
HAL Id: tel-03827812
https://theses.hal.science/tel-03827812

Submitted on 24 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of consensus protocols for blockchain technologies
and quantum cryptanalysis of Misty schemes

Ambre Toulemonde

To cite this version:
Ambre Toulemonde. Study of consensus protocols for blockchain technologies and quantum crypt-
analysis of Misty schemes. Cryptography and Security [cs.CR]. Université Paris-Saclay, 2022. English.
�NNT : 2022UPASG041�. �tel-03827812�

https://theses.hal.science/tel-03827812
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T

N
N
T
:�
��
�U

PA
SG

��
�

Thèse de doctorat de l’université Paris-Saclay

École doctorale n�580, Sciences et technologies de
l’information et de la communication (STIC)

Spécialité de doctorat : Mathématiques et Informatique
Graduate School : Informatique et sciences du numérique, Référent :

Université de Versailles-Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche LMV (Université Paris-Saclay, UVSQ,
CNRS), sous la direction de Jacques PATARIN, Professeur, la co-supervision

d’Aline GOUGET, Directrice en cryptographie avancée.

Thèse soutenue à Versailles, le 23 juin 2022, par

Ambre TOULEMONDE

Composition du jury
Louis Goubin Président
Professeur, Université de Versailles
Saint-Quentin-en-Yvelines
Sébastien Canard Rapporteur & Examinateur
Ingénieur de recherche, Orange Innovation
David Naccache Rapporteur & Examinateur
Professeur, Ecole normale supérieure (DI/ENS)
Jean-Sébastien Coron Examinateur
Professeur, Université du Luxembourg
Jean-Paul Delahaye Examinateur
Professeur émérite, Chercheur au
CNRS/Centrale Lille Institut/Université de Lille
Aline GOUGET Examinatrice
Directrice en cryptographie avancée
Jacques PATARIN Directeur de thèse
Professeur, Université de Versailles et Thales DIS

d

Remerciements

Je souhaite tout d’abord remercier Aline Gouget et Jacques Patarin qui m’ont encadrée
tout au long de cette thèse. Je leur adresse toute ma gratitude pour le temps et la
confiance qu’ils m’ont accordés, ainsi que pour tous leurs conseils sur les di�érents sujets
que nous avons pu développer ensemble.

J’adresse mes remerciements à Sébastien Canard et David Naccache d’avoir accepté
d’être rapporteurs de cette thèse. Je les remercie d’avoir consacré du temps à cette
lecture et pour m’avoir fait part de leurs remarques qui m’ont permis d’améliorer ce
manuscrit. Je tiens également à remercier Jean-Sébastien Coron, Jean-Paul Delahaye et
Louis Goubin pour avoir accepté de participer à mon jury de thèse.

Je remercie l’équipe de Thales qui m’a accueillie pendant cette thèse. Un grand merci
pour tous nos échanges, professionnels ainsi que personnels, et tous les bons moments
passés dans l’équipe qui m’ont permi d’avoir un cadre exceptionnel pour mes recherches.
Je tiens à remercier particulièrement Amira pour toutes nos discussions et ses conseils
qui m’ont aidée tout au long de cette thèse.

Je remercie également l’équipe de Smart Chain de m’avoir accueillie ces derniers mois.
J’ai pu approfondir mes connaissances dans le monde de la "crypto" et finir sereinement
l’écriture du manuscrit grâce à vous.

Merci également à mes amis du master CSI de Bordeaux avec qui j’ai partagé mes
premiers pas dans la cryptographie et également ceux à Paris. Rémi, Thibault, Léa,
Anthony et Quentin, je vous souhaite que le meilleur pour la suite.

Je tiens à remercier mes amis qui sont comme ma seconde famille : Rob, Q2, Jesse,
Noemia, Habibi, Nini, Ben, Boti, Maxime, Tanguy, Thomas, Yoann, Delphine, Thib et
Megan. Merci pour tous les moments partagés avec vous, principalement animés de fous
rire et d’ivresse.

A mes plus vieux amis, David, Agathe et Mathilde, qui m’encouragent et me
soutiennent depuis des années. Merci d’avoir toujours eu les bons mots, notamment
pendant ces trois dernières années, qui m’ont aidé à balayer mes doutes et rempli de
fierté.

Mes derniers remerciements vont évidemment à ma famille pour leur soutien. Merci
d’avoir cru en moi et encouragé dans tout ce que j’ai entrepris. Je tiens à remercier en
particulier ma soeur Aude pour son soutien et son aide précieuse pendant cette thèse.

Contents

General introduction 1

I Consensus protocols for blockchain technologies 7

1 Introduction 9
1.1 Context . 9
1.2 Contribution and Organization . 11

2 Cryptographic primitives and main notions 13
2.1 Cryptographic primitives and assumptions 13
2.2 Participants . 15
2.3 Centralized, decentralized and distributed 15
2.4 Consensus protocols . 16
2.5 Leader election protocols . 17
2.6 Blockchain technologies . 17

3 Consensus protocols before the advent of blockchain technologies 21
3.1 Distributed agreement problems . 21
3.2 Possibility and impossibility results 24
3.3 Practical Byzantine Fault Tolerance (PBFT) 28
3.4 Summary . 28

4 Consensus protocols for blockchain technologies 29
4.1 Example of consensus protocols . 29
4.2 Attacks and strategies . 33
4.3 First formalization . 41
4.4 Summary . 42

5 Revisiting security analysis of Single Secret Leader Election 43
5.1 SSLE overview . 44
5.2 Security model . 44

4 CONTENTS

5.3 Shu�ing-based SSLE construction 49
5.4 Security analysis . 51
5.5 Tweakened shu�ing-based SSLE . 55
5.6 Discussion on the fairness property 57
5.7 Summary on SSLE . 60

6 Unpredictability properties in Algorand 61
6.1 Algorand overview . 61
6.2 Security model . 62
6.3 Algorand construction . 66
6.4 Security analysis . 70
6.5 Summary on Algorand . 72

7 Security model and application to LEP-TSP 73
7.1 Overview . 74
7.2 Security model . 76
7.3 LEP-TSP leader election construction 81
7.4 Security analysis . 88
7.5 Summary . 94

8 Useful work 95
8.1 Overview of useful work . 95
8.2 Entities and building blocks . 96
8.3 Our Useful work protocol . 99
8.4 Security analysis . 103
8.5 Variants and discussion . 106
8.6 Summary on Useful Work . 106

9 Summary on consensus protocols for blockchain 107

II Quantum cryptanalysis of Misty schemes 109

10 Introduction 111
10.1 Context . 111
10.2 Our Contribution and Organization 112

11 Definitions 113
11.1 Simon’s and Grover’s algorithms . 113
11.2 Misty constructions . 114

12 Overview of (quantum) cryptanalysis on Misty schemes 119
12.1 Misty L schemes with few rounds 119
12.2 Misty LKF with few rounds . 120
12.3 Misty R schemes with few rounds 120
12.4 Misty RKF schemes with few rounds 121

13 Contribution on Misty schemes 123
13.1 Quantum cryptanalysis on Misty 123
13.2 Security proof on 3-round Misty R 127

14 Summary on quantum cryptanalysis of Misty schemes 131

General conclusion 133

Long résumé 137

Publications 143

Bibliography 145

General introduction

In a world where everything tends to be connected, the security of information
and communications between each device needs to be guaranteed. More precisely,
it is necessary to ensure confidentiality and integrity of data exchanged between
individuals, businesses and governments. Cryptology which is the science of
designing secure communication has become essential to address this security goal.

Cryptology encompasses two domains: cryptography that is the study of defense
techniques and cryptanalysis that is the study of attack techniques. There exists
two approaches in cryptography. First, secret-key or symmetric cryptography where
the secret is shared between the sender and the receiver to encrypt and decrypt
data. Second, public-key or asymmetric cryptography which uses a pair of keys
linked mathematically, one public key is used by the sender to encrypt data and
the other one is stored privately by the receiver to decrypt. Thus, cryptography
enables to design encryption, signature schemes and authentication protocols that
are the core of secure communication systems.

In recent years, two research domains in cryptology have aroused great interest:
cryptography in blockchain technologies due to the emergence of cryptocurrencies,
and quantum cryptanalysis due to the threat of quantum computers. Naturally,
our research topics are geared toward these two areas. The manuscript addresses
separately these two subjects.

Cryptography in blockchain technologies. Blockchain technologies became
well-known in 2008 with the release of Bitcoin paper [85]. A blockchain is a digital
ledger or a chain of blocks implemented in distributed manner, i.e. without using
a central authority to maintain the ledger. Moreover, the blockchain is designed to
be immutable. In other words, once a block of data is written into the blockchain,
it cannot be removed or changed. In [85], the author (or the authors) known as
Satoshi Nakamoto presents the Bitcoin cryptocurrency system. This is a digital
money system in which transactions between users are grouped into blocks and
publicly stored in the blockchain.

Even if blockchain technologies have been firstly used to develop cryptocurrencies
such as Bitcoin and Ethereum, the first two cryptocurrencies created and listed on

1

market capitalization websites, these technologies proved to be relevant for several
other applications. Indeed, transfers of cryptocurrencies generalized to transfers of
digital information can be applied in a variety of sectors. For example, blockchain
technologies can be used in supply chains to improve the traceability of products
or in energy markets to facilitate energy transactions between prosumers who
are simultaneously producers and consumers. Compared to current approaches,
blockchain technologies can improve, facilitate and accelerate processes in various
sectors.

Rapidly, two types of blockchain have been identified: public and private. In
a public blockchain such as the one in the Bitcoin system, anyone at any time
can read and add new blocks into the ledger. However, the public aspect is not
necessary or even not desired in some applications. Thus, the private blockchain
restricts only a group of authenticated participants to read and participate in the
protocol. Depending on the use case, the type of blockchain needs to be suitably
chosen.

Whatever the type of blockchain, one main process of these technologies is the
storage of transactions that has to be done in secure manner, i.e. data stored
into the ledger have not been tampered and cannot be modified or deleted. This
process is executed by participants thanks to a consensus protocol that uses several
cryptographic techniques that prevent from altering the ledger. A consensus
protocol is a process that enables to reach a common agreement in distributed
manner. In a blockchain context, participants use a consensus protocol to agree on
which block of transactions is added into the ledger. Generally, these consensus
protocols are based on leader election process that chooses randomly and in
distributed manner one of the participants as leader who wins the right to write
the next block into the ledger.

For example, in the consensus protocol used in Bitcoin, called Proof-of-Work
(PoW), the leader is the first participant who solves a cryptographic puzzle known
as hash puzzle. Participants have to find a block whose hash value is lower than a
target value. However, several studies outline important issues in the Bitcoin PoW
protocol such as the energy waste, the centralization of participants with the most
computing power and many others.

Actually, designing consensus protocols is not a new problem and has been widely
studied in distributed systems. With the new requirements of open participation
and issues related to the Bitcoin PoW protocol, works to design new consensus
protocols for blockchain while leveraging the first results for distributed systems
are actively being researched.

In the light of the increased popularity of blockchain, the security of these
technologies has to be studied. Several attacks, strategies, formalization and formal
proofs have been released. In this thesis, we study the security of consensus protocols

2

that are one of the main challenges in blockchain technologies. In particular, we
want to understand what is the level of trust and what are the security parameters
of consensus protocols for blockchain.

Quantum cryptanalysis. Quantum computers are machines that exploit quantum
physic instead of standard electronics enabling thus to perform tasks faster than
classical computers. Roughly speaking, classical computers are based on binary
computing where data are represented by bits that can take two values, either 0 or
1. Whereas in the quantum computers, data are represented by quantum bits, also
called qubits that can be not only either 0 or 1 but also any superposition of 0 and
1.

The quantum cryptography is the science that exploits quantum mechanics to
design new cryptography protocols such as quantum key distribution, and quantum
cryptanalysis is the study of attack techniques using quantum computers. The term
of post-quantum cryptography refers to protocols that uses classical computers and
withstand attacks using classical and quantum computers.

In 1994, Peter Shor [96] outlined the threat of quantum computers that could
break current systems based on asymmetric cryptography. Indeed, the security of
these systems is based on problems assumed to be di�cult to be solved with classical
computers such as the computation of discrete logarithm or the factorization of large
numbers. In theory, quantum computers could e�ciently solve these problems and
therefore break asymmetric cryptography systems yielding communication insecure.
Regarding protocols based on symmetric cryptography, quantum computers could
also be a threat but less important one. Indeed, in 1998, Grover [59] proposed a
quantum algorithm allowing to make an exhaustive search among n elements in
O(

Ô
n) time instead of O(n). This can easily be mitigated by doubling the key

size.
Even if today quantum computers that exist are not enough powerful to break

current cryptography, the study of new quantum attacks and the design of post-
quantum algorithms is important. Since 2017, the National Institute of Standards
and Technologies (NIST) has launched a competition to standardize post-quantum
public key algorithms. This competition aims to provide several standards for
di�erent applications, expected to be published within the next two to five years.
The competition is still in progress at the time of writing.

In this thesis, we study quantum resistance of symmetric cryptography schemes
called Misty. In particular, we provide quantum cryptanalysis of these schemes
that have been used to design Kasumi algorithm, adopted as the standard cipher
in the third generation mobile systems.

3

Contributions
This thesis addresses separately the research related to consensus protocols for
blockchain technologies in a first part and the research related to quantum
cryptanalysis in a second part.

Firstly, we present the work on consensus protocols for blockchain technologies
that aim to provide security analysis of consensus protocols. We start by a
state of the art on consensus protocols before and since the advent of blockchain
technologies. Then, we present three contributions that analyze the security of
consensus protocols. These works aim to outline security properties that address
well-known issues and attacks. Next, we provide a fourth contribution which
describes at high level a new consensus protocol that uses the computing power for
useful works. We summarize these contributions in the following paragraphs.

1. Revisiting security analysis of Single Secret Leader Election. In this
contribution, we revisit the security model of the Single Secret Leader Election
(SSLE) [15]. We focus on the shu�ing-based SSLE construction which is a practical
scheme relying on the hardness of the Decisional Di�e-Hellman. SSLE schemes
select exactly one leader whose identity remains hidden until he decides to reveal
it. We first add the liveness property in the security model of SSLE schemes to
ensure the election of a leader even in presence of malicious or inactive participants.
Liveness is a classical security property in distributed systems that guarantees new
data generated by leaders to be continually added into the system. Then, we refine
the unpredictability property that means that non-leaders cannot guess who is
the leader until he reveals his identity. We guarantee that there is at least two
uncorrupted participants in the list from which the leader is elected and prevent
the adversary learning which participant has been elected. We revisit also the
fairness property that ensures that each participant has the same probability of
being elected. Next, we provide a strategy enabling to introduce a bias so as to
make one of corrupted participants elected with a probability of f

n
where f is the

number of corrupted participants compared to a uniform probability of 1
n
. We

propose a slight modification of the original scheme in order to achieve the fairness
property. Finally, we motivate the need for our definition of the fairness property.

2. Unpredictability properties in Algorand. In this contribution, we analyze
the unpredictability properties in the Algorand leader election protocol considered as
a Probabilistic Leader Election. In Algorand, one or several potential leaders may be
selected and a rule enables to choose one of them as leader. It is possible that there
is no leader elected for some elections. Unpredictability originally defined in [15] is
important to prevent an attacker from targeting the leader in DoS attack. First, we
show that this unpredictability property is satisfied by Algorand. Then, we extend

4

this unpredictability to the t-forward unpredictability to capture the case where an
adversary elected as leader cannot predict the leaders of the t following elections.
This may prevent an adversary to plan which data to add at a suitable time into
the ledger, e.g. transactions executed at a suitable time may be advantageous in
high frequency trading. Finally, we describe a strategy for the expected number
of potential leaders set to nl = 1 enabling an adversary to be leader and predict
the t next leaders with a probability of f

n
((f

n
)t + (1 ≠ (f

n
)t)(f

n
)t) + (1 ≠ (f

n
)t) 1

n≠f
·

1
nt

instead of (f

n
+ (1 ≠

f

n
) 1

n≠f
) 1

nt with at most f participants are corrupted among
the n participants. In this contribution, we outline the properties related to the
unpredictability and the importance of the parameter nl of Algorand.

3. Security model and application to LEP-TSP. In this contribution,
we define a security model of Single Leader Election (SLE) protocols with five
security properties: uniqueness, fairness, unpredictability, t-forward unpredictability
and liveness. They are defined in the model to address well-known issues and
attacks targeting consensus protocols. Uniqueness means that exactly one leader is
chosen in each election. The others properties have been studied in the previous
contributions and are adapted in this work when it is necessary. Then, we propose
a SLE construction called LEP-TSP which is a new leader election protocol based
on external RNG services. It is intended to be used in private setting such as
the private blockchain. We prove that our LEP-TSP protocol meets the expected
security properties of a SLE protocol. In particular, LEP-TSP operates while
f < n

3 participants are corrupted by an adversary, with n the total number of
participants.

4. Useful work. As additional work, we propose a new consensus protocol called
Useful Work (UW) where the computing work and the memory space are dedicated
to useful works. Specifically, instead of solving a hash puzzle as in the Bitcoin
protocol, participants run the code of any real world problems submitted by clients
to be a candidate for winning useful coins. We also present some new issues and
show that our UW protocol is resilient to these issues and the classical attacks on
consensus protocols. This contribution aims to give an insight on what we can do
with computing power instead of using it to solve the Bitcoin PoW puzzle. We
present a high level description of UW protocol comprised of di�erent mechanisms
that may be done in several manners. This work can be used as basis for further
studies to construct a consensus protocol that solves any� real world problems.

Then, in the second part dedicated to quantum cryptanalysis of Misty schemes,
we present the following contribution.

�Assuming problems with a number of computations less than a computational complexity.

5

5. Quantum cryptanalysis of Misty schemes. We provide a quantum
cryptanalysis of Misty schemes that aims to improve the results already known
in the classical model. Misty schemes are symmetric schemes and well-known
variants of Feistel construction used to design block cipher encryption protocols,
here seen as pseudo-random permutation generators. We describe non-adaptive
quantum chosen plaintext attacks against 4-round Misty L and Misty LKF schemes,
and against 3-round Misty R and Misty RKF schemes. These attacks enable to
distinguish these Misty schemes from random permutations in polynomial time.
We extend the quantum distinguishing attack against 3-round Misty RKF schemes
to obtain a quantum key recovery attack against d-round Misty RKF schemes with
complexity Õ(2(d≠3)n/2). Finally, we present a security proof with the same bound
2n/2 which shows that the best known cryptanalysis against Misty R schemes is
optimal.

Organization
Part I is dedicated to the study of consensus protocols for blockchain. Chapter 1
gives the context of this first research topic. In Chapter 2, we provide the main
notions used in this part. Chapter 3 and Chapter 4 provide a state of the art on
consensus protocols. We give the security analysis of Single Secret Leader Election
in Chapter 5 and the one of Algorand in Chapter 6. Chapter 7 provides the security
model of leader election and the new protocol called LEP-TSP. In Chapter 8, we
describe the new protocol of Useful Work. We summarize in Chapter 9.

Part II is dedicated to the study of Misty schemes. Chapter 10 gives the
context of this second research topic. In Chapter 11, we provide the main definition
used in this part. Chapter 12 gives an overview of previous works and the new
results. In Chapter 13, we present quantum attacks against Misty schemes and the
security proof of Misty R schemes with 3 rounds. We summarize this second part
in Chapter 14.

Finally, we provide a general conclusion and give an extended abstract in French
in last chapters.

6

Part I

Consensus protocols for
blockchain technologies

7

Chapter 1

Introduction

Contents
1.1 Context . 9

1.2 Contribution and Organization 11

In this first chapter, we give an overview of consensus protocols and new
challenges to construct these protocols for blockchain technologies. We provide also
some examples of blockchain applications to outline its popularity in several sectors.
Finally, we present our contribution on this research topic and the organization of
Part I.

1.1 Context
Consensus protocols are processes enabling a group of participants to reach a
common agreement in distributed manner, i.e. without a central authority. These
protocols are originally proposed as solutions to a problem introduced by Lamport
et al. [75] referred as the Byzantine generals problem. In this problem, a group of
Byzantine generals without a central entity attempts to agree on attacking or not
an enemy city. The Byzantine generals problem became the seminal work for the
research related to consensus protocols in distributed systems.

For decades, several works were undertaken to resolve this problem such as the
Practical Byzantine Fault Tolerant (PBFT) [24] protocol introduced by Castro and
Liskov. The PBFT protocol became the reference to achieve the basic security
properties of safety and liveness in partial synchrony by assuming at most 1

3 of
the group may be corrupted. The safety property means that (i) only a value that
has been proposed may be chosen; (ii) only a single value is chosen, and (iii) a
participant never considers that a value has been chosen unless it actually has

9

been. The liveness property requires that a consensus can be achieved even if
some fraction of participants may be malicious or inactive. The partial synchrony
assumption means that messages can be delayed, duplicated or delivered out of
order.

With the advent of the blockchain technology proposed by Nakamoto [85], an
increased interest in consensus protocols has emerged. Participants use a consensus
protocol to select randomly and in distributed manner one of them as leader who
provides the next block of data to be added into the ledger. This process is also
known as leader election.

The well-known Proof-of-Work (PoW) [85] consensus protocol has been introduced
to select the leader proportionally to his computing power. Moreover, the Nakamoto
PoW protocol is designed to achieve the new requirements of scalability and
incentivation of a public blockchain. The scalability enables to handle a variable
and huge number of participants, and the incentivation aims to motivate entities to
participate in the consensus protocol. However, the Nakamoto PoW protocol has a
number of limitations such as an intensive energy consumption, the fork problem,
the selfish mining strategies, etc.

Thus, one of the main challenges of blockchain technologies is the choice
of consensus protocols. The security of these technologies mainly relies on the
security provided by consensus protocols�. Hence, with the new requirements of
blockchain technologies and issues of the Nakamoto PoW protocol, new consensus
protocols need to be designed while leveraging the advantage of first results to solve
the Byzantine generals problem. Analyzing the security of consensus protocols
is important to evaluate the trust that we can have in blockchain technologies.
Therefore, this thesis provides security analysis of consensus protocols by focusing
on the leader election process.

Blockchain applications. Blockchain technologies became a promising technology
due to its new way of trust. Indeed, it allows participants who have more or less
trust in each other to work together, i.e. exchanging information in secure manner
and without the need of a central authority. Its popularity begun with the Bitcoin
cryptocurrency [85], a fully distributed digital money system based on a blockchain
technology. Indeed, previous works as Digicash [27], B-money [34] or Bit Gold [99]
were first solutions of digital money systems but required a trusted party or are
vulnerable to Sybil attack where several identities are created by an attacker to
increase her influence in the protocol.

Other companies have created their own cryptocurrency based on blockchain
technologies by improving the idea of Nakamoto such as Ethereum [21], Cardano [63]

�Other factors may impact the security of blockchain technologies, such as the used
programming language or the implementation of algorithms, that are out of scope of our work.

10

and Algorand [29]. Even if blockchain technologies have been mainly deployed for
financial transactions, it is increasingly used in other domains such as in the supply
chain [82, 42], medical sector [92, 71] or energy markets [4, 67].

The supply chain is responsible for the management of the flow of millions of
products, and the traceability is one of its most important aspect. Traceability
enables to identify and trace the product pieces, and to know the path they took
to their final destinations. The blockchain technology can improve the traceability
aspect of supply chains by guaranteeing di�erent properties: trade-privacy of who
and what are involved in a shipping of product and transparency of the immutable
amount of products [82], or the privacy-sensitive information, certificate verifiability
and auditability [42].

The blockchain may also facilitate the exchanges in health care sector for the
entry and operation of clinical data without compromising other sensitive data [92]
or the management of medical supplies [71].

Another example of a blockchain use case is given in [4, 67] regarding the energy
sector. The blockchain may be designed as an energy market to facilitate and
help energy transactions between prosumers who are simultaneously producers and
consumers. All information related to the energy flows and services can be stored
into the ledger. Thus, this may ensure energy provenance, transactions privacy
and immutability of data.

1.2 Contribution and Organization
Constructing or selecting a consensus protocol is one of main challenges in distributed
systems, and for the last couple of years, in particular for the blockchain technologies
due to their promising benefits in several domains. New consensus protocols for
these technologies have been developed in order to achieve the safety and liveness
properties while avoiding the issues of the Nakamoto PoW protocol. Several papers
on the security analysis of these protocols that exhibit the issues of well-known
Nakamoto PoW protocol have been published in the literature.

First, we present a state of the art on consensus protocols. Then, we study two
promising approaches to construct consensus protocols named Single Secret Leader
Election (SSLE) and Algorand. In particular, we focus on the leader election
process which is an important mechanism in consensus protocols, and outline
important security properties to prevent well-known issues. Next, we provide a
new security model for leader election protocols with these security properties. We
propose also a new leader election protocol, named LEP-TSP, intended to be used
in private setting and prove that LEP-TSP meets the expected security properties.
Finally, we provide a high level description of a new consensus protocol named
Useful Work intended to make computation power useful.

11

This part is organized as follows. In Chapter 2, we provide the main notions
and cryptographic primitives used in Part I. Then, we present a state of the art on
consensus protocols before the emergence of blockchain technologies in Chapter 3
and for blockchain technologies in Chapter 4. Chapter 5 and Chapter 6 present
the work on SSLE and Algorand respectively. In Chapter 7, we propose a security
model of leader election protocol with five security properties that addresses well-
known issues and attacks targeting consensus protocols. We describe also LEP-TSP
protocol which is a new leader election protocol based on external RNG services,
intended to be used in private setting. The last contribution described in Chapter 8
proposes a new consensus protocol called Useful Work. Finally, we summarize this
part in Chapter 9.

12

Chapter 2

Cryptographic primitives and
main notions

Contents
2.1 Cryptographic primitives and assumptions 13

2.1.1 Decisional Di�e-Hellman assumption 14

2.1.2 Hash functions . 14

2.1.3 Digital signature schemes 14

2.1.4 Random number generator 15

2.2 Participants . 15

2.3 Centralized, decentralized and distributed 15

2.4 Consensus protocols . 16

2.5 Leader election protocols 17

2.6 Blockchain technologies 17

In this chapter, we provide the main notions and cryptographic primitives used
in the first part of this manuscript.

2.1 Cryptographic primitives and assumptions
All along this part, we mention and use the following cryptographic primitives and
assumption. Mostly, we consider that the primitives satisfy the desired properties,
unless otherwise specified, and outline which property is the most significant
according to the context when it is necessary.

13

2.1.1 Decisional Di�e-Hellman assumption
Let G be a finite group of prime order q, the Decisional Di�e-Hellman assumption [37]
states that, given a generator g œ G, two elements ga, gb

œ G and a candidate
X œ G, it is hard to decide whether X = gab or not.

2.1.2 Hash functions
Hash functions map arbitrarily long bit-strings to strings of fixed length. A
hash function HASH takes a message x œ {0, 1}

ú as input and outputs a value
y œ {0, 1}

n referred to as a hash value or simply hash. The hash function HASH
must guarantee the following security properties [1]:

• Preimage resistance: for most y in {0, 1}
n, it is hard to find a string x such

that HASH(x) = y .

• 2nd-preimage resistance: given x, it is hard to find a string xÕ
”= x such that

HASH(x) = HASH(xÕ).

• Collision resistance: it is hard to find two di�erent strings x and xÕ such that
HASH(x) = HASH(xÕ).

In this manuscript, the term hard means that there is no polynomial-time algorithm
that enables to break the security property.

2.1.3 Digital signature schemes
Digital signatures are schemes that ensure authenticity, non-repudiation and
integrity of digital message. A digital signature scheme S is defined by three
algorithms (KGEN, SIGN, V ERIF). The algorithm KGEN takes as input a
security parameter ⁄ and generates the secret and public keys (sk, pk). The
algorithm SIGN takes as input a secret key sk and a message x, and outputs a
signature sign. The algorithm V ERIF takes as input a public key pk, a message
x and a signature sign and rejects or accepts the signature by outputting 0 or 1
respectively. A digital signature scheme must fulfill the following properties:

• Unforgeability: only the signer can produce a valid signature on a given
message

• Non-repudiation: the signer cannot deny having signed the message with a
valid signature

• Integrity: the content of message has not been modified
For the sake of simplicity, we use the terms of signature scheme or signature to
designate a digital signature scheme.

14

2.1.4 Random number generator
A random number generator (RNG) is a function that provides a bit string r from
a secret s and has the following properties:

• Unpredictability: anyone without the knowledge of s cannot produce better
than a random guess on the value r prior to some step barrier in the generation
of the value.

• Randomness: the value r is indistinguishable from a uniformly distributed
random string for anyone without the knowledge of s.

2.2 Participants
We use the notion of participants to designate the ones who execute the protocol.
We denote by n the total number of participants in a protocol. Thus, the set of n
participants are denoted by {P1, . . . , Pn}.

An honest, also called uncorrupted, participant designates an online participant
who performs all the protocol instructions.

A participant is malicious, also called Byzantine, corrupted or faulty, if she
deviates from the protocol instructions. We consider that the set of malicious
participants may act as a single entity designated by an attacker or adversary.

Note that, o�ine participants may not be necessarily malicious [35] but they
can seriously a�ect the protocol. We denote by f the number of malicious or o�ine
participants and by h the number of honest participants. Thus, we have n = f + h.
In this manuscript, we use he/his to designate an honest participant and she/her
for a malicious participant.

2.3 Centralized, decentralized and distributed
Thanks to Figure 2.1, we can easily distinguish the di�erent structures for a system.
In a centralized model, there is a unique central entity that manages the other
participants. Every modification and request require the agreement of this central
party. Whereas, in a decentralized system, no unique party controls other. However,
some participants depend on one or several other participants who may impact them.
Finally, in a distributed model, all participants are equals and every modification
needs a common agreement to be adopted. The protocols studied in this part are
between decentralized and distributed organization according to the use case.

15

Figure 2.1: Three organizations for a system [61]

2.4 Consensus protocols
Consensus protocol is a central component of any distributed or decentralized
system in which a group of n participants P1, . . . , Pn agree on the current state.
Generally, a consensus protocol is divided in rounds where at each round k, an
agreement on the state is reached. The basic properties of a consensus protocol are
originally defined as follows:

• Agreement: all honest participant decides on the same value.

• Validity: if a participant decides on a value, then this value was proposed by
some participant.

• Termination: every honest participant eventually decides on a value.

The basics security properties of distributed systems are safety and liveness. Firstly,
they were informally introduced in [73] such that the safety property states that
something bad will never happen and the liveness property means that something
good will eventually happen. For consensus protocols, these properties are refined
as follows [74]:

• Safety: (i) only a value that has been proposed may be chosen; (ii) only a
single value is chosen, and (iii) a participant never considers that a value has
been chosen unless it actually has been.

• Liveness: a consensus on a value can be achieved even if some fraction of
participants may be malicious or inactive, i.e. o�ine or do not actively
participate in the protocol.

16

2.5 Leader election protocols
In this thesis, a leader election protocol is considered as a particular case of
consensus protocols. The n participants P1, . . . , Pn agree in distributed manner on
a leader who may have a particular role. For example, in a context of distributed
ledger, the leader provides the next data to add into the ledger. Generally, the
leader election protocol is divided in rounds where at each round one or several
leaders may be randomly elected. This is also possible that in some leader elections
there is no leader for some rounds.

In this thesis, we study and specify the security properties of leader election
needed to construct consensus protocols for blockchain based on the security
properties defined in the previous section.

2.6 Blockchain technologies
Blockchain technologies are new technologies based on a data structure called
blockchain. The blockchain structure is seen as a ledger or chain of blocks where each
block stores transactions in distributed manner without a central authority. The
blockchain structure is intended to be immutable, i.e. once a block of transactions
is written or added into the ledger, it should no longer be removed or changed.
A new block is added after reaching a consensus on this block. The blockchain
structure can be considered as a distributed or decentralized system according to
the use case.

In this manuscript, the notion of blockchain designate the blockchain structure
where a new block of transactions is added after the participants reach a consensus
on this block. The height of the blockchain corresponds to the number of blocks
added after the first block called genesis block. This latter is generally configured
by the initial participants. Figure 2.2 represents an ideal structure of blockchain of
height k with the genesis block B0. We designate also by chain or branch, all or a
part of the blockchain. The main chain designates the chain chosen by participants
generally in the case of a fork, i.e. several branches extending a same block.

B0 � B1 � B2 � . . . � Bk≠1 � Bk

Figure 2.2: Blockchain of height k.

17

Actors. We can generally distinguish two groups of actors in a blockchain: users
and nodes. Users can be persons, entities, organizations, businesses and others
which transfer assets between each other. The role of users is to generate, sign and
send transactions. A node is an individual system which is a part of the blockchain
system. Each node may store a copy of the ledger. The nodes have the main role in
the blockchain which is the responsibility to generate, verify and write transactions
and so new blocks into the ledger. Obviously, a user may be also a node.

In this manuscript, we focus on the role of nodes which are the participants
described in Section 2.2. We denote the set of nodes by {P1, . . . , Pn}.

Transactions. A transaction may be a transfer of assets such as money, goods or
information, e.g. the progress of a product in a supply chain. The transactions are
generally generated, signed and sent by users. A transaction is considered as valid
if the information related to this transaction are valid. For example, it contains
valid signatures, the transaction issuer owns the assets, the address of transaction
receiver exists, assets are not double spent and many others.

In this manuscript, the term of transactions designates any data added into the
blockchain according to its use case.

Blocks. A block is a set of data usually created by a node. A block is typically
divided into two parts, a block header and a block data. In the block data part,
the node may include a list of valid transactions and the hash of the block header.
Other data such as ledger events may be also included in this part. The block
header part may include the information related to the block such as the block
number, a timestamp, the Merkle tree root of the transactions list and others. The
hash value of the previous block header is also included in the block header which
enables to link the blocks with each others.

A Merkle tree [79] is a tree, usually binary, such that each node is the hash of
its children. In a blockchain context, the hash of each valid transaction represents
a leaf of a Merkle tree and the corresponding Merkle tree root is added into a block
header.

Figure 2.3 gives an example block Bi,k = (BHeaderi,k, BDatai,k) generated by
a node Pi with a Merkle tree with four valid transactions tx0, tx1, tx2 and tx3. The
values BHeaderi,k and BDatai,k are the block header and block data respectively.

Writing a new block. The protocol to add a new block into the blockchain
may be divided into these following phases.

Phase 1: Issuing the transactions. Users create transactions that transfer
assets to other users and broadcast their transactions to nodes.

18

BHeaderi,k

HASH(BHeaderik≠1,k≠1)

MerkleT reeRoot(validT xListk) � root = HASH(h4, h5)

⇣⇣
⇣⇣⇣1

PP
PPPi

h4 = HASH(h0, h1) h5 = HASH(h2, h3)

��✓ @@I ��✓ @@I
h0 = HASH(tx0) h1 = HASH(tx1) h2 = HASH(tx2) h3 = HASH(tx3)

6 6 6 6
tx0 tx1 tx2 tx3

HASH(BHeaderi,k)

validT xListk

Figure 2.3: Example of block with the Merkle tree roof ot the list of valid
transactions validTxListk = {tx0, tx1, tx2, tx3}.

Phase 2: Verification of transactions. Nodes verify transactions and put
valid ones on hold in a local pool of pending transactions�.

Phase 3: Block construction. Nodes create candidate blocks with valid transactions
pending in their pool.

Phase 4: Consensus. Nodes use a consensus protocol to agree on the next block to
be added into the ledger. An additional voting step can occur to consider
the block as confirmed, i.e. it may be considered as an immutable part
of the blockchain and so transactions included in it can be executed.

Obviously, these phases and their order may di�er from a protocol to another. For
example, Phase 4 may be a leader election that firstly elects a node as leader to
execute Phase 3.

In this manuscript, we assume that Phase 1 and Phase 2 are already executed
and we focus on Phase 3 and Phase 4. In other words, we consider that nodes
have (di�erent) pools of valid transactions and want to add the next block into the
blockchain.

Blockchain categories. Currently, two models of blockchains may be considered:
permissionless blockchain and permissioned blockchain.

