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Abstract

Today, the most fundamental issue of condition monitoring in most industrial plants
is fault diagnostics and prognostics. One of the most effective approaches to investigate
this issue is condition monitoring based on vibration signal analysis. With the development
of industry, multi-threaded maintenance and multi-channel acquisition are becoming more
widespread in the current, which put forward higher requirements for maintenance. Based
on this observation, it is proposed in this thesis one automated diagnosis framework for the
rolling element bearing that integrates the successive steps of fault detection, fault type
identification, fault signal reconstruction and fault size characterization. The advantage is
that the complete diagnosis process is completed at once, while involving only one key
hyperparameter, which improves the degree of automation of current Condition Based
Maintenance (CBM) and liberating human participation.

In the presence of incipient fault, vibrations of rolling element bearings show symp-
tomatic signatures in the form of repetitive impulses. This can be seen as a non-stationary
signal whose statistical properties switch between two states. The proposed maintenance
strategy models such characteristics with an explicit-duration hidden Markov model
(EDHMM) and uses the estimated model parameters to perform integrated diagnosis
without requiring the user’s expertise. The detection of a fault is first achieved by means
of a likelihood ratio test built on the EDHMM parameters. One statistical counting
approach and posterior probability spectrum are then used for identifying the fault type
automatically. In order to obtain the fault signal in some cases, one Bayesian filter based
on the EDHMM parameters is constructed. Finally, the fault size is estimated from the
duration times returned by EDHMM.

Subsequently, the capability of the integrated auto-diagnosis framework is illustrated
on different experimental datasets. The first validation is forced on the vibration data
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for specific conditions. The results prove the robust and accurate maintenance of the
rolling element bearing. In addition, the result of accelerated degradation data also shows
the effectiveness of the method, especially the ability of detecting failure occurrence and
tracking quantitatively fault development. This technique has potential for using in the
machine CBM.

Keywords: Intelligence Maintenance; Rolling element bearing; Integrated auto-framework;
Fault detection; Fault type identification; Fault signal reconstruction; Fault size character-
ization.
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Résumé

Aujourd’hui, le problème le plus fondamental de la surveillance d’état dans la plupart
des installations industrielles est le diagnostic et le pronostic des défauts. L’une des
approches les plus efficaces pour étudier ce problème est la surveillance de l’état basée sur
l’analyse des signaux de vibration. Avec le développement de l’industrie, la maintenance
multithread et l’acquisition multicanal se généralisent, ce qui met en avant des exigences de
maintenance plus élevées. Sur la base de cette observation, il est proposé dans cette thèse
un cadre de diagnostic automatisé pour le roulement qui intègre les étapes successives
de détection de défaut, d’identification du type de défaut, de reconstruction du signal
de défaut et de caractérisation de la taille du défaut. L’avantage est que le processus de
diagnostic complet est réalisé en une seule fois, tout en impliquant un seul hyperparamètre
clé, ce qui améliore le degré d’automatisation de la maintenance basée sur les conditions
(CBM) actuelle et libère la participation humaine.

En présence de défaut naissant, les vibrations des roulements présentent des signatures
symptomatiques sous forme d’impulsions répétitives. Cela peut être vu comme un signal
non stationnaire dont les propriétés statistiques basculent entre deux états. La stratégie
de maintenance proposée modélise ces caractéristiques avec un modèle de Markov caché
à durée explicite (EDHMM) et utilise les paramètres estimés du modèle pour effectuer
un diagnostic intégré sans nécessiter l’expertise de l’utilisateur. La détection d’un défaut
est d’abord réalisée au moyen d’un test de rapport de vraisemblance construit sur les
paramètres de l’EDHMM. Une approche de comptage statistique et une probabilité sont
ensuite utilisées pour identifier automatiquement le type de défaut. Afin d’obtenir le
signal de défaut dans certains cas, un filtre bayésien basé sur les paramètres EDHMM est
construit. Enfin, la taille du défaut est estimée à partir des durées renvoyés par EDHMM.

Par la suite, la capacité du cadre d’autodiagnostic intégré est illustrée sur différents
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ensembles de données expérimentales. La première validation est réalisée sur les données
de vibration pour des conditions spécifiques. Les résultats indiquent une diagnostic
robuste et précise du roulement à éléments roulants. De plus, le résultat sur des données de
dégradation accélérée montre également l’efficacité de la méthode, en particulier la capacité
à détecter l’occurrence d’une défaillance et de suivre quantitativement son développement.
Cette technique a un potentiel d’utilisation en CBM.

Mots-clés: maintenance du renseignement; Roulement à élément roulant; Auto-framework
intégré; Détection de fautes; Identification du type de défaut; Reconstruction du signal de
défaut; Caractérisation de la taille des défauts.
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Résumé étendu en français

Introduction

Contexte et motivations

En tant que composants essentiels, les roulements sont utilisés dans toutes sortes de
systèmes mécaniques rotatifs, par exemple les éoliennes, l’aérospatiale, le transport, etc. Ce
sont des composants d’entraînement très sollicités qui, avec le temps, deviennent sensibles
à l’usure et à l’écaillage. Les performances normales des machines tournantes dépendent
entièrement de l’état de santé des roulements, qui représentent près de 45 à 55% de ces
défaillances d’équipement. La défaillance d’un seul roulement peut souvent provoquer
l’arrêt de systèmes de fabrication entiers, réduisant ainsi la fiabilité et la disponibilité
du système. Cela augmente à son tour les temps d’arrêt de la production causant une
perte financière massive à l’organisation et peut même s’avérer dangereux pour la sécurité
des travailleurs. Par conséquent, les stratégies de maintenance efficaces pour minimiser
l’impact des défaillances des roulements sont très importantes pour l’industrie.

La stratégie de maintenance actuelle est la maintenance prédictive, qui peut être
réalisée grâce à une série de tests et d’analyses sans qu’aucun dommage ne se produise. Elle
est organisée et mis en œuvre en fonction de l’état de fonctionnement de l’équipement et
est appelée Maintenance Based Maintenance (CBM). Cependant, ce type de maintenance
repose encore principalement sur l’expertise humaine, qui sera effectuée à un coût élevé
et pour une quantité limitée de données seulement. De plus, la surveillance de l’état du
roulement n’est pas simple, ni la détection ou l’identification du type de défaut lorsqu’un
défaut s’est produit. En réalité, le diagnostic des roulements est un sujet important et
de nombreux sous-problèmes doivent être résolus. Cependant, les techniques actuelles
sont presque toutes conçues pour des problèmes spécifiques, plutôt que pour l’ensemble
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du diagnostic, ce qui est très exigeant pour l’utilisateur et nécessite des connaissances
en algorithmes et une expérience d’expert. Tels sont les obstacles sur la route de la
maintenance.

Objectifs

Sur la base de l’importance et des défis mentionnés ci-dessus de la surveillance de
l’état des roulements, l’objectif de cette thèse est de présenter un cadre d’autodiagnostic
intégré pour les roulements. L’importance et la contribution de cette recherche sont le
développement d’un cadre d’autodiagnostic intégré grâce à la modélisation stochastique
du signal pour réaliser à la fois la détection de défaut, la reconstruction du signal de
défaut, l’identification du type de défaut et la caractérisation de la taille du défaut. Pour
atteindre ces objectifs, un modèle stochastique, le modèle de Markov caché à durée explicite
(EDHMM), est sélectionné pour modéliser dans un premier temps la distribution temps-
fréquence du signal de vibration. Les paramètres estimés du modèle EDHMM sont utilisés
pour effectuer ces tâches sans avoir besoin d’autres informations préalables ni de l’expertise
de l’utilisateur.

Les principales contributions du présent travail sont résumées comme suit. Il introduit
une méthodologie complète qui:

• réalise la détection, l’identification et la caractérisation des défauts à la fois, dans un
cadre intégré qui dépend d’un seul hyperparamètre clé ; cela vient avec

– une test du rapport de vraisemblance pour la détection d’un défaut

– un filtre bayésien pour reconstruire le signal de défaut

– un spectre de probabilité a posteriori qui est une alternative robuste au spectre
d’enveloppe standard, exempt de tout pré-traitement, et une autre technique
d’identification automatique d’un point de vue statistique sans aucun examen
visuel

– une technique simple basée sur la régression linéaire pour estimer la taille du
défaut

• est non supervisé, dans le sens où elle s’applique sans besoin de données historiques
et sans apprendissage,
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• est automatisée, en ce sens que ces tâches sont effectuées consécutivement sans
nécessiter l’intervention de l’utilisateur.

Chapitre 2

Ce chapitre décrit les caractéristiques de base des vibrations des roulements et l’état
de l’art sur le diagnostic des défauts des roulements. Premièrement, les caractéristiques
des roulements sont décrites dans la section 2.2, y compris la structure de base, les
caractéristiques de vibration et les caractéristiques de défaut naissant. La section 2.3 décrit
quelles techniques actuelles sont appliquées pour le diagnostic des défauts de roulements
de différents points de vue, y compris la détection, l’amélioration du signal de défaut,
l’identification et les techniques d’estimation de la taille des défauts. La littérature sur les
méthodes de modélisation stochastique est passée en revue, en particulier pour le HMM
et l’EDHMM. Enfin, les techniques de diagnostic automatique sont également passées
en revue. Sur la base de cette recherche bibliographique, quelques points sont dignes de
mention. 1). À travers la littérature disponible, comme indiqué dans la section 2.3, il est
clair que diverses techniques avancées ont été proposées pour répondre aux différentes
tâches de diagnostic. Cependant, ces techniques sont presque toutes indépendantes et
nécessitent que les utilisateurs aient un niveau élevé d’expérience et de connaissances
lorsqu’ils traitent différents problèmes de diagnostic. 2). En ce qui concerne les techniques
qui tentent d’aller dans le sens d’un diagnostic intégré et automatisé dans la section 2.5, il
n’existe encore aucune recherche capable d’intégrer tous les sous-problèmes de diagnostic
dans une seule solution. Encore moins de travaux ont essayé d’atteindre ces objectifs de
manière automatisée, c’est-à-dire sans réglage manuel des algorithmes par un expert. Donc
toutes ces raisons nous poussent dans une direction, l’autodiagnostic intégré, ce qui est
exactement ce que poursuit la thèse.

Chapitre 3

Ce chapitre examine le modèle stochastique et comment l’utiliser pour modéliser la
distribution temps-fréquence du signal de vibration du roulement, y compris le paramétrage,
l’estimation et l’analyse. La section 3.2 introduit d’abord la chaîne de Markov, ouvrant la
voie aux HMM et EDHMM suivants respectivement dans les sections 3.3 et 3.4. Le cadre
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proposé dépend principalement de l’EDHMM. Il vise à capturer l’évolution temporelle des
coefficients STFT et à calculer la durée dans différents états. L’estimation de ces paramètres
nécessite des algorithmes spécifiques, qui sont détaillés dans la section 3.5. Certains
paramètres clés de l’EDHMM sont également abordés dans la section 3.5. L’efficacité de ces
paramètres et les caractéristiques qu’ils révèlent sont illustrées par un signal synthétique de
défaut de roulement. Enfin, l’hyperparamètre de ce modèle et l’initialisation des paramètres
sont discutés. Il s’avère qu’un seul hyperparamètre, c’est-à-dire la longueur de la fenêtre
Nw, doit être défini à l’avance. Cela rend l’approche potentiellement plus robuste et mieux
adaptée aux applications pratiques en l’absence de connaissances préalables.

Chapitre 4

Ce chapitre présente le cadre de diagnostic intégré, y compris la détection des défauts,
la reconstruction du signal de défaut, l’identification du type de défaut et la quantification
de la taille du défaut. Ce chapitre est le travail de base de cette thèse. Les paramètres
EDHMM obtenus dans le chapitre précedent sont utilisés dans le cadre de diagnostic
proposé. La section 4.2 introduit le test du rapport de vraisemblance (LRT) et prête
les paramètres EDHMM pour détecter la présence nécessitant un pré-traitement des
données. Si un défaut est détecté, l’étape d’identification renvoie le spectre de probabilité
postérieur (PPS), l’équivalent d’un spectre d’enveloppe, qui peut être analysé visuellement
ou automatiquement. Afin d’automatiser entièrement, une méthode simple est proposée
basée sur un point de vue statistique pour calculer la probabilité postérieure de différents
types de défauts. De même, le signal de défaut peut être extrait grâce à une filtre de variable
en temps construit par la matrice de covariance de l’observation. Indépendamment de ce
dernier, l’étape de caractérisation du défaut utilise le paramètre de Poisson de l’EDHMM
pour évaluer la taille du défaut par régression linéaire, offrant ainsi une solution simple à
une tâche difficile. Il est à nouveau souligné que l’algorithme complet ne repose que sur
l’hyperparamètre critique, Nw, l’inverse de la résolution fréquentielle. En particulier, il
ne s’appuie ni sur des données historiques, ni sur des informations préalables, ni sur une
intervention manuelle.
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Chapitre 5

Ce chapitre présente la validation du cadre de diagnostic intégré à travers différents
jeux de données. La contribution de cette partie est de déterminer les capacités du cadre
d’autodiagnostic intégré proposé pour les roulements. Deux scénarios expérimentaux
différents sont présentés dans cet article. La première validation expérimentale est relative
à des roulements avec différents dommages, fonctionnant à différentes vitesses et sous
différentes charges. Les résultats des 36 ensembles de données de roulement associés à
trois cas de défaillance différents montrent l’efficacité de ce cadre. Le deuxième type de
données expérimentales rapporte le comportement d’un seul roulement endommagé soumis
à un long test à vitesse et charge constantes. Lors de la validation, la méthode proposée a
également été comparée à l’approche de pointe, le kurtogram. Pour la première validation,
quelques commentaires s’imposent 1) Il s’avère que la technique de détection est efficace
pour détecter le temps d’occurrence des défauts, comme le montre la figure 5.13(c) dans le
deuxième cas associé aux données de dégradation accélérée. 2) La fréquence caractéristique
du roulement a été facilement modulée par la fréquence de l’arbre produisant une série
de bandes latérales et d’harmoniques, ce qui a une grande influence sur l’identification.
Cependant, les deux techniques d’identification proposées surmontent bien ce problème,
vu la Fig. 5.3, la Fig. 5.7 et la Fig. 5.16. 3) Elles sont également capables de quantifier la
taille de défaut définé dans la section 5.2, et de fournir des informations sur la propagation
des fissures et suivre quantitativement l’évolution de la fissure vue à la section 5.3.

Conclusion

L’objectif principal de cette thèse est l’étude de méthodes de traitement automa-
tique du signal pour différentes tâches de diagnostic dans un cadre intégré. Les avan-
tages remarquables sont qu’elles fonctionnent sans données historiques, sans beaucoup
d’hyperparamètres, même sans aucune intervention manuelle dans le processus. La revue
de la littérature sur cette question montre que les techniques existantes se concentrent
au contraire sur des tâches diagnostique spécifiques. De plus ces techniques sont presque
toutes indépendantes et nécessitent que les utilisateurs aient un niveau élevé d’expérience
et de connaissances. Certaines méthodes tentent de répondre à une telle aspiration, mais
n’atteignent pas la dose automatisée et intégrée comme dans cette thèse. La méthode
proposée surmonte ces lacunes comme démontré sur les données expérimentales du chapitre
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5. Bien que la validation de la méthode proposée semble parfaite, plusieurs aspects n’ont
pas été pris en compte dans la thèse. Dans cette partie, quelques-unes des directions de
travail futures liées à cette recherche sont suggérées.
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Chapter 1. General introduction

1.1 Background and Motivation

As crucial components, rolling bearings serve almost in all kinds of rotating mechanical
systems, e.g., wind turbine, aerospace, transportation etc. They are highly-stressed drive
components which, over a period of time, become susceptible to wear and spall. The
normal performance of rotating machinery is entirely dependent upon the health state
of the rolling bearings, which accounts for almost 45-55% of these equipment failures
[23, 108]. The failure of just a single bearing can often cause the stoppage of entire
manufacturing systems thereby reducing the reliability and availability of the system. This
in turn increases the production downtime causing a massive financial loss and may even
prove dangerous to the safety of the workers. Therefore the effective maintenance strategy
to minimize the negative impact of bearing failures is very important for the industry.

Fortunately, the maintenance theory is getting more and more advanced to meet the
existing large amount of industrial monitoring data. The development of maintenance
theory has gone through several important stages in the past decades, from Run-to-Failure
maintenance, Scheduled maintenance, Predictive maintenance to Intelligence maintenance.
The Run-to-Failure maintenance is the oldest definition of maintenance, which means
that the maintenance only occurs after a sudden or even catastrophic failure. Therefore,
such maintenance will cause a lot of time and money costs and even life-threatening. The
Scheduled maintenance refers to schedule the maintenance plan in advance through the
prior knowledge about the average service life of the crucial component, and intervene
in regularly to the system based on the plan. So it implies taking the risk of replacing
the healthy operational components. With the development of science and technology, it
makes the Predictive Maintenance possible. This kind of maintenance can be achieved
through a series of tests and analyses without the occurrence of damage. It is arranged
and implemented based on the operating status of the equipment, and is called Condition
Based Maintenance (CBM). However, human expertise is an outstanding solution but at
a high cost and for a limited quantity of data only, the analysis being time-consuming.
Recently, with the advent of Industry 4.0, the digital factory offers many alternatives
to human monitoring. The Intelligence Maintenance is a promising direction, which is
dedicated to improving the degree of automation of maintenance and liberating human
participation. Figure 1.1 shows the main steps in the intelligence maintenance system.

In the current maintenance strategy, one of the most effective approaches is condition
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1.1. Background and Motivation

Intelligence maintenance framework

 Acquisition
State 

assessment

Diagnosis

Prognosis

Maintenance 

management

Repair 

measures

Maintenance 

action

Automation and Intelligence

Figure 1.1: Intelligence maintenance framework.

monitoring based on vibration signal analysis. Compared with other common techniques,
such as acoustic analysis, thermal imaging analysis, etc., vibration signal has irreplaceable
advantages, for example, the well known characteristic vibration signatures, well-developed
signal processing techniques, supported by various sensors commercially available for
different operational conditions, etc. As the characteristic of faulty bearing, the vibration
signal will appear the repetitive transient pulses contaminated with additive noise. The
transient pulse is often due to faulty point passing through the load zone, which is
followed by the oscillations with decaying low-frequency specified by the excited structural
resonances. Whereas, the additive noise comes from a variety of interfering sources, such
as, channel effects or device defects, system tremor, environmental interference, etc. Due to
the structure of the bearing and additive noise interference, this kind of repetitive pattern
tends to be stochastic and non-stationary, especially, in high frequency range dominantly,
which brings difficulties to analyze through deterministic model or traditional techniques.
Therefore recognizing that kind of transient from non-stationary signals generated from
bearing needs helps from the specific signal processing tools.

In addition, as shown in Figure 1.1, in the condition monitoring of bearings, it is not
simple to detect or identify the fault type when it occurs. In reality, bearing diagnosis
is a big topic, and there are many sub-issues that need to be solved. However, current
techniques are almost designed for specific issues, rather than toward the whole diagnosis,
which is high demanding for the user and requires different algorithms knowledge and
expert experience. These are the obstacles on the road to intelligence maintenance. Based
on the above mentioned importance and challenges of bearing condition monitoring, the
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Chapter 1. General introduction

motivation is to investigate further the use of vibration analysis in solving efficiently some
key problems in condition monitoring, so as to present an integrated auto-diagnostic
framework for the rolling element bearing.

1.2 Objectives and scope of the research

According to the identified research problem and the above-mentioned motivations,
during the envisage phase of diagnosis solution, it is necessary to consider different factors,
i.e., simplicity, practicality, automatically. The following questions can be formulated as
input to this thesis.

• How to achieve integrated diagnosis?
Is it possible to integrate all the diagnosis issues (detection, reconstruction, identifi-
cation, characterization) into one-package framework? This means completing all
the diagnosis issues at once without manual tuning of the algorithms.

• How to achieve unsupervised diagnosis?
Is it possible to employ an advanced signal processing technique and stochastic
modeling which requires only one measurement and does not need to be trained by a
sequence of data? This means without need of historical data and without training.

• How to achieve automated diagnosis?
Would it be possible to apply such a technique automatically? This means these
tasks are completed consecutively without requiring the user’s intervention, and as
few hyperparameter settings as possible.

Based on the concerned questions above, this research focuses on the development
of bearing intelligence CBM and proposed one integrated auto-diagnosis framework in-
cluding fault detection, fault signal reconstruction, fault type identification and fault size
characterization, which are as shown in Figure 1.2. The main contributions of the present
work are resumed as follows. It introduces a complete methodology that:

• achieves detection, identification, and characterization of faults at once, in an
integrated framework that depends on only one key hyperparameter; this comes with

– a likelihood ratio test for detection of a fault [14]

– a Bayesian filter for reconstruction of the fault signal [162]
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– a posterior probability spectrum that is a robust alternative to the standard
envelope spectrum, free of any pre-processing, and another automatic identifi-
cation technique from statistical-based view of point without any examination
visually

– a simple technique based on linear regression for estimating the fault size

• is unsupervised, in the sense that it is applied without need of historical data and
without training,

• is automated, in the sense that these tasks are completed consecutively without
requiring the user’s intervention.

Fault Detection

Fault signal 
Reconstruction

Fault type 
Identification

Fault size 
Characterization

Bearing CBM

Figure 1.2: Components of the integrated diagnosis framework.

The significance and contribution of this research is the development of an integrated
auto-diagnostic framework by stochastic modeling of the vibration signal to achieve fault
detection, fault signal reconstruction, fault type identification and fault size characterization
at once. To achieve this goal, one stochastic model, explicit duration hidden Markov
model (EDHMM), is selected to model the time-frequency distribution of the vibration
signal firstly. EDHMM is investigated in this research because it provides a well-defined
mathematical structure for identifying non-stationary periodicities in time series, and
this model returns several valuable parameters useful for the following integrated auto-
diagnosis. It is worth mentioning that the proposed four components of intelligent bearing
CBM depicted in Figure 1.2 are independent to each other, and any one of the tasks
can be accomplished effectively without the aid of other. And they do not affect each
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Chapter 1. General introduction

other because different tasks are based on different EDHMM parameters. The detailed
probabilistic model and such modular integrated diagnosis framework will be discussed in
the upcoming chapters.

1.3 Organization of the thesis

This thesis is divided into six chapters. The contributions and contents of each
chapter are explained separately as follows:

Chapter 1 explains the background and motivations behind this research, as well as the
research questions. It also describes the main objectives and contributions of this research
and outlines an overview of the dissertation.

Chapter 2 outlines the state of the art on the bearing fault diagnosis. Firstly, the
characteristics of rolling element bearing are described in Section 2.2, including basic
structure, vibration characteristics and incipient fault characteristics. Section 2.3 describes
what current techniques are applied in bearing fault diagnostics from different viewpoints,
including detection, fault signal enhancement , identification and the fault size estimation
techniques. Literature on stochastic modeling method are reviewed, especially the hidden
Markov model and explicit duration hidden Markov model. In the final, the automatic
diagnosis techniques are also reviewed. The chapter closes with one discussion based on
the shortcomings of existing techniques, thereby leading to the research content of this
dissertation.

