Keywords: stochastic optimization, machine learning, stochastic algorithms, online learning, streaming, time-dependent data

Learning from time-dependent streaming data with online stochastic algorithms

. Nevertheless, there is still a lack of theoretical understanding of how dependence and biases affect these learning algorithms.

. The SSG combines SG-based methods' applicability, computational benefits, variance-reducing properties through mini-batching, and the accelerated convergence from Polyak-Ruppert averaging. Our analysis links the dependency and convexity level, enabling us to improve convergence. Roughly speaking, SSG methods can converge using non-decreasing streaming batches, which break long-term and short-term dependence, even using biased gradient estimates. More surprisingly, these results form a heuristic that can help increase the stability of SSG methods in practice. In particular, our analysis reveals how noise reduction and accelerated convergence can be achieved by processing the dataset in a specific pattern, which is beneficial for large-scale learning problems.

At last, we propose an online adaptive recursive estimation routine for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models called AdaVol. The AdaVol procedure relies on stochastic algorithms combined with Variance Targeting Estimation (VTE); AdaVol has computationally efficient properties, while VTE overcomes some convergence difficulties due to the lack of convexity of the Quasi-Maximum Likelihood (QML) procedure. Empirical demonstrations show favorable trade-offs between AdaVol's stability and its ability to adapt to time-varying estimates.

Résumé

Apprentissage à partir de données en continu dépendant du temps avec des algorithmes stochastiques en ligne Au cours des dernières décennies, les systèmes intelligents, tels que l'apprentissage automatique et l'intelligence artificielle, se sont imposés dans de nombreux secteurs de la société. Cependant, bon nombre de ces méthodes fonctionnent souvent dans un cadre d'apprentissage batch ou hors ligne, où le modèle est réentraîné à partir de zéro lorsque de nouvelles données arrivent. Ces méthodes d'apprentissage présentent des inconvénients majeurs, tels que des coûts de réentraînement élevés en cas de nouvelles données, et donc une faible adaptabilité aux données massives et en pratique. Dans le même temps, ces systèmes intelligents génèrent une quantité pratiquement infinie de grands jeux de données, dont beaucoup se présentent sous la forme d'un flux quasi-continu de données, appelé streaming. C'est pourquoi les méthodes du premier ordre à faible coût de calcul par itération sont devenues prédominantes dans la littérature ces dernières années, en particulier la descente de gradient stochastique (SG) [START_REF] Robbins | A stochastic approximation method[END_REF]. Ces méthodes SG sont adaptées et robustes dans de nombreux domaines allant de problèmes lisses et fortement convexes aux problèmes complexes non convexes, ce qui les rend applicables à de nombreuses tâches d'apprentissage pour des applications réelles où les données sont de grande taille (et de grande dimension) et arrivent à une vitesse élevée. Ces méthodes du premier ordre ont été intensivement étudiées en théorie et en pratique au cours des dernières années [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. Néanmoins, il y a encore un manque de compréhension théorique sur la façon dont la dépendance et le biais affectent ces algorithmes d'apprentissage.

Un thème central de cette thèse est d'apprendre à partir de données en streaming dépendantes du temps et d'examiner comment les flux de données changeants affectent l'apprentissage. Pour y parvenir, nous construisons d'abord l'algorithme de gradient stochastique en streaming (SSG), qui peut gérer des données quasi-continues ; il comprend diverses méthodes SG, telles que la descente SG (c'est-à-dire l'algorithme de Robbins-Monro), les méthodes SG à mini-batch, ainsi que leurs estimations moyennes Polyak-Ruppert [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF]. La descente SSG combine l'applicabilité des méthodes fondées sur les SG, les avantages en termes de calcul, les propriétés de réduction de la variance grâce au mini-batching, et la convergence accélérée grâce à la moyénisation de Polyak-Ruppert. Notre analyse repose sur le niveau de dépendance et de convexité du problème, et nous permet d'améliorer la convergence. En résumé, les méthodes SSG peuvent converger en utilisant des mini-batchs de tailles croissante en streaming, qui rompent la dépendance à long terme et à court terme, et ce, même en utilisant des estimations de gradient biaisées. De manière plus surprenante, ces résultats forment une heuristique qui peut aider à augmenter la stabilité des méthodes SSG en pratique. En particulier, notre analyse révèle comment une réduction du bruit et une convergence accélérée peuvent être obtenues en traitant l'ensemble de données selon une procédure spécifique, ce qui est bénéfique pour les problèmes d'apprentissage à grande échelle.

Enfin, nous proposons une méthode d'estimation récursive adaptative en ligne pour les modèles GARCH appelée AdaVol. La procédure AdaVol repose sur des algorithmes stochastiques combinés à la méthode de ciblage de la variance (VTE) ; AdaVol présente des propriétés efficaces sur le plan du calcul grâce à la VTE qui permet de surmonter certaines difficultés de convergence dues au manque de convexité de la procédure de vraisemblance quasi-maximale (QML). Des démonstrations empiriques montrent des compromis favorables entre la stabilité d'AdaVol et sa capacité à s'adapter à des estimations variant dans le temps.

Mots clés: optimisation stochastique, apprentissage automatique, algorithmes stochastiques, apprentissage en ligne, streaming, données dépendantes It is now three years since I moved to Paris for this thesis project. A lot has happened since then. I left with high expectations for my new Parisian life. I had to learn French, eat buttery food every night, taste a lot of local grapes, and truly enjoy the Parisian culture. I almost made it, not because of my own efforts but because of the people around me. I owe immense gratitude to everyone who made this journey enjoyable. Therefore, I will now start to name-drop all those I want to thank, but don't feel neglected if I have forgotten your name.

First of all, I would like to thank my supervisors, Antoine and Olivier. This project would not have been possible without your enormous commitment and support, and the many hours you have invested in me. Olivier, it has been over seven years since we got to know each other, and I am so grateful for everything you have taught me. I have truly lived by the saying that an expert is someone who has made all the mistakes that can be made in a narrow field. Without your extraordinary patience and support, it would not have been possible for me to make all these mistakes; without saying I have made enough. Antoine, I really appreciate all the hours you spent evaluating my work. Without your enthusiasm and knowledge, I would never have made it through. I am sorry that my lack of language skills has excluded me from all your jokes; as far as I could tell, they were hilarious. I have nothing more to say than that it has been a great pleasure working with you.

Thanks to DIM Math Innov for the opportunity they gave me through the Paris Ile-de-France Region program, and in particular to Dominique Wetzel, who constantly took care of us candidates.

I would also like to express my gratitude to Sebastien Gadat and Genero Sucarrat for their careful reading of my thesis and for many insightful comments and suggestions. Thanks to Alain Durmus, Gersende Fort, and Sylvain Le Corff for being my jury members.

Thanks to my office family. You all made this thesis so much more fun! I especially want to thank Joseph, Grâce, Cyril, Camila, Ludovic, Antonio, Miguel, Ariane, Pierre, Iqraa, Franceso, Alice, Alexis, Patrick, and those who went before me; Adeline, Aude, Nicolas, Riccardo, and Vincent. Thanks to the LPSM organization for their work and help; Hugues, Louise, Valérie, and Nathalie. Last but not least, I want to thank Gloria and Thibault, it would never have been the same without you. I am already sad not to see you every day, but I wish you all the best. I hope we see each other again soon.

Thanks to my friends and family for supporting and listening to me during this thesis. It has been the most stressful and challenging period of my life, but you have helped me make it the happiest. Finally, I would like to thank the most important person, Amalie. All these years, you stayed by my side, supporting and reassuring me, pushing and cheering me on, and sometimes putting up with me. Our relationship is my greatest achievement.

Learning from Streaming Data

Machine learning and intelligent systems have become an integral part of modern society, e.g., through online learning, deep learning, reinforcement learning and supervised learning [START_REF] Goodfellow | Deep learning[END_REF][START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF][START_REF] Hazan | Introduction to online convex optimization[END_REF][START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. This interest is particularly driven by readily available datasets of enormous size and increasingly powerful and cheaper computer systems. Many of these systems follow the traditional learning scheme where we observe an entire dataset, build our model and then predict/label new observations, e.g., see the left-hand side of Figure 1.1. At the same time, the use of these intelligent systems generates a practically infinite amount of large-scale datasets, many of which come as a continuous data stream, so-called streaming data, such as internet traffic (e.g., tweets, search engines, advertising), self-driving cars, financial investments, weather data, or other sensor data [1,[START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF][START_REF] Lan | First-order and stochastic optimization methods for machine learning[END_REF].

These data streams should be processed sequentially with the property that the data stream may change over time. To be able to distinguish between these, we introduce streaming learning. In streaming learning, we assume that data arrives sequentially over time, in which we update our models during this continuous influx of data, e.g., see right-hand side of Figure 1.1.

Streaming data arrives as an endless sequence of samples (data points), which means that at any given time, the model must be able to adapt to the samples observed (so far) to predict/label new samples accurately. Such streaming models can never be seen as complete but must be updated continuously as newer samples arrive. Methods that recalculate the model from scratch on the arrival of new samples are impractical due to their high computational cost. Therefore we need procedures that effectively update the model as more samples arrive. This computational efficiency should not be at the expense of accuracy; the model's accuracy should be close to that achieved if we built a model from scratch using all the samples [START_REF] Bottou | Large scale online learning[END_REF].

Machine learning is rooted in statistics and is highly dependent on the efficiency of numerical algorithms. One of the main ingredients in machine learning is to choose the optimization method.

The optimization model must numerically estimate the parameters of a given model so that the model can make accurate decisions based on future data. These model parameters must be selected optimally for a given learning problem based on currently available data. Traditional gradient-based batch approaches can effectively solve small learning problems but are unfeasible for streaming (and large-scale) learning problems [START_REF] Bottou | The tradeoffs of large scale learning[END_REF]. Therefore, there is a need for effective optimization methods that process data samples at low computational costs while having sufficient theoretical guarantees. This setting goes beyond the traditional optimization methods [START_REF] Aspremont | Smooth optimization with approximate gradient[END_REF][START_REF] Juditsky | First order methods for nonsmooth convex largescale optimization, i: general purpose methods[END_REF], which gives first-order gradient methods an important role.

A hallmark of learning from streaming data (or large-scale learning) is the uncertainty from limited (or no) access to accurate information about incoming data. This can be implemented by assuming that the objectives of the optimization are stochastic, leading to Stochastic Optimization (SO) [START_REF] Nemirovskij | Problem complexity and method efficiency in optimization[END_REF]. Solving the SO problem in a streaming framework means we approach the objective using the gradually arriving samples drawn according to an unknown process. Stochastic algorithms, such as the Stochastic Gradient (SG) descent [START_REF] Robbins | A stochastic approximation method[END_REF], have been one of the core methods of efficiently dealing with SO problems. Since then, much work has been done to analyze, improve and develop methods dealing with stochasticity [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Ghadimi | Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization i: A generic algorithmic framework[END_REF][START_REF] Lan | An optimal method for stochastic composite optimization[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF]. An essential extension is Polyak-Ruppert averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF]; this technique sequentially aggregates the estimates, which leads to a smoother curves (i.e., variance reduction in the estimation trajectories), and accelerates the convergence.

The classical analyses of SO problems typically require unbiased gradients drawn independently and identically distributed (i.i.d.) from some underlying (and unknown) data generation process [START_REF] Cesa-Bianchi | On the generalization ability of on-line learning algorithms[END_REF]. However, in practice, learning often involves a data-generating process that produces highly dependent data samples, which are known to heavily bias the SO problem and slow down the convergence of learning; these time-dependent streaming data could, e.g., be meteorological or financial time series. Nevertheless, stochastic algorithms for dependent data are not as well understood as for i.i.d. data. Stochastic algorithms can converge even when they only have access to biased gradients, but most analysis has been developed with specific applications in mind [4,[START_REF] Bertsekas | Nonlinear Programming[END_REF][START_REF] Aspremont | Smooth optimization with approximate gradient[END_REF][START_REF] Devolder | Stochastic first order methods in smooth convex optimization[END_REF][START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF]]. Yet, some researchers have examined the convergence of stochastic algorithms these difficult settings, e.g., see Agarwal and Duchi [3], Karimi et al. [START_REF] Karimi | Non-asymptotic analysis of biased stochastic approximation scheme[END_REF].

While the above works utilized concepts of data dependence to characterize different stochastic algorithms over dependent data, there is still a lack of theoretical understanding on how different levels of data dependence affects these algorithms. In particular, the learning scheme of stochastic algorithms critically affects the bias and variance of the learning process. In fact, under i.i.d. data and convexity, we have shown that SG-based methods achieves only slightly improved convergence bounds by using constant mini-batch vs. single batch [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]. However, these learning schemes may lead to substantially different convergence behaviors over highly dependent data, as the gradients are no longer unbiased estimates. Therefore, it is vital to understand the interplay between data dependence and stochastic algorithms. In this thesis, we go beyond these standard assumptions by allowing dependent and biased gradients. Specifically, we study convergence rates of stochastic algorithms over a broad spectrum of data dependence levels under various streaming schemes, including mini-batch and averaged mini-batches.

Organization. In this introduction, we summarize this thesis's main ideas and challenges. Section 1.1.1 explains some of the benefits of SG-based methods and emphasizes where our contributions should be placed in the literature. Next, this thesis's contributions (and a brief description of them) are given in Section 1.1.2. Section 1.2 presents the stochastic streaming algorithms that solve the SO problem, namely the Stochastic Streaming Gradient (SSG) and Averaged SSG (ASSG). In addition, we highlight some of its extensions used to design optimization methods, e.g., noise/variance reduction methods that use the power of mini-batch methods to reduce noise during optimization and iterative averaging that improves convergence rates (Section 1.2.3). Finally, we provide a summary of the main results of this thesis (Section 1.3); here we show how our SSG and ASSG methods overcome these challenges and achieve convergence in difficult settings with long-and short-range dependencies, biased estimates, and changing data streams.

Examples of Applications

In statistics and machine learning, one often encounters the following optimization problem [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]: let l 1 , . . . , l n be a sequence of random differentiable functions from R d to R. Our goal is to find an approximate solution θ ∈ R d of the following optimization problem,

L n (θ) = 1 n n t=1 l t (θ). (1.1.1)
We say that L n : R d → R yields the empirical risk, i.e., empirical loss. Many problems, from classification, and regression to ranking, can be written on this form (1.1.1), e.g., see Teo et al. [START_REF] Teo | A scalable modular convex solver for regularized risk minimization[END_REF] for examples of scalar and vectorial loss functions and their derivatives.

For example, consider the simple case where we have some samples (X t , Y t), t = 1, . . . , n from a couple of random variables (X, Y) in X × Y. Our interest is to find predictor h θ : X → R over Chapter 1 some parameterization {h θ } θ∈R d , by minimizing (1.1.1) with l t (θ) = l(h θ (X t), Y t)+λΩ(θ), where l is some loss function, λ > 0 a regulizer parameter, and Ω : R d → R some regularizer, e.g., the l 1 or l 2 regularization. The loss l could be the quadratic loss, logistic loss, (squared) hinge loss, or Huber's (robust) loss, but it depends on the experiments that one wants to perform [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Boyd | Convex optimization[END_REF][START_REF] Bubeck | Convex optimization: Algorithms and complexity[END_REF][START_REF] Nesterov | Lectures on convex optimization[END_REF][START_REF] Nocedal | Numerical optimization[END_REF].

More specifically, in classification one has X = R d and Y = {-1, 1}, thus, taking the hinge loss max{0, 1-Y t h θ (X t)}, h θ (X t) = θ T X t and Ω(θ) = ∥θ∥ 2 2 one obtains the SVM problem. On the other hand, taking the logistic loss log(1 + exp(-Y t h θ (X t))) and again h θ (X t) = θ T X t and Ω(θ) = ∥θ∥ 2 2 one obtains the (regularized) logistic regression problem. In regression one has X = R d and Y = R, thus, taking the squared loss (h θ (X t) -Y t) 2 , h θ (X t) = θ T X t and Ω(θ) = 0 one obtains the vanilla least-squares problem. This problem can be rewritten in vector notation as min θ∈R d ∥Xθ -Y ∥ 2 , where X ∈ R n×d is the matrix with X t the t'th row and Y = (Y 1 , . . . , Y n) T . Hence, with Ω(θ) = ∥θ∥ 2 2 one obtains the ridge regression problem, while with Ω(θ) = ∥θ∥ 1 this is the LASSO problem [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF].

The regularizer Ω(θ) can be seen as a simple convex function that, when added to a non-convex loss function l, may convexifies it, thereby helping gradient-based optimization techniques avoid poor solutions at its saddle points or flat areas.

In addition to these simple methods, there are many other more complex methods, such as those for linear/non-linear time series. These methods have been successfully used in a wide range of applications due to their ability to describe or predict time-varying (dependent) processes, e.g., the AutoRegressive (AR), Moving-Average (MA), and AutoRegressive Moving-Average (ARMA) models are the most well-known models for time series [START_REF] Box | Time series analysis: forecasting and control[END_REF][START_REF] Brockwell | Time series: theory and methods[END_REF][START_REF] Hamilton | Time series analysis[END_REF]. Standard time series analysis often relies on independence and constant noise, but it can be relaxed by, e.g., the AutoRegressive Conditional Heteroskedasticity (ARCH) model [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF].

Let us give some examples of (1.1.1) with our notation: let (Z t) denote some real-valued time series. For an AR(d) model our interest is in explaining Y t = Z t using the explanatory values X t = (Z t-1 , . . . , Z t-d). In other words, an AR model explains the variable of interest by a linear combination of past values of the variable, whereas a multiple regression model explains the variable of interest by a linear combination of predictors. A reasonable measure could be to compare to the best possible AR model, i.e., at time t, we make a prediction h θ (X t) = d i=1 θ i Z t-i , after which Y t is revealed, and we suffer a loss l t (θ) = (Y t -h θ (X t) 2 , where θ = (θ 1 , . . . , θ d) are the coefficients.

Another example could be an ARCH(d) model, e.g, see Francq and Zakoïan [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF]: in this case, we are interested in predicting the volatility of Z t (i.e., Y t = Z 2 t) using the explanatory values X t = (Z 2 t-1 , . . . , Z 2 t-d). Thus, an ARCH(d) process with parameters θ = (ω, α 1 , . . . , α d) has h θ (X t) = ω + d i=1 α i Z 2 t-i . The natural estimator for θ is the Quasi-Maximum Likelihood Estimator (QMLE) due to its theoretically appealing properties and robustness to extreme values, e.g., see Patton [START_REF] Patton | Volatility forecast comparison using imperfect volatility proxies[END_REF]. This means we are considering Quasi-Likelihood (QL) losses of form l t (θ) = log h θ (X t)+Y 2 t /h θ (X t). However, the concavity of the QL loss raises some issues, which we will return to in Chapter 4.

More sophisticated models such as ARMA, ARIMA, and Generalized ARCH (GARCH) are studied in Anava et al. [START_REF] Anava | Online learning for time series prediction[END_REF], Liu et al. [START_REF] Liu | Online arima algorithms for time series prediction[END_REF], Werge and Wintenberger [START_REF] Werge | Adavol: An adaptive recursive volatility prediction method[END_REF]. In Chapter 4, we propose an online adaptive estimation routine for GARCH models called AdaVol. AdaVol uses Section 1.1 online stochastic algorithms to estimate the parameters of a GARCH model using the QMLE. More generally, online learning algorithms of (both stationary and non-stationary) dependent time series have been studied in Agarwal and Duchi [3], Wintenberger [START_REF] Wintenberger | Stochastic online convex optimization; application to probabilistic time series forecasting[END_REF].

To sum up, the optimization problem in (1.1.1) contains numerous models, whether we want to incorporate dependency or not. Even though (1.1.1) may look remarkably simple, it ranges widely.

We will see several different examples of (l t) over the following chapters; in particular, we will consider each l t as a varying block of streaming data, i.e., a streaming batch of varying size.

Computational Trade-offs by Stochastic Gradient Methods

Let us now illustrate the computational advantages of stochastic gradient-based methods. For this purpose, we introduce some fundamental gradient-based optimization algorithms to minimize the empirical risk L n in (1.1.1). We are currently introducing them in the context of minimizing the empirical risk L n , but our later analysis will focus on algorithms for minimizing the expected risk L in (1.2.4). Optimization methods can be divided into two broad categories: stochastic and batch. Gradient-based batch optimization methods can, in their simplest form with k ∈ N, be defined as

θ k = θ k-1 -γ k g k (θ k-1), with g k (θ k-1) =    1 |C k | i∈C k ∇ θ l i (θ k-1), (mini-batch) 1 n n i=1 ∇ θ l i (θ k-1), (batch gradient) (1.1.2)
with θ 0 ∈ R d , C k ⊆ {1, . . . , n} and (γ k) is the learning rate. Solving (1.1.1) by traditional iterative gradient-based methods (1.1.2) can be effective in solving small-scale learning problems where n and d are small. A batch approach would have a computational cost of O(dn) per-iteration, i.e., O(kdn) computations after k iterations. In practice, one would instead use an iterative mini-batch method in which a subset of samples C k is chosen randomly in each iteration. A mini-batch have a computational costs of O(|C k |d) per-iteration, i.e., O(k|C k |d) computations after k iterations. These (mini-)batch approaches will converge quickly, but these approaches are too computationally expensive and will thus be prohibitive for streaming data (or large datasets), where n and/or d are large, since we would have computational costs of O(kdn) (or O(k|C k |d)) every time new data arrives. Instead, online algorithms have been the core method of interest [START_REF] Hazan | Introduction to online convex optimization[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF], particularly the SG descent [START_REF] Robbins | A stochastic approximation method[END_REF], which, in the context of minimizing L n in (1.1.1), is defined for t = 1, . . . , n by θ t = θ t-1 -γ t ∇ θ l t (θ t-1).

(1.1.

3)

The SG descent in (1.1.3) has a computational cost of only O(d) for each new data point, corresponding to a mini-batch with |C k | = 1 and k = 1, which is very cheap. These SG methods and batch approaches have different trade-offs in computational costs and expected convergence rates.

One may ask, why have SG methods become so famous for large-scale problems? This question requires careful consideration of the computational trade-offs between stochastic and batch methods and a thorough investigation of their convergence capabilities [START_REF] Bottou | The tradeoffs of large scale learning[END_REF][START_REF] Bottou | Large scale online learning[END_REF][START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF].

Chapter 1

Contributions and Outline of Thesis

Main goals. The central theme of this thesis is to learn from time-dependent streaming data, where traditional optimization techniques are unsustainable due to their high computational cost.

We want to explore SG-based methods robustness and convergence guarantees under various settings. In short, the main objectives of this thesis are 1. To allow learning algorithms to handle streaming data, 2. To improve learning by adapting streaming learning to the hardness of the problem; the level of dependence, noisiness, and convexity.

Chapter 2 introduces the Stochastic Optimization (SO) problem in a streaming framework.

In this streaming setting, we propose techniques for minimizing convex objectives through unbiased estimates of their gradients. Our analysis extends the work of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] to a streaming framework. A fundamental aspect of this chapter is to explore how changing data streams affect these techniques; this include everything from vanilla SG descent and Averaged SG (ASG)1 , mini-batch SG and ASG, to more exotic learning designs. Our main theoretical contribution is the non-asymptotic analysis of the SSG and Averaged SSG (ASSG) method in this streaming framework. Our results show a noticeable improvement in convergence rates by having learning rates that adapt to the expected data streams. In particular, we show how to obtain improved convergence rates robust to any data streaming rate. In addition, noise reduction can be achieved by processing the data in a specific pattern, which is advantageous for large-scale machine learning problems.

These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed streaming algorithms.

• Godichon-Baggioni, A., Werge, N., [START_REF] Wintenberger | Stochastic online convex optimization; application to probabilistic time series forecasting[END_REF]. Non-asymptotic analysis of stochastic approximation algorithms for streaming data. arXiv preprint arXiv:2109.07117.

Next, in Chapter 3, we investigate the SO problem in a streaming framework [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF], where the data comes from a dependent stochastic process. We provide non-asymptotic analysis and quantify the magnitude of achievable convergence rates under various dependency structures (sometimes leading to divergence). Our framework covers many applications with dependence and biased gradients.

Our results build a connection between the level of dependency and convexity, enabling us to improve convergence. Roughly speaking, SSG methods can break short-term and even long-term dependence by using increasing batch sizes, which counteracts the dependency structures. We show that biased SSG methods converge, and that they can converge with the same accuracy as unbiased SSG methods if the bias is not too large. More surprisingly, our results give an explicit heuristic that can be used in practice to help increase the stability of SSG methods. In particular, we show that mini-batch is essential to break dependence and ensure convexity. In addition, we can accelerate convergence by simultaneously averaging.

• Godichon-Baggioni, A., Werge, N., and Wintenberger, O. (2022). Learning from time-dependent streaming data with online stochastic algorithms. arXiv preprint arXiv:2205.12549.

In Chapter 4, we propose an online adaptive estimation routine for GARCH models called AdaVol. The AdaVol procedure relies on stochastic algorithms combined with the technique of Variance Targeting Estimation (VTE) [START_REF] Francq | Merits and drawbacks of variance targeting in garch models[END_REF]. This AdaVol method has computationally efficient properties, while VTE alleviates some convergence difficulties encountered by the usual Quasi-Maximum Likelihood (QML) estimation due to a lack of convexity. Empirical demonstrations show favorable trade-offs between AdaVol's stability and its ability to adapt to time-varying estimates.

The adaptation to time-varying parameters was a surprising advantage that appeared when we applied our method to real-life observations. • Werge, N. (2021). Predicting risk-adjusted returns using an asset independent regime-switching model. Expert Systems with Applications, 184:115576.

Stochastic Optimization for Streaming Data

The computational complexity of an algorithm is a limited element when handling streaming data (or large-scale datasets). The main focus of this thesis is to study stochastic algorithms for solving stochastic optimization problems in a steaming framework. We focus on gradient-based optimization algorithms with convex objectives that we will analyze in a non-asymptotic way. Remark that gradient estimates can be constructed from function values if gradients are unavailable, e.g., see Nesterov and Spokoiny [START_REF] Nesterov | Random gradient-free minimization of convex functions[END_REF]. In Section 1.2.1, we formalize stochastic optimization problems in a steaming framework. Next, in Section 1.2.2, we define the Stochastic Streaming Gradient (SSG) methods [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF][START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF] and highlight some of the main benefits of SSG methods. This section is concluded with a preview of some advanced optimization techniques discussed in the literature (Section 1.2.3).

Chapter 1

Problem Formulation

In statistics and machine learning, we often want to describe the behavior of a real system of interest, usually in the form of a parameterized mathematical model [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]. Therefore, we set up a mathematical function representing how well the model describes the system of interest with the model parameters as arguments. Throughout the thesis, we refer to this as the objective function.

We can now describe our streaming setting formally: at each time t ∈ N, a block consisting of n t ∈ N random functions l t = (l t,1 , . . . , l t,nt) arrives. The objective of the Stochastic Optimization (SO) problem is to minimize functions of the form depending on L and some underlying noise sequence.

L(θ) = E[l t (θ)], (1.2
An example of such a SO problem (1.2.4) can be given as follows [START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]: there is an unknown one-to-one mapping L : Θ → R embedded into the system by nature, which we are interested in.

Thus, in order to approximate L (and recover θ from it), we use the gradient estimates (∇ θ l t), where l t is e.g., the loss between the predicted h θ (X t) and true Y t outputs, respectively; here we assume that the prediction function h θ has a fixed form and is parameterized by a real vector θ ∈ Θ over which the optimization is to be performed. Hence, the aim is to find θ such that the prediction function h θ minimizes the risk L.

In order to compare our streaming methods fairly, we should always compare in terms of the number of observations used, namely using N t = t i=1 n i , which is the (accumulated) sum of observations at time t. For example, for empirical risk minimization (1.1.1), one chooses the predictor by minimizing the empirical risk over a parameterized set of predictors potentially with regularization [START_REF] Lan | An optimal method for stochastic composite optimization[END_REF][START_REF] Teo | A scalable modular convex solver for regularized risk minimization[END_REF][START_REF] Vapnik | The nature of statistical learning theory[END_REF], e.g, for a parameterization {h θ } θ∈Θ , a regulizer parameter λ, and a regularizer Ω :

Θ → R, this requires to minimize L Nt (θ) = 1 Nt t i=1 l i (θ) with l i (θ) = n i j=1 l(h θ (X i,j), Y i,j)+λΩ(θ)
, where X i = (X i,1 , . . . , X i,n i) and Y i = (Y i,1 , . . . , Y i,n i) are the blocks of n i observations that arrive at each i (a.k.a. streaming batches). Consequently, if n t = 1, we have the classic setting of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], which we described in Section 1.1.1. Whereas, if n t is constant, we have a (constant) mini-batch. Having n t varying means that we have varying streaming batches depending on the time t, which is what we are particularly interested in.

Stochastic Streaming Gradients

The prototypical method for solving the SO problem is SG-based methods [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Hardt | Train faster, generalize better: Stability of stochastic gradient descent[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF][START_REF] Toulis | Towards stability and optimality in stochastic gradient descent[END_REF][START_REF] Xiao | Dual averaging method for regularized stochastic learning and online optimization[END_REF][START_REF] Zhang | Solving large scale linear prediction problems using stochastic gradient descent algorithms[END_REF]. But to solve the SO problem (1.2.4) in a streaming framework, we use the Stochastic Streaming Gradient (SSG) method proposed by Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF], given as

θ t = θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) , θ 0 ∈ Θ, (1.2.5)
where γ t is the learning rate satisfying the conditions ∞ i=1 γ i = ∞ and ∞ i=1 γ 2 i < ∞ [START_REF] Robbins | A stochastic approximation method[END_REF]. Note that if ∀t, n t = 1, SSG becomes the well-known SG descent. In many models, there may be constraints on the parameter space, which would require a projection of the parameters; therefore, we also introduce the Projected Stochastic Streaming Gradient (PSSG) estimate, defined by

θ t = P Θ θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) , θ 0 ∈ Θ, (1.2.6)
where P Θ denotes the the Euclidean projection onto Θ, i.e., P

Θ (θ) = arg min θ ′ ∈Θ ∥θ -θ ′ ∥ 2 . To shorten notation, we let ∇ θ l t (θ) = n -1 t nt i=1 ∇ θ l t,i (θ)
. In this streaming setting, we are also interested in acceleration approaches to the existing algorithms. An essential extension is the Polyak-Ruppert averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF], which guarantees optimal statistical efficiency without jeopardizing the computational cost; the Averaged Stochastic Streaming Gradient (ASSG) is given by

θt = 1 N t t-1 i=0 n i+1 θ i , θ0 = 0, (1.2.7)
where N t = t i=1 n i is the sum of observations at time t. Likewise, PASSG denotes the averaged estimate of PSSG (1.2.6). In addition, (1.2.7) can be modified to a weighted average version, giving greater weight to the latest estimates and thereby improving the convergence while limiting the effect of poor initializations; examples of these can be found in Boyer and Godichon-Baggioni [START_REF] Boyer | On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions[END_REF], Mokkadem and Pelletier [START_REF] Mokkadem | A generalization of the averaging procedure: The use of two-time-scale algorithms[END_REF].

These averaging methods sequentially aggregates the estimates, which leads to a smoother curves (i.e., variance reduction in the estimation trajectories), and accelerates the convergence.

Practically, as we handle data sequentially, we will make use of the rewritten formula: θt = (N t-1 /N t) θt-1 + (n t /N t)θ t-1 with θ0 = 0. Pseudo-code of these streaming estimates are presented in Algorithm 1.1. Each update of these methods is very cheap, involving only the computation of

n t gradients ∇ θ l t (θ t-1) = n -1 t nt i=1 ∇ θ l t,i (θ t-1
), i.e., a computational costs of O(dn t). Thus, we have the same computationally efficiency as the SG descent in (1.1.3), e.g., see Section 1.1.1. These methods are notable as (θ t) is a stochastic process whose behavior is determined by the random sequence (l t) and the learning rate (γ t). Still, as we shall see in our analysis in Section 1.3, the Chapter 1 direction of -γ t ∇ θ l t (θ t) might not point at θ t . However, if it does in expectation, we follow the gradient of L, and thereby the sequence (θ t) can be guided toward the minimizer of L.

θ k+1 = θ k - γ k N t t i=1 n i j=1 ∇ θ l i,j (θ k). (1.2.8)
The computational cost of each step (1.2.8) is prohibitive for N t very large (e.g., 10 6 or 10 9), although one would expect a better step estimate when all N t samples are considered at each iteration. Periteration would have a computational cost of O(dN t), i.e., O(kdN t) computations after k iterations (similarly to what we saw in Section 1.1.1). In addition, we must also take into account that in streaming settings, one has limited response time between new observations; thus, computational costs become even more crucial.

Beyond Stochastic Streaming Gradients

Due to the massive popularity of SG methods, it is obvious to ask how we can make SG even more efficient, robust, and user-friendly for several different optimization methods. This question has led to very many variants, of which we will outline some of the most common, but we will omit algorithms that are impractical for large-scale datasets, e.g., see Boyd et al. [START_REF] Boyd | Convex optimization[END_REF], Nesterov et al.

[104] for more details on second-order methods (such as Newton's method), or other extensions.

The choice of learning rate (γ t) has a significant impact on the convergence of SG methods;

if it is too small, it will slow down the convergence, while too high a learning rate may prevent convergence or even divergence, as the loss function will fluctuate around the minimum. Thus, an adaptive learning rate would be much more effortless to adjust and more user-friendly, as it requires less fine-tuning. In addition, it would be preferable to have a learning rate per dimension, which thereby adjust learning individually as convergence evolves. Some of the most common adaptive learning algorithms for SG optimization is Momentum [START_REF] Qian | On the momentum term in gradient descent learning algorithms[END_REF], Nesterov accelerated gradient [START_REF] Nesterov | A method for unconstrained convex minimization problem with the rate of convergence o (1/kˆ2)[END_REF],

Adagrad [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF], Adadelta [START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF], RMSprop [START_REF] Hinton | Neural networks for machine learning lecture 6a overview of mini-batch gradient descent[END_REF], and Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. Ruder [START_REF] Ruder | An overview of gradient descent optimization algorithms[END_REF] gives an overview of various SG methods for (convex and non-convex) optimization, including how to parallelize and distribute SG updates.

If one were to look at the trajectory of the noisy gradients SG uses as estimates, one would be surprised. This lack of robustness (or high noise level) can prevent SG methods from converging or lead to slow convergence. There are several techniques to improve the robustness of SG methods, of which some of the most known are mini-batch SG, gradient aggregation methods, and iterate averaging methods. Such methods have proven effective in practice and possess attractive theoretical properties because they reduce the noise in the gradient estimates [START_REF] Defazio | Saga: A fast incremental gradient method with support for non-strongly convex composite objectives[END_REF][START_REF] Johnson | Accelerating stochastic gradient descent using predictive variance reduction[END_REF][START_REF] Jothimurugesan | Variance-reduced stochastic gradient descent on streaming data[END_REF][START_REF] Nguyen | Sarah: A novel method for machine learning problems using stochastic recursive gradient[END_REF][START_REF] Roux | A stochastic gradient method with an exponential convergence _rate for finite training sets[END_REF]. The minibatch SG uses a small subset of gradient estimates in each iteration, which intuitively reduces variance, makes it easier to tune the learning rate (γ t), and improves the quality of each iteration.

Gradient aggregation methods enhance the quality of the gradient estimates more adaptively; these methods smooth the iterations using past gradient estimates, e.g., using a weighted average of these past estimates [START_REF] Défossez | Adabatch: Efficient gradient aggregation rules for sequential and parallel stochastic gradient methods[END_REF]. On the other hand, iterate averaging methods do not accomplish noise reduction by averaging gradient estimates but instead by averaging the iterates computed during the optimization [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF]. These methods also have some appealing convergence acceleration properties, which we will come back to later.

Non-asymptotic Analysis of Stochastic Streaming Gradient Estimates

This section presents a summary of this thesis's main results [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF][START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF]. These results are shown in a simple form to be able to highlight the main conclusions, but an extended (and fully nonasymptotic) version can be found in the papers themselves, e.g., see Chapters 2 and 3. Before examining the stochastic streaming estimates in more detail, we briefly present the mathematical framework in Section 1.3.1. Next, Section 1.3.2 provides the analysis in the i.i.d. streaming setting.

In Section 1.3.3, we expand these assumptions and notions to include time-dependency. Through this section, we will show examples of our findings.

Throughout this introduction, we consider the stochastic algorithms in (1.2.5) to (1.2.7) with learning rates on the form

γ t = C γ n β t t -α with hyper-parameters C γ > 0, β ∈ [0, 1]
, and α > 0 chosen accordingly to the expected streaming batches denoted by n t . The streaming batches n t are on the form C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1); here C ρ = 1 and ρ = 0 corresponds to the classical SG descent, where we process observations one-by-one [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. If C ρ ∈ N and ρ = 0 we consider mini-batch procedures of size C ρ , and likewise, if C ρ ∈ N and ρ ∈ (-1, 1) we have varying streaming batches with initial batch size of C ρ . We will refer to ρ as the streaming rate. Our aim is to bound

δ t = E[∥θ t -θ * ∥ 2] and δt = E[∥ θt -θ * ∥ 2]
non-asymptotically such that these bounds depend solely on the problem's parameters. These non-asymptotic bounds are derived by explicitly bounding the t-th estimate of (1.2.5) and (1.2.6) using classical techniques from stochastic approximations [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]. Remark that almost sure convergence of SO algorithms were shown in Pelletier [START_REF] Pelletier | On the almost sure asymptotic behaviour of stochastic algorithms[END_REF].

Chapter 1

Mathematical Framework

The analysis of SO algorithms requires assumptions on the objective function L: the SO problem (1.2.4) is specified over a convex domain Θ, which in this thesis we always take to be a compact subset of R d , d ≥ 1, and an objective function L : Θ → R which is convex with respect to its argument θ ∈ Θ. This problem is a closely related branch of optimization tools for (online) convex optimization [START_REF] Boyd | Convex optimization[END_REF][START_REF] Hazan | Introduction to online convex optimization[END_REF][START_REF] Nesterov | Lectures on convex optimization[END_REF].

Quasi-strong Convex Objectives

Following Gower et al. [START_REF] Gower | Sgd: General analysis and improved rates[END_REF], Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], we assume that L has a unique global minimizer θ * ∈ Θ such that ∇ θ L(θ *) = 0, and it is µ-quasi-strongly convex [START_REF] Karimi | Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF], i.e, there exists

µ > 0 such that ∀θ ∈ Θ, L(θ *) ≥ L(θ) + ⟨∇ θ L(θ), θ * -θ⟩ + µ 2 ∥θ * -θ∥ 2 .
(1.3.9)

Teo et al. [START_REF] Teo | A scalable modular convex solver for regularized risk minimization[END_REF] provides a comprehensive record of various convex functions L used in machine learning applications. Milder degrees of convexity have been studied by, e.g., Karimi et al. [START_REF] Karimi | Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition[END_REF],

which studied stochastic gradient methods under the Polyak-Łojasiewicz condition [START_REF] Lojasiewicz | A topological property of real analytic subsets[END_REF][START_REF] Polyak | Gradient methods for minimizing functionals[END_REF], or Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF], which studied the Ruppert-Polyak averaging estimate under some Kurdyka-Łojasiewicz-type condition [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF][START_REF] Lojasiewicz | A topological property of real analytic subsets[END_REF]. Relaxations of convexity is crucial in practice to ensure robustness and adaptiveness of the algorithms, e.g., for non-strongly convex SO, see Bach and Moulines [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF], Necoara et al. [START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF], Nemirovski et al. [START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF].

Smoothness of the Objectives

Some additional assumptions are needed for bounding the averaging estimate (θt) in (1.2.7):

let the function L have C ∇ -Lipschitz continuous gradients, i.e., there exists a constant

C ∇ > 0, ∀θ, θ ′ ∈ Θ ⊆ R d , ∥∇ θ L(θ) -∇ θ L(θ ′)∥ ≤ C ∇ ∥θ -θ ′ ∥. (1.3.10)
Remark that one has µI d ⪯ ∇ 2 θ L(θ) ⪯ C ∇ I d in the case L is µ-quasi-strongly convex and twice differentiable, e.g., see Nesterov et al. [START_REF] Nesterov | Lectures on convex optimization[END_REF]. As discussed in Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF], this assumption ensures that ∇ θ L does not vary arbitrarily, making the gradient ∇ θ L a useful indicator on how to decrease L. Moreover, note that when L is µ-quasi-convex and C ∇ -smooth, the convergence of gradient methods will depend on the number C ∇ /µ ≥ 1. If C ∇ /µ is small, we have fast convergence, and conversely, if it is large, we get oscillations [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]. Next, assume that the Hessian of

L is C ′ ∇ - Lipschitz-continuous, that is, there exists C ′ ∇ ≥ 0 such that ∀θ, θ ′ ∈ Θ ⊆ R d , ∥∇ 2 θ L(θ) -∇ 2 θ L(θ ′)∥ ≤ C ′ ∇ ∥θ -θ ′ ∥. (1.3.11)
Note that (1.3.10) and (1.3.11) only needs to hold true for θ ′ = θ * .

Learning from Streaming Data

A fundamental aspect of Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF] is to explore how changing data streams affect these SO methods. These data streams includes everything from vanilla SG and ASG descent, mini-batch SG and ASG, to more exotic learning designs. Our analysis extends the work of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] to a streaming framework. Our main theoretical contribution is the non-asymptotic analysis of the SSG methods in this streaming framework. Our results show a noticeable improvement in convergence rates by having learning rates that adapt to the expected data streams. In particular, we show how to obtain improve convergence, while being robust to any data streaming rate.

Remember the description of our streaming framework in which we solve our SO problem (1.2.4):

at each time t ∈ N, a block consisting of n t ∈ N random functions l t = (l t,1 , . . . , l t,nt) arrive. Let (l t) constitute a sequence of independent differentiable random functions (possibly non-convex) and their gradients unbiased estimates of ∇ θ L, e.g., see Nesterov et al. [START_REF] Nesterov | Lectures on convex optimization[END_REF] for definitions and properties of such functions. We assume the following about the l t,i functions at each t ∈ N with i = 1, . . . , n t :

Assumption 1.3.1 (unbiased gradients). The random variable ∇ θ l t,i (θ) is square-integrable and ∀θ ∈ Θ, E[∇ θ l t,i (θ)] = ∇ θ L(θ).
In the classical convergence analysis of SG methods, one assumes that the SGs are uniformly bounded [START_REF] Hazan | Beyond the regret minimization barrier: optimal algorithms for stochastic strongly-convex optimization[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Rakhlin | Making gradient descent optimal for strongly convex stochastic optimization[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF]. However, this assumption is too restrictive as it only may hold for some losses, e.g., see Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF], Nguyen et al. [START_REF] Nguyen | Sgd and hogwild! convergence without the bounded gradients assumption[END_REF]. Instead, we follow the same ideas as in Gower et al. [START_REF] Gower | Sgd: General analysis and improved rates[END_REF], Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], to make the following assumption about the expected smoothness of the stochastic gradients (∇ θ l t,i).

