
HAL Id: tel-03827809
https://theses.hal.science/tel-03827809v1

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing traffic signal control systems using
reinforcement learning

Maxime Tréca

To cite this version:
Maxime Tréca. Designing traffic signal control systems using reinforcement learning. Artificial Intel-
ligence [cs.AI]. Université Paris-Saclay, 2022. English. �NNT : 2022UPASG043�. �tel-03827809�

https://theses.hal.science/tel-03827809v1
https://hal.archives-ouvertes.fr

T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
�
�
�
�
U
P
A
S
G
�
�
�

Designing traffic signal control systems

using reinforcement learning
Création de systèmes de contrôle de feux à l’aide de

méthodes d’apprentissage par renforcement

Thèse de doctorat de l’université Paris-Saclay

École doctorale n�
580, sciences et technologies de l’information et de la

communication (STIC)
Spécialité de doctorat : Informatique

Graduate School : Informatique et sciences du numérique
Référent : Université de Versailles Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche DAVID (Université Paris-Saclay, UVSQ), sous la
direction de Dominique BARTH, professeur, le co-encadrement de Julian GARBISO,

docteur et le co-encadrement de Mahdi ZARGAYOUNA, maître de conférence.

Thèse soutenue à Versailles, le 6 juillet 2022, par

Maxime TRÉCA

Composition du jury

Amal El Fallah-Seghrouchni Présidente

Professeure, LIP6, Sorbonne Université

Alain Dutech Rapporteur et Examinateur

Professeur, LORIA, INRIA Nancy

René Mandiau Rapporteur et Examinateur

Professeur, LAMIH, Université Polytechnique Hauts-

de-France

Lila Boukhatem Examinatrice

Maîtresse de Conférences, LISN, Université Paris Sa-

clay

Dominique Barth Directeur de thèse

Professeur, DAVID, UVSQ

Titre : Création de systèmes de contrôle de feux à l’aide de méthodes d’apprentissage par renforcement
Mots clés : Apprentissage par renforcement, simulation de trafic, contrôle de feux, apprentissage
profond.

Résumé : Cette thèse étudie le fonctionnement
des systèmes de contrôle de feux de signalisation
dans l’optique d’optimiser le trafic routier. Cette
optimisation s’appuie sur des techniques d’appren-
tissage par renforcement qui modélisent un ou plu-
sieurs agent maximisant une tâche dans un envi-
ronement. Pou run état donné du système (i.e. le
réseau routier), l’agent choisit une action (i.e. une
configuration de feux) qui est appliquée à l’envi-
ronnement dans le but de maximizer un objectif
(i.e. minimiser le temps d’attente des véhicules du
réseau).

Ces travaux se divisent en trois parties. Tout
d’abord une partie introductive dresse l’état de
l’art des différentes disciplines abordées durant le
thèse, soit une présentation du contrôle de feux tel
qu’il est utilisé dans le monde des transports, une
présentation de l’apprentissage par renforcement
en tant que branche de l’intelligence artificielle puis
une présentation du domaine RL-TSC (reinforce-
ment learning for traffic signal control), soit com-
ment les méthodes d’apprentissage par renforce-
ment sont appliquées au contrôle de feux.

Dans un second temps, la thèse présente les
outils utilisés afin de développer des méthodes de
contrôle de feux à l’aide de l’apprentissage par ren-
forcement. Plus particulièrement, nous définissons
un modèle mathématique du contrôle de feux, ainsi
qu’un modèle d’apprentissage utilisé par les diffé-
rents algorithmes pour apprendre dans ce contexte
(i.e. définition des états de l’environnement, des
actions prises par les agents et les récompenses as-
sociées). Finalement, nous présentons l’environne-
ment d’experimentation utilisé pour l’optimisation
de trafic (simulateur SUMO), et les ptocoles utili-
sés pour mesurer la performance des algorithmes
d’apprentissage par renforcement utilisés dans ce
contexte.

Finalement, la troisième partie de ces travaux
vise à analyser et comparer diverses méthodes
de contrôle de feux utilisant de l’apprentissage
par renforcement. Dans un premier temps, plu-
sieurs approches classiques de la littérature (e.g.

Q-learning, LRP et méthode acteur-critique) sont
appliquées sur une intersection isolée. Après avoir
identifié et expliqué pourquoi les approches par va-
leur, comme le Q-learning, sont le plus adaptées
au contrôle de feux, nous étendons cette approche
à l’utilisation de réseaux de neurones profonds
comme moyen d’approximation par fonction. Cette
approche plus moderne est associée à une meilleure
adaptabilité de l’agent et donc de meilleures per-
formances.

Dans un second temps, nous étendons notre
analyse à un cadre multi-agent. Cette approche
introduit un certain nombre de contraintes sup-
plémentaires sur l’apprentissage, comme la non-
stationnarité, mais permet également aux agents
de communiquer et de même se coordonner afin
de mieux optimiser le traffic en l’anaysant à plus
grande échelle. Plusieurs approches innovantes
sont proposées dans ce cadre, comme notamment
une coordination par vague verte permettant à plu-
sieurs agents indépendants de se coordonner auto-
matiquement le long d’une artère. Cette approche
donne de meilleurs résultats que les méthodes
non-coordonnées de la littérature, mais unique-
ment lors que le réseau n’est pas congestionné.
Une seconde approche que nous avons développé,
DEC-DQN, permet aux intersections d’un réseau
routier d’apprendre à adapter leurs feux de signali-
sation en fonction du trafic en temps réel. Le point
central de cette méthode est que les intersections
du réseau peuvent communiquer entre elles selon
un protocole qu’elles ont elle-mêmes appris, ce
qui leur permet de s’adapter à plusieurs scenarios
routiers sans instructions explicites. Une expéri-
mentation sur simulateur de trafic dans une ville
synthétique à grande échelle valide la performance
de DEC-DQN par rapport à d’autres méthodes
phrase de la littérature RL-TSC comme MARLIN.
Les résultats de ces simulations indiquent la supé-
riorité de notre approche dans plusieurs scénarios
de trafic différents : trafic faible, congestionné et
variable.

Title : Designing Traffic Signal Control Systems Using Reinforcement Learning
Keywords : Reinforcement learning, traffic simulation, traffic signal control, deep learning.

Abstract : This thesis studies traffic light control
systems in order to optimize traffic flows. This op-
timization is based on reinforcement learning tech-
niques, which model one or multiple agents maxi-
mizing a task in a given environment. This thesis
defines a novel deep reinforcement learning me-
thod that allows intersections of a road network
to learn to adapt their traffic light signals depen-

ding on the current state of the road network. The
main contribution of this method is the ability for
intersections to communicate according to a com-
munication protocol that they learn themselves, al-
lowing them to adapt to multiple traffic scenarios.
This novel method, DEC-DQN, outperforms va-
rious coordinated deep reinforcmeent learning me-
thods in use in the traffic signal control literature.

�

Designing Tra�c Signal Control Systems
Using Reinforcement Learning

by

M�����T����

Supervisors: Prof. Dr. Dominique Barth Université de Versailles Saint-Quentin-en-Yvelines
Dr. Julian Garbiso Institut Védécom

Prof. Dr. Mahdi Zargayouna Université Gustave Ei�el

A���������������

I would like to express my appreciation tomy supervisor, Dominique Barth, for his guidance dur-
ing my years of research. When Dominique informed me of a research topic on tra�c optimiza-
tion, I hadno idea that itwould result in studying a subject I knewvery little about–reinforcement
learning–for the next three years. I thank him for this fruitful discovery. Dominique was always
available for guidance and scienti�c discussions, no matter how busy his schedule was. However,
he also let me explore my own ideas. I owe him the ability to be autonomous and curious in
research, which is precious. I am proud to have him as an advisor. I would like to extend this
appreciation to my two co-supervisors, Julian Garbiso andMahdi Zargayouna. Julian has always
been very generous with his time and energy, from proofreading papers before deadlines to con-
ceptualizingnovelways of optimizing tra�c. Hismoral support has also been vital during di�cult
periods of my thesis. I am happy to call him a friend. I would like to thank Mahdi for his enthu-
siasm, kindness, and keen eye regarding scienti�c publications. He was always available to give
me excellent advice regardingmanuscripts or model choices. I would like to thank Amal El Fallah
Seghrouchni, Lila Boukhatem, Alain Dutech, and René Mandiau for participating in my thesis
committee.
Imet amazingpeople duringmy thesis, whether at InstitutVédécomor theDAVIDandGRET-

TIA lab. Although the simple mention of their names does not do justice to their talent or kind-
ness, I would like to thank Alexis, Aziz, Bertrand, Bintou, Catherine, Coline, David, Fabienne,
Fares, Frank, Jean-Michel, Joseph, Kartik, Leila, Loric, Mael, Mehdi, Nassim, Perla, Pierre, Safa,
Sandrine, Shabbir, Tatiana, Thierry, Toussaint, Tristan, Xavier, Yacine, Yann, Ylène, Youssef and
others for these three years together. I would also like to extend these thanks to my students, who
kept my passion for teaching and computer science alive. I am also grateful to Université de Ver-
sailles Saint-Quentin-en-Yvelines, Institut Védécom, and Université Gustave Ei�el for �nancing
and accompanyingmy research and allowingme to publish andparticipate in conferences. Finally,
I would like to thank the thousands of people around the world who develop andmaintain open-
source software. More speci�cally, this thesis research would not have been possible without the
thousands of hours of work behind the GNU/Linux, NixOS, Emacs, and SUMO projects.
My wife Marci has been an anchor during this time. I can never repay her enough for her pa-

tience, love, joy, and for the sacri�ces she made for me to complete this thesis. Last but certainly
not least, I am grateful for my friends and family for their continuous support.

�

C�������

� I����������� �

�.� Motivations . �

�.� Tra�c Signal Control . ��

�.� Reinforcement Learning . ��

�.� Contributions . ��

�.� Structure of this Thesis . ��

I T����� ��

� A� I����������� ��T������ S�����C������ ��

�.� The Science of Tra�c Signal Control . ��

�.�.� Origins of Tra�c Signal Control . ��

�.�.� Tra�c Signal Control Terminology ��

�.�.� ATypology of Tra�c Signal Control Methods ��

�.� Operation of Tra�c Signal Control Methods ��

�.�.� FixedMethods . ��

�.�.� ActuatedMethods . ��

�.�.� Adaptive Methods . ��

� R������������ L�������T����� ��

�.� Fundamental Reinforcement Learning Concepts ��

�.�.� Markov Decision Process . ��

�.�.� Learning Algorithm . ��

�.�.� Agent Policy . ��

�.� Reinforcement LearningModel Extensions ��

�.�.� Multi-agent Reinforcement Learning ��

�.�.� Function Approximation . ��

� R������������ L�������A������ ��T������ S�����C������ ��

�.� Modeling Tra�c for Reinforcement Learning ��

�.�.� General Model Choices . ��

�.�.� Model Parameter Design . ��

�.� Tra�c Signal Control Methods . ��

�.�.� Single Agent Reinforcement Learning Applied to TSC ��

�.�.� Multi-Agent Reinforcement Learning Applied to TSC ��

�.�.� Agent Coordination Applied to TSC ��

�.�.� Function Approximation Techniques ��

�

Contents

II M���� ��

� T������M���� ��

�.� Road Network . ��

�.�.� Graph . ��

�.�.� Vertices . ��

�.� Tra�c Signals . ��

�.�.� Tra�c Trajectories . ��

�.�.� Tra�c Phases . ��

�.�.� Signal Cycles . ��

�.� Tra�c Flows . ��

�.�.� Modeling Tra�c . ��

�.�.� Vehicles and Lanes . ��

�.�.� Transition Function . ��

� L�������M���� ��

�.� Objective FunctionF . ��

�.�.� Role of the Objective Function . ��

�.�.� Choosing the Objective Function ��

�.� Reward FunctionR . ��

�.�.� Choosing the Reward Function . ��

�.� State Space S . ��

�.�.� Role of the State Space . ��

�.�.� Choosing the State Space . ��

�.� Action SpaceA . ��

�.�.� Role of the Action Space . ��

�.�.� Choosing the Action Space . ��

�.� Transition Function T . ��

�.�.� Choosing the TransitionModel . ��

� E����������� S������ ��

�.� Tra�c Simulator . ��

�.�.� Simulator Features . ��

�.�.� Network Data . ��

�.�.� Demand Data . ��

�.�.� Output Data . ��

�.� Simulation Library . ��

�.�.� Library Structure . ��

�.�.� Tra�c Generation . ��

�.�.� Additional Utilities . ��

�.� Experimental Protocols . ��

�.�.� Convergence Analysis . ��

�.�.� Performance Analysis . ��

�.�.� Performance Analysis Under Variable Flows ��

�

Contents

III M����� ��

� I�������T������ S�����C������M������ ��

�.� Deterministic Isolated Tra�c Signal Control ��

�.�.� FixedMethods . ��

�.�.� Optimal Method . ��

�.� Classical Reinforcement LearningMethods ��

�.�.� Value-basedMethods . ��

�.�.� Policy IterationMethods . ��

�.�.� Actor-critic Methods . ��

�.�.� Performance Evaluation of Classical RLMethods ��

�.� Function Approximation Techniques . ��

�.�.� Q-learning Bootstrapping . ��

�.�.� Function Approximation for Q-Learning ��

�.�.� Applying Function Approximation to Tra�c Signal Control ��

� C����������T������ S�����C������M������ ���

�.� Independent Learning . ���

�.�.� Optimal Method in the MARLCase ���

�.�.� Independent Learning Performance ���

�.� GreenWave Coordination . ���

�.�.� GreenWave CoordinationMechanisms ���

�.�.� GreenWaveMethods . ���

�.�.� GreenWave Performance . ���

�.� Indirect Coordination . ���

�.�.� Indirect CoordinationMechanisms ���

�.�.� Measuring The Impact Of Indirect Coordination ���

�.� Direct Coordination . ���

�.�.� Direct CoordinationMechanisms ���

�.�.� Measuring the Impact of Direct Coordination ���

�.� Agent Coordination on Large-Scale Tra�c Networks ���

�.�.� Synthetic Large-Scale Road Network ���

�.�.� Performance Under Fixed and Variable Arrival Rates ���

�� C��������� ���

B����������� ���

A������� ���

L��� �� S������ ���

A A������� �O������M����� ���

B A������� �Q��������� �������������� ������ ���

�

Contents

C A������� �C���������A������� ���

�

� I�����������

The XXth century has indubitably been the century of the personal motor vehicle. In the United
States, the rates of vehicle ownership per ���.��� inhabitants have soared from �.� in ���� to ���.�
in ���� and ���.� in ���� (Davis and Boundy, ����). As this increasing number of vehicles started
circulating on urban transportation networks, the need for tra�c signal control (TSC) became
apparent for two reasons. Its primary and essential goal was to guarantee the safety of road users.
Its second and corollary goal was to reduce tra�c congestion caused by the introduction of a large
number of vehicles in urban areas. This thesis aims to leverage recent advances inmachine learning
to ful�ll these twomissions: optimizing tra�c �ows on a tra�c networkwhile ensuring the safety
of its users.

��� M����������

Until the ����s, tra�c signal control was mainly seen through the prism of tra�c engineering
and operational research. Early TSC solutions inspired by Webster’s work (����) provided sim-
ple �xed tra�c signal settings based on historical tra�c data that performed relatively well. More
advanced tra�c solutions such as adaptive tra�c signal control (ATSC) which relies on routing
tra�c using real-time instead of real-time tra�c data, soon followed. The recent rise of reinforce-
ment learning (RL) and the development of novel sensor technology have provided a theoretical
and practical basis for the use of machine learning for tra�c signal control. The study of ATSC
methods has become exceedingly popular in the literature in recent years due to these new per-
spectives. The reinforcement learning-based tra�c signal control (RL-TSC) literature has since
showcased impressive achievements in simulated tra�c settings during its relatively short history.
In recent years, this research has culminated with the use of TSCmethods coupled with deep re-
inforcement learning (DRL) techniques and agent coordination. Such methods allow multiple
intersections to optimize tra�c �ows on large simulated networks using real-world tra�c data,
outperforming several well-established TSCmethods from the tra�c engineering literature. The
numerous manners in which the RL-TSC literature applies reinforcement learning on tra�c op-
timization problems is a testament to the fact that RL is a highly well-suited tool for the control of
tra�c lights. This last remark should, however, not divert us from the fact that tra�c signal con-
trol is muchmore than a simple application domain of machine learningmethods, but a complex
and fascinating research topic that predates the �eld of RL itself. It would hence be a mistake to
study RL-TSC without understanding tra�c engineering �rst.
This thesis’s primarymotivation is to provide a complete (but not exhaustive) study of howone

can apply modern reinforcement learning techniques to the problem of tra�c signal control. By
�rst de�ning what tra�c is, we were able to incrementally build a model and framework for RL-
TSCwhile analyzing, discussing, and explaining each hypothesis,model choice, or design decision
along the way. Thismodeling work has not only allowed us to build a state-of-the-art coordinated

�

� Introduction

tra�c signal control method but can also serve as a basis for any future work onRL-TSC research
in the future.

��� T������ S�����C������

The task of tra�c signal control, which consists in assigning a right-of-way on con�icting tra�c
�ows over an intersection through the use of light signals, can be seen as a simple optimization
problem. Each intersection of the road network aims to achievemaximum vehicle throughput on
its lanes while maintaining safety constraints for road users. This optimization problem has vari-
ous answers in the TSC literature depending on the characteristics of the intersection at hand. In-
deed, the optimal tra�c light assignment over an intersection depends on geographic constraints
and tra�c data accessibility. Intersections for which only historical tra�c data is available will
not route tra�c the same way as intersections using real-time tra�c data through sensors or loop
detectors. Similarly, tra�c routing di�ers depending on its scale of operation: the optimization
problem is easy to solve over isolated intersections but becomes increasingly complexwhen spread
on a larger scale, such as arterials.

Given thatmost state-of-the-art tra�c signal control solutions, presented in chapter �, are both
adaptive (i.e., they can access tra�c data in real-time) and coordinated (i.e., they optimize tra�c
�ows on multiple intersections), we aim at developing a tra�c signal control leveraging both of
these features, while being able to automatically learn to route tra�c using a branch of machine
learning known as reinforcement learning.

��� R������������ L�������

Reinforcement learning is a class of machine learning algorithms aiming at solving tasks through
rewardmaximization. MostRLmodels feature an agent interactingwith an environment to solve
a task. The environment goes through successive states (e.g., tra�c congestion around an intersec-
tion) answered by the agent with an action (e.g., a tra�c light setting) applied to the environment.
Once the action is applied, the environment transitions to a new state, and the agent receives a re-
ward value that quanti�es the quality of the previous action given the task it is trying to solve. By
e�ciently testing state-action combinations to maximize the agent’s cumulated reward signals,
RL algorithms can learn an optimal policy, which maps optimal actions to di�erent environment
states. We present the general RL framework in chapter �.

The use of reinforcement learning for tra�c signal control tasks, which we cover extensively
in chapter �, has been increasingly popular for multiple reasons. First, the theoretical framework
of reinforcement learning is a good �t for tra�c signal control problems. Since learning models
usually place agents at the intersection level, they canboth learn in a single-agent (SARL) ormulti-
agent (MARL) setting since the RL framework covers both single and multi-agent learning. Sec-
ond, developingRL-TSCmethods is relatively easier thandeveloping classical tra�c signal control
methods. Indeed,model-freeRLmethods learn from reward signals from the environment with-
out explicitly modeling how their actions a�ect state transitions of the environment. In the case
of tra�c signal control, this implies that a model-free method can learn to route tra�c without
prior knowledge regarding tra�c dynamics. Furthermore, the availability of open-source tra�c

��

�.� Contributions

simulators and scienti�c computing programming libraries has made it easy to prototype novel
RL-TSCmethods and test their performance on tra�c simulations.

��� C������������

We have made several scienti�c contributions during our research work on coordinated tra�c
signal control methods:

• In chapter �, we analyze the e�ect of di�erent action space de�nitions on an intersection’s
overall tra�c routing abilities using the Q-learning algorithm. Our experiments showed
that a step-based action space de�nition was superior to a phase-based one. We published
these results in the form of guidelines for action space de�nition for RL-TSC applications
at the AAAI ICAPS ���� conference (Tréca et al., ����a).

• In chapter �, we present a simulation librarywritten inPython, carmulator, which has been
created during our research work to quickly prototype novel RL-TSC methods and com-
pare themto existingmethodsusing theSUMO simulator. All the results obtainedduring this
thesis work are reproducible using this simulation library released under an open-source li-
cense.

• In chapter �, we de�ne a novel bootstrapping method used to accelerate the convergence
process of a Q-learning-based tra�c signal control method on an isolated intersection. By
pre-estimating the value function of each possible tra�c state around an intersection using
approximation results from queuing theory, we were able to drastically improve the con-
vergence speed of a RL-TSC agent. We have presented this novel method at the IEEEVTC
���� conference (Tréca et al., ����b).

• In chapter �, we develop a novel near-optimal tra�c signal control method. This method
features a backtracking algorithm that enumerates all the possible strategies of a tra�c light
controller over a given horizon by repeatedly saving and loading SUMO simulation states and
returns the optimal one. This near-optimal method allows to set an upper performance
bound on tra�c simulation scenarios, which proves extremely useful in evaluating the per-
formance of RL-TSCmethods. This method is currently being submitted for publication.

• In chapter �, we present a deep reinforcement learning algorithm for tra�c signal control
that relies on greenwave coordination over arterial streets. This form of tra�c light coordi-
nation, which, to our knowledge, has not been studied in the RL-TSC literature, outper-
forms standard deep Q-learning algorithms in normal tra�c conditions. This method has
been accepted for publication and will be presented at the TRISTAN ���� conference.

• In chapter �, we present a novel RL-TSC method featuring direct coordination between
agents of the same road network. Agents using this direct coordination method learn a
common communication protocol through a shared deep neural network and can hence
coordinate automatically without human intervention. This coordination method pro-
vides excellent results, which we consider to be state-of-the-art. This method has been sub-
mitted to the NeurIPS ���� conference.

��

https://github.com/mtreca/carmulator

� Introduction

��� S�������� �� ����T�����

This thesis aims to build a state-of-the-art coordinated tra�c signal control method from the
ground up. Hence, the structure of this thesis re�ects the deeply iterative nature of this work,
divided into three main parts.
The �rst part of this thesis contains a thorough review of classical tra�c signal control (chapter

�) and the theoretical framework of reinforcement learning (chapter �). These two reviews help
establish the necessary terms and concepts which we use to present the �eld of RL-TSC (chapter
�). Following these de�nitions, the second part of this thesis looks at the model in use for tra�c
signal control. More speci�cally, we de�ne amathematical model of tra�c signal control (chapter
�), whichwe can, in turn, use to formally determine how tra�c is represented and optimized from
a reinforcement learning standpoint (chapter �). Finally, we describe the tra�c simulation setup
used to conduct tra�c signal control experiments of this thesis (chapter �). This thesis’s third
and �nal part de�nes e�cient tra�c signal control methods using the experimental framework
described in part �. More speci�cally, we �rst aim at comparing multiple tra�c signal control on
isolated intersections to establish theoptimalRL-TSCmethodandassociatedparameters (chapter
�). On this basis, we extend our scope of analysis to multi-intersection networks and the study of
coordination modes between these intersections (chapter �). Finally, we summarize our main
�ndings and present future areas of research in the last chapter of this thesis (chapter ��).

��

P��� I

T�����

The �rst part of this thesis presents the context in which reinforcement learning-based tra�c sig-
nal control methods were developed. Thus, this part successively introduces the �eld of tra�c
signal control (chapter �), including its origins, main concepts and methods, and the theory of
machine learning (chapter �) by presenting its general framework and the main categories of RL
algorithms. Finally, we describe how these disciplinesmerged to give birth toRL-TSC (chapter �)
by doing a thorough literature review of this research topic and by discussing its main challenges.

��

� A� I����������� ��T������ S�����

C������

�.� The Science of Tra�c Signal Control . ��

�.�.� Origins of Tra�c Signal Control . ��

�.�.� Tra�c Signal Control Terminology ��

�.�.� ATypology of Tra�c Signal Control Methods ��

�.� Operation of Tra�c Signal Control Methods ��

�.�.� FixedMethods . ��

�.�.� ActuatedMethods . ��

�.�.� Adaptive Methods . ��

Tra�c signal control, which is the study of the use of tra�c lights to ensure the safety and e�-
ciency of a road network, has been central in the proper management of urbanmobility for more
than a century. The role of this chapter is twofold. It �rst aims to establish a short history of the
�eld of TSC by presenting the motivations for its inception and its pivotal role in the modern-
ization of urban mobility while showcasing how TSC methods have considerably evolved over a
century. The second objective of this chapter is to present a certain number of crucial tra�c sig-
nal control concepts and notions which will be essential to the understanding of how these TSC
methods optimize tra�c before formally introducing amathematical tra�cmodel in chapter � of
this thesis.

��� T�� S������ ��T������ S�����C������

The birth and adoption of tra�c lights is a direct consequence of themass production of automo-
biles in the early XXth century. The widespread availability of the Ford Model T, which started
production in ����, caused an exponential surge in tra�c congestion inmostmajor cities inNorth
America andWesternEurope in the late ����s and ����s, respectively. Congestionbecame soprob-
lematic in some large cities that walking or taking the subway was commonly thought to be faster
than using a car (Wells, ����). These issues regarding urban mobility caused the birth of tra�c sig-
nal control in the ����s, which then developed to become an entire �eld of study throughout the
century. This section quickly reviews the origins, terminology, and main types of methods used
in TSC.

��

� An Introduction to Tra�c Signal Control

����� O������ ��T������ S�����C������

The�rstmodern tra�c lightwas installed inCleveland,Ohio, in ���� (see Figure �.�) tomodernize
the existing tra�c routing solutions. Tra�c lights soon expanded to several major American cities
to streamline heavily congested intersections.

While they reduced congestion and improved tra�c safety, the �rst tra�c lights were frowned
upon by inner-city inhabitants. Since they caused an increase in tra�c and average vehicular
speeds in these areas (which was proof of their e�ectiveness), pedestrians felt safer with the use
of stop signs, even though they caused more tra�c accidents at the time (McShane, ����). At �rst,
the control of tra�c at intersections was under the responsibility of the city police, either through
modern tra�c control systems, such as tra�c lights or semaphores� or using direct gestures. Since
they were directly operating tra�c lights, police o�cers drove most early innovations regarding
tra�c signal control systems. The addition of an orange light for safety reasons in ���� and the
octagonal shape of stop signs in ���� is a testament to this involvement. The extensive use of hu-
man intervention in routing tra�c was a driving factor in the tra�c light automation that soon
followed. The �rst automated tra�c light system (TLS) appeared in Houston, Texas, in ����,
and most major cities in North America and Western Europe adopted these automated systems
as early as ����. Aswell as cutting downoperating costs of tra�c light systems signi�cantly, this in-
novation e�ectively transferred the task of using and developing TSC systems from police o�cers
to electricians and soon-to-be tra�c engineers.

Figure �.�: The First Modern Tra�c Light Control System, Installed on Euclid and ���th Avenue. Cleve-
land, Ohio, August ����.

�Semaphores were mechanical devices with rotating Stop and Go signs giving a right of way to vehicles around an
intersection.

��

�.� The Science of Tra�c Signal Control

Interestingly enough, one should note that most TLS systems developed during the ����s and
����s were all remarkably similar, even though they arose in di�erent locations and no one had
explicitly set standards at the time. This natural gravitation towards the same set of tra�c rules
partly explains why TLS systems were similar in most parts of the world by the ����s (McShane,

����).

����� T������ S�����C������T����������

Over a century, tra�c signal control has evolved from an experimental technique to reduce con-
gestion on a few intersections to an entire �eld of researchwith speci�c concepts and terminology.
This section introduces a certain number of key concepts and terms used in the �eld of tra�c en-
gineering and which are crucial to understanding the challenges posed by tra�c signal control.
Note that this section does not extensively cover tra�c engineering concepts, which one can �nd
inmultiple works in the transportation literature (Koonce and Rodegerdts, ����; Sullivan et al., ����;
Urbanik et al., ����), but to provide a general introduction to TSC to the reader to underline its
mechanisms and challenges.

Tra�c signal control is commonly applied on intersections composed ofmultiple entry points,
also known as approaches (e.g. arrows on Figure �.�). These approaches meet on the crossing area
of the intersection, on which multiple tra�c streams can cross (e.g., gray zone on Figure �.�).
A tra�c stream can engage on the crossing area when it has a right of way over the intersection,
usually given by a tra�c light controller.

Figure �.�: An example �-way intersection.

Non-con�icting tra�c streams that can safely and simultaneously cross an intersection can
form a tra�c phase. A signal cycle is a repetitive pattern of phases implemented by a tra�c light
controller, ensuring that all intersection tra�c streams can eventually cross it. Adding constraints
on the organization and compatibility of tra�c streams in a signal cycle still allows for many dif-
ferent valid signal cycles on the same intersections. A common signal cycle pattern for �-way in-
tersections, known as the NEMA� signal cycle, is represented on Figure �.�.

�National ElectricalManufacturers Association.

��

� An Introduction to Tra�c Signal Control

Figure �.�: An example NEMA signal cycle on a �-way intersection.

One should note that if the signal cycle of an intersection is the only way this intersection in�u-
ences tra�c, there are four main levers of action within signal cycle design that in�uences tra�c
on that intersection (Papageorgiou et al., ����):

�. Its phase speci�cation, or how it organizes phases within its signal cycle.
�. Its split time, or the relative duration of each phase within the signal cycle.
�. Its cycle time, which is the total duration of the signal cycle.
�. Its o�sets with neighboring intersections, which can create green waves along the intersec-

tions of an arterial street.

����� AT������� ��T������ S�����C������M������

All existing tra�c signal control methods belong to twomajor categories, given their mode of op-
eration. Depending on whether it routes tra�c on a single intersection or multiple ones, a TSC
method will either be isolated or coordinated. Additionally, if the tra�c signal control method
adapts to the current tra�c state, it is de�ned as adaptive, otherwise as �xed. This section quickly
presents each class of TSC methods according to these classes and underlines some of their ad-
vantages and limitations.

������� F����M������

The earliest and simplest tra�c light systems implement �xed-time signal cycles. These timing
strategies assign �xed durations to each phase of the signal cycle, usually using historical tra�c
data, giving insight into the distribution of tra�c �ows over intersections. While a good �rst ap-
proach regarding green light time assignment is to increase the green phase length of high-demand
lanes, attribution for �xed signal timing can quickly become complex (Urbanik et al., ����). More
advanced �xed-time tra�c lights can also switch tra�c light con�gurations on demand since traf-
�c demand usually changes during the day. Fixed methods cannot adapt to tra�c conditions in
real-time, given their nature. These methods are easy and cheap to deploy in real-life applications
but are also likely to perform relatively poorly in areas subject to high variations of tra�c demand.
While our primary goal is to study RL-TSC which is by nature adaptive, we present a few �xed
methods such as Webster’s or a near-optimal method in detail in section �.� of this thesis.

��

�.� The Science of Tra�c Signal Control

������� A�������M������

Adaptive tra�c signal control methods implement variable-length signal cycles that can adapt
to tra�c conditions in real-time by querying tra�c state through the use of sensors or cameras.
Adaptive methods generally provide better results than their �xed-time counterparts, as they can
react to tra�c demand changes in real-time. They are still rarely seen in real-world situations due
to their high deployment and maintenance costs. According to the United States department
of transportation, less than � percent of US intersections used an adaptive tra�c signal control
method in ���� (USDT, ����). While it is true that ATSC methods are more costly to deploy and
are marginal in most countries, they provide several bene�ts compared to �xed-timing plans that
would make their adoption worthwhile. Aside from the obvious fact that �xed-timing plans can-
not adapt to tra�c conditions in real-time, they also require regular maintenance and updates to
keep track of tra�c demand changes. Outdated signal timing plans are estimated to be responsi-
ble for �� percent of total tra�c delays in the US, which translates to an $�.� billion yearly cost in
fuel and productivity loss (USDT, ����). According to A. Robertson, creator of the TRANSYT and
SCOOT tra�c signal control methods, the switch from �xed to adaptive methods becomes more
urgent as TSC technology progresses (Robertson, ����):

I �nd it di�cult to believe that, as we approach the end of this century, tra�c engi-
neers and drivers will continue to tolerate signals with green and red times that were
decided by the �ows and queues that happened to be observed on one day many
years earlier, rather than in the last �ve minutes.

������� I�������M������

Isolated TSC methods, as indicated by their name, take a single intersection into account when
routing tra�c. They represent the majority of tra�c controllers in use. On the one hand, iso-
lated TSCmethods present several advantages. They are easy to implement, o�er a relatively low
complexity, and are highly scalable since removing or adding an isolated tra�c light on a road
network has little to no incidence on the other intersections of the network. On the other hand,
these methods are by nature limited since they can only act on tra�c on a per-intersection basis,
which limits their usefulness in highly used road networks or when tra�c light coordination is
desirable (Mannion et al., ����).We analyze these methods in detail in chapter � of this thesis.

������� C����������M������

Conversely, coordinated TSC methods aim to optimize tra�c around a given intersection and
make each intersection interact with its neighbors to some degree to optimize tra�c further. The
mechanisms relating to inter-intersection coordinationdi�er dependingon theTSCmethod. Co-
ordinatedmethods allow formore complex tra�cmanagement features since they can access traf-
�c data over larger networkportions andpotentially coordinate their signal cycle implementations
to optimize tra�c. For instance, green wave or bandwidth-based methods presented in the next
sectionmake extensive use of coordination to function correctly. Note that if these methods usu-
ally perform better than their isolated counterparts, they incur a high equipment cost since all
intersections must communicate in real-time, which increases their overall complexity, limiting

��

� An Introduction to Tra�c Signal Control

their applicability. Since developing an intelligent and adaptive coordinated tra�c signal control
method is one of the objectives of this thesis work, these methods will be extensively discussed, in
their adaptive form, in chapter � of this thesis.

��� O�������� ��T������ S�����C������M������

The previous section has shown themainmotivations behind tra�c signal control and how these
methods can be categorized depending on theirmode and scale of operation. This section broadly
presents how tra�c signal control methods optimize tra�c through several historically signi�cant
TSC methods, some of which are still in use today. We present these methods according to two
commonways to classify TSCmethods. On the one hand, thesemethods di�er according to their
responsiveness, dividing them between �xed, actuated, and adaptive methods (Gartner et al., ����).
On the other hand, these methods can also di�er according to the tra�c-related metric they aim
at optimizing. Some, known as bandwidth-based, aim at optimizing tra�c �ows along an arte-
rial and are hence necessarily coordinated. Others, known as delay-based, aim at minimizing the
average time it takes for a vehicle to exit the network. Delay-based methods have a multitude of
di�erent application settings (e.g., isolated, coordinated, �xed, actuated, adaptive) and are known
to perform better than bandwidth-based ones under variable tra�c �ows and complex signal set-
tings (Robertson, ����).

����� F����M������

While somewhat simple in design at �rst, �xed tra�c signal control methods can regroup a signif-
icant number of distinct techniques and modes of operation, including isolated and coordinated
methods, both using delay-based and bandwidth-based optimization objectives.

������� F����D�����B����M������

Regarding delay-based �xed methods, the �rst and signi�cant tra�c signal control method to be
developed is due toWebster (����), which studied the optimal settings of an isolated intersection
depending on the tra�c demand around it. Using one of the �rst computer tra�c simulations,
Webster de�ned a total delay function expressing themean delay per vehicle as a function of the in-
tersection’s cycle time, phases, and �ow values. UsingWebster’s formula (see section �.�.� for a full
de�nition), a tra�c engineer can minimize vehicular delay around an intersection (under normal
tra�c conditions) by setting green splits proportionally to the tra�c �ow within the intersec-
tion. Even though posterior works have re�ned it, Webster’s formula is an essential foundation
of the tra�c signal control literature (Rouphail et al., ����). Fixed delay-based tra�c signal control
methods featuring multiple agents have also appeared relatively early in the history of tra�c engi-
neering. TRANSYT (Robertson, ����) is a �xed and coordinated tra�c signal control method whose
objective is tominimize the sum of average vehicle queues by computing optimal per-intersection
splits and o�sets on a given road network. TRANSYT estimates the average vehicle �ow value on
each link of the network, also called cyclic �ow pro�les, by using historical data. Based on cyclic
�owpro�le data, pre-speci�ed staging, minimumgreen times, and cycle time value, TRANSYT then
simulates tra�c�owsusingdi�erent signal timingparameters, each associatedwith aperformance

��

�.� Operation of Tra�c Signal Control Methods

index. The settings with the best performance index are selected and applied for each intersection.
TRANSYT has since evolved into a commercial modelization tool containing a tra�c simulator and
a signal cycle optimizer.

������� F���� B���������B����M������

Perhapsmore surprisingly,multiple bandwidth-based (andhence coordinated)�xedmethods also
appeared relatively early in the history of tra�c signal control, due to the works of Little� (����),
which transcribed the bandwidth problem as a mixed-integer linear program. This program is
computed using bounds on its cycle time and red phases for a given signal cycle and information
about speed along the arterial. Solving this program allows �nding cycle times, speed limits, and
phase organizations, maximizing the bandwidth along an arterial. The MAXBAND algorithm (Little

et al., ����)uses Little’s bandwidth problem formulation to compute the optimal signal parameters
tomaximize the bandwidth along an arterial. MAXBAND also can generate splits using tra�c volume
and capacity data. A later extension, MAXBAND-86, also considers left-turn phase sequences in
the linear program (Chang et al., ����). One of MAXBAND’s limitations is that its model supposes
that tra�c �ows are uniform along an arterial, meaning that platoons of vehicles are supposed to
travel at the same speed and spread on the arterial. MULTIBAND (Gartner et al., ����) alleviates this
weakness by allowing di�erent bandwidth values for each link of the arterial. This modi�cation
yields better performance at the cost of a larger solution space. An extension of this method,
MULTIBAND-96 (Stamatiadis and Gartner, ����), adds the possibility to optimize bandwidth along
multiple arterials simultaneously.

����� A�������M������

Vehicle actuation methods use vehicle detection systems such as pressure plates or sensors to
change tra�c signals in real-time. Since these methods rely on vehicle detection, they do not be-
long in the�xedmethod category; however, theRL-TSC literature usually considers themdistinct
to adaptivemethods since they have two di�erentmodes of operation. On the one hand, actuated
methods allocate a minimal green time for each phase of the signal cycle and increase them if ve-
hicles using these phases are detected. On the other hand, adaptive methods estimate in advance
the arrivals of vehicles on all phases of the signal cycle and pre-computes its signal cycle accord-
ingly (Shenoda,Machemehl, et al., ����). Actuatedmethods are hence somewhat less advanced than
adaptive ones.

������� C��������A�������M������

Miller �rst de�ned a vehicle actuation TSCmethod on an isolated intersection (Miller, ����). This
intersection is given minimum green time duration and means for vehicle detection. The inter-
section then scans for vehicles through all of its approaches. When a vehicle is detected, the cor-
responding approach bene�ts from a green time extension, as long as it complies with minimum
green times de�ned for other approaches. If no vehicle is present, the method proceeds to the
next approach. This method has been re�ned multiple times by improving its decision process

�Little is also known for his work on queuing theory, and especially for Little’s law (Little, ����).

��

� An Introduction to Tra�c Signal Control

by, for instance, computing the relative gains and losses caused by switching the signal at each pe-
riod. Out of the extensions ofMiller’smethod, MOVA (Vincent and Peirce, ����) is probably themost
popular. Once a phase reaches minimum green time, MOVA checks whether the links of the active
phase are still saturated by computing their output �ow rates. If at least one link is still saturated,
the current phase is extended until it either becomes under-saturated or reaches the maximum
green time. If more than one approach is saturated, MOVA switches to a saturated mode where it
estimates queue emptying rates for all approaches at the end of minimum green time and tries to
maximize queue capacity along its lanes. The method was tested by its authors and boosted aver-
age performance by ��% compared to other vehicle-actuated methods in use at the time (Vincent
and Peirce, ����).

����� A�������M������

Finally, adaptivemethods regroup tra�c signal control methods which can adapt their signal tim-
ing plans in real-time through the use of sensing technologies allowing themethod tomonitor the
state of tra�c in real-time. While thesemethods are among themost advancedTSCmethods pre-
sented so far, they are also the least implemented in real tra�c scenarios because of their increased
cost and complexity.

������� C��������A�������M������

Among the numerous adaptive tra�c signal control methods present in the literature, some are
of particular interest. First, the SCOOT (Hunt et al., ����) method is the tra�c-responsive version
of TRANSYT. Instead of relying on historical tra�c data, SCOOT continuously updates its cyclic
�ow pro�le estimations using sensors deployed on multiple links of the network. This adaptive
capability ensures improved performance: testing in the city of Glasgow showed that SCOOT out-
performed TRANSYT by an average of ��% (Robertson, ����). The SCOOT algorithmhas since evolved
to become a commercial TSC solution quite widespread inGreat Britain andAustralia. A second
adaptive method, OPAC (Gartner, ����), leverages dynamic programming methods instead of stan-
dard parametric models to leverage real-time arrival data around an isolated intersection. OPAC
has since then been extended several times to include more functionality, such as arterial tra�c
optimization (Gartner et al., ����).

������� H�����������M������

Amore advanced sub-class of adaptive tra�c signal control methods regroups hierarchical meth-
ods. These methods aim to formulate an exhaustive tra�c model on a road network and split it
into smaller problems distributed acrossmultiple layers communicatingwith each other. Some of
thesemethodshavebeen routing tra�c fordecades inmajorurban areas, such asCLAIRE-SITI (Sce-
mama and Carles, ����) in Brussels, Toulouse, and New Dehli or GERTRUDE in Bordeaux, Lisbon
or Beijing (Lambert, ����).

