
HAL Id: tel-03828248
https://theses.hal.science/tel-03828248v1

Submitted on 25 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isolation Mechanisms within the vSwitch of Cloud
Computing Platform

Ye Yang

To cite this version:
Ye Yang. Isolation Mechanisms within the vSwitch of Cloud Computing Platform. Networking and
Internet Architecture [cs.NI]. Sorbonne Université; University of Chinese academy of sciences, 2022.
English. �NNT : 2022SORUS191�. �tel-03828248�

https://theses.hal.science/tel-03828248v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité
Informatique

Laboratoire d’Informatique de Paris 6
École Doctorale Informatique, Télécommunications et Électronique

Présentée par

Ye YANG

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Sujet de la thèse :

Isolation Mechanisms within the vSwitch of Cloud Computing Platform

soutenue le 27 Juin 2022

devant le jury composé de :

M. Serge FDIDA Sorbonne Université Directeur de thèse
M. Gaogang XIE CNIC, CAS Directeur de thèse
M. Kave SALAMA-
TIAN

Université de Savoie Rapporteurs

M. Ke XU Tsinghua Université Rapporteurs
M. Marcelo DIAS DE
AMORIM

Sorbonne Université Président du jury

M. Zhenyu LI ICT, CAS Examinateur
Mme. Thi-Mai-Trang
NGUYEN

Sorbonne Université Examinateur





Acknowledgements

During the few years of my Ph.D. period, I often felt confused, and I was always learning
through trial and error. Due to the lack of logic and outstanding expression ability, it is not easy
for me to sort out a very rigorous research logic. So I always got the “rejected” decisions for
the poor expression in my submitted academic papers. Thanks to the help of professors, family,
and friends, I have been able to establish my research area and make breakthroughs. I should
be grateful to those who helped me.

Firstly, I want to thank my family. I want to thank my parents for providing me with the
best possible studying and living conditions from I was a child, and encouraging me to go out
of my small hometown to do research in a university and for a doctorate degree. They have
paid a lot for me over the past twenty years. Then I would like to thank my girlfriend, Miss.
Jiaqi Liang. Thank you for your love and encouragement during the low point of my life. You
have changed my character that was too conservative, and taught me the speculative spirit in
the real life.

Of course, I would like to thank Professor Serge Fdida and Gaogang Xie, my advisors. As
the vice president of Sorbonne University, Professor Serge is usually involved in lots of official
businesses, but he always gives full respect and much helps to students. Every time I send him
an email to exchange manuscripts or ideas, Professor Serge will reply patiently no matter how
busy he is. As my mentor in China, Professor Gaogang Xie can be regarded as a leader on
the road of my scientific research career. He has established the correct values for me to do
scientific research: starting from practical problems, considering the constraints in the actual
environment, and seeking for the best solution. Only the solutions made in this circumstance
are the most valuable scientific achievements that can be recognized by the industry.

Thanks to the engineers Xing Li and Yilong Lv from Alibaba Cloud. They provided me with
many practical challenges and problems faced by the public cloud industry. In our cooperation,
I also gradually enriched my understanding of cloud networking.

I cannot forget Emilie Mespoulhes, Zoe Jegu, and Patricia Zizzo. They helped me with
remote registration and other formalities during the COVID-19 pandemic. It is a pity that I
have not been able to come to Paris and Sorbonne University physically, and thus missed a



iv

wonderful experience. The epidemic has affected the lives of countless, but I believe that the
cold winter will eventually pass, and spring is just around the corner.



Abstract

As an important component of the cloud platform, virtual switch (vSwitch) is responsible for
realizing the network connectivity between virtual machines (VMs) and external devices. In
order to make great use of limited resources to forward packets with high performance, existing
vSwitches have been widely adopted with sharing designs. For example, sharing hardware
resources, data structure and processing procedures among VMs. However, these sharing
designs destroy the isolation among VMs. In vSwitch, different VMs compete for shared
resources and access memory without restriction, which makes them cannot be guaranteed with
stable network Quality of Service (QoS) and also face the risk of data plane attacks along with
illegal memory access.

In order to solve these performance, failure, and security issues caused by the lack of isolation,
this thesis explores the isolation mechanisms from three aspects of hardware resources, software
data structure, and I/O operations in vSwitch. In this way, the cloud service providers can really
provide tenants with isolated, secure and stable virtual network environment. The main works
and contributions of this thesis are as follows:

1) CPU-cycle isolation based network QoS method. To solve the problem that VMs compete
for limited CPU resources in vSwitch to interfere with each other’s network performance, this
thesis proposes a novel network QoS method based on CPU-cycle isolation (C2QoS). C2QoS
establishes the corresponding relationship between vSwitch forwarding capability and CPU
consumption through a measurement-driven modeling method. Based on this model, C2QoS
designs a CPU-cycle based token bucket mechanism, which provides bandwidth guarantee
for VMs through isolating and restricting the I/O-dedicated CPU resources. Besides the token
bucket mechanism, a hierarchical batch processing task scheduling mechanism is designed to
provide differentiated latency according to priority. Through the realization of the proposed
C2QoS method on the open-source OVS-DPDK platform, this thesis has carried out a sufficient
experimental evaluation on it. The results show that, compared with the traditional packet/flow-
based QoS method, the C2QoS method achieves VM network bandwidth guarantee by isolating
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the competition of CPU resources, and at the same time reducing the additional VM network
latency caused by competition by 80%.

