Keywords: Designing Traffic Signal Control Systems Using Reinforcement Learning Reinforcement learning, traffic simulation, traffic signal control, deep learning

This thesis studies traffic light control systems in order to optimize traffic flows. This optimization is based on reinforcement learning techniques, which model one or multiple agents maximizing a task in a given environment. This thesis defines a novel deep reinforcement learning method that allows intersections of a road network to learn to adapt their traffic light signals depen-ding on the current state of the road network. The main contribution of this method is the ability for intersections to communicate according to a communication protocol that they learn themselves, allowing them to adapt to multiple traffic scenarios. This novel method, DEC-DQN, outperforms various coordinated deep reinforcmeent learning methods in use in the traffic signal control literature.

Titre : Création de systèmes de contrôle de feux à l'aide de méthodes d'apprentissage par renforcement Mots clés : Apprentissage par renforcement, simulation de trafic, contrôle de feux, apprentissage profond.

Résumé : Cette thèse étudie le fonctionnement des systèmes de contrôle de feux de signalisation dans l'optique d'optimiser le trafic routier. Cette optimisation s'appuie sur des techniques d'apprentissage par renforcement qui modélisent un ou plusieurs agent maximisant une tâche dans un environement. Pou run état donné du système (i.e. le réseau routier), l'agent choisit une action (i.e. une configuration de feux) qui est appliquée à l'environnement dans le but de maximizer un objectif (i.e. minimiser le temps d'attente des véhicules du réseau).

Ces travaux se divisent en trois parties. Tout d'abord une partie introductive dresse l'état de l'art des différentes disciplines abordées durant le thèse, soit une présentation du contrôle de feux tel qu'il est utilisé dans le monde des transports, une présentation de l'apprentissage par renforcement en tant que branche de l'intelligence artificielle puis une présentation du domaine RL-TSC (reinforcement learning for traffic signal control), soit comment les méthodes d'apprentissage par renforcement sont appliquées au contrôle de feux.

Dans un second temps, la thèse présente les outils utilisés afin de développer des méthodes de contrôle de feux à l'aide de l'apprentissage par renforcement. Plus particulièrement, nous définissons un modèle mathématique du contrôle de feux, ainsi qu'un modèle d'apprentissage utilisé par les différents algorithmes pour apprendre dans ce contexte (i.e. définition des états de l'environnement, des actions prises par les agents et les récompenses associées). Finalement, nous présentons l'environnement d'experimentation utilisé pour l'optimisation de trafic (simulateur SUMO), et les ptocoles utilisés pour mesurer la performance des algorithmes d'apprentissage par renforcement utilisés dans ce contexte.

Finalement, la troisième partie de ces travaux vise à analyser et comparer diverses méthodes de contrôle de feux utilisant de l'apprentissage par renforcement. Dans un premier temps, plusieurs approches classiques de la littérature (e.g. Q-learning, LRP et méthode acteur-critique) sont appliquées sur une intersection isolée. Après avoir identifié et expliqué pourquoi les approches par valeur, comme le Q-learning, sont le plus adaptées au contrôle de feux, nous étendons cette approche à l'utilisation de réseaux de neurones profonds comme moyen d'approximation par fonction. Cette approche plus moderne est associée à une meilleure adaptabilité de l'agent et donc de meilleures performances.

Dans un second temps, nous étendons notre analyse à un cadre multi-agent. Cette approche introduit un certain nombre de contraintes supplémentaires sur l'apprentissage, comme la nonstationnarité, mais permet également aux agents de communiquer et de même se coordonner afin de mieux optimiser le traffic en l'anaysant à plus grande échelle. Plusieurs approches innovantes sont proposées dans ce cadre, comme notamment une coordination par vague verte permettant à plusieurs agents indépendants de se coordonner automatiquement le long d'une artère. Cette approche donne de meilleurs résultats que les méthodes non-coordonnées de la littérature, mais uniquement lors que le réseau n'est pas congestionné. Une seconde approche que nous avons développé, DEC-DQN, permet aux intersections d'un réseau routier d'apprendre à adapter leurs feux de signalisation en fonction du trafic en temps réel. Le point central de cette méthode est que les intersections du réseau peuvent communiquer entre elles selon un protocole qu'elles ont elle-mêmes appris, ce qui leur permet de s'adapter à plusieurs scenarios routiers sans instructions explicites. Une expérimentation sur simulateur de trafic dans une ville synthétique à grande échelle valide la performance de DEC-DQN par rapport à d'autres méthodes phrase de la littérature RL-TSC comme MARLIN. Les résultats de ces simulations indiquent la supériorité de notre approche dans plusieurs scénarios de trafic différents : trafic faible, congestionné et variable.

Designing Trac Signal Control Systems

Using Reinforcement Learning by M T Supervisors: Prof. Dr. Dominique Barth Université de Versailles Saint-Quentin-en-Yvelines Dr. Julian Garbiso Institut Védécom Prof. Dr. Mahdi Zargayouna Université Gustave Eiel A I would like to express my appreciation to my supervisor, Dominique Barth, for his guidance during my years of research. When Dominique informed me of a research topic on trac optimization, I had no idea that it would result in studying a subject I knew very little about-reinforcement learning-for the next three years. I thank him for this fruitful discovery. Dominique was always available for guidance and scientic discussions, no matter how busy his schedule was. However, he also let me explore my own ideas. I owe him the ability to be autonomous and curious in research, which is precious. I am proud to have him as an advisor. I would like to extend this appreciation to my two co-supervisors, Julian Garbiso and Mahdi Zargayouna. Julian has always been very generous with his time and energy, from proofreading papers before deadlines to conceptualizing novel ways of optimizing trac. His moral support has also been vital during dicult periods of my thesis. I am happy to call him a friend. I would like to thank Mahdi for his enthusiasm, kindness, and keen eye regarding scientic publications. He was always available to give me excellent advice regarding manuscripts or model choices. I would like to thank Amal El Fallah Seghrouchni, Lila Boukhatem, Alain Dutech, and René Mandiau for participating in my thesis committee.

I met amazing people during my thesis, whether at Institut Védécom or the DAVID and GRET-TIA lab. Although the simple mention of their names does not do justice to their talent or kindness, I would like to thank Alexis, Aziz, Bertrand, Bintou, Catherine, Coline, David, Fabienne, Fares, Frank, Jean-Michel, Joseph, Kartik, Leila, Loric, Mael, Mehdi, Nassim, Perla, Pierre, Safa, Sandrine, Shabbir, Tatiana, Thierry, Toussaint, Tristan, Xavier, Yacine, Yann, Ylène, Youssef and others for these three years together. I would also like to extend these thanks to my students, who kept my passion for teaching and computer science alive. I am also grateful to Université de Versailles Saint-Quentin-en-Yvelines, Institut Védécom, and Université Gustave Eiel for nancing and accompanying my research and allowing me to publish and participate in conferences. Finally, I would like to thank the thousands of people around the world who develop and maintain opensource software. More specically, this thesis research would not have been possible without the thousands of hours of work behind the GNU/Linux, NixOS, Emacs, and SUMO projects.

My wife Marci has been an anchor during this time. I can never repay her enough for her patience, love, joy, and for the sacrices she made for me to complete this thesis. Last but certainly not least, I am grateful for my friends and family for their continuous support.

I

The XX th century has indubitably been the century of the personal motor vehicle. In the United States, the rates of vehicle ownership per . inhabitants have soared from . in to . in and . in (Davis and Boundy,). As this increasing number of vehicles started circulating on urban transportation networks, the need for trac signal control (TSC) became apparent for two reasons. Its primary and essential goal was to guarantee the safety of road users. Its second and corollary goal was to reduce trac congestion caused by the introduction of a large number of vehicles in urban areas. This thesis aims to leverage recent advances in machine learning to fulll these two missions: optimizing trac ows on a trac network while ensuring the safety of its users.

Introduction

trac signal control method but can also serve as a basis for any future work on RL-TSC research in the future.

T S C

The task of trac signal control, which consists in assigning a right-of-way on conicting trac ows over an intersection through the use of light signals, can be seen as a simple optimization problem. Each intersection of the road network aims to achieve maximum vehicle throughput on its lanes while maintaining safety constraints for road users. This optimization problem has various answers in the TSC literature depending on the characteristics of the intersection at hand. Indeed, the optimal trac light assignment over an intersection depends on geographic constraints and trac data accessibility. Intersections for which only historical trac data is available will not route trac the same way as intersections using real-time trac data through sensors or loop detectors. Similarly, trac routing diers depending on its scale of operation: the optimization problem is easy to solve over isolated intersections but becomes increasingly complex when spread on a larger scale, such as arterials.

Given that most state-of-the-art trac signal control solutions, presented in chapter , are both adaptive (i.e., they can access trac data in real-time) and coordinated (i.e., they optimize trac ows on multiple intersections), we aim at developing a trac signal control leveraging both of these features, while being able to automatically learn to route trac using a branch of machine learning known as reinforcement learning.

R L

Reinforcement learning is a class of machine learning algorithms aiming at solving tasks through reward maximization. Most RL models feature an agent interacting with an environment to solve a task. The environment goes through successive states (e.g., trac congestion around an intersection) answered by the agent with an action (e.g., a trac light setting) applied to the environment. Once the action is applied, the environment transitions to a new state, and the agent receives a reward value that quanties the quality of the previous action given the task it is trying to solve. By eciently testing state-action combinations to maximize the agent's cumulated reward signals, RL algorithms can learn an optimal policy, which maps optimal actions to dierent environment states. We present the general RL framework in chapter .

The use of reinforcement learning for trac signal control tasks, which we cover extensively in chapter , has been increasingly popular for multiple reasons. First, the theoretical framework of reinforcement learning is a good t for trac signal control problems. Since learning models usually place agents at the intersection level, they can both learn in a single-agent (SARL) or multiagent (MARL) setting since the RL framework covers both single and multi-agent learning. Second, developing RL-TSC methods is relatively easier than developing classical trac signal control methods. Indeed, model-free RL methods learn from reward signals from the environment without explicitly modeling how their actions aect state transitions of the environment. In the case of trac signal control, this implies that a model-free method can learn to route trac without prior knowledge regarding trac dynamics. Furthermore, the availability of open-source trac

S T

This thesis aims to build a state-of-the-art coordinated trac signal control method from the ground up. Hence, the structure of this thesis reects the deeply iterative nature of this work, divided into three main parts.

The rst part of this thesis contains a thorough review of classical trac signal control (chapter) and the theoretical framework of reinforcement learning (chapter). These two reviews help establish the necessary terms and concepts which we use to present the eld of RL-TSC (chapter). Following these denitions, the second part of this thesis looks at the model in use for trac signal control. More specically, we dene a mathematical model of trac signal control (chapter), which we can, in turn, use to formally determine how trac is represented and optimized from a reinforcement learning standpoint (chapter). Finally, we describe the trac simulation setup used to conduct trac signal control experiments of this thesis (chapter). This thesis's third and nal part denes ecient trac signal control methods using the experimental framework described in part . More specically, we rst aim at comparing multiple trac signal control on isolated intersections to establish the optimal RL-TSC method and associated parameters (chapter). On this basis, we extend our scope of analysis to multi-intersection networks and the study of coordination modes between these intersections (chapter). Finally, we summarize our main ndings and present future areas of research in the last chapter of this thesis (chapter).

P I T

The rst part of this thesis presents the context in which reinforcement learning-based trac signal control methods were developed. Thus, this part successively introduces the eld of trac signal control (chapter), including its origins, main concepts and methods, and the theory of machine learning (chapter) by presenting its general framework and the main categories of RL algorithms. Finally, we describe how these disciplines merged to give birth to RL-TSC (chapter) by doing a thorough literature review of this research topic and by discussing its main challenges. Trac signal control, which is the study of the use of trac lights to ensure the safety and eciency of a road network, has been central in the proper management of urban mobility for more than a century. The role of this chapter is twofold. It rst aims to establish a short history of the eld of TSC by presenting the motivations for its inception and its pivotal role in the modernization of urban mobility while showcasing how TSC methods have considerably evolved over a century. The second objective of this chapter is to present a certain number of crucial trac signal control concepts and notions which will be essential to the understanding of how these TSC methods optimize trac before formally introducing a mathematical trac model in chapter of this thesis.

T S T S C

The birth and adoption of trac lights is a direct consequence of the mass production of automobiles in the early XX th century. The widespread availability of the Ford Model T, which started production in , caused an exponential surge in trac congestion in most major cities in North America and Western Europe in the late s and s, respectively. Congestion became so problematic in some large cities that walking or taking the subway was commonly thought to be faster than using a car (Wells,). These issues regarding urban mobility caused the birth of trac signal control in the s, which then developed to become an entire eld of study throughout the century. This section quickly reviews the origins, terminology, and main types of methods used in TSC.

O T S C

The rst modern trac light was installed in Cleveland, Ohio, in (see Figure .) to modernize the existing trac routing solutions. Trac lights soon expanded to several major American cities to streamline heavily congested intersections.

While they reduced congestion and improved trac safety, the rst trac lights were frowned upon by inner-city inhabitants. Since they caused an increase in trac and average vehicular speeds in these areas (which was proof of their eectiveness), pedestrians felt safer with the use of stop signs, even though they caused more trac accidents at the time (McShane,). At rst, the control of trac at intersections was under the responsibility of the city police, either through modern trac control systems, such as trac lights or semaphores or using direct gestures. Since they were directly operating trac lights, police ocers drove most early innovations regarding trac signal control systems. The addition of an orange light for safety reasons in and the octagonal shape of stop signs in is a testament to this involvement. The extensive use of human intervention in routing trac was a driving factor in the trac light automation that soon followed. The rst automated trac light system (TLS) appeared in Houston, Texas, in , and most major cities in North America and Western Europe adopted these automated systems as early as . As well as cutting down operating costs of trac light systems signicantly, this innovation eectively transferred the task of using and developing TSC systems from police ocers to electricians and soon-to-be trac engineers. .

The Science of Trac Signal Control

Interestingly enough, one should note that most TLS systems developed during the s and s were all remarkably similar, even though they arose in dierent locations and no one had explicitly set standards at the time. This natural gravitation towards the same set of trac rules partly explains why TLS systems were similar in most parts of the world by the s (McShane,

).

T S C T

Over a century, trac signal control has evolved from an experimental technique to reduce congestion on a few intersections to an entire eld of research with specic concepts and terminology. This section introduces a certain number of key concepts and terms used in the eld of trac engineering and which are crucial to understanding the challenges posed by trac signal control.

Note that this section does not extensively cover trac engineering concepts, which one can nd in multiple works in the transportation literature (Koonce and Rodegerdts, ; Sullivan et al., ; Urbanik et al.,), but to provide a general introduction to TSC to the reader to underline its mechanisms and challenges. Trac signal control is commonly applied on intersections composed of multiple entry points, also known as approaches (e.g. arrows on Figure .). These approaches meet on the crossing area of the intersection, on which multiple trac streams can cross (e.g., gray zone on Figure .). A trac stream can engage on the crossing area when it has a right of way over the intersection, usually given by a trac light controller. Non-conicting trac streams that can safely and simultaneously cross an intersection can form a trac phase.Asignal cycle is a repetitive pattern of phases implemented by a trac light controller, ensuring that all intersection trac streams can eventually cross it. Adding constraints on the organization and compatibility of trac streams in a signal cycle still allows for many different valid signal cycles on the same intersections. A common signal cycle pattern for -way intersections, known as the NEMA signal cycle, is represented on Figure .. One should note that if the signal cycle of an intersection is the only way this intersection inuences trac, there are four main levers of action within signal cycle design that inuences trac on that intersection (Papageorgiou et al.,):

. Its phase specication, or how it organizes phases within its signal cycle.

. Its split time, or the relative duration of each phase within the signal cycle.

. Its cycle time, which is the total duration of the signal cycle.

. Its osets with neighboring intersections, which can create green waves along the intersections of an arterial street.

A T T S C M

All existing trac signal control methods belong to two major categories, given their mode of operation. Depending on whether it routes trac on a single intersection or multiple ones, a TSC method will either be isolated or coordinated. Additionally, if the trac signal control method adapts to the current trac state, it is dened as adaptive, otherwise as xed. This section quickly presents each class of TSC methods according to these classes and underlines some of their advantages and limitations.

F M

The earliest and simplest trac light systems implement xed-time signal cycles. These timing strategies assign xed durations to each phase of the signal cycle, usually using historical trac data, giving insight into the distribution of trac ows over intersections. While a good rst approach regarding green light time assignment is to increase the green phase length of high-demand lanes, attribution for xed signal timing can quickly become complex (Urbanik et al.,). More advanced xed-time trac lights can also switch trac light congurations on demand since trafc demand usually changes during the day. Fixed methods cannot adapt to trac conditions in real-time, given their nature. These methods are easy and cheap to deploy in real-life applications but are also likely to perform relatively poorly in areas subject to high variations of trac demand.

While our primary goal is to study RL-TSC which is by nature adaptive, we present a few xed methods such as Webster's or a near-optimal method in detail in section . of this thesis.

A M

Adaptive trac signal control methods implement variable-length signal cycles that can adapt to trac conditions in real-time by querying trac state through the use of sensors or cameras.

Adaptive methods generally provide better results than their xed-time counterparts, as they can react to trac demand changes in real-time. They are still rarely seen in real-world situations due to their high deployment and maintenance costs. According to the United States department of transportation, less than percent of US intersections used an adaptive trac signal control method in (USDT,). While it is true that ATSC methods are more costly to deploy and are marginal in most countries, they provide several benets compared to xed-timing plans that would make their adoption worthwhile. Aside from the obvious fact that xed-timing plans cannot adapt to trac conditions in real-time, they also require regular maintenance and updates to keep track of trac demand changes. Outdated signal timing plans are estimated to be responsible for percent of total trac delays in the US, which translates to an $. billion yearly cost in fuel and productivity loss (USDT,). According to A. Robertson, creator of the TRANSYT and SCOOT trac signal control methods, the switch from xed to adaptive methods becomes more urgent as TSC technology progresses (Robertson,):

I nd it dicult to believe that, as we approach the end of this century, trac engineers and drivers will continue to tolerate signals with green and red times that were decided by the ows and queues that happened to be observed on one day many years earlier, rather than in the last ve minutes.

I M

Isolated TSC methods, as indicated by their name, take a single intersection into account when routing trac. They represent the majority of trac controllers in use. On the one hand, isolated TSC methods present several advantages. They are easy to implement, oer a relatively low complexity, and are highly scalable since removing or adding an isolated trac light on a road network has little to no incidence on the other intersections of the network. On the other hand, these methods are by nature limited since they can only act on trac on a per-intersection basis, which limits their usefulness in highly used road networks or when trac light coordination is desirable (Mannion et al.,). We analyze these methods in detail in chapter of this thesis.

C M

Conversely, coordinated TSC methods aim to optimize trac around a given intersection and make each intersection interact with its neighbors to some degree to optimize trac further. The mechanisms relating to inter-intersection coordination dier depending on the TSC method. Coordinated methods allow for more complex trac management features since they can access trafc data over larger network portions and potentially coordinate their signal cycle implementations to optimize trac. For instance, green wave or bandwidth-based methods presented in the next section make extensive use of coordination to function correctly. Note that if these methods usually perform better than their isolated counterparts, they incur a high equipment cost since all intersections must communicate in real-time, which increases their overall complexity, limiting their applicability. Since developing an intelligent and adaptive coordinated trac signal control method is one of the objectives of this thesis work, these methods will be extensively discussed, in their adaptive form, in chapter of this thesis.

O T S C M

The previous section has shown the main motivations behind trac signal control and how these methods can be categorized depending on their mode and scale of operation. This section broadly presents how trac signal control methods optimize trac through several historically signicant TSC methods, some of which are still in use today. We present these methods according to two common ways to classify TSC methods. On the one hand, these methods dier according to their responsiveness, dividing them between xed, actuated, and adaptive methods (Gartner et al.,).

On the other hand, these methods can also dier according to the trac-related metric they aim at optimizing. Some, known as bandwidth-based, aim at optimizing trac ows along an arterial and are hence necessarily coordinated. Others, known as delay-based, aim at minimizing the average time it takes for a vehicle to exit the network. Delay-based methods have a multitude of dierent application settings (e.g., isolated, coordinated, xed, actuated, adaptive) and are known to perform better than bandwidth-based ones under variable trac ows and complex signal settings (Robertson,).

F M

While somewhat simple in design at rst, xed trac signal control methods can regroup a significant number of distinct techniques and modes of operation, including isolated and coordinated methods, both using delay-based and bandwidth-based optimization objectives.

F DB M

Regarding delay-based xed methods, the rst and signicant trac signal control method to be developed is due to Webster (), which studied the optimal settings of an isolated intersection depending on the trac demand around it. Using one of the rst computer trac simulations, Webster dened a total delay function expressing the mean delay per vehicle as a function of the intersection's cycle time, phases, and ow values. Using Webster's formula (see section .. for a full denition), a trac engineer can minimize vehicular delay around an intersection (under normal trac conditions) by setting green splits proportionally to the trac ow within the intersection. Even though posterior works have rened it, Webster's formula is an essential foundation of the trac signal control literature (Rouphail et al.,). Fixed delay-based trac signal control methods featuring multiple agents have also appeared relatively early in the history of trac engineering. TRANSYT (Robertson,) is a xed and coordinated trac signal control method whose objective is to minimize the sum of average vehicle queues by computing optimal per-intersection splits and osets on a given road network. TRANSYT estimates the average vehicle ow value on each link of the network, also called cyclic ow proles, by using historical data. Based on cyclic ow prole data, pre-specied staging, minimum green times, and cycle time value, TRANSYT then simulates trac ows using dierent signal timing parameters, each associated with a performance

. Operation of Trac Signal Control Methods index. The settings with the best performance index are selected and applied for each intersection.

TRANSYT has since evolved into a commercial modelization tool containing a trac simulator and a signal cycle optimizer.

F BB M

Perhaps more surprisingly, multiple bandwidth-based (and hence coordinated) xed methods also appeared relatively early in the history of trac signal control, due to the works of Little (), which transcribed the bandwidth problem as a mixed-integer linear program. This program is computed using bounds on its cycle time and red phases for a given signal cycle and information about speed along the arterial. Solving this program allows nding cycle times, speed limits, and phase organizations, maximizing the bandwidth along an arterial. The MAXBAND algorithm (Little et al.,) uses Little's bandwidth problem formulation to compute the optimal signal parameters to maximize the bandwidth along an arterial. MAXBAND also can generate splits using trac volume and capacity data. A later extension, MAXBAND-86, also considers left-turn phase sequences in the linear program (Chang et al.,). One of MAXBAND's limitations is that its model supposes that trac ows are uniform along an arterial, meaning that platoons of vehicles are supposed to travel at the same speed and spread on the arterial. MULTIBAND (Gartner et al.,) alleviates this weakness by allowing dierent bandwidth values for each link of the arterial. This modication yields better performance at the cost of a larger solution space. An extension of this method, MULTIBAND-96 (Stamatiadis and Gartner,), adds the possibility to optimize bandwidth along multiple arterials simultaneously.

A M

Vehicle actuation methods use vehicle detection systems such as pressure plates or sensors to change trac signals in real-time. Since these methods rely on vehicle detection, they do not belong in the xed method category; however, the RL-TSC literature usually considers them distinct to adaptive methods since they have two dierent modes of operation. On the one hand, actuated methods allocate a minimal green time for each phase of the signal cycle and increase them if vehicles using these phases are detected. On the other hand, adaptive methods estimate in advance the arrivals of vehicles on all phases of the signal cycle and pre-computes its signal cycle accordingly (Shenoda, Machemehl, et al.,). Actuated methods are hence somewhat less advanced than adaptive ones.

C A M

Miller rst dened a vehicle actuation TSC method on an isolated intersection (Miller,). This intersection is given minimum green time duration and means for vehicle detection. The intersection then scans for vehicles through all of its approaches. When a vehicle is detected, the corresponding approach benets from a green time extension, as long as it complies with minimum green times dened for other approaches. If no vehicle is present, the method proceeds to the next approach. This method has been rened multiple times by improving its decision process

Little is also known for his work on queuing theory, and especially for Little's law (Little,).

by, for instance, computing the relative gains and losses caused by switching the signal at each period. Out of the extensions of Miller's method, MOVA (Vincent and Peirce,) is probably the most popular. Once a phase reaches minimum green time, MOVA checks whether the links of the active phase are still saturated by computing their output ow rates. If at least one link is still saturated, the current phase is extended until it either becomes under-saturated or reaches the maximum green time. If more than one approach is saturated, MOVA switches to a saturated mode where it estimates queue emptying rates for all approaches at the end of minimum green time and tries to maximize queue capacity along its lanes. The method was tested by its authors and boosted average performance by % compared to other vehicle-actuated methods in use at the time (Vincent and Peirce,).

A M

Finally, adaptive methods regroup trac signal control methods which can adapt their signal timing plans in real-time through the use of sensing technologies allowing the method to monitor the state of trac in real-time. While these methods are among the most advanced TSC methods presented so far, they are also the least implemented in real trac scenarios because of their increased cost and complexity.

C A M

Among the numerous adaptive trac signal control methods present in the literature, some are of particular interest. First, the SCOOT (Hunt et al.,) method is the trac-responsive version of TRANSYT. Instead of relying on historical trac data, SCOOT continuously updates its cyclic ow prole estimations using sensors deployed on multiple links of the network. This adaptive capability ensures improved performance: testing in the city of Glasgow showed that SCOOT outperformed TRANSYT by an average of % (Robertson,). The SCOOT algorithm has since evolved to become a commercial TSC solution quite widespread in Great Britain and Australia. A second adaptive method, OPAC (Gartner,), leverages dynamic programming methods instead of standard parametric models to leverage real-time arrival data around an isolated intersection. OPAC has since then been extended several times to include more functionality, such as arterial trac optimization (Gartner et al.,).

H M

A more advanced sub-class of adaptive trac signal control methods regroups hierarchical methods. These methods aim to formulate an exhaustive trac model on a road network and split it into smaller problems distributed across multiple layers communicating with each other. Some of these methods have been routing trac for decades in major urban areas, such as CLAIRE-SITI (Scemama and Carles,) in Brussels, Toulouse, and New Dehli or GERTRUDE in Bordeaux, Lisbon or Beijing (Lambert,).

Since they are both adaptive and coordinated, hierarchical methods rank among the most ambitious ones and often use dynamic programming to solve sub-problems on dierent scales. A rst example of hierarchical TSC systems is PRODYN (Henry et al.,). The central controller of PRODYN rst denes a complete trac optimization program using multiple state equations. Realtime trac data gathered through sensors is then fed to the program, which splits it using decomposition coordination, each sub-problem only depending on local intersection variables. These subproblems are then solved using intersection-based data and recursive programming techniques and sent back to the central controller, who deduces signal settings for each intersection of the network. In comparison testing, PRODYN has unsurprisingly been found to perform better than TRANSYT (Henry et al.,). A second hierarchical TSC method of interest is RHODES (Mirchandani and Head,), which uniquely features three distinct levels of operation. The dynamic network loading module in PRODYN captures the slow-changing variables of the network, such as its geometry or the preferred routes of vehicles. Using this data, this module estimates the load in vehicles per hour for each link of the network (as well as other variables such as queue discharge rates and destination probabilities) and sends these estimations to a Network Flow Control layer. This second layer allocates a per-intersection green time for each of these estimated trac streams on a per-platoon basis and passes them to the intersection control layer, which explicitly computes the best possible phase and splits settings using forward recursion and dynamic programming.

::::

This chapter gave a general presentation of the eld of trac signal control through two axes. First, we presented the overall characteristics of trac signal control. We explained how the need for TSC emerged in the early XX th century and how it focused on two key missions: ensuring the safety of drivers and optimizing trac ows. We then dened key concepts in trac engineering, such as the organization of an intersection and the role of signal cycles. We nally established a typology of trac signal control methods depending on their mode and scale of operation. We explained how xed, adaptive, isolated, and coordinated methods all had advantages and drawbacks and could be used in distinct trac situations. Given its potential eciency and exibility, we established that developing an adaptive and coordinated TSC methods was the main aim of our work.

Second, we presented multiple classes of real-world trac signal control methods and briey explained how they operated. This presentation covered various types of TSC methods, ranging from simple xed methods to actuated and adaptive methods, and nished with complex hierarchical systems.

F R L C

Reinforcement learning models the interaction of an agent and an environment. The agent aims to maximize its objective by acting on its environment but is not told how dierent actions will aect its goal depending on the current environment state. Hence, the agent must test multiple actions in a trial-and-error fashion to learn which ones are best suited to maximize its objective. Each reinforcement learning model is divided into three parts. The interactions between the agent and its environment are modeled by a decision process; the agent learns from repeated interactions with the environment using a learning algorithm/and chooses the actions to apply to the environment using a /policy. We present all three components of reinforcement learning models and their associated challenges in this section.

M D P

A Markov decision process (MDP) is a stochastic control process that can model the decisions of an agent aiming at maximizing a global objective function F in a given environment (Sutton and Barto,). A MDP is dened as a -tuple (S, A, T , R), where S and A are respectively Reinforcement Learning Theory the state and action spaces of the MDP, while R and T are its reward and transition functions respectively (Bellman,).

M D P L

The interactions between the agent and the environment in a MDP are modeled as follows. At each discrete time step, the agent observes the state of the environment s 2Sand chooses an action a 2Ato solve its task. Once action a is applied, the environment transitions to a new state s 0 according to the transition function T : S ⇥ A ⇥ S 7 ! [0, 1] which maps the probability of the system transitioning from state s to state s 0 when the agent selects action a. Finally, the agent receives a reward r computed according to the reward function R, which evaluates the quality of the agent's action according to the task it is trying to solve. In order to choose actions maximizing its successive rewards, the agent uses a policy π which a mapping from each state s 2Sand action a 2Ato the probability π(s, a) of taking action a when in state s. As we will see section .., various RL algorithms iteratively rene the agent's policy to approximate the optimal policy π ⇤ which yields maximal rewards, perfectly dictating its action choices depending on the current environment state. Figure . summarizes the interactions between the agent and its environment.

R S O F

The fundamental driving force behind reinforcement learning is the maximization of the agent's expected cumulative rewards. Indeed, the reward scalar r the agent receives at each time step is the only signal indicating the quality of the current agent's actions. MDPs hence imply a strong reward hypothesis, stating that any task can be expressed as a reward maximization goal (Sutton and Barto,). This property is one of the most distinctive features of RL models since a reward signal is in theory sucient for learning to occur.

Since the reward function, R, is paramount in driving learning in RL models, it needs to be strongly correlated with the global objective function of the agent, F. In other words, an agent cannot hope to maximize a metric given by its objective function F if the signal reward it receives, dictated by R, is not correlated to this objective.

S R

While they are usually not explicitly dened, multiple state denitions coexist in MDPs. On the one hand, the environment has a true state which entirely characterizes it. On the other hand, the agent uses a representation of this true environment state, denoted s 2S.

These two environment states dier since the true state of an environment might contain information that is irrelevant to the maximization objective of the agent. Indeed, the state space of a MDP must contain a sucient amount of features from the true environment state so that the agent can clearly dierentiate environment states. However, including too many features from the true environment state increases the dimensionality of the state space and distinguishes environment states that are similar in the context of the task at hand, which is likely to cause a slower learning process (Abdulhai et al.,). For this reason, RL models aim at developing an action space containing enough data for the agent to reach an acceptable policy while keeping dimensionality under control. Since we never directly refer to the true environment state in RL models, the environment state s used throughout this thesis refers to the state representation of the environment by the agent.