Since they are both adaptive and coordinated, hierarchical methods rank among the most am-
bitious ones and often use dynamic programming to solve sub-problems on di�erent scales. A
�rst example of hierarchical TSC systems is PRODYN (Henry et al., ����). The central controller of

��

�.� Operation of Tra�c Signal Control Methods

PRODYN �rst de�nes a complete tra�c optimization programusingmultiple state equations. Real-
time tra�c data gathered through sensors is then fed to the program,which splits it usingdecompo-
sition coordination, each sub-problem only depending on local intersection variables. These sub-
problems are then solved using intersection-based data and recursive programming techniques
and sent back to the central controller, who deduces signal settings for each intersection of the
network. In comparison testing, PRODYN has unsurprisingly been found to perform better than
TRANSYT (Henry et al., ����). A second hierarchical TSCmethod of interest is RHODES (Mirchandani

and Head, ����),which uniquely features three distinct levels of operation. The dynamic network
loadingmodule in PRODYN captures the slow-changing variables of the network, such as its geom-
etry or the preferred routes of vehicles. Using this data, this module estimates the load in vehicles
per hour for each link of the network (as well as other variables such as queue discharge rates and
destination probabilities) and sends these estimations to aNetwork Flow Control layer. This sec-
ond layer allocates a per-intersection green time for each of these estimated tra�c streams on a
per-platoon basis and passes them to the intersection control layer, which explicitly computes the
best possible phase and splits settings using forward recursion and dynamic programming.

::::

This chapter gave a general presentation of the �eld of tra�c signal control through two axes.
First, we presented the overall characteristics of tra�c signal control. We explained how the

need for TSC emerged in the early XXth century and how it focused on two key missions: en-
suring the safety of drivers and optimizing tra�c �ows. We then de�ned key concepts in tra�c
engineering, such as the organization of an intersection and the role of signal cycles. We �nally
established a typology of tra�c signal control methods depending on their mode and scale of op-
eration. We explained how �xed, adaptive, isolated, and coordinated methods all had advantages
and drawbacks and could be used in distinct tra�c situations. Given its potential e�ciency and
�exibility, we established that developing an adaptive and coordinatedTSCmethodswas themain
aim of our work.
Second, we presented multiple classes of real-world tra�c signal control methods and brie�y

explained how they operated. This presentation covered various types of TSC methods, ranging
from simple �xed methods to actuated and adaptive methods, and �nished with complex hierar-
chical systems.

��

� R������������ L�������T�����

�.� Fundamental Reinforcement Learning Concepts ��

�.�.� Markov Decision Process . ��

�.�.� Learning Algorithm . ��

�.�.� Agent Policy . ��

�.� Reinforcement LearningModel Extensions ��

�.�.� Multi-agent Reinforcement Learning ��

�.�.� Function Approximation . ��

Reinforcement Learning describes a class of task-solvingmachine learning algorithms. At their
core, RL algorithms are “a way of programming agents by reward and punishment without need-
ing to specify how the task is to be achieved.” (Kaelbling et al., ����). Reinforcement learning
methods are particularly suited for tasks in which an agent must accomplish a task in an envi-
ronment (e.g., autonomous driving, playing video games) without prior information about this
environment. This chapter �rst gives a general overview of how reinforcement learning methods
model the interactions between an agent and its environment and how reinforcement learning
algorithms can learn to solve a task from these interactions. Then, it presents how RL models
can be extended to allow for multiple agents learning within the same environment and how RL
algorithm can use function approximation techniques to increase their learning e�ciency.

��� F����������R������������ L�������C�������

Reinforcement learning models the interaction of an agent and an environment. The agent aims
to maximize its objective by acting on its environment but is not told how di�erent actions will
a�ect its goal depending on the current environment state. Hence, the agent must test multiple
actions in a trial-and-error fashion to learn which ones are best suited to maximize its objective.
Each reinforcement learningmodel is divided into three parts. The interactions between the agent
and its environment are modeled by a decision process; the agent learns from repeated interactions
with the environment using a learning algorithm/and chooses the actions to apply to the environ-
ment using a /policy. We present all three components of reinforcement learningmodels and their
associated challenges in this section.

����� M�����D������� P������

A Markov decision process (MDP) is a stochastic control process that can model the decisions
of an agent aiming at maximizing a global objective function F in a given environment (Sutton
and Barto, ����). A MDP is de�ned as a �-tuple (S,A, T ,R), where S and A are respectively

��

� Reinforcement Learning Theory

the state and action spaces of the MDP, while R and T are its reward and transition functions
respectively (Bellman, ����).

������� M�����D������� P������ L���

The interactions between the agent and the environment in a MDP are modeled as follows. At
each discrete time step, the agent observes the state of the environment s 2 S and chooses an
action a 2 A to solve its task. Once action a is applied, the environment transitions to a new state
s0 according to the transition function T : S ⇥A⇥ S 7! [0, 1] which maps the probability of
the system transitioning from state s to state s0 when the agent selects action a. Finally, the agent
receives a reward r computed according to the reward functionR, which evaluates the quality of
the agent’s action according to the task it is trying to solve. In order to choose actions maximizing
its successive rewards, the agent uses a policy π which amapping from each state s 2 S and action
a 2 A to the probability π(s, a) of taking action a when in state s. As we will see section �.�.�,
various RL algorithms iteratively re�ne the agent’s policy to approximate the optimal policy π⇤

which yields maximal rewards, perfectly dictating its action choices depending on the current
environment state. Figure �.� summarizes the interactions between the agent and its environment.

Agent

Environment

π(s) = a

sr

s
0 = T (s, a)

r
0 = R(s, a)

step

Figure �.�: Schematic view of agent-environment interactions in a MDP.

������� R����� S������ ���O�������� F�������

The fundamental driving force behind reinforcement learning is the maximization of the agent’s
expected cumulative rewards. Indeed, the reward scalar r the agent receives at each time step is
the only signal indicating the quality of the current agent’s actions. MDPs hence imply a strong
reward hypothesis, stating that any task can be expressed as a reward maximization goal (Sutton
and Barto, ����). This property is one of the most distinctive features of RLmodels since a reward
signal is in theory su�cient for learning to occur.

Since the reward function, R, is paramount in driving learning in RL models, it needs to be
strongly correlated with the global objective function of the agent, F . In other words, an agent
cannot hope tomaximize ametric given by its objective functionF if the signal reward it receives,
dictated byR, is not correlated to this objective.

������� S����R�������������

While they are usually not explicitly de�ned, multiple state de�nitions coexist in MDPs. On the
one hand, the environment has a true state which entirely characterizes it. On the other hand, the
agent uses a representation of this true environment state, denoted s 2 S .

��

�.� Fundamental Reinforcement Learning Concepts

These two environment states di�er since the true state of an environment might contain in-
formation that is irrelevant to the maximization objective of the agent. Indeed, the state space of
a MDPmust contain a su�cient amount of features from the true environment state so that the
agent can clearly di�erentiate environment states. However, including too many features from
the true environment state increases the dimensionality of the state space and distinguishes envi-
ronment states that are similar in the context of the task at hand, which is likely to cause a slower
learning process (Abdulhai et al., ����). For this reason, RL models aim at developing an action
space containing enough data for the agent to reach an acceptable policy while keeping dimen-
sionality under control. Since we never directly refer to the true environment state in RLmodels,
the environment state s used throughout this thesis refers to the state representation of the envi-
ronment by the agent.
Markov decision processes assume full observability of the environment by the agent. This

property ensures that the agent can observe the true state of the environment in order to form its
own state representation. Alternative formulations ofMDPs, such as partially observableMarkov
decision processes do not allow for full observability of the true environment state, which forces
the agent to estimate this state indirectly. Partial observability models are brie�y presented in sec-
tion �.�.�.�. Furthermore, some RL algorithms such as linear automata (see section �.�.�) do not
use state representation at all to learn and only rely on the reward signal from the environment.

����� L�������A��������

As stated in section �.�.�.�, the role of any RL algorithms is to maximize the cumulated reward
signals received by the agent during its interactions with the environment. Their primary strategy
is to successively try all available actions a 2 A on the environment to identify high-payo� ones.
This learning process is, however, not straightforward for two reasons. First, the same action can
yield vastly di�erent rewards given the current state of the environment (e.g., steering left in an
autonomous vehicle may result in taking a highway exit or crashing depending on its position),
which forces the agent to estimate the quality of an action relatively to the state the environment is
in. Second, the agent cannotmeasure the quality of some actions immediately after applying them
(e.g., investing in stocks may cause a short-term loss but a long-term pro�t), forcing it to take de-
layed rewards into account. Reinforcement learning methods leverage two distinct components
working hand-in-hand to learn how to maximize the agent’s utility under these constraints. The
learning algorithm estimates the quality of each state of the environment while the agent policy
decides which action the agent should take next based on these quality estimates. This section
presents the former.

������� D������ P����������M������

Dynamic programming (DP) methods are the only class of learning algorithms providing ex-
act solutions for solving MDPs, short of exhaustively searching the policy space. This optimal-
ity is achieved by supposing a complete knowledge of the underlying MDP, and in particular
of the reward and transition functions R and P , which is an assumption that rarely holds in
practice (Barto, ����). The key idea of DP methods is to compute a value function V , which esti-
mates the expected value (in terms of expected reward) of each encountered state of the state space
S (Bellman, ����). For a given state s, the associated value estimateV (s) is computed by estimating,

��

� Reinforcement Learning Theory

for each next possible state s0, the quality of going into such a new state according to the current
policy π. The quality of a state is itself measured as the reward associated with this transition and
the value estimate of the new state discounted by a factor γ, weighted by the probability of such
a transition occurring according to the current agent policy π (Sutton and Barto, ����).

Vπ(s) =
X

s02S

Tπ(s, s
0)(Rπ(s, s

0) + γVπ(s
0)) (�.�)

DP algorithms iteratively re�ne their policy by using this recursive formulation of the value
function. For a policy π, the value function Vπ is computed in a process called policy evaluation.
Once the value function Vπ is computed, it can, in turn, be used to improve the existing policy
to a superior one, π0, in a process called policy improvement. By alternating policy evaluation and
policy improvement steps in a process known as general policy iteration, DPmethods converge to
an optimal policy π⇤, which yields a maximum utility over an in�nite horizon (Sutton and Barto,

����).

������� M�����C����M������

Asopposed todynamicprogramming,Monte-Carlo (MC)methodsdonot assumeperfect knowl-
edge of the environment. Instead, MC methods aim at approximating value estimate V by aver-
aging each of its observed return values at the end of a learning episode. Theoretically, the value
functions estimated withMCmethods converge to the exact value function when the number of
visits to each state of S goes to in�nity (Sutton and Barto, ����).

Since an agent using MC methods has no information regarding the environment, it cannot
directly use policy improvement as in the DP case since it requires computing rewards using the
reward functionR. MC methods can however estimate the value of actions relative to states by
using a quality function Q. Similarly to the value function V (s), the quality function Q(s, a)
computes the expected returns associated with a state s when choosing action a. MC methods
keep track of each state-action couple (s, a) encounter,N(s, a)within an episode, as well as the
associated total cumulated rewards. Using these values, it can approximate the quality of each
state-action pair by averaging the total episode gains:

Q(s, a) Q(s, a) +
1

N(s, a)
(
X

r �Q(s, a)) (�.�)

MC algorithms are approximation methods, which means that its quality function estimates
Q(s, a) improve the more the state-action couple (s, a) is visited. Hence, the longer an agent
explores a given MDP and the more distinct state-action couple it encounters, the better the re-
sulting quality estimates will be. Furthermore, since its quality function estimates are computed
using the cumulated gains over the entire episode, MC methods can only be applied in environ-
ments having a terminal state.

������� T��������D��������� L�������

Temporal-di�erence (TD) learning is inspired by both DP and MC methods. Similarly to MC
methods, TDmethods approximate value or quality estimates since they have no prior knowledge

��

�.� Fundamental Reinforcement Learning Concepts

of the environment. Similarly toDPmethods, these value estimates include the estimated value of
the next system state (see Equation �.�.�.�), meaning that they can bootstrap. A simple illustration
of TD learning is the TD(0) formula, which iteratively updates the value estimate V (s) of a state
s by using the reward value r obtained when transitioning to state s, as well as the value estimate
V (s0) of the successor state s0, weighted by a parameter α known as the learning rate.

V (s) V (s) + α[r + γV (s0)� V (s)] (�.�)

TDmethods present two signi�cant advantages compared toDP andMCmethods. First, they
can operate incrementally by estimating value functions from other value estimates in an online
manner (i.e., while being in an episode), as opposed toMCmethods. Second, TDmethods donot
require any model of the environment since the transition and reward functions are not needed
for the computation of value estimates, whichmakes themmuchmore �exible thanDPmethods.

������� P�����������M������

The three types of RL algorithms we have presented so far are value-based since they all aim at
estimating value or quality functions to approximate an optimal agent policy. Instead of com-
puting value estimates to deduce an optimal policy, policy iteration (Howard, ����) methods aim
at directly searching for the agent’s optimal policy π⇤ without relying on value estimates (Arulku-
maran et al., ����). To this end, a parameterized policy is updated to maximize the agent’s utility,
usually through gradient-based optimization. The REINFORCE algorithm (Williams, ����) or
learning automata (Kaelbling et al., ����) are instances of such RL policy search methods. Finally,
actor-criticmethods aim to balance value-based and policy iterationmethods by using bothmech-
anisms: the critic (value function estimator) gives feedback to the actor (the policy) after each in-
teraction with the environment, both in�uencing each other in the process. These methods are,
in a way, a special case of policy gradient methods (Arulkumaran et al., ����) and are described in
more detail in section �.�.�.

������� M�����F��� ���M�����B����M������

As stated earlier in this section, RLmethods such asMC andTD do not need to know the transi-
tion function T in order to properly function. More generally, a method is known asmodel-free
when it does notmodel the transition functionT of the environment. In otherwords,model-free
methods observe successive states of the environment and do not aim to estimate how a chosen
action a might in�uence the transition of the environment to the next state s0. The main ad-
vantage of model-free methods is their relative simplicity since no mechanisms exist to estimate
environment state transitions and their broad applicability to a large number of RL problems.

Conversely, methods that take into account the transition function are known asmodel-based.
It is important to note thatwhileDPmethods are necessarilymodel-based since they cannot func-
tion without knowing the transition function T , TD andMC can also be model-based. Indeed,
these methods can approximate the transition function T through successive observations of the
environment states. In practice, model-based methods can compute transition estimates through
the use of state counters (Wiering, ����), sometimes coupled with dynamic programming (Bakker
et al., ����; Kuyer et al., ����) or Bayesian methods (Khamis et al., ����a,b). Model-based methods

��

� Reinforcement Learning Theory

allow for richer models of the environment, which makes them both faster and more sample ef-
�cient, ensuring good policy performance in a relatively short amount of time (Yau et al., ����; Ye
et al., ����).However, this performance usually comes at the cost of model complexity.

����� A���� P�����

The previous section describes how the learning algorithm aims to estimate the intrinsic value of
states and actions of the MDP, which is a prediction problem. The last and crucial component
of reinforcement learning models is the agent’s policy scheme which leverages these value esti-
mates to establish an optimal policy in order to select actionsmaximizing its rewards. This second
mechanism is known as a control problem.

������� T��R��� �� P�������

Apolicy has two often contradicting roles. On the one hand, RLmethods using quality estimates
have no guarantee to visit all state-action pairs in (S,A), which may cause the policy to get stuck
on a local optimum. The role of policies is hence to promote exploration of the state and action
space by visiting each pair of (S,A) in�nitely often, which is usually a necessary condition for
reaching an optimal policy. On the other hand, the agent uses the policy to maximize its utility,
which is obtained by selecting actions with high-value estimates, a technique known as exploita-
tion. The drive to explore the state-action space by selecting sub-optimal action for exploration
contradicts the drive for maximizing the agent’s utility, a phenomenon known as the exploration-
exploitation dilemma.

������� G����� ��� S������ P�������

Abasic approach to aiming atmaximizing agent utilitywould be to pick, for eachnew system state
s, the actiona⇤ such that the associated value estimateQ(s, a⇤) ismaximal across all actions ofA.
This policy, known as greedy, does not guarantee su�cient exploration and is likely not to reach
optimality. A commonly used policy alleviating this issue is the ε-greedy policy, which selects the
action associated with the highest value estimate with probability 1� ε or a random action oth-
erwise, ensuring that the agent can visit all state-action pairs for ε > 0 (Sutton and Barto, ����). A
standard limitation of ε-greedy policies is that all actions are chosen with the same probability if
a random action is to be selected, which may be undesirable if some actions are associated with
low-value estimates. The softmax function policy counteracts subpar action selection by assign-
ing a distinct probability weight to all actions of the action space based on their estimated values
and on a temperature parameter that determines the randomness of action selection. Hence, the
softmax policy favors high-payo� actions even when randomly selecting actions while maintain-
ing su�cient exploration by assigning a non-nil probability weight to all actions (Sutton and Barto,
����).

������� I����������� �� P����� I�����

This section illustrates the in�uence of exploration and exploitation of the state and action space
through agentpolicy through a simple learningproblem. TheCart-Pole problem features an agent

��

�.� Reinforcement LearningModel Extensions

whose objective is to balance a pole placed on a cart. The agent can move the cart left or right
and receive a reward equal to the number of steps the stick stays on the cart without falling. We
compare the performance of three learning agents on the Cart-Pole problem using theQ-learning
algorithm (Watkins and Dayan, ����), and an ε-greedy policy with di�erent ε values: a constant
value of �.��, a constant value of �.�, and a decreasing value of ε = 1 � log10(n + 1/25), with
n being the current learning episode (bounded between �.� and �).

 0

 100

 200

 0 100 200

R
ew

ar
d

Simulation Episode

Fixed 0.05

Fixed 0.5

Variable

Figure �.�: Learning process evolution of the Q-learning algorithm solving the CartPole problem using an
ε-greedy policy with di�erent ε rates. The maximum reward per episode is ���.

Results of these simulations, as shown on Figure �.� underline the importance of proper bal-
ance between exploration and exploitation. In the ε = 0.05 case, the exploration parameter is
too low for su�cient exploration. The agent gets stuck in a local optimum by making the pole
fall early, yielding a small but positive reward. Conversely, using a high exploration parameter
ε = 0.5 causes quick exploration of the state space, which explains superior performance in the
early episodes. However, this high random action selection rate proves unable to exploit high-
payo� actions due to the high policy unpredictability. Hence, using a decaying exploration rate
that favors exploration in early episodes and exploitation later allows the algorithm to converge to
an optimal policy.

��� R������������ L�������M���� E���������

The concepts presented so far give us enough tools to build simple reinforcement learning meth-
ods, but such methods would su�er from substantial shortcomings. First, the presented RL
model only features a single agent and would hence be unable to function with multiple agents
learning in parallel over a road network as commonly seen in historical TSC methods (see sec-
tion �.�.�.�). A less obvious issue comes from the fact that all the reinforcement learning algo-
rithms presented so far rely on an exhaustive exploration of the state and action spaces of the envi-
ronment. This search can prove extremely ine�cient when these spaces get su�ciently large and

��

� Reinforcement Learning Theory

pose acceptability problems when applied to tra�c signal control tasks. The two reinforcement
learning model extensions presented below deal with each of these issues to improve the overall
capabilities of RLmethods, which will be applied to tra�c signal control later on.

����� M����������R������������ L�������

Featuring multiple agents learning in parallel is likely to be desirable when modeling multi-agent
systems–such as tra�c signal control–which are commonly used in the �eld of reinforcement
learning (Arulkumaran et al., ����; Busoniu et al., ����).Multi-agent reinforcement learning (MARL)
models present clear advantages such as increased performance thanks to decentralized execu-
tion, improved robustness, or permitting experience sharing between agents (i.e., di�erent learn-
ing agents exchanging value estimates they have learned separately) (Busoniu et al., ����). While it
would seem natural to usemultiple learning agents without changing anything else, moving from
a SARL to aMARLmodelmodi�es the theoretical framework inwhich these agents learn, which
creates several new challenges which need to be addressed.

������� P������O������������

The �rst e�ect caused by the introduction of multiple learning agents relates to choosing how
much of the environment they can observe and act upon. Since it is common to feature MARL
models in which each agent only acts locally, the decision process associated with such models
usually changes to a partially observable Markov decision process (POMDP), which extend the
model of MDPs by adding constraints on the ability of each agent of the system to observe the
entire state of the environment (Panait and Luke, ����). POMDPs are represented as a �-uple
(S,A, T ,R,Ω, O). Besides the usual MDP elements, POMDPs feature an observation space
Ω, containing the set of states of the environment that are observable by each agent and an ob-
servation function,O, containing the probabilities of encountering a given observation from the
observation spaceO depending the previous agent action a and the new true environment state
s0 (Oliehoek et al., ����; Sutton and Barto, ����). As opposed to traditional MDPs, an agent in a
POMDP setting must maximize its utility under uncertainty as it can only receive partial obser-
vations from the observation space Ω instead of true system states from the state space S . The
agent hence learns to associate observations to system states by estimating the observation func-
tion O through the use of belief states which model observation probabilities through Bayesian
estimations of the entire process’ history (Bakker et al., ����).

������� A���� I�����������

Another signi�cant impact caused by the introduction of multiple learning agents in the same
environment is that these agents can interact and in�uence each other. RL models can choose to
explicitly model agent interactions through coordination mechanisms in which agents take each
other into account or even communicate (see section �.�.� for an illustration of agent coordina-
tion applied to tra�c signal control). Alternatively, MARL models can choose to ignore these
interactions, hence implementing independent learning in which agents ignore each other and
maximize their own local rewards. Regardless of modeling choices, the fact that agents in�uence
each other in MARL models cannot be ignored. Since multiple agents act concurrently on the

��

�.� Reinforcement LearningModel Extensions

environment, the actions of one agent can in�uence the environment state of another. This phe-
nomenon, known as non-stationarity, can lead agents to believe that their actions caused changes
in the environment that were in reality caused by others. The absence of a stationary environment
can potentially causeRL algorithms to never converge to an optimal policy due to amoving-target
issue (El-Tantawy and Abdulhai, ����).

Furthermore, the correlation requirement between reward andobjective functionmust be even
more carefully designed in MARL systems. Indeed, since each agent greedily aims to maximize
its locally observed reward function, one must ensure that these local optimization goals are not
clashing with each other and are properly correlated with the global objective function (Busoniu

et al., ����).

����� F�������A������������

Awidespread issue associated with RLmethods is caused by the size of their environment’s state
and action spaces, which is also known as their dimensionality. Since RL algorithms have to per-
form an exhaustive search of these spaces to establish value estimates, the computation andmem-
ory storage costs associated with this search grow exponentially as they increase. A second, and
perhaps worse, issue related to large state spaces is well summarized by Sutton and Barto (����):

The problem with large state spaces is not just the memory needed for large tables,
but the time and data needed to �ll them accurately. In many of our target tasks,
almost every state encountered will never have been seen before. To make sensible
decisions in such states it is necessary to generalize from previous encounters with
di�erent states that are in some sense similar to the current one. In other words, the
key issue is that of generalization. How can experience with a limited subset of the
state space be usefully generalized to produce a good approximation over a much
larger subset?

Techniques of function approximation provide an elegant answer to both of the issues men-
tioned above. First, by not storing value estimates in a tabular fashion (i.e., each state is associated
with its own value), these techniques can deal with much larger state spaces without dimension-
ality issues. Second, function approximation allows RL algorithms not only to learn the value
estimates of states they visit but generalize these results to predict the value of states they have not
yet encountered.

������� F�������A������������

Function approximation aims to extract information from state features and their associated val-
ues to approximate the entire value functionof the problem. In otherwords, function approxima-
tion does not associate a value estimate V (s) to each encountered state s separately but uses state
and reward values to directly estimate how each feature of the state space impacts its associated
value estimate. This task is achieved by approximating the value function using a parameterized
function, which is by nature a supervised learning task (Sutton and Barto, ����). Approximation
function can take simple forms such as a linear function of features of the observed state or more
complex structures such as multi-layered neural networks.

��

� Reinforcement Learning Theory

������� D���R������������ L�������

An increasingly popular way of using function approximation in RL is to use neural networks
as function approximators (Arulkumaran et al., ����), leading to a speci�c branch of RL known as
deep reinforcement learning (DRL) (Gregurić et al., ����).While presenting how neural networks
operate indetail is outside of the scopeof this thesis�, neural networks aremachine learningmodels
featuring multiple layers of neurons and activations weighted by parameters θ. A neural network
maps a multi-dimensional input vector to a mono-dimensional one. Training a neural network
involves computing a loss functionLmeasuring the di�erence between the neural network’s out-
put and the observed value. Using gradient descent methods, the neural network is trained to
properly estimate the correct output vector for a given input one. In the case of DRL, the output
of such a neural network is the value estimateV (s, θ) of a state s given as input. The output value
is compared to the true reward value obtained from the environment, and the weight parameters
θ are then corrected accordingly using gradient descent.

������� C���������� I�����

DRLmodels provide a number of signi�cant advantages, such as state generalization undermuch
larger dimensionality than classical RLmethods. However, DRLmethods also break the conver-
gence guarantee of classical RL algorithms by moving away from tabular representations (Van der
Pol, ����). The �rst reason for these convergence issues is that the observation data in RL models
is assumed to be independently and identically distributed (i.i.d.). This is, however, not the case
for DRLmodels since evolving policy and function approximationmake these observations both
correlated and unevenly distributed (McCloskey and Cohen, ����). A second convergence issue of
DRLmethods is due to amoving target phenomenon. Since each observation updates the entire
weights θ of the function used to approximate value estimates, these updates may a�ect earlier
estimations and cause the learning target to oscillate constantly. We present common solutions to
these convergence issues in section �.�.�.

::::

This chapter introduced reinforcement learning algorithms, which allow an agent tomaximize
a task in an environment by maximizing its cumulated expected rewards. We notably described
how aMDP hS,A, T ,Ri couldmodel the interactions between the agent and the environment.
The agent observes the current environment states, chooses an actiona, and receives an associated
reward r while the system transitions to a new state s0.

Agents learn to maximize their cumulated expected rewards through the combined use of a
learning algorithm and of a policy. The learning algorithm estimates the relative value of state and
of state-action couples through the use of a value V and qualityQ function, respectively. On the
basis of these value and quality estimates, the policy dictates which action the agent should select
based on the current system state in order to maximize its rewards.
Since classical single-agent RL models are rather limited, we �nally introduced two RL exten-

sions. First, we brie�y described how multiple agents could solve tasks concurrently in the same

�Anthony and Bartlett (����) provide a general introduction to neural networks, andVan der Pol (����) a more
succinct presentation of neural networks aimed at TSC applications

��

�.� Reinforcement LearningModel Extensions

environment, even enabling agent coordination. We then �nally introduced the concept of func-
tion approximation and deep reinforcement learning, which allows the agent to deal with much
larger state spaces and to generalize past state encounters through a parameterized function.

��

� R������������ L�������A������ ��

T������ S�����C������

�.� Modeling Tra�c for Reinforcement Learning ��

�.�.� General Model Choices . ��

�.�.� Model Parameter Design . ��

�.� Tra�c Signal Control Methods . ��

�.�.� Single Agent Reinforcement Learning Applied to TSC ��

�.�.� Multi-Agent Reinforcement Learning Applied to TSC ��

�.�.� Agent Coordination Applied to TSC ��

�.�.� Function Approximation Techniques ��

The typology of historical tra�c signal control methods established in chapter � allows to dis-
tinguish TSC methods according to their features and complexity. It is common to sort these
methods according to distinct generations: actuated methods form the �rst generation of TSC
methods; centralized adaptive methods such as SCOOT or OPAC the second generation; and ad-
vanced hierarchical methods such as PRODYN or RHODES constitute the third generation (Gartner

et al., ����). The application of RL to tra�c signal control gave birth to a fourth AI-based genera-
tion of methods (El-Tantawy and Abdulhai, ����). This section gives an overall tour of the state of
reinforcement learning applied to tra�c signal control research since its inception in ���� (Mikami

and Kakazu). Notably, we present how TSC problems can be adapted to a RL-based framework
and showcase the main contributions and advances in the �eld of RL-TSC for both isolated and
coordinated methods.

��� M�������T������ ���R������������ L�������

If multiple RL-TSC methods can tackle the tra�c optimization problem quite di�erently, they
still all have to de�ne this problem within a RL-centric framework. First, some general model
choices have to bemade regarding tra�c, such as de�ningwhat itmeans to optimize tra�c, which
components of the tra�c network are considered agents, and how well the agent can observe its
environment. Then, onemust choose the speci�c elements constituting theMDP, such as which
type of information about the road network the agent observes, how each agent can act upon the
road network, and how its rewards are measured.

����� G������M����C������

This section refers to the broad model characteristics of a RL-TSC method. These choices are
a crucial �rst building block of any RL-TSC method since they de�ne which kind of agents are

��

� Reinforcement Learning Applied to Tra�c Signal Control

learning to optimize tra�c, howmuch information they gather from their environment, and how
much they interact with each other.

������� T���� �� L�������A�����

An overwhelmingly common approach in the RL-TSC literature is to consider that each inter-
section is a learning agent. While this choice is evident for isolated TSC models (Abdulhai et al.,
����), it is also the preferred choice for MARLmodels featuring multiple intersections (Mannion

et al., ����). If multi-intersection road network optimization could theoretically be tackled by a
single central planner controlling multiple tra�c lights simultaneously, such a model would have
important limitations. Indeed, such a model would su�er from poor scalability (since adding or
removing an intersection to the network completely changes the learning model) and an expo-
nential increase in dimensionality, explaining why such an approach is common among third-
generation TSC methods but absent from RL-based ones (Yau et al., ����). In the MARL case,
each intersection has a local view of its environment (usually neighboring lanes) according to the
POMDPmodel (see section �.�.�). Note that other approaches are nevertheless possible onmulti-
intersection networks, such as considering vehicles as additional agents that can collaborate with
intersections (Bakker et al., ����; Kuyer et al., ����; Steingrover et al., ����; Wiering, ����) or using
intersection clusters as agent (Bazzan et al., ����).

������� M�����F��� ���M�����B����M������

Asecondmajor design decision regardingRL-TSCmethods relates to their estimation of the tran-
sition functionT . Indeed, bothmodel-based andmodel-freemethods, described in section �.�.�.�,
have been applied in the RL-TSC literature (Mannion et al., ����). As stated in this section, model-
free methods are usually simpler and slower since they do not estimate state transitions, while
model-based methods are more complex and e�cient.

In the realm of RL-TSC, model-based approaches are believed by some to introduce unnec-
essary complexity (El-Tantawy et al., ����; Mannion et al., ����) as they can prove more problematic
for learning problems with large state sets (Crites and Barto, ����). The most telling example of
this preference is shown in the literature review analysis of Noaeen et al. (����) which states that
only � out of the ��� surveyed RL-TSC papers used model-based RL methods, the last of which
was published in ���� (Khamis and Gomaa). Regarding multi-agent modeling choices, the use of
POMDPs is prevalent in the literature since model-based (Bakker et al., ����) and some actor-critic
methods employ it (Richter et al., ����), even though a few methods model interactions between
intersections as stochastic games (Bazzan, ����; Bazzan et al., ����) orMarkov games (Aragon-Gómez

and Clempner, ����).

������� I���������� L������� ���C�����������

A �nal major design decision regardingmulti-intersection TSCmethods is themodeling of inter-
actions occurring between each learning agent. The simplest way tomodel these interactions is to
ignore them and consider independent MARL models in which no agent-to-agent interactions
exist (Tan, ����). Even though we have shown in section �.�.� that agents necessarily in�uence each
other inMARLmodels, some papers of the RL-TSC literature do not consider it to be a limiting

��

�.� Modeling Tra�c for Reinforcement Learning

factor of agent performance in the case of TSC (Pham et al., ����).While this statement might not
be accurate, a signi�cant number of independent MARL methods show excellent performance
without ever addressing this issue (Noaeen et al., ����). Explicit coordination mechanisms can,
however, limit non-stationarity and increase overall tra�c routing performances in RL-TSC con-
texts (Mannion et al., ����). Such coordinated MARL models are applicable in both model-based
and model-free situations and present numerous advantages besides alleviating issues relating to
non-stationarity. Indeed, junction-to-junction coordination can be used to emulate green wave
coordination or complex third-generation TSC methods as presented in section �.�.�. Various
modes of agent coordination are successfully used in the RL-TSC literature, ranging from simply
observing a neighboring intersection’s state to directly computing optimal joint actions (Yau et al.,
����).

����� M���� P��������D�����

After having decided which type of agent is going to be learning how to optimize tra�c and how
these agents are going to interact with each other, any RL-TSCmodel still has several design deci-
sions to take regarding the modeling of the environment. The proper de�nition of the objective
function, state space, action space, and reward function is crucial for the learning process of any
reinforcement learning method.

������� O�������� F�������F

The general objective of optimizing tra�c is rather vague when it needs to be explicitly translated
into an objective function for the agent to maximize. Existing surveys of the RL-TSC literature
give us valuable insight as to which objective functions are commonly used across various traf-
�c optimization methods using reinforcement learning. Note that when constructing a RL-TSC
method, one does not need to limit the objective function to a single metric. Indeed, some papers
of the literature aim atmaximizingmultiple tra�c-relatedmetrics at once by using compound re-
ward de�nitions or by usingmultiple objective functions (Brys et al., ����; Houli et al., ����; Khamis

andGomaa, ����; Khamis et al., ����a),which is a learning technique knownasmulti-objectivity. The
surveys ofWei et al. (����) andNoaeen et al. (����) list the following classes of objective functions.

T�������M������ Time-basedmetrics are by far themost common form of objective func-
tions in RL-TSC applications. Vehicular travel time is a metric measuring the total travel time of
a vehicle across the network. Travel time is easily obtainable but does not di�erentiate between
trip-related and congestion-related time spent in the network. Amore accurate temporalmetric is
delay, which is de�ned as the di�erence between the observed and expected travel time of a vehicle.
Delay measurements allow account for the time loss due to congestion or routing ine�ciencies
but necessitate an estimation model of the expected travel time of vehicles. Finally, the waiting
time is de�ned as the amount of time a vehicle has waited at a red light or due to congestion. This
metric has the advantage of only measuring waiting time due to network ine�ciencies, making
it a suitable objective function for tra�c optimization. Furthermore, this metric has the advan-
tage of being measurable before vehicles reach their destination. However, waiting time is readily
available in tra�c simulations but hard to obtain in real-life scenarios.

��

� Reinforcement Learning Applied to Tra�c Signal Control

C���������M������ A second class of tra�c metrics suitable for RL-TSC objective func-
tions are congestion-related. Absolute congestion values such as queue size, have been used as an
objective function in RL-TSC applications. Queue size metrics are well-suited to road networks
with low vehicular capacity or known bottleneck areas. Alternatively, congestion metrics over
time, such as intersection throughput, have been used to measure the e�ciency and evenness of
TSCmethods.

S����M������ Finally, multiple forms of vehicular speed such as absolute speed, acceleration,
or harmonic speed are also used as objective functions. These objective functions prioritize vehicle
movement smoothness and uniformity and are sometimes associated with related variables such
as the number of stops per trip.

������� R����� F�������R

As stated in section �.�.�.�, the objective and reward functions of any RLmodel have to be tightly
correlated since the agentwill use signals from the latter tomaximize the former. It is hence logical
that the tra�cmetrics used to determine the objective function in the previous section are present
in the reward function de�nition. Hence, temporal, congestion, and speedmetrics are once again
the most common components of reward functions in the RL-TSC literature (Yau et al., ����).

T������� M������ In practice, delay measurements are commonly used as a reward func-
tion since they estimate the vehicular time loss due to tra�c routing ine�ciencies (Mannion et al.,

����). These measurements include vehicular delay or cumulated waiting time on a lane, either
in absolute, di�erence, or average form (Arel et al., ����; El-Tantawy and Abdulhai, ����). Delay can
also be squared to penalize further large delay values (Abdulhai et al., ����; Brys et al., ����).

C���������M������ Congestion metrics used for reward function de�nition can include
queue size or variation of queue size (Araghi et al., ����; Mikami andKakazu, ����), as well as intersec-
tion throughput metrics (Brys et al., ����; Touhbi et al., ����). Furthermore, some papers developed
ametric known as green time appropriateness, for which the agent is penalizedwhen unused green
time is observed while vehicles are idle at red lights (Cahill et al., ����).

S���� ���M����M������ A few papers use vehicular speed metrics as part of their reward
functions, either as an absolute value or as a ratio between observed speed andmaximum allowed
speed (Van der Pol and Oliehoek, ����). Usually, speed metrics are used asmulti-objectivitymetrics,
as mentioned in the previous section. For instance, the reward function featured in Van der Pol

and Oliehoek’s model (����) is composed of delay and speed measurements, as well as emergency
stops and accident indicators.

������� S���� S���� S

Tra�c signal control problems are a perfect illustration of the trade-o� between complex and
simple state representation mentioned in section �.�.�.�: the state space of a MDP only contains a
subset of features from the true environment state that is relevant to the agent. RL-TSC models

��

�.� Modeling Tra�c for Reinforcement Learning

hence have a large amount of tra�c-related features of the environment at their disposal in or-
der to de�ne the state space S of the MDP. The most common features used for state de�nition
identi�ed by Yau et al. (����) are listed below.

C���������M������ Congestion metrics, and queue size per lane in particular, are among
the most commonly used for state space de�nition within the RL-TSC literature (Mannion et al.,

����). These metrics can take into account all vehicles of the lane or halted vehicles only. Further-
more, the absolute number of vehicles can be used, as well as queue categories (e.g., low, medium,
or high congestion) (Cahill et al., ����; Chin et al., ����). Aminority of articles use relative queue size
(i.e., the ordering of queue sizes of lanes around an intersection) instead of absolute values (Ab-
doos et al., ����). Finally, the maximum queue size across all lanes also has been used as a state
variable (El-Tantawy and Abdulhai, ����).

T������ S����� M������ Tra�c signal metrics such as phase-related indicators are some-
times used in state space de�nition. Such variables include the current green phase index in the
signal cycle and the duration for which it has been active (Arel et al., ����), or the current red phase
timing. This type of information is bene�cial for the learner as it indicates the current state of the
signal cycle at its intersection.

S���� ��� P���������M������ Newer RL-TSC methods, usually using deep neural net-
works, often use detailed positional data as state representations. Hence, vehicular positions can
be represented using cellular encoding, also known as discrete tra�c state encoding (DTSE) (Gen-
ders and Razavi, ����), and used as state inputs for neural networks in the form of binary matri-
ces (Vander Pol andOliehoek, ����)or even as images fed to a convolutional neural network (Mousavi

et al., ����). Other vehicular data, such as speed, can be used in place of positional indices (Van der
Pol and Oliehoek, ����).

u v

v1 v2 v3 v4

Figure �.�: For a given lane, a MDP can use multiple environment features to represent the current tra�c
state. Number of vehicles in a queue (�) or on the lane (�) can be used for vehicle-related data.
Current phase index and duration are phase-related indicators. Finally, DTSE representations
can be used (11101 in the current situation).

The RL-TSC literature is not unanimous in its choices regarding state space de�nition since it
is often algorithm-dependent. For instance, the choice of simplifying, or discretizing, state repre-
sentations to reduce dimensionality is taken in approximately ��% of papers surveyed byNoaeen

et al. (����), meaning that ��% of the surveyed papers opted for fuller state representations such
as DTSE. The large amount of di�erent features of the road network that are used in state repre-
sentations in papers of the RL-TSC literature also underlines this lack of consensus.

��

� Reinforcement Learning Applied to Tra�c Signal Control

������� A����� S����A

Since TSC consists in in�uencing tra�c through the use of tra�c signals, it is no surprise that
action spaces of RL-TSCmethods all revolve around tra�c phase control. Yau et al. (����) identify
two main types of actions in their survey of the RL-TSC literature.

T������P���� S����� An agent using tra�c phase splits chooses a time interval allocation for
each phase of the signal cycle. This allocation can either be phase-based, meaning that the agent
allocates the entire phase duration at once, or step-based, in which the agent evaluates whether to
switch or extend the current phase at regular intervals. As we will see in section �.�, the in�uence
of using step or phase-based actions on tra�c-routing performance has not been studied until
recently. Results from a paper we published on the matter have shown that, in the case of tra�c
phase split actions, step-based actionswere strictly superior to phase-based ones (Tréca et al., ����a).

T������ P���� C����� An agent using tra�c phase choices directly decides which tra�c
phase is to be activated next. This action type o�ers more �exibility for the agent but comes at the
cost of additional complexity due to necessary safety and compatibility checks on the generated
signal cycles.

��� T������ S�����C������M������

The previous section described how papers of the RL-TSC literature model the RL framework
applied for tra�c optimization. These model choices covered agent representation, agent coor-
dination, choosing between a model-free or model-based method, and de�ning each element of
the underlying MDP. We now present the di�erent RL-TSC methods themselves, in increasing
order of complexity. Isolated TSC are presented �rst, followed byMARLmethods, both in inde-
pendent and coordinated cases, to �nish with function approximation methods applied to tra�c
optimization.

����� S�����A����R������������ L�������A������ ��TSC

Even though they are somewhat rare given the popularity of multi-agent systems for TSC, a few
papers of the literature have studied the behavior of an isolated intersection using RL-TSC (Man-

nion et al., ����). These papers can broadly be divided into two categories. Some feature a single
intersection to study the performance of a speci�c learning algorithm–which happens to be Q-
learning (Watkins andDayan, ����) inmost cases (Abdulhai et al., ����; Chin et al., ����; El-Tantawy and
Abdulhai, ����; Wen et al., ����)– while others voluntarily restrict their �eld of study to an isolated
intersection to analyze speci�c learning-related phenomenon such as action space de�nition or
function approximation techniques (Tréca et al., ����a,b).

������� C�������� SARLM������

Papers from the �rst category often compare the performance of the Q-learning algorithm to
classical TSC methods. For instance, El-Tantawy and Abdulhai (����) found out that single-agent
Q-learning outperformed �xed signal timing for multiple RL state de�nitions. Abdulhai et al.

��

�.� Tra�c Signal Control Methods

(����) used Q-Learning on an isolated intersection combined with the cerebellar model articu-
lation controller (CMAC) function approximation technique (see section �.�.�) and found that
their method had results on par with the TRANSYT and SCOOT methods under constant vehicle
�ows but performed signi�cantly better under variable �ows. Similarly, Chin et al. (����) stud-
ied the convergence of an isolated intersection using Q-Learning and an ε-greedy policy. The
Q-Learning method could adapt to peak-hour tra�c situations simulated using real-world data,
even though the authors did not compare it to another TSC control plan.

