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Development of machine learning approaches in precision medicine for the identification of prognostic and predictive biomarkers based

Titre : Développement de méthodes d'apprentissage statistique pour l'identification de biomarqueurs pronostiques et prédictifs à l'aide de données "-omiques" de grande dimension dans le domaine de la médecine de précision Mots clés : données de grande dimension ; sélection de variables ; biomarqueurs pronostiques/prédictifs ; méthodes régularisées ; apprentissage automatique ; médecine de précision.

Résumé :

Avec la révolution génomique et l'arrivée de la médecine de précision, l'identification de biomarqueurs qui sont explicatifs (biomarqueurs actifs) d'une réponse clinique devient de plus en plus importante dans la recherche clinique. Ces biomarqueurs sont utiles pour mieux comprendre la progression d'une maladie (biomarqueurs pronostiques) et pour mieux identifier les patients les plus susceptibles de bénéficier d'un traitement donné (biomarqueurs prédictifs). Les données relatives aux biomarqueurs (génomique, transcriptomique et protéomique, par exemple) sont en général de grande dimension, le nombre de biomarqueurs mesurés (variables) étant beaucoup plus important que la taille de l'échantillon. Cependant, seule une fraction des biomarqueurs est réellement active, d'où la nécessité de sélectionner les variables. Parmi les divers algorithmes d'apprentissage statistique, les approches régularisées telles que le Lasso sont très utilisées pour faire de la sélection de variables dans des contextes de grande dimension en raison de leurs performances statistiques et numériques. Cependant, la consistance de leur sélection n'est pas garantie lorsque les biomarqueurs sont fortement corrélés. Au cours de ma thèse, plusieurs nouvelles approches ont été développées pour effectuer la sélection de variables dans ce contexte difficile. Plus précisément, quatre méthodes sont mises en place sous différents modèles statistiques (modèle de régression linéaire, modèle de type ANCOVA et modèle de régression logistique). L'idée principale est de supprimer les corrélations en blanchissant la matrice de design. Pour l'une d'entre elles, des résultats de la consistance en signe ont été obtenus sous des hypothèses peu restrictives. Les approches proposées ont été évaluées par des études de simulation et appliquées à des données publiques. Les résultats montrent que les performances statistiques de nos méthodes sont meilleures que celles de l'état de l'art. Nos méthodes sont implémentées dans les packages R suivants : WLasso, PPLasso, et WLogit.

Abstract: With the genomic revolution and the new era of precision medicine, the identification of biomarkers that are informative (i.e. active) for a response (endpoint) is becoming increasingly important in clinical research. These biomarkers are beneficial to better understand the progression of a disease (prognostic biomarkers) and to better identify patients more likely to benefit from a given treatment (predictive biomarkers). Biomarker data (e.g. genomics, transcriptomics, and proteomics) usually have a high-dimensional nature, with the number of measured biomarkers (variables) much larger than the sample size. However, only a fraction of biomarkers is truly active, therefore raising the need for variable selection. Among various statistical learning approaches, regularized methods such as Lasso have become very popular for highdimensional variable selection due to their statistical and numerical performance. However, their selection consistency is not guaranteed when the biomarkers are highly correlated. Throughout my PhD, several novel regularized approaches were developed to perform variable selection in this challenging context. More precisely, four methods were proposed in different statistical models (linear regression model, ANCOVA-type model, and logistic regression model). The main idea is to remove the correlations by whitening the design matrix. For one of the methods, results of the sign consistency were established under mild conditions. The proposed approaches were evaluated through simulation studies and applications on publicly available datasets. The results suggest that our approaches are more performant than compared methods for selecting prognostic and predictive biomarkers in high-dimensional (correlated) settings. Three of our methods are implemented in the R packages: WLasso, PPLasso, and WLogit, available from the CRAN (Comprehensive R Archive Network).

Chapter 1 -Introduction

Biological context

Traditional medicine follows the one-size-fits-all approach to assess drugs and other therapies to cure large groups of people with a similar illness, and the treatment is based on what is most likely to work for patients with similar symptoms. But people do not respond to a treatment in the same way. Some drugs work very well for some people, while do not help for others or even cause side effects [START_REF] Alberti | Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neuropathy[END_REF]. Compared to traditional medicine, precision medicine is much more targeted; it aims at matching the right treatment to the right patients (Figure 1.1). According to the US National Cancer Institute's definition, "Precision medicine is a form of medicine that uses information about a person's genes, proteins and environment to prevent, diagnose and treat disease"

With the revolution of biotechniques and the new era of precision medicine, understanding the cause of a disease, finding out drug response mechanisms, and predicting the response to treatment for therapeutic decision-making are becoming increasingly important in medical research. The availability of growing amounts of data from population studies is enabling researchers to have access to patient omics (e.g. genomes) and clinical data, and therefore give access to ever more detailed molecular outlines of the human body [START_REF] Krassowski | State of the field in multi-omics research: From computational needs to data mining and sharing[END_REF]. These biological molecules are called the biomarkers; examples include genes in RNAseq data, proteins in proteomics data, and SNPs in GWAS data. However, how to make the best use of these data requires advanced research [START_REF] Ginsburg | Precision medicine: From science to value[END_REF].

An important feature of biomarker data is the high dimensionality: the number of biomarkers is usually larger than the sample size. For example, RNAseq data provides over 20,000 gene expressions. Meanwhile, the sample size is generally limited (10 ∼ 100) due to the cost. Moreover, it is commonly assumed by the scientific community that only a small subset of biomarkers is sufficient to explain the outcome (e.g. clinical endpoint). The identification of such biomarkers is therefore of fundamental and practical interest. It can help to make discovery on novel signaling pathways, predict patients' responses to the therapy and eventually optimize the therapeutical strategy for a given patient. However, separating relevant biomarkers from the background is difficult due to the noise associated with sample collection and assay variability. The presence of complicated interactions between biomarkers also increases the difficulty [START_REF] Yamada | Interpretation of omics data analyses[END_REF]. Novel techniques are needed to discover active biomarkers and better understand diseases at the molecular level. 

Examples in precision medicine

Over years of research, scientists have learned more about the biological mechanism that controls how diseases start and how they behave. Knowing how biomarkers and illnesses interact has helped to fine-tune treatments to make them work better. According to the glossary of FDA (Food and Drug Administration) and NIH (National Institutes of Health), different types of biomarkers have been defined in the framework of medical development. Here we only focus on two of them: prognostic biomarker and predictive biomarker. A prognostic biomarker informs about a likely disease outcome (e.g. disease recurrence, disease progression, death) independent of treatment received. As illustrated in Figure 1.2, we assume that the biomarker has only two status: positive (B+) and negative (B-), and an experiment treatment (Exp) is compared to a placebo (Pbo)/standard treatment. The clinical endpoint is measured under different treatments and different biomarker status. If a biomarker is prognostic, the response is different according to the biomarker status (positive v.s. negative) but irrelevant to the treatment (placebo v.s. experiment). An example of a prognostic biomarker is BRCA1/2 mutations. For women with breast cancer, BRCA1/2 mutations suggest a higher risk of developing a contralateral breast cancer [START_REF] Ahmed | Risks of contralateral breast cancer in brca1 and brca2 mutation carriers[END_REF]. To reduce this risk, some women with BRCA1/2 mutation-associated breast cancer undergo contralateral prophylactic mastectomy, and this procedure has been reported to reduce the risk of future contralateral breast cancer by at least 90% [START_REF] Sprundel | van sprundel tc, schmidt mk, rookus ma, brohet r, van asperen cj, rutgers ej, van't veer lj, tollenaar rarisk reduction of contralateral breast cancer and survival after contralateral prophylactic mastectomy in brca1 or brca2 mutation carriers[END_REF][START_REF] Domchek | Association of risk-reducing surgery in brca1 or brca2 mutation carriers with cancer risk and mortality[END_REF]. Another example is the MammaPrint signature developed in breast cancer [START_REF] Sotiriou | Gene-expression signatures in breast cancer[END_REF]. MammaPrint uses microarray to measure the expression of 70 genes that are key hallmarks of cancer, based on which patients are separated into two groups, i.e., low or high risk for disease recurrence. In the prospective randomized clinical trial MINDACT study [START_REF] Rutgers | Updated results of the mindact trial: 70-gene signature to guide de-escalation of chemotherapy in early breast cancer[END_REF], patients classified as being at low risk had an excellent outcome of disease-free survival. According to the EGTM (European Group on Tumour Markers) guidelines, the MammaPrint test "may be used for determining prognosis and guiding decision making with respect to the administration of adjuvant chemotherapy in patients with newly diagnosed invasive breast cancer." Prognostic biomarkers indicate the potential risk of the progression of the disease, therefore contribute to decisions about whether or how aggressively to intervene with the treatment. Unlike prognostic biomarkers, a biomarker is considered as predictive if on a given clinical endpoint, the treatment effect (experimental compared with control/standard therapy) is different for biomarker-positive patients compared with biomarker-negative patients. In Figure 1.2, only the B+ group showed an effect from the experiment compared to placebo on the clinical endpoint, while no treatment effect was observed in the B-group. Predictive biomarkers can therefore help to determine which patients might be more likely to respond or be resistant to specific therapies. One example is erlotinib maintenance treatment for advanced non-small cell lung cancer. Patients with tumors harboring an EGFR mutation had a higher survival rate when assigned with erlotinib than with a placebo. In contrast, the EGFR wild-type group showed no clear benefit from erlotinib [START_REF] Ballman | Biomarker: Predictive or prognostic[END_REF]. Another example is the measurement of HER2 in breast cancer therapy decisions. Overexpression of HER2 leads to tumor growth and enhances cell proliferation and invasion [START_REF] Rimawi | Targeting her2 for the treatment of breast cancer[END_REF]. According to this mechanism, four forms of anti-HER2 therapy are available [START_REF] Martin | Emerging therapeutic options for her2-positive breast cancer[END_REF], and HER2 gene overexpression appears to be necessary for patients to respond to these treatments. Therefore, only HER2-positive patients can receive anti-HER2 therapies. Apart from therapeutical decision-making, predictive biomarkers are also important in clinical development. For example, in a randomized controlled clinical trial of an investigational therapy, a biomarker can be used to select patients for enrollment in a clinical trial or to stratify patients into biomarker positive and biomarker negative groups. If the biomarker is predictive of a favorable outcome, then the effect of the investigational therapy compared to a control therapy will be greater in patients with the biomarker. Distinguishing prognostic and predictive biomarkers can be difficult in some cases [START_REF] Mishina | FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource [Internet]. Monitoring Biomarker. Silver Spring (MD)[END_REF]. Especially with only one treatment presented, the effect on a given clinical endpoint can come from either prognostic or predictive effect or both of them.

The development of precision medicine is changing the way that patients are treated. [START_REF] Vargas | Biomarker development in the precision medicine era: lung cancer as a case study[END_REF] summarized the lung cancer treatments with precision medicine based on different types of biomarkers (genomic, transcriptomic, epigenomic, proteomic, etc.) and listed promising biomarkers in lung cancer. From a more global point of view, [START_REF] Tsimberidou | Review of precision cancer medicine: Evolution of the treatment paradigm[END_REF] revisited the history of the development in precision medicine and indicated that new strategies, including gene-directed therapies, will enable optimization of treatment for individual patients and expedite drug discovery and approval.

The objective of my thesis is therefore to develop novel methods that can correctly select relevant biomarkers in high-dimensional settings, especially when the biomarkers are correlated. We first considered the linear regression case to identify prognostic biomarkers when the endpoint is continuous. With the presence of two comparative treatments, we then developed a novel method to simultaneously identify both prognostic and predictive models by using an ANCOVA type linear model. At last, the linear regression model was extended to the logistic regression model with the purpose of classification when the endpoint is binary.

Variable selection for high-dimensional data in the linear regression model

1.3.1. Background We first consider the linear regression model. We denote the continuous responses (endpoint) y = ( 1 , . . . , n ) T of n samples, where A T denotes the transpose of A. Then we consider the following model:

y = Xβ + , (1.1)
where X = (X 1 , . . . , X p ) is the design matrix containing the expression of p biomarkers (p n) and β = (β 1 , . . . , β p ) T is a sparse vector to estimate, namely with a majority of null coefficients. In Model (1.1), is the error term. Variable selection aims at identifying all important variables whose regression coefficients are estimated as non-null. Several reviews can be found on the topic of variable selection [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF] and [START_REF] Heinze | Variable selection -a review and recommendations for the practicing statistician[END_REF] for example). To summarize, following are three classes of methods mainly used for high-dimensional variable selection for omics data.

Univariate test

The univariate approach consists in independently studying each biomarker by evaluating its strength of association with the response in a regression model [START_REF] Mcdonald | Handbook of Biological Statistics 2nd Edition[END_REF]. However, the multiplicity of the statistical tests can make this approach less powerful [START_REF] Lee | What is the proper way to apply the multiple comparison test?[END_REF]. To address this issue, multiple testing corrections have been proposed to make statistical tests more stringent. The best-known adjustment is the Bonferroni correction, and other less conservative ones include Bonferroni-Holm [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF] and Hochberg [START_REF] Hochberg | A sharper bonferroni procedure for multiple tests of significance[END_REF] techniques. To control the false discovery rate, commonly used adjustments in omics data analysis include [START_REF] Benjamini | Controlling the false discovery rate -a practical and powerful approach to multiple testing[END_REF] and [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. Although very simple to implement, this approach does not take into account the correlation between biomarkers, which may be an important limitation in the context of genomic data.

Wrapper approaches

Wrapper approaches are other methods to select a subset of variables. The most popular ones are forward, backward and stepwise selection. The choice of variables is carried out by an automatic procedure. In each step, a variable is considered for addition to or subtraction from the set of explanatory variables based on some prespecified criterion [START_REF] Hocking | A biometrics invited paper. the analysis and selection of variables in linear regression[END_REF]. Application of this approach to biomarker selection can be found in [START_REF] Xiong | Feature (gene) selection in gene expression-based tumor classification[END_REF] and [START_REF] Lu | Stepwise selection on homeologous prr genes controlling flowering and maturity during soybean domestication[END_REF]. However, these approaches often show a high risk of overfitting and are computationally expensive for high-dimensional data [START_REF] Smith | Step away from stepwise[END_REF].

Penalized regression

Penalized regression is often used in the context of high-dimensional data. It consists in adding a penalty term to the likelihood of Model (1.1). A widely used penalty is a 1 norm of coefficients, namely the Lasso (Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996a). It consists in minimizing the following criterion:

L λ (β) = y -Xβ 2 2 + λ β 1 , (1.2)
where µ Other penalty forms include the Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], the Dantzig selector [START_REF] Candes | The Dantzig selector: Statistical estimation when p is much larger than n[END_REF], Nonnegative Garrote [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF], adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF], grouped Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] as examples. A more general review on the topic of variable selection in high dimensional settings can be found in [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF]. Due to their attractive ability to perform variable selection and coefficient estimation simultaneously [START_REF] Fan | Statistical challenges with high dimensionality: Feature selection in knowledge discovery[END_REF], penalized approaches have been widely applied to genomic analysis [START_REF] Ogutu | Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions[END_REF][START_REF] Li | Overview of lasso-related penalized regression methods for quantitative trait mapping and genomic selection. TAG. Theoretical and applied genetics[END_REF][START_REF] Desta | Genomic selection: Genome-wide prediction in plant improvement[END_REF]. Therefore, this thesis mainly focuses on this type of approach.

High Correlations between biomarkers

A notorious difficulty of model selection in high dimensional frameworks comes from the correlation between the covariates. The correlation can easily be spurious in high-dimensional genomic data, which can lead to the selection of wrong models. Figure 1.3 presents empirical correlations between gene expression data (after preprocessing) in Prostate dataset [START_REF] Singh | Gene expression correlates of clinical prostate cancer behavior[END_REF] (2135 genes, 102 samples) and Breast cancer dataset [START_REF] Sotiriou | Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis[END_REF] (1111 genes, 189 samples). We can clearly observe strong correlations in blocks, which means that genes in each block are correlated. Under such high correlations, the Lasso is known to be inconsistent in variable selection, despite its various advantages. Sign consistency ensures that the active variables (non-null coefficients) of β are estimated by non-null coefficients with the same sign and that the non-active variables (null coefficients) are estimated by null coefficients. More precisely, an estimator of β is sign consistent if

P si n( β) = si n(β) -----→ n→+∞ 1 (1.3) where si n(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.
The consistency of subset selection received considerable attention, and various investigation has been devoted to the model selection consistency of Lasso: [START_REF] Zhao | On model selection consistency of lasso[END_REF]; [START_REF] Meinshausen | High dimensional graphs and variable selection with the lasso[END_REF]; [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators[END_REF]; [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF]. During my PhD, I mainly focused on the Irrepresentable Condition established by [START_REF] Zhao | On model selection consistency of lasso[END_REF]. The authors proved that this condition is necessary and sufficient to recover the support of β, namely to retrieve the null and non-null components in the vector β and thus to provide a sign consistent estimator. This condition is defined as follows.

Irrepresentable condition (IC): Let S = {j, β j 0} be the set of active variables, S c the set of non-active variables and X A the submatrix of X containing only the indices of columns which are in the set A. Hence, the empirical covariance matrix of the covariates, C n = n -1 X T X, can be rewritten as follows:

C n = C n 11 C n 12 C n 21 C n 22 ,
where

C n 11 = n -1 X T S X S , C n 12 = n -1 X T S X S c , C n 21 = n -1 X T S c X S , C n 22 = n -1 X T S c X S c
. Then, the design matrix X satisfies the Irrepresentable Condition if for some constant α ∈ (0, 1),

C n 21 (C n 11 ) -1 sign(β S ) j ≤ 1 -α, for all j.
(1.4)

Intuitively, this condition means that the correlation between the active and non-active explanatory variables is smaller than the correlation between the active explanatory variables. Hence, this condition is most likely to be violated when the correlations between non-active and active variables are large.

In high-dimensional genomic data, this condition is difficult to guarantee as the correlation between biomarkers is usually high [START_REF] Michalopoulos | Human gene correlation analysis (hgca): A tool for the identification of transcriptionally co-expressed genes[END_REF]. This phenomenon is typically observed in omics data. [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] tested the Irrepresentable Condition on several publicly available genomic data and highlighted that the condition is violated in almost all the datasets investigated.

The main idea: whitening

To deal with the issue of high correlations between the biomarkers, several strategies have been proposed. The Elastic Net introduced by Zou and Hastie 

i ). Elastic Net has the grouping effect of selecting groups of correlated variables. Preconditioning is another type of methods to deal with correlation. [START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] and [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed to leftmultiply X, y and in Model (1.1) by specific matrices to remove the correlations between the columns of X. Another recently published method, named Precision Lasso [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF], proposes to handle the correlation issue by assigning similar weights to correlated variables.

In my thesis, I proposed an alternative and novel technique to remove the correlations that may exist between the predictors (biomarkers). Suppose the n rows X (1) , . . . , X (n) of X are assumed to be independent Gaussian random vectors with a covariance matrix equal to Σ. Let Σ -1/2 := U D -1/2 U T where U and D are the matrices involved in the spectral decomposition of the symmetric matrix Σ given by: Σ = U DU T . We then denote X = XΣ -1/2 . Therefore, (1.1) can be rewritten as follows:

y = X β + , (1.5) where β = Σ 1/2 β := U D 1/2 U T β.
With such a transformation, the covariance matrix of the rows of X is equal to identity and the columns of X are thus uncorrelated. Figure 1.4 presents the heatmap of the correlations (same datasets as presented in Figure 1.3) after the whitening transformation. The covariance matrix Σ was estimated by package cvCovEst (Boileau et al., 2021). The proposed method is implemented in the WLasso R package available from the CRAN.

We propose a novel variable selection approach, WLasso (Whitening Lasso), with the previously introduced idea of whitening. After transformation of Model (1.5), we propose to minimize the following criterion with respect to β:

L gen λ ( β) = y -X β 2 2 + λ Σ -1/2 β 1 , (1.6)
which guarantees a sparsity enforcing constraint on β thanks to the 1 penalty. Note that note that L λ (β) = L gen λ ( β). We thus obtain

β 0 (λ) = arg min β L gen λ ( β).
To estimate β, we will use the following modified estimator which can be seen as a thresholding of the components of β 0 (λ). For K in {1, . . . , p}, let Top K be the set of indices corresponding to the K largest values of the components of

| β 0 |, then the estimator of β is β = ( β ( K ) j ) 1≤j ≤p where β (K ) j is defined by: β (K ) j (λ) =        β 0j (λ), j ∈ Top K Kth largest value of | β 0j |, j Top K .
(1.7)

To estimate β, we will first consider β 0 = Σ -1/2 β and then apply a thresholding strategy. Thus, we propose to estimate β by β = ( β ( M ) j ) 1≤j ≤p where β (M ) j is defined by:

β (M ) j (λ) = β 0j (λ), j ∈ Top M 0, j Top M .
(1.8)

Variables with non-null coefficients in β are considered as associated with the response variable. In Chapter 2, we showed in various numeric experiments that when the biomarkers are highly correlated, WLasso outperforms the compared approaches in sparse high-dimensional frameworks.

Contribution of Chapter 3

This section summarizes the article: Zhu, W., Adjakossa, E., [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF]. Sign Consistency of the Generalized Elastic Net Estimator. Submitted and also available on arXiv preprint (arXiv:2106.05454).

In this section, aside from the transformation in Model (1.5), we propose combining an 1 and 2 penalty and consider the following criterion:

L E N λ,η ( β) = y -X β 2 2 + λ Σ -1/2 β 1 + η β 2 2
, with λ, η > 0.

(1.9) Since it consists in adding a 2 penalty part to the Generalized Lasso as in the Elastic Net, we will call it generalized Elastic Net (gEN). The gEN estimator is defined by

β = Σ -1/2 β, (1.10) with β = arg min β L E N λ,η β . (1.11)
With this new estimator, we defined a corresponding irrepresentable condition called Generalized Irrepresentable Condition (GIC): There exist λ, η, α, δ 4 > 0 such that for all j,

(C n 21 + η n Σ 21 )(C n 11 + η n Σ 11 ) -1 sign(β 1 ) + 2η λ β 1 - 2η λ Σ 21 β 1 j ≤ 1 -α, for all j,
(1.12)

where β 1 denotes the non-null components in the vector β. We proved that this condition is sufficient for the gEN estimator to be sign consistent under certain conditions. Moreover, we compared GIC with EIC (Elastic Net Irrepresentable Condition, [START_REF] Jia | On model selection consistency of the elastic net when p > n[END_REF]) and IC, and demonstrate that there exist cases where GIC is satisfied but EIC and IC are not.

1.4. Identification of prognostic and predictive biomarkers in high-dimensional linear models with PPLasso 1.4.1. Identification of predictive biomarkers With the advancement of precision medicine, there has been an increasing interest in identifying prognostic or predictive biomarkers. Previously introduced WLasso and generalized Elastic Net are developed for the purpose of selecting prognostic biomarkers. However, the discovery of predictive biomarkers has seen much less attention. Limited to binary endpoint, [START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF] proposed to first predict response probabilities for treatment and use this probability as the response in a classification problem to find effective biomarkers. [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF] proposed a new method to detect the interaction between the treatment and the biomarkers by modifying the covariates. This method can be implemented on a continuous/binary/time-to-event endpoint. [START_REF] Lipkovich | Subgroup identification based on differential effect search (sides) -a recursive partitioning method for establishing response to treatment in patient subpopulations[END_REF] proposed a method called SIDES, which adopts a recursive partitioning algorithm for screening treatment-by-biomarker interactions. This method was further improved in [START_REF] Lipkovich | Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using sides[END_REF] by adding another step of preselection on predictive biomarkers based on variable importance. The method was demonstrated with a continuous endpoint. More recently, [START_REF] Sechidis | Distinguishing prognostic and predictive biomarkers: an information theoretic approach[END_REF] applied approaches coming from information theory for ranking biomarkers on their prognostic/predictive strength. Their method is applicable only for binary or time-to-event endpoints. Moreover, most of these methods were assessed in a situation where the sample size is relatively large and the number of biomarkers is limited, which is hardly the case for genomic data.

In the literature mentioned above, the authors focused on one of the problems of identifying predictive biomarkers. However, the identification of prognostic biomarkers is also key in this context. The clinical impact of treatment can be judged only with the knowledge of the prognosis of a patient. It is thus of importance to reliably predict the prognosis of patients to assist in treatment counseling [START_REF] Windeler | Prognosis -what does the clinician associate with this notion[END_REF]. We proposed a novel approach called PPLasso (Predictive Prognostic Lasso) to simultaneously identify prognostic and predictive biomarkers in a high-dimensional setting with ANCOVA-type linear models.

Contribution of Chapter 4

This section summarizes the article: Zhu, W., Lévy-Leduc, C., and Ternès, N. (2022). Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. Submitted and also available on arXiv preprint (arXiv:2202.01970).

The proposed method is implemented in the PPLasso R package available from the CRAN.

Let y be a continuous response and t 1 , t 2 two treatments. Let also X 1 (resp. X 2 ) denote the design matrix for the n 1 (resp. n 2 ) patients with treatment t 1 (resp. t 2 ), each containing measurements on p candidate biomarkers:

X 1 =         X 1 11 X 2 11 . . . X p 11 X 1 12 X 2 12 . . . X p 12 ... X 1 1n 1 X 2 1n 1 . . . X p 1n 1         , X 2 =         X 1 21 X 2 21 . . . X p 21 X 1 22 X 2 22 . . . X p 22 ... X 1 2n 2 X 2 2n 2 . . . X p 2n 2        
.

(1.13)

To take into account the potential correlation that may exist between the biomarkers in the different treatments, we shall assume that the rows of X 1 (resp. X 2 ) are independent centered Gaussian random vectors with a covariance matrix equal to Σ 1 (resp. Σ 2 ).