Markov decision processes assume full observability of the environment by the agent. This property ensures that the agent can observe the true state of the environment in order to form its own state representation. Alternative formulations of MDPs, such as partially observable Markov decision processes do not allow for full observability of the true environment state, which forces the agent to estimate this state indirectly. Partial observability models are briey presented in section Furthermore, some RL algorithms such as linear automata (see section ..) do not use state representation at all to learn and only rely on the reward signal from the environment.

L A

As stated in section ..., the role of any RL algorithms is to maximize the cumulated reward signals received by the agent during its interactions with the environment. Their primary strategy is to successively try all available actions a 2Aon the environment to identify high-payo ones. This learning process is, however, not straightforward for two reasons. First, the same action can yield vastly dierent rewards given the current state of the environment (e.g., steering left in an autonomous vehicle may result in taking a highway exit or crashing depending on its position), which forces the agent to estimate the quality of an action relatively to the state the environment is in. Second, the agent cannot measure the quality of some actions immediately after applying them (e.g., investing in stocks may cause a short-term loss but a long-term prot), forcing it to take delayed rewards into account. Reinforcement learning methods leverage two distinct components working hand-in-hand to learn how to maximize the agent's utility under these constraints. The learning algorithm estimates the quality of each state of the environment while the agent policy decides which action the agent should take next based on these quality estimates. This section presents the former.

D P M

Dynamic programming (DP) methods are the only class of learning algorithms providing exact solutions for solving MDPs, short of exhaustively searching the policy space. This optimality is achieved by supposing a complete knowledge of the underlying MDP, and in particular of the reward and transition functions R and P, which is an assumption that rarely holds in practice (Barto,). The key idea of DP methods is to compute a value function V , which estimates the expected value (in terms of expected reward) of each encountered state of the state space S (Bellman,). For a given state s, the associated value estimate V (s) is computed by estimating,

Reinforcement Learning Theory

for each next possible state s 0 , the quality of going into such a new state according to the current policy π. The quality of a state is itself measured as the reward associated with this transition and the value estimate of the new state discounted by a factor γ, weighted by the probability of such a transition occurring according to the current agent policy π (Sutton and Barto,).

V π (s)= X s 0 2S T π (s, s 0)(R π (s, s 0)+γV π (s 0)) (.)
DP algorithms iteratively rene their policy by using this recursive formulation of the value function. For a policy π, the value function V π is computed in a process called policy evaluation.

Once the value function V π is computed, it can, in turn, be used to improve the existing policy to a superior one, π 0 , in a process called policy improvement. By alternating policy evaluation and policy improvement steps in a process known as general policy iteration, DP methods converge to an optimal policy π ⇤ , which yields a maximum utility over an innite horizon (Sutton and Barto,

).

MC M

As opposed to dynamic programming, Monte-Carlo (MC) methods do not assume perfect knowledge of the environment. Instead, MC methods aim at approximating value estimate V by averaging each of its observed return values at the end of a learning episode. Theoretically, the value functions estimated with MC methods converge to the exact value function when the number of visits to each state of S goes to innity (Sutton and Barto,).

Since an agent using MC methods has no information regarding the environment, it cannot directly use policy improvement as in the DP case since it requires computing rewards using the reward function R. MC methods can however estimate the value of actions relative to states by using a quality function Q. Similarly to the value function V (s), the quality function Q(s, a) computes the expected returns associated with a state s when choosing action a. MC methods keep track of each state-action couple (s, a) encounter, N (s, a) within an episode, as well as the associated total cumulated rewards. Using these values, it can approximate the quality of each state-action pair by averaging the total episode gains:

Q(s, a) Q(s, a)+ 1 N (s, a) (X r Q(s, a)) (.)
MC algorithms are approximation methods, which means that its quality function estimates Q(s, a) improve the more the state-action couple (s, a) is visited. Hence, the longer an agent explores a given MDP and the more distinct state-action couple it encounters, the better the resulting quality estimates will be. Furthermore, since its quality function estimates are computed using the cumulated gains over the entire episode, MC methods can only be applied in environments having a terminal state.

TD L

Temporal-dierence (TD) learning is inspired by both DP and MC methods. Similarly to MC methods, TD methods approximate value or quality estimates since they have no prior knowledge of the environment. Similarly to DP methods, these value estimates include the estimated value of the next system state (see Equation ...), meaning that they can bootstrap. A simple illustration of TD learning is the TD(0) formula, which iteratively updates the value estimate V (s) of a state s by using the reward value r obtained when transitioning to state s, as well as the value estimate V (s 0) of the successor state s 0 , weighted by a parameter α known as the learning rate.

V (s) V (s)+α[r + γV (s 0) V (s)] (.)
TD methods present two signicant advantages compared to DP and MC methods. First, they can operate incrementally by estimating value functions from other value estimates in an online manner (i.e., while being in an episode), as opposed to MC methods. Second, TD methods do not require any model of the environment since the transition and reward functions are not needed for the computation of value estimates, which makes them much more exible than DP methods.

P M

The three types of RL algorithms we have presented so far are value-based since they all aim at estimating value or quality functions to approximate an optimal agent policy. Instead of computing value estimates to deduce an optimal policy, policy iteration (Howard,) methods aim at directly searching for the agent's optimal policy π ⇤ without relying on value estimates (Arulkumaran et al.,). To this end, a parameterized policy is updated to maximize the agent's utility, usually through gradient-based optimization. The REINFORCE algorithm (Williams,) or learning automata (Kaelbling et al.,) are instances of such RL policy search methods. Finally, actor-critic methods aim to balance value-based and policy iteration methods by using both mechanisms: the critic (value function estimator) gives feedback to the actor (the policy) after each interaction with the environment, both inuencing each other in the process. These methods are, in a way, a special case of policy gradient methods (Arulkumaran et al.,) and are described in more detail in section ...

MF MB M

As stated earlier in this section, RL methods such as MC and TD do not need to know the transition function T in order to properly function. More generally, a method is known as model-free when it does not model the transition function T of the environment. In other words, model-free methods observe successive states of the environment and do not aim to estimate how a chosen action a might inuence the transition of the environment to the next state s 0 . The main advantage of model-free methods is their relative simplicity since no mechanisms exist to estimate environment state transitions and their broad applicability to a large number of RL problems.

Conversely, methods that take into account the transition function are known as model-based. It is important to note that while DP methods are necessarily model-based since they cannot function without knowing the transition function T , TD and MC can also be model-based. Indeed, these methods can approximate the transition function T through successive observations of the environment states. In practice, model-based methods can compute transition estimates through the use of state counters (Wiering,), sometimes coupled with dynamic programming (Bakker et al., ; Kuyer et al.,) or Bayesian methods (Khamis et al., a,b). Model-based methods

Reinforcement Learning Theory

allow for richer models of the environment, which makes them both faster and more sample efcient, ensuring good policy performance in a relatively short amount of time (Yau et al., ; Ye et al.,). However, this performance usually comes at the cost of model complexity.

A P

The previous section describes how the learning algorithm aims to estimate the intrinsic value of states and actions of the MDP, which is a prediction problem. The last and crucial component of reinforcement learning models is the agent's policy scheme which leverages these value estimates to establish an optimal policy in order to select actions maximizing its rewards. This second mechanism is known as a control problem.

T R P

A policy has two often contradicting roles. On the one hand, RL methods using quality estimates have no guarantee to visit all state-action pairs in (S, A), which may cause the policy to get stuck on a local optimum. The role of policies is hence to promote exploration of the state and action space by visiting each pair of (S, A) innitely often, which is usually a necessary condition for reaching an optimal policy. On the other hand, the agent uses the policy to maximize its utility, which is obtained by selecting actions with high-value estimates, a technique known as exploitation. The drive to explore the state-action space by selecting sub-optimal action for exploration contradicts the drive for maximizing the agent's utility, a phenomenon known as the explorationexploitation dilemma.

G S P

A basic approach to aiming at maximizing agent utility would be to pick, for each new system state s, the action a⇤ such that the associated value estimate Q(s, a ⇤) is maximal across all actions of A. This policy, known as greedy, does not guarantee sucient exploration and is likely not to reach optimality. A commonly used policy alleviating this issue is the ε-greedy policy, which selects the action associated with the highest value estimate with probability 1 ε or a random action otherwise, ensuring that the agent can visit all state-action pairs for ε>0 (Sutton and Barto,). A standard limitation of ε-greedy policies is that all actions are chosen with the same probability if a random action is to be selected, which may be undesirable if some actions are associated with low-value estimates. The softmax function policy counteracts subpar action selection by assigning a distinct probability weight to all actions of the action space based on their estimated values and on a temperature parameter that determines the randomness of action selection. Hence, the softmax policy favors high-payo actions even when randomly selecting actions while maintaining sucient exploration by assigning a non-nil probability weight to all actions (Sutton and Barto,).

I P I

This section illustrates the inuence of exploration and exploitation of the state and action space through agent policy through a simple learning problem. The Cart-Pole problem features an agent . Reinforcement Learning Model Extensions whose objective is to balance a pole placed on a cart. The agent can move the cart left or right and receive a reward equal to the number of steps the stick stays on the cart without falling. We compare the performance of three learning agents on the Cart-Pole problem using the Q-learning algorithm (Watkins and Dayan,), and an ε-greedy policy with dierent ε values: a constant value of ., a constant value of ., and a decreasing value of ε =1 log 10 (n +1/25), with n being the current learning episode (bounded between . and). Results of these simulations, as shown on Figure . underline the importance of proper balance between exploration and exploitation. In the ε =0 .05 case, the exploration parameter is too low for sucient exploration. The agent gets stuck in a local optimum by making the pole fall early, yielding a small but positive reward. Conversely, using a high exploration parameter ε =0 .5 causes quick exploration of the state space, which explains superior performance in the early episodes. However, this high random action selection rate proves unable to exploit highpayo actions due to the high policy unpredictability. Hence, using a decaying exploration rate that favors exploration in early episodes and exploitation later allows the algorithm to converge to an optimal policy.

R L M E

The concepts presented so far give us enough tools to build simple reinforcement learning methods, but such methods would suer from substantial shortcomings. First, the presented RL model only features a single agent and would hence be unable to function with multiple agents learning in parallel over a road network as commonly seen in historical TSC methods (see section ...). A less obvious issue comes from the fact that all the reinforcement learning algorithms presented so far rely on an exhaustive exploration of the state and action spaces of the environment. This search can prove extremely inecient when these spaces get suciently large and Reinforcement Learning Theory pose acceptability problems when applied to trac signal control tasks. The two reinforcement learning model extensions presented below deal with each of these issues to improve the overall capabilities of RL methods, which will be applied to trac signal control later on.

M R L

Featuring multiple agents learning in parallel is likely to be desirable when modeling multi-agent systems-such as trac signal control-which are commonly used in the eld of reinforcement learning (Arulkumaran et al., ; Busoniu et al.,). Multi-agent reinforcement learning (MARL) models present clear advantages such as increased performance thanks to decentralized execution, improved robustness, or permitting experience sharing between agents (i.e., dierent learning agents exchanging value estimates they have learned separately) (Busoniu et al.,). While it would seem natural to use multiple learning agents without changing anything else, moving from a SARL to a MARL model modies the theoretical framework in which these agents learn, which creates several new challenges which need to be addressed.

P O

The rst eect caused by the introduction of multiple learning agents relates to choosing how much of the environment they can observe and act upon. Since it is common to feature MARL models in which each agent only acts locally, the decision process associated with such models usually changes to a partially observable Markov decision process (POMDP), which extend the model of MDPs by adding constraints on the ability of each agent of the system to observe the entire state of the environment (Panait and Luke,). POMDPs are represented as a -uple (S, A, T , R, Ω,O). Besides the usual MDP elements, POMDPs feature an observation space Ω, containing the set of states of the environment that are observable by each agent and an observation function, O, containing the probabilities of encountering a given observation from the observation space O depending the previous agent action a and the new true environment state s 0 (Oliehoek et al., ; Sutton and Barto,). As opposed to traditional MDPs, an agent in a POMDP setting must maximize its utility under uncertainty as it can only receive partial observations from the observation space Ω instead of true system states from the state space S. The agent hence learns to associate observations to system states by estimating the observation function O through the use of belief states which model observation probabilities through Bayesian estimations of the entire process' history (Bakker et al.,).

A I

Another signicant impact caused by the introduction of multiple learning agents in the same environment is that these agents can interact and inuence each other. RL models can choose to explicitly model agent interactions through coordination mechanisms in which agents take each other into account or even communicate (see section .. for an illustration of agent coordination applied to trac signal control). Alternatively, MARL models can choose to ignore these interactions, hence implementing independent learning in which agents ignore each other and maximize their own local rewards. Regardless of modeling choices, the fact that agents inuence each other in MARL models cannot be ignored. Since multiple agents act concurrently on the environment, the actions of one agent can inuence the environment state of another. This phenomenon, known as non-stationarity, can lead agents to believe that their actions caused changes in the environment that were in reality caused by others. The absence of a stationary environment can potentially cause RL algorithms to never converge to an optimal policy due to a moving-target issue (El-Tantawy and Abdulhai,).

Furthermore, the correlation requirement between reward and objective function must be even more carefully designed in MARL systems. Indeed, since each agent greedily aims to maximize its locally observed reward function, one must ensure that these local optimization goals are not clashing with each other and are properly correlated with the global objective function (Busoniu et al.,).

F A

A widespread issue associated with RL methods is caused by the size of their environment's state and action spaces, which is also known as their dimensionality. Since RL algorithms have to perform an exhaustive search of these spaces to establish value estimates, the computation and memory storage costs associated with this search grow exponentially as they increase. A second, and perhaps worse, issue related to large state spaces is well summarized by Sutton and Barto ():

The problem with large state spaces is not just the memory needed for large tables, but the time and data needed to ll them accurately. In many of our target tasks, almost every state encountered will never have been seen before. To make sensible decisions in such states it is necessary to generalize from previous encounters with dierent states that are in some sense similar to the current one. In other words, the key issue is that of generalization. How can experience with a limited subset of the state space be usefully generalized to produce a good approximation over a much larger subset? Techniques of function approximation provide an elegant answer to both of the issues mentioned above. First, by not storing value estimates in a tabular fashion (i.e., each state is associated with its own value), these techniques can deal with much larger state spaces without dimensionality issues. Second, function approximation allows RL algorithms not only to learn the value estimates of states they visit but generalize these results to predict the value of states they have not yet encountered.

F A

Function approximation aims to extract information from state features and their associated values to approximate the entire value function of the problem. In other words, function approximation does not associate a value estimate V (s) to each encountered state s separately but uses state and reward values to directly estimate how each feature of the state space impacts its associated value estimate. This task is achieved by approximating the value function using a parameterized function, which is by nature a supervised learning task (Sutton and Barto,). Approximation function can take simple forms such as a linear function of features of the observed state or more complex structures such as multi-layered neural networks.

Reinforcement Learning Theory

D R L

An increasingly popular way of using function approximation in RL is to use neural networks as function approximators (Arulkumaran et al.,), leading to a specic branch of RL known as deep reinforcement learning (DRL) (Gregurić et al.,). While presenting how neural networks operate in detail is outside of the scope of this thesis , neural networks are machine learning models featuring multiple layers of neurons and activations weighted by parameters θ. A neural network maps a multi-dimensional input vector to a mono-dimensional one. Training a neural network involves computing a loss function L measuring the dierence between the neural network's output and the observed value. Using gradient descent methods, the neural network is trained to properly estimate the correct output vector for a given input one. In the case of DRL, the output of such a neural network is the value estimate V (s, θ) of a state s given as input. The output value is compared to the true reward value obtained from the environment, and the weight parameters θ are then corrected accordingly using gradient descent.

C I

DRL models provide a number of signicant advantages, such as state generalization under much larger dimensionality than classical RL methods. However, DRL methods also break the convergence guarantee of classical RL algorithms by moving away from tabular representations (Van der Pol,). The rst reason for these convergence issues is that the observation data in RL models is assumed to be independently and identically distributed (i.i.d.). This is, however, not the case for DRL models since evolving policy and function approximation make these observations both correlated and unevenly distributed (McCloskey and Cohen,). A second convergence issue of DRL methods is due to a moving target phenomenon. Since each observation updates the entire weights θ of the function used to approximate value estimates, these updates may aect earlier estimations and cause the learning target to oscillate constantly. We present common solutions to these convergence issues in section ...

::::

This chapter introduced reinforcement learning algorithms, which allow an agent to maximize a task in an environment by maximizing its cumulated expected rewards. We notably described how a MDP hS, A, T , Ri could model the interactions between the agent and the environment. The agent observes the current environment state s, chooses an action a, and receives an associated reward r while the system transitions to a new state s 0 .

Agents learn to maximize their cumulated expected rewards through the combined use of a learning algorithm and of a policy. The learning algorithm estimates the relative value of state and of state-action couples through the use of a value V and quality Q function, respectively. On the basis of these value and quality estimates, the policy dictates which action the agent should select based on the current system state in order to maximize its rewards.

Since classical single-agent RL models are rather limited, we nally introduced two RL extensions. First, we briey described how multiple agents could solve tasks concurrently in the same Anthony and Bartlett () provide a general introduction to neural networks, and Van der Pol () a more succinct presentation of neural networks aimed at TSC applications environment, even enabling agent coordination. We then nally introduced the concept of function approximation and deep reinforcement learning, which allows the agent to deal with much larger state spaces and to generalize past state encounters through a parameterized function. The typology of historical trac signal control methods established in chapter allows to distinguish TSC methods according to their features and complexity. It is common to sort these methods according to distinct generations: actuated methods form the rst generation of TSC methods; centralized adaptive methods such as SCOOT or OPAC the second generation; and advanced hierarchical methods such as PRODYN or RHODES constitute the third generation (Gartner et al.,). The application of RL to trac signal control gave birth to a fourth AI-based generation of methods (El-Tantawy and Abdulhai,). This section gives an overall tour of the state of reinforcement learning applied to trac signal control research since its inception in (Mikami and Kakazu). Notably, we present how TSC problems can be adapted to a RL-based framework and showcase the main contributions and advances in the eld of RL-TSC for both isolated and coordinated methods.

R L

M T R L

If multiple RL-TSC methods can tackle the trac optimization problem quite dierently, they still all have to dene this problem within a RL-centric framework. First, some general model choices have to be made regarding trac, such as dening what it means to optimize trac, which components of the trac network are considered agents, and how well the agent can observe its environment. Then, one must choose the specic elements constituting the MDP, such as which type of information about the road network the agent observes, how each agent can act upon the road network, and how its rewards are measured.

G M C

This section refers to the broad model characteristics of a RL-TSC method. These choices are a crucial rst building block of any RL-TSC method since they dene which kind of agents are Reinforcement Learning Applied to Trac Signal Control learning to optimize trac, how much information they gather from their environment, and how much they interact with each other.

T L A

An overwhelmingly common approach in the RL-TSC literature is to consider that each intersection is a learning agent. While this choice is evident for isolated TSC models (Abdulhai et al.,), it is also the preferred choice for MARL models featuring multiple intersections (Mannion et al.,). If multi-intersection road network optimization could theoretically be tackled by a single central planner controlling multiple trac lights simultaneously, such a model would have important limitations. Indeed, such a model would suer from poor scalability (since adding or removing an intersection to the network completely changes the learning model) and an exponential increase in dimensionality, explaining why such an approach is common among thirdgeneration TSC methods but absent from RL-based ones (Yau et al.,). In the MARL case, each intersection has a local view of its environment (usually neighboring lanes) according to the POMDP model (see section ..). Note that other approaches are nevertheless possible on multiintersection networks, such as considering vehicles as additional agents that can collaborate with intersections (Bakker et al., ; Kuyer et al., ; Steingrover et al., ; Wiering,) or using intersection clusters as agent (Bazzan et al.,).

MF MB M

A second major design decision regarding RL-TSC methods relates to their estimation of the transition function T . Indeed, both model-based and model-free methods, described in section ..., have been applied in the RL-TSC literature (Mannion et al.,). As stated in this section, modelfree methods are usually simpler and slower since they do not estimate state transitions, while model-based methods are more complex and ecient.

In the realm of RL-TSC, model-based approaches are believed by some to introduce unnecessary complexity (El-Tantawy et al., ; Mannion et al.,) as they can prove more problematic for learning problems with large state sets (Crites and Barto,). The most telling example of this preference is shown in the literature review analysis of Noaeen et al. () which states that only out of the surveyed RL-TSC papers used model-based RL methods, the last of which was published in (Khamis and Gomaa). Regarding multi-agent modeling choices, the use of POMDPs is prevalent in the literature since model-based (Bakker et al.,) and some actor-critic methods employ it (Richter et al.,), even though a few methods model interactions between intersections as stochastic games (Bazzan, ; Bazzan et al.,) or Markov games (Aragon-Gómez and Clempner,).

I L C

A nal major design decision regarding multi-intersection TSC methods is the modeling of interactions occurring between each learning agent. The simplest way to model these interactions is to ignore them and consider independent MARL models in which no agent-to-agent interactions exist (Tan,). Even though we have shown in section .. that agents necessarily inuence each other in MARL models, some papers of the RL-TSC literature do not consider it to be a limiting factor of agent performance in the case of TSC (Pham et al.,). While this statement might not be accurate, a signicant number of independent MARL methods show excellent performance without ever addressing this issue (Noaeen et al.,). Explicit coordination mechanisms can, however, limit non-stationarity and increase overall trac routing performances in RL-TSC contexts (Mannion et al.,). Such coordinated MARL models are applicable in both model-based and model-free situations and present numerous advantages besides alleviating issues relating to non-stationarity. Indeed, junction-to-junction coordination can be used to emulate green wave coordination or complex third-generation TSC methods as presented in section ... Various modes of agent coordination are successfully used in the RL-TSC literature, ranging from simply observing a neighboring intersection's state to directly computing optimal joint actions (Yau et al.,

).

M P D

After having decided which type of agent is going to be learning how to optimize trac and how these agents are going to interact with each other, any RL-TSC model still has several design decisions to take regarding the modeling of the environment. The proper denition of the objective function, state space, action space, and reward function is crucial for the learning process of any reinforcement learning method.

O F F

The general objective of optimizing trac is rather vague when it needs to be explicitly translated into an objective function for the agent to maximize. Existing surveys of the RL-TSC literature give us valuable insight as to which objective functions are commonly used across various trafc optimization methods using reinforcement learning. Note that when constructing a RL-TSC method, one does not need to limit the objective function to a single metric. Indeed, some papers of the literature aim at maximizing multiple trac-related metrics at once by using compound reward denitions or by using multiple objective functions (Brys et al., ; Houli et al., ; Khamis and Gomaa, ; Khamis et al., a), which is a learning technique known as multi-objectivity. The surveys of Wei et T M Time-based metrics are by far the most common form of objective functions in RL-TSC applications. Vehicular travel time is a metric measuring the total travel time of a vehicle across the network. Travel time is easily obtainable but does not dierentiate between trip-related and congestion-related time spent in the network. A more accurate temporal metric is delay, which is dened as the dierence between the observed and expected travel time of a vehicle. Delay measurements allow account for the time loss due to congestion or routing ineciencies but necessitate an estimation model of the expected travel time of vehicles. Finally, the waiting time is dened as the amount of time a vehicle has waited at a red light or due to congestion. This metric has the advantage of only measuring waiting time due to network ineciencies, making it a suitable objective function for trac optimization. Furthermore, this metric has the advantage of being measurable before vehicles reach their destination. However, waiting time is readily available in trac simulations but hard to obtain in real-life scenarios.

Reinforcement Learning Applied to Trac Signal Control

C M A second class of trac metrics suitable for RL-TSC objective functions are congestion-related. Absolute congestion values such as queue size, have been used as an objective function in RL-TSC applications. Queue size metrics are well-suited to road networks with low vehicular capacity or known bottleneck areas. Alternatively, congestion metrics over time, such as intersection throughput, have been used to measure the eciency and evenness of TSC methods. S M Finally, multiple forms of vehicular speed such as absolute speed, acceleration, or harmonic speed are also used as objective functions. These objective functions prioritize vehicle movement smoothness and uniformity and are sometimes associated with related variables such as the number of stops per trip.

R F R

As stated in section ..., the objective and reward functions of any RL model have to be tightly correlated since the agent will use signals from the latter to maximize the former. It is hence logical that the trac metrics used to determine the objective function in the previous section are present in the reward function denition. Hence, temporal, congestion, and speed metrics are once again the most common components of reward functions in the RL-TSC literature (Yau et al.,).

T M In practice, delay measurements are commonly used as a reward function since they estimate the vehicular time loss due to trac routing ineciencies (Mannion et al.,). These measurements include vehicular delay or cumulated waiting time on a lane, either in absolute, dierence, or average form (Arel et al., ; El-Tantawy and Abdulhai,). Delay can also be squared to penalize further large delay values (Abdulhai et al., ; Brys et al.,).

C M Congestion metrics used for reward function denition can include queue size or variation of queue size (Araghi et al., ; Mikami and Kakazu,), as well as intersection throughput metrics (Brys et al., ; Touhbi et al.,). Furthermore, some papers developed a metric known as green time appropriateness, for which the agent is penalized when unused green time is observed while vehicles are idle at red lights (Cahill et al.,).

S M M A few papers use vehicular speed metrics as part of their reward functions, either as an absolute value or as a ratio between observed speed and maximum allowed speed (Van der Pol and Oliehoek,). Usually, speed metrics are used as multi-objectivity metrics, as mentioned in the previous section. For instance, the reward function featured in Van der Pol and Oliehoek's model () is composed of delay and speed measurements, as well as emergency stops and accident indicators.

S S S

Trac signal control problems are a perfect illustration of the trade-o between complex and simple state representation mentioned in section ...: the state space of a MDP only contains a subset of features from the true environment state that is relevant to the agent. RL-TSC models hence have a large amount of trac-related features of the environment at their disposal in order to dene the state space S of the MDP. The most common features used for state denition identied by Yau et al. () are listed below.

C M Congestion metrics, and queue size per lane in particular, are among the most commonly used for state space denition within the RL-TSC literature (Mannion et al.,). These metrics can take into account all vehicles of the lane or halted vehicles only. Furthermore, the absolute number of vehicles can be used, as well as queue categories (e.g., low, medium, or high congestion) (Cahill et al., ; Chin et al.,). A minority of articles use relative queue size (i.e., the ordering of queue sizes of lanes around an intersection) instead of absolute values (Abdoos et al.,). Finally, the maximum queue size across all lanes also has been used as a state variable (El-Tantawy and Abdulhai,).

T S M Trac signal metrics such as phase-related indicators are sometimes used in state space denition. Such variables include the current green phase index in the signal cycle and the duration for which it has been active (Arel et al.,), or the current red phase timing. This type of information is benecial for the learner as it indicates the current state of the signal cycle at its intersection.

S P M Newer RL-TSC methods, usually using deep neural networks, often use detailed positional data as state representations. Hence, vehicular positions can be represented using cellular encoding, also known as discrete trac state encoding (DTSE) (Genders and Razavi,), and used as state inputs for neural networks in the form of binary matrices (Van der Pol and Oliehoek,) or even as images fed to a convolutional neural network (Mousavi et al.,). Other vehicular data, such as speed, can be used in place of positional indices (Van der Pol and Oliehoek,). The RL-TSC literature is not unanimous in its choices regarding state space denition since it is often algorithm-dependent. For instance, the choice of simplifying, or discretizing, state representations to reduce dimensionality is taken in approximately % of papers surveyed by Noaeen et al. (), meaning that % of the surveyed papers opted for fuller state representations such as DTSE. The large amount of dierent features of the road network that are used in state representations in papers of the RL-TSC literature also underlines this lack of consensus.

u v v 1 v 2 v 3 v 4

Reinforcement Learning Applied to Trac Signal Control

A S A

Since TSC consists in inuencing trac through the use of trac signals, it is no surprise that action spaces of RL-TSC methods all revolve around trac phase control. Yau et al. () identify two main types of actions in their survey of the RL-TSC literature.

T P S An agent using trac phase splits chooses a time interval allocation for each phase of the signal cycle. This allocation can either be phase-based, meaning that the agent allocates the entire phase duration at once, or step-based, in which the agent evaluates whether to switch or extend the current phase at regular intervals. As we will see in section ., the inuence of using step or phase-based actions on trac-routing performance has not been studied until recently. Results from a paper we published on the matter have shown that, in the case of trac phase split actions, step-based actions were strictly superior to phase-based ones (Tréca et al., a).

T P C An agent using trac phase choices directly decides which trac phase is to be activated next. This action type oers more exibility for the agent but comes at the cost of additional complexity due to necessary safety and compatibility checks on the generated signal cycles.

T S C M

The previous section described how papers of the RL-TSC literature model the RL framework applied for trac optimization. These model choices covered agent representation, agent coordination, choosing between a model-free or model-based method, and dening each element of the underlying MDP. We now present the dierent RL-TSC methods themselves, in increasing order of complexity. Isolated TSC are presented rst, followed by MARL methods, both in independent and coordinated cases, to nish with function approximation methods applied to trac optimization.

S A R L A TSC

Even though they are somewhat rare given the popularity of multi-agent systems for TSC, a few papers of the literature have studied the behavior of an isolated intersection using RL-TSC (Mannion et al.,). These papers can broadly be divided into two categories. Some feature a single intersection to study the performance of a specic learning algorithm-which happens to be Qlearning (Watkins and Dayan,) in most cases (Abdulhai et al., ; Chin et al., ; El-Tantawy and Abdulhai, ; Wen et al.,)while others voluntarily restrict their eld of study to an isolated intersection to analyze specic learning-related phenomenon such as action space denition or function approximation techniques (Tréca et al., a,b).

C SARL M

Papers from the rst category often compare the performance of the Q-learning algorithm to classical TSC methods. For instance, El-Tantawy and Abdulhai () found out that single-agent Q-learning outperformed xed signal timing for multiple RL state denitions. Abdulhai et al. () used Q-Learning on an isolated intersection combined with the cerebellar model articulation controller (CMAC) function approximation technique (see section ..) and found that their method had results on par with the TRANSYT and SCOOT methods under constant vehicle ows but performed signicantly better under variable ows. Similarly, Chin et al. () studied the convergence of an isolated intersection using Q-Learning and an ε-greedy policy. The Q-Learning method could adapt to peak-hour trac situations simulated using real-world data, even though the authors did not compare it to another TSC control plan.

L SARL M

If SARL models provide some benets compared to xed TSC methods on isolated intersections, they are still seldom used due to two signicant shortcomings. First, they cannot be applied to urban areas with multiple intersections without a central controller, which would lead to unmanageable dimensionality as the number of intersections increases (as stated in section ...). Second, these methods do not feature desirable properties such as junction-to-junction communication or cooperative learning, which are essential in trac management in urban areas. These limitations are also illustrated by the fact that most of the literature reviews regarding RL-TSC methods choose to exclude isolated TSC methods from their review (Noaeen et al., ; Yau et al.,).

MA R L A TSC

Given the limitations of single-agent models, introducing multiple agents in trac control systems is a logical and somewhat natural choice. Indeed, leveraging reinforcement learning over multi-intersection networks has been an objective of RL-TSC models since their inception. For instance, the three rst papers coupling reinforcement learning and trac signal control aimed to do so over multiple intersections (Cao et al., ; Mikami and Kakazu, ; Wiering,).