A permissionless blockchain is also called a public or fully open blockchain. In
this blockchain model, anyone can participate in the blockchain, i.e. being a user
and/or a node. Moreover, all data written into the ledger such as messages and
transactions between users and nodes are visible by anyone. A public blockchain
relies also on a reward system to incentive nodes to maintain the blockchain. This
requirement is usually called incentivation.

A permissioned blockchain is also known as a private or consortium blockchain.
In this model, users and nodes know each others and want to keep a restricted
access to the blockchain. Thus, only a defined group of participants, generally

�The pool of each node may be di�erent from another due to problems of propagation or a
malicious behavior.

19

also authenticated, can read and write data into the ledger. It is possible that
this authenticated group restricts read access and who can issue transactions [102].
Furthermore, participants typically have a common interest, e.g. a business interest,
in working together. There is then usually no real need to reward nodes to maintain
the blockchain.

Table 2.1 summarizes criteria that di�erentiate the blockchain models and gives
some examples of consensus protocols intended to be used in each blockchain model.

Categories Public blockchain Private blockchain
Generate and write Anyone when elected A group
the new block
Read and verify Anyone A group
the blocks
Authentication No Yes
system anonymous nodes authenticated nodes
Data Public Restricted
classification
Incentive Yes, for writers No
Consensus example PoW, PoS PBFT, PoET

Table 2.1: Characteristics for each blockchain model. PoW = Proof of Work, PoS
= Proof of Stake, PBFT = Practical Byzantine Fault Tolerance and PoET = Proof
of Elapsed Time.

20

Chapter 3

Consensus protocols before the
advent of blockchain technologies

Contents
3.1 Distributed agreement problems 21

3.1.1 Interactive consistency problem 22
3.1.2 Byzantine generals problem 23
3.1.3 Consensus problem . 23
3.1.4 Relations among the three problems 23

3.2 Possibility and impossibility results 24

3.2.1 Results under synchrony 24
3.2.2 FLP impossibility in asynchrony 26
3.2.3 Solutions under partial synchrony 26

3.3 Practical Byzantine Fault Tolerance (PBFT) 28

3.4 Summary . 28

In this chapter, we present the original problems related to consensus protocols
and the main resulting solutions.

3.1 Distributed agreement problems
In distributed agreement problems, a set of n participants, also called nodes,
competes or cooperates to achieve the same goal which is reaching a common
agreement without a central authority. There are three well-known and closely
related distributed agreement problems [45]: the interactive consistency problem [90],

21

the Byzantine generals problem [75] and the consensus problem [46]. These problems
di�erentiate from who provides the initial value(s) and on what is the agreement.
Table 3.1 provides the starting values and final outcomes of these three problems.

Problem Interactive Byzantine Consensus
consistency generals

Who initiate All nodes One node All nodes
the value(s)

Final agreement A vector of values Single value Single value

Table 3.1: The distributed agreement problems.

Each of these problems may address di�erent practical applications. For example,
the interactive consistency problem may be relevant for systems that rely on the
combination of several opinions to provide a service [30]. The Byzantine generals
problem can be applied in database management systems [51] where a user command
is executed in each database stored by nodes and an agreed result has to be sent
back to user, for example. Regarding the consensus problem, it may address the
clock synchronization problem [45] where each node has an initial clock value and
a periodic agreement on a single clock value is reached such that two honest nodes
never di�er by more than some value.

Common assumptions. Among the n nodes, up to f may be faulty. For these
three problems, a faulty node means that the node can send altered messages or
refuse to send messages. The n ≠ f other nodes are called non-faulty nodes. They
communicate only by two-party messages, i.e. the sender and the receiver may
alternate their role, and the receiver always knows the identity of the sender. Each
node can communicate directly with any other node. For simplicity, we assume
a binary agreement where the agreed values are in {0, 1}. Results can easily be
extended to multivalue agreement [31]. We first detail the three problems and then
we give the relation among them.

3.1.1 Interactive consistency problem
In the interactive consistency problem [90], each node has an initial value that may
be di�erent from others. Given f, n Ø 0, the non-faulty nodes try to compute a
vector of values and to meet the following conditions:

• Agreement: all non-faulty nodes compute exactly the same vector.

22

• Validity: if the ith node is non-faulty and its initial value is vi, then the ith
value of the vector agreed by all non-faulty nodes must be vi.

Note that if the jth node is faulty, then all non-faulty nodes can agree on any
common value for vj.

3.1.2 Byzantine generals problem
Relying on their work on the interactive consistency problem, Lamport et al.
released the pioneer work on consensus protocols known as the Byzantine generals
problem [75]. In the Byzantine generals problem, an arbitrarily chosen node, called
leader, broadcasts his initial value to all other nodes. The non-faulty nodes try to
reach an agreement on a single value that should satisfy the following conditions:

• Agreement: all non-faulty nodes agree on the same value.

• Validity: if the leader node is non-faulty, then every non-faulty nodes agree
on the value sent by the leader

Note that, in the case where the leader is faulty, then all non-faulty nodes may
agree on any common value.

3.1.3 Consensus problem
Another closely related problem which has been also studied extensively in the
literature is the consensus problem [45, 46]. Every node has its own initial value
that may be di�erent from others. The goal of the consensus problem is to reach
an agreement on a single value such that:

• Agreement: all non-faulty nodes agree on the same value.

• Validity: if the initial values of every non-faulty nodes is v, then all non-faulty
nodes must agree on the value v

Note that, if the initial value of each non-faulty nodes are di�erent, then all
non-faulty nodes can agree on any value of a node.

3.1.4 Relations among the three problems
These three distributed agreement problems are closely related [45]. In particular,
the Byzantine generals problem may be considered as a special case of the interactive
consistency problem where the nodes is interested only in the initial value of one
node. Thus, a protocol resolving the interactive consistency problem also solves the

23

Byzantine generals problem. Inversely, protocols resolving the Byzantine generals
problem can be run in parallel for each node and enable to solve the interactive
consistency problem. Moreover, a protocol that solves the interactive consistency
problem can also be a solution for the consensus problem. Indeed, all non-faulty
nodes can choose the majority value of the vector agreed by the protocol for the
interactive consistency problem, or choosing a default value if the majority does
not exist. Protocols solving consensus protocol needs an extra step to solve the
two other problems as proposed in [45].

Therefore, protocols that solve the Byzantine generals problem can also be
solutions for the interactive consistency problem and the consensus problem. These
solutions are generally called consensus protocols. Thus, the Byzantine generals
problem has been considered as the pioneer work to construct consensus protocols.

3.2 Possibility and impossibility results
In this section, we provide the first well-known possibility and impossibility results
for the Byzantine generals problem and consensus problem.

3.2.1 Results under synchrony
First works have been studied under synchrony defined as follows: (a) the communication
is synchronous, i.e. the message delivery time is fixed and known; (b) the execution
speed is synchronous, i.e. nodes run at a fixed and known rate; and (c) each node
has a clock and all clocks are synchronized. Thus, once a message is sent, it is also
delivered correctly and an absence of message can be detected.

Three results for the Byzantine generals problem have been provided in the
original paper [75] and recalled in this section:

1. It is not possible to solve the Byzantine generals problem with three nodes in
presence of one faulty node.

2. It is possible to solve the Byzantine generals problem with n Ø 3f + 1.

3. Assuming that the messages are signed, it is possible to solve the Byzantine
generals problem with any value of n and f �.

Impossibility when n = 3 and f = 1. The first result comes from the following
scenario. We assume three nodes P1, P2 and P3 such that P3 is faulty. The goal
is to agree on the value 0 or 1, which refer to "retreat" or "attack" in the original

�The problem is considered as empty if n Æ f + 2 [75].

24

paper [75]. Two following cases are considered and represented in Figure 3.1:
(1) non-faulty leader and (2) faulty leader.

In Case (1), the leader, for example P1, sends the value 1 to P2 and P3. The
faulty node P3 reports to P2 that she has received the value 0. Thus, P2 has
conflicting values but must choose the value 1 to satisfy Validity.

In Case (2), the leader P3 sends 0 to P1 and 1 to P2. Then, P1 communicates
0 to P2, and P2 communicates 1 to P1. Thus, P2 is constrained to choose 1 to
satisfy Validity and P1 receiving 0 from the leader must choose 0 to satisfy Validity.
Finally, P1 agree on 0 and P2 agree on 1, that violates the Agreement condition.

&%
'$
��
�⌧

P1

@
@@R
1�

��
1

&%
'$

P2 &%
'$

P3�
0

Case (1)

&%
'$

P1

�
��
0

&%
'$

P2 &%
'$
��
�⌧

P3

@
@@I 0

�
��✓
1

�
1

Case (2)
Figure 3.1: Impossibility when n = 3 and f = 1. Double circle represents the
leader and P3 is the faulty node written in red.

Solution when n Ø 3f + 1. Thus, based on the previous impossibility result,
Lamport et al. proposed a solution referred to the Oral Message (OM) algorithm [75],
that solves the Byzantine generals problem for n Ø 3f + 1 nodes where at most f
nodes may be faulty.

OM algorithm works roughly as follows. First, the leader sends his value to
every node. Next, each node acts as the new leader and sends the value received
from the leader to the n ≠ 2 other nodes. Then, the node sends the majority value
received from other nodes. This step is performed f times.

Thus, in both cases of non-faulty and faulty leader, non-faulty nodes agree on
the same value and both conditions of the Byzantine generals problem are satisfied.
We refer the reader to the original paper [75] for the details of OM(f) and its proof
of correctness for any value of f .

Solution with signed messages for any n and f . The last result [75] is
referred as the Signed Message (SM) algorithm [75] using unforgeable signature on
messages to restrict the faulty node ability to alter messages. In particular, the

25

signature of non-faulty node cannot be forged, any alteration of the signed message
content can be detected and anyone can verify the authenticity of a node signature.
Compared to the case where messages are not signed as in OM algorithm [75],
the nodes know that the leader is faulty since they receive two di�erent values
signed by the leader. We refer the reader to the original paper [75] for the details
of SM(f) and its proof of correctness for any value of f .

3.2.2 FLP impossibility in asynchrony
Another major work was undertaken by Fischer, Lynch and Paterson [46] known
as the FLP impossibility that considers the consensus problem in asynchrony [46]
defined as follows: (a) the communication is asynchronous, i.e. the message delivery
time is not fixed and not known; (b) the execution speed is asynchronous, i.e. the
speeds of nodes is not fixed and not known, and it is not possible to di�erentiate if
the node has stopped entirely or is running very slowly; and (c) nodes have not
access to a synchronized clock. The FLP impossibility is defined as follows:

It is impossible to have a protocol that solves the consensus problem in
asynchronous system in which only one node may crash,

where crash means that the node is non-faulty but may stop at any time and
cannot restart.

3.2.3 Solutions under partial synchrony
Owing the FLP impossibility in asynchrony, the time assumptions have been relaxed
in the following works on the Byzantine generals problem to obtain solutions
intended to be used in practice. Indeed, even if the OM and SM algorithms [75]
satisfy both conditions of the Byzantine generals problem, synchrony is a strong
assumption that stops the protocol when synchrony is violated. These theoretical
results do not enable to obtain robust results for practical applications where natural
network problem may occur at any time, for example. Thus, partial synchrony
originally introduced by Dwork et al. [40] may be a trade-o� between synchrony
and asynchrony assumptions. Partial synchrony may be defined as one of these
following definitions [40]:

• (a) communication is partially synchronous, i.e. one of these two situations
holds: the message delivery time exists but is not known or it is known and
has to hold from some unknown point; and (b) the execution speed of nodes
is synchronous

• (a) communication is synchronous; and (b) the execution speed of nodes is
partially synchronous, i.e. the upper bound on the relative speeds of nodes

26

can exist but be unknown or it can be known but hold only from some
unknown point

• communication and execution speed of nodes are partially synchronous

In their work [40], they consider these following four types of failures: omission
that is a non-faulty node who fails to send or receive messages, i.e. some messages
are lost in transit due to various causes such as transmitter malfunction or receiver
out of range; Byzantine that is is a faulty node sending erroneous messages or not
behaving as expected; authenticated Byzantine that is a Byzantine node who signs
messages and his signature cannot be forged; and crash failure.

They provide results for the Byzantine generals problem with the additional
following conditions:

• Termination: every non-faulty node eventually decide on a value

Based on [40], Table 3.2 compares algorithms [40] resolving the consensus protocol
in partial synchrony with previous works [75, 46]. It presents the necessary number
of nodes n where at most f are faulty to solve the consensus problem. The column
Asynchronous contains Œ for all lines due to the FLP impossibilty [46].

We can outline that a majority of non-faulty nodes is necessary in the two cases
with a partially synchronous communication in presence of crash and omission
failures. Moreover, the same result as in [75] for Byzantine fault is found in each
case with partial synchrony assumptions which is n Ø 3f + 1 by considering at
most f Byzantine faults. Lastly, in the two cases with a partially synchronous
communication and Byzantine faults, the authentication does not improve the
resiliency compare to the case with a synchronous assumption.

Failures Syn- Asyn- Partially Synchronous Partially
-chronous -chronous synchronous communication synchronous
[75] [46] communication and partially communication

and execution synchronous and synchronous
execution execution

Crash f
ú

Œ 2f + 1 f
ú 2f + 1

Omission f
ú

Œ 2f + 1 2f + 1 2f + 1
Byzantine 3f + 1 Œ 3f + 1 3f + 1 3f + 1
Auth. f

ú
Œ 3f + 1 2f + 1 3f + 1

Byzantine

Table 3.2: The minimum number of nodes n, with at most f may have a faulty
behavior, to solve the Byzantine generals problem under di�erent time and execution
assumptions. * the problem is considered as empty when n Æ f + 2.

27

3.3 Practical Byzantine Fault Tolerance (PBFT)
Practical Byzantine Fault Tolerance (PBFT) [24] is the first known implementation
of a solution for the Byzantine generals problem. PBFT became the reference to
achieve safety and liveness in partial synchrony by assuming that at most Â

n≠1
3 Ê

of nodes may be Byzantine. Note that, the partial synchrony corresponds to the
first bullet of definitions defined in the previous section where the message delivery
time is known and hold from some unknown point. Safety means that the nodes
act as a centralized implementation that executes users operations atomically one
at a time and liveness means that users eventually receive replies to their requests.

PBFT is divided in view and at each view a node plays the role of the leader.
The view changes when it appears that the leader has failed. PBFT works roughly
as follows. A user sends a request to invoke a service operation to the leader node.
Then, the leader broadcasts the request to other nodes. Next, the leader and nodes
execute the request and run a three-phase protocol to provide a reply to the user.
At each phase, a node needs to reach a threshold of votes to execute the next phase.
Finally, the user waits for f + 1 replies from di�erent nodes with the same result
after executing the operation to consider his request as confirmed.

3.4 Summary
Reaching a common agreement in distributed manner is not a new problem and
comes from three closely related distributed agreement problems. The Byzantine
generals problem has been considered as the pioneer problem since a solution to
this problem solve the two other problems. In the Byzantine generals problem,
a group of nodes tries to reach an agreement on a single value by assuming that
some of them may be faulty, a.k.a Byzantine. A protocol that solves this problem
has to satisfy the agreement, validity and termination properties.

Several theoretical results have been proved for the Byzantine generals problems
by considering di�erent timing assumptions. The first results led to the statement
that in a synchronous system without signed messages, it is possible to solve the
Byzantine generals problem with n Ø 3f + 1 nodes with at most f nodes may be
Byzantine. The main impossibility result is the FLP impossibility that states that
it is impossible to have a solution to the consensus problem in an asynchronous
system in which only one node may crash.

Therefore, the timing assumption in the next works has been relaxed to obtain
the assumption of partial synchrony that may have several meanings. The PBFT
protocol became the reference to construct consensus protocols in a fixed, small
and identified group of nodes. Indeed, PBFT achieves safety and liveness in partial
synchrony by assuming that at most Â

n≠1
3 Ê of nodes may be Byzantine.

28

Chapter 4

Consensus protocols for
blockchain technologies

Contents
4.1 Example of consensus protocols 29

4.1.1 Proof-of-work (PoW) and new challenges 29
4.1.2 Proof-of-Stake (PoS) and other mechanisms 31

4.2 Attacks and strategies . 33

4.3 First formalization . 41

4.4 Summary . 42

In this chapter, we give some examples of consensus protocols for blockchain
and the first security analysis and formalization of these protocols.

4.1 Example of consensus protocols
This section presents relevant examples of consensus protocols to understand the
main challenges to construct these protocols for blockchain technologies.

4.1.1 Proof-of-work (PoW) and new challenges
The concept of Proof-of-Work, abbreviated PoW, has been formalized by Jakobsson
and Juels in 1999 [65]. The idea was as follows: a prover demonstrates to a verifier
that he has performed a certain amount of computational work in a specified interval
of time. This formalization was intended to outline PoW as a mechanism for several
security goals, e.g. managing resource access, protection against spamming or other
denial-of-service (DoS) attacks.

29

PoW in consensus protocol. In 2008, Nakamoto uses the PoW mechanism in
the consensus protocol for the blockchain of Bitcoin [85]. Nakamoto uses a similar
idea as the one formalized by Jakobsson and Juels [65]: the PoW mechanism is
used in the leader election process where a node has to perform a di�cult intensive
computational work to be a candidate for the election.

The Nakamoto PoW protocol works as follows. A node who wants to be a
candidate for the leader election has to perform a mining. That is, the node called
miner forms a candidate block with valid transactions and a randomly selected
value, a.k.a nonce, while solving a hash puzzle. The hash puzzle of Nakamoto
consists to find a candidate block whose hash value is lower than a target value
called mining di�culty. This latter is adjusted every 2016 blocks, i.e. every 14 days
approximately, in order to maintain a block generation time close to 10 minutes.
The leader who wins the right to write his candidate block into the blockchain is
the first candidate who proposes a block with valid transactions and a hash value
solving the hash puzzle. The block is considered as immutable when a majority of
nodes votes for this block�. It is assumed that a majority of nodes votes for a block
at height k when the block at height k + 6 is added into the blockchain. Finally,
the leader receives his reward composed of the block reward and the transaction
fees included in his block.

The PoW consensus protocol of Nakamoto can be seen as an election in
which the node’s probability of being elected as a leader is proportional to the
computing/mining power owned by the node. The mining power generally refers
to the number of computations to find a valid nonce in a given time. We say also
that nodes are rewarded proportionally to their mining power.

New Bitcoin’s blockchain requirements. Nakamoto’s PoW protocol aims to
achieve the new requirements of scalability and incentivation related to the Bitcoin
blockchain’s public aspect where anyone at any time can participate in the protocol.

The scalability enables to handle a variable number of nodes. Indeed, the
open and dynamic participation of public blockchain does not allow to know the
exact number of nodes who currently participate in the protocol. This requirement
leads to achieve the same throughput when the number of nodes changes and in
particular, when this number increases. The throughput is the time to execute a
transaction, i.e. the time between the transaction is written into the ledger until it
is considered as immutable to be executed.

The incentivization aims to motivate nodes to participate in the consensus
protocol, i.e. verifying the transactions, adding new blocks of transactions and
executing these valid transactions. For example, in the Bitcoin protocol, leaders
are rewarded with some Bitcoin cryptocurrencies.

�More precisely, nodes with a majority of computing power vote for this block.

30

First Nakamoto PoW issues. However, the Nakamoto PoW protocol has a
number of limitations such that requiring intensive energy consumption. Indeed,
the hash puzzle can be only solved by brute force, i.e. testing all possible values
of nonce until finding a hash value lower than the mining di�culty. This issue
has led nodes to gather in pools in order to share the workload and smooth their
revenue. In some ways, there is also a centralization † to big pools, i.e. the ones
that gather more computing power. Thus, they have more chance to find a solution
than small pools but each node of a pool wins proportionally to his mining power.
The protocol is also vulnerable to several other issues such as fork problems leading
to two valid blocks that extend the same block and compete to be the main chain
or selfish mining strategies where the attacker temporarily hides one or several
blocks in order to increase incomes by revealing her blocks at a suitable time. These
issues and some others are detailed in Section 4.2.

4.1.2 Proof-of-Stake (PoS) and other mechanisms
Several alternatives have been mainly proposed to achieve the following goals:
(i) preventing issues of the Nakamoto PoW protocol, (ii) satisfying safety and
liveness properties and (iii) taking into account scalable and incentive needs.

First solutions have been based on a Proof-of-Stake (PoS) mechanism introduced
as an energy-saving alternative to the Nakamoto PoW protocol. In PoS-based
consensus protocols, the probability of being leader is proportional to the money
invested and locked for the protocol, known as stake.

Peercoin [70] has been the first one that uses PoS mechanism in an hybrid
PoW/PoS-based consensus protocol. The idea is that the mining di�culty of a
node is proportional to his stake.

Ouroboros [68] proposed by Kiayias et al. is one of the first blockchain based
on a pure PoS mechanism, i.e. without using PoW mechanism. At each round
of Ouroboros, one election occurs and randomly selects a leader for each slot of
the next round. The random seed for the election is computed via a multiparty
computation protocol using publicly verifiable secret sharing [95].

Algorand [28, 53, 29] is also one of the first pure PoS-based protocols. At each
round of Algorand, one or several potential leaders are randomly and privately
selected. Indeed, their identity remains hidden until they decide to reveal themselves.
Then, a rule selects one of them as leader. If there is not potential leader revealed,
then the round is empty and a default block is added into the ledger. Algorand
seems a promising approach to construct consensus protocols for blockchain and
we study it in more detail in Chapter 6.

†Centralization issue may also be due to the industrialization of mining process with better-
performing machines while seeking low-cost electricity.

31

PoS issues. Combining PoS and PoW mechanisms as in Peercoin, enables to
partially solve the energy waste of PoW. Indeed, the hash puzzle still needs a brute
force to find a solution and mostly computations performed by nodes are always
wasted. PoS-based protocols may also lead to attacks such as nothing-at-stake due
to the small computational e�ort for generating a block. For example, an attacker
can invest currencies in several forks to increase her chance of being in the main
chain and recover her currencies invested in the discarded chains. Another issue of
PoS-based protocols is the centralization to the richer nodes since more money a
node has invested in the protocol, more chance he has to be elected as leader.

Alternative solutions have been proposed to avoid these issues such as the
Delegated Proof-of-Stake (DPoS) of Bitshare [14]. In a DPoS-based protocol, a set
of validators is selected proportionally to the stake delegated by other nodes and
takes turn in creating new blocks. If a validator is suspected of bad behavior, the
delegator is punished.

Other mechanisms. Other solutions have been also proposed such as Proof-
of-Elapsed-Time (PoET) [33, 19], Proof-of-Authority (PoA) [89] or Single Secret
Leader Election (SSLE) [15]. In a PoET-based protocol, the leader is the node
who gets the lowest wait time value randomly generated by a Trusted Execution
Environment (TEE) that is a protected address space. In a PoA-based protocol,
only a fixed and known set of nodes, called authorities, take turns in a predefined
order in generating of blocks. In SSLE schemes, exactly one leader is randomly
selected such that his identity is hidden until he decides to reveal it via an eligibility
proof. The SSLE paper [15] presents a formal model with security properties that
seems a relevant security analysis for leader election protocol and we study it in
more details in Chapter 5.

Instead of replacing the PoW mechanism, some protocols aim to make the
computations useful [66] by substituting the hash puzzle by another problem. For
example, in Primecoin [69], the leader is the first participant who find a chain of
prime numbers. Other mechanisms [8, 77] have been proposed to perform honest
machine learning training work in order to have the chance to be the leader. The
Folding@home [12] and SETI@home [3] projects aim to find solutions to real world
problems such that researching various diseases and extra-terrestrial life respectively.
Zhang et al. [103] proposed the Resource-E�cient Mining where one or several
clients propose any useful works in form of tasks that nodes run in a TEE. Ball et al.
proposed a Proof-of-Useful-Work (PoUW) [9] protocol to replace the Bitcoin PoW
puzzle by the k-Orthogonal Vectors (k-OV) problem. Hybrid solutions [26, 58] have
also been proposed to decrease the energy waste of mining process by combining
the hash puzzle with useful works. We consider this topic as an interesting one
and propose a new consensus protocol called Useful Work in Chapter 8.

32

4.2 Attacks and strategies

Several attacks already known in other systems have to be taken into account in
the construction of consensus protocols for blockchain. For example, the denial of
service (DoS) attack which makes the service of a system useless. Some security
analysis have been done on blockchain and provide other new attacks, rational
strategies and other problems. Table 4.1 summarizes some of these issues.

Name Overview
Fork problem Two valid branches extends the main chain.
Double spending An attacker attempts to reuse the resources of
attack a transaction for another purpose.
DoS or DDoS An attacker floods other nodes to make it unavailable.
attack In DDoS, the attack comes from multiple machines.
Sybil attack [39] An attacker creates several malicious nodes in order

to increase her influence on the protocol.
Majority attack An attacker owns more than half of resources to

participate in the protocol.
Grinding attack An attacker cheats the leader election to increase her

chance of being leader.
Long range An attacker creates a longer valid chain starting from
attack [22, 100] early block to alter the history.
Nothing-at-Stake Developed against PoS-based protocols where an
attack attacker may invest currencies in the system, runs

an attack that is successful or not and recovers her
currency.

Bribery attack An attacker pays a node to work or discard specific
[17, 100] block or chain that is beneficial for him
Selfish mining An attacker hides temporarily one or several blocks
strategies [44] and reveals them at the suitable time in order

to increase her revenue.
Eclipse attack [60] An attacker isolates a victim node from the rest of

nodes to exploit him for her own interest.
Cloning attack [41] An attacker partitions the network long enough to

double spend.

Table 4.1: Attacks on consensus protocol and blockchain.

33

Fork problem

A fork in a blockchain occurs when two blocks extend the same block and compete
to be in the main chain. This issue may be usual as in Nakamoto PoW protocol,
where nodes can propose blocks at roughly the same time. Fork may also be caused
by a malicious behavior. For example, an attacker can partition the network and
create two or several groups of nodes that cannot communicate between them.
Thus, each group may have a di�erent view of the blockchain and continue to
extend their blockchain view creating several di�erent branches. An example of
fork is done is Figure 4.1 where the two branches (B3) and (BÕ

3, BÕ
4, BÕ

5) extend the
block B2.

B0 � B1 � B2

BÕ
3@

@
@@I

BÕ
4� BÕ

5�

B3�
�

��

Figure 4.1: Fork.

The longest chain rule is generally used to solve the fork issue and aims to
converge nodes in the same chain. This rule may state that the nodes have to
choose the chain with the highest number of blocks or the chain with the more
resources (computing power, money, etc.) invested in it. For example in Figure 4.1,
the chain (B0, B1, B2, BÕ

3, BÕ
4, BÕ

5) may be chosen as the main chain. Other solutions
may set some weight on blocks and the heaviest chain is chosen as the main chain.

When a fork is resolved, the transactions included in discarded blocks may
return in the pool of pending transactions to be included in next blocks, as the
transactions in block B3 in Figure 4.1 for example.

Forks may delay the blockchain consistency and impact its performances such
as delaying the validation of blocks and slowing down the throughput. For example,
in the Nakamoto PoW protocol, a block may be considered as immutable after
added 6 blocks (about 1 hour) to ensure that transactions included in this block
can be safely executed. Moreover, a fork may facilitate an attacker to run another
attack such as a double spending or selfish mining strategies as detailed in next
sections.

34

Double spending attack

In digital currency systems, the double spending is one of the most known problems
where an attacker attempts to reuse the currencies for another purpose. In a
blockchain context, the double spending attack is successful when an asset already
transferred via an executed transaction is reused for another purpose. For example,
the attacker issues multiple conflicting transactions whose at least two are executed.
The attacker can also succeed by reverting a transaction already executed and send
assets in another transaction. Verification of transactions phase as defined
in Chapter 2 may be an important phase to prevent the double spending attack.

DoS/DDoS attack

In a denial of service (DoS) attack, an attacker makes the network or service
unavailable, for example, by flooding it of a huge amount of messages. In the
case of distributed denial of service (DDoS), the attacker run a DoS from di�erent
sources.

For example, Conti et al. [32] present a DDoS attack where the adversary floods
a node of undecidable messages. An undecidable message is a message that cannot
be fully validated and has to be stored since it cannot be discarded. Thus, the
victim node may be unavailable or isolated from other nodes since his memory and
bandwidth is full.

This attack may impact the usefulness of a blockchain if leaders become
unavailable to provide new blocks. For example, a cryptocurrency based on
a useless blockchain where the participants can neither add nor execute new
transactions may devalue this cryptocurrency. An attacker may purchase at low
price the cryptocurrency in question. Then, she stops the DoS attack in order
to the cryptocurrency value increases. Thus, the attacker may easily win money
without investing more currencies in blockchain.

Sybil attack

In a Sybil attack [39], an attacker creates several malicious nodes under di�erent
identities to participate in the protocol. The goal can be to increase her influence
in the protocol or to launch another attack such as a DDoS.

In a blockchain context, an attacker can create several nodes to verify, validate
or drop transactions to benefit her transactions. The attacker may also create
nodes to participate in the consensus protocol to approve blocks that are beneficial
for her own interests, e.g. with a double spending attack.

Sybil nodes are generally mitigated with PoW or PoS mechanisms in a public
blockchain. Indeed, splitting the resources (computing power or currencies) over
several nodes may not impact the consensus protocol and the attacker has to invest

35

more resources to have more influence. In a private blockchain, Sybil nodes may
be mitigated with the authentication of nodes.

Majority attack

Another well-known issue is the majority attack where an attacker owns 50% + –,
with – > 0, of resources to participate in the protocol. Indeed, a such attacker in a
blockchain as the one used in Bitcoin may perform all actions without notice from
other nodes. For example, validating transactions and blocks that are beneficial
for her or discarding data to make the blockchain useless.

Until July 2021 when Chinese government banned the mining farms in their
country, Chinese pools had control more than 60% of mining power of Bitcoin
system as outlined in graphs [20].

Grinding attack

In a grinding attack, the attacker attempts to influence the leader election process
to increase her chance of being elected as leader. For example, an attacker may
tamper with a random value used in a leader election process. In the blockchain
context, this may centralize the protocol to the attacker that may be often elected
as leader. This attack may be mitigated by guaranteeing a leader election process
using a random source di�cult to bias.

Long range attack

The purpose of the long-range attack [22] is to alter the history by creating a longer
valid chain starting from an early block, even from the genesis block.

For example, the paper [100] presents a strategy enabling an attacker who
corrupts a specific set of nodes to create a longer branch and fork the blockchain
of Algorand. The attack is described in term of number of nodes that can be
easily adapted in term of money. The strategy is the following. Let PKk be the
set of nodes that participate in the Algorand consensus protocol at the round k
and |PKk| the number of nodes in the set PKk. We denote Bk the block added
during the round k. At the round k, we have the chain (B0, B1, . . . , Bk1 , . . . , Bk).
Assume that at a round k1 < k, the set of nodes is |PKk1| < 1

3 |PKk|. The attacker
A chooses to corrupt the set of nodes PKk1 . Thus, at round k the adversary A

corrupts a total number |PKk1| of nodes that is less than 1
3 |PKk|. The adversary A

can create a fork from the round k1 until the round k + 1. To this end, A generates
the blocks BÕ

k1 , BÕ
k1+1, . . . , BÕ

k
with some transactions among the nodes in PKk1 .

For the block BÕ
k+1, the adversary A generates transactions with tiny amounts of

money from the nodes in PKk1 to the nodes in PKk\PKk1 . In other words, the

36

nodes in PKk\PKk1 are included in the protocol from the block BÕ
k+1 and so from

the round k+1 instead of the round k with Bk. The blocks BÕ
k1 , BÕ

k1+1, . . . , BÕ
k+1 are

easily confirmed since A controls all nodes in PKk1 and the number 2nv/3 of votes
is fixed. Thus, the chain (B0, . . . , Bk1≠1, BÕ

k1 , BÕ
k1+1, . . . , BÕ

k
, BÕ

k+1) is longer than
the chain (B0, B1, . . . , Bk1 , . . . , Bk). Finally, the chain of the attacker is chosen as
the main chain and the attack is successful.

A countermeasure would be adding checkpoints. They may guarantee that the
blocks before a checkpoint can be considered as immutable. Thus, new blocks that
modify the blocks before this checkpoint may be discarded.

Nothing-at-stake attack

The nothing-at-stake attack has originally targeted PoS-based consensus protocols
since the generation of blocks necessitates little computational e�orts. Indeed, an
attacker may invest currencies in multiple chains of a fork by generating a block
for each branch. Thus, it may guarantee that one of them is chosen to be in the
main chain and the attacker can recover currencies invested in the discarded blocks.
This attack could be possible in PoW-based protocols where a node can work on
several forks. However, because of the need of significant mining power to generate
a block, this attack could be not advantageous.

Bribery attack

In a bribery attack [17], an attacker pays a node to work on or discard specific
blocks or chain. In consensus protocols, if the attacker pays a node more than his
expected reward, then the node is encouraged to accept and work for the attacker,
i.e. verifying, validating or discarding transactions or blocks as wanted by the
attacker.

For example, in [100] the attacker asks to send the leader/verifier eligibility of
Algorand participants before publicly revealing it or their keys to validate blocks
since there is no incentive to keep this information secret. Thus, the attacker can
target leaders and verifiers to corrupt in order that they produce data in her favor,
such as including advantageous transactions for the attacker in new blocks or vote
for a block to create a fork.

Selfish mining strategies

Selfish mining strategies [44] are ones of the first security analysis after the release
of Bitcoin paper. These strategies originally target the Nakamoto PoW consensus
protocol. In selfish mining strategies, a set of selfish nodes seen as an attacker hides
temporarily one or several blocks to reveal them at the suitable time to increase

37

her revenue. Indeed, she takes advantage of the usual forking of the Nakamoto
PoW protocol to mine a private chain that only selfish nodes work on. Then, this
private chain is revealed judiciously to drop blocks honestly generated from the
main chain. Selfish mining strategies are successful if the publication of the private
chain constrains honest nodes to abandon the public branch, and thus to waste
their computational power. In this way, the attacker can increase her ratio of blocks
in the blockchain and also her reward compared to the reward she would obtain by
following the honest protocol. Several strategies are proposed in [44]. A simplified
mining algorithm is presented in Algorithm 1.

Let – the mining power of the selfish nodes set and “ the ratio of other nodes
who receive firstly the selfish block and so mine on it (as in the strategy 2.(b) of
Algorithm 1). The set of selfish nodes can obtain a revenue larger than their mining
power when – satisfies the following range [44]:

1 ≠ “

3 ≠ 2“
< – <

1
2

The selfish mining is successful when the selfish nodes have at least 1/3 of the
total mining power and so they can obtain more revenue than the expected ratio
proportional to their mining power. Another relevant result is outlined in the
Figure 4.2 [44]. If the selfish nodes may control a certain proportion of blocks
propagation, then the selfish nodes can succeed the selfish mining with – Æ

1
3 . For

example, if the selfish nodes have – = 1
4 , then they need that “ = 1

2 of honest nodes
mine for them, i.e. at least a majority of honest nodes receives firstly the selfish
block. Figure 4.3 [44] plots the revenue of selfish nodes with di�erent values of –

Figure 4.2: The ratio of honest nodes
according to the mining power held by
the selfish nodes to succeed the Selfish
Mining attack in Bitcoin.

Figure 4.3: The revenue of the selfish
nodes with di�erent “ compared to the
honest nodes revenue in Bitcoin.

38

Algorithm 1 Selfish mining strategy
The set of honest node HN and the set of selfish nodes SN start the mining on
the same starting block Bl,k≠1 generated by a node Pl at round k ≠ 1.
We denote by H a node in HN and by S a node in SN .
We denote by BI,k the block at round k generated by a node I œ {H, S}.

1. If H finds the next block, denoted by BH,k, before SN

BH,k is directly published since H honestly follows the protocol. SN
starts again at the beginning of the selfish mining algorithm with BH,k

as the starting block.
Selfish mining is not successful.

2. Else, if S finds the next block, denoted by BS,k, before HN

S keeps this block private and continues to mine on BS,k. Two cases are
possible:
(a) If S finds the next block BS,k+1:

SN gets ahead of HN and publishes one block at each time H
finds a new block.
Selfish mining is successful because SN continues to mine on
her private chain whereas HN has to start again their mining
at each block published by a selfish node. Thus SN earns all
the revenues of her valid blocks that she publishes.