To model the link that exists between y and the different types of biomarkers we propose using the following model: where ( i1 , . . . , in i ) corresponds to the response of patients with treatment t i , i being equal to 1 or 2, are standard independent Gaussian random variables independent of X 1 and X 2 .

y = 11 12 . . .
X =                   1 0 X 1 11 X 2 11 . . . X p 11 0 0 . . . 0 1 0 X 1 12 X 2 12 . . . X p 12 0 0 . . . 0 . . . . . . . . . . . . . . . 1 0 X 1 1n 1 X 2 1n 1 . . . X p 1n 1 0 0 . . . 0 0 1 0 0 . . . 0 X 1 21 X 2 21 . . . X p 21 0 1 0 0 . . . 0 X 1 22 X 2 22 . . . X p 22 . . . . . . . . . . . . . . . . . . . . . . . . 0 1 0 0 . . . 0 X 1 2n 2 X 2 2n 2 . . . X p 2n 2                   , α 1 (resp. α 2 )
When t 1 stands for the standard treatment or placebo, prognostic (resp. predictive) biomarkers are defined as those having non-null coefficients in β 1 (resp. in β 2β 1 ) and non prognostic (resp. non predictive) biomarkers correspond to the indices having null coefficients in β 1 (resp. in β 2β 1 ).

Model (1.14) can be written as:

y = Xγ + ,
(1.15)

with γ = (α 1 , α 2 , β T 1 , β T 2 )
T . To estimate γ using a sparsity enforcing constraint, we consider a first estimator of γ obtained by minimizing the following criterion with respect to γ:

1 2 y -Xγ 2 2 + λ 1       0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2       γ 1 , (1.16) 
where D 1 = [Id p , 0 p,p ] and D 2 = [-Id p , Id p ], Id p denoting the identity matrix of size p and 0 i, j denoting a matrix having i rows and j columns and containing only zeros.

Since the inconsistency of Lasso variable selection originates from the correlations between the variables, we propose to remove the correlation by "whitening" the matrix X. More precisely, we consider X = XΣ -1/2 , where

Σ =         1 0 0 0 0 1 0 0 0 0 Σ 1 0 0 0 0 Σ 2        
(1.17) and define Σ -1/2 by replacing in (1.17

) Σ i by Σ -1/2 i , where Σ -1/2 i = U i D -1/2 i U T
i , U i and D i being the matrices involved in the spectral decomposition of Σ i for i = 1 or 2. With such a transformation the columns of X are decorrelated and Model (1.15) can be rewritten as follows:

y = X γ + (1.18)
where γ = Σ 1/2 γ. The objective function (1.16) thus becomes:

L PPLasso λ 1 , λ 2 ( γ) = 1 2 y -X γ 2 2 + λ 1       0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2       Σ -1/2 γ 1 .
(1.19)

Similar thresholding was then imposed as previously explained in Section 1.3.4 to obtain the final estimation ( β 1 , β 2 ). The biomarkers with non-null coefficients in β 1 (resp. β 2β 1 ) are considered as prognostic (resp. predictive) biomarkers.

We compared PPLasso to other methods that also deal with the correlations and we showed that PPLasso outperforms them on both prognostic and predictive biomarker identification in various scenarios.

1.5. Variable selection in high-dimensional logistic regression models using a whitening approach 1.5.1. Biomarker selection for binary responses

Previously, we assumed that the response y was continuous. This section focuses on binary responses, which can be seen as a classification problem. Classification is an important topic in biomedical research. For example, following the RECIST (Response Evaluation Criteria in Solid Tumours) guidance [START_REF] Watanabe | New response evaluation criteria in solid tumours revised recist guideline (version 1.1). Gan to kagaku ryoho[END_REF] on the oncology research, patients are usually defined as complete response, partial response, stable disease, and progression according to the response to the treatment. Patients in the first two categories (complete response and partial response) are considered as responders to the treatment, while the others are considered as non-responders. For the disease of Rheumatoid Arthritis, ACR (American College of Rheumatology) criteria are used to assess the treatment response and discriminate efficient treatment from placebo treatment in a clinical trial setting. ACR response is scored as a percentage improvement. For example, ACR50 is a binary outcome indicating whether the improvement is greater than 50%. Another example is tumor classification. With the development of bioinformatics, cancer classification from omics data has become an important topic in genome research [START_REF] Ramaswamy | Multiclass cancer diagnosis using tumor gene expression signatures[END_REF][START_REF] Tibshirani | Diagnosis of multiple cancer types by shrunken centroids of gene expression[END_REF][START_REF] Menyhárt | Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis[END_REF].

Compared to other classifiers such as decision tree [START_REF] Utgoff | Incremental induction of decision trees[END_REF] and SVM (Support Vector Machine) [START_REF] Cortes | Support-vector networks[END_REF], logistic regression [START_REF] Walker | Estimation of the probability of an event as a function of several independent variables[END_REF] is a popular classification method with an explicit statistical interpretation and can provide classification probabilities for a binary response [START_REF] Menard | Applied logistic regression analysis[END_REF]. However, as previously explained, with the high dimensional omics data, it is essential to obtain a small number of key genes and improve the classification accuracy, which leads us to consider the problem of variable selection in high dimensional logistic regression model [START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF]. Recently, regularization approaches have been widely applied to biomarker discovery and disease classification [START_REF] Zhu | Classification of gene microarrays by penalized logistic regression[END_REF][START_REF] Wu | Differential gene expression detection and sample classification using penalized linear regression models[END_REF][START_REF] Ma | Penalized feature selection and classification in bioinformatics[END_REF][START_REF] Liu | Logsum+ l2 penalized logistic regression model for biomarker selection and cancer classification[END_REF]. Besides the high dimensionality, the correlations between biomarkers should also be taken into account. To deal with the correlations, several methods have been proposed. Adapted to logistic regression, the most well-known ones include Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] and Adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] as previously mentioned in Section 1.3.1. Several filter approaches were also proposed to take into consideration the correlations in the classification framework. Relief [START_REF] Kira | A practical approach to feature selection[END_REF]) is sensitive to feature interactions and has inspired a family of Reliefbased feature selection algorithms, notably the ReliefF [START_REF] Kononenko | Overcoming the myopia of inductive learning algorithms with relieff[END_REF]. It was widely used in biomedical research [START_REF] Urbanowicz | Relief-based feature selection: Introduction and review[END_REF]. Fast Correlation Based Filter (FCBF) [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF] is another approach in high-dimensional feature selection that evaluates feature relevance and redundancy based on correlation measures. In this chapter, we propose a novel method that can identify active biomarkers in high-dimensional data and provide classification on collected samples.

Contribution of Chapter 5

This section summarizes the article: Zhu, W., Lévy-Leduc, C., and Ternès, N. (2022). Variable selection in high-dimensional logistic regression models using a whitening approach. Submitted and also available on arXiv preprint (arXiv:2206.14850)

The proposed method is implemented in the WLogit R package which will soon be available from the CRAN.

To formally state the statistical problem, given a design matrix X of size n ×p, X (i) j corresponds to the measurement of the jth biomarker for the ith sample, and β = (β 1 , . . . , β p ) T is the vector of effect size for each biomarker, with a lot of components equal to zero. We assume that the binary responses 1 , 2 , ..., n are independent random variables having a Bernoulli distribution with parameter π β (X (i) ) ( i ∼ Bernoulli(π β (X (i) ))), where for all i in {1, . . . , n},

π β (X (i) ) = exp p j=1 β j X (i) j 1 + exp p j=1 β j X (i) j .
(1.20)

The logistic regression with 1 regularization solves the feature selection problem by adding a penalty function to the log-likelihood of the logistic regression model:

β = arg min β {l(β) + λ β 1 } , (1.21)
where β 1 = p k=1 |β k |, and the log-likelihood l(β) is defined by:

l(β) = 1 n n i=1 i • X (i) β -log(1 + e X (i ) β ) , (1.22)
with X (i) the ith row of X. With the penalty function and properly chosen parameter λ, some components of β are set to zero.

As previously mentioned, the Lasso criterion can fail to select the true subset of active biomarkers when the correlation between active and non-active biomarkers is large, which is stated in the irrepresentable condition for linear regression models in Equation (1.4). A similar condition was obtained by [START_REF] Ravikumar | High-dimensional Ising model selection using l1-regularized logistic regression[END_REF] and [START_REF] Bunea | Honest variable selection in linear and logistic regression models via l1 and l1+l2 penalization[END_REF] in the logistic regression case. Let Q be defined by:

Q = X T HX, (1.23)
where H is a diagonal matrix with

H ii = π β (X (i) )/(1 -π β (X (i) )), 1 ≤ i ≤ n.
(1.24) Let S = {j, β j 0} be the set of active variables with size d, S c the set of nonactive variables, Q S S denotes the d × d sub-matrix of Q indexed by S. With this notation, the condition states: There exists α ∈ (0, 1] such that:

Q S c S (Q S S ) -1 ∞ ≤ 1 -α, (1.25)
where

|A| ∞ = max j=1, ...,p p k=1
|A jk | for any real matrix having p rows and p columns.

We then propose to remove the correlation by 'whitening' the matrix X. More precisely, we consider X = X Σ-1/2 , where Σ is a covariance estimator obtained from H 1/2 X, where H is defined in Equation (1.24). With this transformation, X T H X should be close to the identity matrix I p , thus the irrepresentable condition should be satisfied. After the whitening step, Model (1.20) can be rewritten as:

π β ( X (i) ) = exp p j=1 β j X (i) j 1 + exp p j=1 β j X (i) j , (1.26)
where β = Σ1/2 β. The log-likelihood after the transformation can be written as:

l wt ( β) = 1 n n i=1 i • X (i) β -log 1 + e X (i ) β .
(1.27)

Then an estimator of β is obtained by solving the following problem:

arg min β ∈R p l wt ( β) + λ Σ-1/2 β 1 .
(1.28)

To solve this optimization problem, we usually form a quadratic approximation of the log-likelihood (1.27) by using a Taylor expansion at the current estimates [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF]:

l wt Q ( β) = - 1 2n n i=1 w i (z i -X (i) β) 2 + C( β o ) 2 (1.29) = - 1 2n n i=1 ( √ w i z i - √ w i X (i) β) 2 + C( β o ) 2
(1.30)

with z i = X (i) β + i -π β o ( X (i) ) π β o (X (i) )(1 -π β o ( X (i) ))
, (working response)

w i = π β o ( X (i) )(1 -π β o ( X (i) )), (weights) 
(1.31)

where π β o ( X (i) ) is the evaluation of π β (defined in Model (1.26)) at the current parameters β o . The final estimator can then be derived by the IRLS (Iterative Re-weighted Least Square) algorithm [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF].

After obtaining the estimation of β, similar thresholding was then imposed as previously explained in Section 1.3.4 to obtain the final estimation β. The biomarkers with non-null coefficients are considered as active ones. A classifier is also obtained with β.

The performance of WLogit is assessed using synthetic data in several scenarios and compared with other approaches. The results suggest that WLogit can identify almost all active biomarkers even in the cases where the biomarkers are highly correlated, while the other methods fail, which consequently leads to higher classification accuracy. The performance is also evaluated on the classification of two Lymphoma subtypes, and the obtained classifier also outperformed other methods.

Introduction

The identification of prognostic genomic biomarkers (i.e. biomarkers associated with a variable of interest, for example a clinical endpoint in clinical trials) has become a major concern for the biomedical research field. Indeed, prognostic biomarkers may help to anticipate the prognosis of individual patients and may also be useful to understand a disease at a molecular level and possibly guide for the development of new treatment strategies [START_REF] Kalia | Biomarkers for personalized oncology: recent advances and future challenges[END_REF]).

To this end, statistical variable selection approaches are widely used to identify a subset of biomarkers in high-dimensional settings where the number of biomarkers p is much larger than the sample size n. Several reviews focused on this topic [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF] and [START_REF] Heinze | Variable selection -a review and recommendations for the practicing statistician[END_REF] 2009)), wrapper approaches [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF]): forward, backward selection, and penalized approaches: Lasso (Tibshirani (1996a)), SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF]) among others. Hypothesis tests are limited to independently consider associations for each biomarker thus neglecting potential relationships between them. Wrapper approaches often show high risk of overfitting and are computationally expensive for high-dimensional data [START_REF] Smith | Step away from stepwise[END_REF]). More efforts have been devoted to penalized methods, given the attractive feature of automatically performing variable selection and coefficient estimation simultaneously [START_REF] Fan | Statistical challenges with high dimensionality: Feature selection in knowledge discovery[END_REF]). We shall thus focus on this type of approaches in the following. Let us consider the following linear regression model:

y = Xβ + . (2.1)
where y = ( 1 , . . . , n ) T is the variable to explain (clinical endpoint), X = (X 1 , . . . , X p ) is the design matrix containing the expression of biomarkers such that the correlation matrix of its columns is Σ, β = (β 1 , . . . , β p ) T is a sparse vector to estimate, namely with a majority of null coefficients, and is the error term. The Lasso penalty is a well-known approach to estimate β with a sparsity enforcing constraint. It consists in minimizing the following penalized least-squares criterion (Tibshirani (1996a)):

L λ (β) = y -Xβ 2 2 + λ β 1 , (2.2)
where • 2 is the Euclidean norm and

β 1 = p k=1 |β k |.
However, the Lasso has several drawbacks in highly correlated settings [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]) such as the violation of the Irrepresentable Condition (IC) defined in [START_REF] Zhao | On model selection consistency of lasso[END_REF]. The authors of this article proved that this condition is necessary and sufficient to recover the support of β, namely to retrieve the null and non null components in the vector β and thus to provide a sign consistent estimator. This condition is defined as follows. Let S = {j, β j 0} be the set of active variables, S c the set of non-active variables and X A the submatrix of X containing only the indices of columns which are in the set A. Then, the design matrix X satisfies the Irrepresentable Condition (IC) if, for some constant α ∈ (0, 1),

X T S c X S (X T S X S ) -1 sign(β S ) j ≤ 1 -α, for all j, (2.3) 
where sign(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0. Intuitively, this condition means that the correlation between the active and non active explanatory variables is smaller that the correlation between the active explanatory variables.

Hence, this condition is most likely to be violated when the correlations between non active and active variables are large. In high-dimensional genomic data, this condition is difficult to guarantee as the correlation between biomarkers is usually high [START_REF] Michalopoulos | Human gene correlation analysis (hgca): A tool for the identification of transcriptionally co-expressed genes[END_REF]). [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] tested the Irrepresentable Condition on several publicly available genomic data and highlighted that the condition is violated in almost all the datasets investigated.

To deal with the issue of high correlations between the biomarkers, several strategies have been considered: The Elastic Net introduced by [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] and preconditioning approaches. Elastic Net consists in using a criterion similar to the Lasso except that there is an additional penalty term η β 2 2 which requires to choose properly the parameter η. The preconditioning approaches consist in transforming the given data X and y before applying the Lasso criterion. For example, [START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] and [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed to left-multiply X, y and thus in Model (2.1) by specific matrices to remove the correlations between the columns of X. A major drawback of the latter, called HOLP (High dimensional Ordinary Least squares Projection), is that the preconditioning step may increase the variance of the error term and thus may alter the variable selection performance. Another recently published method named Precision Lasso [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF]) proposes to handle the correlation issue by assigning similar weights to correlated variables. This approach revealed better performance than the other methods when the biomarkers were highly correlated and the sample size is relatively large. However, it failed in more favorable cases when the biomarkers are not correlated.

In this paper, we propose an alternative and novel approach, called Whitening Lasso (WLasso), to take into account the correlations that may exist between the predictors (biomarkers). Our method proposes to transform Model (2.1) in order to remove the correlations existing between the columns of X and thus to "whiten" them and make the IC valid but without changing the error term . This prevents us from noise inflation, see (2.4). Then, the variable (biomarker) selection is performed thanks to the generalized Lasso criterion devised by [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF]. The full details of this method are provided in Section 2.2. An extensive simulation study is presented in Section 2.3 to assess the selection performance of WLasso and to compare it to other methods in different settings. WLasso is also applied to a publicly available dataset in breast cancer in Section 2.4. Finally, we discuss our findings and give concluding remarks in Section 2.5.

Methods

In this section, we propose a novel variable selection approach called WLasso (Whitening Lasso) which consists in removing the correlations existing between the biomarkers (columns of X) and in applying the generalized Lasso criterion proposed by [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF] for variable selection purpose.

Model Transformation

Inspired by the literature on preconditioning, we propose to rewrite Model (2.1) in order to remove the correlation existing between the columns of X. More precisely, let Σ -1/2 := U D -1/2 U T where U and D are the matrices involved in the spectral decomposition of the symmetric matrix Σ given by: Σ = U DU T . We then denote X = XΣ -1/2 . Therefore, (2.1) can be rewritten as follows: (2.4) where β = Σ 1/2 β := U D 1/2 U T β. With such a transformation, since the n rows x 1 , . . . , x n of X are assumed to be independent Gaussian random vectors with a covariance matrix equal to Σ, the covariance matrix of the rows of X is equal to identity and the columns of X are thus uncorrelated. The advantage of such a transformation with respect to the preconditioning approach proposed by [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] is that the error term is not modified thus avoiding an increase of the noise which can overwhelm the benefits of a well conditioned design matrix.

y = X β + ,
To illustrate the benefits of our methodology, observations y were generated according to Model (2.1) with p = 500, n = 50, β having 10 non null components which are equal to 2 and with Σ defined by

Σ = Σ 11 Σ 12 Σ T 12 Σ 22 (2.5)
where Σ 11 is the correlation matrix of active variables with off-diagonal entries equal to α 1 , Σ 22 is the one of non active variables with off-diagonal entries equal to α 3 and Σ 12 is the correlation matrix between active and non active variables with entries equal to α 2 . In the case where (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), which is a case where the IC is not satisfied, Figure 2.1 displays the percentage of components j for which the Irrepresentable Condition (2.3) is not satisfied from 100 replications. We can see from this figure that our approach (WLasso) dramatically improves the number of indices j for which the IC condition is satisfied. The results are even better than those obtained by the transformation proposed by HOLP [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF]).

The following illustrations of Section 2.2 are obtained from observations y generated according to the previous scenario. 

Estimation of β

In order to estimate β with a sparsity enforcing constraint on β, we use the generalized Lasso criterion proposed by [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF] which consists in minimizing the following criterion with respect to β:

y -Xβ 2 2 + λ D 0 β 1 ,
where D 0 is a specific matrix. Note that this criterion boils down to the classical Lasso criterion if D 0 is the identity matrix. In Model (2.4), we thus propose to minimize the following criterion with respect to β:

L gen λ ( β) = y -X β 2 2 + λ Σ -1/2 β 1 , (2.6) 
which guarantees a sparsity enforcing constraint on β thanks to the 1 penalty.

We thus obtain β 0 (λ) = arg min β L gen λ ( β).

To estimate β, we will not directly use β 0 (λ) but the following modified estimator which can be seen as a thresholding of the components of β 0 (λ). For K in {1, . . . , p}, let Top K be the set of indices corresponding to the K largest values of

the components of | β 0 |, then the estimator of β is β = ( β ( K ) j ) 1≤j ≤p where β (K )
j is defined by:

β (K ) j (λ) =        β 0j (λ), j ∈ Top K Kth largest value of | β 0j |, j Top K .
(2.7)

The choice of K = K(λ) is explained in Section 2.2.4. λ that are considered and boxplots of K(λ) for some λ. We can see from this figure that the thresholding improves the estimation of β.

Estimation of β

As previously, to estimate β, we will first consider β 0 = Σ -1/2 β and then apply a thresholding strategy. Thus, we propose to estimate β by β = ( β ( M ) j ) 1≤j ≤p where β (M ) j is defined by:

β (M ) j (λ) = β 0j (λ), j ∈ Top M 0, j Top M .
(2.8)

The choice of M(λ) is explained in Section 2.2.4.

As we can see from Figure 2.3, more true non null (active) components of β (true positive) and more true null (non active) components of β (true negative) can be retrieved with β than with β 0 . We can thus conclude from Figures 2.2 and 2.3 that both thresholdings improve the variable selection.

Choice of the parameters

To choose the parameters K and M in (2.7) and (2.8) for each λ, we use a strategy based on the Mean Squared Error (MSE). We shall first explain the strategy that we used for choosing K. Let

MSE K (λ) = y -X β (K ) (λ) 2 2 ,
where y, X and β (K ) (λ) are defined in (2.1), (2.4) and (2.7), respectively and

K(λ) = arg min K ≥ 1 s.t. MSE K +1 (λ) MSE K (λ) ≥ γ , where γ ∈ (0, 1).
Large values of γ will lead to large values of K(λ) and thus to a weak thresholding of the estimator of β. In practice, as it is shown in Section 2.3, taking γ in (0.9,0.99) provides satisfactory and almost similar results.

For the choice of M(λ), we use the same procedure except that MSE K (λ) is replaced by

MSE M (λ) = y -X β (M ) (λ) 2 2 ,
(2.9)

where y, X and β (M ) (λ) are defined in (2.1) and (2.8), respectively. Both criteria are displayed in Figure 2.4 for a value of λ which is chosen according to the strategy explained in Section 2.3.2.

To better understand the impact of the choice of M and K on the True Positive Rate (TPR) and the False Positive Rate (FPR) for this value of λ, Figure 2.5 displays the TPR and FPR for different values of K and M. We can see from this figure that our choice of M and K, displayed with a red star, guarantees a good trade-off between the TPR and FPR.

Estimation of Σ

Since the matrix Σ is unknown in practice, it has to be estimated. In the particular situation where Σ has the block structure described in (2.5), we propose the following strategy. Firstly, we compute the empirical correlation matrix as follows. Let S be the sample p × p covariance matrix defined by

S = 1 n -1 n i=1 (x i -x) (x i -x) , with x = 1 n n i=1 x i ,
where x i denotes the ith row of X defined in (2.1). The corresponding p × p sample correlation matrix R = (R i, j ) is defined by:

R i, j = S i, j σ i σ j , ∀1 ≤ i, j ≤ p, (2.10) 
where

σ 2 i = 1 n -1 n =1 (X ,i -X i ) 2 , with X i = 1 n n =1 X ,i , ∀1 ≤ i ≤ p.
Secondly, the two groups (or clusters) of active and non active biomarkers are obtained by using a hierarchical clustering with the complete agglomeration method on the matrix R. Thirdly, the entries of Σ are computed by averaging the values of R within the groups. More precisely, let ρ i, j denote the value of the entries in the block having its rows corresponding to Cluster i and its columns to Cluster j. Then, for a given clustering C:

ρ i, j =                  1 #C(i)#C(j) k ∈C(i), ∈C(j) R k, , if C(i) C(j) 1 #C(i)(#C(i) -1) k ∈C(i), ∈C(i),k R k, , if C(i) = C(j) , (2.11) 
where C(i) denotes the cluster i, #C(i) denotes the number of elements in the cluster C(i) and R k, is the (k, ) entry of the matrix R defined in (2.10).

We illustrate the performance of our method in Figure 2.6 in the case where Σ has the structure (2.5) with (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7).

We can see from this figure that the proposed methodology for estimating the correlation coefficients within the blocks of Σ is efficient.

Summary of the WLasso method

The WLasso method can be summarized as follows:

• First step: Estimation of the matrix Σ by Σ, see Section 2.2.5.

• Second step: Transformation of Model (2.1) into Model (2.4) to remove the correlation existing between the columns of X, see Section 2.2.1 where Σ is replaced by Σ.

• Third step: Estimation of β defined in (2.4), see Section 2.2.2.

• Fourth step: Estimation of β defined in (2.1), see Section 2.2.3 and identification of its null and non null components.

Numerical experiments

We performed numerical experiments to assess the performance of the WLasso and to compare it with other recent approaches.

All simulated datasets were generated from Model (2.1) where the n rows of X are assumed to be independent Gaussian random vectors with a covariance matrix equal to Σ and is a standard Gaussian random vector independent of X. Moreover, the number of predictors (biomarkers) p is equal to 100, 200, 500, 1000 or 2000 and the sample size n is equal to 50 or 100. We randomly chose 10 non null coefficients among the p coefficients of β which correspond to the active biomarkers, thus considering different sparsity levels. The value b of the non null coefficients is equal to either 0.5 or 1 to consider different signal-to-noise ratios.

Regarding the correlation matrix Σ which contains the correlation values between the biomarkers, namely the correlations between the columns of the design matrix X, several structures were considered:

• Block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7) and (0.5, 0.7, 0.9);

• Independent setting where Σ is the identity matrix.

The results that are presented hereafter are obtained from 100 replications. Note that other correlation structures are considered in the Supplementary Material.

Since the objective of WLasso is to work with structures where the IC is violated, it should not be surprising that WLasso performs similarly to Lasso if this condition is satisfied.

Estimation of Σ

To evaluate the impact of the estimation of Σ, simulations were performed to compare the performance of WLasso when Σ is known and when it is estimated. The results are displayed in Figure 2.7 for several values of γ (0.9, 0.95, 0.97) which is a parameter appearing in Section 2.2.4. In the top left part of this figure the empirical mean of the largest difference between the True Positive Rate (TPR) and False Positive Rate (FPR) over the replications is displayed for several values of p and for n = 50. It is obtained by selecting for each replication the value of λ achieving the largest difference between the TPR and FPR and by averaging these differences. In the top right and bottom parts of the figure, the empirical means of the corresponding TPR and FPR are displayed, respectively. We can see from this figure that for the value of λ maximizing the difference between TPR and FPR and for all the values of γ , all the active variables are properly retrieved without selecting non active variables when Σ is known. In the case where Σ is estimated by using the approach described in Section 2.2.5, 75% of the active variables are recovered and less than 1% of non active variables are wrongly estimated as active variables for p larger than 1000 and independently of the considered values of γ . Note that the results displayed in Figure 2.7 are obtained when (b, n) = (0.5, 50) but we obtained similar conclusions for (b , n) = (1, 50), (b, n) = (0.5, 100) and(1, 100). 

Choice of λ

For tuning the parameter λ involved in WLasso, we propose choosing the value which minimizes MSE M (λ) (λ) defined in (2.9). In Figure 2.14 of the Supplementary material, we compare the performance of WLasso with this choice of λ (dotted line, also noted as WLasso in the simulation) to the optimal one, called WLasso optimal, obtained when λ is chosen to yield the largest difference between the TPR and the FPR. We can observe from this figure that, for the different values of γ , the TPR is 30% smaller when λ is estimated but that the FPR is quite similar. Additional comparaisons between Wlasso and Wlasso optimal can be found in Section 3.3 for b = 0.5 and in the Supplementary Material for b = 1.