MF MARL M

A great number of learning techniques have existed early on for optimizing trac, such as linear automata (Mikami and Kakazu,), fuzzy logic and classier systems (Cao et al.,) or modelbased reinforcement learning (Wiering,). However, Q-learning is the RL algorithm of choice for RL-TSC systems. Q-learning is present in % of the RL-TSC papers surveyed by Noaeen et al. between the years and .

The Q-learning algorithm was rst applied in a RL-TSC context by Abdulhai et al. () and is popular for its relative simplicity (since it is model-free) and extensibility. An example of Qlearning applied in a multi-agent setting can be found in a paper by Abdoos et al. () in which a set of intersections implement a Q-learning algorithm in parallel, outperforming the tested xed signal plans. An innovative extension of the traditional MARL Q-learning model for TSC can be found in Soilse (Cahill et al.,). On top of regular multi-agent Q-learning, Soilse features a pattern change detection (PCD) mechanism allowing the Q-learning algorithm to re-learn depending on the degree of trac ow change. The more the nature of trac demand changes, the more the learning rate α of the Q-learning algorithm increases, giving more weight to newer state observations. When trac demand stabilizes, the learning rate starts decaying again (Cahill et al.,).

Reinforcement Learning Applied to Trac Signal Control

It should be noted that while such an approach might suer from non-stationarity issues (see section ...), multiple agent learning concurrently using each a Q-learning algorithm, also dened a independent Q-learning (Tan,) provides surprisingly strong performance benchmarks in a number of RL areas (Leibo et al., ; Tampuu et al.,) including TSC problems (Ye et al.,).

MB MARL M

One of the earliest and most inuential RL-TSC models featuring multiple agents, proposed by Wiering (), is model-based. Wiering's model features both intersections and vehicles as learning agents, aiming to minimize vehicular waiting time, optionally communicating destinations and waiting time (for vehicles), and congestion information (for intersections). A rst extension of Wiering's model includes additional congestion data from neighboring intersections, increasing agent performance and dimensionality in doing so (Steingrover et al.,). A second extension renes the computation of estimates of the transition function T by leveraging maximum likelihood estimations and dynamic programming (Bakker et al.,). A nal series of extensions by Khamis and Gomaa respectively added complex car acceleration models, Bayesian transition probability estimation, multi-objectivity and agent cooperation to Bakker et al.'s model (Khamis and Gomaa, ; Khamis et al., a,b).

A C A TSC

Additionally to dening which learning algorithm should be used by intersections in order to optimize trac, MARL models also have to decide on the interaction model of its agents. Indeed, as we have seen in section ..., MARL models can either choose to ignore agent-to-agent interactions, resulting in independent learning methods, or choose to model these interactions through coordination. These coordination mechanisms range from entirely independent learning to direct coordination and joint-action selection. This section reviews the most commonly used coordination modes of the RL-TSC literature.

MP A

Multiple Wiering-type models mentioned in the previous section have been extended to include direct coordination between junctions. Such extensions, due to Kuyer et al. () and Bakker et al. (), leverage coordination graphs and the max-plus algorithm for agent coordination. Since it is impossible to coordinate all intersections simultaneously because the state space increases exponentially with the number of agents, coordination graphs decompose the global payo function into a local function depending on a subset of agents. The global optimum can then be obtained by computing the local optimal joint actions of each sub-problem (Kok and Vlassis,). In order to quickly compute the optimal joint action of each sub-problem, the max-plus algorithm organizes ecient message sharing between local agents for a xed number of iterations to coordinate their action choice in a limited amount of time.

Even though the max-plus algorithm signicantly speeds up the coordination process between agents, coordinated MARL methods remain highly computationally intensive, and their use is generally discouraged in time-critical applications (Bakker et al.,). In terms of performance, Wiering-type coordinated methods outperform all of the non-coordinated models of the same . Trac Signal Control Methods type in highly saturated conditions. When trac is not saturated, however, performance is on par with coordination-free model-based methods but at the cost of longer computation time (Bakker et al., ; Kuyer et al.,). Note that some model-free methods also feature coordination graphs coupled with the max-plus algorithm (Medina and Benekohal, ; Van der Pol,).

MARLIN A

Another highly popular model-based approach used in RL-TSC coordination is MARLIN (El-Tantawy and Abdulhai, ; El-Tantawy et al.,). The MARLIN algorithms rely on two key concepts of the MARL literature: the principle of the locality of interaction and modular Q-learning. The principle of the locality of interaction states that for POMDPs in which agent interactions are limited to their neighborhood, optimizing the local joint utility of an agent and its immediate neighbors is sucient to reach an optimal agent policy (Nair et al.,). Modular Q-learning can reduce the dimensionality of the state and action space of a problem by partitioning it between sets of two agents (Ono and Fukumoto,). Like coordination graphs, modular Q-learning divides a joint problem between N agents of dimensionality |s| N into N 1 sub-problems between two agents, each of dimensionality |s| 2 , hence keeping dimensionality in check. Once these subproblems are solved, the agent chooses the action maximizing the sum of these sub-problems.

Two variants of the MARLIN algorithm exist. In the MARLIN-IC (for indirect coordination) version, each intersection models interactions with each of its neighbors in a joint Q-table and estimates the impact of its next action choices based on these joint Q-tables (see section .. for a detailed explanation of the algorithm). As for MARLIN-DC (for direct coordination), agents directly exchange their current policies with their immediate neighbors and negotiate a joint set of actions maximizing their joint utility. Both of these methods have been tested on a simulated network of intersections representing downtown Toronto using real trac data. Both MARLIN variants outperformed the real-world method implemented on the same network (El-Tantawy et al.,). MARLIN has long been considered to be a state-of-the-art coordinated TSC method (Brys et al., ; Mannion et al., ; Yau et al.,). However, since its original publication in , the eld of RL-TSC has rapidly adopted more function approximation techniques which greatly improve the performance of MARL methods, coordinated or not (Noaeen et al.,).

A A

If most RL-TSC coordination methods rely on well-known coordination mechanisms such as the max-plus or MARLIN algorithms, several original coordination techniques have appeared in recent years. One can nd a novel approach to trac light coordination in the γ-reward model of Liu et al. (), which considers spatial delayed reward as a vector for agent coordination. If a vehicle takes n steps to travel from intersection u to intersection v, the reward of agent u will not only take into account the local delay at step t but also part of the delay that it caused around intersection v at time t+n. This delayed reward forces agents to take the utility of other intersections into account when maximizing their own (Liu et al.,). Another coordination model developed by Chen et al. () aims to optimize trac on large-scale networks (around trac lights) on a region-to-region basis. Trac is optimized by region by uniforming trac pressure (dened as the dierence between upstream and downstream congestion around an intersection) using deep Q-learning. A nal example of alternative TSC coordination methods can be found in the works of Qi et al. (), which optimize trac similarly to third-generation classical TSC methods by coordinating trac lights through platooning estimations by supposing that some vehicles of the road network are autonomous and communicate with intersections.

A U C

All papers presented in this section have shown that RL-TSC methods featuring agent coordination provided superior performances to independent methods in a number of contexts, especially on large-scale networks. A paper by Wagner et al. () has, however, claimed that trac light coordination is dicult to achieve in real-world conditions and that few parts of a road network might benet from it. Multiple simulated scenarios have backed these claims in which wellparameterized independent actuated methods have outperformed coordinated ones. However, the authors have claimed that these results are preliminary and require more investigation, which is the primary goal of chapter of this thesis. This thesis tackles the complex issue of agent coordination and studies its potential benets in chapter .

F A T

If agent coordination has been largely studied in the eld of RL-TSC since its inception, the application of function approximation techniques to enhance trac routing optimization has been at the forefront of RL-TSC research in recent years. We distinguish two types of function approximation techniques applied to RL-TSC. The rst category is formed by classical methods that are often based on simple or older neural networks models. The second category regroups recent methods that apply recent approximation methods from the deep reinforcement learning literature. These two categories of function approximation techniques are presented in this section.

C F A

To the best of our knowledge, Abdulhai et al. (Abdulhai et al.) were the rst to apply a function approximation technique on a RL-TSC task. The technique they applied is the CMAC model (Albus,), which can be seen as a hybrid data structure in-between an articial neural network and a sophisticated lookup table (Brys et al.,). When a state-action pair is visited, CMAC propagates the Q-value estimates to other pairs based on their similarity, allowing for faster exploration of the state space, hence speeding up the convergence process. Pham et al. () have applied a similar function approximation method known as tile coding. Tile coding partitions the state space according to dierent subsets (or tiles) and maps them to states by similarity.

The QTLC-FA function approximation method, used by Prashanth and Bhatnagar (), aims to approximate the Q-function with a matrix formed of multiple d-dimensional vectors (one per state-action pair), d being much lower than the overall dimensionality of the problem. These vectors are coupled with a tunable parameter matrix which is iteratively updated in a Q-learninglike fashion using gradient descent. For instance, in a three-by-three grid network used by the authors, the dimensionality of the problem is reduced from 10 101 to d ⇡ 200 using QTLC-FA while retaining good performances compared to the non-approximated model.

D R L

The use of deep learning has become prevalent in RL-TSC in the last few years, a rise that can be conrmed by many literature review papers specically studying the use of deep reinforcement learning for RL-TSC (Gregurić et al., ; Haydari and Yilmaz,). As newer and more ecient function approximation methods are discovered and showcased in the DRL literature, such methods gradually make their way into the eld of RL-TSC. Two major types of DRL algorithms have proven the most ecient for a variety of learning tasks: actor-critic and deep Q-learning methods (Gregurić et al.,). In both cases, state-of-the-art versions of these algorithms are heavily modied to include several tricks and techniques such as dueling networks, prioritized experience replay, or multi-step learning to increase learning performance and alleviate learning issues (Gregurić et al.,). Given the number of additional techniques they employ, these methods are also colloquially known as rainbow methods (Hessel et al.,). Both versions have applied such rainbow methods to trac routing tasks, each having its specicities.

In the case of actor-critic algorithms, these methods featured multiple techniques such as natural actor-critic (Richter et al.,), tile coding and radial basis function networks (Aslani et al.,), advantage actor-critic (AC) (Chu et al., ; Xiong et al.,), asynchronous advantage actor-critic (AC) (Genders and Razavi,) or fuzzy radial basis function (Chun-Gui et al.,).

As for deep Q-learning techniques, rainbow-type techniques using double Q-learning and coordination graphs (Van der Pol,), image-type state representation, and convolutional neural networks (Shabestary and Abdulhai,), recurrent neural networks (Shi and Chen,) have also been applied. While the current DRL is not yet denitive about which algorithm structure provides the best results since they can widely dier depending on the learning task, duelling double deep Q-network (DQN) algorithms seem to provide excellent learning capabilities in a wide array of learning tasks (Hessel et al.,).

::::

This chapter has given a large overview of how reinforcement learning models described in chapter can be applied to trac signal control tasks. By analyzing a large array of papers from the RL-TSC literature, which includes a number of literature reviews and surveys, we were able to identify the most common modeling choices of RL-TSC models.

In the area of environment modeling, we have shown that intersections are almost always used as learning agents who often aim to minimize vehicular delay on the road network. We have also shown that a wide array of features of the environment could be used as components of the MDP. Similarly, MARL TSC models could both successfully feature independent learning and agent coordination. Regarding RL algorithms used by papers of the literature, we have identied that multi-agent and model-free methods were widely more popular than their single-agent and model-based counterparts. Among these methods, TD algorithms such as Q-learning are broadly used in the literature. Finally, we have shown that function approximation techniques have become a mandatory feature of any modern RL-TSC method given their eciency and that actor-critic and deep reinforcement learning methods provided excellent results in recent works.

P II M

After describing how reinforcement learning and trac signal control are used in the literature to optimize trac in various ways, we aim to replicate, explain and extend these trac signal control methods. In order to undertake these tasks, the second part of this thesis focuses on formally dening the environment in which our learning problem occurs. This modelization process is done incrementally. Since we optimize trac through trac signal control, our rst task is to properly dene road networks and trac in a simple mathematical model (chapter). Once this modelization task is completed, we then describe how the learning agent interacts with its newly dened environment by dealing with learning-related aspects of our model (chapter). Finally, we present the simulation framework in which they will be applied in practical terms, hence completing the description of our RL-TSC framework (chapter). The rst-and often forgotten-necessary step to study trac light control systems is to dene what trac is. Consequently, this chapter presents a simple discrete-time trac model based on graph theory upon which we will be able to adequately describe the RL-TSC methods to be used in later parts of this thesis. The rst section of this chapter describes road networks as graphs formed of vertices and arcs. The second section describes how we model vehicular movements and trac signals on the vertices of a road network. The third and last section denes how we model trac ows on this road network.

R N

Graph theory (Berge,) provides a good set of tools to model a trac network. The arcs of a graph are quite similar to streets or roads, and the same is true for vertices as intersections or junctions. Hence, we extend these concepts from graph theory to dene the static part of our trac model: its network.

G

Let G =(V, A) be a directed multigraph (or multidigraph) representing a road network, where V is the set of vertices and A the set of arcs of G. An arc (u, v) 2 A (also denoted by uv) represents a connection from vertex u to vertex v on G. The road network G is modeled as a multigraph so that multiple arcs can link the same two vertices, similarly to lanes on streets of a road network. These connections are used by vehicles to move from vertex to vertex across the road network. Conversely, a vertex v 2 V is a point connecting multiple arcs of G. Figure . shows an example of how graphs can model road networks. A path over G is a sequence of arcs a 1 ,a 2 ,...a n of A of G indicating a valid route from a vertex u to a vertex v of V . We assume here that G is strongly connected, which means that for any pair of vertices (u, v) 2 V 2 , there is a path in G connecting u to v. The strong connectivity property makes it possible to reach any point of G from any starting point within the network, which is a fair and necessary assumption regarding road networks.

V

The indegree and outdegree of a vertex v respectively refers to the number of arcs going towards and out of v. Since G is strongly connected, the indegree and outdegree of any vertex of V is at least . The set of vertices connected to a vertex v of G is dened as its neighborhood and can split up between the incoming and outgoing neighboring vertices of v, respectively noted Γ (v) and

Γ + (v). u v w

T S

Trac signals are essential in modeling a road network. To our knowledge, no works of the RL-TSC literature formally dene the way trac light controls operate over an intersection. However, a tremendous amount of technical trac literature exists regarding the design and operation of trac light systems, either stemming from local trac authorities (Koonce and Rodegerdts, ; Sullivan et al.,) or trac simulator documentation (Erdmann and Krajzewicz,). Based on this literature, this section introduces a simple model discrete-time of trac ows over vertices of a road network.

T T

A trac trajectory uw over an intersection v 2 V , which is composed of an incoming arc uv 2 A and an outgoing arc vw 2 A, represents the trajectory of a vehicle going from arc uv to arc vw by crossing intersection v. Two trac trajectories are said to be compatible if they do not overlap each other on the crossing area of the intersection since it could cause an accident. Trac engineering aims to combine multiple trac trajectories over an intersection while ensuring their compatibility. Note that the formal denition of trajectory compatibility is beyond the scope of our model and that compatible trajectories over an intersection are given as input through a compatibility table (see Table .). Consider, for instance, an intersection of degree displayed on Figure ., and its associated trac trajectory incompatibilities in Table .. This table shows that right-turn trac streams (e.g. yx, wv) are only incompatible with trajectories with the same outgoing arc. Conversely, left-turn lanes (e.g. yv, wx) are incompatible with all other trac streams on the intersection, Trac Model excepted its symmetric trajectories (e.g. vy and yv) and the opposite side right-turn (e.g. yv and xw). This latter observation underlines the importance of left-turn trajectory over standard -way intersections. There are two common ways of addressing the specic and conicting case of left-turns in trafc engineering (Koonce and Rodegerdts,). The rst kind of left-turns are permissive left-turns in which left-turning vehicles have a right of way on the crossing area. In the case of permissive leftturns, such vehicles station on the crossing area until they can safely cross in the absence of vehicles from these other streams. The second kind of left-turns are protected left-turns, in which leftturning vehicles are associated with a specic trac signal and arc. The choice of implementing a permissive or protected left-turn is usually the result of a warrant analysis on a per-intersection basis (Sullivan et al.,), and is most of all the result of a trade-o between trac safety and lower intersection capacity. Even though it is essential to mention the importance of left-turns in trac signal control, our trac model does not require to specify whether an intersection uses protected or permissive left-turns. In both cases, a left-turn (e.g., yv on Figure .) is being represented in the same manner whether it is protected or permissive without impacting the rest of the trac model. The actual left-turn type over an intersection, which depends on warrant analysis, number of lanes, and historical trac ows, is left as an implementation detail discussed in chapter .

T P

We designate by trac phase over a vertex v a set of trac trajectories on v that are all mutually compatible, meaning that vehicles following trajectories of these phases could safely do so simultaneously. Note that a phase can contain any number of compatible trajectories and that the same trajectories of an intersection can be grouped in dierent phases (see section ...). The principal type of trac phase, also known as green phase, associates a green light signal with a set of trajectories φ v =(xy, ..., yz), giving them the right to cross intersection v. Each green phase φ v is associated with a yellow (or amber) phase φ 0

v . An amber phase associates each trajectory of . Trac Signals φ 0 v with a yellow signal, which allows vehicles on these trajectories to cross the intersection while warning them that their right of way on the intersection is expiring and that they should decelerate accordingly. These amber phases are essential in avoiding collisions on the crossing area due to emergency braking by going directly from a green to a red signal. Finally, the red phase is a specic phase containing no trajectories at all: φ 0 v = ;. Using a red phase is necessary for safety reasons by ensuring that vehicles crossing the intersection during an amber phase have time to go through before the next green phase becomes active.

S C

A signal cycle on a vertex v is an periodic sequence Φ v =(φ 1 ,...,φ n) of trac phases on the intersection. Signal cycles aim to eciently organize the successive right of ways of multiple compatible trac trajectories on an intersection over time. A signal cycle can be decomposed into a static structure (i.e., how phases are organized to form a signal cycle), which we present rst. Once this structure is dened, a signal cycle can associate phases with phase durations, which dictates how a signal cycle changes over time.

S C S

If a signal cycle Φ v could potentially be a sequence of any phases over an intersection, it must satisfy two key constraints to be considered valid:

. Each possible trac trajectory over intersection v must appear at least once in the phases of the signal cycle Φ v . This constraint is a necessary extension of the strong connectivity property on the graph G, since it ensures that for any two neighbors of v, u 2 Γ (v),

w 2 Γ + (v), w is reachable from u.
. Each green phase φ v of a valid signal cycle Φ v must be directly followed by its yellow phase equivalent φ 0 v , which must itself be directly followed by the red phase φ 0 v . This second constraint comes from the safety requirements stated above.

Intersections can broadly be categorized into two categories, depending on how they implement signal cycle rules. Intersections implementing a xed phasing scheme maintain the same phase ordering within successive applications of their signal cycles. While the respective duration of each phase can vary between signal cycles (see the following subsection), the ordering of phases within the signal cycle cannot change. Conversely, intersections a variable phasing scheme can both change the duration and order of phases within their signal cycles, provided that the two constraints stated above are respected.

An important point to note is that an intersection can have multiple valid signal cycles. However, a signal cycle being valid does not necessarily induce that it is adapted for a given intersection. Consider, for instance, The -way intersection displayed on Figure .. In the case of this intersection, multiple valid signal cycles can be dened. For instance, a signal cycle can use green phases successively granting a right of way to all incoming arcs of the intersection: φ 1 =(vw, vx), φ 2 = (wv, wx), φ 3 =(xv, xw). Another valid signal cycle could consist in using green phases giving a right of way to successive pairs of arcs of the intersection φ 1 =(vw, wv), φ 2 =(wx, xw), φ 3 =(vx, xv). A third signal cycle could also use green phases giving a right of way to all trafc trajectories one by one successively:

φ 1 =(vw), φ 2 =(vx), φ 3 =(wv), φ 4 =(wx), φ 5 =(xv), φ 6 =(xw).
It is, however, clear that this last signal cycle would be much less efcient at routing trac than the two other proposed signal cycle since it only allows for a single trac trajectory at a time while the others use two. This illustrates the fact that a valid signal cycle is not necessarily ecient.

S C E

Dening an ordering of phases within a signal cycle is insucient to route trac since trac trajectories occur over time. Our trac model denes the evolution of the trac light signals over an intersection in discrete time, divided in time steps of equal length. Given a signal cycle (Chowdhury et al.,), which are much more precise and advanced than simple cellular automatons. These models include, among others, collision (Krauß,) and lane-changing models (Erdmann,). It hence appears much more logical to maintain a discrete-step model of the trac environment and to delegate the continuous-time management of vehicular movement on lanes of the network to the SUMO trac simulator, which we present in great detail in chapter .

Φ v =(φ 1 ,...,φ n) on v,
The use of a trac simulator as a black box abstraction is represented by a transition function T , whose exact role is detailed later on in this section.

V L

A vehicle is formally dened as a tuple c =(p, e) 2 A n ⇥ N where p is the path followed by the vehicle on graph G from its entry to its exit arc and e the time step of access of the vehicle on the network. The path p is computed on the road network graph using Dijkstra's shortest path algorithm and does not account for other vehicles present on the network. Each vehicle aims to follow its path p on the network graph G in order to exit the network through vertex v with a minimal waiting time. The waiting time of a vehicle is dened as the number of time steps the vehicle has been idle on the road network while following its route p, either due to a red light signal or due to another vehicle present on the network. The cumulated waiting time of a vehicle c at step t is given denoted by the value ω t (c), which is computed by the transition function T . Roads on trac networks are usually divided into multiple lanes, each allowing for vehicle movement. Since the road network graph, G, is dened as a multidigraph, each lane is represented by an arc linking two vertices of G. Hence, two arcs link the same pair of vertices, similarly to lanes. The congestion of a lane, associated with arc uv 2 E, is equal to the number of vehicles present on this lane at a given time step t, and is noted c t (uv). The relative position of vehicles within a lane uv 2 E, which is once again computed using the transition function T , is given by the value P t (uv) (see Figure .).

T F

Since modeling the movement of vehicles on trac lanes is a complex task, we have, as stated at the beginning of this section, delegated the management of movement, lane-switching behavior, and entry and exit rules of vehicles on the lane to the SUMO simulator and its associated transition function T . The transition function T , which is reminiscent of the MDP transition function T (see section ..), applies the following changes to the road network at each time step:

. All lanes of G and their vehicles are updated according to the trac model of the SUMO simulator. If a vehicle changes lanes or exits or enters the network, those changes are reected on the corresponding lanes of E. Similarly, the waiting time of all vehicles of L is increased by one if they wait during the transition. The values of congestion c t , vehicle position P t and vehicle waiting time ω t are updated accordingly. . The signal cycle of all network trac lights is advanced by one step. Phases are automatically switched if the current phase duration exceeds maximum phase time d max or if the current phase duration is attained.

u v v 1 v 2 v 3 v 4 T u v v 1 v 2 v 3 v 5
. The current simulation step t is increased by .

While many more parameters are considered in actual trac simulations (see chapter), the simplied model presented in this section allows to precisely describe trac phenomena related to trac signal control. This model, in turn, helps to properly dene the reinforcement learning framework applied to trac signal control.

::::

This chapter introduced a formal trac model to help us describe the dynamics of a road network.

This model rst dened the structure of the road as a multidigraph in which vertices are intersections and arcs are lanes. It then described the movement of vehicles over the network in order to dene how phases and signal cycles are organized over an intersection. Finally, we described the temporal dynamics of the road network. This description includes the movement of vehicles over lanes and the overall network transition, which is managed through a black-box transition function T . This transition function depends on the SUMO trac simulator, which is presented in detail in chapter L M The trac model dened in chapter allows to easily manipulate trac-related concepts when applying them in a learning setting. This section builds upon this foundation by formulating the learning problem at hand-routing trac using trac signal control-using elements from this trac model. As we have seen in chapter , the standard framework used to represent reinforcement learning problems is a Markov Decision Process. Consequently, this chapter denes each necessary component of our RL-TSC model. It rst denes the global objective function F to be optimized by the agent. It then denes each component of the MDP -uple, namely the state space S, the action space A, the reward function R and the transition function T used to model the framework and solve the objective function F. As we presented most modeling options used by RL-TSC methods of the literature in section ., this chapter aims to underline the impact of choosing dierent trac models to decide which representation is the most adapted to our needs.

O F F

When applying a reinforcement learning method to a given problem, the rst and most crucial question is which objective function the agent should optimize. In the case of trac signal control, the rather vague term "optimizing trac" can refer to widely dierent goals, such as minimizing delay or congestion, but also noise and CO emissions.

R O F

One crucial point to bear in mind is that the objective function has to be the rst model component to be dened since all elements of the MDP are dependent on it. Indeed, we have seen that the reward and objective function have to be tightly correlated in order for the agent to learn. Furthermore, state and action space denitions are also highly dependent on the objective the agent is trying to solve. For instance, if a reduction in CO emissions is the main objective of a RL-TSC model, the components of the MDP will have to be chosen to suit this objective. Not only the reward function R will have to incorporate CO-related variables, but the state space denition will also likely incorporate features of the environment that are relevant to this goal. This observation also implies that the dierent parts of the MDP that we dene in this section are chosen with regards to a specic objective function and are not likely to be optimal in other contexts. Also, note that in the case of RL-TSC methods, the objective function of the agent is often directly used as a performance metric to estimate the problem-solving ability of the agent (Mannion et al.,). In other words, the better the agent learns how to optimize the objective function, the better the associated performance metric will be.

C O F

While there is no right and wrong answer when choosing an objective function, some trac metrics are usually more relevant than others. Both the classical and RL-based trac signal control literature indicate that there are two main ways of optimizing trac: through minimization of delays or minimization of congestion (Koonce and Rodegerdts,). Both objectives have their virtues and limitations, and their selection is usually dependent on the goals of local trac authorities (e.g., some areas favor high-speed trac ows and minimized delays, while residential areas might favor limited speeding and noise). Since our experimental framework will feature multiple road networks with dierent geometries, we make the design choice of selecting the most common objective function (i.e., that will be applicable in all trac scenarios). While congestion reduction might be more benecial in some specic scenarios, delay reduction has a broad range of applications that will yield satisfactory-if maybe not always optimal-results. This choice is shared in the RL-TSC literature, as almost % of the papers surveyed by Noaeen et al. () aimed at minimizing delay or travel time while minimization of queue sizes, maximization of speed, and throughput accounted for , and % of papers respectively.

The last decision regarding to the model's objective function is choosing which time-related measurement to minimize. As stated in the literature review in chapter , there are three main types of time-related variables in vehicular networks: delay (i), travel time (ii), and waiting time (iii). As it turns out, there is little dierence in the three measurements when looking at them from an aggregated perspective. The plots shown on Figure . show that, on the aggregated level, all three time-related performance metrics variables that are obtainable through means of trac simulation are entirely equivalent. Hence, the choice of the objective function to use depends on the ease of use of the chosen metric and its applicability. Since the time loss and trip duration indicators can only be obtained once the vehicle reaches its destination, both measurements pose a problem when using them to design the MDP's reward function R as they caused the rewards to be delayed (Van der Pol and Oliehoek,). Hence, vehicular waiting time, which is readily available . Reward Function R in simulation settings at all points of the simulation, provides an adequate objective function for the problem at hand.

R F R

The rst component of the MDP to dene, the reward function R, logically follows the denition of the objective function. The reward function aims to help the agent assess whether an observed state-action couple is valuable in maximizing the agent's objective function F. As stated in section ., the chosen reward function R has to be strongly correlated to the objective the agent aims to maximize as it directly connects the agent's actions to its objective function. Moreover, the inuence of an agent acting on a given environment state must have a direct, measurable impact on the reward returned by the system for proper learning to occur. This section investigates which reward function best ts the stated objective of reducing vehicular waiting time.

C R F

Since the main objective of our RL-TSC model is to reduce the waiting time of vehicles on the network, we logically use the same measurements when dening the reward function R of the MDP. While the RL-TSC literature showcases an extensive array of possible reward functions, experiments carried out by El-Tantawy and Abdulhai (El-Tantawy and Abdulhai,) comparing the eect of multiple rewards denition on RL-TSC performance found that somewhat simple reward functions performed better. Similar tests used with our experimental setup have also shown the superiority of cumulated delay dierence-based rewards. Hence, for an agent placed on intersection u 2 V , the reward associated with an action a t is dened as:

r t = X v2Γ (u) (X c2Pt(vu) ω t (c) X c2P t+k (vu) ω t+k (c))
Learning Model

In simpler terms, the reward associated with an action a t for an intersection u is obtained by computing the cumulated waiting time of all vehicles present on lanes directly going from neighbors of u towards u after and before the action was taken (i.e., at time steps t + k and t, where t + k is the rst time step at which the agent can decide action a t) and computing their dierence. Such a reward function respects important constraints regarding reward function denition. Measuring dierences in cumulated waiting time is obviously correlated with the global objective of reducing the overall cumulated waiting time of vehicles of the road network, and this dierence directly quanties the quality of a given state-action pair. A positive reward indicates that the cumulated waiting time is lower after choosing action a t , thus indicating a likely correct action choice. Conversely, a negative reward value indicates an increase in cumulated waiting time between those decision points.

S S S

In reinforcement learning theory, the state space S of an MDP is used to describe features of the environment state that are relevant to the agent. Proper state denition is essential in RL problems since the agent uses it to dierentiate system states and act upon them accordingly. Since not all features of the environment are relevant to the agent, the main challenge associated with state space denition is choosing which features of the environment we should choose and how detailed they should be.

R S S

One of the most commonly faced trade-os when designing the state space of a RL-TSC model by choosing among the dierent trac features is choosing between detailed state representation and exploration eciency. Indeed, adding more features of the environment in the state space S potentially leads to better agent performance since it can distinguish dierent system states better. Still, it also introduces additional dimensionality, which delays the learning process since it increases the size of the state space and hence the duration of its exploration process by the agent. Furthermore, one should note that some components of the environment's actual state are irrelevant for the learning problem at hand or are already embedded in other variables. For instance, the CO emissions of vehicles of the network are likely not relevant when looking at reducing waiting times on the network. The challenge of state representation for RL modelization is hence to identify which features of the environment are relevant when dening the state space S of the RL problem.

C S S

Multiple studies have been made in the RL-TSC literature to measure the impact of state denition on agent performance. El-Tantawy and Abdulhai () compared the performances of an isolated intersection using Q-Learning associated distinct state values (intersection throughput, vehicular delay, and maximum queue length) found that queue and delay-based state representations yielded the best results for cumulative vehicle delay in simulations using trac data from the city of Toronto. Similarly, Genders and Razavi () have evaluated the eect of state granu-larity on the performance of an asynchronous advantage actor-critic RL-TSC agent, using three increasingly complex state denitions going from occupancy and speed, to queue and density and nally full DTSE states (see section ...). Their results show that vehicular delay improvements were minimal when using complex state representations and that no dierences were observed in throughput or congestion metrics. The authors suggest that increasing state complexity may be benecial for suciently complex function approximation methods such as long short-term memory cells or convolutional neural networks, but not for simpler learning methods.

