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Titre: Simulation et évaluation de modèles d’extrêmes multivariés pour des données environnementales
Mots clés: Extrêmes multivariés; Simulation d’extrêmes cooccurrents; Variation régulière multivariée et cachée;
Evaluation de classifieurs extrêmes; Hauteur significative de vagues; Débits de rivière

Résumé: L’estimation précise des probabilités
d’occurrence des événements extrêmes environnemen-
taux est une préoccupation majeure dans l’évaluation des
risques. Pour l’ingénierie côtière par exemple, le dimen-
sionnement de structures implantées sur ou à proximité
des côtes doit être tel qu’elles résistent aux événements
les plus sévères qu’elles puissent rencontrer au cours de
leur vie. Cette thèse porte sur la simulation d’événements
extrêmes multivariés, motivée par des applications aux
hauteurs significatives de vagues, et sur l’évaluation de
modèles de prédiction d’occurrence d’événements ex-
trêmes.

Dans la première partie du manuscrit, nous proposons
et étudions un simulateur stochastique qui génère con-
jointement, en fonction de certaines conditions d’état de
mer au large, des extrêmes de hauteur significative de
vagues (Hs) au large et à la côte. Pour cela, nous nous
appuyons sur l’approche par dépassements de seuils bi-
variés et nous développons un algorithme de simulation
non-paramétrique de lois de Pareto généralisées bivar-
iées. À partir de ce simulateur d’événements cooccur-
rents, nous dérivons un modèle de simulation condition-

nel. Les deux algorithmes de simulation sont mis en oeu-
vre sur des expériences numériques et appliqués aux ex-
trêmes de Hs près des côtes bretonnes françaises. Un
autre développement est traité quant à la modélisation
des lois marginales des Hs. Afin de prendre en compte
leur non-stationnaritée, nous adaptons une extension de
la loi de Pareto généralisée, en considérant l’effet de la
période et de la direction pic sur ses paramètres.

La deuxième partie de cette thèse apporte un
développement plus théorique. Pour évaluer différents
modèles de prédiction d’extrêmes, nous étudions le cas
spécifique des classifieurs binaires, qui constituent la
forme la plus simple de prévision et de processus déci-
sionnel : un événement extrême s’est produit ou ne s’est
pas produit. Des fonctions de risque adaptées à la classi-
fication binaire d’événements extrêmes sont développées,
ce qui nous permet de répondre à notre deuxième ques-
tion. Leurs propriétés sont établies dans le cadre de la
variation régulière multivariée et de la variation régulière
cachée, permettant de considérer des formes plus fines
d’indépendance asymptotique. Ces développements sont
ensuite appliqués aux débits de rivière extrêmes.

Title: Simulation and assessment of multivariate extreme models for environmental data
Keywords: Multivariate extremes; Simulation of joint extremes; Multivariate and hidden regular variation; Evalua-
tion of extreme classifiers; Significant wave height; River discharges

Abstract: Accurate estimation of the occurrence proba-
bilities of extreme environmental events is a major issue
for risk assessment. For example, in coastal engineering,
the design of structures installed at or near the coasts
must be such that they can withstand the most severe
events they may encounter in their lifetime. This thesis
focuses on the simulation of multivariate extremes, moti-
vated by applications to significant wave height, and on
the evaluation of models predicting the occurrences of
extreme events.

In the first part of the manuscript, we propose and
study a stochastic simulator that, given offshore condi-
tions, produces jointly offshore and coastal extreme sig-
nificant wave heights (Hs). We rely on bivariate Peaks
over Threshold and develop a non-parametric simula-
tion scheme of bivariate generalised Pareto distributions.
From such joint simulator, we derive a conditional sim-
ulation model. Both simulation algorithms are applied

to numerical experiments and to extreme Hs near the
French Brittany coast. A further development is ad-
dressed regarding the marginal modelling of Hs. To take
into account non-stationarities, we adapt the extended
generalised Pareto model, letting the marginal parame-
ters vary with the peak period and the peak direction.

The second part of this thesis provides a more the-
oretical development. To evaluate different prediction
models for extremes, we study the specific case of binary
classifiers, which are the simplest type of forecasting and
decision-making situation: an extreme event did or did
not occur. Risk functions adapted to binary classifiers
of extreme events are developed, answering our second
question. Their properties are derived under the frame-
work of multivariate regular variation and hidden regular
variation, allowing to handle finer types of asymptotic in-
dependence. This framework is applied to extreme river
discharges.
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Résumé en Français
Les zones côtières sont fréquemment soumises à des événements maritimes ex-trêmes. Ces événements sont, par définition, ceux ayant le plus d’impact sur lespopulations ou les activités économiques. En France, l’exemple le plus drama-tique fût la tempête Xynthia qui s’est abattue en février 2010 sur la façade atlan-tique, engendrant un nombre élevé de victimes et de dommages matériels (Gen-ovese and Przyluski, 2013). De part sa dimension catastrophique, cet événementest très certainement la tempête maritime qui a le plus marqué les mémoires.Chaque année, plusieurs tempêtes touchent le littoral français, fort heureuse-ment sans avoir de conséquences humaines aussi dramatiques que la tempêteXynthia, mais qui ont cependant de nombreux impacts que ce soit sur la fiabil-ité des structures installées en mer ou sur les côtes, ou encore sur l’érosion deslittoraux.Les hauteurs de vagues extrêmes sont une des caractéristiques de ces tem-pêtesmaritimes. Afin de déterminer les potentiels impacts des phénomènesmar-itimes extrêmes, il est donc crucial de pouvoir caractériser et prédire les vagues lesplus extrêmes pouvant survenir près des littoraux. Dans ce contexte, les travauxprésentés dans ce manuscrit visent à répondre aux deux questions suivantes :

• Comment simuler de tels événements extrêmes ? (Problématique n°1)
• Comment comparer différents modèles de simulation, ou de prédiction,d’événements extrêmes ? (Problématique n°2)
Une première partie des travaux porte sur la modélisation des extrêmes dela hauteur significative des vagues, notée Hs. Cette quantité permet de mesurerl’énergie des vagues et donc leur sévérité. La problématique n°1 est traitée enconsidérant les conditions d’états de mer au large pouvant générer des hauteursde vagues extrêmes près des côtes.Une fois lemodèle de simulation construit, unequestionnaturelle est d’évaluerses performances en termes de prédiction d’extrêmes. La seconde partie destravaux de cette thèse vise à répondre à cette problématique n°2, en considérantle cas particulier des classifieurs binaires, qui peuvent être vus comme des en-codeurs d’événements extrêmes (un extrême a eu lieu ou n’a pas eu lieu).Un résumé de ces différents travaux est donné ci-dessous.
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Résumé en Français

Simulation jointe de Hs à la côte et au large
Pour répondre à la problématique n°1, nous considérons deux points spécifiquesun point au large (représenté en rouge sur la Figure 1) et un point à la côte (envert sur la Figure 1). Nous souhaitons modéliser conjointement les extrêmes dehauteur significative de vagues en ces deux points.

Figure 1: Carte représentant le point au large (en rouge) et le point près des côtes(point vert).
Afin de modéliser simultanément les Hs au large et à la côte, l’outil adéquatest la théorie des extrêmes multivariés, qui permet de modéliser la structure dedépendance entre les valeurs les plus extrêmes d’un vecteur aléatoire.Dans le cadre univarié, un extrême peut être défini comme un événementdépassant un certain seuil, fixé au préalable (approche par dépassements deseuil). Dans ce contexte, pour un seuil u suffisamment grand, les dépassementsde seuils, définis par [X − u | X > u] où X est une variable aléatoire réelle, peu-vent être approximés par une loi de Pareto généralisée, notée GPD (Coles, 2001).Cette caractérisation a été ensuite étendue au cadre multivarié. Nous suivonsici la définition développée par Rootzén and Tajvidi (2006), en se restreignant aucadre bivarié (correspondant à notre application) : si l’on considère un vecteur

X = (X1, X2) dans R2, alors les dépassements de seuils bivariés
[X − u | X ≰ u] ,

peuvent être approximés par une GPD bivariée, où X ≰ u signifie que X1 ≥ u1ou X2 ≥ u2, si u = (u1, u2) ∈ R2. Une illustration de ces dépassements de seuilsest présentée sur la Figure 2 avec les données de Hs au large et à la côte.Afin de construire de tels vecteurs GPD, Rootzén et al. (2018a) ont établi lareprésentation suivante
Z = E + T −max(T ), (1)

8



Résumé en Français

Figure 2: Hs à la côte en fonction des Hs au large, la zone hachurée rouge corre-spond aux dépassements bivariés des hauteurs significatives de vagues.
où T est un vecteur bivarié et E une variable exponentielle, indépendante de T .Le vecteur Z ainsi défini suit alors une loi GPD standard.A partir de la représentation (1), nous développons un générateur stochastiquepermettant de simuler conjointement desHs extrêmes au large et à la côte, et celaen fonction de certaines conditions au large, qui sont notamment desHs au largemodérément élevées.Pour cela, un algorithme de simulation non-paramétrique de vecteurs GPD estprésenté. Cet algorithme s’appuie sur la ré-écriture suivante de l’Equation (1) :{

Z1 = E +∆1∆<0,

Z2 = E −∆1∆≥0,
(2)

où ∆ := Z1 − Z2 = T1 − T2 et 1· correspond à la fonction indicatrice. Le pointclef de l’algorithme est l’utilisation d’un bootstrap non-paramétrique pour simulerdes valeurs de ∆. Les performances de l’algorithme sont illustrées sur plusieurssimulations numériques.Avant d’appliquer ce générateur stochastique de vecteurs GPD aux donnéesde Hs, l’Equation (1) requiert que les variables soient standardisées à la mêmeéchelle. Pour cela, les distributions marginales des Hs au large et à la côte sontmodélisées par une EGPD (Naveau et al., 2016), qui permet d’éviter la sélectionparfois difficile du seuil u de la GPD. L’EGPD autorise la modélisation de toute laplage de données et pas uniquement la queue de distribution. Cela nous permetnotamment demodéliser comment desHs au largemodérément élevées peuventproduire des Hs extrêmes à la côte.Une spécificité des Hs est leur caractère non-stationnaire. En effet, Jonathanand Ewans (2013) ont montré que la modélisation des extrêmes de hauteur signi-ficative de vagues nécessite de prendre en compte l’effet de certaines covariables,
9



Résumé en Français

telles que la direction des vagues ou la saisonnalité. Dans notre étude, nous con-sidérons l’effet de la période pic (notée Tp) et de la direction pic (notée Dp) surla relation entre les Hs au large et celles à la côte. Tout comme la hauteur signi-ficative de vagues, ces deux variables contribuent à caractériser un état de mer.Elles correspondent à la période et la direction de propagation du maximum - ou"pic" - d’énergie des vagues. La dépendance en Tp et Dp des modèles sur les loismarginales est portée, dans les deux cas, par le paramètre d’échelle de l’EGPD àl’aide de splines de lissage (Le Carrer, 2022).Enfin, un second algorithme est développé, permettant de simuler des Hsà la côte conditionnellement aux Hs au large. Ce second générateur peut êtrevu comme une méthode de dowscaling statistique des Hs au large (considéréescomme des données provenant d’un modèle global de vagues) vers les Hs à lacôte (issues d’un modèle local).Les deux algorithmes de simulation sont ensuite validés sur des expériencesnumériques et appliqués aux extrêmesdeHs près des côtes bretonnes françaises.
Evaluation et comparaison de classifieurs d’événements extrêmes
Pour répondre à la problématique n°2, nous étudions le cas particulier des clas-sifieurs binaires. Pour cela, nous considérons que l’on dispose d’une variable bi-naire Y ∈ {−1,+1} qui encode l’occurrence d’un événement extrême :

Y := Y (u) =

{
+1, si H > u,

−1, sinon,
oùH ∈ [0,∞) est une certaine variable aléatoire (par exemple un débit de rivière)et u > 0 un seuil critique élevé.A partir d’un ensemble d’observations multivariées X ∈ [0,∞)d, nous cher-chons à déterminer, parmi différents classifieurs binaires g(X;u) ∈ {−1,+1} deces observations, le meilleur en terme de prédictions d’occurrence d’événementsextrêmes, i.e. correspondant à Y (u) = +1. Pour fixer les idées, on peut considérerque les observationsX représentent des débits de rivière en différentes stationsde mesure (points rouges sur la carte 3), et que Y (u) décrit l’occurrence d’un débitde rivière extrême en une station différente deX (triangle jaune sur la carte 3).Afin de comparer différents classifieurs, nous définissons la fonction de risquesuivante

R(u)(g) =
P(g(X;u) ̸= Y (u))

P(Y (u) = 1 ou g(X;u) = 1)
∈ [0, 1].

Si l’on regarde la Figure 4 représentant des prédictions binaires obtenues viaun arbre de décision, cette fonction de risque revient à compter le nombremoyende points se trouvant dans les zones jaune et rouge, pondéré par la probabilitéd’être dans les zones jaune, verte ou rouge.
10



Résumé en Français

Figure 3: Carte du bassin versant duDanube, montrant les 31 stations de jaugeagele long du Danube et de ses affluents.
Comme nous considérons les occurrences d’événements extrêmes, en pra-tique, le seuil critique u est très grand et il y a très peu de points dansla zone verte. Nous définissons alors le risque extrême d’un classifieur par

R(g) := limu→∞R(u)(g). Et nous considérons que pour deux classifieurs binaires
g1 et g2, si R(g1) < R(g2), alors g1 est un meilleur classifieur en terme de prédic-tions d’occurrence d’événements extrêmes que g2.

Figure 4: Exemple de prédictions binaires obtenues avec un arbre de décision,contre les observations H . La ligne horizontale bleue représente le seuil critique
u, la ligne verticale sépare les deux classes prédites −1 et +1.

Un second développement est porté sur le comportement de dépendanceasymptotique entre la variable d’intérêt H et les classifieurs binaires. Pour cela,nous considérons des classifieurs de la forme
g(X;u) =

{
+1, si g(X) > u,

−1, sinon,
11



Résumé en Français

pour une certaine fonction g : Rd → (0,∞). Dans ce cas-là, nous montrons que lamesure de risque extrême R(g) telle que définie précédemment ne permet pasde discriminer des classifieurs dans le cas où g(X) et H sont asymptotiquementindépendants.Pour contourner ce problème, nous définissons une seconde fonction derisque, adaptée aux cas de l’indépendance asymptotique, en considérant le con-ditionnement suivant pour ε ∈ [0, 1)

Rε(g) := lim
u→∞

P(g(X;u) ̸= Y (u) | Y (εu) = g(X; εu) = 1)

P(Y (u) = 1 ou g(X;u) = 1 | Y (εu) = g(X; εu) = 1)
.

Nous établissons alors un estimateur empirique de Rε(g), dont les propriétésasymptotiques sont dérivées dans le cadre de la variation régulière multivariéeet de la variation régulière cachée, à l’aide principalement du modèle de Ramosand Ledford (2009), dont une adaptation est la suivante
P[g(X) > u,H > v] = L(u, v)(u−αgv−αH )1/2η,

où η ∈ (0, 1] indique le vitesse de décroissance de la queue bivariée, L(·, ·) est unefonction à variation lente et αH , αg > 0 sont les indices de queue respectifs de Het g(X).Cette seconde fonction de risque est appliquée à l’analyse des débits extrêmesde rivière dans le bassin versant du Danube. L’application compare différents al-gorithmes de prédiction (classifieur linéaire, régression logistique, arbres de dé-cision,. . . ) et teste leur capacité à prédire les débits de rivière extrêmes en unestation donnée à partir des observations en d’autres stations (voir Figure 3).
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Introduction
Motivations
Coastal areas are frequently subject to extreme maritime events. These eventsare, by definition, those that have the greatest impact on populations or economicactivities. In France, the most dramatic example was the Xynthia storm which hitthe Atlantic coast in February 2010, causing a high number of fatalities and mate-rial damages (Genovese and Przyluski, 2013). Due to its catastrophic dimension,this event is undoubtedly the maritime storm that has left the greatest mark onpeople’s memories.Every year, numerous storms hit the French coastline, fortunately without hav-ing such dramatic human consequences as the Xynthia storm, but which never-theless have multiple impacts, whether on the reliability of structures installed atsea or on the coasts, or on coastal erosion.Extreme wave heights are one of the characteristics of these maritime storms.In order to determine the potential impacts of extreme maritime events, it istherefore crucial to be able to characterise and predict the most extreme wavesthat canoccur near the coast. In this context, thework presented in thismanuscriptaims to answer the following questions:

• How to simulate such extreme events? (Problematic n°1)
• How to compare different simulation, or prediction, models of extremeevents? (Problematic n°2)
The first part of the work concerns the modelling of extreme significant waveheights, denoted Hs. This quantity measures the energy of the waves and, con-sequently, their severity. The problematic n°1 is addressed by considering theoffshore sea state conditions that can generate extreme wave heights near thecoast.Once the simulation model is built, a natural question is to evaluate its per-formance in terms of prediction of extremes. The second part of the work of thisthesis aims at answering this problematic n°2, by considering the particular caseof binary classifiers, which can be seen as extreme event encoders (an extremehas or has not occurred).
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Introduction

Outline of the thesis
The outline of this manuscript is as follows. In Chapter 1, the main results of ex-treme value theory (EVT) are discussed. Since this theory entails many conceptsand questions, a focus is made on the key elements of univariate andmultivariateEVT, that are useful for the rest of this thesis.The main goal of Chapter 2 is to answer the problematic n°1. For that, we pro-pose and study a stochastic simulator that, given offshore conditions, producesjointly offshore and coastal extreme significant wave heights. We rely on bivariatePeaks over Threshold (Rootzén and Tajvidi, 2006) and develop a non-parametricsimulation scheme of bivariate GPD. To take into account non-stationarities, wealso adapt the extended generalised Paretomodel (Naveau et al., 2016), letting theparameters vary with specific sea state parameters.Chapter 3 addresses the problematic n°2. We study the specific case of bi-nary classifiers, which are the simplest type of forecasting and decision-makingsituation: an extreme event did or did not occur. Such classifier tailored for ex-tremes will be called an extremal classifier and risk functions that answer our ini-tial question will be developed. Their properties will be derived under the frame-work of multivariate regular variation and hidden regular variation, allowing tohandle finer types of asymptotic independence.

All the codes used in this manuscript are produced with R (R Core Team, 2022).
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Chapter 1
Elements of extreme value theory

Overview of Chapter 1
In this Chapter, the main results of extreme value theory (EVT) are dis-cussed. Since this theory entails many concepts and questions, a focus ismade on the key elements that are useful for the rest of this thesis. Theproofs are omitted and can be found inmany great reference books suchas Coles (2001), Beirlant et al. (2004) or de Haan and Ferreira (2007). Theoutline of the present chapter is as follows.In Section 1.1, we give the foundations of univariate EVT. Starting fromits key result that the generalised extreme value distributions are the onlypossible limits that can be obtained for the maximum of a random sam-ple, under a suitable renormalisation, we introduce two modelling ap-proaches for extremes: block maxima and peaks over thresholds. Then,a brief note is made on regular variation which is a powerful tool in EVT.Section 1.2 is devoted to multivariate EVT. A focus is made on bivari-ate extremes, this enables us to avoid complex notations. Similarly to theunivariate case, the bivariate extreme value distributions are introducedas the limit of component-wise maxima. Characterisations of this familyare given with its spectral representation. Bivariate peaks over thresh-olds models are discussed, following the representation of Rootzén andTajvidi (2006). Then a discussion is made on the dependence structureof bivariate extreme value distributions and we show that extreme valuemodels fail for asymptotically independent variables. Therefore, the lastsection addresses this issue by looking at other types of models apartfrom the class of extreme value distributions.
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

This chapter was written with the help of the above-mentioned textbooks.Other references that have proved very valuable include Fougères (2004), Reissand Thomas (2007) and the recent review of Davison and Huser (2015) which con-tains helpful animations that illustrate some of the following concepts.In this chapter, we do not address in details the question of statistical inferencemethods. A comprehensive account can be found in Beirlant et al. (2004) or Deyand Yan (2016) among others.

1.1 Univariate extremes
As mentioned in the introduction of this dissertation, univariate extreme valuetheory (EVT) provides a solid theoretical basis and framework for studying thelargest values of a sample. In this context different modelling methods coexist:blockmaxima, r largest order statistics, peaks over threshold andpoint process. Inthe following, we focus on themaxima and the threshold exceedances of randomvariables, see, e.g. Coles (2001) or Dey and Yan (2016) for details on the otherapproaches.
1.1.1 Possible limits of block maxima
The strength of EVT began in 1928 with the Fisher and Tippett (1928) Theorem (andlater with Gnedenko (1943)). The idea was that if we consider a sequence of inde-pendent and identically distributed random variables X1, . . . , Xn with commoncumulative distribution function F , then there are only three possible limiting dis-tributions for the maximum Mn := max{X1, . . . , Xn} after proper renormalisa-tion. These three families are known as GEV (Generalised Extreme Value distribu-tions).
Theorem 1.1 (Fisher and Tippett (1928); Gnedenko (1943)). If there exists sequences
(an > 0) and (bn) such that

lim
n→∞

P [(Mn − bn)/an ≤ x] = G(x), (1.1)
where G is a non-degenerate distribution function. Then G belongs to the GEV familyi.e. is of the form:

Gξ(x) =


exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ}
if ξ ̸= 0, x ∈ {x; 1 + ξ(x− µ)/σ > 0} ,

exp

{
− exp

[(
x− µ

σ

)]}
if ξ = 0, x ∈ R,

for parameters µ ∈ R (location), σ > 0 (scale) and ξ ∈ R (shape).
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1.1. Univariate extremes

In EVT, an important issue concerns the shape parameter ξ, which governs thebehaviour of the upper-tail distribution (see Figure 1.1):
• If ξ > 0, the upper end-point of Gξ is infinite and the distribution is heavy-tailed, i.e. the tail of the distribution decreases polynomially (Fréchet family).
• If ξ = 0, the upper end-point of Gξ is also infinite but the distribution israther light-tailed, i.e. the tail decreases exponentially (Gumbel family).
• If ξ < 0, the upper end-point of Gξ is finite, the distribution tail is bounded(Weibull family). Furthermore, the upper end-point xF can be linked to theparameters of the GEV through xF = µ− σ/ξ.

Figure 1.1: Densities of the three generalised extreme value distributions. For theFréchet distribution ξ = 0.5 and for the Weibull distribution ξ = −0.5. The shapeparameter σ is equal to 1 and the location parameter µ is equal to 0.
If equation (1.1) is satisfied then F (orX with distribution function F ) is said tobe in the domain of attraction of the GEV distribution Gξ, often denoted

F ∈ D(Gξ).
Example 1.2. For example, the Uniform distribution is in the Weibull domain of at-
traction, with ξ = −1. Indeed, let Xi ∼ U(0, 1), setting an = n−1 and bn = 1 we
have:

P
[
(Mn − 1)/n−1 ≤ x

]
= F n(1 + n−1x) =

(
1 + n−1x

)n −−−→
n→∞

exp(x).

Note that the Weibull family and the Fréchet family can be linked through
X ∈ D(Gξ<0) ⇔ Y := (xF −X)−1 ∈ D(Gξ>0), (1.2)
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

where Gξ<0 (resp. Gξ>0) is the Weibull (resp. Fréchet) extreme value distributionand xF denotes the upper end-point of the distribution function F ofX (see Beir-lant et al., 2004). This correspondence is one of the reason why the EVT literatureoften focuses on the heavy-tail case. It is also justified from an application per-spective. Indeed, there is an historical tradition between hydrology and EVT, andit is widely agreed that the distributions of hydrologic variables are heavy-tailed(e.g. Katz et al., 2002).From a statistical point of view, however, Equation (1.2) is of no use since, ingeneral, no prior information is available on the sign of ξ.A convenient related concept to the extreme value distributions ismax-stability.A distribution function F ismax-stable if, for every n ∈ N,
F n(bn + anx) = F (x), (1.3)

for a suitable choice of constants bn and an > 0. And it can be shown that theclasses of generalised extreme value distributions and max-stable distributionscoincide (see, for example, Beirlant et al. (2004)).A classification of the standard distributions according to their domain of at-traction, with their respective normalising constants, can be found for example inEmbrechts et al. (2013).In practice, the normalising constants an and bn are unknown and the maximaare modelled directly using the following approximation for a large enough blocksize n
P(Mn ≤ x) ≈ G [(x− bn)/an] = G∗(x),

where G∗ also belongs to the GEV family and differs from G only in the scale andlocation parameters.The max-stability property (1.3) implies in particular that if block maxima withfixed block size n are well approximated by a GEV distributionG, then block max-ima over a larger block size should also be well approximated by the GEVG, up toa change of scale and location. Indeed, considerm = αn ≥ n, α ∈ N, then
P(Mm ≤ x) = Fm(x) = [F n(x)]α = [P(Mn ≤ x)]α .

And from this simple equation, if F ∈ D(G), using the max-stability property (1.3),one can write
P(Mm ≤ x) ≈ {G [(x− bn)/an]}α = G [(x− bαn)/aαn] .

From Theorem 1.1, and the preceding remark, one can derive directly the firstapproach for modelling extreme events which is the so-called block maxima ap-proach (see Figure 1.4). For that, the data will be divided into blocks of equal sizes(typically blocks of one year or onemonth), we then compute themaxima for eachblock and we can then fit a GEV distribution to the set of block maxima. Note that
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1.1. Univariate extremes

the size of the block implies a bias-variance trade-off: if the block size is too small,the approximation from the limit in Theorem 1.1 will be bad inducing higher bias;if the block size is too big, we will have too few datapoints, leading to higher vari-ance.
1.1.2 Peaks over thresholds approach
One limitation of the block maxima approach is if many extremes occur in thesame block, only one event will be kept, which may lead to a significant loss ofdata. The second approach, named peaks over thresholds, is an alternative whereinstead of consideringmaxima per block, wewill look at all events, or peaks, abovea given - usually high - threshold. This approach relies on the following theoremwhere, with a similar emphasis, it states that the only possible limiting distribu-tions of the threshold excesses is the generalised Pareto family (GP).
Theorem 1.3 (Balkema and de Haan (1974); Pickands (1975)). For every ξ ∈ R, X
is in the domain of attraction of a GEV distribution Gξ if, and only if, the distribution
function of the excesses X − u, conditionally on X > u, converges as follows

lim
u→xF

sup
0<x<xF−u

|P(X − u ≤ x | X > u)−Hξ,σ̃(u)(x)| = 0, (1.4)
for some positive function σ̃, where xF is the upper end-point of F and Hξ,σ̃(u) is the
generalised Pareto distribution function and defined as

Hξ,σ̃(u)(x) := 1− (1 + ξx/σ̃(u))−1/ξ .

If Theorem 1.3 holds true, then the shape parameter ξ is the same for the GEVdistribution Gξ and the GP distribution Hξ,σ̃(u), and σ̃(u) = σ + ξ(u− µ).The different behaviours of the tail distribution given the shape parameter ξare the same as for the GEV family (see Figure 1.2), where for ξ = 0, taking the limit
ξ → 0 in (1.4), we have

H0,σ̃(u)(x) = 1− exp(−x/σ̃(u)).