Comparison with other methods

In this section, we compare our methodology with other approaches: the classical Lasso described in Tibshirani (1996a) and two recently proposed methods aiming at handling the correlations between the columns of the design matrix X: HOLP and Precision Lasso proposed by [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] and [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF], respectively. This comparison is performed by computing the TPR and FPR of these approaches for different values of the parameters involved in each of them.

The grid of λ for the classical Lasso and for WLasso is provided by the glmnet and genlasso R packages, respectively. Concerning the Precision Lasso, we numerically found for each value of n and p the λ min and λ max leading to p non null estimated coefficients and p null estimated coefficients, respectively. Then, we chose 100 values of λ uniformly distributed in the interval [λ min , λ max ] and we used the light implementation of the Precision Lasso. As for HOLP, β is estimated by βHOLP = X T (XX T ) -1 y. Then, for each s in {1, . . . , p}, the components of β which are estimated as non null are the s largest among the | βHOLP,j |, where βHOLP,j denotes the jth components of βHOLP . In this case, the parameter controlling the sparsity level of the estimator of β is s. It has a similar role as λ in the previous approaches.

The corresponding results are displayed in Figures 2.8 and 2.9 in the case where n = 50 and b = 0.5 and Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7) and (0.5, 0.7, 0.9), respectively. The top left part of these figures displays displays the average over the replications of the largest difference between TPR and FPR for different values of p, which corresponds to an optimal choice of the parameters. For WLasso, we also display the results obtained when the parameter λ is chosen by using the strategy proposed in Section 2.3.2, γ = 0.95 and Σ is estimated using the procedure explained in Section 2.2.5. The corresponding TPR and FPR for each method are displayed in the top right part and bottom part of the figures, respectively. Note that we also conducted experiments in the case where b = 1. Since the conclusions are very similar, the corresponding figures are given in the Supplementary material.

We can see from Figures 2.8 and 2.9 that WLasso outperforms the other methods: the TPR is one of the largest while the FPR is the smallest. HOLP has a larger TPR than WLasso. However, the associated FPR is much larger. It has moreover to be noticed that Lasso, HOLP and Precision Lasso are favored with respect to WLasso since their parameters were chosen to optimize their performance in terms of TPR and FPR whereas, in WLasso, the parameter λ was chosen by using the strategy of Section 2.3.2 and Σ was estimated. 100. We observe from this figure that the overall performance has been improved and that both WLasso optimal and WLasso outperforms the others especially in the case where p is large. Similar results are obtained in the case where b = 1 and (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9). We refer the reader to the Supplementary material for further details.

Figure 2.11 displays the performance of the different methodologies in the case where Σ = Id, n = 50 and b = 0.5, that is in the case where there is no correlation between the biomarkers (columns of X). We can see from this figure that even in this case, WLasso, which is designed for handling the correlation between the biomarkers, obtains similar results as the Lasso in terms of TPR-FPR except for small values of p. In the case where n = 100, WLasso obtains the best results in terms of TPR-FPR for p larger than 250, see the Supplementary material. 

Numerical performance

Figure 2.12 displays the computational times of WLasso implemented in the R package WLasso for different values of p and of the parameter "maxsteps" (maximum number of steps/λs considered in the algorithm) involved in the genlasso R package and n = 50. The timings were obtained on a workstation with 8GB of RAM and Intel Core i5 (2.4GHz) CPU. We can see from this figure that it takes only 6 minutes for processing data when p = 2000.

Moreover, we can observe from Figure 2.13 that the most time consuming step of WLasso is the one where the generalized Lasso criterion is used (blue part in Figure 2.13). However, the computational time of this step was divided by two when the parameter "maxsteps" was changed from 2000 (default value) to 500 without changing the variable selection results. Note that all the numerical results of the previous sections were obtained with the default value of "maxsteps" (2000). 

Application to gene expression data in breast cancer

We applied the previously detailed methods to publicly available data at Gene Expression Omnibus database (www.ncbi.nlm.nih.gov/geo), with accession code GSE2990, see [START_REF] Sotiriou | Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis[END_REF]. A total of n = 189 tumor samples from patients with breast cancer were available and their microarray data were collected on 22,283 probes. Expression data were preprocessed and normalized as in the original publication. A filtering step based on the interquartile range (IQR) was considered to remove some probes as in [START_REF] Gentleman | Bioinformatics and Computational Biology Solutions Using R and Bioconductor (Statistics for Biology and Health)[END_REF]. We removed probes with IQR < 1.5 and those which lack of annotation. The remaining p = 1, 111 probes were then standardized. The goal of the application is to identify genes potentially related to breast cancer prognosis. To this end, the ESR1 gene expression was considered as the variable y to explain (response variable) as it is well known to be associated with breast cancer prognosis as recently explained by [START_REF] Wu | Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis[END_REF].As all patients in the application are ER+ breast cancer patients, the choice of this gene expression is justified. The standardized 1,111 probes were considered as explanatory variables.

We implemented the approaches investigated in Section 2.3 and illustrated their genes selection. For WLasso, we used the methodology described in Section 2.2.5 for estimating the correlation matrix Σ. The heatmap of the correlation between probes is provided in Figure 2.28 of the Supplementary material and the coefficients α 1 , α 2 and α 3 were estimated by α1 = 0.17, α2 = 0.21 and α3 = 0.52, respectively. The parameter λ was chosen by cross-validation for the Lasso penalty, and the number of selected variables for Precision Lasso and HOLP was chosen in order to select approximately the same number of variables as with WLasso. Table 2.1 given in the Supplementary material provides the list of genes corresponding to the selected probes for each method. Unfortunately, HOLP could not provide any results since it requires the computation of the inverse of the matrix XX T which is not invertible in this case. The matrix X T is indeed not full rank in this dataset. WLasso and Lasso selected almost the same number of genes, i.e. 63 and 66 genes respectively. Interestingly, the selection of the two methods is quite different with only 8 genes in common. Within these genes, some are already known in the literature to be associated with breast cancer prognosis such as TOP2A or NAT1 genes. In addition, some other potential prognostic genes were selected by one of the two methods, for example: BCL-2 for the Lasso, or GATA3 and CXCL12 for the WLasso. The selected genes for the Precision Lasso are also quite different from the other methods: 8 and 6 genes in common with WLasso and Lasso, respectively. Among the genes selected by the Precision Lasso, some are also known in the literature to be associated with the breast cancer prognosis such as GSTT1 or GATA3 also identified by WLasso. This application suggests that the WLasso can select meaningful variables in a context of correlated biomarker data. Nevertheless, this application can only be viewed as an illustration and cannot be used to formally compare or validate the methods in terms of variable selection.

Conclusion

In this paper, we proposed an innovative, efficient and fully data-driven method to deal with the variable selection issue in high-dimensional frameworks where the active variables are highly correlated with the non-active ones, and is implemented in the WLasso R package. The proposed WLasso method has been assessed and compared with other methods in a simulation study with several scenarios. In the highly correlated setting, WLasso successfully identifies more true positives with limited false positives as compared with the classical Lasso. Contrary to HOLP, WLasso still works when several columns are linearly dependent and does not suffer from the inflation of noise introduced by the preconditioning. Compared with the recent Precision Lasso approach, which aims to deal with the same issue, WLasso obtained better results in terms of selection accuracy in the different settings considered. The poor performance of the Precision Lasso are consistent with the findings in [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] in a low to moderate sample size setting even with highly correlated structure since the method selected a high number of false positives as compared to the true positives. WLasso is also very computationally efficient and demonstrated its abilities to identify some genes possibly related to breast cancer prognosis from a publicly available gene expression dataset. However, the following directions could be considered to improve its performance.

Firstly, the method that we used for estimating Σ could be improved by using more sophisticated approaches such as [START_REF] Perrot-Dockès | Estimation of large block structured covariance matrices: Application to "multi-omic" approaches to study seed quality[END_REF]. Secondly, the way of choosing the parameter λ for the final model selection could also be improved by considering cross-validation or stability selection. Until now, a simple approach has been considered to avoid computation time and performed quite well especially for moderate to high sample size. Thirdly, most of the computational time of WLasso is spent in the application of the generalized Lasso criterion.

Hence, for an application to genomic datasets having more than twenty thousands of variables, it could be worth speeding it up. This will be the subject of future work. .17: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9), b = 1 and n = 50. Chapter 3 -Sign Consistency of the Generalized Elastic Net Estimator
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Abstract

In this paper, we propose a novel variable selection approach in the framework of high-dimensional linear models where the columns of the design matrix are highly correlated. It consists in rewriting the initial high-dimensional linear model to remove the correlation between the columns of the design matrix and in applying a generalized Elastic Net criterion since it can be seen as an extension of the generalized Lasso. The properties of our approach called gEN (generalized Elastic Net) are investigated both from a theoretical and a numerical point of view. More precisely, we provide a new condition called GIC (Generalized Irrepresentable Condition) which generalizes the EIC (Elastic Net Irrepresentable Condition) of [START_REF] Jia | On model selection consistency of the elastic net when p > n[END_REF] under which we prove that our estimator can recover the positions of the null and non null entries of the coefficients when the sample size tends to infinity. We also assess the performance of our methodology using synthetic data and compare it with alternative approaches. Our numerical experiments show that our approach improves the variable selection performance in many cases. 

Introduction

Variable selection has become an important and actively used task for understanding or predicting an outcome of interest in many fields such as medicine [START_REF] Lu | Stepwise selection on homeologous prr genes controlling flowering and maturity during soybean domestication[END_REF][START_REF] Gunter | Variable selection for qualitative interactions in personalized medicine while controlling the family-wise error rate[END_REF][START_REF] Gu | Bayesian two-step lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints[END_REF][START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF], social media [START_REF] Tufekci | Big questions for social media big data: Representativeness, validity and other methodological pitfalls[END_REF][START_REF] Lin | What does social media say about your stress?[END_REF][START_REF] Tomeny | Geographic and demographic correlates of autism-related anti-vaccine beliefs on twitter, 2009-15[END_REF], or finance [START_REF] Sermpinis | Modelling market implied ratings using lasso variable selection techniques[END_REF][START_REF] Amendola | Variable selection in high-dimensional regression: A nonparametric procedure for business failure prediction[END_REF][START_REF] Uniejewski | Understanding intraday electricity markets: Variable selection and very short-term price forecasting using lasso[END_REF]. Through decades, numerous variable selection methods have been developed such as subset selection [START_REF] Draper | Applied regression analysis[END_REF] or regularization techniques [START_REF] Bickel | Regularization in statistics[END_REF]. Subset selection methods achieve sparsity by selecting the best subset of relevant variables using the Akaike information criterion [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] or the Bayesian information criterion [START_REF] Schwarz | Estimating the dimension of a model[END_REF] but are shown to be NP-hard and could be unstable in practice [START_REF] Welch | Algorithmic complexity: three np-hard problems in computational statistics[END_REF][START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF]. The regularized variable selection techniques have become popular for their capability to overcome the above difficulties (Tibshirani, 1996a;[START_REF] Hastie | Statistical Learning with Sparsity: The Lasso and Generalizations[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF][START_REF] Wu | Genome-wide association analysis by lasso penalized logistic regression[END_REF]. Among them, the Lasso approach (Tibshirani, 1996a) is one of the most popular and can be defined as follows. Let y satisfy the following linear model

y = Xβ + , (3.1)
where y = ( 1 , . . . , n ) T ∈ R n is the response variable, T denoting the transposition, X = (X 1 , . . . , X p ) is the design matrix with n rows of observations on p covariates, β = (β 1 , . . . , β p ) T ∈ R p is a sparse vector, namely contains a lot of null components, and is a Gaussian vector with zero-mean and a covariance matrix equal to σ 2 I n , I n denoting the identity matrix in R n . The Lasso approach estimates β with a sparsity enforcing constraint by minimizing the following penalized least-squares criterion:

L Lasso λ (β) = y -Xβ 2 2 + λ β 1 , (3.2) 
where

a 1 = p k =1 |a k | denotes the 1 norm of the vector (a 1 , . . . , a p ) T , b 2 2 = n k =1 b 2 k denotes the 2 norm of the vector (b 1 , . . . , b n ) T ,
and λ is a positive constant corresponding to the regularization parameter. The Lasso popularity largely comes from the fact that the resulting estimator

β Lasso (λ) = arg min β ∈R p L Lasso λ (β)
is sparse (has only a few nonzero entries), and sparse models are often preferred for their interpretability [START_REF] Zhao | On model selection consistency of lasso[END_REF]. Moreover, β Lasso (λ) can be proved to be sign consistent under some assumptions, namely there exists λ such that

lim n→∞ P si n β Lasso (λ) = si n(β ) = 1,
where sign(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0. Before giving the conditions under which [START_REF] Zhao | On model selection consistency of lasso[END_REF] prove the sign consistency of β Lasso , we first introduce some notations. Without loss of generality, we shall assume as in [START_REF] Zhao | On model selection consistency of lasso[END_REF]) that the first q components of β are non null (i.e. the components that are associated to the active variables, and denoted as β 1 ) and the last pq components of β are null (i.e. the components that are associated to the non active variables, and denoted as β 2 ). Moreover, we shall denote by X 1 (resp. X 2 ) the first q (resp. the last pq) columns of X. Hence, C n = n -1 X T X, which is the empirical covariance matrix of the covariates, can be rewritten as follows:

C n = C n 11 C n 12 C n 21 C n 22 , with C n 11 = n -1 X T 1 X 1 , C n 12 = n -1 X T 1 X 2 , C n 21 = n -1 X T 2 X 1 , C n 22 = n -1 X T 2 X 2 .
It is proved by [START_REF] Zhao | On model selection consistency of lasso[END_REF]) that β Lasso (λ) is sign consistent when the following Irrepresentable Condition (IC) is satisfied:

C n 21 (C n 11 ) -1 sign(β 1 ) j ≤ 1 -α, for all j, (3.3) 
where α is a positive constant. In the case where p n, Wainwright develops in [START_REF] Wainwright | Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (lasso)[END_REF] the necessary and sufficient conditions, for both deterministic and random designs, on p, q, and n for which it is possible to recover the positions of the null and non null components of β , namely its support, using the Lasso.

When there are high correlations between covariates, especially the active ones, the C n 11 matrix may not be invertible, and the Lasso estimator fails to be sign consistent. To circumvent this issue, Zou and Hastie [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] introduced the Elastic Net estimator defined by:

β E N (λ, η) = arg min β ∈R p L E N λ,η (β), (3.4) 
where

L E N λ,η (β) = y -Xβ 2 2 + λ β 1 + η β 2 with λ, η > 0.
Yuan and Lin prove in [START_REF] Yuan | On the nonnegative garrote estimator[END_REF]) that when the following Elastic Net Condition (EIC) is satisfied the Elastic Net estimator defined by (3.4) is sign consistent when p and q are fixed: there exist positive λ and η such that

C n 21 C n 11 + η n I q -1 sign(β 1 ) + 2η λ β 1 j ≤ 1 -α, for all j.
(3.5)

Moreover, when p, q, and n go to infinity with p n, Jia and Yu prove in [START_REF] Jia | On model selection consistency of the elastic net when p > n[END_REF] that the sign consistency of the Elastic Net estimator holds if additionally to Condition (3.5) n goes to infinity at a rate faster than q log(pq).

In the case where the active and non active covariates are highly correlated, IC (3.3) and EIC (3.5) may be violated. To overcome this issue several approaches were proposed: the Standard PArtial Covariance (SPAC) method [START_REF] Xue | Variable selection for highly correlated predictors[END_REF] and preconditioning approaches among others. Xue and Qu [START_REF] Xue | Variable selection for highly correlated predictors[END_REF] developed the so-called SPAC-Lasso which enjoys strong sign consistency in both finite-dimensional (p < n) and high-dimensional (p n) settings. However, the authors mentioned that the SPAC-Lasso method only selects the active variables that are not highly correlated to the non active ones, which may be a weakness of this approach. The preconditioning approaches consist in transforming the given data X and y before applying the Lasso criterion. For example, [START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] and [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed to left-multiply X, y and thus in Model (3.1) by specific matrices to remove the correlations between the columns of X. A major drawback of the latter approach, called HOLP (High dimensional Ordinary Least squares Projection), is that the preconditioning step may increase the variance of the error term and thus may alter the variable selection performance.

Recently, [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF] proposed another strategy under the following assumption:

1. X is assumed to be a random design matrix such that its rows (x i ) 1≤i ≤n are i.i.d. zero-mean Gaussian random vectors having a covariance matrix equal to Σ.

More precisely, they propose to rewrite Model (3.1) in order to remove the correlation existing between the columns of X. Let Σ -1/2 := U D -1/2 U T where U and D are the matrices involved in the spectral decomposition of the symmetric matrix Σ given by: Σ = U DU T , then, denoting X = XΣ -1/2 , (3.1) can be rewritten as follows:

y = X β + , (3.6 
)

where β = Σ 1/2 β := U D 1/2 U T β .
With such a transformation, the covariance matrix of the n rows of X is equal to identity and the columns of X are thus uncorrelated. The advantage of such a transformation with respect to the preconditioning approach proposed by [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] is that the error term is not modified thus avoiding an increase of the noise which can overwhelm the benefits of a well conditioned design matrix. Their approach then consists in minimizing the following criterion with respect to β:

y -X β 2 2 + λ Σ -1/2 β 1 , (3.7)
where X = XΣ -1/2 in order to ensure a sparse estimation of β thanks to the penalization by the 1 norm.

This criterion actually boils down to the Generalized Lasso proposed by (Tibshirani and Taylor, 2011):

L enl asso λ ( β) = y -X β 2 2 + λ D β 1 , with λ > 0 (3.8) and D = Σ -1/2 .
Since, as explained in [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF], some problems may occur when the rank of the design matrix is not full, we will consider in this paper the following criterion:

L E N λ,η ( β) = y -X β 2 2 + λ Σ -1/2 β 1 + η β 2 2
, with λ, η > 0.

(3.9) Since it consists in adding an L 2 penalty part to the Generalized Lasso as in the Elastic Net, we will call it generalized Elastic Net (gEN). We prove in Section 3.2 that under Assumption 1 and the Generalized Irrepresentable Condition (GIC) (3.12) given below among others, β is a sign-consistent estimator of β where β is defined by

β = Σ -1/2 β, (3.10) with β = arg min β L E N λ,η β , (3.11) L E N λ,η
β being defined in Equation (3.9). The Generalized Irrepresentable Condition (GIC) can be stated as follows: There exist λ, η, α, δ 4 > 0 such that for all j,

P (C n 21 + η n Σ 21 )(C n 11 + η n Σ 11 ) -1 sign(β 1 ) + 2η λ β 1 - 2η λ Σ 21 β 1 j ≤ 1 -α = 1-o e -n δ 4 .
(3.12)

Note that GIC coincides with EIC when X is not random and Σ = I p . Moreover, GIC does not require C n 11 to be invertible. Since EIC and IC are both particular cases of GIC, if the IC or EIC holds, then there exist λ or η such that the GIC holds.

The rest of the paper is organized as follows. Section 3.2 is devoted to the theoretical results of the paper. More precisely, we prove that under some mild conditions β defined in (3.10) is a sign-consistent estimator of β . To support our theoretical results, some numerical experiments are presented in Section 3.3. The proofs of our theoretical results can be found in Section 3.5.

Theoretical results

The goal of this section is to establish the sign consistency of the Generalized Elastic Net estimator defined in (3.10). To prove this result, we shall use the following lemma. Lemma 3.2.1. Let y satisfying Model (3.1) under Assumption 1 and β be defined in (3.10). Then,

P si n β = si n(β ) ≥ P (A n ∩ B n ) , (3.13)
where

A n := C n, Σ 11 -1 W n (1) < √ n β 1 - λ 2n C n, Σ 11 -1 si n(β 1 ) - η n C n, Σ 11 -1 Σ 11 β 1 , B n := C n, Σ 21 C n, Σ 11 -1 W n (1) -W n (2) ≤ λ 2 √ n - λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 , and 
C n, Σ 11 = C n 11 + η n Σ 11 , C n, Σ 21 = C n 21 + η n Σ 21 , W n = 1 √ n X T = W n (1) W n (2) , (3.14) with W n (1) = 1 √ n X T 1 and W n (2) = 1 √ n X T 2 .
The proof of Lemma 3.2.1 is given in Section 3.5.

The following theorem gives the conditions under which the sign consistency of the generalized Elastic Net estimator β defined in (3.10) holds.

Theorem 3.2.2. Assume that y satisfies Model (3.1) under Assumption 1 with p = p n such that p n exp n -δ tends to 0 as n tends to infinity for all positive δ . Assume also that there exist some positive constants M 1 , M 2 , M 3 and α satisfying

M 1 < β 2 min 9σ 2 and 2 + √ 2 √ M 3 σ α < β min 3M 2 √ q , (3.15)
and that there exist λ > 0 and η > 0 such that (3.12) and

λ n < 2β min 3M 2 √ q , (3.16) λ n ≥ 2 2 + √ 2 √ M 3 σ α , (3.17) η n < 1 3M 2 λ max (Σ 11 ) × β min β 1 2 , (3.18)
hold as n tends to infinity, where β min = min 1≤j ≤q β 1 j . Suppose also that there exist some positive constants δ 1 , δ 2 , δ 3 such that, as n → ∞,

P λ max H A H T A ≤ M 1 = 1 -o e -n δ 1 , (3.19) P λ max C n, Σ 11 -1 ≤ M 2 = 1 -o e -n δ 2 ,
(3.20)

P λ max H B H T B ≤ M 3 = 1 -o e -n δ 3 , (3.21)
where λ max (A) denotes the largest eigenvalue of A,

H A = 1 √ n C n, Σ 11 -1 X T 1 and H B = 1 √ n C n, Σ 21 C n, Σ 11 -1 X T 1 -X T 2 ,
C n, Σ 11 and C n, Σ 21 being defined in (3.14) and X 1 (resp. X 2 ) denoting the first q (resp. the last pq) columns of X. Then,

P si n β = si n(β ) → 1, as n → ∞,
where β is defined in (3.10).

Note that Conditions (3.16) and (3.17) are consistent thanks to (3.15). The proof of Theorem 3.2.2 is given in Section 3.5 and a discussion on the assumptions of Theorem 3.2.2 is provided in Section 3.3.

Numerical experiments

The goal of this section is to discuss the assumptions and illustrate the results of Theorem 3.2.2. For this, we generated datasets from Model (3.1) where the matrix Σ appearing in 1 is defined by

Σ = Σ 11 Σ 12 Σ T 12 Σ 22 . (3.22)
In (3.22), Σ 11 is the correlation matrix of the active variables having its off-diagonal entries equal to α 1 , Σ 22 is the correlation matrix of the non active variables having its off-diagonal entries equal to α 3 and Σ 12 is the correlation matrix between the active and the non active variables with entries equal to α 2 . In the numerical experiments, (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7). Moreover, β appearing in Model (3.1) has q non zero components which are equal to b and σ = 1. The number of predictors p is equal to 200, 400, or 600 and the sample size n takes the same values for each value of p.

3.3.1. Discussion on the assumptions of Theorem 3.2.2 We first show that GIC defined in (3.12) can be satisfied even when EIC and IC, defined in (3.5) and (3.3) respectively, are not fulfilled. For this, we computed for different values of λ and η the following values:

IC = max j C n 21 (C n 11 ) -1 (sign(β 1 ) j EIC = min λ,η max j C n 21 (C n 11 + η n I q ) -1 (sign(β 1 ) + 2η λ β 1 ) j GIC = min λ,η max j (C n 21 + η n Σ 21 )(C n 11 + η n Σ 11 ) -1 sign(β 1 ) + 2η λ β 1 - 2η λ Σ 21 β 1 j (3.23)
and Figure 3.1 displays the boxplots of these criteria obtained from 100 replications. We can see from these figures that in all the considered cases GIC is satisfied (i.e. all values are smaller than 1) whereas EIC and IC are not. The values of p and n do not seem to have a big impact on EIC and IC. However, contrary to p, n seems to have an influence on GIC which increases with n when b = 1 and decreases when n increases when b = 10. 3.21) with respect to η for different values of n, p and for q = 5 or 10. These plots thus provide lower bounds for M 1 , M 2 and M 3 appearing in the previous equations. Observe that (3.18) can be rewritten as:

ηM 2 < n 3λ max (Σ 11 ) × β min β 1 2 .
(3.24)

Based on the plots at the bottom right of Figures 3.2 and 3.3, we can see that there exist η's satisfying Condition 3.24 and thus (3.18) and that the interval in which the adapted η's lie is larger when q = 5 than when q = 10.

Based on the average of M 1 previously obtained, the left part of (3.15) is always satisfied as soon as b > √ 18. Based on the average of M 2 and M 3 previously obtained, the average of left-hand side and of the right-hand side of the right part of Equation (3.15) are displayed in Figures 3.4 and 3.5. We can see from these figures that it is only satisfied for large values of b. Moreover, it is more often satisfied when q = 5 than for q = 10.

We will show in the next section that even if the cases where all the conditions of the theorem are not fulfilled our method is robust enough to outperform the Elastic Net defined in (3.4) even in these cases.

Comparison with other methods

To assess the performance of our approach (gEN) in terms of sign-consistency with respect to other methods and to illustrate the results of Theorem 3.2.2, we than Elastic Net. We can also see that the difference between the performance of gEN and Elastic Net is larger for high signal-to-noise ratios (b = 10). It has to be noticed that when TPR=1 for our approach it also means that the signs of the non null β i are also properly retrieved.

Since Σ is unknown in practice, we also provide in Figure 3.9 the performance of our approach when Σ is estimated by using the R package cvCovEst. This latter approach is denoted gEN_est. More precisely, Figure 3.9 displays the empirical mean of the largest difference between the True Positive Rate and the False Positive Rate over the replications. It is obtained by selecting for each replication the value of λ and η achieving the largest difference between the TPR and FPR and by averaging these differences. This figure also displays the corresponding TPR and FPR for gEN with oracle Σ and Elastic Net for different values of n. We observe that all compared methods have TPR=1, which means that all True Positives have been retrieved. However, the False Positives selected by gEN (whether Σ was estimated or not) is smaller. Although this rate is slightly higher for gEN when Σ was estimated, gEN_est still outperforms ELastic Net. Here q = 10.

