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"Sometimes I’ll start a sentence and
I don’t even know where it’s going.
I just hope I find it along the way."

Michael Scott, The Office (US).





Abstract

Learning from time-dependent streaming data with online stochastic algorithms

In recent decades, intelligent systems, such as machine learning and artificial intelligence, have
become mainstream in many parts of society. However, many of these methods often work in a batch
or offline learning setting, where the model is re-trained from scratch when new data arrives. Such
learning methods suffer some critical drawbacks, such as expensive re-training costs when dealing
with new data and thus poor scalability for large-scale and real-world applications. At the same
time, these intelligent systems generate a practically infinite amount of large datasets, many of which
come as a continuous stream of data, so-called streaming data. Therefore, first-order methods with
low per-iteration computational costs have become predominant in the literature in recent years, in
particular the Stochastic Gradient (SG) descent [124]. These SG methods have proven scalable and
robust in many areas ranging from smooth and strongly convex problems to complex non-convex
ones, which makes them applicable in many learning tasks for real-world applications where data
are large in size (and dimension) and arrive at a high velocity. Such first-order methods have been
intensively studied in theory and practice in recent years [21]. Nevertheless, there is still a lack of
theoretical understanding of how dependence and biases affect these learning algorithms.

A central theme in this thesis is to learn from time-dependent streaming data and examine how
changing data streams affect learning. To achieve this, we first construct the Stochastic Streaming
Gradient (SSG) algorithm, which can handle streaming data; this includes several SG-based meth-
ods, such as the well-known SG descent and mini-batch methods, along with their Polyak-Ruppert
average estimates [118, 129]. The SSG combines SG-based methods’ applicability, computational
benefits, variance-reducing properties through mini-batching, and the accelerated convergence from
Polyak-Ruppert averaging. Our analysis links the dependency and convexity level, enabling us to
improve convergence. Roughly speaking, SSG methods can converge using non-decreasing streaming
batches, which break long-term and short-term dependence, even using biased gradient estimates.
More surprisingly, these results form a heuristic that can help increase the stability of SSG methods
in practice. In particular, our analysis reveals how noise reduction and accelerated convergence
can be achieved by processing the dataset in a specific pattern, which is beneficial for large-scale
learning problems.

At last, we propose an online adaptive recursive estimation routine for Generalized AutoRegres-
sive Conditional Heteroskedasticity (GARCH) models called AdaVol. The AdaVol procedure relies
on stochastic algorithms combined with Variance Targeting Estimation (VTE); AdaVol has com-
putationally efficient properties, while VTE overcomes some convergence difficulties due to the lack
of convexity of the Quasi-Maximum Likelihood (QML) procedure. Empirical demonstrations show
favorable trade-offs between AdaVol’s stability and its ability to adapt to time-varying estimates.

Keywords: stochastic optimization, machine learning, stochastic algorithms, online learning,
streaming, time-dependent data





Résumé

Apprentissage à partir de données en continu dépendant du temps avec des
algorithmes stochastiques en ligne

Au cours des dernières décennies, les systèmes intelligents, tels que l’apprentissage automatique
et l’intelligence artificielle, se sont imposés dans de nombreux secteurs de la société. Cependant, bon
nombre de ces méthodes fonctionnent souvent dans un cadre d’apprentissage batch ou hors ligne,
où le modèle est réentraîné à partir de zéro lorsque de nouvelles données arrivent. Ces méthodes
d’apprentissage présentent des inconvénients majeurs, tels que des coûts de réentraînement élevés en
cas de nouvelles données, et donc une faible adaptabilité aux données massives et en pratique. Dans
le même temps, ces systèmes intelligents génèrent une quantité pratiquement infinie de grands jeux
de données, dont beaucoup se présentent sous la forme d’un flux quasi-continu de données, appelé
streaming. C’est pourquoi les méthodes du premier ordre à faible coût de calcul par itération
sont devenues prédominantes dans la littérature ces dernières années, en particulier la descente de
gradient stochastique (SG) [124]. Ces méthodes SG sont adaptées et robustes dans de nombreux
domaines allant de problèmes lisses et fortement convexes aux problèmes complexes non convexes,
ce qui les rend applicables à de nombreuses tâches d’apprentissage pour des applications réelles où
les données sont de grande taille (et de grande dimension) et arrivent à une vitesse élevée. Ces
méthodes du premier ordre ont été intensivement étudiées en théorie et en pratique au cours des
dernières années [21]. Néanmoins, il y a encore un manque de compréhension théorique sur la façon
dont la dépendance et le biais affectent ces algorithmes d’apprentissage.

Un thème central de cette thèse est d’apprendre à partir de données en streaming dépendantes
du temps et d’examiner comment les flux de données changeants affectent l’apprentissage. Pour y
parvenir, nous construisons d’abord l’algorithme de gradient stochastique en streaming (SSG), qui
peut gérer des données quasi-continues ; il comprend diverses méthodes SG, telles que la descente
SG (c’est-à-dire l’algorithme de Robbins-Monro), les méthodes SG à mini-batch, ainsi que leurs
estimations moyennes Polyak-Ruppert [118, 129]. La descente SSG combine l’applicabilité des
méthodes fondées sur les SG, les avantages en termes de calcul, les propriétés de réduction de la
variance grâce au mini-batching, et la convergence accélérée grâce à la moyénisation de Polyak-
Ruppert. Notre analyse repose sur le niveau de dépendance et de convexité du problème, et nous
permet d’améliorer la convergence. En résumé, les méthodes SSG peuvent converger en utilisant des
mini-batchs de tailles croissante en streaming, qui rompent la dépendance à long terme et à court
terme, et ce, même en utilisant des estimations de gradient biaisées. De manière plus surprenante,
ces résultats forment une heuristique qui peut aider à augmenter la stabilité des méthodes SSG en
pratique. En particulier, notre analyse révèle comment une réduction du bruit et une convergence
accélérée peuvent être obtenues en traitant l’ensemble de données selon une procédure spécifique,
ce qui est bénéfique pour les problèmes d’apprentissage à grande échelle.

Enfin, nous proposons une méthode d’estimation récursive adaptative en ligne pour les modèles
GARCH appelée AdaVol. La procédure AdaVol repose sur des algorithmes stochastiques combinés
à la méthode de ciblage de la variance (VTE) ; AdaVol présente des propriétés efficaces sur le
plan du calcul grâce à la VTE qui permet de surmonter certaines difficultés de convergence dues au
manque de convexité de la procédure de vraisemblance quasi-maximale (QML). Des démonstrations
empiriques montrent des compromis favorables entre la stabilité d’AdaVol et sa capacité à s’adapter
à des estimations variant dans le temps.

Mots clés: optimisation stochastique, apprentissage automatique, algorithmes stochastiques, ap-
prentissage en ligne, streaming, données dépendantes
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1.1 Learning from Streaming Data

Machine learning and intelligent systems have become an integral part of modern society, e.g.,
through online learning, deep learning, reinforcement learning and supervised learning [59, 70,
71, 140]. This interest is particularly driven by readily available datasets of enormous size and
increasingly powerful and cheaper computer systems. Many of these systems follow the traditional
learning scheme where we observe an entire dataset, build our model and then predict/label new
observations, e.g., see the left-hand side of Figure 1.1. At the same time, the use of these intelligent
systems generates a practically infinite amount of large-scale datasets, many of which come as a
continuous data stream, so-called streaming data, such as internet traffic (e.g., tweets, search engines,
advertising), self-driving cars, financial investments, weather data, or other sensor data [1, 87, 90].
These data streams should be processed sequentially with the property that the data stream may
change over time. To be able to distinguish between these, we introduce streaming learning. In
streaming learning, we assume that data arrives sequentially over time, in which we update our
models during this continuous influx of data, e.g., see right-hand side of Figure 1.1.

Streaming data arrives as an endless sequence of samples (data points), which means that at any
given time, the model must be able to adapt to the samples observed (so far) to predict/label new
samples accurately. Such streaming models can never be seen as complete but must be updated
continuously as newer samples arrive. Methods that recalculate the model from scratch on the
arrival of new samples are impractical due to their high computational cost. Therefore we need
procedures that effectively update the model as more samples arrive. This computational efficiency
should not be at the expense of accuracy; the model’s accuracy should be close to that achieved if

1



Chapter 1

Figure 1.1: Learning schemes: large- and small-scale learning vs. learning from streaming data.

we built a model from scratch using all the samples [20].

Machine learning is rooted in statistics and is highly dependent on the efficiency of numerical
algorithms. One of the main ingredients in machine learning is to choose the optimization method.
The optimization model must numerically estimate the parameters of a given model so that the
model can make accurate decisions based on future data. These model parameters must be selected
optimally for a given learning problem based on currently available data. Traditional gradient-based
batch approaches can effectively solve small learning problems but are unfeasible for streaming (and
large-scale) learning problems [19]. Therefore, there is a need for effective optimization methods that
process data samples at low computational costs while having sufficient theoretical guarantees. This
setting goes beyond the traditional optimization methods [37, 78], which gives first-order gradient
methods an important role.

A hallmark of learning from streaming data (or large-scale learning) is the uncertainty from
limited (or no) access to accurate information about incoming data. This can be implemented by
assuming that the objectives of the optimization are stochastic, leading to Stochastic Optimization
(SO) [102]. Solving the SO problem in a streaming framework means we approach the objective
using the gradually arriving samples drawn according to an unknown process. Stochastic algorithms,
such as the Stochastic Gradient (SG) descent [124], have been one of the core methods of efficiently
dealing with SO problems. Since then, much work has been done to analyze, improve and develop
methods dealing with stochasticity [21, 54, 89, 101]. An essential extension is Polyak-Ruppert
averaging [118, 129]; this technique sequentially aggregates the estimates, which leads to a smoother
curves (i.e., variance reduction in the estimation trajectories), and accelerates the convergence.

The classical analyses of SO problems typically require unbiased gradients drawn independently
and identically distributed (i.i.d.) from some underlying (and unknown) data generation process
[34]. However, in practice, learning often involves a data-generating process that produces highly
dependent data samples, which are known to heavily bias the SO problem and slow down the con-
vergence of learning; these time-dependent streaming data could, e.g., be meteorological or financial
time series. Nevertheless, stochastic algorithms for dependent data are not as well understood as for
i.i.d. data. Stochastic algorithms can converge even when they only have access to biased gradients,
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Section 1.1

but most analysis has been developed with specific applications in mind [4, 15, 37, 40, 130]. Yet,
some researchers have examined the convergence of stochastic algorithms these difficult settings,
e.g., see Agarwal and Duchi [3], Karimi et al. [79].

While the above works utilized concepts of data dependence to characterize different stochastic
algorithms over dependent data, there is still a lack of theoretical understanding on how different
levels of data dependence affects these algorithms. In particular, the learning scheme of stochastic
algorithms critically affects the bias and variance of the learning process. In fact, under i.i.d. data
and convexity, we have shown that SG-based methods achieves only slightly improved convergence
bounds by using constant mini-batch vs. single batch [57]. However, these learning schemes may
lead to substantially different convergence behaviors over highly dependent data, as the gradients
are no longer unbiased estimates. Therefore, it is vital to understand the interplay between data
dependence and stochastic algorithms. In this thesis, we go beyond these standard assumptions
by allowing dependent and biased gradients. Specifically, we study convergence rates of stochastic
algorithms over a broad spectrum of data dependence levels under various streaming schemes,
including mini-batch and averaged mini-batches.

Organization. In this introduction, we summarize this thesis’s main ideas and challenges. Sec-
tion 1.1.1 explains some of the benefits of SG-based methods and emphasizes where our contributions
should be placed in the literature. Next, this thesis’s contributions (and a brief description of them)
are given in Section 1.1.2. Section 1.2 presents the stochastic streaming algorithms that solve the
SO problem, namely the Stochastic Streaming Gradient (SSG) and Averaged SSG (ASSG). In addi-
tion, we highlight some of its extensions used to design optimization methods, e.g., noise/variance
reduction methods that use the power of mini-batch methods to reduce noise during optimization
and iterative averaging that improves convergence rates (Section 1.2.3). Finally, we provide a sum-
mary of the main results of this thesis (Section 1.3); here we show how our SSG and ASSG methods
overcome these challenges and achieve convergence in difficult settings with long- and short-range
dependencies, biased estimates, and changing data streams.

1.1.1 Examples of Applications

In statistics and machine learning, one often encounters the following optimization problem [70]:
let l1, . . . , ln be a sequence of random differentiable functions from Rd to R. Our goal is to find an
approximate solution θ ∈ Rd of the following optimization problem,

Ln(θ) =
1

n

n∑
t=1

lt(θ). (1.1.1)

We say that Ln : Rd → R yields the empirical risk, i.e., empirical loss. Many problems, from
classification, and regression to ranking, can be written on this form (1.1.1), e.g., see Teo et al. [141]
for examples of scalar and vectorial loss functions and their derivatives.

For example, consider the simple case where we have some samples (Xt, Yt), t = 1, . . . , n from
a couple of random variables (X,Y ) in X × Y. Our interest is to find predictor hθ : X → R over
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Chapter 1

some parameterization {hθ}θ∈Rd , by minimizing (1.1.1) with lt(θ) = l(hθ(Xt), Yt)+λΩ(θ), where l is
some loss function, λ > 0 a regulizer parameter, and Ω : Rd → R some regularizer, e.g., the l1 or l2
regularization. The loss l could be the quadratic loss, logistic loss, (squared) hinge loss, or Huber’s
(robust) loss, but it depends on the experiments that one wants to perform [21, 26, 31, 104, 110].

More specifically, in classification one has X = Rd and Y = {−1, 1}, thus, taking the hinge loss
max{0, 1−Ythθ(Xt)}, hθ(Xt) = θTXt and Ω(θ) = ∥θ∥22 one obtains the SVM problem. On the other
hand, taking the logistic loss log(1 + exp(−Ythθ(Xt))) and again hθ(Xt) = θTXt and Ω(θ) = ∥θ∥22
one obtains the (regularized) logistic regression problem. In regression one has X = Rd and Y = R,
thus, taking the squared loss (hθ(Xt) − Yt)2, hθ(Xt) = θTXt and Ω(θ) = 0 one obtains the vanilla
least-squares problem. This problem can be rewritten in vector notation as minθ∈Rd∥Xθ − Y ∥2,
whereX ∈ Rn×d is the matrix withXt the t’th row and Y = (Y1, . . . , Yn)

T . Hence, with Ω(θ) = ∥θ∥22
one obtains the ridge regression problem, while with Ω(θ) = ∥θ∥1 this is the LASSO problem [142].
The regularizer Ω(θ) can be seen as a simple convex function that, when added to a non-convex loss
function l, may convexifies it, thereby helping gradient-based optimization techniques avoid poor
solutions at its saddle points or flat areas.

In addition to these simple methods, there are many other more complex methods, such as
those for linear/non-linear time series. These methods have been successfully used in a wide range
of applications due to their ability to describe or predict time-varying (dependent) processes, e.g.,
the AutoRegressive (AR), Moving-Average (MA), and AutoRegressive Moving-Average (ARMA)
models are the most well-known models for time series [25, 30, 66]. Standard time series analysis
often relies on independence and constant noise, but it can be relaxed by, e.g., the AutoRegressive
Conditional Heteroskedasticity (ARCH) model [45].

Let us give some examples of (1.1.1) with our notation: let (Zt) denote some real-valued time
series. For an AR(d) model our interest is in explaining Yt = Zt using the explanatory values
Xt = (Zt−1, . . . , Zt−d). In other words, an AR model explains the variable of interest by a linear
combination of past values of the variable, whereas a multiple regression model explains the variable
of interest by a linear combination of predictors. A reasonable measure could be to compare to the
best possible AR model, i.e., at time t, we make a prediction hθ(Xt) =

∑d
i=1 θiZt−i, after which Yt

is revealed, and we suffer a loss lt(θ) = (Yt − hθ(Xt)
2, where θ = (θ1, . . . , θd) are the coefficients.

Another example could be an ARCH(d) model, e.g, see Francq and Zakoïan [48]: in this case,
we are interested in predicting the volatility of Zt (i.e., Yt = Z2

t ) using the explanatory values Xt =

(Z2
t−1, . . . , Z

2
t−d). Thus, an ARCH(d) process with parameters θ = (ω, α1, . . . , αd) has hθ(Xt) =

ω+
∑d

i=1 αiZ
2
t−i. The natural estimator for θ is the Quasi-Maximum Likelihood Estimator (QMLE)

due to its theoretically appealing properties and robustness to extreme values, e.g., see Patton [113].
This means we are considering Quasi-Likelihood (QL) losses of form lt(θ) = log hθ(Xt)+Y

2
t /hθ(Xt).

However, the concavity of the QL loss raises some issues, which we will return to in Chapter 4.

More sophisticated models such as ARMA, ARIMA, and Generalized ARCH (GARCH) are
studied in Anava et al. [7], Liu et al. [92], Werge and Wintenberger [150]. In Chapter 4, we
propose an online adaptive estimation routine for GARCH models called AdaVol. AdaVol uses
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online stochastic algorithms to estimate the parameters of a GARCH model using the QMLE. More
generally, online learning algorithms of (both stationary and non-stationary) dependent time series
have been studied in Agarwal and Duchi [3], Wintenberger [152].

To sum up, the optimization problem in (1.1.1) contains numerous models, whether we want to
incorporate dependency or not. Even though (1.1.1) may look remarkably simple, it ranges widely.
We will see several different examples of (lt) over the following chapters; in particular, we will
consider each lt as a varying block of streaming data, i.e., a streaming batch of varying size.

Computational Trade-offs by Stochastic Gradient Methods

Let us now illustrate the computational advantages of stochastic gradient-based methods. For
this purpose, we introduce some fundamental gradient-based optimization algorithms to minimize
the empirical risk Ln in (1.1.1). We are currently introducing them in the context of minimizing the
empirical risk Ln, but our later analysis will focus on algorithms for minimizing the expected risk
L in (1.2.4). Optimization methods can be divided into two broad categories: stochastic and batch.
Gradient-based batch optimization methods can, in their simplest form with k ∈ N, be defined as

θk = θk−1 − γkgk(θk−1), with gk(θk−1) =

 1
|Ck|

∑
i∈Ck
∇θli(θk−1), (mini-batch)

1
n

∑n
i=1∇θli(θk−1), (batch gradient)

(1.1.2)

with θ0 ∈ Rd, Ck ⊆ {1, . . . , n} and (γk) is the learning rate. Solving (1.1.1) by traditional iterative
gradient-based methods (1.1.2) can be effective in solving small-scale learning problems where n
and d are small. A batch approach would have a computational cost of O(dn) per-iteration, i.e.,
O(kdn) computations after k iterations. In practice, one would instead use an iterative mini-batch
method in which a subset of samples Ck is chosen randomly in each iteration. A mini-batch have
a computational costs of O(|Ck|d) per-iteration, i.e., O(k|Ck|d) computations after k iterations.
These (mini-)batch approaches will converge quickly, but these approaches are too computationally
expensive and will thus be prohibitive for streaming data (or large datasets), where n and/or d
are large, since we would have computational costs of O(kdn) (or O(k|Ck|d)) every time new data
arrives. Instead, online algorithms have been the core method of interest [71, 132], particularly the
SG descent [124], which, in the context of minimizing Ln in (1.1.1), is defined for t = 1, . . . , n by

θt = θt−1 − γt∇θlt(θt−1). (1.1.3)

The SG descent in (1.1.3) has a computational cost of only O(d) for each new data point, corre-
sponding to a mini-batch with |Ck| = 1 and k = 1, which is very cheap. These SG methods and
batch approaches have different trade-offs in computational costs and expected convergence rates.
One may ask, why have SG methods become so famous for large-scale problems? This question
requires careful consideration of the computational trade-offs between stochastic and batch methods
and a thorough investigation of their convergence capabilities [19–21].
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1.1.2 Contributions and Outline of Thesis

Main goals. The central theme of this thesis is to learn from time-dependent streaming data,
where traditional optimization techniques are unsustainable due to their high computational cost.
We want to explore SG-based methods robustness and convergence guarantees under various
settings. In short, the main objectives of this thesis are

1. To allow learning algorithms to handle streaming data,

2. To improve learning by adapting streaming learning to the hardness of the problem; the
level of dependence, noisiness, and convexity.

Chapter 2 introduces the Stochastic Optimization (SO) problem in a streaming framework.
In this streaming setting, we propose techniques for minimizing convex objectives through unbi-
ased estimates of their gradients. Our analysis extends the work of Moulines and Bach [96] to a
streaming framework. A fundamental aspect of this chapter is to explore how changing data streams
affect these techniques; this include everything from vanilla SG descent and Averaged SG (ASG)1,
mini-batch SG and ASG, to more exotic learning designs. Our main theoretical contribution is the
non-asymptotic analysis of the SSG and Averaged SSG (ASSG) method in this streaming frame-
work. Our results show a noticeable improvement in convergence rates by having learning rates that
adapt to the expected data streams. In particular, we show how to obtain improved convergence
rates robust to any data streaming rate. In addition, noise reduction can be achieved by processing
the data in a specific pattern, which is advantageous for large-scale machine learning problems.
These theoretical results are illustrated for various data streams, showing the effectiveness of the
proposed streaming algorithms.

• Godichon-Baggioni, A., Werge, N., Wintenberger, O. (2021). Non-asymptotic analysis of
stochastic approximation algorithms for streaming data. arXiv preprint arXiv:2109.07117.

Next, in Chapter 3, we investigate the SO problem in a streaming framework [57], where the data
comes from a dependent stochastic process. We provide non-asymptotic analysis and quantify the
magnitude of achievable convergence rates under various dependency structures (sometimes leading
to divergence). Our framework covers many applications with dependence and biased gradients.
Our results build a connection between the level of dependency and convexity, enabling us to
improve convergence. Roughly speaking, SSG methods can break short-term and even long-term
dependence by using increasing batch sizes, which counteracts the dependency structures. We show
that biased SSG methods converge, and that they can converge with the same accuracy as unbiased
SSG methods if the bias is not too large. More surprisingly, our results give an explicit heuristic that
can be used in practice to help increase the stability of SSG methods. In particular, we show that
mini-batch is essential to break dependence and ensure convexity. In addition, we can accelerate
convergence by simultaneously averaging.

1The ASG estimate is referring to the Polyak-Ruppert averaging estimate [118, 129].
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• Godichon-Baggioni, A., Werge, N., and Wintenberger, O. (2022). Learning from time-dependent
streaming data with online stochastic algorithms. arXiv preprint arXiv:2205.12549.

In Chapter 4, we propose an online adaptive estimation routine for GARCH models called
AdaVol. The AdaVol procedure relies on stochastic algorithms combined with the technique of
Variance Targeting Estimation (VTE) [49]. This AdaVol method has computationally efficient
properties, while VTE alleviates some convergence difficulties encountered by the usual Quasi-
Maximum Likelihood (QML) estimation due to a lack of convexity. Empirical demonstrations show
favorable trade-offs between AdaVol’s stability and its ability to adapt to time-varying estimates.
The adaptation to time-varying parameters was a surprising advantage that appeared when we
applied our method to real-life observations.2

• Werge, N., Wintenberger, O. (2022). Adavol: An adaptive recursive volatility prediction
method. Econometrics and Statistics, 23:19–35.

During my Ph.D. first year, I worked part-time at Advestis as an AI researcher. Advestis is
an award-winning french fintech company making AI-based quantitative trading and research. My
mission at Advestis was to conduct independent research with the aim of constructing a regime-
shifting model that can distinguish between market regimes in a wide range of financial markets.
This work resulted in the paper below, where I propose an asset-independent regime-switching
model for risk-adjusted return forecasts based on hidden Markov models; a full version paper is
included in Chapter A.

• Werge, N. (2021). Predicting risk-adjusted returns using an asset independent regime-switching
model. Expert Systems with Applications, 184:115576.

1.2 Stochastic Optimization for Streaming Data

The computational complexity of an algorithm is a limited element when handling streaming
data (or large-scale datasets). The main focus of this thesis is to study stochastic algorithms for
solving stochastic optimization problems in a steaming framework. We focus on gradient-based op-
timization algorithms with convex objectives that we will analyze in a non-asymptotic way. Remark
that gradient estimates can be constructed from function values if gradients are unavailable, e.g.,
see Nesterov and Spokoiny [106]. In Section 1.2.1, we formalize stochastic optimization problems in
a steaming framework. Next, in Section 1.2.2, we define the Stochastic Streaming Gradient (SSG)
methods [57, 58] and highlight some of the main benefits of SSG methods. This section is concluded
with a preview of some advanced optimization techniques discussed in the literature (Section 1.2.3).

2AdaVol was recently ranked third among the best probability forecasters in the M6 financial forecast competition,
e.g., see https://m6competition.com. The M6 competition will be live, lasting for twelve months, starting in
February 2022 and ending a year later in 2023. Quarterly prizes will be awarded for each of the four quarters of the
competition, of which we ranked third in the first quarter.
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Chapter 1

1.2.1 Problem Formulation

In statistics and machine learning, we often want to describe the behavior of a real system of
interest, usually in the form of a parameterized mathematical model [21, 70]. Therefore, we set up
a mathematical function representing how well the model describes the system of interest with the
model parameters as arguments. Throughout the thesis, we refer to this as the objective function.
We can now describe our streaming setting formally: at each time t ∈ N, a block consisting of
nt ∈ N random functions lt = (lt,1, . . . , lt,nt) arrives. The objective of the Stochastic Optimization
(SO) problem is to minimize functions of the form

L(θ) = E[lt(θ)], (1.2.4)

with respect to θ ∈ Θ, where Θ is a closed convex set in Rd and lt : Θ → R is some random
differentiable functions (possibly non-convex), e.g, see Boyd et al. [26], Nesterov et al. [104]. The
function L is called the objective function (and sometimes also the risk). We assume that L is
µ-quasi-strongly convex and Lipschitz continuous, e.g., see definitions in Section 1.3.1. Our goal
is to find this unique global minimizer θ∗ ∈ Θ of L. Minimization of the objective function L is
achieved without evaluating it directly but by with use of random functions ∇θlt,i as estimates of the
gradient of L. These random functions (lt,i) can be seen as observations (or random loss functions)
depending on L and some underlying noise sequence.

An example of such a SO problem (1.2.4) can be given as follows [87]: there is an unknown
one-to-one mapping L : Θ → R embedded into the system by nature, which we are interested in.
Thus, in order to approximate L (and recover θ from it), we use the gradient estimates (∇θlt),
where lt is e.g., the loss between the predicted hθ(Xt) and true Yt outputs, respectively; here we
assume that the prediction function hθ has a fixed form and is parameterized by a real vector θ ∈ Θ

over which the optimization is to be performed. Hence, the aim is to find θ such that the prediction
function hθ minimizes the risk L.

In order to compare our streaming methods fairly, we should always compare in terms of the
number of observations used, namely using Nt =

∑t
i=1 ni, which is the (accumulated) sum of obser-

vations at time t. For example, for empirical risk minimization (1.1.1), one chooses the predictor by
minimizing the empirical risk over a parameterized set of predictors potentially with regularization
[89, 141, 145], e.g, for a parameterization {hθ}θ∈Θ, a regulizer parameter λ, and a regularizer Ω :

Θ→ R, this requires to minimize LNt(θ) =
1
Nt

∑t
i=1 li(θ) with li(θ) =

∑ni
j=1 l(hθ(Xi,j), Yi,j)+λΩ(θ),

where Xi = (Xi,1, . . . , Xi,ni) and Yi = (Yi,1, . . . , Yi,ni) are the blocks of ni observations that arrive
at each i (a.k.a. streaming batches). Consequently, if nt = 1, we have the classic setting of Moulines
and Bach [96], which we described in Section 1.1.1. Whereas, if nt is constant, we have a (constant)
mini-batch. Having nt varying means that we have varying streaming batches depending on the
time t, which is what we are particularly interested in.
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1.2.2 Stochastic Streaming Gradients

The prototypical method for solving the SO problem is SG-based methods [24, 68, 133, 144,
153, 156]. But to solve the SO problem (1.2.4) in a streaming framework, we use the Stochastic
Streaming Gradient (SSG) method proposed by Godichon-Baggioni et al. [57], given as

θt = θt−1 −
γt
nt

nt∑
i=1

∇θlt,i (θt−1) , θ0 ∈ Θ, (1.2.5)

where γt is the learning rate satisfying the conditions
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞ [124]. Note

that if ∀t, nt = 1, SSG becomes the well-known SG descent. In many models, there may be
constraints on the parameter space, which would require a projection of the parameters; therefore,
we also introduce the Projected Stochastic Streaming Gradient (PSSG) estimate, defined by

θt = PΘ

(
θt−1 −

γt
nt

nt∑
i=1

∇θlt,i (θt−1)

)
, θ0 ∈ Θ, (1.2.6)

where PΘ denotes the the Euclidean projection onto Θ, i.e., PΘ(θ) = argminθ′∈Θ∥θ − θ′∥2. To
shorten notation, we let ∇θlt(θ) = n−1

t

∑nt
i=1∇θlt,i(θ).

In this streaming setting, we are also interested in acceleration approaches to the existing al-
gorithms. An essential extension is the Polyak-Ruppert averaging [118, 129], which guarantees
optimal statistical efficiency without jeopardizing the computational cost; the Averaged Stochastic
Streaming Gradient (ASSG) is given by

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, (1.2.7)

where Nt =
∑t

i=1 ni is the sum of observations at time t. Likewise, PASSG denotes the averaged
estimate of PSSG (1.2.6). In addition, (1.2.7) can be modified to a weighted average version,
giving greater weight to the latest estimates and thereby improving the convergence while limiting
the effect of poor initializations; examples of these can be found in Boyer and Godichon-Baggioni
[27], Mokkadem and Pelletier [95].

These averaging methods sequentially aggregates the estimates, which leads to a smoother
curves (i.e., variance reduction in the estimation trajectories), and accelerates the convergence.
Practically, as we handle data sequentially, we will make use of the rewritten formula: θ̄t =

(Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 with θ̄0 = 0. Pseudo-code of these streaming estimates are presented
in Algorithm 1.1. Each update of these methods is very cheap, involving only the computation of
nt gradients ∇θlt(θt−1) = n−1

t

∑nt
i=1∇θlt,i(θt−1), i.e., a computational costs of O(dnt). Thus, we

have the same computationally efficiency as the SG descent in (1.1.3), e.g., see Section 1.1.1. These
methods are notable as (θt) is a stochastic process whose behavior is determined by the random
sequence (lt) and the learning rate (γt). Still, as we shall see in our analysis in Section 1.3, the
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direction of −γt∇θlt(θt) might not point at θt. However, if it does in expectation, we follow the
gradient of L, and thereby the sequence (θt) can be guided toward the minimizer of L.

Algorithm 1.1: Stochastic streaming gradient estimates (SSG/PSSG/ASSG/PASSG)
Inputs : θ0 ∈ Θ, project: True or False, average: True or False
Outputs: θt, θ̄t (resulting estimates)
θ̄0 = 0
for each t ≥ 1, a block of nt data arrives do

θt ← θt−1 − γt
nt

∑nt
i=1∇θlt,i (θt−1)

if project is True then
θt ← PΘ(θt) /* project estimate */

if average is True then
θ̄t ← (Nt−1/Nt)θ̄t−1 + (nt/Nt)θt−1 /* average estimate */

In the same way as the streaming methods in (1.2.5) to (1.2.7), one can define the (full) batch
gradient method in our streaming setting, given as

θk+1 = θk −
γk
Nt

t∑
i=1

ni∑
j=1

∇θli,j(θk). (1.2.8)

The computational cost of each step (1.2.8) is prohibitive forNt very large (e.g., 106 or 109), although
one would expect a better step estimate when all Nt samples are considered at each iteration. Per-
iteration would have a computational cost of O(dNt), i.e., O(kdNt) computations after k iterations
(similarly to what we saw in Section 1.1.1). In addition, we must also take into account that in
streaming settings, one has limited response time between new observations; thus, computational
costs become even more crucial.

1.2.3 Beyond Stochastic Streaming Gradients

Due to the massive popularity of SG methods, it is obvious to ask how we can make SG even
more efficient, robust, and user-friendly for several different optimization methods. This question
has led to very many variants, of which we will outline some of the most common, but we will omit
algorithms that are impractical for large-scale datasets, e.g., see Boyd et al. [26], Nesterov et al.
[104] for more details on second-order methods (such as Newton’s method), or other extensions.

The choice of learning rate (γt) has a significant impact on the convergence of SG methods;
if it is too small, it will slow down the convergence, while too high a learning rate may prevent
convergence or even divergence, as the loss function will fluctuate around the minimum. Thus, an
adaptive learning rate would be much more effortless to adjust and more user-friendly, as it requires
less fine-tuning. In addition, it would be preferable to have a learning rate per dimension, which
thereby adjust learning individually as convergence evolves. Some of the most common adaptive
learning algorithms for SG optimization is Momentum [119], Nesterov accelerated gradient [103],
Adagrad [42], Adadelta [155], RMSprop [74], and Adam [83]. Ruder [127] gives an overview of
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various SG methods for (convex and non-convex) optimization, including how to parallelize and
distribute SG updates.

If one were to look at the trajectory of the noisy gradients SG uses as estimates, one would be
surprised. This lack of robustness (or high noise level) can prevent SG methods from converging or
lead to slow convergence. There are several techniques to improve the robustness of SG methods,
of which some of the most known are mini-batch SG, gradient aggregation methods, and iterate
averaging methods. Such methods have proven effective in practice and possess attractive theoretical
properties because they reduce the noise in the gradient estimates [38, 76, 77, 108, 126]. The mini-
batch SG uses a small subset of gradient estimates in each iteration, which intuitively reduces
variance, makes it easier to tune the learning rate (γt), and improves the quality of each iteration.
Gradient aggregation methods enhance the quality of the gradient estimates more adaptively; these
methods smooth the iterations using past gradient estimates, e.g., using a weighted average of
these past estimates [39]. On the other hand, iterate averaging methods do not accomplish noise
reduction by averaging gradient estimates but instead by averaging the iterates computed during
the optimization [118, 129]. These methods also have some appealing convergence acceleration
properties, which we will come back to later.

1.3 Non-asymptotic Analysis of Stochastic Streaming Gradient Estimates

This section presents a summary of this thesis’s main results [57, 58]. These results are shown
in a simple form to be able to highlight the main conclusions, but an extended (and fully non-
asymptotic) version can be found in the papers themselves, e.g., see Chapters 2 and 3. Before
examining the stochastic streaming estimates in more detail, we briefly present the mathematical
framework in Section 1.3.1. Next, Section 1.3.2 provides the analysis in the i.i.d. streaming setting.
In Section 1.3.3, we expand these assumptions and notions to include time-dependency. Through
this section, we will show examples of our findings.

Throughout this introduction, we consider the stochastic algorithms in (1.2.5) to (1.2.7) with
learning rates on the form γt = Cγn

β
t t

−α with hyper-parameters Cγ > 0, β ∈ [0, 1], and α > 0

chosen accordingly to the expected streaming batches denoted by nt. The streaming batches nt are
on the form Cρt

ρ with Cρ ≥ 1 and ρ ∈ (−1, 1); here Cρ = 1 and ρ = 0 corresponds to the classical
SG descent, where we process observations one-by-one [96]. If Cρ ∈ N and ρ = 0 we consider
mini-batch procedures of size Cρ, and likewise, if Cρ ∈ N and ρ ∈ (−1, 1) we have varying streaming
batches with initial batch size of Cρ. We will refer to ρ as the streaming rate. Our aim is to bound
δt = E[∥θt − θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2] non-asymptotically such that these bounds depend solely
on the problem’s parameters. These non-asymptotic bounds are derived by explicitly bounding
the t-th estimate of (1.2.5) and (1.2.6) using classical techniques from stochastic approximations
[13, 87]. Remark that almost sure convergence of SO algorithms were shown in Pelletier [115].

11



Chapter 1

1.3.1 Mathematical Framework

The analysis of SO algorithms requires assumptions on the objective function L: the SO problem
(1.2.4) is specified over a convex domain Θ, which in this thesis we always take to be a compact
subset of Rd, d ≥ 1, and an objective function L : Θ → R which is convex with respect to its
argument θ ∈ Θ. This problem is a closely related branch of optimization tools for (online) convex
optimization [26, 71, 104].

Quasi-strong Convex Objectives

Following Gower et al. [60], Moulines and Bach [96], we assume that L has a unique global
minimizer θ∗ ∈ Θ such that ∇θL(θ

∗) = 0, and it is µ-quasi-strongly convex [80, 99], i.e, there exists
µ > 0 such that ∀θ ∈ Θ,

L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2. (1.3.9)

Teo et al. [141] provides a comprehensive record of various convex functions L used in machine
learning applications. Milder degrees of convexity have been studied by, e.g., Karimi et al. [80],
which studied stochastic gradient methods under the Polyak-Łojasiewicz condition [93, 117], or Ga-
dat and Panloup [50], which studied the Ruppert-Polyak averaging estimate under some Kurdyka-
Łojasiewicz-type condition [86, 93]. Relaxations of convexity is crucial in practice to ensure robust-
ness and adaptiveness of the algorithms, e.g., for non-strongly convex SO, see Bach and Moulines
[9], Necoara et al. [99], Nemirovski et al. [101].

Smoothness of the Objectives

Some additional assumptions are needed for bounding the averaging estimate (θ̄t) in (1.2.7):
let the function L have C∇-Lipschitz continuous gradients, i.e., there exists a constant C∇ > 0,
∀θ, θ′ ∈ Θ ⊆ Rd,

∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (1.3.10)

Remark that one has µId ⪯ ∇2
θL(θ) ⪯ C∇Id in the case L is µ-quasi-strongly convex and twice

differentiable, e.g., see Nesterov et al. [104]. As discussed in Bottou et al. [21], this assumption
ensures that ∇θL does not vary arbitrarily, making the gradient ∇θL a useful indicator on how
to decrease L. Moreover, note that when L is µ-quasi-convex and C∇-smooth, the convergence of
gradient methods will depend on the number C∇/µ ≥ 1. If C∇/µ is small, we have fast convergence,
and conversely, if it is large, we get oscillations [21]. Next, assume that the Hessian of L is C ′

∇-
Lipschitz-continuous, that is, there exists C ′

∇ ≥ 0 such that ∀θ, θ′ ∈ Θ ⊆ Rd,

∥∇2
θL(θ)−∇2

θL(θ
′)∥ ≤ C ′

∇∥θ − θ′∥. (1.3.11)

12
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Note that (1.3.10) and (1.3.11) only needs to hold true for θ′ = θ∗.

1.3.2 Learning from Streaming Data

A fundamental aspect of Godichon-Baggioni et al. [57] is to explore how changing data streams
affect these SO methods. These data streams includes everything from vanilla SG and ASG descent,
mini-batch SG and ASG, to more exotic learning designs. Our analysis extends the work of Moulines
and Bach [96] to a streaming framework. Our main theoretical contribution is the non-asymptotic
analysis of the SSG methods in this streaming framework. Our results show a noticeable improve-
ment in convergence rates by having learning rates that adapt to the expected data streams. In
particular, we show how to obtain improve convergence, while being robust to any data streaming
rate.

Remember the description of our streaming framework in which we solve our SO problem (1.2.4):
at each time t ∈ N, a block consisting of nt ∈ N random functions lt = (lt,1, . . . , lt,nt) arrive. Let
(lt) constitute a sequence of independent differentiable random functions (possibly non-convex) and
their gradients unbiased estimates of∇θL, e.g., see Nesterov et al. [104] for definitions and properties
of such functions. We assume the following about the lt,i functions at each t ∈ N with i = 1, . . . , nt:

Assumption 1.3.1 (unbiased gradients). The random variable ∇θlt,i(θ) is square-integrable and
∀θ ∈ Θ, E[∇θlt,i(θ)] = ∇θL(θ).

In the classical convergence analysis of SG methods, one assumes that the SGs are uniformly
bounded [72, 101, 121, 133]. However, this assumption is too restrictive as it only may hold for
some losses, e.g., see Bottou et al. [21], Nguyen et al. [107]. Instead, we follow the same ideas as
in Gower et al. [60], Moulines and Bach [96], to make the following assumption about the expected
smoothness of the stochastic gradients (∇θlt,i).

Assumption 1.3.2-p (Cl-expected smoothness). For p ≥ 1, there exists Cl > 0 such that ∀θ, θ′ ∈
Θ, E[∥∇θlt,i(θ)−∇θlt,i(θ

′)∥p] ≤ Cp
l E[∥θ − θ

′∥p].

Assumption 1.3.2-p can be seen as an assumption about the smoothness properties of (lt,i), and
it only needs to hold for θ′ = θ∗. Moreover, under Assumption 1.3.1, Assumption 1.3.2-p with
p = 1 implies the condition in (1.3.10) by Jensen’s inequality. The last fundamental assumption
(Assumption 1.3.3-p) is about the finitude of (∇θlt,i(θ

∗)):

Assumption 1.3.3-p (σ-gradient noise). For p ≥ 1, there exists σ > 0 such that E[∥∇θlt,i(θ
∗)∥p] ≤

σp.

These assumptions are modified versions of the standard assumptions for stochastic approxi-
mations as they hold for any i = 1, . . . , nt, e.g., see [13, 87, 96]. By the smoothness assumption
(Assumption 1.3.2-p), we avoid the unfavorable uniformly bounded gradients assumption, which is
too restrictive and only holds for a few losses. Assumption 1.3.3-p enables to give an upper bound
of the Frobenius norm of the variance of the gradient for p = 2 and is very usual (see [96] for
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instance). For SSG and PSSG, we only need Assumptions 1.3.2-p and 1.3.3-p to hold for p = 2,
whereas, for ASSG and PASSG, we need p = 4 in order to bound the fourth-order moment. Our
framework include classic examples: stochastic approximation (Robbins-Monro setting [124]) and
learning from i.i.d. data, such as linear regression, logistic regression, general ridge regressions and
quantile regression, p-means, and softmax regression, under regularity conditions [33, 136]; here it is
important to remark that most of these examples lead to the minimization of only locally strongly
convex objectives, and the assumptions are only verified for the projected estimates, i.e., PSSG and
PASSG [141].

Stochastic Streaming Estimates

Recall that we consider learning rates on the form γt = Cγn
β
t t

−α with hyper-parameters Cγ > 0,
β ∈ [0, 1], and α chosen accordingly to the expected streaming batches denoted by nt = Cρt

ρ. But
before we present our results, we want to recall the result for the classical SG descent (i.e., nt = 1

as Cρ = 1 and ρ = 0) shown by Moulines and Bach [96]:

Theorem 1.3.1. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows (1.2.5) or (1.2.6).
Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there
exists Cδ > 0 such that for α ∈ (1/2, 1), we have

δt ≤
21+ασ2Cγ

µNα
t

+O(exp(−CδN
1−α
t )). (1.3.12)

The non-asymptotic bound in (1.3.12) depends explicitly upon the problem’s parameters. Such
bounds were the first of their kind, whereas previous results focused mainly on almost sure conver-
gence., e.g., see [115].

Decay of the initial conditions. The condition of having α ∈ (1/2, 1) is a natural restriction
from Robbins and Monro [124], ensuring

∑∞
i=1 γi =∞ and

∑∞
i=1 γ

2
i <∞. The primary conclusion

of Theorem 1.3.1 is that (1.3.12) can be divided into a noise term 21+ασ2Cγ

µNα
t

and a sub-exponential
term O(exp(−CδN

1−α
t )) (an explicit version of this term can be found in Moulines and Bach [96]).