Chapter 3 considers the stochastic models, and how to use them to model the time-
frequency distribution of the bearing vibration signal, including the parameter setting,
estimation and analysis. Section 3.2 introduces firstly the Markov chain, paving the way
for the following HMM and EDHMM in Section 3.3 and Section 3.4, respectively. The
proposed framework mainly depends on the EDHMM. It aims at capturing the time
evolution of the STFT coefficients and computing the duration time in different states.
The estimation of its parameters requires specific algorithms, which are detailed in Section
3.5. In order to have better performance, the model needs some parameters to be set in
advance, which is discussed in Section 3.6.

Chapter 4 presents the integrated diagnosis framework including fault detection, fault
signal reconstruction, fault type identification and fault size quantification. This chapter
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is the core work of this thesis. The EDHMM parameters obtained in the previous chapter
will be used in this proposed diagnosis framework. Section 4.2 introduces the likelihood
ratio test (LRT) and provides the EDHMM parameters for detecting the presence of fault
without requiring any data pre-preprocessing. A time-varying filter based on Bayesian
theory is proposed to extract the fault signal in full-band in Section 4.3. Section 4.4
proposes a posterior probability spectrum (PPS) of the states; it is used as a robust
alternative to the state-of-the-art envelope spectrum for identifying the fault frequencies.
In order to avoid visual examination, a simple method based on a statistical point of view
for identifying automatically the fault type is proposed. Finally, the fault size quantification
through a simple idea of linear regression is described in Section 4.6. In this section, the
time duration parameter of the EDHMM is used to assess the fault size, thus offering a
simple solution to a challenging task.

Chapter 5 presents the validation of the integrated diagnosis framework through different
bearing datasets. Two different experimental scenarios are reported in this paper. In
Section 5.1, the vibration signal relative to bearings with different damages, running at
different speeds and under different loads are used. The second scenario (Section 5.2)
addresses the accelerated degradation data. In the validation, the proposed method is also
compared with the state-of-the-art kurtogram. In the last section, results of the different
experimental datasets are discussed.

The last part completes the thesis with general conclusions about the proposed integrated
auto-diagnosis framework. Ideas for future research challenges are discussed together with
suggestions for improvements of the proposed techniques.

The Appendix gives some mathematical deduction used in this thesis, including the
detailed process of the stochastic model parameter estimation in Appendix A, and the
algorithm convergence in Appendix B.

7/129

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI045/these.pdf 
© [Y. Jin], [2022], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI045/these.pdf 
© [Y. Jin], [2022], INSA Lyon, tous droits réservés



Chapter 2

State of the art

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Rolling element bearing signal characteristics . . . . . . . . . 10

2.2.1 Basic structure of rolling element bearing . . . . . . . . . . . . 10

2.2.2 Vibration characteristics of rolling element bearings . . . . . . 11

2.2.3 Incipient fault characteristics of rolling element bearing . . . . 13

2.3 General review of diagnosis of rolling element bearings . . . 14

2.3.1 Bearing fault detection . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Bearing fault signal enhancement . . . . . . . . . . . . . . . . . 18

2.3.3 Bearing fault identification . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Bearing fault size characterization . . . . . . . . . . . . . . . . 27

2.4 Hidden Markov model and its variants . . . . . . . . . . . . . 29

2.4.1 Hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Explicit duration hidden Markov model . . . . . . . . . . . . . 31

2.5 Integrated automatic diagnosis . . . . . . . . . . . . . . . . . . 34

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9/129

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI045/these.pdf 
© [Y. Jin], [2022], INSA Lyon, tous droits réservés



Chapter 2. State of the art

2.1 Introduction

This chapter provides an overview of bearing and the current vibration monitoring
approaches. The chapter begins with the introduction of various characteristics of rolling
element bearings. Since bearing vibration monitoring consists of predefined steps, several
state-of-the-art approaches for each diagnostic module are discussed subsequently, including
fault detection, fault signal enhancement, fault identification and fault size characterization.
Markov process is a desired tool that models the nonstationary nature of the vibration
signal and uncovers the intrinsic structure in signals. Hence, in this chapter, a review of
Hidden Markov model and its variant is also given. Vibration-based monitoring of rolling
element bearings is a complex topic, which involves several issues, then the integrated
auto-diagnosis techniques are investigated based on current literature. Furthermore, a
preliminary conclusion concerning the limitation of current research and the focus of this
thesis is drawn in the last subsection.

2.2 Rolling element bearing signal characteristics

As a special structure, a rolling element bearing has its own unique characteristics,
including vibration characteristics and incipient fault characteristics. These characteristics
enable bearing to generate useful vibration information when rotating, which offers the
possibility of diagnosing potential bearing faults. This section considers some basic but
important knowledge, containing the structure of rolling element bearings, the common
bearing fault types and how they occur, also the mechanism of vibration generation in
rolling element bearings.

2.2.1 Basic structure of rolling element bearing

Most rolling bearings consist of rings with a raceway (inner ring and outer ring),
rolling elements and a cage as shown in Figure 2.1. In reality, the outer ring is often fixed
on the bearing seat or mechanical body. The inner ring is connected to the drive shaft
and driven by the shaft rotation. Rolling elements geometrically contact with the raceway
surfaces of the inner and outer rings at “points”, whose role is to convert motion from
sliding to rolling. The cage separates the rolling elements at regular intervals, holds them
in place within the inner and outer raceways, and allows them to rotate freely and reduces
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the collision between them.

 

d

D

α  

Figure 2.1: The diagrammatic sketch of a rolling bearing.

2.2.2 Vibration characteristics of rolling element bearings

Vibration monitoring has now become a well accepted part of many planned main-
tenance regimes and relies on the well known characteristic vibration signatures which
rolling bearings exhibit as the rolling surfaces degrade. However, in fact, vibrations occur
all the time. As a rolling element passes over a location on a race, the surface of the race is
subjected to a high effective stress for a short time during element passage. This cycling of
stress occurs once per element passage at the location. Simultaneously, a location on the
rolling element itself is also subjected to a cycle of subsurface stress twice per revolution of
the element. The vibrations are generated when surfaces interact through a combination
of rolling and sliding. The bearing natural vibration is originated from elastic factors; so
whether the bearing fails or not, it will produce vibration.

When the bearing experiences a localised defect during operation, each interaction
will cause an instantaneous impact and excite the system to perform high-frequency free
attenuation vibration response according to its natural frequency. Such impact has higher
energy than the natural excitation. Due to the bearing geometrical symmetry and dynamic
regularity, the impact will show typical signal signature.

For a stationary outer ring and rotating inner ring, from the bearing geometry the
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fundamental frequencies are derived as follows [124]:

Bearing characteristic frequencies:

• Ballpass frequency, outer race:
fBPFO = Zfr

2 [1− d
D
cosα]

• Ballpass frequency, inner race:
fBPFI = Zfr

2 [1 + d
D
cosα]

• Fundamental train frequency (cage speed):
fFTF = fr

2 [1− d
D
cosα]

• Ball (roller) spin frequency:
fBSF = Dfr

2d [1− ( d
D
cosα)2]

where, fr is the shaft speed, Z is the number of rolling elements, and α is the angle of
the load from the radial plane. These bearing equations assume that there is no sliding
and that the rolling elements roll over the raceway surfaces. However, in practice this is
rarely the case and due to a number of factors the rolling elements undergo a combination
of rolling and sliding. As a consequence the actual characteristic defect frequencies may
differ slightly from those predicted. Therefore, it is necessary to take the nearby frequency
value as the fault frequency according to the actual situation.

There are some unique characteristics for the faulty bearing vibrations, such as
impulsiveness [10], cyclostationarity [10] and modulation [124].

• Impulsive characteristic
The impulsive waveform in the faulty bearing vibration signal is due to the response
of the structure to excitation forces whenever a faulty point passes through the load
zone. Such transient pulse is followed by decaying oscillations with natural frequency
corresponding to structural resonances. However, the impulsive waveform caused by
the fault is easily submerged in strong background noise at the incipient fault stage,
resulting in a low signal-to-noise ratio, which brings great difficulty to the feature
extraction of rolling bearings.

• Cyclostationary characteristic
Due to the bearing vibration generation form, i.e. combination of rolling and
sliding, the vibration signals from rolling-element bearings often exhibit high levels of
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2.2. Rolling element bearing signal characteristics

cyclostationarity, especially in the presence of localised faults [8]. Traditional signal
processing methods based on Fourier transform encounter certain limitations or are
powerless in some cases. This asks for the development of specific signal processing
tools [7].

• Modulation characteristic
Rolling bearing vibration signals have typical multi-modulation characteristics. Mc-
fadden, et al. [106] proposed firstly the vibration model of a single point defect in
a rolling element bearing. It can be seen from the model that the vibration signal
caused by the localised fault can be regarded as a combination of a low-frequency
part (faulty impact) and a high-frequency part (natural resonance frequency). In
diagnosis, the actual resonance and other modulation are not of interest, but only
the fault impulse demodulated signature.

2.2.3 Incipient fault characteristics of rolling element bearing

The rolling-contact bearing is an element of machinery with a very important role,
and it dominates the performance of the machine. However, a rolling element bearing
will eventually fail through a fatigue mechanism that can be greatly accelerated by poor
installation, overloading, improper lubrication, or contamination. If the abnormality can
be detected timely in the early incipient stage, not only the maintenance cost will be
reduced, but even catastrophic accidents can be effectively avoided. Therefore, the early
detection of bearing faults is extremely important. When the bearing has an initial failure
during operation, the vibration signal will have two important characteristics [14]; the
first one can be described as an increase in the impulsiveness of the signal, i.e. a deviation
from Gaussianity, and/or the second one as a shift of the statistical behaviour of the signal
from stationarity to non-stationarity. However, in the incipient fault stage, the level of the
vibration will often show unobvious signal features, weak impulsive energy and low signal
to noise ratio, etc. These characteristics depend upon many factors, summarised by the
following points,

• in the incipient stage, the impact energy of the small fault will be weak, which makes
the impact easily submerged in the noise;

• the point at which the vibration is measured may correspond to complicated vibration
propagation path, and noise increases during the process of propagation;
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• the operating environment of the bearing and other rotating components, i.e. electric
motors, gears, shaft, etc., may modify the bearing features;

• the acquisition and conversion error of the sensor is another non-negligible factor.

Therefore, in order to perform better maintenance, one good measurement environment is
very important. In addition, the recovery of the fault signature in a low signal-to-noise
ratio and the link to the stochastic and nonstationary nature of the fault signature are the
critical problems in the incipient fault diagnosis.

2.3 General review of diagnosis of rolling element

bearings

2.3.1 Bearing fault detection

During operation, the bearings are subjected to heavy and dynamic loadings generated
by machines and transmitted through the components of rolling element bearings. Hence,
the healthy condition of bearings is very important in the rotating machinery system. Any
failure in the bearings must be detected on time to avoid increase in downtime, production
time and catastrophic failure of the machinery. Thus, the detection of these defects is of
vital importance for condition monitoring and quality inspection of bearings. As described
in Chapter 2.2.2, an instantaneous impact will appear during each interaction. These pulses
produce vibration which are the main signatures for proving the fault existence. In this
subsection, two different kinds of detection techniques are reviewed, i.e. the time-domain
indicators and the stochastic indicators.

2.3.1.1 Time domain indicators

Because the time domain indicators have the advantage of intuition, are easy to
understand, convenient to calculate, and high efficiency, they have been widely used in the
field of bearing detection. The time domain indicators can be divided into two categories,
i.e. dimensional indicators and dimensionless indicators. The dimensional indicators mainly
include Root Mean Square (RMS), Standard Deviation, Effective value etc. However,
these indicators are usually closely related to the load and speed of rotating machines, and
sensitive to the operating conditions. In practical applications, dimensionless indicators are
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2.3. General review of diagnosis of rolling element bearings

usually used to monitor the health condition of bearings. The time-domain dimensionless
indicators are not only independent on loads and speeds of rotating machinery, but they
are also able to effectively indicate early faults occurring in the rotating machinery [84].
There are six indicators usually used for the fault diagnosis of rolling element bearing,
shown as follows:

Skewness (SK) [114]

SK =
∑L
t=1(xt − x)3

(L− 1)σ3 , (2.1)

where, xt, t = 1, 2, ...,L is the tth sampling point of the raw signal x, L is the number of
sampling points, x is the mean value of the sample x defined as

x = 1
L

L∑
t=1

xt,

and σ is the standard deviation of the sample x defined as

σ =

√√√√ 1
L− 1

L∑
t=1

(xt − x)2.

Kurtosis (KU) [53]

KU =
∑L
t=1(xt − x)4

(L− 1)σ4 ; (2.2)

Crest indicator (CI) [51]
CI = max|xt|√

1
L

∑L
t=1(xt)2

; (2.3)

Clearance indicator (CLI) [133]

CLI = max|xt|
( 1
L

∑L
t=1

√
|xt|)2

; (2.4)

Shape indicator (SI)

SI =

√
1
L

∑L
t=1(xt)2

1
L

∑L
t=1 |xt|

; (2.5)

Impulse indicator (IMI)
IMI = max|xt|

1
L

∑L
t=1

√
|xt|

. (2.6)
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The six dimensionless parameters are extracted from the raw vibration signals to
reflect the general change of the healthy condition of bearings. Among these dimensionless
indicators, the Kurtosis is more sensitive to impact signals and most widely used in the
fault detection of rolling bearings. However, the above indicators can be considered as the
impulsiveness measures. The cyclic behavior is very an important characteristic in the
rotating machine vibration signal. Antoni proposed the indicator that used the negentropy
of the square envelope spectrum to indicate the cyclostationary behavior [10]. In addition,
some indicators based statistical point of view are designed to identify the cyclostationary
behavior in Ref. [14],

Indicator for testing the Gaussian cyclostationary hypothesis (GCS) against the Gaussian
stationary (GS)

IGCS/GS(x) = ln < s2(t) > − < ln s2(t) >, (2.7)

where, s2(t) is N-periodic component of the squared envelope of the signal, defined as

s2(t) = 1
K

K−1∑
k=0
|x(t+ kN)|2

with K = bL/Nc is the number of N-sample periods of in the L-sample long signal. The
operation < s2(t) > stands for the time average value of s2(t).

Indicator for testing the generalized Gaussian cyclostationary (GGCS) hypothesis against
the generalized Gaussian stationary (GGS) is

IGGCS/GGS(x) = 2κ−1
0 ln < sκ0(t) > −2κ−1

1 < ln sκ1(t) > +C, (2.8)

where, sκ(t), κ = κ0,κ1, is N-periodic component of the κ-power envelope of the signal
and C stands for an additive constant. sκ(t) is defined as

sκ(t) = 1
K

K−1∑
k=0
|x(t+ kN)|κ

with κ0,κ1 are the estimates of the shape parameters of generalized Gaussian distribution.

Some researchers have also proposed band pass filter techniques based on time domain
in which impulse loading excites structural resonance in the high frequency zone that can
be detected by a transducer. The shock pulse method [5] is based on band pass filtering
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techniques. This method is widely used in industries but cannot effectively detect defects
at low speed. Dwyer [53] initially introduced the concept of spectral kurtosis and Antoni
[11, 15] implemented it in the field of fault diagnosis of rolling element bearings. Spectral
Kurtosis (SK) is a statistical tool that identifies the presence of a series of transients and
its position in the frequency domain. Antoni [9] in his paper listed various properties of
SK for the first time. More recently, Antoni [10] summarized evidence studies of transients
and proposed a new spectral extraction method, namely infogram, which considers both
the two characteristics and uses negentropy of the square envelope and its spectrum to
depict the two characteristics of transients.

2.3.1.2 Stochastic model

As described in Chapter 2.2.2, some signal changes will appear in the process of
bearing failure; one is the increase in the impulsiveness of the signal, another is a shift
of the statistical behaviour of the signal from stationarity to non-stationarity, i.e. the
occurrence of repetitive transients. Although the traditional time-domain indicators
are effective and sensitive to impulses, they have no ability to differentiate them. The
probabilistic model is another common used way to detect bearing faults. In reference [14],
a statistical methodology based on the maximum likelihood ratio is introduced as a general
framework to design condition indicators. The proposed indicator is optimal in the sense
that it coincides with the statistics of the likelihood ratio test (LRT) which maximizes the
probability of true detection given a fixed probability of false alarm (erroneous rejection of
the null hypothesis). HMM is also a parametric statistical method that has the capability
of pattern classification and is suitable for dynamic time series of signals that are non-
stationary. The reference about bearing fault detection based on HMM can be seen in
[112, 113]. In reference [167], the researchers introduced a fault detector based on the
estimation of features or condition indicators from sensor data. The key attribute of
the features is that they characterize a large number of targeted faults. Their selection
and extraction are critical processes that affect unequivocally the success or failure of
the detector. Another critical component is the fault progression model describing the
degrading state of the system. In reality, however, this model is often unknown and
severely hinders the application of model-based detection method. With the absence of
data, it is impossible to build a data-driven model. The authors [168] therefore developed a
model based on the Paris fatigue law and modified it to adapt to the fault mode of interest
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and integrate it into the defect detection architecture. A parametric adaptation algorithm
was then introduced. The features and fault progression patterns are then defined in a
particle filter framework where the current feature distribution is compared to its baseline
counterpart to detect a gap or divergence between the two.

2.3.2 Bearing fault signal enhancement

Another significant and often unavoidable problem in signal processing is the presence
of background noise due to adverse recording environments, as well as convolutional noise
due to sensor and signal propagation variability. Various signal processing techniques
involving time, frequency and statistical methods have been used to detect incipient
faults. These techniques require a high signal-to-noise-ratio (SNR), where the faulty
component vibrations are higher than the background noise. Standard spectral features
are highly sensitive to noise, which can decrease the following modeling effectiveness and
give misleading results. It is important, therefore, to incorporate signal enhancement
and/or robust spectral extraction techniques that enhance the feature while suppressing
background noise. The basic goal of feature enhancement is to extract the clean signal x(t)
from the measurement y(t) with additive background noise n(t). There are various ways to
denoise in the pretreatment, and this part mainly concentrates here on the class of denoising
methods that capitalize on time-frequency feature. The signal model can be written as
y(t) = x(t) + n(t), and the corresponding Fourier transform as Y (f) = X(f) +N(f).
The problem can be simplified as only estimating the spectral amplitude |X(f)|, which is
based on an underlying fact that the short-time spectral amplitude rather than phase that
is important for vibration signal. The spectral amplitude estimation algorithm is one kind
of the classic approaches for de-noising, which can be classified as minimum mean square
error (MMSE), spectral subtraction, wiener filter based on their estimation method.

The spectral subtraction estimation approach developed by Boll [26] is designed for
enhancing signals degraded by uncorrelated additive noise. It is an approach for estimating
the magnitude frequency spectrum of the underlying clean signal by subtracting the noise
magnitude spectrum from the noisy spectrum. The power spectrum subtraction [93] has
the same idea, but instead use the power spectrum. These two basic methods are derived
in Chapter 2.3.2.1. Some other variations on the basic spectral subtraction approach have
been proposed. Notable work in this area is that of McAulay and Malpass [103], who
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formulated the spectral subtraction approach as a maximum likelihood estimation problem
of the variance of each spectral component of the original clean signal. Other popular
modifications are those that involve averaging or smoothing of the sample spectrum
estimator, controlling the amount of subtracted noise [93, 24].

Wiener filter [87] is applied either in the time domain or frequency domain to obtain
an estimate of the undergraded signal. In the time domain the Wiener filtering operation
can be represented as a convolution, and in the frequency domain as multiplication by the
complex filter gain function. At a single frequency, the Wiener filter spectrum estimate
[93, 103] is therefore a gain function times the corrupted spectrum Y (f). The Wiener
filter is also the optimal MMSE estimator under a Gaussian assumption.

Ephraim et al. [55] proposed one algorithm assuming that the short-time spectrum
follows the Gaussian distribution, and utilized MMSE on the short-time spectral amplitude
(STSA) of the signal for enhancing the noisy signal. In the literature [54], Ephraim took
the measure of mean-square error of the spectra into account, and extended the STSA
estimator which minimizes the mean-square error of the log-spectra in enhancing noisy
signal. These two STSA estimators were derived under the Gaussian assumption. Porter
and Boll [118] gave a modification and improvement for the optimal MMSE estimator
calculated directly from noisy data in a way that avoids the need for assuming a specific
form of the distribution.

2.3.2.1 Spectral Subtraction

Spectral subtraction [26] is a simple and efficient method. The approach is to estimate
the magnitude frequency spectrum of the underlying clean spectrum by subtracting the
noise magnitude spectrum from the noisy spectrum. As the signal in practice tends to
be non-stationary, then the STFT is applied here. The signal model can be rewritten in
short time spectrum as

Y (n, k) = X(n, k) +N(n, k),

where n means the window index, and Y (n, k), X(n, k), N(n, k) represent the spectrum
at frequency k of the nth short segment of the measured signal, the clean signal and the
additive noise, respectively. It is assumed that the noise n(t) does not depend on the
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Chapter 2. State of the art

original signal y(t). Then the spectral magnitude |N(n, k)| of N(n, k) can be replaced
by its average value |N(n, k)| taken during normal vibration (without fault). The phase
∠N(n, k) of N(n, k) is replaced by the phase ∠Y (n, k) of Y (n, k). These substitutions
result in the spectral subtraction estimator X̂(n, k):

X̂(n, k) = [|Y (n, k)| − |N(n, k)|]ej∠Y (n,k)

or
X̂(n, k) = H1 · Y (n, k),

where,

H1 = 1− |N(n, k)|
|Y (n, k)| . (2.9)

In the literature [93, 103], one similar idea called power spectrum subtraction is
presented. The author estimated the spectral amplitude firstly, and then used the phase
of the original signal ∠Y (n, k) to form the estimate X̂(n, k). The square of the Fourier
coefficient modulus can be written as

|Y (n, k)|2 = |X(n, k)|2 + |N(n, k)|2 +X(n, k)†N(n, k) +X(n, k)N †(n, k). (2.10)

From the observed data y(t), |Y (n, k)|2 can be obtained directly. The terms |N(n, k)|2,
X(n, k)†N(n, k) and X(n, k)N †(n, k) cannot be obtained exactly. In the power spectrum
subtraction technique, they are approximated by E[|N(n, k)|2], E[X(n, k)†N(n, k)] and
E[X(n, k)N †(n, k)]. Because the additive noise N(n, k) is statistically independent with
the signal of interestX(n, k), then the quantity E[X(n, k)†N(n, k)] and E[X(n, k)N †(n, k)]
are zero. The Eq.(2.10) can be rewritten as

|X̂(n, k)|2 = |Y (n, k)|2 − E[|N(n, k)|2], (2.11)

where, the E[|N(n, k)|2] can be replaced with |N(n, k)|2 if noise is stationary. The phase
of X̂(n, k) is from ∠Y (n, k), so that,

X̂(n, k) = |X̂(n, k)| · ej∠Y (n,k).

As pointed in reference [93], the estimated quantity is not guaranteed to be non-
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2.3. General review of diagnosis of rolling element bearings

negative since the right-hand side of Eq.(2.10) or Eq.(2.11) can become negative, and a
number of somewhat arbitrary choices have been made. In many studies, the negative
values are set to zero.