2) Flow table isolation based data plane attack defense mechanism. Aiming at the problem
of Denial of Service (DoS) attacks initiated by malicious tenants during the lookup process of
the shared flow table, this thesis proposes a data plane attack defense mechanism based on flow
table structure isolation (D-TSE). D-TSE uses VM as the unit to separate the flow table structure
to achieve independent packet classification performance and failure isolation. In order to
redirect packets to its dedicated flow table, D-TSE designs a lightweight pre-classification
module to determine the attribution of each packet before the classification operation. To
ensure the forwarding efficiency in the separated flow table structure, D-TSE designs a batch
re-aggregation mechanism. Through the realization of the proposed D-TSE mechanism on the
OVS-DPDK platform, this thesis has carried out sufficient experimental verification on it. The
results show that D-TSE isolates the data structure and processing procedures belonging to
different VMs in vSwitch at the cost of up to 5% performance degradation, thereby achieving
the isolation of network failure and efficiently solving the risk of data plane DoS attacks.

3) Memory access isolation based virtualized network I/O (VNIO) mechanism. To solve
the risk of illegal memory access caused by shared memory in existing VNIO mechanisms, this
thesis proposes a VNIO mechanism based on memory access isolation (S2H). By analyzing
the existing memory sharing models adopted in the VNIO mechanisms and their security
risks, a secure memory sharing model is designed. Based on this model, S2H mechanism
based on virtio standard is designed and implemented. In order to reduce the CPU usage
and ensure scalability in the S2H mechanism, this thesis designs a “batch-grained” thread
scheduling method. Through the realization of the S2H prototype system on the OVS-DPDK
and QEMU/KVM platforms, this thesis has carried out a large number of experiments to verify
its validity. The results show that S2H mechanism achieves the highest memory isolation
and security in the software-based VNIO mechanisms at the cost of 2-9% increase in latency,
while maintaining comparable performance and scalability as the widely adopted vHost-User
solution.



Résumé

En tant que composant important de la plate-forme cloud, le commutateur virtuel (vSwitch)
est responsable de la réalisation de la connectivité réseau entre les machines virtuelles et les
périphériques externes. Afin de tirer le meilleur parti des ressources limitées pour transférer
des paquets avec des performances élevées, les vSwitches existants ont été largement adopté
des principes de conception partagés. Par exemple, partager les ressources matérielles, la
structure des données et les procédures de traitement entre les machines virtuelles. Cependant,
ces conceptions de partage détruisent l’isolement entre les machines virtuelles. Dans vSwitch,
différentes machines virtuelles se disputent les ressources partagées et accèdent à la mémoire
sans restriction, cela les rend incapables de garantir une qualité de service (QoS) réseau stable,
tout en faisant face au risque d’attaques de plans de données et d’accès illégaux à la mémoire.

Afin de résoudre ces problèmes de performance, de défaillance et de sécurité causés par
le manque d’isolation, cette thèse explore les mécanismes d’isolation de trois aspects des
ressources matérielles, de la structure des données logicielles et des opérations d’E/S dans
vSwitch. De cette façon, les fournisseurs de services cloud peuvent vraiment fournir aux
locataires un environnement de réseau virtuel isolé, sécurisé et stable. Les principaux travaux
et contributions de cette thèse sont les suivants:

1) Méthode QoS réseau basée sur l’isolation du cycle CPU. Pour résoudre le problème
selon lequel les machines virtuelles se disputent des ressources CPU limitées dans vSwitch
pour interférer les performances réseau de l’autre, cette thèse propose une nouvelle méthode
QoS réseau basée sur l’isolation du cycle CPU (C2QoS). C2QoS établit la correspondance entre
la capacité de transfert vSwitch et la consommation CPU grâce à une approche de modélisation
basée sur la mesure. Sur la base de ce modèle, C2QoS conçoit un mécanisme de seau à jetons
basé sur le cycle CPU, qui fournit une garantie de bande passante pour les machines virtuelles
en isolant et en limitant les ressources CPU dédiées aux E/S. Outre le mécanisme de seau à
jetons, un mécanisme de planification hiérarchique des tâches de traitement par lots est conçu
pour fournir une latence différenciée en fonction de la priorité. A travers la réalisation de la
méthode C2QoS proposée sur la plateforme open source OVS-DPDK, cette thèse a réalisé une
évaluation expérimentale suffisante sur celle-ci. Les résultats montrent que, par rapport aux
méthodes QoS traditionnelles basées sur les paquets/flux, la méthode C2QoS garantit la bande
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passante du réseau VM en isolant les conflits de ressources CPU, tout en réduisant la latence
supplémentaire de 80%.

2) Mécanisme de défense contre les attaques du plan de données basé sur l’isolement
de la table de flux. Visant le problème des attaques par déni de service (DoS) initiées
par des locataires malveillants lors du processus de recherche de la table de flux partagée,
cette thèse propose une défense contre les attaques du plan de données mécanisme basé sur
l’isolation de structure de table de flux (D-TSE). D-TSE utilise VM comme unité pour séparer
la structure de la table de flux afin d’obtenir des performances de classification de paquets
indépendantes et une isolation des pannes. Afin de rediriger les paquets vers sa table de flux
dédiée, D-TSE conçoit un module léger de pré-classification pour déterminer l’attribution de
chaque paquet avant l’opération de classification. Pour garantir l’efficacité du transfert dans la
structure de table de flux séparée, D-TSE conçoit un mécanisme de réagrégation par lots. En
implémentant le mécanisme D-TSE sur la plate-forme OVS-DPDK, cet article l’a entièrement
vérifié expérimentalement. Les résultats montrent que D-TSE isole la structure des données et
les procédures de traitement appartenant à différentes machines virtuelles dans vSwitch au prix
d’une dégradation des performances allant jusqu’à 5%, réalisant ainsi l’isolation des pannes de
réseau et résolvant efficacement le risque d’attaques DoS du plan de données.