Similarly to the notion ofmax-stability, regarding peak over thresholds a usefulproperty is the threshold stability (e.g. Falk et al., 2010). A distribution F is threshold
stable (sometimes called POT-stable) if, for every u ∈ [0, xF ], with xF the upper-endpoint of F ,

F [u](bu + aux) = F (x), (1.5)
for a suitable choice of constants bu and au > 0. F [u] denotes the distribution ofexceedances above the threshold u and is defined by

F [u](x) =
F (x)− F (u)

1− F (u)
, x ≥ u.
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

Figure 1.2: Densities of the GP distribution for different values of the shape pa-rameter ξ. For the Fréchet family ξ = 0.5 and for the Weibull family ξ = −0.5. Thescale parameter σ̃ is equal to 1.
Note that if X has distribution function F , then the threshold exceedances
X − u | X > u have distribution function F [u]:

P(X − u ≤ x | X > u) = F [u](x+ u).

The following proposition shows that the class of threshold stable distributionscoincides with the class of GP distributions (see, e.g. Falk et al. (2010)).
Proposition 1.4. Let F be a distribution function with upper-end point xF .

1. If there exists functions a(u) > 0 and b(u) such that

lim
u→xF

F [u](b(u) + a(u)x) = L(x), (1.6)
where L is a non-degenerate distribution function, then L is threshold stable.

2. Conversely, if L is a threshold stable distribution, then L satisfies (1.6).
If, in addition to being threshold stable, L is continuous, then L is a GP distribution,
up to a change of scale and location.

Example 1.5. Considering the Uniform distribution as in Example 1.2, its conditional
threshold exceedances correspond to the generalised Pareto distribution with ξ = −1
and σ̃(u) = 1− u

P(X − u ≤ x | X > u) =
F (x+ u)− F (u)

1− F (u)
=

(x+ u)− u

1− u
=

x

1− u
.

28



1.1. Univariate extremes

FromTheorem 1.3we canderive the second approach tomodel extremeevents,the so-called peaks over thresholdsmodel (see Fig. 1.4). Instead of splitting data intoblocks, we will choose a high enough threshold u and then fit a GP distribution tothe thresholds exceedances. As for the block maxima approach with the choice ofthe block length, the choice of the threshold u implies a bias-variance trade-off.For many applications, u will typically be chosen as a high quantile of the data ofinterest.Similarly to the max-stability for the block maxima approach, the thresholdstability property (1.5) implies in particular that if threshold exceedances over agiven threshold u are well approximated by a GP distributionH , then the thresh-old exceedances over a higher threshold will also be well approximated by the GPdistributionH , up to a change of scale and location. To see this, consider a higherthreshold v = α + u > u, α > 0, then
P(X − v > x | X > v) =

P(X > x+ v)

P(X > u)
× P(X > u)

P(X > v)
=

P(X − u > x+ α | X > u)

P(X − u > α | X > u)
.

Then, if the exceedancesX −u | X > u are approximated by a GP distributionH ,using the threshold stability of H , one can write
P(X − v ≤ x | X > v) ≈ H(x+ α)−H(α)

1−H(α)
= H((x+ α− bu)/au).

Figure 1.3: Upper tail distribution of significant wave heights (Hs), correspondingto the threshold exceedances above the 0.98 quantile ofHs. GP density with shapeparameter ξ = 0 (resp. ξ > 0) is superimposed as a red solid line (resp. bluedashed line).
An example of peaks over threshold modelling is given in Figure 1.3, with thewave data used in Chapter 2. As mentioned in the Introduction, in this chapter,
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

we will consider significant wave height, denoted Hs. This quantity basically giveinformation about the ocean surface roughness, more details are provided in Sec-tion 2.1.1. Figure 1.3 depicts the distribution of the threshold exceedances of Hsgiven thatHs > u, where u is the 0.98 quantile ofHs. Two GP densities are super-imposed, showing that the Hs exceedances should be rather well approximatedby a light-tailed distribution. This a priori analysis will be confirmed in Chapter 2,where the estimated shape parameters forHs data in two locations will be slightlynegative (see Table 2.2).To avoid a careful threshold selection, Naveau et al. (2016) introduced an exten-sion of the GP distribution, the so-called extended generalised Pareto distribution(EGPD). In a nutshell, the EGPD allows to model the entire range of a distributionwith a smooth transition between the lower and the upper tails. This model isintroduced in Section 2.1.3 and it has been applied to the wave data in Legrandet al. (2022), see Chapter 2.

Figure 1.4: Illustration of the block maxima versus the peaks over thresholds ap-proaches with one year of the wave data described in Chapter 2, Section 2.1.1.
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1.1. Univariate extremes

To sum up
To model extreme events, two main strategies can be used:

1. The block maxima approach which relies on the approximation ofrenormalised maxima by a GEV distribution (Theorem 1.1).
⇝ Needs to choose the size of the blocks.

2. The peaks over thresholds approach which relies on the approxima-tion of the thresholds exceedances by a GP distribution (Theorem1.3).
⇝ Needs to choose the threshold.

1.1.3 Regular variation and domain of attraction
When studying EVT, one theoretical tool that quickly comes into play is regular
variation. Here we briefly introduce the key concepts and show how regular vari-ation can be used to determine domains of attraction. See, e.g. Bingham et al.(1987) for more details.
Definition 1.6. A positive measurable function f is regularly varying (r.v.) with index
α ∈ R if

lim
t→∞

f(tx)

f(t)
= xα, for all x > 0.

If α = 0, f is called a slowly varying function.

Example 1.7. Examples of regularly varying functions are: all the functions converging
to a positive constant, x 7→ xα for α ∈ R, x 7→ logβ(x) for β ∈ R.

In the following, we consider regularly varying survival functions 1 − F of arandom variable X . For this, an additional constraint is required by imposing
α > 0. This can be seen through the following convergence, assuming that 1− Fis r.v. with index α,

lim
t→∞

1− F (tx)

1− F (t)
= lim

t→∞

P(X > tx)

P(X > t)
= x−α, (1.7)

then necessarily, αmust be strictly positive.Thanks to the following result, due to Gnedenko (1943), the domains of at-traction of the Fréchet family and the Weibull family can then be characterised interms of regular variation.
Theorem 1.8 (Gnedenko (1943)). In the following, Gξ>0 (resp. Gξ<0) denotes the
Fréchet (resp. Weibull) family distribution and xF denotes the upper end-point of F .
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

• F ∈ D(Gξ>0) iif 1− F is regularly varying (r.v.) with index 1/ξ.

• F ∈ D(Gξ<0) iif xF < ∞ and 1− F (xF − 1/x) is r.v. with index −1/ξ.

Note that using the link between theWeibull and the Fréchet families providedin Equation (1.2), only the first statement of Theorem 1.8 is needed.
Example 1.9. Every Pareto-like distributions, i.e. such that 1−F (x) ∼ Cx−α for large
x and for some C, α > 0, are in the domain of attraction of the Fréchet family. For
example the Pareto, Cauchy, and Burr distributions.

From this characterisation theorem, we see that the theory of regular variationis an appropriate framework to study heavy-tailed distributions, bringing manyvaluable theoretical tools (e.g. Resnick, 2007). In Chapter 3, we will provide themultivariate extension of regular variation and this theoretical framework will beapplied in particular to extreme river discharges, which are heavy-tailed data.

1.2 Multivariate extremes
The extension from univariate extremes to multivariate extremes is not straight-forward, partly because it implies a point of view choice. For example, consideringtemperature data in different cities, one could say that an extreme (multivariate)event occurs if large values of temperature in one of the cities is observed, but itcould also be that large values in all cities occur simultaneously. In the bivariatecase, an illustration of these two approaches is given in Figure 1.5 with daily riverdischarges from the Danube river network (more details on this dataset are givenin Chapter 3). The underlying question here could then be the following: Do wewant to assess the risk of flooding at one (or more) location or are we more in-terested in assessing the overall risk of flooding - which increases if extreme riverdischarges occur at different locations simultaneously?The second key aspect of multivariate extremes is the dependence structurebetween the different components in the asymptotic. For large values, the de-pendence structure between the components of a multivariate distribution canbe disrupted. An example developed by Sibuya (1960) is the bivariate Gaussiandistribution, for which, whenever the correlation coefficient ρ is strictly smallerthan 1, its components are independent in the extremes (see Figure 1.6).To focus on the dependence structure , the standard method is to transformthe data to commonmargins which removesmarginal effects. This is what is donein Figure 1.6, where the data are transformed to common Pareto margins (forexample). Note that this transformation does not alter the dependence structure.Once the marginal effects are removed, it is then easier to seek for dependenceor independence. This two step study can be elegantly illustrated through thecopula theory and the following theorem:
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1.2. Multivariate extremes

Figure 1.5: Scatter plots of daily river discharges of two stations in theDanube rivernetwork. The two possible regions of extremes are depicted in blue: when an ex-treme event is defined as a large value observed in at least one of the components(left) and when it is defined as a large value in both components simultaneously(right).
Theorem 1.10 (Sklar (1959)). Let F be a joint distribution function with margins FX

and FY . Then there exists a copula C 1 such that, for all x, y ∈ R,

F (x, y) = C {FX(x), FY (y)} . (1.8)
If FX , FY are continuous, then C is unique. Conversely, if C is a copula and FX , FY

are distribution functions, then the function F defined by (1.8) is a joint distribution
function with margins FX and FY .

From Theorem 1.10 we see that the study of the joint distribution F can bedecomposed into the study of its margins and of the dependence structure, viathe copula C. More details on copula theory, and its links with EVT, can be foundfor example in Nelsen (2006).On this basis and derived from theoretical and practical perspectives, themod-elling ofmultivariate extreme events is in general carried out in two steps: the firststep concerns the treatment of the margins and the second step the descriptionof the dependence behaviour (e.g. Cai et al., 2013; Tendijck et al., 2021; Rohmeret al., 2021).Themarginalmodelling can involve classic univariate EVT (see Section 1.1). Giventhe application, some models will be more adapted than others. For example, inChapter 2 the margins are modelled using a specific type of extreme value dis-tribution: the extended generalised Pareto distribution (Naveau et al., 2016). If
1A copula (in dimension 2) is a bivariate distribution function on [0, 1]× [0, 1] with uniformmar-gins in [0, 1] (Nelsen, 2006).
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

Figure 1.6: Illustration of asymptotic independence with a bivariate Gaussian vec-tor on the original scale (left) and transformed to common Pareto scale (right).

there is no specific constraint on the marginal modelling, to facilitate the choice,Beirlant et al. (2004) suggest that when the main interest lies in the dependencestructure, a convenient choice is to transform into standard Fréchet margins asthere are good theoretical properties in this case.
Regardless of the chosen standardisation distribution, once the data are trans-formed to commonmargins, different theoretical objects can be defined tomodeland to measure the dependence at high levels. In the remaining of this sectionwe will briefly introduce these tools and provide the links between them. We willrestrict our attention to the bivariate case, generalisation to higher dimensionscan be found in the references mentioned earlier.
To lighten the notations, in the following bold face symbols will denote bivari-ate vectors: x = (x1, x2) ∈ R2, 0 = (0, 0),. . . Operations and relations involvingsuch vectors will be considered component-wise. For example min(x,0) will cor-respond to (min(x1, 0),min(x2, 0)) ∈ R2.

1.2.1 Domain of attraction and characterisation
The definition commonly adopted in the literature for the notion of maximum inthe multivariate case is the component-wise maxima. If we assume that we havea set of bivariate vectors (X1, Y1), . . . , (Xn, Yn) that are independent and identi-cally distributed with common bivariate distribution function F , then the samplemaximumMn is defined by

Mn :=

(
max
1≤i≤n

Xi, max
1≤i≤n

Yi

)
.
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1.2. Multivariate extremes

Note that the sample maximum does not necessarily correspond to a samplepoint. Then, similarly to the univariate case, we can define the family of multivari-ate extreme value distributions as the only possible limit for the sample maximaafter proper renormalisation. Recall that operations involving vectors are meantcomponent-wise.
Definition 1.11. If there exists sequences inR2 (an) and (bn)with an,j > 0 for j = 1, 2,
such that

lim
n→∞

P [(Mn − bn)/an ≤ (x, y)] = G(x, y), (1.9)
where G is a non-degenerate distribution function, then G belongs to the bivariate
extreme value family and F is said to be in the (bivariate) domain of attraction of G,
denoted F ∈ D(G).

This definition implies that, if X = (X, Y ) ∈ D(G), the marginal distribution
FX (resp. FY ) ofX (resp. Y ) must be in the univariate domain of attraction of theGEV distribution G1 (resp. G2), where Gj denotes the jth marginal distribution of
G, for j = 1, 2.As in the univariate case, there is a multivariate version of max-stability: G ismax-stable if

Gn(bn + anx) = G(x),

for suitable vectors bn and an > 0. And it can be proved that G is a bivariateextreme value distribution if, and only if, G is max-stable.
Example 1.12. Consider a bivariate vector with unit Fréchet margins. Then in this
case, taking bn = 0 and an = (n, n) for all n > 0,

P [Mn/an ≤ (x, y)] = F n(n(x, y)) = (exp(−1/(n(x, y))n = exp(−1/(x, y)).

The standard Fréchet distribution is then in its own domain of attraction.

We now assume that both margins are transformed to standard Fréchet dis-tributions (whose distribution function is given by x 7→ exp(−1/x) for x > 0). Thenthe following theorem provides a characterisation of the bivariate extreme valuefamily defined in Equation (1.9) (see Fougères (2004) or more specifically Resnick(1987) for the multivariate version).
Theorem 1.13. The following statements are equivalent:

(i) G is a bivariate extreme value distribution with unit Fréchet margins.

(ii) There exists a finite measureH on [0, 1] such that for each x, y > 0, one has that

G(x, y) = exp

{
−2

∫ 1

0

max

(
w

x
,
1− w

y

)
dH(w)

}
with the mean constraints

∫ 1

0
dH(w) = 1 and

∫ 1

0
wdH(w) = 1/2.

35



CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

If we are in the framework of Theorem 1.13, the following measure is also de-scribed
V (x, y) := 2

∫ 1

0

max

(
w

x
,
1− w

y

)
dH(w), for any x, y > 0. (1.10)

The measure V can be any positive function such that for t > 0 and x, y > 0,
V (tx, ty) = t−1V (x, y) (homogeneity property) and V (z,∞) = V (∞, z) = 1/z forany z > 0 (marginal constraints).
Definition 1.14. ThemeasureH is known as the spectralmeasure and V is sometimes
called the exponent measure of the extreme value distribution function G.

Instead of V defined in (1.10), the stable tail dependence function (e.g. Beirlantet al., 2004) is widely considered in the literature and is defined by
l(x, y) := V

(
1

x
,
1

y

)
, x, y ≥ 0.

Other alternative and equivalent characterisations can be found. For example,the Pickands dependence function (Pickands, 1981) is defined as
A(t) := V

(
1

1− t
,
1

t

)
, for any t ∈ [0, 1]. (1.11)

The Pickands dependence function can be linked to the spectral measure through
A(t) = 2

∫ 1

0

max {w(1− t), (1− w)t} dH(w).

From the marginal constraints on V , A(0) = A(1) = 1. Moreover, A lies within theset max(t, 1− t) ≤ A(t) ≤ 1 for any t ∈ [0, 1] and is convex within this region.The measure V is completely determined by the Pickands dependence func-tion A through
V (x, y) =

(
1

x
+

1

y

)
A

(
x

x+ y

)
,

for x, y > 0 such that x+ y > 0.The spectral measure H can also be recovered from V , or equivalently A, seeBeirlant et al. (2004) for more details, so that there are one-to-one mappings be-tween H , V and A.
Example 1.15. Historically, the first parametric family of bivariate extremes is the
logistic model (Beirlant et al., 2004). Its distribution G is given by

G(x, y) = exp
{
−
(
x−1/α + y−1/α

)α}
, x, y > 0, (1.12)
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1.2. Multivariate extremes

for a parameter 0 < α ≤ 1. The corresponding exponent measure is therefore

V (x, y) =
(
x−1/α + y−1/α

)α
,

and it can be shown that the corresponding spectral measure H has associated spec-
tral density h given by

h(w) =
1− α

α
{w(1− w)}1/α−2

{
(1− w)1/α + w1/α

}α−2
, w ∈ (0, 1).

The behaviour of this family given α will be discussed later in Section 1.2.3. Other para-
metric families can be found in Section 9.2.2 of Beirlant et al. (2004). Simulations from
this model are displayed in Figure 1.7 for different values of the parameter α.

Figure 1.7: Simulations of n = 1000 points from the bivariate logistic extreme valuemodel (1.12) for different values of α ∈ {0.2, 0.5, 0.99} (left to right).
Alternative ways of describing multivariate extremes to the ones presentedhere exist, see for instance Segers (2012) for further details.
To sum up
Assuming that the bivariate extreme value distributionG has unit Fréchetmargins, it can be equivalently characterised by:

1. the spectral measure H

G(x, y) = exp

{
−2

∫ 1

0

max

(
w

x
,
1− w

y

)
dH(w)

}
,

2. the exponent measure V

G(x, y) = exp(−V (x, y)),
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3. the Pickands dependence function A

G(x, y) = exp

[
−
{(

1

x
+

1

y

)
A

(
x

x+ y

)}]
.

1.2.2 Bivariate threshold excess model
As for the univariate case, instead of consideringmaximaone can consider thresh-old exceedances. However, the extension to the multivariate case is not straight-forward since it requires to define the conditioning event X > u in a multivari-ate way. For that, there is no universal choice on how to define multivariate ex-ceedances. In this work, we follow the definition of Rootzén and Tajvidi (2006),saying that an observation is extreme if it is extreme in at least one of its compo-nents, but other definitions exist (e.g. Falk and Guillou, 2008).Such event is denotedX ≰ u and means that at least one component ofX isabove a given (high) threshold, i.e.

{X ≰ u} := {X1 > u1 or X2 > u2}, (1.13)
where u = (u1, u2) and X = (X1, X2). The subset defined in (1.13) correspondsto the blue L-shaped region in the left-hand side of Figure 1.5 or the red L-shapedregion in Figure 1.8.

Figure 1.8: (left) Map illustrating the locations considered in Chapter 2. The reddot corresponds to the "offshore" point and the green dot corresponds to the"coastal" point. (right) Scatter plot of the significant wave heights at the two loca-tions considered, more details on the data are provided in Chapter 2. The blackdots belong to the region where the multivariate model will be fitted.
In Chapter 2, a joint simulationmodel of significant wave heights (Hs) in two lo-cations is developed. An application of such stochastic simulator could be on the
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1.2. Multivariate extremes

installation of wind farms in two relatively distant sites and the study of the ex-treme wave conditions that these sites could face simultaneously. In this context,the definition of Rootzén and Tajvidi (2006) appears to be the most appropriatesince it allows for the possibility that the Hs are not necessarily extreme on bothsites simultaneously (see Figure 1.8).Rootzén and Tajvidi (2006) provide the following Definition 1.16 for the mul-tivariate generalised Pareto distribution (stated here only in the bivariate case),which fulfils the two following motivating conditions for the extension from uni-variate to multivariate GP (Rootzén and Tajvidi, 2006, p.919):
(M1) exceedances (of suitably coordinated levels) asymptotically have a

multivariate GP distribution if and only if componentwise maxima
asymptotically are EV distributed;

(M2) the multivariate GP distribution is the only one which is preserved
under (a suitably coordinated) change of exceedance levels.

Definition 1.16. A distribution function H is a bivariate generalised Pareto distribu-
tion if

H(x) :=
1

− logG(0)
log

G(x)

G(x ∧ 0)
, (1.14)

for some bivariate extreme value distributionGwith non-degeneratemargins and with
0 < G(0) < 1. In particular, H(x) = 0 for x < 0 and H(x) = 1− logG(x)/ logG(0)
for x > 0.

Considering the spectral representation of Theorem 1.13, when x > 0, H(x)can easily be linked to the spectral measure of the associated GEV distribution
G, or similarly, to the Pickands dependence function A (see Propositions 5.3 and6.1 of Tajvidi (1996)). In the following, we will provide the explicit link between theexponent measure V and the GP distribution in a specific case.Rootzén and Tajvidi (2006) showed that the properties (M1) and (M2) are ful-filled with this definition of bivariate GP distributions thanks to the two followingtheorems. Theorem 1.17 answers the motivation (M1), and can be viewed as amultivariate extension of Theorem 1.3. The second theorem, Theorem 1.18, is theanalogue of the threshold stability property in the univariate case (see Proposition1.4), and answers the above motivation (M2).Hereinafter we consider a threshold function defined as an increasing contin-uous curve u(t) parameterised by t ∈ [1,∞), i.e. the thresholds are defined fromthe set {u(t) = (u1(t), u2(t)) : t ∈ [1,∞)}. Here "increasing" means that if t > s,with t, s ∈ [1,∞), u(t) > u(s). Recall that this inequality is meant component-wise, i.e. it corresponds to u1(t) > u1(s) and u2(t) > u2(s). An illustration is givenin Figure 1.9. This parametrisation is needed to specify how the 2-dimensionallevels increase as we look further into the tail of the bivariate distribution F ofX(see Tajvidi, 1996, Chapter 4).

39
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Figure 1.9: Illustration of the curve u(t) = (u1(t), u2(t)).
Theorem 1.17 (Rootzén and Tajvidi (2006)). Let consider X = (X1, X2) a bivariate
random vector with distribution function F .

1. IfF is in the domain of attraction of a bivariate extreme value distributionGwith
0 < G(0) < 1, then there exists an increasing continuous curve u(t), starting at
u(1) = 0, with lim

t→∞
F (u(t)) = 1 and a function σ(u(t)) > 0, such that

lim
t→∞

P
{
σ(u(t))−1 (X − u(t)) ≤ x | X ≰ u(t)

}
=

1

− logG(0)
log

G(x)

G(x ∧ 0)
,

for all x.

2. Conversely, if there exists an increasing continuous curveuwith lim
t→∞

F (u(t)) = 1

and a function σ(u(t)) > 0 such that, for x > 0,

lim
t→∞

P
{
σ(u(t))−1 (X − u(t)) ≤ x | X ≰ u(t)

}
= H(x), (1.15)

for some functionH , where the marginals ofH onR+ are non-degenerate. Then
the left-hand side of (1.15) converges to a limitH(x) for allx and there is a unique
bivariate extreme value distribution G with G(0) = e−1 such that

H(x) = log
G(x)

G(x ∧ 0)
, (1.16)

G(x) = exp {H(x)− 1} for x > 0, and F ∈ D(G).

Note that the two representations (1.14) and (1.16) of the bivariate GP distribu-tions coincide: letting t = 1/(− logG(0)) in (1.14),
H(x) = log

G(x)t

G(x ∧ 0)t
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and by max-stability of G, Gt is again an extreme value distribution with
G(0)t = exp(−1).
Theorem 1.18 (Rootzén and Tajvidi (2006)). Again, let consider X = (X1, X2) a
bivariate random vector.

1. IfX has a bivariate GP distributionH , then there exists an increasing continuous
curveu(t)withu(1) = 0 and lim

t→∞
H(u(t)) = 1, and a functionσ(u(t)) > 0 such

that
P
[
σ(u(t))−1 (X − u(t)) ≤ x | X ≰ u(t)

]
= H(x), (1.17)

for t ∈ [1,∞) and all x.

2. Conversely, if there exists an increasing continuous curve u(t) with u(1) = 0
and lim

t→∞
P [X < u(t)] = 1, and a function σ(u(t)) > 0 such that (1.17) holds

for x > 0, and X has non-degenerate margins, then X has a bivariate GP
distribution.

The marginals of a bivariate GP distribution are typically not univariate GP.However, their restriction to the positive subset are:
P(Xj ≤ x | Xj > 0) = 1− (1 + ξjx/σj)

−1/ξj ,

for x ≥ 0 such that σj + ξjx > 0 and where ξj and σj , for j = 1, 2, are the marginalshape and scale parameters. For any bivariate GP distribution H , we thereforeconsider its associated shape parameter ξ as the vector of the marginal param-eters (ξ1, ξ2), and, similarly, its scale parameter σ := (σ1, σ2). We write GP (σ, ξ)the GP distribution H with parameters σ and ξ, and the standard GP distributionis defined for ξ = 0 and σ = 1.Any bivariate vector X = (X1, X2) ∼ GP (σ, ξ) can be characterised throughthe standard GP distribution, as follows
X = σ

eξZ − 1

ξ
, (1.18)

where Z ∼ GP (1,0). From Equation (1.18), the study of bivariate GP distributionscan then be reduced to the study of standard formGP distributions. Rootzén et al.(2018b,a) introduce a number of stochastic representations of such standardisedGP random vectors. One of them is as follows.Let T be a bivariate random vector and let E be a unit exponential randomvariable independent of T . Then
E + T −max(T ) ∼ GP (1,0). (1.19)
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Conversely, any standard GP vector can be expressed in this way. To emphasisethe dependence on the bivariate vector T , it may be better to write GP (1,0,T )instead of GP (1,0).Using Definition 1.16, we can consider the exponent measure V , as defined in(1.10), of the GEV G associated to the GP distribution GP (1,0,T ). Then Rootzénet al. (2018a) showed that V and T = (T1, T2) can be linked through
V (x1, x2) = E

{
max

[
1

x1

eT1−max(T )

E(eT1−max(T ))
,
1

x2

eT2−max(T )

E(eT2−max(T ))

]}
.

From (1.19), it appears that to construct bivariate GP models, a possibility isto assume a parametric distribution on T . This question was addressed by Kiril-iouk et al. (2019) where different explicit density formulas for T are derived. Twoexamples of such models are given in Figure 1.10 with T that follows a bivariateGaussian distribution and, on the other hand, T1 and T2 being two independentGumbel-distributed variables.

Figure 1.10: Simulations of bivariate GPmodels from the representation (1.19) with(left) T following a Gaussian distribution with zero-mean and covariance matrix
Σ = [(1, 0.4), (0.4, 1)] and (right) T = (T1, T2) where T1 and T2 are independentvariables with T1 ∼ Gumbel(0, 1) and T2 ∼ Gumbel(0, 4).

In Chapter 2, we will built on model (1.19) to develop a non-parametric genera-tor of such standard GP vectors, without assuming any specific parametric shapeon T .Finally, from a practical modelling perspective, a similar approach to the uni-variate case can be used as motivated by Theorem 1.17. Indeed, for a sufficientlylarge threshold u (i.e. large in each component), X − u | X ≰ u can be well ap-proximated by a bivariate GP distribution. As this statistical modelling approach
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is still at an early stage, few papers deal with practical applications of multivari-ate GP models (e.g. Brodin and Rootzén, 2009; Kiriliouk et al., 2019; Kiriliouk andNaveau, 2020, ...) following the representation of Rootzén and Tajvidi (2006).
To sum up
Bivariate GP distributions emerge as the limit distributions of bivariatethreshold excesses, defined asX − u | X ≰ u.One construction of standard forms for such bivariate GP vectors isgiven by

E + T −max(T ),

where E ∼ Exp(1) and T is any bivariate vector independent of E.

1.2.3 Asymptotic dependence and independence: Definitionsand characterisations.
As already mentioned, an important feature in multivariate EVT is to describe thedependence behaviour of two variables as they become larger and larger. Thisquestion has many applications, among which we mention the following two.