2.3.2.2 Wiener filtering

In the previous section, the basis for estimating the short-time spectral magnitude
through a process of spectral subtraction was described. In this section, we review the
wiener filter technique, in which a frequency weighting for an “optimum” filter is first
estimated from the noisy observation. Here, Y (n, k), X(n, k), N(n, k) again denote the
short-time spectra associated with the windowed time functions y(t), x(t) and n(t). The
estimate X̂(n, k) of X(n, k) that minimizes the mean-square error is obtained by filtering
y(n) with the noncausal Wiener filter as

X̂(n) = H2 · Y (n, k),

where, the frequency weighting H2 can be represented by the power quantity Py, Px and
Pn as

H2 = Px
Px + Pn

= E[|X(n, k)|2]
E[|X(n, k)|2] + E[|N(n, k)|2] . (2.12)

Based on the independence assumption and the relationship Eq.(2.10), E[|Y (n, k)|2]
can be simplified as the sum of E[|X(n, k)|2] and E[|N(n, k)|2], Then Eq.(2.12) can be
also written as

H2 = 1− E[|N(n, k)|2]
E[|Y (n, k)|2] . (2.13)

The result Eq.(2.13) derived from the MMSE estimator can be also seen as the
Wiener filter. Similar with the previous section, the spectral magnitude |N(n, k)| here can
also be replaced by its average value |N(n, k)| taken during normal vibration (without
fault). In addition, the quantities E[|Y (n, k)|2], E[|X(n, k)|2], and E[|N(n, k)|2] can also
be understood as the corresponding covariance matrix. Therefore, the covariance matrix
will be used to denoise thanks to Eq.(2.13), which will be introduced detailed in the
Chapter 4.3.
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2.3.2.3 Minimum Mean-Square Error

In this subsection, one STSA estimation through minimum mean-square error is
described, and the spectral components are assumed as statistically independent Gaussian
random variables with zero mean. This approach was first proposed by Ephraim in [118],
and later used in various fields. Based on the formulation of the estimation problem given
in the previous section, our task is to estimate the modulus |X(n, k)| from the observed
signal y(t). The MMSE estimator |X̂(n, k)| of |X(n, k)| is obtained through the Bayesian
theory as,

|X̂(n, k)| = E[|X(n, k)||y(t)]

= E[|X(n, k)||Y (n, k)]

=
∫
X(n,k)

|X(n, k)|p(X(n, k)|Y (n, k))

=
∫
X(n,k)

|X(n, k)|p(Y (n, k)|X(n, k))p(X(n, k))
p(Y (n, k))

=
∫
X(n,k) |X(n, k)|p(Y (n, k)|X(n, k))p(X(n, k))∫

X(n,k) p(Y (n, k)|X(n, k))p(X(n, k)) . (2.14)

If one substitutes the Gaussian distribution into Eq.(2.14) and performs some manipulations
(see literature [118]), the estimate |X̂(n, k)| can be obtained as

|X̂(n, k)| = ξ(n, k)
1 + ξ(n, k) |Y (n, k)|,

where ξ(n, k) is the covariance ratio at frequency k of the nth spectral component of the
clean signal and the noise ξ(n, k) = E[|X(n,k)|2]

E[|N(n,k)|2] . Similarly, ∠Y (n, k) is used as the phase of
X̂(n, k), and substituting ξ(n, k) into the above formula as

X̂(n, k) = E[|X(n, k)|2]
E[|X(n, k)|2] + E[|N(n, k)|2] · Y (n, k). (2.15)

It is found that the MMSE estimator of the magnitude of the kth signal spectral
component is in fact same as the Wiener estimator. For this reason, Eq.(2.15) is referred
to as a Wiener amplitude estimator.
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2.3. General review of diagnosis of rolling element bearings

2.3.3 Bearing fault identification

The aim of the identification step is to locate the localized fault through different
techniques using the data collected from the bearing. During the past few decades, a
significant body of research has been carried out for addressing directly or indirectly fault
identification. The state-of-the-art signal processing techniques used recently are listed
in Figure 2.2, mainly including 1) signal decomposition: empirical mode decomposition
and local mean decomposition, blind deconvolution, matrix decomposition techniques;
2) signal modeling: cyclostationary, hidden Markov model; 3) signal transformation:
STFT, Wigner-Ville decomposition, wavelet transformation, cepstral analysis; 4) artificial
intelligence, etc. In the final analysis, these advanced processing techniques all need to
return back to demodulation and spectrum analysis for finding the bearing fault frequency
so as to identify the fault type. These methods are reviewed as follow.

Vibration signal

Signal 
Decomposition

Signal processing techniques

Signal 
modelling

Signal 
transformation

Feature 
extraction

Local mean decomposition 
Empirical mode 
decomposition 
Ensemble empirical mode 
decomposition 
Blind source separation
Blind deconvolution
Matrix decomposition

...

Time domain 
feature
Frequency domain 
feature
Time-frequency 
feature 
Statistical feature

...

Artificial 
intelligence

Fourier transform
Short time Fourier 
transform
Cepstrum
Wigner-Ville 
distribution
Wavelet transform

...

Cyclostationary 
model
Hidden Markov 
model
Dynamic model

...

Artificial neural 
network 
Support vector 
machine
Convolutional 
neural network

...

Figure 2.2: Vibration signal analysis techniques.

Spectral kurtosis and Kurtogram are one of the most popular methods. Antoni
[11] gave a comprehensive theoretical framework of the spectral kurtosis and presented a
spectral kurtosis estimation method based on the filter bank decomposition. Subsequently,
Antoni [15, 9] published a further study on how to apply SK in the diagnostics of rotating
machinery, and presented a tool called the Kurtogram and its fast algorithm, which shows
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spectral kurtosis values in a special band-pass structure as a function of two parameters,
centre frequency and bandwidth of the filtered signal. A number of improved Kurtogram-
based methods have since been proposed by other researchers. Lei et al. [85] pointed out
that the Kurtogram based on the STFT or FIR filters are not precise in the extraction
of impulsive features of a damaged bearing signal. An improved Kurtogram method was
put forward which utilized the Daubechies-wavelet based Wavelet Packet Transform filter.
It was demonstrated to be more effective in de-noising the signals and taking out faulty
features not present in the original kurtogram. Smith stated in reference [136] that they
may fail in specific environments, such as in the presence of electromagnetic interference
or other impulsive masking signals. Then the optimised spectral kurtosis was proposed for
selecting the best demodulation band to extract bearing fault-related impulsive content
from vibration signals contaminated with strong electromagnetic interference.

Cyclostationary characteristic widely exists in the rotating or reciprocating machin-
ery signal, especially the bearing vibration signal, which exhibits some hidden periodicity
in its energy flow. McCormick and Nandi [104] appears to be the first to apply the second-
order cyclostationary statistics in the monitoring of rotating machinery, and a number of
cyclostationary tools such as the spectral correlation density, the Wigner-Ville spectrum
and the degree of cyclostationarity were compared against traditional stationary tools to
diagnose bearings. The literature [13, 27] explores the cyclostationary characteristics of the
defective bearing signals. The vibration signals of rolling bearings consist of random and
periodic components. The autocorrelation function of these signals exhibits time varying,
periodic and cyclostationary temperament. Sawalhi and Randall [127, 128] studied the
extended inner race and outer race fault in rolling element bearings in the presence of gear
interaction. The cyclostationary properties such as spectral correlation function of the
system were utilized to separate out the bearing faults from the gear faults. Antoni [8]
formulated systematically and comprehensively the theory of cyclostationarity, including
the definition, cyclostationary tools and the application. Chen [44] used the cyclic spectral
density in fault diagnosis of rolling element bearings; this method is described as the
Fourier transform of the cyclic autocorrelation function obtained by modifying the time
varying autocorrelation function of a Wigner-Ville distribution based on the assumption
that the bearing signals possess a cyclostationary character. Abboud et al. [2] extended
cyclostationary theory to nonstationary operating conditions through the interaction
between time and angle, which is materialized by the angle-periodicity of the correlation
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2.3. General review of diagnosis of rolling element bearings

measure of two versions of the signals shifted by a constant time-lag.

Cepstrum is one of the oldest techniques used in the field of signal processing
and has been improved by several authors to apply it to the rolling element bearings
fault investigation. Cepstrum and logarithmic power spectrum are a pair of Fourier
transforms, put differently, cepstrum is the inverse Fourier transform of the power spectrum
in logarithmic coordinates. Local faults in gears give an impulsive modulation of the
gearmesh signals (both amplitude and frequency modulation) resulting in large numbers
of sidebands spaced at the speed of the gear on which the local fault is located [122].
The majority of such sidebands are only visible on a spectrum with a log amplitude
scale, and so the cepstrum is an ideal way to extract the frequency information hidden in
the sidebands. So the cepstrum can detect and quantify families of periodically spaced
spectral components. Borghesani et al. [30] demonstrated the effectiveness of a cepstral
based technique for prewhitening of the bearing signals thereby providing a relatively less
complicated tool for identifying the bearing faults than the spectral kurtosis based methods.
Park et al. [115] used a modified form of cepstrum analysis known as the minimum variance
cepstrum obtained by liftering a logarithmic power spectrum by applying the minimum
variance algorithm, for the early detection of faults in the ball bearings. It was observed
that the minimum variance cepstrum could easily predict the fault period regardless of
system frequency response or choice of optimal resonance bands subjugated mostly by the
wavelet analysis methods. There are also some articles [71, 99] that provide some more
insight into the cepstrum based analysis and the application on rolling element bearings
fault diagnosis.

Matrix decomposition technique is usually acted as one preprocessing tool to
extract the signal feature or reduce the dimension in the vibration signal analysis. As
reference [88] stated, the multidimensional data reduction methods such as independent
component analysis, principal component analysis, and singular value decomposition
fail to fully understand the multivariate character of bearing signals data. The authors
[89][88] adopted an innovative method using the generalized S-transform for time frequency
representation of the signal and a two-dimensional non-negative matrix factorization (NMF)
to reduce the dimension of the time frequency matrix and extract the desired features from
a bearing signal. Such combination is a very common way in vibration signal analysis, as
found in other similar methods such as NMF+SVM [165], NMF+kNN [164], NMF based
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feature selection for classification [92], etc. The above research only took advantage of
dimensionality reduction decomposition. But matrix decomposition technique is more than
just this. The analysis could take a further step for recovering the time domain denoised
signal. In reference [152], the improved sparse NMF was proposed to separate and extract
the compound fault features of rolling bearings, and the time–frequency information was
transformed into the time domain by using an inverse STFT. However, the phase recovery
process was not introduced. Wodecki et al. [155] used the cyclic spectral coherence as
the two dimensional representation map. Then NMF was used to analyze such map in
two ways: first, it helped to initially separate cyclic components by producing a set of
filters for input vibration data, and second, to identify proper damage-related frequency
components in envelope spectrum.

Signal decomposition mainly include empirical mode decomposition (EMD) [69],
local mean decomposition (LMD) [135], variational mode decomposition (VMD) [50]. In
recent years, feature extraction based on signal decomposition technology has been widely
used in fault diagnosis. Guo et al. [63] notified the EMD may be difficult to recover
impulses from large noise. Further, the conventional EMD was reported to introduce mode
mixing effect and the distortion of the faulty impulses. Based on these two observations,
the authors therefore develop a hybrid signal processing method that combines spectral
kurtosis (SK) with ensemble empirical mode decomposition (EEMD). Because the end
effect and mode mixing problems also plague LMD, the authors [101, 100] proposed a
soft screening stop criterion that enables LMD to automatically find an optimal number
of iterations for each screening process. In the proposed method, an objective function
that considers two characteristics (the root mean square and the excess kurtosis) of the
target signal was defined to automatically determine the optimal number of iterations.
The recently proposed VMD is to transform the signal decomposition problem into a
constrained optimization problem [50]. So it overcomes the problems of end effect and
mode component aliasing in EMD and LMD methods and has a more solid mathematical
theory foundation.

Blind deconvolution is the technique to find an inverse filter, which can recover the
original impact signal by reacting on the transmission path of the signal. At the same time,
it can also enhance the impact component in the signal. Thus, blind deconvolution is very
suitable for the monitoring and diagnosis of rolling bearing impact fault. There are different
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blind deconvolution methods based on different optimization criteria. Minimum entropy
deconvolution (MED), as a linear analysis method, was first proposed by Wiggins and
applied to the fault diagnosis of bearings by Sawalhi [130]. Cheng et al. [42] proposed an
improved MED method, which sloves the filter coefficients by the standard particle swarm
optimization algorithm, assisted by a generalized spherical coordinate transformation. The
proposed method delivered better deconvolution performance than the classical MED
method. McDonald et al. [105] proposed the Maximum Correlation Kurtosis deconvolution.
Based on correlation kurtosis as an evaluation index, the deconvolution was realized through
an iterative process. In this way, continuous impulse sequences that are submerged by
noise in the signal were highlighted. Recently, a novel blind deconvolution method rooted
on the maximization of the cyclostationarity of the excitation – as typically encountered
with machine faults – was proposed [34]. This method is based on the generalized Rayleigh
quotient and solved by means of an iterative eigenvalue decomposition algorithm. The
comparison results reveal superior other blind deconvolution methods existing in the
literature.

Artificial intelligence is another powerful pattern identification tool, which has
attracted great attention from many researchers and shows promise in bearing fault
identification or classification applications. The step of fault identification amounts to
mapping the information obtained in the feature space to bearing faults in the fault space.
Numerous artificial intelligence tools or techniques have been used, including mathematical
optimization, as well as classification- and probability-based methods. Specifically, classi-
fiers and statistical learning methods have been widely used in fault diagnosis of rotating
machinery, that includes, k-NN algorithms [151], Bayesian classifier [18], SVM [170] and
artificial neural network (ANN). Most recently, deep learning approaches have also began
to be applied in the field of fault diagnosis [86]. The effectiveness of these approaches
largely depends upon the quality of features extracted from the bearing signals.

2.3.4 Bearing fault size characterization

And last but not least, bearing fault size is also an important information during
the degradation process. A knowledge of when a bearing will fail – that is, its remaining
useful life (RUL) – can serve as supplement to maintenance decision-making such as
determining in advance the time an equipment needs to be taken out-of-service and that
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can alternatively allow for sufficient lead time for maintenance planning as well. The
current research are almost based on the double impact detection, and the time between
them is used to estimated fault size.

The earliest research of bearing fault characterization and quantification using
vibration analysis was by Epps [56]. He mainly investigated the relationship between the
waveform of the vibration source and the localized defect. As he stated in the reference,
the vibration characteristics associated with ball passage over a raceway fault could consist
of a step response for the ball entry into the fault and an impulse response for the ball
impact on the trailing edge of the fault. The entry into the fault appears like a step
response, with mainly low frequency content, while the impact on exit excites a much
broader band impulse response. Based on this observation, Sawalhi and Randall [129] had
a further investigation with both simulated and seeded faults. In order to enable a clear
separation of the two events, and produce an averaged estimate of the size of the fault,
some advanced signal processing techniques, such as pre-whitening filtering, wavelet and
cepstrum analyses, are used to enhance the entry event while keeping the impulse response
for fault size estimation. In reference [154], Wang et al. presented a technique based
on synchronous signal averaging with the bearing fault characteristic frequency obtained
from raw vibration signatures. The averaged signal represents the vibration characteristics
within one period of impact produced by the bearing fault. When the fault size is smaller
than the diameter of the balls, the features associated with the ball’s entry into and exit
from the fault may be extracted and the fault size could be derived. Subsequently, in
reference [131], the squared envelope of the bearing synchronous averaging is jointed with
autoregressive inverse filtration, this combination gives a superior enhancement to the step
response and balances it with the impulse response. Ahmadi et al. [4] conducted some
experiments, and observed the vibration characteristics under different applied load and
rotating speed. The experimental results show strong dependency of the duration time of
the low frequency entry and exit transient events on the applied load. It is evident that
changes in the speed have almost no effect on duration time of the low frequency entry
and exit transient events. Therefore, a new defect size estimation method is proposed
and is shown to be accurate for estimating a range of defect geometries over a range of
shaft speeds and applied loads. The change in the static stiffness of the bearing and the
applied load effect were also researched in [81]. However, as stated in reference [80], almost
all previous researches are all based on the tested bearings with defects that have sharp
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90◦ rectangular edges, which is inconsistent with the facts. Larizza et al. developed a
numerical model for a rolling element bearing, and a new defect size estimation method
was developed to improve the accuracy in estimating the size of a defect that has sloping
leading and trailing edges.

2.4 Hidden Markov model and its variants

2.4.1 Hidden Markov model

In this section, one type of stochastic signal model will be focused, namely the hidden
Markov model (HMM). It is a good tool to model the transient pattern in nonstationary
signals. The basic mathematical theory was published in a series of classic papers by
Baum and his colleagues [21, 20] in the late 1960s and early 1970s. Later, it became
an important research direction in signal processing; especially in the field of speech
recognition. After 2000s, HMMs have become more and more popular in various fields,
such as, medical signal modeling, facial expression recognition, gene prediction, gesture
recognition, musical composition and vibration signal analysis. There are two strong
reasons why it has been so popular in the last decades. First the models are very rich in
mathematical structure and hence can form the theoretical basis for use in a wide range of
applications. Second the models, when applied properly, work very well in practice for
several important applications [120]. Although the number of reported researches based
on HMM’s is too large to discuss in detail here, a survey on the development of modeling
the time-frequency features of nonstationary signal through HMM is given here.

HMM is a statistical model of the time series, and its basic theory was founded in
the early 1960s. The HMM was firstly implemented in speech processing in the 1970s, and
prosperous in the 1980s. Taking into account the unique characteristics of speech signals,
some mainstream features, such as, perceptual linear prediction [73], mel-frequency cepstral
coefficients [39], Vector Quantization [121] etc., have been widely used to be modeled
through HMMs. In addition to these features, short-time Fourier spectrum is also a good
tool. This is because the short-time Fourier transformation and its inverse establish a one-
to-one mapping between the time domain and the frequency domain, and FFT algorithms
can be implemented efficiently [163]. Also, the short time Fourier transformation preserves
information from the original signal, and ensures that important features are not lost as a
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result of the transformation. Furthermore, the nonstationary signal can be considered as
stationary over a short time interval. In reference [125], the authors had a comparison
on these time-frequency features with their application to speech recognition. Juang
and Rabiner [74] firstly used the short-time Fourier spectral vectors to characterize the
sequence of sounds, and applied HMM in speech recognition and observed an accuracy rate
higher than 95% in speaker-independent tasks. Flores [59] describes a scheme for robust
speech recognition at poor signal to noise ratios. It consists of the spectral subtraction
scheme followed by hidden markov model compensation framework. The estimated clean
speech signal is then modeled through HMM for improving the recognition. Deng et
al. [43] modeled the time-varying spectral information as a deterministic trend which
is essentially a low order regression (state-dependent) of the spectral coefficients with
parameters estimated as an integral component of the HMM training process. One kind of
continuous density HMM (CDHMM) [120, 147] is very common in the speech recognition.
In the CDHMM model, it is assumed that the feature vector distribution encountered
at a given state can be modeled by a Gaussian distribution whose underlying mean
represents the "true value" of the feature vector at that state. A more general approach
is to associate with each state a weighted sum, or mixture of Gaussian distributions.
A complete statement on the speech processing through observation vectorization and
CDHMM is described in the paper [77]. Each observation can be modeled as the single
component Gaussian probability density or a more generalized Gaussian mixture model
[77]. The combination of time-frequency features and HMM approaches have also been
successfully for animal vocalizations analyses [138, 149].

This analysis method is also applied in other fields, for example, robot application.
In order to judge the best trajectory of the robot, Tso [148] proposed to apply STFT as the
feature extraction tool for HMM technique to measure human behaviour consistency. A
similar method is used in human behavior recognition and robot control [163]. Furthermore,
in the paper [157], the HMM was utilized to characterize the time-frequency features of
radar signals for the purpose of fall detection, and the feasibility of early warning was
investigated. The transient signal detection through HMM is another interesting subject.
In paper [78], the sonar signal is divided into a sequence of time-frequency frames, and
each frame is represented by a feature in HMM for recognizing sonar transient signals.
Chen [38] modeled the transient-present observations as an HMM and the transient-
absent as independent random noise, and combined it with a sequential probability ratio
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test to achieve the transient signal detection. The frequency line detection is a similar
problem studied in [141, 119, 19]. Streit and Barrett [141] and Quinn et al. [119] used an
HMM-based algorithm to track the peak of the STFT. In the literature [19], the author
combined the FFTs feature (amplitude and phase values) and HMM tracker as frequency
line detectors. The recurrence of periodicities in the airflow trace data is also covered in
the literature. The authors in [64] proposed a spectrum-based HMM where the discrete
latent state sequence reflects the time-varying changes as well as recurrence of periodic
regimes as defined by their spectral properties.

HMM was used for fault diagnosis based on vibration signal since the 1990s. There
are more than 150 paper focus on fault diagnosis and prognosis from 2000. Looking at the
existing literature, the HMM-based methods for fault diagnosis can be roughly classified
in two ways. The first kind of approach is concerned about modeling the total life process
and describe the degradation process for prediction [79, 169, 16, 146, 134, 132]. In the
other kind of approach, several HMM models for every fault mode are trained, and then
the trained models are exploited to do fault mode classification [3, 32, 160, 61, 40]. In [161],
Xin proposed a method based on short-time Fourier spectrum and HMM for separating
the fault signal from the raw vibration signal. They modeled the signal pattern with
different distribution in time-frequency domain as the different hidden states, and utilize
the advantage of invertible mathematically of STFT to extract the time domain fault
signal. After investigation, this is a novel idea for modeling the time-frequency futures of
the vibration signal for diagnosis. Then they proposed a complete framework integrating
detection, recognition, extraction and diagnosis in literature [162].

2.4.2 Explicit duration hidden Markov model

As a rich mathematical structure and good models for real world signal, HMMs have
became increasingly popular in recent decades. It is an important class of models that are
successful in many application areas. However, the standard HMM allows self-transition
process, then the time the Markov chain spends in a state is a random variable that is
statistically described by a geometric probability mass distribution [68]. Suppose the
self-transition (from state i to state i) probability is denoted as aii. The probability of
state occupancy decreases exponentially with time, and the probability of d consecutive
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Chapter 2. State of the art

observations in state i can be written as

p(d|i) = adii(1− aii). (2.16)

p(d|i) is the probability of taking the self-transition at state i for d times. Because of this
property, the Markov chain has no idea of how long it has stayed in a state and when to
leave the state. In many cases this property seems to be a strong limitation that results
in inaccurate signal modeling [62]. Researchers have proposed a number of techniques to
address these limitations. In 1980, Ferguson [60] modeled the self-transition process with
an explicit duration probability distribution for addressing this problem.

The explicit duration hidden Markov model can be viewed as a special instance
of the standard HMM. What makes waiting time hidden Markov model different from
the standard HMM is that there exists a duration time d in each state. The duration
distribution p(d|j) can be either a discrete distribution or a continuous density, a non-
parametric or a parametric density. When the underlying process enters state j for
duration d with the probability p(d|j), there are d observations produced. Therefore, the
self-transitions are prohibited in the explicit duration hidden Markov model. This makes it
suitable for use in a wide range of applications. The capacity and complexity of EDHMM
are analyzed in [72], which points that standard hidden Markov model coupled with a
moderate increase in overall topological complexity and state distribution parameter tying,
are already well suited to handling nonexponential duration distributions. Since it was
proposed, EDHMM has attracted the attention of scholars in various fields. In this section,
only the application in fault diagnosis and prognosis is given.

The application to fault diagnosis and prognosis appeared gradually after 2000, in
particular in the recent ten years. The related literature is synthesized in one table, seen in
Table 2.1, following the diagnosis objects, the objective, the type of data and methodology.
The table is supposed to provide a more direct view of reported studies to readers who are
concerned with the use of EDHMM in prognostics and health management (PHM).

Dong et al. [48] were the first researchers to apply EDHMM to PHM in 2006. They
validated the effectiveness of the EDHMM for the fault classification of UH-60A Blackhawk
main transmission planetary carriers and prognosis of a hydraulic pump health monitoring
application. He et al. pointed out the drawback of EDHMMs in [66]: the computational
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2.4. Hidden Markov model and its variants

Table 2.1: Summary of the use of EDHMM for fault diagnosis

Object Reference Objective Type of observation Methodology

planetary box Dong et al. [48] fault classification time domain vibration sig-
nal

original EDHMM

Fan et al. [57] diagnosis and prog-
nosis

time domain vibration sig-
nal

original EDHMM

hydraulic pump Dong et al.[48] prognosis time domain vibration sig-
nal

original EDHMM

Dong et al. [46] fault classification
and prognosis

time domain vibration sig-
nal

segmental EDHMM

Dong et al. [47] fault classification
and prognosis

wavelet decomposition co-
efficients

segmental EDHMM

Dong et al. [45] fault classification
and prognosis

wavelet decomposition co-
efficients

auto-regressive EDHMM

Dong et al. [49] RUL prediction wavelet decomposition co-
efficients

non-stationary segmental
EDHMM

Dong et al. [97,
95]

RUL prediction wavelet decomposition co-
efficients

joint EDHMMwith sequen-
tial Monte Carlo method

Dong et al. [96] RUL prediction wavelet decomposition co-
efficients

adaptive EDHMM

rotor He et al. [66] prognosis frequency domain vibra-
tion signal

original EDHMM

shaft Bechhoefer et al.
[22]

prognosis frequency domain vibra-
tion signal

original EDHMM

gearbox Teng et al. [144] RUL prediction time-frequency domain of
vibration signal

original EDHMM

Li et al. [90] fault detection and
RUL prediction

time domain vibration sig-
nal

multivariate Bayesian
control scheme based on
EDHMM

Li et al. [91] fault detection and
RUL prediction

time domain vibration sig-
nal

Optimal Bayesian control
scheme based on EDHMM

hydraulic cylin-
der

Su et al.[142] RUL prediction cylinder wear data original EDHMM

Huang et al.
[70]

fault diagnosis wavelet decomposition co-
efficients

original EDHMM

Xiao et al. [159] RUL prediction dynamic pressure signal EDHMM combined with
high-order particle filter

bearing Wu et al. [158] wear prediction certain data(unspecified in
the paper)

modified EDHMM

Chen et al. [41] prognosis time domain vibration sig-
nal

mixtured non-gaussian
based EDHMM

Wang et al.
[153]

prognosis time domain vibration sig-
nal

Duration-dependent
EDHMM

Cartella et al.
[36]

RUL prediction time domain vibration sig-
nal

EDHMM combined with
AIC

Le et al. [82, 83] RUL prediction simulation vibration signal Multi-Branch EDHMM

draught fan Lin et al. [94] prognosis time domain vibration sig-
nal

original EDHMM

milling tool Liu et al. [98] RUL prediction cutting force signal modified EDHMM
Duan et al. [52] RUL prediction cutting force signal EDHMM combined with

vector autoregressive
degradation modeling

transformer Hao et al. [65] RUL prediction vibration signal time-varying EDHMM

fused deposition
modeling

Wu et al. [156] Condition monitor-
ing

AE signal original EDHMM

unknown object Khaleghei et al.
[76]

RUL prediction simulation data EDHMM
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Chapter 2. State of the art

complexity may increase for inference and parameter estimation. But duration modeling by
parametric probability distributions has been used to alleviate the computational burden.
A method that does not require the estimation of the state duration time for prognosis
was proposed in [66]. Dong et al. [45] presented a novel statistical learning approach based
on auto-regressive EDHMM that took the correlation between observations into account
for fault classification and RUL prediction. In the next few years, Dong et al. proposed a
series of improved methods, for example the non-stationary EDHMM [49], aging factors
integrated into EDHMM [117], joint with sequential Monte Carlo method [97, 95], etc., for
equipment health prediction. Some researchers consider that the system is subjected to
degradation due to different operating conditions, leading to different rates in deterioration
evolution. To take into account such problem, multi-branch or multi-sensor EDHMM
[47, 96, 82, 83, 41] were proposed. In addition, another strategy is the combination of
EDHMM with various assistant methods, such as the sequential Monte Carlo method for
decreasing the computational and space complexity [97, 95], AIC for evaluating the correct
model configuration [36], particle filter for predicting the online state [159], etc. These
application results show that better performance has been achieved by the combination
strategy. In the articles of Dong [48, 45], the wavelet decomposition coefficients were
utilized for the observations of EDHMM. But the goal is to develop trained EDHMMs to
recognize N different states of a component for a given failure mode. Therefore, for the
diagnosis of the fault, it is necessary that a separate EDHMM is trained for all possible
fault types in addition to the EDHMM for normal conditions. After investigation, it is
found that there is no article that really does fault diagnosis through the combination of
EDHMM and time-frequency observations.

2.5 Integrated automatic diagnosis

The previous sections have focused mainly on the diagnosis techniques from different
viewpoints. As mentioned before, the objective of this thesis is to present an integrated
auto-diagnostic framework that includes fault detection, fault signal reconstruction, fault
type identification, and fault size characterization. In this section, therefore, the automated
diagnostic framework through the models introduced before is discussed and reviewed.

Bearing diagnosis is not simply to identify the fault type when a fault occurred. In
the reality, bearing diagnosis is a big topic, and there are many sub-issues to be solved.
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2.5. Integrated automatic diagnosis

For example, the health status of the collected vibration signal is often unknown. In the
first step, therefore, the signal needs to be checked whether it is collected from a faulty
bearing or healthy one. If the bearing is determined to be faulty, the fault identification
is the next subtask. In some cases, the fault signal extraction is also an important task.
These are not enough, and the engineers also want to know the fault degree and whether
the bearing can still be used. These problems all belong to the category of rolling element
bearing CBM. Therefore, integrated diagnosis can be understood in general as "a field of
research and application which aims at making use of present vibration signal in order to
detect its degradation, diagnose faults, assess and pro-actively manage its failures". Based
on this viewpoint, related references are reviewed.

The automation of fault diagnosis was primarily handicapped in the past due to the
lack of appropriate techniques to represent the knowledge-based, symbolic reasoning of an
expert diagnostician [31]. The authors of [31] presented a two-stage fault detection and
diagnosis approach. The first stage is a generic and fast technique for detection using an
index fusion and fuzzy logic approach; the second stage describes the development of a
fault diagnosis method through the HMM ’codebook’ training. In reference [111, 112],
Ocak proposed one method that can realize automatically fault detection and diagnosis
by training HMM. Faults can be detected online by monitoring the probabilities of the
pretrained HMM for the normal case given the features extracted from the vibration
signals, and the HMM for which the probability is maximum determines the condition of
the bearing. The bearing prognosis issue was integrated into Ocak’s PhD thesis in [110]. In
reference [79], a fault diagnostics and prognostics algorithm based on HMM was proposed.
The algorithm trained different HMM models, and then achieved the fault diagnostics
and prognostics in a unified framework. Similar research can be found in many references
[169, 16, 146, 145]. In reference [16], the authors proposed an integrated framework based
on HMM to incorporate fault diagnostics and fault severity estimation. EDHMM can
also be used to achieve the integrated auto-diagnosis framework. In reference [46], the
proposed segmental EDHMM-based framework combines diagnostics and prognostics in
an integrated manner. Reference [75] is another attempt, where the authors proposed an
indicator based on the order-frequency spectral coherence to achieve self-running diagnosis,
including detection, identification and classification of typical rolling element bearing faults.
Zuo [107] proposed an integrated framework, and showed how to model the degradation
process of a condition monitored device through the EDHMM and then presented how
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Chapter 2. State of the art

to employ real-time condition monitoring data for online diagnostics and prognostics.
Reference [102] offers a recent discussion on integrated and automated machine health
monitoring. After investigation, the limitation of current studies is the lack of diagnosis
by modeling the nonstationary vibration signal. In other words, in most works in the
literature, they trained the different HMMs in advance, and then use them for detecting
or identifying or classifying. The second limitation is that most of them did not integrate
the sub-issues mentioned above into one diagnostic framework.

2.6 Discussion

Based on the above literature survey, there are some points of worthy concern.
Through the available literature discussed in Chapter 2.3, it is clear that various advanced
techniques have been proposed to address the different diagnostic tasks. However, these
techniques are almost all independent, which requires users to have a high level of experience
and knowledge when dealing with different diagnostic problems. Concerning the techniques
that demonstrate attempts towards integrated and automated diagnosis in Chapter 2.5,
there is still no one research that is able to integrate all the diagnostic sub-issues in one
solution. Even fewer have tried to achieve these objectives in an automated way, i.e.
without manual tuning of the algorithms by an expert. According to the ISO 13374-
1:2003 at Condition monitoring and diagnostics of machines, the diagnosis process can
be divided into data acquisition, data manipulation, state detection, fault identification,
health assessment, prognostic assessment, and advisory generation. So all of these reasons
push us in one direction, integrated auto-diagnosis technique. As we known, the ultimate
goal of research is to apply in practice, which requires the method performed in a simple
and automated way. This is exactly what the thesis is pursuing.

Following the goal mentioned above, this thesis is dedicated to propose one stochastic
model based diagnostic framework, achieving automation and integration at the same
time. As mentioned in the bearing vibration characteristics, the intrinsic uncertainties
and nonstationarity which underlie the incipient fault vibration signal and its temporal
sequential nature, made EDHMM-based approaches a perfect option for our objectives.
In addition, as an advanced model, EDHMM comes with several valuable parameters
useful for clarifying the transition law and finding temporal structures in the vibration
signals. However, as investigated in Chapter 2.4, the HMMs-based approaches that are
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2.7. Conclusion

implemented for the diagnostic task in the literature are basically used as a supervised
way which needs massive data to train different models in advance, and then exploiting
the trained models to process the testing signal. The computational complexity and the
assumption of data available significantly impede the diagnosis applications in a practical
scenario. Unlike the supervised way, in this thesis, the stochastic model is used as signal
analysis tool to extract the fault information for the following integrated auto-diagnosis.
The modeling and analysis process is illustrated in Figure 2.3. The repetitive series of
transients passes a filter-bank analysis implemented by the STFT to generate observations.
For such rotating vibration signals, the Fourier transform have proved good performances,
but other transforms are also possible. And then under the theory of stochastic model,
the useful information hidden in the vibration signal can be extracted by estimating the
model parameters. In this example, there exist two different time-frequency distributions
which indicate the transient state and the noisy state, respectively. In the meantime, the
distribution parameters in the observation with different states can be estimated, and the
duration time in different states can also be obtained. These important information will
encourage us to achieve fault detection, fault signal reconstruction, fault identification and
fault size characterization at once without historical data and manual intervention. Since
this integrated framework does not impose too many prior knowledge and parameters, it
is capable of more automation to address different sub-issues.
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Figure 2.3: Illustration of HMM-based signal analysis.

2.7 Conclusion

In this chapter, the basic bearing knowledge and bearing condition monitoring
techniques have been reviewed firstly. Afterward, the advantages, disadvantages, and
performance of the described different types of techniques have been discussed in detail.
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Chapter 2. State of the art

While it is impossible to investigate all of the existing techniques, this chapter still aims to
shed some light on the strengths and drawbacks of different techniques in each diagnostic
issue. Based on the investigation provided in this chapter, it is evident that effective
techniques already exist in different issues, but that there is still a gap in the integrated
diagnosis framework, and one in automatic way. It is found the integrated and automated
diagnosis based on stochastic model of vibration signal is still a new and challenging topic.
Hence, some comments have been discussed in the end, and the objectives of this thesis
have been emphasized once again.
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Chapter 3. Markov stochastic process

3.1 Introduction

As we know, in most situations bearing fault characteristics cannot be measured
directly as the bearing vibration signature is modified by the machine structure and this
situation is further complicated by other vibration coming from other equipment on the
machine. Such interferences often make the interpretation of signals difficult. In probability
theory, stochastic processes are the main mathematical tool for describing uncertainty.
Compared with deterministic models, the stochastic models have gifted flexibility and
adaptability to cope with the complexity of non-stationary phenomena. In this chapter,
we now formally introduce the stochastic model, hidden Markov model and its variant.
We start by reviewing the basic definitions and concepts pertaining to Markov chains, and
then the hidden Markov model and its special extension, explicit duration hidden Markov
model. Based on the vibration signal, a detailed estimation and analysis of the model
parameters is given subsequently. Some issues with respect to the input model parameters
are discussed at last.

3.2 Markov chains

In reality, sequential data are ubiquitous, for example, the rainfall measurement
or temperature on successive days at a particular location, the vibration signature at
successive time frames, etc. To express such data in a probabilistic model, one of the
simplest ways is offered by the Markov model. It is a stochastic model describing a
sequence of possible events in which the probability of each event depends only on the
observation attained in the previous event [25]. It can also be called first-order Markov
chain, which is depicted as a graphical model in Figure 3.1. Here we consider a sequential
data Y1:N ∈M representing the specific stochastic process. The set M is the sample space,
and the element in M is called an observation of the process. Then the Markov process
can be expressed mathematically as

p(Yn+1 = j|Yn = i,Yn−1 = in−1, ...,Y1 = i1) = p(Yn+1 = j|Yn = i) = aij, (3.1)

where, i, j, i1, ..., in−1 ∈M . The observations are assumed to be independent and identically
distributed. It is noted that aij is a fixed probability independent of time, representing
the probability that the Markov process will make a transition to observation j given the
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current observation i. Since probabilities are nonnegative and since the process must make
a transition into a specific observation, clearly one has an important constraint as

aij ≥ 0,
∑
j

aij = 1, i, j ∈M .

Let A denote the transition probability matrix of first-order Markov chain, so that

A =



a11 a12 · · · a1M

a21 a22 · · · a2M
... ... . . . ...

aM1 aM2 · · · aMM

 . (3.2)

Y
1

Y
2

Y
3

Y
4

Figure 3.1: A first-order Markov chain of observation {Yn}, in which the distribution
p(Yn|Yn−1) of a particular observation Yn is conditioned on the value of the previous

observation Yn−1.

According to the above description, we obtain the first-order Markov chain, which is
depicted as a graphical model show in Figure 3.1. Without loss of generality, the joint
distribution for a sequence of observations can be expressed through a product rule in the
form,

p(Y1,Y2, ...,YN) =
N∏
n=1

p(Yn|Yn−1, ...,Y1)

= p(Y1)
N∏
n=1

p(Yn|Yn−1), (3.3)

where p(Y1) is the initial probability, and one constrain for the initial probability is∑
Y1∈M p(Y1) = 1. Thus if we use such a model to predict the next observation in a

sequence, the distribution of predictions will depend only on the value of the previous
observation and will be independent of all earlier observations. Although the first-order
Markov chain is very simple, it provides an important modeling idea and theoretic basis
for afterword probabilistic model.

Here an example related to sequential data is used to illustrate the first-order Markov
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Chapter 3. Markov stochastic process

chain. Suppose that the chance of rain tomorrow (denoted as observation Yn+1) depends
on only whether or not it is raining today (denoted as Yn), but not on past weather
conditions. Suppose also that if it rains today, then it will rain tomorrow with probability
p1; and if it does not rain today, then it will rain tomorrow with probability p2. If we say
that the process is in state 0 when it rains and state 1 when it does not rain, then the
above-mentioned process is a two-state Markov chain whose transition probability matrix
is given by,

A =

p1 1− p1

p2 1− p2

 , (3.4)

and the transition probabilities are p1 = p(Yn+1 = 0|Yn = 0), p2 = p(Yn+1 = 1|Yn = 0).

3.3 Hidden Markov model

However, for some cases, the observations are complex and infinite, and the corre-
sponding states are finite but invisible. In such cases, each state randomly generates 1 out
of every k observations visible to us. We can model this by introducing additional hidden
states to permit a general case. Let the hidden state sequence {zn,n = 1, 2, 3, ...} be a
Markov chain with the transition probabilities aij and initial probabilities πi = p(z1 = i),
i ∈ M defined in the previous section. Further, suppose that when the Markov chain
enters state i at time n, then the observation Yn is emitted with probability p(Yn|zn = i).
Therefore, a model of the previous defined type in which the sequence {Yn,n = 1, 2, 3, ...}
is observed, while the sequence of underlying Markov chain states {zn,n = 1, 2, 3, ...} are
unobserved, is called a hidden Markov model (HMM). It is an extension of a Markov
chain which is able to capture the sequential relations among the hidden variables. The
sequential data is represented using a Markov chain of hidden states, with each observation
conditioned on the corresponding hidden state, as shown in Figure 3.2.

According to the above introduction, a HMM can be governed by the following
parameters:

• Number of states N
This is usually set to the total number of distinct, or elementary, stochastic events
in a signal process.

• Transition probability matrix
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z1 z2 znz3 zN

Y1 Y2 Y3 Yn YN

... ...

Figure 3.2: The graphical structure of a hidden Markov model, in which each
observation Yn is condition on the state of the corresponding hidden state and the state

sequence is a first order Markov chain.

It is a constant matrix that provides a Markovian connection network between the
hidden states, and models the variations in the duration of the signals associated
with each state.

• Initial probability vector
This is different from a transition probability as it is the first state, and so it has
a marginal distribution represented by a vector of probabilities π with elements
πi = p(z1 = i), i ∈M .

• Emission probability
This is a conditional probability from hidden state to the observed variable, p(Yn|zn).
If the observation is discrete, this probability will be a matrix that models the
transition from the state to the observation. If the observation is continuous, this
probability further depends on the specific parameter φ according to a probability
distribution. Because Yn is observed, the distribution p(Yn|zn) consists of a vector of
N numbers corresponding to the N possible states.

These HMM parameters can be described as the parameter set θ = {π,A,φ}, where,
φ represents the emission probability matrix or the parameter in the observation distribu-
tion. For Gaussian observations, the distribution parameter φ include the covariance and
the mean value. Then, the joint distribution for this model is given by,

p(Y1:N ,Z1:N |θ) = p(z1)
[
N∏
n=2

p(zn|zn−1)
]

N∏
n=1

p(xn|zn). (3.5)

A useful way of interpreting and using HMMs is to consider each state of an HMM
as a model of a segment of a stochastic process. One example about the vibration signal
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Chapter 3. Markov stochastic process

is used to illustrate the hidden Markov model, which is depicted in Figure 3.3. The upper
subplot of Figure 3.3 depicts two states Markov chain zn, one state represents the noise
interval, and another state for transient part. The lower subplot shows the noisy vibration
signal observed through a sensor mounted on the rotating machine. Each specific segment
of the signal has one corresponding hidden state. In this example, the observations are
the continuous vibration signal. A suggested way to model it is to segment the signal
into short intervals. The intervals are described by a specific distribution with different
parameters. Short time windowed segments is a common way to deal with a continuous
signal. In the next section, the detailed description about how to model the vibration
signal will be given.

Noisy observation

Markov chain

Figure 3.3: Example of a binary state Markov chain in a noisy signal. The continuous
signal is segmented by short windows and conditioned on the corresponding hidden state.

The estimation task of prime interest for HMMs is to estimate the model parameters
θ and the hidden sequence {zn} from the observed sequence {Yn} in some optimal way.
We will discuss how to estimate the parameters in the later section of this chapter, and
the convergence of the algorithm in the appendix.

3.4 Vibration signal modeling

HMM is a versatile stochastic model for nonstationary phenomena that involves tran-
sitions between hidden states. It is therefore well suited for describing the time-frequency
spectrum coefficients of a faulty signal, whose probability distribution switches between
one state corresponding to the occurrence of impulses and another one corresponding to
dead zones [161]. However, in the standard HMM the transition probability matrix is
assumed constant, which implies that the time spent in a state is a random variable that
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3.4. Vibration signal modeling

follows a geometric probability distribution [68]. For bearing signals, this is an unrealistic
assumption. To fix this drawback, it is proposed to introduce an explicit duration hidden
Markov model [60] (also known as "segmental HMM [126]" and "variable-duration HMM
[143]", as part of the larger theory of hidden semi-Markov models (HSMM) [166]). In this
section we introduce one useful variant, EDHMM. We will give a detailed introduction
about EDHMM, and how to use it to model vibration signal.

3.4.1 Signal model and STFT decomposition

In order to motivate the EDHMM, let first consider the signal model. Let y(t)
denotes the measured vibration signal, x(t) the series of impulses due to impacts on a
fault and n(t) the background noise, which, by definition, embodies all other sources of
vibration that are not of interest for diagnosis. Clearly, in the healthy state,

y(t) = n(t),

whereas in the faulty state
y(t) = x(t) + n(t)

is a superposition of transients and noise. The faulty signal will be modeled hereafter as a
nonstationary signal that switches between two states: an “active” state where an impulse
occurs and an “inactive” state where noise only is observable.

As discussed above, the continuous observation need to be segmented before modeling.
How to segment the vibration signal is an essential component of modeling, often having
an important impact on the final result. The main concern in the segment action is the
information extraction completeness. In the present work, the STFT is used as a versatile
transform for decomposing nonstationary vibration signals with the ability of evidencing
possible transitions between two different states. This is because the STFT decomposition
and its inverse transformation establish a one-to-one mapping between the time domain and
the time-frequency domain, and its oscillating basis functions are well-fitted to represent
vibration signals. Also, a nonstationary signal can be considered as quasi-stationary over a
short time interval. As it preserves information from the original signal, the STFT ensures
that important features are not lost as a result of the transformation.

The STFT coefficients Y (n, k) of a discrete-time signal y(t), t = 0, 1, 2, ...,L− 1 over
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Chapter 3. Markov stochastic process

a time interval of length Nw is given by

Y (n, k) =
Nw−1∑
m=0

y(nR +m)w(m)e−j2πm
k

Nw , (3.6)

where n = 1, 2, ...,N , N = b(L−Nw)/Rc+ 1 and k = 1, 2, ...,Nk, Nk = bNw/2c, represent
the time and frequency indices, respectively; w(m) denotes a positive and smooth Nw-long
data window, and R represents the window shift.

In order to better use the STFT coefficients Y (n, k), three assumptions concerning
Y (n, k) will be needed:

• i) Y (n, k) and Y (n′, k′) are independent for any k 6= k′ and n 6= n′,

• ii) the expected value of the STFT coefficients is zero,

• iii) the real <{Y (n, k)} and imaginary ={Y (n, k)} parts are independent and iden-
tically distributed.

The assumptions are made to simplify the model, but without losing reasonableness.
The windowed signal will tend to be stationary, which means the frequency bin k and
k′ under one window are uncorrelated. Then the reasonableness of assumption i is only
depend on the window shift R. If the shift is large enough, n and n′ will be independent.
Assumption ii and iii are also due to the stationary characteristic of windowed signal.

Under mild conditions, the vector of STFT coefficients Yn = [Y (n, 1), ...,Y (n,Nk)]
converges in distribution to the complex-valued Gaussian distribution according to the
central limit theorem [33], as expressed in Eq.(3.7). More reasons justifying the Gaussian
assumption of the STFT coefficients can be found in reference [116]. As will be seen
shortly, this property is advantageous in following modeling.

Yn ∼ CN (µ,C,M). (3.7)

The covariance of this distribution is C = E[(Yn − µ)(Yn − µ)†], where † means the
complex conjugate of the transpose, and the pseudo-covariance isM = E[(Yn−µ)(Yn−µ)T ].
According to assumption i, the covariance of two random variables with different frequency
is zero; according to assumption ii, the mean value µ is zero. Therefore, the covariance C

can be simplified as a diagonal matrix with zeros in the off-diagonal elements as given by
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3.4. Vibration signal modeling

Eq.(3.8):

C = E[(Yn − µ)(Yn − µ)†]

= E[YnY †n ]

=



C11 0 · · · 0
0 C22 · · · 0
... ... . . . ...
0 0 · · · CNkNk

 , (3.8)

where Ckk = |<(Y (n, k))|2 + |=(Y (n, k))|2, k ∈ {1, 2, ...,Nk} is the sum of squares of
real and imaginary parts, and represents the energy of the signal at the datum n with
frequency k. Similiarly, the pseudo-covariance M = E[(Yn−µ)(Yn−µ)T ] can be deduced
as a zero matrix. Then, the Gaussian random variables Yn are only determined by their
covariance matrix C, i.e. Yn ∼ CN (0,C). It is also called a circularly-symmetric Gaussian
distribution, whose distribution, p(Yn), is given by,

p(Yn) = exp{−Y †nC−1Yn}
πNk |C|

. (3.9)

It is worth noting that the STFT is used here to pre-process the data and not as
a visual diagnostic tool – i.e. as with time-frequency based approaches; therefore, the
uncertainty principle to which it is subjected – which limits the time-frequency resolution –
is not really an issue. It is noted here that other transforms are also possible. The columns
of the coefficient matrix Yn will be used as the observation sequence of the following
modeling.

3.4.2 Explicit duration hidden Markov model

EDHMM [60, 166] is an extension of hidden Markov models that includes the case
where the duration time in a state is described by a specific distribution, which is the
origin of the term "explicit duration". It is used in this section to describe the temporal
relationship among the STFT coefficients. Each observation Yn belongs to one unknown
state, denoted as zn. Then the corresponding state sequence of the observations Y1:N is
denoted by z1:N , {z1, z2, ..., zN}. In the present application, the faulty bearing vibration
signal comprises two states:
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Chapter 3. Markov stochastic process

1. “inactive” state, hereafter labeled #1, where noise only is present,

2. “active” state, labeled #2, where an impulse occurs.

Therefore, the hidden states z1:N take two values, zn ∈ {1, 2}. In each state i, the
whole duration is denoted as di, which means there are di successive observations of
the signal belonging to the state i. Here, the Poisson distribution with parameter λi,
di ∼ P (λi), is used to model the discrete variable di, although other distribution choices
are equally possible,

p(di = k) = λki
k! e

−λi , k = 0, 1, ..., (3.10)

where, the Poisson parameter λi represents the average window number in state i, which
will be a key parameter for the following diagnosis. One advantage of Poisson distribution
is that it has only one parameter, and all the distribution information can be obtained
through this parameter. In addition, from the characteristic of Poisson distribution, the
duration time in different transient pulses is very similar, which makes it well suited for
Poisson distribution. The simplified model is shown in Figure 3.4. This extends the
standard HMM to the domain of modeling the temporal structure of hidden state sequence.
From now on, one will need to define the dynamic duration time τn(i), the time already
spent in the current state i at datum n. If the entry and exit in state i occur at time
instants n1 and n2, respectively, then τn1−1(i) = 0, τn1+m(i) = m for m = 0, 1, ...,n2 − n1,
and τn2(i) = n2 − n1 + 1 is one sample of the discrete variable di.

zn=i zn+1=j

Y Y Y... ...

...

YY Y

Hidden state 

Observation 

Duration
p

i
(d) p

j
(d)

...

di dj

Figure 3.4: Explicit duration hidden Markov model, in which one state emits di values
of observations, and each observation follows a complex-valued Gaussian distribution,

i, j ∈ {1, 2}.
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3.4. Vibration signal modeling

The transition probability matrix A in EDHMM is an 2× 2 dynamic matrix that
depends on τn(i), rather than a constant matrix as in the standard HMM. The diagonal
elements, aii(τn), represent the recurrent state transition probabilities. These two elements
are defined as the probability of remaining in the current state i at the next time step,
given the time, τn(i), already spent in the current state i. Since the duration time follows
the Poisson distribution, the recurrent probability aii(τn) will decrease with τn. Then the
recurrent probability aii(τn) can be expressed through the Poisson cumulative distribution
function (CDF) as,

aii(τn(i)) = p(zn+1 = i|zn = i, τn(i))

= p(zn+1 = i|zn = i, ..., zn−τn(i)+1 = i, zn−τn(i) 6= i)

= p(zn+1 = i, ..., zn−τn(i)+2 = i|zn−τn(i)+1 = i, zn−τn(i) 6= i)
p(zn = i, ..., zn−τn(i)+2 = i|zn−τn(i)+1 = i, zn−τn(i) 6= i)

= p(di > τn(i))
p(di > τn(i)− 1)

= 1− p(di ≤ τn(i))
1− p(di ≤ τn(i)− 1)

= 1− F (τn(i)|λi)
1− F (τn(i)− 1|λi)

, (3.11)

where F (τn(i)|λi) represents the CDF of Poisson distribution with parameter λi. The
numerator, 1− F (τn(i)|λi), represents the probability that the explicit duration Markov
process, at datum n, has stayed in state i for at least τn(i) samples. Figure 3.5 shows one
example of Poisson distribution with the parameter λ = 5. From the CDF in the lower
subplot and Eq.(3.11), it is found that the recurrent transition probability aii(τn(i)) will
gradually decrease as τn(i) increase. Eventually, the Markov chain will transit to state j
from state i, and then go to the next Poisson process.

According to the recurrent probability defined above and the constraint ∑j aij = 1,
the dynamic transition probability matrix A(τn(i)) can be written as

A(τn(i)) = [aij(τn(i))]

= [p(zn+1 = j|zn = i, τn(i))]

=

 a11(τn(1)) 1− a11(τn(1))
1− a22(τn(2)) a22(τn(2))

 . (3.12)
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Figure 3.5: Illustration of Poisson distribution. The upper subplot is the PMF with the
horizontal axis as the duration time τn(i), i.e. the number of remainings in current state i.

λi is the expected duration time in state i; The lower subplot is the CDF showing
discontinuous at the integers of τn(i) because a variable that is Poisson distributed takes

on only integer values.

where, the two off-diagonal elements, aij(τn)(i 6= j), is defined as the transition probabilities
between two different states, given the previous state i has lasted τn(i). For the two-states
case, the relationship between the recurrent probability and non-recurrent probability is
fixed, aij(τn) = 1− aii(τn(i)), under the constraint ∑j aij = 1.

In this definition, τn(i) can be adaptively optimized through the duration distribution
parameters in each datum n. Therefore, the dynamic matrix A(τn(i)) will also vary regularly
according to the Poisson parameter, which does not need to be estimated in the following
re-estimation section. Then the state sequence generated by this dynamic matrix will have
a time-varying mean and variance relating to Poisson characteristic. It will actually tend
to be pseudo-cyclostationary, which is a more relevant model for the vibration signals of
interest in this thesis. This is in marked contrast with the standard HMM, which involves
a constant transition matrix, and therefore can only produce stationary state sequences
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3.4. Vibration signal modeling

without noticeable cyclicity in the timing of their switches. Figure 3.6 shows a simulated
example that illustrates the difference between the state sequences produced by HMM
and EDHMM. The state sequence in Figure3.6(a) is generated from a dynamic transition
matrix modeled by the Poisson distribution with parameters λ = (5, 20), while the the
state sequence in Figure3.6(c) is generated from the corresponding equivalent constant
transition matrix. Their spectral analysis displayed in Figure3.6(b) and Figure3.6(d)
illustrates the unique ability EDHMM to produce a pseudo-cyclostationary sequence with
cycle around 100 Hz.
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)

Figure 3.6: Illustration of the difference between a dynamic and constant transition
matrix. (a) The EDHMM state sequence and (b) its Fourier spectrum; (c) the

corresponding HMM state sequence and (d) its Fourier spectrum.

In EDHMM, transitions between states start from an initial probability (n = 1)
denoted πi, i ∈ {1, 2}, defined as πi = p(z1 = i|Y1:N) with the constraint ∑i πi = 1. The
probabilities of different states are then updated according to transitions and observations.
The modeling stage is completed up to now, and the EDHMM is completely described
by the set of parameters θ = {π1,λ,C} (note that π2 = 1− π1), where λ = [λ1,λ2] and
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Chapter 3. Markov stochastic process

C = [C1,C2]. The next section addresses the estimation of these parameters, and explains
what characteristics of the signal these parameters reveal.

3.5 Parameter estimation and analysis

3.5.1 Parameter estimation

The goal is to find the optimal model parameter set θ that maximizes the likelihood
p(Y1:N |θ) from the observations Y1:N . The forward-backward recursion formulas are first
introduced to calculate the likelihood. The forward and backward variables at datum n

are defined as
αn(i) = p(Y1:n, zn = i|θ), (3.13)

βn(i) = p(Yn+1:N |zn = i,θ). (3.14)

The quantity αn(i) represents the joint probability of observing all of the given data up to
time n and the value of state i, where βn(i) represents the conditional probability of all
future data from time n+ 1 up to N given the value of state i. Therefore, α and β are the
forms of 2×N matrices for the two states model.

In order to calculate the forward and backward variables, the recursion relations are
derived using the conditional independence properties together with the sum and product
rules. The forward quantity αn(i) is expressed in terms of αn−1(i) as,

αn(j) = p(Y1,Y2, ...,Yn|zn = j)p(zn = j)

= p(Yn|zn = j)p(Y1,Y2, ...,Yn−1|zn = j)p(zn = j)

= p(Yn|zn = j)
∑

zn−1=i
p(Y1,Y2, ...,Yn−1, zn−1 = i, zn = j)

= p(Yn|zn = j)
∑

zn−1=i
p(Y1,Y2, ...,Yn−1, zn|zn−1 = i)p(zn−1 = i)

= p(Yn|zn = j)
∑

zn−1=i
p(Y1,Y2, ...,Yn−1|zn−1 = i)aij(τn−1)p(zn−1 = i)

= p(Yn|zn = j)
∑

zn−1=i
p(Y1,Y2, ...,Yn−1, zn−1 = i)aij(τn−1)

= p(Yn|zn = j)
[∑

i

αn−1(i)aij(τn−1)
]

. (3.15)
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3.5. Parameter estimation and analysis

With the same manipulation, the recursion relation for quantity βn(i) can be formu-
lated as,

βn(i) =
∑
j

βn+1(j)aij(τn)p(Yn+1|zn+1 = j). (3.16)

It is seen these two recursion formulas contains the dynamic duration time τn(i). Therefore,
to calculate the formulas above, the update formula for τn(i) is required [17], as follows,

τn(i) = p(zn = i|Y1:n,θ)τn−1(i) + 1

= αn(i)∑
i αn(i)τn−1(i) + 1. (3.17)

From now on, several other posterior probabilities are defined for facilitating the
subsequent re-estimation. First, the posterior probability of the current state zn being
equal to i at datum n, given the observations Y1:N and parameter set θ, denoted as γn(i),
is expressed as

γn(i) = p(zn = i|Y1:N ,θ)

= p(Y1:N |zn = i,θ)p(zn = i|θ)
p(Y1:N |θ)

= p(Y1:n, zn = i|θ)p(Yn+1:N |zn = i,θ)
p(Y1:N |θ)

= αn(i)βn(i)
p(Y1:N |θ) . (3.18)

The sequence γ1:N (i) will be used for identifying the fault type in Chapter 4.4. According
to this equation, there are some useful remarks worth noting. On one hand, if setting
n = N and replacing αN(i), we can obtain one relationship as

γN(i) = p(zN = i|Y1:N ,θ)

= p(Y1:N , zN = i|θ)βN(i)
p(Y1:N |θ)

= p(zn = i|Y1:N ,θ)βN(i), (3.19)

from which it can be seen that βN (i) = γN (i)
p(zn=i|Y1:N ,θ) = 1 for all the states i. This inference

will be useful in the derivation of likelihood function. As we know, the likelihood function
p(Y1:N |θ) is the indicator for the convergence criterion of the algorithm, so it drives the
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Chapter 3. Markov stochastic process

decision as whether the iterative algorithm is to be stopped or not. On the other hand, if we
sum both side of Eq.(3.18), and use the fact that the left-side is a normalized distribution,
the likelihood function p(Y1:N |θ) can be written as

p(Y1:N |θ) =
∑
i

αn(j)βn(i). (3.20)

Then the likelihood function can be estimated for any convenient choice of n. In order to
simplify the algorithm, n = N is selected for removing βn(i) according to the inference
form Eq.(3.19), i.e, βN(i) = 1. The likelihood function can be simplified as

p(Y1:N |θ) =
∑
i

αN(i). (3.21)

Next, another useful posterior probability, denoted as ξn(i, j), is the probability of a
transition from state i to state j given the observations Y1:N , which can be expressed in
terms of the forward-backward variables and model parameters as,

ξn(i, j) = p(zn = i, zn+1 = j|Y1:N ,θ)

= p(Y1:N |zn = i, zn+1 = j,θ)p(zn = i, zn+1 = j|θ)
p(Y1:N |θ)

= αn(i)βn+1(j)aij(τn(i))p(Yn+1|zn+1 = j,θ)
p(Y1:N |θ) . (3.22)

According to the above formulas, the parameters θ = {π1,λ,C} can be estimated as
follows. The initial state probability πi estimate is

π̂i = γ1(i)/
∑
i

γ1(i), (3.23)

where the numerator γ1(i) can be understood as the probability of occurrence of z1 = i,
and the denominator, ∑i γ1(i), as the possibility of z1 over all states. The estimate of the
covariance Ci is (See details in appendix A),

Ĉi =
∑N
n=1 γn(i)YnY †n∑N

n=1 γn(i)
. (3.24)
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3.5. Parameter estimation and analysis

In the case of two-state EDHMM, one has the useful relationships

π̂1 + π̂2 = 1 and Ĉ1 + Ĉ2 =
∑N
n=1 YnY

†
n

N
. (3.25)

In the Poisson distribution, the maximum likelihood estimate of the parameter from
the samples is the sample mean. Therefore, the parameter λ in the duration distribution
is estimated as

λ̂i =
N−1∑
n=1

ξn(i, j)τn(i) (i 6= j), (3.26)

where the weight ξn(i, j) represents the probability of transition from state i to state j,
and the condition (i 6= j) means the weighted average of τn(i) is calculated only at the
transition time. Eqs.(3.23) to (3.26) complete one updating process for estimating the
parameters θ = {π1,λ,C}, which is then iterated. The iteration stop criterion depends on
the increase rate of the likelihood function p(Y1:N |θ), shown in Eq.(3.21). The proof of
this iterative convergence is demonstrated in Appendix B. The full estimation procedure
is summarized as follows,

1) Assume an initial parameter set θold.

2) Compute the forward-backward variables αn(i) and βn(i) through Eqs.(3.15) and
(3.16). Next, calculate the forward-backward variables and the related probability
γn(i) and ξn(i, j) through Eqs.(3.18) and (3.22). Finally, etimate the new parameter
set θnew through Eqs.(3.23) to (3.26).

3) Check for the stop criterion of either the logarithmic likelihood or the parameters. If
the stop criterion is not satisfied, the let θold ← θnew and return to step 2).

The pseudo-code is summarized in Algorithm 1. It is noted that it involves two pa-
rameters: max_iter for the maximum number of iterations and Threshold for the expected
relative tolerance between the logarithmic likelihood probabilities of two consecutive times.
These two parameters can be easily set by default. Also, the STFT parameters, Nw, R,
and the EDHMM parameter θ = {π1,λ,C} will be discussed in detail in Chapter 3.6.

3.5.2 Parameter analysis

The parameters of EDHMM be estimated in the previous section, will be used to
construct the integrated diagnosis framework of the next chapter. The parameters of a
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Chapter 3. Markov stochastic process

Algorithm 1 EDHMM
Input: y(t), Nw, R, max_iter, Threshold
STFT:−→ Y1:N
EDHMM Initialization: θ = {π1,λ,C}
for k <max_iter do
→ Pre-process

τn(i) = αn(i)∑
i
αn(i)τn−1(i) + 1

γn(i) = αn(i)βn(i)
p(Y1:N |θ)

ξn(i, j) = αn(i)βn+1(j)aij(τn(i))p(Yn+1|zn+1=j,θ)
p(Y1:N |θ)

→ Update the parameter θ = {π1,λ,C}
π̂i = γ1(i)/∑i γ1(i)
Ĉi =

∑N

n=1 γn(i)YnY
†

n∑N

n=1 γn(i)

λ̂i = ∑N−1
n=1 ξn(i, j)τn(i) (i 6= j)

→ Stop criteria
if log pk(Y1:N )−log pk−1(Y1:N )
| log pk(Y1:N )|+| log pk−1(Y1:N )| <Threshold then
Stop

else
k ← k + 1; θold ← θnew

Endif
Endfor
Output: output result

random process determine the characteristics of the signals generated by the process. As
the characteristics of the signals change, so do the corresponding parameters. So in this
section, a synthetic signal,

y(t) = x(t) + n(t),

is used to demonstrate the function of the output parameters and what characteristics
they reveal.

The fault signal x(t) is a simulated bearing inner race fault, and white noise n(t) is
set to a noise-to-signal-ratio of 0 dB. The signal is gendered with a resonance frequency
f0 = 5000Hz, and modulated by a low fault frequency fBPFI = 163Hz. The rotating
frequency, fr, is set as 30Hz and the signal length is L = 48000 samples in one second,
as shown in Figure 3.7. The easy signal is generated in order to better understand the
meaning of the EDHMM parameters.
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Figure 3.7: The synthetic signal with SNR=0 dB and sampling frequency fs = 4.8kHz
over one second.

Covariance Ĉ

The positive diagonal matrix Ĉi is the covariance of the observations in state i,
as described in Eq.(3.8). The diagonal elements, [Ĉi]kk = |<(Y (n, k))|2 + |=(Y (n, k))|2,
k ∈ {1, 2, ...,Nk}, are the estimates of the variance at frequency k. Therefore, this
parameter is a good indicator for displaying the energy distribution in the frequency
domain [162]. It can also be used as a criterion for deciding whether the signal is healthy
(see next Chapter 4.2). It also determined the frequency location of the transient pulses. In
this sense, it can also be used for frequency band selection. Figure 3.8 shows the spectrogram
of the synthetic signal; the frequency resolution is set to ∆f = fs/Nw = 375Hz and a
window shift R = 16 is used.

From the spectrogram, it is found that the covariance of the transient state indicated
by a solid line has a high energy in the band centred on 5000Hz, exactly where the
resonance frequency is, and low energy in other areas. By contract, the noise state
indicated by dashed line has low energy in all frequency bands.

Sequence τn and posterior probability γ1:N(i)

As mentioned earlier, each time a defect strikes a mating surface, a pulse of short
duration is generated that excites the resonances periodically at the characteristic frequency
related to the fault location. The above simulated signal is observed in the time interval
[0, 0.1] s shown in Figure 3.9. The posterior probability sequence γ1:N(i) shown in Figure
3.9(b) represents the possibility of different states. By some manipulation of this sequence
γ1:N(i), the pulse frequency and the information of the type fault in the signal can be
obtained.
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Figure 3.8: The spectrogram of the synthetic signal with resonance frequency
f0 = 5kHz and fault frequency fBPFI = 161Hz.

The parameter τn(i) is like a counter recording the number of Fourier window during
state i. It describes well the temporal structure of the vibration signal. Figure 3.9(c) and
(d) display the duration time sequence in state 2 and state 1, respectively. From the figure,
it is found that these transient pulses last about 3 or 4 windows, and the inactive ones
last about 18 windows. A variation in these duration values is probably due to the fact
that when a roller goes to the non-load zone, the magnitude of the transient will be low
and covered by noise. In practice, this may also be due to the difficulty of maintaining a
constant speed during data collection. After obtaining the parameter τn, the single time
period (interval between two impacts) of the simulated signal can be easily calculated
through the summation of τn(1) and τn(2). The usage of it for identifying the fault type
based on a statistical point of view will be illustrated in the next chapter. These two
model parameters are proposed first time in vibration signal analysis.

Another interesting point is that the rotating frequency fr, drawn in the red line
of Figure 3.9(a), is removed in the posterior probability shown in Figure 3.9(b). This
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Figure 3.9: Zoom of simulated signal in interval [0 0.1] s. (a) Raw vibration signal; (b)
posterior probability γn(2); (c) duration time sequence τn(2) of the active state; (d)

duration time sequence τn(1) of the inactive state.

is because the posterior probability is not sensitive to signal amplitude, so it will avoid
the influence of signal modulation and lead to a clear spectrum. This advantage will
be demonstrated in the validation chapter 5. In addition, it is found that there are two
transient pulses wrongly estimated in Figure 3.9(b) as the roller was in the non-load
zone so that the amplitude was small and covered by the noise. But the state sequence
incompleteness will affect less the diagnosis result, identification and characterization,
which will be discussed in Chapter 4.6.

Poission parameter λ

λi is the parameter of a Poisson distribution that models the number of STFT
windows covering the state i, di. It can be estimated as the expected value of the duration
time in different states. The parameter λ2 represents the average number of windows that
cover a transient pulse. It will increase as the fault size increases, so it will be a good
indicator to assess the fault size. This parameter is proposed first time to used in fault
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Chapter 3. Markov stochastic process

size estimation. The fault size quantification based on λ2 will be addressed in Chapter 4.5.

In order to illustrate the discrepancy of this parameter, 16 different sets of inner
race fault data from the CWRU bearing data center are used here, including 4 different
rotating speeds and 2 fault sizes. For statistical purposes, it is required to divide each
dataset into several short signals through sliding segmentation with a overlap, to obtain
more dataset. Then we can obtain a point (λ1, λ2) for each segment of the signal, as
shown in Figure 3.10.
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Figure 3.10: Illustration of the discrepancy of the parameters λ in different data sets.

From this figure, some remarks with respect to the parameter λ are worthy of
attention. 1) Both λ1 and λ2 increase when the fault size increases, which is counter-
intuitive. As the time period (intervals between the impacts) is fixed, λ1 should theoretically
decrease as the fault increases. This may be due to the transient pulses not being detected,
and being identified wrongly as noise states. 2) It is found that, under the same fault
size, λ2 of the outer race is greater than the λ2 of the inner race. It is also found that the
rotating speed has an impact on duration time, but not much. From the figure, we can
see that the features (λ1, λ2) are good at separating different samples (different fault type,
different fault size). In this sense, they could be used as the features for classification.
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3.6 Input parameter settings

In order to be fully automated, a methodology should rely on a minimum of hy-
perparameters. The hyperparameters introduced so far relate to the STFT and the
EDHMM.