Discussion

In this paper, we proposed a novel variable selection approach called gEN (generalized Elastic Net) in the framework of linear models where the columns of the design matrix are highly correlated and thus when the standard Lasso criterion usually fails. We proved that under mild conditions, among which the GIC, which is valid when other standard conditions like EIC or IC are not fulfilled, our method provides a sign-consistent estimator of β . For a more thorough discussion regarding the application of our approach in practical situations, we refer the reader to [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF]. Note that (3.9) given by:

L E N ( β) = y -X β 2 2 + λ Σ -1/2 β 1 + η β 2 2
can be rewritten as

L E N ( β) = y * -X * β 2 2 + λ Σ -1/2 β 1 , where y * = y 0 , X * = X √ ηI p .
Then, β satisfies

X * T y * -X * β = λ 2 (Σ -1/2 ) T z, (3.25)
where A T denotes the transpose of the matrix A, and

         z j = si n (Σ -1/2 β) j , if (Σ -1/2 β) j 0 z j ∈ [-1, 1], if (Σ -1/2 β) j = 0 .
Equation (3.25) can be rewritten as:

X T y -X T X + ηΣ β = λ 2 z which leads to X T X(β -β) + X T -ηΣ β = λ 2 z,
by using that y = Xβ + . By using the following notations:

u = β -β , C n = 1 n X T X and W n = 1 √ n X T , Equation (3.25) becomes C n + η n Σ √ n u + η √ n Σβ -W n = - λ 2 √ n z.
(3.26)

With the following notations:

C n = C n 11 C n 12 C n 21 C n 22 , Σ = Σ 11 Σ 12 Σ 21 Σ 22 , u = u 1 u 2 , W n = W n (1) W n (2) , β = β 1 0 ,
the first components of Equation (3.26) are:

C n 11 + η n Σ 11 √ n u 1 + C n 12 + η n Σ 12 √ n u 2 + η √ n Σ 11 β 1 -W n (1) = - λ 2 √ n si n(β 1 ).
(3.27)

If u = u 1 0
, it can be seen as a solution of the generalized Elastic Net criterion where, by Equation (3.27), u 1 is defined by:

√ n u 1 = C n, Σ 11 -1 W n (1) - η √ n C n, Σ 11 -1 Σ 11 β 1 - λ 2 √ n C n, Σ 11 -1
si n(β 1 ), (3.28)

where we used (3.14). Note that the event A n can be rewritten as follows:

√ n -β 1 + λ 2n C n, Σ 11 -1 si n(β 1 ) + η n C n, Σ 11 -1 Σ 11 β 1 < C n, Σ 11 -1 W n (1) < √ n β 1 - λ 2n C n, Σ 11 -1 si n(β 1 ) - η n C n, Σ 11 -1 Σ 11 β 1 which implies √ n -β 1 + λ 2n C n, Σ 11 -1 si n(β 1 ) + η n C n, Σ 11 -1 Σ 11 β 1 < C n, Σ 11 -1 W n (1) < √ n β 1 + λ 2n C n, Σ 11 -1 si n(β 1 ) + η n C n, Σ 11 -1 Σ 11 β 1 , using that -|x | ≤ x ≤ |x |, ∀x ∈ R.
Then, by using (3.28), we get that

√ n| u 1 | < √ n|β 1 | and thus | u 1 | < |β 1 |. Notice that | u 1 | < |β 1 | implies that β 1 0 and that si n( β 1 ) = si n(β 1 ). Moreover, since u 2 = 0, we get that si n( β) = si n(β ).
The last components of (3.26) satisfy:

C n 21 + η n Σ 21 √ n u 1 + C n 22 + η n Σ 22 √ n u 2 + η √ n Σ 21 β 1 -W n (2) = - λ 2 √ n z 2 ,
where by (3.25), |z 2 | ≤ 1. Hence,

C n 21 + η n Σ 21 √ n u 1 + η √ n Σ 21 β 1 -W n (2) ≤ λ 2 √ n ,
which can be rewritten as follows by using (3.28):

C 21 C n, Σ 11 -1 W n (1) - η √ n Σ 11 β 1 - λ 2 √ n si n(β 1 ) + η √ n Σ 21 β 1 -W n (2) ≤ λ 2 √ n .
(3.29)

When the event B n is satisfied:

- λ 2 √ n + λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) - 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 ≤ C n, Σ 21 C n, Σ 11 -1 W n (1) -W n (2) ≤ λ 2 √ n - λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 . (3.30)
By using that -|x | ≤ x ≤ |x | for all x in R, we get that it implies that

C n, Σ 21 C n, Σ 11 -1 W n (1) -W n (2) - λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 + η √ n Σ 21 β 1 ≤ λ 2 √ n ,
which corresponds to (3.29). Thus, if A n and B n are satisfied, we get that si n β = si n (β), which concludes the proof.

3.5.2. Proof of Theorem 3.2.2 By Lemma 3.2.1,

P si n β = si n(β ) ≥ P (A n ∩ B n ) ≥ 1 -P A c n -P B c n ,
where A c n and B c n denote the complementary of A n and B n , respectively. Thus, to prove the theorem it is enough to prove that P A c n → 0 and P B c n → 0 as n → ∞.

Recall that

A n := C n, Σ 11 -1 W n (1) < √ n β 1 - λ 2n C n, Σ 11 -1 si n(β 1 ) - η n C n, Σ 11 -1 Σ 11 β 1 .
Let ζ and τ be defined by

ζ = C n, Σ 11 -1 W n (1) and τ = √ n β 1 - λ 2n C n, Σ 11 -1 si n(β 1 ) - η n C n, Σ 11 -1 Σ 11 β 1 .
Then,

P(A n ) = P ∀j, |ζ j | < τ j .
Thus,

P(A c n ) = P ∃j, |ζ j | ≥ τ j ≤ q j=1 P |ζ j | ≥ τ j .
Note that

P(|ζ j | ≥ τ j ) = P |ζ j | ≥ √ n (β 1 ) j - λ 2n C n, Σ 11 -1 si n(β 1 ) j - η n C n, Σ 11 -1 Σ 11 β 1 j = P |ζ j | + λ 2 √ n C n, Σ 11 -1 si n(β 1 ) j + η √ n C n, Σ 11 -1 Σ 11 β 1 j ≥ √ n (β 1 ) j ≤ P |ζ j | ≥ √ n (β 1 ) j 3 + P λ 2 √ n C n, Σ 11 -1 si n(β 1 ) j ≥ √ n (β 1 ) j 3 + P η √ n C n, Σ 11 -1 Σ 11 β 1 j ≥ √ n (β 1 ) j 3 .
(3.31)

Observe that

ζ = C n, Σ 11 -1 W n (1) = 1 √ n C n 11 + η n Σ 11 -1 X T 1 = H A ,
where

H A = 1 √ n C n 11 + η n Σ 11 -1 X T 1 ,
X 1 denoting the columns of the design matrix X associated to the q active covariates. Thus, for all j in {1, . . . , q},

ζ j = n k =1 (H A ) jk k .
By using the Cauchy-Schwarz inequality,

|ζ j | = n k =1 (H A ) jk k ≤ n k =1 (H A ) 2 jk 1/2 n k=1 2 k 1/2 = H A H T A j j × 2 ≤ λ max H A H T A × 2 .
Hence, the first term in the r.h.s. of (3.31) satisfies the following inequalities:

P |ζ j | ≥ √ n (β 1 ) j 3 ≤ P λ max H A H T A × 2 ≥ √ n (β 1 ) j 3 ≤ P λ max H A H T A × 2 2 ≥ n (β 1 ) 2 j 9 .
(3.32)

Since by (3.19), there exist M 1 > 0 and δ 1 > 0 such that

P λ max H A H T A ≤ M 1 = 1 -o e -n δ 1 , as n → ∞,
we have:

P λ max H A H T A × 2 2 ≥ n (β 1 ) 2 j 9 ≤ P 2 2 ≥ n (β 1 ) 2 j 9M 1 + P λ max H A H T A > M 1 ≤ P 2 2 σ 2 ≥ nβ 2 min 9M 1 σ 2 + o e -n δ 1 .
Using that

2 2
σ 2 ∼ χ 2 (n), we get, by Lemma (1) of [START_REF] Laurent | Adaptive estimation of a quadratic functional by model selection[END_REF], that 

P λ max H A H T A × 2 2 ≥ n (β 1 ) 2 j 9 ≤ exp - t 2 + 1 2 n (2t -n) + o e -n δ
P |ζ j | > √ n (β 1 ) j 3 ≤ exp - t 2 + 1 2 n (2t -n) + o e -n δ 1 , (3.34) with t = nβ 2 min 9M 1 σ 2 > n 2 .
Let us now derive an upper bound for the second term in the r.h.s. of (3.31):

P λ 2 √ n C n, Σ 11 -1 si n(β 1 ) j ≥ √ n (β 1 ) j 3 .
By using the Cauchy-Schwarz inequality, we get that:

C n, Σ 11 -1 si n(β 1 ) j = q k=1 C n, Σ 11 -1 jk si n(β 1 ) k ≤ q k =1 C n, Σ 11 -1 2 jk × si n(β 1 ) 2 ≤ C n, Σ 11 -2 j j × √ q ≤ λ max C n, Σ 11 -1 × √ q.
Then,

P λ 2 √ n C n, Σ 11 -1 si n(β 1 ) j ≥ √ n (β 1 ) j 3 ≤ P λ 2 q n λ max C n, Σ 11 -1 ≥ √ n (β 1 ) j 3 ≤ P λ max C n, Σ 11 -1 ≥ 2n 3λ √ q (β 1 ) j ≤ P λ max C n, Σ 11 -1 ≥ 2n 3λ √ q β min = o e -n δ 2 , as n → ∞, (3.35) since 2n 3λ √ q β min > M 2 by (3.16).
Let us now derive an upper bound for the third term in the r.h.s. of (3.31):

P η √ n C n, Σ 11 -1 Σ 11 β 1 j > √ n (β 1 ) j 3 .
We have

C n, Σ 11 -1 Σ 11 β 1 j = q k=1 C n, Σ 11 -1 Σ 11 jk β 1 k ≤ q k =1 C n, Σ 11 -1 Σ 11 2 jk × β 1 2 ≤ λ max C n, Σ 11 -1 Σ 2 11 C n, Σ 11 -1 × β 1 2 ≤ λ max C n, Σ 11 -1 λ max (Σ 11 ) × β 1 2 .
Thus,

P η √ n C n, Σ 11 -1 Σ 11 β 1 j ≥ √ n (β 1 ) j 3 ≤ P η √ n λ max C n, Σ 11 -1 λ max (Σ 11 ) β 1 2 ≥ √ n (β 1 ) j 3 ≤ P λ max C n, Σ 11 -1 ≥ nβ min 3η β 1 2 λ max (Σ 11 ) = o e -n δ 2 , as n → ∞, (3.36) since nβ min 3η β 1 2 λ max (Σ 11 ) > M 2 by (3.18).
By putting together Equations (3.34), (3.35) and (3.36), we get:

P A c n ≤ q exp - n 2 κ - √ 2κ -1 + q × o e -n δ 1 + 2q × o e -n δ 2 ,(3.37) with κ = β 2 min 9M 1 σ 2 . Note that κ - √ 2κ -1 > 0 since κ = β 2 min
9M 1 σ 2 > 1 by (3.15). Equation (3.37) then implies that

P A c n → 0 as n → ∞.
Let us now prove that P B c n → 0 as n → ∞. Recall that

B n := C n, Σ 21 C n, Σ 11 -1 W n (1) -W n (2) ≤ λ 2 √ n - λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 , Let ψ = C n, Σ 21 C n, Σ 11 -1 W n (1) -W n (2) = 1 √ n C n, Σ 21 C n, Σ 11 -1 X T 1 -X T 2 =: H B and µ = λ 2 √ n - λ 2 √ n C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 .
Then,

P(B c n ) = P(∃j, |ψ j | > µ j ) ≤ p j=q+1 P(|ψ j | > µ j ).
By using the Cauchy-Schwarz inequality, we get that:

|ψ j | = n k=1 (H B ) jk k ≤ n k =1 (H B ) 2 jk 1/2 × 2 = H B H T B j j × 2 ≤ λ max (H B H T B )× 2 , (3.38) 
where

H B H T B = C n, Σ 21 C n, Σ 11 -1 C n 11 C n, Σ 11 -1 C n, Σ 12 -C n, Σ 21 C n, Σ 11 -1 C n 12 -C n 21 C n, Σ 11 -1 C n, Σ 12 +C n 22 .
By (3.21), there exist M 3 > 0 and δ 3 > 0 such that

P λ max H B H T B ≤ M 3 = 1 -o e -n δ 3 , as n → ∞.
By the GIC condition (3.12), there exist α > 0 and δ 4 > 0 such that for all j,

P C n, Σ 21 C n, Σ 11 -1 si n(β 1 ) + 2η λ Σ 11 β 1 - 2η λ Σ 21 β 1 ≤ 1 -α = 1 -o e -n δ 4 .
Thus, we get that:

P(B c n ) ≤ p j=q+1 P |ψ j | > µ j ≤ p j=q+1 P |ψ j | > λα 2 √ n + (p -q)o e -n δ 4 ≤ p j=q+1 P λ max (H B H T B ) × 2 > λα 2 √ n + (p -q)o e -n δ 4 , using Equation (3.38) ≤ p j=q+1 P λ max (H B H T B ) × 2 2 > λ 2 α 2 4n + (p -q)o e -n δ 4 ≤ p j=q+1 P 2 2 σ 2 > λ 2 α 2 4nM 3 σ 2 + (p -q)o e -n δ 3 + (p -q)o e -n δ 4 ≤ (p -q) exp - s 2 + 1 2 n(2s -n) + (p -q)o e -n δ 3 + (p -q)o e -n δ 4 ≤ (p -q) exp - n 2 s n -2 s n -1 + (p -q)o e -n δ 3 + (p -q)o e -n δ 4 ≤ (p -q) exp - n 2 + (p -q)o e -n δ 3 + (p -q)o e -n δ 4
(3.39)

with s n = λ 2 α 2 4n 2 M 3 σ 2 since λ 2 α 2 4n 2 M 3 σ 2 ≥ 2 + √
2 by (3.17).

Finally, Equation (3.39) implies that

P(B c n ) → 0, as n → ∞,
which concludes the proof.
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The proposed method is implemented in the PPLasso R package available from the CRAN.

Abstract

In clinical development, identification of prognostic and predictive biomarkers is essential to precision medicine. Prognostic biomarkers can be useful for anticipating the prognosis of individual patients, and predictive biomarkers can be used to identify patients more likely to benefit from a given treatment. Previous researches were mainly focused on clinical characteristics, and the use of genomic data in such an area is hardly studied. A new method is required to simultaneously select prognostic and predictive biomarkers in high dimensional genomic data where biomarkers are highly correlated. We propose a novel approach called PPLasso (Prognostic Predictive Lasso) integrating prognostic and predictive effects into one statistical model. PPLasso also takes into account the correlations between biomarkers that can alter the biomarker selection accuracy. Our method consists in transforming the design matrix to remove the correlations between the biomarkers before applying the generalized Lasso. In a comprehensive numerical evaluation, we show that PPLasso outperforms the Lasso type approaches on both prognostic and predictive biomarker identification in various scenarios. Finally, our method is applied to publicly available transcriptomic data from clinical trial RV144. Our method is implemented in the PPLasso R package which is available from the Comprehensive R Archive Network (CRAN).

Introduction

With the advancement of precision medicine, there has been an increasing interest in identifying prognostic or predictive biomarkers in clinical development. A prognostic biomarker informs about a likely clinical outcome (e.g., disease recurrence, disease progression, death) in the absence of therapy or with a standard therapy that patients are likely to receive, while a predictive biomarker is associated with a response or a lack of response to a specific therapy. [START_REF] Ballman | Biomarker: Predictive or prognostic[END_REF] and [START_REF] Clark | Prognostic factors versus predictive factors: Examples from a clinical trial of erlotinib[END_REF] provided a comprehensive explanation and concrete examples to distinguish prognostic from predictive biomarkers, respectively.

Concerning the biomarker selection, the high dimensionality of genomic data is one of the main challenges as explained in [START_REF] Fan | Statistical challenges with high dimensionality: Feature selection in knowledge discovery[END_REF]. To identify effective biomarkers in high-dimensional settings, several approaches can be considered including hypothesis-based tests described in [START_REF] Mcdonald | Handbook of Biological Statistics 2nd Edition[END_REF], wrapper approaches proposed in [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF], and penalized approaches such as Lasso designed by Tibshirani (1996b) among others. Hypothesis-based tests consider each biomarker independently and thus ignore potential correlations between them. Wrapper approaches often show high risk of overfitting and are computationally expensive for high-dimensional data as explained in Smith (2018). More efforts have been devoted to penalized methods given their ability to automatically perform variable selection and coefficient estimation simultaneously as highlighted in [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF]. However, Lasso showed some potential drawbacks when biomarkers are highly correlated. Particularly, when the Irrepresentable Condition (IC) proposed by [START_REF] Zhao | On model selection consistency of lasso[END_REF] is violated, Lasso can not guarantee to correctly identify true effective biomarkers. In genomic data, biomarkers are usually highly correlated such that this condition can hardly be satisfied, see [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF]. Several methods have been proposed to adress this issue. Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] combines the 1 and 2 penalties and is particularly effective in tackling correlation issues and can generally outperform Lasso. Adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] proposes to assign adaptive weights for penalizing different coefficients in the 1 penalty, and its oracle property was demonstrated. [START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] proposed the HOLP approach which consists in removing the correlation between the columns of the design matrix; [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] proposed to handle the correlation by assigning similar weights to correlated variables in their approach called Precision Lasso; [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF] proposed to remove the correlations by applying a whitening transformation to the data before using the generalized Lasso criterion designed by [START_REF] Tibshirani | The solution path of the generalized lasso[END_REF].

The challenge of finding prognostic biomarkers has been extensively explored with previously introduced methods, however, the discovery of predictive biomarkers has seen much less attention. Limited to binary endpoint, [START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF] proposed to first predict response probabilities for treatment and use this proba-bility as the response in a classification problem to find effective biomarkers. [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF] proposed a new method to detect interaction between the treatment and the biomarkers by modifying the covariates. This method can be implemented on continuous/binary/time-to-event endpoint. [START_REF] Lipkovich | Subgroup identification based on differential effect search (sides) -a recursive partitioning method for establishing response to treatment in patient subpopulations[END_REF] proposed a method called SIDES, which adopts a recursive partitioning algorithm for screening treatment-by-biomarker interactions. This method was further improved in [START_REF] Lipkovich | Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using sides[END_REF] by adding another step of preselection on predictive biomarkers based on variable importance. The method was demonstrated with continuous endpoint. More recently, Sechidis et al. ( 2018) applied approaches coming from information theory for ranking biomarkers on their prognostic/predictive strength. Their method is applicable only for binary or time-to-event endpoint. Moreover, all of these methods were assessed under the situation where the sample size is relatively large and the number of biomarkers is limited, which is hardly the case for genomic data.

In the literature mentioned above, the authors focused on one of the problematic of identifying prognostic or predictive biomarkers, but rarely on both. Even if predictive biomarkers is of major importance for identifying patients more likely to benefit from a treatment, the identification of prognostic biomarkers is also key in this context. Indeed, the clinical impact of a treatment can be judged only with the knowledge of the prognosis of a patient. It is thus of importance to reliably predict the prognosis of patients to assist treatment counseling [START_REF] Windeler | Prognosis -what does the clinician associate with this notion[END_REF]. In this paper, we propose a novel approach called PPLasso (Prognostic Predictive Lasso) to simultaneously identify prognostic and predictive biomarkers in a high dimensional setting with continuous endpoints, as presented in Section 4.2. Extensive numerical experiments are given in Section 4.3 to assess the performance of our approach and to compare it to other methods. PPLasso is also applied to the clinical trial RV144 in Section 4.4. Finally, we give concluding remarks in Section 4.5.

Method

In this section, we propose a novel approach called PPLasso (Predictive Prognostic Lasso) which consists in writing the identification of predictive and prognostic biomarkers as a variable selection problem in an ANCOVA (Analysis of Covariance) type model mentioned for instance in [START_REF] Faraway | Practical regression and ANOVA using R[END_REF].

Statistical modeling

Let y be a continuous response or endpoint and t 1 , t 2 two treatments. Let also X 1 (resp. X 2 ) denote the design matrix for the n 1 (resp. n 2 ) patients with treatment t 1 (resp. t 2 ), each containing measurements on p candidate biomarkers:

X 1 =         X 1 11 X 2 11 . . . X p 11 X 1 12 X 2 12 . . . X p 12 ... X 1 1n 1 X 2 1n 1 . . . X p 1n 1         , X 2 =         X 1 21 X 2 21 . . . X p 21 X 1 22 X 2 22 . . . X p 22 ... X 1 2n 2 X 2 2n 2 . . . X p 2n 2         . (4.1)
To take into account the potential correlation that may exist between the biomarkers in the different treatments, we shall assume that the rows of X 1 (resp. X 2 ) are independent centered Gaussian random vectors with a covariance matrice equal to Σ 1 (resp. Σ 2 ).

To model the link that exists between y and the different types of biomarkers we propose using the following model: 

where ( i1 , . . . , in i ) corresponds to the response of patients with treatment t i , i being equal to 1 or 2,

X =                   1 0 X 1 11 X 2 11 . . . X p 11 0 0 . . . 0 1 0 X 1 12 X 2 12 . . . X p 12 0 0 . . . 0 . . . . . . . . . . . . . . . 1 0 X 1 1n 1 X 2 1n 1 . . . X p 1n 1 0 0 . . . 0 0 1 0 0 . . . 0 X 1 21 X 2 21 . . . X p 21 0 1 0 0 . . . 0 X 1 22 X 2 22 . . . X p 22 . . . . . . . . . . . . . . . . . . . . . . . . 0 1 0 0 . . . 0 X 1 2n 2 X 2 2n 2 . . . X p 2n 2                  
, with α 1 (resp. α 2 ) corresponding to the effects of treatment t 1 (resp. t 2 ). Moreover, β 1 = (β 11 , β 12 , . . . , β 1p ) T (resp. β 2 = (β 21 , β 22 , . . . , β 2p ) T ) are the coefficients associated to each of the p biomarkers in treatment t 1 (resp. t 2 ) group, T denoting the matrix transposition and ϵ 11 , . . . , ϵ 2n 2 are standard independent Gaussian random variables independent of X 1 and X 2 . When t 1 stands for the standard treatment or placebo, prognostic biomarkers are defined as those having non-zero coefficients in β 1 . According to the definition of prognostic biomarkers, their effect should indeed be demonstrated in the absence of therapy or with a standard therapy that patients are likely to receive. On the other hand, predictive biomarkers are defined as those having non-zero coefficients in β 2β 1 because they aim to highlight different effects between two different treatments.

Model (4.2) can be written as:

y = Xγ + , (4.3 
)

with γ = (α 1 , α 2 , β T 1 , β T 2 ) T .
The Lasso penalty is a well-known approach to estimate coefficients with a sparsity enforcing constraint allowing variable selection by estimating some coefficients by zero. It consists in minimizing the following penalized least-squares criterion (Tibshirani (1996b)):

1 2 y -Xγ 2 2 + λ γ 1 , (4.4) 
where

u 2 2 = n i=1 u 2 i and u 1 = n i=1 |u i | for u = (u 1 , . . . , u n ). A different sparsity
constraint was applied to β 1 and β 2β 1 to allow different sparsity levels. Hence we propose to replace the penalty λ γ 1 in (4.4) by

λ 1 β 1 1 + λ 2 β 2 -β 1 1 . (4.5)
Thus, a first estimator of γ could be found by minimizing the following criterion with respect to γ:

1 2 y -Xγ 2 2 + λ 1       0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2       γ 1 , (4.6) 
where D 1 = [Id p , 0 p,p ] and D 2 = [-Id p , Id p ], with Id p denoting the identity matrix of size p and 0 i, j denoting a matrix having i rows and j columns and containing only zeros. However, since the inconsistency of Lasso biomarker selection is originated from the correlations between the biomarkers, we propose to remove the correlation by "whitening" the matrix X. More precisely, we consider X = XΣ -1/2 , where

Σ =         1 0 0 0 0 1 0 0 0 0 Σ 1 0 0 0 0 Σ 2         (4.7)
and define Σ -1/2 by replacing in (4.7) Σ i by Σ -1/2 i , where

Σ -1/2 i = U i D -1/2 i U T
i , U i and D i being the matrices involved in the spectral decomposition of Σ i for i = 1 or 2. With such a transformation the columns of X are decorrelated and Model (4.3) can be rewritten as follows:

y = X γ + (4.8)
where γ = Σ 1/2 γ. The objective function (4.6) thus becomes:

L PPLasso λ 1 , λ 2 ( γ) = 1 2 y -X γ 2 2 + λ 1       0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2       Σ -1/2 γ 1 .
(4.9)

Estimation of γ

Let us define a first estimator of γ = ( α 1 , α 2 , β T 1 , β T 2 ) as follows:

γ 0 (λ 1 , λ 2 ) = ( α 1 , α 2 , β T 10 , β T 20 ) = arg min γ L PPLasso λ 1 , λ 2 ( γ), (4.10) 
for each fixed λ 1 and λ 2 . To better estimate β 1 and β 2 , a thresholding was ap-

plied to β 0 (λ 1 , λ 2 ) = ( β 10 (λ 1 , λ 2 ) T , β 20 (λ 1 , λ 2 ) T ) T . For K 1 (resp. K 2 ) in {1, . . . , p}, let Top K 1 (resp. Top K 2 ) be the set of indices corresponding to the K 1 (resp. K 2 ) largest values of the components of | β 10 (λ 1 , λ 2 )| (resp. | β 20 (λ 1 , λ 2 )|), then the estimator of β = ( β T 1 , β T 2 ) after the correction is denoted by β(λ 1 , λ 2 ) = ( β ( K 1 ) 1 (λ 1 , λ 2 ), β ( K 2 ) 2 (λ 1 , λ 2 ))
where the jth component of β

(K i ) i (λ 1 , λ 2 ), for i = 1 or 2, is defined by: β (K i ) i j (λ 1 , λ 2 ) =        β i0j (λ 1 , λ 2 ), j ∈ Top K i K 1 th largest value of | β i0j (λ 1 , λ 2 )|, j Top K i .
(4.11)

Note that the corrections are only performed on β 0 , the estimators α 1 and α 2 were not modified.

