, the second player colours one blue. The first (second,
resp.) player wins if they manage to connect the red (blue, resp.) sides of the board with red (blue,
resp.) tiles. In the 1950s [73], a variation of the game of Hex, called the Shannon switching game,
was introduced. In this game, the first player has the goal of connecting two marked vertices in a
graph, while the second player wants to make sure this never happens. Traditionally, the players

1.3 – The largest connected subgraph games 11

take turns selecting edges of the graph, with the first player winning if there is a path consisting
of only the first player’s edges between the two marked vertices, but a variant where the players
select vertices (and obtain all their incident edges) also exists.

However, not all connection games involve connecting sides of a board or two vertices in a
graph. Havannah, a board game invented by Christian Freeling that was released in 1981, is one
such game, where the players may also win by forming closed loops, with the playing board and
the rules being similar to Hex. Connection games tend to be very difficult complexity-wise (one
of the reasons they are played and studied), with the majority of them being PSPACE-complete.
For example, the generalised Hex, the Shannon switching game on vertices (when players select
vertices instead of edges), and the (generalised) Havannah are all PSPACE-complete [109, 67,
39]. That being said, the Shannon switching game on edges is polynomial-time solvable [43]. For
more on the complexity of other connection games, see [39]. For more on connection games in
general, see [42] for a book on such games.

Another characteristic of the largest connected subgraph game, is that the winner of the game
is the player with the highest score, where the score of a player is defined as explained above. Thus,
this game can also be placed in the field of study of scoring games. The score in these games is an
abstract quantity usually measured in an abstract unit called points. Players may gain points in a
myriad of ways, all depending on the rules of the game. For example, in the orthogonal colouring
game on graphs [7], a player’s score is equal to the number of coloured vertices in their copy of
the graph at the end of the game, i.e., each player gets one point for each coloured vertex in their
copy of the graph. Recently, the papers [88, 89, 90] have started to build a general theory around
scoring games. There have also been a number of papers on different scoring games of late, such
as [47, 63, 96, 114].

1.3.2 Maker-Breaker games

Consider once more the game of Hex. At first glance, there is another similarity between the
game of Hex and the largest connected subgraph game, namely that in both games, both players
appear to have the same goal, i.e., to be the first player that builds the connected structure required
to win the game. However there is a small, but very important difference to be noted here: contrary
to the largest connected subgraph game, any game of Hex is a win for Alice if and only if it is a
loss for Bob. That is, there is no game of Hex that is a draw. Actually, if we assume that both
players play optimally, then Alice is always guaranteed to win. This can be shown by using the
famous strategy stealing argument (which we also employ in Chapter 7). In a nutshell, if Bob has a
winning strategy then Alice can steal it. That is, after an arbitrary first move, Alice can pretend to
be Bob, and follow the Bob’s winning strategy. By doing that, Alice can eventually win the game,
which contradicts the existence of Bob’s winning strategy.

The game of Hex has gathered a lot of interest. We refer the interested reader to [41], a book
that gathers various strategies that can be followed during a game of Hex. One of the reasons for
which Hex is interesting is that it can also be seen as a game in which Alice tries to connect the
red sides of the board with red tiles, while Bob tries to stop her. Such games are known as Maker-
Breaker games. Actually, both the game of Hex and the Shannon switching game are considered
as some of the most famous Maker-Breaker games. In order to understand why Maker-Breaker
games have gathered the attention of the scientific community, we have to explain how they can
be defined as a subclass of positional games.

12 CHAPITRE 1 — Introduction

Positional games are two player games, played on a shared board, which can be abstractedly
represented by a set of elements (for example vertices of a graph) X . Now during each turn of a
positional game, the players claim previously unclaimed elements of X . In the simplest version,
which is of interest for this thesis, each player claims exactly one element of X per turn. To
represent the goals of the players, positional games make use of a family F = {A1, . . . , Ak} of
subsets ofX , which are usually referred to as the winning sets of the hypergraph of the game, with
each one of theAis defining a hyperedge. Note that the setting of positional games is rather general,
as can be attested by the fact that it does not impose any specific winning conditions. One possible
winning condition could be “the winner is the first player to capture all the elements of Ai for
some 1 ≤ i ≤ k”. Such games are known as Maker-Maker games. Another possible set of winning
conditions could be “the first player wins if they capture all the elements ofAi, for some 1 ≤ i ≤ k,
while the second player wins if, when there are no more unclaimed elements remaining in X , the
first player has not won yet”. The family of Maker-Breaker games is defined as the positional
games that verify this second set of winning conditions, with the first and second players usually
being referred to as the Maker the Breaker respectively. For more details on positional games, the
interested reader is invited to see [77].

Returning once more to the game of Hex, it is now formally justifiable that it is a Maker-
Breaker game. Indeed, let X be the hexagonal tiles of the board and F be all the possible “chains”
of tiles connecting the red sides of the board. It was also claimed in the first paragraph of this
section that any game of Hex is a win for Alice if and only if it is a loss for Bob. This is actually
proven in [71]. So the winning condition of Hex can be translated into “Alice wins if she manages
to capture one hyperedge of F and Bob wins if, once all the elements of F are captured, Alice has
not won”.

The first famous result, which sparked the interest to study Maker-Breaker games, is the so-
called Erdős-Selfridge Theorem [65]. Consider any Maker-Breaker game played on X , with F =
{A1, . . . , Ak}. According to the Erdős-Selfridge Theorem, if Σk

i=12−|Ai| < 1/2, then the Breaker
has a winning strategy. We stress here that the proof of this theorem is not just existential. That
is, the proof does not only shows the existence of a winning strategy for the Breaker, but also
provides us with one such strategy. Informally, if the conditions of the theorem are satisfied, then
it suffices for the Breaker to follow a greedy algorithm, claiming in each turn an element of X that
minimises the “worth function” of the remaining unclaimed elements of X . This worth function is
well defined, and gets updated during each turn, taking into account the elements that the Maker
has claimed.

On the complexity side of things, Schaefer proved in 1978 that determining the outcome of
a Maker-Breaker game is PSPACE-complete, even when each of the winning sets in F has size
at most 11 (or exactly 11) [111]. This result was not improved upon until quite recently, when
Rahman and Watson proved that determining the outcome of a Maker-Breaker game is PSPACE-
complete, even when each of the winning sets in F has size at most 6 (or exactly 6) [108]. These
complexity results are substantial since the problem proven to be PSPACE-complete under the
above restrictions, commonly known as POS CNF, is a common problem to reduce from in order
to prove PSPACE-hardness, and the size of the largest winning set often has implications on the
properties of PSPACE-hard instances of the problem being reduced to.

Apart from general results for Maker-Breaker games, many individual such games have been
considered. The following are some of the more notable Maker-Breaker games played on graphs.
In particular, in 1978, Chvátal and Erdős introduced the following Maker-Breaker games played on
the complete graphKn: the Hamiltonicity game, the Connectivity game, and the Clique game [55].

1.4 – Results and layout of this thesis 13

In each of these games,X consists of the edges ofKn, whileF consists of each Hamiltonian cycle
for the former, each spanning tree for the second, and each clique of a given size for the latter.
They notably also introduced biased Maker-Breaker games, which are those in which Breaker
may instead select multiple elements of X on each of his turns, and the goal is to determine the
least number he may select, while still guaranteeing him winning [55]. Note also that the Colouring
construction game (presented in Section 1.1) is another example of a Maker-Breaker game. Indeed,
this game can be described by a setX which contains exactly the vertices of the given graph, while
F consists of all the proper k-colourings of the graph, for the given k. Clearly, the Maker wins in
the colouring construction game if they manage to construct a proper colouring of the given graph,
while the Breaker wins if they manage to stop this from happening. Note the small intricacy in the
definition of this game, namely that the Breaker is forced to colour vertices while respecting the
property that the under-construction colouring should be proper. If this condition was not in place,
then the game would be quite trivial (and thus uninteresting), as it would suffice that the Breaker
colours a neighbour of an already coloured vertex v with the same colour as that of v, to win the
game. Lastly, it is worth mentioning a recently introduced Maker-Breaker game played on graphs
called the Maker-Breaker Domination game, conceived by Duchêne et al. in 2020 [62], in which
X consists of the vertices of the graph, while F consists of all the dominating sets of the graph.

In the next section we present an overview of the results presented in this thesis, as well as
how this thesis is organised.

1.4 Results and layout of this thesis

Chapters 2, 3, 4, 5 and 6 will present our work on proper labellings of graphs. Chapters 7, 8
and 9 will be consecrated to the study of the largest connected subgraph game.

1.4.1 Proper labellings

Chapter 2 presents an overview of some of the tools employed in the first part of this thesis. It is
also the chapter in which we present the three conjectures on proper labellings which we were lead
to propose through our research. In particular, in Section 2.1, we present these three conjectures,
and we comment on the nice interplay that rises between them. Then, in Sections 2.2 and 2.3, we
present some tools and important graphs that are going to be useful in the next chapters.

Chapter 3 presents our work on equitable proper labellings. Our results answer some questions
that were left open in [18]. In particular, we focus our attention on identifying graphs G such that
χΣ(G) = 2 < χΣ(G) = 3; let us say that a graph verifying this property is bad. We first prove
that given a graph G such that χΣ(G) = 2, it is NP-complete to decide if χΣ(G) = 2 as well.
This implies that there are infinitely many bad graphs. We then turn our attention towards bipartite
graphs, and prove that once more there exist arbitrarily many bad bipartite graphs. We finally show
that, for every k ≥ 3, every k-regular bipartite graph admits an equitable proper k-labelling. This
chapter presents a joint work with J. Bensmail, F. Mc Inerney and N. Nisse, published in [26].

Chapter 4 considers the problem of designing proper labellings which additionally minimise
the sum of the labels being used. It would directly follow from the 1-2-3 Conjecture, if it were
true, that for every nice graph G, there exists a proper labelling such that the sum of the assigned
labels is at most 3|E(G)|. It turns out that this problem is actually quite different from the 1-2-3
Conjecture. Indeed, we prove that there is no absolute constant k such that for any graph G, the

14 CHAPITRE 1 — Introduction

proper labelling of G that minimises the sum of labels being assigned is a k-labelling. We also
prove that the problem of designing proper labellings with minimum label sum is NP-hard in
general, but solvable in polynomial time for graphs with bounded treewidth and maximum degree,
as well as other, simple, families of graphs. We then conjecture that for almost every connected
graph G there should be a proper labelling with label sum at most 2|E(G)|, which we verify
for several classes of graphs. In particular, we manage to prove this conjecture for the class of
bipartite graphs, and we go on to propose an even stronger conjecture for these graphs, namely
that there should always be a proper labelling with label sum at most 3

2 |E(G)| + c (for some
constant c), which we prove for trees. This chapter presents a joint work with J. Bensmail and N.
Nisse, published in [29] and presented in [28].

In Chapter 5 we study the problem of designing proper 3-labellings that also minimise the
number of edges labelled 3. We prove that, for every p ≥ 0, there are various graphs needing at
least p 3s in their proper 3-labellings. Actually, deciding whether a given graph can be properly
3-labelled with p 3s is NP-complete for every p ≥ 0. We then focus on classes of 3-chromatic
graphs. For various classes of such graphs (cacti, cubic graphs, triangle-free planar graphs, etc.),
we prove that there is no p ≥ 1 such that all their graphs admit proper 3-labellings assigning label 3
to at most p edges. In such cases, we provide lower and upper bounds on the number of 3s needed
by any proper 3-labelling of a graph belonging to one of these families. Our investigation leads us
to propose a conjecture stating that for any nice graph G, there should exist a proper 3-labelling of
G which assigns label 3 on at most 1

3 of the edges of G. This chapter presents a joint work with J.
Bensmail and F. Mc Inerney, published in [22] and presented in [23].

In Chapter 6 we deal with the following question: given a graph G, what is the order of the
largest induced subgraph of G that is locally irregular? Or, equivalently, what is the minimum
number of vertices that must be deleted from G so that what remains is locally irregular? Let
us denote by I(G) this parameter. We first examine some simple graph families, namely paths,
cycles, trees, complete bipartite and complete graphs. We then show that the decision version of
the introduced problem is NP-complete, even for restricted families of graphs. We then show that
we cannot even approximate an optimal solution within a ratio of O(n1− 1

k), where k ≥ 1 and n
is the order the graph, unless P=NP, even when the input graph is bipartite. Then we provide two
parameterised algorithms that compute the value I(G), for a given graph G, each one considering
different parameters. The first one considers the size of the solution k and the maximum degree ∆
of G while the second one considers the treewidth tw and ∆ of G . Therefore, we show that the
problem is FPT by both k and tw if the graph has bounded maximum degree ∆. It is natural to
wonder if there exists an FPT algorithm parameterised only by k or tw. We answer negatively to
this question, by showing that our algorithms are essentially optimal. In particular, we prove that
there is no algorithm that computes I(G) with dependence f(k)no(k) or f(tw)no(tw), unless the
EXPONENTIAL TIME HYPOTHESIS fails. This chapter presents a joint work with N. Melissinos
and T. Triomatis, presented in [69].

1.4.2 Combinatorial games

Chapters 7, 8 and 9 are dedicated to the study of the largest connected subgraph game and
its Maker-Breaker version. The largest connected subgraph game is a joint work with J. Bensmail,
F. Mc Inerney and N. Nisse, published in [25] and presented in [24]. A report about the Maker-
Breaker version, which is a joint work with J. Bensmail, F. Mc Inerney, N. Nisse and N. Oijid, can
be found in [27].

1.4 – Results and layout of this thesis 15

In Chapter 7, we give some first results for both games under consideration. Among these
results, we prove that Bob can never win the largest connected subgraph game. We also provide
some first upper and lower bounds on the largest score that Alice can achieve when playing the
Maker-Breaker version of the game on the graph G. We then characterise a class of graphs such
that Bob can always guarantee a draw when playing the largest connected subgraph game on a
graph belonging to that class. Graphs belonging to this class are called reflection graphs. Sec-
tion 7.3 is consecrated to proving that, given a graphG, determining the outcome of any one of the
two games presented in this chapter is PSPACE-complete, even if we assume that G belongs to
some restricted families of graphs such as bipartite graphs of diameter 5 for the largest connected
subgraph game, and, additionally, split and planar graphs for its Maker-Breaker variation. We also
show that identifying reflection graphs is as hard as the GRAPH ISOMORPHISM problem.

Chapter 8 presents our results on some simple families of graphs. First we determine the
outcome of the either version of the largest connected subgraph game, when it is played on a
graph that is either a path or a cycle. Then, in Section 8.2, we determine the outcome of the
largest connected subgraph game when it is played on a cograph. It is worth mentioning here
that determining the outcome of the Maker-Breaker version when playing on cographs is far less
arduous than determining the outcome of the largest connected subgraph game when playing on
these graphs. Thus, in Section 8.3, we also manage to provide a linear-time algorithm that decides
the outcome of the Maker-Breaker version when playing on (q, q − 4)-graphs, a family which
naturally generalises cographs.

Chapter 9 deals withA-perfect graphs. Recall that a graphG is said to beA-perfect if Alice can
always create a single connected component when playing the Maker-Breaker largest connected
subgraph game on G. We begin by focusing our attention on the problem of identifying such
graphs that are also regular. In particular, in Section 9.2.1, we prove that for every d ≥ 4, there
exist arbitrarily large d-regular graphs that are A-perfect. On the contrary, in Section 9.2.2, we
prove that any 3-regular A-perfect graph is of order at most 16. Finally, we provide sufficient
conditions for a graph to be A-perfect, either in regards to its degrees, or to its size.

Variations of proper labellings

CHAPTER 2
Three new conjectures,
useful tools and graphs

In Section 2.1 of this chapter we formally define the three problems that are going to
be the main focus of Chapters 3, 4 and 5. These are optimisation problems, which are
about finding proper labellings that also verify some additional constraints, and define
three natural parameters which we study. We also propose three new conjectures on the
upper bound of these new parameters, and explain how the study of each one of them
leads us naturally to the study of the others. Finally, in Sections 2.2 and 2.3 we provide
some general tools that are going to be useful later on, as well as the description of some
important graphs.

2.1 Definition of three variations and their interplay 19
2.2 Useful techniques . 23

2.2.1 Proper labellings through stable sets 23
2.2.2 Dynamic programming on nice tree-decompositions 25

2.3 Useful graphs . 26
2.3.1 Odd multi-cacti . 27
2.3.2 Useful gadgets . 28

2.1 Definition of three variations and their interplay

In this section we formally introduce the problems on proper labellings that are treated in
Chapters 3, 4 and 5.

Let G = (V,E) be a graph. Recall that a k-labelling ` of a graph G, is a function that assigns
a number from {1, . . . , k} on each edge of G; these numbers will be referred to as labels. Any k-
labelling defines a vertex-colouring c` of G, where each vertex v ∈ V receives as colour c`(v) =
Σu∈N(v)`(uv). This c`(v) is said to be the colour of v induced by `. If the colouring c` is a proper
vertex-colouring of G, ` is said a proper k-labelling of G. The parameter χΣ(G) is used to denote
the minimum k such thatG admits a proper k-labelling. The parameter χΣ was initially introduced
in [81], in which the authors propose the following conjecture:

1-2-3 Conjecture. If G is a nice ∗ graph, then χΣ(G) ≤ 3.

∗. Recall that a graph is said nice if it does not contain K2 as a connected component

19

20 CHAPITRE 2 — Three new conjectures, useful tools and graphs

Chapter 3 regards the problem of finding equitable proper labellings, that is proper labellings
in which each label is assigned more or less the same number of times. Formally:

Definition 2.1.1. Let G = (V,E) be a nice graph and ` a k-labelling of G. For every label α
assigned by ` (meaning that there exists at least one edge of G labelled α by `), let nb`(α) be the
number of edges of G being labelled α by `. That is,

nb`(α) = |{e ∈ E : `(e) = α}|.

A k-labelling ` is said to be equitable if for every two distinct labels α, β assigned by `, the values
nb`(α) and nb`(β) differ by at most 1. That is,

max
i,j
|nb`(i)− nb`(j)| ≤ 1,

for 1 ≤ i < j ≤ k. The parameter χΣ(G) is used to denote the minimum k such that G admits an
equitable proper k-labelling. This notion was initially introduced and studied in [18].

It follows from the results in [34] that for any nice graph G, the parameter χΣ(G) is well defi-
ned. In particular, we know that χΣ(G) is upperly bounded by a function of the number of edges
of G. Nevertheless, to date, there is no constant upper bound for χΣ(G). The authors of [18] have
investigated several aspects of equitable proper labellings, most of which are about the relation-
ship between χΣ(G) and χΣ(G) for a given graph G. Note that K4 is the only nice graph G (that
we know of) verifying χΣ(G) > 3. Their research leads us to wonder about the plausibility of an
equitable version of the 1-2-3 Conjecture:

Conjecture 2.1.2 (Equitable 1-2-3 Conjecture). IfG is a nice graph other thanK4, then χΣ(G) ≤
3.

Consider now any nice graph G, other than K4, and let ` be an equitable proper 3-labelling
of G. Observe that the number of edges labelled 1 by ` is about the same as the number of edges
labelled 3 by `. It follows that the sum of labels assigned to the edges of G by `, is about 2|E(G)|.
Note that this sum is, in general, much smaller than what is suggested by the immediate upper
bound on that value, which follows from the result that χΣ(G) ≤ 5 [79], i.e., that the sum of
the labels assigned by ` is at most 5|E(G)|. This leads us directly to the next variation of proper
labellings, considered in Chapter 4, namely the problem of finding proper labellings that minimise
the sum of the assigned labels. Formally:

Definition 2.1.3. For a labelling ` of a nice graph G = (V,E), let σ(`) denote the sum of labels
assigned to the edges of G by `. That is,

σ(`) =
∑
e∈E

`(e).

For any k ≥ χΣ(G), denote by mEk(G) the minimum value of σ(`) over all proper k-labellings `
of G. That is,

mEk(G) = min {σ(`) : ` is a proper k-labelling of G} .

Finally, let mE(G) = min{mEk(G) : k ≥ χΣ(G)}.

2.1 – Definition of three variations and their interplay 21

4 3

5

1

23

(a) K3

4

2 3

4

56

1

1

2

2

3

3

(b) C6

Figure 2.1 – Proper 3-labellings of K3 and C6.

Observe that the 1-2-3 Conjecture, if true, would imply that, for every nice graphG, mE(G) ≤
mE3(G) ≤ 3|E(G)|. A natural question to wonder is whether there exist graphs G for which
mE(G) is close to this theoretical upper bound of 3|E(G)|. The fact that we are not aware of
graphsGwith χΣ(G) = 3 needing a lot of 3s in all proper 3-labellings, as well as Conjecture 2.1.2,
leads us to suspect that even the following conjecture might be true:

Conjecture 2.1.4. For every nice graph G = (V,E), mE(G) ≤ 2|E|.

Clearly, Conjecture 2.1.4 holds true for all nice graphs G with χΣ(G) ≤ 2. Experimentation
via computer programs led us to observe that, actually, it might even be true that, when considering
connected graphs, the equality mE(G) = 2|E(G)| holds if and only if G is K3 or C6. Note that
χΣ(K3) = χΣ(C6) = 3. This is a direct consequence of the following observation, which is
useful when dealing with graphs that contain adjacent vertices of degree 2, and is going to remain
important throughout the first part of this thesis.

Observation 2.1.5. Let G be a graph containing two adjacent vertices v2 and v3 of degree 2. Let
v1 be the other neighbour of v2, and let v4 be the other neighbour of v3 (possibly v1 = v4). Then,
by any proper labelling ` of G, `(v1v2) 6= `(v3v4).

Proof. Since, by any proper labelling ` of G, it holds that c`(v2) = `(v1v2) + `(v2v3), c`(v3) =
`(v2v3) + `(v3v4), and c`(v2) 6= c`(v3), then `(v1v2) 6= `(v3v4). �

Actually, it also follows from Observation 2.1.5 that any proper 3-labelling ` of C6 will be
such that nb`(1) = nb`(2) = nb`(3) = 2. In Figure 2.1 we illustrate the only possible 3-labelling
of K3 and one proper 3-labelling of C6. However, these cases are very particular, due to the small
number of edges these two graphs have.

Note also that we do manage to prove Conjecture 2.1.4 for the case of nice bipartite graphs
(see Section 4.4.2). This leads us to propose an even stronger conjecture for the case of bipartite
graphs, which we manage to prove for the case of trees:

Conjecture 2.1.6. There is an absolute constant c ≥ 1 such that, for every nice connected bipartite
graph G, mE2(G) ≤ 3

2 |E|+ c.

Informally, a labelling verifying Conjecture 2.1.6 assigns labels 1 and 2 to almost half the
edges of G each, and label 3 to the rest; the constant c that appears in the conjecture corresponds
exactly to the number of edges labelled 3.

Note also that the number of edges labelled 3 by the labellings proposed in the previous pa-
ragraph, is rather small. This falls in line with a long-standing belief of this field, i.e., that proper

22 CHAPITRE 2 — Three new conjectures, useful tools and graphs

Conjecture 2.1.4:
mE(G) ≤ 2|E|

Conjecture 2.1.9:
ρ3(G) ≤ 1

3

Conjecture 2.1.2:
χΣ(G) ≤ 3

Conjecture 2.1.6:
mE(B) ≤ 3

2 |E|+ c

Figure 2.2 – A schematic representation of the interplay between the conjectures proposed in this
thesis. The graph G is assumed to be any nice graph different from K4, and B is assumed to be
any nice connected bipartite graph. The set E represents the edges of the corresponding graph.
The arrows are not to be interpreted as “implies”, but rather “leads to the study of”.

3-labellings do not actually require “a lot” of edges labelled 3. It is exactly to better understand
and quantify this “a lot” that we introduce the final variation of proper labellings considered in this
thesis in Chapter 5, namely the problem of constructing proper 3-labellings that also minimise the
number of edges labelled 3. Formally:

Definition 2.1.7. For any nice graph G, we denote by mT(G) the minimum number of edges
assigned label 3 by a proper 3-labelling of G. That is,

mT(G) = min{nb`(3) : ` is a proper 3-labelling of G}.

We extend this parameter mT to classes F of graphs by defining mT(F) as the maximum value
of mT(G) over the members G of F . Clearly, mT(F) = 0 for every class F of graphs admitting
proper 2-labellings (i.e., χΣ(G) ≤ 2 for every G ∈ F).

Given a graph class F , we are interested in determining whether mT(F) ≤ p for some p ≥ 0.
From this perspective, for every p ≥ 0, we denote by Gp the class of graphs G with mT(G) = p.
For convenience, we also define G≤p = G0 ∪ · · · ∪ Gp.

Our research suggests that, for several graph classes F , there is no p ≥ 0 such that F ⊂
G≤p. For such a class, we want to know whether the proper 3-labellings of their members require
assigning label 3 many times, with respect to their number of edges. We study this aspect through
the following terminology.

Definition 2.1.8. For a nice graph G, we define

ρ3(G) = mT(G)/|E(G)|.

We extend this ratio to a class of graphs F by setting

ρ3(F) = max{ρ3(G) : G ∈ F}.

We are thus interested in determining bounds on ρ3(F) for some graph classes F whose
members admit proper 3-labellings, and, more generally speaking, in how large this ratio can be.

2.2 – Useful techniques 23

Note that this is similar to considering how large ρ3(G) can be for a given graph G. Also, notice
that graphsG of small size with χΣ(G) = 3 are more likely to require many (compared to |E(G)|)
3s to be properly 3-labelled, resulting in these graphs having “large” ρ3(G) (meaning a value close
to 1). Through an exhaustive search, it is easy to see that, among the sample of small connected
graphs (e.g., of order at most 6), the maximum ratio ρ3 is exactly 1/3, which is attained byK3 and
C6. At the moment, these are the worst graphs we know of, which leads us to raising the following
conjecture.

Conjecture 2.1.9. If G is a nice connected graph, then ρ3(G) ≤ 1/3.

It is worth adding that Conjecture 2.1.9 can be seen as a weaker version of Conjecture 2.1.2, in
the sense that if the latter were to be proven correct then the former would also follow. To sum up,
Conjecture 2.1.2 leads directly to both Conjectures 2.1.4 and 2.1.9, while Conjecture 2.1.4 also
leads to Conjecture 2.1.9. So there is a very nice correlation between the conjectures proposed in
our work, which we schematically depict in Figure 2.2.

2.2 Useful techniques

In this section we present a set of techniques that are going to be useful in the following
chapters.

2.2.1 Proper labellings through stable sets

We now present a version of the proof that any nice 3-chromatic graph admits proper 3-
labellings. This theorem, initially presented in [81], is fundamental in this field. Furthermore,
we make use of the approach followed in the proof of this theorem in Chapters 4 and 5.

The following proof is based on carefully labelling a particular subgraph of the given 3-
chromatic nice graph G. Since G is 3-chromatic, it follows that G is not bipartite. Thus there
exists an odd-length cycle C in G. Let H be a subgraph of G constructed as follows. Start from
H = C. Then, until V (H) = V (G), repeatedly choose a vertex v ∈ V (G) \ V (H) such that
there exists a vertex u ∈ V (H) with uv ∈ E(G), and add the edge uv to H . In the end, H is a
connected spanning subgraph of G containing only one cycle, C, which is of odd length. Then,
we have |E(H)| = |V (G)|. This graph H is denoted as an odd unicyclic (connected) spanning
subgraph of G.

Theorem 2.2.1 ([81]). If G is a nice connected 3-chromatic graph, then χΣ(G) ≤ 3.

Proof. Let φ : V (G) → {0, 1, 2} be a proper 3-vertex-colouring of G. In what follows, our goal
is to construct a 3-labelling ` of G such that c`(v) ≡ φ(v) mod 3 for every vertex v ∈ V (G),
thus making ` proper. Note that, aiming at vertex colours modulo 3, we can instead assume that `
assigns labels 0, 1, 2. To obtain such a labelling, we start from ` assigning label 2 to all edges of
G. We then modify ` iteratively until all vertex colours are as desired modulo 3. Recall that a walk
in a graph is a path in which vertices and/or edges might be repeated. A walk is said closed if it
starts and ends at a same vertex. We say a path is even (odd, resp.) if it consists of an even (odd,
resp.) number of edges.

Let H be an odd unicyclic spanning subgraph of G. As long as G has a vertex v with c`(v) 6≡
φ(v) mod 3, we apply the following procedure. Choose W = (v, v1, . . . , vn, v), a closed walk of

24 CHAPITRE 2 — Three new conjectures, useful tools and graphs

odd length in G starting and ending at v, and going through edges of H only. This walk is sure to
exist. Indeed, consider, inH , a (possibly empty) path P from v to the closest vertex u ofC (if v lies
on C, then u = v and P has no edge). Then, the closed walk vPuCuPv is a possible W . We then
follow the consecutive edges of W , starting from v and ending at v, and, going along, we apply
+2,−2,+2,−2, . . . ,+2 (modulo 3) to the labels assigned by ` to the traversed edges. As a result,
note that c`(x) is not altered modulo 3 for every vertex x 6= v, while c`(v) is incremented by 1
modulo 3. If c`(v) ≡ φ(v) mod 3, then we are done with v. Otherwise, we repeat this switching
procedure once again, so that v fulfils that property.

Eventually, we get c`(v) ≡ φ(v) mod 3 for every v ∈ V (G), meaning that ` is proper. All that
remains to be done is to replace the label of the edges labelled 0 by ` by the label 3. The resulting
labelling is a proper 3-labelling of G and thus χΣ(G) ≤ 3. �

The importance of the above proof is twofold. On the one hand, it can easily be modified in
order to achieve proper 3-labellings with additional constraints, as is done in Chapter 5. On the
other hand, one can replicate this proof even for graphs of chromatic number k ≥ 3, and design
proper (not necessarily 3-)labellings verifying the desired properties, as is done in Chapter 4.

On an even more general level, the core idea behind the proof of Theorem 2.2.1 is to take
advantage of a partition of the vertices of the given graph G into p stable sets. Given such a
partition S0, . . . , Sp−1, we can try to construct a labelling ` such that for each vertex v ∈ V (G), if
v ∈ Si then c`(v) is congruent to i (modulo p). In the case of 3-chromatic graphs, this construction
is achieved through an odd unicyclic spanning subgraph of G. But this is not the only way such
a labelling could be constructed. The important thing to note here is that constructing ` in such a
way is extremely helpful, as it guarantees that the labelling is proper, without having to check if the
induced colouring is indeed proper. This idea is behind many arguments that are fairly common
in this field (see e.g. [16, 32, 46, 81, 94, 95, 116]). Let us present one more example of this idea.
Note that the following lemma is going to prove useful in Chapter 4.

Lemma 2.2.2 ([46]). Let G = (U, V,E) be a connected bipartite graph. If at least one of |U | or
|V | is even, then χΣ(G) ≤ 2.

Proof. Assume w.l.o.g. that |U | is even. We will construct a 2-labelling ` such that
1. for every u ∈ U , c`(u) is odd and
2. for every v ∈ V , c`(v) is even.

We start by having ` assign label 2 on all the edges of G. At this stage, only the vertices of V
verify the above condition. To make sure that also the vertices of U verify the above condition, we
pair the vertices of U two by two. Let u1, u2 be one such pair. Since G is connected and bipartite,
there exists an even-length path P from u1 to u2. Following P , we swap the labels of the edges
we encounter (so label 1 becomes 2 and vice versa). This procedure only changes the parity of
c`(u1) and c`(u2). Repeating this procedure for all the pairs of vertices of U results in the desired
2-labelling. �

As a final example of using stable sets to produce proper labellings, we mention here the case
of nice trees.

Proposition 2.2.3. Let T = (V,E) be a nice tree. Then χΣ(T) ≤ 2. Furthermore, a proper
2-labelling of T can be constructed in linear time.

Proof. We provide a procedure that constructs a proper 2-labelling of T in linear time. The follo-
wing observation is of crucial importance, and will appear many times throughout this thesis:

2.2 – Useful techniques 25

Observation 2.2.4. Let G be a nice graph containing at least one vertex v such that d(v) = 1,
and let u be the sole neighbour of v. Then, for any k-labelling ` of G, c`(v) < c`(u).

Let us now root T on a vertex r, and let L0, . . . , Lp be the levels of T . That is, a vertex v
belongs in Li, for 0 ≤ i ≤ p, if its distance from r is exactly i. We will construct a 2-labelling `
such that for every non-leaf vertex v ∈ V , if v ∈ Li, then c`(v) has the same parity as i. Clearly, a
labelling that respects this condition is proper as any two adjacent non-leaf vertices of a rooted tree
belong in different levels, and thus their colours induced by ` have different parities. Note that the
parity of the induced colours of the leaves of T is unspecified. This does not create any colouring
conflict thanks to Observation 2.2.4.

The construction of ` is as follows. We start by having ` assign label 1 on all the edges of T .
Now, we consider the vertices of T in a breadth first search fashion, starting from r. In this search,
if we encounter a non-leaf vertex v whose induced colour does not have the correct parity, we
change the label of uv from 1 to 2, where u is any vertex amongst the children of v. Note that this
modification does not affect the colour of the parent of v. At the end of the search, ` will verify
the desired condition. �

Since determining χΣ(G) can be done efficiently whenG is a tree (thanks to Proposition 2.2.3
and because determining if a graph is locally irregular can be done in linear time), it makes sense
to wonder whether calculating χΣ(G) can be done efficiently when G is a graph of bounded tree-
width.

2.2.2 Dynamic programming on nice tree-decompositions

Two of the algorithms we present in Chapters 4 and 6 are dynamic programming algorithms,
which produce proper labellings of graphs that are “close to being trees”. These graphs are for-
mally defined through the notion of a tree-decomposition:

Definition 2.2.5. Given a graphG = (V,E), a tree-decomposition ofG is a pair (T,X) such that
T = (V (T), E(T)) is a tree and X = {Xt ⊆ V | t ∈ V (T)} is a family of subsets (called bags)
of vertices of G such that:

— V =
⋃

t∈V (T)
Xt;

— for every uv ∈ E, there exists t ∈ V (T) with u, v ∈ Xt; and
— for every v ∈ V , the subset {t ∈ V (T) | v ∈ Xt} induces a subtree of T .

The width of (T,X) is equal to max
t∈V (T)

|Xt| − 1 and the treewidth tw(G) is the minimum width of

a tree-decomposition of G.

In order to render the above definition, as well as our dynamic programming algorithms pre-
sented in Chapters 4 and 6, more comprehensible, let us give an intuition on how the above notion
can be used algorithmically by presenting the following toy example. We consider the problem of
deciding if for a given graph G, χ(G) ≤ 3. Recall that this problem is NP-complete [74]. We will
now present a dynamic programming algorithm that solves this problem in polynomial time on
graphs of bounded treewidth.

Theorem 2.2.6 ([10]). Let G be a graph and (T,X) be a rooted (with root r) tree-decomposition
of G of width k − 1, for some fixed k ≥ 2. Deciding if χ(G) ≤ 3 can be done in polynomial time.

26 CHAPITRE 2 — Three new conjectures, useful tools and graphs

Sketch of the proof. We will consider one by one the nodes of V (T) in a bottoms-up fashion,
starting from the leaves of T and progressing towards r. Before explaining how we treat each
node, we need a final definition. Let t1 and t2 be any two nodes of T . Moreover, let c1 (c2 resp.)
be a colouring of the vertices of Xt1 (Xt2 resp.). We will say that c1 agrees with c2 if for every
vertex v ∈ Xt1 ∩Xt2 , c1(v) = c2(v). If Xt1 ∩Xt2 = ∅ then every pair of colourings for t1 and t2
agree with each other.

Let t be a leaf node of T . Since the width of the tree-decomposition is k − 1, we know that t
contains at most k vertices. For each vertex v of Xt, consider the three colours that c could assign
to v. There are at most 3k possible colourings for the vertices of Xt. Among all these colourings,
keep the ones that are proper colourings of G[Xt]. If no such colouring exists, then χ(G) > 3 and
the algorithm stops.

Assume now that t is a non-leaf node of T , and that we have already treated all the nodes
t1, . . . , td that are the children of t. For each 1 ≤ i ≤ d, let Ci = {ci1, ci2, . . . , cip} be the list of
all the colourings already stored for ti (which are proper colourings of G[Xti] for every i). Note
that p ≤ 3k. Consider once more the list C of all the at most 3k possible colourings of the vertices
of Xt that are also proper colourings of G[Xt]. Among all the colourings of C, we only keep the
ones that agree with at least one colouring in Ci for every 1 ≤ i ≤ d, and delete the rest. If after
concluding this procedure C is empty, then χ(G) > 3 and the algorithm stops.

If we manage to successfully treat all the nodes of T , then χ(G) ≤ 3. Moreover, we have to
treat at most O(n) such nodes (where n is the order of G), and each node requires a time which is
exponential only in k. Therefore the algorithm runs in polynomial (in respect to n) time. �

Note that in the algorithm presented above, it would have been practical if the given tree-
decomposition was such that any two neighbouring (in T) bags differed by at most one vertex.
This idea is captured by the notion of nice tree-decompositions. Formally:

Definition 2.2.7. A tree-decomposition (T,X) is nice [38] if T is rooted in r ∈ V (T) and every
node t ∈ V (T) is exactly of one of the following four types:

1. Leaf: t is a leaf of T and |Xt| = 1.
2. Introduce: t has a unique child t′ and there exists v ∈ V such that Xt = Xt′ ∪ {v}.
3. Forget: t has a unique child t′ and there exists v ∈ V such that Xt′ = Xt ∪ {v}.
4. Join: t has exactly two children t′, t′′ and Xt = Xt′ = Xt′′ .

It is well known that every graph G = (V,E) admits a nice tree-decomposition (T,X) rooted
in r ∈ V (T), that has width equal to tw(G), |V (T)| = O(|V |) and Xr = {∅} [38].

We finish this section with some additional notation which will prove useful for the algo-
rithms on graphs of bounded treewidth presented in Chapters 4 and 6. Let (T,X) be a rooted tree-
decomposition (with root r) of G and t ∈ V (T). A subtree of T induced by t and its descendants
is denoted as Tt and the corresponding subgraph of G, i.e., the graph induced by ∪t′∈V (Tt)Xt′ ,
is denoted by Gt (clearly, Gr = G). Let us also set Vt = V (Gt) for convenience. Notice that
Xt ⊆ Vt. Finally, for every v ∈ Vt, we denote by Nt(v) the neighbourhood of v in Gt, that is
Nt(v) = {u ∈ Vt : uv ∈ E(Gt)}.

2.3 Useful graphs

In this section we present a family of graphs and a set of gadgets that are going to be useful
throughout the next chapters.

2.3 – Useful graphs 27

(a) (b)

(c) (d)

Figure 2.3 – Constructing an odd multi-cactus through several steps, from the red-olive C6 (a).
Red-olive paths with length at least 5 congruent to 1 modulo 4 are being repeatedly attached onto
olive edges through steps (b) to (d). Solid edges are red edges. Wiggly edges are olive edges.

2.3.1 Odd multi-cacti

One of the most well understood families of graphs in the context of proper labellings, is that
of bipartite graphs. It was shown already in [81], via a modification of the proof of Lemma 2.2.2,
that nice bipartite graphs G verify the 1-2-3 Conjecture. Note also that some bipartite graphs G
verify χΣ(G) = 3 (for example C6).

Thus, connected nice bipartite graphs can be classified into three classes B1, B2 and B3 where,
for each i ∈ {1, 2, 3}, the setBi contains exactly the connected bipartite graphsGwith χΣ(G) = i.
Clearly, B1 contains exactly the bipartite graphs that are locally irregular. Recall that, in general, it
is NP-complete to decide if a given graph G verifies χΣ(G) ≤ 2. Note that this complexity result
does not hold for bipartite graphs. So, the natural question becomes whether we can efficiently
distinguish the bipartite graphs belonging in B2 from those belonging in B3. We have already
presented some small steps towards this direction, namely that a nice bipartite graph G that is not
locally irregular, belongs in B2 if G is a tree or at least one of its bipartition classes is of even size.
The first real step towards answering this question appears in [94], where it was shown that if a
bipartite graphG is 3-connected, thenG ∈ B2. The definitive answer to the question of classifying
bipartite graphs came when the graphs of B3 were characterized by Thomassen, Wu and Zhang
in [116], who proved that these graphs are exactly the so-called odd multi-cacti. As we are going
to provide results for these graphs in Chapters 3 and 4, we give their definition here.

Definition 2.3.1. A graphG is an odd multi-cactus if it can be obtained at any step of the following
procedure (see Figure 2.3 for an illustration):

28 CHAPITRE 2 — Three new conjectures, useful tools and graphs

2

a1
3

a2
2

b1
3

b2

9u2

1 1

1 2 1 2

2

c1
3

c2
2

d1
3

d2

8 u3

1 1

1 2 1 2

u1

2 1

1

(a) {c`1 (u2), c`1 (u3)} = {8, 9}.

2

a1
3

a2
2

b1
3

b2

9u2

1 1

1 2 1 2

2

c1
3

c2
2

d1
3

d2

10 u3

1 1

1 2 1 2

u1

1 2

2

(b) {c`2 (u2), c`2 (u3)} = {9, 10}.

Figure 2.4 – The only proper 2-labellings `1 (left) and `2 (right) of the T2 gadget, used in the
construction illustrated in Figure 2.5. The induced colours for each labelling are represented as
integers in the corresponding vertices. Vertex u1 is called the root of the gadget. Wiggly edges are
edges that could be labelled either 1 or 2.

— Start from a cycle with length at least 6, congruent to 2 modulo 4, whose edges are properly
coloured with red and olive (i.e., no two adjacent edges have the same colour).

— Consider an olive edge uv and join u and v via a new path of length at least 5, congruent
to 1 modulo 4, whose edges are properly coloured with red and olive, where both the edge
incident to u and the edge incident to v are red.

It is worth mentioning that odd multi-cacti are 2-degenerate and 2-connected. Also, they are
bipartite, and both of their parts have odd size. It can also be noted that for every olive edge uv,
we have d(u) = d(v), and no two olive edges share ends.

Theorem 2.3.2 ([116]). Let G be a nice connected bipartite graph. Then χΣ(G) = 3 if and only
if G is an odd multi-cactus.

2.3.2 Useful gadgets

In this section we present a graph admitting proper 2-labellings, that also has a very useful
property: it contains three particular edges such that, by any proper 2-labelling of that graph,
these particular edges are assigned the same label. What is even more useful, is that many copies
of this graph can be combined, by correctly identifying their respective particular edges, with the
resulting graph having a multitude of new particular edges, all of which must receive the same
label by every proper 2-labelling.

Definition 2.3.3. The graph illustrated in Figure 2.5 is called the spreading gadget and denoted
by Gf. In Gf, the parts denoted by a T2 correspond to the graph illustrated in Figure 2.4; let us
call T2 the triangle gadget. The edge u1u2 will be referred to as the input and the edges u9u10 and
u12u13 as the outputs of Gf.

This gadget was initially introduced in [20] where it was shown that any proper 2-labelling `
of Gf verifies `(u1u2) = `(u9u10) = `(u12u13). Furthermore, the different proper 2-labellings
of Gf have a very specific behaviour in regards to how many edges are labelled by 1 and by 2,
which is going to prove useful in our study of equitable proper labellings, in Chapter 3, and proper

2.3 – Useful graphs 29

1

u1
4

u2

5

u3

6
u4

10
u5

10

u6

11

u7

3

u8
2

u9
1

u10

3
u11

2
u12

1
u13

1

1

2

2

2

2

2

2

2

1 1

2

1 1

2 3

1

1

2

T2

T2

2 3

1

1

2

T2

(a) Input is labelled 1.

2

u1
5

u2

3

u3

4
u4

8
u5

8
u6

7

u7

2

u8
3

u9
2

u10

2
u11

3
u12

2
u13

2

1

2

1

1

1

1

1

1

1 2

1

1 2

2 3

1

1

2

T2

T2

2 3

1

1

2

T2

(b) Input is labelled 2.

Figure 2.5 – The only proper 2-labellings of the spreading gadget Gf. A triangle marked as “T2”
indicates that a copy of the T2 gadget (depicted in Figure 2.4) is attached via its root vertex. That
is, u5 (resp., u6 and u7) is identified to the root of one copy of T2. The induced colours for each
labelling are represented as integers in the corresponding vertices. Wiggly edges are edges that
could be labelled either 1 or 2.

labellings that also minimise the sum of labels being used, in Chapter 4. Since our results will take
advantage of this particular behaviour, we include here a more detailed version of the proof of the
following three theorems, initially presented in [20]:

Theorem 2.3.4. In any proper 2-labelling ` of T2:
— {`(u1u2), `(u1u3)} = {1, 2}; furthermore:

— Either {c`(u2), c`(u3)} = {8, 9}, and nb`(1) can be any value in {6, . . . , 10};
— or {c`(u2), c`(u3)} = {9, 10}, and nb`(1) can be any value in {5, . . . , 9}.

Proof. Let ` be a proper 2-labelling of T2. Since c`(a1) 6= c`(a2), we have, say, `(a1u2) = 1
and `(a2u2) = 2. Note that whatever `(a1a2) is, no conflict involving a1 (or a2) and u2 can
arise, due to the larger degree of u2. These arguments also apply around the bi’s, ci’s, and di’s. In
particular, the labels of the four edges joining u2 to the ai’s and bi’s bring 6 to the colour of u2,
and similarly the labels of the four edges joining u3 to the ci’s and di’s bring 6 to the colour of
u3. Now, since c`(u2) 6= c`(u3), we have, say, `(u1u2) = 1 and `(u1u3) = 2. Then, no conflict
involving u2 and u3 can arise, no matter whether u2u3 is labelled 1 or 2. In the first case, we get
(c`(u2), c`(u3)) = (8, 9), while we get (c`(u2), c`(u3)) = (9, 10) in the second case.

The parts of the statement dealing with nb`(1) hold, essentially, because each of the edges
a1a2, b1b2, c1c2, d1d2, and u2u3 can freely be assigned any label in {1, 2} by `. �

30 CHAPITRE 2 — Three new conjectures, useful tools and graphs

Theorem 2.3.5. Gf verifies the following:
— |E(Gf)| = 89.
— In any proper 2-labelling ` of Gf, we have `(u1u2) = `(u9u10) = `(u12u13).
— There exist both proper 2-labellings ` of Gf where `(u1u2) = 1, and proper 2-labellings

` of Gf where `(u1u2) = 2.
— In any proper 2-labelling ` of Gf where `(u1u2) = 1:

— c`(u2) = 4;
— c`(u9) and c`(u12) can be any value in {2, 3}; furthermore:

— if c`(u9) = c`(u12) = 2, then nb`(1) can be any value in {35, . . . , 56};
— if c`(u9) = c`(u12) = 3, then nb`(1) can be any value in {33, . . . , 54};
— if {c`(u9), c`(u12)} = {2, 3}, then nb`(1) can be any value in {34, . . . , 55}.

— In any proper 2-labelling ` of Gf where `(u1u2) = 2:
— c`(u2) = 5;
— c`(u9) and c`(u12) can be any value in {3, 4}; furthermore:

— if c`(u9) = c`(u12) = 3, then nb`(1) can be any value in {35, . . . , 56};
— if c`(u9) = c`(u12) = 4, then nb`(1) can be any value in {33, . . . , 54};
— if {c`(u9), c`(u12)} = {3, 4}, then nb`(1) can be any value in {34, . . . , 55}.

Proof. Consider ` a proper 2-labelling of Gf. We first note that we have `(u3u5) = `(u4u6).
Indeed, suppose to the contrary that, e.g., `(u3u5) = 1 and `(u4u6) = 2 holds. Since there are two
copies of T2 attached to u5, by Theorem 2.3.4, the colour of u5 is 7 + `(u5u7) and it is adjacent
to a vertex with colour 9 (in T2). Similarly, because of the two copies of T2 attached to u6, the
colour of u6 is 8 + `(u6u7) and it is adjacent to a vertex with colour 9 (in T2). Then, we must
have `(u5u7) = 1 and `(u6u7) = 2, so that c`(u5) = 8 and c`(u6) = 10. We also know that a
neighbour of u7 from the graph T2 attached to it has colour 9, and that this graph T2 provides 3
to the colour of u7 by Theorem 2.3.4. Then, u7 has colour 6 + `(u7u8) + `(u7u11), and the two
edges u7u8 and u7u11 must be labelled (with 1 or 2) in such a way that the colour of u7 does not
meet any value in {8, 9, 10}, which is impossible.

Now suppose `(u1u2) = 1, and consider the edges u2u3 and u2u4 (see Figure 2.5(a) for
an illustration). First, if `(u2u3) = `(u2u4), then note that ` cannot be proper according to
the arguments above since we would need to have `(u3u5) 6= `(u4u6) since c`(u3) 6= c`(u4).
Thus, `(u2u3) = 1 and `(u2u4) = 2 without loss of generality, and c`(u2) = 4. Note that,
if `(u3u4) = 1, then we necessarily get that c`(u3) or c`(u4) is equal to c`(u2) since we need
`(u3u5) = `(u4u6). Thus, `(u3u4) = 2. We then have `(u3u5) = 2 since c`(u3) 6= c`(u2),
and also `(u4u6) = 2 since c`(u4) 6= c`(u3) (and because `(u4u6) = `(u3u5) by the arguments
above).

According to the arguments above, we have `(u5u7) = `(u6u7) = 2. By the same argu-
ments and since c`(u5) = c`(u6) = 10, we have `(u7u8) = `(u7u11) = 2. Then, `(u9u10) =
`(u12u13) = 1 to avoid conflicts. Thus, assuming the input ofGf is labelled 1, then its two outputs
are also labelled 1. A similar case analysis yields an analogous conclusion when `(u1u2) = 2, see
Figure 2.5(b).

Let us conclude by pointing out that, in the proper labellings of Gf mentioned above, the only
edges for which the assigned label can freely be either 1 or 2 are the edges u8u9, u11u12, four
edges in each of the four copies of T2 attached to u5 and u6, and five edges in the copy of T2
attached to u7. As pointed out earlier, all other edges must (up to symmetry) receive a particular

2.3 – Useful graphs 31

v1 v2

Gf1

1

1

Gf

1

1 Gf

1

1

Figure 2.6 – An example of the generator gadget G4. The triangles are meant to represent the
copies of Gf. The red edge is the input of G4, as well as the input of G2, the first copy of Gf that
was used in the construction. The blue edges are the outputs of G4. The edge v1v2 corresponds to
the edge u9u10 of G2 (following the naming convention of Figure 2.5), which coincides with the
edge u1u2 of the copy of Gf that was used to construct G3. The label 1 is used to demonstrate the
property shown in Theorem 2.3.7.

label in {1, 2} as soon as that of u1u2 is fixed. It is then easy to check that the parts of the statement
dealing with nb`(1) are true. �

The last gadget we need is the following.

Definition 2.3.6. The generator gadget Gm is a graph with m ≥ 2 outputs and one input, which
is obtained from m − 1 spreading gadgets as follows. For m = 2, G2 = Gf. For m = 3, the
generator gadget G3 with three outputs is obtained by plugging two copies H1 and H2 of the
spreading gadget Gf along any output of H1 and the input of H2. The input of G3 is then the
input of H1 and the three outputs of G3 are the second (unplugged) output of H1 and the two
outputs of H2. For m > 3, the generator gadget Gm with m outputs is obtained by plugging a
copy G of the generator gadget Gm−1 with m − 1 outputs and a new copy H of the spreading
gadget Gf along one output of G and the input of H . The input of Gm is then the input of G and
the m outputs of Gm are the remaining m− 2 (unplugged) outputs of G and the two outputs of H .

Figure 2.6 illustrates the generator gadget G4.

Theorem 2.3.7. Gm verifies the following, for every m ≥ 3:
— |E(Gm)| = 88m− 87.
— In any proper 2-labelling of Gm, the input and m outputs are assigned the same label.
— There exist both proper 2-labellings of Gm where the input is assigned label 1, and proper

2-labellings of Gm where the input is assigned label 2.
— In any proper 2-labelling ` of Gm assigning label 1 to the input, nb`(1) ∈ {32m −

31, . . . , 55m− 54}.
— In any proper 2-labelling ` of Gm assigning label 2 to the input, nb`(1) ∈ {33m −

33, . . . , 56m− 56}.

Proof. This follows essentially from Theorem 2.3.5, since Gm is made up of m− 1 copies of Gf.
In particular, any proper 2-labelling ` of Gm induces one of each of its m−1 underlying Gf’s. As
pointed out in the statement of Theorem 2.3.5, vertices identified through the plugging operation
cannot get in conflict.

The part of the statement dealing with nb`(1) is essentially because, in each copy of Gf in
Gm, there are 23 edges that can freely be set to 1 or 2 (four edges in four attached copies of

32 CHAPITRE 2 — Three new conjectures, useful tools and graphs

T2, five edges in the last attached copy of T2, and two edges adjacent to the outputs). Assuming
the input of Gm is labelled 1 by `, according to Theorem 2.3.5 in each of the copies of Gf the
number of edges that can be assigned label 1 essentially ranges from 33 to 56. Thus, in Gm, the
number of edges that can be assigned label 1 ranges from 33(m − 1) − (m − 2) = 32m − 31 to
56(m− 1)− (m− 2) = 55m− 54. The computation is similar when the input of Gm is assigned
label 2, the only difference is that copies of Gf do not share edges labelled 1. �

CHAPTER 3
Equitable proper

labellings
In this chapter, we consider equitable proper labellings of graphs, which were introduced
by Baudon, Pilśniak, Przybyło, Senhaji, Sopena, and Woźniak.
We provide results regarding some open questions about equitable proper labellings.
Via a hardness result, we first prove that there exist infinitely many graphs for which
more labels are required in the equitable version than in the non-equitable version. This
remains true in the bipartite case. We finally show that, for every k ≥ 3, every k-regular
bipartite graph admits an equitable proper k-labelling.
This chapter presents a joint work with J. Bensmail, F. Mc Inerney and N. Nisse, publi-
shed in [26].

3.1 Hardness result . 34
3.1.1 Initiator gadget . 35
3.1.2 Corrector gadget . 37
3.1.3 Main result . 39

3.2 Bipartite graphs G with χΣ(G) < χΣ(G) 44
3.2.1 Bipartite graphs G with χΣ(G) = 3 44
3.2.2 Bipartite graphs G with χΣ(G) = 2 47

3.3 Equitable proper labellings of regular bipartite graphs 52
3.4 Conclusion . 55

This chapter focuses on equitable proper labellings, which are proper labellings in which all
labels must be assigned about the same number of times. Recall that a labelling ` is called equitable
if, for every two distinct labels α, β assigned by `, meaning that there exists at least one edge of
the graph labelled α and one labelled β, the number of edges assigned label α differs from the
number of edges assigned label β by at most 1. The smallest k such that G admits an equitable
proper k-labelling is denoted by χΣ(G). This parameter χΣ is defined for every nice graph. The
formal definition of these notions can be found in Definition 2.1.1.

Let us start this chapter by briefly summarising the main results on equitable proper labellings,
found in [18]:

— For nice forests F , we always have χΣ(F) = χΣ(F) ≤ 2.

33

34 CHAPITRE 3 — Equitable proper labellings

— For nice complete bipartite graphs Kn,m, we always have χΣ(Kn,m) = χΣ(Kn,m) ≤ 2,
except for the peculiar case of K3,3 which verifies 2 = χΣ(K3,3) < χΣ(K3,3) = 3.

— For nice complete graphs Kn, we always have χΣ(Kn) = χΣ(Kn) = 3, except for the
peculiar case of K4 which verifies 3 = χΣ(K4) < χΣ(K4) = 4.

At this point, the previous results lead to a number of interesting questions. Is K4 the only
graph G with χΣ(G) > 3? Are graphs G with χΣ(G) < χΣ(G) rare? Can the difference between
χΣ(G) and χΣ(G) be arbitrarily large? In general, could it be that if G is a nice graph other than
K4, then χΣ(G) ≤ 3 (appearing in this thesis as Conjecture 2.1.2)?

A few more results partially answering some of these questions can be found in Senhaji’s
thesis [113]. In particular:

— Senhaji proved that χΣ(G) = χΣ(G) ≤ 3 holds for a certain number of graphs G, inclu-
ding nice paths, nice cycles, some Theta graphs, and some Cartesian products of graphs.

— Using computer programs, he came up with four cubic bipartite graphs G verifying 2 =
χΣ(G) < χΣ(G) = 3.

— For particular cubic bipartite graphsG, such as Hamiltonian ones, he proved that χΣ(G) ≤
2.

In this chapter, we provide results towards some of the questions above. In particular, we
investigate the existence of graphs G with χΣ(G) < χΣ(G). In Section 3.1, we first prove that
there exist infinitely many such graphs. This is obtained through proving that the problem of
deciding whether χΣ(G) = 2 holds for a given graph G with χΣ(G) = 2 is NP-complete. We
then investigate, in Section 3.2, the same question for bipartite graphs. We exhibit operations
establishing that there exist infinitely many bipartite graphs G with χΣ(G) < χΣ(G). We also
prove that for every bipartite graph G with χΣ(G) = 3, i.e., odd multi-cacti, we have χΣ(G) = 3.
In Section 3.3, we finally provide a result on equitable proper labellings of regular bipartite graphs,
showing that χΣ(G) ≤ k holds for every such k-regular graph (k ≥ 3). In particular, we have
χΣ(G) ≤ 3 for every cubic bipartite graph G.

3.1 Hardness result

This section is devoted to the proof that the problem of deciding whether χΣ(G) = 2 holds
for a given graph G with χΣ(G) = 2 is NP-complete.

The reduction in the proof of our main result below will be mostly obtained by plugging several
gadgets, some of which are already introduced in Section 2.3.2, with specific properties together.
More precisely, some of our gadgets will have specific pendent edges (i.e., with exactly one of
their ends being of degree 1) being their inputs or outputs. Given two disjoint gadgets G and H
where e is an output of G and f is an input of H , by plugging G and H (along e and f) we mean
identifying e and f together. More precisely, if e = xy and f = uv with y and v being the vertices
of degree 1 of e and f respectively, then identifying e and f means identifying x and v, and y and
u respectively.

High-level description. Before describing the explicit construction in our reduction, let us first
give some intuition about its desired structure, as well as the gadgets that will be used.

The most important gadget for our construction is the generator gadget Gm, presented in Sec-
tion 2.3.2, Definition 2.3.6. The most convenient feature of the gadget Gm comes from Theo-
rem 2.3.7, which lets us generate arbitrarily many pendent edges with the same label by a proper

3.1 – Hardness result 35

2-labelling. This, for instance, permits to make the colours of some vertices grow by a similar
amount, or, as will be illustrated later, to forbid some values as vertex colours.

The generator gadget Gm has several downsides, however. A first one is that we, a priori, do
not know whether its input and outputs will be labelled 1 or 2 by a proper 2-labelling. A second
one is that Gm does not comply well with equitability, in the sense that, generally speaking, it ad-
mits both proper 2-labellings highly favouring the number of assigned 1s, and proper 2-labellings
highly favouring the number of assigned 2s (recall Theorem 2.3.7).

To overcome these points, we will use two additional types of gadgets we will call the initiator
gadget Ik and the corrector gadget C (to be formally defined in the subsections below), in the
following way. The initiator gadget Ik will be used to introduce a large imbalance in favour of one
of the two labels by any proper 2-labelling. By that, we mean an imbalance that is so big that even
all the labelling freedom we have in Gm will not allow to close the gap between the 1s and the
2s. To make sure that the whole graph does admit equitable proper 2-labellings, however, we will
add several copies of the corrector gadget C. The most important property of this gadget is that, in
terms of equitability, its behaviour regarding label 1 and label 2 is far from symmetric. By that, we
mean, that the possibilities C grants highly depend on the label assigned to its input by a proper
2-labelling. If this label is 1, then we can both favour the number of assigned 1s or favour the
number of assigned 2s. On the contrary, if this label is 2, then for sure the number of assigned 2s
is favoured.

By properly plugging an initiator gadget Ik (for a well chosen value of k) and corrector gadgets
C onto the generator gadget Gm, we can, in particular, make sure that the outputs of Gm are all
labelled 1 by an equitable proper 2-labelling of the whole graph. This is because, by a proper 2-
labelling assigning label 2 to the outputs, the initiator gadget Ik would introduce a huge imbalance
in favour of the number of assigned 2s, that is so huge that it cannot be caught up by the labelling
freedom of Gm and the copies of the corrector gadget C.

Once we know that the input and all outputs of Gm must be assigned label 1 by any equitable
proper 2-labelling, the forcing mechanisms in the whole graph then become much easier to track,
and it then becomes easier to design an equivalence with finding a solution to the problem from
which we are reducing.

3.1.1 Initiator gadget

The first gadget we need is the diamond D depicted in Figure 3.1. Here and further, for every
gadget introduced through a figure, we deal with its vertices and edges following the notation
from that figure. The input of D is the edge u1u2, while the output of D is the edge u9u10. The
properties of interest of D are the following:

Theorem 3.1.1. D verifies the following:
— |E(D)| = 11.
— In any proper 2-labelling ` of D, we have `(u1u2) = `(u9u10).
— There exist both proper 2-labellings ` of D where `(u1u2) = 1, and proper 2-labellings `

of D where `(u1u2) = 2.
— In any proper 2-labelling ` of D where `(u1u2) = 1:

— c`(u2) = 4;
— c`(u9) can be any value in {2, 3};
— nb`(1) = 7 and nb`(2) = 4.

— In any proper 2-labelling ` of D where `(u1u2) = 2:

36 CHAPITRE 3 — Equitable proper labellings

1

u1

4

u2

3

u3

5

u4

4

u5

2/3

u6

3/4

u7

4/3

u8

3/2

u9

1

u10

1

1

2

1

1

2

1 1/2 2 2/1 1

(a) `(u1u2) = 1.

2

u1

5

u2

4

u3

6

u4

5

u5

3/4

u6

2/3

u7

3/2

u8

4/3

u9

2

u10

2

1

2

2

1

2

2 1/2 1 2/1 2

(b) `(u1u2) = 2.

Figure 3.1 – The diamond gadget D. The values in each vertex v are the possible colours of c`(v)
by a proper 2-labelling ` of D.

— c`(u2) = 5;
— c`(u9) can be any value in {3, 4};
— nb`(1) = 4 and nb`(2) = 7.

Proof. Let ` be a proper 2-labelling of D. Assume `(u1u2) = 1.
If `(u2u3) = `(u2u4) = 1, then c`(u2) = 3. Since c`(u3) 6= c`(u4), we have `(u3u5) = 1 and

`(u4u5) = 2, or vice versa. Since c`(u3) 6= c`(u2), we have `(u3u4) = 2. This gives c`(u3) = 4
and c`(u4) = 5. Now we note that no matter what `(u5u6) is, we necessarily get c`(u5) ∈ {4, 5} =
{c`(u3), c`(u4)}, a contradiction. So we cannot have `(u2u3) = `(u2u4) = 1.

If `(u2u3) = `(u2u4) = 2, then c`(u2) = 5. Again, since c`(u3) 6= c`(u4), we have, say,
`(u3u5) = 1 and `(u4u5) = 2. Since c`(u4) 6= 5, we have `(u3u4) = 2, which gives c`(u3) =
c`(u2) = 5, a contradiction. Thus, we cannot have `(u2u3) = `(u2u4) = 2.

If, say, `(u2u3) = 1 and `(u2u4) = 2, then c`(u2) = 4. Assume first that `(u3u4) = 2. In
that case, since c`(u3) 6= c`(u2), we have `(u3u5) = 2, and thus c`(u3) = 5. Since c`(u4) 6=
c`(u3), we have `(u4u5) = 2, and thus c`(u4) = 6. Now, we note that no matter what `(u5u6)
is, we have c`(u5) ∈ {5, 6} = {c`(u3), c`(u4)}, a contradiction. So, we have `(u3u4) = 1.
Since c`(u3) and c`(u4) are different from c`(u2), we have `(u3u5) = 1 and `(u4u5) = 2, which
gives c`(u3) = 3 and c`(u4) = 5. Now, since c`(u5) 6∈ {3, 5} = {c`(u3), c`(u4)}, we have
`(u5u6) = 1, which gives c`(u5) = 4. By Observation 2.1.5, we then have `(u7u8) 6= `(u5u6)
and `(u9u10) 6= `(u7u8), and thus `(u7u8) = 2 and `(u9u10) = 1. By the same argument, we
have `(u6u7) 6= `(u8u9), and both ways are possible. Indeed, if on the one hand `(u6u7) = 1
and `(u8u9) = 2, then c`(u6) = 2, c`(u7) = 3, c`(u8) = 4, and c`(u9) = 3. If on the other
hand `(u6u7) = 2 and `(u8u9) = 1, then c`(u6) = 3, c`(u7) = 4, c`(u8) = 3, and c`(u9) = 2.

3.1 – Hardness result 37

According to all these arguments, we have that nb`(1) = 7 while nb`(2) = 4. Also, depending on
whether `(u6u7) = 1 and `(u8u9) = 2, or `(u6u7) = 2 and `(u8u9) = 1, the value of c`(u9) can
be any one in {2, 3}. See Figure 3.1(a) for an illustration of the resulting `.

These arguments can be mimicked the exact same way when `(u1u2) = 2. In particular, we
have `(u1u2) = `(u9u10) = 2, nb`(1) = 4 while nb`(2) = 7, and c`(u9) can be any value in
{3, 4}. See Figure 3.1(b) for an illustration. �

The initiator gadget Ik of length k ≥ 2 has one input and one output, and is obtained from k
diamond gadgets as follows. For k = 2, the initiator gadget I2 of length 2 is obtained by plugging
two copies D1 and D2 of the diamond gadget D along the output of D1 and the input of D2. The
input of I2 is then the input of D1 and the output of I2 is then the output of D2. For k > 2, the
initiator gadget Ik of length k is obtained by plugging a copy G of the initiator gadget Ik−1 of
length k − 1 and a new copy H of the diamond gadget D along the output of G and the input of
H . The input of Ik is then the input of G and the output of Ik is then the output of H .

Theorem 3.1.2. Ik verifies the following, for every k ≥ 2:
— |E(Ik)| = 10k + 1.
— In any proper 2-labelling of Ik, the input and output are assigned the same label.
— There exist both proper 2-labellings of Ik where the input is assigned label 1, and proper

2-labellings of Ik where the input is assigned label 2.
— In any proper 2-labelling ` of Ik where the input is assigned label 1:

— c`(v) can be any value in {2, 3}, where v denotes the degree-2 vertex of the output of
Ik;

— nb`(1) = 6k + 1 and nb`(2) = 4k.
— In any proper 2-labelling ` of Ik where the input is assigned label 2:

— c`(v) can be any value in {3, 4}, where v denotes the degree-2 vertex of the output of
Ik;

— nb`(1) = 4k and nb`(2) = 6k + 1.

Proof. This follows mainly from the fact that Ik is made up of k copies of the diamond gadget
D plugged one after another, and that the diamond gadget D has all of the properties described
in Theorem 3.1.1. In particular, a proper 2-labelling of Ik induces a proper 2-labelling of the k
copies of the diamond gadget D in it. Specifically, it can be checked that no conflict can arise
around the inputs and outputs that were identified. Also, for a proper 2-labelling of Ik assigning
label α ∈ {1, 2} to the input, in each copy of the diamond gadget D label α must be assigned to
seven edges while the other label must be assigned to four edges. Due to how the copies ofD were
plugged, we deduce that 7k − (k − 1) = 6k + 1 edges of Ik must be assigned label α, while 4k
edges must be assigned the other label. �

3.1.2 Corrector gadget

The corrector gadget C is the graph depicted in Figure 3.2. The input of C is the edge u1u2,
while C has no output. Its interesting properties are the following:

Theorem 3.1.3. C verifies the following:
— |E(C)| = 9.
— There exist both proper 2-labellings ` of C where `(u1u2) = 1, and proper 2-labellings `

of C where `(u1u2) = 2.

38 CHAPITRE 3 — Equitable proper labellings

1u1

2u2

3u3

4u4 4 u5

3u6 5 u7

1

1

1 1

1 21 2

1

(a) `(u1u2) = 1, nb`(1) = 7,
nb`(2) = 2.

1u1

3u2

6u3

5u4 5 u5

4u6 6 u7

1

2

2 2

1 21 2

2

(b) `(u1u2) = 1, nb`(1) = 3,
nb`(2) = 6.

2u1

4u2

6u3

5u4 5 u5

4u6 6 u7

2

2

2 2

1 21 2

2

(c) `(u1u2) = 1, nb`(1) = 2,
nb`(2) = 7.

Figure 3.2 – The corrector gadget C. The values in each vertex v are the possible colours of c`(v)
by a proper 2-labelling ` of C.

— In any proper 2-labelling ` of C where `(u1u2) = 1:
— c`(u2) ∈ {2, 3};
— either nb`(1) = 7 and nb`(2) = 2, or nb`(1) = 3 and nb`(2) = 6.

— In any proper 2-labelling ` of C where `(u1u2) = 2:
— c`(u2) = 4;
— nb`(1) = 2 and nb`(2) = 7.

Proof. Let ` be a proper 2-labelling of C. Because u6 and u7 both have degree 3, we
have that c`(u6), c`(u7) ∈ {3, 4, 5, 6}. Furthermore, c`(u6) 6= c`(u7), and we cannot have
{c`(u6), c`(u7)} = {3, 6}. We consider all of the remaining possibilities for {c`(u6), c`(u7)}
in what follows.

Assume c`(u6) = 3 and c`(u7) = 4. Then, all three edges incident to u6 must be labelled 1,
while we have, say, `(u7u4) = 1 while `(u7u5) = 2. Then, we note that, whatever `(u4u3) is,
we have c`(u4) ∈ {3, 4} = {c`(u6), c`(u7)}, a contradiction. The case where `(u7u4) = 2 while
`(u7u5) = 1 is symmetric with the colour of u5 coming into conflict with that of u6 or u7 instead.
Thus, we cannot have {c`(u6), c`(u7)} = {3, 4}.

Assume c`(u6) = 3 and c`(u7) = 5. Again, all three edges incident to u6 must be labelled 1,
while we have `(u7u4) = `(u7u5) = 2. Now, since c`(u4) and c`(u5) are different from 5 =
c`(u7), we have `(u4u3) = `(u5u3) = 1. This gives c`(u4) = c`(u5) = 4. Now, since c`(u3)
is different from 4 = c`(u4) = c`(u5), we have `(u3u2) = 1. Then c`(u3) = 3, and, since
c`(u2) 6= c`(u3), we have `(u2u1) = 1, which yields c`(u2) = 2. This is the labelling depicted in
Figure 3.2(a).

Assume c`(u6) = 4 and c`(u7) = 5. First, assume `(u6u7) = 1. Then we have, say, `(u6u4) =
1 and `(u6u5) = `(u7u4) = `(u7u5) = 2 (the case where `(u6u4) = 2 and `(u6u5) = 1 is sym-
metric). Note now that whatever `(u4u3) is, we have c`(u4) ∈ {4, 5} = {c`(u6), c`(u7)}, a contra-
diction. Then, assume `(u6u7) = 2. Then we have `(u6u4) = `(u6u5) = 1 and, say, `(u7u5) = 1
and `(u7u4) = 2 (the case where `(u7u5) = 2 and `(u7u4) = 1 is symmetric). Again, note

3.1 – Hardness result 39

that whatever `(u4u3) is, we have c`(u4) ∈ {4, 5} = {c`(u6), c`(u7)}, a contradiction. Thus, we
cannot have {c`(u6), c`(u7)} = {4, 5}

Assume c`(u6) = 4 and c`(u7) = 6. Then, all three edges incident to u7 must be labelled 2,
while we have `(u6u4) = `(u6u5) = 1. Now, since c`(u4) and c`(u5) are different from 4 =
c`(u6), we have `(u4u3) = `(u5u3) = 2. This gives c`(u4) = c`(u5) = 5. Now, since c`(u3)
is different from 5 = c`(u4) = c`(u5), we have `(u3u2) = 2. Then, c`(u3) = 6, and note that
u1u2 can correctly be assigned either of the labels 1 and 2. In the first case, we get the labelling
depicted in Figure 3.2(b), in which c`(u2) = 3. In the second case, we get the labelling depicted
in Figure 3.2(c), in which c`(u2) = 4.

Assume c`(u6) = 5 and c`(u7) = 6. Then, all three edges incident to u7 must be label-
led 2, while we have, say, `(u6u4) = 1 while `(u6u5) = 2 (the case where `(u6u4) = 2 while
`(u6u5) = 1 is symmetric). Then, we note that, whatever `(u5u3) is, we have c`(u5) ∈ {5, 6} =
{c`(u6), c`(u7)}, a contradiction. Thus, we cannot have {c`(u6), c`(u7)} = {5, 6}. �

3.1.3 Main result

We are now ready for the main result of this section.

