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THÈSE
pour obtenir le grade de docteur délivré par
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Abstract

The response of clouds in the trades to warming remains uncertain, raising the specter
of a high climate sensitivity. Decreases in cloud fraction are thought to relate to cou-
plings among convective mixing, turbulence, radiation, and the large-scale environ-
ment. The EUREC4A (Elucidating the role of cloud-circulation coupling in climate)
field campaign made extensive measurements that allow for deeper physical under-
standing and the first process-based constraint on the trade cumulus feedback, as
described in this thesis, in two parts.

The first part (Chapters 2–5) uses EUREC4A observations to improve under-
standing of the characteristic vertical structure of trade-wind air and the processes
that determine it. The second part (Chapters 6–7) applies an improved physical
understanding of the trade-wind boundary layer to the evaluation of trade cumulus
feedbacks. Ideas developed in these chapters support new conceptual models of the
structure of the lower trade-wind atmosphere and a more active role of clouds in main-
taining this structure, and show little evidence for a strong trade cumulus feedback
to warming.

Chapt. 3 calculates clear-sky radiative profiles from 2580 in situ soundings launched
during EUREC4A, which are then used to observationally close subcloud layer mois-
ture and heat budgets in Chapt. 4. Chapt. 4 shows that mixed layer theory, evaluated
with EUREC4A observations and with uncertain parameters constrained in a Bayesian
approach, provides a closed description of subcloud layer thermodynamic variability.
Monthly-mean residuals are 3.6 Wm−2 for moisture and 2.9 Wm−2 for heat, and
synoptic residuals are small and unbiased. Mixed layer theory is therefore a useful
framework for characterizing subcloud layer variability and the processes controlling
it. Surface wind speed variability is found to influence the subcloud layer depth and
fluxes, yet thermodynamic variability above the subcloud layer top emerges as the
primary control on subcloud layer moisture and heat variability. Observed thermo-
dynamic profiles and effective entrainment parameters constrained in the Bayesian
methodology show evidence of an about 150 m thick transition layer separating the
well-mixed part of the subcloud layer from the subcloud layer top.

Contrary to previous theory, Chapt. 5 shows that the canonical structure of strong
jumps at the subcloud layer top is rare and occurs only in large cloud-free areas. A
population of small clouds is shown to be responsible for smoothing vertical gradients
over the transition layer. These findings suggest a new conceptual picture that the
dissipation of small clouds modulates the transition layer structure. This analysis
allows for positing an interplay between shallow and deeper trade-wind convection
and a more active role for clouds in mixing processes that determine the subcloud
layer structure.

Chapt. 6 traces how, in a representative subset of CMIP6 models, differing trade-
wind cloud radiative responses can explain about 70% of the spread in global cloud
feedbacks, and differences in trade-wind cloud responses discriminate between high
and low climate sensitivity models. Chapt. 7 presents analysis supporting a weak
trade cumulus feedback. Observations support a positive relationship between cloudi-
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ness and convective mixing, which is opposite to the negative relationship thought to
underlie strongly positive trade cumulus feedbacks. Three metrics related to the cou-
plings among clouds, convective mixing, and relative humidity are presented that can
be applied to both observations and climate models and yield a probabilistic estimate
of the trade cumulus feedback.
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Chapter 1

Why look to the trades?

“We were still sailing in the blue zone of the trade winds. And it was every

day, every day, every night, the same regular breath, warm, exquisite to

breathe; and the same transparent sea, and the same small white clouds,

speckled, calmly passing across the deep sky; ...” –Pierre Loti, My Brother

Yves, 1883.

“Climate change is a question of our world’s destiny — it will determine

the well-being of everyone on Earth”. –Angela Merkel, 2017.

1.1 A defining challenge of our time

Climate prediction is a defining challenge of our time. It is long-established that

greenhouse gases lead to a warming of the atmosphere (e.g., Arrhenius, 1908; Charney

et al., 1979). A central open question, which motivates much of the research in this

thesis, is what sets the speed and intensity of warming at the global scale. How

much and how quickly will global temperatures rise due to greenhouse gas forcing?

A subsequent question is what effects are produced by a certain amount of warming.

Heating provides the energy to drive winds, evaporate moisture, form rain, and melt

ice. Global warming is thus expected to influence extreme weather events, such as

storms, floods, and droughts, and increase sea level. These regional changes have

attendant consequences for human health, water resources, agriculture, migration,

and biodiversity. As expressed by former German chancellor Angela Merkel, climate
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change is a question of Earth’s destiny and will affect the well-being of everyone on

Earth.

Economically, climate change is an externality that is unprecedentedly large and

uncertain (Tol, 2009). Estimates of the social cost of carbon range in magnitude

(e.g., Stern, 2006; Weitzman, 2011; Nordhaus, 2018), yet they all project large conse-

quences. These estimates, however, likely remain an incomplete representation of the

possible effects of climate change, in particular heavy-tailed structural uncertainties

associated with low-probability, high-impact scenarios (e.g., Weitzman, 2011, 2014;

Wagner and Weitzman, 2016). There is thus a need for advancing knowledge about

how much the Earth will warm and the implications of a given level of warming.

A primary lens for studying future climate is General Circulation Models (GCMs),

also called global climate models. In 1963, Joseph Smagorinsky published a seminal

paper describing numerical experiments using the primitive equations, a set of fluid

equations that describe global atmospheric flows (Smagorinsky, 1963). This first

GCM was based on the premise that studying the atmospheric circulation required a

model capable of resolving heat transport from the equator to the poles. Smagorin-

sky’s work paved the way to a vast research effort to couple the atmospheric circulation

to different physical processes, such as moist convection and cloud formation, which

have long been appreciated as important for the energetics of the atmosphere (e.g.,

Arakawa and Schubert, 1974; Stevens and Bony, 2013).

GCMs are a powerful tool for understanding how the climate system works, yet

they remain an imprecise lens into the future. These models must make a number

of approximations and simplifications, in particular to represent small-scale processes

below the 100–200 km resolution of typical GCMs. Most processes related to moist

convection and cloud formation cannot, for instance, be simulated explicitly and are

instead represented indirectly by so-called parametrizations, which relate subgrid-

scale processes to the large-scale variables explicitly resolved by the model (e.g.,

Siebesma et al., 2020). Representing tropical diabatic responses, in particular, re-

lies heavily upon such parametrizations, whereas in the mid-latitudes, much of the

energy and moisture transport is accomplished by baroclinic eddies that are better
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resolved by GCMs (Smagorinsky, 1963; Stevens and Bony, 2013; Siebesma et al.,

2020). Beyond these structural uncertainties, there are additional parametric un-

certainties that result from inadequately sampling the high-dimensional parameter

spaces of these models; a model with only 20 free parameters is, for instance, already

a hypercube with around one million corners (Carslaw et al., 2018).

Due to these uncertainties, GCMs lay out a broad swath of futures in response

to greenhouse gas forcing. A common metric for quantifying the response of the

climate system to carbon dioxide (CO2) radiative forcing is the equilibrium climate

sensitivity (ECS). ECS is defined as the amount of surface warming at equilibrium

following a doubling of atmospheric CO2 concentrations. Knutti et al. (2017) write

that ECS “has reached almost iconic status as the single number that describes how

severe climate change will be”. This idealized metric also serves as a way to compare

model predictions.

Despite a long history of recognizing the influence of carbon dioxide on Earth’s

temperature, ECS has proven stubbornly challenging to estimate. In the 1820s, the

French physicist Joseph Fourier suggested that the Earth traps heat (Fleming, 1999).

In 1896, in developing a theory to explain the Ice Ages, Swedish physicist and chemist

Svante Arrhenius first estimated how increases in atmospheric CO2 are responsible for

increases in Earth’s temperature. In 1908, Arrhenius wrote, “Although the sea, by ab-

sorbing carbonic acid [resulting from carbon dioxide interacting with water], acts as a

regulator of huge capacity, which takes up about five-sixths of the produced carbonic

acid, we yet recognize that the slight percentage of carbonic acid in the atmosphere

may by the advances of industry be changed to a noticeable degree in the course

of a few centuries” (Arrhenius, 1908). Arrhenius was the first person to recognize

the potential for anthropogenic CO2 to change Earth’s temperature and estimated a

temperature increase of 4∘C in response to a CO2 doubling (Arrhenius, 1908). In the

1960s, Charles Keeling presented observational evidence of increasing atmospheric

CO2 concentrations due to human activities, relative to preindustrial levels trapped

in ice cores. Climate models developed beginning in the 1960s provided a physical-

numerical framework for studying the relationship between radiative forcing by CO2
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and surface temperature (e.g., Smagorinsky, 1963; Manabe and Strickler, 1964; Man-

abe and Wetherald, 1967). In 1979, the United States National Academy of Sciences

convened a group of scientists, led by Jule Charney, to assess the potential influences

of CO2 on climate. The ensuing report, “Carbon Dioxide and Climate: A Scientific

Assessment” became known as the ‘Charney Report’ and popularized the concept of

equilibrium climate sensitivity. Drawing on results from two early climate models

and physical insights, the Charney report put forward a best estimate of ECS of 3∘C

and range from 1.5–4.5∘C (Charney et al., 1979), known as the ‘Charney range’.

Tightening the Charney range of ECS is one of climate science’s most enduring

problems. The most recent assessment of climate sensitivity, across multiple lines of

evidence gives a narrower range of 2.6–3.9∘C (Sherwood et al., 2020). Notably, the

tighter upper bound is not directly constrained by the latest generation of GCMs

in the Coupled Model Intercomparison Project phase 6 (CMIP6) whose range is

1.8–5.6∘C (Zelinka et al., 2020; Meehl et al., 2020). The upper bound is instead

constrained by process-based and paleoclimate constraints, though paleoclimate con-

straints also use GCMs (Sherwood et al., 2020). Despite the apparent tighter upper

bound, there are still open questions regarding the influence of changing spatial pat-

terns of warming (‘pattern effect’), long timescale feedbacks, and cloud feedbacks,

which could still allow for a more positive upper bound on ECS (Sherwood et al.,

2020).

The increase in complexity of GCMs has expanded the number of physical pro-

cesses that can be studied with these tools, yet uncertainties in climate sensitivity

remain similar to those that emerged from early modeling studies. In his landmark

study, Smagorinsky concluded, “In pursuing the objective to generalize theoretical

models we must ask ourselves whether greater detail in formulating the contributing

processes is warranted by truncation errors, by sensitivity of the results to detail, by

the resulting increase in computational complexity and time, and by ignorance of the

way these processes really work. Very often this cannot be determined in advance,

but must wait for computational experiments to be performed”. Stevens and Bony

(2013) respond, writing, “Although the drive to complexity has not reduced key un-
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certainties, it has addressed Smagorinsky’s question as to what level of process detail

is necessary to understand the general circulation. There is now ample evidence that

an inadequate representation of clouds and moist convection, or more generally the

coupling between atmospheric water and circulation, is the main limitation in current

representations of the climate system”. The Charney report already discussed that a

primary obstacle to better climate predictions was uncertainty in the radiative feed-

backs associated with clouds (e.g., Charney et al., 1979; Bony et al., 2013b). These

obstacles remain in CMIP6, with the response of clouds and convection still repre-

senting a primary uncertainty in constraining climate sensitivity (e.g., Zelinka et al.,

2020; Meehl et al., 2020). This chain of research casts into relief that in addition

to increasing the complexity of models, it is equally important to deepen physical,

process understanding using observations and simpler modeling frameworks.

1.2 Climate questions traced to the trades

In the novel, My Brother Yves, the French naval officer and writer, Pierre Loti, writes

about a journey in the trade winds, as cited in the opening quotation. The trade-wind

zones extend from about 10–30∘ north and south of the equator. In both hemispheres,

these zones are dominated by the trades, which are steady easterly winds with an

equatorward component, blowing from the subtropical high to the equatorial low.

The etymology of the trade winds in different languages gives insight to their

nature and perception. In 14th century English, ‘trades’ denoted a regular path or

track, but by the 18th century, the importance of the trade winds for exchanges of

goods led to the association with foreign commerce (Dictionary). In German, the

winds are known as Passatwinde, coming from Portuguese, passar, or Italian passata,

both meaning to ‘go through’, highlighting their steady movement. In French, the

trades are les vents d’alizés, similar to Portuguese, ventos alísios. The French name

is speculated to relate to the Latin root lixare, which was used in medieval French

to qualify the “smooth, delicate, gentle character of these measured winds that blow

regularly” (Bellec, 2003). The serenity and steadiness of this etymology and Loti’s
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description appear at odds with the urgency of climate change. How can such a calm

and steady region play a role in determining how much the Earth will warm?

1.2.1 Role of trades in climate

A first answer comes by way of their large statistical weight: trade-wind regions are

the most frequent tropical regime, and trade-wind cumuli are, moreover, the most

frequent cloud type on Earth (e.g., Norris, 1998; Bony and Dufresne, 2005). Trade-

cumulus regions cover approximately 20% of the Earth (e.g., Myers et al., 2021).

Small changes in these regions with warming, such as associated with their cloudiness,

therefore have a large global impact. Their geographic extent provides an intrinsic

motivation to better understand the trades.

In the vertical, trade-wind air exhibits a characteristic layered structure (Riehl

et al., 1951; Malkus, 1958; Augstein et al., 1974; Stevens, 2006). A robust vertical

structure also allows for developing conceptual models, which are useful frameworks

for developing process understanding (e.g., Stevens, 2006). In its most general form,

the trade-wind atmosphere is divided into a shallow, moist layer typically extending

to 2–3 km in height, topped by a much drier free troposphere. Near the equator, deep

convection forms in response to the destabilizing effect of radiative cooling from water

vapor (e.g., Emanuel et al., 1994b). This deep, precipitating convection effectively

dehydrates the atmosphere, such that air subsiding in the subtropics is very dry.

Large-scale subsidence in the subtropics also suppresses deep convection, explaining

why the trade-wind moist layer does not grow beyond few kilometer depth.

This shallow, moist layer is often referred to as the ‘planetary boundary layer’ and

is itself divided into additional layers. Previous descriptions of these layers, primarily

from Malkus (1958) and Augstein et al. (1974), are briefly summarized:

1. surface layer : the lowest 50–100 m over the ocean that are characterized by

mechanical turbulence.

2. mixed layer : a neutrally stable, vertically well-mixed layer from the top of the

surface layer up to approximately 600 m.
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a. b.

Figure 1-1: Reproducing two figures from Malkus (1958), one of the first papers to
analyze the vertical structure of the trade-wind atmosphere. Panel (a) plots a cartoon
of the vertical levels in the moist layer, from the sea surface to the cloud top, overlain
by a dry, subsiding free troposphere, and (b) mean sounding profiles in cloudy (nine
soundings) and clear areas (sixteen soundings) for the mixing ratio (𝑊 ), temperature
(𝑇 ), and virtual temperature (𝑇 *). These profiles are annotated with estimates of the
different vertical levels introduced above: mixed layer, transition layer, cloud layer,
and inversion layer.

3. transition layer : a layer of approximately 100 m thickness that is thought to

separate dry convection and mechanical mixing below from cloud convection

above the transition layer top. Together the mixed layer and transition layer

are often referred to as the subcloud layer.

4. cloud layer : a layer wherein shallow trade cumuli are embedded. This layer

typically has decreasing specific humidity and a temperature gradient that is

slightly stronger than the moist adiabat. Cloudiness typically peaks around

cloud-base and again near the trade-wind inversion. Trade-wind cumuli are

shallow in height because they are capped by subsiding air and a stable inversion

layer.

5. trade-wind inversion layer : a layer of strongly decreasing humidity (‘hydro-

lapse’) and increasing temperature around 2–3 km in height, which separates

the moist layer from the dry free troposphere. The mean height of this inter-

facial zone is determined by the opposing balance between compression due to

large-scale subsidence and expansion due to convection.
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In the following sections, three vignettes are discussed that describe the implications

of this characteristic vertical structure and motivate a closer examination of the trade-

wind planetary boundary layer.

Link in the global energy budget

One motivation to study the trade-wind planetary boundary layer is its role as an

early link in the global energy budget (e.g., Riehl et al., 1951; Malkus, 1958). The

trade-wind subcloud layer couples the surface to the cloud layer, and in doing so,

regulates the import of energy and moisture from the ocean (e.g., Malkus, 1958;

LeMone and Pennell, 1976; Stevens, 2007). Subcloud layer moisture and temperature

variability control moist static energy variability, which influences the convective po-

tential and thus cloudiness (e.g., Emanuel, 1986; Neelin et al., 1987; Lindzen and Hou,

1988; Emanuel, 1993). Clouds, however, also influence the subcloud layer. Clouds

bring down drier air from aloft, which can then be entrained into the subcloud layer

(Stevens, 2006). They can also influence the radiative budget of the subcloud layer

and of the surface.

The export of latent heat from the trades to the equator is accomplished by ad-

vection of moisture by the trades. The trades can be interpreted in a number of

ways. They can be interpreted, for example, as the return flow of the Hadley cir-

culation, or, from a boundary layer perspective, as the result of the boundary layer

momentum budget that is driven by pressure gradients induced by sea-surface tem-

perature differences, leading to a flow from the subtropics to the equatorial regions

(Lindzen and Nigam, 1987). After being exported to equatorial regions, latent heat

that originally accumulated in the trade-wind boundary layer has numerous down-

stream effects. The advection of moisture into the deep tropics favors high values of

boundary layer moist static energy and thus deep convection (Emanuel et al., 1994b)

near the equator rather than in the trade wind regions (Oueslati and Bellon, 2013;

Popp and Silvers, 2017). Upper-level divergence in the deep tropics is consistent

with the poleward mass flux in the Hadley circulation that exports energy poleward,

thus helping to maintain an approximate thermal equilibrium globally (e.g., Riehl
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et al., 1951; Malkus, 1958; Pierrehumbert, 1995). Outside the tropics, the poleward

energy transport is dominated by eddies, which influence large-scale circulations and

the global hydrological cycle through their transport of latent and sensible heat and

angular momentum (e.g., Riehl, 1954; Heckley, 1985; Tiedtke, 1989).

Given its role in global energy transports, primarily by funneling latent and sen-

sible heat to the tropics, subtle thermodynamic variations in the trades can have

significant global reverberations (e.g., Malkus, 1958; Augstein et al., 1974; Tiedtke,

1989). These considerations motivate an investigation of the vertical structure of the

trade-wind atmosphere, as well as its thermodynamic variability and vertical mixing

processes.

Earth’s ‘radiator fins’

The vertical structure of trade-wind air also has implications for radiative processes.

Fig. 1-2 shows that Earth is a water planet. It depicts upper-atmospheric water vapor

absorption above about 4 km observed from the Meteosat satellite in the water vapor

channel. Areas with a dry upper atmosphere are rare globally but emerge in the

subtropics (e.g., Spencer and Braswell, 1997; Soden, 1998).

The trade-wind atmosphere is effective at cooling to space because of the large

infrared transmissivity of the dry free troposphere and, typically, lack of high clouds.

Strong radiant energy loss to space occurs from the top of the shallow moist layer,

whereas the dry atmosphere above does not return much downwelling radiation. The

loss of infrared energy to space increases nonlinearly with decreases in relative humid-

ity (Spencer and Braswell, 1997; Soden, 1998). For instance, a free troposphere with

10% mean relative humidity radiates about 320 Wm−2, whereas an atmosphere with

30% relative humidity radiates only 300 Wm−2 (e.g., Fig. 2 in Spencer and Braswell

(1997)). The key to allowing the tropics to lose its heat is thus to have vast dry

areas. Evocatively, Pierrehumbert (1995) calls the subtropics the ‘radiator fins’, in

contrast with the equatorial regions being like a ‘furnace’ or a ‘hothouse’. Through

their dryness, the trades thus increase the efficiency of radiant heat loss, stabilize

tropical temperatures, and reduce the amount of energy that must be exported to the
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Figure 1-2: (a) the 6.2 micron METEOSAT channel, which measures atmospheric
water vapor absorption above about 600 hPa. Darker shades indicate lower humidity
and thus greater transparency to emitted longwave radiation. One such area with a
dry free troposphere is highlighted by a white box. (b) Two AQUA MODIS GOES-
E views of a trade-wind cloud field east of Barbados (indicated by a red star) on
February 2, 2020 and (c) February 9, 2020.

poles.

A less cloudy future?

Besides its dry free troposphere, the trades further cool tropical temperatures through

the presence of shallow cumuli, which have a negative radiative effect (e.g., Hartmann

et al., 1992). Regarding these shallow trade-wind clouds, the question is not how much

longwave radiation do the subtropics lose to space. It is, rather, how much shortwave

energy do the subtropics absorb, with more shallow clouds implying a larger albedo

and less heat gain, and vice versa. Trade-wind cumuli are, as introduced previously,

the most frequent cloud type on Earth (e.g., Norris, 1998; Bony et al., 2017). The

‘small white clouds’, as described by Loti, are not as spectacular as cumulonimbus

clouds that can grow higher than the tallest mountains or the expansive decks of

stratocumulus clouds off western continental coasts. Yet they constitute the ‘silent’,
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or humble majority of Earth’s clouds whose changes are greatly amplified by their

frequency.

Climate change experiments with GCMs show that there is a propensity of trade-

wind cloudiness, in particular at its base, to decrease with warming, raising the specter

of high ECS values. In a pioneering study, Bony and Dufresne (2005) showed that

cloud radiative responses in GCMs diverged most in shallow cumulus regimes, and

these responses discriminate between high and low climate sensitivity models (Fig. 1-

3a). This analysis also highlights how climate models, despite their known deficien-

cies, allow us to form hypotheses — for instance, that the sensitivity of trade-wind

clouds to environmental conditions is a large source of uncertainty in global cloud feed-

backs and ECS (Bony and Dufresne, 2005). Ensuing research has further supported

the Bony and Dufresne (2005) findings, such as using different CMIP ensembles (e.g.,

Webb et al., 2006; Vial et al., 2013; Zelinka et al., 2020) and more idealized aquaplanet

configurations (e.g., Medeiros et al., 2008). Fig. 1-2 shows two trade-wind cloud fields

from the GOES-E satellite. This uncertainty can be rephrased pictorially: how will

the views in Fig. 1-2 change with warming, towards a cloudier or less cloudy future

in the trades?

Process-based studies, on the other hand, suggest that trade-wind clouds are less

sensitive to changing environmental conditions than GCMs predict. In large-eddy

simulations (LES), trade-wind clouds at cloud-base are resilient to changing environ-

mental conditions both in the current climate (Nuijens et al., 2015a) and idealized

climate change experiments (Rieck et al., 2012; Blossey et al., 2013; Bretherton, 2015;

Vogel et al., 2016). These process-based studies suggest a neutral or slightly posi-

tive trade-wind cloud feedback. Two recent studies, Myers et al. (2021) and Cesana

and Del Genio (2021), use satellite measurements and also find evidence for a near-

zero trade-wind cloud feedback (Fig. 1-3d.). Myers et al. (2021) also find that trade

cumulus feedbacks estimated using CMIP models are markedly higher than their

satellite-constrained estimate. In CMIP6 relative to CMIP5, a too-negative midlat-

itude cloud feedback, compared to satellite constraints, was corrected (e.g., Zelinka

et al., 2020). This correction is argued to have unmasked a compensating too-positive
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a. Stevens et al, 2016Bony and Dufresne, 2005

d. Myers et al, 2021

Figure 1-3: Figures illustrating the discrepancy between a large sensitivity of cloud-
base cloudiness to changing environmental conditions in GCMs (a. ,b. , c.) and
greater resilience in satellites (d) and LES (not shown). (a) Reproduction of Fig. 2
from Bony and Dufresne (2005) showing the change in the net cloud radiative effect
with warming as a function of dynamical regimes. Red (blue) points correspond
to models predicting a positive (negative) tropical-mean cloud radiative response.
Markers show the mean, lines the standard deviation, and dotted lines the range of
15 coupled GCMs. (b) Reproduction of Fig. 1 in Stevens et al. (2016b) showing cloud
fraction (left) and change in cloud fraction (right) for two model versions differing in a
single shallow convective mixing parameter. Also shown is an observed cloud fraction
profile at the Barbados Cloud Observatory as described in this study (grey). (c)
Reproduction of Fig. 1 in Vial et al. (2016) showing the vertical distribution of the
moist static energy flux convergence due to convection (left, in %) and cloud fraction
(right, in %) for a range of convective mixing strengths, with minimum in thick blue,
and maximum in thick red. (d) Adapted from Fig. 3 in Myers et al. (2021) showing
observationally-constrained marine low cloud feedbacks scaled by regime frequency
globally. Error bars for observations span 90% confidence intervals estimated from
observational uncertainty and inter-model uncertainty in cloud-controlling factors.
Bars for CMIP models span the range of simulated feedbacks associated with changes
in low cloud properties.
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cloud feedback in the trades, which then led to much higher ECS values in CMIP6,

outside the Charney range (Myers et al., 2021), again emphasizing the importance

of testing the credibility of strongly positive trade cumulus feedbacks simulated by

GCMs.

There is thus a discrepancy to resolve — why are trade-wind clouds in GCMs

much more sensitive to changing environmental conditions than in LES or satellite-

derived studies? On the one hand, there are reasons to interpret results from LES and

satellite-based studies with caution. In LES, the cloud amount is not linked to the

large-scale circulations in which the clouds form, and cloud fraction is known to be

sensitive to microphysics scheme, resolution, or domain size (e.g., Vogel et al., 2016;

Vial et al., 2017; Radtke et al., 2021). Cloud fraction estimates from satellites were

shown to diverge widely across passive remote sensors (Stubenrauch et al., 2013). An-

other consideration is that due to their coarse spatial resolution, satellite retrievals

could, in principle, underestimate the number of cloudy pixels and overestimate the

clear-sky fraction (e.g., Mieslinger et al., 2019, 2021); this would lead to an under-

estimate of the cloud feedback, which is proportional to the difference between the

all-sky and clear-sky cloud radiative effect. The satellite-based studies also rely upon

reanalysis data to estimate environmental conditions, yet these reanalysis data are

known to exhibit biases in the trades (e.g., Stevens et al., 2016b). More fundamen-

tally, the question remains why these lines of evidence suggest a small trade cumulus

feedback. That is, the physical mechanism explaining the resilience of trade cumulus

cloud fraction to changing environmental conditions remains unknown.

Growing evidence suggests that the diversity of GCM trade cumulus feedbacks

can, on the other hand, be traced to a specific idea: how models represent lower-

tropospheric vertical mixing (e.g., Sherwood et al., 2014; Bony et al., 2017). Fig. 1-

3b,c. highlight two case studies from GCMs that differ in the strength of convective

mixing, with large implications for changes in cloudiness and ECS. The general idea,

which will be discussed in Chapt. 7, is that increased convective mixing brings dry air

down from the free troposphere, drying the large-scale environment near cloud-base

and decreasing cloud-base cloudiness. Greater mixing therefore reduces cloudiness at
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cloud base. In GCMs, differences in this vertical mixing are thought to result from

different representations of the interplay among surface turbulent fluxes, convective

mixing, and low-level radiative effects (e.g., Tomassini et al., 2014; Vial et al., 2016).

These processes are thought to explain large differences in the trade-wind cloud

feedback, yet they have never been tested observationally. During the EUREC4A

(Elucidating the role of cloud-circulation coupling in climate) field campaign, we col-

lected data to measure these interplays, such as among cloudiness, shallow convective

mixing, radiative heating, and the large-scale environment, in order to constrain cloud

feedbacks (Bony et al., 2017; Stevens et al., 2021). The campaign took place in Jan-

uary and February 2020 in the downstream trades of the North Atlantic. The original

aim of EUREC4A to constrain cloud feedbacks opened a broader set of questions to

improve fundamental understanding of the trades. The Charney report stated that

climate prediction may be “expected to improve gradually as greater scientific under-

standing is acquired and faster computers are built” (Charney et al., 1979). Since this

report, faster computers have been built, but there are still numerous open questions

regarding scientific understanding of the trades, several of which this thesis, using

EUREC4A data, tries to answer.

1.3 Thesis outline

From a methodological perspective, this thesis has two parts. In the first part (Chap-

ters 2–5), in situ EUREC4A observations are introduced (Chapt. 2) and analyzed to

deepen physical understanding of the characteristic vertical structure of trade-wind

air and the processes that maintain it. Chapt. 4 closes subcloud layer moisture and

heat budgets for the first time with in situ observations, using radiative heating pro-

files calculated and studied in Chapt. 3 and bulk models of surface and entrainment

fluxes constrained in a Bayesian approach. The EUREC4A observations also provide

a basis for reconceptualizing the transition layer, which contrasts with previous views

based on theory for cloud-free boundary layers (Chapt. 5).

Better understanding how the trades behave in the present-day using EUREC4A
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Figure 1-4: Artistic of clouds and turbulence from different time periods and cultures:
(a) knight on horseback hidden in the clouds Andrea Mantegna’s (1456–1459) painting
of St. Sebastian, (b) figure hiding in the clouds in a 13th century fresco by Giotto di
Bondone, (c) sketch of turbulence by Leonardo da Vinci (1452–1519), (d) Starry Night
by Vincent van Gogh (1853–1890), (e) L’Embellie, or The Upswing by René Magritte
(1898–1967), (f) the The Great Wave off Kanagawa by Hokusai (1760–1849), and (g)
La corde sensible, or The Heartstring by René Magritte.

observations allows for better evaluating how trade-wind clouds will change in the fu-

ture. In the second part (Chapters 6–7), this improved physical understanding is ap-

plied to the evaluation of general circulation models. Chapt. 6 traces how, in CMIP6,

uncertainties in trade cumulus feedbacks are strongly associated with uncertainties in

the global cloud feedback and, to a lesser extent, in equilibrium climate sensitivity.

Chapt. 7 shows analysis supporting the first process-based constraint on the trade cu-

mulus cloud feedback. This constraint draws upon extensive EUREC4A observations,

mixed layer theory as evaluated in Chapt. 4, and output from ten GCMs. Conclu-

sions and perspectives following from ideas presented in this thesis are discussed in

Chapt. 8. Chapt. 9 presents additional materials.

1.4 A door in the sky — learning to see clouds

Clouds, while remaining the subject of rich scientific inquiry, have also long fascinated

artists and writers. One can argue that there are a number of parallels between

observing art and observing nature. Both involve noticing and connecting particular

elements with the entirety. Art and nature evoke a sense of beauty and wonder

that are thought-provoking. Seeing artwork, like observing nature, is enriched by
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being with people of various backgrounds, as each person brings different perspectives

and experiences to bear. Works of art, such as poetry, painting, or dance, also

foster concision and intensity in communicating ideas, which is not unlike a scientific

equation or explanation.

Looking at art, moreover, sharpens our senses and encourages close examination.

The precise observer Andrea Mantegna’s (1456–1459) painting of St. Sebastian is

rewarded with a knight on horseback hidden in the turbulent clouds (Fig. 1-4a).

Similarly, if looking closely at a 13th century fresco by Florentine artist, Giotto di

Bondone, a profile of a smirking devil, or alternatively the artist himself, emerges

in the vaporous clouds (Fig. 1-4b). In both cases, once you see the hidden figure

a first time, you cannot fail to see it the following times. These vignettes raise the

question of how we learn to see, as one often sees what one is conditioned to see. How

often do we miss surprises hidden in plain sight? One way that EUREC4A avoids

potential blind spots is by bringing together a vast community. By merging differing,

complementary perspectives, one can hope to overcome our blind spots and discover

some of the surprises that have remained hidden in the clouds.

These cloud mysteries have long fascinated the human imagination. Art has of-

ten depicted clouds and turbulent motion, as illustrated in Fig. 1-4. Painter René

Magritte writes about his research on “the problem of the cloud”: “I feel a drive to

paint a cloud, perhaps a hundred” (Sylvester, 1992). Indeed, his painting L’Embellie,

or The Upswing, (1962) depicts a door in the sky that opens onto a field of shal-

low clouds (Fig. 1-4e). The Barbadian poet, Kamau Brathwaite (1930–2020), uses

the same visual language as Magritte, writing, ‘from under the clouds where I write

the first poem ... a door opening in the sky” (Brathwaite, 2005). To return to the

questions introduced in this chapter, Magritte and Brathwaite’s images of a door

in the sky evoke the history of climate model analysis of the trades. These model

analyses revealed limitations in our physical understanding about shallow convective

processes in the trades, which represent bottlenecks for climate predictions. That is,

they have shown us the door to deeper physical understanding and improved climate

prediction. Now, EUREC4A has allowed us to walk through this door. The German
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physicist, Max Planck, writes about the scientific process of formulating questions

and then posing them to nature that is at the heart of EUREC4A: “An experiment

is a question which science poses to Nature, and a measurement is the recording of

Nature’s answer. But before an experiment can be performed, it must be planned

— the question to Nature must be formulated before being posed” (Planck, 2014).

The ‘recordings’ of nature’s answers from EUREC4A invite us to deepen our physical

understanding, all the while being filled with a sense of wonder and curiosity about

these questions in the sky.
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Chapter 2

Can EUREC4A answer climate ques-

tions?

At the time of EUREC4A, the scientific study of the trades had progressed to the

point of formulating specific questions that, if tested observationally, could lead to

a step-change in understanding, as discussed in Chapt. 1. Before transitioning to

the research chapters, this chapter discusses additional motivations for organizing

the EUREC4A field campaign (Sec. 2.1) and presents the primary measurement plat-

forms (Sec. 2.2.1). An argument is also given why these measurements are amenable

to answering climate questions (Sec. 2.2.2). I had the opportunity to take part in

EUREC4A and briefly describe my research flight experiences (Sec. 2.3) and contri-

butions to the campaign (Sec. 2.4).

2.1 Why organize EUREC4A?

The EUREC4A (Elucidating the role of cloud-circulation coupling in climate) field

study took place in January and February 2020 in the north Atlantic trades, east of

Barbados (see Fig. 2-1 for experiment location). As introduced in Chapt. 1, it is the

most extensive field campaign ever performed in the trades, and the first campaign to

measure both clouds and their large-scale environment, including circulations (Bony

et al., 2017; Stevens et al., 2021). EUREC4A was originally conceived to observa-

tionally test trade cumulus feedback mechanisms thought to explain large differences

in climate sensitivity and to provide benchmark measurements for a new genera-

tion of models and satellite observations (Bony et al., 2017; Stevens et al., 2021).
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These aims require jointly characterizing the micro- and macrophysical environment

of clouds, and the cloud field itself. Yet the question arises, why organize such a

campaign, given the large number of previous field campaigns and the wealth of data

from satellites?

Advancing understanding on the questions raised in Chapt. 1 requires observa-

tional data, but such data is lacking in the trades. The last major field studies focus-

ing on the trades took place about 50 years ago, before climate change was considered

a salient issue. They include the Atlantic Expedition from September to October 1965

(Augstein et al., 1973), the Atlantic Tradewind EXperiment, ATEX, in February 1969

(Augstein et al., 1974), the Barbados Oceanographic and Meteorological Experiment,

BOMEX, from May to July 1969 (Holland, 1970), and the Puerto-Rico Experiment

in December 1972 (LeMone and Pennell, 1976). These campaigns took place at the

advent of the satellite era, so they were not yet accompanied by observations from

space. Despite occurring half a century ago, these studies continue to act as reference

data sets for studying and simulating cloudiness in the trades (e.g., Stevens et al.,

2001; Siebesma et al., 2003).

More recent field campaigns focused on different cloud regimes and other questions

than jointly characterizing trade-wind clouds and their large-scale environment. Some

field studies sampled primarily stratocumulus regimes (e.g., Stevens et al., 2003b;

Bretherton et al., 2004; Wood et al., 2011; Russell et al., 2013), or regions of deeper

convection (e.g., Betts, 1974; Raymond et al., 2003), such as the Global Atmospheric

Research Program’s (GARP) Atlantic Tropical Experiment (GATE) (e.g., Kuettner,

1974) or the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Re-

sponse Experiment (TOGA-COARE) (e.g., Webster and Lukas, 1992; Johnson et al.,

1999). Other field campaigns made measurements in the trades, such as Rain in

shallow cumulus over the ocean (RICO, Rauber et al., 2007), Cloud System Evolution

in the Trades (CSET, Albrecht et al., 2019) and Organization of Tropical East Pa-

cific Convection (OTREC, Fuchs-Stone et al., 2020), yet their scientific motivations

were targeted towards more specific physical processes, such as precipitation and the

stratocumulus-to-cumulus transition.
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Since early field campaigns in the trades, the expansion of satellite measurements

has provided global views of Earth and extensive new data. Yet as alluded to in

Chapt. 1, the coarse vertical resolution of passive remote sensing measurements leads

to biases in their representation of vertical moisture profile features, such as the

sharp decrease at the planetary boundary layer top or elevated moisture layers (e.g.,

Loeb et al., 2009; Chepfer et al., 2010; Stevens et al., 2017; Prange et al., 2021),

especially in the lowest three kilometers, corresponding to the weakest absorption

lines (Chazette et al., 2014). Regarding cloudiness, biases in cloud detection among

different passive remote sensors lead to large discrepancies in estimates of trade-

wind cloud fraction and related quantities (Stubenrauch et al., 2013). The highest-

resolution satellite measurements better resolve trade-wind clouds (e.g. the ASTER

instrument has up to 15 m spatial resolution), yet these high-resolution sensors have

limited temporal sampling (e.g., Mieslinger et al., 2019, 2021). Cloudiness is often

studied in mesoscale large-eddy simulations, yet cloud fraction and cloud organization

are sensitive to resolution, domain size, and microphysics scheme (e.g., Bretherton

and Blossey, 2017a; Vogel et al., 2016; Radtke et al., 2021).

Given these limitations, in situ observations are critical for testing ideas about

trade-wind cumuli. To begin filling this measurement gap, in 2010, the Max Planck

Institute for Meteorology and the Caribbean Institute for Meteorology and Hydrol-

ogy established the Barbados Cloud Observatory (BCO) on the windward side of

Barbados, at the easternmost point of the island (Stevens et al., 2016b). The BCO

intercepts air that has been undisturbed by land influence since the western coast

of Africa. Other long-term ground-based measurement stations are located in the

extratropics, such as Cloudnet (Illingworth et al., 2007) and the U.S. Department

of Energy’s ARM (Atmospheric Radiation Measurement) climate research facilities

(e.g., Moran et al., 1998; Long et al., 2013). The BCO is unique, however, in being

the only long-term observational site in the trades. The BCO was also the anchor for

two Next-Generation Aircraft Remote Sensing for Validation Studies airborne field

campaigns (NARVAL and NARVAL2), held in December 2013 and August 2016 in

preparation for EUREC4A (Stevens et al., 2016b; Konow et al., 2019).
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Figure 2-1: Location of EUREC4A field study in the North Atlantic trades, east of
Barbados, as shown in (a) and (d). (b) shows the view from the Barbados Cloud
Observatory in a rare cloud-free moment, and (c) depicts a cloud field seen from
flying on the WP-3D aircraft. In (e) is René Magritte’s painting, L’embellie or The
Upswing (1962), as if opening the door to the trade winds that blow from the east,
as illustrated schematically in (d).

2.2 Building a cloud laboratory in the trades

Growing from these observational foundations, EUREC4A brought together four ships,

five aircraft, the Barbados Cloud Observatory, a C-band rain radar, and a multitude

of uncrewed aerial and seagoing systems, including fixed-wing aircraft, quadcopters,

drifters, buoys, underwater gliders, and Saildrones (Stevens et al., 2021). EUREC4A

also launched an extensive sounding array consisting of 1068 dropsondes and 1512

radiosondes. This ‘symphony’ of measurements can be thought of as building a tran-

sient cloud laboratory in the trades. This cloud laboratory can then be used to

observationally test the questions raised in the previous chapter.
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2.2.1 Primary measurement platforms

In the following section, the four measurement platforms whose data are used through-

out the following chapters are briefly outlined. Further information is given in later

chapters regarding particular analyses. The high-flying aircraft, HALO (High Alti-

tude and Long Range Research Aircraft), (Konow et al., 2021) characterized clouds

and the environment from approximately 9–10 km, both with remote-sensing instru-

ments and by launching approximately 800 dropsondes around the perimeter of a

fixed, mesoscale circle (Stevens et al., 2021). It followed a circular flight pattern

known as the ‘EUREC4A circle’ (Fig. 2-2). This EUREC4A circle was centered at

13.3∘ N, 57.7∘ W and had an about 220 km diameter, roughly comparable to the

meso-𝛽 scale from Orlanski (1975) or the size of a typical GCM grid box. A second

aircraft, the ATR-42, primarily followed a 120x15 km rectangular, or racetrack, flight

pattern below 3–4 km within the EUREC4A circle (Fig. 2-2) (Bony et al., 2022). One

particularity of the ATR-42 was its sideways-pointing lidar and radars that, notably,

measured the cloud fraction at cloud base. Flight legs below cloud base also charac-

terized turbulent structures, microphysics (aerosols and clouds), and thermodynamic

variability in the subcloud layer and near-to-surface. A third aircraft, the WP-3D

Orion, augmented this sampling of clouds and their environment with additional

dropsondes and remote sensing (Pincus et al., 2021). Within the EUREC4A circle, a

research vessel, the R/V Meteor, complemented the three aircraft by providing sea

temperature estimates, surface-based remote sensing, and surface flux measurements

along an about 200 km transect in the same domain, from 12.5–14.5∘ N along the

57.255∘ W meridian (Fig. 2-2). Measurements from the Barbados Cloud Observatory

provide additional data.

2.2.2 Relevance for climate questions

A common denominator of the platforms described in Sec. 2.2.1 is that they undertook

intense, unbiased statistical sampling. That is, they did not ‘cloud chase’, or seek

out specific meteorological conditions, as did other platforms, such as the Twin Otter
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MODIS-Aqua, February 2, 2020 

~220 km

HALO

R/V Meteor

ATR-42

WP-3D

a. b.

Figure 2-2: (a) MODIS-AQUA satellite image overlain with approximate tracks for
HALO and the WP-3D in the EUREC4A circle (yellow), ATR-42 rectangular pattern
(green), and R/V Meteor ship tracks (red), and (b) the campaign-mean specific hu-
midity profile annotated with the approximate flight levels of the different aircraft,
noting that HALO dropsondes yield data from 9–10 km and WP-3D dropsondes from
about 5–7 km downwards.

aircraft that was also part of the campaign. Instead, the platforms followed prescribed

flight patterns – the EUREC4A circle for HALO, and to a lesser extent, the WP-

3D, the racetrack for the ATR-42, and the transect for the R/V Meteor. These

measurements therefore yield unbiased realizations of the large-scale environment.

As a result, measurements from the different platforms are assumed to be consistent

and comparable, despite sampling at slightly offset locations and times.

For the relevance of EUREC4A measurements to climate questions, the measure-

ments need to fulfill two additional conditions beyond being unbiased samples. First,

measurements must be representative of the broader trade wind regions, such that

inferences from EUREC4A generalize to the trades as a whole. Second, inferences

from short timescales must be relevant for longer climate timescales.

For the first condition, Medeiros and Nuijens (2016) show that in GCMs and

observations (from the BCO and Calipso), shallow cumulus clouds near Barbados

exhibit similar structure and variability to clouds across the entire trade wind belt.

Medeiros and Nuijens (2016) also show that errors simulated by GCMs near Barbados
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– regarding the vertical structure of clouds, the planetary boundary layer, covariance

with environmental conditions, and turbulent and convective mixing processes that

give rise to clouds – are similar to errors simulated in other trade-wind regions. Rasp

et al. (2020) find, similarly, that patterns of shallow cumulus cloud organization

present near Barbados are also present through the trades as a whole. These studies

lay an empirical foundation that clouds near Barbados are representative of trade-

wind clouds across the tropics.

The second condition is that short timescale variability is informative of variability

expressed on longer scales. Clouds and many associated processes, such as turbulence,

entrainment, and convective mixing, are ‘fast physics’. Over the past two decades,

numerous studies have shown that climatological biases in GCMs, in particular re-

garding moist convection, are already evident on shorter timescales, even within a

few days of model simulation, motivating the evaluation of GCMs in ‘weather mode’

(e.g., Rodwell and Palmer, 2007; Williams et al., 2013). Regarding changes in tropi-

cal circulation and precipitation associated with the direct adjustments to CO2, Bony

et al. (2013a) show that about half of the 30-year mean change from a quadrupling of

CO2 occurs within five days, showing that these changes rely upon fast physical pro-

cesses. Based on these considerations, it therefore appears a reasonable ansatz that

EUREC4A observations can provide a window into understanding these fast physical

processes, which can then inform longer-term responses. Indeed, in Chapt. 7, the re-

lationships among convective mixing, cloudiness, and relative humidity are shown to

be similar at the three-hourly and monthly timescales in GCM output. These results

indicate that three-hourly processes are informative for explaining longer timescale

variability. Vial et al, in review also demonstrate that variability on the diurnal

timescale is representative of variability on monthly and annual timescales. Previ-

ous studies also indicate that cloud feedbacks are similar whether calculated from

inter-annual, or longer timescale variability (e.g., Zhou et al., 2015; Sherwood et al.,

2020).
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2.3 Flying

I had the remarkable opportunity to take part in the EUREC4A campaign in January

and February 2020. The in situ data that I analyze in the following chapters is thus

data that I helped collect. The benefits of being immersed in the natural environment

one wishes to study is perhaps best expressed by the renowned American mathemati-

cian and meteorologist, Edward Lorenz. Regarding atmospheric circulations, Lorenz

wrote, “Before one can make any serious attempt to explain the circulation of the at-

mosphere, he must become familiar with the circulation which he wishes to explain...

experience suggests that the investigator who attempts to deduce the atmospheric

circulation without first observing it is placing himself at a considerable disadvan-

tage” (Lorenz, 1967). This sentiment certainly holds for observing and making an

attempt to better understand processes in the trades. There is also a unique spirit

of discovery, joy, and camaraderie in participating in a field campaign that brings

together people from numerous institutions and countries in a shared pursuit.

While in Barbados, I took part in two research flights: one on the ATR-42, and

another on the WP-3D, known informally as the ‘hurricane hunter’ or ‘Miss Piggy’.

These were my first research aircraft experiences and gave me different perspectives

of the trade-wind clouds. The ATR flew through clouds near their base around 800

m, and the WP-3D flew higher, around 5–6 km on average. On the French ATR-

42, I sat next to Marie Lothon who was already analyzing in situ thermodynamic

data in real-time and initiated me as a first-timer into the workings of a flight. On

this day, February, 5, 2020, there were many clouds at cloud base (Fig. 2-3a,d). On

other days, the meteorological situation was quite different, and given the unbiased

(vs. cloud-chasing) nature of the sampling, the crew found themselves flying through

long stretches of nearly clear-sky. After hours of flat lines on different measurement

devices designed to measure clouds and humidity, one can understand when Nicolas

Rochetin, a French scientist, exclaimed, “Holy mackerel, we missed the stratiform

zone again!” (“Saperlipopette, on a encore raté la zone stratiforme !”). Even when

the skies were clear, a rapid descent down to 60 m provided an adrenaline rush.
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a. b. c.

d. e. f.

Figure 2-3: Photos from flying in the ATR-42 (left) near (a,d) the maximum in cloud-
base cloudiness and (e) near the surface around 60 m, and (right, b,c,f) in the WP-3D,
depicting (b.,c.) wisps of clouds detraining condensate at cloud top and (f) a field of
shallow cumuli.
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During this flight leg, it felt as though the airplane was skimming along the ocean

surface. One was close enough to spot wave crests breaking into whitecaps in the

strong wind and the sargassum seaweed that is so troublesome for Barbadian tourism.

Within the ATR aircraft, it was still possible to appreciate the coordination of the

EUREC4A experiment. The online Planet interface allowed for tracking, for instance,

the Twin Otter aircraft that zigzagged around, chasing clouds, and the Poldirad

rain radar, which we had helped build a few days earlier and that now measured

precipitation. One could also track how the HALO aircraft flew above us in circles.

On our headphones, the French pilots joked about the Germans who throw “800

lithium batteries in the sea”. (That is, the about 800 dropsondes launched from

HALO.) The concurrence of the ATR-42 and HALO flight patterns (Fig. 2-2) and

their unbiased sampling suggest that their measurements should be coherent. Indeed,

after the campaign, strong agreement was found between the two platforms across

the campaign, such as regarding their thermodynamic variability at different heights,

indicating that measurements indeed reflect large-scale variability (Bony et al., 2022).

My flight on NOAA’s hurricane hunter was also a poetic, fascinating experience.

The hurricane hunter, as its name implies, normally flies in much more trying condi-

tions. The evening before my flight, Kerry Emanuel was telling us about the first and

only crash of a hurricane hunter plane during Hurricane Janet in 1955, and another

harrowing, near-crash during Hurricane Hugo in 1989. In the pre-flight meeting prior

to our take-off, unusually strong wind shear was forecast for the flight area. We were

then instructed to put on safety suits whose pockets contained essentials in case of an

emergency, such as a flashlight, knife, and warming blanket. These aspects certainly

added to the mystique and excitement, tinged with very slight fear, when stepping

on board for the flight.

The WP-3D flight on February 9, 2020 was an all-night flight during full moon.

Even deep in the night, the moonlight illuminated a panorama of cloud formations:

billowing cumuli, cloud arcs, decks of clouds, veil clouds that appear like flying car-

pets, and a handful of extremely narrow cloud towers that grew to 7–8 km. I sat

in the cockpit during take-off and parts of the flight. Despite the illusion of gliding
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across a tactile or well-defined surface of the clouds, there is no such obvious boundary

between clouds and their environment. Encountering the cloud edge is, of course, not

like walking through a door, but rather like encountering a gradient of water vapor

that would be easier to observe in infrared light. Stevens et al. (2017) expresses it

evocatively and succinctly: “If it did not have to condense to become visible, water va-

por would fuel the fascination of many more scientists. Imagine seeing with the naked

eyes how elevated layers of water vapor, and its radiative effects, engender shallow

circulations, or how pockets of humidity surround and socialize cumulus convection.

Imagination is indeed necessary because water vapor’s mysteries arise as much from

its visible transparency as from the opulence of its infrared opacity”.

One frequently-occurring cloud formation was small wisps of clouds that detached

from cloud tops and then drifted and dissipated into the drier environment (Fig. 2-

3b,c). This detrainment moistens and cools the surrounding environment. Observing

these clouds out the window was the initial spark for proposing a new conceptual

model of the transition layer in Chapt. 5.

2.4 Organizing outreach

Before concluding this chapter and transitioning to the research chapters, I summarize

two contributions to the campaign. The first contribution is outreach work that we or-

ganized in collaboration with Barbadian colleagues Rebecca Chewitt-Lucas, Branden

Spooner, Shanice Whitehall from the Caribbean Institute for Meteorology and Hy-

drology (CIMH), and French colleagues, Benjamin Fildier and Ludovic Touzé-Peiffer.

Ulrike Kirchner and Dörte de Graaf from the Max Planck Institute for Meteorol-

ogy also helped us organize outreach. The outreach initiatives included a two-day

scientific symposium, about 20 visits to local schools, a weekly seminar series with

local institutes, and an open house for the broader community to visit different mea-

surement platforms. The second contribution was calculating clear-sky, aerosol-free

atmospheric radiative profiles from 2580 soundings (1068 dropsondes and 1512 ra-

diosondes) launched during the campaign (Albright et al., 2021a). This analysis is
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presented in Chapt. 3.

The research symposium, ‘From BOMEX to EUREC4A’, brought together 24 lo-

cal and visiting scientists and about 100 participants to consider the advances since

BOMEX, a major field campaign that took place 50 years before EUREC4A (Fig. 2-

4). While BOMEX had many similarities with EUREC4A, involving several ships and

research aircraft, the main difference lies in their objectives. For BOMEX, the main

objective was studying the exchange of moisture, heat, and momentum between the

ocean and the atmosphere. At the time, climate change was not yet a topical issue,

so the main goal of the campaign was to improve weather forecasting. For EUREC4A,

by contrast, better understanding and constraining the magnitude of future climate

change is at the heart of the campaign.

Two ‘alumni’ of the BOMEX campaign, 50 years before, spoke during the sympo-

sium: Clyde Outram, former director of Civil Aviation on Barbados, and Pat Callen-

der, then the head of the Barbadian airport. They vividly recounted their experiences,

even bringing an insignia from BOMEX that they had kept for five decades. Callen-

der raised further points of contrast between BOMEX and EUREC4A, describing how

he had to negotiate on behalf of local air traffic controllers seeking compensation for

managing United States aircraft during the BOMEX campaign, and local scientists

were not often co-authors on the papers published with BOMEX data. EUREC4A,

on the other hand, is a Barbadian-German-French-American initiative with strong

Barbadian involvement and expertise.

Together with the Barbadian Ministry of Education, we also organized visits to

about 20 local elementary and secondary schools (Fig. 2-4). The Barbadian gov-

ernment has strongly invested in education, and our efforts sought to reinforce their

environmental education. We interactively explored the scientific method by con-

ducting small experiments using simple materials. Using commonly-found materials

made it easier for students to recreate the experiments at home. The experiments

included creating a cloud in a bottle, observing surface tension, and asking how strat-

ification affects mixing and overturning (e.g., by observing whether an ice cube melts

more quickly in fresh or salty water). During the school visits, we also tried to vi-
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c.

Figure 2-4: Photographs from outreach activities organized, including (a) the two-day
symposium, ‘From BOMEX to EUREC4A and (b.,c.) a school visit where Ludovic
Touzé-Peiffer and I perform experiments with local students. Photo a. is taken by
Frédéric Batier, and photos b.,c., are taken by Marius Léna.

sualize questions asked during EUREC4A and benefited from cloud animations and

presenting tips provided by Tim Cronin and Pier Siebesma. We also organized an

outreach day, wherein a number of facilities opened to the general public, such as for

the launching of radiosondes and drones. Our outreach activities are summarized in

the EUREC4A overview paper, Stevens et al. (2021).
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Chapter 3

Atmospheric radiative profiles during

EUREC4A

This chapter presents the method to calculate atmospheric radiative profiles from

EUREC4A soundings and presents initial results. Calculating these radiative profiles

is a necessary step for analyses in later chapters, namely closing subcloud layer ther-

modynamic budgets (Chapt. 4) and reconceptualizing the transition layer (Chapt. 5).

3.1 Abstract

The couplings among clouds, convection, and circulation in trade-wind regimes re-

main a fundamental puzzle that limits our ability to constrain future climate change.

Radiative heating plays an important role in these couplings. Here we calculate

clear-sky radiative profiles from 2580 in situ soundings (1068 dropsondes and 1512

radiosondes) collected during the EUREC4A field campaign, which took place in the

downstream trades of the western tropical Atlantic in January-February 2020. We

describe the method used to calculate these cloud-free, aerosol-free radiative profiles.

We then present preliminary results sampling variability at multiple scales, from the

variability across all soundings to groupings by diurnal cycle and mesoscale orga-

nization, as well as individual soundings associated with elevated moisture layers.

We also perform an uncertainty assessment and find that the errors resulting from

uncertainties in observed sounding profiles, and ERA5 reanalysis employed as up-

per and lower boundary conditions are small. The present radiative profile data set

This chapter was published in Earth System Science Data in February 2021 (Albright et al.,
2021a).
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can provide important additional detail missing from calculations based on passive

remote sensing and aid in understanding the interplay of radiative heating with dy-

namic and thermodynamic variability in the trades. The data set can also be used

to investigate the role of low-level radiative cooling gradients in generating shallow

circulations. All data are archived and freely available for public access on AERIS at

https://doi.org/10.25326/78.

3.2 Introduction

The EUREC4A field campaign, which took place in January and February 2020 in

the downstream trades of the western tropical Atlantic, was designed to elucidate

the couplings among clouds, convection, and circulation in trade-wind regimes and

understand the role of this interplay in climate change (Bony et al., 2017). Shallow

trade-wind clouds cover large parts of tropical oceans (Wood, 2012), yet their response

to warming remains largely unknown, and uncertainty in shallow convective processes

are the cause for large uncertainties in climate projections (Bony and Dufresne, 2005;

Vial et al., 2013; Sherwood et al., 2014; Zelinka et al., 2020). Among all physical

processes involved in shallow convection, atmospheric radiative cooling emerges as

key to the coupling between low-level circulations and convection. Understanding the

dynamics driven by variations in radiative heating rates, and potential relationship

to the mesoscale organization of clear and cloudy regions, was one motivation for the

campaign (Bony et al., 2017).

A characteristic feature of the trade-wind vertical moisture profile is a sharp hu-

midity gradient between the moist marine boundary layer and dry, subsiding free

troposphere around two kilometers Riehl et al. (1951); Malkus (1958). This charac-

teristic vertical moisture structure has important implications for radiative cooling

profiles, but it is difficult to observe with satellite remote sensing (Stevens et al., 2017).

Indeed, moisture profile features, such as the sharp decreases in moisture at the top

of the marine boundary layer or elevated moisture layers, are smaller than typical

weighting functions of even hyperspectral instruments (e.g. Maddy and Barnet, 2008;
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Schmit et al., 2009; Menzel et al., 2018), especially in the lowest three kilometers,

corresponding to the weakest absorption lines (Chazette et al., 2014). The lack of

informative observations means that the vertical profile of water vapor in large-scale

atmospheric analyses do not represent the fine-scale moisture structure indicated by

soundings (Pincus et al., 2017). Errors in the vertical moisture structure estimated

from passive remote sensing produce corresponding errors in radiative cooling pro-

files computed from retrievals and/or analyses, making in situ soundings especially

valuable.

Here we calculate radiative profiles from 2580 in situ soundings (1068 dropsondes

and 1512 radiosondes) collected during EUREC4A, whose network of observations pro-

vided extensive sampling of the tropical trade-wind environment. Similar studies have

been conducted over continents as part of the Atmospheric Radiation Measurement

program (Kato et al., 1997; Mlawer et al., 1998), over the western Pacific warm-pool

region as part of the TOGA COARE (Coupled Ocean–Atmosphere Response Exper-

iment) (Guichard et al., 2000), and over the western tropical Atlantic, albeit focused

on transported Saharan dust layers (Gutleben et al., 2019). The present radiative

profiles have the potential to complement and further what can be learned from cal-

culations based on passive remote sensing. In addition, this data set may help in

understanding how low-level gradients in radiative cooling fuel shallow circulations,

as observed to emerge in remote sensing and large eddy simulations (L’Ecuyer et al.,

2008; Stephens et al., 2012; Seifert et al., 2015). These shallow circulations are specu-

lated to influence the mesoscale spatial organization of shallow convection, a question

at the core of EUREC4A (Bony et al., 2020; Stevens et al., 2020b).

In Sec. 3.3, we describe the data, the radiative transfer code, and the procedure

underlying the calculation of the radiative profiles. We then present initial results to

open the discussion on questions that could be explored with these radiative profiles

(Sec. 3.4). Lastly, we perform an uncertainty assessment (Sec. 3.5) and find that errors

resulting from uncertainties in the sea surface skin temperature, in situ soundings,

and ERA5 reanalysis used as boundary conditions are modest.
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3.3 Data and methods

3.3.1 Radiosonde and dropsonde data

From January 8 to February 19, over 2500 atmospheric soundings were conducted

using dropsondes and radiosondes over the western tropical Atlantic ocean south and

east of Barbados. As the sondes fall or ascend, their simple autonomous sensors,

equipped with a GPS receiver, measure the vertical profiles of pressure, temperature,

relative humidity, and instantaneous horizontal wind. To calculate radiative profiles,

we employ data (‘level-3’) that have been interpolated into a common altitude grid

with 10 meter spacing (Stephan et al., 2020; George et al., 2021). We select dropsondes

and radiosondes that have measurements on more than ten atmospheric levels in

total; this crude filter suffices to remove failed soundings and results in an input data

set consisting of 1068 atmospheric profiles from dropsondes and 1436 profiles from

radiosondes. The minimum and maximum levels 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 measured by each

sonde are reported in the final data set.

Figure 3-1a shows the geographic and temporal distributions of the sondes used

to calculate the radiative profiles. Radiosondes were launched from a network of

one land station and four research vessels, within a region ranging from 51–60∘W to

6–16∘N. On land, radiosondes were launched from the Barbados Cloud Observatory

(BCO), located on a promontory on the easternmost point of Barbados called Deebles

Point (13.16∘N, 59.43∘W), where it is exposed to relatively undisturbed easterly trade-

winds. The fleet of four research vessels includes the French research vessel L’Atalante,

two German research vessels Maria S. Merian (MS-Merian) and Meteor, and the

American research vessel from the National Oceanic and Atmospheric Administration

(NOAA) Ronald H. Brown (RH-Brown). Dropsondes were launched from both the

German High Altitude and Long Range Research Aircraft (HALO) and the United

States Lockheed WP-3D Orion from NOAA (WP-3D). HALO typically flew at an

altitude of 30,000 ft (approximately 9 km), following a circular flight pattern with

90 km radius centered at 13.3∘N, 57.7∘W. When launching sondes, the WP-3D flew
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Figure 3-1: (a) The EUREC4A sounding network: 1068 soundings from dropsondes
(white) and 1512 from radiosondes (coral). We employ 810 dropsondes launched from
HALO and 258 dropsondes from the WP-3D to calculate radiative profiles, as well
as 325, 344, 156, 377, and 310 radiosondes launched from L’Atalante, BCO, MS-
Merian, Meteor, and RH-Brown, respectively. Background colors show sea surface
skin temperature (SSTskin) from ERA5 reanalysis at 0.25∘ resolution averaged over
January and February. (b) The diurnal distribution of the 1068 dropsondes (blue)
and 1512 radiosondes (coral) with sonde launch time are binned in 10 min intervals.
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at 24,000 ft (approximately 7 km), releasing sondes along both linear and circular

patterns in the region covered by HALO, as well as further to the east close to the

nominal position of the RH-Brown.

Radiosondes were launched every four hours, daily from January 8–February 19,

2020, approximately synchronously from each platform. Given that the time-lag

between ascending and descending radiosondes is on the order of hours, and that

there is substantial horizontal drift between the ascent and descent, we chose to

compute separate radiative profiles for ascending and descending radiosondes. For

dropsondes, HALO flight takeoffs were staggered at 5, 8, and 11 am local time, with

flights lasting approximately eight hours, yielding roughly 72 sondes per flight. The

WP-3D undertook three night flights, which allows for a better characterization of

the diurnal cycle, together with the radiosondes launched during the night (Figure

3-1b).

We refer the reader to Stephan et al. (2020) and George et al. (2021) for a complete

description of the radiosonde and dropsonde data sets, respectively, and Bony et al.

(2017) and Stevens et al. (2021) for an overview of the campaign scientific motivations

and measurement strategy.

3.3.2 Radiative transfer calculation

The radiative transfer code used here, RRTMGP (Rapid Radiative Transfer Model

for GCMs, Parallel) (Pincus et al., 2019), is a plane-parallel correlated-𝑘 two-stream

model based on state-of-the-art spectroscopic data for gas and condensate optics.

It is based on line parameters from Atmospheric and Environmental Research and

the MT_CKD water vapor continuum absorption model (Mlawer et al., 2012). The

calculation of radiative profiles from radiosonde and dropsonde data then proceeds in

the following way:

1. vertical soundings of temperature, pressure, and water vapor specific humidity

at 10 meter resolution are interpolated onto a 1 hPa vertical grid and then

merged with temperature and specific humidity from ERA5 reanalyses in the
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following manner. Sonde measurements below 40 m are first truncated for all

sondes: radiosondes do not provide data in this surface layer because of deck

heating effects on ships (Stephan et al., 2020), and we apply the same filter

to dropsondes for consistency. The ERA5 profiles at hourly and 0.25∘ resolu-

tion (European Centre for Medium-Range Weather Forecasts, 2017) are linearly

interpolated temporally and spatially to the time, latitude, and longitude of the

sounding. ERA5 values are used above the highest level measured by each sonde

to extend the observed soundings vertically to 0.1hPa and account for the ef-

fect of high-altitude thermodynamic variability on the radiative cooling profiles

below. To obtain the lower boundary condition, we linearly interpolate the

ERA5 sea surface skin temperature (SSTskin), also at hourly and 0.25∘ reso-

lution (European Centre for Medium-Range Weather Forecasts, 2017), to the

time, longitude and latitude where the sounding was launched;

2. CO2 concentrations are set to the present day value of 414 ppm while CH4,

O3 and N2O concentrations are taken from the standard tropical atmosphere

profile of Garand et al. (2001);

3. the set of resulting profiles is then used as input to RRTMGP to derive upwelling

and downwelling clear-sky radiative fluxes in the shortwave and longwave ranges

of the spectrum. The calculation uses a spectrally-uniform surface albedo of 0.07

and a spectrally-uniform surface emissivity of 0.98, typical values for tropical

oceans.

Dropsondes and radiosondes drift horizontally as they rise and/or fall (Figure 3-

1a), which could give slight errors due to aliasing of horizontal moisture variability

into vertical variability. This potential error source is less pronounced for dropsondes

than radiosondes due to their faster travel speed through the troposphere.

We compute radiative fluxes and heating rates only for the gaseous component

of the atmosphere, without explicitly taking into account cloud or aerosol properties.

These radiative profiles are therefore clear-sky and aerosol-free. The soundings do,

however, capture the water vapor structure, including regions of high humidity in
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cloud areas and aerosol layers. Cloud cover in trade-wind regimes is relatively low,

between 10% (Nuijens et al., 2015a) and 20% (Medeiros and Nuijens, 2016) for active

clouds, so cloud-free, or clear-sky, profiles are representative of the thermodynamic

environment. Taking into account the influence of cloud liquid water would require

a number of ad hoc assumptions about microphysical and optical properties within

clouds (see for instance Guichard et al., 2000). Similarly, we do not directly represent

the radiative effect of mineral dust aerosols. The dominant aerosol radiative effect in

this region has been shown to result from the covariance of aerosols with water vapor,

such that aerosols tend to be associated with elevated moisture layers Gutleben et al.

(2019, 2020). Dust aerosol layers are, moreover, more common in the summer than

in winter (Lonitz et al., 2015). We leave open the possibility that direct scattering by

dust aerosols has an additional role on radiative heating rates, but do not have the

coincident data to appropriately address this question for all soundings.

3.4 Preliminary results and discussion

This section includes a first exploration of the data set. We examine radiative variabil-

ity at different scales – across all soundings, at the diurnal timescale, and according to

different patterns of mesoscale organization – as well as in individual profiles showing

the influence of sharp vertical moisture gradients on radiative heating rates.

3.4.1 Variability across soundings

A distribution of longwave, shortwave, and net heating rates, as well as large-scale

thermodynamic quantities, are shown in Fig. 3-2. Local extrema in the median

shortwave, longwave, and net heating rates occur near 2 km (Fig. 3-2d,e,f), associated

with the rapid decrease in specific and relative humidity at this level (Fig. 3-2b,c).

The top of the planetary boundary layer, or interface between the moist marine

boundary layer and dry free troposphere above, is expected to occur around 2 km

in the trades (Malkus, 1958; Cao et al., 2007; Stevens et al., 2017). The spread

in specific and relative humidity is greater than that in temperature, suggesting a
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Figure 3-2: Top: Temperature (a), specific humidity (b) and relative humidity (c)
(with respect to ice for 𝑇 < 0∘C) from EUREC4A dropsonde and radiosonde data.
Bottom: Shortwave (d), longwave (e) and net (f) heating rates calculated from
EUREC4A dropsonde and radiosonde data using the radiative transfer code RRT-
MGP. The center traces are the median profiles, and the medium and light grey
shadings indicate the 25–75% and 5–95% intervals, respectively. For the shortwave,
the median and the interquartile range are calculated using daytime values only.

53



strong role for moisture variability on the variability in radiative heating rates. On

average, longwave cooling is stronger than shortwave heating, such that net heating

rates are largely negative from the surface up to 10 km, with a median value around

-1 K/day. Additional local minima in longwave heating are observed around 3, 5, and

7 km between the 5% and 25% quantiles. These local minima could, for instance,

correspond to the radiative effect of elevated moisture layers arising from convection

detraining moisture at these higher levels, albeit less frequently, or aerosol layers

associated with increased water vapor concentrations (Stevens et al., 2017; Wood

et al., 2018a,b; O et al., 2018; Gutleben et al., 2019).

We next partition radiative heating variability into its variability in time (e.g.

diurnal cycle, day-to-day variability) and regarding the spatial characteristics of the

convection field (e.g. the spatial distribution of clear and cloudy regions).

3.4.2 Diurnal cycle and day-to-day variability

Figure 3-3 gives an overview of the diurnal variability of radiative heating, which has

been implicated in the diurnal cycle of convection and cloudiness (e.g., Gray and Ja-

cobson Jr, 1977; Randall and Tjemkes, 1991; Ruppert and Johnson, 2016). Shortwave

radiative heating follows the solar cycle. Longwave heating rates show less diurnal

variability and have approximately the same amplitude (with an opposite sign) as

shortwave heating rates during daytime. This compensation between longwave cool-

ing and shortwave heating results in a daytime net heating rate that is slightly positive

in the lower 2 km. The daytime heating within the cloud layer could contribute to

stabilizing the lower atmosphere, disfavoring convection. At night, strong radiative

cooling destabilizes the lower troposphere and strengthens convective fluxes. The

maximum nighttime longwave cooling occurs slightly above 2 km. During daytime,

the peak in stabilizing radiative heating appears slightly below 2 km. This difference

in the height of peak radiative heating, albeit of different sign, could reflect differences

in the height of the moist, convecting layer over the diurnal cycle: a shallower marine

boundary layer during the day that deepens at night (Vial et al., 2019). These consid-

erations highlight the potential for subtle interactions among radiation, convection,
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Figure 3-3: Diurnal composite of shortwave (left), longwave (middle), and net (right)
clear-sky heating rates binned in 10-minute intervals. Colored shadings indicate heat-
ing rates in units of K/day. The data are plotted with respect to local solar time to
simplify interpretation of the diurnal cycle. White indicates the absence of data. We
note that some variability, such as in the nighttime longwave radiative cooling vari-
ability, could result from different numbers of sondes launched throughout the diurnal
cycle (as illustrated in Fig. 3-1b).
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and cloudiness on the diurnal timescale.

Fig. 3-4 shows the day-to-day evolution of the shortwave (top), longwave (middle)

and net (bottom) heating rates derived from radiosondes launched at BCO. In the

shortwave and net heating rates, the daily stripes are due to zero shortwave heating

during the night. In the longwave component alone, the amplitude of the diurnal

cycle is less evident. Regarding the day-to-day variability, both in the shortwave

and the longwave components, trends in the height-evolution of the radiative heating

maxima appear to persist over several days. These trends are likely due to variations

in humidity (e.g. Dopplick, 1972; Jeevanjee and Fueglistaler, 2020) and are consistent

with the presence of multi-day trends in moisture observed at BCO during the cam-

paign (see Figure 13 in Stevens et al., 2021). At the end of the campaign, the rise in

the peak of longwave cooling appears to correspond to the rising location of the inter-

face between the moist, convecting layer below and dry free troposphere above (not

shown). The persistence and evolution of radiative heating patterns could be tied to

larger-scale synoptic moisture activity or to the evolution of mesoscale organization

patterns.

3.4.3 Radiative signatures of mesoscale patterns of cloud or-

ganization

We next aggregate radiative heating rates spatially. Fig. 3-5 illustrates four repre-

sentative cases of the Fish-Gravel-Flower-Sugar classification established previously

for mesoscale (20-2,000 km) organization patterns of clear and cloudy regions (Bony

et al., 2020; Stevens et al., 2020b). These cloud organization patterns were identified

visually from satellite imagery and correspond to differences in large-scale environ-

mental conditions (Bony et al., 2020). They are also observed to have different top-

of-the-atmosphere radiative effects (Bony et al., 2020). As outlined in Stevens et al.

(2020b), Sugar refers to a ‘dusting’ of small, shallow clouds with low reflectivity and

a random spatial distribution. Gravel clouds tend to be deeper than Sugar (up to

3-4 km), have little stratiform cloudiness, precipitate, and organize along apparent
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Figure 3-4: Shortwave (top), longwave (middle), and net (bottom) heating rates at
BCO during EUREC4A, from January 19 to February 17. The heating rates are
calculated from radiosondes launched at BCO. In colors are heating rates with units
of K/day. White indicates the absence of data.
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gust fronts or cold pools at the 20-200 km scales. Fish are skeletal networks (often

fishbone-like) of clouds at the 200-2,000 km scale with stratiform cloud layers; the Fish

pattern is often associated with extratropical intrusions. Flowers are circular features

defined by their stratiform cloud elements. Both Fish and Flowers are surrounded by

large swaths of clear air.

We choose four days as an example of the large-scale environmental and radiative

signature of each pattern, given the spatial pattern observable in the GOES-16 satel-

lite images in the HALO flight path shown by the white circle. We plot daily-mean

profiles for temperature, specific humidity, and relative humidity (Fig. 3-5a,b,c), as

well as shortwave, longwave, and net radiative heating rates (Fig. 3-5d,e,f). These

profiles were calculated from approximately 70 HALO dropsondes launched during

the eight-hour flight on each day. We also plot the standard deviation of radiative

heating for each flight (Fig. 3-5g,h,i). As a first approximation, the standard deviation

of daily radiative heating profiles acts as a proxy for spatial variability in radiative

heating rates.

Spatial variability in radiative heating has been shown to drive shallow circula-

tions (e.g. Naumann et al., 2019) and affect convective organization (e.g. Bretherton

et al., 2005; Muller and Held, 2012). In this illustrative example, the differences in

the mean and standard deviation of the radiative heating rates hint at a role for dif-

ferences in radiative cooling rates in the onset or maintenance of mesoscale patterns

of organization. For instance, the ‘Fish’ pattern on January 22, 2020 appears to have

a moister lower troposphere between 1 and 3 km and slightly drier free troposphere

above 4 km. This vertical moisture distribution may give rise to the observed vertical

variability in radiative heating rates, with larger peaks in the mean profile (Fig. 3-5e)

and standard deviation (Fig. 3-5h) in radiative heating observable between 2 and 4

km, likely corresponding to strong humidity gradients at these levels.
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Fish 22-01-2020

Flower 02-02-2020

Gravel 05-02-2020

Sugar 09-02-2020

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3-5: Thermodynamic (a-c), daily mean radiative heating (d-f), and daily stan-
dard deviation of radiative heating (g-i) profiles classified by mesoscale organization
pattern, using a characteristic example of each type as diagnosed from snapshots
from GOES-16 infrared channel (left column). This figure employs HALO dropson-
des launched in the circular flight pattern (shown by the white circle) on the chosen
day, corresponding to roughly 70 dropsondes each. We focus on the spatial extent of
the HALO flight pattern because the cloud organization pattern does not necessarily
extend across the entire sampling domain Figure 3-1a, nor have the patterns been
shown to be scale-invariant.
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3.4.4 Effect of sharp moisture gradients on radiative heating

profiles

Figure 3-6 highlights the radiative signatures of elevated moisture layers, which can

persist for multiple hours at inversion levels (Stevens et al., 2017; Wood et al., 2018a;

Gutleben et al., 2019). We focus in detail on two thermodynamic and radiative heat-

ing profiles of a particular elevated moisture layer extending to 4 kilometers, along-

side GOES-16 images (Fig. 3-6i,j) corresponding to these soundings. This structure

persisted for at least four hours on January 24, 2020, and we plot thermodynamic

conditions and radiative heating profiles sampled three hours apart, at 12:55 and

15:55 UTC (see Fig. 3-6). A striking feature is the sharp peak in longwave cooling

at the top of the moisture layer of nearly -20 K/day at 15:55 UTC, corresponding to

the strong humidity gradient, with relative humidity decreasing by nearly 70% in 100

meters (Fig. 3-6c,d).

Although we calculate clear-sky profiles only, the present work could be extended

to account for radiative effect of cloud liquid water, which could be used, for instance,

to investigate the radiative effect of geometrically- and optically-thin ‘veil clouds’

persisting at inversion levels (Wood et al., 2018a,b; O et al., 2018), such as those

illustrated by the flight photographs (Fig. 3-6a,e). Over global oceans, approximately

half of low clouds do not fully attenuate space-borne lidar, suggesting that these

optically-thin clouds contribute significantly to total cloud cover estimates (?) and

could have an important radiative impact (e.g., Wood et al., 2018b).

3.5 Uncertainty assessment

To evaluate the robustness of our results and ensure good use of this data set, we

performed several uncertainty assessments by perturbing the SSTskin, in situ moisture

data, and ERA profiles used. We also included in the data set the minimum and

maximum levels 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 measured by each sonde. Unless indicated otherwise,

the errors reported below correspond to a subset of profiles with valid data starting
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(b) (c) (d)

(f) (g) (h)

(a)

(e)

(i) (j)

Figure 3-6: Thermodynamic and radiative heating profiles associated with an elevated
moisture layer persisting for multiple hours on January 24, 2020 in the HALO flight
pattern. Plotted here are the temperature (b), specific humidity (c), relative humidity
(d), as well as shortwave, longwave, and net radiative heating rate (f-h) profiles for
two soundings sampled three hours apart, at 12:55 and 15:55 UTC. Alongside these
profiles are photographs (a,b) taken from the HALO aircraft during the flight and
GOES-16 satellite images (i,j), with the dropsonde location and launch time indicated
by a circle along the circular flight pattern. Credit for the two flight photographs: J.
Vial.
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at 40 m (ie. 𝑧𝑚𝑖𝑛 ≤ 40 m) and during daytime, which corresponds to 1314 profiles.

The daytime filter was required for relevant calculation of the error in the shortwave,

and then kept for consistency for the longwave, but the magnitude of errors in the

longwave is not affected by this filter (not shown).

We first test the sensitivity to the ERA5 SSTskin. To this end, we perturbed the

original SSTskin by ±0.42 K and recalculate all heating rates. This value is chosen as

it corresponds to the root-mean-square-error (RMSE) between ERA5 SSTskin and

Marine-Atmosphere Emitted Radiance Interferometers (M-AERI) measures taken

during a series of cruises in the Caribbean Sea from 2014 to 2019 (Luo and Minnett,

2020). Figure 3-7 shows the RMSE between the original and perturbed radiative

profiles (blue-green curves). In the longwave and net, the effect of the perturbation

is strong in the first atmospheric layer, but then decreases rapidly and becomes neg-

ligible after a few hundred meters. Except for the first few atmospheric layers, the

uncertainty around the SSTskin can therefore be safely neglected.

We then investigate the sensitivity to the uncertainty of sounding measurements

by perturbing all soundings by a vertically-uniform relative error and redoing all

radiative transfer calculations. The manufacturer predicts an uncertainty of ±0.1 K

for the temperature and ±3% for relative humidity (Vaisala, 2018). The temperature

uncertainty has virtually no effect on radiative profiles (not shown). The effect of ±3%

uncertainty on the specific humidity profiles is shown in Fig. 3-7 in red. The highest

RMSE for this specific humidity perturbation occurs in the cloud layer, between 800

m and 2 km, with a magnitude of 0.05 K/day for net radiative heating. A secondary

peak with a magnitude of 0.03 K/day is also evident near the inversion, at about

3 km. Given a median radiative heating value of -1 K/day throughout the lower

troposphere (Sec. 3.4.1), these errors are roughly 3-5% for the net radiative heating.

These maxima likely correspond to the cumulative errors at the altitude of large

vertical humidity gradients, which lead to peaks in longwave, and to a lesser extent

shortwave heating rates for individual profiles.

Finally, we explore the uncertainty associated with ERA5 temperature and hu-

midity data employed as an upper boundary condition. Similarly to the uncertainty
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Figure 3-7: Root-mean-square error (RMSE) estimates in shortwave (left), longwave
(center) and net heating rates (right) for perturbations in SSTskin (blue), ERA5 hu-
midity profiles (green) and sonde humidity measurements (red) for the 1314 daytime
profiles that have valid data starting at 40 m. Dashed curves show negative perturba-
tions, solid curves show positive perturbations and dotted green curves show ERA5
humidity perturbations restrained to the 1117 daytime profiles that have valid data
at all levels between 40 m and 8 km. The horizontal grey bars on the left panel show
the frequency distribution in the maximum level measured (𝑧𝑚𝑎𝑥).
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analysis for the sounding data, we perturb ERA5 3D fields — used as input to the ra-

diative transfer code — by a uniform relative error. Previous studies have shown that

ERA5 reanalyses can present biases of various kinds (Nagarajan and Aiyyer, 2004;

Dyroff et al., 2015). We compare ERA5 humidity and temperature data with coinci-

dent radiosonde measures to obtain an estimate of ERA5 biases up to 100 hPa. From

the surface to 100 hPa, the RMSE in temperature between co-located radiosonde

soundings and ERA5 is between 0.3 and 0.7 K, with a mean of 0.5 K, and between

5% (at the surface) and 70% (near the inversion) for the specific humidity, with a

mean around 30%.

Fig. 3-7 only shows the effect of the ERA5 specific humidity uncertainty, taken at

±30%, on radiative profiles, as the temperature has once again a negligible influence.

The corresponding green curves (respectively dashed and solid) reveal local maxima

in the longwave and net heating rates around 3, 7 and 9.5 km. Again given a median

radiative heating value of -1K/day throughout the lower troposphere (Sec. 3.4.1), the

errors at these local peaks are between 10–30%. These maxima coincide with the

modes in the frequency distribution of the highest level 𝑧𝑚𝑎𝑥 measured by the sound-

ings, indicated in grey in the left panel. These peaks suggest that the uncertainty

arises from the large discontinuities emerging at the ERA5-sounding junction level

when perturbing ERA5 humidity profiles. The results suggest that the corresponding

uncertainty mainly occurs in the vicinity of the junction levels. This notion is further

confirmed by calculating the RMSE only on profiles which have data between 40 m

and 8 km (ie. 𝑧𝑚𝑖𝑛 ≤ 40 m and 𝑧𝑚𝑎𝑥 ≥ 8 km, dotted green curve): the remaining 1117

profiles left do not contain vertical discontinuities in humidity in this range, and we

see that the remaining upper-tropospheric discontinuities do not affect heating rates

in the lowest troposphere.

Overall, the small uncertainty values given with these tests support the robustness

of this data set and gives confidence regarding its use for more detailed investigations

in the lower troposphere. The uncertainty from sea surface skin temperature is limited

to the first few atmosphere layers, and uncertainty from merging with ERA5 specific

humidity is largely contained to the sounding-reanalysis junction point. Uncertainty
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associated with observed specific humidity profiles produces localized errors in the

cloud and inversion layers below 3 km, though these errors are approximately 5% or

less. We recommend that users carefully compare the magnitude of the signal they

analyze with the magnitudes of the errors provided here.

3.6 Conclusions

The first objective of this work is to present the method used to calculate clear-sky,

aerosol-free radiative profiles from 2580 radiosonde and dropsonde soundings launched

during the EUREC4A field campaign. These radiative profiles are calculated using

a state-of-the-art correlated-𝑘 model, RRTMGP, in which ERA5 reanalyses provide

lower and upper boundary conditions. We then aggregate the radiative heating pro-

files at multiple scales to examine temporal and spatial variability in trade wind

regimes. We find that radiative heating rates in the wintertime trade-wind environ-

ment display significant diurnal and day-to-day variability, and we observe hints that

this variability may be associated with different types of mesoscale organization. An

uncertainty assessment is further conducted to demonstrate that the influence of un-

certainties in the sounding data, and upper and lower boundary conditions, is small

relative to the magnitude of estimated radiative heating.

These results present a first overview of how this data set could help answer

existing research questions, in particular: 1) What is the role played by radiation

in the mesoscale organization of shallow convection? (e.g., Seifert and Heus, 2013;

Bretherton and Blossey, 2017b) 2) what is the interplay between the diurnal vari-

ability in radiative heating, convection, and cloudiness? (e.g., Gray and Jacobson Jr,

1977; Ruppert Jr and O’Neill, 2019; Vial et al., 2019), and 3) what is the influence

of clear-sky radiative cooling gradients on atmospheric circulations? (e.g., Gray and

Jacobson Jr, 1977; Mapes, 2001; Emanuel et al., 2014; Thompson et al., 2017; Nau-

mann et al., 2019). Such questions regarding the coupling of clouds, convection, and

circulations in trade-wind regimes are at the heart of the EUREC4A field campaign,

and the radiative profiles presented here complement other EUREC4A observations
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and data products in forming a toolbox for these investigations.
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Chapter 4

Observed subcloud layer moisture and

heat budgets in the trades

4.1 Abstract

The trade-wind subcloud layer is an important structural component of the atmo-

sphere. Its thermodynamic variability has long been characterized using simple frame-

works, of which mixed layer theory is the simplest kind. Past studies qualitatively

support such a description, yet the adequacy of mixed layer theory as a quanti-

tative description has not been tested. Here we use observations collected during

the EUREC4A (Elucidating the role of clouds–circulation coupling in climate) field

campaign to test this framework and evaluate our understanding of the trade-wind

subcloud layer. We find evidence for a transition layer separating the mixed layer

and subcloud layer tops. The presence of such a finitely-thick transition layer with

vertical gradients complicates the application of mixed layer theory, which assumes

an abrupt gradient, or ‘jump’ at the subcloud layer top. This ambiguity introduces

effective parameters and motivates their estimation through a Bayesian methodology.

Results from this Bayesian inversion further reflect a finite-depth entrainment zone.

We find that subcloud layer moisture and heat budgets close for synoptic variability

and a monthly campaign-mean, yielding a campaign-mean residual of 3.6 Wm−2 for

moisture and 2.9 Wm−2 for heat. Surface wind speed variability influences the sub-

cloud layer depth and fluxes, yet thermodynamic variability above the subcloud layer

This chapter is published in the Journal of the Atmospheric Sciences.
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top emerges as the primary control on subcloud layer moisture and heat variability.

Given that this simple theoretical framework can explain observed variability, it offers

an appealing framework for evaluating larger-scale models that must parameterize the

processes regulating this fundamental part of the atmosphere.

4.2 Introduction

The trade-wind subcloud layer is an important component of the tropical atmosphere.

Typically defined as extending from the top of the surface layer (at approximately 50

m) to cloud base (e.g., Malkus, 1958; Stevens et al., 2017), it couples the surface to

the trade-wind cloud layer and, in so doing, regulates the import of heat and moisture

from the ocean to the atmosphere above (e.g., Malkus, 1958; LeMone and Pennell,

1976; Stevens, 2007). Clouds are influenced by subcloud layer properties, as subcloud

moisture variability controls moist static energy variability, which influences convec-

tive potential and cloudiness (e.g., Emanuel, 1986, 1993). Clouds also influence the

subcloud layer, as they introduce variability in surface fluxes and radiation, influence

wind shear, and mix down dry air from aloft that can then be entrained into the

subcloud layer (e.g., Stevens, 2006). This subtle interplay between the subcloud and

cloud layers ultimately governs the magnitude of latent heat transport from the trades

to the equator (e.g., Malkus, 1958). The trade-wind subcloud layer thus forms an im-

portant link in the global thermodynamic budget, transporting latent heat to the

equatorial belt where it influences large-scale circulations and the global hydrological

cycle (Riehl, 1954; Heckley, 1985; Tiedtke, 1989).

To the extent that the subcloud layer influences the cloud layer, the clouds of

the trades provide an additional motivation to study the trade-wind subcloud layer.

By virtue of their large spatial extent and thus statistical weight, trade-wind cloud

regimes have a large influence on the global energy budget and global dynamics (e.g.,

Bony et al., 2004). Differences in the response of trade-wind cumulus to warming

explain large differences in climate sensitivity estimates (e.g., Bony and Dufresne,

2005; Webb et al., 2006; Vial et al., 2013; Myers et al., 2021), some of which have
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been shown to relate to how efficiently moisture is exported out of the trade-wind

subcloud layer (Sherwood et al., 2014).

Given the importance of the trade-wind subcloud layer, it is useful to under-

stand what controls its properties. To aid this understanding, the subcloud layer

has long been characterized using simple frameworks. Turbulence is expected to ho-

mogenize subcloud layer thermodynamic variables in the vertical (e.g., Mahrt, 1976;

Stull, 2012). Such a well-mixed vertical structure allows for simplification by solving

for the vertically-integrated, or bulk, properties of the subcloud layer. Among these

the vertically-integrated, or bulk models, the mixed layer model is the simplest case,

representing the subcloud layer by a single vertically-averaged value. As reviewed

by Stevens (2006), mixed layer models have formed a basis for representing the sub-

cloud layer in larger-scale models (Deardorff, 1972; Arakawa and Schubert, 1974),

thermodynamic models of the tropics (Betts and Ridgway, 1989; Miller, 1997), diag-

nostic studies of surface winds over tropical oceans (Stevens et al., 2002; McGauley

et al., 2004), and diagnostic studies of specific regions, including trade-wind regimes

(Betts, 1976; Betts and Albrecht, 1987; Neggers et al., 2006), deep convective regions

(Emanuel, 1993; Raymond, 1995), or stratocumulus regimes (Kraus, 1963; Lilly, 1968;

Wood and Bretherton, 2004). Mixed layer models allow for quantifying the magni-

tude of different processes that control subcloud layer variability and attributing this

variability to changes in the environment.

The adequacy of this mixed layer description of the subcloud layer has, however,

only been assessed from relatively few measurements and large-eddy simulations often

performed for idealized conditions over small (and usually homogeneous) domains.

Past observational studies typically used approximately 100 dropsondes and fixed

certain parameters, such as the sea surface temperature and vertical thermodynamic

structure above the subcloud layer (Betts, 1976; Betts and Albrecht, 1987; Betts

and Ridgway, 1989). Other studies examining large-scale heat and moisture bud-

gets (Augstein et al., 1973; Yanai et al., 1973; Holland and Rasmusson, 1973; Nitta

and Esbensen, 1974) considered the layer up to the trade-wind inversion, therefore

focusing on different vertical transports than our budgets for the subcloud layer. Aug-
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menting subcloud layer thermodynamic analyses with passive remote sensing remains

challenging, in particular regarding the boundary layer height, entrainment flux, and

vertical motions (e.g., Kalmus et al., 2014). Indeed, tropical moisture variability is

poorly quantified by passive remote sensing, especially in the lowest three kilometers,

because observed moisture profile features are at scales much finer than the typi-

cal weighting functions of even hyperspectral instruments (e.g., Maddy and Barnet,

2008; Chazette et al., 2014; Stevens et al., 2017; Pincus et al., 2017). Output from

large-eddy simulations could, conceivably, be used to evaluate mixed layer theory, and

mixed layer models have been used to interpret large-eddy simulations (e.g., Neggers

et al., 2006; Bellon and Stevens, 2012, 2013; Schalkwijk et al., 2013). Indeed, the

apparent realism of large-eddy simulations can suggest a trustworthy representation

of nature, yet these simulations use idealized boundary conditions, employ a range of

domain sizes and resolutions, and rarely represent the diversity of mesoscale patterns

of convection observed in nature, all of which introduce uncertainty into the resultant

thermodynamic fields (e.g., Bony et al., 2017). The limitations of both passive re-

mote sensing and large-eddy simulation output render in situ observations especially

important for testing mixed layer theory as a description of the trade-wind subcloud

layer.

As part of the EUREC4A (Elucidating the role of clouds–circulation coupling in

climate) field campaign (Bony et al., 2017; Stevens et al., 2021), we collected the

necessary data to investigate the structure and variability of the trade-wind subcloud

layer. These data allow us to test whether mixed layer theory is a reasonable and use-

ful theoretical framework for studying the trade-wind subcloud layer. After verifying

that the assumptions of mixed layer theory are reasonable relative to observational

constraints, we test whether this simple framework is useful for diagnosing the bal-

ance of physical processes controlling subcloud layer thermodynamic variability and

its large-scale environmental controls. A primary motivation for the EUREC4A cam-

paign was to make the first process-based constraint on the trade cumulus feedback,

which is undertaken in Vogel et al., in review. The process-based approach in Vogel

et al., in review makes use of the mixed layer framework, albeit for the subcloud layer
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mass budget. Another motivation for the present paper is therefore to evaluate the

adequacy of the mixed layer framework for subcloud layer moisture and heat, in order

to assess whether it can be applied to the subcloud layer mass budget and thus the

evaluation of trade cumulus feedbacks.

To this end, Section 5.3 presents the EUREC4A observations, and Section 4.4 de-

fines subcloud layer variability in terms of five parameters — its height, as well as its

means and gradients in specific humidity and potential temperature – and quantifies

how each parameter contributes to variability across measurement periods separated

by hours to weeks. Section 4.5 introduces the mixed layer theory framework and a

Bayesian methodology that is used to jointly constrain uncertain parameters related

to entrainment. Section 4.6 then evaluates whether this simple theoretical frame-

work, applied to in situ observations, can explain observed synoptic variability and

the monthly campaign-mean for moisture and heat. Section 4.7 examines the rela-

tionships among subcloud layer properties and large-scale meteorological conditions,

and Sec. 4.8 presents discussion and conclusions.

4.3 EUREC4A field campaign data

EUREC4A field study measurements were made in January and February 2020 in the

North Atlantic trade-wind regions, east of Barbados, to study the couplings among

clouds, circulations, and their large-scale environment. In both models and obser-

vations, clouds and the large-scale environment around Barbados were found to be

representative of the Atlantic and Pacific trades (Medeiros and Nuijens, 2016; Rasp

et al., 2020), suggesting that many inferences from EUREC4A observations are in-

formative of trade-wind regions globally. EUREC4A sets itself apart from previous

field campaign that are, for instance, reviewed by Garstang et al. (2019), through the

intense and unbiased sampling; the use of novel observing strategies combined with

improved and novel instrumentation; and the coincidence of satellite measurements

with very high spatial resolution and temporal sampling (Bony et al., 2017; Stevens

et al., 2021).
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Figure 4-1 shows the geographic distribution of the measurements used in this

study. Our core data are 810 dropsondes from the German High Altitude and Long

Range Research Aircraft (HALO) launched between January 22, 2020 and February

15, 2020 (George et al., 2021; Konow et al., 2021). These dropsondes yield vertical

profiles of pressure, temperature, and relative humidity with a manufacturer-stated

accuracy of 0.4 hPa, 0.1∘C, and 2%, respectively (Vaisala, 2022). We employ level-

3 and level-4 dropsonde data, which have been processed and interpolated into a

common altitude grid with 10 m vertical resolution (George et al., 2021). We note that

George et al. (2021) identify a dry bias in the HALO dropsondes, which they correct

with a multiplicative factor of 1.06 applied to relative humidity and all associated

moisture quantities from these sondes. We use these corrected data.

One unique aspect of EUREC4A is the sampling strategy that provides aggre-

gated, statistical estimates of a larger-scale signal, compared to individual point-wise

measurements. During EUREC4A, dropsonde measurements were distributed along a

fixed flight pattern, the ‘EUREC4A circle’ — the EUREC4A circle is a circular flight

pattern with an approximately 220-kilometer diameter, centered at 13.3∘N, 57.7∘W,

at 9.5 km altitude (Fig 4-1). The spatial scale of the EUREC4A circle characterizes

the large-scale environment and corresponds to the size of a typical general circu-

lation model gridbox, or what Orlanski (1975) called the meso-𝛽 scale (20–200km).

Given that measurements did not target specific meteorological conditions (e.g., no

‘cloud-chasing’), they provide unbiased sampling of the large-scale environment.

Following Stevens et al. (2021), one circle-mean refers to the mean of typically 12

dropsondes launched over one hour along the EUREC4A circle (due to operator and

instrument errors, on some circles fewer sondes were launched, but never fewer than

seven). A dropsonde is launched for every 30 degree change in heading. Typically

each flight incorporated two – temporally well separated – periods of ‘circling’. A

circling-mean is defined as the mean of three consecutive circle-means (or in two

cases, two circle-means), corresponding to 30–36 consecutive soundings aggregated

over 210 minutes. Variability on the circling-mean scale captures how the large-

scale environment varies across about 3.5-hourly periods, and we refer to variability
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Figure 4-1: Data employed in this study include dropsondes launched in the
EUREC4A circle (white; 810 HALO dropsonde soundings), subcloud layer thermo-
dynamic measurements from the ATR-42 aircraft (red tracks), and sea surface tem-
perature and surface flux measurements from the R/V Meteor (navy tracks). We also
use data from the Barbados Cloud Observatory (green) and subcloud layer thermody-
namic measurements from the remotely-piloted aircraft CU-RAAVEN (orange). For
illustrative purposes, background sea surface temperatures are ERA5 data at 0.25∘
resolution, averaged over January and February 2020.

measured on the circling-mean scale as synoptic variability. The campaign-mean

refers to the mean of 810 dropsondes launched from the HALO aircraft between

January 22, 2020 and February 15, 2020, or approximately a monthly-mean. In total,

the dropsonde data are aggregated to 69 circle-means, 24 circling-means, and one

campaign-mean.

The French ATR-42 aircraft made thermodynamic measurements during 18 flights

from January 26 to February 13, 2020. The ATR-42 flew coincident rectangular

patterns inside the EUREC4A circle (see Fig. 4-1), therefore also providing unbiased

measurements of the large-scale environment. Its thermodynamic measurements show

good agreement with the HALO dropsonde measurements (Bony et al., 2022). We

also make use of smaller-scale thermodynamic measurements between January 24 to
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February 15, 2020 below one kilometer from a remotely-piloted aircraft CU-RAAVEN

(de Boer et al., 2022). Sea surface temperatures are from the R/V Meteor, with

these values extrapolated from the R/V Meteor location to the respective dropsonde

location based on fixed zonal and meridional sea surface temperature gradients of

−0.14 K degree−1 of latitude or longitude (Vogel et al., in review). These gradients

are estimated from two satellite products (GOES-16 ABI and CLS) and ECMWF

Reanalysis of Meteorological data (ERA5, Hersbach et al., 2020), which agree well

over the same spatiotemporal domain. To a lesser extent and solely for purposes of

comparison with our observations, we use ERA5 data at 0.25∘ spatial and hourly

temporal resolution for January and February 2020, for surface sensible and latent

heat fluxes and vertical profiles of specific humidity and potential temperature.

4.4 Describing the subcloud layer structure and its

variability

To conceptualize the subcloud layer we first consider a representation in terms of

five scalar variables: height or depth (ℎ), mean potential temperature (𝜃), mean

specific humidity (𝑞), as well as vertical gradients in potential temperature (𝜕𝜃/𝜕𝑧)

and specific humidity (𝜕𝑞/𝜕𝑧). We hypothesize that knowing these five variables is

sufficient to characterize the subcloud layer and how it varies thermodynamically.

4.4.1 Defining the subcloud layer height

We first ask to what extent the subcloud layer height, ℎ, can be defined from observed

thermodynamic profiles. Despite its role as a key vertical length scale, there is no

consensus on how to define this height (e.g., Seibert et al., 2000). Different methods

applied to a single data set have been shown to yield a wide range of heights (e.g.,

Liu and Liang, 2010; Beyrich and Leps, 2012; Dai et al., 2014), leading to ambiguity

in the fundamental question of the depth of the trade-wind subcloud layer.

To estimate ℎ, we use three subcloud height methods, as described here and in
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greater detail in Appendix A. Results are summarized in Table 4.1. The first method

estimates the depth over which there is no vertical gradient in a conserved variable

within a threshold following Canut et al. (2012). This ‘gradient method’ selects the

height where a thermodynamic variable exceeds its mean, averaged over the levels

below, by a certain threshold 𝜖 – that is, that height at which the variable is no

longer well-mixed vertically. For instance, for specific humidity, the depth is chosen

where |𝑞(𝑧) − 𝑞𝜌| ≤ 𝜖𝑞, where 𝑞𝜌 = 1
𝑧

∫︀ 𝑧

100
𝑞(𝑧)𝑑𝑧 is updated at each vertical level

and computed as the density-weighted mean from 100 m to a depth 𝑧. We apply

this method to 𝑞, 𝜃, and virtual potential temperature, 𝜃𝑣, a proxy for buoyancy.

Empirically, we choose a threshold, 𝜖, that is one-third of small-scale variability,

estimated as within-day variability from 50–550 m depth. These threshold values for

𝑞, 𝜃, and 𝜃𝑣 are 0.35 gkg−1, 0.15 K, and 0.20 K, respectively. The second method,

following Holzworth (1964), estimates the level at which a hypothetical rising parcel

of near-surface air, representing a thermal, reaches its level of neutral buoyancy, based

on a cloud-layer 𝜃𝑣 profile, without any overshoot. The third definition finds the peak

in the relative humidity profile, given that relative humidity is expected to maximize

at the subcloud layer top if specific humidity is constant and temperature decreases

with height.

From this analysis, a conceptual picture emerges of two distinct vertical layers.

The first layer is a well-mixed layer in 𝑞 and 𝜃 (Fig. 4-2, Fig. 4-9), which also corre-

sponds to the distribution of relative humidity maxima. Averaging these three height

methods gives a mean depth of 555 m (Fig. 4-2a,c). A layer that is well-mixed ver-

tically in 𝑞 and 𝜃 has previously been called the mixed layer (e.g., Malkus, 1958;

Augstein et al., 1974), and we adopt this same terminology. The buoyancy variable,

𝜃𝑣, however, remains better-mixed over a deeper layer, to a mean depth of 708 m av-

eraged between the 𝜃𝑣-gradient and parcel methods. Such a layer that is better-mixed

deeper in 𝜃𝑣 than 𝑞 and 𝜃 individually was observed previously (e.g., Malkus, 1958;

Augstein et al., 1974; Nicholls and Lemone, 1980; Yin and Albrecht, 2000). This

depth also coincides with the mean lifting condensation level (LCL) of 708 m. Each

LCL value is the mean of LCL values calculated for air masses from 50–300 m. Note
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that the LCL is calculated from circle- or circling-mean air, which averages subcloud

layer air from areas that are in regions of clear skies and in regions where clouds form

above. If the LCL is, however, calculated from individual dropsonde soundings, the

distribution shifts lower, with the moistest parcels having LCL values that align with

the mixed layer top (not shown). Historically, the layer that is better-mixed in 𝜃𝑣 and

corresponds to the environmental-mean cloud base or LCL level is often called the

subcloud layer (e.g., Malkus, 1958; Augstein et al., 1974; Nicholls and Lemone, 1980;

Yin and Albrecht, 2000). Although this naming can be confusing, because clouds

already start to form below the subcloud layer top, we retain this terminology. This

height analysis suggests that there is some ambiguity in the determination of the

boundary layer depth.

We associate this ambiguous region between the mixed layer top and subcloud

layer top with the transition layer (Malkus, 1958). Such a layer is often found in

observations (Augstein et al., 1974; Yin and Albrecht, 2000), is used in simple theo-

retical modeling approaches (e.g., Albrecht et al., 1979), and emerges in simulations

(Stevens et al., 2001), yet the processes that give rise to its structure remain little in-

vestigated. Here defined as the difference between the subcloud layer top (𝜃𝑣-gradient

method) and mixed layer top (𝑞-gradient method), the transition layer has thickness

151±77 m in circle-mean data and 152±50 m in circling-mean data. The mixed layer

top and subcloud layer top heights, moreover, vary coherently, with a Pearson cor-

relation coefficient of r=0.86. Over this interfacial transition layer, 𝑞 and 𝜃 begin to

exhibit vertical gradients, albeit in ways that have compensating effects on buoyancy,

so that 𝜃𝑣 gradients are less pronounced (e.g., Nicholls and Lemone, 1980; Betts and

Albrecht, 1987; Yin and Albrecht, 2000), as illustrated schematically in Fig. 4-2b).

The differing vertical structures of the mixed layer and transition layer suggests that

they may be controlled by different physical processes, which is the subject of a future

study (Albright et al., 2022, being prepared for publication).

In simple modeling studies, an interpretation arose that the transition layer could

be modeled as an infinitely-thin layer with ‘jumps’, or abrupt discontinuities, in anal-

ogy with the cloud-free convective boundary layer (e.g., Lilly, 1968; Tennekes, 1973;
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Figure 4-2: (a) Probability distributions from different methods employed to estimate
the mixed and subcloud layer heights. We find that three methods based on specific
humidity, 𝑞, or potential temperature, 𝜃, and relative humidity (blue curves) corre-
spond to the mixed layer top. Two methods using virtual potential temperature, 𝜃𝑣
(the 𝜃𝑣-gradient method and parcel method, orange profiles) instead correspond to a
deeper layer, called the subcloud layer, given its correspondence with the lifting con-
densation level calculated from environmental-mean air (black). For the mixed layer
and subcloud layer top distributions, the thicker line is the mean of distributions
calculated using individual height methods. (b) A schematic showing how vertical
gradients in 𝑞 and 𝜃 compensate to weaken the vertical gradient in 𝜃𝑣. (c) 69 circle-
mean profiles for 𝑞, 𝜃, and 𝜃𝑣. The black line is the campaign-mean across all profiles,
and colored profiles correspond to time (dark to lighter blue over time). Dotted lines
mark the mixed layer height and subcloud layer height. The difference between the
subcloud layer top and mixed layer top heights indicates the transition layer. (d) Two
individual dropsonde profiles: one from January 31, 2020 at 16:06 UTC exhibiting a
rare ‘jump-like’ structure (black) and another from January 31, 2020 at 16:18 UTC
exhibiting a more typical structure with smoother vertical gradient at the subcloud
layer top (grey).
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Arakawa and Schubert, 1974; Albrecht et al., 1979; Stevens, 2006). EUREC4A mea-

surements do not, however, show the subcloud layer to be a layer defined by a sharp

jump or discontinuity at its top, either in aggregated soundings (Fig. 4-2c) or most

individual soundings (see one example in Fig. 4-2d). Rarely, in about ten percent of

cases, a profile with a sharp jump occurs, such as shown in Fig. 4-2d. The presence of

such sharp discontinuities, if rare, does, however, show that smoother profiles are not

an artifact of potentially slow dropsonde moisture sensor time responses, and they

are instead a physical feature of the atmosphere. The ability of the sondes to mea-

sure such sharp profiles is consistent with the manufacturer-stated sensitivities for

the Vaisala dropsonde RD41, which have a temperature response time of 0.5 seconds

and moisture response time of less than 0.3 seconds at 1000 hPa, 20∘C, and the fall

speed of the sonde (roughly 6.5 ms−1) (Vaisala, 2022). Indeed, Vömel et al. (2021)

show that the new sensors, such as in EUREC4A’s RD41 dropsondes, have rapid time

constants and do not require time-lag corrections at the warmer temperatures in the

lowest kilometers of the atmosphere. A comparison of dropsonde moisture profiles

with higher-frequency (1 Hz) moisture measurements from the ATR-42 (not shown)

further supports this inference that smooth vertical gradients are not an artifact of

slow sensor response times.

The presence of a finite-thickness transition layer introduces ambiguity in the

application of the mixed layer theory, whose entrainment closures are based upon

a canonical jump-like structure at the subcloud layer top. We address this uncer-

tainty through the introduction of effective parameters estimated through a Bayesian

approach, as described in Sec. 4.5.3.

4.4.2 Evidence that vertical thermodynamic gradients are small

Another key assumption in mixed layer theory is that subcloud layer thermodynamic

variables can be represented by a single vertically well-mixed value. To test this

assumption, we compare the magnitude of vertical gradients relative to variability

about vertically-averaged mean values across soundings. We do this in two steps. We

first calculate the root mean square error (RMSE) from assuming a vertical, perfectly
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well-mixed profile relative to the observed profile up to the mixed layer top. Second,

this RMSE is compared with the standard deviation, 𝜎, calculated for all mixed-layer

mean values over the campaign (from circle-mean data), as the fractional difference[︀
𝜎−𝑅𝑀𝑆𝐸

𝜎

]︀
×100. A perfectly well-mixed layer would have values of 100%, and values

near 100% indicate that the vertical variability about the mean for a particular sonde

is much smaller than the variability among sondes. For 𝑞, the fractional difference is

83±3.2% across circle-mean data, with the values denoting the mean and standard

deviation. Similarly, the fractional difference for potential temperature is 76±6.0%,

with the smaller value for potential temperature resulting from its smaller variability

about the mean value. Fig. 4-9 also illustrates that what we call the mixed layer

is indeed well-mixed vertically – with notable exceptions on January 24, 2020 (pan-

els c.,d.), and February 7, 2020 (panels o.,p.), identified as having many cold pools

(Touzé-Peiffer et al., 2022), which are expected to cause deviations away from a well-

mixed profile. On this basis, we infer that vertical gradients are small and provide

initial justification for their omission from the mixed layer description. A posteriori

support for this conclusion is provided by additional analysis in Sec. 4.6.

Beyond the magnitude of vertical gradients, another question is the extent to

which variability in vertical gradients encodes differences in variability among sub-

cloud layers. We find that rank correlations (Kendall and Spearman) and Pearson

correlations of 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 with ℎ, 𝜃, and 𝑞 are below 0.3, suggesting that the

strength of vertical gradients does not strongly differentiate subcloud layers.

4.4.3 Moisture variability is the primary mode of subcloud

layer thermodynamic variability

We find that the subcloud layer varies thermodynamically primarily through variabil-

ity in 𝑞, and this moisture variability controls nearly all variability in subcloud layer

moist static energy (MSE), with a correlation coefficient r= 0.99 between 𝑞 and mean

subcloud layer MSE. MSE is defined as 𝑐𝑝𝑇 + ℓv𝑞+ 𝑔𝑧 where 𝑐𝑝 is the specific heat at

constant pressure, 𝑇 is the absolute pressure in Kelvin, ℓv is the specific enthalpy of
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vaporization, 𝑞 is the water vapor specific humidity, 𝑔 is the gravitational constant,

and 𝑧 is height above the surface. The height of the subcloud layer is defined us-

ing the 𝜃𝑣-gradient method, and subcloud layer means, 𝑞 and 𝜃, are defined as the

density-weighted means from 50 m to this height.

One way to compare variability in 𝑞 and 𝜃 is by diagnosing their contribution to

variability in vertical length-scales. In the circle-mean aggregated data, anomalies

in 𝑞 relative to the campaign-mean have a Pearson correlation coefficient r=−0.71

with ℎ anomalies and r=−0.97 with anomalies in the LCL, showing that variability

in different vertical heights is strongly associated with 𝑞 variability. Anomalies in

𝜃, by contrast, have a Pearson correlation coefficient of only −0.5 with anomalies

in the LCL and −0.24 with ℎ anomalies. Warmer temperatures are also associated

with increased humidity, which would lower the LCL, so the weak anticorrelation with

potential temperature variability could reflect the compensating effects of temperature

and humidity on the LCL.

Continuous ERA5 data, which are found to vary coherently with observations

despite a dry bias in moisture (see Fig. 4-3a and Bock et al. (2021)), allow for es-

timating other modes of thermodynamic variability. ERA5 assimilated EUREC4A

dropsonde and radiosondes, although ongoing analysis of winds shows that the as-

similation of local soundings did not strongly influence the reanalysis (Geet George,

personal communication). From these continuous ERA5 data, we find the 𝑞 signal,

averaged for the same about 220 km-diameter circular domain as the observations

(Fig. 4-1), decorrelates after approximately two days, with an autocorrelation coeffi-

cient that decreases from 0.98 after one hour to 0.19 after 48 hours (Fig. 4-3d). That

moisture is mostly decorrelated after two days aligns well with the mean gap of two

days between EUREC4A flights, indicating that the research flights sample indepen-

dent realizations of synoptic moisture variability. The 10 m wind speed is highly

autocorrelated, with an autocorrelation coefficient of 0.74 after two days and 0.48 af-

ter 8 days (Fig. 4-3d). The wind speed signal decorrelates after ten days with r=0.04,

demonstrating the dominance of lower-frequency surface wind speed variability.

Another way of analyzing thermodynamic variability is performing fast Fourier
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a. b.

c. d.

Figure 4-3: Evolution of (a.) subcloud layer mean specific humidity, 𝑞, (b.) 10 m wind
speed, and (c.) subcloud layer mean potential temperature, 𝜃 for circle-mean data
(lighter circle) and circling-mean data (darker circle), compared with hourly ERA5
data (light grey). Note that ERA5 moisture displays a dry bias (Bock et al., 2021),
and here ERA5 specific humidity is multiplied by a factor 1.1. Panel d. shows the
autocorrelation coefficients at various time lags calculated from hourly ERA5 data
for 𝑞 and 𝜃, interpolated to the same heights as the in situ data, and the 10 m wind
speed.
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transformations. The fast Fourier transformation of 𝜃 has a strong peak in the power

spectral density at a 24-hour frequency, whereas a diurnal signal is not seen in 𝑞 (not

shown). Variability in 𝜃 is smaller in magnitude (Fig. 4-3c) and appears to be largely

diurnal, potentially driven by variability in shortwave radiative heating (Albright

et al., 2021a).

4.5 Mixed layer theory for subcloud layer moisture

and heat

We first introduce the mixed layer theory framework (Sec. 4.5.1). An important as-

sumption in this theory is that the subcloud layer is well-mixed, which was shown

to be the case, at least below the transition layer base (Sec. 4.4.2). The existence

of a finite-depth transition layer and its vertical gradients, however, introduces chal-

lenges into the application of mixed layer theory, particularly its assumption that the

interface between the subcloud layer and cloud layer is vanishingly thin (e.g., Lilly,

1968; Stevens, 2006). EUREC4A observations allow us to test the adequacy of this

interpretive framework despite the presence of the finite-thickness transition layer.

4.5.1 Theory and closure assumptions

For a subcloud layer scalar, 𝜗, after performing a Reynolds decomposition on the

conservation equation (D𝜗
D𝑡

= 𝑄𝜗, where 𝑄𝜗 is a diabatic source term) and integrating

over the depth of the layer, the mixed layer budget of 𝜗 can be written as,

ℎ𝑆𝜗 = 𝑤′𝜗′
⃒⃒
0
− 𝑤′𝜗′

⃒⃒
1
. (4.1)

We neglect the horizontal gradients in 𝑤′𝜗′, which are small compared to the vertical

gradients. 𝑆𝜗 includes the contribution of the mean flow to the material derivative,

as well as the diabatic source term, 𝑄𝜗. This diabatic source term 𝑄𝜗 can include

radiation or precipitation and evaporation effects, but we set 𝑄𝑞 = 0 for moisture,

neglecting the influence of evaporating precipitation on the subcloud layer moisture
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units mean 1 s.d.
h(ML) m 555 79.0
h(SC) m 708 83.6
h(LCL) m 694 105
Δ h(TL) m 152 50
𝑞𝑠 gkg−1 22.59 0.189
𝑞ML gkg−1 15.3 0.886
𝑞SC gkg−1 15.1 0.883
SST K 300.0 0.169
𝜃𝑠 K 299.2 0.260
𝜃ML K 298.3 0.235
𝜃SC K 298.4 0.253
𝑈 m s−1 8.46 2.19
𝜕𝑞/𝜕𝑧 (ML) gkg−1km−1 -1.06 0.293
𝜕𝑞/𝜕𝑧 (TL) gkg−1km−1 -6.69 2.11
𝜕𝜃/𝜕𝑧 (ML) K km−1 0.424 0.291
𝜕𝜃/𝜕𝑧 (TL) K km−1 2.49 0.644
𝜕𝜃𝑣/𝜕𝑧 (ML) K km−1 0.233 0.247
𝜕𝜃𝑣/𝜕𝑧 (TL) K km−1 1.30 0.324

Table 4.1: Campaign-mean and standard deviation of different terms as calculated
from the 24 circling-mean data (three-hourly timescale) located in the ‘EUREC4A
circle’. Various heights are given: h(ML) is the mixed layer top height, h(SC) is the
subcloud layer top height, h(LCL) is the lifting condensation level, and ∆ h(TL) is
the thickness of the transition layer, defined as the difference between the subcloud
layer and mixed layer tops. The subscript ‘s’ refers to the surface, and ‘ML’ and
‘SC’ refer to the mixed layer and subcloud layer. The sea surface temperature (SST)
values include the cool-skin approximation adjustment – that is, they include the 0.25
K subtracted from R/V Meteor SSTs. 𝑈 refers to the wind speed at 10 m. Vertical
gradients are expressed per kilometer.
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budget, but we do account for radiation in the heat budget (𝑄𝜃 ̸= 0). The equation

expresses that the vertical divergence of the turbulent flux balances the sum of the

non-turbulent processes, denoted by 𝑆𝜗 (e.g., Betts, 1976; Stevens, 2006). The thick-

ness of the layer is ℎ. The subscript 0 denotes values at the lower interface of the bulk

layer (ocean-to-subcloud layer interface), and the subscript 1 denotes values at the

upper interface (the subcloud-to-cloud layer interface), and 𝑤 refers to the vertical

velocity.

The flux at an interface, 𝑖, is given as the product of the velocity relative to the

mean flow and a ‘jump’,

𝑤′𝜗′
⃒⃒
𝑖
= −𝑉𝑖∆𝑖𝜗, (4.2)

where ∆𝑖𝜗 defines the change in 𝜗 across the interface, from top to bottom, so that

∆1𝜗 = 𝜗1 − 𝜗 and ∆0𝜗 = 𝜗− 𝜗0.

With this notation, we can rewrite Eq. (4.1) as,

ℎ𝑆𝜗 = −𝑉0∆0𝜗+ 𝑉1∆1𝜗. (4.3)

The first term on the right-hand side, 𝑉0∆0𝜗, defines a surface flux wherein the surface

exchange velocity, 𝑉0, denotes the product of the 10 m horizontal wind speed, 𝑈

(wherein easterly is defined as negative), and a dimensionless parameter, C𝑑, following

surface layer similarity theory (e.g., Stevens, 2006). Note that −𝑉0∆0𝜗 is positive

when surface values are larger than subcloud layer values, which is almost always the

case for potential temperature and specific humidity. The dimensionless parameter,

C𝑑, depends on the surface roughness, the structure of the surface layer, and the

stability of this layer but is generally taken to be constant and equal to 0.0011 (e.g.,

Deardorff, 1972; Fairall et al., 2003). In this analysis, we set C𝑑 = 0.0010. Our smaller

value compensates for the larger difference between the surface and subcloud layer

values, compared to the typical difference taken between the surface and 20 m value

(e.g., Fairall et al., 2003).
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Entrainment closure

𝑉1 in Eq. (4.3) represents the diabatic growth of the subcloud layer into the overlying

fluid and is taken to equal the entrainment rate, 𝐸 (e.g., Stevens, 2006). The funda-

mental processes controlling entrainment remain poorly understood and represented

(e.g., Fedorovich et al., 2004; Canut et al., 2012). The most basic approach, proposed

by Lilly (1968), is to represent the turbulent entrainment flux at the subcloud layer

top as a fixed fraction of the surface turbulent flux,

𝐸 = −𝐴𝑉0∆0𝜃𝑣
∆1𝜃𝑣

. (4.4)

This closure is known as the ‘zero-order jump model’ for 𝐸, as the jump occurs over

a transition layer of zero thickness. A zero-order jump model is made in analogy

with the sharp discontinuity seen in stratocumulus mixed layers (e.g., Lilly, 1968;

Deardorff, 1972) and dry convective boundary layers (e.g., Tennekes, 1973; Stull,

1976).

The constant 𝐴 defines the entrainment ‘efficiency’ and varies between 0 and 1.

The end member of 𝐴 = 0 refers to total frictional dissipation of the surface buoyancy

flux and no entrainment at the layer-top, whereas 𝐴 = 1 refers to zero frictional dis-

sipation, and the entire surface buoyancy flux being available for entrainment (Lilly,

1968). The jump, ∆1𝜃𝑣, is positive and models the resistance that entrainment feels

when tasked with mixing a relatively more buoyant fluid into the turbulent layer.

As discussed in Sec. 4.4.1, the subcloud layer is not, except in rare cases, char-

acterized by such a zero-order jump structure and instead exhibits vertical gradients

over a finite depth. Such vertical gradients over a finite thickness are consistent with

finite-thickness entrainment zones seen in large-eddy simulations, in what is often

called a first-order jump model (e.g., Vanzanten et al., 1999; Canut et al., 2012). The

zero- and first-order jump models are contrasted schematically in Fig. 4-4.

We attempt to accommodate the ambiguity from the transition layer by introduc-

ing coefficients, 𝐶𝑞 and 𝐶𝜃, which scale jumps at the top of the layer and compensate

for possible errors in our choice of the subcloud layer height, ℎ, and uncertainty in the
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depth over which the jumps are computed. The scaling coefficient approach is similar

to the linear mixing-line model that represents cloud layer air mixing into the mixed

layer (Betts and Ridgway, 1989). Whereas our formulation is similar to the ‘transfer

coefficient’ approach in Neggers et al. (2006) and Zheng (2019), these studies take

differences between values in the free troposphere and the subcloud layer, whereas

we consider values across the transition layer. The jumps ∆1𝑞, ∆1𝜃, and ∆1𝜃𝑣 are

formulated as,

∆1𝑞 = 𝐶q(𝑞ℎ+ − 𝑞|h−) (4.5)

∆1𝜃 = 𝐶𝜃(𝜃ℎ+ − 𝜃|h−) (4.6)

∆1𝜃𝑣 = ∆1𝜃 + 0.61(𝜃∆1𝑞 + 𝑞∆1𝜃) (4.7)

The subscript ℎ+ refers to the value of 𝑞 or 𝜃 above ℎ, computed as the average from ℎ

to ℎ + 100 m. 𝑞|ℎ− or 𝜃|ℎ− are averages from 50 m to the mixed layer top defined from

the linearized relative humidity method (see Appendix A), though it is insensitive to

defining the mixed layer top using other methods. The choice of averaging up to the

mixed layer top, rather than up to ℎ, to calculate these jumps is motivated by the

desire to exclude transition layer air in the average. Due to sub-circling variability in

ℎ, excluding transition layer air can best be achieved by a conservative (and therefore

lower-altitude) choice of averaging height. The choice of averaging from ℎ + 100 m

is to reduce small-scale variability associated with values at a single altitude. The

ultimate magnitude of the entrainment fluxes or residuals in the budgets are not

affected by selecting values at ℎ, or averaging up to 50 m, 100 m, or 150 m above ℎ,

though it does influence the relative magnitudes of the entrainment rate, 𝐸, compared

to the jumps. Ultimately the budget analysis depends on the product of 𝐸 times the

jump, and so defining the jump over a larger layer increases the jump and decreases

𝐸.
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Figure 4-4: Schematic of subcloud layer budgets, as described in Eq. (4.8) and
Eq. (4.9). Descriptions of the surface fluxes (𝑉0∆0𝜗), entrainment fluxes (𝐸∆1𝜗),
material derivatives (𝐷𝜗

𝑑𝑡
), and clear-sky radiative heating term (Q𝑟) are given in

Sec. 4b and Sec. 4c. The height ℎ refers to the depth of the subcloud layer, which
includes both a well-mixed layer and a transition layer. Also shown are idealized
profiles of specific humidity, 𝑞, and potential temperature, 𝜃 in keeping with the zero-
order jump model (dotted lines) and the first-order model, similar to what is done in
this study (solid lines).

Budget equations for subcloud layer moisture and heat balances

Combining these assumptions, the budget for Eq. (4.1) for specific humidity, 𝑞, is,

ℎ

[︂
𝜕𝑞

𝜕𝑡
+ (�⃗� · ∇𝑞)

]︂
= −𝐶𝑑𝑈∆0𝑞 −

𝐴𝑒𝑉0∆0𝜃𝑣
∆1𝜃𝑣

∆1𝑞. (4.8)

The 𝑞 balance is between a surface latent heat flux, −𝐶𝑑𝑈∆0𝑞, which moistens the

layer from a saturated ocean surface moisture source, 𝑞𝑠, wherein ∆0𝑞 = 𝑞−𝑞𝑠 < 0; an

entrainment flux, −𝐴𝑒𝑉0Δ0𝜃𝑣
Δ1𝜃𝑣

∆1𝑞, which imports drier cloud layer air into the subcloud

layer, wherein 𝐸 is defined in Eq. (4.4) and ∆1𝑞 < 0; and large-scale horizontal

advection, �⃗� · ∇𝑞 and a time-derivative, 𝜕𝑞
𝜕𝑡

, both of which can either moisten or dry

the subcloud layer. We neglect phase changes, such as associated with evaporating

precipitation within the subcloud layer.

For subcloud layer mean potential temperature, 𝜃, the budget equation is,

ℎ

[︂
𝜕𝜃

𝜕𝑡
+ (�⃗� · ∇𝜃)

]︂
= −𝐶𝑑𝑈∆0𝜃 −

𝐴𝑒𝑉0∆0𝜃𝑣
∆1𝜃𝑣

∆1𝜃 + ℎ𝑄r. (4.9)
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Eq. (4.9) includes a surface sensible heat flux, −𝐶𝑑𝑈∆0𝜃, which warms the subcloud

layer given ∆0𝜃 = 𝜃−𝜃𝑠 < 0; an entrainment flux −𝐴𝑒𝑉0Δ0𝜃𝑣
Δ1𝜃𝑣

∆1𝜃, which brings warmer

cloud layer air into the subcloud layer; large-scale horizontal advection �⃗� · ∇𝜃, which

could either warm or cool the layer; a time-derivative 𝜕𝜃
𝜕𝑡

, which is predominantly

associated with the diurnal cycle; and a clear-sky radiative heating term 𝑄r, another

cooling term. We again neglect phase changes, such as evaporating precipitation. This

heat balance is more difficult to constrain, both because it involves more terms and

because the magnitude of individual terms is smaller. Also note that these kinematic

fluxes can be converted to dynamic fluxes by multiplying by the air density, 𝜌, and

ℓv for specific humidity, and air density and 𝑐𝑝 for potential temperature.

The processes in the 𝑞 budget (Eq. (4.8)) and 𝜃 budget (Eq. (4.9)) are illustrated

schematically in Fig. 4-4.

4.5.2 Observational estimates of terms in mixed layer theory

budgets

Here we describe how the different terms in Eq. (4.8) and Eq. (4.9) are calculated

from observations, except for entrainment, which is the focus of Sec. 4.5.3. Clear-

sky, aerosol-free radiative heating profiles for EUREC4A dropsondes and radiosonde

profiles are calculated in Albright et al. (2021a). Large-scale horizontal moisture

advection, �⃗� · ∇𝑞, and potential temperature advection, �⃗� · ∇𝜃, are calculated in

George et al. (2021) using the regression method from Bony and Stevens (2019).

We estimate the time derivatives or storage terms, 𝜕𝑞
𝜕𝑡

and 𝜕𝜃
𝜕𝑡

, as the ordinary least

squares regression slope of the three circle-means per circling-mean. Estimating this

derivative as the regression slope for the approximately 30–36 individual soundings

per circling yields similar results (r=0.82), yet these soundings are more affected by

small-scale variability than are circle-means. For uncertainty estimates, we calculate

the standard error of the three circle-mean data per circling-mean for all terms in

Eq. (4.8) and Eq. (4.9), except for uncertainty on the time-derivative, which we take

to be the standard error on the regression slope.
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units mean 1 s.d.

𝐹q bulk, dropsondes Wm−2 166 56
𝐹q bulk, Meteor Wm−2 165 48
𝐹q COARE, dropsondes Wm−2 162 45
𝐹q ERA5 Wm−2 178 49
𝐹𝜃 bulk, dropsondes Wm−2 6.3 2.7
𝐹𝜃 bulk, Meteor Wm−2 6.5 3.8
𝐹𝜃 COARE, dropsondes Wm−2 6.0 6.1
𝐹𝜃 ERA5 Wm−2 10 4.5
E mm s−1 20.4 7.9
𝐴𝑒 - 0.43 0.056
𝐶𝑞 - 1.26 0.34
𝐶𝜃 - 1.15 0.31
Δ1𝑞 = 𝐶q(𝑞ℎ+ − 𝑞|h−) gkg−1 -2.32 0.597
Δ1𝜃 = 𝐶𝜃(𝜃ℎ+ − 𝜃|h−) K 0.782 0.115
Δ𝜃𝑣 K 0.359 0.0297
EΔ𝑞 Wm−2 -128 52.8
EΔ𝜃 Wm−2 18.0 6.47
�⃗� · ∇𝑞 gkg−1ms−1 1.59×10−5 2.12×10−5

�⃗� · ∇𝜃 K ms−1 8.51×10−3 8.46×10−3

𝑄rad,clr K d−1 −0.853 1.01

Table 4.2: Campaign-mean and standard deviation of different terms as calculated
from the 24 circling-mean data (about three-hourly timescale) averaged along the
‘EUREC4A circle’ for surface latent and sensible heat fluxes, entrainment fluxes, hor-
izontal advection terms, and net radiative heating. 𝐴𝑒, are from the Bayesian inver-
sion, and the effective jumps are calculated by from Eq. (4.5) and Eq. (4.6) using
the mean values of 𝐶𝑞 and 𝐶𝜃. For the surface flux terms, bulk refers to bulk theory
formulations, Meteor refers to measurements from the R/V Meteor instead of drop-
sondes, and COARE refers to the COARE algorithm. Horizontal advection and net
radiative heating are values averaged over the subcloud layer depth.
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Surface fluxes

Bulk estimates of surface fluxes are calculated as −𝐶𝑑𝑈∆0𝜗 (Eq. 4.14 and Eq. 4.15).

The difference ∆0𝜗 is taken between the mixed layer mean and surface value and is

negative, yielding positive surface fluxes. Estimates are 6.3±2.7 Wm−2 for the sensible

heat flux and 166± 54 Wm−2 for the latent heat flux, with the notation denoting the

mean and standard deviation. For the sensible heat fluxes, we subtract 0.25 K from

Meteor sea temperatures measured at few-meter depth to account for the ‘cool skin’

effect that sea surface temperatures at the surface are cooler than at few-meter depth

(e.g., Fairall et al., 2003). The bulk estimates of surface sensible and latent heat

fluxes agree well, both in terms of magnitude and variability, with three alternative,

but co-located estimates of these fluxes: bulk estimates from the R/V Meteor, fluxes

calculated with the COARE algorithm (Fairall et al., 2003) using HALO dropsonde

data, and ERA5 surface fluxes (Table 4.2). Pearson correlation coefficients of our

bulk sensible heat flux estimates are r=0.81, 0.82, and 0.72 with these three estimates,

respectively. For the latent heat fluxes, the correlations are r=0.84, 0.92, and 0.95,

respectively. These flux values are consistent with climatological values, for instance

as shown by Yu et al. (2004) and Bigorre and Plueddemann (2021) (about 160–170

Wm−2 for the latent heat flux and 6–8 Wm−2 for the sensible heat flux) with differences

being consistent with sampling errors associated with the observations being made

for slightly different locations or time periods.

The surface turbulent flux, 𝐹𝜃𝑣 , which is used to compute 𝐸, is defined as 𝐹𝜃𝑣 =

𝐹𝜃 +0.608𝜃𝐹𝑞, wherein 0.608 is a thermodynamic constant that relates the molecular

weight of water relative to that of dry air. 𝐹𝜃𝑣 relates to surface buoyancy flux by

a factor 𝑔

𝜃
, which then denotes the time rate of change of turbulent kinetic energy

production. 𝐹𝜃𝑣 fluxes estimated from mixed layer theory or bulk methods are 16±5.2

Wm−2, which agree well with the three other surface flux estimates in magnitude and

variability, with correlation coefficients around r=0.9.
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4.5.3 Bayesian inversion of uncertain terms in entrainment

fluxes

The most uncertain terms in Eq. (4.8) and Eq. (4.9) relate to the entrainment fluxes:

the effective entrainment efficiency, 𝐴𝑒, and the scaling parameters for the jumps, 𝐶q

and 𝐶𝜃. The entrainment exchange velocity, 𝐸 (Eq. (4.4)), and fluxes at the subcloud

layer top have long been challenging to measure observationally (e.g., Lenschow et al.,

1999; Kawa and Pearson Jr, 1989; Stevens et al., 2003b) or estimate from simulations

(e.g., Moeng et al., 1999; Bretherton et al., 1999; Vogel et al., 2020).

There are a lack of foregoing constraints on these jumps, and from the trade-wind

observations, there are ambiguities associated with how to define the jumps at the

upper interface (Fig. 4-2c). Given these uncertainties, we constrain the parameters,

Θ ={𝐴𝑒, 𝐶q, 𝐶𝜃}, using a Bayesian framework. This approach allows for estimating a

joint distribution of parameters, Θ, that are most likely to explain the observed data.

The values of 𝐶q, 𝐶𝜃, and 𝐴𝑒 should be physical, and synoptic variability should be

explained without having to vary these parameters.

The Bayesian approach is similar to other optimization techniques, yet it yields

joint posterior distributions and thus provides an estimate of uncertainty for the

constrained parameters. Following Bayes rules, we invert for the joint posterior dis-

tribution of Θ,

𝑃 (Θ | 𝑦obs) ∝ 𝑃 (𝑦obs | Θ)·𝑃 (Θ). (4.10)

Sampled sets of parameter values, Θ, are used with observed estimates of the other

terms to model subcloud layer moisture and temperature budgets, 𝑦obs, following

Eq. (4.8) and Eq. (4.9). We model the likelihood, 𝑃 (𝑦obs | Θ), such that the residuals

of the subcloud layer moisture and heat budgets are normally distributed around zero

with standard deviations 𝜎𝑞 and 𝜎𝜃, respectively. The likelihood 𝑃 (𝑦obs | Θ) is thus

formulated based on the multivariate Gaussian distribution of the modeled subcloud

layer moisture and temperature budgets,

𝑃 (𝑦obs | Θ) ∼ 𝑁(0,Σ2(Θ)). (4.11)
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Figure 4-5: Joint posterior distributions for the uncertain entrainment parameters
𝐴𝑒, 𝐶𝑞, and 𝐶𝜃, with lighter colors referring to more frequently sampled parameter
combinations. For the marginal posterior distributions (black), the marginal prior
distribution (grey), and mean of the posterior distribution (red) are also shown.
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Σ2(Θ) =

⎡⎢⎣𝜎2
𝑞 0

0 𝜎2
𝜃

⎤⎥⎦ . (4.12)

This likelihood expresses the probability of closing the moisture and heat budgets, or

jointly obtaining residuals normally-distributed around zero for both budgets given

parameters Θ. We set the off-diagonal terms to zero in Eq. (4.12), meaning that

there is no covariance between residuals in the moisture and heat budget. We assume

a standard deviation 𝜎𝑞 of 1×10−8 kgkg−1s−1, or 17 Wm−2 when converted from a

kinematic to dynamic flux. For potential temperature, the standard deviation 𝜎𝜃 is

chosen to be 3×10−6 Ks−1 or 2.5 Wm−2, though our results are insensitive to these

choices. The posterior distribution, 𝑃 (Θ | 𝑦obs), then represents the distribution of

parameter values that are most likely to close the budgets given observed variability.

For the prior distribution 𝑃 (Θ) on 𝐴𝑒, we choose a normal prior with mean of 0.2

and standard deviation 0.4, 𝒩 (0.2, 0.42). A common view of 𝐴𝑒 is the ratio of mini-

mum to maximum buoyancy fluxes, when assuming that the minimum buoyancy flux

occurs at the subcloud layer top, and that the transition from the negative, minimum

to zero buoyancy flux occurs over an infinitely thin layer. Its value is often taken to

be 0.2 (Lilly, 1968; Stull, 1976; Tennekes and Driedonks, 1981; Driedonks, 1982; Pino

et al., 2003), motivating our choice of normal prior with mean 0.2. Assuming that the

source of entrainment is surface buoyancy fluxes (rather than other processes, such

as radiative cooling, or evaporative cooling by clouds as in Stevens (2007)), a value

of 𝐴𝑒 greater than one is energetically inconsistent with our assumptions. Obtaining

a posterior distribution of 𝐴𝑒 that does not exceed one serves as a physical test of the

model. For the scaling parameters, we model the prior distributions for 𝐶q and 𝐶𝜃 as

a normal distribution with mean 1 and standard deviation of 0.5.

Sampling is performed using the Metropolis-Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970), and we run the model for 60,000 samples, four times (four

‘chains’), though results converge after 30,000 samples. The first 10,000 samples are

discarded for each chain, yielding 200,000 samples. Results are consistent among

chains, indicating that our model is adequately sampled.
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Bayesian inversion results

Notably, the entrainment efficiency, 𝐴𝑒, is well-constrained by the Bayesian inversion

and has a maximum likelihood estimate (MLE) posterior value of 0.43 and a 5–95%

credible interval of 0.34 − −0.53 (Fig. 4-5). Its marginal posterior distribution is

similar regardless of the prior distribution. 𝐴𝑒 being larger than 0.2 is consistent

with it being an effective parameter that reflects the existence of a finitely-thick

transition layer, as previously discussed. Using Sahelian convective boundary layer

observations, Canut et al. (2012) also found evidence for an entrainment efficiency

larger than 0.2 given a finite-thickness entrainment zone, though in their case wind

shear over the entrainment zone contributed to a larger value. Wind shear over the

transition layer is, however, small during EUREC4A (cf. Fig. 4-10). Whether or not

this value of 𝐴𝑒 is consistent with direct numerical simulation (Garcia and Mellado,

2014) and large-eddy simulation (Fedorovich et al., 2004) of the convective boundary

layer, which suggest values closer to 0.2, is unclear. A larger value of 𝐴𝑒, as in the

case of Vanzanten et al. (1999), may result from how we define the jumps and the

depth of the layer, whose values are greater than those in idealized LES (as discussed

by Fedorovich et al. (2004)). 𝐴𝑒 > 0.2 could also be indicative of cloud processes

within the transition layer contributing to the mixing (cf. Stevens (2007)), an idea

we are exploring further in a separate study.

The mean posterior value of 𝐶q is 1.26 with a 5-95% credible interval of 0.74–1.89.

The mean posterior value of 𝐶𝜃 is 1.15 with a 5-95% credible interval of 0.65–1.66

(Fig. 4-5). We multiply the mean posterior values of the transfer coefficients by the

time-varying values of ∆𝑞 and ∆𝜃 (calculated following Eq. (4.5) and Eq. (4.6)) to

obtain specific humidity and potential temperature jumps used to calculate the en-

trainment flux. The strong covariance between 𝐶q and 𝐶𝜃, with a Pearson correlation

coefficient of r=0.97, suggests that the same subcloud layer eddies mix moisture and

heat, consistent with physical expectation, and that knowing either 𝐶q or 𝐶𝜃 appears

sufficient for scaling the jumps. That the parameters constrained by the Bayesian in-

version are physical – namely, an 0.2 < 𝐴𝑒 ≤ 1 and scaling coefficients that strongly
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covary – acts as a first validation of mixed layer theory.

Our entrainment rates are 20.4±7.9 mm s−1, with values denoting the mean and

standard deviation (Table 4.2). Similar to the surface fluxes, making a direct quan-

titative comparison with previous studies is difficult given that different regimes are

sampled, such as a trade-wind or stratocumulus boundary layer, as well as different

vertical levels (e.g., cloud-top versus cloud-base). There are a number of forego-

ing estimates of cloud-top entrainment rates in stratocumulus regimes: during the

DYCOMS-II field study southwest of California, Stevens et al. (2003a) find values

3.9±1 mm s−1; also using in situ data but in the southeast Pacific, Caldwell et al.

(2005) estimate rates of 4±1 mm s−1; using satellite measurements for a transect

from 35∘ to 15∘ N, Kalmus et al. (2014) estimate 3.5±1.5 mm s−1; and using in

situ observations from the MAGIC field campaign between California and Hawaii,

Ghate et al. (2019) estimated cloud-top entrainment rates of 7.83±5.23 mm s−1 in

closed cellular stratocumulus cloud conditions. The larger entrainment rates during

EUREC4A are plausible considering the much weaker stability of the capping layer

compared to stratocumulus regimes. In the Sahelian boundary layer, Canut et al.

(2012) estimate a large range of cloud-top entrainment rates from about 10–150 mm

s−1 (their Figures 10, 11). In large-eddy simulations of trade-wind regions, Vogel et al.

(2020) find a mean entrainment rates of 14 mm s−1, with lower values compared to

observed EUREC4A values likely due to the coarser vertical resolution leading to a

larger ∆𝜃𝑣-jump.

Justification for larger entrainment efficiency, 𝐴𝑒, from theory

Before presenting the resulting budgets, we present two expository examples that con-

textualize the larger effective entrainment parameter, 𝐴𝑒, from the Bayesian inversion

that accounts for a finitely-thick transition layer.

First, performing a Reynolds decomposition on the conservation equation, D𝜗
D𝑡

=

𝑄𝜗, and integrating over a layer above and below ℎ from ℎ+ = ℎ+ 𝜖 to ℎ− = ℎ− 𝜖 for
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some small 𝜖 yields an expression for 𝐸, wherein 𝜃𝑣+ is the value at ℎ+, and 𝛿ℎ = 2𝜖,

𝐸 =
−𝐴𝑉0∆0𝜃𝑣

∆1𝜃𝑣
+

𝛿ℎ

2∆1𝜃𝑣

(︂
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

)︂
. (4.13)

The derivation for Eq. (4.13) is given in Appendix C. Setting Eq. (4.4) and Eq. (4.13)

equal for 𝐸, we consider that the second term on the right-hand side of Eq. (4.13)

is absorbed to increase 𝐴 in Eq. (4.4), which renders 𝐴 as an effective parameter,

𝐴𝑒 that accounts for jumps occurring over a finite-thickness layer. This second term

is what Garcia and Mellado (2014) called the ‘distortion and shape term’, although

in their study of a clear-sky convective boundary layer, it was only a small (10%)

contribution to a value of 𝐴 ≈ 0.2, associated with turbulent mixing.

A second justification is obtained by specifying that 𝐴𝑒 is the value yielding the

correct vertical flux divergence:

1. Modeling the subcloud layer with an infinitely thin transition layer (zero-order

flux-jump model), the rate of warming or drying in the subcloud layer is given

by the vertical flux gradient, 𝜕𝐹
𝜕𝑧

. The vertical flux divergence equals 𝐹0(1+𝐴)
ℎ

if

𝐹h = −𝐴𝐹0, where subscripts 0 and ℎ refer to the surface and subcloud layer

top, respectively, and 𝐹 denotes the fluxes.

2. In the case of a finite-thickness transition layer, the flux minimum is not at the

top of the subcloud layer, but rather at some height below ℎ - 𝛿ℎ (first-order

flux-jump model; see, for instance, Fig. 1 in Fedorovich et al. (2004) for an

illustration). In this case, 𝐴 is still defined as the ratio of the minimum to

maximum flux, and the vertical flux divergence over the layer of depth ℎ − 𝛿ℎ

is 𝐹0(1+𝐴)
(ℎ−𝛿ℎ)

.

3. Setting these two vertical flux divergences equal and replacing 𝐴 in step (1.) with

𝐴e to introduce an effective parameter into the zero-order flux-jump model is
𝐹0(1+𝐴e)

ℎ
= 𝐹0(1+𝐴)

(ℎ−𝛿ℎ)
, yielding 𝐴e = (1+𝐴)ℎ

(ℎ−𝛿ℎ)
-1. For example, if 𝐴 = 0.2 as often

assumed, and ℎ = 710 m, then 𝐴𝑒 = 0.40 for 𝛿ℎ = 100 m, 𝐴𝑒 = 0.52 for

𝛿ℎ = 150 m, and 𝐴𝑒 = 0.67 for 𝛿ℎ = 200 m.
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Fedorovich et al. (2004) argue that this apparent increase in 𝐴 would arise, for instance

if the depth of the subcloud layer is chosen to be above the height of the buoyancy

flux minimum, which was not measured during EUREC4A.

4.6 Resulting moisture and temperature budgets

Adopting the mean parameter estimates from the Bayesian inversion, Fig. 4-6 shows

that the bulk theory budgets close to within 3.6 Wm−2 for moisture and 2.9 Wm−2

for potential temperature for the campaign-mean and can largely explain synoptic

variability.

For the moisture budget, the campaign-mean residual is 2.2% of the largest term,

the surface latent heat flux. For synoptic variability, the residuals can have larger

magnitude, yet uncertainty propagated from the individual terms crosses zero for 20

out of 24 circling-means, suggesting that residuals are unbiased and indistinguishable

from zero to within uncertainty. The budgets also close equally well for daytime or

nighttime (Fig. 4-6a). In the heat balance, 14 out of 24 residuals are unbiased, with

their uncertainty estimates crossing uncertainty, and as for moisture, the heat budget

holds equally well for day and night (Fig. 4-6b).

Regarding the relative magnitude of physical processes, for the moisture budget,

the dominant balance is between surface latent heat flux (166±56 Wm−2) and entrain-

ment drying flux (−128 ± 53 Wm−2), with a secondary role for large-scale moisture

advection multiplied by ℎ (−34 ± 41 Wm−2) and the storage term multiplied by ℎ

(−1.0 ± 40 Wm−2). The mean ratio between the surface latent heat flux and the

entrainment drying flux is 1.39. The advection terms are the product of negative

(easterly) winds and a negative difference from taking the difference of a colder, drier

value in the east minus a warmer, moister value further west. The net effect of this

advection term on the balances is negative because it is subtracted from the left-hand

side in Eq. (4.8) and Eq. (4.9).

In the heat budget, the entrainment flux (18 ± 6.5 Wm−2) has roughly twice

the magnitude of the other terms, which have a similar magnitude of 6–8 Wm−2
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(Fig. 4-6b). That the entrainment warming flux has a larger magnitude than the

surface sensible heat flux is because the surface latent heat flux contributes strongly

to the buoyancy fluxes, i.e., though the F𝑞 contribution to F𝜃𝑣 . Compared to the

moisture budget, wherein surface fluxes balance entrainment fluxes to first-order,

there is greater variability in the magnitude of individual terms in the heat budget.

In certain cases (e.g., second circling-mean on January 31, 2020), the time-derivative

term is larger than the entrainment flux. In the heat balance, radiative cooling of

the layer, and the time-derivative and horizontal advection when they are cooling

terms, are disproportionately balanced by entrainment warming. In three cases, the

magnitude of the heat budget residuals are larger than the largest-magnitude term

(second circling-mean on February 2, 2020, second circling-mean on February 7, 2020,

second circling-mean on February 13, 2020). Note that setting ℎ to be the mixed layer

top, rather than the subcloud layer top results in slightly larger residuals, 6.9 Wm−2

for the heat budget and 9.6 Wm−2 for the moisture budget.

One might be tempted to think that the flexibility afforded by the Bayesian frame-

work allows for closing the budgets by construction. 𝐴𝑒, 𝐶q, and 𝐶𝜃 are assumed to

be constant, yet vertical profiles of moisture and potential temperature change across

days, such that there is no guarantee that a fixed combination of 𝐴𝑒, 𝐶q, and 𝐶𝜃 al-

lows for budgets to close. We close moisture and heat budgets jointly, which provides

a stronger constraint than closing a single budget. That is, in the moisture budget,

drying by entrainment balances moistening by surface fluxes, whereas in the heat

budget, both entrainment and surface fluxes warm the layer, such that each budget

place counteracting constraints on the entrainment rate.

That the budgets close to within small residuals for most cases and the campaign-

mean suggests that knowledge of the mean state in Eq. (4.8) and Eq. (4.9) is sufficient

to close the budgets, without knowledge of the vertical thermodynamic gradients or

incorporating additional processes. The ratios of 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 multiplied by

ℎ/2 to the jumps at the upper interface are small, with a mean value of 20% for 𝑞

and 22% for 𝜃, providing further evidence that the influence of vertical gradients on

the subcloud layer budgets is small. The correlation of residuals with vertical gradi-

98



includes nighttime
includes nighttime

time (month-day)

-8.1 (9.8) Wm-2

6.3 (2.7) Wm-2
18 (6.5) Wm-2

-6.9 (8.2) Wm-2

2.9 Wm-2

-6.3 (16) Wm-2

W
m

-2
W

m
-2

includes nighttime

time (month-day)

166 (56) Wm-2

-128 (53) Wm-2

-34 (41) Wm-2

3.6 Wm-2

-1.0 (40) Wm-2

Surface flux
Entrainment flux
Horiz. advection

time-derivative
radiative heating

b. Heat budget

a. Moisture budget

Figure 4-6: Synoptic variation over time and campaign-mean moisture and heat bal-
ances, showing the surface flux (blue), entrainment flux (orange), large-scale horizon-
tal advection (dark blue), the time derivative (light blue), clear-sky radiative cooling
(red), and the residual term (grey). Note that time is not linear on this axis and
refers to the different measurement periods. Black stars flag circling-means that in-
clude sondes launched during the nighttime. Panel a. shows the moisture balance
whereas panel b. shows the heat budget balance. The black error bar represents un-
certainties in quadrature, added together for all terms: the 5-95% Bayesian credible
interval on entrainment parameters, and for the other terms, one standard deviation
calculated across the three circle-means making up one circling-mean. In the residual
panels, the intermediate y-axis ticks (around 30 Wm−2 and 10 Wm−2) denote the
mean values of positive and negative residuals. For the campaign-mean balance on
the right-hand side, values given correspond to the mean and standard deviation of
each time across the campaign.
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ents, moreover, informs whether the omission of vertical gradients from the budgets

is justified. Indeed, correlations of residuals with vertical gradients are small: the

correlations of 𝜃 residuals with 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 are 0.21 and −0.17, respectively,

and the correlations of the 𝑞 residuals with 𝜕𝜃/𝜕𝑧 and 𝜕𝑞/𝜕𝑧 are 0.33 and −0.25,

respectively.

Is the remaining structure in residuals informative of missing processes?

Structure in the residuals is indicative of observational error, structural issues in our

formulations, or missing processes. The entrainment efficiency, 𝐴𝑒, and the scaling

coefficients on the jumps, 𝐶q and 𝐶𝜃, could, in principle, vary on a case-by-case basis

with the thickness of the transition layer (compare Eq. (4.13)), which we do not

account for in the present analysis by assuming these parameters are constants. That

said, the thickness of the transition layer does not strongly correlate with residuals

in the moisture (r=0.38) or heat budgets (r=0.20). Regarding missing processes, we

use two proxies for precipitation or precipitation-driven downdrafts, whose influences

we neglect: cloud top height estimated from the WALES instrument on-board HALO

(Konow et al., 2021), mindful that deeper clouds are more likely to precipitate (e.g.,

Stevens et al., 2016b), and a cold pool fraction per circling, wherein a cold pool

sounding is defined as having 𝜃𝑣-gradient height less than 400 m (Touzé-Peiffer et al.,

2022). The residual structure is, however, not correlated with these proxies. For

WALES cloud top height, correlations are r=0.19 for 𝑞 residuals and r=0.16 for 𝜃

residuals. For the cold pool fraction, these correlations are also small, r=0.23 for 𝑞

residuals and r=0.24 for 𝜃 residuals. The weak correlations support our finding that

the subcloud layer moisture and heat budgets can close solely by representing small-

scale entrainment mixing. These findings, that the influence of downdrafts and other

coherent structures is relatively small (at least in the trades) relative to turbulent

entrainment mixing, are consistent with Thayer-Calder and Randall (2015), justifying

assumptions in many parameterizations, dating back to Arakawa and Schubert (1974).
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4.7 How do these subcloud layer properties relate to

the large-scale environment?

4.7.1 Wind speed variability

Fig. 4-7 relates variability among 𝑈 , ℎ, surface fluxes, entrainment fluxes, and the

clear-sky radiative cooling, Qr. A deeper subcloud layer tends to be associated with

stronger 𝑈 , r=0.62, consistent with Nuijens and Stevens (2012), though there are

outliers with intermediate wind speeds leading to the smallest and largest heights.

Naumann et al. (2017) and Naumann et al. (2019) suggest that stronger radiative

cooling is associated with a smaller ℎ, while Zheng (2019) finds that stronger radiative

cooling deepens the subcloud layer. Unfortunately, our observations do not allow us

to resolve this discrepancy. We do not find a simple linear relationship between clear-

sky radiative cooling and ℎ (Fig. 4-7, bottom row) or mean thermodynamics. During

the night, the wind speed tends to increase, deepening the subcloud layer, which

could offset a decrease in the depth of this layer due to stronger nighttime radiative

cooling. This compensation highlights the difficulty in disentangling the influence of

clear-sky radiative cooling on subcloud layer properties when its variability is aliased

onto variability in other variables, such as the surface wind speed.

Surface and entrainment fluxes are strongly associated with 𝑈 variability, as ex-

pected, given their structural dependence on the wind speed. Fixing other parameters

at their campaign-mean value and only allowing 𝑈 to change recovers most variance

in surface and entrainment fluxes: 87% of the variance in 𝐹𝑞, 64% of the variance

in 𝐸∆𝑞, 74% of the variance in 𝐸∆𝜃, though only 22% of the variance in 𝐹𝜃. If we

instead allow only the sea surface temperature to vary, we recover 32% of the variance

in 𝐹𝑞, 38% of the variance in 𝐸∆𝑞, 11% of the variance in 𝐹𝜃, and 35% of the variance

in 𝐸∆𝜃. The surface wind speed plays a larger role in explaining variability in the

fluxes except for 𝐹𝜃.
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Figure 4-7: Relationships among 10 m wind speed, subcloud layer depth, surface
fluxes, entrainment fluxes, and clear-sky radiative cooling. The black line is the ordi-
nary least squares regression, and the grey shading is the 5–95% confidence interval
on the regression. Colors correspond to quartiles of the wind speed with increasing
wind speed going from blue to red. Note that, along the diagonal, the probability
density function (pdf) smooths the four distributions corresponding to quartiles of
10 m wind speed, though these quartiles are non-overlapping: (3.3–6.7], (6.7–9.0],
(9.0–10.3], and (10.3–12] ms−1. The inset shows the Pearson correlation coefficients
among these variables.
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4.7.2 Predictive skill of mixed layer theory

Having established that mixed layer theory is a skillful framework (Sec. 4.6), we can

further employ it as a physical mapping to diagnose how boundary conditions, such

as the surface wind speed, influence 𝑞 and 𝜃. Solving for 𝑞 from Eq. (4.8) yields,

𝑞 =
𝑉0𝑞𝑠 + 𝐸𝑞+ − ℎ(𝜕𝑞

𝜕𝑡
+ �⃗� · ∇𝑞)

𝑉0 + 𝐸
. (4.14)

Similarly, solving for 𝜃 from Eq. (4.9) yields,

𝜃 =
𝑉0𝜃𝑠 + 𝐸𝜃+ + ℎ𝑄𝑟 − ℎ(𝜕𝜃

𝜕𝑡
+ �⃗� · ∇𝜃)

𝑉0 + 𝐸
. (4.15)

The velocity scale is 𝑉0 = 𝐶𝑑𝑈 , and 𝑞+ and 𝜃+ correspond to values 150 m above

the subcloud layer top, ℎ, though results are similar for choosing any height between

100–500 m above ℎ. 𝐸 can, moreover, be rewritten as,

𝐸 =
𝐴𝑒𝐹𝜃𝑣

(𝜃 + 0.61[𝜃(𝑞+ − 𝑞) + 𝑞(𝜃+ − 𝜃)])− 𝜃𝑣
(4.16)

as function of 𝑞+ and 𝜃+.

Predictions of 𝑞 from Eq. (4.14) recover 85% variance in observed 𝑞, with a cor-

relation coefficient r=0.92 (Fig. 4-8b). This simple theoretical framework thus has

significant skill for predicting variability in mean subcloud layer humidity. The sim-

ple framework has less skill for capturing variations in observed 𝜃, with a correlation

coefficient of r=0.48 between observed 𝜃 and 𝜃 calculated with Eq. (4.15). The weaker

skill for potential temperature is qualitatively consistent with larger residuals in the

heat budget. The reduced skill could result from multiple reasons: the smaller mag-

nitude of variability in 𝜃 itself compared to 𝑞 (see Fig. 4-3), the smaller magnitude

of the terms in the heat budget, and the presence of an additional term of radiative

heating in the heat budget, wherein this radiative heating is here only calculated

as clear-sky following Albright et al. (2021a). At times, there may be a substantial

contribution from clouds, which is not accounted for in our analysis.

103



q+

q

E

h

qsV0

Dq
dt

−
qp

V0qs Eq++
=

h
Dq
dt

V0 E+

(a) (b) (c)

Figure 4-8: (a) Schematic showing the factors influencing mean subcloud layer specific
humidity, 𝑞: 𝑉0 denotes the surface velocity scale, defined as 𝐶𝑑 times the 10 m
wind speed; ℎ is the subcloud layer height; 𝑞𝑠 is the surface (saturated) specific
humidity; 𝐸 is the entrainment rate; 𝑞+ is defined as the mean from ℎ to ℎ+100
m; 𝐷𝑞

𝑑𝑡
is the total derivative of subcloud layer mean specific humidity. (b) Scatter

plot between 𝑞 predicted using Eq. (4.14) and observed 𝑞, with linear regression and
Pearson correlation coefficient. (c) Scatter plot between 𝑞 predicted using Eq. (4.14),
but only allowing 𝑞+ to vary and keeping all other terms fixed at their campaign-
mean, and observed 𝑞, with linear regression and Pearson correlation coefficient.

The success of Eq. (4.14) in explaining variability in 𝑞, however, allows for ex-

ploring the influence of different boundary conditions on the mean subcloud layer

properties. We externalize different boundary conditions: 𝑈 , SST, �⃗� · ∇𝑞, �⃗� · ∇𝜃, Qr,

𝑞+, 𝜃+, 𝜕𝑞
𝜕𝑡

, and 𝜕𝜃
𝜕𝑡

. The terms 𝑞+ and 𝜃+ are defined as the mean from ℎ to ℎ + 100

m – that is, air just above the subcloud layer and within the cloud layer and may

not be completely independent of the properties of the subcloud layer. Cloud layer

moisture variability is likely influenced by processes in the free atmosphere, such as

dry intrusions (e.g., Stevens et al., 2021; Villiger et al., 2022).

To test the influence of these conditions, we vary one parameter at a time and fix

the other parameters at their campaign-mean value to predict 𝑞 or 𝜃 values. Perhaps

surprisingly, varying only the surface wind speed to predict 𝑞 yields a weak correlation

with observed 𝑞 (r=−0.2) or with predicted 𝑞 when allowing all external factors to

vary (r=−0.11), not only the wind. That the net influence of the wind speed is

weak might seem to contradict the previous discussion, but results from its opposing

influences, both moistening the layer through surface fluxes and drying it through
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entrainment. Whereas the correlation of the surface wind speed with individual fluxes

is strong (Fig. 4-7), the correlation of the wind speed with the sum of the surface

moistening flux and entrainment drying flux is weak (r=0.32). Varying only 𝑞+, which

also influences the entrainment rate through ∆𝜃𝑣, yields the highest correlation with

predicted moisture (r=0.55) and observed moisture (r=0.58, Fig. 4-8c). For heat, we

find that 𝜃+ has a correlation of r=0.36 with predicted 𝜃 and r=0.85 with observed 𝜃.

In summary, variability in the fluxes is strongly influenced by 𝑈 variability. Yet

due to opposing influences of the surface and entrainment fluxes on 𝑞, the surface

wind speed does not strongly influence 𝑞 variability. Instead, knowing the humidity

above the subcloud layer, 𝑞+, is the most informative for reconstructing 𝑞 variability.

Clouds, however, couple subcloud layer moisture, 𝑞 and 𝑞+, in which case it is difficult

to infer causality. The strong predictive skill of 𝑞+ does point to the importance of

understanding what controls dry intrusions into the cloud layer, such as extratropical

dry intrusions discussed in Villiger et al. (2022), which can influence the subcloud

layer moisture by entraining relatively drier air from the layer above.

4.8 Conclusions

In this analysis, we quantify thermodynamic variability in the trade-wind subcloud

layer and test mixed layer theory using extensive in situ observations from the

EUREC4A campaign.

A primary question motivating our analyses is whether mixed layer theory, as a

simple and often-employed theoretical framework, is an appropriate and useful way

to study how and why the subcloud layer varies. Regarding its appropriateness, a

first assumption is that the subcloud layer is well-mixed vertically, and we find that

vertical gradients, at least over the mixed layer, are small relative to variability about

the mean (Fig. 4-9). Regarding a second assumption about a ‘jump’ at the subcloud

layer top, in defining the subcloud layer height, we find evidence for a transition

layer that separates the mixed layer top from the subcloud layer top (Fig. 4-2). The

transition layer exhibits vertical gradients over finite thickness. The presence of the
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transition layer and its vertical gradients introduces ambiguity into the application

of mixed layer theory, in particular regarding the formulation of the entrainment rate

and entrainment fluxes.

We address this uncertainty through the introduction of effective parameters re-

lated to entrainment, which are estimated using a Bayesian methodology. The mean

effective entrainment efficiency, 𝐴𝑒 = 0.43 (Fig. 4-5), is greater than the value of 0.2

as often assumed. Such a large value of 𝐴𝑒 is inconsistent with large eddy simulation

(Fedorovich et al., 2004) and direct numerical simulation studies (Garcia and Mel-

lado, 2014) of idealized convective boundary layers. A large 𝐴𝑒 value could arise if

other processes are contributing to the energetics of mixing, for instance wind shear,

cloud processes, or radiative cooling, or if the depth of the layer is taken to be too

deep as compared to the height where the minimum buoyancy flux locates (e.g., Fe-

dorovich et al., 2004; Canut et al., 2012). Applying our inversion technique using the

shallower mixed layer depth to specify ℎ does not, however, resolve this discrepancy,

nor does wind shear appear to play a role (see Fig. 4-10). This discrepancy leaves a

possible disagreement with idealized simulations, or other processes, such as contri-

butions from shallow clouds or radiative cooling in the transition layers, as candidate

explanations for a larger 𝐴𝑒. Related to these considerations, there are other open

questions regarding the transition layer that we address in a forthcoming publication,

particularly, which physical processes give rise to its vertical structure.

Having accounted for the challenges that the transition layer posed for the formu-

lation of entrainment in this theoretical framework, we find that mixed layer theory

can explain both synoptic and monthly-mean variability in subcloud layer moisture

and heat budgets, with campaign-residuals of 3.6 Wm−2 for moisture and 2.9 Wm−2

for heat. For synoptic variability across the campaign, the residuals are generally

small and unbiased – that is, with uncertainties estimates crossing zero (Fig. 4-6).

That the budgets close to within these small residuals suggests that knowledge of the

mean state through 𝑞, 𝜃, and ℎ is generally sufficient to close the thermodynamic

budgets, without having to include vertical thermodynamic gradients. We also find

little evidence that closing moisture and heat budgets requires representing addi-
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tional processes, such as precipitation or coherent downdrafts, and we can therefore

not distinguish residuals from uncorrelated observational error.

After showing that mixed layer theory is a skillful framework, we use this the-

ory as a mapping between external conditions and subcloud layer thermodynamics.

In Sec. 4.4.3, we showed that 𝑞 varies significantly day-to-day and decorrelates after

about two days, such that EUREC4A research flights sample nearly-independent real-

izations of large-scale variability. Anomalies in the subcloud layer depth and LCL are,

moreover, largely associated with anomalies in 𝑞. Given its large synoptic variability

and influence on subcloud layer vertical length-scales, the primary mode of subcloud

layer thermodynamic variability therefore appears to be through 𝑞 variability, moti-

vating our focus on 𝑞 variability. The simple mixed layer theory framework is able

to explain significant variability in observed 𝑞, with a correlation r=0.92 between

observed and predicted 𝑞 (Fig. 4-8b). Whereas we find strong linear relationships

among variability in the surface wind speed and subcloud layer depth, surface fluxes,

and entrainment fluxes (Fig. 4-7), variability in the surface wind speed does not ex-

plain observed 𝑞 variability due to its compensating influences on both moistening the

layer through surface fluxes and drying the layer through entrainment fluxes. Instead,

only knowing moisture above the subcloud layer, 𝑞+, has the most predictive skill for

variations in observed 𝑞 (r=0.58, Fig. 4-8c) because these are the air masses that are

incorporated into the subcloud layer by entrainment.

The ability of mixed layer theory to observationally close subcloud layer moisture

and heat budgets gives confidence in using this approach to constrain trade cumulus

feedbacks using the subcloud layer mass budget, which is the focus of Vogel et al., in

review. In this work, mixed layer theory, combined with novel sampling strategies,

are used to perform the first process-level observational test to constrain trade cu-

mulus feedbacks and climate sensitivity (e.g., Rieck et al., 2012; Zhang et al., 2013;

Sherwood et al., 2014; Brient et al., 2016; Vial et al., 2016). Given the skill of the

mixed layer framework, it would also be worthwhile to apply this framework to rep-

resentations of the trade-wind subcloud layer by a hierarchy of models, from general

circulation to storm-resolving models and large-eddy simulations. Variables analyzed
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could include subcloud layer moisture or heat as in this study, momentum (e.g., Hol-

land and Rasmusson, 1973), or isotopes (e.g., Risi et al., 2020). Quantifying the

relative magnitudes of different processes, how well the budgets close, and how indi-

vidual terms vary according to large-scale environmental conditions would serve as a

consistent framework for evaluating and comparing how well models represent phys-

ical processes, such as surface and entrainment fluxes, relative to novel observational

anchoring from the EUREC4A field campaign.

4.9 Appendix A: Methodology for various boundary

and subcloud layer height estimates

4.9.1 Thermodynamic variable gradient method

The vertical stratification of the tropical atmosphere occurs in all variables, but it is

most evident in moisture (Augstein et al., 1974; Stevens et al., 2001). We first define

a subcloud layer length scale as the depth over which there is no vertical gradient in

specific humidity within a threshold, applying the method from Canut et al. (2012).

The method selects the height where the specific humidity becomes greater than the

density-weighted mean specific humidity of the levels below by a certain threshold 𝜖q:

|𝑞(𝑧) − 𝑞| ≤ 𝜖𝑞, where 𝑞 is updated at each vertical level. We begin at a height of

100 m to minimize the influence of the surface layer. This humidity-jump approach

was implicitly adopted in Malkus (1958), and is similar to previous estimates based

on discontinuities in observed profiles (e.g. Heffter, 1980; Marsik et al., 1995).

In implementing the 𝑞-gradient method, the primary uncertainty is the choice of

threshold 𝜖𝑞, which should be large enough not to be biased by small-scale vertical

variability, but precise enough to identify the humidity discontinuity at the subcloud

layer top. To choose a threshold, we turn to intensive sampling from both the CU-

RAAVEN remotely-piloted aircraft and the ATR-42 and HALO aircraft. Empirically,

we choose a threshold that is one-third of turbulent, eddy-scale variability, estimated

as within-flight variability (compared with day-to-day variability). Calculating the
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specific humidity standard deviation below 550 m within a three-hourly flight of the

CU-RAAVEN suggests a threshold 𝜖= 0.3 gkg−1. Calculating the standard deviation

in 𝑞 below 500m from the ATR-42 yields a threshold 𝜖= 0.35 gkg−1, and for HALO

soundings within one flight, one-third of the standard deviation is 𝜖= 0.27 gkg−1. We

use the largest value, 𝜖= 0.35 gkg−1. The maximum allowable vertical gradient in

the boundary layer is thus 0.035 gkg−1m−1, given a 10m grid spacing. This threshold

allows for a certain moisture gradient, or deviation from a perfectly well-mixed profile,

noted previously for both the trades and other environments (Malkus, 1958; Mahrt,

1976; Dai et al., 2014) and shown by our analyses. Across the HALO dropsonde

soundings, this 0.35 gkg−1 threshold corresponds to a 10% difference between mean air

in the cloud and subcloud layer, when averaging air masses between 1000–1200m and

100-300m depths. We evaluate this height method and empirically-chosen gradient

in Sec. 4.4. Heights from the 𝑞-gradient method are 546±82 m, with values denoting

the mean and standard deviation across the 69 circle-mean data.

An advantage of this threshold definition is its straightforward application to other

thermodynamic variables like 𝜃 and 𝜃𝑣: |𝜃(𝑧)− 𝜃| ≥ 𝜖𝜃. We use thresholds 0.15 K for

𝜃 and 0.20 K for 𝜃𝑣. The threshold of 0.2K for 𝜃𝑣 is also employed in Touzé-Peiffer

et al. (2022). These thresholds are similarly chosen from the CU-RAAVEN, ATR-

42, and HALO sounding data as one-third of one standard deviation within flights.

These thresholds correspond to 10% of differences between cloud and boundary layer

air (estimated conservatively as the 1000-1200m minus 100-400m layer-means) for 𝜃

and 𝜃𝑣, respectively. Heights from the 𝜃-gradient are 549±97 m and 697±94 m for

the 𝜃-gradient, with values denoting the mean and standard deviation across the 69

circle-mean data.

4.9.2 Parcel method

Next, we examine the parcel method, also referred to as the ‘Holzworth method’, as

introduced by Holzworth (1964), which estimates the level at which a hypothetical

rising parcel of surface air, representing a thermal, reaches its level of neutral buoy-

ancy. We compute the level of neutral buoyancy where 𝜃𝑣 surface parcels intersect a
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background profile fitted to the cloud layer 𝜃𝑣 profile determined by linear regression.

Surface air is defined as 0-50m values; choosing 0-90m air affects the height by O(1%).

We calculate the cloud layer 𝜃𝑣 profile from 100m above the height determined from

the 𝑞-gradient method to the first inversion base height, defined where the static

stability first exceeds 0.1 K/hPa, similar to a definition given in Bony and Stevens

(2019).

This parcel method can be viewed as a simplification of the Richardson-number

method that neglects the shear contribution (e.g., Seibert et al., 2000; Dai et al.,

2014; Zhang et al., 2014). Although the Richardson and gradient Richardson number

methods are related to the generation and consumption of mixed layer turbulence

and diagnose flow stability (e.g., Garratt, 1994; Stull, 2012), we do not employ this

method due to the considerable uncertainty underlying choices in its free parameters

(e.g., Zilitinkevich and Baklanov, 2002; Seidel et al., 2012). Heights from the parcel

method are 719±85 m.

4.9.3 Linearized relative humidity profile

A third type of definition involves the relative humidity profiles. The relative hu-

midity increases throughout the subcloud layer (e.g., Nuijens et al., 2015b), as the

specific humidity 𝑞 remains largely constant while temperature decreases. In practice,

spurious peaks in relative humidity in our circle-mean profiles could arise from the

spatial averaging of multiple soundings. For instance, a circle-mean could average

between profiles falling through a cloud close to the subcloud layer top, saturated in

relative humidity, and drier profiles elsewhere along the EUREC4A circle flight path.

To circumvent this bias, we introduce a linearization of the relative humidity

profile. We find the first local maximum in relative humidity above 300m and then

linearize the relative humidity profile, by ordinary least squares regression, from 50m

above the surface to 50m above this first local relative humidity maximum. We then

find all local relative humidity maxima below one kilometer and choose the height

that minimizes the relative humidity difference between the observed and linearized

profiles. Heights from the relative humidity maximum method are 571±96 m.
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4.10 Appendix B: Vertical thermodynamic profiles

To further illustrate the vertical structure as described in Sec. 4.4, Fig. 4-9 plots

vertical profiles of potential temperature, 𝜃, and specific humidity, 𝑞, and Fig. 4-10

plots vertical profiles of virtual potential temperature, 𝜃𝑣, and zonal wind speed.
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Figure 4-9: The 24 circling-mean profiles (black, aggregate of about 36 dropsondes
each) of (left) potential temperature, 𝜃, and (right) specific humidity, 𝑞. Each panel
also shows the three circle-mean profiles (grey) averaged to estimate each circling-
mean. Blue dots correspond to the mixed layer top, estimated with the 𝑞-gradient
definition, and orange dots denote the subcloud layer top, estimated with the 𝜃𝑣-
gradient definition. The vertical navy line denotes the mixed layer-mean value and
demonstrates that the majority of profiles have a vertically well-mixed layer for ther-
modynamic variables.
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Figure 4-10: The 24 circling-mean profiles (black, aggregate of about 36 dropson-
des each) of (left) virtual potential temperature, 𝜃𝑣, and (right) zonal wind speed.
Each panel also shows the three circle-mean profiles (grey) averaged to estimate each
circling-mean. Blue dots correspond to the mixed layer top, estimated with the 𝑞-
gradient definition, and orange dots denote the subcloud layer top, estimated with
the 𝜃𝑣-gradient definition. The vertical navy line denotes the mixed layer-mean value
and demonstrates that the majority of profiles have a vertically well-mixed layer for
thermodynamic variables (but not the wind speed).
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4.11 Appendix C: Derivation for entrainment effi-

ciency parameter, 𝐴𝑒

For a subcloud layer scalar, 𝜗, Eq. (4.13) results from integrating the following equa-

tion over a thin interfacial layer with lower and upper boundaries h− = ℎ − 𝜖 and

h+ = ℎ+ 𝜖 and layer-thickness 𝛿ℎ = ℎ+ − ℎ− = 2𝜖,

∫︁ ℎ+

ℎ−

𝜕𝜗

𝜕𝑡
𝑑𝑧 = −

∫︁ ℎ+

ℎ−

𝜕

𝜕𝑧
𝑤′𝜗′ 𝑑𝑧. (4.17)

Applying the Leibniz integral rule for differentiation under integration yields,

𝑑

𝑑𝑡

[︀
⟨𝜗⟩𝛿ℎ𝛿ℎ

]︀
− 𝑑ℎ+

𝑑𝑡
𝜗ℎ+ +

𝑑ℎ−

𝑑𝑡
𝜗ℎ− = −𝑤′𝜗′|ℎ+ + 𝑤′𝜗′|ℎ− (4.18)

Assuming that turbulence vanishes at h+ implies that 𝑤′𝜗′|ℎ+ = 0. Heights ℎ+ and

ℎ− are offset from ℎ by a constant, 𝜖, such that h+=h+𝜖 and h−=h-𝜖, which means

that 𝑑ℎ+

𝑑𝑡
= 𝑑ℎ−

𝑑𝑡
= 𝑑ℎ

𝑑𝑡
. Assuming that the layer is well-mixed implies that 𝑞ℎ− = 𝑞.

With these assumptions, Eq. (4.18) becomes,

𝑑

𝑑𝑡

[︀
⟨𝜗⟩𝛿ℎ𝛿ℎ

]︀
− 𝑑ℎ

𝑑𝑡
∆𝜗 = 𝑤′𝜗′|ℎ− (4.19)

If 𝛿ℎ is constant and ⟨𝜗⟩𝛿ℎ is approximately equal to 𝜗+𝜗+

2
, with 𝜗 equaling the

mixed layer mean value then Eq. (4.19) becomes,

𝛿ℎ

2

[︂
𝑑𝜗

𝑑𝑡
+

𝑑𝜗+

𝑑𝑡

]︂
− 𝑑ℎ

𝑑𝑡
∆𝜗 = 𝑤′𝜗′|ℎ− (4.20)

Note that if assuming that the interfacial layer has zero-thickness, e.g. 𝛿ℎ = 0,

Eq. (4.20) becomes,

−𝑑ℎ

𝑑𝑡
∆𝜗 = −𝐸∆𝜗 = 𝑤′𝜗′|ℎ−, (4.21)

where the growth of the layer, 𝑑ℎ
𝑑𝑡

is considered the entrainment rate, 𝐸.
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Replacing 𝜗 with 𝜃𝑣 yields Eq. (4.13),

𝛿ℎ

2

[︂
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

]︂
− 𝑑ℎ

𝑑𝑡
∆𝜃𝑣 = 𝑤′𝜃′𝑣|ℎ− (4.22)

Rearranging to solve for 𝐸 = 𝑑ℎ
𝑑𝑡

yields and adopting the formulation for the flux,

𝑤′𝜃′𝑣|ℎ−, given in Eq. (4.2) and Eq. (4.4) yields,

𝐸 =
−𝐴𝑉0∆0𝜃𝑣

∆1𝜃𝑣
+

𝛿ℎ

2∆1𝜃𝑣
(
𝑑𝜃𝑣
𝑑𝑡

+
𝑑𝜃𝑣+
𝑑𝑡

). (4.23)

The effective 𝐴𝑒 can be interpreted as absorbing the second term on the right-hand

side in Eq. (4.23).
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Chapter 5

A new conceptual picture of the tran-

sition layer

5.1 Abstract

The transition layer in the trades has long been observed and simulated, but the

physical processes producing its structure remain little investigated. Using extensive

observations from the EUREC4A (Elucidating the role of clouds–circulation coupling

in climate) field campaign, we propose a new conceptual picture of the trade-wind

transition layer. The majority of cloud bases are observed to form within the tran-

sition layer, instead of above it. The theory of cloud-free convective boundary layers

suggests a vertical structure with strong jumps at the mixed layer top, yet such strong

jumps are only found rarely. Despite cloud fraction near cloud base being small,

the cloud-free convective boundary layer structure is infrequent and confined to large

(𝑂(200 km)) cloud-free areas. We propose that very small clouds, with cloud tops gen-

erally below 1.3 km, maintain the transition layer, in analogy with the maintenance

of the trade-wind inversion by deeper clouds. This analysis suggests an additional

contribution to the energetics of entrainment mixing, which is based on the ability of

small clouds to detrain and dissipate condensate into the transition layer, leading to

evaporative cooling. Inferences from mixed layer theory and Paluch mixing diagrams,

moreover, suggest that the cloudy transition layer structure does not affect the rate of

entrainment mixing, but rather the properties of the air incorporated into the mixed

This chapter is in review at the Journal of the Atmospheric Sciences.
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layer.

5.2 Introduction

The transition layer in the trades has long been observed (e.g., Malkus, 1958; Augstein

et al., 1974; Yin and Albrecht, 2000) and simulated (e.g., Stevens et al., 2001), but the

physical processes that give rise to its structure are little investigated. This layer is

often associated with a thin layer (100–200m thick) above the turbulent mixed layer

(around 500–600m depth) and is identified from vertical thermodynamic gradients

that differ from the nearly-zero vertical gradients in the mixed layer below and the

non-zero vertical gradients in the cloud layer above (e.g., Malkus, 1958; Augstein

et al., 1974; Yin and Albrecht, 2000).

In previous studies, there is, however, substantial ambiguity regarding the transi-

tion layer structure and its relation to cloud base. Early observational studies argue

that cloud bases form above the transition layer top (Malkus, 1958; Augstein et al.,

1974). More recent conceptual model studies contend that cloud bases form within

the transition layer (Neggers et al., 2009; Gentine et al., 2013), yet their conceptual-

ization of the transition layer remains ambiguous: in Neggers et al. (2009), the mixed

layer top and cloud base coincide, but what they call the transition layer is above

these two levels; Gentine et al. (2013) call the offset between the mixed layer and

cloud layer the ‘dry inversion layer’, with cloud bases occurring somewhere within

this layer.

There is also uncertainty whether the transition layer is a ubiquitous feature of

the trade-wind atmosphere in both cloudy and non-cloudy areas. Malkus (1958), for

instance, examines vertical gradients in 25 trade-wind soundings to conclude that the

transition layer was always (100%) present in clear-sky regions and generally (55%)

absent in cloudy regions. She also proposes that the transition layer is thicker in

clear areas (200m) than in cloudy areas (80m), as illustrated schematically in Fig. 5-

1a. Augstein et al. (1974), moreover, outlines a qualitative scheme (his Fig. 12) that

the trade-wind transition layer is maintained by dry convection and mechanically-
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driven turbulence, whereas clouds form and moist convective processes play a role

in producing the vertical structure above the transition layer top. The inferences of

strong vertical thermodynamic gradients over the transition layer and cloud bases

forming above the transition layer top, moreover, established a conceptual picture

of the transition layer as a barrier to convection that regulates subcloud to cloud

layer transports (e.g., Ooyama, 1971; Augstein et al., 1974; Yin and Albrecht, 2000;

Neggers et al., 2006), even though this view stands in contrast to contemporary

quasi-equilibrium thinking, which contends that convection occurs in response to

larger-scale instabilities rather than local convective inhibition (e.g., Emanuel et al.,

1994a).

In the years subsequent to these early observational studies, an interpretation arose

in simple modeling studies that the trade-wind transition layer could be modeled as

an infinitely-thin layer exhibiting a ‘jump’, or abrupt discontinuity, above the well-

mixed layer. This structure is inferred in analogy with stratocumulus regimes (e.g.,

Lilly, 1968) or cloud-free convective boundary layer (e.g., Stull, 1976; Tennekes, 1973;

Arakawa and Schubert, 1974; Albrecht et al., 1979; Stevens, 2006). Such a conceptual

view is shown in Fig. 5-1b. A cloud-free direct numerical simulation from Garcia

and Mellado (2014) exhibiting strong vertical gradients is reproduced in Fig. 5-1c.

These illustrations highlight a layer that is well-mixed by turbulence, topped by a

transition layer represented as an abrupt discontinuity, in keeping with expectations

from cloud-free boundary layers and stratocumulus regimes. In the trades, the cloud-

base cloud fraction is small (e.g., Malkus, 1958; Bony et al., 2022), such that it appears

a reasonable approximation to assume that the cloud-free boundary layer structure

is the baseline structure, as in Stevens (2006).

Closure schemes for the vertical (rather than lateral) entrainment rate based on

cloud-free boundary layers are common features of trade cumulus parametrizations

(Betts, 1973; Arakawa and Schubert, 1974; Albrecht et al., 1979). The conceptual

view of entrainment in a cloud-free boundary layer is that overshooting plumes entrain

filaments of more stratified overlying air into the turbulent layer (e.g., Bretherton,

1997). Such a formulation suggests that clouds are not explicitly agents of turbulent

119



Reproduced from Garcia, Mellado, 2014
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Reproduced from Garcia, Mellado, 2014
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Sharp buoyancy gradients (green)

Figure 5-1: (a) Representing specific humidity profiles from Malkus (1958) with the
heights and gradients given in that study. The mean profile (dark blue) is the weighted
average between 16 clear-sky (averaged in light blue) and 9 cloudy (averaged in
medium blue) soundings. The transition layer gradients are shown in solid lines
in the clear and cloudy profiles, compared to dashed lines for the mixed and cloud
layers. According to this view, clouds start to form above the transition layer top.
(b) An idealized profile of specific humidity similar to those in previous conceptual
models (e.g., Arakawa and Schubert, 1974; Albrecht et al., 1979; Stevens, 2006). That
the infinitely-thin transition layer can vary in height is indicated by the up-and-down
arrow. (c) Figure reproduced from Garcia and Mellado (2014) (their Fig. 2), showing
the logarithm of the buoyancy gradient (similar to the 𝜃𝑣 gradient) from their direct
numerical simulation of a dry convective boundary layer. Colors correspond to in-
creasing values, from black to blue to green.
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entrainment mixing, and turbulence and any associated entrainment are instead gen-

erated by surface fluxes, wind shear, and radiative cooling (e.g., Bretherton, 1997;

Fedorovich et al., 2004).

As part of the EUREC4A (Elucidating the role of clouds–circulation coupling in

climate) field campaign (Bony et al., 2017; Stevens et al., 2021), we collected the

necessary data to investigate the structure of the trade-wind transition layer and the

physical processes that produce this structure. Using EUREC4A observations, the

trade-wind subcloud layer is shown to have a nuanced vertical structure that includes

a finite-depth transition layer between the well-mixed part of the subcloud layer and

subcloud layer top, both in individual and aggregated soundings, contrasting with

the jump-like structure expected from cloud-free boundary layers (Albright et al.,

2022). Albright et al. (2022), reproduced in Chapt. 4, showed that the presence of the

finite-thickness transition layer introduced ambiguity into the application of mixed

layer theory for subcloud layer moisture and heat budgets. This ambiguity could,

however, be accounted for using effective entrainment parameters constrained using

observations and a Bayesian methodology. A larger effective entrainment efficiency

parameter, 𝐴e = 0.43, was found compared to previous studies that contend 𝐴 =

0.2 (e.g., Lilly, 1968; Stull, 1976; Tennekes and Driedonks, 1981; Driedonks, 1982;

Pino et al., 2003; Garcia and Mellado, 2014). An effective parameter value of 0.4

is, however, consistent with other large-eddy simulation results (Schalkwijk et al.,

2013; Naumann et al., 2017, 2019). An ensuing question then arises, what processes

maintain such a finite-thickness transition layer in the trades? Here we provide a first

answer to this question.

5.3 EUREC4A data

The primary data are similar to those used in Chapt. 4 (published as Albright et al.

(2022)), in particular 810 dropsondes from the High Altitude and Long Range Re-

search Aircraft (HALO) launched between January 22, 2020 and February 15, 2020

(Konow et al., 2021). These dropsondes provide vertical profiles of pressure, tem-
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perature, and relative humidity, which have been processed and interpolated into a

common altitude grid with 10m vertical resolution (George et al., 2021). As de-

scribed in Albright et al. (2022), dropsonde measurements were distributed along

the ‘EUREC4A circle’, defined by a circular flight pattern with an approximately

220-kilometer diameter, centered at 13.3∘N, 57.7∘W. A ‘circle-mean’ averages about

12 dropsondes along the EUREC4A circle. This circular flight pattern was repeated

69 times, over 12 flights. Typically each flight incorporated two – temporally well-

separated – periods of circling. A ‘circling-mean’ is defined as the mean of three

circle-means. Given that measurements did not target specific meteorological condi-

tions they provide unbiased sampling. The structure of the data collected encourages

the definition of 69 circle-means and 24 circling-means.

To estimate cloud base heights, we use ceilometer cloud base height estimates from

two platforms, the R/V Meteor and the Barbados Cloud Observatory (BCO, Stevens

et al., 2016a), at 10-second resolution from January 19, 2020 to February 19, 2020.

The Meteor is within the eastern portion of the EUREC4A circle, whereas the BCO

is about 200 km downstream from the circle center. Data during night times that

the HALO aircraft did not fly are dropped. Cloud base heights vary, and to estimate

the base of clouds forming from updrafts within the subcloud layer, the first-detected

cloud base heights (as in Nuijens et al. (2014): “cbh1, where the superscript 1 denotes

it is the first detected base, rather than the second or third”) between 350 and 1000m

are analyzed. These data span the range of the mixed layer lifting condensation levels.

We bin data into three-hourly segments and then select the most frequently-sampled

value as a representative cloud base (Fig. 5-2). Typically, the first peak corresponds

to the absolute peak of the distribution. In the cases where they differ, we select

the first peak that is within 50% of the absolute distribution peak. The first peak is

chosen because the first decile is biased by rain, whereas higher deciles increasingly

reflect cloud side detection from sheared convection or decaying cloud fragments that

are not indicative of cloud base (Nuijens et al., 2014). Examples of three-hourly

cloud base distributions are given in Fig. 5-2 to illustrate the methodology. In the

following analysis, the ceilometer cloud base height distribution refers to the aggregate
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a. b.

Figure 5-2: Example three-hourly cloud base height distributions from the R/V Me-
teor (solid) and the Barbados Cloud Observatory ceilometers (dotted), annotated
with the first distribution peak (‘pdf peak’, blue vertical line). Also shown is the
5% cloud top height estimate from WALES (purple vertical line) for the same time
interval.

of distribution peaks from three-hourly data (e.g., Fig. 5-3c).

Cloud top height data are taken from the WALES (WAter vapor Lidar Experiment

in Space) instrument, a water vapour differential absorption lidar. This lidar oper-

ates at four wavelengths around 935 nm to measure water vapor mixing ratio profiles

below the HALO aircraft (Wirth et al., 2009; Konow et al., 2021). Data products

used are a cloud flag and cloud top height having both a precision and accuracy of

about 10m (Konow et al., 2021). By way of comparison, even high-resolution satellite

retrievals from the Advanced Spaceborne Thermal Emission and Reflection Radiome-

ter instrument have a vertical uncertainty of 250–500m on cloud top height estimates

(e.g., Mieslinger et al., 2019), rendering the WALES cloud top height estimates with

their high vertical resolution particularly valuable.

5.4 Building a new conceptual picture of the transi-

tion layer with EUREC4A observations

In Sec. 5.4, we first address the depth (Sec. 5.4.1) and the stability (Sec. 5.4.2) of

the transition layer and then the connection to cloud bases and cloud formation

(Sec. 5.4.3).
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5.4.1 Transition layer depth

The expectation from cloud-free boundary layers is a single layer that varies in height,

topped by a discontinuity (e.g., as idealized in Fig. 5-1b). Sampling the undulation of

this layer would result in a single Gaussian height distribution (Lilly, 1968). Similarly,

averaging multiple soundings with sharp vertical gradients, albeit at different heights,

would lead to a mean sounding with a more gradual vertical gradient. To test the idea

of a single layer topped by a discontinuity, we perform a vertical length-scale analysis

of the convective boundary layer. The methods for calculating various heights are

presented in Chapt. 4 (Albright et al., 2022).

The first layer corresponds to a well-mixed layer in 𝑞 and 𝜃, which also corresponds

to the distribution of relative humidity maxima, and has a mean depth of 500m for

individual soundings and 570m for circle-mean data (Fig. 5-3a,b). A layer that is

well-mixed vertically in 𝑞 and 𝜃 has previously been called the mixed layer (e.g.,

Malkus, 1958; Augstein et al., 1974), and we adopt this same terminology. The buoy-

ancy variable, 𝜃𝑣, however, remains better-mixed over a deeper layer. Such a layer

that is better-mixed deeper in 𝜃𝑣 than 𝑞 and 𝜃 individually was observed previously

and referred to as the subcloud layer, given its correspondence with environmental-

mean lifting condensation levels (e.g., Malkus, 1958; Augstein et al., 1974; Nicholls

and Lemone, 1980; Yin and Albrecht, 2000), even though the naming can be mis-

leading because clouds already start to form below the top of this layer (Fig. 5-3c).

Indeed, calculating the lifting condensation levels from individual soundings results

in a distribution that is closer to the mixed layer top distribution (Fig. 5-3a). This

subcloud layer top has a mean depth of 710 m in individual soundings and 708m in

circle-mean data. This height analysis suggests that there is some ambiguity in the

determination of the boundary layer depth. Contrary to expectations from cloud-

free boundary layers, a conceptual picture emerges from this height analysis of two

distinct vertical layers, in individual soundings as well as more aggregated data.

We associate this ambiguous region between the mixed layer top and subcloud

layer top with the transition layer (Malkus, 1958) and define it as the difference
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b. c. d.

Mixed layer Subcloud layer
Transition layera.

Cold pools

e.

Figure 5-3: Figure adapted from Chapt. 4 (Albright et al., 2022). (a) Distributions of
different height methods, as described in Albright et al. (2022) and Sec. 5.4.1, applied
to 810 dropsondes to estimate the mixed and subcloud layer heights. Three methods
(averaged in the blue curve) based on 𝑞 and 𝜃, individually and relative humidity
correspond to the mixed layer, whereas the 𝜃𝑣-gradient and parcel method based on
𝜃𝑣, a proxy for buoyancy correspond to what is often called the subcloud layer height
(averaged in the orange curve). Also shown are the distribution of lifting condensation
levels calculated for individual dropsonde soundings averaged from 100–300m air
parcels (black) and ceilometer cloud base height estimates from the R/V Meteor
and BCO (two grey curves). Cold pool soundings correspond to the distribution
around 150m height. Mixed layer heights lower than 400 m generally correspond to
simulations with cold pools (Touzé-Peiffer et al., 2022). Shown in the bottom panels
are 69 circle-mean profiles for (b) 𝑞, (c) 𝜃, 𝜃𝑣, and (d) 𝜃𝑒. The black line is the time-
mean across all profiles, and colored profiles go across time (from darker to lighter
blue). Dotted lines mark the mixed layer height (blue) and subcloud layer height
(orange) calculated using circle-mean data. Their difference indicates the presence
of a transition layer. Note that the mixed layer and subcloud layer height values in
panel b. are calculated from circle-mean profiles, explaining the difference in heights
with panel (a) calculated from individual dropsonde soundings. Shown in panel (e) is
the empirical cumulative distribution function (CDF) of aggregated ceilometer cloud
base height distributions measured by the R/V Meteor and at the BCO, as described
in Sec. 5.3.
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between the subcloud layer top and mixed layer top. Using individual dropsondes

and taking the difference between the top of the subcloud layer and mixed layer

distributions yields a transition layer thickness of 180±207m, with the values denoting

the mean and standard deviation. The values are 151±77m for circle-mean and

152±50m for circling-mean data, converging towards a mean depth of about 150 m

and smaller standard deviation for increasing scales of averaging. The transition layer

therefore appears to have about 100–200m depth, within the range given in previous

observational studies (e.g., Malkus, 1958; Augstein et al., 1974; Yin and Albrecht,

2000), but contrasting with the thin transition layer view from modeling.

5.4.2 Transition layer stability

Previous conceptualizations of the transition layer contend that the transition layer

acts as a barrier or cap to convection (Sec. 5.2), which would suggest relatively strong

thermodynamic gradients. The transition layer gradients given in Malkus (1958) and

Augstein et al. (1974) are a useful point of comparison. Fig. 5-4 shows that transition

layer 𝜃𝑣 gradients observed during EUREC4A (black line) are, on average, weaker

than those in Malkus (1958) and Augstein et al. (1974) (red lines). Specific humidity

gradients are similar, and the weaker 𝜃𝑣 gradient in EUREC4A is driven by a weaker 𝜃

gradient. We speculate that the reason for the greater stability implied by the mean

profiles in Malkus (1958) and Augstein et al. (1974) is their smaller sample size and

that their sampling was not entirely unbiased, compared to the extensive, unbiased

sampling in EUREC4A. Malkus (1958), for instance, launch 16 out of their 25 sound-

ings into extended cloud-free regions, whereas the other nine soundings explicitly

targeted active cloud cores. Augstein et al. (1974) analyze a larger set of soundings

from field campaigns in 1965 and 1969. Soundings are, however, removed when a

transition layer was not apparent, which could bias results towards stronger transi-

tion layer gradients. During EUREC4A, strong gradients with the magnitude of those

in Malkus (1958) and Augstein et al. (1974) are seen, but they occur infrequently

(Fig. 5-4).
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Figure 5-4: Composite profiles of (a) specific humidity, 𝑞, and (b) virtual poten-
tial temperature, 𝜃𝑣. The profiles are constructed from the mean mixed layer value;
mean gradients over the mixed layer, transition layer, and lower cloud layer; and
mean heights of the mixed layer and transition layer top. Heights are estimated from
EUREC4A sounding data. EUREC4A data are plotted in black, both the campaign-
mean (thick black line) and individual dropsondes (thin grey lines), with the mixed
layer mean value indicated by the black dot. Blue and red profiles use vertical gra-
dients from previous studies; the mean value adjusted to the mean mixed layer value
in EUREC4A such that transition layer gradients can be more easily compared. M58
(blue) corresponds to Malkus (1958), and A74 (red) refers to Augstein et al. (1974).
𝜃𝑣 gradients are given in Augstein et al. (1974), but for Malkus (1958), 𝜃𝑣 values
are calculated from observed temperature, mixing ratio, and pressure profiles in her
Fig. 7. Note, moreover, that the visualization in Fig. 5-4 exaggerates the extent of the
strongest vertical gradients by extrapolating these strong vertical gradients, which are
often found over short distance, over the mean depth of the transition layer. Based
on our view, clouds are shown as having their bases at the mixed layer top, rather
than the transition layer top as in Augstein et al. (1974) and Malkus (1958). Also
shown are the 25th- and 75th-percentile of lifting condensation levels (LCL) calculated
from individual dropsondes, averaging LCL values from 100–300m air parcels (blue
dotted lines).
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5.4.3 Cloud bases form within the transition layer

Another difference with Malkus (1958) and Augstein et al. (1974) is that the majority

of cloud bases are already found within the transition layer, instead of above its top.

Decreasing 𝜃𝑒 over the transition layer (Fig. 5-3b), a necessary but not sufficient

condition for a conditionally unstable layer, hints at a potential role for convective

processes in this layer. Examining ceilometer cloud base estimates, about 60% of 3-

h-cloud base peaks occur below what is typically called the subcloud layer top height.

A cumulative distribution of these cloud base heights is given in Fig. 5-3c, showing

that the R/V Meteor has 61% of cloud base peaks below 710m (55% for BCO).

Below 500 m, approximately the mixed layer top height, 6% of clouds measured by

the R/V Meteor ceilometer already have their bases (9% clouds at BCO). More recent

conceptual modeling studies have also assumed that clouds already have their bases

within the transition layer (Neggers et al., 2009; Gentine et al., 2013).

Given that the majority of clouds already have their bases within the transition

layer, we conjecture that cloud-mediated processes could play a role in creating its

structure. Many clouds may continue to grow above the transition layer, yet a sub-

stantial fraction of clouds both form and dissipate within the transition layer. When

clouds form, they warm and dry the ambient environment, and when they dissipate,

they cool and moisten the environment, such that this air takes on properties that

more closely resemble mixed layer air. Such cloud-driven processes could ‘precondi-

tion’ the surrounding air and reduce the work to entrain more-buoyant air into the

mixed layer. We thus hypothesize that 1) the structure of the transition layer is an

important way in which the cloudy boundary layer differs from a cloud-free, or dry

boundary layer and 2) these different vertical structures could reflect differences in

entrainment and vertical mixing processes. These hypotheses can directly be tested

using EUREC4A observations.

128



5.5 Physical origins of transition layer structure

The idea that the presence of clouds changes the transition layer structure is tested

through a denial-of-mechanism approach. A distinction is made between a cloud-

free convective boundary layer, or a convective boundary layer without clouds at its

top over scales much larger than the depth of the layer (e.g., cloud-free over scales

greater than 10 km), as compared to cloud-topped convective boundary layers. Large

clear-sky areas, rather than simply clear-sky areas in between clouds, are selected be-

cause the area between clouds is still influenced by cloud condensate detrainment and

mixing from these previous, ‘ghost’ clouds. Such large clear-sky areas are identified

in two ways: first, by eye, from GOES-E satellite movies at one one-minute resolu-

tion overlain with dropsonde locations and times (Bony et al., 2022); and second, in

Sec. 4b, using the cloud flag product from WALES lidar as introduced in Sec. 5.3.

Fig. 5-5 illustrates two case studies, for January 22 (Fig. 5-5a–e) and February

2 (Fig. 5-5f–i), both of which exhibit large clear-sky swaths. In each case, GOES-

E satellite movies are used to identify one dropsonde from an extensive cloud-free

area, spanning the diameter of the EUREC4A circle, and another sonde that is more

influenced by clouds. The cloud-free sondes exhibit a well-mixed layer structure

topped by a jump. In the non-cloud-free cases, a discontinuity is not visible, and

instead there are smoother vertical gradients (Fig. 5-5). Fig. 5-6 shows that large

domain large-eddy simulations (𝑂(100 km)) exhibit a similar vertical transition layer

structure of stronger vertical gradients in large clear-sky areas than in areas influenced

by clouds. These simulations further support that smoother vertical gradients in

cloudy areas are not spurious observational error (e.g., slower sensor response times

if a sonde became wet after passing through clouds, smoothing vertical gradients, cf.

Albright et al. (2022)) and represent a physical difference to better understand.

To next test whether the expected difference between cloud-free and cloudy profiles

generalizes across the 810 dropsondes, the maximum vertical gradient (over 10 m) is

calculated for all dropsonde vertical profiles of specific humidity, 𝑞, between 300–

800m. This maximum vertical gradient metric captures the strongest jump that is
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(a) (c) (e)

(b)

(f) (h) (i)02-02

GOES-E 01-22~ 220 km (d)

(j)

(g)

Figure 5-5: Two pairs of dropsonde profiles for specific humidity, 𝑞, potential temper-
ature, 𝜃, and net radiative heating wherein one sounding per pair is launched in large
clear-sky area (red) and the other in an area influenced by clouds (blue). Pairs of
dropsondes are from January 22 (top panels) and February 2 (bottom panels). Also
shown are their corresponding GOES-E satellite images (a,b and f,g). The sonde
times are given in the legends for dropsonde profiles, and the sonde location (outlined
in blue or red circle) is overlain on the satellite image. Note that the vertical profiles
are aligned to have approximately the same mixed layer mean value to better compare
the transition layer structure; offsets are given in the legend.
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(a) (b) (c)

Figure 5-6: Panel (a) shows the liquid water path in a 200x100 km domain simulation
of trade-wind cloudiness (‘flower’ pattern) in Dauhut et al. (2022). A representative
profile is selected in a large cloud-free area (red) and in an area influenced by cloudi-
ness (blue), whose locations are shown in panel (a). Corresponding specific humidity
(b) and potential temperature profiles (c) are also shown. Profiles in different loca-
tions around the cloud edge or within the cloud are similar to the selected profile in
blue, and other profiles in large cloud-free areas are similar to the red profile.

evident in an observed boundary layer moisture profile. The lower bound of 300 m

is chosen to avoid possible surface layer influences, and 800m acts as a conservative

estimate of the mixed layer top. Results are similar for different choices of lower

and upper bound. The vertical layering of the atmosphere is present in numerous

variables, but particularly evident in moisture (e.g., Augstein et al., 1974), motivating

our choice of 𝑞, though results are similar for other thermodynamic variables.

Fig. 5-7 shows that the majority of soundings have small values of this maximum

vertical gradient metric, corresponding to smooth gradients at the mixed layer top.

The 25th-percentile and median values of the maximum vertical gradient are 0.17

and 0.25 gkg−1 compared to a standard deviation of 1.06 gkg−1 for 𝑞 averaged from

100–500 m. Examining vertical gradients above the 95th-percentile compared to satel-

lite images, larger values are shown to systematically occur in large clear-sky areas.

Fig. 5-7b-e shows satellite images for two days having numerous soundings making

up the largest-5% vertical gradient values. On these days, large clear-sky frequently

extend across the EUREC4A circle. This analysis provides an initial indication of an

association between sharp gradients in thermodynamic profiles and large, cloud-free

areas.
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b. Jan 22

(a)

c. Jan 26

Figure 5-7: Distribution of the maximum vertical gradient (across 10 m) found in
a given specific humidity, 𝑞, profile between 300–900 m. The red box highlights
the largest-5% vertical gradients. Shown in the inset panels (b,c) are two example
GOES-E satellite images illustrating large clear-sky swaths from which profiles with
the largest-5% vertical gradients are sampled.

5.5.1 Two populations of clouds

A population of clouds is identified that we hypothesize is responsible for chang-

ing vertical gradients in the transition layer relative to cloud-free conditions. Fig. 5-8

shows the distribution of cloud top heights estimated from the WALES lidar (Sec. 5.3,

cf. Jacob et al. (2020)). This cloud top height distribution is bimodal, with peaks

around 850m and 1900m. The bimodality in cloud top heights was previously iden-

tified (e.g., Genkova et al., 2007; Leahy et al., 2012), but the uncertainty on these

early observational estimates (250–500 m) was large compared to the depth of the

first cloud population and offset between shallow and deeper clouds, and much larger

than the uncertainty in the WALES cloud top height data. There is an apparent

scale separation around 1300m, which also corresponds to the value used to separate

two cloud populations simulated at the Barbados Cloud Observatory by large-eddy

simulations in Vial et al. (2019). The first peak is associated with shallow, likely

non-precipitating clouds, and the second peak is associated with deeper, potentially

132



Figure 5-8: Distribution of cloud top heights estimated from WALES lidar data as
described in Sec. 5.3. Vertical dashed lines correspond to approximately the peaks in
the bimodal distribution, around 850m for shallower and 1900m for deeper clouds.
The solid turquoise line marks the 5th cloud base heights from R/V Meteor and BCO
ceilometers, giving a lower bound of cloud base heights.

precipitating clouds (Lonitz et al., 2015) and stratiform clouds resulting from detrain-

ment near the trade-wind inversion around 2–3 km. Shallow clouds are more frequent

than deeper clouds, and they appear to vary relatively little in height, with a standard

deviation of 184m for cloud tops below 1300m (Fig. 5-8).

5.5.2 Shallow clouds appear to produce transition layer struc-

ture

To test how shallow clouds influence the transition layer structure, the maximum

vertical gradient distribution (Fig. 5-7) is revisited, but conditioned on scenes using

cloud top height estimates. The goal is to isolate large clear-sky swaths that are

relatively free from cloud influences and compare the transition layer structure in this

cloud-free case versus other cases. Using the WALES cloud flag and cloud top heights,

measurements are separated into three categories: large clear-sky areas, cloudy areas

with cloud tops below 1.3 km (shallow clouds, e.g. Fig. 5-8), and all areas that are not

large clear-sky areas, including cloudy and smaller cloud-free areas (overlapping with

the second category). This separation allows us to test whether 1) large clear-sky
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Figure 5-9: Similar to Fig. 5-7, except with distributions conditioned on large clear-
sky scenes of at least 15 minutes without encountering a cloud (red), shallow clouds
with cloud top heights estimated from WALES lidar data below 1.3 km (light blue),
and all areas outside of large clear-sky scenes (dark blue). Each colored vertical line
is the mean of the distributions.

areas do systematically exhibit stronger vertical gradients in the transition layer, and

2) the presence of shallow clouds is sufficient to change the transition layer structure

from the cloud-free boundary layer case, independent of the influence of deeper clouds.

Large clear-sky areas are selected by first identifying all cloud-free segments using

the cloud flag, calculating the 95th-percentile of segment lengths, and then considering

segments that are greater than this 95th-percentile as large clear-sky areas. These

large cloud-free patches correspond to 15 minutes of flight time without encountering

a cloud, or about 180 km at a typical flight speed of 200 m s−1. The associated

dropsondes are then selected for these large clear-sky areas, corresponding to 13%

of all dropsondes. For cloudy areas, the disjoint set of the large clear-sky swaths is

chosen, including clear-sky in between clouds, shallow clouds, and deeper clouds. The

category of shallow clouds is selected by removing cases with cloud tops greater than

1.3 km.

The analysis from Fig. 5-7 is then repeated for these three categories. Fig. 5-9

shows that the maximum vertical gradients are indeed stronger in large clear-sky ar-

eas than other scenes. The distribution of gradients estimated for shallow clouds is,

moreover, nearly identical with the distribution of gradients for all conditions (includ-
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ing deeper clouds), suggesting that the presence of shallow clouds is sufficient to cause

mixing that smooths vertical gradients relative to cloud-free conditions. From this

conditional sampling, a physical picture emerges that the life cycle of shallow clouds

forming and dissipating in the transition layer changes vertical gradients relative to

cloud-free conditions. The proposed physical mechanism — when shallow clouds dis-

sipate or detrain about 100m above where they form, they cool and moisten the

environment, such that the ambient air more closely resembles the mixed layer prop-

erties — is consistent with the observed differences in transition layer structures in

Fig. 5-9.

5.6 The effects of a cloudy transition layer

Clouds appear to be responsible for the observed transition layer structure and its

deviation from what might be expected for the case of a dry convective boundary layer.

It is less clear to what extent the emergence of a cloudy transition layer matters for

the evolution of the mixed layer, and hence the net air-sea exchange of energy and

moisture.

Using ‘mixing diagrams’ (Paluch, 1979) and mixed layer theory allows for com-

paring the structure of the lower atmosphere in what was above (Sec. 5.5) called

‘cloud-free’ and ‘cloudy’ profiles. This permits for quantifying the efficiency of mixing

in the two cases, and the extent to which differences in the structure the atmosphere

above the mixed layer imprints itself on the mixed layer properties, irrespective of

the rate of mixing.

5.6.1 Mixing diagrams and mixed layer theory

To answer these questions, it is useful to apply mixed layer theory to mixing diagrams.

To introduce the ideas, we first examine the campaign-mean sounding through the

lower 3. Fig. 5-10 presents the mixing diagram of this sounding using potential

temperature, 𝜃, and specific humidity, 𝑞, as thermodynamic coordinates. Each point

in this space represents the mean across all 810 dropsondes at a given height. A
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mixed layer shows up as a cluster of points around a single value, which in the case

of Fig. 5-10 is around 𝑞 = 15.4 and 𝜃 = 298.3. Adiabatic mixing between layers

of the atmosphere with distinct thermodynamic properties will scatter along a line

spanning the space between the points that characterize the respective layers (e.g.,

Paluch, 1979; Betts and Albrecht, 1987; Heus et al., 2008; Böing et al., 2014). Fig. 5-10

shows that the same mixing line includes both the mixed and transition layers. This

structure suggests that air in the transition layer is entrained into the mixed layer.

The observed mixing line only changes its slope around 900m, above the top of the

subcloud layer, suggesting that air above this height is no longer directly incorporated

into the mixed layer. For reference, Fig. 5-10 also plots the fundamental lines defined

by constant 𝜃𝑣 and constant 𝜃𝑒 lines. This visualization shows that the subcloud

layer, whose points are roughly aligned with a line of constant 𝜃𝑣, are better mixed

in this quantity than in terms of either 𝑞 or 𝜃. The constant 𝜃𝑒 line shows the slope

that a saturated, cloudy updraft would follow. The mixing line in the cloud layer

more closely approaches a constant 𝜃𝑒 line, suggesting that these two fundamental

lines could be taken as limiting distributions for the subcloud versus the cloud layers.

A generalized budget equation for the value of a scalar, 𝜗 within the mixed layer,

is derived in Appendix A and can be expressed as,

𝜗 =
𝜗′
0 + 𝐴*𝜗1

(1 + 𝐴*)
𝑤𝑖𝑡ℎ 𝜗′

0 = 𝜗0 +𝑄𝜗
ℎ

𝑉0

. (5.1)

This represents two point mixing between air above the boundary layer, whose prop-

erties are given by 𝜗1, and surface values (denoted by 𝜗0) as modified by non-turbulent

processes, i.e., advection, storage, or radiative heating. The strength of these non-

turbulent processes are measured by 𝑄𝜗 and act on a timescale 𝜏 = ℎ
𝑉0
, with ℎ the

mixed layer depth and 𝑉0 the surface exchange velocity (drag coefficient-weighted

10m wind speed, see Appendix A). Eq. 5.1 introduces an important quantity, 𝐴*,

a non-dimensional entrainment rate, which defines the non-dimensional entrainment

velocity 𝐸 = 𝐴*𝑉0. It weights the influence of the surface (and non-turbulent pro-

cesses) and the properties of the air being incorporated into the mixed layer on the
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Figure 5-10: Scatter plot of observed 𝑞 and 𝜃 values up to 3 km (grey points) and
theoretical mixing lines from the surface to 3 km (black and grey dashed lines). Also
shown are the campaign-mean surface value (blue downward triangle), value averaged
from 100–400m (white star), value at 900m (blue upward triangle), constant lifting
condensation level at 945 hPa (green dotted line), constant 𝜃𝑣 line (orange dotted line),
and constant 𝜃𝑒 line (dark blue dotted line). Theoretical mixing lines are calculated
from Eq. 5.1, as described in Sec. 5. The black dashed line is the theoretical mixing
line incorporating air from 10–150m above the mixed layer layer. The grey dashed
line multiples the surface wind speed by 0.73.
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state of the layer.

We use Eq. (5.1) to calculate theoretical mixing lines whose slopes depend on the

choices of 𝑞1 and 𝜃1 and whose end points are given by 𝜗′
0, varying 𝐴*. To calculate

𝜗′
0 we used the observed 𝜗0, 𝑄𝜗, and ℎ

𝑉0
values from the soundings. We then find the

best-fit mixing line to the observations. In Fig. 5-10, demonstrates how the best-fit

mixing line to observations coincides with air from 10–150m above the mixed layer

top – that is, it incorporates transition layer air into the mixed layer. Theoretical

mixing lines increasingly diverge when deeper air is incorporated into the mixed layer.

This analysis suggests that the transition layer is part of the same mixing layer as the

mixed layer, and that the mixed layer properties can be conceptualized as two point

mixing between air at the top of the transition layer and air imbued with surface

properties modified by non-turbulent processes, as measured by 𝑄𝜗 acting on the

timescale given by ℎ
𝑉0
.

The agreement of this theoretical mixing line, incorporating air from within the

transition layer, with the observed values can be empirically improved by increasing

𝜏 = ℎ
𝑉0

, for instance by multiplying the wind speed by a factor 0.73 in the 𝑉0 term

(Fig. 5-10, grey dashed line). These adjustments suggest potential limitations in how

the surface exchange velocity is represented, or the effects of missing source terms,

such cloud induced perturbations to the radiative heating. Fig. 5-10a also plots 𝑞-𝜃

values corresponding to a constant lifting condensation level at 945 hPa. The observed

and best-fit theoretical mixing line are nearly perpendicular to the constant lifting

condensation level curve. Whether this is a coincidence, or whether mixing aligns to

maximize variance in the lifting condensation level, merits further study.

Effect of a cloudy transition layer on entrainment

Given the mixing line connecting 𝜗′
0 with 𝜗, the non-dimensional entrainment rate,

𝐴*, can be measured by inverting Eq. 5.1. By deriving 𝐴* from cloud-free and cloudy

profiles it should be possible to identify if the presence of a cloud-maintained transition

layer leads to substantial changes in the rate of boundary layer deepening, i.e., greater

values of 𝐴*.
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Figure 5-11: As in Fig. 5-10, but for 𝑞 and 𝜃 soundings aggregated for large clear-sky
areas (red) and areas influenced by cloudiness (blue, following the conditional sam-
pling in Fig. 5-7). Also shown are the campaign-mean surface value (blue downward
triangle), value averaged from 100–400 m (white star), 𝜗1 value annotated with its
height (black star), and value at 900 m (blue upward triangle). Data-derived mixing
lines are linear regressions to the observed profile from 400–700 m (grey dotted lines).
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To see if clouds influence the value of 𝐴* we compare mixing diagrams for large

clear-sky areas and areas influenced by cloudiness (following the sampling in Fig. 5-

7). The resulting mixing diagrams are shown in Fig. 5-11. Both seem to show that

the cluster of mixed layer points lie at about the same distance along the mixing

line, suggesting at least that differences in 𝐴* are subtle. More quantitatively, given

{𝜗′
0, 𝜗, 𝜗1}, Eq. (5.1) can be inverted for 𝐴*. We follow this procedure for each case,

estimating 𝜗′
0 by assuming both cases have the same 𝜗0, but allowing 𝑄𝜗 to vary

(giving 𝜃′0 = 297.1K and 𝑞′0 = 21.1 for the clear-sky and 𝜃′0 = 297.1K and 𝑞′0 = 21.4

for the cloudy profile). In this case, 𝜗1 is chosen as the point where a data-derived

mixing line (a linear regression to observations from 400–700m) departs from the

observations by 0.1, a point whose location and height are included on the diagram.

This analysis suggests that 𝐴* is slightly larger in the cloudy than cloud-free case.

𝐴* calculated from 𝑞 equals 3.1 for the clear-sky profile, and 𝐴*=3.3 for the cloudy

profile; for 𝜃, 𝐴*=1.5 for the clear-sky and 𝐴*=1.7 for the cloudy profile. This finding

remains robust for a range of choices regarding 𝜗1 and data-estimated mixing lines.

Mixed layer theory would not lead one to expect differences between 𝐴* calculated

with 𝑞 versus 𝜃,; however the estimates do not diverge as much as they seem. A

roughly 0.2 increase in 𝜃 leads to commensurate values of 𝐴*, about 3, for both

estimates.

That our analysis does not identify a strong change in the deepening rates, 𝐴*, of

cloud-free, versus cloudy boundary layers, suggests that the clouds are not influencing

the mixing directly. The main difference of the cloud case seems rather to be that

it leads to a thicker transition layer — consistent with our previous hypothesis that

very shallow clouds maintain the transition layer— and modifies the properties of the

air that is being incorporated into the mixed layer.

Effect of a cloudy transition layer on the mixed layer

That the differences in the transition layer state influence the mixed layer and hence

surface fluxes is apparent in Fig. 5-11. The mixing line of the cloud-free soundings is

clearly distinct from that of the cloud soundings, mostly by virtue of the value of 𝜗1.
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Were this not the case we would expect the value of 𝜗1 to lie on the mixing line of

the cloudy soundings, albeit extending to a drier and warmer state. That this is not

the case can mostly be attributed to differences in 𝑞1, suggesting that the main role

of the clouds is to moisten the transition layer, rather than to cool it, consistent with

the heating-cooling couplet of non-precipitating clouds being within the same mixing

layer.

To illustrate this idea, we consider a case of a ‘dry transition layer’. That is,

instead of incorporating the campaign-mean transition layer air (averaged between

550–700m), we incorporate air from higher aloft that is assumed to subside without

evaporative cooling of cloud liquid water. This case would imply a stronger jump

in the transition layer. To estimate such an example 𝑞1-𝜃1 pair, we consider the

campaign-mean specific humidity at 1500m (having a value of 10.03 gkg−1) and find

the corresponding 𝜃 value such that the 𝜃𝑣 value at 1500m equals its mean transition

layer value. A constant 𝜃𝑣 is motivated by the idea that gravity waves will remove

buoyancy differences at similar levels, e.g., between the observed transition layer value

and our ‘dry transition layer’ example. Adopting a 𝑞1-𝜃1 tuple of 10.03 gkg−1 and 299.4

K as 𝜗1 values and predicting the mixed layer 𝑞-𝜃 pair following Eq. (5.1) yields a

predicted mixed layer mean value of 298.9 K and 11.8 gkg−1. We set 𝐴* = 5 and

otherwise keep terms equal to the values in the adjusted mixing line (grey dashed line

in Fig. 5-10). These values are warmer and drier than the prediction using 𝑞1-𝜃1 values

in the transition layer, which were 15.44 gkg−1 and 298.3 K. This comparison suggests

that the presence of a cloudy transition layer leads to a moister and cooler mixed layer.

A drier mixed layer would increase surface latent heat fluxes, whereas a warmer mixed

layer would decrease surface sensible heat fluxes. These are compensating changes

from the point of view of the buoyancy flux. Comparing the predictions in the two

example cases, the net influence on the surface buoyancy flux appears, however, to

be negligible: the buoyancy flux is 17.69 Wm−2 when incorporating air at 1500m and

17.65 Wm−2 when incorporating transition layer air.
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5.7 Discussion and conclusions

These analyses suggest that the transition layer structure is predominantly deter-

mined by cloudy, not dry processes. An offset exists between mixed and subcloud

layer tops in individual soundings, as well as more aggregated vertical profiles, and

we associate this offset with a transition layer. Strong vertical gradients at the mixed

layer top are only found rarely and when they occur, they tend to occur in scenes that

are cloud-free over large (𝑂(200km)) areas. In areas influenced by clouds, vertical

gradients are instead smoother, extending over a larger depth. Analysis of ceilometer

data from several sites suggests that he transition layer is populated by small clouds

that have their bases near the top of the mixed layer and tend to only grow a few

hundred meters above these bases.

Based on these findings, we propose a conceptual picture of the transition layer

maintained by the formation and dissipation of shallow clouds. This layer is in some

senses analogous to the maintenance of the trade-wind inversion by deeper clouds, as

proposed by Riehl et al. (1951) and derived theoretically by Stevens (2007). Riehl

et al. (1951) describe the physical mechanism behind this maintenance of the trade-

wind inversion layer by deeper clouds:

“It is well known that the bases of the cumuli have a nearly uniform height,

but that the tops are very irregular. Some are found within the cloud layer,

many near the inversion base, and some within the inversion layer as active

clouds penetrate the base. As shown by visual observation and many

photographs, the tops of these clouds break off and evaporate quickly. In

this way moisture is introduced into the lower portions of the inversion

layer, and the air there situated gradually takes on the characteristics of

the cloud layer.”

In this view, overshooting convective plumes collapse or break off and, in the pro-

cess, inject condensate into the trade-wind inversion layer. The evaporation of this

condensate maintains the depth of the cloud layer against compensating subsidence,
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Clouds wicking moisture into inversion layer, 
cf. Riehl et al, 1951; Malkus, 1958

Shallow clouds rooted in transition layer

(b) Riehl et al, 1951(a)

Inversion layer

Transition layer

Mixed layer

cloud 

layer

‘subcloud’

 layer

 9 Feb. 2020 from WP-3D

(c)

Figure 5-12: (a) Photos taken during a EUREC4A flight in the WP-3D aircraft that
illustrate the ubiquity of very shallow clouds, often with their bases in the transition
layer (left panel), and deeper clouds wicking or injecting moisture to maintain the
inversion layer (right panel) as in the mechanism proposed by Riehl et al. (1951).
(b) Reproducing a schematic from Riehl et al. (1951) who proposed that the evap-
oration of deeper clouds maintains the trade-wind inversion layer. (c) Illustration
of a conceptual picture suggesting a symmetry between deeper clouds growing and
maintaining the trade-wind inversion layer following Riehl et al. (1951) and Stevens
(2007), and shallower clouds growing the transition layer. The formation and dissi-
pation of shallow clouds in the transition layer moistens and cools (denoted by the
transparent blue area) the transition layer, rendering gradients smoother and weaker
compared to the dry boundary layer case.

.

143



which dries and warms and shrinks the layer. These ideas are also illustrated by

Fig. 5-12b reproduced from Riehl et al. (1951). In a similar way, clouds evaporating

in the transition layer grow and maintain the transition layer compared to the abrupt

discontinuity observed in the cloud-free boundary layer case. The transition layer

then more closely resembles the properties of the mixed layer. These findings suggest

a symmetry between shallow and deep clouds, with each population growing its own

layer, as illustrated schematically in Fig. 5-12c. These results also suggest that small

clouds beget larger clouds. Small clouds ‘precondition’ the large-scale environment

and decrease the resistance to convection through weaker vertical gradients in the

transition layer, making it easier for deeper clouds to form, similar to the ideas ex-

pressed in Neggers (2015), though his preconditioning occurs above what he calls the

transition layer in an ‘acceleration-detrainment layer’. Similarly, Janssens et al., in

prep show that, in large-eddy simulations, a thicker transition layer with smoothly-

varying gradients in 𝑞 and 𝜃 favors the growth of moisture variance that helps promote

mesoscale organization of cloudiness.

From this analysis emerges the potential for an additional contribution to the

energetics of entrainment mixing, which is based on the ability to detrain condensate

whose cooling and moistening lessens the work that needs to be done by entrainment,

effectively allowing for values of 𝐴e that are larger than 0.2 (see Fig. 5-13). This

view contrasts with the classical view established from dry boundary layers. The

classical view of entrainment posits that overshooting plumes must do work on the

overlying stratified fluid in order to bring down tendrils or filaments of overlying, more

stable fluid and mix it into the turbulent boundary layer below (e.g., Bretherton,

1997) (cf., Fig. 5-13a). Fig. 5-13c, however, highlights how the cloud liquid water

dissipation flux allows for more negative ‘effective’ dry buoyancy fluxes and thus

larger 𝐴𝑒. The net buoyancy flux is weakly positive in the transition layer due to the

compensation between the liquid water flux and more negative dry buoyancy flux.

That is, the preconditioning picture of shallow cumuli progressively injecting their

moisture and cooling the environment is one of ‘subtle persuasion’ rather than ‘brute

force’ entrainment in dry layers. We do not, however, find compelling evidence that
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Figure 5-13: Profiles of the ratio of the buoyancy flux to its surface buoyancy flux
for different cases, which are used to illustrate the entrainment efficiency, 𝐴, or its
effective value 𝐴𝑒. Shown in (a) is the classical mixed layer model view of an abrupt
discontinuity at the mixed layer top, wherein 𝐴 is the minimum ratio of the buoyancy
flux to its surface value and is found at the layer-top. This view is contrasted with a
finite-thickness transition layer in which the minimum buoyancy flux (corresponding
to 𝐴) is not found at the mixed layer top, but rather 𝐴𝑒 extrapolated (in the dotted
black line) to the layer-top is the value required to obtain the correct mixed layer
heating and cooling rates from the slope of the buoyancy profile. Panel (c) illustrates
how the liquid water flux (dotted blue line) can contribute to the net buoyancy flux
(solid blue line) and compensate for more negative (extrapolated, dotted black line)
dry buoyancy fluxes and larger 𝐴𝑒. The contribution of the liquid water flux can be
thought of as an addition ‘boost’ to the energetics of entrainment mixing.
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a larger 𝐴e in cloudy conditions implies a greater rate of deepening, but rather that

it helps grow an effectively deeper layer.

Building upon findings in Riehl et al. (1951), Stevens (2007), moreover, show that

the cloud layer growth could be represented using concepts based on cloud-free, or

dry mixed layer theory. He finds that a simple model that is formulated in terms of

an ‘effective’ dry buoyancy flux is skillful at predicting the cloud layer growth in large

eddy simulations. These findings suggest that cloudy processes can still be represented

using cloud-free mixed layer theory if effective parameters are introduced. This result

is similar to the findings in Chapt. 4 wherein an entrainment formulation based on

mixed layer theory and dry boundary layers was used, but effective parameters were

introduced to account for ambiguities resulting from the finite-thickness transition

layer, which, as shown here is produced by cloud-mediated processes. Mixed layer

theory, with slight modifications, still closes subcloud layer moisture and heat budgets.

These considerations highlight that extensive observations from the field, such as from

the EUREC4A campaign, open the door to revisiting old concepts and testing their

applicability when confronted with more extensive new data. This confrontation, in

turn, allows for improved understanding of the origins of the characteristic vertical

structure of trade-wind air.
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Chapter 6

Uncertainty in trade cumulus feedbacks

still contributes to uncertainty in global

cloud feedbacks in CMIP6

6.1 Outline

In the second part of this thesis, physical understanding developed in chapters 2–

5 is applied to the evaluation of general circulation models (GCMs). In previous

CMIP ensembles, uncertainties regarding trade cumulus cloud changes were shown to

explain large differences in global cloud feedbacks and climate sensitivity (e.g., Bony

and Dufresne, 2005; Webb et al., 2006; Vial et al., 2013; Brient and Schneider, 2016).

The CMIP6 models have been updated in numerous ways, such as regarding their

convection schemes, microphysics schemes, and vertical resolution (e.g., Gettelman

et al., 2019; Danabasoglu et al., 2020; Zelinka et al., 2020). It is therefore not a priori

clear how large a role trade-wind clouds still play in explaining global uncertainties.

This chapter uses CMIP6 models to motivate a continued focus on trade cumulus

cloud feedbacks. It acts as preparation for Chapt. 7, which presents the first process-

based constraint on this trade cumulus feedback. In this chapter and Chapt. 6,

Jessica Vial pre-processed the amip and amip4K model output and provided valuable

Sec. 6.5 in this chapter contributed to Boucher et al. (2020), published in the Journal of Advances
in Modeling Earth Systems in May 2020. The remaining analysis is unpublished and served as addi-
tional validation for the importance of trade cumulus cloud feedbacks in motivating the EUREC4A
campaign.
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guidance throughout this analysis. The structure of this chapter follows the well-

known quip from Winston Churchill (1874–1965) of a ‘riddle wrapped in a mystery

inside an enigma’. Here the question is whether the riddle of trade-wind clouds,

wrapped in the mystery of tropical clouds, still contribute to enigmas surrounding

global cloud feedbacks and climate sensitivity.

6.2 Methods

6.2.1 Estimating equilibrium climate sensitivity

As introduced in Chapt. 1, the equilibrium climate sensitivity (ECS) is one of the

earliest metrics for quantifying the climate system response to carbon dioxide (CO2)

forcing (Charney et al., 1979; Cess et al., 1989). As defined in these studies, the

top-of-atmosphere (TOA) radiative imbalance, ∆𝑅, can be expressed linearly as the

sum of the radiative forcing, 𝐹 , and the product of a feedback parameter, 𝜆, and the

global-mean surface temperature change, ∆𝑇 ,

∆𝑅 = 𝐹 + 𝜆∆𝑇. (6.1)

This product, 𝜆∆𝑇 , is also referred to as radiative damping.

The ECS is defined as the global-mean surface temperature change, 𝑇eq, that

restores a TOA radiative balance, ∆𝑅=0, after a carbon dioxide doubling,

𝐸𝐶𝑆 = ∆𝑇eq = −𝐹2xCO2

𝜆
. (6.2)

The ECS depends both on the radiative forcing associated with a CO2 doubling,

𝐹2xCO2 and the strength of the radiative feedback parameter, 𝜆. A climate system

that more effectively reflects shortwave radiation to space, such as through greater

low cloud fraction, or more effectively radiates longwave radiation away to space,

such through fewer upper-tropospheric clouds, requires less warming, ∆𝑇 , to restore

a planetary energy balance (e.g., Zelinka et al., 2020; Meehl et al., 2020). A key
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assumption is that the radiative damping, 𝜆∆𝑇 , in Eq. 6.2 can be expressed as a

product of a single, time-invariant feedback parameter, 𝜆, and ∆𝑇 . A large body of

research has highlighted that the constant 𝜆 assumption is imperfect, such as due to

different radiative feedbacks actualized on different response timescales (e.g., Armour

et al., 2013; Proistosescu and Huybers, 2017) and the state-dependence of feedbacks

(e.g., Bloch-Johnson et al., 2015).

Here ECS is estimated following Gregory et al. (2004), similar to Andrews et al.

(2012) and Zelinka et al. (2020). Anomalies are calculated as the difference between

the first 150 years of global-annual output from abrupt-4xCO2 simulations (coupled

GCM simulations wherein atmospheric CO2 concentrations are abruptly quadrupled

from their preindustrial baseline and then held fixed) and a preindustrial control sim-

ulation, piControl. Positive radiative fluxes are defined downwards. Note that ECS

using 150 years of warming is sometimes referred to as the ‘effective’ climate sensi-

tivity instead of the equilibrium climate sensitivity since the model has not reached

equilibrium above 150 years (e.g., Rugenstein et al., 2020; Meehl et al., 2020). Here

the two terms are used interchangeably, given the focus on understanding relative

differences among models.

Using a subset of 12 CMIP6 models, Fig. 6-1a suggests that there is a bimodal

distribution of ECS, with a mean of 4∘C and two cluster of models around 3∘C and

5∘C, which is consistent with the inferences in Zelinka et al. (2020) and Flynn and

Mauritsen (2020) who use a larger sample of models. In the following analysis, low

and high ECS are defined relative to the CMIP6 mean of 4∘C. The second distribution

of models having ECS values higher than 5∘C was not present in CMIP5, which was

unimodal and had a range of 2.1–4.7∘C (Taylor et al., 2012; Andrews et al., 2012).

As discussed in Sec. 1.2.1, the shift towards higher ECS in the CMIP6 ensemble

is thought to result from correcting too-negative extratropical low cloud feedbacks,

compared with satellite constraints. This correction then unmasked the consistently

too-positive trade cumulus feedbacks, driving high ECS values (Myers et al., 2021).

I explore an additional way of quantifying climate sensitivity that produces a

distribution of values and allows for examining the influence of the nonlinear forcing-
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a.

b. c. d. r=0.66

Figure 6-1: (a) Distribution of ECS estimated for the models listed in the legend, and
scatter plots of (b) global ∆CRE and ECS (c), tropical ∆CRE and global ∆CRE,
and (d) tropical ∆CRE and ECS. High climate sensitivity models, defined as ECS
> 4∘C are red, and low climate sensitivity models (ECS < 4∘C) are blue. 5–95%
uncertainty on the linear regression (grey shading) is defined from re-sampling 1000
times with replacement (‘bootstrapping’).

150



temperature response relationship. Methodologically, the approach bins annual-mean

data, samples one value from each bin, performs a linear regression using one value

from each bin, and then repeats this procedure many times (‘bootstrapping’). This

‘binning and bootstrapping’ method contrasts with performing a single linear regres-

sion on all data. Binning the data better illustrates a potential nonlinearity in the

forcing-response relationship (Fig. 6-2a scatter plot vs. Fig. 6-2b binned data). Re-

peatedly sampling (for instance 1000 times) yields a distribution, such as for climate

sensitivity in Fig. 6-2c. For the IPSL-CM6A-LR model, the mean climate sensitiv-

ity from this method is similar to results from the Gregory et al. (2004) regression.

Using 300 years of model output, ECS from the Gregory et al. (2004) method is

4.8∘C, equal to the mean from the binning and bootstrapping approach. The 5-95%

uncertainty from the binning and bootstrapping approach (4.2–5.7 ∘C) is, however,

larger than the 5-95% uncertainty on the regression (4.3–5.2 ∘C). This larger range in

the binning and bootstrapping approach suggests that influences from the nonlinear

forcing-response relationship tend to be small but could influence the upper bound,

at least for the IPSL-CM6A-LR model as shown in Fig. 6-2. In the following analysis,

we, however, return to the Gregory et al. (2004) method for consistency with other

studies.

6.2.2 Quantifying cloud radiative responses

In previous ensembles, the spread in cloud feedbacks was the primary driver of the

spread in climate sensitivity (e.g., Bony and Dufresne, 2005; Vial et al., 2013; Zelinka

et al., 2020). Here we quantify the spread in cloud radiative responses among a subset

of models using a simplified metric, the change in the cloud radiative effect (∆CRE),

in order to quantify how much differences in this ∆CRE, globally, in the tropics, and

in the trades, contribute to uncertainty in ECS.

The cloud feedback is a component of the radiative feedback, 𝜆, in Eq. (6.1)

and Eq. (6.2). A cloud feedback is a change in the top-of-atmosphere radiative flux

resulting from a change in cloud albedo (e.g., due to changes in droplet size, water

content), fraction, or altitude with warming. A positive feedback denotes that clouds
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Figure 6-2: (a) Canonical Gregory ordinary least-squares (OLS) regression using dif-
ferent lengths of global-annual data as given in the legend for ∆𝑅 and ∆𝑇 ; (b) an
example of binning 300 years of model output from IPSL-CM6A-LR to better see the
concavity in forcing and response; (c) the ECS distribution, with the mean denoted by
the vertical line, that results from binning data as in (b) and sampling one value from
each bin to perform the least-squares regression and repeatedly (here, 1000 times)
performing a regression.

change radiatively in a way that amplifies the initial warming, whereas a negative

feedback denotes that clouds change in a way that damps the initial warming. A

closely related quantity, the change in the cloud radiative effect (∆CRE), was shown

to be a skillful proxy for intermodel differences in the cloud feedback (e.g., Soden

et al., 2008; Vial et al., 2013). CRE is defined as the difference between all-sky (‘all’,

with clouds) and clear-sky (‘clr’, clouds artificially removed) net downward radiative

fluxes,

𝐶𝑅𝐸 = 𝑅all −𝑅clr = (𝐿𝑊clr −𝐿𝑊all) + (𝑆𝑊all −𝑆𝑊clr) = 𝐶𝑅𝐸LW +𝐶𝑅𝐸SW, (6.3)

with positive radiative fluxes defined downward. In present-day climate, net CRE

is negative (about -20 Wm−2) due to CRELW ≈ 30 Wm−2, reflecting the longwave

warming effect of high clouds, and CRESW ≈ −50 Wm−2, due to clouds enhancing

the planetary albedo (e.g., Ramanathan et al., 1989). A small change in the cooling

effect of clouds (∆𝐶𝑅𝐸 on the order of a few Wm−2) due to global-mean warming,

∆𝑇 , could induce a strong feedback, motivating the large, long-standing focus on

better constraining the cloud feedback, which is proportional to ∆𝐶𝑅𝐸/∆𝑇 (e.g.,
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Ramanathan et al., 1989; Bony et al., 2006).

Here ∆CRE is defined as the difference in CRE between a perturbed and control

climate simulation. Cloud feedbacks are equal to the ∆CRE with an offset, typically

0.3 Wm−2 (e.g., Soden et al., 2008), accounting for the masking effects of clouds on

clear-sky fluxes. For instance, removing a high cloud in a dry atmosphere would

have a larger influence on the outgoing longwave radiation than would removing such

a cloud in an already moist and opaque atmosphere. Whereas the ∆CRE is not a

reliable metric of the absolute magnitude of the cloud feedback, it is a skillful proxy

for intermodel spread in the cloud feedback as calculated from other methods (e.g.,

Vial et al., 2013; Zelinka et al., 2020). The global ∆CRE calculated for this subset

of models has a Pearson correlation coefficient r=0.99 with global cloud feedback

estimates from Zelinka et al. (2020) using the kernel method. I therefore use ∆CRE

as a simplified method for examining the spread in cloud feedbacks.

6.3 Uncertainty in ECS still driven by spread in global

and tropical cloud feedbacks

Fig. 6-1b shows that, in this representative subset of models, the spread in the global

∆CRE can explain 55% of the variance in ECS (r=0.74). Variability in climate

sensitivity is driven more by variance in the shortwave ∆CRE (r=0.61) than by

variance in the longwave ∆CRE (r=-0.25) (not shown). The explanatory power of

the global ∆CRE for ECS in this sample is similar to that in the previous CMIP5

ensemble, r=0.73 (e.g., Ceppi et al., 2017). The global ∆CRE can result from multiple

physical processes, such as rising high clouds (e.g., due to fixed anvil temperature

hypothesis), the iris effect (e.g., decreasing anvil cloud fraction with warming), cloud

fraction changes in shallow clouds over tropical oceans, and cloud fraction and phase

changes in extratropical clouds (e.g., Bony et al., 2006; Ceppi et al., 2017). It is thus

not a priori clear how large a role the tropics, or cloud fraction changes in the trades,

in particular, play in explaining global ∆CRE and climate sensitivity.
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Only the tropical ∆CRE can, however, still explain 44% of the variance in climate

sensitivity (r=0.66, Fig. 6-1c) and 76% of the variance in the global cloud feedback

(r=0.87, Fig. 6-1d). The tropics are defined equatorward of 30∘. The extratropical

∆CRE, by contrast, explains only 18% of the variance in ECS (r=0.42). While

changes in extratropical cloud feedback can explain the shift towards higher mean

values from CMIP5 to CMIP6, variance in the tropical ∆CRE can still explain more

variance within ensembles. The origins of the spread in tropical ∆CRE are therefore

examined in greater detail in the following sections.

6.4 Trade-wind cloud responses differ between high

and low climate sensitivity models

6.4.1 Conceptualizing the tropical circulation

The tropical cloud responses can further be decomposed using the framework from

Bony et al. (2004). The tropical radiation budget depends on the distribution of

cloud types, which in turn is controlled, to first-order, by the large-scale atmospheric

circulation (Bony et al., 2004). Large-scale atmospheric subsidence favors the forma-

tion of shallow clouds, such as trade-wind cumuli and stratocumulus clouds, whereas

large-scale ascending motion is associated with deeper convective clouds (Fig. 6-3a).

This framework uses the large-scale vertical velocity at 500 hPa, 𝜔500 (expressed in

hPa/day), as a proxy of the large-scale atmospheric circulation. 𝜔500 is the first

baroclinic mode of the large-scale circulation in the deep tropics and correlates well

with the total diabatic heating of the column, and hence with the precipitation. The

tropical circulation can be discretized as a series of dynamical regimes, wherein the

ascending branches of large-scale circulations with warm sea surface temperatures

correspond to negative values of 𝜔500, and regions of colder sea surface temperatures

and large-scale subsiding motions correspond to positive values of 𝜔500. To first order,

the signs of negative or positive 𝜔500 therefore correspond to large-scale convergence

or large-scale divergence. The trades are often identified between 10 to 30 hPa/day
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(e.g., Bony et al., 2004; Brient et al., 2016).

The tropical circulation can also be conceptualizing using the large-scale verti-

cal pressure velocity at 700 hPa, 𝜔700, and estimated inversion strength, EIS, more

precisely discriminate among low-cloud regimes, such as between the trades and stra-

tocumulus regimes. This approach is similar to Medeiros and Stevens (2011) and

Medeiros et al. (2015) using lower tropospheric stability and 𝜔500, and is analogous

to the approach in Myers et al. (2021). Following Myers et al. (2021), we identify the

trades as areas with climatological annual-mean EIS below 1 K and 𝜔700 between 0

and 15 hPa/day.

In the following analysis, ten amip models from CMIP5 and CMIP6 are used

(see Table 6.1), which are a different sample of models presented above. The amip

simulations are global simulations of the atmosphere and land surface forced by ob-

served sea surface temperatures (rather than letting these freely evolve as in coupled

piControl and abrupt-4xCO2 experiments), sea ice cover, and greenhouse gas concen-

trations (Gates et al., 1999). amip4K models add a uniform 4 K warming to the amip

simulations. Using observed sea surface temperatures (SST) avoids known biases in

coupled models, but there are downsides, such as eliminating feedbacks between the

atmosphere and ocean. In coupled models, Liu et al. (2013) show that SSTs are too

cold and not variable enough in the Atlantic warm pool compared to observations,

and Zhou et al. (2016) show that SSTs are too warm in the eastern equatorial Pacific

compared with observed SSTs.

∆CRE values are calculated as the difference between CRE in amip4K and

amip simulations and then normalized by the 4 K temperature difference in these

simulations to give a proxy for the cloud feedback. Qin et al. (2022) find good

agreement between cloud feedbacks across geographic locations calculated using cou-

pled (e.g., abrupt-4xCO2 and piControl) and uncoupled, atmosphere-only simulations

(e.g., amip4K and amip), justifying our use of atmosphere-only simulations to analyze

the spread of cloud feedbacks. For these amip experiments, for heuristic purposes,

ECS values are taken from Zelinka et al. (2020), as ECS is calculated using abrupt-

4xCO2 and piControl experiments not amip4K and amip experiments, with low and
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Figure 6-3: (a) An idealization of the tropical circulation as given in Emanuel et al.
(1994b), ranging from regions of large-scale ascent and deep convection to regions of
moderate large-scale subsidence and trade cumulus clouds (turquoise box) and strong
large-scale subsidence and stratocumulus clouds (dark blue box), as well as transi-
tion zones between trade cumuli and stratocumuli (dashed turquoise box). (b) The
probability density function of 𝜔500 in seven CMIP6 piControl simulations (listed in
the legend), with the colored shading denoting one standard deviation of monthly
values around 20-year climatology. The turquoise box denotes trade-wind regions as
defined as 𝜔500 values from 10–30 hPa/day. (c) A satellite view of ‘flower’ clouds
that could represent clouds found in the cumulus-stratocumulus transition zone, the
dashed turquoise box in panels a. and d. (d) The mean frequency distribution
of tropical dynamical regimes averaged over ten amip simulations in EIS and 𝜔700

(pressure velocity at 700 hPa) space. Frequency of discretized dynamical regimes is
defined as the area covered by these regions, normalized by the total area of the trop-
ics. Following Myers et al. (2021), the trades are defined as areas with climatological
annual mean EIS below 1 K and 𝜔700 between 0 and 15 hPa/day (turquoise box).
Note that this 𝜔700 range differs from the 𝜔500 range. A potential intermediate zone
between cumulus and stratocumulus clouds is extended from 15–25 hPa/day (dashed
turquoise box). Also shown are the EIS and 𝜔700 values corresponding to stratocu-
mulus regimes (darker blue).
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Model acronym Model Country
BCC-CSM2-MR Beijing Climate Center, Climate System Model, version 2 China
CanAM4 Canadian Centre for Climate Modelling and Analysis, Fourth Generation Canada
CESM2-WACCM Community Earth System Model (CESM) Whole Atmosphere Community Climate Model United States
CNRM-ESM2-0 Centre National de Recherches Météorologiques (CNRM) Earth system model, 2nd gen. France
CNRM-CM6-1 Centre National de Recherches Météorologiques (CNRM) coupled model, 6th gen. France
GFDL-CM4 Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Physical Model 4 United States
GISS-E2-1-G Goddard Institute for Space Studies (GISS), ModelE Atmosphere/GISS Ocean United States
GISS-E2-1-H Goddard Institute for Space Studies (GISS), ModelE Atmosphere//Hycom Ocean United States
HadGEM3-GC31-LL Third Hadley Centre Global Environment Model, Global Coupled configuration 3.1 United Kingdom
IPSL-CM5A-LR Institut Pierre-Simon Laplace (IPSL) coupled model, 5th generation France
IPSL-CM6A-LR Institut Pierre-Simon Laplace (IPSL) coupled model, 6th generation France
MIROC6 Model for Interdisciplinary Research on Climate Japan
MPI-ESM-LR Max Planck Institute for Meteorology Earth System Model Germany
MRI-ESM2-0 Meteorological Research Institute Earth System Model version 2.0 Japan
SAM0-UNICON Seoul National University Atmospheric Model, v.0, Unified Convection Scheme South Korea

Table 6.1: Additional information for model simulations used in this chapter, as
identified by their model acronym.

high ECS again defined relative to the CMIP6 mean of 4∘C.

Fig. 6-3b,d shows how the trades are the most common cloud regime in the trop-

ics in these two coordinate systems. In the ensemble-mean frequency distribution

(Fig. 6-3d), the trade-wind area covers 32% of the tropics, compared with 4.4% for

stratocumulus, using the respective EIS and 𝜔700 definitions from Myers et al. (2021)

and 39% of the tropics when defining the trades between 10–30 in hPa/day in 𝜔500.

The frequency distribution structure is similar for individual models. Perhaps sur-

prisingly, there is also substantial weight in between what Myers et al. (2021) define

as either trade-wind or stratocumulus based on the EIS-𝜔700 decomposition. The area

from 16–25 hPa/day and EIS < 1 K covers 14% of the tropics and could correspond

to transition zones between stratocumuli and trade cumuli, such as when stratocumu-

lus decks recede towards continents. These clouds could perhaps also correspond to

clouds named ‘flowers’ by Stevens et al. (2020b) and Bony et al. (2020), which tend

to be associated with stronger subsidence (Bony et al., 2020; Schulz et al., 2021).

In geographic space, Fig. 6-4 shows the frequency of occurrence of trade-wind

regions in two representative climate models, one having high ECS (IPSL-CM6A-

LR) and another with low ECS (BCC-CSM2-MR). Fig. 6-4 shows that trade-wind

regions cover wide swaths of tropical oceans. The EUREC4A measurement area east

of Barbados is nearly always classified as a trade-wind region across the ten models.
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Figure 6-4: Frequency of occurrence of trade-wind regions in geographic space in the
IPSL-CM6A-LR model (high ECS) and BCC-CSM2-MR (low ECS) using 30 years
of annual model output from amip simulations. Trade-wind regions are identified as
having EIS<1 and 𝜔700 between 0–15 hPa/day, as introduced previously and following
Myers et al. (2021).

6.4.2 Different thermodynamic and dynamic cloud radiative

responses for high and low ECS models

Clouds are sensitive to changes in both temperature and circulation. The Bony et al.

(2004) framework separates these two influences, decomposing a cloud variable, 𝐶,

such as the ∆CRE, into the sum of a thermodynamic component that is related to

temperature changes, a dynamic component that is related to changes in 𝑃𝜔, the

occurrence frequency of circulation changes, and a covariance term that tends to be

negligibly small,

𝛿𝐶𝜔 =

∫︁ +∞

−∞
𝐶𝜔𝛿𝑃𝜔 +

∫︁ +∞

−∞
𝑃𝜔𝛿𝐶𝜔 +

∫︁ +∞

−∞
𝛿𝑃𝜔𝛿𝐶𝜔. (6.4)

Discretizing this equation gives,

𝛿𝐶𝜔 =
∑︁
𝜔

𝐶𝜔∆𝑃𝜔 +
∑︁
𝜔

𝑃𝜔∆𝐶𝜔 +
∑︁
𝜔

∆𝑃𝜔∆𝐶𝜔 (6.5)

The dynamic component, 𝐶𝜔∆𝑃𝜔, represents the effect of changing circulation on the

cloud variable, without letting the clouds adjust in response to temperature. The
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Figure 6-5: (a) The thermodynamic component, P𝜔∆CRE, in 𝜔500 space for 4 high
(red) and 6 low (blue) ECS models, with the mean (solid line) and standard error
for the high or low ECS models (shading). In 𝜔500 space, trade-wind regions are
demarcated by the dashed lines from 10–30 hPa/day. Instead of in 𝜔500 space, (b)
and (c) show the thermodynamic component in the two-dimensional EIS-𝜔700 space
with the boxes defined in the same way as in Fig. 6-3.

thermodynamic component, 𝑃𝜔∆𝐶𝜔, by contrast, quantifies the effect of changing

temperature on the cloud response, holding circulation fixed.

To illustrate the association between clouds and circulation, Fig. 6-5 projects the

tropical thermodynamic cloud radiative response, 𝑃𝜔∆𝐶𝑅𝐸𝜔, resulting only from

temperature-induced changes, into the two circulation spaces (EIS-𝜔700 and 𝜔500).

A difference emerges between high and low ECS models in the trades. Trade-wind

clouds exhibit a moderate radiative sensitivity to temperature change, yet through

their ubiquity, or large statistical weight in 𝑃𝜔, they have a large net influence on

the tropical radiation budget. If defining the trades from 10–30 hPa/day in 𝜔500,

the fractional contribution of the trades to the tropical ∆CRE is 20% for low ECS

models and 46% for high ECS models. In general, the contribution to the spread of
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Figure 6-6: (a) The net ∆CRE in 𝜔500 space for 4 high (red) and 6 low (blue)
ECS models, with the mean and standard error in shading. Trade-wind regions are
demarcated by the dashed lines from 10–30 hPa/day. (b) and (d) show the net ∆CRE
in EIS-𝜔700 space with the boxes defined in the same way as in Fig. 6-3. (c) shows
the change in regime frequency, 𝛿𝑃𝜔500 between amip4K and amip simulations.

a variable, such as ∆CRE, can be quantified as,∑︀
𝜔trades

(∆𝐶𝑅𝐸h
𝜔 −∆𝐶𝑅𝐸l

𝜔)

∆𝐶𝑅𝐸
h −∆𝐶𝑅𝐸

l , (6.6)

where ∆𝐶𝑅𝐸 is the tropical-mean ∆CRE for high (h) or low (l) ECS models. As one

example, applying Eq. (6.6) to the thermodynamic ∆CRE and defining the trades

from 10–30 hPa/day in 𝜔500, trade-wind regimes contribute to 65% of the spread in the

tropical thermodynamic ∆CRE. This contribution is similar for different definitions

of the trades: 57% if defining the trades from 10–25 hPa/day, or 78% if defining from

0–30h hPa/day.

Fig. 6-6 shows the tropical net ∆CRE, including both the dynamic and thermo-

dynamic component, and the small covariance term. The correlation between the

tropical thermodynamic and net ∆CRE values is r=0.66. The change in regime fre-

quency, ∆𝑃𝜔, (Fig. 6-6c) illustrates the well-established finding that the large-scale
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vertical motions associated with tropical circulation weakens with warming. In trade

cumulus regimes, weakly-subsiding regions become more frequent at the expense of

more strongly-subsiding regimes, with ∆𝑃𝜔 values crossing zero around 15 hPa/day.

The structure and magnitude of the ∆CRE is driven more by the dynamic response to

changes in the large-scale circulation than the thermodynamic response. In particular,

the dipole structure in the net ∆CRE reflects the influence of the dynamic compo-

nent of ∆CRE, driven by the dipole structure in ∆𝑃𝜔 (Fig. 6-6c). Low ECS models

have more negative, stabilizing ∆CRE in weakly-subsiding regimes than do high ECS

models (Fig. 6-6a,d). In low ECS models, the more stabilizing ∆CRE likely arises

from a positive dynamic change in cloud fraction near cloud base and the trade-wind

inversion (Fig. 6-8b) and a less-negative thermodynamic component of cloud frac-

tion changes (Fig. 6-8a). These results may suggest that low ECS models simulate

stronger estimated inversion strength (EIS) (Wood and Bretherton, 2006) in these

weakly-subsiding regimes, whereas high ECS models are associated with weaker EIS,

as larger EIS and greater tropospheric stability is associated with increased cloudiness

(e.g., Wood and Bretherton, 2006; Myers and Norris, 2013).

6.4.3 Global influence of spread in trade cumulus feedbacks

Fig. 6-7, moreover, shows that these differences in the trade-wind ∆CRE can explain

differences in the global ∆CRE and climate sensitivity. Here the trades are selected

using the EIS and 𝜔700 criteria, but results are qualitatively similar if using the 𝜔500

criterion (not shown). Differences in the net trade-wind ∆CRE explain 69% of the

variance in the global ∆CRE (Fig. 6-7a) and 25% of the variance in ECS (Fig. 6-7b).

Also illustrated are the mean and standard deviation of the marine shallow cloud

feedback given in the International Panel of Climate Change’s Sixth Assessment Re-

port (IPCC AR6), which is assessed to be 0.2±0.16 Wm−2K−1 from multiple lines of

evidence (Arias et al., 2021). The large standard deviation reflects the existing uncer-

tainties associated with different approaches of constraining trade cumulus feedbacks

(Arias et al., 2021), as discussed in Chapt. 1.

These trade-wind ∆CRE values and thus correlations are, moreover, relatively
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Figure 6-7: Scatter plots between the (a) trade-wind net ∆CRE and global ∆CRE,
and (b) trade-wind net ∆CRE and ECS. Trade-wind regions are selected from the
EIS-𝜔700 criterion from Myers et al. (2021) as described in the text. Panel (c) and (d)
are similar, except with trade-wind regions defined using a slightly modified criterion
from Myers et al. (2021), wherein 𝜔700 values are less than 25 hPa/day (instead of
15 hPa/day), as a sensitivity test for trade-wind ∆CRE values. Red points denote
models with ECS > 4∘C, and blue points denote models with ECS < 4∘C. Uncertainty
on the regression is calculated from bootstrapping, with darker grey corresponding
to 25–75% uncertainty and lighter grey to 5–95% uncertainty on the regression. Also
shown is the mean (blue vertical line) and standard deviation (blue shading) of the
marine shallow cloud feedback as assessed from multiple lines of evidence in the IPCC
AR6.
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insensitive to different choices of the upper bound of 𝜔700 used in identifying trade-

wind regions, together with an EIS criterion. As one example, defining the trades

using 𝜔700 values up to 25 hPa/day, instead of 15 hPa/day as in Myers et al. (2021),

following discussions in Sec. 6.4.1, increases the mean trade-wind ∆CRE from a mean

of 0.31 to 0.46 Wm−2K−1. The correlation between the different ∆CRE values is,

however, one-to-one, r=0.996. The choice of upper bound on 𝜔700 therefore does not

strongly influence the relative differences among models and their correlations with

the global ∆CRE (Fig. 6-7c) and climate sensitivity (Fig. 6-7d). That said, Fig. 6-7

shows that the correlation values are sensitive to the inclusion of individual models,

such as the IPSL-CM5A-LR model. For climate sensitivity, the uncertainty range on

the correlation crosses zero (Fig. 6-7b,d). The uncertainty range does, however, not

span zero for the global ∆CRE (Fig. 6-7a,c).

6.4.4 Vertical cloud fraction changes in high and low ECS

models

The change in the vertical cloud fraction in the trades also differs between high and

low ECS models, similar to previous ensembles (e.g., Vial et al., 2013; Brient et al.,

2016). In previous ensembles, the trade cumulus feedback was shown to largely be

governed by changes in cloud fraction near cloud-base, which is, in turn, sensitive

to the representation of turbulence, convection, and radiation in models (e.g., Brient

et al., 2016; Vial et al., 2016).

Fig. 6-8 shows the change in trade-wind cloud fraction, expressed as the weighted

contribution to the net tropical cloud fraction change, which is on the order of one-

or two-percent across models. Trade-wind regions are selected from the 𝜔700 and

EIS criteria as described earlier, but results are similar when selecting on the basis of

𝜔500. The three panels correspond to the thermodynamic change (Fig. 6-8a), dynamic

change (Fig. 6-8b), and the net change (Fig. 6-8c). Cloud changes between high and

low sensitivity models tend to be most pronounced at two levels – around cloud base

at about 930 hPa (∼ 700 m) and the inversion base at about 800 hPa (∼ 2 km).
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Figure 6-8: Contribution of cloud fraction changes in trades to the tropical cloud
fraction change between amip4K and amip simulations for high (4 models, red) and
low ECS models (6 models, blue). Shown are the (a) thermodynamic change, 𝑃𝜔∆𝐶𝜔,
(b) dynamic change, ∆𝑃𝜔𝐶𝜔, and (c) net change, 𝛿𝐶𝜔, where 𝐶𝜔 refers to cloud
fraction. The shading is the standard error. Trade-wind regions are selected from the
𝜔700 and EIS criteria, following Myers et al. (2021), as described in the text.

In observations, cloudiness near cloud-base is nearly two-thirds of the total cloud

cover in the trades (Nuijens et al., 2014), and in previous model ensembles, cloud-

base cloud fraction changes with warming were strongly associated with the spread

in trade cumulus cloud feedbacks (e.g., Brient et al., 2016; Vial et al., 2016). These

considerations motivate a focus, in the next chapter, on cloud-base cloud fraction and

its sensitivity to environmental changes.

6.5 Analysis of climate sensitivity in the IPSL-CM6A-

LR model

Before concluding, a more in-depth examination of the causes of higher ECS in the

IPSL-CM6A-LR model relative to its predecessor, IPSL-CM5A-LR, is discussed. This

analysis contributed to Boucher et al. (2020) (its Sec. 6 on climate sensitivity) and

is described below.
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When calculated with the Gregory et al. (2004) method, the effective ECS be-

tween IPSL-CM5A-LR and IPSL-CM6A-LR increases from 4.0 to 4.5 K using 150

years of data, or from 4.1 to 4.8 K using 300 years of data. The relative contri-

butions to ECS are calculated following Dufresne and Bony (2008) and Vial et al.

(2013), and illustrated in Fig. 6-9a. This method decomposes the contributions to

ECS into (i) rapid tropospheric and stratospheric adjustments to carbon dioxide and

(ii) temperature-mediated feedbacks operating on longer time scales. More specifi-

cally, the rapid tropospheric adjustment includes the climate response associated with

all tropospheric adjustments (temperature, water vapor, and clouds), surface albedo

change, and the small land surface warming due to the CO2 forcing (Vial et al.,

2013). The method also quantifies the relative contributions of the water vapor and

temperature lapse rate, surface albedo, and cloud feedbacks. Individual feedbacks

are calculated by the radiative kernel method (Bony et al., 2006; Soden et al., 2008;

Shell et al., 2008). A radiative kernel acts as a partial derivative, representing the

sensitivity of the radiative flux, 𝑅, to changes in a climate variable, 𝑋, such as water

vapor, temperature, and surface albedo. To find the kernel, the radiative code of a

climate model is run offline with a standard perturbation, such as 1 K warming at

each vertical level, moistening that would occur from warming by 1 K at constant

relative humidity, and changing surface albedo by 1%. The radiative kernel, 𝜕𝑅
𝜕𝑋

, is

multiplied by the change in the climate variable of interest diagnosed from a model

simulation and then normalized by the global-mean surface temperature change to

yield the feedback value,

𝜆𝑥 =
𝜕𝑅

𝜕𝑋

𝜕𝑋

𝑑𝑇
. (6.7)

We employ the same kernels as in Shell et al. (2008) for water vapor, temperature,

and surface albedo. The cloud feedback is calculated as a corrected residual term,

correcting for a cloud-masking term following Vial et al. (2013), which adds a con-

sistent offset to net cloud feedback value estimated from the cloud radiative effect

method (e.g., Andrews et al., 2012). A small residual term reflects nonlinearities in

the relationship between radiative perturbation and the temperature response.
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Figure 6-9: (a) Global radiative feedbacks, calculated with the kernel method fol-
lowing Vial et al. (2013) and described in Sec. 6.5, for IPSL-CM5A-LR and IPSL-
CM6A-LR models, with each model labelled as either ‘CM5A’ or ‘CM6A’. (b) These
feedbacks for the two IPSL versions are also shown relative to the CMIP5 mean feed-
back values (dark blue) given in Ceppi et al. (2017), showing that the global cloud
feedback in the IPSL-CM5A-LR model was much more positive than the CMIP5
mean or the IPSL-CM6A-LR model. Panel (c) shows that a relative humidity bias in
the CMIP5 model version (left) increased further in IPSL-CM6A-LR (right) relative
to ERA Interim reanalysis. (d) Differences between relative humidity (%) after 150
years of the abrupt-4xCO2 experiment and values in the piControl experiment for the
IPSL-CM6A-LR model.
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The main drivers of this larger ECS in IPSL-CM6A-LR are, somewhat unexpect-

edly, more positive rapid tropospheric adjustment to CO2, and a stronger combined

lapse rate and water vapor feedback (Fig. 6-9a), rather than a stronger cloud feedback.

We diagnose the strong tropospheric adjustment from aqua-4xCO2 and amip-4xCO2

simulations, as well as the abrupt-4xCO2 simulations, and find that the stronger

adjustments come from clear-sky regimes (not shown). The stronger water vapor

feedback primarily results from strong moistening tendencies in weakly-ascending

regimes around 500 hPa (Fig. 6-9d). We diagnose this moistening tendency in weak

ascent regimes by projecting the relative humidity anomalies, defined as the difference

between relative humidity after 150 years of the abrupt-4xCO2 simulation and the

piControl, into a circulation regime basis, based on 𝜔500 (Bony et al., 2004). Relative

humidity anomalies reach up to 15% in these weak ascent regimes. The IPSL-CM6A-

LR model is, however, also too moist in the historical tropical atmosphere compared

with ERA-Interim data (Fig. 6-9c), which suggests the moistening under warming

might be exaggerated as well. The net cloud feedback is less positive than in previous

model versions (Fig. 6-9a). The IPSL-CM6A-LR model is somewhat of an outlier

that predicts a high ECS without a strong global cloud feedback (e.g., Fig. 6-1a.,c).

An anticorrelation between the strength of the cloud and combined lapse rate

and water vapor feedback was noted by Huybers (2010) for the CMIP3 ensemble.

The two IPSL model versions appear to trade-off in the strength of the combined

global lapse rate and water vapor feedback and cloud feedback. In the subset of

12 CMIP6 models analyzed here, such an anticorrelation is also evident (r=-0.68),

driven more by the water vapor (r=-0.62) rather than lapse rate feedback (r=0.25).

One physical hypothesis is that a mid-tropospheric increase in relative humidity and

cloudiness in weakly-ascending regimes could reflect a trade-off between shallow and

deep convection schemes. If thermals are not strong enough to trigger deep convection,

water vapor and cloudiness accumulate in the mid-troposphere after being transported

there by shallow convection, yielding a positive water vapor feedback and negative

cloud feedback. This mechanism is, however, confined to a single tropical regime,

whereas the feedbacks are global. It would be useful to more systematically examine
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potential physical origins of such compensations, such as whether they are tied to a

single regime or physical mechanism across models.

6.6 Initial conclusions

In a representative sample of CMIP6 models, differences in trade-wind cloud responses

can still discriminate between high and low sensitivity models. The trade-wind ther-

modynamic and net change in the cloud radiative effect (∆CRE), as well as vertical

changes in cloud fraction, differ between high and low sensitivity models. The trade-

wind net ∆CRE can, moreover, explain about 70% of the variance in the global

cloud feedback. These analyses show that trade-wind cloud feedbacks are still a large

source of uncertainty in global cloud feedbacks, even if other regions contribute to

the spread in ECS in CMIP6 more so than in previous CMIP ensembles (e.g., Zelinka

et al., 2020). These findings are similar to those shown for CMIP5, such as in Vial

et al. (2013) and Brient et al. (2016), albeit for a larger number of models.

Three main conclusions are drawn from this chapter that motivate analyses in

the following chapter. First, large differences remain in CMIP6 among modeled trade

cumulus cloud responses to warming. Second, these differences in trade cumulus cloud

responses to warming differ between high and low ECS models. Third, the inability

to assess which group of modeled responses are more physically credible highlights a

fundamental gap in our understanding of the environmental controls on trade-wind

cloudiness. The next chapter tries to improve this understanding with EUREC4A

observations in order to constrain trade cumulus feedbacks.
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Chapter 7

Constraining trade cumulus feedbacks

with EUREC4A

7.1 Introduction

The skill of mixed layer theory for obsessionally closing subcloud layer moisture and

energy budgets (Chapt. 4) gives confidence that it can also be applied to the subcloud

layer mass budget. In the following chapter, the motivation and key results of Vogel

et al. are summarized, with a focus on my contributions. Vogel et al. use mixed layer

theory and novel sampling strategies to perform the first observational test of the

‘mixing-desiccation’ hypothesis.

I am the second author on the Vogel et al. study and contributed to the analysis in

two main ways. My first contribution was constraining the entrainment rate from the

subcloud layer thermodynamic budgets and estimating the subcloud layer depth, as

discussed in Chapt. 4. Together with Jessica Vial, my second contribution is analyzing

how GCMs represent the mixing-desiccation hypothesis in present-day (Sec. 7.4) and

relating these representations to trade-wind cloud radiative responses to warming

(Sec. 7.5).

Analysis in this chapter contributed to Vogel et al., which has been accepted in Nature.
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7.2 Mixing-desiccation hypothesis

EUREC4A was originally conceived to observationally constrain trade-wind cloud

feedbacks that were shown to explain large differences in climate sensitivity (Bony

et al., 2017; Stevens et al., 2021), as introduced in Chapt. 1 and further discussed in

Chapt. 6. A substantial chain of research has formulated a specific physical idea about

what influences changes in cloudiness with warming. This idea can be expressed as

the mixing-desiccation hypothesis, or the cloud fraction vs. mass flux dilemma. An

increased convective mass flux evacuates more mass from the subcloud layer, deep-

ening the cloud layer. This deepening through cloud formation causes mixing at the

cloud top, which brings down dry air from the free troposphere. As a result, the moist

lower troposphere becomes relatively drier, leading to the evaporation, or desiccation,

of clouds near their base. As a result, the mixing-desiccation hypothesis predicts an

inverse relationship between convective mixing and cloud-base cloud fraction (e.g.,

Gettelman et al., 2012; Rieck et al., 2012; Zhang et al., 2013; Sherwood et al., 2014;

Tomassini et al., 2014; Brient et al., 2016; Vial et al., 2016; Bony et al., 2017). In

a warmer climate, the lower tropospheric humidity gradient increases, following the

nonlinear Clausius-Clapeyron relationship. All else equal, vertical mixing even more

efficiently dries the environment at cloud-base. The decrease in cloud-base cloudiness

is expected to lead to a more positive cloud feedback (e.g., Bony et al., 2017).

Early support for this conceptual picture comes by analogy with the process of

stratocumulus breaking up into cumulus. Bretherton and Wyant (1997) use a mixed

layer model and find that increasing surface latent heat fluxes, relative to cloud-top

radiative cooling, drive the decoupling of the stratocumulus layer. That is, increased

surface fluxes, and thus convective mixing (e.g., Tiedtke, 1989), appear to break up

stratocumulus into cumulus and reduce cloud fraction. Studies with GCM-ensembles

and single GCMs also support the idea that increased convective mixing decreases

cloudiness at cloud-base. Sherwood et al. (2014) use 43 GCMs (in CMIP5) to show

that differences in the simulated strength of convective mixing between the lower

and mid-troposphere in the tropics can explain about 50% of the spread in climate
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sensitivity. Stevens et al. (2016b), Tomassini et al. (2014), and Vial et al. (2016)

use single climate models run in configurations that differ in their convective mixing

parameters and also find evidence that increased convective mixing decreases cloud-

base cloudiness.

Other approaches, however, do not find a strong reduction in cloud-base cloudiness

with convective mixing. As discussed in Chapt. 1, process-based studies using large-

eddy simulations suggest that low clouds are more resilient to changing environmental

conditions than many GCM studies suggest (e.g., Blossey et al., 2013; Zhang et al.,

2013; Bretherton, 2015; Vogel et al., 2016; Radtke et al., 2021), supporting a neutral

or only slightly positive trade cumulus cloud feedback. Using the MIROC model,

Kamae et al. (2016) find that differences in lower-tropospheric mixing can explain the

spread in low-cloud feedbacks in only half of a perturbed physics ensemble. Myers

et al. (2021) and Cesana and Del Genio (2021) use satellite measurements and also

find evidence for a near-zero trade-wind cloud feedback. The physical mechanisms

behind an apparent robustness of trade-wind clouds to warming are, however, not yet

understood.

An alternate null hypothesis is that increased convective mixing increases cloud-

base cloudiness by moistening the large-scale environment at cloud-base. Such a

hypothesis is not the mixing-desiccation hypothesis, but could instead be called the

mixing-moistening hypothesis. There are multiple reasons why the mixing-desiccation

hypothesis could be wrong. Observed mesoscale vertical velocity is, for instance,

larger than the longer timescale-mean values that are typically used in models of

varying complexity (Bony and Stevens, 2019; George et al., 2021). This larger vari-

ability in vertical velocity could introduce dynamic controls on cloudiness that might

be missing in models. It is also not a priori clear whether an increased mass flux and

entrainment necessarily decrease relative humidity, or could instead increase relative

humidity by deepening the subcloud layer (Vogel et al., 2020).
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7.3 First observational test of this mechanism

7.3.1 Measurements and methods

To observationally test this hypothesis requires jointly measuring the cloud fraction

(𝐶), mass flux (𝑀), and relative humidity (𝑅𝐻) near cloud base. Vogel et al.,

in prep estimate all of these quantities for the first time at the process level using

EUREC4A observations. Despite their importance for climate sensitivity and cloud

feedback questions, these terms have never been jointly estimated from observations

given the challenges of making these measurements. Here the key points related to

the measurements and methods are summarized. Additional information is found in

Vogel et al., in prep.

To measure the cloud fraction at cloud base, 𝐶, the ATR-42 aircraft had horizontally-

staring backscatter lidar operating at 355 nm (‘ALIAS’, Airborne Lidar for Atmo-

spheric Studies) (Chazette et al., 2020) and horizontally-staring Doppler cloud radar

(‘BASTA’, Bistatic rAdar SysTem for Atmospheric studies) (Bony et al., 2022). A

radar-lidar synergy product of cloud fraction near cloud-base agrees well with in-

dependent, coincident estimates (see Fig. 17 of Bony et al. (2022)). The estimate

includes drizzle, making it an upper bound on cloud-base cloud fraction.

Vogel et al., in prep consider the mass flux, 𝑀 , as a proxy for the lower-tropospheric

convective mixing. It can be estimated as a residual from the subcloud layer mass

budget,
𝐷ℎ

𝑑𝑡
= 𝐸 −𝑀 +𝑊. (7.1)

The mass balance of the subcloud layer is based on mixed layer theory, as also eval-

uated in Chapt. 4 for subcloud layer moisture and energy budgets. In the mass

balance, the subcloud layer, having a depth ℎ, is controlled by the entrainment rate,

𝐸 (a mass source), the mass flux, 𝑀 (a mass sink), and the large-scale vertical ve-

locity, 𝑊 (either a mass source or sink), as, for instance, described in Stevens (2006).

As preparation for EUREC4A, Vogel et al. (2020) also evaluated the skill of this mass

budget framework using large-eddy simulations. These terms have units of height per
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time, such as mm/s. Note that depth, ℎ, multiplied by area and density corresponds

to mass.

Vogel et al. show that the time derivative and horizontal advection terms of ℎ are

small. If therefore assuming stationarity and homogeneity, 𝐷ℎ
𝑑𝑡

=0, 𝑀 can be solved

for as the residual of the subcloud layer mass budget. That it, the mass flux is the

sum of 𝐸 and 𝑊 ,

𝑀 = 𝐸 +𝑊. (7.2)

Vogel et al., in prep finds that the storage and advection terms are small and unbiased,

such that these assumptions are justified. Results are also qualitatively similar when

including the total derivative term.

Whereas 𝐶 is measured from the ATR-42, other terms, such as those to calculate

𝑀 , are estimated using over 800 dropsondes launched from the coincident HALO

aircraft. The subcloud layer height, ℎ, is estimated using the 𝜃𝑣-gradient method as

described in Chapt. 2. The method for calculating the entrainment rate, 𝐸, is also

described in Chapt. 2. Chapt. 4 constrains uncertain entrainment parameters using a

Bayesian inversion of subcloud layer moisture and energy budgets. This approach as-

sesses the skill of mixed layer theory and provides an independent constraint on 𝐸 for

the mass budget in Vogel et al., in prep. The vertical velocity, 𝑊 , is historically chal-

lenging to measure. During two smaller field campaigns in preparation for EUREC4A,

novel sampling strategies were developed and tested to measure 𝑊 (Bony and Stevens,

2019). With EUREC4A data, George et al. (2021) compute vertical profiles of 𝑊 by

vertically integrating the divergence of the horizontal wind field measured by drop-

sondes from the surface up to the flight level. These measurements allow for capturing

variations in the strength of mesoscale circulations (Bony and Stevens, 2019; George

et al., 2021). In this analysis, 𝑊 is taken at the subcloud layer top, ℎ. Relative

humidity, 𝑅𝐻, is also estimated from HALO dropsonde measurements at ℎ. Results

are similar when considering 𝑅𝐻 measured by the ATR-42. All terms are computed

at the one-hour circle-scale and then aggregated to the three-hourly circling-scale (see

terminology in Chapt. 4, Table 1).
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7.3.2 Observed relationships

To test the mixing-desiccation hypothesis, Vogel et al., in prep perform a multiple

linear regression between cloudiness, 𝐶, and mass flux, 𝑀 , and relative humidity,

𝑅𝐻,

𝐶 = 𝑎M𝑀 + 𝑎RH𝑅𝐻 + 𝐶0. (7.3)

𝑀 and 𝑅𝐻 are not correlated, with a Pearson correlation coefficient r=-0.075.

Contrary to the anticorrelation between 𝐶 and 𝑀 outlined by the mixing-desiccation

hypothesis, the observed correlation between 𝐶 and 𝑀 near cloud-base is strong and

positive, with r=0.72. That is, increased convective mixing is associated with in-

creased, rather than decreased cloudiness. Also including 𝑅𝐻 further tightens the

relationship, giving a correlation between predicted and observed 𝐶 of r=0.83, though

the relationship remains driven mostly by 𝑀 variations. Adding relative humidity

presumably improves the correlation because the large-scale moisture conditions in-

fluence the persistence of clouds and because not all clouds are active clouds and

associated with a mass flux (e.g., Stull, 1985). The physical mechanism will be fur-

ther discussed in Sec. 7.5, and more thoroughly presented in Vogel et al., in prep.

7.4 Comparison with GCMs

As a point of comparison, we examine how GCMs represent the couplings among the

same terms, 𝐶, 𝑀 , and 𝑅𝐻. Hourly modeling output at so-called cfSites-locations

is produced as part of the Cloud Feedback Model Intercomparison Project (CFMIP).

These 120 locations are sometimes coincident with measurement stations, such as the

Barbados Cloud Observatory, and are generally located in areas exhibiting a large

spread in intermodel cloud feedbacks (e.g. see Fig. 2 in Webb et al. (2017)). Despite

the general notion that GCMs do not produce output in the ‘space of observables’,

these point-wise model outputs are more amenable to comparison with in situ obser-

vations than GCM outputs on larger grid scales.

𝐶, 𝑀 , and 𝑅𝐻 are calculated for ten CMIP models (four from CMIP5 and six
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(a).

Figure 7-1: Box plots of cfSite output from ten amip model simulations for (a)
mass flux, 𝑀 , (b), relative humidity, 𝑅𝐻, and (c), cloud fraction, 𝐶. The box plot
corresponds to the interquartile range (from the first quartile to the third quartile),
with mean values shown in blue (medians not shown). Whiskers extend from the
box by 1.5 times the interquartile range. Flier points are those extending past the
whiskers. The interquartile range of observed EUREC4A values are outlined in red,
and the mean observed value is given by the dotted red line.
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from CMIP6) using the cfSites output. As in Vial et al., in prep, we use the amip

configuration from 1979–2008, selecting data in January and February to correspond

to EUREC4A measurements. For each model, between 2–6 cfSites locations are avail-

able in the north Atlantic trades between 59–44 ∘W and 11–16 ∘N. All profiles with

clouds above 600 hPa (about 4.2 km) are dropped to ensure a focus on shallow con-

vection. Values near cloud-base are selected as the first maximum below 850 hPa

(about 1.5 km). These vertical levels can differ for cloudiness, mass flux, and relative

humidity, but the height differences are, on average, zero. Results are qualitatively

similar when constraining all values to occur at the same level. After calculating

the near cloud-base values for all sites, we average across the available sites for each

model. These spatially-averaged, hourly outputs are then aggregated to the three-

hourly timescale, which corresponds to the circling-mean timescale of EUREC4A data

(see description in Chapt. 4). Hourly outputs are also aggregated to monthly-means

for studying longer timescale variability.

Fig. 7-1 shows that these ten models simulate a diversity of cloud-base mass flux,

relative humidity, and cloud fraction values for three-hourly data. Across models,

the mean 𝑀 ranges enormously from 1.25*10−11–61.6 mm/s, the mean 𝑅𝐻 ranges

from 86.4–99.4%, and the mean 𝐶 ranges from 2.06–29.7%. The observed 𝑀 values is

15.2±6.54 mm/s, with values denoting the mean and standard deviation. Observed

𝑅𝐻 values are 86.6±3.06%, and observed 𝐶 values are 5.38±1.94%. Except for one

model (IPSL-CM5A-LR), the mean modeled 𝑅𝐻 value is higher than observed mean

𝑅𝐻. Modeled 𝑀 values vary widely, including by many orders of magnitude. Eight

out of ten models predict 𝐶 values greater than the observed value, and four out of

ten models predict 𝐶 values that are more than twice the observed value.

Among models, the relationships among these variables also differ strongly, both

at the three-hourly and monthly timescale. Fig. 7-2a,b plot relationships among 𝐶

and 𝑀 and between 𝐶 and 𝑅𝐻 using non-standardized data (e.g., not divided by

the standard deviation) to show the diversity of simulated relationships. Given the

sometimes large differences among modeled values, for instance, in the magnitude of

𝑀 , values are, however, standardized in the following analysis. As a result of this
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standardization, the slope and correlation values are equal. In GCMs, the correlation

between standardized 𝐶 and 𝑀 ranges from -0.12 to 0.55 in three-hourly data and

-0.42 to 0.61 in monthly data. Three of ten GCMs have a negative correlation at

the three-hourly timescale and seven GCMs have a weakly positive correlation of

r<0.3. The observed correlation between 𝐶 and 𝑀 is, by contrast, 0.72, with a 50%

confidence interval from 0.65 to 0.82, outside the values spanned by these ten GCMs.

The relationships between 𝐶 and 𝑅𝐻 in models also show large variability (Fig. 7-

2b), yet these relationships overlap with the observed correlation. In the GCMs,

correlations range from 0.097–0.84 in three-hourly model output and 0.21–0.84 in

monthly model output. The correlation in three-hourly observed data is 0.36, towards

the center of the GCM range, with a 50% confidence interval from 0.16–0.55.

7.5 Can present-day variability constrain future cloud

changes?

One condition for the relevance of EUREC4A measurements for evaluating cloud

feedbacks, as discussed in Chapt. 2, is that variability expressed on shorter timescales

is informative of variability expressed on longer timescales. In the ten GCMs, a

strong association emerges between correlations estimated at the three-hourly and

monthly timescales, both for the 𝐶-𝑀 relationship (r=0.80, with a 5-95% confidence

interval from 0.33–0.95,) and 𝐶-𝑅𝐻 relationship (r=0.80, 0.21–0.96, 5-95% c.i.), as

shown in Fig. 7-3. These correlations provide important support that inferences from

EUREC4A data are informative about climate scale behaviors. More generally, these

correlations suggest that the physical processes underlying the relationships among

𝐶, 𝑀 , and 𝑅𝐻 are relatively timescale-invariant.

A common approach to narrowing uncertainty in climate variables involves so-

called ‘emergent constraints’ (e.g., Eyring et al., 2019; Hall et al., 2019). Emergent

constraints relate an observable quantity with an uncertain, non-observable climate

response parameter, such as cloud feedbacks or climate sensitivity. If a relationship
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a. b.

c. d.

Figure 7-2: Diversity of relationships between (a) 𝐶 and 𝑀 and (b) between 𝐶 and
𝑅𝐻. Note that in panels a. and b., data are not standardized (divided by standard
deviation) in order to show the variability among models, but the mass flux for
the IPSL-CM6A-LR model is divided by three so that its magnitude is comparable
to the other models. The circle refers the mean value, and the line is the linear
regression fit to model output or observations. Colors are consistent throughout
panels and correspond to values of the thermodynamic trade-wind ∆CRE, divided by
the 4 K change in global-mean surface temperature, with blue to red corresponding to
increasing values. Panel c. shows a bar plot of these thermodynamic ∆CRE values.
Panel d. plots aM/aRH versus 𝜎C as described in Sec. 7.5.
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a. b.

Figure 7-3: Relationship between three-hourly correlation and monthly correlation
between cloud fraction and mass flux (a) and between cloud fraction and relative
humidity (b). Symbols correspond to models as listed in the legend, and the black
line is the ordinary least squares regression. Dark and light grey shading correspond to
50% and 90% confidence interval on the regression, as estimated by bootstrapping, or
repeatedly sampling with replacement and performing the regression 1000-times. The
(three-hourly) observed correlation is given by the orange vertical line, and orange
shading corresponds to 50% uncertainty on the Pearson correlation, as estimated by
bootstrapping (rather than the Fisher transformation).
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(e.g., linear) emerges between these two variables, estimating the observable quan-

tity provides a ‘shortcut’ to constrain the non-observable variable. Early emergent

constraints were proposed for the hydrological cycle (Allen and Ingram, 2002) and

snow-albedo feedback and (Hall and Qu, 2006). Regarding Northern Hemisphere

snow cover, Hall and Qu (2006) demonstrated that, in 17 CMIP3 models, there is a

tight correlation between the amplitude of the seasonal cycle and decrease in snow

cover per degree of local warming. This constraint is compelling because it is phys-

ically plausible that the same mechanism controls snow cover changes, whether due

to seasonal changes or CO2-mediated radiative forcing. Indeed, this constraint has

persisted across multiple climate model ensembles (Qu et al., 2014; Thackeray et al.,

2018).

Many other emergent constraints are less robust, casting doubt on the utility of

this framework. Caldwell et al. (2018) found that only four of 19 published emergent

constraints on climate sensitivity remained plausible when applied to out-of-sample

data. Similarly, Schlund et al. (2020b) recalculated previous emergent constraints for

the CMIP6 ensemble and found much lower correlations of these metrics with climate

sensitivity than with the ensembles for which these constraints were calculated. More

generally, the limited sample size of models and near-infinite number of observable

quantities implies that some spurious emergent relationships can arise solely due to

chance (e.g., Caldwell et al., 2014). The framework is therefore criticized as being the

result of ‘data mining’ whose inferences should be treated with caution (e.g., Caldwell

et al., 2014, 2018; Lutsko et al., 2021). As GCMs become increasingly sophisticated,

multiple factors can explain the spread in global quantities, such as climate sensitivity,

(e.g., Zelinka et al., 2020), suggesting that a single metric will no longer have global

explanatory power. Emergent constraints should therefore instead target specific

physical processes or regions (e.g., Klein and Hall, 2015; Brient and Schneider, 2016),

which we adopt as the approach in this work. Such improved physical understanding

can then be used to assess the credibility of model representations, or even rule out

certain models, whether or not a linear relationship emerges between present-day and

future variables.
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7.5.1 Observational constraints

We consider three metrics, which can be applied to both three-hourly observations and

model output and then related to future cloud changes: (1) the correlation between 𝐶

and 𝑀 , as shown in Fig. 7-2a; (2) aM/aRH, the ratio of the multiple linear regression

coefficients of Eq. (7.3); and (3) 𝜎C, the standard deviation of 𝐶.

The first metric quantifies the association between convective mixing and cloud-

base cloud fraction. Fig. 7-4 shows that a linear relationship emerges between the cor-

relation between 𝐶 and 𝑀 and the change in the trade-wind thermodynamic ∆CRE

(r=-0.71). There are indications that models simulating a more positive correla-

tion between 𝐶 and 𝑀 , in better agreement with observations, predict less-positive

thermodynamic ∆CRE values, and vice versa. With the other two metrics, a linear

relationship does not emerge with the thermodynamic or net ∆CRE. The correlation

with the thermodynamic ∆CRE is -0.19 with aM/aRH and 0.30 with 𝜎C.

The two other metrics nonetheless allow for assessing models relative to obser-

vational constraints, as modeled metrics both have a large spread and differ from

observational metrics. The ratio aM/aRH quantifies the relative dependence of cloudi-

ness on 𝑀 , a dynamic control, versus 𝑅𝐻, a more thermodynamic control. A greater

dependence on 𝑅𝐻 is, moreover, expected if increasing the mass flux decreases rel-

ative humidity, which then decreases cloudiness, in line with the mixing-desiccation

hypothesis. Fig. 7-2d shows that all models underestimate aM/aRH relative to its

observed value. This finding suggests that models have a larger dependence on 𝑅𝐻

(larger aRH regression coefficient) and a weaker dependence on 𝑀 than observations.

Expressed differently, models whose cloudiness depends more on 𝑀 variations, rather

than 𝑅𝐻 variations are in better agreement with observations. These models, more-

over, tend to predict weaker thermodynamic ∆CRE values, though a clear linear

relationship does not emerge. These findings suggest that observed clouds are more

dynamically controlled, by 𝑀 , and less thermodynamically controlled, by 𝑅𝐻, than

clouds in GCMs.

Fig. 7-2d also shows that all models overestimate 𝜎C, the variability in cloud-
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base cloud fraction. Nine of ten models have 𝜎C values more than three times the

observed value. The standard deviation in the IPSL-CM6A-LR (3.2%) is closest to

the observed value (1.9%). Both the mean cloud fraction (Fig. 7-1c) and its variability

through 𝜎C are overestimated. Moreover, models that produce a larger mean 𝐶 also

simulate more variation about this mean value, with a correlation r=0.62 between

the mean 𝐶 and 𝜎C. One speculation is that some GCMs represent trade-cumulus

clouds more similarly to stratocumulus clouds. The larger mean cloud fraction and

larger variability could perhaps be more analogous to stratocumulus decks forming

and breaking up than the more scattered trade cumulus fields with lower mean cloud

fraction and lower variability.

In terms of obtaining a probabilistic estimate of the trade cumulus feedback, the

three metrics co-vary and therefore cannot be treated as fully independent constraints.

The correlation between the 𝐶 and 𝑀 correlation is 0.49 with aM/aRH and -0.53 with

𝜎C. The correlation between aM/aRH and 𝜎C is -0.58. These considerations motivate

the development of a framework to consider constraints jointly (Sec. 7.6 and Chapt. 8).

7.5.2 Comparison with other cloud feedback estimates

In Fig. 7-5, one metric, the 𝐶 vs. 𝑀 correlation is related to the trade cumulus feed-

backs estimated from Myers et al. (2021) as a check of consistency. The Myers et al.

(2021) trade-wind cloud feedbacks are calculated from different model simulations

(abrupt-4xCO2 rather than amip4K simulations), but we use the same regime par-

titioning based on 𝜔700 and EIS as in Myers et al. (2021) to identify the trades as

described in Chapt. 6. There are seven models that overlap between our analyses.

Fig. 7-5 relates the Myers et al. (2021) trade cumulus feedbacks to the 𝐶 vs. 𝑀

correlation for GCMs and observations. The MIROC6 model emerges as an outlier

whose trade cumulus cloud feedback is much smaller in the coupled (abrupt-4xCO2 )

than uncoupled (amip4K ) simulations (Fig. 7-5b). Including the MIROC6 model,

the correlation between the Myers et al. (2021) trade cumulus feedback and 𝐶 vs. 𝑀

correlation is -0.37. If excluding MIROC6, the correlation is much stronger, r=-0.92.

The best linear regression fit to GCMs is also extrapolated to the observed correla-
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Figure 7-4: Correlation between cloud fraction and mass flux versus trade-wind ther-
modynamic ∆CRE. As in Fig. 7-3, symbols again correspond to models as listed in
the legend, and the black line is the ordinary least squares regression. Dark and light
blue shading correspond to 50% and 90% confidence interval on the regression, as
estimated by bootstrapping, or repeatedly sampling with replacement and perform-
ing the regression 1000-times. The (three-hourly) observed correlation is given in
the orange vertical line with shading corresponds to 50% uncertainty on the Pearson
correlation as estimated by bootstrapping, rather than the Fisher transformation.
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with MIROC6

a.

b.

without MIROC6

Figure 7-5: As in Fig. 7-4, but with trade-wind cloud feedbacks estimated from Myers
et al. (2021) for the six models that overlap with our analysis. Also shown is the best
estimate of the trade cumulus feedback (grey horizontal line) and the 90% confidence
interval (grey horizontal shading) from Myers et al. (2021), as well as an extrapolation
of the best-fit regression line from modeled correlations between the cloud fraction and
mass flux to the observed correlation (dashed black line). To highlight the influence
of single models, panel (a) includes the MIROC6 model, whereas panel (b) excludes
the MIROC6 model.
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tion value. The two lines including and excluding MIROC6 span the 90% confidence

interval from Myers et al. (2021), as shown in Fig. 7-5, which provides additional

support for a weak trade cumulus feedback.

7.6 Discussion and initial conclusions

This chapter described key results of Vogel et al., with a focus on my contributions.

Vogel et al. present novel measurements of the convective mass flux, cloud fraction and

relative humidity at cloud base from the recent EUREC4A field campaign. These mea-

surements allow for performing the first observational test of the mixing-desiccation

hypothesis, which is thought to explain large differences in trade cumulus feedbacks

and thus equilibrium climate sensitivity.

Instead of the negative relationship between cloudiness and the convective mass

flux outlined by the mixing-desiccation hypothesis in climate models, observations

show a strong, positive relationship (𝑟 = 0.72) between cloudiness and the mass flux,

consistent with process-based assessments (cf. Chapt. 1). This positive relation-

ship is strengthened by also including relative humidity at cloud base (𝑟 = 0.83).

Observations therefore suggest that cloudiness is principally controlled dynamically

through the mass flux, whose variance is controlled equally by the entrainment rate

and vertical velocity. In nature, entrainment and mesoscale vertical velocity have

compensating influences on relative humidity near cloud-base — entrainment and

cloud-base relative humidity are negatively correlated, whereas mesoscale vertical ve-

locity and cloud-base relative humidity are positively correlated. These compensating

influences on cloud-base relative humidity prevent the mixing-desiccation mechanism,

or a strong desiccation of cloudiness with increased mass flux and convective mixing.

An analysis of ten GCMs shows that cloudiness in these models is, by contrast, more

controlled thermodynamically by variability in cloud-base relative humidity. GCMs

also tend to overestimate both the mean and variability in cloud fraction compared

with observations, which could potentially result from a more stratocumulus- than

trade cumulus-like representation in GCMs.
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We propose three metrics related to these couplings among cloudiness, mass flux,

and relative humidity, which can be used to observationally constrain the trade cumu-

lus feedback. Models that simulate a negative coupling between cloudiness and the

mass flux, as opposed to the positive observed relationship, tend to produce a stronger

thermodynamic cloud feedback (thermodynamic ∆CRE) with warming. Different ap-

proaches exist for combining multiple physical constraints in a statistical framework

to yield a probabilistic estimate of the trade cumulus feedback, which are discussed

in Chapt. 8 as ongoing work.

The findings described in this chapter and more-fully in Vogel et al. provide the

first constraint on the trade cumulus feedback at the process-level. The results sup-

port a weak trade cumulus feedback, consistent with large-eddy simulations and satel-

lite studies, as discussed in Chapt. 1 and Sec. 7.2. The present work distinguishes

itself, however, from these foregoing studies because it also elucidates a physical

mechanism behind the robustness of trade cumuli to changes in their environment.

Whereas clouds in GCMs are more sensitive to thermodynamic variations, clouds in

nature are more robust to thermodynamic variations and instead more controlled by

dynamic variations that are not well-represented in GCMs.
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Chapter 8

Conclusions and perspectives

Clouds may first strike an observer by their poetry, which sparks the imagination.

As introduced in Chapt. 1, clouds have long fascinated the human imagination, and

this fascination finds manifold expressions in art. When something is striking, there

is often a greater desire to understand it — leading to deeper analysis and deeper

appreciation of what we see. The British painter John Constable (1776–1837) con-

tended that “we see nothing truly until we understand it” (Hamblyn, 2002). In this

spirit, this thesis can also be interpreted as an attempt to better understand, and

therefore to better see the visible and invisible motions that surround us.

This chapter reviews key results from this thesis, organized in two parts (Sec. 8.1),

and then discusses new questions that follow from these results (Sec. 8.2). The first

part (Chapters 2–5) used EUREC4A observations to improve understanding of the

characteristic vertical structure of trade-wind air and the processes that determine this

structure. Better understanding how the trades vary in the present-day is a necessary

condition for evaluating how they will change in the future. In the second part

(Chapters 6–7), this improved physical understanding was applied to the evaluation

of general circulation models (GCMs) to yield the first process-based constraint on

the trade cumulus feedback.

To return to the challenges outlined in Chapt. 1, estimates of future warming, as

quantified by the equilibrium climate sensitivity (ECS), disagree by several degrees.

One of the largest sources of disagreement is uncertainties about how trade-wind

clouds over the oceans will respond to warming (e.g., Bony and Dufresne, 2005; Webb

et al., 2006; Vial et al., 2013; Myers et al., 2021). During EUREC4A, we collected

the necessary data to test whether models predicting large trade cumulus feedbacks
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are physically plausible (Bony et al., 2017; Stevens et al., 2021). A single set of mea-

surements cannot disprove a hypothesis, as individual measurements may be biased

or non-reproducible. EUREC4A, however, brings together a wealth of instruments

and approaches. This comprehensive view informed by many coincident observations

allows us to propose new conceptual models of the structure of the trade-wind bound-

ary layer and the role of clouds in determining this structure and to conclude that

there is little evidence for a strong trade cumulus feedback to warming.

8.1 Summary of key results

8.1.1 Clear-sky radiation in the trades

In the uncertain couplings among clouds, convection, and circulation in the trades,

radiative heating plays an important role, yet it is difficult to observe from space.

Passive remote sensing cannot capture the sharp vertical moisture gradients, espe-

cially in the lower troposphere, that are essential for calculating atmospheric radiative

heating profiles (e.g., Maddy and Barnet, 2008; Chazette et al., 2014; Stevens et al.,

2017). To fill this gap, we calculate clear-sky radiative profiles from 2580 in situ

soundings launched during EUREC4A, which form the largest radiative profiles data

set for the trades (Chapt. 3). An updated radiative transfer code RRTMGP (Rapid

Radiative Transfer Model for GCMs, Parallel) from Pincus et al. (2019) is used to

calculate the radiative profiles. Variability in radiative heating is evident at multiple

scales, such as related to the diurnal cycle, synoptic variability, and mesoscale cloud

organization. An uncertainty assessment, moreover, shows that errors resulting from

uncertainties in observed sounding profiles and ERA5 reanalysis employed as upper

and lower boundary conditions are small. In the context of this thesis, the clear-sky

radiative profiles are a necessary component of observationally closing subcloud layer

moisture and heat budgets, which is the subject of Chapt. 4.
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8.1.2 Observed subcloud layer moisture and heat budgets

The trade-wind subcloud layer is an important structural component of the tropi-

cal atmosphere (e.g., Riehl, 1954; Malkus, 1958; Tiedtke, 1989; LeMone et al., 2018),

which has long been characterized using simple, bulk frameworks (Betts, 1973; Arakawa

and Schubert, 1974; Deardorff, 1972; Stevens, 2006), of which mixed layer models are

the simplest kind. The adequacy of the mixed layer description of the subcloud layer

has, however, only been assessed from relatively few observations and large-eddy sim-

ulations often performed for small domains and idealized conditions (e.g., Stevens,

2006). These limitations render in situ observations especially important for testing

the skill of mixed layer theory.

Chapt. 4 shows that mixed layer theory, evaluated with EUREC4A observations

and with uncertain parameters constrained in a Bayesian approach, provides a closed

description of subcloud layer moisture and heat budgets. Campaign-residuals are 3.6

Wm−2 for moisture and 2.9 Wm−2 for heat, and residuals for synoptic variability are

small and unbiased. In defining the subcloud layer height using observed thermody-

namic profiles, we find evidence for a transition layer that separates the well-mixed

part of the subcloud layer from the subcloud layer top. The presence of a transi-

tion layer and its vertical gradients introduce ambiguity in the application of mixed

layer theory, which are addressed through the introduction of effective parameters

estimated through a Bayesian methodology. We find that constrained entrainment

parameters reflect mixing over a finitely-thick transition layer. These entrainment pa-

rameters, notably a mean effective entrainment efficiency, 𝐴e = 0.43, that is greater

than 0.2 as often assumed, are consistent with expectations both from theory and

direct numerical simulations. The small residuals, moreover, suggest that closing

moisture and heat budgets does not require knowledge of additional processes, such

as phase changes associated with evaporating precipitation in downdrafts.

Regarding large-scale external influences, we find that the net influence of the

surface wind speed on mean subcloud layer moisture is weak due to its compensating

influences through surface moistening and entrainment drying. Instead, knowing
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moisture and temperature values above the subcloud layer has the most skill for

predicting subcloud layer mean moisture and heat, presumably because these are the

properties of the air mixed into the subcloud layer by entrainment.

8.1.3 A new conceptual picture of the transition layer

The presence of a finitely-thick transition layer, as discussed in Chapt. 4, contrasts

with foregoing theory based on cloud-free convective boundary layers, which have an

abrupt discontinuity at their top (e.g., Lilly, 1968). This discrepancy is investigated

further in Chapt. 5. The transition layer in the trades has long been observed and

simulated, but its origins remain little investigated. This layer is often associated with

an 150–200 m stable layer that separates dry turbulent processes in the well-mixed

part of the subcloud layer from moist convection in the overlying cloud layer (e.g,

Malkus, 1958; Augstein et al., 1974; Yin and Albrecht, 2000). Extensive observations

from EUREC4A indicate that the majority of clouds are already rooted in the transi-

tion layer, and cloud-mediated mixing causes its vertical structure. Strong jumps at

the layer top, as expected from the theory of cloud-free convective boundary layers,

are only found rarely and when they occur, they tend to occur in large (𝑂(200km))

cloud-free areas. A population of small clouds, with their bases beginning around

500 m and growing only a few hundred meters above these bases, is shown to be

responsible for smoothing vertical gradients over the transition layer.

These findings lead to a new conceptual picture that the formation and dissipation

of shallow clouds maintains the transition layer, in analogy with the maintenance of

the trade-wind inversion by deeper clouds as proposed by Riehl et al. (1951) and

elaborated by Stevens (2007). Small clouds precondition the large-scale environment

and decrease the resistance to convection through weaker vertical gradients in the

transition layer, making it easier for deeper clouds to form. This conceptual model

suggests that small clouds beget larger clouds. From this analysis also emerges the

potential for an alternate view of entrainment mixing, which is based on the ability

to detrain condensate into the overlying stable layer and thus induce gentle sinking

motion through negative buoyancy. Inferences from mixed layer theory and Paluch
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mixing diagrams (e.g., Paluch, 1979) are also used to support inferences of air being

sourced from the transition layer for entrainment, rather than being mixed directly

from deeper in the cloud layer.

8.1.4 Towards the first process-based constraint on trade cu-

mulus feedbacks

In the second part of this thesis, physical understanding developed in the previous

chapters 2–5 is applied to constrain trade-wind cloud feedbacks simulated by GCMs.

In CMIP3 and CMIP5, uncertainties in trade-wind cloud responses were the largest

source of uncertainty in climate sensitivity (e.g., Bony and Dufresne, 2005; Webb

et al., 2006; Vial et al., 2013; Brient and Schneider, 2016).

Chapt. 6 finds that, in a representative sample of CMIP6 models, trade-wind

cloud responses still differ between high and low sensitivity models, in the terms of

the trade-wind thermodynamic and net change in the cloud radiative effect (∆CRE),

acting as a proxy for the cloud feedback, as well as vertical changes in cloud fraction.

The trade-wind net ∆CRE can, moreover, explain about 70% of the variance in the

global cloud feedback. These analyses show that trade-wind cloud responses are still

a large source of uncertainty in global cloud feedbacks, even if other regions also

contribute to the spread in climate sensitivity in CMIP6 (e.g., Zelinka et al., 2020;

Flynn and Mauritsen, 2020; Myers et al., 2021). Given the multiple influences on

climate sensitivity, efforts should focus on constraining physical processes or regional

cloud responses (e.g., Klein and Hall, 2015; Brient and Schneider, 2016; Lutsko et al.,

2021), which is the focus of Chapt. 7.

Chapt. 7 presents analysis supporting the first process-based constraint on the

trade cumulus feedback. This chapter describes results of Vogel et al., with a focus

on my contributions. Vogel et al. present novel measurements from EUREC4A of

the cloud-base cloud fraction, convective mass flux, and relative humidity. These

measurements allow for testing the mixing-desiccation hypothesis, which predicts a

negative relationship between convective mixing and cloudiness and is thought to
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explain large differences among trade cumulus feedbacks.

Contrary to this hypothesis, observations show a positive relationship between the

convective mass flux and cloud fraction (r=0.72), which is strengthened by the inclu-

sion of relative humidity (r=0.83). Observations indicate that cloudiness is principally

controlled dynamically by variations in the mass flux, which is, in turn, influenced by

variability in both the entrainment rate and mesoscale vertical velocity. In nature,

the compensating effects of entrainment and vertical velocity on relative humidity

near cloud-base prevent the mixing-desiccation mechanism, or a strong decrease in

cloudiness with increased mass flux.

All components, such as the cloud-base cloud fraction, mesoscale vertical velocity,

relative humidity, and the entrainment rate, have, historically, been challenging to

estimate with observations and are observational firsts. The entrainment rate is

independently constrained in Chapt. 4. Novel sampling strategies during EUREC4A

provided the most extensive data set to-date of the mesoscale vertical velocity (Bony

and Stevens, 2019; George et al., 2021), revealing its influence on cloudiness.

An analysis of ten GCMs, by contrast, indicates that cloudiness in GCMs is more

controlled thermodynamically, by relative humidity variations, than dynamically by

mass flux variations, as in the observations. We speculate that this dynamical control

— both through the entrainment rate that is negatively correlated with cloud-bae

relative humidity but also through vertical velocity variations that are positively

correlated with cloud-base relative humidity — makes clouds in nature more resilient

to convective mixing, which has tended to dissipate clouds in GCMs.

To obtain a probabilistic estimate of the trade cumulus feedback, we propose three

metrics related to the couplings among cloudiness, mass flux, and relative humidity,

which can be applied to both observations and GCMs. In the ten GCMs, a rela-

tionship, for instance, emerges between the correlation between the cloudiness and

convective mass flux and a proxy for the trade cumulus cloud feedback, the thermo-

This mass flux is also estimated using mixed layer theory. Closing subcloud layer moisture and
heat budgets in Chapt. 4 provided an observational assessment of this framework, as well as an
independent estimate of the entrainment rate, 𝐸, which is used to calculate 𝑀 in Eq. (7.2).
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dynamic ∆CRE. Models predicting the most negative coupling between convective

mixing and cloudiness — most inconsistent with observational constraints — are as-

sociated with the strongest thermodynamic ∆CRE. This constraint suggests a weak

trade cumulus feedback, consistent with large-eddy simulations and satellite studies

as discussed in Chapt. 1 and Sec. 7.2. Calculating a probabilistic estimate of the

trade cumulus feedback using the three proposed metrics is the subject of ongoing

work and described in more detail in Sec. 8.2. The present work, moreover, goes a step

further than previous constraints because its aim is to elucidate the physical mecha-

nism behind the resilience of trade-wind cumuli to changes in their environment, with

observations indicating that dynamic, rather thermodynamic controls make clouds in

nature more resilient than those in GCMs to changing environment conditions.

8.2 Perspectives

8.2.1 Short-term perspectives

Several projects emerge as relatively logical extensions to ideas proposed in this thesis.

Given that mixed layer theory offers a closed description for observations (Chapt. 4),

it offers an appealing framework for evaluating larger-scale models that must param-

eterize the processes regulating this important component of the tropical atmosphere.

The mixed layer framework would ensure a consistent definition of different terms and

processes and allow for more like-for-like comparisons among terms across models, in-

cluding GCMs, storm-resolving models, and large-eddy simulations. Such a project

would allow the quantification of the relative magnitudes of different processes in

these budgets, test how well the budgets close in different models, and examine how

individual terms vary according to large-scale environmental conditions. Observa-

tions from the EUREC4A field campaign, as analyzed in Chapt. 4, act as a novel

benchmark for these modeled representations. Numerical simulations are, moreover,

continuous in time for variables of interest, such that simulations that are judged as

realistic with respect to observational constraints could be used to further improve
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process understanding, such as related to entrainment.

A second extension is calculating moist static energy (MSE) budgets, such as

for the subcloud layer or the total atmospheric column. It is not immediately clear

whether the budgets will close on time- and spatial-scales relevant for EUREC4A,

such as the three-hourly circling and monthly campaign-mean timescale and about

220 km-diameter EUREC4A circle spatial scale. Previous studies used remote sensing

observations, but on much larger monthly and annual time scales and continental-

wide spatial scales, to observationally constrain water (Rodell et al., 2015) and energy

budgets (L’Ecuyer et al., 2015), still with large uncertainties. Inoue and Back (2015)

close MSE budgets using TOGA COARE data and Lanczos filters to separate vari-

ability with different timescales (about 2-, 5-, 10-day, and Madden–Julian oscillation

timescales). Preliminary analysis of EUREC4A soundings shows that horizontal and

vertical advection terms become increasingly large and variable when approaching

the three-hourly circling timescale.

If the total-column MSE budget can, however, be closed to within small residuals

using EUREC4A observations, this framework could be used to study the interplay

of clouds and their environment through an energetic lens. The atmospheric cloud

radiative effect (ACRE) emerges as a residual from the total-column MSE budget,

yielding an energetic estimate of clouds. It would be useful to compare these es-

timates of the ACRE with coincident satellite and geometric (i.e. cloud fraction)

estimates of cloudiness, as well as examine how the ACRE varies on different scales

and relates to large-scale environmental conditions. In a different approach, Brient

and Bony (2012) and Brient and Bony (2013) estimate the ACRE from total-column

MSE budgets calculated for the IPSL-CM5A-LR model run in a hierarchy of configu-

rations, diagnose the contributions to the ACRE, and conclude that the impact of an

external perturbation on low-cloud cover depends on how the perturbation influences

the vertical gradient of moist static energy within the boundary layer.

A third, ongoing extension of Chapt. 5 is to compare the transition layer struc-

ture in large cloud-free and other regions using large-eddy simulations. A useful

first question to answer is whether large cloud-free areas in large-eddy simulations
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do exhibit stronger vertical gradients in the transition layer than areas influenced by

cloudiness. Whereas the dropsonde observations provide snapshots of the atmospheric

state, large-eddy simulations provide continuous data. These simulations could allow

for better tracing whether it is the dissipation of shallow clouds that smooth vertical

gradients over the transition layer relative to the jump-like structure exhibited in

large cloud-free areas. These simulations also provide vertical velocity at high spatial

and temporal frequency. The goal is to test whether large cloud-free areas systemati-

cally have stronger subsidence, which suppresses convection, than do areas with some

cloudiness.

A fourth extension, especially of Chapt. 7, is to combine different observational

constraints on the trade cumulus feedback in a physical, statistical framework. Dif-

ferent approaches exist for combining physical constraints, as introduced in Sec. 7.6.

Stevens et al. (2016b) propose a quantitative ‘storyline’ approach, which was ex-

panded into the Bayesian statistical framework in Sherwood et al. (2020) to constrain

climate sensitivity. Bretherton and Caldwell (2020) discuss an approach that uses

multiple physical constraints and an ensemble of GCMs to yield a multivariate Gaus-

sian distribution of an uncertain climate sensitivity proxy. Their approach accounts

for observational uncertainties in the different metrics, sampling uncertainties, and

covariance among the metrics. One drawback to this approach is an assumption of

normality of the underlying variables, which could give overconfidence about the tails

of the constrained distribution. Other approaches include the Bayesian approaches

of Renoult et al. (2020) and Bowman et al. (2018), and machine learning approach of

Schlund et al. (2020a). It is ongoing work to develop a statistical framework to com-

bine the multiple constraints discussed in Chapt. 7 into a single probabilistic estimate

of the trade cumulus feedback.
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8.2.2 Bias correction using atmospheric radiative profiles from

in situ measurements and machine learning approaches

Chapt. 3 presented over 2500 radiative profiles derived from in situ dropsondes and

radiosondes launched during the EUREC4A campaign. The soundings more accu-

rately represent fine-scale vertical moisture features, which are critical for calculating

atmospheric radiative cooling profiles but are often smoothed in passive remote sens-

ing retrievals and reanalysis data, as for example shown by Prange et al. (2021) and

discussed in Chapt. 3. The EUREC4A soundings, and therefore the radiative profiles,

also have much higher temporal and spatial sampling than the soundings that are

typically launched worldwide. The greater accuracy and high sampling intensity of

the soundings and radiative profiles provide an opportunity to improve satellite and

reanalysis products.

Machine learning is an increasingly common approach for studying clouds and ra-

diation, such as by training on cloud-resolving model output for use in coarser climate

models (Rasp et al., 2018; Gentine et al., 2018; O’Gorman and Dwyer, 2018; Beucler

et al., 2021, e.g.,). Bias correction is a common problem to which machine learning is

applied (e.g., Lary et al., 2016; Karpatne et al., 2018; Mathieu and Aubrecht, 2018).

A successful application of machine learning depends primarily on two factors: the

machine learning algorithm and a comprehensive training data set (e.g., Mathieu and

Aubrecht, 2018; Rolnick et al., 2019; Beucler et al., 2021). The radiative profiles pre-

sented in Chapt. 3, and its underlying moisture profiles, would be a useful training

set in the application of machine learning, in particular using deep neural networks.

The soundings and radiative profiles introduce information about short-term, small-

scale features that is missing from passive remote sensing and reanalysis products and

therefore has the potential to improve biases in the trades in these products.
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8.2.3 How do tropical forests modulate atmospheric moisture

transports?

As discussed in Sec. 1.2.1, the trades can be pictured as an expansive river in the sky,

advecting moisture into the Intertropical Convergence Zone. A longer-term, broad

question is, how and why does the path of water change when it moves over land?

An open question is how atmospheric moisture transports work over land where the

sources are more variable and the flows more influenced by topography. In other

words, how does the broad, moist wave in the trade-wind atmosphere evolve as it

snakes and meanders across tropical continents?

One way that land influences atmospheric water flows is through moisture recy-

cling by rainforests, such as the vast rainforests in the Amazon and Congo Rivers. In

many tropical regions, moisture appears to be transported in a sort of ‘atmospheric

river’, traveling across borders, channeled narrowly in the vertical, but spread out

widely in the horizontal, compared to atmospheric rivers in the extratropics, which

are narrow in the horizontal and often associated with extreme precipitation (e.g.,

Gimeno et al., 2014; Rutz et al., 2019). There are many open questions regarding

these expansive moisture transports in the tropics and how they differ from atmo-

spheric rivers in the midlatitudes, which are better characterized (e.g., Espinoza et al.,

2018). The sources of water, for instance, remain unclear. Jasechko et al. (2013) use

isotope measurements to show that transpiration is the largest source of water over

continents, representing 80–90% of terrestrial evapotranspiration, though other stud-

ies contend that such partitioning is subject to large uncertainties (e.g., Schlesinger

and Jasechko, 2014; Ellison et al., 2017). Beyond the origins of the moisture, how do

these tropical atmospheric ‘rivers’ move across borders, how variable are their flows,

and how do they vary according to large-scale conditions?

These transcontinental moisture flows produce rainfall that feeds lakes and rivers,

yet too often such bodies of water are considered as national entities. Political conflicts

often find root in river systems, such as Egypt, Sudan, and Ethiopia’s conflicts over

the Nile (e.g., Swain, 1997; Carlson, 2013). There is an impression that ‘Egypt is
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the Nile’ when examining a map of its population density (e.g., as shown in Fig. 1

of Haars et al. (2016)), illustrating the preeminence of these freshwater sources for

human welfare and livelihood. Yet the main source of the Nile is the Ethiopian upper

Blue Nile Basin (e.g., Mellander et al., 2013), and rainfall in Ethiopia has its origins,

in part, from moisture recycling from rainforests in the Congo.

An ensuing question is, how would deforestation affect these extensive tropical

atmospheric rivers? Attributing precipitation changes to such human influences must

be treated with caution. Ellison (2018), however, suggest that deforestation in West

Africa may have decreased Nile flows from Ethiopia in the last decades of the 20th

century. In other African regions, Keys et al. (2016) estimate that up to 40% of sub-

Saharan rainfall is presently due to moisture recycled by vegetation. Is the ongoing

famine in Madagascar, for instance, in any way connected to ongoing deforestation

in the Congo River basin? Similar questions can be asked regarding the influence of

deforestation on atmospheric circulations and precipitation in the Amazon (e.g., Coe

et al., 2017; Staal et al., 2018), and southeast Asia (e.g., Paul et al., 2016).

Tropical atmospheric moisture flows and their interactions with land are not yet

fully understood, and they have never been governed, as would be a river that crosses

international borders on land. Storm-resolving models, in concert with remote sensing

and in situ observations, are a new tool and potentially have advantages for study-

ing these atmospheric moisture flows and precipitation compared to GCMs. There

are indications that storm-resolving models may better represent precipitation than

GCMs with certain well-documented deficiencies, such as raining too early in the

day and too frequently compared to observations (e.g., Palmer and Stevens, 2019;

Stevens et al., 2020a). The influences of deforestation on atmospheric water flows

could potentially be studied by selectively changing the evaporative capacity over

land to reflect how forests modulate water flows compared to deforested areas. In-

creasing physical understanding of these atmospheric moisture flows and precipitation

would provide valuable information for scientists, stakeholders, and policymakers. It

therefore seems reasonable to approach these questions with a diversity of tools, and

new storm-resolving models complement existing studies using in situ observations,
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satellite products, and GCMs. Idealized bulk models, similar to those used in this

thesis, have provided insights to land-atmosphere couplings (e.g., Betts, 2000; Cronin,

2013) and could also potentially be used in an exploration of the influence of forests

on atmospheric moisture variability.

8.2.4 Final thoughts

Behind the apparent steadiness of the trades, as evoked by Pierre Loti, with its

“same regular breath, warm, exquisite to breathe; and the same transparent sea, and

the same small white clouds”, a more dynamic picture emerges. Ideas in this thesis

allow for proposing new conceptual models of the lower trade-wind atmosphere and

a more active role for cloud mixing processes in determining its vertical structure,

and falsifying a strong trade-wind cloud response to warming, based on clouds being

dynamically, rather than thermodynamically controlled. I hope that this thesis was

at times enjoyable to read. Participating in EUREC4A was a tremendous opportunity

to be immersed in the natural environment that I study and approach these questions

with first-hand experience, having collected data, watched clouds form and dissipate,

and imagined the circulations that fuel these clouds. There remains much to be

understood about the trades and how they will evolve with warming. I can only

hope that some of the ideas in this thesis can help improve our understanding of the

surprises still hidden in the clouds.
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Chapter 9

Additional materials

A list of publications as first or co-author is included at the end of this thesis

manuscript.

As a final note, another part of my research, developed with Peter Huybers, in-

volves studying aerosols and their multifaceted influences, on radiation and the cli-

mate system, as well as on paintings. Regarding the former, our recent paper Albright

et al. (2021b) is included in the list of publications, at the end of this thesis after

the bibliography. This work uses a Bayesian model of aerosol forcing and Earth’s

multi-time-scale temperature response to radiative forcing to understand the origins

of different lower bounds on aerosol forcing. We first demonstrate the ability of a

simple aerosol model to emulate aerosol radiative forcing simulated by 10 general cir-

culation models. A joint inference of climate sensitivity and effective aerosol forcing

from historical surface temperatures is then made over 1850–2019. We obtain a max-

imum likelihood estimate of aerosol radiative forcing of -0.85 Wm−2 (5–95% credible

interval from -1.3 to -0.50 Wm−2) for 2010–19 relative to 1750. A relatively tight

bound on aerosol forcing is obtained from the structure of temperature and aerosol

precursor emissions and, particularly, from the rapid growth in emissions between

1950 and 1980. Obtaining a 5th percentile lower bound on aerosol forcing around

-2.0 Wm−2 requires prescribing internal climate variance that is a factor of 5 larger

than the CMIP6 mean and assuming large, correlated errors in global temperature

observations. Ocean heat uptake observations may further constrain aerosol radiative

forcing but require a better understanding of the relationship between time-variable

radiative feedbacks and radiative forcing.

Regarding the latter, after studying aerosol forcing over the instrumental period,
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we look further back in time to study the influence of 19th century air pollution in

London and Paris. We present evidence that trends in paintings by J.M.W. Turner

and Claude Monet depict trends in historical air pollution. The abstract of this paper,

which is in preparation, is reproduced here.

Paintings by Turner and Monet Depict

Trends in 19th Century Air Pollution

Abstract: Anthropogenic aerosol emissions increased to unprecedented levels

during the 19th century Industrial Revolution, particularly in Western European

cities, leading to an optical environment having less contrast and more intensity.

Here we show that the trends from more figurative to impressionistic representa-

tions in J.M.W. Turner and Claude Monet’s paintings in London and Paris over the

19th century render changes in their local optical environment. In particular, we

demonstrate that changes in local SO2 emissions are a highly statistically-significant

explanatory variable for trends in the contrast and intensity of Turner, Monet, and

others’ works, including after controlling for time trends and subject matter. Indus-

trialization altered the environmental context in which painting occurred, and our

results indicate that Impressionism contains elements of polluted realism.
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