������� L���������� �� SARLM������

If SARLmodels provide some bene�ts compared to �xedTSCmethods on isolated intersections,
they are still seldom used due to two signi�cant shortcomings. First, they cannot be applied to ur-
ban areaswithmultiple intersectionswithout a central controller, whichwould lead tounmanage-
able dimensionality as the number of intersections increases (as stated in section �.�.�.�). Second,
these methods do not feature desirable properties such as junction-to-junction communication
or cooperative learning, which are essential in tra�c management in urban areas. These limita-
tions are also illustrated by the fact thatmost of the literature reviews regardingRL-TSCmethods
choose to exclude isolated TSCmethods from their review (Noaeen et al., ����; Yau et al., ����).

����� M�����A����R������������ L�������A������ ��TSC

Given the limitations of single-agent models, introducing multiple agents in tra�c control sys-
tems is a logical and somewhat natural choice. Indeed, leveraging reinforcement learning over
multi-intersection networks has been an objective of RL-TSC models since their inception. For
instance, the three �rst papers coupling reinforcement learning and tra�c signal control aimed to
do so over multiple intersections (Cao et al., ����; Mikami and Kakazu, ����; Wiering, ����).

������� M�����F���MARLM������

A great number of learning techniques have existed early on for optimizing tra�c, such as linear
automata (Mikami and Kakazu, ����), fuzzy logic and classi�er systems (Cao et al., ����) or model-
based reinforcement learning (Wiering, ����).However, Q-learning is the RL algorithm of choice
for RL-TSC systems. Q-learning is present in ��%of theRL-TSCpapers surveyed byNoaeen et al.

between the years ���� and ����.

The Q-learning algorithm was �rst applied in a RL-TSC context by Abdulhai et al. (����) and
is popular for its relative simplicity (since it is model-free) and extensibility. An example of Q-
learning applied in a multi-agent setting can be found in a paper by Abdoos et al. (����) in which
a set of �� intersections implement a Q-learning algorithm in parallel, outperforming the tested
�xed signal plans. An innovative extension of the traditional MARL Q-learning model for TSC
can be found in Soilse (Cahill et al., ����).On top of regular multi-agent Q-learning, Soilse fea-
tures a pattern change detection (PCD)mechanism allowing theQ-learning algorithm to re-learn
depending on the degree of tra�c �ow change. The more the nature of tra�c demand changes,
the more the learning rate α of the Q-learning algorithm increases, giving more weight to newer
state observations. When tra�c demand stabilizes, the learning rate starts decaying again (Cahill

et al., ����).

��

� Reinforcement Learning Applied to Tra�c Signal Control

It shouldbenoted thatwhile such an approachmight su�er fromnon-stationarity issues (see sec-
tion �.�.�.�), multiple agent learning concurrently using each aQ-learning algorithm, also de�ned
a independent Q-learning (Tan, ����) provides surprisingly strong performance benchmarks in a
number of RL areas (Leibo et al., ����; Tampuu et al., ����) including TSC problems (Ye et al., ����).

������� M�����B����MARLM������

One of the earliest and most in�uential RL-TSC models featuring multiple agents, proposed by
Wiering (����), is model-based. Wiering’s model features both intersections and vehicles as learn-
ing agents, aiming to minimize vehicular waiting time, optionally communicating destinations
and waiting time (for vehicles), and congestion information (for intersections). A �rst extension
of Wiering’s model includes additional congestion data from neighboring intersections, increas-
ing agent performance and dimensionality in doing so (Steingrover et al., ����). A second extension
re�nes the computation of estimates of the transition function T by leveraging maximum likeli-
hood estimations and dynamic programming (Bakker et al., ����). A �nal series of extensions by
Khamis and Gomaa respectively added complex car acceleration models, Bayesian transition prob-
ability estimation, multi-objectivity and agent cooperation to Bakker et al.’s model (Khamis and

Gomaa, ����; Khamis et al., ����a,b).

����� A����C�����������A������ ��TSC

Additionally to de�ning which learning algorithm should be used by intersections in order to
optimize tra�c, MARL models also have to decide on the interaction model of its agents. In-
deed, as we have seen in section �.�.�.�, MARLmodels can either choose to ignore agent-to-agent
interactions, resulting in independent learning methods, or choose to model these interactions
through coordination. These coordination mechanisms range from entirely independent learn-
ing to direct coordination and joint-action selection. This section reviews the most commonly
used coordination modes of the RL-TSC literature.

������� M���P���A���������

Multiple Wiering-type models mentioned in the previous section have been extended to include
direct coordination between junctions. Such extensions, due toKuyer et al. (����) and Bakker et al.
(����), leverage coordination graphs and themax-plus algorithm for agent coordination. Since it
is impossible to coordinate all intersections simultaneously because the state space increases expo-
nentially with the number of agents, coordination graphs decompose the global payo� function
into a local function depending on a subset of agents. The global optimum can then be obtained
by computing the local optimal joint actions of each sub-problem (Kok andVlassis, ����). In order
to quickly compute the optimal joint action of each sub-problem, the max-plus algorithm orga-
nizes e�cient message sharing between local agents for a �xed number of iterations to coordinate
their action choice in a limited amount of time.

Even though the max-plus algorithm signi�cantly speeds up the coordination process between
agents, coordinated MARL methods remain highly computationally intensive, and their use is
generally discouraged in time-critical applications (Bakker et al., ����). In terms of performance,
Wiering-type coordinated methods outperform all of the non-coordinated models of the same

��

�.� Tra�c Signal Control Methods

type in highly saturated conditions. When tra�c is not saturated, however, performance is on par
with coordination-free model-based methods but at the cost of longer computation time (Bakker
et al., ����; Kuyer et al., ����).Note that somemodel-freemethods also feature coordination graphs
coupled with the max-plus algorithm (Medina and Benekohal, ����; Van der Pol, ����).

������� MARLINA���������

Another highly popular model-based approach used in RL-TSC coordination is MARLIN (El-

Tantawy and Abdulhai, ����; El-Tantawy et al., ����). TheMARLIN algorithms rely on two key con-
cepts of the MARL literature: the principle of the locality of interaction andmodular Q-learning.
The principle of the locality of interaction states that for POMDPs in which agent interactions
are limited to their neighborhood, optimizing the local joint utility of an agent and its immediate
neighbors is su�cient to reach an optimal agent policy (Nair et al., ����).Modular Q-learning can
reduce the dimensionality of the state and action space of a problem by partitioning it between
sets of two agents (Ono and Fukumoto, ����). Like coordination graphs, modular Q-learning di-
vides a joint problembetweenN agents of dimensionality |s|N intoN�1 sub-problems between
two agents, each of dimensionality |s|2, hence keeping dimensionality in check. Once these sub-
problems are solved, the agent chooses the action maximizing the sum of these sub-problems.
Two variants of theMARLIN algorithm exist. In theMARLIN-IC (for indirect coordination)

version, each intersection models interactions with each of its neighbors in a joint Q-table and
estimates the impact of its next action choices based on these joint Q-tables (see section �.�.� for
a detailed explanation of the algorithm). As for MARLIN-DC (for direct coordination), agents
directly exchange their current policies with their immediate neighbors and negotiate a joint set of
actions maximizing their joint utility. Both of these methods have been tested on a simulated net-
work of �� intersections representing downtown Toronto using real tra�c data. BothMARLIN
variants outperformed the real-worldmethod implemented on the samenetwork (El-Tantawy et al.,
����).MARLIN has long been considered to be a state-of-the-art coordinated TSCmethod (Brys

et al., ����; Mannion et al., ����; Yau et al., ����). However, since its original publication in ����,
the �eld of RL-TSC has rapidly adoptedmore function approximation techniques which greatly
improve the performance of MARLmethods, coordinated or not (Noaeen et al., ����).

������� A����������A���������

IfmostRL-TSC coordinationmethods rely onwell-known coordinationmechanisms such as the
max-plus or MARLIN algorithms, several original coordination techniques have appeared in re-
cent years. One can �nd a novel approach to tra�c light coordination in the γ-reward model of
Liu et al. (����), which considers spatial delayed reward as a vector for agent coordination. If a vehi-
cle takesn steps to travel from intersection u to intersection v, the reward of agent uwill not only
take into account the local delay at step t but also part of the delay that it caused around intersec-
tion v at time t+n. This delayed reward forces agents to take the utility of other intersections into
account when maximizing their own (Liu et al., ����). Another coordination model developed by
Chen et al. (����) aims to optimize tra�c on large-scale networks (around ���� tra�c lights) on
a region-to-region basis. Tra�c is optimized by region by uniforming tra�c pressure (de�ned as
the di�erence between upstream and downstream congestion around an intersection) using deep
Q-learning. A �nal example of alternative TSC coordination methods can be found in the works

��

� Reinforcement Learning Applied to Tra�c Signal Control

of Qi et al. (����), which optimize tra�c similarly to third-generation classical TSC methods by
coordinating tra�c lights through platooning estimations by supposing that some vehicles of the
road network are autonomous and communicate with intersections.

������� A�������� ���U��������� ��C�����������

All papers presented in this section have shown that RL-TSC methods featuring agent coordi-
nation provided superior performances to independent methods in a number of contexts, espe-
cially on large-scale networks. A paper by Wagner et al. (����) has, however, claimed that tra�c
light coordination is di�cult to achieve in real-world conditions and that few parts of a road net-
work might bene�t from it. Multiple simulated scenarios have backed these claims in which well-
parameterized independent actuated methods have outperformed coordinated ones. However,
the authors have claimed that these results are preliminary and require more investigation, which
is the primary goal of chapter � of this thesis. This thesis tackles the complex issue of agent coor-
dination and studies its potential bene�ts in chapter �.

����� F�������A������������T���������

If agent coordination has been largely studied in the �eld ofRL-TSC since its inception, the appli-
cation of function approximation techniques to enhance tra�c routing optimization has been at
the forefront of RL-TSC research in recent years. We distinguish two types of function approx-
imation techniques applied to RL-TSC. The �rst category is formed by classical methods that
are often based on simple or older neural networks models. The second category regroups recent
methods that apply recent approximation methods from the deep reinforcement learning litera-
ture. These two categories of function approximation techniques are presented in this section.

������� C�������� F�������A������������

To the best of our knowledge, Abdulhai et al. (Abdulhai et al.) were the �rst to apply a function ap-
proximation technique on a RL-TSC task. The technique they applied is the CMACmodel (Al-
bus, ����),which can be seen as a hybrid data structure in-between an arti�cial neural network and
a sophisticated lookup table (Brys et al., ����). When a state-action pair is visited, CMAC propa-
gates the Q-value estimates to other pairs based on their similarity, allowing for faster exploration
of the state space, hence speeding up the convergence process. Pham et al. (����) have applied a sim-
ilar function approximation method known as tile coding. Tile coding partitions the state space
according to di�erent subsets (or tiles) and maps them to states by similarity.

The QTLC-FA function approximation method, used by Prashanth and Bhatnagar (����), aims
to approximate the Q-function with a matrix formed of multiple d-dimensional vectors (one per
state-action pair), d being much lower than the overall dimensionality of the problem. These
vectors are coupled with a tunable parameter matrix which is iteratively updated in a Q-learning-
like fashion using gradient descent. For instance, in a three-by-three grid network used by the
authors, the dimensionality of the problem is reduced from 10101 to d ⇡ 200 using QTLC-FA
while retaining good performances compared to the non-approximated model.

��

�.� Tra�c Signal Control Methods

������� D���R������������ L�������

The use of deep learning has become prevalent in RL-TSC in the last few years, a rise that can be
con�rmed by many literature review papers speci�cally studying the use of deep reinforcement
learning for RL-TSC (Gregurić et al., ����; Haydari and Yilmaz, ����). As newer and more e�cient
function approximationmethods are discovered and showcased in theDRL literature, suchmeth-
ods gradually make their way into the �eld of RL-TSC. Twomajor types of DRL algorithms have
proven the most e�cient for a variety of learning tasks: actor-critic and deep Q-learning meth-
ods (Gregurić et al., ����). In both cases, state-of-the-art versions of these algorithms are heavily
modi�ed to include several tricks and techniques such as dueling networks, prioritized experience
replay, or multi-step learning to increase learning performance and alleviate learning issues (Gre-
gurić et al., ����). Given the number of additional techniques they employ, these methods are also
colloquially known as rainbow methods (Hessel et al., ����). Both versions have applied such rain-
bowmethods to tra�c routing tasks, each having its speci�cities.
In the case of actor-critic algorithms, these methods featured multiple techniques such as nat-

ural actor-critic (Richter et al., ����), tile coding and radial basis function networks (Aslani et al.,
����), advantage actor-critic (A�C) (Chu et al., ����; Xiong et al., ����), asynchronous advantage
actor-critic (A�C) (Genders and Razavi, ����) or fuzzy radial basis function (Chun-Gui et al., ����).

As for deep Q-learning techniques, rainbow-type techniques using double Q-learning and co-
ordination graphs (Van der Pol, ����), image-type state representation, and convolutional neural
networks (Shabestary and Abdulhai, ����), recurrent neural networks (Shi and Chen, ����) have also
been applied. While the current DRL is not yet de�nitive about which algorithm structure pro-
vides the best results since they can widely di�er depending on the learning task, duelling double
deepQ-network (�DQN) algorithms seem toprovide excellent learning capabilities in awide array
of learning tasks (Hessel et al., ����).

::::

This chapter has given a large overviewofhowreinforcement learningmodels described in chap-
ter � can be applied to tra�c signal control tasks. By analyzing a large array of papers from the
RL-TSC literature, which includes a number of literature reviews and surveys, we were able to
identify the most commonmodeling choices of RL-TSCmodels.

In the area of environment modeling, we have shown that intersections are almost always used
as learning agents who often aim to minimize vehicular delay on the road network. We have
also shown that a wide array of features of the environment could be used as components of the
MDP. Similarly, MARL TSC models could both successfully feature independent learning and
agent coordination. Regarding RL algorithms used by papers of the literature, we have identi-
�ed that multi-agent and model-free methods were widely more popular than their single-agent
and model-based counterparts. Among these methods, TD algorithms such as Q-learning are
broadly used in the literature. Finally, we have shown that function approximation techniques
have become a mandatory feature of any modern RL-TSCmethod given their e�ciency and that
actor-critic and deep reinforcement learning methods provided excellent results in recent works.

��

P��� II

M����

After describing how reinforcement learning and tra�c signal control are used in the literature
to optimize tra�c in various ways, we aim to replicate, explain and extend these tra�c signal con-
trol methods. In order to undertake these tasks, the second part of this thesis focuses on formally
de�ning the environment in which our learning problem occurs. This modelization process is
done incrementally. Since we optimize tra�c through tra�c signal control, our �rst task is to
properly de�ne road networks and tra�c in a simple mathematical model (chapter �). Once this
modelization task is completed, we then describe how the learning agent interacts with its newly
de�ned environment by dealing with learning-related aspects of our model (chapter �). Finally,
we present the simulation framework in which they will be applied in practical terms, hence com-
pleting the description of our RL-TSC framework (chapter �).

��

� T������M����

�.� Road Network . ��

�.�.� Graph . ��

�.�.� Vertices . ��

�.� Tra�c Signals . ��

�.�.� Tra�c Trajectories . ��

�.�.� Tra�c Phases . ��

�.�.� Signal Cycles . ��

�.� Tra�c Flows . ��

�.�.� Modeling Tra�c . ��

�.�.� Vehicles and Lanes . ��

�.�.� Transition Function . ��

The �rst–and often forgotten–necessary step to study tra�c light control systems is to de�ne
what tra�c is. Consequently, this chapter presents a simple discrete-time tra�c model based on
graph theory upon which we will be able to adequately describe the RL-TSCmethods to be used
in later parts of this thesis. The �rst section of this chapter describes road networks as graphs
formed of vertices and arcs. The second section describes how we model vehicular movements
and tra�c signals on the vertices of a road network. The third and last section de�nes how we
model tra�c �ows on this road network.

��� R���N������

Graph theory (Berge, ����) provides a good set of tools to model a tra�c network. The arcs of
a graph are quite similar to streets or roads, and the same is true for vertices as intersections or
junctions. Hence, we extend these concepts from graph theory to de�ne the static part of our
tra�c model: its network.

����� G����

LetG = (V,A)be adirectedmultigraph (ormultidigraph) representing a roadnetwork,whereV
is the set of vertices andA the set of arcs ofG. An arc (u, v) 2 A (also denoted by uv) represents
a connection from vertex u to vertex v onG. The road networkG is modeled as a multigraph so
that multiple arcs can link the same two vertices, similarly to lanes on streets of a road network.
These connections are used by vehicles to move from vertex to vertex across the road network.
Conversely, a vertex v 2 V is a point connecting multiple arcs ofG. Figure �.� shows an example
of how graphs can model road networks. A path overG is a sequence of arcs a1, a2, . . . an ofA

��

� Tra�c Model

ofG indicating a valid route from a vertex u to a vertex v of V . We assume here thatG is strongly
connected, whichmeans that for any pair of vertices (u, v) 2 V 2, there is a path inG connectingu
to v. The strong connectivity propertymakes it possible to reach any point ofG from any starting
point within the network, which is a fair and necessary assumption regarding road networks.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

Figure �.�: Example non-directed graph representing a road network.

����� V�������

The indegree and outdegree of a vertex v respectively refers to the number of arcs going towards
and out of v. SinceG is strongly connected, the indegree and outdegree of any vertex of V is at
least �. The set of vertices connected to a vertex v ofG is de�ned as its neighborhood and can split
up between the incoming and outgoing neighboring vertices of v, respectively noted Γ�(v) and
Γ
+(v).

u v w

Figure �.�: Example node degrees. Node u has an indegree of 2 and an outdegree of 1. Node v has an
indegree of 0 and an outdegree of 3. Nodew has an indegree and outdegree of 3.

��

�.� Tra�c Signals

��� T������ S������

Tra�c signals are essential in modeling a road network. To our knowledge, no works of the RL-
TSC literature formally de�ne theway tra�c light controls operate over an intersection. However,
a tremendous amount of technical tra�c literature exists regarding the design and operation of
tra�c light systems, either stemming from local tra�c authorities (Koonce and Rodegerdts, ����;
Sullivan et al., ����) or tra�c simulator documentation (Erdmann and Krajzewicz, ����). Based on
this literature, this section introduces a simple model discrete-time of tra�c �ows over vertices of
a road network.

����� T������T�����������

A tra�c trajectoryuw over an intersection v 2 V , which is composed of an incoming arcuv 2 A
and an outgoing arc vw 2 A, represents the trajectory of a vehicle going from arc uv to arc
vw by crossing intersection v. Two tra�c trajectories are said to be compatible if they do not
overlap each other on the crossing area of the intersection since it could cause an accident. Tra�c
engineering aims to combine multiple tra�c trajectories over an intersection while ensuring their
compatibility. Note that the formal de�nition of trajectory compatibility is beyond the scope
of our model and that compatible trajectories over an intersection are given as input through a
compatibility table (see Table �.�).

uv x

w

y

Figure �.�: Illustration of a �-way intersection.

Consider, for instance, an intersection of degree � displayed on Figure �.�, and its associated
tra�c trajectory incompatibilities in Table �.�. This table shows that right-turn tra�c streams
(e.g. yx, wv) are only incompatible with trajectories with the same outgoing arc. Conversely,
left-turn lanes (e.g. yv, wx) are incompatible with all other tra�c streams on the intersection,

��

� Tra�c Model

excepted its symmetric trajectories (e.g. vy and yv) and the opposite side right-turn (e.g. yv and
xw). This latter observation underlines the importance of left-turn trajectory over standard �-way
intersections.

vw vx vy wv wx wy xv xw xy yv yw yx

vw o o o o o o
vx o o o o o o
vy o o

wv o o
wx o o o o o o o
wy o o o o o o

xv o o o o o o
xw o o
xy o o o o o o

yv o o o o o o o
yw o o o o o o
yx o o

Table �.�: Tra�c trajectory incompatibilities on a �-way intersection.

There are two commonways of addressing the speci�c and con�icting case of left-turns in traf-
�c engineering (Koonce and Rodegerdts, ����). The �rst kind of left-turns are permissive left-turns
inwhich left-turning vehicles have a right ofway on the crossing area. In the case of permissive left-
turns, such vehicles station on the crossing area until they can safely cross in the absence of vehicles
from these other streams. The second kind of left-turns are protected left-turns, in which left-
turning vehicles are associated with a speci�c tra�c signal and arc. The choice of implementing
a permissive or protected left-turn is usually the result of a warrant analysis on a per-intersection
basis (Sullivan et al., ����), and is most of all the result of a trade-o� between tra�c safety and lower
intersection capacity. Even though it is essential to mention the importance of left-turns in tra�c
signal control, our tra�cmodel does not require to specifywhether an intersection uses protected
or permissive left-turns. In both cases, a left-turn (e.g., yv on Figure �.�) is being represented in
the same manner whether it is protected or permissive without impacting the rest of the tra�c
model. The actual left-turn type over an intersection, which depends on warrant analysis, num-
ber of lanes, and historical tra�c �ows, is left as an implementation detail discussed in chapter �.

����� T������ P�����

We designate by tra�c phase over a vertex v a set of tra�c trajectories on v that are all mutually
compatible, meaning that vehicles following trajectories of these phases could safely do so simul-
taneously. Note that a phase can contain any number of compatible trajectories and that the same
trajectories of an intersection can be grouped in di�erent phases (see section �.�.�.�). The prin-
cipal type of tra�c phase, also known as green phase, associates a green light signal with a set of
trajectories φv = (xy, ..., yz), giving them the right to cross intersection v. Each green phase
φv is associated with a yellow (or amber) phase φ0

v . An amber phase associates each trajectory of

��

�.� Tra�c Signals

φ0

v with a yellow signal, which allows vehicles on these trajectories to cross the intersection while
warning them that their right of way on the intersection is expiring and that they should deceler-
ate accordingly. These amber phases are essential in avoiding collisions on the crossing area due to
emergency braking by going directly from a green to a red signal. Finally, the red phase is a speci�c
phase containing no trajectories at all: φ0

v = ;. Using a red phase is necessary for safety reasons by
ensuring that vehicles crossing the intersection during an amber phase have time to go through
before the next green phase becomes active.

����� S�����C�����

A signal cycle on a vertex v is an periodic sequence Φv = (φ1, . . . ,φn) of tra�c phases on the
intersection. Signal cycles aim to e�ciently organize the successive right of ways of multiple com-
patible tra�c trajectories on an intersection over time. A signal cycle can be decomposed into a
static structure (i.e., howphases are organized to form a signal cycle), whichwe present �rst. Once
this structure is de�ned, a signal cycle can associate phases with phase durations, which dictates
how a signal cycle changes over time.

������� S�����C���� S��������

If a signal cycle Φv could potentially be a sequence of any phases over an intersection, it must
satisfy two key constraints to be considered valid:

�. Each possible tra�c trajectory over intersection v must appear at least once in the phases
of the signal cycle Φv . This constraint is a necessary extension of the strong connectivity
property on the graph G, since it ensures that for any two neighbors of v, u 2 Γ

�(v),
w 2 Γ

+(v),w is reachable from u.

�. Each green phase φv of a valid signal cycleΦv must be directly followed by its yellow phase
equivalent φ0

v , which must itself be directly followed by the red phase φ0
v . This second

constraint comes from the safety requirements stated above.

Intersections can broadly be categorized into two categories, depending on how they imple-
ment signal cycle rules. Intersections implementing a �xed phasing scheme maintain the same
phase ordering within successive applications of their signal cycles. While the respective duration
of each phase can vary between signal cycles (see the following subsection), the ordering of phases
within the signal cycle cannot change. Conversely, intersections a variable phasing scheme can
both change the duration and order of phases within their signal cycles, provided that the two
constraints stated above are respected.

An important point to note is that an intersection can have multiple valid signal cycles. How-
ever, a signal cycle being valid does not necessarily induce that it is adapted for a given intersection.
Consider, for instance, The �-way intersection displayed on Figure �.�. In the case of this intersec-
tion, multiple valid signal cycles can be de�ned. For instance, a signal cycle can use green phases
successively granting a right of way to all incoming arcs of the intersection: φ1 = (vw, vx),φ2 =
(wv,wx), φ3 = (xv, xw). Another valid signal cycle could consist in using green phases giving
a right of way to successive pairs of arcs of the intersection φ1 = (vw,wv), φ2 = (wx, xw),

��

� Tra�c Model

uv x

w

Figure �.�: Illustration of a �-way intersection.

φ3 = (vx, xv). A third signal cycle could also use green phases giving a right of way to all traf-
�c trajectories one by one successively: φ1 = (vw), φ2 = (vx), φ3 = (wv), φ4 = (wx),
φ5 = (xv), φ6 = (xw). It is, however, clear that this last signal cycle would be much less ef-
�cient at routing tra�c than the two other proposed signal cycle since it only allows for a single
tra�c trajectory at a time while the others use two. This illustrates the fact that a valid signal cycle
is not necessarily e�cient.

������� S�����C���� E��������

De�ning an ordering of phases within a signal cycle is insu�cient to route tra�c since tra�c
trajectories occur over time. Our tra�c model de�nes the evolution of the tra�c light signals
over an intersection in discrete time, divided in time steps of equal length. Given a signal cycle
Φv = (φ1, . . . ,φn) on v, we designate by φt(v) the phase ofΦv that is active at time step t, and
by dt(v) the amount of steps for which the current phase on v has been active within the current
signal cycle. The total duration of the signal cycle on intersection v is noted as Cv . At each time
step, the tra�c light controller on an intersection v can change the currently active tra�c light
φt(v) if the current phase active time, dt(v), is superior to aminimumphase duration dmin. This
minimum duration is usually implemented on intersections for safety and acceptability reasons.
Conversely, if the currently active phaseφt(v) has been active for dmax steps, it is forced to change
at the next time step.

��� T������ F����

So far, our tra�cmodel has used graph theory to de�ne the structure of the road network and has
used tra�c engineering to describe discrete-time rules for vehicle crossing of intersections. The
�nal section of this model deals with tra�c �ows themselves, de�ning what tra�c is, and then
modeling how tra�c �ows from vertex to vertex of the road network.

����� M�������T������

Tra�c is composed of vehicles that move over the road network’s arcs. Since vehicle movement
is continuous, properly de�ning it in a discrete-time model is highly di�cult. While it is possible

��

�.� Tra�c Flows

to approximate vehicle movement using, for instance, cellular automata (Nagel and Schreckenberg,

����), we do not opt for this option for two reasons. First, tra�c experiments of this thesis are
based on the SUMO tra�c simulator (Lopez et al., ����), which does not use a cellular automata
model, which would mean that our theoretical tra�c model would not match our experimental
setup. Second, most tra�c simulators, including SUMO, use advanced microscopic tra�c simula-
tion models (Chowdhury et al., ����),which are muchmore precise and advanced than simple cel-
lular automatons. These models include, among others, collision (Krauß, ����) and lane-changing
models (Erdmann, ����). It hence appears much more logical to maintain a discrete-step model of
the tra�c environment and to delegate the continuous-timemanagement of vehicularmovement
on lanes of the network to the SUMO tra�c simulator, whichwe present in great detail in chapter �.
The use of a tra�c simulator as a black box abstraction is represented by a transition function T ,
whose exact role is detailed later on in this section.

����� V������� ��� L����

A vehicle is formally de�ned as a tuple c = (p, e) 2 An ⇥ N where p is the path followed by
the vehicle on graphG from its entry to its exit arc and e the time step of access of the vehicle on
the network. The path p is computed on the road network graph using Dijkstra’s shortest path
algorithm and does not account for other vehicles present on the network. Each vehicle aims to
follow its path p on the network graph G in order to exit the network through vertex v with a
minimal waiting time. The waiting time of a vehicle is de�ned as the number of time steps the
vehicle has been idle on the road networkwhile following its routep, either due to a red light signal
or due to another vehicle present on the network. The cumulated waiting time of a vehicle c at
step t is given denoted by the value ωt(c), which is computed by the transition function T .
Roads on tra�c networks are usually divided into multiple lanes, each allowing for vehicle

movement. Since the road network graph, G, is de�ned as a multidigraph, each lane is repre-
sented by an arc linking two vertices ofG. Hence, two arcs link the same pair of vertices, similarly
to lanes. The congestion of a lane, associated with arc uv 2 E, is equal to the number of vehicles
present on this lane at a given time step t, and is noted ct(uv). The relative position of vehicles
within a lane uv 2 E, which is once again computed using the transition function T , is given by
the value Pt(uv) (see Figure �.�).

����� T��������� F�������

Since modeling the movement of vehicles on tra�c lanes is a complex task, we have, as stated at
the beginning of this section, delegated the management of movement, lane-switching behavior,
and entry and exit rules of vehicles on the lane to the SUMO simulator and its associated transition
function T . The transition function T , which is reminiscent of the MDP transition function T
(see section �.�.�), applies the following changes to the road network at each time step:

�. All lanes ofG and their vehicles are updated according to the tra�cmodel of the SUMO sim-
ulator. If a vehicle changes lanes or exits or enters the network, those changes are re�ected
on the corresponding lanes ofE. Similarly, the waiting time of all vehicles ofL is increased
by one if they wait during the transition. The values of congestion ct, vehicle position Pt

and vehicle waiting time ωt are updated accordingly.

��

� Tra�c Model

u v

v1

v2

v3

v4

T

u v

v1

v2

v3

v5

Figure �.�: Illustration of the evolution of vehicles positions Pt(uv) and Pt+1(uv) given by the transition
functionT . The transition function caused the departure of vehicle v4 and arrival of vehicle v5.
Transitions also direct lane changes, which is illustrated by vehicle v3.

�. The signal cycle of all network tra�c lights is advancedbyone step. Phases are automatically
switched if the current phase duration exceedsmaximumphase time dmax or if the current
phase duration is attained.

�. The current simulation step t is increased by �.

While many more parameters are considered in actual tra�c simulations (see chapter �), the
simpli�ed model presented in this section allows to precisely describe tra�c phenomena related
to tra�c signal control. This model, in turn, helps to properly de�ne the reinforcement learning
framework applied to tra�c signal control.

::::

This chapter introduced a formal tra�c model to help us describe the dynamics of a road net-
work.
This model �rst de�ned the structure of the road as a multidigraph in which vertices are inter-

sections and arcs are lanes. It then described the movement of vehicles over the network in order
to de�ne how phases and signal cycles are organized over an intersection. Finally, we described
the temporal dynamics of the road network. This description includes the movement of vehicles
over lanes and the overall network transition, which is managed through a black-box transition
function T . This transition function depends on the SUMO tra�c simulator, which is presented
in detail in chapter �

��

� L�������M����

�.� Objective FunctionF . ��

�.�.� Role of the Objective Function . ��

�.�.� Choosing the Objective Function ��

�.� Reward FunctionR . ��

�.�.� Choosing the Reward Function . ��

�.� State Space S . ��

�.�.� Role of the State Space . ��

�.�.� Choosing the State Space . ��

�.� Action SpaceA . ��

�.�.� Role of the Action Space . ��

�.�.� Choosing the Action Space . ��

�.� Transition Function T . ��

�.�.� Choosing the TransitionModel . ��

The tra�cmodel de�ned in chapter � allows to easily manipulate tra�c-related concepts when
applying them in a learning setting. This section builds upon this foundation by formulating the
learning problem at hand–routing tra�c using tra�c signal control–using elements from this
tra�c model. As we have seen in chapter �, the standard framework used to represent reinforce-
ment learning problems is a Markov Decision Process. Consequently, this chapter de�nes each
necessary component of our RL-TSC model. It �rst de�nes the global objective function F to
be optimized by the agent. It then de�nes each component of the MDP �-uple, namely the state
space S , the action spaceA, the reward functionR and the transition function T used to model
the framework and solve the objective functionF . As we presented most modeling options used
by RL-TSC methods of the literature in section �.�, this chapter aims to underline the impact of
choosing di�erent tra�cmodels to decide which representation is themost adapted to our needs.

��� O�������� F�������F

When applying a reinforcement learning method to a given problem, the �rst and most crucial
question is which objective function the agent should optimize. In the case of tra�c signal con-
trol, the rather vague term “optimizing tra�c” can refer to widely di�erent goals, such as mini-
mizing delay or congestion, but also noise and CO� emissions.

��

� LearningModel

����� R��� �� ���O�������� F�������

One crucial point to bear in mind is that the objective function has to be the �rst model compo-
nent to be de�ned since all elements of the MDP are dependent on it. Indeed, we have seen that
the reward and objective function have to be tightly correlated in order for the agent to learn. Fur-
thermore, state and action space de�nitions are also highly dependent on the objective the agent
is trying to solve. For instance, if a reduction in CO� emissions is the main objective of a RL-TSC
model, the components of the MDP will have to be chosen to suit this objective. Not only the
reward functionR will have to incorporate CO�-related variables, but the state space de�nition
will also likely incorporate features of the environment that are relevant to this goal. This observa-
tion also implies that the di�erent parts of theMDP that we de�ne in this section are chosen with
regards to a speci�c objective function and are not likely to be optimal in other contexts. Also,
note that in the case ofRL-TSCmethods, the objective function of the agent is often directly used
as a performance metric to estimate the problem-solving ability of the agent (Mannion et al., ����).

In other words, the better the agent learns how to optimize the objective function, the better the
associated performance metric will be.

����� C������� ���O�������� F�������

While there is no right and wrong answer when choosing an objective function, some tra�c met-
rics are usually more relevant than others. Both the classical and RL-based tra�c signal control
literature indicate that there are two main ways of optimizing tra�c: through minimization of
delays or minimization of congestion (Koonce and Rodegerdts, ����). Both objectives have their
virtues and limitations, and their selection is usually dependent on the goals of local tra�c author-
ities (e.g., some areas favor high-speed tra�c �ows and minimized delays, while residential areas
might favor limited speeding and noise). Since our experimental framework will feature multiple
roadnetworkswith di�erent geometries, wemake the design choice of selecting themost common
objective function (i.e., that will be applicable in all tra�c scenarios). While congestion reduction
might be more bene�cial in some speci�c scenarios, delay reduction has a broad range of applica-
tions that will yield satisfactory–if maybe not always optimal–results. This choice is shared in the
RL-TSC literature, as almost ��% of the papers surveyed byNoaeen et al. (����) aimed at minimiz-
ingdelay or travel timewhileminimizationofqueue sizes,maximizationof speed, and throughput
accounted for ��, � and �% of papers respectively.

The last decision regarding to the model’s objective function is choosing which time-related
measurement to minimize. As stated in the literature review in chapter �, there are three main
types of time-related variables in vehicular networks: delay (i), travel time (ii), and waiting time
(iii). As it turns out, there is little di�erence in the three measurements when looking at them
from an aggregated perspective. The plots shown on Figure �.� show that, on the aggregated level,
all three time-related performance metrics variables that are obtainable through means of tra�c
simulation are entirely equivalent. Hence, the choice of the objective function to use depends on
the ease of use of the chosen metric and its applicability. Since the time loss and trip duration
indicators can only be obtained once the vehicle reaches its destination, both measurements pose
a problemwhenusing them to design theMDP’s reward functionR as they caused the rewards to
be delayed (Vander Pol andOliehoek, ����).Hence, vehicularwaiting time, which is readily available

��

�.� Reward FunctionR

0

5000

10000

15000

20000

0 50 100 150 200 250 300 350 400 450 500

Simulation Episode

Delay

Time Loss

Trip Duration

Figure �.�: Comparison of tra�c simulation episodes using three distinct time-related performance indica-
tors. Thesemetrics compute the average trip duration, time loss and vehicular delay formultiple
simulation episodes of ��� steps.

in simulation settings at all points of the simulation, provides an adequate objective function for
the problem at hand.

��� R����� F�������R

The�rst component of theMDPtode�ne, the reward functionR, logically follows the de�nition
of the objective function. The reward function aims to help the agent assess whether an observed
state-action couple is valuable in maximizing the agent’s objective function F . As stated in sec-
tion �.�, the chosen reward function R has to be strongly correlated to the objective the agent
aims to maximize as it directly connects the agent’s actions to its objective function. Moreover,
the in�uence of an agent acting on a given environment state must have a direct, measurable im-
pact on the reward returned by the system for proper learning to occur. This section investigates
which reward function best �ts the stated objective of reducing vehicular waiting time.

����� C������� ���R����� F�������

Since the main objective of our RL-TSC model is to reduce the waiting time of vehicles on the
network, we logically use the same measurements when de�ning the reward function R of the
MDP. While the RL-TSC literature showcases an extensive array of possible reward functions,
experiments carried out by El-Tantawy and Abdulhai (El-Tantawy and Abdulhai, ����) comparing the
e�ect of multiple rewards de�nition on RL-TSC performance found that somewhat simple re-
ward functions performed better. Similar tests used with our experimental setup have also shown
the superiority of cumulated delay di�erence-based rewards. Hence, for an agent placed on inter-
section u 2 V , the reward associated with an action at is de�ned as:

rt =
X

v2Γ�(u)

(
X

c2Pt(vu)

ωt(c)�
X

c2Pt+k(vu)

ωt+k(c))

��

� LearningModel

In simpler terms, the reward associated with an action at for an intersection u is obtained by
computing the cumulated waiting time of all vehicles present on lanes directly going from neigh-
bors of u towards u after and before the action was taken (i.e., at time steps t + k and t, where
t + k is the �rst time step at which the agent can decide action at) and computing their di�er-
ence. Such a reward function respects important constraints regarding reward function de�ni-
tion. Measuring di�erences in cumulated waiting time is obviously correlated with the global
objective of reducing the overall cumulated waiting time of vehicles of the road network, and this
di�erence directly quanti�es the quality of a given state-action pair. A positive reward indicates
that the cumulated waiting time is lower after choosing action at, thus indicating a likely correct
action choice. Conversely, a negative reward value indicates an increase in cumulatedwaiting time
between those decision points.

��� S���� S���� S

In reinforcement learning theory, the state space S of an MDP is used to describe features of the
environment state that are relevant to the agent. Proper state de�nition is essential inRLproblems
since the agent uses it to di�erentiate system states and act upon them accordingly. Since not all
features of the environment are relevant to the agent, the main challenge associated with state
space de�nition is choosingwhich features of the environmentwe should choose and how detailed
they should be.

����� R��� �� ��� S���� S����

One of the most commonly faced trade-o�s when designing the state space of a RL-TSC model
by choosing among the di�erent tra�c features is choosing between detailed state representation
and exploration e�ciency. Indeed, adding more features of the environment in the state space S
potentially leads to better agent performance since it can distinguish di�erent system states bet-
ter. Still, it also introduces additional dimensionality, which delays the learning process since it
increases the size of the state space and hence the duration of its exploration process by the agent.
Furthermore, one should note that some components of the environment’s actual state are irrel-
evant for the learning problem at hand or are already embedded in other variables. For instance,
the CO� emissions of vehicles of the network are likely not relevant when looking at reducing
waiting times on the network. The challenge of state representation for RLmodelization is hence
to identify which features of the environment are relevant when de�ning the state space S of the
RL problem.

����� C������� ��� S���� S����

Multiple studies have been made in the RL-TSC literature to measure the impact of state de�-
nition on agent performance. El-Tantawy and Abdulhai (����) compared the performances of an
isolated intersection using Q-Learning associated distinct state values (intersection throughput,
vehicular delay, and maximum queue length) found that queue and delay-based state represen-
tations yielded the best results for cumulative vehicle delay in simulations using tra�c data from
the city of Toronto. Similarly, Genders and Razavi (����) have evaluated the e�ect of state granu-

��

�.� Action SpaceA

larity on the performance of an asynchronous advantage actor-critic RL-TSC agent, using three
increasingly complex state de�nitions going from occupancy and speed, to queue and density and
�nally full DTSE states (see section �.�.�.�). Their results show that vehicular delay improvements
were minimal when using complex state representations and that no di�erences were observed
in throughput or congestion metrics. The authors suggest that increasing state complexity may
be bene�cial for su�ciently complex function approximation methods such as long short-term
memory cells or convolutional neural networks, but not for simpler learning methods.

Similarly to these papers, we compared the performance of multiple state de�nitions on a wide
array ofRL-TSC algorithms, ranging from simple classicalmethods such asQ-learning to deep re-
inforcement learning algorithms (see section �.�.� for a de�nition). In one case, we used discretized
queue data and, in the other case, DTSE occupancy data. The experimental protocol contained
an isolated intersection implementing a NEMA-type signal cycle. We found that methods using
detailed state representations took two to three times the number of training episodes to reach the
same performance levels as methods using simpler state representations. No notable performance
improvements were observed once these performance levels were reached. Furthermore, we tested
DTSE state representations on even more complex function approximation architectures, such
as recurrent or �DQN networks. We did not observe any signi�cant advantage to using complex
state representation. In the light of these �ndings, our experiments will use discretized state de�-
nitions composed of (but not limited to) phase andqueue data around an intersection. For a given
intersection v 2 V composed of n incoming lanes li, i 2 [1, n], we use the current phase index
φt(u), current phase duration dt(u) and congestion values on lanes around the intersection ct(l)
(see section �.�.� and section �.�) to reach the following state de�nition:

st(u) = hφt(u), dt(u), ct(l1), ct(l2), . . . , ct(ln)i

This state de�nition yields a satisfactory balance between low dimensionality and su�cient
granularity by providing both phase and tra�c information to the learning agent.

��� A����� S����A

Selecting the action spaceA of a RL problem is equally vital, albeit di�erent from setting its state
space. Similarly to the state space S , the action spaceA is essential since it de�nes how the agent
can act on the environment to solve its learning task. Hence, di�erent types of action spaces can
exist in the case of RL-TSC, event though to a lesser extent than in the state space case.

����� R��� �� ���A����� S����

Interestingly, while being as important as–if not more than–state de�nition, the e�ect of action
space de�nition on RL-TSC performance has, to the best of our knowledge, not been studied in
the literature. Indeed, multiple types of action spaces are featured in RL-TSC papers. We hence
researched and published an in-depth analysis of the e�ect of action space de�nition on the per-
formance of RL-TSC controllers (Tréca et al., ����a) to compare these multiple action types.