To illustrate the interest of using a thresholding step, we generated a dataset based on Model 4.3 with parameters described in Section 4.3.1 and p = 500. Moreover, to simplify the graphical illustrations, we focus on the case where λ 1 = λ 2 = λ. Figure 4.1 displays the estimation error associated to the estimators of β(λ) before and after the thresholding. We can see from this figure that the estimation of β(λ) is less biased after the correction. The choice of K 1 and K 2 will be explained in Section 4.2.4.

Estimation of γ

With β = ( β T 1 , β T 2
), the estimators of β 1 and β 2β 1 can be obtained by

β 10 = Σ -1/2 1 β 1 and ( β 20 -β 10 ) = Σ -1/2 2 β 2 -Σ -1/2 1 β 1 .
As previously, another thresholding was applied to β 10 and β 20 : for i = 1 or 2, for each fixed λ 1 and λ 2 . The biomarkers with non-zero coefficients in

β (M i ) i j (λ 1 , λ 2 ) = β i0j (λ 1 , λ 2 ), j ∈ Top M i 0, j Top M i , (4.12) 
β 1 = β (M 1 ) 1 (resp. β (M 2 ) 2 -β (M 1 )

1

) are considered as prognostic (resp. predictive) biomarkers, where the choice of M 1 and M 2 is explained in Section 4.2.4.

To illustrate the benefits of using an additional thresholding step, we used the dataset described in Section 4.2.2. Moreover, to simplify the graphical illustrations, we also focus on the case where λ 1 = λ 2 = λ. Figure 4.8 in the Supplementary material displays the number of True Positive (TP) and False Positive (FP) in prognostic and predictive biomarker identification with and without the second thresholding. We can see from this figure that the thresholding stage limits the number of false positives. Note that α 1 and α 2 are estimated by α 1 and α 2 defined in (4.10).

Choice of the parameters K

1 , K 2 , M 1 and M 2
For each (λ 1 , λ 2 ) and each K 1 , we computed:

MSE K 1 , K 2 (λ 1 , λ 2 ) = y -X γ (K 1, K 2) (λ 1 , λ 2 ) 2 2 , (4.13) 
where γ

(K 1,K 2) (λ 1 , λ 2 ) = ( α 1 , α 2 , β (K 1 ) T 1 , β (K 2 ) T 2
) defined in (4.10) and in (4.11). It is displayed in the left part of Figure 4.2.

For each λ 1 , λ 2 and a given δ ∈ (0, 1), the parameter K 2 is then chosen as follows for each K 1 :

K 2 (λ 1 , λ 2 ) = arg min K 2 ≥ 1 s.t. MSE (K 1 , K 2 +1 )(λ 1 , λ 2 ) MSE (K 1 , K 2 ) (λ 1 , λ 2 ) ≥ δ .
The K 2 associated to each K 1 are displayed with '*' in the left part of Then K 1 is chosen by using a similar criterion:

K 1 (λ 1 , λ 2 ) = arg min K 1 ≥ 1 s.t. MSE (K 1 +1, K 2 )(λ 1 , λ 2 ) MSE (K 1 , K 2 ) (λ 1 , λ 2 ) ≥ δ .
The values of MSE (K 1 , K 2 ) (λ 1 , λ 2 ) are displayed in the right part of Figure 4.2 in the particular case where λ 1 = λ 2 = λ, δ = 0.95 and with the same dataset as the one used in Section 4.2.2. K 1 is displayed with a red star.

The parameters M 1 and M 2 are chosen in a similar way except that

MSE K 1 , K 2 (λ 1 , λ 2 ) is replaced by MSE M 1 , M 2 (λ 1 , λ 2 ) where: MSE M 1 , M 2 (λ 1 , λ 2 ) = y -X γ (M 1 , M 2 ) (λ 1 , λ 2 ) 2 2 , with γ (M 1 , M 2 ) (λ 1 , λ 2 ) = ( α 1 , α 2 , β (M 1 ) T 1 , β (M 2 ) T 2
) defined in (4.10) and (4.12). In the following,

γ(λ 1 , λ 2 ) = γ ( M 1 , M 2 ) (λ 1 , λ 2 ).

Estimation of Σ 1 and Σ 2

As the empirical correlation matrix is known to be a non accurate estimator of Σ when p is larger than n, a new estimator has to be used. Thus, for estimating Σ we adopted a cross-validation based method designed by Boileau et al. (2021) and implemented in the cvCovEst R package (Boileau et al., 2021). This method chooses the estimator having the smallest estimation error among several compared methods (sample correlation matrix, POET [START_REF] Fan | Large covariance estimation by thresholding principal orthogonal complements[END_REF]) and Tapering [START_REF] Cai | Optimal rates of convergence for covariance matrix estimation[END_REF]) as examples). Since the samples in treatments t 1 and t 2 are assumed to be collected from the same population, Σ 1 and Σ 2 are assumed to be equal. For the sake of simplicity, we limit ourselves to the case where λ 1 = λ 2 = λ. For choosing λ we used BIC (Bayesian Information Criterion) which is widely used in the variable selection field and which consists in minimizing the following criterion with respect to λ:

BIC(λ) = n log(MSE(λ)/n) + k(λ) log(n),
where n is the total number of samples, MSE(λ) = y -X γ(λ) 2 2 and k(λ) is the number of non null coefficients in the OLS estimator γ obtained by re-estimating only the non null components of β 1 and β 2β 1 . The values of the BIC criterion as well as those of the MSE obtained from the dataset described in Section 4.2.2 are displayed in Figure 4.3. Table 4.2 in the supplementary material provides the True Positive Rate (TPR) and False Positive Rate (FPR) when λ is chosen either by minimizing the MSE or the BIC criterion for this dataset. We can see from this table that both of them have TPR=1 (all true positives are identified). However, the FPR based on the BIC criterion is smaller than the one obtained by using the MSE.

Numerical experiments

This section presents a comprehensive numerical study by comparing the performance of our method with other regularized approaches in terms of prognostic and predictive biomarker selection. Besides the Lasso, we also compared with Elastic Net and Adaptive Lasso since they also take into account the correlations. For Lasso, Elastic Net and Adaptive Lasso, in order to directly estimate prognostic and predictive effects, X and γ in Model ( 4.3) were replaced by

X * = 1 n 1 ,1 0 n 1 ,1 X 1 0 n 1 ,p 0 n 2 ,1 1 n 2 ,1 X 2 X 2 ,
and

γ * = (α 1 , α 2 , β * 1 , β * 2 )
, respectively, where X 1 and X 2 are defined in (4.1), 0 i, j (resp. 1 i, j ) denotes a matrix having i rows and j columns and containing only zeros (resp. ones). Note that this is the modeling proposed by [START_REF] Lipkovich | Tutorial in biostatistics: data-driven subgroup identification and analysis in clinical trials[END_REF],

β * 1 = β 1 and β * 2 = β 2 -β 1 .
The sparsity enforcing constraint was put on the coefficients β * 1 and β * 2 which boils down to putting a sparsity enforcing constraint on β 1 and β 2β 1 .

Simulation setting

All simulated datasets were generated from Model (4.3) where the n 1 (n 2 ) rows of X 1 (X 2 ) are assumed to be independent Gaussian random vectors with a covariance matrix Σ 1 = Σ 2 = Σ bm , and is a standard Gaussian random vector independent of X 1 and X 2 . We defined Σ bm as:

Σ bm = Σ 11 Σ 12 Σ T 12 Σ 22 (4.14)
where Σ 11 (resp. Σ 22 ) are the correlation matrix of prognostic (resp. non-prognostic) biomarkers with off-diagonal entries equal to a 1 (resp. a 3 ). Morever, Σ 12 is the correlation matrix between prognostic and non-prognostic variables with entries equal to a 2 . In our simulations (a 1 , a 2 , a 3 ) = (0.3, 0.5, 0.7), which is a framework proposed by [START_REF] Xue | Variable selection for highly correlated predictors[END_REF]. We checked that the Irrepresentable Condition (IC) of [START_REF] Zhao | On model selection consistency of lasso[END_REF] is violated and thus the standard Lasso cannot recover the positions of the null and non null variables. For each dataset we assumed randomized treatment allocation between standard and experimental arm with a 1:1 ratio, i.e. n 1 = n 2 = 50. We further assume a relative treatment effect of 1 (α 1 = 0 and α 2 = 1). The number of biomarkers p varies from 200 to 2000. The number of active biomarkers was set to 10 (i.e. 5 purely prognostic biomarkers with β 1j = β 2j = b 1 = 1 (j = 1, ..., 5) and 5 biomarkers both prognostic and predictive with β 1j = b 1 and β 2j = b 2 = 2 (j = 6, ..., 10)).

Evaluation criteria

We considered several evaluation criteria to assess the performance of the methods in selecting the prognostic and predictive biomarkers: the TPR prog as the true positive rate (i.e. rate of active biomarkers selected) and FPR prog the false positive rate (i.e. rate of inactive biomarkers selected) of the selection of prognostic biomarkers, and similarly for predictive biomarkers with TPR pred and FPR pred . We further note TPR all and FPR all the criterion of overall selection among all candidate biomarkers regardless their prognostic or predictive effect. The objective of the selection is to maximize the TPR all and minimize the FPR all . All metrics were calculated by averaging the results of 100 replications for each scenario.

Biomarker selection results

For the proposed method, different results were presented. PPLasso Σ (resp. PPLasso) corresponds to the results of the method by considering the true (resp. estimated) matrix Σ bm . For estimating Σ bm , we used the approach explained in Section 4.2.5. Two choices of λ are also presented: "optimal" and "min(bic)". The former gives the optimal selection that maximizes (TPR all -FPR all ) which is also the choice used for Lasso, Elastic Net and Adaptive Lasso in these simulations. All these three methods are implemented with the glmnet R package, and the parameter α used for Elastic Net varies from 0.1 to 0.9. The choice of "min(bic)" is only applied to our method, which minimizes the BIC criterion defined in Section 4.2.6. For ease of presentation, the abbreviation EN (resp. AdLasso) refers to Elastic Net (resp. Adaptive Lasso) in the following. Figure 4.4 shows the selection performance of PPLasso and other compared methods in the simulation scenario presented in Section 4.3.1. PPLasso achieved to select all prognostic biomarkers (TPR prog almost 1) even for large p, with limited false positive prognostic biomarkers selected. As compared to the optimal λ maximizing (TPR all -FPR all ), the one selected with the BIC tends to select some false positives (average: 33 (FPR prog = 0.17) for p = 200 and 10 (FPR prog = 0.005) for p = 2000). The results obtained from the oracle and estimated Σ bm are comparable. Selection performance of predictive biomarkers is slightly lowered as compared to prognostic biomarkers. Even if the false positive selection is quite similar between prognostic and predictive biomarkers, PPLasso missed some true predictive biomarkers when λ is selected with the BIC criterion (average TPR pred = 0.98 and 0.80 for oracle and estimated Σ bm , respectively, with p = 2000). In this scenario where the IC is violated, PPLasso globally outperforms Lasso, Elastic Net and Adaptive Lasso. Although Elastic Net showed higher TPR than Lasso and Adaptive Lasso, they all failed in selecting all truly prognostic and predictive biomarkers, and the number of missed active biomarkers increased with the dimension p. For example, for Elastic Net, TPR prog = 0.85 and 0.53, TPR pred = 0.81 and 0.61 for p = 200 and 2000, respectively.

Impact of the correlation matrix Σ

To evaluate the impact of the correlation matrix on the selection performance of the methods, additional scenarios are presented where the IC is satisfied:

1. Compound symmetry structure where all biomarkers are equally correlated with a correlation ρ = 0.5;

2. Independent setting where Σ bm is the identity matrix.

For the scenario with compound symmetry structure displayed in Figure 4.5, all the methods successfully identified the true prognostic biomarkers (TPR prog close to 1 even for large p) with limited false positive selection. On the other hand, the compared methods (Lasso, Elastic Net, Adaptive Lasso) missed some predictive biomarkers especially when p increases. On the contrary, PPLasso successfully identified almost all predictive biomarkers with the optimal choice of λ. Moreover, even when λ is selected by minimizing the BIC criterion (min(bic)), PPLasso est outperformed Lasso and Adaptive Lasso when p > 500 with relatively stable TPR pred and FPR pred as p increases.

For the independent setting, as displayed in Figure 4.6, prognostic biomarkers were globally well identified by all the compared methods with a slightly higher 99 TPR prog for Lasso and Elastic Net as compared to PPLasso but also with a slightly higher FPR prog . With regards to predictive biomarkers, PPLasso using Σ bm (oracle) performed also similarly to the Lasso, which is reasonable since no transformation has been used in PPLasso. On the other hand, even if PPLasso with λ selected with "min(bic)" performed similarly with PPLasso with optimal λ for relatively small p, the selection performance is altered for large p and even if the performance is higher than Lasso and Adaptive Lasso, it is smaller than the one of Elastic Net. 

Impact of the effect size of active biomarkers

To evaluate the impact of the effect size on biomarker selection performance, the scenario presented in Section 4.3.1 was considered with different values of b 2 : 1.5, 2 and 2.5.

Since the effect size of prognostic biomarkers did not change, the comparison focused on predictive biomarkers. As expected, the reduction of the effect size makes the biomarker selection harder, especially for Lasso, Elastic Net and Adaptive Lasso where the predictive biomarker selection is limited when b 2 = 1.5: for Lasso when p = 2000, TPR pred = 0.45 (resp. 0.22) for b 2 = 2 (resp. 1.5), see Figure 4.4 and Figure 4.9 of the supplementary material. The selection performance of PPLasso when λ is selected with min(bic) is also reduced by decreasing b 2 , especially when Σ bm is also estimated. Nevertheless, the selection performance of PPLasso remains better than for the other compared methods for which the performance displayed are associated to the optimal value of λ. On the other hand, even with limited effect size, PPLasso with optimal λ identified all predictive biomarkers with very limited false positive selection. When b 2 was increased to 2.5, the selection performance for all methods is improved and the results for PPLasso with estimated λ was close to the ones with the optimal λ as displayed in Figure 4.10 of the supplementary material. As compared with PPLasso, for which the selection performance remained stable as p increased, Lasso, Elastic Net and Adaptive Lasso were more impacted by the value of p since the true positive selection decreased as p increased. As an example, for the Lasso, TPR pred =0.95 (resp. 0.65) for p = 200 (resp. 2000).

Impact of the number of predictive biomarkers

The impact of the number of true predictive biomarkers was assessed by increasing the number of predictive biomarkers from 5 to 10 in the scenario presented in Section 4.3.1. When the number of predictive biomarkers increased, the impact on PPLasso is almost negligible, especially for prognostic biomarker identification. However, for the other methods, we can see from Figure 4.11 of the supplementary material that it became even harder to identify predictive biomarkers. TPR pred decreased compared to Figure 4.4, especially for large p (e.g. TPR pred = 0.12, 0.18, and 0.02 for Lasso, Elastic Net and Adaptive Lasso respectively when p = 2000).

Impact of the dimension of the dataset

In this section, we studied a different sample size: n=50 with n 1 = n 2 = 25 and a different number of biomarkers: p=5000.

We can see from Figure 4.12 of the supplementary material that for p = 5000, the selection performance of PPLasso is not altered as compared with p = 2000 while the compared methods have more difficulties to identify both prognostic and predictive biomarkers.

When the sample size is smaller (n=50), we can see from Figure 4.13 of the supplementary material that the ability to identify prognostic and predictive biomarkers decreased for all the methods. However, PPLasso still outperformed the others with higher TPR prog and TPR pred and lower FPR prog and FPR pred . 

Application to real clinical trials

We applied the previously described methods to publicly available transcriptomic data from the RV144 vaccine trial (Rerks-Ngarm et al. ( 2009)). This trial showed reduced risk of HIV-1 acquisition by 31.2% with vaccination with AL-VAC and AIDSVAX as compared to placebo. Transcriptomic profiles of in vitro HIV-1 Env-stimulated peripheral blood mononuclear cells (PBMCs) obtained preimmunization and 15 days after the immunization (D15) from both 40 vaccinees and 10 placebo recipients were generated to better understand underlying biological mechanisms [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF], Gene Expression Omnibus accession code: GSE103671).

For illustration purpose, the absolute change at D15 in gene mTOR was considered as the continuous endpoint (response). mTOR plays a key role in mTORC1 signaling pathway which has been shown to be associated with risk of HIV-1 acquisition [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF], [START_REF] Akbay | Modulation of mtorc1 signaling pathway by hiv-1[END_REF]). The gene expression has been normalized as in the original publication of [START_REF] Fourati | Integrated systems approach defines the antiviral pathways conferring protection by the rv144 hiv vaccine[END_REF]. After removing non-annotated genes (LOCxxxx and HS.xxxx), the top 2000 genes with the highest empirical variances were included as candidate biomarkers for prognostic and predictive identification from PPLasso and the compared methods. The penalty parameter λ for the Lasso and Adaptive Lasso, the parameters λ and α for Elastic Net were selected through the classical cross-validation approach. For PPLasso, λ was selected based on the criterion described in Section 4.2.6.

The estimation of Σ was obtained by comparing several candidate estimators from the cvCovEst R package and by selecting the estimator having the smallest estimation error. In this application, the combination of the sample covariance matrix and a dense target matrix (denseLinearShrinkEst) derived by [START_REF] Ledoit | The Power of (Non-)Linear Shrinking: A Review and Guide to Covariance Matrix Estimation[END_REF] provides the smallest estimation error. Figure 4.7 displays the estimated Σ and highlights the strong correlation between the genes. Table 4.3 of the Supplementary material gives details on the compared estimators.

Prognostic and predictive genes selected by PPLasso, Lasso, Elastic Net and Adaptive Lasso are listed in Table 4.1. The number of genes selected are similar for all the compared methods, except for a slightly higher number of predictive genes selected by PPLasso. Lasso, Elastic Net and Adaptive Lasso selected very similar sets of prognostic and predictive genes. The intersection between PPLasso and others is moderate (2 prognostic genes (SLAMF7 and TNFRSF6B), 2 predictive genes (YTHDC1 and RPL21)). Interestingly, some genes selected by most methods such as SLAMF7, TNFRSF6B, TNFRSF18 or NUCKS1 have already been discussed in the HIV-1 field. Moreover, among the predictive genes selected by the PPLasso, some are linked to pathways that have been highlighted as possible target for HIV-1 such as BIRC3 and TLR8.

Conclusion

We propose a new method named PPLasso to simultaneously identify prognostic and predictive biomarkers. PPLasso is particularly interesting for dealing with high dimensional omics data when the biomarkers are highly correlated, which is a framework that has not been thoroughly investigated yet. From various numerical studies with or whithout strong correlation between biomarkers, we highlighted the strength of PPLasso in well identifying both prognostic and predictive biomarkers with limited false positive selection. The current method is only dedicated to the analysis of continuous responses through ANCOVA type models. However, it will be the subject of a future work to extend it to other challenging contexts, such as classification or survival analysis. Chapter 5 -Variable selection in high-dimensional logistic regression models using a whitening approach
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The content of this chapter is in the article: Zhu, W., Lévy-Leduc, C., and Ternès, N. ( 2022). Variable selection in high-dimensional logistic regression models using a whitening approach. Submitted and also available on arXiv preprint (arXiv:2206.14850).

The proposed method is implemented in the WLogit R package which will soon be available from the CRAN.

Abstract

In bioinformatics, the rapid development of sequencing technology has enabled us to collect an increasing amount of omics data. Classification based on omics data is one of the central problems in biomedical research. However, omics data usually has a limited sample size but high feature dimensions, and it is assumed that only a few features (biomarkers) are active, i.e. informative to discriminate between two categories (cancer subtypes, responder/non-responder to a treatment for example). Identifying active biomarkers for classification has therefore become fundamental for omics data analysis. Focusing on binary classification, we propose an innovative feature selection method aiming at dealing with the high correlations between the biomarkers. Various research has shown the notorious influence of correlated biomarkers and the difficulty of accurately identifying active ones. Our method, WLogit, consists in whitening the design matrix to remove the correlations between biomarkers, then using a penalized criterion adapted to the logistic regression model to select features. The performance of WLogit is assessed using synthetic data in several scenarios and compared with other approaches. The results suggest that WLogit can identify almost all active biomarkers even in the cases where the biomarkers are highly correlated, while the other methods fail, which consequently leads to higher classification accuracy. The performance is also evaluated on the classification of two Lymphoma subtypes, and the obtained classifier also outperformed other methods. Our method is implemented in the WLogit R package available from the Comprehensive R Archive Network (CRAN).

Introduction

With the advances in high-throughput molecular techniques, omics technologies can generate large-scale molecular data, such as genomic, transcriptomic, proteomic, and metabolomic data. Classification based on the molecular levels is one of the essential issues in genome research. Examples include tumor classification [START_REF] Quackenbush | Microarray analysis and tumor classification[END_REF], disease classification [START_REF] Loscalzo | Human disease classification in the postgenomic era: a complex systems approach to human pathobiology[END_REF] and distinguishing between responder v.s. non-responder to a treatment [START_REF] Gustafsson | Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment[END_REF]. Different machine learning techniques have been applied to solve this classification problem. Compared to classifiers such as decision tree [START_REF] Utgoff | Incremental induction of decision trees[END_REF] and SVM [START_REF] Cortes | Support-vector networks[END_REF], logistic regression [START_REF] Walker | Estimation of the probability of an event as a function of several independent variables[END_REF] is a popular classification method with an explicit statistical interpretation and can provide classification probabilities for a binary response [START_REF] Menard | Applied logistic regression analysis[END_REF].

However, classification based on omics data is a challenging task. In most omics datasets, the number of biomarkers is much larger than the sample size. Under such a situation, it is generally believed that only a few biomarkers are relevant to disease outcomes, they are called active biomarkers. The presence of irrelevant biomarkers can lead to overparameterized models that increase the risk of overfitting [START_REF] Sung | Molecular signatures from omics data: from chaos to consensus[END_REF]. Therefore, selecting the active biomarkers can simplify the classifier without the loss of classification accuracy and ease the computational burden. Various methods for feature selection in bioinformatics were developed and reviews can be found in [START_REF] Ang | Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection[END_REF] and [START_REF] Jardillier | Bioinformatics methods to select prognostic biomarker genes from large scale datasets: A review[END_REF]. To address this issue, regularization via the Lasso (Tibshirani, 1996a) is often implemented to reduce the subset of biomarkers. It adds a penalty equal to the sum of the absolute value of the coefficients that can result in sparse models with few non-zero coefficients and eliminate biomarkers with zero coefficients.

To formally state the statistical problem, given a design matrix X of size n ×p, X (i) j corresponds to the measurement of the jth biomarker for the ith sample, and β = (β 1 , . . . , β p ) T is the vector of effect size for each biomarker, with most components equal to zero. We assume that the binary responses 1 , 2 , ..., n are independent random variables having a Bernoulli distribution with parameter

π β (X (i) ) ( i ∼ Bernoulli(π β (X (i) )))
, where for all i in {1, . . . , n},

π β (X (i) ) = exp p j=1 β j X (i) j 1 + exp p j=1 β j X (i) j .
(5.1)

The logistic regression with 1 regularization solves the feature selection problem by adding a penalty function to the log-likelihood of the logistic regression model:

β = arg min β {l(β) + λ β 1 } , (5.2) 
where

β 1 = p k=1
|β k |, and the log-likelihood l(β) is defined by:

l(β) = 1 n n i=1 i • X (i) β -log(1 + e X (i ) β ) , (5.3) 
with X (i) the ith row of X. With the penalty function and properly chosen parameter λ, some components of β are set to zero. Recently, penalization approaches have been widely applied to biomarker discovery and disease classification [START_REF] Zhu | Classification of gene microarrays by penalized logistic regression[END_REF][START_REF] Wu | Differential gene expression detection and sample classification using penalized linear regression models[END_REF][START_REF] Ma | Penalized feature selection and classification in bioinformatics[END_REF][START_REF] Liu | Logsum+ l2 penalized logistic regression model for biomarker selection and cancer classification[END_REF]. A more comprehensive review of different regularizations for analyzing high-dimensional omics data can be found in [START_REF] Vinga | Structured sparsity regularization for analyzing high-dimensional omics data[END_REF].

Despite various advantages, the Lasso criterion can fail to select the true subset of active biomarkers when all biomarkers are highly correlated, especially when the correlation between active and non-active biomarkers is large. This phenomenon was explicitly explained by [START_REF] Zhao | On model selection consistency of lasso[END_REF], where a condition is established for Lasso to consistently select the true model in the classical Gaussian regression model. The condition is called the Irrepresentable Condition (IC) (or incoherent condition by [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF]), and related properties in a Gaussian linear model were reached independently by [START_REF] Zhao | On model selection consistency of lasso[END_REF] and [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF]. A similar condition was obtained by [START_REF] Ravikumar | High-dimensional Ising model selection using l1-regularized logistic regression[END_REF] and [START_REF] Bunea | Honest variable selection in linear and logistic regression models via l1 and l1+l2 penalization[END_REF] in the logistic regression case. Let Q be defined by: Q = X T HX, (5.4) where H is a diagonal matrix with

H ii = π β (X (i) )/(1 -π β (X (i) )), 1 ≤ i ≤ n.
(5.5)

Let S = {j, β j
0} be the set of active variables with size d, S c the set of non-active variables. Q S S denotes the d × d sub-matrix of Q indexed by S. With this notation, the condition states:

There exists α ∈ (0, 1] such that:

Q S c S (Q S S ) -1 ∞ ≤ 1 -α, (5.6) 
where |A| ∞ = max To deal with the correlations between variables, several methods have been proposed. The most well-known ones include Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] and Adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF]. The former combines the 1 and 2 penalties, and the latter assigns weights to each of the parameters in forming the 1 penalty of Lasso. Several filter approaches were also proposed to take into consideration the correlations in the classification framework. Relief [START_REF] Kira | A practical approach to feature selection[END_REF]) is sensitive to feature interactions and has inspired a family of Relief-based feature selection algorithms, notably the ReliefF [START_REF] Kononenko | Overcoming the myopia of inductive learning algorithms with relieff[END_REF]. It was widely used in biomedical research [START_REF] Urbanowicz | Relief-based feature selection: Introduction and review[END_REF]. Fast Correlation Based Filter (FCBF) [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF] is another approach in high-dimensional feature selection that evaluates feature relevance and redundancy based on correlation measures.