3) Mécanisme d’E/S réseau virtualisé (VNIO) basé sur l’isolation de l’accès mémoire.
Pour résoudre le risque d’accès illégal à la mémoire causé par la mémoire partagée dans les
mécanismes VNIO existants, cette thèse propose un mécanisme VNIO basé sur l’isolement de
l’accès mémoire (S2H). En analysant le modèle de partage de mémoire adopté par le mécanisme
VNIO existant et ses risques de sécurité, cet article conçoit un modèle de partage de mémoire
sécurisé. Sur la base de ce modèle, un mécanisme S2H basé sur la norme virtio est conçu et mis
en œuvre. Afin de réduire l’utilisation du processeur et d’assurer l’évolutivité du mécanisme
S2H, cette thèse conçoit une méthode d’ordonnancement de threads "batch-grained". A travers
la réalisation du système prototype S2H sur les plateformes OVS-DPDK et QEMU/KVM, cette
thèse a réalisé un grand nombre d’expérimentations pour vérifier sa validation. Les résultats
montrent que le mécanisme S2H atteint l’isolation et la sécurité de la mémoire les plus élevées
dans les mécanismes VNIO basés sur le logiciel au prix d’une augmentation de 2 à 9% de
la latence, tout en maintenant des performances et une évolutivité comparables à celles de la
solution vHost-User largement adoptée.
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Chapter 1

Introduction

1.1 The overview of vSwitch on the cloud platform

Cloud computing, known for its high cost-effectiveness and flexibility, has been popular and
widely deployed, since it was proposed in 2005. After several years of development, lots of
emerging technologies and scenarios including data centers, operator networks, edge computing,
and even 5G have now been integrated into cloud platforms and architectures. More and more
enterprises and individuals are also deploying their services by purchasing virtual machines
(VMs) on cloud platforms[1–4]. Thanks to virtualization technology, these VMs running
different services can enjoy an independent and flexible running environment on the same
physical server. That is achieved by the virtualization layer, which is shown in Fig. 1.1. The
virtualization layer between the hardware and the VMs, provides VMs with the abstraction of
physical hardware, which enables VMs to reasonably use these physical resources on demand.

Generally, the hypervisor layer consists of 4 kinds of virtualization technologies, i.e. CPU
virtualization, memory virtualization, storage virtualization, and network virtualization. The
first three are included in the hypervisor program of the corresponding virtualization platform,
which provides the virtualization of real physical hardware resources, such as QEMU/KVM[5,
6], Xen[7], etc. However, the network virtualization is different. On a host server, the VM’s
network resource is not a real physical resource, but a “virtual” resource realized by a third-
party vSwitch through software packet forwarding. The VM’s maximum network bandwidth
and latency are also determined by the performance of vSwitch. Therefore, it can be said
that the network virtualization is provided by vSwitch independent from the virtualization
platform[8, 9].
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Figure 1.1 The cloud platform infrastructure

The idea of leveraging vSwitch to virtualize the network is originated from Bridge[10] in the
Linux kernel. As shown in Fig. 1.2(a), Linux Bridge is a virtual network device that works
on a layer 2 network. It can bind other network devices as slave devices, and virtualize the
slave devices into "ports". Similar to a switch in the physical network, when a device (such
as a network interface controller (NIC) device “eth”, or a virtual “tap” device) is bound to the
Linux Bridge as a port, it can use this Bridge to switch packets. However, before the packet is
switched and forwarded in Linux Bridge, it needs to be copied many times in the kernel space.
That leads to low performance. On the other hand, Bridge can only implement basic network
switching functions, but cannot manage, configure, and monitor complex virtual networks in a
cloud environment. Therefore, the high-performance and powerful vSwitch came into being.
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tap0 tap1
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Kernel
Space

VM0 VM1

(a) Linux Bridge
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vport0 vport1
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Figure 1.2 The comparison of Linux Bridge and vSwitch.

The structure of the vSwitch is shown in Fig. 1.2(b). To pursue higher performance, the existing
vSwitches are transferred from kernel space to user space, which can reduce the memory
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copying times. Another benefit is to make it easier to leverage various high-performance user-
space packet processing components for acceleration, such as Intel Data Plane Development
Kit (DPDK)[11], etc. In terms of flexibility, the biggest difference between vSwitch and Linux
Bridge is that the vSwitch contains the whole network forwarding and network I/O logic, that
is, all the processes from device driver to packet forwarding are all included in the vSwitch
program. In this way, the vSwitch has the privilege to perform fine-grained traffic processing,
configuration, and monitoring at different levels (e.g. per-tenant, per-port, per-flow, and even
per packet), which greatly enriches the cloud service provider’s ability to manage virtual
networks.

For each VM deployed on the cloud platform, the vSwitch can provide it with basic network
functions in three aspects: virtualized network I/O (VNIO), packet classification, and external
network connection. Take the VM sending packets as an example: when a packet is sent
from the VM, the vSwitch will first call the interface function of the VNIO to realize packet
copying on the corresponding virtual port (see “vport” in Fig. 1.2(b)); when the packet is copied
from the VM memory to the vSwitch’s packet buffer, the packet classification algorithm in
vSwitch will parse the packet header and search the destination port according to the quintuple
information; on the destination port, vSwitch sends the packet to external network by calling
the sending callback function. The whole process takes place in user-space and is carried out in
batch processing mode, which makes it efficient. So it can be said that vSwitch has already
realized the vision of providing a high-performance and flexible virtual network for tenants on
the cloud.