Thus, we should focus on reducing the noise term without harming the natural decay of the sub-
exponential term.

Now, let us present our first result [57]: we start by considering constant streaming batches (i.e.,
mini-batch SSG) where nt follows the constant streaming batch size Cρ ∈ N:

Theorem 1.3.2. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows (1.2.5) or (1.2.6).
Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there
exists C ′

δ > 0 such that for α ∈ (1/2, 1), we have

δt ≤
21+ασ2Cγ

µC1−α−β
ρ Nα

t

+O(exp(−C ′
δN

1−α
t )). (1.3.13)

Variance reduction. Not surprisingly, the bound in (1.3.13) has the same structure as (1.3.12),
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whereby we can make equivalent conclusions. However, the noise term in (1.3.13) is divided by
C1−α−β
ρ , implying we could achieve variance reduction by taking α + β ≤ 1. Thus taking a large

streaming batch size Cρ will give us some variance reduction, but it will not increase the convergence
rate, which is still determined by α ∈ (1/2, 1). Remark that too large streaming batch sizes Cρ

would be unsuitable in practice as it would mean we would only take a few steps before convergence
is achieved.

These fixed-sized streaming batches are not the most realistic streaming setting. It is far more
likely to vary in size depending on the data streams. Thus, let us now consider varying streaming
batches where nt are on the form Cρt

ρ with Cρ ≥ 1 and ρ ∈ (−1, 1) such that nt ≥ 1 for all t. We
will refer to ρ as the streaming rate. For the convenience of notation, let ρ̃ = ρ1{ρ≥0}.

Theorem 1.3.3. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows (1.2.5) or (1.2.6).
Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 2 hold true. Then there
exists C ′′

δ > 0 such that for α− βρ̃ ∈ (1/2, 1), we have

δt ≤
21+(2+ρ)ϕσ2Cγ

µC
(1−β)1{ρ≥0}−ϕ
ρ Nϕ

t

+O(exp(−C ′′
δN

1−ϕ
t )), (1.3.14)

with ϕ = ((1− β)ρ̃+ α)/(1 + ρ̃).

When ρ = 0, Theorem 1.3.3 yields the same as Theorem 1.3.2. Moreover, when Cρ = 1 and
ρ = 0, we obtain the usual SG descent studied in Moulines and Bach [96], e.g., see Theorem 1.3.1.

Accelerated decay and variance reduction. The condition of having α − βρ̃ ∈ (1/2, 1)

relaxes the usual condition of having α ∈ (1/2, 1) for ρ non-negative. In particular, accelerated
convergence could be achieved by, e.g., setting α = 2/3 and β = 0 for streaming rates ρ > 0,
giving us δt = O(N−(2/3+ρ)/(1+ρ)

t ), meaning increasing streaming batches (ρ > 0) can accelerate
convergence. Moreover, the noise term is scaled by C1−β−ϕ

ρ for ρ ≥ 0, implying we should take
α+ β ≤ 1 to obtain variance reduction (as we saw for Theorem 1.3.2).

Acceleration by Averaging

In what follows, we consider the averaging estimate (θ̄n) given in (1.2.7) derived with use of
(θt) from (1.2.5) or (1.2.6). Instead of first considering the vanilla case {Cρ = 1, ρ = 0}, then the
mini-batch case {Cρ ∈ N, ρ = 0}, and finally the streaming case {Cρ ∈ N, ρ ∈ (−1, 1)}, we only
consider the streaming case from which the other cases will follow.

Besides having Assumptions 1.3.2-p and 1.3.3-p to hold for p = 4, an additional assumption is
needed for bounding the rest term of the averaging estimate.

Assumption 1.3.4. There exists a non-negative self-adjoint operator Σ such that E[∇θlt,i(θ
∗)∇θlt,i(θ

∗)⊤] ⪯
Σ.

Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 1.3.3-p.
Moreover, to avoid calculating the six-order moment when considering projected average estimate
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PASSG, we make the unnecessary assumption that ∥∇θlt,i(θ)∥ is uniformly bounded for any θ ∈ Θ;
the derivation of the six-order moment can be found in Godichon-Baggioni [55].

Assumption 1.3.5. Let dmin = infθ∈∂Θ∥θ−θ∗∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover,
there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ∥∇θlt,i(θ)∥2 ≤ G2

Θ a.s., with i = 1, . . . , nt.

Theorem 1.3.4. Denote δ̄t = E[∥θ̄t− θ∗∥2] with (θ̄t) given by (1.2.7), where (θt) follows (1.2.5) or
(1.2.6). Assume that Assumption 1.3.1, Assumptions 1.3.2-p and 1.3.3-p for p = 4, and Assump-
tion 1.3.4 hold true. Moreover, let (1.3.10) and (1.3.11) hold true. In addition, Assumption 1.3.5
must hold true only if (θt) follows (1.2.6). For α− βρ̃ ∈ (1/2, 1), we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+O(max{N−1+ϕ/2
t , N−ϕ

t }), (1.3.15)

where Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and ϕ = ((1− β)ρ̃+ α)/(1 + ρ̃).

Accelerated decay. As noticed in Polyak and Juditsky [118], the leading term Λ/Nt achieves
the desirable Cramer-Rao bound, namely, the leading term Λ/Nt could obtain the optimal and
incorrigible rate of O(N−1

t ) [50, 97]. Moreover, this bound is achieved without inverting the Hessian,
and it is invariant of the learning rate (γt). Thus, by averaging, we have increased the rate of
convergence from O(N−ϕ

t ) (in Theorem 1.3.3) to the optimal rate O(N−1
t ). As discussed in Gadat

and Panloup [50], the bound of δ̄t can be seen as a bias-variance decomposition between the first
and second term in (1.3.15).

Next, it is worth noting that there are no sub-exponential decaying terms for the initial conditions
in (1.3.15), which is a common problem for averaging. This means we should be more careful when
picking our hyper-parameters, e.g., taking Cγ too large. Nevertheless, these hyper-parameters decay
at a rate of at least O(N−2

t ).
Robustness towards streaming rates ρ. The main remainder term O(max{N−1+ϕ/2

t , N−ϕ
t })

reveal that ϕ = 2/3 ⇔ α − βρ̃ = (2 − ρ̃)/3, e.g., by setting β = 0, we should pick α = (2 − ρ̃)/3.
Likewise, if ρ = 0, we yield the same conclusion as in Moulines and Bach [96], namely α = 2/3.
However, these hyper-parameter choices are not resilient against any arrival schedule ρ. Nonetheless,
we can robustly achieve ϕ = 2/3 for any ρ ∈ (−1, 1) by setting α = 2/3 and β = 1/3. In other
words, we can achieve optimal convergence for any data stream by having α = 2/3 and β = 1/3. It
is important to remark that these choices of hyper-parameters are not derived from exact bounds.
Gadat and Panloup [50] establishes even tighter bounds (which also are optimal relative to Cramer-
Rao’s lower bound) under the Kurdyka-Łojasiewicz-type condition [86, 93], where they show that
α = 3/4, leading to the main remainder term O(N−5/4

t ).

Example 1.3.1 (Geometric median). The geometric median is a generalization of the real median
introduced by Haldane [64]. Robust estimators such as the geometric median may be preferred over
the mean when the data is noisy. Moreover, in our streaming framework, stochastic algorithms are
preferred as they efficiently handle large samples of high-dimensional data [33, 55]. The geometric
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median of X ∈ Rd is defined by θ∗ ∈ Rd which minimizes the convex function L(θ) = E[∥X −
θ∥ − ∥X∥], e.g., see Gervini [53], Kemperman [81] for properties such as existence, uniqueness, and
robustness (breakdown point). Thus, the gradient ∇θL(θ) = E[∇θlt(θ)] with ∇θlt(θ) = −(Xt −
θ)/∥Xt − θ∥ is bounded as ∥∇θlt(θ)∥ ≤ 1. We omit to project our estimates as this would hide
the errors we want to explore (which we will see more clearly in Example 1.3.2, where we consider
real-life time-dependent streaming data). Instead of projecting the estimates, one could adapt the
proof of Gadat and Panloup [50] to a streaming setting. Otherwise, if Xt is bounded, one can adapt
Cardot et al. [32] to the streaming setting showing that the streaming estimates are bounded.

To measure the performance, we use the mean quadratic error of the parameter estimates over
one-hundred replications, given by (E[∥θNt − θ∗∥2])t≥1. Note that averaging over several iterations
gives a reduction in variability, which mainly benefits the SSG. Suppose (Xt) is standard Gaussian
centered at (θi)1≤i≤d with θi taken randomly in the range [−d, d]. Moreover, following the reasoning
of Cardot et al. [33], we set Cγ =

√
d, and let α = 2/3. For this example we take d = 10 (Figure 1.2).

In Figure 1.2a, we consider constant data streams to illustrate the results in Theorems 1.3.1
and 1.3.2; this figure shows the variance reduction effect for different constant streaming batches
Cρ ∈ {1, 8, 64, 128} with β = 0 (as shown in Theorem 1.3.2). However, the robustness of the
geometric median leaves only a small positive impact for further variance reduction. Thus, too
large (constant) streaming batch sizes Cρ hinders the convergence as we make too few iterations.
In addition, we see an acceleration in decay by averaging, as explained in Theorem 1.3.4.

These findings can be extended to Figures 1.2b to 1.2e, where we vary the streaming rate ρ for
streaming batch sizes Cρ = 1, 8, 64, and 128, respectively, with β = 0. These figures shows an
increase in decay of the SSG when the streaming rate ρ increase as mentioned after Theorem 1.3.3.
But the lack of convergence improvements in Figures 1.2d and 1.2e comes from β = 0, which means
we do not exploit the potential of using more observations to accelerate convergence.

As discussed after Theorem 1.3.4, one example of this could be achieved by setting α = 2/3 and
β = 1/3 such that ϕ = 2/3 for any ρ. As shown in Figure 1.2f, we can achieve this acceleration by
simply taking β = 1/3. In addition, β = 1/3 provides optimal convergence robust to any streaming
rate ρ. Choosing a proper β > 0 is particularly important when Cρ is large, as robustness is an
integral part of the geometric median method.

1.3.3 Learning from Time-dependent Streaming Data

In this section, we go beyond the classical assumptions that require unbiased gradients (e.g., see
Bottou et al. [21], Lacoste-Julien et al. [88]) by allowing the gradients to be dependent and biased
estimators [58]. Convergence rates of SG descent with biased estimators has previously been stud-
ied in, e.g., Ajalloeian and Stich [4], Bertsekas [15], but not in a streaming setting. In this section,
we start by replacing Assumptions 1.3.1 to 1.3.4 with the new assumptions; Assumptions 1.3.6-p
to 1.3.9. These new assumptions are milder than the standard assumptions for stochastic approx-
imations, e.g., see [13, 57, 87, 96]. We show some examples of how these assumptions could be
verified using mixing conditions. Next, our convergence results are presented, with and without
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Figure 1.2: Geometric median for various data streams nt = Cρt
ρ. See Example 1.3.1 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, Cρ = 1, β = 0

(c) Varying streaming batches, Cρ = 8, β = 0 (d) Varying streaming batches, Cρ = 64, β = 0

(e) Varying streaming batches, Cρ = 128, β = 0 (f) Varying streaming batches, Cρ = 8, β = 1/3
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averaging. At last, experiments of our findings are illustrated. Let Ft = σ(li : i ≤ t) denote the
natural filtration of the SO problem (1.2.4).

Assumption 1.3.6-p (Dννt-dependence and Bννt-bias). Let θ0 be F0-measurable. For each t ≥ 1,
the random function ∇θlt(θ) is square-integrable, Ft-measurable, and there exists a positive integer
p such that for all Ft−1-measurable θ ∈ Θ,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ νpt (Dp
νE[∥θ − θ∗∥p] +Bp

ν), (1.3.16)

for some positive sequence (νt)t≥1 with Dν , Bν ≥ 0.

Assumption 1.3.7-p (κt-expected smoothness). There exists a positive integer p such that ∀θ, θ′ ∈
Θ, E[∥∇θlt(θ)−∇θlt(θ

′)∥p] ≤ κptE[∥θ − θ′∥p] for some positive sequence (κt)t≥1.

Assumption 1.3.8-p (σt-gradient noise). There exists a positive integer p such that E[∥∇θlt(θ
∗)∥p] ≤

σpt for some positive sequence (σt)t≥1.

Assumption 1.3.6-p is on the form of mixing conditions for weakly dependence sequences, im-
plying that dependence dilutes with the rate of νt. It is possible to verify Assumption 1.3.6-p by
using moment inequalities for partial sums of strongly mixing sequences [123]; we will refer to this
as short-range dependence. Note that for any positive integer p, Assumption 1.3.6-p can be upper
bounded by

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ E[∥∇θlt(θ)−∇θL(θ)∥p] = n−p
t E[∥St∥p], (1.3.17)

using Jensen’s inequality, where St =
∑nt

i=1(∇θlt,i(θ) − ∇θL(θ)) is a d-dimensional vector. Let
(∇θlt,i) be a strictly stationary sequence and assume that there exists some r > p such that
supx>0(x

rQ(x))1/r < ∞, where Q(x) denotes the quantile function of ∥∇θlt,i∥. Suppose that
(∇θlt,i) is strongly α-mixing in the sense of Rosenblatt [125], with strong mixing coefficients (αt)t≥1

satisfying αt = O(t−pr/(2r−2p)). Then by Rio [123, Corollary 6.1], we have that E[∥St∥p] = O(np/2t ),
meaning, (1.3.17) is at most O(n−p/2

t ); this includes several linear, non-linear, and Markovian time
series, e.g., see Bradley [29], Doukhan [41] for more examples, other mixing coefficients of weak
dependence and the relations between them. In relation to the form of Assumption 1.3.6-p, this
means that Bν ̸= 0 in this case. However, having Bν = 0 is possible in well-specified examples.
Note that Assumptions 1.3.7-p and 1.3.8-p can be verified using α-mixing conditions by analogues
arguments as for Assumption 1.3.6-p such that κpt and σpt is O(n−p/2

t ).
The (νt), (κt), and (σt) sequences may be considered as uncertain terms depending on the

streaming-batch nt. Thus, let νt = n−ν
t , κt = Cκn

−κ
t , and σt = Cσn

−σ
t with ν ∈ (0,∞), κ, σ ∈

[0, 1/2], and Cκ, Cσ > 0. Having, σ, κ ∈ [0, 1/2] follows directly from Godichon-Baggioni et al.
[57], since σ = κ = 1/2 corresponds to the i.i.d. case, whereas σ, κ < 1/2 allows noisier outputs.
Similarly, vt = 0 corresponds to the classical unbiased i.i.d. setting. Having νt = n−ν

t means
Assumption 1.3.6-p, allow so-called long-range dependence (also known as long memory or long-
range persistence) when ν ∈ (0, 1/2) and short-range dependence when ν ∈ [1/2,∞). Thus, the
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i.i.d. case is when ν → ∞. In this section, we continue to consider streaming-batches (nt) on the
form Cρt

ρ but with ρ ∈ [0, 1) (compared to Section 1.3.2 where ρ ∈ (−1, 1)).

Stochastic Streaming Estimates

Theorem 1.3.5. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows the recursion
in (1.2.5) or (1.2.6). Assume that Assumptions 1.3.6-p to 1.3.8-p hold true for p = 2. Suppose
nt = Cρt

ρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µν = µ− 1{ρ=0}2DνC
−ν
ρ > 0. There exists C ′′′

δ > 0

such that for α− ρβ ∈ (1/2, 1), we have

δt ≤
2

7+6ρσ
1+ρ C2

σCγ

µνC
2σ−β−α

1+ρ
ρ N

ρ(2σ−β)+α
1+ρ

t

+
2

2+6ρν
1+ρ B2

ν

µµνC
2ν
1+ρ
ρ N

2ρν
1+ρ

t

+O(exp(−C ′′′
δ N

(1+ρβ−α)/(1+ρ)
t )). (1.3.18)

Theorem 1.3.5 replicate the results of the unbiased i.i.d. case (with Bν = 0 and κ = σ = 1/2)
considered in Section 1.3.2 [57]. Our findings also reproduce the results of Moulines and Bach
[96], where they considered the unbiased i.i.d. case (under slightly different assumptions) using the
vanilla SG descent, namely, when Cρ = 1 and ρ = 0. Moreover, if the function L has C∇-Lipschitz
continuous gradients, then Theorem 1.3.5 implies the bound on the objective function values of L,
E[L(θt)− L(θ∗)] ≤ C∇δt/2 by Cauchy–Schwarz’s inequality.

Decay of the initial conditions. Note that the positivity of the dependence penalised con-
vexity constant µν = µ−1{ρ=0}2DνC

−ν
ρ is essential in all terms of (1.3.18). Having µν > 0 depends

solely on the level of dependence Dν but it is scaled by C−ν
ρ , meaning if Dν is so large that µν is no

longer positive, then we should take Cρ large enough such that µν becomes positive again; this is
illustrated in Chapter 3 for ARCH models [58]. The streaming constant Cρ contributes positively
to all terms in (1.3.18), either directly or though µν .

The last term of (1.3.18) can be seen as the noise term decaying with O(N−(ρ(2σ−β)+α)/(1+ρ)
t )

for α− ρβ ∈ (1/2, 1), e.g., for any ρ ∈ [0, 1), δt = O(N−2/3
t ) when α = 2/3, β = 1/3, and σ = 1/2.

In addition, the noise term is positively affected by large streaming constants Cρ when α+ β < 2σ,
which will be expressed as a variance reduction, e.g., see Example 1.3.2 below. In unbiased cases
(Bν = 0) the noise term would also be the asymptotic term.

Behavior for Bν. The second term of (1.3.18) can be seen as an dependency term as it is
determined solely by the level of dependence ν, the bias error Bν , and the convexity constant
µν . It is remarkable that the dependence term is unconnected from the choice of the learning
rate (γt) but instead by the streaming rate through Cρ and ρ. The dependence term decay with
O(N−2ρν/(1+ρ)

t ), which requires ρ positive to decay since ν ∈ (0,∞), e.g., if ν = 1/2, we would
need ρ = 1 to obtain O(N−1/2

t ). It is surprising that Theorem 1.3.5 allows both long-range and
short-range dependence. Indeed, long-range dependence leads to slow convergence (slower than
O(N−1/2

t )) but it will still converge. Obviously, this only matters if Bν ̸= 0. To conclude, by
taking ρ > 0 and Cρ large enough to ensure that µν stays positive, then we will converge with
δt = O(max{1{Bν ̸=0}N

−2ρν/(1+ρ)
t , N

−(ρ(2σ−β)+α)/(1+ρ)
t }).
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Acceleration by Averaging

Similarly to Section 1.3.2, besides having Assumptions 1.3.6-p to 1.3.8-p to hold for p = 4, an
additional assumption is needed to control the rest term. Thus, in continuation of Assumption 1.3.8-
p with σt = Cσn

−σ
t for σ ∈ [0, 1/2], we make the following assumption:

Assumption 1.3.9. There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1, we have
n2σt E[∇θlt(θ

∗)∇θlt(θ
∗)⊤] ⪯ Σ+Σt, where Σt is a positive symmetric matrix with Tr(Σt) = C ′

σn
−2σ′

t ,
C ′
σ ≥ 0, and σ′ ∈ (0, 1/2].

In the unbiased and independent case, Assumption 1.3.9 is verified with σ = 1/2 and C ′
σ = 0

[57]. The short-range dependence cases is when σ = 1/2, whereas, the long-range dependence
case is for σ < 1/2. Moreover, Assumption 1.3.9 allows us to obtain leading term Λ/Nt with
Λ = Tr(∇2

θL(θ
∗)−1Σ∇2

θL(θ
∗)−1) as in Theorem 1.3.4. To consider the projected average estimate

θ̄n given in (1.2.7), an additional assumption is needed to avoid calculating the six-order moment.
Thus, we make the unnecessary assumption that (∇θlt) is uniformly bounded.3

Assumption 1.3.10. Let DΘ = infθ∈∂Θ∥θ−θ∗∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover,
there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ∥∇θlt(θ)∥2 ≤ G2

Θ a.s.

Theorem 1.3.6. Denote δ̄t = E[∥θ̄t−θ∗∥2] with θ̄n given by (1.2.7), where (θt) follows the recursion
in (1.2.5) or (1.2.6). Assume that Assumptions 1.3.6-p to 1.3.8-p for p = 4 and Assumption 1.3.9
hold true. Moreover, let (1.3.10) and (1.3.11) hold true. In addition, Assumption 1.3.10 must hold
true if (θt) follows the recursion in (1.2.6). Suppose nt = Cρt

ρ with ρ ∈ [0, 1) and Cρ ∈ N, such that
µν = µ− 1{ρ=0}2DνC

−ν
ρ > 0. For α− ρβ ∈ (1/2, 1), we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +
21/2Λ1/2C

1−2σ
2(1+ρ)
ρ

N
1+2ρσ
2(1+ρ)

t

1{σ<1/2} +
21/2C

′1/2
σ C

1−2(σ+σ′)
2(1+ρ)

ρ

µN
1+2ρ(σ+σ′)

2(1+ρ)

t

(1.3.19)

+O
(
max

{
N

− 2+ρ(2σ+β)−α
2(1+ρ)

t , N
− ρ(2σ−β)+α

1+ρ

t

})
+ Õ

(
N

− δ+ρν
2(1+ρ)

t

)
+ 1{Bν ̸=0}Ψt, (1.3.20)

with δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν ̸=0}min{ρ(2σ − β) + α, 2ρν} and Ψt given such that

Ψt = Õ
(
max

{
N

− ρ(σ+ν)
2(1+ρ)

t , N
− 1+ρ(β+ν)−α

1+ρ

t , N
− 1+2ρν

2(1+ρ)

t , N
− δ/2+ρν

2(1+ρ)

t , N
− 2ρν

1+ρ

t

})
.

Accelerated decay. Theorem 1.3.6 replicate the results of Theorem 1.3.4 with Λ/Nt as leading
term in the unbiased i.i.d. case. Thus, by averaging it is possible to achieve the incorrigible rate
of O(N−1

t ), e.g., this is always achieved in the unbiased case with σ = 1/2, even under short-range
dependence (i.e., when ν ≥ 1/2). Remark that each term in (1.3.19) is a direct consequence of
Assumption 1.3.9. Furthermore, all terms of (1.3.19) are independent of the learning rate (γt) but
the two last terms are dependent on streaming batches through Cρ and ρ. As in Theorem 1.3.5,

3The derivation of the six-order moment can be found in Godichon-Baggioni [55].
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the positivity of µν is essential for all terms in (1.3.20) even if it does not appear directly; a long
version can be found in Chapter 3. For objectives that lack convexity µ or have high levels of
dependence Dν , we can only ensure convergence by increasing Cρ, i.e., ensuring positivity of µν ;
this is illustrated in Chapter 3 for ARCH models [58].

The first term of (1.3.20) decay at the rateO(max{N−(2+ρ(β+2σ)−α)/(1+ρ)
t , N

−2(ρ(2σ−β)+α)/(1+ρ)
t }),

which suggests choosing α, β such that α+ ρ(2σ/3− β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2

yields a decay of O(N−4/3
t ) for any ρ. Thus, we can robustly achieve O(N−4/3

t ) for any streaming
rate ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. In general, the convergence is resilient to any
streaming rate ρ by having α = 2/3 and β = 2σ/3. But taking β > 0 would damage the variance
reduction effect from having Cρ large (e.g., see discussion after Theorem 3.3.1). Thus, there is a
trade-off between accelerating the convergence by taking β = 2σ/3 > 0 or taking β = 0 to favor
from variance reduction. In practice, an immediate choice would be to take β = 0, but if the data
or model contains a low amount of noise, it can be advantageous to raise β to improve convergence
[57]; this is illustrated in Examples 1.3.1 and 1.3.2.

Next, the decay of the second term in (1.3.20) is tricky to interpret in a simple manner as
it is a mixture of the learning rate α and β, streaming rate ρ, dependence rate ν, and bias Bν .
Nevertheless, some observations can be made: first, having β = 0 is beneficial for the decay rate δ
in all cases. Second, increasing streaming rate ρ would also increase the decay.

Behavior for Bν. The influence of Bν is exclusively contained in Ψt, with the exception of
the second term of (1.3.20). Also, increasing ρ will always diminish the bad influence of this bias
term. Surprisingly, Ψt → 0 as t → ∞ for any ν, but long-range dependence is excluded if we wish
to obtain the desired rate of δ̄t = O(N−1). However, it does not seem to have any major influence
in our experiments, e.g., see Example 1.3.2. To conclude, by taking ρ positive and Cρ large enough
to ensure that µν stays positive, then we will converge under long- or short-range dependence with
biased gradient estimates.

Example 1.3.2 (Geometric median, continuation of Example 1.3.1). To illustrate our methodology
on real-life time-dependent streaming data, we consider some historical hourly weather data4. The
dataset contains around five years (roughly 45000 data points) of high temporal resolution hourly
measurements over various weather attributes, such as temperature, humidity, and air pressure.
These measurements are available for thirty US and Canadian cities and six Israeli cities, meaning
the dimension d = 36. In our study, we consider the hourly temperature measurements, which we
filter for monthly and annual seasonality by subtracting the monthly and annual averages.

Figure 1.3 shows the results of the geometric median estimated in the same way as described
in Example 1.3.1; but here we compare our estimates to the geometric median estimate calculated
by the Weiszfeld’s algorithm [148]. Although the (geometric) median is a robust metric (as seen in
Example 1.3.1), we see a considerable amount of fluctuations in Figure 1.3, which comes from the
time-dependency and the noise in the weather measurements. Figure 1.3a shows that it is essential

4The historical hourly weather dataset can be found on https://www.kaggle.com/datasets/selfishgene/
historical-hourly-weather-data.
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to use a mini-batch of a certain size to stabilize the optimization. But to achieve reasonable
convergence, we need to have increasing streaming batches (i.e., positive streaming rates ρ > 0),
which we can see in Figures 1.3b to 1.3e. Most surprising is that we can achieve excellent convergence
(with a final error of only 10−5) by combining increasing streaming batches with averaging, e.g., see
Figure 1.3f with Cρ = 64, ρ > 0 and β = 1/3.

An extended study of stochastic algorithms for time-dependent data can be found in Chapter 4,
where we propose AdaVol as an online adaptive recursive estimation routine of GARCH parameters.
Here, we make a natural adaptation of the Quasi-Maximum Likelihood (QML) procedure to a
streaming setting. This method is based on stochastic algorithms combined with the Variance
Targeting Estimation (VTE) technique [49]. However, AdaVol was made before the theory of
stochastic algorithms of time-dependent streaming data (with lack of convexity) was shown. This
can also be reflected in Chapter 4, as we use VTE to include all models parameters in the projection
and thereby achieved convergence. With this new theory in place, a modified AdaVol algorithm
could thus be made without VTE by increasing streaming batches to remedy the convexity problems
and break the dependency. Thus, some theoretical guarantees could be proved for this modified
version. Nevertheless, in Chapter 4, we will see that AdaVol goes beyond this stationary setting,
e.g., AdaVol’s ability to adapt to time-varying parameters was beneficial in the M6 financial forecast
competition, where it recently ranked third among the best probability forecasters.

Summary

We examined the SO problem in a streaming framework using time-dependent and biased (gra-
dient) estimates. In particular, we explored convergence rates of the SSG and ASSG algorithms in
a non-asymptotic manner. The theoretical results formed heuristics that links the level of depen-
dency and convexity to the rest of the model parameters. These heuristics provided new insights
into determining learning rates, which can help increase the stability of SG-based methods. Our
experiments verified these findings, suggesting using increasing streaming batches for highly depen-
dent data sources. Moreover, in large-scale learning problems with dependence, noisy variables, and
lack of convexity, we know now how to accelerate convergence and reduce noise through the learning
rate and the treatment pattern of the datasets.
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Figure 1.3: Geometric median for various data streams nt = Cρt
ρ. See Example 1.3.2 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, Cρ = 1, β = 0

(c) Varying streaming batches, Cρ = 8, β = 0 (d) Varying streaming batches, Cρ = 64, β = 0

(e) Varying streaming batches, Cρ = 128, β = 0 (f) Varying streaming batches, Cρ = 64, β = 1/3
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Chapter 2: Non-asymptotic Analysis of Stochastic Algorithms for Streaming
Data

Abstract

Motivated by the high-frequency data streams continuously gener-
ated, real-time learning is becoming increasingly important. These
data streams should be processed sequentially with the property that
the data stream may change over time. In this streaming setting,
we propose techniques for minimizing convex objectives through unbi-
ased estimates of their gradients, commonly referred to as stochastic
approximation problems. Our methods rely on stochastic approxi-
mation algorithms because of their applicability and computational
advantages. The reasoning includes iterate averaging that guaran-
tees optimal statistical efficiency under classical conditions. Our non-
asymptotic analysis shows accelerated convergence by selecting the
learning rate according to the expected data streams. We show that
the average estimate converges optimally and robustly for any data
stream rate. In addition, noise reduction can be achieved by process-
ing the data in a specific pattern, which is advantageous for large-scale
machine learning problems. These theoretical results are illustrated
for various data streams, showing the effectiveness of the proposed
algorithms.

keywords: machine learning, large-scale, stochastic approximation,
stochastic optimization, streaming data.
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2.1 Introduction

Machine learning and artificial intelligence have become an integral part of modern society. This
massive utilization of intelligent systems generates an endless sequence of data, many of which come
as streaming data such as internet traffic data, financial investments, self-driving cars, or sensor
data. It requires robust and time-efficient algorithms to analyze and process such data without
compromising accuracy. This problem has attracted a lot of attention in the machine learning
community [19, 20, 133, 153, 156].

Even after 70 years, Stochastic Approximation (SA) algorithms are still widely used for han-
dling large amounts of data [124]; the most well-known is presumably the Stochastic Gradient (SG)
method, which has led to numerous extensions [42, 83, 122, 128, 143, 155]. An essential extension
is the Polyak-Ruppert averaging (ASG) proposed by Polyak and Juditsky [118] and Ruppert [129],
which guarantees optimal statistical efficiency without jeopardizing the computational cost. Bot-
tou et al. [21] reviews these stochastic algorithms for large-scale machine learning, including noise
reduction and second-order methods, among others.

Contributions. A fundamental aspect of this paper is to explore how changing data streams
affect these stochastic optimization methods. Our analysis extends the work of Moulines and Bach
[96] to a streaming framework. We examine two different kinds of data streams: constant and
varying streaming-batches. These data streams includes everything from vanilla SG and ASG,
mini-batch SG and ASG, to more exotic learning designs. Our main theoretical contribution is the
non-asymptotic analysis of the SG and ASG method in this streaming framework. Our results show
a noticeable improvement in convergence rates by having learning rates that adapt to the expected
data streams. In particular, we show how to obtain optimal convergence rates robust to any data
streaming rate.

Organization. Section 2.2 presents the streaming framework on which the non-asymptotic
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analysis relies. Our convergence results are presented in Sections 2.3 and 2.4, with and without
averaging. Both sections includes analysis of unbounded and uniform bounded gradients. These
theoretical results are illustrated in Section 2.5 for a variety of data streams. At last, some final
remarks are done in Section 2.6.

2.2 Problem Formulation

The objective of the stochastic optimization problem is to minimize functions of the form L(θ) =

E[lt(θ)] with respect to θ ∈ Θ, where Θ is a closed convex set in Rd. The minimization of L
is achieved without evaluating it directly but by unbiased functions lt : Rd → R. Observe that
the principles for biased functions (lt) are rather different [37, 130]. Let (lt) constitute a sequence
of independent differentiable random functions (possibly non-convex) and their gradients unbiased
estimates of ∇θL, e.g., see Nesterov et al. [104] for definitions and properties of such functions. Let
us now describe our streaming framework in which we will solve our SA problem: at each time t ∈ N,
a block consisting of nt ∈ N random functions lt = (lt,1, . . . , lt,nt) arrive. These random functions
(lt,i) can be seen as observations (or random loss functions) depending on the true minimizer θ∗

and some underlying noise sequence. To solve this, we introduce the Stochastic Streaming Gradient
(SSG) defined as

θt = θt−1 −
γt
nt

nt∑
i=1

∇θlt,i(θt−1), θ0 ∈ Θ, (2.2.1)

where (γt) is a decreasing sequence of positive numbers also referred to as the learning rate satisfying∑t
i=1 γi = ∞ and

∑t
i=1 γ

2
i < ∞ for t → ∞ [124]. In the same way, we introduce the Projected

Stochastic Streaming Gradient (PSSG), defined by

θt = PΘ

(
θt−1 −

γt
nt

nt∑
i=1

∇θlt,i (θt−1)

)
, θ0 ∈ Θ, (2.2.2)

where PΘ denotes the projection onto Θ. The PSSG estimate in (2.2.2) is very convenient for models
with conditions on the parameters space, and thereby, requires a projection of the parameters.
Next, to guarantee optimal convergence properties [118, 129], we introduce the Averaged Stochastic
Streaming Gradient (ASSG), given as

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, (2.2.3)

where (θt) follow (2.2.1) andNt denotes the accumulated sum of observations,
∑t

i=1 ni. Similarly, we
define the PASSG estimate as when (θ̄t) (in (2.2.3)) is derived using (2.2.2). Practically, as we handle
data sequentially, we will make use of the rewritten formula: θ̄t = (Nt−1/Nt)θ̄t−1+(nt/Nt)θt−1 with
θ̄0 = 0.
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2.2.1 Quasi-strong Convex and Lipschitz Smooth Objectives

Following Moulines and Bach [96], Sridharan et al. [135], we make the following assumptions
about the objective function L: assume that θ∗ ∈ Θ is the unique global minimizer of L with
∇θL(θ

∗) = 0. Also, let L be µ-quasi-strong convex [80, 99], that is, the exists µ > 0 such that
∀θ ∈ Θ the following inequality holds,

L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2. (2.2.4)

Teo et al. [141] provides a comprehensive record of various convex functions L used in machine
learning applications. Milder degrees of convexity have been studied by, e.g., Karimi et al. [80],
which studied stochastic gradient methods under the Polyak-Łojasiewicz condition [93, 117], or
Gadat and Panloup [50], which studied the Ruppert-Polyak averaging estimate under some Kurdyka-
Łojasiewicz-type condition [86, 93]. Next, let the function ∇θL be C∇-Lipschitz continuous, i.e.,
there exists C∇ > 0 such that ∀θ, θ′ ∈ Θ,

∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (2.2.5)

Furthermore, for the averaging estimate in (2.2.3), we need the function L to be twice differentiable
with Cδ-Lipschitz continuous Hessian operator ∇2

θL, meaning, there exists Cδ > 0 such that ∀θ, θ′ ∈
Θ,

∥∇2
θL(θ)−∇2

θL(θ
′)∥ ≤ Cδ∥θ − θ′∥. (2.2.6)

Note that (2.2.5) and (2.2.6) only needs to hold for θ′ = θ∗.

2.3 Stochastic Streaming Gradients

This section considers the SSG and PSSG methods with streaming batches arriving in constant
and varying streams. Our aim is to provide bounds on the quadratic mean E[∥θt − θ∗∥2], which
depends explicitly upon the problem’s parameters. In order to do this, we assume the following
about the function lt,i for each t ∈ N with i = 1, . . . , nt:

Assumption 2.3.1. The random variable ∇θlt,i(θ) is square-integrable and ∀θ ∈ Θ, E[∇θlt,i(θ)] =

∇θL(θ).

Assumption 2.3.2-p (Cl-expected smoothness). For p ≥ 1, there exists Cl > 0 such that ∀θ, θ′ ∈
Θ, E[∥∇θlt,i(θ)−∇θlt,i(θ

′)∥p] ≤ Cp
l E[∥θ − θ

′∥p].

Assumption 2.3.3-p (σ-gradient noise). For p ≥ 1, there exists σ > 0 such that E[∥∇θlt,i(θ
∗)∥p] ≤

σp.

These assumptions are modified versions of the standard assumptions for stochastic approxi-
mations [13, 87] as they hold for any i = 1, . . . , nt. Note that Assumption 2.3.2-p only needs to
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hold for θ′ = θ∗. By the smoothness assumption (Assumption 2.3.2-p), we avoid the unfavorable
uniformly bounded gradients assumption, which is too restrictive and only holds for a few losses.
Assumption 2.3.3-p is a weak assumption that should be seen as an assumption on Θ rather than
on (lt,i). For SSG and PSSG, we only need Assumptions 2.3.2-p and 2.3.3-p to hold for p = 2,
whereas, for ASSG and PASSG, we need p = 4 in order to bound the fourth-order moment. Our
framework include classic examples: stochastic approximation (Robbins-Monro setting [124]) and
learning from i.i.d. data, such as linear regression, logistic regression, general ridge regressions and
quantile regression, p-means, and softmax regression, under regularity conditions [33, 136]. In the
following theorem, we derive an explicit upper bound on the t-th estimate of (2.2.1) and (2.2.2) for
any learning rate (γt) using classical techniques from stochastic approximations [13, 87].

Theorem 2.3.1 (SSG/PSSG). Denote δt = E[∥θt−θ∗∥2] for some δ0 ≥ 0, where (θt) follows (2.2.1)
or (2.2.2). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we have for any
learning rate (γt) that

δt ≤ exp

−µ t∑
i=t/2

γi

πδt +
2σ2

µ
max

t/2≤i≤t

γi
ni
, (2.3.7)

with πδt = exp(4C2
l

∑t
i=1 γ

2
i /ni) exp(2C

2
∇
∑t

i=1 1{ni>1}γ
2
i )(δ0 + 2σ2/C2

l ).

Sketch of proof. Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we
derive from (2.2.1) that (δt) satisfies the recursive relation

δt ≤ [1− 2µγt + (2C2
l + (nt − 1)C2

∇)n
−1
t γ2t ]δt−1 + 2σ2n−1

t γ2t , (2.3.8)

for any (nt) and (γt) fulfilling the conditions imposed on the learning rate [124]. This recursive rela-
tion is then bounded in a non-asymptotic manner using Proposition B.1.5 in Chapter B. Bounding
the projected estimate in (2.2.2) follows directly from the fact that E[∥PΘ(θ)−θ∗∥2] ≤ E[∥θ−θ∗∥2],
∀θ ∈ Θ [157].

Related work. When nt = 1 in (2.3.7), we obtain the usual SG method studied in Moulines
and Bach [96]. Similarly, Theorem 2.3.1 provides an upper bound on the function values, E[L(θt)−
L(θ∗)] ≤ Clδt/2; this follows by Cauchy-Schwarz inequality and Assumption 2.3.2-p.

Natural decay imposed by Robbins and Monro [124]. The learning rate (γt) should
satisfy the following requirements:

∑t
i=1 γi = ∞ and

∑t
i=1 γ

2
i /ni ≤

∑t
i=1 γ

2
i < ∞ for t → ∞.

These conditions directly imply that πδt < ∞ as t → ∞. Thus, our attention is on reducing
the noise term maxt/2≤i≤t γi/ni without damaging the natural decay of the sub-exponential term
exp(−µ

∑t
i=t/2 γi). In particular, this non-asymptotic bound shows convergence in quadratic mean

for any learning rate, fulfilling these conditions. In addition, the scaling with (nt) in the noise term
shows an apparent variance reduction when we increase the streaming batches (nt).

Throughout this paper, we will consider learning rates on the form γt = Cγn
β
t t

−α with hyper-
parameters Cγ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streaming batches denoted
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by nt. We start by considering constant streaming batches (i.e., mini-batch SG) where nt follows
the constant streaming batch size Cρ ∈ N:

Corollary 2.3.1 (SSG/PSSG, constant streaming batches). Denote δt = E[∥θt − θ∗∥2] for some
δ0 ≥ 0, where (θt) follows (2.2.1) or (2.2.2). Suppose γt = CγC

β
ρ t−α such that α ∈ (1/2, 1). Under

Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 2, we have

δt ≤ exp

(
− µCγN

1−α
t

21−αC1−α−β
ρ

)
πc∞ +

21+ασ2Cγ

µC1−α−β
ρ Nα

t

, (2.3.9)

where πc∞ = exp(4αC2
γ(2C

2
l + Cρ1{Cρ>1}C

2
∇)/(2α− 1)C1−2β

ρ )(δ0 + 2σ2/C2
l ) is a finite constant.

Decay of the initial conditions. The bound in Corollary 2.3.1 depends on the initial condition
δ0 = ∥θ0 − θ∗∥2 and the variance σ2 in the noise term. The initial condition δ0 vanish sub-
exponentially fast for α ∈ (1/2, 1). Thus, the asymptotic term is 21+ασ2Cγ/µC

1−α−β
ρ Nα

t , i.e.,
δt = O(N−α

t ). Moreover, the bound in (2.3.9) is optimal (up to some constants) for quadratic
functions (lt,i), since the deterministic recursion in (2.3.8) would be with equality. It is worth noting
that if CγCl or CγC∇ is chosen too large, they may produce a large πc∞ constant. In addition, πc∞ is
positively affected by Cρ when β < 1/2. Obviously, the hyper-parameter β only comes into play if
the streaming batch size is larger than one, i.e., Cρ > 1. Nonetheless, the effect of πc∞ will decrease
exponentially fast due to the sub-exponentially decaying factor in front.

Variance reduction. The asymptotic term is divided by C1−α−β
ρ , implying we could achieve

variance reduction by taking α+ β ≤ 1 when Cρ is large. Taking a large streaming batch size, e.g.,
Cρ = t, one accelerates the vanilla SG convergence rate to O(N1−β

t ). However, this large streaming
batch size would be unsuitable in practice, and it would mean that we would take few steps until
convergence is achieved.

The safe choice of having β = 0 functions well for the SSG method for any streaming batch size
Cρ, but fixed-sized streaming batches are not the most realistic streaming setting. These streaming
batches are far more likely to vary in size depending on the data streams. For the sake of simplicity,
we consider varying streaming batches where nt are on the form Cρt

ρ with Cρ ≥ 1 and ρ ∈ (−1, 1)
such that nt ≥ 1 for all t. We will refer to ρ as the streaming rate. For the convenience of notation,
let ρ̃ = ρ1{ρ≥0}.

Corollary 2.3.2 (SSG/PSSG, varying streaming batches). Denote δt = E[∥θt − θ∗∥2] for some
δ0 ≥ 0, where (θt) follows (2.2.1) or (2.2.2). Suppose γt = Cγn

β
t t

−α where nt = Cρt
ρ with Cρ ≥ 1

and ρ ∈ (−1, 1), such that α − βρ̃ ∈ (1/2, 1). Under Assumption 2.3.1, Assumptions 2.3.2-p
and 2.3.3-p with p = 2, we have

δt ≤ exp

(
− µCγN

1−ϕ
t

2(2+ρ)(1−ϕ)C1−β−ϕ
ρ

)
πv∞ +

21+(2+ρ)ϕσ2Cγ

µC
(1−β)1{ρ≥0}−ϕ
ρ Nϕ

t

, (2.3.10)

where ϕ = ((1− β)ρ̃+α)/(1+ ρ̃) and πv∞ = exp(4(α− βρ̃)C2
γC

2β
ρ (2C2

l +C2
∇)/(2(α− βρ̃)− 1))(δ0 +
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2σ2/C2
l ) is a finite constant.