In this article, we propose a novel feature selection method to take this issue into account by removing the correlations between biomarkers in the high dimensional logistic regression model. Inspired by the idea of WLasso (Whitening Lasso) proposed by [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF], we first 'whiten' the columns of X. Then, the biomarker selection is performed thanks to a regularized quadratic approximation of the log-likelihood. More details on this method are presented in Section 5.2. In Section 5.3, the performance of the proposed method is assessed via numerical experiments and compared with several methods focusing on the same problem. In Section 5.4, we apply the proposed procedure to a publicly available omic dataset aiming at identifying active biomarkers to classify on two Lymphoma subtypes. Finally, we discuss our findings and give concluding remarks in Section 5.5.

Method

To solve the optimization problem (5.2), one may directly minimize the penalized log-likelihood [START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF][START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF], or use least square approximation as proposed by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], which proposes to form a quadratic approximation of the log-likelihood (5.3) by using a Taylor expansion at the current estimates:

l Q (β) = - 1 2n n i=1 w i (z i -X (i) β) 2 + C(β o ) 2 (5.7) = - 1 2n n i=1 ( √ w i z i - √ w i X (i) β) 2 + C(β o ) 2
(5.8)

with z i = X (i) β + i -π β o (X (i) ) π β o (X (i) )(1 -π β o (X (i) ))
, (working response)

w i = π β o (X (i) )(1 -π β o (X (i) )), (weights) 
(5.9)

where π β o (X (i) ) is the evaluation of π β (defined in Model (5.1)) at the current parameters β o . The final estimator can be derived by the IRLS (Iterative Re-weighted Least Square) algorithm [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF].

Interestingly, the logistic irrepresentable condition (5.6) coincides with the Irrepresentable condition in linear regression [START_REF] Zhao | On model selection consistency of lasso[END_REF], when replacing the matrix X by √ wX, where √ w is a diagonal matrix with diagonal entries equal to ( √ w 1 , . . . , √ w n ) as defined in (5.9).

Transformation

Since the inconsistency of the Lasso estimator comes from the correlations between the biomarkers, we propose to remove the correlation by "whitening" the matrix X. More precisely, we consider X = X Σ-1/2 , where Σ is a covariance estimator obtained from H 1/2 X where H is defined in Equation (5.5). With this transformation, X T H X should be close to the identity matrix I p , thus the irrepresentable condition should be satisfied. Figure 5.1 shows the percentage of elements on the left-hand side of Equation ( 5.6) that violated the condition. Data for illustration was generated on one scenario in numerical experiments: the balanced case with blockwise correlation structure when p = 500. This dataset will be used in the rest of the section to illustrate different steps in our method. Since in practice we do not know π β (X (i) ), the oracle H with true coefficients and estimated H (see Section 5.2.5 for details) were both presented. We verified through this figure that the violation of the irrepresentable condition had been reduced after the transformation. and Top M is defined in a similar way as previously. The choice of the parameter M was also based on the log-likelihood. By replacing β in (5.3) by β (M ) (λ), which is the vector having the β (M ) j for components, we get l M ( β(λ)). Using the same strategy as in Section 5.2.2, M is chosen as follows:

M(λ) = arg min K ≥ 1 s.t. l M ( β(λ)) l M +1 ( β(λ))
≥ γ , where γ ∈ (0, 1).

As we can see from Figure 5.10 in Supplementary, the thresholding step successfully removed non active variables while keeping most of the true active ones in the model.

Choice of the parameter λ

Suppose the estimation of β was obtained following Section 5.2.2 and Section 5.2.3. For simplicity, we note it as β(λ) over the sequence of λ, and the corresponding log-likelihood is l( β(λ)). We chose λ by:

λ = arg max λ l( β(λ)).
(5.15)

Notice that if multiple λs maximize the log-likelihood, we chose the one leading to the most parsimonious model.

Estimation of Σ

In practice, Σ is calculated by estimating the variance-covariance matrix from H 1/2 X. As the diagonal of H defined in Equation (5.5) is unknown because no information on β is available, the latter can be roughly estimated by ridge regression in the logistic regression model when p > n. We denote this estimator by β r id e and obtain H with H ii = π β r id e (X (i) )/(1π β r id e (X (i) )) for i = 1, . . . , n.

Finally, Σ is calculated by estimating the variance-covariance matrix of H 1/2 X, by using the method implemented in the package cvCovEst of [START_REF] Boileau | cvCovEst: Cross-Validated Covariance Matrix Estimation[END_REF].

5.2.6. Summary of WLogit algorithm 1. Calculate Σ, the empirical variance-covariance matrix of H 1/2 X, as described in Section 5.2.5

2. Compute X = X Σ-1/2 3. For each λ:

(a) Estimate β as described in Section 5.2.2.

(b) Estimate β as described in Section 5.2.3.

4. Choose λ as described in Section 5.2.4, then perform variable selection and/or prediction of y based on β( λ).

This section aims at evaluating WLogit and comparing it with existing ones. We simulated data from Model (5.1), where the rows of X are assumed to be independent Gaussian random vectors with covariance matrix equal to Σ. The response y was generated following Model (5.1), and the vector β has 10 non-zero elements with an effect size equal to 1. The sample size is equal to n = 100, and we considered the balanced case where there are 50 responses i equal to 1 and 50 equal to 0, and an imbalanced case where there are 20 responses i equal to 1 and 80 equal to 0. The number of predictors (biomarkers) took its values from 200 to 2000. 100 replications were generated for each scenario.

In our simulations, we mainly considered correlation structures in which the irrepresentable condition was violated. We defined Σ with a blockwise structure:

Σ = Σ 11 Σ 12 Σ 21 Σ 22 , (5.16) 
where Σ 11 (resp. Σ 22 ) are the correlation matrix of active (resp. non-active) biomarkers with off-diagonal entries equal to α 1 (resp. α 3 ), Σ 12 is the correlation matrix between active and non-active variables with entries equal to α 2 . In our simulations, we chose (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), one of the frameworks proposed by [START_REF] Xue | Variable selection for highly correlated predictors[END_REF]. Although this structure was proposed in the context of linear regression, we checked that the irrepresentable condition for the logistic model was also violated (as displayed in Figure 5.1). Additionally to this special case, we also investigated the case where no correlation exists between predictors, i.e., Σ is the identity matrix, and in this case, the irrepresentable condition is satisfied.

Compared methods

Compared methods include two other penalized approaches: Lasso and Elastic Net adapted to the logistic regression model. Elastic Net is noted as EN in the figures. The parameters in these two algorithms are chosen by 10-fold crossvalidation and implemented by the R package glmnet. We also compared our method with other approaches not involving the penalized regression family: Reli-efF and FCBF. They also take into account the correlations between predictors and are widely used in the identification of biomarkers. ReliefF was implemented by the R package CORElearn with parameter estimator="ReliefFexpRank". Since this method only gives the rank of predictors, we selected the same number of predictors as WLogit with the highest rank. FCBF was implemented by the Bioconductor package FCBF. We kept the default parameters for these two methods.

Evaluation

The evaluation of the performance of the compared methods was based on two aspects: (1) the accuracy of biomarker selection and ( 2) the accuracy of sample classification, which can be seen as a prediction task. Figure 5.3 shows different steps in the numerical experiments and the two types of evaluation. 

Biomarker selection

We generate training sets as described at the beginning of this section. Each method selected a subset of predictors, and we evaluate the selection by True Positive Rate (TPR) and False Positive Rate (FPR). The reported values for TPR and FPR are obtained by averaging these values from 100 replications.

Sample classification

For penalized regression approaches (WLogit, Lasso, and Elastic Net), a classifier was already available with selected predictors since these approaches also give regression coefficients estimation at the same time. For ReliefF and FCBF, when a subset of predictors was chosen, the logistic regression classifier was built with the estimation of coefficients on each chosen predictor. The evaluation was then performed on another simulated testing set with the same settings as the training set, except with only half the sample size (100 (training) v.s. 50 (testing)). The evaluation on the testing test will provide the prediction accuracy of the selected set of predictors, which is presented by the AUC (Area Under the receiver operating characteristic (ROC) curve).

Results

The corresponding results are displayed in Figures 5.4 and 5.5 in the case where Σ has the blockwise correlation structure defined in Model (5.16) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7). The corresponding TPR and FPR for each method are displayed. We can see from Figure 5.4 that WLogit largely outperforms the other methods: the TPR is always the largest and close to 1 (0.95 for p = 200 and 0.86 for p = 2000 ). Lasso, Elastic Net, and FCBF performed similarly. They can identify a very limited number of active variables (TPR smaller than 0.20). Although the FPR for WLogit was larger when p = 200 (FPR= 0.17), it decreased when p increases (FPR= 0.01 for p = 2000). When p = 2000, the FPR for all the methods is similar. With the same subset size of selected variables as WLogit, ReliefF performed poorly: the TPR is close to 0, and the FPR is the largest when p is not large. Figure 5.5 presents the average of AUC on the testing set for all methods, based on the classifiers developed on the training set (variable selection evaluated in Figure 5.4). WLogit showed the best classification accuracy stable at a high level (> 0.96) even when the number of predictors increases, which may come from the fact that it has identified more active variables than others. Lasso and Elastic Net performed similarly (AUC= 0.86 and 0.83 for Lasso and Elastic Net, respectively, when p = 2000). Although FCBF showed competitive predictor selection accuracy, the classification accuracy (AUC= 0.64 when p = 2000) is lower than the one of Lasso and Elastic Net. Moreover, its classification accuracy decreased with the increase of p and was even lower than ReliefF from p = 1000 (0.66 for FCBF and 0.68 for ReliefF when p = 1000). This may come from the fact that the selected biomarkers from FCBF underwent a re-estimations of coefficients by a logistic regression, while for Lasso and Elastic Net, their coefficients were directly derived from the feature selection step, which provided more accurate prediction. Figure 5.6 displays the performance of the different approaches in the case where Σ = I p , when there is no correlation between the biomarkers. Even if WLogit is designed for handling the correlations when the IC is violated, it still outperformed other methods in terms of biomarker selection. The TPR is the largest among all methods, while the FPR is the smallest (FPR< 0.05). For example when p = 2000, the TPRs were 0.43 (WLogit), 0.25 (Lasso), 0.16 (Elastic Net), 0.03 (ReliefF) and 0.08 (FCBF). The FPRs for all the methods were limited. The most performant methods were then: WLogit, Lasso, Elastic Net, FCBF, and ReliefF, in this order. The same conclusion can be reached in sample classification accuracy from Figure 5.7: WLogit always had the highest AUC (0.86 when p = 200 and 0.66 when p = 2000) compared to other methods. We found that a high accuracy on sample classification is usually given by a high accuracy on predictor selection. result can come from selection failure (no predictor selected) in some folds, which degraded the overall prediction accuracy.

Finally, we used the complete dataset to perform gene selection. Figure 5.9 presents the number of genes selected by each method and the overlap between them. WLogit selected a subset of 18 genes with four genes in common with Elastic Net and one in common with Relief. Lasso selected only one gene that was included in the set of 11 genes selected by Elastic Net. FCBF selected four genes that have no intersection with others. The list of genes selected by each method is given in Supplementary materials, with annotations provided by DAVID database [START_REF] Sherman | David: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[END_REF].

Conclusion

This paper proposes a novel biomarker selection method in the high dimensional logistic regression model when the biomarkers are highly correlated. Our approach, called WLogit, consists in using a penalized criterion dedicated to the logistic regression model after having removed the correlations existing between the biomarkers. The numerical experiments showed the strength of our method not only on biomarker selection but also on sample classification. Chapter 6 -Conclusion

Summary of all developed methods

As described in the previous sections, I developed during my PhD several variable selection methods in different high-dimensional frameworks. We first considered the linear regression model where the response variable is quantitative and only with the presence of prognostic biomarkers. For this purpose, WLasso was designed to perform variable selection in a challenging context where the biomarkers are highly correlated. Then, we proposed another approach based on the Generalized Elastic Net, which combines the 1 and 2 penalties and obtains a more generalized estimator. We established under mild conditions the sign consistency of the corresponding estimator. These two methods were mainly developed for prognostic biomarkers identification. For a comparative study (usually a randomized clinical trial comparing two treatments), we proposed the PPLasso approach, which adds biomarker-to-treatment interactions thanks to an ANCOVA-type model. The above three methods were developed for linear models. We finally extended our approach to the classification problem when the response is a binary variable, which led to the development of WLogit. Following the same procedure as PPLasso, WLogit could be further extended to predictive biomarker identification (named by PPLogit, see Section 6.2.2). Our predictor selection methods are only available for continuous and binary responses, but could be extended to survival data. The data available are of the form (time, predictors, event): (t 1 , X (1) , δ 1 ), . . . , (t N , X (N ) , δ N ). The time t i is either survival or censoring time, and δ i is the censoring status. If a patient has a survival event of interest (e.g., disease progression, release, death), then t i will be the time for the survival event and δ i will be equal to 1. On the other hand, if the patient does not have the survival event, then t i will be the censoring time, and δ i will be equal to 0. X (i) denotes the vector of predictors X (i) 1 , . . . , X (i) p for the ith individual on p covariates. Different models are available to model survival data. The proportional-hazard model, also known as the Cox model, is the most widely used in clinical research. It assumes that:

λ(t |X (i) ) = λ 0 (t) exp( p j=1 X (i) j β j ) (6.1)
where λ(t |X (i) ) is the hazard at time t given predictor values X (i) , and λ 0 (t) is an arbitrary baseline hazard function. β is the effect size of each variable. One usually estimates the parameter β in the proportional-hazards model (6.1) through maximization of the partial likelihood (without specification of λ 0 (t)):

L(β) = i:δ i =1 exp(X (i) β) k ∈R(t i ) exp(X (k ) β) (6.2)
where R(t) = {subject k |t k ≤ t } is the risk set at time t, i.e. the indices of individuals that are still alive at time t. The penalized Cox model proposes to estimate β by:

β = arg min {L(β) + λ β 1 } . (6.3)
The direct optimization problem is difficult to adapt to our method, two possible alternatives provide other possibilities to solve this issue.

Survival stacking: transform to a classification problem

As an alternative to Cox model, [START_REF] Craig | Survival stacking: casting survival analysis as a classification problem[END_REF] proposed a method called "survival stacking" which reshapes survival data, so that survival problems can be addressed as classification problems, thereby enabling the use of classification methods in a survival setting. As a simple example of right-censored dataset

The variable "risk set 2" is the indicator for individuals at risk at time t 3 (time point of the second event). Finally, we vertically stack all predictor matrices and outcome vectors to form a single dataset:

X = predictor 1 predictor 2 risk set 1 risk set 2 X (1) 1 X (1) 2 1 0 X (2) 1 X (2) 2 1 0 X (3) 1 X (3) 2 1 0 X (3) 1 X (3) 2 0 1 , ỹ = outcome 1 0 0 1.
By reframing survival problems as classification problems, we can now leverage the previously developed WLogit in a survival context. [START_REF] Craig | Survival stacking: casting survival analysis as a classification problem[END_REF] showed that the survival stacking has a deep relationship to the Cox model: they verified that the coefficients used in the logistic regression model with reshaped data were a close approximation of those from the Cox model. This technique has already been discussed in D' Agostino et al. (1990) and [START_REF] Ingram | Empirical comparisons of proportional hazards and logistic regression models[END_REF], but underused in practice.

Restricted mean survival time: transform to a regression problem

The Cox proportional hazard model is a linear model that assumes the relationship between the predictors and the hazard is constant through time, which is not always appropriate. Another alternative tool, the restricted mean survival time (RMST), was proposed to analyze survival data in a more reliable way [START_REF] Royston | The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt[END_REF], [START_REF] Royston | Restricted mean survival time: An alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome[END_REF]). The restricted mean is a measurement of average survival from time 0 to a specified (restricted) time point, and may be estimated as the area under the survival curve up to that point. Suppose S(t) is the survival curve (Kaplan-Meier curve for example). The restricted mean survival time µ to some horizon t * equals the area under the survival curve S(t) from t = 0 to t = t * :

µ = ∫ t * 0 S(t) dt . (6.4)
For example, when t is years to death, we may think of µ as the t * -year life expectancy. To take into account the covariables, [START_REF] Ambrogi | Analyzing differences between restricted mean survival time curves using pseudo-values[END_REF] further proposed a pseudo-value approach that can model RMST with covariables through a linear model. With the ith pseudo-value at time t * defined as: (6.5) where S -i (t) is the Kaplan-Meier estimator excluding subject i, θ t * ,i therefore presents the contribution of the ith individual to the overall mean time survival at time t * . Taking this as the response value of individual i, a linear regression model can be assumed as: (6.6) where α determines the baseline restricted mean time and X (i) are time-independent covariates. The basic model can be the linear regression where we assume a linear relationship between the baseline predictor and the survival time, therefore we can now use the previously developed WLasso method in this context.

θ t * ,i = n ∫ t * 0 S(t) dt -(n -1) ∫ t * 0 S -i (t) dt,
θ t * ,i = α + X (i) β,

Identification of predictive biomarkers

In chapter 4, we developed a method, PPLasso, that can simultaneously identify prognostic and predictive biomarkers in the linear model. Although this method is currently only limited to continuous quantitative response, the idea of using the ANCOVA model for predictive effect can be easily generalized to other types of statistical modeling, including logistic regression. Following the idea of PPLasso, we can construct the same design matrix with biomarker-treatment interactions and treatment effects. Then for logistic regression, we use the re-weighted least square approach as in WLogit. Finally, the thresholding and penalty of PPLasso could be used to identify the two kinds of biomarkers. This corresponds to PPLogit in Figure 6.1. Furthermore, with the idea of adapting to survival analysis as described in Section 6.2.1, we can also develop new approaches for predictive biomarker identification based on time-to-event endpoints: by converting the survival data to binary (survival stacking) or continuous (restricted survival mean time) response, we will be able to apply PPLogit or PPLasso on converted dataset respectively. Thus, one perspective of this work is to develop and make available to users a more sophisticated and complete R package encompassing all the methods for different response types and different types of biomarkers.

Testing covariance matrices in high dimension

During my PhD research, I have been focusing on developing novel methods that take into account the correlations that may exist between covariables. All the developed methods aim to solve the inconsistency of variable selection in the presence of high correlations. However, not all datasets show a strong correlation between covariables. Testing the presence of correlation is therefore useful before implementing our methods. In the absence of correlations, traditional Lasso may be preferred even though the whitening approaches show similar results. Covariance matrix testing in high-dimensional settings requires new approaches since many classical multivariate methods fail when the number of covariables exceeds the sample size. Classical tests are based on the unbiased modified likelihood ratio criterion, which leads to unstable tests that have poor statistical performance when p > n. Among the newly developed techniques, [START_REF] Fisher | On testing for an identity covariance matrix when the dimensionality equals or exceeds the sample size[END_REF] proposed to test the hypothesis H 0 : Σ = I p , i.e. the covariance matrix is identity (decorrelated covariates) by proposing two new statistics for high-dimensional data. With the same objective, another method based on posterior Bayes factor [START_REF] Wang | Testing high dimensional covariance matrices via posterior bayes factor[END_REF] was proposed. The test of block-diagonal covariance matrix was also proposed by [START_REF] Hyodo | Testing blockdiagonal covariance structure for high-dimensional data[END_REF], which can be implemented to test pathway structures. Extended to any prefixed structure, CRAMP [START_REF] Ayyala | Covariance matrix testing in high dimension using random projections[END_REF] per-forms hypothesis testing for a given covariance structure with the hypothesis test H 0 : Σ = Σ 0 for some p ×p matrix Σ 0 . It consists in projecting the high dimensional data randomly into lower-dimensional subspaces, therefore allowing for the use of traditional multivariate tests.

Chapter 7 -En bref

Contexte biologique

La médecine traditionnelle traite tous les patients de la même manière sans tenir compte de leurs spécifités propres mais parfois les gens ne réagissent pas de la même manière à un traitement. Certains médicaments fonctionnent très bien pour certaines personnes, tandis que d'autres peuvent s'avérer inefficaces ou même provoquer des effets secondaires [START_REF] Alberti | Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neuropathy[END_REF]. Contrairement à la médecine traditionnelle, la médecine de précision est beaucoup plus ciblée : elle vise à donner un traitement adapté à chaque patient (figure 7.1). Selon la définition de l'Institut national du cancer des États-Unis, "La médecine de précision est une forme de médecine qui utilise des informations sur les gènes, les protéines et l'environnement d'une personne pour prévenir, diagnostiquer et traiter les maladies."

Avec l'arrivée des nouvelles techniques de séquençage et de la médecine de précision, la compréhension de la cause d'une maladie, la découverte des mécanismes de réponse aux médicaments et la prédiction de la réponse au traitement pour la prise de décision thérapeutique deviennent de plus en plus importantes dans la recherche médicale. La disponibilité de quantités croissantes de données issues d'études de population permet aux chercheurs d'avoir accès aux données "-omiques" (métabolomique, protéomique, transcriptomique,...) et cliniques des patients, et donc d'accéder à des informations au niveau moléculaire [START_REF] Krassowski | State of the field in multi-omics research: From computational needs to data mining and sharing[END_REF]. Ces molécules biologiques sont appelées les biomarqueurs, ils incluent : les gènes dans les données RNAseq, les protéines dans les données protéomiques et les SNP dans les données GWAS. Cependant, pour exploiter au mieux ces données de nouvelles méthodes doivent être mises en place [START_REF] Ginsburg | Precision medicine: From science to value[END_REF].

Une caractéristique importante des données "-omiques" est le fait que le nombre de variables (ici les biomarqueurs) est généralement supérieur à la taille de l'échantillon. Par exemple, dans le cadre des données RNAseq on peut avoir plus de 20 000 données d'expression de gènes alors que la taille de l'échantillon est généralement limitée (10 ∼ 100) en raison du coût des expériences. Par ailleurs, étant donné que seul un petit sous-ensemble de biomarqueurs suffit généralement pour expliquer la variable réponse (un critère clinique, par exemple), arriver à identifier ces biomarqueurs est fondamental et difficile. La présence d'interactions complexes entre les biomarqueurs augmente encore la difficulté de leur identification [START_REF] Yamada | Interpretation of omics data analyses[END_REF]. De nouvelles techniques sont donc nécessaires pour identifier les biomarqueurs véritablement explicatifs d'une variable réponse et ainsi mieux comprendre les maladies au niveau moléculaire. [START_REF] Sprundel | van sprundel tc, schmidt mk, rookus ma, brohet r, van asperen cj, rutgers ej, van't veer lj, tollenaar rarisk reduction of contralateral breast cancer and survival after contralateral prophylactic mastectomy in brca1 or brca2 mutation carriers[END_REF][START_REF] Domchek | Association of risk-reducing surgery in brca1 or brca2 mutation carriers with cancer risk and mortality[END_REF].

Un autre exemple est la signature MammaPrint développée dans le cancer du sein [START_REF] Sotiriou | Gene-expression signatures in breast cancer[END_REF]. MammaPrint utilise des microréseaux pour mesurer l'expression de 70 gènes qui sont des caractéristiques clés du cancer, sur la base desquels les patients sont séparés en deux groupes : ceux qui présentent un risque faible ou élevé de récidive de la maladie. Dans l'essai clinique prospectif randomisé MINDACT, les patients classés comme étant à faible risque ont obtenu un excellent résultat en termes de survie sans maladie. Selon les lignes directrices de l'EGTM (European Group on Tumour Markers), le test MammaPrint "peut être utilisé pour déterminer le pronostic et guider la prise de décision concernant l'administration d'une chimiothérapie adjuvante chez les patientes atteintes d'un cancer du sein invasif récemment diagnostiqué." Les biomarqueurs pronostiques indiquent le risque potentiel de progression de la maladie et contribuent donc à la prise de décision quant à la nécessité ou à l'agressivité d'un traitement. Les patients dont les tumeurs présentent une mutation de l'EGFR ont un taux de survie plus élevé lorsqu'ils sont traités avec de l'erlotinib par rapport à ceux qui ont eu un placebo. En revanche, le groupe des patients de type sauvage EGFR n'a pas montré de bénéfice clair de l'erlotinib [START_REF] Ballman | Biomarker: Predictive or prognostic[END_REF]. Un autre exemple est la mesure de l'expression du gène HER2 dans les décisions de traitement du cancer du sein. La surexpression de HER2 entraîne la croissance de la tumeur et favorise la prolifération et l'invasion des cellules [START_REF] Rimawi | Targeting her2 for the treatment of breast cancer[END_REF]. Selon ce mécanisme, quatre formes de thérapie anti-HER2 sont disponibles [START_REF] Martin | Emerging therapeutic options for her2-positive breast cancer[END_REF] et la surexpression du gène HER2 semble être nécessaire pour que les patients répondent à ces traitements. Par conséquent, seules les patientes HER2-positives peuvent recevoir des thérapies anti-HER2. Outre la prise de décision thérapeutique, les biomarqueurs prédictifs sont également importants pour la recherche clinique. Par exemple, dans un essai clinique contrôlé randomisé d'une thérapie expérimentale, un biomarqueur peut être utilisé pour sélectionner les patients à inclure dans un essai clinique ou pour stratifier les patients en groupes de biomarqueurs positifs et négatifs. Si le biomarqueur est prédictif d'une issue favorable, l'effet du traitement expérimental par rapport à un traitement de référence sera plus important chez les patients porteurs du biomarqueur. Distinguer les biomarqueurs pronostiques et prédictifs peut être difficile dans certains cas en particulier lorsqu'un seul traitement est présent, l'effet sur un critère d'évaluation clinique donné pouvant provenir d'un effet pronostique ou prédictif, voire des deux.