• Among the components of a multivariate random vector, identifying sub-groups such that large values occur simultaneously allows to reduce the di-mension of the model by removing all the other components that do notcontribute to the joint extremal behaviour. This is related to the notion ofsparsity for extreme value, a very active research field (e.g. Lehtomaa andResnick, 2020; Engelke and Ivanovs, 2020; Meyer and Wintenberger, 2021).This issue will also be addressed in a more humble way in Section 3.7.2.
• Another typical application of multivariate EVT is the probability estimationof failure regions, i.e. P [(X, Y ) ∈ D], where D is a remote set (with no ob-servations). This can simply corresponds to the subsets {X > x, Y > y} or
{X > x or Y > y} for large x, y (see Figure 1.5), or it can also correspondsto more sophisticated sets given some specific constraints such as environ-mental loads (e.g. de Haan and de Ronde, 1998; Beersma and Buishand,2004; Cai et al., 2013; Ewans and Jonathan, 2014). In this context, wronglyassuming the dependence structure between the large values of X and Ywill lead to an overestimation or an underestimation of the probability offailure region (see the aforementioned references).

Given the data at hand, the dependence structure in the extremes can be verydifferent. For example, looking at Figure 1.11, which compares the data used inChapter 2 with those used in Chapter 3, the dependence behaviour between the
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largest values in the extreme region, symbolised by the upper blue hatched quad-rant, appears to be quite different. Regarding the wave data, large values mainlyoccur simultaneously in both variables, whereas in the case of the river data, alarge value in one component does not always corresponds to a large value in theother component.

Figure 1.11: Asymptotic dependence behaviour for the different application datasets considered in this thesis. (left) Scatter plot between the significant waveheights in the two locations of interest (see Chapter 2). (right) Scatter plot betweenthe river discharges in two distant stations (see Chapter 3). The blue hatched re-gion is just a visual indication ofwhere both components are large simultaneously.
The limiting extreme value distributionG provides this type of information, i.e.the dependence structure of the variablesX and Y . In the following, we keep theprevious notations, i.e. the bivariate distribution function F of a vector (X, Y ) is inthe domain of attraction of a bivariate extreme value distributionG characterisedby a spectral measure H , an exponent measure V or, equivalently, a Pickandsdependence function A.The random variables X and Y are said to be asymptotically independent if,equivalently,
• H puts mass 1/2 on the boundaries w = 0 and w = 1,
• V (x, y) = 1/x+ 1/y for any x, y > 0,
• A(t) = 1 for any t ∈ [0, 1].

These properties correspond to be in the domain of attraction of the indepen-dence, i.e. the limiting extreme value distribution decomposes into
G(x, y) = G1(x)×G2(y),
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where G1, G2 are the marginal distributions of G.Conversely, X and Y are said to be completely dependent if, equivalently,
• H puts mass 1 at the barycenter w = 1/2,
• V (x, y) = max(1/x, 1/y) for any x, y > 0,
• A(t) = max(t, 1− t) for any t ∈ [0, 1].

Example 1.19. Continuing with Example 1.15, Figure 1.12 depicts the spectral measure
H and the Pickands dependence functionA for the bivariate logistic model with differ-
ent values of α. Figure 1.12 shows that αmeasures the strength of dependence between
the two components. In particular, when α → 0 in (1.12),

G(x, y) → exp
{
−max

(
x−1, y−1

)}
,

which corresponds to complete dependence, and when α → 1,

G(x, y) → exp
{
−
(
x−1 + y−1

)}
,

and this corresponds to asymptotic independence.

Figure 1.12: (left) Spectral measure H and (right) Pickands dependence function
A for the logistic model defined in (1.12) (Coles, 2001), with α = 0.2 (red solid line),
α = 0.5 (blue dashed line) and α = 0.99 (green dotted line). The spectral measureson the left panel have been normalised between 0 and 1 for visual purposes. Onthe right panel, the black dotted line represents the lower bound ofA. Estimationsare performed using the R packages evd (Stephenson, 2002) for H and copula(Hofert et al., 2020) for A.

In practice, asymptotic independence means that the largest values betweenthe components of a random vector are unlikely to occur simultaneously. If this
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is not the case, i.e. large values occur simultaneously with a high probability, wesay that X and Y are asymptotically dependent. The goal is then to determinethe strength of this dependence.From Theorem 1.13 and the spectral representation, all the dependence struc-ture of the limiting distribution is contained in the spectral measureH . From this,it can be very useful to have a summary of this information. Different coefficientshave been proposed tomeasure the strength of asymptotic dependence betweentwo variables. The best-known is probably the dependence measure χ (Coles et al.,1999), defined as
χ := lim

x→xF

P(X > x | Y > x) (1.20)
A generalisation in the case where the marginal distributions of X and Y arenon-identical is given by

χ := lim
u→1

P(FX(X) > u | FY (Y ) > u).

The coefficient χ defined in (1.20) can bewritten as the limit of a function χ(u) suchthat χ = lim
u→1

χ(u) with

χ(u) := 2− log {P(FX(X) < u, FY (Y ) < u)}
log(u)

.

The different properties for χ and χ(u) are the following:
• 0 ≤ χ ≤ 1.
• χ = 0 if, and only if, X and Y are asymptotically independent. This charac-terisation corresponds to the definition given by Sibuya (1960) for asymptot-ically independent variables.
• If χ > 0,X and Y are asymptotically dependent, and the value of χ increaseswith the strength of asymptotic dependence.
• The sign of χ(u) determines whether X and Y are positively or negativelyassociated at the quantile level u.

Example 1.20. Looking at the wave data used in Chapter 2, we can consider the
strength of asymptotic dependence between the Hs at the two locations of interest.
From Figure 1.13, it seems that χ = lim

u→1
χ(u) > 0, indicating that the two variables

might be asymptotically dependent.

Remark 1.21. Looking at the right-hand side of Figure 1.13, as u gets closer to 1, the
point-wise confidence interval increases, up to contain 0, due to the smaller number
of points in the extreme. It is therefore not so evident to be in favour of asymptotic
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Figure 1.13: (left) Scatter plot of significant wave heights in two nearby locationsoff the coast of Brittany, more details are given in Chapter 2. (right) Plot of thecorresponding estimated dependencemeasureχ for increasing values of quantilelevels u with 95% point-wise confidence intervals (estimation is performed usingthe R package evd (Stephenson, 2002)).
dependence.
In this context, one could use other graphical tools to check for extremal dependence.
For example, and as already mentioned, it is possible to standardised data in common
margins in order to focus on the extremal dependence structure. This is shown in Figure
1.14, where we compare the asymptotic dependence behaviour of theHs data and the
simulated Gaussian vector of Figure 1.6. Unlike the Gaussian vector, for the Hs data
some points are lying in the interior of the positive quadrant, supporting asymptotic
dependence.
Note that more precise diagnostics can be achieved with the help of statistical tests.
There is an extensive literature on this subject, a review can be found in Bacro and
Toulemonde (2013). For example Draisma et al. (2004) proposed a test based on an
estimator of the coefficient of tail dependence η (see Equation (1.21)). With an extension
to the spatial context, Bacro et al. (2010) developed a test linked to the F-madogram,
a quantity often considered in spatial extremes and defined by 1

2
E|FX(X) − FY (Y )|

(see the references therein).

If we assume that X and Y have common standard Fréchet margins, χ canalso be written as χ = lim
x→+∞

χ(x) where
χ(x) := 2 + x log {P(X < x, Y < x)} .

From this, one can easily see that for the bivariate extreme value distribution givenby G(x, y) = exp(−V (x, y)), χ(x) ≡ χ = 2− V (1, 1).
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Figure 1.14: Asymptotic dependence comparison on Pareto scale betweenHs data(left) and a Gaussian vector (right).
More generally, if (X, Y ) is in the domain of attraction of a bivariate extremevalue distribution G with exponent measure V , then χ = 2 − V (1, 1). In terms ofthe Pickands dependence function this can be written as χ = 2(1−A(1/2)). Fromthis, we retrieve that asymptotic independence is equivalent to χ = 0.

Example 1.22. Following Examples 1.15 and 1.19, the dependence measure for the lo-
gistic model is given by

χ = 2− 2α.

The role ofα is once again highlighted: whenα gets closer to 0, χ tends to 1 (i.e. stronger
asymptotic dependence) and when α = 1, χ = 0 (i.e. asymptotic independence).

Yet, in the case of asymptotic independence (i.e. χ = 0), no information isavailable on the strength of dependence at large but finite levels. In this case,an alternative measure of dependence, denoted χ̄, is often introduced (e.g. Coleset al., 1999) and provides information on the strength of dependence in case ofasymptotic independence. This coefficient is defined through the following limit,provided that it exists, χ̄ := limu→1 χ̄(u), where
χ̄(u) :=

2 log(1− u)

logP(FX(X) > u, FY (Y ) > u)
− 1, u ∈ (0, 1).

Its properties are the following:
• −1 ≤ χ̄ ≤ 1.
• χ̄ = 1 if, and only if, X and Y are asymptotically dependent, and in thiscase χ informs us on the strength of asymptotic dependence between thevariables.
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• If χ̄ < 1, X and Y are asymptotically independent, and the value of χ̄ pro-vides a measure that increases with dependence strength.
All in all, the pair (χ, χ̄) provides complete information on the extreme depen-dence behaviour between two variables. This has been applied for example inTowe et al. (2013) to study the dependence structure between extreme significantwave height and extreme wind speed (such data will be considered in Chapter 2).The disadvantage of χ̄ is that, unlike χ, it is not easily interpreted. A third de-pendence coefficient was introduced by Ledford and Tawn (1996), which is per-haps easier to interpret as it is directly related to the way the joint tail decreases.Assuming that X and Y have unit Fréchet margins, they suggested the followingtail model

P(X > x, Y > x) ∼ l(x)

x1/η
, for large x, (1.21)

where η ∈ (0, 1] and l is a slowly varying function (see Definition 1.6). The coef-ficient η in (1.21) is called the coefficient of tail dependence and constitute anothermeasure of extremal dependence.Using (1.20), one can show that, provided that the limit exists,
χ = lim

x→∞
x1−1/ηl(x). (1.22)

From (1.22), if η = 1 and limx→∞ l(x) = c ∈ (0, 1], X and Y are asymptoticallydependent with strength of dependence given by χ = c. On the other hand, if
η < 1 or if η = 1 and limx→∞ l(x) = 0, X and Y are asymptotically independent.Within the class of asymptotic independence, three types of dependence can bedistinguished:

1. If 1/2 < η ≤ 1, X and Y are positively associated: large observations forboth X and Y occur more frequently than under exact independence.
2. If η = 1/2, extremes of X and Y are near independent. If additionally

l(x) = 1, the variables are exactly independent.
3. If 0 < η < 1/2, X and Y are negatively associated: large observations forboth X and Y occur less frequently than if X and Y were independent.
In Heffernan (2000) values of the coefficient of tail dependence η and slowlyvarying function l can be found for a wide range of bivariate distributions, includ-ing both asymptotic dependence and asymptotic independence. Finally, χ̄ and ηcan be linked through χ̄ = 2η − 1.
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To sum up
The coefficient of extremal dependence χ defined in (1.20) measures thestrength of asymptotic dependence between the components of a ran-dom vector. Unlike the measures introduced in Section 1.2.1, χ is a finitenumber, easier to handle.IfX ∈ D(G), χ can be linked to the previous measures through

χ = 2− V (1, 1) = 2(1− A(1/2)).

In case of asymptotic independence (i.e. χ = 0), other measures havebeen developed to quantify the dependence structure at high but finitelevels. Namely the coefficient of extremal dependence χ̄ and the coef-ficient of tail dependence η. The relation between the two is given by
χ̄ = 2η − 1.

1.2.4 Limitations of bivariate EVT
From Theorem 1.17, the bivariate threshold excess model presented in Section1.2.2, and used in Chapter 2, requires that the underlying distribution F belongsto the domain of attraction of a bivariate EV distribution. For asymptotically de-pendent variables, such models are fully adequate. Therefore, looking at Figure1.13, a bivariate threshold excess model seems well adapted to the wave data dis-cussed in Chapter 2.For some applications, asymptotically independent data can also be encoun-tered (e.g. Heffernan and Resnick, 2005; Wadsworth and Tawn, 2012; Towe et al.,2017, ...). For example, in Chapter 3, we will consider asymptotically independentmeasurements of river discharges from distant stations.However, if asymptotic independence arises, the class of bivariate extremevalue distributions is no longer appropriate. This can be illustrated in severalways. For example, assume that we are in the framework of Section 1.2.1, i.e. wehave a set of bivariate vectors {(Xi, Yi)}1≤i≤n, independent and identically dis-tributed, with unit Fréchet margins and common distribution F . Moreover, as-sume that F ∈ D(G), i.e.

lim
n→∞

P [Mn/n ≤ (x, y)] = G(x, y).

Then, using that log x ∼ x− 1 for x → 1,
logP [Mn/n ≤ (x, y)] = n logF (nx, ny) ∼ n (F (nx, ny)− 1) .

Therefore, the above convergence can then be rewritten as
lim
n→∞

nP(X1/n > x or Y1/n > y) = − logG(x, y).
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This leads to
lim
n→∞

nP(X1/n > x and Y1/n > y) = logG(x, y)− logG1(x)− logG2(y),

whereG1 andG2 are the marginals ofG (see the remark following Definition 1.11).Now going back to our question, assume that we are in the domain of attractionof the asymptotic independence. Then in this case
lim
n→∞

nP(X1 > nx and Y1 > ny) = 0.

This shows that in the case of asymptotic independence, we can not extrapolatejoint probabilities at high but finite levels. Thus, if we only rely on bivariate EVT,asymptotic independence is similar to perfect independence and this is certainlyan excessive assumption.To fill this gap, models adapted to the case of asymptotic independence havebeen developed. We present two of them in the following section.
1.2.5 Models coping with asymptotic independence
To overcome the abovementioned issue, models that accommodate both asymp-totic dependence and asymptotic independence have been introduced. In thefollowing, X and Y are assumed to have unit Fréchet margins.Note that compared to the bivariate GP model introduced in Section 1.2.2, thefollowingmodels focus on regionswhere the two components are simultaneouslylarge. This corresponds for example to the situation in the right-hand side of Fig-ure 1.5.Building on their first study (Ledford and Tawn, 1996), Ledford and Tawn (1997)introduced an extension of model (1.21) with a more flexible model given by

P(X > x, Y > y) ∼ L(x, y)
xc1yc2

, for large x and y, (1.23)
where c1, c2 > 0 are such that c1 + c2 ≥ 1 and L is a bivariate slowly varyingfunction, that is, there exists a function g such that, for all x, y > 0 and c > 0,

g(x, y) = lim
r→∞

L(rx, ry)
L(r, r)

and g(cx, cy) = g(x, y). (1.24)
The homogeneity property in (1.24) implies that g is constant along any ray y = axfor a > 0 and one can introduce a ray dependence function g∗ defined as
g(x, y) = g∗(x/(x + y)) = g∗(w) for w = x/(x + y) ∈ (0, 1). Setting η = 1/(c1 + c2)shows that this latter model (1.23) contains the previous model (1.21).
Example 1.23. Assume that X and Y are two independent Fréchet-distributed vari-
ables. Then

P(X > x, Y > y) = [1− exp(−1/x)] [1− exp(−1/y)] ∼ L(x, y)(xy)−1,
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

for large x and y, whereL(x, y) ≡ 1 is a bivariate slowly varying function. In particular
c1 = c2 = 1 and η = 1/2 (exact independence).

Finally, building on a simplified version of model (1.23) by considering c1 = c2,Ramos and Ledford (2009) proposed the following joint tail model
P(X > x, Y > y) =

L(x, y)
(xy)1/(2η)

, (1.25)
with the same assumptions on L and η as before, i.e. η ∈ (0, 1] and L is a bivariateslowly varying function as in (1.24). This new model aimed to overcome someissues of model 1.23 for which, in some special cases, the joint density obtainedwas valid only when x/(x+ y) ∈ (0, 1).The main result of Ramos and Ledford (2009) is an alternative spectral repre-sentation as in Theorem 1.13 which provides a unified framework covering bothasymptotic dependence and asymptotic independence, unlike the classical multi-variate extreme value case.
Theorem 1.24 (Ramos and Ledford (2009)). If (1.25) holds and if

lim
u→∞

P (X > us, Y > ut)

P (X > u, Y > u)
=

g∗(s/(s+ t))

(st)1/(2η)
,

for all s, t ≥ 1 where g∗ is the limit function that is defined following equation (1.24)
and η is the coefficient of tail dependence. Then g∗(w) satisfies

η−1g∗(w) =

(
1− w

w

)1/(2η) ∫ w

0

z1/ηdHη(z) +

(
w

1− w

)1/(2η) ∫ 1

w

(1− z)1/ηdHη(z),

where Hη is a (non-negative) measure on [0, 1] satisfying the normalisation condition

η−1 =

∫ 1/2

0

w1/ηdHη(w) +

∫ 1

1/2

(1− w)1/ηdHη(w).

The measure Hη introduced in Theorem 1.24 is the analogue of the spectralmeasureH defined in Theorem 1.13 and a relationship between the twomeasurescan be derived (Ramos, 2003; Ramos and Ledford, 2009). For example, if (X, Y )follows a bivariate extreme value distribution with standard Fréchet margins andspectral measureH , assuming thatX and Y are not exactly independent, so that
η = 1 (or equivalently χ > 0), then one can show that H = {2− V (1, 1)}H1 (seeRamos and Ledford, 2009).In Chapter 3, model (1.25) of Ramos and Ledford (2009) is used to developa risk measure adapted to a wide range of dependence models, including both
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asymptotic dependence and asymptotic independence. In particular, links be-tween model (1.25) and hidden regular variation are discussed in Section 3.1.2.In this section, only joint tail models based on multivariate regular variationhave been introduced. But many other models for asymptotically independentdata have been developed in the literature such as the conditional tail model ofHeffernan and Tawn (2004), which avoids the restriction to regions where bothcomponents are simultaneously large. de Carvalho and Ramos (2012) provide areview on the existing methods for the statistical modelling of asymptotically in-dependent data.We give here some possible limitations of the aforementioned appealingmod-els that deal with both asymptotic dependence and asymptotic independence.Firstly, and as alreadymentioned, Ramos and Ledford (2009)model focuses on re-gions where both variables are large, this can be a significant limitation for someapplications, such as the application considered in Chapter 2 with the wave data.On the other hand, for the flexible model of Heffernan and Tawn (2004), whichremoves this constraint, some authors have raised some theoretical issues (e.g.Drees and Janßen, 2017).Finding models that deal with both asymptotic dependence and asymptoticindependence is a current intensive research area, and recent advances in thisdirection have been made (e.g Wadsworth et al., 2017).A final remark is that, in our case, the data at hand used in Chapter 2, areasymptotically dependent. This is one of the reasons why we choose to focus anddevelop bivariate threshold excess models, which are theoretically valid models,relying on EVT.

1.3 Tools considered in the following
To sum up
Among the different tools presented in this chapter, the ones that we willuse in the continuation of this manuscript are the following.

• In Chapter 2, a non-parametric simulator of bivariate GP vectors(see Rootzén and Tajvidi (2006) and Section 1.2.2) will be developedto simulate extreme wave events.
• In Chapter 3, a risk measure adapted to binary classification of ex-treme events in case of both asymptotic dependence and indepen-dencewill be considered, relying onRamos and Ledford (2009)model(see also Section 1.2.5).
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Chapter 2
Joint stochastic simulation ofextreme coastal and offshoresignificant wave heights

Overview of Chapter 2
Themain goal of the following chapter is to propose and study a stochas-tic simulator that, given offshore conditions, produces jointly offshoreand coastal extreme significant wave heights. For that, we rely on bi-variate Peaks over Threshold (see Section 1.2.2 and Rootzén and Tajvidi(2006)) anddevelop anon-parametric simulation schemeof bivariateGPD.To take into account non-stationarities, we also adapt the extended gen-eralised Pareto model (Naveau et al., 2016), letting the parameters varywith specific sea state parameters.Section 2.2 gives some background motivations for the study of ex-treme coastal wave heights. More specifically, precise definitions of theparameters used to describe a sea state are detailed in Section 2.1.1, alongwith the databases used in Paper I (Legrand et al., 2022). Section 2.1.2briefly describe the evolution of the conducted study,motivating themod-elling developed in Paper I. This preliminaries are ended in Section 2.1.3,with a brief introduction on the extended generalised Pareto distribution(EGPD), which is adapted in Paper I for a non-stationary modelling.From Section 2.2 to Appendix 2.B, Paper I is reproduced as it is. In Sec-tion 2.3, the sea state data considered in this study are presented. Wethen develop in Section 2.4 the marginal regression models, incorporat-ing the effects of the peak period and the peak direction on the EGPDparameters. In Section 2.5, our non-parametric method to simulate MGP
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CHAPTER 2. JOINT STOCHASTIC SIMULATION OF EXTREME COASTAL AND OFFSHORESIGNIFICANT WAVE HEIGHTS
vectors is presented, along with some numerical experiments. Two algo-rithms are outlined, one for bivariate simulations and a second one forconditional simulations. Finally, both algorithms are applied in Section2.6 to the sea state data. The results show that these algorithms success-fully simulate new realistic extreme Hs events.

2.1 Preamble to Paper I
The characterisation of future extreme wave events is crucial because of theirmultiple impacts, covering a broad range of topics such as coastal flood hazard,coastal erosion, reliability of offshore and coastal structures . . .

For instance, for coastal flood risk assessment, Idier et al. (2020) combinedhistorical data, statistical and physical models to reconstruct past coastal floodevents in a specific site on the French coastline. They showed that the return pe-riod associated to historical flood events tends to decrease due to sea-level rise.On a global scale (i.e. along the world coastlines), Marcos et al. (2019) consid-ered the compound effects of extreme wave heights and storm surges. As men-tioned in Section 1.2.3, Marcos et al. (2019) found that return periods of coastalextreme water levels were significantly overestimated if the dependency struc-ture between wave heights and storm surges was not considered.
Characterisation of wave climatology is also of great concern regarding the im-plementation of Marine Renewable Energy structures (often shortened to MRE).For example, Stopa et al. (2013) used a numerical wave model (see Section 2.1.1)to characterise the wave climate in Hawaii for potential implementation sites ofwave energy converters.
Concerning the variability of the intensity of the extremes, authors have shownan increase in extreme significant wave heights in the last decades over the NorthAtlantic Ocean (Bertin et al., 2013; Young and Ribal, 2019), and which could be at-tributed to climate change (Rohmer et al., 2020). Regarding future wave climateprojections, under different emission scenarios1 (RCP4.5 and RCP8.5), their is aconsensus on a decrease of the mean significant wave heights in the North At-lantic Ocean (Aarnes et al., 2017; Bricheno andWolf, 2018; Lemos et al., 2021), but ithas also been shown a slight increase in the most extreme wave events (Brichenoand Wolf, 2018). Caution should be exercised here as there is no general consen-sus on this subject (e.g. Lobeto et al., 2021). Note that in order to address such is-sues, initiatives such as COWCLIP (Coordinated OceanWave Climate Project) havebeen carried out with the aim, among others, of producing a unified database ofglobal wave climate projections (Morim et al., 2020).
1IPCC (2014) defined different scenarios given the evolution of greenhouse gas concentrationsin the atmosphere, named RCP, according to the climate policies adopted.
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All these studies show the importance of predicting extreme wave heights ac-curately, and more particularly in coastal regions. In Paper I (Legrand et al., 2022),we propose a first attempt in this direction by looking at howmoderately high off-shore wave heights can produce large coastal significant wave heights. For this,we will propose a joint stochastic simulator which, given offshore sea states con-ditions, produces extreme offshore and coastal significant wave heights.
2.1.1 Wave data
Spectral definition of sea state parameters
In this section, we provide a precise definition of significant wave height, denoted
Hs. More details on ocean waves can be found, for example, in Holthuijsen (2007).Recall that in Chapter 1, we said that Hs gave a measure of the ocean surfaceroughness. More precisely, this quantity can be defined from the energy of a seastate.A sea state is the characterisation, in a given area and for a limited period, ofthe sea surface elevation, which is assumed to be a stationary process. Becausewaves are generated from various weather systems, mainly wind sea (waves gen-erated locally from the wind) and swell (that have travelled from a remote gener-ating area), the description of this sea surface can be complex.To overcome this issue, a sea state can be decomposed into several simplewave trains (or harmonic waves), each having a particular direction of propagationand wave period, the so called spectral decomposition (see Figure 2.1).

Figure 2.1: Spectral decomposition of a sea state as a sum of harmonic waves(taken from Holthuijsen (2007)).
From this spectral decomposition, one can consider the spectral energy den-sity function of each simple wave train involved, denoted E(f, θ), where θ is the
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direction of propagation and f is the wave frequency (i.e. the inverse of the waveperiod). Note that it is a convention to consider the frequency rather than theperiod. A representation of the total spectral energy of a sea state is then givenby the so-called wave spectrum, which gives the spectral energy of each wave traingiven its direction θ and frequency f . An example is given in Figure 2.2. From thisrepresentation, one can identify the different wave regimes:

• swells that correspond to a relatively narrow directional dispersion and tolow frequencies: they are visually rather regular and long-crested,
• wind sea corresponding to a much broader directional dispersion and tohigher frequencies: corresponding to irregular and short-crested waves.

Figure 2.2: Example of wave spectrum at the coastal location considered in PaperI (see Figure 2.7). The corresponding date is 21/12/2021 04:00. The wave spectrumis provided by https://marc.ifremer.fr/.
To synthesise the information contained in this 2-dimensional spectrum, sev-eral statistics are defined. These parameters are then used to describe a sea state.We give here the formal definitions of the spectral parameters used in Paper I.More details are given, for example, in Chapter 4 of Holthuijsen (2007).
• The significant wave height Hs (in meters) is estimated from the total vari-ance of the moving sea surface elevation, denoted ⟨η2⟩, which is shown tobe the integrated spectral density in both frequency and direction:

Hs = 4
√

⟨η2⟩ = 4

√∫ ∞
0

∫ 2π

0

E(f, θ)dfdθ.

The significant wave height is usually interpreted as a measure of the waveenergy of the sea state. Historically, it is also defined as the average of thehighest one-third of wave heights.
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• The peak period Tp (in seconds) is the period associated to the maximum ofthe omnidirectional spectrum, it corresponds to the period of the dominantwaves in the sea state and is defined as
Tp =

[
argmax

f
E(f)

]−1
=

[
argmax

f

∫ 2π

0

E(f, θ)dθ

]−1
.

• The peak direction Dp (in degrees) is the direction associated to the maxi-mum of energy of the wave spectrum, defined as
Dp = argmax

θ

∫ ∞
0

E(f, θ)df.

As an example, for the wave spectrum in Figure 2.2, Hs = 0.66m, Tp = 3.57sand Dp = 117◦, indicating that the corresponding sea state is rather dominatedby a wind sea regime and with dominant waves coming from the North-West.These statistics are limited as they give a limited picture of a sea state, as ex-plained by Holthuijsen (2007) (p.25):
For instance, wave conditions may well be similar in the sense that the
significant wave height and period are equal, but they may still be very
different in detail: a mixed sea state of wind sea (short, irregular, locally
generated waves) and swell (long, smooth waves, generated in a distant
storm) may have the same significant wave height and period as a slightly
higher wind sea without swell.

However, for a long-term description of the wave climate, these statistics aresufficient and are conventionally used, especially for coastal studies.
Wave data sources
Significant wave height is obtained either from direct measurements of the seasurface elevation, using in situmeasurements (such as buoys) or remote-sensingtechniques (e.g. satellites), or fromnumerical wavemodels. Numerical wavemod-els produce simulated wave spectrum based on the physical equation of wave en-ergy balance (Filipot and Ardhuin, 2012), taking into account different forcing (suchas winds, currents, sea ice, bathymetry,. . . ).Note that in situ measurements generally provide estimates of the omnidi-rectional spectrum E(f), whereas numerical models can estimate the full wavespectrum E(f, θ), but they are considered to be closer to the truth than satelliteor numerical data and therefore used often as reference (e.g. Ailliot et al., 2011).Historical outputs from numerical wave models are often called hindcast data(in contrast to forecast data), since it consist of numerical predictions in the past.In this thesis, two hindcast databases based on the numerical wave model
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WAVEWATCH-III (Tolman et al., 2014) are considered (more details are given later,Section 2.3). Both have been developed by IFREMER (French Research Institute forExploitation of the Sea) and provide sea state statistics (asHs, Tp andDp). For thetwo databases, the numerical wave model is forced by the CFSR wind reanalysis2(Saha et al., 2010). Their main characteristics are the following:

• IOWAGA (Ardhuin and Accensi, 2014): covers the whole globe with a regular
0.5◦ resolution grid in latitude and longitude (see Figure 2.3) and 3-hourlytemporal resolution from 01/01/1990 to 31/03/2020.

• HOMERE (Accensi and Maisondieu, 2015): covers the Channel and the Bay ofBiscay on an unstructured grid, refined close to the coast (see Figure 2.3). Ittakes into account a high resolution bathymetry and is forced by IOWAGAon the wet boundaries. The temporal resolution is one hour time step, dataare available from 01/01/1994 to 30/04/2021.

Figure 2.3: Grids of the hindcast databases considered. (left) Portion of theIOWAGA grid. (right) Total HOMERE grid.

2.1.2 On the choice of appropriate covariates formodelling ex-treme coastal sea states
The starting point of this study was to characterise the conditional distribution ofextreme significant wave height, considered as exceedances over a high thresh-old, close to the French coast.

2Reanalysis data are obtained by combining historical observations and numerical model out-puts through data assimilation (e.g. Evensen, 2009), providing more consistent databases.
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We chose to focus on one specific point from the HOMERE database, repre-sented in yellow in Figure 2.4, which corresponds to the SEM-REV sea test site(Mouslim et al., 2009). The main advantage of this specific location is that it iswell-documented and is used for the development and optimisation of renew-able energy structures, it is therefore of great interest to describe extreme seastates at this specific site.Since waves are generated by winds, a first part of the study was devoted tofind a conditionalmodel for extremeHs givenwind fields. Indeed, waves observedat the point of interest depends onwind conditions over the North Atlantic Ocean.The large spatial extent of wind fields implied the need to identify the character-istics of the spatio-temporal wind processes associated with extreme Hs and toderive a representation in a finite dimensional space, in order to facilitate the cal-culation of the above mentioned model.

Figure 2.4: Wind field corresponding to the highest Hs at the location of interest,depicted by the yellow dot. Arrows represent the wind direction and colours itsintensity. Wind data are extracted from the ERA5 database.
For that, we considered the 10mwind components U10 and V10 from the ERA5global reanalysis database (Hersbach et al., 2020). This dataset was used in a pre-liminary approach, it was chosen mainly for accessibility reasons, although in asecond approach it would have been more relevant to consider the CFRS reanal-ysis dataset since it corresponds to the wind forcing of the wave data.Figure 2.4 illustrates the spatial footprint of the wind field corresponding tothemaximumofHs in the dataset. This preliminary work highlighted, for extreme

Hs, dominant sectors of wind direction. But it also raised some limitations due tothe large spatial extent of wind fields and the complex processes involved in thegeneration of extreme sea states, which imply the superposition of very differentwave regimes (swells and wind sea). Obakrim et al. (2022) addressed this issue
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using a downscaling approach based on weather-types. This approach was alsoinvestigated by Michel et al. (2022), relying on deep learning methods. One draw-back of these studies is that it requires to take into account the whole wind fieldover the North Atlantic Ocean.To avoid this, we decided to exploit the somewhat space-time Markovian be-haviour of extreme Hs. Indeed, there is a strong spatial and temporal depen-dency, notably in the extremes, among the nearest data points due to the wavepropagation (see Figure 2.5). Furthermore, the benefits of considering a wavefield instead of a wind field is that the former contains most of the informationresulting from the complex wave generation processes.

Figure 2.5: Measure of asymptotic dependence χ between wave data points fromIOWAGA and the location of interest extracted from HOMERE (green trianglepoint).
The advantage of the global IOWAGA database is that it can be run rapidly.Whereas HOMERE is slower to run, due to its strong refinement. Thus, findinga relationship between the large-scale model (represented by IOWAGA) and thesmall-scalemodel (represented by HOMERE) would allow rapid calculations of theprobabilities of extreme Hs at the location of interest.In Paper I (Legrand et al., 2022), we will built on the relation between a large-scale grid point and a small-scale grid point of interest, near the coast (see Figure2.7). The proposed model will allow for a statistical downscaling of extreme Hsfrom the global wave model to the coastal model.

2.1.3 Extended generalised Pareto distribution
Among extreme value methodologies, GP models (see Section 1.1.2) are power-ful tools for modelling extreme climate observations. However a major drawbackof such methods is the threshold choice. To answer this problem, threshold se-
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lection methods have been proposed (see, e.g. Raymond-Belzile (2019), Chapter1). Another drawback is that by definition ofGPmodels, only values that are abovethe threshold are considered. But for some applications, one needs to modelthe entire range of the data. For instance, this is the case in Paper I, where wewant to model Hs exceedances given moderately high values of Hs, i.e. we lookat quantities of the following type
Hs − u | Hs > u,

but for moderate threshold u.In this context, different models have been proposed to describe the range ofobservations. For example, studies have considered piece-wisemodels, for whichone consider a GP model above the threshold and a parametric model for thebulk below the threshold, for wave applications people considered for instance atruncated Weibull (Randell et al., 2016) or a truncated Gamma distribution (Rosset al., 2017).However such models are discontinuous at the threshold. To alleviate this,Carreau and Bengio (2009) developed a mixture GP model, with a smooth tran-sition at the threshold, from an hybrid GP distribution that combines a Gaussianand a GP tail. Yet this model is rather complicated to use in practice due to thestrong continuity constraints.Recently, Naveau et al. (2016) (see also the references therein) proposed amodel that bypasses the threshold selection andmodels the entire range of data,the so called extended generalised Pareto distribution (EGPD).The EGPD is a distribution defined on (0,∞) whose distribution function isgiven by
F (x) = G [Hξ,σ(x)] ,

where G is a continuous distribution function on [0, 1] and Hξ,σ is a GP distribu-tion function as defined in Section 1.1.2 (Chapter 1). In Naveau et al. (2016), severalconstraints are required for G in order to ensure the lower and upper tails be-haviours. Four different parametric models for G are derived.In this study we will only use the first one, which in practice appears to be flex-ible enough (Tencaliec et al., 2019; de Carvalho et al., 2021; Rivoire et al., 2021; LeGall et al., 2022), and given by G(v) = vκ. This model has therefore three param-eters: a scale σ > 0, a shape ξ ∈ R (controlling the upper-tail behaviour) and asecond shape parameter κ > 0 (which controls the shape of the lower tail). Figure2.6 depicts the density of the EGPD for different values of κ.In Paper I bellow, the EGPD will be used for marginal modelling, as describedin Equation (2.2). The review of Jonathan and Ewans (2013) on the statistical mod-elling of extreme significant wave heights highlights the necessity of taking intoaccount covariates effects. For this, Generalised Additive Models (GAMs) providea nice flexible framework (Hastie and Tibshirani, 1986).
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Figure 2.6: Densities of the extended GP distribution for different values of theshape parameter κ, with ξ = 0 and σ = 1.
Recall that the simplest regression model, the linear model, can be written incompact form as {

Y ∼ N (µ, σ2),

µ = Xβ,

where X is the design matrix and β the vector of parameters. A GAM is a gen-eralisation of the linear model, that allows for response distributions other thanGaussian, for a certain degree of non-linearity in the model and with linear pre-dictors specified as smooth function of the covariates. It can be written as
Y ∼ some exponential family distribution,
g(E[Y ]) = Xβ +

J∑
j=1

sj(xj),

where g is a smooth monotonic link function and sj are smooth functions ofsome covariates (x1, . . . , xJ).The smooth functions sj are typically represented as linear combinations ofbasis functions bj,k
sj(x) =

K∑
k=1

αj,kbj,k(x), 1 ≤ j ≤ J,

where αj,k are some coefficients to be estimated. The basis functions bj,k arecompletely known, and different basis (also called splines) can be considered fora same model, such as natural cubic splines, thin plate splines, tensor productsplines (see Perperoglou et al. (2019) for a comprehensive review, with applica-tions in R). A complete introduction on GAMs can be found in Wood (2006).
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The above GAM considers only single-parameter distributions with mean pa-rameter that vary as a smooth function of some covariates. Such models havethen been extended to distribution families with more than one parameter. Forexample, regarding extreme value models, Chavez-Demoulin and Davison (2005)proposed tomodel the behaviour of extremes with GAMs by allowing the GPD pa-rameters to be represented as smooth functions of covariates. Yee and Stephen-son (2007) linked an extended version of GAMs (named Vector Generalised Addi-tiveModels, VGAM3) with EVT. All thesemodels are built for extreme valuemodels.However, as discussed previously, we wish to model values that are not necessar-ily extreme, relying on the EGPD.To model non-stationarity with EGPD models, Le Carrer (2022) developed anadd-on to the gamlss package (Stasinopoulos et al., 2008). GAMLSS (GeneralisedAdditive Models for Location, Scale and Shape) allows for GAM forms of (up to)four-parameter distributions. In the case of the EGPD, it can be written as
Y ∼ EGPD(ξ, κ, σ)

g1(ξ) = X1β1 + s1,1(x1,1) + · · ·+ s1,J1(x1,J1),

g2(κ) = X2β2 + s2,1(x2,1) + · · ·+ s2,J2(x2,J2),

g3(σ) = X3β3 + s3,1(x3,1) + · · ·+ s3,J3(x3,J3),

where, for i ∈ {1, 2, 3}, gi is a link function, Xi is the design matrix containingthe linear additive terms, βi is the vector of linear parameters and (si,j)1≤j≤Ji arethe smoothing functions of the explanatory variables (xi,1, . . . , xi,Ji). The imple-mentation of Le Carrer (2022) allows to consider negative shape parameters ξ bysetting g1 as an identity link, allowing an unconstrained search domain for the in-ference of ξ. Note that the model fitting is performed using maximum penalisedlikelihood estimation.This is used in Paper I to let the scale parameter σ of the EGPD vary as a smoothfunction of the peak period and peak direction (see Equation (2.2)).A final remark is that besides GAM related models, other recent approacheshave been considered to let the parameters of the EGPD vary given some covari-ates. For example, de Carvalho et al. (2021) developed a Bayesian approach tolearn the effect of covariates on an EGPD-based model.

∗ ∗ ∗

Below, Paper I (Legrand et al., 2022) is reproduced as it will be submitted. Itwas written and developed by Juliette L. under the supervision of Pierre Ailliot,Philippe Naveau and Nicolas Raillard.
3VGAMs are more general models than GAMs, that allow for multiple linear predictors and en-compassmodels outside the exponential family distribution (Yee, 2015). Thesemodels encompassthe cases where Y is a vector.
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2.2 Introduction
French coastlines have been particularly affected by extreme maritime events inthe past (Nicolae Lerma et al., 2015). Co-occurrence of high tidal coefficients, at-mospheric surge conditions and specific sea states can lead to extreme maritimeevents. These events are particularly crucial for assessing flooding risks and theirconsequences (Genovese and Przyluski, 2013; Bertin et al., 2012). According to thespecial IPCC report (see Collins et al. (2019)), extreme wave heights, which con-tribute to these extrememaritime events, have increased over the past few years.The recent IPCC report (Seneviratne et al., 2021) indicates, with high confidence,an increase in the occurrence and magnitude of such coastal events in the fu-ture. More specifically, Caires and Sterl (2005) showed that the most extremewave conditions were expected to occur in the North Atlantic, which include theBay of Biscay, our study area.

Sea surface elevation over a geographical area results from the superpositionof waves generated by local winds and by remote swell (generated in distant re-gions). The characterisation of this complex surface is called a sea state and todescribe it, various parameters are available. In this work, we will focus on threevariables: the significant wave height denotedHs [m], the peak period, Tp [s], andthe peak direction, Dp [°] (see e.g. Holthuijsen (2007) for more details).
From a coastal risk point of view, a fundamental question is to determine howmoderately high offshore significant wave heights can produce large coastal Hs.Peak direction and peak period influence the relationship between coastal andoffshore Hs. In this context, our main goal is to propose and study a stochasticsimulator that, given offshore conditions (Tp, Dp, Ho moderately high), producesjointly offshore and coastal extreme significant wave heights. The left-hand sidemap of Figure 2.7 shows the two locations of interest.
From such a stochastic generator (1st goal), many products can be derived. Inparticular our second objective is to propose a conditional simulation model (2ndgoal). The framework for each step of this study is summarised in Table 2.1. Inorder to make the two simulation models as flexible as possible, non-parametricalgorithms are derivedusing resampling techniques (or non-parametric bootstrap(Efron, 1979)). While this study focuses on simulation of extreme Hs, and as illus-trated by the numerical simulations in Section 2.5, the two non-parametric algo-rithms developed could be applied to a broad range of data.
In multivariate extreme value analysis, one is often interested in the joint be-haviour of the variables as they become large. As illustrated by the right-hand sideof Figure 2.7, which depicts a scatter plot between Ho and Hc, large values tendto occur simultaneously. For this specific type of dependence, called asymptoticdependence (Coles, 2001), models from the class of multivariate Extreme ValueTheory (EVT) can be used. To achieve the two objectives (1st Goal and 2nd Goal),we will therefore propose two simulation algorithms based onmultivariate Peaks
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Hc Ho Dp Tp

Inference v v v v
1st Goal: Joint simulation x x v v
2nd Goal: Conditional simulation x v v v

Table 2.1: Summary of available data for each step of this study. A tick v (resp. across x) indicates the availability (resp. non-availability) of the data.

Figure 2.7: (left) Portion of IOWAGA hindcast database grid, the red dot cor-responds to the "offshore" point (data extracted from the IOWAGA database)and the green dot corresponds to the "coastal" point (data extracted from theHOMERE database). (right) Scatter plot of the coastal significant wave heights ver-sus the offshore significant wave heightswith the different thresholds considered.The black dots belong to the region where the multivariate model is fitted.

over Thresholds (Sec. 8.3.1 Beirlant et al., 2004). Note that to assess whether datafall within the class of asymptotic dependence or not, summary statistics havebeen developed such as the dependencemeasures χ and χ̄ (Coles et al., 1999) andplots of these measures (not shown here) confirm strong dependence betweenlarge values of Ho and Hc.For weakly dependent extremes, conditional models based on Heffernan andTawn (2004) should be favoured to deal with our 2nd goal, see for example Toweet al. (2017); Shooter et al. (2019); Tendijck et al. (2021).
Before modelling the joint behaviour of large values, it is necessary to modelmargins (Beirlant et al., 2004). To visualise this task with respect to our data, theempirical histograms displayed in Figure 2.8 indicate that, given {Ho > vo} (mod-erately high offshore significant wave heights), a traditional univariate extreme
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Figure 2.8: (left) Empirical histogram for the coastal significant wave height thresh-old exceedances and (right) similarly for the offshore significant wave heightsthreshold exceedances, illustrating that fitting a generalised Pareto distribution(Coles, 2001) is not suitable for the coastal data. The coastal marginal threshold isdefined by vc := min (Hc;Ho > vo).
value approach based on fitting a generalised Pareto distribution (GPD) to theexceedances (Coles, 2001) is not appropriate. To tackle this issue, we use the ex-tended generalised Pareto distribution (EGPD) introduced by Naveau et al. (2016)which handles this type of setting (see also Papastathopoulos and Tawn (2013)),more details are given in Section 2.4.Furthermore, like many other environmental data, extreme Hs are non--stationary with respect to covariates (Jonathan and Ewans, 2013) and marginalmodels need to take into account this non-stationarity (e.g. Ewans and Jonathan,2008;Méndez et al., 2008; Casas-Prat et al., 2014). To incorporate non-stationarities,Chavez-Demoulin and Davison (2005) proposed to let the parameters of an ex-treme value model vary as smooth functions of covariates. This has been inten-sively applied to oceanographic data (e.g. Feld et al., 2014; Jonathan et al., 2014;Ross et al., 2017, ...). However, there are only a few papers dealing with non-stationary EGPD (de Carvalho et al., 2021; Haruna et al., 2021). In this study, and asillustrated in Figure 2.9, the marginal EGPD models parameters will be describedas smooth functions of the covariates Tp and Dp.The key steps of our study are the following: (1) marginal regression modellingwithin the class of EGPD, (2) transformation of the data to common exponentialmargins, (3) modelling extremal dependence between the variables using multi-variate generalised Pareto model (hereafter MGP models) (Rootzén and Tajvidi,2006), (4) non-parametric simulation of bivariate extreme Hs within the class ofMGP distributions. In our modelling scheme, different steps are novelties.To ourknowledge, little attention has been paid in the literature to the modelling of mul-
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Figure 2.9: Dependence of Hs with respect to Tp and Dp (left) Offshore significantwave heightsHo given peak period Tp. (right) Estimated quantiles ofHo given thepeak direction Dp for different quantile levels q ∈ {0.25, 0.5, 0.75, 0.9, 0.99}, esti-mation is performed using smoothed quantile regression (Koenker et al., 1994).
tivariate non-stationary extremes using EGPD and to the non-parametric simula-tion within the MGP class.Our paper is organised as follows. In Section 2.3, the sea state data are pre-sented and themarginal inference incorporating covariates in the EGPDmodellingis described in Section 2.4. In Section 2.5, the non-parametric method to simulateMGP vectors is presented and some numerical experiments are shown. Two algo-rithms are outlined, one for bivariate simulations and a second one for conditionalsimulations. Both algorithms are applied in Section 2.6 to the sea state data.

2.3 Sea state data
Our study is carried out in the northern part of the Bay of Biscay in France. Thespecificity of this region is that it is exposed to the Atlantic Ocean and thereforesubject to complex superpositions of wind generated waves and swell. The dataare extracted from two different wave hindcasts provided by IFREMER and con-sist of simulations of sea states by a numericalmodel. First, the IOWAGA database(Ardhuin and Accensi, 2014) corresponds to sea states parameters that are gener-ated by thewavemodelWAVEWATCH-III and forcedbyCFSRwinds on aGlobal grid(0.5◦ resolution grid in latitude and longitude). HOMERE is the second database(Accensi and Maisondieu, 2015), also based on WAVEWATCH-III model and forcedby IOWAGA on the wet boundaries, but on an unstructured grid covering only theEnglish Channel and the Bay of Biscay, more refined close to the coast and withthe inclusion of currents and water levels.Asmentioned in the introduction, we restrict our attention to two specific loca-tions: an offshore grid point (47◦N, 3◦W) from the IOWAGA database and a coastalpoint from the HOMERE database, near the French coast (47◦24N, 2◦78W) cor-
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responding to the SEM-REV sea test site (Mouslim et al., 2009) (see Figure 2.7).Among all the sea states parameters, the significant wave heightsHs[m] from thetwo locations, the peak period Tp[s] and the peak direction Dp[

◦] only from theoffshore location are used. Data are available at 3-hour intervals spanning from1994 to 2016. More precisely, the original HOMERE database has a 1-hour resolu-tion time step but the IOWAGA database is sampled every 3 hours, so to obtaindata at the same time scale a sub-sampling of theHOMEREdatabase every 3hoursis performed. In the following, Hc (resp. Ho) denotes the coastal (resp. offshore)significant wave heights. A scatter plot betweenHc andHo can be found in Figure2.7, highlighting a strong dependence structure between the variables. Data arethen split into two sets:
• Set 1 contains the first 70% of the data and is used for the inference of themarginal regression models and the preliminary steps for the simulation of
Hs (see Section 2.6);

• Set 2 contains the remaining 30% of the data and is used for the simulationof extreme Hs.

2.4 Marginal regression analysis
2.4.1 Marginal regression
In this section, only the data from Set 1 are considered. A regression model for
Hc andHo is chosen. We pre-select the extremes by considering, within the Set 1,data such thatHo > vo, i.e. belonging to the right rectangular region in Figure 2.7,where vo is defined as the 0.98 quantile of Ho. A common choice when someoneis interested in extreme values is to work with the class of the generalised Paretodistributions (GPD) (e.g. Coles (2001)). However, this type of model always raisesquestions on the choice of the threshold and the GPD approximation holds trueonly for the very high values. In our case we want to model all the data that areabove the blue line in Figure 2.7, this means that values are not necessarily ex-tremes. To overcome such problems, Naveau et al. (2016) proposed a new classof extreme value distributions, called extended generalised Pareto distributions(EGPD). The EGPD class is suitable for modelling the entire range of data, not onlythe most extreme values, and avoids the need for careful threshold selection (seeFigure 2.8). In Naveau et al. (2016), four parametric models are proposed. We re-strict ourselves to the first and simplest one (corresponding to the EGP3 modelintroduced by Papastathopoulos and Tawn (2013)), which appears to be flexibleenough, and whose cumulative distribution function is of the form

F (x) =

(
1−

(
1 +

ξx

σ

)−1/ξ)κ

. (2.1)
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The model has three parameters: scale σ > 0, shape ξ ∈ R and an additionalparameter κ > 0which controls the shape of the lower tail. In Naveau et al. (2016),the authors developed the EGPD for non-negative shape parameter ξ. Indeed,the main applications were the modelling of daily rainfall (e.g. Naveau et al., 2016;Tencaliec et al., 2019; de Carvalho et al., 2021; Rivoire et al., 2021), which are heavy-tailed (ξ > 0). In our case, as reported in Jonathan and Ewans (2013), extreme Hsdata are generally described by upper-bounded tail distributions. Still, the case
ξ < 0 can be handled by model (2.2).As mentioned in the Introduction, Hs data are non-stationary (see Figure 2.9),see also Jonathan et al. (2014); Feld et al. (2014); De Leo et al. (2021). Therefore, weregress Hs on the peak direction Dp and the peak period Tp. We choose here toput the dependency on the scale parameter. The regressionmarginal models canthen be written as follows

P(Ho − vo ≤ x|Ho > vo, Tp, Dp) =

(
1−

(
1 +

ξox

σo(Tp, Dp)

)−1/ξo)κo

,

P(Hc − vc ≤ x|Ho > vo, Tp, Dp) =

(
1−

(
1 +

ξcx

σc(Tp, Dp)

)−1/ξc)κc

.

(2.2)

The coastal marginal threshold vc introduced in (2.2) is defined by
vc := min(Hc;Ho > vo) so that theminimumofHc−vc is equal to zero. The regres-sionmarginal models (2.2) are estimated using the R package gamlss (Stasinopou-los et al., 2008) with the EGPD family (Le Carrer, 2022). The inference is performedusing maximum penalised likelihood estimation (note that the model fitting isachieved with the CG algorithm (Cole and Green, 1992)). In our model (2.2), we as-sume that the parameters σo and σc vary smoothly with Tp andDp. This is achievedusing tensor product of cubic regression splines. The parameter estimates for theregressionmarginal models are reported in Table 2.2. Asymptotic 95% confidenceintervals for each parameter are given in brackets and derived from the asymp-totic variance-covariance matrix of the fitted models.

ξ κ

Coast −0.11[−0.15,−0.07] 4.11 [3.57, 4.64]Offshore −0.10[−0.16,−0.04] 1.16 [1.05, 1.26]

Table 2.2: Estimated parameters for the regression marginal models. 95% asymp-totic confidence intervals are given in brackets.
Both estimated shape parameters are negative but close to zero, which sug-gests light-tailed or bounded distributions. This is in accordance with previousstudies and the physical behaviour of wave heights in shallow waters (Castilloand Sarabia, 1992; Vanem and Fazeres-Ferradosa, 2022). The goodness of fit ofthe model (2.2) are shown in Appendix 2.A.
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2.4.2 Covariates effects
To visualise the effect of the covariates on the scale parameters, we choose toconsider the theoretical expectation of the fitted EGPD models. As can be seenfrom Equation (2.3) (and similarly for Ho), the theoretical expectation of model(2.2) is directly proportional to the scale parameter (see Naveau et al. (2016)):

E(Hc|Ho > vo, Tp, Dp) = σc(Tp, Dp)
1

ξc
[κcB(κc, 1− ξc)− 1] , (2.3)

where B denotes the Beta function defined by
B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt.

Figure 2.10: (left) Interpolated ratio of empirical extreme coastal significant waveheights Hc and extreme offshore significant wave heights Ho. The interpolatedsurface between the data points is performedusing local polynomial interpolationof degree 2. (middle) Ratio of the predicted conditional expectations of extremecoastal significant wave heightsHc and extreme offshore significant wave heights
Ho, conditionally to the offshore peak direction Dp and the offshore peak period
Tp. (right) Absolute difference between the interpolated empirical ratio and thepredicted ratio. On the three plots, observed data points are superimposed.

The first panel in Figure 2.10 represents the empirical ratioHc/Ho given Tp and
Dp values. Local polynomial interpolation (LOESS, Cleveland and Devlin (1988)) isperformed between the observed data points to get values on a regular grid ofDpand Tp, ranging from 230 to 300 degrees for the peak direction and from 10 to 20seconds for the peak period. This first panel is then compared to the estimatedratio of the two conditional expectations (second panel in Figure 2.10), which, fromEquation (2.3), is proportional to

σ̂c (Tp, Dp) /σ̂o (Tp, Dp) .

72



2.5. Multivariate Pareto model

This ratio can give us an idea of the propagation of the wave energy from the off-shore to the coast as a function of the covariates. These results can be physicallyinterpreted: the loss of wave energy between the offshore and the coast is lowerfor small periods but also for waves coming from the SW rather than the NW dueto the bathymetry (see the map on Figure 2.7). In the third panel of Figure 2.10,the dark blue region, corresponding to Tp > 16s and Dp < 255◦, has no data andconsequently, produces large differences due to extrapolation issues.Using the estimated σ̂c(Tp, Dp) and σ̂o(Tp, Dp), theHs data are then transformedto common exponential scale using the probability integral transform
HE

o := − log
{
1− F̂o[(Ho − vo)/σ̂o(Tp, Dp)]

}
,

HE
c := − log

{
1− F̂c[(Hc − vc)/σ̂c(Tp, Dp)]

}
,

(2.4)

where F̂o (resp. F̂c) is the fitted EGPD(ξ̂o, κ̂o, 1) cdf’s (resp. EGPD(ξ̂c, κ̂c, 1)) fromEquation (2.2).