Similarly to these papers, we compared the performance of multiple state denitions on a wide array of RL-TSC algorithms, ranging from simple classical methods such as Q-learning to deep reinforcement learning algorithms (see section .. for a denition). In one case, we used discretized queue data and, in the other case, DTSE occupancy data. The experimental protocol contained an isolated intersection implementing a NEMA-type signal cycle. We found that methods using detailed state representations took two to three times the number of training episodes to reach the same performance levels as methods using simpler state representations. No notable performance improvements were observed once these performance levels were reached. Furthermore, we tested DTSE state representations on even more complex function approximation architectures, such as recurrent or DQN networks. We did not observe any signicant advantage to using complex state representation. In the light of these ndings, our experiments will use discretized state denitions composed of (but not limited to) phase and queue data around an intersection. For a given intersection v 2 V composed of n incoming lanes l i ,i 2 [1,n], we use the current phase index φ t (u), current phase duration d t (u) and congestion values on lanes around the intersection c t (l) (see section .. and section .) to reach the following state denition:

s t (u)=hφ t (u),d t (u),c t (l 1),c t (l 2),...,c t (l n)i
This state denition yields a satisfactory balance between low dimensionality and sucient granularity by providing both phase and trac information to the learning agent.

A S A

Selecting the action space A of a RL problem is equally vital, albeit dierent from setting its state space. Similarly to the state space S, the action space A is essential since it denes how the agent can act on the environment to solve its learning task. Hence, dierent types of action spaces can exist in the case of RL-TSC, event though to a lesser extent than in the state space case.

R A S

Interestingly, while being as important as-if not more than-state denition, the eect of action space denition on RL-TSC performance has, to the best of our knowledge, not been studied in the literature. Indeed, multiple types of action spaces are featured in RL-TSC papers. We hence researched and published an in-depth analysis of the eect of action space denition on the performance of RL-TSC controllers (Tréca et al., a) to compare these multiple action types.

E D

Our analysis compares two types of action spaces: phase-based and step-based actions. Phasebased actions allow the agent to set the duration of the next green phase all at once. When using phase-based actions, the possible action interval for the agent is hence [d min ,d max], corresponding to the minimum and maximal green phase duration, respectively (see section ...). When using step-based actions, the agent chooses at regular intervals whether to extend or switch the current green phase. This action space denition hence contains two actions and allows the agent to end the current green phase at any decision point. Note that the state space associated with these two action space denitions is likely to be dierent. Indeed, step-based actions need to include the duration of the current green phase, d t (u), in order to know for how long it has been active. This information is not necessary in the phase-based case since no decision is taken while a green phase is active.

Our analysis rst compares the eect of these two action space denitions on dimensionality. Since the step-based action space is only composed of two actions, it signicantly reduces actions space dimensionality compared to phase-based actions. However, this reduction in action space dimensionality is compensated by an increase in state space dimensionality since step-based actions necessitate the use of the current phase duration d t in the state denition, contrary to phase-based actions. In conclusion, when using phase-related indicators in the state space of the problem, choosing either step-based or phase-based action types has little inuence on the overall dimensionality of the learning problem.

E P

The second part of our analysis compares the eect of action space denition on the performances of an isolated intersection under dierent types of trac demand ows. The SUMO trac simulator used for these experiments, as well as the protocol used to generate trac demand data, are described in detail in chapter .

This experiment compares a phase-based method to a step-based method which chooses an action at every k step. Additionally, the shape of trac demand can be changed over the intersection: the overall vehicle arrival rate follows a Poisson process with a xed arrival rate, but a parameter τ controls the imbalance of arrival rates between the north-south and east-west lanes of the intersection (i.e., a minimum value of τ ensures completely uniform trac, while a maximum value of τ only allows trac to occur between the east and west lanes of the intersection). Simulation results have shown that step-based actions are strictly superior to phase-based ones, regardless of the nature of the trac demand dictated by parameter τ (Tréca et al., a). Furthermore, the analysis of the inuence of the step size k between successive step-based actions has shown that smaller step sizes generally yield better performances in even trac conditions, but that slightly longer decisions windows (e.g., k =5to k = 10) performed better in heavily skewed trac conditions due to a high parameter τ .

The inherent advantage of step-based methods over phase-based methods can be explained by their very nature: by evaluating whether to extend or switch the current phase every k steps, an agent using step-based actions refreshes its appreciation of the current system state much more frequently than in the phase-based case, in which the agent observes the current system state only once at the beginning of the phase when selecting its action. The decision points shown on Fig- ure . illustrate the dierent rates at which step-based and phase-based controllers get information about the environment. Since the RL-TSC agent observes the current system state much more infrequently than in the step-based case, it cannot adapt as quickly to changing trac conditions, hence explaining inferior performances. The last phenomenon to explain is the relatively poorer performances of very short interval steps of phase-based actions in heavily imbalanced trac situations. We attribute these poor performances to the exploration process of the agent. Since the agent favors selecting random actions to explore the state-action space at the beginning of the learning through an ε-greedy policy with a high exploration rate, increasing the rate at which this agent chooses actions through shorter step intervals k mechanically increases its odds of selecting a random action. However, when trafc is heavily imbalanced, the agent should naturally favor longer green phases on east-west lanes and shorter green phases on north-south lanes. By increasing the odds of prematurely ending a normally long green phase through excessive exploration, shorter decision intervals can increase congestion on east-west lanes, impeding overall performance.

φ 1 φ 1 φ 1 φ 1 φ 1 φ 1 φ 1 φ 1 φ 0 1 φ 0 1 φ 0 1 φ 0 φ 0 φ 2 φ 2 φ 2 φ 2 φ 2 φ 0 2 φ 0 2 φ 0 2 φ 0 φ 0 φ 3 φ 3 φ 3 φ 3 φ 3 φ 3 φ 3

C A S

The choice of using a step-based action space over a phase-based one has been motivated by the experimental results presented in the previous section. The step size to associate with step-based action selection we chose is k =1 . Indeed, even though longer step intervals performed slightly better in skewed trac conditions, we have found that the shortest action step interval was the best overall parameter, especially coupled with more advanced reinforcement learning techniques such as deep reinforcement learning (see chapter). Hence, the superior results provided by stepbased actions coupled with relatively small decision intervals lead us to use a step-based action space:

A = {0, 1}
in which 0 represents a phase extension action and 1 a phase switch action.

T F T

The fourth and nal point to discuss regarding the modeling of the MDP relating to trac optimization is the transition function T . The function T dictates how the environment transitions from one state to the next depending on the agent's action. The transition function, if estimated, oers additional information to the learning agent when selecting an action by estimating the next system state and its potential rewards (see section ...).

C T M

As stated during the literature review of RL-TSC methods, both model-free and model-based methods have been applied to trac signal control problems. However, most RL-TSC models choose not to estimate the transition function and are hence eectively model-free. Consequently, while it is technically possible to estimate the transition function of the model's MDP to obtain additional information about the environment, it is commonly accepted that the additional model complexity introduced by switching to a model-free to a model-based method is not worthwhile from a performance standpoint (Mannion et al.,). Furthermore, using a modelbased method impedes model scalability due to dimensionality issues (El-Tantawy and Abdulhai,). These observations, coupled with the fact that most state-of-the-art RL methods applied to trac signal control are model-free, make use logically choose a model-free RL-TSC setting in which the transition function T does not need to be estimated.

::::

This chapter used the trac model denition of chapter in order to entirely model the MDP components used in our RL-TSC method.

On the basis of the literature review of chapter , we established that the objective function of our RL-TSC model was the reduction of the cumulated waiting time of vehicles on the road network. The cumulated waiting time is dened as all the steps for which a vehicle could not advance on the road network, either due to a red trac light signal or congestion. Consequently, we dened the reward function of the MDP as the dierence in cumulated waiting time of vehicles around the lane of an intersection between two successive decision points. We then dened the state space of the MDP as a simple combination of phase-related and congestion features after showing that detailed state representations such as DTSE did not bring increased performance in our model. Similarly, we studied in detail the role of action space denition on agent performance by comparing phase-based and step-based actions. Our analysis has shown that step-based actions were strictly superior to phase-based ones, hence guiding our modeling choice. Finally, like the majority of works of the RL-TSC literature, we chose not to model the transition function of the MDP, resulting in a model-free RL-TSC method. The second part of this thesis focuses on modeling how to apply RL methods in a trac signal control context. In chapter , we laid the foundations of a simple mathematical model of trac signal control, and in chapter , we used this mathematical model to dene the learning framework in which we apply various RL algorithms on TSC tasks. This chapter focuses on the last element of this iterative modeling work by presenting the tools and methods used to experimentally apply various RL-TSC methods on trac scenarios. Our experimental setup is composed of two main parts. First and foremost, we use the SUMO trac simulator to simulate trac scenarios on which we test dierent trac signal control methods. Secondly, we designed a simulation library, carmulator, in order to integrate a wide variety of RL-TSC systems in SUMO. This library also includes many pre and post-processing tools to prepare simulation input and process simulation output for further analysis. Finally, we present how the SUMO trac simulator and the carmulator library are used in order to build an experimental protocol used to measure the performance of RL-TSC methods in simulated settings.

E S

T S

This rst section describes the SUMO trac simulator that we use to run our RL-TSC experiments. We rst quickly review SUMO's capabilities and features, ending with a justication as to why we chose this simulator. The second section gives an overview of how SUMO manipulates data for trac simulations by looking separately at network, trac demand, and simulation output data.

S F

Our trac experiments are realized using the SUMO trac simulator (Lopez et al.,). SUMO is a microscopic simulator, meaning that each vehicle is managed individually. Furthermore, it is space-continuous and time-discrete, which means that each simulation step in SUMO has a oneto-one correspondence with time steps presented in our trac model in chapter . Finally, SUMO is a multi-modal trac simulator, meaning that multiple vehicle types and pedestrians can be simulated concurrently.

We decided to use SUMO for multiple reasons. First, SUMO is an actively maintained free and open-source trac simulator, which means that it is possible to inspect its source code to have insights on some implementation details and that we were able to contribute to its development by submitting bug reports or suggestions to its development team. Second, the SUMO trac simulator is increasingly popular in the RL-TSC literature. A systematic literature review by Noaeen et al. () shows that the rst uses of SUMO in the literature date from , but that out of surveyed papers in used SUMO as their trac simulator of choice , making it the most popular choice in front of simulators such as VISSIM or PARAMICS. Finally, the SUMO oers unparalleled exibility when it comes to development and integration with other tools: it oers a Python API to communicate with a running simulation process, Traci, and oers a large number of utilities designed to process simulation inputs and outputs, such as trac demand or simulation logs. The SUMO simulator is written in C++ and uses XML for input and output data format. The simulator relies on two main inputs to run a simulation: a network le, which describes the road network over which to simulate, and a trip le, which contains trac demand information over the network. It can also generate several output les and logs in XML format. Additionally to the SUMO simulator, the sumo-gui program provides real-time feedback of the ongoing trac simulation, using speed and visualization options.

N D

SUMO uses a network le in order to represent the road network in which simulations occur. These les are composed of a network geometry part, in which the network graph edges are listed, including their length, positions, and the number of lanes. The network's junctions (or vertices) are then listed and are each associated with a trac light program. This program contains each phase of the signal cycle in a specic state form and the default duration of each phase. Network les can be edited by hand using XML, but SUMO integrates a trac network GUI editor, Netedit, which allows to easily create new road networks and edit trac light programs on its junctions. The SUMO simulator also provides external tools to convert real-world networks from OpenStreetMaps and convert them to a SUMO XML format.

Quite surprisingly, the same literature review stated that around % of the surveyed papers did not state which simulation tools were used at all! SUMO represents trac signals in a specic way. For instance, the phase GGGgrrrrGGGgrrrr represents the light signal for each intersection's lanes in order. In this example, lanes , , , , , have a prioritized green signal, lanes and have a permissive left green signal, and other lanes have a red signal.

D D

The other central data input needed to simulate trac is the demand data, which indicates the number of vehicles and their trajectories going through the road network. Multiple types of demand data are accepted by SUMO (Urquiza-Aguiar et al.,). The rst and simplest form of demand data is a trip, represented by an origin and end edge of the network and a start time. When simulated, SUMO will compute the shortest path on G (as dened in section ..) going from the origin to destination edge of the trip using Dijkstra's algorithm and use this route for the vehicle. The second demand data type is a route, dened as a trip with a pre-computed route, which hence does not need route computation during the simulation. Finally, SUMO accepts ow denitions, composed of an origin and destination edge and probability. During simulation, vehicles will be generated between all pairs according to their respective probabilities and computed similarly to trips.

There are many ways to generate trac data to these three demand data formats, using a wide range of sources. A simple but cumbersome way to obtain demand data is to either write it by hand to an XML le, use the provided utility in Netedit, or use a random trip generation tool packaged with SUMO. Demand data generated in this manner is usually highly unrealistic. Flow definitions can provide a more realistic demand denition, either provided manually or converted by a SUMO utility from origin-destination matrices using real-world data. Other demand data sources are road detector data, which computes trips from observed trac ows at certain observation points of the network or activity data, generated using the ActivityGen utility, which generates trac ows from activity denitions of the network such as population number or type of neighborhood.

O D

The SUMO simulator can log many simulation variables for further use, such as trip duration, time loss, route length, waiting time, or number of stops. Additional logging data can include vehicle emissions, vehicle trajectory, lane changes, noise emissions, or battery use. A simulation process does not need any interaction to complete, as the signal cycles dened in the network data les directly control trac lights. However, it is possible to use the Traci API to control these trac lights on a step-by-step basis directly. The possibility to control a running simulation process through an API was the starting point of the simulation library we created, carmulator.

S L

We created the carmulator library to interact with the Traci API and directly query and control a running SUMO process. This library was designed for multiple reasons. First, it allowed us to quickly prototype and experiment with RL-TSC controllers within SUMO by establishing simple interfaces between the simulator and prototype methods. Second, the carmulator library provides several reference RL-TSC methods found in the literature, which one can use for experimentation or comparison purposes. Finally, carmulator provides many utilities to make working with the SUMO simulator easier.

L S

The carmulator library is a wrapper around the SUMO simulator allowing direct control of trac lights during a simulation. On startup, carmulator initializes a SUMO process and several libraryspecic data structures such as a simulation supervisor, trac lights and signal cycles (one per junction), and a global simulation data record. The simulation supervisor then interfaces SUMO and carmulator by, on the one hand, querying the current simulation state and making it available to various carmulator trac controllers, and, on the other hand, by transcribing controller actions into trac signals applicable in SUMO. provides a simplied description of the simulation supervisor. . Simulation Library Using this supervision architecture has several advantages. First and foremost, interacting with SUMO in a single class delimits interface code from carmulator-only code and limits the risks of bugs and the number of messages passed from SUMO to carmulator . Second, and most importantly, using this architecture allows quickly dening multiple trac signal control methods. Indeed, all trac lights use the same simple interface composed of two methods. The set method allows the controller to execute any necessary operation using the current simulation step and the global carmulator data record (for instance, the controller can count the number of vehicles around its lanes at the current time step, verify which signal cycle was in place on a neighboring junction at the previous time step, or send/read a message to/from neighboring intersections). The get method, executed after set, queries the controller for a new trac signal choice when needed. The controller can choose this signal with information from the network gathered in the set phase. Dening new trac control methods using these two methods then becomes extremely easy. For instance, dening a xed trac signal that switches phase periodically every ten steps is as simple as dening these two methods :

Algorithm

T G

Besides simulating RL methods using SUMO, the second central task of the carmulator library is to generate trac demand data for these simulations. While it is possible to use hand-crafted trac demand les or SUMO generated data (either through netedit or programs such as duarouter), carmulator provides multiple high-level ow-based trac generation methods. As stated in section .., ow-based trac demand associates a given edge pair with a vehicle spawn probability evaluated every simulation step (hence describing a binomial process, which is akin to a Poisson distribution for small probability values, which is often the case in our context). The ow values can be generated in multiple ways using carmulator. The rst is to supply an origin-destination matrix automatically converted to a matching ow demand data le for a given network. If no trac data is available for a network, carmulator can generate ow demand from scratch by generating uniform demand ow across all edge pairs of the network, which ensures trac stability but is rather unrealistic. Another option provided by carmulator is to generate ow probabilities using an exponential distribution of parameter λ, which are more realistic than uniform ows.

The exponential parameter λ denes the mean of the drawn ow parameters and the overall trac intensity. The overall shape of exponential distributions according to dierent values of parameter λ can be seen on Figure ..

A U

While easily dening trac signal control methods and running them using SUMO is the primary goal of carmulator, the library also provides some additional utilities and methods which proved extremely useful in working with TSC systems.

Comparing multiple TSC methods must be done following the same experimental conditions. In the case of trac simulations in SUMO, the same exact trac demand le and random number generator seed have to be used to fairly compare methods. Since these constraints are typical in RL-TSC analysis, carmulator provides an experiment_setup and an experiment_run function, ensuring that all methods run for the same amount of episodes the same random seed and demand le are used for each episode across compared algorithms. These methods also generate unique names for all log les of the experiment to be retrieved easily.

E P

Developing the carmulator library has the advantage of making RL-TSC experimentation easy. Indeed, the library provides controller classes that can be used to quickly prototype TSC methods simulation wrappers that can compare multiple TSC methods in the exact same simulation conditions. The carmulator library also provides dedicated experimental protocols to analyze RL-TSC controllers. This section covers the three main protocols that are used for the rest of this thesis work in order to compare RL-TSC methods.

C A

We dene convergence analysis as the study of the learning capabilities of a RL-TSC agent as learning episodes advance. This analysis is conducted by rst generating a set of trac demand data using the protocol described in section .. that will be used across all simulation episodes of the experiment. This trac demand is dened in terms of ow, meaning that at each step, each edge pair of the network has a xed probability of spawning a vehicle following this route. Hence, for the same demand data, using the same random seed will result in the same exact trac data, while using distinct seeds will result in slightly dierent trac data that are still following the general demand pattern. We exploit this property when comparing the convergence of multiple RL-TSC methods. For the same episode index (i.e., the nth simulation episode), the same seed is used across all tested methods, meaning that they all learn using the same exact trac data. However, between episode indexes, the random seed is changed, ensuring that RL-TSC methods learn on distinct but similar trac data from one episode to the next.

As for convergence analysis itself, we compute, for each simulation episode, the sum of cumulated waiting times of each vehicle that traveled through the network, giving the total delay of the simulation episode. Plotting these successive delay values from episode to episode, as in Figure ., allow to observe the evolution of the routing trac capabilities of each agent. For increased accuracy, we usually repeat a convergence analysis over multiple trac scenarios, each associated with distinct trac demand data. The plotted result is then the average cumulated waiting time values of these scenarios. Note that convergence analysis observes the rate at which a RL-TSC learns while it is still training. This implies that convergence analysis is not sucient to measure the overall performance of a RL-TSC method (which is why we also present performance protocols in section .. and section ..). Furthermore, it also implies that we must decide on a stopping criterion when measuring agent convergence. While there is no hard rule as to when to stop the training of a machine learning model, a generally agreed upon rule is to establish an end of training criteria, usually expressed as a lower bound on the variation of the performance of the agent. Given the unstable Experimental Setting nature of RL-TSC learning, we decide to end agent training if the dierence in the average performance of the last n simulation episodes and the n episodes before them is lower than a threshold value κ. The value of parameters n and κ are set, however, on a case-by-case basis since the RL-TSC convergence process greatly diers depending on the trac scenario and learning method at hand.

P A

As mentioned in the previous section, convergence analysis cannot entirely analyze the eciency of a RL-TSC method. Indeed, this analysis can underline information regarding the learning process of tested methods but can say little about their performance once they have converged. Moreover, learning-specic techniques such as random action selection in the ε-greedy policy (see section ...) introduce sub-optimal action selection choices for the sake of exploration, which can, in turn, aect agent performance. Sub-optimal action selection could introduce a bias in the performance metrics of some RL-TSC methods, especially when one is more likely to explore the state-action space than the other.

We hence evaluate the performance of an agent separately from its convergence process. While a performance analysis still measures the total cumulated waiting time of vehicles, it measures it within instead of across simulation episodes. In other words, it plots how the total cumulated waiting time increases as vehicles arrive within the simulation. In order to measure the variability of methods, we plot these metrics over multiple trac scenarios, each associated with distinct trac data drawn according to the method described in section ... The resulting plot, as displayed on Figure ., features the minimal and maximal cumulated waiting time observed across multiple scenarios for each tested method. . Experimental Protocols Note that within a simulation scenario, all vehicles are generated up to a certain time step (e.g., on Figure .), and the simulation nishes when the last generated vehicle reaches its destination. It is hence possible to have methods associated with longer running simulations, as is the case with method A in the gure above. Finally, performance analysis considers that the RL-TSC methods they compare have nished learning and hence disable their exploration features such as random action selection by setting ε =0 . This ensures that only greedy action selection is in place, which increases agent performance once learning has occurred.

P A U V F

The convergence and performance experimental protocols allow to study the learning dynamic and post-learning performance of RL-TSC methods. A nal experimental protocol of interest to widen our analysis relates to the robustness of these methods. Indeed, even the most advanced RL-TSC methods will not avoid congestion and delays if the trac demand is superior to a road network's capabilities. However, performant RL-TSC methods can delay congestion and delays as much as possible as trac demand increases. Similarly, a desirable method can quickly go back to normal trac conditions once trac demand decreases. These measurements of robustness hence warrant the constitution of a third experimental protocol that can observe how various methods react to trac conditions of variable intensity. In order to observe both of these phenomenon, we dene a variable-ow experimental protocol that is inspired by both the convergence and performance protocols described above. For xed demand data, all tested methods are rst trained similarly to the convergence protocol described above. Then, after these methods converge, the arrival rate λ of each edge pair of the Experimental Setting trac demand data is increased by .% for each simulation episode over episodes, gradually increasing the total trac demand while maintaining its overall shape. After the trac demand peak is reached, the same arrival rate is decreased over episodes by increments of % at each episode, returning to a pre-rush hour arrival rate. After running the same experimental scenario multiple times in order to increase accuracy, the resulting plot (see Figure .) shows the best and worst waiting times per episode across these distinct scenarios. This nal experimental protocol hence combines methods from both the convergence and performance protocols by both looking at inter-episode performance levels (similarly to the convergence protocol) and by plotting best and worst-case cumulated waiting time levels of these episodes across scenarios (similarly to the performance protocol).

::::

In this chapter, we presented the practical tools used to simulate trac in this thesis work. We rst presented the SUMO trac simulator, an open-source microscopic trac simulator used to experiment with various RL-TSC methods in this thesis. This simulator was chosen for its availability and exibility since it oers a Python API that can directly connect to a running simulation process.

We also presented our RL-based trac simulation library, carmulator, which complements SUMO by allowing us to quickly develop RL-TSC controllers and test them in trac simulation settings. This library implements a trac demand generation utility used to generate demand data over a trac network. Furthermore, carmulator contains a series of experimental protocols used to compare in detail the various RL-TSC methods it implements. The convergence protocol measures the ability of methods to learn across simulation episodes; the performance protocol measures the post-learning performance and performance variability of methods within a simulation episode; while the variable-ow protocol measures the robustness of methods by gradually increasing and decreasing the trac demand data.

P III M

The third part of this thesis is dedicated to studying dierent reinforcement learning-based methods used for trac signal control. Once again, this work is done incrementally as the problem at hand complexies. We start by discussing multiple isolated trac signal control methods (chapter), featuring both deterministic and learning methods, to analyze each of their components and establish which algorithms and policies are better suited for trac signal control. Once isolated intersection control is analyzed, we extend our eld of study to networks featuring multiple intersections (chapter) to study various modes of operations between intersections ranging from independent control to direct coordination mechanisms. Isolated trac signal control methods aim to optimize trac at the single intersection level, regardless of the actual size of the road network. Since their scope of action is limited, isolated TSC methods are usually simpler to develop and analyze than their coordinated counterparts. This last point leads us to start our analysis of RL-TSC methods on isolated intersections before moving on to coordinated TSC methods in chapter . This chapter rst covers deterministic isolated TSC methods, which do not use learning to route trac but will be useful in our experimentations. We then cover multiple classes of classical RL algorithms before looking at function approximation techniques.

D I T S C

The rst subset of isolated TSC methods is composed of TSC methods which do not use learning mechanisms to route trac. Deterministic methods regroup, among others, TSC methods implementing a xed signal cycle repeating itself regardless of trac conditions, hand-tuned xed signal cycles designed to maximize intersection throughput, and more complex routing methods.

F M

The term xed trac signal control methods regroups TSC methods which implement a xed signal cycle on a given controller regardless of the current trac situation. The simplest form of xed Isolated Trac Signal Control Methods signal control would be an algorithm assigning the same green phase length regardless of phase index or trac state, even though such an algorithm does not consider the trac demand around the intersection. During the s, Webster formulated a method to compute the optimal cycle time and split times of an intersection given the trac demand around it (Webster,). Webster's estimations for optimal cycle time and phase splits rely on computing critical lanes for each phase i of the signal cycle, which is the lane with the highest ratio f i of ow to saturation ow (El-Tantawy and Abdulhai,). Once the critical lanes are identied, the optimum cycle length C in seconds is estimated as a function of the unusable time per cycle L (i.e., amount of seconds dedicated to red phase time) and of the sum of the critical lane ow ratios computed earlier:

C = 1.5L +5 1.0 P f i
The optimal green phase time g i for each phase i of the signal cycle is calculated by distributing the total available green time C L proportionally to the ow ratio of each phase as

g i = f i P f i (C L)
After parameterizing ow values gathered from historical trac data, the Webster formula allows intersections to implement a xed signal cycle adapted to their trac demand. algorithm details the Webster signal cycle formula.

Algorithm : Fixed signal timing algorithm using Webster's formula.

for each step t do i φ t (v); if d t (v) <g i (v) then a v 0; else a v 1;
While multiple algorithms extend this basis (Rouphail et al.,) to more accurately assign green time within an intersection's signal cycle, Webster's original formula provides a good performance indicator of how a real-world parameterized intersection would behave in a trac simulation setting.

O M

A particular shortcoming regarding the analysis of TSC algorithms is that there is-to the best of our knowledge-no given deterministic method capable of nding an optimal or near-optimal solution for a given trac situation at the single intersection level. Furthermore, a common complaint regarding the performance evaluation of learning algorithms is that while it is easy to observe whether a learning method improves over time, it proves more complicated to estimate this improvement with regard to a maximum performance bound for this given problem. A RL-TSC method improving its trac routing capabilities fourfold through learning iterations does not . Deterministic Isolated Trac Signal Control measure if this improvement is still far from an optimal-and often unobserved-solution. This issue is common in most papers of the RL-TSC literature since most proposed TSC methods are either compared to xed or other RL-based methods of the literature (Noaeen et al.,), but rarely to state-of-the-art trac engineering methods used in real-life urban networks. The optimal method we present in this section solves these issues.

O S S

We developed an approximation method that leverages the ability to save and load simulation states in SUMO to alleviate this issue partially. This method considers agent strategies, which are binary strings representing successive step-based action choices (see section ..) by the agent over a certain number of simulation steps. For instance, the strategy 001000 represents two successive extensions of the original green phase, followed by a phase switch and another three successive phase extensions, for a total strategy duration of (a single step per extension action and ten steps for a switch action, corresponding to steps of yellow and red time and steps of minimum green time). The main idea behind this optimal strategy approximation algorithm is the following: when facing an action choice (i.e., whether to extend or switch the current green phase), the algorithm saves the current simulation state to disk and starts testing all possible strategies of length k in a tree-like manner (see Figure .) by successively saving and loading simulation states. After computing all strategies, the algorithm returns the one yielding the best results to the agent, which applies its rst h steps. Appendix A provides a complete description of the algorithm.

Isolated Trac Signal Control Methods

D I

A known limitation of exhaustive strategy search methods is their combinatorial explosion when the strategy tree reaches a sucient length. In the case of trac signal control, this total number of strategies can be computed by listing all the valid combinations of 0s and 1s that form a strategy string of the desired length and then computing the number of permutations without repetitions in which these symbols can be arranged. Using this formula, we estimate that there are unique strategies of length , strategies of length , and around million unique strategies of length . Testing the entire strategy tree of a . steps simulation would require trying 2.13⇥ 10 782 unique strategies, which is entirely above our computational means.

R S P

Since an exhaustive optimal search is impossible given the combinatorial explosion of the problem at hand, the role of the strategy depth k as well as the horizon h for which the agent will apply the returned strategy is paramount in nding the right balance between optimality approximation and computational needs for this algorithm. In theory, increasing the strategy search depth k should increase the performance with diminishing returns and increase computation times exponentially (since longer strategies matter less and less regarding the current decision point but dramatically increase the computational search costs). Additionally, increasing the horizon parameter should reduce computational costs and negatively impact agent performance since the entire strategy search process is triggered less frequently. Hence, choosing parameters h and k is a matter of balancing agent performance and algorithm running time. In order to study the inuence of both these parameters on the strategy approximation algorithm, we measure the cumulated waiting time obtained in a single-intersection simulation and the total simulation time in seconds for dierent strategy depth and horizon values for the same trac and simulation settings. We present the cumulated waiting time values obtained within the simulations on Table .. We rst observe that our predictions regarding the positive inuence of longer depths k and shorter horizons h on cumulated waiting time values are respected overall. Nonetheless, some higher horizon values can sometimes outperform lower ones (e.g., horizon h = 10 yields a better result than h =5for k = 35), which is likely due to a "lucky run" by specic combinations of k and h; and shows the inherent limitations of optimal strategy approximation methods. The inu-ence of the horizon parameter also behaves as expected. Increased horizon values above h =1 quickly degrade performance values, even though this degradation is not necessarily ordered or linear for higher values of h. Regarding computational costs, we do notice a substantial reduction in simulation time when increasing agent horizon initially, but this reduction quickly decreases for horizon values above h = 10, as one can see on Figure . for selected values of parameter k.

k / h - - - - - -

P R

These results lead us to make the following recommendations regarding the optimal parameter selection. First, we do recommend setting the horizon parameter h to . Indeed, as we can see on Table ., setting a minimal horizon parameter is the surest way of obtaining a minimal cumulated waiting time for a xed depth parameter k, while higher values of h tend to increase the unpredictability of the performance output. Furthermore, we observe on Figure . that an algorithm of depth k and horizon takes less time to compute and performs better than an algorithm of depth k +5and horizon 5. Our recommendations regarding the depth parameter k depend on two bounds: a lower depth bound decided by performance, for which we recommend setting parameter k to values of or higher, and a higher depth bound decided by computation time and which depends on the entire length of the simulation. Using results from our test simulations of steps and a xed horizon parameter of h =1 , we estimate that it takes an average of . seconds per simulation step to run the algorithm for a depth parameter of , . seconds per step for a depth parameter of , . seconds per step for a depth parameter of and : minutes per step for a depth parameter of . Multiplying these estimates by the number of steps necessary to Isolated Trac Signal Control Methods run a given simulation gives a reasonable estimate of how long a given optimal method will run, which helps select the highest value of parameter k with acceptable computation times.

C R L M

As we have mentioned in chapter , multiple types of RL algorithms, such as value-based, policy iteration or actor-critic methods have been successfully applied to TSC tasks (Noaeen et al.,). This section hence aims to rst present a RL algorithm from each of these classes before comparing them in practice on a single-intersection trac simulation. Each representative algorithm is voluntarily kept simple to ease the presentation and analysis work of this section; more advanced methods, including function approximation techniques, are presented in section ..