Decay of the initial conditions. As mentioned for Corollary 2.3.1, the condition of having
α − βρ̃ ∈ (1/2, 1) is a natural restriction from Robbins and Monro [124], which relaxes the usual
condition of having α ∈ (1/2, 1) for ρ non-negative. For ρ ∈ (−1, 1/2), setting α = 2/3 and β = 1/3

would give same decay rate, δt = O(N−2/3
t ) as we saw for Corollary 2.3.1 when α = 2/3. However,

accelerated convergence could be achieved by, e.g., setting α = 1 and β = 1/2 for streaming rate
ρ ∈ (0, 1), giving us δt = O(N−(1+ρ/2)/(1+ρ)

t ).
Variance reduction. Similarly to Corollary 2.3.1, the sub-exponential and asymptotic term is

scaled by C1−β−ϕ
ρ for ρ ≥ 0, implying we should take α+β ≤ 1 to obtain variance reduction. These

conclusions will change when we consider the averaging estimate in Section 2.4.
The reasoning in Corollary 2.3.2 could be expanded to include random streaming batches where

nt is given such that CLt
ρL ≤ nt ≤ CHt

ρH with ρL, ρH ∈ (−1, 1) and CL, CH ≥ 1. This yields the
modified rate ϕ′ = ((1− β)ρL + α)/(1 + ρH); nevertheless, we will leave the proof to the reader.

2.4 Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate (θ̄n) given in (2.2.3) derived with use of (θt)
from (2.2.1) (Section 2.4.1) or (2.2.2) (Section 2.4.2). Besides having Assumptions 2.3.2-p and 2.3.3-
p to hold for p = 4, an additional assumption is needed for bounding the rest term of the averaging
estimate.

Assumption 2.4.1. There exists a non-negative self-adjoint operator Σ such that E[∇θlt,i(θ
∗)∇θlt,i(θ

∗)⊤] ⪯
Σ.

Note that the operator Σ always exists when σ is finite for order p = 4 in Assumption 2.3.3-p.

2.4.1 Unbounded Gradients

As in Section 2.3, we conduct a general study for any learning rate (γt) when applying the
Polyak-Ruppert averaging estimate from (2.2.3):

Theorem 2.4.1 (ASSG). Denote δ̄t = E[∥θ̄t−θ∗∥2] with (θ̄t) given by (2.2.3) using (θt) from (2.2.1).
Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, and Assumption 2.4.1, we
have for any learning rate (γt) that

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
1

µNt

t−1∑
i=1

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ δ1/2i +
nt

µγtNt
δ
1/2
t +

n1
µNt

(
1

γ1
+ Cl

)
δ
1/2
0

+
Cl

µNt

(
t−1∑
i=1

ni+1δi

)1/2

+
Cδ

µNt

t−1∑
i=0

ni+1∆
1/2
i , (2.4.11)

where Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and ∆t = E[∥θt − θ∗∥4] for some ∆0 ≥ 0.
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As noticed in Polyak and Juditsky [118], the leading term Λ/Nt achieves the Cramer-Rao bound
[50, 97]. Note that the leading term Λ/Nt is invariant of the learning rate (γt). Moreover, this
bound of O(N−1

t ) is achieved without inverting the Hessian. Next, the processes (δt) and (∆t)

can be bounded by the recursive relations in (2.3.7) and (2.7.21). There are no sub-exponential
decaying terms for the initial conditions in Theorem 2.4.1, which is a common problem for averaging.
However, as mentioned previously, we are more interested in advancing the decay of the asymptotic
terms. To ease notation, we make use of the functions ψy

x(t) : R→ R, given as

ψy
x(t) =


t(1−x)/(1+y)/(1− x) if x < 1,

(1 + y) log(t) if x = 1,

x/(x− 1) if x > 1,

with y ∈ R+, such that
∑t

i=1 i
−x ≤ ψ0

x(t) for any x ∈ R+. Note that ψy
x(t)/t = O(t−(x+y)/(1+y)) if

x < 1, ψy
x(t)/t = O(log(t)t−1) if x = 1, and ψy

x(t)/t = O(t−1) if x > 1. Hence, for any x, y ∈ R+,
ψy
x(t)/t = Õ(t−(x+y)/(1+y)), where the Õ(·) notation hides logarithmic factors.

Corollary 2.4.1 (ASSG, constant streaming batches). Denote δ̄t = E[∥θ̄t − θ∗∥2] with (θ̄t) given
by (2.2.3) using (θt) from (2.2.1). Suppose γt = CγC

β
ρ t−α such that α ∈ (1/2, 1). Under Assump-

tion 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, and Assumption 2.4.1, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
6σC

(1−α−β)/2
ρ

µ3/2C
1/2
γ N

1−α/2
t

+
2α6Cδσ

2Cγ

µ2C1−α−β
ρ Nα

t

+
2ClσC

1/2
γ

µ3/2C
(1−α−β)/2
ρ N

(1+α)/2
t

+
CρΓc

µNt

+
C2−α−β
ρ

√
πc∞A

c
∞

µCγN
2−α
t

+
(6 + 71{Cρ>1})2

3α/2Cδσ
2C

3/2
γ C

3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
,

with Γc given by (1/CγC
β
ρ + Cl)δ

1/2
0 + Cl

√
πc∞A

c
∞/Cρ +

√
πc∞A

c
∞/CγC

β
ρ + Cδ

√
Πc

∞A
c
∞, consisting

of the finite constants πc∞, Πc
∞ and Ac

∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, Cδ, Cγ, Cρ, β
and α.

Accelerated decay the initial conditions. By averaging, we have increased the rate of
convergence from O(N−α

t ) to the optimal rate O(N−1
t ). The two subsequent terms are the main

remaining terms decaying at the rate O(Nα−2
t ) and O(N−2α

t ), which suggests setting α = 2/3 would
be optimal. The remaining terms are negligible. Next, it is worth noting that having α+ β = 1 in
Corollary 2.4.1, we would give no impact in the main remaining terms from the streaming batch
size Cρ. Moreover, taking α = 2/3 and β ≤ 1/3 would be an optimal choice of hyper-parameters
such that the streaming batch size Cρ have a positive or no impact. At last, as we do not rely on
sub-exponentially decaying terms, we need to be more careful when picking our hyper-parameters,
e.g., taking CγCl too large may cause Γc to be significant. Nevertheless, the term consisting of Γc

decay at a rate of at least O(N−2
t ).

Corollary 2.4.2 (ASSG, varying streaming batches). Denote δ̄t = E[∥θ̄t − θ∗∥2] with (θ̄t) given by
(2.2.3) using (θt) from (2.2.1). Suppose γt = Cγn

β
t t

−α where nt = Cρt
ρ with Cρ ≥ 1 and ρ ∈ (−1, 1),
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such that α− βρ̃ ∈ (1/2, 1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4,
and Assumption 2.4.1, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
23+ϕ(1+ρ̃)σC

(1−ϕ−β)/21{ρ≥0}
ρ

µ3/2C
1/2
γ N

1−ϕ/2
t

+
2(1+ϕ)(1+ρ̃)−2Cδσ

2Cγ

µ2C1−ϕ−β
ρ Nϕ

t

+
2ϕ(1+ρ̃)/2ClσC

1/2
γ

µ3/2C
(1−ϕ−β)/21{ρ≥0}
ρ N

(1+ϕ)/2
t

+
CρΓv

µNt
+
C2−ϕ−β
ρ

√
πv∞A

v
∞

µCγN
2−ϕ
t

+
23(1+ϕ)(1+ρ̃)/2Cδσ

2C
3/2
γ C

1+3β/2
ρ ψρ̃

3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
1{ρ≥0}
ρ Nt

,

with Γv given by (1/CγC
β
ρ + Cl)δ

1/2
0 + 2ρ̃Cl

√
πv∞A

v
∞/Cρ + 2

√
πv∞A

v
∞/CγC

β
ρ + 2ρ̃Cδ

√
Πv

∞A
v
∞, con-

sisting of the finite constants πv∞, Πv
∞ and Av

∞, that only depends on µ, δ0, ∆0, Cl, σ, C∇, Cδ, Cγ,
Cρ, β and α.

Robustness towards streaming rates ρ: Following the arguments above, the two main
remainder terms reveal that ϕ = 2/3 ⇔ α − βρ̃ = (2 − ρ̃)/3, e.g., by setting β = 0, we should
pick α = (2 − ρ̃)/3. Likewise, if ρ = 0, we yield the same conclusion as in Corollary 2.4.1, namely
α = 2/3. However, these hyper-parameter choices are not resilient against any arrival schedule ρ.
Nonetheless, we can robustly achieve ϕ = 2/3 for any ρ ∈ (−1, 1) by setting α = 2/3 and β = 1/3.
In other words, we can achieve optimal convergence for any data stream by having α = 2/3 and
β = 1/3.

2.4.2 Bounded Gradients

In what follows, we consider the averaging estimate θ̄n given in (2.2.3) but with the use of the
projected estimate PSSG from (2.2.2). To avoid calculating the six-order moment, we make the
unnecessary assumption that ∥∇θlt,i(θ)∥ is uniformly bounded for any θ ∈ Θ; the derivation of the
six-order moment can be found in Godichon-Baggioni [55].

Assumption 2.4.2. Let dmin = infθ∈∂Θ∥θ−θ∗∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover,
there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ∥∇θlt,i(θ)∥2 ≤ G2

Θ a.s., with i = 1, . . . , nt.

Corollary 2.4.3 (PASSG, constant streaming batches). Denote δ̄t = E[∥θ̄t − θ∗∥2] with (θ̄t) given
by (2.2.3) using (θt) from (2.2.2). Suppose γt = CγC

β
ρ t−α such that α ∈ (1/2, 1). Under Assump-

tion 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, Assumptions 2.4.1 and 2.4.2, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
6σC

(1−α−β)/2
ρ

µ3/2C
1/2
γ N

1−α/2
t

+
2α6Cδσ

2Cγ

µ2C1−α−β
ρ Nα

t

+
2ClσC

1/2
γ

µ3/2C
(1−α−β)/2
ρ N

(1+α)/2
t

+
CρΓc

µNt

+
C2−α−β
ρ

√
πc∞A

c
∞

µCγN
2−α
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+
(6 + 71{Cρ>1})2

3α/2C ′
δσ

2C
3/2
γ C

3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
,

with C ′
δ = Cδ+22GΘ/d

2
min and Γc given by (1/CγC

β
ρ +Cl)δ

1/2
0 +Cl

√
πc∞A

c
∞/Cρ+

√
πc∞A

c
∞/CγC

β
ρ +

Cδ

√
Πc

∞A
c
∞, consisting of the finite constants πc∞, Πc

∞ and Ac
∞, that only depends on µ, δ0, ∆0,

Cl, σ, C∇, Cδ, Cγ, Cρ, β and α.
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Corollary 2.4.4 (PASSG, varying streaming batches). Denote δ̄t = E[∥θ̄t−θ∗∥2] with (θ̄t) given by
(2.2.3) using (θt) from (2.2.2). Suppose γt = Cγn

β
t t

−α where nt = Cρt
ρ with Cρ ≥ 1 and ρ ∈ (−1, 1),

such that α− βρ̃ ∈ (1/2, 1). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4,
Assumptions 2.4.1 and 2.4.2, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
23+ϕ(1+ρ̃)σC

(1−ϕ−β)/21{ρ≥0}
ρ
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1/2
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t

+
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2Cγ
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t
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√
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v
∞

µCγN
2−ϕ
t

+
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2C

3/2
γ C

1+3β/2
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3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
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ρ Nt

,

with C ′
δ = Cδ+22GΘ/d

2
min and Γv given by (1/CγC

β
ρ+Cl)δ

1/2
0 +2ρ̃Cl

√
πv∞A

v
∞/Cρ+2

√
πv∞A

v
∞/CγC

β
ρ+

2ρ̃Cδ

√
Πv

∞A
v
∞, consisting of the finite constants πv∞, Πv

∞ and Av
∞, that only depends on µ, δ0, ∆0,

Cl, σ, C∇, Cδ, Cγ, Cρ, β and α.

2.5 Experiments

In this section, we demonstrate the theoretical results presented in Sections 2.3 and 2.4 for various
data streams. In Section 2.5.1, we illustrate the unbounded gradient case (Sections 2.3 and 2.4.1)
using linear regression. Where in Section 2.5.2, we present the bounded gradient case (Sections 2.3
and 2.4.2) by considering the geometric median. To measure the performance, we use the quadratic
mean error of the parameter estimates over 100 replications, given by (E[∥θNt − θ∗∥2])t≥1. Note
that averaging over several iterations gives a reduction in variability, which mainly benefits the SSG
and PSSG.

2.5.1 Linear Regression

Consider the linear regression defined by yt = XT
t θ+ϵt, where Xt ∈ Rd is a random features vec-

tor, θ ∈ Rd is the parameters vector, and ϵt is a random variable with zero mean, independent from
Xt. Moreover, (Xt, ϵt)t≥1 are independent and identically distributed. Thus, θ∗ is the minimizer of
L(θ) = E[(yt −XT

t θ)
2]. In this example, we fix d = 10, set θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10,

and let (Xt) and (ϵt) be standard Gaussian. It is well-known that Cγ can substantially impact
convergence; when Cγ is too large, instability can occur, leading to an explosion during the first
iterations. If Cγ is too small, the convergence can become very slow and destroy the desired rate α.
To focus on the various data streams, we set Cγ = 1/2 and α = 2/3.

In Figure 2.1a, we consider constant data streams to illustrate the results in Corollaries 2.3.1
and 2.4.1. The figures show a solid decay rate proportional to α = 2/3 for any streaming batch size
Cρ ∈ {1, 8, 64, 128} with β = 0, as shown in Corollary 2.3.1. In addition, we see an acceleration
in decay by averaging, as explained in Corollary 2.4.1. Both methods show a noticeable reduction
in variance when Cρ increases which are particularly beneficial in the beginning. Moreover, as
mentioned in Remark 2.7.1, the stationary phase may also commence earlier when we raise the
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streaming batch size Cρ. Next, in Figures 2.1b to 2.1e, we vary the streaming rate ρ for streaming
batch sizes Cρ = 1, 8, 64, and 128, respectively, with β = 0. These figures shows an increase in decay
of the SSG when the streaming rate ρ increase. Despite this, we still achieve better convergence for
the ASSG method, which seems more immune to the different choices of streaming rate ρ, e.g., see
the discussion after Corollary 2.4.2. We know this from Corollary 2.3.2, as ϕ = (ρ̃+α)/(1+ ρ̃) ≥ α
for β = 0. In addition, we see that Cρ has a positive effect on the noise (i.e, variance reduction),
but if Cρ becomes too large, it may slow down convergence (as seen in Figure 2.1e). Alternatively,
we could think around the problem in another way: how can we choose α and β such that we have
optimal decay of ϕ = 2/3 for any ρ. In other words, for any arrival schedule that may occur, how
should we choose our hyper-parameters such that we achieve optimal decay of ϕ = 2/3. As discussed
after Corollary 2.4.2, one example of this could be achieved by setting α = 2/3 and β = 1/3 such
that ϕ = 2/3 for any ρ. Figure 2.1f shows an example of this where we (indeed) achieve the same
decay rate for any streaming rate ρ.

2.5.2 Geometric Median

The geometric median is a generalization of the real median introduced by Haldane [64]. Robust
estimators such as the geometric median may be preferred over the mean when the data is noisy.
Moreover, in our streaming framework, stochastic algorithms are preferred as they efficiently handle
large samples of high-dimensional data [33, 55]. The geometric median of X ∈ Rd is defined
by θ∗ ∈ Rd which minimizes the convex function L(θ) = E[∥X − θ∥ − ∥X∥], e.g., see Gervini
[53], Kemperman [81] for properties such as existence, uniqueness, and robustness (breakdown
point). Thus, the gradient ∇θL(θ) = E[∇θlt(θ)] with ∇θlt(θ) = −(Xt − θ)/∥Xt − θ∥ is bounded
as ∥∇θlt(θ)∥ ≤ 1. We omit to project our estimates as this would hide the errors we want to
explore (which we will see more clearly in Example 1.3.2, where we consider real-life time-dependent
streaming data). Instead of projecting the estimates, one could adapt the proof of Gadat and
Panloup [50] to a streaming setting. Otherwise, if Xt is bounded, one can adapt Cardot et al. [32]
to the streaming setting showing that the streaming estimates are bounded. Similarly to above, we
fix d = 10 and let (Xt) be standard Gaussian centered at θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10.
Moreover, following the reasoning of Cardot et al. [33], we set Cγ =

√
d =
√
10, and let α = 2/3.

Figure 2.2a shows the variance reduction effect for different constant streaming batches Cρ

with β = 0. However, the robustness of the geometric median leaves only a small positive impact
for further variance reduction. Thus, too large (constant) streaming batch sizes Cρ hinders the
convergence as we make too few iterations. These findings can be extended to Figures 2.2b to 2.2e,
where we vary the streaming rate ρ for streaming batch sizes Cρ = 1, 8, 64, and 128, respectively,
with β = 0. The lack of convergence improvements comes from β = 0, which means we do not
exploit the potential of using more observations to accelerate convergence. As shown in Figure 2.2f,
we can achieve this acceleration by simply taking β = 1/3. In addition, β = 1/3 provides optimal
convergence robust to any streaming rate ρ. Choosing a proper β > 0 is particularly important
when Cρ is large, as robustness is an integral part of the geometric median method.
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Figure 2.1: Linear regression for various data streams nt = Cρt
ρ. See Section 2.5.1 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, Cρ = 1, β = 0

(c) Varying streaming batches, Cρ = 8, β = 0 (d) Varying streaming batches, Cρ = 64, β = 0

(e) Varying streaming batches, Cρ = 128, β = 0 (f) Varying streaming batches, Cρ = 8, β = 1/3
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Figure 2.2: Geometric median for various data streams nt = Cρt
ρ. See Section 2.5.2 for details.

(a) Constant streaming batches, ρ = 0, β = 0 (b) Varying streaming batches, Cρ = 1, β = 0

(c) Varying streaming batches, Cρ = 8, β = 0 (d) Varying streaming batches, Cρ = 64, β = 0

(e) Varying streaming batches, Cρ = 128, β = 0 (f) Varying streaming batches, Cρ = 8, β = 1/3
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2.6 Conclusions

We considered the SO problem in a streaming framework where we had to minimize objectives
using only unbiased estimates of its gradients. We introduced and studied the convergence rates of
the stochastic streaming algorithms in a non-asymptotic manner. This investigation was derived
using learning rates of the form γt = Cγn

β
t t

−α under varying data streams of nt. The theoretical re-
sults and our experiments showed a noticeable improvement in the convergence rate by choosing the
learning rate (hyper-parameters) according to the expected data streams. For ASSG and PASSG,
we showed that this choice of learning rate led to optimal convergence rates and was robust to any
data stream rate we may encounter. Moreover, in large-scale learning problems, we know how to
accelerate convergence and reduce noise through the learning rate and the treatment pattern of the
data.

There are several ways to expand our work but let us give some examples: first, we can extend our
analysis to include streaming batches of any size in the spirit of the discussion after Corollary 2.3.2.
Second, many machine learning problems encounter correlated variables and high-dimensional data,
making an extension to non-strongly convex objectives advantageous, e.g, in Werge and Winten-
berger [150], they use SG-based optimization methods for volatility prediction through GARCH
modeling. Third, Assumption 2.3.1 requires independent random functions, thus, an obvious exten-
sion could incorporate a more realistic dependency assumption, thereby increasing the applicability
for more models. Moreover, studying dependence may give insight into how to process dependent
information optimally. Next, a natural extension would be to modify our averaging estimate from
(2.2.3) to a weighted averaged version (WASSG) proposed by Mokkadem and Pelletier [95] and
Boyer and Godichon-Baggioni [27], given as

θ̄t,λ =
1∑t

i=1 ni log(1 + i)λ

t∑
i=1

ni log(1 + i)λθi−1, (2.6.12)

where θ̄0,λ = 0, λ > 0 and (θt) is coming from (2.2.1). By giving more importance to the latest
estimates, we should improve convergence and limit the effect of bad initializations. Following the
demonstrations in Section 2.5, an example of this WASSG estimate (θ̄t,λ) can be found in Figure 2.3
with use of λ = 2. Here we see that although the WASSG estimate in (2.6.12) may not achieve a
better final error (compared to the ASSG and PASSG estimates in Figures 2.1f and 2.2f), it still
achieves a better decay along the way, often referred to as parameter tracking.

2.7 Proofs

In this section, we provide detailed proofs of the results presented in the manuscript. Purely
technical results used in the proofs can be found in Chapter B. Let (Ft)t≥1 be an increasing family
of σ-fields, namely Ft = σ(l1, . . . , lt) with lt = (lt,1, . . . , lt,nt). Furthermore, we expand the notation
with Ft−1,i = σ(l1,1, . . . , lt−1,nt−1 , lt,1, . . . , lt,i) such that Ft−1,0 = Ft−1. Meaning, ∀0 ≤ i < j, we
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Figure 2.3: WASSG for various data streams nt = Cρt
ρ. See Section 2.6 for details.

(a) Linear regression, varying streaming batches,
Cρ = 8, β = 1/3

(b) Geometric median, varying streaming
batches, Cρ = 8, β = 1/3

have Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j . Thus, by the independence of the random (differentiable) functions
(lt,i), Assumption 2.3.1 yields that ∀t ≥ 1, E[∇θlt,i(θt−1)|Ft−1,i−1] = ∇θL(θt−1) with i = 1, . . . , nt.

2.7.1 Proofs for Section 2.3

The section is structured such that we start by analyzing the recursive relations and bounding
them for every choice of learning rate. Next, we look at specific choices of learning rates.

Proof of Theorem 2.3.1. Taking the quadratic norm on both sides of (2.2.1), expanding it, and take
the conditional expectation, yields

E[∥θt − θ∗∥2|Ft−1] =∥θt−1 − θ∗∥2 +
γ2t
n2t

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1


−2γt
nt

nt∑
i=1

E[⟨∇θlt,i(θt−1), θt−1 − θ∗⟩|Ft−1]. (2.7.13)

To bound the second term (on the right-hand side) of (2.7.13), we first expand it as follows,

nt∑
i=1

E[∥∇θlt,i(θt−1)∥2|Ft−1] +

nt∑
i ̸=j

E[⟨∇θlt,i(θt−1),∇θlt,j(θt−1)⟩|Ft−1]. (2.7.14)

For first term of (2.7.14), we utilize the Lipschitz continuity of ∇θlt,i, together with Assump-
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tions 2.3.1 to 2.3.3-p, to obtain

E[∥∇θlt,i(θt−1)∥2|Ft−1] ≤2E[∥∇θlt,i(θt−1)−∇θlt,i(θ
∗)∥2|Ft−1] + 2E[∥∇θlt,i(θ

∗)∥2|Ft−1]

≤2C2
l ∥θt−1 − θ∗∥2 + 2σ2, (2.7.15)

using ∥x+ y∥2 ≤ 2(∥x∥2 + ∥y∥2). Next, for the second term in (2.7.14): as Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j

for all 0 ≤ i < j, we have

E[⟨∇θlt,i(θt−1),∇θlt,j(θt−1)⟩|Ft−1] = E[E[⟨∇θlt,i(θt−1),∇θL(θt−1)⟩|Ft−1,i−1]|Ft−1],

since θt−1 and lt,i are Ft−1,j−1-measurable for all 0 ≤ i < j, and similarly, as θt−1 is Ft−1-measurable
and Ft−1,i−1-measurable for all i ≥ 0, we also have

E[E[⟨∇θlt,i(θt−1),∇θL(θt−1)⟩|Ft−1,i−1]|Ft−1] =E[⟨E[∇θlt,i(θt−1)|Ft−1,i−1],∇θL(θt−1)⟩|Ft−1]

=∥∇θL(θt−1)∥2,

where ∥∇θL(θt−1)∥2 ≤ C2
∇∥θt−1− θ∗∥2 as ∇θL is C∇-Lipschitz continuous and ∇θL(θ

∗) = 0. Thus,
we obtained a bound for the second term (on the right-hand side) of (2.7.13) using the bounds of
the two terms in (2.7.14):

nt∑
i=1

(2C2
l ∥θt−1 − θ∗∥2 + 2σ2) +

nt∑
i ̸=j

C2
∇∥θt−1 − θ∗∥2 = (2C2

l nt + C2
∇(nt − 1)nt)∥θt−1 − θ∗∥2 + 2σ2nt.

(2.7.16)

For the third term (on the right-hand side) of (2.7.13) we use that L is µ-quasi-strong convex and
θt−1 is Ft−1-measurable,

E[⟨∇θlt,i(θt−1), θt−1 − θ∗⟩|Ft−1] =⟨E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ∗⟩

=⟨∇θL(θt−1), θt−1 − θ∗⟩

≥µ∥θt−1 − θ∗∥2, (2.7.17)

by Assumption 2.3.1. Combining inequalities from (2.7.16) and (2.7.17) into (2.7.13) and taking
the expectation on both sides of the inequality, yields the recursive relation (2.3.8):

δt ≤ [1− 2µγt + (2C2
l + (nt − 1)C2

∇)n
−1
t γ2t ]δt−1 + 2σ2n−1

t γ2t ,

with δt = E[∥θt − θ∗∥2] with some δ0 ≥ 0. At last, by Proposition B.1.5, we obtain the desired

40



Section 2.7

inequality in (2.3.7), namely

δt ≤ exp

−µ t∑
i=t/2

γi

 exp

(
4C2

l

t∑
i=1

γ2i
ni

)
exp

(
2C2

∇

t∑
i=1

1{ni>1}γ
2
i

)(
δ0 +

2σ2

C2
l

)
+

2σ2

µ
max

t/2≤i≤t

γi
ni
.

using that (nt − 1)n−1
t ≤ 1{nt>1}, nt ≥ 1, and that

max
1≤i≤t

2σ2

2C2
l + (ni − 1)C2

∇
≤ max

1≤i≤t

2σ2

2C2
l

=
σ2

C2
l

.

Remark 2.7.1. The decrease of (2C2
l + (nt − 1)C2

∇)n
−1
t γt determines when the stationary phase

occurs. This is more clearly seen in Proposition B.1.4, where the inner terms directly depend on
the inception of the stationary phase. Thus, by increasing nt, we decrease (2C2

l +(nt−1)C2
∇)n

−1
t γt,

and especially it dominates the constant Cl.

Proof of Corollary 2.3.1. By Theorem 2.3.1, we have the upper bound giving as

δt ≤ exp

−µ t∑
i=t/2

γi

πct +
2σ2

µCρ
max

t/2≤i≤t
γi. (2.7.18)

as nt = Cρ, with πct = exp((4C2
l /Cρ)

∑t
i=1 γ

2
i ) exp(2C

2
∇1{Cρ>1}

∑t
i=1 γ

2
i )(δ0+σ

2/C2
l ). The sum term∑t

i=1 γ
2
i = C2

γC
2β
ρ
∑t

i=1 i
−2α in πct can be bounded with the help of integral tests for convergence,∑t

i=1 i
−2α = 1 +

∑t
i=2 i

−2α ≤ 1 +
∫ t
1 x

−2α dx ≤ 1 + 1/(2α − 1) = 2α/(2α − 1), as α ∈ (1/2, 1).
Likewise, plugging γt = CγC

β
ρ t−α into the first term of (2.7.18), gives

exp

−µ t∑
i=t/2

γi

 = exp

−µCγC
β
ρ

t∑
i=t/2

i−α

 ≤ exp

(
−µCγC

β
ρ

∫ t

t/2
x−α dx

)
≤ exp

(
−µCγC

β
ρ t1−α

21−α

)
,

using the integral test for convergence. Next, as (γt)t≥1 is decreasing, then maxt/2≤i≤t γt = γt/2.
Combining all these findings into (2.7.18), gives us

δt ≤ exp

(
−µCγC

β
ρ t1−α

21−α

)
πc∞ +

21+ασ2Cγ

µC1−β
ρ tα

, (2.7.19)

with πc∞ = exp(4αC2
γ(2C

2
l + Cρ1{Cρ>1}C

2
∇)/(2α − 1)C1−2β

ρ )(δ0 + 2σ2/C2
l ). At last, converting

(2.7.19) into terms of Nt using Nt = Cρt, yields the desired.

Proof of Corollary 2.3.2. For convenience, we divided the proof into two cases to comprehend that
nt ≥ 1 for all t: first, we bound each term of (2.3.7) (from Theorem 2.3.1) after inserting, γt =

Cγn
β
t t

−α = CγC
β
ρ tβρ−α if ρ ≥ 0, or γt ≥ Cγt

−α if ρ < 0 (using that β ≥ 0) into the inequality. If
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ρ ≥ 0, the first term of (2.3.7) can be bounded, as follows:

exp

−µ t∑
i=t/2

γi

 = exp

−µCγC
β
ρ

t∑
i=t/2

iβρ−α

 ≤ exp

(
−µCγC

β
ρ t1+βρ−α

21+βρ−α

)
,

using that α− βρ ∈ (1/2, 1) and the integral test for convergence. In a same way, if ρ < 0, one has

exp

−µ t∑
i=t/2

γi

 ≤ exp

−µCγ

t∑
i=t/2

i−α

 ≤ exp

(
−µCγt

1−α

21−α

)
.

Likewise, with the help of integral tests for convergence, we have for ρ ≥ 0, that
∑t

i=1 γ
2
i /ni ≤∑t

i=1 γ
2
i ≤ 2(α − βρ)C2

γC
2β
ρ /(2(α − βρ) − 1), as nt ≥ 1 and α − ρβ > 1/2. If ρ < 0, one has∑t

i=1 γ
2
i /ni ≤

∑t
i=1 γ

2
i ≤ 2αC2

γC
2β
ρ /(2α − 1) since Cρ ≥ nt ≥ 1. Next, as (1 − β)ρ + α > 0 for

ρ ≥ 0, then we can bound the last term of (2.3.7) by

2σ2

µ
max

t/2≤i≤t

γi
ni

=
2σ2Cγ

µC1−β
ρ

max
t/2≤i≤t

1

i(1−β)ρ+α
≤ 21+(1−β)ρ+ασ2Cγ

µC1−β
ρ t(1−β)ρ+α

.

Likewise, if ρ < 0, we have

2σ2

µ
max

t/2≤i≤t

γi
ni

=
2σ2Cγ

µ
max

t/2≤i≤t

1

n1−β
i iα

≤ 21+ασ2Cγ

µtα
,

since nt ≥ 1 and β ≤ 1. Combining all these findings gives

δt ≤ exp

(
−µCγC

β1{ρ≥0}
ρ t(1−ϕ)(1+ρ̃)

2(1−ϕ)(1+ρ̃)

)
πv∞ +

21+ϕ(1+ρ̃)σ2Cγ

µC
(1−β)1{ρ≥0}
ρ tϕ(1+ρ̃)

, (2.7.20)

where πv∞ = exp(4(α − βρ̃)C2
γC

2β
ρ (2C2

l + C2
∇)/2(α − βρ̃) − 1) with ρ̃ = ρ1{ρ≥0} and ϕ = ((1 −

β)ρ̃ + α)/(1 + ρ̃). To write this in terms of Nt, we use that Nt =
∑t

i=1 ni = Cρ
∑t

i=1 i
ρ =

Cρ(t
ρ +

∑t−1
i=1 i

ρ) ≤ Cρ(t
ρ +

∫ t
1 x

ρ dx) ≤ Cρ(t
ρ + tρ

∫ t
1 dx) = Cρ(t

ρ + t1+ρ) ≤ 2Cρt
1+ρ, for ρ ≥ 0,

thus, t ≥ (Nt/2Cρ)
1/(1+ρ). For ρ < 0, we have Nt ≤ Cρt, i.e, t ≥ Nt/Cρ.

2.7.2 Proofs for Section 2.4

Lemma 2.7.1 (ASSG/PASSG). Denote ∆t = E[∥θt − θ∗∥4] for some ∆0 ≥ 0, where (θt) follows
(2.2.1) or (2.2.2). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4 and
Assumption 2.4.1, we have for any learning rate (γt) that

∆t ≤ exp

−µ t∑
i=t/2

γi

Π∆
t +

32σ4

µ2
max

t/2≤i≤t

γ2i
n2i

+
48σ4

µ
max

t/2≤i≤t

γ3i
n3i

+
114σ4

µ
max

t/2≤i≤t

γ3i 1{ni>1}

n2i
,

(2.7.21)
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with Π∆
t given in (2.7.29).

Proof of Lemma 2.7.1. We will now derive the recursive step sequence for the fourth-order moment
using the same arguments as in proof for Theorem 2.3.1. Thus, one can show that

E[∥θt − θ∗∥4|Ft−1] ≤∥θt−1 − θ∗∥4 +
γ4t
n4t

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
4
∣∣∣∣∣∣Ft−1


+
4γ2t
n2t

E

〈 nt∑
i=1

∇θlt,i (θt−1) , θt−1 − θ∗
〉2
∣∣∣∣∣∣Ft−1


+
2γ2t
n2t
∥θt−1 − θ∗∥2E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1


−4γt
nt
∥θt−1 − θ∗∥2

nt∑
i=1

⟨E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ∗⟩

+
4γ3t
n3t

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2〈 nt∑

i=1

∇θlt,i (θt−1) , θt−1 − θ∗
〉∣∣∣∣∣∣Ft−1

 ,
using θt−1 is Ft−1−measurable. Note, by Assumption 2.3.1, we have

⟨E[∇θlt,i(θt−1)|Ft−1], θt−1 − θ∗⟩ = ⟨∇θL(θt−1), θt−1 − θ∗⟩ ≥ µ∥θt−1 − θ∗∥2,

as L is µ-quasi-strong convex. Combining this with the Cauchy-Schwarz inequality ⟨x, y⟩ ≤ ∥x∥∥y∥,
we obtain the simplified expression:

E[∥θt − θ∗∥4|Ft−1] ≤∥θt−1 − θ∗∥4 +
γ4t
n4t

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
4
∣∣∣∣∣∣Ft−1


+

6γ2t
n2t
∥θt−1 − θ∗∥2E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1


− 4µγt∥θt−1 − θ∗∥4 +

4γ3t
n3t
∥θt−1 − θ∗∥E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
3
∣∣∣∣∣∣Ft−1

 .
Next, recall Young’s Inequality, i.e., for any at, bt, ct > 0 we have atbt ≤ a2t c2t /2 + b2t /2c

2
t ,∥∥∥∥∥

nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
3

≤ γt
2nt ∥θt−1 − θ∗∥

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
4

+
2nt ∥θt−1 − θ∗∥

γt

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2

,
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giving us

E[∥θt − θ∗∥4|Ft−1] ≤(1− 4µγt)∥θt−1 − θ∗∥4 +
3γ4t
n4t

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
4
∣∣∣∣∣∣Ft−1


+
8γ2t
n2t
∥θt−1 − θ∗∥2E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1

 . (2.7.22)

To bound the second and fourth-order terms in (2.7.22), we would need to study the recursive
sequences: firstly, utilizing the Lipschitz continuity of ∇θlt,i, together with Assumptions 2.3.2-p
and 2.3.3-p, and that θt−1 is Ft−1-measurable (Assumption 2.3.1), we obtain

E[∥∇θlt,i(θt−1)∥p|Ft−1] ≤2p−1[E[∥∇θlt,i(θt−1)−∇θlt,i(θ
∗)∥p|Ft−1] + E[∥∇θlt,i(θ

∗)∥p|Ft−1]]

≤2p−1[Cp
l ∥θt−1 − θ∗∥p + σp], (2.7.23)

for any p ∈ [1, 4] using the bound ∥x+ y∥p ≤ 2p−1(∥x∥p + ∥y∥p). Thus, we can bound the second-
order term in (2.7.22) by

E

∥∥∥∥∥
t∑

i=1

∇θlt,i (θt−1)

∥∥∥∥∥
2
∣∣∣∣∣∣Ft−1

 ≤[2C2
l nt + C2

∇(nt − 1)nt]∥θt−1 − θ∗∥2 + 2σ2nt

≤[2C2
l nt + C2

∇n
2
t1{nt>1}]∥θt−1 − θ∗∥2 + 2σ2nt, (2.7.24)

following the same steps in the proof of Theorem 2.3.1, but with use of (2.7.23). Bounding the
fourth-order term is a bit heavier computationally, but let us recall that ∥

∑
i xi∥2 =

∑
i∥xi∥2 +∑

i ̸=j⟨xi, xj⟩ =
∑

i∥xi∥2 + 2
∑

i≤j⟨xi, xj⟩. Then, we have that

∥∥∥∥∥
nt∑
i=1

∇θlt,i(θt−1)

∥∥∥∥∥
4

=

 nt∑
i=1

∥∇θlt,i(θt−1)∥2 +
nt∑
i ̸=j

⟨∇θlt,i(θt−1),∇θlt,j(θt−1)⟩

2

≤2

(
nt∑
i=1

∥∇θlt,i(θt−1)∥2
)2

+ 4

 nt∑
i<j

⟨∇θlt,i(θt−1),∇θlt,j(θt−1)⟩

2

, (2.7.25)

as (x+ y)2 ≤ 2x2 + 2y2. For the first term of (2.7.25), we have

E

( n1∑
i=1

∥∇θlt,i(θt−1)∥2
)2
∣∣∣∣∣∣Ft−1

 =

nt∑
i=1

E[∥∇θlt,i(θt−1)∥4|Ft−1] +

nt∑
i ̸=j

E[∥∇θlt,i(θt−1)∥2∥∇θlt,j(θt−1)∥2|Ft−1]

≤8nt[C4
l ∥θt−1 − θ∗∥4 + σ4] + 4n2t1{nt>1}[C

2
l ∥θt−1 − θ∗∥2 + σ2]2,

using the bound from (2.7.23), nt(nt − 1) ≤ n2t1{nt>1}, and that Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j for all
0 ≤ i < j. To bound the second term of (2.7.25), we ease notation by denoting ∇θlt,i(θt−1) by υi,
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giving us nt∑
i<j

⟨υi, υj⟩

2

=

nt∑
i<j

⟨υi, υj⟩2 +
nt∑

i<j,k<l
(i,j) ̸=(k,l)

⟨υi, υj⟩⟨υk, υl⟩

=

nt∑
i<j

⟨υi, υj⟩2︸ ︷︷ ︸
A

+

nt∑
i<j,k<l

(i,j)̸=(k,l),j=l

⟨υi, υj⟩⟨υk, υl⟩

︸ ︷︷ ︸
B

+

nt∑
i<j,k<l

(i,j) ̸=(k,l),j ̸=l

⟨υi, υj⟩⟨υk, υl⟩

︸ ︷︷ ︸
C

.

By Cauchy-Schwarz inequality, we can bound the first term A, by

E[A|Ft−1] ≤
nt∑
i<j

E[∥υi∥2∥υj∥2|Ft−1]

≤2nt(nt − 1)[C2
l ∥θt−1 − θ∗∥2 + σ2]2

≤2n2t1{nt>1}[C
2
l ∥θt−1 − θ∗∥2 + σ2]2,

using that Ft−1 ⊆ Ft−1,i ⊂ Ft−1,j for all 0 ≤ i < j. Next, since l = j implies i ̸= k, we have

E[B|Ft−1] =

nt∑
i<j,k<l,i ̸=k,j=l

E[⟨υi, υj⟩⟨υk, υl⟩|Ft−1]

=

nt∑
i<j,k<l,i ̸=k,j=l

E[E[⟨E[υi|Ft−1,i−1], υj⟩⟨E[υk|Ft−1,k−1], υl⟩|Ft−1,l−1]|Ft−1]

=

nt∑
i<j,k<l,i ̸=k,j=l

E[E[⟨∇θL(θt−1), υl⟩2|Ft−1,l−1]|Ft−1]

≤
nt∑

i<j,k<l,i ̸=k,j=l

E[∥∇θL(θt−1)∥2E[∥υl∥2|Ft−1,l−1]|Ft−1]

≤
nt∑

i<j,k<l,i ̸=k,j=l

2C2
∇∥θt−1 − θ∗∥2[C2

l ∥θt−1 − θ∗∥2 + σ2]

=nt(nt − 1)(nt − 2)C2
∇∥θt−1 − θ∗∥2[C2

l ∥θt−1 − θ∗∥2 + σ2]

≤n3t1{nt>1}C
2
∇∥θt−1 − θ∗∥2[C2

l ∥θt−1 − θ∗∥2 + σ2],

using the Cauchy-Schwarz inequality and the bound in (2.7.23). In the same way, as j ̸= l includes
(i, j) ̸= (k, l), we can rewrite C as

C =

nt∑
i<j,k<l,j ̸=l

⟨υi, υj⟩⟨υk, υl⟩ =
nt∑

i<j,k<l,i=k,j ̸=l

⟨υi, υj⟩⟨υk, υl⟩︸ ︷︷ ︸
C1

+

nt∑
i<j,k<l,i ̸=k,j ̸=l

⟨υi, υj⟩⟨υk, υl⟩︸ ︷︷ ︸
C2

,
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where E[C1|Ft−1] = E[B|Ft−1]. Finally, we can rewrite C2 as

C2 =

nt∑
i<j,k<l,i ̸=k,j ̸=l,i=l,j ̸=k

⟨υiυj⟩⟨υkυl⟩︸ ︷︷ ︸
C2,1

+

nt∑
i<j,k<l,i ̸=k,j ̸=l,i ̸=l,j=k

⟨υiυj⟩⟨υkυl⟩︸ ︷︷ ︸
C2,2

+

nt∑
i<j,k<l,i ̸=j ̸=k ̸=l

⟨υiυj⟩⟨υkυl⟩︸ ︷︷ ︸
C2,3

,

where E[C2,1|Ft−1] = E[C2,2|Ft−1] = E[B|Ft−1], and

E[C2,3|Ft−1] =

nt∑
i<j,k<l,i ̸=j ̸=k ̸=l

E[∥∇θL(θt−1)∥4|Ft−1]

≤nt(nt − 1)(nt − 2)(nt − 3)C4
∇∥θt−1 − θ∗∥4

≤n4t1{nt>1}C
4
∇∥θt−1 − θ∗∥4.

Thus, the fourth-order term of (2.7.22), is bounded by

E

∥∥∥∥∥
nt∑
i=1

∇θlt,i (θt−1)

∥∥∥∥∥
4
∣∣∣∣∣∣Ft−1

 ≤ 16nt[C
4
l ∥θt−1 − θ∗∥4 + σ4] + 16n2t1{nt>1}[C

2
l ∥θt−1 − θ∗∥2 + σ2]2

+ 12n3t1{nt>1}C
2
∇∥θt−1 − θ∗∥2[C2

l ∥θt−1 − θ∗∥2 + σ2] + 4n4t1{nt>1}C
4
∇∥θt−1 − θ∗∥4

≤[16C4
l nt + 16C4

l n
2
t1{nt>1} + 12C2

∇C
2
l n

3
t1{nt>1} + 4C4

∇n
4
t1{nt>1}]∥θt−1 − θ∗∥4

+ [32C2
l σ

2n2t1{nt>1} + 12C2
∇σ

2n3t1{nt>1}]∥θt−1 − θ∗∥2 + 16σ4nt + 16σ4n2t1{nt>1}. (2.7.26)

Combining the bound from (2.7.24) and (2.7.26) into (2.7.22), we obtain the recursive relation for
the fourth-order moment:

E[∥θt − θ∗∥4|Ft−1] ≤[1− 4µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

l n
−1
t γ2t + 48C4

l n
−3
t γ4t + 48C4

l n
−2
t 1{nt>1}γ

4
t

+ 36C2
∇C

2
l n

−1
t 1{nt>1}γ

4
t + 12C4

∇1{nt>1}γ
4
t ]∥θt−1 − θ∗∥4

+ [16σ2n−1
t γ2t + 96C2

l σ
2n−2

t 1{nt>1}γ
4
t + 36C2

∇σ
2n−1

t 1{nt>1}γ
4
t ]∥θt−1 − θ∗∥2

+ 48σ4n−3
t γ4t + 48σ4n−2

t 1{nt>1}γ
4
t .