(b) Else, H finds also the next block BH,k:
S publishes instantly her block BS,k.
A part of HN receives firstly the block BH,k and the other part
of HN receives firstly the block BS,k. Three cases are possible:
i. S finds the block BS,k+1 and publishes it:

SN earns the reward of blocks BS,k and BS,k+1.
Selfish mining is successful.

ii. H finds the block BH,k+1 mined on the block BS,k:
HN earns the reward of block BH,k+1 and SN earns the
reward of BS,k.
Selfish mining is successful.

iii. H finds the block BH,k+1 mined on their block BH,k:
HN earns the rewards of their blocks BH,k and BH,k+1.
Selfish mining is not successful.

39

and “. In particular, with (–, “) Ø (1
3 , 0) and (–, “) Ø (1

4 , 1
2), the revenue obtained

with the selfish mining is higher than the expected revenue earned by following
honestly the protocol.

A possible countermeasure to limit selfish mining strategies would be to change
the rule of mining on the first block received and the longest chain choice in the
case of a fork. For example, as proposed in [44], nodes can collect chains of same
length and choose uniformly at random one to mine the next block.

Eclipse attack

Eclipse attack [17] enables to isolate a victim node from the rest of the network to
exploit him for her own interest, such as filtering the node’s view of the blockchain,
forcing to waste computational power or using the node’s computing power. The
main idea is to control a su�cient number of IP addresses to monopolize incoming
and outgoing connections of the victim. With a certain number of addresses,
an eclipse attack can be successful with a probability of 85% [17]. Several
countermeasures are proposed in [17] such as a new mechanism to fill the addresses
tables to prevent attacker addresses to be added into tables.

An eclipse attack can be useful for selfish mining strategies for example. Indeed,
selfish nodes can increase the ratio of honest nodes who mine for selfish nodes,
denoted by “ in selfish mining strategies. Thus, blocks found by the eclipsed nodes
may be not forwarded to honest nodes and only blocks generated by selfish nodes
may be provided to eclipsed nodes. Note that, a node (specifically for Bitcoin
and public blockchain) may have several public addresses and an attacker has to
determine which ones own to the victim node. An eclipse attack is successful if
each victim node’s public address is eclipsed from others.

Cloning attack

Cloning attack [41] aims to perform a double spending attack in a Proof-of-Authority
(PoA) consensus protocol. In a PoA-based protocol, a set of authorities takes turn in
predefined order to generate new blocks. In a cloning attack, an attacker duplicates
her instance in a clone which uses her pair of public and private keys to generate
and vote for blocks. By partitioning participants into two groups that cannot
communicate between each other, an attacker and her clone can participate in the
chain of both groups. The attacker and her clone provide conflicting transactions to
their respective group. The goal is to 1) confirm the two transactions by maintaining
enough time the partitioning and 2) create a longer chain in one of the groups
in order to discard the chain of the other group. Thus, when the partitioning is
stopped, the conflicting transactions are confirmed but only one chain is selected
as the main chain due to the longest chain rule.

40

The conditions proposed in [41] to prevent the cloning attack in a PoA-based
protocol is n+f

2 < |V | < n ≠ f where V the set of authorities to confirm a block
and f is the number of malicious ones.

4.3 First formalization
In the original paper of Bitcoin [85], Nakamoto proposes a solution to solve both
the consensus problem and the double spending issue assuming open participation
without a trusted third party. However, the paper [85] does not provide formal
proof of this claim. Table 4.2 lists some of the first formalizations of the Nakamoto
PoW protocol.

Date Title Overview
2014 Anonymous Byzantine Consensus A first formal definition of Bitcoin

from Moderately-Hard Puzzles: in a synchronous model
A Model for Bitcoin [81]

2014 The Bitcoin Backbone Protocol: First formalization of fundamental
Analysis and Application [47] properties of Bitcoin protocol in a
[49, 48] synchronous model with an adver-

-sary with less than half of total
power.

2016 Analysis of the Blockchain Extend [49] in partially synchrony.
Protocol in Asynchronous
Networks [86]

2016 The Bitcoin Backbone Protocol Extend [49] in dynamic and
with Chains of Variable Di�culty partially synchronous setting.
[50]

2017 A formal model of Bitcoin Prove the properties of no double
transactions [5] spending and non-increasing value.

Table 4.2: First formalization of the Nakamoto PoW protocol.

In [47], Garay et al. formalize the core behind the Nakamoto PoW protocol,
namely Bitcoin backbone. It is defined by these three following properties:

• common-prefix with parameter k œ N: it holds that the probability for any
two honest nodes maintain the same prefix of chain by removing k blocks
from the end of their local chain increases exponentially in k.

• chain-quality with parameters l œ N and ‹ œ R: it holds that in any l

41

consecutive blocks of a chain of any honest node, the ratio of honest blocks
is at least ‹.

• chain-growth with parameters · œ R and s œ N: after s consecutive rounds,
it holds that any honest node adopts a chain that is at least · ·s blocks longer
than his local chain.

To the best of our knowledge, their paper [47] and its updated versions [49, 48]
can be considered as the first ones that present the best formalization with a
security proof in the domain of consensus protocols for blockchain. Indeed, all steps
to provide a security proof are respected: formalization of consensus protocols,
formalization of the adversary power, formalization of security properties and finally
a proof of these properties. Thereafter, works providing security proofs of consensus
protocols are mainly based on the Bitcoin backbone model.

4.4 Summary
The well-known PoW consensus protocol proposed in the Bitcoin blockchain by
Nakamoto elects in distributed manner a leader proportionally to his computing
power to generate the next block to be added into the ledger. The Nakamoto
PoW consensus protocol aims to solve the consensus problem while satisfying the
scalability and incentivation requirements of the public blockchain.

However, several issues have not been taken into account such as the fork
problem, the centralization in big pools, the selfish mining strategies and many
others as seen in this chapter. Several alternatives have been proposed to prevent
Nakamoto PoW issues based on mechanisms such as PoS, PoET, PoA and many
others [101]. New security analysis have outlined other issues such as the centralization
in richer nodes, the nothing-at-stake issue, the cloning attack, etc. Some formalization
have also been published and the paper on the Bitcoin backbone became the
influential work to analyze consensus protocols for blockchain.

With all these works, we observe that the main process in a consensus protocol
is the leader election one that elects randomly and in distributed manner a leader
to generate the next block to be added into the ledger. Thus, we focus our work
on this process in the three following chapters.

42

Chapter 5

Revisiting security analysis of
Single Secret Leader Election

Contents
5.1 SSLE overview . 44

5.2 Security model . 44

5.2.1 SSLE model . 44

5.2.2 SSLE security properties 46

5.3 Shu�ing-based SSLE construction 49

5.4 Security analysis . 51

5.4.1 Uniqueness: security proof 51

5.4.2 Fairness: a strategy to introduce a bias 51

5.4.3 Unpredictability: security proof 52

5.4.4 Liveness: a strategy to break the property 54

5.5 Tweakened shu�ing-based SSLE 55

5.5.1 Tweakened shu�ing-based SSLE construction 55

5.5.2 Security analysis of tweakened shu�ing-based SSLE . . 55

5.6 Discussion on the fairness property 57

5.6.1 Random beacon construction from an external source . 57

5.6.2 Random beacon from an internal source 58

5.7 Summary on SSLE . 60

43

5.1 SSLE overview
Recently, a formal model of Single Secret Leader Election (SSLE) scheme was
introduced in [15]. In a SSLE protocol, a group of n participants aim to randomly
choose exactly one leader such that the identity of the leader will be only known
by the chosen leader. Later, the elected leader can reveal his identity while proving
that he indeed won the election.

Three constructions are provided in [15]. A first construction is built upon
indistinguishability obfuscation [10, 52] and a second construction is built upon
threshold FHE [16]. These constructions aim to show the feasibility of constructing a
SSLE protocol and do not target real-life applications. Then, the third construction
called shu�ing-based SSLE is built upon the hardness of the Decisional Di�e-
Hellman (DDH). This shu�ing-based SSLE scheme that we study in this chapter
has been proposed as a more suitable construction for practical applications.

A SSLE scheme must meet three properties: (i) uniqueness: exactly one leader
is chosen in each election; (ii) fairness: each entity has a probability 1

n
of becoming

the leader; and (iii) unpredictability: an adversary who does not control the leader
cannot learn which entity has been elected before the leader decides to reveal
himself.

5.2 Security model
In a SSLE [15] protocol, a group of at most N participants P1, . . . , PN repeatedly
elects exactly one leader Pi. At every election, each participant learns whether he
is the leader and if yes, he can provide a proof that she was elected.

5.2.1 SSLE model
Let ⁄ be the security parameter. We assume that a fresh public randomness
Q is generated for each election. We adapt the original definition of a SSLE
scheme provided in [15]. Indeed, we simplify the model to fit better with the
construction based on the hardness of Decisional Di�e-Hellman that we focus on
in this chapter. A SSLE protocol is defined as a tuple of Probabilistic Polynomial
Time (PPT) algorithms SSLE = (SSLE.Setup, SSLE.KeyGen, SSLE.Register,
SSLE.RegisterVerify, SSLE.Elect, SSLE.Verify).

The algorithm SSLE.Setup is a process intended to be run a single time before
initiating a series of elections:

• SSLE.Setup(1⁄, N)æ pp,st0. On input 1⁄ and the maximum number of
participants N , it generates the public parameters pp and the initial state st0.

44

The algorithm SSLE.KeyGen is run by each participant before executing the
registration process:

• SSLE.KeyGen (1⁄,pp)æ sk, pk. On input 1⁄ and the public parameters pp,
it generates a secret key sk and a public key pk.

The process SSLE.Register is run by each participant when he wants to start
taking part in elections:

• SSLE.Register(i,pp,st,ski, pki) æ pi,st’. Each participant registers to
take part in elections using a unique public identity i œ {1, . . . , N}, the public
parameter pp, the current state st, the secret key ski and the public key
pki. Registration outputs an index of registration pi for a value vi

� that is
computed using the secret value ski and it modifies the state st to st’ by
adding the pair (i, pki) to the state st and by shu�ing the list of values vj’s
such that vi is ranked pi.

The participant registers once and stays registered unless he decides to leave or
he has been elected. Indeed, an elected leader has to re-register after having been
elected.
Every time a new participant has registered, each previously registered participant
has to run the process SSLE.RegisterVerify in order to verify that the registration
was carried out correctly:

• SSLE.RegisterVerify(i,pp,st,ski, pi) æ 0/1. Verification of registration is
done using participant’s secret key ski, the index of registration pi, the public
parameters pp and the current state st. It outputs 1 if the new participant
has registered correctly from the perspective of participant Pi, meaning that
Pi is able to retrieve his randomized value vi in his related bucket, and 0
otherwise.

The process SSLE.Elect is run by each participant when he wants to check whether
he is elected as the leader for the current election:

• SSLE.Elect(i,pp,st,Q, ski, pi) æ (0, ‹)/(1, fi). Leader election begins by
taking as inputs the public parameters pp, current state st, and a random
beacon Q œ R, and it outputs whether participant Pi has been chosen as
the leader. In case the participant Pi has been chosen as the leader, it also
outputs a proof of leadership computed using ski.

The process SSLE.Verify is used to check whether a participant who claims to be
the leader, when it is time for the leader to reveal himself, is indeed elected leader.

�We add this value in the model to be more accurate than [15]

45

• SSLE.Verify(i, pp, st, Q, fi)æ 1/0. Given an index i, the state st, the
election randomness Q, a proof fi claiming that a particular participant Pi

was elected leader, the verification algorithm accepts or rejects the proof that
the participant Pi has been elected leader.

5.2.2 SSLE security properties
Before describing the security properties of a SSLE scheme, we provide a generic
experiment that applies for the three defined security properties.

Generic experiment

It is played between an adversary A and a challenger C as follows.

• Setup Phase: The adversary A selects the maximum number of participants
N . The challenger C runs SSLE.Setup (1⁄, N) and it outputs (pp,st0).
The adversary A selects the number of corrupted participants f < N and
a related subset M of indexes in {1, . . . , N} of size f . The challenger C

executes SSLE.KeyGen(1⁄,pp) for the uncorrupted participants and gets
corresponding values (ski, pki).

• Election Phase: The challenger C generates an election randomness Q0.
To register an uncorrupted participant, the adversary A sends the index
i of the participant to the challenger C. Then, the challenger C runs
SSLE.Register(i,pp,st,ski, pki) and it gives back to the adversary A the
values pki, pi and st’. To register a corrupted participant, the adversary
A sends the index i of the participant to the challenger C with an updated state
st’. In either case, the challenger C runs SSLE.RegisterVerify(j,pp,st’,skj,
pj) for any previously registered participant Pj which is an uncorrupted
participant. If it ever happens that there is a call to SSLE.RegisterVerify(j,
pp,st’,skj,pj) that returns 0, then the game immediately ends with output 0.
Otherwise, the state is updated to st’. The number of registered participants
is denoted by n with n Æ N .
During this phase, several elections may occur. For each new election,
the challenger first generates a new randomness Q. Then, the challenger
C executes on behalf of each uncorrupted participant Pi the algorithm
SSLE.Elect(j,pp,st,Q, skj,pj) and C sends the output (1, fij) or 0 to A.

After the election phase, a challenge phase is executed. This latter phase is
specifically defined for each property.

46

Uniqueness

The uniqueness property requires that exactly one leader is chosen in each election.
It means that exactly one participant in an election can prove that he is the elected
leader. This property is related to the safety property and more specifically to the
following requirement: only a single value is chosen. We recall the experiment of
the uniqueness property which is the same as defined in [15].

It is assumed that an adversary A can corrupt as many participants as she
wants denoted by f with f Æ n. Since a corrupted participant that is elected leader
may choose not to announce that she is the leader, it is possible that zero leader is
elected.

We denote the uniqueness experiment by UNIQUE[A, ⁄, N, f, n]. The experiment
is played between an adversary A and a challenger C as follows.

• Challenge Phase. For the election with randomness Q, the adversary
A outputs values (bi, fii) for each corrupted participant. The experiment
outputs 0 if for the election with randomness Q and state st, there is at
most one participant P

ú
i

that outputs biú = 1 and fiiú such that Verify
(iú,pp,st,Q, fiiú) = 1. Otherwise, the experiment outputs 1.

We say that a SSLE scheme S is unique if no PPT adversary A can win the
uniqueness game except with negligible probability. That is, for all PPT A, we
have:

Pr
5
UNIQUE[A, ⁄, N, f, n] = 1

6
Æ negl(⁄)

Fairness

The property of fairness means that each participant has a probability 1
n

of being
elected as the leader. However, the formal definition provided in [15] does not fit
exactly with this informal definition. Indeed, the authors consider that as long as
the probability for the adversary to be the elected leader is equal to the fraction
of adversary-controlled participants, the protocol is fair. We disagree with this
global definition of probability of success since, in a fair leader election process,
even in the set of corrupted participants, the probability that a specific corrupted
participant is elected should be 1

n
. Indeed, in some leader election protocols like

Algorand [29] or Fantomette [7], the selection of a specific participant for a given
election has an impact on following elections. This may also happen in the SSLE
assuming that the randomness Q is generated from the history of previous elections.
We discuss this remark in more detail in Section 5.6. Consequently, we adapt the
fairness game originally described in [15] in order to capture this broader notion of
fairness.

47

It is assumed that an adversary can corrupt as many participants as she wants
denoted by f with f Æ n. We denote the fairness experiment by FAIR[A, ⁄, N, f, n].
The experiment is played between an adversary A and a challenger C as follows.

• Challenge Phase. At some point, all participants have registered. Then,
the adversary A selects a participant i and one more election occurs. The
experiment FAIR[A, ⁄, N, f, n] outputs 1 if Verify(i,pp,st,Q, fii)= 1 in the
challenge election. Otherwise, it outputs 0.

We say that a SSLE scheme S is fair if no PPT adversary A can win the fairness
game with greater than negligible advantage. That is, for all PPT A, we have:

----Pr
5
FAIR[A, ⁄, N, f, n] = 1

6
≠

1
n

---- Æ negl(⁄)

Unpredictability

The property of unpredictability means that an adversary A who does not control
the leader cannot learn which participant has been elected. The unpredictability
game has been originally defined to avoid the case where there is no uncorrupted
participant in the bucket bú from which the winner of the election is elected. In that
case, A controls the winner of the election and then it is possible for A to predict the
winner. The following case has also to be taken into account: when there is exactly
one uncorrupted participant into the bucket bú, then A can predict with probability
1 who is the winner of the election. We thus adapt the unpredictability game
originally defined in [15] to prevent this specific case where A has the capability to
learn which participant has been elected.

It is assumed that A can corrupt as many participants as she wants denoted by f
with f Æ n≠2. We denote the unpredictability experiment by UNPRED[A, ⁄, N, f, n].
The experiment is played between an adversary A and a challenger C as follows.

• Challenge Phase. At some point, all participants have registered. Then,
the adversary A indicates that she wishes to receive a challenge and one more
election occurs. In this election, the challenger C does not send (bj, fij) for
each uncorrupted participant to the adversary A. Let Pi be the winner of
this election. The game ends with the adversary A outputting an index iÕ in
{0, . . . , N}. If Pi is a corrupted participant or if Pi is the single uncorrupted
participant in his bucket bú then the output of UNPRED[A, ⁄, N, f, n] is set to
0. Otherwise UNPRED[A, ⁄, N, f, n] is set to 1 if and only if i = iÕ. By default,
the output is 0.

We say that a SSLE scheme S is unpredictable if no PPT adversary A can win the
unpredictability game with greater than negligible advantage when the winner of

48

the election is uncorrupted. That is, for all PPT A, for any f Æ n ≠ 2 and n Æ N ,
we have:

Pr
5
UNPRED[A, ⁄, N, f, n] = 1 | i œ {1, . . . , N} \ M

6
Æ

1
nú + negl(⁄)

where nú is the number of uncorrupted participants in the bucket from which the
elected participant is selected.

Liveness

The liveness property is one basic security property of consensus protocols [73, 74]
and also leader election. The liveness property as defined in [7] requires that even
if a fraction of participants is controlled by an adversary A, it is still possible to
elect a leader. This informal definition means that at each election, at least one
participant provides a valid leader eligibility proof that is accepted by the other
participants. Thus, the liveness property guarantees that there is at least one
leader at each election. For instance, in a context of blockchain, this enables also
new blocks of data generated by leaders to be continually added into the ledger.
Therefore, we formally describe the liveness property which is not defined in the
original security model of a SSLE scheme [15].

The liveness experiment is denoted by LIVE[A, ⁄, N, n, f] and is played between
an adversary A and a challenger C as follows.

• Challenge phase. For the election with randomness Q, the adversary
A outputs values (bi, fii) for each corrupted participant. The experiment
outputs 0 if for the election with randomness Q and state st, there is at
least one participant P

ú
i

that outputs biú = 1 and fiiú such that Verify
(iú,pp,st,Q, fiiú) = 1. Otherwise, the experiment outputs 1.

We say that a SSLE scheme is live if no PPT adversary A can win the liveness
game except with negligible probability. That is, for all PPT A we have:

Pr[LIVE[A, ⁄, n, c] = 1] Æ negl(⁄)

5.3 Shu�ing-based SSLE construction
Hereinafter, we recall the description of the shu�ing-based SSLE construction
based on DDH introduced in [15].

Let G be a group of prime order q where DDH is hard. Let H be a hash
function.

• SSLE.Setup(1⁄, N): select a public generator g œR G and set L = {}.
Output pp= (g, N) and st0 = L.

49

• SSLE.KeyGen(1⁄,pp): select a random value ki œR {0, 1}
⁄. Compute

(dki, pki) = H(ki). The public key is pki and the secret key is ski = (ki, dki).

• SSLE.Register(i,pp,st,ski, pki). The current state st can be parsed as
follows: st= (L, pk1, . . . , pk(i≠1)).

– Make a first update of the state st by adding pki to the list pk1, . . . , pk(i≠1).

– Then, select a random value ri œR Zq. If there is any entry at index pi

in L whose value is ‹, then replace it by (gri , gridki). Else, append the
pair (gri , gridki) to L and set pi = |L|.

– Next, sample a random permutation � on Á
Ô

NË elements and set b = pi

mod
Ô

N .

– Finally, update L, and thus the current state st, such that each entry
Lj·b = (uj·b, vj·b) is replaced by Lj·b = (urj

�(j)·b, v
rj

�(j)·b) for rj œR Zq, where
Lj·b denotes the entries in L at index j = b mod

Ô
N for 1 Æ j Æ |L|.

The output is (pi, stÕ) with pi the updated index where the participant’s new
entry has been moved by �.

• SSLE.RegisterVerify(i,pp,st,dki, pi). Parse the current state st = (L,
pk1, . . . , pkn) and recover the value b of the newly registered participant.
Then, run the following checks:

– If pi = b mod
Ô

N , then the newly registered participant is in the
same bucket as Pi and he has to check that there is exactly one entry
Lj = (uj, vj) in the bucket where j is a multiple of pi mod

Ô
N such

that udki

j
= vj and update pi = j for that entry.

– If pi ”= b mod
Ô

N , then the newly registered participant is not in the
same bucket as Pi and he has to check that there is no entry Lj = (uj, vj)
in the bucket where j is a multiple of b mod

Ô
N such that udki

j
= vj.

– Check that there are no duplicates among pk1, . . . , pkn.

If the above checks pass, then the output is 1. Otherwise, the output is 0.

• SSLE.Elect(i,pp,st,Q, ki, pi). Parse the state st = (L, pk1, . . . , pkn). Let
z be the number of times ‹ appears in L and let zÕ be the number of times
‹ appears before the ith entry of L. If pi≠zÕ ”= Q mod (N ≠ z), output 0.
Otherwise, remove entry Lpi

from L and pki from st, set fi = (i, pi, ki) and
output 1.

50

• SSLE.Verify(i,pp,st,Q, fi) Parse st = (L, pk1, . . . , pkn), fi = (i, pi, ki) and
Li = (u, v). Compute (dkÕ

i
, pkÕ

i
) = H(ki). If pi≠zÕ = Q mod (N ≠z), udk

Õ
i = v

and pkÕ
i

= pki, output 1. Otherwise, output 0.

The next election is then run with the updated L where the entry Lpi
has been

removed and entries of new registered participants have been added.

5.4 Security analysis
In this section, we analyze the shu�ing-based SSLE scheme described in Section 5.3.
For each security property, either we prove that the shu�ing-based SSLE scheme
satisfies the security property or we provide a strategy that breaks the security
property.

5.4.1 Uniqueness: security proof
The uniqueness property described in Section 5.2 has not been modified from the
original one definition of [15]. Thus, we do not recall the proof for the uniqueness
property which is exactly the same as the one provided in [15] that proves the
following theorem.

Theorem 1 For any adversary A, the shu�ing-based SSLE construction provided
in Section 5.3 is a unique SSLE scheme in the random oracle model under the
assumption that G is a group in which the DDH problem is hard.

5.4.2 Fairness: a strategy to introduce a bias
The fairness property of a SSLE protocol informally defined as, each participant
having a probability 1

n
of becoming the leader should enable, as an example, to

organize bets on who will be elected. In this case, an adversary could attempt to
introduce a bias into the election process in order to elect one specific corrupted
participant. In this section we explain the strategy enabling to introduce such a
bias in the leader election process. We explain how to detect it in Section 5.5.

Let A be a collaborative set of participants that want to make elected one
specific corrupted participant Ah with h œ {1, . . . , t}. For the sake of simplicity,
let us assume that A1, . . . At have been a�ected to the same bucket. During the
registration process, every Ai may follow the regular procedure or modify the values
of some or all collaborative participants already registered in the same bucket.
Since the security of the scheme proposed in [15] relies on the check by every
participant that he still finds his value in L, then Ai can do the following without
being detected at this stage by honest participants:

51

• Parse st= (L, pk1, . . . , pk(i≠1)).

• Select a first random value ki œR {0, 1}
⁄ and compute (dki, pki) = H(ki). Set

ski = (ki, dki) and make a first update of the state st by adding pki to the
list pk1, . . . , pk(i≠1). This step is executed in a regular way.

• Select a second random value ri œR Zq. If there is any entry at index pi in
L whose value is ‹, then replace it by (gri , gridk1). Else, it appends the pair
(gri , gridk1) to L and set pi = |L|. Note that, in this example, A1 has shared
the knowledge of the secret value dk1 with Ai.

• Sample a random permutation � on Á
Ô

NË elements and set b = pi mod
Ô

N .

• Finally, update L, and thus the current state st, such that each Lj·b =
(uj·b, vj·b) is replaced by Lj·b = (urj

�(j)·b, v
rj

�(j)·b) for rj œR Zq.

The output is (ski, pki, pi, stÕ) with pi the updated index where the participant’s
new entry has been moved by �.

When f collaborative participants are in the same bucket, they can all commit
on the same value dk1 for example by selecting di�erent values ri’s, and on di�erent
values pki without being detected during the registration phase. Thus, in the bucket
there are f values that commit on the same value dk1. The size of the bucket is
|L|Ô

N
. The probability that A1 is elected is f

|L| instead of a uniform probability 1
|L| .

5.4.3 Unpredictability: security proof
In this section, we provide the proof of the following theorem.

Theorem 2 Under the assumption that G is a group in which DDH problem is
hard, then for any adversary A, the shu�ing-based SSLE construction provided in
Section 5.3 is a

1
1

nú + negl(⁄)
2
-unpredictable SSLE scheme in the random oracle

model where nú is the minimum number of uncorrupted participants in buckets
containing uncorrupted participants.

Proof. The proof for unpredictability is an adaptation of the proof provided
in [15] by taking into account that there should be at least 2 honest participants in
buckets containing honest participants. The unpredictable proof is done through a
series of hybrid experiments.

• H0[x]: the real unpredictability game UNPRED[A, ⁄, N, f, n] with the following
additional abort condition. Le bú be the bucket from which the winner of the
challenge election is chosen. The game aborts if the xth registration is not the
last registration of an uncorrupted participant into bú before the challenge

52

election. Note that, while there is at least two uncorrupted participants
in bú during the challenge election, such a registration will always exist.
Otherwise, the winner will not be an uncorrupted participant or the winner
of the challenge election is predictable with probability 1 if there is a single
uncorrupted participant registered into bú.

• H1[x]: the same as experiment H0[x] except that instead of the winner being
defined by the participant that can produce a proof of leadership that will
be accepted by SSLE.TVerify, the winner is defined to be the participant
Pi for which udki = v where (u, v) œ L is the entry chosen by the election
randomness Q.

Since the two definitions are equivalent, H1[x] is indistinguishable from H0[x].

• H2[x]: the same as experiment H1[x] except that the experiment outputs
0 if the adversary ever queries the random oracle on the secret ki of an
uncorrupted participant who participates in the challenge election.

Any values of (dki, pki) belonging to an uncorrupted participant Pi appear inde-
-pendently random to the adversary until ki is revealed to prove that Pi has been
elected leader, unless the adversary queries H at ki with probability at most q

2⁄

if it makes q queries. The probability that the adversary queries H at a point
corresponding to any uncorrupted participant’s secret is at most Nq

2⁄ Æ negl(⁄).
Then, no PPT adversary could distinguish between H1[x] and H2[x].

• H3[x]: in this experiment, the challenger chooses the value of Q to be used in
the election challenge during the setup phase instead of during the challenge
phase so that the challenger knows at setup time which bucket the leader will
be chosen from in the election challenge.

In H3[x], the distribution of messages sent by the challenger is not modified and it
is identical to H2[x] in terms of adversary’s view. Then, no PPT adversary could
distinguish between H2[x] and H3[x].

• H4[x]: the same as in experiment H3[x] except that the challenger is behaving
di�erently in the xth registration. During this registration, instead of replacing
each Lj·bú = (uj·bú , vj·bú) = (uj·bú , udki

j·bú) by Lj·bú Ω (urj

�(j)·bú , u
dkirj

�(j)·bú) for rj Ω

Zq for entries corresponding to the secret dki of uncorrupted participant Pi,
it sets Lj·bú Ω (urj

�(j)·bú , u
dk

ú
i

rj

�(j)·bú) for a new random key dkú
i

Ω Zq which from
then on plays the role of dki in determining whether participant Pi has won
the election.

53

We refer to [15] for the proof that H4[x] is indistinguishable from H3[x] assuming
that the DDH assumption holds in G. We now show that for all adversaries, we
have that:

Pr [H4[x | i œ {1, . . . , N}\M]] Æ
1
nú

with nú
Ø 2 being the number of uncorrupted participants in the bucket bú. In

H4[x], all the uncorrupted participants’ entries in bucket bú appear random, i.e.
as (ga, gb) with a and b random values selected from Zq. Thus the contents of
bucket bú are distributed independently of the "winning" participant Pi. Thus the
adversary A can do no better than choosing an uncorrupted participant at random
from the set of participants registered in bucket bú. In the best case, the bucket
bú contains the minimum value of uncorrupted participants. Thus the adversary
wins the unpredictability game in H4[x] with probability at most 1

nú ; that is, with
probability 1

2 in the best case.

5.4.4 Liveness: a strategy to break the property

Informally, the liveness property requires that even if a fraction of participants
is controlled by an adversary A, at least one participant provides a valid leader
eligibility proof accepted by other participants at each election. We provide a
strategy that shows that the liveness property is not guaranteed in the shu�ing-
based SSLE scheme.

By construction of the shu�ing-based SSLE scheme, each participant secretly
determines if he is elected as leader and his identity remains hidden until he decides
to reveal his leader eligibility proof. Indeed, each participant determines with his
position pi, where his secret ki is committed in L, if this equality pi ≠ zÕ = R
mod (N ≠ z) is verified. If this is the case, the elected participant broadcasts his
eligibility proof fi = (i, ki, pi). Thus, the non-elected participants cannot learn
who is the leader before he reveals his eligibility proof fi since we cannot learn
which participant has committed the secret at the position pi in L selected with Q
without the knowledge of ki. Moreover, at each election, exactly one participant is
chosen as leader by the uniqueness property of the shu�ing-based SSLE scheme.

The strategy is as follows. In the case where a corrupted participant At is chosen
as leader, this means that At obtains the output (1, fit) Ω SSLE.Elect(t,pp,st,Q,
skt, pt). The corrupted leader At may choose to not reveal that she is elected and
does not sent (1, fit) to other participants. By the uniqueness of the shu�ing-based
SSLE scheme, the other participants Pi output (0, ‹) Ω SSLE.Elect(i,pp,st,Q, ski,
pi). Therefore, for this election there is no leader with a non-negligible probability
of f

n
.

54

5.5 Tweakened shu�ing-based SSLE
In this section, we provide a modification of the shu�ing-based SSLE scheme to
detect the strategy of Section 5.4.2 by adding a checking step. Then, we provide a
security analysis of this modified shu�ing-based SSLE scheme, called tweakened
shu�ing-based SSLE.

5.5.1 Tweakened shu�ing-based SSLE construction
When a participant Pi is elected, he has to reveal the value dki and ki. With the
knowledge of dki, anyone can detect that the coalition of f malicious participants has
misbehaved. Indeed, once the proof of the elected participant is provided, anyone
can parse the current state st = (L, pk1, . . . , pkn) and run the following check.
For all pj such that pj mod

Ô
N = pi mod

Ô
N , the corresponding participant

is in the same bucket as the elected participant Pi. Then, for all pj, anyone can
check whether the corresponding entry Lj = (uj, vj) is such that udki

j
= vj. If

yes, then there is a duplicate and the election has to be invalidated. Note that
this additional check enables to detect not only that there is a duplicate but also
the number of duplicates. Another election occurs to elect a leader by deleting
the duplicated value and its duplicates in L. We can be sure that the duplicated
value and its duplicates are owned by corrupted participants since the algorithm
SSLE.RegisterVerify(i,pp,st,dki, pi) ensures that no one can duplicate an entry
of an uncorrupted participant without being detected. So, a participant who has
duplicated an entry in L is a corrupted participant and thus, duplicated entries
correspond to a registered corrupted participant.

In order to detect the strategy described in section 5.4.2, we propose a slight
modification of the process SSLE.Verify(i,pp,st,Q, fi) as follows.

• SSLE.TVerify(i,pp,st,Q, fi): Parse st = (L, pk1, . . . , pkn), fi = (i, pi, ki)
and Li = (u, v). Compute (dkÕ

i
, pkÕ

i
) = H(ki). If pi≠zÕ = Q mod (N ≠ z),

udk
Õ
i = v and pkÕ

i
= pki, output 1. Otherwise, output 0.

For all pj such that pj mod
Ô

N = pi mod
Ô

N , then the corresponding
participant is in the same bucket as the elected participant Pi. Anyone can
check whether the corresponding entry Lj = (uj, vj) is such that udki

j
= vj.

If yes, then there is a duplicate. Then, replace all entries Lj = (uj, vj) such
that udki

j
= vj by ‹ and the output is 0. Otherwise, all the above checks pass

and the output is 1.

5.5.2 Security analysis of tweakened shu�ing-based SSLE
In this section, we analyze the tweakened shu�ing-based SSLE scheme described in
Section 5.5.1. In particular, we provide a strategy that breaks the liveness property

55

and we prove the following theorem.

Theorem 3 Let G be a group in which DDH problem is hard. For any adversary A,
the tweakened shu�ing-based SSLE construction is a unique, fair and

1
1

nú + negl(⁄)
2
-

unpredictable SSLE scheme in the random oracle model where nú is the minimum
number of uncorrupted participants in buckets containing uncorrupted participants.

Proof. We provide the proofs for the properties of uniqueness, fairness and
unpredictability that therefore prove Theorem 3.

Uniqueness proof: The SSLE.RegisterVerify and SSLE.Elect algorithms
ensure that the element in L selected with the random value Q corresponds exactly
to one secret ki and so exactly one participant is elected. The new check step done
in SSLE.TVerify does not impact neither SSLE.RegisterVerify nor SSLE.Elect
and ensures also that the winner with the corresponding secret ki has committed
only once his secret in the list L. Thus, the proof of the uniqueness is the same as
Section 5.4.1 and proves that the tweakened shu�ing-based SSLE guarantees the
uniqueness property.

Fairness proof: The fairness property follows directly from the construction
where exactly one entry is selected uniformly at random to be the leader in
each election. The checks done in RegisterVerify ensure that each uncorrupted
participant registers once in L with one secret dki and thus each entry in L

corresponds to one uncorrupted participant. Thus, any given uncorrupted participant
has a probability 1

n
of being elected. The new checks done in SSLE.TVerify ensure

that a corrupted participant whose secret is duplicated in several entries in L is
discarded from the election and SSLE.TVerify outputs ‹ if this participant is
selected as leader in SSLE.Elect. Then, every corrupted participant has to be
registered once in L with her corresponding secret to have the chance to be leader
and so has also a probability 1

n
of being elected.

Unpredictability proof: The new check step done in SSLE.TVerify does
not reveal any information on the elements in the bucket bú in which the leader
is selected. Thus, the elements in bú appear random to the adversary A until the
corresponding secret is revealed. If the adversary A does not control the leader,
then the leader A can do not better than choosing an uncorrupted participant at
random from bú to predict the leader. Thus, the proof of the unpredictability is the
same as Section 5.4.3 and proves that the tweakened shu�ing-based SSLE scheme
guarantees the unpredictability property.

Strategy against the liveness. In the tweakened shu�ing-based SSLE scheme
of Section 5.5.1, we can apply the same strategy described in Section 5.4.4. Indeed,
as in the shu�ing-based SSLE scheme, each participant secretly determines if
he is elected as leader and remains hidden until he reveals his eligibility proof.

56

Thus, a corrupted leader can choose to not reveal her eligibility proof and by the
uniqueness property of the tweakened shu�ing-based SSLE scheme, there is no
leader for this election. Therefore, the liveness property is not satisfied in the
tweakened shu�ing-based SSLE scheme. The detail of the strategy can be found
in Section 5.4.4.

5.6 Discussion on the fairness property
In this section, we motivate our definition of the fairness property. Let us first
recall both definitions of fairness:

• Definition 1 [15]: each uncorrupted participant has the probability 1
n

to be
elected and in a set of f corrupted participants, the probability that one of
them is elected leader is f

n
.