Assumption 1.3.2-p (C l -expected smoothness). For p ≥ 1, there exists

C l > 0 such that ∀θ, θ ′ ∈ Θ, E[∥∇ θ l t,i (θ) -∇ θ l t,i (θ ′)∥ p] ≤ C p l E[∥θ -θ ′ ∥ p].
Assumption 1.3.2-p can be seen as an assumption about the smoothness properties of (l t,i), and it only needs to hold for θ ′ = θ * . Moreover, under Assumption 1.3.1, Assumption 1.3.2-p with p = 1 implies the condition in (1.3.10) by Jensen's inequality. The last fundamental assumption (Assumption 1.3.3-p) is about the finitude of (∇ θ l t,i (θ *)):

Assumption 1.3.3-p (σ-gradient noise). For p ≥ 1, there exists σ > 0 such that E[∥∇ θ l t,i (θ *)∥ p] ≤ σ p .
These assumptions are modified versions of the standard assumptions for stochastic approximations as they hold for any i = 1, . . . , n t , e.g., see [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF][START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. By the smoothness assumption (Assumption 1.3.2-p), we avoid the unfavorable uniformly bounded gradients assumption, which is too restrictive and only holds for a few losses. Assumption 1.3.3-p enables to give an upper bound of the Frobenius norm of the variance of the gradient for p = 2 and is very usual (see [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] for Chapter 1 instance). For SSG and PSSG, we only need Assumptions 1.3.2-p and 1.3.3-p to hold for p = 2, whereas, for ASSG and PASSG, we need p = 4 in order to bound the fourth-order moment. Our framework include classic examples: stochastic approximation (Robbins-Monro setting [START_REF] Robbins | A stochastic approximation method[END_REF]) and learning from i.i.d. data, such as linear regression, logistic regression, general ridge regressions and quantile regression, p-means, and softmax regression, under regularity conditions [START_REF] Cardot | Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm[END_REF][START_REF] Steinwart | Estimating conditional quantiles with the help of the pinball loss[END_REF]; here it is important to remark that most of these examples lead to the minimization of only locally strongly convex objectives, and the assumptions are only verified for the projected estimates, i.e., PSSG and PASSG [START_REF] Teo | A scalable modular convex solver for regularized risk minimization[END_REF].

Stochastic Streaming Estimates

Recall that we consider learning rates on the form γ t = C γ n β t t -α with hyper-parameters C γ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streaming batches denoted by n t = C ρ t ρ . But before we present our results, we want to recall the result for the classical SG descent (i.e., n t = 1 as C ρ = 1 and ρ = 0) shown by Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]:

Theorem 1.3.1. Denote δ t = E[∥θ t -θ * ∥ 2]
for some δ 0 ≥ 0, where (θ t) follows (1.2.5) or (1.2.6). Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there exists C δ > 0 such that for α ∈ (1/2, 1), we have

δ t ≤ 2 1+α σ 2 C γ µN α t + O(exp(-C δ N 1-α t)). (1.3.12)
The non-asymptotic bound in (1.3.12) depends explicitly upon the problem's parameters. Such bounds were the first of their kind, whereas previous results focused mainly on almost sure convergence., e.g., see [START_REF] Pelletier | On the almost sure asymptotic behaviour of stochastic algorithms[END_REF].

Decay of the initial conditions. The condition of having α ∈ (1/2, 1) is a natural restriction from Robbins and Monro [START_REF] Robbins | A stochastic approximation method[END_REF], ensuring ∞ i=1 γ i = ∞ and ∞ i=1 γ 2 i < ∞. The primary conclusion of Theorem 1.3.1 is that (1.3.12) can be divided into a noise term)) (an explicit version of this term can be found in Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]). Thus, we should focus on reducing the noise term without harming the natural decay of the subexponential term. Now, let us present our first result [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]: we start by considering constant streaming batches (i.e., mini-batch SSG) where n t follows the constant streaming batch size C ρ ∈ N:

Theorem 1.3.2. Denote δ t = E[∥θ t -θ * ∥ 2]
for some δ 0 ≥ 0, where (θ t) follows (1.2.5) or (1.2.6). Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there exists C ′ δ > 0 such that for α ∈ (1/2, 1), we have

δ t ≤ 2 1+α σ 2 C γ µC 1-α-β ρ N α t + O(exp(-C ′ δ N 1-α t)). (1
δ t ≤ 2 1+(2+ρ)ϕ σ 2 C γ µC (1-β)1 {ρ≥0} -ϕ ρ N ϕ t + O(exp(-C ′′ δ N 1-ϕ t)), (1.3.14
)

with ϕ = ((1 -β)ρ + α)/(1 + ρ).
When ρ = 0, Theorem 1.3.3 yields the same as Theorem 1.3.2. Moreover, when C ρ = 1 and ρ = 0, we obtain the usual SG descent studied in Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], e.g., see Theorem 1.3.1. Accelerated decay and variance reduction. The condition of having α -β ρ ∈ (1/2, 1) relaxes the usual condition of having α ∈ (1/2, 1) for ρ non-negative. In particular, accelerated convergence could be achieved by, e.g., setting α = 2/3 and β = 0 for streaming rates ρ > 0,

giving us δ t = O(N -(2/3+ρ)/(1+ρ) t
), meaning increasing streaming batches (ρ > 0) can accelerate convergence. Moreover, the noise term is scaled by C 1-β-ϕ ρ for ρ ≥ 0, implying we should take α + β ≤ 1 to obtain variance reduction (as we saw for Theorem 1.3.2).

Acceleration by Averaging

In what follows, we consider the averaging estimate (θn) given in (1.2.7) derived with use of (θ t) from (1.2.5) or (1.2.6). Instead of first considering the vanilla case {C ρ = 1, ρ = 0}, then the mini-batch case {C ρ ∈ N, ρ = 0}, and finally the streaming case {C ρ ∈ N, ρ ∈ (-1, 1)}, we only consider the streaming case from which the other cases will follow.

Besides having Assumptions 1.3.2-p and 1.3.3-p to hold for p = 4, an additional assumption is needed for bounding the rest term of the averaging estimate. Assumption 1.3.4. There exists a non-negative self-adjoint operator

Σ such that E[∇ θ l t,i (θ *)∇ θ l t,i (θ *) ⊤] ⪯ Σ.
Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 1.3.3-p. Moreover, to avoid calculating the six-order moment when considering projected average estimate Chapter 1 PASSG, we make the unnecessary assumption that ∥∇ θ l t,i (θ)∥ is uniformly bounded for any θ ∈ Θ; the derivation of the six-order moment can be found in Godichon-Baggioni [START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF].

Assumption 1.3.5. Let d min = inf θ∈∂Θ ∥θ -θ * ∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists

G Θ > 0 such that ∀t ≥ 1, sup θ∈Θ ∥∇ θ l t,i (θ)∥ 2 ≤ G 2 Θ a.
where Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1) and ϕ = ((1 -β)ρ + α)/(1 + ρ).
Accelerated decay. As noticed in Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], the leading term Λ/N t achieves the desirable Cramer-Rao bound, namely, the leading term Λ/N t could obtain the optimal and incorrigible rate of O(N -1 t) [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF][START_REF] Murata | Statistical analysis of learning dynamics[END_REF]. Moreover, this bound is achieved without inverting the Hessian, and it is invariant of the learning rate (γ t). Thus, by averaging, we have increased the rate of convergence from O(N -ϕ t) (in Theorem 1.3.3) to the optimal rate O(N -1 t). As discussed in Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF], the bound of δt can be seen as a bias-variance decomposition between the first and second term in (1.3.15).

Next, it is worth noting that there are no sub-exponential decaying terms for the initial conditions in (1.3.15), which is a common problem for averaging. This means we should be more careful when picking our hyper-parameters, e.g., taking C γ too large. Nevertheless, these hyper-parameters decay at a rate of at least O(N -2 t). Robustness towards streaming rates ρ. The main remainder term O(max{N

-1+ϕ/2 t , N -ϕ t }) reveal that ϕ = 2/3 ⇔ α -β ρ = (2 -ρ)/3,
e.g., by setting β = 0, we should pick α = (2 -ρ)/3.

Likewise, if ρ = 0, we yield the same conclusion as in Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], namely α = 2/3. However, these hyper-parameter choices are not resilient against any arrival schedule ρ. Nonetheless, we can robustly achieve ϕ = 2/3 for any ρ ∈ (-1, 1) by setting α = 2/3 and β = 1/3. In other words, we can achieve optimal convergence for any data stream by having α = 2/3 and β = 1/3. It is important to remark that these choices of hyper-parameters are not derived from exact bounds.

Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] establishes even tighter bounds (which also are optimal relative to Cramer-Rao's lower bound) under the Kurdyka-Łojasiewicz-type condition [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF][START_REF] Lojasiewicz | A topological property of real analytic subsets[END_REF], where they show that α = 3/4, leading to the main remainder term O(N -5/4 t

).

Example 1.3.1 (Geometric median). The geometric median is a generalization of the real median introduced by Haldane [START_REF] Haldane | Note on the median of a multivariate distribution[END_REF]. Robust estimators such as the geometric median may be preferred over the mean when the data is noisy. Moreover, in our streaming framework, stochastic algorithms are preferred as they efficiently handle large samples of high-dimensional data [START_REF] Cardot | Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm[END_REF][START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF]. The geometric median of X ∈ R d is defined by θ * ∈ R d which minimizes the convex function L(θ) = E[∥X -θ∥ -∥X∥], e.g., see Gervini [START_REF] Gervini | Robust functional estimation using the median and spherical principal components[END_REF], Kemperman [START_REF] Kemperman | The median of a finite measure on a banach space[END_REF] for properties such as existence, uniqueness, and robustness (breakdown point). Thus, the gradient

∇ θ L(θ) = E[∇ θ l t (θ)] with ∇ θ l t (θ) = -(X t - θ)/∥X t -θ∥ is bounded as ∥∇ θ l t (θ)∥ ≤ 1.
We omit to project our estimates as this would hide the errors we want to explore (which we will see more clearly in Example 1.3.2, where we consider real-life time-dependent streaming data). Instead of projecting the estimates, one could adapt the proof of Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] to a streaming setting. Otherwise, if X t is bounded, one can adapt Cardot et al. [START_REF] Cardot | A fast and recursive algorithm for clustering large datasets with k-medians[END_REF] to the streaming setting showing that the streaming estimates are bounded.

To measure the performance, we use the mean quadratic error of the parameter estimates over one-hundred replications, given by (E[∥θ Nt -θ * ∥ 2]) t≥1 . Note that averaging over several iterations gives a reduction in variability, which mainly benefits the SSG. Suppose (X t) is standard Gaussian centered at (θ i) 1≤i≤d with θ i taken randomly in the range [-d, d]. Moreover, following the reasoning of Cardot et al. [START_REF] Cardot | Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm[END_REF], we set C γ = √ d, and let α = 2/3. For this example we take d = 10 (Figure 1.2). In Figure 1.2a, we consider constant data streams to illustrate the results in Theorems 1.3.1 and 1.3.2; this figure shows the variance reduction effect for different constant streaming batches C ρ ∈ {1, 8, 64, 128} with β = 0 (as shown in Theorem 1.3.2). However, the robustness of the geometric median leaves only a small positive impact for further variance reduction. Thus, too large (constant) streaming batch sizes C ρ hinders the convergence as we make too few iterations.

In addition, we see an acceleration in decay by averaging, as explained in Theorem 1.3.4.

These findings can be extended to Figures 1.2b to 1.2e, where we vary the streaming rate ρ for streaming batch sizes C ρ = 1, 8, 64, and 128, respectively, with β = 0. These figures shows an increase in decay of the SSG when the streaming rate ρ increase as mentioned after Theorem 1.3.3.

But the lack of convergence improvements in Figures 1.2d and 1.2e comes from β = 0, which means we do not exploit the potential of using more observations to accelerate convergence.

As discussed after Theorem 1.3.4, one example of this could be achieved by setting α = 2/3 and β = 1/3 such that ϕ = 2/3 for any ρ. As shown in Figure 1.2f, we can achieve this acceleration by simply taking β = 1/3. In addition, β = 1/3 provides optimal convergence robust to any streaming rate ρ. Choosing a proper β > 0 is particularly important when C ρ is large, as robustness is an integral part of the geometric median method.

Learning from Time-dependent Streaming Data

In this section, we go beyond the classical assumptions that require unbiased gradients (e.g., see Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF], Lacoste-Julien et al. [START_REF] Lacoste-Julien | A simpler approach to obtaining an o (1/t) convergence rate for the projected stochastic subgradient method[END_REF]) by allowing the gradients to be dependent and biased estimators [START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF]. Convergence rates of SG descent with biased estimators has previously been studied in, e.g., Ajalloeian and Stich [4], Bertsekas [START_REF] Bertsekas | Nonlinear Programming[END_REF], but not in a streaming setting. In this section, we start by replacing Assumptions 1.3.1 to 1.3.4 with the new assumptions; Assumptions 1.3.6-p to 1.3.9. These new assumptions are milder than the standard assumptions for stochastic approximations, e.g., see [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF][START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. We show some examples of how these assumptions could be verified using mixing conditions. Next, our convergence results are presented, with and without

E[∥E[∇ θ l t (θ)|F t-1] -∇ θ L(θ)∥ p] ≤ ν p t (D p ν E[∥θ -θ * ∥ p] + B p ν), (1.3.16)
for some positive sequence (ν t) t≥1 with D ν , B ν ≥ 0.

Assumption 1.3.7-p (κ t -expected smoothness). There exists a positive integer p such that ∀θ,

θ ′ ∈ Θ, E[∥∇ θ l t (θ) -∇ θ l t (θ ′)∥ p] ≤ κ p t E[∥θ -θ ′ ∥ p]
E[∥E[∇ θ l t (θ)|F t-1] -∇ θ L(θ)∥ p] ≤ E[∥∇ θ l t (θ) -∇ θ L(θ)∥ p] = n -p t E[∥S t ∥ p],
(1.3.17) using Jensen's inequality, where S t = nt i=1 (∇ θ l t,i (θ) -∇ θ L(θ)) is a d-dimensional vector. Let (∇ θ l t,i) be a strictly stationary sequence and assume that there exists some r > p such that sup x>0 (x r Q(x)) 1/r < ∞, where Q(x) denotes the quantile function of ∥∇ θ l t,i ∥. Suppose that (∇ θ l t,i) is strongly α-mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], with strong mixing coefficients (α t) t≥1 satisfying α t = O(t -pr/(2r-2p)). Then by Rio [123,); this includes several linear, non-linear, and Markovian time series, e.g., see Bradley [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF], Doukhan [START_REF] Doukhan | Mixing: properties and examples[END_REF] for more examples, other mixing coefficients of weak dependence and the relations between them. In relation to the form of Assumption 1.3.6-p, this means that B ν ̸ = 0 in this case. However, having B ν = 0 is possible in well-specified examples.

Note that Assumptions 1.3.7-p and 1.3.8-p can be verified using α-mixing conditions by analogues arguments as for Assumption 1.3.6-p such that κ p t and σ p t is O(n

-p/2 t
). The (ν t), (κ t), and (σ t) sequences may be considered as uncertain terms depending on the streaming-batch n t . Thus, let ν t = n -ν t , κ t = C κ n -κ t , and

σ t = C σ n -σ t with ν ∈ (0, ∞), κ, σ ∈ [0, 1/2],
n t = C ρ t ρ with ρ ∈ [0, 1) and C ρ ∈ N, such that µ ν = µ -1 {ρ=0} 2D ν C -ν ρ > 0.
There exists C ′′′ δ > 0 such that for α -ρβ ∈ (1/2, 1), we have

δ t ≤ 2 7+6ρσ 1+ρ C 2 σ C γ µ ν C 2σ-β-α 1+ρ ρ N ρ(2σ-β)+α 1+ρ t + 2 2+6ρν 1+ρ B 2 ν µµ ν C 2ν 1+ρ ρ N 2ρν 1+ρ t + O(exp(-C ′′′ δ N (1+ρβ-α)/(1+ρ) t
)).

(1.3.18)

Theorem 1.3.5 replicate the results of the unbiased i.i.d. case (with B ν = 0 and κ = σ = 1/2) considered in Section 1.3.2 [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]. Our findings also reproduce the results of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], where they considered the unbiased i.i.d. case (under slightly different assumptions) using the vanilla SG descent, namely, when C ρ = 1 and ρ = 0. Moreover, if the function L has C ∇ -Lipschitz continuous gradients, then Theorem 1.3.5 implies the bound on the objective function values of L,

E[L(θ t) -L(θ *)] ≤ C ∇ δ t /2 by Cauchy-Schwarz's inequality.
Decay of the initial conditions. Note that the positivity of the dependence penalised con-

vexity constant µ ν = µ -1 {ρ=0} 2D ν C -ν
ρ is essential in all terms of (1.3.18). Having µ ν > 0 depends solely on the level of dependence D ν but it is scaled by C -ν ρ , meaning if D ν is so large that µ ν is no longer positive, then we should take C ρ large enough such that µ ν becomes positive again; this is illustrated in Chapter 3 for ARCH models [START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF]. The streaming constant C ρ contributes positively to all terms in (1.3.18), either directly or though µ ν .

The last term of (1.3.18) can be seen as the noise term decaying with O(N -(ρ(2σ-β)+α)/(1+ρ) t) for α -ρβ ∈ (1/2, 1), e.g., for any ρ ∈ [0, 1), δ t = O(N -2/3 t) when α = 2/3, β = 1/3, and σ = 1/2. In addition, the noise term is positively affected by large streaming constants C ρ when α + β < 2σ, which will be expressed as a variance reduction, e.g., see Example 1.3.2 below. In unbiased cases (B ν = 0) the noise term would also be the asymptotic term.

Behavior for B ν . The second term of (1.3.18) can be seen as an dependency term as it is determined solely by the level of dependence ν, the bias error B ν , and the convexity constant µ ν . It is remarkable that the dependence term is unconnected from the choice of the learning rate (γ t) but instead by the streaming rate through C ρ and ρ. The dependence term decay with

O(N -2ρν/(1+ρ) t
), which requires ρ positive to decay since ν ∈ (0, ∞), e.g., if ν = 1/2, we would need ρ = 1 to obtain O(N

-1/2 t
). It is surprising that Theorem 1.3.5 allows both long-range and short-range dependence. Indeed, long-range dependence leads to slow convergence (slower than

O(N -1/2 t
)) but it will still converge. Obviously, this only matters if B ν ̸ = 0. To conclude, by taking ρ > 0 and C ρ large enough to ensure that µ ν stays positive, then we will converge with

δ t = O(max{1 {Bν ̸ =0} N -2ρν/(1+ρ) t , N -(ρ(2σ-β)+α)/(1+ρ) t }).

Acceleration by Averaging

Similarly to Section 1.3.2, besides having Assumptions 1.3.6-p to 1.3.8-p to hold for p = 4, an additional assumption is needed to control the rest term. Thus, in continuation of Assumption 1.3.8p with σ t = C σ n -σ t for σ ∈ [0, 1/2], we make the following assumption: Assumption 1.3.9. There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1, we have

n 2σ t E[∇ θ l t (θ *)∇ θ l t (θ *) ⊤] ⪯ Σ + Σ t , where Σ t is a positive symmetric matrix with Tr(Σ t) = C ′ σ n -2σ ′ t , C ′ σ ≥ 0, and σ ′ ∈ (0, 1/2].
In the unbiased and independent case, Assumption 1.3.9 is verified with σ = 1/2 and C ′ σ = 0 [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]. The short-range dependence cases is when σ = 1/2, whereas, the long-range dependence case is for σ < 1/2. Moreover, Assumption 1.3.9 allows us to obtain leading term Λ/N t with

Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1
) as in Theorem 1.3.4. To consider the projected average estimate θn given in (1.2.7), an additional assumption is needed to avoid calculating the six-order moment. Thus, we make the unnecessary assumption that (∇ θ l t) is uniformly bounded. 3Assumption 1.3.10. Let D Θ = inf θ∈∂Θ ∥θ -θ * ∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists

G Θ > 0 such that ∀t ≥ 1, sup θ∈Θ ∥∇ θ l t (θ)∥ 2 ≤ G 2 Θ a.s. Theorem 1.3.6. Denote δt = E[∥ θt -θ * ∥ 2]
µ ν = µ -1 {ρ=0} 2D ν C -ν ρ > 0. For α -ρβ ∈ (1/2, 1), we have δ1/2 t ≤ Λ 1/2 N 1/2 t 1 {σ=1/2} + 2 1/2 Λ 1/2 C 1-2σ 2(1+ρ) ρ N 1+2ρσ 2(1+ρ) t 1 {σ<1/2} + 2 1/2 C ′1/2 σ C 1-2(σ+σ ′) 2(1+ρ) ρ µN 1+2ρ(σ+σ ′) 2(1+ρ) t (1.3.19) +O max N - 2+ρ(2σ+β)-α 2(1+ρ) t , N - ρ(2σ-β)+α 1+ρ t + Õ N -δ+ρν 2(1+ρ) t + 1 {Bν ̸ =0} Ψ t , (1.3.20
)

with δ = 1 {Bν =0} (ρ(2σ -β) + α) + 1 {Bν ̸ =0} min{ρ(2σ -β) + α, 2ρν} and Ψ t given such that Ψ t = Õ max N - ρ(σ+ν) 2(1+ρ) t , N - 1+ρ(β+ν)-α 1+ρ t , N -1+2ρν 2(1+ρ) t , N - δ/2+ρν 2(1+ρ) t , N -2ρν 1+ρ t .
Accelerated decay. Theorem 1.3.6 replicate the results of Theorem 1.3.4 with Λ/N t as leading term in the unbiased i.i.d. case. Thus, by averaging it is possible to achieve the incorrigible rate of O(N -1 t), e.g., this is always achieved in the unbiased case with σ = 1/2, even under short-range dependence (i.e., when ν ≥ 1/2). Remark that each term in (1.3.19) is a direct consequence of Assumption 1.3.9. Furthermore, all terms of (1.3.19) are independent of the learning rate (γ t) but the two last terms are dependent on streaming batches through C ρ and ρ. As in Theorem 1.3.5, the positivity of µ ν is essential for all terms in (1.3.20) even if it does not appear directly; a long version can be found in Chapter 3. For objectives that lack convexity µ or have high levels of dependence D ν , we can only ensure convergence by increasing C ρ , i.e., ensuring positivity of µ ν ; this is illustrated in Chapter 3 for ARCH models [START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF].

The first term of (1.3.20) decay at the rate O(max{N

-(2+ρ(β+2σ)-α)/(1+ρ) t , N -2(ρ(2σ-β)+α)/(1+ρ) t }), which suggests choosing α, β such that α + ρ(2σ/3 -β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2 yields a decay of O(N -4/3 t
) for any ρ. Thus, we can robustly achieve O(N -4/3 t) for any streaming rate ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. In general, the convergence is resilient to any streaming rate ρ by having α = 2/3 and β = 2σ/3. But taking β > 0 would damage the variance reduction effect from having C ρ large (e.g., see discussion after Theorem 3.3.1). Thus, there is a trade-off between accelerating the convergence by taking β = 2σ/3 > 0 or taking β = 0 to favor from variance reduction. In practice, an immediate choice would be to take β = 0, but if the data or model contains a low amount of noise, it can be advantageous to raise β to improve convergence [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]; this is illustrated in Examples 1.3.1 and 1.3.2.

Next, the decay of the second term in (1.3.20) is tricky to interpret in a simple manner as it is a mixture of the learning rate α and β, streaming rate ρ, dependence rate ν, and bias B ν .

Nevertheless, some observations can be made: first, having β = 0 is beneficial for the decay rate δ in all cases. Second, increasing streaming rate ρ would also increase the decay.

Behavior for B ν . The influence of B ν is exclusively contained in Ψ t , with the exception of the second term of (1.3.20). Also, increasing ρ will always diminish the bad influence of this bias term. Surprisingly, Ψ t → 0 as t → ∞ for any ν, but long-range dependence is excluded if we wish to obtain the desired rate of δt = O(N -1). However, it does not seem to have any major influence in our experiments, e.g., see Example 1.3.2. To conclude, by taking ρ positive and C ρ large enough to ensure that µ ν stays positive, then we will converge under long-or short-range dependence with biased gradient estimates.

Example 1.3.2 (Geometric median, continuation of Example 1.3.1). To illustrate our methodology on real-life time-dependent streaming data, we consider some historical hourly weather data 4 . The dataset contains around five years (roughly 45000 data points) of high temporal resolution hourly measurements over various weather attributes, such as temperature, humidity, and air pressure.

These measurements are available for thirty US and Canadian cities and six Israeli cities, meaning the dimension d = 36. In our study, we consider the hourly temperature measurements, which we filter for monthly and annual seasonality by subtracting the monthly and annual averages. ; but here we compare our estimates to the geometric median estimate calculated by the Weiszfeld's algorithm [START_REF] Weiszfeld | On the point for which the sum of the distances to n given points is minimum[END_REF]. Although the (geometric) median is a robust metric (as seen in Example 1.3.1), we see a considerable amount of fluctuations in Figure 1.3, which comes from the time-dependency and the noise in the weather measurements. Figure 1.3a shows that it is essential to use a mini-batch of a certain size to stabilize the optimization. But to achieve reasonable convergence, we need to have increasing streaming batches (i.e., positive streaming rates ρ > 0), which we can see in Figures 1.3b to 1.3e. Most surprising is that we can achieve excellent convergence (with a final error of only 10 -5) by combining increasing streaming batches with averaging, e.g., see An extended study of stochastic algorithms for time-dependent data can be found in Chapter 4, where we propose AdaVol as an online adaptive recursive estimation routine of GARCH parameters.

Here, we make a natural adaptation of the Quasi-Maximum Likelihood (QML) procedure to a streaming setting. This method is based on stochastic algorithms combined with the Variance Targeting Estimation (VTE) technique [START_REF] Francq | Merits and drawbacks of variance targeting in garch models[END_REF]. However, AdaVol was made before the theory of stochastic algorithms of time-dependent streaming data (with lack of convexity) was shown. This can also be reflected in Chapter 4, as we use VTE to include all models parameters in the projection and thereby achieved convergence. With this new theory in place, a modified AdaVol algorithm could thus be made without VTE by increasing streaming batches to remedy the convexity problems and break the dependency. Thus, some theoretical guarantees could be proved for this modified version. Nevertheless, in Chapter 4, we will see that AdaVol goes beyond this stationary setting, e.g., AdaVol's ability to adapt to time-varying parameters was beneficial in the M6 financial forecast competition, where it recently ranked third among the best probability forecasters.

Summary

We examined the SO problem in a streaming framework using time-dependent and biased (gradient) estimates. In particular, we explored convergence rates of the SSG and ASSG algorithms in a non-asymptotic manner. The theoretical results formed heuristics that links the level of dependency and convexity to the rest of the model parameters. These heuristics provided new insights into determining learning rates, which can help increase the stability of SG-based methods. Our experiments verified these findings, suggesting using increasing streaming batches for highly dependent data sources. Moreover, in large-scale learning problems with dependence, noisy variables, and lack of convexity, we know now how to accelerate convergence and reduce noise through the learning rate and the treatment pattern of the datasets. Chapter 2: Non-asymptotic Analysis of Stochastic Algorithms for Streaming Data

Abstract

Motivated by the high-frequency data streams continuously generated, real-time learning is becoming increasingly important. These data streams should be processed sequentially with the property that the data stream may change over time. In this streaming setting, we propose techniques for minimizing convex objectives through unbiased estimates of their gradients, commonly referred to as stochastic approximation problems. Our methods rely on stochastic approximation algorithms because of their applicability and computational advantages. The reasoning includes iterate averaging that guarantees optimal statistical efficiency under classical conditions. Our nonasymptotic analysis shows accelerated convergence by selecting the learning rate according to the expected data streams. We show that the average estimate converges optimally and robustly for any data stream rate. In addition, noise reduction can be achieved by processing the data in a specific pattern, which is advantageous for large-scale machine learning problems. These theoretical results are illustrated for various data streams, showing the effectiveness of the proposed algorithms.

Introduction

Machine learning and artificial intelligence have become an integral part of modern society. This massive utilization of intelligent systems generates an endless sequence of data, many of which come as streaming data such as internet traffic data, financial investments, self-driving cars, or sensor data. It requires robust and time-efficient algorithms to analyze and process such data without compromising accuracy. This problem has attracted a lot of attention in the machine learning community [START_REF] Bottou | The tradeoffs of large scale learning[END_REF][START_REF] Bottou | Large scale online learning[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF][START_REF] Xiao | Dual averaging method for regularized stochastic learning and online optimization[END_REF][START_REF] Zhang | Solving large scale linear prediction problems using stochastic gradient descent algorithms[END_REF].

Even after 70 years, Stochastic Approximation (SA) algorithms are still widely used for handling large amounts of data [START_REF] Robbins | A stochastic approximation method[END_REF]; the most well-known is presumably the Stochastic Gradient (SG) method, which has led to numerous extensions [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF][START_REF] Kingma | Adam: A method for stochastic optimization[END_REF][START_REF] Reddi | On the convergence of adam and beyond[END_REF][START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF][START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF][START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF]. An essential extension is the Polyak-Ruppert averaging (ASG) proposed by Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] and Ruppert [START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF],

which guarantees optimal statistical efficiency without jeopardizing the computational cost. Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF] reviews these stochastic algorithms for large-scale machine learning, including noise reduction and second-order methods, among others.

Contributions.

A fundamental aspect of this paper is to explore how changing data streams affect these stochastic optimization methods. Our analysis extends the work of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF] to a streaming framework. We examine two different kinds of data streams: constant and varying streaming-batches. These data streams includes everything from vanilla SG and ASG, mini-batch SG and ASG, to more exotic learning designs. Our main theoretical contribution is the non-asymptotic analysis of the SG and ASG method in this streaming framework. Our results show a noticeable improvement in convergence rates by having learning rates that adapt to the expected data streams. In particular, we show how to obtain optimal convergence rates robust to any data streaming rate.

Organization. Section 2.2 presents the streaming framework on which the non-asymptotic analysis relies. Our convergence results are presented in Sections 2.3 and 2.4, with and without averaging. Both sections includes analysis of unbounded and uniform bounded gradients. These theoretical results are illustrated in Section 2.5 for a variety of data streams. At last, some final remarks are done in Section 2.6.

Problem Formulation

The objective of the stochastic optimization problem is to minimize functions of the form

L(θ) = E[l t (θ)] with respect to θ ∈ Θ, where Θ is a closed convex set in R d .
The minimization of L is achieved without evaluating it directly but by unbiased functions l t : R d → R. Observe that the principles for biased functions (l t) are rather different [START_REF] Aspremont | Smooth optimization with approximate gradient[END_REF][START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF]. Let (l t) constitute a sequence of independent differentiable random functions (possibly non-convex) and their gradients unbiased estimates of ∇ θ L, e.g., see Nesterov et al. [START_REF] Nesterov | Lectures on convex optimization[END_REF] for definitions and properties of such functions. Let us now describe our streaming framework in which we will solve our SA problem: at each time t ∈ N, a block consisting of n t ∈ N random functions l t = (l t,1 , . . . , l t,nt) arrive. These random functions (l t,i) can be seen as observations (or random loss functions) depending on the true minimizer θ * and some underlying noise sequence. To solve this, we introduce the Stochastic Streaming Gradient (SSG) defined as

θ t = θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1), θ 0 ∈ Θ, (2.2.1)
where (γ t) is a decreasing sequence of positive numbers also referred to as the learning rate satisfying

t i=1 γ i = ∞ and t i=1 γ 2 i < ∞ for t → ∞ [124].
In the same way, we introduce the Projected Stochastic Streaming Gradient (PSSG), defined by

θ t = P Θ θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) , θ 0 ∈ Θ, (2.2.2)
where P Θ denotes the projection onto Θ. The PSSG estimate in (2.2.2) is very convenient for models with conditions on the parameters space, and thereby, requires a projection of the parameters.

Next, to guarantee optimal convergence properties [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF], we introduce the Averaged Stochastic Streaming Gradient (ASSG), given as

θt = 1 N t t-1 i=0 n i+1 θ i , θ0 = 0, (2.2.3)
where (θ t) follow (2.2.1) and N t denotes the accumulated sum of observations, t i=1 n i . Similarly, we define the PASSG estimate as when (θt) (in (2.2.3)) is derived using (2.2.2). Practically, as we handle data sequentially, we will make use of the rewritten formula: θt = (N t-1 /N t) θt-1 + (n t /N t)θ t-1 with θ0 = 0. Chapter 2

Quasi-strong Convex and Lipschitz Smooth Objectives

Following Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], Sridharan et al. [START_REF] Sridharan | Fast rates for regularized objectives[END_REF], we make the following assumptions about the objective function L: assume that θ * ∈ Θ is the unique global minimizer of L with ∇ θ L(θ *) = 0. Also, let L be µ-quasi-strong convex [START_REF] Karimi | Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF], that is, the exists µ > 0 such that ∀θ ∈ Θ the following inequality holds,

L(θ *) ≥ L(θ) + ⟨∇ θ L(θ), θ * -θ⟩ + µ 2 ∥θ * -θ∥ 2 . (2.2.4)
Teo et al. [START_REF] Teo | A scalable modular convex solver for regularized risk minimization[END_REF] provides a comprehensive record of various convex functions L used in machine learning applications. Milder degrees of convexity have been studied by, e.g., Karimi et al. [START_REF] Karimi | Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition[END_REF],

which studied stochastic gradient methods under the Polyak-Łojasiewicz condition [START_REF] Lojasiewicz | A topological property of real analytic subsets[END_REF][START_REF] Polyak | Gradient methods for minimizing functionals[END_REF], or Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF], which studied the Ruppert-Polyak averaging estimate under some Kurdyka-Łojasiewicz-type condition [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF][START_REF] Lojasiewicz | A topological property of real analytic subsets[END_REF]. Next, let the function ∇ θ L be C ∇ -Lipschitz continuous, i.e., there exists

C ∇ > 0 such that ∀θ, θ ′ ∈ Θ, ∥∇ θ L(θ) -∇ θ L(θ ′)∥ ≤ C ∇ ∥θ -θ ′ ∥. (2.2.5)
Furthermore, for the averaging estimate in (2.2.3), we need the function L to be twice differentiable with C δ -Lipschitz continuous Hessian operator ∇ 2 θ L, meaning, there exists

C δ > 0 such that ∀θ, θ ′ ∈ Θ, ∥∇ 2 θ L(θ) -∇ 2 θ L(θ ′)∥ ≤ C δ ∥θ -θ ′ ∥. (2.2.6)
Note that (2.2.5) and (2.2.6) only needs to hold for θ ′ = θ * .

Stochastic Streaming Gradients

This section considers the SSG and PSSG methods with streaming batches arriving in constant and varying streams. Our aim is to provide bounds on the quadratic mean E[∥θ t -θ * ∥ 2], which depends explicitly upon the problem's parameters. In order to do this, we assume the following about the function l t,i for each t ∈ N with i = 1, . . . , n t :

Assumption 2.3.1. The random variable ∇ θ l t,i (θ) is square-integrable and ∀θ ∈ Θ, E[∇ θ l t,i (θ)] = ∇ θ L(θ). Assumption 2.3.2-p (C l -expected smoothness). For p ≥ 1, there exists C l > 0 such that ∀θ, θ ′ ∈ Θ, E[∥∇ θ l t,i (θ) -∇ θ l t,i (θ ′)∥ p] ≤ C p l E[∥θ -θ ′ ∥ p]. Assumption 2.3.3-p (σ-gradient noise). For p ≥ 1, there exists σ > 0 such that E[∥∇ θ l t,i (θ *)∥ p] ≤ σ p .
These assumptions are modified versions of the standard assumptions for stochastic approximations [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF] as they hold for any i = 1, . . . , n t . Note that Assumption 2.

δ t ≤ exp   -µ t i=t/2 γ i   π δ t + 2σ 2 µ max t/2≤i≤t γ i n i , (2.3.7
)

with π δ t = exp(4C 2 l t i=1 γ 2 i /n i) exp(2C 2 ∇ t i=1 1 {n i >1} γ 2 i)(δ 0 + 2σ 2 /C 2 l).
Sketch of proof. Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we derive from (2.2.1) that (δ t) satisfies the recursive relation

δ t ≤ [1 -2µγ t + (2C 2 l + (n t -1)C 2 ∇)n -1 t γ 2 t]δ t-1 + 2σ 2 n -1 t γ 2 t , (2.3.8)
for any (n t) and (γ t) fulfilling the conditions imposed on the learning rate [START_REF] Robbins | A stochastic approximation method[END_REF]. This recursive relation is then bounded in a non-asymptotic manner using Proposition B.1.5 in Chapter B. Bounding the projected estimate in (2.2.2) follows directly from the fact that

E[∥P Θ (θ) -θ * ∥ 2] ≤ E[∥θ -θ * ∥ 2], ∀θ ∈ Θ [157].
Related work. When n t = 1 in (2.3.7), we obtain the usual SG method studied in Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF]. Similarly, Theorem 2.3.1 provides an upper bound on the function values, E[L(θ t) -L(θ *)] ≤ C l δ t /2; this follows by Cauchy-Schwarz inequality and Assumption 2.3.2-p. [START_REF] Robbins | A stochastic approximation method[END_REF]. The learning rate (γ t) should satisfy the following requirements:

Natural decay imposed by Robbins and Monro

t i=1 γ i = ∞ and t i=1 γ 2 i /n i ≤ t i=1 γ 2 i < ∞ for t → ∞. These conditions directly imply that π δ t < ∞ as t → ∞.
Thus, our attention is on reducing the noise term max t/2≤i≤t γ i /n i without damaging the natural decay of the sub-exponential term exp(-µ t i=t/2 γ i). In particular, this non-asymptotic bound shows convergence in quadratic mean for any learning rate, fulfilling these conditions. In addition, the scaling with (n t) in the noise term shows an apparent variance reduction when we increase the streaming batches (n t).

Throughout this paper, we will consider learning rates on the form γ t = C γ n β t t -α with hyperparameters C γ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streaming batches denoted by n t . We start by considering constant streaming batches (i.e., mini-batch SG) where n t follows the constant streaming batch size C ρ ∈ N:

Corollary 2.3.1 (SSG/PSSG, constant streaming batches). Denote δ t = E[∥θ t -θ * ∥ 2] for some δ 0 ≥ 0, where (θ t) follows (2.2.1) or (2.2.2). Suppose γ t = C γ C β ρ t -α such that α ∈ (1/2, 1)
. Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we have

δ t ≤ exp - µC γ N 1-α t 2 1-α C 1-α-β ρ π c ∞ + 2 1+α σ 2 C γ µC 1-α-β ρ N α t , (2.3.9)
where

π c ∞ = exp(4αC 2 γ (2C 2 l + C ρ 1 {Cρ>1} C 2 ∇)/(2α -1)C 1-2β ρ)(δ 0 + 2σ 2 /C 2 l) is a finite constant.
Decay of the initial conditions. The bound in Corollary 2.3.1 depends on the initial condition

δ 0 = ∥θ 0 -θ * ∥ 2
and the variance σ 2 in the noise term. The initial condition δ 0 vanish subexponentially fast for α ∈ (1/2, 1). Thus, the asymptotic term is

2 1+α σ 2 C γ /µC 1-α-β ρ N α t , i.e., δ t = O(N -α t)
. Moreover, the bound in (2.3.9) is optimal (up to some constants) for quadratic functions (l t,i), since the deterministic recursion in (2.3.8) would be with equality. It is worth noting

that if C γ C l or C γ C ∇ is chosen too large, they may produce a large π c ∞ constant. In addition, π c ∞ is positively affected by C ρ when β < 1/2.
Obviously, the hyper-parameter β only comes into play if the streaming batch size is larger than one, i.e., C ρ > 1. Nonetheless, the effect of π c ∞ will decrease exponentially fast due to the sub-exponentially decaying factor in front.

Variance reduction. The asymptotic term is divided by C 1-α-β ρ , implying we could achieve variance reduction by taking α + β ≤ 1 when C ρ is large. Taking a large streaming batch size, e.g., C ρ = t, one accelerates the vanilla SG convergence rate to O(N 1-β t). However, this large streaming batch size would be unsuitable in practice, and it would mean that we would take few steps until convergence is achieved.

The safe choice of having β = 0 functions well for the SSG method for any streaming batch size C ρ , but fixed-sized streaming batches are not the most realistic streaming setting. These streaming batches are far more likely to vary in size depending on the data streams. For the sake of simplicity, we consider varying streaming batches where n t are on the form C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1) such that n t ≥ 1 for all t. We will refer to ρ as the streaming rate. For the convenience of notation,

let ρ = ρ1 {ρ≥0} . Corollary 2.3.2 (SSG/PSSG, varying streaming batches). Denote δ t = E[∥θ t -θ * ∥ 2] for some δ 0 ≥ 0, where (θ t) follows (2.2.1) or (2.2.2). Suppose γ t = C γ n β t t -α where n t = C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1), such that α -β ρ ∈ (1/2,
δ t ≤ exp - µC γ N 1-ϕ t 2 (2+ρ)(1-ϕ) C 1-β-ϕ ρ π v ∞ + 2 1+(2+ρ)ϕ σ 2 C γ µC (1-β)1 {ρ≥0} -ϕ ρ N ϕ t , (2.3.10
)

where ϕ = ((1 -β)ρ + α)/(1 + ρ) and π v ∞ = exp(4(α -β ρ)C 2 γ C 2β ρ (2C 2 l + C 2 ∇)/(2(α -β ρ) -1))(δ 0 + Section 2.4 2σ 2 /C 2 l) is a finite constant.
Decay of the initial conditions. As mentioned for Corollary 2.3.1, the condition of having

α -β ρ ∈ (1/2, 1
) is a natural restriction from Robbins and Monro [START_REF] Robbins | A stochastic approximation method[END_REF], which relaxes the usual condition of having α ∈ (1/2, 1) for ρ non-negative. For ρ ∈ (-1, 1/2), setting α = 2/3 and β = 1/3 would give same decay rate,

δ t = O(N -2/3 t
) as we saw for Corollary 2.3.1 when α = 2/3. However, accelerated convergence could be achieved by, e.g., setting α = 1 and β = 1/2 for streaming rate ρ ∈ (0, 1), giving us

δ t = O(N -(1+ρ/2)/(1+ρ) t).
Variance reduction. Similarly to Corollary 2.3.1, the sub-exponential and asymptotic term is scaled by C 1-β-ϕ ρ for ρ ≥ 0, implying we should take α + β ≤ 1 to obtain variance reduction. These conclusions will change when we consider the averaging estimate in Section 2.4.

The reasoning in Corollary 2.3.2 could be expanded to include random streaming batches where

n t is given such that C L t ρ L ≤ n t ≤ C H t ρ H with ρ L , ρ H ∈ (-1, 1) and C L , C H ≥ 1. This yields the modified rate ϕ ′ = ((1 -β)ρ L + α)/(1 + ρ H)
; nevertheless, we will leave the proof to the reader.

Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate (θn) given in (2.2.3) derived with use of (θ t) from (2.2.1) (Section 2.4.1) or (2.2.2) (Section 2.4.2). Besides having Assumptions 2.3.2-p and 2.3.3p to hold for p = 4, an additional assumption is needed for bounding the rest term of the averaging estimate.

Assumption 2.4.1. There exists a non-negative self-adjoint operator

Σ such that E[∇ θ l t,i (θ *)∇ θ l t,i (θ *) ⊤] ⪯ Σ.
Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 2.3.3-p.