On the one hand, the STFT is characterized by the window type, its length Nw,
and its shift R. It is known to be relatively insensitive to the window type, provided
the window is a smooth function. Given a window type, the value of the shift should
be small enough to prevent any loss of information. A typical choice is a Hann window
with R = Nw/4. Hence, the window length Nw is the only critical parameter. It directly
controls the frequency resolution ∆f = Fs/Nw. As discussed in the reference [162], the
window length should be shorter than the fault period (interval between two impacts).
Hence, this condition can possibly be met given a prior knowledge of the potential faults
and their associated characteristic frequencies. A lower bound is surely more difficult to
find; it is data-dependent in general as it corresponds to the coarsest frequency resolution
required to analyze the signal.

On the other hand, the EDHMM involves initial values for the unknown paramaters
π1, C1, and λi, i = 1, 2 (remember that π2 and C2 are easily deduced from π1 and C1

according to formula (3.25)). There are various possible initialization strategies. An ad
hoc strategy is discussed in [162] for a two-state HMM of the STFT coefficients, which
also applies here. Another popular strategy is to first cluster the data with the K-means
algorithm and then get estimates from the obtained clusters. A last possibility is to resort
to random initialization. Intensive numerical experiments have shown that the proposed
EDHMM is robust to initialization, whatever the strategy used, because it involves only
two states. It is therefore concluded that initialization of the EDHMM will not significantly
affect the finial results. In conclusion, Nw remains the sole critical hyperparameter of the
proposed methodology.

3.7 Conclusion

This chapter introduced and reviewed firstly the basic theory of Markov model,
including Markov chain and hidden Markov model. It then mainly introduced the used
stochastic model, explicit duration hidden Markov model, for modeling the vibration
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Chapter 3. Markov stochastic process

signal, from vibration signal segmentation, stochastic modeling, parameter estimation to
parameter analysis.

First, the STFT was formulated as a decomposition tool and it was explained how
to apply it to the time-frequency transform of vibration signals, and how the observed
time-frequency coefficients are modeled. Then, the iterative estimation algorithm was
used to find the optimal parameter θ to maximize the likelihood p(Y1:N |θ). Afterward,
some valuable parameters provided by EDHMM were introduced, which are useful for the
vibration signal diagnosis, such as the posterior probability sequence γ1:N(i), covariance
Ĉ, duration time sequence τ1:N , Poisson parameter λ, etc. The effectiveness of these
parameters and what characteristics they reveal were illustrated through a synthetic bearing
fault signal. For example, the elements in the covariance Ĉ measure the energy distribution
in the frequency domain, which will be a good parameter for fault detection; and the
probability sequence γ1:N(i) removes the influence of other high amplitude components
like resonances and amplitude modulation; it is for some occasions able to increase the
effect of spectrum analysis; the parameter λ in the Poisson distribution estimates the
expected value of the duration time of different states, which is able to assess the fault
severity. Finally, the hyperparameter of this model and the parameters initialization were
discussed. It is found that only one hyperparameter, i.e. window length Nw, needs to be
set in advance. This makes it potentially suited for practical applications in the absence
of prior knowledge.
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Chapter 4. Integrated auto-diagnostic framework

4.1 Introduction

In modern applications, the vibrations are often acquired in continuous flow on
multiple channels and machines simultaneously, which brings the difficulty to process and
analyze them. So it is not practical or possible anymore to have an expert dedicated to only
looking at analysis results and condition indicators continuously. Such practical problems
demand for the development of integrated and automatic diagnosis techniques. In this
Chapter, to achieve this goal, an automated diagnosis framework is proposed, including
detection, identification, fault size characterization and fault signal reconstruction. The
estimated parameters of the EDHMM model are used to complete these tasks without
need of other prior information and user’s expertise.

This Chapter is organized as follows. Section 4.2 describes the statistical hypothetical
test algorithm called likelihood ratio test for detecting the vibration signal. In Section
4.3, a time-varying filter is designed to recover the fault signal from corrupted signal.
Subsequently, the identification of the fault type is achieved through one statistical counting
method, and the posterior probability spectrum is also introduced. Section 4.5 introduces
the characterization of the fault size using the duration time in different states. One
discussion based on this integrated framework is given in Section 4.6.

4.2 Fault detection

Early detection is capable for examination of the fault occurrence and prediction
of the fault evolution of the failing component before the fault progresses to a state
that endangers the system’s operational integrity. Timely and correct decision making is
important for the real-time monitoring of crucial system. Therefore, the first step is to
check whether the recorded vibration signal belongs to a healthy bearing or if it indicates
the presence of a fault, in which case subsequent fault identification is needed.

As seen in the investigation of Chapter 2.3.1, the current techniques, either cannot
accurately find the failure occurrence point as there is no corresponding alarm threshold,
or take up a lot of resources for data training. In this section, one technique based on
the likelihood ratio test (LRT) is introduced. According to Neyman-Pearson, the LRT is
the most powerful test, which means it has the largest possible test power (probability
of detection) given the significance level α (probability of false alarm). Unlike other
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4.2. Fault detection

indicators, the likelihood ratio naturally follows a chi-squared distribution, which provides
the mathematical basis for finding the alarm threshold. The detailed process is formulated
as follows. First, the two alternative hypotheses, H0 and H1, are characterized by the
following likelihood functions:



Null hypothesis H0 (healthy signal with state 1 only):

p(Y1:N |H0) =
N∏
n=1
CN (Yn; 0,CH0)

Alternative hypothesis H1 (faulty signal with intermittent states 1 and 2):

p(Y1:N |H1) =
N∏
n=1

[γn(1) · CN (Yn; 0,CH1
1 ) + γn(2) · CN (Yn; 0,CH1

2 )].

Since the theoretical covariance matrices are unknown, they have to be estimated
under the two alternative hypotheses. On the one hand, under H1, the covariance matrices
CH1
i , i = 1, 2, are estimated by Eq.(3.23) as explained in Chapter 3.5. On the other hand,

under H0, the estimate of CH0 is

ĈH0 =
∑N
n=1 YnY

H
n

N
= ĈH1

1 + ĈH1
2 , (4.1)

where the last equality results from Eq.(3.24). As explained in Chapter 3.5.2, the covariance
associated to one state is a good indicator for displaying the energy distribution in the
frequency domain. Therefore, the covariances CH1

i and CH0 will be similar for the null
hypothesis, while very different under the alternative hypothesis. Based on this feature, the
statistical indicator, generalized likelihood ratio (GLR), can be constructed by plugging in
these estimates into the probabilities p(Y1:N |Hi), i = 0, 1 as,

Λ = ln p(Y1:N |H1)
p(Y1:N |H0)

= ln
∏N
n=1[γn(1) · CN (Yn; 0, ĈH1

1 ) + γn(2) · CN (Yn; 0, ĈH1
2 )]∏N

n=1 CN (Yn; 0, ĈH0)
. (4.2)

The principle of the test is to accept the hypothesis H1 if the GLR Λ is greater than
a given alarm threshold. According to Wilk’s theorem, twice the GLR asymptotically
follows a chi-squared distribution with number of degrees of freedom, denoted v, equal to
the difference between the number of unknown parameters under hypotheses H1 and H0,
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Chapter 4. Integrated auto-diagnostic framework

that is
2Λ ∼ χ2

v. (4.3)

In the null hypothesis H0, there are only Nk unknown elements in the covariance CH0 ,
whereas for hypothesis H1, 2Nk for the two covariance matrices and N for the posterior
probability γn (noting that γn(1) + γn(2) = 1). So the difference in degrees of freedom is
v = Nk +N . Therefore, the null hypothesis H0 is rejected if Λ > χ2

v,1−α/2 at the risk α,
where χ2

v,1−α is the quantile of the chi-squared distribution with probability 1− α. Figure
4.1 shows one example of Chi-squared distribution with the freedom degree v = 5 and
alarm α = 0.05. Therefore, any confidence interval can be obtained based on distribution
with known parameters, which is able to provide a mathematical basis for fault detection.
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10, 0.05
2 30 40 50
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0.04
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0.1

95%

v=10
=0.05

Figure 4.1: Illustration of fault detection based on chi-squared distribution with
parameter v = 10 and α = 0.05.

4.3 Fault signal reconstruction

Spectral amplitude estimation forms the basis of many signal restoration systems,
such as for vibration signal denoising. For restoration of time-domain signals, an estimate
of the instantaneous magnitude spectrum is combined with the phase of the noisy signal
and then transformed via an inverse discrete Fourier transform to the time domain. The
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4.3. Fault signal reconstruction

related methods are covered in Chapter 2.3.2. Bayesian spectral amplitude estimation
methods offer substantial performance improvements on spectral subtraction by utilising
the probability density functions of the signal and noise process. The hidden states
associated with signal spectra provide useful information for the evolution of signal spectra
and the correlation between those spectra. Therefore, HMM can provide a mathematically
tractable model basis for signal enhancement. In this section, the EDHMM based denoising
method is formulated in the following.

The basic goal of feature enhancement is to extract the clean signal x(t) from the
measurement y(t) with additive background noise n(t). Firstly, according to the Bayesian
theory and EDHMM theory, the posterior probability distribution of the nth observation
Xn can be written as

p(Xn|Yn,θ) ∝ p(Yn|Xn,θ)p(Xn|θ),

where, Xn represents the Fourier coefficients of the fault signal at nth window. For the
specific frequency k, the fault signal spectrum posterior probability is

p(X(n, k)|Y (n, k),θ)

∝
exp{−|Y (n,k)−γnX(n,k)|2

Ĉ1(k) } exp{ −|X(n,k)|2
Ĉ2(k)−Ĉ1(k)}

π2Ĉ1(k)(Ĉ2(k)− Ĉ1(k))

∝
exp{− [γ2

n(Ĉ2(k)−Ĉ1(k))+Ĉ1(k)]X(n,k)2−2γn(Ĉ2(k)−Ĉ1(k))Y (n,k)X(n,k)+(Ĉ2(k)−Ĉ1(k))X(n,k)2

Ĉ1(k)(Ĉ2(k)−Ĉ1(k)) }

π2Ĉ1(k)(Ĉ2(k)− Ĉ1(k))
, (4.4)

where, Ĉ1 and Ĉ2 are the covariances of the observation in different states, and they
can be estimated through Eq.(3.23). Then, the estimation of covariance of the signal
of interest Xn is obtained as Ĉ2 − Ĉ1. From another way, the STFT coefficients of the
fault signal x(t) converge in distribution to the complex-valued Gaussian distribution
according to the central limit theorem [33]. According to the certain assumptions, the
STFT coefficients X(n) at a given datum n follow the complex Gaussian distribution. For
the specific frequency point k, the posterior probability distribution can be written as,

p(X(n, k)|Y (n, k),θ) =
exp{− |X(n,k)−µx(k)|2

Cx(k) }
πCx(k) . (4.5)

Combining the two formulas (4.4) and (4.5), the corresponding mean µx(k) and
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Chapter 4. Integrated auto-diagnostic framework

covariance matrix Cx(k) of the posterior probability distribution can be given as


Cx(k) = Ĉ1(k)(Ĉ2(k)− Ĉ1(k))

γ2
n(Ĉ2(k)− Ĉ1(k)) + Ĉ1(k)

µx(k) = Cx(k)
Ĉ1(k)

γnY (n, k).

If one substitutes the covariance Cx(k) into the mean µx(k), the expectation of the fault
signal spectrum at datum n can be obtained as,

E{Xn|Yn,θ} = µx = γn(Ĉ2 − Ĉ1)
γ2
n(Ĉ2 − Ĉ1) + Ĉ1

Yn. (4.6)

Finally, the time-domain signal of interest, x(t), is obtained from Eq.(4.6) by using the
inverse STFT. Compared with the Wiener filter as Eq.(2.10), this can be seen as a
time-varying filter, as which takes account of the posterior probability γn.

The technique of fault signal reconstruction is assessed based on its ability to recover
the fault signal when the signal is disturbed by noise. Two different SNRs were chosen, 0
dB and -5 dB. For higher SNRs, the bearing fault signal impacts are more prominent and
for lower SNRs the bearing fault impacts are easily masked by background noise.The noise
immunity of the method will be discussion in the last section. Figure 4.2(a) depicts a
simulated bearing inner race fault signal at rotating speed of 30 Hz, and the simulated fault
characteristic frequency fBPFI = 161 Hz. The simulated signal was further corrupted by
Gaussian noise with SNR= 0 dB which is shown in Figure 4.2(b). Figure 4.2(c) shows that
this technique has the capability of removing Gaussian noise with a 0 dB SNR, recovering
a clean signal as close as possible to the simulated signal (bearing fault signal).

The same simulated signal is corrupted by the Gaussian noise with SNR=-5 dB,
shown in Figure 4.3(b). Figure 4.3(c) shows that this technique has the capability of
removing Gaussian with a -5 dB SNR and recovering a clean signal as close as possible to
the source signal. The bottom subplot shows a consistent impulsive signal of a damaged
bearing with an average time interval of 6.23 ms very close to the characteristic defect.
The kurtosis of the corrupted signal was found to be 4.19, which is very close to a Gaussian
distribution; while the kurtosis of the reconstructed fault signal was 20.73 and it can be
seen that the recovered signal was improved.
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Figure 4.2: Illustration of the capability of fault signal reconstruction technique. (a)
Simulated signal with 1800 RPM; (b) Corrupted signal with SNR= 0 dB Gaussian noise;

(c) Reconstructed fault signal.

4.4 Fault type identification

Once a fault is detected, the type and severity of the fault will become the primary
issue. Spectral analysis of vibration signal is widely used in bearing fault analysis. Most
advanced techniques all rely on demodulation and spectrum analysis for finding the bearing
fault type. However, apart from evaluation of vibration signal spectrum to identify specific
bearing component frequencies, vibration signals can also be analysed by other means to
identify the fault type. In this section, two different approaches are proposed based on the
EDHMM parameters, i.e, posterior probability spectrum and statistical analysis-based
identification.
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Figure 4.3: Illustration of the capability of fault signal reconstruction technique. (a)
Simulated signal with 1800 RPM; (b) Corrupted signal with SNR= -5 dB Gaussian noise;

(c) Reconstructed fault signal.

4.4.1 Posterior probability spectrum

The components in the vibration signal of a faulty bearing mainly consist of damped
and repetitive impulses on the top of stationary background noise. This has been modeled
in Chapter 3.4.2 as statistical properties switch between two states (the active and inactive
states). The transition frequency between these two states relates to the bearing fault
frequency, which is itself expressed in terms of the geometrical parameters of the bearing
and is specific to each type of fault. Therefore, the idea is to identify the type of
fault by performing the spectral analysis of the posterior probability of the active state,
γn(2) = p(zn = 2|Y1:N ,θ), with respect to time datum n. This defines the posterior
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4.4. Fault type identification

probability spectrum (PPS) S(k) as

S(k) = |F{γn(2)}|2 = |
N∑
n=1

γn(2)e−j2πk n
N |2, (4.7)

where F{·} represents the discrete Fourier operator. The advantage of the PPS is that it
is only related to the state information of the vibration signal, which is more conducive to
spectrum analysis than the original signal. In addition, the PPS is not sensitive to the
amplitude of the transient pulses, so it can avoid the influence of modulation, thereby
reducing the sidebands in the spectrum. This advantage had been illustrated by an
exemplary signal with inner race fault shown in Fig.4.4. It is shown in the subplot (a)
that the characteristic frequency fBPFI and its harmonic are very clear. Compared to
the squared envelop spectrum in subplot (b), most sidebands or amplitude modulation
have been removed in the PPS. This advantages will be further explained in Chapter 3.5.2.
In respect of spectrum analysis, it is similar to the envelope spectrum, a cutting-edge
tool widely used in vibration-based condition monitoring [124]. However, contrary to the
latter, the PPS does not rely on manual pre-processing for the selection of informative
bands in the signal, as typically achieved by means of finely tuned bandpass filters (see
e.g. [6],[67],[109]). The advantage of the PPS will be demonstrated through validation in
the next chapter.

The spectral analysis of the state sequence is a valuable tool for identifying the
bearing fault type, yet it still requires a visual inspection. If this task is to be automated as
well, one can still resume the spectrum by scalar indicators (see e.g. [29]) or use automatic
spectral analysis methods as introduced in [58]. Another strategy is proposed hereafter in
order to automatically identify the fault type among a given set of candidates.

4.4.2 Statistical analysis

Spectrum analysis is one common and effective method for identifying the bearing
fault type. But the disadvantage is that it is not automatic. Finally, it still depends on
the visual examination of the end-user. Although some methods can realize automatic
scanning, they are difficult to implement. In order to completely escape the manual
intervention, this section introduces one simple method based on a statistical point of view
for identifying automatically the fault type.
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Figure 4.4: Illustration of the capability of PPS. (a) Posterior probability spectrum
S(k); (b) Envelope spectrum of original vibration signal.

Since the EDHMM returns the time τ(i) already spent in the current state i at each
instant n, the average period between two successive impulses can also be estimated, thus
giving an indication of the characteristic fault frequency. More specifically, let ts be the
elapsed time between the s-th and the (s+ 1)-th impulses (see Figure 4.5) and let fc be
the expected characteristic frequency of a fault type c. Then, accounting for the possible
presence of uncertainties in the actual value of fc (unpredictable dependence on load,
presence of slippage, etc.) and in the measurement of ts (estimation errors, effect of noise),
one can count the number of times ts falls in a narrow frequency interval [fc − σ, fc + σ]
of width 2σ centered on fc:

Nc = card({ts : 1/ts ∈ [fc − σ, fc + σ], s ∈ {1, 2, ...,S}}), (4.8)

where card(A) means the number of elements in the set A. If a number C of exclusive
fault types are considered (e.g. inner-race fault, outer-race fault, ball-fault), the posterior

72/129

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI045/these.pdf 
© [Y. Jin], [2022], INSA Lyon, tous droits réservés



4.5. Fault size characterization

probability of observing fault c, c = 1, ...,C given t1:S is then estimated by

p(fc|t1:S) = Nc∑C
n=1 Nn

. (4.9)

Since the equations to calculate the characteristic frequencies are based on bearing
geometry and speed alone, variations due to loading and slipping are not considered.
σ is the frequency error, which extends the characteristic frequency to a characteristic
interval; it is typically about 5% of the fault characteristic frequency. Therefore, automatic
identification of the type can be achieved by selecting the highest empirical posterior
probability, i.e. finding the maximum probability is to identify the fault type. In addition,
the samples 1/t1:S can be also represented in the form of a histogram, and then the fault
identification issue is equivalent to finding the highest bin.

t
1 t

3
t
2

t
s

... ... t
S

Posterior
probability

Vibration
signal

(1)

(2)

Figure 4.5: Illustration of the impulse cycles. The first sequence is the state posterior
probability; second is the vibration signal; The last two subplots are the duration time

sequence for different states.

4.5 Fault size characterization

The fault type can be determined through the techniques defined in the previous
section, but the fault severity is still unknown. In the characterization stage, the size of
the bearing fault is of concern. A proportional relationship between the transient pulse
duration and fault size seems a reasonable assumption. In reference [129], Randall made a
very thorough study of the vibration signatures due to the entry and exit of the rolling
elements from the fault region and the duration time between them was used to estimate
the fault size. Similarly, in EDHMM the duration time of the transient pulse state can
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Chapter 4. Integrated auto-diagnostic framework

be used as an indicator for the fault size. The parameter λ2 of the Poisson distribution
(shown in the Eq.(3.25)) represents the average number of windows that cover the transient
pulse. The corresponding average duration of the transient (in second) is

∆t ≈ λ2R

Fs
, (4.10)

with Fs the sampling frequency of the signal. The value of ∆t reflects the duration of the
passage of the fault in the contact zone of the bearing. In practice, it is likely to be slightly
over-estimated since it includes the coda, say ∆e (in seconds), of the impulse response of
the structure. However, if needed, the latter can possibly be measured by other means
and subtracted from ∆t. For instance, a reasonable estimate of the coda can be obtained
by measuring the response of the structure after being impacted by a hammer. Another
simple method – used hereafter – is to deduce the value of ∆e from measurement taken
at different rotation speeds. Besides, the precision of ∆t is on the order of the window
shift, i.e. R/Fs . This is surely less accurate than the precision that could be achieved
with other methods such as blind deconvolution [130, 123, 34, 35], yet the latter usually
comes with a high demand on the user’s expertise. Sacrificing a degree of precision is the
price to pay for having an automated method.

For a faulty bearing with stationary outer race, the fault size l (in meter) is related
to the transient duration ∆t as follows,

Outer race fault:
l ≈ πfFTF (∆t−∆e) ·D (4.11)

Inner race fault:
l ≈ πfFTF (∆t−∆e) ·D(1 + d/D) (4.12)

Rolling element fault:

l ≈ πfFTF (∆t−∆e) ·D(1 + d/(2D))

≈ πfBSF (∆t−∆e) · d (4.13)

where D and d stand for the pitch and element diameters of the bearing, respectively,
and fFTF for the fundamental train frequency. It is worth noting that a fault on a rolling
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4.5. Fault size characterization

element actually produces impacts of slightly different durations on the outer and inner
races. Formula (4.11) applies to the former case and formula (4.12) to the latter case.
Formula (4.13) is an average, when both races are impacted. Noting that when several
rotation speeds are available, say f jr , j = 1, 2, ..., the above formulas can be cast in the
general form ∆tj = l · c(f jr ) + ∆e, where c(f jr ) is a function of f jr . Therefore, the fault size
l and the coda error ∆e can be estimated as the slope and the intercept, respectively, of
the fitted lines between the duration times ∆tj and c(f jr ), as shown in Figure 4.6. One
advantage of this technique is that regression will decrease the error produced in the
estimation and transformation of ∆t, and this advantage will become more obvious as the
fitted samples increase. Although this technique still cannot accurately quantify the size,
it will be useful for condition monitoring as demonstrated hereafter in the next chapter.
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Figure 4.6: The illustration of fault size characterization through linear regression, with
the horizontal axis as the function c(f jr ) and vertical axis as the duration time ∆tj, in
which the estimated fault size l̂ and the coda error ∆e correspond to the slope and the

intercept of the fitting line.
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Chapter 4. Integrated auto-diagnostic framework

4.6 Discussion

Figure 4.7 summarizes the integrated diagnostic algorithm and resumes its essential
steps introduced in this chapter. The algorithm takes the recorded signal as an input
and returns elements of information on 1) detection, 2) reconstruction, 3) identification
and 4) size characterization of a potential fault. The detection step returns a binary
output, which can be possibly substantiated by the likelihood ratio Λ (or a p−value). The
higher the value of Λ with respect to a threshold, the lower the risk of false alarm (see
Eq.(4.3)). If a fault is detected, the identification step returns the PPS, the equivalent
of an envelope spectrum, which can be analyzed visually or automatically. In order to
be fully automatic, a simple method that calculates the posterior probability of different
fault types for identifying the fault type is also introduced. Eventually, the fault signal
can be extracted through a time-varying filter constructed from the covariance matrix of
the observations. Independently of the latter, the fault characterization step returns an
estimate of the fault size.

It is emphasized again that the complete algorithm relies only on one critical
hyperparameter, Nw, the inverse of the frequency resolution. In particular, it does neither
rely on historical data, nor on finely tuned pre-filters, nor on trial-and-error manipulation
of time-frequency distributions. In addition, these four tasks are independent of each other,
in the sense that any one of the tasks can be accomplished effectively without the aid of
other. Therefore, it can be understood as a modular integrated framework. However, one
high risk in this diagnosis framework is the strong dependency on the stochastic model.
Only if the model is well established, the integrated diagnosis will perform well.

In practical applications, the vibration signal is always distorted by all kinds of noise.
For example, when a roller goes to the non-load zone, the magnitude of the transient
pulse will be low and easily covered by noise, which may be estimated wrongly as noise
state. As shown in Figure 3.9(b), it is seen that two transient pulses with low energy that
have been estimated wrongly. But the wrong estimation of a state or the state sequence
incompleteness affect little the final result. The reason is because the statistical analysis is
based on statistics comparison, it is rather unaffected by the hidden state incompleteness.
The example in Figure 3.10 is used here to explain. In this synthetic signal, there are some
transient pulses that are totally covered by noise. However, for the statistical analysis
based identification, the probability of inner race fault is the highest in the posterior
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Figure 4.7: The flowchart of the integrated diagnosis framework.

probability Table 4.1. Meantime, Figure 4.8 shows the histogram of the frequency data
of the incipient fault signal, f = 1/ts, s ∈ {1, 2, ...,S}. Histogram is a probability density
representation, which will in general more intuitively reflect the distribution of the fault
impulsive cycle. It shows that the majority periods fall into the frequency bin [157 167]
Hz, which includes the characteristic frequency fBPFI . The second highest bin is [76 86]
Hz, which is due to the doubling period because of the wrong estimation of the state.
With respect to the characterization, the missing of some transient pulses will also not
affect the estimation of λ2. Because the estimated λ̂2 (the expected number of Fourier
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Chapter 4. Integrated auto-diagnostic framework

windows over transient state) is only related to τn(2) according to Eq. 3.26. Therefore,
hidden state incompleteness will not affect the estimation of λ2. But overcompleteness
(the noise state is estimated wrongly as transient state) will affect the estimation. Such
influence will be decreased after the linear regression. In conclusion, wrong estimation of
a state or the state sequence incompleteness affect little the finial result.

Table 4.1: The posterior probabilities of fault type given t1:S

Fault type BPFI BPFO BSF FTF
Posterior probability p(fBP F I |t1:S) p(fBP F O|t1:S) p(fBSF |t1:S) p(fF T F |t1:S)
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Figure 4.8: Histogram of the transient pulse cycle frequency, showing the red dash line
relating to the fault characteristic frequency located in the highest bin.

Two aspects are important regarding the effectiveness of the proposed method against
different noises, i.e. the resonance frequency band and the noise energy (amplitude). If
the noise and the signal of interest locate in different frequency bands, e.g. the noise from
environment or component outside the system. No mater how strong of the noise, it won’t
affect the result. The same synthetic signal x(t) in 3.5.2 are used here, as shown in the
yellow signal in Figure 4.9 (a). The resonance frequency is 5000 Hz. And the noise n(t) is
filtered by a high pass filter with the cutoff frequency fc as 8000 Hz as the blue signal in
Figure 4.9 (a). It is found the amplitude of the noise is higher than the signal of interest
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4.6. Discussion

x(t). The composite signal is shown in Figure 4.9 (b), in which, the fault signal x(t) is
totally covered by the noise. However, in Figure 4.10, the PPS of the composite signal
displays the obvious information of signal x(t). This example proves the proposed method
is immune to noise that locates in different resonance frequency band. In another case,
when they have the same resonance frequency, the effectiveness of the method depends
on the magnitude of the noise. If the signal of interest x(t) is totally covered by the
noise in the same resonance frequency band, for example, the strong noise from the same
mechanical system, the proposed method will fail.
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Figure 4.9: Illustration of the synthetic signal. (a) The noise n(t) and the signal of
interest x(t); (b) the composite signal.
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Figure 4.10: The posterior probability spectrum of the composite signal.

79/129

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2022LYSEI045/these.pdf 
© [Y. Jin], [2022], INSA Lyon, tous droits réservés



Chapter 4. Integrated auto-diagnostic framework

4.7 Conclusion

This chapter has presented the diagnosis framework based on the parameters from
the EDHMM. All the diagnosis issues can be addressed at once in an automated way, i.e.
without manual intervention in the process. The contribution of this part is the realization
of integrated auto-diagnosis.
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Chapter 5. Experimental validation

5.1 Introduction

So far, the stochastic model, the diagnostic framework and its automatization have
been discussed in the previous chapters only at the theoretical level. Brief illustrations of
the model parameters on simulated data have been given, highlighting their performance. In
this chapter, the proposed integrated auto-diagnostic framework is tested on experimental
data. The experimental validations of this chapter give a better insight into the proposed
method in a practical setting. For this validation, two different kinds of experimental data
associated to bearing signal are used. The first experimental data is relative to bearings
with different damages, running at different speeds and under different loads; the second
kind of experimental data reports the behaviour of a single bearing undergoing a long
test at constant speed and load until fault occurrence. Based on the validation results,
the final section gives a general discussion of the achieved diagnostic performances of the
proposed integrated framework.

5.2 Variable condition data

In order to illustrate the benefit of the integrated auto-diagnostic framework, ex-
perimental data from the Case Western Reserve University Bearing Data Center [37] are
examined. In Cases 1 and 2, 24 sets of data associated to the drive end with three bearing
fault sizes are selected: 12 sets for the inner race fault and 12 sets for the outer race
fault. There are four different motor speeds and motor loads in each fault size. In Case
3, the rolling element fault data are from Technology Research Group of the Polytechnic
University of Madrid [140]. The dataset comprises vibration signals from a double-row
spherical roller bearing (FAG22205E1KC3) with four different fault depths and three
speeds of rotation.

5.2.1 Case 1: Inner race fault data

In this case, 12 sets of inner race fault data acquired from drive end are used, and
the sampling frequency is 48 kHz. Table 5.1 gives a summary of the data number and the
corresponding information. According to the frequency sampling and rotation frequency,
the window length and window shift are set to Nw = 128 samples and R = 16, which gives
a frequency resolution of 375 Hz. Therefore, there are N = 48000−Nw

R
+ 1 = 2993 windows
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5.2. Variable condition data

covering one second signal. The number of Fourier transform (NFFT) is set as 256, then
Nk = NFFT/2 = 128. The quantile in Eq.(4.3) can be calculated as χ2

v,1−α = 3253.1,
with risk α = 0.05 and v = N +Nk = 3121 degrees of freedom. The bearing details and
its characteristic frequencies are listed in Table 5.2.

Table 5.1: List of the inner race fault datasets and their corresponding basic information

Dataset Accelerometer location Fault Size Motor load Motor Speed
[mm] [hp] [rpm]

#097

Drive end

0

0 1796
#098 1 1772
#099 2 1750
#100 3 1730
#109

0.18

0 1796
#110 1 1772
#111 2 1750
#112 3 1730
#174

0.36

0 1796
#175 1 1772
#176 2 1750
#177 3 1730
#213

0.54

0 1796
#214 1 1772
#215 2 1750
#217 3 1730

Table 5.2: The basic information bearing details and fault frequencies

Bearing type SKF 6205-2RS JEM
Position Drive end

BPFO 3.585
Characteristic frequencies BPFI 5.415
(×rotation frequency fr) BSF 2.357

FTF 0.3983

Table 5.3 summarize the inner race fault diagnosis results, including fault detection,
fault identification, and fault size quantification. In order to demonstrate the effectiveness
of the detection algorithm, four healthy data records (#097−#100) are used as a basis
of comparison. In the “Detection” column, it is found that the test statistic Λ of the
healthy data are all less than the quantile χ2

v,1−α/2, whereas the test statistic Λ of the
faulty data are greater than this threshold except for #174. The ”Identification” column
lists the posterior probabilities of four fault types given the impulse cycle t1:S, where,
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p1 = p(fBPFI |t1:S), p2 = p(fBPFO|t1:S), p3 = p(fBSF |t1:S), p4 = p(fFTF |t1:S). From the
results, it is seen that the inner race fault probability, p1, is maximum for almost all the
records, proving the effectiveness of the statistical analysis for automated identification
method. In the “Characterization” column, the fault size quantification results are given
according to the algorithm of Chapter 3.5. Note that the results for the record #174 are
meaningless because this dataset is likely to have been corrupted due to some unknown
reasons, e.g. mechanical looseness as suggested in the reference [137].

Table 5.3: Inner race fault diagnosis results

Dataset Detection Identification Characterization
Λ Result p1 p2 p3 p4 λ2 l [mm]

#097 503.4 Accept H0 —— —— ——
#098 491.7 Accept H0 —— —— ——
#099 727.1 Accept H0 —— —— ——
#100 529.6 Accept H0 —— —— ——
#109 83606 Reject H0 1 0 0 0 5.23 0.14
#110 107329 Reject H0 1 0 0 0 6.11 0.19
#111 85730 Reject H0 0.98 0.02 0 0 6.18 0.20
#112 98226 Reject H0 0.96 0.04 0 0 5.99 0.15
#174 NAN NAN —— —— ——
#175 84173 Reject H0 0.70 0.30 0 0 6.26 0.27
#176 85226 Reject H0 0.57 0.09 0.34 0 6.55 0.37
#177 73326 Reject H0 0.55 0.06 0.39 0 6.59 0.39
#213 71309 Reject H0 1 0 0 0 7.29 0.68
#214 49428 Reject H0 0.97 0.03 0 0 7.10 0.57
#215 51570 Reject H0 1 0 0 0 7.28 0.66
#217 26051 Reject H0 0.93 0 0.07 0 7.11 0.56

The assessment of the fault size is illustrated in Figure 5.1. As explained in the
previous chapter, the parameter λ2 returns the average duration of the transient pulse
(in window length) augmented by the coda of the impulse response of the structure. As
explained in Chapter 4.5, the latter can be measured by the vertical-intercept of the fitted
lines between the duration time ∆t and the rotation frequency fr. The results of coda ∆e
are reported in Table 5.4. The corrected duration time of the fault is eventually obtained
by subtracting the coda error ∆e, i.e. ∆t−∆e, with ∆t calculated from Eq.(4.9). Figure
5.1 shows that the estimate of the fault size varies slightly with motor speed, but is close
to the actual size within an acceptable error. In this figure, the estimated fault sizes are
in the 90% confidence intervals of the actual values obtained by assuming a uniform error
with standard deviation equal to R/Fs.
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Table 5.4: The coda error ∆e [ms]

Fault size (mm) 0.18 0.36 0.54
∆e (ms) 1.92 1.96 2.03
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Figure 5.1: Quantification of the fault size together with 90% confidence intervals based
on the assumption of a uniform error with standard deviation equal to R/Fs.

The capability of the proposed integrated framework to perform automated diagnosis
is now validated on record #175. The spectrogram of the raw signal is displayed in
Figure 5.2. C1 and C2 are the covariances of two different states, representing the energy
distribution. It is seen that there exist nonstationary components in the frequency
band [0,5000] Hz. The posterior probabilities are summarized in Table 5.3. It is seen
that the probability p(fBPFI |t1:S) is maximum, thus indicating an inner-race fault. The
identification is performed totally automatically, without the need of the decision of
the end-user. In this record, it is found that the outer fault also accounts for a non-
negligible proportion. This is likely due to the modulations by the shaft and the cage
rotations, resulting in some low-frequency components incidentally falling into the outer
fault characteristic interval.

In order to assess its performance for bearing fault identification, the PPS S(k)
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Figure 5.2: Spectrogram of the record #175 and the corresponding covariance of two
states, C1 and C2, in the right subplot.

is illustrated in Figure 5.3(a). It is seen that the inner fault frequency fBPFI and its
harmonics are clearly dominant in the spectrum, thus indicating an inner-race fault.
This is compared in Figure 5.3(b) with the state-of-the-art approach, which consists in
computing the envelope spectrum after bandpass filtering the signal in the most informative
frequency band, here selected as the maximum of the kurtogram [9, 137]. The standard
envelope spectrum also reveals the BPFI, but accompanied with several sidebands due to
modulations by the shaft and the cage rotations. These truly pertain to the inner-race
fault signature. The reason why they are not present in the PPS is because the latter is,
by construction, less sensitive to amplitude modulation. Incidentally, the PPS also shows
strong sidebands at three time the speed rotation (present too in the envelope spectrum),
which are likely due to frequency modulations.

In order to better assess the performance of this framework, the results are observed
in the time interval [0.5, 0.6] s shown in Figure 5.4. The expected value λ2 of the duration
time in the transient pulse state is 6.26 (window lengths), which means that the transient
pulse lasts about 2.09 ms. This includes the coda of the impulse response that lasts about
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Figure 5.3: Spectral analysis of record #175. (a) Posterior probability spectrum S(k);
(b) Envelope spectrum of bandpass signal with maximum kurtosis in band [5; 6] kHz

selected from kurtogram.

1.96 ms. Therefore, after correction, the fault size estimate is l ≈ 0.27 mm according to
Eq.(4.10). The estimated value deviates from the actual size 0.36 mm, which might be
due to the precision of duration time ∆t. Although it is hard to quantify exactly the fault
size, it can still provide a meaningful guide for bearing diagnosis and prognosis.

Finally, the capability of the proposed method to reconstruct the fault signal is now
demonstrated through record #175. Compared to Figure 5.5(a), it can be seen from
Figure 5.5(b) that many low-energy transient pulses have been recovered after signal
reconstruction. It can be seen that the background noise has been eliminated, and the
original signal has been enhanced. The impulses from the defect on the inner race,
especially the impulses produced in the non-load zone, can be clearly seen and the SNR
has been improved. The reconstructed signal shows a typical sequence of impulsive signal,
and few frequency components such as 29 Hz, 160 Hz were detected.

In order to illustrate the sensitivity of the proposed method with respect to the
window length, the effect of taking different values of Nw is investigated when estimating
the empirical posterior probability p1 – see Figure 5.6. It is seen that only the case with
Nw = 128 has probability greater than 0.5, yet the probability remains significant for at
least three octaves of Nw. This demonstrates that the temporal structure of the signal can
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Figure 5.4: Zoom of #175 in interval [0.5, 0.6] s. (a) Raw vibration signal; (b) the
corresponding spectrogram; (c) posterior probability γn(2); (d) duration time sequence

τn(2) of the active state; (e) duration time sequence τn(1) of the inactive state.

be revealed in a reasonably large range of values of the hyperparameter Nw. In addition,
it is found that the window shift R almost has no effect on the result.

5.2.2 Case 2: Outer race fault data

In this case, the outer race fault datasets from the Case Western Reserve University
are used to validate the integrated diagnostic method. Table 5.5 lists the basic information
of the used 12 data sets. The sampling frequency is 48 kHz.

The same STFT parameters are used, so the quantile in the fault detection is also
same with the first case, i.e. χ2

v,1−α = 3253.1. Table 5.6 displays the diagnosis results
in the case of an outer race fault. It shows that faults of sizes 0.18 mm (#135−#138)
and 0.54 mm (#238 −#241) are detected correctly. They are also correctly identified
as outer-race faults with the maximum probability p(fBPFO|t1:S). In addition, the last
column of the table shows that the estimated fault sizes are reasonable. However, the
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Figure 5.5: Fault signal reconstruction. (a) Raw vibration signal #175; (b)
Reconstructed fault signal.
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Figure 5.6: Empirical posterior probability p1 for different values of the hyperparameter
Nw.

records corresponding to the fault size 0.36 mm (#201−#204) have poor diagnosis results.
For record #201, the presence of a fault is correctly detected, but the probability of outer
race fault is not the maximum. Records #202−#204 are detected wrongly as healthy
signal. It is noted here that these signals were already recognized as difficult to diagnose
in the reference [137]. A visual inspection of these signals actually confirms that they
strongly resemble healthy signals. They have been analyzed here to fairly assess the limits
of the proposed method. It is emphasized that the latter has not been designed to improve
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Table 5.5: List of the outer race fault data datasets and their corresponding basic
information

Dataset Accelerometer location Fault Size Motor load Motor Speed
[mm] [hp] [rpm]

#135

Drive end

0.18

0 1796
#136 1 1772
#137 2 1750
#138 3 1730
#201

0.36

0 1796
#202 1 1772
#203 2 1750
#204 3 1730
#238

0.54

0 1796
#239 1 1772
#240 2 1750
#241 3 1730

the detection capability of state-of-the-art methods (e.g. as given in [137]), but rather to
cover the four consecutive tasks of diagnosis in an automated way. The fact that it does
so nearly as well as finely hand-tuned methods is remarkable.

Table 5.6: Outer racer fault diagnosis results

Dataset Detection Identification Characterization
Λ Result p1 p2 p3 p4 λ2 l [mm]

#135 321543 Reject H0 0 1 0 0 8.65 0.15
#136 284131 Reject H0 0 1 0 0 9.24 0.21
#137 268814 Reject H0 0 1 0 0 8.99 0.20
#138 265902 Reject H0 0 1 0 0 9.40 0.23
#201 2797.8 Reject H0 0.76 0.24 0 0 —— ——
#202 385.2 Accept H0 —— —— ——
#203 275.2 Accept H0 —— —— ——
#204 153.8 Accept H0 —— —— ——
#238 210946 Reject H0 0.03 0.97 0 0 9.26 0.45
#239 221400 Reject H0 0 1 0 0 10.10 0.62
#240 200886 Reject H0 0 1 0 0 9.85 0.61
#241 206363 Reject H0 0 0.82 0.18 0 10.37 0.68

5.2.3 Case 3: Rolling element fault data

In this subsection, the proposed automated diagnosis framework is illustrated on the
dataset from Technology Research Group of the Polytechnic University of Madrid [140].
The dataset comprises vibration signals from a double-row spherical roller bearing (FAG
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22205E1KC3), with different fault depths, recorded by accelerometers in three directions.
There are four different fault depths and three speeds of rotation. The sampling frequency
is 40 kHz. Each combination was recorded three times during 30 s to ensure that small
differences due to uncontrollable variables were distributed evenly across all records. Table
5.7 reports the rolling element fault data sets and their corresponding basic information,
and Table 5.8 lists the potential fault frequencies. More details can be found in reference
[139]. This case aims at analyzing all signals recorded by the accelerator at 6 o’clock on
the bearing casing.

Table 5.7: List of the rolling element fault datasets and their corresponding basic
information

Dataset Accelerometer location Fault Size Motor Speed
[mm] [rpm]

#10

6 o’clock of the bearing caeing

F1(0.006)
200

#11 350
#12 500
#19

F2(0.014)
200

#20 350
#21 500
#31

F3(0.019)
200

#32 350
#33 500
#40

F4(0.027)
200

#41 350
#42 500

Table 5.8: Bearing details and fault frequencies

Bearing type FAG 22205E1KC3
BPFO 6.1852

Characteristic frequencies BPFI 8.8148
(× rotation frequency fr) BSF 5.4030

FTF 0.4123

The duration of the records is one second (40000 samples). According to the sampling
frequency and rotating frequency, the window length Nw and NFFT are set to 512 and
1024 respectively. Due to the large difference between the rotation speeds in this case,
different window shifts R are used, 64 for 200 rpm and 350 rpm and 32 for 500 rpm.
Therefore, we can obtain the number of windows in STFT N = 40000−Nw

R
+ 1 = 618 and

the Nk = NFFT/2 = 512. So the degrees of freedom for 200 rpm and 350 rpm data is
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p1 = N +Nk = 1130. Similarly, the degrees of freedom for 500 rpm can also be obtained
as p2 = 1747. Accordingly, the statistical threshold for fault detection can be calculated
as χ2

1130,0.95/2 = 605.2 and χ2
1747,1−α/2 = 923.2. The results for fault detection, fault

identification and fault size quantification are reported in Table 5.9. These faults are
correctly detected and identified in all cases.

Table 5.9: Diagnosis results

Dataset Detection Identification Characterization
Λ Result p1 p2 p3 p4 λ2 l [mm]

#10 7975 Reject H0 0.03 0.17 0.80 0 4.44 1.70
#11 10535 Reject H0 0.03 0.16 0.81 0 3.71 1.58
#12 20109 Reject H0 0.06 0.05 0.89 0 6.76 1.76
#19 8102 Reject H0 0.02 0.12 0.86 0 4.31 1.66
#20 10825 Reject H0 0 0.14 0.86 0 4.34 1.91
#21 25138 Reject H0 0.11 0.06 0.83 0 6.72 1.75
#31 9599 Reject H0 0.04 0.08 0.88 0 5.15 1.91
#32 17264 Reject H0 0 0 1 0 4.23 1.85
#33 25955 Reject H0 0 0 1 0 7.51 2.04
#40 3598 Reject H0 0 0 1 0 5.40 1.99
#41 10361 Reject H0 0 0.10 0.90 0 4.43 1.95
#42 23130 Reject H0 0.15 0 0.85 0 7.60 2.08

Following similar lines as in the first case, the coda ∆e is assessed from the relationship
between parameter λ2 and rotation frequency fr. The estimated fault size based on the
corrected duration time is displayed in the “Characterization” column. Figure 5.7 illustrates
the fault size quantification through the model parameter λ2. From this figure, it is found
that the estimated value is slightly influenced by the motor rotation speed, thus illustrating
the overall uncertainty of the method. The errors caused by fluctuations are located in
the 90% confidence intervals based on the assumption of a uniform error with standard
deviation equal to R/Fs. From the figure, it is found the error of the fault size quantification
is still acceptable.

Next, the bearing data #12 associated to rolling element fault F1 (fault depth =
0.006 mm, fault area = 11.05 mm2) and speed 500 rpm is selected to illustrate the diagnosis
process. The LRT introduced in Chapter 4.2 is Λ = 20109, which is greater than the
statistical threshold. Therefore, this signal is considered as symptomatic. The posterior
probability spectrum S(k) of the posterior probability sequence is displayed in Figure
5.8(a). It is seen that the fault frequency fBSF and its harmonics dominate the spectrum,
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Figure 5.7: Quantification of the fault size together with 90% confidence intervals based
on the assumption of a uniform error with standard deviation equal to R/Fs.

thus indicating a ball fault. For comparison, the state-of-the-art envelope spectrum –
computed as in Case 1 – is displayed in Figure 5.8(b). In this case, it is less efficient than
the PPS. The reason is that the signal contains one very strong impulse, much higher than
the other ones (an observation quite typical of ball faults), which jeopardizes its spectral
analysis (note that this could be fixed on an expert level by using the robust envelope
analysis technique described in Ref. [28]). By comparison, the PPS is robust to outliers.
Similarly, the posterior probabilities p(f |t1:S) of the fault type displayed in Table 5.9. It
is seen that p(fBSF |t1:S) is the highest, thus pointing out that the fault comes from the
rolling element. One advantage of the latter is that it performed automatically, without
visual examination.

The zoomed output of the EDHMM is shown in Figure 5.9. According to the duration
time sequence τn(1) and τn(2) shown in Figure 5.9(c)-(d), the corresponding mean values
λ1 and λ2 are 20.50 and 6.76 windows. The corresponding duration time are 16.40 ms and
5.40 ms, respectively. The corrected impulse duration time is calculated by subtracting
the coda error ∆e from ∆t, equal to 3.79 ms. Following the lines of Chapter 4.5, the fault
size l estimate returned by EDHMM is about 1.76 mm. According to the indication given
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Figure 5.8: Spectral analysis of dataset # 12. (a) Posterior probability spectrum S(k);
(b) Envelope spectrum of bandpass signal with maximum kurtosis in band [8.8; 10] kHz

selected from kurtogram.

in Ref. [139], the fault covers an area of 11.05 mm2 and extends over the full length of the
roller, that is 6.5 mm, the fault width is roughly 1.70 mm. It is found that the estimated
value is not too far from the actual value.

Now, the capability of the proposed method to reconstruct the fault signal is validated
on the record #12. Figure 5.10(a) shows the faulty signal with frequency fBSF = 45.025Hz.
The result of a reconstructed signal is shown in Figure 5.10(b). The observed signal in
Figure 5.10(a) has a kurtosis level of 6.98, which indicates a bearing damage. The kurtosis
of the recovered signal was 23.02, which is even a stronger indication of a damaged bearing.
In the signal of subplot (a), it is not possible to identify all the spikes of a rolling element
fault and some transient pulses with low energy are masked by background noise. After
signal reconstruction, subplot (b) shows a typical sequence of spikes with a time interval
of about 22.2 ms, very close to the characteristic defect frequency.

5.3 Accelerated degradation data

The previous section has focused on the failure resulting from an artificial damage.
In this section, the life time dataset of rolling element bearings is used to gauge the
performance of the proposed method in detecting a growing potential failure of a new
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Figure 5.9: Zoom of #12 in interval [0.5 0.6] s. (a) Vibration signal; (b) posterior
probability γn(2); (c) duration time sequence τn(2) of active state; (d) duration time

sequence τn(1) of inactive state.

bearing, which is eventually run to failure, and also in tracking fault size evolution. Results
from naturally occurring fault of new bearings are more difficult to analysis than artificial
defects.

The used datasets are provided by the Institute of Design Science and Basic Com-
ponent at Xi’an Jiaotong University (XJTU) [150]. This datasets contain complete
run-to-failure data of 15 rolling element bearings, and one dataset named Bearing 3_1
with the end of outer race fault is selected to demonstrate the effectiveness of the proposed
integrated diagnosis framework. The type of tested bearings is LDK UER204, and the
detailed parameters are given in Table 5.10. The sampling frequency is 25.6 kHz. As
shown in Figure 5.11, a total of 32768 sampling points (i.e. 1.28 s) are recorded for each
sampling, and the sampling period is equal to 1 min.

The total operating life is 42 h 18 min. The rotating speed is constant at 2400 rpm,
and the radial load is 10 kN. Because the load is applied in the horizontal direction, the
accelerometer placed in this direction is able to capture more degradation information of
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Figure 5.10: Fault signal reconstruction. (a) Raw vibration signal #12; (b)
Reconstructed fault signal.

Table 5.10: Bearing details and fault frequencies

Bearing type LDK UER204

Outside diameter 39.80mm Inside diameter 29.30 mm
Pitch diameter 34.55mm Ball diameter 7.92 mm
Number of balls 8 Contact angle 0◦

Dynamic load rating 12.82 kN Static load rating 6.65 kN

BPFO 3.0831
Characteristic frequencies BPFI 4.9169
(× rotation frequency fr) BSF 2.0666

FTF 0.3854

the tested bearings. Therefore, the horizontal vibration signal is selected to demonstrate
the effectiveness of the proposed integrated diagnosis framework. Figure 5.12 shows the
typical horizontal vibration signal during the whole operating life.

In common engineering applications, the selection process and expected fatigue life
of rolling bearing are determined by the ISO standard 281:2007 [1]. Here, the bearing’s
basic fatigue life rating is defined as using the number of rotations for which 90% of all
bearings in a specific group achieve or exceed a calculated time without failure (probability
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Figure 5.12: Full life vibration signal in the horizontal direction of the bearing 3_1.

of failure: 10%). According to [1], the theoretical expected fatigue life can be calculated
using the following equation,

Lh = 106

60n

(
C

P

)ε
, (5.1)

where, Lh is the expected fatigue life (h), n is the rotating speed (rpm), C and P are the
dynamic load rating (kN) and the applied dynamic load (kN) respectively. The exponent
of the life equation ε is 3 for a ball bearing. The actual life time tends to be longer than
the rating life. For this example, the expected life time can be calculated as 14.6 h, while
the the actual situation is 42.3 h.

Some features were extracted from the time domain data such as the Kurtosis (KU),
the RMS, the crest indicator (CI) and shape indicator (SI) of the vibration signal, shown
in Figure 5.13. Definitions of these features have been described in Chapter 2.2. Trends of
these features are plotted to indicate the progressive failure of the bearing over time. From
Figure 5.13, it is seen that there is no clear indication of failure in the first 40 h, where the
bearing operation is stable as seen in Figure 5.12. Data after about 40 h shows increasing
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vibration energy. It can also be observed from Figure 5.13 that the features significantly
increase in last several hours, in particular RMS. From the kurtosis plot, it is seen that
values of about 3 indicate no failure condition. With fault initiation, the impacts of rolling
elements generate impulses, leading to increasing kurtosis values. The failure appears to
happen at approximately 40 hours. But there is no way to get the exact failure occurrence
time, because there is no corresponding level or threshold for these time domain features.
Therefore, the time domain indicators are effective for tracking the development of failures,
but unable to indicate when the failures happen to appear.
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Figure 5.13: Bearing 3_1 vibration signal indicators; RMS: Root mean square; KU:
Kurtosis; CI: Crest indicator; SI: Shape Indicator.

In order to figure out the exact failure occurrence time and track the progressive
failure process, the integrated diagnosis framework is performed here to analyze these
degradation data. According to the sampling frequency and rotating frequency, the window
length Nw and window shift R are set to 256 and 16 samples, respectively.

First the fault detection algorithm is used to calculate the GLR Λ. Figure 5.14 (b)
shows the vibration signal from 39 h, which is the interval of interest where the fault
appear. The GLR Λ is calculated and shown by the blue line in Figure 5.14 (c). Each
data point in the blue line represents the Λ for 1.28 seconds duration of the signal. The
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time data is taken at 1 minute interval. Thus for 3.3 hours a total of 198 Λ points are
calculated. The red dashed line represents the quantile level χ2

v,1−α/2. The higher the
value of Λ with respect to the threshold χ2

v,1−α/2, the higher the probability of detection,
and the lower the risk of false alarm. It is seen in Figure 5.14 (c) that the two lines cross
around 39.6 h, which reflects the starting point of the failure. Compared with the time
domain indicators plotted in Figure 5.13, GLR Λ has the ability to provide a threshold
for comparison and deciding the health status. Figure 5.14 (d) displays the evolution of
the Poisson parameter λ2. This parameter controls the distribution of the transient pulse
duration time, which can be estimated as the average number of windows that cover the
transient pulse. A proportional relationship between the transient pulse duration and fault
size seems a reasonable assumption. So λ2 can be used as a quantity to characterize the
fault size. In Figure 5.14 (d), each asterisk represents λ2 for 1.28 seconds duration of the
signal every two minutes. Then there are 81 obtained values for tracking quantitatively,
rather than qualitatively like the other time domain indicators, the development of the
failure. From the figure, it is seen that the λ2 sequence gradually increases with the
development of the failure, from the first value at about 5.0 to the end value at about 7.9.
From the time the fault is found in the vibration signal to the end of the degradation test,
the fault size increases by about a factor 1.6.

Compared to the traditional time domain indicators (Kurtosis, Skewness, RMS, crest,
etc.), the advantage of the GLR Λ is that it follows the chi-squared distribution, which
provides a theoretical quantile that can be used to make a decision. This is extremely
important in engineering applications. In addition, in the proposed framework, the
stochastic model also provides the mean transient pulse duration time, λ2, which is able
to track the development of faults in a proportional manner. This enables to characterize
quantitatively the fault size, not just a qualitative analysis like the traditional time domain
indicators.

After the fault occurrence point is detected, the subsequent signal can be saved and
analyzed in details. Figure 5.15 displays the signal at 39.6 h, which shows bearing failure
occurrence. Since the fault is incipient, the impulses are still weak, and strongly masked by
background noise. This signal has a kurtosis level of 3.16, which complies with a Gaussian
characteristic. This shows that this signal is challenging and difficult to diagnose. The
identification approach of the proposed integrated framework is applied to identify the
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Figure 5.14: Illustration of fault detection and fault development tracking. (a)
accelerated degradation vibration signal; (b) interval of fault occurrence; (c) generalized
likelihood ratio Λ for detecting fault occurrence; (d) Poisson distribution parameter λ2 for

tracking the fault development.

fault type.

Figure 5.16 shows the histogram of the frequency data of the incipient fault signal,
f = 1/ts, s ∈ {1, 2, ...,S}. It is seen that most of the impulsive cycles fall within the
frequency bin [112 135] Hz. This bin contains the outer race characteristic defect frequency
fBPFO, indicating that the transient pulses in the signal were generated to a certain extent
by the outer race. The other posterior probabilities of different fault types are listed
in Table 5.11. It is seen the probability of the outer race p(fBPFO|t1:S) is the highest,
confirming the outer race fault. Such statistical analysis can be realized automatically
without the visual examination of a spectrum.
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Figure 5.15: Signal with the incipient fault @ 39.6 h.
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Figure 5.16: Histogram of the transient pulse cycle frequency, showing the red dash line
relating to the fault characteristic frequency located in the highest bin.

Table 5.11: The posterior probabilities of fault type given t1:S

Fault type BPFI BPFO BSF FTF
Posterior probability p(fBP F I |t1:S) p(fBP F O|t1:S) p(fBSF |t1:S) p(fF T F |t1:S)

0.18 0.66 0.14 0.02

In order to confirm this statistical analysis, the posterior probability spectrum
is shown in Figure 5.17(a). The rotating frequency fr at 39.5 Hz and the outer race
fault characteristic frequency fBPFO at 123.3 Hz are very clearly visible in the posterior
probability spectrum S(k). For comparison, the state-of-the-art envelope spectrum of the
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bandpass signal is computed and displayed in Figure 5.17(b), where the Kurtogram is used
to select the most informative frequency band. The signal was band pass filtered between
3200 Hz to 4266 Hz as the most informative frequency region. In the envelope spectrum,
although the characteristic frequency fBPFO and its second harmonic can be seen, the
spectrum contains many other unknown frequency components. The results of the signal at
39.6 h (bearing 3_1) shows that the stochastic model is capable of modeling the different
states in the bearing fault signal to identify the characteristic defect frequencies.
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Figure 5.17: Spectral analysis of the signal at 39.6 h. (a) Posterior probability
spectrum S(k); (b) Envelope spectrum of bandpass signal with maximum kurtosis in

band [3.2; 4.3] kHz selected from kurtogram.

At last, the capability of the proposed method to reconstruct the fault signal is
validated on the signal at the fault occurrence point. Figure 5.18(a) displays the zoom
of time domain in the interval [0.8, 1] s. It is seen that the raw vibration shows a rather
stationary behavior, without the obvious fault manifestation. It is impossible to identify
visually the spikes of an outer race fault in the time domain; most transient pulses with
low energy are masked by background noise. After reconstructing the fault signal, Figure
5.18(b) shows that the majority of the transient pulses have been reconstructed; the
time interval between the adjacent pulses is about 8.3 ms, very close to the outer race
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Figure 5.18: Fault signal reconstruction. (a) Raw vibration signal at 39.6 h; (b)
Reconstructed fault signal.

5.4 Conclusion

This chapter has illustrated the application of the proposed integrated auto-diagnostic
technique for detection, identification, quantification of a fault and fault signal reconstruc-
tion. Two kinds of experimental data have been considered in this chapter. The results on
36 sets of bearing data associated to three different fault cases has shown the efficiency
of this framework. Almost all faults have been detected through the stochastic indicator
GLR. Although, the bearing characteristic frequency was modulated by the shaft frequency
thus producing a series of sidebands and harmonics, which has a big influence on the
identification, the proposed identification technique overcame this problem well. For the
signal reconstruction technique, the transients interval became clearer after fault signal
reconstruction. In addition, from Figure 5.1 and 5.7, the fault size has been assessed close
to the real size, and within the 90% confidence intervals, thus validating the technique.

In the accelerated degradation data, the failure is natural, not artificial like the first
experimental validation. On this set of data, it is important to detect an incipient fault in
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Chapter 5. Experimental validation

advance before it continues to develop. After validation, it is found that the technique is
effective for detecting the fault occurrence time, and is also capable of providing information
on its propagation and tracking quantitatively the evolution of the crack.
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Conclusions and perspectives

Conclusion

The main objective of this thesis is the investigation of automatic signal processing
methods for different diagnostic tasks in one integrated framework. The remarkable
advantages are that it performs without the historic data, without few hyperparameters,
and without any manual intervention in the process. The literature review shows that the
most existing techniques are focused on one specific diagnostic task. But these techniques
are almost independent, which requires users to have a high level of experience and
knowledge when dealing with different diagnostic problems. Some methods attempt to
fulfill such aspiration, yet not reaching the automated and integrated level as this thesis
does.

The thesis introduced an automated diagnosis framework rooted on a stochastic
model of the vibration signals produced by rolling element bearing faults. The proposed
method can achieve the fault detection, fault type identification, fault signal reconstruction
and fault size characterization at once. The distinguishing feature of this method is that it
is performed automatically, which means that no human intervention or manual tuning of
the algorithms is required for solving these subtasks. The whole process depends mainly
on only one key hyperparameter, i.e. the window length Nw in the STFT.

Firstly, a technique based on hypothesis test is introduced to detect the healthy
status of the vibration signal. The test statistics is the GLR constructed through the
EDHMM parameter, i.e. the covariance matrix C in different states, and it asymptotically
follows a chi-squared distribution according to Wilk’s theorem. Unlike the supervised
approach, this technique does not require prior knowledge or training data.

Secondly, the fault signal is extracted from the noisy vibration signal based on the
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Conclusions and perspectives

Bayesian theorem and EDHMM parameters. After modeling through EDHMM, the STFT
coefficients related to the failure can be singled out and estimated as the active state,
and then the inverse STFT is used to reconstruct the fault signal. Compared with the
Wiener filter, this technique can be seen as a time-varying filter, which takes account of
the posterior probability γn.

Subsequently, two different techniques are proposed based on the EDHMM parameters
to identify the fault type. The PPS is the spectrum of the posterior probability, a robust
alternative to the standard envelope spectrum, free of any pre-processing. Unlike the
signal spectrum, the PPS is not sensitive to the amplitude of the transient pulses, so it
can avoid the influence of modulation, thereby reducing the sidebands in the spectrum.
However, in order to completely escape visual inspection, a simple statistical method is
introduced for identifying automatically the fault type. It is based on the duration time of
each transient period, to calculate the probabilities of different fault types. Then the fault
identification is achieved by a probability comparison.

At last, the fault size quantification is addressed. This technique is based on the
hypothesis that a proportional relationship exists between the transient pulse duration
and fault size. So we can get the linear relationship between the duration time and fault
size based on the geometry structure of the rolling element bearing. Therefore, after
some mathematical manipulation, the estimated fault size l̂ and the coda error ∆e can be
estimated as the slope and the intercept, respectively, of the fitted lines with respect to
machine speed. The Poisson parameter λ2, i.e. the expected duration time of transient
pulse, can also track quantitatively the fault size evolution.

The above techniques for different diagnostic tasks are all based on the EDHMM
parameters. A nonstationary bearing signal cannot be entirely modeled by a deterministic
model, while EDHMM, as one stochastic model, has gifted flexibility and adaptability to
cope with the complexity of non-stationary phenomena. Finally, it should be mentioned
that the proposed integrated auto-diagnostic framework strongly depends on this stochastic
model, which poses a risk to the diagnosis. This will be considered in future research. In
the last chapter, the capability of the proposed automated diagnosis framework has been
validated through two different experimental scenarios. The results of the experimental
validation not only meets the expectation of diagnosis, but also reflect its unique advantages,
i.e. the automation and integration.
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Perspectives

So far, it is time to close this thesis. The previous chapters described how to model
the signal, how to estimate the model parameters, how to use the parameters for integrated
diagnosis and the performance in the experimental validation. Although everything seems
perfect, there are several aspects that have not been considered in the thesis. In this part,
some of the future work directions related to this research are suggested.

• Simplicity and reliability
One of the most crucial aspects that should be kept in mind is that the ultimate
goal of scientific research is to find practical application. In the practical CBM, the
reliability of the technique rather than its sophistication is the primary pursuit. It is
often required that part or even all of the proposed technique should be suitable for
the slave computer or microcomputer, which means the method should be performed
in a simple and automated way. Therefore, computational optimization of this
integrated diagnosis framework is the next step to be done.

• Ability for variable speed conditions
In addition, in most industrial environments, the speed is often an uncontrollable
variable, e.g. as with wind turbines. However, the current framework is only valid
at constant speed. Angle-time analysis [2][12] could potentially be jointed with the
EDHMM in future work to achieve the integrated diagnosis for variable rotating
speed signals.

• Diversity of applicable object
This research attempted to establish an integrated diagnosis framework for rolling
element bearings. So another future work is the application of integrated diagnosis
in condition monitoring applications for other rotational machine components such
as gears, pumps, blades etc.

• Comprehensiveness of the framework
One last recommendation for future scientific work is related to the embedding of the
RUL forecast. The reliable RUL estimation is a challenging task and also very useful
in real CBM. In the current framework, the Poisson parameter λ2 (i.e. the expected
duration time of transient pulse) can quantitatively track the evolution of the fault
size. Since this consideration could lead to increased prognostic performance, further
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research effort in this field is suggested.
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Appendix A

Parameter estimation

In this section, the detail mathematical process about the Eq.(3.23) and (3.25) is
demonstrated. The logarithmic likelihood function of the observation is obtained by
marginalizing over the hidden variables as,

L(θ) = ln p(Y1:N |θ) = ln{
∑
Z

p(Y1:N ,Z|θ)}, (A.1)

where, Z = z1:N . The goal is to find the optimal parameter θ that maximizes the
likelihood function L(θ). But in this likelihood function, it is found that the summation
over the hidden states appears inside the logarithm. As the hidden variables Z are also
unknown, which brings difficulties to direct maximization. We therefore turn to the
iterative algorithm to find an efficient framework for maximizing indirectly the likelihood
function. Some manipulation on the logarithmic likelihood function L(θ) are performed
as follow,

L(θ) = ln{
∑
Z

p(Y1:N ,Z|θ)}

= ln
∑
Z

p(Z|Y1:N ,θold) p(Y1:N ,Z|θ)
p(Z|Y1:N ,θold)

≥
∑
Z

p(Z|Y1:N ,θold) ln p(Y1:N ,Z|θ)
p(Z|Y1:N ,θold)

=
∑
Z

{p(Z|Y1:N ,θold) ln p(Y1:N ,Z|θ)} −
∑
Z

{p(Z|Y1:N ,θold) ln p(Z|Y1:N ,θold)}.

The updated θnew can be found by maximizing the logarithmic likelihood function
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Appendix A. Parameter estimation

L(θ) in each iteration. As maximizing L(θ) with respect to the parameters θ, then we
remove the items that are not related to the parameters θ. And using the Q(θ,θold) as
the new objective function, then it can be simplified as

Q(θ,θold) =
∑
Z

p(Z|Y ,θold) ln p(Y ,Z|θ). (A.2)

We substitute the joint probability ln p(X,Z|θ) into Q(θ,θold) and make use the
definitions of γ and ξ, Q(θ,θold) can be written as,

Q(θ,θold) =
∑
i

γ1(i) ln πi +
N∑
n=2

∑
i

∑
j

ξn(i, j) ln aij +
N∑
n=1

∑
i

γn(i) ln p(Yn|θk). (A.3)

Maximization with respect to π is achieved using appropriate Lagrange multipliers. First,
setting the derivatives of the equation (A.3) with respect to πi to zero, together with the
constrain ∑i πi = 1, we can obtain γ1(i)

πi
+ ρ = 0. Joint with the the constrain ∑i πi = 1,

the formula can be written as ∑i γ1(i) = −ρ. Then the parameter π is given by,

πi = γ1(i)∑
i γ1(i) . (A.4)

We take the derivative with respect to the parameter Ci as follow,

∂Q(θ,θold) = −
N∑
n=1

γn(i)
[
∂[ln |Ci|+ Y †nC−1

i Yn]
∂Ci

]

= −
N∑
n=1

γn(i)
[
tr(C−1

i ∂Ci)− Y †nC−1
i ∂CiC−1

i Yn
]

= −
N∑
n=1

γn(i)
[
tr(C−1

i ∂Ci)− tr(Y †nC−1
i ∂CiC−1

i Y )
]

= −
N∑
n=1

γn(i)
[
tr(C−1

i ∂Ci)− tr(C−1
i Y Y

†C−1
i ∂Ci)

]

= −
N∑
n=1

γn(i)
[
tr([C−1

i − C−1
k Y Y

†C−1
i ]∂Ci)

]

=⇒ ∂Q(θ,θold)
∂Ci

= −
N∑
n=1

γn(i)[C−1
i − C−1

i Y Y
†C−1

i ] = 0

=⇒ Ci =
∑N
n=1 γn(i)Y Y †∑N

n=1 γn(i)
. (A.5)
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Appendix B

Proof of the convergence

In this section, the detailed proof about the convergence of the iterative algorithm
in Chapter 3.4 is given. Intuitively, as long as it can be proved that the new estimated
parameter θnew makes the logarithmic likelihood function L(θnew) greater than the previous
iteration, then the iterative algorithm converges. The proof of the convergence is equivalent
to prove L(θnew) > L(θold). If proven, the L(θ) will be maximized after a sufficient number
of iterations. Some manipulations about the logarithmic likelihood function L(θ) are made
as follow,

L(θ) = ln p(Y1:N |θ)

= ln p(Y1:N ,Z|θ)
p(Z|Y1:N ,θ)

=
∑
Z

p(Z|Y1:N ,θold) ln p(Y1:N ,Z|θ)
p(Z|Y1:N ,θ)

=
∑
Z

{p(Z|Y1:N ,θold) ln p(Y1:N ,Z|θ)} −
∑
Z

{p(Z|Y1:N ,θold) ln p(Z|Y1:N ,θ)}

= Q(θ,θold)−H(θ,θold),

where,
Q(θ,θold) =

∑
Z

{p(Z|Y1:N ,θold) ln p(Y1:N ,Z|θ)} (B.1)
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Appendix B. Proof of the convergence

H(θ,θold) =
∑
Z

{p(Z|Y1:N ,θold) ln p(Z|Y1:N ,θ)}. (B.2)

As shown in Appendix A, the new parameter θnew is obtained by maximizing the
function Q(θ,θold), i.e. θnew = arg maxθQ(θ,θold). Absolutely, the relationship is beyond
doubt,

Q(θnew,θold) > Q(θold,θold). (B.3)

So if H(θnew,θold) < H(θold,θold) is also proved, then it can explain the convergence,
L(θnew) > L(θold). The demonstration of H(θnew,θold) < H(θold,θold) is given as follow,

H(θnew,θold)−H(θold,θold) =
∑
Z

p(Z|Y1:N ,θold) ln p(Z|Y1:N ,θnew)
p(Z|Y1:N ,θold)

≤ ln
∑
Z

p(Z|Y1:N ,θold)p(Z|Y1:N ,θnew)
p(Z|Y1:N ,θold)

= ln
∑
Z

p(Z|Y1:N ,θnew)

= 0. (B.4)

The convergence is proven,

L(θnew) > L(θold). (B.5)
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