However, with the improvement of vSwitch performance, the number of VMs it can support has
also increased significantly, and that introduces isolation issues. In the evolution of vSwitch,
the developers have always regarded flexibility as their primary goal, and therefore integrate a
large number of network functions and components into vSwitch. At the same time, in order to
maximize the use of limited resources and provide efficient forwarding capacity, designs such
as sharing resources and data structures among tenants are adopted. These designs have made
the vSwitch gradually become a highly privileged user-space process with resource sharing and
intensive I/O operations. In a high-density deployed cloud platform, it is difficult to guarantee
the isolation of tenants’ network performance, network failure, and even security. Therefore,
the problem of isolation in vSwitch becomes an urgent challenge for cloud service providers
(CSPs) currently.
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1.2 Isolation challenges in vSwitch

For the isolation problem within the vSwitch of cloud platform, the key point is to research how
to combine the architecture of vSwitch to design mechanisms for guaranteeing VM isolation
in network performance, network failures, and security. Specifically, it includes the following
aspects: isolating and guaranteeing tenant’s network Quality of Service (QoS) and Service
Level Agreements (SLA); isolating forwarding failure and defending against data plane Denial
of Service (DoS) attacks; isolating and protecting the VM memory from illegal access by
attackers during the VNIO operations. However, the existing works lack a systematic analysis
and theoretical basis for these issues, which therefore ignores the competition resources, the
sharing of data structures, and the highly privileged I/O operations. As a result, they all cannot
achieve good results.

1.2.1 Network performance isolation

Network performance isolation in vSwitch requires that the VM’s network SLA performance
is stable, independent, and not affected by other tenants. That is achieved through QoS
methods. The existing QoS methods used in vSwitch are inherited from hardware switches,
including two major types of mechanisms: token bucket mechanisms[12–15] and fair queuing
mechanisms[16–20]. The core idea of these two mechanisms is to forward the packets at
a certain rate or interval, so as to ensure the network bandwidth and latency requirements.
However, the prerequisite for these mechanisms is that the processing capacity of the network
forwarding device is constant, and the processing time and resource consumption per packet
are also constant. Unfortunately, this premise is common in hardware switches, but it does not
apply in software-implemented vSwitches.

The latest works proved that in the vSwitch, the forwarding capacity of the CPU core processing
engine will change with the different network traffic loads[21–23]. Therefore, a tenant may
compete for limited CPU physical resources in the software vSwitch by constructing traffic with
extreme characteristics, thereby disturbing the network experience of other tenants. In order to
avoid the problem of VM network performance interference due to the lack of CPU resource
isolation, these works only add a CPU limiting module besides the traditional hardware switch
based QoS method. The disadvantages are obvious: on the one hand, these methods cannot
accurately describe the relationship between variable network performance and CPU resource
consumption; on the other hand, they will increase the overhead in vSwitch for that multiple
modules are added to the data path.
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However, to redesign the QoS methods for software vSwitch according to its architecture and
isolation demands on hardware resources, there are three main challenges:

1) The forwarding capability of the vSwitch is variable, making it difficult to establish a
resource consumption model corresponding to the network forwarding performance. In
vSwitch, the processing engine is a general-purpose CPU core. Compared to the powerful
hardware pipelines in hardware switch, that has a constant packet forwarding rate, the limited
CPU core in vSwitch has different forwarding capacity under different traffic characteristics. In
Google Cloud’s experiments, one CPU core can forward 1518-byte packets to 10 Gbps, but can
only reach 1.2 Gbps with 64-byte packets. It is the variable processing capacity that causes the
traditional QoS method to fail in vSwitch, because the time used for forwarding each packet is
different, and the CPU resources consumed are also different.

2) The fine-grained CPU resource allocation and limitation. On cloud servers, most of the
CPU resources need to be allocated to VMs in order to pursue higher profits. Therefore, the
CPU cores that can be allocated to vSwitch for packet forwarding are limited. Taking Google
Cloud as an example, only 2 CPU cores are allocated to the Google’s vSwitch to forward traffic
for all VMs on one physical server. However, in the field of software forwarding, existing CPU
resource allocation and isolation strategies are all based on CPU core granularity, which is
unrealistic in vSwitches with limited CPU cores. On the other hand, how to use CPU resource
allocation to accurately limit the VM’s packet rate also faces challenges in terms of lightweight
and implementation.

3) The batch processing and polling running modes pose challenges to traffic scheduling
and latency guarantee. For efficiency, batch processing and polling running modes are widely
used in the vSwitch to achieve the maximum throughput. The running mode of each working
CPU core in vSwitch is as follows: receives and forwards a batch of (e.g. 32) packets on a
VM’s port, and then goes to the next port to perform the same operations. As the density of
VMs deployed on one server continues to increase, these VMs inevitably compete for a limited
number of CPU cores in terms of timing, resulting in increased network latency. The traditional
packet and traffic scheduling methods both work during the process of packet forwarding, and
do not take into account that the packet forwarding tasks compete for CPU core in terms of
timing. Therefore, it cannot solve the indiscriminate high latency that forwarding tasks wait for
the CPU core to process.