Unbounded Gradients

As in Section 2.3, we conduct a general study for any learning rate (γ t) when applying the Polyak-Ruppert averaging estimate from (2.2.3):

Theorem 2.4.1 (ASSG). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from (2.
(γ t) that δ1/2 t ≤ Λ 1/2 N 1/2 t + 1 µN t t-1 i=1 n i+1 γ i+1 - n i γ i δ 1/2 i + n t µγ t N t δ 1/2 t + n 1 µN t 1 γ 1 + C l δ 1/2 0 + C l µN t t-1 i=1 n i+1 δ i 1/2 + C δ µN t t-1 i=0 n i+1 ∆ 1/2 i , (2.4.11)
where

Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1) and ∆ t = E[∥θ t -θ * ∥ 4] for some ∆ 0 ≥ 0.
As noticed in Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], the leading term Λ/N t achieves the Cramer-Rao bound [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF][START_REF] Murata | Statistical analysis of learning dynamics[END_REF]. Note that the leading term Λ/N t is invariant of the learning rate (γ t). Moreover, this bound of O(N -1 t) is achieved without inverting the Hessian. Next, the processes (δ t) and (∆ t) can be bounded by the recursive relations in (2.3.7) and (2.7.21). There are no sub-exponential decaying terms for the initial conditions in Theorem 2.4.1, which is a common problem for averaging.

However, as mentioned previously, we are more interested in advancing the decay of the asymptotic terms. To ease notation, we make use of the functions ψ y x (t) : R → R, given as

ψ y x (t) =          t (1-x)/(1+y) /(1 -x) if x < 1, (1 + y) log(t) if x = 1, x/(x -1) if x > 1, with y ∈ R + , such that t i=1 i -x ≤ ψ 0 x (t) for any x ∈ R + . Note that ψ y x (t)/t = O(t -(x+y)/(1+y)) if x < 1, ψ y x (t)/t = O(log(t)t -1) if x = 1,
δ1/2 t ≤ Λ 1/2 N 1/2 t + 6σC (1-α-β)/2 ρ µ 3/2 C 1/2 γ N 1-α/2 t + 2 α 6C δ σ 2 C γ µ 2 C 1-α-β ρ N α t + 2C l σC 1/2 γ µ 3/2 C (1-α-β)/2 ρ N (1+α)/2 t + C ρ Γ c µN t + C 2-α-β ρ √ π c ∞ A c ∞ µC γ N 2-α t + (6 + 71 {Cρ>1})2 3α/2 C δ σ 2 C 3/2 γ C 3β/2 ρ ψ 0 3α/2 (N t /C ρ) µ 3/2 N t , with Γ c given by (1/C γ C β ρ + C l)δ 1/2 0 + C l π c ∞ A c ∞ /C ρ + √ π c ∞ A c ∞ /C γ C β ρ + C δ Π c ∞ A c ∞ , consisting of the finite constants π c ∞ , Π c ∞ and A c ∞ , that only depends on µ, δ 0 , ∆ 0 , C l , σ, C ∇ , C δ , C γ , C ρ , β and α.
Accelerated decay the initial conditions. By averaging, we have increased the rate of convergence from O(N -α t) to the optimal rate O(N -1 t). The two subsequent terms are the main remaining terms decaying at the rate O(N α-2 t) and O(N -2α t), which suggests setting α = 2/3 would be optimal. The remaining terms are negligible. Next, it is worth noting that having α + β = 1 in Corollary 2.4.1, we would give no impact in the main remaining terms from the streaming batch size C ρ . Moreover, taking α = 2/3 and β ≤ 1/3 would be an optimal choice of hyper-parameters such that the streaming batch size C ρ have a positive or no impact. At last, as we do not rely on sub-exponentially decaying terms, we need to be more careful when picking our hyper-parameters, e.g., taking C γ C l too large may cause Γ c to be significant. Nevertheless, the term consisting of Γ c decay at a rate of at least O(N

δ1/2 t ≤ Λ 1/2 N 1/2 t + 2 3+ϕ(1+ρ) σC (1-ϕ-β)/21 {ρ≥0} ρ µ 3/2 C 1/2 γ N 1-ϕ/2 t + 2 (1+ϕ)(1+ρ)-2 C δ σ 2 C γ µ 2 C 1-ϕ-β ρ N ϕ t + 2 ϕ(1+ρ)/2 C l σC 1/2 γ µ 3/2 C (1-ϕ-β)/21 {ρ≥0} ρ N (1+ϕ)/2 t + C ρ Γ v µN t + C 2-ϕ-β ρ √ π v ∞ A v ∞ µC γ N 2-ϕ t + 2 3(1+ϕ)(1+ρ)/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ ψ ρ 3(α-β ρ)/2 (N t /C ρ) µ 3/2 C 1 {ρ≥0} ρ N t , with Γ v given by (1/C γ C β ρ + C l)δ 1/2 0 + 2 ρC l π v ∞ A v ∞ /C ρ + 2 √ π v ∞ A v ∞ /C γ C β ρ + 2 ρC δ Π v ∞ A v ∞ , con- sisting of the finite constants π v ∞ , Π v ∞ and A v ∞ , that only depends on µ, δ 0 , ∆ 0 , C l , σ, C ∇ , C δ , C γ , C ρ , β and α.
Robustness towards streaming rates ρ: Following the arguments above, the two main remainder terms reveal that ϕ = 2/3 ⇔ α -β ρ = (2 -ρ)/3, e.g., by setting β = 0, we should pick α = (2 -ρ)/3. Likewise, if ρ = 0, we yield the same conclusion as in Corollary 2.4.1, namely α = 2/3. However, these hyper-parameter choices are not resilient against any arrival schedule ρ. Nonetheless, we can robustly achieve ϕ = 2/3 for any ρ ∈ (-1, 1) by setting α = 2/3 and β = 1/3.

In other words, we can achieve optimal convergence for any data stream by having α = 2/3 and β = 1/3.

Bounded Gradients

In what follows, we consider the averaging estimate θn given in (2.2.3) but with the use of the projected estimate PSSG from (2.2.2). To avoid calculating the six-order moment, we make the unnecessary assumption that ∥∇ θ l t,i (θ)∥ is uniformly bounded for any θ ∈ Θ; the derivation of the six-order moment can be found in Godichon-Baggioni [START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF].

Assumption 2.4.2. Let d min = inf θ∈∂Θ ∥θ -θ * ∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists

G Θ > 0 such that ∀t ≥ 1, sup θ∈Θ ∥∇ θ l t,i (θ)∥ 2 ≤ G 2 Θ a.s., with i = 1, . . . , n t . Corollary 2.4.3 (PASSG, constant streaming batches). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from (2.2.2). Suppose γ t = C γ C β ρ t -α such that α ∈ (1/2,
δ1/2 t ≤ Λ 1/2 N 1/2 t + 6σC (1-α-β)/2 ρ µ 3/2 C 1/2 γ N 1-α/2 t + 2 α 6C δ σ 2 C γ µ 2 C 1-α-β ρ N α t + 2C l σC 1/2 γ µ 3/2 C (1-α-β)/2 ρ N (1+α)/2 t + C ρ Γ c µN t + C 2-α-β ρ √ π c ∞ A c ∞ µC γ N 2-α t + (6 + 71 {Cρ>1})2 3α/2 C ′ δ σ 2 C 3/2 γ C 3β/2 ρ ψ 0 3α/2 (N t /C ρ) µ 3/2 N t , with C ′ δ = C δ + 2 2 G Θ /d 2 min and Γ c given by (1/C γ C β ρ + C l)δ 1/2 0 + C l π c ∞ A c ∞ /C ρ + √ π c ∞ A c ∞ /C γ C β ρ + C δ Π c ∞ A c ∞ , consisting of the finite constants π c ∞ , Π c ∞ and A c ∞ , that only depends on µ, δ 0 , ∆ 0 , C l , σ, C ∇ , C δ , C γ , C ρ , β
δ1/2 t ≤ Λ 1/2 N 1/2 t + 2 3+ϕ(1+ρ) σC (1-ϕ-β)/21 {ρ≥0} ρ µ 3/2 C 1/2 γ N 1-ϕ/2 t + 2 (1+ϕ)(1+ρ)-2 C δ σ 2 C γ µ 2 C 1-ϕ-β ρ N ϕ t + 2 ϕ(1+ρ)/2 C l σC 1/2 γ µ 3/2 C (1-ϕ-β)/21 {ρ≥0} ρ N (1+ϕ)/2 t + C ρ Γ v µN t + C 2-ϕ-β ρ √ π v ∞ A v ∞ µC γ N 2-ϕ t + 2 3(1+ϕ)(1+ρ)/2 C ′ δ σ 2 C 3/2 γ C 1+3β/2 ρ ψ ρ 3(α-β ρ)/2 (N t /C ρ) µ 3/2 C 1 {ρ≥0} ρ N t , with C ′ δ = C δ +2 2 G Θ /d 2 min and Γ v given by (1/C γ C β ρ +C l)δ 1/2 0 +2 ρC l π v ∞ A v ∞ /C ρ +2 √ π v ∞ A v ∞ /C γ C β ρ + 2 ρC δ Π v ∞ A v ∞ , consisting of the finite constants π v ∞ , Π v ∞ and A v ∞ , that only depends on µ, δ 0 , ∆ 0 , C l , σ, C ∇ , C δ , C γ , C ρ , β and α.

Experiments

In this section, we demonstrate the theoretical results presented in Sections 2.3 and 2.4 for various data streams. In Section 2.5.1, we illustrate the unbounded gradient case (Sections 2.3 and 2.4.1) using linear regression. Where in Section 2.5.2, we present the bounded gradient case (Sections 2.3 and 2.4.2) by considering the geometric median. To measure the performance, we use the quadratic mean error of the parameter estimates over 100 replications, given by (E[∥θ Nt -θ * ∥ 2]) t≥1 . Note that averaging over several iterations gives a reduction in variability, which mainly benefits the SSG and PSSG.

Linear Regression

Consider the linear regression defined by y t = X T t θ +ϵ t , where X t ∈ R d is a random features vector, θ ∈ R d is the parameters vector, and ϵ t is a random variable with zero mean, independent from X t . Moreover, (X t , ϵ t) t≥1 are independent and identically distributed. Thus, θ * is the minimizer of

L(θ) = E[(y t -X T t θ) 2].
In this example, we fix d = 10, set θ = (-4, -3, 2, 1, 0, 1, 2, 3, 4, 5) T ∈ R 10 , and let (X t) and (ϵ t) be standard Gaussian. It is well-known that C γ can substantially impact convergence; when C γ is too large, instability can occur, leading to an explosion during the first iterations. If C γ is too small, the convergence can become very slow and destroy the desired rate α.

To focus on the various data streams, we set C γ = 1/2 and α = 2/3.

In Figure 2.1a, we consider constant data streams to illustrate the results in Corollaries 2. 2.1e, we vary the streaming rate ρ for streaming batch sizes C ρ = 1, 8, 64, and 128, respectively, with β = 0. These figures shows an increase in decay of the SSG when the streaming rate ρ increase. Despite this, we still achieve better convergence for the ASSG method, which seems more immune to the different choices of streaming rate ρ, e.g., see the discussion after Corollary 2.4.2. We know this from Corollary 2.3.2, as ϕ = (ρ + α)/(1 + ρ) ≥ α for β = 0. In addition, we see that C ρ has a positive effect on the noise (i.e, variance reduction), but if C ρ becomes too large, it may slow down convergence (as seen in Figure 2.1e). Alternatively, we could think around the problem in another way: how can we choose α and β such that we have optimal decay of ϕ = 2/3 for any ρ. In other words, for any arrival schedule that may occur, how should we choose our hyper-parameters such that we achieve optimal decay of ϕ = 2/3. As discussed after Corollary 2.4.2, one example of this could be achieved by setting α = 2/3 and β = 1/3 such that ϕ = 2/3 for any ρ. Figure 2.1f shows an example of this where we (indeed) achieve the same decay rate for any streaming rate ρ.

Geometric Median

The geometric median is a generalization of the real median introduced by Haldane [START_REF] Haldane | Note on the median of a multivariate distribution[END_REF]. Robust estimators such as the geometric median may be preferred over the mean when the data is noisy.

Moreover, in our streaming framework, stochastic algorithms are preferred as they efficiently handle large samples of high-dimensional data [START_REF] Cardot | Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm[END_REF][START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF]. The geometric median of X ∈ R d is defined by θ * ∈ R d which minimizes the convex function L(θ) = E[∥X -θ∥ -∥X∥], e.g., see Gervini [START_REF] Gervini | Robust functional estimation using the median and spherical principal components[END_REF], Kemperman [START_REF] Kemperman | The median of a finite measure on a banach space[END_REF] for properties such as existence, uniqueness, and robustness (breakdown point). Thus, the gradient

∇ θ L(θ) = E[∇ θ l t (θ)] with ∇ θ l t (θ) = -(X t -θ)/∥X t -θ∥ is bounded as ∥∇ θ l t (θ)∥ ≤ 1.
We omit to project our estimates as this would hide the errors we want to explore (which we will see more clearly in Example 1.3.2, where we consider real-life time-dependent streaming data). Instead of projecting the estimates, one could adapt the proof of Gadat and Panloup [START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF] to a streaming setting. Otherwise, if X t is bounded, one can adapt Cardot et al. [START_REF] Cardot | A fast and recursive algorithm for clustering large datasets with k-medians[END_REF] to the streaming setting showing that the streaming estimates are bounded. Similarly to above, we fix d = 10 and let (X t) be standard Gaussian centered at θ = (-4, -3, 2, 1, 0, 1, 2, 3, 4, 5) T ∈ R 10 . Moreover, following the reasoning of Cardot et al. [START_REF] Cardot | Efficient and fast estimation of the geometric median in hilbert spaces with an averaged stochastic gradient algorithm[END_REF], we set Chapter 2

C γ = √ d = √ 10

Conclusions

We considered the SO problem in a streaming framework where we had to minimize objectives using only unbiased estimates of its gradients. We introduced and studied the convergence rates of the stochastic streaming algorithms in a non-asymptotic manner. This investigation was derived using learning rates of the form γ t = C γ n β t t -α under varying data streams of n t . The theoretical results and our experiments showed a noticeable improvement in the convergence rate by choosing the learning rate (hyper-parameters) according to the expected data streams. For ASSG and PASSG, we showed that this choice of learning rate led to optimal convergence rates and was robust to any data stream rate we may encounter. Moreover, in large-scale learning problems, we know how to accelerate convergence and reduce noise through the learning rate and the treatment pattern of the data.

There are several ways to expand our work but let us give some examples: first, we can extend our analysis to include streaming batches of any size in the spirit of the discussion after Corollary 2.3.2.

Second, many machine learning problems encounter correlated variables and high-dimensional data, making an extension to non-strongly convex objectives advantageous, e.g, in Werge and Wintenberger [START_REF] Werge | Adavol: An adaptive recursive volatility prediction method[END_REF], they use SG-based optimization methods for volatility prediction through GARCH modeling. Third, Assumption 2.3.1 requires independent random functions, thus, an obvious extension could incorporate a more realistic dependency assumption, thereby increasing the applicability for more models. Moreover, studying dependence may give insight into how to process dependent information optimally. Next, a natural extension would be to modify our averaging estimate from (2.2.3) to a weighted averaged version (WASSG) proposed by Mokkadem and Pelletier [START_REF] Mokkadem | A generalization of the averaging procedure: The use of two-time-scale algorithms[END_REF] and Boyer and Godichon-Baggioni [START_REF] Boyer | On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions[END_REF], given as

θt,λ = 1 t i=1 n i log(1 + i) λ t i=1 n i log(1 + i) λ θ i-1 , (2.6.12)
where θ0,λ = 0, λ > 0 and (θ t) is coming from (2.2.1). By giving more importance to the latest estimates, we should improve convergence and limit the effect of bad initializations. Following the demonstrations in Section 2.5, an example of this WASSG estimate (θt,λ) can be found in Figure 2.3 with use of λ = 2. Here we see that although the WASSG estimate in (2.6.12) may not achieve a better final error (compared to the ASSG and PASSG estimates in Figures 2.1f and 2.2f), it still achieves a better decay along the way, often referred to as parameter tracking.

Proofs

In this section, we provide detailed proofs of the results presented in the manuscript. Purely technical results used in the proofs can be found in Chapter B. Let (F t) t≥1 be an increasing family of σ-fields, namely F t = σ(l 1 , . . . , l t) with l t = (l t,1 , . . . , l t,nt). Furthermore, we expand the notation have F t-1 ⊆ F t-1,i ⊂ F t-1,j . Thus, by the independence of the random (differentiable) functions

with F t-1,i = σ(l 1,1 , . . . , l t-1,n t-1 , l t,1 , . . . , l t,i) such that F t-1,0 = F t-1 . Meaning, ∀0 ≤ i < j, we
(l t,i), Assumption 2.3.1 yields that ∀t ≥ 1, E[∇ θ l t,i (θ t-1)|F t-1,i-1] = ∇ θ L(θ t-1
) with i = 1, . . . , n t .

Proofs for Section 2.3

The section is structured such that we start by analyzing the recursive relations and bounding them for every choice of learning rate. Next, we look at specific choices of learning rates.

Proof of Theorem 2.3.1. Taking the quadratic norm on both sides of (2.2.1), expanding it, and take the conditional expectation, yields

E[∥θ t -θ * ∥ 2 |F t-1] =∥θ t-1 -θ * ∥ 2 + γ 2 t n 2 t E   nt i=1 ∇ θ l t,i (θ t-1) 2 F t-1   - 2γ t n t nt i=1 E[⟨∇ θ l t,i (θ t-1), θ t-1 -θ * ⟩|F t-1]. (2.7.13)
To bound the second term (on the right-hand side) of (2.7.13), we first expand it as follows,

nt i=1 E[∥∇ θ l t,i (θ t-1)∥ 2 |F t-1] + nt i̸ =j E[⟨∇ θ l t,i (θ t-1), ∇ θ l t,j (θ t-1)⟩|F t-1]. (2
E[∥∇ θ l t,i (θ t-1)∥ 2 |F t-1] ≤2E[∥∇ θ l t,i (θ t-1) -∇ θ l t,i (θ *)∥ 2 |F t-1] + 2E[∥∇ θ l t,i (θ *)∥ 2 |F t-1] ≤2C 2 l ∥θ t-1 -θ * ∥ 2 + 2σ
F t-1 ⊆ F t-1,i ⊂ F t-1,j
for all 0 ≤ i < j, we have

E[⟨∇ θ l t,i (θ t-1), ∇ θ l t,j (θ t-1)⟩|F t-1] = E[E[⟨∇ θ l t,i (θ t-1), ∇ θ L(θ t-1)⟩|F t-1,i-1]|F t-1],
since θ t-1 and l t,i are F t-1,j-1 -measurable for all 0 ≤ i < j, and similarly, as θ t-1 is F t-1 -measurable and F t-1,i-1 -measurable for all i ≥ 0, we also have

E[E[⟨∇ θ l t,i (θ t-1), ∇ θ L(θ t-1)⟩|F t-1,i-1]|F t-1] =E[⟨E[∇ θ l t,i (θ t-1)|F t-1,i-1], ∇ θ L(θ t-1)⟩|F t-1] =∥∇ θ L(θ t-1)∥ 2 ,
where

∥∇ θ L(θ t-1)∥ 2 ≤ C 2 ∇ ∥θ t-1 -θ * ∥ 2 as ∇ θ L is C ∇ -Lipschitz continuous and ∇ θ L(θ *) = 0.
Thus, we obtained a bound for the second term (on the right-hand side) of (2.7.13) using the bounds of the two terms in (2.7.14):

nt i=1 (2C 2 l ∥θ t-1 -θ * ∥ 2 + 2σ 2) + nt i̸ =j C 2 ∇ ∥θ t-1 -θ * ∥ 2 = (2C 2 l n t + C 2 ∇ (n t -1)n t)∥θ t-1 -θ * ∥ 2 + 2σ 2 n t .
(2.7.16)

For the third term (on the right-hand side) of (2.7.13) we use that L is µ-quasi-strong convex and

θ t-1 is F t-1 -measurable, E[⟨∇ θ l t,i (θ t-1), θ t-1 -θ * ⟩|F t-1] =⟨E[∇ θ l t,i (θ t-1)|F t-1], θ t-1 -θ * ⟩ =⟨∇ θ L(θ t-1), θ t-1 -θ * ⟩ ≥µ∥θ t-1 -θ * ∥ 2 , (2
δ t ≤ [1 -2µγ t + (2C 2 l + (n t -1)C 2 ∇)n -1 t γ 2 t]δ t-1 + 2σ 2 n -1 t γ 2 t , with δ t = E[∥θ t -θ * ∥ 2]
with some δ 0 ≥ 0. At last, by Proposition B.1.5, we obtain the desired inequality in (2.3.7), namely

δ t ≤ exp   -µ t i=t/2 γ i   exp 4C 2 l t i=1 γ 2 i n i exp 2C 2 ∇ t i=1 1 {n i >1} γ 2 i δ 0 + 2σ 2 C 2 l + 2σ 2 µ max t/2≤i≤t γ i n i .
using that (n t -1)n -1 t ≤ 1 {n t >1} , n t ≥ 1, and that

max 1≤i≤t 2σ 2 2C 2 l + (n i -1)C 2 ∇ ≤ max 1≤i≤t 2σ 2 2C 2 l = σ 2 C 2 l .
Remark 2.7.1. The decrease of (2C 2 l + (n t -1)C 2 ∇)n -1 t γ t determines when the stationary phase occurs. This is more clearly seen in Proposition B. 1.4, where the inner terms directly depend on the inception of the stationary phase. Thus, by increasing n t , we decrease (2C

δ t ≤ exp   -µ t i=t/2 γ i   π c t + 2σ 2 µC ρ max t/2≤i≤t γ i . (2.7.18)
as

n t = C ρ , with π c t = exp((4C 2 l /C ρ) t i=1 γ 2 i) exp(2C 2 ∇ 1 {Cρ>1} t i=1 γ 2 i)(δ 0 +σ 2 /C 2 l). The sum term t i=1 γ 2 i = C 2 γ C 2β ρ t i=1 i -2α in π c
t can be bounded with the help of integral tests for convergence,

t i=1 i -2α = 1 + t i=2 i -2α ≤ 1 + t 1 x -2α dx ≤ 1 + 1/(2α -1) = 2α/(2α -1), as α ∈ (1/2, 1). Likewise, plugging γ t = C γ C β ρ t -α into the first term of (2.7.18), gives exp   -µ t i=t/2 γ i   = exp   -µC γ C β ρ t i=t/2 i -α   ≤ exp -µC γ C β ρ t t/2 x -α dx ≤ exp - µC γ C β ρ t 1-α 2 1-α , using the integral test for convergence. Next, as (γ t) t≥1 is decreasing, then max t/2≤i≤t γ t = γ t/2 .
Combining all these findings into (2.7.18), gives us

δ t ≤ exp - µC γ C β ρ t 1-α 2 1-α π c ∞ + 2 1+α σ 2 C γ µC 1-β ρ t α , (2.7.19) with π c ∞ = exp(4αC 2 γ (2C 2 l + C ρ 1 {Cρ>1} C 2 ∇)/(2α -1)C 1-2β ρ)(δ 0 + 2σ 2 /C 2 l). At last, converting (2.7.19) into terms of N t using N t = C ρ t, yields the desired.
Proof of Corollary 2.3.2. For convenience, we divided the proof into two cases to comprehend that n t ≥ 1 for all t: first, we bound each term of (2.3.7) (from Theorem 2.3.1) after inserting,

γ t = C γ n β t t -α = C γ C β ρ t βρ-α if ρ ≥ 0, or γ t ≥ C γ t -α if ρ < 0 (using that β ≥ 0) into the inequality. If
ρ ≥ 0, the first term of (2.3.7) can be bounded, as follows:

exp   -µ t i=t/2 γ i   = exp   -µC γ C β ρ t i=t/2 i βρ-α   ≤ exp - µC γ C β ρ t 1+βρ-α 2 1+βρ-α ,
using that α -βρ ∈ (1/2, 1) and the integral test for convergence. In a same way, if ρ < 0, one has

exp   -µ t i=t/2 γ i   ≤ exp   -µC γ t i=t/2 i -α   ≤ exp - µC γ t 1-α 2 1-α .
Likewise, with the help of integral tests for convergence, we have for ρ ≥ 0,

that t i=1 γ 2 i /n i ≤ t i=1 γ 2 i ≤ 2(α -βρ)C 2 γ C 2β ρ /(2(α -βρ) -1), as n t ≥ 1 and α -ρβ > 1/2. If ρ < 0, one has t i=1 γ 2 i /n i ≤ t i=1 γ 2 i ≤ 2αC 2 γ C 2β ρ /(2α -1) since C ρ ≥ n t ≥ 1.
Next, as (1 -β)ρ + α > 0 for ρ ≥ 0, then we can bound the last term of (2.3.7) by

2σ 2 µ max t/2≤i≤t γ i n i = 2σ 2 C γ µC 1-β ρ max t/2≤i≤t 1 i (1-β)ρ+α ≤ 2 1+(1-β)ρ+α σ 2 C γ µC 1-β ρ t (1-β)ρ+α . Likewise, if ρ < 0, we have 2σ 2 µ max t/2≤i≤t γ i n i = 2σ 2 C γ µ max t/2≤i≤t 1 n 1-β i i α ≤ 2 1+α σ 2 C γ µt α ,
since n t ≥ 1 and β ≤ 1. Combining all these findings gives

δ t ≤ exp - µC γ C β1 {ρ≥0} ρ t (1-ϕ)(1+ρ) 2 (1-ϕ)(1+ρ) π v ∞ + 2 1+ϕ(1+ρ) σ 2 C γ µC (1-β)1 {ρ≥0} ρ t ϕ(1+ρ) , (2.7.20)
where

π v ∞ = exp(4(α -β ρ)C 2 γ C 2β ρ (2C 2 l + C 2 ∇)/2(α -β ρ) -1) with ρ = ρ1 {ρ≥0} and ϕ = ((1 - β)ρ + α)/(1 + ρ). To write this in terms of N t , we use that N t = t i=1 n i = C ρ t i=1 i ρ = C ρ (t ρ + t-1 i=1 i ρ) ≤ C ρ (t ρ + t 1 x ρ dx) ≤ C ρ (t ρ + t ρ t 1 dx) = C ρ (t ρ + t 1+ρ) ≤ 2C ρ t 1+ρ , for ρ ≥ 0, thus, t ≥ (N t /2C ρ) 1/(1+ρ) . For ρ < 0, we have N t ≤ C ρ t, i.e, t ≥ N t /C ρ .
∆ t ≤ exp   -µ t i=t/2 γ i   Π ∆ t + 32σ 4 µ 2 max t/2≤i≤t γ 2 i n 2 i + 48σ 4 µ max t/2≤i≤t γ 3 i n 3 i + 114σ 4 µ max t/2≤i≤t γ 3 i 1 {n i >1} n 2 i , (2.7.21)
with Π ∆ t given in (2.7.29).

Proof of Lemma 2.7.1. We will now derive the recursive step sequence for the fourth-order moment using the same arguments as in proof for Theorem 2.3.1. Thus, one can show that

E[∥θ t -θ * ∥ 4 |F t-1] ≤∥θ t-1 -θ * ∥ 4 + γ 4 t n 4 t E   nt i=1 ∇ θ l t,i (θ t-1) 4 F t-1   + 4γ 2 t n 2 t E   nt i=1 ∇ θ l t,i (θ t-1) , θ t-1 -θ * 2 F t-1   + 2γ 2 t n 2 t ∥θ t-1 -θ * ∥ 2 E   nt i=1 ∇ θ l t,i (θ t-1) 2 F t-1   - 4γ t n t ∥θ t-1 -θ * ∥ 2 nt i=1 ⟨E[∇ θ l t,i (θ t-1)|F t-1], θ t-1 -θ * ⟩ + 4γ 3 t n 3 t E   nt i=1 ∇ θ l t,i (θ t-1) 2 nt i=1 ∇ θ l t,i (θ t-1) , θ t-1 -θ * F t-1   , using θ t-1 is F t-1 -measurable.
Note, by Assumption 2.3.1, we have

⟨E[∇ θ l t,i (θ t-1)|F t-1], θ t-1 -θ * ⟩ = ⟨∇ θ L(θ t-1), θ t-1 -θ * ⟩ ≥ µ∥θ t-1 -θ * ∥ 2 ,
as L is µ-quasi-strong convex. Combining this with the Cauchy-Schwarz inequality ⟨x, y⟩ ≤ ∥x∥∥y∥, we obtain the simplified expression:

E[∥θ t -θ * ∥ 4 |F t-1] ≤∥θ t-1 -θ * ∥ 4 + γ 4 t n 4 t E   nt i=1 ∇ θ l t,i (θ t-1) 4 F t-1   + 6γ 2 t n 2 t ∥θ t-1 -θ * ∥ 2 E   nt i=1 ∇ θ l t,i (θ t-1) 2 F t-1   -4µγ t ∥θ t-1 -θ * ∥ 4 + 4γ 3 t n 3 t ∥θ t-1 -θ * ∥E   nt i=1 ∇ θ l t,i (θ t-1) 3 F t-1   .
Next, recall Young's Inequality, i.e., for any a t , b t , c t > 0 we have

a t b t ≤ a 2 t c 2 t /2 + b 2 t /2c 2 t , nt i=1 ∇ θ l t,i (θ t-1) 3 ≤ γ t 2n t ∥θ t-1 -θ * ∥ nt i=1 ∇ θ l t,i (θ t-1) 4 + 2n t ∥θ t-1 -θ * ∥ γ t nt i=1 ∇ θ l t,i (θ t-1) 2 , Chapter 2
giving us

E[∥θ t -θ * ∥ 4 |F t-1] ≤(1 -4µγ t)∥θ t-1 -θ * ∥ 4 + 3γ 4 t n 4 t E   nt i=1 ∇ θ l t,i (θ t-1) 4 F t-1   + 8γ 2 t n 2 t ∥θ t-1 -θ * ∥ 2 E   nt i=1 ∇ θ l t,i (θ t-1) 2 F t-1   . (2
E[∥∇ θ l t,i (θ t-1)∥ p |F t-1] ≤2 p-1 [E[∥∇ θ l t,i (θ t-1) -∇ θ l t,i (θ *)∥ p |F t-1] + E[∥∇ θ l t,i (θ *)∥ p |F t-1]] ≤2 p-1 [C p l ∥θ t-1 -θ * ∥ p + σ p], (2.7.23)
for any p ∈ [1, 4] using the bound ∥x + y∥ p ≤ 2 p-1 (∥x∥ p + ∥y∥ p). Thus, we can bound the secondorder term in (2.7.22) by

E   t i=1 ∇ θ l t,i (θ t-1) 2 F t-1   ≤[2C 2 l n t + C 2 ∇ (n t -1)n t]∥θ t-1 -θ * ∥ 2 + 2σ 2 n t ≤[2C 2 l n t + C 2 ∇ n 2 t 1 {n t >1}]∥θ t-1 -θ * ∥ 2 + 2σ 2 n t , (2.7.24)
following the same steps in the proof of Theorem 2.3.1, but with use of (2.7.23). Bounding the fourth-order term is a bit heavier computationally, but let us recall that

∥ i x i ∥ 2 = i ∥x i ∥ 2 + i̸ =j ⟨x i , x j ⟩ = i ∥x i ∥ 2 + 2 i≤j ⟨x i , x j ⟩. Then, we have that nt i=1 ∇ θ l t,i (θ t-1) 4 =   nt i=1 ∥∇ θ l t,i (θ t-1)∥ 2 + nt i̸ =j ⟨∇ θ l t,i (θ t-1), ∇ θ l t,j (θ t-1)⟩   2 ≤2 nt i=1 ∥∇ θ l t,i (θ t-1)∥ 2 2 + 4   nt i<j ⟨∇ θ l t,i (θ t-1), ∇ θ l t,j (θ t-1)⟩   2 , (2.7.25)
as (x + y) 2 ≤ 2x 2 + 2y 2 . For the first term of (2.7.25), we have

E   n 1 i=1 ∥∇ θ l t,i (θ t-1)∥ 2 2 F t-1   = nt i=1 E[∥∇ θ l t,i (θ t-1)∥ 4 |F t-1] + nt i̸ =j E[∥∇ θ l t,i (θ t-1)∥ 2 ∥∇ θ l t,j (θ t-1)∥ 2 |F t-1] ≤8n t [C 4 l ∥θ t-1 -θ * ∥ 4 + σ 4] + 4n 2 t 1 {n t >1} [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] 2 ,
using the bound from (2.7.23), n t (n t -1) ≤ n 2 t 1 {n t >1} , and that F t-1 ⊆ F t-1,i ⊂ F t-1,j for all 0 ≤ i < j. To bound the second term of (2.7.25), we ease notation by denoting ∇ θ l t,i (θ t-1) by υ i , giving us

  nt i<j ⟨υ i , υ j ⟩   2 = nt i<j ⟨υ i , υ j ⟩ 2 + nt i<j,k<l (i,j)̸ =(k,l) ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ = nt i<j ⟨υ i , υ j ⟩ 2 A + nt i<j,k<l (i,j)̸ =(k,l),j=l ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ B + nt i<j,k<l (i,j)̸ =(k,l),j̸ =l ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ C .
By Cauchy-Schwarz inequality, we can bound the first term A, by

E[A|F t-1] ≤ nt i<j E[∥υ i ∥ 2 ∥υ j ∥ 2 |F t-1] ≤2n t (n t -1)[C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] 2 ≤2n 2 t 1 {n t >1} [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] 2 , using that F t-1 ⊆ F t-1,i ⊂ F t-1,j for all 0 ≤ i < j. Next, since l = j implies i ̸ = k, we have E[B|F t-1] = nt i<j,k<l,i̸ =k,j=l E[⟨υ i , υ j ⟩⟨υ k , υ l ⟩|F t-1] = nt i<j,k<l,i̸ =k,j=l E[E[⟨E[υ i |F t-1,i-1], υ j ⟩⟨E[υ k |F t-1,k-1], υ l ⟩|F t-1,l-1]|F t-1] = nt i<j,k<l,i̸ =k,j=l E[E[⟨∇ θ L(θ t-1), υ l ⟩ 2 |F t-1,l-1]|F t-1] ≤ nt i<j,k<l,i̸ =k,j=l E[∥∇ θ L(θ t-1)∥ 2 E[∥υ l ∥ 2 |F t-1,l-1]|F t-1] ≤ nt i<j,k<l,i̸ =k,j=l 2C 2 ∇ ∥θ t-1 -θ * ∥ 2 [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] =n t (n t -1)(n t -2)C 2 ∇ ∥θ t-1 -θ * ∥ 2 [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] ≤n 3 t 1 {n t >1} C 2 ∇ ∥θ t-1 -θ * ∥ 2 [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2],
using the Cauchy-Schwarz inequality and the bound in (2.7.23). In the same way, as j ̸ = l includes (i, j) ̸ = (k, l), we can rewrite C as

C = nt i<j,k<l,j̸ =l ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ = nt i<j,k<l,i=k,j̸ =l ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ C 1 + nt i<j,k<l,i̸ =k,j̸ =l ⟨υ i , υ j ⟩⟨υ k , υ l ⟩ C 2 , where E[C 1 |F t-1] = E[B|F t-1].
⟨υ i υ j ⟩⟨υ k υ l ⟩ C 2,2 + nt i<j,k<l,i̸ =j̸ =k̸ =l ⟨υ i υ j ⟩⟨υ k υ l ⟩ C 2,3
,

where

E[C 2,1 |F t-1] = E[C 2,2 |F t-1] = E[B|F t-1],
and

E[C 2,3 |F t-1] = nt i<j,k<l,i̸ =j̸ =k̸ =l E[∥∇ θ L(θ t-1)∥ 4 |F t-1] ≤n t (n t -1)(n t -2)(n t -3)C 4 ∇ ∥θ t-1 -θ * ∥ 4 ≤n 4 t 1 {n t >1} C 4 ∇ ∥θ t-1 -θ * ∥ 4 .
Thus, the fourth-order term of (2.7.22), is bounded by

E   nt i=1 ∇ θ l t,i (θ t-1) 4 F t-1   ≤ 16n t [C 4 l ∥θ t-1 -θ * ∥ 4 + σ 4] + 16n 2 t 1 {n t >1} [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] 2 + 12n 3 t 1 {n t >1} C 2 ∇ ∥θ t-1 -θ * ∥ 2 [C 2 l ∥θ t-1 -θ * ∥ 2 + σ 2] + 4n 4 t 1 {n t >1} C 4 ∇ ∥θ t-1 -θ * ∥ 4 ≤[16C 4 l n t + 16C 4 l n 2 t 1 {n t >1} + 12C 2 ∇ C 2 l n 3 t 1 {n t >1} + 4C 4 ∇ n 4 t 1 {n t >1}]∥θ t-1 -θ * ∥ 4 + [32C 2 l σ 2 n 2 t 1 {n t >1} + 12C 2 ∇ σ 2 n 3 t 1 {n t >1}]∥θ t-1 -θ * ∥ 2 + 16σ 4 n t + 16σ 4 n 2 t 1 {n t >1} . (2.7.26)
Combining the bound from (2.7.24) and (2.7.26) into (2.7.22), we obtain the recursive relation for the fourth-order moment:

E[∥θ t -θ * ∥ 4 |F t-1] ≤[1 -4µγ t + 8C 2 ∇ 1 {n t >1} γ 2 t + 16C 2 l n -1 t γ 2 t + 48C 4 l n -3 t γ 4 t + 48C 4 l n -2 t 1 {n t >1} γ 4 t + 36C 2 ∇ C 2 l n -1 t 1 {n t >1} γ 4 t + 12C 4 ∇ 1 {n t >1} γ 4 t]∥θ t-1 -θ * ∥ 4 + [16σ 2 n -1 t γ 2 t + 96C 2 l σ 2 n -2 t 1 {n t >1} γ 4 t + 36C 2 ∇ σ 2 n -1 t 1 {n t >1} γ 4 t]∥θ t-1 -θ * ∥ 2 + 48σ 4 n -3 t γ 4 t + 48σ 4 n -2 t 1 {n t >1} γ 4 t .
Using the Young's inequalities,

2C 2 ∇ C 2 l ≤ n t C 4 ∇ + n -1 t C 4 l , 16σ 2 n -1 t γ 2 t ∥θ t-1 -θ * ∥ 2 ≤ 2µγ t ∥θ t -θ * ∥ 4 + 32σ 4 µ -1 n -2 t γ 3 t , 2C 2 l σ 2 n -2 t 1 {n t >1} γ 4 t ∥θ t-1 -θ * ∥ 2 ≤ C 4 l n -2 t 1 {n t >1} γ 4 t ∥θ t -θ * ∥ 4 + σ 4 n -2 t 1 {n t >1} γ 4
t , and

2C 2 ∇ σ 2 n -1 t 1 {n t >1} γ 4 t ∥θ t-1 -θ * ∥ 2 ≤ C 4 ∇ 1 {n t >1} γ 4 t ∥θ t -θ * ∥ 4 + σ 4 n -2 t 1 {n t >1} γ 4 t , yields, E[∥θ t -θ * ∥ 4 |F t-1] ≤[1 -2µγ t + 8C 2 ∇ 1 {n t >1} γ 2 t + 16C 2 l n -1 t γ 2 t + 48C 4 l n -3 t γ 4 t + 114C 4 l n -2 t 1 {n t >1} γ 4 t +48C 4 ∇ 1 {n t >1} γ 4 t]∥θ t-1 -θ * ∥ 4 + 32µ -1 σ 4 n -2 t γ 3 t + 48σ 4 n -3 t γ 4 t + 114σ 4 n -2 t 1 {n t >1} γ 4 t . (2.7.27)
Taking, the expectation on both sides of the inequality in (2.7.27) yields the recursive relation for the fourth-order moment:

∆ t ≤[1 -2µγ t + 8C 2 ∇ 1 {n t >1} γ 2 t + 16C 2 l n -1 t γ 2 t + 48C 4 l n -3 t γ 4 t + 114C 4 l n -2 t 1 {n t >1} γ 4 t + 48C 4 ∇ 1 {n t >1} γ 4 t]∆ t-1 + 32µ -1 σ 4 n -2 t γ 3 t + 48σ
∆ t ≤ exp   -µ t i=t/2 γ i   Π ∆ t + 32σ 4 µ 2 max t/2≤i≤t γ 2 i n 2 i + 48σ 4 µ max t/2≤i≤t γ 3 i n 3 i + 114σ 4 µ max t/2≤i≤t γ 3 i 1 {n i >1} n 2 i .
where

Π ∆ t is given by exp 32C 2 l t i=1 γ 2 i n i exp 96C 4 l t i=1 γ 4 i n 3 i exp 228C 4 l t i=1 1 {n i >1} γ 4 i n 2 i exp 16C 2 ∇ t i=1 1 {n i >1} γ 2 i exp 96C 4 ∇ t i=1 1 {n i >1} γ 4 i ∆ 0 + 2σ 4 C 4 l + 4σ 4 γ 1 µC 2 l n 1 , (2.7.29)
with use of

max 1≤i≤t 32µ -1 σ 4 n -2 i γ i + 48σ 4 n -3 i γ 2 i + 114σ 4 n -2 i 1 {n i >1} γ 2 i 8C 2 ∇ 1 {n i >1} + 16C 2 l n -1 i + 48C 4 l n -3 i γ 2 i + 114C 4 l n -2 i 1 {n i >1} γ 2 i + 48C 4 ∇ 1 {n i >1} γ 2 i ≤ σ 4 C 4 l + 2σ 4 γ 1 µC 2 l n 1 .
At last, bounding the projected estimate (2.2.2) follows from that

E[∥P Θ (θ) -θ * ∥ 2] ≤ E[∥θ -θ * ∥ 2],
∀θ ∈ Θ.

Proofs for Section 2.4.1

Proof of Theorem 2.4.1. Following Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], we rewrite (2.2.1) to

θ t = θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) ⇐⇒ 1 γ t (θ t-1 -θ t) = ∇ θ l t (θ t-1), (2.7.30)
where

∇ θ l t (θ t-1) denotes n -1 t nt i=1 ∇ θ l t,i (θ t-1). Note ∇ θ l t (θ t-1) ≈ ∇ θ l t (θ *) + ∇ 2 θ l t (θ *)(θ t-1 -θ *)
, and that ∇ θ l t (θ *) and ∇ θ l t (θ) -∇ θ L(θ) behaves almost like an i.i.d. sequences with zero mean.

Thus, θt -θ * behaves like -∇ θ L(θ *) -1 N -1 t t i=1 n i ∇ θ l i (θ *) leading to a bound in O(√ N t). Observe that ∇ 2 θ L(θ *)(θ t-1 -θ *) =∇ θ l t (θ t-1) -∇ θ l t (θ *) -[∇ θ l t (θ t-1) -∇ θ l t (θ *) -∇ θ L(θ t-1)] martingale term -[∇ θ L(θ t-1) -∇ 2 θ L(θ *)(θ t-1 -θ *)] rest term
, where ∇ 2 θ L(θ *) is invertible with lowest eigenvalue greater than µ, i.e., ∇ 2 θ L(θ *) ≥ µ. Thus, summing the parts and using the Minkowski's inequality, we obtain the inequality:

E θt -θ * 2 1 2 ≤   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ *) 2     1 2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) 2     1 2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i [∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L (θ i-1)] 2     1 2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ L (θ i-1) -∇ 2 θ L (θ *) (θ i-1 -θ *) 2     1 2
.

As (∇ θ l t,i (θ *)) is a square-integrable martingale increment sequences on R d (Assumption 2.3.1), we have

E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ *) 2   =E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i j=1 ∇ θ l i,j (θ *) 2   ≤ 1 N 2 t t i=1 n i j=1 E ∇ 2 θ L (θ *) -1 ∇ θ l i,j (θ *) 2 ≤ Tr ∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1 N t , (2.7.31)
using Assumption 2.4.1. To ease notation, we denote

Tr[∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1
] by Λ. Next, note that for all t ≥ 1, we have the relation in (2.7.30), giving us

1 N t t i=1 n i ∇ θ l i (θ i-1) = 1 N t t i=1 n i γ i (θ i-1 -θ i) = 1 N t t-1 i=1 (θ i -θ *) n i+1 γ i+1 - n i γ i - 1 N t (θ t -θ *) n t γ t + 1 N t (θ 0 -θ *) n 1 γ 1 , leading to ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) ≤ 1 N t µ t-1 i=1 ∥θ i -θ * ∥ n i+1 γ i+1 - n i γ i + 1 N t µ ∥θ t -θ * ∥ n t γ t + 1 N t µ ∥θ 0 -θ * ∥ n 1 γ 1 .
Hence, with the notion of δ t = E[∥θ t -θ * ∥ 2] this expression can be simplified to

  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) 2     1 2 ≤ 1 N t µ t-1 i=1 δ 1 2 i n i+1 γ i+1 - n i γ i + n t N t γ t µ δ 1 2 t + n 1 N t γ 1 µ δ 1 2
0 .

(2.7.32)

For the martingale term, we have

E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i [∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L (θ i-1)] 2   ≤ 1 N 2 t µ 2 t i=1 n 2 i E ∥∇ θ l i (θ i-1) -∇ θ l i (θ *)∥ 2 = 1 N 2 t µ 2 t i=1 E   n i j=1 ∇ θ l i,j (θ i-1) -∇ θ l i,j (θ *) 2   ≤ 1 N 2 t µ 2 t i=1 n i j=1 E ∥∇ θ l i,j (θ i-1) -∇ θ l i,j (θ *)∥ 2 1 2 ≤ C 2 l N 2 t µ 2 t i=1 n i δ i-1 , (2.7
  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ L (θ i-1) -∇ 2 θ L (θ *) (θ i-1 -θ *) 2     1 2 ≤ C δ N t µ t i=1 n i ∆ 1 2 i-1 , (2
δ1/2 t ≤ Λ 1/2 N 1/2 t + 1 N t µ t-1 i=1 δ 1/2 i n i+1 γ i+1 - n i γ i + n t N t γ t µ δ 1/2 t + n 1 N t γ 1 µ δ 1/2 0 + C l N t µ t i=1 n i δ i-1 1/2 + C δ N t µ t i=1 n i ∆ 1/2 i-1 , (2.7
δ1/2 t ≤ Λ 1/2 N 1/2 t + C ρ N t µ t-1 i=1 δ 1/2 i 1 γ i+1 - 1 γ i + C ρ N t γ t µ δ 1/2 t + C ρ N t µ 1 γ 1 + C l δ 1/2 0 + C l C 1 2 ρ N t µ t-1 i=1 δ i 1/2 + C δ C ρ N t µ t-1 i=0 ∆ 1/2 i .
(2.7.36)

The second-order moment δ t is bounded by Corollary 2.3.1 but with use of (2.7.19) as we work in terms of t. The fourth-order moment ∆ t from Lemma 2.7.1 can be simplified to:

∆ t ≤ exp   -µ t i=t/2 γ i   Π c ∞ + 1 µ 32σ 4 µC 2 ρ max t/2≤i≤t γ 2 i + 48σ 4 C 3 ρ max t/2≤i≤t γ 3 i + 114σ 4 1 {Cρ>1} C 2 ρ max t/2≤i≤t γ 3 i ≤ exp - µC γ C β ρ t 1-α 2 1-α Π c ∞ + 1 µ 2 2α 32σ 4 C 2 γ C 2β ρ µC 2 ρ t 2α + 2 3α 48σ 4 C 3 γ C 3β ρ C 3 ρ t 3α + 2 3α 114σ 4 C 3 γ C 3β ρ 1 {Cρ>1} C 2 ρ t 3α , using that γ t = C γ C β ρ t -α is decreasing as α ∈ (1/2,
Π c ∞ = exp 64αC 2 l C 2 γ C 2β ρ (2α -1) C ρ exp (192 + 456C ρ 1 {Cρ>1})C 4 l C 4 γ C 4β ρ C 3 ρ exp 32αC 2 ∇ C 2 γ C 2β ρ 1 {Cρ>1} 2α -1 exp 192C 4 ∇ C 4 γ C 4β ρ 1 {Cρ>1} ∆ 0 + 2σ 4 C 4 l + 4σ 4 C γ µC 2 l C 1-β ρ , using t i=1 i -2α ≤ 2α/(2α -1) and t i=1 i -4α ≤ 2. Note that Π c
∞ is a finite constant, independent of t. To bound the first term of (2.7.36), namely

Cρ Ntµ t-1 i=1 δ 1/2 i |γ -1 i+1 -γ -1 i |, we remark that |γ -1 t+1 - γ -1 t | ≤ C -1 γ C -β ρ αt α-1 , one has (since √ a + b ≤ √ a + √ b), C ρ N t µ t-1 i=1 δ 1 2 i 1 γ i+1 - 1 γ i ≤ C 1-β ρ α C γ µN t t i=1 i α-1   exp - µC γ C β ρ i 1-α 2 2-α π c ∞ + 2 1+α 2 σ C γ √ µC 1-β 2 ρ i α/2   .
(2.7.37)

For simplicity, let us denote

A c ∞ = ∞ i=0 exp - µC γ C β ρ i 1-α 2 2-α ≥ ∞ i=0 i α-1 exp - µC γ C β ρ i 1-α 2 2-α ,
as α < 1. Thus, the first part of (2.7.37) is bounded as follows:

C 1-β ρ α √ π c ∞ C γ µN t t i=1 i α-1 exp - µC γ C β ρ i 1-α 2 2-α ≤ C 1-β ρ α √ π c ∞ A c ∞ C γ µN t .
Furthermore, with the help of an integral test for convergence, one has

t i=1 i α/2-1 ≤ 1+ t 1 s α/2-1 ds = 1 + (2/α)t α/2 -(2/α) ≤ (2/α)t α/2
, such that the second part of (2.7.37) can be bounded by

2 1+α 2 σC 1-β 2 ρ α C 1/2 γ µ 3/2 N t t i=1 i α/2-1 ≤ 2 3+α 2 σC 1-β 2 ρ t α/2 C 1/2 γ µ 3/2 N t = 2 3+α 2 σC 1-α-β 2 ρ C 1/2 γ µ 3/2 N 1-α/2 t
.

By combining this, we get

C ρ N t µ t-1 i=1 δ 1 2 i 1 γ i+1 - 1 γ i ≤ C 1-β ρ α √ π c ∞ A c ∞ C γ µN t + 2 3+α 2 σC 1-α-β 2 ρ C γ µ 3/2 N 1-α/2 t . (2.7.38)
Similarly, second term of (2.7.36), can be bounded by

C ρ N t γ t µ δ 1 2 t ≤ C 1-α-β ρ C γ µN 1-α t   exp - µC γ C β ρ t 1-α 2 2-α π c ∞ + 2 1+α 2 σ C γ √ µC 1-β 2 ρ t α/2   ≤ C 2-α-β ρ √ π c ∞ A c ∞ C γ µN 2-α t + 2 1+α 2 C 1-α-β 2 ρ σ C γ µ 3/2 N 1-α/2 t , using exp(-µC γ C β ρ t 1-α /2 2-α) = A c t ≤ t -1 t i=1 A c i ≤ t -1 A c ∞ as A c
t is decreasing. In a same way, one has

C l C 1 2 ρ N t µ t-1 i=1 δ i 1 2 ≤ C l C 1 2 ρ N t µ A c ∞ π c ∞ + 2 1+α σ 2 C γ t 1-α (1 -α) µC 1-β ρ 1/2 ≤ C l C 1 2 ρ √ π c ∞ A c ∞ N t µ + 2 1+α 2 C l σ C γ C 1-α-β 2 ρ µ 3/2 N 1+α 2 t .
Bound the last term of (2.7.36), is done as follows,

C δ C ρ N t µ t-1 i=0 ∆ 1 2 i ≤ C δ C ρ N t µ t-1 i=0 exp - µC γ C β ρ i 1-α 2 2-α Π c ∞ + 2 α 6C δ σ 2 C γ C β ρ N t µ 2 t-1 i=1 i -α + (6 + 71 {Cρ>1})2 3α/2 C δ σ 2 C 3/2 γ C 3β/2 ρ N t µ 3/2 t-1 i=1 i -3α/2 ≤ C δ C ρ Π c ∞ A c ∞ N t µ + 2 α 6C δ σ 2 C γ C 1-α-β ρ µ 2 N α t + (6 + 71 {Cρ>1})2 3α/2 C δ σ 2 C 3/2 γ C 3β/2 ρ ψ 0 3α/2 (N t /C ρ) µ 3/2 N t .
Thus, by collecting the terms above, we obtain:

δ1/2 t ≤ Λ 1/2 N 1/2 t + 6σC 1-α-β 2 ρ C γ µ 3/2 N 1-α/2 t + 2 α 6C δ σ 2 C γ C 1-α-β ρ µ 2 N α t + C 2-α-β ρ √ π c ∞ A c ∞ C γ µN 2-α t + 2 1+α 2 C l σ C γ C 1-α-β 2 ρ µ 3/2 N 1+α 2 t + C ρ Γ c µN t + (6 + 71 {Cρ>1})2 3α/2 C δ σ 2 C 3/2 γ C 3β/2 ρ µ 3/2 ψ 0 3α/2 (N t /C ρ) -1 N t ,
where

Γ c = (1/C γ C β ρ + C l)δ 1/2 0 + C l π c ∞ A c ∞ /C 1/2 ρ + √ π c ∞ A c ∞ /C γ C β ρ + C δ Π c ∞ A c ∞ .
Proof of Corollary 2.4.2. The steps of the proof follows the ones of Corollary 2.4.1 with the smart notation of ϕ and ρ: The bound for δt in (2.4.11) is given by

δ1/2 t ≤ Λ 1/2 N 1/2 t + 1 N t µ t-1 i=1 δ 1/2 i n i+1 γ i+1 - n i γ i + n t N t γ t µ δ 1/2 t + n 1 N t µ 1 γ 1 + C l δ 1/2 0 + C l N t µ t-1 i=1 n i+1 δ i 1/2 + C δ N t µ t-1 i=0 n i+1 ∆ 1/2 i , (2.7.39)
where the learning rate is on the form γ t = C γ n β t t -α with n t = C ρ t ρ . The second-order moment δ t is upper bounded by (2.7.20) from Corollary 2.3.2. The fourth-order moment ∆ t from Lemma 2.7.1 can be simplified as follows,

∆ t ≤ exp   -µ t i=t/2 γ i   Π v ∞ + 32σ 4 µ 2 max t/2≤i≤t γ 2 i n 2 i + 162σ 4 µ max t/2≤i≤t γ 3 i n 2 i ,
as n t ≥ 1 for any t ≥ 1 and β ≤ 1, and

Π v ∞ = exp 32(α -β ρ)C 2 γ C 2β ρ (2C 2 l + C 2 ∇) 2(α -β ρ) -1 exp 192C 4 γ C 4β ρ (4C 4 l + C 4 ∇) ∆ 0 + 2σ 4 C 4 l + 4σ 4 C γ µC 2 l C 1-β ρ , using that t i=1 i -a ≤ 2 for a ≥ 2.
Next, for ρ ≥ 0, we have

∆ t ≤ exp - µC γ C β ρ t 1+βρ-α 2 1+βρ-α Π v ∞ + 2 2α-2βρ+2ρ 32σ 4 C 2 γ C 2β ρ µ 2 C 2 ρ t 2α-2βρ+2ρ + 2 3α-3βρ+2ρ 162σ 4 C 3 γ C 3β ρ µC 2 ρ t 3α-3βρ+2ρ
, using that α -βρ ∈ (1/2, 1). If ρ < 0, one directly have

∆ t ≤ exp - µC γ C β ρ t 1-α 2 1-α Π v ∞ + 2 2α 32σ 4 C 2 γ C 2β ρ µ 2 t 2α + 2 3α 162σ 4 C 3 γ C 3β ρ µt 3α .
With the notion of ϕ and ρ, we can combine the two ρ-cases as follows:

∆ t ≤ exp - µC γ C β1 {ρ≥0} ρ t (1-ϕ)(1+ρ) 2 (1-ϕ)(1+ρ) Π v ∞ + 2 2ϕ(1+ρ) 32σ 4 C 2 γ C 2β ρ µ 2 C 21 {ρ≥0} ρ t 2ϕ(1+ρ) + 2 3ϕ(1+ρ)-ρ 162σ 4 C 3 γ C 3β ρ µC 21 {ρ≥0} ρ t 3ϕ(1+ρ)-ρ .
We will in the following bound the terms for t but afterwards we will translate it to terms in N t .

If ρ ≥ 0, the first relation is t ≥ (N t /2C ρ) 1/(1+ρ) since N t = C ρ (t ρ + t-1 i=1 i ρ) ≤ C ρ (t ρ + t 1 x ρ dx) ≤ C ρ (t ρ + t ρ t 1 dx) = C ρ (t ρ + t 1+ρ) ≤ 2C ρ t 1+ρ
by use the integral test for convergence. Similarly,

N t = C ρ t i=1 i ρ ≥ C ρ t 0 x ρ dx = C ρ t ρ+1 , thus, t ≤ (N t /C ρ) 1/(1+ρ) . If ρ < 0, one has t ≤ N t and N t ≤ C ρ t, i.e., t ≥ N t /C ρ . Bounding 1 Ntµ t-1 i=1 δ 1/2 i |n i+1 /γ i+1 -n i /γ i |, we first note n t /γ t = C -1 γ C 1-β ρ t (1-β)ρ+α for ρ ≥ 0.
52 Section 2.7

Thus, by the mean value theorem, we obtain:

n i+1 γ i+1 - n i γ i ≤ ((1 -β)ρ + α) C 1-β ρ C γ sup ν∈(i,i+1) ν (1-β)ρ+α-1 ≤ ((1 -β)ρ + α) C 1-β ρ C γ i 1-(1-β)ρ-α , (2.7.40) as α + (1 -β)ρ ≤ 1 -ρ since α -βρ ∈ (1/2, 1
). For ρ < 0, the mean value theorem gives us

n i+1 γ i+1 - n i γ i = 1 C γ n 1-β i+1 (i + 1) α -n 1-β i i α ≤ C 1-β ρ C γ |(i + 1) α -i α | ≤ αC 1-β ρ C γ sup ν∈(i,i+1) ν α-1 ≤ αC 1-β ρ C γ i 1-α ,
as (n t) t≥1 is a decreasing sequence and β ≤ 1. Thus, for any ρ ∈ (-1, 1), we have

n i+1 γ i+1 - n i γ i ≤ ϕ(1 + ρ)C 1-β ρ C γ i 1-ϕ(1+ρ) .
By using this, we obtain:

1 N t µ t-1 i=1 δ 1 2 i n i+1 γ i+1 - n i γ i ≤ ϕ(1 + ρ)C 1-β ρ N t µC γ t i=1 i ϕ(1+ρ)-1   exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) π v ∞ + 2 1+ϕ(1+ ρ) 2 σ C γ √ µC (1-β) 2 1 {ρ≥0} ρ i ϕ(1+ ρ) 2   .
Next, let us denote

A v ∞ = ∞ i=0 i ρ exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) ≥ ∞ i=0 i ϕ(1+ρ)-1 exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) , since ϕ(1 + ρ) -1 = α + (1 -β)ρ -1 ≤ ρ. Thus, ϕ(1 + ρ)C 1-β ρ √ π v ∞ N t µC γ t i=1 i ϕ(1+ρ)-1 exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) ≤ ϕ(1 + ρ)C 1-β ρ √ π v ∞ A v ∞ N t µC γ .
Furthermore, with the help of an integral test for convergence, we have

ϕ(1 + ρ)2 1+ϕ(1+ ρ) 2 σC 1-β 2 1 {ρ≥0} ρ µ 3/2 C γ N t t i=1 i ϕ(1+ ρ) 2 -1 ≤ 2 3+ϕ(1+ ρ) 2 σC 1-β 2 1 {ρ≥0} ρ t ϕ(1+ ρ) 2 µ 3/2 C γ N t ≤ 2 3+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t . Chapter 2
Summarising, with use of ϕ(1 + ρ) < 2, we obtain

1 N t µ t-1 i=1 δ 1 2 i n i+1 γ i+1 - n i γ i ≤ ϕ(1 + ρ)C 1-β ρ √ π v ∞ A v ∞ N t µC γ + 2 3+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t ≤ 2C 1-β ρ √ π v ∞ A v ∞ µC γ N t + 2 3+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t .
Similarly, for nt Ntγtµ δ 1/2 t , one have

n t N t γ t µ δ 1 2 t ≤ C 1-β ρ √ π v ∞ t ϕ(1+ρ) N t C γ µ exp - µC γ C β1 {ρ≥0} ρ t (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) + 2 1+ϕ(1+ ρ) 2 σC 1-β 2 1 {ρ≥0} ρ t ϕ(1+ ρ) 2 µ 3/2 C γ N t ≤ C 2-ϕ-β ρ √ π v ∞ A v ∞ µC γ N 2-ϕ t + 2 1+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t . For n 1 Ntµ (γ -1 1 + C l)δ 1/2
0 , we insert the definition of our learning functions, giving us

n 1 N t µ 1 γ 1 + C l δ 1/2 0 = C ρ N t µ 1 C γ C β ρ + C l δ 1/2 0 .
Bounding C l Ntµ (t-1 i=1 n i+1 δ i) 1/2 , follows the ideas from above, using that n t+1 ≤ 2 ρn t , to obtain

C l N t µ t-1 i=1 n i+1 δ i 1 2 ≤ 2 ρ/2 C l N t µ t i=1 n i δ i 1 2 ≤ 2 ρ/2 C l N t µ C ρ t i=1 i ρ exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 (1-ϕ)(1+ρ) π v ∞ + 2 1+ϕ(1+ρ) σ 2 C γ µC (1-β)1 {ρ≥0} ρ i ϕ(1+ρ) 1 2 = 2 ρ/2 C l N t µ C ρ π v ∞ t i=1 i ρ exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 (1-ϕ)(1+ρ) + 2 1+ϕ(1+ρ) σ 2 C γ C β1 {ρ≥0} ρ µ t i=1 i β ρ-α 1 2 ≤ 2 ρ/2 C l N t µ C ρ π v ∞ A v ∞ + 2 ϕ(1+ρ) σ 2 C γ C β1 {ρ≥0} ρ t (1-ϕ)(1+ρ) µ 1 2 ≤ 2 ρ/2 C l C ρ √ π v ∞ A v ∞ µN t + 2 ϕ(1+ ρ) 2 C l σ C γ C β/21 {ρ≥0} ρ t (1-ϕ)(1+ ρ) 2 µ 3/2 N t ≤ 2 ρ/2 C l C ρ √ π v ∞ A v ∞ µN t + 2 ϕ(1+ ρ) 2 C l σ C γ µ 3/2 C 1-ϕ-β 2 1 {ρ≥0} ρ N 1+ϕ 2 t . Section 2.7 Likewise, for C δ Ntµ t-1 i=0 n i+1 ∆ 1/2 i , we get C δ N t µ t-1 i=0 n i+1 ∆ 1 2 i ≤ 2 ρC δ C ρ N t µ t-1 i=1 i ρ exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 (1-ϕ)(1+ρ) Π v ∞ + 2 2ϕ(1+ρ) 32σ 4 C 2 γ C 2β ρ µ 2 C 21 {ρ≥0} ρ i 2ϕ(1+ρ) + 2 3ϕ(1+ρ)-ρ 162σ 4 C 3 γ C 3β ρ µC 21 {ρ≥0} ρ i 3ϕ(1+ρ)-ρ 1 2 ≤ 2 ρC δ C ρ N t µ t-1 i=1 i ρ exp - µC γ C β1 {ρ≥0} ρ i (1-ϕ)(1+ρ) 2 1+(1-ϕ)(1+ρ) Π v ∞ + 2 ϕ(1+ρ) 6σ 2 C γ C β ρ µC 1 {ρ≥0} ρ i ϕ(1+ρ) + 2 3ϕ(1+ρ)/2-ρ/2 13σ 2 C 3/2 γ C 3β/2 ρ µ 1/2 C 1 {ρ≥0} ρ i 3ϕ(1+ρ)/2 ≤ 2 ρC δ C ρ Π v ∞ A v ∞ µN t + 2 ϕ(1+ρ)+ρ C δ σ 2 C γ C 1+β ρ µ 2 C 1 {ρ≥0} ρ N t t-1 i=1 i β ρ-α + 2 3ϕ(1+ρ)/2+ρ/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ µ 3/2 C 1 {ρ≥0} ρ N t t-1 i=1 i 3(β ρ-α)/2 ,
where the second term can be bounded as

2 (1+ϕ)(1+ρ)-1 C δ σ 2 C γ C 1+β ρ µ 2 C 1 {ρ≥0} ρ N t t-1 i=1 i β ρ-α ≤ 2 (1+ϕ)(1+ρ)-1 C δ σ 2 C γ C 1+β ρ t 1+β ρ-α (1 + β ρ -α)µ 2 C 1 {ρ≥0} ρ N t ≤ 2 (1+ϕ)(1+ρ)-2 C δ σ 2 C γ µ 2 C 1-ϕ-β ρ N ϕ t ,
and the third term by

2 3(1+ϕ)(1+ρ)/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ µ 3/2 C 1 {ρ≥0} ρ N t t-1 i=1 i 3(β ρ-α)/2 ≤ 2 3(1+ϕ)(1+ρ)/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ ψ ρ 3(α-β ρ)/2 (N t /C ρ) µ 3/2 C 1 {ρ≥0} ρ N t .
By collecting these bounds, we get

C δ N t µ t-1 i=0 n i+1 ∆ 1 2 i ≤ 2 ρC δ C ρ Π v ∞ A v ∞ µN t + 2 (1+ϕ)(1+ρ)-2 C δ σ 2 C γ µ 2 C 1-ϕ-β ρ N ϕ t + 2 3(1+ϕ)(1+ρ)/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ ψ ρ 3(α-β ρ)/2 (N t /C ρ) µ 3/2 C 1 {ρ≥0} ρ N t .
Combining our findings from above, we have

δ1/2 t ≤ Λ 1/2 N 1/2 t + 2C 1-β ρ √ π v ∞ A v ∞ µC γ N t + 2 3+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t + C 2-ϕ-β ρ √ π v ∞ A v ∞ µC γ N 2-ϕ t + 2 1+ϕ(1+ ρ) 2 σC 1-ϕ-β 2 1 {ρ≥0} ρ µ 3/2 C γ N 1-ϕ/2 t + C ρ N t µ 1 C γ C β ρ + C l δ 1 2 0 + 2 ρ/2 C l C ρ √ π v ∞ A v ∞ µN t + 2 ϕ(1+ ρ) 2 C l σ C γ µ 3/2 C 1-ϕ-β 2 1 {ρ≥0} ρ N 1+ϕ 2 t + 2 ρC δ C ρ Π v ∞ A v ∞ µN t + 2 (1+ϕ)(1+ρ)-2 C δ σ 2 C γ µ 2 C 1-ϕ-β ρ N ϕ t + 2 3(1+ϕ)(1+ρ)/2 C δ σ 2 C 3/2 γ C 1+3β/2 ρ ψ ρ 3(α-β ρ)/2 (N t /C ρ) µ 3/2 C 1 {ρ≥0} ρ N t .
This can be simplified to the desired using Γ v given by

(1/C γ C β ρ + C l)δ 1/2 0 + 2 ρC l π v ∞ A v ∞ /C 1/2 ρ + 2 √ π v ∞ A v ∞ /C γ C β ρ + 2 ρC δ Π v ∞ A v ∞ , consisting of the finite constants π v ∞ , Π v ∞ and A v ∞ .
Proofs

δ1/2 t ≤ Λ 1/2 N 1/2 t + 1 N t µ t-1 i=1 n i+1 γ i+1 - n i γ i δ 1/2 i + n t N t γ t µ δ 1/2 t + n 1 N t µ 1 γ 1 + C l δ 1/2 0 + C l N t µ t-1 i=1 n i+1 δ i 1/2 + C ′ δ N t µ t i=0 n i+1 ∆ 1/2 i where Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1) and C ′ δ = C δ + 2 2 G Θ /d 2 min .
Proof of Theorem 2.7.1. Denote E[∥ θt -θ * ∥ 2] by δt with (θt) given by (2.2.3) using (θ t) from (2.2.2).

As in the proof Theorem 2.4.1, we follow the steps of Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], in which, we can rewrite (2.2.2) to

1 γ t (θ t-1 -θ t) = ∇ θ l t (θ t-1) - 1 γ t Ω t ,
where ∇ θ l t (θ t-1) = n -1 t nt i=1 ∇ θ l t,i (θ t-1) and Ω t = P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -(θ t-1 -γ t ∇ θ l t (θ t-1)). Thus, summing the parts, using the Minkowski's inequality, and bounding each term gives us the same bound as in Theorem 2.4.1, but with an additional term regarding Ω t , namely

  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i γ i Ω i 2     1 2 ≤ 1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 = 1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 1 {θ i-1 -γ i ∇ θ l i (θ i-1) / ∈Θ} , (2.7.41) using Godichon-Baggioni [55, Lemma 4.3]. Next, we note that E[∥Ω t ∥ 2 1 {θ t-1 -γ t ∇ θ l t (θ t-1) / ∈Θ}] = 4γ 2 t G 2 Θ P[θ t-1 -γ t ∇ θ l t (θ t-1) / ∈ Θ], since ∥Ω t ∥ 2 = ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -θ t-1 + γ t ∇ θ l t (θ t-1)∥ 2 ≤2 ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -θ t-1 ∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 =2 ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -P Θ (θ t-1)∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 ≤2 ∥θ t-1 -γ t ∇ θ l t (θ t-1) -θ t-1 ∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 =4γ 2 t ∥∇ θ l t (θ t-1)∥ 2 ≤ 4γ 2 t G 2 Θ ,
as P Θ is Lipschitz and ∥∇ θ l t,i (θ)∥ 2 ≤ G 2 Θ for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and Portier [56, Theorem 4.2], we know that P[θ t-1 -γ t ∇ θ l t (θ t-1) /

∈ Θ] ≤ ∆ t /d 4 min , where d min = inf θ∈∂Θ ∥θ -θ * ∥ with ∂Θ denoting the frontier of Θ. Thus, (2.7.41) can then be bounded by

1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 1 {θ i-1 -γ i ∇ θ l i (θ i-1) / ∈Θ} ≤ 2G Θ µd 2 min N t t i=1 n i ∆ 1/2 i ≤ 2 2 G Θ µd 2 min N t t i=1 n i+1 ∆ 1/2 i ,

Introduction

Over the past decade, machine learning and artificial intelligence have become mainstream in many parts of society; substantial improvements in the performance and cost of mass storage devices and network systems have contributed to this. Traditional machine learning methods often work in a batch or offline learning setting, where the model is re-trained from scratch when new data arrive. Such learning methods suffer some critical drawbacks, such as expensive re-training costs when dealing with new data and thus poor scalability for large-scale and real-world applications.

At the same time, these intelligent systems generate a practically infinite amount of large-scale data sets, many of which come as a continuous data stream, so-called streaming data.

Streaming data arrives as an endless sequence of samples (data points), which means that at any given time, the model must be able to adapt to the samples observed (so far) to predict/label new samples accurately. Such (streaming) models can never be seen as complete but must be updated continuously as newer samples arrive. Methods that recalculate the model from scratch on the arrival of new samples are impractical due to their high computational cost. Therefore we need procedures that effectively update the model as more samples arrive. This computational efficiency

should not be at the expense of accuracy; the model's accuracy should be close to that achieved if we built a model from scratch using all the samples [START_REF] Bottou | Large scale online learning[END_REF].

Stochastic algorithms have proven effective in overcoming the drawbacks of traditional (batch/offline) machine learning methods as they only use samples one by one without knowing their number in advance, especially the Stochastic Gradient (SG) method [START_REF] Robbins | A stochastic approximation method[END_REF]. These SG methods have proven scalable and robust in many areas ranging from smooth and strongly convex problems to complex non-convex ones, which makes them applicable in many large-scale machine learning tasks for realworld applications where data are large in size (and dimension) and arrive at a high velocity. Such first-order methods have been intensively studied in theory and practice in recent years [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF].

The classical analyses for SG methods typically require unbiased gradients drawn independently and identically distributed (i.i.d.) from some underlying (and unknown) data generation process [START_REF] Cesa-Bianchi | On the generalization ability of on-line learning algorithms[END_REF]. However, in practice, learning often happens with non-i.i.d. (and biased) data, e.g., network traffic, meteorological, financial time series, or other sensor data. We go beyond these standard assumptions by allowing dependent and biased gradients. SG methods can converge even when they only have access to biased gradients, but most analysis has been developed with specific applications in mind [4,[START_REF] Bertsekas | Nonlinear Programming[END_REF][START_REF] Aspremont | Smooth optimization with approximate gradient[END_REF][START_REF] Devolder | Stochastic first order methods in smooth convex optimization[END_REF][START_REF] Schmidt | Convergence rates of inexact proximal-gradient methods for convex optimization[END_REF]. Stochastic learning algorithms for non-i.i.d. data are not as well understood as for i.i.d. data; however, some researchers have examined the convergence of statistical learning algorithm in non-i.i.d. settings [3,[START_REF] Mohri | Stability bounds for stationary φ-mixing and β-mixing processes[END_REF][START_REF] Yu | Rates of convergence for empirical processes of stationary mixing sequences[END_REF].

Solving the problem of stochastic approximations using streaming SGs methods means we must approach the objective using the gradually arriving samples drawn according to some unknown dependent process. This leads to some new challenges, e.g., this endless stream of samples (may) changes at each step (and arrives sequentially), meaning that streaming SGs must be able to adapt to varying arrival speeds without compromising accuracy. We present and analyze streaming SGs that overcome these challenges and achieve convergence in various settings with long-and short-range dependence, biased gradient estimates, and changing data streams.

Contributions. In this paper, we investigate SG methods in a streaming framework [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF], where the data comes from a dependent stochastic process. We provide non-asymptotic analysis and quantify the magnitude of achievable convergence rates under various dependency structures (sometimes leading to divergence). Our framework covers many applications with dependence and biased gradients under weak gradient assumptions. Our results builds a connection between dependency, the level of convexity, and the achievable learning rate to obtain optimal convergence. Roughly speaking, SG methods can achieve convergence using increasing batch sizes, which counteract the long-range (and short-range) dependence. We show that biased SG methods converge, and that they can converge with the same accuracy as unbiased SG methods if the bias is not too large. More surprisingly, our results show a precise heuristic that can be used in practice to help increase the stability of SG methods.

Organization. Section 3.2 presents the streaming framework on which the non-asymptotic analysis relies; we introduce some key concepts, definitions, and assumptions. In particular, Section 3.2.2 contains the assumptions about dependency structures and gradients, with some examples of how these could be verified using mixing conditions. Our convergence results are presented in Section 3.3, with and without averaging (Sections 3.3.1 and 3.3.2). Each result is followed by a thorough discussion that relates to other work. All our convergence analysis depends on the assumptions in Section 3.2, and some additional conditions for the averaged case (Section 3.3.2). At last, experimentations of our findings are illustrated in Section 3.4, with some final remarks in Section 3.5.

Problem Formulation

We consider the Stochastic Optimization (SO) problem min θ∈Θ L(θ) = E t [l t (θ)], where Θ is a closed convex set in R d and l t : Θ → R is some differentiable random functions (possibly nonconvex), e.g, see Nesterov et al. [START_REF] Nesterov | Lectures on convex optimization[END_REF]. We solve the SO problem in a streaming framework, where a block l t = (l t,1 , . . . , l t,nt) of n t ∈ N random functions arrives at any given time t ∈ N. In solving the SO problem, we use the Stochastic Streaming Gradient (SSG) estimate proposed by Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF], given as

θ t = θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) , θ 0 ∈ Θ, (3.2.1)
where γ t is the learning rate satisfying the conditions ∞ i=1 γ i = ∞ and ∞ i=1 γ 2 i < ∞ [START_REF] Robbins | A stochastic approximation method[END_REF]. Note that if ∀t, n t = 1, SSG becomes the well-known SG method, which has attracted a lot of attention [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Hardt | Train faster, generalize better: Stability of stochastic gradient descent[END_REF][START_REF] Shalev-Shwartz | Pegasos: Primal estimated sub-gradient solver for svm[END_REF][START_REF] Xiao | Dual averaging method for regularized stochastic learning and online optimization[END_REF][START_REF] Zhang | Solving large scale linear prediction problems using stochastic gradient descent algorithms[END_REF]. Almost sure convergence of SO algorithms were shown in Pelletier [START_REF] Pelletier | On the almost sure asymptotic behaviour of stochastic algorithms[END_REF]. In many models, there may be constraints on the parameter space, which would require a projection of the parameters; therefore, we also introduce the Projected Stochastic Streaming Gradient (PSSG) estimate, defined by

θ t = P Θ θ t-1 - γ t n t nt i=1 ∇ θ l t,i (θ t-1) , θ 0 ∈ Θ, (3.2.2)
where P Θ denotes the Euclidean projection onto Θ, i.e., P Θ (θ) = arg min θ ′ ∈Θ ∥θ -θ ′ ∥ 2 . To shorten notation, we let ∇ θ l t (θ) = n -1 t nt i=1 ∇ θ l t,i (θ). An essential extension is the Polyak-Ruppert averaging [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF], which guarantees optimal statistical efficiency without jeopardizing the computational cost; the Averaged Stochastic Streaming Gradient (ASSG) is given by

θt = 1 N t t-1 i=0 n i+1 θ i , θ0 = 0, (3.2.3)
where N t = t i=1 n i is the accumulated sum of observations. Likewise, let PASSG denote the (Polyak-Ruppert) averaged estimate of PSSG (3.2.2).

Quasi-strong Convex Objectives

Following Gower et al. [START_REF] Gower | Sgd: General analysis and improved rates[END_REF], Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], we assume that L has a unique global minimizer θ * ∈ Θ such that ∇ θ L(θ *) = 0, and it is µ-quasi-strongly convex [START_REF] Karimi | Linear convergence of gradient and proximalgradient methods under the polyak-łojasiewicz condition[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF], i.e, there exists

µ > 0 such that ∀θ ∈ Θ, L(θ *) ≥ L(θ) + ⟨∇ θ L(θ), θ * -θ⟩ + µ 2 ∥θ * -θ∥ 2 . (3.2.4)
The µ-quasi-strongly convexity assumption is a non-strongly convex relaxation of the SO problem, which is more conservative than µ-strongly convexity. Relaxations of convexity is crucial in practice to ensure robustness and adaptiveness of the algorithms, e.g., for non-strongly convex SO, see Bach

p such that for all F t-1 -measurable θ ∈ Θ, E[∥E[∇ θ l t (θ)|F t-1] -∇ θ L(θ)∥ p] ≤ ν p t (D p ν E[∥θ -θ * ∥ p] + B p ν), (3.2.5)
for some positive sequence (ν t) t≥1 with D ν , B ν ≥ 0.

In the classical convergence analysis of SG methods, one assumes that the SGs are uniformly bounded. However, this assumption is too restrictive as it only may hold for some losses [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF][START_REF] Nguyen | Sgd and hogwild! convergence without the bounded gradients assumption[END_REF].

Instead, we follow the same ideas as in Gower et al. [START_REF] Gower | Sgd: General analysis and improved rates[END_REF], Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], to make the following assumption about the expected smoothness of the stochastic gradients (∇ θ l t).

Assumption 3.2.2-p (κ t -expected smoothness). There exists a positive integer p such that ∀θ,

θ ′ ∈ Θ, E[∥∇ θ l t (θ) -∇ θ l t (θ ′)∥ p] ≤ κ p t E[∥θ -θ ′ ∥ p]
E[∥E[∇ θ l t (θ)|F t-1] -∇ θ L(θ)∥ p] ≤ E[∥∇ θ l t (θ) -∇ θ L(θ)∥ p] = n -p t E[∥S t ∥ p], (3.2.6)
using Jensen's inequality, where

S t = nt i=1 (∇ θ l t,i (θ) -∇ θ L(θ)
) is a d-dimensional vector. Let (∇ θ l t,i) be a strictly stationary sequence and assume that there exists some r > p such that sup x>0 (x r Q(x))1/r < ∞, where Q(x) denotes the quantile function of ∥∇ θ l t,i ∥. Suppose that (∇ θ l t,i) is strongly α-mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], with strong mixing coefficients (α t) t≥1 satisfying α t = O(t -pr/(2r-2p)). Then by Rio [); this includes several linear, non-linear, and Markovian time series, e.g., see Bradley [START_REF] Bradley | Basic properties of strong mixing conditions. a survey and some open questions[END_REF], Doukhan [START_REF] Doukhan | Mixing: properties and examples[END_REF] for more examples, other mixing coefficients of weak dependence and the relations between them. In relation to the form of Assumption 3.2.1-p, this means that B ν ̸ = 0 in this case. However, having B ν = 0 is possible in well-specified examples, which we will see later in Section 3.4. Note that Assumptions 3.2.2-p and 3.2.3-p can be verified using α-mixing conditions by analogues arguments as for Assumption 3.2.1-p such that κ p t and

σ p t is O(n -p/2 t
).

Convergence Analysis

In this section, we consider the stochastic streaming estimates in (3.2.1) to (3.2.3) with streamingbatches (n t) arriving in non-decreasing streams. We aim to non-asymptotically bound

δ t = E[∥θ t - θ * ∥ 2] and δt = E[∥ θt -θ * ∥ 2]
, such that they only depend on the parameters of the problem.

Learning rate and function forms. Throughout this paper, we consider learning rates on the form γ t = C γ n β t t -α with C γ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streamingbatches n t . Obviously, (ν t), (κ t), and (σ t) may be considered as uncertain terms depending on the streaming-batch n t . Thus, let ν t = n -ν t , κ t = C κ n -κ t , and

σ t = C σ n -σ t with ν ∈ (0, ∞), κ, σ ∈ [0, 1/2],
and C κ , C σ > 0. Having, σ, κ ∈ [0, 1/2] follows directly from Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF], since σ = κ = 1/2 corresponds to the i.i.d. case 1 , whereas σ, κ < 1/2 allows noisier outputs. Similarly, v t = 0 corresponds to the classical i.i.d. setting. Having ν t = n -ν t means Assumption 3.2.1-p, allow so-called long-range dependence (also known as long memory or longrange persistence) when ν ∈ (0, 1/2) and short-range dependence when ν ∈ [1/2, ∞). Thus, the i.i.d. case is when ν → ∞.

For the sake of simplicity, we consider streaming-batches (n t) on the form C ρ t ρ with C ρ ∈ N and ρ ∈ [0, 1) such that n t ∈ N. This form of streaming-batches means that we are considering everything from vanilla SG and mini-batch SG methods, to more exotic learning designs, e.g., C ρ > 1 and ρ = 0 correspond to mini-batch SG of size C ρ . We will refer to C ρ as the streaming constant size and ρ as the streaming rate.

n t = C ρ t ρ with ρ ∈ [0, 1) and C ρ ∈ N, such that µ ν = µ -1 {ρ=0} 2D ν C -ν ρ > 0. For α -ρβ ∈ (1/2, 1), we have δ t ≤ π t + 2 2+6ρν 1+ρ B 2 ν µµ ν C 2ν 1+ρ ρ N 2ρν 1+ρ t + 2 7+6ρσ 1+ρ C 2 σ C γ µ ν C 2σ-β-α 1+ρ ρ N ρ(2σ-β)+α 1+ρ t , (3
δ t ≤ [1 -(µ -2D ν ν t)γ t + 2κ 2 t γ 2 t]δ t-1 + B 2 ν µ ν 2 t γ t + 2σ 2 t γ 2 t ,
for any γ t , ν t , κ t , σ t , and n t . This recursive relation can be explicitly upper bounded in a nonasymptotic way (by Proposition 3.6.1) using classical techniques from stochastic approximations [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]. As mentioned in Zinkevich [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF], bounding the projected estimate in (3.2.2) follows directly

from that E[∥P Θ (θ) -θ * ∥ 2] ≤ E[∥θ -θ * ∥ 2], ∀θ ∈ R d , ∀θ * ∈ Θ, as Θ is a closed convex set.
Related work. Theorem 3.3.1 replicate the results of the unbiased i.i.d. case (with B ν = 0 and κ = σ = 1/2) considered in Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]. Our findings also reproduce the results of Moulines and Bach [START_REF] Moulines | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF], where they considered the unbiased i.i.d. case (under slightly different assumptions) using the vanilla SG method, namely, when C ρ = 1 and ρ = 0. Moreover, if the function L has C ∇ -Lipschitz continuous gradients2 , then (3.3.7) implies the bound on the objective function values of L, E[L(θ t) -L(θ *)] ≤ C ∇ δ t /2 by Cauchy-Schwarz's inequality.

Decay of the initial conditions. The initial conditions that π t contains will be forgotten subexponentially fast, since π t = O(exp(-N

(1+ρβ-α)/(1+ρ) t)) as long as µ ν = µ -1 {ρ=0} 2D ν C -ν ρ > 0.
Note that the positivity of the dependence penalised convexity constant µ ν is essential in all terms of (3.3.7). Having µ ν > 0 depends solely on the level of dependence D ν but it is scaled by C -ν ρ , meaning if D ν is so large that µ ν is no longer positive, then we should take C ρ large enough such that µ ν becomes positive again; this is illustrated in Sections 3.) when α = 2/3, β = 1/3, and σ = 1/2. In addition, the noise term is positively affected by large streaming constants C ρ when α + β < 2σ, which will be expressed as a variance reduction, e.g., see Section 3.4. In unbiased cases (B ν = 0) the noise term would also be the asymptotic term.

Behavior for B ν . The second term of (3.3.7) can be seen as an dependency term as it is determined solely by the level of dependence ν, the bias error B ν , and the convexity constant µ ν ; It is remarkable that the dependence term is unconnected from the choice of the learning rate (γ t) but instead by the streaming rate through C ρ and ρ. The dependence term decay with

O(N -2ρν/(1+ρ) t
) which requires ρ positive to decay since ν ∈ (0, ∞), e.g., to obtain O(N -1/2 t) we would need ρ = 1 and ν = 1/2. It is surprising that Theorem 3.3.1 allows both long-range and short-range dependence. Indeed, long-range dependence leads to slow convergence (slower

than O(N -1/2 t
)) but it will still converge. Obviously, this only matters if

B ν ̸ = 0. Overall, δ t = O(max{1 {Bν ̸ =0} N -2ρν/(1+ρ) t , N -(ρ(2σ-β)+α)/(1+ρ) t }).

Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate θn given in (3.2.3) with (θ t) following the SSG estimate in (3.2.1) or the PSSG estimate in (3.2.2). Some additional assumptions is needed for bounding the rest terms of the averaging estimate: let the function L have C ∇ -Lipschitz continuous gradients, i.e., there exists a constant

C ∇ > 0, ∀θ, θ ′ ∈ Θ ⊆ R d , ∥∇ θ L(θ) -∇ θ L(θ ′)∥ ≤ C ∇ ∥θ -θ ′ ∥. (3.3.8)
As discussed in Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF], this assumption ensures that ∇ θ L does not vary arbitrarily, making the gradient ∇ θ L a useful indicator on how to decrease L. Next, assume that the Hessian of L is C ′ ∇ -Lipschitz-continuous, that is, there exists

C ′ ∇ > 0 such that ∀θ, θ ′ ∈ Θ ⊆ R d , ∥∇ 2 θ L(θ) -∇ 2 θ L(θ ′)∥ ≤ C ′ ∇ ∥θ -θ ′ ∥. (3.3.9)
Note that (3.3.8) and (3.3.9) only needs to hold true for θ ′ = θ * . Moreover, in continuation of Assumption 3.2.3-p with σ t = C σ n -σ t for σ ∈ [0, 1/2], we make the following assumption:

Assumption 3.3.1.
There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1, we have

n 2σ t E[∇ θ l t (θ *)∇ θ l t (θ *) ⊤] ⪯ Σ + Σ t , where Σ t is a positive symmetric matrix with Tr(Σ t) = C ′ σ n -2σ ′ t , C ′ σ ≥ 0, and σ ′ ∈ (0, 1/2].
Remark that in the unbiased case, such as in Section 3.4.1, Assumption 3.3.1 is verified with σ = 1/2 and C ′ σ = 0 [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]. The short-range dependence cases is when σ = 1/2, as in Section 3.4.1, whereas, the long-range dependence case is for σ < 1/2. Moreover, Assumption 3.3.1 allows us to obtain leading term Λ/N t with Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1), which attains the Cramer-Rao bound; we will see this in Theorem 3.3.2.

To consider the averaging estimate θn given in (3.2.3), an additional assumption is needed in order to avoid calculating the six-order moment: we make the unnecessary assumption that (∇ θ l t) is uniformly bounded; the derivation of the six-order moment can be found in Godichon-Baggioni [START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF]. reduction effect from having C ρ large (e.g., see discussion after Theorem 3.3.1). Thus, there is a trade-off between accelerating the convergence by taking β = 2σ/3 > 0 or taking β = 0 to favor from variance reduction. In practice, an immediate choice would be to take β = 0, but if the data or model contains a low amount of noise, it can be advantageous to raise β to improve convergence [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF].

Next, the decay of the second term in (3.3.11) is tricky to interpret in a simple manner as it is a mixture of the learning rate, streaming rate, dependence, and bias. Nevertheless, some observations can be made: first, having β = 0 is beneficial for the decay rate δ in all cases. Second, increasing streaming rate ρ would also increase the decay.

Behavior for B ν . The influence of B ν is exclusively contained in Ψ t , with the exception of the second term of (3.3.11). Also, increasing ρ will always diminish the bad influence of this bias term. Surprisingly, Ψ t → 0 as t → ∞ for any ν, but long-range dependence is excluded if we wish to obtain the desired rate of δt = O(N -1). However, it does not seem to have any major influence in our experiments, e.g., see Section 3.4. To conclude, by taking ρ positive and C ρ large enough to ensure that µ ν stays positive, then we will converge under long-or short-range dependence with biased gradient estimates.

Experiments

A way to illustrate our findings is by use of classical time-series methods that aims to construct models for time-series analysis, modeling, and prediction of the underlying sequences of real-valued signals (X t). These methods have been successfully used in a wide range of applications such as statistics, econometrics, and signal processing because of their ability to describe or predict time-varying (dependent) processes, e.g., the AutoRegressive (AR), Moving-Average (MA), and AutoRegressive Moving-Average (ARMA) models are the most well-known models for time-series [START_REF] Box | Time series analysis: forecasting and control[END_REF][START_REF] Brockwell | Time series: theory and methods[END_REF][START_REF] Hamilton | Time series analysis[END_REF]. The standard time-series analysis often relies on independence and constant noise, but it can be relaxed by, e.g., the AutoRegressive Conditional Heteroskedasticity (ARCH) model [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF].

Online learning algorithms of (both stationary and non-stationary) dependent time-series have been studied in Agarwal and Duchi [3], Anava et al. [START_REF] Anava | Online learning for time series prediction[END_REF], Wintenberger [START_REF] Wintenberger | Stochastic online convex optimization; application to probabilistic time series forecasting[END_REF].

Our experiment measures the performance by the quadratic mean error E[∥θ Nt -θ * ∥ 2] over one thousand replications with θ 0 and θ * drawn randomly according to the models' specifications.

It should be noted that averaging over several replications gives a reduction in variability, that mainly benefits the SSG. The experiments will demonstrate how the choice of C ρ and ρ affects the dependence D ν , bias B ν , and the (dependence) penalised convexity constant µ ν . To compare different data streams n t = C ρ t ρ through the selection of C ρ and ρ, we fix the following parameters: C γ = 1, α = 2/3, and β = 0.

AutoRegressive (AR) Model

A process (X t) is called a (zero-mean) AR(1) process, if there exists real-valued parameter θ such that X t = θX t-1 + ϵ t , where (ϵ t) is some noise process with zero mean and noise σ ϵ . To illustrate the versatility of our results, we construct some noisy (heavy-tailed) data with long-range dependence: the noisiness is integrated using a Student's t-distribution with degrees of freedom above four, denoted by (z t). The long-range dependence is incorporated by multiplying (z t) with the fractional Gaussian noise G t (H) = B t+1 (H) -B t (H), where (B t (H)) is a fractional Brownian motion with Hurst index H ∈ (0, 1). (B t (H)) can also be seen as a (zero-mean) Gaussian process with stationary and self-similar increments. Thus, let the AR(1) process X t be constructed using the noise process ϵ t = G t (3/4)z t , where a Hurst index of

H = 3/4 corresponds to ν 2 t , κ 2 t , σ 2 t is O(n -1/2 t) and ν 4 t , κ 4 t , σ 4 t is O(n -3/4 t
) in Assumptions 3.2.1-p to 3.2.3-p and 3.3.1.

AutoRegressive (AR) Model

Consider the example, in which, we estimate an AR(1) model X t = θX t-1 + ϵ t from the underlying stationary AR(1) process X t = θ * X t-1 +ϵ t with |θ * | < 1. We omit to project our estimates as this will hide the dependence coming from D ν , which is what we wish to explore. For constant streamingbatch sizes of one, the squared loss is l t (θ) = (X t -θX t-1) 2 with ∇ θ l t (θ) = -2X t-1 (X t -θX t-1).

This gives a mean squared loss

L(θ) = E t [l t (θ)] = E[(X t -θX t-1) 2] = E[(θ * X t-1 + ϵ t -θX t-1) 2] = (θ * -θ) 2 E[X 2 t-1] + σ 2 ϵ , with ∇ θ L(θ) = -2(θ * -θ)E[X 2 t-1]. Thus, Assumption 3.2.1-p (for p = 2 with σ(X t-1) ⊆ F t-1) yields E[∥E[∇ θ l t (θ)|F t-1] -∇ θ L(θ)∥ 2] =E[(E[2X t-1 (θX t-1 -X t)|F t-1] -2(θ -θ *)E[X 2 t-1]) 2] =4(θ -θ *) 2 E[(X 2 t-1 -E[X 2 t-1]) 2],
meaning that Assumption 3.2.1-p is fulfilled if X t has bounded moments of order p. Moreover, from this we can directly deduce that B ν = 0. Likewise, the remaining assumptions can be verified, in particular Assumption 3.3.1 is satisfied with Σ t = 0.

AutoRegressive (AR) Model: misspecified case

Next, assume that the underlying data generating process follows the MA(1)-process, X t = ϕϵ t-1 + ϵ t , with ϕ ∈ R. The misspecification error of fitting an AR(1) model to a MA(1) process can be found by minimizing L(θ),

θ * = arg min θ E[(X t -θX t-1) 2] = arg min θ E[(ϵ t + ϕϵ t-1 -θ(ϵ t-1 + ϕϵ t-2)) 2] = arg min θ E[(ϵ t + (ϕ -θ)ϵ t-1 -θϕϵ t-2) 2] = arg min θ σ 2 ϵ + (ϕ -θ) 2 σ 2 ϵ + θ 2 ϕ 2 σ 2 ϵ ≡ arg min θ (ϕ -θ) 2 + θ 2 ϕ 2 = arg min θ L(θ),
where

L(θ) = (ϕ-θ) 2 +θ 2 ϕ 2 is a strictly convex function in θ. Thus, ∇ θ L(θ) = 0 ⇔ 2(θ-ϕ)+2θϕ 2 = 0 ⇔ 2θ(1 + ϕ 2) = 2ϕ ⇔ θ = ϕ/(1 + ϕ 2), meaning for ϕ ∈ R we have θ ∈ (-1/2, 1/2).
With this in mind, we can conduct our study of fitting an AR(1) model to the MA(1) process with ϕ drawn randomly from R.

AutoRegressive Conditional Heteroskedasticity (ARCH) Model

A key element of time series analysis is modeling heteroscedasticity of the conditional variance, e.g., volatility clustering in financial time series. AutoRegressive Conditional Heteroscedasticity (ARCH) models are some of the most well-known models that incorporate this feature. A process (ϵ t) is called an ARCH(1) process with parameters α 0 and α 1 if it satisfies

   ϵ t = σ t z t , σ 2 t = α 0 + α 1 ϵ 2 t-1 , (3.4.12)
where α 0 > 0 and α 1 ≥ 0 ensures the non-negativity of the conditional variance process (σ 2 t), and the innovations (z t) is white noise. The ARCH process parameters are known to be challenging to estimate in empirical applications as the optimization algorithms can quickly fail or converge to irregular solutions. Therefore, projecting the estimates is vital for the optimization procedure.

A well-discussed problem for the ARCH models is that small values of α 0 are tricky to estimate.

Stabilizing the estimation of α 0 would not only improve the α 0 estimate but also have a positive impact on the other model parameters. One way to deal with small values of α 0 is by the using the models homogeneity, i.e., scaling an ARCH process (X t) with parameters (α 0 , α 1) gives us an ARCH process (√ λX t) with parameters (λα 0 , α 1) with same innovations. To simplify our analysis we consider a stationary ARCH(1) model, where we fix α 0 at 1 and initialize it at 1/2. We employ the quasi-maximum likelihood procedure for the statistical inference as outlined in Werge and Wintenberger [START_REF] Werge | Adavol: An adaptive recursive volatility prediction method[END_REF]; the quasi likelihood losses is given by l t (θ) = 2 -1 (X 2 t /σ 2 t (θ) + log(σ 2 t (θ)) with first-order derivative

∇ θ l t (θ) = ∇ θ σ 2 t (θ) σ 2 t (θ) -X 2 t 2σ 4 t (θ)
where ∇ θ σ 2 t (θ) = (1, X 2 t-1) T . Observe that the loss function (l t) itself is not strongly convex but only the objective function L may be strongly convex; convexity conditions of ARCH was investigated in Wintenberger [START_REF] Wintenberger | Stochastic online convex optimization; application to probabilistic time series forecasting[END_REF]. There are different ways to overcome lack of convexity: first, projecting the estimates such that the (conditional) variance process (σ 2 t) stays away from zero (and close to the unconditional variance). Second, in the specific example of ARCH model, one could also recover convexity by implementing variance targeting techniques; an example using Generalized ARCH (GARCH) models can be found in Werge and Wintenberger [START_REF] Werge | Adavol: An adaptive recursive volatility prediction method[END_REF].

AutoRegressive (AR)-AutoRegressive Conditional Heteroskedasticity (ARCH) Model

We complete our experiments by considering an AR models with ARCH noise: the process (X t) is called an AR(1)-ARCH(1) process with parameters θ, α 0 and α 1 if it satisfies

         X t = θX t-1 + ϵ t , ϵ t = σ t z t , σ 2 t = α 0 + α 1 ϵ 2 t-1 . (3.4.13)
where the innovations (z t) is white noise. The statistical inference of this model is done using the squared loss for the AR-part and the QMLE for the ARCH part, e.g., see Sections 3.4.1 and 3.4.2.

Discussion of Experiments

The experiments described earlier in Sections 3 First consider the AR illustration in Figures 3.1a and 3.1b: each pair of data streams converges, but it is clear that the traditional SG method experiences a large amount of noise initially, particularly affecting the average estimate period but not its decay rate. 3 Both methods show a noticeable reduction in variance when C ρ increases, which is particularly beneficial in the beginning.

Nevertheless, too large streaming batch sizes C ρ may hinder the convergence as this leads to too few iterations. Moreover, Figures 3.1a and 3.1b indicates improving decay for SSG when increasing the streaming rate ρ. Conversely, ASSG does not see improvements in the same way, as we do not exploit the potential of using multiple observations through the β parameter, which could accelerate convergence, e.g., see Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF] for a discussion in the (unbiased) i.i.d. case. It is surprising that we do not see any effect from Σ t in Assumption 3.3.1, but this seems to be an artifact effect in the proof as we need fourth-order moments.

In Figures 3.1c and 3.1d, we have the experiments for the stationary ARCH(1) models, with and without the AR-part, respectively, as outlined in Sections 3.4.2 and 3.4.3. These figures illustrate the lack of convexity when using small streaming batch sizes, e.g., the traditional SG method and its average estimate, {C ρ = 1, ρ = 0} diverges. Remark that the lack of convexity is expressed through the lack positively of µ ν , which only larger streaming batch sizes C ρ can counteract. Moreover, the traditional SG method, {C ρ = 1, ρ = 0} is omitted in Figure 3.1d due to lack of convexity.

Figure 3.1d shows that large (C ρ = 64) and non-decreasing (ρ ≥ 0) streaming batches can converge under difficult settings. To conclude, by taking ρ positive and C ρ large enough to ensure that µ ν stays positive, then we will converge under long-or short-range dependence with biased gradient estimates.

Conclusion

We studied the SO problem in a streaming framework using dependent and biased (gradient)

estimates. In particular, we explored convergence rates of the SSG and ASSG algorithms in a nonasymptotic manner. The theoretical results formed heuristics that links the level of dependency and convexity to the rest of the model parameters. These heuristics provided new insights into determining optimal learning rates, which can help increase the stability of SG-based methods.

In short, by taking positive increasing streaming batches, we will converge under long-or shortrange dependence with biased gradient estimates. Our experimentation verified these investigations suggesting large streaming batches for highly dependent data sources. Moreover, in large-scale learning problems with dependence, noisy variables, and lack of convexity, we know how to accelerate convergence and reduce noise through the learning rate and the treatment pattern of the data.

There are several ways to expand our work: first, we can extend our analysis to include streaming batches of any size (not in terms of streaming batch size and streaming rates). Second, an extension to non-strongly convex goals could be beneficial as it will provide more insight into how we can choose robust learning rates [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF]. At the same time, this learning rate could be made adaptive such that it is robust to poor initialization and requires less fine-tuning. This last objective is the most important for practitioners as it builds a universality across applications.

Proofs

Let us start by giving a short sketch of how our proofs section is structured: we start by deriving recursive relations to the desired quantities. Next, we derive a general bounds to the recursive relationship for any (γ t), (ν t), (κ t), (σ t), and (n t). Finally, we insert the specific functions forms of (γ t), (ν t), (κ t), (σ t), and (n t), which yield the results seen in Theorems 3.3.1 and 3.3.2.

Before doing the proofs, we recall a repeating argument used to non-asymptotically bound recursive relations of form (3.6.14):

Proposition 3.6.1 (Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF]). Suppose (ω t), (α t), (η t), and (β t) to be some non-negative sequences satisfying the recursive relation,

ω t ≤ [1 -2λα t + η t α t]ω t-1 + β t α t , (3
with τ t = exp   -λ t i=t/2 α i     exp C ω t i=1 η i α i ω 0 + 1 λ max 1≤i≤t β i + t/2-1 i=1 β i α i   .
Proposition 3.6.1 shows a simple way to bound (ω t) in (3.6.14); the bound in (3.6.15) consists of a sub-exponential term τ t and a noise term λ -1 max t/2≤i≤t β i . Thus, our attention is on reducing the noise term without damaging the natural decay of the sub-exponential term where τ t → 0 exponentially fast as t → ∞.

Later in the proofs, we will insert some specific types of the sequences above, resulting in different generalized harmonic numbers, which can be bounded with the integral test for convergence.

Moreover, to present our results in terms of N t = t i=1 n i , we will use that 1+ρ) . To ease notation, we will make use of the functions ψ x (t), ψ y x (t) : R + \ {0} → R, given as

(N t /2C ρ) 1/(1+ρ) ≤ t ≤ (2N t /C ρ) 1/(
ψ x (t) =          t 1-x /(1 -x) if x < 1, 1 + log(t) if x = 1, x/(x -1) if x > 1,
and

ψ y x (t) =          t (1-x)/(1+y) /(1 -x) if x < 1, 1 + log(t 1/(1+y)) if x = 1, x/(x -1) if x > 1, (3.6.16)
with y ∈ R + such that ψ y x (t) = ψ x (t 1/(1+y)). Thus, t i=1 i -x ≤ ψ x (t) for any x ≥ 0. Furthermore, with this notation, we have that ψ y x (t

)/t = O(t -(x+y)/(1+y)) if x < 1, ψ y x (t)/t = O(log(t)t -1) if x = 1, and ψ y x (t)/t = O(t -1) if x > 1.
Hence, for any x 0 , x 1 , x 2 , y ≥ 0, ψ y x 0 (t)/t = Õ(t -(x 0 +y)/(1+y)) and ψ y x 1 (t)ψ y x 2 (t)/t = Õ(t -(x 1 +x 2 +y-1)/(1+y)), where the Õ(•) notation suppress logarithmic factors.

3.6.1 Proofs for Section 3.3.1

In the following lemma, we derive an explicit recursive relation of

δ t = E[∥θ t -θ * ∥ 2] to non-
asymptotically bound the t-th estimate of (3.2.1) for any (γ t), (ν t), (κ t), (σ t), and (n t) using classical techniques from stochastic approximations [START_REF] Benveniste | Adaptive algorithms and stochastic approximations[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms and Applications[END_REF]. As mentioned in Zinkevich [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF], bounding the

projected estimate in (3.2.2) follows directly from that E[∥P Θ (θ) -θ * ∥ 2] ≤ E[∥θ -θ * ∥ 2], ∀θ ∈ R d , ∀θ * ∈ Θ, as Θ is a closed convex set.
Lemma 3.6.1 (Second-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for

p = 2. Suppose that µ ν = µ -1 {νt=C} 2D ν ν t > 0. Let 1 {νt=C} and 1 {νt¬C} indicate whether (ν t) is constant or not. Denote δ t = E[∥θ t -θ * ∥ 2]
for some δ 0 ≥ 0, where (θ t) follows the recursion in

δ t ≤ π t + 2B 2 ν µµ ν max t/2≤i≤t ν 2 i + 4 µ ν max t/2≤i≤t σ 2 i γ i , with π t = exp   - µ ν 2 t i=t/2 γ i   exp 1 {νt¬C} 2C δ D ν t i=1 ν i γ i exp 2C δ t i=1 κ 2 i γ 2 i δ 0 + 2B 2 ν µµ ν max 1≤i≤t ν 2 i + 4 µ ν max 1≤i≤t σ 2 i γ i + B 2 ν µ t/2-1 i=1 ν 2 i γ i + 2 t/2-1 i=1 σ 2 i γ 2 i   .
Proof of Lemma 3.6.1. By taking the quadratic norm on (3.2.1), expanding the norm, and taking the expectation, we can derive the equation,

δ t = δ t-1 + γ 2 t E[∥∇ θ l t (θ t-1)∥ 2] -2γ t E[⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩], (3.6.17)
where

δ t = E[∥θ t -θ * ∥ 2] with δ 0 ≥ 0.
To bound the second term in (3.6.17), we use Assumptions 3.2.2-p and 3.2.3-p for p = 2, to obtain that

E[∥∇ θ l t (θ t-1)∥ 2] =E[∥∇ θ l t (θ t-1) -∇ θ l t (θ *) + ∇ θ l t (θ *)∥ 2] ≤2E[∥∇ θ l t (θ t-1) -∇ θ l t (θ *)∥ 2] + 2E[∥∇ θ l t (θ *)∥ 2] ≤2κ 2 t δ t-1 + 2σ 2 t , (3.6.18)
as ∥x + y∥ p ≤ 2 p-1 (∥x∥ p + ∥y∥ p). As noted in Bottou et al. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF], Nesterov et al. [START_REF] Nesterov | Lectures on convex optimization[END_REF], (3.2.4) implies

that ⟨∇ θ L(θ), θ -θ * ⟩ ≥ µ∥θ -θ * ∥ 2 for all θ ∈ Θ ⊆ R d . Next, since L is µ-strongly convex (3.2.4)
and θ t-1 is F t-1 -measurable (Assumption 3.2.1-p), we can bound the third term on the right-hand side of (3.6.17) by

E[⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩] =E[⟨∇ θ L(θ t-1), θ t-1 -θ * ⟩] + E[⟨E[∇ θ l t (θ t-1)|F t-1] -∇ θ L(θ t-1), θ t-1 -θ * ⟩] ≥µδ t-1 -D ν ν t δ t-1 -B ν ν t δ 1/2 t-1 , (3.6.19)
since

E[⟨E[∇ θ l t (θ t-1)|F t-1] -∇ θ L(θ t-1), θ t-1 -θ * ⟩] ≥ -E[∥E[∇ θ l t (θ t-1)|F t-1] -∇ θ L(θ t-1)∥∥θ t-1 -θ * ∥] ≥ -E[∥E[∇ θ l t (θ t-1)|F t-1] -∇ θ L(θ t-1)∥ 2] E[∥θ t-1 -θ * ∥ 2] ≥ -ν 2 t (D 2 ν δ t-1 + B 2 ν) δ t-1 ≥ -D ν ν t δ t-1 -B ν ν t δ t-1 ,
by Jensen's inequality, Cauchy-Schwarz inequality, Hölder's inequality, and Assumption 3.2.1-p with µ ν = µ -1 {ρ=0} 2D ν C -ν ρ > 0, and π t can be bounded by

exp   - µ ν C γ C β ρ 2 t i=t/2 i ρβ-α   exp 1 {ρ̸ =0} 2C δ D ν C γ C β ρ C ν ρ t i=1 i ρ(β-ν)-α exp 2C δ C 2 κ C 2 γ C 2β ρ C 2κ ρ t i=1 i 2ρ(β-κ)-2α δ 0 + 2B 2 ν µµ ν C 2ν ρ + 4C 2 σ C γ C β ρ µ ν C 2σ ρ + B 2 ν C γ C β ρ µC 2ν ρ t/2-1 i=1 i ρ(β-2ν)-α + 2C 2 σ C 2 γ C 2β ρ C 2σ ρ t/2-1 i=1 i 2ρ(β-σ)-2α   ≤ exp - µ ν C γ C β ρ t 1+ρβ-α 2 2 exp 1 {ρ̸ =0} 2C δ D ν C γ C β ρ ψ α-ρ(β-ν) (t) C ν ρ exp 4(α -ρ(β -κ))C δ C 2 κ C 2 γ C 2β ρ (2α -2ρ(β -κ) -1)C 2κ ρ δ 0 + 2B 2 ν µµ ν C 2ν ρ + 4C 2 σ C γ C β ρ µ ν C 2σ ρ + B 2 ν C γ C β ρ ψ α-ρ(β-2ν) (t/2) µC 2ν ρ + 4(α -ρ(β -σ))C 2 σ C 2 γ C 2β ρ (2α -2ρ(β -σ) -1)C 2σ ρ ≤ exp - µC γ N (1+ρβ-α)/(1+ρ) t 2 (3+ρ(2+β)-α)/(1+ρ) C (1-β-α)/(1+ρ) ρ   exp   1 {ρ̸ =0} 2C δ D ν C γ C β ρ ψ ρ α-ρ(β-ν) (2N t /C ρ) C ν ρ   exp 4(α -ρ(β -κ))C δ C 2 κ C 2 γ C 2β ρ (2α -2ρ(β -κ) -1)C 2κ ρ δ 0 + 2B 2 ν µµ ν C 2ν ρ + 4C 2 σ C γ C β ρ µ ν C 2σ ρ + B 2 ν C γ C β ρ ψ ρ α-ρ(β-2ν) (N t /C ρ) µC 2ν ρ + 4(α -ρ(β -σ))C 2 σ C 2 γ C 2β ρ (2α -2ρ(β -σ) -1)C 2σ ρ   , (3.6.22)
with help of an integral test for convergence5 , ψ x (t) and ψ y x (t) from (3.6.16), and by use of

(N t /2C ρ) 1/(1+ρ) ≤ t ≤ (2N t /C ρ) 1/(1+ρ) .

Proofs for Section 3.3.2

As in Section 3.6.1, we begin the following sections by conducting a general study for any (γ t), (ν t), (κ t), (σ t), and (n t), when applying the Polyak-Ruppert averaging estimate (θt) from (3.2.3). Moreover, we need to study fourth-order rate ∆ t = E[∥θ t -θ * ∥ 4] of the recursive estimates (3.2.1) and (3.2.2). Lemma 3.6.2 (Fourth-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for

p = 4. Suppose that µ ′ ν = µ -1 {νt=C} 2D 4 ν ν 4 t /µ 3 > 0. Let 1 {νt=C} and 1 {νt¬C} indicate whether (ν t) is constant or not. Denote ∆ t = E[∥θ t -θ * ∥ 4]
for some ∆ 0 ≥ 0, where (θ t) follows the recursion in

∆ t ≤Π t + 4B 4 ν µ 3 µ ′ ν max t/2≤i≤t ν 4 i + 1024 µµ ′ ν max t/2≤i≤t σ 4 i γ 2 i + 96 µ ′ ν max t/2≤i≤t σ 4 i γ 3 i , with Π t = exp   - µ ′ ν 4 t i=t/2 γ i   exp 1 {νt¬C} C ∆ D 4 ν µ 3 t i=1 ν 4 i γ i exp 256C ∆ µ t i=1 κ 4 i γ 3 i exp 24C ∆ t i=1 κ 4 i γ 4 i ∆ 0 + 4B 4 ν µ 3 µ ′ ν max 1≤i≤t ν 4 i + 1024 µµ ′ ν max 1≤i≤t σ 4 i γ 2 i + 96 µ ′ ν max 1≤i≤t σ 4 i γ 3 i + B 4 ν µ 3 t/2-1 i=1 ν 4 i γ i + 256 µ t/2-1 i=1 σ 4 i γ 3 i + 24 t/2-1 i=1 σ 4 i γ 4 i   .
Proof of Lemma 3.6.2. The derivation of the recursive step sequence for the fourth-order moment ∆ t of (3.2.1) follows the same methodology as for the second-order moment in Lemma 3.6.1. In the same way we deduced (3.6.17), we can take the quadratic norm on (3.2.1), expand the norm, and take the square on both sides, to derive the equation

∥θ t -θ * ∥ 4 =(∥θ t-1 -θ * ∥ 2 + γ 2 t ∥∇ θ l t (θ t-1)∥ 2 -2γ t ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩) 2 =∥θ t-1 -θ * ∥ 4 + γ 4 t ∥∇ θ l t (θ t-1)∥ 4 + 4γ 2 t ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩ 2 + 2γ 2 t ∥θ t-1 -θ * ∥ 2 ∥∇ θ l t (θ t-1)∥ 2 -4γ t ∥θ t-1 -θ * ∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩ -4γ 3 t ∥∇ θ l t (θ t-1)∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩.
Taking the expectation on both sides of the equality above gives us

∆ t =∆ t-1 + γ 4 t E[∥∇ θ l t (θ t-1)∥ 4] + 4γ 2 t E[⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩ 2] + 2γ 2 t E[∥θ t-1 -θ * ∥ 2 ∥∇ θ l t (θ t-1)∥ 2] -4γ t E[∥θ t-1 -θ * ∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩] -4γ 3 t E[∥∇ θ l t (θ t-1)∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩] ≤∆ t-1 + γ 4 t E[∥∇ θ l t (θ t-1)∥ 4] + 6γ 2 t E[∥θ t-1 -θ * ∥ 2 ∥∇ θ l t (θ t-1)∥ 2] -4γ t E[∥θ t-1 -θ * ∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩] + 4γ 3 t E[∥θ t-1 -θ * ∥∥∇ θ l t (θ t-1)∥ 3],
by use of Cauchy-Schwarz inequality. Next, Young's inequality yields 4γ 3

t ∥θ t-1 -θ * ∥∥∇ θ l t (θ t-1)∥ 3 ≤ 2γ 4 t ∥∇ θ l t (θ t-1)∥ 4 +2γ 2 t ∥θ t-1 -θ * ∥ 2 ∥∇ θ l t (θ t-1)∥ 2 and 8γ 2 t ∥θ t-1 -θ * ∥ 2 ∥∇ θ l t (θ t-1)∥ 2 ≤ (µγ t /2)∥θ t-1 - θ * ∥ 4 + 32µ -1 γ 3 t ∥∇ θ l t (θ t-1)∥ 4
, which helps us to obtain the simplified expression,

∆ t ≤[1 + µγ t /2]∆ t-1 + 3γ 4 t E[∥∇ θ l t (θ t-1)∥ 4] + 32µ -1 γ 3 t E[∥∇ θ l t (θ t-1)∥ 4] -4γ t E[∥θ t-1 -θ * ∥ 2 ⟨∇ θ l t (θ t-1), θ t-1 -θ * ⟩].
To bound the fourth-order term E[∥∇ θ l t (θ t-1)∥ 4], we make use of the Lipschitz continuity of ∇ θ l t (Assumption 3.2.2-p), Assumption 3.2.3-p, and that θ t-1 is F t-1 -measurable (Assumption 3.2.1-p), ∆ t . Corollary 3.6.1 (Fourth-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for p = 4.

Let γ t = C γ n β t t -α , ν t = n -ν t , κ t = C κ n -κ t , and σ t = C σ n -σ t with ν ∈ (0, ∞), β ∈ [0, 1], κ, σ ∈ [0, 1/2], and C γ , C κ , C σ > 0. Suppose n t = C ρ t ρ with ρ ∈ [0, 1) and C ρ ∈ N, such that µ ′ ν = µ -1 {ρ=0} 2D 4 ν /µ 3 C 4ν ρ > 0. Denote ∆ t = E[∥θ t -θ * ∥ 4]
for some ∆ 0 ≥ 0, where (θ t) follows the recursion in (3.2.1) or (3.2.2). For α -ρβ ∈ (1/2, 1), we have

∆ t ≤ Π t + 2 2+4ρν B 4 ν µ 3 µ ′ ν C 4ν ρ t 4ρν + 2 2ρ(2σ-β)+2α (2 10 µ -1 + 2 7 C γ C β ρ)C 4 σ C 2 γ C 2β ρ µ ′ ν C 4σ ρ t 2ρ(2σ-β)+2α , (3.6.26)
with Π t given in (3.6.27) such that

Π t = O(exp(-N (1+ρβ-α)/(1+ρ) t
)).

Proof of Corollary 3.6.1. Inserting the functions

γ t = C γ n β t t -α , ν t = n -ν t , κ t = C κ n -κ t , σ t = C σ n -σ
t , and n t = C ρ t ρ into the bound of Lemma 3.6.2 and using

γ 3 t ≤ C γ C β ρ γ 2 t as α -ρβ ∈ (1/2, 1), yields (3.6.26) with µ ′ ν = µ -1 {ρ=0} 2D 4 ν /µ 3 C 4ν ρ > 0,
where Π t can be bounded as follows,

exp   - µ ′ ν C γ C β ρ 4 t i=t/2 i ρβ-α   exp 1 {ρ̸ =0} C ∆ D 4 ν C γ C β ρ µ 3 C 4ν ρ t i=1 i ρ(β-4ν)-α exp 2 8 C ∆ C 4 κ C 3 γ C 3β ρ µC 4κ ρ t i=1 i ρ(3β-4κ)-3α exp 24C ∆ C 4 κ C 4 γ C 4β ρ C 4κ ρ t i=1 i 4ρ(β-κ)-4α ∆ 0 + 4B 4 ν µ 3 µ ′ ν C 4ν ρ + 1024C 4 σ C 2 γ C 2β ρ µµ ′ ν C 4σ ρ + 96C 4 σ C 3 γ C 3β ρ µ ′ ν C 4σ ρ + B 4 ν C γ C β ρ µ 3 C 4ν ρ t/2-1 i=1 i ρ(β-4ν)-α + 256C 4 σ C 3 γ C 3β ρ µC 4σ ρ t/2-1 i=1 i ρ(3β-4σ)-3α + 24C 4 σ C 4 γ C 4β ρ C 4σ ρ t/2-1 i=1 i 4ρ(β-σ)-4α   ≤ exp - µ ′ ν C γ C β ρ t 1+ρβ-α 2 3 exp 1 {ρ̸ =0} C ∆ D 4 ν C γ C β ρ ψ 0 α-ρ(β-4ν) (t) µ 3 C 4ν ρ exp 2 10 C ∆ C 4 κ C 3 γ C 3β ρ µC 4κ ρ exp 2 6 C ∆ C 4 κ C 4 γ C 4β ρ C 4κ ρ ∆ 0 + 2 2 B 4 ν µ 3 µ ′ ν C 4ν ρ + 2 10 C 4 σ C 2 γ C 2β ρ µµ ′ ν C 4σ ρ + 2 7 C 4 σ C 3 γ C 3β ρ µ ′ ν C 4σ ρ + B 4 ν C γ C β ρ ψ 0 α-ρ(β-4ν) (t/2) µ 3 C 4ν ρ + 2 10 C 4 σ C 3 γ C 3β ρ µC 4σ ρ + 2 6 C 4 σ C 4 γ C 4β ρ C 4σ ρ , (3.6.27)
with help of the integral test for convergence; t i=1 i ρ(3β-4x)-3α ≤ 3 < 2 2 and t i=1 i 4ρ(β-x)-4α ≤ 2 for any x ≥ 0 as α -ρβ ∈ (1/2, 1). Lemma 3.6.3. Assume that Assumptions 3.2.1-p to 3.2.3-p for p = 4 and Assumption 3.3.1 hold true. Denote δt = E[∥ θt -θ * ∥ 2] with θn given by (3.2.3), where (θ t) follows the recursion in (3.2.1) or (3.2.2). In addition, Assumption 3.3.2 must hold true if (θ t) follows the recursion in (3.2.2), which is indicated by 1 {D Θ <∞} . For any learning rate (γ t), we have

δ1/2 t ≤ Λ 1/2 N t t i=1 n 2(1-σ) i 1/2 + C ′1/2 σ µN t t i=1 n 2(1-σ-σ ′) i 1/2 + 2 1/2 B 1/2 ν µN t   t j=2 n j ν j j-1 i=1 n i σ i   1/2 + 1 µN t t-1 i=1 δ 1/2 i n i+1 γ i+1 - n i γ i + n t µγ t N t δ 1/2 t + n 1 µN t 1 γ 1 + 2 1/2 (C ∇ + κ 1) δ 1/2 0 + 2 1/2 µN t t-1 i=1 n 2 i+1 (C 2 ∇ + κ 2 i+1)δ i 1/2 + C ′′ ∇ µN t t-1 i=0 n i+1 ∆ 1/2 i + 2 3/4 µN t   t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)n j+1 ν j+1 j-1 i=0 (C ∇ + κ i+1)n i+1 δ 1/2 i   1/2 , with Λ = Tr(∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1) and C ′′ ∇ = C ′ ∇ /2 + 1 {D Θ <∞} 2G Θ /D 2 Θ .
Proof of Lemma 3.6.3. The proof is divided into two parts; in the first part, (θ t) follows (3.2.1), and the second part considers (3.2.2). Assume that (θ t) is derived from the recursion in (3.2.1):

following Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], we rewrite (3.2.1) to

1 γ t (θ t-1 -θ t) = ∇ θ l t (θ t-1), (3.6.28)
where

∇ θ l t (θ t-1) = n -1 t nt i=1 ∇ θ l t,i (θ t-1). Observe that ∇ 2 θ L(θ *)(θ t-1 -θ *) = -∇ θ l t (θ *) + ∇ θ l t (θ t-1) -[∇ θ l t (θ t-1) -∇ θ l t (θ *) -∇ θ L(θ t-1)] -[∇ θ L(θ t-1) -∇ 2 θ L(θ *)(θ t-1 -θ *)],
where ∇ 2 θ L(θ *) is invertible with lowest eigenvalue greater than µ, i.e., ∇ 2 θ L(θ *) ≥ µI d . Thus, summing the parts, taking the quadratic norm and expectation, and using Minkowski's inequality, Chapter 3 gives us the inequality,

E θt -θ * 2 1/2 ≤   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ *) 2     1/2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) 2     1/2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i [∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L (θ i-1)] 2     1/2 +   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ L (θ i-1) -∇ 2 θ L (θ *) (θ i-1 -θ *) 2     1/2 . (3.6.29)
As (∇ θ l t (θ *)) is a square-integrable sequences on R d (Assumption 3.2.1-p), we have

E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ *) 2   = 1 N 2 t t i=1 n 2 i E ∇ 2 θ L (θ *) -1 ∇ θ l i (θ *) 2 + 2 N 2 t 1≤i<j≤t n i n j E ∇ 2 θ L (θ *) -1 ∇ θ l i (θ *) , ∇ 2 θ L (θ *) -1 ∇ θ l j (θ *) ,
where the first term can be bounded by Assumption 3.3.1,

1 N 2 t t i=1 n 2 i E ∇ 2 θ L (θ *) -1 ∇ θ l i (θ *) 2 ≤ 1 N 2 t t i=1 n 2(1-σ) i Tr ∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1 + C ′ σ µ 2 n 2σ ′ i = Λ N 2 t t i=1 n 2(1-σ) i + C ′ σ µ 2 N 2 t t i=1 n 2(1-σ-σ ′) i , where Λ denotes Tr[∇ 2 θ L(θ *) -1 Σ∇ 2 θ L(θ *) -1]. For the next term, 2 N 2 t 1≤i<j≤t n i n j E ∇ 2 θ L (θ *) -1 ∇ θ l i (θ *) , ∇ 2 θ L (θ *) -1 ∇ θ l j (θ *) ≤ 2 µ 2 N 2 t 1≤i<j≤t n i n j E [⟨∇ θ l i (θ *) , ∇ θ l j (θ *)⟩] = 2 µ 2 N 2 t 1≤i<j≤t n i n j E [⟨∇ θ l i (θ *) , E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)⟩] ≤ 2 µ 2 N 2 t 1≤i<j≤t n i n j E [∥∇ θ l i (θ *)∥ ∥[E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)]∥] ≤ 2 µ 2 N 2 t 1≤i<j≤t n i n j E ∥∇ θ l i (θ *)∥ 2 E ∥[E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)]∥ 2 ≤ 2B ν µ 2 N 2 t 1≤i<j≤t n i n j σ i ν j = 2B ν µ 2 N 2 t t j=2 n j ν j j-1 i=1 n i σ i ,
by Cauchy-Schwarz inequality, Hölder's inequality, and Assumptions 3.2.1-p and 3.2.3-p. Thus,

  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ *) 2     1/2 ≤ Λ 1/2 N t t i=1 n 2(1-σ) i 1/2 + C ′1/2 σ µN 1/2 t t i=1 n 2(1-σ-σ ′) i 1/2 + 2 1/2 B 1/2 ν µN t   t j=2 n j ν j j-1 i=1 n i σ i   1/2 . (3.6.30)
Next, by the relation in (3.6.28), we have

1 N t t i=1 n i ∇ θ l i (θ i-1) = 1 N t t i=1 n i γ i (θ i-1 -θ i) = 1 N t t-1 i=1 (θ i -θ *) n i+1 γ i+1 - n i γ i - 1 N t (θ t -θ *) n t γ t + 1 N t (θ 0 -θ *) n 1 γ 1 , leading to ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) ≤ 1 µN t t-1 i=1 ∥θ i -θ * ∥ n i+1 γ i+1 - n i γ i + 1 µN t ∥θ t -θ * ∥ n t γ t + 1 µN t ∥θ 0 -θ * ∥ n 1 γ 1 .
Chapter 3

Hence, with the notation of δ t = E[∥θ t -θ * ∥ 2], the second term can be bounded by

  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ l i (θ i-1) 2     1/2 ≤ 1 µN t t-1 i=1 δ 1 2 i n i+1 γ i+1 - n i γ i + n t µγ t N t δ 1 2 t + n 1 µγ 1 N t δ 1 2
0 .

(3.6.31)

For the third term, we can derive it as

E   ∇ 2 θ L(θ *) -1 1 N t t i=1 n i [∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L(θ i-1)] 2   = 1 µ 2 N 2 t t i=1 n 2 i E ∥∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L(θ i-1)∥ 2 + 2 µ 2 N 2 t t i<j n i n j E [⟨∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L(θ i-1), ∇ θ l j (θ j-1) -∇ θ l j (θ *) -∇ θ L(θ j-1)⟩] , where t i=1 n 2 i E ∥∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L (θ i-1)∥ 2 ≤2 t i=1 n 2 i E ∥∇ θ l i (θ i-1) -∇ θ l i (θ *)∥ 2 + 2 t i=1 n 2 i E ∥∇ θ L (θ i-1)∥ 2 ≤2 t i=1 n 2 i κ 2 i δ i-1 + 2C 2 ∇ t i=1 n 2 i δ i-1 ,
by the Cauchy-Schwarz inequality, Assumption 3.2.2-p and (3.3.8). For the other term, we note that

E[⟨∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L(θ i-1), ∇ θ l j (θ j-1) -∇ θ l j (θ *) -∇ θ L(θ j-1)⟩] =E[⟨∇ θ l i (θ i-1) -∇ θ l i (θ *) -[∇ θ L(θ i-1) -∇ θ L(θ *)], E[∇ θ l j (θ j-1)|F j-1] -∇ θ L(θ j-1) -[E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)]⟩] ≤ E[∥∇ θ l i (θ i-1) -∇ θ l i (θ *) -[∇ θ L(θ i-1) -∇ θ L(θ *)]∥ 2] E[∥E[∇ θ l j (θ j-1)|F j-1] -∇ θ L(θ j-1) -[E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)]∥ 2] ≤ 2E[∥∇ θ l i (θ i-1) -∇ θ l i (θ *)∥ 2] + 2E[∥∇ θ L(θ i-1) -∇ θ L(θ *)∥ 2] 2E[∥E[∇ θ l j (θ j-1)|F j-1] -∇ θ L(θ j-1)∥ 2] + 2E[∥E[∇ θ l j (θ *)|F j-1] -∇ θ L(θ *)∥ 2] ≤ 2κ 2 i δ i-1 + 2C 2 ∇ δ i-1 2D 2 ν ν 2 j δ j-1 + 4B 2 ν ν 2 j ≤ 2 1/2 (κ i δ 1/2 i-1 + C ∇ δ 1/2 i-1)(D ν ν j δ 1/2 j-1 + 2 1/2 B ν ν j), using F i-1 ⊂ F j-1 since i < j,
  E   ∇ 2 θ L(θ *) -1 1 N t t i=1 n i [∇ θ l i (θ i-1) -∇ θ l i (θ *) -∇ θ L(θ i-1)] 2     1/2 ≤ 2 1/2 µN t t i=1 n 2 i κ 2 i δ i-1 1/2 + 2 1/2 C ∇ µN t t i=1 n 2 i δ i-1 1/2 + 2 3/4 µN t   t j=2 (D ν δ 1/2 j-1 + 2 1/2 B ν)n j ν j j-1 i=1 (C ∇ + κ i)n i δ 1/2 i-1   1/2 . (3.6.32)
The last term is directly bounded by (3.3.9), using that (3.3.9) implies ∀θ,

∥∇ θ L(θ) -∇ 2 θ L(θ *)(θ - θ *)∥ ≤ C ′ ∇ ∥θ -θ * ∥ 2 /2 [105], giving us   E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i ∇ θ L (θ i-1) -∇ 2 θ L (θ *) (θ i-1 -θ *) 2     1 2 ≤ C ′ ∇ 2µN t t i=1 n i ∆ 1/2 i-1 , (3.6.33)
with the notion

∆ t = E[∥θ t -θ * ∥ 4].
Combining the terms (3.6.30) to (3.6.33) into (3.6.29), gives us

δ1/2 t ≤ Λ 1/2 N t t i=1 n 2(1-σ) i 1/2 + C ′1/2 σ µN t t i=1 n 2(1-σ-σ ′) i 1/2 + 2 1/2 B 1/2 ν µN t   t j=2 n j ν j j-1 i=1 n i σ i   1/2 + 1 µN t t-1 i=1 δ 1/2 i n i+1 γ i+1 - n i γ i + n t µγ t N t δ 1/2 t + n 1 µγ 1 N t δ 1/2 0 + 2 1/2 µN t t i=1 n 2 i κ 2 i δ i-1 1/2 + 2 1/2 C ∇ µN t t i=1 n 2 i δ i-1 1/2 + C ′ ∇ 2µN t t i=1 n i ∆ 1/2 i-1 + 2 3/4 µN t   t j=2 (D ν δ 1/2 j-1 + 2 1/2 B ν)n j ν j j-1 i=1 (C ∇ + κ i)n i δ 1/2 i-1   1/2
, which gives the desired by shifting the indices and collecting the δ 0 terms,

δ1/2 t ≤ Λ 1/2 N t t i=1 n 2(1-σ) i 1/2 + C ′1/2 σ µN t t i=1 n 2(1-σ-σ ′) i 1/2 + 2 1/2 B 1/2 ν µN t   t j=2 n j ν j j-1 i=1 n i σ i   1/2 + 1 µN t t-1 i=1 δ 1/2 i n i+1 γ i+1 - n i γ i + n t µγ t N t δ 1/2 t + n 1 µN t 1 γ 1 + 2 1/2 (C ∇ + κ 1) δ 1/2 0 + 2 1/2 µN t t-1 i=1 n 2 i+1 (C 2 ∇ + κ 2 i+1)δ i 1/2 + C ′ ∇ 2µN t t-1 i=0 n i+1 ∆ 1/2 i + 2 3/4 µN t   t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)n j+1 ν j+1 j-1 i=0 (C ∇ + κ i+1)n i+1 δ 1/2 i   1/2 . (3.6.34)
Now, assume that (θ t) is derived from the recursion in (3.2.2): as above, we follow the steps of Polyak and Juditsky [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], in which, we can rewrite (3.2.2) to

1 γ t (θ t-1 -θ t) = ∇ θ l t (θ t-1) - 1 γ t Ω t ,
where

Ω t = P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -(θ t-1 -γ t ∇ θ l t (θ t-1)
). Thus, summing the parts, taking the norm and expectation, and using the Minkowski's inequality, yields the same terms as in (3.6.29), but with an additional term regarding Ω t , namely

  E   ∇ 2 θ L (θ *) -1 1 N t t i=1 n i γ i Ω i 2     1/2 ≤ 1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 = 1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 1 {θ i-1 -γ i ∇ θ l i (θ i-1) / ∈Θ} , (3.6.35)
using Godichon-Baggioni [55, Lemma 4.3]. Next, we note that

E[∥Ω t ∥ 2 1 {θ t-1 -γt∇ θ lt(θ t-1) / ∈Θ}] = 4γ 2 t G 2 Θ P[θ t-1 -γ t ∇ θ l t (θ t-1) / ∈ Θ], since ∥Ω t ∥ 2 = ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -θ t-1 + γ t ∇ θ l t (θ t-1)∥ 2 ≤2 ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -θ t-1 ∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 =2 ∥P Θ (θ t-1 -γ t ∇ θ l t (θ t-1)) -P Θ (θ t-1)∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 ≤2 ∥θ t-1 -γ t ∇ θ l t (θ t-1) -θ t-1 ∥ 2 + 2γ 2 t ∥∇ θ l t (θ t-1)∥ 2 = 4γ 2 t ∥∇ θ l t (θ t-1)∥ 2 ≤ 4γ 2 t G 2 Θ ,
as P Θ is Lipschitz and ∥∇ θ l t (θ)∥ 2 ≤ G 2 Θ for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and Portier [56, Theorem 4.2] with use of Lemma 3.6.2, we know that

P[θ t-1 -γ t ∇ θ l t (θ t-1) / ∈ Θ] ≤ ∆ t /D 4 Θ
, where D Θ = inf θ∈∂Θ ∥θ -θ * ∥ with ∂Θ denoting the frontier of Θ. Thus, (3.6.35) can then be bounded by

1 µN t t i=1 n i γ i E ∥Ω i ∥ 2 1 {θ i-1 -γ i ∇ θ l i (θ i-1) / ∈Θ} ≤ 2G Θ µD 2 Θ N t t i=1 n i ∆ 1/2 i ≤ 2G Θ µD 2 Θ N t t i=1 n i+1 ∆ 1/2 i ,
since the sequence (n t) is either constant or increasing, meaning ∀t, n t /n t+1 ≤ 1. At last, this term can be combined into (3.6.34) with use of

C ′′ ∇ = C ′ ∇ /2 + 1 {D Θ <∞} 2G Θ /D 2
Θ , which indicates whether (θ t) follows (3.2.2) or not.

Proof of Theorem 3.3.2. The result follows by simplifying and bounding each term of Lemma 3.6.3, with use of Theorem 3.3.1 and Lemma 3.6.2. Thus, by inserting

γ t = C γ n β t t -α , ν t = n -ν t , κ t = C κ n -κ t , σ t = C σ n -σ
t , and n t = C ρ t ρ into the bound of Lemma 3.6.3, we obtain 1+ρ) . Similarly, as ν ∈ (0, ∞), we have that

δ1/2 t ≤ Λ 1/2 N 1/2 t 1 {σ=1/2} + Λ 1/2 C 1-σ ρ N t t i=1 i 2ρ(1-σ) 1/2 1 {σ̸ =1/2} + C ′1/2 σ C 1-σ-σ ′ ρ µN t t i=1 i 2ρ(1-σ-σ ′) 1/2 + 2 1/2 B 1/2 ν C 1/2 σ C ρ µC (σ+ν)/2 ρ N t   t j=2 j ρ(1-ν) j-1 i=1 i ρ(1-σ)   1/2 + (ρ(1 -β) + α)C ρ µC γ C β ρ N t t-1 i=1 i ρ(1-β)+α-1 δ 1/2 i + C ρ t ρ(1-β)+α µC γ C β ρ N t δ 1/2 t + C ρ µN t 1 C γ C β ρ + 2 1/2 C κ C κ ρ + C ∇ δ 1/2 0 + 2 1/2+ρ(1-κ) C κ C ρ µC κ ρ N t t-1 i=1 i 2ρ(1-κ) δ i 1/2 + 2 1/2+ρ C ∇ C ρ µN t t-1 i=1 i 2ρ δ i 1/2 + 2 ρ C ′′ ∇ C ρ µN t t-1 i=0 i ρ ∆ 1/2 i + 2 3/4+ρ(2-ν)/2 C ρ µC ν/2 ρ N t   t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)j ρ(1-ν) j-1 i=1 C ∇ + 2 ρκ C κ C κ ρ i ρκ i ρ δ 1/2 i   1/2 , using n i+1 /n i ≤ 2 ρ and that |n i+1 /γ i+1 -n i /γ i | ≤ (ρ(1 -β) + α)C 1-β ρ /C γ i 1-ρ(1-β)-α as ρ(1 - β) + α ≤ 1 -ρ with ρ ∈ [0, 1). Next, as σ ∈ [0, 1/2] and σ ′ ∈ (0, 1/2], we have t i=1 i 2ρ(1-σ-σ ′) ≤ t 1+2ρ(1-σ-σ ′) /(1 + 2ρ(1 -σ -σ ′)), where t ≤ (2N t /C ρ) 1/(
t-1 j=2 j ρ(1-ν) j-1 i=1 i ρ(1-σ) ≤ t-1 j=1 j ρ(1-ν) t-1 i=1 i ρ(1-σ) ≤ψ ρ(ν-1) (t)ψ ρ(σ-1) (t) ≤ψ ρ ρ(ν-1) (2N t /C ρ)ψ ρ ρ(σ-1) (2N t /C ρ),
using the ψ-function defined in (3.6.16), such that

ψ ρ ρ(σ-1) (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ)/N t ≤ Õ(N -ρ(σ+ν)/2(1+ρ) t
).

Let D κ ∇ denote C ∇ + 2 ρκ C κ /C κ ρ with κ ∈ [0, 1/2], such that 2 1/2+ρ(1-κ) C κ C ρ µC κ ρ N t t-1 i=1 i 2ρ(1-κ) δ i 1/2 + 2 1/2+ρ C ∇ C ρ µN t t-1 i=1 i 2ρ δ i 1/2 ≤ 2 1/2+ρ D κ ∇ C ρ µN t t-1 i=1 i 2ρ δ i 1/2
, and, likewise, we have that

t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)j ρ(1-ν) j-1 i=1 C ∇ + 2 ρκ C κ C κ ρ i ρκ i ρ δ 1/2 i ≤ D κ ∇ t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)j ρ(1-ν) j-1 i=1 i ρ δ 1/2 i .
From (3.6.21) we know that δ t ≤ D δ /t δ with

D δ = sup t∈N π t t δ + 2 1+2ρν B 2 ν µµ ν C 2ν ρ + 2 2+ρ(2σ-β)+α C 2 σ C γ C β ρ µ ν C 2σ ρ , and δ = 1 {Bν =0} (ρ(2σ -β) + α) + 1 {Bν ̸ =0} min{ρ(2σ -β) + α, 2ρν}, yielding t-1 j=1 (D ν δ 1/2 j + 2 1/2 B ν)j ρ(1-ν) j-1 i=1 i ρ δ 1/2 i ≤ D 1/2 δ t-1 j=1 (D ν D 1/2 δ j -δ/2 + 2 1/2 B ν)j ρ(1-ν) j-1 i=1 i ρ-δ/2 ≤ D 1/2 δ t-1 j=1 (D ν D 1/2 δ j -δ/2 + 2 1/2 B ν)j ρ(1-ν) ψ δ/2-ρ (t) ≤ D ν D δ ψ δ/2-ρ (t)ψ δ/2+ρ(ν-1) (t) + 2 1/2 B ν D 1/2 δ ψ δ/2-ρ (t)ψ ρ(ν-1) (t) ≤ D ν D δ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ δ/2+ρ(ν-1) (2N t /C ρ) + 2 1/2 B ν D 1/2 δ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ), if δ/2 -ρ ≥ 0. Hence, ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ δ/2+ρ(ν-1) (2N t /C ρ)/N t = Õ(N -(δ+ρν)/2(1+ρ) t
), and

ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ)/N t = Õ(N -(δ/2+ρν)/2(1+ρ) t). Next, we define πt = t i=1 i 2 π i ≥ t i=1 π i such that π t ≤ t -1 t i=1 π i ≤ t -1 πt ≤ t -1 π∞ since π t is decreasing. Similarly, let Πt = t i=1 i ρ Π i .
Both πt and Πt convergences to some finite constant depending on the model's parameters. With use of these notions, one can show that

δ1/2 t ≤ Λ 1/2 N 1/2 t 1 {σ=1/2} + 2 1+2ρ(1-σ)/2(1+ρ) Λ 1/2 C (1-2σ)/2(1+ρ) ρ 1 + 2ρ(1 -σ)N (1+2ρσ)/2(1+ρ) t 1 {σ̸ =1/2} + 2 1+2ρ(1-σ-σ ′)/2(1+ρ) C ′1/2 σ C (1-2σ-2σ ′)/2(1+ρ) ρ 1 + 2ρ(1 -σ -σ ′)µN (1+2ρ(σ+σ ′))/2(1+ρ) t + 2 1/2 B 1/2 ν C 1/2 σ C ρ ψ ρ ρ(σ-1) (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ) µC (σ+ν)/2 ρ N t + (ρ(1 -β) + α)C ρ π∞ µC γ C β ρ N t + (ρ(1 -β) + α)2 1/2+ρν B ν C ρ ψ ρ 1+ρ(β+ν-1)-α (2N t /C ρ) µ 3/2 µ 1/2 ν C γ C β+ν ρ N t + (ρ(1 -β) + α)2 (4+ρ(2+2σ-3β)+3α)/2(1+ρ) C σ C (2-2σ-β-α)/2(1+ρ) ρ (ρ(1 -σ) + (α -ρβ)/2)µµ 1/2 ν C 1/2 γ N (2+ρ(β+2σ)-α)/2(1+ρ) t + 2 (1+ρ(1-β)+α)/(1+ρ) C (2+β-α)/(1+ρ) ρ π∞ µC γ N (2+ρβ-α)/(1+ρ) t + 2 (1+ρ(1+3ν-β)+α))/(1+ρ) B ν C (1-β-ν-α)/(1+ρ) ρ µ 3/2 µ 1/2 ν C γ N (1+ρ(β+ν)-α)/(1+ρ) t + 2 (2+ρ(1-2β+σ)+2α)/(1+ρ) C σ C (2-2σ-β-α)/2(1+ρ) ρ µµ 1/2 ν C 1/2 γ N (2+ρ(β+2σ)-α)/2(1+ρ) t + 2 1/2+ρ D κ ∇ C ρ π1/2 ∞ µN t + 2 3/2+ρ(1+ν) B ν D κ ∇ C ρ ψ ρ 2ρ(ν-1) (2N t /C ρ) µ 3/2 µ 1/2 ν C ν ρ N t + 2 (3+ρ(5-2σ+β)-α)/2(1+ρ) D κ ∇ C σ C 1/2 γ C (1+β-2σ+α)/2(1+ρ) ρ µµ 1/2 ν N (1+ρ(2σ-β)+α)/(2(1+ρ)) t + 2 3/4+ρ(2-ν)/2 D κ ∇ D 1/2 ν D 1/2 δ C ρ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ δ/2+ρ(ν-1) (2N t /C ρ) µC ν/2 ρ N t + 2 1+ρ(2-ν)/2 B 1/2 ν D κ ∇ D 1/4 δ C ρ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ) µC ν/2 ρ N t + C ρ µN t 1 C γ C β ρ + 2 1/2 D κ ∇ δ 1/2 0 + 2 ρ C ′′ ∇ C ρ Π∞ µN t + 2 1+ρ(1+2ν) B 2 ν C ′′ ∇ C ρ ψ ρ ρ(2ν-1) (2N t /C ρ) µ 5/2 µ ′ ν C 2ν ρ N t + 2 (1+ρ(1+2σ-β)+α)/(1+ρ) (2 5 µ -1/2 + 2 4 C 1/2 γ C β/2 ρ)C ′′ ∇ C 2 σ C γ µ µ ′ ν C (1-2ρσ-α)/(1+ρ) ρ N (ρ(2σ-β)+α)/(1+ρ) t , where µ ′ ν = µ -1 {ρ=0} 2D 4 ν /µ 3 C 4ν ρ , D κ ∇ = C ∇ + 2 κ C κ /C κ ρ and C ′′ ∇ = C ′ ∇ + 1 {D Θ <∞} 2G Θ /D 2 Θ , which can be simplified into δ1/2 t ≤ Λ 1/2 N 1/2 t 1 {σ=1/2} + 2 1/2 Λ 1/2 C (1-2σ)/2(1+ρ) ρ N (1+2ρσ)/2(1+ρ) t 1 {σ̸ =1/2} + 2 1/2 C ′1/2 σ C (1-2(σ+σ ′))/2(1+ρ) ρ µN (1+2ρ(σ+σ ′))/2(1+ρ) t + 2 2+(7+2ρ(1+σ))/2(1+ρ) C σ C (2-2σ-β-α)/2(1+ρ) ρ µµ 1/2 ν C 1/2 γ N (2+ρ(β+2σ)-α)/2(1+ρ) t + 2 (1+ρ(1+2σ-β)+α)/(1+ρ) (2 5 µ -1/2 + 2 4 C 1/2 γ C β/2 ρ)C ′′ ∇ C 2 σ C γ µ µ ′ ν C (1-2ρσ-α)/(1+ρ) ρ N (ρ(2σ-β)+α)/(1+ρ) t + 2 (5/2+ρ(5-2σ))/2(1+ρ) D κ ∇ C σ C 1/2 γ C (1+β-2σ+α)/2(1+ρ) ρ µµ 1/2 ν N (1+ρ(2σ-β)+α)/(2(1+ρ)) t + ΓC ρ µN t + 2 (2+ρ)/(1+ρ) C (2+β-α)/(1+ρ) ρ π∞ µC γ N (2+ρβ-α)/(1+ρ) t + 2 3/4+ρ(2-ν)/2 D κ ∇ D 1/2 ν D 1/2 δ C ρ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ δ/2+ρ(ν-1) (2N t /C ρ) µC ν/2 ρ N t + 1 {Bν ̸ =0} Ψ t , as α-ρβ ∈ (1/2, 1) with use of Γ = 2π ∞ /C γ C β ρ +(1/C γ C β ρ +2 1/2 D κ ∇)δ 1/2 0 +2 1/2+ρ D κ ∇ π1/2 ∞ +2 ρ C ′′ ∇ Π∞ , D κ ∇ = C ∇ + 2 κ C κ /C κ ρ , δ = 1 {Bν =0} (ρ(2σ -β) + α) + 1 {Bν ̸ =0} min{ρ(2σ -β) + α, 2ρν}
, and Ψ t given as

2 1/2 B 1/2 ν C 1/2 σ C ρ ψ ρ ρ(σ-1) (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ) µC (σ+ν)/2 ρ N t + 2 3/2+ρν B ν C ρ ψ ρ 1+ρ(β+ν-1)-α (2N t /C ρ) µ 3/2 µ 1/2 ν C γ C β+ν ρ N t + 2 3/2+ρ(1+ν) B ν D κ ∇ C ρ ψ ρ 2ρ(ν-1) (2N t /C ρ) µ 3/2 µ 1/2 ν C ν ρ N t + 2 3(1+ρν) B ν C (1-β-ν-α)/(1+ρ) ρ µ 3/2 µ 1/2 ν C γ N (1+ρ(β+ν)-α)/(1+ρ) t + 2 1+ρ(2-ν)/2 B 1/2 ν D κ ∇ D 1/4 δ C ρ ψ ρ δ/2-ρ (2N t /C ρ)ψ ρ ρ(ν-1) (2N t /C ρ) µC ν/2 ρ N t + 2 2(1+ρν) B 2 ν C ′′ ∇ C ρ ψ ρ ρ(2ν-1) (2N t /C ρ) µ 5/2 µ ′ ν C 2ν ρ N t (3.6.36) = Õ(N -ρ(σ+ν)/2(1+ρ) t) + Õ(N -(1+ρ(β+ν)-α)/(1+ρ) t) + Õ(N -(1+2ρν)/2(1+ρ) t) + O(N -(1+ρ(β+ν)-α)/(1+ρ) t) + Õ(N -(δ/2+ρν)/2(1+ρ) t) + Õ(N -2ρν/(1+ρ) t),
Furthermore, with Õ-notation one can yield,

δ1/2 t ≤ Λ 1/2 N 1/2 t 1 {σ=1/2} + 2 1/2 Λ 1/2 C (1-2σ)/2(1+ρ) ρ N (1+2ρσ)/2(1+ρ) t 1 {σ̸ =1/2} + 2 1/2 C ′1/2 σ C (1-2(σ+σ ′))/2(1+ρ) ρ µN (1+2ρ(σ+σ ′))/2(1+ρ) t + 2 6 C σ C (2-2σ-β-α)/2(1+ρ) ρ µµ 1/2 ν C 1/2 γ N (2+ρ(β+2σ)-α)/2(1+ρ) t + 1 {Bν ̸ =0} Ψ t + 2 7 (µ -1/2 + C 1/2 γ C β/2 ρ)C ′′ ∇ C 2 σ C γ µ µ ′ ν C (1-2ρσ-α)/(1+ρ) ρ N (ρ(2σ-β)+α)/(1+ρ) t + 2 2 D κ ∇ C σ C 1/2 γ C (1+β-2σ+α)/2(1+ρ) ρ µµ 1/2 ν N (1+ρ(2σ-β)+α)/(2(1+ρ)) t + ΓC ρ µN t + 2 2 C (2+β-α)/(1+ρ) ρ π∞ µC γ N (2+ρβ-α)/(1+ρ) t + Õ(N -(δ+ρν)/2(1+ρ) t
), (3.6.37) where

Ψ t = Õ(N -ρ(σ+ν)/2(1+ρ) t)+ Õ(N -(1+ρ(β+ν)-α)/(1+ρ) t)+ Õ(N -(1+2ρν)/2(1+ρ) t)+ Õ(N -(δ/2+ρν)/2(1+ρ) t)+ Õ(N -2ρν/(1+ρ) t
), implying that ν > 1/2 to obtain the desired rate δt = O(N -1) if B ν = 0.

Introduction

Time series analysis has attracted much attention in the last three decades. A central aspect of time series analysis is modeling heteroscedasticity of the conditional variance, e.g., volatility clustering in financial time series. Some well-known models incorporating this feature are the Au-toRegressive Conditional Heteroscedasticity (ARCH) model and the Generalized ARCH (GARCH) model introduced by [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation[END_REF] and [START_REF] Bollerslev | Generalized autoregressive conditional heteroscedasticity[END_REF], respectively. Many reasons can explain these models' success; they constitute a stationary time series model with a time-varying conditional variance, and secondly, they may model time series with heavier tails than the Gaussian ones, which often occurs in financial time series.

Quasi-Maximum Likelihood (QML) estimation is widely used for statistical inference in GARCH models due to their appealing theoretical nature and tolerance to overdispersion, which is often observed in empirical data. This paper studies the Quasi-Maximum Likelihood Estimator (QMLE) for the broader class of conditionally heteroscedastic time series models of multiplicative form given by

X t = h t (θ 0)Z t , t ∈ Z, (4.1.1)
where θ 0 is the true underlying parameter vector, (Z t) is a sequence of i.i.d. random variables with E[Z 0] = 0 and E[Z 2 0] = 1, and the (non-negative) volatility process (h t) t∈Z is defined as h t (θ) = g θ X t-1 , . . . , X t-p , h t-1 (θ), . . . , h t-q (θ) , p, q ≥ 0. Suppose that the parameter set Θ ⊂ R d and {g θ |θ ∈ Θ} denotes the (finite) parametric family of non-negative functions on R p × [0, ∞) q satisfying certain regularity conditions. We also require that h t is F t-1 -measurable for all t ∈ Z, where F t = σ(Z k : k ≤ t) denotes the σ-field generated by the random variables {Z k : k ≤ t}.

The stability of model (4.1.1)-(4.1.2) is accomplished under the assumption that g θ is a contraction. This condition is a random Lipschitz coefficient condition, where the Lipschitz coefficient has a negative logarithmic moment. The notion of contractivity is clarified in [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF] where they study QML inference of general conditionally heteroscedastic models with emphasis on the approximation (h t) of the stochastic volatility (h t).

QML estimation of the parameters in the class of conditionally heteroscedastic time series models has been studied frequently in recent years, see e.g., [START_REF] Berkes | GARCH processes: structure and estimation[END_REF], [START_REF] Francq | Maximum likelihood estimation of pure garch and arma-garch processes[END_REF], [START_REF] Straumann | Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach[END_REF], and [START_REF] Wintenberger | Continuous invertibility and stable qml estimation of the egarch(1,1) model[END_REF]. However, all these references consider iterative estimation, where one assembles a batch of data and afterward performs the statistical inference. Thus, one evaluates an objective function consisting of a sum of n loss terms.

Each iteration would then have a cost of O(nd), making the recursion cost O(mnd), where m is the number of iterations. As the amount of data grows, these optimizers become prohibitively expensive and increasingly computationally inefficient. Moreover, iterative optimizers become unsuitable for streaming settings where we are modeling and predicting data as they arrive.

Many financial practices, such as banks, asset managers, and financial services institutes, find themselves estimating thousands of volatility models every day for risk and pricing purposes. In addition, the sampling of financial time series is increasingly at high frequency. Therefore, recursive procedures must undoubtedly be advantageous since one only processes observations once. In recursive QML estimation, we update the previous QML estimate with the new observations at time t in order to produce the QML estimate of the parameters at time t.

Thus, in modern statistical analysis, it is becoming increasingly common to work with streaming data where one observes only a group of observations at a time. Naturally, this has led to an expanded interest in time-scalable recursive estimation procedures with a cost of only O(d) computations per recursion, e.g., see [START_REF] Bottou | The tradeoffs of large scale learning[END_REF]. However, there has only been given a little amount of attention to recursive estimation in conditionally heteroscedastic time series models.

[36] presented a recursive method for estimating the parameters of an ARCH process. Under sufficient assumptions on the underlying process, [START_REF] Aknouche | Recursive estimation of garch models[END_REF] showed consistency of their recursive least squares method for GARCH processes, and [START_REF] Kierkegaard | Estimating garch models using recursive methods[END_REF] also developed a recursive estimation method for GARCH processes supported by empirical evidence. Convergence analysis of the recursive QML estimator for GARCH processes based on stochastic approximations with Markovian dynamics using a resetting mechanism has been previously presented ([START_REF] Gerencsér | Recursive estimation of garch processes[END_REF]). A self-weighted recursive estimation algorithm for GARCH models was proposed in [START_REF] Cipra | Robust recursive estimation of garch models[END_REF] with a robustification in [START_REF] Hendrych | Self-weighted recursive estimation of garch models[END_REF]. However, none of the above references mention problems with convexity or address the obstacles that may occur when the true parameter θ 0 is close to the boundary of the parameter space.

The difficulty of estimating time-varying parameters of statistical models increases in the setting of streaming data. To sustain computational efficiency and be adaptive to changes in the estimates, one may decrease the number of observations in each iteration in the optimization procedure, which may decrease the stability of the statistical inference. We propose a natural adaptation of the QML method, relying on stochastic approximations combined with the Variance Targeting Estimation (VTE) technique, which we call AdaVol. This recursive method is time-scalable and memoryefficient, as it only requires the previous estimate to process new observations, and it only needs to treat the observations once. We present empirical evidence that AdaVol achieves a favorable trade-off between adaptability and stability.

The rest of the paper is organized as follows: Section 4.2 introduces the QML procedure for the general class of conditionally heteroscedastic time series models of multiplicative form and investigates the asymptotic properties of the Quasi-Likelihood (QL) function (Section 4.2.1). Next, in Section 4.2.2, we present the QML estimation of the GARCH parameters. In Section 4.3, we present our adaptive approach for recursively estimating GARCH parameters named AdaVol. We examine the AdaVol procedure on simulated and real-life observations in Section 4.4, and some concluding remarks are made in Section 4.5.

QML Estimation in Conditionally Heteroscedastic Time Series Models

The approximate QMLE θ * n is defined as

θ * n ∈ arg min θ∈K L n (θ), (4.2.3)
where the parameter set K is a suitable compact subset of the parameter space Θ. The QL function with QL losses, denoted l t (θ) and l t (θ), given as

l t (θ) = 1 2 X 2 t h t (θ) + log h t (θ) and l t (θ) = 1 2 X 2 t h t (θ) + log h t (θ) , (4.2.5)
where (h t) is an approximation of (h t) defined recursively for t ≥ 1 as in (4.1.2) with initialization

h -q+1 = • • • = h 0 = 0 or any deterministic constant.
From [137, Proposition 5.2.12], we know the initialization error between (h t) and the true (h t) will vanish exponentially fast almost surely.

Assuming Z 0 is standard normal distributed, we may note X t is also Gaussian with variance h t conditioned on F t-1 . The QL function L n (•) in (4.2.4) is derived under this Gaussian assumption.

The consistency and asymptotic properties of the QMLE θ * n combined with the robustness of the QL function for overdispersion make the method highly used in practice (e.g., see [START_REF] Patton | Volatility forecast comparison using imperfect volatility proxies[END_REF]). Under the assumptions in [138, N.1, N.2, N.3 and N.4], the QMLE θ * n is strongly consistent and asymptotically normal, that is

θ * n a.s. → θ 0 and √ n θ * n -θ 0 → N (0, V 0) as n → ∞, (4.2.6)
with θ 0 as the true parameter vector and V 0 the asymptotic covariance matrix.

Unfortunately, these asymptotic properties in (4.2.6) come with a drawback on the QL loss; the consistency is achieved through careful domination of logarithmic moments. The concavity of logarithms makes the criterion insensitive to extreme values, but it also implies that the criterion itself behaves as a concave function. As most optimization algorithms are based on convex assumptions, this is striking.

In the next section, we show that the approximate Hessian H n (θ) = n -1 ∇ 2 θ L n (θ) admits strictly positive eigenvalues for n sufficiently large dependent on the model specifications and the underlying data process. This means that for sufficiently large batch sizes of observations, the QMLE θ * n can be seen as the unique solution of a locally strongly convex optimization problem; the existence and uniqueness of θ * n ensure that usual iterative optimization routines can efficiently approximate it for n large enough. Assumption 4.2.2. Let K ⊂ Θ be a compact set with true parameter vector θ 0 ∈ K in the interior. The random functions fulfill certain conditions, such that E[∥l 0 ∥ K] < ∞, E[∥∇ 2 θ l 0 ∥ K] < ∞, and furthermore have the following uniform convergences ∥n

-1 L n -L n ∥ K a.s. -→ 0 and n -1 ∥∇ 2 θ L n - ∇ 2 θ L n ∥ K a.s.
-→ 0 as n → ∞.

Assumption 4.2.3. The components of the vector ∇ θ g θ (X 0 , h 0) from (4.1.2) with θ = θ 0 are linearly independent random variables.

The following Theorem 4.2.1 is an extension of [START_REF] Ip | The asymptotic convexity of the negative likelihood function of garch models[END_REF]

θ * n = arg min θ∈K L n (θ).
Local strong convexity is crucial for guaranteeing the convergence of an optimization algorithm, although some methods go beyond this point ([START_REF] Ward | Adagrad stepsizes: Sharp convergence over nonconvex landscapes, from any initialization[END_REF]). Thus, Theorem 4.2.1 is an essential result for computing the QMLE θ * n parameters of the model in (4.1.1)-(4.1.2). Nevertheless, to guarantee the property in (4.2.7), we need a sufficiently large (and maybe unbounded) random N , which depends on the true parameter vector θ 0 , the parameter estimates (θ * t), and the observations (X t). One often has a fixed size of observations in practice, so the iterative algorithm may not converge. To our experience, this phenomenon may occur when the true parameter vector θ 0 is close to the boundary of K, or if the initial values θ * 0 are far away from the true parameters θ 0 .

QML Estimation of GARCH(p,q) Parameters

The general class of conditionally heteroscedastic time series models includes the very popular ARCH and GARCH models. For more than three decades, these models have attracted considerable amounts of attention in the literature since their introduction. A process (X t) is called a GARCH(p, q) process with parameter vector θ = (ω, α 1 , . . . , α p , β 1 , . . . , β q) T , if it satisfies

   X t = σ t Z t , σ 2 t = ω + p i=1 α i X 2 t-i + q j=1 β j σ 2 t-j , (4.2.8)
where ω, α i , and β j for 1 ≤ i ≤ p and 1 ≤ j ≤ q are non-negative parameters ensuring the non-negativity of the conditional variance process (σ 2 t). The innovations (Z t) is a sequence of i.i.d. random variables with E[Z 0] = 0 and E[Z 2 0] = 1. Likewise, one can define an ARCH(p) process by setting β j = 0 for 1 ≤ j ≤ q in (4.2.8). The GARCH(p, q) process (X t) given in (4.2.8) has QL losses given by l t (θ) = 2 -1 (X 2 t / σ 2 t (θ) + log σ 2 t (θ)) with first-order derivative

∇ θ l t (θ) = ∇ θ σ 2 t (θ) σ 2 t (θ) -X 2 t 2 σ 4 t (θ) (4
.2.9)

Adaptive Recursive QML Estimation

Our recursive QML method relies on stochastic approximations introduced by [START_REF] Robbins | A stochastic approximation method[END_REF], which only requires the previous parameter estimate to update the parameter estimate using the new observation. We perform the first-order stochastic gradient method defined as

θ t = θ t-1 -η t-1 ∇ θ l t (θ t-1), (4.3.11)
where η t-1 > 0 is the step-size at the t -1 step, and ∇ θ l t (θ t-1) is the gradient using the X t observation and the QMLE estimate θ t-1 . This method is computationally efficient as it only requires a cost of O(d) per recursion. Depending on the number of observations, we have a trade-off between the accuracy of the recursive QML estimates and the time it takes to perform a parameter update ([START_REF] Bottou | The tradeoffs of large scale learning[END_REF]).

According to [START_REF] Robbins | A stochastic approximation method[END_REF], we must schedule the step-size such that ∞ t=1 η t = ∞ and ∞ t=1 η 2 t < ∞, but these bounds do not make the choice of an appropriate step-size η t easier in practice. A more suitable approach is an adaptive learning rate, which updates the step-size in (4.3.11) on the fly pursuant to the gradient ∇ θ l t (•). Thus, our choice of step-size η t have less impact on performance, making convergence more robust and lower the demand for manually fine-tuning. Such an approach is often used in settings of streaming data as generic methods are preferred. Adaptive and separate learning rates for each parameter was proposed by [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF] in their AdaGrad procedure. A different learning rate speeds up convergence in situations where the appropriate learning rates vary across parameters.

Other well-known examples of adaptive learning rates could be AdaDelta by [START_REF] Zeiler | Adadelta: an adaptive learning rate method[END_REF], RMSProp by [START_REF] Tieleman | Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude[END_REF] and ADAM by [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. As we may expect a lack of convexity, we select the AdaGrad algorithm since it has shown promising results in non-convex optimization ([START_REF] Ward | Adagrad stepsizes: Sharp convergence over nonconvex landscapes, from any initialization[END_REF]). The AdaGrad procedure is given by the updates

θ t = θ t-1 - η t i=1 ∇ θ l i (θ i-1) 2 + ϵ ∇ θ l t (θ t-1), (4.3.12)
where η > 0 is a constant learning rate and ϵ > 0 a small number ensuring positivity. Good default values are η = 0.1 and ϵ = 10 -8 , e.g., see AdaVol in Algorithm 4.1. Note ∇ θ l i (θ i-1) 2 denotes the element-wise square ∇ θ l i (θ i-1) ⊙ ∇ θ l i (θ i-1).

As the QL loss is defined only for θ n ∈ K, we will require that the recursive algorithm always takes values in K. [START_REF] Zinkevich | Online convex programming and generalized infinitesimal gradient ascent[END_REF] suggests we project our approximation θ n onto K, preventing large jumps and enforcing the convergence of our stochastic gradient method. By implementing this projection on (4.3.12), we have our method for updating estimates, namely The GARCH process (X t) parameters can be numerically challenging to estimate in empirical applications. The numerical optimization algorithms can quickly fail or converge to irregular solutions ([START_REF] Zumbach | The pitfalls in fitting garch (1, 1) processes[END_REF]). Therefore, examining the approximative QMLE θ * n must be made with a healthy amount of skepticism. A well-discussed problem for the GARCH(p, q) models is that the QMLE performs poorly for numerically small (but still positive) values of ω. The parameter ω is vital and often tricky to estimate. Stabilizing the estimation of ω would not only improve the ω estimate but also have a positive impact on the other model parameters.

θ t = P K   θ t-1 - η t i=1 ∇ θ l i (θ i-1) 2 + ϵ ∇ θ l t (θ t-1)   . (4
On way to overcome small values of ω for the GARCH(p, q) model is by scaling (X t) with some factor λ > 0 as we have homogeneity; let (X t) follow a GARCH(p, q) process with parameter vector θ = (ω, α 1 , . . . , α p , β 1 , . . . , β q) T and innovations (Z t). Then for any λ > 0, the process (√ λX t) is a GARCH(p, q) process with parameter vector θ = (λω, α 1 , . . . , α p , β 1 , . . . , β q) T and identical innovations (Z t).

However, we wish to avoid this form of inference in our recursive algorithm as one then needs to come up with a scaling parameter that has to be estimated beforehand. Instead, we circumvent this issue by introducing a concept called Variance Targeting Estimation (VTE) ([START_REF] Francq | Merits and drawbacks of variance targeting in garch models[END_REF]). We apply VTE for estimating ω by use of γ 2 , which is the unconditional variance estimated by the sample variance (as seen in (4.3.14)). Thus we have a two-step estimator where we estimate the sample variance γ 2 recursively, and the remaining parameters θ = (α 1 , . . . , α p , β 1 , . . . , β q) T are estimated by the QML method. Pseudo-code of the AdaVol algorithm is presented in Algorithm 4.1. The reparametrization is obtained by defining

ω = γ 2   1 - p i=1 α i - q j=1 β j   . (4.3.14)
The volatility process in the GARCH(p, q) process can then be rewritten as

(σ 2 t -γ 2) = p i=1 α i (X 2 t-i -γ 2) + q j=1 β j (σ 2 t-j -γ 2). (4.3.15)
Similarly, one can define an ARCH(p) process by setting β j = 0 for 1 ≤ j ≤ q. The GARCH(p, q) process (X t) in (4.3.15) has similar QL losses as before except ∇ θ σ 2 t (θ) in (4.2.9) and (4.2.10), where ϑ t (θ) is given as (X 2 t-1 -γ 2 , . . . , X 2 t-p -γ 2 , σ 2 t-1 (θ) -γ 2 , . . . , σ 2 t-q (θ) -γ 2) T ∈ R p+q and the parameter space is defined by K = (α 1 , . . . , α p , β 1 , . . . , β q) ∈ R p+q + p i=1 α i + q j=1 β j < 1 . The VTE is not a requirement for the recursive method, but it provides additional speed and numerical stability. Namely, the VTE ensures a consistent estimate of the long-run variance, even if the model is misspecified. Additionally, presuming γ is well estimated, we reduce the parameter space dimension and increase the speed of convergence of the recursive optimization routines.

Moreover, the geometry of the new set of optimization K allows the projection step in (4.3.13) to Section 4.4 performing learning rate evaluated on the first part of the observations. We use a fixed learning rate η = 0.1 across all applications (simulated and real-life observations) to avoid the learning rate's potential influence in our experiments. However, one should be aware of the versatility achieved with different learning rate choices. The choice of learning rates is cumbersome, as an excessive learning rate can cause the algorithm to deviate from the true parameter estimate. In contrast, a learning rate that is too small can lead to slow convergence. Nevertheless, a small learning rate may be preferred if one only wants to keep track of minor parameter estimation changes.

Simulations

All simulations are performed by the use of twenty thousand observations (n = 20000), and the simulated data (X t) is always generated using Gaussian innovations with zero mean and unit variance. To avoid possible bias due to the choice of the true parameter vector θ 0 and initial values θ 0 , θ 0 , we conduct our experiments using random parameter vectors θ 0 ∈ K and random initial guesses θ 0 , θ 0 ∈ K. These parameter vectors are drawn randomly from our parameter space K. The ω parameter is generated by taking a positive number from a uniform distribution, and then we multiply it with 10 -τ , where τ is some random positive integer up to eight. In this way, we cover a broad parameter domain while having parameter values close to the boundary. Similarly, the (α i) 1≤i≤p and (β j) 1≤j≤q parameters is generated from a uniform distribution with the condition of having p i=1 α i + q j=1 β j < 1. Note that the initial guesses θ 0 and θ 0 are generated the same way. Thus, when we mention random parameters for the rest of the paper, we refer to this generation procedure.

ARCH Models

As discussed earlier, the iterative QMLE approximation θ n performs poorly for numerically small ω > 0 values, which are often encountered in financial time series. Before moving on to the case of small ω parameter values, we have in Figure 4.1a the trajectories of both QMLE approximations using an ARCH(1) process with true parameter vector and initial values given by

θ 0 = ω α 1 = 2
1) T and θ n = (ω (n) , α (n) 1) T , when the true parameter ω = 2.0. Not surprisingly, our method experiences some fluctuations initially, but as the learning rate decreases, the fluctuation likewise evaporates, and within the first few thousand observations, we hit the true parameter values. Likewise, in Figure 4.1b, we have the QMLE approximations' trajectories for an ARCH(1) process, but now with true parameter vector and initial guess given as Here, in Figure 4.2a, we can see that AdaVol converges to the true parameter values with low sensitivity to the choice of initial values. Moreover, this convergence occurs within the first few thousand observations. However, in Figure 4.2b, we see the opposite in which θ n has convergence issues; it is consistently underestimating the ω parameter. Furthermore, the α 1 parameter range does not appear to be decreasing over time, and the range seems larger than AdaVol's.

As we observe the true volatility process (σ t) in this section, we can evaluate the predicted volatility processes' accuracy. We do this using the Mean Percentage Errors (MPE) given as where (σ t) is coming from AdaVol and (σ t) from the IQMLE approximation. Note that σ t 's estimation is the same as for the IQMLE approximation θ t , i.e., (σ t) (k-2000)+1≤t≤k is estimated using (X t) 1≤t≤k for k = 2000, 4000, . . . , n.

σ MPE = 1 n n t=1 σ t -σ t σ t and σ MPE = 1 n n t=1 σ t -σ t σ t , (4
In the rest of this section, we will use random parameters to generalize our studies, limiting the potential bias from having fixed parameters (See Section 4.4.1). Our routine is as follows: We draw a random true parameter vector θ 0 ∈ K from which we generate our observations (X t). Based on these observations (X t), we calculate our estimates using (a random) θ 0 = θ 0 ∈ K. Then, we evaluate our estimates using an accuracy score, e.g., MPE and MAPE. Finally, we repeat all these steps the desired number of times. Another way of measuring the accuracy can be made by studying the conditional quantiles using the recursive (σ t) and iterative (σ t) predicted volatility processes ([START_REF] Biau | Sequential quantile prediction of time series[END_REF]). Under the assumption of standard Gaussian innovations, X t is Gaussian with zero mean and variance σ 2 t . Thus, for any

n = (ω (n) , α (n) 1 , β (n) 1) T and θ n = (ω (n) , α (n) 1 , β (n) 1)
T for a GARCH(1, 1) model with the true parameter vector and initial guess given by

θ 0 =    ω α 1 β 1    =    1 • 10 -8 0.2 0.7    and θ 0 = θ 0 =    5 • 10 -8 0.1 0.8    . (4.4.22)
As for the ARCH(1) model, we observe a lower spread in the parameter trajectories coming from AdaVol θ n than from the IQMLE approximation θ n . Moreover, the iterative θ n is consistently overestimating the β 1 parameter (and underestimating the α 1 parameter), indicating a bias relative to the initial value. It is worth mentioning that even if all initial values are in the stationary region, i.e., θ 0 = θ 0 = θ 0 ∈ K, we still have a proper amount of fluctuation in the parameter trajectories.

As discussed before, this may partially be due to the volatility introduced by the gradient method and the flatness of the QL loss ([START_REF] Zumbach | The pitfalls in fitting garch (1, 1) processes[END_REF]). Nevertheless, our recursive method possesses a remarkable convergence already after the first few thousand observations.

The accuracy scores, namely MPE from (4.4.18) and MAPE from (4.4.19), can be found in Figure 4.6 for the GARCH(1, 1) model using random true parameter vector and random initial values in K. By comparing our methods using random initializations, we circumvent the possible bias from the initial guess, which we observed in Figure 4.5b for the iterative method. As in the ARCH(1) case, we obtain a lower spread for σ MPE than σ MPE . Nevertheless, one should still expect some probability of ending up with an irregular solution where the AdaVol algorithm fails to converge.

Application to the S&P500 Index

We apply our method on the S&P500 Index from January 1950 to September 2020, consisting of n = 17672 observations to test real-life data performance. We employ the GARCH(1, 1) model Figure 4.9: Log-returns r t of S&P500 Index (solid lines) and confidence intervals r ± 1.96 σ t and r ± 1.96 σ t (dotted lines) using the recursive σ t (blue) and iterative σ t (red) predicted volatilities, where r is the mean of the log-returns r t . From top to bottom, we have Jan. 1950 to Jan. 1952, Jan. 1985 to Jan. 1987, and Jan. 2019 to Sep. 2020.

and the iterative (σ t) volatility can be appraised with the use of the squared log-returns (r 2 t). We use the Mean Absolute Errors (MAE) defined by

σ 2 MAE = 1 n n t=1 |r 2 t -σ 2 t | and σ 2 MAE = 1 n n t=1 |r 2 t -σ 2 t |. (4.4.24)
In Table 4.2, we consider the MAEs for the same periods used in Figure 4.9, including for the full dataset. The results in Table 4.2 confirm our conclusions about Figure 4.9; the AdaVol method tracks the volatility better than the iterative method.

Conclusion

We proposed an adaptive approach to recursively estimate GARCH model parameters in a streaming setting using the VTE technique (AdaVol). AdaVol's design showed to produce resilient and adaptive estimates in our empirical investigations. The adaptation to time-varying parameters was a surprising advantage that appeared when we applied our method to real-life observations.

As the assumption of having constant estimates seems not to be the case for the stock indices we analyze, then it is beneficial to have the ability to adapt. One could facilitate this ability more by incorporating a rolling volatility estimation of γ instead of using the sample volatility. Combining this with a different learning rate than AdaGrad, which enables continuous learning (e.g., ADAM by [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]), could encourage adaptability.

Future Perspectives

We proved asymptotic local convexity of the QL function in general conditionally heteroscedastic time series models of multiplicative form. An interesting question arises: can one prove Theorem 4.2.1 for a bounded set of N observations? Expressed differently, can one find a N bounded, such that we have convergence/convexity of recursive algorithms, e.g., for the GARCH, EGARCH, and AGARCH models. To our knowledge, this has not been proved yet.

The stability of using our recursive approach to solve the QML problem could be improved by using a mini-batch approach. A mini-batch approach will lower each incremental volatility as one uses more observations per recursion to update the QML estimate. Applying a mini-batch method does not require much more computational power than the stochastic gradient descent, only O(bd),

where b is the number of observations used in each (mini-batch) recursion. Using more observations, we could achieve more consistency and smoothness in the estimation procedure's convergence while keeping favorable computational costs.

Furthermore, an accelerated convergence of our estimates could be obtained by recursion averaging, also called Polyak-Ruppert averaging, which is guaranteed under fairly relaxed conditions ([START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF]). This Polyak-Ruppert average estimate could be utilized solely or employed as a benchmark to detect structural breaks.

Finally, it could be interesting to extend all of these concepts around our work with Adavol to the multivariate case [START_REF] Laurent | On the forecasting accuracy of multivariate garch models[END_REF][START_REF] Pedersen | Multivariate variance targeting in the bekk-garch model[END_REF].

Proofs

Proof of Theorem 4.2.1. To prove local strong convexity for the approximate QL function L n using the approximate QMLE θ * n , we first list some bounds for the Hessians: under the regularity conditions on the derivatives of h t , then using (4.2.5), we can write is compact, the minimum of the continuous QL function E[l 0] exists. Moreover, as E[l 0] is a unique minimum at θ 0 under Assumption 4.2.1, we get

inf θ∈K ′ E[l 0 (θ)] > E[l 0 (θ 0)], a.s. From Assumption 4.2.2, we know that ∥n -1 L n -L 0 ∥ K ′ a.s.
-→ 0 as n → ∞. Hence, we have

inf θ∈K ′ n -1 L n (θ) a.s. -→ inf θ∈K ′ L 0 (θ),
where inf θ∈K ′ L 0 (θ) > E[l 0 (θ 0)]. Thus, the B(θ 0 , δ 0) gives us a unique global minimum of the QL function L n , i.e.,

inf θ∈K n -1 L n (θ) ≥ E[l 0 (θ 0)], a.s.,
where equality only is attained when θ = θ 0 .

Relative Speed Comparison

It is argued that the recursive procedure AdaVol is computationally advantageous as it only processes observations once. In order to illustrate this advantage, a relative computational speed comparison as in [START_REF] Sucarrat | garchx: Flexible and Robust GARCH-X Modelling[END_REF] is presented. The code is not optimized; it is solely for illustration purposes.

In the streaming data framework, the parameters are estimated recursively as described in Section 4.4. Meaning, for each t, the iterative estimate θ t is estimated using the observations (X i) 1≤i≤t and the previous iterative estimate θ t-1 as initialization.

An ARCH(1), GARCH(1, 1), and GARCH(2, 2) model is considered for the computational speed analysis. Table 4.3 shows the relative speed comparison for these models with sample sizes n = 1000

and n = 2000. The overall conclusion is that the AdaVol procedure is faster than the iterative one, e.g., the iterative estimation of a GARCH(

Conclusion and Future Perspectives

The central theme of this thesis was to learn from time-dependent streaming data. We examined the robustness and convergence guarantees of SG-based methods under different settings, covering many applications with dependence and biased gradients. Our analysis explored convergence rates of the stochastic streaming algorithms in a non-asymptotic manner. The theoretical results formed heuristics that links the level of dependency and convexity to the rest of the model parameters.

These heuristics provided new insights into determining optimal learning rates, which can help increase the stability of SG-based methods. Roughly speaking, SG-based methods brooked shortterm and even long-term dependence by using non-decreasing batch sizes, which counteracted the dependency structures. In particular, we showed that mini-batch is essential to break dependence and ensure convexity. In addition, we can accelerate convergence by simultaneously averaging. Our experimentation verified these investigations suggesting large streaming batches with slow decaying learning rates for highly dependent data sources. Moreover, in large-scale learning problems with dependence, noisy variables, and lack of convexity, we know how to achieve (and accelerate) convergence and reduce noise through the learning rate and the treatment pattern of the data.

Future perspectives. There are several ways to expand our work about stochastic algorithms: (a) we can extend our analysis to include streaming batches of any size (and not as a function of streaming batch size C ρ and streaming rates ρ). (b) an extension to non-strongly convex objectives could be advantageous as it will provide more insight into how we should choose our learning rates [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF][START_REF] Gadat | Optimal non-asymptotic bound of the ruppert-polyak averaging without strong convexity[END_REF][START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF]. (c) learning rates should be made adaptive so they are robust to poor initialization and require less tuning; an adaptive learning rate is essential for practitioners as it builds a form of universality across applications, e.g., see [START_REF] Duchi | Adaptive subgradient methods for online learning and stochastic optimization[END_REF][START_REF] Kingma | Adam: A method for stochastic optimization[END_REF]. (d) non-parametric analysis could improve our theoretical results for large values of d. (e) we have focused on results in quadratic mean but another way to strengthen our non-asymptotic guarantees could be high probability bounds [START_REF] Durmus | Tight high probability bounds for linear stochastic approximation with fixed stepsize[END_REF]; for any δ ∈ (0, 1), we could obtain bounds on the sequence {∥θ t -θ * ∥ : t ∈ N} that holds with probability at least 1 -δ. (f) concerning AdaVol, we need to prove that Adavol works in theory, both under stationarity and non-stationarity, which should also include the proof of Polyak-Ruppert averaging (under stationarity). (g) at last, it could be interesting to generalize our work to other time series models but especially to the multivariate case [START_REF] Laurent | On the forecasting accuracy of multivariate garch models[END_REF][START_REF] Pedersen | Multivariate variance targeting in the bekk-garch model[END_REF].

A.3 Data

Our objective is to identify market regimes on various asset classes, namely commodity (CO), currency (FX), equity (EQ), and fixed income (FI). We consider d = 15 instruments defined as I = (I 1 , . . . , I 15) T , consisting of four different instruments per asset type, except for commodities where we have only three instruments. All instruments I are future contracts generated automatically by selecting the nearest contract. The data analyzed are closing returns of daily frequency from January 2000 to October 2019, consisting of n = 4972 observations (per instrument).

Table A.1 presents an overview of the performance of each asset. This confirms a high degree of variation of the considered asset; commodities and equities are the most volatile asset classes, whereas fixed income volatility is several times lower. Currencies appear to be in the middle of the levels we observe for equities and fixed income. Fixed income seems to be the most coherent asset class, whereas we find some large variations in returns, volatility, and maximum drawdown in commodities. When the underlying parameters are believed to follow a random walk, it is natural to use exponential forgetting. One of the most popular methods for calculating moments is the Exponential Weighted Moving Moment (EWMM) method, which is applied extensively in many different fields due to its computational efficiency. This EWMM method is often used to reduce noisy time-series data, also called "smoothing" the data. We can define the EWMM i t of order i ∈ N at time t by

#

EWMM i t = λM i t + (1 -λ)EWMM i t-1 ,
where λ = 2 s+1 with s ∈ N defined as the span. For daily data, letting our span s = 5 would correspond to a half-life of 5 days. The choice of s can be seen as a smoothing factor where high (low) values of s would mean a high (low) degree of smoothing our time series. Using this method to calculate the well-known exponential weighted moving average of observations (x 1 , . . . , x n) is done by letting M 1 t = x t for t = 1, . . . , n. Furthermore, setting s = 2t -1 would give us the usual average estimate. Hence, there is a trade-off between the sensitivity to noise and its ability to adapt to parameter changes.

A.4.2 Feature Extraction

Our interest is to predict risk-adjusted returns, where we incorporate an adjustable hyperparameter that changes the stickiness of the regimes. We extract the features of our instruments I according to the description of EWMMs in Section A.4.1. Denote our features for the first and second moment by (f i s) i=1,2 = (EWMM i t) i=1,2 , where s denotes the feature span. All features (f i s) i=1,2 are normalized to zero mean and unit variance using a z-score normalization fitted on the training data. After normalization, we concatenate our features depending on the moment's order into one feature before passing it onto our HMM. Thus, our complete features space is f s = (f 1 s , f 2 s). The span s in our features f s will work as a smoothing factor and determine the frequency of regime shifts, namely the regime stickiness. The larger we make our smoothing factor s, the slower our features f s would change, making our hidden states more sticky, i.e., large diagonal values in the transition matrix A (See Section A.2.1). Thus, portfolio turnover will decrease.

There are different approaches in the literature on how to deal with this increased noise of hidden state prediction; the authors of [START_REF] Gupta | Stock market prediction using hidden markov models[END_REF] use the notion of latency days, in which they forecast the hidden states at time n + 1 using only the ten previous days of observations. Others detect a regime change by considering the number of consecutive days in the same new hidden state, given a rolling window of days (which one has to estimate/select). Intuitively, smaller window sizes will lead to a larger number of regime changes, whereas large window sizes will increase regimes' length.

Putting into an economic scenario, one would like to find a window size according to the preferences for turnover adjusted for transaction costs.

A.4.3 Prediction of Expected SR

The unsupervised classification computed by the HMM using our features f s = (f 1 s , f 2 s) results in some mean and variance estimates of every feature in each hidden state S. We aim to combine these resulting mean and variance estimates into a self-explanatory financial metric that reflects the underlying risk-adjusted returns.

Before defining the risk-adjusted return metric we need to introduce the following notions: let µ = {µ j } j=1,...,S denote the mean vectors and Σ = {Σ j } j=1,...,S the co-variance matrices with µ j = (µ j (f 1 s), µ j (f 2 s)) T ∈ R 2 and Σ j = Σ j (f 1 s , f 2 s) ∈ R 2×2 for j = 1, . . . , S. Thus, by dividing our mean estimate of our first moment by the mean estimate of the second moment at each hidden state, we have an Expected SR (ESR) in each hidden state called ESR j s . Meaning, for each hidden state j ∈ {1, . . . , S}, then ESR j s = µ j (f 1 s)/µ j (f 2 s) ∈ R. We denote by ESR S s the vector (ESR 1 s , . . . , ESR S s) T ∈ R S , where S is the number of hidden states in the HMM and s the span used to calculate our features.

We can use our ESR S s metric to predict an expected SR h ≥ 0 steps ahead by combining this with the estimated vector of state probabilities α and the transition matrix A. Recall from (A.2.3) that α n+h|n = α n|n A h , where α n|n is the vector of state probabilities at time n and A the transition matrix (given the sequence of observations (x 1 , . . . , x n)) with the jth entry (α n|n) j = P(z n = j|x) for j = 1, . . . , S. Hence, we can define the predicted ESR (PESR) metric by the product of PESR S s (h) = (ESR S s) T α n+h|n , (A. 4.4) where h ≥ 0 and PESR S s (h) ∈ R. This PESR S s (h) number tells us what SR to expect h ≥ 0 times ahead.

Summarizing, ESR S s is a vector containing an expected SR of each hidden state of our HMM. Thus, by incorporation the transition estimates, we obtain PESR S s (h) as a metric for predicting expected risk-adjusted returns h ≥ 0 steps ahead given the HMM with S hidden states. Both metrics are fitted on the features using span s, extracted from the past observations (x 1 , . . . , x n).

One may note that more elaborating functions could be made by including higher order of moments, incorporating the downside risk of returns. Extracting features using closing and opening prices, high and low prices, and volume may also be of interest, as long as the features are not linearly correlated.

A.5 Experiments

In our experiments, we divide the data set into three parts: training (up to the year 2012 ≈ twelve years), validation (the year 2012 to 2016 ≈ four years), and test set (from the year 2016 ≈ four years).

We train our HMM using the features f s = (f 1 s , f 2 s) extracted from our training data. Then we validate the (out-of-sample) performance by evaluating our model on the validation data. Selecting training data with suitable variability will help us improve the models' ability to generalize. Thus, we identify the desired pattern(s) in our training data, which explains our validation data's behavior the best. To avoid getting stuck in a local maximum, we select the HMM with the highest score over many trained models, where each model is randomly initialized.

Our goal is to enhance the risk-adjusted returns with the use of our proposed PESR metric PESR S s (h) from (A.4.4). We choose the number of hidden states relatively low to have high interpretability of each hidden state in our HMM. Thus, our choice is an HMM with three hidden states (S = 3), where the hidden states can be labeled as a bull, bear, and high volatility regime.

Our labeling comes from the fact that our estimated ESR metric outputs a positive, negative, and (close to) zero value, which can be labeled into a bull, bear, and high volatility regime. Our high volatility regimes have an estimated ESR metric close to zero as the estimated volatility dominates, i.e., µ j (f 2 s) is sufficiently larger than µ j (f 1 s) and µ j (f 1 s) is close to zero. We model the outcomes/predictions of the PESR metric PESR S s (h) into the two different holding strategies; a long-only strategy and long/short strategy. We will not restrict the turnover level, but we incorporate a transaction cost of 5bps for buying and selling. Lastly, as we are disallowing gearing, we cap our holdings onto the range [0, 1] for the long-only strategy and [-1, 1] for the long/short strategy. If we were to increase the number of hidden states (and/or adding other features) in our HMM, then the PESR metric's outcomes may be transformed into a more advanced holding strategy.

From our training and validation data, we observe that spans s ∈ {15, 30, 60} seems preferable to have some different levels of transitions within the four years of testing. Thus, we will in the next section consider span s ∈ {15, 30, 60}. This range of spans s would also illustrate how the choice of Table A.5: Realized performance metrics; annualized returns, annualized volatilities, Sharpe ratios, maximum drawdowns, and daily turnovers of long/short strategies PESR 3 s (1) s∈{15,30,60} in the test period from January 2016 to October 2019.

A.6 Discussion

HMMs have previously been applied to finance time series with great success but never on a broad class of assets, at least not to our knowledge. We proposed an asset independent three-state HMM for predicting risk-adjusted returns trained using only the first two moments as features.

The model outcome was combined into a metric for predicting expected SRs. Our investigation showed a proper ability to predict bull, bear, and high-volatility regimes, which lead to enhanced risk-adjusted returns (compared to buying the underlying asset) while keeping a preferable turnover level. However, this could be improved by fine-tuning the choice of span s as transaction costs could otherwise dominate.

As our findings were made using the entire test dataset to predict the hidden state sequence, our next focus will then be an extension to a setting in which we make incremental predictions of tomorrow's expected SR using only past information. As this may increase noise, we could increase our model's predictability by introducing time-varying parameters, i.e., an adaptive model where the model parameters are updated as new observations arrive (e.g., see [START_REF] Ford | Adaptive estimation of hmm transition probabilities[END_REF] and [START_REF] Nystrup | Long memory of financial time series and hidden markov models with time-varying parameters[END_REF]). Expanding this analysis with a larger group of features, e.g., volume, higher-order moments, short-term oscillators, and associated gradients, could be appealing. All this could be combined with the feature saliency HMM proposed by [2], which comprises the treatment of "irrelevant" features. As we only have positive terms, we can upper bound the term:

A.7 Cumulative Returns of HMM Strategies

1 ω t i=k   t j=i+1 [1 -ωγ j] - t j=i [1 -ωγ j]   ≤ 1 ω   1 - t j=k [1 -ωγ j]   ≤ 1
A t,2 = t 0 i=1 t j=i+1 [1 -2ωγ j + η j γ j] ν i γ i =   t j=t 0 +1 [1 -2ωγ j + η j γ j]   t 0 i=1 t 0 j=i+1 [1 -2ωγ j + η j γ j] ν i γ i ≤   t j=t 0 +1 [1 -ωγ j]   t 0 i=1 t 0 j=i+1 [1 + η j γ j] ν i γ i ≤ exp   -ω t j=t 0 +1 γ j   max 1≤i≤t 0 ν i η i t 0 i=1 t 0 j=i+1 [1 + η j γ j] η i γ i ≤ exp   -ω t j=t 0 +1 γ j   max 1≤i≤t 0 ν i η i exp t 0 i=1 η i γ i ≤ exp   -

Figure 1 . 1 :

 11 Figure 1.1: Learning schemes: large-and small-scale learning vs. learning from streaming data.

2 1+α σ 2

 2 Cγ µN α t and a sub-exponential term O(exp(-C δ N 1-α t

Chapter 1 Figure 1 . 2 :

 112 Figure 1.2: Geometric median for various data streams n t = C ρ t ρ . See Example 1.3.1 for details.

 (a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, C ρ = 1, β = 0 (c) Varying streaming batches, C ρ = 8, β = 0 (d) Varying streaming batches, C ρ = 64, β = 0 (e) Varying streaming batches, C ρ = 128, β = 0 (f) Varying streaming batches, C ρ = 8, β = 1/3

Figure 1 .

 1 Figure 1.3 shows the results of the geometric median estimated in the same way as described in Example 1.3.1; but here we compare our estimates to the geometric median estimate calculated

Figure 1 .

 1 Figure 1.3f with C ρ = 64, ρ > 0 and β = 1/3.

Chapter 1 Figure 1 . 3 :

 113 Figure 1.3: Geometric median for various data streams n t = C ρ t ρ . See Example 1.3.2 for details.

 (a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, C ρ = 1, β = 0 (c) Varying streaming batches, C ρ = 8, β = 0 (d) Varying streaming batches, C ρ = 64, β = 0 (e) Varying streaming batches, C ρ = 128, β = 0 (f) Varying streaming batches, C ρ = 64, β = 1/3

3 . 1 and 2 . 4 . 1 .

 31241 The figures show a solid decay rate proportional to α = 2/3 for any streaming batch size C ρ ∈ {1, 8, 64, 128} with β = 0, as shown in Corollary 2.3.1. In addition, we see an acceleration in decay by averaging, as explained in Corollary 2.4.1. Both methods show a noticeable reduction in variance when C ρ increases which are particularly beneficial in the beginning. Moreover, as mentioned in Remark 2.7.1, the stationary phase may also commence earlier when we raise the streaming batch size C ρ . Next, in Figures 2.1b

 to

 , and let α = 2/3.

Figure 2 .

 2 Figure2.2a shows the variance reduction effect for different constant streaming batches C ρ with β = 0. However, the robustness of the geometric median leaves only a small positive impact for further variance reduction. Thus, too large (constant) streaming batch sizes C ρ hinders the convergence as we make too few iterations. These findings can be extended to Figures 2.2b to 2.2e,

 to 2.2e, where we vary the streaming rate ρ for streaming batch sizes C ρ = 1, 8, 64, and 128, respectively, with β = 0. The lack of convergence improvements comes from β = 0, which means we do not exploit the potential of using more observations to accelerate convergence. As shown in Figure2.2f, we can achieve this acceleration by simply taking β = 1/3. In addition, β = 1/3 provides optimal convergence robust to any streaming rate ρ. Choosing a proper β > 0 is particularly important when C ρ is large, as robustness is an integral part of the geometric median method.

Figure 2 . 1 :

 21 Figure 2.1: Linear regression for various data streams n t = C ρ t ρ . See Section 2.5.1 for details.

3 Figure 2 . 2 :

 322 Figure 2.2: Geometric median for various data streams n t = C ρ t ρ . See Section 2.5.2 for details.(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, C ρ = 1, β = 0

Figure 2 . 3 :

 23 Figure 2.3: WASSG for various data streams n t = C ρ t ρ . See Section 2.6 for details.

 (a) Linear regression, varying streaming batches, C ρ = 8, β = 1/3 (b) Geometric median, varying streaming batches, C ρ = 8, β = 1/3

. 35)

 35 where δt = E[∥ θt -θ * ∥ 2], which can be simplified into (2.4.11) by shifting the indices and collecting the δ 0 terms. Proof of Corollary 2.4.1. As n t = C ρ for all t ≥ 1, we simplify the bound for δt in(2.4.11) to

 4.2 and 3.4.3. The streaming constant C ρ contributes positively to all terms in (3.3.7), either directly or though µ ν . The last term of (3.3.7) can be seen as the noise term decaying with O(N -(ρ(2σ-β)+α)/(1+ρ) t) for α -ρβ ∈ (1/2, 1), e.g., for any ρ ∈ [0, 1), δ t = O(N -2/3 t

 .4.1 to 3.4.3 can be found in Figure 3.1; here {C ρ = 1, ρ = 0} corresponds to the classical SG method and its (Polyak-Ruppert) average estimate, {C ρ = 64, ρ = 0} is a mini-batch SSG/ASSG, and {C ρ = 64, ρ = 1/2} is an increasing SSG/ASSG with initial batch size of C ρ = 64.

Figure 3 . 1 :

 31 Figure 3.1: Simulation of various data streams n t = C ρ t ρ . See Section 3.4 for details.

 (a) AR(1): well-specified case. See Section 3.4.1 for details. (b) AR(1): misspecified case. See Section 3.4.1 for details.(c) ARCH(1). See Section 3.4.2 for details. (d) AR(1)-ARCH(1). See Section 3.4.3 for details.

L

 n (θ) and approximate QL function L n (θ) are given by L n (θ) = n t=1 l t (θ) and L n (θ) =

4. 2 . 1

 21 Asymptotic Properties of the QL Function To establish the asymptotic local convexity of the QL function of the model described by (4.1.1)-(4.1.2), we need the following assumptions: Assumption 4.2.1, 4.2.2, and 4.2.3, which naturally emerges from the arguments and properties [138] made to ensure stability of the QL function and QMLE procedure. We will use two different matrix norms, namely, let ∥A∥ op denote the matrix operator norm of the matrix A ∈ R d×d with respect to the Euclidean norm, i.e., ∥A∥ op = sup v̸ =0 |Av|/|v|, and denote ∥A∥ K the norm of the continuous matrix-valued function A on K, i.e., ∥A∥ K = sup x∈K ∥A(x)∥ op , where K is a compact set of R d . Assumption 4.2.1. The model (4.1.1)-(4.1.2) with θ = θ 0 admits a unique stationary ergodic solution.

Figure 4 .

 4 Figure 4.1a shows a very reasonable convergence of both estimators, θ n = (ω (n) , α

Figure 4 . 1 :

 41 Figure 4.1: Trajectory of θ n (solid line) and θ n (semi-dotted line) for an ARCH(1) process with true parameter vector (dotted line) and initial guess given in sub-caption.

Figure 4 .

 4 Figure 4.1b indicates a modest convergence of θ n but shows slow convergence of α n towards the true α 1 parameter. In addition, α n seems biased concerning the initial value α 0 = 0.4 as it processes almost half of the observations before moving closer to the true α 1 = 0.6. A way of demonstrating the variation of θ n and θ n performance for small ω values is presented in Figure 4.2a and Figure 4.2b, where we have the average trajectory of one hundred trajectories with their corresponding boxplots showing the distribution of these one hundred trajectories.

 .4.18)

Figure 4 . 2 :

 42 Figure 4.2: Average trajectory (solid line) of one hundred θ n , θ n 's for an ARCH(1) process with true parameter vector (dotted line) and initial guess from (4.4.17). The boxplots shows the distribution of the one hundred trajectories.(a) (θ n) (b) (θ n)

Figure 4 . 4 :Figure 4 .

 444 Figure 4.4: Boxplots of one hundred QS α scores with α = {0.01, 0.02, . . . , 0.99} using an ARCH(1) model with random true parameter vector and initial value in K.

Figure 4 .

 4 Figure 4.7 presents the results of one hundred QS α scores with random true parameter vector and initial value in K. Again, the QS α scores are indistinguishable (even when the iterative method is forward-looking).

Figure 4 . 5 :

 45 Figure 4.5: Average trajectory (solid line) of one hundred θ n , θ n 's for a GARCH(1, 1) process with true parameter vector (dotted line) and initial guess given in (4.4.22). The boxplots shows the distribution of the one hundred trajectories.(a) (θ n) (b) (θ n)

Figure 4 . 6 :

 46 Figure 4.6: Boxplots of one hundred accuracy scores MPE (4.4.18) and MAPE (4.4.19) using a GARCH(1, 1) process with true parameter vector and random initial guess in K.

Figure 4 . 7 :

 47 Figure 4.7: Boxplots of one hundred QS α scores with α = {0.01, 0.02, . . . , 0.99} using the GARCH(1, 1) model with random true parameter vector and initial value in K. Stock Market Index Period CAC 40 (CAC) March 1990 -Sep. 2020 DAX 30 (DAX) Jan. 1988 -Sep. 2020 Dow Jones (DJIA) Feb. 1985 -Sep. 2020 NASDAQ Composite (NDAQ) Feb. 1971 -Sep. 2020 Nikkei 225 (NKY) Jan. 1965 -Sep. 2020 Russell 2000 (RUT) Nov. 1987 -Sep. 2020 Standard & Poor's 500 (S&P500) Jan. 1950 -Sep. 2020 Table 4.1: Overview of considered stock market indices including their observation periods. The observations consist of daily log-returns which are defined as log differences of the closing prices of the index between two consecutive days.

Figure 4 .

 4 Figure 4.10 contains the results of one hundred QS α scores using the recursive (σ t) and iterative (σ t) volatility process, respectively, with random initial values in K. Remarkably, AdaVol outperforms the iterative method, although the latter uses future information, i.e., (σ t) (k-2000)+1≤t≤k

Figure 4 .

 4 Figure 4.11: Log-returns r t of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (midright), NKY (bottom-left) and RUT (bottom-right) index (solid lines) and confidence intervals r ± 1.96 σ t and r ± 1.96 σ t (dotted lines) using the recursive σ t (blue) and iterative σ t (red) predicted volatilities, where r is the mean of the log-returns r t . The period is Jan. 2019 to Sep. 2020.

Figure 4 . 12 :

 412 Figure 4.12: Boxplots of one hundred QS α scores with the use of the recursive σ t and iterative σ t volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99}, using the GARCH(1, 1) model on the log-returns r t of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (mid-right), NKY (bottom-left) and RUT (bottom-right) index with random initial values in K.

Figure

 Figure A.1a-A.3c and Figure A.3d-A.5f shows the HMM strategies long-only and long/short, respectively, based on the outcomes of PESR 3 s (1) s∈{15,30,60} for the instruments I.

Figure A. 1 :Figure A. 2 :Figure A. 3 :Figure A. 4 :

 1234 Figure A.1: Cumulative returns HMM strategies in the test period from January 2016 to October 2019. (a) I 1 (CO1) (b) I 2 (CO2)

Figure A. 5 : 2 .[1 - 2)[1 -[1 -[1 -[1 -[1 -[1 -[1 -[1 -

 521211111111 Figure A.5: Cumulative returns HMM strategies in the test period from January 2016 to October 2019. (a) I 10 (EQ3) (b) I 11 (EQ4)

 Algorithm 1.1: Stochastic streaming gradient estimates (SSG/PSSG/ASSG/PASSG) Inputs : θ 0 ∈ Θ, project: True or False, average: True or False Outputs: θ t , θt (resulting estimates) θ0 = 0 for each t ≥ 1, a block of n t data arrives do θ t ← θ t-1 -γt

	nt	nt i=1 ∇ θ l t,i (θ t-1)
	if project is True then
	θ t ← P Θ (θ t)	/* project estimate */
	if average is True then
	θt ← (N t-1 /N

t) θt-1 + (n t /N t)θ t-1 /* average estimate */

In the same way as the streaming methods in (1.2.5) to (1.2.7), one can define the (full) batch gradient method in our streaming setting, given as

 are on the form C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1) such that n t ≥ 1 for all t. We will refer to ρ as the streaming rate. For the convenience of notation, let ρ = ρ1 {ρ≥0} . Denote δ t = E[∥θ t -θ * ∥ 2] for some δ 0 ≥ 0, where (θ t) follows (1.2.5) or (1.2.6).

		Section 1.3
	whereby we can make equivalent conclusions. However, the noise term in (1.3.13) is divided by
	C 1-α-β ρ	, implying we could achieve variance reduction by taking α + β ≤ 1. Thus taking a large
	streaming batch size C ρ will give us some variance reduction, but it will not increase the convergence
	rate, which is still determined by α ∈ (1/2, 1). Remark that too large streaming batch sizes C ρ
	would be unsuitable in practice as it would mean we would only take a few steps before convergence
	is achieved.
	These fixed-sized streaming batches are not the most realistic streaming setting. It is far more
	likely to vary in size depending on the data streams. Thus, let us now consider varying streaming
	batches where n t Theorem 1.3.3. Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there
	exists C ′′ δ > 0 such that for α -β ρ ∈ (1/2, 1), we have
		.3.13)
	Variance reduction. Not surprisingly, the bound in (1.3.13) has the same structure as (1.3.12),

 s., with i = 1, . . . , n t .

	Theorem 1.3.4. Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (1.2.7), where (θ t) follows (1.2.5) or
	(1.2.6). Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 4, and Assump-
	tion 1.3.4 hold true. Moreover, let (1.3.10) and (1.3.11) hold true. In addition, Assumption 1.3.5
	must hold true only if (θ t) follows (1.2.6). For α -β ρ ∈ (1/2, 1), we have	
	δ1/2 t	≤	Λ 1/2 t N 1/2	+ O(max{N t -1+ϕ/2	, N -ϕ t }),	(1.3.15)

 averaging. At last, experiments of our findings are illustrated. Let F t = σ(l i : i ≤ t) denote the natural filtration of the SO problem (1.2.4). (D ν ν t -dependence and B ν ν t -bias). Let θ 0 be F 0 -measurable. For each t ≥ 1, the random function ∇ θ l t (θ) is square-integrable, F t -measurable, and there exists a positive integer p such that for all F t-1 -measurable θ ∈ Θ,

	Assumption 1.3.6-p

 for some positive sequence (κ t) t≥1 . Assumption 1.3.8-p (σ t -gradient noise). There exists a positive integer p such that E[∥∇ θ l t (θ *)∥ p] ≤

	σ p t for some positive sequence (σ t) t≥1 .
	Assumption 1.3.6-p is on the form of mixing conditions for weakly dependence sequences, im-
	plying that dependence dilutes with the rate of ν t . It is possible to verify Assumption 1.3.6-p by
	using moment inequalities for partial sums of strongly mixing sequences [123]; we will refer to this
	as short-range dependence. Note that for any positive integer p, Assumption 1.3.6-p can be upper
	bounded by

 Corollary 6.1], we have that E[∥S t ∥ p] = O(n

		p/2 t),
	meaning, (1.3.17) is at most O(n	-p/2 t

 In this section, we continue to consider streaming-batches (n t) on the form C ρ t ρ but with ρ ∈ [0, 1) (compared to Section 1.3.2 where ρ ∈ (-1, 1)).

	Chapter 1	
	i.i.d. case is when ν → ∞. Stochastic Streaming Estimates	
	Theorem 1.3.5. Denote δ t = E[∥θ t -θ * ∥ 2] for some δ 0 ≥ 0, where (θ t) follows the recursion
	in (1.2.5) or (1.2.6). Assume that Assumptions 1.3.6-p to 1.3.8-p hold true for p = 2. Suppose
	and C κ , C σ > 0. Having, σ, κ ∈ [0, 1/2] follows directly from Godichon-Baggioni et al.
	[57], since σ = κ = 1/2 corresponds to the i.i.d. case, whereas σ, κ < 1/2 allows noisier outputs.
	Similarly, v t = 0 corresponds to the classical unbiased i.i.d. setting. Having ν t = n -ν t	means
	Assumption 1.3.6-p, allow so-called long-range dependence (also known as long memory or long-
	range persistence) when ν ∈ (0, 1/2) and short-range dependence when ν ∈ [1/2, ∞). Thus, the

 Suppose n t = C ρ t ρ with ρ ∈ [0, 1) and C ρ ∈ N, such that

	with θn given by (1.2.7), where (θ t) follows the recursion
	in (1.2.5) or (1.2.6). Assume that Assumptions 1.3.6-p to 1.3.8-p for p = 4 and Assumption 1.3.9
	hold true. Moreover, let (1.3.10) and (1.3.11) hold true. In addition, Assumption 1.3.10 must hold
	true if (θ t) follows the recursion in (1.2.6).

 1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we have

 2.1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, and Assumption 2.4.1, we have for any learning rate

 Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, and Assumption 2.4.1, we have

and ψ y x (t)/t = O(t -1) if x > 1. Hence, for any x, y ∈ R + , ψ y x (t)/t = Õ(t -(x+y)/(1+y)), where the Õ(•) notation hides logarithmic factors. Corollary 2.4.1 (ASSG, constant streaming batches). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from (2.2.1). Suppose γ t = C γ C β ρ t -α such that α ∈ (1/2, 1).

 Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, and Assumption 2.4.1, we have

-2 t). Corollary 2.4.2 (ASSG, varying streaming batches). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from (2.2.1). Suppose γ t = C γ n β t t -α where n t = C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1), such that α -β ρ ∈ (1/2, 1).

 1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, Assumptions 2.4.1 and 2.4.2, we have

 and α. Corollary 2.4.4 (PASSG, varying streaming batches). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from (2.2.2). Suppose γ t = C γ n β t t -α where n t = C ρ t ρ with C ρ ≥ 1 and ρ ∈ (-1, 1), such that α -β ρ ∈ (1/2, 1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, Assumptions 2.4.1 and 2.4.2, we have

	Chapter 2

 2 , (2.7.15) using ∥x + y∥ 2 ≤ 2(∥x∥ 2 + ∥y∥ 2). Next, for the second term in (2.7.14): as

 2 l + (n t -1)C 2 ∇)n -1 t γ t , and especially it dominates the constant C l . Proof of Corollary 2.3.1. By Theorem 2.3.1, we have the upper bound giving as

 2.7.2 Proofs for Section 2.4 Lemma 2.7.1 (ASSG/PASSG). Denote ∆ t = E[∥θ t -θ * ∥ 4] for some ∆ 0 ≥ 0, where (θ t) follows (2.2.1) or (2.2.2). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4 and Assumption 2.4.1, we have for any learning rate (γ t) that

 .7.22) To bound the second and fourth-order terms in(2.7.22), we would need to study the recursive sequences: firstly, utilizing the Lipschitz continuity of ∇ θ l t,i , together with Assumptions 2.3.2-p and 2.3.3-p, and that θ t-1 is F t-1 -measurable (Assumption 2.3.1), we obtain

 Finally, we can rewrite C 2 as C 2 = nt i<j,k<l,i̸ =k,j̸ =l,i=l,j̸ =k ⟨υ i υ j ⟩⟨υ k υ l ⟩

	nt
	+
	i<j,k<l,i̸ =k,j̸ =l,i̸ =l,j=k
	C 2,1

 4 n -3 t γ 4 t + 114σ 4 n -2 t 1 {n t >1} γ 4 t . (2.7.28) with ∆ t = E[∥θ t -θ * ∥ 4] for some ∆ 0 ≥ 0. By Proposition B.1.5, we achieve the (upper) bound of ∆ t in (2.7.28), given as

 1). Regarding Π ∆ t defined in (2.7.29), we can bound it by

 for Section 2.4.2

	Theorem 2.7.1 (PASSG). Denote δt = E[∥ θt -θ * ∥ 2] with (θt) given by (2.2.3) using (θ t) from
	(2.2.2). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, Assumptions 2.4.1
	and 2.4.2, we have for any learning rate (γ t) that

 using that the sequence (n t) is either constant or varying, meaning n t+1 /n t ≤ 2. Introduction . 60 3.2 Problem Formulation . 62 3.2.1 Quasi-strong Convex Objectives . 62 3.2.2 Stochastic Streaming Gradient Assumptions: Dependence, Biased Gradients, Expected Smoothness, and Gradient Noise 63 3.3 Convergence Analysis . 64 3.3.1 Stochastic Streaming Gradients . 65 3.3.2 Averaged Stochastic Streaming Gradients 66 3.4 Experiments . 68 3.4.1 AutoRegressive (AR) Model . 69 Model . 71 3.4.4 Discussion of Experiments . 71 3.5 Conclusion . 73 3.6 Proofs . 73 3.6.1 Proofs for Section 3.3.1 . 74 3.6.2 Proofs for Section 3.3.2 . 77

	Contents
	Proof of Corollary 2.4.3. The proof follows directly from Corollary 2.4.1 but with use of Theo-rem 2.7.1. Chapter 3: Learning from Time-dependent Streaming Data with Online Stochastic Algorithms Abstract We study stochastic algorithms in a streaming framework, trained on samples coming from a dependent data source. In this streaming framework, we analyze the convergence of Stochastic Gradient (SG) methods in a non-asymptotic manner; this includes various SG meth-3.1 3.4.2 AutoRegressive Conditional Heteroskedasticity (ARCH) Model . . 70
	ods such as the well-known stochastic gradient descent (i.e., Robbins-3.4.3 AutoRegressive (AR)-AutoRegressive Conditional Heteroskedastic-Proof of Corollary 2.4.4. The proof follows directly from Corollary 2.4.2 but with use of Theo-aged estimates (i.e., Polyak-Ruppert averaged). Our results form a rem 2.7.1. Monro algorithm), mini-batch SG methods, together with their aver-ity (ARCH)
	heuristic by linking the level of dependency and convexity to the rest
	of the model parameters. This heuristic provides new insights into
	choosing the optimal learning rate, which can help increase the stabil-
	ity of SG-based methods; these investigations suggest large streaming
	batches with slow decaying learning rates for highly dependent data
	sources.

 and Moulines[START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n)[END_REF], Necoara et al.[START_REF] Necoara | Linear convergence of first order methods for non-strongly convex optimization[END_REF], Nemirovski et al.[START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF].

	3.2.2 Stochastic Streaming Gradient Assumptions: Dependence, Biased Gradients, Expected Smooth-
	ness, and Gradient Noise
	We go beyond the classical assumptions that require unbiased (uniformly bounded) gradients
	by allowing the gradients to be dependent and biased estimates. Our aim is to non-asymptotically
	bound the SSG estimates (3.2.1) to (3.2.3) explicitly using the SO problem parameters. In order to
	do this, we let the natural filtration of the SO problem F

t = σ(l i : i ≤ t), and assume the following about the gradients (∇ θ l t): Assumption 3.2.1-p (D ν ν t -dependence and B ν ν t -bias). Let θ 0 be F 0 -measurable. For each t ≥ 1, the random function ∇ θ l t (θ) is square-integrable, F t -measurable, and there exists a positive integer

 123, Corollary 6.1], we have that E[∥S t ∥ p] = O(n

		p/2 t),
	meaning, (3.2.6) is at most O(n	-p/2 t

 Theorem 3.3.1. Denote δ t = E[∥θ t -θ * ∥ 2] for some δ 0 ≥ 0, where (θ t) follows the recursion in (3.2.1) or (3.2.2). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for p = 2. Suppose

 .3.7) with π t given in (3.6.22) such that π t = O(exp(-N Sketch of proof. Under Assumptions 3.2.1-p to 3.2.3-p with p = 2, it can be shown that (δ t) satisfies the recursive relation (3.6.20),

	(1+ρβ-α)/(1+ρ) t)).

 Then, for (α t) and (η t) decreasing, we have the upper bound on (ω t) given by

	ω t ≤ τ t +	1 λ	max t/2≤i≤t	β i ,	(3.6.15)

.

6.14)

with ω 0 ≥ 0 and λ > 0. Let C ω ≥ 1 be such that λα t ≤ 1 for all t ≥ t ω with t ω = inf{t ≥ 1 : C ω η t ≤ λ}.

 (∥a∥ p + ∥b∥ p) with p ∈ N, Assumptions 3.2.1-p and 3.2.2-p, and (3.3.8). Thus,

	Section 3.6
	2 p-1
	84

Cauchy-Schwarz inequality, Hölder's inequality, ∥a + b∥ p ≤

 , which established similar results for the likelihood function of GARCH models under the assumption that (X t) is strictly stationary and strongly mixing with geometric rate, and (Z t) is Gaussian. Solving the QML estimation problem in (4.2.3) for θ * n is known to be computationally heavy as one has to find the solution of a non-linear equation, namely (4.2.4). Nonetheless, Theorem 4.2.1 ensures the existence of an N such that we have a unique global QMLE θ * n for all n ≥ N . Theorem 4.2.1. Under Assumption 4.2.1, 4.2.2, and 4.2.3, there exist positive constants C, δ > 0, and a random positive integer N ∈ N such that g T H n (θ)g > Cg T g, ∀n ≥ N, a.s., (4.2.7)for all θ ∈ B(θ 0 , δ) and g ∈ R d \ {0}.

	The result above shows local strong convexity of the QL function L n . The following corollary
	arises from the proof of Theorem 4.2.1:
	Corollary 4.2.1. Under Assumption 4.2.1, 4.2.2, and 4.2.3, the QMLE θ * n exists and is unique,
	that is

 Boxplots of one hundred accuracy scores, MPE in (4.4.18) and MAPE in (4.4.19), can be found in Figure 4.3. In the top graph of Figure 4.3, one can observe the MPE (for both methods) is symmetric around zero, but σ MPE has a negative tail, meaning the iterative method may overestimate the volatility in some cases. Also, the spread of σ MPE is higher than the σ MPE , which is clearly seen by looking at σ MAPE in the bottom graph of Figure 4.3.

Table 4

 4 As the observation period spans over a long time, it is unlikely that the logreturn series is stationary. To exhibit AdaVol's ability to adapt to time-varying estimates, we begin

	by considering the S&P500 Index in Section 4.4.2. Afterward, in Section 4.4.2, we investigate the
	remaining six stock market indices presented in Table 4.1, namely the CAC, DAX, DJIA, NDAQ,
	NKY, and RUT index.

.1 shows an overview of the used stock market indices. All empirical studies use the GARCH(1, 1) model, but higher-order parameters may yield a better fit for some stock market indices.

Table 4 .

 4 1, 1) model is about 205 times slower. Another important observation is the relative speed for different sample sizes n, namely, the larger the sample size n, the greater the relative speed gain is for the AdaVol procedure.

	Model	n	AdaVol arch
	ARCH(1)	1000	1.00	163.64
		2000	1.00	190.12
	GARCH(1, 1) 1000	1.00	204.89
		2000	1.00	233.86
	GARCH(2, 2) 1000	1.00	322.33
		2000	1.00	328.50

3: Relative speed comparison between AdaVol (

[START_REF] Werge | Adavol. GitHub repository[END_REF]

) and arch version 4.15

([134]

). A value of 1.00 means the method is the fastest. A value of 163.64 means the estimation time of the method is 163.64 times larger than the fastest.

Table A .

 A 1: Performance overview (annualized return, annualized volatility, Sharpe ratio, and maximum drawdown) of our instruments I evaluated from January 2000 to October 2019. Note I ∈ R n×d with n = 4972 and d = 15.To further emphasize our instruments' diversity, we show the range (minimum; maximum) of the one-year rolling mean, standard deviation, skewness, and (excess) kurtosis in TableA.2. The instruments I show a considerable amount of variability, both within and across instrument types, with commodities showing the most variation and fixed income showing the least fluctuation. In particular, it is not abnormal that skewness exceeds one (in absolute terms), nor kurtosis is negative (platykurtic) or very positive (leptokurtic), e.g., CO2 have a kurtosis above thirty-five. -3.26;3.93) (5.09;23.69) (-3.63;2.20) (-0.42;19.33) 2 CO2 (-8.94;12.6) (14.01;58.96) (-1.01;4.15) (-0.64;35.64) 3 CO3 (-13.48;5.33) (8.61;56.73) (-2.54;1.79) (-0.69;11.50) 4 FX1 (-3.12;1.6) (2.7;13.02) (-4.18;0.97) (-0.66;25.85) 5 FX2 (-2.37;1.57) (2.35;12.07) (-1.36;1.10) (-0.61;6.59) 6 FX3 (-1.89;2.12) (2.67;11.58) (-2.29;2.65) (-0.36;13.96) 7 FX4 (-1.35;1.92) (2.07;9.87) (-0.88;1.30) (-0.70;4.62) 8 EQ1 (-5.55;2.61) (5.84;35.71) (-2.01;1.90) (-0.42;13.29) 9 EQ2 (-5.03;2.41) (4.66;32.84) (-1.41;1.21) (-0.56;5.26) 10 EQ3 (-8.62;4.55) (6.47;49.24) (-2.61;1.25) (-0.80;13.03) 11 EQ4 (-5.77;2.16) (3.64;39.59) (-4.05;1.49) (-0.43;22.06) .74;0.58) (0.48;4.49) (-4.34;2.24) (-0.49;26.33) Table A.2: Range (min; max) of one-year rolling mean, standard deviation, skewness and (excess) kurtosis of instruments I. Rolling mean and standard deviation are scaled by 10 3 .

	# Instr. Mean	Std.		Skew.	Kurt.
	1 CO1 (12 FI1 (-0.86;1.8) (1.66;8.11) (-1.40;1.39) (-0.75;6.52)
	13 FI2	(-0.62;1.34) (1.97;6.25) (-1.32;0.70) (-0.77;3.83)
	14 FI3	(-0.81;1.4) (1.94;7.3)	(-0.90;1.60) (-0.70;6.92)
	15 FI4	(-0				
		Instr.	Ret.		Vol.	SR	DD
	1	CO1	6.36% 17.23%	0.45 16.81%
	2	CO2	-20.19%	50.4%	-0.2 37.71%
	3	CO3	5.46% 36.12%	0.33 24.13%
	4	FX1	-0.83%	9.17% -0.04 10.83%
	5	FX2	-0.02%	9.58%	0.05	5.83%
	6	FX3	-1.82%	9.79% -0.14	8.29%
	7	FX4	-0.98%	7.96% -0.08	4.98%
	8	EQ1	1.1% 23.34%	0.16 18.39%
	9	EQ2	2.64%	18.1%	0.24 15.79%
	10 EQ3	1.08% 24.61%	0.17 27.98%
	11 EQ4	4.14% 18.67%	0.31 21.02%
	12 FI1	3.73%	5.91%	0.66	5.02%
	13 FI2	4.22%	5.24%	0.82	3.49%
	14 FI3	3.65%	5.88%	0.65	4.19%
	15 FI4	2.35%	3.05%	0.79	2.87%

A.4 Feature Engineering

A.4.1 Exponential Weighted Moving Moments

 -ωγ j] ≥ 0, showing the inequality in (B.1.2).Proposition B.1.3. Let (γ t) t≥1 and (η t) t≥1 be positive sequences. For any k ≤ t, we can obtain the (upper) bounds:with ω > 0. Furthermore, suppose that for all i ≥ k, ωγ i ≤ 1, then Proof of Proposition B.1.3. We obtain the inequality in (B.1.3) directly by Proposition B.1.1: ωγ j] η i γ i ≤ max Proposition B.1.4. Let (δ t) t≥0 , (γ t) t≥1 , (η t) t≥1 , and (ν t) t≥1 be some positive sequences satisfying the recursive relation:δ t ≤ (1 -2ωγ t + η t γ t) δ t-1 + ν t γ t , (B.1.5)with δ 0 ≥ 0 and ω > 0. Denote t 0 = inf {t ≥ 1 : η t ≤ ω}, and suppose that for all t ≥ t 0 + 1, one has ωγ t ≤ 1. Then, for γ t and η t decreasing, we have the upper bound on (δ t): = 0 if t/2 < t 0 .Proof of Proposition B.1.4. Applying the recursive relation from (B.1.5) t times, we derive:-2ωγ i + η i γ i] -2ωγ j + η j γ j] ν i γ i At ,where B t can be seen as a transient term only depending on the initialisation δ 0 , and a stationary term A t . The transient term B t can be divided into two products, before and after t 0 , -2ωγ i + η i γ i] = -2ωγ i + η i γ i] -2ωγ i + η i γ i] .Using that t 0 = inf {t ≥ 1 : η t ≤ ω}, and since for all t ≥ t 0 + 1, we have 2ωγ t -η t γ t ≥ ωγ t , it comes by applying the (simple) bound 1 + t ≤ exp(t) for all t ∈ R. We derive that Next, the stationary term A t can (similarly) be divided into two sums (after and before t 0):-2ωγ j + η j γ j] ν i γ i -ωγ j] ν i γ i = -ωγ j] ν i γ i + [1 -ωγ j] ν i γ i + max [1 -ωγ j]≤ exp(-ω t j=t/2 γ j) as 1 + t ≤ exp(t) for all t ∈ R. Thus, for all t ∈ R, = 0 if t/2 < t 0 . The second stationary term A t,2 can be bounded, thanks to Proposition B.1.1, as follows:

	ω max , t/2≤i≤t i=t 0 +1 γ i exp  ,  [1 + ωγ j] γ i j=k [1 t using t γ j t i=k t j=i+1 [1 -ωγ j] η i ≤ 1 ω max k≤i≤t η i . t i=k t j=i+1 [1 + k≤i≤t η i t i=k t j=i+1 ≤ 1 ω max k≤i≤t η i t j=k [1 + ωγ j] ≤ 1 ω max k≤i≤t η i exp   ω t j=k γ j   . Similarly, for the inequality in (B.1.4), we have δ t ≤ exp   -ω t i=t/2 γ i     exp t 0 i=1 η i γ i δ 0 + max 1≤i≤t 0 ν i η i + t/2-1 i=t 0 +1 ν i γ i   + 1 ω for all t ∈ N with the convention that t/2 t 0 δ t ≤ t i=1 i=1 j=i+1 [1 Bt δ 0 + t t i=1 i=t 0 +1 i=1 = exp -2ω t 0 i=1 γ i exp t 0 i=1 η i γ i exp -ω t i=t 0 +1 γ i ≤ exp -ω t i=1 i=1 ν i , (B.1.6) (B.1.3) (B.1.4) t 0 η i γ i B t ≤ exp   -ω t i=t/2 γ i   exp t 0 i=1 η i γ i . (B.1.7) A t = t i=t 0 +1 t j=i+1 [1 A t,1 + t 0 i=1 t j=i+1 [1 -2ωγ t 0 +1≤i≤t ν i t i=t 0 +1 t j=i+1 [1 -ωγ j] γ i = 1 ω max t 0 +1≤i≤t ν i ≤ 1 ω max t/2≤i≤t ν i , by Proposition B.1.3. Furthermore, if t/2 > t 0 + 1, we get A t,1 ≤ t i=t 0 +1 t j=i+1 [1 t/2-1 i=t 0 +1 t j=i+1 [1 t i=t/2 t j=i+1 [1 -ωγ j] ν i γ i ≤ t/2-1 i=t 0 +1 t j=t/2 t/2≤i≤t ν i t i=t/2 t j=i+1 [1 -ωγ j] γ i = t j=t/2 [1 -ωγ j] t/2-1 i=t 0 +1 ν i γ i + 1 ω max t/2≤i≤t ν i , [1 B t = t i=1 [1 t 0 i=1 [1 t i=t 0 +1 t 0 [1 -2ωγ i + η i γ i] t [1 -ωγ i] ≤ t 0 exp (-2ωγ i + η i γ i) t exp (-ωγ i) where t j=t/2 A t,1 ≤ exp   -ω t j=t/2 γ j   t/2-1 i=t 0 +1 ν i γ i + 1 ω max t/2≤i≤t ν i , (B.1.8) [1 B t ≤ t/2 where t 0
	j=k

t i=k t j=i+1 [1 + ωγ j] η i γ i ≤ 1 ω max k≤i≤t η i exp   ω t i=k t j=i+1 [1 -ωγ j] η i γ i ≤ max k≤i≤t η i t i=k t j=i+1 [1 -ωγ j] γ i ≤ 1 ω max k≤i≤t η i , by Proposition B.1.2. j + η j γ j] ν i γ i A t,2

.

The first stationary term A t,1 (with t > t 0) can be bounded as follows: if t/2 ≤ t 0 + 1, we have

A t,1 ≤ max

 ω Then, using the bound for A t,1 in (B.1.8) and A t,2 in (B.1.9), we can bound A t by Finally, combining the bound for B t in (B.1.7) and A t in (B.1.10), we achieve the bound for δ t ≤ B t δ 0 + A t , namely the upper bound in (B.1.6). The following proposition is a more simplistic but rougher version of the bound in Proposition B.1.4. Proposition B.1.5. Let (δ t) t≥0 , (γ t) t≥1 , (η t) t≥1 , and (ν t) t≥1 be some positive sequences satisfying the recursive relation in (B.1.5). Denote t 0 = inf {t ≥ 1 : η t ≤ ω}, and suppose that for all t ≥ t 0 +1, one has ωγ t ≤ 1. Then, for γ t and η t decreasing, we have for all t ∈ N, Proof of Proposition B.1.5. The resulting (upper) bound in (B.1.11) follows directly from (B.1.6) by noting that t 0 ≤ t, giving us

		t/2-1					t							
					ν i γ i ≤			ν i γ i ≤ max
		i=t 0 +1				i=1						
																		t j=1	γ j	  max 1≤i≤t 0	ν i η i	exp 2	t 0 i=1	η i γ i ,
	by the definition of t 0 , thus							
	A t,2 ≤ exp	  -ω	t j=1	γ j	  max 1≤i≤t 0	ν i η i	exp 2	t 0 i=1	η i γ i ≤ exp	  -ω	t j=t/2	γ j	  max 1≤i≤t 0	ν i η i	exp 2	t 0 i=1	η j γ j .
																		(B.1.9)
	A t ≤ exp	  -ω	t j=t/2	γ j	 	  exp 2	t 0 i=1	η j γ j max 1≤i≤t 0	ν i η i	+	t/2-1 i=t 0 +1	ν i γ i	  +	1 ω	max t/2≤i≤t	ν i .	(B.1.10)
	δ t ≤ exp	  -ω	t i=t/2	γ i	  exp 2	t i=1	η i γ i	δ 0 + 2 max 1≤i≤t	ν i η i	+	1 ω	max t/2≤i≤t	ν i .	(B.1.11)

1≤i≤t (ν i /η i) t i=1 η i γ i ≤ max 1≤i≤t (ν i /η i) exp(2 t i=1 η i γ i),

as (ν t) and (γ t) are positive sequences.

The ASG estimate is referring to the Polyak-Ruppert averaging estimate[START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF][START_REF] Ruppert | Efficient estimations from a slowly convergent robbins-monro process[END_REF].

AdaVol was recently ranked third among the best probability forecasters in the M6 financial forecast competition, e.g., see https://m6competition.com. The M6 competition will be live, lasting for twelve months, starting in February 2022 and ending a year later in 2023. Quarterly prizes will be awarded for each of the four quarters of the competition, of which we ranked third in the first quarter.

The derivation of the six-order moment can be found in Godichon-Baggioni[START_REF] Godichon-Baggioni | Estimating the geometric median in hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence[END_REF].

The historical hourly weather dataset can be found on https://www.kaggle.com/datasets/selfishgene/ historical-hourly-weather-data.

keywords: machine learning, large-scale, stochastic approximation, stochastic optimization, streaming data.

keywords: stochastic optimization, machine learning, stochastic algorithms, online learning, streaming, time-dependent data

You can't beat the system.

Later, in Section

3.3.2 for the averaged estimate (3.2.3), we assume in (3.3.8) that the function L has C∇-Lipschitz continuous gradients.

A modification of our average estimate to a weighted average version could improve convergence as it could limit the effect of poor initializations[START_REF] Boyer | On the asymptotic rate of convergence of stochastic newton algorithms and their weighted averaged versions[END_REF][START_REF] Mokkadem | A generalization of the averaging procedure: The use of two-time-scale algorithms[END_REF]. But despite this, we still achieve better convergence for the ASSG method.

Note thatt i=1 i 2ρ(β-κ)-2α ≤ (2α -2ρ(β -κ))/(2α -2ρ(β -κ) -1) and t i=1 i 2ρ(β-σ)-2α ≤ (2α -2ρ(βσ))/(2α -2ρ(β -σ) -1) as ν > 0, σ, κ ∈ [0, 1/2], ρ ∈ [0, 1), β ∈ [0,1], and α -ρβ ∈ (1/2, 1).

Acknowledgements

Assumption 3.3.2. Let D Θ = inf θ∈∂Θ ∥θ -θ * ∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover, there exists G Θ > 0 such that ∀t ≥ 1, sup θ∈Θ ∥∇ θ l t (θ)∥ 2 ≤ G 2 Θ a.s.

.

An explicit version of the bound is given in (3.6.37).

Sketch of proof. In Lemma 3.6.3, we conduct a general study of the Polyak-Ruppert averaging estimate (θt) defined in (3.2.3) for (γ t), (ν t), (κ t), (σ t) and (n t) on any form. Thus, Theorem 3.3.2 follows by Lemma 3.6.3 using the (specific) bounds of δ t = E[∥θ t -θ * ∥ 2] and ∆ t = E[∥θ t -θ * ∥ 4] in Theorem 3.3.1 (eq. (3.6.21)) and Lemma 3.6.2. Related work. Theorem 3.3.2 replicate the results of Godichon-Baggioni et al. [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF] with Λ/N t as leading term in the unbiased i.i.d. case. Thus, by averaging it is possible to achieve the incorrigible rate of O(N -1 t), e.g., this is always achieved in the unbiased case with σ = 1/2, even under shortrange dependence (i.e., when ν ≥ 1/2). Accelerated decay. Remark that each term in (3.3.10) is a direct consequence of Assumption 3.3.1. Furthermore, all terms of (3.3.10) are independent of the learning rate (γ t) but the two last terms are dependent on streaming batches through C ρ and ρ. As in Theorem 3.3.1, the positivity of µ ν is essential for all terms in (3.3.11) even if it does not appear directly. For objectives that lack convexity µ or have high levels of dependence D ν , we can only ensure convergence by increasing C ρ , i.e., ensuring positivity of µ ν ; this is illustrated in Sections 3.4.2 and 3.4.3 for ARCH models.

The first term of (3.3.11) decay at the rate O(max{N -(2+ρ(β+2σ)-α)/(1+ρ) t , N -2(ρ(2σ-β)+α)/(1+ρ) t }), which suggests choosing α, β such that α + ρ(2σ/3 -β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2 yields a decay of O(N -4/3 t) for any ρ. Thus, we can robustly achieve O(N -4/3 t) for any streaming rate ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. In general, the convergence is resilient to any streaming rate ρ by having α = 2/3 and β = 2σ/3. But taking β > 0 would damage the variance Chapter 3 with p = 2. Hence, applying the inequalities (3.6.18) and (3.6.19) to (3.6.17), yields

with µ ν = µ-1 {νt=C} 2D ν ν t > 0. Let C δ be the constant fulfilling the conditions of Proposition 3.6.1

such that C δ is chosen larger than

t , and n t = C ρ t ρ into the bound of Lemma 3.6.1 yields

(3.6.21) 4 If a, b, c > 0, p, q > 1 such that 1/p + 1/q = 1, then ab ≤ a p c p /p + b q /qc q .

to have that

using that ∥x + y∥ p ≤ 2 p-1 (∥x∥ p + ∥y∥ p) for any p ∈ N. Thus,

Next, using the same arguments as in the proof of Lemma 3.6.1, Young's inequality, and Assumption 3.2.1-p with p = 4, we have

such that the last term of (3.6.24) can be bounded as follows,

Indeed, inserting this into (3.6.24) gives us

which can be modified with use the indicator function that determines whether (ν t) is constant

Note that µ ν from Lemma 3.6.1 is lower bounded by µ ′ ν , and strictly lower bounded for

, which is possible as the sequence (ν t) is non-increasing, and (κ t) and (γ t) decrease. Hence, by applying Proposition 3.6.1 on (3.6.25), we obtain the desired bound for Chapter 4: AdaVol: An Adaptive Recursive Volatility Prediction Method Abstract Quasi-Maximum Likelihood (QML) procedures are theoretically appealing and widely used for statistical inference. While there are extensive references on QML estimation in batch settings, it has attracted little attention in streaming settings until recently. An investigation of the convergence properties of the QML procedure in a general conditionally heteroscedastic time series model is conducted, and the classical batch optimization routines extended to the framework of streaming and large-scale problems. An adaptive recursive estimation routine for GARCH models named AdaVol is presented. The AdaVol procedure relies on stochastic approximations combined with the technique of Variance Targeting Estimation (VTE). This recursive method has computationally efficient properties, while VTE alleviates some convergence difficulties encountered by the usual QML estimation due to a lack of convexity. Empirical results demonstrate a favorable trade-off between AdaVol's stability and the ability to adapt to time-varying estimates for real-life data. keywords : volatility models, quasi-likelihood, recursive algorithm, GARCH, prediction method, stock index Section 4.3 and second-order derivative

where ∇ θ σ 2 t (θ) = ϑ t (θ)+ q j=1 β j ∇ θ σ 2 t-j (θ) with ϑ t (θ) = (1, X 2 t-1 , . . . , X 2 t-p , σ 2 t-1 (θ), . . . , σ 2 t-q (θ)) T ∈ R p+q+1 and Hessian H n (θ) = n -1 n t=1 ∇ 2 θ l t (θ). The equations (4.2.8) creates a complicated probabilistic structure that is not easily understood, although it looks relatively simple. The conditions ensuring the existence and uniqueness of a stationary solution to the equations (4.2.8) for GARCH(1, 1) was provided by [START_REF] Nelson | Stationarity and persistence in the garch(1,1) model[END_REF]. [START_REF] Bougerol | Stationarity of GARCH processes and of some nonnegative time series[END_REF] later showed it for the GARCH(p, q) model using that GARCH(p, q) can be embedded in a Iterated Random Lipschitz Map (IRLM). See [START_REF] Bougerol | Kalman filtering with random coefficients and contractions[END_REF] for a formal definition of IRLMs.

We can illustrate the IRLM method on the GARCH(1, 1) model with parameter vector θ = (ω, α 1 , β 1) T . The IRLM for σ 2 t is then given by σ

Likewise, the ARCH(1) process (β 1 = 0) then requires E[log(α 1 Z 2 0)] < 0, which is the same as α < 2e ϵ ≈ 3.56 with Z 0 being Gaussian. Thus, the stationary condition is much weaker than the second-order stationary condition in which we require α 1 + β 1 < 1.

The statistical inference leads to further nontrivial problems since the exact distribution of (Z t) remains unspecified, and so one usually determines the likelihoods under the hypothesis of standard Gaussian innovations. Moreover, the volatility (σ t) is an unobserved quantity approximated by mimicking the recursion (4.2.8) with an initialization, for instance

showed under minimal assumptions that the QMLE is strongly consistent and asymptotically normal.

Furthermore, under Assumption 4.2.1-4.2.3, we have asymptotic local strong convexity of the QL function in GARCH(p, q) models by Theorem 4.2.1. However, the number of observations needed to guarantee local strong convexity vary. This can easily be seen by looking at the simplest case, namely when (X t) follows an ARCH(1) process with parameter vector θ = (ω, α 1) T . The volatility process

. Thus, the non-negativity of λ t,2 would ensure convexity at time t in our QML procedure. However, the probability of having convexity at each t is unlikely as

n is approximately 0.52 n with i.i.d. Gaussian innovations (Z t), i.e., (Z 2 t) is χ 2 -distributed with 1 degree of freedom. On the other hand, increasing the number of observations used at each iteration would increase the probability of having local strong convexity.

Chapter 4 Algorithm 4.1: AdaVol: Adaptive recursive QML estimation for GARCH(p, q) models using the technique of VTE.

Data: (X t) t≥1 (observations) Inputs : θ 0 (initial parameter vector), η = 0.1, ϵ = 10 -8 Outputs: θ t (resulting estimates), σ 2 t+1 (predicted volatility) initialize:

be efficiently implemented following [START_REF] Duchi | Efficient projections onto the l1-ball for learning in high dimensions[END_REF].

One should be aware that the VTE requires stronger assumptions for the existence of the variance and is likely to suffer from efficiency loss. [START_REF] Francq | Merits and drawbacks of variance targeting in garch models[END_REF] also showed that the VTE would never be asymptotically more accurate than the QMLE. Another drawback of using the VTE is the need for a finite fourth moment of the process (X t). Meaning, one would need α 1 < 0.57 for an ARCH(1) model using standard Gaussian noise as

These parameter bounds restrict the usefulness and range of applications for the VTE techniques. Fortunately, these constraints solely concern the batch setting.

Applications

In this section, we examine the AdaVol algorithm on simulated and real-life observations. Our implementation of AdaVol is provided in a repository at [START_REF] Werge | Adavol. GitHub repository[END_REF], and a relative speed comparison can be found in 4.7. We compare our approach to the Iterative QMLE (IQMLE) approximation θ n , which is estimated at every two thousand increments using all observations up to this point, i.e., (θ t) (k-2000)+1≤t≤k is estimated using (X t) 1≤t≤k for k = 2000, 4000, . . . , n. In this way, we illuminate the large-scale learning trade-off of applying our recursive method instead of the iterative method, which is forward-looking with up to two thousand observations ([START_REF] Bottou | The tradeoffs of large scale learning[END_REF]). As suggested by [START_REF] Ip | The asymptotic convexity of the negative likelihood function of garch models[END_REF], we use the (bounded) L-BFGS algorithm to solve the nonlinear optimization problem in (4.2.3) for θ n with initial guess θ 0 ∈ K. Our recursive QMLE approximation θ n is produced by the AdaVol algorithm (described in Algorithm 4.1). It takes our initial value θ 0 ∈ K, learning rate η = 0.1 and ϵ = 10 -8 as input. At last, for a fair comparison, we always use the same initial guess for both methods,

It is possible to customize AdaVol by tuning the learning parameter η, e.g., by choosing the best α ∈ (0, 1), the α-quantile of a Gaussian distribution N (0,

, where Φ -1 (α) is the α-quantile of the standard Gaussian distribution. We use the so-called α-quantile loss function proposed by [START_REF] Koenker | Regression quantiles[END_REF]: The α-quantile loss function ρ α using the volatility process σ t is defined as

with tilting parameter α ∈ (0, 1). The idea behind the α-quantile loss function is to penalize quantiles of low probability more for overestimation than for underestimation (and reversely for high probability quantiles). We evaluate across the α-quantile scores ρ α of (σ t) by the (normalized) cumulative α-quantile scoring function QS α : indicates no loss of generality in using our recursive method even though our estimates are calculated only once, making them more adaptable over time. Surprisingly, the iterative method is not superior, even when forward-looking (with up to two thousand observations).

Chapter 4

The QML trajectories can be seen in Figure 4.8. The produced AdaVol estimates

1) T experience some fluctuations initially, but as it vaporizes, it is clear that our estimates change over time. Most remarkable are the shifts our estimates make around some historical market crashes, e.g., Black Monday, the financial crisis, and COVID-19. The instant shift in our estimates is an appealing property for detecting structural breaks. It is noteworthy that the estimates of the IQMLE approximation θ n = (ω (n) , α In Figure 4.9, we have the log-returns r t of the S&P500 Index, and the confidence intervals r ± 1.96 σ t and r ± 1.96 σ t using the recursive σ t and iterative σ t predicted volatilities, where r is the mean of the log-returns r t . It seems that the recursive method σ t adapts more rapidly than the iterative one σ t to changes in the S&P500 Index observations r t . Especially in Figure 4.9, under the COVID-19 crisis, we encountered a period with a substantial volatility increase. Here, we observe σ t 's ability to track changing volatilities better than σ t .

In the absence of the true (unobserved) variance process (σ is estimated using (r t) 1≤t≤k for k = 2000, 4000, . . . , 16000, 17505. This indicates that one could achieve better performance using the recursive method, even if it only predicts volatility using previous information.

Other Stock Market Indices

We now extend our analysis to the remaining stock market indices from Table 4.1, namely the CAC, DAX, DJIA, NDAQ, NKY, and RUT index. In Figure 4.11, we can observe AdaVol's ability to adapt to time-varying parameters seems to hold for several stock market indices. These figures show a clear benefit in recursive estimation as it increases adaptivity that may be advantageous under a financial crisis such as the COVID-19.

These conclusions are confirmed in Figure 4.12, where we have one hundred QS α scores using the recursive (σ t) and iterative (σ t) volatility process with random initial values in K. As for the S&P500 Index (in Figure 4.10), our findings indicate that the recursive approach estimates the QS α quantiles better than the iterative method, both on average and with a lower spread.

The assumption of having an underlying data generation process with constant "true" parameters may not hold in real-life examples. Thus, AdaVol seems to have an advantage compared to the iterative method, as it estimates the parameters step-by-step. In contrast, the iterative method always has to estimate the parameters using all observations over an extensive period of time.

Especially, as

for all θ ∈ K.

From [138, Lemma 7.2], the asymptotic Hessian H 0 (θ 0) = E[∇ 2 θ l 0 (θ 0)] is a symmetric positive definite matrix a.s. under Assumption 4.2.3. As H 0 (θ) is the limit of the continuous matrix-valued function H n (θ), it is itself a continuous matrix-valued function. Thus, the eigenvalue function λ i 0 (θ) for 1 ≤ i ≤ d of H 0 (θ) is also continuous. The eigenvalues λ i 0 (θ 0) are positive real numbers with the smallest one λ min 0 (θ 0) denoted by

satisfying g T H 0 (θ 0)g ≥ λ min 0 (θ 0)g T g for all g ∈ R d \ {0}. To shorten the notation, we write with no ambiguity H 0 (θ 0) ⪰ λ min 0 (θ 0)I d where I d denotes the d-dimensional identity matrix. By continuity, λ min 0 (θ) is positive on a neighborhood B(θ 0 , δ) such there exist ϵ > 0 satisfying λ min 0 (θ 0) -ϵ > 0, meaning

for θ ∈ B(θ 0 , δ). Hence, for θ ∈ B(θ 0 , δ) and g ∈ R d \ {0}, we have

> C, a.s., using (4.6.27) for all n ≥ N by taking 0 < ϵ < 6 -1 λ min and letting C = 2 g T H n (θ)g > Cg T g, a.s., for all n ≥ N where B(θ 0 , δ 0) denotes the open ball around θ 0 with radius δ 0 > 0. For each element θ i ∈ K, we make an open ball B(θ i , δ i) for δ i > 0 such that the union of B(θ i , δ i) for all i only contains θ 0 once, i.e., θ 0 / ∈ B(θ i , δ i) for i ̸ = 0. As K is compact and contained in the union of all B(θ i , δ i), then there is a finite covering of

Appendix A: Predicting Risk-adjusted Returns using an Asset Independent Regime-switching Model

Abstract

Financial markets tend to switch between various market regimes over time, making stationarity-based models unsustainable. We construct a regime-switching model independent of asset classes for risk-adjusted return predictions based on hidden Markov models. This framework can distinguish between market regimes in a wide range of financial markets such as the commodity, currency, stock, and fixed income market. The proposed method employs sticky features that directly affect the regime stickiness and thereby changing turnover levels. An investigation of our metric for risk-adjusted return predictions is conducted by analyzing daily financial market changes for almost twenty years. Empirical demonstrations of out-of-sample observations obtain an accurate detection of bull, bear, and high volatility periods, improving risk-adjusted returns while keeping a preferable turnover level.

keywords:

hidden Markov model, financial time series, nonstationary, regime-switching, prediction markets, trading strategies

A.1 Introduction

Financial markets are known to shift between economic cycles; some of the most well-known regimes are the bull, bear, and high-volatility markets. Each of these market regimes may have financial characteristics unique to this particular regime. One of the most common methods of financial market analysis is time series analysis. Time series models are used to predict future prices, price changes, and volatilities in a wide range of financial markets. Some of the most famous models are the AutoRegressive Integrated Moving Average (ARIMA) models. However, analyzing financial time series through these traditional time series methods may result in misleading resolutions as they cannot embrace the nonlinear characteristics of financial time series, e.g., the stationarity assumption often seems dubious in practice. Therefore, non-stationary-based time series models are more suitable for financial time series. One could comprehend this by modifying these time series models by incorporating a time-dependent variable to adjust for the non-stationarity, e.g., the threshold autoregressive time series model.

Another way to capture financial markets' tendency to switch between regimes is the Hidden Markov Model (HMM), as it "only" assumes local or state-conditioned stationarity. Modeling times series data using HMMs became mainstream after [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF] and [START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF] applied it across many areas (e.g., speech recognition, medical applications, and text classification). The idea of making a Markovswitching approach to analyze financial time series became popular after [START_REF] Hamilton | A new approach to the economic analysis of nonstationary time series and the business cycle[END_REF] applied this approach to identify economic cycles of GNP levels. More recently, the HMM has been used to predict market regimes in the financial markets due to their ability to capture multiple characteristics from financial return series such as time-varying correlations, fat tails, volatility clustering, skewness, and kurtosis, while also providing reasonable approximations even for processes in which the underlying model is unknown ([8, 111, 112]). Besides, HMMs are advantageous as they allow ample interpretability of the results; thinking in market regimes is a natural approach for financial practitioners. Nevertheless, the lack of data availability makes the linking between investment purposes and business cycles a complex and challenging task. As the market regimes are not observable, one has to extract them from the time series. However, this extraction is not unambiguous, as some specific regimes may be up for discussion in the financial practitioner's community, e.g., high and low volatility regimes depend on the given risk-aversion. Consequently, we demand a model to apprehend the various economic sentiments of the financial markets.

Many researchers have applied HMMs to analyze and predict economic (non-linear) trends and future financial asset prices. [START_REF] Kritzman | Regime shifts: Implications for dynamic strategies[END_REF] studied an HMM with two states to predict regimes in market turbulence, inflation, and economic growth index. [START_REF] Hassan | Stock market forecasting using hidden markov model: A new approach[END_REF] and [START_REF] Nguyen | Hidden markov model for stock trading[END_REF] used the HMM to forecast prices in the stock market. A combination of open, close, low, and high prices was used in [START_REF] Gupta | Stock market prediction using hidden markov models[END_REF] for stock price prediction. All of the above references use four hidden states in their study on the stock market.

[61] and [START_REF] Fons | A novel dynamic asset allocation system using feature saliency hidden markov models for smart beta investing[END_REF] used a four-state and two-state HMM, respectively, in their studies of asset allocation decisions using various time series. As suggested by [START_REF] Guidolin | Size and value anomalies under regime shifts[END_REF], a range between two and four hidden states in the HMM is often encountered in financial studies. However, studies of applying HMMs to predict trends across a broad range of assets are sparse.

In this study, we focus on predicting risk-adjusted returns using a single regime-switching model.

Using only one HMM to analyze a wide range of assets, we enforce generalizations in the model. This framework is made with so-called "sticky" features that naturally enhance regime stickiness by an adjustable hyperparameter. Finally, we demonstrate our methodology on a broad range of asset classes by analyzing daily financial market changes for almost twenty years. The investigation illustrates our metric ability to predict risk-adjusted returns for different regime stickiness choices.

Our experiments are conducted using out-of-sample observations, showing an accurate detection of bull, bear, and high volatility periods, improving risk-adjusted returns while keeping a preferable turnover level.

A.2 Hidden Markov Models (HMMs)

There is much literature about HMMs, but to have the necessary notions, we briefly sketch the elements of the HMM, how to estimate the parameters, and select the number of hidden states in the HMMs. For a comprehensive introduction of the inference of HMMs, we refer to [START_REF] Zucchini | Hidden Markov Models for Time Series: An Introduction Using R[END_REF] and [START_REF] Murphy | Machine learning : a probabilistic perspective[END_REF].

A.2.1 Elements of HMM

The HMM is a probabilistic model in which a sequence of observations x = (x 1 , . . . , x n) with x t ∈ R d for t = 1, . . . , n is generated by a latent finite-state Markov chain z = (z 1 , . . . , z n). Denote by d the dimension of the observations. We call z the sequence of hidden states where z t ∈ {1, . . . , S} for t = 1, . . . , n with S the number of hidden states. The HMM can be specified by the initial probability vector π = {π i } i=1,...S ∈ R S , a transition probability matrix A = {A ij } i,j=1,...,S ∈ R S×S and the emission probabilities B which can be any distribution conditioned on the current hidden state. The parameters of the HMM are given by Λ = {π, A, B} and have to be estimated from the observed sequence x. Note that π i = P(z 1 = i) is the probability for being in hidden state i at time

is the transition probability of moving from hidden state i at time t -1 to hidden state j at time t with S j=1 A ij = 1, and B is the parameters of the conditional densities p(x t |z t = j).

When working with financial time series, a typical choice of emission probabilities is the Gaussian Mixture Model (GMM). However, other density functions could likewise be considered. A gentle introduction of HMMs with GMM emissions is made in [START_REF] Bilmes | A gentle tutorial of the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models[END_REF]. The authors of [START_REF] Ang | Regime changes and financial markets[END_REF] and [START_REF] Nystrup | Stylised facts of financial time series and hidden markov models in continuous time[END_REF] show evidence on the HMMs ability to comprehend several stylized facts, such as leptokurtosis, heteroskedasticity, skewness, and time-varying correlations, by use of the GMM as emission probability. For simplicity, we assume the distribution of emission probabilities B to be Gaussian; B = p(x t |z t = j, Λ) = N (x t |µ j , Σ j) where µ = {µ j } j=1,...,S is the mean vectors and Σ = {Σ j } j=1,...,S the co-variance matrices with µ j ∈ R d and Σ j ∈ R d×d for j = 1, . . . , S. Thus, the model parameters of our HMM is given as Λ = {π, A, µ, Σ}.

A.2.2 Parameter Estimation

There are three fundamental problems in estimating the HMM:

• Given the observations sequence x = (x 1 , . . . , x n) and HMM parameters Λ = {π, A, µ, Σ}, how can we estimate P(x|Λ) the likelihood of the given observation sequence.

• Given the observations sequence x = (x 1 , . . . , x n) and model parameters Λ = {π, A, µ, Σ}, how can we choose a sequence of hidden states z = (z 1 , . . . , z n), which is optimal.

• How do we adjust the HMM parameters Λ = {π, A, µ, Σ} to maximize P(x|Λ).

There are several approaches to solve these problems since there are several possible optimal criteria. We choose to solve the first and the second problem by the dynamic programming algorithms known as the forward-backward algorithm proposed by [START_REF] Baum | An inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology[END_REF] and [START_REF] Baum | Growth transformations for functions on manifolds[END_REF], and the Viterbi algorithm ([START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF]). The third problem is solved by the iterative Baum-Welch (BW) algorithm, a type of the Expectation-Maximization (EM) algorithm ([START_REF] Rabiner | A tutorial on hidden markov models and selected applications in speech recognition[END_REF]).

The BW algorithm alternates between an expectation step and a maximization step until convergence is reached, often abbreviated as the E-step and M-step. In the E-step, we calculate the expected log-likelihood of the hidden state given the observation sequence x and model parameters Λ. Next, in the M-step we maximize the expected log-likelihood from the E-step to update our model parameters Λ. We denote by Q(Λ, Λ) the function of the expectation of the complete log-likelihood given as

where the current model is Λ and the previous model as Λ.

It can be proven that P(x|Λ) ≥ P(x| Λ), but it is essential to remember that the BW algorithm does not guarantee a global solution. As suggested in [2] and [START_REF] Fons | A novel dynamic asset allocation system using feature saliency hidden markov models for smart beta investing[END_REF], we modify the Q(Λ, Λ) function with the priors of the model parameters G(Λ), namely

which is called Maximum a Posteriori (MAP) estimation ([START_REF] Gauvain | Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains[END_REF]). Thus, in the E-step, we calculate the Q(Λ, Λ) function from (A.2.1), and for the M-step, we maximize (A.2.2).

A.2.3 Prediction

The prediction of the hidden states sequence (z 1 , . . . , z n) is estimated using the observation sequence (x 1 , . . . , x n) as described in Section A.2.2. We denote by α n|n the vector of state probabilities at time n (given the sequence of observations x = (x 1 , . . . , x n)) with the jth entry (α n|n) j = P(z n = j|x) for j = 1, . . . , S. Thus, one can forecast the state probability h ≥ 0 steps ahead by

as the model parameters A are assumed to be constant over time.

A.2.4 Model Selection

A drawback of using the HMM is the necessity of knowing the number of hidden states in advance (such as the hyper-parameter k in the k-nearest neighbor algorithm and k-means clustering). There are several criteria used for this model selection: the lazy approach is to use statistical criteria such as the Akaike's Information Criterion (AIC) by [START_REF] Akaike | A new look at the statistical model identification[END_REF], Bayesian Information Criterion (BIC) by [START_REF] Schwarz | Estimating the dimension of a model[END_REF],

Hannan-Quinn Information Criterion (HQIC) by [START_REF] Hannan | The determination of the order of an autoregression[END_REF], and Bozdogan Consistent Akaike Information Criterion (BCAIC) by [START_REF] Bozdogan | Model selection and akaike's information criterion (aic): The general theory and its analytical extensions[END_REF]. These criteria are defined as follows:

where log(L) is the log-likelihood of the model, n indicates the number of observations in the time series, and p denotes the number of independent parameters of the model. In the case of an HMM with GMM emissions, we have p = S(S +cm), where S is the number of hidden states in the Markov chain of the model, m is the number of Gaussian mixtures, and c is the number of parameters of the underlying distribution of the observation process. Note that a d-dimensional multivariate Gaussian with full covariance matrix process has c = d + d(d + 1)/2 parameters to estimate. Thus, an HMM with three hidden states (S = 3), a single 2-dimensional Gaussian process in each hidden state, has a total of 24 parameters.

Suppose one were to see the number of hidden states as the number of strategies we have to make to produce proper predictions. Then the number should be neither too small nor too large. If the number of hidden states is too small, then the risk of misclassification will increase. Too many hidden states will make the distinction between each hidden state vague and, therefore, increase the risk for overfitting and increase the computational cost. A similar observation can be made regarding the number of Gaussian mixture components.

However, if one wishes to maintain a high degree of interpretability of the hidden states in the model, we should keep the number of hidden states low. Another approach is the greedy approach, where we decide the number of hidden states in the HMM by constructing different portfolios based on HMMs with different numbers of hidden states and then select the number of hidden states associated with the portfolios of the best performance, e.g., evaluated by the Sharpe Ratio (SR).

One should be aware that we may find different optimal numbers of states for each asset using these criteria.

span affects our method's regime stickiness. Recall that the choice of span s will directly affect the turnover, meaning a lower span s may increase (absolute) performance and lower regime stickiness, i.e., increase the level of turnover.

All results in the following section are made using the (out-of-sample) test period from January 2016 to October 2019. Before we move to the results of our experiments, then we may need an overview of the instrument's performance metrics to compare with the outcome of our strategies.

In Table A

A.5.1 Results

The results of our long-only strategy based on the outcomes of PESR 3 s (1) s∈{15,30,60} are presented in Table A.4. Table A.4 confirms our claim that lower (higher) levels of span s delivers a higher (lower) level of turnover. However, different choices of span s affect the performance metrics individually due to both the "true" length of market regimes and the transaction costs. If we consider span s = 30, then what first comes to mind is that all (annualized) returns are positive with slightly lower (annualized) volatility leading to an improved SR, now above one for all assets (except from FX1, which have a SR of 0.86). Furthermore, CO1, EQ4, and FI1, now have a SR above two.

The daily turnover range from 1.64% to 4.08%, giving an investment horizon of approximately 25 to over 60 days. Thus, one would have a monthly re-balancing scheme for this long-only strategy.

The overall results presented in Table A. 4 show a convincing improvement of SR with a feasible turnover rate (which can be changed after preferences through the selection of span s). Nevertheless, we cannot guarantee that the cumulative return will be improved using our PESR metric, as the aim is to improve risk-adjusted returns. FI4 is an example of this as we see an improved SR but not a cumulative return. In such cases, additional span sizes should be included to embrace these assets. Several factors affect the investment strategy, but the choice of span s has a significant influence since it operates as a smoothing factor and determines the regime shifts' frequency (i.e., the regime stickiness). Thus, assets with low volatility may not require much smoothing, suggesting that we should use higher levels of span s. In addition, transaction costs play a significant role as the absolute returns are small.

Long-only PESR A.5, we have the results of our long/short strategy; this strategy seems to provide larger (absolute) returns but with increased volatility, leading to a lower SR than for the long-only strategy. This means the short leg of our strategies adds some more volatility to the strategy.

Next, in Table

Naturally, as we can be short now, this leads to increasing daily turnover, e.g., for span s = 30, the turnover now ranges from 3.37% to 7.34% giving an investment horizon of approximately 15 to 30 days. As the turnover increase, the same do transaction costs, which for some strategies/assets may represent a significant part of the overall performance. Particularly, FI4 has a negative SR (and cumulative return), however, with lower volatility than the asset itself. Time-series plots of cumulative returns of each instrument I for both HMM strategies (long-only and long/short) can be found in A.7, including their corresponding holdings. These figures show that we mostly shift between the bull and bear regime, and only in the high volatility state for some short periods. Overall, as we seek to increase our risk-adjusted returns, then the long-only strategy would be preferred. However, if we relaxed our risk-aversion, we could maximize total return using the long/short strategy.

Appendix B: Technical Results and Their Proofs

B.1 Outline

This chapter contains purely technical results used in the proofs presented in Chapters 2 and 3 [START_REF] Godichon-Baggioni | Non-asymptotic analysis of stochastic approximation algorithms for streaming data[END_REF][START_REF] Godichon-Baggioni | Learning from timedependent streaming data with online stochastic algorithms[END_REF]. In what follows, we use the conventions inf ∅ = 0, 0 t=1 = 0 and 0 t=1 = 1.

Proposition B.1.1. Let (γ t) t≥1 be a positive sequence. For any k ≤ t, and ω > 0, we have