��

� LearningModel

������� E����� ��D�������������

Our analysis compares two types of action spaces: phase-based and step-based actions. Phase-
based actions allow the agent to set the duration of the next green phase all at once. When using
phase-based actions, the possible action interval for the agent is hence [dmin, dmax], correspond-
ing to the minimum and maximal green phase duration, respectively (see section �.�.�.�). When
using step-based actions, the agent chooses at regular intervals whether to extend or switch the cur-
rent green phase. This action space de�nition hence contains two actions and allows the agent to
end the current green phase at any decision point. Note that the state space associated with these
two action space de�nitions is likely to be di�erent. Indeed, step-based actions need to include
the duration of the current green phase, dt(u), in order to know for how long it has been active.
This information is not necessary in the phase-based case since no decision is taken while a green
phase is active.
Our analysis �rst compares the e�ect of these two action space de�nitions on dimensional-

ity. Since the step-based action space is only composed of two actions, it signi�cantly reduces
actions space dimensionality compared to phase-based actions. However, this reduction in action
space dimensionality is compensated by an increase in state space dimensionality since step-based
actions necessitate the use of the current phase duration dt in the state de�nition, contrary to
phase-based actions. In conclusion, when using phase-related indicators in the state space of the
problem, choosing either step-based or phase-based action types has little in�uence on the overall
dimensionality of the learning problem.

������� E����� �� P����������

The second part of our analysis compares the e�ect of action space de�nition on the performances
of an isolated intersection under di�erent types of tra�c demand �ows. The SUMO tra�c simu-
lator used for these experiments, as well as the protocol used to generate tra�c demand data, are
described in detail in chapter �.

This experiment compares a phase-basedmethod to a step-basedmethod which chooses an ac-
tion at everyk step. Additionally, the shape of tra�c demand canbe changedover the intersection:
the overall vehicle arrival rate follows a Poisson process with a �xed arrival rate, but a parameter
τ controls the imbalance of arrival rates between the north-south and east-west lanes of the inter-
section (i.e., a minimum value of τ ensures completely uniform tra�c, while a maximum value
of τ only allows tra�c to occur between the east and west lanes of the intersection). Simulation
results have shown that step-based actions are strictly superior to phase-based ones, regardless of
the nature of the tra�c demand dictated by parameter τ (Tréca et al., ����a). Furthermore, the
analysis of the in�uence of the step size k between successive step-based actions has shown that
smaller step sizes generally yield better performances in even tra�c conditions, but that slightly
longer decisions windows (e.g., k = 5 to k = 10) performed better in heavily skewed tra�c
conditions due to a high parameter τ .

The inherent advantage of step-based methods over phase-based methods can be explained by
their very nature: by evaluating whether to extend or switch the current phase every k steps, an
agent using step-based actions refreshes its appreciation of the current system state much more
frequently than in the phase-based case, in which the agent observes the current system state only
once at the beginning of the phase when selecting its action. The decision points shown on Fig-

��

�.� Action SpaceA

ure �.� illustrate the di�erent rates at which step-based and phase-based controllers get informa-
tion about the environment. Since the RL-TSC agent observes the current system state much
more infrequently than in the step-based case, it cannot adapt as quickly to changing tra�c con-
ditions, hence explaining inferior performances.

φ1 φ1 φ1 φ1 φ1 φ1 φ1 φ1 φ0

1
φ0

1

φ0

1
φ0 φ0 φ2 φ2 φ2 φ2 φ2 φ0

2
φ0

2

φ0

2
φ0 φ0 φ3 φ3 φ3 φ3 φ3 φ3 φ3

Figure �.�: Illustration of the decision steps of phase-based (in red) and step-based (with decision interval
k = 1, in blue) action types on a signal cycle. Yellow steps represent forced transition phases of
the signal cycle.

The last phenomenon to explain is the relatively poorer performances of very short interval
steps of phase-based actions in heavily imbalanced tra�c situations. We attribute these poor per-
formances to the exploration process of the agent. Since the agent favors selecting random actions
to explore the state-action space at the beginning of the learning through an ε-greedy policy with
a high exploration rate, increasing the rate at which this agent chooses actions through shorter
step intervals kmechanically increases its odds of selecting a random action. However, when traf-
�c is heavily imbalanced, the agent should naturally favor longer green phases on east-west lanes
and shorter green phases on north-south lanes. By increasing the odds of prematurely ending a
normally long green phase through excessive exploration, shorter decision intervals can increase
congestion on east-west lanes, impeding overall performance.

����� C������� ���A����� S����

The choice of using a step-based action space over a phase-based one has been motivated by the
experimental results presented in the previous section. The step size to associate with step-based
action selection we chose is k = 1. Indeed, even though longer step intervals performed slightly
better in skewed tra�c conditions, we have found that the shortest action step interval was the
best overall parameter, especially coupled withmore advanced reinforcement learning techniques
such as deep reinforcement learning (see chapter �). Hence, the superior results provided by step-
based actions coupled with relatively small decision intervals lead us to use a step-based action
space:

A = {0, 1}

in which 0 represents a phase extension action and 1 a phase switch action.

��

� LearningModel

��� T��������� F������� T

The fourth and �nal point to discuss regarding the modeling of the MDP relating to tra�c opti-
mization is the transition function T . The function T dictates how the environment transitions
from one state to the next depending on the agent’s action. The transition function, if estimated,
o�ers additional information to the learning agentwhen selecting an action by estimating the next
system state and its potential rewards (see section �.�.�.�).

����� C������� ���T���������M����

As stated during the literature review of RL-TSC methods, both model-free and model-based
methods have been applied to tra�c signal control problems. However, most RL-TSC mod-
els choose not to estimate the transition function and are hence e�ectively model-free. Conse-
quently, while it is technically possible to estimate the transition function of the model’s MDP
to obtain additional information about the environment, it is commonly accepted that the addi-
tional model complexity introduced by switching to amodel-free to amodel-basedmethod is not
worthwhile from a performance standpoint (Mannion et al., ����). Furthermore, using a model-
based method impedes model scalability due to dimensionality issues (El-Tantawy and Abdulhai,

����). These observations, coupled with the fact that most state-of-the-art RL methods applied
to tra�c signal control are model-free, make use logically choose a model-free RL-TSC setting in
which the transition function T does not need to be estimated.

::::

This chapter used the tra�c model de�nition of chapter � in order to entirely model theMDP
components used in our RL-TSCmethod.
On the basis of the literature review of chapter �, we established that the objective function

of our RL-TSC model was the reduction of the cumulated waiting time of vehicles on the road
network. The cumulated waiting time is de�ned as all the steps for which a vehicle could not
advance on the road network, either due to a red tra�c light signal or congestion. Consequently,
wede�ned the reward functionof theMDPas the di�erence in cumulatedwaiting timeof vehicles
around the lane of an intersection between two successive decision points. We then de�ned the
state space of the MDP as a simple combination of phase-related and congestion features after
showing that detailed state representations such as DTSE did not bring increased performance in
ourmodel. Similarly, we studied in detail the role of action space de�nition on agent performance
by comparing phase-based and step-based actions. Our analysis has shown that step-based actions
were strictly superior to phase-based ones, hence guiding our modeling choice. Finally, like the
majority of works of the RL-TSC literature, we chose not tomodel the transition function of the
MDP, resulting in a model-free RL-TSCmethod.

��

� E����������� S������

�.� Tra�c Simulator . ��

�.�.� Simulator Features . ��

�.�.� Network Data . ��

�.�.� Demand Data . ��

�.�.� Output Data . ��

�.� Simulation Library . ��

�.�.� Library Structure . ��

�.�.� Tra�c Generation . ��

�.�.� Additional Utilities . ��

�.� Experimental Protocols . ��

�.�.� Convergence Analysis . ��

�.�.� Performance Analysis . ��

�.�.� Performance Analysis Under Variable Flows ��

The second part of this thesis focuses onmodeling how to apply RLmethods in a tra�c signal
control context. In chapter �, we laid the foundations of a simple mathematical model of tra�c
signal control, and in chapter �, we used this mathematical model to de�ne the learning frame-
work in which we apply various RL algorithms on TSC tasks. This chapter focuses on the last
element of this iterative modeling work by presenting the tools and methods used to experimen-
tally apply various RL-TSCmethods on tra�c scenarios. Our experimental setup is composed of
two main parts. First and foremost, we use the SUMO tra�c simulator to simulate tra�c scenarios
on which we test di�erent tra�c signal control methods. Secondly, we designed a simulation li-
brary, carmulator, in order to integrate a wide variety of RL-TSC systems in SUMO. This library
also includes many pre and post-processing tools to prepare simulation input and process sim-
ulation output for further analysis. Finally, we present how the SUMO tra�c simulator and the
carmulator library are used in order to build an experimental protocol used to measure the per-
formance of RL-TSCmethods in simulated settings.

��� T������ S��������

This �rst section describes the SUMO tra�c simulator that we use to run ourRL-TSC experiments.
We �rst quickly review SUMO’s capabilities and features, ending with a justi�cation as to why we
chose this simulator. The second section gives an overview of how SUMO manipulates data for
tra�c simulations by looking separately at network, tra�c demand, and simulation output data.

��

� Experimental Setting

����� S�������� F�������

Our tra�c experiments are realized using the SUMO tra�c simulator (Lopez et al., ����). SUMO is
a microscopic simulator, meaning that each vehicle is managed individually. Furthermore, it is
space-continuous and time-discrete, which means that each simulation step in SUMO has a one-
to-one correspondence with time steps presented in our tra�c model in chapter �. Finally, SUMO
is a multi-modal tra�c simulator, meaning that multiple vehicle types and pedestrians can be
simulated concurrently.

We decided to use SUMO for multiple reasons. First, SUMO is an actively maintained free and
open-source tra�c simulator, which means that it is possible to inspect its source code to have
insights on some implementation details and that we were able to contribute to its development
by submitting bug reports or suggestions to its development team. Second, the SUMO tra�c sim-
ulator is increasingly popular in the RL-TSC literature. A systematic literature review byNoaeen

et al. (����) shows that the �rst uses of SUMO in the literature date from ����, but that �� out of ��
surveyed papers in ���� used SUMO as their tra�c simulator of choice�, making it themost popular
choice in front of simulators such as VISSIM or PARAMICS. Finally, the SUMO o�ers unparalleled
�exibility when it comes to development and integration with other tools: it o�ers a Python API
to communicate with a running simulation process, Traci, and o�ers a large number of utilities
designed to process simulation inputs and outputs, such as tra�c demand or simulation logs. The
SUMO simulator is written inC++ andusesXML for input and output data format. The simulator
relies on two main inputs to run a simulation: a network �le, which describes the road network
over which to simulate, and a trip �le, which contains tra�c demand information over the net-
work. It can also generate several output �les and logs in XML format. Additionally to the SUMO
simulator, the sumo-gui program provides real-time feedback of the ongoing tra�c simulation,
using speed and visualization options.

����� N������D���

SUMO uses a network �le in order to represent the road network inwhich simulations occur. These
�les are composed of a network geometry part, in which the network graph edges are listed, in-
cluding their length, positions, and the number of lanes. The network’s junctions (or vertices)
are then listed and are each associated with a tra�c light program. This program contains each
phase of the signal cycle in a speci�c state form� and the default duration of each phase. Net-
work �les can be edited by hand using XML, but SUMO integrates a tra�c network GUI editor,
Netedit, which allows to easily create new road networks and edit tra�c light programs on its
junctions. The SUMO simulator also provides external tools to convert real-world networks from
OpenStreetMaps and convert them to a SUMOXML format.

�Quite surprisingly, the same literature review stated that around ��% of the surveyed papers did not state which
simulation tools were used at all!

�
SUMO represents tra�c signals in a speci�cway. For instance, the phase GGGgrrrrGGGgrrrr represents the light signal
for each intersection’s lanes in order. In this example, lanes �, �, �, �, ��, �� have a prioritized green signal, lanes �
and �� have a permissive left green signal, and other lanes have a red signal.

��

�.� Tra�c Simulator

Figure �.�: The Netedit program, used here to edit the signal cycle of an intersection.

����� D�����D���

The other central data input needed to simulate tra�c is the demand data, which indicates the
number of vehicles and their trajectories going through the road network. Multiple types of de-
manddata are acceptedby SUMO (Urquiza-Aguiar et al., ����). The�rst and simplest formof demand
data is a trip, represented by an origin and end edge of the network and a start time. When simu-
lated, SUMOwill compute the shortest path onG (as de�ned in section �.�.�) going from the origin
to destination edge of the trip using Dijkstra’s algorithm and use this route for the vehicle. The
second demand data type is a route, de�ned as a trip with a pre-computed route, which hence
does not need route computation during the simulation. Finally, SUMO accepts �ow de�nitions,
composed of an origin and destination edge and probability. During simulation, vehicles will be
generated between all pairs according to their respective probabilities and computed similarly to
trips.

There are many ways to generate tra�c data to these three demand data formats, using a wide
range of sources. A simple but cumbersome way to obtain demand data is to either write it by
hand to an XML �le, use the provided utility in Netedit, or use a random trip generation tool
packagedwithSUMO.Demanddata generated in thismanner is usually highlyunrealistic. Flowdef-
initions can provide amore realistic demand de�nition, either providedmanually or converted by
a SUMO utility from origin-destinationmatrices using real-world data. Other demand data sources
are road detector data, which computes trips from observed tra�c �ows at certain observation
points of the network or activity data, generated using the ActivityGen utility, which generates
tra�c �ows from activity de�nitions of the network such as population number or type of neigh-
borhood.

��

� Experimental Setting

����� O�����D���

The SUMO simulator can log many simulation variables for further use, such as trip duration, time
loss, route length, waiting time, or number of stops. Additional logging data can include vehicle
emissions, vehicle trajectory, lane changes, noise emissions, or battery use. A simulation process
does not need any interaction to complete, as the signal cycles de�ned in the network data �les
directly control tra�c lights. However, it is possible to use the TraciAPI to control these tra�c
lights on a step-by-step basis directly. The possibility to control a running simulation process
through an API was the starting point of the simulation library we created, carmulator.

��� S��������� L������

We created the carmulator library to interact with the Traci API and directly query and con-
trol a running SUMO process. This library was designed for multiple reasons. First, it allowed us
to quickly prototype and experiment with RL-TSC controllers within SUMO by establishing sim-
ple interfaces between the simulator and prototype methods. Second, the carmulator library
provides several reference RL-TSCmethods found in the literature, which one can use for experi-
mentationor comparisonpurposes. Finally, carmulatorprovidesmanyutilities tomakeworking
with the SUMO simulator easier.

����� L������ S��������

The carmulator library is a wrapper around the SUMO simulator allowing direct control of tra�c
lights during a simulation. On startup, carmulator initializes a SUMO process and several library-
speci�c data structures such as a simulation supervisor, tra�c lights and signal cycles (one per
junction), and a global simulation data record. The simulation supervisor then interfaces SUMO
and carmulator by, on the one hand, querying the current simulation state and making it avail-
able to various carmulator tra�c controllers, and, on the other hand, by transcribing controller
actions into tra�c signals applicable in SUMO. � provides a simpli�ed description of the simulation
supervisor.

Algorithm �: Simpli�ed tra�c supervisor loop in carmulator.

Initialize controllers and signal cycles;
whileVehicles are still present in the network do

Query SUMO for the current network tra�c, waiting times, and tra�c signals;
for Each tra�c controller and signal cycle in the network do

Advance the signal cycle by � step;
if Signal cycle needs a decision then

Query the controller for a signal cycle action;
Pass the controller action to the signal cycle;

if Signal cycle has changed then
Change the signal cycle in SUMO;

Move the simulation by � step in SUMO;

Log simulation data to disk;

��

https://github.com/mtreca/carmulator

�.� Simulation Library

Using this supervision architecture has several advantages. First and foremost, interacting with
SUMO in a single class delimits interface code from carmulator-only code and limits the risks of
bugs and the number of messages passed from SUMO to carmulator�. Second, and most impor-
tantly, using this architecture allows quickly de�ning multiple tra�c signal control methods. In-
deed, all tra�c lights use the same simple interface composed of two methods. The setmethod
allows the controller to execute any necessary operation using the current simulation step and
the global carmulator data record (for instance, the controller can count the number of vehicles
around its lanes at the current time step, verify which signal cycle was in place on a neighboring
junction at the previous time step, or send/read a message to/from neighboring intersections).
The get method, executed after set, queries the controller for a new tra�c signal choice when
needed. The controller can choose this signal with information from the network gathered in
the set phase. De�ning new tra�c control methods using these two methods then becomes ex-
tremely easy. For instance, de�ning a �xed tra�c signal that switches phase periodically every ten
steps is as simple as de�ning these two methods�:

def set(step):

return

def get(step):

return step % 10 == 0

����� T������G���������

Besides simulatingRLmethodsusing SUMO, the second central task of thecarmulator library is to
generate tra�c demand data for these simulations. While it is possible to use hand-crafted tra�c
demand �les or SUMO generated data (either through netedit or programs such as duarouter),
carmulator provides multiple high-level �ow-based tra�c generation methods. As stated in sec-
tion �.�.�, �ow-based tra�c demand associates a given edge pair with a vehicle spawn probability
evaluated every simulation step (hence describing a binomial process, which is akin to a Poisson
distribution for small probability values, which is often the case in our context). The �ow values
can be generated in multiple ways using carmulator. The �rst is to supply an origin-destination
matrix automatically converted to a matching �ow demand data �le for a given network. If no
tra�c data is available for a network, carmulator can generate �ow demand from scratch by gen-
erating uniform demand �ow across all edge pairs of the network, which ensures tra�c stability
but is rather unrealistic. Another option provided by carmulator is to generate �ow probabili-
ties using an exponential distribution of parameterλ, which aremore realistic thanuniform�ows.
The exponential parameterλ de�nes themean of the drawn �owparameters and the overall tra�c
intensity. Theoverall shape of exponential distributions according todi�erent values of parameter
λ can be seen on Figure �.�.

�Message passing between SUMO and the Python API is relatively slow, accounting for �� to ��% of total simulation
time for simple TSCmethods.

�In this scenario, returning a � indicates a current green phase extension of � step, and returning a � indicates a phase
switch.

��

� Experimental Setting

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20 40 60 80 100 120 140 160 180 200

G
e
n
e
ra
te
d
F
lo
w
R
a
te

Cumulated Draws (sorted)

λ = 0.025

λ = 0.015

λ = 0.005

Figure �.�: Distribution of ��� draws according to an exponential distribution of parameter λ.

����� A���������U��������

While easily de�ning tra�c signal control methods and running them using SUMO is the primary
goal of carmulator, the library also provides some additional utilities andmethodswhich proved
extremely useful in working with TSC systems.

Comparingmultiple TSCmethodsmust be done following the same experimental conditions.
In the case of tra�c simulations in SUMO, the same exact tra�c demand �le and random number
generator seedhave tobeused to fairly comparemethods. Since these constraints are typical inRL-
TSC analysis, carmulator provides an experiment_setup and an experiment_run function,
ensuring that allmethods run for the same amount of episodes the same random seed anddemand
�le are used for each episode across compared algorithms. These methods also generate unique
names for all log �les of the experiment to be retrieved easily.

��� E����������� P��������

Developing the carmulator library has the advantage of making RL-TSC experimentation easy.
Indeed, the library provides controller classes that can be used to quickly prototype TSC meth-
ods simulation wrappers that can compare multiple TSC methods in the exact same simulation
conditions. The carmulator library also provides dedicated experimental protocols to analyze
RL-TSC controllers. This section covers the three main protocols that are used for the rest of this
thesis work in order to compare RL-TSCmethods.

����� C����������A�������

Wede�ne convergence analysis as the study of the learning capabilities of aRL-TSCagent as learn-
ing episodes advance. This analysis is conducted by �rst generating a set of tra�c demand data
using the protocol described in section �.�.� that will be used across all simulation episodes of the

��

�.� Experimental Protocols

experiment. This tra�c demand is de�ned in terms of �ow, meaning that at each step, each edge
pair of the network has a �xed probability of spawning a vehicle following this route. Hence, for
the same demand data, using the same random seed will result in the same exact tra�c data, while
using distinct seeds will result in slightly di�erent tra�c data that are still following the general
demand pattern. We exploit this property when comparing the convergence of multiple RL-TSC
methods. For the same episode index (i.e., the nth simulation episode), the same seed is used
across all tested methods, meaning that they all learn using the same exact tra�c data. However,
between episode indexes, the random seed is changed, ensuring that RL-TSC methods learn on
distinct but similar tra�c data from one episode to the next.

As for convergence analysis itself, we compute, for each simulation episode, the sum of cumu-
lated waiting times of each vehicle that traveled through the network, giving the total delay of the
simulation episode. Plotting these successive delay values from episode to episode, as in Figure �.�,
allow to observe the evolution of the routing tra�c capabilities of each agent. For increased accu-
racy, we usually repeat a convergence analysis over multiple tra�c scenarios, each associated with
distinct tra�c demand data. The plotted result is then the average cumulated waiting time values
of these scenarios.

18000

20000

22000

24000

26000

28000

30000

32000

0 10 20 30 40 50

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (2.5x103 s)

Method A

Method B

Convergence per Method

Figure �.�: Example of a convergence analysis plot.

Note that convergence analysis observes the rate at which aRL-TSC learnswhile it is still train-
ing. This implies that convergence analysis is not su�cient to measure the overall performance of
a RL-TSCmethod (which is why we also present performance protocols in section �.�.� and sec-
tion �.�.�). Furthermore, it also implies that we must decide on a stopping criterion when mea-
suring agent convergence. While there is no hard rule as to when to stop the training of amachine
learning model, a generally agreed upon rule is to establish an end of training criteria, usually ex-
pressed as a lower bound on the variation of the performance of the agent. Given the unstable

��

� Experimental Setting

nature of RL-TSC learning, we decide to end agent training if the di�erence in the average perfor-
mance of the last n simulation episodes and the n episodes before them is lower than a threshold
value κ. The value of parameters n and κ are set, however, on a case-by-case basis since the RL-
TSC convergence process greatly di�ers depending on the tra�c scenario and learning method at
hand.

����� P����������A�������

As mentioned in the previous section, convergence analysis cannot entirely analyze the e�ciency
of aRL-TSCmethod. Indeed, this analysis can underline information regarding the learning pro-
cess of testedmethods but can say little about their performance once they have converged. More-
over, learning-speci�c techniques such as random action selection in the ε-greedy policy (see sec-
tion �.�.�.�) introduce sub-optimal action selection choices for the sake of exploration, which can,
in turn, a�ect agent performance. Sub-optimal action selection could introduce a bias in the per-
formance metrics of some RL-TSC methods, especially when one is more likely to explore the
state-action space than the other.

We hence evaluate the performance of an agent separately from its convergence process. While
a performance analysis still measures the total cumulated waiting time of vehicles, it measures it
within instead of across simulation episodes. In other words, it plots how the total cumulated
waiting time increases as vehicles arrive within the simulation. In order to measure the variabil-
ity of methods, we plot these metrics over multiple tra�c scenarios, each associated with distinct
tra�c data drawn according to the method described in section �.�.�. The resulting plot, as dis-
played on Figure �.�, features the minimal and maximal cumulated waiting time observed across
multiple scenarios for each tested method.

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
or
st
/B
es
t
C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Step (s)

Method A

Method B

Performance per Method

Figure �.�: Example performance analyis plot.

��

�.� Experimental Protocols

Note that within a simulation scenario, all vehicles are generated up to a certain time step (e.g.,
���� on Figure �.�), and the simulation �nishes when the last generated vehicle reaches its desti-
nation. It is hence possible to have methods associated with longer running simulations, as is the
case with method A in the �gure above. Finally, performance analysis considers that the RL-TSC
methods they compare have �nished learning and hence disable their exploration features such
as random action selection by setting ε = 0. This ensures that only greedy action selection is in
place, which increases agent performance once learning has occurred.

����� P����������A�������U����V������� F����

The convergence and performance experimental protocols allow to study the learning dynamic
and post-learning performance of RL-TSCmethods. A �nal experimental protocol of interest to
widen our analysis relates to the robustness of these methods. Indeed, even the most advanced
RL-TSCmethods will not avoid congestion and delays if the tra�c demand is superior to a road
network’s capabilities. However, performant RL-TSC methods can delay congestion and delays
as much as possible as tra�c demand increases. Similarly, a desirable method can quickly go back
to normal tra�c conditions once tra�c demand decreases. These measurements of robustness
hence warrant the constitution of a third experimental protocol that can observe how various
methods react to tra�c conditions of variable intensity.

0

500000

1x106

1.5x106

2x106

2.5x106

3x106

3.5x106

4x106

4.5x106

100 150 200 250 300

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (103 s)

Method A

Method B

Variable-Flow Performance per Method

Figure �.�: Example variable-�ow performance analysis plot.

In order to observe both of these phenomenon, we de�ne a variable-�ow experimental pro-
tocol that is inspired by both the convergence and performance protocols described above. For
�xed demand data, all tested methods are �rst trained similarly to the convergence protocol de-
scribed above. Then, after these methods converge, the arrival rate λ of each edge pair of the

��

� Experimental Setting

tra�c demand data is increased by �.�% for each simulation episode over ��� episodes, gradually
increasing the total tra�c demand while maintaining its overall shape. After the tra�c demand
peak is reached, the same arrival rate is decreased over ��� episodes by increments of �% at each
episode, returning to a pre-rush hour arrival rate. After running the same experimental scenario
multiple times in order to increase accuracy, the resulting plot (see Figure �.�) shows the best and
worst waiting times per episode across these distinct scenarios. This �nal experimental protocol
hence combinesmethods from both the convergence and performance protocols by both looking
at inter-episode performance levels (similarly to the convergence protocol) and by plotting best
and worst-case cumulated waiting time levels of these episodes across scenarios (similarly to the
performance protocol).

::::

In this chapter, we presented the practical tools used to simulate tra�c in this thesis work.
We �rst presented the SUMO tra�c simulator, an open-sourcemicroscopic tra�c simulator used

to experimentwith variousRL-TSCmethods in this thesis. This simulatorwas chosen for its avail-
ability and �exibility since it o�ers a PythonAPI that can directly connect to a running simulation
process.
We also presented our RL-based tra�c simulation library, carmulator, which complements

SUMO by allowing us to quickly develop RL-TSC controllers and test them in tra�c simulation
settings. This library implements a tra�c demand generation utility used to generate demand
data over a tra�c network. Furthermore, carmulator contains a series of experimental protocols
used to compare in detail the various RL-TSC methods it implements. The convergence proto-
col measures the ability ofmethods to learn across simulation episodes; the performance protocol
measures the post-learning performance and performance variability of methods within a simu-
lation episode; while the variable-�ow protocol measures the robustness of methods by gradually
increasing and decreasing the tra�c demand data.

��

P��� III

M�����

The third part of this thesis is dedicated to studying di�erent reinforcement learning-basedmeth-
ods used for tra�c signal control. Once again, this work is done incrementally as the problem at
hand complexi�es. We start by discussingmultiple isolated tra�c signal controlmethods (chapter
�), featuring both deterministic and learning methods, to analyze each of their components and
establish which algorithms and policies are better suited for tra�c signal control. Once isolated
intersection control is analyzed, we extend our �eld of study to networks featuring multiple in-
tersections (chapter �) to study various modes of operations between intersections ranging from
independent control to direct coordination mechanisms.

��

� I�������T������ S�����C������

M������

�.� Deterministic Isolated Tra�c Signal Control ��

�.�.� FixedMethods . ��

�.�.� Optimal Method . ��

�.� Classical Reinforcement LearningMethods ��

�.�.� Value-basedMethods . ��

�.�.� Policy IterationMethods . ��

�.�.� Actor-critic Methods . ��

�.�.� Performance Evaluation of Classical RLMethods ��

�.� Function Approximation Techniques . ��

�.�.� Q-learning Bootstrapping . ��

�.�.� Function Approximation for Q-Learning ��

�.�.� Applying Function Approximation to Tra�c Signal Control ��

Isolated tra�c signal control methods aim to optimize tra�c at the single intersection level,
regardless of the actual size of the roadnetwork. Since their scope of action is limited, isolatedTSC
methods are usually simpler to develop and analyze than their coordinated counterparts. This last
point leads us to start our analysis of RL-TSC methods on isolated intersections before moving
on to coordinatedTSCmethods in chapter �. This chapter �rst covers deterministic isolatedTSC
methods, which donot use learning to route tra�c butwill be useful in our experimentations. We
then cover multiple classes of classical RL algorithms before looking at function approximation
techniques.

��� D������������ I�������T������ S�����C������

The �rst subset of isolated TSC methods is composed of TSC methods which do not use learn-
ing mechanisms to route tra�c. Deterministic methods regroup, among others, TSC methods
implementing a �xed signal cycle repeating itself regardless of tra�c conditions, hand-tuned �xed
signal cycles designed tomaximize intersection throughput, andmore complex routingmethods.

����� F����M������

The term�xed tra�c signal controlmethods regroupsTSCmethodswhich implement a�xed sig-
nal cycle on a given controller regardless of the current tra�c situation. The simplest formof �xed

��

� Isolated Tra�c Signal Control Methods

signal control would be an algorithm assigning the same green phase length regardless of phase in-
dex or tra�c state, even though such an algorithm does not consider the tra�c demand around
the intersection. During the ����s, Webster formulated a method to compute the optimal cycle
time and split times of an intersection given the tra�c demand around it (Webster, ����).Webster’s
estimations for optimal cycle time andphase splits rely on computing critical lanes for eachphase i
of the signal cycle, which is the lane with the highest ratio fi of �ow to saturation �ow (El-Tantawy

and Abdulhai, ����). Once the critical lanes are identi�ed, the optimum cycle lengthC in seconds
is estimated as a function of the unusable time per cycle L (i.e., amount of seconds dedicated to
red phase time) and of the sum of the critical lane �ow ratios computed earlier:

C =
1.5L+ 5

1.0�
P

fi

The optimal green phase time gi for each phase i of the signal cycle is calculated by distributing
the total available green timeC � L proportionally to the �ow ratio of each phase as

gi =
fi

P

fi
(C � L)

After parameterizing �ow values gathered from historical tra�c data, the Webster formula al-
lows intersections to implement a �xed signal cycle adapted to their tra�c demand. algorithm �

details the Webster signal cycle formula.

Algorithm �: Fixed signal timing algorithm usingWebster’s formula.

for each step t do
i φt(v);
if dt(v) < gi(v) then

av 0;
else

av 1;

Whilemultiple algorithms extend this basis (Rouphail et al., ����) tomore accurately assign green
timewithin an intersection’s signal cycle,Webster’s original formula provides a good performance
indicator of how a real-world parameterized intersection would behave in a tra�c simulation set-
ting.

����� O������M�����

A particular shortcoming regarding the analysis of TSC algorithms is that there is–to the best
of our knowledge–no given deterministic method capable of �nding an optimal or near-optimal
solution for a given tra�c situation at the single intersection level. Furthermore, a common com-
plaint regarding the performance evaluation of learning algorithms is that while it is easy to ob-
serve whether a learning method improves over time, it proves more complicated to estimate this
improvement with regard to a maximum performance bound for this given problem. ARL-TSC
method improving its tra�c routing capabilities fourfold through learning iterations does not

��

�.� Deterministic Isolated Tra�c Signal Control

measure if this improvement is still far from an optimal–and often unobserved–solution. This
issue is common in most papers of the RL-TSC literature since most proposed TSC methods
are either compared to �xed or other RL-based methods of the literature (Noaeen et al., ����), but
rarely to state-of-the-art tra�c engineeringmethods used in real-life urban networks. The optimal
method we present in this section solves these issues.

������� O������ S������� S�����

We developed an approximation method that leverages the ability to save and load simulation
states in SUMO to alleviate this issue partially. This method considers agent strategies, which are
binary strings representing successive step-based action choices (see section�.�.�) by the agent over
a certain number of simulation steps. For instance, the strategy 001000 represents two successive
extensions of the original green phase, followed by a phase switch and another three successive
phase extensions, for a total strategy duration of �� (a single step per extension action and ten
steps for a switch action, corresponding to � steps of yellow and red time and � steps of minimum
green time). The main idea behind this optimal strategy approximation algorithm is the follow-
ing: when facing an action choice (i.e., whether to extend or switch the current green phase),
the algorithm saves the current simulation state to disk and starts testing all possible strategies of
length k in a tree-like manner (see Figure �.�) by successively saving and loading simulation states.
After computing all strategies, the algorithm returns the one yielding the best results to the agent,
which applies its �rst h steps. Appendix A provides a complete description of the algorithm.

X

1 0 0 0 0 0

0

1 0 0 0 0

0

1 0 0 0

0

1 0 0

0

1 0

0
1

−

Figure �.�: Representation of a strategy tree search for a depth k = 15. The � character represents ��
successive extend actions for brevity.

��

� Isolated Tra�c Signal Control Methods

������� D������������� I�����

A known limitation of exhaustive strategy search methods is their combinatorial explosion when
the strategy tree reaches a su�cient length. In the case of tra�c signal control, this total number
of strategies can be computed by listing all the valid combinations of 0s and 1s that form a strategy
string of the desired length and then computing the number of permutations without repetitions
in which these symbols can be arranged. Using this formula, we estimate that there are �� unique
strategies of length ��, ���� strategies of length ��, and around �� million unique strategies of
length ���. Testing the entire strategy tree of a ��.��� steps simulationwould require trying2.13⇥
10782 unique strategies, which is entirely above our computational means.

������� R��� �� S����� P���������

Since an exhaustive optimal search is impossible given the combinatorial explosion of the problem
at hand, the role of the strategy depth k as well as the horizon h for which the agent will apply
the returned strategy is paramount in �nding the right balance between optimality approxima-
tion and computational needs for this algorithm. In theory, increasing the strategy search depth
k should increase the performance with diminishing returns and increase computation times ex-
ponentially (since longer strategies matter less and less regarding the current decision point but
dramatically increase the computational search costs). Additionally, increasing the horizon pa-
rameter should reduce computational costs and negatively impact agent performance since the
entire strategy search process is triggered less frequently. Hence, choosing parameters h and k
is a matter of balancing agent performance and algorithm running time. In order to study the
in�uence of both these parameters on the strategy approximation algorithm, we measure the cu-
mulatedwaiting time obtained in a single-intersection simulation and the total simulation time in
seconds for di�erent strategy depth andhorizon values for the same tra�c and simulation settings.

k / h � � �� �� �� ��

�� ��� ��� ��� - - -
�� ��� ��� ��� ��� - -
�� ��� ��� ��� ��� ��� -
�� ��� ��� ��� ��� ��� ���

�� ��� ��� ��� ��� ��� ���

�� ��� ��� ��� ��� ��� ���

�� ��� ��� ��� ��� ��� ���

Table �.�: Cumulated waiting times according to di�erent strategy depths k and horizon h values.

Wepresent the cumulatedwaiting time values obtainedwithin the simulations onTable �.�. We
�rst observe that our predictions regarding the positive in�uence of longer depths k and shorter
horizons h on cumulated waiting time values are respected overall. Nonetheless, some higher
horizon values can sometimes outperform lower ones (e.g., horizon h = 10 yields a better result
than h = 5 for k = 35), which is likely due to a "lucky run" by speci�c combinations of k and
h; and shows the inherent limitations of optimal strategy approximation methods. The in�u-

��

�.� Deterministic Isolated Tra�c Signal Control

ence of the horizon parameter also behaves as expected. Increased horizon values above h = 1
quickly degrade performance values, even though this degradation is not necessarily ordered or
linear for higher values ofh. Regarding computational costs, we do notice a substantial reduction
in simulation time when increasing agent horizon initially, but this reduction quickly decreases
for horizon values above h = 10, as one can see on Figure �.� for selected values of parameter k.

256

1024

4096

16384

65536

140 160 180 200 220 240

C
om

p
u
ta
ti
on

T
im

e
(s
)

CumulatedWaiting Time

k = 20

k = 30

k = 40

Performance and computation time values for different depth search and horizon parameters

Figure �.�: Computation time of the optimal strategy approximation algorithm depending on di�erent
horizon parameter h values (�, ��, ��, ��, ��, ��, �� and ��, in increasing order on the above
�gure).

������� P��������R��������������

These results lead us to make the following recommendations regarding the optimal parameter
selection. First, we do recommend setting the horizon parameter h to �. Indeed, as we can see
on Table �.�, setting a minimal horizon parameter is the surest way of obtaining a minimal cu-
mulated waiting time for a �xed depth parameter k, while higher values of h tend to increase the
unpredictability of the performance output. Furthermore, we observe on Figure �.� that an algo-
rithm of depth k and horizon � takes less time to compute and performs better than an algorithm
of depth k + 5 and horizon 5. Our recommendations regarding the depth parameter k depend
on two bounds: a lower depth bound decided by performance, for which we recommend setting
parameter k to values of �� or higher, and a higher depth bound decided by computation time and
which depends on the entire length of the simulation. Using results from our test simulations of
��� steps and a �xed horizon parameter of h = 1, we estimate that it takes an average of �.� sec-
onds per simulation step to run the algorithm for a depth parameter of ��, �.� seconds per step
for a depth parameter of ��, ��.� seconds per step for a depth parameter of �� and �:��minutes per
step for a depth parameter of ��. Multiplying these estimates by the number of steps necessary to

��

� Isolated Tra�c Signal Control Methods

run a given simulation gives a reasonable estimate of how long a given optimal method will run,
which helps select the highest value of parameter k with acceptable computation times.

��� C��������R������������ L�������M������

As we have mentioned in chapter �, multiple types of RL algorithms, such as value-based, policy
iteration or actor-critic methods have been successfully applied to TSC tasks (Noaeen et al., ����).

This section hence aims to �rst present a RL algorithm from each of these classes before compar-
ing them in practice on a single-intersection tra�c simulation. Each representative algorithm is
voluntarily kept simple to ease the presentation and analysis work of this section; more advanced
methods, including function approximation techniques, are presented in section �.�.

����� V����������M������

Among the threemain types of value-based reinforcement learning algorithms presented in chap-
ter �, onlyTemporal-Di�erence learning algorithms are suited toRL-TSC tasks. Indeed,Dynamic
Programming methods are model-based, meaning that they require prior knowledge or estima-
tions of the transition function T of the underlying MDP, which is generally considered as a
complex modeling task (El-Tantawy et al., ����; Mannion et al., ����) and is hence seldom featured in
the literature (Noaeen et al., ����). Similarly, Monte Carlo methods are not used for tra�c signal
control tasks. Indeed, these methods update their policies and value estimates at the end of an
episode, instead of at the end of each stepwithin an episode (Sutton and Barto, ����),making them
un�t for tasks like RL-TSC in which fast reactivity within an episode is essential for acceptable
performance (El-Tantawy and Abdulhai, ����).

������� Q���������

Given its overwhelming presence in the RL-TSC literature and its relatively simple structure, we
choose to study Q-learning (Watkins and Dayan, ����) as the representative value-based method.
The Q-learning algorithm estimates the quality of state-action couples of the environment using
a general policy iteration technique (see section �.�.�) and stores these estimates in a Q-table. For
α 2 [0, 1] and γ 2 [0, 1] representing the learning rate and discount factor of the agent, the
estimated quality of each state-action visited by the agent is successively updated according to the
following rule:

Q(st, at) (1� α)Q(st, at) + α(rt + γmax
a

Q(st+1, a)) (�.�)

The intent behind the update rule in Equation �.� is rather clear: for a given state st and asso-
ciated chosen action at, the estimated quality valueQ(st, at) stored in the Q-table is updated by
keeping a fraction 1�α of its old value and a fraction at of a newly estimated quality value. This
latter term is estimated using the associated reward value rt (since the long-term reward function
iswhat the quality function approximates) aswell as the estimated quality associatedwith the next
system state st+1, which is computed by estimating themaximal reward the agent could obtain in
this new state,maxaQ(st+1, at). Since this reward is delayed for the agent, a discount factor γ is
applied to re�ect the agent’s decision-making process at step t. algorithm � provides an illustration

��

�.� Classical Reinforcement LearningMethods

of the Q-learning algorithm using an ε-greedy policy (see section �.�.�.�) applied to isolated tra�c
signal control.

Algorithm �: Illustration of a standard Q-Learning algorithm with an ε-greedy policy
applied to an isolated intersection.

for each step t do
Observe s, a, r, s0;
Q(s, a) (1� α)Q(s, a) + α(r + γmaxa0 Q(s0, a0));
if X ⇠ U(0, 1) < ε then

a0 ⇠ U(A);
else

a0 maxaQ(s0, a);

����� P����� I��������M������

Policy iteration methods aim at directly estimating the optimal agent policy of a given problem
without needing to estimate value or quality functions. Learning automata (LA)–which were
originally developed in the �eld of mathematical psychology (Narendra and Thathachar, ����)–are
functionally equivalent to simple policy iteration RL algorithms (Kaelbling et al., ����; Nowé et al.,

����). Learning automata were the �rst RL algorithms to be applied to a TSC problem (Mikami

and Kakazu, ����). Learning automata maintain a policy vector containing the probabilities of se-
lecting a given action inA. After receiving a reward from the environment, the vector p is directly
updated to take this feedback into account. Hence, LA circumvent the need for value or quality
estimates by directly embedding these values as probabilities in their policy vector. Multiple types
of learning automata can be derived from these guidelines and generally di�er on three points:
their reward model, scheme and statelessness.

������� L�������A������� P���������

Linear automata usually use three distinct reward models. The P-model is suited for rewards
whose values are either 0 or 1, the Q-model when rewards are a distinct collection of symbols,
and the S-model when rewards are within a continuous interval (Narendra and Thathachar, ����).