Through the above analysis, it can be seen that the existing network QoS methods in vSwitch
are inherited from the hardware switch, and do not take into account the competition of the
traffic forwarding for CPU resource in terms of utilization and timing, resulting in poor isolation
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and cannot guarantee the tenant SLA performance. Therefore, it is necessary to redesign a new
QoS method based on hardware resource isolation according to the vSwitch’s architecture. This
research aims to address the three challenges in proposing the new QoS method for isolating
VM network performance.

1.2.2 Network failure isolation

Network failures in vSwitch mainly occur in the flow table lookup module. On the data plane
of the virtual network, there is a kind of DoS attack, using the flow table update mechanism
under Software Defined Network (SDN) to create chaos and reduce the lookup performance.
This DoS attack will then lead to the forwarding failure in the forwarding device, and cause
network downtime problems to all tenants. Regardless of whether the attack is initiated by an
external device or an internal tenant, the failure of the forwarding device will affect all tenants
who use the device for packet forwarding. As early as the birth of SDN, some works have
warned that a kind of DoS attack leveraging the flow table update feature may occur in all SDN
devices[24, 25]. But most of them require a large number of packets to achieve, so it is easy to
detect and prevent through big flow detect mechanisms, thereby having little impact on the real
network environment[26, 27].

However, some recent works have found that the lack of isolation in the vSwitch’s flow table
can be used to bypass the detection mechanism and implement DoS attacks by carefully
constructing some low-rate traffic[28, 29]. Since all VMs share the same flow table structure in
the vSwitch to classify and forward packets, a malicious tenant can cause the lookup frequently
miss in the shared flow table by constructing special low-rate traffic, thereby triggering The
SDN controller issues a large number of meaningless rules and inserts them into the shared
flow table. These frequently inserted meaningless rules will greatly increase the time and
space complexity of flow table lookup, and the DoS attack formed. During the attack, all
VMs’ packet lookup processes will become extremely slow because of this common “failure
point”, and the forwarding performance of the entire vSwitch can be reduced to less than 20%
at most. Existing defense mechanisms against this attack focus on limiting the frequency of
traffic “pulling down” new rules and improving the packet classification algorithms[28, 30].
Unfortunately, these mechanisms can only reduce the effectiveness of DoS attacks, but cannot
completely isolate and prevent such attacks. What’s worse, the forwarding performance of
some normal services will also be affected by these restrictions.

The fundamental reason for the DoS attack on the data plane is the lack of isolation in vSwitch’s
flow table structure, so this research starts from the idea of isolating the flow table structure to
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reduce attack risks and isolate the device failure. For implementation, separating the shared
flow table in the vSwitch faces the following two challenges:

1) Break the paradox of needing to predict the packet’s owner before classifying it. After
separating the shared flow table for each tenant in vSwitch, a problem occurred that before
the packet needs to be classified, it should be first determined its owner, so as to redirect the
packet to the corresponding flow table structure for classification. This problem is particularly
serious in the direction of NIC to VM, because the packets received from NIC could belong to
any VMs on the server. Thus, an efficient pre-classification mechanism needs to be carefully
designed.

2) Reduce the overhead brought by the separated flow table architecture. When the shared
flow table in the vSwitch is split into multiple private flow tables of different tenants, the packet
processing procedure also changes accordingly. Due to the existence of the batch processing
mechanism, a batch of packets received on one port may be redirected into different flow tables
for subsequent lookup and forwarding operations, which will greatly reduce the relevance
of context processing. The most typical problem is that the cache locality is invalid, thereby
reducing the forwarding efficiency.

Based on the above analysis, to isolate the common failure and prevent the DoS attack on
the data plane of vSwitch, it is necessary to add the flow table structure isolation design to
the vSwitch. This research focuses on solving the above two challenges, and proposes an
efficient packet processing procedure under the separated flow table architecture, as well as
some forwarding performance optimization mechanisms.

1.2.3 Memory security isolation

Illegal memory access in the virtualization environment is mostly caused by I/O operations,
especially the VNIO accelerated by shared memory. The role of VNIO is to transfer packets
between the VM memory and the vSwitch’s packet buffer. Since these two pieces of memory
belong to different processes on the host (hypervisor and vSwitch), it requires an efficient
inter-process communication mechanism. The existing VNIO mechanisms widely adopt the
design of shared memory to improve the data path performance of vSwitch. In terms of memory
sharing, the existing solutions adopt two types of memory sharing models: the VM memory is
shared to vSwitch, and vSwitch realizes the packet copying workload[31–33]; the vSwitch’s
packet buffer is shared with all the VMs, and the VM directly reads and writes the packets in
the buffer[34–38].
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These memory sharing models bring high-performance data paths for vSwitch, but also break
the memory isolation originally provided by the virtualization platform and bring serious
security risks. The memory sharing models introduce a new attack surface for attackers, in
which malicious tenants can initiate illegal memory access. Through shared memory, an
attacker can read or write the memory of other VMs without restriction. Taking the first
memory sharing model as an example, malicious tenants can construct packets to trigger the
vulnerabilities in vSwitch. After taking control of the user-space vSwitch, they can implement
“legal” memory access and even attack to other VMs.

The virtualization open source community has already been aware of this risk, and researchers
from RedHat also reported a Direct Memory Access (DMA) attack based on shared memory[39,
40]. However, the existing solutions are all simple reinforcement works, which are dedicated to
restricting memory access behavior based on insecure memory sharing models. For example, the
address translation process of memory access is restricted to prevent illegal I /O memory access.
However, these reinforcement measures greatly reduce the performance due to frequent legality
checks and inter-process communication. For example, the price paid by the community’s
vIOMMU solution is that the VNIO performance is reduced to 20%[41–43]. In addition, other
memory protection mechanisms, such as the hardware-based Intel Software Guard eXtensions
(SGX) mechanism, cannot be used in VNIO for the same performance reason[44–46].