V M

Among the three main types of value-based reinforcement learning algorithms presented in chapter , only Temporal-Dierence learning algorithms are suited to RL-TSC tasks. Indeed, Dynamic Programming methods are model-based, meaning that they require prior knowledge or estimations of the transition function T of the underlying MDP, which is generally considered as a complex modeling task (El-Tantawy et al., ; Mannion et al.,) and is hence seldom featured in the literature (Noaeen et al.,). Similarly, Monte Carlo methods are not used for trac signal control tasks. Indeed, these methods update their policies and value estimates at the end of an episode, instead of at the end of each step within an episode (Sutton and Barto,), making them unt for tasks like RL-TSC in which fast reactivity within an episode is essential for acceptable performance (El-Tantawy and Abdulhai,).

Q

Given its overwhelming presence in the RL-TSC literature and its relatively simple structure, we choose to study Q-learning (Watkins and Dayan,) as the representative value-based method. The Q-learning algorithm estimates the quality of state-action couples of the environment using a general policy iteration technique (see section ..) and stores these estimates in a Q-table. For α 2 [0, 1] and γ 2 [0, 1] representing the learning rate and discount factor of the agent, the estimated quality of each state-action visited by the agent is successively updated according to the following rule:

Q(s t ,a t) (1 α)Q(s t ,a t)+α(r t + γ max a Q(s t+1 ,a)) (.)
The intent behind the update rule in Equation . is rather clear: for a given state s t and associated chosen action a t , the estimated quality value Q(s t ,a t) stored in the Q-table is updated by keeping a fraction 1 α of its old value and a fraction a t of a newly estimated quality value. This latter term is estimated using the associated reward value r t (since the long-term reward function is what the quality function approximates) as well as the estimated quality associated with the next system state s t+1 , which is computed by estimating the maximal reward the agent could obtain in this new state, max a Q(s t+1 ,a t). Since this reward is delayed for the agent, a discount factor γ is applied to reect the agent's decision-making process at step t. algorithm provides an illustration of the Q-learning algorithm using an ε-greedy policy (see section ...) applied to isolated trac signal control.

Algorithm : Illustration of a standard Q-Learning algorithm with an ε-greedy policy applied to an isolated intersection.

for each step t do Observe s, a, r, s 0 ; Q(s, a)

(1 α)Q(s, a)+α(r + γ max a 0 Q(s 0 ,a 0)); if X ⇠U(0, 1) <εthen a 0 ⇠U(A); else a 0 max a Q(s 0 ,a);

P I M

Policy iteration methods aim at directly estimating the optimal agent policy of a given problem without needing to estimate value or quality functions. Learning automata (LA)-which were originally developed in the eld of mathematical psychology (Narendra and Thathachar,)-are functionally equivalent to simple policy iteration RL algorithms (Kaelbling et al., ; Nowé et al.,

). Learning automata were the rst RL algorithms to be applied to a TSC problem (Mikami and Kakazu,). Learning automata maintain a policy vector containing the probabilities of selecting a given action in A. After receiving a reward from the environment, the vector p is directly updated to take this feedback into account. Hence, LA circumvent the need for value or quality estimates by directly embedding these values as probabilities in their policy vector. Multiple types of learning automata can be derived from these guidelines and generally dier on three points: their reward model, scheme and statelessness.

L A P

Linear automata usually use three distinct reward models. The P-model is suited for rewards whose values are either 0 or 1, the Q-model when rewards are a distinct collection of symbols, and the S-model when rewards are within a continuous interval (Narendra and Thathachar,). LA schemes also dier on which vector update strategy to apply when receiving a reward. The two most common linear schemes are the linear reward-inaction (LRI) scheme, which only increases probabilities when the reward is positive, and the linear reward-penalty (LRP) scheme, which both increases probabilities if the reward is positive and decreases them if the reward is negative. For σ 2 [0, 1] and τ 2 [0, 1] two parameters respectively associated with the reward and penalty components of the linear automaton, these two schemes can be summarized using the update rules below shown on Equation .. Since these update rules guarantee that the policy vectors remain valid probability distributions, the agent policy is directly included in the probability vector in the form of a stochastic policy: each action of the action space is drawn according to its weight in the policy vector. While initially using a single policy vector regardless of the system Isolated Trac Signal Control Methods state (Nowé et al.,), linear automata can maintain multiple policy vectors p s , each associated with a state s of the state space S.

p a (p a + σr(1 p a) τ (1 r)p a , if a = a t p a σrp a + τ (1 r)(1 ||A|| 1 p a), else (.) M L A TSC
Regarding the application of LA to RL-TSC problems, several choices have to be made regarding their features. First, state-indexed policies ensure the algorithm behaves dierently depending on the current system state, which is crucial in trac signal control. Hence, the LA applied to trafc signal control will maintain a separate policy vector p s per system state. The reward scheme used for trac applications has to feature both negative and positive reward values, according to the reward function dened in section .. We consequently apply a S reward model within the [1, 1] interval where each reward is linearized to t in this interval by using the worst and best past observed rewards as the upper and lower bounds of the interval. Finally, the choice of using a LRI or LRP scheme is largely problem-dependent. Our experiences on TSC applications have shown that the LRP scheme was strongly superior to the LRI scheme since it took into account both good and bad action selection decisions. Indeed, by not taking bad action choices into account, the LRI scheme does not learn from wrong trac decisions even though they are essential in adequately routing trac. Additionally, the rst paper applying reinforcement learning to trac signal control featured a LRP algorithm (Mikami and Kakazu,). Based on these model choices, and by selecting identical parameters for both rewards and penalties (i.e., σ = τ), the LRP algorithm associated with a stochastic policy for isolated trac signal control is presented in algorithm .

Algorithm : Illustration of a linear reward-penalty with a stochastic policy applied to an isolated intersection. p s,a);

a 0 ⇠ p s 0 ;
. Classical Reinforcement Learning Methods

A M

Similarly to policy iteration methods, actor-critic methods establish a policy directly through a policy vector (i.e. the actor); and, similarly to value-based methods, the agent maintains quality estimates (i.e. the critic) and uses them to rene the policy vector iteratively (Grondman et al.,). While most actor-critic algorithms used in a TSC context use advanced rainbow-type models leveraging function approximation and other techniques (Gregurić et al.,), the general actor-critic framework allows to dene simpler schemes that do not rely on continuous state or action spaces or function approximation techniques (Crites and Barto,).

S AC A

We dene an actor-critic algorithm that merges mechanisms from Q-learning and linear automata dened above. Similarly to learning automata, the agent's policy of this actor-critic model is a probability vector p s associated with a given environment state, s. Additionally, and similarly to Q-learning, this actor-critic algorithm stores quality estimates in a tabular fashion and uses temporal-dierence methods to compute these estimates. By using the TD-error formula, which is dened as

δ = r + γq(s 0 ,a 0) q(s, a) (.)
where q(s, a) denotes the quality estimate of taking action a in state s, and the critic update rule dened as q(s, a) q(s, a)+αδ (Crites and Barto,) we obtain the quality function estimate update rule: q(s, a)

(1 α)q(s, a)+α(r + γq(s 0 ,a 0)) (.)

While similar in appearance to the Q-learning update rule dened in Equation ., it is important to note that in this case, the agent's following action a 0 , or the associated quality q(s 0 ,a 0) cannot be predicted by looking at the quality estimates alone, since they have to take into account the agent's (now separate) policy. It is, however, possible to estimate this future quality estimate by averaging existing state-action estimates weighted by the associated agent policy p s 0 : q(s 0 ,a 0)= X a2A q(s 0 ,a)p s 0 ,a (.)

Equations . and . allow to compute quality estimates using a separate policy vector. The policy vector is then itself updated using a linearized TD-error δ on the basis of the maximal and minimal observed TD-error values, δ min and δ max . The entire actor-critic algorithm is presented in algorithm .

Isolated Trac Signal Control Methods

Algorithm : Pseudocode illustration of an actor-critic leveraging Q-learning and linear reward-penalty mechanisms with a stochastic policy applied to an isolated intersection.

for each step t do

Observe s, a, r, s 0 ; δ r +(P a2A q(s 0 ,a)p s 0 ,a) q(s, a); q(s, a)

(1 α)q(s, a)+αδ;

if

P E C RL M

After presenting methods from three main reinforcement learning algorithm classes, our next task is to measure and compare their trac optimization performance. This series of experiments compares the Q-learning, linear reward-penalty, and actor-critic algorithm on an isolated intersection. More specically, the policy and data structures used by these algorithms are compared in order to establish whether one of them is best suited to deal with trac optimization tasks.

E S

The comparison of the three classical RL-TSC algorithms of the previous sections is done using the convergence experimental protocol (see section ..). The trac demand data is generated using an exponential law of parameter λ =0 .04 (see section ..) on a four-way isolated intersection using a NEMA-type signal cycle. Essential simulation parameters, are summarized on Table .. One could argue that using such a simple road network for these experimentations could render our results meaningless since they dier quite a lot from real-world scenarios. However, we argue that it is exactly because real-world applications are complex that our analysis work should start with simplied trac scenarios. Indeed, RL-TSC analysis itself seems to suer from the curse of dimensionality. It is much harder to explain how a given algorithm performs when it is combined with multiple layers of complexity, such as multi-agent learning, agent policy, or function approximation, than when it is used in a simple context. This observation explains why our analysis work is iterative in nature. By using the simplest road network at rst, we are able to identify which class of algorithm performs better as well to explain why. Using these results, we can then exclude other RL classes from the analysis as we increase the overall complexity of the model by adding, for instance, multiple intersections or function approximation techniques.

I P R

We measure a rst performance evaluation of the three classes of classical RL-TSC algorithms on an isolated intersection with an overall vehicle arrival rate of λ =0 .04 vehicles per second, randomly distributed across the incoming edges of the intersection. As one can see on Figure ., the convergence process of all three methods is highly straightforward, all methods triggering their end of training criteria (see section ..) around the th episode (for stopping parameters n = 10 and κ =3). While each method starts around the same cumulated waiting time levels, they then quickly form a distinct performance hierarchy, with actor-critic (average), linear rewardpenalty (average), and Q-learning (average) ranking from worst to best. We note that all the tested methods show an ability to learn to route trac as simulation episodes advance (although barely in the case of the actor-critic method). If only the classical Q-learning can outperform the xed Webster controller, it is still far from our optimal method, which has an average waiting time of .

If these results already give us an insight on which classical RL algorithms are adapted to trac signal control out of the box, they also clearly show the presence of a signicant performance gap in performance between otherwise quite similar reinforcement learning algorithms, which raises the question of how one might explain this discrepancy. Two-possibly overlapping-explanations can be given for these discrepancies when looking at RL theory. The rst explanation relates to agent policies, since Q-learning, which performs better, uses an ε-greedy policy while both LRP and actor-critic use a stochastic policy. The second explanation relates to the data structure being used by the algorithms in question. Indeed, Q-learning uses a Q-table to store quality estimates, while both LRP and actor-critic use stochastic vector to store information about the quality of state-action couples. Both of these hypotheses are investigated in the following two sections.

Isolated Trac Signal Control Methods

P I A

The rst hypothesis we investigate is the dierent agent policies being employed by these classical RL algorithms. Q-learning uses an ε-greedy policy, while both the LRP and actor-critic algorithms use a stochastic policy which might limit their performances. In order to verify this hypothesis, we run the same trac scenario as in the previous section while swapping the policies used by the three classical RL algorithms. We use a stochastic policy on a Q-learning algorithm by transforming Q-table rows in probability vectors by linearizing them during action selection. Conversely, we greedily pick the highest probabilities of the policy vectors of LRP and actor-critic policies while maintaining a probability ε of selecting a random action. This experiment aims to estimate whether a stochastic policy is inherently inferior to a greedy-type policy for the three classical RL algorithms in TSC applications. We plot the results of this experiment on Figure . by showing the three algorithms using two types of policies: greedy policies are shown in full lines, stochastic policies in dashed lines. These results give contrasted answers regarding our initial hypothesis. On the one hand, switching to an ε-greedy policy sensibly increases the performance of the LRP (in blue in the gure) and-in an even greater fashion-of the actor-critic algorithm (in yellow in the gure). On the other hand, we cannot conclude that stochastic policies are inherently inferior to greedy ones since the Qlearning method (in red in the gure) using a stochastic policy performs slightly better than the greedy version.

Our rst experiment, using alternative agent policies to explain the superiority of the Q-learning over LRP and actor-critic methods, cannot fully explain the dierence in performance between the three algorithms. However, this same experiment allows to conclude that Q-learning is the overall best classical RL algorithm for TSC applications given its superiority using multiple agent policies and that it should henceforth be applied to RL-TSC problems.

D S I A

The second hypothesis we formulated regarding the dierence in the performance of the three tested classical RL algorithms is that they employ dierent data structures to store their learning data. Q-learning stores quality estimates in a tabular fashion, LRP stores probability weights in policy vectors, while the actor-critic method uses both data structures in a hybrid approach. On the one hand, Q-learning stores cardinal values (i.e., an absolute measure of the quality of a stateaction pair), while, on the other hand, policy iteration methods store ordinal values (i.e., an order of preference of actions for a given state) in the form of probabilities. We argue that using an RL algorithm using ordinal values introduces several model limitations compared to cardinal values. First, models using ordinal quality estimates are unable to predict the future estimated value of a state, which are expressed in cardinal values, and as represented in the γ max a Q(s t+1 ,a) term of the Q-learning formula in Equation .. While the actor-critic algorithm circumvents this limitation by maintaining both a Q-table and a policy vector, the LRP algorithm is unable to determine the quality of a new state and can hence only use the reward value r as a quality indicator of a state-action couple, making it more limited than other methods. Second, one could argue that using a probability vector as a data structure imposes additional constraints on the storage of quality estimates. They must be probability values summing to , which forces linearization of the reward and TD-error values, potentially causing information loss.

Isolated Trac Signal Control Methods

In order to test this new theory, we run two modied versions of the Q-learning algorithm in the same simulation scenario. A rst version disables the role of future values estimates in the computation of quality estimates by setting the discount parameter γ to 0, rendering the learning agent entirely myopic to future rewards. A second version neutralizes the role of future reward estimates and also linearizes the state-action estimates before storing them in the Q-table, as if these values were stored in a policy vector, instead of computing them as policy vectors on-the-y before the action selection process as in Figure .. Finally, we run a modied version of the actor-critic which does not use the policy vector for action selection but tabular quality estimates similarly to the Q-learning, with the exception that these quality estimates are computed using a TD-error formula instead of the classical Q-learning formula. This last method is simulated to verify further if linearization is the root cause for degraded performance in the actor-critic algorithm. This second experiment, whose results are on Figure . proves our hypothesis correct. We rst notice that the quality estimates of future states, which are neutralized through the discount rate parameter γ, seem to have no inuence on the performance of RL-TSC algorithms. Indeed, both the standard (in yellow) and no-future quality estimates (in red) Q-learning algorithms show similar performance levels. This observation shows that, in the context of trac signal control, the quality of a state-action couple seems only to be dictated by how the chosen action directly impacts trac and not by how it could make the system transition to a more favorable state. In broader terms, this would imply that most good trac routing strategies aim at immediately acting on trac by lowering waiting times instead of aiming for medium or long-term strategies.

The second (and major) result of this experiment is that storing quality estimates in linearized form, eectively switching from a cardinal to an ordinal data structure, dramatically impedes the learning ability of Q-learning. A seen on Figure ., Q-learning using linearized quality estimates (in blue) has performance levels similar to those of LRP on Figure .. Conversely, the actor-critic method using a greedy policy coupled with tabular storage of quality estimates (using a dashed plot on the gure), hence circumventing the use of policy vectors and linearization, performs similarly to Q-learning, further proving the limitations of using ordinal quality estimates for RL-TSC applications. This last observation also shows no signicant dierence exists between a standard Q-learning estimate rule and the TD-error update used by the actor-critic algorithm. Finally, while this series of experiments has shown that Q-learning is the best classical RL algorithm for isolated trac signal control, its performance levels are still far behind what the optimal strategy approximation method has achieved in the same simulation setting, with an average cumulated waiting time of per simulation episode (which is around % lower than the standard Q-learning algorithm). This dierence in performance underlines the need for more sophisticated reinforcement learning algorithms and techniques, such as function approximation methods, which we describe in the next section.

F A T

The role of function approximation techniques, as described in chapter , is twofold. On the one hand, function approximation techniques can signicantly reduce the dimensionality of a RL task and cause faster learning convergence. On the other hand, they allow the learning agent to generalize past observations to decide how to handle unobserved states eciently. While dimensionality issues are not central since the state space dened in section . is quite dimensionality-ecient, the issue of generalization is crucial in trac signal control problems. For instance, the states 051111 and 051112 are highly similar in practice since they only dier by one vehicle on the last lane of the intersection. If these two states are hence likely to have similar value estimates, they are yet they are entirely unrelated from a learning standpoint, which means that the RL algorithm will have to visit these two states separately in order to estimate their value. This section explores two distinct manners to exploit function approximation to improve the classical RL-TSC methods tested in the previous section. The rst one uses a unique pattern that uses function approximation to bootstrap a Q-learning table to accelerate the learning process, while the second illustrates the use of deep neural networks to improve the standard Q-learning algorithm iteratively.

Q B

As stated in the introduction of this section, the main limitation of classical reinforcement learning techniques is their inability to predict the value estimate of a state they have not yet visited. This issue is particularly problematic in TSC applications since intersections have to test a certain amount of low-value state-action combinations, such as switching the current green phase when the associated lanes around the intersection have a large number of vehicles waiting on them. These state-action combinations have to be tested for exploration purposes but can cause signicant delays on the road network.

Isolated Trac Signal Control Methods

Q E B

A quite unorthodox rst-approach solution to the problem of generalization for tabular RL methods is to provide quality estimates to the agent before learning even starts through function approximation (Matignon et al.,). In the case of Q-learning, this bootstrapping method would pre-estimate each state-action entry of the Q-table with an estimation of its value. Such a solution requires estimating the impact of each trac control action (i.e., extend or switch the current green phase) on each possible trac state in terms of cumulated waiting time dierence. This approach is hence on the margin of function approximation techniques: we do use a function to approximate quality estimates of the states of the environment, but we only do so before learning occurs, at which point we use a classical RL algorithm. To the best of our knowledge, using an approximation function to pre-populate the entries of a Q-table in a RL-TSC context had never been done before we published a paper on the matter (Tréca et al., b).

s t / a t 0 1 s 1 0 0 s 2 0 0 s m 0 0 s t / a t 0 1 s 1 Q(s 1 , 0) Q(s 1 , 1) s 2 Q(s 2 , 0) Q(s 2 , 1) s |A| Q(s A , 0) Q(s A , 1)

E F

Our bootstrapping method relies on estimating the quality of each state-action pair of the environment by computing the reward associated with applying each action to each trac state of the state space. In practice, computing the reward of each state-action pair requires to estimate the dierence in waiting time before and after an action was applied to a particular trac state, which requires prior knowledge of the environment, most notably trac demand around the intersection. For phase-based action types, the quality of an action is measured by estimating, for each lane, the number of vehicles that were present in the lane at the beginning of the action (denoted by o) and vehicles that entered the lane while the action is being applied (denoted by n). For both groups of vehicles, it is possible to estimate the number of vehicles that exited the lane (denoted by a) and the vehicles that stayed on the lane (denoted by a +) and measure their respective impact on the overall waiting time. By supposing that each vehicle leaving the intersection lowers the cumulated waiting time by T l , which is the average service time associated with lane l (and which is computed by modeling each trac lane around the intersection as a M/D/1/K queue, as shown in our paper), we can estimate the quality of a specic state-action pair in a phase-based action space to be equal to:

Bootstrapping refers here to the action of pre-lling the Q-table with estimated state-action quality values and is hence dierent for the concept of bootstrapping in the RL literature which refers to the technique which consists in using values estimates to update other value estimates in methods such as temporal-dierence learning.

. Function Approximation Techniques

Q(s, a)= X l T l ⇥ (n l,a + o l,a) a ⇥ (o + l,a + n + l,a) (.)
Note that Appendix B provides a complete description of this approximation algorithm in pseudocode form. This approximation method provides several advantages compared to the traditional Q-learning algorithm. First, while not providing exact values for the quality of each stateaction pair, these estimates are still much closer to their actual quality function than default values of 0, which are typically used with Q-learning. Second, bootstrapping can occur without starting a trac simulation and hence operate in a completely oine manner. This last point presents a signicant advantage in computational resources since oine computation is signicantly faster than online. Finally, if this approximation method has only been tested for phase-based actions, we believe that this method could easily be adapted to step-based actions by modifying the estimation model presented above.

B

These eciency claims have been tested according to the experimental protocol described in section ... The standard and bootstrapped Q-learning techniques are compared on dierent simulation scenarios on an isolated intersection, each composed of episodes of steps each. In each tested scenario, the overall vehicle arrival rate is xed to λ =0 .06 vehicles per second, but the distribution of this arrival rate between the lanes of the intersection diers between scenarios. As one can see by looking at the waiting time evolution per episode for these trac scenarios on Figure ., bootstrapping signicantly improves the early performance of the Q-learning agent, which is strongly superior to the standard Q-learning algorithm for an average of simulation episodes. The computation time needed to achieve similar results also strongly favors the approximation method: the entire oine bootstrapping process took around seconds, whereas the online simulation training for the standard Q-learning method took around two and a half minutes. A last crucial point to mention is that while this approximation method does speed up the initial convergence process of a phase-based Q-learning agent, it does not improve its overall performance since it reverts to a classical Q-learning algorithm once online learning occurs. This statement can be veried on Figure . after episode when the standard Q-learning method catches up with the approximation method. Hence, this method does increase the speed at which a Q-learning agent reaches acceptable performance, and it does not make the learning algorithm better at its task, which is a problem more likely to be solved by bonade function approximation techniques, as presented in the next section.

F A QL

The literature review of chapter has shown the plethora of function approximation techniques that can be applied to trac signal control. Most notably, we have seen in the literature review of chapter the DQN method is believed to be one of the best available function approximation methods for a broad range of RL problems (Gregurić et al., ; Hessel et al.,). This fact, coupled with the conclusion of section .. stating Q-learning-based methods are superior in isolated trac situations, lead us to develop a deep Q-learning model for RL-TSC. This section hence iteratively builds a deep Q-learning method starting from a simple deep Q-network (DQN). We then dene a number of RL-specic techniques that are gradually incorporated into this DQN method, explaining their purpose and limitations along the way.

D Q

The rst signicant shift from a classical Q-learning method to a DQN method is the introduction of a neural network (see section ...) as a function approximator (Mnih et al.,). If the overall components of a neural network (see Figure .) do not change across dierent models, its architecture can greatly vary depending on the problem at hand and the kind of input data it receives. Networks using image data as inputs are likely to feature convolutional layers, while models aiming at establishing temporal links between input vectors are likely to include recurrent features. Regardless of the architecture of the DRL model, the overall learning mechanisms remain the same: the current system state s is used as an input vector of the neural network, which outputs a vector of size |A| containing the estimated quality of each action available to the agent. Upon applying action a to the environment and observing its actual quality in the form of a reward r, the agent computes the dierence between the estimated and the observed quality of the state-action pair using a loss function L. This loss is then backpropagated to update the weights θ of the neural network using gradient descent methods such as Adam or RMSprop (Zou et al.,).

. Function Approximation Techniques

I 1 I i H 1 H n O 1 O j Figure .
: Simple illustration of a fully connected neural network. An input vector of dimension i goes through a single hidden layer of dimension n and results in an output vector of dimension j.

E R

One of the leading causes of convergence issues of function approximation techniques seen in section .. is due to the fact that the system transitions observed by the learning agent are strongly correlated (i.e., the choice of a state-action couple (s, a) inuences the choice of the following one, (s 0 ,a 0)) and that their distribution is non-stationary (i.e., the likelihood of observing a specic state-action pair directly depends on the current quality estimates and policy of the agent).

A solution used to alleviate these issues is the use of experience replay: the agent maintains an observation buer D that stores all system transitions (s, a, r, s 0) observed by the agent (either all observations or the last N ones) and samples the observations used for learning from this buer. Experience replay breaks correlation between samples and allows for batch normalization (i.e., sampling multiple observations at once, increasing learning stability and convergence speed) when learning (Riedmiller,). A common limitation of experience replay is that observations of the replay buer D are sampled uniformly, meaning that the least commonly observed states (which might be the most important) have a low probability of being sampled. The use of prioritized experience replay alleviates this issue by sampling observations according to their TD-error value: the highest the TD error, the more likely the agent needs to learn from this specic observation, and the higher its selection probability is (Schaul et al.,).

T N

Using the same neural network to evaluate the value of a given state and for learning can cause it to oscillate due to frequent weight updating, a phenomenon known as the moving-target issue (Hessel et al.,). A common solution to these oscillation issues is to use two distinct networks for value estimation and learning: a target network θ T with frozen weights is used to evaluate the loss while a value network θ V is used for learning from these evaluations. The weights of θ V are transferred to θ T every K steps to limit the moving-target issue (Gao et al.,).

D Q

The use of two distinct networks for evaluation and learning also oers the possibility of further separating the role of both networks. Indeed, for a transition (s, a, r, s 0), deep Q-learning estimates the quality Q(s, a) using reward r and the value of the next system state s 0 by estimating the quality of best next state-action couple, Q(s 0 ,a 0). In regular deep Q-learning models, both the best next action a 0 and the associated quality Q(s 0 ,a 0) are estimated all at once using weights θ, while deep Q-learning using target networks will estimate the best next action and the associated quality Q(s 0 ,a 0) using the value network θ V . Double deep Q-learning (Hasselt,) is an extension of simple DQN models aiming to avoid overestimations during the Q-learning target update by further separating the role of each network. The best next action is chosen using the current evaluation network θ V , while the quality estimate of the corresponding state-action pair Q(s 0 ,a 0) is computed using the target network θ T , increasing estimation robustness and decreasing the likeliness of model over-estimation (Gregurić et al.,).

D N

Dueling networks (Wang et al.,) are another extension of DQNs which use two distinct estimators within the neural network to evaluate the value of a state V (s) and quality of a state-action pair Q(s, a) (see section .) separately (Gregurić et al.,). More specically, the second estimator computes the advantage of each state-action pair, A(s, v)=Q(s, a) V (s), which represents the relative value of an action compared to others for a given state. Separating the evaluation of states allows learning which states are intrinsically valuable for the agent regardless of which action is being applied to it, which allows identifying states in which actions do not inuence the environment in any meaningful way (e.g., a trac state in which no vehicles are present), further speeding up the learning process (Liang et al.,).

DDQN DQN A

The two reinforcement learning techniques presented in this section, double Q-learning and dueling networks, can be used to form various deep RL methods. A deep Q-network used with double Q-learning forms a double deep Q-network (DDQN), while using a dueling network on a deep Q-network forms a Dueling deep Q-networks (DQN). Merging both techniques results in the state-of-the-art DQN algorithm used in most recent RL-TSC models (Gregurić et al.,), which is used in a number of recent RL-TSC models (Calvo and Dusparic, ; Wang et al.,).

Given the recent development of the dueling deep Q network technique (), some models feature only double deep Q-learning, or DDQN, models (Gao et al., ; Genders and Razavi, ; Van der Pol,) while showcasing excellent performance levels. A pseudocode illustration of both algorithms (depending on the underlying neural network architecture) is presented in algorithm .

.

Function Approximation Techniques

Algorithm : Pseudocode illustration of a DDQN/DQN algorithm.

Initialize θ T and θ V with random weights ; Initialize empty buers D and P; for each step t do Observe s, a, r, s 0 ; D D+(s, a, r, s 0); P P+(|Q(s, a) r + γ max a 0 Q(s 0 ,a 0)| +0.01);

if |D| B then Sample (s B ,a B ,r B ,s 0 B) ⇠P; a ⇤ B max a 0 B Q(s 0 B ,a 0 B ; θ V); L =(Q(s B ,a B ; θ V) r B + γQ(s 0 B ,a ⇤ B ; θ T)) 2 ; Update weights θ V using L; if X ⇠U(0, 1) <εthen a 0 ⇠U(A); else a 0 max a Q(s 0 ,a; θ V); if t | K then θ T θ V ; A F A T S C
After presenting the various ways function approximation techniques can be applied and rened on learning problems, our nal task is to gauge the eectiveness of these techniques on trac signal control optimization. This section studies the eect of the function approximation techniques presented above, one by one, on an isolated intersection in order to produce the most ecient isolated reinforcement learning algorithm for trac signal control.

N A

The rst step regarding the construction of an ecient RL-TSC method using function approximation is the choice of its architecture, which is the organization of the hidden layers of its neural network. An important point to underline is that, besides being usually problem-dependent, the architecture of a neural network also largely depends on the type of inputs this network is expected to receive. This point is crucial since papers applying deep Q-learning methods to trac signal control usually provide complex state information as inputs for their neural networks, usually in image form, which requires the associated network to treat these images using multiple convolutional layers A(s, 1) The neural network architecture used for our experiments, presented in Figure ., features four fully connected layers of neurons each. Each layer is associated with a ReLU rectier, which is a prevalent activation function in the deep RL literature (Ramachandran et al.,), and a batch normalization layer which accelerates learning by normalizing inputs between layers (Ioe and Szegedy,). Not that we do not include dropout, a mechanism used to randomly drop weights between layers, to our neural network since they are not necessary when applying batch normalization (Li et al.,). When dueling networks are implemented (as in Figure .), two distinct layers are used to compute the advantage and state value separately before combining them; if this feature is not implemented, a fourth regular layer directly computing the state-action quality is used instead.

V (s) Q(s, 0) Q(s, 1)

D Q E R

This section measures the impact of function approximation alone (i.e., using a deep neural network instead of a tabular data structure) and of function approximation with experience replay on the performance of an isolated intersection with an overall arrival rate of λ =0 .04 for . Function Approximation Techniques episodes of simulation steps each. This experiment once again uses the experimental protocol dened in section .., and uses the hyperparameters dened in Table . and Table .. Tested on a single intersection with an arrival rate of λ =0 .4. Batch normalization is used on deep Q-learning with experience replay.

Results of this rst experiment on Figure . underline the importance of both function approximation and experience replay. Due to the absence of generalization from past experiences, the standard Q-learning method (in red) very quickly converges to acceptable performance levels but reaches a performance plateau due to its inability to fully exploit its interactions with the environment, similar to what has been observed in section ... The use of function approximation with a basic deep Q-learning technique (in blue) allows for generalization and hence better performance and increased stability. However, the need for both function approximation and experience replay seems to be crucial in RL-TSC applications. Indeed, the tested method using both techniques (in yellow) greatly outperforms the others. Instead of learning from one observation at a time, learning from batches of B = 100 observations allows the agent to revisit the same trafc transition multiple times and quickly converge to improved performance levels. Hence, both function approximation and experience replay is vital in building an ecient RL-TSC method.