LA schemes also di�er on which vector update strategy to apply when receiving a reward. The
two most common linear schemes are the linear reward-inaction (LRI) scheme, which only in-
creases probabilities when the reward is positive, and the linear reward-penalty (LRP) scheme,
which both increases probabilities if the reward is positive and decreases them if the reward is neg-
ative. For σ 2 [0, 1] and τ 2 [0, 1] two parameters respectively associated with the reward and
penalty components of the linear automaton, these two schemes can be summarized using the
update rules below shown on Equation �.�. Since these update rules guarantee that the policy
vectors remain valid probability distributions, the agent policy is directly included in the proba-
bility vector in the form of a stochastic policy: each action of the action space is drawn according to
its weight in the policy vector. While initially using a single policy vector regardless of the system

��

� Isolated Tra�c Signal Control Methods

state (Nowé et al., ����), linear automata can maintain multiple policy vectors ps, each associated
with a state s of the state space S .

pa

(

pa + σr(1� pa)� τ(1� r)pa, if a = at

pa � σrpa + τ(1� r)(1
||A||�1 � pa), else

(�.�)

������� M������� L�����A������� ���TSC

Regarding the application of LA toRL-TSC problems, several choices have to bemade regarding
their features. First, state-indexed policies ensure the algorithm behaves di�erently depending on
the current system state, which is crucial in tra�c signal control. Hence, the LA applied to traf-
�c signal control will maintain a separate policy vector ps per system state. The reward scheme
used for tra�c applications has to feature both negative and positive reward values, according to
the reward function de�ned in section �.�. We consequently apply a S reward model within the
[�1, 1] interval where each reward is linearized to �t in this interval by using the worst and best
past observed rewards as the upper and lower bounds of the interval. Finally, the choice of us-
ing a LRI or LRP scheme is largely problem-dependent. Our experiences on TSC applications
have shown that the LRP scheme was strongly superior to the LRI scheme since it took into ac-
count both good and bad action selection decisions. Indeed, by not taking bad action choices into
account, the LRI scheme does not learn fromwrong tra�c decisions even though they are essen-
tial in adequately routing tra�c. Additionally, the �rst paper applying reinforcement learning to
tra�c signal control featured a LRP algorithm (Mikami and Kakazu, ����). Based on these model
choices, and by selecting identical parameters for both rewards and penalties (i.e., σ = τ), the
LRP algorithm associated with a stochastic policy for isolated tra�c signal control is presented
in algorithm �.

Algorithm �: Illustration of a linear reward-penalty with a stochastic policy applied to
an isolated intersection.

for each step t do
Observe s, a, r, s0;

if r < rmin then
rmin r;

if r > rmax then
rmax r;

r̂ (r � rmin)/(rmax � rmin);

for ai inA do
if ai = a then

ps,a ps,a + σr̂(1� ps,a)� σ(1� r̂)ps,a;
else

ps,a ps,a � σr̂ps,a + σ(1� r̂)(1
||A||�1 � ps,a);

a0 ⇠ ps0 ;

��

�.� Classical Reinforcement LearningMethods

����� A�����������M������

Similarly to policy iteration methods, actor-critic methods establish a policy directly through a
policy vector (i.e. the actor); and, similarly to value-based methods, the agent maintains qual-
ity estimates (i.e. the critic) and uses them to re�ne the policy vector iteratively (Grondman et

al., ����). While most actor-critic algorithms used in a TSC context use advanced rainbow-type
models leveraging function approximation and other techniques (Gregurić et al., ����), the general
actor-critic framework allows to de�ne simpler schemes that do not rely on continuous state or
action spaces or function approximation techniques (Crites and Barto, ����).

������� S�����A�����C�����A��������

Wede�ne an actor-critic algorithm thatmergesmechanisms fromQ-learning and linear automata
de�ned above. Similarly to learning automata, the agent’s policy of this actor-critic model is a
probability vector ps associated with a given environment state, s. Additionally, and similarly
to Q-learning, this actor-critic algorithm stores quality estimates in a tabular fashion and uses
temporal-di�erence methods to compute these estimates. By using the TD-error formula, which
is de�ned as

δ = r + γq(s0, a0)� q(s, a) (�.�)

where q(s, a) denotes the quality estimate of taking action a in state s, and the critic update
rule de�ned as q(s, a) q(s, a) + αδ (Crites and Barto, ����) we obtain the quality function
estimate update rule:

q(s, a) (1� α)q(s, a) + α(r + γq(s0, a0)) (�.�)

While similar in appearance to the Q-learning update rule de�ned in Equation �.�, it is impor-
tant to note that in this case, the agent’s following action a0, or the associated quality q(s0, a0)
cannot be predicted by looking at the quality estimates alone, since they have to take into account
the agent’s (now separate) policy. It is, however, possible to estimate this future quality estimate
by averaging existing state-action estimates weighted by the associated agent policy ps0 :

q(s0, a0) =
X

a2A

q(s0, a)ps0,a (�.�)

Equations �.� and �.� allow to compute quality estimates using a separate policy vector. The

policy vector is then itself updated using a linearized TD-error δ̂ on the basis of the maximal and
minimal observed TD-error values, δmin and δmax. The entire actor-critic algorithm is presented
in algorithm �.

��

� Isolated Tra�c Signal Control Methods

Algorithm �: Pseudocode illustration of an actor-critic leveraging Q-learning and linear
reward-penalty mechanisms with a stochastic policy applied to an isolated intersection.

for each step t do
Observe s, a, r, s0;
δ r + (

P

a2A q(s0, a)ps0,a)� q(s, a);
q(s, a) (1� α)q(s, a) + αδ;

if δ < δmin then
δmin δ;

if δ > δmax then
δmax δ;

δ̂ (δ � δmin)/(δmax � δmin);

for ai inA do
if ai = a then

ps,a ps,a + σδ̂(1� ps,a)� σ(1� δ̂)ps,a;
else

ps,a ps,a � σδ̂ps,a + σ(1� δ̂)(1
||A||�1 � ps,a);

a0 ⇠ ps0 ;

����� P���������� E��������� ��C��������RLM������

After presentingmethods from threemain reinforcement learning algorithmclasses, our next task
is tomeasure and compare their tra�c optimizationperformance. This series of experiments com-
pares theQ-learning, linear reward-penalty, and actor-critic algorithm on an isolated intersection.
More speci�cally, the policy and data structures used by these algorithms are compared in order
to establish whether one of them is best suited to deal with tra�c optimization tasks.

������� E����������� S����

The comparison of the three classical RL-TSC algorithms of the previous sections is done using
the convergence experimental protocol (see section �.�.�). The tra�c demand data is generated
using an exponential law of parameter λ = 0.04 (see section �.�.�) on a four-way isolated inter-
section using a NEMA-type signal cycle. Essential simulation parameters, are summarized on Ta-
ble �.�.

One could argue that using such a simple road network for these experimentations could ren-
der our results meaningless since they di�er quite a lot from real-world scenarios. However, we
argue that it is exactly because real-world applications are complex that our analysis work should
startwith simpli�ed tra�c scenarios. Indeed,RL-TSCanalysis itself seems to su�er from the curse
of dimensionality. It is much harder to explain how a given algorithm performs when it is com-
bined with multiple layers of complexity, such as multi-agent learning, agent policy, or function
approximation, than when it is used in a simple context. This observation explains why our anal-
ysis work is iterative in nature. By using the simplest road network at �rst, we are able to identify

��

�.� Classical Reinforcement LearningMethods

Parameter Value

Episodes 500
Steps 2500/episode
Vehicle arrival rate λ 0.04 veh/s
Discount factor γ 0.98
Learning rate α 0.2! 0.001
Random action probability ε 0.9! 0.01
LRP reward parameter σ 0.5
LRP penalty parameter τ 0.5
Moving window n for stopping criteria 10 episodes
Performance delta κ for stopping criteria 5 sec average

Table �.�: Simulation hyper-parameters used for classical RL method comparison.

which class of algorithm performs better as well to explain why. Using these results, we can then
exclude other RL classes from the analysis as we increase the overall complexity of the model by
adding, for instance, multiple intersections or function approximation techniques.

������� I������ P����������R������

Wemeasure a �rst performance evaluation of the three classes of classical RL-TSC algorithms on
an isolated intersection with an overall vehicle arrival rate of λ = 0.04 vehicles per second, ran-
domly distributed across the incoming edges of the intersection. As one can see on Figure �.�, the
convergenceprocess of all threemethods is highly straightforward, allmethods triggering their end
of training criteria (see section �.�.�) around the ���th episode (for stopping parameters n = 10
and κ = 3). While each method starts around the same cumulated waiting time levels, they then
quickly form a distinct performance hierarchy, with actor-critic (����� average), linear reward-
penalty (����� average), andQ-learning (����� average) ranking fromworst to best. We note that
all the tested methods show an ability to learn to route tra�c as simulation episodes advance (al-
though barely in the case of the actor-critic method). If only the classical Q-learning can outper-
form the �xed Webster controller, it is still far from our optimal method, which has an average
waiting time of �����.

If these results already give us an insight on which classical RL algorithms are adapted to tra�c
signal control out of the box, they also clearly show the presence of a signi�cant performance gap
in performance between otherwise quite similar reinforcement learning algorithms, which raises
the question of how onemight explain this discrepancy. Two–possibly overlapping–explanations
can be given for these discrepancies when looking at RL theory. The �rst explanation relates to
agent policies, since Q-learning, which performs better, uses an ε-greedy policy while both LRP
and actor-critic use a stochastic policy. The second explanation relates to the data structure being
used by the algorithms in question. Indeed, Q-learning uses a Q-table to store quality estimates,
while both LRP and actor-critic use stochastic vector to store information about the quality of
state-action couples. Both of these hypotheses are investigated in the following two sections.

��

� Isolated Tra�c Signal Control Methods

18000

20000

22000

24000

26000

28000

30000

32000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (2.5x103 s)

Optimal

Webster

Q-Learning

Linear Reward-Penalty

Actor-Critic

Cumulated Vehicle Waiting Time Evolution per Algorithm Type

Figure �.�: Training process of three classical reinforcement learning algorithms on an isolated intersection.

������� P����� I��������A�������

The �rst hypothesis we investigate is the di�erent agent policies being employed by these classical
RL algorithms. Q-learning uses an ε-greedy policy, while both the LRP and actor-critic algo-
rithms use a stochastic policy which might limit their performances. In order to verify this hy-
pothesis, we run the same tra�c scenario as in the previous section while swapping the policies
used by the three classical RL algorithms. We use a stochastic policy on a Q-learning algorithm
by transforming Q-table rows in probability vectors by linearizing them during action selection.
Conversely, we greedily pick the highest probabilities of the policy vectors of LRP and actor-critic
policies while maintaining a probability ε of selecting a random action. This experiment aims
to estimate whether a stochastic policy is inherently inferior to a greedy-type policy for the three
classical RL algorithms in TSC applications.

We plot the results of this experiment on Figure �.� by showing the three algorithms using two
types of policies: greedy policies are shown in full lines, stochastic policies in dashed lines. These
results give contrasted answers regarding our initial hypothesis. On the one hand, switching to
an ε-greedy policy sensibly increases the performance of the LRP (in blue in the �gure) and–in
an even greater fashion–of the actor-critic algorithm (in yellow in the �gure). On the other hand,
we cannot conclude that stochastic policies are inherently inferior to greedy ones since the Q-
learning method (in red in the �gure) using a stochastic policy performs slightly better than the
greedy version.

Our�rst experiment, using alternative agentpolicies to explain the superiority of theQ-learning
over LRP and actor-critic methods, cannot fully explain the di�erence in performance between
the three algorithms. However, this same experiment allows to conclude that Q-learning is the

��

�.� Classical Reinforcement LearningMethods

21000

22000

23000

24000

25000

26000

27000

28000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (2.5x103 s)

Q-Learning

Linear Reward-Penalty

Actor-Critic

Cumulated Vehicle Waiting Time Evolution per Algorithm and Policy Type

Figure �.�: Training process of three classical reinforcement learning algorithms using two distinct policy
types on an isolated intersection. Dashed lines represent a stochastic policy, full lines an ε-greedy
policy. All plots use smoothing splines for readability.

overall best classical RL algorithm for TSC applications given its superiority usingmultiple agent
policies and that it should henceforth be applied to RL-TSC problems.

������� D��� S�������� I��������A�������

The second hypothesis we formulated regarding the di�erence in the performance of the three
tested classical RL algorithms is that they employ di�erent data structures to store their learning
data. Q-learning stores quality estimates in a tabular fashion, LRP stores probability weights in
policy vectors, while the actor-critic method uses both data structures in a hybrid approach. On
the one hand, Q-learning stores cardinal values (i.e., an absolute measure of the quality of a state-
action pair), while, on the other hand, policy iteration methods store ordinal values (i.e., an order
of preference of actions for a given state) in the form of probabilities. We argue that using an RL
algorithm using ordinal values introduces several model limitations compared to cardinal values.
First, models using ordinal quality estimates are unable to predict the future estimated value of a
state, which are expressed in cardinal values, and as represented in the γmaxaQ(st+1, a) term of
the Q-learning formula in Equation �.�. While the actor-critic algorithm circumvents this limita-
tion bymaintaining both aQ-table and a policy vector, the LRP algorithm is unable to determine
the quality of a new state and can hence only use the reward value r as a quality indicator of a
state-action couple, making it more limited than othermethods. Second, one could argue that us-
ing a probability vector as a data structure imposes additional constraints on the storage of quality
estimates. Theymust be probability values summing to �, which forces linearization of the reward
and TD-error values, potentially causing information loss.

��

� Isolated Tra�c Signal Control Methods

In order to test this new theory, we run two modi�ed versions of the Q-learning algorithm in
the same simulation scenario. A �rst version disables the role of future values estimates in the
computation of quality estimates by setting the discount parameter γ to 0, rendering the learning
agent entirely myopic to future rewards. A second version neutralizes the role of future reward
estimates and also linearizes the state-action estimates before storing them in theQ-table, as if these
valueswere stored in a policy vector, instead of computing them as policy vectors on-the-�y before
the action selection process as in Figure �.�. Finally, we run a modi�ed version of the actor-critic
which does not use the policy vector for action selection but tabular quality estimates similarly
to the Q-learning, with the exception that these quality estimates are computed using a TD-error
formula instead of the classicalQ-learning formula. This lastmethod is simulated to verify further
if linearization is the root cause for degraded performance in the actor-critic algorithm.

21000

22000

23000

24000

25000

26000

27000

28000

29000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (2.5x103 s)

Q-Learning, ε-greedy (γ=0.8)
Q-Learning, stochastic (γ = 0)

Q-Learning, stochastic and linearized (γ = 0)

Actor-Critic, no policy vector, ε-greedy

Cumulated Vehicle Waiting Time Evolution per RL Algorithm and Policy Type

Figure �.�: Training process of the Q-learning and actor-critic algorithms using data structure variations.
Full lines represent multiple variations of the Q-learning algorithm. The dashed line represents
the actor-critic policy.

This second experiment, whose results are on Figure �.� proves our hypothesis correct. We
�rst notice that the quality estimates of future states, which are neutralized through the discount
rate parameter γ, seem to have no in�uence on the performance of RL-TSC algorithms. Indeed,
both the standard (in yellow) and no-future quality estimates (in red)Q-learning algorithms show
similar performance levels. This observation shows that, in the context of tra�c signal control,
the quality of a state-action couple seems only to be dictated by how the chosen action directly
impacts tra�c and not by how it could make the system transition to a more favorable state. In
broader terms, thiswould imply thatmost good tra�c routing strategies aimat immediately acting
on tra�c by lowering waiting times instead of aiming for medium or long-term strategies.

��

�.� Function Approximation Techniques

The second (and major) result of this experiment is that storing quality estimates in linearized
form, e�ectively switching from a cardinal to an ordinal data structure, dramatically impedes the
learning ability of Q-learning. A seen on Figure �.�, Q-learning using linearized quality estimates
(in blue) has performance levels similar to those of LRP on Figure �.�. Conversely, the actor-critic
method using a greedy policy coupled with tabular storage of quality estimates (using a dashed
plot on the �gure), hence circumventing the use of policy vectors and linearization, performs sim-
ilarly toQ-learning, further proving the limitations of using ordinal quality estimates forRL-TSC
applications. This last observation also shows no signi�cant di�erence exists between a standard
Q-learning estimate rule and theTD-errorupdateusedby the actor-critic algorithm. Finally, while
this series of experiments has shown that Q-learning is the best classical RL algorithm for isolated
tra�c signal control, its performance levels are still far behind what the optimal strategy approx-
imation method has achieved in the same simulation setting, with an average cumulated waiting
time of ����� per simulation episode (which is around ��% lower than the standard Q-learning
algorithm). This di�erence in performance underlines the need for more sophisticated reinforce-
ment learning algorithms and techniques, such as function approximation methods, which we
describe in the next section.

��� F�������A������������T���������

The role of function approximation techniques, as described in chapter �, is twofold. On the one
hand, function approximation techniques can signi�cantly reduce thedimensionality of aRL task
and cause faster learning convergence. On the other hand, they allow the learning agent to general-
ize past observations to decide how to handle unobserved states e�ciently. While dimensionality
issues are not central since the state space de�ned in section �.� is quite dimensionality-e�cient,
the issue of generalization is crucial in tra�c signal control problems. For instance, the states
051111 and 051112 are highly similar in practice since they only di�er by one vehicle on the last
lane of the intersection. If these two states are hence likely to have similar value estimates, they are
yet they are entirely unrelated froma learning standpoint, whichmeans that theRLalgorithmwill
have to visit these two states separately in order to estimate their value. This section explores two
distinct manners to exploit function approximation to improve the classical RL-TSC methods
tested in the previous section. The �rst one uses a unique pattern that uses function approxima-
tion to bootstrap a Q-learning table to accelerate the learning process, while the second illustrates
the use of deep neural networks to improve the standard Q-learning algorithm iteratively.

����� Q��������� B������������

As stated in the introduction of this section, the main limitation of classical reinforcement learn-
ing techniques is their inability to predict the value estimate of a state they have not yet visited.
This issue is particularly problematic in TSC applications since intersections have to test a certain
amount of low-value state-action combinations, such as switching the current green phase when
the associated lanes around the intersection have a large number of vehicles waiting on them.
These state-action combinations have to be tested for exploration purposes but can cause signi�-
cant delays on the road network.

��

� Isolated Tra�c Signal Control Methods

������� Q������ E������� B������������

Aquite unorthodox�rst-approach solution to theproblemof generalization for tabularRLmeth-
ods is to provide quality estimates to the agent before learning even starts through function ap-
proximation (Matignon et al., ����). In the case of Q-learning, this bootstrapping� method would
pre-estimate each state-action entry of theQ-table with an estimation of its value. Such a solution
requires estimating the impact of each tra�c control action (i.e., extend or switch the current
green phase) on each possible tra�c state in terms of cumulated waiting time di�erence. This
approach is hence on the margin of function approximation techniques: we do use a function to
approximate quality estimates of the states of the environment, but we only do so before learning
occurs, at which point we use a classical RL algorithm. To the best of our knowledge, using an
approximation function to pre-populate the entries of a Q-table in a RL-TSC context had never
been done before we published a paper on the matter (Tréca et al., ����b).

st / at 0 1

s1 0 0
s2 0 0

.

sm 0 0

st / at 0 1

s1 Q̂(s1, 0) Q̂(s1, 1)

s2 Q̂(s2, 0) Q̂(s2, 1)

.

s|A| Q̂(sA, 0) Q̂(sA, 1)

Table �.�: Comparison of a regular (left) and bootstrapped (right) initial Q-table of an isolated intersection

using Q-learning. The Q̂ function represents a manual quality estimation of a state-action pair.

������� E��������� F�������

Our bootstrapping method relies on estimating the quality of each state-action pair of the envi-
ronment by computing the reward associated with applying each action to each tra�c state of the
state space. In practice, computing the reward of each state-action pair requires to estimate the
di�erence in waiting time before and after an actionwas applied to a particular tra�c state, which
requires prior knowledge of the environment, most notably tra�c demand around the intersec-
tion. For phase-based action types, the quality of an action is measured by estimating, for each
lane, the number of vehicles that were present in the lane at the beginning of the action (denoted
by o) and vehicles that entered the lane while the action is being applied (denoted by n). For both
groups of vehicles, it is possible to estimate the number of vehicles that exited the lane (denoted
by a �) and the vehicles that stayed on the lane (denoted by a +) and measure their respective
impact on the overall waiting time. By supposing that each vehicle leaving the intersection lowers
the cumulated waiting time by Tl, which is the average service time associated with lane l (and
which is computed by modeling each tra�c lane around the intersection as a M/D/1/K queue, as
shown in our paper), we can estimate the quality of a speci�c state-action pair in a phase-based
action space to be equal to:

�Bootstrapping refers here to the action of pre-�lling the Q-table with estimated state-action quality values and is
hence di�erent for the concept of bootstrapping in the RL literature which refers to the technique which consists
in using values estimates to update other value estimates in methods such as temporal-di�erence learning.

��

�.� Function Approximation Techniques

Q̂(s, a) =
X

l

Tl ⇥ (n�

l,a + o�l,a)� a⇥ (o+l,a + n+
l,a) (�.�)

Note that Appendix B provides a complete description of this approximation algorithm in
pseudocode form. This approximation method provides several advantages compared to the tra-
ditional Q-learning algorithm. First, while not providing exact values for the quality of each state-
action pair, these estimates are stillmuch closer to their actual quality function than default values
of 0, which are typically used withQ-learning. Second, bootstrapping can occur without starting
a tra�c simulation and hence operate in a completely o�ine manner. This last point presents a
signi�cant advantage in computational resources since o�ine computation is signi�cantly faster
than online. Finally, if this approximation method has only been tested for phase-based actions,
we believe that this method could easily be adapted to step-based actions by modifying the esti-
mation model presented above.

������� B������������ ����������

These e�ciency claims have been tested according to the experimental protocol described in sec-
tion �.�.�. The standard and bootstrapped Q-learning techniques are compared on �� di�erent
simulation scenarios on an isolated intersection, each composed of ��� episodes of ����� steps
each. In each tested scenario, the overall vehicle arrival rate is �xed to λ = 0.06 vehicles per sec-
ond, but the distribution of this arrival rate between the lanes of the intersection di�ers between
scenarios.

24000

26000

28000

30000

32000

34000

36000

38000

40000

0 10 20 30 40 50 60 70 80 90 100

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (10x103 s)

Classical Q-Learning

Bootstrapped Q-Learning

Cumulated Vehicle Waiting Time Evolution

Figure �.�: Comparative convergence process of a regular and bootstrappedQ-learning algorithm. Average
out of �� simulation scenarios.

��

� Isolated Tra�c Signal Control Methods

As one can see by looking at the waiting time evolution per episode for these tra�c scenar-
ios on Figure �.�, bootstrapping signi�cantly improves the early performance of the Q-learning
agent, which is strongly superior to the standard Q-learning algorithm for an average of �� simu-
lation episodes. The computation time needed to achieve similar results also strongly favors the
approximationmethod: the entire o�ine bootstrapping process took around �� seconds, whereas
the online simulation training for the standard Q-learning method took around two and a half
minutes. A last crucial point to mention is that while this approximation method does speed up
the initial convergence process of a phase-based Q-learning agent, it does not improve its overall
performance since it reverts to a classical Q-learning algorithm once online learning occurs. This
statement can be veri�ed on Figure �.� after episode �� when the standard Q-learning method
catches upwith the approximationmethod. Hence, this method does increase the speed at which
a Q-learning agent reaches acceptable performance, and it does not make the learning algorithm
better at its task, which is a problemmore likely to be solved by bona�de function approximation
techniques, as presented in the next section.

����� F�������A������������ ���Q�L�������

The literature review of chapter � has shown the plethora of function approximation techniques
that can be applied to tra�c signal control. Most notably, we have seen in the literature review
of chapter � the �DQNmethod is believed to be one of the best available function approximation
methods for a broad range of RL problems (Gregurić et al., ����; Hessel et al., ����). This fact,
coupled with the conclusion of section �.�.� stating Q-learning-based methods are superior in
isolated tra�c situations, lead us to develop a deep Q-learning model for RL-TSC. This section
hence iteratively builds a deepQ-learningmethod starting froma simple deepQ-network (DQN).
We thende�ne anumberofRL-speci�c techniques that are gradually incorporated into thisDQN
method, explaining their purpose and limitations along the way.

������� D���Q���������

The �rst signi�cant shift from a classical Q-learning method to a DQNmethod is the introduc-
tion of a neural network (see section �.�.�.�) as a function approximator (Mnih et al., ����). If the
overall components of a neural network (see Figure �.�) do not change across di�erent models,
its architecture can greatly vary depending on the problem at hand and the kind of input data
it receives. Networks using image data as inputs are likely to feature convolutional layers, while
models aiming at establishing temporal links between input vectors are likely to include recurrent
features. Regardless of the architecture of the DRL model, the overall learning mechanisms re-
main the same: the current system state s is used as an input vector of the neural network, which
outputs a vector of size |A| containing the estimated quality of each action available to the agent.
Upon applying action a to the environment and observing its actual quality in the form of a re-
ward r, the agent computes the di�erence between the estimated and the observed quality of the
state-action pair using a loss function L. This loss is then backpropagated to update the weights
θ of the neural network using gradient descent methods such as Adam or RMSprop (Zou et al.,

����).

��

�.� Function Approximation Techniques

.

.

.

.

.

.

.

.

.

I1

Ii

H1

Hn

O1

Oj

Figure �.�: Simple illustration of a fully connected neural network. An input vector of dimension i goes
through a single hidden layer of dimension n and results in an output vector of dimension j.

������� E���������R�����

One of the leading causes of convergence issues of function approximation techniques seen in sec-
tion �.�.� is due to the fact that the system transitions observed by the learning agent are strongly
correlated (i.e., the choice of a state-action couple (s, a) in�uences the choice of the following
one, (s0, a0)) and that their distribution is non-stationary (i.e., the likelihood of observing a spe-
ci�c state-action pair directly depends on the current quality estimates and policy of the agent).
A solution used to alleviate these issues is the use of experience replay: the agent maintains an ob-
servation bu�er D that stores all system transitions (s, a, r, s0) observed by the agent (either all
observations or the lastN ones) and samples the observations used for learning from this bu�er.
Experience replay breaks correlation between samples and allows for batch normalization (i.e.,
samplingmultiple observations at once, increasing learning stability and convergence speed)when
learning (Riedmiller, ����). A common limitation of experience replay is that observations of the
replay bu�erD are sampled uniformly, meaning that the least commonly observed states (which
might be the most important) have a low probability of being sampled. The use of prioritized
experience replay alleviates this issue by sampling observations according to their TD-error value:
the highest the TD error, the more likely the agent needs to learn from this speci�c observation,
and the higher its selection probability is (Schaul et al., ����).

������� T�����N������

Using the same neural network to evaluate the value of a given state and for learning can cause it to
oscillate due to frequent weight updating, a phenomenon known as themoving-target issue (Hes-

sel et al., ����). A common solution to these oscillation issues is to use two distinct networks for
value estimation and learning: a target network θT with frozen weights is used to evaluate the
loss while a value network θV is used for learning from these evaluations. The weights of θV are
transferred to θT everyK steps to limit the moving-target issue (Gao et al., ����).

��

� Isolated Tra�c Signal Control Methods

������� D�����Q���������

The use of two distinct networks for evaluation and learning also o�ers the possibility of further
separating the role of both networks. Indeed, for a transition (s, a, r, s0), deep Q-learning esti-
mates the qualityQ(s, a) using reward r and the value of the next system state s0 by estimating
the quality of best next state-action couple, Q(s0, a0). In regular deep Q-learning models, both
the best next action a0 and the associated qualityQ(s0, a0) are estimated all at once using weights
θ, while deep Q-learning using target networks will estimate the best next action and the associ-
ated quality Q(s0, a0) using the value network θV . Double deep Q-learning (Hasselt, ����) is an
extension of simple DQN models aiming to avoid overestimations during the Q-learning target
update by further separating the role of each network. The best next action is chosen using the
current evaluation network θV , while the quality estimate of the corresponding state-action pair
Q(s0, a0) is computed using the target network θT , increasing estimation robustness and decreas-
ing the likeliness of model over-estimation (Gregurić et al., ����).

������� D������N�������

Dueling networks (Wang et al., ����) are another extension of DQNs which use two distinct esti-
matorswithin the neural network to evaluate the value of a stateV (s) andquality of a state-action
pairQ(s, a) (see section �.�) separately (Gregurić et al., ����).More speci�cally, the second estima-
tor computes the advantage of each state-action pair,A(s, v) = Q(s, a) � V (s), which repre-
sents the relative value of an action compared to others for a given state. Separating the evaluation
of states allows learning which states are intrinsically valuable for the agent regardless of which
action is being applied to it, which allows identifying states in which actions do not in�uence the
environment in any meaningful way (e.g., a tra�c state in which no vehicles are present), further
speeding up the learning process (Liang et al., ����).

������� DDQN ��� �DQNA���������

The two reinforcement learning techniques presented in this section, double Q-learning and du-
eling networks, can be used to form various deep RL methods. A deep Q-network used with
doubleQ-learning forms a double deepQ-network (DDQN), while using a dueling network on a
deepQ-network forms a Dueling deepQ-networks (�DQN).Merging both techniques results in
the state-of-the-art �DQN algorithm used in most recent RL-TSC models (Gregurić et al., ����),
which is used in a number of recent RL-TSC models (Calvo and Dusparic, ����; Wang et al., ����).

Given the recent development of the dueling deepQ network technique (����), somemodels fea-
ture only double deepQ-learning, orDDQN,models (Gao et al., ����; Genders andRazavi, ����; Van
der Pol, ����)while showcasing excellent performance levels. A pseudocode illustration of both al-
gorithms (depending on the underlying neural network architecture) is presented in algorithm �.

��

�.� Function Approximation Techniques

Algorithm �: Pseudocode illustration of a DDQN/�DQN algorithm.

Initialize θT and θV with random weights ;
Initialize empty bu�ersD andP ;
for each step t do

Observe s, a, r, s0;
D D + (s, a, r, s0);
P P + (|Q(s, a)� r + γmaxa0 Q(s0, a0)|+ 0.01);

if |D| � B then
Sample (sB, aB, rB, s

0

B) ⇠ P ;
a⇤B maxa0

B
Q(s0B, a

0

B; θ
V);

L = (Q(sB, aB; θ
V)� rB + γQ(s0B, a

⇤

B; θ
T))2;

Update weights θV usingL;

if X ⇠ U(0, 1) < ε then
a0 ⇠ U(A);

else
a0 maxaQ(s0, a; θV);

if t | K then
θT θV ;

����� A������� F�������A������������ ��T������ S�����C������

After presenting the various ways function approximation techniques can be applied and re�ned
on learningproblems, our�nal task is to gauge the e�ectiveness of these techniques on tra�c signal
control optimization. This section studies the e�ect of the function approximation techniques
presented above, one by one, on an isolated intersection in order to produce the most e�cient
isolated reinforcement learning algorithm for tra�c signal control.

������� N������A�����������

The �rst step regarding the construction of an e�cient RL-TSCmethod using function approxi-
mation is the choice of its architecture, which is the organization of the hidden layers of its neural
network. An important point to underline is that, besides being usually problem-dependent, the
architecture of a neural network also largely depends on the type of inputs this network is ex-
pected to receive. This point is crucial since papers applying deep Q-learning methods to tra�c
signal control usually provide complex state information as inputs for their neural networks, usu-
ally in image form, which requires the associated network to treat these images using multiple
convolutional layers (Calvo andDusparic, ����; Van der Pol, ����; Wang et al., ����).Our tra�cmodel
uses a discrete and relatively compact state de�nition since they can be used by both classical and
deep reinforcement learning methods while ensuring similar performance levels (see section �.�),
which implies that our neural network architecture is likely to be di�erent since convolutional
neural networks are not needed in our case.

��

� Isolated Tra�c Signal Control Methods

s

F
C

L
a
y
er

R
eL

U

B
a
tc

h
N

o
rm

F
C

L
a
y
er

R
eL

U

B
a
tc

h
N

o
rm

F
C

L
a
y
er

R
eL

U

B
a
tc

h
N

o
rm

F
C

L
a
y
er

R
eL

U

B
a
tc

h
N

o
rm

F
C

L
a
y
er

R
eL

U

B
a
tc

h
N

o
rm

A(s, 0)

A(s, 1)

V (s)

Q(s, 0)

Q(s, 1)

Figure �.�: Architecture of the �DQN network.

The neural network architecture used for our experiments, presented in Figure �.�, features
four fully connected layers of ��� neurons each. Each layer is associated with a ReLU recti�er,
which is a prevalent activation function in the deep RL literature (Ramachandran et al., ����), and
a batch normalization layer which accelerates learning by normalizing inputs between layers (Io�e
and Szegedy, ����). Not that we do not include dropout, a mechanism used to randomly drop
weights between layers, to our neural network since they are not necessary when applying batch
normalization (Li et al., ����). When dueling networks are implemented (as in Figure �.�), two
distinct layers are used to compute the advantage and state value separately before combining
them; if this feature is not implemented, a fourth regular layer directly computing the state-action
quality is used instead.

Parameter Value

Optimizer Adam (Kingma and Ba, ����)

Learning rate α 0.0001
Replay bu�erD size 10000 observations
Minibatch sizeB 100 observations
Target network update intervalK 1000 steps

Table �.�: Deep reinforcement learning-speci�c simulation hyper-parameters used for function approxi-
mation RLmethod comparison.

������� D���Q��������� ��� E���������R�����

This section measures the impact of function approximation alone (i.e., using a deep neural net-
work instead of a tabular data structure) and of function approximation with experience replay
on the performance of an isolated intersection with an overall arrival rate of λ = 0.04 for ���

���

�.� Function Approximation Techniques

episodes of ���� simulation steps each. This experiment once again uses the experimental proto-
col de�ned in section �.�.�, and uses the hyperparameters de�ned in Table �.� and Table �.�.

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

Standard Q-Learning

Deep Q-Learning

Deep Q-Learning + Prioritized Experience Replay

Impact of Function Approximation and Experience Replay on Cumulated Vehicle Waiting Time

Figure �.�: Impact of function approximation and experience replay on tra�c routing performances.
Tested on a single intersection with an arrival rate of λ = 0.4. Batch normalization is used
on deep Q-learning with experience replay.

Results of this �rst experiment on Figure �.� underline the importance of both function ap-
proximation and experience replay. Due to the absence of generalization from past experiences,
the standard Q-learning method (in red) very quickly converges to acceptable performance lev-
els but reaches a performance plateau due to its inability to fully exploit its interactions with the
environment, similar to what has been observed in section �.�.�. The use of function approxima-
tion with a basic deep Q-learning technique (in blue) allows for generalization and hence better
performance and increased stability. However, the need for both function approximation and ex-
perience replay seems to be crucial inRL-TSC applications. Indeed, the testedmethod using both
techniques (in yellow) greatly outperforms the others. Instead of learning from one observation
at a time, learning from batches ofB = 100 observations allows the agent to revisit the same traf-
�c transition multiple times and quickly converge to improved performance levels. Hence, both
function approximation and experience replay is vital in building an e�cient RL-TSCmethod.

������� D�����Q��������� ���D������N�������

After validating the need for deep reinforcement learning coupled with experience replay for ef-
�cient tra�c signal control, we turn our attention to the additional techniques presented earlier,
such as using target networks, double Q-learning, and dueling networks. Since we are con�dent
in the robustness of the DQNmethods we are testing, we measure their performance on an iso-
lated intersection with a near-saturation �ow rate of λ = 0.6, once again randomly distributed

���

� Isolated Tra�c Signal Control Methods

across the lanes of the intersection. The following combination of techniques is incrementally
tested: DQN with experience replay and target network (DQN), DQN with double Q-learning
(DDQN),DQNwithduelingnetworks (�DQN) and,�nally,DQNwithbothdoubleQ-learning
and dueling networks (�DQN). While it would seem logical to predict that the most advanced
technique should yield the highest performance metrics, using a learning model that is too com-
plex for a given learning task will at best complexify the model for no valid reason (and hence
increase training time) and at worse decrease the learning performance the model due to over�t-
ting (Vapnik and Izmailov, ����).

50000

60000

70000

80000

90000

100000

110000

120000

0 50 100 150 200 250

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

Optimal

Deep Q-learning

Double Deep Q-learning

Dueling Deep Q-learning

Double Dueling Deep Q-learning

Impact of Function Approximation Techniques on Cumulated Vehicle Waiting Time

Figure �.��: Impact of function approximation techniques on tra�c routing performances. Average values
plotted from �� simulation scenarios on a single intersection with an arrival rate of λ = 0.6.
Batch normalization, target networks and prioritized experience replay is used on all tested
methods. Results are smoothed for readability.

Simulation results of Figure �.�� show that all the testedmethods provide somewhat similar cu-
mulated waiting time levels. Detailed average cumulated values over simulation episodes, shown
onTable �.�, gives, however, insight into the comparative performances of these function approx-
imation methods. The best method, in our experimental setting, turns out to be dueling deep
Q-learning (�DQN). Interestingly, double Q-learning, which is often used in the RL-TSC lit-
erature, seems to have no e�ect when used on its own compared to a standard deep Q-learning
method and seems to slightly degrade performance when used in conjunction with a dueling net-
work (see the yellow plot on Figure �.��). While no clear-cut answer can be given as to why such
a phenomenon is present since double Q-learning has been developed to limit over-estimation
issues in deep Q-learning (VanHasselt et al., ����), the fact that the tra�c signal control problem
at hand is relatively much more straightforward than the Atari games on which the original al-
gorithm was tested or complex tra�c state representation using images could explain why such

���

�.� Function Approximation Techniques

an addition would be unnecessary in our model and slightly degrade performance. Conversely,
the relatively helpful addition of a dueling network in the RL-TSC model seems to indicate that
increased discrimination between low and high-value states is bene�cial to TSC-related learning.

Algorithm Episodes �-��� Episodes ���-���

Deep Q-learning ����� �����

Double Deep Q-learning ����� �����

Dueling Deep Q-learning ����� �����

Dueling Double Deep Q-learning ����� �����

Table �.�: Average waiting time per simulation episode and deep reinforcement learning algorithm type.

Based on these �ndings, we decided to use dueling deep Q-learning (which we abbreviate to
�DQN as to not confuse it with DDQN, which stands for double deep Q-learning) as the deep
RLmethodof choice for tra�c signal control andwill use thismethod as a benchmark for tackling
agent coordination in the next chapter.

::::

This chapter has analyzed a wide array of RL-TSCmethods on isolated intersections. As stated
in section �.�.�.�, we �rst voluntarily restrict the road network scope to a single intersection in
order to analyze the e�ect of RL algorithms and policies with as little noise as possible before
extending this scope to multi-intersection networks in chapter �.
This chapter �rst presented deterministic methods in order to use them as reference bench-

marks when studying RL-TSC algorithms. First, we described the classical Webster method,
which assigns green phases according to the demand pro�le of each line around an intersection.
We then presented a novel near-optimal method using SUMO’s ability to save and load simulation
states. Both of these methods provide average and optimal benchmarks for isolated RL-TSC per-
formance, respectively.
We then discussed the respective merits and shortcomings of classical (i.e., not using function

approximation) RL methods. We compared algorithms for three main classes of RL methods:
Q-learning for value-based, LRP for policy iteration, and a hybrid of the two previous algorithms
for actor-critic methods. Experiments have shown that Q-learning provides the best performance
for our experimental settings regardless of its policy, making it our preferred class of method for
the remainder of our research.
Finally, we discussed the use of function approximation techniques for isolatedRL-TSCmeth-

ods. Experiment results have �rst shown that both function approximation and prioritized ex-
periment replay were essential for proper learning convergence. We then presented a wide array
of function approximation techniques, such as target networks, double Q-learning, and dueling
networks, in order to identify which combination of these techniques could yield optimal perfor-
mance levels. The results of this second experiment have shown that combining deepQ-learning,
prioritized experience replay, target, and dueling networks in a method known as �DQN reached
the best possible performance in our experimental setting.

���

� C����������T������ S�����

C������M������

�.� Independent Learning . ���

�.�.� Optimal Method in the MARLCase ���

�.�.� Independent Learning Performance ���

�.� GreenWave Coordination . ���

�.�.� GreenWave CoordinationMechanisms ���

�.�.� GreenWaveMethods . ���

�.�.� GreenWave Performance . ���

�.� Indirect Coordination . ���

�.�.� Indirect CoordinationMechanisms ���

�.�.� Measuring The Impact Of Indirect Coordination ���

�.� Direct Coordination . ���

�.�.� Direct CoordinationMechanisms ���

�.�.� Measuring the Impact of Direct Coordination ���

�.� Agent Coordination on Large-Scale Tra�c Networks ���

�.�.� Synthetic Large-Scale Road Network ���

�.�.� Performance Under Fixed and Variable Arrival Rates ���

The previous chapter’s tra�c optimization study led us to identify dueling deep Q-network
(�DQN) as the algorithm of choice for tra�c optimization on isolated intersections. As under-
lined in chapter �, however, tra�c optimization over multiple intersections is essential for proper
tra�c signal control as single-intersection networks are seldom encountered in real-life tra�c sce-
narios. As the extension of the tra�c model to a multi-agent setting is hence necessary, this shift
raises the central question of the interactions between the multiple agents of this new model.
Since MARL models can both choose to ignore (in the form of independent learning) or model
agent interactions (through coordination methods), the �rst objective of this chapter is to mea-
sure whether agent coordination is needed in the context of tra�c signal control by comparing
independent and coordinated learningmethods. If coordination is shown to be bene�cial to traf-
�c signal control performance, our second goal is then to explore which forms of coordination
are most bene�cial for tra�c optimization. Since multiple forms of agent coordination–such as
indirect and direct coordination in the RL literature (Panait and Luke, ����) or green waves in traf-
�c engineering,–are applicable in MARL models, these methods will be tested one by one in a
multi-agent setting.

���

� Coordinated Tra�c Signal Control Methods

��� I���������� L�������

The simplest form of interaction to consider between agents in a MARL model is independent
learning, inwhich agents do not acknowledge each other while learning in the same environment.
While simple in nature, independent learningmodels have several bene�ts, such as high scalability
(since agents learn independently from each other and can hence be freely added or removed from
the road network) and excellent performance for relatively low complexity, as seen in the simula-
tion results of the previous chapter. Preventing the modeling of agent-to-agent interactions does
not, however, allow for agents to share observations or learned policies, which proves helpful (and
sometimes crucial depending on the learning task) in accelerating their learning process (Tan, ����).
The use of independent learning for the study of coordinationmethods hence plays a central role
in the evaluation of coordinated RL-TSC methods since it is not only considered as a coordina-
tion option to route tra�c but also as a benchmark used to generally measure the added bene�t
of agent coordination in the speci�c case of RL-TSC tasks.