Using the Young’s inequalities, 2C2
∇C

2
l ≤ ntC4

∇+n−1
t C4

l , 16σ2n−1
t γ2t ∥θt−1−θ∗∥2 ≤ 2µγt∥θt−θ∗∥4+

32σ4µ−1n−2
t γ3t , 2C2

l σ
2n−2

t 1{nt>1}γ
4
t ∥θt−1− θ∗∥2 ≤ C4

l n
−2
t 1{nt>1}γ

4
t ∥θt− θ∗∥4 + σ4n−2

t 1{nt>1}γ
4
t , and

2C2
∇σ

2n−1
t 1{nt>1}γ

4
t ∥θt−1 − θ∗∥2 ≤ C4

∇1{nt>1}γ
4
t ∥θt − θ∗∥4 + σ4n−2

t 1{nt>1}γ
4
t , yields,

E[∥θt − θ∗∥4|Ft−1] ≤[1− 2µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

l n
−1
t γ2t + 48C4

l n
−3
t γ4t + 114C4

l n
−2
t 1{nt>1}γ

4
t

+48C4
∇1{nt>1}γ

4
t ]∥θt−1 − θ∗∥4 + 32µ−1σ4n−2

t γ3t + 48σ4n−3
t γ4t + 114σ4n−2

t 1{nt>1}γ
4
t .

(2.7.27)

Taking, the expectation on both sides of the inequality in (2.7.27) yields the recursive relation for
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the fourth-order moment:

∆t ≤[1− 2µγt + 8C2
∇1{nt>1}γ

2
t + 16C2

l n
−1
t γ2t + 48C4

l n
−3
t γ4t + 114C4

l n
−2
t 1{nt>1}γ

4
t

+ 48C4
∇1{nt>1}γ

4
t ]∆t−1 + 32µ−1σ4n−2

t γ3t + 48σ4n−3
t γ4t + 114σ4n−2

t 1{nt>1}γ
4
t . (2.7.28)

with ∆t = E[∥θt − θ∗∥4] for some ∆0 ≥ 0. By Proposition B.1.5, we achieve the (upper) bound of
∆t in (2.7.28), given as

∆t ≤ exp

−µ t∑
i=t/2

γi

Π∆
t +

32σ4

µ2
max

t/2≤i≤t

γ2i
n2i

+
48σ4

µ
max

t/2≤i≤t

γ3i
n3i

+
114σ4

µ
max

t/2≤i≤t

γ3i 1{ni>1}

n2i
.

where Π∆
t is given by

exp

(
32C2

l

t∑
i=1

γ2i
ni

)
exp

(
96C4

l

t∑
i=1

γ4i
n3i

)
exp

(
228C4

l

t∑
i=1

1{ni>1}γ
4
i

n2i

)

exp

(
16C2

∇

t∑
i=1

1{ni>1}γ
2
i

)
exp

(
96C4

∇

t∑
i=1

1{ni>1}γ
4
i

)(
∆0 +

2σ4

C4
l

+
4σ4γ1
µC2

l n1

)
, (2.7.29)

with use of

max
1≤i≤t

32µ−1σ4n−2
i γi + 48σ4n−3

i γ2i + 114σ4n−2
i 1{ni>1}γ

2
i

8C2
∇1{ni>1} + 16C2

l n
−1
i + 48C4

l n
−3
i γ2i + 114C4

l n
−2
i 1{ni>1}γ

2
i + 48C4

∇1{ni>1}γ
2
i

≤ σ4

C4
l

+
2σ4γ1
µC2

l n1
.

At last, bounding the projected estimate (2.2.2) follows from that E[∥PΘ(θ)− θ∗∥2] ≤ E[∥θ− θ∗∥2],
∀θ ∈ Θ.

Proofs for Section 2.4.1

Proof of Theorem 2.4.1. Following Polyak and Juditsky [118], we rewrite (2.2.1) to

θt = θt−1 −
γt
nt

nt∑
i=1

∇θlt,i(θt−1) ⇐⇒
1

γt
(θt−1 − θt) = ∇θlt(θt−1), (2.7.30)

where ∇θlt(θt−1) denotes n−1
t

∑nt
i=1∇θlt,i(θt−1). Note ∇θlt(θt−1) ≈ ∇θlt(θ

∗) +∇2
θlt(θ

∗)(θt−1 − θ∗),
and that ∇θlt(θ

∗) and ∇θlt(θ) − ∇θL(θ) behaves almost like an i.i.d. sequences with zero mean.
Thus, θ̄t−θ∗ behaves like −∇θL(θ

∗)−1N−1
t

∑t
i=1 ni∇θli(θ

∗) leading to a bound in O(
√
Nt). Observe

that

∇2
θL(θ

∗)(θt−1 − θ∗) =∇θlt(θt−1)−∇θlt(θ
∗)

− [∇θlt(θt−1)−∇θlt(θ
∗)−∇θL(θt−1)]︸ ︷︷ ︸

martingale term

− [∇θL(θt−1)−∇2
θL(θ

∗)(θt−1 − θ∗)]︸ ︷︷ ︸
rest term

,
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where∇2
θL(θ

∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2
θL(θ

∗) ≥ µ. Thus, summing
the parts and using the Minkowski’s inequality, we obtain the inequality:

(
E
[∥∥θ̄t − θ∗∥∥2]) 1

2 ≤

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ
∗)

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni [∇θli (θi−1)−∇θli (θ
∗)−∇θL (θi−1)]

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
[
∇θL (θi−1)−∇2

θL (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
 1

2

.

As (∇θlt,i(θ
∗)) is a square-integrable martingale increment sequences on Rd (Assumption 2.3.1), we

have

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ
∗)

∥∥∥∥∥
2
 =E

∥∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∑
j=1

∇θli,j (θ
∗)

∥∥∥∥∥∥
2

≤ 1

N2
t

t∑
i=1

ni∑
j=1

E
[∥∥∥∇2

θL (θ∗)−1∇θli,j (θ
∗)
∥∥∥2]

≤
Tr
[
∇2

θL(θ
∗)−1Σ∇2

θL(θ
∗)−1

]
Nt

, (2.7.31)

using Assumption 2.4.1. To ease notation, we denote Tr[∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1] by Λ. Next, note
that for all t ≥ 1, we have the relation in (2.7.30), giving us

1

Nt

t∑
i=1

ni∇θli (θi−1) =
1

Nt

t∑
i=1

ni
γi

(θi−1 − θi)

=
1

Nt

t−1∑
i=1

(θi − θ∗)
(
ni+1

γi+1
− ni
γi

)
− 1

Nt
(θt − θ∗)

nt
γt

+
1

Nt
(θ0 − θ∗)

n1
γ1
,

leading to ∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥ ≤ 1

Ntµ

t−1∑
i=1

∥θi − θ∗∥
∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣
+

1

Ntµ
∥θt − θ∗∥

nt
γt

+
1

Ntµ
∥θ0 − θ∗∥

n1
γ1
.
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Hence, with the notion of δt = E[∥θt − θ∗∥2] this expression can be simplified to

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥
2
 1

2

≤ 1

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
Ntγtµ

δ
1
2
t +

n1
Ntγ1µ

δ
1
2
0 .

(2.7.32)

For the martingale term, we have

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni [∇θli (θi−1)−∇θli (θ
∗)−∇θL (θi−1)]

∥∥∥∥∥
2


≤ 1

N2
t µ

2

t∑
i=1

n2iE
[
∥∇θli (θi−1)−∇θli (θ

∗)∥2
]
=

1

N2
t µ

2

t∑
i=1

E

∥∥∥∥∥∥
ni∑
j=1

∇θli,j (θi−1)−∇θli,j (θ
∗)

∥∥∥∥∥∥
2

≤ 1

N2
t µ

2

t∑
i=1

ni∑
j=1

(
E
[
∥∇θli,j (θi−1)−∇θli,j (θ

∗)∥2
]) 1

2 ≤
C2
l

N2
t µ

2

t∑
i=1

niδi−1, (2.7.33)

by the Cauchy-Schwarz inequality and Assumption 2.3.2-p. For all t ≥ 1, the rest term is directly
bounded by (2.2.6):

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
[
∇θL (θi−1)−∇2

θL (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
 1

2

≤ Cδ

Ntµ

t∑
i=1

ni∆
1
2
i−1,

(2.7.34)

with the notion ∆t = E[∥θt− θ∗∥4]. Finally, combining the terms from (2.7.31) to (2.7.34), gives us

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
Ntγtµ

δ
1/2
t +

n1
Ntγ1µ

δ
1/2
0

+
Cl

Ntµ

(
t∑

i=1

niδi−1

)1/2

+
Cδ

Ntµ

t∑
i=1

ni∆
1/2
i−1, (2.7.35)

where δ̄t = E[∥θ̄t− θ∗∥2], which can be simplified into (2.4.11) by shifting the indices and collecting
the δ0 terms.

Proof of Corollary 2.4.1. As nt = Cρ for all t ≥ 1, we simplify the bound for δ̄t in (2.4.11) to

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
Cρ

Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣+ Cρ

Ntγtµ
δ
1/2
t +

Cρ

Ntµ

(
1

γ1
+ Cl

)
δ
1/2
0

+
ClC

1
2
ρ

Ntµ

(
t−1∑
i=1

δi

)1/2

+
CδCρ

Ntµ

t−1∑
i=0

∆
1/2
i . (2.7.36)
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The second-order moment δt is bounded by Corollary 2.3.1 but with use of (2.7.19) as we work in
terms of t. The fourth-order moment ∆t from Lemma 2.7.1 can be simplified to:

∆t ≤ exp

−µ t∑
i=t/2

γi

Πc
∞ +

1

µ

(
32σ4

µC2
ρ

max
t/2≤i≤t

γ2i +
48σ4

C3
ρ

max
t/2≤i≤t

γ3i +
114σ41{Cρ>1}

C2
ρ

max
t/2≤i≤t

γ3i

)

≤ exp

(
−µCγC

β
ρ t1−α

21−α

)
Πc

∞ +
1

µ

(
22α32σ4C2

γC
2β
ρ

µC2
ρt

2α
+

23α48σ4C3
γC

3β
ρ

C3
ρt

3α
+

23α114σ4C3
γC

3β
ρ 1{Cρ>1}

C2
ρt

3α

)
,

using that γt = CγC
β
ρ t−α is decreasing as α ∈ (1/2, 1). Regarding Π∆

t defined in (2.7.29), we can
bound it by

Πc
∞ =exp

(
64αC2

l C
2
γC

2β
ρ

(2α− 1)Cρ

)
exp

(
(192 + 456Cρ1{Cρ>1})C

4
l C

4
γC

4β
ρ

C3
ρ

)
exp

(
32αC2

∇C
2
γC

2β
ρ 1{Cρ>1}

2α− 1

)

exp
(
192C4

∇C
4
γC

4β
ρ 1{Cρ>1}

)(
∆0 +

2σ4

C4
l

+
4σ4Cγ

µC2
l C

1−β
ρ

)
,

using
∑t

i=1 i
−2α ≤ 2α/(2α− 1) and

∑t
i=1 i

−4α ≤ 2. Note that Πc
∞ is a finite constant, independent

of t. To bound the first term of (2.7.36), namely Cρ

Ntµ

∑t−1
i=1 δ

1/2
i |γ

−1
i+1− γ

−1
i |, we remark that |γ−1

t+1−
γ−1
t | ≤ C−1

γ C−β
ρ αtα−1, one has (since

√
a+ b ≤

√
a+
√
b),

Cρ

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣ ≤C1−β
ρ α

CγµNt

t∑
i=1

iα−1

exp

(
−µCγC

β
ρ i1−α

22−α

)√
πc∞ +

2
1+α
2 σ
√
Cγ

√
µC

1−β
2

ρ iα/2

 .

(2.7.37)

For simplicity, let us denote

Ac
∞ =

∞∑
i=0

exp

(
−µCγC

β
ρ i1−α

22−α

)
≥

∞∑
i=0

iα−1 exp

(
−µCγC

β
ρ i1−α

22−α

)
,

as α < 1. Thus, the first part of (2.7.37) is bounded as follows:

C1−β
ρ α

√
πc∞

CγµNt

t∑
i=1

iα−1 exp

(
−µCγC

β
ρ i1−α

22−α

)
≤ C1−β

ρ α
√
πc∞A

c
∞

CγµNt
.

Furthermore, with the help of an integral test for convergence, one has
∑t

i=1 i
α/2−1 ≤ 1+

∫ t
1 s

α/2−1 ds =

1 + (2/α)tα/2 − (2/α) ≤ (2/α)tα/2, such that the second part of (2.7.37) can be bounded by

2
1+α
2 σC

1−β
2

ρ α

C
1/2
γ µ3/2Nt

t∑
i=1

iα/2−1 ≤ 2
3+α
2 σC

1−β
2

ρ tα/2

C
1/2
γ µ3/2Nt

=
2

3+α
2 σC

1−α−β
2

ρ

C
1/2
γ µ3/2N

1−α/2
t

.
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By combining this, we get

Cρ

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ 1

γi+1
− 1

γi

∣∣∣∣ ≤ C1−β
ρ α

√
πc∞A

c
∞

CγµNt
+

2
3+α
2 σC

1−α−β
2

ρ√
Cγµ3/2N

1−α/2
t

. (2.7.38)

Similarly, second term of (2.7.36), can be bounded by

Cρ

Ntγtµ
δ

1
2
t ≤

C1−α−β
ρ

CγµN
1−α
t

exp

(
−µCγC

β
ρ t1−α

22−α

)√
πc∞ +

2
1+α
2 σ
√
Cγ

√
µC

1−β
2

ρ tα/2


≤C

2−α−β
ρ

√
πc∞A

c
∞

CγµN
2−α
t

+
2

1+α
2 C

1−α−β
2

ρ σ√
Cγµ3/2N

1−α/2
t

,

using exp(−µCγC
β
ρ t1−α/22−α) = Ac

t ≤ t−1
∑t

i=1A
c
i ≤ t−1Ac

∞ as Ac
t is decreasing. In a same way,

one has

ClC
1
2
ρ

Ntµ

(
t−1∑
i=1

δi

) 1
2

≤ClC
1
2
ρ

Ntµ

(
Ac

∞π
c
∞ +

21+ασ2Cγt
1−α

(1− α)µC1−β
ρ

)1/2

≤
ClC

1
2
ρ
√
πc∞
√
Ac

∞
Ntµ

+
2

1+α
2 Clσ

√
Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

.

Bound the last term of (2.7.36), is done as follows,

CδCρ

Ntµ

t−1∑
i=0

∆
1
2
i ≤

CδCρ

Ntµ

t−1∑
i=0

exp

(
−µCγC

β
ρ i1−α

22−α

)√
Πc

∞ +
2α6Cδσ

2CγC
β
ρ

Ntµ2

t−1∑
i=1

i−α

+
(6 + 71{Cρ>1})2

3α/2Cδσ
2C

3/2
γ C

3β/2
ρ

Ntµ3/2

t−1∑
i=1

i−3α/2

≤
CδCρ

√
Πc

∞A
c
∞

Ntµ
+

2α6Cδσ
2Cγ

C1−α−β
ρ µ2Nα

t

+
(6 + 71{Cρ>1})2

3α/2Cδσ
2C

3/2
γ C

3β/2
ρ ψ0

3α/2(Nt/Cρ)

µ3/2Nt
.

Thus, by collecting the terms above, we obtain:

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
6σC

1−α−β
2

ρ√
Cγµ3/2N

1−α/2
t

+
2α6Cδσ

2Cγ

C1−α−β
ρ µ2Nα

t

+
C2−α−β
ρ

√
πc∞A

c
∞

CγµN
2−α
t

+
2

1+α
2 Clσ

√
Cγ

C
1−α−β

2
ρ µ3/2N

1+α
2

t

+
CρΓc

µNt
+

(6 + 71{Cρ>1})2
3α/2Cδσ

2C
3/2
γ C

3β/2
ρ

µ3/2ψ0
3α/2(Nt/Cρ)−1Nt

,

where Γc = (1/CγC
β
ρ + Cl)δ

1/2
0 + Cl

√
πc∞A

c
∞/C

1/2
ρ +

√
πc∞A

c
∞/CγC

β
ρ + Cδ

√
Πc

∞A
c
∞.

Proof of Corollary 2.4.2. The steps of the proof follows the ones of Corollary 2.4.1 with the smart
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notation of ϕ and ρ̃: The bound for δ̄t in (2.4.11) is given by

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
Ntγtµ

δ
1/2
t +

n1
Ntµ

(
1

γ1
+ Cl

)
δ
1/2
0

+
Cl

Ntµ

(
t−1∑
i=1

ni+1δi

)1/2

+
Cδ

Ntµ

t−1∑
i=0

ni+1∆
1/2
i , (2.7.39)

where the learning rate is on the form γt = Cγn
β
t t

−α with nt = Cρt
ρ. The second-order moment δt

is upper bounded by (2.7.20) from Corollary 2.3.2. The fourth-order moment ∆t from Lemma 2.7.1
can be simplified as follows,

∆t ≤ exp

−µ t∑
i=t/2

γi

Πv
∞ +

32σ4

µ2
max

t/2≤i≤t

γ2i
n2i

+
162σ4

µ
max

t/2≤i≤t

γ3i
n2i
,

as nt ≥ 1 for any t ≥ 1 and β ≤ 1, and

Πv
∞ =exp

(
32(α− βρ̃)C2

γC
2β
ρ (2C2

l + C2
∇)

2(α− βρ̃)− 1

)
exp

(
192C4

γC
4β
ρ (4C4

l + C4
∇)
)(

∆0 +
2σ4

C4
l

+
4σ4Cγ

µC2
l C

1−β
ρ

,

)

using that
∑t

i=1 i
−a ≤ 2 for a ≥ 2. Next, for ρ ≥ 0, we have

∆t ≤ exp

(
−µCγC

β
ρ t1+βρ−α

21+βρ−α

)
Πv

∞ +
22α−2βρ+2ρ32σ4C2

γC
2β
ρ

µ2C2
ρt

2α−2βρ+2ρ
+

23α−3βρ+2ρ162σ4C3
γC

3β
ρ

µC2
ρt

3α−3βρ+2ρ
,

using that α− βρ ∈ (1/2, 1). If ρ < 0, one directly have

∆t ≤ exp

(
−µCγC

β
ρ t1−α

21−α

)
Πv

∞ +
22α32σ4C2

γC
2β
ρ

µ2t2α
+

23α162σ4C3
γC

3β
ρ

µt3α
.

With the notion of ϕ and ρ̃, we can combine the two ρ-cases as follows:

∆t ≤ exp

(
−µCγC

β1{ρ≥0}
ρ t(1−ϕ)(1+ρ̃)

2(1−ϕ)(1+ρ̃)

)
Πv

∞ +
22ϕ(1+ρ̃)32σ4C2

γC
2β
ρ

µ2C
21{ρ≥0}
ρ t2ϕ(1+ρ̃)

+
23ϕ(1+ρ̃)−ρ̃162σ4C3

γC
3β
ρ

µC
21{ρ≥0}
ρ t3ϕ(1+ρ̃)−ρ̃

.

We will in the following bound the terms for t but afterwards we will translate it to terms in Nt.
If ρ ≥ 0, the first relation is t ≥ (Nt/2Cρ)

1/(1+ρ) since Nt = Cρ(t
ρ +
∑t−1

i=1 i
ρ) ≤ Cρ(t

ρ +
∫ t
1 x

ρ dx) ≤
Cρ(t

ρ + tρ
∫ t
1 dx) = Cρ(t

ρ + t1+ρ) ≤ 2Cρt
1+ρ by use the integral test for convergence. Similarly,

Nt = Cρ
∑t

i=1 i
ρ ≥ Cρ

∫ t
0 x

ρ dx = Cρt
ρ+1, thus, t ≤ (Nt/Cρ)

1/(1+ρ). If ρ < 0, one has t ≤ Nt and
Nt ≤ Cρt, i.e., t ≥ Nt/Cρ.

Bounding 1
Ntµ

∑t−1
i=1 δ

1/2
i |ni+1/γi+1 − ni/γi|, we first note nt/γt = C−1

γ C1−β
ρ t(1−β)ρ+α for ρ ≥ 0.
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Thus, by the mean value theorem, we obtain:∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤ ((1− β)ρ+ α)
C1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣∣ν(1−β)ρ+α−1
∣∣∣ ≤ ((1− β)ρ+ α)C1−β

ρ

Cγi1−(1−β)ρ−α
, (2.7.40)

as α+ (1− β)ρ ≤ 1− ρ since α− βρ ∈ (1/2, 1). For ρ < 0, the mean value theorem gives us∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ = 1

Cγ

∣∣∣n1−β
i+1 (i+ 1)α − n1−β

i iα
∣∣∣ ≤ C1−β

ρ

Cγ
|(i+ 1)α − iα|

≤αC
1−β
ρ

Cγ
sup

ν∈(i,i+1)

∣∣να−1
∣∣ ≤ αC1−β

ρ

Cγi1−α
,

as (nt)t≥1 is a decreasing sequence and β ≤ 1. Thus, for any ρ ∈ (−1, 1), we have∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣ ≤ ϕ(1 + ρ̃)C1−β
ρ

Cγi1−ϕ(1+ρ̃)
.

By using this, we obtain:

1

Ntµ

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
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γi
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ρ
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ρ i(1−ϕ)(1+ρ̃)
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2
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2 σ
√
Cγ

√
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(1−β)
2
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ρ i
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2

 .

Next, let us denote

Av
∞ =

∞∑
i=0

iρ̃ exp

(
−µCγC

β1{ρ≥0}
ρ i(1−ϕ)(1+ρ̃)
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≥
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(
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β1{ρ≥0}
ρ i(1−ϕ)(1+ρ̃)

21+(1−ϕ)(1+ρ̃)

)
,

since ϕ(1 + ρ̃)− 1 = α+ (1− β)ρ̃− 1 ≤ ρ̃. Thus,

ϕ(1 + ρ̃)C1−β
ρ
√
πv∞

NtµCγ

t∑
i=1

iϕ(1+ρ̃)−1 exp

(
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)
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ρ
√
πv∞A

v
∞

NtµCγ
.

Furthermore, with the help of an integral test for convergence, we have

ϕ(1 + ρ̃)2
1+ϕ(1+ρ̃)

2 σC
1−β
2
1{ρ≥0}

ρ

µ3/2
√
CγNt
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2
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√
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2
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.
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Summarising, with use of ϕ(1 + ρ̃) < 2, we obtain

1

Ntµ
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δ
1
2
i
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.

Similarly, for nt
Ntγtµ

δ
1/2
t , one have
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2
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.

For n1
Ntµ

(γ−1
1 + Cl)δ

1/2
0 , we insert the definition of our learning functions, giving us
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Bounding Cl
Ntµ

(
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1/2, follows the ideas from above, using that nt+1 ≤ 2ρ̃nt, to obtain
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Likewise, for Cδ
Ntµ

∑t−1
i=0 ni+1∆

1/2
i , we get
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where the second term can be bounded as
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and the third term by
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By collecting these bounds, we get
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Combining our findings from above, we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
2C1−β

ρ
√
πv∞A

v
∞

µCγNt
+

2
3+ϕ(1+ρ̃)

2 σC
1−ϕ−β

2
1{ρ≥0}

ρ

µ3/2
√
CγN

1−ϕ/2
t

+
C2−ϕ−β
ρ

√
πv∞A

v
∞

µCγN
2−ϕ
t

+
2

1+ϕ(1+ρ̃)
2 σC

1−ϕ−β
2

1{ρ≥0}
ρ

µ3/2
√
CγN

1−ϕ/2
t

+
Cρ

Ntµ

(
1

CγC
β
ρ

+ Cl

)
δ

1
2
0 +

2ρ̃/2Cl

√
Cρ
√
πv∞
√
Av

∞
µNt

+
2

ϕ(1+ρ̃)
2 Clσ

√
Cγ

µ3/2C
1−ϕ−β

2
1{ρ≥0}

ρ N
1+ϕ
2

t

+
2ρ̃CδCρ

√
Πv

∞A
v
∞

µNt

+
2(1+ϕ)(1+ρ̃)−2Cδσ

2Cγ

µ2C1−ϕ−β
ρ Nϕ

t

+
23(1+ϕ)(1+ρ̃)/2Cδσ

2C
3/2
γ C

1+3β/2
ρ ψρ̃

3(α−βρ̃)/2(Nt/Cρ)

µ3/2C
1{ρ≥0}
ρ Nt

.

55



Chapter 2

This can be simplified to the desired using Γv given by (1/CγC
β
ρ +Cl)δ

1/2
0 + 2ρ̃Cl

√
πv∞A

v
∞/C

1/2
ρ +

2
√
πv∞A

v
∞/CγC

β
ρ + 2ρ̃Cδ

√
Πv

∞A
v
∞, consisting of the finite constants πv∞, Πv

∞ and Av
∞.

Proofs for Section 2.4.2

Theorem 2.7.1 (PASSG). Denote δ̄t = E[∥θ̄t − θ∗∥2] with (θ̄t) given by (2.2.3) using (θt) from
(2.2.2). Under Assumption 2.3.1, Assumptions 2.3.2-p and 2.3.3-p with p = 4, Assumptions 2.4.1
and 2.4.2, we have for any learning rate (γt) that

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

+
1

Ntµ

t−1∑
i=1

∣∣∣∣ni+1

γi+1
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(
1

γ1
+ Cl

)
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+
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δ
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i

where Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and C ′
δ = Cδ + 22GΘ/d

2
min.

Proof of Theorem 2.7.1. Denote E[∥θ̄t−θ∗∥2] by δ̄t with (θ̄t) given by (2.2.3) using (θt) from (2.2.2).
As in the proof Theorem 2.4.1, we follow the steps of Polyak and Juditsky [118], in which, we can
rewrite (2.2.2) to

1

γt
(θt−1 − θt) = ∇θlt (θt−1)−

1

γt
Ωt,

where ∇θlt(θt−1) = n−1
t

∑nt
i=1∇θlt,i(θt−1) and Ωt = PΘ(θt−1−γt∇θlt(θt−1))− (θt−1−γt∇θlt(θt−1)).

Thus, summing the parts, using the Minkowski’s inequality, and bounding each term gives us the
same bound as in Theorem 2.4.1, but with an additional term regarding Ωt, namely

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
γi
Ωi

∥∥∥∥∥
2
 1

2

≤ 1

µNt
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√
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∥Ωi∥2

]

=
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√
E
[
∥Ωi∥2 1{θi−1−γi∇θli(θi−1)/∈Θ}

]
, (2.7.41)

using Godichon-Baggioni [55, Lemma 4.3]. Next, we note that E[∥Ωt∥21{θt−1−γt∇θlt(θt−1)/∈Θ}] =

4γ2tG
2
ΘP[θt−1 − γt∇θlt(θt−1) /∈ Θ], since

∥Ωt∥2 = ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1 + γt∇θlt (θt−1)∥2

≤2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1∥2 + 2γ2t ∥∇θlt (θt−1)∥2

=2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− PΘ (θt−1)∥2 + 2γ2t ∥∇θlt (θt−1)∥2

≤2 ∥θt−1 − γt∇θlt (θt−1)− θt−1∥2 + 2γ2t ∥∇θlt (θt−1)∥2

=4γ2t ∥∇θlt (θt−1)∥2 ≤ 4γ2tG
2
Θ,
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as PΘ is Lipschitz and ∥∇θlt,i(θ)∥2 ≤ G2
Θ for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and

Portier [56, Theorem 4.2], we know that P[θt−1 − γt∇θlt(θt−1) /∈ Θ] ≤ ∆t/d
4
min, where dmin =

infθ∈∂Θ∥θ − θ∗∥ with ∂Θ denoting the frontier of Θ. Thus, (2.7.41) can then be bounded by

1

µNt

t∑
i=1

ni
γi

√
E
[
∥Ωi∥2 1{θi−1−γi∇θli(θi−1)/∈Θ}

]
≤ 2GΘ

µd2minNt

t∑
i=1

ni∆
1/2
i ≤ 22GΘ

µd2minNt

t∑
i=1

ni+1∆
1/2
i ,

using that the sequence (nt) is either constant or varying, meaning nt+1/nt ≤ 2.

Proof of Corollary 2.4.3. The proof follows directly from Corollary 2.4.1 but with use of Theo-
rem 2.7.1.

Proof of Corollary 2.4.4. The proof follows directly from Corollary 2.4.2 but with use of Theo-
rem 2.7.1.
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Chapter 3: Learning from Time-dependent Streaming Data with Online
Stochastic Algorithms

Abstract

We study stochastic algorithms in a streaming framework, trained
on samples coming from a dependent data source. In this streaming
framework, we analyze the convergence of Stochastic Gradient (SG)
methods in a non-asymptotic manner; this includes various SG meth-
ods such as the well-known stochastic gradient descent (i.e., Robbins-
Monro algorithm), mini-batch SG methods, together with their aver-
aged estimates (i.e., Polyak-Ruppert averaged). Our results form a
heuristic by linking the level of dependency and convexity to the rest
of the model parameters. This heuristic provides new insights into
choosing the optimal learning rate, which can help increase the stabil-
ity of SG-based methods; these investigations suggest large streaming
batches with slow decaying learning rates for highly dependent data
sources.

keywords: stochastic optimization, machine learning, stochastic algo-
rithms, online learning, streaming, time-dependent data
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3.1 Introduction

Over the past decade, machine learning and artificial intelligence have become mainstream in
many parts of society; substantial improvements in the performance and cost of mass storage devices
and network systems have contributed to this. Traditional machine learning methods often work
in a batch or offline learning setting, where the model is re-trained from scratch when new data
arrive. Such learning methods suffer some critical drawbacks, such as expensive re-training costs
when dealing with new data and thus poor scalability for large-scale and real-world applications.
At the same time, these intelligent systems generate a practically infinite amount of large-scale data
sets, many of which come as a continuous data stream, so-called streaming data.

Streaming data arrives as an endless sequence of samples (data points), which means that at any
given time, the model must be able to adapt to the samples observed (so far) to predict/label new
samples accurately. Such (streaming) models can never be seen as complete but must be updated
continuously as newer samples arrive. Methods that recalculate the model from scratch on the
arrival of new samples are impractical due to their high computational cost. Therefore we need
procedures that effectively update the model as more samples arrive. This computational efficiency
should not be at the expense of accuracy; the model’s accuracy should be close to that achieved if
we built a model from scratch using all the samples [20].

Stochastic algorithms have proven effective in overcoming the drawbacks of traditional (batch/of-
fline) machine learning methods as they only use samples one by one without knowing their number
in advance, especially the Stochastic Gradient (SG) method [124]. These SG methods have proven
scalable and robust in many areas ranging from smooth and strongly convex problems to complex
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non-convex ones, which makes them applicable in many large-scale machine learning tasks for real-
world applications where data are large in size (and dimension) and arrive at a high velocity. Such
first-order methods have been intensively studied in theory and practice in recent years [21].

The classical analyses for SG methods typically require unbiased gradients drawn independently
and identically distributed (i.i.d.) from some underlying (and unknown) data generation process
[34]. However, in practice, learning often happens with non-i.i.d. (and biased) data, e.g., network
traffic, meteorological, financial time series, or other sensor data. We go beyond these standard
assumptions by allowing dependent and biased gradients. SG methods can converge even when
they only have access to biased gradients, but most analysis has been developed with specific
applications in mind [4, 15, 37, 40, 130]. Stochastic learning algorithms for non-i.i.d. data are not
as well understood as for i.i.d. data; however, some researchers have examined the convergence of
statistical learning algorithm in non-i.i.d. settings [3, 94, 154].

Solving the problem of stochastic approximations using streaming SGs methods means we must
approach the objective using the gradually arriving samples drawn according to some unknown
dependent process. This leads to some new challenges, e.g., this endless stream of samples (may)
changes at each step (and arrives sequentially), meaning that streaming SGs must be able to adapt to
varying arrival speeds without compromising accuracy. We present and analyze streaming SGs that
overcome these challenges and achieve convergence in various settings with long- and short-range
dependence, biased gradient estimates, and changing data streams.

Contributions. In this paper, we investigate SG methods in a streaming framework [57],
where the data comes from a dependent stochastic process. We provide non-asymptotic analysis
and quantify the magnitude of achievable convergence rates under various dependency structures
(sometimes leading to divergence). Our framework covers many applications with dependence and
biased gradients under weak gradient assumptions. Our results builds a connection between de-
pendency, the level of convexity, and the achievable learning rate to obtain optimal convergence.
Roughly speaking, SG methods can achieve convergence using increasing batch sizes, which coun-
teract the long-range (and short-range) dependence. We show that biased SG methods converge,
and that they can converge with the same accuracy as unbiased SG methods if the bias is not too
large. More surprisingly, our results show a precise heuristic that can be used in practice to help
increase the stability of SG methods.

Organization. Section 3.2 presents the streaming framework on which the non-asymptotic
analysis relies; we introduce some key concepts, definitions, and assumptions. In particular, Sec-
tion 3.2.2 contains the assumptions about dependency structures and gradients, with some examples
of how these could be verified using mixing conditions. Our convergence results are presented in
Section 3.3, with and without averaging (Sections 3.3.1 and 3.3.2). Each result is followed by a
thorough discussion that relates to other work. All our convergence analysis depends on the as-
sumptions in Section 3.2, and some additional conditions for the averaged case (Section 3.3.2). At
last, experimentations of our findings are illustrated in Section 3.4, with some final remarks in
Section 3.5.
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3.2 Problem Formulation

We consider the Stochastic Optimization (SO) problem minθ∈Θ L(θ) = Et[lt(θ)], where Θ is a
closed convex set in Rd and lt : Θ → R is some differentiable random functions (possibly non-
convex), e.g, see Nesterov et al. [104]. We solve the SO problem in a streaming framework, where
a block lt = (lt,1, . . . , lt,nt) of nt ∈ N random functions arrives at any given time t ∈ N. In solving
the SO problem, we use the Stochastic Streaming Gradient (SSG) estimate proposed by Godichon-
Baggioni et al. [57], given as

θt = θt−1 −
γt
nt

nt∑
i=1

∇θlt,i (θt−1) , θ0 ∈ Θ, (3.2.1)

where γt is the learning rate satisfying the conditions
∑∞

i=1 γi = ∞ and
∑∞

i=1 γ
2
i < ∞ [124]. Note

that if ∀t, nt = 1, SSG becomes the well-known SG method, which has attracted a lot of attention
[24, 68, 133, 153, 156]. Almost sure convergence of SO algorithms were shown in Pelletier [115]. In
many models, there may be constraints on the parameter space, which would require a projection of
the parameters; therefore, we also introduce the Projected Stochastic Streaming Gradient (PSSG)
estimate, defined by

θt = PΘ

(
θt−1 −

γt
nt

nt∑
i=1

∇θlt,i (θt−1)

)
, θ0 ∈ Θ, (3.2.2)

where PΘ denotes the Euclidean projection onto Θ, i.e., PΘ(θ) = argminθ′∈Θ∥θ − θ′∥2. To shorten
notation, we let ∇θlt(θ) = n−1

t

∑nt
i=1∇θlt,i(θ). An essential extension is the Polyak-Ruppert averag-

ing [118, 129], which guarantees optimal statistical efficiency without jeopardizing the computational
cost; the Averaged Stochastic Streaming Gradient (ASSG) is given by

θ̄t =
1

Nt

t−1∑
i=0

ni+1θi, θ̄0 = 0, (3.2.3)

where Nt =
∑t

i=1 ni is the accumulated sum of observations. Likewise, let PASSG denote the
(Polyak-Ruppert) averaged estimate of PSSG (3.2.2).

3.2.1 Quasi-strong Convex Objectives

Following Gower et al. [60], Moulines and Bach [96], we assume that L has a unique global
minimizer θ∗ ∈ Θ such that ∇θL(θ

∗) = 0, and it is µ-quasi-strongly convex [80, 99], i.e, there exists
µ > 0 such that ∀θ ∈ Θ,

L(θ∗) ≥ L(θ) + ⟨∇θL(θ), θ
∗ − θ⟩+ µ

2
∥θ∗ − θ∥2. (3.2.4)
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The µ-quasi-strongly convexity assumption is a non-strongly convex relaxation of the SO problem,
which is more conservative than µ-strongly convexity. Relaxations of convexity is crucial in practice
to ensure robustness and adaptiveness of the algorithms, e.g., for non-strongly convex SO, see Bach
and Moulines [9], Necoara et al. [99], Nemirovski et al. [101].

3.2.2 Stochastic Streaming Gradient Assumptions: Dependence, Biased Gradients, Expected Smooth-
ness, and Gradient Noise

We go beyond the classical assumptions that require unbiased (uniformly bounded) gradients
by allowing the gradients to be dependent and biased estimates. Our aim is to non-asymptotically
bound the SSG estimates (3.2.1) to (3.2.3) explicitly using the SO problem parameters. In order to
do this, we let the natural filtration of the SO problem Ft = σ(li : i ≤ t), and assume the following
about the gradients (∇θlt):

Assumption 3.2.1-p (Dννt-dependence and Bννt-bias). Let θ0 be F0-measurable. For each t ≥ 1,
the random function ∇θlt(θ) is square-integrable, Ft-measurable, and there exists a positive integer
p such that for all Ft−1-measurable θ ∈ Θ,

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ νpt (Dp
νE[∥θ − θ∗∥p] +Bp

ν), (3.2.5)

for some positive sequence (νt)t≥1 with Dν , Bν ≥ 0.

In the classical convergence analysis of SG methods, one assumes that the SGs are uniformly
bounded. However, this assumption is too restrictive as it only may hold for some losses [21, 107].
Instead, we follow the same ideas as in Gower et al. [60], Moulines and Bach [96], to make the
following assumption about the expected smoothness of the stochastic gradients (∇θlt).

Assumption 3.2.2-p (κt-expected smoothness). There exists a positive integer p such that ∀θ, θ′ ∈
Θ, E[∥∇θlt(θ)−∇θlt(θ

′)∥p] ≤ κptE[∥θ − θ′∥p] for some positive sequence (κt)t≥1.

Assumption 3.2.2-p can be seen as an assumption about the smoothness properties of (lt). The
last fundamental assumption (Assumption 3.2.3-p) is a very weak assumption, and should be seen
as an assumption on Θ rather than on (lt):

Assumption 3.2.3-p (σt-gradient noise). There exists a positive integer p such that E[∥∇θlt(θ
∗)∥p] ≤

σpt for some positive sequence (σt)t≥1.

These assumptions (Assumptions 3.2.1-p to 3.2.3-p) are milder than the standard assumptions
for stochastic approximations, e.g., see [13, 57, 87, 96]. They include classic examples such as
stochastic approximation and learning from dependent data, which we will demonstrate later in Sec-
tion 3.4. Assumption 3.2.1-p is on the form of mixing conditions for weakly dependence sequences,
implying that dependence dilutes with the rate of νt. It is possible to verify Assumption 3.2.1-p by
using moment inequalities for partial sums of strongly mixing sequences [123]; we will refer to this
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as short-range dependence. Note that for any positive integer p, Assumption 3.2.1-p can be upper
bounded by

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥p] ≤ E[∥∇θlt(θ)−∇θL(θ)∥p] = n−p
t E[∥St∥p], (3.2.6)

using Jensen’s inequality, where St =
∑nt

i=1(∇θlt,i(θ) − ∇θL(θ)) is a d-dimensional vector. Let
(∇θlt,i) be a strictly stationary sequence and assume that there exists some r > p such that
supx>0(x

rQ(x))1/r < ∞, where Q(x) denotes the quantile function of ∥∇θlt,i∥. Suppose that
(∇θlt,i) is strongly α-mixing in the sense of Rosenblatt [125], with strong mixing coefficients (αt)t≥1

satisfying αt = O(t−pr/(2r−2p)). Then by Rio [123, Corollary 6.1], we have that E[∥St∥p] = O(np/2t ),
meaning, (3.2.6) is at most O(n−p/2

t ); this includes several linear, non-linear, and Markovian time
series, e.g., see Bradley [29], Doukhan [41] for more examples, other mixing coefficients of weak
dependence and the relations between them. In relation to the form of Assumption 3.2.1-p, this
means that Bν ̸= 0 in this case. However, having Bν = 0 is possible in well-specified examples,
which we will see later in Section 3.4. Note that Assumptions 3.2.2-p and 3.2.3-p can be verified
using α-mixing conditions by analogues arguments as for Assumption 3.2.1-p such that κpt and σpt
is O(n−p/2

t ).

3.3 Convergence Analysis

In this section, we consider the stochastic streaming estimates in (3.2.1) to (3.2.3) with streaming-
batches (nt) arriving in non-decreasing streams. We aim to non-asymptotically bound δt = E[∥θt−
θ∗∥2] and δ̄t = E[∥θ̄t − θ∗∥2], such that they only depend on the parameters of the problem.

Learning rate and function forms. Throughout this paper, we consider learning rates on the
form γt = Cγn

β
t t

−α with Cγ > 0, β ∈ [0, 1], and α chosen accordingly to the expected streaming-
batches nt. Obviously, (νt), (κt), and (σt) may be considered as uncertain terms depending on
the streaming-batch nt. Thus, let νt = n−ν

t , κt = Cκn
−κ
t , and σt = Cσn

−σ
t with ν ∈ (0,∞),

κ, σ ∈ [0, 1/2], and Cκ, Cσ > 0. Having, σ, κ ∈ [0, 1/2] follows directly from Godichon-Baggioni
et al. [57], since σ = κ = 1/2 corresponds to the i.i.d. case1, whereas σ, κ < 1/2 allows noisier
outputs. Similarly, vt = 0 corresponds to the classical i.i.d. setting. Having νt = n−ν

t means
Assumption 3.2.1-p, allow so-called long-range dependence (also known as long memory or long-
range persistence) when ν ∈ (0, 1/2) and short-range dependence when ν ∈ [1/2,∞). Thus, the
i.i.d. case is when ν →∞.

For the sake of simplicity, we consider streaming-batches (nt) on the form Cρt
ρ with Cρ ∈ N

and ρ ∈ [0, 1) such that nt ∈ N. This form of streaming-batches means that we are considering
everything from vanilla SG and mini-batch SG methods, to more exotic learning designs, e.g., Cρ > 1

and ρ = 0 correspond to mini-batch SG of size Cρ. We will refer to Cρ as the streaming constant
size and ρ as the streaming rate.

1You can’t beat the system.
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3.3.1 Stochastic Streaming Gradients

Theorem 3.3.1. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows the recursion
in (3.2.1) or (3.2.2). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for p = 2. Suppose
nt = Cρt

ρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µν = µ−1{ρ=0}2DνC
−ν
ρ > 0. For α−ρβ ∈ (1/2, 1),

we have

δt ≤ πt +
2

2+6ρν
1+ρ B2

ν

µµνC
2ν
1+ρ
ρ N

2ρν
1+ρ

t

+
2

7+6ρσ
1+ρ C2

σCγ

µνC
2σ−β−α

1+ρ
ρ N

ρ(2σ−β)+α
1+ρ

t

, (3.3.7)

with πt given in (3.6.22) such that πt = O(exp(−N (1+ρβ−α)/(1+ρ)
t )).