• Definition 2 : each participant, even in the set of corrupted participants, has
the probability 1

n
to be elected leader.

Note that in Definition 1, it is possible that in the set of f corrupted participants,
the probability that one of them is elected leader is f

n
and the other f ≠ 1 corrupted

participants have a probability zero of being elected. We compare these two
definitions in order to outline that in some cases satisfying only Definition 1 may
lead to an issue whereas satisfying Definition 2 prevents this issue. For that, we
analyze the use of the leader election output to construct a random beacon [91]
which is a common generator to obtain a random value Q. We consider two
constructions: (1) a first construction using the result of the election process as an
external source of entropy such as using the result of Bitcoin consensus protocol
in [18]; and (2) a second construction using an internal source such as the history
of a previous election like in Algorand [29] and Fantomette [7].

5.6.1 Random beacon construction from an external source
In [18], Bonneau et al. propose a construction of random beacons from the
result of the Bitcoin consensus protocol and show the importance of manipulation-
resistant property of random beacon that guarantees that the output Q cannot be
manipulated to be more advantageous for the adversary.

Following this idea, a random beacon value Q could be computed with the
result of the shu�ing-based SSLE leader election, e.g. data of the leader such as his
identity i and his secret ki. If we use the SSLE scheme according to Definition 1 of
Section 5.3, a set of f corrupted participants can run the strategy of Section 5.4.2
to bias the leader election and thus the random beacon construction.

57

To this end, they choose the most advantageous pair (i, ki) that belongs to a
corrupted participant Ai and duplicate ki in f positions in L. If Ai is elected as
leader, then this means that one of f positions in L has been selected. The random
value Q is then computed using the pair (i, ki). Thereafter, Q could be used in
applications requiring randomness such as a lottery or another random beacon for
a consensus protocol.

With this random beacon construction that uses the result of the SSLE leader
election according to Definition 1 as described in Section 5.3, the random value Q
can be manipulated by a set of corrupted participants. In particular, the pair (i, ki)
is chosen such that the corresponding Q is advantageous for corrupted participants,
e.g. being the winner of the lottery or being the leader that provides a block in a
consensus protocol for blockchain, since the probability to select the secret ki is f

n

compared to a uniform probability.
In the case where this random beacon is constructed using the SSLE leader

election according to Definition 2 as described in Section 5.5, selecting a pair (i, ki)
cannot occur with probability better than 1

n
. Indeed, duplicates in L are detected

and this ensures that a given secret is only committed in one position in L.

5.6.2 Random beacon from an internal source
In the original SSLE paper [15], the authors propose that a fresh random value Q is
generated for each election and the mean to generate it is out of the scope of their
paper. Several works have studied how to generate this random beacon [18, 29, 7].

As in [29, 7], the random beacon construction can use data of the leader election
protocol itself. Hereinafter, we provide a construction of the random value Qr for
an election r from the output of the shu�ing-based SSLE leader election. Then,
we include this construction in the shu�ing-based SSLE leader election according
to Definition 1 as described in Section 5.3 to outline the problems that may arise.

The random beacon uses a first random value Q0 that may be chosen by all
participants. Note that a random beacon construction that would be only based
on public parameters of SSLE leader election is not suitable because it would be
predictable. This would contradict the unpredictability property of SSLE leader
election. Therefore, the construction of the random beacon needs to use the
secret information such as the secret key ki of the leader. Let’s assume that the
random value Qr used in the election r to elect a leader lr is computed as follows:
Qr = HASH(lr≠1, klr≠1) where lr≠1 is the identity of the leader elected in the
previous election r ≠ 1 and klr≠1 his secret key. Let us detail the shu�ing-based
SSLE leader election fulfilling fairness as defined in Definition 1 with this random
beacon construction. The set of n participants P1, . . . , Pn run the election r to
elect a leader as follows:

58

• The participants of the election r registered in L are those already registered
in the previous election r ≠ 1 and also the new participants which register by
running the algorithms of SSLE.KeyGen and SSLE.Register such that the
output of SSLE.RegisterVerify algorithm is 1. Note that the leader of the
round r ≠ 2 and the new participants have to register before the end of round
r ≠ 1 if they want to participate in the election r.

• After obtaining L, each participant Pi computes the random Qr using the pair
(lr≠1, klr≠1) resulting from the previous election: Qr = HASH(lr≠1, klr≠1)

• Each participant Pi runs SSLE.Elect with Qr as random value. If SSLE.Elect
outputs 1, then Pi knows that he is elected as the leader of the election r. The
participant Pi provides his eligibility proof fi = (i, pi, ki) to other participants.

• Each participant Pj verifies the leader eligibility proof fi of Pi with SSLE.Verify.
If the output is 1, then Pj considers Pi as the leader of the election r.
The random value Qr+1 will be computed with his pair (i, ki): Qr+1 =
HASH(i, ki).

Note that the random value Qr+1 will be used in the election r + 1 to elect the next
leader. Moreover, the registration process for an election r + 1 has to be completed
before the leader of the election r reveals his identity. This ensures that the random
value Qr+1 is only computed once all participants have committed their secrets.
The leader of the election r cannot register for the election r + 1 since he knows
the index in the list which is selected by Qr+1.

Since this SSLE leader election only fulfills the fairness property according
to Definition 1, a set of t corrupted participants can run the strategy described
in Section 5.4.2 in order to bias the leader election and so the random beacon
construction, in the election r for instance. To this end, f < t corrupted participants
choose a pair (i, ki) that belongs to the corrupted participant Ai and duplicate
ki in f positions in L. In particular, they choose (i, ki) such that the random
Qr+1 = HASH(i, ki) would select a position in L where one of the t ≠ f other
corrupted participants are registered. The random value Qr+1 is advantageous for
the corrupted participants since the probability to select the secret ki is f

n
instead

of the uniform probability. Note that the f ≠ 1 duplicates of ki in L become useless
if ki is selected since a pair of public-secret keys (pki, (ki, dki)) is one-time use for
the eligibility proof.

If the shu�ing-based SSLE leader election fulfills the fairness property according
to Definition 2, selecting a pair (i, ki) cannot occur with probability better than 1

n

since any duplication of a secret value in the list of participants is detected.

59

Through these two random beacon constructions, we show that the manipulation-
resistant property of random beacon can depend on the considered definition of
fairness.

5.7 Summary on SSLE
In this chapter, we revisited the single secret leader election protocol based on the
hardness of DDH. Since this protocol originally described in [15] is the most practical
one among the three proposed constructions, we considered that it deserves further
study. We first added the liveness property in the security model of a SSLE scheme
to ensure a leader election even in presence of malicious or inactive participants.
Then, we revisited the fairness property to ensure a uniform probability of being
elected even among corrupted participants. We refined also the unpredictability
property to ensure that there is at least two uncorrupted nodes in the list from
which the leader is elected and prevent the adversary learning which participant
has been elected.

Then, we considered the case of a collaborative set of participants that aim to
introduce a bias so as to make one of them elected with probability f

n
where f

is the number of corrupted participants compared to 1
n
. Note that, for a specific

election, the other f ≠ 1 corrupted participants have a probability zero of being
elected. We then explained how to detect this attack strategy and we provided a
slight modification of the specification of SSLE based on the hardness of DDH by
adding a checking step to be performed after the leader has been revealed.

Finally, this work aims to outline the importance of the fairness property where
all participants, corrupted and uncorrupted, have the same probability to be elected
as leader. Thus, we also provided two constructions of random beacon to motivate
the need for our definition of the fairness property.

Note that, the fairness definition considers equal weighting of participants
that can easily be extended to consider participants with respect to some other
distribution. For example, if the shu�ing-based SSLE scheme is combined with a
PoS mechanism, each unit of money can be considered as one registration.

60

Chapter 6

Unpredictability properties in
Algorand

Contents
6.1 Algorand overview . 61

6.2 Security model . 62

6.2.1 PLE Model . 63
6.2.2 Security properties . 64

6.3 Algorand construction 66

6.4 Security analysis . 70

6.4.1 Unpredictability proof 70
6.4.2 Strategy against the t-forward unpredictability 70

6.5 Summary on Algorand 72

6.1 Algorand overview
A promising approach to construct consensus protocols for blockchain is the
Algorand consensus protocol [28, 53, 29] used in the blockchain of the same name.
Algorand consensus protocol can be considered as a Probabilistic Leader Election
(PLE) protocol where one leader is elected on expectation [6]. An interesting
mechanism of Algorand is a new Byzantine agreement (BA) protocol based on a
Verifiable Random Function (VRF). A BA is a protocol enabling to reach a common
agreement on a value assuming Byzantine faults. A VRF [80] is a function that
takes as inputs a pair of message and secret, and outputs a random value Q and a
proof fi that Q is correctly computed.

61

Algorand consensus protocol is divided in rounds. At the first round k = 0,
a first election randomness value Q0 is agreed by the initial participants. Then,
several rounds occurs. At each round, a leader election protocol is run to elect a
participant as leader. First, each participant secretly determines if he is selected as
potential leader by computing the VRF function with as inputs his private key and
the public randomness value. His identity remains hidden until he decides to reveal
his leader eligibility proof. A number of potential leaders nl is expected at each
election. When the identities of potential leaders are revealed, a rule enables to
choose one of them as leader. Then, several steps occur to acknowledge the chosen
leader. Finally, a new random value is computed with the leader eligibility proof
and is intended to be used as random value for the next election. In the case where
there is no leader, the round is empty and the random value is computed with the
default computation.

In the original papers of Algorand [28, 53, 29], Chen and Micali introduce the
Algorand blockchain and consensus protocols. Algorand consensus protocol was
designed to operate while more than 2/3 of money are honest, i.e. more than
2/3 of money belongs to honest participants. They show that with overwhelming
probability, (a) all honest participants agree on the same block Bk generated at
round k and (b) the leader of a new block is honest with a probability of at least
ph = h2(1 + h ≠ h2) with h the percentage of participants who are honest. In [53],
Gilad et al. apply the Algorand consensus protocol [28] to achieve safety and
liveness in partial synchrony in the context of cryptocurrency

Although Algorand delivers promising result, the papers [100, 32] argue that
its security assumptions cannot be always guaranteed. In [100], Wang provides
two attacks intended to show that the assumptions of fork occurs with a small
probability and the honest majority of money may not be guaranteed if the attacker
bribes participants. In [32], Conti et al. present a DDoS attack where the adversary
floods a participant of undecidable messages in order to make him unavailable or
isolate him from other participants.

These di�erent analysis of Algorand [28, 29, 53, 100, 32] have not studied the
unpredictability property as defined in [15] that we study in this chapter. Note
that, we consider Algorand in term of number of participants that can be easily
adapted in term of money.

6.2 Security model

Let P1, . . . , Pn be the n initial participants who participate in the election process.
In a Probabilistic Leader Election (PLE) protocol, one leader is elected on expectation
[6] at each round k Ø 1.

62

6.2.1 PLE Model
Let ⁄ be the security parameter. We adapt the formal model of a SSLE [15] scheme
to fit better with PLE protocols such as Algorand. It is defined as a tuple of
Probabilistic Polynomial Time (PPT) algorithms and protocol PLE = (PLE.Setup,
PLE.KeyGen, PLE.Register, PLE.RegisterVerify, PLE.Elect, PLE.Verify)
defined as follows.

The algorithm PLE.Setup is a process intended to be run a single time at the
beginning of the protocol:

• PLE.Setup(1⁄,param)æ pp, stpub0. On input 1⁄ and the set of parameters
param, it generates the public parameters pp and the initial state stpub0.

The algorithm PLE.KeyGen is run by each participant before the registration process
to generate the keys to participate in the protocol:

• PLE.KeyGen (1⁄,pp) æ (sk1, pk1), (sk2, pk2). On input 1⁄ and the public
parameters pp, it generates two pairs of secret and public keys (sk1, pk1) used
for the election and (sk2, pk2) used for the registration and signing processes.

The algorithm PLE.Register is run by an already registered participant to register
a new participant to take part in the consensus protocol:

• PLE.Register(i,pp,k,stpubk, (ski,1, pki,1), (ski,2, pki,2), (pkiÕ,1, pkiÕ,2)) æ

stpubk+1, stprivi. An already registered participant Pi registers a new
participant PiÕ to take part in the elections by using the public parameter pp,
the round index k, the corresponding state stpubk, the secret and public keys
(ski,1, pki,1), (ski,2, pki,2) and the two public keys (pkiÕ,1, pkiÕ,2). It computes a
registration value rv with (ski,2, pki,2) and (pkiÕ,1, pkiÕ,2). It modifies the
current state stpubk to stpubk+1 by adding {rv, pkiÕ,1, pkiÕ,2} to stpubk.
Registration outputs the updated state stpubk+1 and stprivi = (ski,1, ski,2).

Every time a new participant has registered, previously registered participants have
to run the PLE.RegisterVerify algorithm to verify that the registration has been
correctly carried out:

• PLE.RegisterVerify(i,pp,k,stpubk) æ 0/1. An already registered partici-
-pant Pi verifies the registration of a new participant by using the public
parameters pp, the index of the round k and the corresponding public state
stpubk. If the state stpubk is valid, it outputs 1. Otherwise, it outputs 0.

At each round, the PLE.Elect protocol is run by each participant to elect a
leader for this round. During the PLE.Elect process, several steps occur and the
participants interact to agree on a leader:

63

• PLE.Elect(i,pp,k,stpubk,stprivi, Qk≠1) æ (0, ‹)/ (1, fi). It takes as
inputs the public parameter pp, the index of the round k, the state stpubk,
the private state stprivi and the election randomness value Qk≠1. In the
first step, the participant Pi verifies his own leader eligibility and broadcasts
his leader eligibility proof in case he is elected. Then, several steps occur to
collect a threshold of vote messages for a leader proof or for an empty round.
It outputs (1, fi) with fi = fiiÕ if there is a participant PiÕ elected as the leader
for this round k or fi = fik,Á the empty round proof if there is no leader for
this round k. In both cases, a new value Qk is also computed. Otherwise, it
outputs (0, ‹).

The process PLE.Verify is used to check whether the participant selected as leader
has been correctly elected or the empty round has been correctly voted:

• PLE.Verify(i,pp,k,stpubk, Qk≠1, fi)æ 0/1. Given the public parameter pp,
the index of the round k, the corresponding public state stpubk, the election
randomness value Qk≠1, the proofs fi claiming that a particular participant
was elected leader or an empty round was acknowledged, the verification
algorithm accepts or rejects the proof that the participant has been elected
leader or an empty round was acknowledged.

6.2.2 Security properties
In this chapter, we focus on the unpredictability aspect of Algorand. Therefore, in
this section, we formally define two unpredictability properties. In particular, we
adapt the unpredictability game provided in Chapter 5 and extend this unpredictabi-
-lity property to the new property named t-forward unpredictability. First, we
provide a generic experiment that applies for the two defined security properties.
Then, we provide the challenge phase specifically defined for each property.

Generic experiment

It is played between an adversary A and a challenger C as follows.

• PLE.Setup phase. The adversary A selects the parameter param. The
challenger C runs PLE.Setup(1⁄, param) and gives the parameters pp and
stpub0 to the adversary A. The adversary A selects a number f of participants
to corrupt and a related subset M of size f . The challenger C runs the
algorithm of PLE.KeyGen(1⁄,pp) for the uncorrupted participants and gets
corresponding values (ski,1, pki,1) and (ski,2, pki,2).

• Election Phase. The challenger C generates the first election randomness
Q0. Then, the corrupted and uncorrupted participants are registered. In either

64

case, the challenger C verifies the registration with PLE.RegisterVerify(i,pp,
k,stpubk). If it returns 0, the game immediately ends with output 0.
Otherwise, the state is updated to stpubk+1. We denote by n the number of
registered participants. During this phase, several elections may occur. For
each new election, the challenger C runs PLE.Elect(i,pp,k,stpubk,stprivi,
Qk≠1) on behalf of each uncorrupted participant Pi with the random value
Qk≠1 computed with the result of the election at the previous round k ≠ 1.
Then, C sends the outputs (1, fi) or (0, ‹) to the adversary A.

After the election phase, a challenge phase is executed. This latter phase is
specifically defined for each property.

Unpredictability property

The unpredictability property defined in [15] means that an adversary A who does
not control the leader cannot learn which participant has been elected. As discussed
in Chapter 5, this property originally defined in [15] does not consider the case
where there is exactly one uncorrupted participant into the list from which the
winner of the election is elected, then A can predict with probability 1 who is the
winner of the election. We recall the unpredictability game described in Chapter 5
that prevents this specific case.

The unpredictability experiment is denoted by UNPRED[A, ⁄, n, f] and is played
between an adversary A and a challenger C as follows.

• Challenge phase. At some point, all participants have registered. Then, an
election occurs. In this election, the challenger C does not send fij for each
uncorrupted participant Pj to A. Let Pi be the winner of this election. The
game ends with the adversary A outputting an index iÕ. If Pi is a corrupted
participant or if Pi is the single uncorrupted participant registered in the list
from which the leader is elected, then the experiment outputs 0. It outputs 1
if and only if i = iÕ. Else, it outputs 0.

We say that a PLE scheme is unpredictable if no PPT adversary A can win the
unpredictability game with greater than negligible advantage when the winner of
the election is uncorrupted. That is, for all PPT A, we have:

Pr[UNPRED[A, ⁄, n, f] = 1|i œ {1, . . . , n}\M] Æ
1

n ≠ f
+ negl(⁄)

t-forward unpredictability property

The definition of the unpredictability property only considers the current election
and the case where the adversary does not control the winner of this election.

65

However, in some election such as Algorand, a corrupted leader can have an impact
on the following elections as we show in Section 6.4.2. Moreover, in a context of
blockchain, an attacker who knows at which election she will be leader can plan
the data to add at the suitable time into the ledger. Therefore, we generalize
the unpredictability property by introducing a new property called t-forward
unpredictability to capture the case where even elected as leader, the adversary
cannot predict the next leaders.

The t-forward unpredictability experiment is denoted by FUNPRED[A, ⁄, n, f]
and is played between an adversary A and a challenger C as follows.

• Challenge phase. At some point, all participants have registered. Then, an
election occurs. In this election, the challenger C does not send fij for each
uncorrupted participant Pj to A. Let Pi0 be the winner of this election and
Pi1 , . . . , Pit

be the winners of the t following elections. The game ends with
the adversary A outputting indexes iÕ

0, iÕ
1, . . . , iÕ

t
. It outputs 1 if and only if

i0 = iÕ
0, i1 = iÕ

1, . . . , it = iÕ
t
. Else, it outputs 0.

We say that a PLE scheme is t-forward unpredictable if no PPT adversary A can
win the forward unpredictability game with greater than negligible advantage. For
all PPT A, we have:

Pr[FUNPRED[A, ⁄, n, f] = 1] Æ (f

n
+ (1 ≠

f

n
) 1
n ≠ f

) 1
nt

+ negl(⁄)

6.3 Algorand construction
In this section, we first recall the definition of verifiable random functions (VRF)
and then provide the construction of Algorand.

Verifiable random function. A verifiable random function V RF [80] consists
of three algorithms (G, E, V). Given a security parameter ⁄, G produces a pair of
public and secret keys (pk, sk). The algorithm E takes as inputs a message m and
a secret sk to produce the value v and the corresponding proof fi. The algorithm V
takes as inputs a message m, a public key pk, a value v and a proof fi and accepts
by outputting Y ES or refuses with the output NO. The properties [80] of a VRF
function are the following:

• Uniqueness: no value (pk, m, v, vÕ, fi, fiÕ) such that v ”= vÕ can satisfy
V (pk, m, v, fi) = V (pk, m, vÕ, fiÕ) = Y ES

• Provability: for all m, if E(m, sk) = (v, fi) then V (pk, m, v, fi) = Y ES

• Pseudorandomness: v is indistinguishable from a truly random value.

66

Algorand [28, 53, 29] selects at each round/election k, one leader among n
participants P1, . . . , Pn. At each election, a number of potential leaders nl is
expected to reveal their identities. When the identities of potential leaders are
revealed, a rule enables to choose one of them as leader. Then, several steps occur
to validate the participant selected as leader.

We denote by V Sk,s the set of validators of round k at step s. Let HASH be
a hash function, SIGN be a signature scheme and V RF be a verifiable random
function.

• PLE.Setup(1⁄,param): parse the set of parameters param= {nl, nv, lb, m}

where nl is the expected number of potential leaders in each election, nv is
the expected number of validators in each step of an election, lb is the look
back parameter to select the set of participants for an election and m the
maximal number of steps in an election. Initialize L = {}, PK0 = {} and
the randomness Q0. Output pp= (nl, nv, lb, m) and stpub0 = (L, PK0, Q0).

• PLE.KeyGen (1⁄,pp): generate the secret and public keys (ski,1, pki,1) of
the VRF function V RF ; and the public and secret keys (ski,2, pki,2) of the
signature scheme SIGN . Output (ski,1, pki,1), (ski,2, pki,2).

• PLE.Register(i,pp,k,stpubk, (ski,1, pki,1), (ski,2, pki,2), (pkiÕ,1, pkiÕ,2)): parse
the state stpubk and PKk = ((pk1,1, pk1,2, a1), (pk2,1, pk2,2, a2), . . . , (pkiÕ≠1,1,
pkiÕ≠1,2, aiÕ≠1)). If (pkiÕ,1, pkiÕ,2) /œ PKk, then Pi registers a new participant
PiÕ by generating the value rvi,iÕ = (pki,1, (pkiÕ,1, pkiÕ,2), aiÕ , signi) where
signi = SIGN [ski,2](pki,1, (pkiÕ,1, pkiÕ,2), aiÕ). In other words, the value rvi,iÕ

transfers an amount of money aiÕ from the account related to pki,1 to the new
one related to pkiÕ,1. Update stpubk to stpubk+1 by replacing (pki,1, pki,2, ai)
by (pki,1, pki,2, ai ≠ aiÕ) and by adding (pkiÕ,1, pkiÕ,2, aiÕ) to PKk and rvi,iÕ to
L. Output stpubk+1 and stprivi= (ski,1, ski,2).

• PLE.RegisterVerify(i,pp,k,stpubk): parse the state stpubk= (L, PKk)
and recover the value rvj,jÕ = (pkj,1, (pkjÕ,1, pkjÕ,2), ajÕ , signj) of the newly
registered participant PjÕ . Verify ajÕ Æ aj for the tuple (pkj,1, pkj,2, aj) œ PKk

and signj with pkj,2 is valid. If the above checks pass, then it outputs 1. Else
it outputs 0.

• PLE.Elect(i,pp,k,stpubk≠lb,stprivi, Qk≠1): The participant Pi such that
(pki,1, pki,2, ai) œ stpubk≠lb runs the following steps during the round k.

– At step s = 1, the participant Pi computes the target plk = nl

|P Kk≠lb| .
Then Pi computes the VRF output ‡i,k = V RF [ski,1](HASH(Qk≠1, k))
and the corresponding VRF proof ci.

67

� If HASH(‡i,r) Æ plk, the participant Pi computes the contribution
–i,k = HASH(Qk≠1)ski,1 and broadcasts his eligibility proof fii =
(‡i,k, ci, –i,k).

Then, in either case, Pi starts the step 2.
– At step s = 2, the participant Pi collects the proofs of potential leaders

fijÕ . Then, Pi computes the target pvk = nv

|P Kk≠lb| and the value “i,k,2 =
V RF [ski,1](HASH(Qk≠1, k, 2)). If HASH(“i,k,2) Æ pvk, then Pi œ

V Sk,2 and he can select one proof fij = (‡j,k, cj, –j,k) such that
� HASH(‡j,k) Æ plk,
� HASH(‡j,k) Æ HASH(‡jÕ,k) for all received VRF output ‡jÕ,k

� and ci is valid
Then, Pi sets vote = fij and broadcasts the vote message vmi,2 =
(“i,k,2, vote, signi) where signi = SIGN [ski,2](vote). Else, if none proof
passes the above verification steps or if Pi receives zero proof of potential
leaders, then he broadcasts a vote message for the value vote = Á that
represents an empty round. Then, in either case, Pi starts the step 3.

– At step s = 3, the participant Pi collects the vote messages vmj,s≠1 =
(“j,k,s≠1, vote, signj) from validators in V Sk,2. If Pi œ V Sk,3 that means
that HASH(“i,k,3) Æ pvk, and if Pi receives at least 2nv

3 + 1 of valid
vote messages vmj,2 for the same value vote from di�erent validators
Pj, then Pi broadcasts a vote message vmi,3 = (“i,k,3, vote, signi) where
signi = SIGN [ski,2](vote). Else, Pi broadcasts a vote message for the
value vote = Á. Then, in either case, Pi starts the step 4.

– At step s = 4, the participant Pi collects the vote messages vmj,s≠1 =
(“j,k,s≠1, vote, signj) from validators in V Sk,3. If Pi œ V Sk,4 that means
that HASH(“i,k,4) Æ pvk, and if he receives at least 2nv

3 + 1 of valid vote
messages vmj,3 for the same value vote ”= Á from di�erent validators Pj,
then Pi broadcasts a certify message cmi,4 = (0, “i,k,4, vote, signi) where
signi = SIGN [ski,2](0, vote). Else, Pi broadcasts a certify message
cmi,4 = (1, “i,k,4, vote, signi) with signi = SIGN [ski,2](1, vote) and the
value vote is defined as follows:

� vote = Á if Pi receives at least 2nv

3 + 1 of valid vote messages
vmj,s≠1 = (“j,k,s≠1, vote, signj) for the same value vote = Á from
di�erent validators Pj.

� any vote ”= Á if Pi receives at least nv

3 + 1 of valid vote messages
vmj,s≠1 = (“j,k,s≠1, vote, signj) for the same value vote ”= Á from
di�erent validators Pj.

� vote = Á otherwise.

68

Then, in either case, Pi starts the step 5.
– At the step 5 Æ s Æ m ≠ 1, if Pi œ V Sk,s, i.e. HASH(“i,k,s) Æ pvk, then

he acts as follows:
� Ending Condition 0: if Pi receives at least 2nv

3 + 1 valid certify
messages cmj,s≠1 = (0, “j,k,s≠1, vote, signj) for the same value vote =
fijÕ from di�erent validators Pj, then Pi computes Qk = HASH(–jÕ,k,
k), sets fi = (k, fijÕ , CERTjÕ) where CERTjÕ is at least 2nv

3 + 1 valid
certify messages cmj,s≠1 for fijÕ from di�erent validators Pj. The
output is (1, fi).

� Ending Condition 1: else, if Pi receives at least 2nv

3 + 1 valid certify
messages cmj,s≠1 = (1, “j,k,s≠1, votej, signj) for any value votej, then
Pi computes Qk = HASH(Qk≠1, k) and sets fiÁ = (k, Á, CERTÁ)
where CERTjÁ is at least 2nv

3 + 1 valid certify messages cmj,s≠1 for
any value votej from di�erent validators Pj. The output is (1, fiÁ).

� else, Pi recovers the value vote as in step s = 4 and broadcasts
cmi,s = (1, “i,k,s, vote, signi) if Pi receives more than 2nv

3 + 1 valid
certify messages of the form cmj,s≠1 = (1, “j,k,s≠1, votej, signj) for
any value votej. Else, Pi broadcasts cmi,s = (0, “i,k,s, vote, signi).
Then, in either case, Pi starts the step s + 1.

– else, this means s = m �, Pi verifies Ending Condition 0. Else, he
verifies Ending Condition 1. Else Pi sets vote = Á and broadcasts
cmi,m = (1, ‡i,k,m, vote, signi).

Else, this means HASH(‡i,k,s) > pvr or the step m does not enable to output.
At any step s > 4 if Pi enters in Ending condition 0 or Ending condition 1.
Else the output is (0, ‹).

• PLE.Verify(i,pp,k,stpubk≠lb, Qk≠1, fi): If fi ”= fiÁ, parses stpubk≠lb and
fi = (k, (‡j,k, cj, –j,k), CERTj). Verify if cj is valid, HASH(‡j,k) Æ plk and
HASH(‡j,k) Æ HASH(‡jÕ,k) for all received VRF outputs ‡jÕ,k. If CERTj is
a set of at least 2nv

3 + 1 valid certify messages for fi from di�erent validators
and for s Ø 4, then Pi computes Qk = HASH(–j,k, k) and output 1. Else,
if fi = fiÁ, the participant Pi verifies that fi is a set of at least 2nv

3 valid
certify messages for any value. If yes, he computes Qk = HASH(Qk≠1, k)
and output 1. Otherwise, output 0.

The next election is then run at the round k+1 with the public state stpubk+1≠lb

and the random value Qk.
�
m is chosen such that with overwhelming probability, the PLE.Elect protocol has ended

before this step m [28, 29]

69

6.4 Security analysis
In this section, we analyze the unpredictability and t-forward unpredictability
properties defined at Section 6.2.2.

6.4.1 Unpredictability proof
The unpredictability property means that an adversary A who does not control the
leader cannot learn which participant has been elected. Let HASH be a random
oracle. In this section, we provide a proof of the following theorem:

Theorem 4 For any adversary A, the Algorand leader election protocol provided
in Section 6.3 is unpredictable in the random oracle model under the assumption of
the pseudorandomness property of the verifiable random function.

Proof. Suppose that the adversary A wins the unpredictability game. Then, at
some point of the challenged election k, the adversary A outputs the index iÕ such
as Pi is an uncorrupted participant and PLE.Verify(i,pp,k,stpubk≠lb, Qk≠1, fi)
with fi = (k, fiiÕ , CERTiÕ) outputs 1. This means that the adversary A can
predict which VRF outputs ‡iÕ,k is the lowest value such that HASH(‡iÕ,k) Æ plk.
Then, this means that the adversary A can distinguish ‡iÕ,k from a random value
with a non-negligible advantage. This implies that the attacker has broken the
pseudorandomness property of the VRF function.

Therefore, the adversary cannot do better than randomly selecting an uncorrupted
participant in the list Lk of registered participants to know who has been elected
at election k, i.e. with a probability of at most 1

n≠f
.

6.4.2 Strategy against the t-forward unpredictability
In this section, we provide a strategy that breaks the t-forward unpredictability
property for the specific setting nl = 1. This means that if the leader does not
reveal her leader eligibility proof, then there is no leader for this election and the
next random value is computed with the default computation. The strategy enables
an adversary A elected at a given election to predict the leaders of the t next
elections.

The idea of the attack is the following. At the election of a round k, a corrupted
participant is elected as leader and sends her eligibility proof fi only to the corrupted
participants. If the next random value computed with the proof fi elects corrupted
participants as leaders for the next elections, then fi is revealed to the uncorrupted
participants. Else, if the next random value computed with the default computation
enables corrupted participants being elected as leaders for the next elections, then

70

fi is not revealed to the uncorrupted participants. By default, fi is revealed to the
uncorrupted participants. Thus, with a non-negligible advantage, the corrupted
participants can predict the leaders of the next elections with this strategy. First,
we describe the strategy in more detail in the next paragraph for one following
election and then we extend the strategy for any number t of following elections.

Strategy for one following election

Let A be a set of f corrupted participants A1, . . . , Af . We assume that at the
election of a round k, a corrupted participant Al is elected as leader and generates
her leader eligibility proof fil = (‡l,k, ci, –l,k) as computed in Section 6.3. Then, Al

sends fil only to A and each Ai performs the following protocol during the step 1
of PLE.Elect:

Each Ai computes the following values
• The two possible next random values Qk = HASH(–l,k, k) and Qk,Á =

HASH(Qk≠1, k).

• The two possible VRF outputs ‡i,k+1 = V RF [ski,1](HASH(Qk, k + 1)) and
‡Õ

i,k+1 = V RF [ski,1](HASH(Qr,Á, k + 1)).
Then, the set of corrupted participants checks the following verification steps:

• If HASH(‡i,k+1) Æ plk+1 (Eq1) for any corrupted participant Ai, then Al

reveals fil to the uncorrupted participants

• else, if HASH(‡Õ
i,k+1) Æ plk+1 (Eq2) for any corrupted participant Ai, then

Al does not reveal fil.

• else, this means that none corrupted participant is elected as the leader at
round k + 1 neither with ‡i,k+1 nor with ‡Õ

i,k+1, then Al reveals fil to the
uncorrupted participants

Thereafter, the other steps of PLE.Elect protocol are performed in regular manner.
Thus, the probability that one of corrupted participants is elected at round k

and the adversary A can predict the leader at round k +1 is f

n
(f

n
+(1≠

f

n
) f

n
) instead

of f

n
·

1
n
. Indeed, the leader at round k is a corrupted participant with probability f

n
.

A leader is corrupted at round k + 1 with Qk, i.e. Eq1 is verified, with probability
f

n
. A corrupted participant is elected at round k + 1 with Qr,Á, i.e. participants

check Eq2 if Eq1 is not verified with probability (1 ≠
f

n
), and Eq2 is verified with

probability f

n
. The probability that one of uncorrupted participants is elected as

leader at round k and A can predict the leader at round k + 1 does not change
with the selfish strategy and is (1 ≠

f

n
) 1

n≠f
·

1
n
. Finally, the adversary can win the

1-forward predictability game with probability f

n
(f

n
+ (1 ≠

f

n
) f

n
) + (1 ≠

f

n
) 1

n≠f
·

1
n
.

71

Strategy for t following elections

The strategy described in the previous paragraph can be extended for any t following
elections. Indeed, with the two possible randomness values Qk = HASH(–l,k, k)
and Qk,Á = HASH(Qk≠1, k), the corrupted participants verify which random value
enables to consecutively elect corrupted leaders until the round k + t. If this is the
case with Qk, then fil is revealed to the uncorrupted participants. Else, if this is
the case with Qk,Á, then fil is not revealed to the uncorrupted participants. Then,
participants verify which random value enables to consecutively elect corrupted
leaders until the round k + t ≠ 1. If this is the case with Qk, then fil is revealed
to the uncorrupted participants. Else, if this is the case with Qk,Á, then fil is not
revealed to the uncorrupted participants. And so on, until the round k + 1. In the
case where none participant in A is elected as leader at round k + 1 neither with
Qk nor with Qk,Á, then fil is revealed to the uncorrupted participants.

Thus, the adversary A can win the t-forward unpredictability game of Section
6.2.2 with probability f

n
((f

n
)t + (1 ≠ (f

n
)t)(f

n
)t) + (1 ≠ (f

n
)t) 1

n≠f
·

1
nt instead of

(f

n
+ (1 ≠

f

n
) 1

n≠f
) 1

nt .

6.5 Summary on Algorand
In this chapter, we analyzed the unpredictability properties in Algorand leader
election protocol [57]. In particular, we showed that the unpredictability property
defined in [15] is satisfied by Algorand. Then, we generalized this unpredictability
property to the t-forward unpredictability to capture the case where an adversary
elected as leader cannot predict the leaders of the t following elections. Finally, we
described a strategy enabling an adversary who corrupts f participants to predict
the next leaders. Indeed, when the number of potential leaders at each round is
set to nl = 1, this strategy increases the probability that the leader is corrupted
and she predicts the t next leaders to f

n
((f

n
)t + (1 ≠ (f

n
)t)(f

n
)t) + (1 ≠ (f

n
)t) 1

n≠f
·

1
nt

instead of (f

n
+ (1 ≠

f

n
) 1

n≠f
) 1

nt with at most f participants are corrupted among the
n participants. Therefore, the Algorand’s parameter nl originally sets in Z

+ [28]
has to be properly chosen. Indeed, nl may be erroneously set to 1 for the sake of
simplification and e�ectiveness of the consensus protocol as this enables to reduce
the number of verification of potential leaders proofs, which is not a suitable choice.
Note that, in the last implementation of the Algorand consensus protocol [2], nl is
set to 20.