����� O������M����� �� ���MARLC���

As explained in chapter �, the shift from a SARL toMARLmodel has a number of consequences
on the RL-TSC model at hand. The �rst consequence of this switch is that the approximation
method de�ned in section �.�.� is likely to not guarantee optimality anymore. Indeed, in the iso-
lated case, the intersection can easily compute an approximation of the optimal strategy since it
is the only agent a�ecting the network. However, in the MARL case, multiple intersections will
aim at computing an optimal strategy step by step without explicitly knowing the strategy of its
neighbors. In other words, since agents computing their optimal strategy cannot guess which
strategy their neighbors are going to apply, the resulting strategy has no guarantee to be optimal
or near-optimal. Note that it would be possible to design a multi-agent version of the optimal
strategy approximation algorithm, which computes an optimal joint strategy at the cost of much
higher complexity. However, we emit the hypothesis that neighboring intersections’ in�uence on
the optimal strategy of an intersection has little in�uence on the overall performance levels of the
algorithm in practice. This hypothesis is based on an experiment shown in section �.�.�.�, which
shows that vehicles coming fromneighboring intersections have little e�ect on the performance of
an intersection in the short term. It should, however, be noted that while we apply the same near-
optimal strategy search algorithm, its computational costs aremuch higher since each intersection
has to compute its optimal strategy approximation algorithm separately.

����� I���������� L������� P����������

The primary consequence of extending the learning model to a multi-agent setting is the intro-
ductionofnon-stationarity andhigher learning instability due to concurrent agent learning. Since
independent learning methods do not provide explicit mechanisms to deal with these issues, the
introduction ofmultiple learning agents on a road network could in�uence the hierarchy of func-
tion approximation methods de�ned in section �.�.�, which concluded in the superiority of the
�DQN controllers for tra�c signal control in an isolated intersection setting. This section hence
presents a control experiment checking whether the results obtained on an isolated intersection
still hold true in a multi-agent setting. This experiment compares the �DQN method with the

���

�.� Independent Learning

�DQNmethod, which has also been used in a multi-agent MARL scenario (Calvo and Dusparic,

����) and a standard DQN algorithm in a simple multi-intersection network in order to verify if
their performance hierarchy changes with the introduction of multiple agents.

������� C���������� �� I����������M������

The �rst manner in which these independent methods are compared is, as done previously, by
measuring their average convergence trajectory over di�erent tra�c scenarios. This protocol is ex-
plained in detail in section �.�.�. We test thesemethods on a two-by-two grid network composed of
four intersections, each implementing an independent version of their RL-TSC algorithm. Traf-
�c demand generation is done according to the protocol detailed in section �.�.�. The arrival rate
is �xed to λ = 0.015 on average per entry-exit edge pair on the network. The learning hyperpa-
rameters used for this experiment are listed in Table �.� and Table �.�.

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (2.5x103 s)

Optimal

Deep Q-Learning

Dueling Deep Q-Learning

Double Dueling Deep Q-Learning

Cumulated Vehicle Waiting Time Evolution

Figure �.�: Comparison of multi-agent independent function approximation methods. Average results
over � simulation scenarios.

Results displayed on Figure �.� show the cumulated waiting time evolution for these meth-
ods averaged over �ve distinct tra�c scenarios, for ��� episodes of ���� steps each. First, these
results con�rm that the relative e�ciency of these methods does not seem to be a�ected by the
shift to a MARL model, as they are similar to the single intersection results of Figure �.��. In-
deed, the �DQNalgorithm still yields the best overall performance in terms of cumulated waiting
time, while the �DQN method still displays a relatively high learning instability as observed in
the isolated intersection scenario of section �.�.�. Overall, these results show that while DQN
and �DQN are each relatively close to the (unattainable) optimal strategy performance levels, the
�DQN algorithm is slightly more e�cient on average, making it our preferred method for inde-

���

� Coordinated Tra�c Signal Control Methods

pendent multi-agent learning. In its independent multi-agent version, this chosen algorithm will
be referred to as independent dueling deep Q-network (I�DQN).

������� P���������� �� I����������M������

While the analysis of the convergence process of the various methods in the previous paragraph
already underlines essential information regarding their e�ciency, it does not reveal their entire
tra�c routing capabilities. Indeed, as mentioned in section �.�.�, the convergence analysis of RL-
TSC methods do not entirely measure their abilities for multiple reasons. First, these methods
are still in the learning phase when being compared and use associated mechanisms such as state-
space exploration (i.e., by using a random action selection policy parameter ε > 0). Second, since
convergence performance measurements are computed over entire simulation episodes, there is
little information about the performance variability of thesemethodswithin a simulation episode
or across di�erent simulation scenarios.

Since performance variability of RL-TSC methods is a characteristic we wish to observe, we
compare the independent function approximation techniques of the previous section according
to the performance protocol described in section �.�.�. Multi-agent performance evaluationsmea-
sure the cumulated waiting time evolution within a single simulation episode. More speci�cally,
we measure the minimal and maximal cumulated waiting time of the DQN, �DQN and �DQN
methods over �� distinct tra�c scenarios of ���� steps each. These simulation results are shown
on Figure �.�. The experimental parameters are similar to those of the previous section.

0

50000

100000

150000

200000

250000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

W
or
st
/B
es
t
C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Step (s)

Double Dueling Deep Q-Learning

Dueling Deep Q-Learning

Deep Q-Learning

Best andWorst Agent Performances Over 20 Traffic Simulations

Figure �.�: Performance comparison of the DQN, �DQN and �DQN algorithms over �� tra�c scenarios.

Performance results con�rm our intuitions regarding the independent methods we tested. All
methods display a large variability regarding overall cumulated waiting times, which indicates

���

�.� GreenWave Coordination

a substantial variety of the simulation scenarios we tested (cumulated waiting times vary from
around �� ��� to ��� ��� depending on the tra�c scenario). Themean cumulated waiting times
for these methods are relatively close to each other (�� ��� for DQN, �� ��� for �DQN and ��

��� for �DQN). While displaying the most extensive variability of all, by simultaneously yield-
ing the best and worst overall simulation results depending on the tested scenario, the �DQN
method is inferior to the �DQNmethod from a mean performance standpoint, which is consid-
ered essential since reduced performance variability should ensure a more stable convergence of
the learning process on a broader range of tra�c scenarios. Consequently, our choice to use the
�DQNmethod we formulated in chapter � is maintained in multi-agent settings.

��� G����W���C�����������

Explaining why communication and coordination between intersections should be used is a sur-
prisingly complex issue that arises when reading the RL-TSC literature. Indeed, many literature
papers proposing modern and coordinated tra�c signal control methods claim that interactions
between intersections of a road network are bene�cial in optimizing tra�c, usually proving this
claim with plots showing the superior performances of these multi-agent methods. However,
these papers seldom explain how coordination makes optimizing tra�c easier�. A satisfying an-
swer to this question can nonetheless be found in the tra�c engineering literature, which has the
bene�t of directly describing coordinationmethods that have been applied in real-world contexts
for decades. Consequently, the �rst coordination mechanism we study are green wave coordina-
tion techniques, which are extremely common in real-world tra�c applications, and have the ad-
vantage of being quickly developed in tra�c simulation settings (as opposed to many proprietary
tra�c routing methods whose source code is not accessible).

����� G����W���C�����������M���������

The main goal of green wave coordination is to allow for continuous vehicle movement along
an arterial or major street by properly o�setting green phases on their tra�c controllers. When
correctly executed, green waves decrease the number of stops and delays along these arterials. A
major point to note is that green wave coordination is not always desirable. Indeed, the US tra�c
signal timing manual states that intersections must be close to one another� and share the same
cycle time, and that signi�cant tra�c must occur between them for coordination to be bene�-
cial (Koonce and Rodegerdts, ����). Green waves are designed around three key parameters: cycle
time, o�set and split time. First, the cycle time of all intersections within the green wave must
be identical for synchronization purposes and is hence computed to best �t the tra�c demand
of all these intersections, for instance, using Webster’s formula (see section �.�.�). The o�sets be-
tween intersections represent the delay with which they will successively apply the same green
phase along the arterial, hence creating a green wave. O�sets are equal to the ratio of the autho-
rized speed divided by the length of the streets of the arterial, which approximates the time it takes

�Anotable exception is featured in the paper ofWei et al., which aims to equalize queue pressure across intersections,
which has been proved to result in optimal intersection throughput (Wei et al., ����b)

�the Manual on Uniform Tra�c Control Devices recommends a maximum length of ���m between two intersec-
tions for coordination

���

� Coordinated Tra�c Signal Control Methods

a vehicle to travel from each intersection of the arterial to the next. Finally, split time designates
the organization of the remaining phases of the intersections within their respective signal cycles,
with the constraint that the arterial green phase repeats at �xed time intervals to preserve the green
phase o�sets. The tra�c signal settings giving way to a green wave along a speci�c path are typi-
cally represented using a time-space diagram, as shown on Figure �.�.

u1

u2

u3

u4

Figure �.�: Example time-space diagram on a four intersection arterial. The x-axis represents time and the
y axis distance. Intersections of the arterial are numbered from u1 to u4. Vehicle movements
across the arterial are represented by black arrows. The signal cycles of the four intersections,
represented across the time axis next to its intersection, are computed so that green waves can
occur in both directions of the arterial.

����� G����W���M������

This section proposes two distinct tra�c control methods relying on green wave coordination
to test their e�ciency. As noted previously, green wave coordination requires additional pre-
processing compared to other forms of tra�c light coordination since key arterials have to be
identi�ed on the network. Their associated cycle time and o�sets have to be computed before-
hand.

������� F����G����W���M�����

The �rst green wave coordination method is a �xed method akin to most real-world implemen-
tations. Once one or more arterials are identi�ed on the network, and their associated tra�c de-
mand obtained, we compute the optimal cycle time of each intersection usingWebster’s formula
(see section �.�.�) and use its average value per arterial as the arterial’s cycle time. We then man-
ually compute o�sets and apply them along the arterials. The resulting method is a �xed green
wave tra�c signal method that is not adaptive but provides a good performance baseline.

������� A�������G����W���M�����

The second green wave coordination method is an adaptive extension of the �rst, which relies on
the �DQN method instead of Webster’s formula to compute the splits within the signal cycle.
Since green wave coordination relies on �xed-time signal cycles to ensure coordination along the
arterial, the adaptive greenwavemethod canonly compute the relative length of eachphasewithin
this signal cycle. The action space of this method is hence necessarily phase-based, as the agent

���

�.� GreenWave Coordination

has to choose the entire length of the major arterial green phase in advance due to signal cycle
constraints. While this method su�ers from the limitations associated with using a phase-based
action space (see section �.�), it should, however, bene�t from built-in coordinationmechanisms
inherent to this method which do not have to be learned, and of the e�ciency associated with
�DQNmethods.

Algorithm �: Illustration of the coordinated green wave algorithm. This algorithm is
implemented on intersections featuring two green phases but can be adapted for a larger
phase amount. Variable C represents the total cycle time, which is equal on all intersec-
tions along the arterial. Learning, sampling, and target network update operations of
�DQN are omitted for brevity.

Initialize gv to ; for each intersection v of the network;
for each step t do

for each intersection v do
Observe sv, av, rv, s

0

v ;
if gv = ; then

if X ⇠ U(0, 1) < ε then
a0v ⇠ U(A);

else
a0v maxaQ(s0v, av; θ

V
v);

gv a0v ;

else
a0v C � gv � 2dmin;
gv ;;

����� G����W��� P����������

This section evaluates the performance of the two green wave methods described in the previous
section, especially regarding the usefulness of greenwave coordination. In order to do so, we com-
pare the �xed greenwavemethod to some of its non-coordinated counterparts, such as �xed signal
cycles or signal cycles computed usingWebster’s formula. To isolate the coordinated feature of the
adaptive green wave method, we pitch it against the I�DQNmethod of section �.�, which repre-
sents our best RL-TSC method so far. This comparison is made according to three distinct axes:
convergence analysis, performance analysis under normal tra�c conditions, and performance un-
der saturated tra�c conditions.

������� G����W���C����������

We �rst test the green wave coordination methods and I�DQN controllers by looking at their
convergence according to the protocol de�ned in section �.�.�. These methods are tested on a
simple �-intersection network which features a main arterial, as pictured on Figure �.�. Tra�c
data is generated speci�cally to create higher tra�c demand along themain arterial of the network:
each edge pair at the edge of the network has a base �ow rate value of λ = 0.06 vehicles per step.

���

� Coordinated Tra�c Signal Control Methods

u1 u2 u3 u4

Figure �.�: � interesection network use to emulate green waves along an arterial. All intersections share the
same o�set time of �� steps and the same cycle time ofC = 30.

If the starting edge of the pair is located on the arterial (i.e. horizontally next to intersections u1
and u4 on Figure �.�), this �ow rate is increased by 0.01. Similarly, if the ending edge is located
on the arterial, the �ow rate parameter is also increased by 0.01. Once the �ow rate of each edge
pair is computed, tra�c is generated according to the protocol of section �.�.�.

We �rst compare the convergence trajectories of the �DQN and coordinated green wave meth-
ods over ��� episode runs of ���� steps each, averaged over �ve distinct tra�c scenarios. Figure �.�
showcases the cumulatedwaiting time evolution per episode of eachmethod. Multiple key points
can be deduced from these results.

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

I2DQN

Adaptive GreenWave

Fixed GreenWave

Webster

Optimal

Cumulated Vehicle Waiting Time Evolution

Figure �.�: Performance evolution of green-wave andDQN-basedTSCmethods on the line network. Fixed
methods are represented as dotted lines in the following order (fromworst to best): simple �xed
method, Webster �xed method, green wave �xed method and optimal method.

���

�.� GreenWave Coordination

First, a clear hierarchy canbe established regarding�xed, non-adaptivemethods: the greenwave
Webster algorithm outperforms the regular Webster algorithm quite signi�cantly, which high-
lights the usefulness of green wave coordination for �xed methods. This comparison obviously
does not include the optimal method, which is used as a lower performance bound that cannot
be beaten by RL-TSCmethods.

Regarding the two adaptivemethods, the �rst point to notice is that bothmethods converge to
similar performance levels, eventually outperforming the �xed green wave coordination method.
We do, however, notice that the convergence process is faster in the green wave coordination case,
which is likely because the green coordinationmechanismof thismethod is not learned but forced
on the intersections, giving this method an advantage in the early simulation episodes. This ob-
servation also proves our earlier hypothesis stating that these built-in coordination mechanisms
would in�uence tra�c performancemore than the use of phase-based actions, which are less opti-
mal than step-based ones (Tréca et al., ����a).Table �.� illustrates the evolution of the convergence
process of bothmethods and shows the slight superiority of the green wave coordinationmethod
throughout simulation iterations.

Average Waiting Time �-��� �-��� ���-��� ���-��� ���-���

Deep Q-learning ����� ����� ����� ����� �����

Adaptive GreenWave ����� ����� ����� ����� �����

Table �.�: Average waiting time per simulation episode according to episode intervals.

������� P���������� ��N�����T������C���������

As stated in the previous section, studying the convergence process of a RL-TSC method is not
always su�cient to study its e�ectiveness. Indeed, performance evaluations allow comparingmul-
tiple RL-TSC methods post-training while eliminating sub-optimal action choices due to explo-
ration. Such a comparison is evenmore necessarywhen comparing I�DQNand the greenwave co-
ordination method since both methods do not choose actions at the same rate (since the I�DQN
method is step-based and the green wave method phase-based), which might cause an additional
bias since the former chooses actions much more frequently than the latter, and is hence more
likely to choose random actions often. We hence measure the performance of the I�DQN and
coordinated green wave method using the performance protocol de�ned in section �.�.�. This
experiment is conducted over �� distinct tra�c scenarios using a non-saturating base �ow rate of
λ = 0.06.

The performance outputs of the I�DQN and adaptive green wave methods of Figure �.� con-
�rm the superiority of the greenwavemethod. Indeed, one can observe that tra�c scenarios using
the adaptive green wave method (in blue in the performance plot) are shorter, as symbolized by
the shorter size of the plot along the x-axis, indicating that vehicles generated up to simulation step
���� are reaching their destination faster. Furthermore, the adaptive green wave method shows
better average performance than the I�DQN algorithm, as one can see with the relative position
of both curves while su�ering from less performance variability, as shown by its smaller surface
area on Figure �.�. It is, however, essential to bear in mind that the superior performances of the

���

� Coordinated Tra�c Signal Control Methods

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400

W
or
st
/B
es
t
C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Step (s)

I2DQN

Adaptive GreenWave

Best andWorst Agent Performances Over 20 Traffic Simulations, Regular Traffic

Figure �.�: Performance spectrum comparison of Deep Q-learning and Green Wave Coordination meth-
ods over �� tra�c scenarios. Base tra�c arrival rate �xed to λ = 0.06.

green wave coordinationmethod were obtained in a tra�c scenario featuring optimal parameters
for the use of green wave coordination. Indeed, our experiment features amain arterial composed
of multiple close intersections with a relatively normal tra�c demand along the arterial, which
encourages green waves along the arterial.

������� P���������� �� S��������T������C���������

Given their strongly di�erent nature, the last point to consider when comparing the I�DQN and
green wave coordination methods is their resilience to saturated tra�c conditions. Indeed, while
the I�DQNmethod should learn to adapt regardless of the tra�c conditions due to its adaptive
and independent nature, the built-in coordination mechanism of the green wave method is not
guaranteed to function if the tra�c is saturated or over-saturated as bandwidth solutions often
result in poor performances in these situations (Koonce andRodegerdts, ����). In order to evaluate
whether these limitations a�ect the adaptive green wave controller, we run a second performance
evaluation innear-saturated tra�c conditionswith abase arrival rate ofλ = 0.08 vehicles per step.
The rest of the simulation parameters remain similar to those of the previous section. Results of
this second evaluation are on Figure �.�.

Performance evaluations in a saturated road network of Figure �.� con�rm our original hy-
pothesis regarding the poor robustness of the green wave coordination method in near-saturated
tra�c conditions. Both the I�DQNandgreenwavemethods su�er fromworse performance levels
which aremechanically due to higher tra�c demand. However, the increase in cumulatedwaiting
time is much higher in the green wave case (���%) than in the I�DQN case (���%). Furthermore,

���

�.� GreenWave Coordination

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200 400 600 800 1000 1200 1400 1600

W
or
st
/B
es
t
C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Step (s)

Adaptive GreenWave

I2DQN

Best andWorst Agent Performances Over 20 Traffic Simulations, Saturated Traffic

Figure �.�: Performance spectrum comparison of the I�DQN and adaptive green wave methods over ��
tra�c scenarios. Base tra�c arrival rate �xed to λ = 0.8.

the performance variability of the greenwavemethod signi�cantly increases in near-saturated con-
ditions (��%between the best andworst tra�c scenario), while the I�DQNperformance variabil-
ity remains in line with normal tra�c �ow levels (��%), showing greater �exibility.

������� O������A������������ �� ���G����W���C�����������M�����

Given the multiple experiments conducted in this section so far, our conclusions regarding green
wave coordination e�ectiveness are contrasted. While our deep learning-based green wave coor-
dination method is overall more e�cient than the I�DQN controller, these results only in an
experimental setting featuring an arterial with pre-computed o�sets between intersections and
regular tra�c demand going mostly along this arterial; all of which highly favor the green wave
coordination method. These superior results do not hold as soon as these speci�c settings are
changed, as illustrated by the subpar performances of the green wave coordination methods in
near-saturation tra�c �ows in the last section. This remark underlines the relative utility of the
green wave coordination method since it requires a speci�c tra�c demand and network topology
to provide optimal performance. This point has been confronted before byWagner et al. (����) in
their paper questioning the overall usefulness of direct agent coordination in TSC systems:

While arterial coordination can be demonstrated to yield gains in e�ciency under
fairlymild conditions, the coordination of a whole transport system is not as simple.
In addition to the mathematical and organizational challenges that come with this
task, it is also not clear what can be gained. So, an optimum solutionmight turn out

���

� Coordinated Tra�c Signal Control Methods

to be just a few percent or so better in reducing delays, emissions, and even crashes,
leading to the question whether it is worth the e�ort.

While we tend to agree with these conclusions concerning our experimental results, which ex-
plains why we do not pursue green wave coordination techniques further in this thesis work, it
should be noted that an I�DQN method that could automatically switch to green wave coor-
dination when speci�c tra�c demand conditions are met (e.g., non-saturated tra�c �ows along
arterials of a road network) would provide the best of both the I�DQN and green wave coordi-
nation methods. However, some computational challenges (e.g., implementing step-based green
wave coordination, which is a non-trivial scheduling task, or automatically detecting arterials on
a large road network and computing its o�set values) would have to be tackled to implement such
a hybrid method.

��� I�������C�����������

In their state-of-the-art paper regarding cooperative multi-agent learning, Panait and Luke (����)
de�ne indirect communication methods as "those which involve the implicit transfer of infor-
mation from agent to agent through modi�cation of the world environment.". In the realm of
RL-TSC, the modi�cation of the world environment usually occurs through modi�cations of
the state space of the learning agents, as action space modi�ed is associated with direct coordina-
tion (see section �.�). Hence, indirect coordination applied to TSC relies on letting agents receive
information besides their immediate local state without explicitly coordinating andmaking them
exploit this additional data during their learning process.

����� I�������C�����������M���������

All MARL TSCmethods using indirect coordination rely on state augmentation. A straightfor-
ward manner to augment the state space of a coordination-free TSC method to achieve indirect
coordination would be to directly include features from the state information of neighboring in-
tersections into the state space of each intersectionof thenetwork, hence increasing the knowledge
of the true system state of each intersection. While such an approach is theoretically feasible and
has even been applied in practice (Nishi et al., ����;Wei et al., ����b), it is subjected to dimensionality
issues when the number of external state features increases. Even when parsimoniously including
neighboring agent state features in an agent’s state representation, the exploration process can
become unbearably slow due to the curse of dimensionality (Genders, ����). This increase in di-
mensionality is also themain obstacle to using centralized learning in RL-TSC applications, since
the concatenation of all intersection-level state representations of an entire road network would
make the state space of the problem skyrocket, making exploration impossible in practice for the
centralized agent (Yau et al., ����).

While indirect coordination methods su�er from certain limitations due to dimensionality
considerations, they remain the most popular form of agent coordination in the RL-TSC liter-
ature mostly due to their �exibility and ease of implementation. Indeed, such methods rely on
letting agents observe more features of the environment than what they would observe in an in-
dependent setting; and this additional data can be exploited in many di�erent ways depending

���

�.� Indirect Coordination

on the underlying RL-TSCmethod, ranging from state augmentation to more complex joint ac-
tion computation (see next paragraph). Consequently, indirect coordination methods are easier
to develop and implement than direct coordinationmethods, requiring message passing between
agents and explicit coordination mechanisms.

������� MARLIN�IC A��������

A prime example of indirect coordination circumventing dimensionality issues applied to traf-
�c signal control is found in the MARLIN-IC algorithm designed by El-Tantawy and Abdulhai

(����) and presented in chapter �. The MARLIN-IC algorithm is a model-based indirect coor-
dination method that maximizes the utility of each agent of the network by �rst estimating the
optimal joint policy of each agent and its neighborhood according to the principle of the locality
of interaction then computes the associated optimal action using modular Q-learning. Given the
prevalence ofMARLIN-IC in the RL-TSC literature and its reported e�ciency, this method has
been ported to the carmulator library for comparison purposes.

The primary mechanism behind the MARLIN-IC algorithm is the computation of optimal
joint action states between an intersection and its neighbors. For a given local state around an
intersection v, sv , the intersection computes the associated joint state (sv, sn) by observing the
local state of each of its immediate neighbors in the network. The intersection then estimates the
actions an each of its neighbors will take given this joint state action (by keeping a table of obser-
vations of past joint state and joint actions) and computes its optimal action based on the actions
each of its neighbors are expected to take. This rather complex algorithm, which necessitates a Q-
learning and past observation table for agent-neighbor couple, leverages indirect coordination by
observing neighboring states and actions and strategy modeling through the estimation of neigh-
boring actions without direct communication.

������� D���MARLIN�IC A��������

The original MARLIN-IC algorithm has long been considered to be a state-of-the-art coordi-
nated TSC method, which has showcased excellent results on large-scale tra�c scenarios using
real-world tra�c data (Brys et al., ����; Mannion et al., ����; Yau et al., ����). However, the �eld
of RL-TSC has dramatically evolved since its original publication in ���� and has most notably
adopted more sophisticated function approximation techniques in order to improve agent per-
formance and learning e�ciency. The superiority of deep learning over traditional RL algorithms
has already been demonstrated in chapter � and is also the central thesis of a ���� paper co-written
by one of the MARLIN co-authors (Shabestary and Abdulhai, ����). We consequently decided to
adapt the original MARLIN algorithm to newer function approximation techniques by using
deep instead of regular Q-learning as the learning algorithm. If the adaptation of the original
algorithm to its deep Q-learning variant (referred to as deepMARLIN) is straightforward, a cou-
ple of points should be noted. First, using a function approximation technique onMARLIN-IC
could potentially break the theoretical guarantees ofmodularQ-learning. However, experimental
results obtained with the deep MARLIN method show that this theoretical result has little im-
portance in practice. Second, the addition of a function approximation technique on top of an
already rather complex coordinationmethod initially resulted in a volatile learning process, which
is a common issue with indirect coordination techniques applied in non-stationary and complex

���

� Coordinated Tra�c Signal Control Methods

environments (Nowé et al., ����). However, the addition of a single-agent learning layer, which is
described in detail in the next paragraph, has entirely alleviated these issues.

������� M�������MARLIN�IC A��������

Since its source code is not (to our knowledge) publicly available, we have re-implemented the
MARLIN-IC algorithm in Python to the best of our abilities from its description in the thesis
manuscript of El-Tantawy and Abdulhai (����). While most of the algorithm has been ported as-is
without any problem whatsoever, we have noticed an unde�ned behavior in its original imple-
mentation. In some cases, an intersection has to pick its next action but has neighbors who do
not choose any action for this time step because they are within a yellow or red phase. While the
unavailable neighboring intersection can be skipped in most cases, this situation is problematic if
the intersection choosing its action only has a single neighbor or in the rare cases in which all its
neighbors are unavailable simultaneously since no joint actions can be computed. Furthermore,
skipping some of the unavailable neighbors causes information loss, which is likely to degrade
agent performance. In order to deal with this edge case, we decided to modify the MARLIN-IC
algorithm structure to add a regular SARL learning algorithm below the joint-action coordina-
tion layer. Each intersection �rst learns from local states and actions similarly to any isolated RL
algorithm (using a classical or deep learning form) and then augments the resulting value function
through neighbor coordination as in the original MARLIN algorithm. The resulting modi�ed
MARLIN-IC algorithm, with this modi�cation, is shown on algorithm �.

Algorithm �:Outline of the originalMARLIN algorithm as described by El-Tantawy and
Abdulhai (����) with an additional learning layer. Ovn is an observation table listing the
actions taken by agent n given the current joint state svn and Pa0n

a function computing

the probability of neighbour n choosing action a
0

n based on the current joint state and
this observation history.

for each agent v 2 V do
Observe sv, s

0

v, av, rv ;
Qv(sv, av) (1� α)Qv(sv, av) + α(rv + γmaxaQv(s

0

v, av));
for each neighbour n 2 Γ(v) do

Observe sn, s
0

n, an;
Ovn(svn, avn) Ovn(svn, avn) + 1;
Qvn(svn, avn) (1� α)Qvn(svn, avn) + α(rv + γmaxaQvn(s

0

vn, avn));

a
0

v maxa⇤n Qv(sv, av) +
P

nΓ(v)Qvn(s
0

vn, a
⇤

vn)Pa0n
(Ovn, s

0

vn, a
⇤

v));

The modi�ed MARLIN-IC algorithms, both in their classical or deep form, both strongly
bene�t from the introduction of this single-agent learning layer. In order to measure the bene�ts
of this change, we tested four variations of the MARLIN-IC algorithm: two in its original form
(one featuring this additional layer, onewithout), two in its deep learning form (one featuring this
additional layer, one without). These four RL-TSCmethods are tested on a two-by-two network
featuring four intersections, with an overall arrival rate parameter of λ = 0.015.

���

�.� Indirect Coordination

20000

40000

60000

80000

100000

120000

0 5 10 15 20 25 30 35 40 45 50

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

MARLIN

ModifiedMARLIN

DeepMARLIN

DeepModifiedMARLIN

Cumulated Vehicle Waiting Time Evolution

Figure �.�: Performance comparison of the regular and modi�ed MARLIN-IC methods in their classical
and deep forms. Classical MARLINmethods are in red; deep MARLINmethods are in blue.
Dashed lines represent theoriginalMARLINalgorithm, full lines ourmodi�ed version. Results
are averaged over �ve simulation scenarios.

Our testing lead to two key observations. First, the addition of a single-agent learning layer
greatly improves performance for both the classical and deep MARLIN methods, as seen when
comparing plots of the same color on Figure �.�. Second, we see that the deep MARLIN algo-
rithm signi�cantly outperforms the classical MARLIN algorithm in their modi�ed versions, as
seen when comparing the full plots of the same �gure. Most notably, we notice that the deep
MARLIN algorithmusing a single-agent layer achieves remarkable stability quite early in the con-
vergence process. On the basis of these results, we retain the modi�ed versions of the MARLIN
algorithm, both in its classical and deep form, given their superior performances. These algo-
rithms will be referred to as MARLIN and deepMARLIN from now on for simplicity’s sake.

����� M��������T�� I�����O� I�������C�����������

The aim of the MARLIN algorithms we are testing–exploiting joint state and action observa-
tions to maximize utility at the neighborhood level–is clear. We now need to evaluate its relative
e�ciency compared to independent methods such as the �DQN algorithm tested in the previous
section in order to establish if, and possiblywhy, such a formof coordination is bene�cial to tra�c
optimization.

���

� Coordinated Tra�c Signal Control Methods

������� I�������C�����������C����������

The �rst e�ciency measurement is done regarding the convergence process of the original and
deepMARLIN algorithms, which are compared to an independent I�DQNmethod and the op-
timal andWebster deterministic methods for comparison purposes. These methods are tested on
a two-by-two grid network composed of � intersections by using the convergence protocol de-
�ned in section �.�.�. Since indirect coordination techniques do not have the special requirements
seen with green wave coordination methods, there are no additional constraints regarding tra�c
generation or intersection cycle time. Tra�c �ows between each pair of edges of the network are
generated using an exponential law of parameterλ = 0.015, which corresponds to low to regular
tra�c demand over the network.

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

Optimal

Webster

I2DQN

MARLIN

DeepMARLIN

Cumulated Vehicle Waiting Time Evolution

Figure �.�: Convergence process of the I�DQN, MARLIN and Deep MARLIN methods. Webster and
Optimal �xedmethods are included for comparison purposes. Average values over � simulation
scenarios. Smoothed results.

We �rst analyze the convergence process of our selectedmethods for ��� episodes of ���� steps
each. The results of these tra�c simulations, presented in Figure �.� show �rst and foremost the
strong convergence stability of both MARLIN algorithms and, to a lesser extent, of the I�DQN
algorithm. Similarly to tabular value function algorithms tested in section �.�.�, the original
MARLIN algorithm (in blue in the �gure) is unable to improve early on, hinting at its inabil-
ity to learn further from its environment due to the absence of function approximation mecha-
nisms. Conversely, bothmethods featuring function approximation techniques quickly converge
to higher performance levels. Additionally, we notice that the two-layer approach to coordination
we o�ered to limit convergence instability in the deep MARLIN case performs exceedingly well
given that the deepMARLINmethods we tested without this approachweremore unstable than
the I�DQN algorithm shown on Figure �.�. While these initial results con�rm the intuition that

���

�.� Indirect Coordination

the classical MARLINmethod does not perform as well as deep reinforcement learning methods
leveraging neural networks for state generalization, low and steady tra�c demand scenarios do
not allow to measure how adaptive and resilient both deep RL methods are in order to compare
them truly.

������� I�������C�����������U����V�������T������ F����

Since the I�DQN and deep MARLIN method showcase quite similar performance levels in the
experiments of the previous section, we design an experiment aiming to test their capabilities un-
der changing tra�c conditions. The experimental protocol we designed in section �.�.� compares
the robustness of both methods by gradually increasing tra�c demand over multiple simulation
episodes, testing their robustness in the process. For this experiment, we generate tra�c data using
an exponential law of parameter 0.015 (using the protocol de�ned in section �.�.�). This tra�c
generation results in randomly generated arrival�ow rates over each entry-exit edge pair of the net-
work. After running a hundred simulation episodes using these regular weights (in order tomake
both methods converge), we gradually increase the arrival rate of each edge pair of the network
by �.�% each step for ��� steps, reaching an overall arrival rate of around �.��, before decreas-
ing by �% each step for ��� steps, returning to a pre-rush hour tra�c demand. Hence, each TSC
method will learn to route vehicles in increasingly saturated tra�c conditions while ensuring that
the tra�c demand imbalances that exist in the network are maintained. Furthermore, once peak-
hour tra�c conditions are passed, gradually lowering tra�c demand will allow to observe which
methods can quickly return to pre-rush hour performance levels, denoting greater adaptability.
We present these simulation results in Figure �.��. Asmentioned in section �.�.�, the areas plot-

ted in this �gure correspond to the performance spectrum of a given RL-TSCmethod delimited
by its best and worst observed cumulated waiting times for a given simulation episode. Addition-
ally, a solid line plots the average cumulatedwaiting time across all simulation scenarios and repre-
sents the average performance level of the TSCmethod for this given tra�c network and demand.
Results of Figure �.�� do show that while the low-tra�c demand situations of the �rst simulation
steps result in somewhat equivalent performance levels from both I�DQN and deep MARLIN
(even though the latter continues improving beyond the former after iteration ��, which is not
visible in Figure �.��), increasing this tra�c demand allows di�erentiating both methods further.
The initial increase in tra�c demand immediately decreases the stability of the deep MARLIN
method (see sub-plot �), while the I�DQNmethodmaintains greater stability during these initial
steps. As congestion keeps increasing, however, the I�DQN also su�ers from increased perfor-
mance variability, and to a greater extent than the deep MARLINmethod (see sub-plot �). This
causes I�DQN to display lower performance levels compared to the deep MARLIN method, as
seen on sub-plots �, � and � of Figure �.��. Finally, we note that the deep MARLINmethod dis-
plays superior resilience after sustaining a brutal increase in tra�c, as its variance in performance
quickly decreases when tra�c demand levels go back to normal (see sub-plot �).

���

� Coordinated Tra�c Signal Control Methods

0

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250 300

0.01

0.015

0.02

0.025

0.03

0.035

1

2

3

4

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

A
rr
iv
al
ra
te

Simulation Episode (103 s)

I2DQN

D-MARLIN

Arrival Rate

CumulatedWaiting Time Evolution In Variable Traffic Conditions

1

2 3

4

Figure �.��: Analysis of I�DQN and deepMARLIN under variable tra�c conditions.

In conclusion, the deep MARLIN algorithm provides better performance overall in variable
tra�c demand conditions than its independent counterpart I�DQN, even though deep MAR-
LIN seems more susceptible to performance instabilities for minor variations of tra�c demand
(see subplot � of Figure �.��). Moreover, deepMARLIN also proves more resilient to these tra�c
changes as it quickly stabilizes its performance levels once tra�c demand goes down.

������� M�������� ��� I�������� �� J���� S�����A�����M�������

The previous subsection has shown that indirect coordination between intersections of a road
network allowed from similar to superior performances compared to independentmethods. This

���

�.� Indirect Coordination

section aims to explain how such coordinationmechanisms provide an advantage to independent
methods.

MARLIN C����������� M�������� The critical coordination mechanism behind the
MARLIN and deep MARLIN algorithms is the joint state and action modeling between an in-
tersection and its neighbors. When computing quality estimates associatedwith di�erent actions,
intersections do not only use the local tra�c state but also take into account the probable future
action of each of its neighbors, given their local tra�c state. While such an approach has empiri-
cally proven its e�ciency (El-Tantawy and Abdulhai, ����), no clear-cut explanation has been given
as to why observing the tra�c state of neighboring intersections can improve the learning abilities
of an intersection.

J���� A�����M������� We argue that modeling neighboring intersection is often useless
since their actions do not have time to impact the local tra�c state from one step to the next.
Indeed, it should take around � seconds (or steps in our case) for a vehicle to travel from one inter-
section to the next in the quad network used in our experiments (intersections are spaced ���me-
ters apart). While it should logically be argued that a vehicle in�uences an intersection–through
state and reward computation–themoment it enters one of its incoming lanes, a single step is not
long enough for a vehicle to entirely travel the crossing area of its origin intersection. This means
that the in�uence of an intersection on its neighbors should range from null to minimal between
two successive time steps. This observation should, in theory, imply that neighboring intersection
state and action modeling has virtually no e�ect on the computation of quality estimates for the
“extend” action since its e�ect is measured from one time step to the next. However, neighboring
states and actions in�uence the quality estimate of the “switch” actionwhose e�ects aremeasured
around ten steps after the action has been taken, long enough for neighboring tra�c to reach the
local intersection.

M�������� ��� I�������� �� N���������� F������� We designed a speci�c experi-
ment in order to test this hypothesis. We �rst trained a regular deep MARLIN controller under
normal tra�c conditions and extracted one of the resulting neural networks from one of its con-
trollers. Using the neural network associated with the joint state-action modeling between inter-
sections u and v, we are able to measure the estimated quality value Quv(suv, auv) measuring
the quality of any given joint state-action couple (suv, auv) given as an input (see algorithm �).
This allows, among other things, to measure how much a change in the local state su or neigh-
boring state sv in�uences the quality values Q(suv, auv) of actions “extend” and “switch”. In
practice, we sample multiple states that have been encountered during the learning process from
the memory replay bu�erD. Eached sampled state suv has the form:

suv = hφ(u), d(u), c(lu1), . . . , c(lun),φ(v), d(v), c(lv1), . . . , c(lvn)i

which is a concatenation of the local states of intersectionsu and v as de�ned in section �.�. For
each sampled statesuv , we�rstmeasure thequality valuesQ(suv, “extend”) andQ(suv, “switch”)
associated with both actions available to the intersection u. Then, we change the values of φ(u)
and φ(v) in suv , which represent respectively the current phase index of intersection u and v.

���

� Coordinated Tra�c Signal Control Methods

Since intersections in the quad network have two main green phases (i.e. east-west and north-
south), this change switches the currently active green phase from one to the next. Using these
alternative state de�nitions, wemeasure the new associated quality values in order tomeasure how
they di�er from the original valuesQ(suv, “extend”) andQ(suv, “switch”).

The idea behind these measurements is the following. The more a given feature of the state
space in�uences the reward of an agent, the more a change of its value will change the quality
value associatedwith it, ceteris paribus. In the case of our experiment, the feature of the state space
indicating the currently active phase of an intersection is essential in choosing the next action. If
the lanes along the north-south axis of an intersection are heavily congested, the quality of the
“switch” action is likely to be high if the currently active phase is east-west and very likely to be
low if it is north-south. Hence, measuring the di�erence in quality values after changing a feature
of the state space gives an idea of how much this feature matters to the agent and its reward. By
measuring these di�erences, we hope to show that switching the local phase index φ(u) highly
matters for intersection u, while switching the neighboring phase index φ(v) does not for the
“switch” action.

E����������� R������ Results of Table �.� show these di�erences in quality values after
sampling ���� di�erent states. The values µ in the table represent the average di�erence in qual-
ity after a phase switch, whileσ represents the variance in average di�erence in quality after a phase
switch. These results underline, as expected, the massive di�erence between local and neighbor-
ing state changes. As we can see in Table �.�, a change in the neighbor state has a close to zero
impact on the “extend” action of the local controller (both the average di�erence in variance dif-
ference being close to �), while having a signi�cant impact on the “switch” action. Furthermore,
we can see on the �rst row of this table that the local phase index feature of the state space signi�-
cantly impacts the quality value of both actions, indicating its signi�cant in�uence on the agent’s
decision.

µ(extend) µ(switch) σ(extend) σ(switch)

Local phase change �.�� �.�� ��.�� �.��
Neighbor phase change �.�� �.�� �.�� �.��

Table �.�: Average di�erence (µ) and variance in average di�erence (σ) of value estimates for ���� states.

This experiment hence con�rms that the advantage of the deep MARLIN method over inde-
pendent algorithms such as I�DQN resides in its ability to compute quality estimates of phase-
switching actions better since the tra�c neighboring intersectionswill in�uence local tra�cwhile
this action is being applied. Conversely, our �ndings indicate the joint state-action modeling of
deep MARLIN is useless when computing quality estimates of the phase extension action since
the neighboring tra�c does not have the time to in�uence the local tra�c, which represents both
a missed opportunity to extract additional information from neighboring states and a method
weakness since it introduces unnecessary computation and potential instability.

���

�.� Direct Coordination

D������� J���� A�����M������� A logical argument that could be made regarding the
inability of deepMARLIN to properly take neighboring states into account from one step to the
next would be to delay the time step at which the intersections receive neighboring states. One
could imagine that modeling the neighboring state from a couple of steps prior would leave time
for this anterior state representation to a�ect the local tra�c state. This solution would, however,
only displace the issue. Since intersections usingMARLIN learn through joint-action modeling,
the delayed state representation of neighboring intersections would already be incorporated in
the local intersection state, still rendering the delayed neighboring state representation unable to
in�uence the “extend” action quality estimates. The direct coordination method presented in
the following subsection aims to provide quality estimates for both action types throughmessage
passing rather than through joint state modeling.

��� D�����C�����������

Direct agent coordination, also known as explicit coordination (Busoniu et al., ����) pushes agent
interaction further than indirect coordination by allowing for direct exchange of information
while learning. The main di�erence between indirect and direct coordination methods is that
the latter does not only receive information from other agents of the environment but also di-
rectly take other agents into account in their decision-making process through explicit message
passing mechanisms or joint action computation.

����� D�����C�����������M���������

Similarly to indirect coordination methods, a wide variety of algorithms can be used for direct
coordination of tra�c lights since their only requirement is the direct exchange of information
between learning agents. Hence, while multiple direct coordination mechanisms exist for RL-
TSC systems, such as themax-plus algorithm (Kok andVlassis, ����; Van der Pol andOliehoek, ����),

we focus here on two di�erent coordination algorithms: the MARLIN-DC algorithm, which
is the direct coordination version of the MARLIN-IC algorithm that we studied in the previ-
ous section, and the RIAL and DIAL algorithms (Foerster et al., ����)which features self-learning
communication between agents of the same environment.