Sketch of proof. Under Assumptions 3.2.1-p to 3.2.3-p with p = 2, it can be shown that (δt)

satisfies the recursive relation (3.6.20),

δt ≤ [1− (µ− 2Dννt)γt + 2κ2tγ
2
t ]δt−1 +

B2
ν

µ
ν2t γt + 2σ2t γ

2
t ,

for any γt, νt, κt, σt, and nt. This recursive relation can be explicitly upper bounded in a non-
asymptotic way (by Proposition 3.6.1) using classical techniques from stochastic approximations
[13, 87]. As mentioned in Zinkevich [157], bounding the projected estimate in (3.2.2) follows directly
from that E[∥PΘ(θ)− θ∗∥2] ≤ E[∥θ − θ∗∥2], ∀θ ∈ Rd, ∀θ∗ ∈ Θ, as Θ is a closed convex set.

Related work. Theorem 3.3.1 replicate the results of the unbiased i.i.d. case (with Bν = 0

and κ = σ = 1/2) considered in Godichon-Baggioni et al. [57]. Our findings also reproduce the
results of Moulines and Bach [96], where they considered the unbiased i.i.d. case (under slightly
different assumptions) using the vanilla SG method, namely, when Cρ = 1 and ρ = 0. Moreover,
if the function L has C∇-Lipschitz continuous gradients2, then (3.3.7) implies the bound on the
objective function values of L, E[L(θt)− L(θ∗)] ≤ C∇δt/2 by Cauchy–Schwarz’s inequality.

Decay of the initial conditions. The initial conditions that πt contains will be forgotten sub-
exponentially fast, since πt = O(exp(−N (1+ρβ−α)/(1+ρ)

t )) as long as µν = µ − 1{ρ=0}2DνC
−ν
ρ > 0.

Note that the positivity of the dependence penalised convexity constant µν is essential in all terms
of (3.3.7). Having µν > 0 depends solely on the level of dependence Dν but it is scaled by C−ν

ρ ,
meaning if Dν is so large that µν is no longer positive, then we should take Cρ large enough such that
µν becomes positive again; this is illustrated in Sections 3.4.2 and 3.4.3. The streaming constant
Cρ contributes positively to all terms in (3.3.7), either directly or though µν .

The last term of (3.3.7) can be seen as the noise term decaying with O(N−(ρ(2σ−β)+α)/(1+ρ)
t ) for

α− ρβ ∈ (1/2, 1), e.g., for any ρ ∈ [0, 1), δt = O(N−2/3
t ) when α = 2/3, β = 1/3, and σ = 1/2. In

addition, the noise term is positively affected by large streaming constants Cρ when α + β < 2σ,
which will be expressed as a variance reduction, e.g., see Section 3.4. In unbiased cases (Bν = 0)
the noise term would also be the asymptotic term.

2Later, in Section 3.3.2 for the averaged estimate (3.2.3), we assume in (3.3.8) that the function L has C∇-Lipschitz
continuous gradients.
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Behavior for Bν. The second term of (3.3.7) can be seen as an dependency term as it is
determined solely by the level of dependence ν, the bias error Bν , and the convexity constant
µν ; It is remarkable that the dependence term is unconnected from the choice of the learning
rate (γt) but instead by the streaming rate through Cρ and ρ. The dependence term decay with
O(N−2ρν/(1+ρ)

t ) which requires ρ positive to decay since ν ∈ (0,∞), e.g., to obtain O(N−1/2
t )

we would need ρ = 1 and ν = 1/2. It is surprising that Theorem 3.3.1 allows both long-range
and short-range dependence. Indeed, long-range dependence leads to slow convergence (slower
than O(N−1/2

t )) but it will still converge. Obviously, this only matters if Bν ̸= 0. Overall, δt =
O(max{1{Bν ̸=0}N

−2ρν/(1+ρ)
t , N

−(ρ(2σ−β)+α)/(1+ρ)
t }).

3.3.2 Averaged Stochastic Streaming Gradients

In what follows, we consider the averaging estimate θ̄n given in (3.2.3) with (θt) following the
SSG estimate in (3.2.1) or the PSSG estimate in (3.2.2). Some additional assumptions is needed for
bounding the rest terms of the averaging estimate: let the function L have C∇-Lipschitz continuous
gradients, i.e., there exists a constant C∇ > 0, ∀θ, θ′ ∈ Θ ⊆ Rd,

∥∇θL(θ)−∇θL(θ
′)∥ ≤ C∇∥θ − θ′∥. (3.3.8)

As discussed in Bottou et al. [21], this assumption ensures that ∇θL does not vary arbitrarily,
making the gradient ∇θL a useful indicator on how to decrease L. Next, assume that the Hessian
of L is C ′

∇-Lipschitz-continuous, that is, there exists C ′
∇ > 0 such that ∀θ, θ′ ∈ Θ ⊆ Rd,

∥∇2
θL(θ)−∇2

θL(θ
′)∥ ≤ C ′

∇∥θ − θ′∥. (3.3.9)

Note that (3.3.8) and (3.3.9) only needs to hold true for θ′ = θ∗. Moreover, in continuation of
Assumption 3.2.3-p with σt = Cσn

−σ
t for σ ∈ [0, 1/2], we make the following assumption:

Assumption 3.3.1. There exists a non-negative self-adjoint operator Σ such that ∀t ≥ 1, we have
n2σt E[∇θlt(θ

∗)∇θlt(θ
∗)⊤] ⪯ Σ+Σt, where Σt is a positive symmetric matrix with Tr(Σt) = C ′

σn
−2σ′

t ,
C ′
σ ≥ 0, and σ′ ∈ (0, 1/2].

Remark that in the unbiased case, such as in Section 3.4.1, Assumption 3.3.1 is verified with
σ = 1/2 and C ′

σ = 0 [57]. The short-range dependence cases is when σ = 1/2, as in Section 3.4.1,
whereas, the long-range dependence case is for σ < 1/2. Moreover, Assumption 3.3.1 allows us
to obtain leading term Λ/Nt with Λ = Tr(∇2

θL(θ
∗)−1Σ∇2

θL(θ
∗)−1), which attains the Cramer-Rao

bound; we will see this in Theorem 3.3.2.
To consider the averaging estimate θ̄n given in (3.2.3), an additional assumption is needed in

order to avoid calculating the six-order moment: we make the unnecessary assumption that (∇θlt)

is uniformly bounded; the derivation of the six-order moment can be found in Godichon-Baggioni
[55].
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Assumption 3.3.2. Let DΘ = infθ∈∂Θ∥θ− θ∗∥ > 0 with ∂Θ denoting the frontier of Θ. Moreover,
there exists GΘ > 0 such that ∀t ≥ 1, supθ∈Θ∥∇θlt(θ)∥2 ≤ G2

Θ a.s.

Theorem 3.3.2. Denote δ̄t = E[∥θ̄t−θ∗∥2] with θ̄n given by (3.2.3), where (θt) follows the recursion
in (3.2.1) or (3.2.2). Assume that Assumptions 3.2.1-p to 3.2.3-p for p = 4 and Assumption 3.3.1
hold true. In addition, Assumption 3.3.2 must hold true if (θt) follows the recursion in (3.2.2).
Suppose nt = Cρt

ρ with ρ ∈ [0, 1) and Cρ ∈ N, such that µν = µ − 1{ρ=0}2DνC
−ν
ρ > 0. For

α− ρβ ∈ (1/2, 1), we have

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +
21/2Λ1/2C

1−2σ
2(1+ρ)
ρ

N
1+2ρσ
2(1+ρ)

t

1{σ<1/2} +
21/2C

′1/2
σ C

1−2(σ+σ′)
2(1+ρ)

ρ

µN
1+2ρ(σ+σ′)

2(1+ρ)

t

(3.3.10)

+O
(
max

{
N

− 2+ρ(2σ+β)−α
2(1+ρ)

t , N
− ρ(2σ−β)+α

1+ρ

t

})
+ Õ

(
N

− δ+ρν
2(1+ρ)

t

)
+ 1{Bν ̸=0}Ψt, (3.3.11)

with δ = 1{Bν=0}(ρ(2σ− β) +α) + 1{Bν ̸=0}min{ρ(2σ− β) +α, 2ρν} and Ψt given in (3.6.36), such
that

Ψt = Õ
(
max

{
N

− ρ(σ+ν)
2(1+ρ)

t , N
− 1+ρ(β+ν)−α

1+ρ

t , N
− 1+2ρν

2(1+ρ)

t , N
− δ/2+ρν

2(1+ρ)

t , N
− 2ρν

1+ρ

t

})
.

An explicit version of the bound is given in (3.6.37).

Sketch of proof. In Lemma 3.6.3, we conduct a general study of the Polyak-Ruppert averaging
estimate (θ̄t) defined in (3.2.3) for (γt), (νt), (κt), (σt) and (nt) on any form. Thus, Theorem 3.3.2
follows by Lemma 3.6.3 using the (specific) bounds of δt = E[∥θt − θ∗∥2] and ∆t = E[∥θt − θ∗∥4] in
Theorem 3.3.1 (eq. (3.6.21)) and Lemma 3.6.2.

Related work. Theorem 3.3.2 replicate the results of Godichon-Baggioni et al. [57] with Λ/Nt

as leading term in the unbiased i.i.d. case. Thus, by averaging it is possible to achieve the incorrigible
rate of O(N−1

t ), e.g., this is always achieved in the unbiased case with σ = 1/2, even under short-
range dependence (i.e., when ν ≥ 1/2).

Accelerated decay. Remark that each term in (3.3.10) is a direct consequence of Assump-
tion 3.3.1. Furthermore, all terms of (3.3.10) are independent of the learning rate (γt) but the two
last terms are dependent on streaming batches through Cρ and ρ. As in Theorem 3.3.1, the posi-
tivity of µν is essential for all terms in (3.3.11) even if it does not appear directly. For objectives
that lack convexity µ or have high levels of dependence Dν , we can only ensure convergence by
increasing Cρ, i.e., ensuring positivity of µν ; this is illustrated in Sections 3.4.2 and 3.4.3 for ARCH
models.

The first term of (3.3.11) decay at the rateO(max{N−(2+ρ(β+2σ)−α)/(1+ρ)
t , N

−2(ρ(2σ−β)+α)/(1+ρ)
t }),

which suggests choosing α, β such that α+ ρ(2σ/3− β) = 2/3, e.g., α = 2/3, β = 1/3 and σ = 1/2

yields a decay of O(N−4/3
t ) for any ρ. Thus, we can robustly achieve O(N−4/3

t ) for any streaming
rate ρ by setting α = 2/3 and β = 1/3 if σ = 1/2. In general, the convergence is resilient to any
streaming rate ρ by having α = 2/3 and β = 2σ/3. But taking β > 0 would damage the variance
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reduction effect from having Cρ large (e.g., see discussion after Theorem 3.3.1). Thus, there is a
trade-off between accelerating the convergence by taking β = 2σ/3 > 0 or taking β = 0 to favor
from variance reduction. In practice, an immediate choice would be to take β = 0, but if the data
or model contains a low amount of noise, it can be advantageous to raise β to improve convergence
[57].

Next, the decay of the second term in (3.3.11) is tricky to interpret in a simple manner as it is a
mixture of the learning rate, streaming rate, dependence, and bias. Nevertheless, some observations
can be made: first, having β = 0 is beneficial for the decay rate δ in all cases. Second, increasing
streaming rate ρ would also increase the decay.

Behavior for Bν. The influence of Bν is exclusively contained in Ψt, with the exception of
the second term of (3.3.11). Also, increasing ρ will always diminish the bad influence of this bias
term. Surprisingly, Ψt → 0 as t → ∞ for any ν, but long-range dependence is excluded if we wish
to obtain the desired rate of δ̄t = O(N−1). However, it does not seem to have any major influence
in our experiments, e.g., see Section 3.4. To conclude, by taking ρ positive and Cρ large enough
to ensure that µν stays positive, then we will converge under long- or short-range dependence with
biased gradient estimates.

3.4 Experiments

A way to illustrate our findings is by use of classical time-series methods that aims to construct
models for time-series analysis, modeling, and prediction of the underlying sequences of real-valued
signals (Xt). These methods have been successfully used in a wide range of applications such
as statistics, econometrics, and signal processing because of their ability to describe or predict
time-varying (dependent) processes, e.g., the AutoRegressive (AR), Moving-Average (MA), and
AutoRegressive Moving-Average (ARMA) models are the most well-known models for time-series
[25, 30, 66]. The standard time-series analysis often relies on independence and constant noise, but
it can be relaxed by, e.g., the AutoRegressive Conditional Heteroskedasticity (ARCH) model [45].
Online learning algorithms of (both stationary and non-stationary) dependent time-series have been
studied in Agarwal and Duchi [3], Anava et al. [7], Wintenberger [152].

Our experiment measures the performance by the quadratic mean error E[∥θNt − θ∗∥2] over
one thousand replications with θ0 and θ∗ drawn randomly according to the models’ specifications.
It should be noted that averaging over several replications gives a reduction in variability, that
mainly benefits the SSG. The experiments will demonstrate how the choice of Cρ and ρ affects
the dependence Dν , bias Bν , and the (dependence) penalised convexity constant µν . To compare
different data streams nt = Cρt

ρ through the selection of Cρ and ρ, we fix the following parameters:
Cγ = 1, α = 2/3, and β = 0.
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3.4.1 AutoRegressive (AR) Model

A process (Xt) is called a (zero-mean) AR(1) process, if there exists real-valued parameter θ
such that Xt = θXt−1 + ϵt, where (ϵt) is some noise process with zero mean and noise σϵ. To
illustrate the versatility of our results, we construct some noisy (heavy-tailed) data with long-range
dependence: the noisiness is integrated using a Student’s t-distribution with degrees of freedom
above four, denoted by (zt). The long-range dependence is incorporated by multiplying (zt) with
the fractional Gaussian noise Gt(H) = Bt+1(H) − Bt(H), where (Bt(H)) is a fractional Brownian
motion with Hurst index H ∈ (0, 1). (Bt(H)) can also be seen as a (zero-mean) Gaussian process
with stationary and self-similar increments. Thus, let the AR(1) process Xt be constructed using
the noise process ϵt =

√
Gt(3/4)zt, where a Hurst index of H = 3/4 corresponds to ν2t , κ

2
t , σ

2
t is

O(n−1/2
t ) and ν4t , κ4t , σ4t is O(n−3/4

t ) in Assumptions 3.2.1-p to 3.2.3-p and 3.3.1.

AutoRegressive (AR) Model

Consider the example, in which, we estimate an AR(1) model Xt = θXt−1+ϵt from the underly-
ing stationary AR(1) processXt = θ∗Xt−1+ϵt with |θ∗| < 1. We omit to project our estimates as this
will hide the dependence coming fromDν , which is what we wish to explore. For constant streaming-
batch sizes of one, the squared loss is lt(θ) = (Xt − θXt−1)

2 with ∇θlt(θ) = −2Xt−1(Xt − θXt−1).
This gives a mean squared loss

L(θ) = Et[lt(θ)] = E[(Xt − θXt−1)
2] = E[(θ∗Xt−1 + ϵt − θXt−1)

2] = (θ∗ − θ)2E[X2
t−1] + σ2ϵ ,

with ∇θL(θ) = −2(θ∗ − θ)E[X2
t−1]. Thus, Assumption 3.2.1-p (for p = 2 with σ(Xt−1) ⊆ Ft−1)

yields

E[∥E[∇θlt(θ)|Ft−1]−∇θL(θ)∥2] =E[(E[2Xt−1(θXt−1 −Xt)|Ft−1]− 2(θ − θ∗)E[X2
t−1])

2]

=4(θ − θ∗)2E[(X2
t−1 − E[X2

t−1])
2],

meaning that Assumption 3.2.1-p is fulfilled if Xt has bounded moments of order p. Moreover, from
this we can directly deduce that Bν = 0. Likewise, the remaining assumptions can be verified, in
particular Assumption 3.3.1 is satisfied with Σt = 0.

AutoRegressive (AR) Model: misspecified case

Next, assume that the underlying data generating process follows the MA(1)-process, Xt =

ϕϵt−1 + ϵt, with ϕ ∈ R. The misspecification error of fitting an AR(1) model to a MA(1) process
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can be found by minimizing L(θ),

θ∗ =argmin
θ

E[(Xt − θXt−1)
2] = argmin

θ
E[(ϵt + ϕϵt−1 − θ(ϵt−1 + ϕϵt−2))

2]

= argmin
θ

E[(ϵt + (ϕ− θ)ϵt−1 − θϕϵt−2)
2] = argmin

θ
σ2ϵ + (ϕ− θ)2σ2ϵ + θ2ϕ2σ2ϵ

≡ argmin
θ

(ϕ− θ)2 + θ2ϕ2 = argmin
θ

L(θ),

where L(θ) = (ϕ−θ)2+θ2ϕ2 is a strictly convex function in θ. Thus, ∇θL(θ) = 0⇔ 2(θ−ϕ)+2θϕ2 =

0 ⇔ 2θ(1 + ϕ2) = 2ϕ ⇔ θ = ϕ/(1 + ϕ2), meaning for ϕ ∈ R we have θ ∈ (−1/2, 1/2). With this
in mind, we can conduct our study of fitting an AR(1) model to the MA(1) process with ϕ drawn
randomly from R.

3.4.2 AutoRegressive Conditional Heteroskedasticity (ARCH) Model

A key element of time series analysis is modeling heteroscedasticity of the conditional variance,
e.g., volatility clustering in financial time series. AutoRegressive Conditional Heteroscedasticity
(ARCH) models are some of the most well-known models that incorporate this feature. A process
(ϵt) is called an ARCH(1) process with parameters α0 and α1 if it satisfiesϵt = σtzt,

σ2t = α0 + α1ϵ
2
t−1,

(3.4.12)

where α0 > 0 and α1 ≥ 0 ensures the non-negativity of the conditional variance process (σ2t ), and
the innovations (zt) is white noise. The ARCH process parameters are known to be challenging
to estimate in empirical applications as the optimization algorithms can quickly fail or converge
to irregular solutions. Therefore, projecting the estimates is vital for the optimization procedure.
A well-discussed problem for the ARCH models is that small values of α0 are tricky to estimate.
Stabilizing the estimation of α0 would not only improve the α0 estimate but also have a positive
impact on the other model parameters. One way to deal with small values of α0 is by the using
the models homogeneity, i.e., scaling an ARCH process (Xt) with parameters (α0, α1) gives us an
ARCH process (

√
λXt) with parameters (λα0, α1) with same innovations. To simplify our analysis

we consider a stationary ARCH(1) model, where we fix α0 at 1 and initialize it at 1/2. We em-
ploy the quasi-maximum likelihood procedure for the statistical inference as outlined in Werge and
Wintenberger [150]; the quasi likelihood losses is given by lt(θ) = 2−1(X2

t /σ
2
t (θ) + log(σ2t (θ)) with

first-order derivative

∇θlt(θ) = ∇θσ
2
t (θ)

(
σ2t (θ)−X2

t

2σ4t (θ)

)
where∇θσ

2
t (θ) = (1, X2

t−1)
T . Observe that the loss function (lt) itself is not strongly convex but only

the objective function L may be strongly convex; convexity conditions of ARCH was investigated
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in Wintenberger [152]. There are different ways to overcome lack of convexity: first, projecting the
estimates such that the (conditional) variance process (σ2t ) stays away from zero (and close to the
unconditional variance). Second, in the specific example of ARCH model, one could also recover
convexity by implementing variance targeting techniques; an example using Generalized ARCH
(GARCH) models can be found in Werge and Wintenberger [150].

3.4.3 AutoRegressive (AR)-AutoRegressive Conditional Heteroskedasticity (ARCH) Model

We complete our experiments by considering an AR models with ARCH noise: the process (Xt)

is called an AR(1)-ARCH(1) process with parameters θ, α0 and α1 if it satisfies
Xt = θXt−1 + ϵt,

ϵt = σtzt,

σ2t = α0 + α1ϵ
2
t−1.

(3.4.13)

where the innovations (zt) is white noise. The statistical inference of this model is done using the
squared loss for the AR-part and the QMLE for the ARCH part, e.g., see Sections 3.4.1 and 3.4.2.

3.4.4 Discussion of Experiments

The experiments described earlier in Sections 3.4.1 to 3.4.3 can be found in Figure 3.1; here
{Cρ = 1, ρ = 0} corresponds to the classical SG method and its (Polyak-Ruppert) average estimate,
{Cρ = 64, ρ = 0} is a mini-batch SSG/ASSG, and {Cρ = 64, ρ = 1/2} is an increasing SSG/ASSG
with initial batch size of Cρ = 64.

First consider the AR illustration in Figures 3.1a and 3.1b: each pair of data streams con-
verges, but it is clear that the traditional SG method experiences a large amount of noise initially,
particularly affecting the average estimate period but not its decay rate.3 Both methods show a
noticeable reduction in variance when Cρ increases, which is particularly beneficial in the beginning.
Nevertheless, too large streaming batch sizes Cρ may hinder the convergence as this leads to too
few iterations. Moreover, Figures 3.1a and 3.1b indicates improving decay for SSG when increasing
the streaming rate ρ. Conversely, ASSG does not see improvements in the same way, as we do not
exploit the potential of using multiple observations through the β parameter, which could accelerate
convergence, e.g., see Godichon-Baggioni et al. [57] for a discussion in the (unbiased) i.i.d. case. It
is surprising that we do not see any effect from Σt in Assumption 3.3.1, but this seems to be an
artifact effect in the proof as we need fourth-order moments.

In Figures 3.1c and 3.1d, we have the experiments for the stationary ARCH(1) models, with and
without the AR-part, respectively, as outlined in Sections 3.4.2 and 3.4.3. These figures illustrate
the lack of convexity when using small streaming batch sizes, e.g., the traditional SG method and its
average estimate, {Cρ = 1, ρ = 0} diverges. Remark that the lack of convexity is expressed through

3A modification of our average estimate to a weighted average version could improve convergence as it could limit
the effect of poor initializations [27, 95]. But despite this, we still achieve better convergence for the ASSG method.
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Figure 3.1: Simulation of various data streams nt = Cρt
ρ. See Section 3.4 for details.

(a) AR(1): well-specified case. See Section 3.4.1
for details.

(b) AR(1): misspecified case. See Section 3.4.1
for details.

(c) ARCH(1). See Section 3.4.2 for details. (d) AR(1)-ARCH(1). See Section 3.4.3 for de-
tails.

72



Section 3.6

the lack positively of µν , which only larger streaming batch sizes Cρ can counteract. Moreover,
the traditional SG method, {Cρ = 1, ρ = 0} is omitted in Figure 3.1d due to lack of convexity.
Figure 3.1d shows that large (Cρ = 64) and non-decreasing (ρ ≥ 0) streaming batches can converge
under difficult settings. To conclude, by taking ρ positive and Cρ large enough to ensure that µν
stays positive, then we will converge under long- or short-range dependence with biased gradient
estimates.

3.5 Conclusion

We studied the SO problem in a streaming framework using dependent and biased (gradient)
estimates. In particular, we explored convergence rates of the SSG and ASSG algorithms in a non-
asymptotic manner. The theoretical results formed heuristics that links the level of dependency
and convexity to the rest of the model parameters. These heuristics provided new insights into
determining optimal learning rates, which can help increase the stability of SG-based methods.
In short, by taking positive increasing streaming batches, we will converge under long- or short-
range dependence with biased gradient estimates. Our experimentation verified these investigations
suggesting large streaming batches for highly dependent data sources. Moreover, in large-scale
learning problems with dependence, noisy variables, and lack of convexity, we know how to accelerate
convergence and reduce noise through the learning rate and the treatment pattern of the data.

There are several ways to expand our work: first, we can extend our analysis to include streaming
batches of any size (not in terms of streaming batch size and streaming rates). Second, an extension
to non-strongly convex goals could be beneficial as it will provide more insight into how we can choose
robust learning rates [9, 99, 101]. At the same time, this learning rate could be made adaptive such
that it is robust to poor initialization and requires less fine-tuning. This last objective is the most
important for practitioners as it builds a universality across applications.

3.6 Proofs

Let us start by giving a short sketch of how our proofs section is structured: we start by
deriving recursive relations to the desired quantities. Next, we derive a general bounds to the
recursive relationship for any (γt), (νt), (κt), (σt), and (nt). Finally, we insert the specific functions
forms of (γt), (νt), (κt), (σt), and (nt), which yield the results seen in Theorems 3.3.1 and 3.3.2.
Before doing the proofs, we recall a repeating argument used to non-asymptotically bound recursive
relations of form (3.6.14):

Proposition 3.6.1 (Godichon-Baggioni et al. [57]). Suppose (ωt), (αt), (ηt), and (βt) to be some
non-negative sequences satisfying the recursive relation,

ωt ≤ [1− 2λαt + ηtαt]ωt−1 + βtαt, (3.6.14)

with ω0 ≥ 0 and λ > 0. Let Cω ≥ 1 be such that λαt ≤ 1 for all t ≥ tω with tω = inf{t ≥ 1 : Cωηt ≤
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λ}. Then, for (αt) and (ηt) decreasing, we have the upper bound on (ωt) given by

ωt ≤ τt +
1

λ
max

t/2≤i≤t
βi, (3.6.15)

with

τt = exp

−λ t∑
i=t/2

αi

exp(Cω

t∑
i=1

ηiαi

)(
ω0 +

1

λ
max
1≤i≤t

βi

)
+

t/2−1∑
i=1

βiαi

 .
Proposition 3.6.1 shows a simple way to bound (ωt) in (3.6.14); the bound in (3.6.15) consists

of a sub-exponential term τt and a noise term λ−1maxt/2≤i≤t βi. Thus, our attention is on reducing
the noise term without damaging the natural decay of the sub-exponential term where τt → 0

exponentially fast as t→∞.

Later in the proofs, we will insert some specific types of the sequences above, resulting in
different generalized harmonic numbers, which can be bounded with the integral test for convergence.
Moreover, to present our results in terms of Nt =

∑t
i=1 ni, we will use that (Nt/2Cρ)

1/(1+ρ) ≤ t ≤
(2Nt/Cρ)

1/(1+ρ). To ease notation, we will make use of the functions ψx(t), ψ
y
x(t) : R+ \ {0} → R,

given as

ψx(t) =


t1−x/(1− x) if x < 1,

1 + log(t) if x = 1,

x/(x− 1) if x > 1,

and ψy
x(t) =


t(1−x)/(1+y)/(1− x) if x < 1,

1 + log(t1/(1+y)) if x = 1,

x/(x− 1) if x > 1,

(3.6.16)

with y ∈ R+ such that ψy
x(t) = ψx(t

1/(1+y)). Thus,
∑t

i=1 i
−x ≤ ψx(t) for any x ≥ 0. Furthermore,

with this notation, we have that ψy
x(t)/t = O(t−(x+y)/(1+y)) if x < 1, ψy

x(t)/t = O(log(t)t−1) if
x = 1, and ψy

x(t)/t = O(t−1) if x > 1. Hence, for any x0, x1, x2, y ≥ 0, ψy
x0(t)/t = Õ(t−(x0+y)/(1+y))

and ψy
x1(t)ψ

y
x2(t)/t = Õ(t−(x1+x2+y−1)/(1+y)), where the Õ(·) notation suppress logarithmic factors.

3.6.1 Proofs for Section 3.3.1

In the following lemma, we derive an explicit recursive relation of δt = E[∥θt − θ∗∥2] to non-
asymptotically bound the t-th estimate of (3.2.1) for any (γt), (νt), (κt), (σt), and (nt) using classical
techniques from stochastic approximations [13, 87]. As mentioned in Zinkevich [157], bounding the
projected estimate in (3.2.2) follows directly from that E[∥PΘ(θ) − θ∗∥2] ≤ E[∥θ − θ∗∥2], ∀θ ∈ Rd,
∀θ∗ ∈ Θ, as Θ is a closed convex set.

Lemma 3.6.1 (Second-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for
p = 2. Suppose that µν = µ − 1{νt=C}2Dννt > 0. Let 1{νt=C} and 1{νt¬C} indicate whether (νt)

is constant or not. Denote δt = E[∥θt − θ∗∥2] for some δ0 ≥ 0, where (θt) follows the recursion in
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(3.2.1) or (3.2.2). For any learning rate (γt), we have

δt ≤ πt +
2B2

ν

µµν
max

t/2≤i≤t
ν2i +

4

µν
max

t/2≤i≤t
σ2i γi,

with

πt =exp

−µν
2

t∑
i=t/2

γi

[exp(1{νt¬C}2CδDν

t∑
i=1

νiγi

)
exp

(
2Cδ

t∑
i=1

κ2i γ
2
i

)
(
δ0 +

2B2
ν

µµν
max
1≤i≤t

ν2i +
4

µν
max
1≤i≤t

σ2i γi

)
+
B2

ν

µ

t/2−1∑
i=1

ν2i γi + 2

t/2−1∑
i=1

σ2i γ
2
i

 .
Proof of Lemma 3.6.1. By taking the quadratic norm on (3.2.1), expanding the norm, and taking
the expectation, we can derive the equation,

δt = δt−1 + γ2t E[∥∇θlt(θt−1)∥2]− 2γtE[⟨∇θlt(θt−1), θt−1 − θ∗⟩], (3.6.17)

where δt = E[∥θt − θ∗∥2] with δ0 ≥ 0. To bound the second term in (3.6.17), we use Assump-
tions 3.2.2-p and 3.2.3-p for p = 2, to obtain that

E[∥∇θlt(θt−1)∥2] =E[∥∇θlt(θt−1)−∇θlt(θ
∗) +∇θlt(θ

∗)∥2]

≤2E[∥∇θlt(θt−1)−∇θlt(θ
∗)∥2] + 2E[∥∇θlt(θ

∗)∥2]

≤2κ2t δt−1 + 2σ2t , (3.6.18)

as ∥x+y∥p ≤ 2p−1(∥x∥p+∥y∥p). As noted in Bottou et al. [21], Nesterov et al. [104], (3.2.4) implies
that ⟨∇θL(θ), θ − θ∗⟩ ≥ µ∥θ − θ∗∥2 for all θ ∈ Θ ⊆ Rd. Next, since L is µ−strongly convex (3.2.4)
and θt−1 is Ft−1-measurable (Assumption 3.2.1-p), we can bound the third term on the right-hand
side of (3.6.17) by

E[⟨∇θlt(θt−1), θt−1 − θ∗⟩] =E[⟨∇θL(θt−1), θt−1 − θ∗⟩]

+ E[⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩]

≥µδt−1 −Dννtδt−1 −Bννtδ
1/2
t−1, (3.6.19)

since

E[⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩] ≥ −E[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥∥θt−1 − θ∗∥]

≥ −
√
E[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥2]

√
E[∥θt−1 − θ∗∥2]

≥ −
√
ν2t (D

2
νδt−1 +B2

ν)
√
δt−1 ≥ −Dννtδt−1 −Bννt

√
δt−1,

by Jensen’s inequality, Cauchy–Schwarz inequality, Hölder’s inequality, and Assumption 3.2.1-p
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with p = 2. Hence, applying the inequalities (3.6.18) and (3.6.19) to (3.6.17), yields

δt ≤[1− 2µγt + 2Dννtγt + 2κ2tγ
2
t ]δt−1 + 2Bννtγtδ

1/2
t−1 + 2σ2t γ

2
t

≤[1− (µ− 2Dννt)γt + 2κ2tγ
2
t ]δt−1 +

B2
ν

µ
ν2t γt + 2σ2t γ

2
t ,

using Young’s inequality4; 2Bννtγtδ
1/2
t−1 ≤ µγtδt−1 + B2

νν
2
t γt/µ. Next, we introduce the indicator

function for whether (νt) is constant (= C) or not (¬C), such that

δt ≤ [1− (µν − 1{νt¬C}2Dννt)γt + 2κ2tγ
2
t ]δt−1 +

B2
ν

µ
ν2t γt + 2σ2t γ

2
t , (3.6.20)

with µν = µ−1{νt=C}2Dννt > 0. Let Cδ be the constant fulfilling the conditions of Proposition 3.6.1
such that Cδ is chosen larger than 1 verifying Cδ(1{νt¬C}2Dννt+2κ2tγt) ≤ µν/2 such that it’s imply
µνγt/2 ≤ 1, which is possible as the sequence (νt) is non-increasing, and (κt) and (γt) is decreasing.
At last, bounding (3.6.20) by Proposition 3.6.1 concludes the proof.

Proof of Theorem 3.3.1. Inserting the functions γt = Cγn
β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , σt = Cσn

−σ
t ,

and nt = Cρt
ρ into the bound of Lemma 3.6.1 yields

δt ≤πt +
21+2ρνB2

ν

µµνC2ν
ρ t2ρν

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ tρ(2σ−β)+α

(3.6.21)

≤πt +
2(2+6ρν)/(1+ρ)B2

ν

µµνC
2ν/(1+ρ)
ρ N

2ρν/(1+ρ)
t

+
2(7+6ρσ)/(1+ρ)C2

σCγ

µνC
(2σ−β−α)/(1+ρ)
ρ N

(ρ(2σ−β)+α)/(1+ρ)
t

,

4If a, b, c > 0, p, q > 1 such that 1/p+ 1/q = 1, then ab ≤ apcp/p+ bq/qcq.

76



Section 3.6

with µν = µ− 1{ρ=0}2DνC
−ν
ρ > 0, and πt can be bounded by

exp

−µνCγC
β
ρ

2

t∑
i=t/2

iρβ−α

[exp(1{ρ̸=0}2CδDνCγC
β
ρ

Cν
ρ

t∑
i=1

iρ(β−ν)−α

)

exp

(
2CδC

2
κC

2
γC

2β
ρ

C2κ
ρ

t∑
i=1

i2ρ(β−κ)−2α

)(
δ0 +

2B2
ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

)

+
B2

νCγC
β
ρ

µC2ν
ρ

t/2−1∑
i=1

iρ(β−2ν)−α +
2C2

σC
2
γC

2β
ρ

C2σ
ρ

t/2−1∑
i=1

i2ρ(β−σ)−2α


≤ exp

(
−µνCγC

β
ρ t1+ρβ−α

22

)[
exp

(
1{ρ ̸=0}2CδDνCγC

β
ρψα−ρ(β−ν)(t)

Cν
ρ

)

exp

(
4(α− ρ(β − κ))CδC

2
κC

2
γC

2β
ρ

(2α− 2ρ(β − κ)− 1)C2κ
ρ

)(
δ0 +

2B2
ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

)

+
B2

νCγC
β
ρψα−ρ(β−2ν)(t/2)

µC2ν
ρ

+
4(α− ρ(β − σ))C2

σC
2
γC

2β
ρ

(2α− 2ρ(β − σ)− 1)C2σ
ρ

]

≤ exp

(
− µCγN

(1+ρβ−α)/(1+ρ)
t

2(3+ρ(2+β)−α)/(1+ρ)C
(1−β−α)/(1+ρ)
ρ

)exp
1{ρ ̸=0}2CδDνCγC

β
ρψ

ρ
α−ρ(β−ν)(2Nt/Cρ)

Cν
ρ


exp

(
4(α− ρ(β − κ))CδC

2
κC

2
γC

2β
ρ

(2α− 2ρ(β − κ)− 1)C2κ
ρ

)(
δ0 +

2B2
ν

µµνC2ν
ρ

+
4C2

σCγC
β
ρ

µνC2σ
ρ

)

+
B2

νCγC
β
ρψ

ρ
α−ρ(β−2ν)(Nt/Cρ)

µC2ν
ρ

+
4(α− ρ(β − σ))C2

σC
2
γC

2β
ρ

(2α− 2ρ(β − σ)− 1)C2σ
ρ

 , (3.6.22)

with help of an integral test for convergence5, ψx(t) and ψy
x(t) from (3.6.16), and by use of

(Nt/2Cρ)
1/(1+ρ) ≤ t ≤ (2Nt/Cρ)

1/(1+ρ).

3.6.2 Proofs for Section 3.3.2

As in Section 3.6.1, we begin the following sections by conducting a general study for any (γt),
(νt), (κt), (σt), and (nt), when applying the Polyak-Ruppert averaging estimate (θ̄t) from (3.2.3).
Moreover, we need to study fourth-order rate ∆t = E[∥θt − θ∗∥4] of the recursive estimates (3.2.1)
and (3.2.2).

Lemma 3.6.2 (Fourth-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true for
p = 4. Suppose that µ′ν = µ− 1{νt=C}2D

4
νν

4
t /µ

3 > 0. Let 1{νt=C} and 1{νt¬C} indicate whether (νt)

is constant or not. Denote ∆t = E[∥θt − θ∗∥4] for some ∆0 ≥ 0, where (θt) follows the recursion in

5Note that
∑t

i=1 i
2ρ(β−κ)−2α ≤ (2α − 2ρ(β − κ))/(2α − 2ρ(β − κ) − 1) and

∑t
i=1 i

2ρ(β−σ)−2α ≤ (2α − 2ρ(β −
σ))/(2α− 2ρ(β − σ)− 1) as ν > 0, σ, κ ∈ [0, 1/2], ρ ∈ [0, 1), β ∈ [0, 1], and α− ρβ ∈ (1/2, 1).
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(3.2.1) or (3.2.2). For any learning rate (γt), we have

∆t ≤Πt +
4B4

ν

µ3µ′ν
max

t/2≤i≤t
ν4i +

1024

µµ′ν
max

t/2≤i≤t
σ4i γ

2
i +

96

µ′ν
max

t/2≤i≤t
σ4i γ

3
i ,

with

Πt =exp

−µ′ν
4

t∑
i=t/2

γi

[exp(1{νt¬C}C∆D
4
ν

µ3

t∑
i=1

ν4i γi

)
exp

(
256C∆

µ

t∑
i=1

κ4i γ
3
i

)

exp

(
24C∆

t∑
i=1

κ4i γ
4
i

)(
∆0 +

4B4
ν

µ3µ′ν
max
1≤i≤t

ν4i +
1024

µµ′ν
max
1≤i≤t

σ4i γ
2
i +

96

µ′ν
max
1≤i≤t

σ4i γ
3
i

)

+
B4

ν

µ3

t/2−1∑
i=1

ν4i γi +
256

µ

t/2−1∑
i=1

σ4i γ
3
i + 24

t/2−1∑
i=1

σ4i γ
4
i

 .

Proof of Lemma 3.6.2. The derivation of the recursive step sequence for the fourth-order moment
∆t of (3.2.1) follows the same methodology as for the second-order moment in Lemma 3.6.1. In the
same way we deduced (3.6.17), we can take the quadratic norm on (3.2.1), expand the norm, and
take the square on both sides, to derive the equation

∥θt − θ∗∥4 =(∥θt−1 − θ∗∥2 + γ2t ∥∇θlt(θt−1)∥2 − 2γt⟨∇θlt(θt−1), θt−1 − θ∗⟩)2

=∥θt−1 − θ∗∥4 + γ4t ∥∇θlt(θt−1)∥4 + 4γ2t ⟨∇θlt(θt−1), θt−1 − θ∗⟩2 + 2γ2t ∥θt−1 − θ∗∥2∥∇θlt(θt−1)∥2

− 4γt∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩ − 4γ3t ∥∇θlt(θt−1)∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩.

Taking the expectation on both sides of the equality above gives us

∆t =∆t−1 + γ4t E[∥∇θlt(θt−1)∥4] + 4γ2t E[⟨∇θlt(θt−1), θt−1 − θ∗⟩2] + 2γ2t E[∥θt−1 − θ∗∥2∥∇θlt(θt−1)∥2]

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]− 4γ3t E[∥∇θlt(θt−1)∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]

≤∆t−1 + γ4t E[∥∇θlt(θt−1)∥4] + 6γ2t E[∥θt−1 − θ∗∥2∥∇θlt(θt−1)∥2]

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩] + 4γ3t E[∥θt−1 − θ∗∥∥∇θlt(θt−1)∥3],

by use of Cauchy-Schwarz inequality. Next, Young’s inequality yields 4γ3t ∥θt−1−θ∗∥∥∇θlt(θt−1)∥3 ≤
2γ4t ∥∇θlt(θt−1)∥4+2γ2t ∥θt−1−θ∗∥2∥∇θlt(θt−1)∥2 and 8γ2t ∥θt−1−θ∗∥2∥∇θlt(θt−1)∥2 ≤ (µγt/2)∥θt−1−
θ∗∥4 + 32µ−1γ3t ∥∇θlt(θt−1)∥4, which helps us to obtain the simplified expression,

∆t ≤[1 + µγt/2]∆t−1 + 3γ4t E[∥∇θlt(θt−1)∥4] + 32µ−1γ3t E[∥∇θlt(θt−1)∥4]

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩].

To bound the fourth-order term E[∥∇θlt(θt−1)∥4], we make use of the Lipschitz continuity of ∇θlt

(Assumption 3.2.2-p), Assumption 3.2.3-p, and that θt−1 is Ft−1-measurable (Assumption 3.2.1-p),
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to have that

E[∥∇θlt(θt−1)∥4] ≤ 8κ4t∆t−1 + 8σ4t , (3.6.23)

using that ∥x+ y∥p ≤ 2p−1(∥x∥p + ∥y∥p) for any p ∈ N. Thus,

∆t ≤[1 + µγt/2 + 256µ−1κ4tγ
3
t + 24κ4tγ

4
t ]∆t−1 + 256µ−1σ4t γ

3
t + 24σ4t γ

4
t

− 4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩]. (3.6.24)

Next, using the same arguments as in the proof of Lemma 3.6.1, Young’s inequality, and Assump-
tion 3.2.1-p with p = 4, we have

4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩]

≥ −4γtE[∥θt−1 − θ∗∥3∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥]

≥ −3µγt∆t−1 − µ−3γtE[∥E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1)∥4]

≥ −3µγt∆t−1 − µ−3γtD
4
νν

4
t ∆t−1 − µ−3γtB

4
νν

4
t ,

such that the last term of (3.6.24) can be bounded as follows,

4γtE[∥θt−1 − θ∗∥2⟨∇θlt(θt−1), θt−1 − θ∗⟩] =4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1], θt−1 − θ∗⟩]

=4γtE[∥θt−1 − θ∗∥2⟨∇θL(θt−1), θt−1 − θ∗⟩]

+ 4γtE[∥θt−1 − θ∗∥2⟨E[∇θlt(θt−1)|Ft−1]−∇θL(θt−1), θt−1 − θ∗⟩]

≥µγt∆t−1 − µ−3γtD
4
νν

4
t ∆t−1 − µ−3γtB

4
νν

4
t .

Indeed, inserting this into (3.6.24) gives us

∆t ≤
[
1−

(
µ

2
− D4

νν
4
t

µ3

)
γt +

256κ4tγ
3
t

µ
+ 24κ4tγ

4
t

]
∆t−1 +

B4
νν

4
t γt

µ3
+

256σ4t γ
3
t

µ
+ 24σ4t γ

4
t ,

which can be modified with use the indicator function that determines whether (νt) is constant
(= C) or not (¬C), such that

∆t ≤

[
1−

(
µν
2
−
1{νt¬C}D

4
νν

4
t

µ3

)
γt +

256κ4tγ
3
t

µ
+ 24κ4tγ

4
t

]
∆t−1 +

B4
νν

4
t γt

µ3
+

256σ4t γ
3
t

µ
+ 24σ4t γ

4
t ,

(3.6.25)

with µ′ν = µ− 1{νt=C}2D
4
νν

4
t /µ

3 > 0. Note that µν from Lemma 3.6.1 is lower bounded by µ′ν , and
strictly lower bounded for (νt) constant, i.e., µν > µ′ν > 0. Let C∆ ≥ 1 fulfill the conditions of
Proposition 3.6.1; the C∆ constant is chosen such that C∆(1{νt¬C}D

4
νν

4
t /µ

3+256κ4tγ
2
t /µ+24κ4tγ

3
t ) ≤

µ′ν/2 implying µ′νγt/2 ≤ 1, which is possible as the sequence (νt) is non-increasing, and (κt) and
(γt) decrease. Hence, by applying Proposition 3.6.1 on (3.6.25), we obtain the desired bound for
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∆t.