D Q D N

After validating the need for deep reinforcement learning coupled with experience replay for efcient trac signal control, we turn our attention to the additional techniques presented earlier, such as using target networks, double Q-learning, and dueling networks. Since we are condent in the robustness of the DQN methods we are testing, we measure their performance on an isolated intersection with a near-saturation ow rate of λ =0 .6, once again randomly distributed Isolated Trac Signal Control Methods across the lanes of the intersection. The following combination of techniques is incrementally tested: DQN with experience replay and target network (DQN), DQN with double Q-learning (DDQN), DQN with dueling networks (DQN) and, nally, DQN with both double Q-learning and dueling networks (DQN). While it would seem logical to predict that the most advanced technique should yield the highest performance metrics, using a learning model that is too complex for a given learning task will at best complexify the model for no valid reason (and hence increase training time) and at worse decrease the learning performance the model due to overtting (Vapnik and Izmailov,). Simulation results of Figure . show that all the tested methods provide somewhat similar cumulated waiting time levels. Detailed average cumulated values over simulation episodes, shown on Table ., gives, however, insight into the comparative performances of these function approximation methods. The best method, in our experimental setting, turns out to be dueling deep Q-learning (DQN). Interestingly, double Q-learning, which is often used in the RL-TSC literature, seems to have no eect when used on its own compared to a standard deep Q-learning method and seems to slightly degrade performance when used in conjunction with a dueling network (see the yellow plot on Figure .). While no clear-cut answer can be given as to why such a phenomenon is present since double Q-learning has been developed to limit over-estimation issues in deep Q-learning (Van Hasselt et al.,), the fact that the trac signal control problem at hand is relatively much more straightforward than the Atari games on which the original algorithm was tested or complex trac state representation using images could explain why such . Function Approximation Techniques an addition would be unnecessary in our model and slightly degrade performance. Conversely, the relatively helpful addition of a dueling network in the RL-TSC model seems to indicate that increased discrimination between low and high-value states is benecial to TSC-related learning.

Algorithm

Episodes -Episodes - Based on these ndings, we decided to use dueling deep Q-learning (which we abbreviate to DQN as to not confuse it with DDQN, which stands for double deep Q-learning) as the deep RL method of choice for trac signal control and will use this method as a benchmark for tackling agent coordination in the next chapter.

Deep Q-learning Double Deep Q-learning Dueling Deep Q-learning Dueling Double Deep Q-learning

::::

This chapter has analyzed a wide array of RL-TSC methods on isolated intersections. As stated in section ..., we rst voluntarily restrict the road network scope to a single intersection in order to analyze the eect of RL algorithms and policies with as little noise as possible before extending this scope to multi-intersection networks in chapter .

This chapter rst presented deterministic methods in order to use them as reference benchmarks when studying RL-TSC algorithms. First, we described the classical Webster method, which assigns green phases according to the demand prole of each line around an intersection. We then presented a novel near-optimal method using SUMO's ability to save and load simulation states. Both of these methods provide average and optimal benchmarks for isolated RL-TSC performance, respectively.

We then discussed the respective merits and shortcomings of classical (i.e., not using function approximation) RL methods. We compared algorithms for three main classes of RL methods: Q-learning for value-based, LRP for policy iteration, and a hybrid of the two previous algorithms for actor-critic methods. Experiments have shown that Q-learning provides the best performance for our experimental settings regardless of its policy, making it our preferred class of method for the remainder of our research.

Finally, we discussed the use of function approximation techniques for isolated RL-TSC methods. Experiment results have rst shown that both function approximation and prioritized experiment replay were essential for proper learning convergence. We then presented a wide array of function approximation techniques, such as target networks, double Q-learning, and dueling networks, in order to identify which combination of these techniques could yield optimal performance levels. The results of this second experiment have shown that combining deep Q-learning, prioritized experience replay, target, and dueling networks in a method known as DQN reached the best possible performance in our experimental setting. The previous chapter's trac optimization study led us to identify dueling deep Q-network (DQN) as the algorithm of choice for trac optimization on isolated intersections. As underlined in chapter , however, trac optimization over multiple intersections is essential for proper trac signal control as single-intersection networks are seldom encountered in real-life trac scenarios. As the extension of the trac model to a multi-agent setting is hence necessary, this shift raises the central question of the interactions between the multiple agents of this new model. Since MARL models can both choose to ignore (in the form of independent learning) or model agent interactions (through coordination methods), the rst objective of this chapter is to measure whether agent coordination is needed in the context of trac signal control by comparing independent and coordinated learning methods. If coordination is shown to be benecial to trafc signal control performance, our second goal is then to explore which forms of coordination are most benecial for trac optimization. Since multiple forms of agent coordination-such as indirect and direct coordination in the RL literature (Panait and Luke,) or green waves in trafc engineering,-are applicable in MARL models, these methods will be tested one by one in a multi-agent setting.

Coordinated Trac Signal Control Methods

I L

The simplest form of interaction to consider between agents in a MARL model is independent learning, in which agents do not acknowledge each other while learning in the same environment. While simple in nature, independent learning models have several benets, such as high scalability (since agents learn independently from each other and can hence be freely added or removed from the road network) and excellent performance for relatively low complexity, as seen in the simulation results of the previous chapter. Preventing the modeling of agent-to-agent interactions does not, however, allow for agents to share observations or learned policies, which proves helpful (and sometimes crucial depending on the learning task) in accelerating their learning process (Tan,). The use of independent learning for the study of coordination methods hence plays a central role in the evaluation of coordinated RL-TSC methods since it is not only considered as a coordination option to route trac but also as a benchmark used to generally measure the added benet of agent coordination in the specic case of RL-TSC tasks.

O M MARL C

As explained in chapter , the shift from a SARL to MARL model has a number of consequences on the RL-TSC model at hand. The rst consequence of this switch is that the approximation method dened in section .. is likely to not guarantee optimality anymore. Indeed, in the isolated case, the intersection can easily compute an approximation of the optimal strategy since it is the only agent aecting the network. However, in the MARL case, multiple intersections will aim at computing an optimal strategy step by step without explicitly knowing the strategy of its neighbors. In other words, since agents computing their optimal strategy cannot guess which strategy their neighbors are going to apply, the resulting strategy has no guarantee to be optimal or near-optimal. Note that it would be possible to design a multi-agent version of the optimal strategy approximation algorithm, which computes an optimal joint strategy at the cost of much higher complexity. However, we emit the hypothesis that neighboring intersections' inuence on the optimal strategy of an intersection has little inuence on the overall performance levels of the algorithm in practice. This hypothesis is based on an experiment shown in section ..., which shows that vehicles coming from neighboring intersections have little eect on the performance of an intersection in the short term. It should, however, be noted that while we apply the same nearoptimal strategy search algorithm, its computational costs are much higher since each intersection has to compute its optimal strategy approximation algorithm separately.

I L P

The primary consequence of extending the learning model to a multi-agent setting is the introduction of non-stationarity and higher learning instability due to concurrent agent learning. Since independent learning methods do not provide explicit mechanisms to deal with these issues, the introduction of multiple learning agents on a road network could inuence the hierarchy of function approximation methods dened in section .., which concluded in the superiority of the DQN controllers for trac signal control in an isolated intersection setting. This section hence presents a control experiment checking whether the results obtained on an isolated intersection still hold true in a multi-agent setting. This experiment compares the DQN method with the . Independent Learning DQN method, which has also been used in a multi-agent MARL scenario (Calvo and Dusparic,) and a standard DQN algorithm in a simple multi-intersection network in order to verify if their performance hierarchy changes with the introduction of multiple agents.

C I M

The rst manner in which these independent methods are compared is, as done previously, by measuring their average convergence trajectory over dierent trac scenarios. This protocol is explained in detail in section ... We test these methods on a two-by-two grid network composed of four intersections, each implementing an independent version of their RL-TSC algorithm. Trafc demand generation is done according to the protocol detailed in section ... The arrival rate is xed to λ =0 .015 on average per entry-exit edge pair on the network. The learning hyperparameters used for this experiment are listed in Table . andTable .. Results displayed on Figure . show the cumulated waiting time evolution for these methods averaged over ve distinct trac scenarios, for episodes of steps each. First, these results conrm that the relative eciency of these methods does not seem to be aected by the shift to a MARL model, as they are similar to the single intersection results of Figure .. Indeed, the DQN algorithm still yields the best overall performance in terms of cumulated waiting time, while the DQN method still displays a relatively high learning instability as observed in the isolated intersection scenario of section ... Overall, these results show that while DQN and DQN are each relatively close to the (unattainable) optimal strategy performance levels, the DQN algorithm is slightly more ecient on average, making it our preferred method for inde-Coordinated Trac Signal Control Methods pendent multi-agent learning. In its independent multi-agent version, this chosen algorithm will be referred to as independent dueling deep Q-network (IDQN).

P I M

While the analysis of the convergence process of the various methods in the previous paragraph already underlines essential information regarding their eciency, it does not reveal their entire trac routing capabilities. Indeed, as mentioned in section .., the convergence analysis of RL-TSC methods do not entirely measure their abilities for multiple reasons. First, these methods are still in the learning phase when being compared and use associated mechanisms such as statespace exploration (i.e., by using a random action selection policy parameter ε>0). Second, since convergence performance measurements are computed over entire simulation episodes, there is little information about the performance variability of these methods within a simulation episode or across dierent simulation scenarios.

Since performance variability of RL-TSC methods is a characteristic we wish to observe, we compare the independent function approximation techniques of the previous section according to the performance protocol described in section ... Multi-agent performance evaluations measure the cumulated waiting time evolution within a single simulation episode. More specically, we measure the minimal and maximal cumulated waiting time of the DQN, DQN and DQN methods over distinct trac scenarios of steps each. These simulation results are shown on Figure .. The experimental parameters are similar to those of the previous section. Performance results conrm our intuitions regarding the independent methods we tested. All methods display a large variability regarding overall cumulated waiting times, which indicates . Green Wave Coordination a substantial variety of the simulation scenarios we tested (cumulated waiting times vary from around to depending on the trac scenario). The mean cumulated waiting times for these methods are relatively close to each other (for DQN, for DQN and for DQN). While displaying the most extensive variability of all, by simultaneously yielding the best and worst overall simulation results depending on the tested scenario, the DQN method is inferior to the DQN method from a mean performance standpoint, which is considered essential since reduced performance variability should ensure a more stable convergence of the learning process on a broader range of trac scenarios. Consequently, our choice to use the DQN method we formulated in chapter is maintained in multi-agent settings.

G W C

Explaining why communication and coordination between intersections should be used is a surprisingly complex issue that arises when reading the RL-TSC literature. Indeed, many literature papers proposing modern and coordinated trac signal control methods claim that interactions between intersections of a road network are benecial in optimizing trac, usually proving this claim with plots showing the superior performances of these multi-agent methods. However, these papers seldom explain how coordination makes optimizing trac easier . A satisfying answer to this question can nonetheless be found in the trac engineering literature, which has the benet of directly describing coordination methods that have been applied in real-world contexts for decades. Consequently, the rst coordination mechanism we study are green wave coordination techniques, which are extremely common in real-world trac applications, and have the advantage of being quickly developed in trac simulation settings (as opposed to many proprietary trac routing methods whose source code is not accessible).

G W C M

The main goal of green wave coordination is to allow for continuous vehicle movement along an arterial or major street by properly osetting green phases on their trac controllers. When correctly executed, green waves decrease the number of stops and delays along these arterials. A major point to note is that green wave coordination is not always desirable. Indeed, the US trac signal timing manual states that intersections must be close to one another and share the same cycle time, and that signicant trac must occur between them for coordination to be benecial (Koonce and Rodegerdts,). Green waves are designed around three key parameters: cycle time, oset and split time. First, the cycle time of all intersections within the green wave must be identical for synchronization purposes and is hence computed to best t the trac demand of all these intersections, for instance, using Webster's formula (see section ..). The osets between intersections represent the delay with which they will successively apply the same green phase along the arterial, hence creating a green wave. Osets are equal to the ratio of the authorized speed divided by the length of the streets of the arterial, which approximates the time it takes A notable exception is featured in the paper of Wei et al., which aims to equalize queue pressure across intersections, which has been proved to result in optimal intersection throughput (Wei et al., b) the Manual on Uniform Trac Control Devices recommends a maximum length of m between two intersections for coordination

Coordinated Trac Signal Control Methods

a vehicle to travel from each intersection of the arterial to the next. Finally, split time designates the organization of the remaining phases of the intersections within their respective signal cycles, with the constraint that the arterial green phase repeats at xed time intervals to preserve the green phase osets. The trac signal settings giving way to a green wave along a specic path are typically represented using a time-space diagram, as shown on Figure ..

G W M

This section proposes two distinct trac control methods relying on green wave coordination to test their eciency. As noted previously, green wave coordination requires additional preprocessing compared to other forms of trac light coordination since key arterials have to be identied on the network. Their associated cycle time and osets have to be computed beforehand.

F G W M

The rst green wave coordination method is a xed method akin to most real-world implementations. Once one or more arterials are identied on the network, and their associated trac demand obtained, we compute the optimal cycle time of each intersection using Webster's formula (see section ..) and use its average value per arterial as the arterial's cycle time. We then manually compute osets and apply them along the arterials. The resulting method is a xed green wave trac signal method that is not adaptive but provides a good performance baseline.

A G W M

The second green wave coordination method is an adaptive extension of the rst, which relies on the DQN method instead of Webster's formula to compute the splits within the signal cycle.

Since green wave coordination relies on xed-time signal cycles to ensure coordination along the arterial, the adaptive green wave method can only compute the relative length of each phase within this signal cycle. The action space of this method is hence necessarily phase-based, as the agent

. Green Wave Coordination has to choose the entire length of the major arterial green phase in advance due to signal cycle constraints. While this method suers from the limitations associated with using a phase-based action space (see section .), it should, however, benet from built-in coordination mechanisms inherent to this method which do not have to be learned, and of the eciency associated with DQN methods.

Algorithm : Illustration of the coordinated green wave algorithm. This algorithm is implemented on intersections featuring two green phases but can be adapted for a larger phase amount. Variable C represents the total cycle time, which is equal on all intersections along the arterial. Learning, sampling, and target network update operations of DQN are omitted for brevity.

Initialize g v to ; for each intersection v of the network;

for each step t do for each intersection v do Observe s v ,a v ,r v ,s 0 v ; if g v = ; then if X ⇠U(0, 1) <εthen a 0 v ⇠U(A); else a 0 v max a Q(s 0 v ,a v ; θ V v); g v a 0 v ; else a 0 v C g v 2d min ; g v ;;
G W P This section evaluates the performance of the two green wave methods described in the previous section, especially regarding the usefulness of green wave coordination. In order to do so, we compare the xed green wave method to some of its non-coordinated counterparts, such as xed signal cycles or signal cycles computed using Webster's formula. To isolate the coordinated feature of the adaptive green wave method, we pitch it against the IDQN method of section ., which represents our best RL-TSC method so far. This comparison is made according to three distinct axes: convergence analysis, performance analysis under normal trac conditions, and performance under saturated trac conditions.

G W C

We rst test the green wave coordination methods and IDQN controllers by looking at their convergence according to the protocol dened in section ... These methods are tested on a simple -intersection network which features a main arterial, as pictured on Figure .. Trac data is generated specically to create higher trac demand along the main arterial of the network: each edge pair at the edge of the network has a base ow rate value of λ =0.06 vehicles per step. If the starting edge of the pair is located on the arterial (i.e. horizontally next to intersections u 1 and u 4 on Figure .), this ow rate is increased by 0.01. Similarly, if the ending edge is located on the arterial, the ow rate parameter is also increased by 0.01. Once the ow rate of each edge pair is computed, trac is generated according to the protocol of section ...

Coordinated Trac Signal Control Methods

We rst compare the convergence trajectories of the DQN and coordinated green wave methods over episode runs of steps each, averaged over ve distinct trac scenarios. Figure . showcases the cumulated waiting time evolution per episode of each method. Multiple key points can be deduced from these results. First, a clear hierarchy can be established regarding xed, non-adaptive methods: the green wave Webster algorithm outperforms the regular Webster algorithm quite signicantly, which highlights the usefulness of green wave coordination for xed methods. This comparison obviously does not include the optimal method, which is used as a lower performance bound that cannot be beaten by RL-TSC methods.

Regarding the two adaptive methods, the rst point to notice is that both methods converge to similar performance levels, eventually the xed green wave coordination method. We do, however, notice that the convergence process is faster in the green wave coordination case, which is likely because the green coordination mechanism of this method is not learned but forced on the intersections, giving this method an advantage in the early simulation episodes. This observation also proves our earlier hypothesis stating that these built-in coordination mechanisms would inuence trac performance more than the use of phase-based actions, which are less optimal than step-based ones (Tréca et al., a). Table . illustrates the evolution of the convergence process of both methods and shows the slight superiority of the green wave coordination method throughout simulation iterations.

Average Waiting Time -----

Deep Q-learning Adaptive Green Wave

P N T C

As stated in the previous section, studying the convergence process of a RL-TSC method is not always sucient to study its eectiveness. Indeed, performance evaluations allow comparing multiple RL-TSC methods post-training while eliminating sub-optimal action choices due to exploration. Such a comparison is even more necessary when comparing IDQN and the green wave coordination method since both methods do not choose actions at the same rate (since the IDQN method is step-based and the green wave method phase-based), which might cause an additional bias since the former chooses actions much more frequently than the latter, and is hence more likely to choose random actions often. We hence measure the performance of the IDQN and coordinated green wave method using the performance protocol dened in section ... This experiment is conducted over distinct trac scenarios using a non-saturating base ow rate of λ =0.06.

The performance outputs of the IDQN and adaptive green wave methods of Figure . conrm the superiority of the green wave method. Indeed, one can observe that trac scenarios using the adaptive green wave method (in blue in the performance plot) are shorter, as symbolized by the shorter size of the plot along the x-axis, indicating that vehicles generated up to simulation step are reaching their destination faster. Furthermore, the adaptive green wave method shows better average performance than the IDQN algorithm, as one can see with the relative position of both curves while suering from less performance variability, as shown by its smaller surface area on green wave coordination method were obtained in a trac scenario featuring optimal parameters for the use of green wave coordination. Indeed, our experiment features a main arterial composed of multiple close intersections with a relatively normal trac demand along the arterial, which encourages green waves along the arterial.

P S T C

Given their strongly dierent nature, the last point to consider when comparing the IDQN and green wave coordination methods is their resilience to saturated trac conditions. Indeed, while the IDQN method should learn to adapt regardless of the trac conditions due to its adaptive and independent nature, the built-in coordination mechanism of the green wave method is not guaranteed to function if the trac is saturated or over-saturated as bandwidth solutions often result in poor performances in these situations (Koonce and Rodegerdts,). In order to evaluate whether these limitations aect the adaptive green wave controller, we run a second performance evaluation in near-saturated trac conditions with a base arrival rate of λ =0.08 vehicles per step. The rest of the simulation parameters remain similar to those of the previous section. Results of this second evaluation are on Figure .. Performance evaluations in a saturated road network of Figure . conrm our original hypothesis regarding the poor robustness of the green wave coordination method in near-saturated trac conditions. Both the IDQN and green wave methods suer from worse performance levels which are mechanically due to higher trac demand. However, the increase in cumulated waiting time is much higher in the green wave case (%) than in the IDQN case (%). Furthermore, the performance variability of the green wave method signicantly increases in near-saturated conditions (% between the best and worst trac scenario), while the IDQN performance variability remains in line with normal trac ow levels (%), showing greater exibility.

O A G W C M

Given the multiple experiments conducted in this section so far, our conclusions regarding green wave coordination eectiveness are contrasted. While our deep learning-based green wave coordination method is overall more ecient than the IDQN controller, these results only in an experimental setting featuring an arterial with pre-computed osets between intersections and regular trac demand going mostly along this arterial; all of which highly favor the green wave coordination method. These superior results do not hold as soon as these specic settings are changed, as illustrated by the subpar performances of the green wave coordination methods in near-saturation trac ows in the last section. This remark underlines the relative utility of the green wave coordination method since it requires a specic trac demand and network topology to provide optimal performance. This point has been confronted before by Wagner et al. () in their paper questioning the overall usefulness of direct agent coordination in TSC systems:

While arterial coordination can be demonstrated to yield gains in eciency under fairly mild conditions, the coordination of a whole transport system is not as simple.

In addition to the mathematical and organizational challenges that come with this task, it is also not clear what can be gained. So, an optimum solution might turn out

Coordinated Trac Signal Control Methods

to be just a few percent or so better in reducing delays, emissions, and even crashes, leading to the question whether it is worth the eort.

While we tend to agree with these conclusions concerning our experimental results, which explains why we do not pursue green wave coordination techniques further in this thesis work, it should be noted that an IDQN method that could automatically switch to green wave coordination when specic trac demand conditions are met (e.g., non-saturated trac ows along arterials of a road network) would provide the best of both the IDQN and green wave coordination methods. However, some computational challenges (e.g., implementing step-based green wave coordination, which is a non-trivial scheduling task, or automatically detecting arterials on a large road network and computing its oset values) would have to be tackled to implement such a hybrid method.

I C

In their state-of-the-art paper regarding cooperative multi-agent learning, Panait and Luke () dene indirect communication methods as "those which involve the implicit transfer of information from agent to agent through modication of the world environment.". In the realm of RL-TSC, the modication of the world environment usually occurs through modications of the state space of the learning agents, as action space modied is associated with direct coordination (see section .). Hence, indirect coordination applied to TSC relies on letting agents receive information besides their immediate local state without explicitly coordinating and making them exploit this additional data during their learning process.

I C M

All MARL TSC methods using indirect coordination rely on state augmentation. A straightforward manner to augment the state space of a coordination-free TSC method to achieve indirect coordination would be to directly include features from the state information of neighboring intersections into the state space of each intersection of the network, hence increasing the knowledge of the true system state of each intersection. While such an approach is theoretically feasible and has even been applied in practice (Nishi et al., ; Wei et al., b), it is subjected to dimensionality issues when the number of external state features increases. Even when parsimoniously including neighboring agent state features in an agent's state representation, the exploration process can become unbearably slow due to the curse of dimensionality (Genders,). This increase in dimensionality is also the main obstacle to using centralized learning in RL-TSC applications, since the concatenation of all intersection-level state representations of an entire road network would make the state space of the problem skyrocket, making exploration impossible in practice for the centralized agent (Yau et al.,).

While indirect coordination methods suer from certain limitations due to dimensionality considerations, they remain the most popular form of agent coordination in the RL-TSC literature mostly due to their exibility and ease of implementation. Indeed, such methods rely on letting agents observe more features of the environment than what they would observe in an independent setting; and this additional data can be exploited in many dierent ways depending on the underlying RL-TSC method, ranging from state augmentation to more complex joint action computation (see next paragraph). Consequently, indirect coordination methods are easier to develop and implement than direct coordination methods, requiring message passing between agents and explicit coordination mechanisms.

MARLINIC A

A prime example of indirect coordination circumventing dimensionality issues applied to trafc signal control is found in the MARLIN-IC algorithm designed by El-Tantawy and Abdulhai () and presented in chapter . The MARLIN-IC algorithm is a model-based indirect coordination method that maximizes the utility of each agent of the network by rst estimating the optimal joint policy of each agent and its neighborhood according to the principle of the locality of interaction then computes the associated optimal action using modular Q-learning. Given the prevalence of MARLIN-IC in the RL-TSC literature and its reported eciency, this method has been ported to the carmulator library for comparison purposes.

The primary mechanism behind the MARLIN-IC algorithm is the computation of optimal joint action states between an intersection and its neighbors. For a given local state around an intersection v, s v , the intersection computes the associated joint state (s v ,s n) by observing the local state of each of its immediate neighbors in the network. The intersection then estimates the actions a n each of its neighbors will take given this joint state action (by keeping a table of observations of past joint state and joint actions) and computes its optimal action based on the actions each of its neighbors are expected to take. This rather complex algorithm, which necessitates a Qlearning and past observation table for agent-neighbor couple, leverages indirect coordination by observing neighboring states and actions and strategy modeling through the estimation of neighboring actions without direct communication.

D MARLINIC A

The original MARLIN-IC algorithm has long been considered to be a state-of-the-art coordinated TSC method, which has showcased excellent results on large-scale trac scenarios using real-world trac data (Brys et al., ; Mannion et al., ; Yau et al.,). However, the eld of RL-TSC has dramatically evolved since its original publication in and has most notably adopted more sophisticated function approximation techniques in order to improve agent performance and learning eciency. The superiority of deep learning over traditional RL algorithms has already been demonstrated in chapter and is also the central thesis of a paper co-written by one of the MARLIN co-authors (Shabestary and Abdulhai,). We consequently decided to adapt the original MARLIN algorithm to newer function approximation techniques by using deep instead of regular Q-learning as the learning algorithm. If the adaptation of the original algorithm to its deep Q-learning variant (referred to as deep MARLIN) is straightforward, a couple of points should be noted. First, using a function approximation technique on MARLIN-IC could potentially break the theoretical guarantees of modular Q-learning. However, experimental results obtained with the deep MARLIN method show that this theoretical result has little importance in practice. Second, the addition of a function approximation technique on top of an already rather complex coordination method initially resulted in a volatile learning process, which is a common issue with indirect coordination techniques applied in non-stationary and complex Coordinated Trac Signal Control Methods environments (Nowé et al.,). However, the addition of a single-agent learning layer, which is described in detail in the next paragraph, has entirely alleviated these issues.

M MARLINIC A

Since its source code is not (to our knowledge) publicly available, we have re-implemented the MARLIN-IC algorithm in Python to the best of our abilities from its description in the thesis manuscript of El-Tantawy and Abdulhai (). While most of the algorithm has been ported as-is without any problem whatsoever, we have noticed an undened behavior in its original implementation. In some cases, an intersection has to pick its next action but has neighbors who do not choose any action for this time step because they are within a yellow or red phase. While the unavailable neighboring intersection can be skipped in most cases, this situation is problematic if the intersection choosing its action only has a single neighbor or in the rare cases in which all its neighbors are unavailable simultaneously since no joint actions can be computed. Furthermore, skipping some of the unavailable neighbors causes information loss, which is likely to degrade agent performance. In order to deal with this edge case, we decided to modify the MARLIN-IC algorithm structure to add a regular SARL learning algorithm below the joint-action coordination layer. Each intersection rst learns from local states and actions similarly to any isolated RL algorithm (using a classical or deep learning form) and then augments the resulting value function through neighbor coordination as in the original MARLIN algorithm. The resulting modied MARLIN-IC algorithm, with this modication, is shown on algorithm .

Algorithm : Outline of the original MARLIN algorithm as described by El-Tantawy and Abdulhai () with an additional learning layer. O vn is an observation table listing the actions taken by agent n given the current joint state s vn and P a 0 n a function computing the probability of neighbour n choosing action a 0 n based on the current joint state and this observation history.

for each agent v 2 V do Observe s v ,s 0 v ,a v ,r v ; Q v (s v ,a v) (1 α)Q v (s v ,a v)+α(r v + γ max a Q v (s 0 v ,a v)); for each neighbour n 2 Γ(v) do Observe s n ,s 0 n ,a n ; O vn (s vn ,a vn) O vn (s vn ,a vn)+1; Q vn (s vn ,a vn) (1 α)Q vn (s vn ,a vn)+α(r v + γ max a Q vn (s 0 vn ,a vn)); a 0 v max a⇤n Q v (s v ,a v)+ P nΓ(v) Q vn (s 0 vn ,a ⇤ vn)P a 0 n (O vn ,s 0 vn ,a ⇤ v));
The modied MARLIN-IC algorithms, both in their classical or deep form, both strongly benet from the introduction of this single-agent learning layer. In order to measure the benets of this change, we tested four variations of the MARLIN-IC algorithm: two in its original form (one featuring this additional layer, one without), two in its deep learning form (one featuring this additional layer, one without). These four RL-TSC methods are tested on a two-by-two network featuring four intersections, with an overall arrival rate parameter of λ =0.015. Our testing lead to two key observations. First, the addition of a single-agent learning layer greatly improves performance for both the classical and deep MARLIN methods, as seen when comparing plots of the same color on Figure .. Second, we see that the deep MARLIN algorithm signicantly outperforms the classical MARLIN algorithm in their modied versions, as seen when comparing the full plots of the same gure. Most notably, we notice that the deep MARLIN algorithm using a single-agent layer achieves remarkable stability quite early in the convergence process. On the basis of these results, we retain the modied versions of the MARLIN algorithm, both in its classical and deep form, given their superior performances. These algorithms will be referred to as MARLIN and deep MARLIN from now on for simplicity's sake.

. Indirect Coordination

M T I O I C

The aim of the MARLIN algorithms we are testing-exploiting joint state and action observations to maximize utility at the neighborhood level-is clear. We now need to evaluate its relative eciency compared to independent methods such as the DQN algorithm tested in the previous section in order to establish if, and possibly why, such a form of coordination is benecial to trac optimization.

Coordinated Trac Signal Control Methods

I C C

The rst eciency measurement is done regarding the convergence process of the original and deep MARLIN algorithms, which are compared to an independent IDQN method and the optimal and Webster deterministic methods for comparison purposes. These methods are tested on a two-by-two grid network composed of intersections by using the convergence protocol dened in section ... Since indirect coordination techniques do not have the special requirements seen with green wave coordination methods, there are no additional constraints regarding trac generation or intersection cycle time. Trac ows between each pair of edges of the network are generated using an exponential law of parameter λ =0.015, which corresponds to low to regular trac demand over the network. We rst analyze the convergence process of our selected methods for episodes of steps each. The results of these trac simulations, presented in Figure . show rst and foremost the strong convergence stability of both MARLIN algorithms and, to a lesser extent, of the IDQN algorithm. Similarly to tabular value function algorithms tested in section .., the original MARLIN algorithm (in blue in the gure) is unable to improve early on, hinting at its inability to learn further from its environment due to the absence of function approximation mechanisms. Conversely, both methods featuring function approximation techniques quickly converge to higher performance levels. Additionally, we notice that the two-layer approach to coordination we oered to limit convergence instability in the deep MARLIN case performs exceedingly well given that the deep MARLIN methods we tested without this approach were more unstable than the IDQN algorithm shown on Figure .. While these initial results conrm the intuition that the classical MARLIN method does not perform as well as deep reinforcement learning methods leveraging neural networks for state generalization, low and steady trac demand scenarios do not allow to measure how adaptive and resilient both deep RL methods are in order to compare them truly.

I C U V T F

Since the IDQN and deep MARLIN method showcase quite similar performance levels in the experiments of the previous section, we design an experiment aiming to test their capabilities under changing trac conditions. The experimental protocol we designed in section .. compares the robustness of both methods by gradually increasing trac demand over multiple simulation episodes, testing their robustness in the process. For this experiment, we generate trac data using an exponential law of parameter 0.015 (using the protocol dened in section ..). This trac generation results in randomly generated arrival ow rates over each entry-exit edge pair of the network. After running a hundred simulation episodes using these regular weights (in order to make both methods converge), we gradually increase the arrival rate of each edge pair of the network by .% each step for steps, reaching an overall arrival rate of around ., before decreasing by % each step for steps, returning to a pre-rush hour trac demand. Hence, each TSC method will learn to route vehicles in increasingly saturated trac conditions while ensuring that the trac demand imbalances that exist in the network are maintained. Furthermore, once peakhour trac conditions are passed, gradually lowering trac demand will allow to observe which methods can quickly return to pre-rush hour performance levels, denoting greater adaptability.