������� MARLIN�DCA��������

TheMARLIN-DCalgorithm (El-Tantawy andAbdulhai, ����) leverages direct negotiationbetween
agents in order to compute optimal joint policies. Similarly to MARLIN-IC, each agent main-
tains aQ-table with each of its neighbors containing quality estimates according to the joint state-
action of the intersection and its neighbor. When choosing an action, an intersection does not
only compute its optimal action according to the joint state-action space with each of its neigh-
bors (similarly to MARLIN-IC) but also estimates the optimal action of each of its neighbors
by directly using their policies. Using this additional information, the agent can then compute
its best-response action with regard to the actions of its neighbors and estimate the di�erence in
utility between its original optimal action and this best-response action. After this �rst computa-
tion step, intersections directly coordinate themselves by broadcasting their di�erence in utility to

���

� Coordinated Tra�c Signal Control Methods

their neighbors: the intersectionwith themaximal utility di�erence in its neighborhood is allowed
to change its original action to the best-response action. By repeating this process by descending
order of di�erence in expected utility, the MARLIN-DC algorithm reaches an equilibrium that
is expected to maximize the joint expected reward of a neighborhood of intersections. While this
algorithm o�ers a novel direct coordinationmethod to optimize tra�c signal control, experimen-
tal results presented by El-Tantawy and Abdulhai have shown that MARLIN-DC provides similar
to slightly worse performance levels compared toMARLIN-IC, while increasing its computation
time �vefold. These limitations motivated El-Tantawy and Abdulhai to only study MARLIN-IC
in large-scale simulation scenarios and hence prevented us from implementing and testing the
MARLIN-DC algorithm in carmulator.

������� R��������� ���D������������� I�����A���� L�������

A promising technique for agent coordination known as reinforced inter-agent learning (RIAL)
has originated in a paper by Foerster et al. (����). In its original version, the RIAL algorithm is
applied to a fully cooperative, partially observable, and sequential multi-agent learning problem
inwhich communication is essential. Without any communication protocol de�ned beforehand,
agentsmust learn to communicate through limited channels during each step of the game in order
to maximize their shared rewards. Agents must not only learn to solve their tasks, but they must
learn and agree on a common communication protocol. During learning, each agent chooses two
distinct actions using two distinct neural networks: a tra�c action a and a message actionm to
send to the other agents. The selected actions and messages of each agent are then observed by all
other players on the next step as part of the state space de�nition.

The originalRIAL algorithmhas been extendby the di�erentiable inter-agent learning (DIAL)
algorithmwhichnot only sharesmessages across agents, but also gradients used to reward commu-
nication actions. A single neural network is shared by all agents for choosing the communication
action. Each agent using the communication neural network has a unique index variable as an
input, allowing them to specialize. Such a method requires centralized learning since learning
parameters cannot be shared through limited communication channels. Since centralized com-
putation is the norm in tra�c simulations, parameter sharing through the use of a single neural
network between agents is possible in RL-TSC applications, and has already been benchmarked
in that manner (Chu et al., ����; Vanneste et al., ����). While results from these papers have been
encouraging (they have both beaten independent learning baselines), we believe that the DIAL
algorithm is not optimal for RL-TSC tasks. The remainder of this chapter explain why this is the
case, and how our proposed method, DEC-DQN, addresses these issues.

������� A�������T��A�����������

The �rst issue regarding the application of DIAL to tra�c signal control comes from the neural
network architecture being used in the original algorithm. Indeed, the learning task of choice of
the original DIAL paper is a switch-riddle game that is both relatively short (in terms of learning
episodes) and simple (in terms of state-action space de�nition). Additionally, since taking awrong
decision can cause the game to end early, tracking previous states of the gamewas deemed essential
and was done using a gated recursive unit network, which is a form of recurring neural network.

���

�.� Direct Coordination

If this neural network architecture �tted this type of game, tra�c signal control would be en-
tirely di�erent for multiple reasons. First, tra�c optimization is neither short (since the learning
task goes inde�nitely) nor simple (since state-action spaces are a magnitude more complex than
the switch-riddle games). These factors signi�cantly increase the complexity of gradient compu-
tation in recurring neural networks since the input data is larger (states are complex) and wider
(episodes are longer), which considerably lengthens the learning process of each agent. Addition-
ally, and perhaps more importantly, we have found that keeping track of past system states using
a recurrent neural network mattered little in our TSC setting, implying that only the immediate
system state and the action applied to it were in�uencing the utility of an agent. While a few pa-
pers of the literature use recurrent neural networks in their deep learning models (Chu et al., ����;
Ma andWu, ����; Shi andChen, ����; Xiong et al., ����; Zeng et al., ����), they also use complexDTSE
state representation (see section �.�.�.�) through image inputs, which justi�es the use of recurrent
neural networks alongside convolutional layers in order to learn from image input data.

u

su

v

sv

w

sw

S
h
a
re

d
M

es
sa

g
e

N
eu

ra
l
N

et
w

o
rk

mu

mv

mw

s
0

u

mv

s
0

v

mu

mw

s
0

w

mv

2
D

Q
N

u
2
D

Q
N

v
2
D

Q
N

w

a
0

u

a
0

v

a
0

w

Figure �.��: Illustration of the modi�ed DIAL architecture applied to a road network of three aligned in-
tersections, u, v andw. At each step, each intersection chooses a communication actionm on
the basis of its local state and unique intersection index on the shared communication neural
network. The resulting message is then sent to neighboring intersections at the next time step
and is used by neighboring intersections to chose a tra�c signal control action a.

In the case of simpler state representation, such as ours, testing multiple architectures of re-
current neural networks (long short-term memory and gated recursive unit) in the isolated and
coordinated cases has resulted in subpar performances in all cases. Hence, since recurrent neural
networks provide both inferior performance results and a signi�cant increase in computational
needs for learning, we retain the dual network architecture of the original DIAL algorithmbut re-

���

� Coordinated Tra�c Signal Control Methods

place the recurring components by simple fully connected layers similarly to the I�DQNmethod.
We represent the chosen architecture on Figure �.��.

������� R��������C������������A������

The second challenge andmain caused by applying theDIAL algorithm on a tra�c signal control
task comes from associating rewards to message actions taken by agents at each step. This adjust-
ment issue is again due to the type of task on which the original DIAL algorithm was applied. In
the switch-riddle game, the same reward is used to both environment and message actions a and
m since the game is fully cooperative and can only end up in the death or liberation of all prison-
ers. Hence, the same reward is shared across all agents, and both actions are working towards the
same optimization goal. In the case of tra�c signal control, rewards are neither shared between
agents nor impacted in the same way by environment andmessage actions. Each agent locally op-
timizes tra�c through action a tomaximize its local utility and sends amessagem (in the form of
an integer), which will be received at a future time step by its neighbors so that they canmaximize
their local utility. While local tra�c related-actions can hence still be rewarded directly using traf-
�c delay-related measurements, message-passing actions are much harder to estimate since agents
have no innate mechanisms to estimate if a message they sent has been taken into account by a
neighboring intersection, and, if so, how this message has a�ected their local utility. Furthermore,
since intersections with multiple neighbors receive multiple messages each turn, computing the
individual reward associatedwith each of thesemessages poses an issue of credit assignment (Panait
andLuke, ����; Sutton andBarto, ����) sincewedonot knowhow todivide the rewardbetween each
neighbor. These issues underline the fact that applying a DIAL-type algorithm in a tra�c signal
control context requires to de�ne a reward function speci�cally designed to reward communica-
tion actions.

We design the direct-evaluation communication DQN (DEC-DQN) method to address this
challenging task. The DEC-DQN algorithm features a reward function speci�cally geared to-
wards communication actions which directly estimates how agent communications a�ect those
who receive them. This estimation is made possible by the fact that tra�c simulations allow for
centralized training and parameter sharing. It is hence possible, within a simulation episode, for
an agent not only to access the shared neural network used for message action selection but also
to access the neural networks used by neighboring intersections in order to choose their tra�c-
related actions. By supposing, furthermore, that agents can observe all communications passed
between agents, the reward function used in the DEC-DQN leverages an idea similar to state fea-
ture estimation in section �.�.�.�. The reward of a communicationmmade by an intersection v
is computed by estimating the opportunity cost of sending messagem for each neighbor n of v.
This opportunity cost is obtainedbyplugging the state of neighborn containing the original com-
munication actionm into its neural network in order to observe the maximum attainable quality
estimate that neighbor n can reach. Then, this quality value is compared to all other potential
maximum quality estimates neighbor n could have gotten had agent v sent a di�erent communi-
cation actionm. The higher the di�erence between the quality estimate associated with the best
potential communication actionm⇤ and the sent communicationm, the higher the opportunity
cost. In other words, the more an intersection makes its neighbors miss on high-quality estimates
due to a given communication action it sent, the higher the loss associated with this communica-

���

�.� Direct Coordination

tion should be. The detailed pseudocode illustration of the loss computation of communication
actions of the DEC-DQN algorithm is illustrated in algorithm �.

Algorithm �: Algorithmic illustration of the loss computation for message actions in
the DEC-DQN algorithm. The reward associated with the messagemv chosen by inter-
section v is computed by estimating, for each intersection neighboring v, the maximal
expected reward this neighbor could attain when receiving messagemv and the maximal
expected reward it could attain by receiving any other message from intersection v. The
higher the di�erence between these twomaximal expected rewards, the more intersection
v should have chosen a di�erent message, and the higher the associated loss is.

for each agent v 2 V do
L 0;
Observemv ;
for each neighbour n 2 Γ(v) do

M (m1, . . . ,mv�1) for [1, v � 1] 2 Γ(n)� {v};
s0 (s0n,M,mv);
Vmax max(Vθn(s

0));
formalt 2 Am � {mv} do

s0alt (s0n,M,malt);
if max(Vθn(s

0

alt)) > Vmax then
Vmax max(Vθn(s

0

alt));
L L+ ||Vmax �max(Vθn(s

0))||

������� C�������DEC�DQN P���������

Theproper tuning of parameters is essential inmost deep learningmodels, and this is perhaps even
truer in the DEC-DQN case when compared to other deep RL-TSCmodels such as I�DQN. In-
deed, on top of sharing itsmodel parameters with I�DQN, the coordination-speci�cmechanisms
of DEC-DQN need to be correctly parameterized to pass messages between intersections of the
network e�ciently. This section hence aims at �nding proper values for two parameters of the
DEC-DQN algorithm for TSC. First, this section studies the e�ect of the size of communication
channels between agents, also de�ned as the size of the action space for communication actions
Am. Finding the correct communication channel size is a trade-o�. Too narrow of a channel
might not be able to express su�ciently di�erent messages, limiting the usefulness of agent com-
munication. Conversely, too large of a channel increases dimensionality and prevents the agents
from converging on a common communication protocol, limiting once again the usefulness of
agent communication. The second parameter we aim to estimate is the e�ect of delay between
the emission of a communication action by an intersection and its reception by its neighbors,
which was a fundamental limitation of the indirect coordination mechanism of MARLIN, as
seen in the previous section.

C������������C������S��� The size of the communication channel |Am| is paramount
in proper communication between agents of the DEC-DQN algorithm. Messages are sent by

���

� Coordinated Tra�c Signal Control Methods

agents as integers to their neighbors in order to convey information about their local situation
without explicit constraints as to what thesemessages represent. As this communication protocol
is learned, the size of these communication channels represents the depth, or richness, of what
these messages can convey. As such, a small message action space, similarly to a small state space
S , conveys less information to the agent but is likely to converge faster due to its reduced dimen-
sionality. Conversely, a large amount of communication channels allows the agents to exchange
more precise data at the cost of a longer convergence process. Since the optimal size of the com-
munication space is highly likely to be problem-dependent, we experiment with various commu-
nication channel sizes in a simulation setting. We compare the convergence process (as described
in section �.�.�) of three DEC-DQN algorithms with di�erent communication channel sizes on a
two-by-two grid network in order to estimate their in�uence on the agent’s convergence process.
Note that this experiment is carried out over a relatively long number of simulation episodes,
���� instead of the usual ���, in order to observe the very-long term convergence of DEC-DQN
methods using large communication channels.

40000

60000

80000

100000

120000

140000

160000

180000

0 100 200 300 400 500 600 700 800 900 1000

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

DEC-DQN, |A| = 2

DEC-DQN, |A| = 5

DEC-DQN, |A| = 10

Cumulated Vehicle Waiting Time Evolution

Figure �.��: Convergence process of the DEC-DQN algorithm per comunication channel size.

Results of this experiment, averaged over �ve tra�c scenarios, are shown on Figure �.��. The
�rst observation is that communication channel size does not seem to have a signi�cant e�ect on
very long-term convergence, as all three DEC-DQN methods show similar performance values
in later simulation episodes. However, we do observe that the DEC-DQN algorithm using the
largest communication channel size (in yellow in the �gure) displays greater convergence insta-
bility, which is noticeable around episode ��� on Figure �.��. Since increasing the channel size
of communication actions does overall not seem to yield speci�c rewards for this speci�c learn-
ing problem but does increase learning instability, we choose the simplest message action space in
order to reduce dimensionality, which is |Am| = 2.

���

�.� Direct Coordination

M������D���� As underlined in section �.�.�.�, the in�uence of the delay at which intersec-
tions receive information from their neighbors is crucial for adequately computing the quality
estimates of tra�c actions at its disposal. Since, as opposed to theMARLIN algorithm, the delay
between the emission and reception of a communication action is con�gurable in theDEC-DQN
algorithm, it is hence essential to analyze the e�ect that such a delaymay have on quality estimates.
To this end, we repeat the experimental protocol described in section �.�.�.�which allows to esti-
mate the impact of messages on the quality estimates of an intersection by directly measuring it
on their neural networks. In this setup, we train ten distinctDEC-DQNagents using increasingly
larger message reception delays∆t ranging from � to �� on quality estimates similarly to what has
beendone in the indirect coordination case. Each agent has exactly oneneighborwho sends one of
two communication actions, since |Am| = 2, as stated in the previous section. We then sample
observations from the replay bu�er D, and for each observation, measure the e�ect of �ipping
the original message sent by the neighboring intersection on the associated quality estimates of
the agent. The average di�erence in quality estimates for a message and its �ipped variant, µ(a),
is then computed for a given action a. The results of these computations, for multiple message
delays∆t, can be found in Table �.�.

∆t = 1 ∆t = 2 ∆t = 3 ∆t = 4 ∆t = 5

µ(switch) ��.�� ��.�� ��.�� ��.�� ��.��
µ(extend) ��.�� ��.�� ��.�� ��.�� �.��

∆t = 6 ∆t = 7 ∆t = 8 ∆t = 9 ∆t = 10

µ(switch) ���.�� ��.�� ��.�� ��.�� ��.��
µ(extend) ���.� ��.�� ��.�� ��.� ��.��

Table �.�: Average di�erence of quality estimates for di�erent messages and delay values∆t.

The results from these experiments raise two critical points. First, the communication actions
of a neighbor in�uence the quality estimates of all actions by the agent. Indeed, µ values of Ta-
ble �.� are all signi�cantly di�erent from �, indicating that a switch in the neighbor’s commu-
nication action has a substantial impact on the agent’s expected reward. This �rst observation
shows that DEC-DQN solves the primary issue associated with deep MARLIN: its inability to
in�uence a neighboring intersection from one step to the next. Since DEC-DQN has by a min-
imal delay of � step by construction, it does not su�er from this shortcoming. Furthermore, we
observe that the average di�erence in quality estimates does not tend to substantially change as
the message delay parameter∆t increases. While we could interpret this phenomenon as proof
that communication does not a�ect agent performance (although upcoming experimental results
show otherwise), we understand it as a proof of DEC-DQN’s adaptability. Since the communi-
cation protocol is learned from scratch by agents, messages passed between agents do not have to
represent �xed, time-dependent, state information like in MARLIN but can represent any fea-
ture of the environment. Hence, we suppose that the features that are chosen to be included
in these communication protocols are likely to change depending on the chosen delay value (e.g.,
lower communication delays are, for instance, likely to favor features that aremore likely to impact
neighboring intersections immediately). However, its impact on agent performance does remain

���

� Coordinated Tra�c Signal Control Methods

somewhat constant. These �ndings hence tend to indicate that while themessage delay parameter
∆t dictates which kind of state features are used by agents to craft their communication proto-
cols, they all tend to have a similar impact on resulting agent quality estimates. In light of these
�ndings, we hence opted for the most straightforward message delay parameter value,∆t = 1.

����� M�������� ��� I����� ��D�����C�����������

This section is dedicated to analyzing the performances of DEC-DQN in a TSC setting. This
analysis compares theDEC-DQNalgorithm to a baseline independent deepQ-learning using the
I�DQN algorithm. We �rst measure the convergence of both methods before evaluating their
performance capabilities in regular and saturated tra�c conditions.

������� D�����C�����������C����������

The �rst experiment compares the convergence of both methods according to the protocol de-
�ned in section �.�.�. We generate tra�c demand data on a �x� grid network according to the
protocol de�ned in section �.�.�, using a constant arrival rate averaging λ = 0.018 vehicles per
step. The convergence process of the I�DQNandDEC-DQNalgorithms is plotted on an average
of �� distinct tra�c scenarios, each running for ��� episodes of ���� steps each. As mentioned in
the previous section, the chosen DEC-DQN parameters are a default message reception delay of
∆t = 1 and a communication action channel of |Am| = 2. The learning hyperparameters used
for this experiment are similar to those listed in Table �.� and Table �.�.

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400 450 500

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

Webster

I2DQN

DEC-DQN

Cumulated Vehicle Waiting Time Evolution

Figure �.��: Convergence process of the I�DQN and DEC-DQN algorithms.

The results of these experiments, as shown on Figure �.��, tend to di�erentiate both methods
slightly more than in the indirect coordination case. While both the coordination-free and di-

���

�.� Direct Coordination

rect coordination-based methods once again end up achieving similar performance levels in the
later stages of simulation on all tested scenarios, theDEC-DQNalgorithm converges signi�cantly
faster in the early tra�c simulation episodes (wemeasured an average di�erence in performance of
�.��% during the �rst ��� episodes on Figure �.��). While displaying the relative superiority of di-
rect coordination to independent learning, this result is somewhat surprising. Since DEC-DQN
uses a larger state space than I�DQN, and since it necessitates to train both a tra�c-related and
communication-related neural network, we would have expected a longer convergence process
than the independent learning method, eventually reaching superior performance levels. How-
ever, Figure �.�� seems to show that agents, in this simple tra�c scenario, manage to quickly con-
verge on a common communication protocol which enables the agent to reach excellent perfor-
mance levels quickly.

������� D�����C�����������U����V�������T������ F����

Anextensiveway ofmeasuring the overall e�ciency of aRL-TSCmethod is to analyze its behavior
under variable tra�c conditions. To this end, we replicate the experimental setup of section �.�.�.�
using increasing and decreasing tra�c �ows to compare the I�DQN and DEC-DQN methods
using the same experimental parameters. This experiment is designed to estimate how agent co-
ordination can help intersection using DEC-DQN to adapt to changing tra�c conditions.

The results on Figure �.��, averaged over � distinct tra�c scenarios, con�rm our initial observa-
tions. Subplots �, �, and � of this�gure, respectively associatedwith an increase, peak, and decrease
in tra�c arrival rates, all show that the DEC-DQN algorithm (in blue) is superior to I�DQN (in
red) both in terms of average performance (as shown by the solid-colored lines) and in terms of
variance (as shown by the colored areas on the plot). Most notably, the I�DQN method su�ers
from high variance in performance when tra�c �ows start to increase (as seen in subplot �) and
features an extremely poor simulation episode near the peak of tra�c �ows (as seen on subplot
�), probably due to a single disastrous simulation episode, showing the potential instability of the
I�DQN algorithm under saturated tra�c �ows. More importantly, these simulation results do
not showcase the ine�ciency of the I�DQN method, whose results are similar to those found
in Figure �.��, but rather the extremely good resilience of the DEC-DQN algorithm even under
highly saturated tra�c conditions.

These simulation results seem like de�nitive proof that, when properly orchestrated, coordina-
tion between intersections for tra�c signal control can signi�catively increase agent performance
and globally reduce cumulativewaiting times over a road network. Our results have shown that, in
the case of our experimental protocol, direct coordination is likely to be superior to indirect coor-
dination since information transmittedbyneighboring intersections is likely to in�uence the value
estimates of both the “switch” and “extend” actions, as opposed to the latter only in MARLIN-
type algorithms. Since these observations have been made, however, on relatively small road net-
works containing a few intersections, we address the direct comparison of the threemainmethods
of interest (I�DQN, deepMARLIN, andDEC-DQN) on a synthetic large-scale road network in
the next and �nal tra�c simulation of this thesis.

���

� Coordinated Tra�c Signal Control Methods

0

100000

200000

300000

400000

500000

600000

700000

800000

0 50 100 150 200 250 300

0.01

0.015

0.02

0.025

0.03

0.035

1

2

3

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

A
rr
iv
al
ra
te

Simulation Episode (103 s)

I2DQN

DEC-DQN

Arrival Rate

CumulatedWaiting Time Evolution In Variable Traffic Conditions

1

2

3

Figure �.��: Analysis of the I�DQN and DEC-DQN algorithms in variable tra�c conditions.

���

�.� Agent Coordination on Large-Scale Tra�c Networks

��� A����C����������� �� L�����S����T������N�������

While the results observed in the previous section and their subsequent conclusions are su�-
cient to prove that agent coordination is e�ective in increasing tra�c optimization performance
through message passing, the e�ect of the direct and indirect coordination methods have been
tested on road networks featuring a limited amount of intersections. This last section, which con-
tains experiments on coordinationmethods on a larger scale of operation, has twomainobjectives.
First, it aims to analyze whether such a change in scale has any e�ect on the coordination mecha-
nisms that were previously observed. In other words, we want to know if increasing the number
of coordinated intersections changes the behavior of the independent, indirect, and direct coordi-
nation methods we have used so far. Second, this experiment on a larger-scale network is used to
directly compare the threemost promisingRL-TSCmethods we have tested so far: I�DQN, deep
MARLIN, andDEC-DQN, in order to drawmore decisive conclusions regarding their respective
merits and shortcomings.

����� S�������� L�����S����R���N������

The network chosen to represent a large-scale tra�c simulation is composed of �� nodes (�� of
which are intersections controlled by tra�c lights) and ��� edges. While not based on the network
graph of a real-world urban area, this road network aims to recreate features commonly seen in
urban areas, such as the use of a two-by-two lane outer ring road and north/west and east/west
arterials going through the network center.

Figure �.��: Synthetic city network.

In order to generate realistic tra�c �ows over the net-
work, the default shortest path algorithm used by vehicles
to select a route on the network (through the duarouter
program) is modi�ed in two ways. First, the edge length
used in the computation of the shortest part is weighted by
a factor of the number of lanes the road has: for two routes
with the sameweight, a vehiclewill take the route containing
edges with a higher number of lanes, which is akin to pre-
ferring arterials and highways instead of single-lane streets.
Second, a random factor r is introduced in duarouter and
represents the upper bound for which sub-optimal routes
can still be chosen by a vehicle. For a parameter r = 1.2
(which we pick), a vehicle can select any route going from
its origin to its destination as long as its travel cost is at most
�.�� times the cost of the shortest route. This factor intro-
duces randomness and personal driver preferences (which might be sub-optimal) in travel route
selection. Finally, and similarly to the previous sections, the Poisson vehicle arrival rate of each
origin-destination pair of the network is chosen according to an exponential law of parameter λ,
according to the experiment protocol de�ned in section �.�.�. The convergence process of the
RL-TSCmethods are �rst tested on a non-saturation arrival rate, and their stability is then tested
by increasing and decreasing this arrival rate.

���

� Coordinated Tra�c Signal Control Methods

����� P����������U���� F���� ���V�������A������R����

After describing the road network over which our experiments take place, we now observe the
e�ect of scaling the experimental road network up on the convergence process and adaptability to
changing tra�c conditions of the I�DQN, deepMARLIN, andDEC-DQN tra�c signal control
methods. Given their overall scale, and given the fact that they compare the bestRL-TSCmethods
we have developed in each category (i.e., independent, indirect, and direct coordination), this�nal
series of experiments give a complete overview of the respective merits and shortcomings of these
RL-TSCmethods.

������� C����������U���� F����T������ F����

As seen in the previous section of this chapter, the �rst manner in which coordinated RL-TSC
methods can be analyzed is through the observation of their convergence process according to
the protocol de�ned in section �.�.�. This convergence is tested on the synthetic city network for
a near-saturation �xed arrival rate of λ = 0.1. For this experiment, the performance spectrum
of each method over the ten tested tra�c scenarios (de�ned in section �.�.� as the area showing
the best and worst cumulated waiting times of a given method over the tested tra�c scenarios) is
displayed alongside the usual average performance plot.

200000

250000

300000

350000

400000

450000

500000

550000

600000

650000

700000

0 20 40 60 80 100

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (1x103 s)

I2DQN

DeepMarlin

DEC-DQN

Cumulated Vehicle Waiting Time Evolution

Figure �.��: Convergence of the I�DQN, deep MARLIN and DEC-DQN with a constant arrival rate on
the synthetic city network.

The convergence values of Figure �.�� show results similar to those observed in small-scale net-
works. Most notably, we observe that the DEC-DQN coordination method (in yellow in the
�gure) converges around ��% faster than other methods in the early learning iterations andmain-
tains its performance advantage throughout the simulation runs. Another notable point regard-

���

�.� Agent Coordination on Large-Scale Tra�c Networks

ing these simulation results is the respective evolutionof the I�DQNanddeepMARLINmethods
compared to the previous small-scale experiments. While converging slower at �rst, I�DQN (in
red) ends up performing better than deep MARLIN (in blue) on average towards the end of the
simulation, reaching DEC-DQN-like performance levels.

The convergence analysis of these three RL-TSCmethods hence provide valuable information
regarding their comparative merits on large-scale tra�c simulations with regards to their conver-
gence. Similarly to earlier experiments, the DEC-DQN coordinated method provides the best of
both worlds by performing better on early simulation iterations and by maintaining these supe-
rior performances in the long run. Hence, the introduction of a large number of learning agents,
each using the same neural network in order to learn to communicate, seems to accelerate their
convergence towards a common communication protocol, explaining the early convergence of
DEC-DQN due to e�cient coordination through proper communication. Conversely, the deep
MARLIN algorithm seems to su�er from the introduction of a larger number of learning agents.
While the deepMARLINmethod yielded similar performance levels with lower variance to those
of I�DQN on simulations done on a smaller scale network (see Figure �.�), the switch to a large-
scale network decreases the maximum performance metrics of the deep MARLIN algorithm,
which becomes strictly less e�cient than the I�DQN method. The reason for this loss in e�-
ciency is not entirely apparent since coordination, in the deepMARLIN case, still yields bene�ts
in the form of accelerated convergence in early iterations when compared to I�DQN.

������� P����������U����V�������T������ F����

The �nal simulation scenario we run in order to comprehensively analyze the three coordinated
RL-TSCmethods compares their respective performance under variable tra�c conditions in the
large-scale synthetic road network de�ned in section �.�.�. This analysis, coupled with the results
of the�xed tra�c�owsof theprevious subsection, shouldprovide a complete comparisonof these
threemethods. This last simulation scenario is by far themost costly to run from a computational
perspective since it features both a high number of intersections and a high number of vehicles
when tra�c demand is increased (see section �.�.�.� for the complexity analysis of each method).
Consequently, we used �ve di�erent tra�c scenarios to generate the data used to plot Figure �.��,
instead of the usual ��.

Results of this �nal experiment, as shown on Figure �.��, strengthen the observations wemade
under �xed tra�c �ows. First, the deep MARLIN method (in blue in the �gure) is the worst
average performer as tra�c �ows increase (see subplot �), similarly to what was observed towards
the end of tra�c scenarios of Figure �.��. As it also features low-performance variance, the deep
MARLIN method seems to indicate its limitations once again when applied to many intersec-
tions. However, the somewhat decentralized architecture of the deep MARLIN method (since
each neighboring intersection pair is associatedwith an independent neural network) seems to in-
crease its robustness, as demonstrated by the low variance of its performances once tra�c demand
decreases (see subplot �). These results indicate that the deep MARLINmethod is best suited in
relatively small networks with variable tra�c conditions, such as seen in the tra�c scenario of sec-
tion �.�.�.�. Comparatively, the I�DQNmethod (in red) features relatively good performances–
superior on average to those of deepMARLIN–although at the cost of higher variance and lower
robustness (see subplot �). These results underline the fact that the I�DQN method is suitable

���

� Coordinated Tra�c Signal Control Methods

0

500000

1x106
1.5x106
2x106

2.5x106
3x106

3.5x106
4x106

4.5x106

100 150 200 250 300

1

2

3

C
u
m
u
la
te
d
W
ai
ti
n
g
T
im

e
(s
)

Simulation Episode (103 s)

I2DQN

DeepMARLIN

DEC-DQN

CumulatedWaiting Time Evolution In Variable Traffic Conditions

1

2

3

Figure �.��: Comparison of the I�DQN, deepMARLIN and DEC-DQNmethods in variable tra�c con-
ditions on a large scale tra�c network.

���

�.� Agent Coordination on Large-Scale Tra�c Networks

for any road network size (since no coordination is used) but is preferable in networks with rel-
atively low tra�c demand variation. Finally, our novel DEC-DQNmethod provides once again
the best of both worlds by featuring both the best average performance levels for almost all points
of the simulation episodes, all while featuring low variance levels. Such a method is preferable for
all types of networks and all types of tra�c demand, provided that direct coordination between
intersections is possible.

������� C���������C��������� ��RL�TSC A���������

A �nal point of comparison worth analyzing regarding coordinated RL-TSC methods relates to
their computational andmemory requirements. Indeed, while these constraints do not play a sig-
ni�cant role in the desirability of each method in simulated scenarios, they can be major factors
in their feasibility in real-world applications. We compare two principal metrics for each method.
First, we look at the average number of operations executed by each algorithm for each simulation
step, which broadly represents their average computational needs. The average number of oper-
ations is preferred to a traditional complexity analysis as it gives a more detailed appreciation of
eachmethod’s relative computational costs. The complete calculations used to obtain this average
number of operation per simulation step is given in Appendix C. The secondmetric we use is the
average memory requirements for learning data, which can directly be obtained bymeasuring the
�le size of the learning data �le we obtain at the end of a tra�c simulation using carmulator.

Method Computation (op/s) Memory (kb)

I�DQN 239162880 409144
DeepMARLIN 717663744 2069528
DEC-DQN 1435765248 459716

Table �.�: Computational and memory requirements of various RL-TSC algorithms.

Computational and memory requirements shown on Table �.� underline a typical pattern re-
lated to coordination for tra�c signal control methods: there are strongly diminishing returns
when aiming at improving a well-parameterized independent TSC method. The limited to no-
table improvements regarding agent convergence or performance, in the respective case of deep
MARLIN and DEC-DQN, are either associated with a steep increase in memory (a �vefold in-
crease) or computational (a sevenfold increase) requirements, respectively. This last observation
underlines the high costs associated with implementing e�ective agent coordination for tra�c
signal control, whether in terms of the general complexity of the algorithms at play or in their
associated costs. Nonetheless, given the speed at which all these algorithms are executed in simu-
lated tra�c conditions, these costs should not be prohibitive regarding their potential application
in real-world tra�c scenarios.

::::

This chapter undertook an in-depth analysis of various RL-TSC methods used on road net-
works featuring multiple intersections. More speci�cally, we analyzed di�erent modes of coordi-
nation between agents to establish which form is most bene�cial for tra�c signal control. Each of

���

� Coordinated Tra�c Signal Control Methods

these coordination methods is compared to an independent method, I�DQN, which was identi-
�ed as the most capable non-coordinated RL-TSCmethod at the end of chapter �.

We startedbyde�ning coordinationbasedon the concept of greenwave coordination fromtraf-
�c engineering. In its adaptive form, the green wave coordination method adds o�set constraints
on intersections along an arterial. Each intersection has a �xed total cycle time and hence chooses
phase-based actions to route tra�c. On this basis, the green wave coordination method uses an
�DQNneural network to learn how to split green phase timewithin this �xed signal cycle. Exper-
imental results have shown that this novel method signi�cantly outperformed the independent
I�DQNcontroller on arterial streets under normal tra�c conditions. However, this performance
hierarchy entirely inverts when tra�c is saturated along the arterial, making the green wave coor-
dination method un�t for general use on road networks.
The second type of coordinationmechanismwe analyzed is indirect coordination, which relies

on indirect information passing between neighboring intersections. We presented theMARLIN-
IC algorithm, which is a trademark method of the coordinated RL-TSC literature. This method
relies on joint state-actionmodeling in order to compute optimal action choices for each agent of
the network. We proposed a modi�ed version of the MARLIN-IC algorithm featuring an addi-
tional single-agent decision-making process and used a deep neural network instead of a classical
Q-learning algorithm for agent learning. This adapted method has shown moderate improve-
ments compared to the I�DQN algorithm. An in-depth analysis of the neural networks used by
agents of the MARLIN-IC algorithm has shown that these improvements are held back by the
fact that joint state-actionmodeling is not an e�cientmanner of communicating information be-
tween neighboring intersections, since the information being sent from an intersection does not
immediately a�ect the neighboring intersection’s tra�c.
The third typeof coordinationmechanismwe analyzed is direct coordination,which lets agents

directly exchange information to maximize their reward. We developed a novel coordinated RL-
TSCmethod, DEC-DQN, based on the coordination mechanisms of the DIAL algorithm. This
algorithm enables agents working towards an optimization goal to communicate in order to solve
their tasks. The novelty of this algorithm is that agents do not only use reinforcement learning
to learn how to solve their tasks but also to settle on a common coordination protocol. This
novel approach is highly desirable in RL-TSC applications since this communication does not
have to be designed beforehand and can hence be potentially applied to any type of road network.
Experiments conducted on small-scale networks have shown that DEC-DQN,which we adapted
for tra�c signal control, performed signi�cantly better than the baseline I�DQNmethod.

The �nal section of this chapter pitted the three best RL-TSC methods designed during this
thesis work in a large-scale simulation scenario. These experiments were carried out in order to
identify the relative strengths and weaknesses of each type of coordination: independent in the
case of I�DQN, indirect for deepMARLIN, and direct for DEC-DQN. Simulation results have
shown that the performance of the deepMARLIN algorithmwas degraded due to the scale of the
road network but could adapt well to varying tra�c demand, implying that this method is better
suited for small-scale networks with variable demand. Conversely, the I�DQNmethod featured a
performance level similar to those of deepMARLIN, although at a much lower complexity cost.
However, its low robustness makes the I�DQN algorithm better-suited for road networks with
low tra�c demand variance. Finally, the DEC-DQN RL-TSC method once again displayed ex-
cellent convergence speed and great robustness to changing tra�c conditions. Its ability to deal

���

�.� Agent Coordination on Large-Scale Tra�c Networks

with varying tra�c demand regardless of network size makes it, in our opinion, the best RL-TSC
method featured in this thesis work, and our recommended coordinated RL-TSC method, pro-
vided that direct agent coordination is feasible in the tra�c optimization problem at hand.

���

�� C���������

The central aim of this thesis was to develop a state-of-the-art coordinated tra�c signal control
method for tra�c optimization. Our objective was to carefully develop this method from the
ground up to justify all of our model choices and provide guidelines for future research in this
area.

R�������W��� ��T���T�����

We carried out this research goal in iterative stages. The �rst step was to give a general presen-
tation of what tra�c optimization using reinforcement learning is. We separately presented the
�elds of tra�c engineering and reinforcement learning in chapter � and chapter � respectively.
These chapters introduced the main concepts and terminology of tra�c signal control and gave a
general overview of how reinforcement learning algorithms aim at solving a task through learning
using an algorithm and policy on aMarkov decision process. This necessary concept introduction
paved the way for a presentation on how these two �eldsmerged in the reinforcement learning for
tra�c signal control literature in chapter �. This chapter gave a comprehensive overview of how
reinforcement learning algorithms optimize tra�c �ows. Moreover, it introduced crucial con-
cepts such as agent coordination and function approximation and explained how the literature
tackled these challenges. These three chapters form the �rst part of the thesis.

We then developed the general framework in which our novel RL-TSCmethod could later be
constructed, tested, and validated. We �rst de�ned a model of tra�c �ow in chapter �, which al-
lowed us to mathematically de�ne tra�c engineering concepts to apply them in a reinforcement
learning context. Such an application takes place in chapter �, which analyzes themultipleways in
which the tra�c optimization problem can bemodelized as aMarkov decision process and estab-
lishes the optimal one, which we later use for our research work. This chapter notably underlines
ine�cient MDP models regarding state or action space representation. Finally, chapter � closed
this general RL-TSC framework presentation by describing the tra�c simulator used to develop
and compare tra�c signal control methods to answer our research question. This framework is
composed of the SUMO tra�c simulator and our research library, carmulator. The chapter ended
with an in-depth presentation on how the performance of a RL-TSC controller could be accu-
rately measured: through convergence and performance analysis protocols under �xed or variable
tra�c �ows.

After establishing the concepts and framework needed for our research, we tackled the traf-
�c optimization problem on isolated intersections in chapter �. This chapter �rst presented a
near-optimal �xed tra�c signal control method used for benchmarking purposes before compar-
ing three types of classic RL algorithms. After proving that temporal-di�erence learning coupled
with greedy policies are most e�cient for tra�c optimization, we underlined the crucial role of
function approximation for acceptable performance. This observation led to the analysis of vari-

���

�� Conclusion

ous modern deep reinforcement learning algorithms applied to TSC, singling out I�DQN as the
best method for isolated tra�c signal control. These �ndings enabled us to extend our research
to multi-intersection road networks in chapter �. We distinguished four distinct modes of agent
coordination (independent, green wave, indirect and direct) and developed and tested a novel
RL-TSC algorithm for each of these categories. We �rst developed a deep learning-based coor-
dination method based on green waves over arterials, which performed better than independent
learning under rather speci�c conditions. We then adapted a major algorithm of the RL-TSC
literature MARLIN-IC in order to compare it to other forms of coordination. By slightly mod-
ifying its structure and using a neural network instead of a classical RL algorithm, we made the
MARLIN-ICmethodoutperform the I�DQNalgorithmover a small-scale roadnetwork. Finally,
and perhaps most notably, we developed the DEC-DQN direct coordination method, which al-
lows intersections of a road network to coordinate through direct message passing. The novelty
of this method is that no communication protocol is de�ned beforehand, meaning that intersec-
tions learn to both route tra�c and settle on a common communication protocol. Our experi-
ments have shown that the DEC-DQN direct coordination method outperforms all other tested
methods and state-of-the-art performance levels. Moreover, these results have been con�rmed on
a large-scale simulated tra�c network featuring more than �� intersections.

F������� ���C������������

Our research has produced several signi�cant contributions regarding RL-TSC, all of which are
listed in section �.�. Furthermore, our analysis work on isolated and coordinated TSC allowed us
to formulate multiple key observations.

We tried to the best of our ability to not only show on experimental results that agent coordi-
nation was bene�cial for RL-TSC but to explain how it improved tra�c optimization tasks. This
endeavor was, for instance, at the basis of the creation of the green wave coordination method
since tra�c engineering could formally prove that such a form of coordination form could im-
prove throughput alongside an arterial. As RL methods are by nature much harder to formally
analyze, our aim was to at least identify which parts of a coordination method made it superior
to the baseline independent RL-TSCmethod. These attempts have resulted in the analysis of sec-
tion �.�.�.� stating that the deepMARLIN algorithm could only partially in�uence its neighbors.
This observation has, in turn, prompted us to adapt theDIAL algorithm intoDEC-DQNdue to
its unique structure. Instead of trying to impose an explicit model of agent coordination, such as
joint state-action modeling in the case of deepMARLIN, the ability of agents using DEC-DQN
to learn a common communication protocol meant that such a model was no longer necessary.
This di�erence is, in our eyes, quite similar to the model-based and model-free distinction in RL
models as described in section �.�.�.�. Instead of trying to create an imperfect model of the un-
known mechanisms of tra�c coordination, we could let a learning algorithm �gure it for itself.
The experiment conducted in paragraph �.�.�.� con�rms that such a coordination mechanism
entirely in�uences its neighbors through the unique reward function for communication actions
we designed in section �.�.�.�. This is, in our opinion, the strongest result of this thesis work,
alongside the performance gains associated with using such a method.

The second major �nding of this thesis work relates to our original goal of �nding the “best”
algorithm for RL-TSC. As section �.�.�.� as shown, this initial goal might have been wrongly

���

formulated given that each tested method has relative strengths and weaknesses. For instance,
the I�DQN algorithm showcases good results overall (except in highly saturated conditions), on
di�erent network types, for an overall low complexity cost. Conversely, theDEC-DQNalgorithm
provides excellent results, even in highly congested scenarios, but comes at a high complexity cost
and necessitates a speci�c infrastructure (i.e., a central controller being able to train agents) which
might not be feasible in some situations. Hence, we would argue that each method presented in
this thesis has speci�c areas in which their application would be relevant.
Finally, while experimental results of section �.�.�.� have shown that coordination is undeni-

ably bene�cial to tra�c optimization, wewere surprised to�ndout thatmodern non-coordinated
RL-TSCalgorithms such as I�DQNprovided excellent performance for low complexity and com-
putational costs. Indeed, we have established in section �.�.�.� that it is preferable to use an iso-
lated algorithm such as I�DQN on a large-scale network instead of a more complex and variable
algorithm such as deep MARLIN. More generally, this thesis work has shown the diminishing
returns that are strongly associated with tra�c optimization, as increases in method complexity
yield smaller and smaller performance gains. This observation stands both for the traditional TSC
methods studied in chapter � and for the RL-based methods of chapter �.

F�����W����

Even thoughwebelieve that this thesis o�ers both abroad and in-depth analysis of tra�coptimiza-
tion using reinforcement learning, we also believe that it could bene�t from additional research
and experimentation.
Some short-term experiments could be carried out regarding the large-scale network simula-

tions using real-world data. While the large-scale network we designed in section �.�.� has inter-
esting properties such as an outer ring road and high-speed lanes making its analysis worthwhile,
using real-world tra�c data and the associated urban network could legitimate our simulation
results even further. While some open data sets containing tra�c �ows exist�, selecting data that
is compatible with our simulation settings, reworking the datasets, and recreating the associated
road networks in SUMO could not be achieved during this thesis work. However, such a pursuit
would be worthwhile, in our opinion. Another short-term research question of interest would
be the use of modern actor-critic methods using deep reinforcement learning for tra�c signal
control. We mentioned in section �.�.�.� that deep Q-networks and deep actor-critic methods
both were popular options for advanced RL-TSC controllers. While the results of section �.�.�
led us to study the former over the latter, recent multi-agent actor-critic approaches featuring
multi-agent policy training (Lowe et al., ����) or cooperative exploration of the state-action space
by agent (Christianos et al., ����) should be investigated.
Finally, we believe that the communication protocol learning process of the DEC-DQN al-

gorithm opens fascinating research questions from a machine learning perspective. More specif-
ically, the common communication protocol reached by DEC-DQN agents should be investi-
gated. For instance, we wonder which features of the state space are leveraged by intersections for
communication. Do they communicate their signal cycle properties, congestion data, or other
features? This study could be conducted on alternative state spaces featuring more features of
the true tra�c environment states since such an analysis could teach us which features of the

�For instance, the the open tra�c collection, lists various open data sets of tra�c demand data.