Since simple reinforcement solutions cannot solve security risks while ensuring performance,
this research attempts to analyze the root cause of these attacks. As the VM memory isolation
is broken by the insecure memory sharing model, the best solution should start from the shared
memory design, and to explore safe but efficient memory sharing model in VNIO design.
Achieving this goal will face three challenges:

1) Achieve the trade-off between security and performance. The introduction of shared
memory is to reduce memory copying times for accelerating VNIO, and improve network
performance. Therefore, if the memory sharing model should be redesigned to enhance
isolation, it cannot introduce new memory copying times and communication overhead.

2) The compatibility support for existing cloud infrastructure. The VMs running on the cloud
have strong compatibility requirements, such as allowing tenants to use various system images,
various network drivers, etc. Therefore, the design of VNIO mechanism cannot seek support
for modifying components inside the VM. Furthermore, all modifications to the architecture
also need to be tenant-agnostic and compatible with existing component interaction methods.

3) Reduce additional CPU usage to meet scalability. Since the vSwitch on the cloud can only
use limited CPU cores for packet forwarding, the design of VNIO mechanism also needs to
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take into account the CPU usage. In order to ensure memory isolation, the shared memory and
data paths are required to be redesigned, which may increase the number of threads for copying
packets. So innovations in scheduling methods are needed to meet CPU quota requirements.

To summarize, in order to achieve the trade-off between performance and security isolation in
the VNIO mechanism, this research aims to redesign more secure and efficient memory sharing
along with the data paths. After solving these three challenges, this thesis will propose a safe
and efficient VNIO mechanism for multi-tenant cloud platforms.

1.3 Research content and main contributions

This thesis focuses on the isolation challenges on tenant network performance, network failure,
and memory security within the vSwitch of cloud computing platforms. The specific research
content is shown in Fig. 1.3: firstly, in order to isolate VM network performance, a network
QoS method based on CPU-cycle isolation (C2QoS) is proposed, which ensures that tenants
enjoy independent network experience[47, 48]; secondly, to prevent DoS attacks on the data
plane, a defense mechanism based on flow table structure isolation (D-TSE) is proposed, which
isolates the possible common failure point in vSwitch and effectively reduces the risks of
data plane attack; finally, to solve the illegal access to VM memory in the existing VNIO
mechanisms, a memory access isolation based VNIO mechanism (S2H) is proposed, which
take into account both the performance and security[49, 50]. The above research content starts
from the urgent needs of the cloud platforms, provides an isolated, secure, and stable virtual
network environment for VMs, and realizes the transition from “providing services to tenants”
to “providing stable services to tenants”.
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1.3.1 Research content

The specific research content of the thesis is as follows:

(1) Research on network QoS method based on CPU-cycle isolation

The existing QoS methods in vSwitch are inherited from hardware switches. These packet/flow-
based methods ignore the competition for hardware resources and variable processing capability
of vSwitch, so they cannot achieve expected results. In order to provide isolation on physical
resources, redesigning a new QoS method faces three challenges: the CPU consumption of
packet forwarding is affected by many factors, and it is difficult to model accurately; the CPU
resources used by the cloud platform for packet forwarding are limited, so fine-grained isolation
and allocation mechanisms of CPU resources are required; the batch processing and polling
running modes in the vSwitch bring difficulties to the scheduling and latency guarantee of
packets. This part of the work aims to solve these three challenges, based on the idea of CPU
resource isolation, to design a method for ensuring VM network QoS.

This thesis proposes a network QoS method based on CPU-cycle isolation, named C2QoS.
Specifically, C2QoS uses a measurement-driven method to describe the influence of VM
traffic characteristics and deployment configurations on the IO-dedicated CPU consumption,
and establishes the performance-CPU model. Based on this model, C2QoS designs a CPU-
cycle based token bucket mechanism to accurately guarantee the tenant’s network bandwidth,
through isolating the competition on CPU utilization. In order to solve the competition in timing,
C2QoS designs a hierarchical batch scheduling mechanism to schedule batch forwarding tasks
on limited CPU cores according to their priorities, so as to provide differentiated latency.

By implementing the proposed C2QoS method on the open-source DPDK-accelerated Open
vSwitch (OVS-DPDK) platform, this thesis fully verified its effectiveness. The experiments
are conducted with two kinds of traffic: tester generating traffic and real services generating
traffic. The experimental results show that, compared with the traditional packet/flow-based
QoS method, the C2QoS method can strictly guarantee the VM network bandwidth, and at the
same time reduce up to 80% of the additional network latency caused by competition.

(2) Research on data plane attack defense mechanism based on flow table isolation

Existing data plane attack defense mechanisms only focus on how to reduce the effect of data
plane DoS attacks by detecting big flows and improving lookup algorithms. However, the newly
proposed Tuple Space Explosion (TSE) attack has been achieved by constructing low-rate
traffic to bypass the detection mechanism. Attack traffic will “pull down” a large number of
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useless rules and insert them into the shared flow table in vSwitch, thereby increasing the
lookup complexity and creating common failure points to interfere with other tenants. In order
to solve this problem, this part of the work aims to isolate the flow table in vSwitch to prevent
DoS attacks, and focuses on solving the paradox that packets need to be determined owners
before looking up in the flow table.

This thesis thus proposes a data plane attack defense mechanism based on flow table isolation,
named D-TSE. Specifically, D-TSE designs a separated multi-level flow table architecture
based on VM granularity. The classification of each VM’s packets will be performed in its
private flow table, thus isolating lookup performance and possible failure points. In order to
solve the paradox illustrated before, D-TSE adds a lightweight PRECLS module, between the
packet receiving and flow table classification steps, to distinguish packet’s owner VM through
IP address and VxLAN identifier. Then, PRECLS redirects the packet to its corresponding flow
table for subsequent lookup. Finally, in order to ensure the efficiency of packet processing under
the separated flow table architecture, D-TSE designs a batch re-aggregation mechanism, which
re-aggregates the redirected packets according to their destination VMs, and then forwarded in
batches.

This thesis implements the proposed D-TSE mechanism on the OVS-DPDK platform, replacing
the original shared multi-level flow table with a separated multi-level flow table architecture.
The experimental results show that the D-TSE mechanism isolates the VM’s flow table lookup
performance and common failure points at the cost of a 5% performance drop, and effectively
reduces the risk of DoS attacks initiated through the data plane flow table.

(3) Research on VNIO mechanism based on memory access isolation

As a bridge to transfer packets between the host and the VM, existing VNIO mechanism adopts
an insecure memory sharing model to reduce memory copying times for higher performance,
thereby introducing risks of memory illegal access. The reinforcement solution from the
community achieves security through address legitimacy detection, and pays an expensive
price of reducing performance by 80%, so it cannot be used in a production environment. In
order to ensure the memory isolation of VMs without reducing performance, this part of the
work attempts to design a safe memory sharing model without compromising performance,
compatibility and CPU efficiency.

This thesis proposes a VNIO mechanism based on memory access isolation, named S2H.
Specifically, this thesis firstly models the shared memory used in existing VNIO mechanisms,
and analyzes their security. Based on the analysis, a secure memory sharing model is proposed
to build VNIO data paths. According to the model, S2H, a safe and efficient VNIO mechanism
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based on the virtio standard, is designed and implemented. S2H can support stock VMs, and
achieves good compatibility with cloud infrastructure. In order to solve the problem of CPU
efficiency and concurrent thread competition in S2H, this thesis designs a batch-grained thread
scheduling method to save CPU resources and avoid deadlock when concurrent threads operate
shared memory, which increases the scalability.

This thesis implements a prototype system of the S2H mechanism on the virtualization platform
built by open-source QEMU/KVM and OVS-DPDK. The experimental results proved that the
S2H mechanism achieves the highest isolation and security in the software VNIO mechanisms
at the cost of only a 2–9% increase in latency, while obtaining the comparable performance
and scalability to the most widely deployed vHost-User mechanism.

1.3.2 Main contributions

With all these works completed, the main contributions and innovations of this thesis are as
follows:

• To isolate VM network performance, this thesis proposes C2QoS, a network QoS method
based on CPU-cycle isolation, and implements it on the OVS-DPDK platform. Compared
with the existing QoS methods, the C2QoS method can more strictly isolate and guarantee
the VM network bandwidth, while reducing 80% of the additional latency caused by
competition.

• To isolate VM network failure, this thesis proposes D-TSE, a data plane attack defense
mechanism based on flow table structure isolation, and implements it in the OVS-DPDK
platform. The experimental results show that the D-TSE mechanism isolates the common
network forwarding failures at the cost of up to 5% performance degradation, and
effectively prevents the data plane DoS attacks based on the shared flow table structure.

• To isolate VM memory security, this thesis proposes S2H, a VNIO mechanism based
on memory access isolation, and implements its prototype system on OVS-DPDK and
QEMU/KVM platform. Experimental results show that compared with the currently
widely used vHost-User mechanism, S2H maintains considerable throughput, but in-
creases 2–9% latency, while ensuring the VM memory isolation.
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1.4 Thesis outline

The rest of this thesis is divided into five chapters.

The Chapter 2 summarizes the related works and background knowledge of vSwitch isolation
in cloud platforms. The Chapter 3 introduces the design of C2QoS and its guarantee on VM
network performance. The Chapter 4 D-TSE design to defense data plane DoS attack. Chapter
5 designs and implements the S2H mechanism with a secure memory sharing model to achieve
a good trade-off between performance and security. Chapter 6 concludes the thesis.





Chapter 2

Background and motivation

Cloud computing, first proposed in 2006, has become a deployment paradigm for massive
internet applications and services for its cost-effectiveness, flexibility, and scalability. After
more than ten years of evolution, thanks to the virtualization technology, cloud computing
has become an indispensable part of business and personal life. For example, the latest 5G
communication technology adopts cloud infrastructure to deploy core network services, and
Microsoft has also launched the Azure platform to help operators for deploying and managing
physical networks through flexible management methods of cloud networks[51].

This thesis focuses on the vSwitch technology on the cloud platform. As the lowest-level
switching and forwarding device in the cloud network, vSwitch not only needs to break the
resource silos to provide high-performance interconnected networks for cloud services, but also
keep tenants’ isolation requirements in terms of performance, security, etc. This chapter will
introduce the related technologies of vSwitches, then discuss the isolation that tenants require
in vSwitch and the existing works in these areas.