Corollary 3.6.1 (Fourth-order moment). Assume that Assumptions 3.2.1-p to 3.2.3-p hold true
for p = 4. Let γt = Cγn

β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , and σt = Cσn

−σ
t with ν ∈ (0,∞), β ∈ [0, 1],

κ, σ ∈ [0, 1/2], and Cγ , Cκ, Cσ > 0. Suppose nt = Cρt
ρ with ρ ∈ [0, 1) and Cρ ∈ N, such that

µ′ν = µ − 1{ρ=0}2D
4
ν/µ

3C4ν
ρ > 0. Denote ∆t = E[∥θt − θ∗∥4] for some ∆0 ≥ 0, where (θt) follows

the recursion in (3.2.1) or (3.2.2). For α− ρβ ∈ (1/2, 1), we have

∆t ≤ Πt +
22+4ρνB4

ν

µ3µ′νC
4ν
ρ t4ρν

+
22ρ(2σ−β)+2α(210µ−1 + 27CγC

β
ρ )C4

σC
2
γC

2β
ρ

µ′νC
4σ
ρ t2ρ(2σ−β)+2α

, (3.6.26)

with Πt given in (3.6.27) such that Πt = O(exp(−N (1+ρβ−α)/(1+ρ)
t )).

Proof of Corollary 3.6.1. Inserting the functions γt = Cγn
β
t t

−α, νt = n−ν
t , κt = Cκn

−κ
t , σt =

Cσn
−σ
t , and nt = Cρt

ρ into the bound of Lemma 3.6.2 and using γ3t ≤ CγC
β
ρ γ2t as α−ρβ ∈ (1/2, 1),

yields (3.6.26) with µ′ν = µ− 1{ρ=0}2D
4
ν/µ

3C4ν
ρ > 0, where Πt can be bounded as follows,

exp

−µ′νCγC
β
ρ

4

t∑
i=t/2

iρβ−α

[exp(1{ρ̸=0}C∆D
4
νCγC

β
ρ

µ3C4ν
ρ

t∑
i=1

iρ(β−4ν)−α

)

exp

(
28C∆C

4
κC

3
γC

3β
ρ

µC4κ
ρ

t∑
i=1

iρ(3β−4κ)−3α

)
exp

(
24C∆C

4
κC

4
γC

4β
ρ

C4κ
ρ

t∑
i=1

i4ρ(β−κ)−4α

)
(
∆0 +

4B4
ν

µ3µ′νC
4ν
ρ

+
1024C4

σC
2
γC

2β
ρ

µµ′νC
4σ
ρ

+
96C4

σC
3
γC

3β
ρ

µ′νC
4σ
ρ

)

+
B4

νCγC
β
ρ

µ3C4ν
ρ

t/2−1∑
i=1

iρ(β−4ν)−α +
256C4

σC
3
γC

3β
ρ

µC4σ
ρ

t/2−1∑
i=1

iρ(3β−4σ)−3α +
24C4

σC
4
γC

4β
ρ

C4σ
ρ

t/2−1∑
i=1

i4ρ(β−σ)−4α


≤ exp

(
−µ

′
νCγC

β
ρ t1+ρβ−α

23

)[
exp

(
1{ρ ̸=0}C∆D

4
νCγC

β
ρψ0

α−ρ(β−4ν)(t)

µ3C4ν
ρ

)
exp

(
210C∆C

4
κC

3
γC

3β
ρ

µC4κ
ρ

)

exp

(
26C∆C

4
κC

4
γC

4β
ρ

C4κ
ρ

)(
∆0 +

22B4
ν

µ3µ′νC
4ν
ρ

+
210C4

σC
2
γC

2β
ρ

µµ′νC
4σ
ρ

+
27C4

σC
3
γC

3β
ρ

µ′νC
4σ
ρ

)

+
B4

νCγC
β
ρψ0

α−ρ(β−4ν)(t/2)

µ3C4ν
ρ

+
210C4

σC
3
γC

3β
ρ

µC4σ
ρ

+
26C4

σC
4
γC

4β
ρ

C4σ
ρ

]
, (3.6.27)

with help of the integral test for convergence;
∑t

i=1 i
ρ(3β−4x)−3α ≤ 3 < 22 and

∑t
i=1 i

4ρ(β−x)−4α ≤ 2

for any x ≥ 0 as α− ρβ ∈ (1/2, 1).

Lemma 3.6.3. Assume that Assumptions 3.2.1-p to 3.2.3-p for p = 4 and Assumption 3.3.1 hold
true. Denote δ̄t = E[∥θ̄t − θ∗∥2] with θ̄n given by (3.2.3), where (θt) follows the recursion in (3.2.1)
or (3.2.2). In addition, Assumption 3.3.2 must hold true if (θt) follows the recursion in (3.2.2),
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which is indicated by 1{DΘ<∞}. For any learning rate (γt), we have

δ̄
1/2
t ≤Λ1/2

Nt

(
t∑

i=1

n
2(1−σ)
i

)1/2

+
C

′1/2
σ

µNt

(
t∑

i=1

n
2(1−σ−σ′)
i

)1/2

+
21/2B

1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

)1/2

+
1

µNt

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
µγtNt

δ
1/2
t +

n1
µNt

(
1

γ1
+ 21/2(C∇ + κ1)

)
δ
1/2
0

+
21/2

µNt

(
t−1∑
i=1

n2i+1(C
2
∇ + κ2i+1)δi

)1/2

+
C ′′
∇

µNt

t−1∑
i=0

ni+1∆
1/2
i

+
23/4

µNt

 t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)nj+1νj+1

j−1∑
i=0

(C∇ + κi+1)ni+1δ
1/2
i

)1/2

,

with Λ = Tr(∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1) and C ′′
∇ = C ′

∇/2 + 1{DΘ<∞}2GΘ/D
2
Θ.

Proof of Lemma 3.6.3. The proof is divided into two parts; in the first part, (θt) follows (3.2.1),
and the second part considers (3.2.2). Assume that (θt) is derived from the recursion in (3.2.1):
following Polyak and Juditsky [118], we rewrite (3.2.1) to

1

γt
(θt−1 − θt) = ∇θlt(θt−1), (3.6.28)

where ∇θlt(θt−1) = n−1
t

∑nt
i=1∇θlt,i(θt−1). Observe that

∇2
θL(θ

∗)(θt−1 − θ∗) =−∇θlt(θ
∗) +∇θlt(θt−1)− [∇θlt(θt−1)−∇θlt(θ

∗)−∇θL(θt−1)]

− [∇θL(θt−1)−∇2
θL(θ

∗)(θt−1 − θ∗)],

where ∇2
θL(θ

∗) is invertible with lowest eigenvalue greater than µ, i.e., ∇2
θL(θ

∗) ≥ µId. Thus,
summing the parts, taking the quadratic norm and expectation, and using Minkowski’s inequality,
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gives us the inequality,

(
E
[∥∥θ̄t − θ∗∥∥2])1/2 ≤

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ
∗)

∥∥∥∥∥
2
1/2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥
2
1/2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni [∇θli (θi−1)−∇θli (θ
∗)−∇θL (θi−1)]

∥∥∥∥∥
2
1/2

+

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
[
∇θL (θi−1)−∇2

θL (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
1/2

.

(3.6.29)

As (∇θlt(θ
∗)) is a square-integrable sequences on Rd (Assumption 3.2.1-p), we have

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ
∗)

∥∥∥∥∥
2
 =

1

N2
t

t∑
i=1

n2iE
[∥∥∥∇2

θL (θ∗)−1∇θli (θ
∗)
∥∥∥2]

+
2

N2
t

∑
1≤i<j≤t

ninjE
[〈
∇2

θL (θ∗)−1∇θli (θ
∗) ,∇2

θL (θ∗)−1∇θlj (θ
∗)
〉]
,

where the first term can be bounded by Assumption 3.3.1,

1

N2
t

t∑
i=1

n2iE
[∥∥∥∇2

θL (θ∗)−1∇θli (θ
∗)
∥∥∥2] ≤ 1

N2
t

t∑
i=1

n
2(1−σ)
i

(
Tr
[
∇2

θL(θ
∗)−1Σ∇2

θL(θ
∗)−1

]
+

C ′
σ

µ2n2σ
′

i

)

=
Λ

N2
t

t∑
i=1

n
2(1−σ)
i +

C ′
σ

µ2N2
t

t∑
i=1

n
2(1−σ−σ′)
i ,
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where Λ denotes Tr[∇2
θL(θ

∗)−1Σ∇2
θL(θ

∗)−1]. For the next term,

2

N2
t

∑
1≤i<j≤t

ninjE
[〈
∇2

θL (θ∗)−1∇θli (θ
∗) ,∇2

θL (θ∗)−1∇θlj (θ
∗)
〉]

≤ 2

µ2N2
t

∑
1≤i<j≤t

ninjE [⟨∇θli (θ
∗) ,∇θlj (θ

∗)⟩]

=
2

µ2N2
t

∑
1≤i<j≤t

ninjE [⟨∇θli (θ
∗) ,E[∇θlj(θ

∗)|Fj−1]−∇θL(θ
∗)⟩]

≤ 2

µ2N2
t

∑
1≤i<j≤t

ninjE [∥∇θli (θ
∗)∥ ∥[E[∇θlj(θ

∗)|Fj−1]−∇θL(θ
∗)]∥]

≤ 2

µ2N2
t

∑
1≤i<j≤t

ninj

√
E
[
∥∇θli (θ∗)∥2

]√
E
[
∥[E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)]∥2

]

≤ 2Bν

µ2N2
t

∑
1≤i<j≤t

ninjσiνj =
2Bν

µ2N2
t

t∑
j=2

(
njνj

j−1∑
i=1

niσi

)
,

by Cauchy-Schwarz inequality, Hölder’s inequality, and Assumptions 3.2.1-p and 3.2.3-p. Thus,E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θ
∗)

∥∥∥∥∥
2
1/2

≤Λ1/2

Nt

(
t∑

i=1

n
2(1−σ)
i

)1/2

+
C

′1/2
σ

µN
1/2
t

(
t∑

i=1

n
2(1−σ−σ′)
i

)1/2

+
21/2B

1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

)1/2

. (3.6.30)

Next, by the relation in (3.6.28), we have

1

Nt

t∑
i=1

ni∇θli (θi−1) =
1

Nt

t∑
i=1

ni
γi

(θi−1 − θi)

=
1

Nt

t−1∑
i=1

(θi − θ∗)
(
ni+1

γi+1
− ni
γi

)
− 1

Nt
(θt − θ∗)

nt
γt

+
1

Nt
(θ0 − θ∗)

n1
γ1
,

leading to∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥ ≤ 1

µNt

t−1∑
i=1

∥θi − θ∗∥
∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ 1

µNt
∥θt − θ∗∥

nt
γt

+
1

µNt
∥θ0 − θ∗∥

n1
γ1
.
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Hence, with the notation of δt = E[∥θt − θ∗∥2], the second term can be bounded byE

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni∇θli (θi−1)

∥∥∥∥∥
2
1/2

≤ 1

µNt

t−1∑
i=1

δ
1
2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
µγtNt

δ
1
2
t +

n1
µγ1Nt

δ
1
2
0 .

(3.6.31)

For the third term, we can derive it as

E

∥∥∥∥∥∇2
θL(θ

∗)−1 1

Nt

t∑
i=1

ni [∇θli(θi−1)−∇θli(θ
∗)−∇θL(θi−1)]

∥∥∥∥∥
2


=
1

µ2N2
t

t∑
i=1

n2iE
[
∥∇θli(θi−1)−∇θli(θ

∗)−∇θL(θi−1)∥2
]

+
2

µ2N2
t

t∑
i<j

ninjE [⟨∇θli(θi−1)−∇θli(θ
∗)−∇θL(θi−1),∇θlj(θj−1)−∇θlj(θ

∗)−∇θL(θj−1)⟩] ,

where

t∑
i=1

n2iE
[
∥∇θli (θi−1)−∇θli (θ

∗)−∇θL (θi−1)∥2
]
≤2

t∑
i=1

n2iE
[
∥∇θli (θi−1)−∇θli (θ

∗)∥2
]

+ 2
t∑

i=1

n2iE
[
∥∇θL (θi−1)∥2

]
≤2

t∑
i=1

n2iκ
2
i δi−1 + 2C2

∇

t∑
i=1

n2i δi−1,

by the Cauchy-Schwarz inequality, Assumption 3.2.2-p and (3.3.8). For the other term, we note
that

E[⟨∇θli(θi−1)−∇θli(θ
∗)−∇θL(θi−1),∇θlj(θj−1)−∇θlj(θ

∗)−∇θL(θj−1)⟩]

=E[⟨∇θli(θi−1)−∇θli(θ
∗)− [∇θL(θi−1)−∇θL(θ

∗)],

E[∇θlj(θj−1)|Fj−1]−∇θL(θj−1)− [E[∇θlj(θ
∗)|Fj−1]−∇θL(θ

∗)]⟩]

≤
√
E[∥∇θli(θi−1)−∇θli(θ∗)− [∇θL(θi−1)−∇θL(θ∗)]∥2]√
E[∥E[∇θlj(θj−1)|Fj−1]−∇θL(θj−1)− [E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)]∥2]

≤
√
2E[∥∇θli(θi−1)−∇θli(θ∗)∥2] + 2E[∥∇θL(θi−1)−∇θL(θ∗)∥2]√
2E[∥E[∇θlj(θj−1)|Fj−1]−∇θL(θj−1)∥2] + 2E[∥E[∇θlj(θ∗)|Fj−1]−∇θL(θ∗)∥2]

≤
√

2κ2i δi−1 + 2C2
∇δi−1

√
2D2

νν
2
j δj−1 + 4B2

νν
2
j ≤ 21/2(κiδ

1/2
i−1 + C∇δ

1/2
i−1)(Dννjδ

1/2
j−1 + 21/2Bννj),

using Fi−1 ⊂ Fj−1 since i < j, Cauchy–Schwarz inequality, Hölder’s inequality, ∥a + b∥p ≤
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2p−1(∥a∥p + ∥b∥p) with p ∈ N, Assumptions 3.2.1-p and 3.2.2-p, and (3.3.8). Thus,E

∥∥∥∥∥∇2
θL(θ

∗)−1 1

Nt

t∑
i=1

ni [∇θli(θi−1)−∇θli(θ
∗)−∇θL(θi−1)]

∥∥∥∥∥
2
1/2

≤ 21/2

µNt

(
t∑

i=1

n2iκ
2
i δi−1

)1/2

+
21/2C∇
µNt

(
t∑

i=1

n2i δi−1

)1/2

+
23/4

µNt

 t∑
j=2

(
(Dνδ

1/2
j−1 + 21/2Bν)njνj

j−1∑
i=1

(C∇ + κi)niδ
1/2
i−1

)1/2

. (3.6.32)

The last term is directly bounded by (3.3.9), using that (3.3.9) implies ∀θ, ∥∇θL(θ)−∇2
θL(θ

∗)(θ−
θ∗)∥ ≤ C ′

∇∥θ − θ∗∥2/2 [105], giving us

E

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
[
∇θL (θi−1)−∇2

θL (θ∗) (θi−1 − θ∗)
]∥∥∥∥∥

2
 1

2

≤
C ′
∇

2µNt

t∑
i=1

ni∆
1/2
i−1,

(3.6.33)

with the notion ∆t = E[∥θt− θ∗∥4]. Combining the terms (3.6.30) to (3.6.33) into (3.6.29), gives us

δ̄
1/2
t ≤Λ1/2

Nt

(
t∑

i=1

n
2(1−σ)
i

)1/2

+
C

′1/2
σ

µNt

(
t∑

i=1

n
2(1−σ−σ′)
i

)1/2

+
21/2B

1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

)1/2

+
1

µNt

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
µγtNt

δ
1/2
t +

n1
µγ1Nt

δ
1/2
0 +

21/2

µNt

(
t∑

i=1

n2iκ
2
i δi−1

)1/2

+
21/2C∇
µNt

(
t∑

i=1

n2i δi−1

)1/2

+
C ′
∇

2µNt

t∑
i=1

ni∆
1/2
i−1

+
23/4

µNt

 t∑
j=2

(
(Dνδ

1/2
j−1 + 21/2Bν)njνj

j−1∑
i=1

(C∇ + κi)niδ
1/2
i−1

)1/2

,
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which gives the desired by shifting the indices and collecting the δ0 terms,

δ̄
1/2
t ≤Λ1/2

Nt

(
t∑

i=1

n
2(1−σ)
i

)1/2

+
C

′1/2
σ

µNt

(
t∑

i=1

n
2(1−σ−σ′)
i

)1/2

+
21/2B

1/2
ν

µNt

 t∑
j=2

(
njνj

j−1∑
i=1

niσi

)1/2

+
1

µNt

t−1∑
i=1

δ
1/2
i

∣∣∣∣ni+1

γi+1
− ni
γi

∣∣∣∣+ nt
µγtNt

δ
1/2
t +

n1
µNt

(
1

γ1
+ 21/2(C∇ + κ1)

)
δ
1/2
0

+
21/2

µNt

(
t−1∑
i=1

n2i+1(C
2
∇ + κ2i+1)δi

)1/2

+
C ′
∇

2µNt

t−1∑
i=0

ni+1∆
1/2
i

+
23/4

µNt

 t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)nj+1νj+1

j−1∑
i=0

(C∇ + κi+1)ni+1δ
1/2
i

)1/2

. (3.6.34)

Now, assume that (θt) is derived from the recursion in (3.2.2): as above, we follow the steps of
Polyak and Juditsky [118], in which, we can rewrite (3.2.2) to

1

γt
(θt−1 − θt) = ∇θlt(θt−1)−

1

γt
Ωt,

where Ωt = PΘ(θt−1 − γt∇θlt(θt−1))− (θt−1 − γt∇θlt(θt−1)). Thus, summing the parts, taking the
norm and expectation, and using the Minkowski’s inequality, yields the same terms as in (3.6.29),
but with an additional term regarding Ωt, namelyE

∥∥∥∥∥∇2
θL (θ∗)−1 1

Nt

t∑
i=1

ni
γi
Ωi

∥∥∥∥∥
2
1/2

≤ 1

µNt

t∑
i=1

ni
γi

√
E
[
∥Ωi∥2

]

=
1

µNt

t∑
i=1

ni
γi

√
E
[
∥Ωi∥2 1{θi−1−γi∇θli(θi−1)/∈Θ}

]
, (3.6.35)

using Godichon-Baggioni [55, Lemma 4.3]. Next, we note that E[∥Ωt∥21{θt−1−γt∇θlt(θt−1)/∈Θ}] =

4γ2tG
2
ΘP[θt−1 − γt∇θlt(θt−1) /∈ Θ], since

∥Ωt∥2 = ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1 + γt∇θlt (θt−1)∥2

≤2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− θt−1∥2 + 2γ2t ∥∇θlt (θt−1)∥2

=2 ∥PΘ (θt−1 − γt∇θlt (θt−1))− PΘ (θt−1)∥2 + 2γ2t ∥∇θlt (θt−1)∥2

≤2 ∥θt−1 − γt∇θlt (θt−1)− θt−1∥2 + 2γ2t ∥∇θlt (θt−1)∥2 = 4γ2t ∥∇θlt (θt−1)∥2 ≤ 4γ2tG
2
Θ,

as PΘ is Lipschitz and ∥∇θlt(θ)∥2 ≤ G2
Θ for any θ ∈ Θ. Moreover, as in Godichon-Baggioni and

Portier [56, Theorem 4.2] with use of Lemma 3.6.2, we know that P[θt−1 − γt∇θlt(θt−1) /∈ Θ] ≤
∆t/D

4
Θ, where DΘ = infθ∈∂Θ∥θ − θ∗∥ with ∂Θ denoting the frontier of Θ. Thus, (3.6.35) can then
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be bounded by

1

µNt

t∑
i=1

ni
γi

√
E
[
∥Ωi∥2 1{θi−1−γi∇θli(θi−1)/∈Θ}

]
≤ 2GΘ

µD2
ΘNt

t∑
i=1

ni∆
1/2
i ≤ 2GΘ

µD2
ΘNt

t∑
i=1

ni+1∆
1/2
i ,

since the sequence (nt) is either constant or increasing, meaning ∀t, nt/nt+1 ≤ 1. At last, this term
can be combined into (3.6.34) with use of C ′′

∇ = C ′
∇/2+1{DΘ<∞}2GΘ/D

2
Θ, which indicates whether

(θt) follows (3.2.2) or not.

Proof of Theorem 3.3.2. The result follows by simplifying and bounding each term of Lemma 3.6.3,
with use of Theorem 3.3.1 and Lemma 3.6.2. Thus, by inserting γt = Cγn

β
t t

−α, νt = n−ν
t , κt =

Cκn
−κ
t , σt = Cσn

−σ
t , and nt = Cρt

ρ into the bound of Lemma 3.6.3, we obtain

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +
Λ1/2C1−σ

ρ

Nt

(
t∑

i=1

i2ρ(1−σ)

)1/2

1{σ ̸=1/2} +
C

′1/2
σ C1−σ−σ′

ρ

µNt

(
t∑

i=1

i2ρ(1−σ−σ′)

)1/2

+
21/2B

1/2
ν C

1/2
σ Cρ

µC
(σ+ν)/2
ρ Nt

 t∑
j=2

(
jρ(1−ν)

j−1∑
i=1

iρ(1−σ)

)1/2

+
(ρ(1− β) + α)Cρ

µCγC
β
ρNt

t−1∑
i=1

iρ(1−β)+α−1δ
1/2
i

+
Cρt

ρ(1−β)+α

µCγC
β
ρNt

δ
1/2
t +

Cρ

µNt

(
1

CγC
β
ρ

+ 21/2
(
Cκ

Cκ
ρ

+ C∇

))
δ
1/2
0 +

21/2+ρ(1−κ)CκCρ

µCκ
ρNt

(
t−1∑
i=1

i2ρ(1−κ)δi

)1/2

+
21/2+ρC∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

+
2ρC ′′

∇Cρ

µNt

t−1∑
i=0

iρ∆
1/2
i

+
23/4+ρ(2−ν)/2Cρ

µC
ν/2
ρ Nt

 t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)j

ρ(1−ν)
j−1∑
i=1

(
C∇ +

2ρκCκ

Cκ
ρ i

ρκ

)
iρδ

1/2
i

)1/2

,

using ni+1/ni ≤ 2ρ and that |ni+1/γi+1 − ni/γi| ≤ (ρ(1 − β) + α)C1−β
ρ /Cγi

1−ρ(1−β)−α as ρ(1 −
β) + α ≤ 1 − ρ with ρ ∈ [0, 1). Next, as σ ∈ [0, 1/2] and σ′ ∈ (0, 1/2], we have

∑t
i=1 i

2ρ(1−σ−σ′) ≤
t1+2ρ(1−σ−σ′)/(1 + 2ρ(1 − σ − σ′)), where t ≤ (2Nt/Cρ)

1/(1+ρ). Similarly, as ν ∈ (0,∞), we have
that

t−1∑
j=2

(
jρ(1−ν)

j−1∑
i=1

iρ(1−σ)

)
≤

t−1∑
j=1

jρ(1−ν)
t−1∑
i=1

iρ(1−σ)

≤ψρ(ν−1)(t)ψρ(σ−1)(t)

≤ψρ
ρ(ν−1)(2Nt/Cρ)ψ

ρ
ρ(σ−1)(2Nt/Cρ),

using the ψ-function defined in (3.6.16), such that√
ψρ
ρ(σ−1)(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)/Nt ≤ Õ(N−ρ(σ+ν)/2(1+ρ)

t ).
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Let Dκ
∇ denote C∇ + 2ρκCκ/C

κ
ρ with κ ∈ [0, 1/2], such that

21/2+ρ(1−κ)CκCρ

µCκ
ρNt

(
t−1∑
i=1

i2ρ(1−κ)δi

)1/2

+
21/2+ρC∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

≤
21/2+ρDκ

∇Cρ

µNt

(
t−1∑
i=1

i2ρδi

)1/2

,

and, likewise, we have that

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)j

ρ(1−ν)
j−1∑
i=1

(
C∇ +

2ρκCκ

Cκ
ρ i

ρκ

)
iρδ

1/2
i

)

≤ Dκ
∇

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)j

ρ(1−ν)
j−1∑
i=1

iρδ
1/2
i

)
.

From (3.6.21) we know that δt ≤ Dδ/t
δ with

Dδ = sup
t∈N

πtt
δ +

21+2ρνB2
ν

µµνC2ν
ρ

+
22+ρ(2σ−β)+αC2

σCγC
β
ρ

µνC2σ
ρ

,

and δ = 1{Bν=0}(ρ(2σ − β) + α) + 1{Bν ̸=0}min{ρ(2σ − β) + α, 2ρν}, yielding

t−1∑
j=1

(
(Dνδ

1/2
j + 21/2Bν)j

ρ(1−ν)
j−1∑
i=1

iρδ
1/2
i

)

≤ D1/2
δ

t−1∑
j=1

(
(DνD

1/2
δ j−δ/2 + 21/2Bν)j

ρ(1−ν)
j−1∑
i=1

iρ−δ/2

)

≤ D1/2
δ

t−1∑
j=1

(
(DνD

1/2
δ j−δ/2 + 21/2Bν)j

ρ(1−ν)ψδ/2−ρ(t)
)

≤ DνDδψδ/2−ρ(t)ψδ/2+ρ(ν−1)(t) + 21/2BνD
1/2
δ ψδ/2−ρ(t)ψρ(ν−1)(t)

≤ DνDδψ
ρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ) + 21/2BνD

1/2
δ ψρ

δ/2−ρ(2Nt/Cρ)ψ
ρ
ρ(ν−1)(2Nt/Cρ),

if δ/2 − ρ ≥ 0. Hence,
√
ψρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
δ/2+ρ(ν−1)(2Nt/Cρ)/Nt = Õ(N−(δ+ρν)/2(1+ρ)

t ), and√
ψρ
δ/2−ρ(2Nt/Cρ)ψ

ρ
ρ(ν−1)(2Nt/Cρ)/Nt = Õ(N−(δ/2+ρν)/2(1+ρ)

t ). Next, we define π̄t =
∑t

i=1 i
2πi ≥∑t

i=1 πi such that πt ≤ t−1
∑t

i=1 πi ≤ t−1π̄t ≤ t−1π̄∞ since πt is decreasing. Similarly, let
Π̄t =

∑t
i=1 i

ρΠi. Both π̄t and Π̄t convergences to some finite constant depending on the model’s
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parameters. With use of these notions, one can show that

δ̄
1/2
t ≤ Λ1/2

N
1/2
t

1{σ=1/2} +
21+2ρ(1−σ)/2(1+ρ)Λ1/2C

(1−2σ)/2(1+ρ)
ρ√

1 + 2ρ(1− σ)N (1+2ρσ)/2(1+ρ)
t

1{σ ̸=1/2}

+
21+2ρ(1−σ−σ′)/2(1+ρ)C
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can be simplified into
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where Ψt = Õ(N−ρ(σ+ν)/2(1+ρ)
t )+Õ(N−(1+ρ(β+ν)−α)/(1+ρ)

t )+Õ(N−(1+2ρν)/2(1+ρ)
t )+Õ(N−(δ/2+ρν)/2(1+ρ)

t )+

Õ(N−2ρν/(1+ρ)
t ), implying that ν > 1/2 to obtain the desired rate δ̄t = O(N−1) if Bν = 0.
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Chapter 4: AdaVol: An Adaptive Recursive Volatility Prediction Method

Abstract

Quasi-Maximum Likelihood (QML) procedures are theoretically ap-
pealing and widely used for statistical inference. While there are
extensive references on QML estimation in batch settings, it has at-
tracted little attention in streaming settings until recently. An in-
vestigation of the convergence properties of the QML procedure in a
general conditionally heteroscedastic time series model is conducted,
and the classical batch optimization routines extended to the frame-
work of streaming and large-scale problems. An adaptive recursive
estimation routine for GARCH models named AdaVol is presented.
The AdaVol procedure relies on stochastic approximations combined
with the technique of Variance Targeting Estimation (VTE). This re-
cursive method has computationally efficient properties, while VTE
alleviates some convergence difficulties encountered by the usual QML
estimation due to a lack of convexity. Empirical results demonstrate a
favorable trade-off between AdaVol’s stability and the ability to adapt
to time-varying estimates for real-life data.

keywords : volatility models, quasi-likelihood, recursive algorithm,
GARCH, prediction method, stock index
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4.1 Introduction

Time series analysis has attracted much attention in the last three decades. A central aspect
of time series analysis is modeling heteroscedasticity of the conditional variance, e.g., volatility
clustering in financial time series. Some well-known models incorporating this feature are the Au-
toRegressive Conditional Heteroscedasticity (ARCH) model and the Generalized ARCH (GARCH)
model introduced by [45] and [18], respectively. Many reasons can explain these models’ success;
they constitute a stationary time series model with a time-varying conditional variance, and sec-
ondly, they may model time series with heavier tails than the Gaussian ones, which often occurs in
financial time series.

Quasi-Maximum Likelihood (QML) estimation is widely used for statistical inference in GARCH
models due to their appealing theoretical nature and tolerance to overdispersion, which is often
observed in empirical data. This paper studies the Quasi-Maximum Likelihood Estimator (QMLE)
for the broader class of conditionally heteroscedastic time series models of multiplicative form given
by

Xt = ht(θ0)Zt, t ∈ Z, (4.1.1)

where θ0 is the true underlying parameter vector, (Zt) is a sequence of i.i.d. random variables with
E[Z0] = 0 and E[Z2

0 ] = 1, and the (non-negative) volatility process (ht)t∈Z is defined as

ht(θ) = gθ
(
Xt−1, . . . , Xt−p, ht−1(θ), . . . , ht−q(θ)

)
, p, q ≥ 0. (4.1.2)

Suppose that the parameter set Θ ⊂ Rd and {gθ|θ ∈ Θ} denotes the (finite) parametric family of
non-negative functions on Rp× [0,∞)q satisfying certain regularity conditions. We also require that
ht is Ft−1-measurable for all t ∈ Z, where Ft = σ(Zk : k ≤ t) denotes the σ-field generated by the

92



Section 4.1

random variables {Zk : k ≤ t}.
The stability of model (4.1.1)-(4.1.2) is accomplished under the assumption that gθ is a contrac-

tion. This condition is a random Lipschitz coefficient condition, where the Lipschitz coefficient has
a negative logarithmic moment. The notion of contractivity is clarified in [138] where they study
QML inference of general conditionally heteroscedastic models with emphasis on the approximation
(ĥt) of the stochastic volatility (ht).

QML estimation of the parameters in the class of conditionally heteroscedastic time series models
has been studied frequently in recent years, see e.g., [14], [48], [138], and [151]. However, all these
references consider iterative estimation, where one assembles a batch of data and afterward performs
the statistical inference. Thus, one evaluates an objective function consisting of a sum of n loss terms.
Each iteration would then have a cost of O(nd), making the recursion cost O(mnd), where m is the
number of iterations. As the amount of data grows, these optimizers become prohibitively expensive
and increasingly computationally inefficient. Moreover, iterative optimizers become unsuitable for
streaming settings where we are modeling and predicting data as they arrive.

Many financial practices, such as banks, asset managers, and financial services institutes, find
themselves estimating thousands of volatility models every day for risk and pricing purposes. In
addition, the sampling of financial time series is increasingly at high frequency. Therefore, recursive
procedures must undoubtedly be advantageous since one only processes observations once. In re-
cursive QML estimation, we update the previous QML estimate with the new observations at time
t in order to produce the QML estimate of the parameters at time t.

Thus, in modern statistical analysis, it is becoming increasingly common to work with stream-
ing data where one observes only a group of observations at a time. Naturally, this has led to an
expanded interest in time-scalable recursive estimation procedures with a cost of only O(d) compu-
tations per recursion, e.g., see [19]. However, there has only been given a little amount of attention
to recursive estimation in conditionally heteroscedastic time series models.

[36] presented a recursive method for estimating the parameters of an ARCH process. Under
sufficient assumptions on the underlying process, [6] showed consistency of their recursive least
squares method for GARCH processes, and [82] also developed a recursive estimation method for
GARCH processes supported by empirical evidence. Convergence analysis of the recursive QML
estimator for GARCH processes based on stochastic approximations with Markovian dynamics using
a resetting mechanism has been previously presented ([52]). A self-weighted recursive estimation
algorithm for GARCH models was proposed in [35] with a robustification in [73]. However, none
of the above references mention problems with convexity or address the obstacles that may occur
when the true parameter θ0 is close to the boundary of the parameter space.

The difficulty of estimating time-varying parameters of statistical models increases in the setting
of streaming data. To sustain computational efficiency and be adaptive to changes in the estimates,
one may decrease the number of observations in each iteration in the optimization procedure, which
may decrease the stability of the statistical inference. We propose a natural adaptation of the QML
method, relying on stochastic approximations combined with the Variance Targeting Estimation
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(VTE) technique, which we call AdaVol. This recursive method is time-scalable and memory-
efficient, as it only requires the previous estimate to process new observations, and it only needs
to treat the observations once. We present empirical evidence that AdaVol achieves a favorable
trade-off between adaptability and stability.

The rest of the paper is organized as follows: Section 4.2 introduces the QML procedure for
the general class of conditionally heteroscedastic time series models of multiplicative form and
investigates the asymptotic properties of the Quasi-Likelihood (QL) function (Section 4.2.1). Next,
in Section 4.2.2, we present the QML estimation of the GARCH parameters. In Section 4.3, we
present our adaptive approach for recursively estimating GARCH parameters named AdaVol. We
examine the AdaVol procedure on simulated and real-life observations in Section 4.4, and some
concluding remarks are made in Section 4.5.

4.2 QML Estimation in Conditionally Heteroscedastic Time Series Models

The approximate QMLE θ̂∗n is defined as

θ̂∗n ∈ argmin
θ∈K

L̂n(θ), (4.2.3)

where the parameter set K is a suitable compact subset of the parameter space Θ. The QL function
Ln(θ) and approximate QL function L̂n(θ) are given by

Ln(θ) =
n∑

t=1

lt(θ) and L̂n(θ) =
n∑

t=1

l̂t(θ), (4.2.4)

with QL losses, denoted lt(θ) and l̂t(θ), given as

lt(θ) =
1

2

(
X2

t

ht(θ)
+ log ht(θ)

)
and l̂t(θ) =

1

2

(
X2

t

ĥt(θ)
+ log ĥt(θ)

)
, (4.2.5)

where (ĥt) is an approximation of (ht) defined recursively for t ≥ 1 as in (4.1.2) with initialization
ĥ−q+1 = · · · = ĥ0 = 0 or any deterministic constant. From [137, Proposition 5.2.12], we know
the initialization error between (ĥt) and the true (ht) will vanish exponentially fast almost surely.
Assuming Z0 is standard normal distributed, we may note Xt is also Gaussian with variance ht
conditioned on Ft−1. The QL function Ln(·) in (4.2.4) is derived under this Gaussian assumption.

The consistency and asymptotic properties of the QMLE θ̂∗n combined with the robustness of the
QL function for overdispersion make the method highly used in practice (e.g., see [113]). Under the
assumptions in [138, N.1, N.2, N.3 and N.4], the QMLE θ̂∗n is strongly consistent and asymptotically
normal, that is

θ̂∗n
a.s.→ θ0 and

√
n
(
θ̂∗n − θ0

)
→ N (0, V0) as n→∞, (4.2.6)
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with θ0 as the true parameter vector and V0 the asymptotic covariance matrix.

Unfortunately, these asymptotic properties in (4.2.6) come with a drawback on the QL loss; the
consistency is achieved through careful domination of logarithmic moments. The concavity of loga-
rithms makes the criterion insensitive to extreme values, but it also implies that the criterion itself
behaves as a concave function. As most optimization algorithms are based on convex assumptions,
this is striking.

In the next section, we show that the approximate Hessian Ĥn(θ) = n−1∇2
θL̂n (θ) admits strictly

positive eigenvalues for n sufficiently large dependent on the model specifications and the underlying
data process. This means that for sufficiently large batch sizes of observations, the QMLE θ̂∗n can
be seen as the unique solution of a locally strongly convex optimization problem; the existence and
uniqueness of θ̂∗n ensure that usual iterative optimization routines can efficiently approximate it for
n large enough.

4.2.1 Asymptotic Properties of the QL Function

To establish the asymptotic local convexity of the QL function of the model described by (4.1.1)-
(4.1.2), we need the following assumptions: Assumption 4.2.1, 4.2.2, and 4.2.3, which naturally
emerges from the arguments and properties [138] made to ensure stability of the QL function
and QMLE procedure. We will use two different matrix norms, namely, let ∥A∥op denote the
matrix operator norm of the matrix A ∈ Rd×d with respect to the Euclidean norm, i.e., ∥A∥op =

supv ̸=0 |Av|/|v|, and denote ∥A∥K the norm of the continuous matrix-valued function A on K, i.e.,
∥A∥K = supx∈K∥A(x)∥op, where K is a compact set of Rd.

Assumption 4.2.1. The model (4.1.1)-(4.1.2) with θ = θ0 admits a unique stationary ergodic
solution.

Assumption 4.2.2. Let K ⊂ Θ be a compact set with true parameter vector θ0 ∈ K in the inte-
rior. The random functions fulfill certain conditions, such that E[∥l0∥K] < ∞, E[∥∇2

θl0∥K] < ∞,
and furthermore have the following uniform convergences ∥n−1L̂n − Ln∥K

a.s.−→ 0 and n−1∥∇2
θL̂n −

∇2
θLn∥K

a.s.−→ 0 as n→∞.

Assumption 4.2.3. The components of the vector ∇θgθ(X0, h0) from (4.1.2) with θ = θ0 are
linearly independent random variables.

The following Theorem 4.2.1 is an extension of [75], which established similar results for the
likelihood function of GARCH models under the assumption that (Xt) is strictly stationary and
strongly mixing with geometric rate, and (Zt) is Gaussian. Solving the QML estimation problem in
(4.2.3) for θ̂∗n is known to be computationally heavy as one has to find the solution of a non-linear
equation, namely (4.2.4). Nonetheless, Theorem 4.2.1 ensures the existence of an N such that we
have a unique global QMLE θ̂∗n for all n ≥ N .
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Theorem 4.2.1. Under Assumption 4.2.1, 4.2.2, and 4.2.3, there exist positive constants C, δ > 0,
and a random positive integer N ∈ N such that

gT Ĥn(θ)g > CgT g, ∀n ≥ N, a.s., (4.2.7)

for all θ ∈ B(θ0, δ) and g ∈ Rd \ {0}.

The result above shows local strong convexity of the QL function L̂n. The following corollary
arises from the proof of Theorem 4.2.1:

Corollary 4.2.1. Under Assumption 4.2.1, 4.2.2, and 4.2.3, the QMLE θ̂∗n exists and is unique,
that is

θ̂∗n = argmin
θ∈K

L̂n(θ).

Local strong convexity is crucial for guaranteeing the convergence of an optimization algorithm,
although some methods go beyond this point ([147]). Thus, Theorem 4.2.1 is an essential result for
computing the QMLE θ̂∗n parameters of the model in (4.1.1)-(4.1.2). Nevertheless, to guarantee the
property in (4.2.7), we need a sufficiently large (and maybe unbounded) random N , which depends
on the true parameter vector θ0, the parameter estimates (θ̂∗t ), and the observations (Xt). One often
has a fixed size of observations in practice, so the iterative algorithm may not converge. To our
experience, this phenomenon may occur when the true parameter vector θ0 is close to the boundary
of K, or if the initial values θ̂∗0 are far away from the true parameters θ0.

4.2.2 QML Estimation of GARCH(p,q) Parameters

The general class of conditionally heteroscedastic time series models includes the very popular
ARCH and GARCH models. For more than three decades, these models have attracted consid-
erable amounts of attention in the literature since their introduction. A process (Xt) is called a
GARCH(p, q) process with parameter vector θ = (ω, α1, . . . , αp, β1, . . . , βq)

T , if it satisfiesXt = σtZt,

σ2t = ω +
∑p

i=1 αiX
2
t−i +

∑q
j=1 βjσ

2
t−j ,

(4.2.8)

where ω, αi, and βj for 1 ≤ i ≤ p and 1 ≤ j ≤ q are non-negative parameters ensuring the
non-negativity of the conditional variance process (σ2t ). The innovations (Zt) is a sequence of i.i.d.
random variables with E[Z0] = 0 and E[Z2

0 ] = 1. Likewise, one can define an ARCH(p) process by
setting βj = 0 for 1 ≤ j ≤ q in (4.2.8). The GARCH(p, q) process (Xt) given in (4.2.8) has QL
losses given by l̂t(θ) = 2−1(X2

t /σ̂
2
t (θ) + log σ̂2t (θ)) with first-order derivative

∇θ l̂t(θ) = ∇θσ̂
2
t (θ)

(
σ̂2t (θ)−X2

t

2σ̂4t (θ)

)
(4.2.9)
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and second-order derivative

∇2
θ l̂t(θ) = ∇θσ̂

2
t (θ)

T∇θσ̂
2
t (θ)

(
2X2

t − σ̂2t (θ)
2σ̂6t (θ)

)
+∇2

θσ̂
2
t (θ)

(
σ̂2t (θ)−X2

t

2σ̂4t (θ)

)
, (4.2.10)

where∇θσ̂
2
t (θ) = ϑt(θ)+

∑q
j=1 βj∇θσ̂

2
t−j(θ) with ϑt(θ) = (1, X2

t−1, . . . , X
2
t−p, σ̂

2
t−1(θ), . . . , σ̂

2
t−q(θ))

T ∈
Rp+q+1 and Hessian Ĥn(θ) = n−1

∑n
t=1∇2

θ l̂t(θ).

The equations (4.2.8) creates a complicated probabilistic structure that is not easily understood,
although it looks relatively simple. The conditions ensuring the existence and uniqueness of a
stationary solution to the equations (4.2.8) for GARCH(1, 1) was provided by [100]. [23] later
showed it for the GARCH(p, q) model using that GARCH(p, q) can be embedded in a Iterated
Random Lipschitz Map (IRLM). See [22] for a formal definition of IRLMs.

We can illustrate the IRLM method on the GARCH(1, 1) model with parameter vector θ =

(ω, α1, β1)
T . The IRLM for σ2t is then given by σ2t = Atσ

2
t−1+Bt with t ∈ Z, where At = α1Z

2
t−1+β1

and Bt = ω. Note ((At, Bt)) constitutes an i.i.d. sequence. From the literature on IRLMs it is
well known that the conditions E[log |A0|] < 0 and E[log+ |B0|] < ∞ guarantee the existence and
uniqueness of a strictly stationary solution of the IRLM Yt = AtYt−1 + Bt for t ∈ Z provided
((At, Bt)) is a stationary ergodic sequence. Applying this to the GARCH(1, 1) model, we get the
known sufficient condition for the existence of a stationary solution, namely E[log(α1Z

2
0 + β1)] < 0.