2.5 Multivariate Pareto model
In this section, the threshold exceedances of Hs transformed to common expo-nential margins are modelled. This vector is denotedHE := (HE

c , H
E
o ) in the fol-lowing. For that, we adapt the definition of Rootzén and Tajvidi (2006) of bivariatethreshold exceedances given as[

HE − u|HE ≰ u
] (2.5)

where u := (uc, uo) ∈ R2
+ andHE ≰ umeans that HE

c > uc and/or HE
o > uo, thatis to say we are extreme in at least one of the two components. ThenmultivariateEVT theory states that (2.5) can bewell approximated by amultivariate generalisedPareto (MGP) distribution (Rootzén and Tajvidi, 2006). Note that there are differ-ent equivalent definitions for multivariate threshold exceedances (see Section 8.3of Beirlant et al. (2004)).Rootzén et al. (2018a) derived a stochastic representation of standardMGP vec-tors considering that a bivariate random vector Z follows a standard MGP distri-bution if, and only if,

Z = E + T −max(T ), (2.6)
withT a random vector andE a unit exponential random variable independent of
T . Note that the standard MGP distribution is supported by the set
L := {x ∈ Rd;x ≰ 0}.In our study, Equation (2.6) is adapted to Z = (Z1, Z2) defined as{

Z1 := HE
o − uo|HE

o > uo or HE
c > uc,

Z2 := HE
c − uc|HE

o > uo or HE
c > uc.

(2.7)
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2.5.1 Simulation of bivariate standard generalised Pareto dis-tributed vectors
Kiriliouk et al. (2019) established several parametricMGPmodels by setting explicitdensities for T in a multivariate setting. In the following, we consider only vectorsof dimension 2, i.e. Z = (Z1, Z2) and T = (T1, T2). To bypass the choice of theunderlying distribution for T , we start from the following rewriting of Equation(2.6), {

Z1 = E +∆1∆<0,

Z2 = E −∆1∆≥0,
(2.8)

where ∆ := Z1 − Z2 = T1 − T2 and 1A denotes the indicator function, equals to 1if A is true and 0 otherwise.Equation (2.8) is the basis for our simulation algorithms. From this equation,we see that we need to simulate values of ∆ and E independently, instead of
(T1, T2). Generating independent, and identically distributed, unit exponential istrivial, so the main difficulty is to simulate ∆. This can be achieved by bootstrap-ping (see Efron (1979)). Our approach is then described in Algorithm 1 and a theo-retical proof can be found in Appendix 2.B.
Algorithm 1 Non-parametric bootstrap MGP simulation
1: input A sample (Z1,i, Z2,i)1≤i≤n from a MGP distribution
2: output A simulated sample (Z

(m)
1,k , Z

(m)
2,k )1≤k≤m, potentially withm ̸= n

3: procedure
4: Define ∆i := Z1,i − Z2,i for 1 ≤ i ≤ n

5: Generate m realisations E
(m)
k ∼ Exp(1), independently of (∆i)1≤i≤n, for

1 ≤ k ≤ m
6: Bootstrapm realisations ∆(m)

k , 1 ≤ k ≤ m, from (∆1, . . . ,∆n)7: end procedure
8: return Z

(m)
1,k := E

(m)
k + ∆

(m)
k 1

∆
(m)
k <0

and Z
(m)
2,k := E

(m)
k − ∆

(m)
k 1

∆
(m)
k >0

, for 1 ≤
k ≤ m

2.5.2 Numerical experiments
In the following, we simulate MGP vectors Z = (Z1, Z2) from the representation(2.6) with different parametric models on (T1, T2) and we compare with our sim-ulation algorithm. The different experiments are reported in Table 2.3 and somegraphical results are shown in Figure 2.11 which displays for each model a scatterplot of the data, the measure of extremal dependence χ(u) for increasing valuesof u, and the marginal quantile-quantile plots. We use the measure χ(u) which
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gives a measure of asymptotic dependence between two variables X and Y (formore details see e.g. Coles et al. (1999)) and which is defined by
χ(u) := P

(
Y > F−1Y (u) | X > F−1X (u)

)
, u ∈ (0, 1).

Bivariate model Joint distribution of T Parameters
(a) Gaussiansymmetric N

(
(µ1, µ2),

(
1 ρ
ρ 1

)) µ1 = 0
µ2 = 0
ρ = 0.4

(b) Gaussianasymmetric N
(
(µ1, µ2),

(
1 ρ
ρ 1

)) µ1 = 0
µ2 = 2
ρ = 0.4

(c) Logistic F (x1, x2) =
(
1 + e−x1/σ1 + e−x2/σ2

)−1 σ1 = 1
σ2 = 5

(d) Gumbel F (x1, x2) = exp [− exp{−x1/σ1}] exp [− exp{−x2/σ2}]
σ1 = 1
σ2 = 4

(e) Exponential S(x1, x2) = exp {−λ1x1 − λ2x2 − λ3max(x1, x2)}
λ1 = 2
λ2 = 10
λ3 = 1

Table 2.3: Overview of the different experiments carried-out. For each, we give thejoint distribution F (x1, x2) when it writes easily or the survival function S(x1, x2).In the third column, we give the different parameters values used in the numericalexperiments.
In Table 2.3, (a) and (b) are two bivariate Gaussian models with same corre-lation coefficient ρ < 1 but with µ1 ̸= µ2 for (b), leading to asymmetry. Model

(c) corresponds to the Type I bivariate logistic distribution proposed by Gumbel(1961). For model (d) we consider two independent Gumbel distributed variableswith different scale parameters. And lastly, (e) corresponds to a bivariate expo-nential distribution as defined in Marshall and Olkin (1967).As seen in Figure 2.11, Algorithm 1 successfully simulates draws from the para-metric simulations in terms of the marginals Z1 and Z2, but also recovers well thedependence structure when looking at the measure of dependence χ(u).
2.5.3 Conditional simulation within the MGP class
From an application perspective, we also want to be able to simulate conditionallyon one of the two variables. In this section we describe the conditional simulationalgorithm for the MGP model.
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(a)

(b)

(c)

(d)

(e)

Figure 2.11: Each panel line corresponds to one of the parametric model (a) to (e),and shows from left to right: (1) Scatter plot of simulated data with the paramet-ric model with sample size n = 10000 (black dots) and sampled data from onesimulation using Algorithm 1 with sample sizem = 10000 (blue dots); (2) Empiricalestimates of the measure of asymptotic dependence χ(u) for the simulated datawith the parametric model (black line) and for the sampled data from Algorithm 1(red line), with associated 95% pointwise confidence intervals based on 1000 boot-strap replications; (3) and (4)Quantile-quantile plots forZ1 andZ2with associated
95% pointwise confidence intervals based on 1000 bootstrap replications.
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2.5. Multivariate Pareto model

From Equation (2.6) we can derive
Z2 = Z1 + T2 − T1 = Z1 −∆. (2.9)

From Equation (2.9), we can design a simulation strategy but caution is re-quired because ∆ and Z1 are not necessarily independents. But for some valuesof Z1, this will be the case. To see this, one can compute the conditional distri-bution of ∆ given Z1 = z1 starting from the joint distribution function of (Z1, Z2)which is given by
f(Z1,Z2)(z1, z2) = e−max(z1,z2)f∆(z1 − z2)1(z1,z2)∈L , for z1, z2 ∈ R,

where f∆ denotes the distribution function of ∆.
1st case: If z1 > 0. In this case, noting that if z1 > 0 then 1(z1,z2)∈L = 1, themarginal distribution of Z1 is given as follows

fZ1(z1) = e−z1K,

whereK :=
∫ 0

−∞ euf∆(u)du+
∫∞
0

f∆(u)du and does not depend on z1.Therefore, the conditional distribution of Z2 given Z1 = z1 when z1 > 0 is givenby
fZ2|Z1(z2 | z1) =

1

K

[
f∆(z1 − z2)1z1≥z2 + ez1−z2f∆(z1 − z2)1z1<z2

]
From this, the conditional distribution of ∆ given Z1 = z1 > 0 can then be de-duced:

f∆|Z1(δ | z1) =
1

K

[
f∆(δ)1δ≥0 + eδf∆(δ)1δ<0

]
. (2.10)

This shows that, conditionally on Z1 > 0, ∆ does not depend on Z1.
2nd case: If z1 < 0. Then, noting that 1(z1,z2)∈L = 1z2>0 if z1 < 0, we get

fZ1(z1) = e−z1K(z1),

where K(z1) :=
∫ z1
−∞ euf∆(u)du. And we can derive the conditional distribution of

Z2 given Z1 = z1 < 0 as follows
fZ2|Z1(z2 | z1) =

1

K(z1)
ez1−z2f∆(z1 − z2)1z2>0.

The conditional distribution of ∆ given Z1 = z1 < 0 is then given by
f∆|Z1(δ | z1) =

1

K(z1)
eδf∆(δ)1δ<z1 . (2.11)

From Equations (2.10) and (2.11) we derive the conditional simulation algorithmdescribed in Algorithm 2, where the simulation procedure is split into two cases:
1. If z1 > 0, we can sample values of ∆ independently of Z1,
2. otherwise, if z1 < 0, we use a rejection sampling approach to approximatethe targeted conditional density in Equation (2.11).
Similarly, we could also derive a simulation scheme of Z1 given Z2 = z2.
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Algorithm 2 Non-parametric conditional MGP simulation
1: input A sample (∆i)1≤i≤n ; a realisation z1 of Z1

2: output A simulated sample (Z
(m)
2,k )1≤k≤m conditionally on Z1 = z1, potentiallywithm ̸= n

3: procedure
4: if z1 > 0 then
5: Define ∆|Z+

1
the subset of (∆i)1≤i≤n such that Z1 > 0

6: Bootstrap m realisations ∆(m)
k , 1 ≤ k ≤ m, from ∆|Z+

1
independently of

Z17: else
8: for 1 ≤ k ≤ m do
9: Sample one realisation ∆

(m)
k from (∆i)1≤i≤n independently of Z110: Generate a random number u ∈ [0, 1]

11: while u > exp(∆
(m)
k )1

∆
(m)
k <z1

do
12: Repeat steps 9 and 10

13: end for
14: end procedure
15: return Z

(m)
2,k := z1 −∆

(m)
k for 1 ≤ k ≤ m

2.5.4 Numerical experiment continued
As for the bivariate simulations, we can illustrate Algorithm 2 with numerical ex-periments. We choose here to show the results only for Model (a) (SymmetricGaussian) since for this specific model we have an explicit form for the theoreticaldistribution of∆. The results are presented in Figure 2.12 where we simulated theconditional distribution of Z2 for eight different conditioning values. The sampledand theoretical conditional distributions appear to be in close conformity.

2.6 Application to extreme significant wave height
The methodology presented in Section 2.5 is applied to the joint and the condi-tional simulations of extreme significant wave heights. For that, the sample ofbivariate threshold exceedances (Z1, Z2) defined in Equation (2.7) is used as inputdata for Algorithm 1 or Algorithm 2. The thresholds uo and uc in (2.7) are definedas the 0.8 quantile of HE

o , or equivalently of HE
c .Recall that in both cases, simulations are performed on the exponential scale.A final step of back transformation is then necessary to get simulations of Hs onthe original scale. This final step corresponds to part 3 (resp. 5) in the followingprocedure for the joint (resp. conditional) simulation of Hs. For the sake of clar-ity we now divide the joint and the conditional simulation scheme of Hs in two
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2.6. Application to extreme significant wave height

Figure 2.12: Sampled conditional distribution of Z2 given Z1 = z1 using Algorithm2 for the asymmetric Gaussian model with sample size n = 10000. Eight exper-iments are presented for different quantiles of Z1 whose values are reported ineach panel title. The sample size for each simulation ism = 10000. The theoreticalconditional density is superimposed in red.
separate sections.
2.6.1 Joint simulation of significant wave heights
The joint simulation scheme for extremeHs is described hereafter. In the follow-ing we fix the pair value (tp, dp) ∈ R2 which may be taken from Set 2.

1. Compute σ̂o(tp, dp) and σ̂c(tp, dp) from the marginal EGPD models fitted onSet 1 (see Section 2.4).
2. Simulate m pairs of (z1, z2) applying Algorithm 1 with input data (Z1, Z2)as defined in (2.7). We therefore obtain m simulated pairs

((z1,1, z2,1), . . . , (z1,m, z2,m)) for a fixed value (tp, dp).
3. Transform the simulated values to the original scale

ho,i := σ̂o(tp, dp)F̂
−1
o (1− e−(z1,i+uo)) + vo ∈ Rm,

hc,i := σ̂c(tp, dp)F̂
−1
c (1− e−(z2,i+uc)) + vc ∈ Rm,

where F̂−1o (resp. F̂−1c ) is the inverse cdf of the EGPD(ξ̂o, κ̂o, 1) (resp.
EGPD(ξ̂c, κ̂c, 1)) estimated in Section 2.4.

This procedure is then applied to four selected pairs (tp, dp) from the Set 2corresponding to the four largestHc of this dataset. Figure 2.13 depicts simulatedpairs of offshore and coastal Hs with simulation sample sizem = 1000.
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Figure 2.13 shows that for these specific conditions, Algorithm 1 successfullygenerates extremeHc andHo. Note that since the four points considered are thelargest observations, they are expected to be among the extremes of the simu-lated distributions.

Figure 2.13: Sampled values of coastal versus offshore significant wave heightsfrom Algorithm 1,m = 1000 pairs of points are simulated. Each panel correspondsto a fixed value of (tp, dp) corresponding to the four largest Hc from Set 2 (in de-creasing order). Next to each scatter plot, marginal distributions of simulated HoandHc are depictedwith boxplots. On both the scatter plots and the boxplots, thered diamond-shaped points represent the true values of the coastal and offshoresignificant wave heights for the four pairs.

Date-Time Hc [m] Ho [m] Tp [s] Dp [°] Joint probability
1 2014-02-05 12:00:00 GMT 7.83 10.1 17.86 257 0.0022 2011-12-16 03:00:00 GMT 7.74 10.4 13.89 262 0.0453 2010-02-24 15:00:00 GMT 7.62 10.0 15.15 259 0.0574 2016-01-02 06:00:00 GMT 7.18 8.4 14.71 256 0.2775 2013-12-24 06:00:00 GMT 7.08 8.4 14.71 253 0.3886 2014-02-14 21:00:00 GMT 7.06 8.3 14.08 248 0.6917 2015-01-15 09:00:00 GMT 6.45 7.9 13.70 260 0.4898 2016-03-28 03:00:00 GMT 6.30 7.6 14.08 256 0.762

Table 2.4: Empirical joint survival probability of exceeding the observed extremesignificant wave heights hc and ho for the eight largest coastal significant waveheights of Set 2. Only events fromdifferent storms are given (i.e. events separatedby more than 3 hours). Estimation is performed using m = 1.106 simulated pairs
(ho,i, hc,i)1≤i≤m for each largest event with Algorithm 1.
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2.6. Application to extreme significant wave height

Table 2.4 describes the eight largest hc of Set 2, giving the time event and thecorresponding ho, tp and dp values. The last column of Table 2.4 givesthe empirical estimate of the joint survival probability defined as
1/m

∑m
i=1 1{ho,i > ho, hc,i > hc}, applying the above procedure with simulationsample sizem = 1.106. This estimated probability quantify the observationsmadewith Figure 2.13: for themost extremeevents, the associated joint probabilities areexpected to be lower.

2.6.2 Conditional simulationof coastal significantwaveheights
The conditional simulation scheme for extreme coastal Hs is described bellow.Note that the procedure is very symmetrical for simulating offshore Hs. In thefollowing we fix the triplet value (ho, tp, dp) ∈ R3 which may be taken from Set 2.

1. Compute σ̂o(tp, dp) and σ̂c(tp, dp) from the marginal EGPD models fitted onSet 1 (see Section 2.4).
2. Transform ho to the standardised space using the probability integral trans-form:

hE
o = − log

{
1− F̂o[(ho − vo)/σ̂o(tp, dp)]

}
where F̂o is the EGP (ξ̂o, κ̂o, 1) cdf’s.

3. Set z1 := hE
o − uo, where uo is the threshold on the offshoreHs on the expo-nential scale.

4. Simulate z2 applying Algorithm 2, only in the case z1 > 0. Here ∆|Z+
1
is de-

fined from Set 1 through∆|Z+
1
:= (Z1 −Z2)1{Z1 > 0}, with Z1, Z2 as definedin (2.7), and bootstrapped m times. We therefore obtain m simulations of

z2 = (z2,1, . . . , z2,m) for a fixed triplet (ho, tp, dp), given z1 > 0.
5. Transform the predicted values to the original scale

hc,i := σ̂c(tp, dp)F̂
−1
c (1− e−(z2,i+uc)) + vc

where F̂−1c is the inverse cdf of the EGPD(ξ̂c, κ̂c, 1) (see Section 2.4).
Note that in Step 4 above, the simulation is restricted to the case when z1 > 0for convenience, since our focus is on the simulation of extreme Hs.The pseudo-algorithm described above is applied with all the triplet values

(ho, tp, dp) from Set 2, with simulation sample size m = 1000. These conditionalsimulations of coastal significant wave heights are then compared to the true val-ues of Hc from Set 2. The overall coverage probability (i.e. the number of timesthe actual value of coastalHs is within the 95% range of the predicted distribution)is equal to 95% and the simulations are shown in Figure 2.14. The simulations and
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the true Hc values (red dots) are most of the time in good agreement. Since nodeclustering approach has been adopted, consecutive observations, which be-long to the same storm event, are kept. They are depicted with identical colour,highlighting a temporal dependence structure between each storm cluster.

Figure 2.14: Boxplot of predicted Hc conditionally on (Ho, Tp, Dp) using Algorithm2. The simulation sample size is equal to m = 1000 for each observation. Reddots represents the observedHc values from Set 2. The alternating colours depictdifferent storms: consecutive boxeswith same colour correspond to observationsthat belong to the same storm (i.e. separated by less than 3 hours).
The effect of the covariates Tp and Dp in the conditional simulations is de-picted in Figure 2.15, showing that the simulation model is able to simulate boththe most intense and the more moderate Hc. This plot also highlight for whichsea state conditions the simulations are far from the observed values. It appearsthat the two predictions such that the observed Hc value does not fall within the

95% simulation range correspond to small Hc and Ho.

2.7 Discussion and conclusions
Simulation of extreme events in a multivariate setting is of great interest to cap-ture not only the statistical behaviour of the extremes, but also the dependencebetween large values of complex processes. Based on the multivariate EVT, thiswork presents two non-parametric simulation algorithms of bivariate generalisedPareto distributed variables, without assuming any specific parametric shape forthe MGP model. Thanks to Algorithm 1, one can simulate joint extremes. As forAlgorithm 2, it allows the simulation of conditional extremes. Both methods havebeen validated with numerical simulations.We would like to point out that in the context of bivariate extremes, othersimulation algorithms have been developed. For example Marcon et al. (2017)

82



2.7. Discussion and conclusions

Figure 2.15: Scatter plot from Set 2 with the peak direction Dp on the y-axis andthe peak period Tp on the x-axis. The dots’ colour corresponds to the value of thecoastal significant wave heightsHc. The size of the dots corresponds to the valueof the offshore significant wave heightsHo. The shape indicates if the observedHcfalls within the 95% range of the predicted distribution from the conditionalmodelwhere the simulation sample size is equal tom = 1000 for each observation.

proposed a simulation method with a semi-parametric structure for the extremaldependence function, but it was not based on a MGP model and did not covernon-stationarities. Michel (2006) derived a non-parametric simulation frameworkof bivariate generalised Pareto variables using a different representation of MGPvectors than the one used in this paper.
For application purposes and as a byproduct, a non-stationary marginal mod-elling with the EGPD was also developed, adding covariate effects on the scaleparameter of the EGPD using smoothing splines.
We applied this work to the simulation of extreme significant wave heightsnear the Brittany coast given specific offshore sea state conditions (Tp, Dp) withcompelling results. In both joint and conditional settings, thanks to the presentedalgorithms, we are able to simulate realistic extreme Hs events.Note that in possible extensions of this work to climate projections, it is as-sumed that data will not be available at the coastal location but only on a coarsegrid, similar to the IOWAGA Global hindcast. This argument is illustrated in Table2.1, and is favour of the first pre-selection of the Hs data through {Ho > vo} forthe marginal regression analysis (see Section 2.4).
Extensions to the multivariate case will be the subject of future works. Con-sidering more than two locations raises different modelling issues. It would alsobe interesting to apply this methodology to other locations in order to ensure theproper generalisation of the methodology.
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2.A Marginal regression modelling

Figure 2.16: (left) Empirical histogram (grey) of the standardised extreme signifi-cant wave heights exceedances (a) at the coast and (b) offshore. The fitted EGPDdensity is superimposed. (right) The corresponding quantile-quantile plots withassociated 95% pointwise confidence intervals computed using parametric boot-strap.
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2.B. Proof of Algorithm 1

We show here the goodness of fit for the marginal regression models definedin Equation (2.2). As our models depend on some covariates, the diagnostic plotspresented here are built for the standardisedHs exceedanceswhich are defined as
(Hc − vc) /σc(Tp, Dp) (and similarly for Ho). From Figure 2.16, one can see that thefits seem to be fairly good, a slight discrepancy in the lower values can be noticedfor the coastal model but this is not a major issue as the interest lies mainly in thelarger values.

2.B Proof of Algorithm 1
With the same notations as in Algorithm 1, let F be the common distribution func-
tion of∆1, . . . ,∆n and F

(m)
nm be the empirical distribution function of the bootstrap

sample ∆
(m)
1 , . . . ,∆

(m)
m .

Lemma 2.1. If F (m)
nm converges in distribution to F , as n and m tend to infinity, then

(Z
(m)
1,k , Z

(m)
2,k )1≤k≤m converge in distribution to a bivariate GPD G where G is the com-

mon distribution function of the sample (Z1,i, Z2,i)1≤i≤n.

Proof. As P (E ≤ u) = 1 − min(1, exp(−u)) for any u ∈ R if E ∼ Exp(1), the
bivariate distribution function of (Z(m)

1 , Z
(m)
2 ) is equal to

P
[
(Z

(m)
1 , Z

(m)
2 ) ≤ (z1, z2)

]
= 1− E

[
min

(
1, e−min(z1−∆(m)1

∆(m)<0
,z2+∆(m)1

∆(m)>0
)
)]

= 1− E
[
min

(
1, e−min(z1−∆(m),z2)−max(∆(m),0)

)]
,

for any (z1, z2) ∈ {x ∈ R2;x ≰ 0}.Then, one can show that the function x 7→ min(1, x), defined for x ≥ 0, isLipschitz and bounded by 1. And applying the Portmanteau theorem, we have,letting min(n,m) → ∞,
P
[
(Z

(m)
1 , Z

(m)
2 ) ≤ (z1, z2) | ∆1, . . . ,∆n

]
→ 1− E

[
min

(
1, e−min(z1−∆,z2)−max(∆,0)

)]
= 1− E

[
min

(
1, emax(T1−z1,T2−z2)−max(T1,T2)

)]
.

Which is the cumulative distribution function of theMGP vector (Z1, Z2) as definedin Rootzén et al. (2018a) (Prop. 8).
The assumption in Lemma 2.1 is linked to the bootstrap asymptotic theory (e.g.Bickel and Freedman (1981)).
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2.3 Summary of Paper I

To sum up

• Paper I addressed the specific issue of joint simulation of extremeenvironmental variables.
• In the context of asymptotic dependence, multivariate EVT providesa solid mathematical framework.

→ Marginal treatment: non-stationary EGPDmodelling, taking into ac-count covariate effects on the scale parameter through smoothingsplines.
→ Dependence treatment: development of non-parametric simula-tion of bivariate GP vectors, based on a simple rewriting.
→ Two algorithms for the simulation of extreme Hs given offshoreconditions (Tp, Dp, Ho moderately high), are outlined:

• A first stochastic simulator that produces jointly offshore andcoastal extreme significant wave heights.
• A second stochastic simulator that produces coastal extremesignificantwaveheights givenoffshore significantwaveheights.

̸→ Underlying hypothesis of asymptotic dependence between Ho and
Hc, otherwise other models should be considered.

̸→ Focus on a specific site: to ensure the generalisation of themethod,other locations should be investigated.

86



Chapter 3
Evaluation of binary classifiers forasymptotically dependent andindependent extremes

Overview of Chapter 3
This chapter addresses another issue, that can be seen as a subsequentstep to the work of Chapter 2. Instead of building one prediction model,assume that we have several prediction models available - or rather sev-eral forecasts - and we want to compare the performance of eachmodel.Since this thesis focuses on EVT, this comparison should be made giventheir capacity to capture extreme occurrences.In the following, we study the specific case of binary classifiers, whichare the simplest type of forecasting and decision-making situation: anextreme event did or did not occur. Such classifier tailored for extremeswill be called an extremal classifier and risk functions that answer our ini-tial question will be developed. Their properties will be derived under theframework of multivariate regular variation and hidden regular variation,allowing to handle finer - or more specific - types of asymptotic indepen-dence.Section 3.1 gives somepreliminary notions onmultivariate regular vari-ations and the refinement to hidden regular variation. Their definitionand some examples are provided.Section 3.2 up to Section 3.6 reproduces Paper II (Legrand et al., 2021).First, the construction of our risk functions is developed by investigat-ing some specific cases: beginning with two naive classifiers and thenlooking at a particular type of asymptotic independence (corresponding
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CHAPTER 3. EVALUATION OF BINARY CLASSIFIERS FOR ASYMPTOTICALLY DEPENDENT ANDINDEPENDENT EXTREMES
to hidden regular variation). We then propose an empirical estimatorof our risk functions, whose inferential properties are derived under theframework ofmultivariate regular variation and hidden regular variation.A simulation study compares different classifiers and indicates their per-formance with respect to our risk functions. To conclude, we apply ourframework to the analysis of extreme river discharges in theDanube riverbasin. The application compares different predictive algorithms and teststheir capacity at forecasting river discharges from other river stations.Finally, Section 3.7 gives some further developments. We study in de-tail the special class of linear classifiers and show that the optimisationof our risk functions leads to a consistent solution. A tool to identify theexplanatory variables that contribute the most to extremal behaviour isdeveloped and applied to the river network data. To conclude, ideas forextending this pre-selection tool to the case of hidden regular variationare presented.

3.1 Preamble to Paper II
In the previous chapter, weproposed a stochastic simulator for bivariate extremesin the case of asymptotic dependence. Specifically, the conditional Algorithm 2proposed in Paper I could be viewed as a statistical method to predict extremevalues of a given variable (e.g. extreme coastal significant wave heights). Nowimagine that we have a prediction model for the entire range of data, not only thelargest values. Then, a natural question in EVT is whether themodel performswellin predicting themost extreme values, and can we discriminate between differentmodels.

This question is in some ways similar to the notion of scoring rules used inthe forecasting literature where the aim is to provide summary measures of howwell a probabilistic forecast performs compared to the reality, but also in com-parison with other competing forecasts. A good introduction can be found, forexample, in Jolliffe and Stephenson (2003). Evaluation of probabilistic forecasts isbeyond the scope of this manuscript, but we can mention some recent advancesin forecast of extreme events, reflecting various challenges that it raises. For ex-ample, considering rare events as binary outputs (which is actually analogous toour approach as explained below), Stephenson et al. (2008) discussed the advan-tages and drawbacks of various risk functions. To obtain accurate extreme windgusts predictions, Friederichs and Thorarinsdottir (2012) derived closed-form ex-pressions of the continuous ranked probability score (CRPS) (e.g. Gneiting et al.,2007) for extreme value-distributed data. A weighted CRPS (Gneiting and Ranjan,2011) has been applied to compare spatio-temporal predictions of extreme seasurface temperatures during the EVA 2019 data competition (Huser, 2021). Finally,
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3.1. Preamble to Paper II

Brehmer and Strokorb (2019) and Taillardat et al. (2019) showed the limitations ofscoring functions to assess tail properties.

3.1.1 Binary classifiers and extremal risk
In Paper II (Legrand et al., 2021) hereunder, we will not consider forecast modelsdirectly but rather binary classifiers. In this context, the previous question nowbecomes how to assess and compare binary classifiers, based upon a set of mul-tivariate observations X and denoted g(X;u), with respect to their capacity tocapture ‘extreme’ occurrences of a binary response Y (u) ∈ {−1,+1}. To set thescene, one can imagine that the labels of Y (u) encode the fact that a given randomvariable H is above (i.e. extreme) or below (i.e. non-extreme) a given threshold u(hence the above notations which depend on u):

Y (u) =

{
+1, if H > u,

−1, otherwise.
As is common practice in EVT, we will consider high thresholds u and call g(X;u)an extremal classifier if it verifies some convergence conditions as u becomeslarge. But then, and due to the inherent rarities of extreme events, there willbe many more −1 labels than +1. This leads somehow to a binary classificationproblem with imbalanced classes and a wealth of models have been developedin the machine learning community to cope with imbalanced data classification(see, e.g. Haixiang et al. (2017) for a recent review).In this context, our objective is not to construct such classifiers but rather todesign an appropriate risk function allowing for their comparison. This risk func-tion will be defined as

R(u)(g) =
P(g(X;u) ̸= Y (u))

P(Y (u) = 1 or g(X;u) = 1)

and will depend on the threshold u considered. Subsequently, and in the samevein as the tail dependence coefficient χ(u) (Coles et al., 1999), one may want tolook at R(u) for high levels of u > 0 to focus on the performance of g(X;u) in theextremes.This risk functionR(u) can then be used to compare different predictivemodelsand test their capacity at forecasting extreme events, as for instance extreme riverdischarges (see Section 3.5). In Section 3.3, the statistical inference properties ofour risk function R(u) are derived under the framework of multivariate regularvariation, which is an alternative way to describe the tail behaviour of multivariateextremes. The following section gives a brief overview of this concept, for moreinformation see, e.g. Resnick (2007).
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3.1.2 Refinement of asymptotic independence
As illustrated in Chapter 2, when working in the framework of asymptotic depen-dence, models based on bivariate extreme value theory usually suit well. How-ever, and as discussed in the following, in the case of binary classifiers, it can becomplex to find such dependent models.To overcome this problem, a finer riskmeasure adapted to the case of asymptotic independence is developed. For thispurpose, we will rely on the framework of Ramos and Ledford (2009) with jointtail models adapted to the case of asymptotic independence (see Section 1.2.5).This specific framework handles the case of hidden regular variations which canbe viewed as a second-order regular variation when asymptotic independencearises (Resnick, 2002). Hereinafter, we give more details on hidden regular varia-tion, starting from the definition of multivariate regular variation, and its connec-tion with the model of Ramos and Ledford (2009).
Multivariate regular variation
Formally, a d-dimensional non-negative random vectorX , with identical margins(for simplicity), is multivariate regularly varying with limit measure ν if there existsa function b(t) → ∞ as t → ∞ and a non-negative Radon measure ν ̸= 0 suchthat

tP
(

X

b(t)
∈ ·
)

v−→ ν, (3.1)
on [0,∞]d \ {0}. The notation v−→ stands for vague convergence, a definition andits properties can be found in Chapter 3 of Resnick (2007) for example.It can be shown that condition (3.1) implies that there exists a constant
α > 0, the tail index, such that, for all relatively compact sets A ⊂ [0,∞]d \ {0}and t > 0, ν(tA) = t−αν(A). This property is fundamental in order to obtain thepolar decomposition of Equation (3.3). Moreover, b is a regularly varying functionwith index 1/α (see Resnick, 2007).The link between the univariate case as discussed in Section 1.1.3 and the abovedefinition of multivariate regular variation may not be directly evident. Yet, equiv-alent definitions of univariate and multivariate regular variation in terms of con-vergence of measures and tail probabilities can be derived (see Theorems 3.6 and6.1 in Resnick (2007)).
Theorem 3.1. LetX be a non-negative d-dimensional random vector. The following
statements are equivalent.

1. X , with distribution function F , is multivariate regularly varying with measure
ν and tail index α > 0.

2. The following convergence holds

lim
t→∞

1− F (tx)

1− F (t1)
= lim

t→∞

P(X/t ∈ [0,x]c)

P(X/t ∈ [0,1]c)
= ν ([0,x]c) , (3.2)
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3.1. Preamble to Paper II

for all points x > 0 which are continuity points of the function x 7→ ν ([0,x]c),
where [0,x]c denotes the complement set taken with respect to [0,∞]d \{0} (see
Figure 3.1 for an illustration in dimension 2).

3. There exists an α-Pareto random variable P and, independently of P , a random
vectorΘ ∈ [0,∞)d on the unit sphere {x ∈ Rd; ∥x∥ = 1}, such that

P
[(

∥X∥
t

,
X

∥X∥

)
∈ · | ∥X∥ > t

]
v−→ P [(P,Θ) ∈ ·] , as t → ∞, (3.3)

for an arbitrary norm ∥·∥ on Rd.

Equation (3.2) is the analogue version of univariate regularly varying randomvariables as defined in (1.7). It implies that the survival function 1−F ismultivariate
regularly varying (see Resnick (2007), Chapter 6).In the polar decomposition (3.3),Θ is referred to as the spectral tail vector andits distribution as the spectral measure. A nice interpretation is that the spectralmeasure, or equivalently ν, places mass in directions where large events occur(Meyer, 2020; Meyer and Wintenberger, 2021). This decomposition will be used inSection 3.7 to develop a special case of a linear classifier.One further comment is that, as for the univariate case, multivariate regularvariation andmultivariate EVT are two strongly connected notions. Indeed, ifX ismultivariate regularly varying as in (3.1) with limit measure ν and tail index α > 0,thenX is in the domain of attraction of an extreme value distribution G with

G(x) = exp {−ν ([0,x]c)} ,

(see, for example Beirlant et al. (2004)). Thus, the limit measure ν and the expo-nent measure V (defined in (1.10) for the bivariate case) are in the end the samequantity, i.e. V (x) = ν ([0,x]c).
Hidden regular variation
In view of the foregoing, hidden regular variation is defined as a refinement ofregular variation on the following subset

E0 :=
{
s ∈ [0,∞]d \ {0} : For some 1 ≤ i < j ≤ d,min(si, sj) > 0

}
.

This set E0 corresponds to the points of [0,∞]d \ {0} such that at most d − 2coordinates are 0 (see Figure 3.1).Then, we say that X is hidden regularly varying if in addition to (3.1), thereexists a non-decreasing function b0(t) → ∞ such that b(t)/b0(t) → ∞, as t → ∞,and a Radon measure ν0 ̸= 0 on E0 and such that
tP
(

X

b0(t)
∈ ·
)

v−→ ν0 (3.4)
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Figure 3.1: Illustration for d = 2 of the different spaces considered. The red linesrepresent the excluded parts. (left) [0,∞]2\{0, 0} grey shaded area, (middle) [0,x]cwith x = (x1, x2) blue hatched area, (right) E0 = (0,∞]2 grey shaded area.
on the set E0. Similarly to multivariate regular variation, if (3.4) holds, there exists
α0 ≥ α such that b0 is regularly varying with index 1/α0 and ν0(t·) = t−α0ν(·), forall t > 0.Now, if X is hidden regularly varying, then necessarily the components of Xare asymptotically independent, this is shown in Resnick (2002) and with Chap-ter 5 of Resnick (1987). For simplicity, we illustrate this for d = 2, considering
X = (X1, X2). In this case, E0 = (0,∞]2. Assuming (3.1) and (3.4) hold, then, since
b(t)/b0(t) → ∞ as t → ∞,

lim
t→∞

tP
(
X1

b(t)
> δ,

X2

b(t)
> δ

)
= lim

t→∞
tP
(
min(X1, X2)

b0(t)
>

b(t)

b0(t)
δ

)
= 0

for any δ > 0. That is, ν (E0) = 0 and ν concentrates on the axes, i.e. on the lines
{(x1, 0);x1 > 0} and {(0, x2);x2 > 0}.Therefore, the terminology hidden can be understood by the fact that the de-pendence structure is hidden by the mass put on the axes, hence a normalisationof smaller order, with b0, is needed to capture the finer structure that may bepresent away from the axes.
Example 3.2. IfX := (X1, X2)withX1 andX2 two i.i.d. Pareto variables with param-
eter 1/2, that is P(Xi > x) = x−1/2. Then, setting b0(t) = 1/t, X is hidden regularly
varying with ν0((x1,∞]× (x2,∞]) = (x1x2)

−1/2. This is illustrated in Figure 3.2.

Example 3.3. ConsiderX := BY +(1−B)U , withB a Bernoulli variable, Y having
regularly varying marginals with index −1, and U multivariate regularly varying with
tail index 1 < α < 2, B, Y and U being independents. Then X is hidden regularly
varying (Resnick, 2002).

Hidden regular variation implies multivariate regular variation and asymptoticindependence, but the converse is in general not true (see Resnick, 2007).
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Figure 3.2: Example of hidden regular variation with X := (X1, X2) as definedin Example 3.2. On the original scale (left) the variables clearly appear as asymp-totically independent, but on the log-scale (right) second-order regular variationemerges.
For inference or simulation purposes, Das and Resnick (2015) review differentgenerative models exhibiting hidden regular variation, namely themixture modeldeveloped by Maulik and Resnick (2004) and the additive model of Weller andCooley (2014). Das and Resnick (2015) also suggest diagnostic tools in order todetect regular variation and hidden regular variation in multivariate data.

Link with Ramos and Ledford (2009) model
In dimension d = 2, it appears that the model of Ramos and Ledford (2009) dis-cussed in Section 1.2.5 is a special case of hidden regular variation, where the co-efficient of tail dependence η is given by η = 1/α0 (see, e.g. Heffernan and Resnick(2005)).Indeed, assume that X = (X1, X2) satisfies (1.25). Consider b0(t) := 2U←(t)1

where U(t) :=
(2t)1/η

L(2t, 2t)
. Then for any x1, x2 > 0,

lim
t→∞

tP
(

X1

b0(t)
> x1,

X2

b0(t)
> x2

)
= g(x1, x2)(x1x2)

−1/(2η) ∼ (x1x2)
−1/(2η).

In the above, we assumed that the components of X were identically dis-tributed. However, with real data analysis, such behaviour is rarely observed. Toovercome this issue, Heffernan and Resnick (2005) showed that the use of therank transform method, resulting in equal marginals, preserved hidden regular
1U←(t) := inf{s;U(s) ≥ t} denotes the left-continuous inverse of U , and U(U←(t)) ∼ t.
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variation. Yet, in the following Paper II (Legrand et al., 2021), equal marginal trans-formation is not desired as explained later. Instead an extension of Ramos andLedford (2009) is developed, allowing for different tail indexes between the com-ponents.

∗ ∗ ∗

Below, Paper II (Legrand et al., 2021) is reproduced as submitted. It was writtenin collaboration with Philippe Naveau and Marco Oesting. In this paper, JulietteL. wrote the Sections 3.4 and 3.5. Juliette L. wrote the R code used and producedthe figures in the article. The theoretical proofs were mainly derived by MarcoOesting. All three authors contributed equally to the writing of the remaining text.The proofs of all lemmas and propositions are placed in Appendix A, as origi-nally done in Paper II.

3.2 Introduction
In binary classification, one typically considers data of the form (X, Y )⊤ where
Y ∈ {−1, 1} represents a binary response to the input X ∈ [0,∞)d. In this paper,we focus on the case that Y = Y (u) represents the occurrence of an extremeevent, Y (u) = 1 indicating that a random quantity H crosses a level u, called thethreshold, and Y (u) = −1 otherwise, that is

Y (u) =

{
+1, if H > u,

−1, otherwise. (3.5)
In the following, for simplicity, we focus on the case thatH is a non-negative ran-dom variable such that P(H > u) > 0 for all u > 0 and its upper end point isinfinite.In extreme value analysis, one is interested in the behaviour of Y (u) for highlevels, that is for u → ∞, and, therefore, also any classifier g needs to be adaptedto the threshold u. Thus, for every u > 0, let g(·;u) be a measurable functionfrom Rd to {−1, 1}. In order to evaluate the quality of the classification at a cer-tain level u, we consider a loss function lu that assigns a cost to a classifier g(·;u)and a realisation (x, y(u)). Here, it is important to note that, by definition of rareevents, P(Y (u) = 1) is very small and P(Y (u) = −1) is close to one as u gets large.This imbalance can lead to atypical and/or undesirable comparisons of classifiers.For example, the “always optimistic" classifier that never forecasts an extremecan be defined as g(X;u) ≡ −1, almost surely. To see how to handle this naiveclassifier, the classical risk function defined as the expectation of the indicator
1{g(X;u) ̸= Y (u)} can be written as

P
(
g(X;u) ̸= Y (u)

)
= P(H > u, g(X;u) = −1) + P(H ≤ u, g(X;u) = 1). (3.6)
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If g(X;u) ≡ −1, then P(g(X;u) ̸= Y (u)) = P(H > u) goes to zero as u gets large.Hence, the classical risk function E(1{g(X;u) ̸= Y (u)}) will systematically favourthe always optimistic classifier for extremes. To avoid this undesirable feature,the loss function has to be modified. One natural idea is to re-scale by P(H > u)and introduce the loss function 1{g(X;u) ̸= Y (u)}/P(H > u). In this case, therisk, i.e., the expected loss E(1{g(X;u) ̸= Y (u)}/P(H > u)), goes towards one as
u gets large.Another trivial but also interesting case is the “crying wolf" forecaster who al-ways issues g(X;u) ≡ +1, see also the forecaster’s dilemma (e.g. Lerch et al.,2017). In this case, Equation (3.6) implies that P (g(X;u) ̸= Y (u)

)
= P(H ≤ u) and,

consequently, the risk E(1{g(X;u) ̸= Y (u)}/P(H > u)) goes towards infinity as
u gets large. This limiting cost indicates that the “crying wolf" forecaster is muchworse than the overly optimistic one. Both of them are unreasonable in practiceand there is no reason to strongly favour one over the other one. For this reason,we propose to use a following weighted loss function

lu(g; (x, y)) =
1

P(Y (u) = 1 or g(X;u) = 1)
1{g(x;u) ̸= y}

and the associated risk
R(u)(g) = E(lu(g;Z)) =

P(g(X;u) ̸= Y (u))

P(Y (u) = 1 or g(X;u) = 1)
. (3.7)

By construction, the event {g(X;u) ̸= Y (u)} implies that {Y (u) = 1} or
{g(X;u) = 1} and therefore, necessarily, R(u)(g) ∈ [0, 1]. In particular, the naiveclassifier g(X;u) ≡ −1 possesses unit risk with R(u)(g) = 1 at each level u > 0.Similarly, the risk of the “crying wolf" classifier g(X;u) ≡ +1 is then equal to
R(u)(g) = P(H ≤ u) and converges to one as u → ∞.Hence, the value of one is reached by the two worst cases scenarios in termsof classifiers. This unit value provides a clear benchmark that can be comparedto any other classifier satisfying the existence of the limit

R(g) = lim
u→∞

R(u)(g) ∈ [0, 1].

We call such classifiers extremal.In the weather forecast literature (e.g. Schaefer, 1990), the definition ofR(u)(g)can be linked to the critical success index, also called the threat score. The criticalsuccess index computes the total number of correct event forecasts (hits) dividedby the total number of forecasts plus the number of misses (hits + false alarms+ misses). Hence, 1 − R(u)(g) can be understood as a critical success index forextremes. In the context of rare events forecasts, Stephenson et al. (2008) high-lighted some advantages and drawbacks of various risk functions, including the
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critical success index. In particular, these authors linked forecast scoring ruleswith two dependence indices used in EVT (see Coles et al., 1999)

χ = lim
u→1

P(U > u | V > u) and χ = lim
u→1

[
2 log(P(U > u)

log(P(U > u, V > u))
− 1

]
,

where the two random variables U and V follow the same continuous uniformdistribution on [0, 1]. The choice of uniformmarginals can be made whenever theforecast can be assumed to be calibrated, i.e. observations and forecasts followthe samemarginal distributions and can be transformed into uniforms. Concern-ing the extremal dependence strength between U and V , if χ > 0, then the vari-ables U and V are said to be asymptotically dependent and χ = 1. If χ = 0, thenthe variables U and V are said to be asymptotically independent and χ < 1 cap-tures some second order extremal dependence information. Stephenson et al.(2008) advocated the use of χ and called it the extreme dependency score. Lateron, Ferro and Stephenson (2011) proposed two different scores and studied theirproperties. But the link with the concept of asymptotic independence was notclear and the convergence results of their estimators were not fully developed. Incontrast to χ, one drawback of χ is that its formula is not easy to explain to prac-titioners. In comparison, R(g) as a type of the critical success index can be inter-preted with ease. Hence, it is of interest to extend this definition to the asymptoticindependent case.In the machine learning literature, Jalalzai et al. (2018) also worked onbinary classifiers for extremes. But they did not focus on R(u)(g). Instead, theystudied a different setting where the object of interest was
P(g(X) ̸= Y | ∥X∥ > u) where ∥X∥ represents a norm with u large. Hence,their conditioning event was {∥X∥ > u}, while our conditioning depends on Ywith the set {Y (u) = 1 or g(X;u) = 1}, see Equation (3.7). So, their interest wascentred on the classifier performance when the norm of the explanatory vectorXwas large. Our focus is on large values of H in the production of extreme eventsof the type Y (u) = 1 when H > u, see Equation (3.5). Jalalzai et al. (2018) providedvarious theoretical results based on themain assumption that the conditional dis-tribution of X given Y = ±1 was regularly varying with an angular measure thatdepends on Y = ±1.In this study, one part of our results is based on the concept of hidden regularvariation (see, e.g. Ledford and Tawn, 1996; Heffernan and Resnick, 2005; Ferro,2007). In particular, we take advantage of the model of Ramos and Ledford (2009)to derive the asymptotic properties of our estimators.Our paper is organised as follows. In Section 3.3, we propose and study a riskfunction that can handle both the asymptotic dependent and independent cases.Estimators are also constructed and their asymptotic properties derived. Section3.4 focuses on a simulation example that highlights the difficulty to compare com-mon classifiers in the case of asymptotic independence. In Section 3.5, we revisit
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the well studied example of the Danube river application and see how the choiceof the metric can change the ranking of classifiers. Note that, besides the proofsof all propositions, the appendix addresses the questions of how to optimise thelinear classifier for extremes and how to choose the relevant features, see Section3.7.

3.3 Risk, upper tail equivalenceandextremal depen-dence
The following lemma provides a flexible blueprint to link risk functions with prob-abilities based on general sets. We will apply it under different setups linked toextreme events.
Lemma 3.4. LetAε be a sequence of measurable sets of increasing sizes with decreas-
ing ε ∈ [0, 1], in particular A1 ⊆ Aε ⊆ A0. Let Bε be the same type of set sequence
such that P(A1 ∩B1) > 0. The following ratio R(Aε, Bε) can be written as

R(Aε, Bε) :=
P(A1△B1 | Aε ∩Bε)

P(A1 ∪B1 | Aε ∩Bε)
= 1−

[
1

P(B1|A1 ∩Bε)
+

1

P(A1 | Aε ∩B1)
− 1

]−1
,

(3.8)
where A1△B1 denotes the difference set. In addition, we have the three following
properties for Rε:

1. R(Aε, Bε) is non-increasing in ε with R(A1, B1) = 0.

2. Let A′ε be another sequence of measurable sets of increasing sizes with decreas-
ing ε.
If A1 = A′1 and Aε ⊆ A′ε for some ε ∈ [0, 1) then

R(Aε, Bε) ≤ R(A′ε, Bε).

3. If for any ε ∈ [0, 1] and ε′ ∈ [0, 1], there exists some positive constants a and b
and some positive function cε,ε′ such that

P(Aε ∩Bε′) = cε,ε′ Pa(Aε)Pb(Bε′), (3.9)
then

R(Aε, Bε) = 1−
[
cε,1
c1,1

(P(A1 | Aε))
−a +

c1,ε
c1,1

(P(B1 | Bε))
−b − 1

]−1
. (3.10)

We deduce from Equation (3.8) that R(Aε, Bε) = 0 if and only if
P(B1 | A1 ∩ Bε) = P(A1 | Aε ∩ B1) = 1. The second property of this lemma
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indicates that, for a given ε, the risk function becomes smaller if the set Aε is assmall as possible.Equation (3.9) can be viewed as a mixing condition that leads to a simple ex-pression of R(Aε, Bε′) based on disjoint events.We want to use the ratio (3.8) in order to generalise the risk R(u)(g) defined in(3.7). In the latter definition, adapted to extremes, the set {H > u}was consideredand one could set B1 = {H > u}, for instance, and consequently, Bε = {H > εu}would be a natural sequence ifH is regularly varying. The choice ofAε is open andit can play an important role2. In the next paragraphs, we set ε = 0 and discussthe choice of A1 and A0. In Section 3.3.1, we will work with ε > 0. In that case, wewill call the corresponding risk the conditional risk.In the rest of this paper, we restrict our attention on a particular form of clas-sifiers

g(X;u) =

{
+1, if g(X) > u,

−1, otherwise, (3.11)
for some function g : Rd → (0,∞). The function g(.) does not have to be a norm.It can be understood as any projection/summary of the explanatory variables Xonto the positive real line (see, e.g. Aghbalou et al., 2021, for projection techniquesfor extremes). This corresponds to the set A1 = {g(X) > u} in Lemma 3.4. Aspecial case of this lemma is to set ε = 0 and when A0 and B0 are equal to the fullset, i.e. P(A0) = P(B0) = 1, and A1 = {g(X) > u} and B1 = {H > u}. In this case,Equation (3.8) tells us that R(u)(g) defined by (3.7) satisfies

R(u)(g) = 1−
[

1

P(H > u | g(X) > u)
+

1

P(g(X) > u | H > u)
− 1

]−1
.

This leads to the following expression of R(u)(g)

R(u)(g) = 1− P(g(X) > u | H > u)

1− P(g(X) > u | H > u) + P(g(X) > u)/P(H > u)
. (3.12)

Within the class defined by Equation (3.11), the effect of the marginal distributionsof H and g(X) on R(g)3 can be explained. When g(X) has a lighter tail than H ,i.e. P(g(X) > u)/P(H > u) → 0, then we also have P(g(X) > u | H > u) → 0, andconsequently
R(u)(g) → 1, as u → ∞.

In the case where g(X) possesses a heavier tail than H , i.e.
P(g(X) > u)/P(H > u) → ∞, we can also show that

R(u)(g) → 1, as u → ∞.
2Although we will apply Lemma 3.4 to sets Aε that are rare events, this is a not a necessity.3the shortcut notationR(g) corresponds to the case where g(X;u) = +1 is built from the event

g(X) > u in the associated R(g).
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This indicates that, whenever g(X) and H are not tail equivalent, the classi-fier g(X) cannot outperform naive classifiers with respect to R(u)(g) for large u.Hence, the marginal behaviour of g(X) has a direct impact of its predicting ca-pacity in terms of R(g). This is a widely known fact in forecast verification. Inparticular, a paradigmpromoted byGneiting and his co-authors (see, e.g. Gneitinget al., 2007) is towork onlywith calibrated forecasts. In our case, calibrationmeansthat g(X) and H have the same distributions, and consequently
P(g(X) > u)/P(H > u) = 1 for all u. In practice, it may be difficult to ensurethat this constraint holds for extremes (see, e.g. Lerch et al., 2017; Taillardat et al.,2019). To illustrate this, suppose that P(X > u) = u−1 for all u ≥ 1, and the vari-able H , independently of the value of X , is either equal to δX or (2 − δ)X withprobability .5 and the constant δ ∈ (0, 1). Then, we have

P(H > u) =
1

2
P (δX > u)+

1

2
P ((2− δ)X > u) =


P(X > u), if u ≥ 2− δ,
1
2

(
1 + δ

u

)
, if δ < u ≤ 2− δ,

1, if δ ≥ u.

Hence, X and H are more than tail equivalent, they have identical tail behaviourfor large u. Concerning classifiers, linear ones of the type ga(X) = aX with a > 0belong to the class defined by (3.11). They are tail equivalent to H , and R(ga) < 1.AlthoughX andH have identical tail behaviours, the choice of a = 1 is not optimalwith respect to R(ga). In particular, one can show that
R(g2−δ) =

1− δ

2− δ
< R(g1) =

2− 2δ

3− δ
.

This is not surprising. By construction, the largest values ofH aremore likely to beproduced by (2− δ)X thanX , especially if δ is small. In this context, the followinglemma (that is a rewriting of Lemma 3.4) explains that the risk function R(g) bothdepend on the upper tail dependence between g(X) and H and their marginalbehaviours.
Lemma 3.5. If

c(g) := lim
u→∞

P(g(X) > u)

P(H > u)
∈ (0,∞),

then the limiting risk based on (3.7) has the following expression
R(g) = 1− χ∗(g)

1 + c(g)− χ∗(g)
,

where χ∗(g) denotes the limit of P(g(X) > u | H > u). In particular,

R(g) = 0 if and only if c(g) = χ∗(g) = 1.
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This lemma indicates that c(g) = 1, i.e. ḡ(X) and H are “asymptotically cali-brated", is a necessary condition to have R(ḡ) = 0. In the above example with

δ = 0, we have c(g2) = 1 and R(g2) = 1/2 ̸= 0. This means that χ∗(g2) < 1. Notethat c(g) = 1 implies that the constant χ∗(g) simply corresponds to the aforemen-tioned tail dependence coefficient χ(g), and so, the case c(g) = 1 simplifies theexpression of the risk
R(g) = 1− χ(g)

2− χ(g)
.

This equality tells us that any asymptotically calibrated classifier with χ(g) = 0always produces a risk function R(g) = 1. Consequently, any asymptotically inde-pendent classifier is as uninformative as the two naive classifiers. A reasonablestrategy will be to dismiss all asymptotically independent classifiers andfind/construct new asymptotically dependent classifiers with positive χ(g). But,finding asymptotically dependent classifiers can be complex in practice, and inaddition, in some not so exotic setups, this is not always possible. To see this, weconsider the simple non-linear regression model in the following lemma.
Lemma 3.6. Assume that the variable H in (3.5) is generated by the non-linear re-
gression model

H
d
= f(X) +N,

where d
= represents the equality in distribution, N corresponds to a random

noise and X corresponds to the explanatory variables, independent of N . If
P(f(X) > u) = o (P(N > u)) , then for any classifier of the type defined by (3.11),
we always have

R(g) = 1.

Hence, no classifier can outperform naive classifiers for this regression model.

Note that even if the forecaster knows exactly the function f(.) and has drawnfrom the explanatory X , the “ideal” classifier g(x) =f(x) will perform badly, i.e.
R(f) = 1. In addition, the classical trick of using ranks to avoid the problem ofmarginals discrepancy cannot be applied here. For example, suppose that H isunit Fréchet distributed, then transforming the marginals of X into unit Fréchetrandom variables, say into X̃ , does not remove the issue as the unobserved noise
N has still have heavier tails than f̃(X̃) = f(X) for some function f̃(.). So, a finerrisk measure is needed that is able to distinguish different classifiers in case ofasymptotic independence.
3.3.1 Conditional risk and hidden regular variation
The choice of the conditioning set in Lemma 3.4 brings new possibilities to con-struct finer risk measures for extremes thanR(u). To do so, we opted for the sets:
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Figure 3.3: Simulated example for Lemma 3.6, for more details see equations(3.16) and (3.17).
A1 = {g(X) > u} and B1 = {H > u}, (when ε = 1) and A0 = {g(X) > 0} and
B0 = {H > 0} (when ε = 0). But, changing the size of the sets Aε and Bε to makethem closer toA1 andB1, will increase the conditional probabilities P(B1 | A1∩Bε)andP(A1 | Aε∩B1). A simple choicewhen ε ̸= 0 or ε ̸= 1 is to setAε = {g(X) > εu}and Bε = {H > εu} with ε > 0. This modelling strategy is at the core of hiddenregular variation and asymptotic independent models. More precisely, we firstneed to fix marginal features. We assume that both g(X) and H possess regu-larly varying tails with indices αg > 0 and αH > 0, respectively. This means thatfor any ε ∈ (0, 1),

lim
u→∞

P(g(X) > u | g(X) > εu) = εαg and lim
u→∞

P(H > u | H > εu) = εαH .

These limits have to be understood with respect to Equation (3.10), i.e. the terms
P(A1 | Aε) and P(B1 | Bε). To apply (3.10), the mixing condition (3.9) needs to besatisfied. To do so, we opt for an extended version of the framework of Ramosand Ledford (2009), i.e.

P[g(X) > u,H > v] = L(u, v)(u−αgv−αH )1/2η, (3.13)
where η ∈ (0, 1] indicates the rate of decay of the joint survival functionand L(·, ·) is bivariate slowly varying function, i.e. there exists a limit function
ℓ : (0,∞)× (0,∞) → (0,∞) defined as

ℓ(s, t) = lim
u→∞

L(us, ut)

L(u, u)
, s, t > 0

and satisfying ℓ(cs, ct) = ℓ(s, t) for all c, s, t > 0. The parameter η measures thedependence strength. The case η = 1 corresponds to the asymptotic dependence
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while η < 1 to the asymptotic independence case. In particular, if η = .5, thenindependence appears in the extremes. If .5 < η < 1 (0 < η < .5) the extremaldependence is said to be positively (negatively) associated.Now, noticing that (3.13) corresponds to the mixing condition (3.9), we can ap-ply Lemma 3.4, see Appendix A.1 for a proof.
Proposition 3.7. Under the Ramos and Ledfordmodel defined by (3.13), the following
risk function

Rε(g) := lim
u→∞

P(g(X;u) ̸= Y (u) | Y (εu) = g(X; εu) = 1)

P(Y (u) = 1 or g(X;u) = 1 | Y (εu) = g(X; εu) = 1)
, (3.14)

which will henceforth also be called conditional risk, can be expressed as

Rε(g) = 1− 1

ℓ(ε, 1)ε−αg/2η + ℓ(1, ε)ε−αH/2η − 1
, for any ε ∈ [0, 1).

Note that η ∈ (0, 1] takes a similar role as χ in the case of the unconditionalrisk R.For fixed ε ∈ [0, 1), the risk function Rε(g) decreases with increasing η. So,given all parameters are fixed but η, the forecaster should aim at maximising η.In practice, two forecasters, say g1 and g2, may produce different ℓ(., .) and αg.Consequently, the minimisation of Rε(g) can also depend, besides η, on otherparameters.
3.3.2 Risk function inference
Concerning the estimation of Rε(g) defined by (3.14), the empirical estimator canbe easily computed from the sample (Xi, Hi)i=1,...,n. The following propositiondescribes the asymptotic property of such an estimator.
Proposition 3.8. Assume that the risk function Rε(g) defined by (3.14) exists for a
sequence of un → ∞ such that npg,ε(un) → ∞ with

pg,ε(un) := P(max{g(X;un), Y
(un)} = 1, H > εun, g(X; εun) = 1).

If

lim
n→∞

√
npg,ε(un)

(
P(g(X;un) ̸= Y (un), H > εun, g(X; εun) = 1)

pg,ε(un)
−Rε(g)

)
= 0,

then the empirical estimator based on a sample (g(Xi;u), {Hi > u})i=1,...,n and de-
fined by

R̂n,ε(g) =

∑n
i=1 1{g(Xi;un) ̸= Y

(un)
i , Hi > εun, g(Xi; εun) = 1}∑n

i=1 1{max{g(Xi;un), Y
(un)
i } = 1, Hi > εun, g(Xi; εun) = 1}

. (3.15)
converges in distribution in the following way√

npg,ε(un)
(
R̂n,ε(g)−Rε(g)

)
n→∞−→ N (0, Rε(g)(1−Rε(g))) .
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3.4 Simulations
3.4.1 A simple linear setup
Our main simulated example is based on a simple linear regression model butwith the feature that the explanatory variables X do not have the same tail be-haviour and the noise is regularly varying, see Lemma 3.6. More precisely, themultivariate vector X is defined as follows

X1 ∼ Pareto(3)

X2 ∼ Pareto(2)

X3 ∼ Exp(1)

X4 ∼ Exp(2)

, (3.16)

where all Xi are independent with X1 and X2 Pareto distributed with respectivetail index 2 and 3, and X3 and X4 exponentially distributed with respective scaleparameters 1 and 2. The variable of interest H is simply a linear transform of X1tainted by an additive noise
H

d
= X1 +N, (3.17)

where N ∼ Pareto(2) represents an independent noise with heavier tail than X1.So, given a sample ({Xj,i}1≤j≤4, Hi)i=1,...,n with n = 10000, our goal is to comparedifferent classifiers in terms of predicting extreme occurrences, here defined as
{H > u}with u equal to the 97th percentile ofH . In this simulation setup, it is clearfrom (3.17) that all variables but X1 are useless to explain H . In addition, Lemma3.6 tells us that the relevant information contained in the variable X1 is hiddenby the heavier noise N , i.e. we are in the case of asymptotic independence. Anexample of such simulation is given in Figure 3.3. The left panel displays a scatterplot between H (left axis) and g(X) = X1 (right axis). As expected, no sign ofasymptotic dependence can be found in the upper corner. In the right panel, weremove the mass along the axis (grey points) by conditioning on the joint event
Aε∩Bε = {g(X) > εu}∩{H > εu}with ε = .7, see all dark points. The right panelzooms on these black points and highlights a clear dependence between H and
X1 that was hidden by the heavier noise N in H = X1 +N .In practice, we do not know the optimal choice for g(.) and we need to intro-duce different classifiers and compare them.
3.4.2 Classifiers descriptions
Table 3.1 below provides the list of classifiers that we compare with our metric(3.15). This list contains some of the most standard classifiers found in the litera-ture (see, e.g. Hastie et al., 2009): logistic regression (Logistic), decision tree (Tree),random forest (RF) and support vector machine (SVM).
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Method Main features
Linear classifier Simple binary classifier, parameters estimation basedon the minimisation of the risk function over the setof contributing variables, theoretical value of R(gθ) in-ferred from spectral decomposition.
Logistic regression Parametric linear model with a lasso penalty, coeffi-cients of less contributing variables are set to zero.
Decision trees Easy to interpret, gives relative importance of eachvariables, learns simple decision rules inferred fromthe input.
Random forests Builds multiple decision trees combined by majorityvote, better predictive power than decision trees.
Support vector machines Finds the best hyperplane to separate two overlappingclasses, generally performs better than the other clas-sifiers.
Table 3.1: Summary and key features of the different classifiers studied. See forexample Hastie et al. (2009) for a comprehensive review of the last four classifica-tion methods.

Except for the linear classifier, we apply them with their built-in cost functionthat is not necessarily fine-tuned to forecast extremes. This is not an issue be-cause our main goal is to compare existing forecasters, and not to create newones (see, e.g. Jalalzai et al., 2018, for such developments). Still, to fix a baseline interms of performance, the linear classifier defined as
gθ(X;u) =

{
+1, θ⊤X > u,

−1, θ⊤X ≤ u,
θ ∈ [0,∞)d.

should be optimal for the linear model (3.17), especially if the regression param-eters are estimated by minimising our cost function (3.14). In such a context, weexpect the linear classifier to be the best. In Appendix 3.7, Proposition 3.9 pro-vides the condition of the consistency of the estimator θ̂n,un based on minimising
R̂n(gθ(·;un)) under a regularly varying framework.The binary outputs from the decision tree classifier are explained in Figure3.4. The light blue and light green regions represent the set of points that arewell predicted by the classifier. On the contrary, wrongly classified points belongto the light yellow and light red regions: either an extreme is predicted when itis not (light red region), or an extreme event is missed (light yellow region). Thedifference between the left and right panels corresponds to the training set based
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Figure 3.4: Example of predicted binary output for the decision tree classifier ver-sus the true values of H (on a logarithmic scale). The classifier has been trainedtwice as explained below. On the left-hand side the classifier is trained with thesubset {H > u} and the horizontal blue dashed line represents the thresholdvalue u. On the right-hand side the classifier is trained with the subset {H > εu}and the horizontal red dashed line represents the threshold value εu = 0.4 × u.The results shown are the predicted valuesmade upon the testing set whose sam-ple size is equal to 3000 (30% of the data).
on either {H > u} or on {H > εu}, i.e. mass removed in the latter case, see also(3.15).
3.4.3 Implementation and results
We split our simulated data set in two: 70% for a training part, over which wetrain our different classifiers to get good predictive power; 30% for a testing part,which we use to estimate the risks R0(g) and Rε(g). Note that each algorithm hasthe same inputs, in particular the same binary sequence describing the events
{H > u} with u set to be equal to the 97th percentile of H . This cross-validationprocedure has been repeated 50 times. The sample used to compute our riskfunction is based on the bivariate binary vector (g({Xj,i}1≤j≤4;u), {Hi > u})i=1,...,nwhere the output of the classifier g is binary. In addition, the binary outputs of theclassifier g are obtained under the threshold u and the threshold εu, so the train-ing part has to be performed twice (once for each threshold). Then, the empiricalrisk estimator defined by (3.15) can be computed. Figure 3.5 shows the sensitivityof the classifier ranking with respect to the value of ε.As expected from Lemma 3.6, the top-left panel, that corresponds to the case
ε = 0, clearly indicates that our five classifiers cannot outperform naive classifiersas all classifiers have a risk near to one, the worst possible value. To start dis-
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Figure 3.5: Estimation of Rε(g) for different classifiers (cross-validation with 50repetitions). In red (top-left) are the estimates when ε = 0 and in blue for differentvalues of ε > 0 (ε ∈ {0.4, 0.6, 0.8}). At the top of each plot, the value of ε and thenumber of points such that H > εu from the testing set are given.
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criminating classifiers, we need to remove the masses along the axes by setting avalue for ε. As we increase ε, the size of sets needed to compute (3.15) becomessmaller, see the values of nε in the legend of each panel. Hence, the blue box plotsbecomeswider as ε increases: a classical bias-variance trade-off. Aswe know from(3.17) that the true generative process is linear, ε = 0.4 appears as a reasonablevalue to balance the bias-variance trade-off. More importantly, the overall rank-ing is not sensitive to the values of ε > 0. In all cases, our linear classifier tailoredto handle linear asymptotic independence cases outperforms all the other classi-fiers. Among the other classifiers, decision tree appears to be the best, but it isstill far from the optimal linear solution. Other simulations concerning the regularvariation case are available upon request.

3.5 Danube river discharges

Figure 3.6: River map of the upper Danube basin, showing sites of the 31 gaugingstations along the Danube and its tributaries. Water flows toward gauging station
1. The stations represented by a green triangle shaped dot are the three stationsof interest as described in Section 3.5.
We now apply our assessment approach to summer daily river discharges (mea-sured inm3/s) at 31 stations spread over the upper Danube basin, see Figure 3.6,and recorded over the time period 1960-2010 in June, July and August. These ob-servations have been studied by the EVT community (see, e.g. Asadi et al., 2015;Mhalla et al., 2020; Gnecco et al., 2021). This dataset was made available by theBavarian Environmental Agency (http://www.gkd.bayern.de). To remove tempo-ral clustering in extreme river discharges, Mhalla et al. (2020) in their Section 5 im-plemented a declustering step. Each station then contains n = 428 observations
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CHAPTER 3. EVALUATION OF BINARY CLASSIFIERS FOR ASYMPTOTICALLY DEPENDENT ANDINDEPENDENT EXTREMES
that we will consider temporally independent. In order to reduce the large dis-crepancy in terms of discharges magnitude among stations, we force the startingvalue of all 31 time series to equal zero by subtracting to each station itsminimum.Then, we re-normalise each time series by its range (i.e. the difference betweenthemaximumand theminimumof each time series). These post processing treat-ments are useful to display and interpret the data at hand and do not impact theclassifiers performance.

Figure 3.7: Summer daily measurements of river discharges from station 1 (y-axis)against station 23 (left x-axis) and station 24 (right x-axis) of Figure 3.6. The bluedotted lines are the threshold value u (the 85th percentile of station 1). The blackdots on the graphs in the top row are the values such thatmin(Xj, X1) > εu where
εu = 0.6u. The graphs in the bottom row corresponds to the same data plots buton unit Frechet scale highlighting potential asymptotic independence in the data.

Although all 31 station recordings are available, we can artificially remove onestation and try to predict its values from a given subset of other weather stations.
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In this section, we remove station 1 (downstream) and try to predict its valuesfrom only stations 23 and 24, which are indirect tributaries to the main river flow.So, this setup is complex4 for two reasons. First, station 1, as a downstream pointthat accumulates all discharges, has a much heavier tail than the two tributaries.Second, it is difficult to determine if we are in the asymptotic dependent or in-dependent case, see Figure 3.7 that displays the scatter plot between the hiddenstation (y-axis with station 1) and the two tributaries (x-axis, stations 23 and 24). Inthis graph, the threshold u is taken to be equal to the 85th quantile of X1 and wechoose ε = 0.6. Figure 3.8 summarises our findings. Removing the mass on theaxeswhen thresholding by εu implies that only 190 points remain from the originallength of 428 data points per station. This can explain why, looking at Figure 3.8,the uncertainty in the risk estimate increases when consideringRε(.) (blue boxes)instead of R0(.) (red boxes).

Figure 3.8: Estimation of Rε(g) for five different classifiers (cross-validation with
50 repetitions, 70% train and 30% test), threshold is the 0.85 quantile of H . In red(left) are the estimates when ε = 0 and in blue (right) for ε = 0.6. The length ofthe testing set is equal to 129, this leads to around 60 points such thatH > εu andnearly 20 points such that H > u.

Unlike the simulation example in Section 3.4.1, it is not clear to assess whetherour river discharges analysis of our three selected weather stations belongs tothe framework of asymptotic independence or not. Still, it is reassuring that theranking of the classifiers in Figure 3.8 appears to be insensitive to the values of
R0 or Rε. i.e. whether the data are asymptotically dependent or not. This hintsthat, among all the classifiers, the logistic regression with lasso penalty seems to

4Section 3.7.3 treats a simpler casewhere station 1 is predicted from thewhole set of remainingstations. In this case, strong dependencies among station 1 and other stations can be observed.So, the main issue is to select these stations, a problem discussed in Section 3.7.
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perform better than the four other classification methods. This ranking of clas-sifiers is specific to this particular example. No general conclusions about lassotechniques for extremes should be drawn.Besides this river example, we advocate practitioners to compute risk func-tions that can both handle the asymptotic dependent and independence cases.This also complements the recent tools used to discriminate between the twocases (see, e.g. Ahmed et al., 2022). In addition, the linear classifier could pro-vide a simple benchmark with well understood properties with respect to R0, seeProposition 3.9.

3.6 Supplementary Materials
A R package is available on GitHub that implements the empirical estimation ofthe risk function developed in this paper (https://github.com/jlegrand35/ExtremesBinaryClassifier) and can be used either to reproduce the results of theconducted classifier comparisons or to perform new comparisons using other bi-nary classifiers. The data used in the application are available in the R package
graphicalExtremes (Engelke et al., 2019).
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3.7 Supplements to Paper II
This section was originally part of the appendix of Legrand et al. (2021). We repro-duce it below and give further details.In the following, the focus is on linear classifiers. We first give its definition andbasic properties, then provide a way to find such optimal classifiers with Propo-sition 3.9. It turns out that it is sufficient to consider only the components con-tributing to the extremes. This leads to the notion of sparsity and from this we
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build a simple tool to detect relevant features. In Paper II, this methodology wasthen applied to the Danube river network, as reproduced below.Hereinafter, we return to the bold notation for the vectors of Rd, i.e.
x = (x1, . . . , xd) ∈ Rd.

3.7.1 Linear Classifiers: Definition, Basic Properties and Infer-ence
In this section, we consider a specific type of classifiers which in Paper II is referredto as linear classifiers, i.e. classifiers of the form

gθ(X;u) =

{
+1, θ⊤X > u,

−1, θ⊤X ≤ u,
θ ∈ [0,∞)d.

This is a simple binary classifier that is based on the idea that a large value alongan appropriate linear combination could produce extremes in the hidden variable
H of interest.To obtain an optimal linear classifier of gθ(X;u), i.e. some weight vector θ∗such that the classification risk R(gθ∗) gets minimal, we need to impose somejoint extremal dependence structure onX and H from (3.6).Even though some of the results can also be obtained in a similar manner ina more general framework for the conditional risk Rε (see Section 3.7.4), hence-forth, we will focus on the asymptotically dependent case where we might findsome optimal classifier with unconditional risk R(gθ∗) < 1. As discussed before,in this case, at least one component of X needs to have a similar tail behaviourasH . A natural assumption is therefore that (X, H) is jointly regularly varying on
[0,∞)d+1 with index α > 0, i.e. there exists an α-Pareto random variable P and, in-dependently of P , a random vector (Γ,Ω) ∈ [0,∞)d× [0,∞), the so-called spectral
tail vector, on the unit sphere {x ∈ [0,∞)d+1 : ∥x∥∞ = 1} such that
L
((

∥(X, H)∥∞
u

,
(X, H)

∥(X, H)∥∞

) ∣∣∣∣ ∥(X, H)∥∞ > u

)
v−→ L(P, (Γ,Ω)), as u → ∞.

Note that assuming joint regular variation, implies in particular thatH and all therelevant components of X are heavy-tailed. For example, this can be the casefor rainfall data (e.g. Le Gall et al., 2022) or river discharges (see Table 3.2). Butother environmental data sometimes do not show such behaviour, as in the caseof wind gusts (Friederichs et al., 2009), temperatures (Toulemonde et al., 2015) orsignificant wave heights (Legrand et al., 2022), which are more light-tailed or evenupper-bounded. Some precautions should therefore be taken before consider-ing a dataset, by applying for instance an univariate extreme value analysis (e.g.Embrechts et al., 2013, Chapter 6).
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Here, we additionally assume that P(∥Γ∥∞ > 0) > 0 and P(Ω > 0) > 0. In thissetup, ∥X∥∞ and H are tail equivalent in the sense that

lim
u→∞

P(∥X∥∞ > u)

P(H > u)
= lim

u→∞

P(∥X∥∞ > u | ∥(X, H)∥∞ > u)

P(H > u | ∥(X, H)∥∞ > u)

=
P(P · ∥Γ∥∞ > 1)

P(P · Ω > 1)
=

E(∥Γ∥α∞)
E(Ωα)

∈ (0,∞),

This is the minimal requirement on the link between the covariates X and theunobserved extremes of H essentially saying that at least one component of Xis tail-equivalent toH . It is important to highlight that we do not exclude the casethat Γi = 0 a.s. for some i ∈ {1, . . . , d} which means that Xi possesses a lightertail than H . This property can be read off from the quantity
ci = lim

u→∞

P(Xi > u)

P(H > u)
=

E(Γα
i )

E(Ωα)
. (3.18)

Thus, Γi = 0 a.s. if and only if ci = 0. By including this case, we therefore admit thatmost of the components of X may not contribute to the extremes of the vector
H . This feature is essential when the question of sparsity will be addressed.Under these conditions, we obtain that, for all θ ∈ [0,∞)d, the classifier gθ isan extremal classifier as
R(gθ) = lim

u→∞
P(H > u or θ⊤X > u)−1

(
P[max{θ⊤X, H} > u]− P[min{θ⊤X, H} > u]

)
=

E
(
max{θ⊤Γ,Ω}α

)
− E

(
min{θ⊤Γ,Ω}α

)
E (max{θ⊤Γ,Ω}α)

= 1−
E
(
min{θ⊤Γ,Ω}α

)
E (max{θ⊤Γ,Ω}α)

∈ [0, 1].

(3.19)
Equation (3.19) implies that the function θ 7→ R(gθ) is well-defined and con-tinuous on [0,∞)d. Its value does not depend on those components θi for which

Γi = 0 a.s., which is equivalent to ci = 0 as discussed above. Thus, in the following,we will consider this function only on the parameter set
C = {θ ∈ [0,∞)d : θi = 0 for all i s.t. ci = 0},

containing all the relevant information – here, note that, in practice, identifyingthe components i ∈ {1, . . . , d} such that ci = 0 a.s., from a given data set is anecessary step for the correct specification of the set C.From the consideration in the introduction, it can be easily seen thatR(g0) = 1– the case θ = 0 corresponds to the trivial always optimistic classifier. Further-more, denoting the set of indices j with cj > 0 by J , we can see that
R(gθ) ≥ 1− E(Ωα)

∥θ∥α∞ ·minj∈J E(Γα
j )

→ 1 (3.20)
as ∥θ∥∞ → ∞. By the continuity of θ 7→ R(gθ), we obtain that the function attainsa global minimum on the domain C.
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Proposition 3.9. Additionally to the assumptions above on the joint distribution of
(X, H) with α > 1, assume that there exists a function a(u) with a(u) → 0 as u → ∞
such that

P(u−1X ∈ A | ∥(X, H)∥∞ > u) ≤ (1 + a(u))P(PΓ ∈ A) (3.21)
for all A ⊂ [0,∞). Furthermore, let un → ∞ and nP(H > un) → ∞ such that, for
every compact subsetK ⊂ C ,

sup
θ∈K

√
nP(H > un)

∣∣∣∣∣P(gθ(X;un) ̸= Y un)

P(H > un)
−

E
(
max{θ⊤Γ,Ω}α

)
− E

(
min{θ⊤Γ,Ω}α

)
E(Ωα)

∣∣∣∣∣ = 0

(3.22)
and

sup
θ∈K

√
nP(H > un)

∣∣∣∣∣P(max{gθ(X;un), Y
un} = 1)

P(H > un)
−

E
(
max{θ⊤Γ,Ω}α

)
E(Ωα)

∣∣∣∣∣ = 0.

(3.23)
If the function θ 7→ R(gθ) has a unique minimiser θ∗ in C , then the estimator

θ̂n,un = argmin
θ∈C

R̂n(gθ(·;un)).

is consistent, i.e. θ̂n,un →p θ
∗.

Given the set C , this result provides a strategy to find the optimal θ, i.e., thebest linear classifier. Determining the set C requires the identification of the rel-evant features, i.e. the index set J such that cj > 0 if and only if j ∈ J . This isdiscussed in more detail in the following subsection.
3.7.2 Feature Selection
The notion of sparsity quickly comes into play when doing classification. This isall the more true when one is only interested in the extremes. Among the wholedata set, only a small proportion will truly contribute to the extremal behaviourof the variable of interest. Here, we develop a method to identify the informa-tive signals in terms of extremes among a large data set, assuming that (X, H)is jointly regularly varying. For a comprehensive review of existing methods onsparsity and multivariate extremes we highly recommend the work of Engelkeand Ivanovs (2021).As we have seen above, for linear classifiers, all the relevant features Xi nec-essarily satisfy ci > 0. Thus, feature selection can be based on estimation of the
ci which can be done according to the following proposition.
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Proposition 3.10. Assume that

ci = lim
u→∞

P(Xi > u)

P(H > u)

exists. If un → ∞ and nP(H > un) → ∞, then∑n
j=1 1{Xj,i > un}∑n
j=1 1{Hj > un}

→p ci.

If, additionally, √
nP(H > un)

(
P(Xi > un)

P(H > un)
− ci

)
→ 0

and
χ∗i = lim

u→∞
P(Xi > u | H > u) ∈ [0, 1]

exists, then, we have

√
nP(H > un)

(∑n
j=1 1{Xj,i > un}∑n
j=1 1{Hj > un}

− ci

)
→ N (0, ci · [1− 2χ∗i + ci]) .

The above Proposition 3.10 helps us to discriminate between informative co-ordinates and non-informative ones in terms of extremes.
3.7.3 River network
We return to the Danube river network. Contrary to what was done in Section3.5, here the data are pre-processed differently: we only subtract the minimumto each station, no re-normalisation is performed. Thus some stations have aheavier tail than others.Before applying the methodology outlined above, an a priori analysis is per-formed to check if the data are well regularly varying. From Table 3.2, we cannot reject the hypothesis that the river discharges at the stations considered areheavy-tailed. Note that we show the results only for Station 1 (the station of inter-est in this study), Stations 2, 13 and 30 (the stations that appear to contribute themost to the extremes of Station 1, see below), and Stations 23 and 24 (the stationsconsidered in Section 3.5).This section deals with a simpler case than the application in Section 3.5. Herean application could be the following: we want to know which stations shouldcontinue to be maintained to prevent extreme floods and maybe some stationsare not necessary.As before, the goal is to predict the extreme events at Station 1, denoted X1,where an extreme event is defined as an event exceeding the 85th quantile of
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Station id 1 2 13 30 23 24

Shape 0.19 0.13 0.07 0.03 0.04 0.04

Table 3.2: Estimates of the shape parameter when fitting a GPD. The thresholdwas selected using mean residual life plot and parameter stability plots (see, e.g.Coles (2001)). Estimation is performed using the R package ismev (Heffernan et al.,2018).
X1. Unlike the study of Section 3.5, we assume that the whole set of remainingstations is available. In this case, strong dependencies among Station 1 and otherstations can be observed. Therefore, the main issue is to identify and select thesestations following the procedure presented above.The stations that may not contribute to the extremes of X1 are identifiedthrough the estimation of the coefficients ci. The estimation of the set C on allthe data is presented in Table 3.3. Among the 30 stations, only three stations arerelevant: Stations 2, 13 and 30. Looking at Figure 3.6, these stations correspondto the stations closest to X1. Figure 3.9 shows the scatter plots between thesestations and Station 1, reflecting strong dependencies between the variables.
Station id 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ci 0.06 0 0 0 0 0 0 0 0 0 0 0.30 0 0 0 0

Station id 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ci 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0

Table 3.3: Empirical estimates of ĉi (as defined in Proposition 3.10) for each sta-tion. The values different from zero are highlighted in red.
Once the contributing variables have been identified, we compare the perfor-mance of several classifiers, on the one hand keeping all the data and on the otherhand keeping only the informative stations. Since there is a strong dependencebetween the data, we assume that it is sufficient here to look at the risk R0. Com-parison results are shown in Figure 3.10. The comparison is performed among thesame classes of classifier as in Section 3.5, see Table 3.1 for a summary.By definition of the linear classifier, the estimation is already done by keepingonly the informative variables, which is why the estimates are identical for thisspecific classifier. As for the other classifiers, we see some improvements whenkeeping only the informative variables: the risk estimates are slightly smaller. Thismeans that even if we remove a lot of information by going from 30 explanatoryvariables to 3, these 3 remaining stations contain all the information in terms ofextremes of Station 1. However, cautionmust be exercised here, as no theoretical
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Figure 3.9: Correlation plot betweenX1 and the stations considered to contributeto the extremes ofX1 according to Table 3.3 (ie for which ci ̸= 0). The blue dottedlines represent the threshold u defined by the 85th percentile of X1.

Figure 3.10: Estimation of R0(g) for different classifiers g (cross-validation - 70%train, 30% test - with 50 repetitions). The red distributions come from the estima-tion with all the stations, and the green distributions represent the estimationswith only the variables having ĉi ̸= 0.
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results have been given for the other classifiers.
Predictive power of the linear classifier
We provide some additional remarks on the special case of the linear classifier.Of the foregoing, only Stations 2, 13 and 30 are relevant for the estimation of theoptimal θ (see Proposition 3.9). The left-hand side of Figure 3.11 depicts the distri-bution estimates of θ̂2, θ̂13 and θ̂30. The estimation is performed on 70% (trainingset) of the data drawn 50 times at random. From Figure 3.11, X30 has less effectthan X2 and X13. Looking at the river map (Fig. 3.6), Station 30 is the furtheststation from Station 1 out of the three.Then one of the 50 estimates is retained (at random, but sensitivity test showedthat it does not impact our results). Let’s denote it θ̂ = (θ̂2, θ̂13, θ̂30). And the pre-dicted output of our linear classifier is computed through θ̂⊤Xtest. The vector
Xtest corresponds to the river discharges at Station 2, 13 and 30 from the remain-ing 30% data (that has not been used for the estimation of θ̂). In the right-handside of Figure 3.11, the predicted output θ̂⊤Xtest is plotted against the observedriver discharges at Station 1. From this, we find that the linear classifier predictsthe extremes quite well (upper right quadrant), but also, it predicts well the riverdischarges that are not extreme (i.e. outside the extreme region). This is mostlikely due to the specificity of our data, which are highly correlated.

Figure 3.11: (left) Estimates of the optimal θi of the three contributing variables
X2, X13 andX30 (see Table 3.3), with 50 replications of the optimisation procedure.(right) Predicted versus observed river discharges at Station 1. The predicted val-ues are defined as θ̂⊤X , for one estimated triplet θ̂ among the 50 estimations.The blue delimited upper region represents the region where both coordinatesare above the 0.85 quantile of X1. The red dotted line depicts the first diagonal.
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3.7.4 Possible extension to hidden regular variation, a simula-tion study
Up to now, Section 3.7 only addressed the asymptotically dependent case. How-ever, some similar results could be derived in the case of asymptotic indepen-dence.For that, we consider amodified version of the ci defined in (3.18). Let ε ∈ [0, 1)and define the following:

ci,ε = lim
u→∞

P(Xi > u | Xi > εu)

P(H > u | H > εu)
.

Then different cases arise according to the value of ε.
Case ε = 0:We get ci,0 ∈ (0,∞) if, and only if, Xi and H are tail equivalent. We get ci,0 = 0if the tail of Xi is less heavy than the tail of H . This corresponds to the previouscoefficient defined in (3.18).
Case ε > 0:If the tail function of H is regularly varying with index αH and the tail function of

Xi is regularly varying with index αi, we obtain
ci,ε = εαi−αH .

Thus, ci,ε = 0 only if Xi possesses light tails (assuming that H is heavy-tailed).The following Lemma and the inference properties of ci,ε from Proposition 3.12are still an open question, but from the simulation results shown hereinafter, weare confident that this holds true.
Lemma 3.11. Assume that the joint distribution of (g(X), H) satisfies the Ramos and
Ledford model

P[g(X) > u,H > v] = L(u, v)(Fg(u)v
−αH )−1/2η, u, v > 0,

where Fg denotes the tail distribution of ḡ(X). Then, the following holds true:

1. If

lim
u→∞

P(g(X) > u | g(X) > εu)

P(H > u | H > εu)
= 0,

we have that Rε(g) = 1 for all ε ∈ (0, 1].

2. If Rε(g) < 1 and ci,ε = 0, then, for all c > 0, we have that

Rε(g) = Rε(hi(c)),

where hi(c) = g(X) + cXi.
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The second result in Lemma 3.11 emphasises that for partially linear classifiers,the components Xi for which ci,ε = 0, do not have any effect, and can thus beremoved as in the asymptotic dependent case.Note that if we assume that the tail function ofH is regularly varyingwith index
αH , then, limu→∞ P(H > u | H > εu) = εαH . Thus, instead of estimating ci,ε, wecan equivalently estimate

c∗i,ε := εαHci,ε = lim
u→∞

P(Xi > u | Xi > εu).

Therefore, a good candidate is the following empirical estimator
ĉi,ε :=

∑n
j=1 1{Xj,i > un}∑n
j=1 1{Xj,i > εun}

, for large un.

The inference results for the estimation of the c∗i,ε, when ε > 0, are obtainedthrough the following proposition, which is the analogue of Proposition 3.10 for
ε > 0.
Proposition 3.12. Assume that

lim
u→∞

P(Xi > un | Xi > εun) ∈ [0, 1]

exists. If un → ∞ and nP(Xi > εun) → ∞ and, additionally,

√
nP(Xi > εun)

(
P(Xi > un)

P(Xi > εun)
− c∗i,ε

)
→ 0,

then, we have

√
nP(Xi > εun)

( ∑n
j=1 1{Xj,i > un}∑n
j=1 1{Xj,i > εun}

− c∗i,ε

)
→ N

(
0, c∗i,ε ·

[
1− c∗i,ε

])
.

The same simulation framework as in Section 3.4 is carried out, i.e.
X1 ∼ Pareto(3), X2 ∼ Pareto(2), X3 ∼ Exp(1), X4 ∼ Exp(2), N ∼ Pareto(2) and
H = X1 +N , where X1, . . . , X4 and N are independent.The theoretical values of the limits c∗i,ε are then given by

c∗1,ε = ε3, c∗2,ε = ε2, c∗3,ε = 0, c∗4,ε = 0.

Now to compare with the theoretical values, we generate 1000 samples with sam-ple size n and threshold u defined as a given quantile of H . Different samplesizes are considered n ∈ {5000, 1e4, 2e4, 1e5} and u is chosen such that we get
300 exceedances each time. The 95% confidence intervals are obtained using theconvergence result of Proposition 3.12.
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Truevalue
n = 1000
nx = 300
q = 70

n = 5000
nx = 300
q = 94

n = 10000
nx = 300
q = 97

n = 20000
nx = 300
q = 98.5

n = 1e5
nx = 300
q = 99.7

c∗1,ε 0.34 0.3494.8% 0.3493.7% 0.3493.7% 0.3493.6% 0.3594.2%

c∗2,ε 0.49 0.4995.8% 0.4995.0% 0.4993.8% 0.4994.3% 0.4995.0%

c∗3,ε 0 0.360% 0.160% 0.0941.7% 0.0599% 0100%

c∗4,ε 0 0.1292.8% 0.0298.6% 099.7% 0100% 0100%

Table 3.4: Empirical mean estimations of the limits c∗i,ε for different sample sizes
n and 95% confidence interval coverage percentages computed among the 1000replicates. The number of exceedances is denoted by nx and the percentile cho-sen for the threshold is given by q. The value ε is equal to 0.7.

The simulation results are presented in Table 3.4. It appears that the samplesize does not impact the estimates. We also see that X1 and X2 are detected ascontributing to the extremes ofH and that we could excludeX3 andX4 from ourclassification task but, in that case, confidence intervals appear to be difficult tofind.

3.8 Summary of Paper II
To sum up

• Paper II addressed the specific issue of comparing binary classifiersin the case of rare event prediction.
• Asymptotic dependent models: considering our first risk function
R(·) (which counts the number of mistakes), we have a benchmarkwith the naive classifiers and we can rank different classifiers.

• Asymptotic independentmodels: for regressionmodels of the form
H = f(X)+N , with tail ofN heavier than tail of f(X), any classifierwill be as good as the naive classifiers.

→ To tackle this issues, development of risk functions adapted to ex-tremal classifiers.
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3.8. Summary of Paper II

→ Flexible framework that allows to address both asymptotic depen-dence and asymptotic independence.
→ Tool to identify the explanatory variables that contribute the mostto extremal behaviour, with promising results in the case of hiddenregular variation.
̸→ Assumption of multivariate regular variation implies to work withheavy-tailed data.
̸→ Transforming the data into identical margins would, in particular,defeat the optimisation scheme of the linear classifier.
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Chapter 4
Some directions for future work
In three years, many avenues are explored, offering various topics for future re-search. Hereinafter we list some potential extensions of the work presented inthis thesis.
Extension of the simulation model to the multivariate case
Recall that in Chapter 2, we considered the stochastic representation of a standardGP vector through

Z = E + T −max(T ), (4.1)
with E a unit exponential variable and T a multivariate vector.For a bivariate vector Z = (Z1, Z2), defining ∆ = Z1 − Z2 allowed to rewritethe representation (4.1) in a simple form, which was then easy to use for non-parametric simulations:

Zi = E ±∆, given the sign of ∆.

Now consider for example that max(T ) = T1. Then the above can be writtenas follows
Z1 = E and Z2 = E −∆.

This gives hints for an extension to themultivariate case. Indeed, if we consider
Z = (Z1, . . . , Zd), d > 2, a first step would be to determine the index j suchthat max(T ) = Tj , this could be achieved through a random sampling between
{1, . . . , d}. Then defining ∆i = Tj − Ti for i ̸= j, this leads to

Zj = E and Zi = E −∆i, for i ̸= j. (4.2)
Simulating independent and identically distributed (iid) unit exponential vari-ablesE is costless. As for the bivariate case, themain point is the simulation of the

∆i. An avenue to explore is to bootstrap observations from the (d-1)-dimensional
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set of points ∆−j := (∆1, . . . ,∆j−1,∆j+1, . . . ,∆d). This could be achieved by re-sampling on the indexes: assuming that we have n iid replicates of∆−j , randomdraws with replacements in {1, . . . , n} leads tom bootstrap samples
(∆

(m)
1,k , . . . ,∆

(m)
j−1,k,∆

(m)
j+1,k, . . . ,∆

(m)
d,k ), 1 ≤ k ≤ m.

From this, we could then perform non-parametric bootstrap MGP simulationsin dimension greater than 2.Perhaps themost challenging point for our application to extremewaveheightsis the multivariate extension of the marginal regression models. Indeed, if we as-sume that instead of having only one offshore site, two or three sites are consid-ered (represented in red in left-hand side of Figure 4.1). From an application per-spective, this could certainly improve the coastal predictions as we would includemore information in the covariates. But up to now, it is unclear how to define theconditioning part as in Equation (2.2). For the coastal marginal model, a possibilitycould be of the following[
Hc − vc | H1

o , T
1
p , D

1
p, H

2
o , T

2
p , D

2
p

]
∼ EGPD,

and to consider that the scale parameter of the EGPD vary as a smooth functionof both (T 1
p , D

1
p) and (T 2

p , D
2
p) (assuming that we have two offshore grid point, site

1 with parameters (H1
o , T

1
p , D

1
p) and site 2 with (H2

o , T
2
p , D

2
p)). This certainly leavesrooms for future developments.In terms of applications of such multivariate simulation model, in addition tothe above-mentioned one, which would allow for more refined simulations, an-other interesting application would be for the recovery of historical data. A pos-sible approach is schematised in the right-hand side of Figure 4.1 and would beto consider two well documented sites such as buoys (represented by the twored dots in Figure 4.1), and to simulate data between this two measurement sites(represented by the blue dot). This idea was suggested by Jérémy Rohmer duringa visit at BRGM, and would deeply increase the understanding of past extremewave events, for which in-situ measurements are rather sparse.

Comparison of coastal extreme wave warning models
For coastal risk assessment, it is crucial to have efficient extreme sea state warn-ing systems. From a simulation methods of extreme Hs as developed in thismanuscript, one could then derive a warning (or forecast) model by looking atthe probability of the event {Y u = +1}, for a given high threshold u, where Y u isdefined as follows

Y u =

{
+1, if Hs > u,

−1, otherwise.
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Figure 4.1: Two possible applications of a multivariate simulation model: (left) Re-finement of coastal simulations; (right) Gap-filling in historical data.
In order to have a "good" warning model, one needs to ensure that the fore-cast does not produce to many false alarms or miss. In this context, the risk func-tion developed in Paper II appears to be entirely relevant. The performances ofseveral prediction models could be assess on historical/hindcast data in order toselect the most efficient in terms of extreme wave events forecast. Such futuredevelopments are definitively something worth trying.

Application to climate projections
Finally, regarding adaptation strategies for future climate conditions, it is of fun-damental importance to be able to derive information on the changes in the oc-currence of extreme wave events between current and future climates, but alsoon the variability between different climate projection models. As discussed inthe introduction of Chapter 2, such questions have been addressed on a globalscale (e.g. Aarnes et al., 2017), but local variability has been less explored.Assuming that the relation between the offshore point and the local point re-mains identical, some future extension of the presented work could then be thesimulation of extreme coastal Hs given large scale wave climate projections.This is somewhat linked to the idea of statistical downscaling, where it is as-sumed that there exists a transformation between the large scale and the localscale, and that this transformation will remain valid in the future climate. Suchmethods have been applied for instance in Bechler et al. (2015) in spatial contextto downscale extreme rainfalls, or in Towe et al. (2017) to produce future extreme
Hs from downscaled wind fields.
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Appendix A
Technical proofs of Paper II
A.1 Proofs
A.1.1 Proof of Lemma 3.4:
We can write that

P(A1 ∪B1 | Aε ∩Bε) =
P((A1 ∪B1) ∩ (Aε ∩Bε))

P(Aε ∩Bε)
,

=
P(A1 ∩Bε) + P(Aε ∩B1)− P(A1 ∩B1)

P(Aε ∩Bε)
.

In the same way, we have
P(A1△B1|Aε ∩Bε) =

P(A1 ∩Bε) + P(Aε ∩B1)− 2P(A1 ∩B1)

P(Aε ∩Bε)
.

Hence, we deduce that
R(Aε, Bε) =

P(A1△B1|Aε ∩Bε)

P(A1 ∪B1|Aε ∩Bε)
= 1−

[
P(A1 ∩Bε)

P(A1 ∩B1)
+

P(Aε ∩B1)

P(A1 ∩B1)
− 1

]−1
.

The expression given by (3.8) follows.Item (a) of the lemma is based on the following inequality
P(U | V ) ≥ P(U | W ), if the sets U , V andW satisfy U ⊂ V ⊂ W.

For item (b), note that
R(Aε, Bε) ≤ R(A′ε, Bε)

⇐⇒ (1−R(Aε, Bε))
−1 ≤ (1−R(A′ε, Bε))

−1

⇐⇒ P(A1 ∩Bε)

P(A1 ∩B1)
+

P(Aε ∩B1)

P(A1 ∩B1)
≤ P(A′1 ∩Bε)

P(A′1 ∩B1)
+

P(A′ε ∩B1)

P(A′1 ∩B1)
,

⇐⇒ P(A1 ∩Bε) + P(Aε ∩B1) ≤
P(A1 ∩B1)

P(A′1 ∩B1)
[P(A′1 ∩Bε) + P(A′ε ∩B1)].
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AsP(A1∩B1) = P(A′1∩B1) andP(A1∩Bε) = P(A′1∩Bε) andP(Aε∩B1) ≤ P(A′ε∩B1),then
R(Aε, Bε) ≤ R(A′ε, Bε).

This provides the second statement (b) since we assume that A1 = A′1 and Aε ⊆
A′ε. Item (c) is a direct consequence of (3.8). □

A.1.2 Proof of Lemma 3.6:
From Eq. (3.12), we know that we can only get R(g) < 1, only if H and g(X) aretail equivalent. Thus, this will be assumed in the following. Let w such that δ :=
limu→∞w(u)/u ∈ (0, 1), then for any positive u we can write that

P(f(X) +N > u, g(X) > u)

P(g(X) > u)
≤ P(f(X) > w(u), g(X) > u)

P(g(X) > u)

+
P(N > u− w(u), g(X) > u)

P(g(X) > u)
.

Since g(X) and N are independent, the second term reduces to P(N > u −
w(u)) which converges to 0 since u− w(u) ∼ (1− δ)u as u gets large.For the first term, we rewrite the ratio as follows

P(f(X) > w(u), g(X) > u)

P(g(X) > u)
≤ P(f(X) > w(u))

P(g(X) > u)

≤ P(f(X) > w(u))

P(N > w(u))

P(N > w(u))

P(N > u)

P(N > u)

P(g(X) > u)
.

Sincew(u) → ∞ and P(f(X) > u) = o (P(N > u)), the ratio P(f(X)>w(u))
P(N>w(u))

goes to
0 as u gets large. From the assumptionw(u) ∼ δu, P(N>w(u))

P(N>u)
behaves as a constant

when u → ∞.The only remaining term is P(N>u)
P(g(X)>u)

which converges to a constant due to tail
equivalence. So, limP(g(X) > u | H > u) = 0. □

A.1.3 Proof of Proposition 3.7:
In Lemma 3.4 we fix Aε = {g(X) > εu} and Bε = {H > εu} and A1 = {g(X) > u}and B1 = {H > u}.

P(H > u or g(X) > u | min{H, g(X)} > εu) = P(A1 ∪B1 | Aε ∩Bε),

and
P(g(X;u) ̸= Y (u) | min{H, g(X)} > εu) = P(A1△B1|Aε ∩Bε).
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The Ramos and Ledford model corresponds to the special of case of (3.9)
P[g(X) > u,H > v] = L(u, v)(u−αgv−αH )1/2η = P(Aε ∩Bε′) = cε,ε′ Pa(Aε)Pb(Bε′)

with
P(Aε) = P(g(X) > εu) = Lg(εu)ε

−αgu−αg ,

P(Bε) = P(H > εu) = LH(εu)ε
−αHu−αH

and
cε,ε′ = L(εu, εu)/L(u, u), a = αg/(2η) and b = αH/(2η).

Then, from (3.10)
R(Aε, Bε) = 1−

[
cε,1
c1,1

(P(A1|Aε))
−a +

c1,ε
c1,1

(P(B1|Bε))
−b − 1

]−1
.

Letting u gets large provides the required result. □.
A.1.4 Proof of Proposition 3.8:
As we assume thatRε(g) exists (for some ε ≥ 0), for un → ∞ such that npg,ε(un) →
∞, we obtain that

√
npg,ε(un)

[ ∑n
i=1 1{g(Xi,un )̸=Y

(un)
i ,Hi>εun,g(Xi;εun)=1}
npg,ε(un)∑n

i=1 1{max{g(Xi,un),Y
(un)
i }=1,Hi>εun,g(Xi;εun)=1}

npg,ε(un)


−

(
P(g(X,un )̸=Y (un),H>εun,g(X;εun)=1)

pg,ε(un)

1

)]
n→∞−→ N

((
0
0

)
,

(
Rε(g) Rε(g)
Rε(g) 1

))
Provided that the bias is negligible, i.e.
lim
n→∞

√
npg,ε(un)

(
P(g(X, un) ̸= Y (un), H > εun, g(X; εun) = 1)

pg,ε(un)
−Rε(g)

)
= 0,

the Delta method yields√
npg,ε(un)

(
R̂n,ε(g)−Rε(g)

)
n→∞−→ N (0, Rε(g)(1−Rε(g))) .

□
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A.2 Proofs of the appendix
A.2.1 Proof of Proposition 3.9
The proof is based on the following lemma which is proven in Subsection A.2.2.
Lemma A.1. Under the assumptions from Proposition 3.9, for every compact subset
K ⊂ C , the sequences of processes {An(θ), θ ∈ K} and {Bn(θ), θ ∈ K} defined by

An(θ) =

√
n

P(H > un)

(
1

n

n∑
i=1

1
{
{θ⊤Xi > un}△{Hi > un}

}
− P(gθ(X;un) ̸= Y (un))

)

Bn(θ) =

√
n

P(H > un)

(
1

n

n∑
i=1

1
{
{θ⊤Xi > un} ∪ {Hi > un}

}
− P(max{gθ(X;un), Y

(un)} = 1)

)
converge to centered Gaussian processes {A(θ), θ ∈ K} and {B(θ), θ ∈ K}, respec-
tively, weakly in ℓ∞(K).

If the function θ 7→ R(gθ) has a uniqueminimizer θ∗, then, necessarily,R(gθ∗) <
1.Now, similarly to the notation above, let J denote the set of indices j with cj > 0,and let us consider θ ∈ C such that ∥θ∥∞ > k0 for some constant k0 > 0. Then,
R̂n(gθ) = 1−

∑n
i=1 1{min(θ⊤Xi, Hi} > un)}∑n
i=1 1{max(θ⊤Xi, Hi} > un)}

≥ 1−
∑n

i=1 1{Hi > un}
minj∈J

∑n
i=1 1{k0Xij > un}

n→∞−→ p 1−max
j∈J

E(Ωα)

kα
0 E(Γα

j )

where the right-hand side goes to 1 as k0 → ∞. Thus, as R̂n(gθ∗) →p R(gθ∗) < 1,we obtain that, for sufficiently large k0 ≫ ∥θ∗∥, with probability going to one,
R̂n(gθ∗) ≤ min

θ∈C\[0,k0]d
R̂n(gθ)

and, consequently,
argminθ∈CR̂n(gθ) = argminθ∈C∩[0,k0]dR̂n(gθ).

Now, we note that, by Lemma A.1, the bias conditions (3.22) and (3.23) and thefunctional delta method, R̂n(gθ) converges in probability to R(gθ) uniformly onevery compact subset of C. In particular,
sup

θ∈C∩[0,K]d

∣∣∣R̂n(gθ)−R(gθ)
∣∣∣→p 0.

Thus,
argminθ∈C∩[0,K]dR̂n(gθ) →p argminθ∈C∩[0,K]dR(gθ) = θ∗.

□
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A.2.2 Proof of Lemma A.1
We will proof the lemma by applying the Central Limit Theorem 2.11.9 in Van derVaart and Wellner (1996). To this end, we define the function spacesA = {aθ, θ ∈
K} and B = {bθ, θ ∈ K} where

aθ : (0,∞)d × (0,∞) → {0, 1}, aθ(x, h) = 1
{
{θ⊤x > 1}△{h > 1}

}
bθ : (0,∞)d × (0,∞) → {0, 1}, bθ(x, h) = 1

{
{θ⊤x > 1} ∪ {h > 1}

}
.

Then, with
Znl(f) =

1√
nP(H > un)

f(u−1n Xl, u
−1
n Hl), f ∈ A ∪ B,

for l = 1, . . . , n, we have that
{An(θ), θ ∈ K} =

{∑n

l=1
(Znl(f)− EZnl(f)), f ∈ A

}
and

{Bn(θ), θ ∈ K} =
{∑n

l=1
(Znl(f)− EZnl(f)), f ∈ B

}
.

Now, we have that
max {∥Znl∥A, ∥Znl∥B} = sup

f∈A∪B
|Znl(f)| ≤

1√
nP(H > un)

a.s.
for all l = 1, . . . , n and n ∈ N.Consequently, we check the Lindeberg condition: For k ∈ N, we have
lim
n→∞

n∑
l=1

E
(
∥Znl∥kA∪B1{∥Znl∥A∪B > η}

)
≤ lim

n→∞

n√
nP(H > un)

k
1{nP(H > un) < 1/η2} = 0

as nP(H > un) → ∞ by definition. For k = 2, we obtain a Lindeberg type condi-tion that ensures convergence of An and Bn to A and B, respectively, in terms offinite-dimensional distributions. For k = 1, we obtain the Lindeberg type condi-tion of Theorem 2.11.9 in Van der Vaart and Wellner (1996).
It remains to check the equi-continuity condition. In the following, to simplifynotation, we assume that C = [0,∞)d. Then, for θ(1), θ(2) ∈ [a, b] ⊂ K ⊂ C , wehave that

|aθ(1)(u−1n X, u−1n H)− aθ(2)(u
−1
n X, u−1n H)| ∈ {0, 1}

and
|bθ(1)(u−1n X, u−1n H)− bθ(2)(u

−1
n X, u−1n H)| ∈ {0, 1}
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and the probability that any of those two expressions is equal to one is boundedby the probability
P(1{a⊤X > un} ≠ 1{b⊤X > un}) = P(a⊤X ≤ un, b

⊤X > un)

= P
(
∥(X,H)∥ >

un

∥K∥d

)
P
(
a⊤X ≤ un, b

⊤X > un

∣∣∣ ∥(X,H)∥ >
un

∥K∥d

)
whereweuse that b⊤X > un implies that ∥X∥ > un/(∥K∥d)with ∥K∥ = supx∈K ∥x∥∞.Making use of the fact that P (∥(X,H)∥ > un/(∥K∥d)) ≤ C0(∥K∥d)α P(H > un) forsome constant C0 > 0 and the bound given by Equation (3.21), we obtain that

P(1{a⊤X > un} ≠ 1{b⊤X > un})
≤ C0(∥K∥d)α P(H > un)[1 + a(un/(∥K∥d))]P

(
Pa⊤Γ ≤ ∥K∥d, Pb⊤Γ > ∥K∥d

)
= C0(∥K∥d)α P(H > un)[1 + a(un/(∥K∥d))]EΓ

(
P
(
P ∈

[
∥K∥d
b⊤Γ

,
∥K∥d
a⊤Γ

]))
≤ C0 P(H > un)[1 + a(un/(∥K∥d))]E

(
(b⊤Γ)α − (a⊤Γ)α

)
≤ 2C0 P(H > un)∥a− b∥

provided that un is sufficiently large as a(un/(∥K∥d)) → 0.Consequently,
sup

∥f−g∥<δ

n∑
l=1

E
[
(Znl(f)− Znl(g))

2
]
= 2C0δ,

which tends to 0 as δ → 0. From this inequality, it can also be seen that any par-tition of K into hypercubes with length ε2/(2C0) leads to a valid ε-bracketing, i.e.the number Nε ∝ 1/ε2d grows with a power rate and, so,√log(Nε) is integrable.Thus, by Theorem 2.11.9, the processes An and Bn converge to Gaussian pro-cesses A and B, weakly in ℓ∞(K).
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