���

https://github.com/graphhopper/open-traffic-collection

�� Conclusion

environment are essential to communicate to neighboring intersections. Furthermore, we won-
der whether the common communication protocol of agents changes depending on the network
topology and tra�c demand levels. Do agents settle on a similar protocol each time, or is it net-
work or simulation-dependent? Additionally, we wonder whether intersections settle on human-
understandable communication settings, corresponding to clear indications such as "tra�c is sat-
urated on my lanes" or whether these messages are simply designed to maximize neighboring in-
tersections’ expected rewards. Overall, we believe that the DEC-DQN algorithm opens a new set
of research questions that we want to investigate further.

���

B�����������

�. Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. “Tra�c light control in non-
stationary environments based on multi agent Q-learning”. In: Intelligent Transportation
Systems (ITSC), ���� ��th International IEEE Conference on. IEEE. ����, pp. ����–����.

�. BaherAbdulhai, RobPringle, andGrigoris JKarakoulas. “Reinforcement learning for true
adaptive tra�c signal control”. Journal of Transportation Engineering ���:�, ����, pp. ���–
���.

�. James SAlbus. “Anewapproach tomanipulator control:The cerebellarmodel articulation
controller (CMAC)”. Journal of Dynamic Systems, Measurement, and Control ��:�, ����,
pp. ���–���.

�. Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
cambridge university press, ����.

�. Sahar Araghi et al. “Q-learning method for controlling tra�c signal phase time in a single
intersection”. In: ��th International IEEEConference on Intelligent Transportation Systems
(ITSC ����). IEEE. ����, pp. ����–����.

�. RománAragon-Gómez and Julio BClempner. “Tra�c-signal control reinforcement learn-
ing approach for continuous-time markov games”. Engineering Applications of Arti�cial
Intelligence ��, ����, p. ������.

�. Itamar Arel et al. “Reinforcement learning-based multi-agent system for network tra�c
signal control”. IET Intelligent Transport Systems �:�, ����, pp. ���–���.

�. Kai Arulkumaran et al. “A brief survey of deep reinforcement learning”. arXiv preprint
arXiv:����.�����, ����.

�. Mohammad Aslani, Mohammad SaadiMesgari, andMarcoWiering. “Adaptive tra�c sig-
nal control with actor-critic methods in a real-world tra�c network with di�erent traf-
�c disruption events”. Transportation Research Part C: Emerging Technologies ��, ����,
pp. ���–���.

��. BramBakker et al. “Tra�c light control bymultiagent reinforcement learning systems”. In:
Interactive Collaborative Information Systems. Springer, ����, pp. ���–���.

��. AndrewGBarto. “Reinforcement learning and dynamic programming”. In:Analysis, De-
sign and Evaluation ofMan–Machine Systems ����. Elsevier, ����, pp. ���–���.

��. Ana LCBazzan. “Opportunities formultiagent systems andmultiagent reinforcement learn-
ing in tra�c control”. Autonomous Agents andMulti-Agent Systems ��:�, ����, p. ���.

��. Ana LC Bazzan, Denise DeOliveira, and BrunoC da Silva. “Learning in groups of tra�c
signals”. Engineering Applications of Arti�cial Intelligence ��:�, ����, pp. ���–���.

���

Bibliography

��. Richard Bellman. “AMarkovian decision process”. Journal ofmathematics andmechanics,
����, pp. ���–���.

��. Claude Berge. “Graphs and hypergraphs”, ����.

��. Daniel Bienstock, Gonzalo Muñoz, and Sebastian Pokutta. “Principled deep neural net-
work training through linear programming”. arXiv preprint arXiv:����.�����, ����.

��. TimBrys,TongTPham, andMatthewETaylor. “Distributed learning andmulti-objectivity
in tra�c light control”. Connection Science ��:�, ����, pp. ��–��.

��. Lucian Busoniu, Robert Babuska, andBartDe Schutter. “A comprehensive survey ofmul-
tiagent reinforcement learning”. IEEETransactions on Systems,Man, andCybernetics, Part
C (Applications and Reviews) ��:�, ����, pp. ���–���.

��. Vinny Cahill et al. “Soilse: A decentralized approach to optimization of �uctuating urban
tra�c using reinforcement learning”. In: Intelligent Transportation Systems (ITSC), ����
��th International IEEE Conference on. IEEE. ����, pp. ���–���.

��. Jeancarlo Arguello Calvo and Ivana Dusparic. “Heterogeneous Multi-Agent Deep Rein-
forcement Learning for Tra�c Lights Control.” In: AICS. ����, pp. �–��.

��. Yanan J Cao et al. “Design of a tra�c junction controller using classi�er system and fuzzy
logic”. In: InternationalConference onComputational Intelligence. Springer. ����, pp. ���–
���.

��. EdmondCP Chang et al. “MAXBAND-��: Program for optimizing left-turn phase se-
quence in multiarterial closed networks”. Transportation Research Record ����, ����.

��. ChachaChen et al. “TowardA thousand lights:Decentralized deep reinforcement learning
for large-scale tra�c signal control”. In: Proceedings of the AAAI Conference on Arti�cial
Intelligence. Vol. ��. ��. ����, pp. ����–����.

��. Yit KwongChin et al. “Q-learning based tra�c optimization inmanagement of signal tim-
ing plan”. International Journal of Simulation, Systems, Science & Technology ��:�, ����,
pp. ��–��.

��. Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider. “Statistical physics
of vehicular tra�c and some related systems”. Physics Reports ���:�-�, ����, pp. ���–���.

��. Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. “Shared experience actor-critic
for multi-agent reinforcement learning”. Advances in Neural Information Processing Sys-
tems ��, ����, pp. �����–�����.

��. Tianshu Chu, Sandeep Chinchali, and Sachin Katti. “Multi-agent Reinforcement Learn-
ing for Networked System Control”. In: International Conference on Learning Represen-
tations. ����. ���: https://openreview.net/forum?id=Syx7A3NFvH.

��. Tianshu Chu et al. “Multi-agent deep reinforcement learning for large-scale tra�c signal
control”. IEEE Transactions on Intelligent Transportation Systems, ����.

��. Li Chun-Gui et al. “Urban tra�c signal learning control using fuzzy actor-critic meth-
ods”. In: ���� Fifth International Conference on Natural Computation. Vol. �. IEEE. ����,
pp. ���–���.

���

https://openreview.net/forum?id=Syx7A3NFvH

Bibliography

��. RobertH Crites and AndrewG Barto. “An actor/critic algorithm that is equivalent to Q-
learning”. In: Advances in Neural Information Processing Systems. ����, pp. ���–���.

��. Stacy Davis andRobert Gary Boundy.Transportation Energy Data Book: Edition ��. Tech.
rep. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), ����.

��. Samah El-Tantawy and Baher Abdulhai. “An agent-based learning towards decentralized
and coordinated tra�c signal control”. In: Intelligent Transportation Systems (ITSC), ����
��th International IEEE Conference on. IEEE. ����, pp. ���–���.

��. SamahEl-Tantawy andBaherAbdulhai. “Multi-agent reinforcement learning for integrated
network of adaptive tra�c signal controllers (MARLIN-ATSC)”. In: Intelligent Trans-
portation Systems (ITSC), ���� ��th International IEEE Conference on. IEEE. ����, pp. ���–
���.

��. SamahEl-Tantawy,BaherAbdulhai, andHossamAbdelgawad. “Multiagent reinforcement
learning for integrated network of adaptive tra�c signal controllers (MARLIN-ATSC):
methodology and large-scale application on downtown Toronto”. IEEE Transactions on
Intelligent Transportation Systems ��:�, ����, pp. ����–����.

��. JakobErdmann. “SUMO’s lane-changingmodel”. In:ModelingMobilitywithOpenData.
Springer, ����, pp. ���–���.

��. Jakob Erdmann and Daniel Krajzewicz. “SUMO’s road intersection model”. In: Simula-
tion of UrbanMObility User Conference. Springer. ����, pp. �–��.

��. JakobFoerster et al. “Learning to communicatewithdeepmulti-agent reinforcement learn-
ing”. Advances in neural information processing systems ��, ����.

��. Juntao Gao et al. “Adaptive tra�c signal control: Deep reinforcement learning algorithm
with experience replay and target network”. arXiv preprint arXiv:����.�����, ����.

��. NathanHGartner.OPAC:Ademand-responsive strategy for tra�c signal control.���. ����.

��. NathanH Gartner, Farhad J Pooran, and ChristinaM Andrews. “Implementation of the
OPAC adaptive control strategy in a tra�c signal network”. In: ITSC ����. ���� IEEE Intel-
ligent Transportation Systems. Proceedings (Cat. No. ��TH����). IEEE. ����, pp. ���–���.

��. NathanHGartner, Chronis Stamatiadis, and Philip J Tarno�. “Development of advanced
tra�c signal control strategies for intelligent transportation systems: Multilevel design”.
Transportation Research Record ����, ����.

��. NathanH Gartner et al. “A multi-band approach to arterial tra�c signal optimization”.
Transportation Research Part B: Methodological ��:�, ����, pp. ��–��.

��. Wade Genders. “Deep reinforcement learning adaptive tra�c signal control”. PhD thesis.
����.

��. Wade Genders and Saiedeh Razavi. “Evaluating reinforcement learning state representa-
tions for adaptive tra�c signal control”. Procedia computer science ���, ����, pp. ��–��.

��. Wade Genders and Saiedeh Razavi. “Using a deep reinforcement learning agent for tra�c
signal control”. arXiv preprint arXiv:����.�����, ����.

���

Bibliography

��. MartinGregurić et al. “Application of deep reinforcement learning in tra�c signal control:
An overview and impact of open tra�c data”. Applied Sciences ��:��, ����, p. ����.

��. IvoGrondman et al. “A survey of actor-critic reinforcement learning: Standard and natural
policy gradients”. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) ��:�, ����, pp. ����–����.

��. HadoHasselt. “Double Q-learning”.Advances in neural information processing systems ��,
����, pp. ����–����.

��. AmmarHaydari andYasinYilmaz. “Deep reinforcement learning for intelligent transporta-
tion systems: A survey”. IEEE Transactions on Intelligent Transportation Systems, ����.

��. Jean-JacquesHenry, Jean Loup Farges, and J Tu�al. “The PRODYN real time tra�c algo-
rithm”. In: Control in Transportation Systems. Elsevier, ����, pp. ���–���.

��. Matteo Hessel et al. “Rainbow: Combining improvements in deep reinforcement learn-
ing”. In: Thirty-second AAAI conference on arti�cial intelligence. ����.

��. DuanHouli, Li Zhiheng, and Zhang Yi. “Multiobjective reinforcement learning for tra�c
signal control using vehicular ad hoc network”. EURASIP journal on advances in signal
processing ����, ����, p. �.

��. RonaldAHoward. “Dynamic programming and markov processes.”, ����.

��. PB Hunt et al. SCOOT-a tra�c responsive method of coordinating signals. Tech. rep. ����.

��. Sergey Io�e andChristianSzegedy. “Batchnormalization:Acceleratingdeepnetwork train-
ing by reducing internal covariate shift”. In: International conference on machine learning.
PMLR. ����, pp. ���–���.

��. Leslie Pack Kaelbling, Michael L Littman, and AndrewWMoore. “Reinforcement learn-
ing: A survey”. Journal of arti�cial intelligence research �, ����, pp. ���–���.

��. MohamedAKhamis andWalidGomaa. “Adaptivemulti-objective reinforcement learning
with hybrid exploration for tra�c signal control based on cooperative multi-agent frame-
work”. Engineering Applications of Arti�cial Intelligence ��, ����, pp. ���–���.

��. MohamedAKhamis,WalidGomaa, andHishamEl-Shishiny. “Multi-objective tra�c light
control systembasedonBayesianprobability interpretation”. In: IntelligentTransportation
Systems (ITSC), ���� ��th International IEEE Conference on. IEEE. ����, pp. ���–����.

��. MohamedA Khamis et al. “Adaptive tra�c control system based on Bayesian probability
interpretation”. In: Electronics, Communications and Computers (JEC-ECC), ���� Japan-
Egypt Conference on. IEEE. ����, pp. ���–���.

��. Diederik P Kingma and Jimmy Ba. “Adam: Amethod for stochastic optimization”. arXiv
preprint arXiv:����.����, ����.

��. Jelle RKok andNikosVlassis. “Using themax-plus algorithm formultiagent decisionmak-
ing in coordination graphs”. In:Robot SoccerWorld Cup. Springer. ����, pp. �–��.

��. Peter Koonce and Lee Rodegerdts.Tra�c signal timingmanual.Tech. rep. United States.
Federal Highway Administration, ����.

���

Bibliography

��. Stefan Krauß. “Microscopic modeling of tra�c �ow: Investigation of collision free vehicle
dynamics”, ����.

��. Lior Kuyer et al. “Multiagent reinforcement learning for urban tra�c control using co-
ordination graphs”. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer. ����, pp. ���–���.

��. MLambert.Tra�cManagement InUrbanAreas -TheFrenchExpertise. ����.���:https:
/ / www . tresor . economie . gouv . fr / Articles / ed92a1e7 - 6eb5 - 4518 - 8ac3 -

a54f1fe2a5fb/files/f15999c0-02d0-4c52-9bd3-7088c775462b (visitedon��/��/����).

��. Joel ZLeibo et al. “Multi-agent reinforcement learning in sequential social dilemmas”.arXiv
preprint arXiv:����.�����, ����.

��. Xiang Li et al. “Understanding the disharmony between dropout and batch normalization
by variance shift”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. ����, pp. ����–����.

��. Xiaoyuan Liang et al. “A deep reinforcement learning network for tra�c light cycle con-
trol”. IEEE Transactions on Vehicular Technology ��:�, ����, pp. ����–����.

��. JohnDCLittle. “A proof for the queuing formula: L= λW”.Operations research �:�, ����,
pp. ���–���.

��. JohnDC Little. “The synchronization of tra�c signals by mixed-integer linear program-
ming”.Operations Research ��:�, ����, pp. ���–���.

��. JohnDC Little, MarkD Kelson, and NathanH Gartner. “MAXBAND: A versatile pro-
gram for setting signals on arteries and triangular networks”, ����.

��. Junjia Liu et al. “Learning scalable multi-agent coordination by spatial di�erentiation for
tra�c signal control”.EngineeringApplications ofArti�cial Intelligence ���, ����, p. ������.

��. PabloAlvarez Lopez et al. “Microscopic tra�c simulation using sumo”. In: ���� ��st Inter-
national Conference on Intelligent Transportation Systems (ITSC). IEEE. ����, pp. ����–
����.

��. RyanLowe et al. “Multi-agent actor-critic formixed cooperative-competitive environments”.
Advances in neural information processing systems ��, ����.

��. JinmingMa and FengWu. “Feudal multi-agent deep reinforcement learning for tra�c sig-
nal control”. In:Proceedings of the ��th InternationalConference onAutonomousAgents and
Multiagent Systems (AAMAS). ����, pp. ���–���.

��. Patrick Mannion, Jim Duggan, and Enda Howley. “An experimental review of reinforce-
ment learning algorithms for adaptive tra�c signal control”. In:AutonomicRoadTransport
Support Systems. Springer, ����, pp. ��–��.

��. Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. “Reward function and
initial values: Better choices for accelerated goal-directed reinforcement learning”. In: In-
ternational Conference on Arti�cial Neural Networks. Springer. ����, pp. ���–���.

��. Michael McCloskey and Neal J Cohen. “Catastrophic interference in connectionist net-
works:The sequential learningproblem”. In:Psychology of learningandmotivation.Vol. ��.
Elsevier, ����, pp. ���–���.

���

https://www.tresor.economie.gouv.fr/Articles/ed92a1e7-6eb5-4518-8ac3-a54f1fe2a5fb/files/f15999c0-02d0-4c52-9bd3-7088c775462b
https://www.tresor.economie.gouv.fr/Articles/ed92a1e7-6eb5-4518-8ac3-a54f1fe2a5fb/files/f15999c0-02d0-4c52-9bd3-7088c775462b
https://www.tresor.economie.gouv.fr/Articles/ed92a1e7-6eb5-4518-8ac3-a54f1fe2a5fb/files/f15999c0-02d0-4c52-9bd3-7088c775462b

Bibliography

��. ClayMcShane. “The origins and globalization of tra�c control signals”. Journal of Urban
History ��:�, ����, pp. ���–���.

��. JuanCMedina andRahim F Benekohal. “Tra�c signal control using reinforcement learn-
ing and themax-plus algorithm as a coordinating strategy”. In: ���� ��th International IEEE
Conference on Intelligent Transportation Systems. IEEE. ����, pp. ���–���.

��. Sadayoshi Mikami and Yukinori Kakazu. “Genetic reinforcement learning for cooperative
tra�c signal control”. In: Proceedings of the First IEEEConference on Evolutionary Compu-
tation. IEEEWorld Congress on Computational Intelligence. IEEE. ����, pp. ���–���.

��. Alan J. Miller. A Computer control system for tra�c networks. University of Birmingham,
Graduate School in Highway & Tra�c Engineering Birmingham, England, ����.

��. Pitu Mirchandani and Larry Head. “RHODES: A real-time tra�c signal control system:
architecture, algorithms, and analysis”. Transportation Research Part C: Emerging Tech-
nologies �:�, ����, pp. ���–���.

��. Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. na-
ture ���:����, ����, pp. ���–���.

��. Seyed SajadMousavi,Michael Schukat, andEndaHowley. “Tra�c light control using deep
policy-gradient and value-function-based reinforcement learning”. IET Intelligent Trans-
port Systems ��:�, ����, pp. ���–���.

��. Kai Nagel and Michael Schreckenberg. “A cellular automaton model for freeway tra�c”.
Journal de physique I �:��, ����, pp. ����–����.

��. Ranjit Nair et al. “Networked distributed POMDPs: A synthesis of distributed constraint
optimization and POMDPs”. In: AAAI. Vol. �. ����, pp. ���–���.

��. Kumpati SNarendra andMandayamALThathachar. “Learning automata-a survey”. IEEE
Transactions on systems, man, and cybernetics �, ����, pp. ���–���.

��. TomokiNishi et al. “Tra�c signal control based on reinforcement learningwith graph con-
volutional neural nets”. In: ���� ��st International conference on intelligent transportation
systems (ITSC). IEEE. ����, pp. ���–���.

��. MohammadNoaeen et al. “ReinforcementLearning inUrbanNetworkTra�c SignalCon-
trol: A Systematic Literature Review”, ����.

��. Ann Nowé, Katja Verbeeck, andMaarten Peeters. “Learning automata as a basis for multi
agent reinforcement learning”. In: International Workshop on Learning and Adaption in
Multi-Agent Systems. Springer. ����, pp. ��–��.

��. AnnNowé, Peter Vrancx, and Yann-Michaël DeHauwere. “Game theory andmulti-agent
reinforcement learning”. In:Reinforcement Learning. Springer, ����, pp. ���–���.

��. Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. “Optimal and approximate Q-
value functions for decentralized POMDPs”. Journal of Arti�cial Intelligence Research ��,
����, pp. ���–���.

��. Norihiko Ono and Kenji Fukumoto. “A modular approach to multi-agent reinforcement
learning”. In:DistributedArti�cial IntelligenceMeetsMachineLearningLearning inMulti-
Agent Environments. Springer, ����, pp. ��–��.

���

Bibliography

��. Liviu Panait and Sean Luke. “Cooperative multi-agent learning: The state of the art”. Au-
tonomous agents and multi-agent systems ��:�, ����, pp. ���–���.

��. Markos Papageorgiou et al. “Review of road tra�c control strategies”. ��, ����, pp. ����
–����.

��. TongThanh Pham et al. “Learning coordinated tra�c light control”. In: Proceedings of the
Adaptive andLearningAgents workshop (atAAMAS-��). Vol. ��. IEEE. ����, pp. ����–����.

��. LA Prashanth and Shalabh Bhatnagar. “Reinforcement learning with function approxi-
mation for tra�c signal control”. IEEE Transactions on Intelligent Transportation Systems
��:�, ����, pp. ���–���.

��. HongshengQi et al. “Coordinated intersection signal design formixed tra�c�owofhuman-
driven and connected and autonomous vehicles”. IEEE Access �, ����, pp. �����–�����.

���. Prajit Ramachandran, Barret Zoph, and QuocV Le. “Searching for activation functions”.
arXiv preprint arXiv:����.�����, ����.

���. Silvia Richter, Douglas Aberdeen, and Jin Yu. “Natural actor-critic for road tra�c optimi-
sation”. In: Advances in neural information processing systems. ����, pp. ����–����.

���. Martin Riedmiller. “Neural �tted Q iteration–�rst experiences with a data e�cient neural
reinforcement learning method”. In: European conference on machine learning. Springer.
����, pp. ���–���.

���. Dennis I Robertson. “Research on the TRANSYT and SCOOTMethods of Signal Co-
ordination”. ITE journal ��:�, ����, pp. ��–��.

���. Dennis I Robertson. “TRANSYT: a tra�c network study tool”, ����.

���. NaguiRouphail, Andrzej Tarko, and Jing Li.Tra�c�ows at signalized intersections. Trans-
portation Research Board, ����.

���. Gérard Scemama and Olivier Carles. “Claire-siti, public and road transport network man-
agement control: A uni�ed approach”, ����.

���. Tom Schaul et al. “Prioritized experience replay”. arXiv preprint arXiv:����.�����, ����.

���. Soheil MohamadAlizadeh Shabestary and Baher Abdulhai. “Deep learning vs. discrete re-
inforcement learning for adaptive tra�c signal control”. In: ���� ��st International Confer-
ence on Intelligent Transportation Systems (ITSC). IEEE. ����, pp. ���–���.

���. Michael Shenoda,RandyMachemehl, et al.Development of a phase-by-phase, arrival-based,
delay-optimized adaptive tra�c signal control methodology with metaheuristic search. Tech.
rep. Texas Transportation Institute, ����.

���. Saijiang Shi and Feng Chen. “Deep Recurrent Q-learning Method for Area Tra�c Coor-
dinationControl”. Journal of Advances inMathematics andComputer Science, ����, pp. �–
��.

���. Chronis Stamatiadis and Nathan Gartner. “MULTIBAND-��: a program for variable-
bandwidth progression optimization of multiarterial tra�c networks”.Transportation Re-
search Record: Journal of the Transportation Research Board ����, ����, pp. �–��.

���

Bibliography

���. Merlijn Steingrover et al. “Reinforcement Learning of Tra�c Light Controllers Adapting
to Tra�c Congestion.” In: BNAIC. Citeseer. ����, pp. ���–���.

���. Andrew Sullivan et al. Tra�c Signal Design Guide & Timing Manual. The University
Transportation Center of Alabama. Alabama Department of Transportation, ����.

���. Richard S Sutton and AndrewG Barto. Reinforcement learning: An introduction. MIT
press, ����.

���. Ardi Tampuu et al. “Multiagent cooperation and competition with deep reinforcement
learning”. PloS one ��:�, ����, e�������.

���. Ming Tan. “Multi-agent reinforcement learning: Independent vs. cooperative agents”. In:
Proceedings of the tenth international conference on machine learning. ����, pp. ���–���.

���. Saad Touhbi et al. “Adaptive tra�c signal control: Exploring reward de�nition for rein-
forcement learning”. Procedia Computer Science ���, ����, pp. ���–���.

���. Maxime Tréca, Julian Garbiso, and Dominique Barth. “Guidelines for Action Space Def-
inition in Reinforcement Learning-Based Tra�c Signal Control”. In: ICAPS Conference,
Special Track on Planning and Learning. ICAPS. AAAI, ����.

���. Maxime Tréca et al. “Fast Bootstrapping for Reinforcement Learning-Based Tra�c Signal
Control Systems Using Queueing Theory”. In: ���� IEEE ��nd Vehicular Technology Con-
ference: VTC����. VTC. IEEE, ����.

���. Thomas Urbanik et al. Signal timing manual. Transportation Research Board, ����.

���. Luis F Urquiza-Aguiar et al. “Comparison of tra�c demand generation tools in SUMO:
Case study: Access highways to quito”. In:Proceedings of the ��th ACMInternational Sym-
posium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks.
����, pp. ��–��.

���. USDepartment of Transportation USDT. Every Day Counts brochure. ����. ���: https:
//www.fhwa.dot.gov/innovation/everydaycounts/edc-1/pdf/asct_brochure.

pdf (visited on ��/��/����).

���. Elise Van der Pol. “Deep reinforcement learning for coordination in tra�c light control”.
Master’s thesis, University of Amsterdam, ����.

���. EliseVander Pol andFrans AOliehoek. “Coordinated deep reinforcement learners for traf-
�c light control”.Proceedings of Learning, Inference andControl ofMulti-Agent Systems (at
NIPS ����), ����.

���. Hado VanHasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double q-learning”. In:Proceedings of the AAAI conference on arti�cial intelligence. Vol. ��.
�. ����.

���. Simon Vanneste et al. “Learning to Communicate with Reinforcement Learning for an
Adaptive Tra�c Control System”. In: International Conference on P�P, Parallel, Grid,
Cloud and Internet Computing. Springer. ����, pp. ���–���.

���. VladimirVapnik andRauf Izmailov. “Rethinking statistical learning theory: learning using
statistical invariants”.Machine Learning ���:�, ����, pp. ���–���.

���

https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/pdf/asct_brochure.pdf
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/pdf/asct_brochure.pdf
https://www.fhwa.dot.gov/innovation/everydaycounts/edc-1/pdf/asct_brochure.pdf

Bibliography

���. RA Vincent and JR Peirce. ’MOVA’: Tra�c Responsive, Self-optimising Signal Control for
Isolated Intersections. Tech. rep. ����.

���. Peter Wagner et al. “Remarks on tra�c signal coordination”, ����.

���. SongWang et al. “Deep reinforcement learning-based tra�c signal control usinghigh-resolution
event-based data”. Entropy ��:�, ����, p. ���.

���. ZiyuWang et al. “Dueling network architectures for deep reinforcement learning”. In: In-
ternational conference on machine learning. PMLR. ����, pp. ����–����.

���. Christopher JCHWatkins and Peter Dayan. “Q-learning”.Machine learning �:�-�, ����,
pp. ���–���.

���. Fo VoWebster. Tra�c signal settings. Tech. rep. ����.

���. HuaWei et al. “A survey on tra�c signal controlmethods”. arXiv preprint arXiv:����.�����,
����.

���. Hua Wei et al. “Colight: Learning network-level cooperation for tra�c signal control”.
In: Proceedings of the ��th ACM International Conference on Information and Knowledge
Management. ����, pp. ����–����.

���. ChristopherW Wells. Car country: An environmental history. University of Washington
Press, ����.

���. KaigeWen, ShiruQu, and Yumei Zhang. “A stochastic adaptive control model for isolated
intersections”. In: ���� IEEE International Conference on Robotics and Biomimetics (RO-
BIO). IEEE. ����, pp. ����–����.

���. MA Wiering. “Multi-agent reinforcement learning for tra�c light control”. In:Machine
Learning: Proceedings of the Seventeenth InternationalConference (ICML’����). ����, pp. ����–
����.

���. Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning”.Machine learning �:�-�, ����, pp. ���–���.

���. Yuanhao Xiong et al. “Learning tra�c signal control from demonstrations”. In: Proceed-
ings of the ��th ACM International Conference on Information and Knowledge Manage-
ment. ����, pp. ����–����.

���. Kok-LimAlvin Yau et al. “A survey on reinforcement learning models and algorithms for
tra�c signal control”. ACMComputing Surveys (CSUR) ��:�, ����, p. ��.

���. Bao-Lin Ye et al. “A survey of model predictive control methods for tra�c signal control”.
IEEE/CAA Journal of Automatica Sinica �:�, ����, pp. ���–���.

���. Jinghong Zeng, Jianming Hu, and Yi Zhang. “Adaptive tra�c signal control with deep re-
currentQ-learning”. In: ���� IEEEIntelligentVehicles Symposium(IV). IEEE. ����, pp. ����–
����.

���. Fangyu Zou et al. “A su�cient condition for convergences of adam and rmsprop”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. ����,
pp. �����–�����.

���

L��� �� F������

�.� Tra�c light system in Cleveland, Ohio, ����. ��

�.� An example �-way intersection. ��

�.� An example NEMA signal cycle on a �-way intersection. ��

�.� Schematic view of agent-environment interactions in a MDP. ��

�.� Evolution of the learning process for the CartPole problem. ��

�.� Example of tra�c variables on a lane. ��

�.� Example non-directed graph representing a road network. ��

�.� Example node degrees. ��

�.� Illustration of a �-way intersection. ��

�.� Illustration of a �-way intersection. ��

�.� Evolution of vehicle position on lanes due to transition function. ��

�.� Di�erent delay-related performance indicators. ��

�.� Illustration of step-based and phase-based actions in a signal cycle ��

�.� The Netedit program. ��

�.� Draws from the exponential distribution. ��

�.� Example of a convergence analysis plot. ��

�.� Example performance analyis plot. ��

�.� Example variable-�ow performance analysis plot. ��

�.� Strategy tree search representation. ��

�.� Approximation algorithm computation time. ��

�.� Convergence process of classical RL algorithms ��

�.� Convergence process of classical RL algorithms using alternative policies ��

�.� Convergence process of classical RL algorithms using other alternative policies . ��

�.� Convergence process of a regular and bootstrapped Q-learning algorithm . . . ��

�.� Illustration of a fully connected neural network. ��

�.� Architecture of the �DQN network. ���

�.� Impact of function approximation and experience replay on agent performances ���

�.�� Impact of function approximation techniques on tra�c routing performances . ���

�.� Comparison of multi-agent independent function approximation methods. . . ���

�.� Performance of independent learning methods. ���

�.� Example time-space diagram . ���

�.� Illustration of the line road network. ���

���

List of Figures

�.� Convergence of the green wave coordination method. ���

�.� Performance of the green wave coordination methods (standard conditions). . . ���

�.� Performance of the green wave coordination method (saturated conditions). . . ���

�.� Comparison of the regular and modi�edMARLIN-IC methods ���

�.� Convergence process of indirect coordination methods. ���

�.�� Analysis of I�DQN and deepMARLIN in variable tra�c conditions. ���

�.�� Illustration of the modi�ed DIAL architecture. ���

�.�� Convergence process of the DEC-DQN algorithm per comunication channel size. ���
�.�� Convergence process of the I�DQN and DEC-DQN algorithms. ���

�.�� Analysis of the I�DQN and DEC-DQN algorithms in variable tra�c conditions. ���

�.�� Synthetic city network. ���

�.�� Large-scale convergence of the I�DQN, deepMARLIN andDEC-DQNmethods. ���
�.�� Large-scale performance of the I�DQN,deepMARLINandDEC-DQNmethods. ���

���

L��� ��T�����

�.� Tra�c trajectory incompatibilities on a �-way intersection. ��

�.� Cumulated waiting times according to di�erent strategy depths k and horizon h
values. ��

�.� Simulation hyper-parameters used for classical RL method comparison. ��

�.� Comparison of a bootstrapped and non-bootstrapped Q-table. ��

�.� Deep reinforcement learning-speci�c simulationhyper-parameters used for func-
tion approximation RLmethod comparison. ���

�.� Average waiting time per simulation episode and deep reinforcement learning
algorithm type. ���

�.� Average waiting time per simulation episode according to episode intervals. . . ���

�.� Average di�erence (µ) and variance in average di�erence (σ) of value estimates
for ���� states. ���

�.� E�ect of message delay∆t on quality estimates. ���

�.� Computational and memory requirements of various RL-TSC algorithms. . . . ���

���

A�������

�DQN Dueling Deep Q-network
�DQN Dueling Double Deep Q-network
ATSC Adaptive Tra�c Signal Control
CMAC Cerebellar Model Articulation Controller
DDQN Double Deep Q-network
DEC-DQN Direct-Evaluation Communication DQN
DIAL Di�erentiable Inter-Agent Learning
DP Dynamic ProgrammingMethods
DQN Deep Q-network
DRL Deep Reinforcement Learning
DTSE Discrete Tra�c State Encoding
I�DQN Independent Dueling Deep Q-network
LA Learning Automata
LRI Linear Reward-Inaction
LRP Linear Reward-Penalty
MARL Multi-Agent Reinforcement Learning
MC Monte-Carlo Methods
MDP Markov Decision Process
POMDP Partially Observable Markov Decision Process
RIAL Reinforced Inter-Agent Learning
RL Reinforcement Learning
RL-TSC Reinforcement Learning-Based Tra�c Signal Control
SARL Single-Agent Reinforcement Learning
TD Temporal-Di�erence Learning
TLS Tra�c Light System
TSC Tra�c Signal Control

���

L��� �� S������

F Global objective function of a MDP
S State space of a MDP
A Action space of a MDP
T Transition function of a MDP
R Reward function of a MDP
t Discrete time step
s, st Environment state at step t
r, rt Agent reward at step t
a, at Agent action at step t
π Agent policy on aMDP
V Value function of a state
Q Quality function of a state-action pair
γ Discount factor
α Learning Rate
ε Random action selection parameter
Ω Observation space of a POMDP
O Observation function of a POMDP
θ Function approximation weights
L Loss function
G Network Graph
V Set of Vertices ofG
A Set of Arcs ofG
u, v, w Vertices ofG
uv, vw Arcs ofG
p Path made of arcs onG
Γ(u),Γ+(u),Γ�(u) Neighborhood, successors and predecessors of vertex u
uw Tra�c trajectory from uv to vw
φv A green phase over vertex v
φ0

v The amber phase associated with green phase φv

φ0
v The red phase on vertex v

Φv A signal cycle on vertex v
φt(v) The active phase on intersection v at step t
dt(v) Amount of steps for which phase φt(v) has been active at step t
Cv Total signal cycle duration of intersection v
dmin, dmax Minimum/maximum duration of a tra�c phase
T Tra�c transition function

���

List of Symbols

hp, ei A vehicle following path p entering the network at step e
ωt(c) Cumulated waiting time of vehicle c at time step t
ct(uv) Congestion of lane uv at step t
Pt(uv) Position function of vehicles on arc uv at step t
λ Exponential distribution parameter used for arrival rate generation
Lv Lost time in the signal cycle of intersection v
fl Flow to saturation �ow ratio of lane l
gi Allocated green time to phase i computed byWebster’s formula
k Strategy depth of the approximation method
h Strategy application horizon of the approximation method
σ Reward parameter of the linear reward-inaction algorithm
τ Penatly parameter of the linear reward-inaction algorithm

δ, δ̂ TD-error and TD-error estimate values
n Moving window for the stopping criteria in simulations
κ Performance delta for the stopping criteria in simulations
D Experience replay bu�er
B Minibatch size for deep learning methods
A Advantage function on a givenMDP
K Target network update interval in steps
m Message action of RIAL controller
∆t Message reception delay of RIAL controller
r Shortest route deviation factor

���

A A������� �O������M�����

This Appendix details the mode of operation of the optimal strategy approximation algorithm
presented in section �.�.�.

Algorithm ��: Pseudocode representation of the approximation algorithm on isolated
intersections. Saving and loading simulation states is omitted for readability.

Function Search(t, S, ω):
if Last element of S is 0 then

t t+ 1;
SUMONextStep();
ω ω+ SUMOGetWait();

else
SUMONextPhase();
for i = 1 to min(dmin, k � t) + 1 do

t t+ 1;
SUMONextStep();
ω ω+ SUMOGetWait();

SUMONextPhase();
for i = 1 to min(dmin, k � t) + 1 do

t t+ 1;
SUMONextStep();
ω ω+ SUMOGetWait();

if t � k then
return S, ω;

Search(t, S + 0, ω);
Search(t, S + 1, ω);

The algorithm begins by verifying which action was taken last. If it was a phase extension,
the simulation step and waiting time are updated, and the simulation moves one step forward in
SUMO. If the last actionwas a phase switch, the algorithm simulates two successive phase switches
(transition and beginning of the following green phase) of dmin steps each and update the waiting
times accordingly. These phase switches can be cut short if the resulting simulation time is greater
than the desired search depth k. If the resulting strategy is long enough, we return it alongside its
associated waiting time. If not, we perform a new search split by recursively calling the function
Searchwith both possible actions. Finally, once the algorithmhas exhausted all possible strategies
for the agent, it returns the strategy associated with the minimum vehicle waiting time.

���

B A������� �Q���������

�������������� ������

This appendixpresents the function approximationmethodusing state-actionpair pre-estimation
with phase-based actions as used in section �.�.�. The elements relating to queueing theory and
how the average service time per vehicle is computed can be found in our paper on the topic (Tréca
et al., ����b).

Algorithm ��: Pseudocode representation of the Q-learning pre-estimation algorithm.

for each state s 2 S do
for each action a 2 A do

Q̃(s, a) 0;
for each lane l 2 L do

ol cl from S ;
nl bλl ⇥ ac;
if l has a green light then

o�l min(ba/2c, ol);
n�

l min(ba/2c � o�l , nl);

else
o�l 0;
n�

l 0;

o+l = ol � o�l ;
n+
l = nl � n�

l ;

Q̃(s, a) Q̃(s, a) + Tl ⇥ (n�

l + o�l)� a⇥ (o+l + n+
l);

This algorithm enumerates the entire state-action couples around an isolated intersection. For
each state and action, the algorithm computes, for each lane of the intersection, the number of
vehicles already present in the lane (ol, directly taken from state s), and an estimate of the number
of new vehicles in the lane (nl, estimated from the arrival rate on lane l,λl). Using these values, the
algorithm estimates the number of vehicles to exit or stay on the lane for both of these categories,
depending onwhether the current lane l has a green signal in the current phase. Finally, the quality
of action a in state s is estimated for the current lane by using Equation �.�.

���

C A������� �C���������A�������

This appendix estimates the average amount of operations needed to perform a single learning
step for di�erent coordinated RL-TSC methods. This metric is used instead of the traditional
big-O complexity calculations since all algorithms are likely to appear in the same class (O(n)),
and we want to underline their computational requirements more precisely. This analysis does
not take into account simple operations such as message passing, observation selection from the
replay bu�er or next action selection through a policy since they are negligible compared to the
two main operations are required for agent learning: forward and backpropagation on a neural
network. This estimation is simpli�ed by the fact that the three tested algorithms all rely on the
same neural network architecture showcased on Figure �.�. If the number of intersections present
on the road network, n, obviously plays a role in the average amount of learning operations per
step, it should be noted that learning only occurs on time steps at which an agent picks a tra�c-
related action,meaning that the agent does not learnwhen it is in the amber, red, orminimal green
phase. While the exact proportionof agents learning at each time step is dependent on thenetwork
type, tra�c �ows, the intersection’s position within the network, and learning trajectory, we have
observed from experimental data that an average of ��% of intersections choosing an action at
each time step was a good general approximation for these calculations. It is hence possible, on
this basis, to estimate the computational costs associated with the three main RL-TSC methods
tested in section �.�

I�DQN The simplest method to compute, I�DQN, only features a single learning step per
agent each time it takes a tra�c action. Since each neural network associated with an agent fea-
tures an input layer of size |S|, four fully connected hidden layers of size ���, and an output layer
of size |A|, each single forward and backpropagation on such a neural network each requires ap-
proximately 128 ⇥ (|S| + 128 + 128 + |A|) operations, which are mostly due to matrix mul-
tiplications (Bienstock et al., ����). Supposing that an average of half of the intersections present
on the network perform these two operations at each time step, the associated average number of
operations is equal to

CI2DQN = n/2⇥ 2⇥ 128⇥ (2⇥ 1282 + |S|+ |A|)

Since other operations associated with learning are negligible in comparison, this formula is a
good approximation of the complexity of a single learning step on a single intersection using the
base I�DQNmethod.

D���MARLIN In comparison, thedeepMARLINmethod features the same exact local learn-
ing process for each network intersection but performs additional learning on joint state-action
between each intersection of the network and its neighbors.

���

C Appendix - Complexity Analysis

For g the average number of neighbors per intersection on a given network, each intersection
performs a joint state-action learning task with an average of g/2 neighbors each step. Further-
more, the input andoutput sizes of these neural networks are doubled since they take into account
local and neighboring states and actions, yielding a total amount of operations per step of

CMARLIN = n/2⇥ 2⇥ 128⇥ (2⇥ 1282 + |S|+ |A|)

+ n/2⇥ (g/2⇥ 2⇥ 128⇥ (2⇥ 1282 + 2|S|+ 2|A|))

DEC�DQN Finally, the average number of operations per step for theDEC-DQNmethod can
be split between tra�c and communication-related actions. The tra�c-related learning process
is identical to the I�DQN case, with the exception that the state space is slightly increased since
each neighbor also receives a communication action from its average g neighbors. Each agent
chooses a communication at each time step regarding communication actions, regardless of their
tra�c action. However, backpropagation only occurs once a neighboring agent, having received
an earlier communication action, receives it. Hence, each time an intersection chooses an action, it
triggers g backpropagations (i.e., for each neighbor that sent amessage to that intersection) on the
shared communication neural network. Furthermore, each of these backpropagations requires to
compute an associated reward, which is itself computed using forward propagation on the neural
networks of each neighbor that sent the original message, as speci�ed in algorithm �.

CDEC�DQN = n/2⇥ 2⇥ 128⇥ (2⇥ 1282 + |S|+ 4 + |A|)

+ n⇥ 128⇥ (2⇥ 1282 + |S|+ |Am|)

+ n/2⇥ g ⇥ 128⇥ (2⇥ 1282 + |S|+ |Am|)

+ n/2⇥ g2 ⇥ 128⇥ (2⇥ 1282 + |S|+ 4 + |A|)

���

