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Titre: Simulation et évaluation de modéles d'extrémes multivariés pour des données environnementales
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Résumé: L'estimation précise des probabilités
d'occurrence des événements extrémes environnemen-
taux est une préoccupation majeure dans |'évaluation des
risques. Pour I'ingénierie cotiére par exemple, le dimen-
sionnement de structures implantées sur ou a proximité
des cotes doit étre tel qu'elles résistent aux événements
les plus sévéres qu'elles puissent rencontrer au cours de
leur vie. Cette thése porte sur la simulation d'événements
extrémes multivariés, motivée par des applications aux
hauteurs significatives de vagues, et sur |'évaluation de
modéles de prédiction d'occurrence d'événements ex-
trémes.

Dans la premiére partie du manuscrit, nous proposons
et étudions un simulateur stochastique qui génére con-
jointement, en fonction de certaines conditions d’'état de
mer au large, des extrémes de hauteur significative de
vagues (Hj) au large et a la cote. Pour cela, nous nous
appuyons sur |'approche par dépassements de seuils bi-
variés et nous développons un algorithme de simulation
non-paramétrique de lois de Pareto généralisées bivar-
iées. A partir de ce simulateur d'événements cooccur-
rents, nous dérivons un modéle de simulation condition-

nel. Les deux algorithmes de simulation sont mis en oeu-
vre sur des expériences numériques et appliqués aux ex-
trémes de Hg prés des cotes bretonnes francaises. Un
autre développement est traité quant a la modélisation
des lois marginales des H;. Afin de prendre en compte
leur non-stationnaritée, nous adaptons une extension de
la loi de Pareto généralisée, en considérant |'effet de la
période et de la direction pic sur ses paramétres.

La deuxiéme partie de cette thése apporte un
développement plus théorique. Pour évaluer différents
modéles de prédiction d'extrémes, nous étudions le cas
spécifique des classifieurs binaires, qui constituent la
forme la plus simple de prévision et de processus déci-
sionnel : un événement extréme s'est produit ou ne s'est
pas produit. Des fonctions de risque adaptées a la classi-
fication binaire d'événements extrémes sont développées,
ce qui nous permet de répondre a notre deuxiéme ques-
tion. Leurs propriétés sont établies dans le cadre de la
variation réguliére multivariée et de la variation réguliére
cachée, permettant de considérer des formes plus fines
d'indépendance asymptotique. Ces développements sont
ensuite appliqués aux débits de riviére extrémes.

Title: Simulation and assessment of multivariate extreme models for environmental data
Keywords: Multivariate extremes; Simulation of joint extremes; Multivariate and hidden regular variation; Evalua-
tion of extreme classifiers; Significant wave height; River discharges

Abstract: Accurate estimation of the occurrence proba-
bilities of extreme environmental events is a major issue
for risk assessment. For example, in coastal engineering,
the design of structures installed at or near the coasts
must be such that they can withstand the most severe
events they may encounter in their lifetime. This thesis
focuses on the simulation of multivariate extremes, moti-
vated by applications to significant wave height, and on
the evaluation of models predicting the occurrences of
extreme events.

In the first part of the manuscript, we propose and
study a stochastic simulator that, given offshore condi-
tions, produces jointly offshore and coastal extreme sig-
nificant wave heights (H;). We rely on bivariate Peaks
over Threshold and develop a non-parametric simula-
tion scheme of bivariate generalised Pareto distributions.
From such joint simulator, we derive a conditional sim-
ulation model. Both simulation algorithms are applied

to numerical experiments and to extreme H, near the
French Brittany coast. A further development is ad-
dressed regarding the marginal modelling of H,. To take
into account non-stationarities, we adapt the extended
generalised Pareto model, letting the marginal parame-
ters vary with the peak period and the peak direction.

The second part of this thesis provides a more the-
oretical development. To evaluate different prediction
models for extremes, we study the specific case of binary
classifiers, which are the simplest type of forecasting and
decision-making situation: an extreme event did or did
not occur. Risk functions adapted to binary classifiers
of extreme events are developed, answering our second
question. Their properties are derived under the frame-
work of multivariate regular variation and hidden regular
variation, allowing to handle finer types of asymptotic in-
dependence. This framework is applied to extreme river
discharges.
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Résumé en Francais

Les zones cdtieres sont fréquemment soumises a des événements maritimes ex-
trémes. Ces événements sont, par définition, ceux ayant le plus d'impact sur les
populations ou les activités économiques. En France, I'exemple le plus drama-
tique fUt la tempéte Xynthia qui s'est abattue en février 2010 sur la facade atlan-
tique, engendrant un nombre élevé de victimes et de dommages matériels (Gen-
ovese and Przyluski, 2013). De part sa dimension catastrophique, cet événement
est tres certainement la tempéte maritime qui a le plus marqué les mémoires.

Chaque année, plusieurs tempétes touchent le littoral francais, fort heureuse-
ment sans avoir de conséquences humaines aussi dramatiques que la tempéte
Xynthia, mais qui ont cependant de nombreux impacts que ce soit sur la fiabil-
ité des structures installées en mer ou sur les cbtes, ou encore sur I'érosion des
littoraux.

Les hauteurs de vagues extrémes sont une des caractéristiques de ces tem-
pétes maritimes. Afin de déterminer les potentiels impacts des phénomenes mar-
itimes extrémes, il est donc crucial de pouvoir caractériser et prédire les vagues les
plus extrémes pouvant survenir prés des littoraux. Dans ce contexte, les travaux
présentés dans ce manuscrit visent a répondre aux deux questions suivantes :

« Comment simuler de tels événements extrémes ?

« Comment comparer différents modéles de simulation, ou de prédiction,
d’événements extrémes ?

Une premiére partie des travaux porte sur la modélisation des extrémes de
la hauteur significative des vagues, notée H,. Cette quantité permet de mesurer
I'énergie des vagues et donc leur sévérité. La est traitée en
considérant les conditions d'états de mer au large pouvant générer des hauteurs
de vagues extrémes pres des cotes.

Une fois le modéle de simulation construit, une question naturelle est d'évaluer
ses performances en termes de prédiction d’extrémes. La seconde partie des
travaux de cette these vise a répondre a cette , en considérant
le cas particulier des classifieurs binaires, qui peuvent étre vus comme des en-
codeurs d'événements extrémes (un extréme a eu lieu ou n'a pas eu lieu).

Un résumé de ces différents travaux est donné ci-dessous.



Résumé en Francais

Simulation jointe de H; a la c6te et au large

Pour répondre a la , nous considérons deux points spécifiques
un point au large (représenté en rouge sur la Figure 1) et un point a la cbte (en
vert sur la Figure 1). Nous souhaitons modéliser conjointement les extrémes de
hauteur significative de vagues en ces deux points.

49:

IS
co

Longitude [°]
B~
~

467

A

T4 3 T2
Latitude [°]

Figure 1: Carte représentant le point au large (en rouge) et le point prés des cotes
(point vert).

Afin de modéliser simultanément les H, au large et a la cOte, I'outil adéquat
est la théorie des extrémes multivariés, qui permet de modéliser la structure de
dépendance entre les valeurs les plus extrémes d'un vecteur aléatoire.

Dans le cadre univarié, un extréme peut étre défini comme un événement
dépassant un certain seuil, fixé au préalable (approche par dépassements de
seuil). Dans ce contexte, pour un seuil u suffisamment grand, les dépassements
de seuils, définis par [X —u | X > u] ou X est une variable aléatoire réelle, peu-
vent étre approximés par une loi de Pareto généralisée, notée GPD (Coles, 2001).
Cette caractérisation a été ensuite étendue au cadre multivarié. Nous suivons
ici la définition développée par Rootzén and Tajvidi (2006), en se restreignant au
cadre bivarié (correspondant a notre application) : si 'on considére un vecteur
X = (X1, X,) dans R?, alors les dépassements de seuils bivariés

(X —u| X £,

peuvent étre approximés par une GPD bivariée, ou X « w signifie que X; > u;
ou Xy > uy, Si u = (u1,uz) € R% Une illustration de ces dépassements de seuils
est présentée sur la Figure 2 avec les données de H, au large et a la cOte.
Afin de construire de tels vecteurs GPD, Rootzén et al. (2018a) ont établi la
représentation suivante
Z =FE+T —max(T), (1)

8
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Figure 2: H, a la c6te en fonction des H, au large, la zone hachurée rouge corre-
spond aux dépassements bivariés des hauteurs significatives de vagues.

ou T est un vecteur bivarié et E une variable exponentielle, indépendante de T'.
Le vecteur Z ainsi défini suit alors une loi GPD standard.

A partir de la représentation (1), nous développons un générateur stochastique
permettant de simuler conjointement des H, extrémes au large et a la cbte, et cela
en fonction de certaines conditions au large, qui sont notamment des H, au large
modérément élevées.

Pour cela, un algorithme de simulation non-paramétrique de vecteurs GPD est
présenté. Cet algorithme s'appuie sur la ré-écriture suivante de I'Equation (1) :

Z1 - E + A]IA<O,

(2)
ZQ - E - A1A207

ouA =27, — 7y =Ty — Ty et 1. correspond a la fonction indicatrice. Le point
clef de I'algorithme est l'utilisation d'un bootstrap non-parameétrique pour simuler
des valeurs de A. Les performances de l'algorithme sont illustrées sur plusieurs
simulations numériques.

Avant d'appliquer ce générateur stochastique de vecteurs GPD aux données
de H,, I'Equation (1) requiert que les variables soient standardisées a la méme
échelle. Pour cela, les distributions marginales des H; au large et a la c6te sont
modélisées par une EGPD (Naveau et al., 2016), qui permet d'éviter la sélection
parfois difficile du seuil « de la GPD. L'EGPD autorise la modélisation de toute la
plage de données et pas uniquement la queue de distribution. Cela nous permet
notamment de modéliser comment des H, au large modérément élevées peuvent
produire des H, extrémes a la cote.

Une spécificité des H, est leur caractére non-stationnaire. En effet, Jonathan
and Ewans (2013) ont montré que la modélisation des extrémes de hauteur signi-
ficative de vagues nécessite de prendre en compte I'effet de certaines covariables,

9



Résumé en Francais

telles que la direction des vagues ou la saisonnalité. Dans notre étude, nous con-
sidérons l'effet de la période pic (notée T,) et de la direction pic (notée D,) sur
la relation entre les H, au large et celles a la c6te. Tout comme la hauteur signi-
ficative de vagues, ces deux variables contribuent a caractériser un état de mer.
Elles correspondent a la période et la direction de propagation du maximum - ou
"pic" - d'énergie des vagues. La dépendance en T}, et D, des modeles sur les lois
marginales est portée, dans les deux cas, par le parametre d'échelle de 'EGPD a
I'aide de splines de lissage (Le Carrer, 2022).

Enfin, un second algorithme est développé, permettant de simuler des H,
a la cote conditionnellement aux H, au large. Ce second générateur peut étre
vu comme une méthode de dowscaling statistique des H, au large (considérées
comme des données provenant d'un modele global de vagues) vers les H, a la
cOte (issues d'un modele local).

Les deux algorithmes de simulation sont ensuite validés sur des expériences
numériques et appliqués aux extrémes de H, prés des cbtes bretonnes francaises.

Evaluation et comparaison de classifieurs d'événements extrémes

Pour répondre a la , hous étudions le cas particulier des clas-
sifieurs binaires. Pour cela, nous considérons que I'on dispose d'une variable bi-
naireY € {—1,+1} qui encode l'occurrence d’'un événement extréme :

+1, si H > u,
-1, sinon,

Y =Y® =

ou H € [0, 00) est une certaine variable aléatoire (par exemple un débit de riviere)
et u > 0 un seuil critique élevé.

A partir d'un ensemble d’'observations multivariées X € [0, 00)% nous cher-
chons a déterminer, parmi différents classifieurs binaires g(X;u) € {—1,+1} de
ces observations, le meilleur en terme de prédictions d'occurrence d'événements
extrémes, i.e. correspondanta Y = 41, Pour fixer les idées, on peut considérer
que les observations X représentent des débits de riviere en différentes stations
de mesure (points rouges sur la carte 3), et que Y™ décrit 'occurrence d’'un débit
de riviére extréme en une station différente de X (triangle jaune sur la carte 3).

Afin de comparer différents classifieurs, nous définissons la fonction de risque
suivante

P(g(X;u) #Y™)
PY® =1oug(X;u)=1)

R™(g) = € [0,1].

Si 'on regarde la Figure 4 représentant des prédictions binaires obtenues via
un arbre de décision, cette fonction de risque revient a compter le nombre moyen
de points se trouvant dans les zones jaune et rouge, pondéré par la probabilité
d'étre dans les zones jaune, verte ou rouge.

10
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latitude
48.5 49.0

48.0

47.5

longitude

Figure 3: Carte du bassin versant du Danube, montrant les 31 stations de jaugeage
le long du Danube et de ses affluents.

Comme nous considérons les occurrences d'événements extrémes, en pra-
tique, le seuil critique u est trés grand et il y a trées peu de points dans
la zone verte. Nous définissons alors le risque extréme d'un classifieur par
R(g) = lim,_,. R™(g). Et nous considérons que pour deux classifieurs binaires
g1 et go, Si R(g1) < R(g2), alors g; est un meilleur classifieur en terme de prédic-
tions d'occurrence d'événements extrémes que gs.

g(X;u)

Figure 4: Exemple de prédictions binaires obtenues avec un arbre de décision,
contre les observations H. La ligne horizontale bleue représente le seuil critique
u, la ligne verticale sépare les deux classes prédites —1 et +1.

Un second développement est porté sur le comportement de dépendance
asymptotique entre la variable d’intérét H et les classifieurs binaires. Pour cela,
nous considérons des classifieurs de la forme
+1, Sig(X) > u,

X;u) =
gl ) -1, sinon,

"
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pour une certaine fonction g : RY — (0, co). Dans ce cas-1a, nous montrons que la
mesure de risque extréme R(g) telle que définie précédemment ne permet pas
de discriminer des classifieurs dans le cas ou g(X) et H sont asymptotiquement
indépendants.

Pour contourner ce probléme, nous définissons une seconde fonction de
risque, adaptée aux cas de l'indépendance asymptotique, en considérant le con-
ditionnement suivant pour ¢ € [0,1)

R.(g) = lim Plg(X;u) #Y™ |V g(Xzew) =1)
u=oo P(Y(W =1 o0ou g(X;u) =1|YE =g(X;eu) =1)

Nous établissons alors un estimateur empirique de R.(g), dont les propriétés
asymptotiques sont dérivées dans le cadre de la variation réguliere multivariée
et de la variation réguliere cachée, a I'aide principalement du modéle de Ramos
and Ledford (2009), dont une adaptation est la suivante

PG(X) > u, H > v] = L(u,v)(u “v=1)Y/2n,

oun € (0,1] indique le vitesse de décroissance de la queue bivariée, L(-,-) estune
fonction a variation lente et a, o, > 0 sont les indices de queue respectifs de
etg(X).

Cette seconde fonction de risque est appliquée a I'analyse des débits extrémes
de riviere dans le bassin versant du Danube. L'application compare différents al-
gorithmes de prédiction (classifieur linéaire, régression logistique, arbres de dé-
cision,...) et teste leur capacité a prédire les débits de riviere extrémes en une
station donnée a partir des observations en d’autres stations (voir Figure 3).

12
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Introduction

Motivations

Coastal areas are frequently subject to extreme maritime events. These events
are, by definition, those that have the greatest impact on populations or economic
activities. In France, the most dramatic example was the Xynthia storm which hit
the Atlantic coast in February 2010, causing a high number of fatalities and mate-
rial damages (Genovese and Przyluski, 2013). Due to its catastrophic dimension,
this event is undoubtedly the maritime storm that has left the greatest mark on
people’s memories.

Every year, numerous storms hit the French coastline, fortunately without hav-
ing such dramatic human consequences as the Xynthia storm, but which never-
theless have multiple impacts, whether on the reliability of structures installed at
sea or on the coasts, or on coastal erosion.

Extreme wave heights are one of the characteristics of these maritime storms.
In order to determine the potential impacts of extreme maritime events, it is
therefore crucial to be able to characterise and predict the most extreme waves
that can occur near the coast. In this context, the work presented in this manuscript
aims to answer the following questions:

* How to simulate such extreme events?

* How to compare different simulation, or prediction, models of extreme
events?

The first part of the work concerns the modelling of extreme significant wave
heights, denoted H,. This quantity measures the energy of the waves and, con-
sequently, their severity. The is addressed by considering the
offshore sea state conditions that can generate extreme wave heights near the
coast.

Once the simulation model is built, a natural question is to evaluate its per-
formance in terms of prediction of extremes. The second part of the work of this
thesis aims at answering this , by considering the particular case
of binary classifiers, which can be seen as extreme event encoders (an extreme
has or has not occurred).
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Introduction

Outline of the thesis

The outline of this manuscript is as follows. In Chapter 1, the main results of ex-
treme value theory (EVT) are discussed. Since this theory entails many concepts
and questions, a focus is made on the key elements of univariate and multivariate
EVT, that are useful for the rest of this thesis.

The main goal of Chapter 2 is to answer the . For that, we pro-
pose and study a stochastic simulator that, given offshore conditions, produces
jointly offshore and coastal extreme significant wave heights. We rely on bivariate
Peaks over Threshold (Rootzén and Tajvidi, 2006) and develop a non-parametric
simulation scheme of bivariate GPD. To take into account non-stationarities, we
also adapt the extended generalised Pareto model (Naveau et al., 2016), letting the
parameters vary with specific sea state parameters.

Chapter 3 addresses the . We study the specific case of bi-
nary classifiers, which are the simplest type of forecasting and decision-making
situation: an extreme event did or did not occur. Such classifier tailored for ex-
tremes will be called an extremal classifier and risk functions that answer our ini-
tial question will be developed. Their properties will be derived under the frame-
work of multivariate regular variation and hidden regular variation, allowing to
handle finer types of asymptotic independence.

All the codes used in this manuscript are produced with R (R Core Team, 2022).
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Chapter 1

Elements of extreme value theory

Overview of Chapter 1

In this Chapter, the main results of extreme value theory (EVT) are dis-
cussed. Since this theory entails many concepts and questions, a focus is
made on the key elements that are useful for the rest of this thesis. The
proofs are omitted and can be found in many great reference books such
as Coles (2001), Beirlant et al. (2004) or de Haan and Ferreira (2007). The
outline of the present chapter is as follows.

In Section 1.1, we give the foundations of univariate EVT. Starting from
its key result that the generalised extreme value distributions are the only
possible limits that can be obtained for the maximum of a random sam-
ple, under a suitable renormalisation, we introduce two modelling ap-
proaches for extremes: block maxima and peaks over thresholds. Then,
a brief note is made on regular variation which is a powerful tool in EVT.

Section 1.2 is devoted to multivariate EVT. A focus is made on bivari-
ate extremes, this enables us to avoid complex notations. Similarly to the
univariate case, the bivariate extreme value distributions are introduced
as the limit of component-wise maxima. Characterisations of this family
are given with its spectral representation. Bivariate peaks over thresh-
olds models are discussed, following the representation of Rootzén and
Tajvidi (2006). Then a discussion is made on the dependence structure
of bivariate extreme value distributions and we show that extreme value
models fail for asymptotically independent variables. Therefore, the last
section addresses this issue by looking at other types of models apart
from the class of extreme value distributions.
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

This chapter was written with the help of the above-mentioned textbooks.
Other references that have proved very valuable include Fougeres (2004), Reiss
and Thomas (2007) and the recent review of Davison and Huser (2015) which con-
tains helpful animations that illustrate some of the following concepts.

In this chapter, we do not address in details the question of statistical inference
methods. A comprehensive account can be found in Beirlant et al. (2004) or Dey
and Yan (2016) among others.

1.1 Univariate extremes

As mentioned in the introduction of this dissertation, univariate extreme value
theory (EVT) provides a solid theoretical basis and framework for studying the
largest values of a sample. In this context different modelling methods coexist:
block maxima, r largest order statistics, peaks over threshold and point process. In
the following, we focus on the maxima and the threshold exceedances of random
variables, see, e.g. Coles (2001) or Dey and Yan (2016) for details on the other
approaches.

1.1.1 Possible limits of block maxima

The strength of EVT began in 1928 with the Fisher and Tippett (1928) Theorem (and
later with Gnedenko (1943)). The idea was that if we consider a sequence of inde-
pendent and identically distributed random variables X3, ..., X,, with common
cumulative distribution function F', then there are only three possible limiting dis-
tributions for the maximum M,, := max{Xj,..., X, } after proper renormalisa-
tion. These three families are known as GEV (Generalised Extreme Value distribu-
tions).

Theorem 1.1 (Fisher and Tippett (1928); Gnedenko (1943)). If there exists sequences
(a, > 0) and (b,) such that

lim P[(M,, — b,)/a, < z] = G(z), (1.1)

n—oo

where G is a non-degenerate distribution function. Then G belongs to the GEV family
i.e. is of the form:

B e I B e s

Ge(x) =
exp —exp[(xgu)}} if¢E =012 €eR,

for parameters 1. € R (location), o > 0 (scale) and £ € R (shape).
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1.1. Univariate extremes

In EVT, an importantissue concerns the shape parameter &, which governs the
behaviour of the upper-tail distribution (see Figure 1.1):

« If € > 0, the upper end-point of G¢ is infinite and the distribution is heavy-
tailed, i.e. the tail of the distribution decreases polynomially (Fréchet family).

« If ¢ = 0, the upper end-point of G¢ is also infinite but the distribution is
rather light-tailed, i.e. the tail decreases exponentially (Gumbel family).

* If £ < 0, the upper end-point of G is finite, the distribution tail is bounded
(Weibull family). Furthermore, the upper end-point x can be linked to the
parameters of the GEV through xp = u — o /€.

0.4

=== Fréchet
---- Gumbel
Weibull

0.3

Density
0.2

0.1

0.0

Figure 1.1: Densities of the three generalised extreme value distributions. For the
Fréchet distribution ¢ = 0.5 and for the Weibull distribution £ = —0.5. The shape
parameter o is equal to 1 and the location parameter p is equal to 0.

If equation (1.1) is satisfied then F' (or X with distribution function F') is said to
be in the domain of attraction of the GEV distribution G, often denoted
F e D(Gg)

Example 1.2. For example, the Uniform distribution is in the Weibull domain of at-
traction, with ¢ = —1. Indeed, let X; ~ U(0,1), setting a, = n~' and b, = 1 we
have:

P[(M,—1)/n ' <z]|=F'(1+n"'2)=(1+n"2)" — exp(z).

Note that the Weibull family and the Fréchet family can be linked through

X e D(G§<0) sY = (QZF - X)il S D(G§>0), (1.2)
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

where Ge. (resp. Geso) is the Weibull (resp. Fréchet) extreme value distribution
and zr denotes the upper end-point of the distribution function F' of X (see Beir-
lant et al., 2004). This correspondence is one of the reason why the EVT literature
often focuses on the heavy-tail case. It is also justified from an application per-
spective. Indeed, there is an historical tradition between hydrology and EVT, and
it is widely agreed that the distributions of hydrologic variables are heavy-tailed
(e.g. Katz et al., 2002).

From a statistical point of view, however, Equation (1.2) is of no use since, in
general, no prior information is available on the sign of &.

A convenientrelated concept to the extreme value distributions is max-stability.
A distribution function F'is max-stable if, for every n € N,

F*(by + anx) = F(), (1.3)

for a suitable choice of constants b,, and a,, > 0. And it can be shown that the
classes of generalised extreme value distributions and max-stable distributions
coincide (see, for example, Beirlant et al. (2004)).

A classification of the standard distributions according to their domain of at-
traction, with their respective normalising constants, can be found for example in
Embrechts et al. (2013).

In practice, the normalising constants a,, and b,, are unknown and the maxima
are modelled directly using the following approximation for a large enough block
sizen

P(M, <z)~G|(x —b,)/a,) = G*(z),

where G* also belongs to the GEV family and differs from G only in the scale and
location parameters.

The max-stability property (1.3) implies in particular that if block maxima with
fixed block size n are well approximated by a GEV distribution G, then block max-
ima over a larger block size should also be well approximated by the GEV G, up to
a change of scale and location. Indeed, consider m = an > n, a € N, then

P(My, < x) = F™(z) = [F"(2)]" = [P(My, < )]

And from this simple equation, if F' € D(G), using the max-stability property (1.3),
one can write

P(M,, <) ~ {G[(x — bn)/an]}" = G[(x = ban)/@an] -

From Theorem 1.1, and the preceding remark, one can derive directly the first
approach for modelling extreme events which is the so-called block maxima ap-
proach (see Figure 1.4). For that, the data will be divided into blocks of equal sizes
(typically blocks of one year or one month), we then compute the maxima for each
block and we can then fit a GEV distribution to the set of block maxima. Note that
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1.1. Univariate extremes

the size of the block implies a bias-variance trade-off: if the block size is too small,
the approximation from the limit in Theorem 1.1 will be bad inducing higher bias;
if the block size is too big, we will have too few datapoints, leading to higher vari-
ance.

1.1.2 Peaks over thresholds approach

One limitation of the block maxima approach is if many extremes occur in the
same block, only one event will be kept, which may lead to a significant loss of
data. The second approach, named peaks over thresholds, is an alternative where
instead of considering maxima per block, we will look at all events, or peaks, above
a given - usually high - threshold. This approach relies on the following theorem
where, with a similar emphasis, it states that the only possible limiting distribu-
tions of the threshold excesses is the generalised Pareto family (GP).

Theorem 1.3 (Balkema and de Haan (1974); Pickands (1975)). For every £ € R, X
is in the domain of attraction of a GEV distribution G¢ if, and only if, the distribution
function of the excesses X — u, conditionally on X > u, converges as follows

lim  sup |[P(X —u<2|X>u)— Hesw(z) =0, (1.4)
U=TF 0<z<Tp—u

for some positive function 6, where xr is the upper end-point of F' and H¢ 5, Is the
generalised Pareto distribution function and defined as

He oy (z) =1 — (1 + /5 (u)) /¢

If Theorem 1.3 holds true, then the shape parameter ¢ is the same for the GEV
distribution G, and the GP distribution H¢ 5y, and &(u) = o + &(u — ).

The different behaviours of the tail distribution given the shape parameter &
are the same as for the GEV family (see Figure 1.2), where for ¢ = 0, taking the limit
& — 0in (1.4), we have

Hosy(x) =1 —exp(—x/5(u)).

Similarly to the notion of max-stability, regarding peak over thresholds a useful
property is the threshold stability (e.g. Falk et al., 2010). A distribution F'is threshold
stable (sometimes called POT-stable) if, for every u € [0, xr], with z the upper-end
point of I,

FU(b, + a,z) = F(x), (1.5)

for a suitable choice of constants b, and a, > 0. FI“ denotes the distribution of
exceedances above the threshold v and is defined by

F[”](x) = T > u.
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

1.0

-~ Fréchet
---- Gumbel
—— Weibull

Density
0.6 0.8

0.4

0.2

0.0

Figure 1.2: Densities of the GP distribution for different values of the shape pa-
rameter . For the Fréchet family ¢ = 0.5 and for the Weibull family ¢ = —0.5. The
scale parameter g is equal to 1.

Note that if X has distribution function F', then the threshold exceedances
X —u | X > u have distribution function F";

P(X —u<z|X>u)=F+u).

The following proposition shows that the class of threshold stable distributions
coincides with the class of GP distributions (see, e.g. Falk et al. (2010)).

Proposition 1.4. Let F' be a distribution function with upper-end point x .
1. If there exists functions a(u) > 0 and b(u) such that

lim F(b(u) + a(u)z) = L(x), (1.6)

U—Tp

where L is a non-degenerate distribution function, then L is threshold stable.
2. Conversely, if L is a threshold stable distribution, then L satisfies (1.6).

If, in addition to being threshold stable, L is continuous, then L is a GP distribution,
up to a change of scale and location.

Example 1.5. Considering the Uniform distribution as in Example 1.2, its conditional
threshold exceedances correspond to the generalised Pareto distribution with ¢ = —1
ando(u) =1—wu

Flx+u)—Fu) (r+u)—u @

PX-u<z|X = = = .
( usw|X>u) 1— F(u) 1—u 1—u
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1.1. Univariate extremes

From Theorem 1.3 we can derive the second approach to model extreme events,
the so-called peaks over thresholds model (see Fig. 1.4). Instead of splitting data into
blocks, we will choose a high enough threshold « and then fit a GP distribution to
the thresholds exceedances. As for the block maxima approach with the choice of
the block length, the choice of the threshold u implies a bias-variance trade-off.
For many applications, u will typically be chosen as a high quantile of the data of
interest.

Similarly to the max-stability for the block maxima approach, the threshold
stability property (1.5) implies in particular that if threshold exceedances over a
given threshold u are well approximated by a GP distribution H, then the thresh-
old exceedances over a higher threshold will also be well approximated by the GP
distribution H, up to a change of scale and location. To see this, consider a higher
threshold v = a +u > u, a > 0, then

PX>z+4v) PX>u) PX-u>z+a|X>u)

P(X — X >0) = _
X —v>a | X>0) = “PX >0 PX—usalX>u

Then, if the exceedances X —u | X > u are approximated by a GP distribution H,
using the threshold stability of H, one can write

H(x+a)— H(a)

PX—-v<z|X>v)~ =H((z+a—-0,)/a,).

1—H(a)

0.7

0.6

0.5

Density
0.4

0.3

0.2

0.1

0.0

0 1Significamzt wave hgights upéer tail [m]5 6

Figure 1.3: Upper tail distribution of significant wave heights (H,), corresponding
to the threshold exceedances above the 0.98 quantile of H,. GP density with shape
parameter ¢ = 0 (resp. & > 0) is superimposed as a red solid line (resp. blue
dashed line).

An example of peaks over threshold modelling is given in Figure 1.3, with the
wave data used in Chapter 2. As mentioned in the Introduction, in this chapter,
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

we will consider significant wave height, denoted H,. This quantity basically give
information about the ocean surface roughness, more details are provided in Sec-
tion 2.1.1. Figure 1.3 depicts the distribution of the threshold exceedances of H,
given that H, > u, where w is the 0.98 quantile of H,. Two GP densities are super-
imposed, showing that the H, exceedances should be rather well approximated
by a light-tailed distribution. This a priori analysis will be confirmed in Chapter 2,
where the estimated shape parameters for H, data in two locations will be slightly
negative (see Table 2.2).

To avoid a careful threshold selection, Naveau et al. (2016) introduced an exten-
sion of the GP distribution, the so-called extended generalised Pareto distribution
(EGPD). In a nutshell, the EGPD allows to model the entire range of a distribution
with a smooth transition between the lower and the upper tails. This model is
introduced in Section 2.1.3 and it has been applied to the wave data in Legrand
et al. (2022), see Chapter 2.
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Figure 1.4: Illustration of the block maxima versus the peaks over thresholds ap-
proaches with one year of the wave data described in Chapter 2, Section 2.1.1.
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1.1. Univariate extremes

To sum up

To model extreme events, two main strategies can be used:

1. The block maxima approach which relies on the approximation of
renormalised maxima by a GEV distribution (Theorem 1.1).
~» Needs to choose the size of the blocks.

2. The peaks over thresholds approach which relies on the approxima-
tion of the thresholds exceedances by a GP distribution (Theorem

1.3).
~+ Needs to choose the threshold.

1.1.3 Regular variation and domain of attraction

When studying EVT, one theoretical tool that quickly comes into play is regular
variation. Here we briefly introduce the key concepts and show how regular vari-
ation can be used to determine domains of attraction. See, e.g. Bingham et al.
(1987) for more details.

Definition 1.6. A positive measurable function f is regularly varying (r.v.) with index
aeRIf
lim f(tz) =z, forallz > 0.

7 0)

If a =0, fis called a slowly varying function.

Example 1.7. Examples of regularly varying functions are: all the functions converging
to a positive constant, x — z® for o € R, x + log” (z) for § € R.

In the following, we consider regularly varying survival functions 1 — F of a
random variable X. For this, an additional constraint is required by imposing
a > 0. This can be seen through the following convergence, assuming that 1 — F
is r.v. with index «,

. 1—F(tx) . P(X > tx) _
lim ———= = lim ————= =27 1.
T —Fe By 0.7)
then necessarily, @ must be strictly positive.

Thanks to the following result, due to Gnedenko (1943), the domains of at-
traction of the Fréchet family and the Weibull family can then be characterised in
terms of regular variation.

Theorem 1.8 (Gnedenko (1943)). In the following, G¢-¢ (resp. Ge~o) denotes the
Fréchet (resp. Weibull) family distribution and xr denotes the upper end-point of F.
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

* F € D(Geso) lif 1 — Fis regularly varying (r.v.) with index 1/&.

* F € D(Gewp) lif p <ocoand 1 — F(xp — 1/x) is r.v. with index —1/¢.

Note that using the link between the Weibull and the Fréchet families provided
in Equation (1.2), only the first statement of Theorem 1.8 is needed.

Example 1.9. Every Pareto-like distributions, i.e. such that 1 — F(z) ~ Cxz~* for large
x and for some C,« > 0, are in the domain of attraction of the Fréchet family. For
example the Pareto, Cauchy, and Burr distributions.

From this characterisation theorem, we see that the theory of regular variation
is an appropriate framework to study heavy-tailed distributions, bringing many
valuable theoretical tools (e.g. Resnick, 2007). In Chapter 3, we will provide the
multivariate extension of regular variation and this theoretical framework will be
applied in particular to extreme river discharges, which are heavy-tailed data.

1.2 Multivariate extremes

The extension from univariate extremes to multivariate extremes is not straight-
forward, partly because itimplies a point of view choice. For example, considering
temperature data in different cities, one could say that an extreme (multivariate)
event occurs if large values of temperature in one of the cities is observed, but it
could also be that large values in all cities occur simultaneously. In the bivariate
case, an illustration of these two approaches is given in Figure 1.5 with daily river
discharges from the Danube river network (more details on this dataset are given
in Chapter 3). The underlying question here could then be the following: Do we
want to assess the risk of flooding at one (or more) location or are we more in-
terested in assessing the overall risk of flooding - which increases if extreme river
discharges occur at different locations simultaneously?

The second key aspect of multivariate extremes is the dependence structure
between the different components in the asymptotic. For large values, the de-
pendence structure between the components of a multivariate distribution can
be disrupted. An example developed by Sibuya (1960) is the bivariate Gaussian
distribution, for which, whenever the correlation coefficient p is strictly smaller
than 1, its components are independent in the extremes (see Figure 1.6).

To focus on the dependence structure , the standard method is to transform
the data to common margins which removes marginal effects. This is what is done
in Figure 1.6, where the data are transformed to common Pareto margins (for
example). Note that this transformation does not alter the dependence structure.
Once the marginal effects are removed, it is then easier to seek for dependence
or independence. This two step study can be elegantly illustrated through the
copula theory and the following theorem:
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1.2. Multivariate extremes
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Figure 1.5: Scatter plots of daily river discharges of two stations in the Danube river
network. The two possible regions of extremes are depicted in blue: when an ex-
treme eventis defined as a large value observed in at least one of the components
(left) and when it is defined as a large value in both components simultaneously
(right).

Theorem 1.10 (Sklar (1959)). Let F' be a joint distribution function with margins Fx
and Fy. Then there exists a copula C" such that, for all x,y € R,

F(z,y) = C{Fx(z), Fy(y)}. (1.8)

If Fx, Fy are continuous, then C'is unique. Conversely, if C'is a copula and Fx, Fy
are distribution functions, then the function F defined by (1.8) is a joint distribution
function with margins Fx and Fy.

From Theorem 1.10 we see that the study of the joint distribution F' can be
decomposed into the study of its margins and of the dependence structure, via
the copula C. More details on copula theory, and its links with EVT, can be found
for example in Nelsen (2006).

On this basis and derived from theoretical and practical perspectives, the mod-
elling of multivariate extreme events is in general carried out in two steps: the first
step concerns the treatment of the margins and the second step the description
of the dependence behaviour (e.g. Cai et al., 2013; Tendijck et al., 2021; Rohmer
et al., 2021).

The marginal modelling can involve classic univariate EVT (see Section 1.1). Given
the application, some models will be more adapted than others. For example, in
Chapter 2 the margins are modelled using a specific type of extreme value dis-
tribution: the extended generalised Pareto distribution (Naveau et al., 2016). If

'A copula (in dimension 2) is a bivariate distribution function on [0, 1] x [0, 1] with uniform mar-
gins in [0, 1] (Nelsen, 2006).
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Figure 1.6: lllustration of asymptotic independence with a bivariate Gaussian vec-
tor on the original scale (left) and transformed to common Pareto scale (right).

there is no specific constraint on the marginal modelling, to facilitate the choice,
Beirlant et al. (2004) suggest that when the main interest lies in the dependence
structure, a convenient choice is to transform into standard Fréchet margins as
there are good theoretical properties in this case.

Regardless of the chosen standardisation distribution, once the data are trans-
formed to common margins, different theoretical objects can be defined to model
and to measure the dependence at high levels. In the remaining of this section
we will briefly introduce these tools and provide the links between them. We will
restrict our attention to the bivariate case, generalisation to higher dimensions
can be found in the references mentioned earlier.

To lighten the notations, in the following bold face symbols will denote bivari-
ate vectors: x = (z1,72) € R% 0 = (0,0),... Operations and relations involving
such vectors will be considered component-wise. For example min(x, 0) will cor-
respond to (min(zy,0), min(x,,0)) € R2.

1.2.1 Domain of attraction and characterisation

The definition commonly adopted in the literature for the notion of maximum in
the multivariate case is the component-wise maxima. If we assume that we have
a set of bivariate vectors (X1,Y),...,(X,,Y,) that are independent and identi-
cally distributed with common bivariate distribution function F, then the sample
maximum M, is defined by

M, .= | max X;, max VY; | .
1<i<n

1<i<n
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1.2. Multivariate extremes

Note that the sample maximum does not necessarily correspond to a sample
point. Then, similarly to the univariate case, we can define the family of multivari-
ate extreme value distributions as the only possible limit for the sample maxima
after proper renormalisation. Recall that operations involving vectors are meant
component-wise.

Definition 1.14. [f there exists sequences inR? (a,,) and (b, ) with a,, ; > 0for j = 1,2,
such that

n—oo

where G is a non-degenerate distribution function, then G belongs to the bivariate
extreme value family and F is said to be in the (bivariate) domain of attraction of G,
denoted F' € D(G).

This definition implies that, if X = (X,Y) € D(G), the marginal distribution
Fx (resp. Fy) of X (resp. Y) must be in the univariate domain of attraction of the
GEV distribution G, (resp. G5), where GG; denotes the jth marginal distribution of
G,forj=1,2.

As in the univariate case, there is a multivariate version of max-stability: G is
max-stable if

G"(b, + a,x) = G(x),

for suitable vectors b, and a,, > 0. And it can be proved that G is a bivariate
extreme value distribution if, and only if, G is max-stable.

Example 1.12. Consider a bivariate vector with unit Fréchet margins. Then in this
case, taking b,, = 0 and a,, = (n,n) for alln > 0,

P[M,/an < (z,y)] = F"(n(z,y)) = (exp(=1/(n(z,y))" = exp(=1/(z,y)).
The standard Fréchet distribution is then in its own domain of attraction.

We now assume that both margins are transformed to standard Fréchet dis-
tributions (whose distribution function is given by x +— exp(—1/x) for x > 0). Then
the following theorem provides a characterisation of the bivariate extreme value
family defined in Equation (1.9) (see Fougeres (2004) or more specifically Resnick
(1987) for the multivariate version).

Theorem 1.13. The following statements are equivalent:

(i) G is a bivariate extreme value distribution with unit Fréchet margins.

(i) There exists a finite measure H on |0, 1] such that for each =,y > 0, one has that

Glz,y) = exp {—2 /01 max (% 1_Tw) dH(w)}

with the mean constraints fol dH(w) =1 and fol wdH (w) = 1/2.

35



CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

If we are in the framework of Theorem 1.13, the following measure is also de-
scribed

Ty
The measure V can be any positive function such that for ¢t > 0 and z,y > 0,
V(tz, ty) = 'V (z,y) (homogeneity property) and V(z,00) = V (o0, z) = 1/z for
any z > 0 (marginal constraints).

1 J——
V(z,y) = 2/ max (E, 1—w) dH(w), forany z,y > 0. (1.10)
0

Definition 1.14. The measure H is known as the spectral measure and V' is sometimes
called the exponent measure of the extreme value distribution function G.

Instead of V' defined in (1.10), the stable tail dependence function (e.g. Beirlant
et al.,, 2004) is widely considered in the literature and is defined by

11
Z(I,y) ::V<_7_) ) %ZJZO

Ty
Other alternative and equivalent characterisations can be found. For example,
the Pickands dependence function (Pickands, 1981) is defined as

Alt) =V (%, %) , foranyt € [0,1]. (1.11)

The Pickands dependence function can be linked to the spectral measure through

A(#) :2/0 max {w(1 — ), (1 — w)t} dH (w).

From the marginal constraints on V, A(0) = A(1) = 1. Moreover, A lies within the
setmax(t,1 —t) < A(t) < 1foranyt € [0,1] and is convex within this region.
The measure V is completely determined by the Pickands dependence func-

tion A through
1 1 T
Vv =|l-+-]A
(@9) (1‘+y> <x+y>

for z,y > O such thatx +y > 0.

The spectral measure H can also be recovered from V, or equivalently A, see
Beirlant et al. (2004) for more details, so that there are one-to-one mappings be-
tween H, V and A.

Example 1.15. Historically, the first parametric family of bivariate extremes is the
logistic model (Beirlant et al., 2004). Its distribution G is given by

G(z,y) = exp {— (x_l/o‘ + y_l/o‘)a} , x,y >0, (1.12)
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1.2. Multivariate extremes

for a parameter 0 < o < 1. The corresponding exponent measure is therefore
V($, y) = (x_l/a + y—l/a)a )

and it can be shown that the corresponding spectral measure H has associated spec-
tral density h given by

h(w) = > % (=)} {0 =) ) e (0,1),

The behaviour of this family given « will be discussed later in Section 1.2.3. Other para-
metric families can be found in Section 9.2.2 of Beirlant et al. (2004). Simulations from
this model are displayed in Figure 1.7 for different values of the parameter «.

a=0.2 a=0.5 a=0.99

Figure 1.7: Simulations of n = 1000 points from the bivariate logistic extreme value
model (1.12) for different values of « € {0.2,0.5,0.99} (left to right).

Alternative ways of describing multivariate extremes to the ones presented
here exist, see for instance Segers (2012) for further details.

To sum up

Assuming that the bivariate extreme value distribution G has unit Fréchet
margins, it can be equivalently characterised by:

1. the spectral measure H

Glz.y) = exp {_2 /0 s (% I‘Tw) dH(w)} |

2. the exponent measure V

G(z,y) = exp(=V(z,9)),

37



CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

3. the Pickands dependence function A
1 1 T
G(z,y) = —<q(=-+-14 :
e = [-{(z+5)4 (7))

1.2.2 Bivariate threshold excess model

As for the univariate case, instead of considering maxima one can consider thresh-
old exceedances. However, the extension to the multivariate case is not straight-
forward since it requires to define the conditioning event X > w in a multivari-
ate way. For that, there is no universal choice on how to define multivariate ex-
ceedances. In this work, we follow the definition of Rootzén and Tajvidi (2006),
saying that an observation is extreme if it is extreme in at least one of its compo-
nents, but other definitions exist (e.g. Falk and Guillou, 2008).

Such event is denoted X « w and means that at least one component of X is
above a given (high) threshold, i.e.

{X f 'Ll,} = {Xl > up or Xy > Ug}, (1.13)

where u = (uy,us) and X = (Xj, Xs). The subset defined in (1.13) corresponds
to the blue L-shaped region in the left-hand side of Figure 1.5 or the red L-shaped
region in Figure 1.8.

491
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Figure 1.8: (left) Map illustrating the locations considered in Chapter 2. The red
dot corresponds to the "offshore" point and the green dot corresponds to the
"coastal" point. (right) Scatter plot of the significant wave heights at the two loca-
tions considered, more details on the data are provided in Chapter 2. The black
dots belong to the region where the multivariate model will be fitted.

In Chapter 2, a joint simulation model of significant wave heights (H,) in two lo-
cations is developed. An application of such stochastic simulator could be on the
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1.2. Multivariate extremes

installation of wind farms in two relatively distant sites and the study of the ex-
treme wave conditions that these sites could face simultaneously. In this context,
the definition of Rootzén and Tajvidi (2006) appears to be the most appropriate
since it allows for the possibility that the H, are not necessarily extreme on both
sites simultaneously (see Figure 1.8).

Rootzén and Tajvidi (2006) provide the following Definition 1.16 for the mul-
tivariate generalised Pareto distribution (stated here only in the bivariate case),
which fulfils the two following motivating conditions for the extension from uni-
variate to multivariate GP (Rootzén and Tajvidi, 2006, p.919):

(M1) exceedances (of suitably coordinated levels) asymptotically have a
multivariate GP distribution if and only if componentwise maxima
asymptotically are EV distributed;

(M2) the multivariate GP distribution is the only one which is preserved
under (a suitably coordinated) change of exceedance levels.

Definition 1.16. A distribution function H is a bivariate generalised Pareto distribu-
tion if

1 G(x)
H = 1
(@)= 5.G0) Gl A o)
for some bivariate extreme value distribution G with non-degenerate margins and with
0 < G(0) < 1. In particular, H(x) = 0 forx < 0 and H(x) = 1 — log G(x)/ log G(0)
forx > 0.

(1.14)

Considering the spectral representation of Theorem 1.13, when > 0, H(x)
can easily be linked to the spectral measure of the associated GEV distribution
G, or similarly, to the Pickands dependence function A (see Propositions 5.3 and
6.1 of Tajvidi (1996)). In the following, we will provide the explicit link between the
exponent measure V' and the GP distribution in a specific case.

Rootzén and Tajvidi (2006) showed that the properties (M1) and (M2) are ful-
filled with this definition of bivariate GP distributions thanks to the two following
theorems. Theorem 1.17 answers the motivation (M1), and can be viewed as a
multivariate extension of Theorem 1.3. The second theorem, Theorem 1.18, is the
analogue of the threshold stability property in the univariate case (see Proposition
1.4), and answers the above motivation (M2).

Hereinafter we consider a threshold function defined as an increasing contin-
uous curve u(t) parameterised by ¢t € [1, 00), i.e. the thresholds are defined from
the set {u(t) = (u1(t),us2(t)) : t € [1,00)}. Here "increasing" means thatif ¢t > s,
with t,s € [1,00), u(t) > u(s). Recall that this inequality is meant component-
wise, i.e. it corresponds to u;(t) > u1(s) and uy(t) > us(s). An illustration is given
in Figure 1.9. This parametrisation is needed to specify how the 2-dimensional
levels increase as we look further into the tail of the bivariate distribution F' of X
(see Tajvidi, 1996, Chapter 4).
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u, ‘
7

U,

Figure 1.9: lllustration of the curve w(t) = (uy(t), us(t)).

Theorem 1.17 (Rootzén and Tajvidi (2006)). Let consider X = (X1, Xs) a bivariate
random vector with distribution function F.

1. If F'is in the domain of attraction of a bivariate extreme value distribution G with
0 < G(0) < 1, then there exists an increasing continuous curve u(t), starting at
u(1) = 0, with tlim F(u(t)) = 1 and a function o (u(t)) > 0, such that

—00

Jim P {o(u(t) ™ (X —u(t) <z | X Lult)} = — 10;(;(0) o G(Cjc(i)oy

forall .

2. Conversely, ifthere exists an increasing continuous curve u with lim F(u(t)) =1

t—o00

and a function o (u(t)) > 0 such that, for x > 0,

lim P{o(u(t)) " (X —ut) <z | X £ult)} = H(x), (1.15)

t—o00

for some function H, where the marginals of H on R are non-degenerate. Then

the left-hand side of (1.15) converges to a limit H (x) for all x and there is a unique

bivariate extreme value distribution G with G(0) = e~! such that
G(x)

G(z N0)’

G(x) =exp{H(x) — 1} forx > 0, and F' € D(G).

H(x) = log (1.16)

Note that the two representations (1.14) and (1.16) of the bivariate GP distribu-
tions coincide: letting ¢t = 1/(—log G(0)) in (1.14),
G(x)

H(x) = logm
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1.2. Multivariate extremes

and by max-stability of G, G* is again an extreme value distribution with
G(0)" = exp(—1).

Theorem 1.18 (Rootzén and Tajvidi (2006)). Again, let consider X = (X;,X5) a
bivariate random vector.

1. If X has a bivariate GP distribution H, then there exists an increasing continuous
curveu(t)withu(l) =0 andtlim H(u(t)) =1, and a function o (u(t)) > 0such
that

Plo(u®) (X —u®) <z |X £u(t)] = H(z), (1.17)

fort € [1,00) and all x.

2. Conversely, if there exists an increasing continuous curve u(t) with u(1) = 0
and tlim P[X < wu(t)] = 1, and a function o (u(t)) > 0 such that (1.17) holds
—00
for x > 0, and X has non-degenerate margins, then X has a bivariate GP
distribution.

The marginals of a bivariate GP distribution are typically not univariate GP.
However, their restriction to the positive subset are:

PX; <2 | X;>0)=1-(1+&z/oy) 5,

for x > 0 such that o; + ¢z > 0 and where &; and ¢;, for j = 1,2, are the marginal
shape and scale parameters. For any bivariate GP distribution H, we therefore
consider its associated shape parameter £ as the vector of the marginal param-
eters (£, &), and, similarly, its scale parameter o := (01, 02). We write GP(o, §)
the GP distribution H with parameters o and &, and the standard GP distribution
is defined for§ =0and o = 1.

Any bivariate vector X = (X, X,) ~ GP(0,&) can be characterised through
the standard GP distribution, as follows

(1.18)

where Z ~ GP(1,0). From Equation (1.18), the study of bivariate GP distributions
canthen be reduced to the study of standard form GP distributions. Rootzén et al.
(2018b,a) introduce a number of stochastic representations of such standardised
GP random vectors. One of them is as follows.

Let T" be a bivariate random vector and let E be a unit exponential random
variable independent of T'. Then

E+T —max(T) ~ GP(1,0). (1.19)
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CHAPTER 1. ELEMENTS OF EXTREME VALUE THEORY

Conversely, any standard GP vector can be expressed in this way. To emphasise
the dependence on the bivariate vector T', it may be better to write GP(1,0,T)
instead of GP(1,0).

Using Definition 1.16, we can consider the exponent measure V, as defined in
(1.10), of the GEV G associated to the GP distribution GP(1,0,T). Then Rootzén
et al. (2018a) showed that V and T' = (7}, T5) can be linked through

1 €T1 —max(T) 1 eTzfmax(T)
V(zy,22) = E {max |:x_1E<€T1—max(T)) ’ EE(GTQ—max(T))} }

From (1.19), it appears that to construct bivariate GP models, a possibility is
to assume a parametric distribution on T'. This question was addressed by Kiril-
iouk et al. (2019) where different explicit density formulas for T" are derived. Two
examples of such models are given in Figure 1.10 with T' that follows a bivariate
Gaussian distribution and, on the other hand, 77 and T; being two independent
Gumbel-distributed variables.

10

Z;

-10

2 0. 2 Z 4 6 8 10 -30 -20 Z, -10 0. 10
Figure 1.10: Simulations of bivariate GP models from the representation (1.19) with
(left) T following a Gaussian distribution with zero-mean and covariance matrix
Y =(1,0.4),(0.4,1)] and (right) T = (7},1>) where T; and T}, are independent
variables with 7} ~ Gumbel(0, 1) and T, ~ Gumbel(0, 4).

In Chapter 2, we will built on model (1.19) to develop a non-parametric genera-
tor of such standard GP vectors, without assuming any specific parametric shape
onT.

Finally, from a practical modelling perspective, a similar approach to the uni-
variate case can be used as motivated by Theorem 1.17. Indeed, for a sufficiently
large threshold w (i.e. large in each component), X —u | X £ u can be well ap-
proximated by a bivariate GP distribution. As this statistical modelling approach
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1.2. Multivariate extremes

is still at an early stage, few papers deal with practical applications of multivari-
ate GP models (e.g. Brodin and Rootzén, 2009; Kiriliouk et al., 2019; Kiriliouk and
Naveau, 2020, ...) following the representation of Rootzén and Tajvidi (2006).

To sum up

Bivariate GP distributions emerge as the limit distributions of bivariate
threshold excesses, definedas X —u | X £ .
One construction of standard forms for such bivariate GP vectors is
given by
E+T — max(T),

where £ ~ Exp(1) and T is any bivariate vector independent of E.

1.2.3 Asymptotic dependence and independence: Definitions
and characterisations.

As already mentioned, an important feature in multivariate EVT is to describe the
dependence behaviour of two variables as they become larger and larger. This
question has many applications, among which we mention the following two.

+ Among the components of a multivariate random vector, identifying sub-
groups such that large values occur simultaneously allows to reduce the di-
mension of the model by removing all the other components that do not
contribute to the joint extremal behaviour. This is related to the notion of
sparsity for extreme value, a very active research field (e.g. Lehtomaa and
Resnick, 2020; Engelke and Ivanovs, 2020; Meyer and Wintenberger, 2021).
This issue will also be addressed in a more humble way in Section 3.7.2.

*+ Another typical application of multivariate EVT is the probability estimation
of failure regions, i.e. P[(X,Y) € D], where D is a remote set (with no ob-
servations). This can simply corresponds to the subsets {X > z,Y > y} or
{X > zor Y >y} for large z,y (see Figure 1.5), or it can also corresponds
to more sophisticated sets given some specific constraints such as environ-
mental loads (e.g. de Haan and de Ronde, 1998; Beersma and Buishand,
2004, Cai et al., 2013; Ewans and Jonathan, 2014). In this context, wrongly
assuming the dependence structure between the large values of X and Y
will lead to an overestimation or an underestimation of the probability of
failure region (see the aforementioned references).

Given the data at hand, the dependence structure in the extremes can be very
different. For example, looking at Figure 1.11, which compares the data used in
Chapter 2 with those used in Chapter 3, the dependence behaviour between the
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largest values in the extreme region, symbolised by the upper blue hatched quad-
rant, appears to be quite different. Regarding the wave data, large values mainly
occur simultaneously in both variables, whereas in the case of the river data, a
large value in one component does not always corresponds to a large value in the
other component.

150

6

100

4
River discharges [m/s]

Significant wave heights [m]
50

2

0 2 Signﬁicant wav?a heights ?m] 10 ; 10002000 3ng(\)/%r diégr?e?rges‘r)[(r)r%g] 6000 7000
Figure 1.11: Asymptotic dependence behaviour for the different application data
sets considered in this thesis. (left) Scatter plot between the significant wave
heights in the two locations of interest (see Chapter 2). (right) Scatter plot between
the river discharges in two distant stations (see Chapter 3). The blue hatched re-
gionis just avisual indication of where both components are large simultaneously.

The limiting extreme value distribution G provides this type of information, i.e.
the dependence structure of the variables X and Y. In the following, we keep the
previous notations, i.e. the bivariate distribution function F' of a vector (X, Y)isin
the domain of attraction of a bivariate extreme value distribution G characterised
by a spectral measure H, an exponent measure V' or, equivalently, a Pickands
dependence function A.

The random variables X and Y are said to be asymptotically independent if,
equivalently,

* H puts mass 1/2 on the boundaries w = 0and w =1,
* V(z,y) =1/x + 1/yforany z,y > 0,
« A(t) =1foranyt € [0, 1].

These properties correspond to be in the domain of attraction of the indepen-
dence, i.e. the limiting extreme value distribution decomposes into

G(z,y) = Gi(x) x Ga(y),
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1.2. Multivariate extremes

where G1, G, are the marginal distributions of G.
Conversely, X and Y are said to be completely dependent if, equivalently,

* H puts mass 1 at the barycenter w = 1/2,
* V(z,y) = max(1/x,1/y) forany z,y > 0,
* A(t) = max(t,1 —t)forany t € [0,1].

Example 1.19. Continuing with Example 1.15, Figure 1.12 depicts the spectral measure
H and the Pickands dependence function A for the bivariate logistic model with differ-
ent values of a. Figure 1.12 shows that o measures the strength of dependence between
the two components. In particular, when o — 0 in (1.12),

G(z,y) — exp {— max (:L‘_l, y_l)} ,
which corresponds to complete dependence, and when a — 1,
G(.Z',y) — exp {_ (m_l + y_l)} )

and this corresponds to asymptotic independence.

1.0

0.9

0.6

----a=0.5
-+ a=0.99

0.5

0.0 02 04 ; 06 08 1.0
Figure 1.12: (left) Spectral measure H and (right) Pickands dependence function
A for the logistic model defined in (1.12) (Coles, 2001), with @ = 0.2 (red solid line),
a = 0.5 (blue dashed line) and a = 0.99 (green dotted line). The spectral measures
on the left panel have been normalised between 0 and 1 for visual purposes. On
the right panel, the black dotted line represents the lower bound of A. Estimations
are performed using the R packages evd (Stephenson, 2002) for H and copula
(Hofert et al., 2020) for A.

In practice, asymptotic independence means that the largest values between
the components of a random vector are unlikely to occur simultaneously. If this
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is not the case, i.e. large values occur simultaneously with a high probability, we
say that X and Y are asymptotically dependent. The goal is then to determine
the strength of this dependence.

From Theorem 1.13 and the spectral representation, all the dependence struc-
ture of the limiting distribution is contained in the spectral measure H. From this,
it can be very useful to have a summary of this information. Different coefficients
have been proposed to measure the strength of asymptotic dependence between
two variables. The best-known is probably the dependence measure x (Coles et al.,
19909), defined as

Xx:= lim P(X >z |Y >ux) (1.20)

T—T R

A generalisation in the case where the marginal distributions of X and Y are
non-identical is given by

X = liHiIP’(FX(X) >u | Fy(Y) > u).

The coefficient y defined in (1.20) can be written as the limit of a function x(u) such
that x = lirr% X (u) with
u—

log {P(Fx(X) < u, By (Y) < u))
log(u) '

x(u) =2

The different properties for y and x(u) are the following:
*0<x<L

« x = 01if, and only if, X and Y are asymptotically independent. This charac-
terisation corresponds to the definition given by Sibuya (1960) for asymptot-
ically independent variables.

« If x > 0, X and Y are asymptotically dependent, and the value of x increases
with the strength of asymptotic dependence.

* The sign of x(u) determines whether X and Y are positively or negatively
associated at the quantile level u.

Example 1.20. Looking at the wave data used in Chapter 2, we can consider the

strength of asymptotic dependence between the H, at the two locations of interest.

From Figure 1.13, it seems that x = lilr% x(u) > 0, indicating that the two variables
u—

might be asymptotically dependent.

Remark 1.21. Looking at the right-hand side of Figure 1.13, as u gets closer to 1, the
point-wise confidence interval increases, up to contain 0, due to the smaller number
of points in the extreme. It is therefore not so evident to be in favour of asymptotic
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Figure 1.13: (left) Scatter plot of significant wave heights in two nearby locations
off the coast of Brittany, more details are given in Chapter 2. (right) Plot of the
corresponding estimated dependence measure y for increasing values of quantile
levels u with 95% point-wise confidence intervals (estimation is performed using
the R package evd (Stephenson, 2002)).

dependence.

In this context, one could use other graphical tools to check for extremal dependence.
For example, and as already mentioned, it is possible to standardised data in common
margins in order to focus on the extremal dependence structure. This is shown in Figure
1.14, where we compare the asymptotic dependence behaviour of the H, data and the
simulated Gaussian vector of Figure 1.6. Unlike the Gaussian vector, for the H, data
some points are lying in the interior of the positive quadrant, supporting asymptotic
dependence.

Note that more precise diagnostics can be achieved with the help of statistical tests.
There is an extensive literature on this subject, a review can be found in Bacro and
Toulemonde (2013). For example Draisma et al. (2004) proposed a test based on an
estimator of the coefficient of tail dependence n (see Equation (1.21)). With an extension
to the spatial context, Bacro et al. (2010) developed a test linked to the F-madogram,
a quantity often considered in spatial extremes and defined by SE|Fx(X) — Fy(Y)
(see the references therein).

If we assume that X and Y have common standard Fréchet margins, x can
also be written as x = lir+n (x) where
T—r+00
X(x):=2+zlog{P(X <z,Y <z)}.
From this, one can easily see that for the bivariate extreme value distribution given
by G(z,y) = exp(=V(z,y)), x(z) = x =2 = V(1 1).
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Figure 1.14: Asymptotic dependence comparison on Pareto scale between H, data
(left) and a Gaussian vector (right).

More generally, if (X,Y) is in the domain of attraction of a bivariate extreme
value distribution G with exponent measure V, then y = 2 — V/(1,1). In terms of
the Pickands dependence function this can be written as x = 2(1 — A(1/2)). From
this, we retrieve that asymptotic independence is equivalent to x = 0.

Example 1.22. Following Examples 1.15 and 1.19, the dependence measure for the lo-
gistic model is given by

X =2 — 2%
The role of ais once again highlighted: when « gets closer to 0, x tends to 1 (i.e. stronger
asymptotic dependence) and when o = 1, x = 0 (i.e. asymptotic independence).

Yet, in the case of asymptotic independence (i.e. x = 0), no information is
available on the strength of dependence at large but finite levels. In this case,
an alternative measure of dependence, denoted Y, is often introduced (e.g. Coles
et al., 1999) and provides information on the strength of dependence in case of
asymptotic independence. This coefficient is defined through the following limit,
provided that it exists, x = lim,_,; x(u), where

2log(1 —u)

X = P e R sw o vEOD:

Its properties are the following:
+ 1<y <1,

« x = 1if, and only if, X and Y are asymptotically dependent, and in this
case x informs us on the strength of asymptotic dependence between the
variables.
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* If x < 1, X and Y are asymptotically independent, and the value of y pro-
vides a measure that increases with dependence strength.

All in all, the pair (x, x) provides complete information on the extreme depen-
dence behaviour between two variables. This has been applied for example in
Towe et al. (2013) to study the dependence structure between extreme significant
wave height and extreme wind speed (such data will be considered in Chapter 2).

The disadvantage of y is that, unlike y, it is not easily interpreted. A third de-
pendence coefficient was introduced by Ledford and Tawn (1996), which is per-
haps easier to interpret as it is directly related to the way the joint tail decreases.
Assuming that X and Y have unit Fréchet margins, they suggested the following
tail model

l(z)
P(X >z,Y >x) ~ YL for large z, (1.21)
where n € (0,1] and [ is a slowly varying function (see Definition 1.6). The coef-
ficient n in (1.21) is called the coefficient of tail dependence and constitute another
measure of extremal dependence.

Using (1.20), one can show that, provided that the limit exists,

x = lim 271 (z). (1.22)
T—00
From (1.22), if n = 1 and lim,_,, {(z) = ¢ € (0,1], X and Y are asymptotically
dependent with strength of dependence given by y = ¢. On the other hand, if
n < lorifn=1andlim, . I/(x) =0, X and Y are asymptotically independent.
Within the class of asymptotic independence, three types of dependence can be
distinguished:

1. If1/2 < n <1, X and Y are positively associated: large observations for
both X and Y occur more frequently than under exact independence.

2. If n = 1/2, extremes of X and Y are near independent. If additionally
[(x) = 1, the variables are exactly independent.

3. If0 < n < 1/2, X and Y are negatively associated: large observations for
both X and Y occur less frequently than if X and Y were independent.

In Heffernan (2000) values of the coefficient of tail dependence n and slowly
varying function [ can be found for a wide range of bivariate distributions, includ-
ing both asymptotic dependence and asymptotic independence. Finally, y and
can be linked through y = 2n — 1.
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To sum up

The coefficient of extremal dependence y defined in (1.20) measures the
strength of asymptotic dependence between the components of a ran-
dom vector. Unlike the measures introduced in Section 1.2.1, x is a finite
number, easier to handle.

If X € D(G), x can be linked to the previous measures through

x=2-V(1,1)=2(1—- A(1/2)).

In case of asymptotic independence (i.e. x = 0), other measures have
been developed to quantify the dependence structure at high but finite
levels. Namely the coefficient of extremal dependence x and the coef-
ficient of tail dependence 7. The relation between the two is given by

X=2n—1.

1.2.4 Limitations of bivariate EVT

From Theorem 1.17, the bivariate threshold excess model presented in Section
1.2.2, and used in Chapter 2, requires that the underlying distribution £’ belongs
to the domain of attraction of a bivariate EV distribution. For asymptotically de-
pendent variables, such models are fully adequate. Therefore, looking at Figure
1.13, a bivariate threshold excess model seems well adapted to the wave data dis-
cussed in Chapter 2.

For some applications, asymptotically independent data can also be encoun-
tered (e.g. Heffernan and Resnick, 2005; Wadsworth and Tawn, 2012; Towe et al.,
2017, ...). For example, in Chapter 3, we will consider asymptotically independent
measurements of river discharges from distant stations.

However, if asymptotic independence arises, the class of bivariate extreme
value distributions is no longer appropriate. This can be illustrated in several
ways. For example, assume that we are in the framework of Section 1.2.1, i.e. we
have a set of bivariate vectors {(X;,Y;)}1<i<n, independent and identically dis-
tributed, with unit Fréchet margins and common distribution F'. Moreover, as-
sume that F' € D(G), i.e.

lim P[M,/n < (z,y)] = G(z,y).

n—oo
Then, using thatlogx ~ x — 1 forz — 1,
log P [M,,/n < (z,y)] = nlog F(nx,ny) ~ n (F(nz,ny) —1).
Therefore, the above convergence can then be rewritten as

lim nP(X;/n>xzorYi/n>y)=—logG(z,y).
n—oo
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This leads to
lim nP(X;/n>xandY;/n > y) =logG(z,y) — log Gy (x) — log Ga(y),

n—oo
where GG; and G, are the marginals of G (see the remark following Definition 1.11).
Now going back to our question, assume that we are in the domain of attraction
of the asymptotic independence. Then in this case
lim nP(X; > nxand Y; > ny) = 0.

n—oo

This shows that in the case of asymptotic independence, we can not extrapolate
joint probabilities at high but finite levels. Thus, if we only rely on bivariate EVT,
asymptotic independence is similar to perfect independence and this is certainly
an excessive assumption.

To fill this gap, models adapted to the case of asymptotic independence have
been developed. We present two of them in the following section.

1.2.5 Models coping with asymptotic independence

To overcome the above mentioned issue, models that accommodate both asymp-
totic dependence and asymptotic independence have been introduced. In the
following, X and Y are assumed to have unit Fréchet margins.

Note that compared to the bivariate GP model introduced in Section 1.2.2, the
following models focus on regions where the two components are simultaneously
large. This corresponds for example to the situation in the right-hand side of Fig-
ure 1.5.

Building on their first study (Ledford and Tawn, 1996), Ledford and Tawn (1997)
introduced an extension of model (1.21) with a more flexible model given by

L(z,y)

I'Cl yCQ

P(X >x,Y >y) ~ , forlarge x and y, (1.23)

where ¢;,co > 0 are such that ¢; + ¢, > 1 and £ is a bivariate slowly varying
function, that is, there exists a function g such that, for all z,y > 0and ¢ > 0,

_ o L(rz,ry)
g(x7y)_rli>r£10 £<7,’7a)

The homogeneity property in (1.24) implies that g is constant along any ray y = ax

for a > 0 and one can introduce a ray dependence function g, defined as

9(z,y) = g«(z/(z +y)) = g:(w) forw = z/(x +y) € (0,1). Settingn = 1/(c1 + ¢2)
shows that this latter model (1.23) contains the previous model (1.21).

and g(cz,cy) = g(x,y). (1.24)

Example 1.23. Assume that X and Y are two independent Fréchet-distributed vari-
ables. Then

P(X >2,Y >y) = [1 —exp(—1/2)] [L — exp(=1/y)] ~ L(z,y)(zy) ",
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forlarge x and y, where L(x,y) = 1is a bivariate slowly varying function. In particular
¢ = co = 1andn = 1/2 (exact independence).

Finally, building on a simplified version of model (1.23) by considering ¢; = ¢,
Ramos and Ledford (2009) proposed the following joint tail model

L(z,y)

P(X>$,Y>y)zw,

(1.25)

with the same assumptions on £ and n as before, i.e. n € (0, 1] and L is a bivariate
slowly varying function as in (1.24). This new model aimed to overcome some
issues of model 1.23 for which, in some special cases, the joint density obtained
was valid only when z/(x + y) € (0,1).

The main result of Ramos and Ledford (2009) is an alternative spectral repre-
sentation as in Theorem 1.13 which provides a unified framework covering both
asymptotic dependence and asymptotic independence, unlike the classical multi-
variate extreme value case.

Theorem 1.24 (Ramos and Ledford (2009)). If (1.25) holds and if

lim P(X >us,Y >ut) g.(s/(s+1))
umoo P(X >u,Y >u) — (st)l/C0) 7

forall s,t > 1 where g, is the limit function that is defined following equation (1.24)
and ) is the coefficient of tail dependence. Then g.(w) satisfies

L\ D pw w \ V@) 1
n‘lg*(w)=<—> / zl/"dHn<z>+(—) [ a=zyao)
0 w

w 1—w

where H, is a (non-negative) measure on [0, 1] satisfying the normalisation condition

1/2 1
nt= /0 w'dH, (w) + /1/2(1 — w)1dH,(w).

The measure H, introduced in Theorem 1.24 is the analogue of the spectral
measure H defined in Theorem 1.13 and a relationship between the two measures
can be derived (Ramos, 2003; Ramos and Ledford, 2009). For example, if (X,Y)
follows a bivariate extreme value distribution with standard Fréchet margins and
spectral measure H, assuming that X and Y are not exactly independent, so that
n = 1 (or equivalently x > 0), then one can show that H = {2 — V/(1,1)} H, (see
Ramos and Ledford, 2009).

In Chapter 3, model (1.25) of Ramos and Ledford (2009) is used to develop
a risk measure adapted to a wide range of dependence models, including both
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asymptotic dependence and asymptotic independence. In particular, links be-
tween model (1.25) and hidden regular variation are discussed in Section 3.1.2.

In this section, only joint tail models based on multivariate regular variation
have been introduced. But many other models for asymptotically independent
data have been developed in the literature such as the conditional tail model of
Heffernan and Tawn (2004), which avoids the restriction to regions where both
components are simultaneously large. de Carvalho and Ramos (2012) provide a
review on the existing methods for the statistical modelling of asymptotically in-
dependent data.

We give here some possible limitations of the aforementioned appealing mod-
els that deal with both asymptotic dependence and asymptotic independence.
Firstly, and as already mentioned, Ramos and Ledford (2009) model focuses on re-
gions where both variables are large, this can be a significant limitation for some
applications, such as the application considered in Chapter 2 with the wave data.
On the other hand, for the flexible model of Heffernan and Tawn (2004), which
removes this constraint, some authors have raised some theoretical issues (e.g.
Drees and Jan[3en, 2017).

Finding models that deal with both asymptotic dependence and asymptotic
independence is a current intensive research area, and recent advances in this
direction have been made (e.g Wadsworth et al., 2017).

A final remark is that, in our case, the data at hand used in Chapter 2, are
asymptotically dependent. This is one of the reasons why we choose to focus and
develop bivariate threshold excess models, which are theoretically valid models,
relying on EVT.

1.3 Tools considered in the following

To sum up

Among the different tools presented in this chapter, the ones that we will
use in the continuation of this manuscript are the following.

* In Chapter 2, a non-parametric simulator of bivariate GP vectors
(see Rootzén and Tajvidi (2006) and Section 1.2.2) will be developed
to simulate extreme wave events.

* In Chapter 3, a risk measure adapted to binary classification of ex-
treme events in case of both asymptotic dependence and indepen-
dence will be considered, relying on Ramos and Ledford (2009) model
(see also Section 1.2.5).
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Chapter 2

Joint stochastic simulation of
extreme coastal and offshore
significant wave heights

Overview of Chapter 2

The main goal of the following chapter is to propose and study a stochas-
tic simulator that, given offshore conditions, produces jointly offshore
and coastal extreme significant wave heights. For that, we rely on bi-
variate Peaks over Threshold (see Section 1.2.2 and Rootzén and Tajvidi
(2006)) and develop a non-parametric simulation scheme of bivariate GPD.
To take into account non-stationarities, we also adapt the extended gen-
eralised Pareto model (Naveau et al., 2016), letting the parameters vary
with specific sea state parameters.

Section 2.2 gives some background motivations for the study of ex-
treme coastal wave heights. More specifically, precise definitions of the
parameters used to describe a sea state are detailed in Section 2.1.1, along
with the databases used in Paper | (Legrand et al., 2022). Section 2.1.2
briefly describe the evolution of the conducted study, motivating the mod-
elling developed in Paper I. This preliminaries are ended in Section 2.1.3,
with a brief introduction on the extended generalised Pareto distribution
(EGPD), which is adapted in Paper | for a non-stationary modelling.

From Section 2.2 to Appendix 2.B, Paper | is reproduced as it is. In Sec-
tion 2.3, the sea state data considered in this study are presented. We
then develop in Section 2.4 the marginal regression models, incorporat-
ing the effects of the peak period and the peak direction on the EGPD
parameters. In Section 2.5, our non-parametric method to simulate MGP
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vectors is presented, along with some numerical experiments. Two algo-
rithms are outlined, one for bivariate simulations and a second one for
conditional simulations. Finally, both algorithms are applied in Section
2.6 to the sea state data. The results show that these algorithms success-
fully simulate new realistic extreme H, events.

2.1 Preamble to Paper |

The characterisation of future extreme wave events is crucial because of their
multiple impacts, covering a broad range of topics such as coastal flood hazard,
coastal erosion, reliability of offshore and coastal structures ...

For instance, for coastal flood risk assessment, Idier et al. (2020) combined
historical data, statistical and physical models to reconstruct past coastal flood
events in a specific site on the French coastline. They showed that the return pe-
riod associated to historical flood events tends to decrease due to sea-level rise.
On a global scale (i.e. along the world coastlines), Marcos et al. (2019) consid-
ered the compound effects of extreme wave heights and storm surges. As men-
tioned in Section 1.2.3, Marcos et al. (2019) found that return periods of coastal
extreme water levels were significantly overestimated if the dependency struc-
ture between wave heights and storm surges was not considered.

Characterisation of wave climatology is also of great concern regarding the im-
plementation of Marine Renewable Energy structures (often shortened to MRE).
For example, Stopa et al. (2013) used a numerical wave model (see Section 2.1.1)
to characterise the wave climate in Hawaii for potential implementation sites of
wave energy converters.

Concerning the variability of the intensity of the extremes, authors have shown
an increase in extreme significant wave heights in the last decades over the North
Atlantic Ocean (Bertin et al., 2013; Young and Ribal, 2019), and which could be at-
tributed to climate change (Rohmer et al.,, 2020). Regarding future wave climate
projections, under different emission scenarios’ (RCP4.5 and RCP8.5), their is a
consensus on a decrease of the mean significant wave heights in the North At-
lantic Ocean (Aarnes et al., 2017; Bricheno and Wolf, 2018; Lemos et al., 2021), but it
has also been shown a slight increase in the most extreme wave events (Bricheno
and Wolf, 2018). Caution should be exercised here as there is no general consen-
sus on this subject (e.g. Lobeto et al., 2021). Note that in order to address such is-
sues, initiatives such as COWCLIP (Coordinated Ocean Wave Climate Project) have
been carried out with the aim, among others, of producing a unified database of
global wave climate projections (Morim et al., 2020).

'IPCC (2014) defined different scenarios given the evolution of greenhouse gas concentrations
in the atmosphere, named RCP, according to the climate policies adopted.
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All these studies show the importance of predicting extreme wave heights ac-
curately, and more particularly in coastal regions. In Paper | (Legrand et al., 2022),
we propose a first attempt in this direction by looking at how moderately high off-
shore wave heights can produce large coastal significant wave heights. For this,
we will propose a joint stochastic simulator which, given offshore sea states con-
ditions, produces extreme offshore and coastal significant wave heights.

2.1.1 Wave data
Spectral definition of sea state parameters

In this section, we provide a precise definition of significant wave height, denoted
H,. More details on ocean waves can be found, for example, in Holthuijsen (2007).
Recall that in Chapter 1, we said that H, gave a measure of the ocean surface
roughness. More precisely, this quantity can be defined from the energy of a sea
state.

A sea state is the characterisation, in a given area and for a limited period, of
the sea surface elevation, which is assumed to be a stationary process. Because
waves are generated from various weather systems, mainly wind sea (waves gen-
erated locally from the wind) and swell (that have travelled from a remote gener-
ating area), the description of this sea surface can be complex.

To overcome this issue, a sea state can be decomposed into several simple
wave trains (or harmonic waves), each having a particular direction of propagation
and wave period, the so called spectral decomposition (see Figure 2.1).

~
RS i

< ’——if*"’s’ S 3

Figure 2.1: Spectral decomposition of a sea state as a sum of harmonic waves
(taken from Holthuijsen (2007)).

From this spectral decomposition, one can consider the spectral energy den-
sity function of each simple wave train involved, denoted E(f,0), where 0 is the
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direction of propagation and f is the wave frequency (i.e. the inverse of the wave
period). Note that it is a convention to consider the frequency rather than the
period. A representation of the total spectral energy of a sea state is then given
by the so-called wave spectrum, which gives the spectral energy of each wave train
given its direction ¢ and frequency f. An example is given in Figure 2.2. From this
representation, one can identify the different wave regimes:

+ swells that correspond to a relatively narrow directional dispersion and to
low frequencies: they are visually rather regular and long-crested,

+ wind sea corresponding to a much broader directional dispersion and to
higher frequencies: corresponding to irregular and short-crested waves.

0
- Ifremer MOOEL WAVEWATCH B (%) NORGAS UG- © 2017 MARC T dr s

Figure 2.2: Example of wave spectrum at the coastal location considered in Paper
| (see Figure 2.7). The corresponding date is 21/12/2021 04:00. The wave spectrum
is provided by https://marc.ifremer.fr/.

To synthesise the information contained in this 2-dimensional spectrum, sev-
eral statistics are defined. These parameters are then used to describe a sea state.
We give here the formal definitions of the spectral parameters used in Paper |.
More details are given, for example, in Chapter 4 of Holthuijsen (2007).

+ The significant wave height H, (in meters) is estimated from the total vari-
ance of the moving sea surface elevation, denoted (1?), which is shown to
be the integrated spectral density in both frequency and direction:

H, =4/ (?) = 4\//000 /0% E(f,0)dfdo.

The significant wave height is usually interpreted as a measure of the wave
energy of the sea state. Historically, it is also defined as the average of the
highest one-third of wave heights.
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* The peak period T, (in seconds) is the period associated to the maximum of
the omnidirectional spectrum, it corresponds to the period of the dominant
waves in the sea state and is defined as

-1

-1 2m
T, = [argmaxE(f)] = {argmax/ E(f, Q)de]
f f 0

* The peak direction D, (in degrees) is the direction associated to the maxi-
mum of energy of the wave spectrum, defined as

D, = argmax /000 E(f,0)df.

0

As an example, for the wave spectrum in Figure 2.2, H, = 0.66m, T, = 3.57s
and D, = 117°, indicating that the corresponding sea state is rather dominated
by a wind sea regime and with dominant waves coming from the North-West.

These statistics are limited as they give a limited picture of a sea state, as ex-
plained by Holthuijsen (2007) (p.25):

For instance, wave conditions may well be similar in the sense that the
significant wave height and period are equal, but they may still be very
different in detail: a mixed sea state of wind sea (short, irregular, locally
generated waves) and swell (long, smooth waves, generated in a distant
storm) may have the same significant wave height and period as a slightly
higher wind sea without swell.

However, for a long-term description of the wave climate, these statistics are
sufficient and are conventionally used, especially for coastal studies.

Wave data sources

Significant wave height is obtained either from direct measurements of the sea
surface elevation, using in situ measurements (such as buoys) or remote-sensing
techniques (e.g. satellites), or from numerical wave models. Numerical wave mod-
els produce simulated wave spectrum based on the physical equation of wave en-
ergy balance (Filipot and Ardhuin, 2012), taking into account different forcing (such
as winds, currents, sea ice, bathymetry,...).

Note that in situ measurements generally provide estimates of the omnidi-
rectional spectrum E(f), whereas numerical models can estimate the full wave
spectrum E(f,0), but they are considered to be closer to the truth than satellite
or numerical data and therefore used often as reference (e.g. Ailliot et al., 2011).

Historical outputs from numerical wave models are often called hindcast data
(in contrast to forecast data), since it consist of numerical predictions in the past.
In this thesis, two hindcast databases based on the numerical wave model
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WAVEWATCH-III (Tolman et al., 2014) are considered (more details are given later,
Section 2.3). Both have been developed by IFREMER (French Research Institute for
Exploitation of the Sea) and provide sea state statistics (as H,, T, and D,). For the
two databases, the numerical wave model is forced by the CFSR wind reanalysis®
(Saha et al., 2010). Their main characteristics are the following:

+ IOWAGA (Ardhuin and Accensi, 2014): covers the whole globe with a regular
0.5° resolution grid in latitude and longitude (see Figure 2.3) and 3-hourly
temporal resolution from 01/01/1990 to 31/03/2020.

* HOMERE (Accensi and Maisondieu, 2015): covers the Channel and the Bay of
Biscay on an unstructured grid, refined close to the coast (see Figure 2.3). It
takes into account a high resolution bathymetry and is forced by IOWAGA
on the wet boundaries. The temporal resolution is one hour time step, data
are available from 01/01/1994 to 30/04/2021.

Latitude [°]

Figure 2.3: Grids of the hindcast databases considered. (left) Portion of the
IOWAGA grid. (right) Total HOMERE grid.

2.1.2 Onthechoice of appropriate covariates for modelling ex-
treme coastal sea states
The starting point of this study was to characterise the conditional distribution of

extreme significant wave height, considered as exceedances over a high thresh-
old, close to the French coast.

2Reanalysis data are obtained by combining historical observations and numerical model out-
puts through data assimilation (e.g. Evensen, 2009), providing more consistent databases.
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We chose to focus on one specific point from the HOMERE database, repre-
sented in yellow in Figure 2.4, which corresponds to the SEM-REV sea test site
(Mouslim et al., 2009). The main advantage of this specific location is that it is
well-documented and is used for the development and optimisation of renew-
able energy structures, it is therefore of great interest to describe extreme sea
states at this specific site.

Since waves are generated by winds, a first part of the study was devoted to
find a conditional model for extreme H, given wind fields. Indeed, waves observed
at the point of interest depends on wind conditions over the North Atlantic Ocean.
The large spatial extent of wind fields implied the need to identify the character-
istics of the spatio-temporal wind processes associated with extreme H, and to
derive a representation in a finite dimensional space, in order to facilitate the cal-
culation of the above mentioned model.

Wind speed and direction, Time : 1998-01-13 17:00:00

Latitude
47.0 475 48.0

46.5

46.0

5 -4
Longitude

Figure 2.4: Wind field corresponding to the highest H, at the location of interest,
depicted by the yellow dot. Arrows represent the wind direction and colours its
intensity. Wind data are extracted from the ERA5 database.

For that, we considered the 10m wind components U;q and Vj, from the ERA5
global reanalysis database (Hersbach et al., 2020). This dataset was used in a pre-
liminary approach, it was chosen mainly for accessibility reasons, although in a
second approach it would have been more relevant to consider the CFRS reanal-
ysis dataset since it corresponds to the wind forcing of the wave data.

Figure 2.4 illustrates the spatial footprint of the wind field corresponding to
the maximum of H, in the dataset. This preliminary work highlighted, for extreme
H,, dominant sectors of wind direction. But it also raised some limitations due to
the large spatial extent of wind fields and the complex processes involved in the
generation of extreme sea states, which imply the superposition of very different
wave regimes (swells and wind sea). Obakrim et al. (2022) addressed this issue
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using a downscaling approach based on weather-types. This approach was also
investigated by Michel et al. (2022), relying on deep learning methods. One draw-
back of these studies is that it requires to take into account the whole wind field
over the North Atlantic Ocean.

To avoid this, we decided to exploit the somewhat space-time Markovian be-
haviour of extreme H,. Indeed, there is a strong spatial and temporal depen-
dency, notably in the extremes, among the nearest data points due to the wave
propagation (see Figure 2.5). Furthermore, the benefits of considering a wave
field instead of a wind field is that the former contains most of the information
resulting from the complex wave generation processes.
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Figure 2.5: Measure of asymptotic dependence y between wave data points from
IOWAGA and the location of interest extracted from HOMERE (green triangle
point).

The advantage of the global IOWAGA database is that it can be run rapidly.
Whereas HOMERE is slower to run, due to its strong refinement. Thus, finding
a relationship between the large-scale model (represented by IOWAGA) and the
small-scale model (represented by HOMERE) would allow rapid calculations of the
probabilities of extreme H at the location of interest.

In Paper | (Legrand et al., 2022), we will built on the relation between a large-
scale grid point and a small-scale grid point of interest, near the coast (see Figure
2.7). The proposed model will allow for a statistical downscaling of extreme H,
from the global wave model to the coastal model.

2.1.3 Extended generalised Pareto distribution

Among extreme value methodologies, GP models (see Section 1.1.2) are power-
ful tools for modelling extreme climate observations. However a major drawback
of such methods is the threshold choice. To answer this problem, threshold se-
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lection methods have been proposed (see, e.g. Raymond-Belzile (2019), Chapter
1).

Another drawback is that by definition of GP models, only values that are above
the threshold are considered. But for some applications, one needs to model
the entire range of the data. For instance, this is the case in Paper |, where we
want to model H, exceedances given moderately high values of H, i.e. we look
at quantities of the following type

Hy—u| Hg > u,

but for moderate threshold w.

In this context, different models have been proposed to describe the range of
observations. For example, studies have considered piece-wise models, for which
one consider a GP model above the threshold and a parametric model for the
bulk below the threshold, for wave applications people considered for instance a
truncated Weibull (Randell et al., 2016) or a truncated Gamma distribution (Ross
et al., 2017).

However such models are discontinuous at the threshold. To alleviate this,
Carreau and Bengio (2009) developed a mixture GP model, with a smooth tran-
sition at the threshold, from an hybrid GP distribution that combines a Gaussian
and a GP tail. Yet this model is rather complicated to use in practice due to the
strong continuity constraints.

Recently, Naveau et al. (2016) (see also the references therein) proposed a
model that bypasses the threshold selection and models the entire range of data,
the so called extended generalised Pareto distribution (EGPD).

The EGPD is a distribution defined on (0, c0) whose distribution function is
given by

F(z) = G [Heo ()],

where G is a continuous distribution function on [0, 1] and H,, is a GP distribu-
tion function as defined in Section 1.1.2 (Chapter 1). In Naveau et al. (2016), several
constraints are required for GG in order to ensure the lower and upper tails be-
haviours. Four different parametric models for G are derived.

In this study we will only use the first one, which in practice appears to be flex-
ible enough (Tencaliec et al., 2019; de Carvalho et al., 2021; Rivoire et al., 2021; Le
Gall et al., 2022), and given by G(v) = v". This model has therefore three param-
eters: a scale ¢ > 0, a shape ¢ € R (controlling the upper-tail behaviour) and a
second shape parameter x > 0 (which controls the shape of the lower tail). Figure
2.6 depicts the density of the EGPD for different values of «.

In Paper | bellow, the EGPD will be used for marginal modelling, as described
in Equation (2.2). The review of Jonathan and Ewans (2013) on the statistical mod-
elling of extreme significant wave heights highlights the necessity of taking into
account covariates effects. For this, Generalised Additive Models (GAMs) provide
a nice flexible framework (Hastie and Tibshirani, 1986).

63



CHAPTER 2. JOINT STOCHASTIC SIMULATION OF EXTREME COASTAL AND OFFSHORE
SIGNIFICANT WAVE HEIGHTS

0.6 0.8 1.0

Density

0.4

0.2

0.0

Figure 2.6: Densities of the extended GP distribution for different values of the
shape parameter k, with ¢ = 0and o = 1.

Recall that the simplest regression model, the linear model, can be written in

compact form as
Y~ N(u, 0%,
= X0,

where X is the design matrix and  the vector of parameters. A GAM is a gen-
eralisation of the linear model, that allows for response distributions other than
Gaussian, for a certain degree of non-linearity in the model and with linear pre-
dictors specified as smooth function of the covariates. It can be written as

Y ~ some exponential family distribution,
J
gE[Y]) = XB+ > si(x;),
j=1

where g is a smooth monotonic link function and s; are smooth functions of
some covariates (zy,..., ).

The smooth functions s; are typically represented as linear combinations of
basis functions b;

K
Sj(.ilj) = ZO&chbj,k(.iE), 1 S] < ']7
k=1

where «a;;, are some coefficients to be estimated. The basis functions b, are
completely known, and different basis (also called splines) can be considered for
a same model, such as natural cubic splines, thin plate splines, tensor product
splines (see Perperoglou et al. (2019) for a comprehensive review, with applica-
tions in R). A complete introduction on GAMs can be found in Wood (2006).
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The above GAM considers only single-parameter distributions with mean pa-
rameter that vary as a smooth function of some covariates. Such models have
then been extended to distribution families with more than one parameter. For
example, regarding extreme value models, Chavez-Demoulin and Davison (2005)
proposed to model the behaviour of extremes with GAMs by allowing the GPD pa-
rameters to be represented as smooth functions of covariates. Yee and Stephen-
son (2007) linked an extended version of GAMs (named Vector Generalised Addi-
tive Models, VGAM3) with EVT. All these models are built for extreme value models.
However, as discussed previously, we wish to model values that are not necessar-
ily extreme, relying on the EGPD.

To model non-stationarity with EGPD models, Le Carrer (2022) developed an
add-on to the gamlss package (Stasinopoulos et al., 2008). GAMLSS (Generalised
Additive Models for Location, Scale and Shape) allows for GAM forms of (up to)
four-parameter distributions. In the case of the EGPD, it can be written as

Y ~ EGPD(&, R, 0)

91(§) = Xuf1 +sia(@1) + -+ 510, (T1,0),
g2(Kk) = Xofa + s21(221) + -+ + 52,5, (2,1,),
g3(0) = X33 + s31(x3,1) + -+ + 83,55 (73,75),

where, for i € {1,2,3}, g; is a link function, X; is the design matrix containing
the linear additive terms, f3; is the vector of linear parameters and (s; ;)i1<;<J, are
the smoothing functions of the explanatory variables (z; 1, ..., ;). The imple-
mentation of Le Carrer (2022) allows to consider negative shape parameters ¢ by
setting g, as an identity link, allowing an unconstrained search domain for the in-
ference of £. Note that the model fitting is performed using maximum penalised
likelihood estimation.

Thisisusedin Paper|to let the scale parameter o of the EGPD vary as a smooth
function of the peak period and peak direction (see Equation (2.2)).

A final remark is that besides GAM related models, other recent approaches
have been considered to let the parameters of the EGPD vary given some covari-
ates. For example, de Carvalho et al. (2021) developed a Bayesian approach to
learn the effect of covariates on an EGPD-based model.

Xk 3k

Below, Paper | (Legrand et al., 2022) is reproduced as it will be submitted. It
was written and developed by Juliette L. under the supervision of Pierre Ailliot,
Philippe Naveau and Nicolas Raillard.

3VGAMs are more general models than GAMs, that allow for multiple linear predictors and en-
compass models outside the exponential family distribution (Yee, 2015). These models encompass
the cases where Y is a vector.
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2.2 Introduction

French coastlines have been particularly affected by extreme maritime events in
the past (Nicolae Lerma et al., 2015). Co-occurrence of high tidal coefficients, at-
mospheric surge conditions and specific sea states can lead to extreme maritime
events. These events are particularly crucial for assessing flooding risks and their
consequences (Genovese and Przyluski, 2013; Bertin et al., 2012). According to the
special IPCC report (see Collins et al. (2019)), extreme wave heights, which con-
tribute to these extreme maritime events, have increased over the past few years.
The recent IPCC report (Seneviratne et al., 2021) indicates, with high confidence,
an increase in the occurrence and magnitude of such coastal events in the fu-
ture. More specifically, Caires and Sterl (2005) showed that the most extreme
wave conditions were expected to occur in the North Atlantic, which include the
Bay of Biscay, our study area.

Sea surface elevation over a geographical area results from the superposition
of waves generated by local winds and by remote swell (generated in distant re-
gions). The characterisation of this complex surface is called a sea state and to
describe it, various parameters are available. In this work, we will focus on three
variables: the significant wave height denoted H, [m], the peak period, 7, [s], and
the peak direction, D, [°] (see e.g. Holthuijsen (2007) for more details).

From a coastal risk point of view, a fundamental question is to determine how
moderately high offshore significant wave heights can produce large coastal H;.
Peak direction and peak period influence the relationship between coastal and
offshore H,. In this context, our main goal is to propose and study a stochastic
simulator that, given offshore conditions (7},, D,, H, moderately high), produces
jointly offshore and coastal extreme significant wave heights. The left-hand side
map of Figure 2.7 shows the two locations of interest.

From such a stochastic generator (1st goal), many products can be derived. In
particular our second objective is to propose a conditional simulation model (2nd
goal). The framework for each step of this study is summarised in Table 2.1. In
order to make the two simulation models as flexible as possible, non-parametric
algorithms are derived using resampling techniques (or non-parametric bootstrap
(Efron, 1979)). While this study focuses on simulation of extreme H,, and as illus-
trated by the numerical simulations in Section 2.5, the two non-parametric algo-
rithms developed could be applied to a broad range of data.

In multivariate extreme value analysis, one is often interested in the joint be-
haviour of the variables as they become large. As illustrated by the right-hand side
of Figure 2.7, which depicts a scatter plot between H, and H,, large values tend
to occur simultaneously. For this specific type of dependence, called asymptotic
dependence (Coles, 2001), models from the class of multivariate Extreme Value
Theory (EVT) can be used. To achieve the two objectives (1st Goal and 2nd Goal),
we will therefore propose two simulation algorithms based on multivariate Peaks
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H. H, D, T

hS]

Inference (VARV} vV oV
1st Goal: Joint simulation X X VvV Vv
2nd Goal: Conditional simulation x Y, VARV

Table 2.1: Summary of available data for each step of this study. A tick v (resp. a
cross x) indicates the availability (resp. non-availability) of the data.
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Figure 2.7: (left) Portion of IOWAGA hindcast database grid, the red dot cor-
responds to the "offshore" point (data extracted from the IOWAGA database)
and the green dot corresponds to the "coastal" point (data extracted from the
HOMERE database). (right) Scatter plot of the coastal significant wave heights ver-
sus the offshore significant wave heights with the different thresholds considered.

The black dots belong to the region where the multivariate model is fitted.

over Thresholds (Sec. 8.3.1 Beirlant et al., 2004). Note that to assess whether data
fall within the class of asymptotic dependence or not, summary statistics have
been developed such as the dependence measures y and x (Coles et al., 1999) and
plots of these measures (not shown here) confirm strong dependence between
large values of H, and H..

For weakly dependent extremes, conditional models based on Heffernan and
Tawn (2004) should be favoured to deal with our 2nd goal, see for example Towe
et al. (2017); Shooter et al. (2019); Tendijck et al. (2021).

Before modelling the joint behaviour of large values, it is necessary to model
margins (Beirlant et al., 2004). To visualise this task with respect to our data, the
empirical histograms displayed in Figure 2.8 indicate that, given {H, > v,} (mod-
erately high offshore significant wave heights), a traditional univariate extreme
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Figure 2.8: (left) Empirical histogram for the coastal significant wave height thresh-
old exceedances and (right) similarly for the offshore significant wave heights
threshold exceedances, illustrating that fitting a generalised Pareto distribution
(Coles, 2001) is not suitable for the coastal data. The coastal marginal threshold is
defined by v, := min (H,; H, > v,).

value approach based on fitting a generalised Pareto distribution (GPD) to the
exceedances (Coles, 2001) is not appropriate. To tackle this issue, we use the ex-
tended generalised Pareto distribution (EGPD) introduced by Naveau et al. (2016)
which handles this type of setting (see also Papastathopoulos and Tawn (2013)),
more details are given in Section 2.4.

Furthermore, like many other environmental data, extreme H, are non-
-stationary with respect to covariates (Jonathan and Ewans, 2013) and marginal
models need to take into account this non-stationarity (e.g. Ewans and Jonathan,
2008; Méndezet al., 2008; Casas-Prat et al., 2014). To incorporate non-stationarities,
Chavez-Demoulin and Davison (2005) proposed to let the parameters of an ex-
treme value model vary as smooth functions of covariates. This has been inten-
sively applied to oceanographic data (e.g. Feld et al., 2014; Jonathan et al., 2014;
Ross et al, 2017, ...). However, there are only a few papers dealing with non-
stationary EGPD (de Carvalho et al., 2021; Haruna et al., 2021). In this study, and as
illustrated in Figure 2.9, the marginal EGPD models parameters will be described
as smooth functions of the covariates 7}, and D,,.

The key steps of our study are the following: (1) marginal regression modelling
within the class of EGPD, (2) transformation of the data to common exponential
margins, (3) modelling extremal dependence between the variables using multi-
variate generalised Pareto model (hereafter MGP models) (Rootzén and Tajvidi,
2006), (4) non-parametric simulation of bivariate extreme H, within the class of
MGP distributions. In our modelling scheme, different steps are novelties.To our
knowledge, little attention has been paid in the literature to the modelling of mul-
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Figure 2.9: Dependence of H, with respect to 7}, and D, (left) Offshore significant
wave heights H, given peak period 7). (right) Estimated quantiles of H, given the
peak direction D, for different quantile levels ¢ € {0.25,0.5,0.75,0.9,0.99}, esti-
mation is performed using smoothed quantile regression (Koenker et al., 1994).

tivariate non-stationary extremes using EGPD and to the non-parametric simula-
tion within the MGP class.

Our paper is organised as follows. In Section 2.3, the sea state data are pre-
sented and the marginal inference incorporating covariates in the EGPD modelling
is described in Section 2.4. In Section 2.5, the non-parametric method to simulate
MGP vectors is presented and some numerical experiments are shown. Two algo-
rithms are outlined, one for bivariate simulations and a second one for conditional
simulations. Both algorithms are applied in Section 2.6 to the sea state data.

2.3 Sea state data

Our study is carried out in the northern part of the Bay of Biscay in France. The
specificity of this region is that it is exposed to the Atlantic Ocean and therefore
subject to complex superpositions of wind generated waves and swell. The data
are extracted from two different wave hindcasts provided by IFREMER and con-
sist of simulations of sea states by a numerical model. First, the IOWAGA database
(Ardhuin and Accensi, 2014) corresponds to sea states parameters that are gener-
ated by the wave model WAVEWATCH-IIl and forced by CFSR winds on a Global grid
(0.5° resolution grid in latitude and longitude). HOMERE is the second database
(Accensi and Maisondieu, 2015), also based on WAVEWATCH-1Il model and forced
by IOWAGA on the wet boundaries, but on an unstructured grid covering only the
English Channel and the Bay of Biscay, more refined close to the coast and with
the inclusion of currents and water levels.

As mentioned in the introduction, we restrict our attention to two specific loca-
tions: an offshore grid point (47°N, 3°W) from the IOWAGA database and a coastal
point from the HOMERE database, near the French coast (47°24N, 2°78W) cor-

69



CHAPTER 2. JOINT STOCHASTIC SIMULATION OF EXTREME COASTAL AND OFFSHORE
SIGNIFICANT WAVE HEIGHTS

responding to the SEM-REV sea test site (Mouslim et al., 2009) (see Figure 2.7).
Among all the sea states parameters, the significant wave heights H,[m] from the
two locations, the peak period 7),[s] and the peak direction D,[°] only from the
offshore location are used. Data are available at 3-hour intervals spanning from
1994 to 2016. More precisely, the original HOMERE database has a 1-hour resolu-
tion time step but the IOWAGA database is sampled every 3 hours, so to obtain
data at the same time scale a sub-sampling of the HOMERE database every 3 hours
is performed. In the following, H. (resp. H,) denotes the coastal (resp. offshore)
significant wave heights. A scatter plot between H.and H, can be found in Figure
2.7, highlighting a strong dependence structure between the variables. Data are
then split into two sets:

» Set 1 contains the first 70% of the data and is used for the inference of the
marginal regression models and the preliminary steps for the simulation of
H, (see Section 2.6);

+ Set 2 contains the remaining 30% of the data and is used for the simulation
of extreme H,.

2.4 Marginal regression analysis

2.4.1 Marginal regression

In this section, only the data from Set 1 are considered. A regression model for
H.and H, is chosen. We pre-select the extremes by considering, within the Set 1,
data such that H, > wv,, i.e. belonging to the right rectangular region in Figure 2.7,
where v, is defined as the 0.98 quantile of H,. A common choice when someone
is interested in extreme values is to work with the class of the generalised Pareto
distributions (GPD) (e.g. Coles (2001)). However, this type of model always raises
questions on the choice of the threshold and the GPD approximation holds true
only for the very high values. In our case we want to model all the data that are
above the blue line in Figure 2.7, this means that values are not necessarily ex-
tremes. To overcome such problems, Naveau et al. (2016) proposed a new class
of extreme value distributions, called extended generalised Pareto distributions
(EGPD). The EGPD class is suitable for modelling the entire range of data, not only
the most extreme values, and avoids the need for careful threshold selection (see
Figure 2.8). In Naveau et al. (2016), four parametric models are proposed. We re-
strict ourselves to the first and simplest one (corresponding to the EGP3 model
introduced by Papastathopoulos and Tawn (2013)), which appears to be flexible
enough, and whose cumulative distribution function is of the form

F(zx) = (1 - (1 + %U) _1/§>H. (2.1)
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The model has three parameters: scale ¢ > 0, shape £ € R and an additional
parameter x > 0 which controls the shape of the lower tail. In Naveau et al. (2016),
the authors developed the EGPD for non-negative shape parameter £. Indeed,
the main applications were the modelling of daily rainfall (e.g. Naveau et al., 2016;
Tencaliec et al., 2019; de Carvalho et al., 2021; Rivoire et al., 2021), which are heavy-
tailed (£ > 0). In our case, as reported in Jonathan and Ewans (2013), extreme H
data are generally described by upper-bounded tail distributions. Still, the case
¢ < 0 can be handled by model (2.2).

As mentioned in the Introduction, H, data are non-stationary (see Figure 2.9),
see also Jonathan et al. (2014); Feld et al. (2014); De Leo et al. (2021). Therefore, we
regress H, on the peak direction D, and the peak period T,,. We choose here to
put the dependency on the scale parameter. The regression marginal models can
then be written as follows

( | = (1 (e ) -
P(H, —v, <x|H, >v,,1,,D,)=1|1— 1++) ,
per 0o(Tp, Dy)

5 x —1/& fe (2.2)
P(H, —v. < z|H, >v,,T,,D,))=[1—- 1+ —— .
( ° i for T p> ( " UC(Tpa D:D))

The coastal marginal threshold wv. introduced in (2.2) is defined by
ve := min(H,; H, > v,) so that the minimum of H,—wv, is equal to zero. The regres-
sion marginal models (2.2) are estimated using the R package gamlss (Stasinopou-
los et al., 2008) with the EGPD family (Le Carrer, 2022). The inference is performed
using maximum penalised likelihood estimation (note that the model fitting is
achieved with the CG algorithm (Cole and Green, 1992)). In our model (2.2), we as-
sume that the parameters o, and o. vary smoothly with 7,, and D,,. This is achieved
using tensor product of cubic regression splines. The parameter estimates for the
regression marginal models are reported in Table 2.2. Asymptotic 95% confidence
intervals for each parameter are given in brackets and derived from the asymp-
totic variance-covariance matrix of the fitted models.

& K

Coast  —0.11[—0.15,—0.07] 4.1 [3.57,4.64]
Offshore —0.10[—0.16, —0.04] 1.16 [1.05, 1.26]

Table 2.2: Estimated parameters for the regression marginal models. 95% asymp-
totic confidence intervals are given in brackets.

Both estimated shape parameters are negative but close to zero, which sug-
gests light-tailed or bounded distributions. This is in accordance with previous
studies and the physical behaviour of wave heights in shallow waters (Castillo
and Sarabia, 1992; Vanem and Fazeres-Ferradosa, 2022). The goodness of fit of
the model (2.2) are shown in Appendix 2.A.
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2.4.2 Covariates effects

To visualise the effect of the covariates on the scale parameters, we choose to
consider the theoretical expectation of the fitted EGPD models. As can be seen
from Equation (2.3) (and similarly for H,), the theoretical expectation of model
(2.2) is directly proportional to the scale parameter (see Naveau et al. (2016)):

E(H.|H, > v,,Ty,D,) = 0.(T), D)) — [kcB(ke, 1 — &) — 1], (2.3)

1
2

where B denotes the Beta function defined by

1
B(a,b):/ t7 N1 —t)tdt.
0

Empirical ratio H./H,
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Figure 2.10: (left) Interpolated ratio of empirical extreme coastal significant wave
heights H. and extreme offshore significant wave heights H,. The interpolated
surface between the data points is performed using local polynomial interpolation
of degree 2. (middle) Ratio of the predicted conditional expectations of extreme
coastal significant wave heights H. and extreme offshore significant wave heights
H,, conditionally to the offshore peak direction D, and the offshore peak period
T,. (right) Absolute difference between the interpolated empirical ratio and the
predicted ratio. On the three plots, observed data points are superimposed.

The first panel in Figure 2.10 represents the empirical ratio H./H, given T,, and
D, values. Local polynomial interpolation (LOESS, Cleveland and Devlin (1988)) is
performed between the observed data points to get values on a regular grid of D,
and T, ranging from 230 to 300 degrees for the peak direction and from 10 to 20
seconds for the peak period. This first panel is then compared to the estimated
ratio of the two conditional expectations (second panel in Figure 2.10), which, from
Equation (2.3), is proportional to

6.(Ty, Dy) /3, (T D,) .

72



2.5. Multivariate Pareto model

This ratio can give us an idea of the propagation of the wave energy from the off-
shore to the coast as a function of the covariates. These results can be physically
interpreted: the loss of wave energy between the offshore and the coast is lower
for small periods but also for waves coming from the SW rather than the NW due
to the bathymetry (see the map on Figure 2.7). In the third panel of Figure 2.10,
the dark blue region, corresponding to 7, > 16s and D,, < 255°, has no data and
consequently, produces large differences due to extrapolation issues.

Using the estimated 6.(7,,, D,) and 6,(7}, D,), the H, data are then transformed
to common exponential scale using the probability integral transform

HE = —log {1 = Fy[(H, = v,)/3,(T;, D))}

' ) ) (2.4)

H;::—kg{l—ﬁﬁ@ﬂ—vdﬂ%ahl%ﬂ}a
where F, (resp. F.) is the fitted EGPD(&,, i, 1) cdfs (resp. EGPD(E,., &, 1)) from
Equation (2.2).

2.5 Multivariate Pareto model

In this section, the threshold exceedances of H; transformed to common expo-
nential margins are modelled. This vector is denoted H¥ := (HE, HF) in the fol-
lowing. For that, we adapt the definition of Rootzén and Tajvidi (2006) of bivariate
threshold exceedances given as

[H” —u|H" £ u] (2.5)

where u := (u., u,) € R2 and H” £ w means that HX > u. and/or HY > u,, that
is to say we are extreme in at least one of the two components. Then multivariate
EVT theory states that (2.5) can be well approximated by a multivariate generalised
Pareto (MGP) distribution (Rootzén and Tajvidi, 2006). Note that there are differ-
ent equivalent definitions for multivariate threshold exceedances (see Section 8.3
of Beirlant et al. (2004)).

Rootzén et al. (2018a) derived a stochastic representation of standard MGP vec-
tors considering that a bivariate random vector Z follows a standard MGP distri-
bution if, and only if,

Z =FE+T —max(T), (2.6)

with T"a random vector and E a unit exponential random variable independent of
T. Note that the standard MGP distribution is supported by the set
L:={x eR%x £ 0}.
In our study, Equation (2.6) is adapted to Z = (Z;, Z,) defined as
7y = HEF —u,|HE > u, or HF > u,,
Zy = HF —uJHY > u,or HY > u..
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2.5.1 Simulation of bivariate standard generalised Pareto dis-
tributed vectors

Kiriliouk et al. (2019) established several parametric MGP models by setting explicit
densities for T" in a multivariate setting. In the following, we consider only vectors
of dimension 2, i.e. Z = (Zy,Z5) and T' = (T3,T5). To bypass the choice of the
underlying distribution for T, we start from the following rewriting of Equation
(2.6),
{21 — E+ Ala, 8)
Zy = E — Al o,

where A := 7, — Z, =T} — T, and 1 4 denotes the indicator function, equals to 1
if Ais true and 0 otherwise.

Equation (2.8) is the basis for our simulation algorithms. From this equation,
we see that we need to simulate values of A and E independently, instead of
(T1,T5). Generating independent, and identically distributed, unit exponential is
trivial, so the main difficulty is to simulate A. This can be achieved by bootstrap-
ping (see Efron (1979)). Our approach is then described in Algorithm 1 and a theo-
retical proof can be found in Appendix 2.B.

Algorithm 1 Non-parametric bootstrap MGP simulation
1. input A sample (Z,;, Z»,;)1<i<» from a MGP distribution
output A simulated sample (Z{TZ), Zéfz))lgkgm, potentially with m # n
. procedure
Define A, : =27, — Zy; for1 <i<n
Generate m realisations E,gm) ~ Ezp(1l), independently of (A;)i<i<y, for
1<k<m
Bootstrap m realisations A,(cm), 1 <k<m,from(Ay,...,A,)
: end procedure
return Zﬁz) = E™ 4+ Ag”)]lA(Tn)<0 and ZQ(ZZ) = B — AlMy
k<m "

R wWoN

N o

for1l <

o

(m) !
A7 >0

2.5.2 Numerical experiments

In the following, we simulate MGP vectors Z = (Z;, Z3) from the representation
(2.6) with different parametric models on (7}, 7;) and we compare with our sim-
ulation algorithm. The different experiments are reported in Table 2.3 and some
graphical results are shown in Figure 2.11 which displays for each model a scatter
plot of the data, the measure of extremal dependence x(u) for increasing values
of u, and the marginal quantile-quantile plots. We use the measure x(u) which
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gives a measure of asymptotic dependence between two variables X and Y (for
more details see e.g. Coles et al. (1999)) and which is defined by

Xw) =P (Y > F'(u) | X > Fy'(u)), u € (0,1).

Bivariate model Joint distribution of T' Parameters
. M1 = 0
(a) Gaussian ( 1 p
- N (p1, p2), p2 =10
symmetric p 1 p—04
(b) Gaussian % <(M ) (1 p>) Z“l B 0
. 1, M2), 2 —
asymmetric p 1 p—04
(c) Logistic F(z1,29) = (1 + e T/on 4 (3*"’02/"2)_1 o =1
’ 09 = 5
(d) Gumbel F(z1,29) = exp [— exp{—z1/01}] exp [ exp{—z2/02}] Z; i
A =2
(e) EXponential S(ZEl, 5(72) = exXp {—/\1[)31 — )\21’2 — /\3 max(xl, CL’Q)} )\2 =10
)\3 - 1

Table 2.3: Overview of the different experiments carried-out. For each, we give the
joint distribution F'(z1, z5) when it writes easily or the survival function S(z1, x2).
In the third column, we give the different parameters values used in the numerical
experiments.

In Table 2.3, (a) and (b) are two bivariate Gaussian models with same corre-
lation coefficient p < 1 but with uy # us for (b), leading to asymmetry. Model
(c) corresponds to the Type | bivariate logistic distribution proposed by Gumbel
(1961). For model (d) we consider two independent Gumbel distributed variables
with different scale parameters. And lastly, (e) corresponds to a bivariate expo-
nential distribution as defined in Marshall and Olkin (1967).

As seen in Figure 2.11, Algorithm 1 successfully simulates draws from the para-
metric simulations in terms of the marginals Z; and Z,, but also recovers well the
dependence structure when looking at the measure of dependence x(u).

2.5.3 Conditional simulation within the MGP class

From an application perspective, we also want to be able to simulate conditionally
on one of the two variables. In this section we describe the conditional simulation
algorithm for the MGP model.
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Figure 2.11: Each panel line corresponds to one of the parametric model (a) to (e),
and shows from left to right: (1) Scatter plot of simulated data with the paramet-
ric model with sample size n = 10000 (black dots) and sampled data from one
simulation using Algorithm 1 with sample size m = 10000 (blue dots); (2) Empirical
estimates of the measure of asymptotic dependence x(u) for the simulated data
with the parametric model (black line) and for the sampled data from Algorithm 1
(red line), with associated 95% pointwise confidence intervals based on 1000 boot-
strap replications; (3) and (4) Quantile-quantile plots for Z; and Z, with associated
95% pointwise confidence intervals based on 1000 bootstrap replications.



2.5. Multivariate Pareto model

From Equation (2.6) we can derive
22221+T2—T1221—A. (2.9)

From Equation (2.9), we can design a simulation strategy but caution is re-
quired because A and Z; are not necessarily independents. But for some values
of Z1, this will be the case. To see this, one can compute the conditional distri-
bution of A given Z; = z; starting from the joint distribution function of (Z;, Z5)
which is given by

fizi.z0) (21, 220) = €7 2) £ (2 — 2001,y Lyer ( fOF 21,20 € R,

where fa denotes the distribution function of A.

1st case: If z; > 0. In this case, noting that if z; > 0 then 1., .,)cr = 1, the
marginal distribution of Z; is given as follows

fz,(z1) = e 7K,

where K := ffoo " fa(u)du + [;° fa(u)du and does not depend on z;.

Therefore, the conditional distribution of 7, given Z; = z; when z; > 0is given
by

1
[z, (22 | 21) = T [falz — 22) L5z + €72 fa(zr — 22) 1y <o |

From this, the conditional distribution of A given Z; = z; > 0 can then be de-
duced:

Fan (8] 21) = o [Fal0)Lozo + € Fa(6)Lsco]. (2:10)
This shows that, conditionally on Z; > 0, A does not depend on Z;.
2nd case: If z; < 0. Then, noting that 1., .,)er, = 1.,50 if 21 < 0, we get
fr (1) = e K(2),
where K(z) := [7._e"fa(u)du. And we can derive the conditional distribution of
Zy given Z; = z; < 0 as follows
1
K(z=1)
The conditional distribution of A given Z; = z; < 0 is then given by
a1 1) = 27

From Equations (2.10) and (2.11) we derive the conditional simulation algorithm
described in Algorithm 2, where the simulation procedure is split into two cases:

T 2012, (22 | 1) e fa(z1 — 22)14,50.

€’ fa(6)Lses, - (2.11)

1. If z; > 0, we can sample values of A independently of 7,

2. otherwise, if z; < 0, we use a rejection sampling approach to approximate
the targeted conditional density in Equation (2.11).

Similarly, we could also derive a simulation scheme of Z; given Z, = 2.
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Algorithm 2 Non-parametric conditional MGP simulation
1. input A sample (A;)1<i<, ; a realisation z; of Z;
2: output A simulated sample (Zg',?)lgkgm conditionally on Z; = z;, potentially

with m # n
3. procedure
4: if z;, > 0 then
5: Define A|Z1+ the subset of (A;);<i<, such that Z; > 0
6: Bootstrap m realisations A,(gm), 1 <k <m,from A|zl+ independently of
Zy
7 else
8: for1 <k <mdo
9 Sample one realisation A,(Cm) from (A;)1<i<n independently of Z;
10: Generate a random number u € [0, 1]
: ; (m)
1 while u > exp(A) )]lA,(j")<Z1 do
12: Repeat steps 9 and 10
13 end for

14: end procedure
15: return Zéjz) =2 — A,E;m) for1<k<m

2.5.4 Numerical experiment continued

As for the bivariate simulations, we can illustrate Algorithm 2 with numerical ex-
periments. We choose here to show the results only for Model (a) (Symmetric
Gaussian) since for this specific model we have an explicit form for the theoretical
distribution of A. The results are presented in Figure 2.12 where we simulated the
conditional distribution of Z, for eight different conditioning values. The sampled
and theoretical conditional distributions appear to be in close conformity.

2.6 Application to extreme significant wave height

The methodology presented in Section 2.5 is applied to the joint and the condi-
tional simulations of extreme significant wave heights. For that, the sample of
bivariate threshold exceedances (7, Z,) defined in Equation (2.7) is used as input
data for Algorithm 1 or Algorithm 2. The thresholds u, and . in (2.7) are defined
as the 0.8 quantile of H”, or equivalently of HE.

Recall that in both cases, simulations are performed on the exponential scale.
A final step of back transformation is then necessary to get simulations of H, on
the original scale. This final step corresponds to part 3 (resp. 5) in the following
procedure for the joint (resp. conditional) simulation of H,. For the sake of clar-
ity we now divide the joint and the conditional simulation scheme of H in two
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Figure 2.12: Sampled conditional distribution of Z, given Z; = z; using Algorithm
2 for the asymmetric Gaussian model with sample size n = 10000. Eight exper-
iments are presented for different quantiles of Z; whose values are reported in
each paneltitle. The sample size for each simulation is m = 10000. The theoretical
conditional density is superimposed in red.

separate sections.

2.6.1 Joint simulation of significant wave heights

The joint simulation scheme for extreme H, is described hereafter. In the follow-
ing we fix the pair value (¢,,d,) € R? which may be taken from Set 2.

1. Compute 6,(t,,d,) and 6.(t,, d,) from the marginal EGPD models fitted on
Set 1 (see Section 2.4).

2. Simulate m pairs of (z1,22) applying Algorithm 1 with input data (7, Z5)
as defined in (2.7). We therefore obtain m simulated pairs
((z11,221)s - - - s (Z1.m, 22.m)) for a fixed value (t,, d,).

3. Transform the simulated values to the original scale
hoi = 0Oolty,dp)F (1 — e~ Gratu)) Ly e R™,
hei = Golty, dy)F7 (1 — e B2atue)) 4y, € R™,

where ]3;1 (resp. Fgl) is the inverse cdf of the EGPD(éO,/%O,l) (resp.
EGPD(&., ke, 1)) estimated in Section 2.4.

This procedure is then applied to four selected pairs (¢,,d,) from the Set 2
corresponding to the four largest H, of this dataset. Figure 2.13 depicts simulated
pairs of offshore and coastal H, with simulation sample size m = 1000.
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Figure 2.13 shows that for these specific conditions, Algorithm 1 successfully
generates extreme H, and H,. Note that since the four points considered are the
largest observations, they are expected to be among the extremes of the simu-
lated distributions.
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Figure 2.13: Sampled values of coastal versus offshore significant wave heights
from Algorithm 1, m = 1000 pairs of points are simulated. Each panel corresponds
to a fixed value of (t,, d,) corresponding to the four largest H. from Set 2 (in de-
creasing order). Next to each scatter plot, marginal distributions of simulated H,
and H. are depicted with boxplots. On both the scatter plots and the boxplots, the
red diamond-shaped points represent the true values of the coastal and offshore
significant wave heights for the four pairs.

Date-Time H.[m] H,[m] T,[s] D,[°] Jointprobability
1 2014-02-05 12:00:00 GMT  7.83 10.1 17.86 257 0.002
2  2011-12-16 03:00:00 GMT 7.74 10.4 13.89 262 0.045
3 2010-02-24 15:00:.00 GMT  7.62 10.0 15.15 259 0.057
4 2016-01-02 06:00:00 GMT 7.18 8.4 14.71 256 0.277
5 2013-12-24 06:00.00 GMT  7.08 8.4 14.71 253 0.388
6 2014-02-14 21.00.:00 GMT 7.06 8.3 14.08 248 0.691
7 2015-01-15 09:00:00 GMT 6.45 7.9 13.70 260 0.489
8 2016-03-28 03:00:.00 GMT  6.30 7.6 14.08 256 0.762

Table 2.4: Empirical joint survival probability of exceeding the observed extreme
significant wave heights h. and h, for the eight largest coastal significant wave
heights of Set 2. Only events from different storms are given (i.e. events separated
by more than 3 hours). Estimation is performed using m = 1.10° simulated pairs
(hois hei)1<i<m fOr each largest event with Algorithm 1.
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Table 2.4 describes the eight largest k. of Set 2, giving the time event and the
corresponding h,,t, and d, values. The last column of Table 2.4 gives
the empirical estimate of the joint survival probability defined as
1/m3°" 1{hy; > ho, h.; > h.}, applying the above procedure with simulation
sample size m = 1.10°. This estimated probability quantify the observations made
with Figure 2.13: for the most extreme events, the associated joint probabilities are
expected to be lower.

2.6.2 Conditional simulation of coastal significant wave heights

The conditional simulation scheme for extreme coastal H, is described bellow.
Note that the procedure is very symmetrical for simulating offshore H,. In the
following we fix the triplet value (h,, t,, d,) € R? which may be taken from Set 2.

1. Compute 6,(t,,d,) and 6.(t,, d,) from the marginal EGPD models fitted on
Set 1 (see Section 2.4).

2. Transform h, to the standardised space using the probability integral trans-
form:

A

BE = —10g {1 = Fl(he = v0) /6oty dy)] |
where F, is the EGP(fO, Ro, 1) cdf's.

3. Set z; := h%Y — u,, where v, is the threshold on the offshore H, on the expo-
nential scale.

4. Simulate z, applying Algorithm 2, only in the case z; > 0. Here A|zl+ is de-
fined from Set 1 through A|zl+ = (21 — Zy)1{Z; > 0}, with Z;, Z, as defined
in (2.7), and bootstrapped m times. We therefore obtain m simulations of
29 = (%221, .., 22.m) for a fixed triplet (h,, t,, d,), given z; > 0.

5. Transform the predicted values to the original scale
hei = 6c(tp, dp)Fc’l(l — e (atue)) Ly,
where F:-1is the inverse cdf of the EGPD(£,, i, 1) (see Section 2.4).

Note that in Step 4 above, the simulation is restricted to the case when z; > 0
for convenience, since our focus is on the simulation of extreme H..

The pseudo-algorithm described above is applied with all the triplet values
(ho, tp, dy,) from Set 2, with simulation sample size m = 1000. These conditional
simulations of coastal significant wave heights are then compared to the true val-
ues of H. from Set 2. The overall coverage probability (i.e. the number of times
the actual value of coastal H, is within the 95% range of the predicted distribution)
is equal to 95% and the simulations are shown in Figure 2.14. The simulations and
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the true H, values (red dots) are most of the time in good agreement. Since no
declustering approach has been adopted, consecutive observations, which be-
long to the same storm event, are kept. They are depicted with identical colour,
highlighting a temporal dependence structure between each storm cluster.

5 6 7 8 9

Coastal significant wave heights [m]
4

Figure 2.14: Boxplot of predicted H. conditionally on (H,, T, D,) using Algorithm
2. The simulation sample size is equal to m = 1000 for each observation. Red
dots represents the observed H, values from Set 2. The alternating colours depict
different storms: consecutive boxes with same colour correspond to observations
that belong to the same storm (i.e. separated by less than 3 hours).

The effect of the covariates T, and D, in the conditional simulations is de-
picted in Figure 2.15, showing that the simulation model is able to simulate both
the most intense and the more moderate H.. This plot also highlight for which
sea state conditions the simulations are far from the observed values. It appears
that the two predictions such that the observed H. value does not fall within the
95% simulation range correspond to small H. and H,.

2.7 Discussion and conclusions

Simulation of extreme events in a multivariate setting is of great interest to cap-
ture not only the statistical behaviour of the extremes, but also the dependence
between large values of complex processes. Based on the multivariate EVT, this
work presents two non-parametric simulation algorithms of bivariate generalised
Pareto distributed variables, without assuming any specific parametric shape for
the MGP model. Thanks to Algorithm 1, one can simulate joint extremes. As for
Algorithm 2, it allows the simulation of conditional extremes. Both methods have
been validated with numerical simulations.

We would like to point out that in the context of bivariate extremes, other
simulation algorithms have been developed. For example Marcon et al. (2017)
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Figure 2.15: Scatter plot from Set 2 with the peak direction D, on the y-axis and
the peak period T, on the x-axis. The dots’ colour corresponds to the value of the
coastal significant wave heights H.. The size of the dots corresponds to the value
of the offshore significant wave heights H,. The shape indicates if the observed H.
falls within the 95% range of the predicted distribution from the conditional model
where the simulation sample size is equal to m = 1000 for each observation.

proposed a simulation method with a semi-parametric structure for the extremal
dependence function, but it was not based on a MGP model and did not cover
non-stationarities. Michel (2006) derived a non-parametric simulation framework
of bivariate generalised Pareto variables using a different representation of MGP
vectors than the one used in this paper.

For application purposes and as a byproduct, a non-stationary marginal mod-
elling with the EGPD was also developed, adding covariate effects on the scale
parameter of the EGPD using smoothing splines.

We applied this work to the simulation of extreme significant wave heights
near the Brittany coast given specific offshore sea state conditions (7}, D,) with
compelling results. In both joint and conditional settings, thanks to the presented
algorithms, we are able to simulate realistic extreme H, events.

Note that in possible extensions of this work to climate projections, it is as-
sumed that data will not be available at the coastal location but only on a coarse
grid, similar to the IOWAGA Global hindcast. This argument is illustrated in Table
2.1, and is favour of the first pre-selection of the H, data through {H, > v,} for
the marginal regression analysis (see Section 2.4).

Extensions to the multivariate case will be the subject of future works. Con-
sidering more than two locations raises different modelling issues. It would also
be interesting to apply this methodology to other locations in order to ensure the
proper generalisation of the methodology.
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2.A Marginal regression modelling
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Figure 2.16: (left) Empirical histogram (grey) of the standardised extreme signifi-
cant wave heights exceedances (a) at the coast and (b) offshore. The fitted EGPD
density is superimposed. (right) The corresponding quantile-quantile plots with
associated 95% pointwise confidence intervals computed using parametric boot-
strap.
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2.B. Proof of Algorithm 1

We show here the goodness of fit for the marginal regression models defined
in Equation (2.2). As our models depend on some covariates, the diagnostic plots
presented here are built for the standardised H, exceedances which are defined as
(H. —v.) Jo.(T), D,) (and similarly for H,). From Figure 2.16, one can see that the
fits seem to be fairly good, a slight discrepancy in the lower values can be noticed
for the coastal model but this is not a major issue as the interest lies mainly in the
larger values.

2.B Proof of Algorithm 1

With the same notations as in Algorithm 1, let ' be the common distribution func-
tionof Ay,..., A, and F,%) be the empirical distribution function of the bootstrap
sample A™ .. A,

Lemma 2.1. If jlid) converges in distribution to F, as n and m tend to infinity, then
(Zl(f,’:), Zéj:))lgkgm converge in distribution to a bivariate GPD G where G is the com-
mon distribution function of the sample (Z1 ;, Z2;)1<i<n-

Proof. As P(E < u) = 1 — min(1l,exp(—u)) for any u € Rif E ~ Ezp(1), the
bivariate distribution function of (2™, Z{™) is equal to

P [(me), Zi") < (21, 22)} = 1-E [min (1, e min(zl*A(m)%(m)<ovz2+A(m)1A(m>>o))}
— 1—-F [mln (17 e~ min(z1—A(m),zz)—max(A(m),O)>} 7
for any (z1,22) € {x € R%; x £ 0}.
Then, one can show that the function x +— min(1, ), defined for z > 0, is

Lipschitz and bounded by 1. And applying the Portmanteau theorem, we have,
letting min(n, m) — oo,

P [(me)v Z§™) < (21, 2) | A, ... ,An} — 1 —E [min (1, e mn(zm822)-max(2,0))]
- 1—-F [mln (1’ emax(T1fz1,TngQ)fmaX(Tl,Tg)):| )

Which is the cumulative distribution function of the MGP vector (Z;, Z5) as defined
in Rootzén et al. (2018a) (Prop. 8). O

The assumption in Lemma 2.1is linked to the bootstrap asymptotic theory (e.g.
Bickel and Freedman (1981)).
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2.3 Summary of Paper |

To sum up

+ Paper | addressed the specific issue of joint simulation of extreme
environmental variables.

* Inthe context of asymptotic dependence, multivariate EVT provides
a solid mathematical framework.

Marginal treatment: non-stationary EGPD modelling, taking into ac-
count covariate effects on the scale parameter through smoothing
splines.

Dependence treatment: development of non-parametric simula-
tion of bivariate GP vectors, based on a simple rewriting.

Two algorithms for the simulation of extreme H, given offshore
conditions (7,, D,, H, moderately high), are outlined:

A first stochastic simulator that produces jointly offshore and

coastal extreme significant wave heights.

A second stochastic simulator that produces coastal extreme

significant wave heights given offshore significant wave heights.

-+ Underlying hypothesis of asymptotic dependence between H, and
H., otherwise other models should be considered.

- Focus on a specific site: to ensure the generalisation of the method,
other locations should be investigated.
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Chapter 3

Evaluation of binary classifiers for
asymptotically dependent and
independent extremes

Overview of Chapter 3

This chapter addresses another issue, that can be seen as a subsequent
step to the work of Chapter 2. Instead of building one prediction model,
assume that we have several prediction models available - or rather sev-
eral forecasts - and we want to compare the performance of each model.
Since this thesis focuses on EVT, this comparison should be made given
their capacity to capture extreme occurrences.

In the following, we study the specific case of binary classifiers, which
are the simplest type of forecasting and decision-making situation: an
extreme event did or did not occur. Such classifier tailored for extremes
will be called an extremal classifier and risk functions that answer our ini-
tial question will be developed. Their properties will be derived under the
framework of multivariate regular variation and hidden regular variation,
allowing to handle finer - or more specific - types of asymptotic indepen-
dence.

Section 3.1gives some preliminary notions on multivariate regular vari-
ations and the refinement to hidden regular variation. Their definition
and some examples are provided.

Section 3.2 up to Section 3.6 reproduces Paper Il (Legrand et al., 2021).
First, the construction of our risk functions is developed by investigat-
ing some specific cases: beginning with two naive classifiers and then
looking at a particular type of asymptotic independence (corresponding
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to hidden regular variation). We then propose an empirical estimator
of our risk functions, whose inferential properties are derived under the
framework of multivariate regular variation and hidden regular variation.
A simulation study compares different classifiers and indicates their per-
formance with respect to our risk functions. To conclude, we apply our
framework to the analysis of extreme river discharges in the Danube river
basin. The application compares different predictive algorithms and tests
their capacity at forecasting river discharges from other river stations.

Finally, Section 3.7 gives some further developments. We study in de-
tail the special class of linear classifiers and show that the optimisation
of our risk functions leads to a consistent solution. A tool to identify the
explanatory variables that contribute the most to extremal behaviour is
developed and applied to the river network data. To conclude, ideas for
extending this pre-selection tool to the case of hidden regular variation
are presented.

3.1 Preamble to Paper Il

Inthe previous chapter, we proposed a stochastic simulator for bivariate extremes
in the case of asymptotic dependence. Specifically, the conditional Algorithm 2
proposed in Paper | could be viewed as a statistical method to predict extreme
values of a given variable (e.g. extreme coastal significant wave heights). Now
imagine that we have a prediction model for the entire range of data, not only the
largest values. Then, a natural question in EVT is whether the model performs well
in predicting the most extreme values, and can we discriminate between different
models.

This question is in some ways similar to the notion of scoring rules used in
the forecasting literature where the aim is to provide summary measures of how
well a probabilistic forecast performs compared to the reality, but also in com-
parison with other competing forecasts. A good introduction can be found, for
example, in Jolliffe and Stephenson (2003). Evaluation of probabilistic forecasts is
beyond the scope of this manuscript, but we can mention some recent advances
in forecast of extreme events, reflecting various challenges that it raises. For ex-
ample, considering rare events as binary outputs (which is actually analogous to
our approach as explained below), Stephenson et al. (2008) discussed the advan-
tages and drawbacks of various risk functions. To obtain accurate extreme wind
gusts predictions, Friederichs and Thorarinsdottir (2012) derived closed-form ex-
pressions of the continuous ranked probability score (CRPS) (e.g. Gneiting et al.,
2007) for extreme value-distributed data. A weighted CRPS (Gneiting and Ranjan,
2011) has been applied to compare spatio-temporal predictions of extreme sea
surface temperatures during the EVA 2019 data competition (Huser, 2021). Finally,
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Brehmer and Strokorb (2019) and Taillardat et al. (2019) showed the limitations of
scoring functions to assess tail properties.

3.1.1 Binary classifiers and extremal risk

In Paper Il (Legrand et al., 2021) hereunder, we will not consider forecast models
directly but rather binary classifiers. In this context, the previous question now
becomes how to assess and compare binary classifiers, based upon a set of mul-
tivariate observations X and denoted ¢(X;u), with respect to their capacity to
capture ‘extreme’ occurrences of a binary response Y™ ¢ {—1,+1}. To set the
scene, one can imagine that the labels of Y encode the fact that a given random
variable H is above (i.e. extreme) or below (i.e. non-extreme) a given threshold u
(hence the above notations which depend on w):

v +1, if H > u,
-1, otherwise.

As is common practice in EVT, we will consider high thresholds « and call g(X;u)
an extremal classifier if it verifies some convergence conditions as u becomes
large. But then, and due to the inherent rarities of extreme events, there will
be many more —1 labels than +1. This leads somehow to a binary classification
problem with imbalanced classes and a wealth of models have been developed
in the machine learning community to cope with imbalanced data classification
(see, e.g. Haixiang et al. (2017) for a recent review).

In this context, our objective is not to construct such classifiers but rather to
design an appropriate risk function allowing for their comparison. This risk func-
tion will be defined as

P(g(X;u) #Y™)

(u) —
R™(g) P(Y® =1org(X;u)=1)

and will depend on the threshold u considered. Subsequently, and in the same
vein as the tail dependence coefficient x(u) (Coles et al., 1999), one may want to
look at R™ for high levels of v > 0 to focus on the performance of g(X;u) in the
extremes.

This risk function R™ can then be used to compare different predictive models
and test their capacity at forecasting extreme events, as for instance extreme river
discharges (see Section 3.5). In Section 3.3, the statistical inference properties of
our risk function R™ are derived under the framework of multivariate regular
variation, which is an alternative way to describe the tail behaviour of multivariate
extremes. The following section gives a brief overview of this concept, for more
information see, e.g. Resnick (2007).
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3.1.2 Refinement of asymptotic independence

As illustrated in Chapter 2, when working in the framework of asymptotic depen-
dence, models based on bivariate extreme value theory usually suit well. How-
ever, and as discussed in the following, in the case of binary classifiers, it can be
complex to find such dependent models.To overcome this problem, a finer risk
measure adapted to the case of asymptotic independence is developed. For this
purpose, we will rely on the framework of Ramos and Ledford (2009) with joint
tail models adapted to the case of asymptotic independence (see Section 1.2.5).
This specific framework handles the case of hidden regular variations which can
be viewed as a second-order regular variation when asymptotic independence
arises (Resnick, 2002). Hereinafter, we give more details on hidden regular varia-
tion, starting from the definition of multivariate regular variation, and its connec-
tion with the model of Ramos and Ledford (2009).

Multivariate regular variation

Formally, a d-dimensional non-negative random vector X, with identical margins
(for simplicity), is multivariate regularly varying with limit measure v if there exists
a function b(t) — oo as t — oo and a non-negative Radon measure v # 0 such
that x

tP (l)(—t) € ) = v, (3.1)
on [0,00]? \ {0}. The notation - stands for vague convergence, a definition and
its properties can be found in Chapter 3 of Resnick (2007) for example.

It can be shown that condition (3.1) implies that there exists a constant
a > 0, the tail index, such that, for all relatively compact sets A C [0,0]¢ \ {0}
andt > 0, v(tA) = t~*v(A). This property is fundamental in order to obtain the
polar decomposition of Equation (3.3). Moreover, b is a regularly varying function
with index 1/« (see Resnick, 2007).

The link between the univariate case as discussed in Section 1.1.3 and the above
definition of multivariate regular variation may not be directly evident. Yet, equiv-
alent definitions of univariate and multivariate regular variation in terms of con-
vergence of measures and tail probabilities can be derived (see Theorems 3.6 and
6.1in Resnick (2007)).

Theorem 3.1. Let X be a non-negative d-dimensional random vector. The following
statements are equivalent.

1. X, with distribution function F, is multivariate regularly varying with measure
v and tail index a > 0.
2. The following convergence holds
lim 1 — F(tx) ~ lim P(X/t € [O,m]c)
twoo 1 — F(t1)  t=oo P(X /t € [0,1]°)

— ([0, 2]°), (32)
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for all points © > 0 which are continuity points of the function x — v ([0, x]°),
where [0, x| denotes the complement set taken with respect to [0, oo]?\ {0} (see
Figure 3.1 for an illustration in dimension 2).

3. There exists an a-Pareto random variable P and, independently of P, a random
vector © € [0, 00)? on the unit sphere {x € RY; ||x| = 1}, such that

p{(”‘)t(_n,%>e.|||X||>t}%P[(P,@)e],ast—wq (3.3)

for an arbitrary norm ||-|| on R,

Equation (3.2) is the analogue version of univariate regularly varying random
variables as defined in (1.7). Itimplies that the survival function 1— F'is multivariate
regularly varying (see Resnick (2007), Chapter 6).

In the polar decomposition (3.3), © is referred to as the spectral tail vector and
its distribution as the spectral measure. A nice interpretation is that the spectral
measure, or equivalently v, places mass in directions where large events occur
(Meyer, 2020; Meyer and Wintenberger, 2021). This decomposition will be used in
Section 3.7 to develop a special case of a linear classifier.

One further comment is that, as for the univariate case, multivariate regular
variation and multivariate EVT are two strongly connected notions. Indeed, if X is
multivariate regularly varying as in (3.1) with limit measure v and tail index a > 0,
then X is in the domain of attraction of an extreme value distribution G with

G(x) = exp {—v ([0, ]},

(see, for example Beirlant et al. (2004)). Thus, the limit measure v and the expo-
nent measure V (defined in (1.10) for the bivariate case) are in the end the same
quantity, i.e. V(x) = v ([0, z|°).

Hidden regular variation

In view of the foregoing, hidden regular variation is defined as a refinement of
regular variation on the following subset

E?:= {s €[0,00]"\ {0} : Forsomel <i < j <d, min(s;s;)>0}.

This set E° corresponds to the points of [0,00]? \ {0} such that at most d — 2
coordinates are 0 (see Figure 3.1).

Then, we say that X is hidden regularly varying if in addition to (3.1), there
exists a non-decreasing function b°(t) — oo such that b(t)/b°(t) — oo, ast — oo,
and a Radon measure v # 0 on E° and such that

X -
/P (b% c ) Ny (3.4
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Figure 3.1: lllustration for d = 2 of the different spaces considered. The red lines
represent the excluded parts. (left) [0, o0]?\{0, 0} grey shaded area, (middle) [0, ]
with « = (z1, 2,) blue hatched area, (right) E° = (0, co]? grey shaded area.

on the set EY. Similarly to multivariate regular variation, if (3.4) holds, there exists
ap > a such that 0° is regularly varying with index 1/ay and v2(¢-) = t=ou(-), for
allt > 0.

Now, if X is hidden regularly varying, then necessarily the components of X
are asymptotically independent, this is shown in Resnick (2002) and with Chap-
ter 5 of Resnick (1987). For simplicity, we illustrate this for d = 2, considering
X = (X1, X5). In this case, E° = (0, oc]?. Assuming (3.1) and (3.4) hold, then, since
b(t)/0°(t) — oo ast — oo,

_ X, X, _ min(Xy, Xo)  b(¢)
lim tP [ =L > 5, =2 = lim ¢P =
! (b(t) 0 b(o) ~ 5) ! ( W b"(t)(s ’

forany § > 0. Thatis, v (E°) = 0 and v concentrates on the axes, i.e. on the lines
{<$1,0>;$1 > 0} and {(0,1’2);x2 > O}

Therefore, the terminology hidden can be understood by the fact that the de-
pendence structure is hidden by the mass put on the axes, hence a normalisation
of smaller order, with ©°, is needed to capture the finer structure that may be
present away from the axes.

Example 3.2. If X := (X, Xs) with X, and X, two i.i.d. Pareto variables with param-
eter 1/2, that is P(X; > x) = 2~ /2 Then, setting 1°(t) = 1/t, X is hidden regularly
varying with v°((z,, 00] x (x4,00]) = (w125)~Y2. This is illustrated in Figure 3.2.

Example 3.3. Consider X := BY + (1 — B)U, with B a Bernoullivariable, Y having
regularly varying marginals with index —1, and U multivariate regularly varying with
tail index 1 < o < 2, B, Y and U being independents. Then X is hidden regularly
varying (Resnick, 2002).

Hidden regular variation implies multivariate regular variation and asymptotic
independence, but the converse is in general not true (see Resnick, 2007).
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log X,

Figure 3.2: Example of hidden regular variation with X := (X, X,) as defined
in Example 3.2. On the original scale (left) the variables clearly appear as asymp-
totically independent, but on the log-scale (right) second-order regular variation
emerges.

For inference or simulation purposes, Das and Resnick (2015) review different
generative models exhibiting hidden regular variation, namely the mixture model
developed by Maulik and Resnick (2004) and the additive model of Weller and
Cooley (2014). Das and Resnick (2015) also suggest diagnostic tools in order to
detect regular variation and hidden regular variation in multivariate data.

Link with Ramos and Ledford (2009) model

In dimension d = 2, it appears that the model of Ramos and Ledford (2009) dis-
cussed in Section 1.2.5 is a special case of hidden regular variation, where the co-
efficient of tail dependence  is given by = 1/ (see, e.g. Heffernan and Resnick
(2005)).

Indeed, assume that X = (X, X;) satisfies (1.25). Consider 0°(t) := 2U* (¢)’
(Qt)l/n

where U(t) = m

. Then for any zy, 25 > 0,

. X1 Xo —1/(2n) ~1/(2n)
tlg(r)lotIP’ (m > x4, bo—(t) > m2> = g(x1, ) (7122) M~ (z122) .

In the above, we assumed that the components of X were identically dis-
tributed. However, with real data analysis, such behaviour is rarely observed. To
overcome this issue, Heffernan and Resnick (2005) showed that the use of the
rank transform method, resulting in equal marginals, preserved hidden regular

W (t) :=inf{s; U(s) > t} denotes the left-continuous inverse of U, and U(U* (t)) ~ t.
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variation. Yet, in the following Paper Il (Legrand et al., 2021), equal marginal trans-
formation is not desired as explained later. Instead an extension of Ramos and
Ledford (2009) is developed, allowing for different tail indexes between the com-
ponents.

Xk 3k

Below, Paper Il (Legrand et al., 2021) is reproduced as submitted. It was written
in collaboration with Philippe Naveau and Marco Oesting. In this paper, Juliette
L. wrote the Sections 3.4 and 3.5. Juliette L. wrote the R code used and produced
the figures in the article. The theoretical proofs were mainly derived by Marco
Oesting. All three authors contributed equally to the writing of the remaining text.

The proofs of all lemmas and propositions are placed in Appendix A, as origi-
nally done in Paper II.

3.2 Introduction

In binary classification, one typically considers data of the form (X,Y)" where
Y € {—1,1} represents a binary response to the input X € [0, c0)<. In this paper,
we focus on the case that Y = Y® represents the occurrence of an extreme
event, Y = 1 indicating that a random quantity H crosses a level u, called the
threshold, and Y = —1 otherwise, that is

+1 if H>u
y® = ’ ’ :
{—17 otherwise. 3:5)

In the following, for simplicity, we focus on the case that H is a non-negative ran-
dom variable such that P(H > w) > 0 for all u > 0 and its upper end point is
infinite.

In extreme value analysis, one is interested in the behaviour of Y for high
levels, that is for u — oo, and, therefore, also any classifier g needs to be adapted
to the threshold u. Thus, for every u > 0, let ¢g(-;u) be a measurable function
from R¢ to {—1,1}. In order to evaluate the quality of the classification at a cer-
tain level u, we consider a loss function [, that assigns a cost to a classifier g(-; u)
and a realisation (z,%™). Here, it is important to note that, by definition of rare
events, P(Y® = 1) is very small and P(Y™ = —1) is close to one as u gets large.
This imbalance can lead to atypical and/or undesirable comparisons of classifiers.
For example, the “always optimistic" classifier that never forecasts an extreme
can be defined as ¢g(X;u) = —1, almost surely. To see how to handle this naive
classifier, the classical risk function defined as the expectation of the indicator
1{g(X;u) # Y™} can be written as

P (g(X;u) # V™) = P(H > u,g(X;u) = —1) + P(H < u,g(X;u) = 1).  (3.6)
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If g(X;u) = —1, then P(g(X;u) # Y®) = P(H > u) goes to zero as u gets large.
Hence, the classical risk function E(1{g(X;u) # Y1) will systematically favour
the always optimistic classifier for extremes. To avoid this undesirable feature,
the loss function has to be modified. One natural idea is to re-scale by P(H > u)
and introduce the loss function 1{g(X;u) # Y®}/P(H > u). In this case, the
risk, i.e., the expected loss E(1{g(X;u) # Y®W}/P(H > u)), goes towards one as
u gets large.

Another trivial but also interesting case is the “crying wolf" forecaster who al-
ways issues g(X;u) = +1, see also the forecaster's dilemma (e.g. Lerch et al.,,
2017). In this case, Equation (3.6) implies that P (¢(X;u) # Y®) = P(H < u) and,
consequently, the risk E(1{g(X;u) # Y™}/P(H > u)) goes towards infinity as
u gets large. This limiting cost indicates that the “crying wolf" forecaster is much
worse than the overly optimistic one. Both of them are unreasonable in practice
and there is no reason to strongly favour one over the other one. For this reason,
we propose to use a following weighted loss function

Lo (.9)) = 5 or g7y = o) )

and the associated risk

P(g(X;u) #Y™)
—1

R™(g) = E(l.(g; 2)) = P(Y®@ = Lor g(X;u) =1)°

(3.7)

By construction, the event {g(X;u) # Y®} implies that {Y® = 1} or
{g(X;u) = 1} and therefore, necessarily, R™(g) € [0,1]. In particular, the naive
classifier g(X;u) = —1 possesses unit risk with R (g) = 1 at each level u > 0.
Similarly, the risk of the “crying wolf" classifier g(X;u) = +1 is then equal to
R™(g) = P(H < ) and converges to one as u — oo.

Hence, the value of one is reached by the two worst cases scenarios in terms
of classifiers. This unit value provides a clear benchmark that can be compared
to any other classifier satisfying the existence of the limit

R(g) = lim R"(g) € [0,1].
We call such classifiers extremal.

In the weather forecast literature (e.g. Schaefer, 1990), the definition of R®)(g)
can be linked to the critical success index, also called the threat score. The critical
success index computes the total number of correct event forecasts (hits) divided
by the total number of forecasts plus the number of misses (hits + false alarms
+ misses). Hence, 1 — R™(g) can be understood as a critical success index for
extremes. In the context of rare events forecasts, Stephenson et al. (2008) high-
lighted some advantages and drawbacks of various risk functions, including the
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critical success index. In particular, these authors linked forecast scoring rules
with two dependence indices used in EVT (see Coles et al., 1999)

2log(P
XZHH%P<U>U|V>U)andY:lim 0g(P(U > u) —1],
u—

u—1 | log(P(U > u,V > u))

where the two random variables U and V' follow the same continuous uniform
distribution on [0, 1]. The choice of uniform marginals can be made whenever the
forecast can be assumed to be calibrated, i.e. observations and forecasts follow
the same marginal distributions and can be transformed into uniforms. Concern-
ing the extremal dependence strength between U and V, if x > 0, then the vari-
ables U and V are said to be asymptotically dependent and ¥ = 1. If x = 0, then
the variables U and V' are said to be asymptotically independent and x¥ < 1 cap-
tures some second order extremal dependence information. Stephenson et al.
(2008) advocated the use of ¥ and called it the extreme dependency score. Later
on, Ferro and Stephenson (2011) proposed two different scores and studied their
properties. But the link with the concept of asymptotic independence was not
clear and the convergence results of their estimators were not fully developed. In
contrast to y, one drawback of y is that its formula is not easy to explain to prac-
titioners. In comparison, R(g) as a type of the critical success index can be inter-
preted with ease. Hence, itis of interest to extend this definition to the asymptotic
independent case.

In the machine learning literature, Jalalzai et al. (2018) also worked on
binary classifiers for extremes. But they did not focus on R™(g). Instead, they
studied a different setting where the object of interest was
P(g(X) # Y | || X]|| > u) where || X|| represents a norm with « large. Hence,
their conditioning event was {||X|| > u}, while our conditioning depends on Y’
with the set {Y™® = 1 or g(X;u) = 1}, see Equation (3.7). So, their interest was
centred on the classifier performance when the norm of the explanatory vector X
was large. Our focus is on large values of H in the production of extreme events
of the type Y® =1 when H > u, see Equation (3.5). Jalalzai et al. (2018) provided
various theoretical results based on the main assumption that the conditional dis-
tribution of X given Y = +1 was regularly varying with an angular measure that
dependsonY = +1.

In this study, one part of our results is based on the concept of hidden regular
variation (see, e.g. Ledford and Tawn, 1996; Heffernan and Resnick, 2005; Ferro,
2007). In particular, we take advantage of the model of Ramos and Ledford (2009)
to derive the asymptotic properties of our estimators.

Our paper is organised as follows. In Section 3.3, we propose and study a risk
function that can handle both the asymptotic dependent and independent cases.
Estimators are also constructed and their asymptotic properties derived. Section
3.4 focuses on a simulation example that highlights the difficulty to compare com-
mon classifiers in the case of asymptotic independence. In Section 3.5, we revisit
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the well studied example of the Danube river application and see how the choice
of the metric can change the ranking of classifiers. Note that, besides the proofs
of all propositions, the appendix addresses the questions of how to optimise the
linear classifier for extremes and how to choose the relevant features, see Section

3.7

3.3 Risk, upper tail equivalence and extremal depen-
dence

The following lemma provides a flexible blueprint to link risk functions with prob-
abilities based on general sets. We will apply it under different setups linked to
extreme events.

Lemma 3.4. Let A, be a sequence of measurable sets of increasing sizes with decreas-
ing e € [0,1], in particular A; C A. C Ay. Let B. be the same type of set sequence
such that P(A, N By) > 0. The following ratio R(A., B.) can be written as

P(A;AB, | A. N B.) 1 1 -

A, B.) = =1- -1
Rl4eB) = 54, 0B [ A.n B.) P(Bi|A N B.) | P(A | AN By)

(3.8)

where A1/A B, denotes the difference set. In addition, we have the three following

properties for R.:

1. R(A., B.) is non-increasing in € with R(A;, By) = 0.

2. Let AL be another sequence of measurable sets of increasing sizes with decreas-
ing e.
If Ay = Ay and A, C AL for some ¢ € [0,1) then

R(A., B:) < R(AL B.).

3. Ifforany e € [0,1] and €' € [0, 1], there exists some positive constants a and b
and some positive function c. . such that

]P)(Az-: N Be’) = Cz—:,z—:’ ]P)a(As) Pb<Bs’); (39)
then
c c -1
R(A.,B.) =1— | =L (P(A | A)) *+ 22(P(By | B.) =1 . (3.10)
C1,1 C1,1
We deduce from Equation (3.8) that R(A.,B.) = 0 if and only if

P(B, | AynNB.) = P(A; | Ac N By) = 1. The second property of this lemma
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indicates that, for a given ¢, the risk function becomes smaller if the set A. is as
small as possible.

Equation (3.9) can be viewed as a mixing condition that leads to a simple ex-
pression of R(A., B./) based on disjoint events.

We want to use the ratio (3.8) in order to generalise the risk R (g) defined in
(3.7)- Inthe latter definition, adapted to extremes, the set { H > u} was considered
and one could set B; = {H > u}, for instance, and consequently, B. = {H > cu}
would be a natural sequence if H is regularly varying. The choice of A, is open and
it can play an important role®. In the next paragraphs, we set ¢ = 0 and discuss
the choice of A; and A,. In Section 3.3.1, we will work with e > 0. In that case, we
will call the corresponding risk the conditional risk.

In the rest of this paper, we restrict our attention on a particular form of clas-
sifiers
+1, if g(X) > u,

1
-1, otherwise, 3:1)

9(X5u) = {
for some function g : RY — (0, o0). The function g(.) does not have to be a norm.
It can be understood as any projection/summary of the explanatory variables X
onto the positive real line (see, e.g. Aghbalou et al., 2021, for projection techniques
for extremes). This corresponds to the set A; = {g(X) > u} in Lemma 3.4. A
special case of this lemma is to set ¢ = 0 and when A, and B, are equal to the full
set, i.e. P(Ay) = P(By) = 1,and A; = {g(X) > u} and B; = {H > u}. In this case,
Equation (3.8) tells us that R™")(g) defined by (3.7) satisfies

@ 1 1 1 7
BRO) =1 pm=ulg0sw PG Su|Bouw -

This leads to the following expression of R (q)

P(G(X) >u| H > u)

B0 =1 TR > | > 0+ (%) > 0/ B > 0]

(3.12)

Within the class defined by Equation (3.11), the effect of the marginal distributions
of H and g(X) on R(g)3 can be explained. When g(X) has a lighter tail than H,
i.e. P(g(X) > wu)/P(H > u) — 0, then we also have P(g(X) > u | H > u) — 0, and
consequently

R™(g) = 1, as u — oc.

In the case where ¢(X) possesses a heavier tail than H, i.e.
P(g(X) > u)/P(H > u) — oo, we can also show that

RW(g) — 1, as u — oo.

2Although we will apply Lemma 3.4 to sets A, that are rare events, this is a not a necessity.
3the shortcut notation R(g) corresponds to the case where g(X;u) = +1is built from the event
g(X) > win the associated R(g).
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This indicates that, whenever g(X) and H are not tail equivalent, the classi-
fier g(X) cannot outperform naive classifiers with respect to R (g) for large w.
Hence, the marginal behaviour of g(X) has a direct impact of its predicting ca-
pacity in terms of R(g). This is a widely known fact in forecast verification. In
particular, a paradigm promoted by Gneiting and his co-authors (see, e.g. Gneiting
etal., 2007)is towork only with calibrated forecasts. In our case, calibration means
that g(X) and H have the same distributions, and consequently
P(G(X) > u)/P(H > u) = 1 for all u. In practice, it may be difficult to ensure
that this constraint holds for extremes (see, e.g. Lerch et al., 2017; Taillardat et al.,
2019). To illustrate this, suppose that P(X > u) = u~! for all uw > 1, and the vari-
able H, independently of the value of X, is either equal to 6.X or (2 — 0)X with
probability .5 and the constant 4 € (0,1). Then, we have

. . P(X > u), ifu>2-—09,
P(H>u):§P(5X>u)+§IP’((2—5)X>u): 1149, ifo<u<2-—09,
1, if 6 > wu.

Hence, X and H are more than tail equivalent, they have identical tail behaviour
for large u. Concerning classifiers, linear ones of the type g,(X) = aX witha > 0
belong to the class defined by (3.11). They are tail equivalent to H, and R(g,) < 1.
Although X and H have identical tail behaviours, the choice of a = 1is not optimal
with respect to R(g,). In particular, one can show that

_ 1—96 _ 2—20
R(Gy-5) = 5— < R(7)) = 35

2—9
This is not surprising. By construction, the largest values of H are more likely to be
produced by (2 — §) X than X, especially if § is small. In this context, the following
lemma (that is a rewriting of Lemma 3.4) explains that the risk function R(g) both
depend on the upper tail dependence between g(X) and H and their marginal
behaviours.

Lemma 3.5. /f

@) = Jim S < (0.00),

then the limiting risk based on (3.7) has the following expression
B X" (9)
1+c(g) — x*(9)°

R(g) =1
where x*(q) denotes the limit of P(g(X) > u | H > w). In particular,
R(g) = 0if and only if (g) = x"(g) = 1.
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This lemma indicates that ¢(g) = 1, i.e. g(X) and H are “asymptotically cali-
brated", is a necessary condition to have R(g) = 0. In the above example with
d = 0, we have ¢(g,) = 1 and R(g,) = 1/2 # 0. This means that x*(g,) < 1. Note
that ¢(g) = 1 implies that the constant x*(g) simply corresponds to the aforemen-
tioned tail dependence coefficient x(g), and so, the case ¢(g) = 1 simplifies the
expression of the risk

x(9)
2-x(9)
This equality tells us that any asymptotically calibrated classifier with x(g) = 0
always produces a risk function R(g) = 1. Consequently, any asymptotically inde-
pendent classifier is as uninformative as the two naive classifiers. A reasonable
strategy will be to dismiss all asymptotically independent classifiers and
find/construct new asymptotically dependent classifiers with positive x(g). But,
finding asymptotically dependent classifiers can be complex in practice, and in
addition, in some not so exotic setups, this is not always possible. To see this, we
consider the simple non-linear regression model in the following lemma.

R(g) =1-

Lemma 3.6. Assume that the variable H in (3.5) is generated by the non-linear re-
gression model

H<E f(X)+N,

where < represents the equality in distribution, N corresponds to a random
noise and X corresponds to the explanatory variables, independent of N. If
P(f(X) > u) = o(P(N > u)), then for any classifier of the type defined by (3.11),
we always have

R(g) = 1.
Hence, no classifier can outperform naive classifiers for this regression model.

Note that even if the forecaster knows exactly the function f(.) and has drawn
from the explanatory X, the “ideal” classifier g(z) =f(x) will perform badly, i.e.
R(f) = 1. In addition, the classical trick of using ranks to avoid the problem of
marginals discrepancy cannot be applied here. For example, suppose that H is
unit Fréchet distributed, then transforming the marginals of X into unit Fréchet
random variables, say into X, does not remove the issue as the unobserved noise
N has still have heavier tails than f(X) = f(X) for some function f(.). So, a finer
risk measure is needed that is able to distinguish different classifiers in case of
asymptotic independence.

3.3.1 Conditional risk and hidden regular variation

The choice of the conditioning set in Lemma 3.4 brings new possibilities to con-
struct finer risk measures for extremes than R™. To do so, we opted for the sets:
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Figure 3.3: Simulated example for Lemma 3.6, for more details see equations
(3.176) and (3.17).

A ={g9(X) > u} and By = {H > u}, (wWhene = 1) and 4, = {g(X) > 0} and
By = {H > 0} (when e = 0). But, changing the size of the sets A. and B. to make
them closer to A; and B, will increase the conditional probabilities P(B; | A1NB.)
andP(A; | A.NBy). Asimple choicewhene # 0ore # listoset A, = {g(X) > cu}
and B. = {H > eu} with ¢ > 0. This modelling strategy is at the core of hidden
regular variation and asymptotic independent models. More precisely, we first
need to fix marginal features. We assume that both g(X) and H possess regu-
larly varying tails with indices ay, > 0 and ay > 0, respectively. This means that
foranye € (0,1),
uli_)rgoIP’(g(X) >u | g(X) > eu) =e% and JLIgOIP(H >u | H>eu)=e%",

These limits have to be understood with respect to Equation (3.10), i.e. the terms
P(A; | A.) and P(B; | B.). To apply (3.10), the mixing condition (3.9) needs to be
satisfied. To do so, we opt for an extended version of the framework of Ramos
and Ledford (2009), i.e.

PG(X) > u, H > v] = L(u,v)(u “ey=1)Y/2n, (3.13)

where n € (0,1] indicates the rate of decay of the joint survival function
and L(-,-) is bivariate slowly varying function, i.e. there exists a limit function
¢:(0,00) x (0,00) — (0,00) defined as

{(s,t) = lim Llus, ut)

t>0
u—oo  L(u,u) ’ %

and satisfying ¢(cs, ct) = ((s,t) for all ¢,s,t > 0. The parameter n measures the
dependence strength. The case n = 1 corresponds to the asymptotic dependence
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while n < 1 to the asymptotic independence case. In particular, if n = .5, then
independence appears in the extremes. If .5 < n < 1(0 < n < .5) the extremal
dependence is said to be positively (negatively) associated.

Now, noticing that (3.13) corresponds to the mixing condition (3.9), we can ap-
ply Lemma 3.4, see Appendix A.1 for a proof.

Proposition 3.7. Under the Ramos and Ledford model defined by (3.13), the following
risk function

P(g(X; Y@ | YE = g(X;eu) =1
R.(g) = lim (9(X;u) # Y| g(Xiew) =1)
u—oo P(Y® =1 org(X;u) =1|YEW = g(X;eu) =1)

which will henceforth also be called conditional risk, can be expressed as

1
Relg)=1- U(g,1)e=/21 4 ((1,)e~n/21 —

Note that n € (0, 1] takes a similar role as x in the case of the unconditional
risk R.

For fixed ¢ € [0,1), the risk function R.(g) decreases with increasing . So,
given all parameters are fixed but 7, the forecaster should aim at maximising 7.
In practice, two forecasters, say g; and go, may produce different ¢(.,.) and a,.
Consequently, the minimisation of R.(g) can also depend, besides 1, on other
parameters.

(3.14)

T foranye € [0,1).

3.3.2 Risk function inference

Concerning the estimation of R.(g) defined by (3.14), the empirical estimator can
be easily computed from the sample (X;, H;);=1...». The following proposition
describes the asymptotic property of such an estimator.

Proposition 3.8. Assume that the risk function R.(g) defined by (3.14) exists for a
sequence of u,, — oo such that np, . (u,) — oo with

P.e(tn) = Plmax{g(X;u,), Y} = 1, H > eup, g(X;eu,) = 1).

If

) P(g(X;uy Y H > eu,, g(X;cu,) =1

lim npw(un)( (9(X5un) # 9l ) )—Rg(g)> o,

n—oo pgﬁ(un)
then the empirical estimator based on a sample (g(X;;u),{H; > u})i—1.._» and de-
fined by

~ " g Xiiu,) £ Y. H > ey, g( Xy eu,) = 1

Ran(g) — Z’L*l {g( ) # 7 g( ) } (3.15)

S Hmax{g(Xiw,), Y} = 1, H; > eun, g(Xisew,) = 1}
converges in distribution in the following way

npy () (Bnclg) = Rel9)) =5 N (0, Be(g) (1 = Rel9)).
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3.4 Simulations

3.4.1 Asimple linear setup

Our main simulated example is based on a simple linear regression model but
with the feature that the explanatory variables X do not have the same tail be-
haviour and the noise is regularly varying, see Lemma 3.6. More precisely, the
multivariate vector X is defined as follows

X, ~ Pareto(3)
X, ~ Pareto(2)
X3 ~Exp(l)
X4 ~ Exp(2)

(3.16)

where all X; are independent with X; and X, Pareto distributed with respective
tail index 2 and 3, and X3 and X, exponentially distributed with respective scale
parameters 1 and 2. The variable of interest H is simply a linear transform of X,
tainted by an additive noise

HLX, +N, (3.17)

where N ~ Pareto(2) represents an independent noise with heavier tail than Xj.
different classifiers in terms of predicting extreme occurrences, here defined as
{H > u} with u equal to the 97th percentile of H. In this simulation setup, itis clear
from (3.17) that all variables but X; are useless to explain H. In addition, Lemma
3.6 tells us that the relevant information contained in the variable X; is hidden
by the heavier noise N, i.e. we are in the case of asymptotic independence. An
example of such simulation is given in Figure 3.3. The left panel displays a scatter
plot between H (left axis) and g(X) = X (right axis). As expected, no sign of
asymptotic dependence can be found in the upper corner. In the right panel, we
remove the mass along the axis (grey points) by conditioning on the joint event
A.NB. ={g9(X) > eu}N{H > cu} with e = .7, see all dark points. The right panel
zooms on these black points and highlights a clear dependence between H and
X1 that was hidden by the heavier noise Nin H = X; + N.

In practice, we do not know the optimal choice for g(.) and we need to intro-
duce different classifiers and compare them.

3.4.2 Classifiers descriptions

Table 3.1 below provides the list of classifiers that we compare with our metric
(3.15). This list contains some of the most standard classifiers found in the litera-
ture (see, e.g. Hastie et al., 2009): logistic regression (Logistic), decision tree (Tree),
random forest (RF) and support vector machine (SVM).
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Method Main features

Linear classifier Simple binary classifier, parameters estimation based
on the minimisation of the risk function over the set
of contributing variables, theoretical value of R(gy) in-
ferred from spectral decomposition.

Logistic regression Parametric linear model with a lasso penalty, coeffi-
cients of less contributing variables are set to zero.

Decision trees Easy to interpret, gives relative importance of each
variables, learns simple decision rules inferred from
the input.

Random forests Builds multiple decision trees combined by majority

vote, better predictive power than decision trees.

Support vector machines Finds the best hyperplane to separate two overlapping
classes, generally performs better than the other clas-

sifiers.

Table 3.1: Summary and key features of the different classifiers studied. See for
example Hastie et al. (2009) for a comprehensive review of the last four classifica-
tion methods.

Except for the linear classifier, we apply them with their built-in cost function
that is not necessarily fine-tuned to forecast extremes. This is not an issue be-
cause our main goal is to compare existing forecasters, and not to create new
ones (see, e.g. Jalalzai et al., 2018, for such developments). Still, to fix a baseline in
terms of performance, the linear classifier defined as

+1, 0" X > u,

d
4 07X < 6 € [0,00)".

9o (X5 1) —{

should be optimal for the linear model (3.17), especially if the regression param-
eters are estimated by minimising our cost function (3.14). In such a context, we
expect the linear classifier to be the best. In Appendix 3.7, Proposition 3.9 pro-
vides the condition of the consistency of the estimator 9n,un based on minimising
R..(go(+;up)) under a regularly varying framework.

The binary outputs from the decision tree classifier are explained in Figure
3.4. The light blue and light green regions represent the set of points that are
well predicted by the classifier. On the contrary, wrongly classified points belong
to the light yellow and light red regions: either an extreme is predicted when it
is not (light red region), or an extreme event is missed (light yellow region). The
difference between the left and right panels corresponds to the training set based
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Decision tree classifier

g(X;u) a(X;gy)

Figure 3.4: Example of predicted binary output for the decision tree classifier ver-
sus the true values of H (on a logarithmic scale). The classifier has been trained
twice as explained below. On the left-hand side the classifier is trained with the
subset {H > w} and the horizontal blue dashed line represents the threshold
value u. On the right-hand side the classifier is trained with the subset {H > ¢,}
and the horizontal red dashed line represents the threshold value ¢, = 0.4 x w.
The results shown are the predicted values made upon the testing set whose sam-
ple size is equal to 3000 (30% of the data).

on either {H > u} oron {H > ¢,}, i.e. mass removed in the latter case, see also
(3.15).

3.4.3 Implementation and results

We split our simulated data set in two: 70% for a training part, over which we
train our different classifiers to get good predictive power; 30% for a testing part,
which we use to estimate the risks Ry(g) and R.(g). Note that each algorithm has
the same inputs, in particular the same binary sequence describing the events
{H > u} with u set to be equal to the 97th percentile of H. This cross-validation
procedure has been repeated 50 times. The sample used to compute our risk
function is based on the bivariate binary vector (¢({ X }1<j<a;u), {H; > u})iz1,.n
where the output of the classifier g is binary. In addition, the binary outputs of the
classifier g are obtained under the threshold u and the threshold cu, so the train-
ing part has to be performed twice (once for each threshold). Then, the empirical
risk estimator defined by (3.15) can be computed. Figure 3.5 shows the sensitivity
of the classifier ranking with respect to the value of ¢.

As expected from Lemma 3.6, the top-left panel, that corresponds to the case
e = 0, clearly indicates that our five classifiers cannot outperform naive classifiers
as all classifiers have a risk near to one, the worst possible value. To start dis-
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Figure 3.5: Estimation of R.(g) for different classifiers (cross-validation with 50
repetitions). In red (top-left) are the estimates when ¢ = 0 and in blue for different
values of ¢ > 0 (¢ € {0.4,0.6,0.8}). At the top of each plot, the value of ¢ and the
number of points such that H > ¢, from the testing set are given.
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criminating classifiers, we need to remove the masses along the axes by setting a
value for . As we increase ¢, the size of sets needed to compute (3.15) becomes
smaller, see the values of n. in the legend of each panel. Hence, the blue box plots
becomeswider as ¢ increases: a classical bias-variance trade-off. As we know from
(3.17) that the true generative process is linear, ¢ = 0.4 appears as a reasonable
value to balance the bias-variance trade-off. More importantly, the overall rank-
ing is not sensitive to the values of ¢ > 0. In all cases, our linear classifier tailored
to handle linear asymptotic independence cases outperforms all the other classi-
fiers. Among the other classifiers, decision tree appears to be the best, but it is
still far from the optimal linear solution. Other simulations concerning the regular
variation case are available upon request.

3.5 Danube river discharges

|atitude
48.5 49.0

48.0

47.5

longitude

Figure 3.6: River map of the upper Danube basin, showing sites of the 31 gauging
stations along the Danube and its tributaries. Water flows toward gauging station
1. The stations represented by a green triangle shaped dot are the three stations
of interest as described in Section 3.5.

We now apply our assessment approach to summer daily river discharges (mea-
sured in m?3/s) at 31 stations spread over the upper Danube basin, see Figure 3.6,
and recorded over the time period 1960-2010 in June, July and August. These ob-
servations have been studied by the EVT community (see, e.g. Asadi et al., 2015;
Mhalla et al., 2020; Gnecco et al., 2021). This dataset was made available by the
Bavarian Environmental Agency (http://www.gkd.bayern.de). To remove tempo-
ral clustering in extreme river discharges, Mhalla et al. (2020) in their Section 5im-
plemented a declustering step. Each station then contains n = 428 observations
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that we will consider temporally independent. In order to reduce the large dis-
crepancy in terms of discharges magnitude among stations, we force the starting
value of all 31 time series to equal zero by subtracting to each station its minimum.
Then, we re-normalise each time series by its range (i.e. the difference between
the maximum and the minimum of each time series). These post processing treat-
ments are useful to display and interpret the data at hand and do not impact the
classifiers performance.
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Figure 3.7: Summer daily measurements of river discharges from station 1 (y-axis)
against station 23 (left x-axis) and station 24 (right x-axis) of Figure 3.6. The blue
dotted lines are the threshold value u (the 85th percentile of station 1). The black
dots on the graphs in the top row are the values such that min(X;, X;) > ¢, where
g, = 0.6u. The graphs in the bottom row corresponds to the same data plots but
on unit Frechet scale highlighting potential asymptotic independence in the data.

Although all 31 station recordings are available, we can artificially remove one
station and try to predict its values from a given subset of other weather stations.
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In this section, we remove station 1 (downstream) and try to predict its values
from only stations 23 and 24, which are indirect tributaries to the main river flow.
So, this setup is complex* for two reasons. First, station 1, as a downstream point
that accumulates all discharges, has a much heavier tail than the two tributaries.
Second, it is difficult to determine if we are in the asymptotic dependent or in-
dependent case, see Figure 3.7 that displays the scatter plot between the hidden
station (y-axis with station 1) and the two tributaries (x-axis, stations 23 and 24). In
this graph, the threshold u is taken to be equal to the 85th quantile of X; and we
choose ¢ = 0.6. Figure 3.8 summarises our findings. Removing the mass on the
axes when thresholding by ¢, implies that only 190 points remain from the original
length of 428 data points per station. This can explain why, looking at Figure 3.8,
the uncertainty in the risk estimate increases when considering R.(.) (blue boxes)
instead of Ry(.) (red boxes).
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Figure 3.8: Estimation of R.(g) for five different classifiers (cross-validation with
50 repetitions, 70% train and 30% test), threshold is the 0.85 quantile of H. In red
(left) are the estimates when ¢ = 0 and in blue (right) for ¢ = 0.6. The length of
the testing set is equal to 129, this leads to around 60 points such that H > ¢, and
nearly 20 points such that H > .

Unlike the simulation example in Section 3.4.1, it is not clear to assess whether
our river discharges analysis of our three selected weather stations belongs to
the framework of asymptotic independence or not. Still, it is reassuring that the
ranking of the classifiers in Figure 3.8 appears to be insensitive to the values of
Ry or R.. i.e. whether the data are asymptotically dependent or not. This hints
that, among all the classifiers, the logistic regression with lasso penalty seems to

4Section 3.7.3 treats a simpler case where station 1 is predicted from the whole set of remaining
stations. In this case, strong dependencies among station 1 and other stations can be observed.
So, the main issue is to select these stations, a problem discussed in Section 3.7.

109



CHAPTER 3. EVALUATION OF BINARY CLASSIFIERS FOR ASYMPTOTICALLY DEPENDENT AND
INDEPENDENT EXTREMES

perform better than the four other classification methods. This ranking of clas-
sifiers is specific to this particular example. No general conclusions about lasso
techniques for extremes should be drawn.

Besides this river example, we advocate practitioners to compute risk func-
tions that can both handle the asymptotic dependent and independence cases.
This also complements the recent tools used to discriminate between the two
cases (see, e.g. Ahmed et al., 2022). In addition, the linear classifier could pro-
vide a simple benchmark with well understood properties with respect to R, see
Proposition 3.9.

3.6 Supplementary Materials

A R package is available on GitHub that implements the empirical estimation of
the risk function developed in this paper (https://github.com/jlegrand35/Extr
emesBinaryClassifier) and can be used either to reproduce the results of the
conducted classifier comparisons or to perform new comparisons using other bi-
nary classifiers. The data used in the application are available in the R package
graphicalExtremes (Engelke et al., 2019).
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3.7 Supplements to Paper Il

This section was originally part of the appendix of Legrand et al. (2021). We repro-
duce it below and give further details.

In the following, the focus is on linear classifiers. We first give its definition and
basic properties, then provide a way to find such optimal classifiers with Propo-
sition 3.9. It turns out that it is sufficient to consider only the components con-
tributing to the extremes. This leads to the notion of sparsity and from this we
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build a simple tool to detect relevant features. In Paper Il, this methodology was
then applied to the Danube river network, as reproduced below.

Hereinafter, we return to the bold notation for the vectors of R?, i.e.
x = (1,...,14) € RY

3.7.1 Linear Classifiers: Definition, Basic Properties and Infer-
ence

In this section, we consider a specific type of classifiers which in Paper Il is referred
to as linear classifiers, i.e. classifiers of the form

+1, 0'X > u,

d
. 07X < u 0 € [0,00)".

ga(X;U)Z{

This is a simple binary classifier that is based on the idea that a large value along
an appropriate linear combination could produce extremes in the hidden variable
H of interest.

To obtain an optimal linear classifier of go(X;u), i.e. some weight vector 6*
such that the classification risk R(ge+) gets minimal, we need to impose some
joint extremal dependence structure on X and H from (3.6).

Even though some of the results can also be obtained in a similar manner in
a more general framework for the conditional risk R. (see Section 3.7.4), hence-
forth, we will focus on the asymptotically dependent case where we might find
some optimal classifier with unconditional risk R(ge-) < 1. As discussed before,
in this case, at least one component of X needs to have a similar tail behaviour
as H. A natural assumption is therefore that (X, H) is jointly regularly varying on
[0, 00)®*! with index a > 0, i.e. there exists an a-Pareto random variable P and, in-
dependently of P, a random vector (T', Q) € [0, 00)? x [0, 00), the so-called spectral
tail vector, on the unit sphere {x € [0,00)%"! : ||z|| = 1} such that

L ((”(X’f)”m, ”(g’}gﬂw) ‘ (X, H)||oo > u) 5 L(P,(T,Q)),as u — oo.

Note that assuming joint regular variation, implies in particular that H and all the
relevant components of X are heavy-tailed. For example, this can be the case
for rainfall data (e.g. Le Gall et al., 2022) or river discharges (see Table 3.2). But
other environmental data sometimes do not show such behaviour, as in the case
of wind gusts (Friederichs et al., 2009), temperatures (Toulemonde et al., 2015) or
significant wave heights (Legrand et al., 2022), which are more light-tailed or even
upper-bounded. Some precautions should therefore be taken before consider-
ing a dataset, by applying for instance an univariate extreme value analysis (e.g.
Embrechts et al., 2013, Chapter 6).
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Here, we additionally assume that P(||T'||. > 0) > 0 and P(Q2 > 0) > 0. In this
setup, || X ||« and H are tail equivalent in the sense that

L PUX e > w) PO e > w | (X HDlloe > )
u—soo  P(H > u) usoo  P(H >u | |[(X, H)|e > u)
P(P - |T|e > 1 E(||T|&
B Pl > 1) E(TIL) o
P(P-Q>1) E(92)
This is the minimal requirement on the link between the covariates X and the
unobserved extremes of H essentially saying that at least one component of X
is tail-equivalent to H. It is important to highlight that we do not exclude the case
that I'; = 0 a.s. for some i € {1,...,d} which means that X; possesses a lighter
tail than H. This property can be read off from the quantity
. P(X; >u)  E(T9)
=1 = L 18
TN P(H >w) | E(Q9) (318)
Thus, I'; = 0a.s.ifand only if ¢; = 0. By including this case, we therefore admit that
most of the components of X may not contribute to the extremes of the vector
H. This feature is essential when the question of sparsity will be addressed.
Under these conditions, we obtain that, for all 8 € [0,0), the classifier gg is
an extremal classifier as

R(ge) = JLIEOP(H >uorf'X >u)! (Pmax{6"X,H} > u] — Pmin{0" X, H} > u)
_E (max{0'T,Q}*) — E (min{0'T, Q}*) L E (min{@'T,Q}*) € [0.1]
N E (max{0'T,Q}?) a E (max{0'T,Q}) T
(3.19)

Equation (3.19) implies that the function 8 — R(gg) is well-defined and con-
tinuous on [0, co)?. Its value does not depend on those components 6; for which
I'; = 0a.s., which is equivalent to ¢; = 0 as discussed above. Thus, in the following,
we will consider this function only on the parameter set

C={0¢€[0,00)":0; =0forallis.t. ¢; =0},

containing all the relevant information - here, note that, in practice, identifying
the components ¢ € {1,...,d} such that ¢; = 0 a.s., from a given data set is a
necessary step for the correct specification of the set C'.

From the consideration in the introduction, it can be easily seen that R(go) = 1
- the case 8 = 0 corresponds to the trivial always optimistic classifier. Further-
more, denoting the set of indices j with ¢; > 0 by .J, we can see that

_ E(©2?)
1115, - minje, E(TS)

R(ge) > 1 — 1 (3.20)

as ||0]| — oo. By the continuity of @ — R(gg), we obtain that the function attains
a global minimum on the domain C.

12
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Proposition 3.9. Additionally to the assumptions above on the joint distribution of
(X, H) with « > 1, assume that there exists a function a(u) with a(u) — 0 as u — oo
such that

P(u='X € A|||(X, H)|lo > u) < (1 +a(u)) P(PT € A) (3.21)

forall A C [0,00). Furthermore, let u, — oo and nP(H > u,) — oo such that, for
every compact subset K C C,

P(go(X;u,) # Y*) E(max{0'T,Q}*) — E (min{0'T,Q}*)

0cK P(H > uy,) E(Q)
(3.22)
and
P(max{ge(X;u,), Y} =1) E (max{0'T,Q}*)| 0
0cK P(H > u,) E(Q) -
(3.23)

If the function @ — R(ge) has a unique minimiser 6* in C, then the estimator

émun = argmin Rn(gg(-; Up))-
fcC

is consistent, i.e. 0,,,, —, 0"

Given the set C, this result provides a strategy to find the optimal 0, i.e., the
best linear classifier. Determining the set C requires the identification of the rel-
evant features, i.e. the index set J such that ¢; > 0 if and only if j € J. This is
discussed in more detail in the following subsection.

3.7.2 Feature Selection

The notion of sparsity quickly comes into play when doing classification. This is
all the more true when one is only interested in the extremes. Among the whole
data set, only a small proportion will truly contribute to the extremal behaviour
of the variable of interest. Here, we develop a method to identify the informa-
tive signals in terms of extremes among a large data set, assuming that (X, H)
is jointly regularly varying. For a comprehensive review of existing methods on
sparsity and multivariate extremes we highly recommend the work of Engelke
and Ivanovs (2021).

As we have seen above, for linear classifiers, all the relevant features X, nec-
essarily satisfy ¢; > 0. Thus, feature selection can be based on estimation of the
¢; which can be done according to the following proposition.

13
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Proposition 3.10. Assume that

exists. If u, — oo and nP(H > u,) — oo, then

> i HXGi > un} N
Z?ﬂ WH; >up} °

C;.

If, additionally,

nP(H > u,) (H —ci) —0

and
X; = lim P(X; >u | H >wu) € [0,1]

U—00

exists, then, we have

2 WX > un}
E?:l 1{H; > un}

nP(H > uy,) < ci> = N(0,¢;-[1=2x; +cl).

The above Proposition 3.10 helps us to discriminate between informative co-
ordinates and non-informative ones in terms of extremes.

3.7.3 River network

We return to the Danube river network. Contrary to what was done in Section
3.5, here the data are pre-processed differently: we only subtract the minimum
to each station, no re-normalisation is performed. Thus some stations have a
heavier tail than others.

Before applying the methodology outlined above, an a priori analysis is per-
formed to check if the data are well regularly varying. From Table 3.2, we can
not reject the hypothesis that the river discharges at the stations considered are
heavy-tailed. Note that we show the results only for Station 1 (the station of inter-
est in this study), Stations 2, 13 and 30 (the stations that appear to contribute the
most to the extremes of Station 1, see below), and Stations 23 and 24 (the stations
considered in Section 3.5).

This section deals with a simpler case than the application in Section 3.5. Here
an application could be the following: we want to know which stations should
continue to be maintained to prevent extreme floods and maybe some stations
are not necessary.

As before, the goal is to predict the extreme events at Station 1, denoted X,
where an extreme event is defined as an event exceeding the 85th quantile of

14



3.7. Supplements to Paper Il

Stationid 1 | 2 13 30 | 23 24
Shape  0.19 | 0.13 0.07 0.03|0.04 0.04

Table 3.2: Estimates of the shape parameter when fitting a GPD. The threshold
was selected using mean residual life plot and parameter stability plots (see, e.g.
Coles (2001)). Estimation is performed using the R package ismev (Heffernan et al.,
2018).

X1. Unlike the study of Section 3.5, we assume that the whole set of remaining
stations is available. In this case, strong dependencies among Station 1 and other
stations can be observed. Therefore, the main issue is to identify and select these
stations following the procedure presented above.

The stations that may not contribute to the extremes of X; are identified
through the estimation of the coefficients ¢;. The estimation of the set C' on all
the data is presented in Table 3.3. Among the 30 stations, only three stations are
relevant: Stations 2, 13 and 30. Looking at Figure 3.6, these stations correspond
to the stations closest to X;. Figure 3.9 shows the scatter plots between these
stations and Station 1, reflecting strong dependencies between the variables.

Stationid 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
ci o6 0 0 000 O0OO0O O O O 030 0 0 0 0

Stationid 18 19 20 21 22 23 24 25 26 27 28 29 30 31
¢ o0 o0 o o o o0 o0 o0 o0 0 0 0 002 0

Table 3.3: Empirical estimates of ¢; (as defined in Proposition 3.10) for each sta-
tion. The values different from zero are highlighted in red.

Once the contributing variables have been identified, we compare the perfor-
mance of several classifiers, on the one hand keeping all the data and on the other
hand keeping only the informative stations. Since there is a strong dependence
between the data, we assume that it is sufficient here to look at the risk R;. Com-
parison results are shown in Figure 3.10. The comparison is performed among the
same classes of classifier as in Section 3.5, see Table 3.1 for a summary.

By definition of the linear classifier, the estimation is already done by keeping
only the informative variables, which is why the estimates are identical for this
specific classifier. As for the other classifiers, we see some improvements when
keeping only the informative variables: the risk estimates are slightly smaller. This
means that even if we remove a lot of information by going from 30 explanatory
variables to 3, these 3 remaining stations contain all the information in terms of
extremes of Station 1. However, caution must be exercised here, as no theoretical
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Figure 3.9: Correlation plot between X, and the stations considered to contribute
to the extremes of X; according to Table 3.3 (ie for which ¢; # 0). The blue dotted
lines represent the threshold u defined by the 85th percentile of Xj;.
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Figure 3.10: Estimation of Ry(g) for different classifiers ¢ (cross-validation - 70%
train, 30% test - with 50 repetitions). The red distributions come from the estima-
tion with all the stations, and the green distributions represent the estimations
with only the variables having ¢; # 0.
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results have been given for the other classifiers.

Predictive power of the linear classifier

We provide some additional remarks on the special case of the linear classifier.
Of the foregoing, only Stations 2,13 and 30 are relevant for the estimation of the
optimal @ (see Proposition 3.9). The left-hand side of Figure 3.11 depicts the distri-
bution estimates of 65, 6,5 and 6. The estimation is performed on 70% (training
set) of the data drawn 50 times at random. From Figure 3.11, X3 has less effect
than X, and X;3. Looking at the river map (Fig. 3.6), Station 30 is the furthest
station from Station 1 out of the three.

Then one of the 50 estimates is retained (at random, but sensitivity test showed
that it does not impact our results). Let's denote it @ = (65, 615, f3). And the pre-
dicted output of our linear classifier is computed through 07 Xs.. The vector
Xiest COrresponds to the river discharges at Station 2, 13 and 30 from the remain-
ing 30% data (that has not been used for the estimation of é). In the right-hand
side of Figure 3.11, the predicted output 07 Xiest iS plotted against the observed
river discharges at Station 1. From this, we find that the linear classifier predicts
the extremes quite well (upper right quadrant), but also, it predicts well the river
discharges that are not extreme (i.e. outside the extreme region). This is most
likely due to the specificity of our data, which are highly correlated.

o
o
° S
1T B ’
— g
o |
o
Q S
e S
. 5
28 2
© -88 I 5
S g >
3o .
k=8 84°%
3 S8 e
S "
2
o " X
S 2 g
o f
. K
N—— ol '
Xa X13 Xa0 0 1000 2000 3000 4000 5000

Observed river discharges

Figure 3.11: (left) Estimates of the optimal 6; of the three contributing variables
X, X153 and X3 (see Table 3.3), with 50 replications of the optimisation procedure.
(right) Predicted versus observed river discharges at Station 1. The predicted val-
ues are defined as 87 X, for one estimated triplet & among the 50 estimations.
The blue delimited upper region represents the region where both coordinates
are above the 0.85 quantile of X;. The red dotted line depicts the first diagonal.
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3.7.4 Possible extension to hidden regular variation, a simula-
tion study

Up to now, Section 3.7 only addressed the asymptotically dependent case. How-
ever, some similar results could be derived in the case of asymptotic indepen-
dence.

For that, we consider a modified version of the ¢; defined in (3.18). Lete € [0, 1)
and define the following:

. P(X; > u | X; > eu)
C;. = lim )
' u—oo P(H > u | H > cu)

Then different cases arise according to the value of .

Case e = 0:
We get ¢;p € (0,00) if, and only if, X; and H are tail equivalent. We get ¢;o = 0
if the tail of X is less heavy than the tail of H. This corresponds to the previous
coefficient defined in (3.18).

Casee > 0:
If the tail function of H is regularly varying with index ay and the tail function of
X; is regularly varying with index «;, we obtain

o —Q
Cie =€ TH,

Thus, ¢; . = 0 only if X; possesses light tails (assuming that H is heavy-tailed).

The following Lemma and the inference properties of ¢; . from Proposition 3.12
are still an open question, but from the simulation results shown hereinafter, we
are confident that this holds true.

Lemma 3.11. Assume that the joint distribution of (g(X ), H) satisfies the Ramos and
Ledford model

P[G(X) > u, H > v] = L(u, v)(Fy(u)v= ")~/ u,v >0,
where F, denotes the tail distribution of g(X ). Then, the following holds true:

1. If
L P(E(X) > u|g(X) > eu)
U—00 P(H>U|H>6u)

we have that R.(g) = 1 for all ¢ € (0, 1].

:O,

2. If R.(9) < landc;. =0, then, for all ¢ > 0, we have that

R.(g) = Rc(hi(c)),

where Ez(C) = E(X) + cX;.
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The second result in Lemma 3.11 emphasises that for partially linear classifiers,
the components X, for which ¢;. = 0, do not have any effect, and can thus be
removed as in the asymptotic dependent case.

Note that if we assume that the tail function of H is regularly varying with index
agy, then, lim, ,o o P(H > u | H > cu) = ¢*. Thus, instead of estimating ¢; ., we
can equivalently estimate

¢, =¢e"%¢ . = lim P(X; >u | X; > cu).

7
’ U—00

Therefore, a good candidate is the following empirical estimator

- > WX > un}
Y Y > eug

for large u,,.

The inference results for the estimation of the ¢;_, when ¢ > 0, are obtained

through the following proposition, which is the analogue of Proposition 3.10 for
e > 0.

Proposition 3.12. Assume that

lim P(X,L > Up ‘ X; > €Un) S [0, 1]

U—00

exists. If u,, — oo and nP(X; > eu,) — oo and, additionally,

P(X; > cun) | i > ) |
\/n( >€u)<IF’(Xi>5un) cl’s>—>0

then, we have

> i HXGi > un}
npP Xi>5Un nj : —C:a —>N 070:5' 1_0;}‘8 )
v ) (Ej:1 WX, >eu,p " (0, | <))

The same simulation framework as in Section 3.4 is carried out, i.e.
X ~ Pareto(3), Xy ~ Pareto(2), X3 ~ Exp(1), Xy ~ Exp(2), N ~ Pareto(2) and
H = X, + N,where X1,...,X,and N are independent.

The theoretical values of the limits ¢} _ are then given by

% %
=&, . =¢,06,=0,¢,.=0.

Now to compare with the theoretical values, we generate 1000 samples with sam-
ple size n and threshold u defined as a given quantile of H. Different sample
sizes are considered n € {5000, 1le4,2¢4, 1e5} and u is chosen such that we get
300 exceedances each time. The 95% confidence intervals are obtained using the
convergence result of Proposition 3.12.
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n=1000 n =15000 n =10000 n =20000 n = 1eb
n, =300 n, =300 n,=300 n,=300 mn, =300
qg="T0 qg=94 q=97 qg=985 ¢=99.7

CT 034 0-3494‘8% 0.3493,7% 0.3493,7% 0-3493.6% 0.3594.2%
C; 049 0-4995.8% 0.4995'0% 0~4993.8% 0.4994_3% 0.4995,0%
C; 0 0.360% 0.160% 0.0941_7% 0.0599% 0100%

True
value

CZ 0 O~1292.8% 0‘0298.6% 099.7% O100% O100%

Table 3.4: Empirical mean estimations of the limits ¢;_ for different sample sizes
n and 95% confidence interval coverage percentages computed among the 1000
replicates. The number of exceedances is denoted by n, and the percentile cho-
sen for the threshold is given by q. The value ¢ is equal to 0.7.

The simulation results are presented in Table 3.4. It appears that the sample
size does not impact the estimates. We also see that X; and X, are detected as
contributing to the extremes of H and that we could exclude X3 and X, from our
classification task but, in that case, confidence intervals appear to be difficult to

find.

3.8 Summary of Paper Il

To sum up

+ Paper Il addressed the specific issue of comparing binary classifiers
in the case of rare event prediction.

« Asymptotic dependent models: considering our first risk function
R(-) (which counts the number of mistakes), we have a benchmark
with the naive classifiers and we can rank different classifiers.

« Asymptoticindependent models: for regression models of the form
H = f(X)+ N, with tail of N heavier than tail of f(X), any classifier
will be as good as the naive classifiers.

—» To tackle this issues, development of risk functions adapted to ex-
tremal classifiers.
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— Flexible framework that allows to address both asymptotic depen-
dence and asymptotic independence.

— Tool to identify the explanatory variables that contribute the most
to extremal behaviour, with promising results in the case of hidden
regular variation.

-+ Assumption of multivariate regular variation implies to work with
heavy-tailed data.

-+ Transforming the data into identical margins would, in particular,
defeat the optimisation scheme of the linear classifier.
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Chapter 4

Some directions for future work

In three years, many avenues are explored, offering various topics for future re-
search. Hereinafter we list some potential extensions of the work presented in
this thesis.

Extension of the simulation model to the multivariate case

Recall thatin Chapter 2, we considered the stochastic representation of a standard
GP vector through
Z =FE+T —max(T), (4.1)

with E a unit exponential variable and T" a multivariate vector.

For a bivariate vector Z = (71, Z,), defining A = Z; — Z, allowed to rewrite
the representation (4.1) in a simple form, which was then easy to use for non-
parametric simulations:

Z; = E+ A, given the sign of A.

Now consider for example that max(T') = 7). Then the above can be written
as follows
leEandZQZE—A.

This gives hints for an extension to the multivariate case. Indeed, if we consider
Z = (Zy,...,Zq), d > 2, a first step would be to determine the index j such
that max(T") = T}, this could be achieved through a random sampling between
{1,....d}. Then defining A; = T; — T; for i # j, this leads to

Zj=Fand Z; = E — A, fori # j. (4.2)
Simulating independent and identically distributed (iid) unit exponential vari-

ables E'is costless. As for the bivariate case, the main pointis the simulation of the
A;. An avenue to explore is to bootstrap observations from the (d-1)-dimensional
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set of points A_; = (Aq,...,Aj_1,Aj41,...,Ay). This could be achieved by re-
sampling on the indexes: assuming that we have n iid replicates of A_;, random

draws with replacements in {1,...,n} leads to m bootstrap samples
AT, alm A AT, 1<k <m.

From this, we could then perform non-parametric bootstrap MGP simulations
in dimension greater than 2.

Perhaps the most challenging point for our application to extreme wave heights
is the multivariate extension of the marginal regression models. Indeed, if we as-
sume that instead of having only one offshore site, two or three sites are consid-
ered (represented in red in left-hand side of Figure 4.1). From an application per-
spective, this could certainly improve the coastal predictions as we would include
more information in the covariates. But up to now, it is unclear how to define the
conditioning part as in Equation (2.2). For the coastal marginal model, a possibility
could be of the following

[He — v | Hj,Tpl, D;,HOZ,TPZ,D;} ~ EGPD,
and to consider that the scale parameter of the EGPD vary as a smooth function
of both (7}, D;) and (177, D7) (assuming that we have two offshore grid point, site
1 with parameters (H,,T,, D,) and site 2 with (H?, T, D2)). This certainly leaves
rooms for future developments.

In terms of applications of such multivariate simulation model, in addition to
the above-mentioned one, which would allow for more refined simulations, an-
other interesting application would be for the recovery of historical data. A pos-
sible approach is schematised in the right-hand side of Figure 4.1 and would be
to consider two well documented sites such as buoys (represented by the two
red dots in Figure 4.1), and to simulate data between this two measurement sites
(represented by the blue dot). This idea was suggested by Jérémy Rohmer during
a visit at BRGM, and would deeply increase the understanding of past extreme
wave events, for which in-situ measurements are rather sparse.

Comparison of coastal extreme wave warning models

For coastal risk assessment, it is crucial to have efficient extreme sea state warn-
ing systems. From a simulation methods of extreme H, as developed in this
manuscript, one could then derive a warning (or forecast) model by looking at
the probability of the event {Y* = +1}, for a given high threshold u, where Y* is
defined as follows

yu +1, if Hy > u,
~1-1, otherwise.
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Figure 4.1: Two possible applications of a multivariate simulation model: (left) Re-
finement of coastal simulations; (right) Gap-filling in historical data.

In order to have a "good" warning model, one needs to ensure that the fore-
cast does not produce to many false alarms or miss. In this context, the risk func-
tion developed in Paper Il appears to be entirely relevant. The performances of
several prediction models could be assess on historical/hindcast data in order to
select the most efficient in terms of extreme wave events forecast. Such future
developments are definitively something worth trying.

Application to climate projections

Finally, regarding adaptation strategies for future climate conditions, it is of fun-
damental importance to be able to derive information on the changes in the oc-
currence of extreme wave events between current and future climates, but also
on the variability between different climate projection models. As discussed in
the introduction of Chapter 2, such questions have been addressed on a global
scale (e.g. Aarnes et al., 2017), but local variability has been less explored.

Assuming that the relation between the offshore point and the local point re-
mains identical, some future extension of the presented work could then be the
simulation of extreme coastal H, given large scale wave climate projections.

This is somewhat linked to the idea of statistical downscaling, where it is as-
sumed that there exists a transformation between the large scale and the local
scale, and that this transformation will remain valid in the future climate. Such
methods have been applied for instance in Bechler et al. (2015) in spatial context
to downscale extreme rainfalls, or in Towe et al. (2017) to produce future extreme
H, from downscaled wind fields.
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Appendix A

Technical proofs of Paper Il

A.1 Proofs

A.1.1 Proof of Lemma 3.4:

We can write that
P((A; U By) N (A-N B.))
P(A. N By) ’
P(A; N B.) +P(A. N By) —P(A; N By)
P(A. N B;)

]P)(Al UBl | AEQBE) ==

In the same way, we have

P(A,ABy| A, B.) = AN Be) + P(A: N B) — 2P(4, N By)

P(A. N B;)
Hence, we deduce that
P(A,AB|A B P(A B P(A B h
R(AE,BE>: ( 1 1‘ Em E) :1_ ( 1m €)+ ( Eﬂ 1) _1
P(A; U Bi|A. N B.) P(A;NBy) P(A N By

The expression given by (3.8) follows.
Item (a) of the lemma is based on the following inequality

PU|V)>PU |W),ifthesetsU, V and W satisfyU Cc V C W.
For item (b), note that
R(A., B:) < R(AL, B.)
— (1—R(A.,B.)) ' <(1-R(A,B.))™"
P(AiNB.) P(A:-NBy) < P(A1NB.) P(A.NBy)
P(A;NB;) PANB) ~ PANB) PA NB)’
P(A; N By)
P(A; N By)

<~ P(ANB.) +P(A. N By) < [P(A] N B.) +P(ALN By).
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AS P(AlﬂBl) - ]P’(A’lﬂBl) and P(AlﬂBE) == P(A'lﬁBE) and ]P)(AEHBl) S IP’(A;OBl),
then
R(A., B:) < R(AL, B.).
This provides the second statement (b) since we assume that A; = A} and A, C
AL
Item (c) is a direct consequence of (3.8). O

A.1.2 Proof of Lemma 3.6:

From Eqg. (3.12), we know that we can only get R(g) < 1, only if H and g(X) are
tail equivalent. Thus, this will be assumed in the following. Let w such that § :=
lim, 0 w(u)/u € (0,1), then for any positive u we can write that

P(f(X)+ N >u,g(X) > u)
P(g(X) > u)

P(f(X) > w(u),g(X) > u)
P(g(X) > )
P(N >u —w(u),g(X) > u)
P(g(X) > ) '

IN

Since g(X) and N are independent, the second term reduces to P(N > u —
w(u)) which converges to 0 since u — w(u) ~ (1 — 0)u as u gets large.
For the first term, we rewrite the ratio as follows

P(F(X) > w(w),3(X) > u) _ B(F(X) > w(w))
BG(X) > u) B(G(X) > u)

_ B((X) > w(w) PN > w(u)) BN >u)

S TRV > w(w) PN >w) PEX) > u)

<

Since w(u) = coand P(f(X) > u) = o (P(N > u)), the ratio M goes to

P(N>w(u))
P(N
Su, (N>w(u

0 as u gets large. From the assumption w(u) ~ BV u) ) pehaves as a constant

when v — oo.

The only remaining termis % which converges to a constant due to tail
equivalence. So, limP(g(X) > u | H > u) = 0. O

A.1.3 Proof of Proposition 3.7:

In Lemma 3.4 we fix A. = {g(X) > eu} and B. = {H > cu} and 4; = {g(X) > u}
and By = {H > u}.

P(H >wuorg(X)>wu|min{H,g(X)} >eu) =P(A, UB; | A. N B,),

and
P(g(X;u) # Y™ | min{H,5(X)} > eu) = P(A,AB,|A. N By).
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A.1. Proofs

The Ramos and Ledford model corresponds to the special of case of (3.9)
P[G(X) > u, H > v] = L(u,v)(u"%0v™1)Y/21 = P(A, N Bo) = ¢ P*(A.) P*(B./)

with

P(A:)
P(B:)

P(g(X) > eu) = Ly(su)e Y 9u",
P(H > eu) = Ly(eu)e”*Hu~ M

and
Ceer = L(eu,eu)/L(u,u), a = ay/(2n) and b = ay/(2n).

Then, from (3.10)
-1

R(A, B.) =1~ | =2 (B(AI]A)) ™ + S (B(Bi]B) ™~ 1
1,1

C1,1

Letting u gets large provides the required result. 0.

A.1.4 Proof of Proposition 3.8:

As we assume that R.(g) exists (for some ¢ > 0), for u,, — oo such thatnp, . (u, ) —
oo, wWe obtain that

S 1{g(X,un) AV Hi>eun,g(Xiseun)=1}
NPg,e (“n)
S H{max{g(Xi,un), Y, "™} =1, Hi>eun,g(Xieun)=1}
NPg,e (“n)

(P(g(X,Un#Y(“"),H>6un,g(X;eun)1) ) |

npg.e(Un)

Pg,e(un)

1

= ()G )

Provided that the bias is negligible, i.e.

P(g(X,u,) #Y") H > eu,, g(X;eu,) = 1)
Dy (tn)

n—0o0

lim \/np,.c(un) ( - Re(Q)) =0,

the Delta method yields

~

npy () (Bclg) = Rel9)) =5 N (0, Be(g) (1 = Rel9)).
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A.2 Proofs of the appendix

A.2.1 Proof of Proposition 3.9

The proof is based on the following lemma which is proven in Subsection A.2.2.

Lemma A.1. Under the assumptions from Proposition 3.9, for every compact subset
K C C, the sequences of processes {A,(0), 0 € K} and {B,(0), 0 € K} defined by

An(0) = m (l Z]l{{QTXZ- > u, YA{H; > un}} — Pgo(X; up) # y(un))>

B.(6) = m <% Z ]l{{HTXi > un} U {H; > up}} — P(max{gy(X; up), Y}

converge to centered Gaussian processes {A(6), 6 € K} and {B(0), 0 € K}, respec-
tively, weakly in (>°(K).

If the function 6 — R(gy) has a unique minimizer 6%, then, necessarily, R(gy+) <
1.
Now, similarly to the notation above, let J denote the set of indices j with ¢; > 0,
and let us consider # € C such that |||« > ko for some constant k, > 0. Then,

S W min(0" X, Hy} > uy,)} — v I{H; > u,}
Yo Wmax(0T X, Hi} > u,)} — minje; Yoo, L{koXy; > un}
n—oo

23,1 E()
P T R E(TY)

ﬁn(%) =1-

where the right-hand side goes to 1 as ky — oo. Thus, as ﬁn(gg*) —p R(go+) < 1,
we obtain that, for sufficiently large ko > ||6*||, with probability going to one,

ﬁn «) < min ﬁn
(90-) <, fnin  Finlg0)

and, consequently,

argming. R, (go) = argminge oo ojaL2n(90)-

Now, we note that, by Lemma A, the bias conditions (3.22) and (3.23) and the
functional delta method, R,(gs) converges in probability to R(gy) uniformly on
every compact subset of C. In particular,

~

sup  |R,.(g0) — R(ge)| —, 0.
0eCN[0,K]?

Thus,

argmineeCm[O,K]an(QG) —p argmineeCm[OK]dR(gG) = 0"
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A.2.2 Proof of Lemma A.1
We will proof the lemma by applying the Central Limit Theorem 2.11.9 in Van der
Vaart and Wellner (1996). To this end, we define the function spaces A = {ay, 0 €
K} and B = {by, 0 € K} where

ag : (0,00)% x (0,00) = {0,1}, ag(a, h) = ]1{{9% > 13A{h > 13}

be : (0,00)% x (0,00) = 0,1}, by(a, h) = ]l{{HT:B >13u{h> 13},

Then, with

1
Zu(f) = X, utH), feAUB,
!(f) nIP’(H>un)f(u" LU, Hy), f

fori=1,...,n,we have that

{4,060, 0 € K} = {37 (Zulf) ~EZu(f)), | € A}

and

(Bu(6), 0 € K} = {32 (Zulf) ~EZulf)), f € B}.

Now, we have that

1
max {||Zull4, || Zn = sup |Z, < a.s.
Wl s} = sup V()] < e

foralll=1,...,nandn € N.
Consequently, we check the Lindeberg condition: For k € N, we have

m 3 R Z 7 n
. (1Znil sl Znall.avs > n}) < lim H{nP(H > u,) <1/n*} =0
THOO; ; neee /nP(H > Un)k

asnP(H > u,) — oo by definition. For £ = 2, we obtain a Lindeberg type condi-
tion that ensures convergence of A, and B,, to A and B, respectively, in terms of
finite-dimensional distributions. For £k = 1, we obtain the Lindeberg type condi-
tion of Theorem 2.11.9 in Van der Vaart and Wellner (1996).

It remains to check the equi-continuity condition. In the following, to simplify
notation, we assume that C' = [0, 00)% Then, for 60 6@ € [a,b] C K C C, we
have that

lagoy (u, ' X, u, Y H) — agey (u, ' X, u P H)| € 0,1}

and
|boy (uy, ' X uy  H) — by (uy, ' X ur ' H)| € {0, 13
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and the probability that any of those two expressions is equal to one is bounded
by the probability
P(1{a"X >u,} #1{b" X > u,}) = P(a" X < up,b' X > uy)

Unp

1K]d

=P (H(X,H)H > >IP> (JX <, bTX > un | |[(X, H)|| > )

IK]d

wherewe usethatb' X > u, impliesthat || X|| > u, /(|| K||d) with || K| = sup,ck [|%]]o-
Making use of the fact that P (||(X, H)|| > u,/(|| K||d)) < Co(|| K ||d)* P(H > u,,) for
some constant Cy, > 0 and the bound given by Equation (3.21), we obtain that

P(1{a"X > u,} #1{b" X > u,})
< oI ) BUH > w,) {1+ alun /(1K) B (Pa'T < | |d, PB'T > [ )
= o B > )1+ s /(T Er (7 (7 e | BEHE LS )
< CoB(H > w1+ a(u, (|K[)]E (6T)" ~ (aT)")
< 2CoP(H > up)|a— b]

provided that u,, is sufficiently large as a(u, /(|| K||d)) — 0.
Consequently,

n

sup Y E[(Zu(f) = Zu(9))?] = 2Co5,
I f=gll<s 3=

which tends to 0 as 6 — 0. From this inequality, it can also be seen that any par-
tition of K into hypercubes with length £2/(2C;) leads to a valid e-bracketing, i.e.
the number N. o 1/£2¢ grows with a power rate and, so, y/log(N.) is integrable.
Thus, by Theorem 2.11.9, the processes A,, and B,, converge to Gaussian pro-
cesses A and B, weakly in (~(K). O
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