Le développement de la médecine de précision change la façon dont les patients sont traités. [START_REF] Vargas | Biomarker development in the precision medicine era: lung cancer as a case study[END_REF] a résumé les traitements du cancer du poumon par la médecine de précision en se basant sur différents types de biomarqueurs (génomique, transcriptomique, épigénomique, protéomique, etc.) et a listé les biomarqueurs prometteurs dans ce dernier. D'un point de vue plus global, [START_REF] Tsimberidou | Review of precision cancer medicine: Evolution of the treatment paradigm[END_REF] a revisité l'histoire du développement de la médecine de précision et a indiqué que de nouvelles stratégies, notamment les thérapies utilisant les expressions génétiques, permettront d'optimiser le traitement de chaque patient et d'accélérer la découverte de nouveaux médicaments.

L'objectif de ma thèse est donc de développer de nouvelles méthodes qui peuvent sélectionner correctement les biomarqueurs pertinents dans des contextes de grande dimension, en particulier lorsque les biomarqueurs sont corrélés. Nous avons d'abord considéré le cas de la régression linéaire multiple pour identifier les biomarqueurs pronostiques lorsque la variable réponse est continue. Avec la présence de deux traitements potentiels, nous avons ensuite développé une nouvelle méthode pour identifier simultanément les marqueurs pronostiques et prédictifs en utilisant un modèle linéaire de type ANCOVA. Enfin, nous avons étendu nos méthodes au cas de la régression logistique lorsque la variable à expliquer est binaire. où X = (X 1 , . . . , X p ) est la matrice de design contenant l'expression de p biomarqueurs (p n) et β = (β 1 , . . . , β p ) T est un vecteur parcimonieux à estimer, c'est-à-dire avec une majorité de coefficients nuls. Dans le modèle (7.1), est le terme d'erreur. La sélection de variables vise à identifier toutes les variables dont les coefficients de régression sont estimés comme non nuls. Plusieurs articles de revue ont été écrits sur le sujet comme [START_REF] Saeys | A review of feature selection techniques in bioinformatics[END_REF][START_REF] Heinze | Variable selection -a review and recommendations for the practicing statistician[END_REF] par exemple et indiquent que trois types de méthodes sont principalement utilisées pour faire de la sélection de variables dans des données "-omiques" de grande dimension.

Tests univariés

L'approche univariée consiste à étudier indépendamment chaque biomarqueur en évaluant sa force d'association avec la réponse dans un modèle de régression linéaire [START_REF] Mcdonald | Handbook of Biological Statistics 2nd Edition[END_REF]. Cependant, la multiplicité des tests statistiques peut rendre cette approche moins puissante [START_REF] Lee | What is the proper way to apply the multiple comparison test?[END_REF]. Pour résoudre ce problème, des corrections de tests multiples ont été proposées. La correction la plus connue est la correction de Bonferroni, et d'autres moins conservatrices incluent les techniques de Bonferroni-Holm [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF] et de Hochberg [START_REF] Hochberg | A sharper bonferroni procedure for multiple tests of significance[END_REF]. Pour contrôler le taux de fausse découverte, les ajustements couramment utilisés dans l'analyse des données "-omiques" sont les suivants : [START_REF] Benjamini | Controlling the false discovery rate -a practical and powerful approach to multiple testing[END_REF] et [START_REF] Benjamini | The control of the false discovery rate in multiple testing under dependency[END_REF]. Bien que très simple à mettre en oeuvre, cette approche ne tient pas compte de la corrélation entre les biomarqueurs, ce qui peut constituer une limitation importante dans le contexte des données "-omiques".

Approches forward, backward et stepwise

Dans le cadre de ces approches le choix des variables est effectué par une procédure qui, à chaque étape, envisage d'ajouter ou de soustraire une variable à l'ensemble des variables explicatives en fonction d'un critère pré-spécifié [START_REF] Hocking | A biometrics invited paper. the analysis and selection of variables in linear regression[END_REF]). On trouve des applications de cette approche à la sélection de biomarqueurs dans [START_REF] Xiong | Feature (gene) selection in gene expression-based tumor classification[END_REF][START_REF] Lu | Stepwise selection on homeologous prr genes controlling flowering and maturity during soybean domestication[END_REF]. Cependant, ces approches présentent souvent un risque élevé de surajustement et sont coûteuses en temps de calcul pour les données de grande dimension [START_REF] Smith | Step away from stepwise[END_REF].

Approches régularisées

Les approches régularisées sont souvent utilisées dans le contexte de données de grande dimension. Elles consistent à ajouter une pénalité de type 1 à la vraisemblance du modèle (7.1) comme c'est le cas par exemple pour le critère Lasso (Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996a). Il consiste à minimiser le critère suivant :

L λ (β) = y -Xβ 2 2 + λ β 1 , (7.2) où µ 2 2 = n i=1 µ 2 i et µ 1 = n i=1 |µ i | lorsque µ = (µ i , . . . , µ n ) T .
D'autres types de pénalités ont été proposées comme celles qui sont par exemple utiliser dans l'Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], le SCAD [START_REF] Fan | Variable selection via nonconcave penalized likelihood and its oracle properties[END_REF], le Dantzig selector [START_REF] Candes | The Dantzig selector: Statistical estimation when p is much larger than n[END_REF], le nonnegative Garrote [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF], le Lasso adaptatif [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] ou le group Lasso [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. Une revue plus générale sur le sujet de la sélection de variables dans des contextes de grande dimension peut être trouvée dans [START_REF] Fan | A selective overview of variable selection in high dimensional feature space[END_REF]. En raison de leur capacité à effectuer la sélection de variables et l'estimation de coefficients simultanément [START_REF] Fan | Statistical challenges with high dimensionality: Feature selection in knowledge discovery[END_REF], les approches régularisées ont été largement appliquées à l'analyse génomique [START_REF] Ogutu | Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions[END_REF][START_REF] Li | Overview of lasso-related penalized regression methods for quantitative trait mapping and genomic selection. TAG. Theoretical and applied genetics[END_REF][START_REF] Desta | Genomic selection: Genome-wide prediction in plant improvement[END_REF]. Par conséquent, nous nous concentrerons dans cette thèse principalement sur ce type d'approches.

Fortes corrélations entre les biomarqueurs

Une difficulté notoire de la sélection de variables dans les contextes de grande dimension provient de la corrélation entre les variables explicatives (covariables, biomarqueurs). La corrélation peut facilement conduire la sélection de variables (biomarqueurs) non pertinentes en particulier dans le cadre des données génomiques de grande dimension. La figure 7.3 présente les corrélations empiriques entre les données d'expression des gènes (après prétraitement) dans un ensemble de données sur le cancer de la prostate [START_REF] Singh | Gene expression correlates of clinical prostate cancer behavior[END_REF] (2135 gènes, 102 échantillons) et un ensemble de données sur le cancer du sein [START_REF] Sotiriou | Gene Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade To Improve Prognosis[END_REF] (1111 gènes, 189 échantillons). Nous pouvons clairement observer de fortes corrélations par blocs, ce qui signifie que les gènes de chaque bloc sont corrélés.

En présence de telles corrélations, le Lasso est connu pour ne pas être consistant en signe. La consistance en signe garantit que les coefficients non nuls de β (associés aux variables actives) sont estimés par des coefficients non nuls de même signe et que les coefficients nuls (associés aux variables non actives) sont estimés par des coefficients nuls. Plus précisément, un estimateur de β est consistant en signe si où si n(x) = 1 si x > 0, -1 si x < 0 et 0 si x = 0.

P si n( β) = si n(β) -----→ n→+∞ 1 (7.3)
La consistance de la sélection de variables a fait l'objet d'une attention considérable, et divers travaux ont été consacrés à l'étude de la consistance de la sélection de modèles obtenus par le Lasso : [START_REF] Zhao | On model selection consistency of lasso[END_REF]; [START_REF] Meinshausen | High dimensional graphs and variable selection with the lasso[END_REF]; [START_REF] Lounici | Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators[END_REF]; [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF]. Pendant ma thèse, je me suis principalement concentrée sur la Condition d'Irreprésentabilité établie par [START_REF] Zhao | On model selection consistency of lasso[END_REF]. Les auteurs ont prouvé que cette condition est nécessaire et suffisante pour retrouver le support de β, c'est-à-dire pour retrouver les composantes nulles et non nulles dans le vecteur β et ainsi fournir un estimateur consistant en signe. Cette condition est définie comme suit.

Condition d'Irreprésentabilité (IC) : Soit S = {j, β j 0} l'ensemble des variables actives, S c l'ensemble des variables non actives et X A la sous-matrice de X contenant uniquement les indices des colonnes qui sont dans l'ensemble A. Par conséquent, la matrice de covariance empirique des covariables, C n = n -1 X T X, peut être réécrite comme suit :

C n = C n 11 C n 12 C n 21 C n 22 , where C n 11 = n -1 X T S X S , C n 12 = n -1 X T S X S c , C n 21 = n -1 X T S c X S , C n 22 = n -1 X T S c X S c
. Alors, la matrice de design X satisfait à la condition d'irreprésentabilité si pour une certaine constante α ∈ (0, 1),

C n 21 (C n 11 ) -1 sign(β S ) j ≤ 1 -α, pout tout j. (7.4)
Intuitivement, cette condition signifie que la corrélation entre les variables actives et non actives est inférieure à la corrélation entre les variables actives. Par conséquent, cette condition est plus susceptible d'être violée lorsque les corrélations entre les variables actives et non actives sont importantes.

Dans les données génomiques en grande dimension, cette condition est difficile à garantir car la corrélation entre les biomarqueurs est généralement élevée [START_REF] Michalopoulos | Human gene correlation analysis (hgca): A tool for the identification of transcriptionally co-expressed genes[END_REF]. Ce phénomène est typiquement observé dans les données omiques. [START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF] Dans ma thèse, j'ai proposé une nouvelle approche pour éliminer les corrélations qui peuvent exister entre les covariables (biomarqueurs). Supposons que les n lignes X (1) , . . . , X (n) de X sont supposées être des vecteurs aléatoires gaussiens indépendants avec une matrice de covariance égale à Σ. Soit Σ -1/2 := U D -1/2 U T où U et D sont les matrices impliquées dans la décomposition spectrale de la matrice symétrique Σ donnée par : Σ = U DU T . Nous notons alors X = XΣ -1/2 .

Le modèle (7.1) peut ainsi être réécrit comme suit :

y = X β + , (7.5 
)

où β = Σ 1/2 β := U D 1/2 U T β.
Avec une telle transformation, la matrice de covariance des lignes de X est égale à l'identité et les colonnes de X sont donc non corrélées. La figure 7.4 présente la heatmap des corrélations (mêmes ensembles de données que ceux présentés dans la figure 7.3) après la transformation de blanchiment. La matrice de covariance Σ a été estimée par le package cvCovEst (Boileau et al., 2021). Nous proposons une nouvelle approche de sélection de variables, WLasso (Whitening Lasso), avec l'idée de blanchiment introduite précédemment. Après transformation du modèle (7.5), nous proposons de minimiser le critère suivant par rapport à β : (7.8)

L gen λ ( β) = y -X β 2 2 + λ Σ -1/2 β 1 , ( 
β (K ) j (λ) =        β 0j (λ), j ∈ 
Les variables dont les coefficients ne sont pas nuls dans β sont considérées comme associées à la variable de réponse. Dans le chapitre 2, nous avons montré dans diverses expériences numériques que, lorsque les biomarqueurs sont fortement corrélés, notre approche WLasso obtient de meilleures performances statistiques que les approches auxquelles nous l'avons comparée.

Contribution du chapitre 3

Cette section résume l'article suivant : Zhu, W., Adjakossa, E., [START_REF] Zhu | A variable selection approach for highly correlated predictors in high-dimensional genomic data[END_REF]. Sign Consistency of the Generalized Elastic Net Estimator. Soumis avec arXiv preprint (arXiv:2106.05454).

Dans cette section, outre la transformation du modèle (7.5), nous proposons de combiner une pénalité 1 et 2 , et de considérer le critère suivant :

L E N λ,η ( β) = y -X β 2 2 + λ Σ -1/2 β 1 + η β 2 2
, avec λ, η > 0.

(7.9) Puisqu'il consiste à ajouter une partie pénalité de 2 au Lasso généralisé comme dans l'Elastic Net, nous l'appellerons Elastic Net généralisé (gEN). L'estimateur gEN est défini par : Avec les progrès de la médecine de précision, l'identification de biomarqueurs pronostiques ou prédictifs suscite un intérêt croissant. Les méthodes WLasso et Elastic Net généralisés introduites précédemment ont été développées dans le but de sélectionner des biomarqueurs pronostiques. Cependant, peu d'approches existent pour identifier des biomarqueurs prédictifs. Pour des variables réponses binaires, [START_REF] Foster | Subgroup identification from randomized clinical trial data[END_REF] a proposé de prédire d'abord les probabilités de réponse au traitement et d'utiliser cette probabilité comme réponse dans un problème de classification pour trouver des biomarqueurs efficaces. [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF] a proposé une nouvelle méthode pour détecter l'interaction entre le traitement et les biomarqueurs en modifiant les covariables. Cette méthode peut être mise en oeuvre pour des réponses continues/binaires/de survie. [START_REF] Lipkovich | Subgroup identification based on differential effect search (sides) -a recursive partitioning method for establishing response to treatment in patient subpopulations[END_REF] a proposé une méthode appelée SIDES, qui adopte un algorithme de partitionnement récursif pour le dépistage des interactions traitement-biomarqueur. Cette méthode a été améliorée dans [START_REF] Lipkovich | Strategies for identifying predictive biomarkers and subgroups with enhanced treatment effect in clinical trials using sides[END_REF] en ajoutant une autre étape de présélection sur les biomarqueurs prédictifs fondée sur l'importance des variables. Leur approche fonctionne pour des variables réponses continues. Plus récemment, [START_REF] Sechidis | Distinguishing prognostic and predictive biomarkers: an information theoretic approach[END_REF] a appliqué des approches issues de la théorie de l'information pour classer les biomarqueurs selon leur effet pronostique/prédictif. Leur méthode n'est applicable que pour des réponses binaires ou de survie. De plus, la plupart de ces méthodes ont été évaluées dans une situation où la taille de l'échantillon est relativement importante et le nombre de biomarqueurs est limité, ce qui n'est pas le cas pour les données génomiques.

β = Σ -1/2
Dans la littérature mentionnée ci-dessus, les auteurs se sont concentrés sur l'identification de biomarqueurs prédictifs. Cependant, l'effet pronostique est également essentiel dans la recherche biomédicale. Nous avons proposé une nouvelle approche appelée PPLasso (Predictive Prognostic Lasso) pour identifier simultanément des biomarqueurs pronostiques et prédictifs dans un cadre de grande dimension en utilisant un modèle linéaire de type ANCOVA.

Contribution du chapitre 4

Cette section résume l'article suivant : Zhu, W., Lévy-Leduc, C., et Ternès, N. (2022). Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. Soumis avec arXiv preprint (arXiv:2202.01970).

La méthode proposée est implementée dans le package R PPLasso disponible sur le CRAN. Soient y une réponse continue et t 1 , t 2 deux traitements. Soit X 1 (resp. X 2 ) la matrice de design pour les n 1 (resp. n 2 ) patients recevant le traitement t 1 (resp. t 2 ), chacune contenant des mesures sur p biomarqueurs candidats : Cependant, vu que la non consistance en signe du Lasso provient en général des fortes corrélations existant entre les variables, nous proposons de supprimer les corrélations en "blanchissant" la matrice X. Plus précisément, nous considérons X = XΣ -1/2 , où (7.17) et définissons Σ -1/2 en remplaçant dans (7.17) Σ i par Σ -1/2 i , où Σ -1/2 i = U i D -1/2 i U T i , U i et D i étant les matrices impliquées dans la décomposition spectrale de Σ i pour i = 1 ou 2. Avec une telle transformation, les colonnes de X sont décorrélées et le modèle (7.15) peut être réécrit comme suit : y = X γ + (7.18) où γ = Σ 1/2 γ. La fonction objectif (7.16) devient donc :

X 1 =         X 1
Σ =         1 0 0 0 0 1 0 0 0 0 Σ 1 0 0 0 0 Σ 2        
L PPLasso λ 1 , λ 2 ( γ) = 1 2 y -X γ 2 2 + λ 1       0 p,1 0 p,1 D 1 0 p,1 0 p,1 λ 2 λ 1 D 2       Σ -1/2 γ 1 . (7.19)
Un seuillage similaire a ensuite été imposé comme expliqué précédemment dans la section 7.3.4 pour obtenir l'estimation finale de ( β 1 , β 2 ). Les biomarqueurs dont les coefficients ne sont pas nuls dans β 1 (resp. β 2β 1 ) sont considérés comme des biomarqueurs pronostiques (resp. prédictifs).

Sélection de variable dans le modèle de régression logistique

en grande dimension 7.5.1. Sélection de biomarqueurs pour les réponses binaires Auparavant, nous avons supposé que la réponse y était continue. Cette section se concentre sur les réponses binaires dont la modélisation peut être vue comme un problème de classification. Cette dernière est un sujet important dans la recherche biomédicale. Par exemple, selon le guide RECIST (Response Evaluation Criteria in Solid Tumours) [START_REF] Watanabe | New response evaluation criteria in solid tumours revised recist guideline (version 1.1). Gan to kagaku ryoho[END_REF] sur la recherche en oncologie, l'évaluation de la réponse des patients est généralement définis comme une réponse complète, une réponse partielle, une maladie stable et une progression en fonction de la réponse au traitement. Les patients des deux premières catégories (réponse complète et réponse partielle) sont considérés comme des répondeurs au traitement, tandis que les autres sont considérés comme des non-répondeurs. Pour la maladie de la polyarthrite rhumatoïde, les critères ACR (American College of Rheumatology) sont utilisés pour évaluer la réponse au traitement dans le cadre d'un essai clinique. La réponse ACR est notée en pourcentage d'amélioration. Par exemple, ACR50 est un résultat binaire indiquant si l'amélioration est supérieure à 50 %. Un autre exemple est la classification des tumeurs. Avec le développement de la bioinformatique, la classification des cancers à partir de données omiques est devenue un sujet important dans la recherche sur le génome [START_REF] Ramaswamy | Multiclass cancer diagnosis using tumor gene expression signatures[END_REF][START_REF] Tibshirani | Diagnosis of multiple cancer types by shrunken centroids of gene expression[END_REF][START_REF] Menyhárt | Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis[END_REF].

Comparée à d'autres classifieurs tels que les arbres de décision [START_REF] Utgoff | Incremental induction of decision trees[END_REF] ou les SVM (Support Vector Machine) [START_REF] Cortes | Support-vector networks[END_REF], la régression logistique [START_REF] Walker | Estimation of the probability of an event as a function of several independent variables[END_REF] est une méthode de classification très utilisée qui permet une interprétation statistique explicite et qui peut fournir des probabilités de classification pour une réponse binaire [START_REF] Menard | Applied logistic regression analysis[END_REF]. Cependant, comme expliqué précédemment, avec les données omiques de grande dimension, il est essentiel d'obtenir un petit nombre de gènes clés et d'améliorer la précision de la classification, ce qui nous amène à considérer le problème de la sélection des variables dans le modèle de régression logistique de grande dimension en utilisant des approches régularisées [START_REF] Park | L1-regularization path algorithm for generalized linear models[END_REF]. Récemment, les méthodes régularisées ont été largement appliquées à la découverte de biomarqueurs et à la classification des maladies [START_REF] Zhu | Classification of gene microarrays by penalized logistic regression[END_REF][START_REF] Wu | Differential gene expression detection and sample classification using penalized linear regression models[END_REF][START_REF] Ma | Penalized feature selection and classification in bioinformatics[END_REF][START_REF] Liu | Logsum+ l2 penalized logistic regression model for biomarker selection and cancer classification[END_REF]. Outre le grand nombre de variables, les corrélations entre les biomarqueurs doivent également être prises en compte. Pour traiter ces corrélations, plusieurs méthodes ont été proposées. Les plus connues sont l'Elastic Net [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] et l'Adaptive Lasso [START_REF] Zou | The adaptive lasso and its oracle properties[END_REF] mentionnés dans la section 7.3 et adaptés au cadre de la régression logistique. Plusieurs approches de filtrage ont également été proposées pour prendre en compte les corrélations dans le cadre de la classification. Relief [START_REF] Kira | A practical approach to feature selection[END_REF] est sensible aux interactions entre les variables et a inspiré une famille d'algorithmes de sélection fondée sur Relief, notamment ReliefF [START_REF] Kononenko | Overcoming the myopia of inductive learning algorithms with relieff[END_REF]. Ce dernier a été largement utilisé dans la recherche biomédicale [START_REF] Urbanowicz | Relief-based feature selection: Introduction and review[END_REF]. FCBF [START_REF] Yu | Feature selection for high-dimensional data: A fast correlation-based filter solution[END_REF] est une autre approche de sélection de variables en grande dimension qui évalue la pertinence et la redondance des variables sur la base de mesures de corrélation. Dans ce chapitre, nous proposons une nouvelle méthode qui peut identifier les biomarqueurs actifs dans les données de grande dimension et fournir une classification sur les échantillons collectés.

Contribution du Chapter 5

Cette section résume l'article suivant qui va être prochainement soumis : Zhu, W., Lévy-Leduc, C., and Ternès, N. (2022). Variable selection in high-dimensional logistic regression models using a whitening approach.

La méthode proposée est mise en oeuvre dans le package R WLogit prochainement disponible sur le CRAN. Soient X une matrice de design de taille n × p où X (i) j correspond à la mesure du jème biomarqueur pour le ième échantillon, et β = (β 1 , . . . , β p ) T le vecteur de la taille de l'effet pour chaque biomarqueur où β contient un grand nombre de composantes égales à zéro. Nous supposons que les réponses binaires 1 , 2 , ..., n sont des variables aléatoires indépendantes ayant une distribution de Bernoulli avec le paramètre π β (X (i) ) ( i ∼ Bernoulli(π β (X (i) ))), où pour tous les i dans {1, . . . , n}, avec X (i) la i-ième ligne de X. Avec la fonction de pénalité et le paramètre λ correctement choisi, certaines composantes de β sont mises à zéro. Comme nous l'avons mentionné précédemment, le critère Lasso peut échouer à sélectionner le véritable sous-ensemble de biomarqueurs actifs lorsque la corrélation entre les biomarqueurs actifs et non actifs est importante, ce qui est énoncé dans la condition d'irreprésentabilité pour les modèles de régression linéaire dans l'équation (7.4). Une condition similaire a été obtenue par [START_REF] Ravikumar | High-dimensional Ising model selection using l1-regularized logistic regression[END_REF][START_REF] Bunea | Honest variable selection in linear and logistic regression models via l1 and l1+l2 penalization[END_REF] dans le cas de la régression logistique. Soit Q défini par : (7.23) où H est une matrice diagonale avec H ii = π β (X (i) )/(1π β (X (i) )), 1 ≤ i ≤ n.

Q = X T HX,
(7.24) Soit S = {j, β j 0} l'ensemble des variables actives de taille d, S c l'ensemble des variables non actives, Q S S désigne la sous-matrice d × d de Q indexée par S. Avec cette notation, la condition s'énonce de la façon suivante : Il existe α ∈ (0, 1] tel que : Nous proposons de supprimer la corrélation en "blanchissant" la matrice X. Plus précisément, nous considérons X = X Σ-1/2 , où Σ est un estimateur de covariance obtenu à partir de H 1/2 X, où H est défini dans l'équation (7.24). Avec cette transformation, X T H X devrait être proche de la matrice identité I p , donc la condition d'irreprésentabilité devrait être satisfaite. Après l'étape de blanchiment, le modèle (7.20) peut être réécrit comme suit : (7.28)

Q S c S (Q S S ) -1 ∞ ≤ 1 -α,
Pour résoudre ce problème d'optimisation, nous proposons d'utiliser une approximation quadratique de la log-vraisemblance (7.27) en utilisant un développement de Taylor à l'ordre 2 évalué aux valeurs courantes des estimateurs [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF] :

l wt Q ( β) = - 1 2n n i=1 w i (z i -X (i) β) 2 + C( β o ) 2 (7.29) = - 1 2n n i=1 ( √ w i z i - √ w i X (i) β) 2 + C( β o ) 2
(7.30)

avec z i = X (i) β + i -π β o ( X (i) ) π β o (X (i) )(1 -π β o ( X (i) ))
, (working response)

w i = π β o ( X (i) )(1 -π β o ( X (i)
)), (weights) (7.31) où π β o ( X (i) ) est l'évaluation de π β o (définie dans le modèle (7.26)) aux paramètres courants β o . L'estimateur final peut alors être obtenu grâce à l'algorithme IRLS (Iterative Re-weighted Least Square) [START_REF] Daubechies | Iteratively reweighted least squares minimization for sparse recovery[END_REF]. Après avoir obtenu l'estimation de β, un seuillage similaire à celui proposé pour les modèles précédents a ensuite été imposé pour obtenir l'estimation finale β. Les biomarqueurs dont les coefficients ne sont pas nuls sont considérés comme actifs. Un classifieur peut également être obtenu à l'aide de β.

Les performances de WLogit sont évaluées à l'aide de données synthétiques dans plusieurs scénarios et comparées à d'autres approches. Les résultats suggèrent que WLogit peut identifier presque tous les biomarqueurs actifs, même dans les cas où les biomarqueurs sont fortement corrélés, alors que les autres méthodes échouent, ce qui conduit par conséquent à une précision de classification plus élevée. Les performances de la méthode ont également été évaluées pour la classification de deux sous-types de lymphome, et le classifieur obtenu surpasse également les autres méthodes.
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 1 Figure 1.3: Heatmap of correlations between expressions of genes. Prostate cancer (left) and Breast cancer (right) datasets.
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 14 Figure 1.4: Heatmap of correlations after whitening. Prostate cancer (left) and Breast cancer (right) datasets.
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 2 Figure 2.1: Proportion of components j such that (2.3) is violated. These results were obtained from 100 replications.
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 22 Figure 2.2: Left: Boxplots of the average of (| β 0j (λ)β j (λ)|) 1≤j ≤p (left) and (| β
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 23 Figure 2.3: Number of True Positive and True Negative for β in red and β 0 in blue for a given vector of observations y.
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 24 Figure 2.4: MSE K (λ) (left) and MSE M (λ) (right) for λ chosen thanks to the strategy explained in Section 2.3.2 for a given vector of observations y and γ = 0.95. The vertical dotted lines correspond to K(λ) and M(λ), respectively.
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 25 Figure 2.5: TPR (left) and FPR (right) for different values of M and K. The TPR and FPR obtained for M = M and K = K are displayed with a red star ('*'). (red dots and green ones are overlaped)
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 26 Figure 2.6: Estimation of the parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7). The horizontal dotted lines correspond to the true values of the parameters. These results are obtained from 100 replications for each value of p.
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 2 Figure 2.7: Average over the replications of max(TPR-FPR) and of the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 0.5 and n = 50. Dotted line: Σ, solid line: Σ.
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 2 Figure 2.10 displays the results when the sample size n is increased and equal to
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 2 Figure 2.8: Top left: Average of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and average of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 0.5 and n = 50.
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 2 Figure 2.9: Top left: Average of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and average of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9), b = 0.5 and n = 50.
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 2 Figure 2.10: Top left: Average of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and average of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 0.5 and n = 100.
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 2 Figure 2.11: Top left: Average of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and average of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ = Id, b = 0.5 and n = 50.