This also implies β1 < 1 since log(β1) ≤ E[log(α1Z
2
0 + β1)] < 0. Likewise, the ARCH(1) process

(β1 = 0) then requires E[log(α1Z
2
0 )] < 0, which is the same as α < 2eϵ ≈ 3.56 with Z0 being

Gaussian. Thus, the stationary condition is much weaker than the second-order stationary condition
in which we require α1 + β1 < 1.

The statistical inference leads to further nontrivial problems since the exact distribution of (Zt)

remains unspecified, and so one usually determines the likelihoods under the hypothesis of standard
Gaussian innovations. Moreover, the volatility (σt) is an unobserved quantity approximated by
mimicking the recursion (4.2.8) with an initialization, for instance X−p+1 = · · · = X0 = 0 and
σ2−q+1 = · · · = σ20 = 0. [14] showed under minimal assumptions that the QMLE is strongly
consistent and asymptotically normal.

Furthermore, under Assumption 4.2.1-4.2.3, we have asymptotic local strong convexity of the QL
function in GARCH(p, q) models by Theorem 4.2.1. However, the number of observations needed to
guarantee local strong convexity vary. This can easily be seen by looking at the simplest case, namely
when (Xt) follows an ARCH(1) process with parameter vector θ = (ω, α1)

T . The volatility process
σ2t (θ) is given as ω + α1X

2
t−1. The eigenvalues of ∇2

θlt(θ) are given by λt = (λt,1, λt,2) = (0, λt,2)

with λt,2 = (1 + X4
t−1)(2X

2
t − σ2t (θ))2

−1σ−6
t (θ). Thus, the non-negativity of λt,2 would ensure

convexity at time t in our QML procedure. However, the probability of having convexity at each t
is unlikely as P(∩nt=1∇2

θlt(θ) ≥ 0) = P(∩nt=1Z
2
t ≥ 1/2) = P(Z2

0 ≥ 1/2)n is approximately 0.52n with
i.i.d. Gaussian innovations (Zt), i.e., (Z2

t ) is χ2-distributed with 1 degree of freedom. On the other
hand, increasing the number of observations used at each iteration would increase the probability
of having local strong convexity.
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4.3 Adaptive Recursive QML Estimation

Our recursive QML method relies on stochastic approximations introduced by [124], which
only requires the previous parameter estimate to update the parameter estimate using the new
observation. We perform the first-order stochastic gradient method defined as

θ̂t = θ̂t−1 − ηt−1∇θ l̂t(θ̂t−1), (4.3.11)

where ηt−1 > 0 is the step-size at the t − 1 step, and ∇θ l̂t(θ̂t−1) is the gradient using the Xt

observation and the QMLE estimate θ̂t−1. This method is computationally efficient as it only
requires a cost of O(d) per recursion. Depending on the number of observations, we have a trade-off
between the accuracy of the recursive QML estimates and the time it takes to perform a parameter
update ([19]).

According to [124], we must schedule the step-size such that
∑∞

t=1 ηt =∞ and
∑∞

t=1 η
2
t <∞, but

these bounds do not make the choice of an appropriate step-size ηt easier in practice. A more suitable
approach is an adaptive learning rate, which updates the step-size in (4.3.11) on the fly pursuant
to the gradient ∇θ l̂t(·). Thus, our choice of step-size ηt have less impact on performance, making
convergence more robust and lower the demand for manually fine-tuning. Such an approach is often
used in settings of streaming data as generic methods are preferred. Adaptive and separate learning
rates for each parameter was proposed by [42] in their AdaGrad procedure. A different learning rate
speeds up convergence in situations where the appropriate learning rates vary across parameters.
Other well-known examples of adaptive learning rates could be AdaDelta by [155], RMSProp by
[143] and ADAM by [83]. As we may expect a lack of convexity, we select the AdaGrad algorithm
since it has shown promising results in non-convex optimization ([147]). The AdaGrad procedure
is given by the updates

θ̂t = θ̂t−1 −
η√∑t

i=1∇θ l̂i(θ̂i−1)2 + ϵ
∇θ l̂t(θ̂t−1), (4.3.12)

where η > 0 is a constant learning rate and ϵ > 0 a small number ensuring positivity. Good default
values are η = 0.1 and ϵ = 10−8, e.g., see AdaVol in Algorithm 4.1. Note ∇θ l̂i(θ̂i−1)

2 denotes the
element-wise square ∇θ l̂i(θ̂i−1)⊙∇θ l̂i(θ̂i−1).

As the QL loss is defined only for θ̂n ∈ K, we will require that the recursive algorithm always
takes values in K. [157] suggests we project our approximation θ̂n onto K, preventing large jumps
and enforcing the convergence of our stochastic gradient method. By implementing this projection
on (4.3.12), we have our method for updating estimates, namely

θ̂t = PK

θ̂t−1 −
η√∑t

i=1∇θ l̂i(θ̂i−1)2 + ϵ
∇θ l̂t(θ̂t−1)

 . (4.3.13)
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4.3.1 Adaptive Recursive QML Estimation for GARCH Models

The GARCH process (Xt) parameters can be numerically challenging to estimate in empirical
applications. The numerical optimization algorithms can quickly fail or converge to irregular so-
lutions ([159]). Therefore, examining the approximative QMLE θ̂∗n must be made with a healthy
amount of skepticism. A well-discussed problem for the GARCH(p, q) models is that the QMLE
performs poorly for numerically small (but still positive) values of ω. The parameter ω is vital and
often tricky to estimate. Stabilizing the estimation of ω would not only improve the ω estimate but
also have a positive impact on the other model parameters.

On way to overcome small values of ω for the GARCH(p, q) model is by scaling (Xt) with some
factor λ > 0 as we have homogeneity; let (Xt) follow a GARCH(p, q) process with parameter vector
θ = (ω, α1, . . . , αp, β1, . . . , βq)

T and innovations (Zt). Then for any λ > 0, the process (
√
λXt)

is a GARCH(p, q) process with parameter vector θ = (λω, α1, . . . , αp, β1, . . . , βq)
T and identical

innovations (Zt).

However, we wish to avoid this form of inference in our recursive algorithm as one then needs
to come up with a scaling parameter that has to be estimated beforehand. Instead, we circumvent
this issue by introducing a concept called Variance Targeting Estimation (VTE) ([49]). We apply
VTE for estimating ω by use of γ2, which is the unconditional variance estimated by the sample
variance (as seen in (4.3.14)). Thus we have a two-step estimator where we estimate the sample
variance γ2 recursively, and the remaining parameters θ = (α1, . . . , αp, β1, . . . , βq)

T are estimated
by the QML method. Pseudo-code of the AdaVol algorithm is presented in Algorithm 4.1. The
reparametrization is obtained by defining

ω = γ2

1−
p∑

i=1

αi −
q∑

j=1

βj

 . (4.3.14)

The volatility process in the GARCH(p, q) process can then be rewritten as

(σ2t − γ2) =
p∑

i=1

αi(X
2
t−i − γ2) +

q∑
j=1

βj(σ
2
t−j − γ2). (4.3.15)

Similarly, one can define an ARCH(p) process by setting βj = 0 for 1 ≤ j ≤ q. The GARCH(p, q)

process (Xt) in (4.3.15) has similar QL losses as before except ∇θσ̂
2
t (θ) in (4.2.9) and (4.2.10),

where ϑt(θ) is given as (X2
t−1 − γ2, . . . , X2

t−p − γ2, σ̂2t−1(θ)− γ2, . . . , σ̂2t−q(θ)− γ2)T ∈ Rp+q and the

parameter space is defined by K =
{
(α1, . . . , αp, β1, . . . , βq) ∈ Rp+q

+

∣∣∣∑p
i=1 αi +

∑q
j=1 βj < 1

}
.

The VTE is not a requirement for the recursive method, but it provides additional speed and
numerical stability. Namely, the VTE ensures a consistent estimate of the long-run variance, even
if the model is misspecified. Additionally, presuming γ is well estimated, we reduce the parame-
ter space dimension and increase the speed of convergence of the recursive optimization routines.
Moreover, the geometry of the new set of optimization K allows the projection step in (4.3.13) to
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Algorithm 4.1: AdaVol: Adaptive recursive QML estimation for GARCH(p, q) models
using the technique of VTE.

Data: (Xt)t≥1 (observations)
Inputs : θ̂0 (initial parameter vector), η = 0.1, ϵ = 10−8

Outputs: θ̂t (resulting estimates), σ̂2t+1 (predicted volatility)
initialize: σ̂21 = X2

1 , µ̂0 = 0, γ̂20 = 0, Ĝ0 = ϵ and t = 0

while θ̂t not converged do
t = t+ 1
µ̂t = t(t+ 1)−1µ̂t−1 + (t+ 1)−1Xt

γ̂2t = (t− 1)t−1γ̂2t−1 + t−1 (Xt − µ̂t)2

ĝt = ∇θ l̂t(θ̂t−1)

Ĝt = Ĝt−1 + ĝ2t

θ̂t = PK

[
θ̂t−1 − ηĜ−1/2

t ĝt

]
σ̂2t+1 = γ̂2t +

∑p
i=1 α̂

(t)
i (X2

t−i − γ̂2t ) +
∑q

j=1 β̂
(t)
j (σ̂2t−j − γ̂2t )

be efficiently implemented following [43].
One should be aware that the VTE requires stronger assumptions for the existence of the vari-

ance and is likely to suffer from efficiency loss. [49] also showed that the VTE would never be
asymptotically more accurate than the QMLE. Another drawback of using the VTE is the need for
a finite fourth moment of the process (Xt). Meaning, one would need α1 < 0.57 for an ARCH(1)

model using standard Gaussian noise as EX4
t < ∞ if and only if α2

1 + (EZ4
0 − 1)α2

1 < 1. For a
GARCH(1, 1) model, we should have (α1 + β1)

2 + (EZ4
0 − 1)α2

1 < 1. These parameter bounds re-
strict the usefulness and range of applications for the VTE techniques. Fortunately, these constraints
solely concern the batch setting.

4.4 Applications

In this section, we examine the AdaVol algorithm on simulated and real-life observations. Our
implementation of AdaVol is provided in a repository at [149], and a relative speed comparison can
be found in 4.7. We compare our approach to the Iterative QMLE (IQMLE) approximation θ̃n,
which is estimated at every two thousand increments using all observations up to this point, i.e.,
(θ̃t)(k−2000)+1≤t≤k is estimated using (Xt)1≤t≤k for k = 2000, 4000, . . . , n. In this way, we illuminate
the large-scale learning trade-off of applying our recursive method instead of the iterative method,
which is forward-looking with up to two thousand observations ([19]). As suggested by [75], we use
the (bounded) L-BFGS algorithm to solve the nonlinear optimization problem in (4.2.3) for θ̃n with
initial guess θ̃0 ∈ K. Our recursive QMLE approximation θ̂n is produced by the AdaVol algorithm
(described in Algorithm 4.1). It takes our initial value θ̂0 ∈ K, learning rate η = 0.1 and ϵ = 10−8

as input. At last, for a fair comparison, we always use the same initial guess for both methods,
namely θ̂0 = θ̃0 ∈ K.

It is possible to customize AdaVol by tuning the learning parameter η, e.g., by choosing the best
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performing learning rate evaluated on the first part of the observations. We use a fixed learning
rate η = 0.1 across all applications (simulated and real-life observations) to avoid the learning rate’s
potential influence in our experiments. However, one should be aware of the versatility achieved
with different learning rate choices. The choice of learning rates is cumbersome, as an excessive
learning rate can cause the algorithm to deviate from the true parameter estimate. In contrast, a
learning rate that is too small can lead to slow convergence. Nevertheless, a small learning rate may
be preferred if one only wants to keep track of minor parameter estimation changes.

4.4.1 Simulations

All simulations are performed by the use of twenty thousand observations (n = 20000), and
the simulated data (Xt) is always generated using Gaussian innovations with zero mean and unit
variance. To avoid possible bias due to the choice of the true parameter vector θ0 and initial values
θ̂0, θ̃0, we conduct our experiments using random parameter vectors θ0 ∈ K and random initial
guesses θ̂0, θ̃0 ∈ K. These parameter vectors are drawn randomly from our parameter space K. The
ω parameter is generated by taking a positive number from a uniform distribution, and then we
multiply it with 10−τ , where τ is some random positive integer up to eight. In this way, we cover
a broad parameter domain while having parameter values close to the boundary. Similarly, the
(αi)1≤i≤p and (βj)1≤j≤q parameters is generated from a uniform distribution with the condition of
having

∑p
i=1 αi +

∑q
j=1 βj < 1. Note that the initial guesses θ̂0 and θ̃0 are generated the same way.

Thus, when we mention random parameters for the rest of the paper, we refer to this generation
procedure.

ARCH Models

As discussed earlier, the iterative QMLE approximation θ̃n performs poorly for numerically small
ω > 0 values, which are often encountered in financial time series. Before moving on to the case of
small ω parameter values, we have in Figure 4.1a the trajectories of both QMLE approximations
using an ARCH(1) process with true parameter vector and initial values given by

θ0 =

(
ω

α1

)
=

(
2.0

0.6

)
and θ̂0 = θ̃0 =

(
1.5

0.4

)
. (4.4.16)

Figure 4.1a shows a very reasonable convergence of both estimators, θ̂n = (ω̂(n), α̂
(n)
1 )T and

θ̃n = (ω̃(n), α̃
(n)
1 )T , when the true parameter ω = 2.0. Not surprisingly, our method experiences

some fluctuations initially, but as the learning rate decreases, the fluctuation likewise evaporates,
and within the first few thousand observations, we hit the true parameter values.

Likewise, in Figure 4.1b, we have the QMLE approximations’ trajectories for an ARCH(1)
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Figure 4.1: Trajectory of θ̂n (solid line) and θ̃n (semi-dotted line) for an ARCH(1) process with true
parameter vector (dotted line) and initial guess given in sub-caption.

(a) (4.4.16). (b) (4.4.17).

process, but now with true parameter vector and initial guess given as

θ0 =

(
1 · 10−8

0.6

)
and θ̂0 = θ̃0 =

(
5 · 10−8

0.4

)
. (4.4.17)

Figure 4.1b indicates a modest convergence of θ̂n but shows slow convergence of α̃n towards the true
α1 parameter. In addition, α̃n seems biased concerning the initial value α̃0 = 0.4 as it processes
almost half of the observations before moving closer to the true α1 = 0.6.

A way of demonstrating the variation of θ̂n and θ̃n performance for small ω values is presented
in Figure 4.2a and Figure 4.2b, where we have the average trajectory of one hundred trajectories
with their corresponding boxplots showing the distribution of these one hundred trajectories.

Here, in Figure 4.2a, we can see that AdaVol converges to the true parameter values with low
sensitivity to the choice of initial values. Moreover, this convergence occurs within the first few
thousand observations. However, in Figure 4.2b, we see the opposite in which θ̃n has convergence
issues; it is consistently underestimating the ω parameter. Furthermore, the α1 parameter range
does not appear to be decreasing over time, and the range seems larger than AdaVol’s.

As we observe the true volatility process (σt) in this section, we can evaluate the predicted
volatility processes’ accuracy. We do this using the Mean Percentage Errors (MPE) given as

σ̂MPE =
1

n

n∑
t=1

σt − σ̂t
σt

and σ̃MPE =
1

n

n∑
t=1

σt − σ̃t
σt

, (4.4.18)
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Figure 4.2: Average trajectory (solid line) of one hundred θ̂n, θ̃n’s for an ARCH(1) process with true
parameter vector (dotted line) and initial guess from (4.4.17). The boxplots shows the distribution
of the one hundred trajectories.

(a) (θ̂n) (b) (θ̃n)

and the Mean Absolute Percentage Errors (MAPE) given by

σ̂MAPE =
1

n

n∑
t=1

|σt − σ̂t|
σt

and σ̃MAPE =
1

n

n∑
t=1

|σt − σ̃t|
σt

, (4.4.19)

where (σ̂t) is coming from AdaVol and (σ̃t) from the IQMLE approximation. Note that σ̃t’s esti-
mation is the same as for the IQMLE approximation θ̃t, i.e., (σ̃t)(k−2000)+1≤t≤k is estimated using
(Xt)1≤t≤k for k = 2000, 4000, . . . , n.

In the rest of this section, we will use random parameters to generalize our studies, limiting
the potential bias from having fixed parameters (See Section 4.4.1). Our routine is as follows: We
draw a random true parameter vector θ0 ∈ K from which we generate our observations (Xt). Based
on these observations (Xt), we calculate our estimates using (a random) θ̂0 = θ̃0 ∈ K. Then, we
evaluate our estimates using an accuracy score, e.g., MPE and MAPE. Finally, we repeat all these
steps the desired number of times. Boxplots of one hundred accuracy scores, MPE in (4.4.18) and
MAPE in (4.4.19), can be found in Figure 4.3. In the top graph of Figure 4.3, one can observe
the MPE (for both methods) is symmetric around zero, but σ̃MPE has a negative tail, meaning the
iterative method may overestimate the volatility in some cases. Also, the spread of σ̃MPE is higher
than the σ̂MPE, which is clearly seen by looking at σ̃MAPE in the bottom graph of Figure 4.3.

Another way of measuring the accuracy can be made by studying the conditional quantiles using
the recursive (σ̂t) and iterative (σ̃t) predicted volatility processes ([16]). Under the assumption of
standard Gaussian innovations, Xt is Gaussian with zero mean and variance σ2t . Thus, for any
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Figure 4.3: Boxplots of one hundred accuracy scores MPE (4.4.18) and MAPE (4.4.19) using an
ARCH(1) process with random true parameter vector and initial guess in K.

α ∈ (0, 1), the α-quantile of a Gaussian distribution N (0, σ2t ) is σtΦ−1(α), where Φ−1(α) is the
α-quantile of the standard Gaussian distribution. We use the so-called α-quantile loss function
proposed by [84]: The α-quantile loss function ρα using the volatility process σt is defined as

ρα(Xt, σt) =

α
(
Xt − Φ−1(α)σt

)
, for Xt > Φ−1(α)σt,

(1− α)
(
Φ−1(α)σt −Xt

)
, for Xt ≤ Φ−1(α)σt,

(4.4.20)

with tilting parameter α ∈ (0, 1). The idea behind the α-quantile loss function is to penalize
quantiles of low probability more for overestimation than for underestimation (and reversely for
high probability quantiles). We evaluate across the α-quantile scores ρα of (σt) by the (normalized)
cumulative α-quantile scoring function QSα:

QSα(Xn, σn) =
1

n

n∑
t=1

M∑
m=1

ραm(Xt, σt), (4.4.21)

with M as the number of quantiles α = {α1, . . . , αM}. The lowest QSα score indicates the best
ability of volatility forecast. The findings of one hundred QSα(Xn, σ̂n) and QSα(Xn, σ̃n) scores is
presented in Figure 4.4, where we have used α = {0.01, 0.02, . . . , 0.99}, a random true parameter
vector and random initialization in K. The QSα scores in Figure 4.4 are indistinguishable. This
indicates no loss of generality in using our recursive method even though our estimates are calculated
only once, making them more adaptable over time. Surprisingly, the iterative method is not superior,
even when forward-looking (with up to two thousand observations).
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Figure 4.4: Boxplots of one hundred QSα scores with α = {0.01, 0.02, . . . , 0.99} using an ARCH(1)
model with random true parameter vector and initial value in K.

GARCH Models

Figure 4.5a and 4.5b shows the trajectories of the parameter estimates θ̂n = (ω̂(n), α̂
(n)
1 , β̂

(n)
1 )T

and θ̃n = (ω̃(n), α̃
(n)
1 , β̃

(n)
1 )T for a GARCH(1, 1) model with the true parameter vector and initial

guess given by

θ0 =

 ω

α1

β1

 =

1 · 10−8

0.2

0.7

 and θ̂0 = θ̃0 =

5 · 10−8

0.1

0.8

 . (4.4.22)

As for the ARCH(1) model, we observe a lower spread in the parameter trajectories coming from
AdaVol θ̂n than from the IQMLE approximation θ̃n. Moreover, the iterative θ̃n is consistently
overestimating the β1 parameter (and underestimating the α1 parameter), indicating a bias relative
to the initial value. It is worth mentioning that even if all initial values are in the stationary region,
i.e., θ̂0 = θ̃0 = θ0 ∈ K, we still have a proper amount of fluctuation in the parameter trajectories.
As discussed before, this may partially be due to the volatility introduced by the gradient method
and the flatness of the QL loss ([159]). Nevertheless, our recursive method possesses a remarkable
convergence already after the first few thousand observations.

The accuracy scores, namely MPE from (4.4.18) and MAPE from (4.4.19), can be found in Figure
4.6 for the GARCH(1, 1) model using random true parameter vector and random initial values in
K. By comparing our methods using random initializations, we circumvent the possible bias from
the initial guess, which we observed in Figure 4.5b for the iterative method. As in the ARCH(1)

case, we obtain a lower spread for σ̂MPE than σ̃MPE. Nevertheless, one should still expect some
probability of ending up with an irregular solution where the AdaVol algorithm fails to converge.

Figure 4.7 presents the results of one hundred QSα scores with random true parameter vector
and initial value in K. Again, the QSα scores are indistinguishable (even when the iterative method
is forward-looking).

105



Chapter 4

Figure 4.5: Average trajectory (solid line) of one hundred θ̂n, θ̃n’s for a GARCH(1, 1) process with
true parameter vector (dotted line) and initial guess given in (4.4.22). The boxplots shows the
distribution of the one hundred trajectories.

(a) (θ̂n) (b) (θ̃n)

4.4.2 Real-life Observations

We will now demonstrate AdaVol’s abilities on real-life observations showing how our technique
works in practice. Table 4.1 shows an overview of the used stock market indices. All empirical
studies use the GARCH(1, 1) model, but higher-order parameters may yield a better fit for some
stock market indices. As the observation period spans over a long time, it is unlikely that the log-
return series is stationary. To exhibit AdaVol’s ability to adapt to time-varying estimates, we begin
by considering the S&P500 Index in Section 4.4.2. Afterward, in Section 4.4.2, we investigate the
remaining six stock market indices presented in Table 4.1, namely the CAC, DAX, DJIA, NDAQ,
NKY, and RUT index.

Application to the S&P500 Index

We apply our method on the S&P500 Index from January 1950 to September 2020, consisting
of n = 17672 observations to test real-life data performance. We employ the GARCH(1, 1) model
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Figure 4.6: Boxplots of one hundred accuracy scores MPE (4.4.18) and MAPE (4.4.19) using a
GARCH(1, 1) process with true parameter vector and random initial guess in K.

Figure 4.7: Boxplots of one hundred QSα scores with α = {0.01, 0.02, . . . , 0.99} using the
GARCH(1, 1) model with random true parameter vector and initial value in K.

Stock Market Index Period
CAC 40 (CAC) March 1990 - Sep. 2020
DAX 30 (DAX) Jan. 1988 - Sep. 2020
Dow Jones (DJIA) Feb. 1985 - Sep. 2020
NASDAQ Composite (NDAQ) Feb. 1971 - Sep. 2020
Nikkei 225 (NKY) Jan. 1965 - Sep. 2020
Russell 2000 (RUT) Nov. 1987 - Sep. 2020
Standard & Poor’s 500 (S&P500) Jan. 1950 - Sep. 2020

Table 4.1: Overview of considered stock market indices including their observation periods. The
observations consist of daily log-returns which are defined as log differences of the closing prices of
the index between two consecutive days.

with initial values:

θ̂0 = θ̃0 =

5 · 10−5

0.05

0.9

 . (4.4.23)
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The QML trajectories can be seen in Figure 4.8. The produced AdaVol estimates θ̂n = (ω̂(n), α̂
(n)
1 , β̂

(n)
1 )T

experience some fluctuations initially, but as it vaporizes, it is clear that our estimates change over
time. Most remarkable are the shifts our estimates make around some historical market crashes,
e.g., Black Monday, the financial crisis, and COVID-19. The instant shift in our estimates is an ap-
pealing property for detecting structural breaks. It is noteworthy that the estimates of the IQMLE
approximation θ̃n = (ω̃(n), α̃

(n)
1 , β̃

(n)
1 )T are predominantly constant over time with minor changes

except for some years between 1990 and 2000, where we detect a shift to lower β̃(n)1 values and
higher ω̃(n) values.

Figure 4.8: Trajectory of the recursive θ̂n (solid line) and iterative θ̃n (semi-dotted line) QML
estimate using a GARCH(1, 1) model on S&P500 Index log-returns from year 1950 to 2020. Both
methods use initial value given in (4.4.23).

In Figure 4.9, we have the log-returns rt of the S&P500 Index, and the confidence intervals
r̄ ± 1.96σ̂t and r̄ ± 1.96σ̃t using the recursive σ̂t and iterative σ̃t predicted volatilities, where r̄ is
the mean of the log-returns rt. It seems that the recursive method σ̂t adapts more rapidly than the
iterative one σ̃t to changes in the S&P500 Index observations rt. Especially in Figure 4.9, under the
COVID-19 crisis, we encountered a period with a substantial volatility increase. Here, we observe
σ̂t’s ability to track changing volatilities better than σ̃t.

In the absence of the true (unobserved) variance process (σ2t ), the efficiency of our recursive (σ̂t)
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Figure 4.9: Log-returns rt of S&P500 Index (solid lines) and confidence intervals r̄ ± 1.96σ̂t and
r̄ ± 1.96σ̃t (dotted lines) using the recursive σ̂t (blue) and iterative σ̃t (red) predicted volatilities,
where r̄ is the mean of the log-returns rt. From top to bottom, we have Jan. 1950 to Jan. 1952,
Jan. 1985 to Jan. 1987, and Jan. 2019 to Sep. 2020.

and the iterative (σ̃t) volatility can be appraised with the use of the squared log-returns (r2t ). We
use the Mean Absolute Errors (MAE) defined by

σ̂2MAE =
1

n

n∑
t=1

|r2t − σ̂2t | and σ̃2MAE =
1

n

n∑
t=1

|r2t − σ̃2t |. (4.4.24)

In Table 4.2, we consider the MAEs for the same periods used in Figure 4.9, including for the full
dataset. The results in Table 4.2 confirm our conclusions about Figure 4.9; the AdaVol method
tracks the volatility better than the iterative method.

Figure 4.10 contains the results of one hundred QSα scores using the recursive (σ̂t) and iterative
(σ̃t) volatility process, respectively, with random initial values in K. Remarkably, AdaVol out-
performs the iterative method, although the latter uses future information, i.e., (σ̃t)(k−2000)+1≤t≤k
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Period σ̂2MAE σ̃2MAE
Jan. 1950 - Jan. 1952 8.2388 8.9049
Jan. 1985 - Jan. 1987 7.1214 7.4723
Jan. 2018 - Sep. 2020 26.9205 30.4775
Jan. 1950 - Sep. 2020 10.1861 10.6731

Table 4.2: MAEs (4.4.24) using log-returns rt of S&P500 Index with the recursive σ̂t and iterative
σ̃t predicted volatilities. Both methods has initial value given in (4.4.23). The σ̂2MAE and σ̃2MAE
numbers are scaled by 10−5.

is estimated using (rt)1≤t≤k for k = 2000, 4000, . . . , 16000, 17505. This indicates that one could
achieve better performance using the recursive method, even if it only predicts volatility using
previous information.

Figure 4.10: Boxplots of one hundred QSα scores with use of the recursive σ̂t and iterative σ̃t
volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99}, using the GARCH(1, 1) model on the
log-returns rt of S&P500 Index with random initial value in K.

Other Stock Market Indices

We now extend our analysis to the remaining stock market indices from Table 4.1, namely the
CAC, DAX, DJIA, NDAQ, NKY, and RUT index. In Figure 4.11, we can observe AdaVol’s ability
to adapt to time-varying parameters seems to hold for several stock market indices. These figures
show a clear benefit in recursive estimation as it increases adaptivity that may be advantageous
under a financial crisis such as the COVID-19.

These conclusions are confirmed in Figure 4.12, where we have one hundred QSα scores using
the recursive (σ̂t) and iterative (σ̃t) volatility process with random initial values in K. As for the
S&P500 Index (in Figure 4.10), our findings indicate that the recursive approach estimates the QSα
quantiles better than the iterative method, both on average and with a lower spread.

The assumption of having an underlying data generation process with constant "true" param-
eters may not hold in real-life examples. Thus, AdaVol seems to have an advantage compared to
the iterative method, as it estimates the parameters step-by-step. In contrast, the iterative method
always has to estimate the parameters using all observations over an extensive period of time.
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Figure 4.11: Log-returns rt of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (mid-
right), NKY (bottom-left) and RUT (bottom-right) index (solid lines) and confidence intervals
r̄±1.96σ̂t and r̄±1.96σ̃t (dotted lines) using the recursive σ̂t (blue) and iterative σ̃t (red) predicted
volatilities, where r̄ is the mean of the log-returns rt. The period is Jan. 2019 to Sep. 2020.

4.5 Conclusion

We proposed an adaptive approach to recursively estimate GARCH model parameters in a
streaming setting using the VTE technique (AdaVol). AdaVol’s design showed to produce resilient
and adaptive estimates in our empirical investigations. The adaptation to time-varying parameters
was a surprising advantage that appeared when we applied our method to real-life observations.
As the assumption of having constant estimates seems not to be the case for the stock indices we
analyze, then it is beneficial to have the ability to adapt. One could facilitate this ability more by
incorporating a rolling volatility estimation of γ instead of using the sample volatility. Combining
this with a different learning rate than AdaGrad, which enables continuous learning (e.g., ADAM
by [83]), could encourage adaptability.
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Figure 4.12: Boxplots of one hundred QSα scores with the use of the recursive σ̂t and iterative σ̃t
volatility process, respectively, for α = {0.01, 0.02, . . . , 0.99}, using the GARCH(1, 1) model on the
log-returns rt of the CAC (top-left), DAX (top-right), DJIA (mid-left), NDAQ (mid-right), NKY
(bottom-left) and RUT (bottom-right) index with random initial values in K.

4.5.1 Future Perspectives

We proved asymptotic local convexity of the QL function in general conditionally heteroscedastic
time series models of multiplicative form. An interesting question arises: can one prove Theorem
4.2.1 for a bounded set of N observations? Expressed differently, can one find a N bounded, such
that we have convergence/convexity of recursive algorithms, e.g., for the GARCH, EGARCH, and
AGARCH models. To our knowledge, this has not been proved yet.

The stability of using our recursive approach to solve the QML problem could be improved by
using a mini-batch approach. A mini-batch approach will lower each incremental volatility as one
uses more observations per recursion to update the QML estimate. Applying a mini-batch method
does not require much more computational power than the stochastic gradient descent, only O(bd),
where b is the number of observations used in each (mini-batch) recursion. Using more observations,
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we could achieve more consistency and smoothness in the estimation procedure’s convergence while
keeping favorable computational costs.

Furthermore, an accelerated convergence of our estimates could be obtained by recursion av-
eraging, also called Polyak-Ruppert averaging, which is guaranteed under fairly relaxed conditions
([118, 129]). This Polyak-Ruppert average estimate could be utilized solely or employed as a bench-
mark to detect structural breaks.

Finally, it could be interesting to extend all of these concepts around our work with Adavol to
the multivariate case [91, 114].

4.6 Proofs

Proof of Theorem 4.2.1. To prove local strong convexity for the approximate QL function L̂n us-
ing the approximate QMLE θ̂∗n, we first list some bounds for the Hessians: under the regularity
conditions on the derivatives of ht, then using (4.2.5), we can write

∇θlt(θ) =
1

2

∇θht(θ)

ht(θ)

(
1− X2

t

ht(θ)

)
and

∇2
θlt(θ) =

1

2h2t (θ)

(
∇θht(θ)

T∇θht(θ)

(
2X2

t

ht(θ)
− 1

)
+∇2

θht(θ)
(
ht(θ)−X2

t

))
,

where the Hessian Hn(θ) is defined as n−1∇2
θLn (θ) = n−1

∑n
t=1∇2

θlt(θ). Similarly, for ∇θ l̂t(θ),
∇2

θ l̂t(θ), and Ĥn(θ), we replace ht(θ),∇θht(θ) and ∇2
θht(θ) by ĥt(θ),∇θĥt(θ) and ∇2

θĥt(θ), respec-
tively. From Assumption 4.2.2, we know n−1∥∇2

θL̂n −∇2
θLn∥K

a.s.−→ 0 for n→∞. Hence, for some
random N1 large enough, there exists ϵ > 0 such that n−1∥∇2

θL̂n −∇2
θLn∥K < ϵ for all n ≥ N1 a.s.

As a consequence, we get

∥Ĥn −Hn∥K < ϵ, a.s., (4.6.25)

for all n ≥ N1. Similarly, applying the ergodic theorem on the integrable sequence (uniformly overK)
(∇2

θlt) of continuous functions over the compact set K, we obtain ∥n−1
∑n

t=1∇2
θlt−E[∇2

θl0]∥K
a.s.−→ 0

for n→∞. Then there exists N2 such that

∥Hn −H0∥K < ϵ, a.s., (4.6.26)

for all n ≥ N2. Thus, by equation (4.6.25) and (4.6.26), we know there exists N = max(N1, N2)

such that for all n ≥ N , we have

∥Ĥn −H0∥K ≤ ∥Ĥn −Hn∥K + ∥Hn −H0∥K < 2ϵ, a.s.
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Especially, as ∥Ĥn −H0∥K is defined as supθ∈K∥Ĥn(θ)−H0(θ)∥op, then

∥Ĥn(θ)−H0(θ)∥op < 2ϵ, (4.6.27)

for all θ ∈ K.
From [138, Lemma 7.2], the asymptotic Hessian H0(θ0) = E[∇2

θl0(θ0)] is a symmetric positive
definite matrix a.s. under Assumption 4.2.3. As H0(θ) is the limit of the continuous matrix-valued
function Hn(θ), it is itself a continuous matrix-valued function. Thus, the eigenvalue function λi0(θ)
for 1 ≤ i ≤ d of H0(θ) is also continuous. The eigenvalues λi0(θ0) are positive real numbers with the
smallest one λmin

0 (θ0) denoted by

λmin
0 (θ0) = min

1≤i≤d
λi0(θ0) > 0,

satisfying gTH0(θ0)g ≥ λmin
0 (θ0)g

T g for all g ∈ Rd \ {0}.
To shorten the notation, we write with no ambiguity H0(θ0) ⪰ λmin

0 (θ0)Id where Id denotes the
d-dimensional identity matrix. By continuity, λmin

0 (θ) is positive on a neighborhood B(θ0, δ) such
there exist ϵ > 0 satisfying λmin

0 (θ0)− ϵ > 0, meaning

H0(θ) ⪰ (λmin
0 (θ0)− ϵ)Id,

for θ ∈ B(θ0, δ). Hence, for θ ∈ B(θ0, δ) and g ∈ Rd \ {0}, we have

gT Ĥn(θ)

gT g
=
gTH0(θ)g

gT g
+
gT
(
Ĥn(θ)−H0(θ)

)
g

gT g

≥ λmin − ϵ−
gT ∥Ĥn(θ)−H0(θ)∥opg

gT g

> λmin − 3ϵ

> C, a.s.,

using (4.6.27) for all n ≥ N by taking 0 < ϵ < 6−1λmin and letting C = 2−1λmin. Then we have the
desired inequality (4.2.7).

Proof of Corollary 4.2.1. The uniqueness of the QMLE θ̂∗n follows from a Pfanzagl argument ([116]).
By Theorem 4.2.1, we know there exists N such that

inf
θ∈B(θ0,δ0)

gT Ĥn(θ)g > CgT g, a.s.,

for all n ≥ N where B(θ0, δ0) denotes the open ball around θ0 with radius δ0 > 0. For each element
θi ∈ K, we make an open ball B(θi, δi) for δi > 0 such that the union of B(θi, δi) for all i only
contains θ0 once, i.e., θ0 /∈ B(θi, δi) for i ̸= 0. As K is compact and contained in the union of all
B(θi, δi), then there is a finite covering of K, i.e., K ⊆

⋃k
i=0B(θi, δi). Let K′ = K \B(θ0, δ0). As K′
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is compact, the minimum of the continuous QL function E[l0] exists. Moreover, as E[l0] is a unique
minimum at θ0 under Assumption 4.2.1, we get

inf
θ∈K′

E[l0(θ)] > E[l0(θ0)], a.s.

From Assumption 4.2.2, we know that ∥n−1L̂n − L0∥K′
a.s.−→ 0 as n→∞. Hence, we have

inf
θ∈K′

n−1L̂n(θ)
a.s.−→ inf

θ∈K′
L0(θ),

where infθ∈K′ L0(θ) > E[l0(θ0)]. Thus, the B(θ0, δ0) gives us a unique global minimum of the QL
function L̂n, i.e.,

inf
θ∈K

n−1L̂n(θ) ≥ E[l0(θ0)], a.s.,

where equality only is attained when θ = θ0.

4.7 Relative Speed Comparison

It is argued that the recursive procedure AdaVol is computationally advantageous as it only
processes observations once. In order to illustrate this advantage, a relative computational speed
comparison as in [139] is presented. The code is not optimized; it is solely for illustration purposes.
In the streaming data framework, the parameters are estimated recursively as described in Section
4.4. Meaning, for each t, the iterative estimate θ̃t is estimated using the observations (Xi)1≤i≤t and
the previous iterative estimate θ̃t−1 as initialization.

An ARCH(1), GARCH(1, 1), and GARCH(2, 2) model is considered for the computational speed
analysis. Table 4.3 shows the relative speed comparison for these models with sample sizes n = 1000

and n = 2000. The overall conclusion is that the AdaVol procedure is faster than the iterative one,
e.g., the iterative estimation of a GARCH(1, 1) model is about 205 times slower. Another important
observation is the relative speed for different sample sizes n, namely, the larger the sample size n,
the greater the relative speed gain is for the AdaVol procedure.

Model n AdaVol arch
ARCH(1) 1000 1.00 163.64

2000 1.00 190.12
GARCH(1, 1) 1000 1.00 204.89

2000 1.00 233.86
GARCH(2, 2) 1000 1.00 322.33

2000 1.00 328.50

Table 4.3: Relative speed comparison between AdaVol ([149]) and arch version 4.15 ([134]). A
value of 1.00 means the method is the fastest. A value of 163.64 means the estimation time of the
method is 163.64 times larger than the fastest.
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Conclusion and Future Perspectives

The central theme of this thesis was to learn from time-dependent streaming data. We examined
the robustness and convergence guarantees of SG-based methods under different settings, covering
many applications with dependence and biased gradients. Our analysis explored convergence rates
of the stochastic streaming algorithms in a non-asymptotic manner. The theoretical results formed
heuristics that links the level of dependency and convexity to the rest of the model parameters.
These heuristics provided new insights into determining optimal learning rates, which can help
increase the stability of SG-based methods. Roughly speaking, SG-based methods brooked short-
term and even long-term dependence by using non-decreasing batch sizes, which counteracted the
dependency structures. In particular, we showed that mini-batch is essential to break dependence
and ensure convexity. In addition, we can accelerate convergence by simultaneously averaging. Our
experimentation verified these investigations suggesting large streaming batches with slow decay-
ing learning rates for highly dependent data sources. Moreover, in large-scale learning problems
with dependence, noisy variables, and lack of convexity, we know how to achieve (and accelerate)
convergence and reduce noise through the learning rate and the treatment pattern of the data.

Future perspectives. There are several ways to expand our work about stochastic algorithms:
(a) we can extend our analysis to include streaming batches of any size (and not as a function of
streaming batch size Cρ and streaming rates ρ). (b) an extension to non-strongly convex objectives
could be advantageous as it will provide more insight into how we should choose our learning rates
[9, 50, 99, 101]. (c) learning rates should be made adaptive so they are robust to poor initialization
and require less tuning; an adaptive learning rate is essential for practitioners as it builds a form
of universality across applications, e.g., see [42, 83]. (d) non-parametric analysis could improve our
theoretical results for large values of d. (e) we have focused on results in quadratic mean but another
way to strengthen our non-asymptotic guarantees could be high probability bounds [44]; for any
δ ∈ (0, 1), we could obtain bounds on the sequence {∥θt − θ∗∥ : t ∈ N} that holds with probability
at least 1 − δ. (f) concerning AdaVol, we need to prove that Adavol works in theory, both under
stationarity and non-stationarity, which should also include the proof of Polyak-Ruppert averaging
(under stationarity). (g) at last, it could be interesting to generalize our work to other time series
models but especially to the multivariate case [91, 114].
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Appendix A: Predicting Risk-adjusted Returns using an Asset Independent
Regime-switching Model

Abstract

Financial markets tend to switch between various market regimes over
time, making stationarity-based models unsustainable. We construct
a regime-switching model independent of asset classes for risk-adjusted
return predictions based on hidden Markov models. This framework
can distinguish between market regimes in a wide range of financial
markets such as the commodity, currency, stock, and fixed income
market. The proposed method employs sticky features that directly
affect the regime stickiness and thereby changing turnover levels. An
investigation of our metric for risk-adjusted return predictions is con-
ducted by analyzing daily financial market changes for almost twenty
years. Empirical demonstrations of out-of-sample observations obtain
an accurate detection of bull, bear, and high volatility periods, improv-
ing risk-adjusted returns while keeping a preferable turnover level.

keywords: hidden Markov model, financial time series, non-
stationary, regime-switching, prediction markets, trading strategies
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A.1 Introduction

Financial markets are known to shift between economic cycles; some of the most well-known
regimes are the bull, bear, and high-volatility markets. Each of these market regimes may have
financial characteristics unique to this particular regime. One of the most common methods of
financial market analysis is time series analysis. Time series models are used to predict future prices,
price changes, and volatilities in a wide range of financial markets. Some of the most famous models
are the AutoRegressive Integrated Moving Average (ARIMA) models. However, analyzing financial
time series through these traditional time series methods may result in misleading resolutions as
they cannot embrace the nonlinear characteristics of financial time series, e.g., the stationarity
assumption often seems dubious in practice. Therefore, non-stationary-based time series models
are more suitable for financial time series. One could comprehend this by modifying these time
series models by incorporating a time-dependent variable to adjust for the non-stationarity, e.g.,
the threshold autoregressive time series model.

Another way to capture financial markets’ tendency to switch between regimes is the Hidden
Markov Model (HMM), as it "only" assumes local or state-conditioned stationarity. Modeling times
series data using HMMs became mainstream after [11] and [120] applied it across many areas (e.g.,
speech recognition, medical applications, and text classification). The idea of making a Markov-
switching approach to analyze financial time series became popular after [65] applied this approach
to identify economic cycles of GNP levels. More recently, the HMM has been used to predict market
regimes in the financial markets due to their ability to capture multiple characteristics from financial
return series such as time-varying correlations, fat tails, volatility clustering, skewness, and kurtosis,
while also providing reasonable approximations even for processes in which the underlying model is
unknown ([8, 111, 112]). Besides, HMMs are advantageous as they allow ample interpretability of the
results; thinking in market regimes is a natural approach for financial practitioners. Nevertheless,
the lack of data availability makes the linking between investment purposes and business cycles a
complex and challenging task. As the market regimes are not observable, one has to extract them
from the time series. However, this extraction is not unambiguous, as some specific regimes may
be up for discussion in the financial practitioner’s community, e.g., high and low volatility regimes
depend on the given risk-aversion. Consequently, we demand a model to apprehend the various
economic sentiments of the financial markets.