72

Chapter 7

Security model and application to
LEP-TSP

Contents
7.1 Overview . 74

7.2 Security model . 76

7.2.1 SLE Model . 76

7.2.2 Security properties . 78

7.3 LEP-TSP leader election construction 81

7.3.1 Prerequisites and assumptions 81

7.3.2 Validators selection and acknowledgement threshold . . 82

7.3.3 Lowest value rule . 83

7.3.4 Protocol description . 83

7.4 Security analysis . 88

7.4.1 Uniqueness: security proof 88

7.4.2 Fairness: security proof 90

7.4.3 Unpredictability: security proof 91

7.4.4 t-forward unpredictability: security proof 91

7.4.5 Liveness: security proof 93

7.5 Summary . 94

73

7.1 Overview
With the previous works provided in the last chapters, we define a security model
of Single Leader Election (SLE) protocol with the five following security properties
that aim to prevent well-known issues:

• The uniqueness property originally defined in [15] requires that exactly one
leader is chosen in each election. This property is important to prevent forks
where there are two or more valid leaders for an election. In a blockchain
context, the fork may lead to two valid chains that extend the same block. As
already seen in Chapter 4, this may delay the ledger consistency and impact
its performance since participants converge to the same blockchain view only
when the fork is resolved. Moreover, the fork may be leveraged to adopt
rational strategies such as the selfish mining [44] as described in Chapter 4.
The uniqueness property may be comparable to the common prefix property
of Bitcoin backbone [49] that, however, does not prevent the fork in the last
blocks.

• The fairness property defined in [15] means that each participant has a
probability of 1

n
of becoming the leader at each election. This ensures that

each participant has the same chance to be leader at each election. Note that,
for the sake of simplicity our fairness definition considers equal weighting
of participants. However, it can easily be extended to consider participants
with respect to some other distribution. For example, in a Proof-of-Stake
consensus protocol, fairness could state that participants are selected as
leader proportionally to the money they have invested. The fairness property
may guarantee fair applications such as the random beacon described in
Section 5.6. Unlike the fairness property, the chain quality property of
Bitcoin backbone [49] does not prevent an adversary to increase her chance
of being selected as leader during an advantageous chosen round. For this
round, applications like a lottery which use the result of the leader election
protocol as randomness source [18] may be unfair, e.g. increasing the chance
of being the winner of the lottery.

• The unpredictability property defined in [15] means that an adversary who
does not control the leader cannot learn which participants has been elected.
This property aims to prevent an attacker from targeting the leader in DoS
attacks, thus makes him unavailable to provide data to be added into the
ledger. This property may also prevent a predictable leader from being
bribed [17].

• The t-forward unpredictability property ensures that, even elected as leader,
the adversary cannot predict the next leaders. This property generalizes the

74

unpredictability property [15] by capturing the case where the leader of the
current election may be corrupted and the t following leaders have also to
remain unpredictable. This property may prevent to bias the leader election
process. For example, in some election protocol such as Algorand [28, 53, 29],
a specific participant elected as leader for a given election may have an impact
on following elections. This strategy is described in Chapter 6 Section 6.4. In
a blockchain context, an adversary who knows at which election she will be
elected leader can plan the data to add at a suitable time into the ledger. For
example, this may be advantageous for high frequency trading if transactions
are added at a suitable time into the ledger.

• The “-liveness property as defined in [7] requires that, even if a fraction “ of
participants is controlled by an adversary, it is still possible to elect a leader.
This is a basic property of leader election protocols which guarantees new
data to be continually added into the ledger. For example, this prevents an
attacker from making a ledger useless due to the inability to add new data
into a ledger. For example, in a cryptocurrency application, an attacker can
impact the currency value by making the ledger useless with a DDoS for
example and win easily money (as described in Chapter 4). Guaranteeing
the “-liveness property can prevent this type of attack. Thus, in a blockchain
context, the liveness property defined in this chapter ensures that one block is
added into the ledger at each election compared to the chain growth property
of Bitcoin backbone [49] that does not guarantee this.

Then, we propose a SLE construction called LEP-TSP which is a new leader
election protocol between n participants using one or several external Trusted
RNG Service Providers (TSP) based on [54]. Every TSP uses the random number
generator (RNG) of a Hardware Security Module (HSM). These TSPs act as
external service providers which generate and provide random values, and they are
not involved in the leader election process. This enables to reduce computation
cost to elect a leader compared to the Bitcoin PoW consensus protocol [85] or the
multiparty coin flipping protocol of Ouroboros [68]. Moreover, the TSPs assign
exactly one random value at each participant for each election by tracking random
values requests. Therefore, this strengthens the fairness of LEP-TSP to guarantee
a uniform probability of being leader.

Our LEP-TSP protocol is designed for permissioned setting, i.e. the participants
who take part in the protocol are authenticated. LEP-TSP operates while at most
one third of participants are inactive or corrupted, i.e. entirely controlled and
coordinated by an adversary. Our protocol meets the expected security properties
in the random model oracle.

Broadly speaking, LEP-TSP proceeds as follows. It is divided in rounds. At
each round k of LEP-TSP, one leader is elected among n participants. To this

75

end, each participant is associated to exactly one TSP provider. Note that, it is
possible for several participants to share the same TSP as discussed in Section 7.3.1.
First, each participant requests a random value from his TSP and broadcasts to
other participants a participation value� computed with the obtained random value
and a public value generated in the previous election. Then, the participant with
the lowest participation value is selected as leader. Finally, the participants run
several steps to acknowledge the same selected leader by collecting a threshold of
acknowledgement messages. The leader elected at round k provides a contribution
value Bk intended to be used in the election at round k + 1.

7.2 Security model
We consider a group of n participants P1, . . . , Pn which use m external TSPs
T SP1, . . . , T SPm to request random values. We also assume that the n participants
P1, . . . , Pn agree to establish a certification authority CA that provides certificates
to the participants and TSPs to authenticate each other.

In a Single Leader Election (SLE) protocol, the n participants P1, . . . , Pn

elect exactly one leader Pk at each round/election k. At every election k, each
participant Pi requests a random value ri from his TSP T SPai

and uses it to
compute a participation value pi. The participant with the lowest participation
value is elected as leader.

7.2.1 SLE Model
Let ⁄ be a security parameter. A SLE protocol is defined as a tuple of Probabilistic
Polynomial Time (PPT) algorithms and protocols defined as follows: SLE = (Setup,
KeyGen, Register, RegisterVerify, Elect, Verify).

Setup protocol is a process intended to be run a single time before initiating a
series of elections:

• Setup(1⁄,param)æ pp,st0. It takes as input the security parameter 1⁄ and
the set of parameters param, e.g. time intervals to collect messages or the
threshold of acknowledgement for a leader. It generates the pair of secret and
public keys (skCA, pkCA) of the certification authority CA. Then, it generates
the pair of secret and public keys (skT SPa

, pkT SPa
) of the TSP T SPa and

gets the certification certT SPa
for the public key pkT SPa

from CA. The initial
�As described in Section 7.3.4, the participants send in same time as their participation values,

a value Q intended to be used in the next election. For example, in a blockchain context, Q may
be a block of transactions.

76

participants P1, . . . , Pn agree on a first value B0, e.g. B0 may be the genesis
block in a blockchain context. It initializes the list of registered participants
L0. It outputs the public parameters pp and the initial state st0.

KeyGen algorithm is run by each participant before executing the registration
process:

• KeyGen (1⁄,pp)æ sk, pk. On input 1⁄ and pp, it generates a secret key sk
and a public key pk.

Register protocol is run by each participant when he wants to start taking part
in elections:

• Register(i,pp,k,stk,ski, pki) æ stk+1. Each participant registers to take
part in elections using a unique public identity i, the public parameter pp, the
index of the round k, the corresponding state stk, the secret key ski and the
public key pki. It selects one authorized TSP T SPai

and gets a certification
certi for the tuple (i, pki, pkT SPai

) from the certification authority CA. It
modifies the state stk to stk+1 by adding the tuple (i, pki, pkT SPai

, certi) to
the state stk.

Every time a new participant is registered, each previously registered participant
has to run RegisterVerify algorithm in order to verify that the registration was
correctly carried out:

• RegisterVerify(i,pp,k,stk,stk≠1) æ 0/1. Verification of a new participant
Pj’s registration from the perspective of the participant Pi is done using the
public parameters pp, the index of the round k, the corresponding state stk

and the previous state stk≠1. It outputs 1 if the state stk is valid and 0
otherwise.

At each round, Elect protocol is run once by each participant to elect a leader.
During Elect process, several steps occur and the participants interact to agree on
a leader as follows:

• Elect(i,pp,k,stk,ski, Bk≠1) æ (0, ‹)/(1, fi). It takes as inputs the public
parameters pp, the index of the round k, the corresponding state stk, the
secret ski and the public value Bk≠1 generated in the previous election.
Each participant Pi requests a random value ri from his TSP T SPai

and
computes the participation value pi with the values ri and Bk≠1. Then, the
participant Pi broadcasts pi. The participant with the lowest participation
value is selected as leader. Finally, several steps occur to collect a threshold
of acknowledgement for the same leader. If the threshold is reached, then
it outputs (1, fi) where fi is the leader eligibility proof generated with the
acknowledgement messages. Else, it outputs (0, ‹).

77

Verify algorithm is used to check whether the participant selected as leader has
been correctly elected.

• Verify(i,pp,k,stk,Bk≠1,fi)æ 1/0. Given an index i, the public parameters
pp, the index of the round k, the corresponding state stk, the contribution
value Bk≠1 and a proof fi claiming that a particular participant Pi was elected
leader, the verification algorithm accepts or rejects the proof fi that Pi has
been elected leader.

7.2.2 Security properties
Before describing the security properties of a SLE protocol, we provide a generic
experiment that applies for the five defined security properties.

Generic experiment

The generic experiment is played between a challenger C and an adversary A as
follows.

• Setup Phase: The adversary A selects the set of parameters param. The
challenger C runs Setup(1⁄, param) and gives (pp,st0) to the adversary
A. The adversary A selects the number of corrupted participants f and a
related subset M of f indexes. The challenger C executes KeyGen(1⁄,pp) for
the uncorrupted participants and gets the corresponding values (ski, pki).

• Election Phase: To register an uncorrupted participant, the adversary
A sends the index i of the participant to the challenger C. Then, C runs
Register(i,pp,k,stk,ski, pki) and it gives back to the adversary A the state
stk+1. To register a corrupted participant, the adversary A sends the index i
of the participant and an updated state stk+1 to the challenger C. In either
case, the challenger C runs RegisterVerify(j,pp,k + 1,stk+1,stk) for any
previously registered participant Pj which is an uncorrupted participant. If it
ever happens that there is a call to RegisterVerify(j,pp,k + 1,stk+1,stk)
that returns 0, then the game immediately ends with output 0. Otherwise, the
state is updated to stk+1. The number of registered participants is denoted
by n.
During this phase, several elections may occur. For each new election, C runs
on behalf of each uncorrupted participant Pi the algorithm Elect(i,pp,k,stk,
ski, Bk≠1) and C sends the output (1, fi) or (0, ‹) to A.

After the election phase, a challenge phase is executed and it is specifically defined
for each property.

78

Uniqueness

The uniqueness property requires that exactly one leader is chosen at each election.
It means that exactly one participant in an election can prove that he is the elected
leader. The uniqueness game originally defined in [15] does not consider the case
where at a given election k, an adversary can corrupt specific participants in order
to create a fork from previous elections kÕ

Æ k. Indeed, in some elections such as
Algorand, the adversary can start a fork from a previous round in order to create a
longer chain than the main chain [100]. Thus, due to the longest rule, the adversary
can rewrite the history. Therefore, we adapt the experiment of the uniqueness
property defined in [15] to fit with the LEP-TSP protocol and to capture this
specific case.

We denote by UNIQUE[A, ⁄, f, n] the uniqueness experiment which is played
between an adversary A and a challenger C as follows.

• Challenge Phase. The adversary A outputs values (bj, fij) for each corrupted
participant. The experiment outputs 0 if for the election at the round k
with the state stk, each participant PiÕ outputs the same value (1, fii) Ω

Elect(iÕ,pp,kÕ,stkÕ,skiÕ , BkÕ≠1) such that Verify(i,pp,kÕ,stkÕ,fii,BkÕ≠1)=
1 for each kÕ

Æ k. Otherwise, the experiment outputs 1.
We say that a SLE protocol is unique if no PPT adversary A can win the uniqueness
game except with a negligible probability. That is, for all PPT A, we have:

Pr
5
UNIQUE[A, ⁄, f, n] = 1

6
Æ negl(⁄)

Fairness

The property of fairness means that each participant has a probability of 1
n

of being
elected as the leader. We recall the fairness game already revisited in Chapter 5
that considers that even in the set of corrupted participants, each participant has
a probability 1

n
of being elected as the leader.

We denote the fairness experiment by FAIR[A, ⁄, f, n] which is played between
an adversary A and a challenger C as follows.

• Challenge Phase. At some point, all participants are registered. Then, the
adversary A selects an participant PiÕ and one more election occurs. Let Pi

be the winner of this election. The experiment outputs 1 if and only if i = iÕ.
Else, it outputs 0.

We say that a SLE protocol is fair if no PPT adversary A can win the fairness
game with greater than negligible advantage. That is, for all PPT adversary A, we
have: ----Pr

5
FAIR[A, ⁄, f, n] = 1

6
≠

1
n

---- Æ negl(⁄)

79

Unpredictability

The property of unpredictability [15] means that an adversary A who does not
control the leader cannot learn which participant has been elected. We adapt the
refined unpredictability game of Chapter 5 to fit better with an LEP-TSP protocol.

We denote by UNPRED[A, ⁄, f, n] the unpredictability experiment. The experiment
is played between an adversary A and a challenger C as follows.

• Challenge Phase. At some point, all participants are registered and one
more election occurs. In this election, the challenger C does not send the
participation value pj for each uncorrupted participant Pj to the adversary
A. Let Pi be the winner of this election. The game ends with A outputting
an index iÕ. If Pi is a corrupted participant or if Pi is the single uncorrupted
participant registered in the list L, then the experiment outputs 0. Otherwise,
it outputs 1 if and only if i = iÕ. By default, the output is 0.

We say that a SLE protocol is unpredictable if no PPT adversary A can win
the unpredictability game with greater than negligible advantage when the winner
of the election is uncorrupted. That is, for all PPT adversary A, for any f Æ n ≠ 2,
we have:

Pr
5
UNPRED[A, ⁄, f, n] = 1 | i œ {1, . . . , N} \ M

6
Æ

1
n ≠ f

+ negl(⁄)

t-forward unpredictability

The t-forward unpredictability ensures that even elected as leader, the adversary
cannot predict the next leaders. We recall the t-forward unpredictability game
introduced in Chapter 6.

The t-forward unpredictability experiment is denoted by FUNPRED[A, ⁄, n, f]
and is played between an adversary A and a challenger C as follows.

• Challenge phase. At some point, all participants are registered. Then,
an election occurs. In this election, the challenger C does not send the
participation value pj for each uncorrupted participant Pj to A. Let Pi0 be
the winner of this election and Pi1 , . . . , Pit

be the winners of the t following
elections. The game ends with the adversary A outputting indexes iÕ

0, iÕ
1, . . . , iÕ

t
.

It outputs 1 if and only if i0 = iÕ
0, i1 = iÕ

1, . . . , it = iÕ
t
. Else, it outputs 0.

We say that a SLE protocol is t-forward unpredictable if no PPT adversary A can
win the t-forward unpredictability game with greater than negligible advantage.
For all PPT adversary A, we have:

Pr[FUNPRED[A, ⁄, n, c] = 1] Æ (f

n
+ (1 ≠

f

n
) 1
n ≠ f

) 1
nt

+ negl(⁄)

80

Liveness

The “-liveness property as defined in [7] requires that even if a fraction “ of
participants is controlled by an adversary A, it is still possible to elect a leader.
We adapt the liveness game already defined in Chapter 5 to fit better with an
LEP-TSP protocol.

We denote by – the fraction of corrupted participants and — the fraction of
network fault, i.e. the fraction of uncorrupted participants whose communication
is controlled by the adversary A. The liveness experiment LIVE[A, ⁄, n, –, —] is
played between an adversary A and a challenger C as follows.

• Challenge phase. The adversary A outputs values (bj, fij) for each corrupted
participant. The experiment outputs 0 if, for the election at the round k with
the state stk, at least one participant PiÕ outputs (1, fii) Ω Elect(iÕ,pp,k,stk,
skiÕ,Bk≠1) such that any participant who verifies the pair (1, fii) outputs
1 ΩVerify(i,pp,k,stk,fii,Bk≠1). Otherwise, the experiment outputs 1.

We say that a SLE protocol is ”-live, with – + — < ”, if no PPT adversary A can
win the liveness game except with a negligible probability. That is, for all PPT
adversary A, we have:

Pr[LIVE[A, ⁄, n, –, —] = 1] Æ negl(⁄)

7.3 LEP-TSP leader election construction
In this section, we first briefly introduce the prerequisites and assumptions for our
protocol. Then, we detail our construction of LEP-TSP protocol.

7.3.1 Prerequisites and assumptions
In this section, we detail the assumptions about n and m which are the numbers
of registered participants and TSPs respectively.

Trusted RNG service providers (TSP)

In our LEP-TSP protocol, n participants use m external TSP to request random
values. Each TSP is an external service that provides exactly one random value per
election and per participant. A tracking list may be stored in each TSP to register
who requests a random for which election. Thus, this may prevent to deliver more
than once time a random value to a participant for a given election. Each TSP
has to be certified by the certification authority to be used in the protocol. We
assume that TSPs generate trusted random values using a HSM and cannot be

81

compromised. Each TSP uses a trusted timer functionality which returns the
current round number.

The number of TSPs in LEP-TSP is set to 2 Æ m Æ n. Indeed, m > 1 enables
to prevent the centralization to one component that may lead to a single point of
failure issue. The upper bound m Æ n may limit the number of TSP by participant
to one. Indeed, since each TSP is limited to deliver one random value per election
and per participant, a participant can request several random values from di�erent
TSPs and then chooses the one enabling to increase her chance to win the election.

It is possible that some TSP are not used. In the case where a TSP provider
becomes unavailable or is corrupted during a period of time, it is necessary to
exclude it from the list of authorized TSP providers used in the protocol. The
participants using this useless or corrupted TSP have to be registered with another
authorized one. The detection and replacement of useless TSP provider is left for
future work.

Two third of honest participants

We assume that at least 2n

3 +1 participants in LEP-TSP are honest, i.e. performing
all the protocol instructions. Two third of honesty is the common assumption of
the Byzantine fault tolerant (BFT) protocols [75, 24] enabling to guarantee security
properties such as safety and liveness properties. Our protocol inherits these
two third of honest participants assumption which also enables to guarantee the
desired security properties and in particular the uniqueness and liveness properties
under di�erent network assumptions. The liveness is achieved when more than
2n

3 + 1 participants are perfectly capable of sending and receiving messages and the
uniqueness is guaranteed even with a partitioned network between the 2n

3 +1 honest
participants. Note that, there exists consensus protocols assuming just a half of
honesty. However, to the best of our knowledge, these protocols are vulnerable to
fork issues that LEP-TSP prevents.

7.3.2 Validators selection and acknowledgement threshold
At each election of our LEP-TSP protocol, the participant with the lowest participation
value is selected as leader and has to be acknowledged by a threshold of participants.
In our LEP-TSP protocol, the acknowledgement of a leader is based on Algorand
committee selection [29]. It is done through multiple subsets of participants named
validators instead of all participants in order to improve liveness requirement.

Broadly speaking, at each step s Ø 2 of an election k, a validators set V Sk,s of
expected size nv is randomly and secretly selected among all participants, i.e. their
identity remains hidden until they send their acknowledgement for the selected
leader. At step 2, the set V Sk,2 selects the participant with the lowest participation

82

value as leader. At steps s Ø 3, the set V Sk,s acknowledges the selected leader if
the threshold th = 2nv

3 + 1 of acknowledgement for the same leader is received from
V Sk,s≠1. We refer to [29, 53] for the choice of nv enabling a reasonable trade-o�
between liveness and uniqueness properties†.

A participant Pi runs the following steps to learn if he is selected in the validators
set V Sk,s at step s of the election k:

• Send to his TSP T SPai
a request message reqi,k,s = (k, i, certi,RNGack, s, rsigni)

where rsigni = SIGN [ski](i, k,RNGack, s). If reqi,k,s is valid and is the first
request for this step s of the election k, then the TSP T SPai

saves reqi,k,s,
generates a random value ri,s and returns to Pi the message asgi,k,s =
(k, reqi,k,s, ri,s, asigni) where asigni = SIGN [skT SPai

](k, reqi,k,s, ri,s).

• Compute the target pvk = nv

|Lk≠lb| where lb is a look back parameter to choose
the set of participants for this election k.

• If HASH(Bk≠1||ri,s||s) Æ pvk, then Pi œ V Sk,s, i.e. Pi is selected as validator
for the step s of the round k.

At each step where the participant Pi is selected in the set of validators V Sk,s, he
broadcasts his vote according to the specification of the protocol (as described in
Section 7.3.4) along with his validator eligibility proof fii,k,s = (asgi,k,s).

7.3.3 Lowest value rule
At each election, each participant requests a random value r from his TSP provider
and uses it to compute a participation value p. Then, the participant with the
lowest participation value is elected as leader. Compared to Algorand with a
specific setting and SSLE, the lowest value rule enables to guarantee that at least
one participant is selected as leader at each election, assuming that there is at
least one honest participant registered in the leader election protocol. Indeed, in
Algorand and SSLE, if the leader is corrupted, it is possible that there is no leader
for this election. We choose also this lowest value rule to prevent a waste of time
as in the PoET-based protocol where each participant has to wait a waiting time
before proposing a new block.

7.3.4 Protocol description
At each round k of our LEP-TSP protocol, one participant is elected as leader
among the n participants P1, P2, . . . , Pn. Let HASH be a hash function and
S = (KGEN, SIGN, V ERIF) be a signature scheme.

†In particular, nv may be suitable chosen to guarantee uniqueness condition except with a
probability of 5 ◊ 10≠9 [29].

83

• Setup(1⁄,param). Parse the set of parameters param= {t2, max, {ts}
max

s=3 , th,
m, nv, lb} where t2 is the time interval to collect the participation values, max
is the maximal number of steps in an election, {ts}

max

s=3 are times to collect the
acknowledgement messages at each step 3 Æ s Æ max, th is the number of
acknowledgement messages to agree on the selected leader, m is the number of
TSPs used in the protocol, nv the expected number of validators in each step
of an election k and lb is the look back parameter to select the validators set.
The certification authority CA is set up outside from the n participants and
uses KGEN to get the secret key skCA and the corresponding public key
pkCA. Next, KGEN is run to obtain the pairs of secret and public keys
(skT SP1 , pkT SP1), . . . , (skT SPm

, pkT SPm
) for the m TSPs T SP1, . . . , T SPm.

For each public key pkT SPa
, the pair (T SPa, pkT SPa

) is sent to the certification
authority CA which returns the certification certT SPa

= SIGN [skCA](T SPa,
pkT SPa

). For each TSP T SPa, a tracking list T LT SPa
= {} is initialized.

Then, a first value B0 agreed by the n participants is generated. The list of
registered participants is initialized L0 = {}. The initial state is set as follows:
st0 = (B0, L0, (T SP1, pkT SP1 , certpkT SP1

), . . . , (T SPm, pkT SPm
, certpkT SPm

)).
It outputs pp= (t1, {ts}

max

s=2 , th, nv, lb, max) and st0.

• KeyGen (1⁄,pp). Run KGEN to generate a secret key sk and the corresponding
public key pk of the signature scheme SIGN .

• Register(i,pp,k,stk,ski, pki). Parse the state stk and the corresponding
list Lk = ((1, pk1, pkT SPa1

, cert1), (2, pk2, pkT SPa2
, cert2), . . . , (i ≠ 1, pki≠1,

pkT SPai≠1
, certi≠1)). The participant Pi selects a public key pkT SPai

œ Lk of
an authorized TSP T SPai

œ stk. Then, Pi provides (i, pki, pkT SPai
) to the

certification authority CA which returns certi = SIGN [skCA](i, pki, pkT SPai
).

The participant Pi updates stk to stk+1 by adding (i, pki, pkT SPai
, certi) to

stk. It outputs stk+1.

• RegisterVerify(i,pp,k,stk,stk≠1). Parse the states stk≠1 and stk. Verify
|Lk≠1| < |Lk|+ |Lk|

10 . Parse stk and recover the value (j, pkj, pkT SPaj
, certj) of

the new participant Pj. The participant Pi verifies if there is no duplicate of
both identity j and public key pkj in stk. Then, Pi checks if pkT SPaj

œ stk,
V ERIF (pkCA, (T SPaj

, pkT SPaj
), certT SPaj

) = 1 and V ERIF (pkCA, (j, pkj,
pkT SPaj

), certj) = 1. If the above checks pass, then it outputs 1. Else, it
outputs 0.

84

• Elect(i,pp,k,stk,ski,Bk≠1). The election protocol is based on the Algorand
leader election described in Chapter 6. The participant Pi runs the following
steps to elect the leader of the round k.
Step s = 1

– Pi sends to his TSP T SPai
a request message reqi,k = (k, i, certi,

RNGprt, rsigni) where rsigni = SIGN [ski](i, k,RNGprt) and RNGprt is
the tag to inform his TSP that Pi requests a random for computing his
participation value.

– T SPai
checks the following verifications: k is the index of the current

round, reqi,k /œ PT SPai
, V ERIF (pkCA, (i, pki, pkT SPai

), certi) = 1 and
V ERIF (pki, (i, k,RNGprt), rsigni) = 1. If the above checks pass, T SPai

adds reqi,k to T LT SPai
, generates a random value ri and returns to Pi

the assignment message asgi,k = (k, reqi,k, ri, asigni) where asigni =
SIGN [skT SPai

](k, reqi,k, ri).
– When the participant Pi receives asgi,k from his TSP provider, Pi verifies

if V ERIF (pkT SPai
, (k, reqi,k, ri), asigni) = 1. If yes, Pi computes his

participation value pi = HASH(Bk≠1||ri) and chooses a value Bi. Then,
Pi broadcasts to other participants the participation message prti =
(k, pi, asgi,k, Bi, psigni) where psigni = SIGN [ski](k, pi, asgi,k, Bi).

Step s = 2

– During the interval t2, the participant Pi collects the participation
messages prtj from other participants. If Pi œ V Sk,2, then Pi sets the
proof fii,k,2 (as in Section 7.3.2) and verifies if there is exactly one valid
participation message received from a participant Pj. Otherwise, Pi

discards the participant Pj from the election. Next, Pi selects one
participation message prtl = (k, pl, asgl,k, Bl, psignl) such that

� asgl,k = (k, reql,r, rl, asignl) is valid: the index k is the current
round, reql,r is valid, V ERIF (pkCA, (k, reql,k, rl), asignl) = 1 and
(l, pkl, pkT SPa

l
, certl) œ stk

� the participation value is computed with the value Bk≠1 resulting
from the previous election and the random value provided by the
corresponding TSP T SPal

: pl = HASH(Bk≠1||rl)
� the signature is valid: V ERIF (pkl, (k, pl, asgl,k, Bl), psignl) = 1
� the participation value is the lowest one received: pl Æ pj for all pj

included in the received participation messages prtj.
The participant Pi sets vote = prtl and broadcasts his acknowledgement
message acki,k,2 = (k, vote, asgi,k,2, fii,k,2, acksigni) where acksigni =

85

SIGN [ski](k, 2, vote, fii,k,2). Else, if these above verification do not
pass or if Pi receives none participation value, then Pi broadcasts an
acknowledgement message for vote = Á.
Then, in either case‡, Pi starts Step 3.

Step s = 3

– the participant Pi collects the acknowledgement messages ackj from the
participants in V Sk,2 during the time t3. If Pi œ V Sk,3, then Pi sets the
proof fii,k,3 and executes the following actions. If Pi receives at least
2nv

3 + 1 valid acknowledgement messages ackj from di�erent validators
in V Sk,2 for the same value vote ”= Á, then Pi broadcasts acki,k,3 =
(k, vote, asgi,k,3, fii,k,3acksigni) where acksigni = SIGN [ski](k, 3, vote,
fii,k,3). Else, Pi broadcasts an acknowledgement message for the value
vote = Á.
Then, in either case, Pi starts Step 4.

Step s = 4

– the participant Pi collects the acknowledgement messages ackj from the
participants in V Sk,3 during the time t4. If Pi œ V Sk,4, then Pi sets the
proof fii,k,4 and executes the following actions. If Pi receives at least
2nv

3 + 1 valid acknowledgement messages ackj from di�erent validators
in V Sk,3 for the same value vote ”= Á, then Pi broadcasts a certify
message cmi,k,4 = (0, vote, asgi,k,4, fii,k,4, certsigni,) where certsigni =
SIGN [ski](k, 4, vote, fii,k,4). Else, the participant Pi broadcasts a certify
message cmi,k,4 = (1, vote, asgi,k,4, fii,k,4, certsigni) for the value vote
defined as follows:

� vote = Á if Pi receives at least 2nv

3 + 1 of valid acknowledgement
messages ackj,k,3 = (k, vote, asgj,k,3, acksignj, fii,k,3) for the same
value vote = Á from di�erent participants in V Sk,3.

� any vote ”= Á if Pi receives at least nv

3 + 1 of valid acknowledgement
messages ackj,k,3 = (k, vote, asgj,k,3, acksignj, fii,k,3) for the same
value vote ”= Á from di�erent participants in V Sk,3.

� vote = Á otherwise
Then, in either case, Pi starts Step 5.

Step 5 Æ s Æ m ≠ 1
‡This means that even if the participant is selected or not in the validators set of this step,

he starts the following step by waiting the messages from the validators of this step.

86

– the participant Pi collects the acknowledgement messages ackj from the
participants V Sk,s≠1 during the time ts. If Pi œ V Sk,s, then Pi sets the
proof fii,k,s and executes the following actions.

� Ending Condition 0: at any step 5 Æ sÕ
Æ s, if Pi receives at least

2nv

3 +1 valid certify messages cmj,k,sÕ≠1 = (0, vote, asgj,k,sÕ≠1, fii,k,sÕ≠1,
certsignj) for the same value vote = prtl, then he sets fi = (k, l, prtl,
ACKl) where ACKl = {th certify messages for prtl}, and Bk = Bl.
It outputs (1, fi).

� Ending Condition 1: else, at any step 5 Æ sÕ
Æ s, if Pi receives at

least 2nv

3 +1 valid certify messages cmj = (1, vote, asgj,k,sÕ≠1, fii,k,sÕ≠1,
certsignj) for any value votej, then set Bk = BÁ where BÁ is the
empty value. Set fiÁ = (k, Á, ACKÁ) where ACKl = {th certify
messages for any value}. It outputs (1, fiÁ).

� else, Pi recovers the value vote as in the step 4. The participant Pi

broadcasts cmi = (1, vote, asgi,k,s, certsigni, fii,k,s) if he has received
more than 2nv

3 +1 valid certify messages of the form cmj = (1, votej,
asgj,k,s≠1, fii,k,s≠1, certsignj) for any value votej. Else, Pi broadcasts
cmi = (0, vote, asgi,k,s, fii,k,s, certsigni). Then, Pi starts Step s + 1.

Step s = m §

– If Pi œ V Sk,m, then Pi sets the proof fii,k,m and executes the following
actions. The participant Pi verifies Ending Condition 0. Else, Pi

verifies Ending Condition 1. Else, he sets vote = Á and broadcasts
cmi = (1, vote, asgi,k,s, fii,k,m, certsigni).

If Pi /œ V Sk,s or the step m does not enable to output: at any step s Ø 5, Pi

enters in Ending condition 1 or Ending condition 0. Else, it outputs (0, ‹).

• Verify(i,pp,k,stk,fi,Bk≠1). If fi ”= fiÁ, parse the proof fi = (kÕ, i, prti, ACKi)
and prti = (kÕ, pi, asgi,kÕ , Bi, psigni). Verify if k ≠ 7 Æ kÕ

Æ k. Then, check
if (i, pki, pkT SPai

, certi) œ stkÕ and V ERIF (pkCA, (i, pki, pkT SPai
), certi) = 1.

Verify if prti is a valid participation message and ACKi contains at least
th valid acknowledgement messages for the same participation message prti.
If the above verifications pass, set Bk = Bi and output 1. If fi = fiÁ, verify
if ACKÁ contains at least th valid acknowledgement messages for certify
messages for any value. If yes, output 1. Else output 0.

§
m is chosen such that with overwhelming probability, Elect protocol has ended before this

step m [28, 29]

87

7.4 Security analysis
We call the winner random value the random value r provided by the TSP provider
enabling to obtain the lowest participation value p. Therefore, the participant with
the winner random value is elected as leader.

Hereinafter, we analyze the uniqueness, fairness, unpredictability, t-forward
unpredictability and liveness of the LEP-TSP protocol. Let HASH be a random
oracle.

7.4.1 Uniqueness: security proof
In this section, we prove the following theorem:

Theorem 5 For any adversary A which corrupts f Æ
n

3 ≠ 1 participants, the
LEP-TSP protocol provided in Section 7.3.4 is unique under the unforgeability
of the signature scheme and the unpredictability and randomness of the random
number generator in the random oracle model.

Proof. The game is the following. At the election at the round k with the
corresponding state stk, the adversary A runs Elect(j,pp,k,stk,skj,Bk≠1) for
each corrupted participant Pj and get the value (bj, fij). The adversary A wins the
uniqueness game (Section 7.2.2) when there is a fork at a round kÕ

Æ k, i.e. at
least two di�erent participants output (1, fii1) ΩElect(j,pp,k,stk,skj,Bk≠1) and
(1, fii2) ΩElect(j,pp,k,stk,skj,Bk≠1), respectively, such that Verify(i1,pp,kÕ,
stÕ

k
,fii1,BkÕ≠1) = Verify(i2,pp,kÕ, stÕ

k
,fii2,BkÕ≠1)= 1 and so Pi1 and Pi2 are

two valid leaders of the round kÕ. Note that, two participants receive the same
⁄-bit value with a probability of 1

2⁄ due to the birthday paradox since the values
are generated across the same distribution. Several cases are possible to generate
these proofs.

• Case 1: We assume that Pi1 and Pi2 request their random values to the same
TSP provider T SPa. The adversary A bias the RNG of T SPa which assigns
the same random value r to Pi1 and Pi2 who obtain the same participation
value p. Note that, the value r is the winner random value if the other
random values provided by the TSP enable to obtain a participation value
higher than p. This means that the adversary can distinguish with a non-
negligible advantage the di�erent values provided by the TSPs from a truly
random value. The proofs fii1 and fii2 are considered valid if they receive
the threshold th of valid certify messages from the validators set of a step
s Ø 4. We denote by fs the number of corrupted participants selected as
validators of the step s. At a step s Ø 4, the adversary generates th ≠ cs

88

certify messages on behalf of th ≠ fs uncorrupted participants for Pi1 and
Pi2 . Note that, a certify message cmi = (0, vote, asgi,kÕ,s, fii,kÕ,s, certsigni) is
valid if V ERIF (pki, (0, vote, asgi,kÕ,s, fii,kÕ,s), certsigni) = 1. If the adversary
A wins the game, it means that she has generated a valid random value for
Pi1 and Pi2 , and th ≠ cs valid certify messages that certify the leadership Pi1

and Pi2 . In this case, A has broken the randomness and unpredictability of
the random number generator and the unforgeability of the signature scheme.

• Case 2: the adversary A generates a valid signature asigni2,k for the corrupted
participant Pi2 such that V ERIF (pkT SPi2

, (k, reqi2,kÕ , r1), asigni2) = 1 with
r1 the winner random value provided by the uncorrupted participant Pi1

during the interval t2. As in Case 1, the adversary generates the th ≠ fs

certify messages on behalf of th ≠ fs uncorrupted participants that certify
the participant Pi2 . In this case, this would imply that the adversary A

has broken the unpredictability of the random number generator and the
unforgeability of the signature scheme.

• Case 3: During the challenged election k, the adversary A creates a fork from
the round kÕ < k as in [100]. We denote by nk the number of participants
registered in the election at round k. We prevent the fork described in [100]
with the following mechanisms:

– the limitation of registration in RegisterVerify algorithm which accepts
at most nk + nk

10 registered participants for the next round k + 1. Thus,
it is not possible from a round k to the next round k + 1, nk represents
nk+1

3 ≠ 1. In particular, we have kÕ < k ≠ 7 such that nkÕ represents
nk

3 ≠ 1.
– the proofs with an index kÕ < k ≠ 7 are discarded in Verify. Therefore,

the adversary can only create a fork from the round k ≠7. At each round
kÕ from k≠7 to k, the adversary generates fii2 such that Verify(i2,pp,kÕ,
stÕ

k
,fii2,BkÕ≠1)= 1 and i2 ”= i1 where Pi1 is the leader of the round kÕ.

If A wins the game, it means that A generates these proofs by either
biasing the RNG of TSP provider to obtain a random value ri2 enabling
to obtain a lower participation value than pi1 or forging a valid signature
on a random value ri2 . Moreover, it means that A generates valid certify
messages on behalf th≠cs uncorrupted participants selected as validators
which certify the leadership of Pi2 . This means that A has broken the
unpredictability of the random number generator and the unforgeability
of the signature scheme.

– verification in Elect by TSP providers enable to provide a random value
only for the current round. Thus, the adversary cannot create a longer

89

chain until the round k + 1 during the challenged election k.

• Case 4: Since the LEP-TSP protocol uses acknowledgement and certify
steps as in Algorand, the proof for the uniqueness property assuming that
A corrupts f Æ

n

3 ≠ 1 participants and the n ≠ f other participants may be
partitioned is also applicable. Indeed, the idea is that even if the n ≠ f are
partitioned in two groups, w.l.o.g., then the probability that the threshold th
is reached in each group to certify two di�erent leaders is small. The details
can be found in [28] at Section 10.

7.4.2 Fairness: security proof
In this section, we provide the proof of the following theorem:

Theorem 6 For any adversary A which corrupts f Æ n participants, the LEP-TSP
protocol provided in Section 7.3.4 is fair under the unforgeability of the signature
scheme, and the unpredictability and randomness of the random number generator
in the random oracle model.

Proof. Note that, the checks done in RegisterVerify ensure that each participant
Pj with his unique identity j is registered once and only with one certified public
key pkj. A second registration under the same identity j and another public key
pkÕ

j
is rejected. Moreover, RegisterVerify ensures also that each certified key

pkj is associated to exactly one authorized TSP provider. Furthermore, all TSP
providers keep track of participants’ requests at each election. Each TSP provider
registers the identity j, the corresponding public key pkj and the certification certj

of each participant Pj who requests a random value for the election k. Thus, this
ensures that only one random value at each election is assigned to each participant
who would like to participate in the election.

Assume that the adversary A wins the fairness game defined in Section 7.2.2.
This means that, at the election k, A has selected the participant PiÕ such that
Verify(iÕ,pp,k,stk,fiiÕ,BkÕ≠1)= 1. Several cases are possible to win the game.

• Case 1: the adversary A winning the fairness game means that it bias the
RNG of the TSP provider T SPa

iÕ which provides the winner random value
riÕ enabling to obtain the lowest participation value piÕ for the participant
PiÕ . This means that the adversary can distinguish with a non-negligible
advantage the di�erent values provided by other TSPs from a truly random
value. In this case, this would mean that A has broken the randomness and
unpredicatbility of the random number generator.

90

• Case 2: the adversary A can also generate a valid signature asignÕ
iÕ,k on

a value r which enables to obtain the lowest participation value. Thus,
V ERIF (pkT SPa

iÕ , (k, reqiÕ,k,r), asignÕ
iÕ,k) = 1. This means that the adversary

can distinguish with a non-negligible advantage the di�erent values provided
by other TSPs from a truly random value. In this case, A has broken the
unforgeability of the signature scheme and the unpredicatbility of the random
number generator.

Therefore, each participant in the list Lk is registered only with one certified
public key and is associated to exactly one TSP provider. Thus, at each election,
each participant receives only one random value enabling to compute one participation
value and has a probability of 1

n
of being elected as leader.

7.4.3 Unpredictability: security proof
In this section, we prove the following theorem:
Theorem 7 For any adversary A which corrupts f Æ n ≠ 2 participants, the LEP-
TSP protocol described in Section 7.3.4 is unpredictable under the unpredictability
of the random number generator in the random oracle model.

Proof. Note that, a participant knows that he is the leader of the election at
the end of the time t2, i.e. when all participation values are revealed and his
participation value is the lowest one.

Suppose that the adversary A wins the unpredictability game defined in
Section 7.2.2. Then, at some point of the challenged election k, the adversary A

outputs the index iÕ such that PiÕ is an uncorrupted participant and Verify(iÕ,pp,k,
stk, fiiÕ , Bk≠1)= 1. It means that the adversary A can learn which value riÕ provided
by the TSP provider T SP iÕ is the winner random value. Thus, the adversary A

can guess with a non-negligible advantage the di�erent outputs of TSPs and which
one is the winner random value. This implies that the attacker has broken the
unpredictability property of the random number generator.

Therefore, to predict the leader of the current election, the adversary cannot
do better than randomly choosing an uncorrupted participant in the list Lk of
registered participants, i.e. with a probability of at most 1

n≠f
.

7.4.4 t-forward unpredictability: security proof
In this section, we provide the proof of the following theorem:
Theorem 8 For any adversary A which corrupts f Æ n participants, the LEP-TSP
protocol provided in Section 7.3.4 is t-forward unpredictable under the unpredictability
and randomness of the random number generator in the random oracle model.

91

Proof Assume that the adversary A wins the t-forward unpredictability game
defined in Section 7.2.2. This means that, at some point of the challenged election
k, the adversary A outputs the indexes iÕ

0, iÕ
1, . . . , iÕ

t
such that the participants

Pi
Õ
0
, Pi

Õ
1
, . . . , Pi

Õ
t

are the leaders of the challenged election k and the t following
elections k + 1, . . . k + t, respectively. We can distinguish two possible cases: either
Pi

Õ
0

is a corrupted participant, or Pi
Õ
0

is an uncorrupted participant.

• In the case where the leader Pi
Õ
0

is an uncorrupted participant, the adversary
A predicting the leader Pi

Õ
0

means that it can guess with a non-negligible
advantage which outputs are provided by TSP providers and which one is the
winner random value. Note that, at each election, the participants have to
request a new random value to compute their participation value to take part
in the election. Thus, to predict the t next leaders, the adversary A guesses
with a non-negligible advantage which outputs provided by TSP provider
for the t next elections and which values ri1 , . . . , rit

are the winner random
values of the t next elections. In this case, the adversary A has broken the
unpredictability property of the random number generator.
To predict the t next leaders, the adversary A can also bias the RNG of a
TSP provider which provides the winner random values ri1 , . . . , rit

enabling
to obtain the lowest participation values pi

Õ
0
, . . . , pi

Õ
t

for the participants
Pi

Õ
1
, . . . , Pi

Õ
t
. This means that the adversary A can guess with a non-negligible

advantage the di�erent outputs of TSPs and which one is the winner random
value. In this case, A has broken the unpredictability and randomness
properties of the random number generator.

• In the case where the leader is Pi
Õ
0

corrupted, the adversary A wins the game
by predicting the t next leaders. Since new random values are requested at
each election to compute participation values, thus the adversary A guesses
with a non-negligible advantage which values ri1 , . . . , rit

provided by the TSP
providers are the winner random values for the t next elections. In this case,
the adversary A has broken the unpredictability property of the random
number generator.
The adversary A can also bias the RNG of a TSP provider which provides
the values ri1 , . . . , rit

enabling to obtain small participation values pi
Õ
0
, . . . , pi

Õ
t

and guess with a non-negligible advantage the di�erent outputs of TSPs for
the t next elections. In this case, A has broken the unpredictability and
randomness properties of the random number generator.

Thus, the adversary wins the unpredictability game with a probability of
(f

n
+ (1 ≠

f

n
) 1

n≠f
) 1

nt . Indeed, the leader of the current election is a corrupted
participant with a probability of f

n
. If the leader is not a corrupted participant,

92

then the adversary can do not better than choosing at random an participant
among the uncorrupted participants registered in the list Lk, i.e. she guesses the
leader with a probability of at most (1 ≠

f

n
) 1

n≠f
. Given the current election, A

predicts the t following leaders by randomly choosing t participants in the list Lk

and thus predicts the t following leaders with probability of at most 1
nt .

7.4.5 Liveness: security proof

In this section, we prove the following theorem:

Theorem 9 For any adversary A which corrupts f Æ
n

3 ≠1, the LEP-TSP protocol
provided in Section 7.3.4 is 1

3-live in the random oracle model.

Proof During an election k, any participant registered along with a valid certificate
delivered by the certification authority CA is authorized to participate in the election.
An authorized participant Pi requests a random value ri to his TSP provider T SPai

and broadcasts his participation value pi = HASH(Bk≠1||ri) to participate in the
election. Anyone before all participants reveal their participation value is aware of
the winner, even the leader himself. In the case where the leader is a corrupted
participant who chooses to not reveal her participation value, the participant
with the second lowest value is the lowest one in the view of honest participants.
Thus, this guarantees that at least one participation value pi is broadcasted by an
uncorrupted participant Pi.

The adversary A wins the liveness game in the case where any participation
value pi reached the threshold th of acknowledgement messages from the sets
of validators. The adversary A can corrupt f = – + — participants where –
participants are entirely controlled and coordinated by A and — are uncorrupted
participants whose A controls their communication, i.e. A can choose which
messages are received or sent to other participants. As in Algorand [53], the
liveness property is satisfied in LEP-TSP under the assumption that f Æ

n

3 ≠ 1¶.
Indeed, while the other n ≠ f Ø

2n

3 + 1 participants are uncorrupted and perfectly
capable of sending and receiving messages, a participation value pi reaches the
threshold th acknowledgement messages. The validators set size nv of each step is
su�ciently large [29, 53] to guarantee with high probability that the number of
honest participants in V Sk,s is strictly higher than the threshold th. The proof
provided in [53] at Section C2 apply in our LEP-TSP.

¶In [53], this is equivalent to the strong synchrony definition that does not allow the adversary
to manipulate the network at a large scale and does not allow network partitions.

93

7.5 Summary
In this chapter, we first defined a security model of a Single Leader Election protocol
that addresses well-known issues and attacks targeting consensus protocols, seen all
along of this first part on consensus protocols for blockchain. Then, we proposed a
construction of LEP-TSP protocol [56] which is a new leader election protocol based
on external RNG services, intended to be used in private setting. We proved that
our LEP-TSP protocol meets the expected security properties of a SLE protocol.
In particular, LEP-TSP operates while f < n

3 participants are corrupted by an
adversary, with n the total number of participants. Some topics are left for the
future work such as an improved model assuming compromised TSP providers or a
performance analysis of our protocol.

94

Chapter 8

Useful work

Contents
8.1 Overview of useful work 95

8.2 Entities and building blocks 96

8.2.1 Two type of entities . 96
8.2.2 Five building blocks . 97

8.3 Our Useful work protocol 99

8.3.1 Problem proposal . 99
8.3.2 Resources provision . 100
8.3.3 Relevant problems selection 100
8.3.4 Problems distribution 100
8.3.5 Useful work process and result announcement 101
8.3.6 Work verification . 101
8.3.7 Winner election . 102
8.3.8 Writer election and validation 102

8.4 Security analysis . 103

8.5 Variants and discussion 106

8.6 Summary on Useful Work 106

8.1 Overview of useful work
We propose the Useful Work (UW) protocol which is a variant of the PoW
mechanism where the work is used to solve any real world problem. Our UW

95

protocol is designed to be used in public setting, i.e. anyone at any time can
participate in the protocol, and it is based on PoW and PoS mechanisms. We
assume that while more than two thirds of coins are owned by honest participants,
then our UW protocol works.

Broadly speaking, our UW protocol proceeds as follows. It is divided in rounds.
At each round k, the participants compete to win useful coins. To this end, they
have to perform the computational work of problems submitted by clients and
provide a proof of their correct computations. When the computational works are
validated by a group of verifiers, a random election is run to choose one of the
participants to win useful coins. Then, a participant is elected to generate the
block Bk of valid transactions that contains also the data related to the winner of
useful coins.

This chapter is intended to give an insight on what we can do with computing
power instead of using it to solve the Bitcoin PoW puzzle. This can be served as
basis for further studies to construct a practical consensus protocol that solves any
world problems.

8.2 Entities and building blocks
In this section, we present the di�erent entities and the main building blocks of
the UW protocol.

We assume that we have a random number generator that provides trusted and
verifiable random values. Several works study how to generate such random values
in distributed manner [23, 98, 94, 93] which is out of scope of this work.

8.2.1 Two type of entities
There are two types of entities in our Useful Work protocol: one or more clients
and several participants.

Clients. The clients are external entities who need computing power for any real
world problem, e.g. scientific experiments, mathematical problems, etc. The clients
submit problems in the form of a code to run. Each client Ci owns an account
accCi

that contains an amount of useful coins related to a pair of public and secret
keys (pkCi

, skCi
).

Participants. The participants perform the computational work of submitted
problems and maintain the blockchain. They may have one or several roles: worker,
voter, verifier and writer. For example, a worker may be also selected as a verifier
or as a writer.

96

Workers perform computation works of submitted problems to win useful coins.
To this end, each worker has to run the code of a submitted problem and provides a
result along with a proof of correct computation. Voters are selected to define which
are the most relevant problems to run. Verifiers are selected to verify the result
published and/or the generated block. The verifiers may earn also useful coins for
their verification. A writer is elected to generate a block of valid transactions and
add it into the blockchain. The writer is also rewarded for his work.

Each participant Pi owns a wallet accPi
that contains an amount of useful coins

related to a pair of public and secret keys (pkPi
, skPi

).

8.2.2 Five building blocks
In this section, we describe the following five mechanisms that we use in our UW
protocol: proof of correct computation, group selection, winner and writer election,
verification process and reward distribution.

Proof of correct computation. For each executed code, a worker has to prove
the correct execution of the problem’s code. This ensures that the workers have
invested computing power and time into the blockchain, and they may be rewarded
for their work.

A first method may be to provide a hash of the executed computation. Then,
the set of verifiers executes the corresponding code and computes the hash of their
computations. If a threshold of verifiers obtains a hash equal to the hash provided
by the worker, then the work is validated.

Proofs as proposed in [13] may also be used to prove the correct computations.
Indeed, the authors of [13] present a Succinct Non-interactive ARgument of
Knowledge (SNARK) to prove the correct execution of C programs. Given a
program � in C and a time bound t to execute �, on any input x, it allows to prove
the correct execution of � after a one-time setup requiring O(|�| · t) cryptographic
operations. The prover requires O(|�| · t) cryptographic operations to generate the
SNARK proof and the verifier performs O(|x|) cryptographic operations to verify
the proof.

We denote by PROVE, the algorithm run by the workers to prove the correctness
of their computations. PROVE may take as input the problem’s code �, the time t,
the input x and the necessary keys and data according to the chosen protocol, and
output a result out and a proof of correct computation proofc.

Group selection. Our UW protocol uses a mechanism of group selection to
choose the following groups: (1) a jury of voters to select the relevant problems,
(2) a verifier set to verify the performed work and (3) a verifier set to check the

97

generated block. A participant may be selected proportionally to the amount of
useful coins owned and his contribution to the blockchain, e.g. the number of
generated blocks in the chain. Voters and verifiers have the same weight for the
vote and verification, respectively, in their group.

A group selection as in [25] may be a first solution. The authors of [25]
propose a group selection where the selected group represents the participants
proportionally to their stake and with no minority being neither underrepresented
nor overrepresented. The general idea is to begin with an empty group and add
a new member over a number of iterations, following some specific rules for the
candidate selection. The random secret election based on the VRF function of
Algorand may also be an e�cient group selection.

We define by SELECTION the algorithm executed by the participants at each
step of a round to select (or learn his owned selection in) the group of voters and
verifiers. SELECTION may take as input the index of the round k, a trusted random
value r1,k, the role of the current step, i.e. voters, verifiers of the performed work or
verifiers for the generated block, and other necessary data for the chosen protocol.
It outputs the selection proof of verifiers.

Winner and writer election. In our UW protocol, we use an election mechanism
to elect (1) a winner who wins the useful coins for his performed work and (2) a
writer who generates the next block to be added into the blockchain. The winner
and the writer may be elected proportionally to the amount of useful coin owned.
The writer is elected among the workers who provide a valid work for a submitted
problem. The winner and the writer may be the same participant. Note that,
an alternative mechanism to select a writer is required when there is no problem
available. The writer may be also selected among all participants who want to be
writer. We can use the SSLE protocol proposed in [15] or the random election of
LEP-TSP introduced in [56].

We denote by ELECTION, the algorithm that elects one winner or writer among a
set of participants. ELECTION takes as inputs the index of the round k, the trusted
random value r2,k and other necessary data according to the chosen protocol, and
outputs the winner or the writer with an eligibility proof.

Verification process. In our UW protocol, the sets of verifiers are selected to
verify the computation works and the generated blocks. These processes prevent
the workers to provide false computations and the writer to add conflicting data
into the blockchain, e.g. double spending transactions. A solution to validate the
works and blocks may be to collect a threshold of acknowledgments th from the
verifiers. The two thirds classical threshold may guarantee security requirements,
such as to be resilient to the Majority attack (as described in Section 8.4). Thus,

98

when a participant receives at least th = 2nv

3 + 1 acknowledgments that validate a
computation work (or a block), with nv the group size, then he can consider the
work (or the block) as valid (or as a part of the blockchain).

Reward distribution. When the block is considered as a part of the blockchain,
the participants involved in this block are rewarded. A fixed reward RW is
distributed among the winner, verifiers and writer. The winner earns rwworker,
each verifier who has verified the work of the winner earns rwverifier and the writer
earns rwwriter. Thus, RW = rwworker + nv · rwverifier + rwwriter. The part of the
worker rwworker may be proportional to the work performed. Each verifier may
earn the same amount rwverifier.

A mechanism to punish malicious participation may also be planned. For
example, if a threshold of verifiers invalidates the result of a worker, this latter may
lose the coins committed for his participation. A further analysis of the reward
mechanism is necessary to guarantee a fair reward for participants.

8.3 Our Useful work protocol

Our Useful Work (UW) protocol is divided in rounds where at each round k, one
block Bk is added into the blockchain. A round is divided in these following eight
steps: 1) Problem proposal, 2) Resources provision, 3) Relevant problems selection,
4) Problems distribution, 5) Useful work process and result announcement, 6) Work
verification, 7) Winner election and 8) Writer election.

8.3.1 Problem proposal

In our UW protocol, a client Ci submits his problem PBCi
with the following

information and broadcasts it to the participants: (�, –c, –m, t, f1, f2, signCi
). A

client Ci submits his problem under the form of a code �, e.g. in C, to be run. The
client estimates the number of computations –c, the memory necessary –m and the
time t to run �. The constant proposal problem fees f1 is paid by the client who
submits his problem and prevents any client to flood the network of problem. The
problem storage fees f2 · |�| is also paid by the client to prevent computational
waste in code and limit the code to only useful computation steps. Optionally, the
client may provide also a certification cert generated by an external entity, e.g.
laboratory or a university, to legitimate the origin of the problem. The client signs
his problem proposal signCi

to prove that he has submitted it.

99

8.3.2 Resources provision
Each participant who wants to be a worker, i.e. running the code of a problem
in order to win useful coins, has to make available his computing capacity. The
worker Pi may commit a stake which is an amount of coins accPi

and the amount
of memory —m available for the computations. A worker who proposes a certain
quantity of memory will obtain a problem proposal requiring an equivalent quantity
of memory.

Note that a minimum amount of committed coins may be required to prevent
an attacker to create several identities with low stake participation.

8.3.3 Relevant problems selection
Each problem proposal may be subject to a vote from a jury of voters to select the
relevant problems. Indeed, selecting some problems may prevent clients to submit
problems which may have a malicious impact for the society, e.g. breaking a secret
key, or to propose an already submitted problem with a slight modification in order
to earn easily useful coins.

The initial voters may be the creators of the blockchain. Each initial voter
may have the same weight of vote, i.e. one voter is equivalent to one vote. Next,
for each new block, a jury of voters is selected proportionally to his stake, i.e. a
participant with a large stake has more chance to be selected in the jury of voters.
The participants use the SELECTION algorithm to know who is selected as voter for
the round k.

The role of the voters is to select the most relevant problems. The vote for a
problem may be based on the number of computations, the quantity of memories and
the time necessary to run the problem’s code. Moreover, additional information
such as a certificate cert signed by an external entity may also legitimate the
problem. A voter Pi broadcasts his vote for a problem PBCj

along with his proof
of selection as voter outputted by SELECTION.

At the end of this step, the l problems PBC1 , PBC2 , . . . , PBCl
that have received

the most votes are selected for the next step.

8.3.4 Problems distribution
The relevant problems PBC1 , PBC2 , . . . , PBCl

may be randomly distributed to the
workers P1, . . . , Pn who have committed their computing capacities at Resources
provision step. A worker who has proposed a large quantity of memory will obtain
a problem proposal requiring an equivalent quantity of memory.

The jury of voters agree on which worker has which problem. For each problem
PBCj

, the voters randomly assign PBCj
to the worker Pi such that —m Ø –m where

100

—m is the quantity of memory committed by the worker Pi and –m the memory
estimated by the client Cj. An assignment proof assignP BCj

,Pi
is generated for each

worker Pi that proves that Pi has to run the code of PBCj
problem.

Note that, the value n may be larger or equal to l. In the case where l < n, two
cases may be possible. First, only l workers may have a problem to execute and the
jury does not assign a problem to the other n≠ l workers. Another possible solution
may assign one problem PB to several workers. In this case, a seed chosen for each
worker is added into the code of the problem PB to obtain unique computations
and a non predictable result. This may guarantee that each worker has to perform
the computation works to propose a result.

8.3.5 Useful work process and result announcement
The worker Pi executes the corresponding code � of the assigned problem PCj

. Then,
Pi computes HASH(workc) where workc is the set of computations executed.

The worker Pi broadcasts the following result RESPi
to prove that he has

performed the problem PBCj
: PBCj

the problem proposal, votesP BCj
the set

of votes from the jury of voters for the proposal PBCj
, assignP BCj

,Pi
the proof

of problem assignment generated in problem distribution step, (out, proofc) the
final output of the code � and the proof of correct computation outputted by
PROVE, HASH(workc) the hash of the computation executed workc and signPi

the
signature of the participant Pi who has executed the code �.

The set of votes votesP BCj
enables to prove that the corresponding problem is

in the list selected by the jury of voters in the Relevant problems selection. The
worker Pi can prove his legitimacy to execute the code of the problem PBCj

with
the assignment proof assignP BCj

,Pi
. The worker Pi provides the values (out, proofc)

outputted by PROVE algorithm to prove his honest and correct computational works.
The hash value HASH(workc) ensures the integrity of his computation workc.
The worker Pi signs his result message signPi

to prove that he has run the assigned
problem’s code.

8.3.6 Work verification
Each participant receives a set of results RESP1 , RESP2 , . . . , RESPn

. SELECTION
is run to select the set of verifiers who verify the performed work for the round k.

If the participant Pi is a verifier, then Pi verifies the proof proofc of RESPj
. If

proofc is correct, then Pi broadcasts his acknowledgement for the result RESPj

along with the proof of selection outputted by SELECTION.
If there is a threshold th of acknowledgments for the same result RESPj

, then
RESPj

is considered as valid and the corresponding worker becomes a candidate
for the winner election step described in the next paragraph.

101

8.3.7 Winner election
Among the workers who provide valid results, a winner is selected to win the useful
coins for his computational work. A random selection with ELECTION algorithm
chooses a worker as the winner to win the useful coins. The winner may be
elected proportionally to the amount of useful coins owned in his wallet and his
contribution to the blockchain. Note that a participant can earn useful coins when
he is selected as winner, verifier of the result provided by the winner or writer, and
his contribution may be measured to the number of blocks that he added into the
blockchain, for example.

The winner and the verifiers who verify the winner’s result are written into
the blockchain as described in the writer election and validation step of the next
paragraph. When the block is validated and considered as a part of the blockchain,
then the writer and verifiers earn their corresponding part of the reward for his
performed work and their verification, respectively.

The other workers who have not been chosen as winner and have proposed a
valid result may recover their stake if they do not want to participate in the next
winner election. In either case, the fees paid by clients may be sent to the workers
who provide a valid result. A problem that has been assigned to a worker but has
not received a valid result may be assigned to the next round by adding a seed
in the problem’s code. This prevents a participant to propose a result already
performed.

8.3.8 Writer election and validation
The writer election step enables to select a participant as writer to generate
and add a new block of transactions. The random election protocol ELECTION
enables to choose one of them as writer and this latter wins the right to add
his block into the blockchain. A new block Bk contains the following values:
(HASH(Bk≠1), TXS, (winner, fiwinner), fiwriter, RW). The value HASH(Bk≠1) where
Bk≠1 is the last block added into the blockchain is the classical hash value to link
the blocks of a blockchain. The set of valid transactions TXS has been verified to
prevent issues such as the double spending as described in Section 8.4. The identity
of the selected worker who wins useful coin and his winning proof (winner, fiwinner)
enable to write in immutable manner in the blockchain who wins the useful coin
for the performed work. The value fiwinner may contain the output of ELECTION
during the winner election step along with the result message of the winner, the
set of verifiers who verify his result and the threshold of acknowledgments. The
value RW is the reward distributed among the winner, verifiers and writer. The
writer proves his legitimacy with the value fiwriter outputted by ELECTION during
this step.

102

Then, a set of verifiers is selected with SELECTION to verify the block of the
writer generated at round k. When the block Bk receives the threshold th of
acknowledgments from the verifiers, Bk is considered as valid and an immutable
part of the blockchain. The block Bk is then added into the blockchain along with
the threshold th of acknowledgments. Finally, each involved participant receives
his reward, i.e. the winner, the verifiers of the result provided by the winner and
the writer who generates the corresponding block.

Note that, in the case where the elected writer is malicious or o�ine, and so
does not provide the expected block, a mechanism to replace the writer is required.
Another solution is to ensure a selection among the online participants until the
end of this step as considered in [87, 36].

8.4 Security analysis
In this section, we discuss some well-known and new attacks, and indicate how our
UW protocol prevents them.

Malicious problem proposal. A malicious client may propose a problem that
is a malware or has a bad impact for the society. A client may also be a worker that
proposes an already executed problem with (or not) a slight modification in order
to easily win coins. We prevent these problems thanks to the relevant problems
selection step that filters the problems submitted by the clients. This selection
is based on the number of computations, the quantity of memory and the time
necessary to run the problem’s code. Additional information may be added into the
problem proposal to refine the selection such as a certificate provided by a trusted
party or a problem description that argue the relevant aspect of the problem.

Coalition problem. It is possible that several workers receive the same code
to execute when there is less submitted problems than workers. In a set of
malicious workers who receives the same problem, only one worker may perform
the computational works for the assigned problem and shares her result and
computations to others malicious workers. Thus, the set of malicious workers can
decrease their computational e�ort while having the same chance to win useful
coins. Our UW protocol avoids this by adding di�erent seeds in the same code
executed by several workers. Thus, the computation for a same code may be
di�erent from a worker to another and a coalition cannot provide the same result.

Work theft. A malicious participant may steal the result of a worker and convince
other participants that she performed the work of the stolen result. Thus, the
malicious participant may participate to the winner selection and so win useful coins

103

without performing any work. Our UW protocol prevents this theft by providing
a proof that a specific participant receives a submitted problem to run. Indeed,
in the problem distribution step, the voters distribute the relevant problem to
participants who want to be workers. The agreement on who has which problem
is verifiable via the assignment proof generated during the problem distribution
step. Moreover, in the case where several workers receive the same problem, the
di�erent seeds added in the problem’s code during the problem distribution step
guarantee that each computational work is di�erent and so a malicious worker
cannot convince other participants that she has performed the work of another
worker.

Fork problem. A fork in a blockchain occurs when two blocks extend the same
block and compete to be in the main chain. This issue is limited in our UW protocol
since in the writer election, only one writer is elected. Moreover, we ensure that
only one block can reach the two thirds threshold of acknowledgements and so
validate one block at each round.

Denial of Service attack. In a DoS attack, an attacker may flood the network
of a huge amount of messages to make it unavailable. In our UW protocol, the
attacker may be a malicious client that floods of fake or useless problems. We
mitigate this issue thanks to the proposal and storage problem fees that limits
a client to submit several and large codes. A DoS attack may also be run by a
malicious worker. Indeed, she may create several identities in order to have several
assignment problems and sent to one or several victim participants false results.
We prevent this issue with requiring a minimum amount of committed coins to win
the right to participate at the winner election and with a punishment mechanism
for workers who provide invalid results and lose their committed coins.

Sybil attack. In a Sybil attack [39], an attacker creates several malicious
participants under di�erent identities to participate in the protocol, e.g. to
increase her influence on the voting and verifying steps. Our UW protocol is
Sybil resilient since the selection algorithm SELECTION is based on PoS mechanism
with a minimum amount of committed stake.The amount of committed stake has
to be suitable chosen to have a trade-o� between motivating participants to take
part in the protocol and the resilience to Sybil attacks. Moreover, an attacker
splitting her currencies for her di�erent identities cannot increase her influence on
the protocol. She may succeed a Sybil attack only by investing at least as much
coin as honest participants.

104

Majority attack. A majority attack may occur when the attacker controls more
than the majority of resources in the system, i.e. useful coins in our UW protocol.
An adversary that controls the majority of coin can make the blockchain useless by
not forwarding messages or not participating in the vote and verification processes.
However, with the two thirds threshold th of acknowledgments as described in
Section 8.2, she cannot validate fake work or conflicting blocks while she controls
less than two thirds of the total coin. We assume then, that our UW protocol
works while two thirds of the total coin owned to honest participants. Moreover, in
the long run of a cryptocurrency context, for example, collecting more than two
thirds of total coin could be di�cult to achieve if the useful coin acquires more
value.

Selfish mining strategies. In a Selfish mining strategy [44], an attacker takes
advantage of the usual forking to temporarily hide one or several blocks and then,
she reveals her blocks at the suitable time to drop honestly generated blocks from
the main chain. In this way, she can increase her ratio of blocks in the blockchain
and thus also her reward compared to the reward she would obtain by following
the honest protocol. In our UW protocol, a participant may earn reward being a
writer, a winner or a verifier. A malicious writer cannot increase her incomes by
withholding her block since a writer who does not provide her block is replaced by
another. A winner is a worker who has already broadcasted his performed work
and so a malicious one cannot increase incomes by hiding his computing e�ort.
Moreover, the malicious worker cannot keep this work for later since an assigned
problem that is unsolved is proposed for the next round with a seed in the code.
As a verifier, an attacker cannot increase his reward since a non-participation to
the verification process is not rewarded.

Nothing-at-stake attack. In a nothing-at-stake attack, an attacker may generate
blocks on multiple chain of a fork and then may guarantee that one of them is
chosen to be in the main chain and the attacker can recover the currencies invested
in the discarded blocks. In our protocol, a worker who proposes false or empty
results is detected during the Work verification phase where verifiers invalidate the
result. Moreover, with the punishment mechanism a worker may lose her stake by
sending false results.

Double spending attack. In a double spending attack, an attacker attempts to
reuse the resources of transactions, generally by executing two transactions that
spend the same currencies. For example, the attacker may issue a transaction that
sends an amount of coins to a recipient. She may succeed to confirm it and then
she may spend the same coins in another transaction, i.e. the second transaction

105

is also confirmed. We prevent this issue in the writer election and validation step
where a group of verifiers is selected to check the block generated by the writer. If
a threshold of verifiers validates the blocks, i.e. there is not conflicting data, then
the block is added into the blockchain. The threshold of acknowledgments ensures
also that only one block reached this threshold.

8.5 Variants and discussion
In this chapter, we describe at high-level a construction of our Useful Work
protocol to replace the hash puzzle of the Bitcoin’s PoW mechanism by useful work.
Obviously, at each step of our UW protocol, several variants are possible.

In Section 8.2, we propose some possible protocols for the SELECTION, ELECTION
and PROVE algorithms. The di�erent steps described in Section 8.3 may also be
done with other mechanisms. For example, the selection of relevant problems may
be done via an external consortium of experts. The distribution of problem may
be replaced by a mechanism where each participant may choose their problem to
execute. The choice of protocols may be based on the security properties according
to the application or the trade-o� with the performance.

Note that, for each choice done in the di�erent steps, several processes may be
adapted. For example, the reward distribution may be reviewed to remain fair,
i.e. each entity is rewarded according to his work invested into to the blockchain.
Moreover, a security analysis may be necessary to prevent attacks as described in
Section 8.4.

8.6 Summary on Useful Work
We presented the Useful Work protocol which is a new consensus protocol for
blockchain based on the Proof-of-Stake and Proof-of-Work processes where the
computing work and the memory space are dedicated to useful works. In our UW
protocol, the participants compete to win useful coins. To this end, they have to
run the code of problems submitted by clients. Then, a PoS-based random election
chooses one of them to win coins. A participant is then elected to generate the
new block of valid transactions along with the information related to the winner of
useful coins. We also presented some new issues and showed that our UW protocol
is resilient to these issues and the classical attacks on the consensus protocols and
blockchain.

Several interesting topics are left for future works such as formal model and
security analysis of our protocol, an implementation and tests to provide a security
and performance trade-o�, and a detailed analysis of the scalability requirement.

106

Chapter 9

Summary on consensus protocols
for blockchain

Reaching a common agreement in distributed manner came from a pioneer problem
called the Byzantine generals problem introduced by Lamport et al. in 1982. In
this problem, a group of participants tries to agree on a single value without a
trusted party. The Byzantine generals problem has been widely studied to provide
solutions, referred to as consensus protocols.

From the first theoretical results, PBFT solution released in 1999 became the
reference to construct consensus protocols. PBFT ensures the liveness and safety
properties in partial synchrony while at most one third of participants are Byzantine.
However, it has been designed for small and fixed set of participants and needs a
large number of exchanged messages to reach an agreement.

Since the release of the Bitcoin paper by Nakamoto in 2008 that introduced
a digital money system using a distributed ledger called blockchain, an increased
interest in consensus protocols has emerged. The blockchain is a cryptographically
secure chain of blocks designed to be immutable where new transactions can only be
appended into the ledger after reaching a consensus. Nakamoto proposed the PoW
consensus protocol to select a leader who wins the right to write a new block into
the ledger. The Nakamoto PoW protocol has been designed to meet the scalability
and incentivation needs of the public Bitcoin blockchain. However, the Nakamoto
PoW protocol su�ers from several issues such as the computing power waste, the
fork problem, the centralization in big pools, the selfish mining, etc.

Thus, new consensus protocols for blockchain have been developed to prevent
the Nakamoto PoW issues while leveraging the first theoretical results to solve
the Byzantine generals problem. First consensus protocols have been based on a
PoS mechanism such as Ouroboros and Algorand. Other consensus protocols aims
to replace the PoW and PoS mechanisms by other ones, such as PoET or PoA
processes. Others aim to make the computation useful, such as Primecoin. However,

107

these new protocols may also arise some other problems like the nothing-at-stake,
the centralization to richer nodes, cloning attacks, etc.

With the increased emergence of blockchain, it is important to evaluate the
trust that we can have in these technologies whose one of main challenges is the
consensus protocol. Several security analysis have been published in the literature:
attacks, strategies, formalization and formal proofs. The influential work of Bitcoin
backbone is used as basis of security analysis in several research on consensus
protocols for blockchain.

In this thesis, we studied leader election protocols that is considered in our works
as particular cases of consensus protocols. Our research aims to provide results for
private setting and therefore the scalability and incentivation requirements are not
the primary challenges in our research. Indeed, the scalability in private setting may
be managed by authentication process to participate in the protocol. Regarding
the incentivation, we consider participants with common business interests such as
processes with the lowest costs, and so this topic is left as a future work according
to needs of use cases.

We choose to analyze the leader election construction of SSLE [11] and Algorand
[57] since they seems to be one of the most relevant constructions in the state of the
art of consensus protocols. SSLE elects exactly one leader per election. Whereas
in Algorand that may be considered as a PLE protocol, one or several potential
leaders may be selected and a rule selects one of them as leader, or no leader is
elected.

These works on the leader election protocols of Algorand and SSLE outlined
the following security properties: uniqueness, fairness, unpredictability, t-forward
unpredictability and liveness. We select these properties because they are important
to address well-known issues and attacks against consensus protocols, compared
to security properties of the Bitcoin backbone model. As result, we proposed a
new security model with these security properties [56]. We finally present a new
leader election protocol called LEP-TSP that uses external RNG service providers
to generate trusted random values. We prove that LEP-TSP meets these expected
security properties while more than two third of participants are honest.

As additional work, we provide a high level description of our Useful Work
protocol that make the computation power useful by solving any real world
problem.

108

Part II

Quantum cryptanalysis of Misty
schemes

109

Chapter 10

Introduction

Contents
10.1 Context . 111

10.2 Our Contribution and Organization 112

In this first chapter, we introduce the context of our work and give also an
overview of our contribution and the organization of Part II.

10.1 Context
As already seen in the general introduction, quantum cryptanalysis studies attack
techniques assuming that an adversary has an access to quantum computers. This
is an important research domain to help in designing post-quantum protocols.

Quantum cryptanalysis has received much more attention in the last past years.
It is known that Grover’s algorithm [59] could provide an exhaustive search among
n elements in O(

Ô
n) time instead of O(n). It seems that doubling the key-length

of one block cipher could achieve the same security against quantum attackers.
However, Kuwakado and Morii [72] introduced a new family of quantum attacks
using Simon’s algorithm [97] which could find the period of a periodic function
in polynomial time in a quantum computer. Indeed, they describe a quantum
distinguishing Chosen Plaintext Attack (CPA) on the 3-round Feistel scheme. This
work has been then extended by Ito et al. [64] to a quantum Chosen Ciphertext
Attack (CCA) distinguisher against the 4-round Feistel cipher.

Even if the most studied way to build pseudo-random permutations from random
function or random permutation is the d-round Feistel construction, there exist
other well-known constructions such as the Misty constructions that we analyze

111

in this part. We study generic attacks on Misty schemes where we assume that
the internal permutations f1, . . . , fd are randomly chosen. The Misty construction
is important from a practical point of view since it has been used as a generic
construction to design Kasumi [43] algorithm that has been adopted as the standard
blockcipher in the third generation mobile systems.

The plaintext message of a Misty scheme is denoted by [L, R] that stands for
Left and Right and the ciphertext message, after applying d rounds, is denoted by
[S, T]. Misty L and Misty R schemes are two di�erent variants of Misty schemes.
Indeed, the first round of a Misty L scheme takes as input [L, R] and it outputs
[R, R ü f1(L)] with f1 a secret permutation from n bits to n bits whereas the first
round of a Misty R scheme takes as input [L, R] and it outputs [R ü f1(L), f1(L)]
with f1 a secret permutation from n bits to n bits. We also consider in this part a
particular case of Misty L and Misty R constructions such that each round function
fi is defined by fi(x) = Fi(Ki ü x) with a public function Fi and a round secret
key Ki. These constructions are named, respectively, d-round Misty LKF scheme
and d-round Misty RKF scheme. To simplify the notation, the public functions
Fi in each round are all denoted by F . These four variants of Misty schemes are
studied in this part.

10.2 Our Contribution and Organization
In this part, we describe a non-adaptive quantum chosen plaintext attack (QCPA)
against 4-round Misty L and Misty LKF schemes, and a QCPA against 3-round
Misty R and Misty RKF schemes. These attacks enable to distinguish these Misty
schemes from random permutations in polynomial time. We extend the quantum
distinguishing attack against 3-round Misty RKF schemes to obtain a quantum key
recovery attack against d-round Misty RKF schemes with complexity Õ(2(d≠3)n/2).
Then, we show that security of Misty L and Misty R schemes with 3 rounds di�ers
regarding CPA attacks. The best known attack against Misty L schemes with 3
rounds has complexity 4 operations with 4 distinct messages. The best known
attack against Misty R schemes has complexity 2n/2 operations with 2n/2 messages.
In this part, we provide a security proof with the same bound 2n/2 which shows
that the best known cryptanalysis against Misty R schemes is optimal.

Organization. In Chapter 11, we provide the main definition used in this part.
Chapter 12 gives an overview of previous works and the new results provided in
this part. In Chapter 13, we present our QCPA against the four variants of Misty
schemes and the quantum key recovery attack on Misty RKF schemes. We provide
also the security proof of Misty R schemes with 3 rounds against adaptive Chosen
Plaintext attack (CPA-2). Finally, we summarize in Chapter 14.

112

Chapter 11

Definitions

Contents
11.1 Simon’s and Grover’s algorithms 113

11.2 Misty constructions . 114

11.2.1 Misty L scheme . 114

11.2.2 Misty R scheme . 115

In this chapter, we give the main algorithms and definitions used in this part.

11.1 Simon’s and Grover’s algorithms
In this section, we recall the results of the two quantum algorithms that we use in
our quantum cryptanalysis. The full details on how the algorithms work can be
found in [59, 97].

Simon’s Problem. Given a Boolean function, f : {0, 1}
n

‘æ {0, 1}
n, that is

observed to be invariant under some n-bit XOR period a, find a.
Simon presents a quantum algorithm [97] that provides exponential speedup

and requires only O(n) quantum queries to find a.

Grover’s problem. Given a Boolean function f : {0, 1}
n

æ {0, 1} and suppose
that there exists a unique x0 œ {0, 1}

n such that f(x0) = 1. Given an oracle access
to f , find x0.

Grover presents a quantum algorithm [59] that requires O(2n/2) quantum queries
to find x0.

113

11.2 Misty constructions
In this section, we describe the four variants of Misty schemes that we study in this
part. The set of all functions from {0, 1}

n to {0, 1}
n is denoted by Fn and the set of

all permutations from {0, 1}
n to {0, 1}

n is denoted by Bn. We have Bn µ Fn. We
denote by Md a Misty scheme of d rounds: f = Md(f1, . . . , fd), where f1, . . . , fd

are permutations from n bits to n bits and f is a permutation from 2n bits to 2n
bits.

11.2.1 Misty L scheme
Let f1 be a permutation of Bn. Let L, R, S and T be elements in {0, 1}

n. Then by
definition we have:

ML(f1)([L, R]) = [S, T] … S = R and T = R ü f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md

L
(f1, . . . , fd) = ML(fd) ¶ . . . ML(f2) ¶ ML(f1)

The permutation Md

L
(f1, . . . , fd) is called a Misty L scheme with d rounds. We

describe in detail the equations of Misty L for the first four rounds.

1 round :

Y
]

[
S = R

T = R ü f1(L) = X1 2 rounds :

Y
]

[
S = X1

T = X1
ü f2(R) = X2

3 rounds :

Y
]

[
S = X2

T = X2
ü f3(X1) = X3 4 rounds :

Y
]

[
S = X3

T = X3
ü f4(X2) = X4

The figure of Misty L schemes for the first round is given in Figure 11.1.
L

?
f1 -

R

?

?

i
?

S = R T = R ü f1(L)
Figure 11.1: First round of Misty L

114

Misty LKF scheme

Let F be a public function of Fn and K1 be a key chosen in {0, 1}
n. Let L, R, S

and T be elements in {0, 1}
n. Then, we define:

MLKF (F, K1)([L, R]) = [S, T] … S = R and T = R ü F (K1 ü L)

Let K1, . . . , Kd be d keys chosen in {0, 1}
n. Then we have:

Md

LKF
(F, K1, . . . , Kd) = MLKF (F, Kd) ¶ . . . MLKF (F, K2) ¶ MLKF (F, K1)

In this part, we call Md

LKF
(F, K1, . . . , Kd) a Misty LKF scheme with d rounds.

The equations of the first four rounds of Misty LKF are as follows.

1 round :

Y
]

[
S = R

T = R ü F (K1 ü L) = A1 2 rounds :

Y
]

[
S = A1

T = A1
ü F (K2 ü R) = A2

3 rounds :

Y
]

[
S = A2

T = A2
ü F (K3 ü A1) = A3 4 rounds :

Y
]

[
S = A3

T = A3
ü F (K4 ü A2) = A4

The figure of Misty LKF schemes for the first round is given in Figure 11.2.

L
?

K1 - i
?

F -

R

?

?

i
?

S = R T = R ü F (K1 ü L)
Figure 11.2: First round of Misty LKF

11.2.2 Misty R scheme
Let f1 be a permutation of Bn. Let L, R, S and T be elements in {0, 1}

n. Then by
definition we have:

MR(f1)([L, R]) = [S, T] … S = R ü f1(L) and T = f1(L)

Let f1, . . . , fd be d bijections of Bn. Then by definition we have:

Md

R
(f1, . . . , fd) = MR(fd) ¶ . . . MR(f2) ¶ MR(f1)

115

The permutation Md

R
(f1, . . . , fd) is called a Misty R scheme with d rounds. We

describe in detail the equations of Misty R for the first four rounds.

1 round :

Y
]

[
S = R ü f1(L) = Y 1

T = f1(L)
2 rounds :

Y
]

[
S = f1(L) ü f2(Y 1) = Y 2

T = f2(Y 1)

3 rounds :

Y
]

[
S = f2(Y 1) ü f3(Y 2) = Y 3

T = f3(Y 2)
4 rounds :

Y
]

[
S = f3(Y 2) ü f4(Y 3) = Y 4

T = f4(Y 3)

The figure of Misty R schemes for the first round is given in Figure 11.3.

L

?
f1

?

?i

R

�

?
S = R ü f1(L) T = f1(L)

Figure 11.3: First round of Misty R

Misty RKF scheme

Let F be a public function of Fn and K1 be a key chosen in {0, 1}
n. Let L, R, S

and T be elements in {0, 1}
n. Then, we define:

MRKF (F, K1)([L, R]) = [S, T] … S = R ü F (K1 ü L) and T = F (K1 ü L)

Let K1, . . . , Kd be d keys chosen in {0, 1}
n. Then we have:

Md

RKF
(F, K1, . . . , Kd) = MRKF (F, Kd) ¶ . . . MRKF (F, K2) ¶ MRKF (F, K1)

In this part, we call Md

RKF
(F, K1, . . . , Kd) a Misty RKF scheme with d rounds.

The equations of Misty RKF for the first four rounds are as follows:
1 round : 2 rounds :Y
]

[
S = R ü F (K1 ü L) = B1

T = F (K1 ü L)

Y
]

[
S = F (K1 ü L) ü F (K2 ü B1) = B2

T = F (K2 ü B1)

3 rounds : 4 rounds :Y
]

[
S = F (K2 ü B1) ü F (K3 ü B2) = B3

T = F (K3 ü B2)

Y
]

[
S = F (K3 ü B2) ü F (K4 ü B3) = B4

T = F (K4 ü B3)

116

The figure of Misty RKF schemes for the first round is given in Figure 11.4.
L
?

K1 - i
?

F

?

?i

R

�

?
S = R ü F (K1 ü L) T = F (K1 ü L)
Figure 11.4: First round of Misty RKF

117

Chapter 12

Overview of (quantum)
cryptanalysis on Misty schemes

Contents
12.1 Misty L schemes with few rounds 119

12.2 Misty LKF with few rounds 120

12.3 Misty R schemes with few rounds 120

12.4 Misty RKF schemes with few rounds 121

In this chapter, we review the cryptanalysis results of the state of the art on
the Misty L and Misty R schemes and we point out the new results provided in
this part.

12.1 Misty L schemes with few rounds
In Table 12.1, we summarize the cryptanalysis results on few rounds of Misty L
schemes based on the state of the art distinguishing attacks presented in [84, 83]
together with our new contributions.

On Misty L schemes with 1 round, we have S = R which gives an attack with
one message in all security models. We only have to check whether S is equal to
R. For a Misty L scheme, this happens with probability 1 whereas for a random
permutation it happens with probability 1

2n .
On Misty L schemes with 2 rounds, we have two cases depending on the security

model. For Chosen Plaintext Attack (CPA), we can choose 2 messages [L1, R1]
and [L2, R2] such that L1 = L2. Then, we can check whether S1 ü S2 is equal to
R1 ü R2. For a Misty L scheme, this happens with probability 1 whereas for a
random permutation it happens with probability 1

2n . This cryptanalysis result is

119

KPA CPA CCA QCPA QCCA
M1

L
1 1 1 1 1

M2
L

2n/2 2 2 2 2
M3

L
2n 4 3 4 3

M4
L

2n 2n/2 4 Our contribution: 4
n (distinguishing attack)

Table 12.1: Number of computations to distinguish Misty L schemes (with 1, 2, 3
and 4 rounds) from random permutations

valid for other security models Chosen Ciphertext Attack (CCA), Quantum Chosen
Plaintext Attack (QCPA) and Quantum Chosen Ciphertext Attack (QCCA). For
Known Plaintext Attack (KPA) model, the CPA attack can be transformed into a
KPA attack using 2n/2 messages and the birthday paradox bound to find a collision
such that Li = Lj.

On Misty L schemes with 3 rounds, there is a CPA attack with 4 messages [83]
that can be transformed into a KPA attack with approximately 2n messages and a
CCA attack with 3 messages [84]. These two attacks also apply in the quantum
model.

On Misty L schemes with 4 rounds, there is a CCA attack with 4 messages [84]
that can be transformed into KPA attack or CPA attack. The same attacks in
the quantum models hold. However, in this part we describe a QCPA attack that
enables to distinguish a Misty L permutation from a random permutation using
only n computations instead of 2n/2 computations.

12.2 Misty LKF with few rounds
The KPA, CPA and CCA attacks against Misty L schemes of [84, 83] can be applied
on Misty LKF schemes. Therefore, we describe in Chapter 13 the QCPA attack
that distinguishes a 4-round Misty LKF scheme from a random permutation using
n computations.

12.3 Misty R schemes with few rounds
On Misty R schemes, the results on 1 and 2 rounds are similar to the case of Misty
L schemes. On Misty R schemes with 3 rounds and with 4 rounds, the results of
the KPA, CCA and QCCA attacks are similar to those of Misty L schemes since a
Misty R scheme is the inverse of a Misty L scheme [84].

120

On Misty R schemes with 3 rounds, the best known attack has a complexity in
2n/2 computations with 2n/2 messages [84]. Luo et al. [78] present quantum attacks
on 3-round Misty L and Misty R schemes using Simon’s algorithm. In this part, we
provide the security proof of Misty R schemes with 3 rounds against CPA-2 with
the same bound 2n/2. We describe also a similar quantum attack on the 3-round
Misty R structure that is a QCPA attack that distinguishes a Misty R scheme from
a random permutation by using n computations.

Table 12.2 summarizes the cryptanalysis results that are distinguishing attacks
on Misty R schemes based on [84] and our new contributions.

KPA CPA CCA QCPA QCCA
M1

R
1 1 1 1 1

M2
R

2n/2 2 2 2 2
M3

R
2n Our contribution: 3 Our contribution: 3

2n/2 (security proof) n (distinguishing attack)
M4

R
2n 2n/2 4 2n/2 4

Table 12.2: Number of computations to distinguish Misty R schemes (with 1, 2, 3
and 4 rounds) from random permutations

12.4 Misty RKF schemes with few rounds
The state of the art distinguishing attacks on Misty R schemes are similar for
Misty RKF schemes and are summarized in Table 12.3 together with our new
contribution. In this part, we provide first a QCPA attack that distinguishes a
3-round Misty RKF scheme from a random permutation by using n computations.
Then, we describe a QCPA attack that uses this quantum distinguishing attack on
3-round Misty RKF schemes to recover the keys of d-round Misty RKF schemes,
for d > 3, in time 2(d≠3)n/2.

121

KPA CPA CCA QCPA QCCA
M3

RKF
2n 2n/2 3 Our contribution: 3

n (distinguishing attack)
M6

RKF
22n 22n 22n Our contribution: 22n

23n/2(key recovery)
M7

RKF
24n 24n 24n Our contribution: 24n

22n(key recovery)
M8

RKF
24n 24n 24n Our contribution: 24n

25n/2(key recovery)
M9

RKF
26n 26n 26n Our contribution: 26n

23n(key recovery)
M10

RKF
26n 26n 26n Our contribution: 26n

27n/2(key recovery)
Md

RKF
, d odd d Ø 9 2(d≠3)n 2(d≠3)n 2(d≠3)n Our contribution: 2(d≠3)n

2(d≠3)n/2(key recovery)
Md

RKF
, d even d Ø 8 2(d≠4)n 2(d≠4)n 2(d≠4)n Our contribution: 2(d≠4)n

2(d≠3)n/2(key recovery)

Table 12.3: Number of computations to distinguish Misty RKF schemes from
random permutations and number of computations to recover the keys when
explicitly specified

122

Chapter 13

Contribution on Misty schemes

Contents
13.1 Quantum cryptanalysis on Misty 123

13.1.1 Quantum distinguishing attack on 4-round Misty L schemes123

13.1.2 Quantum distinguishing attack on 3-round Misty R schemes125

13.1.3 Key recovery attack against Misty RKF schemes 126

13.2 Security proof on 3-round Misty R 127

13.2.1 H coe�cient technique 127

13.2.2 Application to Misty R scheme with 3 rounds 128

In this chapter, we present the quantum attack against the four variant of Misty
scheme. As additional work, we provide also the security proof of Misty R scheme
with 3 rounds.

13.1 Quantum cryptanalysis on Misty
In this section, we describe our QCPA attacks against the four variants of Misty
schemes and the key recovery attack against Misty RKF schemes.

13.1.1 Quantum distinguishing attack on 4-round Misty L
schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes a
4-round Misty L scheme from a 2n-bit random permutation in polynomial time. We
also apply this attack on Misty LKF schemes to obtain a quantum distinguishing

123

attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] be four messages such that L1 ”= L2,
R1 ”= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. As it has been shown in [83],
for such four messages, we have:

X3
1 ü X3

2 ü X3
3 ü X3

4 = f3(X1
1) ü f3(X1

2) ü f3(X1
3) ü f3(X1

4)

where X3
i

is the left half of M4
L
([Li, Ri]) as denoted in Section 11.2. Then, we have:

X3
1 ü X3

2 ü X3
3 ü X3

4 = f3(X1
1) ü f3(X1

2) ü f3(X1
3) ü f3(X1

4)
= f3(R1 ü f1(L1)) ü f3(R2 ü f1(L2)) ü f3(R2 ü f1(L1))

üf3(R1 ü f1(L2))

We set R1 = x and we define the function

g(x) = f3(x ü f1(L1)) ü f3(R2 ü f1(L2)) ü f3(R2 ü f1(L1)) ü f3(x ü f1(L2))

We observe that we have g(x) = g (x ü f1(L1) ü f1(L2)). Thus, the function g is
periodic and the period is f1(L1) ü f1(L2). Note that, this period works even if
x = R2. We can use the Simon’s algorithm on g to get the period s = f1(L1)üf1(L2)
in polynomial time.

In the case where g is constructed with a 2n-bit random permutation instead of
a 4-round Misty L scheme, g is not periodic with overwhelming probability. If we
apply Simon’s algorithm on g, the algorithm fails to find a period. Therefore, we can
distinguish a 4-round Misty L scheme from a random permutation in polynomial
time by using Simon’s algorithm to check if g has a period.

Quantum distinguishing attack on 4-round Misty LKF schemes.

In the same way as for 4-round Misty L schemes, we have a quantum distinguishing
attack on 4-round Misty LKF schemes.

Let [L1, R1], [L2, R2], [L3, R3], [L4, R4] be four messages such that L1 ”= L2,
R1 ”= R2, L3 = L1, R3 = R2, L4 = L2 and R1 = R4. We have also for Misty LKF:

A3
1 ü A3

2 ü A3
3 ü A3

4 = F (K3 ü A1
1) ü F (K3 ü A1

2) ü F (K3 ü A1
3) ü F (K3 ü A1

4)
= F (K3 ü R1 ü F (K1 ü L1)) ü F (K3 ü R2 ü F (K1 ü L2))

üF (K3 ü R2 ü F (K1 ü L1)) ü F (K3 ü R1 ü F (K1 ü L2))

where A3
i

is the left half of M4
LKF

([Li, Ri]) as denoted in Section 11.2. We set
R1 = x and we define the function g by

g(x) = F (K3 ü x ü F (K1 ü L1)) ü F (K3 ü R2 ü F (K1 ü L2))
üF (K3 ü R2 ü F (K1 ü L1)) ü F (K3 ü x ü F (K1 ü L2))

124

We observe that g(x) = g(x ü F (K1 ü L1) ü F (K1 ü L2)). Thus, the function g
is periodic and the period is F (K1 ü L1) ü F (K1 ü L2). We can use the Simon’s
algorithm on g to get the period s = F (K1 ü L1) ü F (K1 ü L2) in polynomial time.
Thus, we obtain a quantum distinguishing attack on a 4-round Misty LKF scheme
by checking with the Simon’s algorithm if g has a period.

13.1.2 Quantum distinguishing attack on 3-round Misty R
schemes

In this section, we describe a quantum chosen plaintext attack that distinguishes a
3-round Misty R scheme from a 2n-bit random permutation in polynomial time
that is already known [78]. We also apply this attack on Misty RKF schemes to
obtain a quantum distinguishing attack on 3-round Misty RKF schemes.

We consider the value SüT = f2(Y 1) = f2(Rüf1(L)) where [S, T] = M3
R

([L, R])
as described in Section 11.2. Let [L1, R], [L2, R] be two messages such that L1 ”= L2.
We set R = x and we define the function

g(x) = S1 ü T1 ü S2 ü T2
= f2(x ü f1(L1)) ü f2(x ü f1(L2))

where [Si, Ti] = M3
R

([Li, R]). We observe that g(x) = g (x ü f1(L1) ü f1(L2)).
Thus, g is a periodic function and the period is f1(L1) ü f1(L2). We can use the
Simon’s algorithm on g to get the period s = f1(L1) ü f1(L2) in polynomial time.

In the case where we apply Simon’s algorithm on g that is constructed with a
2n-bit random permutation, the algorithm fails to find a period with overwhelming
probability. Thus, we can distinguish a 3-round Misty R scheme from a random
permutation by checking with the Simon’s algorithm if g has a period.

Quantum distinguishing attack on 3-round Misty RKF schemes.

In the same way as for 3-round Misty R schemes, we have a quantum distinguishing
attack on 3-round Misty RKF schemes. We can also consider the value S ü T =
F (K2 ü B1) = F (K2 ü R ü F (K1 ü L)) where [S, T] = M3

RKF
([L, R]) as described

in Section 11.2. Let [L1, R], [L2, R] be two messages such that L1 ”= L2. Thus, we
set R = x and we define the function g by

g(x) = S1 ü T1 ü S2 ü T2
= F (K2 ü x ü F (K1 ü L1)) ü F (K2 ü x ü F (K1 ü L2))

where [Si, Ti] = M3
RKF

([Li, R]). We observe that g(x) = g(x ü F (K1 ü L1) ü

F (K1 ü L2)). The function g is periodic and the period of the function is F (K1 ü

125

L1) ü F (K1 ü L2). We can use the Simon’s algorithm on g to get the period
s = F (K1 ü L1) ü F (K1 ü L2) in polynomial time.

Thus, we obtain a quantum distinguishing attack on 3-round Misty RKF schemes
by using Simon’s algorithm on g to check if g has a period.

13.1.3 Key recovery attack against Misty RKF schemes
Based on [62, 76, 38], we combine the quantum distinguishing attack on the 3-round
Misty RKF scheme (Section 13.1.2) with the Grover search to obtain a key recovery
attack against a d-round Misty RKF scheme. The attack recovers the keys of the
d-round Misty RKF scheme K1, . . . , Kd. We apply the technique of [62] recalled in
Proposition 1.

Proposition 1 (Proposition 3 in [62]). Let � : Fm ◊ Fn æ Fn be a function
such that �(k, ·) : Fn æ Fn is a random function for any fixed k œ Fm. Let
� : Fm ◊ Fn æ Fn be a function such that �(k, ·) : Fn æ Fn is a random function
for any fixed k œ Fm \ {k0} and �(k0, x) = �(k0, x ü k1). Then, given a quantum
oracle access to �(·, ·) and �(·, ·), we can recover (k0, k1) with a constant probability
and O((m + n2)2m/2) queries, using O(m + n2) qubits.

For our attack, the key k0 in Proposition 1 corresponds to the keys of the last
(d ≠ 3)-round of a d-round Misty RKF scheme K4, ..., Kd and k1 corresponds to
the period s recovered in the quantum distinguishing attack on the 3-round Misty
RKF scheme described in Section 13.1.2. The idea is to search for the correct key
k0 = (K4, ..., Kd) with the Grover search and check if �(·, ·) ü �(·, ·) is periodic or
not for the candidate key k = (K Õ

4, ..., K Õ
d
) by running the Simon’s algorithm in

parallel.
The attack is the following. Assume that we have a quantum encryption oracle

of a d-round Misty RKF scheme O : {0, 1}
2n

æ {0, 1}
2n. For k = (K Õ

4, ..., K Õ
d
) œ

{0, 1}
(d≠3)n, let Dk : {0, 1}

2n
æ {0, 1}

2n denotes the partial decryption of the last
(d ≠ 3)-round of Misty RKF with the key candidate k. Let W : {0, 1}

(d≠3)n
◊

{0, 1}
n

◊ {0, 1}
n

æ {0, 1}
n be the function that is the sum of the right part and

the left part obtained after the 3-round of the Misty RKF scheme. W is defined by

W (k, L, R) := the sum of the left and right halves of Dk ¶ O(L, R)

We implement a quantum circuit of W using the quantum encryption oracle O. In
the case where k = k0, then W (k0, L, R) = F (K2 ü R ü F (K1 ü L)).

Then, we choose two di�erent n-bits string –, — and define � : {0, 1}
(d≠3)n

◊

{0, 1}
n

æ {0, 1}
n and � : {0, 1}

(d≠3)n
◊ {0, 1}

n
æ {0, 1}

n by �(k, x) := W (k, –, x)
and �(k, x) := W (k, —, x). The function �(k, ·) is an almost random function for

126

each k and �(k, ·) is also an almost random function for each k ”= k0. In the case
where k = k0, we have �(k0, x) = �(k0, x ü k1) where k1 = F (K1 ü –) ü F (K1 ü —).
Indeed, we have:

�(k0, x ü k1) = W (k, –, x ü k1)
= F (K2 ü x ü F (K1 ü –) ü F (K1 ü —) ü F (K1 ü –))
= F (K2 ü x ü F (K1 ü —)) = W (k, —, x) = �(k0, x)

Thus, we can apply Proposition 1 and recover the keys K4, . . . , Kd. Then, we
can recover K1. To this end, we construct a quantum circuit that calculates
the first 3 rounds of the Misty RKF scheme. Then, we compute the period
s = F (K1 ü –) ü F (K1 ü —) with the quantum distinguishing attack on the
3-round Misty RKF scheme with two arbitrary messages [–, x], [—, x] such that
x, –, — œ {0, 1}

n and – ”= —. Thus, we can recover K1 by using the Grover search.
Finally, we can easily recover K2 and K3 using the Grover search and the recovered
key K1.

Attack complexity. By Proposition 1, we can recover (K4, . . . , Kd) in time
O(2(d≠3)n/2)�. Since the last keys K1, K2 and K3 are recovered by using the Grover
search in time O(2n/2), the complexity of the key recovery attack against a Misty
RKF scheme is Õ(2(d≠3)n/2).

13.2 Security proof on 3-round Misty R
The best known CPA-1 attack against a Misty R scheme with 3 rounds is in O(2n/2)
messages and computations [84]. In this section, we prove the security of the
3-round Misty R scheme against adaptive Chosen Plaintext CPA-2 attacks when
the number of queries q is significantly smaller than 2n/2. Since this proof and
the best known attack have the same bound 2n/2, the cryptanalysis of the 3-round
Misty R scheme is optimal. For this proof, we use the result on H coe�cients
technique provided in [88].

13.2.1 H coe�cient technique
Let N be a positive integer. Let IN be the set {0, 1}

N and FN be the set of all
applications from IN to IN . Let BN be the set of permutations from IN to IN .
Let K denotes a set of k-uples of functions (f1, . . . , fk) of FN . We define G as an
application of K æ FN .

�Taking into account the required numbers of qubits and operations, the complexity is in
O(n32(d≠3)n/2) as explained in [62].

127

Definition 1 (H coe�cient) Let q be a positive integer. Let (a1, . . . , aq) with
ai œ IN for i = 1, . . . , q be a sequence of pairwise distinct elements of IN . Let
(b1, . . . , bq) with bi œ IN for i = 1, . . . , q. The H coe�cient denoted by H(a, b) or
simply by H is the number of (f1, . . . , fk) œ K such that:

’i, 1 Æ i Æ q, G(f1, . . . , fk)(ai) = bi

13.2.2 Application to Misty R scheme with 3 rounds
Theorem 10 (Adaptive Chosen Plaintext attack with q queries) [88] Let
Á and — be positive real numbers. Let E be a subset of Iq

N
such that |E| Ø (1≠—)2Nq.

If for all (a1, . . . , aq) with ai œ IN for i = 1, . . . , q such that ai ”= aj when i ”= j and
for all — œ E we have:

H Ø
|k|

2Nq
(1 ≠ Á)

Then, the advantage AdvCPA≠2 to distinguish G(f1, . . . , fk) with (f1, . . . , fk) œR K
from a random function f œR FN fulfills:

AdvCPA≠2
Æ — + Á.

Theorem 11 (CPA-2 security on 3 rounds Misty R) The advantage of an
attacker in an adaptive chosen plaintext attack against the construction Misty R
with 3 rounds is upper bounded by:

AdvCPA≠2
Æ

3
2

q(q ≠ 1)
2

1
2n

Proof. On Misty R schemes with 3 rounds, the set of keys K is equal to B3
N

with
N = 2n.

The transformation MR sends [Li, Ri] to [Ui, Ti] such that:
Y
]

[
Ui = Ti ü Si = f2(Ri ü f1(Li))
Ti = f3(f1(Li) ü Ui)

We are looking to H = {(f1, f2, f3) œ B3
n

such that ’i, 1 Æ i Æ q, MR[Li, Ri] =
[Ui, Ti]}.

Let E be the set defined as follows: E = {[Ui, Ti], 1 Æ i Æ q, Ui ”= Uj when
i ”= j}. We have:

|E| Ø 2Nq

A

1 ≠
q(q ≠ 1)

2 · 2n

B

and we deduce that we have — = q(q≠1)
2·2n .

We select f1 such that the values Ri ü f1(Li) are pairwise distinct and the
values Ui ü f1(Li) are pairwise distinct with [Ui, Ti] œ E.

128

• Ri ü f1(Li) = Rj ü f1(Lj) implies that Li ”= Lj or Ri ”= Rj since i ”= j. Then
we have to remove at most q(q≠1)

2·2n |Bn| permutations f1.

• f1(Li) ü Ui = f1(Lj) ü Uj implies Li ”= Lj since we have Ui ”= Uj. Then we
have to remove at most q(q≠1)

2·2n |Bn| permutations f1.

Now, the function f1 is chosen and both f2 and f3 are fixed in q points pairwise
distinct. Then we have:

H Ø
[Bn|

3

22nq

A

1 ≠
q(q ≠ 1)

2n

B

= |K|

2Nq

A

1 ≠
q(q ≠ 1)

2n

B

Then, by applying Theorem 10, we have Á = q(q≠1)
2n , — = q(q≠1)

2·2n and

AdvCPA≠2
Æ

33
2

4
q(q ≠ 1)

2
1
2n

This concludes the proof.

129

Chapter 14

Summary on quantum
cryptanalysis of Misty schemes

Quantum and post-quantum cryptography have received considerable attention
these last years from academic and industrial scientists due to the advent of
quantum computers. Indeed, these computers use the quantum physic to execute
tasks faster than classical computers and could make communications insecure by
breaking current cryptographic mechanisms.

In 1994, Shor outlined the quantum computers threat that could break current
systems based on asymmetric cryptography. Moreover, in 1998, Grover proposed
an algorithm that could be a threat for symmetric cryptography. Even if today,
quantum computers are not enough powerful to break current cryptographic systems,
identifying new quantum attacks and designing new post-quantum protocols are
important studies for being prepared to deal with this quantum threat.

Thus, in this second and last part, we provided a quantum cryptanalysis of four
variants of Misty schemes [55]. These schemes are symmetric constructions used
to construct Kasumi algorithm, the standard blockcipher in the third generation
mobile systems. We analyzed four variants of Misty schemes, Misty L, Misty R,
Misty LKF and Misty RKF.

We described QCPA attacks that enable to distinguish Misty L and Misty LKF
schemes with 4 rounds, and Misty R and Misty RKF schemes with 3 rounds, from
random permutations in complexity O(n) instead of O(2n/2). Note that the QCPA
attack on 3-round Misty R schemes is already known in [78]. Moreover, we extended
the quantum distinguishing attack on 3-round Misty RKF schemes to obtain a key
recovery attack which recovers the keys of d-round Misty RKF schemes in time
O(2(d≠3)n/2). Finally, as additional work, we provided the security proof of 3-round
Misty R schemes against CPA-2 attack with a complexity in O(2n/2). Since the
best known attack against the 3-round Misty R schemes has the same bound, this
shows that the state of the art attack is then optimal.

131

General conclusion

In this thesis, we studied the two following topics related to research domains
become popular these last years: consensus protocols for blockchain technologies
and quantum cryptanalysis of Misty schemes. For each topic, several contributions
have been presented and summarize in this last chapter. Finally, we conclude with
an insight of future works.

Contributions summary
In Part I, we provided research on the security of some consensus protocols for
blockchain. Firstly, in Chapter 3 and Chapter 4, we presented a state of the art on
consensus protocols before and since the emergence of blockchain technologies.

Reaching a common agreement without a central authority has been widely
studied in distributed systems. Several theoretical results have been proved and
the Practical Byzantine Fault Tolerance protocol became the reference to construct
consensus protocols. The security properties achieved in these solutions are safety
and liveness. However, with the advent of blockchain technologies, new requirements
of scalability and incentivation due to public blockchain and issues related to the
Bitcoin PoW protocol need to be taken into account. Therefore, the safety and
liveness properties have been refined and completed to address these needs. The
Bitcoin backbone model became thus the reference to analyze consensus protocols for
blockchain. Mostly of following solutions to replace the Bitcoin PoW mechanism are
analyzed in the Bitcoin backbone model to formally prove the security of consensus
protocols, such as Ouroboros that is based on a PoS mechanism.

As result of this state of the art, we focused our research on the leader election
process mainly used in consensus protocols for blockchain. Leader election enables
participants to randomly select in distributed manner a leader among them who
wins the right to generate and write the next block of transactions into the ledger.
Thus, we studied the leader election process of two promising approaches to
construct consensus protocols: SSLE schemes in Chapter 5 and Algorand protocol
in Chapter 6. In a SSLE scheme, exactly one leader is elected whereas in the
Algorand protocol, one or several potential leaders may be selected and a rule

133

selects one of them as leader. It is also possible in Algorand that there is not
leader for some elections. For the research on SSLE [11], we revisited the original
security model by adding the liveness into the model and refining the fairness and
unpredictability properties. We showed also, via constructions of a random beacon,
the importance of the refined fairness property that may prevent some issues. Then,
we analyzed the unpredictability properties in the Algorand protocol [57] and
outlined the suitable choice of the expected number of potential leaders needed to
prevent predictable leaders.

As other result [56] presented in Chapter 7, we provided a security model
of leader election protocol with five security properties: uniqueness, fairness,
unpredictability, t-forward unpredictability and liveness. These properties address
well-known issues and attacks against consensus protocols, compared to Bitcoin
backbone model. Finally, we presented a new leader election protocol called LEP-
TSP using external RNG service providers to generate trusted random values.
LEP-TSP is intended to be used in private setting and meets the expected security
properties.

As additional work provided in Chapter 8, we give a high level description of a
new consensus protocol named Useful Work intended to make computation power
useful. This protocol gives an insight on how we can replace the hash puzzle of
Bitcoin PoW protocol by any world problem. We also presented some new issues
and showed that our UW protocol is resilient to these issues and the classical
attacks against consensus protocols.

Part II provided a quantum cryptanalysis on Misty schemes [55]. This aims
to improve classical cryptanalysis already done on these schemes presented in
Chapter 12. Then, we described in Chapter 13 four non-adaptive quantum chosen
plaintext attacks against 4-round Misty L schemes, 4-round Misty LKF schemes,
3-round Misty R schemes and 3-round Misty RKF schemes. These attacks enable to
distinguish these Misty schemes from random permutations in polynomial time. We
extended the quantum distinguishing attack against 3-round Misty RKF schemes
to obtain a quantum key recovery attack against d-round Misty RKF schemes. As
additional work, we presented a security proof of 3-round Misty R schemes with
the same bound 2n/2 which shows that the best known cryptanalysis against Misty
R schemes with 3 rounds is optimal.

Future works
Several works may be interesting as future research topics. Regarding consensus
protocols for blockchain, several mechanisms to guarantee liveness in the shu�ing-
based SSLE scheme are possible. For example, in the case where the leader is

134

detected as corrupted (because she decides to not reveal her eligibility proof, for
example), another election may be planned or another leader is chosen by default.
However, this may impact the other security properties satisfied by SSLE. A further
analysis may be made as future work.

For the research on the Algorand protocol, the strategy against the t-forward
unpredictability of Algorand may be extended in two ways. Firstly, by verifying
the branch of the default value for each future election instead of only the first
election as in the current strategy. Secondly, for any value of nl to confirm the
importance of a suitable choice for this parameter.

The new security model of leader election proposed in this manuscript aims to
take into account the state of the art and new contributions to address well-known
issues and attack against consensus protocols and also leader election protocols.
Another future work could be to generalize this model in order to evaluate the
security of Algorand and SSLE. Thus, an interesting work could be to give a
formal comparison between these di�erent protocols. Moreover, an improved model
assuming compromised TSP providers or an evaluation of our LEP-TSP protocol
are left as future works.

A formalization of our Useful Work is also a perspective of future work. Since
several mechanisms are possible at each step of our protocol, a further study
may be interesting to known which one is the suitable one for which security and
performance goals.

Regarding the topic on quantum cryptanalysis, a similar approach can be used
on other schemes such as on unbalanced Feistel schemes. Quantum distinguishing
attack and quantum key recovery attack against unbalanced Feistel schemes is an
interesting study by applying Simon’s and Grover’s algorithms.

135

Long résumé

Dans le monde d’aujourd’hui où les informations numériques et les communications
sont devenues essentielles pour les individus, entreprises et gouvernements, il est
nécessaire de garantir la confidentialité et l’intégrité de ces données échangées.
La cryptologie, qui est la science permettant de concevoir des communications
sécurisées, est devenue indispensable pour atteindre cet objectif de sécurité.

La cryptologie comprend deux domaines: la cryptographie qui étudie les
techniques de défense et la cryptanalyse qui étudie les techniques d’attaque. Il
existe deux approches en cryptographie: la cryptographie à clé secrète, aussi
appelée cryptographie symétrique, où le secret est partagé par l’expéditeur et le
destinataire pour chi�rer et déchi�rer les données, et la cryptographie à clé publique
ou asymétrique qui utilise une paire de clés liées mathématiquement, une publique
utilisée par l’expéditeur pour chi�rer les données et l’autre gardée privée par le
destinataire pour déchi�rer.

Ces dernières années, deux domaines de recherche en cryptologie ont reçu une
attention considérable de la part des scientifiques académiques et industriels: les
protocoles de consensus pour les technologies blockchain dus à l’émergence des
cryptomonnaies, et la cryptanalyse quantique due à la menace des ordinateurs
quantiques. Naturellement, nos sujets de recherche se sont orientés vers ces deux
domaines que nous avons étudiés séparément dans cette thèse.

La cryptographie dans les technologies blockchain
Les technologies blockchain sont devenues populaires en 2008 avec la publication
du papier sur Bitcoin. Ces technologies sont basées sur une structure appelée
blockchain. La structure de blockchain est un registre numérique ou une chaîne de
blocs implémentée de manière distribuée, i.e. sans utiliser une autorité centrale
pour maintenir le registre. De plus, la blockchain est conçue pour être immuable.
En d’autres termes, dès qu’un bloc de données est écrit dans la blockchain, il ne peut
plus être supprimé ni modifié. Dans le papier de Bitcoin, l’auteur (ou les auteurs)
connu sous le nom de Satoshi Nakamoto présente le système de cryptomonnaie
Bitcoin. Ce dernier est un système de monnaie numérique dont les transactions

137

entre utilisateurs sont groupées dans des blocs et enregistrées publiquement dans
la blockchain.

Même si les technologies blockchain ont été en premier lieu utilisées pour
développer des cryptomonnaies telles que Bitcoin et Ethereum, les deux premières
cryptomonnaies créés et listées sur les sites web de capitalisation boursière, ces
technologies ont démontré une approche pertinente dans plusieurs autres domaines.
En e�et, les transferts de cryptomonnaies généralisés à des transferts d’informations
numériques peuvent être appliqués dans divers secteurs. Par exemple, dans les
chaînes d’approvisionnement pour améliorer la traçabilité des produits, ou bien dans
le marché de l’énergie pour faciliter les transactions d’énergie entre prosommateurs
qui sont à la fois producteurs et consommateurs. En comparaison avec les approches
actuelles, les technologies blockchain peuvent améliorer, faciliter ou même accélérer
les processus de divers secteurs.

Rapidement, deux types de blockchain ont été identifiés: la publique et la privée.
Dans une blockchain publique comme celle dans Bitcoin, n’importe qui à n’importe
quel moment peut lire et ajouter de nouveaux blocs au registre. Cependant, cet
aspect public n’est pas toujours nécessaire voire même non désiré dans certaines
applications. Ainsi, la blockchain privée permet de restreindre la participation et
la lecture du registre à seulement un groupe de participants authentifiés. Selon le
cas d’usage, le type de blockchain doit être convenablement choisi.

Quelque soit le type de blockchain, un des principaux processus de ces technologies
est le stockage sécurisé des transactions, i.e. les données enregistrées dans le registre
n’ont pas été altérées et ne peuvent pas être modifiées ni supprimées. Ce processus
est exécuté par les participants grâce à un protocole de consensus qui utilise des
techniques cryptographiques empêchant les modifications des données du registre.
Un protocole de consensus permet de parvenir à un accord commun de manière
distribuée. Dans un contexte de blockchain, les participants utilisent un protocole
de consensus pour parvenir à un accord sur le prochain bloc de transactions qui
sera ajouté dans le registre. Généralement, ces protocoles de consensus sont basés
sur un processus d’élection de leader qui choisit un des participants comme leader
dont le rôle est de générer le nouveau bloc de transactions.

Par exemple, dans le protocole de consensus utilisé dans Bitcoin, aussi appelé
Preuve de travail (PoW) (en anglais, Proof-of-Work), le leader est le premier
participant à résoudre un puzzle cryptographique, connu sous le nom de hash puzzle.
Ils doivent alors trouver un bloc dont sa valeur de hachage est inférieure à une
valeur cible. Cependant, plusieurs études ont démontré d’importants problèmes
dans ce premier protocole de consensus pour blockchain, tels qu’un gaspillage de
ressources, une centralisation vers les participants avec le plus de puissance de
calcul et bien d’autres.

En fait, concevoir des protocoles de consensus n’est pas un problème nouveau et

138

a été énormément étudié dans les systèmes distribués. Avec les nouveaux besoins
liés à la participation ouverte et les problèmes en lien avec le protocole de Bitcoin,
les travaux pour concevoir de nouveaux protocoles de consensus pour la blockchain
tout en prenant en compte les premiers résultats conçus pour les systèmes distribués
font l’objet de nombreuses recherches.

Au vu de la popularité croissante des technologies blockchain, la sécurité
revendiquée par ces technologies doit être garantie. Dans cette thèse, nous étudions
la sécurité de certains protocoles de consensus qui sont un des principaux défis
dans les technologies blockchain. Plus précisément, nous voulons évaluer le niveau
de confiance ainsi que les paramètres de sécurité des protocoles de consensus pour
la blockchain.

La cryptanalyse quantique
Les ordinateurs quantiques sont des machines qui exploitent la physique quantique
au lieu de l’électronique standard permettant ainsi d’e�ectuer des tâches plus
rapidement que les ordinateurs classiques. Globalement, les ordinateurs classiques
sont basés sur des calculs binaires dont les données sont représentées par des bits
pouvant prendre deux valeurs, 0 ou 1. Alors que dans les ordinateurs quantiques,
les données sont représentées par des bits quantiques, alias qubits, qui peuvent
prendre soit les valeurs 0 ou 1 soit n’importe quelle superposition de 0 et 1.

La cryptographie quantique est donc la science qui utilise la mécanique quantique
pour concevoir de nouveaux protocoles cryptographiques comme la distribution
quantique de clé. La cryptanalyse quantique étudie alors les techniques d’attaques
en utilisant les ordinateurs quantiques. Le terme de cryptographie post-quantique
désigne les protocoles qui utilisent des ordinateurs classiques et résistent aux
attaques utilisant les ordinateurs classiques et quantiques.

En 1994, Peter Shor met en avant la menace des ordinateurs quantiques qui
pourraient casser les systèmes actuels basés sur la cryptographie asymétrique. En
e�et, la sécurité de ces systèmes est basée sur des problèmes supposés di�ciles à
résoudre avec des ordinateurs classiques tels que le calcul du logarithme discret
ou la factorisation de grands nombres. En théorie, les ordinateurs quantiques
pourraient résoudre e�cacement ces problèmes et par conséquent casser les systèmes
cryptographiques, ce qui rendrait les communications non sûres. Concernant
les protocoles basés sur la cryptographie symétrique, les ordinateurs quantiques
pourraient être aussi une menace mais elle serait moins importante. En e�et, en
1998, Grover propose un algorithme quantique permettant de faire une recherche
exhaustive parmi n élements en temps O(

Ô
n) au lieu de O(n). Ce problème peut

facilement être mitigé en doublant la taille de la clé.
Même si aujourd’hui, les ordinateurs quantiques qui existent ne sont pas assez

puissants pour casser la cryptographie actuelle, l’étude de nouvelles attaques

139

quantiques et algorithmes post-quantiques est importante. Depuis 2017, l’Institut
national des normes et de la technologie (NIST) (en anglais, National Institute
of Standards and Technologies) a débuté une compétition pour standardiser les
algorithmes post-quantiques à clé publique. Cette compétition a pour but de fournir
plusieurs standards pour di�érentes applications dans les deux à cinq prochaines
années. Au moment de la rédaction, cette compétition est toujours en cours.

Dans cette thèse, nous étudions la résistance quantique des schémas crypto-
-graphiques symétriques appelés Misty. Ces schémas ont été utilisés pour concevoir
l’algorithme Kasumi, retenu comme le standard de chi�rement dans les systèmes
mobiles de troisième génération. Plus précisément, nous proposons une cryptanalyse
quantique de quatre variants des schémas de Misty.

Résumé des contributions
Cette thèse aborde séparemment les sujets de recherche en lien avec les protocoles
de consensus pour les technologies blockchain dans une première partie et en lien
avec la cryptographie quantique dans une seconde partie.

Dans la première partie, nous présentons nos recherches sur les protocoles de
consensus pour les technologies blockchain. Nous fournissons tout d’abord un état
de l’art des protocoles de consensus avant et depuis l’émergence des technologies
blockchain. Ensuite, nous présentons trois contributions qui analysent la sécurité
de trois protocoles. Ces recherches permettent ainsi de mettre en évidence des
propriétés de sécurité qui ont pour but d’empêcher les attaques et stratégies connues.
La quatrième contribution présente une description de haut niveau d’un nouveau
protocole qui utilise la puissance de calcul pour des calculs utiles. Les contributions
de cette première partie sont résumées dans les paragraphes suivants.

1. Revisite de l’analyse de sécurité des schémas de SSLE. Dans cette
contribution, nous revisitons le modèle de sécurité des schémas de Single Secret
Leader Election (SSLE) [11] en se focalisant sur la construction de shu�ing-based
SSLE qui est le schéma visant à être utilisé en pratique. Les schémas SSLE
sélectionnent exactement un leader dont l’identité reste cachée jusqu’à ce qu’elle
soit dévoilée.

Tout d’abord, nous ajoutons la propriété de liveness dans le modèle de sécurité
d’un schéma de SSLE pour garantir une élection de leader même en présence
de participants malicieux ou inactifs. La liveness est une propriété de sécurité
classique des systèmes distribués qui garantit que de nouvelles données générées
par les leaders soient continuellement ajoutées au système. Ensuite, nous revisitons
la propriété de fairness qui garantit que chaque participant a la même probabilité

140

d’être élu. Nous rafinons églament la propriété de unpredictability qui signifie
que les non-leaders ne peuvent pas deviner qui est leader avant qu’il ne révèle
son identité. Nous guarantissons alors qu’il y a au moins deux participants non
corrompus enregistrés pour l’élection et empêchons l’adversaire de deviner qui a
été élu. Puis, pour chaque propriété, soit nous prouvons qu’elle est satisfaite par
le schéma de shu�ing-based SSLE, soit nous décrivons une stratégie pour casser
cette propriété. Finalement, nous présentons deux constructions de générateurs de
valeurs aléatoires pour justifier le besoin de notre nouvelle définition de fairness.

2. Les propriétés de unpredictability du protocole d’Algorand. Dans
cette contribution, nous analysons les propriétés de unpredictability du protocole
d’élection de leader d’Algorand [57]. Dans Algorand, un ou plusieurs leaders
potentiels peuvent être élus et une règle permet d’en sélectionner un comme le
leader. Il est également possible qu’il n’y ait pas de leader pour certaines élections.
La propriété de unpredictability est importante pour empêcher des attaques comme
les dénis de service ou bien les attaques de corruption. Nous montrons alors
qu’Algorand satisfait cette propriété.

Ensuite, nous étendons cette propriété et définissons la propriété de t-forward
unpredictability. Celle-ci permet de capturer le cas où même si l’adversaire est élu
en tant que leader, il ne peut pas prédire les leaders des t prochaines élections.
Cette propriété peut empêcher un adversaire de planifier quelles données seront
ajoutées au registre au moment opportun, e.g. les transactions exécutées au bon
moment peuvent être favorables dans le trading à haute fréquence.

Finalement, nous décrivons une stratégie pour le paramètre nl = 1, le nombre
de leaders potentiels attendus. Ainsi, avec cette stratégie, la probabilité que le
leader soit corrompu et qu’elle prédise les t prochains leaders est de f

n
((f

n
)t + (1 ≠

(f

n
)t)(f

n
)t) + (1 ≠ (f

n
)t) 1

n≠f
·

1
nt au lieu de (f

n
+ (1 ≠

f

n
) 1

n≠f
) 1

nt avec n le nombre de
participants dont au plus f peuvent être corrompus.

Nous mettons en avant dans cette première contribution les propriétés liées à
l’unpredictability et l’importance du choix du paramètre nl d’Algorand. Ce dernier
pourrait être par erreur configuré à 1 par souci de simplification ou d’e�cacité du
protocole de consensus et doit être choisi de manière appropriée.

3. Modèle de sécurité et application à LEP-TSP. Comme autre résultat
des travaux de recherche [56] sur ce premier sujet, nous définissons un modèle de
sécurité pour les protocoles de Single Leader Election (SLE) avec cinq propriétés
de sécurité: uniqueness, fairness, unpredictability, t-forward unpredictability et
liveness. Ces propriétés ont été définies dans le modèle pour empêcher les attaques
et stratégies bien connues qui visent les protocoles de consensus. La propriété de
uniqueness signifie qu’exactement un leader est choisi à chaque élection. Cette

141

propriété est importante pour éviter des problèmes comme le fork ou les stratégies
dites de selfish, puisqu’il n’est pas possible d’avoir deux leaders, ou deux blocs si
nous sommes dans un contexte de blockchain, en compétition pour la même élection.
Les autres propriétés ont déjà été mentionnées dans les paragraphes précédents.

Ensuite, nous proposons une construction de SLE appelée LEP-TSP (Leader
Election Protocol based on Trusted Service Providers) qui est une nouvelle élection
de leader basée sur des services externes de générateurs de valeurs aléatoires. Ce
protocole vise à être utilisé dans des systèmes privés, tels que les blockchain privées.
Nous prouvons alors que notre protocole LEP-TSP satisfait les propriétés de sécurité
attendues. Plus précisément, le protocole LEP-TSP fonctionne tant que f < n

3 des
n participants sont corrompus par un adversaire.

4. Useful work. Comme recherche additionelle sur ce sujet, nous présentons une
description de haut niveau d’un nouveau protocole de consensus appelé Useful work
(UW) qui a pour but d’utiliser la puissance de calcul et l’espace mémoire pour des
calculs utiles. Plus précisément, au lieu de résoudre un puzzle avec une fonction
de hachage comme dans Bitcoin, les participants exécutent le code de n’importe
quels problèmes concrets soumis par des clients pour avoir la chance de gagner des
monnaies appelées useful coin. Nous présentons également des nouveaux problèmes
et montrons que notre protocole UW est résistant à ces attaques et aux attaques
connues des protocoles de consensus. Cette contribution a pour but de donner un
aperçu sur une nouvelle utilisation de la puissance de calcul pour la rendre utile.
Ce travail peut servir de base pour construire un protocole de consensus qui permet
de résoudre n’importe quel problème concret.

Dans la seconde partie sur une cryptanalyse quantique des schémas de Misty,
nous présentons la contribution suivante.

5. Cryptanalyse quantique des schémas de Misty. Les schémas de Misty
sont des schémas symétriques qui permettent de construire des protocoles de
chi�rement par bloc, ici vus comme des générateurs de permutations pseudo-
aléatoires. Nous décrivons des attaques quantiques non adaptatives à clairs choisis
contre les schémas de Misty L à 4 tours, Misty LKF à 4 tours, Misty R à 3 tours
et Misty RKF 3 à tours [55]. Ces attaques ont pour but de distinguer les schémas
de Misty de permutations aléatoires en temps polynomial. Nous étendons ensuite
l’attaque quantique du schéma de Misty RKF à 3 tours pour obtenir une attaque
quantique permettant de retrouver la clé secrète des schémas de Misty RKF à d
tours. Finalement, comme recherche supplémentaire, nous décrivons une preuve de
sécurité des schémas de Misty R à 3 tours qui montre que la meilleure cryptanalyse
connue des schémas de Misty R à 3 tours est optimale.

142

Publications

The works presented in Chapter 5, Chapter 6 and Chapter 7 and Part II resulted
in the following publications, respectively.

• Amira Barki, Aline Gouget, Ambre Toulemonde. Revisiting security properties
in Single Secret Leader Election. IEEE International Conference on Blockchain
and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021, [11].

• Aline Gouget, Jacques Patarin, Ambre Toulemonde. Unpredictability properties
in Algorand consensus protocol. IEEE International Conference on Blockchain
and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6, 2021, [57].

• Aline Gouget, Jacques Patarin, Ambre Toulemonde. Leader election protocol
based on external RNG services. 3rd Conference on Blockchain Research
& Applications for Innovative Networks and Services, BRAINS 2021, Paris,
France, September 27-30, 2021 [56].

• Aline Gouget, Jacques Patarin, Ambre Toulemonde. (Quantum) Cryptanalysis
of Misty Schemes. Information Security and Cryptology - ICISC 2020 - 23rd
International Conference, Seoul, South Korea, December 2-4, 2020, [55].

The contribution of Chapter 8 has been submitted to the Blockchain And Decentralized
Technologies for Social Good (BANDIT).

143

Bibliography

[1] Paul C. van Oorschot Alfred J. Menezes and Scott A. Vanstone. Handbook
of applied cryptography, chapter hash functions and data integrity, 1996.

[2] Algorand. Algorand’s o�cial implementation in go. https://github.com/
algorand/go-algorand/blob/master/config/consensus.go.

[3] David P. Anderson, Je� Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: An experiment in public-resource computing.
Commun. ACM, 2002.

[4] Claudia Antal, Marcel Antal, Tudor Cioara, and Ionut Anghel. Trading
energy as a digital asset, 05 2020.

[5] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A
formal model of bitcoin transactions. In Proceedings of the 22nd International
Conference on Financial Cryptography and Data Security (FC), 2018.

[6] Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain
proof-of-stake protocols with single secret leader elections. 2021.

[7] Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on blockchain
consensus with fantomette. CoRR, abs/1805.06786, 2018.

[8] Alejandro Baldominos and Yago Saez. Coin.ai: A proof-of-useful-work scheme
for blockchain-based distributed deep learning. 2019.

[9] Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan.
Proofs of useful work. IACR Cryptol. ePrint Arch., 2021.

[10] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. J. ACM, 59(2):6:1–6:48, 2012.

[11] Amira Barki, Aline Gouget, and Ambre Toulemonde. Revisiting security
properties in single secret leader election. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC, Sydney, Australia, 2021.

145

https://github.com/algorand/go-algorand/blob/master/config/consensus.go
https://github.com/algorand/go-algorand/blob/master/config/consensus.go

[12] Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and
Vijay S. Pande. Folding@home: Lessons from eight years of volunteer
distributed computing. In IEEE International Symposium on Parallel
Distributed Processing, 2009.

[13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero
knowledge. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, pages 90–108. Springer Berlin Heidelberg, 2013.

[14] BitShares blockchain foundation. The bitshares blockchain, 2015.
https://www.bitshares.foundation/papers/BitSharesBlockchain.pdf.

[15] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single
secret leader election. IACR Cryptology ePrint Archive, 2020:25, 2020.

[16] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold
fully homomorphic encryption. In Advances in Cryptology - CRYPTO 2018
Proceedings, Part I, pages 565–596, 2018.

[17] Joseph Bonneau. Why buy when you can rent? bribery attacks on bitcoin-
style consensus. 2016.

[18] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public
randomness source. 2015.

[19] Mic Bowman, Debajyoti Das, Avradip Mandal, and Hart Montgomery. On
elapsed time consensus protocols. 2021.

[20] BTC.com. Pool distribution. https://btc.com/stats/pool.

[21] Vitalik Buterin. Ethereum white paper: A next generation smart contract
and decentralized application platform, 2013.

[22] Vitalik Buterin. Long-range attacks: The serious problem with adaptive
proof of work. 2014.

[23] Ignacio Cascudo and Bernardo David. SCRAPE: scalable randomness attested
by public entities. In Applied Cryptography and Network Security - 15th
International Conference, ACNS 2017, Kanazawa, Japan.

[24] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and
Implementation, OSDI ’99, page 173–186, USA, 1999. USENIX Association.

[25] Alfonso Cevallos and Alistair Stewart. A verifiably secure and proportional
committee election rule. 2020.

146

[26] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash
Pourdamghani. Hybrid mining: Exploiting blockchain’s computational power
for distributed problem solving. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, SAC ’19.

[27] David Chaum. Blind signatures for untraceable payments. In CRYPTO,
pages 199–203. Plenum Press, New York, 1982.

[28] Jing Chen and Silvio Micali. Algorand. CoRR, abs/1607.01341, 2016.
[29] Jing Chen and Silvio Micali. Algorand: A secure and e�cient distributed

ledger. Theor. Comput. Sci., 777:155–183, 2019.
[30] Nikos Chondros, Stathis Maneas, Christos Patsonakis, Panos Diamantopoulos,

and Mema Roussopoulos. Practical asynchronous interactive consistency.
2014.

[31] Brian A. Coan and Russell Turpin. Extending binary byzantine agreement
to multivalued byzantine agreement, 1984.

[32] Mauro Conti, Ankit Gangwal, and Michele Todero. Blockchain trilemma
solver algorand has dilemma over undecidable messages. In Proceedings of the
14th International Conference on Availability, Reliability and Security, ARES
’19, New York, NY, USA, 2019. Association for Computing Machinery.

[33] Intel Corporation. Poet 1.0 specification.
[34] Wei Dai. B-money, 1998. Accessed: 2016-04-31.
[35] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable

consensus and applications to provably secure proof of stake. Cryptology
ePrint Archive, Report 2016/919, 2016. https://ia.cr/2016/919.

[36] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. In Ian Goldberg
and Tyler Moore, editors, Financial Cryptography and Data Security. Springer
International Publishing, 2019.

[37] W. Di�e and M. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[38] Xiaoyang Dong and Xiaoyun Wang. Quantum key-recovery attack on Feistel
structures. Sci. China Inf. Sci., 61(10):102501:1–102501:7, 2018.

[39] John R. Douceur. The sybil attack. In Peter Druschel, Frans Kaashoek, and
Antony Rowstron, editors, Peer-to-Peer Systems. Springer Berlin Heidelberg,
2002.

[40] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, April 1988.

147

https://ia.cr/2016/919

[41] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The attack of
the clones against proof-of-authority. CoRR, abs/1902.10244, 2019.

[42] Mourad el Maouchi, Oguzhan Ersoy, and Zekeriya Erkin. DECOUPLES: a
decentralized, unlinkable and privacy-preserving traceability system for the
supply chain. In Chih-Cheng Hung and George A. Papadopoulos, editors,
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
SAC 2019, Limassol, Cyprus, April 8-12, 2019, pages 364–373. ACM, 2019.

[43] ETSI. Specification of the 3GPP Confidentiality and Integrity Algorithm
KASUMI. Document available at http://www.etsi.org/.

[44] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. CoRR, abs/1311.0243, 2013.

[45] Michael J. Fischer. The consensus problem in unreliable distributed systems
(a brief survey). In Proceedings of the 1983 International FCT-Conference
on Fundamentals of Computation Theory, page 127–140, Berlin, Heidelberg,
1983. Springer-Verlag.

[46] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
April 1985.

[47] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. 2014. https://eprint.iacr.org/2014/765.

[48] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. 2020. https://eprint.iacr.org/2014/765.

[49] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In EUROCRYPT (2), pages 281–310.
Springer, 2015.

[50] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol with chains of variable di�culty, 2016. Accessed: 2017-02-06.

[51] Hector Garcia Molina, Frank Pittelli, and Susan Davidson. Applications
of byzantine agreement in database systems. ACM Trans. Database Syst.,
11(1):27–47, March 1986.

[52] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. SIAM J. Comput., 45(3):882–929, 2016.

[53] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. Algorand: Scaling byzantine agreements for cryptocurrencies.
In Proceedings of the 26th Symposium on Operating Systems Principles,
Shanghai, China, October 28-31, 2017, pages 51–68. ACM, 2017.

148

[54] Aline Gouget. Consensus protocol for permissioned ledgers, 2018-07-17.
[55] Aline Gouget, Jacques Patarin, and Ambre Toulemonde. (Quantum)

Cryptanalysis of misty schemes. In Information Security and Cryptology -
ICISC 2020 - 23rd International Conference, Seoul, South Korea, December
2-4, 2020, Proceedings, volume 12593 of Lecture Notes in Computer Science.
Springer, 2020.

[56] Aline Gouget, Jacques Patarin, and Ambre Toulemonde. Leader election
protocol based on external RNG services. In 3rd Conference on Blockchain
Research & Applications for Innovative Networks and Services, BRAINS
2021, Paris, France, September 27-30, 2021. IEEE, 2021.

[57] Aline Gouget, Jacques Patarin, and Ambre Toulemonde. Unpredictability
properties in algorand consensus protocol. In IEEE International Conference
on Blockchain and Cryptocurrency, ICBC 2021, Sydney, Australia, May 3-6,
2021. IEEE, 2021.

[58] Martin Grothe, Tobias Niemann, Juraj Somorovsky, and Jörg Schwenk.
Breaking and fixing gridcoin. In Proceedings of the 11th USENIX Conference
on O�ensive Technologies, WOOT’17. USENIX Association, 2017.

[59] Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search.
In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, page 212–219, 1996.

[60] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoin’s peer-to-peer network. In Proceedings of the 24th USENIX
Conference on Security Symposium, SEC’15, page 129–144, USA, 2015.
USENIX Association.

[61] Jason Hoelscher. Di�used art and di�racted objecthood: Painting in the
distributed field. 02 2014.

[62] Akinori Hosoyamada and Yu Sasaki. Quantum Demiric-Selçuk Meet-in-the-
Middle Attacks: Applications to 6-Round Generic Feistel Constructions. In
Security and Cryptography for Networks - 11th International Conference,
SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, volume 11035 of
Lecture Notes in Computer Science, pages 386–403. Springer, 2018.

[63] Input Output Hong Kong IOHK. Cardano. https://whycardano.com/, 2015.
[64] Gembu Ito, Akinori Hosoyamada, Ryutaroh Matsumoto, Yu Sasaki, and

Tetsu Iwata. Quantum Chosen-Ciphertext Attacks Against Feistel Ciphers.
In Mitsuru Matsui, editor, Topics in Cryptology - CT-RSA 2019, Proceedings,
volume 11405 of Lecture Notes in Computer Science, pages 391–411. Springer,
2019.

149

[65] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding
protocols(extended abstract), 1999.

[66] Vedran Juri�iÊ, Matea RadoöeviÊ, and Ena Fuzul. Optimizing the resource
consumption of blockchain technology in business systems. Business Systems
Research Journal, 2020.

[67] Nikita Karandikar, Antorweep Chakravorty, and Chunming Rong. Blockchain
based transaction system with fungible and non-fungible tokens for a
community-based energy infrastructure. Sensors, 21(11), 2021.

[68] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In
CRYPTO, pages 357–388. Springer, 2017.

[69] Sunny King. Primecoin: Cryptocurrency with prime number proof-of-work.
http://primecoin.io/bin/primecoin-paper.pdf. 2013.

[70] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19(1), 2012.

[71] Randhir Kumar and Rakesh Tripathi. Traceability of counterfeit medicine
supply chain through blockchain, 01 2019.

[72] Hidenori Kuwakado and Masakatu Morii. Quantum distinguisher between the
3-round Feistel cipher and the random permutation. In IEEE International
Symposium on Information Theory, ISIT 2010, Proceedings, pages 2682–2685.
IEEE, 2010.

[73] L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.
Softw. Eng., 3(2):125–143, March 1977.

[74] Leslie Lamport. Paxos made simple, 2001.
[75] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.
[76] Gregor Leander and Alexander May. Grover Meets Simon - Quantumly

Attacking the FX-construction. In ASIACRYPT, pages 161–178. Springer,
2017.

[77] Andrei Lihu, Jincheng Du, Igor Barjaktarevic, Patrick Gerzanics, and Mark
Harvilla. A proof of useful work for artificial intelligence on the blockchain.
2020.

[78] Y Y Luo, H L Yan, L Wang, H G Hu, and X J Lai. Study on block
cipher structures against simon’s quantum algorithm. Journal of Cryptologic
Research, 6(5):561, 2019.

[79] Ralph C. Merkle. Protocols for public key cryptosystems. In 1980 IEEE
Symposium on Security and Privacy, pages 122–122, 1980.

150

[80] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions.
In Proceedings of the 40th Annual Symposium on the Foundations of Computer
Science, pages 120–130, New York, NY, October 1999. IEEE.

[81] A Miller and LaViola JJ. Anonymous byzantine consensus from moderately-
hard puzzles: A model for bitcoin, 2014.

[82] Tatsuo Mitani and Akira Otsuka. Traceability in permissioned blockchain.
IEEE Access, 8:21573–21588, 2020.

[83] Valérie Nachef, Jacques Patarin, and Joana Treger. Generic Attacks on Misty
Schemes -5 rounds is not enough-. IACR Cryptology ePrint Archive, 2009:405,
2009.

[84] Valérie Nachef, Jacques Patarin, and Joana Treger. Generic Attacks on
Misty Schemes. In Progress in Cryptology - LATINCRYPT 2010, Proceedings,
volume 6212 of Lecture Notes in Computer Science, pages 222–240. Springer,
2010.

[85] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[86] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol
in asynchronous networks. Cryptology ePrint Archive, Report 2016/454, 2016.
https://ia.cr/2016/454.

[87] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017. Springer International Publishing, 2017.

[88] Jacques Patarin. The "Coe�cients H" Technique. In Selected Areas in
Cryptography, 15th International Workshop, SAC 2008, volume 5381 of Lecture
Notes in Computer Science, pages 328–345. Springer, 2008.

[89] Viktor Baranov Pavel KhahulinIgor, Igor Barinov. Poa network
white paper, 2018. https://github.com/poanetwork/wiki/wiki/
POA-Network-Whitepaper.

[90] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. J. ACM, 27(2):228–234, April 1980.

[91] Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst. Sci.,
27(2):256–267, 1983.

[92] Juan M Roman-Belmonte, Hortensia De la Corte-Rodriguez, and E Carlos
Rodriguez-Merchan. How blockchain technology can change medicine.
Postgraduate medicine, 130(4):420—427, May 2018.

151

https://ia.cr/2016/454
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper
https://github.com/poanetwork/wiki/wiki/POA-Network-Whitepaper

[93] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and
Edgar R. Weippl. Randrunner: Distributed randomness from trapdoor vdfs
with strong uniqueness. In 28th Annual Network and Distributed System
Security Symposium, NDSS. The Internet Society, 2021.

[94] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl.
Hydrand: E�cient continuous distributed randomness. In 2020 IEEE
Symposium on Security and Privacy, SP. IEEE, 2020.

[95] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic voting. In In CRYPTO, pages 148–164.
Springer-Verlag, 1999.

[96] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and
factoring. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, SFCS ’94, page 124–134, USA, 1994. IEEE Computer
Society.

[97] Daniel R. Simon. On the Power of Quantum Computation. SIAM J. Comput.,
26(5):1474–1483, 1997.

[98] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly,
Linus Gasser, Ismail Kho�, Michael J. Fischer, and Bryan Ford. Scalable
bias-resistant distributed randomness. In 2017 IEEE Symposium on Security
and Privacy, SP. IEEE Computer Society, 2017.

[99] Nick Szabo. Bit gold, 2005. Accessed: 2016-04-31.
[100] Yongge Wang. Another look at ALGORAND. CoRR, abs/1905.04463, 2019.
[101] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. A survey

of distributed consensus protocols for blockchain networks. CoRR,
abs/1904.04098, 2019.

[102] Dylan Yaga, Peter Mell, Nik Roby, and Karen Scarfone. Blockchain technology
overview, 2018-10-03 2018.

[103] Fan Zhang, Ittay Eyal, Robert Escriva, Ari Juels, and Robbert van Renesse.
REM: resource-e�cient mining for blockchains. In 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August 16-18,
2017.

152

	General introduction
	I Consensus protocols for blockchain technologies
	Introduction
	Context
	Contribution and Organization

	Cryptographic primitives and main notions
	Cryptographic primitives and assumptions
	Participants
	Centralized, decentralized and distributed
	Consensus protocols
	Leader election protocols
	Blockchain technologies

	Consensus protocols before the advent of blockchain technologies
	Distributed agreement problems
	Possibility and impossibility results
	Practical Byzantine Fault Tolerance (PBFT)
	Summary

	Consensus protocols for blockchain technologies
	Example of consensus protocols
	Attacks and strategies
	First formalization
	Summary

	Revisiting security analysis of Single Secret Leader Election
	SSLE overview
	Security model
	Shuffling-based SSLE construction
	Security analysis
	Tweakened shuffling-based SSLE
	Discussion on the fairness property
	Summary on SSLE

	Unpredictability properties in Algorand
	Algorand overview
	Security model
	Algorand construction
	Security analysis
	Summary on Algorand

	Security model and application to LEP-TSP
	Overview
	Security model
	LEP-TSP leader election construction
	Security analysis
	Summary

	Useful work
	Overview of useful work
	Entities and building blocks
	Our Useful work protocol
	Security analysis
	Variants and discussion
	Summary on Useful Work

	Summary on consensus protocols for blockchain

	II Quantum cryptanalysis of Misty schemes
	Introduction
	Context
	Our Contribution and Organization

	Definitions
	Simon's and Grover's algorithms
	Misty constructions

	Overview of (quantum) cryptanalysis on Misty schemes
	Misty L schemes with few rounds
	Misty LKF with few rounds
	Misty R schemes with few rounds
	Misty RKF schemes with few rounds

	Contribution on Misty schemes
	Quantum cryptanalysis on Misty
	Security proof on 3-round Misty R

	Summary on quantum cryptanalysis of Misty schemes

	General conclusion
	Long résumé
	Publications
	Bibliography