We present these simulation results in Figure .. As mentioned in section .., the areas plotted in this gure correspond to the performance spectrum of a given RL-TSC method delimited by its best and worst observed cumulated waiting times for a given simulation episode. Additionally, a solid line plots the average cumulated waiting time across all simulation scenarios and represents the average performance level of the TSC method for this given trac network and demand. Results of Figure . do show that while the low-trac demand situations of the rst simulation steps result in somewhat equivalent performance levels from both IDQN and deep MARLIN (even though the latter continues improving beyond the former after iteration , which is not visible in Figure .), increasing this trac demand allows dierentiating both methods further. The initial increase in trac demand immediately decreases the stability of the deep MARLIN method (see sub-plot), while the IDQN method maintains greater stability during these initial steps. As congestion keeps increasing, however, the IDQN also suers from increased performance variability, and to a greater extent than the deep MARLIN method (see sub-plot). This causes IDQN to display lower performance levels compared to the deep MARLIN method, as seen on sub-plots , and of Figure .. Finally, we note that the deep MARLIN method displays superior resilience after sustaining a brutal increase in trac, as its variance in performance quickly decreases when trac demand levels go back to normal (see sub-plot). In conclusion, the deep MARLIN algorithm provides better performance overall in variable trac demand conditions than its independent counterpart IDQN, even though deep MAR-LIN seems more susceptible to performance instabilities for minor variations of trac demand (see subplot of Figure .). Moreover, deep MARLIN also proves more resilient to these trac changes as it quickly stabilizes its performance levels once trac demand goes down.

Coordinated Trac Signal Control Methods

M I J SA M

The previous subsection has shown that indirect coordination between intersections of a road network allowed from similar to superior performances compared to independent methods. This . Indirect Coordination section aims to explain how such coordination mechanisms provide an advantage to independent methods.

MARLIN C M

The critical coordination mechanism behind the MARLIN and deep MARLIN algorithms is the joint state and action modeling between an intersection and its neighbors. When computing quality estimates associated with dierent actions, intersections do not only use the local trac state but also take into account the probable future action of each of its neighbors, given their local trac state. While such an approach has empirically proven its eciency (El-Tantawy and Abdulhai,), no clear-cut explanation has been given as to why observing the trac state of neighboring intersections can improve the learning abilities of an intersection.

J A M We argue that modeling neighboring intersection is often useless since their actions do not have time to impact the local trac state from one step to the next. Indeed, it should take around seconds (or steps in our case) for a vehicle to travel from one intersection to the next in the quad network used in our experiments (intersections are spaced meters apart). While it should logically be argued that a vehicle inuences an intersection-through state and reward computation-the moment it enters one of its incoming lanes, a single step is not long enough for a vehicle to entirely travel the crossing area of its origin intersection. This means that the inuence of an intersection on its neighbors should range from null to minimal between two successive time steps. This observation should, in theory, imply that neighboring intersection state and action modeling has virtually no eect on the computation of quality estimates for the "extend" action since its eect is measured from one time step to the next. However, neighboring states and actions inuence the quality estimate of the "switch" action whose eects are measured around ten steps after the action has been taken, long enough for neighboring trac to reach the local intersection.

M I N F We designed a specic experiment in order to test this hypothesis. We rst trained a regular deep MARLIN controller under normal trac conditions and extracted one of the resulting neural networks from one of its controllers. Using the neural network associated with the joint state-action modeling between intersections u and v, we are able to measure the estimated quality value Q uv (s uv ,a uv) measuring the quality of any given joint state-action couple (s uv ,a uv) given as an input (see algorithm). This allows, among other things, to measure how much a change in the local state s u or neighboring state s v inuences the quality values Q(s uv ,a uv) of actions "extend" and "switch". In practice, we sample multiple states that have been encountered during the learning process from the memory replay buer D. Eached sampled state s uv has the form:

s uv = hφ(u),d(u),c(l u1),...,c(l un),φ(v),d(v),c(l v1),...,c(l vn)i
which is a concatenation of the local states of intersections u and v as dened in section .. For each sampled state s uv , we rst measure the quality values Q(s uv , "extend") and Q(s uv , "switch") associated with both actions available to the intersection u. Then, we change the values of φ(u) and φ(v) in s uv , which represent respectively the current phase index of intersection u and v.

Coordinated Trac Signal Control Methods

Since intersections in the quad network have two main green phases (i.e. east-west and northsouth), this change switches the currently active green phase from one to the next. Using these alternative state denitions, we measure the new associated quality values in order to measure how they dier from the original values Q(s uv , "extend") and Q(s uv , "switch").

The idea behind these measurements is the following. The more a given feature of the state space inuences the reward of an agent, the more a change of its value will change the quality value associated with it, ceteris paribus. In the case of our experiment, the feature of the state space indicating the currently active phase of an intersection is essential in choosing the next action. If the lanes along the north-south axis of an intersection are heavily congested, the quality of the "switch" action is likely to be high if the currently active phase is east-west and very likely to be low if it is north-south. Hence, measuring the dierence in quality values after changing a feature of the state space gives an idea of how much this feature matters to the agent and its reward. By measuring these dierences, we hope to show that switching the local phase index φ(u) highly matters for intersection u, while switching the neighboring phase index φ(v) does not for the "switch" action.

E R Results of Table . show these dierences in quality values after sampling dierent states. The values µ in the table represent the average dierence in quality after a phase switch, while σ represents the variance in average dierence in quality after a phase switch. These results underline, as expected, the massive dierence between local and neighboring state changes. As we can see in Table ., a change in the neighbor state has a close to zero impact on the "extend" action of the local controller (both the average dierence in variance difference being close to), while having a signicant impact on the "switch" action. Furthermore, we can see on the rst row of this table that the local phase index feature of the state space signicantly impacts the quality value of both actions, indicating its signicant inuence on the agent's decision. This experiment hence conrms that the advantage of the deep MARLIN method over independent algorithms such as IDQN resides in its ability to compute quality estimates of phaseswitching actions better since the trac neighboring intersections will inuence local trac while this action is being applied. Conversely, our ndings indicate the joint state-action modeling of deep MARLIN is useless when computing quality estimates of the phase extension action since the neighboring trac does not have the time to inuence the local trac, which represents both a missed opportunity to extract additional information from neighboring states and a method weakness since it introduces unnecessary computation and potential instability.

D J A M A logical argument that could be made regarding the inability of deep MARLIN to properly take neighboring states into account from one step to the next would be to delay the time step at which the intersections receive neighboring states. One could imagine that modeling the neighboring state from a couple of steps prior would leave time for this anterior state representation to aect the local trac state. This solution would, however, only displace the issue. Since intersections using MARLIN learn through joint-action modeling, the delayed state representation of neighboring intersections would already be incorporated in the local intersection state, still rendering the delayed neighboring state representation unable to inuence the "extend" action quality estimates. The direct coordination method presented in the following subsection aims to provide quality estimates for both action types through message passing rather than through joint state modeling.

D C

Direct agent coordination, also known as explicit coordination (Busoniu et al.,) pushes agent interaction further than indirect coordination by allowing for direct exchange of information while learning. The main dierence between indirect and direct coordination methods is that the latter does not only receive information from other agents of the environment but also directly take other agents into account in their decision-making process through explicit message passing mechanisms or joint action computation.

D C M

Similarly to indirect coordination methods, a wide variety of algorithms can be used for direct coordination of trac lights since their only requirement is the direct exchange of information between learning agents. Hence, while multiple direct coordination mechanisms exist for RL-TSC systems, such as the max-plus algorithm (Kok and Vlassis, ; Van der Pol and Oliehoek,), we focus here on two dierent coordination algorithms: the MARLIN-DC algorithm, which is the direct coordination version of the MARLIN-IC algorithm that we studied in the previous section, and the RIAL and DIAL algorithms (Foerster et al.,) which features self-learning communication between agents of the same environment.

MARLINDC A

The MARLIN-DC algorithm (El-Tantawy and Abdulhai,) leverages direct negotiation between agents in order to compute optimal joint policies. Similarly to MARLIN-IC, each agent maintains a Q-table with each of its neighbors containing quality estimates according to the joint stateaction of the intersection and its neighbor. When choosing an action, an intersection does not only compute its optimal action according to the joint state-action space with each of its neighbors (similarly to MARLIN-IC) but also estimates the optimal action of each of its neighbors by directly using their policies. Using this additional information, the agent can then compute its best-response action with regard to the actions of its neighbors and estimate the dierence in utility between its original optimal action and this best-response action. After this rst computation step, intersections directly coordinate themselves by broadcasting their dierence in utility to Coordinated Trac Signal Control Methods their neighbors: the intersection with the maximal utility dierence in its neighborhood is allowed to change its original action to the best-response action. By repeating this process by descending order of dierence in expected utility, the MARLIN-DC algorithm reaches an equilibrium that is expected to maximize the joint expected reward of a neighborhood of intersections. While this algorithm oers a novel direct coordination method to optimize trac signal control, experimental results presented by El-Tantawy and Abdulhai have shown that MARLIN-DC provides similar to slightly worse performance levels compared to MARLIN-IC, while increasing its computation time vefold. These limitations motivated El-Tantawy and Abdulhai to only study MARLIN-IC in large-scale simulation scenarios and hence prevented us from implementing and testing the MARLIN-DC algorithm in carmulator.

R D IA L

A promising technique for agent coordination known as reinforced inter-agent learning (RIAL) has originated in a paper by Foerster et al. (). In its original version, the RIAL algorithm is applied to a fully cooperative, partially observable, and sequential multi-agent learning problem in which communication is essential. Without any communication protocol dened beforehand, agents must learn to communicate through limited channels during each step of the game in order to maximize their shared rewards. Agents must not only learn to solve their tasks, but they must learn and agree on a common communication protocol. During learning, each agent chooses two distinct actions using two distinct neural networks: a trac action a and a message action m to send to the other agents. The selected actions and messages of each agent are then observed by all other players on the next step as part of the state space denition.

The original RIAL algorithm has been extend by the dierentiable inter-agent learning (DIAL) algorithm which not only shares messages across agents, but also gradients used to reward communication actions. A single neural network is shared by all agents for choosing the communication action. Each agent using the communication neural network has a unique index variable as an input, allowing them to specialize. Such a method requires centralized learning since learning parameters cannot be shared through limited communication channels. Since centralized computation is the norm in trac simulations, parameter sharing through the use of a single neural network between agents is possible in RL-TSC applications, and has already been benchmarked in that manner (Chu et al., ; Vanneste et al.,). While results from these papers have been encouraging (they have both beaten independent learning baselines), we believe that the DIAL algorithm is not optimal for RL-TSC tasks. The remainder of this chapter explain why this is the case, and how our proposed method, DEC-DQN, addresses these issues.

A T A

The rst issue regarding the application of DIAL to trac signal control comes from the neural network architecture being used in the original algorithm. Indeed, the learning task of choice of the original DIAL paper is a switch-riddle game that is both relatively short (in terms of learning episodes) and simple (in terms of state-action space denition). Additionally, since taking a wrong decision can cause the game to end early, tracking previous states of the game was deemed essential and was done using a gated recursive unit network, which is a form of recurring neural network.

. Direct Coordination

If this neural network architecture tted this type of game, trac signal control would be entirely dierent for multiple reasons. First, trac optimization is neither short (since the learning task goes indenitely) nor simple (since state-action spaces are a magnitude more complex than the switch-riddle games). These factors signicantly increase the complexity of gradient computation in recurring neural networks since the input data is larger (states are complex) and wider (episodes are longer), which considerably lengthens the learning process of each agent. Additionally, and perhaps more importantly, we have found that keeping track of past system states using a recurrent neural network mattered little in our TSC setting, implying that only the immediate system state and the action applied to it were inuencing the utility of an agent. While a few papers of the literature use recurrent neural networks in their deep learning models (Chu et In the case of simpler state representation, such as ours, testing multiple architectures of recurrent neural networks (long short-term memory and gated recursive unit) in the isolated and coordinated cases has resulted in subpar performances in all cases. Hence, since recurrent neural networks provide both inferior performance results and a signicant increase in computational needs for learning, we retain the dual network architecture of the original DIAL algorithm but re-Coordinated Trac Signal Control Methods place the recurring components by simple fully connected layers similarly to the IDQN method. We represent the chosen architecture on Figure ..

R C A

The second challenge and main caused by applying the DIAL algorithm on a trac signal control task comes from associating rewards to message actions taken by agents at each step. This adjustment issue is again due to the type of task on which the original DIAL algorithm was applied. In the switch-riddle game, the same reward is used to both environment and message actions a and m since the game is fully cooperative and can only end up in the death or liberation of all prisoners. Hence, the same reward is shared across all agents, and both actions are working towards the same optimization goal. In the case of trac signal control, rewards are neither shared between agents nor impacted in the same way by environment and message actions. Each agent locally optimizes trac through action a to maximize its local utility and sends a message m (in the form of an integer), which will be received at a future time step by its neighbors so that they can maximize their local utility. While local trac related-actions can hence still be rewarded directly using trafc delay-related measurements, message-passing actions are much harder to estimate since agents have no innate mechanisms to estimate if a message they sent has been taken into account by a neighboring intersection, and, if so, how this message has aected their local utility. Furthermore, since intersections with multiple neighbors receive multiple messages each turn, computing the individual reward associated with each of these messages poses an issue of credit assignment (Panait and Luke, ; Sutton and Barto,) since we do not know how to divide the reward between each neighbor. These issues underline the fact that applying a DIAL-type algorithm in a trac signal control context requires to dene a reward function specically designed to reward communication actions.

We design the direct-evaluation communication DQN (DEC-DQN) method to address this challenging task. The DEC-DQN algorithm features a reward function specically geared towards communication actions which directly estimates how agent communications aect those who receive them. This estimation is made possible by the fact that trac simulations allow for centralized training and parameter sharing. It is hence possible, within a simulation episode, for an agent not only to access the shared neural network used for message action selection but also to access the neural networks used by neighboring intersections in order to choose their tracrelated actions. By supposing, furthermore, that agents can observe all communications passed between agents, the reward function used in the DEC-DQN leverages an idea similar to state feature estimation in section The reward of a communication m made by an intersection v is computed by estimating the opportunity cost of sending message m for each neighbor n of v. This opportunity cost is obtained by plugging the state of neighbor n containing the original communication action m into its neural network in order to observe the maximum attainable quality estimate that neighbor n can reach. Then, this quality value is compared to all other potential maximum quality estimates neighbor n could have gotten had agent v sent a dierent communication action m. The higher the dierence between the quality estimate associated with the best potential communication action m⇤ and the sent communication m, the higher the opportunity cost. In other words, the more an intersection makes its neighbors miss on high-quality estimates due to a given communication action it sent, the higher the loss associated with this communica-. Direct Coordination tion should be. The detailed pseudocode illustration of the loss computation of communication actions of the DEC-DQN algorithm is illustrated in algorithm .

Algorithm : Algorithmic illustration of the loss computation for message actions in the DEC-DQN algorithm. The reward associated with the message m v chosen by intersection v is computed by estimating, for each intersection neighboring v, the maximal expected reward this neighbor could attain when receiving message m v and the maximal expected reward it could attain by receiving any other message from intersection v. The higher the dierence between these two maximal expected rewards, the more intersection v should have chosen a dierent message, and the higher the associated loss is.

for each agent v 2 V do L 0; Observe m v ; for each neighbour n 2 Γ(v) do M (m 1 ,...,m v 1) for [1,v 1] 2 Γ(n) {v}; s 0 (s 0 n ,M,m v); V max max(V θn (s 0)); for m alt 2A m {m v } do s 0 alt (s 0 n ,M,m alt); if max(V θn (s 0 alt)) >V max then V max max(V θn (s 0 alt)); L L+ ||V max max(V θn (s 0))||

C DECDQN P

The proper tuning of parameters is essential in most deep learning models, and this is perhaps even truer in the DEC-DQN case when compared to other deep RL-TSC models such as IDQN. Indeed, on top of sharing its model parameters with IDQN, the coordination-specic mechanisms of DEC-DQN need to be correctly parameterized to pass messages between intersections of the network eciently. This section hence aims at nding proper values for two parameters of the DEC-DQN algorithm for TSC. First, this section studies the eect of the size of communication channels between agents, also dened as the size of the action space for communication actions A m . Finding the correct communication channel size is a trade-o. Too narrow of a channel might not be able to express suciently dierent messages, limiting the usefulness of agent communication. Conversely, too large of a channel increases dimensionality and prevents the agents from converging on a common communication protocol, limiting once again the usefulness of agent communication. The second parameter we aim to estimate is the eect of delay between the emission of a communication action by an intersection and its reception by its neighbors, which was a fundamental limitation of the indirect coordination mechanism of MARLIN, as seen in the previous section. agents as integers to their neighbors in order to convey information about their local situation without explicit constraints as to what these messages represent. As this communication protocol is learned, the size of these communication channels represents the depth, or richness, of what these messages can convey. As such, a small message action space, similarly to a small state space S, conveys less information to the agent but is likely to converge faster due to its reduced dimensionality. Conversely, a large amount of communication channels allows the agents to exchange more precise data at the cost of a longer convergence process. Since the optimal size of the communication space is highly likely to be problem-dependent, we experiment with various communication channel sizes in a simulation setting. We compare the convergence process (as described in section ..) of three DEC-DQN algorithms with dierent communication channel sizes on a two-by-two grid network in order to estimate their inuence on the agent's convergence process.

Note that this experiment is carried out over a relatively long number of simulation episodes, instead of the usual , in order to observe the very-long term convergence of DEC-DQN methods using large communication channels. Results of this experiment, averaged over ve trac scenarios, are shown on Figure .. The rst observation is that communication channel size does not seem to have a signicant eect on very long-term convergence, as all three DEC-DQN methods show similar performance values in later simulation episodes. However, we do observe that the DEC-DQN algorithm using the largest communication channel size (in yellow in the gure) displays greater convergence instability, which is noticeable around episode on Figure .. Since increasing the channel size of communication actions does overall not seem to yield specic rewards for this specic learning problem but does increase learning instability, we choose the simplest message action space in order to reduce dimensionality, which is |A m | =2.

M D As underlined in section ..., the inuence of the delay at which intersections receive information from their neighbors is crucial for adequately computing the quality estimates of trac actions at its disposal. Since, as opposed to the MARLIN algorithm, the delay between the emission and reception of a communication action is congurable in the DEC-DQN algorithm, it is hence essential to analyze the eect that such a delay may have on quality estimates. To this end, we repeat the experimental protocol described in section ... which allows to estimate the impact of messages on the quality estimates of an intersection by directly measuring it on their neural networks. In this setup, we train ten distinct DEC-DQN agents using increasingly larger message reception delays ∆ t ranging from to on quality estimates similarly to what has been done in the indirect coordination case. Each agent has exactly one neighbor who sends one of two communication actions, since |A m | =2 , as stated in the previous section. We then sample observations from the replay buer D, and for each observation, measure the eect of ipping the original message sent by the neighboring intersection on the associated quality estimates of the agent. The average dierence in quality estimates for a message and its ipped variant, µ(a), is then computed for a given action a. The results of these computations, for multiple message delays ∆ t , can be found in Table .. The results from these experiments raise two critical points. First, the communication actions of a neighbor inuence the quality estimates of all actions by the agent. Indeed, µ values of Table . are all signicantly dierent from , indicating that a switch in the neighbor's communication action has a substantial impact on the agent's expected reward. This rst observation shows that DEC-DQN solves the primary issue associated with deep MARLIN: its inability to inuence a neighboring intersection from one step to the next. Since DEC-DQN has by a minimal delay of step by construction, it does not suer from this shortcoming. Furthermore, we observe that the average dierence in quality estimates does not tend to substantially change as the message delay parameter ∆ t increases. While we could interpret this phenomenon as proof that communication does not aect agent performance (although upcoming experimental results show otherwise), we understand it as a proof of DEC-DQN's adaptability. Since the communication protocol is learned from scratch by agents, messages passed between agents do not have to represent xed, time-dependent, state information like in MARLIN but can represent any feature of the environment. Hence, we suppose that the features that are chosen to be included in these communication protocols are likely to change depending on the chosen delay value (e.g., lower communication delays are, for instance, likely to favor features that are more likely to impact neighboring intersections immediately). However, its impact on agent performance does remain Coordinated Trac Signal Control Methods somewhat constant. These ndings hence tend to indicate that while the message delay parameter ∆ t dictates which kind of state features are used by agents to craft their communication protocols, they all tend to have a similar impact on resulting agent quality estimates. In light of these ndings, we hence opted for the most straightforward message delay parameter value, ∆ t =1.

∆ t =1 ∆ t =2 ∆ t =3 ∆ t =4 ∆ t =5 µ(switch) µ(extend) ∆ t =6 ∆ t =7 ∆ t =8 ∆ t =9 ∆ t = 10 µ(switch) µ(extend)

M I D C

This section is dedicated to analyzing the performances of DEC-DQN in a TSC setting. This analysis compares the DEC-DQN algorithm to a baseline independent deep Q-learning using the IDQN algorithm. We rst measure the convergence of both methods before evaluating their performance capabilities in regular and saturated trac conditions.

D C C

The rst experiment compares the convergence of both methods according to the protocol dened in section ... We generate trac demand data on a x grid network according to the protocol dened in section .., using a constant arrival rate averaging λ =0 .018 vehicles per step. The convergence process of the IDQN and DEC-DQN algorithms is plotted on an average of distinct trac scenarios, each running for episodes of steps each. As mentioned in the previous section, the chosen DEC-DQN parameters are a default message reception delay of ∆ t =1and a communication action channel of |A m | =2. The learning hyperparameters used for this experiment are similar to those listed in Table . andTable .. The results of these experiments, as shown on Figure ., tend to dierentiate both methods slightly more than in the indirect coordination case. While both the coordination-free and di-. Direct Coordination rect coordination-based methods once again end up achieving similar performance levels in the later stages of simulation on all tested scenarios, the DEC-DQN algorithm converges signicantly faster in the early trac simulation episodes (we measured an average dierence in performance of .% during the rst episodes on Figure .). While displaying the relative superiority of direct coordination to independent learning, this result is somewhat surprising. Since DEC-DQN uses a larger state space than IDQN, and since it necessitates to train both a trac-related and communication-related neural network, we would have expected a longer convergence process than the independent learning method, eventually reaching superior performance levels. However, Figure . seems to show that agents, in this simple trac scenario, manage to quickly converge on a common communication protocol which enables the agent to reach excellent performance levels quickly.

D C U V T F

An extensive way of measuring the overall eciency of a RL-TSC method is to analyze its behavior under variable trac conditions. To this end, we replicate the experimental setup of section ... using increasing and decreasing trac ows to compare the IDQN and DEC-DQN methods using the same experimental parameters. This experiment is designed to estimate how agent coordination can help intersection using DEC-DQN to adapt to changing trac conditions.

The results on Figure ., averaged over distinct trac scenarios, conrm our initial observations. Subplots , , and of this gure, respectively associated with an increase, peak, and decrease in trac arrival rates, all show that the DEC-DQN algorithm (in blue) is superior to IDQN (in red) both in terms of average performance (as shown by the solid-colored lines) and in terms of variance (as shown by the colored areas on the plot). Most notably, the IDQN method suers from high variance in performance when trac ows start to increase (as seen in subplot) and features an extremely poor simulation episode near the peak of trac ows (as seen on subplot), probably due to a single disastrous simulation episode, showing the potential instability of the IDQN algorithm under saturated trac ows. More importantly, these simulation results do not showcase the ineciency of the IDQN method, whose results are similar to those found in Figure ., but rather the extremely good resilience of the DEC-DQN algorithm even under highly saturated trac conditions. These simulation results seem like denitive proof that, when properly orchestrated, coordination between intersections for trac signal control can signicatively increase agent performance and globally reduce cumulative waiting times over a road network. Our results have shown that, in the case of our experimental protocol, direct coordination is likely to be superior to indirect coordination since information transmitted by neighboring intersections is likely to inuence the value estimates of both the "switch" and "extend" actions, as opposed to the latter only in MARLINtype algorithms. Since these observations have been made, however, on relatively small road networks containing a few intersections, we address the direct comparison of the three main methods of interest (IDQN, deep MARLIN, and DEC-DQN) on a synthetic large-scale road network in the next and nal trac simulation of this thesis.

Coordinated Trac Signal Control Methods

A C LS T N

While the results observed in the previous section and their subsequent conclusions are sucient to prove that agent coordination is eective in increasing trac optimization performance through message passing, the eect of the direct and indirect coordination methods have been tested on road networks featuring a limited amount of intersections. This last section, which contains experiments on coordination methods on a larger scale of operation, has two main objectives. First, it aims to analyze whether such a change in scale has any eect on the coordination mechanisms that were previously observed. In other words, we want to know if increasing the number of coordinated intersections changes the behavior of the independent, indirect, and direct coordination methods we have used so far. Second, this experiment on a larger-scale network is used to directly compare the three most promising RL-TSC methods we have tested so far: IDQN, deep MARLIN, and DEC-DQN, in order to draw more decisive conclusions regarding their respective merits and shortcomings.

S LS R N

The network chosen to represent a large-scale trac simulation is composed of nodes (of which are intersections controlled by trac lights) and edges. While not based on the network graph of a real-world urban area, this road network aims to recreate features commonly seen in urban areas, such as the use of a two-by-two lane outer ring road and north/west and east/west arterials going through the network center. In order to generate realistic trac ows over the network, the default shortest path algorithm used by vehicles to select a route on the network (through the duarouter program) is modied in two ways. First, the edge length used in the computation of the shortest part is weighted by a factor of the number of lanes the road has: for two routes with the same weight, a vehicle will take the route containing edges with a higher number of lanes, which is akin to preferring arterials and highways instead of single-lane streets. Second, a random factor r is introduced in duarouter and represents the upper bound for which sub-optimal routes can still be chosen by a vehicle. For a parameter r =1 .2 (which we pick), a vehicle can select any route going from its origin to its destination as long as its travel cost is at most . times the cost of the shortest route. This factor introduces randomness and personal driver preferences (which might be sub-optimal) in travel route selection. Finally, and similarly to the previous sections, the Poisson vehicle arrival rate of each origin-destination pair of the network is chosen according to an exponential law of parameter λ, according to the experiment protocol dened in section ... The convergence process of the RL-TSC methods are rst tested on a non-saturation arrival rate, and their stability is then tested by increasing and decreasing this arrival rate.

P U F V A R

After describing the road network over which our experiments take place, we now observe the eect of scaling the experimental road network up on the convergence process and adaptability to changing trac conditions of the IDQN, deep MARLIN, and DEC-DQN trac signal control methods. Given their overall scale, and given the fact that they compare the best RL-TSC methods we have developed in each category (i.e., independent, indirect, and direct coordination), this nal series of experiments give a complete overview of the respective merits and shortcomings of these RL-TSC methods.

C U F T F

As seen in the previous section of this chapter, the rst manner in which coordinated RL-TSC methods can be analyzed is through the observation of their convergence process according to the protocol dened in section ... This convergence is tested on the synthetic city network for a near-saturation xed arrival rate of λ =0 .1. For this experiment, the performance spectrum of each method over the ten tested trac scenarios (dened in section .. as the area showing the best and worst cumulated waiting times of a given method over the tested trac scenarios) is displayed alongside the usual average performance plot. The convergence values of Figure . show results similar to those observed in small-scale networks. Most notably, we observe that the DEC-DQN coordination method (in yellow in the gure) converges around % faster than other methods in the early learning iterations and maintains its performance advantage throughout the simulation runs. Another notable point regard-. Agent Coordination on Large-Scale Trac Networks ing these simulation results is the respective evolution of the IDQN and deep MARLIN methods compared to the previous small-scale experiments. While converging slower at rst, IDQN (in red) ends up performing better than deep MARLIN (in blue) on average towards the end of the simulation, reaching DEC-DQN-like performance levels.

The convergence analysis of these three RL-TSC methods hence provide valuable information regarding their comparative merits on large-scale trac simulations with regards to their convergence. Similarly to earlier experiments, the DEC-DQN coordinated method provides the best of both worlds by performing better on early simulation iterations and by maintaining these superior performances in the long run. Hence, the introduction of a large number of learning agents, each using the same neural network in order to learn to communicate, seems to accelerate their convergence towards a common communication protocol, explaining the early convergence of DEC-DQN due to ecient coordination through proper communication. Conversely, the deep MARLIN algorithm seems to suer from the introduction of a larger number of learning agents. While the deep MARLIN method yielded similar performance levels with lower variance to those of IDQN on simulations done on a smaller scale network (see Figure .), the switch to a largescale network decreases the maximum performance metrics of the deep MARLIN algorithm, which becomes strictly less ecient than the IDQN method. The reason for this loss in eciency is not entirely apparent since coordination, in the deep MARLIN case, still yields benets in the form of accelerated convergence in early iterations when compared to IDQN.

P U V T F

The nal simulation scenario we run in order to comprehensively analyze the three coordinated RL-TSC methods compares their respective performance under variable trac conditions in the large-scale synthetic road network dened in section ... This analysis, coupled with the results of the xed trac ows of the previous subsection, should provide a complete comparison of these three methods. This last simulation scenario is by far the most costly to run from a computational perspective since it features both a high number of intersections and a high number of vehicles when trac demand is increased (see section ... for the complexity analysis of each method). Consequently, we used ve dierent trac scenarios to generate the data used to plot Figure ., instead of the usual .

Results of this nal experiment, as shown on Figure ., strengthen the observations we made under xed trac ows. First, the deep MARLIN method (in blue in the gure) is the worst average performer as trac ows increase (see subplot), similarly to what was observed towards the end of trac scenarios of Figure .. As it also features low-performance variance, the deep MARLIN method seems to indicate its limitations once again when applied to many intersections. However, the somewhat decentralized architecture of the deep MARLIN method (since each neighboring intersection pair is associated with an independent neural network) seems to increase its robustness, as demonstrated by the low variance of its performances once trac demand decreases (see subplot). These results indicate that the deep MARLIN method is best suited in relatively small networks with variable trac conditions, such as seen in the trac scenario of section Comparatively, the IDQN method (in red) features relatively good performancessuperior on average to those of deep MARLIN-although at the cost of higher variance and lower robustness (see subplot). These results underline the fact that the IDQN method is suitable Coordinated Trac Signal Control Methods for any road network size (since no coordination is used) but is preferable in networks with relatively low trac demand variation. Finally, our novel DEC-DQN method provides once again the best of both worlds by featuring both the best average performance levels for almost all points of the simulation episodes, all while featuring low variance levels. Such a method is preferable for all types of networks and all types of trac demand, provided that direct coordination between intersections is possible.

C C RLTSC A

A nal point of comparison worth analyzing regarding coordinated RL-TSC methods relates to their computational and memory requirements. Indeed, while these constraints do not play a signicant role in the desirability of each method in simulated scenarios, they can be major factors in their feasibility in real-world applications. We compare two principal metrics for each method. First, we look at the average number of operations executed by each algorithm for each simulation step, which broadly represents their average computational needs. The average number of operations is preferred to a traditional complexity analysis as it gives a more detailed appreciation of each method's relative computational costs. The complete calculations used to obtain this average number of operation per simulation step is given in Appendix C. The second metric we use is the average memory requirements for learning data, which can directly be obtained by measuring the le size of the learning data le we obtain at the end of a trac simulation using carmulator. Computational and memory requirements shown on Table . underline a typical pattern related to coordination for trac signal control methods: there are strongly diminishing returns when aiming at improving a well-parameterized independent TSC method. The limited to notable improvements regarding agent convergence or performance, in the respective case of deep MARLIN and DEC-DQN, are either associated with a steep increase in memory (a vefold increase) or computational (a sevenfold increase) requirements, respectively. This last observation underlines the high costs associated with implementing eective agent coordination for trac signal control, whether in terms of the general complexity of the algorithms at play or in their associated costs. Nonetheless, given the speed at which all these algorithms are executed in simulated trac conditions, these costs should not be prohibitive regarding their potential application in real-world trac scenarios.

Method

::::

This chapter undertook an in-depth analysis of various RL-TSC methods used on road networks featuring multiple intersections. More specically, we analyzed dierent modes of coordination between agents to establish which form is most benecial for trac signal control. Each of Coordinated Trac Signal Control Methods these coordination methods is compared to an independent method, IDQN, which was identied as the most capable non-coordinated RL-TSC method at the end of chapter .

We started by dening coordination based on the concept of green wave coordination from trafc engineering. In its adaptive form, the green wave coordination method adds oset constraints on intersections along an arterial. Each intersection has a xed total cycle time and hence chooses phase-based actions to route trac. On this basis, the green wave coordination method uses an DQN neural network to learn how to split green phase time within this xed signal cycle. Experimental results have shown that this novel method signicantly outperformed the independent IDQN controller on arterial streets under normal trac conditions. However, this performance hierarchy entirely inverts when trac is saturated along the arterial, making the green wave coordination method unt for general use on road networks.

The second type of coordination mechanism we analyzed is indirect coordination, which relies on indirect information passing between neighboring intersections. We presented the MARLIN-IC algorithm, which is a trademark method of the coordinated RL-TSC literature. This method relies on joint state-action modeling in order to compute optimal action choices for each agent of the network. We proposed a modied version of the MARLIN-IC algorithm featuring an additional single-agent decision-making process and used a deep neural network instead of a classical Q-learning algorithm for agent learning. This adapted method has shown moderate improvements compared to the IDQN algorithm. An in-depth analysis of the neural networks used by agents of the MARLIN-IC algorithm has shown that these improvements are held back by the fact that joint state-action modeling is not an ecient manner of communicating information between neighboring intersections, since the information being sent from an intersection does not immediately aect the neighboring intersection's trac.

The third type of coordination mechanism we analyzed is direct coordination, which lets agents directly exchange information to maximize their reward. We developed a novel coordinated RL-TSC method, DEC-DQN, based on the coordination mechanisms of the DIAL algorithm. This algorithm enables agents working towards an optimization goal to communicate in order to solve their tasks. The novelty of this algorithm is that agents do not only use reinforcement learning to learn how to solve their tasks but also to settle on a common coordination protocol. This novel approach is highly desirable in RL-TSC applications since this communication does not have to be designed beforehand and can hence be potentially applied to any type of road network. Experiments conducted on small-scale networks have shown that DEC-DQN, which we adapted for trac signal control, performed signicantly better than the baseline IDQN method.

The nal section of this chapter pitted the three best RL-TSC methods designed during this thesis work in a large-scale simulation scenario. These experiments were carried out in order to identify the relative strengths and weaknesses of each type of coordination: independent in the case of IDQN, indirect for deep MARLIN, and direct for DEC-DQN. Simulation results have shown that the performance of the deep MARLIN algorithm was degraded due to the scale of the road network but could adapt well to varying trac demand, implying that this method is better suited for small-scale networks with variable demand. Conversely, the IDQN method featured a performance level similar to those of deep MARLIN, although at a much lower complexity cost. However, its low robustness makes the IDQN algorithm better-suited for road networks with low trac demand variance. Finally, the DEC-DQN RL-TSC method once again displayed excellent convergence speed and great robustness to changing trac conditions. Its ability to deal with varying trac demand regardless of network size makes it, in our opinion, the best RL-TSC method featured in this thesis work, and our recommended coordinated RL-TSC method, provided that direct agent coordination is feasible in the trac optimization problem at hand.

C

The central aim of this thesis was to develop a state-of-the-art coordinated trac signal control method for trac optimization. Our objective was to carefully develop this method from the ground up to justify all of our model choices and provide guidelines for future research in this area.

R W T T

We carried out this research goal in iterative stages. The rst step was to give a general presentation of what trac optimization using reinforcement learning is. We separately presented the elds of trac engineering and reinforcement learning in chapter and chapter respectively. These chapters introduced the main concepts and terminology of trac signal control and gave a general overview of how reinforcement learning algorithms aim at solving a task through learning using an algorithm and policy on a Markov decision process. This necessary concept introduction paved the way for a presentation on how these two elds merged in the reinforcement learning for trac signal control literature in chapter . This chapter gave a comprehensive overview of how reinforcement learning algorithms optimize trac ows. Moreover, it introduced crucial concepts such as agent coordination and function approximation and explained how the literature tackled these challenges. These three chapters form the rst part of the thesis.

We then developed the general framework in which our novel RL-TSC method could later be constructed, tested, and validated. We rst dened a model of trac ow in chapter , which allowed us to mathematically dene trac engineering concepts to apply them in a reinforcement learning context. Such an application takes place in chapter , which analyzes the multiple ways in which the trac optimization problem can be modelized as a Markov decision process and establishes the optimal one, which we later use for our research work. This chapter notably underlines inecient MDP models regarding state or action space representation. Finally, chapter closed this general RL-TSC framework presentation by describing the trac simulator used to develop and compare trac signal control methods to answer our research question. This framework is composed of the SUMO trac simulator and our research library, carmulator. The chapter ended with an in-depth presentation on how the performance of a RL-TSC controller could be accurately measured: through convergence and performance analysis protocols under xed or variable trac ows.

After establishing the concepts and framework needed for our research, we tackled the trafc optimization problem on isolated intersections in chapter . This chapter rst presented a near-optimal xed trac signal control method used for benchmarking purposes before comparing three types of classic RL algorithms. After proving that temporal-dierence learning coupled with greedy policies are most ecient for trac optimization, we underlined the crucial role of function approximation for acceptable performance. This observation led to the analysis of vari-Conclusion ous modern deep reinforcement learning algorithms applied to TSC, singling out IDQN as the best method for isolated trac signal control. These ndings enabled us to extend our research to multi-intersection road networks in chapter . We distinguished four distinct modes of agent coordination (independent, green wave, indirect and direct) and developed and tested a novel RL-TSC algorithm for each of these categories. We rst developed a deep learning-based coordination method based on green waves over arterials, which performed better than independent learning under rather specic conditions. We then adapted a major algorithm of the RL-TSC literature MARLIN-IC in order to compare it to other forms of coordination. By slightly modifying its structure and using a neural network instead of a classical RL algorithm, we made the MARLIN-IC method outperform the IDQN algorithm over a small-scale road network. Finally, and perhaps most notably, we developed the DEC-DQN direct coordination method, which allows intersections of a road network to coordinate through direct message passing. The novelty of this method is that no communication protocol is dened beforehand, meaning that intersections learn to both route trac and settle on a common communication protocol. Our experiments have shown that the DEC-DQN direct coordination method outperforms all other tested methods and state-of-the-art performance levels. Moreover, these results have been conrmed on a large-scale simulated trac network featuring more than intersections.

F C

Our research has produced several signicant contributions regarding RL-TSC, all of which are listed in section .. Furthermore, our analysis work on isolated and coordinated TSC allowed us to formulate multiple key observations. We tried to the best of our ability to not only show on experimental results that agent coordination was benecial for RL-TSC but to explain how it improved trac optimization tasks. This endeavor was, for instance, at the basis of the creation of the green wave coordination method since trac engineering could formally prove that such a form of coordination form could improve throughput alongside an arterial. As RL methods are by nature much harder to formally analyze, our aim was to at least identify which parts of a coordination method made it superior to the baseline independent RL-TSC method. These attempts have resulted in the analysis of section ... stating that the deep MARLIN algorithm could only partially inuence its neighbors. This observation has, in turn, prompted us to adapt the DIAL algorithm into DEC-DQN due to its unique structure. Instead of trying to impose an explicit model of agent coordination, such as joint state-action modeling in the case of deep MARLIN, the ability of agents using DEC-DQN to learn a common communication protocol meant that such a model was no longer necessary. This dierence is, in our eyes, quite similar to the model-based and model-free distinction in RL models as described in section Instead of trying to create an imperfect model of the unknown mechanisms of trac coordination, we could let a learning algorithm gure it for itself. The experiment conducted in paragraph ... conrms that such a coordination mechanism entirely inuences its neighbors through the unique reward function for communication actions we designed in section This is, in our opinion, the strongest result of this thesis work, alongside the performance gains associated with using such a method.

The second major nding of this thesis work relates to our original goal of nding the "best" algorithm for RL-TSC. As section ... as shown, this initial goal might have been wrongly formulated given that each tested method has relative strengths and weaknesses. For instance, the IDQN algorithm showcases good results overall (except in highly saturated conditions), on dierent network types, for an overall low complexity cost. Conversely, the DEC-DQN algorithm provides excellent results, even in highly congested scenarios, but comes at a high complexity cost and necessitates a specic infrastructure (i.e., a central controller being able to train agents) which might not be feasible in some situations. Hence, we would argue that each method presented in this thesis has specic areas in which their application would be relevant.

Finally, while experimental results of section ... have shown that coordination is undeniably benecial to trac optimization, we were surprised to nd out that modern non-coordinated RL-TSC algorithms such as IDQN provided excellent performance for low complexity and computational costs. Indeed, we have established in section ... that it is preferable to use an isolated algorithm such as IDQN on a large-scale network instead of a more complex and variable algorithm such as deep MARLIN. More generally, this thesis work has shown the diminishing returns that are strongly associated with trac optimization, as increases in method complexity yield smaller and smaller performance gains. This observation stands both for the traditional TSC methods studied in chapter and for the RL-based methods of chapter .

F W

Even though we believe that this thesis oers both a broad and in-depth analysis of trac optimization using reinforcement learning, we also believe that it could benet from additional research and experimentation. Some short-term experiments could be carried out regarding the large-scale network simulations using real-world data. While the large-scale network we designed in section .. has interesting properties such as an outer ring road and high-speed lanes making its analysis worthwhile, using real-world trac data and the associated urban network could legitimate our simulation results even further. While some open data sets containing trac ows exist , selecting data that is compatible with our simulation settings, reworking the datasets, and recreating the associated road networks in SUMO could not be achieved during this thesis work. However, such a pursuit would be worthwhile, in our opinion. Another short-term research question of interest would be the use of modern actor-critic methods using deep reinforcement learning for trac signal control. We mentioned in section ... that deep Q-networks and deep actor-critic methods both were popular options for advanced RL-TSC controllers. While the results of section .. led us to study the former over the latter, recent multi-agent actor-critic approaches featuring multi-agent policy training (Lowe et al.,) or cooperative exploration of the state-action space by agent (Christianos et al.,) should be investigated.

Finally, we believe that the communication protocol learning process of the DEC-DQN algorithm opens fascinating research questions from a machine learning perspective. More specifically, the common communication protocol reached by DEC-DQN agents should be investigated. For instance, we wonder which features of the state space are leveraged by intersections for communication. Do they communicate their signal cycle properties, congestion data, or other features? This study could be conducted on alternative state spaces featuring more features of the true trac environment states since such an analysis could teach us which features of the

Conclusion

environment are essential to communicate to neighboring intersections. Furthermore, we wonder whether the common communication protocol of agents changes depending on the network topology and trac demand levels. Do agents settle on a similar protocol each time, or is it network or simulation-dependent? Additionally, we wonder whether intersections settle on humanunderstandable communication settings, corresponding to clear indications such as "trac is saturated on my lanes" or whether these messages are simply designed to maximize neighboring intersections' expected rewards. Overall, we believe that the DEC-DQN algorithm opens a new set of research questions that we want to investigate further.

C A C A

This appendix estimates the average amount of operations needed to perform a single learning step for dierent coordinated RL-TSC methods. This metric is used instead of the traditional big-O complexity calculations since all algorithms are likely to appear in the same class (O(n)), and we want to underline their computational requirements more precisely. This analysis does not take into account simple operations such as message passing, observation selection from the replay buer or next action selection through a policy since they are negligible compared to the two main operations are required for agent learning: forward and backpropagation on a neural network. This estimation is simplied by the fact that the three tested algorithms all rely on the same neural network architecture showcased on Figure .. If the number of intersections present on the road network, n, obviously plays a role in the average amount of learning operations per step, it should be noted that learning only occurs on time steps at which an agent picks a tracrelated action, meaning that the agent does not learn when it is in the amber, red, or minimal green phase. While the exact proportion of agents learning at each time step is dependent on the network type, trac ows, the intersection's position within the network, and learning trajectory, we have observed from experimental data that an average of % of intersections choosing an action at each time step was a good general approximation for these calculations. It is hence possible, on this basis, to estimate the computational costs associated with the three main RL-TSC methods tested in section .

IDQN The simplest method to compute, IDQN, only features a single learning step per agent each time it takes a trac action. Since each neural network associated with an agent features an input layer of size |S|, four fully connected hidden layers of size , and an output layer of size |A|, each single forward and backpropagation on such a neural network each requires approximately 128 ⇥ (|S| + 128 + 128 + |A|) operations, which are mostly due to matrix multiplications (Bienstock et al.,). Supposing that an average of half of the intersections present on the network perform these two operations at each time step, the associated average number of operations is equal to

C I2DQN = n/2 ⇥ 2 ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| + |A|)
Since other operations associated with learning are negligible in comparison, this formula is a good approximation of the complexity of a single learning step on a single intersection using the base IDQN method. D MARLIN In comparison, the deep MARLIN method features the same exact local learning process for each network intersection but performs additional learning on joint state-action between each intersection of the network and its neighbors.

C Appendix -Complexity Analysis

For g the average number of neighbors per intersection on a given network, each intersection performs a joint state-action learning task with an average of g/2 neighbors each step. Furthermore, the input and output sizes of these neural networks are doubled since they take into account local and neighboring states and actions, yielding a total amount of operations per step of

C MARLIN = n/2 ⇥ 2 ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| + |A|) + n/2 ⇥ (g/2 ⇥ 2 ⇥ 128 ⇥ (2 ⇥ 128 2 +2|S| +2|A|))
DECDQN Finally, the average number of operations per step for the DEC-DQN method can be split between trac and communication-related actions. The trac-related learning process is identical to the IDQN case, with the exception that the state space is slightly increased since each neighbor also receives a communication action from its average g neighbors. Each agent chooses a communication at each time step regarding communication actions, regardless of their trac action. However, backpropagation only occurs once a neighboring agent, having received an earlier communication action, receives it. Hence, each time an intersection chooses an action, it triggers g backpropagations (i.e., for each neighbor that sent a message to that intersection) on the shared communication neural network. Furthermore, each of these backpropagations requires to compute an associated reward, which is itself computed using forward propagation on the neural networks of each neighbor that sent the original message, as specied in algorithm .

C DEC DQN = n/2 ⇥ 2 ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| +4+|A|) + n ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| + |A m |) + n/2 ⇥ g ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| + |A m |) + n/2 ⇥ g 2 ⇥ 128 ⇥ (2 ⇥ 128 2 + |S| +4+|A|)

 Motivations . Trac Signal Control . Reinforcement Learning . Contributions . Contents III M I T S C M . Deterministic IsolatedTrac Signal Control Fixed Methods .. Optimal Method . Classical Reinforcement Learning Methods .. Value-based Methods .. Policy Iteration Methods .. Actor-critic Methods .. Performance Evaluation of Classical RL Methods Function Approximation Techniques .. Q-learning Bootstrapping .. Function Approximation for Q-Learning Applying Function Approximation to Trac Signal Control C T S C M . Independent Learning .. Optimal Method in the MARL Case Independent Learning Performance Green Wave Coordination .. Green Wave Coordination Mechanisms Green Wave Methods .. Green Wave Performance . Indirect Coordination .. Indirect Coordination Mechanisms Measuring The Impact Of Indirect Coordination Direct Coordination .. Direct Coordination Mechanisms .. Measuring the Impact of Direct Coordination Agent Coordination on Large-Scale Trac Networks Synthetic Large-Scale Road Network Performance Under Fixed and Variable Arrival Rates

.

 The Science of Trac Signal Control .. Origins of Trac Signal Control .. Trac Signal Control Terminology .. A Typology of Trac Signal Control Methods Operation of Trac Signal Control Methods Fixed Methods .. Actuated Methods .. Adaptive Methods .

Figure . :

 . Figure .: The First Modern Trac Light Control System, Installed on Euclid and th Avenue. Cleveland, Ohio, August .Semaphores were mechanical devices with rotating Stop and Go signs giving a right of way to vehicles around an intersection.

Figure . :

 . Figure .: An example -way intersection.

Figure . :

 . Figure .: An example NEMA signal cycle on a -way intersection.

 Figure .: Schematic view of agent-environment interactions in a MDP.

Figure . :

 . Figure .: Learning process evolution of the Q-learning algorithm solving the CartPole problem using an ε-greedy policy with dierent ε rates. The maximum reward per episode is .

 al. () and Noaeen et al. () list the following classes of objective functions.

Figure . :

 . Figure .: For a given lane, a MDP can use multiple environment features to represent the current trac state. Number of vehicles in a queue () or on the lane () can be used for vehicle-related data. Current phase index and duration are phase-related indicators. Finally, DTSE representations can be used (11101 in the current situation).

.

 Road Network .. Graph .. Vertices . Trac Signals .. Trac Trajectories .. Trac Phases .. Signal Cycles . Trac Flows .. Modeling Trac .. Vehicles and Lanes .. Transition Function .

Figure . :

 . Figure .: Example non-directed graph representing a road network.

Figure . :

 . Figure .: Example node degrees. Node u has an indegree of 2 and an outdegree of 1. Node v has an indegree of 0 and an outdegree of 3. Node w has an indegree and outdegree of 3.

Figure . :

 . Figure .: Illustration of a -way intersection.

Figure . :

 . Figure .: Illustration of a -way intersection.

Figure . :

 . Figure .: Illustration of the evolution of vehicles positions P t (uv) and P t+1 (uv) given by the transition function T . The transition function caused the departure of vehicle v 4 and arrival of vehicle v 5 .Transitions also direct lane changes, which is illustrated by vehicle v 3 .

Figure . :

 . Figure .: Comparison of trac simulation episodes using three distinct time-related performance indicators. These metrics compute the average trip duration, time loss and vehicular delay for multiple simulation episodes of steps.

Figure . :

 . Figure .: Illustration of the decision steps of phase-based (in red) and step-based (with decision interval k =1, in blue) action types on a signal cycle. Yellow steps represent forced transition phases of the signal cycle.

Figure . :

 . Figure .: The Netedit program, used here to edit the signal cycle of an intersection.

:

 Simplied trac supervisor loop in carmulator. Initialize controllers and signal cycles; while Vehicles are still present in the network do Query SUMO for the current network trac, waiting times, and trac signals; for Each trac controller and signal cycle in the network do Advance the signal cycle by step; if Signal cycle needs a decision then Query the controller for a signal cycle action; Pass the controller action to the signal cycle; if Signal cycle has changed then Change the signal cycle in SUMO; Move the simulation by step in SUMO; Log simulation data to disk;

 def set(step): return def get(step): return step % 10 == 0

Figure . :

 . Figure .: Distribution of draws according to an exponential distribution of parameter λ.

Figure . :

 . Figure .: Example of a convergence analysis plot.

Figure . :

 . Figure .: Example performance analyis plot.

Figure . :

 . Figure .: Example variable-ow performance analysis plot.

.

 Deterministic Isolated Trac Signal Control Fixed Methods .. Optimal Method . Classical Reinforcement Learning Methods .. Value-based Methods .. Policy Iteration Methods .. Actor-critic Methods .. Performance Evaluation of Classical RL Methods Function Approximation Techniques .. Q-learning Bootstrapping .. Function Approximation for Q-Learning Applying Function Approximation to Trac Signal Control

Figure . :

 . Figure .: Representation of a strategy tree search for a depth k = 15. The character represents successive extend actions for brevity.

 Figure .: Computation time of the optimal strategy approximation algorithm depending on dierent horizon parameter h values (, , , , , , and , in increasing order on the above gure).

 Figure .: Training process of three classical reinforcement learning algorithms on an isolated intersection.

Figure . :

 . Figure .: Training process of three classical reinforcement learning algorithms using two distinct policy types on an isolated intersection. Dashed lines represent a stochastic policy, full lines an ε-greedy policy. All plots use smoothing splines for readability.

 Figure .: Training process of the Q-learning and actor-critic algorithms using data structure variations.Full lines represent multiple variations of the Q-learning algorithm. The dashed line represents the actor-critic policy.

Figure . :

 . Figure .: Comparative convergence process of a regular and bootstrapped Q-learning algorithm. Average out of simulation scenarios.

Figure . :

 . Figure .: Architecture of the DQN network.

 Figure .: Impact of function approximation and experience replay on trac routing performances.Tested on a single intersection with an arrival rate of λ =0 .4. Batch normalization is used on deep Q-learning with experience replay.

 Dueling Deep Q-learning Double Dueling Deep Q-learning Impact of Function Approximation Techniques on Cumulated Vehicle Waiting Time

Figure . :

 . Figure .: Impact of function approximation techniques on trac routing performances. Average values plotted from simulation scenarios on a single intersection with an arrival rate of λ =0 .6. Batch normalization, target networks and prioritized experience replay is used on all tested methods. Results are smoothed for readability.

.

 Independent Learning .. Optimal Method in the MARL Case Independent Learning Performance Green Wave Coordination .. Green Wave Coordination Mechanisms Green Wave Methods .. Green Wave Performance . Indirect Coordination .. Indirect Coordination Mechanisms Measuring The Impact Of Indirect Coordination Direct Coordination .. Direct Coordination Mechanisms .. Measuring the Impact of Direct Coordination Agent Coordination on Large-Scale Trac Networks Synthetic Large-Scale Road Network Performance Under Fixed and Variable Arrival Rates

Figure . :

 . Figure .: Comparison of multi-agent independent function approximation methods. Average results over simulation scenarios.

 Agent Performances Over 20 Tra ffic Simulations

Figure . :

 . Figure .: Performance comparison of the DQN, DQN and DQN algorithms over trac scenarios.

Figure . :

 . Figure .: Example time-space diagram on a four intersection arterial. The x-axis represents time and the y axis distance. Intersections of the arterial are numbered from u 1 to u 4 . Vehicle movements across the arterial are represented by black arrows. The signal cycles of the four intersections, represented across the time axis next to its intersection, are computed so that green waves can occur in both directions of the arterial.

Figure . :

 . Figure .: interesection network use to emulate green waves along an arterial. All intersections share the same oset time of steps and the same cycle time of C = 30.

Figure . :

 . Figure .: Performance evolution of green-wave and DQN-based TSC methods on the line network. Fixed methods are represented as dotted lines in the following order (from worst to best): simple xed method, Webster xed method, green wave xed method and optimal method.

 Figure .. It is, however, essential to bear in mind that the superior performances of the Coordinated Trac Signal Control Methods Agent Performances Over 20 Tra ffic Simulations, Regular Traffic

Figure . :

 . Figure .: Performance spectrum comparison of Deep Q-learning and Green Wave Coordination methods over trac scenarios. Base trac arrival rate xed to λ =0.06.

 Figure .: Performance spectrum comparison of the IDQN and adaptive green wave methods over trac scenarios. Base trac arrival rate xed to λ =0.8.

Figure . :

 . Figure .: Performance comparison of the regular and modied MARLIN-IC methods in their classical and deep forms. Classical MARLIN methods are in red; deep MARLIN methods are in blue. Dashed lines represent the original MARLIN algorithm, full lines our modied version. Results are averaged over ve simulation scenarios.

Figure . :

 . Figure .: Convergence process of the IDQN, MARLIN and Deep MARLIN methods. Webster and Optimal xed methods are included for comparison purposes. Average values over simulation scenarios. Smoothed results.

Figure . :

 . Figure .: Analysis of IDQN and deep MARLIN under variable trac conditions.

Figure . :

 . Figure .: Illustration of the modied DIAL architecture applied to a road network of three aligned intersections, u, v and w. At each step, each intersection chooses a communication action m on the basis of its local state and unique intersection index on the shared communication neural network. The resulting message is then sent to neighboring intersections at the next time step and is used by neighboring intersections to chose a trac signal control action a.

C C S

 S The size of the communication channel |A m | is paramount in proper communication between agents of the DEC-DQN algorithm. Messages are sent by Coordinated Trac Signal Control Methods

Figure . :

 . Figure .: Convergence process of the DEC-DQN algorithm per comunication channel size.

Figure . :

 . Figure .: Convergence process of the IDQN and DEC-DQN algorithms.

Figure . :

 . Figure .: Analysis of the IDQN and DEC-DQN algorithms in variable trac conditions.

Figure . :

 . Figure .: Synthetic city network.

Figure . :

 . Figure .: Convergence of the IDQN, deep MARLIN and DEC-DQN with a constant arrival rate on the synthetic city network.

Figure . :

 . Figure .: Comparison of the IDQN, deep MARLIN and DEC-DQN methods in variable trac conditions on a large scale trac network.

 For instance, the the open trac collection, lists various open data sets of trac demand data.

 Multi-Agent Reinforcement Learning Applied to TSC Agent Coordination Applied to TSC Function Approximation Techniques

		A
	T S C
	. Modeling Trac for Reinforcement Learning
	..	General Model Choices .
	..	Model Parameter Design .
	. Trac Signal Control Methods .
	..	Single Agent Reinforcement Learning Applied to TSC
	..	

Table . :

 . Trac trajectory incompatibilities on a -way intersection.

		vw vx vy wv wx wy xv xw xy yv yw yx
	vw		oooo	oo
	vx		oo	o	ooo
	vy		o	o
	wv			o	o
	wx	oo		oo	ooo
	wy	ooo		oo	o
	xv	o	ooo		oo
	xw	o			o
	xy	oo	oo		oo
	yv	oo	ooooo
	yw	oo	o	ooo
	yx	o	o	

 So far, our trac model has used graph theory to dene the structure of the road network and has used trac engineering to describe discrete-time rules for vehicle crossing of intersections. The nal section of this model deals with trac ows themselves, dening what trac is, and then modeling how trac ows from vertex to vertex of the road network.Trac is composed of vehicles that move over the road network's arcs. Since vehicle movement is continuous, properly dening it in a discrete-time model is highly dicult. While it is possible . Trac Flows to approximate vehicle movement using, for instance, cellular automata (Nagel and Schreckenberg,), we do not opt for this option for two reasons. First, trac experiments of this thesis are based on the SUMO trac simulator(Lopez et al.,), which does not use a cellular automata model, which would mean that our theoretical trac model would not match our experimental setup. Second, most trac simulators, including SUMO, use advanced microscopic trac simulation models

	M T

we designate by φ t (v) the phase of Φ v that is active at time step t, and by d t (v) the amount of steps for which the current phase on v has been active within the current signal cycle. The total duration of the signal cycle on intersection v is noted as C v . At each time step, the trac light controller on an intersection v can change the currently active trac light φ t (v) if the current phase active time, d t (v), is superior to a minimum phase duration d min . This minimum duration is usually implemented on intersections for safety and acceptability reasons. Conversely, if the currently active phase φ t (v) has been active for d max steps, it is forced to change at the next time step.

T F

.

 Objective Function F Role of the Objective Function .. Choosing the Objective Function . Reward Function R Choosing the Reward Function . State Space S Role of the State Space .. Choosing the State Space . Action Space A

.. Role of the Action Space .. Choosing the Action Space . Transition Function T Choosing the Transition Model .

.

 Trac Simulator .. Simulator Features .. Network Data .. Demand Data .. Output Data . Simulation Library .. Library Structure .. Trac Generation .. Additional Utilities . Experimental Protocols .. Convergence Analysis .. Performance Analysis ..

Performance Analysis Under Variable Flows

Table . :

 . Cumulated waiting times according to dierent strategy depths k and horizon h values.

Table . :

 . Simulation hyper-parameters used for classical RL method comparison.

	Parameter	Value
	Episodes	500
	Steps	2500/episode
	Vehicle arrival rate λ	0.04 veh/s
	Discount factor γ	0.98
	Learning rate α	0.2 ! 0.001
	Random action probability ε	0.9 ! 0.01
	LRP reward parameter σ	0.5
	LRP penalty parameter τ	0.5
	Moving window n for stopping criteria	10 episodes
	Performance delta κ for stopping criteria 5 sec average

Table . :

 . Comparison of a regular (left) and bootstrapped (right) initial Q-table of an isolated intersection using Q-learning. The Q function represents a manual quality estimation of a state-action pair.

 (Calvo and Dusparic, ; Van der Pol, ; Wang et al.,). Our trac model uses a discrete and relatively compact state denition since they can be used by both classical and deep reinforcement learning methods while ensuring similar performance levels (see section .), which implies that our neural network architecture is likely to be dierent since convolutional neural networks are not needed in our case.

		Isolated Trac Signal Control Methods		
										FC Layer	ReLU	Batch Norm	A(s, 0)
	s	FC Layer	ReLU	Batch Norm	FC Layer	ReLU	Batch Norm	FC Layer	ReLU	Batch Norm
										FC Layer	ReLU	Batch Norm

Table . :

 . Deep reinforcement learning-specic simulation hyper-parameters used for function approximation RL method comparison.

	Parameter	Value
	Optimizer	Adam (Kingma and Ba,)
	Learning rate α	0.0001
	Replay buer D size	10000 observations
	Minibatch size B	100 observations
	Target network update interval K 1000 steps

Table . :

 . Average waiting time per simulation episode and deep reinforcement learning algorithm type.

Table . :

 . Average waiting time per simulation episode according to episode intervals.

Table . :

 . Average dierence (µ) and variance in average dierence (σ) of value estimates for states.

 al., ; Ma and Wu, ; Shi and Chen, ; Xiong et al., ; Zeng et al.,), they also use complex DTSE state representation (see section ...) through image inputs, which justies the use of recurrent neural networks alongside convolutional layers in order to learn from image input data.

Table . :

 . Average dierence of quality estimates for dierent messages and delay values ∆ t .

Table . :

 . Computational and memory requirements of various RL-TSC algorithms.

		Computation (op/s) Memory (kb)
	IDQN	239162880	409144
	Deep MARLIN	717663744	2069528
	DEC-DQN	1435765248	459716

The algorithm begins by verifying which action was taken last. If it was a phase extension, the simulation step and waiting time are updated, and the simulation moves one step forward in SUMO. If the last action was a phase switch, the algorithm simulates two successive phase switches (transition and beginning of the following green phase) of d min steps each and update the waiting times accordingly. These phase switches can be cut short if the resulting simulation time is greater than the desired search depth k. If the resulting strategy is long enough, we return it alongside its associated waiting time. If not, we perform a new search split by recursively calling the function Search with both possible actions. Finally, once the algorithm has exhausted all possible strategies for the agent, it returns the strategy associated with the minimum vehicle waiting time.

B A Q

This appendix presents the function approximation method using state-action pair pre-estimation with phase-based actions as used in section ... The elements relating to queueing theory and how the average service time per vehicle is computed can be found in our paper on the topic (Tréca et al., b).

Algorithm : Pseudocode representation of the Q-learning pre-estimation algorithm. This algorithm enumerates the entire state-action couples around an isolated intersection. For each state and action, the algorithm computes, for each lane of the intersection, the number of vehicles already present in the lane (o l , directly taken from state s), and an estimate of the number of new vehicles in the lane (n l , estimated from the arrival rate on lane l, λ l). Using these values, the algorithm estimates the number of vehicles to exit or stay on the lane for both of these categories, depending on whether the current lane l has a green signal in the current phase. Finally, the quality of action a in state s is estimated for the current lane by using Equation ..