Many researchers have applied HMMs to analyze and predict economic (non-linear) trends and
future financial asset prices. [85] studied an HMM with two states to predict regimes in market
turbulence, inflation, and economic growth index. [69] and [109] used the HMM to forecast prices in
the stock market. A combination of open, close, low, and high prices was used in [63] for stock price
prediction. All of the above references use four hidden states in their study on the stock market.
[61] and [46] used a four-state and two-state HMM, respectively, in their studies of asset allocation
decisions using various time series. As suggested by [62], a range between two and four hidden
states in the HMM is often encountered in financial studies. However, studies of applying HMMs
to predict trends across a broad range of assets are sparse.



In this study, we focus on predicting risk-adjusted returns using a single regime-switching model.
Using only one HMM to analyze a wide range of assets, we enforce generalizations in the model.
This framework is made with so-called "sticky" features that naturally enhance regime stickiness
by an adjustable hyperparameter. Finally, we demonstrate our methodology on a broad range of
asset classes by analyzing daily financial market changes for almost twenty years. The investigation
illustrates our metric ability to predict risk-adjusted returns for different regime stickiness choices.
Our experiments are conducted using out-of-sample observations, showing an accurate detection of
bull, bear, and high volatility periods, improving risk-adjusted returns while keeping a preferable
turnover level.

A.2 Hidden Markov Models (HMMs)

There is much literature about HMMs, but to have the necessary notions, we briefly sketch the
elements of the HMM, how to estimate the parameters, and select the number of hidden states in
the HMMs. For a comprehensive introduction of the inference of HMMs, we refer to [158] and [98].

A.2.1 Elements of HMM

The HMM is a probabilistic model in which a sequence of observations x = (x1, . . . , xn) with
xt ∈ Rd for t = 1, . . . , n is generated by a latent finite-state Markov chain z = (z1, . . . , zn). Denote by
d the dimension of the observations. We call z the sequence of hidden states where zt ∈ {1, . . . , S}
for t = 1, . . . , n with S the number of hidden states. The HMM can be specified by the initial
probability vector π = {πi}i=1,...S ∈ RS , a transition probability matrix A = {Aij}i,j=1,...,S ∈ RS×S

and the emission probabilities B which can be any distribution conditioned on the current hidden
state. The parameters of the HMM are given by Λ = {π,A,B} and have to be estimated from the
observed sequence x. Note that πi = P(z1 = i) is the probability for being in hidden state i at time
t = 1 where

∑S
i=1 πi = 1, Aij = P(zt = j|zt−1 = i) is the transition probability of moving from

hidden state i at time t− 1 to hidden state j at time t with
∑S

j=1Aij = 1, and B is the parameters
of the conditional densities p(xt|zt = j).

When working with financial time series, a typical choice of emission probabilities is the Gaus-
sian Mixture Model (GMM). However, other density functions could likewise be considered. A
gentle introduction of HMMs with GMM emissions is made in [17]. The authors of [8] and [111]
show evidence on the HMMs ability to comprehend several stylized facts, such as leptokurtosis,
heteroskedasticity, skewness, and time-varying correlations, by use of the GMM as emission prob-
ability. For simplicity, we assume the distribution of emission probabilities B to be Gaussian;
B = p(xt|zt = j,Λ) = N (xt|µj ,Σj) where µ = {µj}j=1,...,S is the mean vectors and Σ = {Σj}j=1,...,S

the co-variance matrices with µj ∈ Rd and Σj ∈ Rd×d for j = 1, . . . , S. Thus, the model parameters
of our HMM is given as Λ = {π,A,µ,Σ}.



A.2.2 Parameter Estimation

There are three fundamental problems in estimating the HMM:

• Given the observations sequence x = (x1, . . . , xn) and HMM parameters Λ = {π,A,µ,Σ},
how can we estimate P(x|Λ) the likelihood of the given observation sequence.

• Given the observations sequence x = (x1, . . . , xn) and model parameters Λ = {π,A,µ,Σ},
how can we choose a sequence of hidden states z = (z1, . . . , zn), which is optimal.

• How do we adjust the HMM parameters Λ = {π,A,µ,Σ} to maximize P(x|Λ).

There are several approaches to solve these problems since there are several possible optimal criteria.
We choose to solve the first and the second problem by the dynamic programming algorithms known
as the forward-backward algorithm proposed by [10] and [12], and the Viterbi algorithm ([146]). The
third problem is solved by the iterative Baum-Welch (BW) algorithm, a type of the Expectation-
Maximization (EM) algorithm ([120]).

The BW algorithm alternates between an expectation step and a maximization step until con-
vergence is reached, often abbreviated as the E-step and M-step. In the E-step, we calculate the
expected log-likelihood of the hidden state given the observation sequence x and model parame-
ters Λ. Next, in the M-step we maximize the expected log-likelihood from the E-step to update
our model parameters Λ. We denote by Q(Λ, Λ̄) the function of the expectation of the complete
log-likelihood given as

Q(Λ, Λ̄) = E[logP(x, z|Λ)|x, Λ̄], (A.2.1)

where the current model is Λ and the previous model as Λ̄.
It can be proven that P(x|Λ) ≥ P(x|Λ̄), but it is essential to remember that the BW algorithm

does not guarantee a global solution. As suggested in [2] and [46], we modify the Q(Λ, Λ̄) function
with the priors of the model parameters G(Λ), namely

Q(Λ, Λ̄) + log(G(Λ)), (A.2.2)

which is called Maximum a Posteriori (MAP) estimation ([51]). Thus, in the E-step, we calculate
the Q(Λ, Λ̄) function from (A.2.1), and for the M-step, we maximize (A.2.2).

A.2.3 Prediction

The prediction of the hidden states sequence (z1, . . . , zn) is estimated using the observation se-
quence (x1, . . . , xn) as described in Section A.2.2. We denote by αn|n the vector of state probabilities
at time n (given the sequence of observations x = (x1, . . . , xn)) with the jth entry (αn|n)j = P(zn =

j|x) for j = 1, . . . , S. Thus, one can forecast the state probability h ≥ 0 steps ahead by

αn+h|n = αn|nA
h, (A.2.3)



as the model parameters A are assumed to be constant over time.

A.2.4 Model Selection

A drawback of using the HMM is the necessity of knowing the number of hidden states in advance
(such as the hyper-parameter k in the k-nearest neighbor algorithm and k-means clustering). There
are several criteria used for this model selection: the lazy approach is to use statistical criteria such
as the Akaike’s Information Criterion (AIC) by [5], Bayesian Information Criterion (BIC) by [131],
Hannan-Quinn Information Criterion (HQIC) by [67], and Bozdogan Consistent Akaike Information
Criterion (BCAIC) by [28]. These criteria are defined as follows:

AIC = −2 log(L) + 2p,

BIC = −2 log(L) + p log(n),

HQIC = −2 log(L) + p log(log(n)),

BCAIC = −2 log(L) + p(log(n) + 1),

where log(L) is the log-likelihood of the model, n indicates the number of observations in the time
series, and p denotes the number of independent parameters of the model. In the case of an HMM
with GMM emissions, we have p = S(S+cm), where S is the number of hidden states in the Markov
chain of the model, m is the number of Gaussian mixtures, and c is the number of parameters of the
underlying distribution of the observation process. Note that a d-dimensional multivariate Gaussian
with full covariance matrix process has c = d+ d(d+ 1)/2 parameters to estimate. Thus, an HMM
with three hidden states (S = 3), a single 2-dimensional Gaussian process in each hidden state, has
a total of 24 parameters.

Suppose one were to see the number of hidden states as the number of strategies we have to
make to produce proper predictions. Then the number should be neither too small nor too large. If
the number of hidden states is too small, then the risk of misclassification will increase. Too many
hidden states will make the distinction between each hidden state vague and, therefore, increase
the risk for overfitting and increase the computational cost. A similar observation can be made
regarding the number of Gaussian mixture components.

However, if one wishes to maintain a high degree of interpretability of the hidden states in the
model, we should keep the number of hidden states low. Another approach is the greedy approach,
where we decide the number of hidden states in the HMM by constructing different portfolios based
on HMMs with different numbers of hidden states and then select the number of hidden states
associated with the portfolios of the best performance, e.g., evaluated by the Sharpe Ratio (SR).
One should be aware that we may find different optimal numbers of states for each asset using these
criteria.



A.3 Data

Our objective is to identify market regimes on various asset classes, namely commodity (CO),
currency (FX), equity (EQ), and fixed income (FI). We consider d = 15 instruments defined as I =

(I1, . . . , I15)
T , consisting of four different instruments per asset type, except for commodities where

we have only three instruments. All instruments I are future contracts generated automatically
by selecting the nearest contract. The data analyzed are closing returns of daily frequency from
January 2000 to October 2019, consisting of n = 4972 observations (per instrument).

Table A.1 presents an overview of the performance of each asset. This confirms a high degree
of variation of the considered asset; commodities and equities are the most volatile asset classes,
whereas fixed income volatility is several times lower. Currencies appear to be in the middle of
the levels we observe for equities and fixed income. Fixed income seems to be the most coherent
asset class, whereas we find some large variations in returns, volatility, and maximum drawdown in
commodities.

# Instr. Ret. Vol. SR DD
1 CO1 6.36% 17.23% 0.45 16.81%
2 CO2 −20.19% 50.4% −0.2 37.71%
3 CO3 5.46% 36.12% 0.33 24.13%

4 FX1 −0.83% 9.17% −0.04 10.83%
5 FX2 −0.02% 9.58% 0.05 5.83%
6 FX3 −1.82% 9.79% −0.14 8.29%
7 FX4 −0.98% 7.96% −0.08 4.98%

8 EQ1 1.1% 23.34% 0.16 18.39%
9 EQ2 2.64% 18.1% 0.24 15.79%
10 EQ3 1.08% 24.61% 0.17 27.98%
11 EQ4 4.14% 18.67% 0.31 21.02%

12 FI1 3.73% 5.91% 0.66 5.02%
13 FI2 4.22% 5.24% 0.82 3.49%
14 FI3 3.65% 5.88% 0.65 4.19%
15 FI4 2.35% 3.05% 0.79 2.87%

Table A.1: Performance overview (annualized return, annualized volatility, Sharpe ratio, and maxi-
mum drawdown) of our instruments I evaluated from January 2000 to October 2019. Note I ∈ Rn×d

with n = 4972 and d = 15.

To further emphasize our instruments’ diversity, we show the range (minimum; maximum) of
the one-year rolling mean, standard deviation, skewness, and (excess) kurtosis in Table A.2. The
instruments I show a considerable amount of variability, both within and across instrument types,
with commodities showing the most variation and fixed income showing the least fluctuation. In
particular, it is not abnormal that skewness exceeds one (in absolute terms), nor kurtosis is negative
(platykurtic) or very positive (leptokurtic), e.g., CO2 have a kurtosis above thirty-five.



# Instr. Mean Std. Skew. Kurt.
1 CO1 (-3.26;3.93) (5.09;23.69) (-3.63;2.20) (-0.42;19.33)
2 CO2 (-8.94;12.6) (14.01;58.96) (-1.01;4.15) (-0.64;35.64)
3 CO3 (-13.48;5.33) (8.61;56.73) (-2.54;1.79) (-0.69;11.50)
4 FX1 (-3.12;1.6) (2.7;13.02) (-4.18;0.97) (-0.66;25.85)
5 FX2 (-2.37;1.57) (2.35;12.07) (-1.36;1.10) (-0.61;6.59)
6 FX3 (-1.89;2.12) (2.67;11.58) (-2.29;2.65) (-0.36;13.96)
7 FX4 (-1.35;1.92) (2.07;9.87) (-0.88;1.30) (-0.70;4.62)
8 EQ1 (-5.55;2.61) (5.84;35.71) (-2.01;1.90) (-0.42;13.29)
9 EQ2 (-5.03;2.41) (4.66;32.84) (-1.41;1.21) (-0.56;5.26)
10 EQ3 (-8.62;4.55) (6.47;49.24) (-2.61;1.25) (-0.80;13.03)
11 EQ4 (-5.77;2.16) (3.64;39.59) (-4.05;1.49) (-0.43;22.06)
12 FI1 (-0.86;1.8) (1.66;8.11) (-1.40;1.39) (-0.75;6.52)
13 FI2 (-0.62;1.34) (1.97;6.25) (-1.32;0.70) (-0.77;3.83)
14 FI3 (-0.81;1.4) (1.94;7.3) (-0.90;1.60) (-0.70;6.92)
15 FI4 (-0.74;0.58) (0.48;4.49) (-4.34;2.24) (-0.49;26.33)

Table A.2: Range (min;max) of one-year rolling mean, standard deviation, skewness and (excess)
kurtosis of instruments I. Rolling mean and standard deviation are scaled by 103.

A.4 Feature Engineering

A.4.1 Exponential Weighted Moving Moments

When the underlying parameters are believed to follow a random walk, it is natural to use
exponential forgetting. One of the most popular methods for calculating moments is the Exponential
Weighted Moving Moment (EWMM) method, which is applied extensively in many different fields
due to its computational efficiency. This EWMM method is often used to reduce noisy time-series
data, also called "smoothing" the data. We can define the EWMMi

t of order i ∈ N at time t by

EWMMi
t = λMi

t + (1− λ)EWMMi
t−1,

where λ = 2
s+1 with s ∈ N defined as the span. For daily data, letting our span s = 5 would

correspond to a half-life of 5 days. The choice of s can be seen as a smoothing factor where high
(low) values of s would mean a high (low) degree of smoothing our time series. Using this method to
calculate the well-known exponential weighted moving average of observations (x1, . . . , xn) is done
by letting M1

t = xt for t = 1, . . . , n. Furthermore, setting s = 2t− 1 would give us the usual average
estimate. Hence, there is a trade-off between the sensitivity to noise and its ability to adapt to
parameter changes.

A.4.2 Feature Extraction

Our interest is to predict risk-adjusted returns, where we incorporate an adjustable hyperpa-
rameter that changes the stickiness of the regimes. We extract the features of our instruments I



according to the description of EWMMs in Section A.4.1. Denote our features for the first and sec-
ond moment by (f is)i=1,2 = (EWMMi

t)i=1,2, where s denotes the feature span. All features (f is)i=1,2

are normalized to zero mean and unit variance using a z-score normalization fitted on the training
data. After normalization, we concatenate our features depending on the moment’s order into one
feature before passing it onto our HMM. Thus, our complete features space is fs = (f1s , f

2
s ).

The span s in our features fs will work as a smoothing factor and determine the frequency of
regime shifts, namely the regime stickiness. The larger we make our smoothing factor s, the slower
our features fs would change, making our hidden states more sticky, i.e., large diagonal values in
the transition matrix A (See Section A.2.1). Thus, portfolio turnover will decrease.

There are different approaches in the literature on how to deal with this increased noise of
hidden state prediction; the authors of [63] use the notion of latency days, in which they forecast
the hidden states at time n + 1 using only the ten previous days of observations. Others detect a
regime change by considering the number of consecutive days in the same new hidden state, given
a rolling window of days (which one has to estimate/select). Intuitively, smaller window sizes will
lead to a larger number of regime changes, whereas large window sizes will increase regimes’ length.
Putting into an economic scenario, one would like to find a window size according to the preferences
for turnover adjusted for transaction costs.

A.4.3 Prediction of Expected SR

The unsupervised classification computed by the HMM using our features fs = (f1s , f
2
s ) results

in some mean and variance estimates of every feature in each hidden state S. We aim to combine
these resulting mean and variance estimates into a self-explanatory financial metric that reflects the
underlying risk-adjusted returns.

Before defining the risk-adjusted return metric we need to introduce the following notions: let
µ = {µj}j=1,...,S denote the mean vectors and Σ = {Σj}j=1,...,S the co-variance matrices with
µj = (µj(f

1
s ), µj(f

2
s ))

T ∈ R2 and Σj = Σj(f
1
s , f

2
s ) ∈ R2×2 for j = 1, . . . , S. Thus, by dividing our

mean estimate of our first moment by the mean estimate of the second moment at each hidden state,
we have an Expected SR (ESR) in each hidden state called ESRj

s. Meaning, for each hidden state j ∈
{1, . . . , S}, then ESRj

s = µj(f
1
s )/µj(f

2
s ) ∈ R. We denote by ESRS

s the vector (ESR1
s, . . . ,ESRS

s )
T ∈

RS , where S is the number of hidden states in the HMM and s the span used to calculate our
features.

We can use our ESRS
s metric to predict an expected SR h ≥ 0 steps ahead by combining this

with the estimated vector of state probabilities α and the transition matrix A. Recall from (A.2.3)
that αn+h|n = αn|nA

h, where αn|n is the vector of state probabilities at time n and A the transition
matrix (given the sequence of observations (x1, . . . , xn)) with the jth entry (αn|n)j = P(zn = j|x)
for j = 1, . . . , S. Hence, we can define the predicted ESR (PESR) metric by the product of

PESRS
s (h) = (ESRS

s )
Tαn+h|n, (A.4.4)



where h ≥ 0 and PESRS
s (h) ∈ R. This PESRS

s (h) number tells us what SR to expect h ≥ 0 times
ahead.

Summarizing, ESRS
s is a vector containing an expected SR of each hidden state of our HMM.

Thus, by incorporation the transition estimates, we obtain PESRS
s (h) as a metric for predicting

expected risk-adjusted returns h ≥ 0 steps ahead given the HMM with S hidden states. Both
metrics are fitted on the features using span s, extracted from the past observations (x1, . . . , xn).
One may note that more elaborating functions could be made by including higher order of moments,
incorporating the downside risk of returns. Extracting features using closing and opening prices,
high and low prices, and volume may also be of interest, as long as the features are not linearly
correlated.

A.5 Experiments

In our experiments, we divide the data set into three parts: training (up to the year 2012 ≈
twelve years), validation (the year 2012 to 2016 ≈ four years), and test set (from the year 2016 ≈
four years).

We train our HMM using the features fs = (f1s , f
2
s ) extracted from our training data. Then we

validate the (out-of-sample) performance by evaluating our model on the validation data. Selecting
training data with suitable variability will help us improve the models’ ability to generalize. Thus,
we identify the desired pattern(s) in our training data, which explains our validation data’s behavior
the best. To avoid getting stuck in a local maximum, we select the HMM with the highest score
over many trained models, where each model is randomly initialized.

Our goal is to enhance the risk-adjusted returns with the use of our proposed PESR metric
PESRS

s (h) from (A.4.4). We choose the number of hidden states relatively low to have high in-
terpretability of each hidden state in our HMM. Thus, our choice is an HMM with three hidden
states (S = 3), where the hidden states can be labeled as a bull, bear, and high volatility regime.
Our labeling comes from the fact that our estimated ESR metric outputs a positive, negative, and
(close to) zero value, which can be labeled into a bull, bear, and high volatility regime. Our high
volatility regimes have an estimated ESR metric close to zero as the estimated volatility dominates,
i.e., µj(f2s ) is sufficiently larger than µj(f1s ) and µj(f1s ) is close to zero.

We model the outcomes/predictions of the PESR metric PESRS
s (h) into the two different holding

strategies; a long-only strategy and long/short strategy. We will not restrict the turnover level, but
we incorporate a transaction cost of 5bps for buying and selling. Lastly, as we are disallowing
gearing, we cap our holdings onto the range [0, 1] for the long-only strategy and [−1, 1] for the
long/short strategy. If we were to increase the number of hidden states (and/or adding other
features) in our HMM, then the PESR metric’s outcomes may be transformed into a more advanced
holding strategy.

From our training and validation data, we observe that spans s ∈ {15, 30, 60} seems preferable
to have some different levels of transitions within the four years of testing. Thus, we will in the next
section consider span s ∈ {15, 30, 60}. This range of spans s would also illustrate how the choice of



span affects our method’s regime stickiness. Recall that the choice of span s will directly affect the
turnover, meaning a lower span s may increase (absolute) performance and lower regime stickiness,
i.e., increase the level of turnover.

All results in the following section are made using the (out-of-sample) test period from January
2016 to October 2019. Before we move to the results of our experiments, then we may need an
overview of the instrument’s performance metrics to compare with the outcome of our strategies.
In Table A.3, we have the annualized returns, annualized volatilities, Sharpe ratios, and maximum
drawdowns of each instrument in I = (I1, . . . , I15)

T . As we earlier discussed in Section A.3, each
instrument’s performance metrics vary a lot, but also within each asset class, we have large vari-
ations. However, most annualized returns are positive (with only a few exceptions) but achieved
under different volatility levels.

# Instr. Ret. Vol. SR DD
1 CO1 7.54% 12.02% 0.67 7.66%
2 CO2 −12.94% 39.25% −0.16 20.0%
3 CO3 10.22% 33.09% 0.46 17.44%

4 FX1 −6.01% 9.52% −0.6 9.93%
5 FX2 −1.68% 6.84% −0.21 3.78%
6 FX3 1.65% 8.57% 0.23 5.56%
7 FX4 0.29% 5.9% 0.08 3.39%

8 EQ1 6.44% 15.35% 0.49 11.8%
9 EQ2 7.51% 12.85% 0.64 6.15%
10 EQ3 5.43% 20.56% 0.36 14.16%
11 EQ4 11.23% 11.35% 1.0 7.82%

12 FI1 0.92% 3.78% 0.27 2.31%
13 FI2 4.23% 4.19% 1.02 2.1%
14 FI3 4.91% 5.35% 0.94 3.23%
15 FI4 1.59% 1.71% 0.96 1.39%

Table A.3: Realized performance metrics; annualized returns, annualized volatility, Sharpe ratios,
and maximum drawdowns of instruments I in the test period from January 2016 to October 2019.

A.5.1 Results

The results of our long-only strategy based on the outcomes of PESR3
s(1)s∈{15,30,60} are pre-

sented in Table A.4. Table A.4 confirms our claim that lower (higher) levels of span s delivers a
higher (lower) level of turnover. However, different choices of span s affect the performance metrics
individually due to both the "true" length of market regimes and the transaction costs. If we con-
sider span s = 30, then what first comes to mind is that all (annualized) returns are positive with
slightly lower (annualized) volatility leading to an improved SR, now above one for all assets (except
from FX1, which have a SR of 0.86). Furthermore, CO1, EQ4, and FI1, now have a SR above two.
The daily turnover range from 1.64% to 4.08%, giving an investment horizon of approximately 25

to over 60 days. Thus, one would have a monthly re-balancing scheme for this long-only strategy.



The overall results presented in Table A.4 show a convincing improvement of SR with a feasible
turnover rate (which can be changed after preferences through the selection of span s). Neverthe-
less, we cannot guarantee that the cumulative return will be improved using our PESR metric, as
the aim is to improve risk-adjusted returns. FI4 is an example of this as we see an improved SR
but not a cumulative return. In such cases, additional span sizes should be included to embrace
these assets. Several factors affect the investment strategy, but the choice of span s has a significant
influence since it operates as a smoothing factor and determines the regime shifts’ frequency (i.e.,
the regime stickiness). Thus, assets with low volatility may not require much smoothing, suggesting
that we should use higher levels of span s. In addition, transaction costs play a significant role as
the absolute returns are small.

Long-only PESR3
15(1) PESR3

30(1) PESR3
60(1)

# Instr. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn.
1 CO1 11.65% 7.8% 2.4 6.29% 4.87% 13.21% 8.27% 2.44 6.48% 2.67% 9.61% 8.39% 1.74 6.67% 1.96%
2 CO2 29.74% 24.13% 2.08 17.7% 3.87% 15.56% 25.29% 1.2 17.7% 2.49% 10.57% 26.39% 0.73 17.7% 2.46%
3 CO3 31.57% 20.62% 1.95 10.94% 4.62% 22.08% 18.35% 1.59 12.81% 3.19% 15.55% 17.88% 1.25 12.81% 2.54%

4 FX1 3.48% 5.71% 0.84 4.09% 4.56% 2.98% 4.89% 0.86 3.67% 2.52% 1.65% 4.51% 0.55 3.29% 2.01%
5 FX2 4.63% 4.26% 1.93 3.78% 3.69% 3.75% 3.89% 1.77 2.57% 2.36% 2.95% 3.89% 1.41 2.57% 1.47%
6 FX3 4.33% 5.31% 1.19 3.59% 4.02% 4.66% 5.19% 1.27 4.72% 2.7% 6.73% 5.75% 1.54 4.72% 2.05%
7 FX4 3.37% 3.16% 1.94 2.13% 3.82% 2.89% 3.7% 1.29 2.71% 2.46% 3.44% 4.13% 1.08 2.42% 2.06%

8 EQ1 15.64% 8.56% 2.48 11.32% 4.49% 11.51% 8.92% 1.73 11.32% 3.74% 8.04% 9.84% 1.04 11.32% 2.66%
9 EQ2 13.44% 6.97% 2.55 4.63% 4.91% 8.02% 7.68% 1.36 4.91% 3.77% 9.81% 8.18% 1.54 5.67% 2.24%
10 EQ3 23.22% 11.22% 2.46 7.58% 5.4% 16.85% 11.47% 1.8 7.58% 3.71% 15.42% 12.05% 1.58 9.58% 2.06%
11 EQ4 14.4% 6.35% 3.0 5.17% 4.79% 12.59% 7.17% 2.01 7.72% 3.43% 10.93% 8.28% 1.44 7.72% 2.07%

12 FI1 2.01% 1.91% 2.49 1.65% 2.44% 2.26% 1.97% 2.58 1.69% 1.64% 1.83% 1.99% 1.92 1.82% 1.44%
13 FI2 5.21% 2.74% 2.62 1.53% 4.91% 4.09% 2.85% 1.93 2.07% 4.08% 3.72% 3.01% 1.6 2.07% 2.97%
14 FI3 6.0% 3.97% 1.8 2.18% 4.64% 4.17% 3.71% 1.35 2.22% 3.87% 3.86% 3.73% 1.31 3.1% 3.09%
15 FI4 0.5% 1.04% 1.25 1.39% 1.63% 0.74% 1.01% 1.62 1.12% 1.68% 1.36% 1.21% 1.97 1.39% 1.27%

Table A.4: Realized performance metrics; annualized returns, annualized volatilities, Sharpe ratios,
maximum drawdowns, and daily turnovers of long-only strategies PESR3

s(1)s∈{15,30,60} in the test
period from January 2016 to October 2019.

Next, in Table A.5, we have the results of our long/short strategy; this strategy seems to provide
larger (absolute) returns but with increased volatility, leading to a lower SR than for the long-only
strategy. This means the short leg of our strategies adds some more volatility to the strategy.
Naturally, as we can be short now, this leads to increasing daily turnover, e.g., for span s = 30, the
turnover now ranges from 3.37% to 7.34% giving an investment horizon of approximately 15 to 30

days. As the turnover increase, the same do transaction costs, which for some strategies/assets may
represent a significant part of the overall performance. Particularly, FI4 has a negative SR (and
cumulative return), however, with lower volatility than the asset itself.

Time-series plots of cumulative returns of each instrument I for both HMM strategies (long-only
and long/short) can be found in A.7, including their corresponding holdings. These figures show
that we mostly shift between the bull and bear regime, and only in the high volatility state for some
short periods. Overall, as we seek to increase our risk-adjusted returns, then the long-only strategy
would be preferred. However, if we relaxed our risk-aversion, we could maximize total return using
the long/short strategy.



Long/short PESR3
15(1) PESR3

30(1) PESR3
60(1)

# Instr. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn. Ret. Vol. SR DD Turn.
1 CO1 15.69% 11.53% 1.31 7.76% 9.68% 18.45% 11.62% 1.52 6.66% 5.22% 9.94% 9.27% 1.07 6.67% 3.13%
2 CO2 51.61% 33.75% 1.4 17.7% 7.61% 33.52% 34.48% 1.01 17.7% 4.72% 26.5% 36.1% 0.83 17.7% 4.81%
3 CO3 53.3% 27.25% 1.7 11.4% 9.03% 26.26% 26.62% 1.01 13.88% 6.63% 16.58% 26.12% 0.72 13.11% 5.27%

4 FX1 10.74% 7.25% 1.43 4.09% 8.22% 9.38% 6.96% 1.32 3.67% 5.11% 6.77% 7.13% 0.95 3.93% 3.9%
5 FX2 10.64% 6.64% 1.55 3.78% 7.56% 9.62% 6.52% 1.44 3.31% 4.74% 8.03% 6.54% 1.22 3.31% 2.98%
6 FX3 7.42% 6.89% 1.06 3.98% 7.38% 7.68% 6.64% 1.15 5.02% 4.92% 9.51% 6.9% 1.35 5.02% 4.1%
7 FX4 6.05% 5.68% 1.06 3.74% 7.72% 5.34% 5.7% 0.94 3.32% 5.0% 5.91% 5.71% 1.04 3.32% 4.16%

8 EQ1 27.3% 13.5% 1.87 11.68% 8.66% 13.81% 13.16% 1.06 11.32% 7.18% 10.74% 13.88% 0.81 12.07% 5.02%
9 EQ2 23.33% 11.27% 1.93 6.72% 9.85% 13.14% 11.36% 1.15 6.6% 7.34% 11.61% 11.99% 0.98 6.72% 4.58%
10 EQ3 43.07% 16.19% 2.3 8.15% 10.64% 29.11% 16.81% 1.62 12.54% 6.98% 22.73% 16.86% 1.31 12.15% 4.43%
11 EQ4 18.51% 10.55% 1.66 6.65% 9.16% 15.01% 10.66% 1.36 9.17% 6.51% 10.67% 11.06% 0.97 7.86% 3.96%

12 FI1 3.28% 3.68% 0.9 1.81% 4.74% 3.58% 3.67% 0.99 1.87% 3.37% 2.32% 2.66% 0.87 1.82% 2.46%
13 FI2 6.28% 4.0% 1.52 1.98% 9.92% 4.93% 4.0% 1.21 2.07% 7.48% 3.35% 3.59% 0.93 2.07% 5.07%
14 FI3 6.98% 4.66% 1.47 2.33% 9.13% 4.24% 4.41% 0.97 2.36% 6.92% 3.49% 4.45% 0.8 3.15% 5.31%
15 FI4 −0.57% 1.66% −0.34 1.39% 3.29% −0.2% 1.57% −0.12 1.12% 3.45% 1.22% 1.35% 0.91 1.39% 2.03%

Table A.5: Realized performance metrics; annualized returns, annualized volatilities, Sharpe ratios,
maximum drawdowns, and daily turnovers of long/short strategies PESR3

s(1)s∈{15,30,60} in the test
period from January 2016 to October 2019.

A.6 Discussion

HMMs have previously been applied to finance time series with great success but never on a
broad class of assets, at least not to our knowledge. We proposed an asset independent three-state
HMM for predicting risk-adjusted returns trained using only the first two moments as features.
The model outcome was combined into a metric for predicting expected SRs. Our investigation
showed a proper ability to predict bull, bear, and high-volatility regimes, which lead to enhanced
risk-adjusted returns (compared to buying the underlying asset) while keeping a preferable turnover
level. However, this could be improved by fine-tuning the choice of span s as transaction costs could
otherwise dominate.

As our findings were made using the entire test dataset to predict the hidden state sequence,
our next focus will then be an extension to a setting in which we make incremental predictions of
tomorrow’s expected SR using only past information. As this may increase noise, we could increase
our model’s predictability by introducing time-varying parameters, i.e., an adaptive model where the
model parameters are updated as new observations arrive (e.g., see [47] and [112]). Expanding this
analysis with a larger group of features, e.g., volume, higher-order moments, short-term oscillators,
and associated gradients, could be appealing. All this could be combined with the feature saliency
HMM proposed by [2], which comprises the treatment of "irrelevant" features.

A.7 Cumulative Returns of HMM Strategies

Figure A.1a-A.3c and Figure A.3d-A.5f shows the HMM strategies long-only and long/short,
respectively, based on the outcomes of PESR3

s(1)s∈{15,30,60} for the instruments I.



Figure A.1: Cumulative returns HMM strategies in the test period from January 2016 to October
2019.

(a) I1 (CO1) (b) I2 (CO2)

(c) I3 (CO3) (d) I4 (FX1)

(e) I5 (FX2) (f) I6 (FX3)



Figure A.2: Cumulative returns HMM strategies in the test period from January 2016 to October
2019.

(a) I7 (FX4) (b) I8 (EQ1)

(c) I9 (EQ2) (d) I10 (EQ3)

(e) I11 (EQ4) (f) I12 (FI1)



Figure A.3: Cumulative returns HMM strategies in the test period from January 2016 to October
2019.

(a) I13 (FI2) (b) I14 (FI3)

(c) I15 (FI4) (d) I1 (CO1)

(e) I2 (CO2) (f) I3 (CO3)



Figure A.4: Cumulative returns HMM strategies in the test period from January 2016 to October
2019.

(a) I4 (FX1) (b) I5 (FX2)

(c) I6 (FX3) (d) I7 (FX4)

(e) I8 (EQ1) (f) I9 (EQ2)



Figure A.5: Cumulative returns HMM strategies in the test period from January 2016 to October
2019.

(a) I10 (EQ3) (b) I11 (EQ4)

(c) I12 (FI1) (d) I13 (FI2)

(e) I14 (FI3) (f) I15 (FI4)





Appendix B: Technical Results and Their Proofs

B.1 Outline

This chapter contains purely technical results used in the proofs presented in Chapters 2 and 3
[57, 58]. In what follows, we use the conventions inf ∅ = 0,

∑0
t=1 = 0 and

∏0
t=1 = 1.

Proposition B.1.1. Let (γt)t≥1 be a positive sequence. For any k ≤ t, and ω > 0, we have

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi ≤
1

ω

t∏
j=k

[1 + ωγj ] ≤
1

ω
exp

ω t∑
j=k

γj

 . (B.1.1)

Proof of Proposition B.1.1. We begin with considering the first inequality in (B.1.1), which follows
by expanding the sum of product:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi =
1

ω

t∑
i=k

t∏
j=i+1

[1 + ωγj ]ωγi =
1

ω

t∑
i=k

t∏
j=i+1

[1 + ωγj ] [1 + ωγi − 1]

=
1

ω

t∑
i=k

 t∏
j=i+1

[1 + ωγj ] [1 + ωγi]−
t∏

j=i+1

[1 + ωγj ]


=
1

ω

t∑
i=k

 t∏
j=i

[1 + ωγj ]−
t∏

j=i+1

[1 + ωγj ]

 .
As the (positive) terms cancel out, we end up with the first inequality in (B.1.1):

1

ω

t∑
i=k

 t∏
j=i

[1 + ωγj ]−
t∏

j=i+1

[1 + ωγj ]

 =
1

ω

 t∏
j=k

[1 + ωγj ]−
t∏

j=k+1

[1 + ωγj ] + · · · −
t∏

j=t+1

[1 + ωγj ]


=
1

ω

 t∏
j=k

[1 + ωγj ]−
t∏

j=t+1

[1 + ωγj ]


=
1

ω

 t∏
j=k

[1 + ωγj ]− 1

 ≤ 1

ω

t∏
j=k

[1 + ωγj ] ,

as
∏t

t+1 = 1 for all t ∈ N. Using the (simple) bound of 1 + t ≤ exp(t) for all t ∈ R, we obtain the
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second inequality of (B.1.1):

1

ω

t∏
j=k

[1 + ωγj ] ≤
1

ω

t∏
j=k

exp (ωγj) =
1

ω
exp

ω t∑
j=k

γj

 .

Proposition B.1.2. Let (γt)t≥1 be a positive sequence. Let ω > 0 and k ≤ t such that for all i ≥ k,
ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi ≤
1

ω
. (B.1.2)

Proof of Proposition B.1.2. We start with expanding the sums of products term in (B.1.2), given
us

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi =
1

ω

t∑
i=k

t∏
j=i+1

[1− ωγj ]ωγi = −
1

ω

t∑
i=k

t∏
j=i+1

[1− ωγj ] [−ωγi]

=− 1

ω

t∑
i=k

t∏
j=i+1

[1− ωγj ] [1− ωγi − 1]

=− 1

ω

t∑
i=k

 t∏
j=i+1

[1− ωγj ] [1− ωγi]−
t∏

j=i+1

[1− ωγj ]


=− 1

ω

t∑
i=k

 t∏
j=i

[1− ωγj ]−
t∏

j=i+1

[1− ωγj ]


=
1

ω

t∑
i=k

 t∏
j=i+1

[1− ωγj ]−
t∏

j=i

[1− ωγj ]

 .
As we only have positive terms, we can upper bound the term:

1

ω

t∑
i=k

 t∏
j=i+1

[1− ωγj ]−
t∏

j=i

[1− ωγj ]

 ≤ 1

ω

1− t∏
j=k

[1− ωγj ]

 ≤ 1

ω
,

using
∏t

j=k[1− ωγj ] ≥ 0, showing the inequality in (B.1.2).

Proposition B.1.3. Let (γt)t≥1 and (ηt)t≥1 be positive sequences. For any k ≤ t, we can obtain
the (upper) bounds:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] ηiγi ≤
1

ω
max
k≤i≤t

ηi exp

ω t∑
j=k

γj

 , (B.1.3)



with ω > 0. Furthermore, suppose that for all i ≥ k, ωγi ≤ 1, then

t∑
i=k

t∏
j=i+1

[1− ωγj ] ηi ≤
1

ω
max
k≤i≤t

ηi. (B.1.4)

Proof of Proposition B.1.3. We obtain the inequality in (B.1.3) directly by Proposition B.1.1:

t∑
i=k

t∏
j=i+1

[1 + ωγj ] ηiγi ≤ max
k≤i≤t

ηi

t∑
i=k

t∏
j=i+1

[1 + ωγj ] γi

≤ 1

ω
max
k≤i≤t

ηi

t∏
j=k

[1 + ωγj ]

≤ 1

ω
max
k≤i≤t

ηi exp

ω t∑
j=k

γj

 .

Similarly, for the inequality in (B.1.4), we have

t∑
i=k

t∏
j=i+1

[1− ωγj ] ηiγi ≤ max
k≤i≤t

ηi

t∑
i=k

t∏
j=i+1

[1− ωγj ] γi ≤
1

ω
max
k≤i≤t

ηi,

by Proposition B.1.2.

Proposition B.1.4. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying
the recursive relation:

δt ≤ (1− 2ωγt + ηtγt) δt−1 + νtγt, (B.1.5)

with δ0 ≥ 0 and ω > 0. Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0 + 1, one
has ωγt ≤ 1. Then, for γt and ηt decreasing, we have the upper bound on (δt):

δt ≤ exp

−ω t∑
i=t/2

γi

exp( t0∑
i=1

ηiγi

)(
δ0 + max

1≤i≤t0

νi
ηi

)
+

t/2−1∑
i=t0+1

νiγi

+
1

ω
max

t/2≤i≤t
νi, (B.1.6)

for all t ∈ N with the convention that
∑t/2

t0
= 0 if t/2 < t0.

Proof of Proposition B.1.4. Applying the recursive relation from (B.1.5) t times, we derive:

δt ≤
t∏

i=1

[1− 2ωγi + ηiγi]︸ ︷︷ ︸
Bt

δ0 +

t∑
i=1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At

,

where Bt can be seen as a transient term only depending on the initialisation δ0, and a stationary



term At. The transient term Bt can be divided into two products, before and after t0,

Bt =

t∏
i=1

[1− 2ωγi + ηiγi] =

(
t0∏
i=1

[1− 2ωγi + ηiγi]

)(
t∏

i=t0+1

[1− 2ωγi + ηiγi]

)
.

Using that t0 = inf {t ≥ 1 : ηt ≤ ω}, and since for all t ≥ t0+1, we have 2ωγt−ηtγt ≥ ωγt, it comes

Bt ≤

(
t0∏
i=1

[1− 2ωγi + ηiγi]
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)
≤
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exp (−2ωγi + ηiγi)
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=exp
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≤ exp

(
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)
exp

(
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i=1

ηiγi

)

by applying the (simple) bound 1 + t ≤ exp(t) for all t ∈ R. We derive that

Bt ≤ exp

−ω t∑
i=t/2

γi

 exp

(
t0∑
i=1

ηiγi

)
. (B.1.7)

Next, the stationary term At can (similarly) be divided into two sums (after and before t0):

At =
t∑

i=t0+1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At,1

+

t0∑
i=1

t∏
j=i+1

[1− 2ωγj + ηjγj ] νiγi︸ ︷︷ ︸
At,2

.

The first stationary term At,1 (with t > t0) can be bounded as follows: if t/2 ≤ t0 + 1, we have

At,1 ≤ max
t0+1≤i≤t

νi

t∑
i=t0+1

t∏
j=i+1

[1− ωγj ] γi =
1

ω
max

t0+1≤i≤t
νi ≤

1

ω
max

t/2≤i≤t
νi,

by Proposition B.1.3. Furthermore, if t/2 > t0 + 1, we get

At,1 ≤
t∑

i=t0+1

t∏
j=i+1

[1− ωγj ] νiγi =
t/2−1∑
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=
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j=t/2

[1− ωγj ]
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1
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νi,



where
∏t

j=t/2[1− ωγj ] ≤ exp(−ω
∑t

j=t/2 γj) as 1 + t ≤ exp(t) for all t ∈ R. Thus, for all t ∈ R,

At,1 ≤ exp

−ω t∑
j=t/2

γj

 t/2−1∑
i=t0+1

νiγi +
1

ω
max

t/2≤i≤t
νi, (B.1.8)

where
∑t/2

t0
= 0 if t/2 < t0. The second stationary term At,2 can be bounded, thanks to Proposi-

tion B.1.1, as follows:
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)
,

by the definition of t0, thus

At,2 ≤ exp

−ω t∑
j=1
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1≤i≤t0

νi
ηi

exp

(
2

t0∑
i=1

ηiγi
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(B.1.9)

Then, using the bound for At,1 in (B.1.8) and At,2 in (B.1.9), we can bound At by

At ≤ exp

−ω t∑
j=t/2

γj

exp(2 t0∑
i=1

ηjγj

)
max
1≤i≤t0

νi
ηi

+

t/2−1∑
i=t0+1

νiγi

+
1

ω
max

t/2≤i≤t
νi. (B.1.10)

Finally, combining the bound for Bt in (B.1.7) and At in (B.1.10), we achieve the bound for δt ≤
Btδ0 +At, namely the upper bound in (B.1.6).

The following proposition is a more simplistic but rougher version of the bound in Proposi-
tion B.1.4.

Proposition B.1.5. Let (δt)t≥0, (γt)t≥1, (ηt)t≥1, and (νt)t≥1 be some positive sequences satisfying
the recursive relation in (B.1.5). Denote t0 = inf {t ≥ 1 : ηt ≤ ω}, and suppose that for all t ≥ t0+1,
one has ωγt ≤ 1. Then, for γt and ηt decreasing, we have for all t ∈ N,

δt ≤ exp

−ω t∑
i=t/2

γi

 exp

(
2

t∑
i=1

ηiγi

)(
δ0 + 2 max

1≤i≤t

νi
ηi

)
+

1

ω
max

t/2≤i≤t
νi. (B.1.11)

Proof of Proposition B.1.5. The resulting (upper) bound in (B.1.11) follows directly from (B.1.6)



by noting that t0 ≤ t, giving us

t/2−1∑
i=t0+1

νiγi ≤
t∑

i=1

νiγi ≤ max
1≤i≤t

(νi/ηi)

t∑
i=1

ηiγi ≤ max
1≤i≤t

(νi/ηi) exp(2

t∑
i=1

ηiγi),

as (νt) and (γt) are positive sequences.
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