Theorem 3.1.4. Given a graph G with χΣ(G) = 2, deciding if χΣ(G) = χΣ(G) is NP-complete.

Proof. The problem is clearly in NP, so we focus on proving it is NP-hard. We do it by reduction
from the MONOTONE CUBIC 1-IN-3 SAT problem, which is NP-hard according to [100]. An
instance of this problem is a 3CNF formula F in which every clause Cj = (x1∨x2∨x3) contains
exactly three distinct variables (not negated) and every variable xi belongs to exactly three distinct
clauses. The question is whether there is a 1-in-3 truth assignment to the variables of F , i.e., a
truth assignment such that every clause has exactly one true variable. Given F , we construct, in
polynomial time, a graph G such that F admits a 1-in-3 truth assignment φ if and only if G admits
an equitable proper 2-labelling `.

The construction of G is as follows. Let us start from the cubic bipartite graph GF modelling
the structure of the 3CNF formula F . That is, for every variable xi of F we add a variable vertex
vi to the graph, for every clause Cj of F we add a clause vertex cj to the graph, and, whenever a
variable xi belongs to a clause Cj in F , we add the formula edge vicj to the graph.

We also add a generator gadget Gµ with µ outputs to the graph, where µ = 10(42m + 30n)
(where, here and further, n is the number of variables in F and m is the number of clauses in F)
so that we have sufficiently many outputs on hand to perform what follows. We connect some of
the outputs and make them adjacent to the clause and variable vertices as follows (see Figure 3.3
for an illustration for clause vertices):

— For every clause vertex cj :
— We first add three new vertices ej , fj , gj , joined via the edges ejfj , fjgj , and ejgj to

form a triangle. We now identify ej and the degree-1 vertex of each of four unused
outputs of Gµ. Similarly, we identify fj and the degree-1 vertex of each of four unused
outputs of Gµ. We next identify gj and the degree-1 vertex of each of two unused
outputs of Gµ. We finally add the edge gjcj to the graph.

— We then add three new vertices e′j , f
′
j , g
′
j , forming a triangle. We then identify e′j and

five unused outputs of Gµ as above, f ′j and five unused outputs of Gµ, and g′j and three
unused outputs of Gµ. We finally add the edge g′jcj to the graph.

40 CHAPITRE 3 — Equitable proper labellings

ej fj

gj

e′j f ′j

g′j

e′′j f ′′j

g′′j

cj

Figure 3.3 – Structure around a clause vertex cj . Wiggly edges are outputs of Gµ.

— We finally add three new vertices e′′j , f
′′
j , g
′′
j , forming a triangle. We then identify e′′j

and seven unused outputs of Gµ as above, f ′′j and seven unused outputs of Gµ, and g′′j
and five unused outputs of Gµ. We finally add the edge g′′j cj to the graph.

— For every variable vertex vi:
— We first add three new vertices ri, si, ti joined to form a triangle (ri, si, ti, ri). We then

identify ri and five unused outputs of Gµ as above. Similarly, we then identify si and
five unused outputs ofGµ. Then, we identify ti and three unused outputs ofGµ. Finally
we add the edge tivi to the graph.

— We then add three new vertices r′i, s
′
i, t
′
i joined to form a triangle (r′i, s′i, t′i, r′i). We then

identify r′i and six unused outputs of Gµ as above. Similarly, we then identify s′i and
six unused outputs of Gµ. Then, we identify t′i and four unused outputs of Gµ. Finally
we add the edge t′ivi to the graph.

— Finally, we identify vi with the degree-1 vertex of one unused output of Gµ.
Note that there are, at this point, a total of β = 3m + 12m + 8n = 15m + 8n edges in the

graph that are not part of Gµ. More precisely, 3m of these edges are edges of GF , i.e., formula
edges, 12m of these edges are part or incident to the triangles added above and joined to the clause
vertices, while 8n of these edges are part or incident to the triangles joined to the variable vertices.
We refer to this graph, that is, the current one with β edges, and that contains none of the edges of
Gµ, as G′F .

Note that since µ = 10(42m + 30n), then, at this point, only 1
10µ outputs of Gµ have been

used. To each of the 9
10µ unused outputs of Gµ, we plug a new copy of the corrector gadget C.

Now, we add to the graph an initiator gadget Iα of length α that we plug to the input of Gµ, where
α is chosen to be the unique integer such that

2 ≤ ((6α+ 1) + (32µ− 31))− (4α+ (56µ− 56) + β) ≤ 3.

The whole resulting graph is our G, whose input is the input of Iα. Clearly, G is obtained in
polynomial time from F .

3.1 – Hardness result 41

Claim 3.1.5. Let ` be a proper 2-labelling of G. If the input is assigned label 2, then ` cannot be
equitable.

Proof of the claim. Assume this is wrong, and consider ` an equitable proper 2-labelling of G
assigning label 2 to the input. We investigate how many 1s and 2s must be assigned to several of
the different gadgets that were plugged together to build G.

— Regarding the initiator gadget Iα of length α used in the construction of G, by Theo-
rem 3.1.2 we get that ` must assign label 1 to exactly 4α edges and label 2 to exactly
6α+ 1 edges.

— By Theorem 2.3.7, in G the input of each of the 9
10µ copies of the corrector gadget C have

their input labelled 2 by `, since it coincides with an output ofGµ whose input is labelled 2
(by Theorem 3.1.2, since the output of Iα and the input ofGµ coincide). By Theorem 3.1.3,
in each of these copies of C, there are two edges labelled 1 and seven edges labelled 2.

Omitting all of the contributions of the corrector gadgets, we can state that there are, at this
point, at least 2α+ 1 more 2s than 1s. This imbalance must be fixed via the labelling of the other
edges of Gµ (i.e., not the input of Gµ) and of G′F . By Theorem 2.3.7, at most 56µ − 56 edges
of Gµ can be assigned label 1 (which yield at least 32µ − 31 edges of Gµ labelled 2, due to the
number of edges of Gµ), while the number of edges of G′F is β. By our choice of α, it is then
impossible that the number of assigned 1s by ` catches up with the number of assigned 2s. This
contradicts the equitability of `. �

Towards establishing the equivalence with a 1-in-3 truth assignment φ satisfying F , let us now
see how a proper 2-labelling ` of G assigning label 1 to the input behaves. We start off by pointing
out the following property of the triangles we have joined to the clause and variable vertices.

Claim 3.1.6. Let γ ≥ 4. Let H be any graph with a triangle (u, v, w, u) and an edge xw (where
x 6∈ {u, v}), and ` be a partial proper 2-labelling of H . Assume only the edges uv, vw, wu, and
xw remain to be labelled, that the partial colour of u and v is γ − 2, and that the partial colour
of w is γ − 4. Then, in every proper extension of ` to uv, vw, wu, and xw, we have `(uv) = 2,
`(xw) = 1, and c`(w) = γ.

Proof of the claim. Since only uv, vw, wu, and xw remain to be labelled, and u and v currently
have the same partial colour, so that c`(u) 6= c`(v) we have, say, `(uw) = 1 and `(vw) = 2. If
`(uv) = 1, then we get c`(u) = γ, c`(v) = γ+1, while the partial colour ofw is currently γ−1. It
is then impossible to assign a correct label to xw, i.e., so that c`(w) 6∈ {γ, γ+1} = {c`(u), c`(v)}.
So, we have `(uv) = 2, in which case c`(u) = γ + 1 and c`(v) = γ + 2. As above, the partial
colour of w is currently γ− 1, and, so that c`(w) 6∈ {γ+ 1, γ+ 2}, we must set `(xw) = 1. Then,
c`(w) = γ. �

Claim 3.1.6, applied to the structure of G (and more precisely to that of G′F), yields the follo-
wing.

Claim 3.1.7. For any proper 2-labelling ` of G assigning label 1 to the input:
— For each clause vertex cj , exactly one of its three incident formula edges is assigned la-

bel 1. Hence, c`(cj) = 8.
— For each variable vertex vi, either all three of its incident formula edges are assigned

label 1, or they are all assigned label 2. Hence, c`(vi) ∈ {6, 9}.
— The number of edges in G′F that are assigned label 1 by ` is 7m + 4n, while the number

of edges assigned label 2 is 8m+ 4n.

42 CHAPITRE 3 — Equitable proper labellings

Proof of the claim. Let ` be such a labelling of G. By Theorems 3.1.2 and 2.3.7, all outputs of Gm
must also be labelled 1 by `.

— Consider any clause vertex cj ofG, and, in particular, the neighbouring triangle (ej , fj , gj).
Note that all the conditions are met to apply Claim 3.1.6. Similarly, this claim applies to the
two triangles (e′j , f ′j , g′j) and (e′′j , f ′′j , g′′j). From the claim, we get that `(gjcj) = `(g′jcj) =
`(g′′j cj) = 1, c`(gj) = 6, c`(g′j) = 7, and c`(g′′j) = 9. Since cj is incident to only three
other edges, formula ones, one of them must be labelled 1 while the other two must be
labelled 2 so that c`(cj) 6∈ {6, 7, 9}. Then, c`(cj) = 8.

— Consider any variable vertex vi of G. By the same arguments, we have `(tivi) = `(t′ivi) =
1, c`(ti) = 7, and c`(t′i) = 8. Consequently, the three remaining (formula) edges incident
to vi must either all be labelled 1 by `, so that c`(vi) = 6, or all be labelled 2, so that
c`(vi) = 9 (recall that vi is also incident to an output of Gµ labelled 1). These are the only
two possibilities so that c`(vi) 6∈ {7, 8}.

The last part of the statement follows from Claim 3.1.6 and the arguments above. This
concludes the proof. Note, in particular, that a consequence is that we have c`(cj) 6= c`(vi) for
every clause vertex cj and variable vertex vi. �

Claim 3.1.7 gives us a direct equivalence between finding a proper 2-labelling of G where the
input is labelled 1 and a 1-in-3 truth assignment to the variables of F . Indeed, consider a proper
2-labelling ` of G assigning label 1 to the input. We regard the fact that `(vicj) = 1 (respectively
`(vicj) = 2) as having, in F , variable vi bringing truth value true (respectively false) to clause Cj .
The condition in the first item of Claim 3.1.7 depicts the fact that, by a 1-in-3 truth assignment
of F , a clause is considered satisfied only if it has exactly one true variable. The condition in the
second item depicts the fact that, by a truth assignment, a variable brings the same truth value to
all of the clauses that contain it. Thus, we can design a 1-in-3 truth assignment φ to the variables
of F from `, and vice versa.

Thus, F is 1-in-3 satisfiable if and only if G admits proper 2-labellings where the input is
labelled 1. By Claim 3.1.5, all equitable proper 2-labellings of G (if any) must assign label 1 to
the input. Thus, to prove that F is 1-in-3 satisfiable if and only if G admits equitable proper 2-
labellings, it remains to show that G admits proper 2-labellings assigning label 1 to the input if
and only if it admits equitable ones assigning label 1 to the input. Since every equitable proper
labelling is a proper labelling, all that remains is to prove the following claim.

Claim 3.1.8. If G admits proper 2-labellings where the input is assigned label 1, then G admits
equitable proper 2-labellings where the input is assigned label 1.

Proof of the claim. Let us consider a proper 2-labelling ` of G assigning label 1 to the input,
obtained as follows. From Theorems 3.1.2 and 2.3.7, we know that all outputs of Gµ must also be
assigned label 1. We propagate ` in Iα, Gµ, and G′F while guaranteeing the following properties:

— In Iα, exactly 4α edges are assigned label 2 by `, while 6α+ 1 edges are assigned label 1.
This is actually the only way to propagate ` in Iα, recall Theorem 3.1.2. Thus, here, there
are 2α+ 1 more assigned 1s than assigned 2s.

— In Gµ, the number of assigned 1s is as small as possible, i.e., is 32µ− 31. In that case, the
number of assigned 2s is 56µ− 56. Such a labelling can be achieved by Theorem 2.3.7.

— In G′F , the number of assigned 2s is m more than the number of assigned 1s. By
Claim 3.1.7 and since G admits a proper 2-labelling where the input is assigned label
1, this property is attainable (while maintaining that the labelling is proper) and actually
has to hold.

3.1 – Hardness result 43

To summarise the above, at this point, the number of assigned 1s is ((6α+ 1) + (32µ−31))−
(4α + (56µ − 56) + m) more than the number of assigned 2s. Recall that α was chosen as the
unique integer such that 2 ≤ ((6α+ 1) + (32µ− 31)) − (4α+ (56µ− 56) + β) ≤ 3. Thus,
β −m+ 2 ≤ ((6α+ 1) + (32µ− 31))− (4α+ (56µ− 56) +m) ≤ β −m+ 3, and hence, the
number of assigned 1s we have considered is either 14m+ 8n+ 2 or 14m+ 8n+ 3 more than the
number of assigned 2s (recall that β = 15m+8n). It remains to consider the 9

10µ = 9(42m+30n)
copies of the corrector gadget C in G. This means that the number of copies of C in G is much
bigger than 14m+ 8n+ 3. By Theorem 3.1.3, we can propagate ` to some copies of C so that six
edges are assigned label 2 and three edges are assigned label 1. This way, the number of assigned
2s we have considered thus far catches up with the number of assigned 1s.

For the remaining copies of C, we can assume that ` roughly alternates propagating following
the two labelling possibilities described in Theorem 3.1.3 when the input is labelled 1, so that the
number of assigned 2s we have considered remains close yet slightly bigger than the number of
assigned 1s. If, eventually, ` is not equitable because the number of assigned 2s is slightly bigger
than the number of assigned 1s, then we can freely switch from 2 to 1 the labels assigned to some
edges of, e.g., triangles in the copies of T2 in some of the spreading gadgets Gf in Gµ. Recall
that all these edges are indeed currently assigned label 2 (since we have minimised the number of
assigned 1s in Gµ).

Something to take into consideration is that the labelling of Gµ we have considered above,
i.e., the one minimising the number of 1s, does not comply with the two labelling schemes of the
corrector gadgetC. Indeed, when the spreading gadgetGf is labelled so that the input is labelled 1
and the number of 1s is minimised, note that the vertices u9 and u12 must have colour 3, which is
not compatible with the labelling of C in Figure 3.2(b). In this case, it is necessary to make u9 (or
u12) have colour 2 (so that they comply with the desired labelling of C) by just changing to 1 the
label of an incident edge labelled 2. This consequently makes the number of 2s increase, which
must be taken into consideration for deciding how to label the next copies of C.

Eventually, ` is equitable. �
To finish off the proof, we prove that, regardless of whether F is 1-in-3 satisfiable, there always

exist proper 2-labellings of G. In other words, we always have χΣ(G) = 2.

Claim 3.1.9. There exist proper 2-labellings of G.

Proof of the claim. We show that G admits proper 2-labellings ` where the input is labelled 2.
Recall that we do not care about equitability here. By Theorem 3.1.2, the output of Iα, which is
the input of Gµ, must be labelled 2 when its input is labelled 2. In turn, by Theorem 2.3.7, the
outputs of Gµ must be labelled 2 as well. Some of these outputs are the input of corrector gadgets.
From Theorems 3.1.2, 3.1.3, and 2.3.7, we get that there do exist partial proper 2-labellings ` of
these gadgets in G such that no conflicts arise.

It remains to prove that such a partial labelling ` can properly be extended to the edges of G′F .
We demonstrate the arguments for one triangle (ej , fj , gj , ej) adjacent to a clause vertex cj , but
the arguments are identical regarding the other triangles and the variable vertices. Because ej and
fj are incident to four edges of Gµ, which are all labelled 2 by the arguments above, ej and fj
already have partial colour 8. Let us assign label 2 to ejfj and fjgj , and label 1 to ejgj . This gives
c`(ej) = 11 6= c`(fj) = 12. At this point, gj has partial colour 7 (3 from the labelling of ejgj and
fjgj , and 4 from the two outputs ofGµ). Let us assign label 1 to gjcj , so that c`(gj) = 8. Note that
no two of ej , fj , and gj are in conflict, and also their colour is so big that no conflict with adjacent
vertices in Gµ can arise.

44 CHAPITRE 3 — Equitable proper labellings

By repeating these arguments, for every clause vertex cj , its incident edges cjgj , cjg′j , and cjg′′j
are labelled 1, while gj , g′j , and g′′j have colour at least 8. In particular, cj has partial colour 3 at
this point. Similarly, for every variable vertex vi its incident edges viti and vit′i are labelled 1, and
ti and t′i have colour at least 10. Recall that an output of Gµ, which is labelled 2, is also attached
to vi. Then, the partial colour of vi is 4 at this point. Let us finish the construction of the labelling
` by assigning label 1 to every formula edge. Since every clause vertex cj and variable vertex vi is
incident to exactly three such edges, we get that c`(cj) = 6 and c`(vi) = 7 for every clause vertex
cj and every variable vertex vi. Then, neither clause vertices nor variable vertices get in conflict
with any of their neighbours. In particular, no clause vertex gets in conflict with a variable vertex.
Then, ` is proper, as desired. �

This concludes the proof. �

Another interpretation of Theorem 3.1.4 is that, independently of whether Conjecture 2.1.2
(claiming that for almost all graphs G, χΣ(G) ≤ 3) is true or not, determining χΣ(G) is an NP-
hard problem for a given graph G. It is also worth mentioning that, in our reduction, the reduced
graphs G we construct should always verify χΣ(G) ≤ 3. This can be seen by noting that all
gadgets and structures we have added to G themselves admit many equitable proper 3-labellings,
some of which could possibly be combined to yield one of G.

3.2 Bipartite graphs G with χΣ(G) < χΣ(G)
In this section, we investigate the existence of bipartite graphs G with χΣ(G) < χΣ(G).

In Section 3.2.1, we first focus on bipartite graphs G with χΣ(G) = 3, as they stand as good
candidates of graphs that could have χΣ(G) > 3. We prove that, actually, χΣ(G) = 3 holds for all
these graphs. In Section 3.2.2, we then study the existence of bipartite graphs G with χΣ(G) = 2
and χΣ(G) = 3. We provide operations for building infinitely many such graphs.

3.2.1 Bipartite graphs G with χΣ(G) = 3

Recall that a bipartite graph G verifying χΣ(G) = 3 is an odd multi-cactus (as defined in
Section 2.3.1). In this section we prove the following:

Theorem 3.2.1. If G is an odd multi-cactus, then χΣ(G) = 3.

Proof. The proof is by induction on the number of vertices of G. The base case corresponds to
G being C6, the cycle of length 6, which is the smallest odd multi-cactus. We first prove a more
general case, namely that the claim is true whenever G is a cycle with length at least 6 congruent
to 2 modulo 4.

Let G be a cycle with length at least 6 congruent to 2 modulo 4. In this case, an equitable
proper 3-labelling can be obtained as follows. Traverse the successive edges of G starting from
an arbitrary one, and assign labels 1, 2, 3, 1, 2, 3, . . . going along until all edges are labelled. Note
that, doing so, at any moment of the procedure the resulting partial labelling is equitable.

— If the length ofG is congruent to 0 or 1 modulo 3, then, by Observation 2.1.5, the resulting
labelling is proper. This is because no two edges at distance 2 receive the same label, which
is the only colour conflict that can occur in a path.

3.2 – Bipartite graphs G with χΣ(G) < χΣ(G) 45

— If the length of G is congruent to 2 modulo 3 (the smallest such graph is C14), then we get
a conflict because of the last two edges that were labelled l1 = 1 and l2 = 2 respectively,
which are each at distance 2 from an edge with the same label. In this situation, we change
l1 into 3 and l2 into 1. Note that no conflict remains now. Furthermore, the labelling re-
mains equitable (the number of assigned 2s is one less than the numbers of assigned 1s
and 3s, which are equal).

For the general case: suppose that all odd multi-cacti with order at most some x− 1 admit an
equitable proper 3-labelling, and let us consider odd multi-cacti with order x. If x 6≡ 2 mod 4,
then, by construction, there exist no such graphs on x vertices, and the claim is true. Thus, we
assume that x ≡ 2 mod 4.

Let G be an odd multi-cactus with x vertices. Since G can be assumed to be different from a
cycle, it was obtained from a cycle of length 2 modulo 4 by repeated path attachments onto olive
edges. Due to the structure of G, it can be noted that there has to exist a olive edge uv where:

1. there exist p ≥ 1 disjoint paths P1, . . . , Pp joining u and v, all of whose inner vertices
have degree 2, and

2. the graph G′ obtained by removing the inner vertices of the paths P1, . . . , Pp from G is an
odd multi-cactus where u and v have degree 2.

First off, it can be assumed that all of the Pi’s have length 5. This is a consequence of the
following more general result:

Claim 3.2.2. Let P9 = (v1, . . . , v9) be the path of length 8, and assume we are given a partial
proper 3-labelling `′ of P9 where only the four edges v1v2, v2v3, v7v8, and v8v9 are labelled, so
that `′(v1v2) 6= `′(v7v8) and `′(v2v3) 6= `′(v8v9). Then, for any permutation {α, β, γ} of {1, 2, 3},
it is possible to extend `′ to a proper 3-labelling ` of P9 where two of v3v4, v4v5, v5v6, and v6v7
are labelled α, one of these edges is labelled β, and one of these edges is labelled γ.

Proof of the claim. So that a labelling of P9 is proper, we must only ensure that every two edges at
distance 2 receive distinct labels, recall Observation 2.1.5. In particular, this implies that labelling
v3v4 and v5v6 can be done independently from labelling v4v5 and v6v7. Then, we will be done if
we can prove that labels α and β can correctly be assigned to v3v4 and v5v6, while labels α and γ
can correctly be assigned to v4v5 and v6v7.

Without loss of generality, let us assume we want to assign labels α and β to v3v4 and v5v6.
Note that, at this point, `(v3v4) must only differ from `(v1v2). Let us assume that we can assign
`(v3v4) = α without there being a conflict with `(v1v2), i.e., `(v1v2) 6= α. If no conflict arises
upon setting `(v5v6) = β, then we are done. Otherwise, it means `(v7v8) = β. In that situation,
let us instead set `(v5v6) = α and `(v3v4) = β. If this raises a conflict, this must be because
`(v1v2) = β. But then, we deduce that `(v1v2) = `(v7v8) = β, a contradiction. �

Indeed, assume, without loss of generality, that P1 has length 4k + 1 for some k ≥ 2. Let us
denote by (u, v1, . . . , v4k, v) the successive vertices of P1 from u to v. LetG′ be the graph obtained
from G by removing the edges v2v3, v3v4, v4v5, v5v6, v6v7 and joining the vertices v2 and v7 by
an edge e. Note thatG′ is an odd multi-cactus since we have essentially contracted a path of length
4k+ 1 (with k ≥ 2) into a path of length 4(k− 1) + 1. Then, by the induction hypothesis, there is
an equitable proper 3-labelling `′ of G′. By definition, note that `′(uv1) 6= `′(e), `′(e) 6= `′(v8v9)
(or `′(e) 6= `′(v8v) if k = 2), and `′(v1v2) 6= `′(v7v8). To extend `′ to an equitable proper 3-
labelling ` of G, for every edge that is both in G and G′ we first infer the label by `′ to `. We then

46 CHAPITRE 3 — Equitable proper labellings

set `(v2v3) to `′(e). Note that no conflict arises in G by this partial labelling. Furthermore, since
`′ is equitable, so is `. Now, consider {α, β, γ} a permutation of {1, 2, 3} such that every two of
nb`′(α) + 2, nb`′(β) + 1, and nb`′(γ) + 1 differ by at most 1. Such an {α, β, γ} exists since `′ is
equitable. By Claim 3.2.2, the current ` can be extended to the edges v3v4, v4v5, v5v6, v6v7 so that
a proper 3-labelling of G results, and this can be done by assigning label α twice, and each of β
and γ once. By our choice of α, β, γ, such a resulting labelling is also equitable.

Then, we can assume all Pi’s have length exactly 5. For every i ∈ {1, . . . , p}, let us set
Pi = (u, vi1, . . . , vi4, v). Let us also denote by u′ the second neighbour (different from v) of u
in G′, and by v′ the second neighbour (different from u) of v in G′. Our goal is to extend `′ to
the edges of the Pi’s so that no conflict arises, and the resulting 3-labelling ` of G is proper. To
begin, consider {α, β, γ} a permutation of {1, 2, 3}. The choice of α, β, and γ can be done in
such a way that the ensuing labelling ` is equitable. Precisely, if nb`′(1) = nb`′(2) = nb`′(3) or
nb`′(1) + 1 = nb`′(2) = nb`′(3) or nb`′(1) = nb`′(2) = nb`′(3)− 1, then (α, β, γ) = (1, 2, 3),
else if nb`′(1) − 1 = nb`′(2) = nb`′(3) or nb`′(1) = nb`′(2) + 1 = nb`′(3), then (α, β, γ) =
(2, 3, 1), and if nb`′(1) = nb`′(2) = nb`′(3) + 1 or nb`′(1) = nb`′(2) − 1 = nb`′(3), then
(α, β, γ) = (3, 1, 2). For all 1 ≤ i ≤ p and for any a, b ∈ Pi such that ab ∈ E(G), it is easy to
verify that c`(a) 6= c`(b), for any of the labellings ` proposed below.

In what follows, let x be any vertex in X = N(u)
p⋂
i=1

Pi, let y be any vertex in Y =

N(v)
p⋂
i=1

Pi, and let w be any vertex in W = (N(u) ∪ N(v))
p⋂
i=1

Pi. Also, for all 1 ≤ i ≤ p,

let `(Pi) = (`(uvi1), `(vi1vi2), `(vi2vi3), `(vi3vi4), `(vi4v)).

Case p = 2:

All the possible subcases are illustrated in Table 3.1. Note that, in all of these subcases, the label-
ling ` has the property that

∑
x∈X

`(ux) =
∑
y∈Y

`(vy), and so, c`(u) 6= c`(v) since c`′(u) 6= c`′(v)

by the inductive hypothesis. Furthermore, note that the maximum colour of any vertex w ∈ W
is 6, no matter the labelling. Lastly, it may seem that the subcase c`′(u) + α + β 6= c`′(u′),
c`′(v) + α + β = c`′(v′) has not been treated, but it is actually symmetric to the subcase where
c`′(u) + α+ β = c`′(u′), c`′(v) + α+ β 6= c`′(v′), which has been treated through subcases 2-4
in Table 3.1.

Case p ≥ 3:

Give the same labellings as in the case p = 2 for P1 and P2. For the remainder of the paths, simply
label them so that the labelling ` is equitable (and proper) and so that, for all 3 ≤ j ≤ p, we
have `(uvj1) = `(vvj4). Note that, in this case, for all x ∈ X , it is not possible for c`(u) = c`(x).
Indeed, if c`(u) ≥ 7, then we are done since, for all w ∈ W , we have that c`(w) ≤ 6. Otherwise,
if c`(u) = 6, then, for all x ∈ X , we have that `(ux) ≤ 2, and so, c`(x) ≤ 5. Lastly, if c`(u) = 5
(note that this is the last case since c`(u) ≥ 5), then, for all x ∈ X , we have that `(ux) = 1, and
so, c`(x) ≤ 4. The same can be said for all y ∈ Y and v.

Case p = 1:

All the possible subcases are illustrated in Table 3.2. Note that, in the first six of these subcases,
the labelling ` has the property that `(uv1) = `(vv4), and so, c`(u) 6= c`(v) since c`′(u) 6= c`′(v)
by the inductive hypothesis. Furthermore, note that the logical subcase that would follow the last
subcase in Table 3.2 would be that c`′(u) + α = c`′(u′), c`′(v) + β = c`′(v′), c`′(u) + β 6=

3.2 – Bipartite graphs G with χΣ(G) < χΣ(G) 47

Subcase Labelling of No conflicts between u (v resp.)
conditions paths P1 and P2 and any of its neighbours in P1 or P2

c`′(u) + α+ β 6= c`′(u′),
c`′(v) + α+ β 6= c`′(v′)

`(P1) = (α, β, γ, α, β)
`(P2) = (β, α, γ, γ, α)

If α = 1: c`(w) ≤ 4 & c`(u), c`(v) ≥ 5.
If α = 2: c`(u), c`(v) ≥ 7.

If α = 3: c`(w) ≤ 5 & c`(u), c`(v) ≥ 6.
c`′(u) + α+ β = c`′(u′),
c`′(v) + 2α 6= c`′(v′),
c`′(v) + 2α 6= α+ γ

`(P1) = (α, β, β, γ, α)
`(P2) = (α, β, γ, γ, α)

If α = 1: c`(x) = 3 & c`(u) ≥ 4.
If α = 2: c`(x) = 5 & c`(u) ≥ 6.

If α = 3: c`(u) ≥ 8.
c`′(u) + α+ β = c`′(u′),
c`′(v) + 2α 6= c`′(v′),
c`′(v) + 2α = α+ γ

`(P1) = (α, γ, β, β, α)
`(P2) = (α, γ, γ, β, α)

Since c`′(u) 6= c`′(v), then
c`′(u) + 2α 6= α+ γ.

c`′(u) + α+ β = c`′(u′),
c`′(v) + 2α = c`′(v′)

`(P1) = (γ, α, β, γ, α)
`(P2) = (α, γ, β, β, γ)

If α = 1: c`(w) ≤ 5 & c`(u), c`(v) ≥ 6.
If α = 2: c`(w) ≤ 4 & c`(u), c`(v) ≥ 5.

If α = 3: c`(u), c`(v) ≥ 7.

Table 3.1 – The four subcases of the proof of Theorem 3.2.1 for p = 2.

c`′(v) +α, c`′(v) +α = 2α, and c`′(u) + β = β+α. However, this subcase cannot exist since, if
c`′(v) +α = 2α, then c`′(v) = α, and if c`′(u) +β = β+α, then c`′(u) = α, and hence, we have
that c`′(u) = c`′(v), a contradiction. Lastly, it may seem that the subcase c`′(u) + α 6= c`′(u′),
c`′(v) + α = c`′(v′) has not been treated, but again, it is actually symmetric to the subcase where
c`′(u) + α = c`′(u′), c`′(v) + α 6= c`′(v′), which has been treated through subcases 4-12 in
Table 3.2. This concludes the proof as all of the possible cases have now been covered. �

3.2.2 Bipartite graphs G with χΣ(G) = 2

We start by introducing two operations, Operations 1 and 2, which, when applied to graphs G
with χΣ(G) ≥ 3, provide more graphs G′ with χΣ(G′) ≥ 3.

Proposition 3.2.3 (Operation 1). Let G be a multigraph with χΣ(G) ≥ 3. If G has an edge uv
with multiplicity at least 2, then the graph G′ obtained from G by subdividing one of these edges
uv four times verifies χΣ(G′) ≥ 3.

Proof. Let G′ be obtained from G by replacing one edge uv with a path (u,w, x, y, z, v) of
length 5. Assume there exists `′, an equitable proper 2-labelling of G′. Assume that `′(uw) = α
for some α ∈ {1, 2}, and that `′(wx) = β for some β ∈ {1, 2}. Set {α} = {1, 2} \ {α} and
{β} = {1, 2}\{β}. Then, by Observation 2.1.5, we have `′(xy) = α, `′(yz) = β, and `′(zv) = α.
By the properness of `′, since u and v are adjacent in G′, we have that c`′(u) 6= c`′(v). This im-
plies that the 2-labelling ` of G obtained from `′ by assigning label α to the edge uv that was
subdivided for constructing G′, and setting `(e) = `′(e) for every e ∈ E(G) ∩ E(G′), is proper.
Furthermore, we have {`′(wx), `′(yz)} = {`′(xy), `′(zv)} = {1, 2}. Hence, nb`(1) = nb`′(1)−2
and nb`(2) = nb`′(2) − 2. So, ` is an equitable proper 2-labelling of G, a contradiction. Thus,
χΣ(G′) ≥ 3. �

Proposition 3.2.4 (Operation 2). Let G be a graph with χΣ(G) ≥ 3. If G has an edge uv with
d(u) = d(v) = 2, then the graph G′ obtained from G by subdividing uv four times verifies
χΣ(G′) ≥ 3.

48 CHAPITRE 3 — Equitable proper labellings

Subcase Labelling No conflicts between u (v resp.)
conditions of path P1 and any of its neighbours in P1

c`′ (u) + α 6= c`′ (u′),
c`′ (v) + α 6= c`′ (v′),
c`′ (v) + α 6= β + α,
c`′ (u) + α 6= γ + α

`(P1) = (α, γ, β, β, α) By the conditions of the subcase.

c`′ (u) + α 6= c`′ (u′),
c`′ (v) + α 6= c`′ (v′),
c`′ (v) + α 6= β + α,
c`′ (u) + α = γ + α

`(P1) = (α, β, β, γ, α) Since c`′ (u) 6= c`′ (v), then c`′ (v) + α 6= γ + α.

c`′ (u) + α 6= c`′ (u′),
c`′ (v) + α 6= c`′ (v′),
c`′ (v) + α = β + α

`(P1) = (α, β, β, γ, α) Since c`′ (u) 6= c`′ (v), then
c`′ (u) + α 6= β + α.

c`′ (u) + α = c`′ (u′),
c`′ (v) + β 6= c`′ (v′),
c`′ (v) + β 6= β + γ,
c`′ (u) + β 6= β + α

`(P1) = (β, α, α, γ, β) By the conditions of the subcase.

c`′ (u) + α = c`′ (u′),
c`′ (v) + β 6= c`′ (v′),
c`′ (v) + β 6= β + γ,
c`′ (u) + β = β + α

`(P1) = (β, γ, α, α, β) Since c`′ (u) 6= c`′ (v), then
c`′ (v) + β 6= β + α.

c`′ (u) + α = c`′ (u′),
c`′ (v) + β 6= c`′ (v′),
c`′ (v) + β = β + γ

`(P1) = (β, γ, α, α, β) Since c`′ (u) 6= c`′ (v), then
c`′ (u) + β 6= β + γ.

c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ 6= γ + α,
c`′ (u) + β 6= 2β

`(P1) = (β, β, α, α, γ) By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ 6= γ + α,
c`′ (u) + β = 2β

`(P1) = (γ, α, β, β, α)

Since c`′ (u) = β, then
c`′ (v) = 2β − α, c`′ (u′) = β + α,
c`′ (v′) = 3β − α, c`(u) = β + γ, and
c`(v) = 2β. It can then be verified

that there are no conflicts.
c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β = c`′ (v) + α,
c`′ (v) + γ = γ + α

`(P1) = (β, α, α, β, γ)

By the last two conditions of the
subcase, c`′ (u) + β = 2α.

Thus, c`(u) 6= β + α.
Note also that c`(u) 6= c`(v).

c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β 6= c`′ (v) + α,
c`′ (v) + α 6= 2α,
c`′ (u) + β 6= 2β

`(P1) = (β, β, γ, α, α) By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β 6= c`′ (v) + α,
c`′ (v) + α 6= 2α,
c`′ (u) + β = 2β

`(P1) = (β, α, γ, β, α)

Note that β ≥ 2 since c`′ (u) = β.
If β = 2: c`(u) = 4, c`(v) = 5, c`(v′) = 6 &

c`(u′) = c`(x) = c`(y) = 3.
If β = 3: c`(u) = 6, c`(v) = 4, c`(v′) = 7 &

c`(u′) = c`(x) = c`(y) = 5.
c`′ (u) + α = c`′ (u′),
c`′ (v) + β = c`′ (v′),

c`′ (u) + β 6= c`′ (v) + α,
c`′ (v) + α = 2α,
c`′ (u) + β 6= β + α

`(P1) = (β, α, γ, β, α) By the conditions of the subcase.
Note also that c`(u) 6= c`(v).

Table 3.2 – The twelve subcases of the proof of Theorem 3.2.1 for p = 1.

Proof. Let us denote by (u,w, x, y, z, v) the path of length 5 ofG′ that results from the subdivision
of uv. Also, let u′ and v′ be the other neighbours of u and v respectively. Assume there exists
`′, an equitable proper 2-labelling of G′ such that `′(u′u) = α for some α ∈ {1, 2}, and that
`′(uw) = β for some β ∈ {1, 2}. Set {α} = {1, 2} \ {α} and {β} = {1, 2} \ {β}. According to
Observation 2.1.5, we have `′(wx) = α, `′(xy) = β, `′(yz) = α, `′(zv) = β, and `′(vv′) = α.

3.2 – Bipartite graphs G with χΣ(G) < χΣ(G) 49

v1

v2

v3

v4

v5

v6

1 1

2 2

22 1 22

(a) With parallel edges.

v1

v2

v3

v4

v5

v6

v7v8v9v10

2

2

2

22

2

1

1

1

122

1

(b) With adjacent degree-2 vertices.

Figure 3.4 – Proper 2-labellings of two bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3.

It follows that the 2-labelling ` of G obtained from `′ by setting `(uv) = β and `(e) = `′(e) for
every e ∈ E(G)∩E(G′) is proper. In particular, note that the above implies that c`(u) = c`′(u) 6=
c`′(v) = c`(v), although u and v are not adjacent in G′. Furthermore, we have {`′(wx), `′(yz)} =
{`′(xy), `′(zv)} = {1, 2}. This implies that nb`(1) = nb`′(1)− 2 and nb`(2) = nb`′(2)− 2. So,
` is an equitable proper 2-labelling of G, a contradiction. Thus, χΣ(G′) ≥ 3. �

We note in particular that Operations 1 and 2 mentioned in Propositions 3.2.3 and 3.2.4, when
performed on bipartite graphs, yield graphs that are also bipartite. Also, by carefully applying
these operations, we can make sure that the resulting graphs are not odd multi-cacti. From this
observation, we come up with two infinite families of bipartite graphs G verifying 2 = χΣ(G) <
χΣ(G) = 3.

The first such family is obtained by repeatedly applying Operations 1 and 2 from the cubic
bipartite multigraph depicted in Figure 3.4(a). This graph indeed has the following properties:

Proposition 3.2.5. Let G be the cubic bipartite multigraph depicted in Figure 3.4(a). Then,
χΣ(G) = 2 and χΣ(G) = 3.

Proof. Since G is cubic, we have χΣ(G) > 1 and thus, χΣ(G) > 1. Actually, we even have
χΣ(G) = 2 since G does not match the definition of an odd multi-cactus (a proper 2-labelling
is also included in Figure 3.4(a)). Towards a contradiction, assume G admits an equitable proper
2-labelling `. In order to have c`(v1) 6= c`(v2), we have `(v1v3) 6= `(v2v4). Similarly, since
c`(v5) 6= c`(v6), we have `(v5v3) 6= `(v6v4). Now, since c`(v3) 6= c`(v4), we have `(v1v3) =
`(v3v5) and `(v2v4) = `(v4v6), since otherwise, c`(v3) = c`(v4) = 1 + 2 + `(v3v4) by the
previous argument. Thus, without loss of generality, we may assume that `(v1v3) = `(v3v5) = 1
and `(v2v4) = `(v4v6) = 2.

Assume now that `(v3v4) = 1. This gives c`(v3) = 3 and c`(v4) = 5. Now, note that the two
edges joining v1 and v2, and similarly the two edges joining v5 and v6, cannot both be assigned
label 1 (as, otherwise, v1 or v5 would be in conflict with v3). Similarly, to avoid a conflict with v4,
the two edges joining v1 and v2, and similarly the two edges joining v5 and v6, cannot be assigned
labels 1 and 2 respectively. Thus, these four edges must be assigned label 2, which means that
nb`(1) = 3 and nb`(2) = 6. This is a contradiction to the equitability of `. Similar arguments can

50 CHAPITRE 3 — Equitable proper labellings

be used to show that we cannot have `(v3v4) = 2 either. Thus, χΣ(G) > 2, and one can easily
come up with equitable proper 3-labellings of G. �

A second infinite family of bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3 is obtai-
ned by repeatedly applying Operation 2, described in Theorem 3.2.4, to the graph depicted in
Figure 3.4(b) (note that this is K3,3 with one edge subdivided four times). Note that this does not
result in an odd multi-cactus. The graph depicted in Figure 3.4(b) has the following properties:

Proposition 3.2.6. Let G be the subcubic bipartite graph depicted in Figure 3.4(b). Then,
χΣ(G) = 2 and χΣ(G) = 3.

Proof. Again, G is not locally irregular and does not match the structure of an odd multi-cactus, so
χΣ(G) = 2 (a proper 2-labelling is also included in Figure 3.4(b)). We now prove that χΣ(G) = 3.
Let us suppose that there exists an equitable proper 2-labelling ` of G. By Observation 2.1.5, we
must have `(v1v10) 6= `(v9v8) and `(v7v6) 6= `(v9v8), and thus, `(v1v10) = `(v7v6). Moreover,
either `(v10v9) = `(v1v10) = `(v7v6) and `(v9v8) = `(v8v7) or `(v1v10) = `(v8v7) = `(v7v6)
and `(v10v9) = `(v9v8). This implies that each of the labels 1 and 2 appears exactly twice in the
edges v10v9, v9v8, v8v7, v7v6.

Let G′ be the graph obtained from G by replacing the path P = (v1, v10, v9, v8, v7, v6) by a
single edge v1v6. Moreover, let `′ be the labelling of G′ such that `′(e) = `(e) for every edge
e ∈ E(G′)∩E(G), and `′(v1v6) = `(v1v10). Since ` is equitable and due to the previous remark,
`′ is an equitable 2-labelling of G. Now, it suffices to show that `′ is also proper. If this is the case,
we arrive at a contradiction since G′ is isomorphic to K3,3 and χΣ(K3,3) = 3 (as proved in [18]).

For the sake of contradiction, suppose that `′ is not proper. Since ` is a proper labelling of G,
it follows that c`′(v1) = c`′(v6) in G′ and that these are the only two vertices that are in conflict.
Observe that G′ is a cubic graph and thus, for each v ∈ V (G′), we have c`′(v) ∈ {3, 4, 5, 6}. We
distinguish the following cases:

— c`′(v1) = c`′(v6) = 3.
In this case, `′(v4v6) = `′(v2v1) = `′(v3v1) = `′(v5v6) = 1, and so,
c`′(v2), c`′(v3), c`′(v4), c`′(v5) 6= 6. Moreover, so that 3 = c`′(v1) /∈ {c`′(v2), c`′(v3)}
and 3 = c`′(v6) /∈ {c`′(v4), c`′(v5)}, we have that c`′(v2), c`′(v3), c`′(v4), c`′(v5) ∈
{4, 5}. By symmetry, let us assume that c`′(v2) = 5. Then, we must have c`′(v4) =
c`′(v5) = 4 which means `′(v3v4) = 1 and that we must have c`′(v3) = 5, which is
impossible since `′(v3v4) = 1.

— c`′(v1) = c`′(v6) = 4.
First, let us assume that `′(v1v6) = 2. In this case, `′(v4v6) = `′(v2v1) = `′(v3v1) =
`′(v5v6) = 1, and so, c`′(v2), c`′(v3), c`′(v4), c`′(v5) 6= 6. Moreover, so that 4 =
c`′(v1) /∈ {c`′(v2), c`′(v3)} and 4 = c`′(v6) /∈ {c`′(v4), c`′(v5)}, we have that
c`′(v2), c`′(v3), c`′(v4), c`′(v5) ∈ {3, 5}. By symmetry, let us assume that c`′(v2) = 5.
Then, we have c`′(v4) ∈ {4, 5}, which conflicts with either v2 or v6.
Second, let us assume that `′(v1v6) = 1. In this case, we may assume by symmetry that
`′(v4v6) = `′(v2v1) = 1 and `′(v3v1) = `′(v5v6) = 2, and so, c`′(v2), c`′(v4) ∈ {3, 5}.
By symmetry, let us assume that c`′(v2) = 5. Therefore, `′(v2v4) = 2 and c`′(v4) ∈ {4, 5}
which conflicts either with v2 or v6.

— c`′(v1) = c`′(v6) ∈ {5, 6}.
These cases can be proved similarly to the previous cases by switching labels 1 and 2.

�

3.2 – Bipartite graphs G with χΣ(G) < χΣ(G) 51

(a) (b)

(c) (d)

Figure 3.5 – Four cubic bipartite graphs G with χΣ(G) = 3.

Theorem 3.2.7. There exist infinitely many bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3.

Proof. The proof follows directly by Propositions 3.2.3, 3.2.4, 3.2.5 and 3.2.6. �

We ran computer programs to come up with additional examples of bipartite graphs admitting
no equitable proper 2-labellings. We are in particular interested in finding such graphs that cannot
be obtained through the application of Operations 1 and 2. We were able to check all cubic bipartite
graphs with up to 25 vertices, and all subcubic (non-cubic) bipartite graphs with up to 17 vertices.
It turns out that, for this restricted sampling, all bipartite graphs G with 2 = χΣ(G) < χΣ(G) = 3
are either small, or modifications of these graphs obtained through Operations 1 and 2 described
earlier. These graphs are illustrated in Figure 3.5.

All these graphs share particular properties of interest. Notably, they share two important pro-
perties of odd multi-cacti, as they are 2-connected and both their partition classes are of odd size.
All of these graphs are also related to K3,3 somehow. For instance, the graph in Figure 3.5(c) can
be obtained by “gluing” two K3,3’s one (with red edges) onto the other (with blue edges) (note
indeed that by contracting the bottom five vertices to a single vertex (and similarly for the top
five vertices), it results in K3,3). Also, the graph in Figure 3.5(d) can be obtained by subdividing
twice the edges of a perfect matching of K3,3 (resulting in the red edges) and joining the resulting
vertices to two new degree-3 vertices (via blue edges). In the non-cubic case, we observed that re-
peatedly applying Operation 1 on the edges of a perfect matching ofK3,3 yields subcubic bipartite
graphs G with 2 = χΣ(G) < χΣ(G) = 3.

It might be that the four graphs (already mentioned in [113]) depicted in Figure 3.5 are the
only cubic bipartite graphs G with χΣ(G) = 2 and χΣ(G) = 3. Our feeling is that as soon as a

52 CHAPITRE 3 — Equitable proper labellings

cubic bipartite graph is large enough, there should always be several ways to locally alter a proper
2-labelling to make it equitable. As a result, we were unsuccessful in coming up with infinite
families of such graphs. For instance, a natural way for generalising the graphs in Figures 3.5(a)
and 3.5(b) is as follows: for any n ≡ 2 mod 4, we denote byC×n the cubic graph obtained fromCn
by adding an edge between any two antipodal vertices. Note indeed that the graph in Figure 3.5(a),
which isK3,3, is alsoC×6 , while the graph in Figure 3.5(b) isC×10. Our experimentations show that,
unfortunately, it seems that χΣ(C×n) = 2 whenever n ≥ 14.

In light of these arguments, let us finish this section by raising the following questions:

Question 3.2.8. Let G be a bipartite graph with 2 = χΣ(G) < χΣ(G) = 3.
— Can we have δ(G) = 1?
— Can we have ∆(G) ≥ 4?
— Can G have cut vertices?
— Can we have |V (G)| 6≡ 2 mod 4?
— Can G be cubic with |V (G)| being arbitrarily large?
— Was G obtained from K3,3 by repeatedly applying certain operations?

3.3 Equitable proper labellings of regular bipartite graphs

In this section, we mainly prove that, for any k ≥ 3, every k-regular bipartite graph admits
equitable proper k-labellings. As a particular case, we get that cubic bipartite graphs form another
family of graphs verifying Conjecture 2.1.2.

Our proof makes use of the following result of Kőnig from 1916, which says that regular
bipartite graphs are class 1. Recall that a proper edge-colouring of a graph is an edge-colouring
where no two adjacent edges get assigned the same colour. In other words, the edge-set of any
k-regular bipartite graph can be partitioned into k perfect matchings.

Theorem 3.3.1 (Kőnig [87]). All k-regular bipartite graphs admit proper k-edge-colourings.

We are now ready for our main result.

Theorem 3.3.2. For all k ≥ 3, if G = (A,B,E) is a k-regular bipartite graph, then χΣ(G) ≤ k.

Proof. Initially, apply a proper k-edge colouring to G, which exists by Theorem 3.3.1. This initial
k-labelling ` is equitable, but it is not proper, since every vertex has colour p = k(k+1)

2 (each
vertex is incident to exactly k edges, each with a unique label from 1 to k). The following four-
step algorithm which makes local swaps of labels is applied to the k-labelling ` of G, until the
k-labelling ` becomes proper. Note that the algorithm only swaps labels of edges, and therefore,
the k-labelling ` remains equitable throughout. In what follows, for a vertex v ∈ V (G), an edge
uv ∈ E(G), and an integer i ≥ 1, let ci`(v) and `i(uv) be the colour of the vertex v and the label
of the edge uv respectively, after the (i− 1)th iteration (and before the ith iteration) of the current
step being considered. Also, the superscript is omitted from the colour notation when the current
colour is being mentioned. The algorithm begins as follows:

1. While there exists a subgraph of G isomorphic to P3 = (u, x, v) such that u, v ∈ A and
c`(u) = c`(v) = p, swap `(ux) with `(vx).

3.3 – Equitable proper labellings of regular bipartite graphs 53

There are three things to note after the first step of the algorithm. The first is that, for each pair
of vertices u, v ∈ A that are dealt with in the ith iteration of Step 1, ci+1

` (u) 6= p and ci+1
` (v) 6= p

for all i ≥ 1. Indeed, their colours were p before the step was executed but since `(ux) 6= `(vx)
for all these pairs u, v ∈ A (x is incident to exactly one edge with label j for all 1 ≤ j ≤ k),
their colours cannot be p after the step is executed. Also, only the labels of edges incident to the
vertices u and v are changed and so, the edges whose labels are changed at each execution of
Step 1 are all disjoint. The second thing is that, for every vertex u ∈ B, we have c`(u) = p. The
third thing is that, once Step 1 can no longer be executed, for any two vertices u, v ∈ A such that
c`(u) = c`(v) = p, we have that dist(u, v) ≥ 4. Now, the algorithm proceeds as follows:

2. While there exists an induced subgraph of G isomorphic to P5 = (u, x, z, y, v) such that
u, v ∈ A and c`(u) = c`(v) = p,

(a) swap `(ux) with `(xz) if this results in c`(z) 6= p;

(b) else, swap `(vy) with `(yz) if this results in c`(z) 6= p;

(c) else, swap `(ux) with `(xz) and `(vy) with `(yz).

Claim 3.3.3. If one of Steps 2(a)-(c) is executed on the ith iteration of Step 2, then ci+1
` (z) 6= p.

Moreover, after any of them is executed, each vertex in B is still incident to exactly one edge with
label j for all 1 ≤ j ≤ k.

Proof of the claim. If Step 2(a) or Step 2(b) is executed, then ci+1
` (z) 6= p by definition. If Step

2(a) cannot be executed, then ci`(z) − `i(xz) + `i(ux) = p. Observe that `i(ux) 6= `i(xz) and
`i(vy) 6= `i(yz) since x, y ∈ B and each vertex inB is still incident to exactly one edge with label
j for all 1 ≤ j ≤ k (trivial induction on the number of times such a process has been performed
before this step). Therefore, ci`(z)− `i(xz) + `i(ux)− `i(yz) + `i(vy) = p− `i(yz) + `i(vy) 6= p
and so, ci+1

` (z) 6= p if Step 2(c) is executed. �

Note that in all cases of Step 2, after its ith execution, either ci+1
` (u) 6= p or ci+1

` (v) 6= p.
Moreover, if ci+1

` (u) = p (ci+1
` (v) = p respectively), then none of the labels of the edges incident

to u (v respectively) were changed. Note that Step 2 eventually ends since no new vertices get
colour p by Claim 3.3.3 and at least one vertex changes from colour p to another colour after each
execution of Step 2. Once Step 2 can no longer be executed, for any two vertices u, v ∈ A such
that c`(u) = c`(v) = p, we have that dist(u, v) > 4. The algorithm proceeds as follows:

3. While there exists a subgraph of G isomorphic to C4 = (u, x, z, y, u) such that u ∈ A and
c`(u) = p,

(a) swap `(ux) with `(xz) if this results in c`(z) 6= p;

(b) else, swap `(uy) with `(yz) if this results in c`(z) 6= p;

(c) else, swap `(ux) with `(xz) and `(uy) with `(yz).

From a proof analogous to that of Claim 3.3.3, if one of Steps 3(a)-(c) is executed at the ith

iteration of Step 3, then ci+1
` (z) 6= p. Furthermore, in all cases of Step 3, after its ith iteration, we

have ci+1
` (u) 6= p, which is obvious except in the case that Step 3(c) was executed. Note that if

ci+1
` (u) = p after the ith iteration of Step 3(c), then ci`(u)−`i(ux)+`i(xz)−`i(uy)+`i(yz) = p.

In this case, `i(xz) − `i(ux) = `i(uy) − `i(yz), since ci`(u) = p. But then, since Steps 3(a) and
3(b) were not executable, ci`(z)− `i(xz) + `i(ux) = ci`(z)− `i(yz) + `i(uy) = p, which implies
that `i(ux) − `i(xz) = `i(uy) − `i(yz). This is a contradiction since both `i(xz) − `i(ux) =

54 CHAPITRE 3 — Equitable proper labellings

`i(uy) − `i(yz) and `i(ux) − `i(xz) = `i(uy) − `i(yz) hold if and only if `i(xz) = `i(ux), but
`i(xz) 6= `i(ux) since x, y ∈ B and each of the vertices of B is still incident to exactly one edge
with label j for all 1 ≤ j ≤ k, even after each iteration of Step 3 is executed until Step 3 can no
longer be executed. Therefore, Step 3(a) or 3(b) was executable and so, Step 3(c) would not have
been executed.

Note that Step 3 eventually ends since no new vertices get colour p and one vertex changes
from colour p to another colour after each execution of Step 3. Once Step 3 can no longer be
executed, then for any vertex u ∈ A such that c`(u) = p, we have that for any two vertices
x, y ∈ N(u), it holds that N(x) ∩ N(y) = u. The remainder of the algorithm depends on the
value of k with the case where k = 3 being different from the case k ≥ 4. In what follows, we
denote by Sx the star with x leaves (being isomorphic to K1,x).

Case k = 3: note that p = 6 in this case. The algorithm proceeds as follows:

4. While there exists a subgraph of G isomorphic to S3, with center u and leaves x, y, z such
that u ∈ A and for all w ∈ N(u), we have that c`(u) = c`(w) = 6, then, w.l.o.g., we may
assume that `i(ux) = 1, `i(uy) = 2, and `i(uz) = 3, and
(a) if for some w ∈ N(u) and some v ∈ N(w) \ {u}, swapping `(uw) with `(wv) results

in c`(v) 6= 6, then swap `(uw) with `(wv);
(b) else, for all q ∈ N(x)\{u}, for all r ∈ N(y)\{u}, and for all s ∈ N(z)\{u}, remove

the labels of the edges xq, yr, and zs, for a total of six labels removed. Note that two 1s,
two 2s, and two 3s have been removed since each vertex in the closed neighbourhood
of u is incident to exactly one edge with label j for all 1 ≤ j ≤ 3. Then, assuming this
is the ith iteration of Step 4, for all q ∈ N(x) \ {u}, for all r ∈ N(y) \ {u}, and for all
s ∈ N(z) \ {u}, set `i+1(xq) = 2, `i+1(yr) = 3, and `i+1(zs) = 1.

First, note that only edges incident to vertices at distance at most 2 from u have their labels
changed and so each execution of Step 4 deals with disjoint vertices and edges in relation to the
other executions of Step 4. If Step 4(a) is executed at the ith iteration, then ci+1

` (u) 6= 6 and
no other vertex changed from colour 6 to another colour or from another colour to 6. If Step
4(b) is executed at the ith iteration, then ci+1

` (u) = 6 remains unchanged, however, ci+1
` (x) = 5,

ci+1
` (y) = 8, and ci+1

` (z) = 5. Moreover, since Step 4(a) was not executed, then for all q ∈ N(x)\
{u}, after the ith iteration of Step 4 (specifically Step 4(b) was executed), we have ci+1

` (q) 6=
ci+1
` (x) and ci+1

` (q) 6= 6. Indeed, let α, β = N(x) \ {u}. For exactly one q ∈ N(x) \ {u}, say
α, the label of xα was changed from 3 to 2. But since Step 4(a) was not executed, we have that
ci`(α) − 3 + 1 = 6 and so, ci`(α) = 8. Therefore, ci+1

` (α) = 7. Also since Step 4(a) was not
executed, we have that ci`(β)− 2 + 1 = 6 and so, ci`(β) = 7. Since none of the labels incident to β
changed, ci`(β) = ci+1

` (β) = 7. Analogously, for all r ∈ N(y) \ {u} and for all s ∈ N(z) \ {u},
we have ci+1

` (r) 6= ci+1
` (y), ci+1

` (r) 6= 6, ci+1
` (s) 6= ci+1

` (z), and ci+1
` (s) 6= 6. Indeed, it is easy

to check that for all r ∈ N(y) \ {u} and for all s ∈ N(z) \ {u}, we have ci+1
` (r) = 7 and

ci+1
` (s) = 4.

Note that Step 4 eventually ends since either c`(u) 6= 6 or all of the neighbours of u have
a colour different from 6 after each execution of Step 4, no vertices change to colour 6, and no
new vertices come into conflict in terms of colour. Once, Step 4 can no longer be executed, the 3-
labelling ` is proper and equitable. Indeed, there are no more vertices in A whose colour conflicts
with a vertex in B.

Case k ≥ 4: the algorithm proceeds as follows:

3.4 – Conclusion 55

q r s

x y

u

1 2 1

∆− 1 ∆

(a) Before Step 4(b) is executed.

q r s

x y

u

∆ 1 2

1 ∆− 1

(b) After Step 4(b) is executed.

Figure 3.6 – The case of the proof of Theorem 3.3.2 before and after Step 4(b) is executed when
k ≥ 4.

4. While there exists a subgraph of G isomorphic to Sk, with center u such that u ∈ A and
for all w ∈ N(u), we have that c`(u) = c`(w) = p (see Figure 3.6),

(a) if for some w ∈ N(u) and some v ∈ N(w) \ {u}, swapping `(uw) with `(wv) results
in c`(v) 6= p, then swap `(uw) with `(wv);

(b) else, let x, y ∈ N(u), q, r ∈ N(x) \ {u} and s ∈ N(y) \ {u} such that, if this
is the ith iteration of Step 4, `i(ux) = ∆ − 1, `i(uy) = ∆, `i(xq) = 1, `i(xr) = 2,
`i(ys) = 1, and swap the labels of these edges so that `i+1(ux) = 1, `i+1(uy) = ∆−1,
`i+1(xq) = ∆, `i+1(xr) = 1, and `i+1(ys) = 2 (see Figure 3.6). Note that such a
labelling `i exists since each vertex in the closed neighbourhood of u is incident to
exactly one edge with label j for all 1 ≤ j ≤ k.

First, note that only edges incident to vertices at distance at most 2 from u have their labels
changed and so each execution of Step 4 deals with disjoint vertices and edges in relation to the
other executions of Step 4. If Step 4(a) is executed at the ith iteration of Step 4, then ci+1

` (u) 6= p
and no other vertex changed from colour p to another colour or from another colour to p. If Step
4(b) is executed at the ith iteration of Step 4, then ci+1

` (u) = p−∆ + 1 6= p, ci+1
` (x) = p−∆ +

1 + ∆− 2 + 1 = p, ci+1
` (y) = p−∆ + ∆− 1− 1 + 2 = p, and since Step 4(a) was not executed,

∆ 6= ∆− 1, and ∆ 6= 2, we have that ci+1
` (q) 6= p, ci+1

` (r) 6= p, and ci+1
` (s) 6= p.

Note that Step 4 eventually ends since c`(u) 6= p after each execution of Step 4 and no new
vertices come into conflict in terms of colour. Once, Step 4 can no longer be executed, the k-
labelling ` is proper and equitable. Indeed, there are no more vertices in A whose colour conflicts
with a vertex in B. �

3.4 Conclusion

In this chapter, we have provided several results on equitable proper labellings, a notion
that was previously introduced and studied in [18] and [113]. Answering a question of Senhaji,
we proved that there exist infinitely many graphs G with χΣ(G) < χΣ(G). Actually, unless
P=NP, deciding if a graph G verifies χΣ(G) = χΣ(G) cannot be done in polynomial time. In
the bipartite case, we exhibited operations for building infinitely many bipartite graphs G with
χΣ(G) < χΣ(G). We also proved that, for every bipartite graph G with χΣ(G) = 3, we have

56 CHAPITRE 3 — Equitable proper labellings

χΣ(G) = 3. Finally, we proved that χΣ(G) ≤ k holds for every k-regular bipartite graph G with
k ≥ 3.

Regarding our results, some aspects remain open.
— In particular, we still wonder whether there is a good characterisation of bipartite graphs

G with 2 = χΣ(G) < χΣ(G) = 3. Recall that all such graphs we have exhibited share
very particular properties, which led to raising Question 3.2.8, whose aspects are very
intriguing. If such a good characterisation was to not exist, then that would be an interes-
ting contrast with the non-equitable case (regarding the characterisation of odd multi-cacti
from [116], presented in Section 2.3.1).

— Regarding Conjecture 2.1.2 (which, recall, claims that for almost all graphs G, χΣ(G) ≤
3), only the case k = 3 of our Theorem 3.3.2 gives a satisfying answer. A next step could
be to prove Conjecture 2.1.2 for all k-regular bipartite graphs with k ≥ 4. Recall that
Kőnig’s Theorem (Theorem 3.3.1) was a nice tool for ensuring equitability in our proof of
Theorem 3.3.2.

More generally speaking, there are still fundamental aspects of Conjecture 2.1.2 which we
barely understand. In particular, it would be nice to provide any general constant upper bound on
χΣ. Providing such a bound even in the bipartite case would already be something. Also, it would
be interesting to know whether K4 is the only connected graph for which χΣ is more than 3.

CHAPTER 4
Minimising the sum of

assigned labels
In this chapter, we study proper labellings of graphs with the extra requirement that the
sum of assigned labels must be as small as possible.
We investigate several aspects of this problem, covering algorithmic and combinatorial
aspects. In particular, we prove that the problem of designing proper labellings with
minimum label sum is NP-hard in general, but solvable in polynomial time for graphs
with bounded treewidth. We also conjecture that for almost every connected graph G
there should be a proper labelling with label sum at most 2|E(G)|, which we verify for
several classes of graphs.
This chapter presents a joint work with J. Bensmail and N. Nisse, published in [29] and
presented in [28].

4.1 First observations and classes of graphs 59
4.1.1 First observations and remarks 59
4.1.2 Simple classes of graphs 60

4.2 Complexity aspects . 63
4.2.1 A negative result for bipartite graphs 63
4.2.2 A positive result for graphs with bounded treewidth 66

4.3 Particular behaviours of the problem 69
4.3.1 Minimising the maximum colour versus minimising the sum

of labels . 69
4.3.2 Using larger labels can be arbitrarily better 72

4.4 Bounds . 74
4.4.1 Graphs with large chromatic number 74
4.4.2 Bipartite graphs . 75

4.4.2.1 Conjecture 2.1.4 for nice bipartite graphs 76
4.4.2.2 Lower bounds for some bipartite graphs 76
4.4.2.3 Improved upper bounds 78
4.4.2.4 Trees . 79

4.5 Conclusion . 81

57

58 CHAPITRE 4 — Minimising the sum of assigned labels

Recall that the problem of finding a proper k-labelling for a given graphG, is equivalent to the
problem of finding a locally irregular multigraph M with at most k parallel edges between each
pair of vertices, constructed from G by multiplying its edges in a particular fashion. In their work
introducing the notion of the irregularity strength of a graph (where M is required to be irregu-
lar rather than locally irregular), the authors of [50] regard edge multiplications as an expensive
operation and, as such, they want to limit it as much as possible.

Minimising, however, the maximum label that is used to create a proper labelling of a graphG,
does not always guarantee that we have actually minimised the cost that corresponds to the edge
multiplications described above. For example, a 2-labelling ` that assigns label 2 to three edges
of G and label 1 to the rest is more expensive (in terms of how many edges the corresponding
multigraphs have) than a 3-labelling `′ that assigns label 3 to only one edge of G and label 1 to the
rest. The 1-2-3 Conjecture, if true, would imply that every nice graph G admits a proper labelling
where the sum of assigned labels is at most 3|E(G)|; but it might be that, using labels with value
larger than 3, we can design better (with respect to the concerns above) proper labellings of G.

In this chapter we study the problem of finding proper labellings that also minimise the sum
of labels being used. Recall that, for a given nice graph G, the parameter mE(G) is the minimum
sum of labels assigned to the edges of G by any proper labelling of G.

Determining mE(G) for a given graph G is also related to finding a proper labelling of G
where the resulting vertex colours satisfy some properties. More precisely, by a straight equiva-
lence between edge labels and vertex colours, see upcoming Observation 4.1.3, it can be establi-
shed that determining mE(G) is equivalent to finding a proper labelling of G that minimises the
sum of resulting vertex colours. Thus, at least at first glance, one could think that determining
mE(G) is somewhat related to finding proper labellings whose induced colourings verify some
specific properties in regards to a proper vertex-colouring of G. For example, there could be links
with the investigations [16] and [31], where the authors study proper labellings with a minimum
number of induced colours or that minimise the maximum induced colour respectively. In Sec-
tion 4.3.1, we actually show that this is not the case, in the sense that proper labellings that are
good for our concerns might be arbitrarily bad for those in [16] and [31], and vice versa.

In Section 4.1, we provide some observations that will be used throughout this chapter. As
a warm up, we also provide the exact value of mE(G) for simple classes of graphs G, namely
complete bipartite graphs, complete graphs and cycles.

In Section 4.2, we deal with the algorithmic aspects of the problem. Recall that for k ∈ N
and a graph G, mEk(G) is the minimum sum of assigned labels over all proper k-labellings of
G. We show that for k ∈ N, determining mEk(G) is NP-complete when G is a planar bipartite
graph. Then we provide an algorithm that, given two integers s and k, decides in polynomial time
if mEk(G) ≤ s when G belongs to the family of graphs that have bounded treewidth.

In Section 4.3, we answer two different questions that deal with the particular nature of our
problem. First, in Section 4.3.1, we show that in general a proper k-labelling that minimises the
maximum induced colour does not minimise the sum of the labels used, and vice versa. Then, in
Section 4.3.2, we provide an infinite family of graphs G for which mEk(G), for every k ≥ 2, can
be arbitrarily larger than mEk+1(G). As mentioned earlier, this property justifies the study of our
problem, as it shows that just finding a proper k-labelling of G minimising the sum of labels for
k = χΣ(G) is not enough.

Finally, in Section 4.4, we study more general aspects of the problem. In particular, we pro-
pose Conjecture 2.1.4 stating that for every nice connected graph G, we should have mE(G) ≤

4.1 – First observations and classes of graphs 59

Graphs Upper bound
χ(G) = k ≥ 3 mEk+1(G) ≤ |E(G)|+ k|V (G)|

χ(G) = k ≥ 3 and k odd mEk(G) ≤ |E(G)|+ (k − 1)|V (G)|
Regular and χΣ(G) = 2 mE2(G) ≤ 3

2 |E(G)|
Bipartite mE3(G) ≤ 2|E(G)|

Bipartite and one bipartition class of even size mE2(G) ≤ |E(G)|+ |V (G)| − 1
Hamiltonian bipartite and one bipartition class of even size mE2(G) ≤ 3

2 |E(G)|
Tree mE2(G) ≤ 3

2 |E(G)|

Table 4.1 – Summary of the upper bounds presented in Section 4.4. We also provide a construction
producing infinitely many connected bipartite graphs G such that mE2(G) = 3

2 |E(G)|.

2|E(G)|. We then proceed by providing upper bounds for some families of graphs, namely bipar-
tite graphs and trees, as well as graphs with large chromatic number, that further strengthen our
belief that Conjecture 2.1.4 should hold true. In Table 4.1 we summarise the results presented in
this section.

4.1 First observations and classes of graphs

In this warm-up section, we give some first insight into the problem of determining the para-
meters mE(G) and mEk(G) for a given graph G. This is done through first observations on the
problem, and by then focusing on simple classes of graphs.

4.1.1 First observations and remarks

Let ` be a proper k-labelling of a graph G. Recall that σ(`) is the sum of the labels assigned
by `. Now since each edge of G is assigned a label between 1 and k, the next trivial bounds follow
directly:

Observation 4.1.1. Let G = (V,E) be a graph and ` be a k-labelling of G. Then

|E| ≤ σ(`) ≤ k|E|.

Consequently, for any k ≥ χΣ(G),

|E| ≤ mEk(G) ≤ k|E|.

Observation 4.1.1 establishes that, for any nice graph G, in general mE(G) should be expres-
sed as a function of |E(G)|. As far as direct upper bounds are concerned, recall that for every nice
graph, χΣ(G) ≤ 5 [79]. This implies that:

Theorem 4.1.2 ([79]). For every nice graph G = (V,E), mE(G) ≤ mE5(G) ≤ 5|E|.

Of course, the upper bound in Theorem 4.1.2 is immediately improved for every nice graph
G for which the upper bound on χΣ(G) can be improved. In particular, recall that χΣ(G) ≤ 3
whenever χ(G) ≤ 3 (see [81]), which implies that mE(G) ≤ mE3(G) ≤ 3|E(G)| holds for such
graphs. Recently, Przybyło proved in [105] that χΣ(G) ≤ 4 whenever G is regular, which implies

60 CHAPITRE 4 — Minimising the sum of assigned labels

that mE(G) ≤ mE4(G) ≤ 4|E(G)| holds for regular graphs. More results of this sort can be
found in [112].

We close this section with the following observation, which provides an obvious way for re-
lating edge labels and vertex colours by a labelling of a graph G. In general, this observation is a
convenient tool for establishing lower bounds on mE(G).

Observation 4.1.3. Let G = (V,E) be a graph and ` be a labelling of G. Then∑
e∈E

2`(e) =
∑
v∈V

c`(v).

In particular, by any labelling `, the sum
∑
v∈V c`(v) must be an even number.

4.1.2 Simple classes of graphs

In this section, we determine the value of mE(G) whenG is any nice complete bipartite graph,
complete graph, or cycle. Let us recall that, for any nice complete bipartite graph Kn,m, we have
χΣ(Kn,m) = 1 if n 6= m > 1, and χΣ(Kn,m) = 2 otherwise. For every nice complete graph Kn,
we have χΣ(Kn) = 3. For every nice cycle Cn, we have χΣ(Cn) = 3 whenever n ≥ 3 is odd or
n ≡ 2 mod 4, while we have χΣ(Cn) = 2 otherwise, i.e., when n ≡ 0 mod 4. Simple proofs for
these statements can be found e.g. in [50, 46].

Note that in all the results obtained in this section, constructing a proper labelling ` of a graph
G achieving σ(`) = mE(G) does not require the use of a label larger than χΣ(G). That is, we
here always have mEk(G) = mE(G) for k = χΣ(G). It is important to point out however that
this behaviour is not true in general (see Section 4.3.2).

Theorem 4.1.4. Let G = (A,B,E) = Kn,m be a complete bipartite graph with n + m > 2.
Then:

— if n 6= m, then mE(G) = mE1(G) = nm = |E|;
— otherwise, i.e., n = m, we have mE(G) = mE2(G) = n(m+ 1) = |E|+

√
|E|.

Proof. If n 6= m, then G is locally irregular, in which case we get a proper 1-labelling when
assigning label 1 to all edges. This is best possible due to Observation 4.1.1. If n = m, then G
is not locally irregular, which implies that a proper labelling of G must assign a label different
from 1 to some edges. Moreover, if a labelling assigns a label different than 1 to less than n edges,
then there would necessarily be, in both A and B, vertices incident only to edges labelled 1, thus
with colour n. In that case, ` would not be proper as some adjacent vertices would have the same
colour.

This means that if n = m, a proper labelling ` of G must assign a label different from 1 to
at least n edges. This implies that mEk(G) ≥ |E| + n. We claim there is a proper 2-labelling
` achieving this lower bound, hence best possible. To obtain `, let a be any vertex of A. Assign
label 2 to all the n edges incident to a, and assign label 1 to all other edges. This labelling is
proper. Indeed c`(a) = 2n, c`(a′) = n for every a′ ∈ A \ {a}, and c`(b) = n+ 1 for every b ∈ B.
Furthermore, σ(`) = |E|+ n = |E|+

√
|E|. �

Theorem 4.1.5. Let Kn = (V,E) be a complete graph with n ≥ 3. Then:
— if n = 3, then mE(K3) = mE3(K3) = 6 = 2|E|;

4.1 – First observations and classes of graphs 61

— if n ≡ 0 mod 4 or n ≡ 1 mod 4, then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2 − 1
)

=
3
2 |E|;

— if n ≡ 2 mod 4 or n ≡ 3 mod 4, then mE(Kn) = mE3(Kn) = 1
2

(
n2 + (n−2)(n−1)

2

)
=⌈

3
2 |E|

⌉
.