Figure 2 .

 2 Figure 2.12: Computational time of WLasso when n = 50, "maxsteps" has the default value, namely 2000 (dotted line) and maxsteps=500 (solid line).

Figure 2 .

 2 Figure 2.13: Time allocation for each part of WLasso for p = 2000 and two values of the parameter "maxsteps".

Figure 2 .

 2 Figure 2.14: Top left: Average over the replications of max(TPR-FPR) and of the corresponding True Positive Rate (top right) and False Positive Rate (bottom left) for (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 0.5 and n = 50. Solid line: optimal choice of λ, dotted line: choice of λ explained in Section 2.3.2 of the paper.

Figure 2 .

 2 Figure 2.15: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the blockwise correlation structure defined in (2.5) of the paper with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 1 and n = 50.

Figure 2 .

 2 Figure 2.16: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7), b = 1 and n = 100.

Figure 2

 2 Figure2.17: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the block-wise correlation structure defined in (2.5) with parameters (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9), b = 1 and n = 50.

Figure 2 .

 2 Figure2.18: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the blockwise correlation structure defined in (2.5) of the paper with parameters (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9), b = 0.5 and n = 100.

Figure 2 .

 2 Figure 2.19: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ has the blockwise correlation structure defined in (2.5) of the paper with parameters (α 1 , α 2 , α 3 ) = (0.5, 0.7, 0.9), b = 1 and n = 100.

Figure 2 .

 2 Figure 2.20: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ = Id, b = 1 and n = 50.

Figure 2 .

 2 Figure 2.21: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ = Id, b = 0.5 and n = 100.

Figure 2 .

 2 Figure 2.22: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, Precision Lasso (PL), WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when Σ = Id, b = 1 and n = 100.

Figure 2 .

 2 Figure 2.23: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when b = 0.5, n = 50, Σ has the block-wise structure (2.5) of the paper but α 1 (resp. α 2 , α 3 ) is randomly chosen in an interval of length 0.01 around 0.3 (resp. 0.5, 0.7).

Figure 2 .

 2 Figure 2.24: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when when b = 0.5, n = 50, Σ has the block-wise structure (2.5) of the paper but α 1 (resp. α 2 , α 3 ) is randomly chosen in an interval of length 0.05 around 0.3 (resp. 0.5, 0.7).

Figure 2 .

 2 Figure 2.25: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when b = 0.5, n = 100, Σ has the block-wise structure (2.5) of the paper with α 1 = α 2 = α 3 = 0.1.

Figure 2 .

 2 Figure 2.26: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when when b = 0.5, n = 100, Σ has the block-wise structure (2.5) of the paper with α 1 = α 2 = α 3 = 0.3.

Figure 2 .

 2 Figure 2.27: Top left: Average over the replications of max(TPR-FPR) for Lasso, HOLP, WLasso (solid line) and of (TPR-FPR) for WLasso obtained for the λ chosen by the strategy proposed in Section 2.3.2 of the paper (dotted line). Average of the corresponding TPR (top right) and FPR (bottom) when when b = 0.5, n = 100, Σ has the block-wise structure (2.5) of the paper with α 1 = α 2 = α 3 = 0.5.

Figure 2 .

 2 Figure 2.28: Heatmap of correlations between the probes.
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  Figures 3.2 and 3.3 show the behavior of λ max H A H T A , λ max C n, Σ 11 -1 and λ max H B H T B appearing in (3.19), (3.20) and (

Figure 3 . 1 :

 31 Figure 3.1: Boxplot of values defined in (3.23) and obtained from 100 replications.

Figure 3 . 2 :

 32 Figure 3.2: Top left: Average of λ max H A H T A in (3.19) as a function of η. Top right: Average of λ max C n, Σ 11

Figure 3 . 3 :

 33 Figure 3.3: Top left: Average of λ max H A H T A in (3.19) as a function of η. Top right: Average of λ max C n, Σ 11

Figure 3 . 4 :

 34 Figure 3.4: Average of the left-hand (resp. right-hand) side of the second part of (3.15) in red (resp. blue) for q = 5.

Figure 3 . 5 :

 35 Figure 3.5: Average of the left-hand (resp. right-hand) side of the second part of (3.15) in red (resp. blue) for q = 10.

Figure 3 . 6 :

 36 Figure 3.6: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with p = 200.

Figure 3 . 7 :

 37 Figure 3.7: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with p = 400.

Figure 3 . 8 :

 38 Figure 3.8: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red) and Elastic Net (in blue) with p = 600.

Figure 3

 3 Figure 3.9: Average of max(TPR-FPR) and the corresponding TPR and FPR for gEN (in red), gEN_est (in green) and Elastic Net (in blue) with p = 200.
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 4 Figure 4.1: Estimation error β 0 (λ)β
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 42 Figure 4.2: Illustration of how to choose K 1 and K 2 (δ = 0.95), final choice is marked with '*'.

Figure 4 .

 4 Figure 4.3: MSE and BIC for all λ. The λ minimizing each criterion is displayed with a vertical line.

  4.2.6. Choice of the parameters λ 1 and λ 2

Figure 4 . 4 :

 44 Figure 4.4: Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers.

Figure 4 . 5 :

 45 Figure 4.5: Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers for the compound symmetry correlation structure.

Figure 4 .

 4 Figure 4.6: Average of (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (independent setting).

Figure 4 .

 4 Figure 4.7: Heatmaps of the correlation matrix estimated by the cvCovEst R package.

Figure 4 .

 4 Figure 4.9: (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (b 2 = 1.5).
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Figure 4 .

 4 Figure 4.10: (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (b 2 = 2.5).

Figure 4 .

 4 Figure 4.11: (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (10 predictive biomarkers).

Figure 4 .

 4 Figure 4.12: (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (with p = 5000).

Figure 4 .

 4 Figure 4.13: (TPR-FPR) and the corresponding True Positive Rate (TPR) and False Positive Rate (FPR) for prognostic (left) and predictive (right) biomarkers (n 1 = n 2 = 25).

|A

  jk | for any real symmetric matrix having p rows and p columns.
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 5 Figure 5.1: Percentage of elements on the left hand-side of Equation (5.6) that violated the IC, before and after transformation with oracle H and estimated H.
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 5 Figure 5.3: Simulation process and evaluation of the compared methods.
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 55 Figure 5.5: AUC on the testing set for different methods in the balanced case when Σ is defined in (5.16) with (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7).

Figure 5 .

 5 Figure 5.6: True Positive Rate (left) and False Positive Rate (right) for different methods in the balanced case when Σ is the identity matrix.

Figure 5 .

 5 Figure 5.7: AUC on the testing set for different methods in the balanced case when Σ is the identity matrix.
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 5 Figure 5.8: Heatmap of correlation of the expression of the genes in the DLBCL dataset.
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 59 Figure 5.9: Venn plot of selected genes by the different compared methods.

Figure 5 .

 5 Figure 5.12: AUC on the testing set for different methods in the imbalanced case when Σ is defined in(5.16) with (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0.7).

Figure 5 .

 5 Figure 5.13: True Positive Rate (left) and False Positive Rate (right) for different methods in the imbalanced case when Σ is the identity matrix.

Figure 5 .

 5 Figure 5.14: AUC on the testing set for different methods in the imbalanced case when Σ is the identity matrix.

Figure 5 .

 5 Figure 5.15: ROC curves and AUC for the different compared methods.
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  Figure 6.1: Summary of the developed methods

Figure 7

 7 Figure 7.1: médecine traditionnelle v.s. médecine de précision

Figure 7 . 2 :

 72 Figure 7.2: Biomarqueurs pronostiques (gauche) v.s. biomarqueurs prédictifs (droite)

7. 3 .

 3 Sélection de variables dans le modèle de régression linéaire multiple en grande dimension 7.3.1. Contexte Soit y = ( 1 , . . . , n ) T la réponse de n échantillons, où A T désigne la transposée de A. Nous considérons alors le modèle suivant : y = Xβ + , (7.1)

Figure 7 . 3 :

 73 Figure 7.3: Heatmap des corrélations entre les expressions des gènes (prostate à gauche et cancer du sein à droite).

Figure 7 . 4 :

 74 Figure 7.4: Heatmap des corrélations après le blanchiment (prostate à gauche et cancer du sein à droite).

  7.3.4. Contribution du chapitre 2Cette section résume l'article suivant : Zhu, W., Lévy-Leduc, C., et Ternès, N. (2021), A variable selection approach for highly correlated predictors in high-dimensional genomic data, Bioinformatics, 37(16), 2238-2244.La méthode proposée est implémentée dans le package R WLasso disponible sur le CRAN.

  7.6)qui garantit une contrainte de parcimonie sur β grâce à la pénalité 1 . Nous obtenons doncβ 0 (λ) = arg min β L gen λ ( β).Pour estimer β, nous utiliserons l'estimateur modifié suivant qui peut être vu comme un seuillage des composantes de β 0 (λ). Pour K dans {1, . . . , p}, soit Top K l'ensemble des indices correspondant aux K plus grandes valeurs des composantes de β 0 , alors l'estimateur de β est β = ( β

  Top K Kième plus grande valeur de | β 0j |, j Top K . (7.7) Pour estimer β, nous allons d'abord considérer β 0 = Σ -1/2 β et ensuite appliquer une stratégie de seuillage. Ainsi, nous proposons d'estimer β par β = ( β ( M ) j ) 1≤j ≤p où β

7. 4 .

 4 Identification de biomarqueurs pronostiques et prédictifs dans des modèles linéaires en grande dimension avec PPLasso 7.4.1. Identification de biomarqueurs prédictifs

  Les approches régularisées avec une pénalité 1 dans le contexte de la régression logistique résolvent le problème de la sélection des variables en ajoutant une pénalité 1 à la log-vraisemblance du modèle de régression logistique :β = arg min β {l(β) + λ β 1 } , k |, et la log-vraisemblance l(β) est definie par: (i) βlog(1 + e X (i ) β ) ,(7.22) 

  jk | pour toute matrice symétrique réelle ayant p lignes et p colonnes.

  (i) βlog 1 + e X (i ) β .(7.27) On obtient alors un estimateur de β en résolvant le problème suivant :

  

  

  

  

  

  

  for example). Commonly used techniques include hypothesis-based test: t-test (McDonald (

Table 2 .

 2 1: Selected genes from each method.

		selected genes
		DSP, TOP2A, FHL1, CD55, SLC39A6, SERPINA3,
		USP1, MYC, MARCH7, ITM2A, SLPI, TLE1,
		HLA-DQA1, BAMBI, GALNT3, LPL, ADIRF, SMN1,
		CLDN3, SYT1, MAOB, CKS2, PMAIP1, S100P,
		REEP1, ABCA8, MYB, TFF1, DNALI1, CXCL13,
	WLasso	AGTR1, DACH1, ZNF415, BLNK, PITX1, LOC101928189,
		ABI1, RGS5, CLNS1A, ABAT, GATA3, CXCL12,
		SPP1, CCL19, NQO1, RHOB, ELN, RND3,
		HLA-DQB1, NFIB, COBL, TMEM158, SLC1A1, ERBB4,
		HBA1, SELENBP1, NAT1, CXCL14, C6orf211, PSD3,
		SPAG16, IL20RA, KLF4
		CCL5, CDH1, TOP2A, ZFP36L2, TPD52, ALCAM,
		RIOK3, RGS2, YES1, FH, ATXN1, BAMBI,
		SNRPE, LPL, RAB4A, BCL2, FRZB, HEPH,
		CA12, PEX3, ALOX5AP, SORBS2, FLRT2, FGFR3,
		MYB, MELK, ADORA2A, KIT, ACAP1, INHBB,
	Lasso	ACOX2, PLAU, MAPT, SCGB1D2, NFAT5, H2BFS,
		ABI1, CADM1, HLA-DQB1, IGHM, ABAT, HLA-DQB1,
		NR2F1, ADH1B, RRM2, CTSZ, GOLGA8A, CALM1,
		PBX1, SYNM, ACKR3, COBL, TP73-AS1, KRT6B,
		BGN, DHRS2, URI1, NAT1, TFAP2B, SLC7A8,
		COL10A1, PRC1, MLPH, FAM134B, COL5A2, ACTB
		CDH1, TIMP3, JUN, FHL1, CALD1, SDHD,
		MX1, WWTR1, RANBP9, MED14, PHKB, FBLN1,
		MYO6, RBP1, FRZB, GSTT1, MMP11, PPP1R3C,
		PMAIP1, CCL5, MYB, CXCL13, NPY1R, CPB1,
		PROS1, ACTG1P4, IFI16, KRT7, ABAT, PDZD2,
	PL	MXRA5, GATA3, MKRN1, TGOLN2, CERS6, SPARC,
		MFAP4, AHSA2, NFIB, SHANK2, ELOVL2, MTMR6,
		CALU, HYMAI, TAF1B, C3, TRAPPC11, C6orf211,
		MST4, FAM134B, S100A14, EXOC5, TPRKB, CKLF,
		CECR1, ARMC9, WAC, PLA2G12A, SERINC3, PYCARD,
		WIZ
	HOLP	

Table 4 .

 4 1: Selected genes from PPLasso, Lasso, Elastic Net and Adaptive Lasso.

		prognostic genes	predictive genes
			TLR8, YTHDC1, NUCKS1,
		HAPLN3, SLAMF7, GTF3C5,	BIRC3, SLAMF7, NFATC2IP,
	PPLasso	FAM46A, SH3PXD2B, TM4SF1,	BOK, MGRN1, KIAA0492,
		TNFRSF6B, TNFRSF18, TRPM2	SLC25A36, HMGN2, P2RY5,
			RPL21, MS4A7, RPL12P6
	Lasso	DKFZp434K191, NUCKS1, MAFF, SLAMF7, HIST2H2AC, HIST1H4C, IL8, TNFRSF6B, TNFRSF18, SCAND1	DKFZp434K191, YTHDC1, VMO1, BOLA2, HIST1H4C, RPL21, MS4A7
		DKFZp434K191, NUCKS1,SNURF,	
		MAFF, SLAMF7, IL8,	DKFZp434K191, YTHDC1, PMP22,
	Elastic Net	ZBP1, TNFRSF6B, ZAK,	VMO1, BOLA2, HIST1H4C,
		TNFRSF18, SCAND1, NME1-NME2,	RPL21, MS4A7,RAB11FIP1
		DNM1L, RNF146, NPEPL1	
	Adaptive Lasso	NUCKS1,SNURF, MAFF, SLAMF7, IL8, ZBP1, TNFRSF6B, NME1-NME2, DNM1L, RNF146	YTHDC1, PMP22, VMO1, BOLA2, HIST1H4C, MS4A7, RPL21

Table 4 .

 4 

	Estimator	Hyperparameters Empirical risk
	denseLinearShrinkEst	-
	sampleCovEst	-
	linearShrinkLWEst	-
	poetEst	lambda=0.1, k=2
	poetEst	lambda=0.2, k=2
	poetEst	lambda=0.1, k=1
	poetEst	lambda=0.2, k=1
	thresholdingEst	gamma=0.2
	thresholdingEst	gamma=0.4

3: Empirical risk of tested methods with different hyperparameters.

  a testé la condition d'irreprésentabilité sur plusieurs données génomiques et a mis en évidence que la condition est violée dans presque tous les jeux de données étudiés.7.3.3. Idée pour supprimer la présence de corrélations : utiliser le blanchiment Plusieurs stratégies ont été proposées pour résoudre le problème des corrélations élevées entre les biomarqueurs. L'Elastic Net introduit par[START_REF] Zou | Regularization and variable selection via the elastic net[END_REF] combine à la fois la pénalité 1 ( β 1 = Elastic Net a pour effet de sélectionner des groupes de variables corrélées. Le préconditionnement est un autre type de méthodes permettant de traiter la corrélation.[START_REF] Jia | Preconditioning the lasso for sign consistency[END_REF] et[START_REF] Wang | High dimensional ordinary least squares projection for screening variables[END_REF] ont proposé de multiplier à gauche X, y et dans le modèle (7.1) par des matrices spécifiques pour supprimer les corrélations entre les colonnes de X. Une autre méthode publiée récemment, nommée Precision Lasso[START_REF] Wang | Precision lasso: Accounting for correlations and linear dependencies in high-dimensional genomic data[END_REF], propose de traiter le problème de corrélation en attribuant des poids similaires aux variables corrélées.

		p
		|β i |) du Lasso et la pénalité 2
	p	i=1
	( β 2 =	β 2 i ). L'
	i=1	

  Avec ce nouvel estimateur, nous avons défini une condition d'irreprésentabilité appelée Generalized Irrepresentable Condition (GIC): Il existe λ, η, α, δ 4 > 0 tels que pour tout j, où β 1 désigne les composantes non nulles du vecteur β. Nous avons prouvé que cette condition est suffisante pour que l'estimateur gEN soit consistant en signe sous certaines conditions. De plus, nous avons comparé GIC avec EIC (Elastic Net Irrepresentable Condition,[START_REF] Jia | On model selection consistency of the elastic net when p > n[END_REF]) et IC, et démontré qu'il existe des cas où GIC est satisfaite alors qu'EIC et IC ne le sont pas.

								β,				(7.10)
	avec										
					β = arg min	L	E N λ,η	β .		(7.11)
					β						
	(C n 21 +	η n	Σ 21 )(C n 11 +	η n	Σ 11 ) -1 sign(β 1 ) +	2η λ	β 1 -	2η λ	Σ 21 β 1	j	≤ 1-α, pour tout j,
												(7.12)

  Pour prendre en compte la corrélation potentielle qui peut exister entre les biomarqueurs des différents traitements, nous supposerons que les lignes de X 1 (resp. X 2 ) sont des vecteurs aléatoires gaussiens centrés indépendants dont la matrice de covariance est égale à Σ 1 (resp. Σ 2 ).Pour modéliser le lien qui existe entre y et les différents types de biomarqueurs, nous proposons d'utiliser le modèle suivant : où ( i1 , . . . , in i ) correspond à la réponse des patients recevant le traitement t i , i étant égal à 1 ou 2, (resp. α 2 ) correspondant aux effets du traitement t 1 (resp. t 2 ). En outre, β 1 = (β 11 , β 12 , . . . , β 1p ) T (resp. β 2 = (β 21 , β 22 , . . . , β 2p ) T ) sont les coefficients associés à chacun des p biomarqueurs dans le groupe t 1 (resp. t 2 ), et ϵ 11 , . . . , ϵ 2n 2 sont des variables aléatoires gaussiennes centrées indépendantes de X 1 et X 2 . Lorsque t 1 représente le traitement standard ou le placebo, les biomarqueurs pronostiques (resp. prédictifs) sont définis comme ceux ayant des coefficients non nuls dans β 1 (resp. dans β 2β 1 ) et les biomarqueurs non pronostiques (resp. non prédictifs) correspondent aux indices ayant des coefficients nuls dans β 1 (resp. dans β 2β 1 ).Le modèle (7.14) peut être écrit comme suit :avec γ = (α 1 , α 2 , β T 1 , β T 2 )T . Pour estimer γ de façon parcimonieuse, nous considérons un premier estimateur de γ obtenu en minimisant le critère suivant par rapport à γ :où D 1 = [Id p , 0 p,p ] et D 2 = [-Id p , Id p ],Id p désignant la matrice identité de taille p et 0 i, j désignant une matrice ayant i lignes et j colonnes et ne contenant que des zéros.
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Remerciements

Appendix

This supplementary material provides additional numerical experiments, figures and a table for Chapter 2: "A variable selection approach for highly correlated predictors in high-dimensional genomic data".

Figure 2.14 illustrates Section 2.3.2. Figures 2.15,2.16,2.17,2.18,2.19,2.20,2.21 and 2.22 provide similar results as those displayed in Figure 2.8 of the paper in the following cases:

• Block-wise correlation structure for Σ with (α 1 , α 2 , α 3 ) = (0.3, 0.5, 0. 2.23, 2.24, 2.25, 2.26 and 2.27 provide similar results as those displayed in Figure 2.8 of the paper for other correlation structures.

Firstly, for testing the robustness of our approach, we considered the case where Σ has the block-wise structure (2.5) of the paper but α 1 (resp. α 2 , α 3 ) is randomly chosen in an interval of length 0.01 or 0.05 around 0.3 (resp. 0.5, 0.7). The results for n = 50 and b = 0.5 are displayed in Figures 2.23 and 2.24. We can see from these figures that the performance of our approach are not very altered by this additional jitter except when it is too large (0.05).

Secondly, to extend the case where Σ is equal to identity, we considered the case where Σ has a particular block-wise structure where α 1 = α 2 = α 3 = ρ for ρ = 0.1, 0.3 and 0.5. The results for n = 100 and b = 0.5 are displayed in Figures 2.25,2.26 and 2.27. We can see from these figures that in this case the performance of our approach are similar to the ones of the Lasso except for the largest value of ρ (0.5) where the True Positive Rate for the Lasso is 3% larger than WLasso for the same False Positive Rate.

Figures 2.28 and Table 2.1 give additional information for the Application Section.

Appendix

This supplementary material provides additional numerical experiments, figures and a table for Chapter 4: "Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso". 

MSE

BIC TPR(prognostic) 1.000 1.000 FPR(prognostic) 0.038 0.024 TPR(predictive) 1.000 1.000 FPR(predctive) 0.008 0.006 After the whitening step, Model (5.1) can be rewritten as: 5.10) where X (i) denotes the ith row of X , and β = Σ1/2 β. The log-likelihood after the transformation can be written as:

(5.11)

Following the same technique of approximation as in (5.7), we can form a quadratic approximation to the transformed (whitened) log-likelihood (5.11), then an estimator of β is obtained by solving the following problem:

(5.12)

Estimation of β

The estimation is obtained by using an iterative procedure. Let maxit and tol denote the maximum number of iterations and the tolerance. For a fixed λ, the following loops are performed: 0) , where β (0) is obtained by ridge regression in the logistic regression model.

• For iteration j = 1, . . . , maxit:

1. Update working response, weights, weighted response, weighted design matrix in the re-weighted least square regression.

Update coefficients

by solving Equation (5.12).

Calculate max(|

. If j = maxit, stop the algorithm and return β

. If none of these conditions is satisfied, go back to Step 1 until one of the stopping criteria is satisfied.

• Denote the final coefficients by β 0 (λ).

To estimate β, we will not directly use β 0 (λ) but the following modified estimator which can be seen as a correction of the components of β 0 (λ). For K in {1, . . . , p}, let Top K be the set of indices corresponding to the K largest values of

( for components, we get l wt K ( β(λ)), and K is chosen as follows

, where γ ∈ (0, 1). The purpose of this step is to correct the intermediate estimation β. Figure 5.2 displays coefficient estimation error of β before and after the thresholding correction. We can see that the correction helps to decrease the coefficient estimation error.

Estimation of β

Resulting from the transformation, a first estimation of β is obtained by β 0 = Σ-1/2 β, and we apply a threshold to get the final estimation ( β ( M ) j ) 1≤j ≤p where

Similar results for the imbalanced case were observed and can be found in Supplementary materials. We noticed that the classification accuracy is slightly lower for all methods compared with balanced cases. However, WLogit always gives the best accuracy on both biomarker selection accuracy and sample classification. 

Application to gene expression data in patients with lymphoma

We applied the previously described approaches to gene expression data from 77 patients with lymphoma first published by [START_REF] Shipp | Diffuse large b-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[END_REF]. This dataset contains 58 diffuse large B-cell lymphomas (DLBCL) and 19 follicular lymphomas (FL) samples. The original data contains 7,129 gene expression data. We followed the preprocessing procedures implemented in [START_REF] Glaab | Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data[END_REF] which kept a total of 2648 predictors. The heatmap of the correlations between the expression of the selected genes is displayed in Figure 5.8, where we can observe strong correlations.

We applied different methods to select the genes that distinguish the two lymphoma subtypes (DLBCL v.s. FL). To evaluate the prediction performance of each method, we applied the commonly used 10-fold cross-validation. The dataset was separated into ten folds, and for each fit, the variable selection was conducted on the training set consisting of 90% of the whole set. Then, the classifier was built with the subset of selected variables and used for predicting the lymphoma subtype for the remaining 10% samples in the testing set. Finally, we report the ROC curve on the validation set and the corresponding AUC. Figure 5.15 in the Supplementary material presents the classification accuracy for the different methods. Our method, WLogit, achieved the highest AUC (0.95), followed by FCBF (0.85) and Relief (0.84). Lasso (0.80) and Elastic Net (0.80) both have a lower AUC; this

Supplementary material

This supplementary material provides additional numerical experiments, figures and tables for the paper: "Variable selection in high-dimensional logistic regression models using a whitening approach". 

, we observe a total of two events at time t 1 and t 3 respectively among the three individuals, and we defined t 1 < t 2 < t 3 . For the first event at time point t 1 , the corresponding risk set (individuals who still survive or have not been censored) is {1, 2, 3}, so we use all three observations and created the following predictor matrix and binary outcome vector:

X R(t 1 ) = predictor 1 predictor 2 risk set 1 risk set 2 X (1) 1 The newly added variable "risk set 1" corresponds to the risk indicator for individuals at risk at time t 1 (time point of the first event). We repeat for the second observed time t 3 for the second event, when the first two individuals are no longer in the study. The corresponding risk set is {3}, so our predictor matrix and binary outcome vector are: