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Résumé : Cette thése étudie le fonctionnement
des systémes de contréle de feux de signalisation
dans I'optique d'optimiser le trafic routier. Cette
optimisation s'appuie sur des techniques d'appren-
tissage par renforcement qui modélisent un ou plu-
sieurs agent maximisant une tache dans un envi-
ronement. Pou run état donné du systéme (i.e. le
réseau routier), I'agent choisit une action (i.e. une
configuration de feux) qui est appliquée a I'envi-
ronnement dans le but de maximizer un objectif
(i.e. minimiser le temps d'attente des véhicules du
réseau).

Ces travaux se divisent en trois parties. Tout
d'abord une partie introductive dresse |'état de
I'art des différentes disciplines abordées durant le
thése, soit une présentation du contrdle de feux tel
qu'il est utilisé dans le monde des transports, une
présentation de |'apprentissage par renforcement
en tant que branche de I'intelligence artificielle puis
une présentation du domaine RL-TSC (reinforce-
ment learning for traffic signal control), soit com-
ment les méthodes d'apprentissage par renforce-
ment sont appliquées au contrdle de feux.

Dans un second temps, la thése présente les
outils utilisés afin de développer des méthodes de
contrdle de feux a I'aide de |'apprentissage par ren-
forcement. Plus particuliérement, nous définissons
un modéle mathématique du contréle de feux, ainsi
qu'un modéle d'apprentissage utilisé par les diffé-
rents algorithmes pour apprendre dans ce contexte
(i.e. définition des états de I'environnement, des
actions prises par les agents et les récompenses as-
sociées). Finalement, nous présentons |'environne-
ment d'experimentation utilisé pour |'optimisation
de trafic (simulateur SUMQ), et les ptocoles utili-
sés pour mesurer la performance des algorithmes
d'apprentissage par renforcement utilisés dans ce
contexte.

Finalement, la troisiéme partie de ces travaux
vise a analyser et comparer diverses méthodes
de controle de feux utilisant de I'apprentissage
par renforcement. Dans un premier temps, plu-
sieurs approches classiques de la littérature (e.g.

Apprentissage par renforcement, simulation de trafic, contrdle de feux, apprentissage

Q-learning, LRP et méthode acteur-critique) sont
appliquées sur une intersection isolée. Aprés avoir
identifié et expliqué pourquoi les approches par va-
leur, comme le Q-learning, sont le plus adaptées
au contrdle de feux, nous étendons cette approche
a l'utilisation de réseaux de neurones profonds
comme moyen d'approximation par fonction. Cette
approche plus moderne est associée a une meilleure
adaptabilité de I'agent et donc de meilleures per-
formances.

Dans un second temps, nous étendons notre
analyse & un cadre multi-agent. Cette approche
introduit un certain nombre de contraintes sup-
plémentaires sur |'apprentissage, comme la non-
stationnarité, mais permet également aux agents
de communiquer et de méme se coordonner afin
de mieux optimiser le traffic en I'anaysant a plus
grande échelle. Plusieurs approches innovantes
sont proposées dans ce cadre, comme notamment
une coordination par vague verte permettant a plu-
sieurs agents indépendants de se coordonner auto-
matiquement le long d'une artére. Cette approche
donne de meilleurs résultats que les méthodes
non-coordonnées de la littérature, mais unique-
ment lors que le réseau n'est pas congestionné.
Une seconde approche que nous avons développé,
DEC-DQN, permet aux intersections d'un réseau
routier d'apprendre a adapter leurs feux de signali-
sation en fonction du trafic en temps réel. Le point
central de cette méthode est que les intersections
du réseau peuvent communiquer entre elles selon
un protocole qu'elles ont elle-mémes appris, ce
qui leur permet de s'adapter a plusieurs scenarios
routiers sans instructions explicites. Une expéri-
mentation sur simulateur de trafic dans une ville
synthétique a grande échelle valide la performance
de DEC-DQN par rapport a d'autres méthodes
phrase de la littérature RL-TSC comme MARLIN.
Les résultats de ces simulations indiquent la supé-
riorité de notre approche dans plusieurs scénarios
de trafic différents : trafic faible, congestionné et
variable.
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Abstract : This thesis studies traffic light control
systems in order to optimize traffic flows. This op-
timization is based on reinforcement learning tech-
niques, which model one or multiple agents maxi-
mizing a task in a given environment. This thesis
defines a novel deep reinforcement learning me-
thod that allows intersections of a road network
to learn to adapt their traffic light signals depen-

ding on the current state of the road network. The
main contribution of this method is the ability for
intersections to communicate according to a com-
munication protocol that they learn themselves, al-
lowing them to adapt to multiple traffic scenarios.
This novel method, DEC-DQN, outperforms va-
rious coordinated deep reinforcmeent learning me-
thods in use in the traffic signal control literature.




Designing Trafhic Signal Control Systems

Using Reinforcement Learning

by

MaxXIME TRECA

Supervisors:  Prof. Dr.  Dominique Barth  Université de Versailles Saint-Quentin-en-Yvelines
Dr. Julian Garbiso Institut Védécom
Prof. Dr. Mahdi Zargayouna  Université Gustave Eiffel






ACKNOWLEDGEMENTS

I'would like to express my appreciation to my supervisor, Dominique Barth, for his guidance dur-
ing my years of research. When Dominique informed me of a research topic on traffic optimiza-
tion, I had no idea that it would result in studying a subject I knew very little about—reinforcement
learning—for the next three years. I thank him for this fruitful discovery. Dominique was always
available for guidance and scientific discussions, no matter how busy his schedule was. However,
he also let me explore my own ideas. I owe him the ability to be autonomous and curious in
research, which is precious. I am proud to have him as an advisor. I would like to extend this
appreciation to my two co-supervisors, Julian Garbiso and Mahdi Zargayouna. Julian has always
been very generous with his time and energy, from proofreading papers before deadlines to con-
ceptualizing novel ways of optimizing traffic. His moral support has also been vital during difficult
periods of my thesis. I am happy to call him a friend. I would like to thank Mahdi for his enthu-
siasm, kindness, and keen eye regarding scientific publications. He was always available to give
me excellent advice regarding manuscripts or model choices. I would like to thank Amal El Fallah
Seghrouchni, Lila Boukhatem, Alain Dutech, and René Mandiau for participating in my thesis
committee.

I metamazing people during my thesis, whether at Institut Védécom or the DAVID and GRET-
TIA lab. Although the simple mention of their names does not do justice to their talent or kind-
ness, I would like to thank Alexis, Aziz, Bertrand, Bintou, Catherine, Coline, David, Fabienne,
Fares, Frank, Jean-Michel, Joseph, Kartik, Leila, Loric, Mael, Mehdi, Nassim, Perla, Pierre, Safa,
Sandrine, Shabbir, Tatiana, Thierry, Toussaint, Tristan, Xavier, Yacine, Yann, Yléne, Youssef and
others for these three years together. I would also like to extend these thanks to my students, who
kept my passion for teaching and computer science alive. I am also grateful to Université de Ver-
sailles Saint-Quentin-en-Yvelines, Institut Védécom, and Université Gustave Eiffel for financing
and accompanying my research and allowing me to publish and participate in conferences. Finally,
I'would like to thank the thousands of people around the world who develop and maintain open-
source software. More specifically, this thesis research would not have been possible without the
thousands of hours of work behind the GNU/Linux, NixOS, Emacs, and SUMO projects.

My wife Marci has been an anchor during this time. I can never repay her enough for her pa-
tience, love, joy, and for the sacrifices she made for me to complete this thesis. Last but certainly
not least, I am grateful for my friends and family for their continuous support.






CONTENTS

1 INTRODUCTION 9
L1 Motivations . . . . . . .. L e e e 9

12 TrafficSignal Control . . . . . . .. ... oo 10

13 ReinforcementLearning . . . . ... ... .. ... .. 0L 10

.4 Contributions . . . . . . .. ... I

Ls StructureofthisThesis . . . . .. . . . ... ... ... ... .. .... 12

I  THEORY 3
2 ANINTRODUCTION TO TRAFFIC SIGNAL CONTROL 15
2.1 The Science of Traffic Signal Control . . . . . .. ... ... ... .. .. .. 15
2.LI Origins of Trafhic Signal Control . . . . .. .. ... ... ...... 16

2.2 Traflic Signal Control Terminology . . . . . . ... ... ... .... 17

2.3 ATypology of Traffic Signal Control Methods . . . . . ... ... .. 18

2.2 Operation of Traffic Signal Control Methods . . . . .. ... ... ... ... 20
221 FixedMethods . . . . .. ... ... 20

2.2.2  ActuatedMethods . . . . ... ... L 21

223 AdaptiveMethods . . . . ... L L L oo 22

3  REINFORCEMENT LEARNING THEORY 25
3.1 Fundamental Reinforcement Learning Concepts . . . . . . . ... ... ... 25
3.LI Markov Decision Process . . . . . . . . .. .. ... ... ... ... 25

3.2 Learning Algorithm . . . ... .. ... o 0o o000 27

3.3 AgentPolicy . . ... ... ... .. .. .. L L o o 30

3.2 Reinforcement Learning Model Extensions . . . . ... ... ... ...... 31
3.21  Multi-agent Reinforcement Learning . . . . . . .. ... ... ... 32

3.2.2  Function Approximation . . . . . ... ... ... ... .. ... .. 33

4 REINFORCEMENT LEARNING APPLIED TO TRAFFIC SIGNAL CONTROL 37
4.1 Modeling Traffic for Reinforcement Learning . . . . . . ... ... ... ... 37
411 GeneralModel Choices . . . . . .. ... ... ... ... . ... 37

412 Model Parameter Design . . . . .. ... ... ... ......... 39

4.2 Traffic Signal Control Methods . . . . . .. ... ... .. .......... 42
421 Single Agent Reinforcement Learning Appliedto TSC . . . . . . .. 42

4.2.2  Mult-Agent Reinforcement Learning Appliedto TSC . . . . . . .. 43

4.2.3  Agent Coordination Appliedto TSC . . . . ... .......... 44

4.2.4  Function Approximation Techniques . . . . ... ... ....... 46



Contents

II

5

MobpEL

TrRAFFIC MODEL

st RoadNetwork . . . .. . ... ... . ...
5.LI Graph. . .. . ...
512 VErtiCeS . . . . v v v i e e e e e e e e e e
s TrafficSignals . . . . ... L Lo
s.2.0 Traffic Trajectories . . . . . .. .. ... ... L L L
s.2.2 TrafficPhases . . . . . ... . ... ... ...
523  SignalCycles . . . ... ... L Lo
5.3 TrafficFlows. . . . . . . . .. ...
531 Modeling Traffic . ... ...... ... ... ... ... .. ..
5.3.2  VehiclesandLanes . . . . ... ... ... ... ...........
5.3.3  Transition Function . . . ... ... ... ... ... ........

LEARNING MODEL

61  Objective Function F . . . . .. .. ... . L L
6.1 Roleof the Objective Function . . . . . . ... ... . ........
6.2 Choosing the Objective Function . . . ... ... ... .......
62 RewardFunctionR . . . . . . . . . . .. . . e
6.21  Choosing the Reward Function . . ... ... ... .........
63 StateSpaceS .. ...
631  RoleoftheStateSpace . . . .. .. ... ... L oL
6.3.2  ChoosingtheStateSpace . . . . .. ... ... .. ... ... ...
6.4 ActionSpace A . . ...
6.41 Roleofthe ActionSpace . . . . . ... ... ... ........ ..
6.4.2  Choosing the ActionSpace . . . . . . ... ... .. .. ... .....
6.5 Transition Function T . . . . . . . . . .. ... ...
6.5 Choosing the Transition Model . . . . ... ... ... .......

EXPERIMENTAL SETTING

71 TrafficSimulator . . . . ... ..
711  Simulator Features . . . . . .. .. ... ...
712 NetworkData . . . .. ... ... ... . ...
713 DemandData . ... .. ... .. ... ... .. ... ...
714 OutputData . . ... ... ... ... . o
7.2 Simulation Library . . . .. ... oo o oo
721 LibraryStructure . . . . ..o Lo
7.2.2  TrafficGeneration . . . .. ... . ... ... .. ... . ... ...
7.2.3  Additional Utilities . . . . . .. ... ... ... ... ........
7.3 Experimental Protocols . . . . ... .. ... .. . o o L
731 Convergence Analysis . . . . ... ... ... L.
7.3.2  Performance Analysis . . . . . ... ... ... o L
7.3.3  Performance Analysis Under Variable Flows . . . ... ... ... ..

49

51
5T
5T
52
53
53

54
55

56
57
57

59

59
60

60
61
61
62
62
62
63
63
6s
66
66



III METHOD

8 IsoLATED TRAFFIC S1IGNAL CONTROL METHODS

8.1 Deterministic Isolated Traffic Signal Control . . . . .. ... ... ..
8.LI Fixed Methods . . . . .. .. ... ... ... . .......
812  OptimalMethod . . . . ... ... ... ... ......
8.2 Classical Reinforcement Learning Methods . . . . . .. .. ... ...
821  Value-basedMethods . . . .. ... ... ...........
8.2.2  DPolicy Iteration Methods . . . . ... ... ... ... ....
8.2.3 ActorcriticMethods . . . . . .. ... ... ..., . ...
8.2.4  Performance Evaluation of Classical RL Methods . . . . . ..
8.3  Function Approximation Techniques . . . . . . ... ... ... ...
831  Q-learning Bootstrapping . . . . ... ... ... ... ...
8.3.2  Function Approximation for Q-Learning . . . . . .. .. ..

8.3.3  Applying Function Approximation to Traftic Signal Control

9 COORDINATED TRAFFIC SIGNAL CONTROL METHODS

9.1 IndependentLearning. . . .. .. ... ... ... .. .. .. ....
9.1 Optimal Methodinthe MARL Case . . . . . ... ... ...
9.1.2  Independent Learning Performance . . . . . ... ... ...
9.2 Green Wave Coordination . . . . . . . ... . ... ... .......
9.21  Green Wave Coordination Mechanisms . . . . . ... .. ..
9.2.2 GreenWaveMethods . . . . .. ... ... ... ... ...
9.2.3 Green Wave Performance . . . . ... .. ... ... .....
9.3 Indirect Coordination . . . . . . .. ... ... ... ... . ... .
9.3.1  Indirect Coordination Mechanisms . . . . .. ... ... ..
9.3.2  Measuring The Impact Of Indirect Coordination . . . . . ..
9.4 Direct Coordination . . . . . . ... ... ... ... ...
9.4.1  Direct Coordination Mechanisms . . . . . ... ... ....
9.4.2  Measuring the Impact of Direct Coordination . . . . . .. ..
9.5 Agent Coordination on Large-Scale Traffic Networks . . . . . . . . ..
9.5.1  Synthetic Large-Scale Road Network . . . . . ... ... ...
9.5.2  Performance Under Fixed and Variable Arrival Rates . . . . . .

10 CONCLUSION

BiBLIOGRAPHY

AcCRONYMS

LisT oF SYMBOLS

A ArPENDIX - OPTIMAL METHOD

B APrrENDIX - Q—LEARNING PRE-ESTIMATION METHOD

Contents

77

143

147

161



Contents

C ArrENDIX - COMPLEXITY ANALYSIS



I INTRODUCTION

The XX century has indubitably been the century of the personal motor vehicle. In the United
States, the rates of vehicle ownership per 100.000 inhabitants have soared from o.1in 1900 t0 323.7
in 1950 and 800.3 in 2000 (Davis and Boundy, 2021). As this increasing number of vehicles started
circulating on urban transportation networks, the need for traffic signal control (TSC) became
apparent for two reasons. Its primary and essential goal was to guarantee the safety of road users.
Its second and corollary goal was to reduce traffic congestion caused by the introduction of a large
number of vehicles in urban areas. This thesis aims to leverage recent advances in machine learning
to fulfill these two missions: optimizing traffic flows on a traffic network while ensuring the safety
of its users.

1.1 MOTIVATIONS

Until the 2000s, traffic signal control was mainly seen through the prism of traffic engineering
and operational research. Early TSC solutions inspired by Webster’s work (1958) provided sim-
ple fixed traffic signal settings based on historical traffic data that performed relatively well. More
advanced traffic solutions such as adaptive traffic signal control (ATSC) which relies on routing
traffic using real-time instead of real-time traffic data, soon followed. The recent rise of reinforce-
ment learning (RL) and the development of novel sensor technology have provided a theoretical
and practical basis for the use of machine learning for traffic signal control. The study of ATSC
methods has become exceedingly popular in the literature in recent years due to these new per-
spectives. The reinforcement learning-based traffic signal control (RL-TSC) literature has since
showcased impressive achievements in simulated traffic settings during its relatively short history.
In recent years, this research has culminated with the use of TSC methods coupled with deep re-
inforcement learning (DRL) techniques and agent coordination. Such methods allow multiple
intersections to optimize traffic flows on large simulated networks using real-world traffic data,
outperforming several well-established TSC methods from the traffic engineering literature. The
numerous manners in which the RL-TSC literature applies reinforcement learning on traffic op-
timization problems is a testament to the fact that RL is a highly well-suited tool for the control of
traffic lights. This last remark should, however, not divert us from the fact that traffic signal con-
trol is much more than a simple application domain of machine learning methods, but a complex
and fascinating research topic that predates the field of RL itself. It would hence be a mistake to
study RL-TSC without understanding traffic engineering first.

This thesis’s primary motivation is to provide a complete (but not exhaustive) study of how one
can apply modern reinforcement learning techniques to the problem of traffic signal control. By
first defining what traffic 7s, we were able to incrementally build a model and framework for RL-
TSC while analyzing, discussing, and explaining each hypothesis, model choice, or design decision
along the way. This modeling work has not only allowed us to build a state-of-the-art coordinated



1 Introduction

traffic signal control method but can also serve as a basis for any future work on RL-TSC research
in the future.

1.2 TRAFFIC SIGNAL CONTROL

The task of traffic signal control, which consists in assigning a right-of-way on conflicting traffic
flows over an intersection through the use of light signals, can be seen as a simple optimization
problem. Each intersection of the road network aims to achieve maximum vehicle throughput on
its lanes while maintaining safety constraints for road users. This optimization problem has vari-
ous answers in the TSC literature depending on the characteristics of the intersection at hand. In-
deed, the optimal traffic light assignment over an intersection depends on geographic constraints
and traffic data accessibility. Intersections for which only historical traffic data is available will
not route traffic the same way as intersections using real-time traffic data through sensors or loop
detectors. Similarly, traffic routing differs depending on its scale of operation: the optimization
problem is easy to solve over isolated intersections but becomes increasingly complex when spread
on a larger scale, such as arterials.

Given that most state-of-the-art traffic signal control solutions, presented in chapter 2, are both
adaptive (i.e., they can access traffic data in real-time) and coordinated (i.e., they optimize traffic
flows on multiple intersections), we aim at developing a traffic signal control leveraging both of
these features, while being able to automatically learn to route traffic using a branch of machine
learning known as reinforcement learning.

1.3 REINFORCEMENT LEARNING

Reinforcement learning is a class of machine learning algorithms aiming at solving tasks through
reward maximization. Most RL models feature an agent interacting with an environment to solve
a task. The environment goes through successive szates (e.g., traffic congestion around an intersec-
tion) answered by the agent with an action (e.g., a traffic light setting) applied to the environment.
Once the action is applied, the environment transitions to a new state, and the agent receives a 7e-
ward value that quantifies the quality of the previous action given the task it is trying to solve. By
efficiently testing state-action combinations to maximize the agent’s cumulated reward signals,
RL algorithms can learn an optimal policy, which maps optimal actions to different environment
states. We present the general RL framework in chapter 3.

The use of reinforcement learning for traffic signal control tasks, which we cover extensively
in chapter 4, has been increasingly popular for multiple reasons. First, the theoretical framework
of reinforcement learning is a good fit for traffic signal control problems. Since learning models
usually place agents at the intersection level, they can both learn in a single-agent (SARL) or multi-
agent (MARL) setting since the RL framework covers both single and multi-agent learning. Sec-
ond, developing RL-T'SC methods is relatively easier than developing classical traffic signal control
methods. Indeed, model-free RL methods learn from reward signals from the environment with-
out explicitly modeling how their actions affect state transitions of the environment. In the case
of traffic signal control, this implies that a model-free method can learn to route traffic without
prior knowledge regarding traffic dynamics. Furthermore, the availability of open-source traffic

10



1.4 Contributions

simulators and scientific computing programming libraries has made it easy to prototype novel
RL-TSC methods and test their performance on traffic simulations.

1.4 CONTRIBUTIONS

We have made several scientific contributions during our research work on coordinated traffic
signal control methods:

* In chapter 6, we analyze the effect of different action space definitions on an intersection’s
overall traffic routing abilities using the Q-learning algorithm. Our experiments showed
that a step-based action space definition was superior to a phase-based one. We published
these results in the form of guidelines for action space definition for RL-TSC applications
at the AAATICAPS 2020 conference (Tréca et al., 2020a).

* Inchapter 7, we present a simulation library written in Python, carmulator, which has been
created during our research work to quickly prototype novel RL-TSC methods and com-
pare them to existing methods using the SUMO simulator. All the results obtained during this
thesis work are reproducible using this simulation library released under an open-source li-
cense.

* In chapter 8, we define a novel bootstrapping method used to accelerate the convergence
process of a Q-learning-based traffic signal control method on an isolated intersection. By
pre-estimating the value function of each possible traffic state around an intersection using
approximation results from queuing theory, we were able to drastically improve the con-
vergence speed of a RL-TSC agent. We have presented this novel method at the IEEE VTC
2020 conference (Tréca et al.,, 2020b).

* In chapter 8, we develop a novel near-optimal traffic signal control method. This method
features a backtracking algorithm that enumerates all the possible strategies of a traffic light
controller over a given horizon by repeatedly saving and loading SUMO simulation states and
returns the optimal one. This near-optimal method allows to set an upper performance
bound on traffic simulation scenarios, which proves extremely useful in evaluating the per-
formance of RL-T'SC methods. This method is currently being submitted for publication.

* In chapter 9, we present a deep reinforcement learning algorithm for traffic signal control
that relies on green wave coordination over arterial streets. This form of traffic light coordi-
nation, which, to our knowledge, has not been studied in the RL-T'SC literature, outper-
forms standard deep Q-learning algorithms in normal traffic conditions. This method has
been accepted for publication and will be presented at the TRISTAN 2022 conference.

* In chapter 9, we present a novel RL-TSC method featuring direct coordination between
agents of the same road network. Agents using this direct coordination method learn a
common communication protocol through a shared deep neural network and can hence
coordinate automatically without human intervention. This coordination method pro-
vides excellent results, which we consider to be state-of-the-art. This method has been sub-
mitted to the NeurIPS 2022 conference.

II
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1 Introduction

1.5 STRUCTURE OF THIS THESIS

This thesis aims to build a state-of-the-art coordinated traffic signal control method from the
ground up. Hence, the structure of this thesis reflects the deeply iterative nature of this work,
divided into three main parts.

The first part of this thesis contains a thorough review of classical traffic signal control (chapter
2) and the theoretical framework of reinforcement learning (chapter 3). These two reviews help
establish the necessary terms and concepts which we use to present the field of RL-TSC (chapter
4). Following these definitions, the second part of this thesis looks at the model in use for trafhic
signal control. More specifically, we define a mathematical model of traffic signal control (chapter
5), which we can, in turn, use to formally determine how traffic is represented and optimized from
a reinforcement learning standpoint (chapter 6). Finally, we describe the traffic simulation setup
used to conduct traffic signal control experiments of this thesis (chapter 7). This thesis’s third
and final part defines efficient traffic signal control methods using the experimental framework
described in part 2. More specifically, we first aim at comparing multiple traffic signal control on
isolated intersections to establish the optimal RL-T'SC method and associated parameters (chapter
8). On this basis, we extend our scope of analysis to multi-intersection networks and the study of
coordination modes between these intersections (chapter 9). Finally, we summarize our main
findings and present future areas of research in the last chapter of this thesis (chapter 10).

12
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THEORY

The first part of this thesis presents the context in which reinforcement learning-based traffic sig-
nal control methods were developed. Thus, this part successively introduces the field of traffic
signal control (chapter 2), including its origins, main concepts and methods, and the theory of
machine learning (chapter 3) by presenting its general framework and the main categories of RL
algorithms. Finally, we describe how these disciplines merged to give birth to RL-TSC (chapter 4)
by doing a thorough literature review of this research topic and by discussing its main challenges.

3
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Traffic signal control, which is the study of the use of traffic lights to ensure the safety and efhi-
ciency of a road network, has been central in the proper management of urban mobility for more
than a century. The role of this chapter is twofold. It first aims to establish a short history of the
field of TSC by presenting the motivations for its inception and its pivotal role in the modern-
ization of urban mobility while showcasing how TSC methods have considerably evolved over a
century. The second objective of this chapter is to present a certain number of crucial traffic sig-
nal control concepts and notions which will be essential to the understanding of how these TSC
methods optimize traffic before formally introducing a mathematical traffic model in chapter 5 of
this thesis.

2.1 THE SCIENCE OF TRAFFIC S1GNAL CONTROL

The birth and adoption of traffic lights is a direct consequence of the mass production of automo-
biles in the early xxth century. The widespread availability of the Ford Model T, which started
production in 1913, caused an exponential surge in traffic congestion in most major cities in North
Americaand Western Europe in the late 19105 and 1920, respectively. Congestion became so prob-
lematic in some large cities that walking or taking the subway was commonly thought to be faster
than using a car (Wells, 2013). These issues regarding urban mobility caused the birth of traffic sig-
nal control in the 1910s, which then developed to become an entire field of study throughout the

century. This section quickly reviews the origins, terminology, and main types of methods used
in TSC.
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2 An Introduction to Traffic Signal Control

2.1.1 ORIGINS OF TRAFFIC S1GNAL CONTROL

The first modern traffic light was installed in Cleveland, Ohio, in 1914 (see Figure 2.1) to modernize
the existing traffic routing solutions. Traffic lights soon expanded to several major American cities
to streamline heavily congested intersections.

While they reduced congestion and improved traffic safety, the first traffic lights were frowned
upon by inner-city inhabitants. Since they caused an increase in traffic and average vehicular
speeds in these areas (which was proof of their effectiveness), pedestrians felt safer with the use
of stop signs, even though they caused more traffic accidents at the time (McShane, 1999). At first,
the control of traffic at intersections was under the responsibility of the city police, either through
modern traffic control systems, such as traffic lights or semaphores' or using direct gestures. Since
they were directly operating traffic lights, police officers drove most early innovations regarding
traffic signal control systems. The addition of an orange light for safety reasons in 1917 and the
octagonal shape of stop signs in 1914 is a testament to this involvement. The extensive use of hu-
man intervention in routing traffic was a driving factor in the traffic light automation that soon
followed. The first automated traffic light system (TLS) appeared in Houston, Texas, in 1922,
and most major cities in North America and Western Europe adopted these automated systems
as early as 1925. As well as cutting down operating costs of traffic light systems significantly, this in-
novation effectively transferred the task of using and developing TSC systems from police officers
to electricians and soon-to-be traffic engineers.
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Figure 2.1: The First Modern Traffic Light Control System, Installed on Euclid and 105th Avenue. Cleve-
land, Ohio, August 1914.

'Semaphores were mechanical devices with rotating Stop and Go signs giving a right of way to vehicles around an
intersection.
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Interestingly enough, one should note that most TLS systems developed during the 1930s and
1940s were all remarkably similar, even though they arose in different locations and no one had
explicitly set standards at the time. This natural gravitation towards the same set of traffic rules
partly explains why TLS systems were similar in most parts of the world by the 1960s (McShane,

1999).

2.1.2 TRAFFIC SIGNAL CONTROL TERMINOLOGY

Over a century, traffic signal control has evolved from an experimental technique to reduce con-
gestion on a few intersections to an entire field of research with specific concepts and terminology.
This section introduces a certain number of key concepts and terms used in the field of traffic en-
gineering and which are crucial to understanding the challenges posed by traffic signal control.
Note that this section does not extensively cover traffic engineering concepts, which one can find
in multiple works in the transportation literature (Koonce and Rodegerdts, 2008; Sullivan et al., 2015;
Urbanik et al., 2015), but to provide a general introduction to TSC to the reader to underline its
mechanisms and challenges.

Traffic signal control is commonly applied on intersections composed of multiple entry points,
also known as approaches (e.g. arrows on Figure 2.2). These approaches meet on the crossing area
of the intersection, on which multiple traffic streams can cross (e.g., gray zone on Figure 2.2).
A traffic stream can engage on the crossing area when it has a 7ight of way over the intersection,
usually given by a traffic light controller.

Figure 2.2: An example 4-way intersection.

Non-conflicting traffic streams that can safely and simultaneously cross an intersection can
form a traffic phase. A signal cycle is a repetitive pattern of phases implemented by a traffic light
controller, ensuring that all intersection traffic streams can eventually cross it. Adding constraints
on the organization and compatibility of traffic streams in a signal cycle still allows for many dif-
ferent valid signal cycles on the same intersections. A common signal cycle pattern for 4-way in-
tersections, known as the NEMA? signal cycle, is represented on Figure 2.3.

*National Electrical Manufacturers Association.
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Figure 2.3: An example NEMA signal cycle on a 4-way intersection.

One should note that if the signal cycle of an intersection is the only way this intersection influ-
ences traffic, there are four main levers of action within signal cycle design that influences traffic
on that intersection (Papageorgiou et al., 2004):

1. Its phase specification, or how it organizes phases within its signal cycle.

Its split time, or the relative duration of each phase within the signal cycle.

Its cycle time, which is the total duration of the signal cycle.

Its offsets with neighboring intersections, which can create green waves along the intersec-

> o»

tions of an arterial street.

2.1.3 A TyroroGY ofF TRAFFIC SIGNAL CONTROL METHODS

All existing traffic signal control methods belong to two major categories, given their mode of op-
eration. Depending on whether it routes traffic on a single intersection or multiple ones, a TSC
method will either be Zsolated or coordinated. Additionally, if the traffic signal control method
adapts to the current traffic state, it is defined as adaptive, otherwise as fixed. This section quickly
presents each class of TSC methods according to these classes and underlines some of their ad-
vantages and limitations.

2.1.3.1 FIXED METHODS

The earliest and simplest traffic light systems implement fixed-time signal cycles. These timing
strategies assign fixed durations to each phase of the signal cycle, usually using historical trafhic
data, giving insight into the distribution of traffic flows over intersections. While a good first ap-
proach regarding green light time assignment is to increase the green phase length of high-demand
lanes, attribution for fixed signal timing can quickly become complex (Urbanik et al., 2015). More
advanced fixed-time traffic lights can also switch traffic light configurations on demand since traf-
fic demand usually changes during the day. Fixed methods cannot adapt to traffic conditions in
real-time, given their nature. These methods are easy and cheap to deploy in real-life applications
but are also likely to perform relatively poorly in areas subject to high variations of traffic demand.
While our primary goal is to study RL-TSC which is by nature adaptive, we present a few fixed
methods such as Webster’s or a near-optimal method in detail in section 8.1 of this thesis.
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2.1.3.2 ADAPTIVE METHODS

Adaptive traffic signal control methods implement variable-length signal cycles that can adapt
to traffic conditions in real-time by querying traffic state through the use of sensors or cameras.
Adaptive methods generally provide better results than their fixed-time counterparts, as they can
react to traffic demand changes in real-time. They are still rarely seen in real-world situations due
to their high deployment and maintenance costs. According to the United States department
of transportation, less than 1 percent of US intersections used an adaptive traffic signal control
method in 2011 (USDT, 20m). While it is true that ATSC methods are more costly to deploy and
are marginal in most countries, they provide several benefits compared to fixed-timing plans that
would make their adoption worthwhile. Aside from the obvious fact that fixed-timing plans can-
not adapt to traffic conditions in real-time, they also require regular maintenance and updates to
keep track of traffic demand changes. Outdated signal timing plans are estimated to be responsi-
ble for 1o percent of total traffic delays in the US, which translates to an $8.7 billion yearly cost in
fuel and productivity loss (USDT, 20m). According to A. Robertson, creator of the TRANSYT and
SCOOT traffic signal control methods, the switch from fixed to adaptive methods becomes more
urgent as TSC technology progresses (Robertson, 1986):

I find it difficult to believe that, as we approach the end of this century, traffic engi-
neers and drivers will continue to tolerate signals with green and red times that were
decided by the flows and queues that happened to be observed on one day many
years earlier, rather than in the last five minutes.

2.1.3.3 ISOLATED METHODS

Isolated TSC methods, as indicated by their name, take a single intersection into account when
routing traffic. They represent the majority of traffic controllers in use. On the one hand, iso-
lated TSC methods present several advantages. They are easy to implement, offer a relatively low
complexity, and are highly scalable since removing or adding an isolated traffic light on a road
network has little to no incidence on the other intersections of the network. On the other hand,
these methods are by nature limited since they can only act on traffic on a per-intersection basis,
which limits their usefulness in highly used road networks or when traffic light coordination is
desirable (Mannion et al., 2016). We analyze these methods in detail in chapter 8 of this thesis.

2.1.3.4 COORDINATED METHODS

Conversely, coordinated TSC methods aim to optimize traffic around a given intersection and
make each intersection interact with its neighbors to some degree to optimize trafhic further. The
mechanisms relating to inter-intersection coordination difter depending on the TSC method. Co-
ordinated methods allow for more complex traffic management features since they can access traf-
fic data over larger network portions and potentially coordinate their signal cycle implementations
to optimize traffic. For instance, green wave or bandwidth-based methods presented in the next
section make extensive use of coordination to function correctly. Note that if these methods usu-
ally perform better than their isolated counterparts, they incur a high equipment cost since all
intersections must communicate in real-time, which increases their overall complexity, limiting
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their applicability. Since developing an intelligent and adaptive coordinated traffic signal control
method is one of the objectives of this thesis work, these methods will be extensively discussed, in
their adaptive form, in chapter 9 of this thesis.

2.2 OPERATION OF TRAFFIC SIGNAL CONTROL METHODS

The previous section has shown the main motivations behind traffic signal control and how these
methods can be categorized depending on their mode and scale of operation. This section broadly
presents how traffic signal control methods optimize traffic through several historically significant
TSC methods, some of which are still in use today. We present these methods according to two
common ways to classify TSC methods. On the one hand, these methods differ according to their
responsiveness, dividing them between fixed, actuated, and adaptive methods (Gartner et al., 1995).
On the other hand, these methods can also differ according to the traffic-related metric they aim
at optimizing. Some, known as bandwidth-based, aim at optimizing traffic flows along an arte-
rial and are hence necessarily coordinated. Others, known as delay-based, aim at minimizing the
average time it takes for a vehicle to exit the network. Delay-based methods have a multitude of
different application settings (e.g., isolated, coordinated, fixed, actuated, adaptive) and are known
to perform better than bandwidth-based ones under variable traffic flows and complex signal set-
tings (Robertson, 1986).

2.2.1 FIXED METHODS

While somewhat simple in design at first, fixed traffic signal control methods can regroup a signif-
icant number of distinct techniques and modes of operation, including isolated and coordinated
methods, both using delay-based and bandwidth-based optimization objectives.

2.2.1.1 FIXED DELAY-BASED METHODS

Regarding delay-based fixed methods, the first and significant traffic signal control method to be
developed is due to Webster (1958), which studied the optimal settings of an isolated intersection
depending on the traffic demand around it. Using one of the first computer traffic simulations,
Webster defined a total delay function expressing the mean delay per vehicle as a function of the in-
tersection’s cycle time, phases, and flow values. Using Webster’s formula (see section 8.1.1 for a full
definition), a traffic engineer can minimize vehicular delay around an intersection (under normal
traffic conditions) by setting green splits proportionally to the traffic flow within the intersec-
tion. Even though posterior works have refined it, Webster’s formula is an essential foundation
of the traffic signal control literature (Rouphail et al., 1998). Fixed delay-based traffic signal control
methods featuring multiple agents have also appeared relatively early in the history of traffic engi-
neering. TRANSYT (Robertson, 1969) is a fixed and coordinated traffic signal control method whose
objective is to minimize the sum of average vehicle queues by computing optimal per-intersection
splits and offsets on a given road network. TRANSYT estimates the average vehicle flow value on
each link of the network, also called cyclic flow profiles, by using historical data. Based on cyclic
flow profile data, pre-specified staging, minimum green times, and cycle time value, TRANSYT then
simulates traffic flows using different signal timing parameters, each associated with a performance
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index. The settings with the best performance index are selected and applied for each intersection.
TRANSYT has since evolved into a commercial modelization tool containing a traffic simulator and
a signal cycle optimizer.

2.2.1.2. FIXED BANDWIDTH-BASED METHODS

Perhaps more surprisingly, multiple bandwidth-based (and hence coordinated) fixed methods also
appeared relatively early in the history of traffic signal control, due to the works of Little? (1966),
which transcribed the bandwidth problem as a mixed-integer linear program. This program is
computed using bounds on its cycle time and red phases for a given signal cycle and information
about speed along the arterial. Solving this program allows finding cycle times, speed limits, and
phase organizations, maximizing the bandwidth along an arterial. The MAXBAND algorithm (Little
etal., 1981) uses Little’s bandwidth problem formulation to compute the optimal signal parameters
to maximize the bandwidth along an arterial. MAXBAND also can generate splits using traffic volume
and capacity data. A later extension, MAXBAND-86, also considers left-turn phase sequences in
the linear program (Chang et al., 1988). One of MAXBAND’s limitations is that its model supposes
that traffic flows are uniform along an arterial, meaning that platoons of vehicles are supposed to
travel at the same speed and spread on the arterial. MULTIBAND (Gartner et al., 1991) alleviates this
weakness by allowing different bandwidth values for each link of the arterial. This modification
yields better performance at the cost of a larger solution space. An extension of this method,
MULTIBAND-96 (Stamatiadis and Gartner, 1996), adds the possibility to optimize bandwidth along
multiple arterials simultaneously.

2.2.2 ACTUATED METHODS

Vehicle actuation methods use vehicle detection systems such as pressure plates or sensors to
change traffic signals in real-time. Since these methods rely on vehicle detection, they do not be-
long in the fixed method category; however, the RL-TSC literature usually considers them distinct
to adaptive methods since they have two different modes of operation. On the one hand, actuated
methods allocate a minimal green time for each phase of the signal cycle and increase them if ve-
hicles using these phases are detected. On the other hand, adaptive methods estimate in advance
the arrivals of vehicles on all phases of the signal cycle and pre-computes its signal cycle accord-
ingly (Shenoda, Machemehl, etal., 2006). Actuated methods are hence somewhat less advanced than
adaptive ones.

2.2.2.1 CLASSICAL ACTUATED METHODS

Miller first defined a vehicle actuation TSC method on an isolated intersection (Miller, 1963). This
intersection is given minimum green time duration and means for vehicle detection. The inter-
section then scans for vehicles through all of its approaches. When a vehicle is detected, the cor-
responding approach benefits from a green time extension, as long as it complies with minimum
green times defined for other approaches. If no vehicle is present, the method proceeds to the
next approach. This method has been refined multiple times by improving its decision process

*Little is also known for his work on queuing theory, and especially for Little’s law (Little, 1961).
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by, for instance, computing the relative gains and losses caused by switching the signal at each pe-
riod. Out of the extensions of Miller’s method, MOVA (Vincent and Peirce, 1988) is probably the most
popular. Once a phase reaches minimum green time, MOVA checks whether the links of the active
phase are still saturated by computing their output flow rates. If at least one link is still saturated,
the current phase is extended until it either becomes under-saturated or reaches the maximum
green time. If more than one approach is saturated, MOVA switches to a saturated mode where it
estimates queue emptying rates for all approaches at the end of minimum green time and tries to
maximize queue capacity along its lanes. The method was tested by its authors and boosted aver-
age performance by 13% compared to other vehicle-actuated methods in use at the time (Vincent
and Peirce, 1988).

2.2.3 ADAPTIVE METHODS

Finally, adaptive methods regroup traffic signal control methods which can adapt their signal tim-
ing plans in real-time through the use of sensing technologies allowing the method to monitor the
state of traffic in real-time. While these methods are among the most advanced TSC methods pre-
sented so far, they are also the least implemented in real traffic scenarios because of their increased
cost and complexity.

2.2.3.1 CLASSICAL ADAPTIVE METHODS

Among the numerous adaptive traffic signal control methods present in the literature, some are
of particular interest. First, the SCOOT (Hunt et al., 1981) method is the traffic-responsive version
of TRANSYT. Instead of relying on historical traffic data, SCOOT continuously updates its cyclic
flow profile estimations using sensors deployed on multiple links of the network. This adaptive
capability ensures improved performance: testing in the city of Glasgow showed that SCOOT out-
performed TRANSYT by an average of 12% (Robertson, 1986). The SCOOT algorithm has since evolved
to become a commercial TSC solution quite widespread in Great Britain and Australia. A second
adaptive method, OPAC (Gartner, 1983), leverages dynamic programming methods instead of stan-
dard parametric models to leverage real-time arrival data around an isolated intersection. OPAC
has since then been extended several times to include more functionality, such as arterial traffic
optimization (Gartner et al., 200r).

2.2.3.2 HIERARCHICAL METHODS

A more advanced sub-class of adaptive traffic signal control methods regroups hierarchical meth-
ods. These methods aim to formulate an exhaustive traffic model on a road network and split it
into smaller problems distributed across multiple /zyers communicating with each other. Some of
these methods have been routing traffic for decades in major urban areas, such as CLATRE-SITI (Sce-
mama and Carles, 2004) in Brussels, Toulouse, and New Dehli or GERTRUDE in Bordeaux, Lisbon
or Beijing (Lambert, 2017).

Since they are both adaptive and coordinated, hierarchical methods rank among the most am-
bitious ones and often use dynamic programming to solve sub-problems on different scales. A
first example of hierarchical TSC systems is PRODYN (Henry et al., 1984). The central controller of
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PRODYN first defines a complete traffic optimization program using multiple state equations. Real-
time traffic data gathered through sensors is then fed to the program, which splits it using decompo-
sition coordination, each sub-problem only depending on local intersection variables. These sub-
problems are then solved using intersection-based data and recursive programming techniques
and sent back to the central controller, who deduces signal settings for each intersection of the
network. In comparison testing, PRODYN has unsurprisingly been found to perform better than
TRANSYT (Henry etal., 1984). A second hierarchical TSC method of interest is RHODES (Mirchandani
and Head, 2001), which uniquely features three distinct levels of operation. The dynamic network
loading module in PRODYN captures the slow-changing variables of the network, such as its geom-
etry or the preferred routes of vehicles. Using this data, this module estimates the load in vehicles
per hour for each link of the network (as well as other variables such as queue discharge rates and
destination probabilities) and sends these estimations to a Network Flow Control layer. This sec-
ond layer allocates a per-intersection green time for each of these estimated traffic streams on a
per-platoon basis and passes them to the zntersection control layer, which explicitly computes the
best possible phase and splits settings using forward recursion and dynamic programming.

This chapter gave a general presentation of the field of traffic signal control through two axes.

First, we presented the overall characteristics of traffic signal control. We explained how the
need for TSC emerged in the early XX® century and how it focused on two key missions: en-
suring the safety of drivers and optimizing traffic flows. We then defined key concepts in traffic
engineering, such as the organization of an intersection and the role of signal cycles. We finally
established a typology of traffic signal control methods depending on their mode and scale of op-
eration. We explained how fixed, adaptive, isolated, and coordinated methods all had advantages
and drawbacks and could be used in distinct traffic situations. Given its potential efficiency and
flexibility, we established that developing an adaptive and coordinated TSC methods was the main
aim of our work.

Second, we presented multiple classes of real-world traffic signal control methods and briefly
explained how they operated. This presentation covered various types of TSC methods, ranging
from simple fixed methods to actuated and adaptive methods, and finished with complex hierar-
chical systems.
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Reinforcement Learning describes a class of task-solving machine learning algorithms. At their
core, RL algorithms are “a way of programming agents by reward and punishment without need-
ing to specify how the task is to be achieved.” (Kaelbling et al., 1996). Reinforcement learning
methods are particularly suited for tasks in which an agent must accomplish a task in an envi-
ronment (e.g., autonomous driving, playing video games) without prior information about this
environment. This chapter first gives a general overview of how reinforcement learning methods
model the interactions between an agent and its environment and how reinforcement learning
algorithms can learn to solve a task from these interactions. Then, it presents how RL models
can be extended to allow for multiple agents learning within the same environment and how RL
algorithm can use function approximation techniques to increase their learning efficiency.

3.1 FUNDAMENTAL REINFORCEMENT LEARNING CONCEPTS

Reinforcement learning models the interaction of an agent and an environment. The agent aims
to maximize its objective by acting on its environment but is not told how different actions will
affect its goal depending on the current environment state. Hence, the agent must test multiple
actions in a trial-and-error fashion to learn which ones are best suited to maximize its objective.
Each reinforcementlearning model is divided into three parts. The interactions between the agent
and its environment are modeled by a decision process; the agent learns from repeated interactions
with the environment using a learning algorithm/and chooses the actions to apply to the environ-
ment using a /policy. We present all three components of reinforcement learning models and their
associated challenges in this section.

3..1 MARKOV DECISION PROCESS

A Markov decision process (MDP) is a stochastic control process that can model the decisions
of an agent aiming at maximizing a global objective function F in a given environment (Sutton

and Barto, 2018). A MDP is defined as a 4-tuple (S, A, 7, R), where S and A are respectively
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the state and action spaces of the MDP, while R and T are its reward and transition functions
respectively (Bellman, 1957).

3...1 MARKOV DEcCIisioN PROCESs Loop

The interactions between the agent and the environment in a MDP are modeled as follows. At
each discrete time step, the agent observes the state of the environment s € S and chooses an
actiona € A tosolve its task. Once action a is applied, the environment transitions to a new state
s" according to the transition function 7 : § x A X S — [0, 1] which maps the probability of
the system transitioning from state s to state s’ when the agent selects action a. Finally, the agent
receives a reward T computed according to the reward function R, which evaluates the quality of
the agent’s action according to the task it is trying to solve. In order to choose actions maximizing
its successive rewards, the agent uses a policy ™ which a mapping from each state s € S and action
a € A to the probability (s, a) of taking action a when in state 5. As we will see section 3.1.2,
various RL algorithms iteratively refine the agent’s policy to approximate the optimal policy 7*
which yields maximal rewards, perfectly dictating its action choices depending on the current
environment state. Figure 3.1 summarizes the interactions between the agent and its environment.

Agent

3
—~
w
N
Il
)

Environment

Figure 3.1: Schematic view of agent-environment interactions in a MDP.

3...2 REWARD S1GNALS AND OBJECTIVE FUNCTION

The fundamental driving force behind reinforcement learning is the maximization of the agent’s
expected cumulative rewards. Indeed, the reward scalar 7 the agent receives at each time step is
the only signal indicating the quality of the current agent’s actions. MDPs hence imply a strong
reward hypothesis, stating that any task can be expressed as a reward maximization goal (Sutton
and Barto, 2018). This property is one of the most distinctive features of RL models since a reward
signal is in theory sufficient for learning to occur.

Since the reward function, R, is paramount in driving learning in RL models, it needs to be
strongly correlated with the global objective function of the agent, F. In other words, an agent
cannot hope to maximize a metric given by its objective function F if the signal reward it receives,
dictated by 'R, is not correlated to this objective.

3..1.3 STATE REPRESENTATION

While they are usually not explicitly defined, multiple state definitions coexist in MDPs. On the
one hand, the environment has a #7ue state which entirely characterizes it. On the other hand, the
agent uses a representation of this true environment state, denoted s € S.
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These two environment states differ since the true state of an environment might contain in-
formation that is irrelevant to the maximization objective of the agent. Indeed, the state space of
a MDP must contain a sufficient amount of features from the true environment state so that the
agent can clearly differentiate environment states. However, including too many features from
the true environment state increases the dimensionality of the state space and distinguishes envi-
ronment states that are similar in the context of the task at hand, which is likely to cause a slower
learning process (Abdulhai et al., 2003). For this reason, RL models aim at developing an action
space containing enough data for the agent to reach an acceptable policy while keeping dimen-
sionality under control. Since we never directly refer to the true environment state in RL models,
the environment state s used throughout this thesis refers to the state representation of the envi-
ronment by the agent.

Markov decision processes assume full observability of the environment by the agent. This
property ensures that the agent can observe the true state of the environment in order to form its
own state representation. Alternative formulations of MDPs, such as partially observable Markov
decision processes do not allow for full observability of the true environment state, which forces
the agent to estimate this state indirectly. Partial observability models are briefly presented in sec-
tion 3.2.1.1. Furthermore, some RL algorithms such as linear automata (see section 8.2.2) do not
use state representation at all to learn and only rely on the reward signal from the environment.

3.2 LEARNING ALGORITHM

As stated in section 3.1.1.2, the role of any RL algorithms is to maximize the cumulated reward
signals received by the agent during its interactions with the environment. Their primary strategy
is to successively try all available actions a € A on the environment to identify high-payoff ones.
This learning process is, however, not straightforward for two reasons. First, the same action can
yield vastly different rewards given the current state of the environment (e.g., steering left in an
autonomous vehicle may result in taking a highway exit or crashing depending on its position),
which forces the agent to estimate the quality of an action relatively to the state the environment is
in. Second, the agent cannot measure the quality of some actions immediately after applying them
(e.g., investing in stocks may cause a short-term loss but a long-term profit), forcing it to take de-
layed rewards into account. Reinforcement learning methods leverage two distinct components
working hand-in-hand to learn how to maximize the agent’s utility under these constraints. The
learning algorithm estimates the quality of each state of the environment while the agent policy
decides which action the agent should take next based on these quality estimates. This section
presents the former.

3.1.2.1 DYNAMIC PROGRAMMING METHODS

Dynamic programming (DP) methods are the only class of learning algorithms providing ex-
act solutions for solving MDPs, short of exhaustively searching the policy space. This optimal-
ity is achieved by supposing a complete knowledge of the underlying MDP, and in particular
of the reward and transition functions R and P, which is an assumption that rarely holds in
practice (Barto, 1995). The key idea of DP methods is to compute a value function V', which esti-
mates the expected value (in terms of expected reward) of each encountered state of the state space
S (Bellman, 1957). For a given state s, the associated value estimate V' (s) is computed by estimating,
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for each next possible state ', the quality of going into such a new state according to the current
policy 7. The quality of a state is itself measured as the reward associated with this transition and
the value estimate of the new state discounted by a factor -, weighted by the probability of such
a transition occurring according to the current agent policy 7 (Sutton and Barto, 2018).

Va(s) = Y Tals, s ) (Ra(s, 8) + 7Va(s) (1)

s'eS

DP algorithms iteratively refine their policy by using this recursive formulation of the value
function. For a policy , the value function V;; is computed in a process called policy evaluation.
Once the value function V7 is computed, it can, in turn, be used to improve the existing policy
to a superior one, ' ina process called policy improvement. By alternating policy evaluation and
policy improvement steps in a process known as general policy iteration, DP methods converge to
an optimal policy 7*, which yields a maximum utility over an infinite horizon (Sutton and Barto,
2018).

3.1.2.2 MONTE-CARLO METHODS

As opposed to dynamic programming, Monte-Carlo (MC) methods do not assume perfect knowl-
edge of the environment. Instead, MC methods aim at approximating value estimate V' by aver-
aging each of its observed return values at the end of a learning episode. Theoretically, the value
functions estimated with MC methods converge to the exact value function when the number of
visits to each state of S goes to infinity (Sutton and Barto, 2018).

Since an agent using MC methods has no information regarding the environment, it cannot
directly use policy improvement as in the DP case since it requires computing rewards using the
reward function R. MC methods can however estimate the value of actions relative to states by
using a guality function . Similarly to the value function V'(s), the quality function Q(s, a)
computes the expected returns associated with a state s when choosing action a. MC methods
keep track of each state-action couple (s, a) encounter, N (s, a) within an episode, as well as the
associated total cumulated rewards. Using these values, it can approximate the quality of each
state-action pair by averaging the total episode gains:

Qs.0) < Q(s.0) + 3775 (S = Q) (52)

MC algorithms are approximation methods, which means that its quality function estimates
Q(s, a) improve the more the state-action couple (s, a) is visited. Hence, the longer an agent
explores a given MDP and the more distinct state-action couple it encounters, the better the re-
sulting quality estimates will be. Furthermore, since its quality function estimates are computed
using the cumulated gains over the entire episode, MC methods can only be applied in environ-
ments having a terminal state.

3.1.2.3 TEMPORAL-DIFFERENCE LEARNING

Temporal-difference (TD) learning is inspired by both DP and MC methods. Similarly to MC
methods, TD methods approximate value or quality estimates since they have no prior knowledge
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of the environment. Similarly to DP methods, these value estimates include the estimated value of
the next system state (see Equation 3.1.2.1), meaning that they can bootstrap. A simple illustration
of TD learning is the TD(0) formula, which iteratively updates the value estimate V() of a state
s by using the reward value 7 obtained when transitioning to state s, as well as the value estimate
V (s') of the successor state s’, weighted by a parameter o known as the learning rate.

V(s) < V(s) +alr +9V(s) = V(s)] (33)

TD methods present two significant advantages compared to DP and MC methods. First, they
can operate incrementally by estimating value functions from other value estimates in an on/ine
manner (i.e., while being in an episode), as opposed to MC methods. Second, TD methods do not
require any model of the environment since the transition and reward functions are not needed
for the computation of value estimates, which makes them much more flexible than DP methods.

3.1.2.4 POLICY-BASED METHODS

The three types of RL algorithms we have presented so far are value-based since they all aim at
estimating value or quality functions to approximate an optimal agent policy. Instead of com-
puting value estimates to deduce an optimal policy, policy iteration (Howard, 1960) methods aim
at directly searching for the agent’s optimal policy 77* without relying on value estimates (Arulku-
maran et al., 2017). To this end, a parameterized policy is updated to maximize the agent’s utility,
usually through gradient-based optimization. The REINFORCE algorithm (Williams, 1992) or
learning automata (Kaelbling et al., 1996) are instances of such RL policy search methods. Finally,
actor-critic methods aim to balance value-based and policy iteration methods by using both mech-
anisms: the critic (value function estimator) gives feedback to the actor (the policy) after each in-
teraction with the environment, both influencing each other in the process. These methods are,
in a way, a special case of policy gradient methods (Arulkumaran et al., 2017) and are described in
more detail in section 8.2.2.

3.1.2.5 MODEL-FREE AND MODEL-BASED METHODS

As stated earlier in this section, RL methods such as MC and TD do not need to know the transi-
tion function 7 in order to properly function. More generally, a method is known as model-free
when it does not model the transition function 7 of the environment. In other words, model-free
methods observe successive states of the environment and do not aim to estimate how a chosen
action @ might influence the transition of the environment to the next state s’. The main ad-
vantage of model-free methods is their relative simplicity since no mechanisms exist to estimate
environment state transitions and their broad applicability to a large number of RL problem:s.
Conversely, methods that take into account the transition function are known as model-based.
Itis important to note that while DP methods are necessarily model-based since they cannot func-
tion without knowing the transition function 7, TD and MC can also be model-based. Indeed,
these methods can approximate the transition function 7" through successive observations of the
environment states. In practice, model-based methods can compute transition estimates through
the use of state counters (Wiering, 2000), sometimes coupled with dynamic programming (Bakker
et al., 2010; Kuyer et al., 2008) or Bayesian methods (Khamis et al., 2012a,b). Model-based methods
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allow for richer models of the environment, which makes them both faster and more sample ef-
ficient, ensuring good policy performance in a relatively short amount of time (Yau et al., 2017; Ye
etal,, 2019). However, this performance usually comes at the cost of model complexity.

3.1.3 AGENT PoLicy

The previous section describes how the learning algorithm aims to estimate the intrinsic value of
states and actions of the MDP, which is a prediction problem. The last and crucial component
of reinforcement learning models is the agent’s policy scheme which leverages these value esti-
mates to establish an optimal policy in order to select actions maximizing its rewards. This second
mechanism is known as a control problem.

3.1.3.1 THE ROLE OF POLICIES

A policy has two often contradicting roles. On the one hand, RL methods using quality estimates
have no guarantee to visit all state-action pairs in (S, A), which may cause the policy to get stuck
on a local optimum. The role of policies is hence to promote exploration of the state and action
space by visiting each pair of (S, .A) infinitely often, which is usually a necessary condition for
reaching an optimal policy. On the other hand, the agent uses the policy to maximize its utility,
which is obtained by selecting actions with high-value estimates, a technique known as exploita-
tion. The drive to explore the state-action space by selecting sub-optimal action for exploration
contradicts the drive for maximizing the agent’s utility, a phenomenon known as the exploration-
exploitation dilemma.

3.1.3.2 GREEDY AND SOFTMAX POLICIES

A basic approach to aiming at maximizing agent utility would be to pick, for each new system state
s, the action ax such that the associated value estimate Q) (s, a*) is maximal across all actions of A.
This policy, known as greedy, does not guarantee sufficient exploration and is likely not to reach
optimality. A commonly used policy alleviating this issue is the e-greedy policy, which selects the
action associated with the highest value estimate with probability 1 — ¢ or a random action oth-
erwise, ensuring that the agent can visit all state-action pairs for € > 0 (Sutton and Barto, 2018). A
standard limitation of e-greedy policies is that all actions are chosen with the same probability if
a random action is to be selected, which may be undesirable if some actions are associated with
low-value estimates. The softmax function policy counteracts subpar action selection by assign-
ing a distinct probability weight to all actions of the action space based on their estimated values
and on a temperature parameter that determines the randomness of action selection. Hence, the
softmax policy favors high-payoft actions even when randomly selecting actions while maintain-
ing sufficient exploration by assigning a non-nil probability weight to all actions (Sutton and Barto,
2018).

3.1.3.3 ILLUSTRATION OF PoLriCcY IMPACT

This section illustrates the influence of exploration and exploitation of the state and action space
through agent policy through a simple learning problem. The Cart-Pole problem features an agent
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whose objective is to balance a pole placed on a cart. The agent can move the cart left or right
and receive a reward equal to the number of steps the stick stays on the cart without falling. We
compare the performance of three learning agents on the Cart-Pole problem using the Q-learning
algorithm (Watkins and Dayan, 1992), and an e-greedy policy with different € values: a constant
value of 0.0s, a constant value of 0.5, and a decreasing value of ¢ = 1 — log;(n + 1/25), with
n being the current learning episode (bounded between o.1and 1).
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~ ' '
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Figure 3.2: Learning process evolution of the Q-learning algorithm solving the CartPole problem using an
e-greedy policy with different € rates. The maximum reward per episode is 200.

Results of these simulations, as shown on Figure 3.2 underline the importance of proper bal-
ance between exploration and exploitation. In the e = 0.05 case, the exploration parameter is
too low for sufficient exploration. The agent gets stuck in a local optimum by making the pole
fall early, yielding a small but positive reward. Conversely, using a high exploration parameter
€ = 0.5 causes quick exploration of the state space, which explains superior performance in the
early episodes. However, this high random action selection rate proves unable to exploit high-
payoft actions due to the high policy unpredictability. Hence, using a decaying exploration rate
that favors exploration in early episodes and exploitation later allows the algorithm to converge to
an optimal policy.

3.2 REINFORCEMENT LEARNING MODEL EXTENSIONS

The concepts presented so far give us enough tools to build simple reinforcement learning meth-
ods, but such methods would suffer from substantial shortcomings. First, the presented RL
model only features a single agent and would hence be unable to function with multiple agents
learning in parallel over a road network as commonly seen in historical TSC methods (see sec-
tion 2.1.3.4). A less obvious issue comes from the fact that all the reinforcement learning algo-
rithms presented so far rely on an exhaustive exploration of the state and action spaces of the envi-
ronment. This search can prove extremely inefficient when these spaces get sufficiently large and
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pose acceptability problems when applied to traffic signal control tasks. The two reinforcement
learning model extensions presented below deal with each of these issues to improve the overall
capabilities of RL methods, which will be applied to traffic signal control later on.

3.2.1 MULTI-AGENT REINFORCEMENT LEARNING

Featuring multiple agents learning in parallel is likely to be desirable when modeling multi-agent
systems—such as traffic signal control-which are commonly used in the field of reinforcement
learning (Arulkumaran etal., 2017; Busoniuetal., 2008). Multi-agent reinforcementlearning (MARL)
models present clear advantages such as increased performance thanks to decentralized execu-
tion, improved robustness, or permitting experience sharing between agents (i.c., different learn-
ing agents exchanging value estimates they have learned separately) (Busoniu et al., 2008). While it
would seem natural to use multiple learning agents without changing anything else, moving from
aSARL to a MARL model modifies the theoretical framework in which these agents learn, which
creates several new challenges which need to be addressed.

3.2.1.1 PARTIAL OBSERVABILITY

The first effect caused by the introduction of multiple learning agents relates to choosing how
much of the environment they can observe and act upon. Since it is common to feature MARL
models in which each agent only acts locally, the decision process associated with such models
usually changes to a partially observable Markov decision process (POMDP), which extend the
model of MDPs by adding constraints on the ability of each agent of the system to observe the
entire state of the environment (Panait and Luke, 2005). POMDDPs are represented as a 6-uple
(S, A, T,R,Q,0). Besides the usual MDP elements, POMDPs feature an observation space
(1, containing the set of states of the environment that are observable by each agent and an ob-
servation function, O, containing the probabilities of encountering a given observation from the
observation space O depending the previous agent action a and the new true environment state
s’ (Olichoek et al., 2008; Sutton and Barto, 2018). As opposed to traditional MDPs, an agent in a
POMDP setting must maximize its utility under uncertainty as it can only receive partial obser-
vations from the observation space €2 instead of true system states from the state space S. The
agent hence learns to associate observations to system states by estimating the observation func-
tion O through the use of belief states which model observation probabilities through Bayesian
estimations of the entire process” history (Bakker et al., 2010).

3.2.1.2 AGENT INTERACTIONS

Another significant impact caused by the introduction of multiple learning agents in the same
environment is that these agents can interact and influence each other. RL models can choose to
explicitly model agent interactions through coordination mechanisms in which agents take each
other into account or even communicate (see section 4.2.3 for an illustration of agent coordina-
tion applied to traffic signal control). Alternatively, MARL models can choose to ignore these
interactions, hence implementing zndependent learning in which agents ignore each other and
maximize their own local rewards. Regardless of modeling choices, the fact that agents influence
each other in MARL models cannot be ignored. Since multiple agents act concurrently on the
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environment, the actions of one agent can influence the environment state of another. This phe-
nomenon, known as non-stationarity, can lead agents to believe that their actions caused changes
in the environment that were in reality caused by others. The absence of a stationary environment
can potentially cause RL algorithms to never converge to an optimal policy due to a moving-target
issue (El-Tantawy and Abdulhai, 2010).

Furthermore, the correlation requirement between reward and objective function must be even
more carefully designed in MARL systems. Indeed, since each agent greedily aims to maximize
its locally observed reward function, one must ensure that these local optimization goals are not
clashing with each other and are properly correlated with the global objective function (Busoniu
etal., 2008).

3.2.2 FUNCTION APPROXIMATION

A widespread issue associated with RL methods is caused by the size of their environment’s state
and action spaces, which is also known as their dimensionality. Since RL algorithms have to per-
form an exhaustive search of these spaces to establish value estimates, the computation and mem-
ory storage costs associated with this search grow exponentially as they increase. A second, and
perhaps worse, issue related to large state spaces is well summarized by Sutton and Barto (2018):

The problem with large state spaces is not just the memory needed for large tables,
but the time and data needed to fill them accurately. In many of our target tasks,
almost every state encountered will never have been seen before. To make sensible
decisions in such states it is necessary to generalize from previous encounters with
different states that are in some sense similar to the current one. In other words, the
key issue is that of generalization. How can experience with a limited subset of the
state space be usefully generalized to produce a good approximation over a much
larger subset?

Techniques of function approximation provide an elegant answer to both of the issues men-
tioned above. First, by not storing value estimates in a tabular fashion (i.e., each state is associated
with its own value), these techniques can deal with much larger state spaces without dimension-
ality issues. Second, function approximation allows RL algorithms not only to learn the value
estimates of states they visit but generalize these results to predict the value of states they have not
yet encountered.

3.2.2.0 FUNCTION APPROXIMATION

Function approximation aims to extract information from state features and their associated val-
ues to approximate the entire value function of the problem. In other words, function approxima-
tion does not associate a value estimate V' (s) to each encountered state s separately but uses state
and reward values to directly estimate how each feature of the state space impacts its associated
value estimate. This task is achieved by approximating the value function using a parameterized
function, which is by nature a supervised learning task (Sutton and Barto, 2018). Approximation
function can take simple forms such as a linear function of features of the observed state or more
complex structures such as multi-layered neural networks.
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3.2.2.2 DEEP REINFORCEMENT LEARNING

An increasingly popular way of using function approximation in RL is to use neural networks
as function approximators (Arulkumaran et al., 2017), leading to a specific branch of RL known as
deep reinforcement learning (DRL) (Greguri¢ et al., 2020). While presenting how neural networks
operate in detail is outside of the scope of this thesis', neural networks are machine learning models
featuring multiple layers of neurons and activations weighted by parameters 6. A neural network
maps a multi-dimensional input vector to a mono-dimensional one. Training a neural network
involves computing a loss function £ measuring the difference between the neural network’s out-
put and the observed value. Using gradient descent methods, the neural network is trained to
properly estimate the correct output vector for a given input one. In the case of DRL, the output
of such a neural network is the value estimate V' (s, 0) of a state s given as input. The output value
is compared to the true reward value obtained from the environment, and the weight parameters
0 are then corrected accordingly using gradient descent.

3.2.2.3 CONVERGENCE [SSUES

DRL models provide a number of significant advantages, such as state generalization under much
larger dimensionality than classical RL methods. However, DRL methods also break the conver-
gence guarantee of classical RL algorithms by moving away from tabular representations (Van der
Pol, 2016). The first reason for these convergence issues is that the observation data in RL models
is assumed to be independently and identically distributed (i.i.d.). This is, however, not the case
for DRL models since evolving policy and function approximation make these observations both
correlated and unevenly distributed (McCloskey and Cohen, 1989). A second convergence issue of
DRL methods is due to a moving target phenomenon. Since each observation updates the entire
weights 6 of the function used to approximate value estimates, these updates may affect earlier
estimations and cause the learning target to oscillate constantly. We present common solutions to
these convergence issues in section 8.3.2.

This chapter introduced reinforcement learning algorithms, which allow an agent to maximize
a task in an environment by maximizing its cumulated expected rewards. We notably described
howaMDP (S, A, T, R) could model the interactions between the agent and the environment.
The agent observes the current environment state s, chooses an action a, and receives an associated
reward 7 while the system transitions to a new state s'.

Agents learn to maximize their cumulated expected rewards through the combined use of a
learning algorithm and of a policy. The learning algorithm estimates the relative value of state and
of state-action couples through the use of a value V' and quality ) function, respectively. On the
basis of these value and quality estimates, the policy dictates which action the agent should select
based on the current system state in order to maximize its rewards.

Since classical single-agent RL models are rather limited, we finally introduced two RL exten-
sions. First, we briefly described how multiple agents could solve tasks concurrently in the same

'Anthony and Bartlett (2009) provide a general introduction to neural networks, and Van der Pol (2016) a more
succinct presentation of neural networks aimed at TSC applications
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environment, even enabling agent coordination. We then finally introduced the concept of func-
tion approximation and deep reinforcement learning, which allows the agent to deal with much
larger state spaces and to generalize past state encounters through a parameterized function.
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The typology of historical traffic signal control methods established in chapter 2 allows to dis-
tinguish TSC methods according to their features and complexity. It is common to sort these
methods according to distinct generations: actuated methods form the first generation of TSC
methods; centralized adaptive methods such as SCOOT or OPAC the second generation; and ad-
vanced hierarchical methods such as PRODYN or RHODES constitute the third generation (Gartner
etal,, 1995). The application of RL to traffic signal control gave birth to a fourth Al-based genera-
tion of methods (El-Tantawy and Abdulhai, 2012). This section gives an overall tour of the state of
reinforcement learning applied to traffic signal control research since its inception in 1994 (Mikami
and Kakazu). Notably, we present how TSC problems can be adapted to a RL-based framework
and showcase the main contributions and advances in the field of RL-TSC for both isolated and
coordinated methods.

4.1 MODELING TRAFFIC FOR REINFORCEMENT LEARNING

If multiple RL-TSC methods can tackle the traffic optimization problem quite differently, they
still all have to define this problem within a RL-centric framework. First, some general model
choices have to be made regarding traffic, such as defining what it means to optimize traffic, which
components of the traffic network are considered agents, and how well the agent can observe its
environment. Then, one must choose the specific elements constituting the MDP, such as which
type of information about the road network the agent observes, how each agent can act upon the
road network, and how its rewards are measured.

4.1.1 GENERAL MoODEL CHOICES

This section refers to the broad model characteristics of a RL-TSC method. These choices are
a crucial first building block of any RL-TSC method since they define which kind of agents are
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learning to optimize traffic, how much information they gather from their environment, and how
much they interact with each other.

4.1.1.1 TYPES OF LEARNING AGENTS

An overwhelmingly common approach in the RL-TSC literature is to consider that each inter-
section is a learning agent. While this choice is evident for isolated TSC models (Abdulhai et al.,
2003), it is also the preferred choice for MARL models featuring multiple intersections (Mannion
et al,, 2016). If multi-intersection road network optimization could theoretically be tackled by a
single central planner controlling multiple traffic lights simultaneously, such a model would have
important limitations. Indeed, such a model would sufter from poor scalability (since adding or
removing an intersection to the network completely changes the learning model) and an expo-
nential increase in dimensionality, explaining why such an approach is common among third-
generation TSC methods but absent from RL-based ones (Yau et al., 2017). In the MARL case,
each intersection has a local view of its environment (usually neighboring lanes) according to the
POMDP model (see section 3.2.1). Note that other approaches are nevertheless possible on multi-
intersection networks, such as considering vehicles as additional agents that can collaborate with
intersections (Bakker et al., 2010; Kuyer et al., 2008; Steingrover et al., 2005; Wiering, 2000) or using
intersection clusters as agent (Bazzan et al., 2010).

4.1.1.2 MODEL-FREE AND MODEL-BASED METHODS

A second major design decision regarding RL-T'SC methods relates to their estimation of the tran-
sition function 7. Indeed, both model-based and model-free methods, described in section 3.1.2.5,
have been applied in the RL-TSC literature (Mannion et al., 2016). As stated in this section, model-
free methods are usually simpler and slower since they do not estimate state transitions, while
model-based methods are more complex and efficient.

In the realm of RL-TSC, model-based approaches are believed by some to introduce unnec-
essary complexity (El-Tantawy et al., 2013; Mannion et al., 2016) as they can prove more problematic
for learning problems with large state sets (Crites and Barto, 1995). The most telling example of
this preference is shown in the literature review analysis of Noacen et al. (2021) which states that
only 8 out of the 160 surveyed RL-TSC papers used model-based RL methods, the last of which
was published in 2014 (Khamis and Gomaa). Regarding multi-agent modeling choices, the use of
POMDPs is prevalent in the literature since model-based (Bakker et al., 2010) and some actor-critic
methods employ it (Richter et al., 2007), even though a few methods model interactions between
intersections as stochastic games (Bazzan, 2009; Bazzan etal., 2010) or Markov games (Aragon-Gémez

and Clempner, 2020).

4.1.1.3 INDEPENDENT LEARNING AND COORDINATION

A final major design decision regarding multi-intersection TSC methods is the modeling of inter-
actions occurring between each learning agent. The simplest way to model these interactions is to
ignore them and consider independent MARL models in which no agent-to-agent interactions
exist (Tan, 1993). Even though we have shown in section 3.2.1 that agents necessarily influence each
other in MARL models, some papers of the RL-TSC literature do not consider it to be a limiting
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factor of agent performance in the case of TSC (Pham et al., 2013). While this statement might not
be accurate, a significant number of independent MARL methods show excellent performance
without ever addressing this issue (Noacen et al., 2021). Explicit coordination mechanisms can,
however, limit non-stationarity and increase overall traffic routing performances in RL-T'SC con-
texts (Mannion et al., 2016). Such coordinated MARL models are applicable in both model-based
and model-free situations and present numerous advantages besides alleviating issues relating to
non-stationarity. Indeed, junction-to-junction coordination can be used to emulate green wave
coordination or complex third-generation TSC methods as presented in section 2.2.3. Various
modes of agent coordination are successfully used in the RL-TSC literature, ranging from simply
observing a neighboring intersection’s state to directly computing optimal joint actions (Yau etal.,

2017).

4.1.2 MODEL PARAMETER DESIGN

After having decided which type of agent is going to be learning how to optimize traffic and how
these agents are going to interact with each other, any RL-TSC model still has several design deci-
sions to take regarding the modeling of the environment. The proper definition of the objective
function, state space, action space, and reward function is crucial for the learning process of any
reinforcement learning method.

4.1.21 OBJECTIVE FUNCTION F

The general objective of optimizing traffic is rather vague when it needs to be explicitly translated
into an objective function for the agent to maximize. Existing surveys of the RL-TSC literature
give us valuable insight as to which objective functions are commonly used across various traf-
fic optimization methods using reinforcement learning. Note that when constructinga RL-TSC
method, one does not need to limit the objective function to a single metric. Indeed, some papers
of the literature aim at maximizing multiple traffic-related metrics at once by using compound re-
ward definitions or by using multiple objective functions (Brys et al., 2014; Houli et al., 2010; Khamis
and Gomaa, 2014; Khamis etal., 2012a), which is a learning technique known as multi-objectivity. The
surveys of Wei et al. (2019) and Noaceen et al. (2021) list the following classes of objective functions.

TEMPORAL METRICS  Time-based metrics are by far the most common form of objective func-
tions in RL-TSC applications. Vehicular t7avel time is a metric measuring the total travel time of
a vehicle across the network. Travel time is easily obtainable but does not differentiate between
trip-related and congestion-related time spent in the network. A more accurate temporal metric is
delay, which is defined as the difference between the observed and expected travel time of a vehicle.
Delay measurements allow account for the time loss due to congestion or routing inefficiencies
but necessitate an estimation model of the expected travel time of vehicles. Finally, the waiting
time is defined as the amount of time a vehicle has waited at a red light or due to congestion. This
metric has the advantage of only measuring waiting time due to network inefficiencies, making
it a suitable objective function for traffic optimization. Furthermore, this metric has the advan-
tage of being measurable before vehicles reach their destination. However, waiting time is readily
available in traffic simulations but hard to obtain in real-life scenarios.
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CONGESTION METRICS A second class of traffic metrics suitable for RL-TSC objective func-
tions are congestion-related. Absolute congestion values such as gueue size, have been used as an
objective function in RL-TSC applications. Queue size metrics are well-suited to road networks
with low vehicular capacity or known bottleneck areas. Alternatively, congestion metrics over

time, such as intersection throughput, have been used to measure the efficiency and evenness of
TSC methods.

SpEED METRICS  Finally, multiple forms of vebicular speed such as absolute speed, acceleration,
or harmonic speed are also used as objective functions. These objective functions prioritize vehicle
movement smoothness and uniformity and are sometimes associated with related variables such
as the number of stops per trip.

4.1.2.2 REWARD FUNCTION R

As stated in section 3.1.1.2, the objective and reward functions of any RL model have to be tightly
correlated since the agent will use signals from the latter to maximize the former. It is hence logical
that the traffic metrics used to determine the objective function in the previous section are present
in the reward function definition. Hence, temporal, congestion, and speed metrics are once again
the most common components of reward functions in the RL-TSC literature (Yau et al., 2017).

TEMPORAL METRICS In practice, delay measurements are commonly used as a reward func-
tion since they estimate the vehicular time loss due to traffic routing inefficiencies (Mannion etal.,
2016). These measurements include vehicular delay or cumulated waiting time on a lane, either
in absolute, difference, or average form (Arel et al., 2010; El-Tantawy and Abdulhai, 2010). Delay can
also be squared to penalize further large delay values (Abdulhai et al., 2003; Brys et al., 2014).

ConGEsTION METRICS  Congestion metrics used for reward function definition can include
queue size or variation of queue size (Araghi etal., 2013; Mikami and Kakazu, 1994), as well as intersec-
tion throughput metrics (Brys et al., 2014; Touhbi et al., 2017). Furthermore, some papers developed
ametric known as green time appropriateness, for which the agent is penalized when unused green
time is observed while vehicles are idle at red lights (Cahill et al., 2010).

SPEED AND MIXED METRICS A few papers use vehicular speed metrics as part of their reward
functions, either as an absolute value or as a ratio between observed speed and maximum allowed
speed (Van der Pol and Olichoek, 2016). Usually, speed metrics are used as multi-objectivity metrics,
as mentioned in the previous section. For instance, the reward function featured in Van der Pol
and Olichoek’s model (2016) is composed of delay and speed measurements, as well as emergency
stops and accident indicators.

4.1.2.3 STATE SPACE S

Traffic signal control problems are a perfect illustration of the trade-off between complex and
simple state representation mentioned in section 3.1.1.3: the state space of a MDP only contains a
subset of features from the true environment state that is relevant to the agent. RL-TSC models
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hence have a large amount of traffic-related features of the environment at their disposal in or-
der to define the state space S of the MDP. The most common features used for state definition
identified by Yau et al. (2017) are listed below.

ConGEesTION METRICS ~ Congestion metrics, and queue size per lane in particular, are among
the most commonly used for state space definition within the RL-T'SC literature (Mannion et al.,
2016). These metrics can take into account all vehicles of the lane or halted vehicles only. Further-
more, the absolute number of vehicles can be used, as well as queue categories (e.g., low, medium,
or high congestion) (Cahill et al., 2010; Chin et al., 20m). A minority of articles use relative queue size
(i.e., the ordering of queue sizes of lanes around an intersection) instead of absolute values (Ab-
doos et al., 2om1). Finally, the maximum queue size across all lanes also has been used as a state
variable (El-Tantawy and Abdulhai, 2010).

TRAFFIC SIGNAL METRICS Traffic signal metrics such as phase-related indicators are some-
times used in state space definition. Such variables include the current green phase index in the
signal cycle and the duration for which it has been active (Arel etal., 2010), or the current red phase
timing. This type of information is beneficial for the learner as it indicates the current state of the
signal cycle at its intersection.

SPEED AND PosiTioNaL METRICS Newer RL-TSC methods, usually using deep neural net-
works, often use detailed positional data as state representations. Hence, vehicular positions can
be represented using cellular encoding, also known as discrete traffic state encoding (DTSE) (Gen-
ders and Razavi, 2018), and used as state inputs for neural networks in the form of binary matri-
ces (Van der Pol and Oliehoek, 2016) or even as images fed to a convolutional neural network (Mousavi
etal,, 2017). Other vehicular data, such as speed, can be used in place of positional indices (Van der
Pol and Oliehoek, 2016).

Figure 4.1: For a given lane, a MDP can use multiple environment features to represent the current traffic
state. Number of vehicles in a queue (3) or on the lane (4) can be used for vehicle-related data.
Current phase index and duration are phase-related indicators. Finally, DTSE representations
can be used (11101 in the current situation).

The RL-TSC literature is not unanimous in its choices regarding state space definition since it
is often algorithm-dependent. For instance, the choice of simplifying, or discretizing, state repre-
sentations to reduce dimensionality is taken in approximately 40% of papers surveyed by Noaeen
et al. (2021), meaning that 60% of the surveyed papers opted for fuller state representations such
as DTSE. The large amount of different features of the road network that are used in state repre-
sentations in papers of the RL-TSC literature also underlines this lack of consensus.
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4.1.2.4 AcTION SPACE A

Since TSC consists in influencing traffic through the use of traffic signals, it is no surprise that
action spaces of RL-TSC methods all revolve around traffic phase control. Yau etal. (2017) identify
two main types of actions in their survey of the RL-TSC literature.

TRAFFIC PHASE SPLITS  Anagent using traffic phase splits chooses a time interval allocation for
each phase of the signal cycle. This allocation can either be phase-based, meaning that the agent
allocates the entire phase duration at once, or step-based, in which the agent evaluates whether to
switch or extend the current phase at regular intervals. As we will see in section 6.4, the influence
of using step or phase-based actions on traffic-routing performance has not been studied until
recently. Results from a paper we published on the matter have shown that, in the case of trafhic
phase splitactions, step-based actions were strictly superior to phase-based ones (Trécaetal., 2020a).

TraFFIiCc PHASE CHOICE An agent using traffic phase choices directly decides which traffic
phase is to be activated next. This action type ofters more flexibility for the agent but comes at the
cost of additional complexity due to necessary safety and compatibility checks on the generated
signal cycles.

4.2 'TrRAFFIC SIGNAL CONTROL METHODS

The previous section described how papers of the RL-TSC literature model the RL framework
applied for traffic optimization. These model choices covered agent representation, agent coor-
dination, choosing between a model-free or model-based method, and defining each element of
the underlying MDP. We now present the different RL-TSC methods themselves, in increasing
order of complexity. Isolated TSC are presented first, followed by MARL methods, both in inde-
pendent and coordinated cases, to finish with function approximation methods applied to traffic
optimization.

4.2.1 SINGLE AGENT REINFORCEMENT LEARNING APPLIED TO TSC

Even though they are somewhat rare given the popularity of multi-agent systems for TSC, a few
papers of the literature have studied the behavior of an isolated intersection using RL-TSC (Man-
nion et al., 2016). These papers can broadly be divided into two categories. Some feature a single
intersection to study the performance of a specific learning algorithm-which happens to be Q-
learning (Watkins and Dayan, 1992) in most cases (Abdulhai et al., 2003; Chin et al., 2011; El- Tantawy and
Abdulhai, 2010; Wen et al., 2007)— while others voluntarily restrict their field of study to an isolated
intersection to analyze specific learning-related phenomenon such as action space definition or
function approximation techniques (Tréca et al., 2020a,b).

4.2.1.1 CrassicaL SARL METHODS

Papers from the first category often compare the performance of the Q-learning algorithm to
classical TSC methods. For instance, El-Tantawy and Abdulhai (2010) found out that single-agent
Q-learning outperformed fixed signal timing for multiple RL state definitions. Abdulhai et al.
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(2003) used Q-Learning on an isolated intersection combined with the cerebellar model articu-
lation controller (CMAC) function approximation technique (see section 4.2.4) and found that
their method had results on par with the TRANSYT and SCOOT methods under constant vehicle
flows but performed significantly better under variable flows. Similarly, Chin et al. (20m) stud-
ied the convergence of an isolated intersection using Q-Learning and an e-greedy policy. The
Q-Learning method could adapt to peak-hour traffic situations simulated using real-world data,
even though the authors did not compare it to another TSC control plan.

4.2.1.2 LiMITATIONS OF SARL METHODS

If SARL models provide some benefits compared to fixed TSC methods on isolated intersections,
they are still seldom used due to two significant shortcomings. First, they cannot be applied to ur-
ban areas with multiple intersections without a central controller, which would lead to unmanage-
able dimensionality as the number of intersections increases (as stated in section 4.1.1.1). Second,
these methods do not feature desirable properties such as junction-to-junction communication
or cooperative learning, which are essential in traffic management in urban areas. These limita-
tions are also illustrated by the fact that most of the literature reviews regarding RL-T'SC methods
choose to exclude isolated TSC methods from their review (Noacen et al., 2021; Yau et al., 2017).

4.2.2 MULTI-AGENT REINFORCEMENT LEARNING APPLIED TO TSC

Given the limitations of single-agent models, introducing multiple agents in traffic control sys-
tems is a logical and somewhat natural choice. Indeed, leveraging reinforcement learning over
multi-intersection networks has been an objective of RL-T'SC models since their inception. For
instance, the three first papers coupling reinforcement learning and traffic signal control aimed to
do so over multiple intersections (Cao et al., 1999; Mikami and Kakazu, 1994; Wiering, 2000).

4.2.2.1 MODEL-FREE MARL METHODS

A great number of learning techniques have existed early on for optimizing traffic, such as linear
automata (Mikami and Kakazu, 1994), fuzzy logic and classifier systems (Cao et al., 1999) or model-
based reinforcement learning (Wiering, 2000). However, Q-learning is the RL algorithm of choice
for RL-TSC systems. Q-learning is present in 60% of the RL-TSC papers surveyed by Noacen et al.
between the years 1994 and 2020.

The Q-learning algorithm was first applied in a RL-TSC context by Abdulhai et al. (2003) and
is popular for its relative simplicity (since it is model-free) and extensibility. An example of Q-
learning applied in a multi-agent setting can be found in a paper by Abdoos et al. (2011) in which
a set of 5o intersections implement a Q-learning algorithm in parallel, outperforming the tested
fixed signal plans. An innovative extension of the traditional MARL Q-learning model for TSC
can be found in Soilse (Cahill etal.,, 2010). On top of regular multi-agent Q-learning, Soilse fea-
tures a pattern change detection (PCD) mechanism allowing the Q-learning algorithm to re-learn
depending on the degree of traffic flow change. The more the nature of traffic demand changes,
the more the learning rate o of the Q-learning algorithm increases, giving more weight to newer
state observations. When traffic demand stabilizes, the learning rate starts decaying again (Cahill
etal., 2010).
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Itshould be noted that while such an approach might suffer from non-stationarity issues (see sec-
tion 3.2.1.2), multiple agent learning concurrently using each a Q-learning algorithm, also defined
a independent Q-learning (Tan, 1993) provides surprisingly strong performance benchmarks in a
number of RL areas (Leibo et al., 2017; Tampuu et al., 2017) including TSC problems (Ye et al., 2019).

4.2.2.2 MoDEL-BAsED MARL METHODS

One of the earliest and most influential RL-TSC models featuring multiple agents, proposed by
Wiering (2000), is model-based. Wiering’s model features both intersections and vehicles as learn-
ing agents, aiming to minimize vehicular waiting time, optionally communicating destinations
and waiting time (for vehicles), and congestion information (for intersections). A first extension
of Wiering’s model includes additional congestion data from neighboring intersections, increas-
ing agent performance and dimensionality in doing so (Steingrover et al., 2005s). A second extension
refines the computation of estimates of the transition function 7~ by leveraging maximum likeli-
hood estimations and dynamic programming (Bakker et al., 2010). A final series of extensions by
Khamis and Gomaa respectively added complex car acceleration models, Bayesian transition prob-
ability estimation, multi-objectivity and agent cooperation to Bakker et al.’s model (Khamis and

Gomaa, 2014; Khamis et al., 2012a,b).

4.2.3 AGENT COORDINATION APPLIED TO TSC

Additionally to defining which learning algorithm should be used by intersections in order to
optimize traffic, MARL models also have to decide on the interaction model of its agents. In-
deed, as we have seen in section 3.2.1.2, MARL models can either choose to ignore agent-to-agent
interactions, resulting in independent learning methods, or choose to model these interactions
through coordination. These coordination mechanisms range from entirely independent learn-
ing to direct coordination and joint-action selection. This section reviews the most commonly
used coordination modes of the RL-TSC literature.

4.2.3.1 MAX-PLUS ALGORITHMS

Multiple Wiering-type models mentioned in the previous section have been extended to include
direct coordination between junctions. Such extensions, due to Kuyer etal. (2008) and Bakker et al.
(2010), leverage coordination graphs and the max-plus algorithm for agent coordination. Since it
is impossible to coordinate all intersections simultaneously because the state space increases expo-
nentially with the number of agents, coordination graphs decompose the global payoft function
into a local function depending on a subset of agents. The global optimum can then be obtained
by computing the local optimal joint actions of each sub-problem (Kok and Vlassis, 200s). In order
to quickly compute the optimal joint action of each sub-problem, the max-plus algorithm orga-
nizes efficient message sharing between local agents for a fixed number of iterations to coordinate
their action choice in a limited amount of time.

Even though the max-plus algorithm significantly speeds up the coordination process between
agents, coordinated MARL methods remain highly computationally intensive, and their use is
generally discouraged in time-critical applications (Bakker et al., 2010). In terms of performance,
Wiering-type coordinated methods outperform all of the non-coordinated models of the same
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type in highly saturated conditions. When traffic is not saturated, however, performance is on par
with coordination-free model-based methods but at the cost of longer computation time (Bakker
etal., 2010; Kuyer et al., 2008). Note that some model-free methods also feature coordination graphs
Coupled with the max—plus algorithm (Medina and Benekohal, 2012; Van der Pol, 2016).

4.2.3.2 MARLIN ALGORITHMS

Another highly popular model-based approach used in RL-TSC coordination is MARLIN (El-
Tantawy and Abdulhai, 2012; El-Tantawy et al., 2013). The MARLIN algorithms rely on two key con-
cepts of the MARL literature: the principle of the locality of interaction and modular Q-learning.
The principle of the locality of interaction states that for POMDPs in which agent interactions
are limited to their neighborhood, optimizing the local joint utility of an agent and its immediate
neighbors is sufficient to reach an optimal agent policy (Nair et al., 2005). Modular Q-learning can
reduce the dimensionality of the state and action space of a problem by partitioning it between
sets of two agents (Ono and Fukumoto, 1997). Like coordination graphs, modular Q-learning di-
vides a joint problem between IV agents of dimensionality |s|" into N — 1 sub-problems between
two agents, each of dimensionality |s|?, hence keeping dimensionality in check. Once these sub-
problems are solved, the agent chooses the action maximizing the sum of these sub-problems.

Two variants of the MARLIN algorithm exist. In the MARLIN-IC (for indirect coordination)
version, each intersection models interactions with each of its neighbors in a joint Q-table and
estimates the impact of its next action choices based on these joint Q-tables (see section 9.3.1 for
a detailed explanation of the algorithm). As for MARLIN-DC (for direct coordination), agents
directly exchange their current policies with their immediate neighbors and negotiate a joint set of
actions maximizing their joint utility. Both of these methods have been tested on a simulated net-
work of 59 intersections representing downtown Toronto using real traffic data. Both MARLIN
variants outperformed the real-world method implemented on the same network (El-Tantawy et al.,
2013). MARLIN has long been considered to be a state-of-the-art coordinated TSC method (Brys
et al,, 2014; Mannion et al., 2016; Yau et al., 2017). However, since its original publication in 2012,
the field of RL-TSC has rapidly adopted more function approximation techniques which greatly
improve the performance of MARL methods, coordinated or not (Noaeen et al., 2021).

4.2.3.3 ALTERNATIVE ALGORITHMS

If most RL-T'SC coordination methods rely on well-known coordination mechanisms such as the
max-plus or MARLIN algorithms, several original coordination techniques have appeared in re-
cent years. One can find a novel approach to traffic light coordination in the y-reward model of
Liu etal. (2021), which considers spatial delayed reward as a vector for agent coordination. If a vehi-
cle takes 72 steps to travel from intersection u to intersection v, the reward of agent u will not only
take into account the local delay at step ¢ but also part of the delay that it caused around intersec-
tion v at time ¢ +n. This delayed reward forces agents to take the utility of other intersections into
account when maximizing their own (Liu et al., 2021). Another coordination model developed by
Chen et al. (2020) aims to optimize traffic on large-scale networks (around 2500 traffic lights) on
a region-to-region basis. Traffic is optimized by region by uniforming traffic pressure (defined as
the difference between upstream and downstream congestion around an intersection) using deep
Q-learning. A final example of alternative TSC coordination methods can be found in the works
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of Qi et al. (2020), which optimize traffic similarly to third-generation classical TSC methods by
coordinating traffic lights through platooning estimations by supposing that some vehicles of the
road network are autonomous and communicate with intersections.

4.2.3.4 ASSERTING THE USEFULNESS OF COORDINATION

All papers presented in this section have shown that RL-TSC methods featuring agent coordi-
nation provided superior performances to independent methods in a number of contexts, espe-
cially on large-scale networks. A paper by Wagner et al. (2019) has, however, claimed that trafhic
light coordination is difficult to achieve in real-world conditions and that few parts of a road net-
work might benefit from it. Multiple simulated scenarios have backed these claims in which well-
parameterized independent actuated methods have outperformed coordinated ones. However,
the authors have claimed that these results are preliminary and require more investigation, which
is the primary goal of chapter 9 of this thesis. This thesis tackles the complex issue of agent coor-
dination and studies its potential benefits in chapter 9.

4.2.4 FUNCTION APPROXIMATION TECHNIQUES

If agent coordination has been largely studied in the field of RL-T'SC since its inception, the appli-
cation of function approximation techniques to enhance traffic routing optimization has been at
the forefront of RL-T'SC research in recent years. We distinguish two types of function approx-
imation techniques applied to RL-TSC. The first category is formed by classical methods that
are often based on simple or older neural networks models. The second category regroups recent
methods that apply recent approximation methods from the deep reinforcement learning litera-
ture. These two categories of function approximation techniques are presented in this section.

4.2.4.1 CLASSICAL FUNCTION APPROXIMATION

To the best of our knowledge, Abdulhai et al. (Abdulhai et al.) were the first to apply a function ap-
proximation technique on a RL-TSC task. The technique they applied is the CMAC model (Al-
bus, 1975), which can be seen as a hybrid data structure in-between an artificial neural network and
a sophisticated lookup table (Brys et al., 2014). When a state-action pair is visited, CMAC propa-
gates the Q-value estimates to other pairs based on their similarity, allowing for faster exploration
of the state space, hence speeding up the convergence process. Pham et al. (2013) have applied a sim-
ilar function approximation method known as zzle coding. Tile coding partitions the state space
according to different subsets (or tiles) and maps them to states by similarity.

The QTLC-FA function approximation method, used by Prashanth and Bhatnagar (20m), aims
to approximate the Q-function with a matrix formed of multiple d-dimensional vectors (one per
state-action pair), d being much lower than the overall dimensionality of the problem. These
vectors are coupled with a tunable parameter matrix which is iteratively updated in a Q-learning-
like fashion using gradient descent. For instance, in a three-by-three grid network used by the
authors, the dimensionality of the problem is reduced from 10'%! to d & 200 using QTLC-FA
while retaining good performances compared to the non-approximated model.
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4.2.4.2 DEEP REINFORCEMENT LEARNING

The use of deep learning has become prevalent in RL-TSC in the last few years, a rise that can be
confirmed by many literature review papers specifically studying the use of deep reinforcement
learning for RL-T'SC (Greguri¢ et al., 2020; Haydari and Yilmaz, 2020). As newer and more efficient
function approximation methods are discovered and showcased in the DR L literature, such meth-
ods gradually make their way into the field of RL-TSC. Two major types of DRL algorithms have
proven the most efficient for a variety of learning tasks: actor-critic and deep Q-learning meth-
ods (Greguri¢ et al., 2020). In both cases, state-of-the-art versions of these algorithms are heavily
modified to include several tricks and techniques such as dueling networks, prioritized experience
replay, or multi-step learning to increase learning performance and alleviate learning issues (Gre-
guri¢ etal., 2020). Given the number of additional techniques they employ, these methods are also
colloquially known as rainbow methods (Hessel et al., 2018). Both versions have applied such rain-
bow methods to traffic routing tasks, each having its specificities.

In the case of actor-critic algorithms, these methods featured multiple techniques such as nat-
ural actor-critic (Richter et al., 2007), tile coding and radial basis function networks (Aslani et al.,
2017), advantage actor-critic (A2C) (Chu et al,, 2019; Xiong et al,, 2019), asynchronous advantage
actor-critic (A3C) (Genders and Razavi, 2018) or fuzzy radial basis function (Chun-Gui et al., 2009).
As for deep Q-learning techniques, rainbow-type techniques using double Q-learning and co-
ordination graphs (Van der Pol, 2016), image-type state representation, and convolutional neural
networks (Shabestary and Abdulhai, 2018), recurrent neural networks (Shi and Chen, 2018) have also
been applied. While the current DRL is not yet definitive about which algorithm structure pro-
vides the best results since they can widely differ depending on the learning task, duelling double
deep Q-network (3DQN) algorithms seem to provide excellent learning capabilities in a wide array
of learning tasks (Hessel et al., 2018).

This chapter has given alarge overview of how reinforcement learning models described in chap-
ter 3 can be applied to traffic signal control tasks. By analyzing a large array of papers from the
RL-TSC literature, which includes a number of literature reviews and surveys, we were able to
identify the most common modeling choices of RL-TSC models.

In the area of environment modeling, we have shown that intersections are almost always used
as learning agents who often aim to minimize vehicular delay on the road network. We have
also shown that a wide array of features of the environment could be used as components of the
MDP. Similarly, MARL TSC models could both successfully feature independent learning and
agent coordination. Regarding RL algorithms used by papers of the literature, we have identi-
fied that multi-agent and model-free methods were widely more popular than their single-agent
and model-based counterparts. Among these methods, TD algorithms such as Q-learning are
broadly used in the literature. Finally, we have shown that function approximation techniques
have become a mandatory feature of any modern RL-TSC method given their efficiency and that
actor-critic and deep reinforcement learning methods provided excellent results in recent works.
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MOoDEL

After describing how reinforcement learning and traffic signal control are used in the literature
to optimize traffic in various ways, we aim to replicate, explain and extend these traffic signal con-
trol methods. In order to undertake these tasks, the second part of this thesis focuses on formally
defining the environment in which our learning problem occurs. This modelization process is
done incrementally. Since we optimize traffic through traffic signal control, our first task is to
properly define road networks and traffic in a simple mathematical model (chapter 5). Once this
modelization task is completed, we then describe how the learning agent interacts with its newly
defined environment by dealing with learning-related aspects of our model (chapter 6). Finally,
we present the simulation framework in which they will be applied in practical terms, hence com-
pleting the description of our RL-T'SC framework (chapter 7).
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The first—and often forgotten—necessary step to study traffic light control systems is to define
what traffic 7. Consequently, this chapter presents a simple discrete-time traffic model based on
graph theory upon which we will be able to adequately describe the RL-TSC methods to be used
in later parts of this thesis. The first section of this chapter describes road networks as graphs
formed of vertices and arcs. The second section describes how we model vehicular movements
and traffic signals on the vertices of a road network. The third and last section defines how we
model traffic flows on this road network.

5.1 RoaD NETWORK

Graph theory (Berge, 1973) provides a good set of tools to model a traffic network. The arcs of
a graph are quite similar to streets or roads, and the same is true for vertices as intersections or
junctions. Hence, we extend these concepts from graph theory to define the static part of our
traffic model: its network.

5..1 GRAPH

LetG' = (V, A) beadirected multigraph (or multidigraph) representing aroad network, where V'
is the set of vertices and A the set of arcs of G. An arc (u, v) € A (also denoted by uv) represents
a connection from vertex u to vertex v on G. The road network G is modeled as a multigraph so
that multiple arcs can link the same two vertices, similarly to lanes on streets of a road network.
These connections are used by vehicles to move from vertex to vertex across the road network.
Conversely, a vertex v € V' is a point connecting multiple arcs of G. Figure 5.1 shows an example
of how graphs can model road networks. A path over G is a sequence of arcs ay, as, . ..a, of A
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of G indicating a valid route from a vertex u to a vertex v of V. We assume here that G is strongly
connected, which means that for any pair of vertices (u, v) € V2, thereisa path in G connecting u
to v. The strong connectivity property makes it possible to reach any point of G from any starting
point within the network, which is a fair and necessary assumption regarding road networks.

Figure s.1: Example non-directed graph representing a road network.

5.1.2 VERTICES

The indegree and outdegree of a vertex v respectively refers to the number of arcs going towards
and out of v. Since G is strongly connected, the indegree and outdegree of any vertex of V' is at
least 1. The set of vertices connected to a vertex v of G is defined as its neighborbood and can split
up between the incoming and outgoing neighboring vertices of v, respectively noted I'™ (v) and

'*(v).

Figure 5.2: Example node degrees. Node v has an indegree of 2 and an outdegree of 1. Node v has an
indegree of 0 and an outdegree of 3. Node w has an indegree and outdegree of 3.
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5.2 TRAFFIC SIGNALS

Traffic signals are essential in modeling a road network. To our knowledge, no works of the RL-
TSC literature formally define the way traffic light controls operate over an intersection. However,
a tremendous amount of technical traffic literature exists regarding the design and operation of
traffic light systems, either stemming from local traffic authorities (Koonce and Rodegerdts, 2008;
Sullivan et al., 2015) or traffic simulator documentation (Erdmann and Krajzewicz, 2013). Based on
this literature, this section introduces a simple model discrete-time of traffic flows over vertices of
aroad network.

5.2. TRAFFIC TRAJECTORIES

A traffic trajectory ww over an intersection v € V, which is composed of an incomingarcuv € A
and an outgoing arc vw € A, represents the trajectory of a vehicle going from arc uv to arc
vw by crossing intersection v. Two traffic trajectories are said to be compatible if they do not
overlap each other on the crossing area of the intersection since it could cause an accident. Trafhic
engineering aims to combine multiple traffic trajectories over an intersection while ensuring their
compatibility. Note that the formal definition of trajectory compatibility is beyond the scope
of our model and that compatible trajectories over an intersection are given as input through a

compatibility table (see Table s.1).

Figure 5.3: Illustration of a 4-way intersection.

Consider, for instance, an intersection of degree 4 displayed on Figure 5.3, and its associated
traffic trajectory incompatibilities in Table s.1. This table shows that right-turn traffic streams
(e.g. YT, wv) are only incompatible with trajectories with the same outgoing arc. Conversely,
left-turn lanes (e.g. v, W) are incompatible with all other traffic streams on the intersection,
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excepted its symmetric trajectories (e.g. Dy and yv) and the opposite side right-turn (e.g. yv and
zw). Thislatter observation underlines the importance of lefz-turn trajectory over standard 4-way

intersections.
vw T vy | WU wWr Wy | TV TW TY | YU Yyw YT
vw 0 o o 0 0 0
T o o o o o o
vy o 0
wu o 0
wx o o o o o o
wy 0 o o o o
U o o 0 0 0 o
TW o
xy o o o o
yvu o o o o o o
yw | o o o o o o
yr o o

Table s.1: Traffic trajectory incompatibilities on a 4-way intersection.

There are two common ways of addressing the specific and conflicting case of left-turns in traf-
fic engineering (Koonce and Rodegerdts, 2008). The first kind of left-turns are permissive left-turns
in which left-turning vehicles have a right of way on the crossing area. In the case of permissive left-
turns, such vehicles station on the crossing area until they can safely cross in the absence of vehicles
from these other streams. The second kind of left-turns are protected left-turns, in which left-
turning vehicles are associated with a specific traffic signal and arc. The choice of implementing
a permissive or protected left-turn is usually the result of a warrant analysis on a per-intersection
basis (Sullivan etal., 2015), and is most of all the result of a trade-off between traffic safety and lower
intersection capacity. Even though it is essential to mention the importance of left-turns in traffic
signal control, our traffic model does not require to specify whether an intersection uses protected
or permissive left-turns. In both cases, a left-turn (e.g., 7v on Figure s5.3) is being represented in
the same manner whether it is protected or permissive without impacting the rest of the trafhic
model. The actual left-turn type over an intersection, which depends on warrant analysis, num-
ber of lanes, and historical traffic flows, is left as an implementation detail discussed in chapter 7.

5.2.2 TRAFFIC PHASES

We designate by traffic phase over a vertex v a set of traffic trajectories on v that are all mutually
compatible, meaning that vehicles following trajectories of these phases could safely do so simul-
taneously. Note that a phase can contain any number of compatible trajectories and that the same
trajectories of an intersection can be grouped in different phases (see section s.2.3.1). The prin-
cipal type of traffic phase, also known as green phase, associates a green light signal with a set of
trajectories ¢, = (T, ..., YZ), giving them the right to cross intersection v. Each green phase
¢y is associated with a yellow (or amber) phase ¢/,. An amber phase associates each trajectory of
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¢!, with a yellow signal, which allows vehicles on these trajectories to cross the intersection while
warning them that their right of way on the intersection is expiring and that they should deceler-
ate accordingly. These amber phases are essential in avoiding collisions on the crossing area due to
emergency braking by going directly from a green to a red signal. Finally, the red phase is a specific
phase containing no trajectories at all: ¢ = (). Using a red phase is necessary for safety reasons by
ensuring that vehicles crossing the intersection during an amber phase have time to go through
before the next green phase becomes active.

5.2.3 S1IGNAL CYCLES

A signal cycle on a vertex v is an periodic sequence ®,, = (¢1, ..., ¢p) of traffic phases on the
intersection. Signal cycles aim to efficiently organize the successive right of ways of multiple com-
patible traffic trajectories on an intersection over time. A signal cycle can be decomposed into a
static structure (i.e., how phases are organized to form a signal cycle), which we present first. Once
this structure is defined, a signal cycle can associate phases with phase durations, which dictates
how a signal cycle changes over time.

5.2.3.1 SIGNAL CYCLE STRUCTURE

If a signal cycle ®,, could potentially be a sequence of any phases over an intersection, it must
satisfy two key constraints to be considered valid:

1. Each possible traffic trajectory over intersection v must appear at least once in the phases
of the signal cycle ®,,. This constraint is a necessary extension of the strong connectivity
property on the graph G, since it ensures that for any two neighbors of v, u € I'"(v),
w € I'"(v), w is reachable from u.

2. Each green phase ¢, of a valid signal cycle ®,, must be directly followed by its yellow phase
equivalent ¢/, which must itself be directly followed by the red phase ¢9. This second

constraint comes from the safety requirements stated above.

Intersections can broadly be categorized into two categories, depending on how they imple-
ment signal cycle rules. Intersections implementing a fixed phasing scheme maintain the same
phase ordering within successive applications of their signal cycles. While the respective duration
of each phase can vary between signal cycles (see the following subsection), the ordering of phases
within the signal cycle cannot change. Conversely, intersections a variable phasing scheme can
both change the duration and order of phases within their signal cycles, provided that the two
constraints stated above are respected.

An important point to note is that an intersection can have multiple valid signal cycles. How-
ever, a signal cycle being valid does not necessarily induce that it is adapted for a given intersection.
Consider, for instance, The 3-way intersection displayed on Figure 5.4. In the case of this intersec-
tion, multiple valid signal cycles can be defined. For instance, a signal cycle can use green phases
successively granting a right of way to all incoming arcs of the intersection: ¢1 = (Vw, V%), 2 =
(wv,wx), p3 = (T, Tw). Another valid signal cycle could consist in using green phases giving
a right of way to successive pairs of arcs of the intersection ¢1 = (vw, Wv), ¢ = (WT,TW),
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Figure 5.4: llustration of a 3-way intersection.

¢3 = (v, 7v). A third signal cycle could also use green phases giving a right of way to all traf-
fic trajectories one by one successively: ¢1 = (VW), ¢ = (VT), ¢p3 = (W0), s = (WT),
¢5 = (TV), P = (Tw). Itis, however, clear that this last signal cycle would be much less ef-
ficient at routing traffic than the two other proposed signal cycle since it only allows for a single
traffic trajectory at a time while the others use two. This illustrates the fact that a valid signal cycle
is not necessarily efficient.

5.2.3.2 SIGNAL CycLE EvoLuTiON

Defining an ordering of phases within a signal cycle is insufficient to route traffic since traffic
trajectories occur over #Zme. Our traffic model defines the evolution of the traffic light signals
over an intersection in discrete time, divided in time steps of equal length. Given a signal cycle
O, = (1, .., ¢n) on v, we designate by ¢¢(v) the phase of ®,, that is active at time step ¢, and
by d;(v) the amount of steps for which the current phase on v has been active within the current
signal cycle. The total duration of the signal cycle on intersection v is noted as C',. At each time
step, the traffic light controller on an intersection v can change the currently active traffic light
¢t (v) if the current phase active time, d¢(v), is superior to a minimum phase duration dyin. This
minimum duration is usually implemented on intersections for safety and acceptability reasons.
Conversely, if the currently active phase ¢ (v) has been active for dmax steps, itis forced to change
at the next time step.

5.3 TRAFFIC FLOWS

So far, our traffic model has used graph theory to define the structure of the road network and has
used traffic engineering to describe discrete-time rules for vehicle crossing of intersections. The
final section of this model deals with traffic flows themselves, defining what traffic s, and then
modeling how traffic flows from vertex to vertex of the road network.

5.3.1 MODELING TRAFFIC

Traffic is composed of vehicles that move over the road network’s arcs. Since vehicle movement
is continuous, properly defining it in a discrete-time model is highly difficult. While it is possible
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to approximate vehicle movement using, for instance, cellular automata (Nagel and Schreckenberg,
1992), we do not opt for this option for two reasons. First, traffic experiments of this thesis are
based on the SUMO traffic simulator (Lopez et al., 2018), which does not use a cellular automata
model, which would mean that our theoretical traffic model would not match our experimental
setup. Second, most traffic simulators, including SUMO, use advanced microscopic traffic simula-
tion models (Chowdhury et al., 2000), which are much more precise and advanced than simple cel-
lular automatons. These models include, among others, collision (Krauf, 1998) and lane-changing
models (Erdmann, 2015). It hence appears much more logical to maintain a discrete-step model of
the traffic environment and to delegate the continuous-time management of vehicular movement
on lanes of the network to the SUMO traffic simulator, which we present in great detail in chapter 7.
The use of a traffic simulator as a black box abstraction is represented by a transition function T,
whose exact role is detailed later on in this section.

5.3.2 VEHICLES AND LANES

A vehicle is formally defined as a tuple ¢ = (p,e) € A™ x N where p is the path followed by
the vehicle on graph G from its entry to its exit arc and e the time step of access of the vehicle on
the network. The path p is computed on the road network graph using Dijkstra’s shortest path
algorithm and does not account for other vehicles present on the network. Each vehicle aims to
follow its path p on the network graph G in order to exit the network through vertex v with a
minimal waiting time. The waiting time of a vehicle is defined as the number of time steps the
vehicle has been idle on the road network while following its route p, either due to a red light signal
or due to another vehicle present on the network. The cumulated waiting time of a vehicle ¢ at
step t is given denoted by the value wy(¢), which is computed by the transition function T'.

Roads on traffic networks are usually divided into multiple lanes, each allowing for vehicle
movement. Since the road network graph, G, is defined as a multidigraph, each lane is repre-
sented by an arc linking two vertices of G. Hence, two arcs link the same pair of vertices, similarly
to lanes. The congestion of a lane, associated with arc uv € F, is equal to the number of vehicles
present on this lane at a given time step ¢, and is noted ¢;(uv). The relative position of vehicles
within a lane uv € E, which is once again computed using the transition function 7T, is given by
the value P;(uv) (see Figure s.5).

5.3.3 TRANSITION FUNCTION

Since modeling the movement of vehicles on traffic lanes is a complex task, we have, as stated at
the beginning of this section, delegated the management of movement, lane-switching behavior,
and entry and exit rules of vehicles on the lane to the SUMO simulator and its associated transition
function 7. The transition function 7', which is reminiscent of the MDP transition function T~
(see section 3.1.1), applies the following changes to the road network at each time step:

1. Alllanes of G’ and their vehicles are updated according to the traffic model of the SUMO sim-
ulator. If a vehicle changes lanes or exits or enters the network, those changes are reflected
on the corresponding lanes of . Similarly, the waiting time of all vehicles of L is increased
by one if they wait during the transition. The values of congestion ¢, vehicle position F;
and vehicle waiting time w; are updated accordingly.
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Figure s.5: Illustration of the evolution of vehicles positions P; (uv) and P, (uv) given by the transition
function 7. The transition function caused the departure of vehicle v4 and arrival of vehicle vs.
Transitions also direct lane changes, which is illustrated by vehicle v3.

2. Thesignal cycle of all network traffic lights is advanced by one step. Phases are automatically
switched if the current phase duration exceeds maximum phase time dyyax or if the current
phase duration is attained.

3. The current simulation step ¢ is increased by 1.

While many more parameters are considered in actual traffic simulations (see chapter 7), the
simplified model presented in this section allows to precisely describe traffic phenomena related
to traffic signal control. This model, in turn, helps to properly define the reinforcement learning
framework applied to traffic signal control.

This chapter introduced a formal traffic model to help us describe the dynamics of a road net-
work.

This model first defined the structure of the road as a multidigraph in which vertices are inter-
sections and arcs are lanes. It then described the movement of vehicles over the network in order
to define how phases and signal cycles are organized over an intersection. Finally, we described
the temporal dynamics of the road network. This description includes the movement of vehicles
over lanes and the overall network transition, which is managed through a black-box transition
tunction T'. This transition function depends on the SUMO traffic simulator, which is presented
in detail in chapter 7
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The traffic model defined in chapter s allows to easily manipulate traffic-related concepts when
applying them in a learning setting. This section builds upon this foundation by formulating the
learning problem at hand-routing traffic using traffic signal control-using elements from this
traffic model. As we have seen in chapter 3, the standard framework used to represent reinforce-
ment learning problems is a Markov Decision Process. Consequently, this chapter defines each
necessary component of our RL-TSC model. It first defines the global objective function F to
be optimized by the agent. It then defines each component of the MDP 4-uple, namely the state
space S, the action space A, the reward function R and the transition function 7 used to model
the framework and solve the objective function F. As we presented most modeling options used
by RL-T'SC methods of the literature in section 4.1, this chapter aims to underline the impact of
choosing different traffic models to decide which representation is the most adapted to our needs.

6.1 OBJECTIVE FUNCTION F
When applying a reinforcement learning method to a given problem, the first and most crucial
question is which objective function the agent should optimize. In the case of traffic signal con-

trol, the rather vague term “optimizing traffic” can refer to widely different goals, such as mini-
mizing delay or congestion, but also noise and CO2 emissions.
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6.1.1 RoLE oF THE OBJECTIVE FUNCTION

One crucial point to bear in mind is that the objective function has to be the first model compo-
nent to be defined since all elements of the MDP are dependent on it. Indeed, we have seen that
the reward and objective function have to be tightly correlated in order for the agent to learn. Fur-
thermore, state and action space definitions are also highly dependent on the objective the agent
is trying to solve. For instance, if a reduction in CO2 emissions is the main objective of a RL-TSC
model, the components of the MDP will have to be chosen to suit this objective. Not only the
reward function R will have to incorporate CO2-related variables, but the state space definition
will also likely incorporate features of the environment that are relevant to this goal. This observa-
tion also implies that the different parts of the MDP that we define in this section are chosen with
regards to a specific objective function and are not likely to be optimal in other contexts. Also,
note that in the case of RL-TSC methods, the objective function of the agent is often directly used
as a performance metric to estimate the problem-solving ability of the agent (Mannion etal., 2016).
In other words, the better the agent learns how to optimize the objective function, the better the
associated performance metric will be.

6.1.2 CHOOSING THE OBJECTIVE FUNCTION

While there is no right and wrong answer when choosing an objective function, some traffic met-
rics are usually more relevant than others. Both the classical and RL-based traffic signal control
literature indicate that there are two main ways of optimizing traffic: through minimization of
delays or minimization of congestion (Koonce and Rodegerdts, 2008). Both objectives have their
virtues and limitations, and their selection is usually dependent on the goals of local traffic author-
ities (e.g., some areas favor high-speed traffic flows and minimized delays, while residential areas
might favor limited speeding and noise). Since our experimental framework will feature multiple
road networks with different geometries, we make the design choice of selecting the most common
objective function (i.e., that will be applicable in all traffic scenarios). While congestion reduction
might be more beneficial in some specific scenarios, delay reduction has a broad range of applica-
tions that will yield satisfactory—if maybe not always optimal-results. This choice is shared in the
RL-TSC literature, as almost 50% of the papers surveyed by Noacen et al. (2021) aimed at minimiz-
ing delay or travel time while minimization of queue sizes, maximization of speed, and throughput
accounted for 12, 6 and 6% of papers respectively.

The last decision regarding to the model’s objective function is choosing which time-related
measurement to minimize. As stated in the literature review in chapter 4, there are three main
types of time-related variables in vehicular networks: delay (i), travel time (ii), and waiting time
(iii). As it turns out, there is little difference in the three measurements when looking at them
from an aggregated perspective. The plots shown on Figure 6.1 show that, on the aggregated level,
all three time-related performance metrics variables that are obtainable through means of traffic
simulation are entirely equivalent. Hence, the choice of the objective function to use depends on
the ease of use of the chosen metric and its applicability. Since the time loss and trip duration
indicators can only be obtained once the vehicle reaches its destination, both measurements pose
a problem when using them to design the MDP’s reward function R as they caused the rewards to
be delayed (Van der Pol and Oliehocek, 2016). Hence, vehicular waiting time, which is readily available
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Figure 6.1: Comparison of traffic simulation episodes using three distinct time-related performance indica-
tors. These metrics compute the average trip duration, time loss and vehicular delay for multiple
simulation episodes of 500 steps.

in simulation settings at all points of the simulation, provides an adequate objective function for

the problem at hand.

6.2 REwarD FuncTION R

The first component of the MDP to define, the reward function R, logically follows the definition
of the objective function. The reward function aims to help the agent assess whether an observed
state-action couple is valuable in maximizing the agent’s objective function F. As stated in sec-
tion 6.1, the chosen reward function R has to be strongly correlated to the objective the agent
aims to maximize as it directly connects the agent’s actions to its objective function. Moreover,
the influence of an agent acting on a given environment state must have a direct, measurable im-
pact on the reward returned by the system for proper learning to occur. This section investigates
which reward function best fits the stated objective of reducing vehicular waiting time.

6.2.1 CHOOSING THE REWARD FUNCTION

Since the main objective of our RL-TSC model is to reduce the waiting time of vehicles on the
network, we logically use the same measurements when defining the reward function R of the
MDP. While the RL-TSC literature showcases an extensive array of possible reward functions,
experiments carried out by El-Tantawy and Abdulhai (El-Tantawy and Abdulhai, 2012) comparing the
effect of multiple rewards definition on RL-TSC performance found that somewhat simple re-
ward functions performed better. Similar tests used with our experimental setup have also shown
the superiority of cumulated delay difference-based rewards. Hence, for an agent placed on inter-
section u € V, the reward associated with an action a; is defined as:

re= > (Y, w(— > wik(e)

veEl ™ (u) c€Pi(vu) c€Pyy i (vu)
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In simpler terms, the reward associated with an action a; for an intersection u is obtained by
computing the cumulated waiting time of all vehicles present on lanes directly going from neigh-
bors of u towards u after and before the action was taken (i.c., at time steps ¢ 4 k and ¢, where
t + k is the first time step at which the agent can decide action a;) and computing their difter-
ence. Such a reward function respects important constraints regarding reward function defini-
tion. Measuring differences in cumulated waiting time is obviously correlated with the global
objective of reducing the overall cumulated waiting time of vehicles of the road network, and this
difference directly quantifies the quality of a given state-action pair. A positive reward indicates
that the cumulated waiting time is lower after choosing action a4, thus indicating a likely correct
action choice. Conversely, a negative reward value indicates an increase in cumulated waiting time
between those decision points.

6.3 STATE SPACE S

In reinforcement learning theory, the state space S of an MDP is used to describe features of the
environment state that are relevant to the agent. Proper state definition is essential in RL problems
since the agent uses it to differentiate system states and act upon them accordingly. Since not all
features of the environment are relevant to the agent, the main challenge associated with state
space definition is choosing which features of the environment we should choose and how detailed

they should be.

6.3.1 ROLE OF THE STATE SPACE

One of the most commonly faced trade-ofts when designing the state space of a RL-TSC model
by choosing among the different traffic features is choosing between detailed state representation
and exploration efficiency. Indeed, adding more features of the environment in the state space S
potentially leads to better agent performance since it can distinguish different system states bet-
ter. Still, it also introduces additional dimensionality, which delays the learning process since it
increases the size of the state space and hence the duration of its exploration process by the agent.
Furthermore, one should note that some components of the environment’s actual state are irrel-
evant for the learning problem at hand or are already embedded in other variables. For instance,
the CO2 emissions of vehicles of the network are likely not relevant when looking at reducing
waiting times on the network. The challenge of state representation for RL modelization is hence
to identify which features of the environment are relevant when defining the state space S of the
RL problem.

6.3.2 CHOOSING THE STATE SPACE

Multiple studies have been made in the RL-TSC literature to measure the impact of state defi-
nition on agent performance. El-Tantawy and Abdulhai (2010) compared the performances of an
isolated intersection using Q-Learning associated distinct state values (intersection throughput,
vehicular delay, and maximum queue length) found that queue and delay-based state represen-
tations yielded the best results for cumulative vehicle delay in simulations using traffic data from
the city of Toronto. Similarly, Genders and Razavi (2018) have evaluated the effect of state granu-
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larity on the performance of an asynchronous advantage actor-critic RL-TSC agent, using three
increasingly complex state definitions going from occupancy and speed, to queue and density and
finally full DTSE states (see section 4.1.2.3). Their results show that vehicular delay improvements
were minimal when using complex state representations and that no differences were observed
in throughput or congestion metrics. The authors suggest that increasing state complexity may
be beneficial for sufficiently complex function approximation methods such as long short-term
memory cells or convolutional neural networks, but not for simpler learning methods.

Similarly to these papers, we compared the performance of multiple state definitions on a wide
array of RL-TSC algorithms, ranging from simple classical methods such as Q-learning to deep re-
inforcement learning algorithms (see section 8.3.3 for a definition). In one case, we used discretized
queue data and, in the other case, DTSE occupancy data. The experimental protocol contained
an isolated intersection implementing a NEMA-type signal cycle. We found that methods using
detailed state representations took two to three times the number of training episodes to reach the
same performance levels as methods using simpler state representations. No notable performance
improvements were observed once these performance levels were reached. Furthermore, we tested
DTSE state representations on even more complex function approximation architectures, such
as recurrent or 3DQN networks. We did not observe any significant advantage to using complex
state representation. In the light of these findings, our experiments will use discretized state defi-
nitions composed of (but not limited to) phase and queue data around an intersection. For a given
intersection v € V' composed of 1 incoming lanes [;, 7 € [1, n], we use the current phase index
¢¢(w), current phase duration d¢ (1) and congestion values on lanes around the intersection ¢ (1)
(see section s5.2.3 and section s.3) to reach the following state definition:

st(u) = (pe(u), di(u), ce(lr), ce(l2), - - - s celln))

This state definition yields a satisfactory balance between low dimensionality and sufficient
granularity by providing both phase and traffic information to the learning agent.

6.4 ActioN Seace A

Selecting the action space A of a RL problem is equally vital, albeit different from setting its state
space. Similarly to the state space S, the action space A is essential since it defines how the agent
can act on the environment to solve its learning task. Hence, different types of action spaces can
exist in the case of RL-TSC, event though to a lesser extent than in the state space case.

6.4.1 ROLE OF THE ACTION SPACE

Interestingly, while being as important as—if not more than—state definition, the effect of action
space definition on RL-TSC performance has, to the best of our knowledge, not been studied in
the literature. Indeed, multiple types of action spaces are featured in RL-TSC papers. We hence
researched and published an in-depth analysis of the effect of action space definition on the per-
formance of RL-TSC controllers (Tréca et al., 2020a) to compare these multiple action types.
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6.4.1.1 EFFECT ON DIMENSIONALITY

Our analysis compares two types of action spaces: phase-based and step-based actions. Phase-
based actions allow the agent to set the duration of the next green phase all at once. When using
phase-based actions, the possible action interval for the agent is hence [dmin, dmax], correspond-
ing to the minimum and maximal green phase duration, respectively (see section s.2.3.2). When
using step-based actions, the agent chooses at regular intervals whether to extend or switch the cur-
rent green phase. This action space definition hence contains two actions and allows the agent to
end the current green phase at any decision point. Note that the state space associated with these
two action space definitions is likely to be different. Indeed, step-based actions need to include
the duration of the current green phase, d;(u), in order to know for how long it has been active.
This information is not necessary in the phase-based case since no decision is taken while a green
phase is active.

Our analysis first compares the effect of these two action space definitions on dimensional-
ity. Since the step-based action space is only composed of two actions, it significantly reduces
actions space dimensionality compared to phase-based actions. However, this reduction in action
space dimensionality is compensated by an increase in state space dimensionality since step-based
actions necessitate the use of the current phase duration d; in the state definition, contrary to
phase-based actions. In conclusion, when using phase-related indicators in the state space of the
problem, choosing either step-based or phase-based action types has little influence on the overall
dimensionality of the learning problem.

6.4.1.2 EFFECT ON PERFORMANCE

The second part of our analysis compares the effect of action space definition on the performances
of an isolated intersection under different types of traffic demand flows. The SUMO traffic simu-
lator used for these experiments, as well as the protocol used to generate traffic demand data, are
described in detail in chapter 7.

This experiment compares a phase-based method to a step-based method which chooses an ac-
tion atevery k step. Additionally, the shape of traffic demand can be changed over the intersection:
the overall vehicle arrival rate follows a Poisson process with a fixed arrival rate, but a parameter
T controls the imbalance of arrival rates between the north-south and east-west lanes of the inter-
section (i.e., a minimum value of 7 ensures completely uniform traffic, while a maximum value
of 7 only allows traffic to occur between the east and west lanes of the intersection). Simulation
results have shown that step-based actions are strictly superior to phase-based ones, regardless of
the nature of the traffic demand dictated by parameter 7 (Tréca et al., 2020a). Furthermore, the
analysis of the influence of the step size k& between successive step-based actions has shown that
smaller step sizes generally yield better performances in even traffic conditions, but that slightly
longer decisions windows (e.g., k = 5 to k = 10) performed better in heavily skewed trafhic
conditions due to a high parameter 7.

The inherent advantage of step-based methods over phase-based methods can be explained by
their very nature: by evaluating whether to extend or switch the current phase every £ steps, an
agent using step-based actions refreshes its appreciation of the current system state much more
frequently than in the phase-based case, in which the agent observes the current system state only
once at the beginning of the phase when selecting its action. The decision points shown on Fig-
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ure 6.2 illustrate the different rates at which step-based and phase-based controllers get informa-
tion about the environment. Since the RL-TSC agent observes the current system state much
more infrequently than in the step-based case, it cannot adapt as quickly to changing traffic con-
ditions, hence explaining inferior performances.

é1
# %o
o %o

Figure 6.2: Illustration of the decision steps of phase-based (in red) and step-based (with decision interval
k = 1, in blue) action types on a signal cycle. Yellow steps represent forced transition phases of
the signal cycle.

The last phenomenon to explain is the relatively poorer performances of very short interval
steps of phase-based actions in heavily imbalanced traffic situations. We attribute these poor per-
formances to the exploration process of the agent. Since the agent favors selecting random actions
to explore the state-action space at the beginning of the learning through an e-greedy policy with
a high exploration rate, increasing the rate at which this agent chooses actions through shorter
step intervals £ mechanically increases its odds of selecting a random action. However, when traf-
fic is heavily imbalanced, the agent should naturally favor longer green phases on east-west lanes
and shorter green phases on north-south lanes. By increasing the odds of prematurely ending a
normally long green phase through excessive exploration, shorter decision intervals can increase
congestion on east-west lanes, impeding overall performance.

6.4.2. CHOOSING THE ACTION SPACE

The choice of using a step-based action space over a phase-based one has been motivated by the
experimental results presented in the previous section. The step size to associate with step-based
action selection we chose is £ = 1. Indeed, even though longer step intervals performed slightly
better in skewed traffic conditions, we have found that the shortest action step interval was the
best overall parameter, especially coupled with more advanced reinforcement learning techniques
such as deep reinforcement learning (see chapter 8). Hence, the superior results provided by step-
based actions coupled with relatively small decision intervals lead us to use a step-based action
space:

A=1{0,1}

in which O represents a phase extension action and 1 a phase switch action.



6 Learning Model

6.5 TraNsiTION FUNCTION T

The fourth and final point to discuss regarding the modeling of the MDP relating to traffic opti-
mization is the transition function 7. The function 7 dictates how the environment transitions
from one state to the next depending on the agent’s action. The transition function, if estimated,
offers additional information to the learning agent when selecting an action by estimating the next
system state and its potential rewards (see section 3.1.2.5).

6.5.1 CHOOSING THE TRANSITION MODEL

As stated during the literature review of RL-TSC methods, both model-free and model-based
methods have been applied to traffic signal control problems. However, most RL-TSC mod-
els choose not to estimate the transition function and are hence effectively model-free. Conse-
quently, while it is technically possible to estimate the transition function of the model’s MDP
to obtain additional information about the environment, it is commonly accepted that the addi-
tional model complexity introduced by switching to a model-free to a model-based method is not
worthwhile from a performance standpoint (Mannion et al., 2016). Furthermore, using a model-
based method impedes model scalability due to dimensionality issues (El-Tantawy and Abdulhai,
2012). These observations, coupled with the fact that most state-of-the-art RL methods applied
to traffic signal control are model-free, make use logically choose a model-free RL-TSC setting in
which the transition function 7 does not need to be estimated.

This chapter used the traffic model definition of chapter s in order to entirely model the MDP
components used in our RL-TSC method.

On the basis of the literature review of chapter 4, we established that the objective function
of our RL-TSC model was the reduction of the cumulated waiting time of vehicles on the road
network. The cumulated waiting time is defined as all the steps for which a vehicle could not
advance on the road network, either due to a red traffic light signal or congestion. Consequently,
we defined the reward function of the MDP as the difference in cumulated waiting time of vehicles
around the lane of an intersection between two successive decision points. We then defined the
state space of the MDP as a simple combination of phase-related and congestion features after
showing that detailed state representations such as DTSE did not bring increased performance in
our model. Similarly, we studied in detail the role of action space definition on agent performance
by comparing phase-based and step-based actions. Our analysis has shown that step-based actions
were strictly superior to phase-based ones, hence guiding our modeling choice. Finally, like the
majority of works of the RL-TSC literature, we chose not to model the transition function of the
MDP, resulting in a model-free RL-TSC method.

66



7 EXPERIMENTAL SETTING

71 TrafficSimulator . . .. ... 67
711  Simulator Features . . . . . .. ... ... .. 68
7012 NetworkData . ... ... ... ... ... ... 68
713 DemandData . ... .. ... ... .. ... .. ... . ... ... 69
714 OutputData . ... ... ... ... ... ... . . .. 70
7.2 SimulationLibrary . . . . . ... L o o oo 70
721 LibraryStructure . . . . ..o Lo oo oo 70
7.2.2  TrafficGeneration . . . . ... ... ... ... ... .. ... .. 71
7.2.3  Additional Utilities . . . . . . . .. ... ... ... ......... 72
7.3 Experimental Protocols . . . . . . ... ... .. oo o L 72,
731 Convergence Analysis . . . .. .. ... ... L. 72
7.3.2  Performance Analysis . . . . .. ... ... L L L. 74
7.3.3  Performance Analysis Under Variable Flows . . . .. ... ... ... 75

The second part of this thesis focuses on modeling how to apply RL methods in a traffic signal
control context. In chapter s, we laid the foundations of a simple mathematical model of traffic
signal control, and in chapter 6, we used this mathematical model to define the learning frame-
work in which we apply various RL algorithms on TSC tasks. This chapter focuses on the last
element of this iterative modeling work by presenting the tools and methods used to experimen-
tally apply various RL-TSC methods on traffic scenarios. Our experimental setup is composed of
two main parts. First and foremost, we use the SUMO traffic simulator to simulate traffic scenarios
on which we test different traffic signal control methods. Secondly, we designed a simulation li-
brary, carmulator, in order to integrate a wide variety of RL-TSC systems in SUMO. This library
also includes many pre and post-processing tools to prepare simulation input and process sim-
ulation output for further analysis. Finally, we present how the SUMO traffic simulator and the
carmulator library are used in order to build an experimental protocol used to measure the per-
formance of RL-TSC methods in simulated settings.

7.1 TRAFFIC SIMULATOR

This first section describes the SUMO traffic simulator that we use to run our RL-TSC experiments.
We first quickly review SUMO’s capabilities and features, ending with a justification as to why we
chose this simulator. The second section gives an overview of how SUMO manipulates data for
traffic simulations by looking separately at network, traffic demand, and simulation output data.
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7.1.1 SIMULATOR FEATURES

Our traffic experiments are realized using the SUMO traffic simulator (Lopez et al., 2018). SUMO is
a microscopic simulator, meaning that each vehicle is managed individually. Furthermore, it is
space-continuous and time-discrete, which means that each simulation step in SUMO has a one-
to-one correspondence with time steps presented in our traffic model in chapter s. Finally, SUMO
is a multi-modal traffic simulator, meaning that multiple vehicle types and pedestrians can be
simulated concurrently.

We decided to use SUMO for multiple reasons. First, SUMO is an actively maintained free and
open-source traffic simulator, which means that it is possible to inspect its source code to have
insights on some implementation details and that we were able to contribute to its development
by submitting bug reports or suggestions to its development team. Second, the SUMO traffic sim-
ulator is increasingly popular in the RL-TSC literature. A systematic literature review by Noaeen
et al. (2021) shows that the first uses of SUMO in the literature date from 2015, but that 17 out of 27
surveyed papers in 2019 used SUMO as their traffic simulator of choice', making it the most popular
choice in front of simulators such as VISSIM or PARAMICS. Finally, the SUMO ofters unparalleled
flexibility when it comes to development and integration with other tools: it offers a Python API
to communicate with a running simulation process, Traci, and offers a large number of utilities
designed to process simulation inputs and outputs, such as traffic demand or simulation logs. The
SUMO simulator is written in C++ and uses XML for input and output data format. The simulator
relies on two main inputs to run a simulation: a network file, which describes the road network
over which to simulate, and a #72p file, which contains traffic demand information over the net-
work. It can also generate several output files and logs in XML format. Additionally to the SUMO
simulator, the sumo—-gui program provides real-time feedback of the ongoing traffic simulation,
using speed and visualization options.

7.1.2 NETWORK DATA

SUMO uses a network file in order to represent the road network in which simulations occur. These
files are composed of a network geometry part, in which the network graph edges are listed, in-
cluding their length, positions, and the number of lanes. The network’s junctions (or vertices)
are then listed and are each associated with a traffic light program. This program contains each
phase of the signal cycle in a specific state form* and the default duration of each phase. Net-
work files can be edited by hand using XML, but SUMO integrates a traffic network GUI editor,
Netedit, which allows to easily create new road networks and edit traffic light programs on its
junctions. The SUMO simulator also provides external tools to convert real-world networks from
OpenStreetMaps and convert them to a SUMO XML format.

'Quite surprisingly, the same literature review stated that around 16% of the surveyed papers did not state which
simulation tools were used at all!

*SUMO represents traffic signals in a specific way. For instance, the phase GGGgrrrrGGGgrrrr represents the light signal
for each intersection’s lanes in order. In this example, lanes 1, 2, 3, 9, 10, 11 have a prioritized green signal, lanes 4
and 12 have a permissive left green signal, and other lanes have a red signal.
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Figure 7.1: The Netedit program, used here to edit the signal cycle of an intersection.

7.1.3 DEMAND DaATA

The other central data input needed to simulate traffic is the demand data, which indicates the
number of vehicles and their trajectories going through the road network. Multiple types of de-
mand data are accepted by SUMO (Urquiza-Aguiar etal., 2019). The firstand simplest form of demand
data is a t74p, represented by an origin and end edge of the network and a start time. When simu-
lated, SUMO will compute the shortest path on G' (as defined in section s.1.1) going from the origin
to destination edge of the trip using Dijkstra’s algorithm and use this route for the vehicle. The
second demand data type is a route, defined as a trip with a pre-computed route, which hence
does not need route computation during the simulation. Finally, SUMO accepts flow definitions,
composed of an origin and destination edge and probability. During simulation, vehicles will be
generated between all pairs according to their respective probabilities and computed similarly to
trips.

There are many ways to generate traffic data to these three demand data formats, using a wide
range of sources. A simple but cumbersome way to obtain demand data is to either write it by
hand to an XML file, use the provided utility in Netedit, or use a random trip generation tool
packaged with SUMO. Demand data generated in this manner is usually highly unrealistic. Flow def-
initions can provide a more realistic demand definition, either provided manually or converted by
a SUMO utility from origin-destination matrices using real-world data. Other demand data sources
are road detector data, which computes trips from observed traffic flows at certain observation
points of the network or activity data, generated using the ActivityGen utility, which generates
traffic flows from activity definitions of the network such as population number or type of neigh-

borhood.

69



7 Experimental Setting

7.1.4 OuTtrUuT DATA

The SUMO simulator can log many simulation variables for further use, such as trip duration, time
loss, route length, waiting time, or number of stops. Additional logging data can include vehicle
emissions, vehicle trajectory, lane changes, noise emissions, or battery use. A simulation process
does not need any interaction to complete, as the signal cycles defined in the network data files
directly control traffic lights. However, it is possible to use the Traci API to control these traffic
lights on a step-by-step basis directly. The possibility to control a running simulation process
through an API was the starting point of the simulation library we created, carmulator.

7.2 SIMULATION LIBRARY

We created the carmulator library to interact with the Traci API and directly query and con-
trol a running SUMO process. This library was designed for multiple reasons. First, it allowed us
to quickly prototype and experiment with RL-TSC controllers within SUMO by establishing sim-
ple interfaces between the simulator and prototype methods. Second, the carmulator library
provides several reference RL-T'SC methods found in the literature, which one can use for experi-
mentation or comparison purposes. Finally, carmulator provides many utilities to make working
with the SUMO simulator easier.

7.2.1 LIBRARY STRUCTURE

The carmulator library is a wrapper around the SUMO simulator allowing direct control of traffic
lights during a simulation. On startup, carmulator initializes a SUMO process and several library-
specific data structures such as a simulation supervisor, traffic lights and signal cycles (one per
junction), and a global simulation data record. The simulation supervisor then interfaces SUMO
and carmulator by, on the one hand, querying the current simulation state and making it avail-
able to various carmulator traffic controllers, and, on the other hand, by transcribing controller
actions into traffic signals applicable in SUMO. 1 provides a simplified description of the simulation
supervisor.

Algorithm 1: Simplified traffic supervisor loop in carmulator.

Initialize controllers and signal cycles;
while Vebicles are still present in the network do
Query SUMO for the current network traffic, waiting times, and traffic signals;
for Each traffic controller and signal cycle in the network do
Advance the signal cycle by 1 step;
if Signal cycle needs a decision then
Query the controller for a signal cycle action;
Pass the controller action to the signal cycle;
if Signal cycle has changed then
‘ Change the signal cycle in SUMO;

Move the simulation by 1 step in SUMO;

Log simulation data to disk;
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7.2 Simulation Library

Using this supervision architecture has several advantages. First and foremost, interacting with
SUMO in a single class delimits interface code from carmulator-only code and limits the risks of
bugs and the number of messages passed from SUMO to carmulator?. Second, and most impor-
tantly, using this architecture allows quickly defining multiple traffic signal control methods. In-
deed, all traffic lights use the same simple interface composed of two methods. The set method
allows the controller to execute any necessary operation using the current simulation step and
the global carmulator data record (for instance, the controller can count the number of vehicles
around its lanes at the current time step, verify which signal cycle was in place on a neighboring
junction at the previous time step, or send/read a message to/from neighboring intersections).
The get method, executed after set, queries the controller for a new traffic signal choice when
needed. The controller can choose this signal with information from the network gathered in
the set phase. Defining new traffic control methods using these two methods then becomes ex-
tremely easy. For instance, defining a fixed traffic signal that switches phase periodically every ten
steps is as simple as defining these two methods*:

def set(step):
return

def get(step):
return step % 10 == 0

7.2.2 TRAFFIC GENERATION

Besides simulating RL. methods using SUMO, the second central task of the carmulator library s to
generate traffic demand data for these simulations. While it is possible to use hand-crafted traffic
demand files or SUMO generated data (either through netedit or programs such as duarouter),
carmulator provides multiple high-level flow-based traffic generation methods. As stated in sec-
tion 7.1.3, flow-based traffic demand associates a given edge pair with a vehicle spawn probability
evaluated every simulation step (hence describing a binomial process, which is akin to a Poisson
distribution for small probability values, which is often the case in our context). The flow values
can be generated in multiple ways using carmulator. The first is to supply an origin-destination
matrix automatically converted to a matching flow demand data file for a given network. If no
traffic data is available for a network, carmulator can generate flow demand from scratch by gen-
erating uniform demand flow across all edge pairs of the network, which ensures traffic stability
but is rather unrealistic. Another option provided by carmulator is to generate flow probabili-
ties using an exponential distribution of parameter A, which are more realistic than uniform flows.
The exponential parameter A defines the mean of the drawn flow parameters and the overall traffic
intensity. The overall shape of exponential distributions according to different values of parameter
A can be seen on Figure 7.2.

*Message passing between SUMO and the Python API is relatively slow, accounting for 30 to 50% of total simulation
time for simple TSC methods.

*In this scenario, returning a o indicates a current green phase extension of 1 step, and returning a 1 indicates a phase
switch.
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Figure 7.2: Distribution of 200 draws according to an exponential distribution of parameter A.

7.2.3 ADDITIONAL UTILITIES

While easily defining traffic signal control methods and running them using SUMO is the primary
goal of carmulator, the library also provides some additional utilities and methods which proved
extremely useful in working with TSC systems.

Comparing multiple TSC methods must be done following the same experimental conditions.
In the case of traffic simulations in SUMO, the same exact traffic demand file and random number
generator seed have to be used to fairly compare methods. Since these constraints are typical in RL-
TSC analysis, carmulator provides an experiment_setup and an experiment_run function,
ensuring that all methods run for the same amount of episodes the same random seed and demand
file are used for each episode across compared algorithms. These methods also generate unique
names for all log files of the experiment to be retrieved easily.

7.3 EXPERIMENTAL PROTOCOLS

Developing the carmulator library has the advantage of making RL-TSC experimentation easy.
Indeed, the library provides controller classes that can be used to quickly prototype TSC meth-
ods simulation wrappers that can compare multiple TSC methods in the exact same simulation
conditions. The carmulator library also provides dedicated experimental protocols to analyze
RL-TSC controllers. This section covers the three main protocols that are used for the rest of this
thesis work in order to compare RL-TSC methods.

7.3.1 CONVERGENCE ANALYSIS

We define convergence analysis as the study of the learning capabilities of a RL-TSC agent as learn-
ing episodes advance. This analysis is conducted by first generating a set of traffic demand data
using the protocol described in section 7.2.2 that will be used across all simulation episodes of the
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experiment. This traffic demand is defined in terms of flow, meaning that at each step, each edge
pair of the network has a fixed probability of spawning a vehicle following this route. Hence, for
the same demand data, using the same random seed will result in the same exact traffic data, while
using distinct seeds will result in slightly different traffic data that are still following the general
demand pattern. We exploit this property when comparing the convergence of multiple RL-TSC
methods. For the same episode index (i.e., the nth simulation episode), the same seed is used
across all tested methods, meaning that they all learn using the same exact traffic data. However,
between episode indexes, the random seed is changed, ensuring that RL-TSC methods learn on
distinct but similar traffic data from one episode to the next.

As for convergence analysis itself, we compute, for each simulation episode, the sum of cumu-
lated waiting times of each vehicle that traveled through the network, giving the total delay of the
simulation episode. Plotting these successive delay values from episode to episode, as in Figure 7.3,
allow to observe the evolution of the routing traffic capabilities of each agent. For increased accu-
racy, we usually repeat a convergence analysis over multiple traffic scenarios, each associated with
distinct traffic demand data. The plotted result is then the average cumulated waiting time values
of these scenarios.
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Figure 7.3: Example of a convergence analysis plot.

Note that convergence analysis observes the rate at which a RL-TSC learns while it is still train-
ing. This implies that convergence analysis is not sufficient to measure the overall performance of
a RL-TSC method (which is why we also present performance protocols in section 7.3.2 and sec-
tion 7.3.3). Furthermore, it also implies that we must decide on a stopping criterion when mea-
suring agent convergence. While there is no hard rule as to when to stop the training of a machine
learning model, a generally agreed upon rule is to establish an end of training criteria, usually ex-
pressed as a lower bound on the variation of the performance of the agent. Given the unstable
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nature of RL-TSC learning, we decide to end agent training if the difference in the average perfor-
mance of the last n simulation episodes and the n episodes before them is lower than a threshold
value k. The value of parameters n and & are set, however, on a case-by-case basis since the RL-
TSC convergence process greatly differs depending on the traffic scenario and learning method at

hand.

7.3.2 PERFORMANCE ANALYSIS

As mentioned in the previous section, convergence analysis cannot entirely analyze the efficiency
of a RL-T'SC method. Indeed, this analysis can underline information regarding the learning pro-
cess of tested methods but can say little about their performance once they have converged. More-
over, learning-specific techniques such as random action selection in the e-greedy policy (see sec-
tion 3.1.3.2) introduce sub-optimal action selection choices for the sake of exploration, which can,
in turn, affect agent performance. Sub-optimal action selection could introduce a bias in the per-
formance metrics of some RL-TSC methods, especially when one is more likely to explore the
state-action space than the other.

We hence evaluate the performance of an agent separately from its convergence process. While
a performance analysis still measures the total cumulated waiting time of vehicles, it measures it
within instead of across simulation episodes. In other words, it plots how the total cumulated
waiting time increases as vehicles arrive within the simulation. In order to measure the variabil-
ity of methods, we plot these metrics over multiple traffic scenarios, each associated with distinct
traffic data drawn according to the method described in section 7.2.2. The resulting plot, as dis-
played on Figure 7.4, features the minimal and maximal cumulated waiting time observed across
multiple scenarios for each tested method.
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Figure 7.4: Example performance analyis plot.
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Note that within a simulation scenario, all vehicles are generated up to a certain time step (e.g.,
1500 on Figure 7.4), and the simulation finishes when the last generated vehicle reaches its desti-
nation. It is hence possible to have methods associated with longer running simulations, as is the
case with method A in the figure above. Finally, performance analysis considers that the RL-TSC
methods they compare have finished learning and hence disable their exploration features such
as random action selection by setting ¢ = 0. This ensures that only greedy action selection is in
place, which increases agent performance once learning has occurred.

7.3.3 PERFORMANCE ANALYSIS UNDER VARIABLE FLOWS

The convergence and performance experimental protocols allow to study the learning dynamic
and post-learning performance of RL-TSC methods. A final experimental protocol of interest to
widen our analysis relates to the robustness of these methods. Indeed, even the most advanced
RL-TSC methods will not avoid congestion and delays if the traffic demand is superior to a road
network’s capabilities. However, performant RL-TSC methods can delay congestion and delays
as much as possible as traffic demand increases. Similarly, a desirable method can quickly go back
to normal traffic conditions once traffic demand decreases. These measurements of robustness
hence warrant the constitution of a third experimental protocol that can observe how various
methods react to traffic conditions of variable intensity.
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Figure 7.5: Example variable-flow performance analysis plot.

In order to observe both of these phenomenon, we define a variable-flow experimental pro-
tocol that is inspired by both the convergence and performance protocols described above. For
fixed demand data, all tested methods are first trained similarly to the convergence protocol de-
scribed above. Then, after these methods converge, the arrival rate A of each edge pair of the
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traffic demand data is increased by 0.8% for each simulation episode over 100 episodes, gradually
increasing the total traffic demand while maintaining its overall shape. After the traffic demand
peak is reached, the same arrival rate is decreased over 100 episodes by increments of 1% at each
episode, returning to a pre-rush hour arrival rate. After running the same experimental scenario
multiple times in order to increase accuracy, the resulting plot (see Figure 7.5) shows the best and
worst waiting times per episode across these distinct scenarios. This final experimental protocol
hence combines methods from both the convergence and performance protocols by both looking
at inter-episode performance levels (similarly to the convergence protocol) and by plotting best
and worst-case cumulated waiting time levels of these episodes across scenarios (similarly to the
performance protocol).

In this chapter, we presented the practical tools used to simulate traffic in this thesis work.

We first presented the SUMO traffic simulator, an open-source microscopic traffic simulator used
to experiment with various RL-TSC methods in this thesis. This simulator was chosen for its avail-
ability and flexibility since it offers a Python API that can directly connect to a running simulation
process.

We also presented our RL-based traffic simulation library, carmulator, which complements
SUMO by allowing us to quickly develop RL-TSC controllers and test them in traffic simulation
settings. This library implements a traffic demand generation utility used to generate demand
data over a traffic network. Furthermore, carmulator contains a series of experimental protocols
used to compare in detail the various RL-TSC methods it implements. The convergence proto-
col measures the ability of methods to learn across simulation episodes; the performance protocol
measures the post-learning performance and performance variability of methods within a simu-
lation episode; while the variable-flow protocol measures the robustness of methods by gradually
increasing and decreasing the traffic demand data.
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METHOD

The third part of this thesis is dedicated to studying different reinforcement learning-based meth-
ods used for traffic signal control. Once again, this work is done incrementally as the problem at
hand complexifies. We start by discussing multiple isolated traffic signal control methods (chapter
8), featuring both deterministic and learning methods, to analyze each of their components and
establish which algorithms and policies are better suited for traffic signal control. Once isolated
intersection control is analyzed, we extend our field of study to networks featuring multiple in-
tersections (chapter 9) to study various modes of operations between intersections ranging from
independent control to direct coordination mechanisms.
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Isolated traffic signal control methods aim to optimize traffic at the single intersection level,
regardless of the actual size of the road network. Since their scope of action is limited, isolated TSC
methods are usually simpler to develop and analyze than their coordinated counterparts. This last
point leads us to start our analysis of RL-TSC methods on isolated intersections before moving
on to coordinated TSC methods in chapter 9. This chapter first covers deterministic isolated TSC
methods, which do not use learning to route traffic but will be useful in our experimentations. We
then cover multiple classes of classical RL algorithms before looking at function approximation
techniques.

8.1 DETERMINISTIC ISOLATED TRAFFIC S1GNAL CONTROL

The first subset of isolated TSC methods is composed of TSC methods which do not use learn-
ing mechanisms to route traffic. Deterministic methods regroup, among others, TSC methods
implementing a fixed signal cycle repeating itself regardless of traffic conditions, hand-tuned fixed
signal cycles designed to maximize intersection throughput, and more complex routing methods.

8.1.1 FixEp METHODS

The term fixed traffic signal control methods regroups TSC methods which implement a fixed sig-
nal cycle on a given controller regardless of the current traffic situation. The simplest form of fixed
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signal control would be an algorithm assigning the same green phase length regardless of phase in-
dex or traffic state, even though such an algorithm does not consider the traffic demand around
the intersection. During the 1950s, Webster formulated a method to compute the optimal cycle
time and split times of an intersection given the traffic demand around it (Webster, 1958). Webster’s
estimations for optimal cycle time and phase splits rely on computing critical lanes for each phase @
of the signal cycle, which is the lane with the highest ratio f; of flow to saturation flow (El-Tantawy
and Abdulhai, 2012). Once the critical lanes are identified, the optimum cycle length C' in seconds
is estimated as a function of the unusable time per cycle L (i.e., amount of seconds dedicated to
red phase time) and of the sum of the critical lane flow ratios computed earlier:

 15L+5
S LO-Xf;

The optimal green phase time g; for each phase ¢ of the signal cycle is calculated by distributing

C

the total available green time C' — L proportionally to the flow ratio of each phase as

9i = Ji
X
After parameterizing flow values gathered from historical traffic data, the Webster formula al-

lows intersections to implement a fixed signal cycle adapted to their traffic demand. algorithm 2
details the Webster signal cycle formula.

(C—-1L)

Algorithm 2: Fixed signal timing algorithm using Webster’s formula.

for cach step t do
i < Pr(v);
if di(v) < gi(v) then
‘ aqy — 0;
else
‘ ay — 1

While multiple algorithms extend this basis (Rouphail etal., 1998) to more accurately assign green
time within an intersection’s signal cycle, Webster’s original formula provides a good performance
indicator of how a real-world parameterized intersection would behave in a traffic simulation set-
ting.

8.1.2 OPTIMAL METHOD

A particular shortcoming regarding the analysis of TSC algorithms is that there is—to the best
of our knowledge—no given deterministic method capable of finding an optimal or near-optimal
solution for a given traffic situation at the single intersection level. Furthermore, a common com-
plaint regarding the performance evaluation of learning algorithms is that while it is easy to ob-
serve whether a learning method improves over time, it proves more complicated to estimate this
improvement with regard to a maximum performance bound for this given problem. A RL-TSC
method improving its traffic routing capabilities fourfold through learning iterations does not
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measure if this improvement is still far from an optimal-and often unobserved—solution. This
issue is common in most papers of the RL-TSC literature since most proposed TSC methods
are either compared to fixed or other RL-based methods of the literature (Noaeen et al., 2021), but
rarely to state-of-the-art traffic engineering methods used in real-life urban networks. The optimal
method we present in this section solves these issues.

8.1.2.1 OPTIMAL STRATEGY SEARCH

We developed an approximation method that leverages the ability to save and load simulation
states in SUMO to alleviate this issue partially. This method considers agent strategies, which are
binary strings representing successive step-based action choices (see section 6.4.2) by the agent over
a certain number of simulation steps. For instance, the strategy 001000 represents two successive
extensions of the original green phase, followed by a phase switch and another three successive
phase extensions, for a total strategy duration of 15 (a single step per extension action and ten
steps for a switch action, corresponding to s steps of yellow and red time and 5 steps of minimum
green time). The main idea behind this optimal strategy approximation algorithm is the follow-
ing: when facing an action choice (i.c., whether to extend or switch the current green phase),
the algorithm saves the current simulation state to disk and starts testing all possible strategies of
length k in a tree-like manner (see Figure 8.1) by successively saving and loading simulation states.
After computing all strategies, the algorithm returns the one yielding the best results to the agent,
which applies its first / steps. Appendix A provides a complete description of the algorithm.
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Figure 8.1: Representation of a strategy tree search for a depth & = 15. The — character represents 10
successive extend actions for brevity.
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8.1.2.2 DIMENSIONALITY ISSUES

A known limitation of exhaustive strategy search methods is their combinatorial explosion when
the strategy tree reaches a sufficient length. In the case of traffic signal control, this total number
of strategies can be computed by listing all the valid combinations of @s and 1s that form a strategy
string of the desired length and then computing the number of permutations without repetitions
in which these symbols can be arranged. Using this formula, we estimate that there are 13 unique
strategies of length 20, 3311 strategies of length so, and around 27 million unique strategies of
length 100. Testing the entire strategy tree of a10.000 steps simulation would require trying 2.13 x
10782 unique strategies, which is entirely above our computational means.

8.1.2.3 ROLE OF SEARCH PARAMETERS

Since an exhaustive optimal search is impossible given the combinatorial explosion of the problem
at hand, the role of the strategy depth & as well as the horizon h for which the agent will apply
the returned strategy is paramount in finding the right balance between optimality approxima-
tion and computational needs for this algorithm. In theory, increasing the strategy search depth
k should increase the performance with diminishing returns and increase computation times ex-
ponentially (since longer strategies matter less and less regarding the current decision point but
dramatically increase the computational search costs). Additionally, increasing the horizon pa-
rameter should reduce computational costs and negatively impact agent performance since the
entire strategy search process is triggered less frequently. Hence, choosing parameters h and k
is a matter of balancing agent performance and algorithm running time. In order to study the
influence of both these parameters on the strategy approximation algorithm, we measure the cu-
mulated waiting time obtained in a single-intersection simulation and the total simulation time in
seconds for different strategy depth and horizon values for the same traffic and simulation settings.

k/h I 5 10 IS 20 25

10 | 221 216 228 - - -
15 | 166 226 276 308 - -
20 | 161 196 208 220 222 -
25 | 144 192 145 218 157 157
30 | 143 167 170 175 222 182
35 | 138 172 157 167 184 204
40 | 37 146 167 166 185 188

Table 8.1: Cumulated waiting times according to different strategy depths & and horizon h values.

We present the cumulated waiting time values obtained within the simulations on Table 8.1. We
first observe that our predictions regarding the positive influence of longer depths k and shorter
horizons h on cumulated waiting time values are respected overall. Nonetheless, some higher
horizon values can sometimes outperform lower ones (e.g., horizon h = 10 yields a better result
than h = 5 for k = 35), which is likely due to a "lucky run" by specific combinations of k and

h; and shows the inherent limitations of optimal strategy approximation methods. The influ-
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ence of the horizon parameter also behaves as expected. Increased horizon values above h = 1
quickly degrade performance values, even though this degradation is not necessarily ordered or
linear for higher values of h. Regarding computational costs, we do notice a substantial reduction
in simulation time when increasing agent horizon initially, but this reduction quickly decreases
for horizon values above h = 10, as one can see on Figure 8.2 for selected values of parameter .

Performance and computation time values for different depth search and horizon parameters

@ k=20 ®
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k=40
;:‘ 16384 |- p 8
§ 4096 .
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© @
256 - ® ..

140 160 180 200 220 240

Cumulated Waiting Time

Figure 8.2: Computation time of the optimal strategy approximation algorithm depending on different
horizon parameter h values (s, 10, 15, 20, 25, 30, 35 and 40, in increasing order on the above

figure).

8.1.2.4 PARAMETER RECOMMENDATIONS

These results lead us to make the following recommendations regarding the optimal parameter
selection. First, we do recommend setting the horizon parameter / to 1. Indeed, as we can see
on Table 8.1, setting a minimal horizon parameter is the surest way of obtaining a minimal cu-
mulated waiting time for a fixed depth parameter £, while higher values of i tend to increase the
unpredictability of the performance output. Furthermore, we observe on Figure 8.2 that an algo-
rithm of depth £ and horizon 1 takes less time to compute and performs better than an algorithm
of depth k + 5 and horizon 5. Our recommendations regarding the depth parameter k depend
on two bounds: a lower depth bound decided by performance, for which we recommend setting
parameter k to values of 25 or higher, and a higher depth bound decided by computation time and
which depends on the entire length of the simulation. Using results from our test simulations of
500 steps and a fixed horizon parameter of i = 1, we estimate that it takes an average of 0.6 sec-
onds per simulation step to run the algorithm for a depth parameter of 10, 4.8 seconds per step
for a depth parameter of 20, 33.1 seconds per step for a depth parameter of 30 and 3:37 minutes per
step for a depth parameter of 40. Multiplying these estimates by the number of steps necessary to
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run a given simulation gives a reasonable estimate of how long a given optimal method will run,
which helps select the highest value of parameter k£ with acceptable computation times.

8.2 CLASSICAL REINFORCEMENT LEARNING METHODS

As we have mentioned in chapter 4, multiple types of RL algorithms, such as value-based, policy
iteration or actor-critic methods have been successfully applied to TSC tasks (Noaeen et al., 2021).
This section hence aims to first present a RL algorithm from each of these classes before compar-
ing them in practice on a single-intersection traffic simulation. Each representative algorithm is
voluntarily kept simple to ease the presentation and analysis work of this section; more advanced
methods, including function approximation techniques, are presented in section 8.3.

8.2.1 VALUE-BASED METHODS

Among the three main types of value-based reinforcement learning algorithms presented in chap-
ter 3, only Temporal-Difference learning algorithms are suited to RL-TSC tasks. Indeed, Dynamic
Programming methods are model-based, meaning that they require prior knowledge or estima-
tions of the transition function 7 of the underlying MDP, which is generally considered as a
complex modeling task (El-Tantawy et al., 2013; Mannion et al., 2016) and is hence seldom featured in
the literature (Noaeen et al., 2021). Similarly, Monte Carlo methods are not used for traffic signal
control tasks. Indeed, these methods update their policies and value estimates at the end of an
episode, instead of at the end of each step within an episode (Sutton and Barto, 2018), making them
unfit for tasks like RL-T'SC in which fast reactivity within an episode is essential for acceptable
performance (El-Tantawy and Abdulhai, 2012).

8.2.1.1 Q-LEARNING

Given its overwhelming presence in the RL-TSC literature and its relatively simple structure, we
choose to study Q-learning (Watkins and Dayan, 1992) as the representative value-based method.
The Q-learning algorithm estimates the quality of state-action couples of the environment using
a general policy iteration technique (see section 3.1.2) and stores these estimates in a Q-table. For
a € [0,1]and v € [0, 1] representing the learning rate and discount factor of the agent, the
estimated quality of each state-action visited by the agent is successively updated according to the
following rule:

Qs1,ar) = (1 = a)Q(sp, ar) + alry + ymax Q(si41, a)) (8.1)

The intent behind the update rule in Equation 8.1 is rather clear: for a given state s; and asso-
ciated chosen action ay, the estimated quality value Q (¢, at) stored in the Q-table is updated by
keeping a fraction 1 — o of its old value and a fraction a; of a newly estimated quality value. This
latter term is estimated using the associated reward value 7 (since the long-term reward function
is what the quality function approximates) as well as the estimated quality associated with the next
system state ;4 1, which is computed by estimating the maximal reward the agent could obtain in
this new state, max Q (841, a). Since this reward is delayed for the agent, a discount factor 7y is
applied to reflect the agent’s decision-making process at step t. algorithm 3 provides an illustration
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of the Q-learning algorithm using an e-greedy policy (see section 3.1.3.2) applied to isolated traffic
signal control.

Algorithm 3: Illustration of a standard Q-Learning algorithm with an e-greedy policy
applied to an isolated intersection.

for cach step t do
Observe s, a,r, s';
Q(s,a) + (1 —a)Q(s,a) + a(r + ymaxy Q(s',a));
if X ~U(0,1) < € then
‘ a ~U(A);
else
‘ a' < max, Q(s';a);

8.2.2 PoLicY ITERATION METHODS

Policy iteration methods aim at directly estimating the optimal agent policy of a given problem
without needing to estimate value or quality functions. Learning automata (LA)-which were
originally developed in the field of mathematical psychology (Narendra and Thathachar, 1974)—are
functionally equivalent to simple policy iteration RL algorithms (Kaelbling et al., 1996; Nowé et al.,
2005). Learning automata were the first RL algorithms to be applied to a TSC problem (Mikami
and Kakazu, 1994). Learning automata maintain a policy vector containing the probabilities of se-
lecting a given action in A. After receiving a reward from the environment, the vector p is directly
updated to take this feedback into account. Hence, LA circumvent the need for value or quality
estimates by directly embedding these values as probabilities in their policy vector. Multiple types
of learning automata can be derived from these guidelines and generally differ on three points:
their reward model, scheme and statelessness.

8.2.2.1 LEARNING AUTOMATA PARAMETERS

Linear automata usually use three distinct reward models. The P-model is suited for rewards
whose values are either 0 or 1, the Q-model when rewards are a distinct collection of symbols,
and the S-model when rewards are within a continuous interval (Narendra and Thathachar, 1974).
LA schemes also differ on which vector update strategy to apply when receiving a reward. The
two most common linear schemes are the linear reward-inaction (LRI) scheme, which only in-
creases probabilities when the reward is positive, and the linear reward-penalty (LRP) scheme,
which both increases probabilities if the reward is positive and decreases them if the reward is neg-
ative. Foro € [0,1] and 7 € [0, 1] two parameters respectively associated with the reward and
penalty components of the linear automaton, these two schemes can be summarized using the
update rules below shown on Equation 8.2. Since these update rules guarantee that the policy
vectors remain valid probability distributions, the agent policy is directly included in the proba-
bility vector in the form of a stochastic policy: each action of the action space is drawn according to
its weight in the policy vector. While initially using a single policy vector regardless of the system
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state (Nowé et al., 2005), linear automata can maintain multiple policy vectors ps, each associated
with a state s of the state space S.
P Pa+0r(l —pg) — 7(1 —7)pg, ifa = ay (8:2)
a Pa — orpg + 7(1 _T)(W —Pa), else

8.2.2.2 MODELING LINEAR AUTOMATA FOR TSC

Regarding the application of LA to RL-TSC problems, several choices have to be made regarding
their features. First, state-indexed policies ensure the algorithm behaves differently depending on
the current system state, which is crucial in traffic signal control. Hence, the LA applied to traf-
fic signal control will maintain a separate policy vector ps per system state. The reward scheme
used for traffic applications has to feature both negative and positive reward values, according to
the reward function defined in section 6.2. We consequently apply a S reward model within the
[—1, 1] interval where each reward is linearized to fit in this interval by using the worst and best
past observed rewards as the upper and lower bounds of the interval. Finally, the choice of us-
ing a LRI or LRP scheme is largely problem-dependent. Our experiences on TSC applications
have shown that the LRP scheme was strongly superior to the LRI scheme since it took into ac-
count both good and bad action selection decisions. Indeed, by not taking bad action choices into
account, the LRI scheme does not learn from wrong traffic decisions even though they are essen-
tial in adequately routing traffic. Additionally, the first paper applying reinforcement learning to
traffic signal control featured a LRP algorithm (Mikami and Kakazu, 1994). Based on these model
choices, and by selecting identical parameters for both rewards and penalties (i.c., 0 = 7), the
LRP algorithm associated with a stochastic policy for isolated traffic signal control is presented
in algorithm 4.

Algorithm 4: Illustration of a linear reward-penalty with a stochastic policy applied to
an isolated intersection.

for cach step t do
Observe s, a,r, s's

if 7 < rpin then
‘ Tmin < 73
if 7 > 7.« then
‘ Tmax < T
7 4= (r — min)/("max — Tmin);

for a; in Ado
if a; = a then
‘ Ps,a < Ps,a + 0'72(1 - ps,a) - U(l - ’f')ps,zﬁ
else

‘ Ps,a < Ps,a — Ufps,a + 0(1 - r)(m - ps,a)B

a’ ~ Ds’s
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8.2.3 ACTOR-CRITIC METHODS

Similarly to policy iteration methods, actor-critic methods establish a policy directly through a
policy vector (i.e. the actor); and, similarly to value-based methods, the agent maintains qual-
ity estimates (i.e. the critic) and uses them to refine the policy vector iteratively (Grondman et
al,, 2012). While most actor-critic algorithms used in a TSC context use advanced rainbow-type
models leveraging function approximation and other techniques (Greguri¢ et al., 2020), the general
actor-critic framework allows to define simpler schemes that do not rely on continuous state or
action spaces or function approximation techniques (Crites and Barto, 199s).

8.2.3.1 SIMPLE ACTOR-CRITIC ALGORITHM

We define an actor-critic algorithm that merges mechanisms from Q-learning and linear automata
defined above. Similarly to learning automata, the agent’s policy of this actor-critic model is a
probability vector ps associated with a given environment state, s. Additionally, and similarly
to Q-learning, this actor-critic algorithm stores quality estimates in a tabular fashion and uses
temporal-difference methods to compute these estimates. By using the TD-error formula, which

is defined as

0 =r+q(s",d') — q(s,a) (83)

where ¢(s, a) denotes the quality estimate of taking action a in state s, and the critic update
rule defined as ¢(s,a) < ¢(s,a) + ad (Crites and Barto, 1995) we obtain the quality function
estimate update rule:

q(s,a) + (1= a)q(s,a) + a(r +vq(s', a')) (8.4)

While similar in appearance to the Q-learning update rule defined in Equation 8.1, it is impor-
tant to note that in this case, the agent’s following action @/, or the associated quality ¢(s’, a’)
cannot be predicted by looking at the quality estimates alone, since they have to take into account
the agent’s (now separate) policy. It is, however, possible to estimate this future quality estimate
by averaging existing state-action estimates weighted by the associated agent policy pgr:

q(s',a') = qls',a)py (8:5)

acA

Equations 8.4 and 8.5 allow to compute quality estimates using a separate policy vector. The
policy vector is then itself updated using a linearized TD-error & on the basis of the maximal and
minimal observed TD-error values, din and dp,qz. The entire actor-critic algorithm is presented
in algorithm s.
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Algorithm s: Pseudocode illustration of an actor-critic leveraging Q-learning and linear
reward-penalty mechanisms with a stochastic policy applied to an isolated intersection.

for cach step t do

Observe s, a,r, s's

d<r+ (ZaGA Q(s,’ a)ps’,a) - Q(S) (I);
q(s,a) + (1 —a)q(s,a) + ad;

if 6 < Omin then
‘ (5min — (5;

if 0 > Opnax then
‘ 5max — (5;

5 — (6 - 5min)/(5max - 5min)§

for a; in Ado
if a; = a then

‘ Ps,a < DPs,a + 03(1 - ps,a) - 0(1 - 8)ps,a5
else

‘ Ps,a < Ps,a — ngs,a +o(l— 3)(% — Ps,a);

a’ ~ Ds’s

8.2.4 PERFORMANCE EVALUATION OF CLASSICAL RL METHODS

After presenting methods from three main reinforcement learning algorithm classes, our next task
is to measure and compare their traffic optimization performance. This series of experiments com-
pares the Q-learning, linear reward-penalty, and actor-critic algorithm on an isolated intersection.
More specifically, the policy and data structures used by these algorithms are compared in order
to establish whether one of them is best suited to deal with traffic optimization tasks.

8.2.4.1 EXPERIMENTAL SETUP

The comparison of the three classical RL-TSC algorithms of the previous sections is done using
the convergence experimental protocol (see section 7.3.1). The traffic demand data is generated
using an exponential law of parameter A = 0.04 (see section 7.2.2) on a four-way isolated inter-
section using a NEMA-type signal cycle. Essential simulation parameters, are summarized on Ta-
ble 8.2.

One could argue that using such a simple road network for these experimentations could ren-
der our results meaningless since they differ quite a lot from real-world scenarios. However, we
argue that it is exactly because real-world applications are complex that our analysis work should
start with simplified traffic scenarios. Indeed, RL-T'SC analysis itself seems to suffer from the curse
of dimensionality. It is much harder to explain how a given algorithm performs when it is com-
bined with multiple layers of complexity, such as multi-agent learning, agent policy, or function
approximation, than when it is used in a simple context. This observation explains why our anal-
ysis work is iterative in nature. By using the simplest road network at first, we are able to identify
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Parameter Value
Episodes 500

Steps 2500/episode
Vehicle arrival rate A 0.04 veh/s
Discount factor 7y 0.98
Learning rate o 0.2 — 0.001
Random action probability 0.9 — 0.01
LRP reward parameter o 0.5

LRP penalty parameter 7 0.5

Moving window n for stopping criteria | 10 episodes
Performance delta & for stopping criteria | 5 sec average

Table 8.2: Simulation hyper-parameters used for classical RL method comparison.

which class of algorithm performs better as well to explain why. Using these results, we can then
exclude other RL classes from the analysis as we increase the overall complexity of the model by
adding, for instance, multiple intersections or function approximation techniques.

8.2.4.2 INITIAL PERFORMANCE RESULTS

We measure a first performance evaluation of the three classes of classical RL-TSC algorithms on
an isolated intersection with an overall vehicle arrival rate of A = 0.04 vehicles per second, ran-
domly distributed across the incoming edges of the intersection. As one can see on Figure 8.3, the
convergence process of all three methods is highly straightforward, all methods triggering their end
of training criteria (see section 7.3.1) around the 100th episode (for stopping parameters n = 10
and k = 3). While each method starts around the same cumulated waiting time levels, they then
quickly form a distinct performance hierarchy, with actor-critic (24957 average), linear reward-
penalty (24144 average), and Q-learning (22491 average) ranking from worst to best. We note that
all the tested methods show an ability to learn to route traffic as simulation episodes advance (al-
though barely in the case of the actor-critic method). It only the classical Q-learning can outper-
form the fixed Webster controller, it is still far from our optimal method, which has an average
waiting time of 19018.

If these results already give us an insight on which classical RL algorithms are adapted to traffic
signal control out of the box, they also clearly show the presence of a significant performance gap
in performance between otherwise quite similar reinforcement learning algorithms, which raises
the question of how one might explain this discrepancy. Two—possibly overlapping—explanations
can be given for these discrepancies when looking at RL theory. The first explanation relates to
agent policies, since Q-learning, which performs better, uses an e-greedy policy while both LRP
and actor-critic use a stochastic policy. The second explanation relates to the data structure being
used by the algorithms in question. Indeed, Q-learning uses a Q-table to store quality estimates,
while both LRP and actor-critic use stochastic vector to store information about the quality of
state-action couples. Both of these hypotheses are investigated in the following two sections.

89



& Isolated Traffic Signal Control Methods

Cumulated Vehicle Waiting Time Evolution per Algorithm Type
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Figure 8.3: Training process of three classical reinforcement learning algorithms on an isolated intersection.

8.2.4.3 PoLICY INFLUENCE ANALYSIS

The first hypothesis we investigate is the different agent policies being employed by these classical
RL algorithms. Q-learning uses an e-greedy policy, while both the LRP and actor-critic algo-
rithms use a stochastic policy which might limit their performances. In order to verify this hy-
pothesis, we run the same traffic scenario as in the previous section while swapping the policies
used by the three classical RL algorithms. We use a stochastic policy on a Q-learning algorithm
by transforming Q-table rows in probability vectors by linearizing them during action selection.
Conversely, we greedily pick the highest probabilities of the policy vectors of LRP and actor-critic
policies while maintaining a probability € of selecting a random action. This experiment aims
to estimate whether a stochastic policy is inherently inferior to a greedy-type policy for the three
classical RL algorithms in TSC applications.

We plot the results of this experiment on Figure 8.4 by showing the three algorithms using two
types of policies: greedy policies are shown in full lines, stochastic policies in dashed lines. These
results give contrasted answers regarding our initial hypothesis. On the one hand, switching to
an e-greedy policy sensibly increases the performance of the LRP (in blue in the figure) and-in
an even greater fashion—of the actor-critic algorithm (in yellow in the figure). On the other hand,
we cannot conclude that stochastic policies are inherently inferior to greedy ones since the Q-
learning method (in red in the figure) using a stochastic policy performs slightly better than the
greedy version.

Our first experiment, using alternative agent policies to explain the superiority of the Q-learning
over LRP and actor-critic methods, cannot fully explain the difference in performance between
the three algorithms. However, this same experiment allows to conclude that Q-learning is the
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Cumulated Vehicle Waiting Time Evolution per Algorithm and Policy Type
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Figure 8.4: Training process of three classical reinforcement learning algorithms using two distinct policy
types on an isolated intersection. Dashed lines represent a stochastic policy, full lines an e-greedy
policy. All plots use smoothing splines for readability.

overall best classical RL algorithm for TSC applications given its superiority using multiple agent

policies and that it should henceforth be applied to RL-TSC problems.

8.2.4.4 DATA STRUCTURE INFLUENCE ANALYSIS

The second hypothesis we formulated regarding the difference in the performance of the three
tested classical RL algorithms is that they employ different data structures to store their learning
data. Q-learning stores quality estimates in a tabular fashion, LRP stores probability weights in
policy vectors, while the actor-critic method uses both data structures in a hybrid approach. On
the one hand, Q-learning stores cardinal values (i.c., an absolute measure of the quality of a state-
action pair), while, on the other hand, policy iteration methods store ordinal values (i.e., an order
of preference of actions for a given state) in the form of probabilities. We argue that using an RL
algorithm using ordinal values introduces several model limitations compared to cardinal values.
First, models using ordinal quality estimates are unable to predict the future estimated value of a
state, which are expressed in cardinal values, and as represented in the y max, Q(s¢+1, @) term of
the Q-learning formula in Equation 8.1. While the actor-critic algorithm circumvents this limita-
tion by maintaining both a Q-table and a policy vector, the LRP algorithm is unable to determine
the quality of a new state and can hence only use the reward value r as a quality indicator of a
state-action couple, making it more limited than other methods. Second, one could argue that us-
ing a probability vector as a data structure imposes additional constraints on the storage of quality
estimates. They must be probability values summing to 1, which forces linearization of the reward
and TD-error values, potentially causing information loss.
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In order to test this new theory, we run two modified versions of the Q-learning algorithm in
the same simulation scenario. A first version disables the role of future values estimates in the
computation of quality estimates by setting the discount parameter y to 0, rendering the learning
agent entirely myopic to future rewards. A second version neutralizes the role of future reward
estimates and also linearizes the state-action estimates before storing them in the Q-table, as if these
values were stored in a policy vector, instead of computing them as policy vectors on-the-fly before
the action selection process as in Figure 8.4. Finally, we run a modified version of the actor-critic
which does not use the policy vector for action selection but tabular quality estimates similarly
to the Q-learning, with the exception that these quality estimates are computed using a TD-error
formula instead of the classical Q-learning formula. This last method is simulated to verify further
if linearization is the root cause for degraded performance in the actor-critic algorithm.

Cumulated Vehicle Waiting Time Evolution per RL Algorithm and Policy Type
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Q-Learning, e-greedy (y=0.8)
28000 = Q-Learning, stochastic (y = 0) ==
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26000 |
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Figure 8.5: Training process of the Q-learning and actor-critic algorithms using data structure variations.
Full lines represent multiple variations of the Q-learning algorithm. The dashed line represents
the actor-critic policy.

This second experiment, whose results are on Figure 8.5 proves our hypothesis correct. We
first notice that the quality estimates of future states, which are neutralized through the discount
rate parameter -y, seem to have no influence on the performance of RL-TSC algorithms. Indeed,
both the standard (in yellow) and no-future quality estimates (in red) Q-learning algorithms show
similar performance levels. This observation shows that, in the context of traffic signal control,
the quality of a state-action couple seems only to be dictated by how the chosen action directly
impacts traffic and not by how it could make the system transition to a more favorable state. In
broader terms, this would imply that most good traffic routing strategies aim at immediately acting
on traffic by lowering waiting times instead of aiming for medium or long-term strategies.
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The second (and major) result of this experiment is that storing quality estimates in linearized
form, effectively switching from a cardinal to an ordinal data structure, dramatically impedes the
learning ability of Q-learning. A seen on Figure 8.5, Q-learning using linearized quality estimates
(in blue) has performance levels similar to those of LRP on Figure 8.3. Conversely, the actor-critic
method using a greedy policy coupled with tabular storage of quality estimates (using a dashed
plot on the figure), hence circumventing the use of policy vectors and linearization, performs sim-
ilarly to Q-learning, further proving the limitations of using ordinal quality estimates for RL-TSC
applications. This last observation also shows no significant difference exists between a standard
Q-learning estimate rule and the TD-error update used by the actor-critic algorithm. Finally, while
this series of experiments has shown that Q-learning is the best classical RL algorithm for isolated
traffic signal control, its performance levels are still far behind what the optimal strategy approx-
imation method has achieved in the same simulation setting, with an average cumulated waiting
time of 18282 per simulation episode (which is around 20% lower than the standard Q-learning
algorithm). This difference in performance underlines the need for more sophisticated reinforce-
ment learning algorithms and techniques, such as function approximation methods, which we
describe in the next section.

8.3 FUNCTION APPROXIMATION TECHNIQUES

The role of function approximation techniques, as described in chapter 3, is twofold. On the one
hand, function approximation techniques can significantly reduce the dimensionality of a RL task
and cause faster learning convergence. On the other hand, they allow the learning agent to general-
ize past observations to decide how to handle unobserved states efficiently. While dimensionality
issues are not central since the state space defined in section 6.3 is quite dimensionality-efficient,
the issue of generalization is crucial in traffic signal control problems. For instance, the states
051111 and 051112 are highly similar in practice since they only differ by one vehicle on the last
lane of the intersection. If these two states are hence likely to have similar value estimates, they are
yet they are entirely unrelated from a learning standpoint, which means that the RL algorithm will
have to visit these two states separately in order to estimate their value. This section explores two
distinct manners to exploit function approximation to improve the classical RL-TSC methods
tested in the previous section. The first one uses a unique pattern that uses function approxima-
tion to bootstrap a Q-learning table to accelerate the learning process, while the second illustrates
the use of deep neural networks to improve the standard Q-learning algorithm iteratively.

8.3.1 Q-LEARNING BOOTSTRAPPING

As stated in the introduction of this section, the main limitation of classical reinforcement learn-
ing techniques is their inability to predict the value estimate of a state they have not yet visited.
This issue is particularly problematic in TSC applications since intersections have to test a certain
amount of low-value state-action combinations, such as switching the current green phase when
the associated lanes around the intersection have a large number of vehicles waiting on them.
These state-action combinations have to be tested for exploration purposes but can cause signifi-
cant delays on the road network.

93



& Isolated Traffic Signal Control Methods

8.3.1.1 QUALITY ESTIMATE BOOTSTRAPPING

A quite unorthodox first-approach solution to the problem of generalization for tabular RL meth-
ods is to provide quality estimates to the agent before learning even starts through function ap-
proximation (Matignon et al., 2006). In the case of Q-learning, this bootstrapping’ method would
pre-estimate each state-action entry of the Q-table with an estimation of its value. Such a solution
requires estimating the impact of each traffic control action (i.e., extend or switch the current
green phase) on each possible traffic state in terms of cumulated waiting time difference. This
approach is hence on the margin of function approximation techniques: we do use a function to
approximate quality estimates of the states of the environment, but we only do so before learning
occurs, at which point we use a classical RL algorithm. To the best of our knowledge, using an
approximation function to pre-populate the entries of a Q-table in a RL-TSC context had never
been done before we published a paper on the matter (Tréca et al., 2020b).

St /at 0 1 St /at i 0 _ 1
S1 0 0 S1 Q(8170) Q(Slv 1)
52 00 s2 | Q(s52,0) | Q(s2,1)
Sm 0 0 3|A| Q(S.A7 0) Q(S.Aa 1)

Table 8.3: Comparison of a regular (left) and bootstrapped (right) initial Q-table of an isolated intersection
using Q-learning. The () function represents a manual quality estimation of a state-action pair.

8.3.1.2 EsTimaTIiON FUNCTION

Our bootstrapping method relies on estimating the quality of each state-action pair of the envi-
ronment by computing the reward associated with applying each action to each traffic state of the
state space. In practice, computing the reward of each state-action pair requires to estimate the
difference in waiting time before and after an action was applied to a particular traffic state, which
requires prior knowledge of the environment, most notably traffic demand around the intersec-
tion. For phase-based action types, the quality of an action is measured by estimating, for each
lane, the number of vehicles that were present in the lane at the beginning of the action (denoted
by 0) and vehicles that entered the lane while the action is being applied (denoted by n). For both
groups of vehicles, it is possible to estimate the number of vehicles that exited the lane (denoted
by a —) and the vehicles that stayed on the lane (denoted by a +) and measure their respective
impact on the overall waiting time. By supposing that each vehicle leaving the intersection lowers
the cumulated waiting time by 7, which is the average service time associated with lane [ (and
which is computed by modeling each traffic lane around the intersection as a M/D/1/K queue, as
shown in our paper), we can estimate the quality of a specific state-action pair in a phase-based
action space to be equal to:

"Bootstrapping refers here to the action of pre-filling the Q-table with estimated state-action quality values and is
hence different for the concept of bootstrapping in the RL literature which refers to the technique which consists
in using values estimates to update other value estimates in methods such as temporal-difference learning.
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Q(s,a) = ZTl X (ng,+o;,)—ax (ozra + nfa) (8.6)
l

Note that Appendix B provides a complete description of this approximation algorithm in
pseudocode form. This approximation method provides several advantages compared to the tra-
ditional Q-learning algorithm. First, while not providing exact values for the quality of each state-
action pair, these estimates are still much closer to their actual quality function than default values
of 0, which are typically used with Q-learning. Second, bootstrapping can occur without starting
a traffic simulation and hence operate in a completely offline manner. This last point presents a
significant advantage in computational resources since offline computation is significantly faster
than online. Finally, if this approximation method has only been tested for phase-based actions,
we believe that this method could easily be adapted to step-based actions by modifying the esti-
mation model presented above.

8.3.1.3 BOOTSTRAPPING EFFICIENCY

These efficiency claims have been tested according to the experimental protocol described in sec-
tion 7.3.1. The standard and bootstrapped Q-learning techniques are compared on 10 different
simulation scenarios on an isolated intersection, each composed of 100 episodes of 10000 steps
each. In each tested scenario, the overall vehicle arrival rate is fixed to A = 0.06 vehicles per sec-
ond, but the distribution of this arrival rate between the lanes of the intersection differs between
scenarios.

Cumulated Vehicle Waiting Time Evolution
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Figure 8.6: Comparative convergence process of a regular and bootstrapped Q-learning algorithm. Average
out of 10 simulation scenarios.
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As one can see by looking at the waiting time evolution per episode for these traffic scenar-
ios on Figure 8.6, bootstrapping significantly improves the early performance of the Q-learning
agent, which is strongly superior to the standard Q-learning algorithm for an average of so simu-
lation episodes. The computation time needed to achieve similar results also strongly favors the
approximation method: the entire offline bootstrapping process took around 16 seconds, whereas
the online simulation training for the standard Q-learning method took around two and a half
minutes. A last crucial point to mention is that while this approximation method does speed up
the initial convergence process of a phase-based Q-learning agent, it does not improve its overall
performance since it reverts to a classical Q-learning algorithm once online learning occurs. This
statement can be verified on Figure 8.6 after episode 60 when the standard Q-learning method
catches up with the approximation method. Hence, this method does increase the speed at which
a Q-learning agent reaches acceptable performance, and it does not make the learning algorithm
better at its task, which is a problem more likely to be solved by bonafide function approximation
techniques, as presented in the next section.

8.3.2 FUNCTION APPROXIMATION FOR Q-LEARNING

The literature review of chapter 4 has shown the plethora of function approximation techniques
that can be applied to traffic signal control. Most notably, we have seen in the literature review
of chapter 4 the 3DQN method is believed to be one of the best available function approximation
methods for a broad range of RL problems (Greguri¢ et al., 2020; Hessel et al., 2018). This fact,
coupled with the conclusion of section 8.2.4 stating Q-learning-based methods are superior in
isolated traffic situations, lead us to develop a deep Q-learning model for RL-TSC. This section
hence iteratively builds a deep Q-learning method starting from a simple deep Q-network (DQN).
We then define a number of R L-specific techniques that are gradually incorporated into this DQN
method, explaining their purpose and limitations along the way.

8.3.2.1 DEEP Q-LEARNING

The first significant shift from a classical Q-learning method to a DQN method is the introduc-
tion of a neural network (see section 3.2.2.2) as a function approximator (Mnih et al,, 2015). If the
overall components of a neural network (see Figure 8.7) do not change across different models,
its architecture can greatly vary depending on the problem at hand and the kind of input data
it receives. Networks using image data as inputs are likely to feature convolutional layers, while
models aiming at establishing temporal links between input vectors are likely to include recurrent
features. Regardless of the architecture of the DRL model, the overall learning mechanisms re-
main the same: the current system state s is used as an input vector of the neural network, which
outputs a vector of size | 4| containing the estimated quality of each action available to the agent.
Upon applying action a to the environment and observing its actual quality in the form of a re-
ward 7, the agent computes the difference between the estimated and the observed quality of the
state-action pair using a loss function L. This loss is then backpropagated to update the weights
0 of the neural network using gradient descent methods such as Adam or RMSprop (Zou et al.,,

2019).
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Figure 8.7: Simple illustration of a fully connected neural network. An input vector of dimension 7 goes
through a single hidden layer of dimension 7 and results in an output vector of dimension j.

8.3.2.2 EXPERIENCE REPLAY

One of the leading causes of convergence issues of function approximation techniques seen in sec-
tion 3.2.2 is due to the fact that the system transitions observed by the learning agent are strongly
correlated (i.e., the choice of a state-action couple (s, a) influences the choice of the following
one, (s',a")) and that their distribution is non-stationary (i.e., the likelihood of observing a spe-
cific state-action pair directly depends on the current quality estimates and policy of the agent).
A solution used to alleviate these issues is the use of experience replay: the agent maintains an ob-
servation buffer D that stores all system transitions (s, a, 7, s") observed by the agent (either all
observations or the last N ones) and samples the observations used for learning from this buffer.
Experience replay breaks correlation between samples and allows for batch normalization (i..,
sampling multiple observations at once, increasing learning stability and convergence speed) when
learning (Riedmiller, 2005). A common limitation of experience replay is that observations of the
replay bufter D are sampled uniformly, meaning that the least commonly observed states (which
might be the most important) have a low probability of being sampled. The use of prioritized
experience replay alleviates this issue by sampling observations according to their TD-error value:
the highest the TD error, the more likely the agent needs to learn from this specific observation,
and the higher its selection probability is (Schaul et al., 2015).

8.3.2.3 TARGET NETWORK

Using the same neural network to evaluate the value of a given state and for learning can cause it to
oscillate due to frequent weight updating, a phenomenon known as the moving-target issue (Hes-
sel et al.,, 2018). A common solution to these oscillation issues is to use two distinct networks for
value estimation and learning: a target network 67 with frozen weights is used to evaluate the
loss while a value network 6" is used for learning from these evaluations. The weights of 6V are
transferred to 67 every K steps to limit the moving-target issue (Gao et al., 2017).
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8.3.2.4 DOUBLE Q-LEARNING

The use of two distinct networks for evaluation and learning also ofters the possibility of further
separating the role of both networks. Indeed, for a transition (s, a,, s’), deep Q-learning esti-
mates the quality Q(s, a) using reward 7 and the value of the next system state s’ by estimating
the quality of best next state-action couple, Q(s", @’). In regular deep Q-learning models, both
the best next action a’ and the associated quality Q(s’, @) are estimated all at once using weights
0, while deep Q-learning using target networks will estimate the best next action and the associ-
ated quality Q(s’, a’) using the value network 6V. Double deep Q-learning (Hasselt, 2010) is an
extension of simple DQN models aiming to avoid overestimations during the Q-learning target
update by further separating the role of each network. The best next action is chosen using the
current evaluation network 6", while the quality estimate of the corresponding state-action pair
Q(s', ') is computed using the target network 67, increasing estimation robustness and decreas-
ing the likeliness of model over-estimation (Greguri¢ et al., 2020).

8.3.2.5 DUELING NETWORKS

Dueling networks (Wang et al., 2016) are another extension of DQNs which use two distinct esti-
mators within the neural network to evaluate the value of a state V' (s) and quality of a state-action
pair Q(s, a) (see section 3.1) separately (Greguri¢ et al., 2020). More specifically, the second estima-
tor computes the advantage of each state-action pair, A(s,v) = Q(s,a) — V(s), which repre-
sents the relative value of an action compared to others for a given state. Separating the evaluation
of states allows learning which states are intrinsically valuable for the agent regardless of which
action is being applied to it, which allows identifying states in which actions do not influence the
environment in any meaningful way (e.g., a traffic state in which no vehicles are present), further
speeding up the learning process (Liang et al., 2019).

8.3.2.6 DDQN aND 3DQN ALGORITHMS

The two reinforcement learning techniques presented in this section, double Q-learning and du-
eling networks, can be used to form various deep RL methods. A deep Q-network used with
double Q-learning forms a double deep Q-network (DDQN), while using a dueling network on a
deep Q-network forms a Dueling deep Q-networks (2DQN). Merging both techniques results in
the state-of-the-art 3DQN algorithm used in most recent RL-TSC models (Greguri¢ et al., 2020),
which is used in a number of recent RL-TSC models (Calvo and Dusparic, 2018; Wang et al., 2019).
Given the recent development of the dueling deep Q network technique (2016), some models fea-
ture only double deep Q-learning, or DDQN, models (Gao etal., 2017; Genders and Razavi, 2016; Van
der Pol, 2016) while showcasing excellent performance levels. A pseudocode illustration of both al-
gorithms (depending on the underlying neural network architecture) is presented in algorithm 6.
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Algorithm 6: Pseudocode illustration of a DDQN/3DQN algorithm.

Initialize 87 and #Y with random weights ;

Initialize empty buffers D and P;

for cach step t do

Observe s, a,r, s

D+ D+ (s,a,r,s);

P P+ (|Q(s,a) — r +ymaxy Q(s',a")| 4+ 0.01);

if |D| > B then
Sample (sg, ap, 7B, s5) ~ P;
aj; ¢ max,, Q(sg, alz;0Y);
L=(Q(sp,ap;0V) —rp+vQ(sz, al;67))%
Update weights A4 using L;

1) < e then

if X ~ U(0,
(A);

‘ a ~U
else
‘ a’' + max, Q(s',a;0V);

if t | K then
‘ o7 « QV;

8.3.3 APPLYING FUNCTION APPROXIMATION TO TRAFFIC SIGNAL CONTROL

After presenting the various ways function approximation techniques can be applied and refined
on learning problems, our final task is to gauge the effectiveness of these techniques on traffic signal
control optimization. This section studies the effect of the function approximation techniques
presented above, one by one, on an isolated intersection in order to produce the most efficient
isolated reinforcement learning algorithm for traffic signal control.

8.3.3.1 NETWORK ARCHITECTURE

The first step regarding the construction of an efficient RL-TSC method using function approxi-
mation is the choice of its architecture, which is the organization of the hidden layers of its neural
network. An important point to underline is that, besides being usually problem-dependent, the
architecture of a neural network also largely depends on the type of inputs this network is ex-
pected to receive. This point is crucial since papers applying deep Q-learning methods to traffic
signal control usually provide complex state information as inputs for their neural networks, usu-
ally in image form, which requires the associated network to treat these images using multiple
convolutional layers (Calvo and Dusparic, 2018; Van der Pol, 2016; Wang et al., 2019). Our traffic model
uses a discrete and relatively compact state definition since they can be used by both classical and
deep reinforcement learning methods while ensuring similar performance levels (see section 6.3),
which implies that our neural network architecture is likely to be different since convolutional
neural networks are not needed in our case.
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Figure 8.8: Architecture of the 3DQN network.

The neural network architecture used for our experiments, presented in Figure 8.8, features
four fully connected layers of 128 neurons each. Each layer is associated with a ReLU rectifier,
which is a prevalent activation function in the deep RL literature (Ramachandran et al., 2017), and
a batch normalization layer which accelerates learning by normalizing inputs between layers (Ioffe
and Szegedy, 2015). Not that we do not include dropout, a mechanism used to randomly drop
weights between layers, to our neural network since they are not necessary when applying batch
normalization (Li et al., 2019). When dueling networks are implemented (as in Figure 8.8), two
distinct layers are used to compute the advantage and state value separately before combining
them; if this feature is not implemented, a fourth regular layer directly computing the state-action
quality is used instead.

Parameter Value

Optimizer Adam (Kingma and Ba, 2014)
Learning rate o 0.0001

Replay bufter D size 10000 observations
Minibatch size B 100 observations

Target network update interval K | 1000 steps

Table 8.4: Deep reinforcement learning-specific simulation hyper-parameters used for function approxi-
mation RL method comparison.

8.3.3.2 DEEP Q-LEARNING AND EXPERIENCE REPLAY

This section measures the impact of function approximation alone (i.c., using a deep neural net-
work instead of a tabular data structure) and of function approximation with experience replay
on the performance of an isolated intersection with an overall arrival rate of A = 0.04 for 250
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episodes of 1000 simulation steps each. This experiment once again uses the experimental proto-
col defined in section 7.3.1, and uses the hyperparameters defined in Table 8.2 and Table 8.4.

Impact of Function Approximation and Experience Replay on Cumulated Vehicle Waiting Time
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Figure 8.9: Impact of function approximation and experience replay on traffic routing performances.
Tested on a single intersection with an arrival rate of A = 0.4. Batch normalization is used
on deep Q-learning with experience replay.

Results of this first experiment on Figure 8.9 underline the importance of both function ap-
proximation and experience replay. Due to the absence of generalization from past experiences,
the standard Q-learning method (in red) very quickly converges to acceptable performance lev-
els but reaches a performance plateau due to its inability to fully exploit its interactions with the
environment, similar to what has been observed in section 8.2.4. The use of function approxima-
tion with a basic deep Q-learning technique (in blue) allows for generalization and hence better
performance and increased stability. However, the need for both function approximation and ex-
perience replay seems to be crucial in RL-TSC applications. Indeed, the tested method using both
techniques (in yellow) greatly outperforms the others. Instead of learning from one observation
ata time, learning from batches of B = 100 observations allows the agent to revisit the same traf-
fic transition multiple times and quickly converge to improved performance levels. Hence, both
function approximation and experience replay is vital in building an efficient RL-TSC method.

8.3.3.3 DOUBLE Q-LEARNING AND DUELING NETWORKS

After validating the need for deep reinforcement learning coupled with experience replay for ef-
ficient traffic signal control, we turn our attention to the additional techniques presented earlier,
such as using target networks, double Q-learning, and dueling networks. Since we are confident
in the robustness of the DQN methods we are testing, we measure their performance on an iso-
lated intersection with a near-saturation flow rate of A = 0.6, once again randomly distributed
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across the lanes of the intersection. The following combination of techniques is incrementally
tested: DQN with experience replay and target network (DQN), DQN with double Q-learning
(DDQN), DQN with dueling networks (2DQN) and, finally, DQN with both double Q-learning
and dueling networks (3DQN). While it would seem logical to predict that the most advanced
technique should yield the highest performance metrics, using a learning model that is too com-
plex for a given learning task will at best complexify the model for no valid reason (and hence
increase training time) and at worse decrease the learning performance the model due to overfit-
ting (Vapnik and Izmailov, 2019).

Impact of Function Approximation Techniques on Cumulated Vehicle Waiting Time
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Figure 8.10: Impact of function approximation techniques on traffic routing performances. Average values
plotted from 10 simulation scenarios on a single intersection with an arrival rate of A = 0.6.
Batch normalization, target networks and prioritized experience replay is used on all tested
methods. Results are smoothed for readability.

Simulation results of Figure 8.10 show that all the tested methods provide somewhat similar cu-
mulated waiting time levels. Detailed average cumulated values over simulation episodes, shown
on Table 8.5, gives, however, insight into the comparative performances of these function approx-
imation methods. The best method, in our experimental setting, turns out to be dueling deep
Q-learning (2DQN). Interestingly, double Q-learning, which is often used in the RL-TSC lit-
erature, seems to have no effect when used on its own compared to a standard deep Q-learning
method and seems to slightly degrade performance when used in conjunction with a dueling net-
work (see the yellow plot on Figure 8.10). While no clear-cut answer can be given as to why such
a phenomenon is present since double Q-learning has been developed to limit over-estimation
issues in deep Q-learning (Van Hasselt et al., 2016), the fact that the traffic signal control problem
at hand is relatively much more straightforward than the Atari games on which the original al-
gorithm was tested or complex traffic state representation using images could explain why such
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an addition would be unnecessary in our model and slightly degrade performance. Conversely,
the relatively helpful addition of a dueling network in the RL-TSC model seems to indicate that
increased discrimination between low and high-value states is beneficial to TSC-related learning.

Algorithm Episodes o-250 | Episodes 150-250
Deep Q-learning 79381 76823
Double Deep Q-learning 79127 76377
Dueling Deep Q-learning 77257 74469
Dueling Double Deep Q-learning 82188 79659

Table 8.5: Average waiting time per simulation episode and deep reinforcement learning algorithm type.

Based on these findings, we decided to use dueling deep Q-learning (which we abbreviate to
2DQN as to not confuse it with DDQN, which stands for double deep Q-learning) as the deep
RL method of choice for traffic signal control and will use this method as abenchmark for tackling
agent coordination in the next chapter.

This chapter has analyzed a wide array of RL-TSC methods on isolated intersections. As stated
in section 8.2.4.1, we first voluntarily restrict the road network scope to a single intersection in
order to analyze the effect of RL algorithms and policies with as little noise as possible before
extending this scope to multi-intersection networks in chapter 9.

This chapter first presented deterministic methods in order to use them as reference bench-
marks when studying RL-TSC algorithms. First, we described the classical Webster method,
which assigns green phases according to the demand profile of each line around an intersection.
We then presented a novel near-optimal method using SUMO’s ability to save and load simulation
states. Both of these methods provide average and optimal benchmarks for isolated RL-T'SC per-
formance, respectively.

We then discussed the respective merits and shortcomings of classical (i.e., not using function
approximation) RL methods. We compared algorithms for three main classes of RL methods:
Q-learning for value-based, LRP for policy iteration, and a hybrid of the two previous algorithms
for actor-critic methods. Experiments have shown that Q-learning provides the best performance
for our experimental settings regardless of its policy, making it our preferred class of method for
the remainder of our research.

Finally, we discussed the use of function approximation techniques for isolated RL-TSC meth-
ods. Experiment results have first shown that both function approximation and prioritized ex-
periment replay were essential for proper learning convergence. We then presented a wide array
of function approximation techniques, such as target networks, double Q-learning, and dueling
networks, in order to identify which combination of these techniques could yield optimal perfor-
mance levels. The results of this second experiment have shown that combining deep Q-learning,
prioritized experience replay, target, and dueling networks in a method known as 2DQN reached
the best possible performance in our experimental setting.
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The previous chapter’s traffic optimization study led us to identify dueling deep Q-network
(2DQN) as the algorithm of choice for traffic optimization on isolated intersections. As under-
lined in chapter 4, however, traffic optimization over multiple intersections is essential for proper
traffic signal control as single-intersection networks are seldom encountered in real-life traffic sce-
narios. As the extension of the traffic model to a multi-agent setting is hence necessary, this shift
raises the central question of the interactions between the multiple agents of this new model.
Since MARL models can both choose to ignore (in the form of independent learning) or model
agent interactions (through coordination methods), the first objective of this chapter is to mea-
sure whether agent coordination is needed in the context of traffic signal control by comparing
independent and coordinated learning methods. If coordination is shown to be beneficial to traf-
fic signal control performance, our second goal is then to explore which forms of coordination
are most beneficial for traffic optimization. Since multiple forms of agent coordination—such as
indirect and direct coordination in the RL literature (Panait and Luke, 2005) or green waves in traf-
fic engineering,—are applicable in MARL models, these methods will be tested one by one in a
multi-agent setting.
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9.1 INDEPENDENT LEARNING

The simplest form of interaction to consider between agents in a MARL model is independent
learning, in which agents do not acknowledge each other while learning in the same environment.
While simple in nature, independent learning models have several benefits, such as high scalability
(since agents learn independently from each other and can hence be freely added or removed from
the road network) and excellent performance for relatively low complexity, as seen in the simula-
tion results of the previous chapter. Preventing the modeling of agent-to-agent interactions does
not, however, allow for agents to share observations or learned policies, which proves helpful (and
sometimes crucial depending on the learning task) in accelerating their learning process (Tan, 1993).
The use of independent learning for the study of coordination methods hence plays a central role
in the evaluation of coordinated RL-TSC methods since it is not only considered as a coordina-
tion option to route traffic but also as a benchmark used to generally measure the added benefit
of agent coordination in the specific case of RL-TSC tasks.

9.1.1 OrTiMAL METHOD IN THE MARL CASE

As explained in chapter 3, the shift from a SARL to MARL model has a number of consequences
on the RL-TSC model at hand. The first consequence of this switch is that the approximation
method defined in section 8.1.2 is likely to not guarantee optimality anymore. Indeed, in the iso-
lated case, the intersection can easily compute an approximation of the optimal strategy since it
is the only agent affecting the network. However, in the MARL case, multiple intersections will
aim at computing an optimal strategy step by step without explicitly knowing the strategy of its
neighbors. In other words, since agents computing their optimal strategy cannot guess which
strategy their neighbors are going to apply, the resulting strategy has no guarantee to be optimal
or near-optimal. Note that it would be possible to design a multi-agent version of the optimal
strategy approximation algorithm, which computes an optimal joint strategy at the cost of much
higher complexity. However, we emit the hypothesis that neighboring intersections’ influence on
the optimal strategy of an intersection has little influence on the overall performance levels of the
algorithm in practice. This hypothesis is based on an experiment shown in section 9.3.2.3, which
shows that vehicles coming from neighboring intersections have little effect on the performance of
an intersection in the short term. It should, however, be noted that while we apply the same near-
optimal strategy search algorithm, its computational costs are much higher since each intersection
has to compute its optimal strategy approximation algorithm separately.

9.1.2 INDEPENDENT LEARNING PERFORMANCE

The primary consequence of extending the learning model to a multi-agent setting is the intro-
duction of non-stationarity and higher learning instability due to concurrent agentlearning. Since
independent learning methods do not provide explicit mechanisms to deal with these issues, the
introduction of multiple learning agents on a road network could influence the hierarchy of func-
tion approximation methods defined in section 8.3.3, which concluded in the superiority of the
2DQN controllers for traffic signal control in an isolated intersection setting. This section hence
presents a control experiment checking whether the results obtained on an isolated intersection
still hold true in a multi-agent setting. This experiment compares the 2DQN method with the
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3DQN method, which has also been used in a multi-agent MARL scenario (Calvo and Dusparic,
2018) and a standard DQN algorithm in a simple multi-intersection network in order to verify if
their performance hierarchy changes with the introduction of multiple agents.

9.1.2.1 CONVERGENCE OF INDEPENDENT METHODS

The first manner in which these independent methods are compared is, as done previously, by
measuring their average convergence trajectory over different traffic scenarios. This protocol is ex-
plained in detail in section 7.3.1. We test these methods on a two-by-two grid network composed of
four intersections, each implementing an independent version of their RL-T'SC algorithm. Traf-
fic demand generation is done according to the protocol detailed in section 7.2.2. The arrival rate
is fixed to A = 0.015 on average per entry-exit edge pair on the network. The learning hyperpa-
rameters used for this experiment are listed in Table 8.2 and Table 8.4.
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Figure 9.1: Comparison of multi-agent independent function approximation methods. Average results
over 5 simulation scenarios.

Results displayed on Figure 9.1 show the cumulated waiting time evolution for these meth-
ods averaged over five distinct traffic scenarios, for soo episodes of 1000 steps each. First, these
results confirm that the relative efficiency of these methods does not seem to be affected by the
shift to a MARL model, as they are similar to the single intersection results of Figure 8.10. In-
deed, the 2DQN algorithm still yields the best overall performance in terms of cumulated waiting
time, while the 3DQN method still displays a relatively high learning instability as observed in
the isolated intersection scenario of section 8.3.2. Overall, these results show that while DQN
and 2DQN are each relatively close to the (unattainable) optimal strategy performance levels, the
2DQN algorithm is slightly more efficient on average, making it our preferred method for inde-
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pendent multi-agent learning. In its independent multi-agent version, this chosen algorithm will
be referred to as independent dueling deep Q-network (I2DQN).

9.1.2.2 PERFORMANCE OF INDEPENDENT METHODS

While the analysis of the convergence process of the various methods in the previous paragraph
already underlines essential information regarding their efficiency, it does not reveal their entire
traffic routing capabilities. Indeed, as mentioned in section 7.3.1, the convergence analysis of RL-
TSC methods do not entirely measure their abilities for multiple reasons. First, these methods
are still in the learning phase when being compared and use associated mechanisms such as state-
space exploration (i.e., by using a random action selection policy parameter € > 0). Second, since
convergence performance measurements are computed over entire simulation episodes, there is
little information about the performance variability of these methods within a simulation episode
or across different simulation scenarios.

Since performance variability of RL-TSC methods is a characteristic we wish to observe, we
compare the independent function approximation techniques of the previous section according
to the performance protocol described in section 7.3.2. Multi-agent performance evaluations mea-
sure the cumulated waiting time evolution within a single simulation episode. More specifically,
we measure the minimal and maximal cumulated waiting time of the DQN, 2DQN and 3DQN
methods over 20 distinct traffic scenarios of 1000 steps each. These simulation results are shown
on Figure 9.2. The experimental parameters are similar to those of the previous section.

Best and Worst Agent Performances Over 20 Traffic Simulations
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Figure 9.2: Performance comparison of the DQN, 2DQN and 3DQN algorithms over 20 traffic scenarios.

Performance results confirm our intuitions regarding the independent methods we tested. All
methods display a large variability regarding overall cumulated waiting times, which indicates
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a substantial variety of the simulation scenarios we tested (cumulated waiting times vary from
around 20 000 to 190 ooo depending on the traffic scenario). The mean cumulated waiting times
for these methods are relatively close to each other (77 718 for DQN, 72 993 for 2DQN and 73
764 for 3DQN). While displaying the most extensive variability of all, by simultaneously yield-
ing the best and worst overall simulation results depending on the tested scenario, the 3DQN
method is inferior to the 2DQN method from a mean performance standpoint, which is consid-
ered essential since reduced performance variability should ensure a more stable convergence of
the learning process on a broader range of traffic scenarios. Consequently, our choice to use the
2DQN method we formulated in chapter 8 is maintained in multi-agent settings.

9.2 GREEN WAVE COORDINATION

Explaining why communication and coordination between intersections should be used is a sur-
prisingly complex issue that arises when reading the RL-TSC literature. Indeed, many literature
papers proposing modern and coordinated traffic signal control methods claim that interactions
between intersections of a road network are beneficial in optimizing traffic, usually proving this
claim with plots showing the superior performances of these multi-agent methods. However,
these papers seldom explain how coordination makes optimizing traffic easier’. A satisfying an-
swer to this question can nonetheless be found in the traffic engineering literature, which has the
benefit of directly describing coordination methods that have been applied in real-world contexts
for decades. Consequently, the first coordination mechanism we study are green wave coordina-
tion techniques, which are extremely common in real-world traffic applications, and have the ad-
vantage of being quickly developed in traffic simulation settings (as opposed to many proprietary
traffic routing methods whose source code is not accessible).

9.2.1 GREEN WAVE COORDINATION MECHANISMS

The main goal of green wave coordination is to allow for continuous vehicle movement along
an arterial or major street by properly offsetting green phases on their trafhic controllers. When
correctly executed, green waves decrease the number of stops and delays along these arterials. A
major point to note is that green wave coordination is not always desirable. Indeed, the US trafhic
signal timing manual states that intersections must be close to one another® and share the same
cycle time, and that significant traffic must occur between them for coordination to be benefi-
cial (Koonce and Rodegerdts, 2008). Green waves are designed around three key parameters: cycle
time, offset and split time. First, the cycle time of all intersections within the green wave must
be identical for synchronization purposes and is hence computed to best fit the traffic demand
of all these intersections, for instance, using Webster’s formula (see section 8.1.1). The offsets be-
tween intersections represent the delay with which they will successively apply the same green
phase along the arterial, hence creating a green wave. Offsets are equal to the ratio of the autho-
rized speed divided by the length of the streets of the arterial, which approximates the time it takes

'A notable exception is featured in the paper of Wei et al., which aims to equalize queue pressure across intersections,
which has been proved to result in optimal intersection throughput (Wei et al., 2019b)

*the Manual on Uniform Traffic Control Devices recommends a maximum length of 8oom between two intersec-
tions for coordination
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9 Coordinated Traffic Signal Control Methods

a vehicle to travel from each intersection of the arterial to the next. Finally, split time designates
the organization of the remaining phases of the intersections within their respective signal cycles,
with the constraint that the arterial green phase repeats at fixed time intervals to preserve the green
phase offsets. The traffic signal settings giving way to a green wave along a specific path are typi-
cally represented using a tZme-space diagram, as shown on Figure 9.3.

Figure 9.3: Example time-space diagram on a four intersection arterial. The x-axis represents time and the
y axis distance. Intersections of the arterial are numbered from w; to u4. Vehicle movements
across the arterial are represented by black arrows. The signal cycles of the four intersections,
represented across the time axis next to its intersection, are computed so that green waves can
occur in both directions of the arterial.

9.2.2 GREEN WAVE METHODS

This section proposes two distinct traffic control methods relying on green wave coordination
to test their efficiency. As noted previously, green wave coordination requires additional pre-
processing compared to other forms of traffic light coordination since key arterials have to be
identified on the network. Their associated cycle time and offsets have to be computed before-

hand.

9.2.2.1 FIXED GREEN WAVE METHOD

The first green wave coordination method is a fixed method akin to most real-world implemen-
tations. Once one or more arterials are identified on the network, and their associated traffic de-
mand obtained, we compute the optimal cycle time of each intersection using Webster’s formula
(see section 8.1.1) and use its average value per arterial as the arterial’s cycle time. We then man-
ually compute offsets and apply them along the arterials. The resulting method is a fixed green
wave traffic signal method that is not adaptive but provides a good performance baseline.

9.2.2.2 ADAPTIVE GREEN WAVE METHOD

The second green wave coordination method is an adaptive extension of the first, which relies on
the 2DQN method instead of Webster’s formula to compute the splits within the signal cycle.
Since green wave coordination relies on fixed-time signal cycles to ensure coordination along the
arterial, the adaptive green wave method can only compute the relative length of each phase within
this signal cycle. The action space of this method is hence necessarily phase-based, as the agent
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9.2 Green Wave Coordination

has to choose the entire length of the major arterial green phase in advance due to signal cycle
constraints. While this method sufters from the limitations associated with using a phase-based
action space (see section 6.4), it should, however, benefit from built-in coordination mechanisms
inherent to this method which do not have to be learned, and of the efficiency associated with

2DQN methods.

Algorithm 7: Illustration of the coordinated green wave algorithm. This algorithm is
implemented on intersections featuring two green phases but can be adapted for a larger
phase amount. Variable C' represents the total cycle time, which is equal on all intersec-
tions along the arterial. Learning, sampling, and target network update operations of
2DQN are omitted for brevity.

Initialize g, to () for each intersection v of the network;
for cach step t do
for cach intersection v do
Observe Sy, Gy, Ty, Shy;
if g, = () then
if X ~U(0,1) < € then
‘ a, ~ U(A);
else
| @), + max, Q(s), ay; 0);
Gy < CL;;
else
a;) +—C— v — 2dmin§
G < 0

9.2.3 GREEN WAVE PERFORMANCE

This section evaluates the performance of the two green wave methods described in the previous
section, especially regarding the usefulness of green wave coordination. In order to do so, we com-
pare the fixed green wave method to some of its non-coordinated counterparts, such as fixed signal
cycles or signal cycles computed using Webster’s formula. To isolate the coordinated feature of the
adaptive green wave method, we pitch it against the I2DQN method of section 9.1, which repre-
sents our best RL-TSC method so far. This comparison is made according to three distinct axes:
convergence analysis, performance analysis under normal traffic conditions, and performance un-
der saturated traffic conditions.

9.2.3.1 GREEN WAVE CONVERGENCE

We first test the green wave coordination methods and I2DQN controllers by looking at their
convergence according to the protocol defined in section 7.3.1. These methods are tested on a
simple 4-intersection network which features a main arterial, as pictured on Figure 9.4. Traffic
data is generated specifically to create higher traffic demand along the main arterial of the network:
each edge pair at the edge of the network has a base flow rate value of A = 0.06 vehicles per step.
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Figure 9.4: 4 interesection network use to emulate green waves along an arterial. All intersections share the
same offset time of 16 steps and the same cycle time of C' = 30.

If the starting edge of the pair is located on the arterial (i.e. horizontally next to intersections 11

and uy4 on Figure 9.4), this flow rate is increased by 0.01. Similarly, if the ending edge is located

on the arterial, the flow rate parameter is also increased by 0.01. Once the flow rate of each edge

pair is computed, traffic is generated according to the protocol of section 7.2.2.

We first compare the convergence trajectories of the 2DQN and coordinated green wave meth-

ods over soo episode runs of 1000 steps each, averaged over five distinct traffic scenarios. Figure 9.5

showcases the cumulated waiting time evolution per episode of each method. Multiple key points

can be deduced from these results.

Cumulated Vehicle Waiting Time Evolution
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Figure 9.5: Performance evolution of green-wave and DQN-based TSC methods on the line network. Fixed
methods are represented as dotted lines in the following order (from worst to best): simple fixed
method, Webster fixed method, green wave fixed method and optimal method.
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First, a clear hierarchy can be established regarding fixed, non-adaptive methods: the green wave
Webster algorithm outperforms the regular Webster algorithm quite significantly, which high-
lights the usefulness of green wave coordination for fixed methods. This comparison obviously
does not include the optimal method, which is used as a lower performance bound that cannot
be beaten by RL-TSC methods.

Regarding the two adaptive methods, the first point to notice is that both methods converge to
similar performance levels, eventually outperforming the fixed green wave coordination method.
We do, however, notice that the convergence process is faster in the green wave coordination case,
which is likely because the green coordination mechanism of this method is not learned but forced
on the intersections, giving this method an advantage in the early simulation episodes. This ob-
servation also proves our earlier hypothesis stating that these built-in coordination mechanisms
would influence traffic performance more than the use of phase-based actions, which are less opti-
mal than step-based ones (Tréca et al., 2020a). Table 9.1 illustrates the evolution of the convergence
process of both methods and shows the slight superiority of the green wave coordination method
throughout simulation iterations.

Average Waiting Time | 0-500  0-250 250-500  400-500  450-500

Deep Q-learning | 23619 24690 22548 22391 22369
Adaptive Green Wave | 23440 24493 22386 21826 21796

Table 9.1: Average waiting time per simulation episode according to episode intervals.

9.2.3.2 PERFORMANCE IN NORMAL TRAFFIC CONDITIONS

As stated in the previous section, studying the convergence process of a RL-TSC method is not
always sufficient to study its effectiveness. Indeed, performance evaluations allow comparing mul-
tiple RL-TSC methods post-training while eliminating sub-optimal action choices due to explo-
ration. Such a comparison is even more necessary when comparing I.DQN and the green wave co-
ordination method since both methods do not choose actions at the same rate (since the 2DQN
method is step-based and the green wave method phase-based), which might cause an additional
bias since the former chooses actions much more frequently than the latter, and is hence more
likely to choose random actions often. We hence measure the performance of the 2DQN and
coordinated green wave method using the performance protocol defined in section 7.3.2. This
experiment is conducted over 20 distinct traffic scenarios using a non-saturating base flow rate of
A = 0.06.

The performance outputs of the 2DQN and adaptive green wave methods of Figure 9.6 con-
firm the superiority of the green wave method. Indeed, one can observe that traffic scenarios using
the adaptive green wave method (in blue in the performance plot) are shorter, as symbolized by
the shorter size of the plot along the x-axis, indicating that vehicles generated up to simulation step
1000 are reaching their destination faster. Furthermore, the adaptive green wave method shows
better average performance than the I2DQN algorithm, as one can see with the relative position
of both curves while suffering from less performance variability, as shown by its smaller surface
area on Figure 9.6. It is, however, essential to bear in mind that the superior performances of the
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Best and Worst Agent Performances Over 20 Traffic Simulations, Regular Traffic
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Figure 9.6: Performance spectrum comparison of Deep Q-learning and Green Wave Coordination meth-
ods over 20 traffic scenarios. Base traffic arrival rate fixed to A = 0.06.

green wave coordination method were obtained in a traffic scenario featuring optimal parameters
for the use of green wave coordination. Indeed, our experiment features a main arterial composed
of multiple close intersections with a relatively normal traffic demand along the arterial, which
encourages green waves along the arterial.

9.2.3.3 PERFORMANCE IN SATURATED TRAFFIC CONDITIONS

Given their strongly different nature, the last point to consider when comparing the .DQN and
green wave coordination methods is their resilience to saturated traffic conditions. Indeed, while
the I2DQN method should learn to adapt regardless of the traffic conditions due to its adaptive
and independent nature, the built-in coordination mechanism of the green wave method is not
guaranteed to function if the traffic is saturated or over-saturated as bandwidth solutions often
result in poor performances in these situations (Koonce and Rodegerdts, 2008). In order to evaluate
whether these limitations affect the adaptive green wave controller, we run a second performance
evaluation in near-saturated traffic conditions with a base arrival rate of A = 0.08 vehicles per step.
The rest of the simulation parameters remain similar to those of the previous section. Results of
this second evaluation are on Figure 9.7.

Performance evaluations in a saturated road network of Figure 9.7 confirm our original hy-
pothesis regarding the poor robustness of the green wave coordination method in near-saturated
traffic conditions. Both the 2.DQN and green wave methods suffer from worse performance levels
which are mechanically due to higher traffic demand. However, the increase in cumulated waiting
time is much higher in the green wave case (250%) than in the I2DQN case (142%). Furthermore,
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Best and Worst Agent Performances Over 20 Traffic Simulations, Saturated Traffic
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Figure 9.7: Performance spectrum comparison of the I2DQN and adaptive green wave methods over 20
traffic scenarios. Base traffic arrival rate fixed to A = 0.8.

the performance variability of the green wave method significantly increases in near-saturated con-
ditions (63% between the best and worst traffic scenario), while the I2DQN performance variabil-
ity remains in line with normal traffic flow levels (29%), showing greater flexibility.

9.2.3.4 OVERALL APPLICABILITY OF THE GREEN WAVE COORDINATION METHOD

Given the multiple experiments conducted in this section so far, our conclusions regarding green
wave coordination effectiveness are contrasted. While our deep learning-based green wave coor-
dination method is overall more efficient than the I2DQN controller, these results only in an
experimental setting featuring an arterial with pre-computed offsets between intersections and
regular traffic demand going mostly along this arterial; all of which highly favor the green wave
coordination method. These superior results do not hold as soon as these specific settings are
changed, as illustrated by the subpar performances of the green wave coordination methods in
near-saturation traffic flows in the last section. This remark underlines the relative utility of the
green wave coordination method since it requires a specific traffic demand and network topology
to provide optimal performance. This point has been confronted before by Wagner et al. (2019) in
their paper questioning the overall usefulness of direct agent coordination in TSC systems:

While arterial coordination can be demonstrated to yield gains in efficiency under
fairly mild conditions, the coordination of a whole transport system is not as simple.
In addition to the mathematical and organizational challenges that come with this
task, it is also not clear what can be gained. So, an optimum solution might turn out
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to be just a few percent or so better in reducing delays, emissions, and even crashes,
leading to the question whether it is worth the effort.

While we tend to agree with these conclusions concerning our experimental results, which ex-
plains why we do not pursue green wave coordination techniques further in this thesis work, it
should be noted that an [2DQN method that could automatically switch to green wave coor-
dination when specific traffic demand conditions are met (e.g., non-saturated traffic flows along
arterials of a road network) would provide the best of both the I2DQN and green wave coordi-
nation methods. However, some computational challenges (e.g., implementing step-based green
wave coordination, which is a non-trivial scheduling task, or automatically detecting arterials on
alarge road network and computing its offset values) would have to be tackled to implement such

a hybrid method.

9.3 INDIRECT COORDINATION

In their state-of-the-art paper regarding cooperative multi-agent learning, Panait and Luke (2005)
define indirect communication methods as "those which involve the implicit transfer of infor-
mation from agent to agent through modification of the world environment.”. In the realm of
RL-TSC, the modification of the world environment usually occurs through modifications of
the state space of the learning agents, as action space modified is associated with direct coordina-
tion (see section 9.4). Hence, indirect coordination applied to TSC relies on letting agents receive
information besides their immediate local state without explicitly coordinating and making them
exploit this additional data during their learning process.

9.3.1 INDIRECT COORDINATION MECHANISMS

All MARL TSC methods using indirect coordination rely on state augmentation. A straightfor-
ward manner to augment the state space of a coordination-free TSC method to achieve indirect
coordination would be to directly include features from the state information of neighboring in-
tersections into the state space of each intersection of the network, hence increasing the knowledge
of the true system state of each intersection. While such an approach is theoretically feasible and
has even been applied in practice (Nishi etal., 2018; Wei et al., 2019b), it is subjected to dimensionality
issues when the number of external state features increases. Even when parsimoniously including
neighboring agent state features in an agent’s state representation, the exploration process can
become unbearably slow due to the curse of dimensionality (Genders, 2018). This increase in di-
mensionality is also the main obstacle to using centralized learning in RL-T'SC applications, since
the concatenation of all intersection-level state representations of an entire road network would
make the state space of the problem skyrocket, making exploration impossible in practice for the
centralized agent (Yau et al.,, 2017).

While indirect coordination methods suffer from certain limitations due to dimensionality
considerations, they remain the most popular form of agent coordination in the RL-T'SC liter-
ature mostly due to their flexibility and ease of implementation. Indeed, such methods rely on
letting agents observe more features of the environment than what they would observe in an in-
dependent setting; and this additional data can be exploited in many different ways depending
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on the underlying RL-TSC method, ranging from state augmentation to more complex joint ac-
tion computation (see next paragraph). Consequently, indirect coordination methods are easier
to develop and implement than direct coordination methods, requiring message passing between
agents and explicit coordination mechanisms.

9.3.1.1 MARLIN-IC ALGORITHM

A prime example of indirect coordination circumventing dimensionality issues applied to traf-
fic signal control is found in the MARLIN-IC algorithm designed by El-Tantawy and Abdulhai
(2012) and presented in chapter 4. The MARLIN-IC algorithm is a model-based indirect coor-
dination method that maximizes the utility of each agent of the network by first estimating the
optimal joint policy of each agent and its neighborhood according to the principle of the locality
of interaction then computes the associated optimal action using modular Q-learning. Given the
prevalence of MARLIN-IC in the RL-T'SC literature and its reported efficiency, this method has
been ported to the carmulator library for comparison purposes.

The primary mechanism behind the MARLIN-IC algorithm is the computation of optimal
joint action states between an intersection and its neighbors. For a given local state around an
intersection v, Sy, the intersection computes the associated joint state (s, Sy,) by observing the
local state of each of its immediate neighbors in the network. The intersection then estimates the
actions a,, each of its neighbors will take given this joint state action (by keeping a table of obser-
vations of past joint state and joint actions) and computes its optimal action based on the actions
each of its neighbors are expected to take. This rather complex algorithm, which necessitates a Q-
learning and past observation table for agent-neighbor couple, leverages indirect coordination by
observing neighboring states and actions and strategy modeling through the estimation of neigh-
boring actions without direct communication.

9.3.1.2 DEEP MARLIN-IC ALGORITHM

The original MARLIN-IC algorithm has long been considered to be a state-of-the-art coordi-
nated TSC method, which has showcased excellent results on large-scale traffic scenarios using
real-world traffic data (Brys et al., 2014; Mannion et al., 2016; Yau et al., 2017). However, the field
of RL-T'SC has dramatically evolved since its original publication in 2012 and has most notably
adopted more sophisticated function approximation techniques in order to improve agent per-
formance and learning efficiency. The superiority of deep learning over traditional RL algorithms
has already been demonstrated in chapter 8 and is also the central thesis of a 2018 paper co-written
by one of the MARLIN co-authors (Shabestary and Abdulhai, 2018). We consequently decided to
adapt the original MARLIN algorithm to newer function approximation techniques by using
deep instead of regular Q-learning as the learning algorithm. If the adaptation of the original
algorithm to its deep Q-learning variant (referred to as deep MARLIN) is straightforward, a cou-
ple of points should be noted. First, using a function approximation technique on MARLIN-IC
could potentially break the theoretical guarantees of modular Q-learning. However, experimental
results obtained with the deep MARLIN method show that this theoretical result has little im-
portance in practice. Second, the addition of a function approximation technique on top of an
already rather complex coordination method initially resulted in a volatile learning process, which
is a common issue with indirect coordination techniques applied in non-stationary and complex
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environments (Now¢ et al., 2012). However, the addition of a single-agent learning layer, which is
described in detail in the next paragraph, has entirely alleviated these issues.

9.3.1.3 MoDIFIED MARLIN-IC ALGORITHM

Since its source code is not (to our knowledge) publicly available, we have re-implemented the
MARLIN-IC algorithm in Python to the best of our abilities from its description in the thesis
manuscript of El-Tantawy and Abdulhai (2012). While most of the algorithm has been ported as-is
without any problem whatsoever, we have noticed an undefined behavior in its original imple-
mentation. In some cases, an intersection has to pick its next action but has neighbors who do
not choose any action for this time step because they are within a yellow or red phase. While the
unavailable neighboring intersection can be skipped in most cases, this situation is problematic if
the intersection choosing its action only has a single neighbor or in the rare cases in which all its
neighbors are unavailable simultaneously since no joint actions can be computed. Furthermore,
skipping some of the unavailable neighbors causes information loss, which is likely to degrade
agent performance. In order to deal with this edge case, we decided to modify the MARLIN-IC
algorithm structure to add a regular SARL learning algorithm below the joint-action coordina-
tion layer. Each intersection first learns from local states and actions similarly to any isolated RL
algorithm (using a classical or deep learning form) and then augments the resulting value function
through neighbor coordination as in the original MARLIN algorithm. The resulting modified
MARLIN-IC algorithm, with this modification, is shown on algorithm 8.

Algorithm 8: Outline of the original MARLIN algorithm as described by El-Tantawy and
Abdulhai (2012) with an additional learning layer. O, is an observation table listing the
actions taken by agent n given the current joint state sy, and Py a function computing
the probability of neighbour n choosing action a,, based on the current joint state and
this observation history.

for cach agentv € V do
Observe sy, Sh, Ay, T3
Qu(Sp, ay) + (1 — a)Qy(Sy, ay) + alry + ymaxy Qy(s,, ay));
for each neighbourn € T'(v) do
Observe s, S, ns
Ovn(svna avn) — Ovn(svna avn) +1;
Qvn(svn; avn) — (1 - Q)Qvn(svn; avn) + Oé('f‘v + ymax, Qvn(sima avn))§
a;, < MaXgx,, Q’U(SU7 av) + an"(v) Qvn(sgﬂw aZn)Pa' (Ovn7 S;m7 a’:));

n

The modified MARLIN-IC algorithms, both in their classical or deep form, both strongly
benefit from the introduction of this single-agent learning layer. In order to measure the benefits
of this change, we tested four variations of the MARLIN-IC algorithm: two in its original form
(one featuring this additional layer, one without), two in its deep learning form (one featuring this
additional layer, one without). These four RL-TSC methods are tested on a two-by-two network
featuring four intersections, with an overall arrival rate parameter of A = 0.015.
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Figure 9.8: Performance comparison of the regular and modified MARLIN-IC methods in their classical
and deep forms. Classical MARLIN methods are in red; deep MARLIN methods are in blue.
Dashed lines represent the original MARLIN algorithm, full lines our modified version. Results
are averaged over five simulation scenarios.

Our testing lead to two key observations. First, the addition of a single-agent learning layer
greatly improves performance for both the classical and deep MARLIN methods, as seen when
comparing plots of the same color on Figure 9.8. Second, we see that the deep MARLIN algo-
rithm significantly outperforms the classical MARLIN algorithm in their modified versions, as
seen when comparing the full plots of the same figure. Most notably, we notice that the deep
MARLIN algorithm using a single-agent layer achieves remarkable stability quite early in the con-
vergence process. On the basis of these results, we retain the modified versions of the MARLIN
algorithm, both in its classical and deep form, given their superior performances. These algo-
rithms will be referred to as MARLIN and deep MARLIN from now on for simplicity’s sake.

9.3.2 MEASURING THE IMPACT OF INDIRECT COORDINATION

The aim of the MARLIN algorithms we are testing—exploiting joint state and action observa-
tions to maximize utility at the neighborhood level-is clear. We now need to evaluate its relative
efficiency compared to independent methods such as the 2DQN algorithm tested in the previous
section in order to establish if, and possibly why, such a form of coordination is beneficial to traffic
optimization.
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9.3.2.1 INDIRECT COORDINATION CONVERGENCE

The first efficiency measurement is done regarding the convergence process of the original and
deep MARLIN algorithms, which are compared to an independent I.DQN method and the op-
timal and Webster deterministic methods for comparison purposes. These methods are tested on
a two-by-two grid network composed of 4 intersections by using the convergence protocol de-
fined in section 7.3.1. Since indirect coordination techniques do not have the special requirements
seen with green wave coordination methods, there are no additional constraints regarding trafhic
generation or intersection cycle time. Traffic flows between each pair of edges of the network are
generated using an exponential law of parameter A = 0.015, which corresponds to low to regular
traffic demand over the network.

Cumulated Vehicle Waiting Time Evolution
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Figure 9.9: Convergence process of the 2DQN, MARLIN and Deep MARLIN methods. Webster and
Optimal fixed methods are included for comparison purposes. Average values over 5 simulation
scenarios. Smoothed results.

We first analyze the convergence process of our selected methods for soo episodes of 1000 steps
each. The results of these traffic simulations, presented in Figure 9.9 show first and foremost the
strong convergence stability of both MARLIN algorithms and, to a lesser extent, of the 2DQN
algorithm. Similarly to tabular value function algorithms tested in section 8.2.4, the original
MARLIN algorithm (in blue in the figure) is unable to improve early on, hinting at its inabil-
ity to learn further from its environment due to the absence of function approximation mecha-
nisms. Conversely, both methods featuring function approximation techniques quickly converge
to higher performance levels. Additionally, we notice that the two-layer approach to coordination
we offered to limit convergence instability in the deep MARLIN case performs exceedingly well
given that the deep MARLIN methods we tested without this approach were more unstable than
the I2DQN algorithm shown on Figure 9.9. While these initial results confirm the intuition that
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the classical MARLIN method does not perform as well as deep reinforcement learning methods
leveraging neural networks for state generalization, low and steady traffic demand scenarios do
not allow to measure how adaptive and resilient both deep RL methods are in order to compare
them truly.

9.3.2.2 INDIRECT COORDINATION UNDER VARIABLE TRAFFIC FLOWS

Since the 2DQN and deep MARLIN method showcase quite similar performance levels in the
experiments of the previous section, we design an experiment aiming to test their capabilities un-
der changing traffic conditions. The experimental protocol we designed in section 7.3.3 compares
the robustness of both methods by gradually increasing traffic demand over multiple simulation
episodes, testing their robustness in the process. For this experiment, we generate traffic data using
an exponential law of parameter 0.015 (using the protocol defined in section 7.2.2). This trafhic
generation results in randomly generated arrival flow rates over each entry-exit edge pair of the net-
work. After running a hundred simulation episodes using these regular weights (in order to make
both methods converge), we gradually increase the arrival rate of each edge pair of the network
by 0.8% each step for 100 steps, reaching an overall arrival rate of around 0.04, before decreas-
ing by 1% each step for 100 steps, returning to a pre-rush hour traffic demand. Hence, each TSC
method will learn to route vehicles in increasingly saturated traffic conditions while ensuring that
the traffic demand imbalances that exist in the network are maintained. Furthermore, once peak-
hour traffic conditions are passed, gradually lowering traffic demand will allow to observe which
methods can quickly return to pre-rush hour performance levels, denoting greater adaptability.

We present these simulation results in Figure 9.10. As mentioned in section 7.3.3, the areas plot-
ted in this figure correspond to the performance spectrum of a given RL-TSC method delimited
by its best and worst observed cumulated waiting times for a given simulation episode. Addition-
ally, a solid line plots the average cumulated waiting time across all simulation scenarios and repre-
sents the average performance level of the TSC method for this given traffic network and demand.
Results of Figure 9.10 do show that while the low-traffic demand situations of the first simulation
steps result in somewhat equivalent performance levels from both IxDQN and deep MARLIN
(even though the latter continues improving beyond the former after iteration 70, which is not
visible in Figure 9.10), increasing this traffic demand allows differentiating both methods further.
The initial increase in traffic demand immediately decreases the stability of the deep MARLIN
method (see sub-plot 1), while the .DQN method maintains greater stability during these initial
steps. As congestion keeps increasing, however, the I2DQN also suffers from increased perfor-
mance variability, and to a greater extent than the deep MARLIN method (see sub-plot 2). This
causes I2DQN to display lower performance levels compared to the deep MARLIN method, as
seen on sub-plots 2, 3 and 4 of Figure 9.10. Finally, we note that the deep MARLIN method dis-
plays superior resilience after sustaining a brutal increase in traffic, as its variance in performance
quickly decreases when traffic demand levels go back to normal (see sub-plot 4).
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Cumulated Waiting Time Evolution In Variable Traffic Conditions
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Figure 9.10: Analysis of 2DQN and deep MARLIN under variable traffic conditions.

In conclusion, the deep MARLIN algorithm provides better performance overall in variable
traffic demand conditions than its independent counterpart I.DQN, even though deep MAR-
LIN seems more susceptible to performance instabilities for minor variations of traffic demand
(see subplot 1 of Figure 9.10). Moreover, deep MARLIN also proves more resilient to these traffic
changes as it quickly stabilizes its performance levels once traffic demand goes down.

9.3.2.3 MEASURING THE INFLUENCE OF JOINT STATE-ACTION MODELING

The previous subsection has shown that indirect coordination between intersections of a road
network allowed from similar to superior performances compared to independent methods. This
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9.3 Indirect Coordination

section aims to explain how such coordination mechanisms provide an advantage to independent
methods.

MARLIN CooRrRDINATION MECHANISM The critical coordination mechanism behind the
MARLIN and deep MARLIN algorithms is the joint state and action modeling between an in-
tersection and its neighbors. When computing quality estimates associated with different actions,
intersections do not only use the local traffic state but also take into account the probable future
action of each of its neighbors, given their local traffic state. While such an approach has empiri-
cally proven its efficiency (El-Tantawy and Abdulhai, 2012), no clear-cut explanation has been given
as to why observing the traffic state of neighboring intersections can improve the learning abilities
of an intersection.

JoiNT AcTioN MODELING  We argue that modeling neighboring intersection is often useless
since their actions do not have time to impact the local traffic state from one step to the next.
Indeed, it should take around 7 seconds (or steps in our case) for a vehicle to travel from one inter-
section to the next in the quad network used in our experiments (intersections are spaced 100 me-
ters apart). While it should logically be argued that a vehicle influences an intersection—through
state and reward computation—the moment it enters one of its incoming lanes, a single step is not
long enough for a vehicle to entirely travel the crossing area of its origin intersection. This means
that the influence of an intersection on its neighbors should range from null to minimal between
two successive time steps. This observation should, in theory, imply that neighboring intersection
state and action modeling has virtually no effect on the computation of quality estimates for the
“extend” action since its effect is measured from one time step to the next. However, neighboring
states and actions influence the quality estimate of the “switch” action whose effects are measured
around ten steps after the action has been taken, long enough for neighboring traffic to reach the
local intersection.

MEASURING THE INFLUENCE OF NEIGHBORING FEATURES We designed a specific experi-
ment in order to test this hypothesis. We first trained a regular deep MARLIN controller under
normal traffic conditions and extracted one of the resulting neural networks from one of its con-
trollers. Using the neural network associated with the joint state-action modeling between inter-
sections u and v, we are able to measure the estimated quality value Quyy (Syy, Guv) measuring
the quality of any given joint state-action couple (Syy, Gyy) given as an input (see algorithm 8).
This allows, among other things, to measure how much a change in the local state s,, or neigh-
boring state s, influences the quality values Q(Syw, Gyy) of actions “extend” and “switch”. In
practice, we sample multiple states that have been encountered during the learning process from
the memory replay buffer D. Eached sampled state s,,,, has the form:

Sup = (O(w), d(u), c(lu1), - c(lun), d(v),d(v), c(ly1), - - -, c(lyn))

which is a concatenation of the local states of intersections © and v as defined in section 6.3. For
each sampled state s,,,,, we first measure the quality values Q (sy,, “extend”) and Q( sy, “switch”)
associated with both actions available to the intersection u. Then, we change the values of ¢(u)
and ¢(v) in Sy, which represent respectively the current phase index of intersection u and v.
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Since intersections in the quad network have two main green phases (i.e. east-west and north-
south), this change switches the currently active green phase from one to the next. Using these
alternative state definitions, we measure the new associated quality values in order to measure how
they differ from the original values Q( sy, “extend”) and Q( Sy, “switch”).

The idea behind these measurements is the following. The more a given feature of the state
space influences the reward of an agent, the more a change of its value will change the quality
value associated with it, ceteris paribus. In the case of our experiment, the feature of the state space
indicating the currently active phase of an intersection is essential in choosing the next action. If
the lanes along the north-south axis of an intersection are heavily congested, the quality of the
“switch” action is likely to be high if the currently active phase is east-west and very likely to be
low if it is north-south. Hence, measuring the difference in quality values after changing a feature
of the state space gives an idea of how much this feature matters to the agent and its reward. By
measuring these differences, we hope to show that switching the local phase index ¢(u) highly
matters for intersection u, while switching the neighboring phase index ¢(v) does not for the
“switch” action.

ExPERIMENTAL RESULTS Results of Table 9.2 show these differences in quality values after
sampling sooo different states. The values p in the table represent the average difference in qual-
ity after a phase switch, while o represents the variance in average difference in quality after a phase
switch. These results underline, as expected, the massive difference between local and neighbor-
ing state changes. As we can see in Table 9.2, a change in the neighbor state has a close to zero
impact on the “extend” action of the local controller (both the average difterence in variance dif-
ference being close to o), while having a significant impact on the “switch” action. Furthermore,
we can see on the first row of this table that the local phase index feature of the state space signifi-
cantly impacts the quality value of both actions, indicating its significant influence on the agent’s
decision.

p(extend) p(switch) | o(extend) o (switch)

Local phase change 3.43 LI9 41.25 4.86
Neighbor phase change 0.35 1.0I 0.54 7.47

Table 9.2: Average difference (1+) and variance in average difference (o) of value estimates for sooo states.

This experiment hence confirms that the advantage of the deep MARLIN method over inde-
pendent algorithms such as [2DQN resides in its ability to compute quality estimates of phase-
switching actions better since the traffic neighboring intersections will influence local traffic while
this action is being applied. Conversely, our findings indicate the joint state-action modeling of
deep MARLIN is useless when computing quality estimates of the phase extension action since
the neighboring traffic does not have the time to influence the local traffic, which represents both
a missed opportunity to extract additional information from neighboring states and a method
weakness since it introduces unnecessary computation and potential instability.
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DELAYING JOINT ACTION MODELING A logical argument that could be made regarding the
inability of deep MARLIN to properly take neighboring states into account from one step to the
next would be to delay the time step at which the intersections receive neighboring states. One
could imagine that modeling the neighboring state from a couple of steps prior would leave time
for this anterior state representation to affect the local traffic state. This solution would, however,
only displace the issue. Since intersections using MARLIN learn through joint-action modeling,
the delayed state representation of neighboring intersections would already be incorporated in
the local intersection state, still rendering the delayed neighboring state representation unable to
influence the “extend” action quality estimates. The direct coordination method presented in
the following subsection aims to provide quality estimates for both action types through message
passing rather than through joint state modeling.

9.4 DIRECT COORDINATION

Direct agent coordination, also known as explicit coordination (Busoniu et al., 2008) pushes agent
interaction further than indirect coordination by allowing for direct exchange of information
while learning. The main difference between indirect and direct coordination methods is that
the latter does not only receive information from other agents of the environment but also di-
rectly take other agents into account in their decision-making process through explicit message
passing mechanisms or joint action computation.

9.4.1 DIRECT COORDINATION MECHANISMS

Similarly to indirect coordination methods, a wide variety of algorithms can be used for direct
coordination of traffic lights since their only requirement is the direct exchange of information
between learning agents. Hence, while multiple direct coordination mechanisms exist for RL-
TSC systems, such as the max-plus algorithm (Kok and Vlassis, 200s; Van der Pol and Oliehoek, 2016),
we focus here on two different coordination algorithms: the MARLIN-DC algorithm, which
is the direct coordination version of the MARLIN-IC algorithm that we studied in the previ-
ous section, and the RIAL and DIAL algorithms (Foerster et al., 2016) which features self-learning
communication between agents of the same environment.

9.4.1.1 MARLIN-DC ALGORITHM

The MARLIN-DC algorithm (El-Tantawy and Abdulhai, 2012) leverages direct negotiation between
agents in order to compute optimal joint policies. Similarly to MARLIN-IC, each agent main-
tains a Q-table with each of its neighbors containing quality estimates according to the joint state-
action of the intersection and its neighbor. When choosing an action, an intersection does not
only compute its optimal action according to the joint state-action space with each of its neigh-
bors (similarly to MARLIN-IC) but also estimates the optimal action of each of its neighbors
by directly using their policies. Using this additional information, the agent can then compute
its best-response action with regard to the actions of its neighbors and estimate the difference in
utility between its original optimal action and this best-response action. After this first computa-
tion step, intersections directly coordinate themselves by broadcasting their difference in utility to
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their neighbors: the intersection with the maximal utility difference in its neighborhood is allowed
to change its original action to the best-response action. By repeating this process by descending
order of difference in expected utility, the MARLIN-DC algorithm reaches an equilibrium that
is expected to maximize the joint expected reward of a neighborhood of intersections. While this
algorithm offers a novel direct coordination method to optimize traffic signal control, experimen-
tal results presented by El-Tantawy and Abdulhai have shown that MARLIN-DC provides similar
to slightly worse performance levels compared to MARLIN-IC, while increasing its computation
time fivefold. These limitations motivated El-Tantawy and Abdulhai to only study MARLIN-IC
in large-scale simulation scenarios and hence prevented us from implementing and testing the
MARLIN-DC algorithm in carmulator.

9.4.1.2. REINFORCED AND DIFFERENTIABLE INTER-AGENT LEARNING

A promising technique for agent coordination known as reinforced inter-agent learning (RIAL)
has originated in a paper by Foerster et al. (2016). In its original version, the RIAL algorithm is
applied to a fully cooperative, partially observable, and sequential multi-agent learning problem
in which communication is essential. Without any communication protocol defined beforehand,
agents must learn to communicate through limited channels during each step of the game in order
to maximize their shared rewards. Agents must not only learn to solve their tasks, but they must
learn and agree on a common communication protocol. During learning, each agent chooses two
distinct actions using two distinct neural networks: a traffic action @ and a message action m to
send to the other agents. The selected actions and messages of each agent are then observed by all
other players on the next step as part of the state space definition.

The original RIAL algorithm has been extend by the differentiable inter-agent learning (DIAL)
algorithm which not only shares messages across agents, but also gradients used to reward commu-
nication actions. A single neural network is shared by all agents for choosing the communication
action. Each agent using the communication neural network has a unique index variable as an
input, allowing them to specialize. Such a method requires centralized learning since learning
parameters cannot be shared through limited communication channels. Since centralized com-
putation is the norm in traffic simulations, parameter sharing through the use of a single neural
network between agents is possible in RL-T'SC applications, and has already been benchmarked
in that manner (Chu et al., 2020; Vanneste et al., 2021). While results from these papers have been
encouraging (they have both beaten independent learning baselines), we believe that the DIAL
algorithm is not optimal for RL-TSC tasks. The remainder of this chapter explain why this is the
case, and how our proposed method, DEC-DQN, addresses these issues.

9.4.1.3 ADAPTING THE ARCHITECTURE

The first issue regarding the application of DIAL to traffic signal control comes from the neural
network architecture being used in the original algorithm. Indeed, the learning task of choice of
the original DIAL paper is a switch-riddle game that is both relatively short (in terms of learning
episodes) and simple (in terms of state-action space definition). Additionally, since taking a wrong
decision can cause the game to end early, tracking previous states of the game was deemed essential
and was done using a gated recursive unit network, which is a form of recurring neural network.
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If this neural network architecture fitted this type of game, traffic signal control would be en-
tirely different for multiple reasons. First, traffic optimization is neither short (since the learning
task goes indefinitely) nor simple (since state-action spaces are a magnitude more complex than
the switch-riddle games). These factors significantly increase the complexity of gradient compu-
tation in recurring neural networks since the input data is larger (states are complex) and wider
(episodes are longer), which considerably lengthens the learning process of each agent. Addition-
ally, and perhaps more importantly, we have found that keeping track of past system states using
a recurrent neural network mattered little in our TSC setting, implying that only the immediate
system state and the action applied to it were influencing the utility of an agent. While a few pa-
pers of the literature use recurrent neural networks in their deep learning models (Chu et al., 2019;
Maand Wu, 20205 Shi and Chen, 2018; Xiong et al., 2019; Zeng et al., 2018), they also use complex DTSE
state representation (see section 4.1.2.3) through image inputs, which justifies the use of recurrent
neural networks alongside convolutional layers in order to learn from image input data.
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Figure 9.11: Illustration of the modified DIAL architecture applied to a road network of three aligned in-
tersections, u, v and w. At each step, each intersection chooses a communication action m on
the basis of its local state and unique intersection index on the shared communication neural
network. The resulting message is then sent to neighboring intersections at the next time step
and is used by neighboring intersections to chose a traffic signal control action a.

In the case of simpler state representation, such as ours, testing multiple architectures of re-
current neural networks (long short-term memory and gated recursive unit) in the isolated and
coordinated cases has resulted in subpar performances in all cases. Hence, since recurrent neural
networks provide both inferior performance results and a significant increase in computational
needs for learning, we retain the dual network architecture of the original DIAL algorithm but re-
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place the recurring components by simple fully connected layers similarly to the .DQN method.
We represent the chosen architecture on Figure 9.11.

9.4.1.4 REWARDING COMMUNICATION ACTIONS

The second challenge and main caused by applying the DIAL algorithm on a traffic signal control
task comes from associating rewards to message actions taken by agents at each step. This adjust-
ment issue is again due to the type of task on which the original DIAL algorithm was applied. In
the switch-riddle game, the same reward is used to both environment and message actions a and
m since the game is fully cooperative and can only end up in the death or liberation of all prison-
ers. Hence, the same reward is shared across all agents, and both actions are working towards the
same optimization goal. In the case of traffic signal control, rewards are neither shared between
agents nor impacted in the same way by environment and message actions. Each agent locally op-
timizes traffic through action a to maximize its local utility and sends a message m (in the form of
an integer), which will be received at a future time step by its neighbors so that they can maximize
their local utility. While local traffic related-actions can hence still be rewarded directly using traf-
fic delay-related measurements, message-passing actions are much harder to estimate since agents
have no innate mechanisms to estimate 7/ a message they sent has been taken into account by a
neighboring intersection, and, if so, how this message has affected their local utility. Furthermore,
since intersections with multiple neighbors receive multiple messages each turn, computing the
individual reward associated with each of these messages poses an issue of credit assignment (Panait
and Luke, 2005; Sutton and Barto, 2018) since we do not know how to divide the reward between each
neighbor. These issues underline the fact that applying a DIAL-type algorithm in a traffic signal
control context requires to define a reward function specifically designed to reward communica-
tion actions.

We design the direct-evaluation communication DQN (DEC-DQN) method to address this
challenging task. The DEC-DQN algorithm features a reward function specifically geared to-
wards communication actions which directly estimates how agent communications affect those
who receive them. This estimation is made possible by the fact that traffic simulations allow for
centralized training and parameter sharing. It is hence possible, within a simulation episode, for
an agent not only to access the shared neural network used for message action selection but also
to access the neural networks used by neighboring intersections in order to choose their traffic-
related actions. By supposing, furthermore, that agents can observe all communications passed
between agents, the reward function used in the DEC-DQN leverages an idea similar to state fea-
ture estimation in section 9.3.2.3. The reward of a communication 7 made by an intersection v
is computed by estimating the opportunity cost of sending message m for each neighbor n of v.
This opportunity cost is obtained by plugging the state of neighbor n containing the original com-
munication action m into its neural network in order to observe the maximum attainable quality
estimate that neighbor n can reach. Then, this quality value is compared to all other potential
maximum quality estimates neighbor n could have gotten had agent v sent a different communi-
cation action m. The higher the difference between the quality estimate associated with the best
potential communication action m* and the sent communication m, the higher the opportunity
cost. In other words, the more an intersection makes its neighbors miss on high-quality estimates
due to a given communication action it sent, the higher the loss associated with this communica-
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tion should be. The detailed pseudocode illustration of the loss computation of communication
actions of the DEC-DQN algorithm is illustrated in algorithm 9.

Algorithm 9: Algorithmic illustration of the loss computation for message actions in
the DEC-DQN algorithm. The reward associated with the message 1, chosen by inter-
section v is computed by estimating, for each intersection neighboring v, the maximal
expected reward this neighbor could attain when receiving message m,, and the maximal
expected reward it could attain by receiving any other message from intersection v. The
higher the difference between these two maximal expected rewards, the more intersection
v should have chosen a different message, and the higher the associated loss is.

for cach agentv € V do
L+ 0
Observe my;
for each neighbourn € T'(v) do
M+ (mqy,...,my_1)for[l,v—1] € T'(n) — {v};
s (s, M,my);
Viax < max(Vp, (s'));
for my; € A, — {m,} do
sl (80, M, my);
if max(Vj, (s/,,)) > Vinax then
‘ Vinax + max(Vp, (sl.))s
L+ L+ ||Viax — max(Vp, (s'))]]

9.4.1.5 CHOOSING DEC-DQN PARAMETERS

The proper tuning of parameters is essential in most deep learning models, and this is perhaps even
truer in the DEC-DQN case when compared to other deep RL-TSC models such as 2DQN. In-
deed, on top of sharing its model parameters with I2DQN, the coordination-specific mechanisms
of DEC-DQN need to be correctly parameterized to pass messages between intersections of the
network efficiently. This section hence aims at finding proper values for two parameters of the
DEC-DQN algorithm for TSC. First, this section studies the effect of the size of communication
channels between agents, also defined as the size of the action space for communication actions
A,,,. Finding the correct communication channel size is a trade-off. Too narrow of a channel
might not be able to express sufficiently different messages, limiting the usefulness of agent com-
munication. Conversely, too large of a channel increases dimensionality and prevents the agents
from converging on a common communication protocol, limiting once again the usefulness of
agent communication. The second parameter we aim to estimate is the effect of delay between
the emission of a communication action by an intersection and its reception by its neighbors,
which was a fundamental limitation of the indirect coordination mechanism of MARLIN, as
seen in the previous section.

CoMMUNICATION CHANNEL S1ZE  Thesize of the communication channel | A,, | is paramount
in proper communication between agents of the DEC-DQN algorithm. Messages are sent by
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agents as integers to their neighbors in order to convey information about their local situation
without explicit constraints as to what these messages represent. As this communication protocol
is learned, the size of these communication channels represents the depth, or richness, of what
these messages can convey. As such, a small message action space, similarly to a small state space
S, conveys less information to the agent but is likely to converge faster due to its reduced dimen-
sionality. Conversely, a large amount of communication channels allows the agents to exchange
more precise data at the cost of a longer convergence process. Since the optimal size of the com-
munication space is highly likely to be problem-dependent, we experiment with various commu-
nication channel sizes in a simulation setting. We compare the convergence process (as described
in section 7.3.1) of three DEC-DQN algorithms with different communication channel sizes on a
two-by-two grid network in order to estimate their influence on the agent’s convergence process.
Note that this experiment is carried out over a relatively long number of simulation episodes,
1000 instead of the usual 100, in order to observe the very-long term convergence of DEC-DQN
methods using large communication channels.

Cumulated Vehicle Waiting Time Evolution
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Figure 9.12: Convergence process of the DEC-DQN algorithm per comunication channel size.

Results of this experiment, averaged over five traffic scenarios, are shown on Figure 9.12. The
first observation is that communication channel size does not seem to have a significant effect on
very long-term convergence, as all three DEC-DQN methods show similar performance values
in later simulation episodes. However, we do observe that the DEC-DQN algorithm using the
largest communication channel size (in yellow in the figure) displays greater convergence insta-
bility, which is noticeable around episode 400 on Figure 9.12. Since increasing the channel size
of communication actions does overall not seem to yield specific rewards for this specific learn-
ing problem but does increase learning instability, we choose the simplest message action space in
order to reduce dimensionality, which is |A,,| = 2.
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MEssAGE DELaY  Asunderlined in section 9.3.2.3, the influence of the delay at which intersec-
tions receive information from their neighbors is crucial for adequately computing the quality
estimates of traffic actions at its disposal. Since, as opposed to the MARLIN algorithm, the delay
between the emission and reception of a communication action is configurable in the DEC-DQN
algorithm, it is hence essential to analyze the effect that such a delay may have on quality estimates.
To this end, we repeat the experimental protocol described in section 9.3.2.3 which allows to esti-
mate the impact of messages on the quality estimates of an intersection by directly measuring it
on their neural networks. In this setup, we train ten distinct DEC-DQN agents using increasingly
larger message reception delays A; ranging from 1 to 10 on quality estimates similarly to what has
been done in the indirect coordination case. Each agent has exactly one neighbor who sends one of
two communication actions, since | A, | = 2, as stated in the previous section. We then sample
observations from the replay buffer D, and for each observation, measure the effect of flipping
the original message sent by the neighboring intersection on the associated quality estimates of
the agent. The average difference in quality estimates for a message and its flipped variant, /1(a),
is then computed for a given action a. The results of these computations, for multiple message
delays Ay, can be found in Table 9.3.

Ar=1 A=2 A=3 Aj=4 A;=5
p(switch) 75.91 60.33 63.64 54.98 41.68
p(extend) 55.03 59.05 13.86 3LI5 9.05
Ar=6 Ay=7 A=8 Ay=9 A, =10
(switch) 116.83 72.49 65.57 70.35 92.41
p(extend) 128.6 44.48 45.05 5L 62.57

Table 9.3: Average difference of quality estimates for different messages and delay values A;.

The results from these experiments raise two critical points. First, the communication actions
of a neighbor influence the quality estimates of all actions by the agent. Indeed, it values of Ta-
ble 9.3 are all significantly different from o, indicating that a switch in the neighbor’s commu-
nication action has a substantial impact on the agent’s expected reward. This first observation
shows that DEC-DQN solves the primary issue associated with deep MARLIN: its inability to
influence a neighboring intersection from one step to the next. Since DEC-DQN has by a min-
imal delay of 1 step by construction, it does not sufter from this shortcoming. Furthermore, we
observe that the average difference in quality estimates does not tend to substantially change as
the message delay parameter A; increases. While we could interpret this phenomenon as proof
that communication does not affect agent performance (although upcoming experimental results
show otherwise), we understand it as a proof of DEC-DQN’s adaptability. Since the communi-
cation protocol is learned from scratch by agents, messages passed between agents do not have to
represent fixed, time-dependent, state information like in MARLIN but can represent any fea-
ture of the environment. Hence, we suppose that the features that are chosen to be included
in these communication protocols are likely to change depending on the chosen delay value (e.g.,
lower communication delays are, for instance, likely to favor features that are more likely to impact
neighboring intersections immediately). However, its impact on agent performance does remain
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somewhat constant. These findings hence tend to indicate that while the message delay parameter
Ay dictates which kind of state features are used by agents to craft their communication proto-
cols, they all tend to have a similar impact on resulting agent quality estimates. In light of these
findings, we hence opted for the most straightforward message delay parameter value, A; = 1.

9.4.2 MEASURING THE IMPACT OF DIRECT COORDINATION

This section is dedicated to analyzing the performances of DEC-DQN in a TSC setting. This
analysis compares the DEC-DQN algorithm to a baseline independent deep Q-learning using the
I2DQN algorithm. We first measure the convergence of both methods before evaluating their
performance capabilities in regular and saturated traffic conditions.

9.4.2.1 DIRECT COORDINATION CONVERGENCE

The first experiment compares the convergence of both methods according to the protocol de-
fined in section 7.3.1. We generate traffic demand data on a 2x2 grid network according to the
protocol defined in section 7.2.2, using a constant arrival rate averaging A = 0.018 vehicles per
step. The convergence process of the 2DQN and DEC-DQN algorithms is plotted on an average
of 1o distinct traffic scenarios, each running for soo episodes of 1000 steps each. As mentioned in
the previous section, the chosen DEC-DQN parameters are a default message reception delay of
At = 1 and a communication action channel of | Ay, | = 2. The learning hyperparameters used
for this experiment are similar to those listed in Table 8.2 and Table 8.4.
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Figure 9.13: Convergence process of the 2DQN and DEC-DQN algorithms.

The results of these experiments, as shown on Figure 9.13, tend to differentiate both methods
slightly more than in the indirect coordination case. While both the coordination-free and di-
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rect coordination-based methods once again end up achieving similar performance levels in the
later stages of simulation on all tested scenarios, the DEC-DQN algorithm converges significantly
faster in the early traffic simulation episodes (we measured an average difference in performance of
9.76% during the first 100 episodes on Figure 9.13). While displaying the relative superiority of di-
rect coordination to independent learning, this result is somewhat surprising. Since DEC-DQN
uses a larger state space than I2DQN, and since it necessitates to train both a traffic-related and
communication-related neural network, we would have expected a longer convergence process
than the independent learning method, eventually reaching superior performance levels. How-
ever, Figure 9.13 seems to show that agents, in this simple traffic scenario, manage to quickly con-
verge on a common communication protocol which enables the agent to reach excellent perfor-
mance levels quickly.

9.4.2.2 DIRECT COORDINATION UNDER VARIABLE TRAFFIC FLOWS

An extensive way of measuring the overall efficiency of a RL-TSC method is to analyze its behavior
under variable traffic conditions. To this end, we replicate the experimental setup of section 9.3.2.2
using increasing and decreasing traffic flows to compare the [2DQN and DEC-DQN methods
using the same experimental parameters. This experiment is designed to estimate how agent co-
ordination can help intersection using DEC-DQN to adapt to changing traffic conditions.

The results on Figure 9.14, averaged over s distinct traffic scenarios, confirm our initial observa-
tions. Subplots 1, 2, and 3 of this figure, respectively associated with an increase, peak, and decrease
in traffic arrival rates, all show that the DEC-DQN algorithm (in blue) is superior to I2DQN (in
red) both in terms of average performance (as shown by the solid-colored lines) and in terms of
variance (as shown by the colored areas on the plot). Most notably, the .DQN method suffers
from high variance in performance when traffic flows start to increase (as seen in subplot 1) and
features an extremely poor simulation episode near the peak of traffic flows (as seen on subplot
2), probably due to a single disastrous simulation episode, showing the potential instability of the
I2DQN algorithm under saturated traffic flows. More importantly, these simulation results do
not showcase the inefficiency of the 2DQN method, whose results are similar to those found
in Figure 9.10, but rather the extremely good resilience of the DEC-DQN algorithm even under
highly saturated traffic conditions.

These simulation results seem like definitive proof that, when properly orchestrated, coordina-
tion between intersections for traffic signal control can significatively increase agent performance
and globally reduce cumulative waiting times over a road network. Our results have shown that, in
the case of our experimental protocol, direct coordination is likely to be superior to indirect coor-
dination since information transmitted by neighboring intersections is likely to influence the value
estimates of both the “switch” and “extend” actions, as opposed to the latter only in MARLIN-
type algorithms. Since these observations have been made, however, on relatively small road net-
works containing a few intersections, we address the direct comparison of the three main methods
of interest (I2DQN, deep MARLIN, and DEC-DQN) on a synthetic large-scale road network in
the next and final traffic simulation of this thesis.
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Figure 9.14: Analysis of the 2DQN and DEC-DQN algorithms in variable traffic conditions.




9.5 Agent Coordination on Large-Scale Traffic Networks

9.5 AGENT COORDINATION ON LARGE-SCALE TRAFFIC NETWORKS

While the results observed in the previous section and their subsequent conclusions are suffi-
cient to prove that agent coordination is effective in increasing traffic optimization performance
through message passing, the effect of the direct and indirect coordination methods have been
tested on road networks featuring a limited amount of intersections. This last section, which con-
tains experiments on coordination methods on a larger scale of operation, has two main objectives.
First, it aims to analyze whether such a change in scale has any effect on the coordination mecha-
nisms that were previously observed. In other words, we want to know if increasing the number
of coordinated intersections changes the behavior of the independent, indirect, and direct coordi-
nation methods we have used so far. Second, this experiment on a larger-scale network is used to
directly compare the three most promising RL-TSC methods we have tested so far: [.DQN, deep
MARLIN, and DEC-DQN, in order to draw more decisive conclusions regarding their respective
merits and shortcomings.

9.5.1 SYNTHETIC LARGE-SCALE RoAD NETWORK

The network chosen to represent a large-scale traffic simulation is composed of 77 nodes (57 of
which are intersections controlled by traffic lights) and 240 edges. While not based on the network
graph of a real-world urban area, this road network aims to recreate features commonly seen in
urban areas, such as the use of a two-by-two lane outer ring road and north/west and east/west
arterials going through the network center.

In order to generate realistic traffic flows over the net-
work, the default shortest path algorithm used by vehicles

to select a route on the network (through the duarouter \ V /
program) is modified in two ways. First, the edge length \ / ‘:V:‘\

used in the computation of the shortest part is weighted by ~_ /\|——|—‘——|—|/\ -
a factor of the number of lanes the road has: for two routes H I_\_i_‘l_}_l_l H
with the same weight, a vehicle will take the route containing :Hzliljjilj“:
edges with a higher number of lanes, which is akin to pre- _ L “ -

. . ) ) ) SN LT S
ferring arterials and highways instead of single-lane streets. / ‘ “ ‘ AN
Second, a random factor 7 is introduced in duarouter and / ~_1 - \
represents the upper bound for which sub-optimal routes / ‘ \

can still be chosen by a vehicle. For a parameter r = 1.2

(which we pick), a vehicle can select any route going from

its origin to its destination as long as its travel cost is at most Figure 9.15: Synthetic city network.
1.20 times the cost of the shortest route. This factor intro-

duces randomness and personal driver preferences (which might be sub-optimal) in travel route
selection. Finally, and similarly to the previous sections, the Poisson vehicle arrival rate of each
origin-destination pair of the network is chosen according to an exponential law of parameter A,
according to the experiment protocol defined in section 7.2.2. The convergence process of the
RL-TSC methods are first tested on a non-saturation arrival rate, and their stability is then tested
by increasing and decreasing this arrival rate.
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9.5.2 PERFORMANCE UNDER FIXED AND VARIABLE ARRIVAL RATES

After describing the road network over which our experiments take place, we now observe the
effect of scaling the experimental road network up on the convergence process and adaptability to
changing traffic conditions of the 2DQN, deep MARLIN, and DEC-DQN traffic signal control
methods. Given their overall scale, and given the fact that they compare the best RL-TSC methods
we have developed in each category (i.c., independent, indirect, and direct coordination), this final
series of experiments give a complete overview of the respective merits and shortcomings of these

RL-TSC methods.

9.5.2.1 CONVERGENCE UNDER Fixep TRAFFIC FLOWS

As seen in the previous section of this chapter, the first manner in which coordinated RL-TSC
methods can be analyzed is through the observation of their convergence process according to
the protocol defined in section 7.3.1. This convergence is tested on the synthetic city network for
a near-saturation fixed arrival rate of A = 0.1. For this experiment, the performance spectrum
of each method over the ten tested traffic scenarios (defined in section 7.3.3 as the area showing
the best and worst cumulated waiting times of a given method over the tested traffic scenarios) is
displayed alongside the usual average performance plot.

Cumulated Vehicle Waiting Time Evolution
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Figure 9.16: Convergence of the 2DQN, deep MARLIN and DEC-DQN with a constant arrival rate on
the synthetic city network.

The convergence values of Figure 9.16 show results similar to those observed in small-scale net-
works. Most notably, we observe that the DEC-DQN coordination method (in yellow in the
figure) converges around 10% faster than other methods in the early learning iterations and main-
tains its performance advantage throughout the simulation runs. Another notable point regard-
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ing these simulation results is the respective evolution of the DQN and deep MARLIN methods
compared to the previous small-scale experiments. While converging slower at first, 2DQN (in
red) ends up performing better than deep MARLIN (in blue) on average towards the end of the
simulation, reaching DEC-DQN-like performance levels.

The convergence analysis of these three RL-TSC methods hence provide valuable information
regarding their comparative merits on large-scale traffic simulations with regards to their conver-
gence. Similarly to earlier experiments, the DEC-DQN coordinated method provides the best of
both worlds by performing better on early simulation iterations and by maintaining these supe-
rior performances in the long run. Hence, the introduction of a large number of learning agents,
each using the same neural network in order to learn to communicate, seems to accelerate their
convergence towards a common communication protocol, explaining the early convergence of
DEC-DQN due to efficient coordination through proper communication. Conversely, the deep
MARLIN algorithm seems to suffer from the introduction of a larger number of learning agents.
While the deep MARLIN method yielded similar performance levels with lower variance to those
of I2DQN on simulations done on a smaller scale network (see Figure 9.9), the switch to a large-
scale network decreases the maximum performance metrics of the deep MARLIN algorithm,
which becomes strictly less efficient than the IxRDQN method. The reason for this loss in effi-
ciency is not entirely apparent since coordination, in the deep MARLIN case, still yields benefits
in the form of accelerated convergence in early iterations when compared to I2DQN.

9.5.2.2 PERFORMANCE UNDER VARIABLE TRAFFIC FLOWS

The final simulation scenario we run in order to comprehensively analyze the three coordinated
RL-TSC methods compares their respective performance under variable traffic conditions in the
large-scale synthetic road network defined in section 9.5.1. This analysis, coupled with the results
of the fixed traffic flows of the previous subsection, should provide a complete comparison of these
three methods. This last simulation scenario is by far the most costly to run from a computational
perspective since it features both a high number of intersections and a high number of vehicles
when traffic demand is increased (see section 9.5.2.3 for the complexity analysis of each method).
Consequently, we used five different traffic scenarios to generate the data used to plot Figure 9.17,
instead of the usual 10.

Results of this final experiment, as shown on Figure 9.17, strengthen the observations we made
under fixed traffic flows. First, the deep MARLIN method (in blue in the figure) is the worst
average performer as traffic flows increase (see subplot 1), similarly to what was observed towards
the end of traffic scenarios of Figure 9.16. As it also features low-performance variance, the deep
MARLIN method seems to indicate its limitations once again when applied to many intersec-
tions. However, the somewhat decentralized architecture of the deep MARLIN method (since
each neighboring intersection pair is associated with an independent neural network) seems to in-
crease its robustness, as demonstrated by the low variance of its performances once traffic demand
decreases (see subplot 3). These results indicate that the deep MARLIN method is best suited in
relatively small networks with variable traffic conditions, such as seen in the traffic scenario of sec-
tion 9.3.2.1. Comparatively, the 2DQN method (in red) features relatively good performances—
superior on average to those of deep MARLIN-although at the cost of higher variance and lower
robustness (see subplot 3). These results underline the fact that the 2DQN method is suitable
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Cumulated Waiting Time Evolution In Variable Traffic Conditions
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Figure 9.17: Comparison of the 2DQN, deep MARLIN and DEC-DQN methods in variable traffic con-
ditions on a large scale traffic network.
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for any road network size (since no coordination is used) but is preferable in networks with rel-
atively low traffic demand variation. Finally, our novel DEC-DQN method provides once again
the best of both worlds by featuring both the best average performance levels for almost all points
of the simulation episodes, all while featuring low variance levels. Such a method is preferable for
all types of networks and all types of traffic demand, provided that direct coordination between
intersections is possible.

9.5.2.3 COMPLEXITY COMPARISON OF RL-TSC ALGORITHMS

A final point of comparison worth analyzing regarding coordinated RL-TSC methods relates to
their computational and memory requirements. Indeed, while these constraints do not play a sig-
nificant role in the desirability of each method in simulated scenarios, they can be major factors
in their feasibility in real-world applications. We compare two principal metrics for each method.
First, we look at the average number of operations executed by each algorithm for each simulation
step, which broadly represents their average computational needs. The average number of oper-
ations is preferred to a traditional complexity analysis as it gives a more detailed appreciation of
each method’s relative computational costs. The complete calculations used to obtain this average
number of operation per simulation step is given in Appendix C. The second metric we use is the
average memory requirements for learning data, which can directly be obtained by measuring the
file size of the learning data file we obtain at the end of a traffic simulation using carmulator.

Method Computation (op/s) | Memory (kb)
12.DQN 239162880 409144
Deep MARLIN 717663744 2069528
DEC-DQN 1435765248 459716

Table 9.4: Computational and memory requirements of various RL-TSC algorithms.

Computational and memory requirements shown on Table 9.4 underline a typical pattern re-
lated to coordination for traffic signal control methods: there are strongly diminishing returns
when aiming at improving a well-parameterized independent TSC method. The limited to no-
table improvements regarding agent convergence or performance, in the respective case of deep
MARLIN and DEC-DQN, are either associated with a steep increase in memory (a fivefold in-
crease) or computational (a sevenfold increase) requirements, respectively. This last observation
underlines the high costs associated with implementing effective agent coordination for traffic
signal control, whether in terms of the general complexity of the algorithms at play or in their
associated costs. Nonetheless, given the speed at which all these algorithms are executed in simu-
lated traffic conditions, these costs should not be prohibitive regarding their potential application
in real-world traffic scenarios.

ANANNL

This chapter undertook an in-depth analysis of various RL-TSC methods used on road net-
works featuring multiple intersections. More specifically, we analyzed different modes of coordi-
nation between agents to establish which form is most beneficial for traffic signal control. Each of
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these coordination methods is compared to an independent method, I2DQN, which was identi-
fied as the most capable non-coordinated RL-TSC method at the end of chapter 8.

We started by defining coordination based on the concept of green wave coordination from traf-
fic engineering. In its adaptive form, the green wave coordination method adds offset constraints
on intersections along an arterial. Each intersection has a fixed total cycle time and hence chooses
phase-based actions to route traffic. On this basis, the green wave coordination method uses an
2DQN neural network to learn how to split green phase time within this fixed signal cycle. Exper-
imental results have shown that this novel method significantly outperformed the independent
I2DQN controller on arterial streets under normal traffic conditions. However, this performance
hierarchy entirely inverts when traffic is saturated along the arterial, making the green wave coor-
dination method unfit for general use on road networks.

The second type of coordination mechanism we analyzed is indirect coordination, which relies
on indirect information passing between neighboring intersections. We presented the MARLIN-
IC algorithm, which is a trademark method of the coordinated RL-TSC literature. This method
relies on joint state-action modeling in order to compute optimal action choices for each agent of
the network. We proposed a modified version of the MARLIN-IC algorithm featuring an addi-
tional single-agent decision-making process and used a deep neural network instead of a classical
Q-learning algorithm for agent learning. This adapted method has shown moderate improve-
ments compared to the I2DQN algorithm. An in-depth analysis of the neural networks used by
agents of the MARLIN-IC algorithm has shown that these improvements are held back by the
fact that joint state-action modeling is not an efficient manner of communicating information be-
tween neighboring intersections, since the information being sent from an intersection does not
immediately affect the neighboring intersection’s traffic.

The third type of coordination mechanism we analyzed is direct coordination, which lets agents
directly exchange information to maximize their reward. We developed a novel coordinated RL-
TSC method, DEC-DQN, based on the coordination mechanisms of the DIAL algorithm. This
algorithm enables agents working towards an optimization goal to communicate in order to solve
their tasks. The novelty of this algorithm is that agents do not only use reinforcement learning
to learn how to solve their tasks but also to settle on a common coordination protocol. This
novel approach is highly desirable in RL-TSC applications since this communication does not
have to be designed beforehand and can hence be potentially applied to any type of road network.
Experiments conducted on small-scale networks have shown that DEC-DQN, which we adapted
for traffic signal control, performed significantly better than the baseline 2DQN method.

The final section of this chapter pitted the three best RL-TSC methods designed during this
thesis work in a large-scale simulation scenario. These experiments were carried out in order to
identify the relative strengths and weaknesses of each type of coordination: independent in the
case of [2DQN, indirect for deep MARLIN, and direct for DEC-DQN. Simulation results have
shown that the performance of the deep MARLIN algorithm was degraded due to the scale of the
road network but could adapt well to varying traffic demand, implying that this method is better
suited for small-scale networks with variable demand. Conversely, the 2DQN method featured a
performance level similar to those of deep MARLIN, although at a much lower complexity cost.
However, its low robustness makes the I.DQN algorithm better-suited for road networks with
low traffic demand variance. Finally, the DEC-DQN RL-TSC method once again displayed ex-
cellent convergence speed and great robustness to changing traffic conditions. Its ability to deal
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with varying traffic demand regardless of network size makes it, in our opinion, the best RL-TSC
method featured in this thesis work, and our recommended coordinated RL-TSC method, pro-
vided that direct agent coordination is feasible in the traffic optimization problem at hand.
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IO CONCLUSION

The central aim of this thesis was to develop a state-of-the-art coordinated traffic signal control
method for traffic optimization. Our objective was to carefully develop this method from the
ground up to justify all of our model choices and provide guidelines for future research in this
area.

REesearcH WoRrk oF THIs THESIS

We carried out this research goal in iterative stages. The first step was to give a general presen-
tation of what traffic optimization using reinforcement learning zs. We separately presented the
fields of traffic engineering and reinforcement learning in chapter 2 and chapter 3 respectively.
These chapters introduced the main concepts and terminology of traffic signal control and gave a
general overview of how reinforcement learning algorithms aim at solving a task through learning
using an algorithm and policy on a Markov decision process. This necessary concept introduction
paved the way for a presentation on how these two fields merged in the reinforcement learning for
traffic signal control literature in chapter 4. This chapter gave a comprehensive overview of how
reinforcement learning algorithms optimize traffic flows. Moreover, it introduced crucial con-
cepts such as agent coordination and function approximation and explained how the literature
tackled these challenges. These three chapters form the first part of the thesis.

We then developed the general framework in which our novel RL-TSC method could later be
constructed, tested, and validated. We first defined a model of traffic flow in chapter s, which al-
lowed us to mathematically define traffic engineering concepts to apply them in a reinforcement
learning context. Such an application takes place in chapter 6, which analyzes the multiple ways in
which the traffic optimization problem can be modelized as a Markov decision process and estab-
lishes the optimal one, which we later use for our research work. This chapter notably underlines
inefficient MDP models regarding state or action space representation. Finally, chapter 7 closed
this general RL-TSC framework presentation by describing the traffic simulator used to develop
and compare traffic signal control methods to answer our research question. This framework is
composed of the SUMO traffic simulator and our research library, carmulator. The chapter ended
with an in-depth presentation on how the performance of a RL-TSC controller could be accu-
rately measured: through convergence and performance analysis protocols under fixed or variable
traffic flows.

After establishing the concepts and framework needed for our research, we tackled the traf-
fic optimization problem on isolated intersections in chapter 8. This chapter first presented a
near-optimal fixed traffic signal control method used for benchmarking purposes before compar-
ing three types of classic RL algorithms. After proving that temporal-difference learning coupled
with greedy policies are most efficient for traffic optimization, we underlined the crucial role of
function approximation for acceptable performance. This observation led to the analysis of vari-
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ous modern deep reinforcement learning algorithms applied to TSC, singling out I2DQN as the
best method for isolated traffic signal control. These findings enabled us to extend our research
to multi-intersection road networks in chapter 9. We distinguished four distinct modes of agent
coordination (independent, green wave, indirect and direct) and developed and tested a novel
RL-TSC algorithm for each of these categories. We first developed a deep learning-based coor-
dination method based on green waves over arterials, which performed better than independent
learning under rather specific conditions. We then adapted a major algorithm of the RL-TSC
literature MARLIN-IC in order to compare it to other forms of coordination. By slightly mod-
ifying its structure and using a neural network instead of a classical RL algorithm, we made the
MARLIN-IC method outperform the I2DQN algorithm over a small-scale road network. Finally,
and perhaps most notably, we developed the DEC-DQN direct coordination method, which al-
lows intersections of a road network to coordinate through direct message passing. The novelty
of this method is that no communication protocol is defined beforehand, meaning that intersec-
tions learn to both route traffic and settle on a common communication protocol. Our experi-
ments have shown that the DEC-DQN direct coordination method outperforms all other tested
methods and state-of-the-art performance levels. Moreover, these results have been confirmed on
a large-scale simulated traffic network featuring more than so intersections.

FINDINGS AND CONTRIBUTIONS

Our research has produced several significant contributions regarding RL-TSC, all of which are
listed in section 1.4. Furthermore, our analysis work on isolated and coordinated TSC allowed us
to formulate multiple key observations.

We tried to the best of our ability to not only show on experimental results that agent coordi-
nation was beneficial for RL-TSC but to explain how it improved traffic optimization tasks. This
endeavor was, for instance, at the basis of the creation of the green wave coordination method
since traffic engineering could formally prove that such a form of coordination form could im-
prove throughput alongside an arterial. As RL methods are by nature much harder to formally
analyze, our aim was to at least identify which parts of a coordination method made it superior
to the baseline independent RL-TSC method. These attempts have resulted in the analysis of sec-
tion 9.3.2.3 stating that the deep MARLIN algorithm could only partially influence its neighbors.
This observation has, in turn, prompted us to adapt the DIAL algorithm into DEC-DQN due to
its unique structure. Instead of trying to impose an explicit model of agent coordination, such as
joint state-action modeling in the case of deep MARLIN, the ability of agents using DEC-DQN
to learn a common communication protocol meant that such a model was no longer necessary.
This difference is, in our eyes, quite similar to the model-based and model-free distinction in RL
models as described in section 3.1.2.5. Instead of trying to create an imperfect model of the un-
known mechanisms of traffic coordination, we could let a learning algorithm figure it for itself.
The experiment conducted in paragraph 9.4.1.5 confirms that such a coordination mechanism
entirely influences its neighbors through the unique reward function for communication actions
we designed in section 9.4.1.4. This is, in our opinion, the strongest result of this thesis work,
alongside the performance gains associated with using such a method.

The second major finding of this thesis work relates to our original goal of finding the “best”
algorithm for RL-TSC. As section 9.5.2.2 as shown, this initial goal might have been wrongly
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formulated given that each tested method has relative strengths and weaknesses. For instance,
the I2DQN algorithm showcases good results overall (except in highly saturated conditions), on
different network types, for an overall low complexity cost. Conversely, the DEC-DQN algorithm
provides excellent results, even in highly congested scenarios, but comes at a high complexity cost
and necessitates a specific infrastructure (i.e., a central controller being able to train agents) which
might not be feasible in some situations. Hence, we would argue that each method presented in
this thesis has specific areas in which their application would be relevant.

Finally, while experimental results of section 9.5.2.2 have shown that coordination is undeni-
ably beneficial to traffic optimization, we were surprised to find out that modern non-coordinated
RL-TSC algorithms such as 2DQN provided excellent performance for low complexity and com-
putational costs. Indeed, we have established in section 9.5.2.2 that it is preferable to use an iso-
lated algorithm such as I2DQN on a large-scale network instead of a more complex and variable
algorithm such as deep MARLIN. More generally, this thesis work has shown the diminishing
returns that are strongly associated with traffic optimization, as increases in method complexity
yield smaller and smaller performance gains. This observation stands both for the traditional TSC
methods studied in chapter 2 and for the RL-based methods of chapter 9.

Future WoRKS

Even though we believe that this thesis offers both a broad and in-depth analysis of traffic optimiza-
tion using reinforcement learning, we also believe that it could benefit from additional research
and experimentation.

Some short-term experiments could be carried out regarding the large-scale network simula-
tions using real-world data. While the large-scale network we designed in section 9.s.1 has inter-
esting properties such as an outer ring road and high-speed lanes making its analysis worthwhile,
using real-world traffic data and the associated urban network could legitimate our simulation
results even further. While some open data sets containing traffic flows exist’, selecting data that
is compatible with our simulation settings, reworking the datasets, and recreating the associated
road networks in SUMO could not be achieved during this thesis work. However, such a pursuit
would be worthwhile, in our opinion. Another short-term research question of interest would
be the use of modern actor-critic methods using deep reinforcement learning for traffic signal
control. We mentioned in section 4.2.4.2 that deep Q-networks and deep actor-critic methods
both were popular options for advanced RL-TSC controllers. While the results of section 8.2.4
led us to study the former over the latter, recent multi-agent actor-critic approaches featuring
multi-agent policy training (Lowe et al., 2017) or cooperative exploration of the state-action space
by agent (Christianos et al., 2020) should be investigated.

Finally, we believe that the communication protocol learning process of the DEC-DQN al-
gorithm opens fascinating research questions from a machine learning perspective. More specif-
ically, the common communication protocol reached by DEC-DQN agents should be investi-
gated. For instance, we wonder which features of the state space are leveraged by intersections for
communication. Do they communicate their signal cycle properties, congestion data, or other
features? This study could be conducted on alternative state spaces featuring more features of
the true traffic environment states since such an analysis could teach us which features of the

"For instance, the the open traffic collection, lists various open data sets of traffic demand data.
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environment are essential to communicate to neighboring intersections. Furthermore, we won-
der whether the common communication protocol of agents changes depending on the network
topology and traffic demand levels. Do agents settle on a similar protocol each time, or is it net-
work or simulation-dependent? Additionally, we wonder whether intersections settle on human-
understandable communication settings, corresponding to clear indications such as "traffic is sat-
urated on my lanes” or whether these messages are simply designed to maximize neighboring in-
tersections’ expected rewards. Overall, we believe that the DEC-DQN algorithm opens a new set
of research questions that we want to investigate further.
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Cerebellar Model Articulation Controller
Double Deep Q-network
Direct-Evaluation Communication DQN
Differentiable Inter-Agent Learning
Dynamic Programming Methods

Deep Q-network

Deep Reinforcement Learning

Discrete Traffic State Encoding
Independent Dueling Deep Q-network
Learning Automata

Linear Reward-Inaction

Linear Reward-Penalty

Multi-Agent Reinforcement Learning
Monte-Carlo Methods

Markov Decision Process

Partially Observable Markov Decision Process
Reinforced Inter-Agent Learning
Reinforcement Learning

Reinforcement Learning-Based Traffic Signal Control
Single-Agent Reinforcement Learning
Temporal-Difterence Learning

Trafhic Light System

Trafhc Signal Control

161






LisT OF SYMBOLS

F Global objective function of a MDP

S State space of a MDP

A Action space of a MDP

T Transition function of a MDP

R Reward function of a MDP

t Discrete time step

S, 8¢ Environment state at step ¢

T, Agent reward at step ¢

a,at Agent action at step ¢

T Agent policy on a MDP

%4 Value function of a state

Q Quality function of a state-action pair

y Discount factor

« Learning Rate

€ Random action selection parameter

Q Observation space of a POMDP

0 Observation function of a POMDP

0 Function approximation weights

L Loss function

G Network Graph

% Set of Vertices of G

A Set of Arcs of G

U, U, W Vertices of G

UV, VW Arcsof G

P Path made of arcson G

[(u), I (u), I (u) Neighborhood, successors and predecessors of vertex u
uw Traffic trajectory from uv to vw

o A green phase over vertex v

@, The amber phase associated with green phase ¢,,
@Y The red phase on vertex v

d, A signal cycle on vertex v

oe(v) The active phase on intersection v at step ¢
di(v) Amount of steps for which phase ¢;(v) has been active at step ¢
Cy Total signal cycle duration of intersection v
dmin, Amax Minimum/maximum duration of a traffic phase

T Traffic transition function



List of Symbols

(p,e) A vehicle following path p entering the network at step e
we(c) Cumulated waiting time of vehicle c at time step ¢

cr(uv) Congestion of lane uv at step ¢

Py (uv) Position function of vehicles on arc uv at step ¢

A Exponential distribution parameter used for arrival rate generation
L, Lost time in the signal cycle of intersection v

fi Flow to saturation flow ratio of lane [

Gi Allocated green time to phase ¢ computed by Webster’s formula
k Strategy depth of the approximation method

h Strategy application horizon of the approximation method
o Reward parameter of the linear reward-inaction algorithm
T Penatly parameter of the linear reward-inaction algorithm
6, ) TD-error and TD-error estimate values

n Moving window for the stopping criteria in simulations

K Performance delta for the stopping criteria in simulations
D Experience replay buffer

B Minibatch size for deep learning methods

A Advantage function on a given MDP

K Target network update interval in steps

m Message action of RIAL controller

Ay Message reception delay of RIAL controller

r Shortest route deviation factor



A APPENDIX - OPTIMAL METHOD

This Appendix details the mode of operation of the optimal strategy approximation algorithm
presented in section 8.1.2.

Algorithm 10: Pseudocode representation of the approximation algorithm on isolated
intersections. Saving and loading simulation states is omitted for readability.

Function Search(t, S, w):
if Last element of S i5s 0 then
t+—t+1;
SUMONextStep();
w 4 w—+ SUMOGetWait();
else
SUMONextPhase();
for i = 1 to min(dpyin, k — t) + 1 do
t+—t+1;
SUMONextStep();
w 4 w—+ SUMOGetWait();
UMONextPhase();
fori = 1tomin(dpin, k —t) + 1 do
t<+—t+1;
SUMONextStep();
w < w-+ SUMOGetWait();
if t > k then
‘ return S, w;
Search(t, S + 0, w);
Search(t, S + 1, w);

7]

The algorithm begins by verifying which action was taken last. If it was a phase extension,
the simulation step and waiting time are updated, and the simulation moves one step forward in
SUMO. If the last action was a phase switch, the algorithm simulates two successive phase switches
(transition and beginning of the following green phase) of dnin steps each and update the waiting
times accordingly. These phase switches can be cut short if the resulting simulation time is greater
than the desired search depth k. If the resulting strategy is long enough, we return it alongside its
associated waiting time. If not, we perform a new search split by recursively calling the function
Search with both possible actions. Finally, once the algorithm has exhausted all possible strategies
for the agent, it returns the strategy associated with the minimum vehicle waiting time.






B APPENDIX - Q-LEARNING
PRE-ESTIMATION METHOD

This appendix presents the function approximation method using state-action pair pre-estimation
with phase-based actions as used in section 8.3.1. The elements relating to queueing theory and
how the average service time per vehicle is computed can be found in our paper on the topic (Tréca

etal., 2020b).

Algorithm 1x: Pseudocode representation of the Q-learning pre-estimation algorithm.

for cach state s € S do

for each action a € Ado

Q(s,a) < 0

for cach lanel € L do

0; < ¢ from S;

ny < [N X al;

if [ bas a green light then
o, < min(|a/2],0);
n; < min(|la/2| — o, ,m);

else

o, <0

n, < 0

ol+ =0,—0;;
nlJr =n;—n;;
Q(s,a) + Q(s,a)+T; x (n, +0,) —ax (olJr + nf),

This algorithm enumerates the entire state-action couples around an isolated intersection. For
each state and action, the algorithm computes, for each lane of the intersection, the number of
vehicles already present in the lane (o;, directly taken from state s), and an estimate of the number
of new vehicles in the lane (1, estimated from the arrival rate on lane , A;). Using these values, the
algorithm estimates the number of vehicles to exit or stay on the lane for both of these categories,
depending on whether the currentlane [ has a green signal in the current phase. Finally, the quality
of action a in state s is estimated for the current lane by using Equation 8.6.






C APPENDIX - COMPLEXITY ANALYSIS

This appendix estimates the average amount of operations needed to perform a single learning
step for different coordinated RL-TSC methods. This metric is used instead of the traditional
big-O complexity calculations since all algorithms are likely to appear in the same class (O(n)),
and we want to underline their computational requirements more precisely. This analysis does
not take into account simple operations such as message passing, observation selection from the
replay buffer or next action selection through a policy since they are negligible compared to the
two main operations are required for agent learning: forward and backpropagation on a neural
network. This estimation is simplified by the fact that the three tested algorithms all rely on the
same neural network architecture showcased on Figure 8.8. If the number of intersections present
on the road network, n, obviously plays a role in the average amount of learning operations per
step, it should be noted that learning only occurs on time steps at which an agent picks a traffic-
related action, meaning that the agent does notlearn when it is in the amber, red, or minimal green
phase. While the exact proportion of agentslearning at each time step is dependent on the network
type, traffic flows, the intersection’s position within the network, and learning trajectory, we have
observed from experimental data that an average of 50% of intersections choosing an action at
each time step was a good general approximation for these calculations. It is hence possible, on
this basis, to estimate the computational costs associated with the three main RL-TSC methods
tested in section 9.5

I2DQN  The simplest method to compute, I2DQN, only features a single learning step per
agent each time it takes a traffic action. Since each neural network associated with an agent fea-
tures an input layer of size | S|, four fully connected hidden layers of size 128, and an output layer
of size | A|, each single forward and backpropagation on such a neural network each requires ap-
proximately 128 x (|S| 4 128 + 128 + |.A|) operations, which are mostly due to matrix mul-
tiplications (Bienstock et al., 2018). Supposing that an average of half of the intersections present
on the network perform these two operations at each time step, the associated average number of
operations is equal to

Crapon =n/2 x 2 x 128 x (2 x 1282 + |S| + | A|)

Since other operations associated with learning are negligible in comparison, this formula is a
good approximation of the complexity of a single learning step on a single intersection using the

base [2DQN method.

Deep MARLIN  Incomparison, the deep MARLIN method features the same exactlocal learn-
ing process for each network intersection but performs additional learning on joint state-action
between each intersection of the network and its neighbors.



C Appendix - Complexity Analysis

For g the average number of neighbors per intersection on a given network, each intersection
performs a joint state-action learning task with an average of g/2 neighbors each step. Further-
more, the input and outputsizes of these neural networks are doubled since they take into account
local and neighboring states and actions, yielding a total amount of operations per step of

CAMARLIN = n/2 X 2 x 128 x (2 x 128% +|S| + |A|)
+n/2 % (g/2 % 2 x 128 x (2 x 1282 4 2|S| + 2| A|))

DEC-DQN  Finally, the average number of operations per step for the DEC-DQN method can
be split between traffic and communication-related actions. The traffic-related learning process
is identical to the [2DQN case, with the exception that the state space is slightly increased since
each neighbor also receives a communication action from its average g neighbors. Each agent
chooses a communication at each time step regarding communication actions, regardless of their
traffic action. However, backpropagation only occurs once a neighboring agent, having received
an earlier communication action, receives it. Hence, each time an intersection chooses an action, it
triggers g backpropagations (i.e., for each neighbor that sent a message to that intersection) on the
shared communication neural network. Furthermore, each of these backpropagations requires to
compute an associated reward, which is itself computed using forward propagation on the neural
networks of each neighbor that sent the original message, as specified in algorithm 9.

CpeC-pON =1/2 x 2 x 128 x (2 x 1282 4 |S| + 4 + |A|)
+ 1 x 128 x (2 x 1282 + [S| + |An])
+1/2 % g x 128 x (2 x 1282 + |S| + |Am|)
+1/2 x g? x 128 x (2 x 1282 + S| + 4 + | A|)
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