Proof. Throughout this proof, for any n ≥ 3, let V = {v1, . . . , vn}.
Regarding the first item, Observation 2.1.5 implies that a proper 3-labelling of K3 must as-

sign three distinct labels to the edges, and thus having {`(v1v2), `(v1v3), `(v2v3)} = {1, 2, 3} is
optimal, in which case σ(`) = 6.

Let us now focus on the second and third items. Following Observation 4.1.3, finding a proper
3-labelling of Kn achieving mE3(Kn) is equivalent to finding a proper 3-labelling minimising the
sum of vertex colours. Since, in Kn, all vertices have degree n − 1, and all vertex colours must
be different by a proper 3-labelling, any proper 3-labelling producing distinct vertex colours in
S1 = {n − 1, n, n + 1, . . . , 2n − 2} would be optimal. Note, however, that when n is congruent
to 2 or 3 modulo 4, such a proper 3-labelling cannot exist as, in such cases, the sum n− 1 + n+
(n+ 1) + · · ·+ (2n−2) of the values in S1 is odd, which cannot be achieved by a labelling (recall
the last statement of Observation 4.1.3). In these cases, however, any proper labelling producing
distinct vertex colours in S2 = {n− 1, n, n+ 1, . . . , 2n− 3, 2n− 1} would be optimal.

Now consider the following 3-labelling ` of Kn (n ≥ 4), already introduced in [31], to
establish what the value of mS3(Kn) is (where mS3(G) denotes the smallest maximum co-
lor over the vertices by a proper 3-labelling of G). We label the edges of Kn through three
steps. Firstly, we assign label 1 to every edge. Secondly, we change the labels of the edges in
{vivj : 1 ≤ i, j ≤ n, i + j ≥ n + 2} to 2. Then v1 is incident to no edge labelled 2, vertex
v2 is incident to one edge labelled 2, vertex vi for 3 ≤ i ≤ b(n − 1)/2c + 1 is incident to i − 1
edges labelled 2, and vi for b(n − 1)/2c + 2 ≤ i ≤ n is incident to i − 2 edges labelled 2. Let
j = b(n−1)/2c+1. Note that for every i ∈ {2, 3, . . . , j, j+2, . . . , n}, vi is adjacent to one more
edge labelled 2 than vi−1; and that vj and vj+1 are both adjacent to j − 1 edges labelled 2 (and
n− j edges labelled 1). So cl(v1) < cl(v2) < · · · < cl(vj) = cl(vj+1) < cl(vj+2) < · · · < cl(vn)
and cl(vi+1) ≤ cl(vi)+1 for 1 ≤ i ≤ n, i.e., all vertices have different colours except vj and vj+1.
Finally, to avoid the conflict between vj and vj+1, let us increase the label of vj+1vj+2 from 2 to 3.
This change induces a new conflict between vj+2 and vj+3. Then we need to increase the label of
vj+3vj+4 from 2 to 3 to get rid of this conflict, which creates a new conflict, and so on. Formally,
we change the labels of the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−1vn} to 3 if n−j is even, i.e., if
n ≡ 0 mod 4 or n ≡ 1 mod 4. Otherwise, if n− j is odd and n ≡ 2 mod 4 or n ≡ 3 mod 4,
then we change the labels of the edges in {vj+1vj+2, vj+3vj+4, . . . , vn−4vn−3, vn−2vn, vn−1vn}
to 3.

It can be checked that the resulting 3-labelling ` is proper, and achieves vertex colours in S1
when n is congruent to 0 or 1 modulo 4, or vertex colours in S2 when n is congruent to 2 or 3
modulo 4. As discussed above, this is best possible. Furthermore, it can easily be checked that the
elements in S1 sum up to the value claimed in the second item, and similarly for the elements in
S2 and the value claimed in the third item. This concludes the proof. �

Theorem 4.1.6. Let n ≥ 3, and Cn = (V,E) be the cycle of length n. Then:
— if n ≡ 0 mod 4, then mE(Cn) = mE2(Cn) = 3

2 |E|;
— if n ≡ 1 mod 4 or n ≡ 3 mod 4, then mE(Cn) = mE3(Cn) =

⌈
3
2 |E|

⌉
+ 1;

62 CHAPITRE 4 — Minimising the sum of assigned labels

— if n ≡ 2 mod 4, then mE(Cn) = mE3(Cn) = 3
2 |E|+ 3.

Proof. Let us order the edges ofCn following a “clockwise direction” and defineE = {e1, . . . , en}
and V = {v1, . . . , vn} such that for i < n, ei = vivi+1 and en = vnv1. Thus, for i > 0,
N(vi) = {vi−1, vi+1} and N(v1) = {v2, vn}. Recall that χΣ(Cn) = 2 for the first item and that
χΣ(Cn) = 3 for the second and third items.

Claim 4.1.7. Let l ≤ k and ` be a k-labelling of Cn that assigns label l to at least one edge. If `
is proper, then it assigns label l to at most b1

2 |E|c edges if n is odd, while it assigns label l to at
most 1

2 |E| − 1 edges if n ≡ 2 mod 4, and it assigns label l to at most 1
2 |E| edges if n ≡ 0 mod 4.

Proof of the claim. Let E = {e ∈ E : `(e) = l} and G = (V ′, E′) be the graph that has
V ′ = {vi : ei ∈ E} and, for i 6= j, vivj ∈ E′ if the corresponding edges ei, ej are at distance
exactly 2 in Cn. Obviously |E| = |V ′|. It follows from Observation 2.1.5 that if ` is a proper
labelling of Cn that maximises |E|, then |E| = |S|, where S is an independent set of G. For n odd,
G is a copy of the graph Cn. SinceG is a cycle, |E| = |S| = b1

2 |V
′|c = b1

2 |E|c. For n ≡ 2 mod 4,
let m be such that n = 4m + 2. It is clear that G contains two connected components, each one
being a copy of the cycle Cn

2
. Thus, |E| = |S| = 2bn4 c = 2m = 1

2 |E|−1. Similarly, if n = 4m, it
is clear that G contains two connected components, each one being a copy of the cycle Cn

2
. Thus,

|E| = |S| = 2m = 1
2 |E|. �

We are now ready to deal with the four values of n (modulo 4) separately:
— For the first item let ` be the following 2-labelling: `(e1) = 1, `(e2) = 1, `(e3) =

2, `(e4) = 2, `(e5) = 1, . . . , `(en) = 2. Let us assume that this ` is not proper. Then
there would exist at least two adjacent vertices vi, vi+1 such that c`(vi) = c`(vi+1). It
follows that `(vi−1) = `(vi+2) (if i = 1 then vi−1 = vn and if i = n then vi+1 = v1)
which is a contradiction. Furthermore, since n ≡ 0 mod 4, label 2 is used on exactly half
the edges of Cn and thus σ(`) = |E| + 1

2 |E| = 3
2 |E|. Moreover, this value is optimal.

Indeed, assume it is not. Then, there would exist a proper labelling `′ such that more than
1
2 |E| edges are labelled 1 by `′, a contradiction by Claim 4.1.7.

— Let Cn be a cycle with n ≡ 1 mod 4. We will show that mE(Cn) = d3
2 |E|e+ 1. Let ` be

a proper labelling of Cn that assigns label 3 to only one edge. It follows from Claim 4.1.7
that at most bn2 c edges of Cn are labelled 1. Actually, there are exactly bn2 c edges labelled
1: if this was not the case, then, since only one edge of Cn is labelled 3, there would be
more than bn2 c edges labelled 2, contradicting Claim 4.1.7. The same holds true for the
edges labelled 2. Since n ≡ 1 mod 4 implies that there exists an m verifying n = 4m+ 1,
then, using this, one can easily show that σ(`) = bn2 c + 2bn2 c + 3 = · · · = d3

2 |E|e + 1.
Furthermore, let `′ be a proper labelling of Cn that assigns label 3 to more than one edge.
It is clear that if `′ is proper, then σ(`) < σ(`′). Thus, σ(`) = mE(Cn). The following
is a proper labelling ` that achieves this optimal value: `(e1) = 1, `(e2) = 1, `(e3) =
2, `(e4) = 2, `(e5) = 1, . . . , `(en−1) = 2, `(en) = 3.

— Let Cn be a cycle with n ≡ 3 mod 4. Similarly to before, mE(Cn) = d3
2 |E|e + 1. The

following is a proper labelling ` that achieves this optimal value: `(e1) = 1, `(e2) =
1, `(e3) = 2, `(e4) = 2, `(e5) = 1, . . . , `(en−3) = 2, `(en−2) = 1, `(en−1) = 3, `(en) =
2.

— Let Cn be a cycle with n ≡ 2 mod 4 (n ≥ 6). We will show that mE(Cn) = 3
2 |E| + 3.

Indeed, let ` be a proper labelling of Cn that assigns label 3 to only one edge. Since ` is
proper, it is obliged to assign label 1 to at most 1

2 |E| − 1 edges of Cn and label 2 to the

4.2 – Complexity aspects 63

s2s1 sk−1

y

u

.

. . .

k vertices k vertices k vertices

k − 1 stars

Figure 4.1 – The k-gadget, used in the proof of Theorem 4.2.2

rest. This however would lead to ` assigning label 2 on at least 1
2 |E| edges, which is a

contradiction to Claim 4.1.7. Thus, ` must assign label 3 on at least two edges. Similarly
to before, a labelling that assigns label 3 to exactly two edges, label 1 to at most 1

2 |E| − 1
edges, and label 2 to the rest of the edges, would achieve the optimal value. The following
` is one such proper labelling: `(e1) = 1, `(e2) = 1, `(e3) = 2, `(e4) = 2, `(e5) =
1, . . . , `(en−3) = 2, `(en−2) = 2, `(en−1) = 3, `(en) = 3.

�

4.2 Complexity aspects

In this section, we establish both a negative and a positive result on the complexity of compu-
ting the parameter mEk(G) for some input integer k and nice graph G. More precisely:

— We first prove that determining mE2(G) is NP-complete, even when G is restricted to a
planar bipartite graph. Recall (from our discussion in Section 2.3.1) that this is contrasting
with the complexity of determining whether χΣ(G) ≤ 2 holds for a given bipartite graph
G, which is a problem that can be solved in polynomial time due to a result of Thomassen,
Wu and Zhang [116].

— We then prove that determining mEk(G) can be done in polynomial time whenever k is
fixed and G is a graph with bounded treewidth.

4.2.1 A negative result for bipartite graphs

In this section, we prove, in Theorem 4.2.2 below, that the problem of determining mEk(G) is
NP-complete in planar bipartite graphs G.

Let us first introduce the k-gadget, for k ≥ 2, which will be useful for proving Theorem 4.2.2.
To build this gadget, illustrated in Figure 4.1, let us start with k − 1 stars, each having a center si
with d(si) = k + 1 for every i ∈ {1, . . . , k − 1}. For each star, pick an arbitrary edge siyi and
identify all the yi’s into a single vertex y, which is called the representative of the gadget. Finally
add another vertex u, called the root of the gadget, and join it to y via an edge. It is clear that
d(u) = 1 and d(y) = k. Each k-gadget is a tree with O(k2) edges. Let v be a vertex of a graph
G, and H be a k-gadget. The operation of adding H to G and identifying the root u of H with v
is called attaching H to v.

64 CHAPITRE 4 — Minimising the sum of assigned labels

Claim 4.2.1. Let G = (V,C,E) be a bipartite graph and ` be any proper 2-labelling of G such
that σ(`) ≤ |E| + c, for c = |C|. Let H be any p-gadget attached to any one vertex of G, where
p− 1 > c, forming the graph G′. Let y be the representative of H . Let `′ be a labelling of G′ such
that for all edges e ∈ E(G), we have `′(e) = `(e). If at least one edge e of H incident to y is
labelled 2 by `′, then there are at least two edges of H that are labelled 2 by `′.

Proof of the claim. Let us suppose that at least one of the edges of H incident to y is labelled 2.
Let z ∈ V ∪ C be the vertex of G′ to which H has been attached.

Let us first assume that the edge zy is labelled 2. If y is incident to only a single edge labelled
2 (i.e., zy), then its colour is c`(y) = p+ 1. Since all its p− 1 neighbours (different from z) have
degree p + 1, each of them must be incident to at least one edge labelled 2 as otherwise it would
have the same colour as y. This leads to at least p > c edges labelled 2, which is a contradiction
(observe that since σ(`) ≤ |E|+c, there are at most c edges labelled 2). Otherwise, if y has exactly
one other incident edge (different from yz) labelled 2, say the edge yw, then we are done.

Then, let us assume that `(yz) = 1. Moreover, let us assume that some edge incident to y, say
yw1 different from yz, is labelled 2. Then c`(y) ≥ p+ 1 with c`(y) = p+ 1 if yw1 is the unique
edge incident to y labelled 2. In this case, each one of the p − 2 neighbours of y (different from
z and w1) must be incident to at least one edge labelled 2, leading to at least p − 1 > c edges
labelled 2, which is a contradiction. Thus c`(y) > p + 1, which means there is at least one more
edge yw2 incident to y labelled 2. �

We are now ready for proving our result.

Theorem 4.2.2. LetG be a nice planar bipartite graph, k ≥ 2 and q ∈ N. The problem of deciding
if mEk(G) ≤ q is NP-complete.

Proof. The problem is clearly in NP. We focus on showing it is also NP-hard. The proof is done by
reduction from PLANAR MONOTONE 1-IN-3 SAT, which was shown to be NP-complete in [100].
In this problem, a 3CNF formula F is given as input, which has clauses with exactly three dis-
tinct variables all of which appear only positively. We say that a bipartite graph G′ = (V,C,E)
corresponds to F if it is constructed from F in the following way: for each variable xi of F add
a variable vertex vi in V and for each clause Cj of F add a clause vertex cj in C. Then the edge
vicj is added if variable xi appears in clause Cj . Furthermore, F is valid as input to the PLANAR

MONOTONE 1-IN-3 SAT problem if the graph G′ that corresponds to F is planar. The question is
whether there exists a 1-in-3 truth assignment of F . Recall that according to such an assignment,
each clause has exactly one variable with the value true.

Observe now that we may assume that each variable appears in at least two clauses. If there
exists a variable, say xi, that belongs to a single clause C = (xi ∨ xj ∨ xk), let us add another
clause C ′ identical to C. Clearly, the obtained formula F ′ is 1-in-3 satisfiable if and only if F is.
Moreover, the graph corresponding to F ′ is planar. Indeed, consider a planar embedding of the
graph G′ \ {vi}. Clearly, vj and vk are in a same face (since their common neighbour, correspon-
ding to C, has degree 2 in G′ \ {vi}). The graph obtained by adding a vertex vi (adjacent to the
vertex corresponding to C) and a vertex corresponding to C ′ (adjacent to vi, vj and vk) in this face
is planar.

Let us prove the statement for k = 2. Let F be a 3CNF formula with c clauses that is given as
input to the PLANAR MONOTONE 1-IN-3 SAT problem. Our goal is to construct a planar bipartite
graph G such that F is 1-in-3 satisfied if and only if mE2(G) ≤ |E(G)|+ c.

4.2 – Complexity aspects 65

Start fromG′ = (V,C,E) being the planar bipartite graph that corresponds to F , with V being
the set of the variable vertices vi and C being the set of the clause vertices cj . Note that in F , each
clause has exactly three variables but there is no bound on how many times a variable appears in
F . Thus for each vi ∈ V , we have d(vi) ≥ 2 and for each cj ∈ C, we have d(cj) = 3. It follows
that |C| = c and |V | ≤ 3c.

Proceed by modifying G′ by adding the gadgets described earlier as follows. For each variable
vertex vi, let di be the initial degree of vi inG′. Let dv,i = (di−1)(c+1)+di and dc = 3(c+1)+3.
For each variable vertex vi, for all 1 ≤ j < di, attach c + 1 copies of the (dv,i + j)-gadget. On
each clause vertex cj , attach c+ 1 copies of the dc-gadget, c+ 1 copies of the (dc + 2)-gadget and
c + 1 copies of the (dc + 3)-gadget. Name the resulting graph G and observe that the degree of
each vi in G becomes equal to dv,i and the degree of each cj in G becomes equal to dc. Clearly,
the construction of G is achieved in polynomial time. Finally observe that since G′ is planar and
the attached gadgets are actually trees, G is also planar.

Let ` be a proper 2-labelling of G such that σ(`) ≤ |E(G)|+ c, i.e., there are at most c edges
of G labelled 2 by `. Observe that G contains p-gadgets for p ∈ {dv,i + 1, dv,i + 2, . . . dv,i + di −
1, dc, dc + 2, dc + 3} and dv,i − 1, dc − 1 > c. Thus Claim 4.2.1 holds for each gadget attached to
G.

Claim 4.2.3. For any proper 2-labelling ` of G such that σ(`) ≤ |E(G)|+ c, we have that:
— c`(vi) /∈ {dv,i + 1, dv,i + 2, . . . , dv,i + di − 1} for each variable vertex vi ∈ V ;
— c`(cj) /∈ {dc, dc + 2, dc + 3} for each clause vertex cj ∈ C.

Proof of the claim. Indeed, each variable vertex vi is adjacent to c + 1 copies of the (dv,i + 1)-
gadget and at most c edges are labelled 2 by `. Thus, at least one of the (dv,i + 1)-gadgets, let
us call it H , that is attached to vi, has all of its edges labelled 1. Moreover, vi is adjacent to the
representative y of H which has degree d(y) = dv,i + 1. Since all the edges of H are labelled 1,
the colour c`(y) of y is dv,i + 1 and thus this colour is forbidden for vi, i.e., c`(vi) 6= dv,i + 1.

By repeating the same arguments for the (dv,i + 2)-gadgets attached to vi, we deduce that
c`(vi) 6= dv,i + 2. Similarly, by considering the dc-gadgets (resp., the (dc + 2)- and (dc + 3)-
gadgets) attached to any clause vertex cj , we get that c`(cj) /∈ {dc, dc + 2, dc + 3}. �

Claim 4.2.4. Let ` be any proper 2-labelling of G such that σ(`) ≤ |E(G)|+ c. Then all edges of
the attached gadgets must be labelled 1.

Proof of the claim. Observe that for each clause vertex z ∈ C, at least one of its incident edges
must be labelled 2. If this were not the case, then c`(z) = dc, and this is not allowed due to
Claim 4.2.3.

Let H be a gadget attached to z, and y be the representative of H . Suppose `(yz) = 2. It
follows from Claim 4.2.1 that there are at least two edges of H labelled 2. Recall that the number
of edges ofG that can be labelled 2 is at most c. Thus, the number of edges ofG, that do not belong
to H and can be labelled 2, is at most c− 2. Furthermore, there are c− 1 clause vertices in G that
are different from z. It follows that there exists a clause vertex that has all of its incident edges
labelled 1, a contradiction. Thus, each z ∈ C must be incident to an edge wz with `(wz) = 2
and w cannot belong to a gadget attached to z. It follows that there must be |C| = c edges of G′

labelled 2 and since σ(`) ≤ |E(G)|+ c, all the edges of the attached gadgets are labelled 1. �
It follows from Claim 4.2.4, that the only possible colours induced on the vertices of G′ by a

proper 2-labelling ` of G are:

66 CHAPITRE 4 — Minimising the sum of assigned labels

— c`(vi) ∈ {dv,i, dv,i+1, dv,i+2, . . . , dv,i+di−1, dv,i+di} for each variable vertex vi ∈ V ,
— c`(cj) ∈ {dc, dc + 1, dc + 2, dc + 3} for each clause vertex cj ∈ C.

The following hold due to Claim 4.2.3:
— For every variable vertex vi, we have c`(vi) ∈ {dv,i, dv,i + di}. Observe that c`(vi) = dv,i

if all edges of G′ adjacent to vi are labelled 1, and c`(vi) = dv,i + di if all edges of G′

adjacent to vi are labelled 2.
— For every clause vertex cj , we have c`(cj) = dc + 1, which corresponds to two edges of

G′ adjacent to cj labelled 1 and only one edge labelled 2.
We are now ready to show the equivalence between finding a 1-in-3 truth assignment φ of F

and finding a proper 2-labelling ` of G such that σ(`) = mE2(G) ≤ |E(G)|+ c. An edge vicj of
G′ labelled 2 (respectively 1) by ` corresponds to variable xi bringing truth value true (respectively
false) to clause Cj by φ. Also, we know that in G′, every variable vertex vi is incident to n ≥ 1
edges, all having the same label (either 1 or 2). Accordingly, the corresponding variable xi brings,
by φ, the same truth value to the n clauses of F that contain it. Finally, in G′, every clause vertex
cj is incident to two edges labelled 1 and one edge labelled 2. This corresponds to the clause Cj
being regarded as satisfied by φ only when it has exactly one true variable. �

4.2.2 A positive result for graphs with bounded treewidth

In this section we provide a dynamic programming algorithm that decides if mEk(G) ≤ s (for
given integers k and s) in polynomial time, where G is a graph of bounded treewidth. Apart from
the basic notions and notations explained in Section 2.2.2, we need to introduce some additional
terminology before proceeding to the main result of this section.

Let (T,X) be a rooted tree-decomposition (with root r) of G and t ∈ V (T). A quasi k-
labelling ofGt consists of a pair of functions (`, c), with ` : E(Gt)→ {1, . . . , k} and c : Vt → N,
such that c is a proper vertex-colouring of Gt, for every v ∈ Vt \ Xt we have c(v) = c`(v),
and for every v ∈ V (Xt) we have c(v) ≥ c`(v). Intuitively, the notion of quasi k-labelling is
a generalisation of proper k-labellings that allows us to further modify the labels (and thus the
induced colours) of the edges of Xt if this is needed in order to extend a proper k-labelling of Gt
into a proper k-labelling ofGt′ , where t′ is the parent of t in T . Finally, let st(`) =

∑
e∈E(Gt) `(e).

Observe that every proper k-labelling `′ of G induces a quasi k-labelling of Gt. For every
e ∈ E(Gt) and v ∈ Vt, let `(e) = `′(e) and c(v) = c`′(v). The pair (`, c) is a quasi k-labelling
of Gt. Indeed, since (T,X) is a tree-decomposition of G, for every internal node t of T , Xt is a
separator between Gt − Xt and G − Vt. Put differently, there are no edges between vertices of
Gt − Xt and G − Vt. Furthermore, if r is such that Xr = ∅, then a quasi k-labelling of Gr is a
proper k-labelling of G. Indeed, it is true (by definition) that a quasi k-labelling of Gr differs from
a proper k-labelling only on the vertices of Xr and since Xr = ∅ and Gr = G the observation
follows.

Theorem 4.2.5. Let k ≥ 2 and tw ≥ 1 be two fixed integers. Given a nice graph G = (V,E)
with |V | = n and an integer s, the problem of deciding whether mEk(G) ≤ s holds can be solved
in polynomial time if G belongs to the family of graphs that have width at most tw (and in linear
time if G is additionally of bounded maximum degree).

Proof. Let us start by giving some definitions. Let ∆ = ∆(G) denote the maximum degree of
G. For every t ∈ V (T), let |Xt| = wt, |E(G[Xt])| = qt, Xt = {v1, . . . , vwt} and E(G[Xt]) =
{e1, . . . , eqt} (to simplify the notation, we will simply denote qt and wt by q and w respectively).

4.2 – Complexity aspects 67

Let Ft = {1, . . . , k}q × {1, . . . , k∆}w × {0, . . . , k∆}w and (L,FC,CB) ∈ Ft, where L =
{l1, . . . , lq}, FC = {f1, . . . , fw} and CB = {b1, . . . , bw}. The labels we “intent” to assign to the
edges of Xt are in L, the “final colours” induced by these labels on the vertices of Xt are in FC,
and in CB we can find the contribution to these colours that come “from below” (meaning the part
of these final colours that is due to edges between Xt and Gt − Xt). Furthermore, for X ′t ⊆ Xt

with X ′t = {u1, . . . , uw′} (where w′ ≤ w), let FC|X′t = {f ′1, . . . , f ′w′} be defined by setting, for
each j ∈ {1, . . . , w′}, f ′j = fij where uj = vij (L|X′t and CB|X′t are defined similarly).

Moreover, a quasi labelling (`, c) of Gt is said compatible with (L,FC,CB) ∈ Ft if,
for each i ∈ {1, . . . , q} and j ∈ {1, . . . , w}, we have that `(ei) = li, c(vj) = fj , and
bj =

∑
x∈Nt(vj)\Xt

`(vjx). This implies that, for all i ∈ {1, . . . , q} and j ∈ {1, . . . , w},∑
z∈Nt(vj)

`(zvj) = bj +
∑

z∈N(vj)∩Xt,ei=vjz

li ≤ c(vj) = fj .

Among all quasi labellings compatible with (L,FC,CB), let us denote as (`∗, c∗) one
such compatible labelling that minimises the sum of the labels assigned by `∗. That is, for any
t ∈ V (T), we have st(`∗) ≤ st(`) for every quasi labelling ` compatible with (L,FC,CB).
Let αt(L,FC,CB) = st(`∗). In essence, for each possible (L,FC,CB) ∈ Ft, we have that
αt(L,FC,CB) is equal to the sum of the labels of an optimal (in terms of sum of labels) quasi
labelling (`∗, c∗) of Gt that is compatible with (L,FC,CB). Note that not all (L,FC,CB) ∈ Ft
admit compatible quasi labellings. If (L,FC,CB) ∈ Ft has no compatible quasi labelling, then
we set αt(L,FC,CB) =∞.

Finally, let us set

Table(t) = ((L,FC,CB,αt(L,FC,CB)))(L,FC,CB)∈Ft

being the table associated with each t ∈ V (T). Note that

|Table(t)| = O
(
kq(k∆ + 1)2w

)
= O

(
k(tw(G)+1)2(k∆ + 1)2tw(G)+2

)
,

since q ≤
(tw(G)+1

2
)

= O((tw(G) + 1)2) and w ≤ tw(G) + 1. Furthermore, since r is such that
Xr = ∅, then αr = αr(∅, ∅, ∅) is equal to the sum of an optimal proper k-labelling of Gr and
thus Table(r) = ((∅, ∅, ∅, αr)), where αr = mEk(G). All that remains to be done is to compute
this Table(t) for every t ∈ V (T). We present a dynamic programming algorithm that performs
this computation bottoms up; that is, starting from the leaves of T and progressing towards r. The
computation depends on the type of t.

Let t be a leaf node. Recall that |Xt| = 1 and thus there are no edges in Xt. For every
y ∈ {1, . . . , k∆} and (L,FC,CB) ∈ Ft, the αt(L,FC,CB) entry of Table(t) is defined as:

αt(L,FC,CB) =
{

0, if (L,FC,CB) = (∅, {y}, {0});
∞, otherwise.

Let t be an introduce node and t′ be its unique child. Set w = |Xt′ |, and let v be such that
Xt = Xt′∪{v} = {v1, . . . , vw, vw+1 = v}. Moreover, letE(Xt) = {e1, . . . , eq, eq+1, . . . , eq+h},
where E(Xt′) = {e1, . . . , eq}. Essentially, the set {eq+1, . . . , eq+h} contains the edges between v

68 CHAPITRE 4 — Minimising the sum of assigned labels

and the other vertices of Xt. By induction, we can assume that Table(t′) is already computed. Let
us show how to compute Table(t). Let

(L = (l1, . . . , lq+h), FC = (f1, . . . , fw+1), CB = (b1, . . . , bw+1)) ∈ Ft.

There is a quasi labelling of Gt compatible with (L,FC,CB) only if the following three (easily
computable) conditions are satisfied:

— The final colour fw+1 that corresponds to v is not in conflict with the final colours that
correspond to the neighbours of v in Xt. That is, for each j ∈ {1, . . . , w} such that vj ∈
Nt(v) ∩Xt, we have fw+1 6= fj .

— Since v is introduced in Xt, we have Nt(v) \Xt = ∅ and, as a consequence, c(v) cannot
have any contribution coming from Gt \Xt. That is bw+1 = 0.

— The colour of each vertex in Gt cannot exceed the final colour that corresponds to it. That
is, for every vi ∈ Xt, we must have

bi +
q+h∑
j=1

ljIi,j ≤ fi,

where Ii,j =
{

1, if there is w ∈ N(vi) ∩Xt such that wvi = ej ;
0, otherwise.

If one of these three conditions is not satisfied, then αt(L,FC,CB) =∞. Otherwise, let us set

αt(L,FC,CB) = αt′(L|Xt′ , FC|Xt′ , CB|Xt′) +
q+h∑
j=q+1

lj .

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t)
for every (L,FC,CB) ∈ Ft.

Let t be a forget node and t′ be its unique child. Set w = |Xt|, and let v be such that Xt′ =
Xt ∪ {v} = {v1, . . . , vw, vw+1 = v}. Moreover, let E(Xt′) = {e1, . . . , eq, eq+1, . . . , eq+h},
where E(Xt) = {e1, . . . , eq}. By induction, we can assume that Table(t′) is already computed.
Let us show how to compute Table(t).

Let (L,FC,CB) ∈ Ft. Let Γt′ be the subset of Ft′ that consists of all (L′, FC ′, CB′) ∈ Ft′
such that (L,FC,CB) = (L′|Xt , FC

′|Xt , CB
′|Xt) (i.e., (L,FC,CB) must be the restriction

to Xt of some (L′, FC ′, CB′) ∈ Ft′) and such that f ′w+1 = b′w+1 +
∑

q+1≤j≤q+h
l′j . The latter

condition allows to respect the property of quasi labellings. Since v ∈ Gt − Xt, the “colour"
that it received so far (with a contribution of b′w+1 from the vertices in Gt′ −Xt′) plus the labels
l′q+1, . . . , l

′
q+h of its incident edges in Xt′ must equal its “final" colour f ′w+1. Finally, let

αt(L,FC,CB) = min
γ∈Γt′

αt′(γ).

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t)
for every (L,FC,CB) ∈ Ft.

Let t be a join node, t′ and t′′ be its two children, with Xt = Xt′ = Xt′′ = {v1, . . . , vw} and
E(Xt) = E(Xt′) = E(Xt′′) = {e1, . . . , eq}. By induction, we can assume that Table(t′) and
Table(t′′) have already been computed. Let us show how to compute Table(t).

4.3 – Particular behaviours of the problem 69

Let (L,FC,CB) ∈ Ft. Let Γt be the set of pairs ((L,FC,CB′), (L,FC,CB′′)) such that
(L,FC,CB′) ∈ Ft′ and (L,FC,CB′′) ∈ Ft′′ such that CB = CB′ + CB′′ (meaning that for
each j ∈ {1, . . . , w} we have bj = b′j + b′′j , where bj ∈ CB, b′j ∈ CB′ and b′′j ∈ CB′′). Then, let

αt(L,FC,CB) = min
((L,FC,CB′),(L,FC,CB′′))∈Γt

αt′(L,FC,CB′) + αt′′(L,FC,CB′′)−
q∑
i=1

li.

Following the above process, the element ((L,FC,CB), αt(L,FC,CB)) is added to Table(t)
for every (L,FC,CB) ∈ Ft.

In all cases, it can be shown by induction that αt(L,FC,CB) 6= ∞ if and only if there is a
quasi labelling of Gt compatible with (L,FC,CB), and, moreover, that if αt(L,FC,CB) 6=∞,
then it is the minimum sum of the edge labels among all quasi labellings of Gt compatible with
(L,FC,CB). �

An alternative way to interpret Theorem 4.2.5 is that, given a graphG and two integers k and s,
the problem of deciding if mEk(G) ≤ s is in FPT when considering as a parameter the treewidth
plus the maximum degree of G. It is worth mentioning here that in Chapter 6 we will demonstrate
a similar result for the problem investigated in that chapter.

4.3 Particular behaviours of the problem

In this section, we study some behaviours of the problem of determining mEk(G) for some
integer k and nice graph G. We start by establishing that there is no systematic relationship bet-
ween the proper labellings we are interested in and those considered in [16] and [31], where the
authors study proper labellings with a minimum number of induced colours or that minimise the
maximum induced colour respectively. In particular, in Section 4.3.1, we show that a labelling of a
graph that minimises the maximum induced colour, does not necessarily also minimise the sum of
assigned labels, and vice versa. Then, in Section 4.3.2, we prove that, in general, using large labels
(larger than χΣ(G)) might be needed for designing proper labellings ` verifying σ(`) = mE(G).
This actually remains true in cases where G is a tree.

4.3.1 Minimising the maximum colour versus minimising the sum of labels

As mentioned already, quite recently the authors of [31] investigated proper labellings that
minimise the maximum resulting vertex colour. The formal definitions are as follows. For a given
graphG and a labelling ` ofG, let mS(G, `) denote the maximum vertex colour c`(v) induced by `
over all vertices v ofG. For a given k ≥ χΣ(G), let mSk(G) denote the smallest value of mS(G, `)
over all proper k-labellings of G. Now, the main parameter of interest is mS(G), which is defined
as the minimum value of mSk(G) over all values of k ≥ χΣ(G). The authors of [31] establish that
for any fixed k ≥ 2, calculating mSk(G) is NP-hard, even when G is a bipartite graph. They also
provide a polynomial-time algorithm for solving this problem on graphs of bounded treewidth.
Then they propose upper and lower bounds on the investigated parameter for bipartite graphs, and
show that if G is a tree of maximum degree ∆, then mSk(G) ∈ {∆,∆ + 1,∆ + 2}, for any k ≥ 2.
Finally, they show that using larger labels can actually be beneficial when constructing labellings
that minimise the maximum induced colour. A similar behaviour is also exhibited by the problem
investigated in this chapter in Section 4.3.2.

70 CHAPITRE 4 — Minimising the sum of assigned labels

As established in Observation 4.1.3 determining mE(G) for a nice graph G can equivalently
be seen as finding a proper labelling of G that minimises the sum of resulting vertex colours.
Thus, one could think that maybe mE(G) is a good approximation of mS(G), or vice versa. In
this section, we show that this is actually not the case.

The next result shows that, when constructing a proper labelling ` of a graph G with
mS(G, `) = mS(G), we might have σ(`) being arbitrarily far from mE(G). In other words, mini-
mising the maximum colour does not imply minimising the sum of labels. This actually remains
true for trees.

Theorem 4.3.1. There exist nice trees T with arbitrarily large maximum degree ∆ ≥ 2 for which,
for any proper labelling ` achieving mS(T, `) = mS(T), we have mE(T, `) = mE(T) + ∆− 2.

Proof. Consider the following tree T with maximum degree ∆ ≥ 2. We start from a vertex v with
∆ neighbours u1, . . . , u∆, each of which is adjacent to ∆−1 leaves. In other words, all neighbours
of v have degree ∆, and all other vertices are leaves at distance exactly 2 from v.

Now consider a proper labelling ` of T that minimises the maximum colour, i.e., mS(T, `) =
mS(T). Since T has adjacent vertices with degree ∆, we have mS(T, `) ≥ ∆ + 1. One possible
way to attain mS(T, `) = ∆ + 1 is to have all edges incident to v being labelled 1, and, for each
ui, to have exactly one incident edge going to a leaf being labelled 2 and all other ∆− 2 incident
edges being labelled 1. Indeed, we get c`(v) = ∆ 6= ∆ + 1 = c`(ui) for every i ∈ {1, . . . ,∆}.
Actually, this is the only way to have mS(T, `) = ∆ + 1, because if we label the edges incident
to v so that c`(v) = ∆ + 1, then it is easy to see that the vertex ui such that `(vui) = 2 would get
c`(ui) ≥ ∆ + 2 to avoid a colour conflict between v and ui. Therefore, there is only one general
way to label (actually 2-label) T so that mS(T, `) = mS(T) = ∆+1, and we note that the number
of edges labelled 2 by ` is exactly ∆ (one for each ui). Thus mE(T, `) = |E|+ ∆.

Observe now that regardless of the value of ∆, the 2-labelling `∗ of T where `∗(vu1) =
`∗(vu2) = 2 and all other edges are labelled 1 is proper. This is because we get c`∗(v) = ∆ + 2,
c`∗(u1) = c`∗(u2) = ∆ + 1 and c`∗(ui) = ∆, for i ∈ {3, . . . ,∆}. Thus, mE(T) ≤ mE2(T) ≤
mE(T, `∗) = |E| + 2 and the difference between σ(`) and σ(`∗) then gets arbitrarily large as ∆
grows larger. �

The next result shows that the converse is also true: a proper labelling that minimises the sum
of labels does not necessarily minimise the maximum colour as well. Note that in what follows,
we make use of the Gf gadget, introduced in Section 2.3.2, Definition 2.3.3 and illustrated in
Figure 2.5.

Theorem 4.3.2. There exist nice graphs G with arbitrarily large maximum degree ∆ ≥ 12 for
which, for any proper 2-labelling ` achieving σ(`) = mE2(G), we have mS(G, `) = mS(G)+∆.

Proof. Having a closer look at Gf, we note that, regarding the problem of computing mE(Gf), it
has the following property:

Claim 4.3.3. Let ` be a proper 2-labelling of Gf achieving σ(`) = mE2(Gf). Then ` assigns
label 2 to the input and two outputs of Gf.

Proof of the claim. As mentioned in Section 2.3.2, the proper 2-labellings of Gf are of two kinds:
those in L1 assigning label 1 to the input and two outputs, and those L2 assigning label 2 to the
input and two outputs. Such groups of labellings L1 and L2 are as described in Figure 2.5 (a) and

4.3 – Particular behaviours of the problem 71

(b), respectively. In particular, it is important to recall that the solid edges in the figures must be
labelled as illustrated (up to symmetry), while the only sources of freedom we have are the labels
assigned to the wiggly edges, which can each freely be chosen to be 1 or 2 (recall Theorems 2.3.4
and 2.3.5).

Let us now determine the minimum sum of labels assigned by these proper labellings:
— For a proper 2-labelling `1 ∈ L1 of Gf assigning label 1 to the input and two outputs, we

note, as illustrated in Figure 2.5 (a), that u5 and u6 must get colour 10, which is possible
only if the two copies of T2 attached to u5 and u6 are labelled as in Figure 2.4 (a). Indeed,
assuming that one of these copies of T2, say the one attached to u5, is labelled as in Fi-
gure 2.4 (b), would mean that c`1(u5) = c`1(u3) = 10, and thus `1 would not be a proper
labelling. The vertex u7 must get colour 11, which is not prevented by any of the two ways
of labelling the copy of T2 attached to it. Thus, for `1 to minimise the sum of labels, the
copies of T2 attached to u5 and u6 must be labelled as in Figure 2.4 (a), and the copy of
T2 attached to u7 must be labelled as in Figure 2.4 (a) as well (as the sum of labels in the
labelling of Figure 2.4 (b) is larger). All wiggly edges should be assigned label 1. In total,
a minimum (in regards to the sum of labels) labelling `1 ∈ L1 assigns label 1 to 40 edges
and label 2 to 25 edges, and thus σ(`1) = 90.

— By similar arguments, we deduce that, by a proper 2-labelling `2 ∈ L2 of Gf assigning
label 2 to the input and two outputs, the copies of T2 attached to u5 and u6 should be
labelled as depicted in Figure 2.4 (b), while the copy of T2 attached to u7 should be labelled
as depicted in Figure 2.4 (a) (in particular, the two labellings of T2 depicted in Figure 2.4
comply with u7 having colour 7). Again, the wiggly edges should be labelled 1. In total, a
minimum labelling `2 ∈ L2 assigns label 1 to 42 edges and label 2 to 23 edges, and thus
σ(`2) = 88.

Thus, a proper 2-labelling ` of Gf achieving σ(`) = mE2(Gf) must assign label 2 to the input
and two outputs. �

Recall now the graph Gm, resulting from attaching m − 1 ≥ 3 copies of the graph Gf (des-
cribed in Section 2.3.2, Definition 2.3.6). Recall also that, according to Theorem 2.3.7, by any
proper labelling ` of Gm, the input and the m outputs of Gm will be assigned the same label.
Let L1 be the labellings assigning label 1 to the input and all outputs, and L2 be the labellings
assigning label 2 to the input and all outputs of Gm. Clearly, a proper 2-labelling ` of Gm veri-
fying σ(`) = mE2(Gm), when restricted to any constituting copy of Gf in Gm, should also be
minimum in terms of sum of assigned labels. From Claim 4.3.3, we thus deduce that a proper
2-labelling ` of Gm achieving σ(`) = mE2(Gm) must assign label 2 to the input and all outputs,
i.e., must belong to the L2 group mentioned above. In particular, the difference between the sum
of labels of a minimum `1 ∈ L1 and the sum of labels of a minimum `2 ∈ L2 gets larger as the
number of copies involved in the construction of Gm gets larger.

Now let G be the graph obtained as follows. Consider the graph G∆ with ∆ outputs (for
any ∆ ≥ 12), and identify the degree-1 vertices of these ∆ outputs to a single vertex o∗ (with
maximum degree ∆, as it can be checked from Figures 2.4 and 2.5 that all other vertices of Gm
have degree at most 6). Note that a proper 2-labelling of G is also proper for G∆, since vertices of
degree 1 cannot be involved in conflicts. Also, a proper 2-labelling of G∆ must be proper in G as
well, since o∗ has degree at least 12 while all its neighbours have degree 2. By these arguments, a
proper 2-labelling ` of G verifying σ(`) = mE2(G) must thus be one of these proper 2-labellings
in L2 assigning label 2 to the input and all outputs. Such an `2 ∈ L2 verifies c`2(o∗) = 2∆. On

72 CHAPITRE 4 — Minimising the sum of assigned labels

A(4, 0) A(5, 0) A(6, 0) A(5, 0) A(6, 0) A(7, 0) A(8, 0)

A(3, 1) A(4, 1)

r

Figure 4.2 – The auxiliary graph A(2, 2).

the other hand, a proper 2-labelling `1 ∈ L1 assigning label 1 to all outputs verifies c`1(o∗) = ∆.
Thus, a proper 2-labelling ` of G verifying σ(`) = mE2(G) will make o∗ get colour 2∆, while
there are proper 2-labellings by which o∗ gets colour ∆. Note in particular that by our choice of
∆, vertex o∗ must indeed be the vertex with the largest colour, as its degree is at least 12, all other
vertices have degree at most 6, and we are only assigning labels 1 and 2. �

4.3.2 Using larger labels can be arbitrarily better

In this section, we present, for any k ≥ 3, a construction for a tree Tk such that mE2(Tk) =
mE3(Tk) = mE4(Tk) = · · · = mEk(Tk) and mEk+1(Tk) < mEk(Tk). In other words, for these
trees Tk we need to consider larger labels to design a proper labelling ` achieving mE(Tk, `) =
mE(Tk).

Let us first introduce the auxiliary graph A(α, β) (for α ≥ 2 and β ≥ 0), which will serve as
the building block for Tk. This auxiliary graph is a tree and is built recursively as follows: for any
α∗ ∈ N, define A(α∗, 0) as a leaf. For any β > 0, A(α, β) is a tree of height β, rooted in a vertex
r that has α children. For each 1 ≤ i ≤ α, let ci be the corresponding child of r; each ci is the root
of anA(α+ i, β−1) tree and thus d(ci) = α+ i+1 (since each ci has α+ i children of its own as
well as an edge connecting him with his parent). Note that d(ci) ∈ D(α) = {α+ 2, . . . , 2α+ 1}
and that, for i 6= j, we have d(ci) 6= d(cj) (and thus all the values of D(α) are used exactly
once). Finally, we say that A(α, β) is represented by r. The auxiliary graph A(2, 2) is illustrated
in Figure 4.2.

Let us also define the pending auxiliary graph that corresponds to A(α, β) as P (α, β) =
(V,E), where V = V (A(α, β)) ∪ {v} and E = E(A(α, β)) ∪ {vr}; in essence P (α, β) is
A(α, β) with an extra vertex v connected to r. We say that P (α, β) is pending from v. Observe
that P (α, β) is locally irregular and thus the labelling ` that assigns label 1 to every one of its
edges is proper and verifies mE(P (α, β), `) = |E|.

Lemma 4.3.4. Let β ∈ N∗ and α ≥ 2. Let ` be a proper α-labelling of the pending auxiliary
graph P (α, 2β) pending from v. Let u,w ∈ V (P (α, 2β)) such that 1 ≤ dist(u, v) ≤ 2 and w is
the parent of u. If `(uw) > 1, then mE(P (α, 2β), `) ≥ |E|+ β.

Proof. Let us prove the claim for the case where dist(u, v) = 2 and u is the root of an A(α +
1, 2β − 1) subtree and w = r (similar arguments hold for the other cases) and let us first assume
that uw is the only edge of P (α, β) that has label more than 1, say `(uw) = α′ where 2 ≤ α′ ≤ α.
It follows that c`(u) = α+ α′ + 1 and that α+ 3 ≤ c`(u) ≤ 2α+ 1. Since all edges of P (α, 2β)
except uw are labelled 1, each child y of u has c`(y) = d(y). Moreover, since u is the root of the

4.4 – Particular behaviours of the problem 73

A(α+1, 2β−1) tree, each one of the α+1 children of u has a unique degree in the set D(α+1).
But D(α + 1) = {α + 3, . . . , 2α + 2} and c`(u) ∈ D(α + 1). It follows that there exists a child
of u that has, by `, the same colour as u. Thus ` must assign a label different than 1 to at least
one more edge of P (α, β), and the argument can be repeated at least β times (since the height
of T (α, 2β) is 2β + 1), leading to ` having to assign a label different than 1 to at least β edges.
The exact value of mE(P (α, 2β), `) = |E| + β is reached if each time the argument is repeated,
α′ = 2 and the next edge that gets assigned label 2 is at distance 2 from the previous ones. �

Theorem 4.3.5. For every k ≥ 2, there exists a nice graph Tk such that mEk+1(Tk) < mEk(Tk).

Proof. Let k ≥ 2 and let us describe the construction of Tk = (V,E). For 0 ≤ j ≤ k − 1, let
P (k + j, 2(k + 1)) be the auxiliary graph pending from vj that corresponds to an auxiliary graph
A(k+ j, 2(k+ 1)) (represented by a vertex rj) and let u, v be two vertices connected by the edge
uv. The tree Tk is the graph that is produced by identifying v with each one of the vj . Observe
that since rj represents A(k + j, 2(k + 1)), each rj has d(rj) = k + j + 1 in Tk and that the
height of Tk is 2(k + 1) + 1. Also observe that in Tk, since N(v) = {r0, . . . , rk−1, u}, we have
d(v) = k + 1 = d(r0).

Claim 4.3.6. There exists a proper (k + 1)-labelling ` of Tk such that σ(`) = |E|+ k.

Proof of the claim. Note that Tk is almost locally irregular. Indeed, let w be a non-leaf vertex of
Tk different from r1, v and u, and let x be its parent. If d(w) = d + 1, then d + 1 > d(x) (by
construction) and w has d children, each one having degree at least d+2. In fact, the only adjacent
vertices that have the same degree are v and r0.

Let ` be the (k + 1)-labelling of Tk that assigns label k + 1 to the edge uv and label 1 to the
remaining edges of Tk. Then c`(v) = 2k + 1 and, for each 0 ≤ i ≤ k − 1, we have d(rj) ∈
[k + 1, 2k] and thus there is no conflict between the colour of v and that of its children. It follows
that ` is a proper (k + 1)-labelling for Tk and σ(`) = |E|+ k. �

Let `′ be any proper k-labelling of Tk. It suffices to show that σ(`′) > |E|+k. Note that, since
d(v) = d(r0) = k + 1 and `′ is proper, there must exist vertices w, y, with w ∈ N(r0) \ {v} and
y ∈ N(v) \ {u, r0}, such that at least one of the edges uv, r0w or vy has to have a label different
from 1. Let `′(uv) = l with 2 ≤ l ≤ k and assume that this is the only edge of Tk that has a
label different from 1. Then c`′(v) = k + l and k + l ∈ {k + 2, . . . , 2k}. Recall that for every
0 ≤ j ≤ k− 1, vertex rj has d(rj) = k+ j + 1 and thus d(rj) ∈ {k+ 1, . . . , 2k}. Besides, since
uv is the only edge with a label different from 1, we have c`′(rj) = d(rj). It follows that there
exists a j ∈ {0, . . . , k − 1}, such that c`′(rj) = c`′(v) leading to `′ not being proper. Thus, there
must exist another edge u′v′ (with, say, u′ being the parent of v′) that is assigned a label different
from 1 by `′. Note that u′ is either rj or v. This edge, however, belongs to P (q, 2(k+1)) (for some
q ∈ {k, . . . , 2k − 1}) and we have that 1 ≤ dist(v′, v) ≤ 2. It follows from Lemma 4.3.4 that
mE(Tk) ≥ |E| + k + 1. The cases where r0w or vy are assigned a label different from 1 follow
by applying directly Lemma 4.3.4. �

Observe that the height of Tk can be controlled by changing the value β of the pending auxi-
liary graphs that form it. Furthermore, for α ≥ 2 and β, β′ ∈ N∗ with β < β′, it follows from
Lemma 4.3.4 that mE(T (α, 2β)) < mE(T (α, 2β′)), where T (α, 2β) denotes the graph Tk for-
med by α pending auxiliary graphs of height 2β. This proves the following corollary:

Corollary 4.3.7. For every k ≥ 2, there exists a graph Tk such that mEk+1(Tk) is arbitrarily
smaller than mEk(Tk).

74 CHAPITRE 4 — Minimising the sum of assigned labels

4.4 Bounds

Observation 4.1.1 establishes that, for any nice graph G, in general mE(G) should be ex-
pressed as a function of |E(G)|. To date, the best result towards the 1-2-3 Conjecture, due to
Kalkowski, Karoński and Pfender [79], states that χΣ(G) ≤ 5 holds for every nice graph G. This
implies Theorem 4.1.2, stating that for every nice graph G, mE(G) ≤ mE5(G) ≤ 5|E(G)|.

Throughout this section, we provide results towards Conjecture 2.1.4, which claims that for
every nice graphG, mE(G) ≤ 2|E(G)|. In particular, we prove a weaker version of that conjecture
for graphs with given chromatic number, we verify Conjecture 2.1.4 for bipartite graphs, and we
prove a stronger result in the particular case of trees.

4.4.1 Graphs with large chromatic number

Towards Conjecture 2.1.4, we provide a general upper bound on mE(G) being a function of
the chromatic number χ(G). In particular, the bound we get is better than that in Theorem 4.1.2,
and even better than the conjectured one in Conjecture 2.1.4, for dense enough graphs. In the
upcoming proofs, we make use of arguments that have already been presented in Section 2.2.1.

The next results are for graphs that are not bipartite. Results dedicated to bipartite graphs will
be provided in the next section.

Theorem 4.4.1. Let G = (V,E) be a nice connected graph with chromatic number k = χ(G) at
least 3. Then, we have mE(G) ≤ mEk+1(G) ≤ |E(G)|+ k|V (G)|.
Proof. Let H be an odd unicyclic spanning subgraph of G (as defined in Section 2.2.1). Also, let
G′ = G ∪ S0, where S0 = ∅, and Si ⊆ V (G′), for 1 ≤ i ≤ k, be the k stable sets induced
by a proper vertex-colouring c of G′ (i.e., if v ∈ Si then c(v) = i). We are going to construct
a (k + 1)-labelling ` on the edges of G′ such that σ(`) ≤ |E(G′)| + k|V (G′)|. Let us start by
having ` assigning label 1 to all edges of G′. At this point, the colour of every vertex is exactly
its degree. For each 0 ≤ i ≤ k, let S∗i = {v ∈ Si|c`(v) = i mod k + 1} (obviously S∗0 = ∅).
Our goal is to modify ` so that for each i, we have S∗i = Si, from which it follows that c` is a
proper vertex-colouring of G′. Aiming at reaching that conclusion, note that, modulo k + 1, we
can equivalently have ` assigning labels 0, . . . , k instead.

Let v∗ ∈ V (G′) such that d(v) = d mod k + 1. Since c`(v∗) = d(v∗), it follows that v∗ ∈ S∗d .
Free to relabel the stable sets induced by c, we may assume that d is such that Sd−1 = ∅. For each
v ∈ Si \ S∗i , we define Po(v) = (v∗, ho1, . . . , hon, v) and Pe(v) = (v∗, he1, . . . , hem, v) to be an
odd and an even walk, respectively, following the edges of H , that connect v∗ and v (thus n is an
even number and m is an odd number). These walks are sure to exist because H contains the odd
cycle C. We modify ` to a labelling `′ as follows. We traverse Po(v) from one end to the other,
and, as going along, alternate between removing 1 mod k + 1 and adding 1 mod k + 1 from the
labels of the traversed edges. Thus `′(v∗ho1) = `(v∗ho1) − 1 mod k + 1, `′(ho1ho2) = `(ho1ho2) +
1 mod k + 1, . . . , `′(honv) = `(honv) − 1 mod k + 1. We perform similar modifications as tra-
versing Pe(v) from one end to the other. Thus `′(v∗he1) = `(v∗he1) + 1 mod k + 1, `′(he1he2) =
`(he1he2)−1 mod k + 1, . . . , `′(hemv) = `(hemv)−1 mod k + 1. These modifications do not affect
the colours of the internal vertices of Po(v) and Pe(v). We perform these modifications one after
the other. That is, if we start by modifying Po(v), then we continue by modifying Pe(v), next with
modifying Po(v), and so on. Each time we modify Po(v) or Pe(v), the colour of v is reduced by
1 mod k + 1 and if we alternate between modifying Po(v) and Pe(v), then the colour of v∗ stays
the same.

4.4 – Bounds 75

Let v ∈ Si\S∗i . We alternate between modifying Po(v) and Pe(v) until c`′(v) = i mod k + 1.
Then me move on to modifying another vertex v′ ∈ Si′ \ S∗i′ (i is not necessarily different from
i′). If the last modification for v was on Po(v), then we start with modifying Pe(v′) and once more
we proceed by alternating between modification on Pe(v′) and Po(v′) and vice versa.

It is clear that once the above process is finished, for each v 6= v∗ and i, we have v ∈ Si if
and only if c`′(v) = i mod k + 1. Also, if the total number w of modifications done is even, then
c`′(v∗) = d mod k + 1 and if w is odd, then c`′(v∗) = d − 1 mod k + 1. In any case, and since
before the modifications we had Sd−1 = ∅, the vertex-colouring c`′ of G is proper. Note that this
remains true when turning all labels 0 into k+ 1, so that `′ is a proper (k+ 1)-labelling as desired.
Recall also that the modifications are done on the edges of H and |E(H)| = |V (G)|. In the worst
case, all the edges of H are labelled k + 1 by `′ and thus mE(G, `′) ≤ |E|+ k|V |. �

In some contexts making use of the walk-switching procedure described in the proof of Theo-
rems 4.4.1 and 2.2.1, there are favourable situations in which the bound can be further reduced.
The next result illustrates that fact.

Theorem 4.4.2. LetG = (V,E) be a nice connected graph with odd chromatic number k = χ(G)
at least 3. Then, we have mE(G) ≤ mEk(G) ≤ |E|+ (k − 1)|V |.

Proof. Let H be an odd unicyclic spanning subgraph of G and Si (for 0 ≤ i ≤ k− 1) be the stable
sets induced by a proper k-vertex-colouring c of G. Our goal is to reach, by `, the desired colours
modulo k. Under that assumption, we can here assign labels 0, . . . , k − 1 instead. Once more, we
start with ` assigning label 1 to all edges of G. For each 1 ≤ i ≤ k, let S∗i = {v ∈ Si | c`(v) =
i mod k}.

For each v ∈ Si \ S∗i , let Pv be an odd-length closed walk of H that contains v. Again the
existence ofPv is guaranteed because ofC. We proceed by modifying the labels ofPv: we alternate
between adding 1 (modulo k) and removing 1 (modulo k) from the labels of consecutive edges
of Pv. Since Pv is a closed walk of odd length, exactly two consecutive edges (not necessarily
distinct) will have to be altered in the same way (i.e., either they are both incremented by 1 or
reduced by 1 modulo k). The modification is done so that these two edges have v as a common
vertex. Let `′ be the modified ` and let us assume that the labels of the edges of H that are
adjacent to v are both incremented by 1 modulo k (symmetric arguments hold for the other case).
Clearly c`′(v) = c`(v) + 2 mod k and since k is odd, by repeating this process the desired value
c`′(v) = i mod k is eventually reached.

Eventually turn all 0s into k’s. In the worst case, `′ assigns label k on each one of the |V | edges
of H . Thus mE(G, `′) ≤ |E|+ (k − 1)|V |. �

4.4.2 Bipartite graphs

In this section, we prove Conjecture 2.1.4 for nice bipartite graphs. It turns out, however,
that we are not aware of many connected bipartite graphs G for which mE3(G) reaches exactly
2|E(G)|. To go further, we both improve the upper bound in particular contexts, and exhibit
constructions of connected bipartite graphs G with large value of mE2(G), that are legitimate
candidates for having mE(G) large. Throughout this section, it is worth keeping in mind that
determining mE2(G) for a given bipartite graph G is NP-complete by Theorem 4.2.2.

76 CHAPITRE 4 — Minimising the sum of assigned labels

4.4.2.1 Conjecture 2.1.4 for nice bipartite graphs

Recall that any bipartite graph belongs to exactly one of the sets B1, B2 or B3 where, for each
i ∈ {1, 2, 3}, Bi contains exactly the connected bipartite graphs G with χΣ(G) = i. Note that
B1 consists of the locally irregular bipartite graphs G, each one of which verifies mE1(G) =
|E(G)|. The graphs G of B2 admit proper 2-labellings, and, for these, by Observation 4.1.1 we
have mE2(G) ≤ 2|E(G)|. So, in order to prove Conjecture 2.1.4 for nice bipartite graphs, we only
need to focus on the graphs of B3. These graphs are what we call odd multi-cacti, and are defined
in Section 2.3.1.

We are now ready to prove our main result in this section, for which we will make use of
Lemma 2.2.2, presented in Chapter 2.

Theorem 4.4.3. For every nice connected bipartite graph G, we have mE(G) ≤ mE3(G) ≤
2|E(G)|.
Proof. Since the statement holds for G ∈ B1 ∪ B2, as explained earlier, we can assume G ∈
B3, i.e., G is an odd multi-cactus with bipartition (U, V) (where both |U | and |V | are odd by
definition). If G is a cycle with length at least 6 congruent to 2 modulo 4, then the result follows
from Theorem 4.1.6. Thus, we may assume that ∆(G) ≥ 3, i.e., some path attachments were made
to build G starting from an original cycle.

Let us consider the last olive edge xy to which a path P = (x, v1, . . . , v4k, y) was attached
in the construction of G, where k ≥ 1. Recall that d(x) = d(y) ≥ 3 by construction. Consider
G′ = G − {v1, v2, v3}. Assuming v1, v3 ∈ U and v2 ∈ V , the bipartition of G′ is (U ′, V ′) =
(U \ {v1, v3}, V \ {v2}). This means that |V ′| is even. By Lemma 2.2.2, there is a proper 2-
labelling `′ of G′ such that all vertices of U ′ have even colour while all vertices of V ′ have odd
colour. Since x ∈ V ′, the colour c`′(x) is odd, and thus at least 3 since dG′(x) ≥ 2. Similarly,
v4 ∈ V ′, so the colour c`′(v4) is odd, and it is precisely 1 since dG′(v4) = 1.

We now extend `′ to a proper 3-labelling ` of G, by assigning label 1 to v1v2, label 2 to xv1
and v3v4, and label 3 to v2v3. This way:

— c`(x) and c`(v4) remain odd;
— c`(v1) = 3 < 5 ≤ c`(x);
— c`(v3) = 5 > 3 = c`(v4);
— c`(v2) = 4 6∈ {c`(v1), c`(v3)} = {3, 5}.
For these reasons, it should be clear that ` is indeed proper. We additionally note that label 3 is

actually assigned only once by `, to v2v3. Furthermore, ` assigns label 1 at least once, e.g. to v1v2.
From this, it follows that σ(`) ≤ 2|E(G)|. �

As mentioned earlier, the only connected bipartite graph G verifying mE(G) = 2|E(G)| we
are aware of, is C6. Due to the small number of edges of C6, this case looks quite pathological.
In particular, it is natural to wonder whether Theorem 4.4.3 can be improved in general, when
excluding C6. We investigate this concern in what follows.

4.4.2.2 Lower bounds for some bipartite graphs

Our main result in this section is that, in general, for a nice connected bipartite graph G it is
not possible to lower mE2(G) below the 3

2 |E(G)| barrier. Put differently, there exist connected
bipartite graphs for which label 2 must be assigned to at least half of the edges by any proper
2-labelling. This is a consequence of the following more general result, which is of independent
interest.

4.4 – Bounds 77

Theorem 4.4.4. Let G be any nice connected graph, and let H be a graph obtained from G by
subdividing every edge e exactly ne times, where ne = 4ke+3 for some ke ≥ 0. Then χΣ(H) = 2.
Furthermore, mE2(H) = 3

2 |E(H)|.

Proof. For every edge e = uv ofG, let us denote byPe the corresponding path of length 4(ke+1) in
H . Note that H has many adjacent 2-vertices, so χΣ(H) > 1. Also, H is bipartite with bipartition
(X,Y), where w.l.o.g. X contains all vertices of G. Now let ` be the 2-labelling of H obtained
by considering every edge e = uv of G, and assigning labels 2, 1, 1, 2, 2, 1, 1, . . . , 1, 1, 2 to the
consecutive edges of Pe as going from u to v. Then ` is proper since all vertices in X have even
colour, while all vertices in Y have odd colour. The last part of the claim follows from the fact that
for every edge e of G, in any labelling ` of H every two edges of Pe being at distance 2 apart must
receive distinct labels (recall Observation 2.1.5). Due to the length of Pe, this implies that the sum
of the labels assigned to its edges is at least 3

2 |E(Pe)|. Thus, σ(`) ≥ 3
2 |E(H)|. �

Corollary 4.4.5. There exist infinitely many connected bipartite graphs G ∈ B2 verifying
mE2(G) = 3

2 |E(G)|. This remains true for trees.

Proof. This follows from Theorem 4.4.4. The last part of the statement is because any subdivision
of a tree is clearly a tree itself. �

In particular through experimentation via computer programs, we also managed to come up
with the following construction yielding connected bipartite graphs G for which mE2(G) slightly
exceeds 3

2 |E(G)|. These graphs can be constructed as follows. Let x, y ≥ 4 be any two integers
congruent to 0 modulo 4. The graph H(x, y) is the graph obtained by starting from the disjoint
union of a cycle C with length x and a cycle C ′ with length y, by adding an edge joining any
vertex of C and any vertex of C ′. Note that H(x, y) has odd size.

Theorem 4.4.6. Let x, y be any two integers congruent to 0 modulo 4, with x, y ≥ 4. Then, we
have mE2(H(x, y)) =

⌈
3
2 |E(H(x, y))|

⌉
.

Proof. We begin by showing the following claim:

Claim 4.4.7. LetG be obtained from a cycle C with length x at least 4 congruent to 0 modulo 4 by
adding an edge from any vertex v of C to a new pending vertex u. Then, by any proper 2-labelling
` of G, exactly half of the edges of G must be labelled 2. Furthermore, either:

— `(vu) = 1 and c`(v) = 5, or
— `(vu) = 2 and c`(v) can be either of 4, 5, 6.

Proof of the claim. Let us denote by v0, . . . , vx−1 the successive vertices of C, where v0 = v.
Because d(vi) = 2 for every i ∈ {1, . . . , x − 1}, recall, according to Observation 2.1.5, that, by
any proper 2-labelling ` of G, we must have `(v0v1) 6= `(v2v3) 6= `(v4v5) 6= . . . 6= `(vx−2vx−1)
(and thus, by the length of x, we have `(v0v1) 6= `(vx−2vx−1)), and similarly `(v1v2) 6= `(v3v4) 6=
`(v5v6) 6= . . . 6= `(vx−1v0) (and thus `(v1v2) 6= `(vx−1v0)). So there are essentially three ways
for ` to be designed:

— If `(v0v1) = `(v0vx−1) = 1, then `(v1v2) = `(vx−1vx−2) = 2, and c`(v1) = c`(vx−1) =
3. In that case, so that c`(v0) 6= 3, we must have `(v0u) = 2 in which case c`(v0) = 4.

— If `(v0v1) = `(v0vx−1) = 2, then `(v1v2) = `(vx−1vx−2) = 1, and c`(v1) = c`(vx−1) =
3. In that case, we can either have `(v0u) = 1 in which case c`(v0) = 5, or `(v0u) = 2 in
which case c`(v0) = 6.

78 CHAPITRE 4 — Minimising the sum of assigned labels

— If `(v0v1) = 1 and `(v0vx−1) = 2, then `(v1v2) = 1 and `(vx−1vx−2) = 2, and c`(v1) = 2
and c`(vx−1) = 4. In that case, so that c`(v0) 6= 4, we must have `(v0u) = 2 in which case
c`(v0) = 5.

This concludes the proof of the claim. �

Let G = H(x, y), and ` be a proper 2-labelling of G. Let H1, H2 be the two connected
components resulting from the removal of the unique bridge uv of G, and G1 and G2 be the
subgraphs H1 + uv and H2 + uv, respectively, of G (where, say, G1 contains the cycle C1 with
length x, and G2 contains the cycle C2 with length y). Applying Claim 4.4.7 onto G1 and G2 and
the restriction of ` to these graphs, we deduce that we cannot have `(uv) = 1 as otherwise we
would have c`(u) = c`(v) = 5, a contradiction. So we must have `(uv) = 2. Furthermore, still
by Claim 4.4.7, exactly half of the edges of C1 must be labelled 2 by `, and similarly exactly half
of the edges of C2 must be labelled 2. It yields that σ(`) = d3

2 |E(H(x, y))|e. Note that ` does
exist, since G is not an odd multi-cactus (due to the presence of the bridge uv). In particular, the
edges of C1 and C2 can be 2-labelled in such a way that c`(u) and c`(v) are two distinct values in
{4, 5, 6}. �

4.4.2.3 Improved upper bounds

As shown previously, it seems that, in general, for nice connected bipartite graphs the bound
in Theorem 4.4.3 might not be optimal. Following our investigations in the previous section, we
believe that perhaps studying Conjecture 2.1.6 could be the right direction to investigate. Recall
that this conjecture states there is an absolute constant c ≥ 1 such that, for every nice connected
bipartite graph G ∈ B2, we have mE2(G) ≤ 3

2 |E(G)|+ c.
Towards Conjecture 2.1.6, in this section our aim is to improve Theorem 4.4.3 further for the

bipartite graphs of B2. First off, we point out that the theoretical upper bound in Theorem 4.4.3
cannot be reached for a bipartite graph in B2.

Observation 4.4.8. For every graph G ∈ B2, we have mE2(G) < 2|E(G)|

Proof. By definition of B1, B2 and B3, since G 6∈ B1 the graph G is not locally irregular. Now,
if mE2(G) = 2|E(G)|, then the only proper 2-labelling of G is the one assigning label 2 to all
edges. For such a labelling to be proper, G must have no two adjacent vertices having the same
degree. So G must be locally irregular, a contradiction. �

In particular contexts, better bounds can be obtained by adapting the arguments from the proof
of Theorem 4.4.1 in a particular way.

Theorem 4.4.9. Let G = (U, V,E) be a nice connected bipartite graph where |U | is even. Then,
we have mE2(G) ≤ |E(G)|+ |V (G)| − 1.

Proof. Let us denote by Ue (Uo, respectively) the set of vertices of U having even (odd, respecti-
vely) degree in G, and similarly by Ve (Vo, respectively) the set of vertices of V having even (odd,
respectively) degree inG. Note that either |Ue| and |Vo|must have the same parity, or |Uo| and |Ve|
must have the same parity. This is because, otherwise, since |U | is even and |U | = |Ue|+ |Uo|, the
sizes |Ue| and |Uo| must have the same parity, we would get that also |Ve| and |Vo| have the same
parity. From this, we would deduce that

∑
u∈U d(u) 6≡

∑
v∈V d(v) mod 2, which is not possible.

Without loss of generality, we may assume that Ue and Vo have the same parity, thus that
|Ue| + |Vo| is even. Our aim now, is to design a 2-labelling of G where all vertices in U get odd

4.4 – Bounds 79

colour while all vertices in V get even colour. Such a labelling will obviously be proper. To that
aim, we proceed as follows. Let us start with assigning label 1 to all edges of G. This way, at
this point the colour of every vertex is exactly its degree; so all vertices in Uo and Ve verify the
desired colour property, while all vertices in Ue and Vo do not. To fix these vertices, we consider
any spanning tree T of G. We now repeatedly apply the following fixing procedure: we consider
any two vertices x and y of Ue ∪ Vo that remain to be fixed, and flip (i.e., turn the 1s into 2s, and
vice versa) the labels of all edges on the unique path in T from x to y. This way, note that only
the colours of x and y are altered modulo 2. Since |Ue| + |Vo| is even, there are an even number
of vertices to fix, and, by flipping labels along paths of T , we can fix the colour of all vertices in
Ue ∪ Vo. This results in a 2-labelling ` of G, with the desired properties, which is thus proper.

Note now that ` assigns label 2 only to a subset of the edges of T . Since T has |V (G)| − 1
edges, the result follows. �

Note for instance that, for a graph G, we have |E(G)| + |V (G)| − 1 ≤ 3
2 |E(G)| as soon as

|E(G)| ≥ 2|V (G)| − 2. As notable consequences, this implies that a connected bipartite graph
G ∈ B2 with a part of even size verifies mE2(G) ≤ 3

2 |E(G)| as soon as G has minimum degree
at least 4, or more generally when the graph is dense enough.

The same result also holds when G is bipartite and cubic (in which case χΣ(G) = 2, by
definition of odd multi-cacti), from a more general argument:

Observation 4.4.10. Let G be a connected regular graph with χΣ(G) = 2. Then, we have
mE(G) ≤ mE2(G) ≤ 3

2 |E(G)|.

Proof. Let ` be a proper 2-labelling ofG. SinceG is regular, the edges labelled 1 by `, and similarly
the edges labelled 2, must induce a locally irregular subgraph of G. Then the 2-labelling `′ of G
obtained by turning all 1s into 2s, and vice versa, is also proper. Now there is one of ` and `′ that
assigns label 2 to at most half of the edges, and the conclusion follows. �

Slight modifications of the proof of Theorem 4.4.9 also yield the desired result for certain
bipartite graphs that are Hamiltonian.

Observation 4.4.11. Let G = (U, V,E) be a Hamiltonian bipartite graph where |U | is even.
Then, we have mE(G) ≤ mE2(G) ≤ 3

2 |E|.

Proof. Just mimic the proof of Theorem 4.4.9, but repair pairs of defective vertices of G along a
Hamiltonian cycle C = (v0, . . . , vn−1, v0), matching each of them, say, with the next defective
vertex in the ordering of C. If this fixing process turns more than half of the edges to 2, then,
instead, repair pairs of vertices around C matching each of them with the previous defective vertex
in the ordering (which is equivalent to flipping the labels along C). �

4.4.2.4 Trees

Our main result here is that for every nice tree T , we have mE2(T) ≤ 3
2 |E(G)|, which cannot

be lowered in general, due to Corollary 4.4.5. Still, it confirms Conjecture 2.1.6 for nice trees.
Let us recall that it was proved in [18] that nice forests admit equitable proper 2-labelling. This
directly implies our result below for trees with even size, while it does not for trees with odd size
(as a 2-labelling where the number of assigned 2s is one more than the number of assigned 1s does
not fulfil our claim).

80 CHAPITRE 4 — Minimising the sum of assigned labels

Theorem 4.4.12. For every nice tree T , we have mE2(T) ≤ 3
2 |E(G)|.

Proof. The proof is by induction on the number of branching vertices of T , where by branching
vertex we mean any vertex of degree at least 3. The base case is when T has no branching vertex,
i.e., when ∆(T) ≤ 2. In that case, T is a path. Let us here consider the 2-labelling ` of T obtained
by assigning labels 1, 1, 2, 2, 1, 1, 2, 2, . . . as traversing the edges from an end-vertex to the second
one. It follows from Observations 2.1.5 and 2.2.4 that ` is proper. Lastly, since 1s and 2s are
assigned by pairs starting from a pair of 1s, it should be clear that ` assigns more 1s than 2s. Thus,
mE2(T) ≤ σ(`) ≤ 3

2 |E|.

We now focus on the general case. That is, we now assume that T has branching vertices, and
every nice tree with fewer branching vertices verifies the claim. Let us root T at some degree-1
vertex r. In the usual way, this defines a (virtual) orientation of T . By a deepest branching vertex
of T , we refer to a branching vertex whose all descendants are not branching vertices, i.e., they
have degree at most 2.

Let us consider a deepest branching vertex v of T . Then v is adjacent to its parent w and there
are k ≥ 2 hanging paths P1, . . . , Pk attached to v. Note that some of the Pi’s may be of length 1
in case some of the children of T are leaves. Let T ′ be the tree obtained from T by removing
the edges of P1, . . . , Pk (i.e., all their vertices different from v). If T ′ is just an edge, then T is
actually a subdivided star. If T is a star with at least two leaves, then it is locally irregular and we
can assign label 1 to all edges. Otherwise, when T is a subdivided star different from a star, then,
without loss of generality, P1 has length at least 2. We then change the root r to be the degree-1
vertex of P1 so that, now, we can assume that T ′ indeed is not an edge.

Thus, we can assume that T ′ is not just an edge. Since T ′ has less branching vertices than T , by
the induction hypothesis there is a proper 2-labelling `′ of T ′ verifying mE(T ′, `′) ≤ 3

2 |E(T ′)|.
We wish to extend `′ to the edges of P1, . . . , Pk, thus to a 2-labelling ` of T . To that aim, we
consider the following two extension schemes for extending `′ to the edges of one Px of the Pi’s:

— 1-extension: We assign labels 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as
they are traversed going from v to the degree-1 vertex of Px.

— 2-extension: We assign labels 2, 1, 1, 2, 2, 1, 1, 2, 2, . . . to the consecutive edges of Px, as
they are traversed going from v to the degree-1 vertex of Px.

Note that whenever Px has length not congruent to 1 modulo 4, the number of assigned 1s is
always at least the number of assigned 2s by both 1-extensions and 2-extensions. More precisely,
if Px has length congruent to 1 modulo 4, then the number of 2s by a 2-extension is one more than
the number of 1s, and vice versa by a 1-extension. Recall also that 1-vertices cannot be involved
in colour conflicts. Furthermore, for two adjacent 2-vertices x, y to have the same colour, the edge
incident to x different from xy must be labelled the same way as the edge incident to y different
from xy. From this, we deduce that when extending `′ to the edges of the Pi’s via 1-extensions
and 2-extensions, we must just make sure that 1) the colour of v does not get equal to the colour
of its parent w, and 2) the colour of v does not get equal to the colour of one of its children.

We note that the second type of colour conflict cannot actually occur. Indeed, note that by a
1-extension of Px, the neighbour of v in Px, unless it has degree 1 (in which case it cannot be
in conflict with v), gets colour 2, while, by a 2-extension, it gets colour 3. Since v is a branching
vertex with k ≥ 2 children, thus of degree k + 1, when performing 1-extensions and 2-extensions
to the Pi’s, vertex v gets colour precisely k+1 ≥ 3 if only 1-extensions are performed, and colour
at least k + 2 ≥ 4 if at least one 2-extension is performed.

4.5 – Conclusion 81

Thus, we just need to find a combination of 1-extensions and 2-extensions to the Pi’s so that
no colour conflict involving v and its parent w arises. Also, we need to make sure that the number
of assigned 1s is at least the number of assigned 2s. If one of the Pi’s has length not congruent to
1 modulo 4, then we choose it as P1. Otherwise, if they all have length congruent to 1 modulo 4,
then we choose any Pi as P1.

We first perform 1-extensions only, i.e., to all Pi’s. If the colour of v gets different from that
of w, then we are done. Otherwise, when performing a 2-extension to P1 and a 1-extension to all
other Pi’s, the colour of v gets bigger, thus getting different from the colour of w. This results in
the desired extension ` to all edges of T .

Let us conclude by noting that the number of 1s assigned by ` is at least the number of assigned
2s. This is because mE2(T ′, `′) ≤ 3

2 |E(T ′)|, and, as mentioned earlier, by 1-extensions to the Pi’s
the number of assigned 1s is at least the number of assigned 2s. By 2-extensions, this is true when
performed on paths of length not congruent to 1 modulo 4. By our choice of P1, if P1 has length
congruent to 1 modulo 4, then so do all Pi’s. In that precise case, the number of 2s assigned to
the edges of P1 is one bigger than the number of assigned 1s, but this is compensated by the fact
that, in P2, the number of assigned 1s is one bigger than the number of assigned 2s. Thus we
additionally have σ(`) ≤ 3

2 |E(T)|, as desired. �

4.5 Conclusion

In this chapter, we have studied proper labellings of graphs with the additional requirement that
we want the sum of assigned labels to be as small as possible. Our interests were guided by both
straight questions, such as determining mE(G) for a given graph G, as well as more fundamental
ones, such as the difference, in general, between mEk(G) and mEk′(G) for k 6= k′. We have also
investigated the complexity of finding proper labellings that also minimise the sum of labels being
used.

We quickly ran into Conjecture 2.1.4, which seems rather natural, considering how plausible
the 1-2-3 Conjecture seems to be, and that graphs, in general, seem to need only a few 3s to design
proper 3-labellings. Conjecture 2.1.4 stands as the main open problem regarding our investigations
in the current chapter. It would also be interesting to progress towards its refinement for bipartite
graphs, Conjecture 2.1.6. A way to progress towards answering both questions could be to exhibit
families of connected (possibly bipartite) graphs G for which mE(G) is “large”, i.e., larger than
the quantity in Theorem 4.4.6.

Regarding our algorithmic results in Section 4.2, we note that they all deal, for a given graph
G, with the parameter mEk(G) (for some k), and not with the more general parameter mE(G).
This is mainly because, as indicated by Theorem 4.3.5, in general there is no absolute constant
that bounds, for all graphs G, the smallest k such that mE(G) = mEk(G). In particular, even for
a graph G of bounded treewidth, although we can determine mEk(G) in polynomial time for any
fixed k (due to our algorithm in Theorem 4.2.5), running multiple iterations of our algorithm to
determine mE(G) is not feasible in polynomial time. Thus, we leave the following problem open
even for the seemingly simplest case:

Question 4.5.1. What is the complexity of determining mE(T) for a given tree T?

CHAPTER 5
Minimising the number

of edges labelled 3
An intuition from previous investigations on the 1-2-3 Conjecture is that, in general, it
should always be possible to produce proper 3-labellings assigning label 3 to only a few
edges. In this chapter we investigate proper 3-labellings of graphs that also minimise
the number of edges labelled 3.
We prove that, for every p ≥ 0, there are various graphs needing at least p 3s in their
proper 3-labellings. Actually, deciding whether a given graph can be properly 3-labelled
with p 3s is NP-complete for every p ≥ 0. We also focus on classes of 3-chromatic
graphs. For various classes of such graphs (cacti, cubic graphs, triangle-free planar
graphs, etc.), we prove that there is no p ≥ 1 such that all their graphs admit proper
3-labellings assigning label 3 to at most p edges. In such cases, we provide lower and
upper bounds on the number of 3s needed.
This chapter presents a joint work with J. Bensmail and F. Mc Inerney, published in [22]
and presented in [23].

5.1 Preliminary results . 84
5.2 Tools for establishing bounds on mT and ρ3 86

5.2.1 Weakly induced subgraphs – A tool for lower bounds 86
5.2.2 Partitioning into stable sets – A tool for upper bounds 89

5.3 The parameters mT and ρ3 for some graph classes 91
5.3.1 Connected graphs needing lots of 3s 92
5.3.2 Bounds for connected cubic graphs 94
5.3.3 Bounds for connected planar graphs with large girth 95
5.3.4 Bounds for connected cacti 98

5.4 Bounds for other graph classes 105
5.4.1 Outerplanar graphs . 105
5.4.2 Halin graphs . 107

5.5 Conclusion . 109

Our goal in this chapter is to study and formally establish the intuition that, in general, graphs
should admit proper 3-labellings assigning only a few 3s. We study this through two questions.

83

84 CHAPITRE 5 — Minimising the number of edges labelled 3

— The very first question to consider is whether, given a (possibly infinite) class F of graphs,
the members of F admit proper 3-labellings assigning only a constant number of 3s, i.e.,
whether there is a constant cF ≥ 0 such that all graphs of F admit proper 3-labellings
assigning label 3 to at most cF edges. Note that this is something that is already known to
hold for a few graph classes. For instance, all nice trees admit proper 2-labellings (recall
Proposition 2.2.3), thus proper 3-labellings assigning label 3 to no edge. Similarly, from
Theorem 4.4.3, it can be deduced that all nice bipartite graphs admit proper 3-labellings
assigning label 3 to at most two edges.

— In case F admits no such constant cF , i.e., the number of 3s the members of F need in
their proper 3-labellings is a function of their number of edges, the second question we
consider is whether the number of 3s needed must be “large” for a given member of F ,
with respect to the number of its edges.

Throughout this chapter, we investigate these two questions in general and for more restricted
classes of graphs. We start off in Section 5.1 by raising preliminary observations and results.
Then, in Section 5.2, we introduce proof techniques for establishing lower and upper bounds on
the number of 3s needed to construct proper 3-labellings for some graph classes. In Sections 5.3
and 5.4, we use these tools to establish that, for several classes of graphs, the number of 3s needed
in their proper 3-labellings is not bounded by an absolute constant. In such cases, we exhibit
bounds (functions depending on the size of the considered graphs) on this number. The difference
between these two sections is that in Section 5.4 we only provide either upper or lower bounds
on the studied parameter for the families of graphs under consideration, while in Section 5.3 we
provide both upper and lower bounds. Our results lead us to propose Conjecture 2.1.9, claiming
that every nice graphG admits proper 3-labellings that assign label 3 to at most one third the edges
of G.

5.1 Preliminary results

Let us briefly recall the definitions given in Section 2.1. We denote by mT(G) the minimum
number of edges assigned label 3 by a proper 3-labelling of a graph G. Also, for a class F of
graphs, mT(F) is defined as the maximum value of mT(G) over the members G of F . Also, for
every p ≥ 0, we denote by Gp the class of graphs G with mT(G) = p. For convenience, we also
define G≤p = G0 ∪ · · · ∪ Gp.

Let us now employ the above notations to restate Theorem 4.4.3:

Theorem 5.1.1. If G is a nice bipartite graph, then G ∈ G≤2. More precisely, G ∈ G0 if G is
not an odd multi-cactus, G ∈ G2 if G is a cycle of length congruent to 2 modulo 4, and G ∈ G1
otherwise (i.e., if G is an odd multi-cactus different from a cycle C4k+2).

Theorem 5.1.1 is worrisome in the sense that, even without considering any additional
constraint, we do not know much about how proper 3-labellings behave beyond the scope of bi-
partite graphs. Our take in this chapter is to focus on the next natural case to consider, that of
3-chromatic graphs, which fulfil the 1-2-3 Conjecture (recall Theorem 2.2.1). Unfortunately, as
will be seen later on, a result equivalent to Theorem 5.1.1 for 3-chromatic graphs does not exist,
even for very restricted classes of 3-chromatic graphs (e.g., cacti, cubic graphs, triangle-free planar
graphs, etc.).

Regarding the classes G0,G1, . . . , it is worth mentioning right away that each Gp is well-
populated, in the sense that there exist infinitely many graphs, with various properties, belonging

5.1 – Preliminary results 85

to Gp. Actually, it turns out that deciding whether a given graph G belongs to G≤p is NP-complete
for every p ≥ 0. We postpone the proofs of these statements to Section 5.2 (Theorems 5.2.3
and 5.2.4), as they require the tools and results introduced earlier in the same section.

As mentioned earlier, we will see throughout this chapter that, for several graph classes F ,
there is no p ≥ 0 such that F ⊂ G≤p. For such a class, we want to know whether the proper
3-labellings of their members require assigning label 3 many times, with respect to their number
of edges. We study this aspect through the following terminology, already introduced in Chap-
ter 2, Definition 2.1.8. For a nice graph G, we define ρ3(G) = mT(G)/|E(G)|. We extend this
ratio to a class F by setting ρ3(F) = sup{ρ3(G) : G ∈ F}. This parameter is at the heart of
Conjecture 2.1.9 which we introduced in Section 2.1, claiming that every nice graph G verifies
ρ3(G) ≤ 1

3 .
Recall that Conjecture 2.1.9 can be seen as a weaker version of Conjecture 2.1.2, investigated

in [18] and in Section 3. However, we cannot benefit much from the results in [18] or Section 3,
since most of these results are about equitable proper 3-labellings of classes of bipartite graphs,
while bipartite graphs form a pretty well-understood case in the context of this chapter (recall
Theorem 5.1.1).

One result we do get from [18] is an upper bound on ρ3 for complete graphs, which is actually
improved by another result presented in Chapter 4. Indeed, it was shown in [18] that complete
graphs Kn with n ≥ 5 admit equitable proper 3-labellings, which implies that they verify Conjec-
ture 2.1.9, i.e., mT(Kn) ≤ |E(Kn)|/3 which is roughly of order n2/6. Recall now Theorem 4.1.5,
where we exhibited proper 3-labellings of complete graphs where the sum of assigned labels is as
small as possible. Looking closely at the proof, it turns out that the designed proper 3-labellings
assign label 3 to roughly n/4 edges, which yields a better upper bound on ρ3(Kn). Determining
the precise ratio in general sounds like an interesting challenge. Through computer experimenta-
tion, we were able to verify that Kn ∈ G1 for 3 ≤ n ≤ 5, while Kn ∈ G2 for 6 ≤ n ≤ 9, and
Kn ∈ G3 for 10 ≤ n ≤ 12. However, we did not manage to prove a general result. We are not
even sure if there exists a p ≥ 3 such that all complete graphs are in G≤p.

We will now present some initial results on proper labellings, which will be useful in the next
sections.

Let ` be a k-labelling of some graph, and let σ : {1, . . . , k} → {1, . . . , k} be a permutation of
{1, . . . , k}. We denote by sw(`, σ) the k-labelling obtained from ` by switching labels as indicated
by σ. That is, if `(e) = i for some edge e and label i, then sw(`, σ)(e) = σ(i). Assuming the set
of labels {1, . . . , k} is clear from the context, for any two i, j ∈ {1, . . . , k}, we denote by σi↔j
the permutation only swapping labels i and j. That is, σi↔j(i) = j, σi↔j(j) = i, and σi↔j(l) = l
for every l ∈ {1, . . . , k} \ {i, j}.

Recall the definition of a d-regular graph G. We extend this definition as follows: we say that
a graph G is quasi d-regular if every vertex v ∈ V (G) satisfies dG(v) ∈ {1, d}. Clearly, every
graph that is d-regular, is also quasi d-regular.

Lemma 5.1.2. If ` is a proper 3-labelling of a quasi d-regular graph G, then sw(`, σ1↔3) is also
proper.

Proof. Assume G is quasi d-regular for some d ≥ 2, and set `′ = sw(`, σ1↔3). Recall that, by
a k-labelling, a vertex of degree 1 can never be involved in a colour conflict with its neighbour.
Consider any edge vw ∈ E(G) with dG(v) = dG(w) = d. For 1 ≤ i ≤ 3, let ni be the number of
edges incident to v that are labelled i by `. Then, n1 +n2 +n3 = d, c`(v) = n1 + 2n2 + 3n3, and

86 CHAPITRE 5 — Minimising the number of edges labelled 3

(a) G (b) H

Figure 5.1 – A graphG containing another graphH as a weakly induced subgraph. InG, the white
vertices can have arbitrarily many neighbours in the grey part, while the full neighbourhoods of
the black vertices are as displayed. InH , the white vertices are the border vertices, while the black
vertices are the core vertices.

c`′(v) = 3n1 + 2n2 + n3, and thus, c`(v) + c`′(v) = 4(n1 + n2 + n3) = 4d. Similarly, we have
that c`(w) + c`′(w) = 4d. Therefore, c`(v)− c`(w) = c`′(w)− c`′(v), with c`(v) 6= c`(w) (since
` is a proper labelling) implying that c`′(w) 6= c`′(v). It follows that `′ is a proper 3-labelling of
G. �

Analogously, one can prove:

Lemma 5.1.3. If ` is a proper 2-labelling of a quasi 3-regular graph, then sw(`, σ1↔2) is also
proper.

5.2 Tools for establishing bounds on mT and ρ3

5.2.1 Weakly induced subgraphs – A tool for lower bounds

Most of the lower bounds on mT and ρ3 that we exhibit in Section 5.3 are through a particular
graph construction. The general idea is that, if we have a collection of graphs H1, . . . ,Hn with
certain structural and labelling properties, then it is possible to combine theseHi’s in some fashion
to form a bigger graph G in which the Hi’s retain their respective labelling properties, from which
we can deduce that G itself has certain labelling properties.

In order to state this construction formally, we need to introduce some terminology first (see
Figure 5.1 for an illustration).

Definition 5.2.1. LetG andH be two graphs such that V (H) ⊆ V (G). We say thatG containsH
as a weakly induced subgraph if, for every vertex v ∈ V (H), either dH(v) = 1 or dH(v) = dG(v).
For every edge uv ∈ E(G), if u ∈ V (H) and v ∈ V (G) \ V (H), then dH(u) = 1; we call these
the border vertices of H . Also, we call the other vertices of H (i.e., those that are not border
vertices) its core vertices.

By definition, note that if G contains H as a weakly induced subgraph and δ(H) ≥ 2, then H
is a collection of connected components of G. In particular, if G is a connected graph, then H is
isomorphic to G. For this reason, this notion makes more sense when δ(H) = 1.

Let H1, H2 be two weakly induced subgraphs of a graph G. We say that H1 and H2 are
disjoint (in G) if they share no core vertices. It follows directly from the definition that, for every
v ∈ V (G), if v ∈ V (H1) ∩ V (H2), then v is a border vertex of both H1 and H2. For a labelling

5.2 – Tools for establishing bounds on mT and ρ3 87

` of G and a subgraph H of G, we denote by `|H the labelling of H inferred from `, i.e., we have
`|H(e) = `(e) for every edge e ∈ E(H).

The key result is that, if a graph G contains other graphs H1, . . . ,Hn as pairwise disjoint
weakly induced subgraphs, then the labelling properties of the Hi’s, in particular mT(Hi), can be
inferred to those of G:

Lemma 5.2.2. Let G be a graph containing nice graphs H1, . . . ,Hn as pairwise disjoint weakly
induced subgraphs. If ` is a proper 3-labelling of G, then `|Hi is a proper 3-labelling of Hi for
every i ∈ {1, . . . , n}. Consequently, mT(G) ≥

∑n
i=1 mT(Hi).

Proof. Consider Hj for some 1 ≤ j ≤ n. Since, by any k-labelling of a nice graph, a vertex
of degree 1 cannot get the same colour as its unique neighbour, then it cannot be involved in a
colouring conflict. This implies that `|Hj is proper if and only if any two adjacent core vertices
of Hj get distinct colours by `|Hj . By the definition of a weakly induced subgraph, we have
dHj (v) = dG(v) for every core vertex v of Hj , which implies that c`|Hj

(v) = c`(v). Thus, for
every edge uv ∈ E(Hj) joining core vertices, we have c`(u) = c`|Hj

(u) 6= c`|Hj
(v) = c`(v) since

` is proper, meaning that `|Hj is also proper. Now, since G contains nice graphs H1, . . . ,Hn as
pairwise disjoint weakly induced subgraphs, then mT(G) ≥

∑n
i=1 mT(Hi). �

Through an easy use of Lemma 5.2.2, we can already establish results of interest regarding
the parameter mT. For instance, we can prove that each graph class Gp (p ≥ 1) contains infinitely
many graphs with various properties.

Theorem 5.2.3. Gp contains infinitely many graphs for every p ≥ 0.

Proof. Clearly, the statement is true for p = 0. We now show that it is also true for every p ≥ 1.
Let H be a graph with δ(H) = 1 and mT(H) = 1 (such graphs exist, see, e.g., our results from
Section 5.3, in particular the graphs illustrated in Figure 5.3). Let uv be an edge of H such that
dH(u) = 1 and dH(v) ≥ 2. Also, let T be any locally irregular graph with an edge u′v′ such that
dT (u′) = 1 and dT (v′) ≥ 3p+ 3.

Now, let G be the graph that is the disjoint union of T and of p copies H1, . . . ,Hp of H , and
identify u′ and the p copies of u to a single vertex w (see Figure 5.2 for an illustration of G).
Clearly, G contains T and the disjoint union of p copies of H as pairwise disjoint weakly induced
subgraphs (with a slight abuse of notations, for simplicity we refer to both the original T and its
copy inG as T). By Lemma 5.2.2, we have mT(G) ≥ mT(T)+p ·mT(H) = p since T is locally
irregular (thus, mT(T) = 0) and mT(H) = 1.

To prove that the equality actually holds, it suffices to construct a proper 3-labelling ` of G
with nb`(3) = p. Recall that nb`(α) is used to denote the number of times that ` assigns label α
on the edges of G. Let `′ be a proper 3-labelling of H such that nb`′(3) = 1, which exists since
mT(H) = 1. To obtain `, for each Hi, we set `(e) = `′(e) for every edge e of Hi, while we
set `(e) = j for every edge e of T , where j ∈ {1, 2} is chosen so that c`(w) 6= c`′(v) for v in
each copy of Hi (recall that c`′(v) is the same for each copy of Hi). As a result, for any Hi, for
every vertex x 6= w of Hi, we get c`(x) = c`′(x). Hence, for any Hi, for every edge xy of Hi

not containing w, we have c`(x) 6= c`(y). Furthermore, for every vertex x of T different from
w, we have either c`(x) = dG(x) or c`(x) = 2dG(x), meaning that, for every edge xy of T not
containing w, we have c`(x) 6= c`(y) since T is locally irregular. Now, by the construction of
`, note that w cannot be in conflict with its neighbours in the Hi’s (due to the choice of j), and
c`(w) < 3p+ 3 ≤ dG(v′) ≤ c`(v′), meaning that w and v′ cannot be in conflict. Thus, ` is proper.

88 CHAPITRE 5 — Minimising the number of edges labelled 3

v u

(a) A graph H s.t.
mT(H) ≥ 1 and δ(H) = 1

u′ v′

...

3p+ 3 vertices

(b) A locally irregular graph T

w

v′

...

3p+ 3 vertices

..
.

p copies of H

(c) The constructed graph G

Figure 5.2 – An illustration of the construction described in the proof of Theorem 5.2.3. The
graph H is abstractedly represented by a cycle, with the edge uv being such that dH(u) = 1 and
dH(v) ≥ 2. The graph T is chosen to be the star on 3p+ 5 vertices, for any p ≥ 1.

�

Note that, in the proof above, the structure of T does not matter, and can be anything as long
as T is locally irregular and has the particular edge u′v′ with dT (u′) = 1 and dT (v′) ≥ 3p+ 3. In
particular, T can potentially contain any graph as an induced subgraph. Thus, each graph class Gp
(p ≥ 1) contains infinitely many graphs with various properties.

Using similar ideas, we can actually prove that deciding if a graph G belongs to Gp cannot be
done in polynomial time, unless P=NP.

Theorem 5.2.4. Given a graph G and any (fixed) integer p ≥ 1, deciding if G ∈ G≤p is NP-
complete.

Proof. The problem is obviously in NP. Let us focus on proving it is also NP-hard. This is done
by a reduction from the 2-LABELLING problem, which was proved to be NP-hard, e.g., in [64]. In
that problem, a graph H is given, and the goal is to decide whether H admits proper 2-labellings.
Given an instance H of 2-LABELLING, we construct, in polynomial time, a graph G such that
mT(G) = p if and only if H admits proper 2-labellings.

Looking closely at the proof from [64], it can be noted that 2-LABELLING remains NP-hard
when restricted to graphs with minimum degree 1. Thus, we can assume H has this property.

5.2 – Tools for establishing bounds on mT and ρ3 89

The construction of G is achieved as follows. Let H ′ be a graph with δ(H ′) = 1 and
mT(H ′) = 1 (as mentioned in the proof of Theorem 5.2.3, such graphs exist, and two are illustra-
ted in Figure 5.3). Let uv be an edge of H ′ such that dH′(u) = 1 and dH′(v) ≥ 2. Now, start from
G being the disjoint union of H and of p copies H ′1, . . . ,H

′
p of H ′, and then identify a vertex of

degree 1 of H and of the p copies of u to a single vertex w. Finally, attach new vertices of degree
1 to w so that the degree of w in G gets at least four times bigger than the degree of any of its
neighbours. Clearly, the construction of G is achieved in polynomial time.

We now prove the equivalence between the two problems.
— Assume ` is a proper 3-labelling of G such that nb`(3) = p. Note that G contains H

and p copies of H ′ as pairwise disjoint weakly induced subgraphs. Due to Lemma 5.2.2,
and because mT(H ′) = 1, this means that we must have nb`|H′

i

(3) = 1 for every i ∈
{1, . . . , p}, and, thus, nb`|H (3) = 0. Then, `|H must be a proper 2-labelling of H .

— Assume ` is a proper 2-labelling ofH . Since mT(H ′) = 1, there exists a proper 3-labelling
`′ of H ′ where nb`′(3) = 1. Now, let `′′ be the 3-labelling of G obtained by setting
`′′(e) = `(e) for every e ∈ E(H), setting `′′(e) = `′(e) for every e ∈ E(H ′i) for each i ∈
{1, . . . , p}, and setting `′′(e) = 1 for every remaining pending edge attached at w. By the
properties of ` and `′, and by arguments similar to those used in the proof of Theorem 5.2.3,
no conflict can occur along an edge not containing w. Now, regarding w, due to its degree,
it follows that c`′′(w) must be strictly bigger than the colour of each of the neighbours of
w. Thus, `′′ is a proper 3-labelling of G, and nb`′′(3) = p.

�

To close this section, we point out that, in some contexts, we can add some structure to a
given graph without altering its value of mT. In some of the later proofs, this will be particularly
convenient for applying inductive arguments or simplifying the structure of a considered graph.

Lemma 5.2.5. LetG be a nice graph with minimum degree 1 and v ∈ V (G) be such that dG(v) =
1. If G′ is the graph obtained from G by adding x > 0 vertices of degree 1 adjacent to v, then
mT(G′) = mT(G).

Proof. Since G′ contains G as a weakly induced subgraph, then by Lemma 5.2.2, we have that
mT(G′) ≥ mT(G). To show that mT(G′) ≤ mT(G), it suffices to extend a proper 3-labelling
of G to one of G′ that assigns label 3 to the same number of edges. To do this, simply note that
since each one of the leaves adjacent to v has degree 1, its colour cannot be in conflict with that of
v. Thus, the only colour conflict that can occur when extending the labelling, is between v and its
unique neighbour in G. If, by labelling all of the edges incident to the leaves adjacent to v with 1s,
there is a colour conflict between v and its neighbour in G, then it suffices to change exactly one
of those labels to 2. �

5.2.2 Partitioning into stable sets – A tool for upper bounds

Due to Theorem 5.1.1, investigating the parameters mT and ρ3 is interesting for graphs with
chromatic number at least 3, i.e., that are not bipartite. These graphs have odd-length cycles. We
take advantage of these cycles, in the sense explained in Section 2.2.1, to prove the following
upper bound on ρ3 for 3-chromatic graphs.

Theorem 5.2.6. If G is a connected 3-chromatic graph, then ρ3(G) ≤ |V (G)|/|E(G)|.

90 CHAPITRE 5 — Minimising the number of edges labelled 3

Proof. The first part of this proof consists in creating a proper 3-labelling of G, exactly as it is
described in the proof of Theorem 2.2.1. Let ` be the resulting labelling.

Recall that we have `(e) = 2 for every e ∈ E(G) \ E(H), where H is the odd unicyclic
spanning subgraph of G constructed in the first part of the proof of Theorem 2.2.1. Thus, only the
edges of H can be assigned label 0 by `. Since |E(H)| = |V (G)| and we can replace all assigned
0s with 3s without breaking the modulo 3 property, we have mT(G) ≤ |V (G)|, which implies
that ρ3(G) ≤ |V (G)|/|E(G)|. �

Theorem 5.2.6, by itself, has implications on Conjecture 2.1.9. In particular, every sufficiently
dense connected 3-chromatic graph verifies the conjecture. This remark applies to, e.g., every
connected 3-chromatic graph G with δ(G) ≥ 6, since it obviously verifies |E(G)| ≥ 3|V (G)|.
Note that, in that case, the connectivity condition can actually be dropped, as every connected
component of a 3-chromatic graph is 3-colourable (so, for each component, one of Theorems 5.1.1
and 5.2.6 applies).

Corollary 5.2.7. If G is a 3-chromatic graph with δ(G) ≥ 6, then ρ3(G) ≤ 1/3.

In general, and more particularly for less dense graphs, it would be interesting to find ways
to improve the arguments in the proof of Theorem 5.2.6 to further reduce the number of assigned
3s. Note that several of our arguments could actually be subject to improvement. For instance, in
the current proof, we always set `(e) = 2 for an edge e ∈ E(G) \ E(H), which might be one of
the reasons why many 3s might appear through the eventual walk-switching procedure. It seems,
however, that in general, this is tough to improve upon significantly without further assumptions
on G. Similarly, in some contexts, it might be possible to choose the odd unicyclic subgraph H
of G in a clever way, but this seems hard to do in general. A more interesting direction is about
choosing the proper 3-vertex-colouring φ in a more clever way. In the next lemma, we show a way
to choose φ in order to reduce the number of 3s assigned by ` to certain sets of edges.

Lemma 5.2.8. Let G be a graph and let ` be a proper {0, 1, 2}-labelling of G such that c`(u) 6≡
c`(v) mod 3 for every edge uv ∈ E(G). If H is a (not necessarily connected) spanning d-regular
subgraph of G for some d ≥ 1, then there exists a proper {0, 1, 2}-labelling `′ of G such that
c`′(u) 6≡ c`′(v) mod 3 for every edge uv ∈ E(G) and that assigns label 0 to at most a third of the
edges of E(H). Moreover, for every edge e ∈ E(G) \ E(H), `′(e) = `(e).

Proof. We construct the following new labelling: starting from `, add 1 (modulo 3) to all the labels
assigned by ` to the edges of H . The resulting labelling `1 is a proper {0, 1, 2}-labelling of G
such that c`1(u) 6≡ c`1(v) mod 3 for every edge uv ∈ E(G). Indeed, for every v ∈ V (G), we
have c`1(v) ≡ c`(v) + d mod 3. Thus, if there exist two adjacent vertices u, v ∈ V (G) such that
c`1(u) ≡ c`1(v) mod 3, then c`(u) ≡ c`(v) mod 3, a contradiction. We define `2 in a similar
fashion, by adding 1 (modulo 3) to all the labels assigned by `1 to the edges of H . Similarly, `2 is
proper. Note that, for every edge e ∈ E(H), we have {`(e), `1(e), `2(e)} = {0, 1, 2}. This implies
that at least one of `, `1, `2 assigns label 0 to at most a third of the edges of E(H). Finally, since
none of the labels of the edges of E(G) \ E(H) were changed to obtain `1 from ` and to obtain
`2 from `1, the last statement of the lemma holds. �

In Lemma 5.2.8, if d = 2, then H forms a cycle cover of G. Thus, when H is also an odd uni-
cyclic spanning connected subgraph of G, a particular application of Lemma 5.2.8 in conjunction
with the proof of Theorem 5.2.6 gives the following corollary:

5.3 – The parameters mT and ρ3 for some graph classes 91

Family F ∃ arbitrarily large G = (V, E) ∈ F :
mT (G) ≥

∀G = (V, E) ∈ F :
mT (G) ≤

χ(G) = 3 1
10 |E|

|V |
|E| |E|

Cubic other than K4
1
10 |E|

1
3 |E|

Cactus 1
12 |E|

1
3 |E|

Planar girth g ≥ 5k + 1, k ≥ 7 1
g(g+1) |E|

2
k−1 |E|

Table 5.1 – Summary of the results presented in Section 5.3.

Corollary 5.2.9. If G is a 3-chromatic Hamiltonian graph of odd order, then ρ3(G) ≤ 1/3.

Another application of Lemma 5.2.8 is for d = 1, i.e., H forms a perfect matching. That is,
Lemma 5.2.8 in conjunction with the proof of Theorem 5.2.6 can be used, for instance, to prove
that class-1 cubic graphs verify Conjecture 2.1.9. Indeed, let G be a class-1 cubic graph, and let
M1,M2,M3 be three disjoint perfect matchings of G. We can assume that G is not bipartite, as
otherwise Theorem 5.1.1 would apply, and also thatG is notK4 (as it can be checked by hand that
mT(K4) = 1). Thus, by Brooks’ Theorem, we get that G is 3-chromatic. Mimicking the proof of
Theorem 5.2.6, we can use an odd-length cycle of G to deduce a {0, 1, 2}-labelling ` of G where
c`(u) 6≡ c`(v) mod 3 for every uv ∈ E(G). Then, by applying Lemma 5.2.8 on each one of the
Mis, we can assume that, for every Mi, at most a third of its edges are assigned label 0 by `. Since
the Mi’s partition E(G), turning all 0s by ` into 3s, we end up with a proper 3-labelling of G
where at most a third of the edges are assigned label 3. In Section 5.3, via a different approach, we
will actually prove that if G is a cubic graph, then ρ3(G) ≤ 1

3 , i.e., that Conjecture 2.1.9 holds for
cubic graphs.

Regarding the proof of Theorem 5.2.6 and the previous arguments, it would be interesting if
we could always choose the odd unicyclic subgraph H in such a way that it admits several disjoint
perfect matchings, so that Lemma 5.2.8 can be employed to reduce the number of assigned 3s. In
the proof of Theorem 5.4.3, we will point out one graph class where this strategy can be employed.

5.3 The parameters mT and ρ3 for some graph classes

We now use the tools introduced in Section 5.2 to exhibit results on the parameters mT and
ρ3 for some particular classes of 3-chromatic graphs (and beyond). In particular, we prove that,
for many classes F of 3-chromatic graphs, there is no p ≥ 1 such that F ⊂ G≤p (i.e., a constant
number p of 3s is not sufficient to construct a proper 3-labelling of at least one of the graphs in
F). In such cases, we provide upper bounds for ρ3(F). Our results are summarised in Table 5.1.
In Section 5.3.1 we present two graphs, as well as two operations, which will serve throughout
the rest of this chapter in constructions that will yield lower bounds on the ρ3 parameter. Then, in
each subsection, we focus on a specific graph family (cubic graphs, planar graphs of big girth and
cacti) and provide both an upper and lower bound on the ρ3 parameter of graphs belonging to the
corresponding family.

92 CHAPITRE 5 — Minimising the number of edges labelled 3

1
v1

3
v2

4
v3

5
v4

7
v5

5
v6

2
v7

3
v8

1

1

1

2

3

1 2

1

2

1

(a) A1

2
v1

6
v2

5
v3

4
v4

3
v5

5
v6

4
v7

1
v8

2

3

1

1

1

1

2

1

2

1

(b) A2

Figure 5.3 – Some proper 3-labellings ` of A1 and A2 with nb`(3) = 1. The colours by c` are
indicated by integers within the vertices.

5.3.1 Connected graphs needing lots of 3s

As mentioned earlier, we are aware of only two connected graphs for which the parameter
ρ3 is exactly 1/3, and these are C3 and C6

∗. A natural question to ask, is whether the bound in
Conjecture 2.1.9 is accurate in general, i.e., whether it can be attained by arbitrarily large graphs.

In light of these thoughts, our goal in this subsection is to provide a class of arbitrarily large
connected graphs achieving the largest possible ratio ρ3. Our arguments are based on our notion
of weakly induced subgraphs, introduced in Section 5.2. Basically, the idea is to have a connected
graphH with mT(H) ≥ 1, and to combine p copiesH1, . . . ,Hp ofH to a single connected graph
G so that mT(G) ≥ p. To guarantee that ρ3(G) is large, the main ideas are 1) to choose H so that
|E(H)| is as small as possible, and 2) to construct G so that only a few edges join the p copies of
H . These two conditions ensure that |E(G)| itself is as small as possible.

We ran computer programs to find graphsH with δ(H) = 1, mT(H) ≥ 1, and with the fewest
edges possible. It turns out that the smallest such graphs have 10 edges. Two such graphs, which
we call A1 and A2, are depicted in Figure 5.3. These two graphs will be used throughout the rest
of this chapter. The two graphs A1 and A2 will allow us to prove several lower bounds on ρ3 for
various graph classes, so, let us formally establish that they do have the desired property.

Lemma 5.3.1. mT(A1) = 1.

Proof. A proper 3-labelling ` of A1 with nb`(3) = 1 is depicted in Figure 5.3(a), which shows
that mT(A1) ≤ 1. We now prove that mT(A1) > 0, i.e., that there is no proper 2-labelling of A1.
Towards a contradiction, assume a proper 2-labelling ` of A1 exists.

By Observation 2.1.5, we have `(v6v7) 6= `(v6v8). Also, since ` is a 2-labelling, we have
c`(v5) ∈ {3, 4, 5, 6}. We distinguish the following cases:

— Case 1: c`(v5) = 3. Then, `(v3v5) = `(v4v5) = `(v5v6) = 1, and so, {c`(v3), c`(v4)} =
{4, 5}. Assume, w.l.o.g., that c`(v3) = 4 and c`(v4) = 5. It follows that `(v2v3) = 1 and
`(v2v4) = `(v3v4) = 2, and thus, c`(v2) ∈ {4, 5} = {c`(v3), c`(v4)}, which contradicts
that ` is proper.

— Case 2: c`(v5) = 4. Then, v5 has exactly one incident edge labelled 2. First, assume that
`(v5v6) = 2. It follows that `(v3v5) = `(v4v5) = 1, and thus, {c`(v3), c`(v4)} = {3, 5}.
Assume, w.l.o.g, that c`(v3) = 3 and c`(v4) = 5. Since c`(v3) = 3, we have that `(v2v3) =

∗. Any disjoint union of C3’s and C6’s reaches that value. This is why Conjecture 2.1.9 focuses on connected
graphs.

5.3 – The parameters mT and ρ3 for some graph classes 93

`(v3v4) = 1, and thus, c`(v4) ≤ 4, a contradiction. Second, assume that `(v5v6) = 1. Since
{`(v6v7), `(v6v8)} = {1, 2}, we have c`(v6) = 4 = c`(v5), a contradiction.

For the next two cases, let A′1 = A1 − {v7v8} and observe that A′1 is quasi 3-regular.
— Case 3: c`(v5) = 5. Then, by Lemma 5.1.3, the 2-labelling `′ = sw(`|A′1 , σ1↔2) is also

proper for A′1. Moreover, recall that {`′(v6v7), `′(v6v8)} = {1, 2}. It follows that `′ can be
extended to a proper 2-labelling `′′ of A1 by setting `′′(v7v8) = 1. But then, c`′′(v5) = 4,
and we get a contradiction to Case 2 above.

— Case 4: c`(v5) = 6. Similarly to the previous case, the 2-labelling `′ = sw(`|A′ , σ1↔2) is
proper forA′1 and it can be extended to a proper 2-labelling `′′ ofA1 by setting `′′(v7v8) =
1. But then, c`′′(v5) = 3, and we get a contradiction to Case 1 above.

�

Lemma 5.3.2. mT(A2) = 1.

Proof. A proper 3-labelling ` ofA2 with nb`(3) = 1 is depicted in Figure 5.3(b). Thus, mT(A2) ≤
1. Let us prove now that mT(A2) > 0, i.e., that there is no proper 2-labelling of A2. Towards a
contradiction, assume a proper 2-labelling ` of A2 exists.

Since ` is a 2-labelling, we have c`(v3) ∈ {3, 4, 5, 6}. We distinguish the following cases:
— Case 1: c`(v3) = 3. Then, `(v2v3) = `(v3v4) = `(v3v5) = 1, and so, {c`(v4), c`(v5)} =
{4, 5}. Assume, w.l.o.g., that c`(v4) = 4 and c`(v5) = 5. It follows that `(v5v4) =
`(v5v6) = 2 and `(v4v6) = 1, and thus, c`(v6) ∈ {4, 5} = {c`(v4), c`(v5)}, which
contradicts that ` is proper.

— Case 2: c`(v3) = 4. Then, v3 has exactly one incident edge labelled 2. First, assume
that `(v3v2) = 2. It follows that `(v3v4) = `(v3v5) = 1, and thus, {c`(v4), c`(v5)} =
{3, 5}. Assume, w.l.o.g., that c`(v4) = 3 and c`(v5) = 5. Since c`(v4) = 3, we have that
`(v4v5) = 1, and thus, c`(v5) ≤ 4, a contradiction. Then, assume, w.l.o.g., that `(v3v5) =
2 (and `(v3v2) = `(v3v4) = 1). It follows that c`(v5) ∈ {5, 6} and c`(v4) ∈ {3, 5}. If
c`(v4) = 5, then c`(v5) = 6. This implies that `(v4v6) = `(v5v6) = 2, and thus, c`(v6) ∈
{5, 6} = {c`(v4), c`(v5)}, a contradiction. Otherwise, c`(v4) = 3, and so, c`(v5) = 5 and
c`(v6) = 4. Hence, `(v6v7) = `(v3v2) = 1, c`(v2), c`(v7) ∈ {3, 5} (because c`(v3) =
c`(v6) = 4). We now get a contradiction no matter how v1v2, v2v7, and v7v8 are labelled,
as either c`(v2) = c`(v7) or 4 ∈ {c`(v2), c`(v7)}.

— Case 3: c`(v3) = 5. Then, by Lemma 5.1.3, the 2-labelling `′ = sw(`, σ1↔2) is also
proper (note that A2 is quasi 3-regular). Since c`′(v3) = 4, we get a contradiction to Case
2 above.

— Case 4: c`(v3) = 6. Then, by Lemma 5.1.3, the 2-labelling `′ = sw(`, σ1↔2) is also
proper. Since c`′(v3) = 3, we get a contradiction to Case 1 above.

�

Through the next constructions, A1 and A2 will be used to build arbitrarily large connected
graphs with large ρ3 and particular properties. Let G be a graph. Given a graph H with at least
two distinct vertices of degree 1, we define H-augmenting an edge uv of G by the following
operations:

1. deleting uv from G;
2. adding a copy of H to G;
3. identifying u and any degree-1 vertex of H , and identifying v and any other degree-1

vertex of H .

94 CHAPITRE 5 — Minimising the number of edges labelled 3

Analogously, assuming H has at least one vertex of degree 1, by H-attaching a pending edge
uv of G, where v has degree 1, we mean the following:

1. deleting v from G;

2. adding a copy of H to G;

3. identifying u and any degree-1 vertex of H .

The next lemma illustrates how these two operations can be used:

Lemma 5.3.3. Let G be a nice graph and let H be a graph with at least two vertices of degree 1
(at least one vertex of degree 1, respectively). Let G′ be the graph obtained by H-augmenting
(H-attaching, respectively) p distinct edges (pending edges, respectively) of G (where 1 ≤ p ≤
|E(G)|). Then, mT(G′) ≥ p ·mT(H).

Proof. This follows from Lemma 5.2.2 since G′ contains p copies H1, . . . ,Hp of H as pairwise
disjoint weakly induced subgraphs. �

The following theorem can be deduced from Lemma 5.3.3 since both graphs A1 and A2 have
degree-1 vertices, verify the properties of Lemmata 5.3.1 and 5.3.2, and have 10 edges.

Theorem 5.3.4. There exist arbitrarily large connected graphs G with ρ3(G) ≥ 1/10.

Proof. Let p ≥ 1 be fixed. We construct a connected graph G with 10p edges such that nb`(3) ≥ p
for any proper 3-labelling ` of G, which implies that ρ3(G) ≥ 1/10. One possible construction
(using A2) is as follows. Start from any connected graph with p edges, and A2-augment all the p
edges to get G. Then G has the claimed properties due to Lemmata 5.3.2 and 5.3.3. �

5.3.2 Bounds for connected cubic graphs

Recall that, given a cubic graphG, it is NP-complete to decide whether χΣ(G) ≤ 2 (see [58]).
Then, a natural question to ask is whether they always admit proper 3-labellings assigning only
a limited number of 3s. We prove that there is actually no p ≥ 1 such that the class of all cubic
graphs lies in G≤p. In contrast, we verify Conjecture 2.1.9 for this class of graphs.

First off, we note that the construction in the proof of Theorem 5.3.4 can be modified slightly
to reach the same conclusion for cubic graphs.

Theorem 5.3.5. There exist arbitrarily large connected cubic graphs G with ρ3(G) ≥ 1/10.

Proof. This follows from applying the same construction as in the proof of Theorem 5.3.4, but
starting from a connected cubic graph with p edges, where p is a multiple of 3. In particular, note
that A2 is quasi 3-regular with exactly two degree-1 vertices (the ones that are used during the
A2-augmentations), which implies that the resulting graph G is cubic. �

Note that, through playing with A2-augmentations and the starting graph, we can go a bit
beyond Theorem 5.3.5. For instance, sinceA2 has exactly two cut vertices and each one is adjacent
to one of its two degree-1 vertices, it can be checked that, performing the construction described
in the proof of Theorem 5.3.5 starting from 2-connected cubic graphs, yields arbitrarily large 2-
connected cubic graphs G with ρ3(G) ≥ 1/10.

Regarding upper bounds, we prove that the parameter ρ3 cannot exceed the 1/3 barrier in
cubic graphs. In other words, we prove Conjecture 2.1.9 for these graphs.

5.3 – The parameters mT and ρ3 for some graph classes 95

Theorem 5.3.6. If G is a cubic graph, then ρ3(G) ≤ 1/3.

Proof. We can assume that G is connected. Also, we can assume that G is neither K4 (in which
case the claim can be verified by hand) nor bipartite (due to Theorem 5.1.1). Thus, by Brooks’
Theorem, we know that G is 3-chromatic. Recall that |E(G)| = 3

2 |V (G)|.
Let us now mimic the proof of Theorem 5.2.6 to get a proper 3-labelling ` of G such that,

for every edge e ∈ E(G) \ E(H) (where, recall, H is an odd unicyclic spanning connected
subgraph of G), we have `(e) = 2. This means that only the edges of H can be labelled 1 or 3
by `. If nb`(3) ≤ 1

2 |E(H)|, then the result follows since |E(H)| = 2
3 |E(G)|. So, assume now

that nb`(3) > 1
2 |E(H)|, and hence, nb`(1) < 1

2 |E(H)|. Since G is regular, by Lemma 5.1.2, the
3-labelling `′ = sw(`, σ1↔3) of G is also proper. Since only the edges of H are labelled 1 or 3 by
`, we deduce that nb`′(3) = nb`(1) < 1

2 |E(H)| = 1
3 |E(G)|, and the result follows. �

5.3.3 Bounds for connected planar graphs with large girth

Recall that the girth g(G) of a graph G is the length of a shortest cycle of G. For any g ≥ 3,
we denote by Pg the class of planar graphs with girth at least g. Note, for instance, that P3 is the
class of all (simple) planar graphs, and that P4 is the class of all triangle-free planar graphs. Recall
that the girth of a tree is set to∞, since it has no cycle.

To date, it is still unknown whether planar graphs verify the 1-2-3 Conjecture, which makes
the study of the parameters mT and ρ3 adventurous for this class of graphs. Something we can
state, however, is that there is no p ≥ 1 such that planar graphs lie in G≤p. Indeed, since the graphs
A1 and A2 are planar, this can be established by the construction in the proof of Theorem 5.3.4 (or
from that of Theorem 5.3.5 to additionally get a cubic graph assumption), by performing it from
planar starting graphs.

Theorem 5.3.7. There exist arbitrarily large connected planar graphs G with ρ3(G) ≥ 1/10.

To go further, we can consider planar graphs with large girth. Indeed, as established by Grötz-
sch’s Theorem, triangle-free planar graphs are 3-colourable, which means that they verify the
1-2-3 Conjecture (recall Theorem 2.2.1). In what follows, we prove two main results. First, we
prove that, for every g ≥ 3, there is no p ≥ 1 such that Pg ⊆ G≤p. Second, we prove that, as
the girth g(G) of a planar graph G grows, the ratio ρ3(G) decreases. As a side result, we prove
Conjecture 2.1.9 for planar graphs with girth at least 36.

In order to prove the first result above, note that we cannot use the graphsA1 andA2 introduced
previously, as they contain triangles. Instead, we provide another construction, yielding, for any
g ≥ 3, a planar graph Sg with girth g. Start from Sg being the cycle Cg = (v0, . . . , vg−1, v0) on g
vertices. Then, for each i ∈ {0, . . . , g − 1}, add a new vertex ui,1 and the edge viui,1 to Sg. Then,
for every i ∈ {1, . . . , g−1}, add a cycleBi = (ui,1, ui,2, . . . , ui,g, ui,1) to Sg, where ui,2, . . . , ui,g
are new vertices. Finally, let u0,1 be the root of Sg. See Figure 5.4 for an illustration of S3 and
Sg. It is clear that all the cycles of Sg have length g, and thus, g(Sg) = g. Moreover, Sg is clearly
planar, and |E(Sg)| = g2 + g.

Note that Sg is bipartite whenever g is even. Since δ(Sg) = 1, in such cases we have
mT(Sg) = 0 by Theorem 5.1.1. When g ≡ 1 mod 4, it can be checked (for instance, by using
some of the arguments in the proof of upcoming Lemma 5.3.8) that Sg admits proper 2-labellings,
and thus, we have mT(Sg) = 0 in those cases as well. The main point for considering this
construction is for the last possible values of g, the values where g ≡ 3 mod 4, for which the
following is verified:

96 CHAPITRE 5 — Minimising the number of edges labelled 3

u0,1

v0

v1v2
u1,1

u1,2u1,3

u2,1

u2,2u2,3

C3

B1B2

(a) S3

. . .

v0
v1

v2

vg−1

u0,1

u1,1

u2,1

ug−1,1

u2,2

u2,g

B1

B2

Bg−1

Cg

u1,2

u1,g

..
.

. .
.

. .
.

ug−1,g

ug−1,2

(b) Sg

Figure 5.4 – The planar graphs S3 (left) and Sg (right) of girth 3 and g, respectively.

Lemma 5.3.8. For every g ≥ 3 with g ≡ 3 mod 4, we have mT(Sg) = 1.

Proof. We begin by showing that a proper 2-labelling of Sg must have specific properties. In what
follows, for every i ∈ {1, . . . , g−1}, we denote byHi the subgraph of Sg induced by V (Bi)∪{vi}.

Claim 5.3.9. Let i ∈ {1, . . . , g − 1}. By any proper 2-labelling ` of Hi, we have `(ui,1ui,2) 6=
`(ui,gui,1), and thus, c`(ui,1) = `(ui,1vi) + 3. Furthermore, such a proper 2-labelling exists.

Proof of the claim. The first part of the claim follows from Observation 2.1.5. Indeed, since g ≡
3 mod 4, it follows that we must have `(ui,1ui,2) 6= `(ui,3ui,4) 6= . . . 6= `(ui,gui,1). Now, it is
easy to check that the following is a proper 2-labelling ` of Hi. Start by setting `(ui,1ui,2) = 2.
Then, continue from ui,2ui,3 and, following the edges of Bi until reaching ui,gui,1, assign labels
1, 1, 2, 2, 1, 1, 2, . . . , 2, 1, 1, 2, 2, 1, 1. The edge ui,1vi can then be assigned any label in {1, 2}. �

Assume that there exists a proper 2-labelling ` of Sg, and let {α, β} be a permutation of {1, 2}.
We define the set

J = {j ∈ {0, . . . , g − 1} : `(vj−1vj) 6= `(vjvj+1)},

where, here and in what follows, indices are taken modulo g. Observe that |J | ≡ 0 mod 2 and that
J 6= ∅. Indeed, assume that J = ∅. Then, we would have that all the edges of Cg receive the same
label α or β. Since ` is proper, it must be that `(viui,1) 6= `(vi+1ui+1,1) for all 0 ≤ i ≤ g − 1.
This is a contradiction since g is odd and ` is a 2-labelling. Let j ∈ J such that j ≥ 1 (the vertex
vj exists since |J | ≡ 0 mod 2 and J 6= ∅). We have that `(vj−1vj) 6= `(vjvj+1), which implies
that `(vj−1vj)+ `(vjvj+1) = 3. It follows that c`(vj) = `(vjuj,1)+3. Note now that the labelling
`j = `|Hj is a proper 2-labelling of Hj (since dHj (vj) = 1). Therefore, by Claim 5.3.9, it follows
that c`(uj,1) = c`j (uj,1) = `j(uj,1vj) + 3 = `(uj,1vj) + 3 = c`(vj), a contradiction.

So far, we have proved that mT(Sg) ≥ 1. In order to show that mT(Sg) = 1, it suffices to
provide a proper 3-labelling ` of Sg such that nb`(3) = 1. We construct one such labelling as
follows. For every i ∈ {1, . . . , g − 1}, we label the subgraph Bi following the 2-labelling scheme
provided in Claim 5.3.9. Then, we set `(v0v1) = 3 and, for every edge e ∈ E(Cg) \ {v0v1}, we
set `(e) = 1. Finally, for the edges of the form viui,1 (0 ≤ i ≤ g − 1), we set `(v0u0,1) = 1,
`(v1u1,1) = 2, `(v2u2,1) = 1, . . . , `(vg−2ug−2,1) = 2, `(vg−1ug−1,1) = 1. It is clear that c`(v0) =
5, and c`(v1) = 6, while the colours of the vertices of the rest of the cycle Cg alternate between 3

5.3 – The parameters mT and ρ3 for some graph classes 97

and 4. Moreover, for all 2 ≤ i ≤ g − 1, if c`(vi) = 3, then c`(ui,1) = 4, and if c`(vi) = 4, then
c`(ui,1) = 5 (by Claim 5.3.9). Thus, ` is a proper 3-labelling that assigns label 3 to only one edge
of Sg. �

We are now ready to prove our lower bound.

Theorem 5.3.10. For every g′ ≥ 3, there exist arbitrarily large connected planar graphs G with
g(G) ≥ g′ and ρ3(G) ≥ 1

g2+g , where g is the smallest natural number such that g ≥ g′ and
g ≡ 3 mod 4.

Proof. For any integer p ≥ 1, denote by G the graph obtained from p disjoint copies H1, . . . ,Hp

of Sg by identifying their roots to a single vertex. Clearly, G is planar and has girth g ≥ g′.
Furthermore, G clearly contains p copies of Sg as pairwise disjoint weakly induced subgraphs.
Then, Lemma 5.2.2 implies that mT(G) ≥ p · mT(Sg), and p · mT(Sg) = p by Lemma 5.3.8.
Since G has p|E(Sg)| = p(g2 + g) edges, the result follows. Moreover, these arguments apply for
any value of p, and so, G can be as large as desired. �

It is not too complicated to check that our construction in the proof of Theorem 5.3.10 yields
planar graphs G of girth g satisfying mT(G) = |E(G)|/(g2 + g) (when g ≡ 3 mod 4). Note
also that the graph G constructed in the proof of Theorem 5.3.10 does not have girth g′ when
g′ 6≡ 3 mod 4. In this case, to obtain a similar result for a graph of girth g′, we can additionally
identify a single vertex of a new cycle of length g′ to the same single vertex as the roots of the p
copies of Sg in the previous proof.

We now proceed to prove that ρ3(G) ≤ 2
k−1 for any nice planar graph G of girth g ≥ 5k + 1,

when k ≥ 7. In other words, the bigger the girth of a planar graph G, the smaller ρ3(G) gets.
The following theorem from [101] is one of the main tools we use to prove this result. For any

k ≥ 1, a k-thread in a graph G is a path (u1, . . . , uk+2), where the k inner vertices u2, . . . , uk+1
all have degree 2 in G.

Theorem 5.3.11 ([101]). For any integer k ≥ 1, every planar graph with minimum degree at least
2 and girth at least 5k + 1 contains a k-thread.

We can now proceed with the main theorem.

Theorem 5.3.12. Let k ≥ 7. If G is a nice planar graph with g(G) ≥ 5k+ 1, then ρ3(G) ≤ 2
k−1 .

Proof. Throughout this proof, we set g = g(G). The proof is by induction on the order of G.
The base case is when |V (G)| = 3. In that case, G must be a path of length 2 (due to the girth
assumption), and the claim is clearly true. So let us focus on proving the general case.

We can assume that G is connected. If G is a tree, then χΣ(G) ≤ 2 and we have ρ3(G) = 0.
So, from now on, we may assume that G is not a tree. We can also assume that G has no vertex v
to which is attached a pending tree Tv that is not a star with center v. Indeed, if such a Tv exists,
then we can find a vertex u ∈ V (Tv) \ {v} whose all neighbours u1, . . . , ux but one are degree-1
vertices. SinceG is not a tree, the graphG′ = G−{u1, . . . , ux} is clearly a nice planar graph with
girth g, admitting, by the inductive hypothesis, a proper 3-labelling attesting that ρ3(G′) ≤ 2

k−1 .
Lemma 5.2.5 tells us that such a labelling can be extended to one of G.

LetG− be the graph obtained fromG by removing all vertices of degree 1. Note that removing
vertices of degree 1 from G can neither decrease its girth nor result in a tree. Since G has girth
g ≥ 5k + 1 and does not contain any cut vertex v ∈ V (G) as described above, the graph G−

98 CHAPITRE 5 — Minimising the number of edges labelled 3

has minimum degree 2. By Theorem 5.3.11, G− contains a k-thread P . Let u1, . . . , uk+2 be the
vertices of P , where dG−(ui) = 2 for all 2 ≤ i ≤ k + 1. Thus, the vertices of P exist in G except
that each of the vertices ui (for 2 ≤ i ≤ k + 1) may be adjacent to some vertices of degree 1 in
addition to their adjacencies in G−. Let G′ be the graph obtained from G by removing the vertices
u3, . . . , uk and all of their neighbours that have degree 1 in G. Note that G′ might contain up
to two connected components. In case G′ has exactly two connected components, then, due to a
previous assumption, none of these can be a tree, which implies that G′ is nice. If G′ is connected,
then, because it has at least two edges (u1u2 and uk+1uk+2), it must be nice. Furthermore, in both
cases, the girth of G′ is at least that of G. Then, by combining the inductive hypothesis and the
fact that ρ3(T) = 0 for every nice tree T , we deduce that ρ3(G′) ≤ 2

k−1 .
To obtain a proper 3-labelling ` of G such that ρ3(G) ≤ 2

k−1 , we extend a proper 3-labelling
`′ of G′ corresponding to ρ3(G′) ≤ 2

k−1 , as follows. First, for each edge incident to a vertex of
degree 1 that we have removed, label it with 1. Recall that none of these vertices of degree 1 can,
later on, be in conflict with their neighbour since they have degree 1. Now, for each 2 ≤ j ≤ k−2,
in increasing order of j, label the edge ujuj+1 with 1 or 2, so that the resulting colour of uj does
not conflict with the colour of uj−1. Finally, label the edges uk−1uk and ukuk+1 with 1, 2 or 3,
so that the resulting colour of uk−1 does not conflict with that of uk−2, the resulting colour of uk
does not conflict with that of uk−1 nor with that of uk+1, and the resulting colour of uk+1 does
not conflict with that of uk+2. Indeed, this is possible since there exist at least two distinct labels
{α, β} ({α′, β′}, respectively) in {1, 2, 3} for uk−1uk (ukuk+1, respectively) such that the colour
of uk−1 (uk+1, respectively) is not in conflict with that of uk−2 (uk+2, respectively). Thus, w.l.o.g.,
choose α and α′ for the labels of uk−1uk and ukuk+1, respectively. If the colour of uk does not
conflict with that of uk−1 nor with that of uk+1, then we are done. If the colour of uk conflicts
with both that of uk−1 and that of uk+1, then it suffices to change both the labels of uk−1uk and
ukuk+1 to β and β′, respectively. Lastly, w.l.o.g., if the colour of uk only conflicts with that of
uk−1, then it suffices to change the label of ukuk+1 to β′. The resulting labelling ` of G is thus
proper. Moreover, |E(G) \ E(G′)| ≥ k − 1 and ` assigns label 3 to at most two more edges than
`′, and so, the result follows. �

Corollary 5.3.13. If G be a planar graph of girth g(G) ≥ 36, then ρ3(G) ≤ 1
3 .

5.3.4 Bounds for connected cacti

Recall that a cactus is a graph in which every edge is contained in at most one simple cycle.
Note that trees are also cacti since they do not contain cycles.

First off, note that the graphs Sg introduced in Section 5.3.3, and those we have constructed
from them in the proof of Theorem 5.3.10, are all cacti (all of their cycles are actually disjoint).
Since the smallest graph Sg is S3, which has 12 edges, the proof of that theorem implies the
following.

Theorem 5.3.14. There exist arbitrarily large connected cacti G with ρ3(G) ≥ 1/12.

We now focus on the upper bound. We actually end up proving Conjecture 2.1.9 for cacti. Note
that cacti are planar graphs and they are 3-chromatic. Thus we know already that if G is a cactus,
then χΣ(G) ≤ 3. Moreover, ifG is of big enough girth, then it also verifies Conjecture 2.1.9 thanks
to Corollary 5.3.13. So in some sense, the following proof may appear as unimportant, especially
considering it is rather technical and long. Nevertheless, we stress the fact that not much is known

5.3 – The parameters mT and ρ3 for some graph classes 99

on the behaviour of proper labellings of graphs that are not bipartite, apart the fact that 3-chromatic
graphs verify the 1-2-3 Conjecture. In our opinion, this gives enough value to the following proof
to merit its inclusion in this thesis.

Theorem 5.3.15. If G is a nice cactus, then ρ3(G) ≤ 1/3.

Proof. The proof is done by induction on |V (G)|. Since the claim is clearly true when G has
only three vertices, let us consider the general case. Clearly, we can assume that G is connected
(as otherwise we could use the inductive hypothesis on each connected component), is not a tree
(since mT(T) = 0 for every nice tree T), is not bipartite (by Theorem 5.1.1), and is not a cycle
(recall Theorem 4.1.6).

Throughout this proof, for readability reasons, we say that a proper 3-labelling is good if it
assigns label 3 to at most a third of the edges of the labelled graph. We first prove that if G has
some specific properties, then we can remove some vertices from G, resulting in a nice cactus G′

that is smaller than G, and extend a good labelling `′ of G′, obtained by induction, into a good
labelling ` of G, thus proving the statement for G. It can then be assumed that G does not have
these properties, which will simplify its structure and allow us to prove the final inductive step.

Let us state a few more remarks. Let ` be an extension of `′ that assigns labels from {1, 2} to
the edges of G that are not in G′. If this ` is proper, then note that it is also good. Similarly, if `
assigns label 3 to at most a third of the edges of G that are not in G′ and ` is proper, then it is also
good.

We start by analysing certain cycles of G. To define those cycles, let us consider the following
terminology (see Figure 5.5 for an accompanying illustration). We denote by G− the cactus ob-
tained from G by repeatedly deleting vertices of degree 1 until the remaining graph has minimum
degree 2. Since G contains cycles, note that G− is not empty. We now consider the block graph
B(G−) of G−, which is defined as follows [59]. A block of G− is a maximal 2-connected sub-
graph of G−. The block graph B(G−) is the tree having a block vertex bB for every block B of
G−, a vertex cv for every cut vertex v of G−, and in which two vertices bB and cv are joined by
an edge if and only if B contains v in G−. Note that B(G−) is not empty since G− has at least
one cycle, and, due to how G− was obtained from G, note that all the leaves of B(G−) are block
vertices corresponding to cycles in G−. In what follows, we study structures around end-cycles,
where an end-cycle C of G refers to a cycle of G−, which corresponds to a leaf bC of B(G−). In
G−, every vertex of an end-cycle C has degree 2, except for one, which we denote by r and call
the root of C, while its other vertices are the inner vertices of C. Note that end-cycles are better
defined as soon as G has at least two cycles. In case G has only one cycle C, then we consider C
as an end-cycle, its root being any of its vertices of degree more than 2 in G (at least one exists
since G is not a cycle).

In what follows, we consider any end-cycle C of G. We first investigate properties of pending
trees attached to the vertices of C. For every vertex v of C, we define Tv as the pending tree rooted
at v in G. Note that there might be no edges in such a Tv, i.e., we can have V (Tv) = {v}. We
implicitly assume that every Tv comes with the natural (virtual) orientation of its edges from the
root (v) to the leaves. Also, we say that Tv is inner if v is indeed an inner vertex of C.

Claim 5.3.16. If some Tv has edges and is not a star, then there is a good labelling of G.

Proof of the claim. Let us consider a deepest (i.e., farthest from v) vertex u of Tv, where all of its
x ≥ 1 children are leaves. Since Tv is not a star, we have u 6= v. Then, the graph G′ obtained from

100 CHAPITRE 5 — Minimising the number of edges labelled 3

(a) The cactus G

v1

v2 v3

v4
v5

B1

B5

B4

B7

B2
B3

B6

(b) The cactus G−

bB1

cv1 bB2

cv2

bB3

cv3

bB5

bB4

cv4

bB6

cv5

bB7

(c) The block graph B(G−)

Figure 5.5 – An example of a cactus G, with the corresponding cactus G− and the block graph
B(G−), as they are introduced in the proof of Theorem 5.3.15. The black vertices of G− are cut
vertices of G−. Observe that the leaves bB1 , bB4 , and bB7 of B(G−), correspond exactly to the
cycles B1, B4, and B7 of G (and of G−), which are considered as end-cycles of G, while B5 is
not considered as an end-cycle of G since bB5 is not a leaf of B(G−). Clearly, bB1 is at distance
10 from bB7 , while bB4 is at distance 6 from both bB1 and bB7 in B(G−).

G by removing all of these x leaves is a nice cactus (due to the presence of the cycle C) in which
u has degree 1. Thus, G′ admits a good labelling by the inductive hypothesis. Lemma 5.2.5 tells
us that this good labelling of G′ can be extended to one of G. �

Claim 5.3.17. If some inner Tv is a star with at least two edges, then there is a good labelling of
G.

Proof of the claim. Let G′ be the graph obtained from G by removing two leaves u, u′ of Tv.
Clearly, G′ is a cactus, and G′ is nice due to the presence of C. By the inductive hypothesis, there
is a good labelling of G′. To obtain one of G, it suffices to extend this labelling to vu and vu′ by
assigning labels 1 and 2 in such a way that no colour conflict arises. Recall that, by a k-labelling of
a nice graph, a vertex of degree 1 cannot be involved in a colour conflict with its neighbour. Then,
it suffices to label vu and vu′ so that no colour conflict arises between v and its two neighbours
in C. Note that there are three different ways to label edges vu and vu′ (assigning label 1 twice,
assigning 2 twice, or assigning both 1 and 2 once). Under these labellings, the vertex v can take

5.3 – The parameters mT and ρ3 for some graph classes 101

three different colours, while it has two neighbours in C. Hence, at least one labelling for the two
edges extends the labelling of G′ to a good labelling of G. �

Thus, in C, any inner Tv can be assumed to have at most one edge.

Claim 5.3.18. If C has length at least 4 and some inner Tv has an edge, then there is a good
labelling of G.

Proof of the claim. Assume C = (v0, v1, . . . , vn−1, v0), where v0 = r is the root of C and n ≥ 4.
By Claims 5.3.16 and 5.3.17, each Tvi (where i ∈ {1, . . . , n− 1}) has at most one edge.

Assume first that there is an i ∈ {2, . . . , n − 2} such that Tvi has an edge viu. Let G′ be
the graph obtained from G by removing u and vi. Clearly, G′ is a cactus with at least two edges
(v0v1 and vn−1v0), so it is nice. By the inductive hypothesis, there is a good labelling ofG′, which
we want to extend to one of G. To that aim, we have to label the three edges viu, vivi−1, vivi+1
(where, here and in what follows, indices are taken modulo n) so that no colour conflict arises,
and label 3 is assigned at most once. First, we assign 1 or 2 to vivi−1 so that vi−1 does not get in
conflict with vi−2. Second, we assign 1 or 2 to vivi+1 so that vi+1 does not get in conflict with
vi+2. Third, we assign 1, 2 or 3 to viu so that vi gets in conflict with neither vi−1 nor vi+1. As
mentioned earlier, u cannot get in conflict with vi due to its degree, so the resulting labelling of G
is good.

Assume now that Tvi has no edge for every i ∈ {2, . . . , n − 2}, but Tv1 has an edge v1u (the
case where Tvn−1 has an edge is symmetrical). This means that each of v2, . . . , vn−2 has degree 2.
In this case, we consider G′ the cactus obtained from G by removing u and v2. Note that G′ has
more than one edge since r has degree at least 3 inG. Then,G′ is nice. By the inductive hypothesis,
there is a good labelling of G′. To extend it to one of G, we must label the edges v1u, v1v2, v2v3
so that no colour conflicts arise, and label 3 is assigned at most once. Similarly as in the previous
case, this can be achieved by first labelling v2v3 with 1 or 2 so that no conflict between v3 and
v4 arises, then labelling v1v2 with 1 or 2 so that no conflict between v2 and v3 arises, and lastly
labelling v1u with 1, 2 or 3 so that v1 is not in conflict with v0 nor v2. �

Due to the previous claims, in G we can assume that C is either a cycle of any length at
least 3 (i.e., all inner vertices have degree 2), or a triangle where one or two of its inner vertices
have a pending edge attached (i.e., one or two of the Tv’s have size 1). We call the first of these
two triangle configurations a 1-triangle, while we call the second configuration a 2-triangle. For
convenience, we also regard these configurations as end-cycles, though they are technically not
cycles in G.

We are now ready to conclude the proof. If G has only one cycle, then, by the previous claims
and our original assumption that G is not just a cycle, it must be that G is a triangle (u, v, w, u)
with a pending vertex attached to u and possibly one attached to v, in which case the claim can
be verified easily (Figure 5.6 illustrates proper 2-labellings of G for these two cases). So G has
at least two cycles. From now on, let us consider two cycles Cx and C1 of G such that the block
vertices bCx and bC1 are two leaves at maximum distance d inB(G−). Note thatC1 is an end-cycle
in G, and let r denote its root. Observe that there might be other (end-)cycles of G at distance d
(in B(G−)) from Cx, with root r. In case these cycles exist, we denote them by C2, . . . , Cq. Then
C1, . . . , Cq are end-cycles in G with the same root r, and, by how these Ci’s were chosen, r either
has only one neighbour u or only two neighbours u, u′ of degree at least 2 that does/do not belong
to the Ci’s. More precisely, r is connected to the rest of the graph either via a path (through an
edge ru), or via a unique cycle (containing both u and u′). Furthermore, there might be vertices

102 CHAPITRE 5 — Minimising the number of edges labelled 3

5
u

4
v

3
w

2
u′

2

21

2

(a) G is a 1-triangle

5
u

6
v

3
w

2
u′

2
v′

2

21

2 2

(b) G is a 2-triangle

Figure 5.6 – Proper 2-labellings for the two cases in the proof of Theorem 5.3.15, where the
cactus G is one cycle C = (u, v, w, u) with one or two of its inner vertices having a pending edge
attached.

of degree 1 adjacent to r. Indeed, by Claim 5.3.16, if there is a pending tree Tr attached at r, then
Tr must be a star with center r. Recall that each of the Ci’s is a cycle, a 1-triangle, or a 2-triangle,
due to previous claims.

Now, let G′ be the cactus obtained from G by removing all the non-root vertices of the
Ci’s (i.e., all their inner vertices, plus the at most two pending vertices of the 1-triangles and
2-triangles). Since G′ contains at least one cycle, it is nice, and thus, admits a good labelling by
the inductive hypothesis. Our goal is to extend it to one of G by labelling the removed edges so
that no conflict arises and at most a third of these edges are assigned label 3.

— Assume q ≥ 2. We first label the edges of every Ci that is a cycle, assigning consecutive
labels 2, 1, 1, 2, 2, 1, 1, . . . while going around, starting and ending with an edge incident
to r. Note that this avoids any conflict between the inner vertices of Ci, that their colours
are at most 4, and that this increases the colour of r by at least 3. For every Ci that is a 1-
triangle, we assign label 2 to its two edges incident to r, and label 1 to its two other edges.
Note that this raises no conflict between the inner vertices of Ci, that their colours are at
most 4, and that the colour of r is increased by 4. Finally, for every Ci that is a 2-triangle,
we assign label 2 to its two edges incident to r and to one pending edge, and label 1 to the
two other edges. As a result, no conflict arises between inner vertices, their colours are at
most 5, and the colour of r is increased by 4.
Since q ≥ 2 and r has at least one neighbour not in the Ci’s, the colour of r is at least 7,
and thus, r cannot be in conflict with its neighbours in the Ci’s. However, we still have to
make sure that the colour of r is different from that of u (where u is the sole neighbour of
r that does not belong to any of the Ci’s) or from that of u and u′ (where u and u′ are the
two neighbours of r that do not belong to any of the Ci’s). Note that, in each Ci, there is an
edge labelled 2 incident to r that can be relabelled 3 without causing conflicts between the
inner vertices. Indeed, if Ci is a cycle, then the very first labelled edge is such an edge. If
Ci is a 1-triangle or 2-triangle, then the one of its two edges labelled 2 incident to r going
to the inner vertex with the largest colour, is such an edge. Thus, by changing the label
from 2 to 3, of one or two of these edges, we can increment the colour of r by 1 or 2 to
avoid the colours of u and u′ (if it exists). This means that, by introducing at most two 3s,
we can get a proper 3-labelling of G, which is good since q ≥ 2.

— Assume q = 1. Assume first that C1 is a 1-triangle or a 2-triangle. Let (r, v1, v2, r) denote
the vertices of the cycle of C1, and u1 and u2 (if it exists) denote the pending vertices
attached to v1 and v2, respectively. We first label rv1 and rv2 with 1 or 2 so that no conflict
arises between r and its neighbours u and u′ (if it exists). This is possible since there are

5.3 – The parameters mT and ρ3 for some graph classes 103

4
r

3
v1

5
v2

1
u1

3
u2

6 u

5 u′

1

1

1

1

3

1

1

Figure 5.7 – A good labelling as described in the proof of Theorem 5.3.15 in the case where
q = 1, C1 is a 2-triangle, and, apart from v1 and v2, the vertex r has two neighbours u and u′. The
underlined labels and colours correspond to the labelling provided from the inductive hypothesis
(and thus, must not be modified). Now, assuming that the underlined labels and colours are as
shown in the figure, we must have c`(r) = 4, as otherwise r would be in colour conflict with
either u or u′. Thus, it must be that `(rv1) = `(rv2) = 1. Then, we get that `(v1u1) = 1 and
`(v2u2) = 3.

three possible combinations. In the case where C1 is a 1-triangle, then we label v1v2 with 1
or 2 so that no conflict arises between v2 and r. In the case where C1 is a 2-triangle, then
we label v1v2 with 1. Now, if C1 is a 1-triangle, then we label v1u1 with 1, 2 or 3 so that no
conflict arises between v1 and r nor between v1 and v2. If C1 is a 2-triangle, then we label
v1u1 with 1 or 2 so that no conflict arises between v1 and r, and then we label v2u2 with 1,
2 or 3 so that no conflict arises between v2 and r nor between v1 and v2. In all cases, we
assign label 3 to at most one edge, so the resulting proper 3-labelling of G is good since
no conflict arises. Figure 5.7 illustrates a possible good labelling for the case where C1 is
a 2-triangle and both u and u′ exist.
Assume now that C1 is a cycle. First, assume that u′ exists. We consider the edges of
C1, and assign to them labels 1 and 2 as previously, i.e., by applying the labelling pattern
2, 1, 1, 2, 2, 1, 1, . . . from one edge incident to r to the other. We consider two cases:
— Assume first that, in the labelling ofC1, the two edges incident to r get assigned distinct

labels (1 and 2). As earlier, no two inner vertices of C1 are in conflict, their colours are
at most 4, and, since u′ exists, the colour of r is at least 5. If this raises no conflict
between r and its neighbours u and u′, then we are done. Otherwise, note that turning
the label assigned to any of the two edges of C1 incident to r into a 3, raises no conflict
between two vertices of C1. Since these two edges are labelled differently, one with
label 1 and the other with label 2, this means that by introducing label 3 once in C1,
we can increment the colour of r by 1 or 2 so that we avoid any conflict between r and
its neighbours u and u′. Then, we can deduce a good labelling of G.

— Assume now that both edges incident to r in C1 get assigned label 2. Then, this time,
the colour of r is at least 6. If there is no conflict between r and one of its neighbours u
and u′, then we are done. So, we can assume there is a conflict, and also that changing
the label of one of the two edges of C1 incident to r to 3, makes r in conflict with the
second one of these two vertices. Then, note that we get a good labelling when labelling
C1 following the pattern 1, 2, 2, 1, 1, 2, 2, . . . instead, since r gets its two incident edges
in C1 being assigned label 1, the colour of r is at least 4 and smaller than the previous
colours we have produced for r, and the colours of the two neighbours of r in C1 are
at most 3.

104 CHAPITRE 5 — Minimising the number of edges labelled 3

u
r

3v1

4v2

?

2

1

3

(a) |C1| = 3, 1st labelling

u
r

2v1

4v2

?

1

1

3

(b) |C1| = 3, 2nd labelling

u
r

3
v1

2v2

4
v3

?

21

1 3

(c) |C1| = 4, 1st labelling

u
r

3
v1

2v2

3
v3

?

21

1 2

(d) |C1| = 4, 2nd labelling

u
r

3
v1

2v2

3v3

5
v4

?

2
1

1

2
3

(e) |C1| = 5, 1st labelling

u
r

3
v1

4v2

3v3

4
v4

?

1
2

2

1
3

(f) |C1| = 5, 2nd labelling

Figure 5.8 – Labelling a pending cycle in the proof of Theorem 5.3.15. Some colours by the
labelling are indicated by integers within the vertices.

Now assume u′ does not exist. We start by considering the cases where C1 has length at
least 6. Start by applying the labelling pattern 2, 1, 1, 2, 2, 1, 1, . . . to the edges of C1 as
before. Assume first that the two edges of C1 incident to r get assigned distinct labels.
Then, change the 1 assigned as a label to one of these two edges into a 3. As a result, no
conflicts arise between inner vertices of C1, their colours are at most 5, while the colour
of r is at least 6 due to the edge ru. So, the only possible conflict is between r and u.
Suppose it occurs. Then, no conflict remains when assigning label 3 to the second edge
of C1 incident to r and we get a good labelling (in particular, only two edges of C1 get
assigned label 3 while its length is at least 6, and this assumption also guarantees that no
two inner vertices of C1 get in conflict). Lastly, assume that both edges of C1 incident to
r get assigned label 2 by the initial labelling scheme. Then, the colour of r is at least 5,
which thus cannot be in conflict with its neighbours in C1. If r is not in conflict with u,
then we get a good labelling of G. Otherwise, we get one by changing the label of one of
the two edges of C1 incident to r to 3.
All that remains to be checked are three length values for C1. The labelling schemes des-
cribed below are illustrated in Figure 5.8.
— If C1 has length 3 (see Figures 5.8(a) and (b)), then assigning either labels 2, 1, 3 or

1, 1, 3 to the edges while going around, starting and ending with r, yields a good label-

5.4 – Bounds for other graph classes 105

Family F ∃ arbitrarily large G = (V, E) ∈ F :
mT (G) ≥

∀G = (V, E) ∈ F :
mT (G) ≤

Outerplanar 1-connected 1
10 |E| ?

Outerplanar 2-connected ? 1
3 |E|

Halin ? 1
3 |E|

Table 5.2 – Summary of the results presented in Section 5.4.

ling, since r gets colour at least 6 or 5, respectively, while the inner vertices of C1 get
colours at most 4, and the colour of u is the only other colour to avoid. In particular,
note that these two labelling schemes increase the colour of r in two different ways (by
5 and 4, respectively).

— If C1 has length 4 (see Figures 5.8(c) and (d)), then we get the same conclusion from
applying the labelling scheme 2, 1, 1, 3 or 2, 1, 1, 2. Indeed, the inner vertices get co-
lours at most 4 and 3, respectively, while r gets colour at least 6 and 5, respectively.
Also, these two schemes increase the colour of r differently, by 5 and 4, respectively.

— If C1 has length 5 (see Figures 5.8(e) and (f)), then the sequence 2, 1, 1, 2, 3 or
1, 2, 2, 1, 3 yields the same conclusion. Indeed, the inner vertices get colours at most 5
and 4, respectively, while r gets colour at least 6 and 5, respectively. Also, these two
schemes increase the colour of r differently, by 5 and 4, respectively.

In all cases, we can deduce a good labelling of G, which concludes the proof.
�

5.4 Bounds for other graph classes

In this section, we state, in the same spirit as in the previous subsections, some lower or upper
bounds on ρ3 that can be obtained for other classes of graphs that are 3-chromatic. Indeed, we focus
on outerplanar graphs and Halin graphs. Note that, strictly speaking, Halin graphs are 4-colourable,
but the main part of our proof will treat the 3-chromatic ones (see upcoming Section 5.4.2 for more
details). The difference between this section and the previous one, is that for the considered graph
classes in this section, one of the two bounds (either the upper or the lower) is partially missing.
Our results in this section are summarised in Table 5.2.

5.4.1 Outerplanar graphs

Recall that a graph is outerplanar if it admits a planar embedding where all vertices lie on the
outer face. First off, we can obtain a result similar to Theorem 5.3.4 for outerplanar graphs.

Theorem 5.4.1. There exist arbitrarily large connected outerplanar graphsGwith ρ3(G) ≥ 1/10.

Proof. For a p ≥ 1, we construct a connected outerplanar graph G with the same properties as
in the proof of Theorem 5.3.4. One possible construction (using A1) is as follows. To obtain G,
start from a star with p edges, and A1-attach all of its p edges. Again, G has the claimed labelling
properties due to Lemma 5.3.1 and Lemma 5.3.3. Also, note that G is clearly outerplanar, since
the same holds true for every star, as well as A1. �

106 CHAPITRE 5 — Minimising the number of edges labelled 3

Recall as well that outerplanar graphs form a subclass of series-parallel graphs. Thus, Theo-
rem 5.4.1 also holds for arbitrarily large connected series-parallel graphs.

Note however that the outerplanar graphs constructed above have cut vertices. So the question
remains, whether or not this lower bound still holds when considering 2-connected outerplanar
graphs (recall that outerplanar graphs are 2-degenerate, and thus, each of them is either separable
or 2-connected). As for an upper bound, we can prove the following:

Theorem 5.4.2. If G is a 2-connected outerplanar graph such that |E(G)| ≥ |V (G)| + 3, then
ρ3(G) ≤ 1/3.

Proof. We can assume that G is not bipartite, as otherwise the claim follows from Theorem 5.1.1.
Then, χ(G) = 3 since outerplanar graphs are 2-degenerate. Now, if |V (G)| is odd, then the result
follows from Corollary 5.2.9. So, in what follows, we assume that |V (G)| is even.

In 2-connected outerplanar graphs, the outer face forms a Hamiltonian cycle
(v0, . . . , vn−1, v0). The other edges, which do not lie on the outer face, are called chords. Since
G is not bipartite, it has an odd-length cycle Cx. Since |V (G)| is even, this Cx is not the whole
outer cycle of G. Furthermore, we can assume that Cx consists of consecutive vertices of the outer
face, i.e., that Cx = (va, va+1, . . . , va+x−1, va) for some a ∈ {0, . . . , n − 1} (where, here and in
what follows, indices are taken modulo n), or, in other words, that vava+x−1 is the only chord of
G in Cx. Indeed, assume Cx has at least two chords, one of which is vivj , where i < j. Note that
{vi, vj} is a cut set of G. This means that V (Cx) is fully included in either {vj , vj+1, . . . , vi} or
{vi, vi+1, . . . , vj}. Assume that V (Cx) ⊆ {vj , vj+1, . . . , vi} (the other case being symmetrical).
Then, note that |{vi, vi+1, . . . , vj}| must be even, as otherwise (vi, vi+1, . . . , vj , vi) would be an
odd-length cycle as desired. Now, we note that replacing vivj in Cx by the path (vi, vi+1, . . . , vj)
results in another odd-length cycle of G with one less chord. Repeating this process as long as
the resulting odd-length cycle has more than one chord, eventually we end up with an odd-length
cycle of G with only one chord, which is as desired.

Up to relabelling the vertices, we can assume, w.l.o.g., that Cx = (v1, . . . , vx, v1). Let us
consider H , the subgraph of G containing the x edges of Cx, and all the (other) edges of the
Hamiltonian cycle (v0, . . . , vn−1, v0) on the outer face of G except for the edge v0v1. Note that
H is an odd unicyclic spanning subgraph of G. Since H is spanning, connected, and unicyclic,
|E(H)| = |V (G)|, which is at most |E(G)| − 3, since |E(G)| ≥ |V (G)|+ 3.

All conditions are now met to invoke the arguments in the proof of Theorem 5.2.6, from
which we can deduce a proper {0, 1, 2}-labelling ` of G where adjacent vertices get distinct co-
lours modulo 3, and in which only the edges of (our) H are possibly assigned label 0. Let us
now consider the subgraph H ′ of G obtained from H by adding the edge v0v1, which is present
in G. Recall that `(v0v1) = 2 by default. Note that H ′ contains at least two disjoint perfect
matchings M1,M2. Indeed, since |V (G)| is even, a first perfect matching M1 of H ′ contains
v0v1, v2v3, . . . , vn−2vn−1. A second perfect matching M2 of H ′ contains v1v2, v3v4, . . . , vn−1v0.
By Lemma 5.2.8, we can assume that at most a third of the edges in M1 ∪M2 are assigned label 0
by `. Since |M1| + |M2| = |E(H ′)| − 1 = |E(H)|, but the edge v1vx ∈ E(H) is not included
in M1 nor M2 (and so may have label 0 too), this gives nb`(0) ≤ E(H)

3 + 1, which is less than
|E(G)|/3 since |E(G)| ≥ |V (G)|+ 3. More formally,

nb`(0) ≤ |E(H)|
3 + 1 = |V (G)|

3 + 1 ≤ |E(G)| − 3
3 + 1 = |E(G)|

3 .

By turning 0s by ` into 3s, we get a proper 3-labelling of G with the same upper bound on the
number of assigned 3s. �

5.4 – Bounds for other graph classes 107

3
v2

4
v3

5
v4

6
v5

5
v6

9
v

1

2

22

2

1

1

2

2

1

(a) A wheel of order n = 6 ≡ 2 mod 4

5
v2

3
v3

4 v4

5
v5

4
v6

3v7

4
v8

8
v

2
1

1

11

1

1

1

1

2

2

1

1

2

(b) A wheel of order n = 8 ≡ 0 mod 4

Figure 5.9 – The proper 2-labelling for wheels of even order described in the proof of Theo-
rem 5.4.3.

Theorem 5.4.2 does not cover all 2-connected outerplanar graphs. However, it covers all
such graphs with at least three chords. Thus, to get a generalisation of Theorem 5.4.2 for all
2-connected outerplanar graphs, one has to prove a similar result for the 3-chromatic ones with
at most two chords. Those with no chords are exactly cycles, for which the claim holds (see,
e.g., Section 4.1.6). For those with one or two chords, the claim can also be verified, for instance
through considering all of the possible ways for the (at most two) chords to interact in such a 2-
connected outerplanar graph, and, for each possible configuration, extending a proper 3-labelling
from face to face. Let us mention that the number of cases to consider can be reduced drastically
by applying some of the arguments used in the proof of Theorem 5.3.12 to deal with long threads.
We voluntarily omit such a tedious proof, which, in our opinion, seems rather plausible, but would
be less interesting than that of Theorem 5.4.2.

5.4.2 Halin graphs

We now proceed by proving Conjecture 2.1.9 for a 4-colourable family of graphs. A Halin
graph is a planar graph with minimum degree 3 obtained as follows. Start from a tree T with no
vertex of degree 2, and consider a planar embedding of T . Finally, add edges to form a cycle going
through all the leaves of T in the clockwise order w.r.t. this embedding. A Halin graph is called a
wheel if it is constructed from a tree T with diameter 2 (i.e., T is a star).

Halin graphs are known to have many properties of interest, such as having triangles, being
Hamiltonian, and having Hamiltonian cycles going through any given edge (see, e.g., [119]). Also,
Halin graphs are 3-degenerate, so, due to the presence of triangles, each of them has chromatic
number 3 or 4. The dichotomy is well-understood, as a Halin graph has chromatic number 4 if
and only if it is a wheel of even order [120]. This allows us to use our tools from Section 5.2 to
establish an upper bound on ρ3 for most Halin graphs (the 3-chromatic ones), while we can treat
the remaining ones separately.

Theorem 5.4.3. If G is a Halin graph, then ρ3(G) ≤ 1/3.

Proof. First, consider the case where G is a wheel of even order n. If n = 4, then G = K4, and
the statement holds (since it can be checked by hand that mT(K4) = 1 and thus ρ3(K4) = 1/6).

108 CHAPITRE 5 — Minimising the number of edges labelled 3

For n ≥ 6, we have that mT(G) = 0. Indeed, let v be the center of the star T , and let v2, . . . , vn
be the leaves of T . We can construct a proper 2-labelling ` of G as follows: start from v2v3,
and, following the edges of the cycle joining the leaves of T in increasing order of their indices,
assign labels 1, 1, 2, 2, 1, 1, 2 . . . , until vnv2 is labelled. If `(vnv2) = 1, then set `(vv2) = 1 and
`(vvi) = 2 for every 3 ≤ i ≤ n. Otherwise, if `(vnv2) = 2 (and so, `(vn−1vn) = 1), set
`(vv2) = 2 and `(vvi) = 1 for every 3 ≤ i ≤ n (see Figure 5.9 for an illustration of the described
labelling). It is easy to check that in both cases ` is a proper 2-labelling of G. Thus, ρ3(G) = 0
and the statement holds.

Next, consider the case where G is not a wheel of even order. Then, χ(G) = 3. If |V (G)| is
odd, then the result follows from Corollary 5.2.9. Thus, we can assume that |V (G)| is even.

By considering any non-leaf vertex r of T in G, and defining a usual root-to-leaf (virtual)
orientation, since no vertex has degree 2 in T , it can be seen that G has a triangle (u, v, w, u),
where v, w are leaves in T with parent u. Furthermore, dG(v) = dG(w) = 3, while dG(u) ≥ 3.
Due to these degree properties, note that if we consider C a Hamiltonian cycle traversing uv, then
C must also include either wu or vw. More precisely, if we orient the edges of C, resulting in a
spanning oriented cycle ~C, then, at some point, ~C enters (u, v, w, u) through one of its vertices,
goes through another vertex of the triangle, and then through the third one, before leaving the
triangle. In other words, C traverses all the vertices of (u, v, w, u) at once.

Up to relabelling the vertices of (u, v, w, u), we can assume that ~C enters the triangle through
u, then goes to v, before going to w and leaving the triangle. Let us consider H , the subgraph
of G containing the three edges of (u, v, w, u), and all successive edges traversed by C after
leaving the triangle except for the edge going back to u. Note that H is an odd unicyclic spanning
subgraph of G, in which the only cycle is the triangle (u, v, w, u) . Furthermore, in E(G) \E(H),
if we set x = xn−3, then the edge xu exists. Since H is spanning, connected, and unicyclic,
|E(H)| = |V (G)|, which is at most 2|E(G)|/3, since δ(G) ≥ 3.

All conditions are now met to invoke the arguments in the proof of Theorem 5.2.6, from which
we can deduce a proper {0, 1, 2}-labelling ` of G where adjacent vertices get distinct colours
modulo 3, and in which only the edges of the chosen H are possibly assigned label 0. Let us now
consider the subgraph H ′ of G obtained from H by adding the edge xu, which is present in G.
Recall that `(xu) = 2 by default. Note that H ′ contains at least two disjoint perfect matchings
M1,M2. Indeed, since |V (G)| is even, then, in H , the hanging path attached at w has odd length.
A first perfect matching M1 of H ′ contains xn−3xn−4, xn−5xn−6, . . . , wx1, and uv. A second
perfect matching M2 of H ′ contains xn−4xn−5, xn−6xn−7, . . . , x2x1, and wv and xu. Now, by
Lemma 5.2.8, we can assume that at most a third of the edges in M1 ∪M2 are assigned label 0 by
`. Since |M1|+ |M2| = |E(H ′)| − 1 = |E(H)|, this gives nb`(0) ≤ E(H)

3 + 1, which is at most
|E(G)|/3 since |E(G)| ≥ 3|V (G)|/2 and |V (G)| ≥ 6 (any Halin graph has at least 4 vertices,
and the only Halin graph with exactly 4 vertices is K4, which we have already treated separately).
That is,

nb`(0) ≤ |E(H)|
3 + 1 = |V (G)|

3 + 1 ≤ 1
3 ·

2|E(G)|
3 + 1 ≤ |E(G)|

3 .

By turning 0s by ` into 3s, we get a proper 3-labelling of G with the same upper bound on the
number of assigned 3s. �

Let us close this section by discussing about some of the upper bound for the value of ρ3
for Halin graphs. We were actually not able to come up with examples of arbitrarily large Halin
graphs needing many 3s in their proper 3-labellings. In fact, we are aware of only three Halin

5.5 – Conclusion 109

graphs that do not admit proper 2-labellings. Two of them are K4 and the prism graph (Cartesian
product of K3 and K2). The third one is constructed as follows: start with two perfect binary trees
on 7 vertices each and add an edge between the roots (degree-2 vertices) of these trees; from the
resulting tree T , construct G as explained in Section 5.4.2. All three of these graphs turn out to lie
in G1. Thus, though we were not able to prove it, it is possible that there exists a p ≥ 1 such that
Halin graphs are in G≤p, and even that p = 1.

5.5 Conclusion

This chapter was dedicated to the study of the importance of 3s in designing proper 3-
labellings, this aspect being motivated by a presumption from previous works that proper 3-
labellings of graphs, in general, should require only a few 3s. This led us to the introduction of
the two quantifying parameters mT and ρ3. As a main contribution, we have introduced, in Sec-
tion 5.2, some tools for deducing bounds on these parameters. Applications of these, in Section 5.3,
led us to results for specific classes of 3-chromatic graphs. In particular, we have established that,
for several simple classes F of graphs, there is no p ≥ 0 such that F ⊂ G≤p. In such cases, we
have provided bounds on ρ3(F).

Several directions for further research sound particularly appealing. A first one is to prove
Conjecture 2.1.9 for more classes of graphs, or to exhibit better upper bounds towards it. Another
one is to investigate whether the bound of 1/3 in that conjecture is close to being tight or not, in
general. Indeed, at the moment we only know of two small connected graphs, namely C3 and C6,
which attain the bound, while the class of arbitrarily large graphs with the biggest value ρ3 we
could construct, achieves a ratio of 1/10 (Theorem 5.3.4).

An interesting perspective could be to provide better lower bounds, i.e., find graphs requiring
even more 3s in their proper 3-labellings. This could be done through using Lemma 5.3.3 (just
as in Theorem 5.3.4 for instance) with graphs H that are better than those used throughout this
chapter. In particular, it would be interesting to find such graphs H with similar properties to A1
andA2, but with ρ3(H) > 1/10. Other properties of interest forH include large density. Note that
the graphs we construct, for instance, in the proof of Theorem 5.3.4, are rather sparse due to how
H-augmentations are performed. It is not always true, however, that performing H-augmentations
results in sparse graphs. For example, consider A2-augmenting a small number of edges of a huge
complete graph. Following these thoughts, we wonder whether denser versions of A1 and A2
exist. Another property of interest could be high connectivity. As mentioned after the proof of
Theorem 5.3.5, the graphs A1 and A2 can be used to produce 2-connected graphs. However, these
graphs cannot be used to produce graphs with connectivity at least 3.

CHAPTER 6
Finding a largest locally

irregular induced
subgraph

In this chapter we introduce and study the problem of finding a largest locally irregular
induced subgraph of a given graph G. Equivalently, given a graph G, find a subset S
of V (G) with minimum order, such that deleting the vertices of S from G results in a
locally irregular graph; we denote with I(G) the order of such a set S. We first examine
some simple graph families. We then show that the decision version of the introduced
problem is NP-Complete, even for restricted families of graphs. Moreover, we cannot
even approximate an optimal solution within a ratio of O(n1− 1

k), for every k ≥ 1,
where n is the order the graph, unless P=NP, even when the input graph is bipartite.
For positive results, we provide two FPT algorithms for computing I(G), the first one
considering, as a parameter, the size of the solution k and the maximum degree ∆ of
G, and the second one considering the treewidth tw and ∆ of G, with running times
(2∆)knO(1) and ∆4twnO(1) respectively. We then prove that there is no algorithm that
computes I(G) with dependence f(k)no(k) or f(tw)no(tw), unless the ETH fails, sho-
wing that our algorithms are essentially optimal.
This chapter presents a joint work with N. Melissinos and T. Triomatis, presented in [69].

6.1 Preliminaries . 113
6.2 (Classical) complexity . 114

6.2.1 Polynomial cases . 114
6.2.2 Hard cases . 116

6.3 (In)approximability . 122
6.4 Parameterised complexity . 125

6.4.1 Two FPT algorithms: size of the solution/treewidth and
maximum degree . 126

6.4.2 W-hardness . 130
6.5 Conclusion . 134

The problem we introduce in this chapter belongs to a more general and well studied family
of problems, which is about identifying a largest induced subgraph of a given graph that verifies

111

112 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

a specific property Π. That is, given a graph G = (V,E) and an integer k, is there a set V ′ ⊆ V
such that |V ′| ≤ k and G[V \ V ′] has the specified property Π? In our case, the property Π
is “the induced subgraph is locally irregular”. This generalised problem is indeed classic in graph
theory, and it is known as the INDUCED SUBGRAPH WITH PROPERTY Π (ISPΠ for short) problem
in [74]. Unfortunately, it was shown in [91], that ISPΠ is a hard problem for any property Π that
is hereditary, i.e., all induced subgraphs of G verify Π if G itself verifies that property.

However, the ISPΠ problem remains interesting even if the property Π is not hereditary (as is
the case for the property of interest in this chapter). Recently, [19] studied the problem for Π being
“all vertices of the induced subgraph have odd degree”, which clearly is not a hereditary property.
Nevertheless, they showed that this is an NP-hard problem, and they gave an FPT algorithm that
solves the problem when parameterised by the rank-width. Also, [3, 11, 98] studied the ISPΠ
problem, where Π is the natural property “the induced subgraph is d-regular”, where d is an integer
given in the input. In particular, in [11] it is shown that finding a largest (connected) induced
subgraph that is d-regular, is NP-hard to approximate, even when restricted on bipartite or planar
graphs. [11] also provides a linear-time algorithm to solve this problem for graphs with bounded
treewidth. In contrast, [3] takes a more practical approach, as they focus on solving the problem
for the particular values of d = 1 and d = 2, by using bounds from quadratic programming,
Lagrangian relaxation and integer programming.

It is quite clear that, in some sense, the property that interests us lies on the opposite side of
the one studied in [3, 11, 98]. However, both properties, “the induced subgraph is regular” and
“the induced subgraph is locally irregular” are not hereditary. This means that we do not get an
NP-hardness result directly from [91]. Furthermore, the ISPΠ problem always admits an FPT
algorithm if Π is a hereditary property [44, 83], but for a non-hereditary one, this is not always
true. Indeed in [98], the authors proved that when considering Π as “the induced subgraph is
regular”, the ISPΠ problem is W[1]-hard when parameterised by the size of the solution. That is,
there should be no O∗(f(k)nc) time algorithm for this problem, where c is a constant. For such
problems, it is also interesting to see if there exists any algorithm with running time O∗(no(k))
or f(k)no(k). The authors of [51, 52, 53] provide techniques that can be used to strongly indicate
the non-existence of such algorithms, by applying them on a variety of W[1]-hard and W[2]-hard
problems, such as the INDEPENDENT SET and the DOMINATING SET, parameterised by the size
of their solutions. These lower bounds are shown under the assumption of the EXPONENTIAL

TIME HYPOTHESIS. Intuitively, this hypothesis claims that there can be no algorithm for solving
3-SAT that does not exhaustively search through an exponential number of possible solutions. A
weaker, but widely utilised, version of this hypothesis, claims that SAT cannot be solved in time
2o(n+m).

We begin in Section 6.1 by providing the basic notations and definitions that are going to
be used throughout this chapter. In Section 6.2, we deal with the complexity of the introduced
problem. In particular, we show that the problem belongs to P if the input graph is a path, cycle,
complete bipartite or complete graph. We then prove that finding a largest induced locally irregular
subgraph of a given graphG is NP-hard, even ifG is restricted to being a subcubic planar bipartite,
or a cubic graph.

As the problem we introduce seems to be computationally hard even for restricted families of
graphs, we proceed by investigating its approximability. Unfortunately, we prove in Section 6.3
that for any bipartite graph G of order n and k ≥ 1, there can be no polynomial-time algorithm
that finds an approximation of I(G) within ratio O(n1− 1

k), unless P=NP. Nevertheless, we do
manage to give a (simple) d-approximation algorithm for d-regular bipartite graphs.

6.1 – Preliminaries 113

We then look into parameterised complexity. In Section 6.4, we present two algorithms that
compute I(G), each one considering different parameters. The first considers the size of the so-
lution k and the maximum degree ∆ of G, and has running time (2∆)knO(1), while the second
considers the treewidth tw and ∆ of G, and has running time ∆4twnO(1). Unfortunately, these
algorithms can be considered as being FPT only if ∆ is part of the parameter. In Section 6.4.2, we
present two linear fpt-reductions which prove that the problem is W[2]-hard when parameterised
only by the size of the solution and W[1]-hard when parameterised only by the treewidth. These
reductions also show that we cannot even have an algorithm that computes I(G) in time f(k)no(k)

or O∗(f(tw)no(tw)), unless the ETH fails.

6.1 Preliminaries

Let G = (V,E) be a graph. Now, let S ⊆ V be such that G[V \ S] is a locally irregular
graph; any set S that has this property is said to be an irregulator of G. Moreover, let I(G) be the
minimum order that any irregulator of G can have. We will say that S is a minimum irregulator of
G if S is an irregulator of G and |S| = I(G).

We also define the following, which generalises the notion of an irregulator. Let G = (V,E)
be a graph, S,X ⊆ V and let G′ = G[V \ S]. If S is such that for every two adjacent vertices
u, v in X \ S, we have that dG′(u) 6= dG′(v), then S will be called an irregulator of X in G. We
define the notion of a minimum irregulator of X in G analogously to the previous paragraph. If S
is a minimum irregulator of X in G, then we define I(G,X) = |S|.

We now provide some lemmata and an observation that will be useful throughout this chapter.
In the three lemmata below, we investigate the relationship between I(G) and I(G,X).

Lemma 6.1.1. Let G = (V,E) be a graph and let X ⊆ V . Then, I(G,X) ≤ I(G).

Proof. Let S be a minimum irregulator of G, G′ = G[V \ S] and X ′ = X \ S. Observe that for
every pair of vertices u, v such that u ∈ X ′ and v ∈ NG′(u) ∩X ′, we have that dG′(u) 6= dG′(v),
since S is a minimum irregulator of G. It follows that S is also an irregulator of X in G, and thus
we have that I(G,X) ≤ |S| = I(G). �

Lemma 6.1.2. Let G = (V,E) be a graph and S,X ⊆ V such that S is a minimum irregulator
of X in G. Then, S ⊆ N [X] and I(G,X) = I(G[N [X]], X).

Proof. Let S be a minimum irregulator of X in G, S1 = S ∩N [X] and S2 = S \ S1. It suffices to
prove that S1 is an irregulator of X in G. Indeed, if S1 ⊆ S verifies this property, then, since S is
a minimum irregulator of X in G, we can conclude that S = S1 and that S ⊆ N [X] (by definition
of S1).

Assume now that S1 is not an irregulator of X in G. Then there exists a pair of vertices u, v
where uv is an edge in G[X \ S1] and dG[V \S1](u) = dG[V \S1](v). Observe that N [{u, v}] ⊆
N [X], and thus N [{u, v}] ∩ S2 = ∅. Therefore, dG[V \S](u) = dG[V \S1](u) = dG[V \S1](v) =
dG[V \S](v). This is a contradiction since S is a minimum irregulator of X in G.

Now, we prove that I(G,X) = I(G[N [X]], X). Let S be a minimum irregulator of X in G.
Since S ⊆ N [X] and any vertex v ∈ X \ S has N(v) ⊆ N [X], we have that dG[V \S](v) =
dG[N [X]\S](v). Thus, S is an irregulator of X in G[N [X]] and I(G,X) ≥ I(G[N [X]], X). Now
for the opposite direction, let S′ be a minimum irregulator of X in G[N [X]]. We now show
that S′ is also an irregulator of X in G. This follows from the fact that for all v ∈ X \ S′,

114 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

we have dG[V \S′](v) = dG[N [X]\S′](v) (again because N(v) ⊆ N [X]). Therefore, I(G,X) ≤
I(G[N [X]], X). �

Lemma 6.1.3. Let G = (V,E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi] ∩N [Xj] = ∅
for every 1 ≤ i < j ≤ n. Then

∑n
i=1 I(G,Xi) ≤ I(G).

Proof. Let X =
⋃n
i=1Xi. For every 1 ≤ i ≤ n, let Si be a minimum irregulator of Xi in G and

G′i = G[V \Si], and let S =
⋃n
i=1 Si and G′ = G[V \S]. Observe first that for every i 6= j, since

N [Xi] ∩N [Xj] = ∅, we have that Si ∩ Sj = ∅ as well. Thus, |S| =
∑n
i=1 |Si|.

We now show that S is a minimum irregulator of X in G. Assume that there exists an S′ such
that |S′| < |S| and S′ is an irregulator of X in G. Then, there exists a k ≤ n such that the set
S′k = S′ ∩N [Xk], is such that |S′k| < |Sk|, as otherwise |S′| cannot be smaller than |S|. Observe
that S′k must be an irregulator of Xk in G; this holds because for any vertex u ∈ S′ \S′k, we know
that u /∈ N [Xk]. This is a contradiction since we have assumed that Sk is a minimum irregulator
of Xk in G and S′k is an irregulator of Xk in G of order smaller than that of Sk. Therefore, S is a
minimum irregulator of X in G, and the statement follows by Lemma 6.1.1. �

Lemma 6.1.4. Let G = (V,E) be a graph, X be a subset of V and S be an irregulator of G. The
set S ∩N [X] is an irregulator of X in G and an irregulator of X in G[N [X]].

Proof. Let SX = S∩N [X],G′ = G[V \S]G∗ = G[V \SX]. Assume that SX is not an irregulator
of X in G. Then there exist two adjacent vertices v, u such that {v, u} ⊂ X \ SX and dG∗(u) =
dG∗(v). Since SX = S ∩N [X] we have that NG[S](u) = NG[SX](u) and NG[S](v) = NG[SX](v).
Therefore dG′(u) = dG∗(u) = dG∗(v) = dG′(u) which is a contradiction since G′ is locally
irregular. It remains to show that SX is an irregulator of X in G[N [X]]. Note that for any vertex
v ∈ X \SX ,N [v] is included in bothG andG[N [X]]. Therefore, dG∗(v) = dG[N [X]\SX](v) since
we have removed the same vertices from N [X]. The result follows. �

Observation 6.1.5. Let G = (V,E) be a graph and S be an irregulator of G. Then, for every
edge uv ∈ E, if dG(u) = dG(v), then S contains at least one vertex in N [{u, v}]. Additionally,
for a set X ⊆ V , let S∗ be an irregulator of X in G[N [X]]. Then, for every edge uv ∈ E(G[X]),
if dG[X](u) = dG[X](v), then S∗ contains at least one vertex in N [{u, v}].

6.2 (Classical) complexity

In this section, we deal with the (classical) complexity of the problem we introduced. First,
we calculate I(G) for some simple families of graphs. Specifically, we show that I(G) can be
calculated in linear time when G is a path, a cycle and a complete or a complete bipartite graph.
Then, we show that finding a minimum irregulator of a graph is NP-hard. This remains true even
for quite restricted families of graphs, such as cubic graphs and subcubic planar bipartite graphs.

6.2.1 Polynomial cases

Theorem 6.2.1. Let G be a graph. If G = Kn, then I(G) = n − 1. Also, if G = Kn,m with
0 ≤ n ≤ m, then I(G) ≤ 1 with the equality holding if and only if n = m.

6.2 – (Classical) complexity 115

Proof. Let G = (V,E). Assume that G = Kn, and let S be an irregulator of G with |S| < n− 1.
Then G′ = G[V \ S] is a complete graph of order n′ > n− (n− 1) = 1, and for any n′ ≥ 2, we
have that Kn′ is not locally irregular, leading to a contradiction.

Observe that Kn,m, with 0 ≤ n < m, is locally irregular, and thus I(Kn,m) = 0 in this case.
Assume now that G = Kn,n with n ≥ 1. We have that I(G) ≥ 1 as Kn,n is not locally irregular.
Let L,R be the two bipartitions of V , with |L| = n and |R| = n. Consider the set S = {v}, where
v is any vertex of L. Clearly, after the deletion of v, the graph G′ = G[V \ S] is isomorphic to
Kn−1,n which is locally irregular. �

Theorem 6.2.2. If Pn is the path on n vertices, then

I(Pn) =
{
bn4 c, if n 6≡ 2 mod 4
bn4 c+ 1, if n ≡ 2 mod 4

Proof. We begin our proof by examining the cases of P1, P2, P3, and P4. Observe first of all that
P1 and P3 are locally irregular graphs. It follows that I(P1) = I(P3) = 0.

On the other hand, it is also easy to check that P2 is not locally irregular, but that deleting any
one of its vertices suffices to turn it into P1 (which is locally irregular). It follows that I(P2) = 1.
We now show that I(P4) = 1. Let P4 = (v1, v2, v3, v4) and note that P4 is not locally irregular
(we have that d(v2) = d(v3) = 2). Moreover, deleting either v1 or v4 from P4, results in the graph
P3, which is locally irregular. Thus I(P4) = 1. Observe moreover that any path on more than 4
vertices is not locally irregular.

We are now ready to continue with the proof. Let n, k, d ∈ N, with n ≥ 5, n ≡ k mod 4,
d = bn4 c and G = Pn = v1 . . . vn. We have the following two cases:

— Case k 6= 2. Consider the set S = {vi : i ≡ 0 mod 4}. We have that |S| = d. Also,
observe that the graph G[V (G) \ S] has d connected components, each one of which is
isomorphic to P3, which are locally irregular, and a connected component isomorphic to
Pk, where k ∈ {0, 1, 3}, which is also locally irregular (the graph P0 is the empty graph).
It follows that S is an irregulator of Pn and that I(Pn) ≤ |S| = d. All that is left to show
is that I(Pn) ≥ d. Let us assume that there exists a set S0 that is an irregulator of Pn
and |S0| < d. Now observe that G[V (G) \ S0] contains at least one connected component
isomorphic to Pm, with m ≥ 4 This is a contradiction, since Pm is not locally irregular.

— Case k = 2. Consider the set S = {vi : i ≡ 0 mod 4} ∪ {vn}. We have that |S| = d+ 1.
Similarly to the previous case, we have thatG[V (G)\S] contains d connected components
isomorphic to P3 and one connected component isomorphic to P1. Thus S is an irregulator
of Pn and I(Pn) ≤ |S| ≤ d + 1. All that is left to show is that I(Pn) ≥ d + 1. Observe
that the arguments supporting that I(Pn) > d are the same as the previous case. So, we
assume that there exists a set S0 that is an irregulator of Pn and |S0| = d. Observe that
all the connected components of G[V (G) \ S0] are paths. Also, if there exists a connected
component isomorphic to a Pm, with m ≥ 4, then G[V (G) \ S0] is not locally irregular.
So we may assume that all the connected components of G[V (G) \ S0] are isomorphic to
a path on at most 3 vertices. It follows that one of these components must be isomorphic
to P2. This is a contradiction since P2 is not locally irregular.

�

Corollary 6.2.3. If Cn is the cycle on n ≥ 3 vertices, then I(Cn) = I(Pn−1) + 1, where Pn−1 is
the path on n− 1 vertices.

116 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

Figure 6.1 – The 3-gadget used in the proof of Theorem 6.2.4.

Proof. Observe that for every vertex v belonging to the cycle G = Cn, we have d(v) = 2. It
follows from Observation 6.1.5 that I(Cn) ≥ 1 and that any S that is an irregulator of G contains
at least one vertex, say vertex v. The statement follows by observing that the graph G[V (G) \ v]
is isomorphic to Pn−1. �

6.2.2 Hard cases

We now show that finding a minimum irregulator of a graph is NP-hard. This remains true
even for quite restricted families of graphs, such as cubic (i.e., 3-regular), and subcubic planar
bipartite graphs, i.e., planar bipartite graphs of maximum degree at most 3.

Theorem 6.2.4. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even if G is
a cubic graph.

Proof. Since the problem is clearly in NP, we focus on proving it is also NP-hard. The reduction
is from 2-BALANCED 3-SAT, which was proven to be NP-complete in [36]. In that problem,
a 3CNF formula F is given as an input, comprised by a set C of clauses over a set of Boolean
variablesX . In particular, we have that each clause contains exactly three literals, and each variable
x ∈ X appears in F exactly twice as a positive and twice as a negative literal. The question is
whether there exists a truth assignment to the variables of X satisfying F .

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that is
given as input to the 2-BALANCED 3-SAT problem. We construct a cubic graph G such that F is
satisfiable if and only if I(G) ≤ 3n. To construct G = (V,E), we start with the following graph:
for each literal xi (¬xi resp.) in F , add a literal vertex vi (v′i resp.) in V , and for each clause Cj
of F , add a clause vertex cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′icj resp.) if the
literal xi (¬xi resp.) appears in Cj according to F . Observe that the resulting graph is bipartite, for
each clause vertex c we have d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F ,
each variable appears twice as a positive and twice as a negative literal). To finish the construction
of G, we make use of the 3-gadgets, illustrated in Figure 6.1. When we say that we attach a copy
H of the 3-gadget to the vertices vi and v′i (for some 1 ≤ i ≤ n), we mean that we add H to
G, and we identify the vertices w1 and w2 to the vertices vi and v′i respectively. Now, for each
pair of literal vertices {vi, v′i}, attach one copy Hi of the 3-gadget to the vertices vi and v′i (see
Figure 6.2). Clearly this construction is achieved in linear time in regards to n + m. Note also
that the resulting graph G is cubic. Before we move on with the reduction, we state the following
claim:

Claim 6.2.5. Let H be a copy of the 3-gadget, shown in Figure 6.1, and X = V (H) \ {w1, w2}.
We have the following:

6.2 – (Classical) complexity 117

v1

v′1

v2

v′2

v3

v′3

c1

c2

c3

c4

Figure 6.2 – An example of the construction of the cubic graph G in the proof of Theorem 6.2.4,
starting from the input formula F = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) ∧
(¬x1 ∨ x2 ∨ x3). The formula has n = 3 variables x1, x2, x3, and m = 4 clauses. For 1 ≤ i ≤ n,
the vertex vi (v′i resp.) corresponds to the appearances of the literal xi (¬xi resp.) in F .

— I(H,X) = 3;
— for any S that is a minimum irregulator of X in H , we have that r /∈ S;
— for w ∈ {w1, w2}, if w ∈ S, with S being a minimum irregulator of X in H , then S =
{u4, u8, w}. Furthermore, these are the only optimal irregulators of X in H that contain
either w1 or w2.

Proof of the claim. First we show that if S is an irregulator of X in H , then |S| ≥ 3. Clearly,
if |S| = 1, then S cannot be an irregulator of X in H . Assume now that |S| = 2 and consider
the edges ur, u2u7 and u4u5. These edges have in common that both of their incident vertices
have the same degree (which is equal to 3). It follows from Observation 6.1.5 that S contains at
least one vertex in each one of the sets S1 = N(uv) = {u1, u5, u, r, w1, w2}, S2 = N(u2u7) =
{u1, u2, u3, u6, u7, u8} and S3 = N(u4u5) = {u3, u4, u5, u6, u8}. Assume first that u1 ∈ S. In
Figure 6.3 we illustrate all possible subsets of vertices of H of order 2 that contain u1. Clearly
none of them is an irregulator of X in H . It follows that u1 /∈ S. Note that due to symmetry, we
can also deduce that u5 /∈ S. It follows that S ∩ S1 ⊆ {u, r, w1, w2} and, since |S| = 2, that the
remaining vertex w of S belongs to (S2 ∩S3) \ {u1, u5} = {u3, u6, u8}. Let H ′ = H[V (H) \S].
It is easy to see that if w = u3 then dH′(u7) = dH′(u8), if w = u6 then dH′(u3) = dH′(u4)
and that if w = u8 then dH′(u3) = dH′(u6) (and this holds true for any possible combination of
vertices w ∈ {u3, u6, u8} and w′ ∈ {u, r, w1, w2}). Thus S cannot be an irregulator of X in H
and I(H,X) ≥ 3. For the remaining claims of the statement, it suffices to find all the irregulators
of X in H of order 3. By doing an exhaustive search, we were able to identify these irregulators.

118 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

They are (up to symmetry) the following: {u1, u8, u7}, {u1, u5, u7}, {u1, u3, u7}, {u4, u8, u},
{u4, u8, w1} and {u4, u8, w2}. �

We are now ready to show the equivalence between finding a satisfying assignment φ of F , and
finding an S that is an irregulator of G such that |S| = 3n (from which follows that I(G) ≤ 3n).

Let φ be a satisfying assignment of F , and let S′ be the set of literal vertices vi (v′i resp.) such
that the corresponding literals xi (¬xi resp.) are assigned value true by φ. Now, for each copy Hi

of the gadget which was used in the construction of G, let S′i = {u4, u8, α}, where α ∈ S′, and
consider the set S =

⋃n
i=1 S

′
i. Note that |S| = 3n. We now show that S is an irregulator of G.

Since φ is a satisfying assignment of F , each clause Cj contains at least one literal that is set to
true. In other words, the clause vertex cj is adjacent to at least one literal vertex that belongs to
S. Let G′ = G[V (G) \ S], and note that dG′(cj) ≤ 2 (for every 1 ≤ j ≤ m), while the degree
of all the literal vertices of G′ is equal to 3. It follows, from the previous observations and from
Claim 6.2.5, that S is an irregulator of G. Furthermore, by the construction of S, we know that
for any literal vertex v of G′, the copy of the vertex r which is incident to v has degree 2 in G′.
Finally, observe that S ∩ V (Hi) is an irregulator of Xi in Hi (by the construction of S) and that
deleting any vertex of G that does not belong to N [Xi], does not change the degree of any vertex
in N [Xi]. So, we can conclude that there are no two vertices in Xi that have the same degrees in
G′. Thus S is an irregulator of G.

For the other direction, assume that I(G) ≤ 3n and let S be a minimum irregulator of G. For
1 ≤ i ≤ n, let Xi = V (Hi) \ {vi, v′i} and observe that N [Xi] contains exactly the vertices of the
gadget Hi. Also, let Si = S ∩ V (Hi), for all i ∈ {1, . . . , n}. First we are going to prove some
properties of S:

Claim 6.2.6. For the given set S, the following properties hold for all i ∈ {1, . . . , n}:
1. Si is a minimum irregulator of Xi in Hi.

2. S =
⋃n
i=1 Si.

3. The vertex r belonging to the gadget Hi, does not belong to S.

4. If vi ∈ S (for some i), then v′i /∈ S and vice versa.

5. For all j ∈ {1, . . . ,m}, we have that cj /∈ S.

Proof of the claim. For the first item, let us first show that Si is an irregulator of Xi in Hi. Assume
that Si does not verify this property; then there exist two vertices u, v inXi \Si that have the same
degree in G[V \ Si]. Since S \ Si does not include any vertices of Hi, we know that u, v belong
in G[V \ S]. This is a contradiction since S is a minimum irregulator of G. In order to show that
Si is actually a minimum irregulator of Xi in Hi, we need to take in consideration the order of S.
Since Si is an irregulator of Xi in Hi, we have that |Si| ≥ 3. Assume that there exists an i such
that |Si| > 3. Since Si ⊆ NG[Xi] and NG[Xi] ∩ NG[Xj] = ∅, for every i 6= j, we have that
|S| ≥

∑n
i=1 |Si| > 3n. This is a contradiction because |S| ≤ 3n. Thus the first item holds.

The rest of the items follow from the first item. For the second item, we just need to observe
that

∑n
i=1 |Si| = 3n and |S| ≤ 3n. Therefore, S cannot contain any other vertex. The third and

four items follow from the facts that Si = S ∩ V (Hi), the first item and Claim 6.2.5. Finally,
the fifth item holds because cj /∈ NG[Xi], for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, and
S =

⋃n
i=1 Si ⊆

⋃n
i=1NG[Xi]. �

Before we give the truth assignment let us note two more things for some vertices of G′ =
G[V \ S]. First, any literal vertex v that belongs to G′, has dG′(v) = 3 since S does not contain

6.2 – (Classical) complexity 119

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(a)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(b)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(c)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(d)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(e)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(f)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(g)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(h)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(i)

u7

u8

u6

u1

u5

u2

u4

u3
u r

w1

w2

(j)

Figure 6.3 – An illustration of all the possible S ⊆ V (H) of order 2 that contain u1, used in the
proof of Claim 6.2.5. The case S = {u1, w2} is omitted because it is the same as case (c). Gray
vertices and edges represent the vertices and edges that do not appear in H[V (H) \ S]. Any pair
of black vertices have the same degree in H[V (H) \ S].

120 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

u1
u2

u3
u4

u r

w1

w2

Figure 6.4 – The gadget used in the proof of Theorem 6.2.7. The white and black vertices are used
to denote vertices belonging to different classes of the bipartition.

any of the neighbours of v. Furthermore, for each clause vertex cj , there must exist a literal vertex
v ∈ N(cj) such that v ∈ S, as otherwise cj would have the same degree as all its neighbours in
G′.

Now consider the following truth assignment: we assign the value true to every variable xi if
the corresponding literal vertex vi belongs to S, and value false to every other variable. Now, since
for every 1 ≤ j ≤ m we have that dG′(cj) < 3, it follows that each clause Cj contains either a
positive literal xi which has been set to true, or a negative literal ¬xi which has been set to false.
Thus F is satisfied. �

In the next theorem we prove that calculating I(G) remains NP-hard even if G is a subcubic
planar bipartite graph, which is a family of graphs not covered by Theorem 6.2.4. Moreover, it
illustrates a different reduction than the one presented in the proof of Theorem 6.2.4. It is worth
noting here that the gadget illustrated in Figure 6.4, which is going to be used in the proof of Theo-
rem 6.2.7, could be used in a similar reduction as the one presented in the proof of Theorem 6.2.4
(replacing the 3-gadget) to show that calculating I(G) is NP-hard, when G is a subcubic bipartite
graph. Nevertheless, as it will be shown in the next section, the reduction we choose to present in
the proof of Theorem 6.2.7 has some direct implications on the approximability of the problem.

Theorem 6.2.7. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even if G is
a subcubic planar bipartite graph.

Proof. Since the problem is clearly in NP, we focus on proving it is also NP-hard. The reduction is
from the VERTEX COVER problem, which remains NP-complete when restricted to planar cubic
graphs [97]. In that problem, a planar cubic graph G and an integer k ≥ 1 are given as an input.
The question is whether there exists a vertex cover of G of order at most k. That is, whether there
exists a set V C ⊆ V (G) such that for every edge uv ∈ E(G), at least one of u and v belongs to
V C and |V C| ≤ k.

Let G′ be a planar cubic graph and k ≥ 1 given as input for VERTEX COVER. Let |E(G′)| =
m. We construct a planar bipartite graph G as follows; we start with the graph G′, and modify it
by using multiple copies of the gadget illustrated in Figure 6.4. Note that we will be following the
naming convention illustrated in Figure 6.4 whenever we talk about the vertices of our gadgets.
When we say that we attach a copyH of the gadget to the vertices v and v′ ofG′, we mean that we
add H to G′, and we identify the vertices w1 and w2 to the vertices v and v′ respectively. Now, for
every edge vv′ ∈ E(G′), attach one copy H of the gadget to the vertices v and v′, and then delete
the edge vv′ (see Figure 6.5). Clearly this construction is achieved in linear time (we have added
m copies of the gadget). Note also that the resulting graph G has ∆(G) = 3 and that the planarity
of G′ is preserved since G is constructed by essentially subdividing the edges of G′ and adding a
tree pending from each new vertex. Also, G is bipartite. Indeed, observe that after removing the

6.2 – (Classical) complexity 121

v2

v1

v3

(a) G′

v3

v2

v1
r

u

(b) G

Figure 6.5 – The construction in the proof of Theorem 6.2.7. The graph G′ is the initial planar
cubic graph, and G is the graph built during the reduction. In G, the white and black vertices are
used to denote vertices belonging to different classes of the bipartition.

edges of E(G′), the vertices of V (G′) form an independent set of G. Furthermore, the gadget is
bipartite, and the vertices w1, w2 (that have been identified with vertices of V (G′)) belong to the
same class of the bipartition (in the gadget). Finally, for any 1 ≤ i ≤ m, let Hi be the ith copy
of the gadget attached to vertices of G′. We will also be using the vertices ri and ui to denote the
copies of the vertices r and u (respectively) that also belong to Hi.

We are now ready to show that the minimum vertex cover of G′ has size k′ if and only if
I(G) = k′. Let V C be a minimum vertex cover of G′ and |V C| = k′. We will show that the set
S = V C is an irregulator of G. Let G∗ = G[V (G) \ S]. Now, for any 1 ≤ i ≤ m, consider the
vertex ri. Since V C is a vertex cover of G′, for every edge vv′ ∈ E(G′), V C contains at least one
of v and v′. It follows that dG∗(ri) ≤ 2. Note also that NG∗(ri) contains the vertex ui ∈ V (Hi)
and possibly one vertex v ∈ V (G′).

Also, since we only delete vertices in V (Hi)∩V (G′), we have that dG∗(ui) = 3 > dG∗(ri). In
the case where NG∗(ri) also contains a vertex v ∈ V (G′), the vertex v is adjacent only to vertices
which do not belong to V (G′). Thus, dG∗(v) = dG(v) = 3 > dG∗(ri). It follows that ri has a
degree that is different from that of all of its neighbours and that V C is an irregulator of G.

Now, we prove that if I(G) = k′ then there exists a vertex cover of size at most k′. Assume
that I(G) = k′ and let S be a minimum irregulator of G. Then, S contains at least one vertex of
Hi (for each 1 ≤ i ≤ m). Let Xi = V (Hi) ∩ V (G′). To construct a vertex cover V C of G′ with
|V C| ≤ k′, we work as follows. For each 1 ≤ i ≤ m:

1. for each vertex v ∈ Xi, if v ∈ S then put v in V C. Then,

2. if S ∩Xi = ∅, then put any one of the two vertices of Xi in V C.

Observe now that any vertex that is added to V C during step 1. of the above procedure, also
belongs to S and any vertex that is added during step 2. corresponds to at least one vertex in S.
It follows that |V C| ≤ k′. Also note that V C contains at least one vertex of Xi, for each i, and
that for each uv ∈ E(G′), there exists an i such that V (Xi) = {u, v}. Thus V C is indeed a vertex
cover of G′.

122 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

Therefore G′ has a minimum vertex cover of size k′ if and only if I(G) = k′. To complete the
proof, note that deciding if I(G) = k′ < k for a given k, answers the question whether G′ has a
vertex cover of size less than k or not. �

6.3 (In)approximability

In the previous section we showed that computing I(G) is NP-hard, even for graphs G be-
longing to quite restricted families of graphs. So the natural question to pose next, which we
investigate in this section, is whether we can approximate I(G).

We start with a corollary that follows from the proof of Theorem 6.2.7 and the inapproxima-
bility of VERTEX COVER in cubic graphs:

Corollary 6.3.1. Given a graph G, it is NP-hard to approximate I(G) to within a ratio of 100
99 ,

even if G is bipartite and ∆(G) = 3.

Proof. The proof is the same as that of Theorem 6.2.7, where the input graph G′ cubic. Therefore,
the resulting graph G is a bipartite graph with ∆(G) = 3 and the minimum vertex cover of G′

has size k if and only if I(G) = k. Then any a-approximation of I(G) = k is an a-approximation
for the minimum vertex cover. Since the minimum vertex cover cannot be approximated within a
factor 100

99 in 3-regular graphs [54], the same holds for I(G). �

Now, we are going to show that there can be no algorithm that approximates I(G) to within
a ratio of O(n1− 1

k) in polynomial time, unless P=NP, even if G is a bipartite graph of order n
(with no restriction on its maximum degree). One way to show that a problem can probably not
be approximated within a certain ratio, is through a gap reduction. The goal of such a reduction is
to show that it is NP-hard to differentiate between instances that have a solution of size at most α
and those for which any solution has size strictly greater than β. If such is the case, then we know
that we cannot approximate the optimal solution within a ratio of β

α , as otherwise we would get
that P=NP.

Theorem 6.3.2. Let G be a bipartite graph of order n and k ∈ N be a constant such that k ≥ 1.
It is NP-hard to approximate I(G) to within O(n1− 1

k).

Proof. The proof is by a gap producing reduction from 2-BALANCED 3-SAT. Let F be a 3CNF
formula with m clauses C1, . . . , Cm and ν variables x1, . . . , xν that is given as input to the 2-
BALANCED 3-SAT problem. Let 2k = k′+ 1. Based on the instance F , we are going to construct
a bipartite graph G = (V,E) where |V | = O(νk′+1) and

— I(G) ≤ ν if F is satisfiable;
— I(G) > νk

′
otherwise.

To construct G = (V,E), we start with the following graph: for each literal xi (¬xi resp.) in
F , add a literal vertex vi (v′i resp.) in V , and for each clause Cj of F , add a clause vertex cj in V .
Next, for each 1 ≤ j ≤ m, add the edge vicj (v′icj resp.) if the literal xi (¬xi resp.) appears in
Cj according to F . Observe that the resulting graph is bipartite, for each clause vertex c we have
d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F , each variable appears twice
as a positive and twice as a negative literal). To finish the construction of G, we make use of the
gadget shown in Figure 6.6 (a), as well as some copies of S5, the star on 5 vertices. When we say
that we attach a copy H of the gadget to the vertices vi and v′i (for some 1 ≤ i ≤ ν), we mean

6.3 – (In)approximability 123

u

u1

u2

w1

w2

(a) The gadget

vi

v′i

...

...

u1
i

u1
i,1

...
...

u1
i,2

uz
i,1

uz
i,2

uz
i

c11 s1
1

c1m s1
m

cz
1 sz

1

cz
m sz

m

(b) The constructed graph G for νk′ = z

Figure 6.6 – The construction in the proof of Theorem 6.3.2. In subfigure (b), we illustrate how
each pair of literal vertices is connected to the rest of the graph. Whenever there is a superscript
1 ≤ l ≤ νk

′
on a vertex, it is used to denote the lth copy of that vertex. The dashed lines are used

to represent the edges between the literal and the clause vertices.

that we add H to G, and we identify the vertices w1 and w2 to the vertices vi and v′i respectively.
Now:

— for each 1 ≤ i ≤ ν, we attach νk
′

copies of the gadget to the vertices vi and v′i of G.
For convenience, we will give unique names to the vertices corresponding to each gadget
added that way. So, the vertex uli (for 1 ≤ l ≤ νk

′
and 1 ≤ i ≤ ν) is used to represent the

vertex u of the lth copy of the gadget attached to vi and v′i, and uli,1 (uli,2 resp.) is used to
denote the vertex u1 (u2 resp.) of that same gadget. Then,

— for each 1 ≤ j ≤ m, we add νk
′

copies of the clause vertex cj to G, each one of these
copies being adjacent to the same literal vertices as cj . For 1 ≤ l ≤ νk

′
, the vertex clj is

the lth copy of cj . Finally,
— for each 1 ≤ j ≤ m and 1 ≤ l ≤ νk

′
, we add a copy of the star S5 on five vertices to G

and identify any degree-1 vertex of S5 to clj . Let slj be the neighbour of clj that also belongs
to a copy of S5.

Observe that the resulting graph G (illustrated in Figure 6.6 (b)) remains bipartite and that this
construction is achieved in polynomial time in regards to ν +m.

From the construction of G, we know that for every 1 ≤ i ≤ ν, d(vi) = d(v′i) = O(νk′).
So, for sufficiently large ν, the only pairs of adjacent vertices of G that have the same degrees are
either the vertices uli and uli,2, or the vertices clj and slj (for every 1 ≤ i ≤ ν, 1 ≤ l ≤ νk

′
and

1 ≤ j ≤ m).
First, let F be a satisfiable formula and let φ be a satisfying assignment of F . Also, let S be the

set of literal vertices vi (v′i resp.) such that the corresponding literals xi (¬xi resp.) are assigned

124 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

value true by φ. Clearly |S| = ν. We will also show that S is an irregulator of G. Consider the
graph G′ = G[V \ S]. Now, for any 1 ≤ i ≤ ν, we have that either vi or v′i, say vi, belongs to the
vertices of G′. Moreover, for every 1 ≤ l ≤ νk, we have that dG′(uli) = 3, while dG′(uli,1) = 2
and dG′(uli,2) = 4 (since none of the neighbours of uli,1 and uli,2 belongs to S). Also, for every
1 ≤ j ≤ m and 1 ≤ l ≤ νk

′
, since φ is a satisfying assignment of F , N(clj) contains at least

one vertex in S. It follows that dG′(clj) = 3 < 4 = dG′(slj). Finally, since S does not contain any
neighbours of vi, we have that dG′(vi) = dG(vi) = O(νk′). It follows that S is an irregulator of
G and thus that I(G) ≤ ν.

Now let F be a non-satisfiable formula and assume that there exists an S that is an irregulator
of G with |S| ≤ νk′ . As usual, let G′ = G[V \ S]. Then:

1. For every 1 ≤ j ≤ m, there exists a literal vertex v such that v ∈ N(clj) for every
1 ≤ l ≤ νk′ . Assume that this is not true for a specific j. Then, since dG(clj) = dG(slj) = 4,
for every 1 ≤ l ≤ νk

′
, we have that S contains at least one vertex in N [{clj , slj}], which

does not belong to the literal vertices. That is, S contains at least one (non-literal) vertex
for each one of the νk

′
copies of cj . Observe also that even if this were the case, then S

would also have to contain at least one more vertex to, for example, prevent u1
i,2 and u1

i ,
from having the same degree in G′. It follows that |S| > νk

′
, which is a contradiction.

2. For every 1 ≤ i ≤ ν, S does not contain both vi and v′i. Assume this is not true for a
specific i. Then, for every 1 ≤ l ≤ νk

′
, we have that dG′(uli) = dG′(uli,1) = 2, unless S

also contains an additional vertex of the gadgets attached to vi and v′i, for each one of the
νk
′

such gadgets. It follows that |S| ≥ νk
′
. Since we have also assumed that for a specific

i, both vi and v′i belong to S, we have that |S| > νk
′
, a contradiction.

3. For every 1 ≤ i ≤ ν, S contains at least one of vi and v′i. Assume this is not true for a
specific i. Then, for every 1 ≤ l ≤ νk

′
, we have that dG′(uli) = dG′(uli,2) = 4, unless S

also contains an additional vertex of the gadgets attached to vi and v′i, for each one of the
νk
′

such gadgets. Even if this were the case, S would also have to contain at least one more
vertex to, for example, prevent c1

1 and S1
1 from having the same degree in G′. It follows

that |S| > νk
′
, which is a contradiction.

So from items 2. and 3. above, it follows that for every 1 ≤ i ≤ ν, S contains exactly one of
vi and v′i. Now consider the following truth assignment: we assign the value true to every variable
xi if the corresponding literal vertex vi belongs to S, and value false to every other variable. Now,
from item 1. above, it follows that each clause Cj contains either a positive literal xi which has
been set to true, or a negative literal ¬xi which has been set to false. Thus F is satisfied, which is
a contradiction.

Up to this point, we have shown that there exists a graph G = (V,E) with |V (G)| = n =
O(νk′+1) where

— I(G) ≤ ν if F is satisfiable;
— I(G) > νk

′
otherwise.

Therefore, we have that there is no polynomial-time algorithm that approximates I(G) withing a
factor of O(νk′−1), unless P=NP.

Now, since n = |V (G)| = O(νk′+1) and 2k = k′ + 1, we have νk−1 = n
k′−1
k′+1 = n

1− 2
k′+1 =

n1− 1
k . This ends the proof of this theorem. �

6.4 – Parameterised complexity 125

Now, we consider the case where G is a regular bipartite graph. Below we present a lower
bound to the size of I(G). This lower bound is then used to obtain a (simple) ∆-approximation of
an optimal solution.

Theorem 6.3.3. If G is a d-regular bipartite graph G = (L,R,E) of order n, we have that
I(G) ≥ n/2d.

Proof. Let S be a minimum irregulator of G and G′ = G[(L ∪ R) \ S]. We distinguish two cases
according to if S is a subset of one of the bipartition classes L or R, or if S contains at least one
vertex from each bipartition class.

Let us first deal with the first case and assume, w.l.o.g, that S ⊆ L. If |S| = |L|, then the
theorem holds (since |L| = |R|). Therefore, we consider the case |S| < |L|. Observe that any
vertex v ∈ R must have dG′(v) < d. Indeed, since S ⊆ L, we know that for any vertex u ∈
NG′(v), we have dG′(v) = d and S is an irregulator. It follows that N(S) = R so d|S| ≥ n/2
which gives us I(G) ≥ n/2d.

Now, we consider the second case (S contains at least one vertex from each bipartition class).
LetLS = S∩L andRS = S∩R. We partitionL (R resp.) into three sets:LS = S∩L (RS = S∩R
resp.), Ld−1 = {u | u ∈ L \ S and dG′(u) < d} (Rd−1 = {u | u ∈ R \ S and dG′(u) < d}) and
Ld = L \ (LS ∪ Ld−1) (Rd = L \ (RS ∪ Rd−1) resp.). Note that for all u ∈ Ld ∪ Rd we have
dG′(u) = d. Therefore all the vertices in Ld have exactly d neighbor in Rd−1 (in both G and G′)
and all the vertices in Rd have exactly d neighbours in Ld−1. Furthermore, since dG′(u) < d for
all u ∈ Ld−1 ∪ Rd−1, we know that each u ∈ Ld−1 has at least one neighbour in RS and each
u ∈ Rd−1 has at least one neighbour in LS . Now we are going to find some upper bounds on the
number of vertices in Ld−1 and Ld.

Since each vertex u ∈ Ld−1 has at least one neighbour in RS , we have that |Ld−1| ≤ d|RS |.
Similarly we can show that |Rd−1| ≤ d|LS |.

Let E∗ be the set of edges between Ld and Rd−1. Since, any vertex of Ld have exactly d
neighbours in Rd−1 we know that |Ld| = |E∗|/d. Since each vertex of Rd−1 has at least one
neighbours inLS , it has at most d−1 edges inE∗. Therefore |E∗| ≤ (d−1)|Rd−1| ≤ d(d−1)|LS |.
This gives us that |Ld| ≤ (d− 1)|LS |.

Now, observe that |L| = |LS |+ |Ld−1|+ |Ld| ≤ |LS |+d|RS |+(d−1)|LS | = d(|LS |+ |RS |).
So, since S = LS ∪RS , we have that I(G) ≥ n/2d. �

Now recall that in any bipartite graph G, any part of a bipartition of G into two stable sets is
a vertex cover of G. Also observe that any vertex cover of a graph G is also an irregulator of G.
Indeed, deleting the vertices of any vertex cover of G leaves us with an independent set, which is
locally irregular. The next corollary follows from these observations and Theorem 6.3.3:

Corollary 6.3.4. For any d-regular bipartite graph G = (L,R,E), max{|L|, |R|} ≤ dI(G) and
any one of L or R is an irregulator of G.

6.4 Parameterised complexity

So the problem of computing a minimal irregulator of a given graph G seems to be hard to
solve, and even to approximate. Thus we now focus our efforts on finding parameterised algo-
rithms that can solve it. Recall that a fixed parameter-tractable (FPT for short) algorithm is an
algorithm with running time f(k)nO(1), where f is a computable function and k is the considered
parameter.

126 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

6.4.1 Two FPT algorithms: size of the solution/treewidth and maximum degree

First we present an FPT algorithm that calculates I(G) when parameterised by the size of the
solution and ∆, the maximum degree of the graph. In order to prove this result, we make use of
the following lemma:

Lemma 6.4.1. LetG = (V,E) be a graph such thatG is not locally irregular, and S be a minimum
irregulator of G. Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S.
Then I(Gv) = I(G)− 1.

Proof. First observe that S′ = S \ {v} must be an irregulator of Gv as Gv[V ′ \ S′] = G[V \ S]. It
follows that I(Gv) ≤ I(G)− 1. Assume that I(Gv) < I(G)− 1. Then there exists an S′′ such that
|S′′| < I(G)− 1 and S′′ is an irregulator of Gv. Since Gv[V ′ \S′′] = G[V \ (S′′ ∪{v})], we have
that S′′ ∪ {v} is an irregulator of G and |S′′ ∪ {v}| = |S′′|+ 1 < I(G). This is a contradiction. �

We are now ready to present the proof of the following theorem:

Theorem 6.4.2. For a given graph G = (V,E) with |V | = n and maximum degree ∆, and for
k ∈ N, there exists an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).

Proof. In order to decide if I(G) ≤ k we are going to use a recursive algorithm. The algorithm
takes (G, k) as input, where G = (V,E) is a graph and k ≥ 0 is an integer. The basic idea of this
algorithm is to take advantage of Observation 6.1.5. We present the exact procedure in Algorithm
IsIrregular.

Input: A graph G = (V,E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?

1: if G is irregular then
2: return yes
3: else if k = 0 then
4: return no
5: else . k > 0 and G is not irregular
6: ans← no
7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]

10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes

12: return ans

Algorithm 6.1 – [IsIrregular(G, k) decision function]

Now, let us argue about the correctness and the efficiency of this algorithm. We claim that for
any graph G = (V,E) and any integer k ≥ 0, Algorithm 6.1 returns yes if I(G) ≤ k and no
otherwise. Furthermore, the number of steps that the algorithm requires is f(k, n) = (2∆)knO(1),
where n = |V |. We prove this by induction on k.

Let us first deal with the base of the induction (k = 0). Here, we only need to check if G is
locally irregular. Algorithm 6.1 does this in line 1 and returns yes if it is (line 2) and no otherwise

6.4 – Parameterised complexity 127

(line 4). Furthermore, we can check if G is locally irregular in polynomial time. So, the claim is
true for the base case.

The induction hypothesis is for (k = k0 ≥ 0). We assume that we have a k0 ≥ 0 such that
Algorithm 6.1 can decide if any graph G with n vertices and maximum degree ∆ has I(G) ≤ k0
in f(k0, n) = (k0 + 1)(2∆)k0nO(1) steps.

Let us now show the induction step (k = k0 + 1). Let G = (V,E) be a graph. If G is
locally irregular then I(G) = 0 and Algorithm 6.1 answers correctly (in line 2). Assume that
G is not locally irregular; then there exists an edge vu ∈ E such that dG(v) = dG(v). Now,
let S be a minimum irregulator of G. It follows from Observation 6.1.5 that S must include at
least one vertex w ∈ NG[{v, u}]. Since Algorithm 6.1 considers all the vertices in NG[{v, u}], at
some point it also considers the vertex w ∈ S ∩ NG[{v, u}]. Now, observe that for any x ∈ S,
the set Sx = S \ {x} is a minimum irregulator of Gx, where Gx = G[V \ {x}]. Furthermore,
by Lemma 6.4.1, we have I(Gx) ≤ k − 1 = k0 if and only if I(G) ≤ k. By the induction
hypothesis, we know that the algorithm answers correctly for all the instances (Gx, k0). Thus, if
I(G) ≤ k = k0 +1, there must exist one instance (Gw, k0), where w ∈ S∩NG[{v, u}], for which
Algorithm 6.1 returns yes. Therefore the algorithm answers for (G, k0 + 1) correctly. Finally, this
process requires nO(1) steps in order to check if the graph is locally irregular and 2∆f(k−1, n−1)
steps (by induction hypothesis) in order to check if for any graphGx we have I(Gx) ≤ k−1 = k0
(where x ∈ N [{u, v}]). So, the algorithm decides in nO(1) + 2∆f(k − 1, n − 1) ≤ nO(1) +
2∆k(2∆)k−1(n−1)O(1) ≤ nO(1) +k(2∆)knO(1) ≤ (k+1)(2∆)knO(1) steps. The result follows
from the fact that k ≤ n− 1. �

We now turn our attention towards graphs of bounded treewidth. In particular, we provide an
FPT algorithm that finds a minimum irregulator of G when parameterised by the treewidth of the
input graph and by ∆. Recall the basic notions and notations explained in Section 2.2.2.

Theorem 6.4.3. For a given graph G = (V,E) and a nice tree-decomposition of G, there exists
an algorithm that returns I(G) in time ∆4twnO(1), where tw is the treewidth of the given decom-
position and ∆ is the maximum degree of G.

Proof. We are going to perform dynamic programming on the nodes of the given nice tree-
decomposition. The idea behind our algorithm is that for each node t we store all the sets S ⊆ Vt
such that S is an irregulator of Vt \ Xt in G. We will also store the necessary “conditions” (ex-
plained more in what follows) such that if there exists a set S′, where S′ \ S ⊆ V \ Vt, that meets
these conditions, then S′ is an irregulator of Vt in G. Observe that if we manage to do such a thing
for every node of the tree-decomposition, then we can find I(G). To do so, it suffices to check
the size of all the irregulators we stored for the root r of the tree-decomposition, which also meet
the conditions we have set. In that way, we can find a set S that is an irregulator of Vr \ Xr in
G, satisfies our conditions and is of minimum order. Since Vr = V and Xr = ∅, this set S is a
minimum irregulator of G and I(G) = |S|.

Let us now present the actual information we are keeping for each node. Assume that t is a
node of the tree-decomposition and S ⊆ Vt is an irregulator of Vt \Xt inG, i.e., S is an irregulator
of Vt \Xt in G. For this S we want to remember which vertices of Xt belong to S as well as the
degrees of the vertices v ∈ Xt \ S in G[Vt \Xt]. This can be done by keeping a table D of size
tw + 1 where, if v ∈ Xt \ S, then we set D(v) = dG[Vt\Xt](v) and if v ∈ Xt ∩ S, then we
set D(v) = ∅ (slightly abusing the notation, by D(v) we mean the position in the table D that
corresponds to the vertex v). Like we have already said, we are going to keep some additional

128 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

information about the conditions that could allow these sets to be extended to irregulators of Vt in
G if we add vertices of V \ Vt. For that reason, we are also going to keep a table with the “target
degree” of each vertex; in this table we assign to each vertex v ∈ Xt \ S a degree dv such that,
if there exists S′ where S′ \ S ⊆ V \ Vt and for all v ∈ Xt \ S we have dG[V \S′](v) = dv, then
S is an irregulator of Vt in G. This can be done by keeping a table T of size tw + 1 where for
each v ∈ Xt \ S we set T (v) = i, where i is the target degree, and for each v ∈ Xt ∩ S we set
T (v) = ∅. Such tables T will be called valid for S in Xt. Finally, we are going to keep the set
X = S ∩Xt and the value min = |S|. Note that the set X does not give us any extra information,
but we keep it as it will be useful to refer to it directly.

To sum up, for each node t of the tree-decomposition of G, we keep a set of quadruples
(X,D, T,min), each quadruple corresponding to a valid combination of a set S that is an irregu-
lator of Vt\Xt inG and the target degrees for the vertices ofXt\S. Here it is important to say that
when treating the node Xt, for every two quadruples (X1, D1, T1,min1) and (X2, D2, T2,min2)
such that for all v ∈ Xt we have that D1(v) = D2(v) and T1(v) = T2(v) (this indicates that
X1 = X2 as well), then we are only going to keep the quadruple with the minimum value between
min1 and min2 as we will prove that this is enough in order to find I(G).

Claim 6.4.4. Assume that for a node t, we have two sets S1 and S2 that are both irregulators of
Vt \ Xt in G, and that T is a target table that is common to both of them. Furthermore, assume
that (X1, D1, T, |S1|) and (X2, D2, T, |S2|) are the quadruples we have to store for S1 and S2
respectively (both respecting T), with D1(v) = D2(v) for every v ∈ Xt. Then for any set S ⊆
V \Vt such that dG[V \(S1∪S)](v) = T (v) for all v ∈ Xt, we also have that dG[V \(S2∪S)](v) = T (v)
for all v ∈ Xt.

Proof of the claim. Assume that we have such an S for S1, let v be a vertex in Xt and H =
G[v∪

(
(V \Vt)\S

)
] (observe thatH does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v),

we know that in the graph H , v has exactly T (v)−D1(v) neighbours (as D1(v) = dG[Vt\S1)](v)).
Now, since D1(v) = D2(v) = dG[Vt\S2](v) we have that dG[V \S2∪S](v) = T (v). Therefore, the
claim holds. �

Simply put, Claim 6.4.4 states that for any two quadruples Q1 = (X,D, T,min1) and Q2 =
(X,D, T,min2), any extension S of S1 is also an extension of S2 (where S1 and S2 are the two
sets that correspond to Q1 and Q2 respectively). Therefore, in order to find the minimum solution,
it is sufficient to keep the quadruple that has the minimum value between min1 and min2.

Now we are going to explain how we create all the quadruples (X,D, T,min) for each type
of node in the tree-decomposition.

First, let t be a leaf node. Observe that in this case, Xt = Vt = ∅. Therefore, we have only one
quadruple (X,D, T,min), where the size of both D and T is zero (so we do not need to keep any
information in them), S = ∅ and min = |S| = 0.

Let t be an introduce node; assume that we have all the quadruples (X,D, T,min) for its child
t′ and let v be the introduced vertex. By construction, we know that v is introduced in Xt and thus
it has no neighbours in Vt \Xt. It follows that if S ⊆ Gt′ is an irregulator for Gt′ \Xt′ , then both
S and S ∪ {v} are irregulators for Vt \Xt in G. Furthermore, there is no set S ⊆ Vt \ {v} that is
an irregulator of Vt \Xt and is not an irregulator of Gt′ \Xt′ . So, we only need to consider two
cases for the quadruples we have to store for c; if v belongs to the under-construction irregulator
of Vt \Xt in G or not.

Case 1. (v is in the irregulator): Observe that for any S that is an irregulator of Gt′ \ Xt′ in
G, which is stored in the quadruples of Xt′ , for every u ∈ Xt′ \ S, we have that dG[Gt′\S](u) =

6.4 – Parameterised complexity 129

dG[Vt\(S∪{v})](u). Moreover, for any target table T which is valid for S in t′, the target table T ′

is valid for S ∪ {v} in t, where T ′ is almost the same as T , the only difference being that T ′ also
contains the information about v, i.e, T ′(v) = ∅. So, for each quadruple (X,D, T,min) in t′, we
need to create one quadruple (X ∪{v}, D′, T ′,min+ 1) for t, where D′ is almost the same as D,
except that it also contains the information about v, i.e., D′(v) = ∅.

Case 2. (v is not in the irregulator): Let q = (X,D, T,min) be a stored quadruple of t′ and S
be the corresponding irregulator of Gt′ \Xt′ in G. We first explain how to construct D′ of t, based
on q. Observe that the only change between G[Gt′ \S] and G[Vt \S] is that in the latter there exist
some new edges from v to some of the vertices of Xt′ . Therefore, for each vertex u ∈ Xt′ \ X
we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u) otherwise. Finally, for the introduced
vertex v, we set D′(v) = |N(v) ∩ (Xt′ \ X)|. We now treat the target degrees for t. Observe
that the target degrees for each vertex in Xt \ {v} are the same as in T , since v only has edges
incident to vertices in Xt. Now, we only need to decide which are the valid targets for v. Since
dG[Vt\S](v) = D′(v), we know that for every target τ , we have thatD′(v) ≤ τ ≤ ∆. Furthermore,
we cannot have the target degrees of v be the same as the targets of one of its neighbours in Xt′

(these values are stored in T), as, otherwise, any valid target table T ′ of t would lead to adjacent
vertices in Xt having the same degree. Let {τ1, . . . , τk} ⊂ {D(v), . . . ,∆} be an enumeration of
all the valid targets for v (i.e. τi 6= T (u) for all u ∈ N [v] ∩ Xt′ \ X). Then, for each quadruple
(X,D, T,min) in t′, and for each i = 1, . . . , k, we need to create the quadruple (X,D′, Ti,min),
such that Ti(u) = T (u) for all u ∈ Xt′ and Ti(v) = τi. In total, we have k ≤ ∆ such quadruples.

Let t be a join node with t′ and t′′ as its two children in the tree-decomposition. Here, it is
important to mention that Xt′ = Xt′′ and (Vt′ \Xt′) ∩ (Vt′′ \Xt′′) = ∅. Assume that there exists
an irregulator S of Vt\Xt inG, a valid target table T of S, and let (X,D, T,min) be the quadruple
we need to store in t for this pair (S, T). Observe that this pair (S, T) is valid for both t′ and t′′,
so we must already have stored at least one quadruple in each node. Let X ⊆ Xt and a let T be a
target table such that (X,D1, T,min1) and (X,D2, T,min2) are stored for t′ and t′′ respectively.
We create the quadruple (X,D, T,min) for t by setting D(u) = D1(u) +D2(u)− dG[Xt\X](u)
for all u ∈ Xt \X , D(u) = ∅ for all u ∈ X and min = min1 +min2 − |X|. Observe that these
are the correct values for the D(u) and min, as otherwise we would count dG[Xt\X](u) and |X|
twice. Finally, we need to note that we do not store any quadruple (X,D, T,min) we create for
the join node such thatD(u) > T (u) for a vertex u ∈ Xt\X . This is because for such quadruples,
the degree of vertex u will never be equal to any of the target degrees we have set, as it can only
increase when we consider any of the ancestor (i.e. parent, grantparent etc.) nodes of t.

Finally, let t be a forget node, t′ be its child and v be the forgotten vertex. Assume that we
have to store in t a quadruple (X,D, T,min). Then, since X = Xt ∩ S for an irregulator S of
Xt in G, we know that in t′ we must already have stored a quadruple (X ′, D′, T ′,min′) such that
X ′ = S ∩Xt′ , D′(u) = D(u) for all u ∈ Xt′ , T ′(u) = T (u) for all u ∈ Xt′ and min′ = min.
Therefore, starting from the stored quadruples in t′, we can create all the quadruples of t. For
each quadruple (X ′, D′, T ′,min′) in t′, we create at most one quadruple (X,D, T,min) for t by
considering two cases; the forgotten vertex v belongs to X ′ or not.

Case 1. (v belongs to X ′): then the quadruple (X,D, T,min) is almost the same as
(X ′, D′, T ′,min′), with the following differences: X = X ′ \ {v}, min = min′, D(u) = D′(u)
and T (u) = T ′(u) for all u ∈ Xt and the tables D and T do not include any information for v as
this vertex does not belong to Xt anymore.

Case 2. (v does not belong to X ′): we first check if D′(v) = T ′(v) or not. This is important
because the degree of v will never again be considered by our algorithm, and thus its degree will

130 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

remain unchanged. So, ifD′(v) = T ′(v), we create the quadruple (X,D, T,min) whereX = X ′,
min = min′, D(u) = D′(u) and T (u) = T ′(u) for all u ∈ Xt and the tables D and T do not
include any information for v.

For the running time, observe that the number of nodes of a nice tree-decomposition isO(tw ·
n) and all the other calculations are polynomial in n+m. Thus we only need to count the different
quadruples in each node. Now, for each vertex v, we either include it inX or we have ∆+1 options
for the valueD(u) and ∆+1− i for the value T (u) ifD(u) = i. Also, for sufficiently large ∆, we
have that 1+

∑∆
i=0(∆+1−i) < ∆2. Furthermore, the setX and the valuemin do not increase the

number of quadruples because X = {u | D(u) = ∅} and from all quadruples (X,D1, T1,min1),
(X,D2, T2,min2) such that D1(u) = D2(u) and T1(u) = T2(u) for all u ∈ Xt, we only keep
one of them (by Claim 6.4.4).

In total, there are ∆2tw different quadruples in each node, and, taking in account the combina-
tions needing to be checked for the join nodes, the algorithm decides in ∆4twnO(1) time. �

It is worth noting that the algorithms of Theorems 6.4.2 and 6.4.3 can be used in order to also
return a minimum irregulator ofG. Moreover, for a given graphG, the problem of calculating I(G)
is in XP when parameterised only by the size of the solution or by the treewidth of G (without
considering ∆(G) as part of the parameter in either case).

6.4.2 W-hardness

Observe that both of the algorithms presented above have to consider ∆ as part of the parame-
ter if they are to be considered as FPT. The natural question to ask at this point is whether we can
have an FPT algorithm parameterised only by the size of the solution, or by the treewidth of the
input graph. In this section, we give a strong indication towards a negative answer for both cases,
proving that, in some sense, the algorithms provided in Section 6.4.1 are optimal. To achieve that,
we also make use of what is known as a linear fpt-reduction, a type of polynomial reduction such
that the size of the parameter of the new problem is linear in regards to the size of the parameter
of the original problem. Observe that if we have a linear fpt-reduction from a problem Q with
parameter k to a problem Q′ with parameter k′ and the assumption that Q cannot be solved in
time f(k)no(k)

1 (where n1 is the size of the input of Q), then we can conclude that there is no
f(k′)no(k

′)
2 -time algorithm for Q (where n2 is the size of the input of Q).

Theorem 6.4.5. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when parame-
terised by k.

Proof. The reduction is from the DOMINATING SET problem, which was shown to be W[2]-
complete when parameterised by the size of the solution (e.g. in [57]). In that problem, a graph
H = (V,E) and an integer k are given as input. The question asked is whether there exists a set
D ⊆ V of order at most k (called a dominating set of H) such that V = N [D].

Let H = (V,E) be a graph and k ∈ N. We construct a graph G = (V ′, E′) such that H has
a dominating set of order at most k if and only if G has an irregulator of order at most k. We
begin by setting V = {v1, . . . , vn}. The graph G is built starting from a copy of the graph H . To
avoid any confusion in what is to follow, we will always use H to denote the original graph, and
G|H = G[{v′1, . . . , v′n}] to denote the copy of H that lies inside G (where the indices of the v′is
are the same as the indices of the corresponding vis). Then, for each 1 ≤ i ≤ n, we attach the

6.4 – Parameterised complexity 131

necessary number of pending vertices (meaning vertices of degree 1) to the vertex v′i, so that the
degree of v′i becomes equal to i ·n. Finally, for each v′i, let u′i be one of its newly attached pending
vertices, and attach the necessary number of new pending vertices to u′i, so that its degree becomes
equal to that of v′i. The resulting graph is G. To be clear, for every vertex v of G, we either have
that v = v′i or v = u′i, or that v is a vertex pending from v′i or u′i (for some 1 ≤ i ≤ n). Note also
that for each 1 ≤ i ≤ n, we have that dG(v′i) = dG(u′i) = i · n.

Now let D be a dominating set of H , with |D| = m ≤ k, and let D′ be the subset of V ′

that corresponds to the vertices of D. That is, D′ = {v′i ∈ V ′ : vi ∈ D}. We claim that the
graph G′ = G[V ′ \ D′] is locally irregular. Indeed, for every 1 ≤ i ≤ n, let α(i) be the number
of neighbours of vi that belong to D. Observe that since D is a dominating set of H , we have
that 1 ≤ α(i) ≤ n − 1. Now, for every vertex v′i in V ′, we have that either v′i ∈ D′, in which
case v′i does not belong to G′, or dG′(v′i) = dG(v′i) − α(i) < dG′(u′i). Moreover, for every
1 ≤ i < j ≤ n, if v′i, v

′
j /∈ D′, we have that dG(v′j)− dG(v′i) ≥ n, and thus dG′(v′j)− dG′(v′i) =

dG(v′j)− α(j)− dG(v′i) + α(i) ≥ n+ α(i)− α(j) ≥ 2. Finally, every pending vertex l of G′ is
attached to either u′i or v′i, which have degree (in G′) strictly larger than 1. It follows that D′ is an
irregulator of G with |D′| = m ≤ k, and thus I(G) ≤ k.

For the other direction, assume that I(G) ≤ k and let S be an irregulator of G, with |S| = k,
andG′ = G[V ′\S]. For each 1 ≤ i ≤ n, let Si = N [v′i]∪N(u′i). We claim that for every i, we have
S∩Si 6= ∅. Assume that this is not true, i.e., that there exists an i0 such that Si0 ∩S = ∅. Then, by
deleting the vertices of S fromG, the degrees of v′i0 and u′i0 remain unchanged. Formally, we have
that dG′(v′i0) = dG(v′i0) = dG(u′i0) = dG′(u′i0). This is a contradiction since S is an irregulator
of G. Now, we consider the set S′, defined as follows:

— Start with S′ = S.
— For each i, while there exists a vertex v ∈ Si ∩ S′ such that dG(v) = 1 or v = u′i, remove

v from S′ and add v′i to S′.
Clearly, we have that S′ only contains vertices from V (G|H) and that |S′| ≤ |S| = k. Also, from
the construction of S′, for every i, we have that Si ∩ S′ 6= ∅. It follows that for every vertex v′i,
we either have v′i ∈ S′ or there exists a vertex v ∈ N(v′i)∩ V (G|H) such that v ∈ S′. Going back
to H , let D = {vi : v′i ∈ S′}. It is clear that D is a dominating set of H of order at most k. This
finishes our reduction.

Finally, note that throughout the above described reduction, the value of the parameter of the
two problems is the same (in both of them, the parameter has value k). Moreover, the construction
of the graph G is achieved in polynomial time in regards to n. These observations conclude our
proof. �

Theorem 6.4.6. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k is W [1]-
hard when parameterised by tw.

Proof. We will present a reduction from the LIST COLOURING problem: the input consists of a
graph H = (V,E) and a list function L : V → P({1, . . . , k}) that specifies the available colours
for each vertex u ∈ V . The goal is to find a proper colouring c : V → {1, . . . , k} such that
c(u) ∈ L(u) for all u ∈ V . When such a colouring exists, we say that (H,L) is a yes-instance of
LIST COLOURING. This problem is known to be W [1]-hard when parameterised by the treewidth
of H [61].

Now, starting from an instance (H,L) of LIST COLOURING, we construct a graph G =
(V ′, E′) (see Figure 6.7 (a)) such that:

132 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

— |V ′| = O(|V |6),
— tw(G) = tw(H) and
— I(G) = nk if and only if (H,L) is a yes-instance of LIST COLOURING.

Before we start with the construction of G, let us present the following claim.

Claim 6.4.7. Let (H,L) be an instance of LIST COLOURING where H = (V,E) and there exists
a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \{u}], L′), where L′(v) = L(v)
for all v ∈ V \ {u}, is a yes-instance of LIST COLOURING if and only if (H,L) is a yes-instance
of LIST COLOURING.

Proof of the claim. Indeed, observe that for any vertex u ∈ V , by any proper colouring c of H ,
c(u) only has to avoid d(u) colours. Since |L(u)| > d(u), we will always have a spare colour to
use on u that belongs to L(u). �

From the previous claim, we can assume that in our instance, for all u ∈ V , we have |L(u)| ≤
d(u). Furthermore, we can deduce that k ≤ n(n− 1) as the degree of any vertex is at most n− 1.
Finally, let us denote by L(u) the set {0, 1, . . . , k} \ L(u). It is important to note here that for
every u ∈ V , the list L(u) contains at least one element belonging in {1, . . . , k}. It follows that
L(u) also contains at least one element, the colour 0. To sum up, we have that 1 ≤ |L(u)| ≤ k.

Now, we present the three gadgets we are going to use in the construction of G. First, we
have the “forbidden colour gadget” Hi, which is a star with i leaves (see Figure 6.7 (c)). When
we say that we attach a copy of Hi on a vertex v of a graph G, we mean that we add Hi to G
and we identify the vertices v and w2 (where here and in what follows, we are using the naming
illustrated in Figure 6.7 when talking about the vertices w1, w2, w3, v1 and v2). The second is be
the “degree gadget”, which is presented in Figure 6.7 (b). Finally, we have the “horn gadget”,
which is a path on three vertices (see Figure 6.7 (d)). We define the operation of attaching these
two gadgets on a vertex v of a graphG similarly to how we defined this operation for the forbidden
colour gadget (each time using the appropriate w1 or w3, according to if it is a degree or a horn
gadget respectively).

In order to construct G, we start from a copy of H . Let us use G|H to denote the copy of H
that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′. We will call the set of
these vertices U . That is, U = {v ∈ V (G|H)}. Then, we are going to attach several copies of each
gadget to u′, for each vertex u′ ∈ U . We start by attaching k copies of the degree gadget to each
vertex u′ ∈ U . Then, for each u ∈ V and each i ∈ L(u), we attach one copy of the forbidden
colour gadget H2n3−i to the vertex u′. Finally, for each u′ ∈ U , we attach to u′ as many copies of
the horn gadget as are needed, in order to have dG(u′) = 2n3.

Before we continue, observe that, for sufficiently large n, we have attached more than n3 (but
still a polynomial number) horn gadgets to each vertex of U . Indeed, before attaching the horn
gadgets, each vertex u′ ∈ U has dG(u) ≤ n − 1 neighbours in U , k neighbours from the degree
gadgets and at most k < n2 neighbours from the forbidden colour gadgets (recall that |L(u)| ≤ k).
We now show that |V ′| = O(n6). For that purpose, let us calculate the number of vertices in all
the gadgets attached to a single vertex u′ ∈ U . First, we have 5k < 5n2 vertices in the degree
gadgets. Then, we have less than 4n3 vertices in the horn gadgets (as we have less that 2n3 such
gadgets). Finally, we have at most k < n2 forbidden colour gadgets, each one of which contains
at most 2n3 vertices. So, for each vertex u′ ∈ U , we have at most 2n5 + 4n3 + 5n2 vertices in the
gadgets attached to u′. Therefore, we have |V ′| = O(n6).

Before we prove that I(G) ≤ nk if and only if (H,L) is a yes-instance of LIST COLOURING,
we need to argue about two things. First, about the treewidth of the graph G and second about

6.4 – Parameterised complexity 133

u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U

(a) The graph G

m horn gadgets

. . .

Hk1

. . .
Hk2

. . .
Hkl

. . .

. . .

. . .

l forbidden colour gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden colour gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 6.7 – In (a) we illustrate the construction of G, as it is described in the proof of Theo-
rem 6.4.6. The black vertex represents every vertex that belongs to U . For the specific vertex u′

shown in the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci for all i = 1, . . . , l. We
also have that m = 2n3 − dG(u)− k − l.

the minimum value of I(G). Since our construction only attaches trees to each vertex of G|H (and
recall that a tree has a treewidth of 1 by definition), we know that tw(G) = tw(G|H) = tw(H).
As for I(G), we will show that it has to be at least equal to nk. For that purpose we have the
following two claims.

Claim 6.4.8. Let S be an irregulator of G and S ∩ U 6= ∅. Then |S| > n3.

Proof of the claim. Let u′ ∈ S ∩ U . By construction, G contains more than n3 horn gadgets that
are attached to u′. Therefore, by deleting u′, we create more than n3 copies of the graph P2, each
one of which forces us to include at least one of its vertices in S. Hence, |S| > n3. �

Claim 6.4.9. Let S be an irregulator of G and S ∩ U = ∅. Then |S| ≥ nk. In particular, S
includes at least one vertex from each copy of the degree gadget used in the construction of G.

Proof of the claim. LetD be a copy of the degree gadget, attached to some vertex u′ ∈ U . Observe
that we have dG(v1) = dG(v2). It follows by Observation 6.1.5 that S contains at least one vertex
v in N [{v1, v2}], and since u′ /∈ S, this v is a vertex other than w1. The result follows from the
fact that the same arguments hold for any degree gadget attached to any vertex of U (recall that
|U | = n and we have attached k copies of the degree gadget to each one of the vertices of U).
Hence, |S| ≥ nk. �

By the previous two claims, we conclude that I(G) ≥ nk. We are ready to show that if (H,L)
is a yes-instance of LIST COLOURING, then there exists a set S ⊆ V ′ such that S is an irregulator
of G and |S| = nk. Let c be a proper colouring of H such that c(u) ∈ L(u) for all u ∈ V . We
construct an irregulator of G as follows. For each u ∈ V , we partition (arbitrarily) the k degree
gadgets attached to the vertex u′ to c(u) “good” and (k − c(u)) “bad” degree gadgets. For each
good degree gadget, we add the copy of the vertex v1 of that gadget to S and for each bad degree
gadget we add the copy of the vertex v2 of that gadget to S. This process creates a set S of size
nk, as it includes k distinct vertices for each vertex u′ ∈ U .

134 CHAPITRE 6 — Finding a largest locally irregular induced subgraph

Now we need to show that S is an irregulator of G. Let G′ = G[V ′ \ S]; observe that each
vertex u′ ∈ U has degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree as
any of its neighbours that do not belong in U . Indeed, for every v ∈ NG′(u′) \ U , we have that
dG′(v) ∈ {1, 2} (if v belongs to a bad degree or a horn gadget) or dG′(v) ∈ {2n3 − i : i ∈ L(u)}
(if v belongs to a forbidden colour gadget). Furthermore, since c is a proper colouring of H , for
all uv ∈ E, we have that c(u) 6= c(v). This gives us that for any edge u′v′ ∈ E′ with u′, v′ ∈ U ,
we have that dG′(u′) = 2n3 − c(u) 6= 2n3 − c(v) = dG′(v′).

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that dG′(u′) =
dG′(w). It remains to show that, in G′, there exist no two vertices belonging to the same gadget
which have the same degree. First of all, we have that S does not contain any vertex from any of
the horn and forbidden colour gadgets, nor from U . Thus any adjacent vertices belonging to these
gadgets have different degrees. Last, it remains to check the vertices of the degree gadgets. Observe
that for any copy of the degree gadget, S contains either v1 or v2. In both cases, after the deletion
of the vertices of S, any adjacent vertices belonging to any degree gadget have different degrees.
Therefore, S is an irregulator of G of order nk and since I(G) ≥ nk we have that I(G) = nk.

Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S is a minimum
irregulator of G and |S| = nk. Let G′ = (V ′′, E′′) be the graph G[V ′ \ S]. It follows from
Claims 6.4.8 and 6.4.9, that S ∩ U = ∅ and that S contains exactly one vertex from each copy
of the degree gadget in G and no other vertices. Consider now the colouring c of H defined as
c(u) = 2n3 − dG′(u′). We show that c is a proper colouring for H and that c(u) ∈ L(u). First,
we have that c is a proper colouring of H . Indeed, for any edge uv ∈ E, there exists an edge
u′v′ ∈ E′′ (since S ∩ U = ∅). Since G′ is locally irregular we have that dG′(u′) 6= dG′(v′),
and thus c(u) 6= c(v). It remains to show that c(u) ∈ L(u) for all u ∈ V . First observe that,
during the construction of G, we attached exactly k degree gadgets to each u′ ∈ U . It follows that
dG′(u′) = 2n3 − j and c(u) = j for a j ∈ {0, 1, . . . , k}. It is sufficient to show that j /∈ L(u).
Since S contains only vertices from the copies of the degree gadgets, we have that each u′ ∈ U
has exactly one neighbour of degree 2n3 − i for each i ∈ L(u) (this neighbour is a vertex of
the forbidden colour gadget Hi that was attached to u′). Furthermore, for all u′ ∈ U , since G′ is
locally irregular, we have that dG′(u′) 6= 2n3− i for all i ∈ L(u). Equivalently, dG′(u′) = 2n3−j
for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V . �

Note that the reductions presented in the proofs of Theorems 6.4.5 and 6.4.6 are linear fpt-
reductions. Additionally we know that

— there is no algorithm that answers if a graph G of order n has a dominating set of size at
most k in time f(k)no(k) unless the ETH fails [93] and

— there is no algorithm that answers if an instance (G,L) of the LIST COLOURING is a
yes-instance in time O∗(f(tw)no(tw)) unless the ETH fails [61].

So, the following corollary holds.

Corollary 6.4.10. Let G be a graph of order n and assume the ETH holds. For k ∈ N, there is no
algorithm that decides if I(G) ≤ k in time f(k)no(k). Furthermore, assuming thatG has treewidth
tw, there is no algorithm that computes I(G) in time O∗(f(tw)no(tw)).

6.5 Conclusion

In this chapter we introduced the problem of finding a largest locally irregular induced sub-
graph of a given graph.

6.5 – Conclusion 135

There are many interesting directions that could be followed for further research. An obvious
one is to investigate whether the problem of calculating I(G) remains NP-hard for other restricted
families of graphs. The first candidate for such a family would be the one of cubic bipartite graphs,
through a reduction similar to the one presented in the proof of Theorem 6.2.4 and by carefully
adapting the gadget illustrated in Figure 6.1. On the other hand, there are some interesting fami-
lies, for which the problem of computing an optimal irregulator could be decided in polynomial
time, such as chordal graphs. Also, it could be feasible to conceive approximation algorithms for
regular bipartite graphs, which have a better approximation ratio than the (simple) algorithm we
presented at the end of Section 6.3. The last aspect we find intriguing is to study the parameterised
complexity of calculating I(G) when considering other parameters, like the size of the minimum
vertex cover ofG, or the order of the remaining graph once the vertices of an irregulator have been
removed, with the goal of identifying a parameter that suffices, by itself, in order to have an FPT
algorithm.

Another interesting direction would be to study a variation of the problem introduced here, in
which the requirement for the desired subgraph to be induced would be dropped. That is, given a
graph G, find the minimum number of vertices and/or edges that must be deleted from G in order
for the remaining graph to be locally irregular. It could also be interesting to compare the behaviour
of such a problem with the problem introduced in this chapter, as the two problems could behave
quite differently. As a simple example, consider the path P5. We know from Theorem 6.2.2 that
I(P5) = 1, and it is easy to check that deleting only one edge of P5 is not enough for the remaining
graph to be locally irregular. Inversely, deleting only the edge v3v4 of P6 = (v1, v2, v3, v4, v5, v6)
results in a locally irregular graph, but I(P6) = 2 (again by Theorem 6.2.2).

Largest connected subgraph games

CHAPTER 7
Preliminaries, first

results and hardness
This chapter introduces the largest connected subgraph game and its Maker-Breaker
variation. We then proceed by presenting our results when these two games are played
on general graphs. Our results for particular classes of graphs, as well as the study
of the more particular behaviour of the two games, are presented in the following two
chapters.
Concerning the first game introduced here, we first prove that, if Alice plays optimally,
then Bob can never win. Then, we define a large class of graphs (called reflection graphs)
in which the game is a draw. Then, we show that recognising reflection graphs is GI-
hard. We then show that determining the outcome of either game is PSPACE-complete.
The largest connected subgraph game is a joint work with J. Bensmail, F. Mc Inerney
and N. Nisse, published in [25] and presented in [24]. A report about the Maker-Breaker
version, which is a joint work with J. Bensmail, F. Mc Inerney, N. Nisse and N. Oijid,
can be found in [27].

7.1 Preliminaries . 140
7.2 Possible outcomes for the Scoring game, and reflection graphs . 142
7.3 Both games are PSPACE-hard 145

7.3.1 The Maker-Breaker game on planar graphs 145
7.3.2 The Maker-Breaker game on bipartite and split graphs . . . 147
7.3.3 The Scoring game on bipartite graphs 149

7.4 Conclusion . 152

In the following three chapters we present our work on the newly introduced largest connected
subgraph game, as well as its Maker-Breaker variation. Since these two games sometimes behave
in a similar fashion, and understanding the behavior of one provides an understanding for the other,
we chose to present our work on both of them simultaneously.

We begin this first chapter with the formal definition of both games in Section 7.1. Then, in
Section 7.2, we show that Bob can never win the largest connected subgraph game, assuming that
Alice plays optimally. Nevertheless, Bob can always guarantee a draw when that game is played
on a graph belonging to a class that we call reflection graphs. We also show that recognising if
a graph is a reflection graph is GI-hard. Finally, in Section 7.3, we deal with the computational
complexity of both games. In particular, we show that deciding the outcome of either game is
PSPACE-complete, even for restricted families of graphs.

139

140 CHAPITRE 7 — Preliminaries, first results and hardness

7.1 Preliminaries

Recall that the largest connected subgraph game is played by two players, Alice and Bob,
on the same, initially uncoloured graph G. During each turn of the game, each player, starting
with Alice, colours an uncoloured vertex with their respective colour; Alice colours vertices red,
and Bob blue. The game ends when all vertices of G have been coloured, with the winner being
the player whose colour induces the largest connected subgraph of G. If Alice (Bob, resp.) has
a winning strategy in the largest connected subgraph game, then G is A-win (B-win, resp.). If
neither Alice nor Bob has a winning strategy in the largest connected subgraph game on G, i.e.,
the game is a draw if both players follow optimal strategies, then G is AB-draw.

Recall that, in general, a Maker-Breaker game played on a graph G = (V,E), with a set of
hyperedges F , called the winning sets, being a collection of subsets of V , is a game in which
the two players alternatively pick vertices from V . The goal of the first player is to pick vertices
forming one set inF , and the goal of the second player is to prevent the first player from doing that.
The Maker-Breaker largest connected subgraph game is a Maker-Breaker game played on a graph
G. Additionally, there is a positive integer k that is given in the input. The collection F consists
of all the connected subgraphs of G of order at least k. So, in each turn, each player (starting with
Alice) colours with their respective colour (Alice with red, Bob with blue) an element of V (G).
Alice is considered as the winner if by the end of the game, the subgraph of G induced by the red
vertices contains at least one connected subgraph ofG of order at least k. Otherwise, Bob wins the
game. For a given graphG, we are interested in the parameter cg(G), which is the largest integer k
such that Maker (Alice) has a winning strategy in the Maker-Breaker largest connected subgraph
game in G.

In what follows (including the next chapters), we will be using the terms “Scoring game” and
“Maker-Breaker game” to refer to the largest connected subgraph game and the Maker-Breaker lar-
gest connected subgraph game respectively. It is worth noting here that the former game could, in-
tuitively, be considered as a Maker-Maker game. Nevertheless, formally stating the largest connec-
ted subgraph game as a Maker-Maker game is not trivial, as it would require to define the winning
sets of the game before the game starts.

The Scoring game is novel in that it is a very natural game which, despite the rich background
on these types of games, was not considered before. In particular, it is a connection game (see [42]
for more on these games) since the players strive to create connected structures, and it is a scoring
game since the winner is determined by the scores of the players. When we refer to the score
of Alice (Bob, resp.) in the context of this game, we mean the largest connected red (blue resp.)
component in the graph at the end of the game. The same definition applies for the score of Alice
in the context of the Maker-Breaker game, although in this game the score of Bob is not defined.
Thus, for a given graph G, cg(G) is the maximum score for which Alice has a strategy ensuring at
least this score in G.

In Figure 7.1 we illustrate an example for each game when played on P6:
— For the Scoring game: Alice wins if the game is played out as depicted in Figure 7.1 (a),

with a score of 2, while Bob achieves a score of 1. However, if the game is played out as
depicted in Figure 7.1 (b), then both players achieve the same score of 3, and the game
ends in a draw.

— For the Maker-Breaker game: recall that a parameter k is given at the start of the game, and
Alice wins only if she achieves a score of at least k. If the game is played out as depicted

7.1 – Preliminaries 141

2 2 1 1 3 3
(a) One game on P6

3 2 1 1 2 3
(b) Another game on P6

Figure 7.1 – An example of playing the Maker-Breaker and the Scoring games on P6. The colour
of each vertex corresponds to the player who chose the vertex, with red (blue resp.) vertices being
chosen by Alice (Bob resp.). The white numbers inside the vertices correspond to the turn during
which the corresponding vertex was coloured.

in Figure 7.1 (a), then Alice wins if k ≤ 2, and loses otherwise. If the game is played out
as depicted in Figure 7.1 (b), Alice wins if k ≤ 3 and loses otherwise.

The final definition needed is that of a strategy. For both games treated here, a strategy for
a player P is a function S taking all the previous moves of both players (and the order of these
moves, hence, the history of the game) as an input, and outputting the next move for player P .
Given a graphG, an optimal strategy for Alice is a winning strategy when dealing with the Scoring
game, and a strategy that ensures her a score of at least cg(G) when dealing with the Maker-
Breaker game. Similarly, an optimal strategy for Bob is a strategy that forces the Scoring game
to end in a draw, and one that ensures Alice’s score is at most cg(G) when dealing with the
Maker-Breaker game. Observe that both games are parity games [85]. Indeed, both games can
be described as games on a graph, where the players alternatively visit (put a colour) a vertex
they desire, provided no player had previously visited that vertex (the vertex was uncoloured),
and the outcome depends on the number of vertices each player visited (the number of vertices
coloured with their respective colour). Thus, optimal strategies for both games can actually be
determined from just the current configuration of coloured vertices, rather than also knowing the
order these vertices were coloured in. Thus, for both games, there can also be an equivalent (in
terms of optimality) second definition of a strategy for a player P , which is a function S that takes
the current configuration of coloured vertices and outputs the next move for player P . We will
interchangeably use both definitions, depending on which one suits us best at the time.

Throughout the next chapters, several of our proofs rely on the fact that Alice or Bob can reach
a certain game configuration (i.e., have a certain set of vertices coloured with their colour) early
on. In such cases, to lighten the exposition, we will sometimes allow ourselves to expose only the
most important moves of the strategies that Alice or Bob must make in some rounds of the game.
In particular, the reader should keep in mind that, in each of the strategies we describe, 1) if Alice
or Bob cannot colour a given vertex in a given round because that vertex is already coloured, then
they must colour any other uncoloured vertex instead, and 2) if no vertex to colour for Alice or
Bob in a given round is specified, then they must colour any uncoloured vertex.

We close this introductory section with a general result, concerning both games. As will be
seen later on, Alice can exploit different types of strategies to achieve the best possible score for
her. One such strategy, which applies to both games and is particularly relevant in sufficiently
dense graphs, is through colouring the vertices of a connected dominating set ∗.

Lemma 7.1.1. For a graph G, if, at any point in the scoring or the Maker-Breaker game, Alice
has coloured all the vertices of a connected dominating set of G, then her score (for either game)
will be

⌈
|V (G)|

2

⌉
.

∗. Recall that a connected dominating set of a graph G = (V,E) is a set S ⊆ V such that for every v ∈ V , either
v ∈ S or v ∈ N(S), and G[S] is connected.

142 CHAPITRE 7 — Preliminaries, first results and hardness

Proof. Assume Alice has coloured the vertices of a connected dominating set S at some point in
any of the two games. By the connectivity property of S, there must be, once the game ends, a
connected red component containing the vertices of S. Also, by the dominating property of S, all
the vertices ofG not in S have at least one neighbour in S. This implies that the red subgraph must
be connected, and thus, that Alice achieves a score of

⌈
|V (G)|

2

⌉
. �

7.2 Possible outcomes for the Scoring game, and reflection graphs

In this section we focus on the Scoring game. We begin by showing that there exists no graph
that is B-win. The crucial observation here is that in this game, it can never harm a player to
have an extra turn, in the sense that an extra turn can never decrease their potential score, i.e., it
can never decrease the potential order of the largest connected monochromatic subgraph they can
build. This is due to the fact that colouring a vertex only impedes that vertex from being coloured
in the future, but does not impede any other vertex from being coloured. Through the use of the
classical strategy stealing argument, we can show the following theorem.

Theorem 7.2.1. There does not exist a graph G that is B-win.

Proof. Towards a contradiction, assume there exists a graph G that is B-win. Consider the follo-
wing strategy for Alice. In the first round, Alice colours any arbitrary vertex v ∈ V (G). Now, one
vertex is coloured and it can be assumed that Bob is the first player. Alice now plays according
to the second player’s winning strategy in G. If, by this strategy, Alice is ever required to colour
an already-coloured vertex, then that vertex must be red, and again, in this case, Alice colours any
arbitrary uncoloured vertex. Since the only reason a vertex cannot be coloured is that it is already
coloured, Alice can always follow this strategy, which is a winning strategy, a contradiction. �

The next natural question to ask is whether there exist graphs that areA-win (AB-draw, resp.).
It is easy to see that there are an infinite number of A-win graphs as any star (of order not equal
to 2) is A-win, since, in order to win, it is sufficient for Alice to colour the universal vertex in
the first round. This also illustrates that there are an infinite number of A-win graphs for which,
through optimal strategies, the order of the largest connected red subgraph is arbitrarily bigger than
the order of the largest connected blue subgraph. There are also an infinite number of AB-draw
graphs, since any graph of even order with two universal vertices is clearlyAB-draw (as, to ensure
at least a draw, it is sufficient for Bob to colour a universal vertex in the first round). By adding
an isolated vertex to any of the graphs mentioned in the previous sentence, we also have that there
are an infinite number of AB-draw graphs of odd order. In Section 8.1, we will see that any path
of order at least 11 is AB-draw, and hence, that there exists an infinite family of connected graphs
of odd order that are AB-draw.

We can actually define a much richer class of graphs that are AB-draw.

Definition 7.2.2. A reflection graph is any graph G, whose vertices can be partitioned into two
sets U = {u1, . . . , un} and V = {v1, . . . , vn} such that:

1. the subgraph G[U] induced by the vertices of U is isomorphic to the subgraph G[V] in-
duced by the vertices of V , and the function mapping ui to vi for all 1 ≤ i ≤ n, is an
isomorphism between G[U] and G[V];

2. for any two vertices ui ∈ U and vj ∈ V , if the edge uivj exists, then the edge ujvi exists
(where, for any 1 ≤ ` ≤ n, v` ∈ V is the image of u` ∈ U by the said isomorphism).

7.2 – Possible outcomes for the Scoring game, and reflection graphs 143

2 4 4 2

5 1 1 5

3 6 4 3

Figure 7.2 – An example of the Scoring game on a reflection graph. Both players achieve the same
score, equal to 3.

In other words, if a graph G can be formed by taking two copies of a graph H , and adding
edges between both copies of H according to the second condition above, then G is a reflection
graph. It is easy to see, for example, that paths and cycles of even order, and Cartesian grids of
even order, are reflection graphs. In Figure 7.2 we illustrate an example of playing the Scoring
game on a Cartesian grid of order 12.

Proposition 7.2.3. Paths, cycles, Cartesian grids, and king grids of even order are reflection
graphs.

Proof. Note that a path of even order 2n (n ≥ 1) can be regarded as the disjoint union of two paths
(u1, . . . , un) and (v1, . . . , vn) of order n, connected by the edge u1v1. Similarly, a cycle of even
length 2n (n ≥ 2) can be regarded as the disjoint union of two paths (u1, . . . , un) and (v1, . . . , vn)
of order n, joined by the edges u1v1 and unvn. Thus, paths and cycles of even order are reflection
graphs. Now, for a Cartesian grid H to be of even order, at least one of its two dimensions must be
even. Assume, w.l.o.g., that its number of columns 2n (n ≥ 1) is even, while its number of rows is
m ≥ 1. Then, H can be regarded as the disjoint union of two Cartesian grids G1 and G2 with m
rows and n columns each, being joined by the edges u1v1, . . . , umvm if we denote by u1, . . . , um
the consecutive vertices of the last column of G1, and by v1, . . . , vm the consecutive vertices of
the first column of G2. King grids of even order can similarly be described that way (note that we
also have both edges uivi+1 and ui+1vi for every i ∈ {1, . . . ,m− 1}). Thus, Cartesian grids and
king grids of even order are reflection graphs. �

The next theorem proves that reflection graphs are AB-draw.

Theorem 7.2.4. Any reflection graph G is AB-draw.

Proof. We define a “copying” strategy for Bob which guarantees a draw. Let U = {u1, . . . , un}
and V = {v1, . . . , vn} be a partitioning of the vertices of G that satisfies the two conditions
required for G to be a reflection graph. Bob’s copying strategy is as follows. In every round, when
Alice colours a vertex ui ∈ U (vi ∈ V , resp.), Bob colours its image vi ∈ V (ui ∈ U , resp.). By
Bob’s strategy, it is easy to see that Bob can always play in this way. Moreover, by the symmetry
of the graph, for every vertex coloured red (blue, resp.) in U , its image is coloured blue (red, resp.)
in V . Hence, once all vertices are coloured, by the symmetry of the graph and the second condition
for reflection graphs concerning the edges between vertices of U and V , there is a blue isomorphic
copy of any connected red subgraph in G. Thus, the game ends in a draw. �

It turns out that recognising reflection graphs is not an easy problem. We show that it is GI-
hard, meaning that it is at least as hard as the GRAPH ISOMORPHISM problem [86]. This essentially

144 CHAPITRE 7 — Preliminaries, first results and hardness

shows that recognising reflection graphs is unlikely to be polynomial-time solvable as there exist
problems in GI (notably the GRAPH ISOMORPHISM problem) which are good candidates for being
NP-intermediate, i.e., in the class NPI, which is the complexity class of problems that are in
NP but that are neither NP-hard nor in P. Note that the class NPI is non-empty if and only if P6=
NP.

Theorem 7.2.5. Given a graph G, deciding if G is a reflection graph is GI-hard.

Proof. The reduction is from the GRAPH ISOMORPHISM problem, in which, given two input
graphs G1 and G2, one has to decide whether G1 and G2 are isomorphic. We may further as-
sume that G1 and G2 are each connected and of odd order, which is one of the input restrictions
for which the problem remains hard. Indeed, note that we obtain an equivalent instance of the pro-
blem (with the desired properties), upon adding, if needed, one or two universal vertices to both
G1 and G2.

We construct a graph H in polynomial time, such that G1 and G2 are isomorphic if and only
if H is a reflection graph. The graph H we construct is simply G1 +G2, the disjoint union of G1
and G2. Let us prove the two directions of the equivalence.

First, we prove the forward direction. Assume that the vertices of G1 and G2 are u1, . . . , un
and v1, . . . , vn, respectively, ordered in such a way that there is an isomorphism between G1 and
G2 where vi is the image of ui, for all 1 ≤ i ≤ n. Note that no edge joins a vertex from G1 and
a vertex from G2. Then, G1 ∪ G2 = H is a reflection graph with U = V (G1) and V = V (G2).
The reflection property is trivial in that case.

Now, we prove the other direction. Assume that H is a reflection graph with parts U =
{u1, . . . , un} and V = {v1, . . . , vn} such that the function mapping ui to vi (for all 1 ≤ i ≤ n) is
an isomorphism between H[U] and H[V]. If U is precisely V (G1) while V is precisely V (G2),
then we get that H[U] = G1 and H[V] = G2 are isomorphic, by the definition of a reflection
graph. So, assume this is not the case.

For all 1 ≤ i ≤ n, note that either

1) ui ∈ V (G1) and vi ∈ V (G2),

2) ui ∈ V (G2) and vi ∈ V (G1),

3) ui, vi ∈ V (G1), or

4) ui, vi ∈ V (G2).

We consider all i’s in turn, and possibly switch vertices of U and V as follows:
— If ui and vi satisfy Condition 1) above, then we do nothing.
— If ui and vi satisfy Condition 2) above, then we move ui from U to V , and, conversely,

move vi from V to U , resulting in a partition of V (H) into two equally sized parts U ′

and V ′. Note that, considering the ordering u′1, . . . , u
′
n and v′1, . . . , v

′
n of U ′ and V ′ (where

u′j = uj and v′j = vj for all 1 ≤ j ≤ n such that i 6= j, and u′i = vi and v′i = ui),
respectively, we have that H is also a reflection graph with respect to the two parts U ′

and V ′. Indeed, by the isomorphism and reflection properties, we have that ui was neigh-
bouring ui1 , . . . , uik in U (and so, vi was neighbouring vi1 , . . . , vik in V) and vj1 , . . . , vjk
in V (and so, vi was neighbouring uj1 , . . . , ujk in U), which translates, for U ′ and V ′,
into u′i neighbouring vj1 , . . . , vjk in V ′ (and so, v′i neighbouring uj1 , . . . , ujk in U ′) and
ui1 , . . . , uik in U ′ (and so, v′i neighbouring vi1 , . . . , vik in V ′).

7.3 – Both games are PSPACE-hard 145

— If ui and vi satisfy Condition 3) or 4) above, then we get a contradiction to one of the
original assumptions on G1 and G2. Indeed, assume, w.l.o.g., that ui and vi satisfy Condi-
tion 3), i.e., both ui and vi originate from G1. Note that, because G1 and G2 are each
connected and of odd order, there must be a pair uj , vj such that, w.l.o.g., uj ∈ V (G1) and
vj ∈ V (G2). Furthermore, sinceG1 is connected, for such a pair uj , vj , it can be assumed,
w.l.o.g., that at least one of uiuj and viuj is an edge. If the former edge exists, then the
contradiction arises from the fact that, since H is a reflection graph, we must have the
edge vivj as well, which is not possible since vi ∈ V (G1) and vj ∈ V (G2). If the latter
edge exists, then, because H is a reflection graph, the edge uivj also exists, hence, an edge
between G1 and G2, which again is a contradiction.

Once all i’s have been treated this way,H remains a reflection graph, and a direct isomorphism
between G1 and G2 is deduced. �

7.3 Both games are PSPACE-hard

In this section we show that both the Scoring game and the Maker-Breaker are PSPACE-
complete. For the former, this means that given a graph G, deciding if it is A-win or AB-draw is
PSPACE-complete. For the latter game, given a graph G and an integer k ≥ 1, deciding whether
cg(G) ≥ k is PSPACE-complete.

Before we start, let us argue about the fact that the decision problems defined above for both
games belong in PSPACE. This follows from the fact that for both games, there are d|V (G)|/2e
rounds and the number of possible moves for each player in a round is at most |V (G)|. Thus, in
the upcoming proofs, we focus on proving the PSPACE-hardness of these games.

Note that the proof of PSPACE-hardness for the Scoring game is more involved than the
corresponding proofs for the Maker-Breaker game on bipartite and split graphs, although they
share many similarities. Thus, we chose to present our reductions starting with two of our results
on the complexity of the Maker-Breaker game, as to render the proof for the Scoring game easier
to follow.

7.3.1 The Maker-Breaker game on planar graphs

In this section we prove that the Maker-Breaker game remains PSPACE-complete even when
the graphs on which the game is played is assumed planar. This result is proven by a reduction
from PLANAR GENERALISED HEX, which was proven to be PSPACE-complete [109]. PLANAR

GENERALISED HEX is played on a planar graph G, in which a particular outside pair {s, t} of
vertices, i.e., st 6∈ E(G) and G+ st is planar, is set. Initially, s and t are red. Then, in successive
rounds, the first player, Alice, colours an uncoloured vertex red, before the second player, Bob,
then colours an uncoloured vertex blue. The game ends once all the vertices of G have been
coloured. If the red subgraph contains a path joining s and t, then Alice wins. Otherwise, Bob
wins.

Theorem 7.3.1. Given a graphG and an integer k ≥ 1, it is PSPACE-complete to decide whether
cg(G) ≥ k, even when G is restricted to be in the class of planar graphs.

Proof. The reduction is from PLANAR GENERALISED HEX. Let (H, s, t) be an instance of PLA-
NAR GENERALISED HEX such that H is the planar graph with the outside pair {s, t}, that the

146 CHAPITRE 7 — Preliminaries, first results and hardness

H

t

s

t10

s1
0

t11 t1n+4. . .

s1
1 s1

n+4. . .

t20

s2
0

t21

t2n+4

...

s2
1

s2
n+4

..
.

t30

s3
0

t31

t3n+4

...

s3
1

s3
n+4

..
.

Figure 7.3 – Illustration of the construction in the proof of Theorem 7.3.1.

game is being played on. Set n = |V (H)|. By adding a degree-1 vertex (a leaf) in H if needed,
we can suppose n is even, as this will not change the outcome of (H, s, t). Let G be the graph
constructed as follows (see Figure 7.3). Start from G being the graph H . Then, add three vertices
s1

0, s
2
0, s

3
0 and make each of them adjacent to s, and add another three vertices t10, t

2
0, t

3
0, and make

each of those adjacent to t. Finally, to each of these six vertices we have just added, attach n + 4
new degree-1 vertices, so that a total of 6(n + 4) degree-1 vertices (leaves) are added to G. The
construction is achieved in polynomial time, and since H is planar, G is too.

Set k = n + 5. We will show that Alice wins in (H, s, t) if and only if cg(G) ≥ k. Let us
assume first that Alice has a winning strategy in (H, s, t). We give a strategy for Alice that ensures
a score of at least k when playing the Maker-Breaker Largest Connected Subgraph game in G. In
the first round, Alice colours s. In the second round, Alice colours s1

0 if possible, and if not, then
she colours s2

0. From the third round on,
— if Alice can colour a vertex in {s1

0, s
2
0, s

3
0} in the third round, then she does. If so, then,

in each of the next rounds, if possible, Alice colours an uncoloured neighbour of an si0
she coloured earlier. At the end of the game, the red subgraph will contain a connected
component of order at least 3 +

⌈
2(n+4)−3

2

⌉
= n+ 6, and thus, Alice will have a score of

at least k;
— otherwise, Bob coloured two vertices in {s1

0, s
2
0, s

3
0} in the first two rounds. Then, Alice

colours t in the third round, and she then colours one of t10 and t20 in the fourth round. At this
point, for the same reasons as earlier, if Bob has not coloured two vertices in {t10, t20, t30}
by the end of the fourth round, then Alice can colour a vertex in that set in the fifth round,
and, as above, guarantee herself a score of at least k.

Thus, we can suppose that, after four rounds, w.l.o.g., s, t, s1
0, and t10 are red, while s2

0, s3
0,

t20, and t30 are blue. From here, Alice’s strategy continues as follows. In the fifth round, Alice
colours, in G, the vertex of H she would have coloured in the first round of her winning strategy
in (H, s, t). From the sixth round on, in each round, if the last vertex coloured by Bob in G is

— some vertex u ∈ V (H), then Alice colours, inG, the vertex ofH she would have coloured
in her winning strategy in (H, s, t), as an answer to Bob colouring u;

7.3 – Both games are PSPACE-hard 147

— a leaf adjacent to some si0 or ti0, then Alice colours another uncoloured leaf adjacent to the
same vertex.

Whenever Alice cannot follow the strategy above, she colours any arbitrary vertex. By this
strategy, at the end of the game in G, s and t are red, and all the vertices that Alice would have
coloured through her winning strategy in (H, s, t) are also red. Moreover, s1

0 and t10 are red, and,
for each of them, she coloured half of their adjacent leaves. Thus, the red subgraph contains a
connected component of order at least n + 8. Thus, Alice achieves a score of at least k, and
cg(G) ≥ k.

Assume now that Bob has a winning strategy in (H, s, t). We give a strategy for Bob that en-
sures that Alice’s score is strictly less than k when playing the Maker-Breaker Largest Connected
Subgraph game in G. In each round, if the last vertex coloured by Alice is

— in {s, s1
0, s

2
0, s

3
0}, then Bob colours a vertex in {s, s1

0, s
2
0, s

3
0};

— in {t, t10, t20, t30}, then Bob colours a vertex in {t, t10, t20, t30};
— a vertex u of H − {s, t}, then Bob colours the vertex of H he would have coloured by his

winning strategy in (H, s, t), as an answer to Alice colouring u;
— a leaf adjacent to some si0 or ti0, then Bob colours another uncoloured leaf adjacent to the

same vertex.
Note that Bob always answers to one of Alice’s moves by colouring a vertex in a set with

even size since n is even. Thus, Bob can follow this strategy from start to end. At the end of
the game in G, the largest connected component of the red subgraph cannot contain both s and
t, as the moves made by Alice and Bob correspond exactly to the moves that would have been
made if they had played in (H, s, t). Moreover, there cannot be two si0’s belonging to the same
connected red component, as, by the strategy above, Bob must have coloured s in this case. The
same holds for the ti0’s. Also, for any of the si0’s and ti0’s, by Bob’s strategy above, Alice can have
coloured at most half of the leaves adjacent to it. Thus, because Alice coloured at most half of
the vertices in H − {s, t}, the largest connected red component in G must have order at most
n−2

2 + 2 + n+4
2 = n+ 3. Thus, Alice achieves a score of less than k, and cg(G) < k. �

7.3.2 The Maker-Breaker game on bipartite and split graphs

The PSPACE-completeness results presented in the current and the following section, are
established via reductions from POS CNF, a game for which deciding whether Alice or Bob has
a winning strategy was shown to be PSPACE-complete in [111].

Definition 7.3.2 (POS CNF). A 2-player game, where the input consists of a set of variables
X = {x1, . . . , xn} and a conjunctive normal form (thus the term CNF) formula φ consisting of
clauses C1, . . . , Cm that each contain only variables from X , all of which appear in their positive
form (thus the term POS). In each round, the first player, Alice, first sets a variable (that is not yet
set) to true, and then, the second player, Bob, sets a variable (that is not yet set) to false. Once all
the variables have been assigned a truth value, Alice wins if φ is true, and Bob wins if φ is false.

It is worth noting here that both of the reductions we provide from POS CNF (the ones pre-
sented in this and the following section) share a lot of similarities to the one given in [62]. The
game studied in [62] is the Maker-Breaker game played on a graph G, with players picking ver-
tices of G, and the winning sets consists of all the dominating sets of G. Taking into account
Lemma 7.1.1 and the fact that such reductions are rather standard, it is not surprising that the

148 CHAPITRE 7 — Preliminaries, first results and hardness

following proofs are similar to the corresponding one in [62]. Nevertheless, we include the full
proofs for completeness.

Theorem 7.3.3. Given a graphG and an integer k ≥ 1, it is PSPACE-complete to decide whether
cg(G) ≥ k, even when G is restricted to be in the class of bipartite graphs of diameter 4.

Proof. We prove the PSPACE-hardness via a reduction from POS CNF. Let (X,φ) be an instance
of POS CNF. Set X = {x1, . . . , xn} and φ = C1 ∧ · · · ∧Cm. By adding a dummy variable in X
if needed, we can suppose n is even.

Consider the graph G constructed as follows. For every variable xi ∈ X , we add a vertex vi
to G. For every clause Cj of φ, we add two vertices C1

j and C2
j to G. For every variable xi ∈ X

and clause Cj of φ, we add the edges viC1
j and viC2

j to G if xi appears in Cj . Finally, we add two
vertices u1 and u2 to G, that we make adjacent to all of the vi’s. Note that the resulting G, which
is constructed in polynomial time, is bipartite and has diameter at most 4.

Set k = |V (G)|/2, and note that |V (G)| is even. We will show that Alice wins in (X,φ) if
and only if cg(G) ≥ k. Let us assume first that Alice has a winning strategy in (X,φ). We give
a strategy for Alice that ensures a score of at least k when playing the Maker-Breaker Largest
Connected Subgraph game in G. In the first round, Alice colours the vertex vi that corresponds to
the variable xi ∈ X she would have set to true in the first round of her winning strategy in (X,φ).
From the second round on, in each round, if the last vertex coloured by Bob is

— some vi, then Alice colours the vertex vj corresponding to the variable xj she would set to
true in response to Bob setting xi to false in her winning strategy in (X,φ);

— u1 (u2, resp.), then Alice colours u2 (u1, resp.);
— some C1

j (C2
j , resp.), then Alice colours C2

j (C1
j , resp.).

Whenever Alice cannot follow the strategy above, she colours any arbitrary vertex. By Alice’s
strategy, once the game in G ends, exactly one vertex in every pair {C1

j , C
2
j } is red, exactly one

vertex in {u1, u2} is red, and the vi’s corresponding to the xi’s she would have set to true in her
winning strategy for (X,φ) are also red. Because Alice wins in (X,φ) with that strategy, every
vertex C`j of G coloured red must be adjacent to at least one vertex vk coloured red corresponding
to a variable she would have set to true when playing in (X,φ). Since all the vi’s are dominated
by u1 and u2, and one of these two vertices is red, we deduce that the red subgraph must contain
only one connected component. Thus, Alice achieves a score of k and cg(G) ≥ k.

Assume now that Bob has a winning strategy in (X,φ). We give a strategy for Bob that en-
sures that Alice’s score is strictly less than k when playing the Maker-Breaker Largest Connected
Subgraph game in G. In each round, if the last vertex coloured by Alice is

— some vi, then Bob colours the vertex vj corresponding to the variable xj he would set to
false in response to Alice setting xi to true in his winning strategy in (X,φ);

— u1 (u2, resp.), then Bob colours u2 (u1, resp.);
— some C1

j (C2
j , resp.), then Bob colours C2

j (C1
j , resp.).

Note that Bob can follow this strategy from start to end, as n is even. By Bob’s strategy, once
the game in G ends, exactly one vertex in every pair {C1

j , C
2
j } is red. Also, since Bob coloured all

the vi’s corresponding to xi’s he would set to false when following a winning strategy in (X,φ),
there exists a Cq that is not satisfied in (X,φ), meaning its variables were all set to false by Bob.
In G, this translates to exactly one of C1

q or C2
q being red while all of their neighbours (the vi’s

corresponding to the xi’s that Cq contains), are blue. Thus, the red subgraph contains at least two
connected components, and hence, Alice achieves a score of less than k, and cg(G) < k. �

7.3 – Both games are PSPACE-hard 149

Corollary 7.3.4. Given a graph G and an integer k ≥ 1, it is PSPACE-complete to decide
whether cg(G) ≥ k, even when G is restricted to be in the class of split graphs.

Proof. The proof is similar to that of Theorem 7.3.3, with the slight difference being in the
construction of G. Here, neither of the vertices u1 and u2 are added, while all the possible edges
between the vi’s are added so that they form a clique, thus making G a split graph. The same stra-
tegies for Alice and Bob (omitting u1 and u2) from the proof of Theorem 7.3.3 remain applicable
by the same arguments, and the result follows. �

7.3.3 The Scoring game on bipartite graphs

In this section, we show that the Scoring game is PSPACE-complete, even when restricted to
bipartite graphs of small diameter.

Theorem 7.3.5. Given a graph G, deciding if G is A-win is PSPACE-complete, even if G is
bipartite and has a diameter of 5.

Proof. Since the number of rounds is exactly d|V (G)|/2e and there are at most |V (G)| possible
moves for a player in any round, the decision problem is in PSPACE. To prove the problem is
PSPACE-hard, we give a reduction from POS CNF. By adding a dummy variable (if necessary),
it is easy to see that POS CNF remains PSPACE-hard even if the number of variables n is odd.
From an instance φ of POS CNF where n is odd, we construct, in polynomial time, an instance
G of the largest connected subgraph game such that Alice wins in φ if and only if G is A-win.
Let x1, . . . , xn be the variables and let C1, . . . , Cm be the clauses of φ. The construction of G is
as follows (see Figure 7.4 for an illustration): for each variable xi (1 ≤ i ≤ n), there is a vertex
xi, and, for each clause Cj (1 ≤ j ≤ m), there are 6 vertices C1

j , . . . , C
6
j . For all 1 ≤ i ≤ n

and 1 ≤ j ≤ m, if the variable xi appears in the clause Cj , then there is the edge xiC
q
j for all

1 ≤ q ≤ 6. In addition to this, there are the vertices u, v1, v2, w1, w2, and y1, . . . , yn+6m−2, and
the edges w1v1, v1u, uv2, and v2w2. Furthermore, for all 1 ≤ i ≤ n, there is the edge uxi, and,
for all 1 ≤ ` ≤ n+ 6m− 2, there are the edges w1y` and w2y`. This completes the construction.
To simplify the proof, let P be the subgraph of G induced by the vertices xi (1 ≤ i ≤ n) and
Cqj (1 ≤ q ≤ 6 and 1 ≤ j ≤ m), and let Q be the subgraph of G induced by the vertices in
V (G) \ (V (P) ∪ {u}). Note that u separates P from Q. To simplify the upcoming calculations,
let b = (n− 1)/2 + 3m+ 1 = bn/2c+ 3m+ 1 since n is odd.

We start by proving the first direction, that is, if Alice wins in φ, thenG isA-win. We describe a
winning strategy for Alice. In what follows, whenever Alice cannot follow her strategy, she simply
colours any arbitrary vertex and resumes her strategy for the subsequent moves of Bob. Alice first
colours u. Now, Bob can only construct connected blue subgraphs in P or Q since u separates
them. For all 1 ≤ j ≤ m, whenever Bob colours a vertex in {C1

j , . . . , C
6
j }, then Alice also colours

a vertex in {C1
j , . . . , C

6
j }, so in what follows, we may assume that Bob does not colour such a

vertex. There are two cases depending on Bob’s next move.
— Bob colours a vertex inQ. Then, Alice colours the vertex xi that corresponds to the variable

xi she wants to set to true in her winning strategy in φ. Now, whenever Bob colours a
vertex xp (1 ≤ p ≤ n and p 6= i), Alice assumes Bob set the variable xp to false in φ and
colours the vertex in {x1, . . . , xn} corresponding to her winning strategy in φ. Otherwise,
whenever Bob colours a vertex in Q, then Alice colours a vertex in Q. Note that, by this
strategy, Alice ensures a connected red subgraph of order at least dn/2e+ 3m+ 1 = b+ 1

150 CHAPITRE 7 — Preliminaries, first results and hardness

...

. . .

.

u

v1 v2

w1 w2

y1

y2

yn+6m−2

x1 x2 xn

C1
1 C2

1 C6
1 C1

2 C2
2 C6

2 C1
m C2

m C6
m

Figure 7.4 – An example of the construction of the graph G in the proof of Theorem 7.3.5, where,
among other variables, the clause C1 contains the variable x1, the clause C2 contains the variables
x1 and x2, and the clause Cm contains the variables x2 and xn.

since she colours half the variable vertices (rounded up since Alice starts in these vertices),
half the clause vertices, and u, and since she followed a winning strategy in φ, this subgraph
is indeed connected. Furthermore, she ensures that any connected blue subgraph in P is of
order at most bn/2c + 3m = b − 1, and hence, Bob must construct his largest connected
blue subgraph in Q if he wants to manage a draw.
If Alice colours v1 or v2 she wins, since then she ensures a connected red subgraph of order
at least dn/2e + 3m + 2 = b + 2, while she ensures that any connected blue subgraph in
Q is of order at most b+ 1. Indeed, |V (Q)| = n+ 6m+ 2, Bob first colours one vertex in
Q, and then each subsequent time he colours a vertex in Q, Alice does the same, and thus,
Bob colours at most 1 + d(n+ 6m+ 1)/2e = 1 + (n+ 1)/2 + 3m = b+ 1 vertices in Q.
Thus, Bob must have coloured v1 and v2 in the first two rounds. Now, Alice colours w2
(so that v2 cannot be part of a large connected blue subgraph since u is red), and she wins
since she ensures that any connected blue subgraph in Q is of order at most d(|V (Q)| −
3)/2e+ 1 = d(n+ 6m− 1)/2e+ 1 = b (recall that n is odd).

— Bob colours a vertex in {x1, . . . , xn}. Then, Alice colours w2.
First, let us assume that Bob does not colour v2 during his second turn,. Then, Alice will
colour v2 in the next round and win with the following strategy: whenever Bob colours a
vertex
— in {w1, v1}, then Alice colours the other vertex in {w1, v1};
— y` (1 ≤ ` ≤ n + 6m − 2), then Alice colours a vertex yk (1 ≤ k ≤ n + 6m − 2 and

` 6= k);
— xi (1 ≤ i ≤ n), then Alice colours a vertex xp (1 ≤ p ≤ n and i 6= p).
In this way, Alice has coloured u, v2, andw2. Moreover, she coloured at least half (rounded
down) of the n+ 6m− 2 + n− 2 vertices y` and xi that remained uncoloured after Bob’s
second turn (at most two vertices y` and xi could have been coloured blue during Bob’s
first two turns, and the half is rounded down since Alice plays in second in this set of

7.3 – Both games are PSPACE-hard 151

vertices). In total, this guarantees a connected red subgraph of order at least 3 + b(n +
6m− 2 + n− 2)/2c = n+ 3m+ 1 > b+ 1 without counting any of the vertices Cqj (1 ≤
q ≤ 6, 1 ≤ j ≤ m). Regarding Bob, any connected blue subgraph in P has order at most
2+d(|V (P)|−2)/2e (since, except for the first two turns of Bob, Alice always answers inP
when Bob colours a vertex in P), i.e., at most 2+d(n+6m−2)/2e = 2+dn/2e+3m−1 =
1+(n+1)/2+3m = (n−1)/2+3m+2 = b+1. Moreover, any connected blue subgraph in
Q has order at most d(|V (Q)|−3)/2e+1 = d(n+6m−1)/2e+1 = (n−1)/2+3m+1 = b.
Hence, Alice wins in this case.
Second, let us assume that Bob colours v2 during his second turn. Now, Alice colours w1
and Bob is forced to colour v1 for the same reasons as above. Alice now colours y1 and
then she follows the strategy just previously described above (the one for the case where
Bob did not colour v2). In this way, Alice ensures a connected red subgraph containing
w2, w1, and half of the vertices y` (rounded up), i.e., a connected red subgraph of order at
least d(n+6m−2)/2e+2 = dn/2e+3m+1 = b+1 inQ. Regarding Bob, any connected
blue subgraph in P has at most d(|V (P)| − 1)/2e + 1 vertices (the first vertex that Bob
coloured, plus half of the remaining vertices in P), i.e., at most d(n+ 6m− 1)/2e+ 1 =
(n − 1)/2 + 3m + 1 = b vertices, and any connected blue subgraph in Q has at most
one vertex. Hence, Alice wins in this case as well, and this concludes the proof of the first
direction.

Now, we prove the other direction, that is, if Bob wins in φ, then G is AB-draw. We give a
strategy for Bob that guarantees the game in G is a draw. In what follows, whenever Bob can-
not follow his strategy, he simply colours any arbitrary vertex and resumes his strategy for the
subsequent moves of Alice. Part of Bob’s strategy is as follows: whenever Alice colours

— a vertex in {C1
j , . . . , C

6
j } for some 1 ≤ j ≤ m, then Bob also colours a vertex in

{C1
j , . . . , C

6
j };

— a vertex xi for some 1 ≤ i ≤ n, then Bob assumes Alice set the variable xi to true in φ
and colours the vertex in {x1, . . . , xn} corresponding to his winning strategy in φ.

Hence, we just need to describe a strategy for Bob in Q′, the subgraph of G induced by the
vertices in V (Q)∪{u}. W.l.o.g., we may assume that the first vertex Alice colours in Q′ is neither
v2 nor w2. Then, Bob colours w2. Now, if the first two vertices Alice colours in Q′ are:

— w1 and v1, then Bob colours u. Now, Alice must colour v2, as otherwise, Bob wins as in
the proof of the first direction where Alice wins if she manages to colour w2, v2, and u.
Then, Bob colours yk for some 1 ≤ k ≤ n + 6m − 2. Now, whenever Alice colours a
vertex y` (1 ≤ ` ≤ n+ 6m− 2), then Bob colours a vertex yk (1 ≤ k ≤ n+ 6m− 2 and
` 6= k);

— w1 and v2, then Bob colours y` for some 1 ≤ ` ≤ n+6m−2. Now, whenever Alice colours
a vertex in {v1, u}, then Bob colours the other vertex in {v1, u}. Otherwise, whenever
Alice colours a vertex y` (1 ≤ ` ≤ n + 6m − 2), then Bob colours a vertex yk (1 ≤ k ≤
n+ 6m− 2 and ` 6= k);

— w1 and u, then Bob colours v1. Now, whenever Alice colours a vertex in
{y1, . . . , yn+6m−2, v2}, then Bob colours another vertex in {y1, . . . , yn+6m−2, v2};

— w1 and yk for some 1 ≤ k ≤ n + 6m − 2, then Bob colours v2. Now, Alice must colour
u, as otherwise, Bob wins as in the proof of the first direction where Alice wins if she
manages to colour w2, v2, and u. Then, Bob colours v1. Now, whenever Alice colours a
vertex y` (1 ≤ ` ≤ n+ 6m− 2), then Bob colours a vertex yp (1 ≤ p ≤ n+ 6m− 2 and
` 6= p);

152 CHAPITRE 7 — Preliminaries, first results and hardness

— any other combination, then Bob colours w1. Now, whenever Alice colours a
vertex in {y1, . . . , yn+6m−2, v1, v2, u}, then Bob colours a different vertex in
{y1, . . . , yn+6m−2, v1, v2} (note that u is not included here).

In the first two cases above, there is a connected blue component in Q (consisting of w2 and
half of the vertices y`, rounded up since Bob starts in these vertices) of order at least d(n+ 6m−
2)/2e+1 = (n−1)/2+3m+1 = b. In the third case above, there is a connected blue component
in Q of order at least b(n + 6m − 2 + 1)/2c + 1 = (n − 1)/2 + 3m + 1 = b (consisting of w2
and half of the vertices y` and v2, rounded down since Alice starts in these vertices). In the fourth
case above, there is a connected blue component in Q of order at least b(n + 6m − 3)/2c + 2 =
(n− 1)/2 + 3m+ 1 = b (the two vertices w2 and v2, plus half, rounded down, of the vertices y`
minus the first one coloured by Alice). In the last case above, there is a connected blue component
in Q of order at least b(n + 6m − 2)/2c + 2 = bn/2c + 3m + 1 = (n − 1)/2 + 3m + 1 = b
(indeed, if α, β are the first two vertices in Q′ coloured by Alice, then Bob colours at least w1, w2,
and half of the vertices in {y1, . . . , yn+6m−2, v1, v2} \ {α, β} rounded down). To summarise, in
each of the cases, Bob has ensured that there is a connected blue component in Q of order at least
b.

Regarding Alice, in the first two cases above, any connected red component in Q is of order at
most b(n + 6m − 2)/2c + 2 = (n − 1)/2 + 3m + 1 = b (consisting of at most w1, v1, and half
of the vertices y` rounded down). In the third case above, any connected red component in Q is
of order at most d(n + 6m − 2)/2e + 1 = dn/2e + 3m = (n − 1)/2 + 3m + 1 = b (consisting
of at most w1 and half of the vertices y` rounded up). In the fourth case above, any connected red
component in Q is of order at most d(n+ 6m− 3)/2e+ 2 = (n− 1)/2 + 3m+ 1 = b (consisting
of at most w1, one vertex yk, and half of the remaining n+ 6m− 3 vertices y` rounded up). In the
last case above, any connected red component in Q is of order at most 1. To summarise, in each of
the cases, Bob has ensured that any connected red component in Q is of order at most b. Hence, if
Alice is to win, she must have constructed a connected red component of order at least b+ 1 in P ′,
the subgraph of G induced by V (P)∪ {u, v1, v2} (since, by Bob’s strategy, it can never be that u,
v1, and w1 (u, v2, and w2, resp.) are all red). Since Bob follows a winning strategy in φ whenever
Alice colours a vertex in {x1, . . . , xn}, there is at least one j (1 ≤ j ≤ m) for which none of the
vertices in C1

j , . . . , C
6
j are adjacent to a red vertex. Hence, any connected red component in P ′ is

of order at most d(n + 6m − 6)/2e + 3 = dn/2e + 3m = (n − 1)/2 + 3m + 1 = b. Thus, in
G, there is a connected blue component of order at least b and any connected red component is of
order at most b. Hence, Alice does not win in any of the cases and this concludes the proof of the
second direction. �

7.4 Conclusion

In this chapter we introduced the largest connected subgraph game and its Maker-Breaker
variation. Apart from establishing that deciding the outcome of either game is computationally
hard in general, we also showed that Bob can never hope to win the Scoring game. Nevertheless,
we identified reflection graphs, a rich family of graphs on which Bob always has a drawing strategy
for the Scoring game.

There are several directions to investigate which are linked to this notion of reflection graphs.
First, just as reflection graphs define an interesting class of graphs that are AB-draw, another
direction could be to find large and interesting classes of graphs that are A-win. Graphs of odd

7.4 – Conclusion 153

order in which Alice can always construct a single connected red component are A-win, and so,
perhaps a class of dense graphs of odd order would be a prime candidate. We provide partial results
towards this direction in upcoming Chapter 9.

We also wonder about different types of grids. A valid point for considering such graphs is
that grids are natural structures to play on in several types of games, as illustrated by Hex. Indeed,
in upcoming Chapter 9, we will discuss about king’s grids, for which we will provide bounds on
cg when there are two rows and m columns. Note that the case of grids will be a recurring theme
in the following chapters. For the moment, notice that Cartesian and king’s grids of even order are
AB-draw, which follows directly from Proposition 7.2.3 and Theorem 7.2.4. This leaves us with
the case of playing the Scoring game on grids of odd order, which can be the subject of a dedicated
study.

Finally, the reductions presented in this chapter open some interesting questions to be explo-
red. For example, since the Maker-Breaker game is PSPACE-complete in split graphs by Corol-
lary 7.3.4, and split graphs have diameter at most 3, there is the question of whether it is hard
to compute cg for graphs of diameter 2. Moreover, in Section 7.3, we showed that the Maker-
Breaker game remains PSPACE-complete when restricted to various classes of graphs, but we do
not know whether the same holds for the Scoring game in those classes of graphs. These results
already point to the fact that trying to establish significant differences between the Scoring and the
Maker-Breaker games could be an interesting question by itself.

CHAPTER 8
Playing on simple

graphs
In this chapter we focus on determining the outcome of the Scoring and the Maker-
Breaker games, when these games are played on specific families of graph. We first
consider the Scoring game, proving that the outcome can be computed in constant time
when the game is played on paths and cycles, and in linear time when played on co-
graphs. We proceed by considering the Maker-Breaker game for which we provide a
linear-time algorithm for deciding its outcome when played on a (q, q − 4)-graph, a
familiy of graphs which generalises cographs.

8.1 Paths and cycles . 155
8.2 The Scoring game on cographs 163
8.3 The Maker-Breaker game on (q, q − 4)-graphs 167
8.4 Conclusion . 175

In this chapter we consider both the Scoring and the Maker-Breaker games when played on
graphs where deciding the outcome can be done efficiently. In Section 8.1 we show that deciding
the outcome of the Scoring game can be done in linear time when playing on a graph G that is a
path or a cycle. It should be noted that this result is not trivial, despite the simplicity of these graph
families. Moreover, considering the Scoring game on paths and cycles is actually helpful in our
endeavor to also determine the parameter cg of these graphs. Indeed, we do manage to determine
cg(G) when G is either a path or a cycle. Then, in Section 8.2, we show that calculating the
outcome of the Scoring game on cographs can be done in linear time. As far as the Maker-Breaker
game is concerned, we consider it when played in cographs, and, more generally, in (q, q − 4)-
graphs. For both classes of graphs, we prove in Section 8.3 that cg can be determined in linear
time.

8.1 Paths and cycles

In this section, we deal with the case of playing the Scoring game on n-vertex paths Pn =
(v1, . . . , vn) and n-vertex cycles Cn = (v1, . . . , vn). Recall that every path and cycle of even
order is a reflection graph by Proposition 7.2.3, and thus, is AB-draw by Theorem 7.2.4. Here, we

155

156 CHAPITRE 8 — Playing on simple graphs

finish the case of paths and cycles by dealing with the case of paths and cycles of odd order. As a
direct corollary, we also compute the value of cg(G) when G is a path or a cycle.

We begin with two technical lemmata for specific cases in paths, which will be used in the
proofs for paths and cycles of odd order. In the following proofs in this section, we often divide
the main path Pn into two subpaths Q and Q′, and say that Alice “follows” Bob, that is, when Bob
plays in Q (in Q′, resp.), Alice then plays in the same subpath Q (in Q′, resp.). The precise way
Alice answers to Bob’s moves in Q (in Q′, resp.) is described in the proofs and depends on the
different cases. Note that, when following this strategy, Alice may be unable to colour a desired
vertex (either because Q, resp., Q′, has no uncoloured vertex anymore, or because the desired
vertex is already coloured red). In such a case, Alice colours any arbitrary uncoloured vertex of
the main path. The same applies for when we say that Bob “follows” Alice. Lastly, for any path
Pn, let us orient the path from left to right (from its end v1 to its other end vn), so that we can
make use of the notions of left and right.

The next two lemmata (Lemmata 8.1.1 and 8.1.2) are both stated using first and second player
rather than Alice and Bob since they will sometimes be used with Alice as the first player and
sometimes with Bob as the first player.

Lemma 8.1.1. For all n ≥ 1, for the path Pn, the second player has a strategy that ensures that
the largest connected subgraph of the first player is of order at most 2, even if one of the ends of
Pn is initially coloured by the first player and it is the first player’s turn.

Proof. Assume, w.l.o.g., that Alice is the first player, Bob is the second player, and v1 is initially
coloured red. Whenever Alice colours a vertex vj with 2 ≤ j ≤ n, Bob colours vj−1 if it is
uncoloured. If vj−1 is already coloured, then Bob colours the closest (in terms of its distance in
the path) uncoloured vertex that is to the right of vj . Towards a contradiction, assume that there
exist 3 consecutive red vertices, denoted by x1, x2, x3 from left to right in Pn. By Bob’s strategy,
concerning the 3 vertices x1, x2, x3, Alice must have coloured x1 first, then x2, and then, x3, as
otherwise, Bob would have coloured at least one of them. But when Alice colours x2, since x1
is already coloured, then Bob will colour the closest uncoloured vertex to the right of x2, which
must be x3 since it is uncoloured as it must get coloured by Alice after she colours x2, and thus,
we have a contradiction. �

Lemma 8.1.2. Let x ≥ 1 and n ≥ x. Consider any path Pn with x vertices initially coloured
by the second player, and let y be the maximum order of an initial connected component of the
second player.

— If y = x and, either the component of the second player contains no ends of Pn or x = 1,
then, if the first player starts, they have a strategy ensuring that the second player cannot
create a connected component of order more than x+ 1;

— otherwise, if the first player starts, then they have a strategy ensuring that the second player
cannot create a connected component of order more than x.

Proof. Assume, w.l.o.g., that Alice is the first player and Bob is the second player. We prove the
lemma by induction on x. First, let us consider the case x = 1. We prove this case by induction
on n. If n = 1, then the result is obvious, so let us focus on the general case. Without loss of
generality, let vj (1 ≤ j < n) be the vertex initially coloured blue. Then, Alice first colours vj+1.
Let Q = (v1, . . . , vj) and Q′ = (vj+2, . . . , vn) (it may be that Q′ is empty and/or Q is restricted
to one vertex). From now on, Alice “follows” Bob, that is, when Bob plays in Q (in Q′, resp.),

8.1 – Paths and cycles 157

v1 v2 . . . vi−2 vi−1 vi vi+1 vi+x−1 vi+x vi+x+1 . . . vn−1 vn

(a)

v1 v2 . . . z vi−1 vi vi+1 vi+x−1 vi+x vi+x+1 . . . vn−1 vn

Q Q′

(b)

v1 v2 . . . z vi vi+1 vi+x−1 vi+x vi+x+1 . . . vn−1 vn

Q Q′

(c)

Figure 8.1 – Case in the proof of Lemma 8.1.2 where y = x = 3, B = (vi, . . . , vi+x−1) and
contains no ends of Pn, and i > 2 (first case when x > 1). On her first turn, depicted in (a), Alice
colours vi+x. If Bob creates a connected component of order x+ 1 by colouring vi−1 on his next
turn, then Alice colours z = vi−2, as depicted in (b). Otherwise, Alice colours z = vi−1, as shown
in (c).

Alice then plays in Q (in Q′, resp.), and both games are considered independently (since vj+1 is
coloured red). Considering Q as a path with one of its ends initially coloured blue, and applying
Lemma 8.1.1 to it (with Bob as the first player), Alice has a strategy ensuring that Bob cannot
create a connected blue component of order more than 2 in Q. On the other hand, after the first
move of Bob in Q′, it is a path of order less than n with one vertex initially coloured blue and it is
the turn of Alice. Thus, by induction (on n), Alice has a strategy ensuring that Bob cannot create
a connected blue component of order more than 2 in Q′. Overall, Alice ensures that the largest
connected blue component has order at most 2 = x+ 1. Hence, the claim holds for x = 1.

Let x > 1 and let us assume by induction that the previous statement holds for all x′ < x.
— Let us first assume that y = x > 1 and the connected blue component B contains no

ends of Pn, say B = (vi, . . . , vi+x−1), 1 < i < n − x + 1. Alice first colours vi+x (see
Figure 8.1(a)). If Bob colours vi−1 on his next turn (in which case there is a connected
blue component of order x + 1), then Alice colours z = vi−2 (unless i = 2, in which
case Alice colours any arbitrary uncoloured vertex). Otherwise, Alice colours z = vi−1
(in which case the largest connected blue component is of order x). Let Q = (v1, . . . , z)
and Q′ = (vi+x+1, . . . , vn) (it may be that Q and/or Q′ are empty, and, in particular, Q is
empty if z /∈ {vi−2, vi−1}). See Figures 8.1(b) and 8.1(c) for an illustration of the current
configuration of coloured vertices. From now on, Alice “follows” Bob, that is, when Bob
plays inQ (inQ′, resp.), Alice then plays inQ (inQ′, resp.), and both games are considered
independently (since z and vi+x are coloured red). After the next move of Bob in Q (Q′,
resp.), it is a path of order less than n with at most 2 ≤ x vertices initially coloured blue
and it is Alice’s turn. Thus, by induction (on n), Alice has a strategy ensuring that Bob
cannot create a connected blue component of order more than x + 1 in Q (Q′, resp.).

158 CHAPITRE 8 — Playing on simple graphs

Overall, Alice ensures that the largest connected blue component in Pn is of order at most
x+ 1. Hence, the claim holds in this case.

— Next, let us assume that y = x > 1 and the connected blue component B contains one
end of Pn, i.e., B = (v1, . . . , vx). Alice first colours vx+1. Then, Bob colours any vertex
in the subpath Q = (vx+2, . . . , vn) (assuming Q is not empty). Therefore, Q initially has
one blue vertex and it is Alice’s turn. By the base case of the induction (x = 1), Alice can
ensure that the largest connected blue component in Q is of order at most 2. Overall, the
largest connected blue component in Pn is of order at most x. Hence, the claim holds in
this case.

— Finally, let us assume that y < x. Let (vi, . . . , vi+y−1) be a largest connected blue com-
ponent such that there is an initial blue vertex vj with j > i + y. Alice first colours vi+y.
Let Q = (v1, . . . , vi+y−1) and Q′ = (vi+y+1, . . . , vn) (it may be that Q′ is empty). From
now on, Alice “follows” Bob, that is, when Bob plays in Q (in Q′, resp.), Alice then plays
in Q (in Q′, resp.), and both games are considered independently (since vi+y is coloured
red). After the next move of Bob in Q (Q′, resp.), it is a path of order less than n with at
most y+1 ≤ x vertices initially coloured blue (and if there is a connected blue component
with x vertices, it must be in Q and it contains the end vi+y−1 of the path Q) and it is Ali-
ce’s turn. Thus, by induction (on n), Alice has a strategy ensuring that Bob cannot create
a connected blue component of order more than x in Q (Q′, resp.). Overall, Alice ensures
that the largest connected blue component in Pn is of order at most x. Hence, the claim
holds in this case, and in general, since this is the last case.

�

We can now deal with the general case of paths of odd order.

Theorem 8.1.3. For all n ≥ 1, the path Pn is A-win if and only if n ∈ {1, 3, 5, 7, 9}.

Proof. Note that, by Theorem 7.2.1, we need to prove that Pn isA-win if n ∈ {1, 3, 5, 7, 9}, and Pn
isAB-draw otherwise. Let Pn = (v1, . . . , vn). If n is even, then Pn isAB-draw by Theorem 7.2.4
since Pn is a reflection graph by Proposition 7.2.3. It is easy to see that, if n ≤ 7 and n is odd, then
Alice wins by first colouring the center of Pn. If n = 9, a winning strategy for Alice is described
in Figure 8.2. Hence, from now on, let us assume that n ≥ 11 is odd.

In the main strategy that follows, we require that there are at least five vertices to the left or
to the right of the first vertex Alice colours, and that is why it does not apply to the paths of odd
order less than 11. We will now describe a strategy for Bob which ensures a draw.

Let vj , with 1 ≤ j ≤ n, be the first vertex coloured by Alice. Since n ≥ 11, there are at least
five vertices to the left or right of vj , say, w.l.o.g., to the left of vj , i.e., 6 ≤ j ≤ n. Bob colours
vj−1. Let Q = (v1, . . . , vj−1) and Q′ = (vj , . . . , vn). From now on, Bob “follows” Alice, that
is, when Alice plays in Q (in Q′, resp.), Bob then plays in Q (in Q′, resp.), and both games are
considered independently (since vj−1 is coloured blue and vj is coloured red). Considering Q′ as
a path with one of its ends initially coloured red, and applying Lemma 8.1.1 to it (with Alice as
the first player), Bob has a strategy ensuring that Alice cannot create a connected red component
of order more than 2 in Q′. Let v` be the first vertex that Alice colours in Q. We distinguish two
cases:

1. ` 6= j − 2. Then, Bob colours vj−2. During the next rounds, whenever Alice plays in Q,
while it is possible, Bob colours a neighbour of the connected blue component containing
vj−1 and vj−2. When it is not possible anymore, either the connected blue component is of

8.1 – Paths and cycles 159

1

2 1 1 2 1 1
2 1 1 2 1 1

If Bob does not colour v4v4, then Alice
colours v4v4. Then, unless Bob

coloured v7v7 and v8v8 during his 2nd
and 3rd turns, Alice can ensure Bob
never has a connected component

of order 3. Otherwise, Alice
colours v2v2 and it is easy to conclude.

2 2 1 1 3

If Bob does not colour v4v4, then
Alice colours v4v4, and it can be

checked that Alice will win.

2 2 1 3 1 3 2 2 1 1

3 3 2 2 1 4 1

3 2 2 1 4 3 1

3 2 2 1 3 4 1

3 2 2 1 3 4 1

3 2 2 1 4 3 1

3 2 2 1 4 3 1

4 2 2 1 3 3 1

2 2 1 4 3 1 3

3 2 2 1 1 3 4

3 2 2 1 1 3 4

If Bob colours v1v1 or v8v8
or v9v9, then Alice

colours v3v3, and it can be
checked that Alice will

win.

2 3 2 1 1 2 2 1 3 1 3 2 1 2 1

3 2 3 2 1 4 1

3 4 2 2 1 3 1

3 3 2 1 2 1 4

2 3 2 1 3 1 4

4 3 2 2 1 3 1

3 3 2 1 2 1 4

2 3 2 1 4 1 3 4 3 2 1 2 1 3

2 3 2 1 4 1 3 4 3 2 1 2 1 3

Only 2 possible
moves for Bob to be

considered, by
symmetry.

Only 2 possible
moves for Bob to be

considered, by
symmetry.

Alice first colours v5v5. There are only 4 possible moves
for Bob to be considered, by symmetry.

Figure 8.2 – Winning strategy for Alice in P9. The squares represent the vertices v1 to v9 from
left to right. A number i in a red (blue, resp.) square indicates this vertex is the ith vertex coloured
by Alice (Bob, resp.). Each arrow corresponds to a move of Bob and then one of Alice. The last
moves in each case are omitted as it is easy to check the last possibilities.

v1 v2 . . . vt vt+1 . . . vj−5 vj−4 vj−3 vj−2 vj−1 vj . . . vn−1 vn

Q Q′

(a)

v1 v2 . . . vt vt+1 . . . vj−5 vj−4 vj−3 vj−2 vj−1 vj . . . vn−1 vn

Q Q′

(b)

v1 v2 . . . vt vt+1 . . . vj−5 vj−4 vj−3 vj−2 vj−1 vj . . . vn−1 vn

Q Q′

R R′

(c)

Figure 8.3 – Second case in the proof of Theorem 8.1.3 where ` = j− 2. Bob begins by colouring
vj−4, as shown in (a). Figure (b) illustrates the case in which Alice then colours vj−3. Figure (c)
illustrates the case in which Alice then colours vt for 1 ≤ t ≤ j− 6 (in the illustration, t < j− 6).

order d(j−1)/2e ≥ 3 (in which case the largest connected red component in Q is of order
b(j− 1)/2c and so, Alice does not win) or it is of order x with 2 ≤ x < (j− 1)/2 and it is
Bob’s turn. In the latter case, the connected blue component in Q consists of the vertices
vj−x, . . . , vj−1, and vj−x−1 is red since Bob cannot colour a neighbour of the connected
blue component. Let R = (v1, . . . , vj−x−1) and note that there are exactly x red vertices

160 CHAPITRE 8 — Playing on simple graphs

in R including vj−x−1 (one of its ends). Then, applying Lemma 8.1.2 to R (with Bob
as the first player), Bob has a strategy ensuring that Alice cannot create a connected red
component of order more than x in R. As usual, whenever Bob cannot follow his strategy,
he simply colours any arbitrary vertex. Hence, the game in Pn ends in a draw in this case.

2. ` = j − 2. Then, Bob colours vj−4 (illustrated in Figure 8.3(a)). Now, if Alice colours
vj−3, then Bob colours vj−5 (as shown in Figure 8.3(b)), and vice versa, and this gua-
rantees that there is a connected blue component of order at least 2. Otherwise, if Alice
colours a vertex vt with 1 ≤ t ≤ j − 6, then Bob colours vt+1, unless vt+1 is already
coloured, in which case, Bob colours vt−1. In the latter case, Bob can ensure a draw since
he can ensure that Alice cannot create a connected red component of order more than 2 in
R∗ = (v1, . . . , vt−1) by Lemma 8.1.1 (with Alice as the first player). So, assume we are
in the former case. Let R = (v1, . . . , vt) and R′ = (vt+1, . . . , vj−5) (see Figure 8.3(c)).
From now on, Bob “follows” Alice (unless Alice colours vj−5, in which case, Bob colours
vj−3), that is, when Alice plays in R (in R′, resp.), Bob then plays in R (in R′, resp.), and
both games are considered independently (since vt is coloured red and vt+1 is coloured
blue). Considering R as a path with one of its ends initially coloured red, and applying
Lemma 8.1.1 to it (with Alice as the first player), Bob has a strategy ensuring that Alice
cannot create a connected red component of order more than 2 in R. Bob plays in R′ as-
suming that vj−5 is already coloured red, and applying Lemma 8.1.1 to it (with Alice as
the first player), Bob has a strategy ensuring that Alice cannot create a connected red com-
ponent of order more than 2 in R′. As usual, whenever Bob cannot follow his strategy, he
simply colours any arbitrary vertex. It is easy to see that, in this case, the largest connected
blue (red, resp.) subgraph is of order at least 2 (at most 2, resp.).

This concludes the proof for n ≥ 11. �

Now, we address the Scoring game in cycles. We again start with a technical lemma for a
specific case in paths, which we will use in the proof for cycles.

Lemma 8.1.4. Let x ≥ 3, n ≥ x+ 1, and let n−x be odd. Consider any path Pn with x vertices,
including both ends, initially coloured blue. If Alice starts, then she has a strategy ensuring that
Bob cannot create a connected blue component of order more than x− 1 in Pn.

Proof. The first case, x = 3, is proven by induction on n. If n = 4, the result obviously holds, so
assume that n > 4 and that the induction holds for all n′ < n.

— First, assume that the initial blue vertices are v1, v2, and vn. Then, Alice colours v3. Then,
Bob colours any uncoloured vertex in Q = (v4, . . . , vn). Now, Q has two blue vertices
(and if there is a connected blue component of order 2 in Q, it contains the end vn of Q).
By Lemma 8.1.2 (with Alice as the first player), Alice can ensure that Bob cannot create a
connected blue component with more than two vertices in Q. Overall, Bob cannot create a
connected blue component of order at least 3 in Pn.

— Next, let v1, vj , vn (with 2 < j < n−1) be the initial blue vertices. W.l.o.g. (up to reversing
the path), assume that j is even (note that n is even since n − x = n − 3 is odd). Then,
Alice colours vj+1. Let Q = (v1, . . . , vj) and Q′ = (vj+2, . . . , vn) (it may be that Q′ is
just the vertex vn). From now on, Alice “follows” Bob, that is, when Bob plays inQ (inQ′,
resp.), Alice then plays in Q (in Q′, resp.), and both games are considered independently
(since vj+1 is coloured red). For the game in Q′, applying Lemma 8.1.1 (with Bob as the

8.1 – Paths and cycles 161

first player), Alice can ensure the largest connected blue component is of order at most 2
in Q′. For the game in Q, by induction on n′ = |Q| < n (note that, because n′ = j is even,
after the first turn of Bob in Q, the hypotheses hold for x = 3 in Q), Alice can ensure the
largest connected blue component is of order at most 2 in Q. Overall, Bob cannot create a
connected blue component of order at least 3 in Pn.

Now, let us assume that x > 3.
First, if there is a connected blue component of order x− 1 containing v1, then Alice colours

vx, and then she can ensure, by Lemma 8.1.1 (with Bob as the first player), that Bob cannot create
a connected blue component with more than two vertices in (vx+1, . . . , vn).

Next, assume that there exists a connected blue component (vj , . . . , vj+x−3) of order x − 2
not containing any end of Pn. By symmetry (up to reversing the path), let j ≤ n− j−x+4. Alice
first colours vj−1. Let Q = (v1, . . . , vj−2) and Q′ = (vj , . . . , vn). From now on, Alice “follows”
Bob, that is, when Bob plays in Q (in Q′, resp.), Alice then plays in Q (in Q′, resp.), and both
games are considered independently (since vj−1 is coloured red). Since j ≤ n − j − x + 4, we
get that 2j − 4 ≤ n − x. Since n − x is odd, it implies that 2j − 4 ≤ n − x − 1, and so, we get
j ≤ n− j − x+ 3. Finally, since j ≥ 3 (as the connected blue component (vj , . . . , vj+x−3) does
not contain v1 which is also blue), it follows that n− j+ 1 ≥ x+ 1. Therefore, Q′ = (vj , . . . , vn)
is of order at least x + 1. When Bob plays in Q, Alice can ensure, by Lemma 8.1.1 (with Bob as
the first player), that Bob cannot create a connected blue component with more than two vertices
in Q. When Bob first plays in Q′, then Q′ becomes a path of order at least x + 1 with x initial
blue vertices, and its largest connected blue component contains its end vj and is of order at most
x− 1. By Lemma 8.1.2 (with Alice as the first player), Alice can ensure that Bob does not create
a connected blue component of order more than x− 1 in Q′.

Otherwise, there must be an uncoloured vertex vj such that at most x − 2 blue vertices are
on the left (on the right, resp.) of vj . Then, Alice first colours vj . Let Q = (v1, . . . , vj−1) and
Q′ = (vj+1, . . . , vn). From now on, Alice “follows” Bob, that is, when Bob plays in Q (in Q′,
resp.), Alice then plays in Q (in Q′, resp.), and both games are considered independently (since vj
is coloured red). By Lemma 8.1.2 (with Alice as the first player), Alice can ensure, both in Q and
Q′, that Bob does not create a connected blue component with at least x vertices (note that after
the first turn of Bob in Q (Q′, resp) it contains at most x− 1 blue vertices including at least one of
its ends). �

Theorem 8.1.5. For all n ≥ 3, the cycle Cn is A-win if and only if n is odd.

Proof. If n is even, then Cn is a reflection graph by Proposition 7.2.3, and so, is AB-draw by
Theorem 7.2.4. Let us now assume that n is odd. We describe a winning strategy for Alice. If
n ≤ 5, the result is obvious, so let us assume that n > 5.

First, let us assume (independently of how this configuration eventually appears) that after
x ≥ 3 rounds, the vertices v1, . . . , vx have been coloured red, the vertices vn and vx+1 are coloured
blue, and any x − 2 other vertices in {vx+2, . . . , vn−1} are coloured blue (see Figure 8.4 for an
illustration). Note that it is now Alice’s turn. By Lemma 8.1.4, Alice may ensure that Bob cannot
create a connected blue component of order at least x in the subgraph induced by (vx+1, . . . , vn).
Therefore, in that situation, Alice wins.

Now, let Alice first colour the vertex v1. If Bob does not colour a neighbour of v1 (say Bob
colours vj with 3 < j < n, since n > 5), then, on her second turn, Alice colours v2. During the
next rounds, while it is possible, Alice colours a neighbour of the connected red component. When

162 CHAPITRE 8 — Playing on simple graphs

vn−1vn

v1

vx vx+1

vx+2

Figure 8.4 – First case in the proof of Theorem 8.1.5 where, after x = 4 rounds, the vertices
v1, . . . , vx are red, the vertices vn and vx+1 are blue, and x− 2 other vertices in {vx+2, . . . , vn−1}
are blue (in this illustration, these vertices are vn−1 and vx+2).

it is not possible anymore, either the connected red component is of order dn/2e or it is of order
at least 3 and we are in the situation of the above paragraph. In both cases, Alice wins.

Therefore, after Alice colours her first vertex (call it v2), Bob must colour some neighbour of
it (say v1). By induction on the number t ≥ 1 of rounds, let us assume that the game reaches, after
t rounds, a configuration where, for every 1 ≤ i ≤ t, the vertices v2i−1 are coloured blue and the
vertices v2i are coloured red. If t = bn/2c, then Alice finally colours vn (recall that n is odd) and
wins. Otherwise, let Alice colour v2t+2.

— If Bob then colours v2t+1, then we are back to the previous situation for t′ = t+ 1. Then,
eventually, Alice wins by induction on n− 2t.

— If Bob does not colour v2t+1, then Alice colours v2t+1 and then continues to grow the
connected red component containing v2t+1 while possible. When it is not possible any-
more, note that contracting the vertices v2 to v2t to a single red vertex, we are back to the
situation of the first paragraph of this proof (with a connected red component of order at
least 3) and, therefore, Alice wins.

�

Allow us to close this section by exhibiting how the arguments used in the proofs above, and
in particular Lemma 8.1.1, can also be useful for providing results when considering the Maker-
Breaker game.

Proposition 8.1.6. Let G be either a path or a cycle of order at least 3. Then cg(G) = 2.

Sketch of the proof. The case where G is a path of order at least 3 is a direct corollary of
Lemma 8.1.1. We will now show that the statement holds when G = Cn, for n ≥ 3.

We first show that cg(Cn) ≥ 2. This is quite trivial as it suffices for Alice to colour any vertex
v of Cn on her first turn, and any uncoloured vertex u ∈ N(v) on her second turn. Note that u
always exists as N(v) = 2 and Bob only colours one vertex in the meantime.

To show that cg(Cn) ≤ 2, Bob’s strategy is to colour a vertex adjacent to the red vertex in the
first round, and now, the game is equivalent to one on a path Pn−1, with one of its ends initially
coloured red. The result follows by Lemma 8.1.1. �

8.2 – The Scoring game on cographs 163

In the following proposition we use the strategies we described for the Scoring game when
played on a path, in order to provide an upper bound on the value of cg(G) when G is a Cartesian
grid, i.e., the Cartesian product Pn�Pm of the paths Pn and Pm.

Proposition 8.1.7. Let n ≤ m. Then, cg(Pn�Pm) ≤ 2n.

Sketch of the proof. Let us consider an n × m grid Pn�Pm with n rows and m columns (with
left and right being defined naturally). Let us consider the following strategy for Bob. When Alice
colours a vertex v, if the right neighbour u of v exists and is uncoloured, then Bob colours u,
otherwise, Bob colours the left neighbour of v if it exists and is uncoloured, and otherwise, Bob
colours any arbitrary uncoloured vertex.

The above strategy for Bob is well-defined and ensures that no three consecutive vertices in
a row are ever red (see the case of paths in Section 8.1 for more details). This ensures that, for
any strategy of Alice, any connected red component has at most 2 vertices in each row, hence,
proving the lemma. Indeed, consider a largest connected red component S at the end of the game.
Towards a contradiction, assume that there exists a row whose intersection with S contains strictly
more than 2 vertices. Then, the restriction of S to this row induces at least two connected red
components X and Y (since there cannot be three consecutive red vertices in a same row). Let
P be any red path from X to Y (that exists since S is connected). It can be shown that P must
contain 3 consecutive red vertices in a same row, a contradiction. �

8.2 The Scoring game on cographs

We continue focusing on the Scoring game. In the previous case of paths and cycles, presented
in Section 8.1, we have seen examples where playing optimally depends more on positional play
with respect to the previously coloured vertices and the graph’s properties, since the sparse struc-
ture of the graph makes it very easy for the players to stop the expansion of the opponent’s largest
connected component. As a consequence, in such cases it is likely that the players must, at some
point, stop growing their largest connected component, and start growing a new one. Obviously,
such a strategy is likely to be far less viable in graph classes that are denser. In such denser graphs,
the game actually tends to turn into a rather different one, where the players grow a single connec-
ted component each, that they have to keep “alive” for as long as possible. We illustrate these
thoughts with the case of cographs, which leads us to introduce a few more notations to describe
a linear-time algorithm deciding the outcome of the Scoring game in such instances.

Definition 8.2.1. A graph G is a cograph if it is P4-free, i.e., if it does not contain any path
with four vertices as an induced subgraph. The class of cographs can also be defined recursively
as follows. The one-vertex graph K1 is a cograph. Let G1 and G2 be two cographs. Then, the
disjoint union G1 + G2 is a cograph. Moreover, the join G1 ⊕ G2, obtained from G1 + G2 by
adding all the possible edges between the vertices of G1 and the vertices of G2, is also a cograph.

Note that a decomposition of a cograph (i.e., a building sequence of unions and joins performed
from single vertices) can be computed in linear time [56].

To simplify the notation in the theorem and its proof to follow, let us introduce the following
graph family.

164 CHAPITRE 8 — Playing on simple graphs

Definition 8.2.2. A graphG isA-perfect if there exists a strategy for Alice that ensures a connected
red component of order

⌈
|V (G)|

2

⌉
, regardless of Bob’s strategy. That is, if a graph G is A-perfect,

then Alice has a strategy to ensure a single connected red component when playing either the
Scoring or the Maker-Breaker game on G.

Theorem 8.2.3. Let G be a cograph. There exists a linear-time algorithm that decides whether G
is A-win or AB-draw, and whether G is A-perfect or not.

Proof. The proof is by induction on n = |V (G)|. More precisely, we describe a recursive algo-
rithm. If n = 1, then G is clearly A-win and G is A-perfect.

Let us now assume that n > 1. There are two cases to be considered. Either G = G1 ⊕ G2
for some cographs G1 and G2, or G = G1 + . . . + Gm, where, for every 1 ≤ i ≤ m (m ≥ 2),
Gi is either a single vertex or is a cograph obtained from the join of two other cographs. For every
1 ≤ i ≤ m, let us assume by induction that it can be computed in time linear in |V (Gi)|, whether
Gi is A-win or AB-draw and whether Gi is A-perfect or not. Let us show, now, how to decide if
G is A-win or AB-draw, and whether G is A-perfect or not, in constant time.

1. Let us first assume that G = G1 ⊕G2. There are three cases to be distinguished.

(a) If n is odd (so we may assume that |V (G2)| ≥ 2), then G is A-win and G is A-perfect.
We describe a winning strategy for Alice. Alice first colours a vertex in G1. In the
second round, Alice colours a vertex in G2 (it is possible since |V (G2)| ≥ 2). Then,
Alice colours any uncoloured vertex in each of the remaining rounds. Regardless of
Bob’s strategy, Alice ends with all the dn2 e red vertices belonging to the same connected
component. Since n is odd, G is A-win, and G is A-perfect.

(b) If |V (G1)|, |V (G2)| ≥ 2 and n is even, then G is AB-draw and G is A-perfect.
We describe a drawing strategy for Bob. W.l.o.g., Alice first colours a vertex in G1.
Then, Bob first colours a vertex in G1 (it is possible since |V (G1)| ≥ 2). In the second
round, Bob colours a vertex inG2 (it is possible since |V (G2)| ≥ 2). Then, Bob colours
any uncoloured vertex in each of the remaining rounds. Regardless of Alice’s strategy,
Bob ends with all the n/2 blue vertices belonging to the same connected component.
Since n is even, Alice cannot have a larger connected red component. Hence, G is
AB-draw and G is A-perfect.

(c) Finally, let us assume that |V (G1)| = 1 (let u be the single vertex of G1) and n is even
(so |V (G2)| is odd). There are two cases to be considered.

i. If G2 is not A-perfect, then G is A-win and G is A-perfect.
We describe a winning strategy for Alice. Alice first colours u. Then, she plays in
G2 as the second player, and thus, she can ensure that any connected blue com-
ponent is of order less than

⌈
|V (G2)|

2

⌉
= dn−1

2 e in G2 since G2 is not A-perfect.
Since u is a universal vertex, regardless of Bob’s strategy, Alice ensures a connec-
ted red component of order n/2, and so G is A-win and G is A-perfect.

ii. If G2 is A-perfect, then G is AB-draw and G is A-perfect.
We describe a drawing strategy for Bob. If Alice first colours a vertex of G2, then
Bob colours u, and then Bob colours any uncoloured vertex of G2 in each of the
subsequent rounds. Then, Bob ensures a connected blue component of order n/2,
and so G is AB-draw and G is A-perfect.

8.2 – The Scoring game on cographs 165

Otherwise, if Alice starts by colouring u, then Bob can play as the first player in
G2 and, in doing so, ensure a connected blue component of order dn−1

2 e = n/2 in
G2. Then, again G is AB-draw and G is A-perfect.

2. Now, let us assume that G = G1 + . . . + Gm where, for every 1 ≤ i ≤ m (m ≥ 2), Gi
is either a single vertex or is a cograph obtained from the join of two other cographs. For
all 1 ≤ i ≤ m, if Gi is a cograph obtained from the join of two other cographs, then let
those two cographs be G′i and G′′i , and let |V (G′i)| ≥ |V (G′′i)|. Also, let ni = |V (Gi)| for
every 1 ≤ i ≤ m, and let us assume that n1 ≥ . . . ≥ nm.
To simplify the case analysis to follow, we will show that we can make several assump-
tions. First note that, if n1 = 1, then G is AB-draw (since n2 = 1 as m ≥ 2) and G
is A-perfect if and only if G = G1 + G2. Hence, we may assume that n1 > 1. Second,
if n2 = 1, then the result of the game in G is the same as the result of the game in G1,
and this result is known since G1 is a join (recall Case 1 of the proof). Moreover, in this
case, G is A-perfect if and only if n1 is odd and G = G1 + G2. Hence, we may also
assume that n2 > 1. Lastly, in what follows, for any of the winning strategies described
for Alice, whenever Bob colours a vertex in Gj for 3 ≤ j ≤ m, Alice also colours a vertex
in Gj on her next turn. The same holds for any of the drawing strategies for Bob (with
Bob and Alice reversed), except for Case 2(e)ii, in which case the same only holds for
4 ≤ j ≤ m. This guarantees that a player never has a connected component of order more
than dnj

2 e in Gj for 3 ≤ j ≤ m (except for Case 2(e)ii in which case the same only holds
for 4 ≤ j ≤ m). Let us remark that Alice will always have a connected red component
of order at least dn1

2 e in all of the winning strategies described for Alice below, and Bob
will always have a connected blue component of order at least dn1

2 e in all of the drawing
strategies described for Bob below. Hence, for all of the cases except Case 2(e)ii, we can
assume that G = G1 +G2, and for Case 2(e)ii, we can assume that G = G1 +G2 +G3.
In what follows, if a player cannot follow their strategy in a round, unless otherwise stated,
they simply colour any arbitrary vertex in that round and then resume their strategy for the
subsequent rounds.
There are five cases to be considered, and recall that we assume that n1 > 1 and n2 > 1
as stated above, which implies that G′′1 and G′′2 exist. Note also that in Case 2(e)iii below,
the statement involves n3, which is not defined if m = 2; in such cases, we consider that
n3 = 0, i.e., regard G3 as an empty graph. Moreover, since Bob always has a strategy
where, for each 1 ≤ i ≤ m, he colours at least bni

2 c vertices of Gi blue, and since n2 > 1,
then G is not A-perfect in all five of the following cases. Thus, all that remains to show is
the outcome of the game on G for each of the cases.

(a) If n1 = n2, then G is AB-draw.
We describe a drawing strategy for Bob. Assume, w.l.o.g., that Alice first colours a
vertex in G1. Bob then colours a vertex in G′′2 . Then, whenever Alice colours a vertex
in G1 (G2, resp.), Bob also colours a vertex in G1 (G2, resp.). In particular, if Bob is
to colour a vertex in G2, then he colours one in G′2 first if possible, and if not, then
he colours a vertex in G′′2 , and lastly, if that is not possible, he colours a vertex in G1.
Similarly, if Bob is to colour a vertex in G1 by this strategy, but cannot since all of the
vertices of G1 are coloured, then he colours one in G′2 first if possible, and if not, then
he colours a vertex in G′′2 .

166 CHAPITRE 8 — Playing on simple graphs

If n1 is odd, then by this strategy, Bob ensures a connected blue component of order
n2−1

2 + 1 = n1−1
2 + 1 in G2 and that the largest connected red component in G is of

order at most n1−1
2 + 1.

If n1 is even, then by this strategy, if Alice colours the last vertex in G1, then Bob
ensures a connected blue component of order dn2−1

2 e + 1 = dn1−1
2 e + 1 in G2 and

that the largest connected red component in G is of order at most dn1−1
2 e + 1. If, on

the other hand, Alice did not colour the last vertex in G1, and so, she coloured the last
vertex in G2, then Bob ensures a connected blue component of order dn2−2

2 e+ 1 = n1
2

in G2 and that the largest connected red component in G is of order at most n1
2 . Hence,

G is AB-draw.

(b) If n1 > n2 and n1 is odd, then G is A-win.
We describe a winning strategy for Alice. Alice first colours a vertex in G1. Then,
whenever Bob colours a vertex in G1 (G2, resp.), Alice colours a vertex in G1 (G2,
resp.). By Case 1(a), Alice has a winning strategy in G1 ensuring a connected red
component of order at least dn1

2 e. By Case 1, Alice ensures that any connected blue
component in G2 is of order at most dn2

2 e < d
n1
2 e. Hence, G is A-win.

(c) If n1 > n2, n1 is even, and |V (G′′1)| ≥ 2, then G is AB-draw.
We describe a drawing strategy for Bob. Whenever Alice colours a vertex in G1 (G2,
resp.), Bob also colours a vertex in G1 (G2, resp.). By Case 1(b), Bob has a drawing
strategy in G1 ensuring a connected blue component of order at least n1

2 . By Case 1,
Bob ensures that any connected red component in G2 is of order at most dn2

2 e ≤
n1
2 .

Hence, G is AB-draw.

(d) If n1 > n2, n1 is even, |V (G′′1)| = 1, and G′1 is A-perfect, then G is AB-draw.
We describe a drawing strategy for Bob. Whenever Alice colours a vertex in G1 (G2,
resp.), Bob also colours a vertex in G1 (G2, resp.). By Case 1(c)ii, Bob has a drawing
strategy in G1 ensuring a connected blue component of order at least n1

2 . By Case 1,
Bob ensures that any connected red component in G2 is of order at most dn2

2 e ≤
n1
2 .

Hence, G is AB-draw.

(e) If n1 > n2, n1 is even, |V (G′′1)| = 1, and G′1 is not A-perfect, then there are three
cases to be considered.

i. If n1 > n2 + 1, then G is A-win.
We describe a winning strategy for Alice. Alice first colours a vertex in G1. Then,
whenever Bob colours a vertex in G1 (G2, resp.), Alice colours a vertex in G1 (G2,
resp.). By Case 1(c)i, Alice has a winning strategy in G1 ensuring a connected red
component of order at least n1

2 , and that any connected blue component in G1 is of
order less than n1

2 . By Case 1, Alice ensures that any connected blue component in
G2 is of order at most dn2

2 e <
n1
2 . Hence, G is A-win.

ii. If n1 = n2 + 1 = n3 + 1, then G is AB-draw.
We describe a drawing strategy for Bob. Whenever Alice colours a vertex in G1,
Bob also colours a vertex in G1. By Case 1, this ensures that n1

2 of the vertices
in G1 are red and n1

2 of them are blue. The first time that Alice colours a vertex
v ∈ V (G2) ∪ V (G3), assume, w.l.o.g., that v ∈ V (G2). Bob then colours a vertex
in G′′3 . Then, whenever Alice colours a vertex in G2 (G3, resp.), Bob also colours

8.3 – The Maker-Breaker game on (q, q − 4)-graphs 167

a vertex in G2 (G3, resp.). In particular, if Bob is to colour a vertex in G3, then he
colours one in G′3 first if possible, and if not, then he colours a vertex in G′′3 , and
lastly, if that is not possible, he colours a vertex in G2. As in Case 2(a), by this
strategy, Bob ensures a connected blue component of order dn3

2 e = n1
2 in G3 and

that any connected red component in G2 is of order at most dn2
2 e = n1

2 . Hence, G
is AB-draw.

iii. If n1 = n2 + 1 and n2 > n3, then G is A-win.
We describe a winning strategy for Alice. Alice first colours the vertex inG′′1 . Then,
Alice colours vertices in G1 as long as she can. By Case 1(c)i, she ensures that any
connected blue component in G1 is of order less than n1

2 . If it is Alice’s turn, there
is a connected red component of order n1−k in G1 for some 0 ≤ k ≤ n1

2 , and it is
the first round in which she can no longer colour vertices in G1, then Bob coloured
k vertices in G1 and n1 − 2k vertices in G2. Then, any connected blue component
in G2 is of order at most dn2−n1+2k−1

2 e+n1− 2k = n1− k− 1 < n1− k. Hence,
G is A-win.

The statement of the theorem then follows since a decomposition of a cograph can be compu-
ted in linear time. �

In the following section we provide a polynomial-time algorithm that computes the result of
the Maker-Breaker game when played on (q, q − 4)-graphs, which generalise cographs.

8.3 The Maker-Breaker game on (q, q − 4)-graphs

In this section, we consider the Maker-Breaker game played in (q, q− 4)-graphs [12], a graph
family that generalises cographs. For a fixed q, these are graphs for which no set of at most q
vertices induces more than q − 4 P4 ’s. Note that cographs are exactly the (q, q − 4)-graphs for
q = 4. The study of (q, q − 4)-graphs is only made possible here thanks to the next lemma which,
although relatively straightforward, is rather useful when considering this game. Intuitively, the
next lemma shows that when playing the Maker-Breaker game on a disconnected graph G, Alice
should focus on the connected component which is the most favourable for her. Note that this is
not necessarily the case when playing the Scoring game on G, as can be justified by the proof of
Theorem 8.2.3.

Lemma 8.3.1. If G is a graph with connected components G1, . . . , Gk, then

cg(G) = max {cg(G1), . . . , cg(Gk)} .

Proof. To show that cg(G) ≤ max {cg(G1), . . . , cg(Gk)}, it suffices to show that for every sub-
graph H of G, cg(H) ≤ cg(G). We give a strategy for Alice ensuring her a score of at least cg(H)
in G. Alice first plays in H according to an optimal strategy S in H . Then, whenever Bob plays
in H , Alice responds in H according to S, and if this is not possible (the vertex to be coloured
by S is already coloured or there are no uncoloured vertices in H) or Bob plays in G, then Alice
colours any arbitrary uncoloured vertex in G. In particular, whenever Alice is forced to colour an
arbitrary vertex in H , she ignores the fact that vertex is coloured when considering her strategy S
in H in the future. The result follows since Alice will colour at least all the vertices in H that she
would colour by S, ensuring her a score of at least cg(H) in G since S is optimal in H .

168 CHAPITRE 8 — Playing on simple graphs

(a) A matched spider (b) An antimatched spider (c) A q-pseudo-spider, 0 ≤ q ≤ 6

Figure 8.5 – Examples of graphs described in Definition 8.3.4. The colours in the vertices are used
to denote to which set each vertex belongs. The colour red is used for the vertices of S, the colour
blue for the vertices of K and olive for the vertices of R.

We will now show that cg(G) ≥ max {cg(G1), . . . , cg(Gk)}. Since the k connected compo-
nents are pairwise disconnected, Bob can just respond in the same connected component that Alice
just played in during each turn. If this is not possible, he colours any arbitrary uncoloured vertex
in G, which can only be beneficial to him. �

The main consequence of Lemma 8.3.1, is that when studying cg for a given class of graphs,
we only need to focus on its connected members. Thus, dealing with cographs in the context of the
Maker-Breaker game is quite easier than doing so in the context of the Scoring game, as it suffices
to focus only on connected cographs, hence, the join of two cographs.

Lemma 8.3.2. For every two graphs G and H , the join G⊕H is A-perfect.

Proof. Consider the strategy for Alice where she aims at having coloured a vertex u ∈ V (G) and
a vertex v ∈ V (H) by the end of the second round. Note that this is always possible to achieve,
unless |V (G)| = |V (H)| = 1, in which case the statement is clearly true. In the other cases,
{u, v} is a connected dominating set of G⊕H , and thus, the result follows by Lemma 7.1.1. �

Theorem 8.3.3. If G is a cograph, then determining cg(G) can be done in linear time.

Proof. Since every connected cograph is the join of two cographs, then, by Lemmata 8.3.1
and 8.3.2, we get that cg(G) =

⌈
|V (Gi)|

2

⌉
, where Gi is the connected component of G of the

largest order. �

Before we deal with (q, q − 4)-graphs, let us state the formal definitions of these graphs.

Definition 8.3.4. Let G = (S,K,R,E) be a graph with V (G) = S ∪ K ∪ R and E(G) = E.
Consider the following properties:

1. S ∪K ∪R is a partition of V (G) and R can be the empty set.

2. G[K ∪ R] = K ⊕ R (i.e., for all u, v ∈ V (G) such that u ∈ K and v ∈ R, we have that
uv ∈ E), and K separates S from R (i.e., for all u ∈ S and v ∈ R, we have that uv /∈ E).

3. S is an independent set,K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S →
K such that, either, for every vertex s ∈ S, N(s) ∩K = K \ {f(s)}, or, for every vertex
s ∈ S, N(s)∩K = {f(s)}. In the former case, we say that f is an antimatching, with the
vertices s and f(s) being antimatched, and in the latter case, we say that f is a matching,
with the vertices s and f(s) being matched.

8.3 – The Maker-Breaker game on (q, q − 4)-graphs 169

If G = (S,K,R,E) verifies all the properties above, it is called a spider. In that case, if f is
a matching (antimatching, resp.), we say that G is a matched spider (antimatched spider, resp.).
Also, if G only verifies Properties 1. and 2. above, it is called a pseudo-spider. In this case, for
any fixed q ≥ 0 such that |V (S ∪K)| ≤ q, we say that G is a q-pseudo-spider. In Figure 8.5 we
illustrate examples for such graphs.

For a fixed q ≥ 0, a graph G is a (q, q − 4)-graph if every subset S ⊆ V (G) of at most q
vertices of G induces at most q − 4 paths on 4 vertices. Note that a cograph is a (q, q − 4)-graph
when q = 4. Equivalently:

Theorem 8.3.5 ([13]). A graph G is a (q, q − 4)-graph if one of the following is satisfied:

1. G is the graph K1.

2. G = G1 +G2, where G1 and G2 are (q, q − 4)-graphs.

3. G = G1 ⊕G2, where G1 and G2 are (q, q − 4)-graphs.

4. G is the spider (S,K,R,E), where G[R] (if R is not empty) is a (q, q − 4)-graph. Note
that, by the definition of a spider, G[S ∪K] induces a (q, q − 4)-graph.

5. G is the q-pseudo-spider (S,K,R,E), whereG[R] (ifR is not empty) is a (q, q−4)-graph.

The above theorem gives us a recursive definition of (q, q − 4)-graphs. In particular, for every
(q, q−4)-graph G, there exists a decomposition-tree (not necessarily unique) representing G. The
internal nodes of such a decomposition correspond to subgraphs of G that are (q, q − 4)-graphs,
and its leaves either correspond to a single vertex or to a subgraph with at most q vertices. The
root corresponds to G, and every internal node has exactly two children (describing the four cases
2 to 5 above). Such a decomposition-tree can be computed in linear time [14]. We are now ready
to prove the main result in this section:

Theorem 8.3.6. Let q ≥ 0. For a (q, q − 4)-graph G, determining cg(G) and an optimal strategy
for Alice can be done in linear time.

Proof. Let us first compute (in linear time) a decomposition-tree T of G. Now, let us describe the
algorithm that proceeds bottom-up from the leaves to the root of T . Every leaf of T corresponds
to a subgraphG′ with a bounded number of vertices, and therefore, cg(G′) and an optimal strategy
for Alice can be computed in time O(1). For every internal node v (corresponding to a subgraph
G′ of G) of T , cg(G′) and a corresponding strategy for Alice are computed from what has already
been computed for the two subgraphs corresponding to the children of v.

Precisely, let G1 and G2 be the two subgraphs of G corresponding to the children of the root
of T , and assume by induction that cg(G1), cg(G2), and optimal strategies for Alice in G1 and G2
have been computed in linear time. We now describe how the algorithm proceeds for G, and we
set |V (G)| = n. There are 4 cases depending on how G is obtained from G1 and G2.

1. IfG = G1 +G2, then cg(G) = max{cg(G1), cg(G2)} by Lemma 8.3.1. W.l.o.g., cg(G) =
cg(G1). By induction, cg(G1) and a strategy for Alice have already been computed.

2. If G = G1 ⊕G2, then cg(G) =
⌈
n
2
⌉

by Lemma 8.3.2. Moreover, a corresponding strategy
for Alice is also given in the proof of Lemma 8.3.2.

3. Assume that G = (S,K,R,E) is a spider with G1 = G[S ∪ K] and G2 = G[R]. Note
that if |R| is odd (even, resp.), then n is odd (even, resp.), as |S| = |K|. There are two
subcases:

170 CHAPITRE 8 — Playing on simple graphs

(a) G is an antimatched spider.
Assume that |K| ≥ 3 since G is a matched spider if |K| = 2. Then, cg(G) =

⌈
n
2
⌉
.

Indeed, consider any strategy for Alice where she colours two uncoloured vertices
v1, v2 ∈ K in the first two rounds (this is possible since |K| ≥ 3). Since G is an
antimatched spider, for every vertex v ∈ S, at least one of the edges in {vv1, vv2} is
in E. Thus, since K is also a clique and G[K ∪R] = K ⊕R, the set {v1, v2} forms a
connected dominating set of G, and we get the result by Lemma 7.1.1.

(b) G is a matched spider.
Let us show that

cg(G) =


⌈
n
2
⌉
−
⌈⌊ |K|

2

⌋
2

⌉
if n and

⌊
|K|
2

⌋
are odd.

⌈
n
2
⌉
−
⌊⌊ |K|

2

⌋
2

⌋
otherwise.

Bob’s strategy First, we give a strategy for Bob to prove the upper bound on cg(G) in
both cases. Bob first plays exhaustively in K (i.e., until every vertex in K is coloured),
then he plays exhaustively inR, then he colours the vertices of S that are matched to red
vertices of K, and finally, he colours any remaining uncoloured vertices (the vertices
of S that are matched to blue vertices of K). By Bob’s strategy, at the end of the game,
any red vertex in S that is matched to a blue vertex of K forms a one-vertex connected
red component. Let r∗S be the number of such red vertices. Then, cg(G) ≤

⌈
n
2
⌉
− r∗S .

Let us first show that r∗S ≥
⌊⌊ |K|

2

⌋
2

⌋
. Let bK be the number of blue vertices in K once

all the vertices of K are coloured. Since Bob first exhaustively colours the vertices in
K, we have that bK ≥

⌊
|K|
2

⌋
. Then, while it is possible, Bob colours vertices that are

not vertices of S matched to blue vertices in K. Consider the very first point of the
game where no such vertex exists (this can occur after a move made by Alice or Bob).
Let rS ≥ 0 be the number of vertices in S that, at this point, are red and matched to
a blue vertex in K. Now, Bob colours the uncoloured vertices of S matched to blue
vertices, and thus, Bob colours at most

⌈
bK−rS

2

⌉
such vertices. Hence, Alice colours at

least
⌊
bK−rS

2

⌋
such vertices. We get that r∗S ≥ rS +

⌊
bK−rS

2

⌋
≥
⌊
bK
2

⌋
≥
⌊⌊ |K|

2

⌋
2

⌋
.

Now, let us consider the particular case where n and
⌊
|K|
2

⌋
are odd, and let us refine

the above analysis to show that, in this case, r∗S ≥
⌈⌊ |K|

2

⌋
2

⌉
. First, if bK >

⌊
|K|
2

⌋
, then,

since
⌊
|K|
2

⌋
is odd, we get that

⌊
bK
2

⌋
>

⌊⌊ |K|
2

⌋
2

⌋
, and so,

⌊
bK
2

⌋
≥
⌈⌊ |K|

2

⌋
2

⌉
, implying

that r∗S ≥
⌈⌊ |K|

2

⌋
2

⌉
. Hence, we may assume that bK =

⌊
|K|
2

⌋
, and so, bK is odd. Since

n is odd, Alice is the last player to colour a vertex inG. Hence, just before Bob colours
his first vertex of S matched to a blue vertex in K, there are an even number of such

8.3 – The Maker-Breaker game on (q, q − 4)-graphs 171

uncoloured vertices remaining. Since bK is odd, this implies that rS ≥ 1. Hence,

r∗S ≥ 1 +
⌊
bK − 1

2

⌋
= 1 +


⌊
|K|
2

⌋
− 1

2

 = 1 +


⌊
|K|
2

⌋
2

 ≥

⌊
|K|
2

⌋
2

 .
Thus, we have proved the upper bound on cg(G) in both cases.

Alice’s strategy Now, we give a strategy for Alice to prove the lower bound on cg(G)
in both cases. Alice first plays exhaustively in K, then she plays exhaustively in R,
then she colours the vertices of S that are matched to red vertices of K, and finally,
she colours any remaining uncoloured vertices (the vertices of S that are matched to
blue vertices of K). Let rK be the number of red vertices in K once all the vertices
of K are coloured. Since Alice first exhaustively colours the vertices in K, we have
that rK ≥

⌈
|K|
2

⌉
. Let bK = |K| − rK ≤

⌊
|K|
2

⌋
be the number of blue vertices in K

once all the vertices of K are coloured. Let uS be the number of vertices of S that are
matched to blue vertices in K. Obviously, uS ≤ bK . Alice’s strategy ensures that, at
the end of the game, the red vertices induce one connected component X and (if Bob
plays optimally) some isolated vertices in S that are matched to blue vertices in K.
By Alice’s strategy, there are at most

⌈uS
2
⌉

such isolated red vertices. Hence, |X| ≥⌈
n
2
⌉
−
⌈uS

2
⌉
≥
⌈
n
2
⌉
−
⌈
bK
2

⌉
. Thus, |X| ≥

⌈
n
2
⌉
−
⌈⌊ |K|

2

⌋
2

⌉
, which matches the upper

bound when n and
⌊
|K|
2

⌋
are odd. Also, if

⌊
|K|
2

⌋
is even, then

⌈⌊ |K|
2

⌋
2

⌉
=
⌊⌊ |K|

2

⌋
2

⌋
, and

so, |X| ≥
⌈
n
2
⌉
−
⌊⌊ |K|

2

⌋
2

⌋
.

The last case to consider is when n is even. Then, Bob is the last player to colour
a vertex. This implies that Alice colours at most

⌊uS
2
⌋

vertices of S matched to blue

vertices in K. So, |X| ≥
⌈
n
2
⌉
−
⌊uS

2
⌋
≥
⌈
n
2
⌉
−
⌊
bK
2

⌋
≥
⌈
n
2
⌉
−
⌊⌊ |K|

2

⌋
2

⌋
.

4. Finally, let us assume that G = (S,K,R,E) is a q-pseudo-spider with G1 = G[S ∪
K] (with |V (G1)| ≤ q) and G2 = G[R]. By Lemma 8.3.1, we may assume that G is
connected.
First, let us consider the case where |V (G2)| ≤ 2q, and so, |V (G)| ≤ 3q. An exhaus-
tive search allows to compute cg(G) and a corresponding strategy for Alice in time O(1).
Roughly, the set of all games in G can be described by one rooted tree with maximum
degree at most 3q and depth 3q. A classical dynamic-programming algorithm on this
execution-tree can be used to compute the result in time O(1).
From now on, let us assume that |V (G2)| > 2q. Note that, in this setting, as soon as
Alice colours a vertex of G2 (and she will always be able to do that in the strategies below
because |V (G2)| > 2q), all the red vertices of K will belong to the same connected red
component (since G[K ∪ R] = K ⊕ R). Moreover, in what follows, Alice will always
colour at least

⌊
|V (G2)|

2

⌋
≥ q vertices in G2, connected by a vertex of K, ensuring that the

largest connected red component is always this one (the one containing all the red vertices
of G2) since |V (G1)| ≤ q.

172 CHAPITRE 8 — Playing on simple graphs

In what follows, we make use of the following slight variation of the Maker-Breaker Lar-
gest Connected Subgraph game. Consider the following game that takes a graph H and
X ⊆ V (H) as inputs. The game proceeds as the Maker-Breaker Largest Connected Sub-
graph game does, i.e., Alice and Bob take turns colouring vertices of G starting with Alice
and with all the vertices being initially uncoloured. The difference lies in the objective
of Alice. At the end of the game, the score achieved by Alice is the total number of red
vertices that belong to the connected red components containing vertices of X . Intuitively,
we see all the connected red components with at least one vertex in X as a single connec-
ted red component. Let cg(H,X) be the largest integer k such that Alice has a strategy
to ensure a score of at least k with input (H,X), regardless of how Bob plays. Note that,
by arguments similar to those near the beginning of this proof, if |V (H)| = O(1), then
cg(H,X) (and a corresponding strategy for Alice) can be computed in time O(1) for all
X ⊆ V (H).
By the previous remark, cg(G1,K) (and a corresponding strategy S1

a for Alice) can be
computed in time O(1). By an exhaustive computation in constant time (since |V (G1)| =
O(1)), it is actually possible to consider all the strategies for Alice and Bob, including
the ones where they may each skip one of their turns. If (in the variant game with input
(G1,K)) there exists a strategy for Alice guaranteeing her a score of at least cg(G1,K),
in which she skips one of her turns, and such that, if Bob skips a turn before Alice, then
Alice can score at least cg(G1,K) + 1 without skipping any of her turns, then let S2

a be
such a strategy for Alice. On the other hand, if (in the variant game with input (G1,K))
there exists a strategy for Bob guaranteeing that Alice cannot score more than cg(G1,K),
in which he skips one of his turns, and such that, if Alice skips a turn before Bob, then Bob
can guarantee that Alice scores at most cg(G1,K) − 1 without skipping any of his turns,
then let S2

b be such a strategy for Bob. Note that, by definition, S2
a and S2

b cannot both exist
simultaneously.
Now, let us consider the following strategy Sb for Bob. Whenever Alice colours a vertex in
G1, Bob plays in G1 following a strategy that ensures that Alice scores at most cg(G1,K)
in the variant game with input (G1,K). Whenever Alice colours a vertex in G2, Bob
colours any vertex ofG2 (if no such move is possible, Bob colours any arbitrary uncoloured
vertex in G). This ensures that the largest connected red component is of order at most
cg(G1,K) +

⌈
|V (G2)|

2

⌉
. That is, cg(G) ≤ cg(G1,K) +

⌈
|V (G2)|

2

⌉
.

Let us also define the following strategy Sa for Alice. First, Alice colours the first vertex
in G1 that ensures her a score of at least cg(G1,K) in the variant game with input (G1,K)
(following strategy S1

a). Then, whenever Bob colours a vertex in G1, Alice colours the
vertex ofG1 following her strategy S1

a to ensure a score cg(G1,K) in the variant game with
input (G1,K). Whenever Bob colours a vertex in G2, Alice colours any vertex in G2. If
no such move is possible, Alice colours any arbitrary uncoloured vertex. This ensures that
the largest connected red component is of order at least cg(G1,K)+

⌊
|V (G2)|

2

⌋
(recall that,

since |V (G2)| ≥ 2, Alice colours at least one vertex inG2). That is, cg(G) ≥ cg(G1,K)+⌊
|V (G2)|

2

⌋
.

Note that the upper and lower bounds above match when |V (G2)| is even. Assume now
that |V (G2)| is odd. We distinguish three cases in what follows. In all of the strategies
below, the first player to colour a vertex in G2 will colour at least

⌈
|V (G2)|

2

⌉
vertices in G2.

8.3 – The Maker-Breaker game on (q, q − 4)-graphs 173

— First, let us assume that the strategy S2
a for Alice in G1 defined above exists. In that

case, let us define Alice’s strategy for G as follows. Alice plays her first turns in G1
following S2

a until she can skip a turn in G1 (i.e., the first time she can skip a turn in
G1 while still guaranteeing a score of at least cg(G1,K) in the variant game with input
(G1,K)).
— If, in one of these rounds, Bob plays in G2, then Alice first plays an extra turn in

G1 (following S2
a that ensures her a score of at least cg(G1,K) + 1 in the variant

game with input (G1,K)), and then, each time Bob plays in G1, she plays in G1
according to S2

a in the variant game with input (G1,K), and each time Bob plays
in G2, she plays in G2.

— Otherwise, Bob also plays in G1 until Alice can skip a turn in G1. Then, once she
can skip a turn in G1 according to S2

a , Alice colours a vertex in G2. From then,
whenever Bob colours a vertex in G1, she colours a vertex in G1 following S2

a .
Otherwise, she colours any arbitrary vertex in G2.

In both cases, this guarantees Alice a score of at least cg(G1,K)+
⌈
|V (G2)|

2

⌉
, matching

the upper bound.
— Second, let us assume that the strategy S2

b for Bob in G1 defined above exists. Note
that S2

a does not exist, so Alice cannot skip one turn inG1 without decreasing her score
in the variant game with input (G1,K). Bob plays his first turns in G1 following S2

b

until he can skip a turn in G1.
— If, in one of these rounds, Alice plays inG2, then Bob first plays an extra turn inG1

(following S2
b that ensures him that Alice will score at most cg(G1,K) − 1 in the

variant game with input (G1,K)). Then, whenever Alice plays in G1, he continues
to follow S2

b in the variant game with input (G1,K), and when Alice plays in G2,
Bob plays in G2.

— Otherwise, Alice also plays in G1 until Bob can skip a turn in G1. Then, once he
can skip a turn in G1 according to S2

b , Bob colours a vertex in G2. From then,
whenever Alice colours a vertex in G1, he colours a vertex in G1 following S2

b .
Otherwise, he colours any arbitrary vertex in G2.

In both cases, this guarantees that Alice’s score is at most cg(G1,K) +
⌊
|V (G2)|

2

⌋
,

matching the lower bound.
— Finally, if none of the strategies S2

a and S2
b exist, the result depends on the parity of

|V (G1)|. Indeed, if Alice skips one turn in G1, then Bob can ensure she scores at
most cg(G1,K) − 1 in the variant game with input (G1,K). On the other hand, if
Bob skips one turn in G1, Alice can score at least cg(G1,K) + 1 in the variant game
with input (G1,K). For Alice to ensure her upper bound and for Bob to ensure the
lower bound, both of them will play in priority in G1. That is, the first vertex of G2
is coloured after all the vertices of G1 have been coloured (and Alice has achieved a
score of cg(G1,K) in the variant game with input (G1,K)). If |V (G1)| is even, Alice
is the first player to colour a vertex in G2, which allows her to score the upper bound
cg(G1,K) +

⌈
|V (G2)|

2

⌉
. Otherwise, Bob is the first player to colour a vertex in G2,

which implies that Alice can score at most the lower bound cg(G1,K) +
⌊
|V (G2)|

2

⌋
.

�

174 CHAPITRE 8 — Playing on simple graphs

Figure 8.6 – Illustration of the infinite Hexagonal grid GH∞ in the proof of Proposition 8.3.7. The
connected red subgraphs are vertex-disjoint 6-cycles covering all the vertices of GH∞. The black
edges induce a matching of GH∞.

We close this section by providing an additional way in which Lemma 8.3.1 can be used.
Indeed, apart from dealing with graphs with multiple connected components, the proof of
Lemma 8.3.1 also implies that for every subgraph H of G, cg(H) ≤ cg(G). To illustrate the
usefulness of this result we consider the case of playing the Maker-Breaker game in hexagonal
grids.

Proposition 8.3.7. If G is a finite subgraph of the infinite hexagonal grid, then cg(G) ≤ 6.

Proof. Let GH∞ be the infinite hexagonal grid as partially shown in Figure 8.6. By the proof of
Lemma 8.3.1, it is sufficient to show that cg(GH∞) ≤ 6. Let (Ci)i∈N be the set of vertex-disjoint
subgraphs of GH∞ depicted in red in Figure 8.6. Note that, for any i ∈ N, Ci induces a cycle of
order 6 and (V (Ci))i∈N is a partition of V (GH∞). Furthermore, M = E(GH∞) \ (

⋃
i∈NE(Ci))

(black edges in Figure 8.6) is a matching of GH∞. Note also that, for any i 6= j, every path from
a vertex of Ci to a vertex of Cj contains an edge in M (since, for every subgraph Ci, the edges
adjacent to a vertex of V (Ci), but not in E(Ci), are by definition in M).

Let us consider the following strategy for Bob. First, note that, for any vertex v ∈ V (G), there
is at most one edge uv ∈M incident to v since M is a matching. Thus, each time Alice colours a
vertex v, Bob colours the vertex u such that uv ∈ M , if it exists and it is uncoloured, and if not,
then he colours any arbitrary uncoloured vertex in G. Let us show that Bob’s strategy ensures that
Alice cannot create a connected red component of order more than 6. Towards a contradiction, let
us assume that Alice creates a connected red component S of order at least 7. Then, there exist
u, v ∈ S and i 6= j such that u ∈ V (Ci) and v ∈ V (Cj) (because the Ck’s partition the vertex-set
of GH∞ and each Ck has order 6). As was mentioned above, every path between u and v must
contain an edge of M , and so, by Bob’s strategy, a vertex of this path has been coloured by Bob,
contradicting that u and v belong to the same connected red component. �

Through a tedious case analysis, it might be possible to prove that cg(GH∞) = 6. However, the
case of other classic types of grids seems trickier, as indicated by the partial result we have already
provided in Proposition 8.1.7.

8.4 – Conclusion 175

8.4 Conclusion

In this chapter we treated some “simple” families of graphs. We first determined the outcome
of the Scoring game when played on paths and cycles. We then showed that deciding the outcome
of either game when played on cographs can be done in linear time. Finally, we provided a linear
time algorithm that decides the outcome of the Maker-Breaker game when played on (q, q − 4)-
graphs, a family that generalises cographs.

As illustrated by the cases of paths and cycles, and cographs, there is not a unique way to play
the Scoring game. Indeed, Alice and Bob, depending on the graph’s properties, might have several
strategical options to choose from. Each such strategy is already interesting by itself, and could
thus be subject to a dedicated focus as further work on the topic.

An even more interesting direction is to compare such strategies for the two introduced games.
Indeed, Lemma 8.3.1 draws a neat difference between the two versions of the game, as the out-
come of the Scoring game in a disconnected graph cannot be established as simply as in the
Maker-Breaker game. This is because, in the latter version, Bob does not care about the structure
induced by the blue vertices. However, in the Scoring game, there are scenarios in which it is more
favourable for Bob to play in a connected component G2 different from the one G1 that Alice just
played in. This would be like skipping a turn inG1, but playing an extra turn inG2 (or playing first
in G2). Thus, to establish a result similar to Lemma 8.3.1 for the Scoring game, one has to deal
with the effects of skipping and playing extra turns, as well as Bob playing first, which seems like a
tricky, yet interesting, aspect to study. Such a result would also be helpful for extending our linear
time algorithm for deciding the outcome of the Scoring game on cographs to (q, q− 4)-graphs, as
we did in Theorem 8.3.6 for the Maker-Breaker game.

Regarding determining cg for other graph classes, an appealing direction could be to consider
standard graph classes such as trees. Theorem 8.1.3 implies that cg(Pn) = 2 for any path Pn of
order n ≥ 3, and we believe that understanding the Maker-Breaker game in larger subclasses of
trees such as caterpillars and subdivided stars is feasible, but requires a lot of work to prove, for a
not so substantial result. Thus, we think it would be most interesting to study directly the class of
trees rather than its subclasses. Other natural graph classes to be investigated are graph products.
For instance, we wonder whether cg(Qn) can be easily determined for a hypercube Qn (where,
recall, Q2 is the cycle C4 of length 4, and, for every n > 2, the hypercube Qn is the Cartesian
product Qn−1�P2 of Qn−1 and the path P2 of order 2). Also, in the upcoming Chapter 9, we will
discuss about king’s grids for which we will provide bounds on cg when there are two rows and m
columns.

Regarding Proposition 8.1.7, we would be interested in knowing the precise value of
cg(Pn�Pm) in general. One issue we ran into is the fact that Alice can play in a non-connected
way (meaning that during a turn Alice can colour a vertex that is not adjacent to a red vertex) and
it is not clear how Bob should anticipate to prevent connected red components to merge later on.
This is the first indication that a connected variant of the Maker-Breaker game, where Alice is
only allowed to colour neighbours of red vertices after the first turn, is an interesting game to be
studied. We comment further on this variant in the conclusion of the upcoming Chapter 9 as some
arguments presented in that chapter, in particular in Section 9.3, will give us a better understanding
of the behaviour of such a variant.

CHAPTER 9
A-perfect graphs and

regularity
In this chapter we focus on the Maker-Breaker games, and specifically on the question
of identifying A-perfect graphs. We show that there exist arbitrarily large A-perfect d-
regular graphs for any d ≥ 4, but, surprisingly, any 3-regularA-perfect graph is of order
strictly less than 18. Moreover, we give sufficient conditions, in terms of the number of
edges or the maximum and minimum degrees, for a graph to be A-perfect.

9.1 Preliminaries . 177
9.2 A-perfect regular graphs . 178

9.2.1 Regular graphs reaching the bounds of cg 178
9.2.2 The peculiar case of cubic graphs 180

9.3 Sufficient conditions for graphs to be A-perfect 182
9.3.1 Graphs with large degrees 182
9.3.2 Graphs with large size . 182

9.4 Conclusion . 188

This chapter focuses on the Maker-Breaker game. In Section 9.1 we provide some additional
motivation for introducing this game. We also provide lower and upper bounds on the parameter
cg. Then, looking for graphs that verify the previously given bounds, we look into connected
regular graphs that are A-perfect. In Section 9.2.1 we provide constructions for arbitrarily large
connected d-regular graphs that are A-perfect, for d ≥ 4. Then, in Section 9.2.2, we show that any
3-regular A-perfect graph is of order strictly less than 18. We then move on to Section 9.3, where
we provide sufficient conditions for a graph to be A-perfect, depending on the degrees or the size
of the graph.

9.1 Preliminaries

Allow us to better describe our motivation for introducing the Maker-Breaker game, with
regards to the Scoring game. In the latter game, for certain subgraphs of some graphs, it may not
be interesting for Bob to try to increase his score in those subgraphs, but rather just to limit Alice’s
score in them. In particular, this can be the case in graphs that are not connected (as we exhibited

177

178 CHAPITRE 9 — A-perfect graphs and regularity

for the case of cographs in Chapter 8). Understanding just how much Bob can limit Alice’s score in
these subgraphs is equivalent to playing the Maker-Breaker game in them. Another motivation is
to understand the properties of graphs in which Alice can ensure a single connected red component
at the end of the Scoring game (especially since Alice wins in these graphs if they have odd order).
This leads us to consider A-perfect graphs in the context of the Maker-Breaker game, which are
the graphs G for which cg(G) = d|V (G)|/2e.

To avoid any confusion, let us clarify that in this chapter we are only interested by A-perfect
graphs for the Maker-Breaker game. Note that the proofs of Theorem 7.3.3 and Corollary 7.3.4
imply that:

Corollary 9.1.1. Deciding if a graphG isA-perfect is PSPACE-complete, even ifG is a bipartite
graph with diameter 4 or a split graph.

We close this section with a first lemma that treats the general upper and lower bounds for the
parameter cg(G):

Lemma 9.1.2. For every graph G,
⌊

∆(G)
2

⌋
+ 1 ≤ cg(G) ≤

⌈
|V (G)|

2

⌉
.

Proof. The right-hand side of the inequality follows from the fact that Alice always colours exactly⌈
|V (G)|

2

⌉
vertices. We now give a strategy for Alice that ensures a score of at least

⌊
∆(G)

2

⌋
+ 1, to

prove the left-hand side of the inequality. In the first round, Alice colours a vertex v with degree
∆(G). Then, in each of the next rounds, if possible, Alice colours an uncoloured neighbour of v.
Once the game ends, by the strategy above, Alice must have coloured v and at least half of its
neighbours, and the result follows. �

Both bounds in Lemma 9.1.2 can be reached for arbitrarily large graphs. For example, there
exist arbitrarily large connected graphs that areA-perfect, since every graph with a universal vertex
is A-perfect. Regarding the lower bound, the graph G that is the disjoint union of m copies of the
complete graph Kd+1 (for any d ∈ N) is d-regular, and cg(G) =

⌊
d
2

⌋
+ 1, while G gets more and

more distant from being A-perfect as m increases.
This last remark makes us wonder about the tightness of the bounds in Lemma 9.1.2 for ar-

bitrarily large regular connected graphs. In the following sections we establish that there exist
arbitrarily large connected d-regular graphs G, with d ≥ 3, for which cg(G) is close to the lower
bound (Lemma 9.2.1), while, for every d ≥ 4, there exist arbitrarily large connected d-regular
graphs G that are A-perfect (Lemma 9.2.2). Surprisingly, the latter result does not hold for every
d ≥ 3, as we prove that any sufficiently large cubic graph is not A-perfect (Theorem 9.2.4).

9.2 A-perfect regular graphs

Before stating our results on cg(G) where G is a regular graph, note that the case of 2-regular
graphs, i.e., cycles, has already been dealt with through Proposition 8.1.6. Thus, in what follows
we consider d-regular graphs, for d ≥ 3.

9.2.1 Regular graphs reaching the bounds of cg
We now show that the lower bound in Lemma 9.1.2 is almost tight for arbitrarily large connec-

ted d-regular graphs, for every d ≥ 3.

9.2 – A-perfect regular graphs 179

(a) d = 4 (b) d = 5

Figure 9.1 – Examples of d-regular A-perfect graphs constructed in the proof of Lemma 9.2.2.

Lemma 9.2.1. For every d ≥ 3, there exist arbitrarily large connected d-regular graphs G such
that cg(G) ≤

⌈
d+3

2

⌉
.

Proof. LetG be the graph constructed as follows. Start fromN ≥ 2 disjoint copiesH0, . . . ,HN−1
of the complete graph on d + 1 vertices. Now, for every i ∈ {0, . . . , N − 1}, remove the edge
uivi, where ui and vi are any two distinct vertices of Hi. Finally, add the edge viui+1 for every
i ∈ {0, . . . , N − 1} (where, here and further, operations are understood modulo N). Note that the
resulting graph G is d-regular, and, free to consider large values of N , can be as large as desired.
For every i ∈ {0, . . . , N − 1}, every vertex of Hi that is different from ui and vi is said to be
internal (to Hi). Since d ≥ 3, every Hi has at least two internal vertices.

We give a strategy for Bob that ensures that Alice’s score inG is at most
⌈
d+3

2

⌉
. In each round,

if the last vertex coloured by Alice is
— some vertex ui, then Bob colours vi−1;
— some vertex vi, then Bob colours ui+1;
— a vertex internal to some Hi, then Bob colours an uncoloured vertex internal to the same

Hi.
By this strategy, once the game ends, every connected red component must be completely

contained inside some Hi. This is because this strategy guarantees that any two vertices vi and
ui+1 end up coloured either by different players, or by Bob only. It thus follows that the largest
connected red component contains, in the worst-case scenario, some ui, vi, and half of the other
vertices of Hi. In other words, the largest connected red component is of order at most

⌈
d+3

2

⌉
. �

Regarding the upper bound from Lemma 9.1.2 in the context of arbitrarily large connected
d-regular graphs, we prove the following:

Lemma 9.2.2. For every d ≥ 4, there exist arbitrarily large d-regular A-perfect graphs.

Proof. Let N > 2, and let d ≥ 4 be fixed. To prove the claim, we construct a d-regular graph
G, whose order is a function of N , such that cg(G) =

⌈
|V (G)|

2

⌉
. We give two possible construc-

180 CHAPITRE 9 — A-perfect graphs and regularity

tions for G, depending on whether d = 4 or d ≥ 5 (see Figure 9.1 for an illustration of both
constructions).

— For the case d = 4, G is the 4-regular graph having two vertices ui1 and ui2 for every
i ∈ {0, . . . , N − 1}, and the four edges ui1u

i+1
1 , ui1u

i+1
2 , ui2u

i+1
1 , ui2u

i+1
2 for every i ∈

{0, . . . , N − 1} (where, here and further, operations over the superscripts are modulo N).
To prove that G is A-perfect, we give a strategy for Alice that ensures that, at the end
of the game in G, the red subgraph is connected. In the first round, Alice colours u0

1.
Then, in the subsequent rounds, if the last vertex Bob coloured is uj1 (uj2, resp.) for some
j ∈ {1, . . . , N − 1}, Alice responds by colouring uj2 (uj1, resp.). Otherwise, Alice colours
any arbitrary uncoloured vertex. By Alice’s strategy, at the end of the game, for every
0 ≤ i ≤ N − 1, exactly one of ui1 and ui2 is red, and thus, the red subgraph is connected,
and G is A-perfect.

— We now consider the case where d ≥ 5. Here, G is constructed as follows. Start from
N disjoint copies H0, . . . ,HN−1 of the complete graph on d + 1 vertices, where, for
every i ∈ {0, . . . , N − 1}, we denote by vi1, . . . , v

i
d+1 the vertices of Hi. For every i ∈

{0, . . . , N − 1}, we remove the edges vi1v
i
3, vi1v

i
4, vi2v

i
3 and vi2v

i
4 from Hi. To finish the

construction of G and make it d-regular, we then join the Hi’s by adding the edges vi3v
i+1
1 ,

vi3v
i+1
2 , vi4v

i+1
1 , and vi4v

i+1
2 for every i ∈ {0, . . . , N−1} (again, operations are understood

modulo N).
To prove that G is A-perfect, we give a strategy for Alice that ensures her a score of
d|V (G)|/2e. In the first round, Alice colours any vertex. In each of the subsequent rounds,
if the last vertex Bob coloured is
— in some pair {vi1, vi2} or {vi3, vi4}, then Alice colours the other vertex in that pair;
— some vertex vij with 5 ≤ j ≤ d+ 1, then Alice colours another vertex vi` with 5 ≤ ` ≤

d+ 1 and j 6= `.
Whenever Alice cannot follow the strategy above, she colours any arbitrary uncoloured
vertex. By Alice’s strategy, at the end of the game, for every i ∈ {0, . . . , N − 1}, at least
one vertex in {vi1, vi2} is red, at least one vertex in {vi3, vi4} is red, and at least one vertex in
{vi5, . . . , vid+1} is red. These vertices form a connected dominating set of G, from which
we deduce that cg(G) = d|V (G)|/2e, by Lemma 7.1.1. Thus, G is A-perfect.

�

9.2.2 The peculiar case of cubic graphs

As mentioned earlier, the bound on d in the statement of Lemma 9.2.2 cannot be lowered, as,
surprisingly, we prove that A-perfect cubic graphs have bounded order.

This can actually be established through previous results on the existence of particular cuts
in sufficiently large connected cubic graphs, such as ones from [99] relying on the following
terminology.

A supercycle is a connected graph with minimum degree at least 2 where not all vertices are of
degree 2. For a graphG, a matchingM is said suitable ifG−M consists of exactly two connected
components, each of which is a supercycle. Note that if G is cubic, then, in G−M , every vertex
incident to an edge of M has degree precisely 2, while, by definition of a supercycle, each of the
two connected components contains a degree-3 vertex. The auhtors of [99] proved the following
result on the existence of suitable matchings in sufficiently large connected cubic graphs.

9.3 – A-perfect regular graphs 181

Theorem 9.2.3 (Corollary 1 of [99]). Every connected cubic graph with order at least 18 admits
a suitable matching.

We are now ready to prove the aforementioned result on cubic graphs.

Theorem 9.2.4. Every A-perfect cubic graph has order at most 16.

Proof. Let G be an A-perfect cubic graph. We can assume that G is connected. Indeed, if G
contains at least two connected components, then, assuming Alice starts the game by colouring
a vertex in some connected component C, Bob can guarantee the red subgraph contains at least
two connected components by the end of the game by just colouring uncoloured vertices of C as
long as possible, and then colouring uncoloured vertices arbitrarily until the game ends. By this
strategy, and because all connected components ofG have order more than 2 due toG being cubic,
Alice indeed colours vertices from at least two distinct connected components of G, and the red
subgraph is thus not connected once the game ends.

Towards proving the claim, assume now that G has order at least 18. Then, by Theorem 9.2.3,
G admits a suitable matching M . As mentioned earlier, G −M consists of exactly two connec-
ted components C1 and C2, in each of which all vertices incident to an edge of M have degree
exactly 2 while the other vertices (there is at least one such) have degree exactly 3. Since, by the
handshaking lemma, in every graph the number of odd-degree vertices is even, we deduce that, in
each of C1 and C2, there are actually at least two degree-3 vertices. In what follows, the degree-
2 vertices of the Ci’s are called interior vertices, while their other (degree-3) vertices are called
exterior vertices.

Consider now the strategy for Bob where, each turn during a game onG, he answers to Alice’s
moves as follows:

— if Alice colours an interior vertex incident to an edge e ∈M , then Bob colours the second
interior vertex incident to e;

— if Alice colours an exterior vertex v, then Bob plays as follows:
— if v is the first exterior vertex coloured by Alice during the whole game, then, denoting,

for the rest of the game, by C∗ the one of C1 and C2 that contains v, Bob colours
any uncoloured exterior vertex of C∗ (one such exists, since C∗ contains at least two
exterior vertices);

— if v is not the first exterior vertex that Alice colours, then C∗ was defined during an
earlier turn, and Bob colours any uncoloured exterior vertex of C∗. If C∗ does not
contain any such uncoloured vertex, then Bob colours any uncoloured vertex of G
instead.

Note that Bob can clearly follow the above strategy from start to end. Note also that once
the game ends, the two incident vertices of every edge of M are coloured with distinct colours.
Furthermore, since C1 and C2 have at least two exterior vertices each, each Ci must contain an
exterior vertex ui coloured red. From all these arguments we deduce that the red subgraph cannot
contain a path joining u1 and u2, and thus that the red subgraph is not connected. Thus, an A-
perfect cubic graph must have order strictly less than 18. �

182 CHAPITRE 9 — A-perfect graphs and regularity

9.3 Sufficient conditions for graphs to be A-perfect

We have already seen a few conditions for graphs to meet the upper bound in Lemma 9.1.2,
i.e., to be A-perfect. In this section, we give two more such sufficient conditions, one is based on
particular degree conditions, while the other is based on the number of edges.

9.3.1 Graphs with large degrees

The next result gives a sufficient condition, in terms of minimum degree and maximum degree,
for a graph to be A-perfect.

Theorem 9.3.1. If G is a connected graph with ∆(G) + δ(G) ≥ |V (G)|, then G is A-perfect.

Proof. We give a strategy for Alice ensuring that, at the end of the game, the red subgraph is
connected, which implies that G is A-perfect. Let u be any vertex of degree ∆(G). In the first
round, Alice colours u. For every i ≥ 1, let Ci be the connected component of red vertices at
the end of the ith round (we will show that the red vertices always induce a connected subgraph,
and so, Ci is well-defined). Let Ri = V (G) \ N [Ci], i.e., Ri is the set of (non-red) vertices not
dominated by a red vertex at the end of the ith round, and let RUi be the subset of uncoloured
vertices in Ri at the end of the ith round. Note that C1 = {u} is connected and that

|RU1 | ≤ |R1| = |V (G)| − |N [C1]| = |V (G)| −∆(G)− 1 ≤ δ(G)− 1.

Let us show by induction on i ≥ 1 that, at the end of the ith round, Ci is connected and either
RUi = ∅ (in which case we are done) or |RUi | ≤ δ(G)− i. By the above paragraph, the induction
hypothesis holds for i = 1. Let i ≥ 1 and let us assume that the induction hypothesis holds for i.
We show it still holds for i+ 1.

If RUi = ∅, then Ci is a connected red dominating set of the subgraph of G induced by the
vertices of Ci and the remaining uncoloured vertices of G. From now on, Alice may colour any
uncoloured vertex, and the induction hypothesis clearly holds for i+ 1. In particular, the set of red
vertices induces a connected subgraph at the end of the game, proving the result.

Otherwise, let v ∈ RUi . Since v has at least δ(G) neighbours (none of which are red since
N [Ri]∩Ci = ∅) and Bob has coloured i vertices, v has at least δ(G)−i uncoloured neighbours, and
δ(G)−i > 0 sinceRUi 6= ∅ and |RUi | ≤ δ(G)−i. Moreover, |RUi \{v}| < δ(G)−i, so v has at least
one uncoloured neighbour w not in Ri, which implies that w ∈ N(Ri) = N(Ci). In the (i+ 1)th
round, Alice coloursw. Then,Ci+1 = Ci∪{w} is clearly connected, andRUi+1 ⊆ Ri+1 ⊆ Ri\{v}
(since v ∈ N(Ci+1)), and hence, |RUi+1| ≤ |Ri+1| ≤ |Ri| − 1 ≤ δ(G)− (i+ 1). �

We note that the bound in the statement of Theorem 9.3.1 is sharp, in the sense that there exists
a graph G with ∆(G)+ δ(G) = |V (G)|−1 that is not A-perfect. For example, consider the graph
G consisting of two complete graphs on d ≥ 3 vertices joined by a single edge e. Then, ∆(G) = d,
δ(G) = d − 1, |V (G)| = 2d, and thus, ∆(G) + δ(G) = 2d − 1 = |V (G)| − 1. However, Bob
can guarantee that Alice achieves a score of about |V (G)|/4, by colouring an uncoloured vertex
incident to e in the first round, and then, in each subsequent round, colouring an uncoloured vertex
in the same clique that Alice just coloured a vertex in. Thus, G is not A-perfect.

9.3.2 Graphs with large size

The next result shows that if G has sufficiently many edges, then G is A-perfect.

9.3 – Sufficient conditions for graphs to be A-perfect 183

r

G′

n− 2 edges

u′

u

r′

G′′

n− 3 edges

(a) The state of the game in G after Alice’s first
two turns in Case 1.(a), where G′′ = G′[N(r′)].

r

G′

n− 2 edges

u′

u

r′

G′′

n− 4 edges

r′′

v

v′

n− 5 edges

(b) The state of the game in G after Alice’s first
three turns in Case 1.(b)i.

Figure 9.2 – Cases 1.(a) and 1.(b)i. in the proof of Theorem 9.3.2.

Theorem 9.3.2. If G is a connected graph with |E(G)| > (|V (G)|−2)(|V (G)|−3)
2 + 2, then G is

A-perfect.

Proof. Set n = |V (G)|, m = |E(G)|, and

x = (n− 2)(n− 3)
2 + 2 = n2 − 5n+ 10

2 .

Note first that ∆(G) ≥ n − 4. Indeed, if we had ∆(G) ≤ n − 5, then we would deduce that
m ≤ n(n−5)

2 < x, which contradicts that m > x. Furthermore, if ∆(G) = n− 4, then δ(G) ≥ 7.
Indeed, if there is a degree-6 vertex, then we have a contradiction since

m ≤ (n− 1)(n− 4) + 6
2 = n2 − 5n+ 10

2 = x.

Thus, if ∆(G) = n− 4, then G is A-perfect by Theorem 9.3.1 since δ(G) ≥ 7. Lastly, if ∆(G) =
n − 1, then δ(G) ≥ 1, and thus, G is A-perfect by Theorem 9.3.1. Hence, in what follows, we
assume that n − 3 ≤ ∆(G) ≤ n − 2. We give a strategy for Alice that allows her to colour the
vertices of a connected dominating set of G within the first four rounds, and so, by Lemma 7.1.1,
G is A-perfect. We treat the two possible values for ∆(G) independently.

1. ∆(G) = n− 2.
Let r ∈ V (G) be such that d(r) = n− 2, and let G′ = G[N(r)]. Then, |V (G′)| = n− 2.
Since d(r) = n − 2, there is exactly one additional vertex u ∈ V (G) \ V (G′) (u 6= r). If
d(u) ≥ 2, then Alice colours r in the first round, and then, in the second round, she colours
a neighbour of u (this is possible since d(u) ≥ 2), and these vertices form a connected

184 CHAPITRE 9 — A-perfect graphs and regularity

dominating set of G. Thus, we may assume that d(u) = 1, and let N(u) = {u′}. We have
that ∆(G′) ≥ n− 4. Indeed, if ∆(G′) ≤ n− 5, then we have a contradiction since

m ≤ (n− 2)(n− 5)
2 + n− 2 + 1 = n2 − 5n+ 8

2 < x.

We distinguish the following subcases:
(a) ∆(G′) = n− 3 (see Figure 9.2(a) for an illustration).

Let r′ ∈ V (G′) be such that dG′(r′) = n− 3. Alice’s strategy is as follows. She starts
by colouring u′. Now, if Bob does not colour r, then Alice continues by colouring r,
at which point she has coloured the vertices of the connected dominating set {u′, r}
of G. So, we may assume that Bob colours r in the first round. In the second round,
Alice colours r′. Observe that {u′, r′} also forms a connected dominating set of G
since dG′(r′) = n− 3, and thus, u′r′ ∈ E(G).

(b) ∆(G′) = n− 4.
Let r′ ∈ V (G′) be such that dG′(r′) = n− 4, and let G′′ = G′[N(r′)]. We distinguish
cases according to whether u′ ∈ V (G′′) or not.

i. u′ ∈ V (G′′).
Since dG′(r′) = n− 4, there is exactly one additional vertex v ∈ V (G′) \ V (G′′)
(v 6= r′). Note that dG′(v) ≥ 1 because if dG′(v) = 0, i.e., N(v) = r, then we
have a contradiction since

m ≤ (n− 3)(n− 4)
2 + n− 2 + 1 = n2 − 5n+ 10

2 = x.

If dG′(v) ≥ 2, then Alice’s strategy is as follows. She starts by colouring u′. As
before, Bob is forced to colour r in the first round. In the second round, Alice
colours r′. In the third round, if u′ /∈ N(v), then Alice colours a neighbour v′ ∈
V (G′) (this is possible since dG′(v) ≥ 2). After three rounds, Alice’s vertices form
a connected dominating set of G.
Assume now that dG′(v) = 1, and let NG′(v) = {v′} (see Figure 9.2(b) for an
illustration). Then, ∆(G′′) = n − 5. Indeed, if ∆(G′′) ≤ n − 6 (and so, n ≥ 6),
then we have a contradiction since

m ≤ (n− 4)(n− 6)
2 + n− 4 + n− 2 + 1 + 1 = n2 − 6n+ 16

2 ≤ x.

Let r′′ ∈ V (G′′) be such that dG′′(r′′) = n − 5, and observe that v′ ∈ N(r′′).
Alice’s strategy is as follows. She starts by colouring u′, forcing Bob to colour r.
Then, she colours v′ forcing Bob to colour r′ (similarly to earlier, if Bob does not
colour r′, then Alice colours r′, and thus, has coloured the vertices of a connected
dominating set ofG). Finally, Alice colours r′′. Observe that the vertices u′, v′, and
r′′ form a connected dominating set of G.

ii. u′ /∈ V (G′′).
Observe that u′ is the only vertex of G′ that is not a neighbour of r′, and that
d(u′) ≥ 3. Indeed, if d(u′) ≤ 2, then we have a contradiction since

m ≤ (n− 3)(n− 4)
2 + n− 2 + 1 = n2 − 5n+ 10

2 = x.

9.3 – Sufficient conditions for graphs to be A-perfect 185

Thus, there is at least one edge u′u′′ with u′′ ∈ V (G′′). If d(u′) ≥ 4, then Alice’s
strategy is as follows. She starts by colouring u′, forcing Bob to colour r. Then,
she colours r′, and, in the third round, she colours one of the remaining uncoloured
neighbours of u′ in G′′ (which exists since d(u′) ≥ 4). These three vertices form a
connected dominating set of G.
Otherwise, d(u′) = 3, and, as in Case 1.(b)i, there exists r′′ ∈ V (G′′) such that
dG′′(r′′) = n− 5. Alice’s strategy is as follows. She starts by colouring u′, forcing
Bob to colour r. Then, she colours u′′, forcing Bob to colour r′. Finally, Alice
colours r′′. Note that u′, u′′, and r′′ form a connected dominating set of G.

2. ∆(G) = n− 3.
Observe thatG cannot contain two vertices u, v such that d(u)+d(v) ≤ 5. Indeed, if there
are two such vertices, then we have a contradiction since m ≤ (n−2)(n−3)+5

2 , but this is
not an integer since (n− 2)(n− 3) + 5 is odd, and thus,

m ≤ (n− 2)(n− 3) + 5− 1
2 = n2 − 5n+ 10

2 = x.

Let r be a vertex of G such that d(r) = n− 3, and let G′ = G[N(r)]. Since d(r) = n− 3,
there are exactly two additional vertices u, v ∈ V (G) \ V (G′) (u, v 6= r). We distinguish
cases according to the degrees of u and v, and note that d(u) + d(v) ≥ 6. In what follows,
when we say that Alice colours a vertex if needed, it means that if it is not necessary (in
the sense that such a vertex has already been coloured), then she either colours the vertex
she is supposed to colour in the next round, or she colours any arbitrary uncoloured vertex
in that round.

(a) d(u), d(v) ≥ 3.
Alice’s strategy is as follows. She starts by colouring r. In the second round, she co-
lours an uncoloured vertex in N(v) in G′ (this is possible since d(v) ≥ 3). In the third
round, if needed, i.e., if Alice has not coloured a vertex in N(u) yet, Alice colours
an uncoloured vertex in N(u) in G′ if possible, and if not, then uv ∈ E(G) and Bob
coloured N(u) \ {v} in the first two rounds, and so, she colours v. Then, by the end
of the third round, Alice has coloured r, at least one vertex in N(v) in G′, and at least
one vertex in N(u), and these vertices form a connected dominating set of G.

(b) d(u) = 2 and d(v) ≥ 4.
Alice’s strategy is as follows. She starts by colouring r. In the second round, she co-
lours an uncoloured vertex in N(u) in G′ if possible, and if not, then uv ∈ E(G) and
Bob coloured N(u) \ {u} in the first round, and so, she colours v. In the third round,
Alice colours an uncoloured vertex in N(v) in G′ (this is possible since d(v) ≥ 4).
Then, by the end of the third round, Alice has coloured r, at least one vertex in N(v)
in G′, and at least one vertex in N(u), and these vertices form a connected dominating
set of G.

(c) d(u) = 1 and d(v) ≥ 5.
Let u′ ∈ N(u) be a fixed neighbour of u in N(u). In this case, there exists at least one
vertex r′ ∈ G′ with dG′(r′) ≥ n− 5, as otherwise, we have a contradiction since

m ≤ (n− 3)(n− 6)
2 + 2(n− 3) + 1 = n2 − 5n+ 8

2 < x.

186 CHAPITRE 9 — A-perfect graphs and regularity

Note that v has at least 4 neighbours in G′ since d(v) ≥ 5 and rv /∈ E(G). We
distinguish the following subcases:

i. ∆(G′) = n− 4.
Let r′ ∈ V (G′) be such that dG′(r′) = n − 4, then Alice’s strategy is as follows.
She starts by colouring u′ (it may be that u′ = v). If Bob colours a vertex in {r, r′}
(a neighbour v′ ∈ V (G′) of v, resp.) in the first round, then, in the second round,
Alice colours the other vertex in {r, r′} (another neighbour v∗ ∈ V (G′) of v,
resp.). If Alice coloured a vertex in {r, r′} (v∗, resp.) in the second round, then she
colours a vertex in {v′, v∗} ({r, r′}, resp.) in the third round. After three rounds,
Alice’s vertices form a connected dominating set of G.

ii. ∆(G′) = n− 5.
Let r′ ∈ V (G′) be such that dG′(r′) = n − 5, and let G′′ = G′[N(r′)]. We
distinguish cases according to whether u′ ∈ V (G′′) or not.

A. u′ ∈ V (G′′).
As u′ ∈ V (G′′), uv /∈ E(G). Since d(r′) = n − 5, there is exactly one addi-
tional vertex w ∈ V (G′) \ V (G′′) (w 6= r′). Note that dG′(w) ≥ 1 because if
dG′(w) = 0, i.e., N(w) = r, then we have a contradiction since

m ≤ (n− 4)(n− 5)
2 + 2(n− 3) + 1 = n2 − 5n+ 10

2 = x.

If dG′(w) ≥ 2, then Alice’s strategy is as follows. She starts by colouring u′. As
before, Bob is forced to colour r in the first round. Indeed, if he does not, then
Alice will colour r in the second round, and then she will colour an uncoloured
neighbour v′ ∈ V (G′) of v in the third round (this is possible since d(v) ≥ 5),
and her vertices form a connected dominating set of G. In the second round,
Alice colours r′. In the third round, if needed, i.e., if u′ /∈ N(w), Alice colours
an uncoloured neighbour w′ ∈ V (G′) of w (this is possible since dG′(w) ≥ 2).
In the fourth round, Alice colours an uncoloured neighbour v′ ∈ V (G′) of v
(this is possible since v has at least 5 neighbours in G′ as uv /∈ E(G) and
d(v) ≥ 5). At the end of the fourth round, Alice’s vertices form a connected
dominating set of G.
Assume now that dG′(w) = 1, and let NG′(w) = {w′}. Then, ∆(G′′) = n−6.
Indeed, if ∆(G′′) ≤ n− 7 (and so, n ≥ 7), then we have a contradiction since

m ≤ (n− 5)(n− 7)
2 + n− 5 + 2(n− 3) + 1 + 1 = n2 − 6n+ 17

2 ≤ x.

Let r′′ ∈ V (G′′) be such that dG′′(r′′) = n− 6, and observe that w′ ∈ N(r′′).
Alice’s strategy is as follows. She starts by colouring u′. As before (when
dG′(w) ≥ 2), Bob is forced to colour r in the first round. In the second
round, Alice colours w′. Analogously to why Bob was forced to colour r in the
first round, Bob is forced to colour r′ in the second round. In the third round,
Alice colours r′′. In the fourth round, Alice colours an uncoloured neighbour
v′ ∈ V (G′) of v (this is possible since v has at least 5 neighbours in G′). At the
end of the fourth round, Alice’s vertices form a connected dominating set of G.

9.3 – Sufficient conditions for graphs to be A-perfect 187

B. u′ /∈ V (G′′).
First, assume that uv /∈ E(G). Then, u′ is the only vertex of G′ that is not a
neighbour of r′, and d(u′) ≥ 3. Indeed, if d(u′) ≤ 2, then we have a contradic-
tion since

m ≤ (n− 4)(n− 5)
2 + 2(n− 3) + 1 = n2 − 5n+ 10

2 = x.

Thus, there is at least one edge u′u′′ with u′′ ∈ V (G′′)∪{v}. If d(u′) ≥ 4, then
Alice’s strategy is as follows. She starts by colouring u′, forcing Bob to colour
r, as before. Then, she colours r′, and in the third round, she colours one of the
remaining uncoloured neighbours of u′ in G′′ (which exists since d(u′) ≥ 4).
In the fourth round, Alice colours an uncoloured neighbour v′ ∈ V (G′) of v
(this is possible since v has at least 5 neighbours inG′). At the end of the fourth
round, Alice’s vertices form a connected dominating set of G.
Otherwise, d(u′) = 3, and, as in Case 2.(c)iiA, there exists r′′ ∈ V (G′′) such
that dG′′(r′′) = n− 6. Let r′′ ∈ V (G′′) be such that dG′′(r′′) = n− 6. Alice’s
strategy is as follows. She starts by colouring u′, forcing Bob to colour r, as
before. Then, she colours u′′, forcing Bob to colour r′, as before. In the third
round, Alice colours r′′. In the fourth round, Alice colours an uncoloured neigh-
bour v′ ∈ V (G′) of v (this is possible since v has at least 5 neighbours in G′).
At the end of the fourth round, Alice’s vertices form a connected dominating
set of G.
Now, assume that uv ∈ E(G). Then, u′ = v and there is exactly one additio-
nal vertex w ∈ V (G′) \ V (G′′) (w 6= r′). Note that dG′(w) ≥ 2 because if
dG′(w) = 1, then we have a contradiction since

m ≤ (n− 4)(n− 5)
2 + 2(n− 3) + 1 = n2 − 5n+ 10

2 = x.

Alice’s strategy is as follows. She starts by colouring u′ = v, forcing Bob to
colour r, as before. In the second round, she colours r′. In the third round,
Alice colours an uncoloured neighbour w′ ∈ V (G′) of w (this is possible since
dG′(w) ≥ 2). In the fourth round, if needed, i.e., if Alice has not yet coloured a
vertex inN(v) that is not u, Alice colours an uncoloured neighbour v′ ∈ V (G′)
of v (this is possible since d(v) ≥ 5). At the end of the fourth round, Alice’s
vertices form a connected dominating set of G.

�

We note that the bound in the statement of Theorem 9.3.2 is sharp, in the sense that there exists
a graph G with (|V (G)|−2)(|V (G)|−3)

2 + 2 edges that is not A-perfect. For example, consider, as G,
any graph obtained from a complete graph on an odd number N ≥ 3 of vertices, by taking any of
its vertices u, and attaching at u a pending path (u, v, w) of length 2. Note that |V (G)| = N + 2
and that

|E(G)| = N(N − 1)
2 + 2 = (|V (G)| − 2)(|V (G)| − 3)

2 + 2.

Now, to see that G is not A-perfect, consider the following strategy for Bob. Bob colours a vertex
in {u, v} in the first round, and then, in each of the subsequent rounds, he colours any uncoloured

188 CHAPITRE 9 — A-perfect graphs and regularity

vertex different from w. Since |V (G)| is odd, Alice is forced to colour w at some point, which,
by the end of the game, cannot be part of a single connected red component due to Bob having
coloured u or v in the first round. Thus, G is not A-perfect.

9.4 Conclusion

In this chapter we focused our attention on A-perfect graphs. Having already established that
the density of the graph on which either game is played, plays an important role on deciding
the outcome, we looked into A-perfect regular graphs. The interesting result in this direction is
that A-perfect 3-regular graphs have bounded order, which is not true for d-regular graphs, for
d ≥ 4. We then proceed by providing sufficient conditions for a graph to be A-perfect. Apart from
helping us better understand A-perfect graphs, the strategies we proposed to prove said conditions
are by themselves interesting, as they shed some light on the behavior of the two games we have
introduced.

Indeed, as we have seen in some graphs, notably in Section 9.3, some optimal strategies for
Alice ensure that the red subgraph is connected at all times. This is the second time we encounter
arguments implying the importance of whether Alice plays in a connected way or not (recall our
discussion in Section 8.4), further enhancing our interest towards the study of a connected variant
of the Maker-Breaker game. Such a variant could be defined similarly to the Maker-Breaker game,
with the difference that Alice is always (except on her first turn) constrained to colour a neighbour
of another red vertex, and the game ends when she cannot. Consequently, we could define ccg(G)
as the maximum score Alice can achieve in G when obliged to play in such a connected way.
Clearly, ccg(G) ≤ cg(G). We were able to observe that it is far from true that these two parameters
are equal in general, even for some quite simple graphs. As an illustration, this is true for king’s
grids with only two rows and m columns (denoted by P2 � Pm). Indeed, in the connected case
and for a sufficiently large m, consider the strategy according to which Bob colours the 4 vertices
at distance 4 from the first vertex coloured by Alice. Bob following such a strategy guarantees
that ccg(P2 � Pm) = O(1). On the other hand, in the non-connected case, consider the strategy
where each time Bob colours a vertex v, Alice colours the neighbour of v in the other row. Alice
following such a strategy guarantees that cg(P2 � Pm) = m, which can be arbitrarily larger than
the established ccg(P2 � Pm).

Finally, it is worth mentioning that if Alice plays in a connected way in a Cartesian or king’s
grid, then the game becomes quite similar to the Angel and Devil Problem of Conway [35]. Opti-
mal strategies for the devil in that game [35] allow to prove that ccg(Pn�Pm) is bounded above by
an absolute constant.

Conclusion and perspectives

CHAPTER 10
Conclusion

In this thesis we have studied two families of combinatorial problems defined on graphs. In
the first part of the thesis we dealt with proper labellings of graphs, and in the second we in-
troduced and studied two variations of the largest connected subgraph game. The approach we
followed in both parts is common. We first exhibited that the under consideration problems are
computationally hard. Then we proceeded by providing either efficient algorithms to compute the
corresponding parameters on restricted families of graphs, or bounds on the corresponding para-
meters for more general families of graphs. In my opinion, the importance of the work presented
here stems from the introduction of the problems considered in the thesis.

In the first part of this thesis, we introduced and studied three new problems related to proper
labellings of graphs, and provided answers to some open questions concerning the problem of
finding equitable proper labellings. Notably, we were able to determine the complexity of finding
an equitable proper labelling. Then, inspired by recent works that consider proper labellings that
verify some additional constraints, we introduced the problem of finding k-labellings that apart
from minimising k, also minimise the sum of the labels or the number of edges labelled 3. The
three problems described in this paragraph form a nice group of problems, in the sense that better
understanding the behaviour of one problem among them could lead to a better understanding of
the other two. This is exhibited by the three new conjectures (Conjectures 2.1.2, 2.1.4 and 2.1.9)
which we are led to propose, as well as the nice interplay that rises between them.

Let us comment on the problem of finding proper 3-labellings that also minimise the number
of edges labelled 3. When dealing with that problem, we came up with various constructions of
graphs that admit proper 3-labellings that assign label 3 on at least/most a fraction of their edges.
Looking closely at the provided constructions, we can observe that the edges labelled 3 in the
labellings we provide, sometimes define a matching of the graph. That is there are no two edges
labelled 3 that are incident to a common vertex. Actually, we are no aware of any graph G with
χΣ(G) = 3 that does not verify this property. So, we ask ourselves whether this is a general
phenomenon. If this turns out to be the case, then it could be interesting to study the minimum
distance that separates the edges labelled 3 by any proper 3-labelling of the given graph. More
generally, what can be said about the structures that are formed by the edges labelled 3 by any
proper 3-labelling of a given graph?

The first part of this thesis closes with the introduction and study of the problem of finding a
largest locally irregular induced subgraph. The behaviour of this problem shares some similarities
with the problems considering proper labellings with additional constraints. Notably, we were able
to provide an FPT algorithm parameterised by the treewidth and the maximum degree of the given
graph. This was the second such algorithm we presented in this thesis, the first one being for the
problem of finding proper k-labellings that minimise the sum of assigned labels. Actually, this
FPT algorithm considering the treewidth and the maximum degree as the parameter, seems to be

191

192 CHAPITRE 10 — Conclusion

a recurring one for proper labellings. Indeed, such an algorithm was also exhibited in [31], where
the authors consider the problem of finding proper labellings that also minimise the maximum
induced colour. We stress that these algorithms are, at their core, quite similar. Thus, we ask
ourselves whether it would be possible to formally define a general (Courcelle-like) framework
that would guarantee and generate such algorithms.

The other aspect that is interesting about the parameterised complexity of the problem of
finding a largest locally irregular induced subgraph of a given graph, is our proof that indicates
that this problem is unlikely to be in FPT when parameterised only by the treewidth. The reduction
in the proof of this result gives us a convenient way to control the degrees of the constructed graph.
This is a good indication that it could actually be possible to prove a similar result for the problem
of finding proper labellings that also minimise the sum of labels. We are once more led to ask
whether this is also a result that can be generalised to cover more versions of proper labellings.

Of course, the big question about proper labellings is if the 1-2-3 Conjecture is true. It would
even be interesting if we managed to prove this conjecture for more families of graphs, for example
planar graphs. A first step towards such a result could be to show the 1-2-3 Conjecture for the
family of planar graphs that admit a unique proper 4-colouring. This is a well characterised fa-
mily [49] which is defined recursively: the smallest such graph is K4. Then, starting with a planar
embedding of a graph Gn of order n belonging in this family, to construct another member Gn+1
of this family of order n + 1 we add one vertex v inside a face F of Gn and the three edges
between v and the three vertices defining the face F (notice that by construction, each face of
Gn is a triangle). This definition would be very useful in order to prove the 1-2-3 Conjecture for
these graphs by, for example, doing induction on the order of the graph, or constructing a dynamic
programming algorithm.

The second part of this thesis introduced and studied two versions of the largest connected
subgraph game. Both versions of this game are natural problems that were not posed before. Mo-
reover, the introduction of the Maker-Breaker version of this game follows naturally from the study
of its scoring version.

Let us discuss further about an interesting aspect of both games, which has to do with connec-
ted strategies. Recall that in the Maker-Breaker game we came upon instances of graphs for which
some optimal strategies for Alice required from her to colour at least one vertex which was not
adjacent to an already red-coloured vertex, apart from the first vertex she coloured. We have no
clear understanding of when Alice should favour such a strategy in general. We wonder, for ins-
tance, whether there is some structural characterisation of graphs for which any optimal strategy
for Alice is not connected.

The situation becomes even more intriguing when considering the Scoring game. Indeed,
in this version, it also makes sense to wonder about whether or not Bob’s optimal strategies
are connected as well. Actually, in the Scoring game we do not even have an equivalent of
Lemma 8.3.1. That is, given a graph with many connected components, we are unsure of what
Alice should do if Bob starts colouring vertices in an arbitrary connected component of the graph,
and vice versa. In fact, this was a non-trivial obstacle that we had to overcome in order to arrive at
the proof of Theorem 8.2.3, and we were only able to do so since cographs have a very particular
and “exploitable” structure.

Finally, we would like to pose an additional direction of further research, apart from the open
questions we left in Chapters 7, 8 and 9. Recall that the inspiration for introducing the Scoring
game came from an attempt to model a real-life card game (explained in more details in Sec-

10.0 – 193

tion 1.3). As a reminder, the scenario to be modeled is a game in which two players alternatively
pick cards from a collection of common cards, with the goal of forming the most “synergistic”
deck. As we already stated in the introduction of this thesis, the Scoring game we introduced is
not a sufficient model to study the above scenario. Indeed, there is nothing to suggest that two pairs
of synergistic cards that also share a card, form a triplet of synergistic cards. In other words, there
is no guarantee that the player whose deck contains the cards corresponding to the largest connec-
ted subgraph of the graph defined by the shared collection of cards (the library graph), will indeed
have a deck that is more synergistic than their opponent’s. Moreover, we could easily imagine that
some pairs of cards are more synergistic than others. This could be translated in the library graph
by giving a weight on each edge, which would be a metric of how synergistic two cards are. So it
would be very interesting to define a game similar to the largest connected subgraph game, but that
is played on a weighted graph, and this would serve as a better model to study the above described
drafting procedure (though the modeling would still be lacking).

Allow me to close this thesis on a more personal note. In the upcoming years I see my research
continuing in the field of proper labellings, but also expanding in the general fields of combina-
torial and algorithmic graph theory. In particular the questions of generalising our algorithmic
results explained above seem very interesting to me. I have also enjoyed the few steps I have taken
in the field of combinatorial games. Apart from the individual interest that each such game has,
I find them appealing also for the value they can have in a didactic setting: most of these games
are exceptionally easy to describe, fun to play with, but far from being trivially solved. Thus such
games can be utilised as an ideal first introduction to combinatorial arguments, even for young
students.

Bibliography

[1] L. Addario-Berry, R. E. L. Aldred, K. Dalal, and B. A. Reed. Vertex colouring edge parti-
tions. Journal of Combinatorial Theory, Series B, 94(2):237–244, 2005.

[2] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Electronic
Notes in Discrete Mathematics, 19:257–263, 2005.

[3] A. Agra, G. Dahl, T. A. Haufmann, and S. J. Pinheiro. The k-regular induced subgraph
problem. Discrete Applied Mathematics, 222:14–30, 2017.

[4] Y. Alavi, A. Boals, G. Chartrand, O. Oellermann, and P. Erdős. k-path irregular graphs.
Congressus Numerantium, 65, 01 1988.

[5] Y. Alavi, G. Chartrand, F. R. K. Chung, P. Erdős, R. L. Graham, and O. R. Oellermann.
Highly irregular graphs. Journal of Graph Theory, 11(2):235–249, 1987.

[6] A. Ali, G. Chartrand, and P. Zhang. Irregularity in Graphs. Springer briefs in mathematics.
Springer, 2021.

[7] S. D. Andres, M. Huggan, F. Mc Inerney, and R. J. Nowakowski. The orthogonal colouring
game. Theoretical Computer Science, 795:312–325, 2019.

[8] K. Appel and W. Haken. Every planar map is four colorable. part I. Discharging. Illinois
Journal of Mathematics, 21:429–490, 1977.

[9] K. Appel and W. Haken. Every planar map is four colorable. part II. Reducibility. Illinois
Journal of Mathematics, 21:491–567, 1977.

[10] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted
to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989.

[11] Y. Asahiro, H. Eto, T. Ito, and E. Miyano. Complexity of finding maximum regular induced
subgraphs with prescribed degree. Theoretical Computer Science, 550:21–35, 2014.

[12] L. Babel. Triangulating graphs with few P4’s. Discrete Applied Mathematics, 89(1-3):45–
57, 1998.

[13] L. Babel and S. Olariu. On the isomorphism of graphs with few P4’s. In Proceedings of
the 21st International Workshop on Graph-Theoretic Concepts in Computer Science (WG
1995), volume 1017 of Lecture Notes in Computer Science, pages 24–36. Springer, 1995.

[14] L. Babel and S. Olariu. On the p-connectedness of graphs - A survey. Discrete Applied
Mathematics, 95(1-3):11–33, 1999.

[15] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. Journal of Graph
Theory, 60(3):242–256, 2009.

[16] O. Baudon, J. Bensmail, H. Hocquard, M. Senhaji, and É. Sopena. Edge weights and vertex
colours: Minimizing sum count. Discrete Applied Mathematics, 270:13–24, 2019.

[17] O. Baudon, J. Bensmail, J. Przybyło, and M. Woźniak. On decomposing regular graphs into
locally irregular subgraphs. European Journal of Combinatorics, 49:90–104, 2015.

195

196 BIBLIOGRAPHY

[18] O. Baudon, M. Pilśniak, J. Przybyło, M. Senhaji, É. Sopena, and M. Woźniak. Equitable
neighbour-sum-distinguishing edge and total colourings. Discrete Applied Mathematics,
222:40–53, 2017.

[19] R. Belmonte and I. Sau. On the complexity of finding large odd induced subgraphs and odd
colorings. Algorithmica, 83(8):2351–2373, 2021.

[20] J. Bensmail. Partitions and decompositions of graphs. Ph.d. thesis, Université de Bordeaux,
2014.

[21] J. Bensmail. A contribution to distinguishing labellings of graphs. Habilitation à diriger
des recherches, Université côte d’azur, Dec. 2020.

[22] J. Bensmail, F. Fioravantes, and F. M. Inerney. On the role of 3’s for the 1-2-3 conjecture.
Theoretical Computer Science, 892:238–257, 2021.

[23] J. Bensmail, F. Fioravantes, and F. M. Inerney. On the role of 3’s for the 1-2-3 conjecture.
In T. Calamoneri and F. Corò, editors, Algorithms and Complexity - 12th International
Conference, CIAC, 2021, May 10-12, 2021, Proceedings, volume 12701 of Lecture Notes
in Computer Science, pages 103–115. Springer, 2021.

[24] J. Bensmail, F. Fioravantes, F. M. Inerney, and N. Nisse. The largest connected subgraph
game. In L. Kowalik, M. Pilipczuk, and P. Rzazewski, editors, Graph-Theoretic Concepts
in Computer Science - 47th International Workshop, WG 2021, Warsaw, Poland, June 23-
25, 2021, Revised Selected Papers, volume 12911 of Lecture Notes in Computer Science,
pages 296–307. Springer, 2021.

[25] J. Bensmail, F. Fioravantes, F. M. Inerney, and N. Nisse. The Largest Connected Subgraph
Game. Algorithmica (to appear), 2022.

[26] J. Bensmail, F. Fioravantes, F. Mc Inerney, and N. Nisse. Further results on an equitable
1-2-3 conjecture. Discrete Applied Mathematics, 297:1–20, 2021.

[27] J. Bensmail, F. Fioravantes, F. Mc Mc Inerney, N. Nisse, and N. Oijid. The Maker-Breaker
Largest Connected Subgraph Game. Research report, Université Côte d’Azur, CNRS, Inria,
I3S, Biot, France, 2021.

[28] J. Bensmail, F. Fioravantes, and N. Nisse. On proper labellings of graphs with minimum
label sum. In L. Gasieniec, R. Klasing, and T. Radzik, editors, Combinatorial Algorithms
- 31st International Workshop, IWOCA 2020, Bordeaux, France, June 8-10, 2020, Procee-
dings, volume 12126 of Lecture Notes in Computer Science, pages 56–68. Springer, 2020.

[29] J. Bensmail, F. Fioravantes, and N. Nisse. On proper labellings of graphs with minimum
label sum. Algorithmica, 84(4):1030–1063, 2022.

[30] J. Bensmail, H. Hocquard, D. Lajou, and É. Sopena. A proof of the multiplicative 1-2-3
conjecture. In N. Balachandran and R. Inkulu, editors, Algorithms and Discrete Applied
Mathematics - 8th International Conference, CALDAM 2022, Puducherry, India, February
10-12, 2022, Proceedings, volume 13179 of Lecture Notes in Computer Science, pages 3–
14. Springer, 2022.

[31] J. Bensmail, B. Li, B. Li, and N. Nisse. On minimizing the maximum color for the 1-2-3
Conjecture. Discrete Applied Mathematics, 289:32–51, 2021.

[32] J. Bensmail, F. Mc Inerney, and K. Lyngsie Szabo. On {a, b}-edge-weightings of bipartite
graphs with odd a, b. Discussiones Mathematicae Graph Theory, 42(1):159–185, 2022.

BIBLIOGRAPHY 197

[33] J. Bensmail, M. Merker, and C. Thomassen. Decomposing graphs into a constant number
of locally irregular subgraphs. European Journal of Combinatorics, 60:124–134, 2017.

[34] J. Bensmail, M. Senhaji, and K. S. Lyngsie. On a combination of the 1-2-3 conjecture
and the antimagic labelling conjecture. Discrete Mathematics and Theoretical Computer
Science, 19(1), 2017.

[35] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for Your Mathematical Plays,
Volume 3. A K Peters/CRC Press, 2018.

[36] P. Berman, M. Karpinski, and A. D. Scott. Approximation hardness of short symmetric
instances of MAX-3SAT. Electronic Colloquium on Computational Complexity, (049),
2003.

[37] H. L. Bodlaender. On the complexity of some coloring games. International Journal of
Foundations of Computer Science, 2(2):133–147, 1991.

[38] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1–45, 1998.

[39] E. Bonnet, F. Jamain, and A. Saffidine. On the complexity of connection games. Theoretical
Computer Science, 644:2–28, 2016.

[40] R. L. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37(2):194–197, 1941.

[41] C. Browne. Hex Strategy: Making the Right Connections. AK Peters, 2000.

[42] C. Browne. Connection Games: Variations on a Theme. AK Peters, 2005.

[43] J. Bruno and L. Weinberg. A constructive graph-theoretic solution of the shannon switching
game. IEEE Transactions on Circuit Theory, 17(1):74–81, 1970.

[44] L. Cai. Fixed-parameter tractability of graph modification problems for hereditary proper-
ties. Information Processing Letters, 58(4):171–176, 1996.

[45] L. Cao. Total weight choosability of graphs: Towards the 1-2-3-conjecture. Journal of
Combinatorial Theory, Series B, 149:109–146, 2021.

[46] G. Chang, C. Lu, J. Wu, and Q. Yu. Vertex-coloring edge-weightings of graphs. Taiwanese
Journal of Mathematics, 15:1807–1813, 2011.

[47] M. Changat, D. S. Lekha, I. Peterin, A. R. Subhamathi, and S. Spacapan. The median game.
Discrete Optimization, 17:80–88, 2015.

[48] G. Chartrand, P. Erdős, and O. Oellermann. How to define an irregular graph. The College
Mathematics Journal, 19:36–42, 1998.

[49] G. Chartrand and D. P. Geller. On uniquely colorable planar graphs. Journal of Combina-
torial Theory, 6(3):271–278, 1969.

[50] G. Chartrand, M. Jacobson, J. Lehel, O. Oellermann, S. Ruiz, and F. Saba. Irregular net-
works. Congressus Numerantium, 64:197–210, 1986.

[51] J. Chen, B. Chor, M. Fellows, X. Huang, D. W. Juedes, I. A. Kanj, and G. Xia. Tight
lower bounds for certain parameterized NP-hard problems. Information and Computation,
201(2):216–231, 2005.

[52] J. Chen, X. Huang, I. A. Kanj, and G. Xia. On the computational hardness based on linear
FPT-reductions. Journal of Combinatorial Optimization, 11(2):231–247, 2006.

198 BIBLIOGRAPHY

[53] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong computational lower bounds via parame-
terized complexity. Journal of Computer and System Sciences, 72(8):1346–1367, 2006.

[54] M. Chlebík and J. Chlebíková. Complexity of approximating bounded variants of optimi-
zation problems. Theoretical Compututer Science, 354(3):320–338, 2006.

[55] V. Chvátal and P. Erdős. Biased positional games. Annals of Discrete Mathematics 2, pages
221–229, 1978.

[56] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing, 14(4):926–934, 1985.

[57] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms. Springer, 2015.

[58] A. Dehghan, M.-R. Sadeghi, and A. Ahadi. Algorithmic complexity of proper labeling
problems. Theoretical Computer Science, 495:25–36, 2013.

[59] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[60] L. Ding, G.-H. Duh, G. Wang, T.-L. Wong, J. Wu, X. Yu, and X. Zhu. Graphs are (1, δ+1)-
choosable. Discrete Mathematics, 342(1):279–284, 2019.

[61] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, 2013.

[62] É. Duchêne, V. Gledel, A. Parreau, and G. Renault. Maker-breaker domination game. Dis-
crete Mathematics, 343(9), 2020.

[63] É. Duchêne, S. Gonzalez, A. Parreau, E. Rémila, and P. Solal. INFLUENCE: a partizan
scoring game on graphs. CoRR, abs/2005.12818, 2020.

[64] A. Dudek and D. Wajc. On the complexity of vertex-coloring edge-weightings. Discrete
Mathematics and Theoretical Computer Science, 13:45–50, 2011.

[65] P. Erdős and J. L. Selfridge. On a combinatorial game. Journal of Combinatorial Theory,
Series A, 14(3):298–301, 1973.

[66] P. Erdős and R. J. Wilson. On the chromatic index of almost all graphs. Journal of Combi-
natorial Theory, Series B, 23(2-3):255–257, 1977.

[67] S. Even and R. E. Tarjan. A combinatorial problem which is complete in polynomial space.
Journal of the ACM, 23(4):710–719, 1976.

[68] R. Faudree and J. Lehel. Bound on the irregularity strength of regular graphs. Combinato-
rics, Colloquium Mathematical Society János Bolyai, 52:247–256, 1987.

[69] F. Fioravantes, N. Melissinos, and T. Triommatis. Complexity of finding maximum locally
irregular induced subgraphs. In A. Czumaj and Q. Xin, editors, 18th Scandinavian Sympo-
sium and Workshops on Algorithm Theory, SWAT, 2022, June 27-29, 2022, Tórshavn, Faroe
Islands, volume 227 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[70] A. M. Frieze, R. J. Gould, M. Karoński, and F. Pfender. On graph irregularity strength.
Journal of Graph Theory, 41(2):120–137, 2002.

[71] D. Gale. The game of Hex and the Brouwer fixed-point theorem. American Mathematical
Monthly, 86:818–827, 1979.

BIBLIOGRAPHY 199

[72] M. Gardner. The Scientific American Book of Mathematical Puzzles & Diversions. Simon
and Schuster, N.Y., 1959.

[73] M. Gardner. The Second Scientific American Book of Mathematical Puzzles and Diversions.
Simon and Schuster, N.Y., 1961.

[74] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[75] H. Grötzsch. Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreis-
freie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenb, Math-Natwiss Reihe,
8:109–120, 1958.

[76] P. J. Heawood. Map-colour theorems. Quarterly Journal of Mathematics, Oxford, 24:332–
338, 1890.

[77] D. Hefetz, M. Krivelevich, M. Stojaković, and T. Szabó. Positional Games, volume 44 of
Oberwolfach Seminars. Springer, Basel, 2014.

[78] M. Kalkowski. Metody algorytmiczne w badaniach siły nieregularności grafów. Ph.d.
thesis, Uniwersytet im. Adama Mickiewicza, Wydzial Matematyki i Informatyki, 2010.

[79] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: Towards the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 100(3):347–349, 2010.

[80] M. Kalkowski, M. Karoński, and F. Pfender. A new upper bound for the irregularity strength
of graphs. SIAM Journal on Discrete Mathematics, 25(3):1319–1321, 2011.

[81] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91(1):151–157, 2004.

[82] R. Keusch. Vertex-coloring graphs with 4-edge-weightings. CoRR, abs/2202.02788, 2022.

[83] S. Khot and V. Raman. Parameterized complexity of finding subgraphs with hereditary
properties. Theoretical Computer Science, 289(2):997–1008, 2002.

[84] H. A. Kierstead and W. T. Trotter. Planar graph coloring with an uncooperative partner.
Journal of Graph Theory, 18(6):569–584, 1994.

[85] R. Küsters. Memoryless determinacy of parity games, volume 2500 of Lecture Notes in
Computer Science. Springer, 2002.

[86] J. Köbler, U. Schöning, and J. Torán. The Graph Isomorphism Problem. Progress in Theo-
retical Computer Science. Birkhäuser Boston, MA, 1993.

[87] D. König. Über graphen und ihre anwendung auf determinantentheorie und mengenlehre.
Mathematische Annalen, 77(4):453–465, 1916.

[88] U. Larsson, R. J. Nowakowski, J. P. Neto, and C. P. Santos. Guaranteed scoring games.
Electronic Journal of Combinatorics, 23(3), 2016.

[89] U. Larsson, R. J. Nowakowski, and C. P. Santos. Game comparison through play. Theore-
tical Compututer Science, 725:52–63, 2018.

[90] U. Larsson, R. J. Nowakowski, and C. P. Santos. Games with guaranteed scores and waiting
moves. International Journal of Game Theory, 47(2):653–671, 2018.

[91] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties is
NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

200 BIBLIOGRAPHY

[92] C. N. Lintzmayer, G. O. Mota, and M. Sambinelli. Decomposing split graphs into locally
irregular graphs. Discrete Applied Mathematics, 292:33–44, 2021.

[93] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time hy-
pothesis. Bulletin of the European Association for Theoretical Computer Science, 105:41–
72, 2011.

[94] H. Lu, Q. Yu, and C.-Q. Zhang. Vertex-coloring 2-edge-weighting of graphs. European
Journal of Combinatorics, 32(1):21–27, 2011.

[95] K. S. Lyngsie. On neighbour sum-distinguishing {0,1}-edge-weightings of bipartite graphs.
Discrete Mathematics and Theoretical Computer Science, 20(1), 2018.

[96] P. Micek and B. Walczak. A graph-grabbing game. Combinatorics, Probability and Com-
puting, 20(4):623–629, 2011.

[97] B. Mohar. Face covers and the genus problem for apex graphs. Journal of Combinatorial
Theory, Series B, 82(1):102–117, 2001.

[98] H. Moser and D. M. Thilikos. Parameterized complexity of finding regular induced sub-
graphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.

[99] P. Mukkamala and D. Pálvölgyi. Drawing cubic graphs with the four basic slopes. In M. van
Kreveld and B. Speckmann, editors, Graph Drawing, pages 254–265, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[100] W. Mulzer and G. Rote. Minimum-weight triangulation is NP-hard. Journal of the ACM,
55, 2006.

[101] J. Nes̆etr̆il, A. Raspaud, and É. Sopena. Colorings and girth of oriented planar graphs.
Discrete Mathematics, 165-166:519–530, 1997.

[102] M. Polanyi. Personal Knowledge: Towards a Post-Critical Philosophy. University of Chi-
cago Press, 1958.

[103] J. Przybyło. Irregularity strength of regular graphs. Electronic Journal of Combinatorics,
15, 06 2008.

[104] J. Przybyło. On decomposing graphs of large minimum degree into locally irregular sub-
graphs. Electronic Journal of Combinatorics, 23(2):2–31, 2016.

[105] J. Przybyło. The 1-2-3 conjecture almost holds for regular graphs. Journal of Combinatorial
Theory, Series B, 147:183–200, 2021.

[106] J. Przybyło and M. Woźniak. On a 1,2 conjecture. Discrete Mathematics and Theoretical
Computer Science, 12(1):101–108, 2010.

[107] J. Przybyło and M. Woźniak. Total weight choosability of graphs. Electronic Journal of
Combinatorics, 18(1), 2011.

[108] M. L. Rahman and T. Watson. 6-uniform maker-breaker game is PSPACE-complete. In Pro-
ceedings of the 38th International Symposium on Theoretical Aspects of Computer Science
(STACS 2021), pages 57:1–57:15, 2021.

[109] S. Reisch. Hex ist PSPACE-vollständig. Acta Informatica, 15(2):167–191, 1981.

[110] N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. The four-colour theorem.
Journal of Combinatorial Theory, Series B, 70(1):2–44, 1997.

BIBLIOGRAPHY 201

[111] T. J. Schaefer. On the complexity of some two-person perfect-information games. Journal
of Computer and System Sciences, 16(2):185–225, 1978.

[112] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. CoRR, abs/1211.5122.

[113] M. Senhaji. Neighbour-distinguishing decompositions of graphs. Ph.d. thesis, Université
de Bordeaux, Sept. 2018.

[114] A. Shapovalov. Occupation games on graphs in which the second player takes almost all
vertices. Discrete Applied Mathematics, 159(15):1526–1527, 2011.

[115] J. Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Information
Processing Letters, 112(5):191–194, 2012.

[116] C. Thomassen, Y. Wu, and C.-Q. Zhang. The 3-flow conjecture, factors modulo k, and the
1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 121:308–325, 2016.

[117] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Diskretnyi Analiz, 3:25–
30, 1964.

[118] B. Vuc̆ković. Multi-set neighbor distinguishing 3-edge coloring. Discrete Mathematics,
341(3):820–824, 2018.

[119] W. Wang, Y. Bu, M. Montassier, and A. Raspaud. On backbone coloring of graphs. Journal
of Combinatorial Optimization, 23(1):79–93, 2012.

[120] W. Wang and K. Lih. List Coloring Halin Graphs. Ars Combinatoria, 77(10):53–63, 2005.

[121] T. Wong and X. Zhu. Total weight choosability of graphs. Journal of Graph Theory,
66(3):198–212, 2011.

[122] J. Wu and X. Zhu. Lower bounds for the game colouring number of partial k-trees and
planar graphs. Discrete Mathematics, 308(12):2637–2642, 2008.

[123] X. Zhu. Refined activation strategy for the marking game. Journal of Combinatorial Theory,
Series B, 98(1):1–18, 2008.

[124] X. Zhu. Every nice graph is (1, 5)-choosable. CoRR, abs/2104.05410, 2021.

Étiquetages d’arêtes, colorations de sommets et jeux
combinatoires sur des graphes

Foivos-Sotirios FIORAVANTES

Résumé
Cette thèse considère deux familles de problèmes définis sur des graphes : les étiquetages d’arêtes propres et les jeux combinatoires. Nous traitons ces problèmes de façon
similaire (et classique) : nous montrons que les problèmes considérés sont difficiles à résoudre, puis nous trouvons des algorithmes efficaces sur des instances restreintes.
Nous nous concentrons d’abord sur des problèmes concernant des étiquetages propres de graphes. Pour un entier k fixé, un k-étiquetage d’un graphe G est une fonction
associant à chaque arête de G une étiquette parmi {1, . . . , k}. Un k-étiquetage induit une coloration des sommets de G, où chaque sommet reçoit comme couleur la
somme des étiquettes de ses arêtes incidentes. Un k-étiquetage est propre si, dans la coloration induite, deux sommets adjacents de G reçoivent des couleurs différentes.
D’après la Conjecture 1-2-3, tout graphe connexe d’ordre au moins 3 admet un 3-étiquetage propre. Nous considérons trois variantes de cette conjecture. Nous étudions
les k-étiquetages propres équilibrés, pour lesquels les étiquettes assignées apparaissent dans les mêmes proportions. La deuxième variante concerne les étiquetages propres
qui minimisent la somme des étiquettes utilisées. Enfin, nous nous intéressons aux 3-étiquetages propres qui minimisent le nombre de fois où l’étiquette 3 est attribuée.
Le choix d’étudier ces variantes est naturel. En effet, une version équilibrée de la Conjecture 1-2-3 est que presque tous les graphes G admettent un 3-étiquetage propre
équilibré. En outre, la somme des étiquettes d’un tel étiquetage est au plus égale à 2|E(G)| et associe l’étiquette 3 à au plus un tiers des arêtes de G. Nous prouvons que
les problèmes d’optimisation introduits sont NP-difficiles. Grâce à des résultats structurels et algorithmiques, nous sommes amenés à proposer de nouvelles conjectures pour
ces problèmes, que nous vérifions sur quelques classes de graphes (complets, bipartis, réguliers, 3-chromatiques, etc.). Notre travail renforce l’idée que des variantes plus
fortes de la Conjecture 1-2-3 pourraient être vraies. Nous terminons en considérant le problème consistant à trouver un plus grand sous-graphe induit d’un graphe donné qui

admet un 1-étiquetage propre. Il est prouvé que ce problème est difficile à résoudre et qu’il n’est pas approximable à un facteurO(|V (G)|1−
1
c) près pour tout entier c.

Néanmoins, nous fournissons des algorithmes paramétrés efficaces.
La deuxième partie de la thèse introduit le jeu du plus grand sous-graphe connexe Maker-Breaker, joué par deux joueurs, Alice et Bob, sur un graphe G, initialement non
coloré. Les joueurs colorent à tour de rôle les sommets de G, chacun avec sa couleur, jusqu’à ce que tous les sommets soient colorés. Alice est la gagnante si, à la fin, le plus
grand sous-graphe connexe de G induit par sa couleur est d’ordre au moins k, un entier fixé. Sinon, Bob gagne le jeu. Nous considérons aussi une version Score du même
jeu, dans laquelle le gagnant est le joueur dont la couleur induit le plus grand sous-graphe connexe de G à la fin du jeu. Nous prouvons que décider de l’issue de ces deux
jeux est PSPACE-difficile et nous fournissons des algorithmes efficaces pour le cas où le jeu se déroule dans certaines familles de graphes (chemins, cycles, cographes,
(q, q − 4)-graphes, etc.). En comparant ces deux jeux, la principale différence que nous observons est que Bob ne peut jamais gagner la version Score (si Alice joue de
manière optimale). Pour une valeur de k égale à la moitié de l’ordre de G, remarquons que si Alice peut gagner la version Maker-Breaker alors elle peut aussi construire un
sous-graphe connexe du même ordre dans la version Score ; de tels graphes sont nommés A-parfaits. Nous étudions les graphes réguliers qui sont A-parfaits et prouvons
que tout graphe 3-régulier A-parfait a au plus 16 sommets. Nous terminons en fournissant des conditions suffisantes pour qu’un graphe soit A-parfait.

Mots-clés : Graphe, Coloration, Conjecture 1-2-3, Jeux combinatoires, Complexité.

Abstract
In this thesis, we consider two families of computational problems defined on graphs: proper edge-labellings and combinatorial games. We attack these problems in a similar
(and classical) way: we show that they are computationally hard, and then find efficient algorithms for instances with specific structure.
First we focus on problems related to proper labellings of graphs. For some natural number k, a k-labelling is a weight function on the edges of a graph G, assigning
weights, called labels in this context, from {1, . . . , k}. A k-labelling induces a vertex-colouring of G, where each vertex receives as colour the sum of the labels of its
incident edges. A k-labelling is proper if the induced vertex-colouring is proper, i.e., such that any two adjacent vertices of G are assigned different colours. According
to the so-called 1-2-3 Conjecture, any connected graph of order at least 3 should admit a proper 3-labelling. We consider three variations of this conjecture. We look into
equitable proper k-labellings, for which the assigned labels appear an equal number of times. We then focus on proper labellings that also minimise the sum of labels
being used, and finally, proper 3-labellings that also minimise the number of times that the label 3 is assigned. The choice to study these variations is natural. Indeed, an
equitable version of the 1-2-3 Conjecture claims that almost every graph G should admit an equitable proper 3-labelling. Also, the sum of labels of such a labelling would
be at most 2|E(G)| and it would assign label 3 to at most one third of the edges of G. We prove that the introduced optimisation problems are NP-hard. Furthermore,
through structural and algorithmical results, we propose new conjectures for the upper bounds of the parameters that we study, which we verify for specific graph classes
(e.g. complete, bipartite, regular, 3-chromatic, etc.). Interestingly, our work gives further evidence that stronger variations of the 1-2-3 Conjecture could hold. We close our
study of proper labellings by considering the problem of finding a largest induced subgraph of a given graph that admits a proper 1-labelling. This problem is proven to be

computationally hard and not approximable within a ratio ofO(|V (G)|1−
1
c) for every natural number c. Nevertheless, we provide efficient parameterised algorithms.

In the second part of the thesis, we introduce and study the Maker-Breaker largest connected subgraph game. This game is played by two players, Alice and Bob, on a
shared, initially uncoloured graph G. The two players take turns colouring the vertices of G, each one with their own colour, until there remains no uncoloured vertex.
Alice is the winner of the game if, by the end, the largest connected subgraph of G induced by her colour is of order greater than k, where the natural number k is also given
at the start of the game. Otherwise Bob wins the game. We also consider a Scoring version of the same game, played in the same way, but in which the winner is the player
whose colour induces the largest connected subgraph of G by the end of the game. We first prove that deciding the outcome of both of these games is PSPACE-hard, and
then proceed by providing efficient algorithms when the games are played on particular graph classes (e.g. paths, cycles, cographs, (q, q− 4)-graphs, etc.). Comparing the
behaviour of these games, one of the main differences we observe is that Bob can never win the Scoring version (if Alice plays optimally). Nevertheless, if Alice can win
the Maker-Breaker version when playing on G for a value of k equal to half the order of G (the best outcome she can hope for), then she can build a connected subgraph of
the same order for the Scoring version; such graphs are called A-perfect. We then study regular graphs that are A-perfect and prove that any 3-regular A-perfect graph has
order at most 16. We finish by providing sufficient conditions for a graph to be A-perfect.

Keywords: Graph, Colouring, 1-2-3 Conjecture, Combinatorial games, Complexity.

	1 Introduction
	1.1 Colouring and playing combinatorial games on graphs
	1.2 1-2-3 Conjecture
	1.2.1 Variations with additional optimisation
	1.2.2 Locally irregular graphs

	1.3 The largest connected subgraph games
	1.3.1 Connection and Scoring games
	1.3.2 Maker-Breaker games

	1.4 Results and layout of this thesis
	1.4.1 Proper labellings
	1.4.2 Combinatorial games

	2 Three new conjectures, useful tools and graphs
	2.1 Definition of three variations and their interplay
	2.2 Useful techniques
	2.2.1 Proper labellings through stable sets
	2.2.2 Dynamic programming on nice tree-decompositions

	2.3 Useful graphs
	2.3.1 Odd multi-cacti
	2.3.2 Useful gadgets

	3 Equitable proper labellings
	3.1 Hardness result
	3.1.1 Initiator gadget
	3.1.2 Corrector gadget
	3.1.3 Main result

	3.2 Bipartite graphs G with (G) < (G)
	3.2.1 Bipartite graphs G with (G)=3
	3.2.2 Bipartite graphs G with (G)=2

	3.3 Equitable proper labellings of regular bipartite graphs
	3.4 Conclusion

	4 Minimising the sum of assigned labels
	4.1 First observations and classes of graphs
	4.1.1 First observations and remarks
	4.1.2 Simple classes of graphs

	4.2 Complexity aspects
	4.2.1 A negative result for bipartite graphs
	4.2.2 A positive result for graphs with bounded treewidth

	4.3 Particular behaviours of the problem
	4.3.1 Minimising the maximum colour versus minimising the sum of labels
	4.3.2 Using larger labels can be arbitrarily better

	4.4 Bounds
	4.4.1 Graphs with large chromatic number
	4.4.2 Bipartite graphs

	4.5 Conclusion

	5 Minimising the number of edges labelled 3
	5.1 Preliminary results
	5.2 Tools for establishing bounds on mT and 3
	5.2.1 Weakly induced subgraphs – A tool for lower bounds
	5.2.2 Partitioning into stable sets – A tool for upper bounds

	5.3 The parameters mT and 3 for some graph classes
	5.3.1 Connected graphs needing lots of 3s
	5.3.2 Bounds for connected cubic graphs
	5.3.3 Bounds for connected planar graphs with large girth
	5.3.4 Bounds for connected cacti

	5.4 Bounds for other graph classes
	5.4.1 Outerplanar graphs
	5.4.2 Halin graphs

	5.5 Conclusion

	6 Finding a largest locally irregular induced subgraph
	6.1 Preliminaries
	6.2 (Classical) complexity
	6.2.1 Polynomial cases
	6.2.2 Hard cases

	6.3 (In)approximability
	6.4 Parameterised complexity
	6.4.1 Two FPT algorithms: size of the solution/treewidth and maximum degree
	6.4.2 W-hardness

	6.5 Conclusion

	7 Preliminaries, first results and hardness
	7.1 Preliminaries
	7.2 Possible outcomes for the Scoring game, and reflection graphs
	7.3 Both games are PSPACE-hard
	7.3.1 The Maker-Breaker game on planar graphs
	7.3.2 The Maker-Breaker game on bipartite and split graphs
	7.3.3 The Scoring game on bipartite graphs

	7.4 Conclusion

	8 Playing on simple graphs
	8.1 Paths and cycles
	8.2 The Scoring game on cographs
	8.3 The Maker-Breaker game on (q,q-4)-graphs
	8.4 Conclusion

	9 A-perfect graphs and regularity
	9.1 Preliminaries
	9.2 A-perfect regular graphs
	9.2.1 Regular graphs reaching the bounds of cg
	9.2.2 The peculiar case of cubic graphs

	9.3 Sufficient conditions for graphs to be A-perfect
	9.3.1 Graphs with large degrees
	9.3.2 Graphs with large size

	9.4 Conclusion

	10 Conclusion
	Bibliography