2.1 The background of vSwitch

2.1.1 The virtualization technology

As the cornerstone of cloud computing, virtualization technology allows different tenants to
be deployed on the same physical server in the form of VMs, thereby reusing the hardware
resources on the server while enjoying an isolated operating environment. Technically, this is
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achieved through a virtualization layer, also known as a Virtual Machine Monitor (VMM) or
hypervisor. The hypervisor realizes the abstraction of hardware resources, that is, realizes the
virtualization of CPU, memory, and even I/O handler to provide corresponding interfaces for
the normal operation of VMs.
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Figure 2.1 The mainstream virtualization architectures

Existing mainstream virtualization platforms are shown in Fig. 2.1. In the QEMU/KVM
virtualization[5, 6] and Xen virtualization[7], the hypervisor includes parts in both user space
and kernel space. Among them, the part in the kernel space runs at a higher privilege level
(KVM in Fig. 2.1(a) and Xen hypervisor in Fig. 2.1(b)), and is responsible for completing CPU
virtualization and memory virtualization, etc. The part in the user space is the main process of
each VM (the QEMU process in Fig. 2.1(a) and the DomU in Fig. 2.1(b)), providing support
from the host OS for the operation of VM. It is worth noting the difference in I/O request
processing between the two virtualization mechanisms: In QEMU/KVM virtualization, each
QEMU process is solely responsible for device emulation and I/O request processing of one
VM within it, while Xen virtualization launches a special Dom0 VM to implement I/O requests
and network communication for all the VMs. Therefore, the Xen virtualization platform itself
consumes much more physical resources than QEMU/KVM platform. The CSPs also tend
to choose the QEMU/KVM virtualization platform to build their cloud infrastructure with
minimal resource cost, thereby reserving as many resources as possible for tenants[52].

Thanks to the virtualization platform, tenants in VMs can enjoy almost bare-metal performance
in isolated environments. For the tenant, what he controls is only the part inside the VM
Operation System (OS), but all the CPU instructions, I/O requests, etc. need to rely on the
hypervisor to execute safely on the hardware. From the perspective of the host that VMs
running on, each VM is actually a user-space hypervisor process, so it enjoys process-level
operational independence and resource isolation.
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However, with the density of VMs deployed on each server is increasing, how to realize the
network connection and network management for the high-density deployed VMs is a big
challenge for CSPs. That requires advanced vSwitch technology.

2.1.2 The vSwitch technology

To realize the network traffic forwarding and bridge the VM’s communication with the outside
devices, a series of difficulties need to be overcome. In terms of architecture, since the VMs run
on a high software abstract, a packet in the VM needs to go through the virtualization layer, the
host OS protocol stack, and the NIC before it can be sent out. During this period, components
that can monitor and set forwarding rules are required. To solve this problem, the vSwitch has
undergone the following stages of evolution.

1) TAP/TUN device communication. TAP/TUN[53] is an important function provided by the
Linux system for user-space programs to realize network connection. In essence, they are all
virtual network devices. TUN is located in the 3rd layer, simulating network layer devices,
while TAP devices run at Layer 2. They all can be used to simulate the virtual NIC function for
the VMs. When the VM needs to send packets out, it can write packets to TUN/TAP devices
through the hypervisor, and the host OS kernel can receive packets through these devices. The
situation in the opposite direction is similar.

2) The Linux Bridge implements a simple virtual switching function. After we have got
the virtual devices on the host, a component that provides lookup and switching for packets
from the virtual devices is necessary. This component is Bridge[10] in the Linux kernel. Linux
Bridge is similar to a switch in the physical network. All network devices connected to it are
virtualized into a port. Packets received from each port are forwarded in the Bridge through the
mapping relationship between MAC addresses and ports. For example, if both the TAP device
and the NIC device are added to the same Bridge, the VM can use this Bridge to realize packet
switching and communicate with the outside devices. However, the use of TAP devices and
Linux Bridge has two defects. The first one is that the packets will be copied multiple times
in the kernel space, resulting in low performance. Another drawback is that the Linux Bridge
cannot monitor and manage traffic. In this way, the VM traffic monitoring and management
tasks fall on the external physical switches. Since all the devices bound to the Linux Bridge
will lose their IP addresses, the traffic of different VMs cannot be distinguished on the external
forwarding devices, which cannot complete the fine traffic management.
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3) The vSwitch realizes high-performance network forwarding and monitoring. To get
rid of the performance and flexibility limitations of packet switching in kernel space, vSwitch
is gradually introduced. The vSwitch is a user-space program independent of the Linux kernel.
It contains the complete I/O operations, switching, forwarding and monitoring logic, that gives
the vSwitch great flexibility. Therefore, the packets in the virtual network can be efficiently
classified, forwarded and monitored in the vSwitch, and do not worry about the limitation from
kernel version.

Benefiting from the idea of SDN, software vSwitch enhances the ability to manage complex
virtual networks on the cloud[54]. In terms of implementation, SDN greatly simplifies the table
types that vSwitch needs to store and query. Traditional routing tables and Access Control Lists
(ACLs) are replaced by unified flow tables. In the abstraction of the flow table, the vSwitch
follows the processing logic of "match+actions". During the packet matching, vSwitch does not
need to pay attention to the specific operation performed for the packets. After the matching
process is completed, vSwitch performs the corresponding actions for the packets according
to the matched flow entry. The action operation includes rich functions such as forwarding,
rate limiting, and security configuration, which makes the CSP flexible to manage network
configurations. At the same time, since the vSwitch is a third-party component independent of
the Linux kernel and the hypervisor virtualization platform, it is also more suitable for business
deployment, configuration and traffic monitoring at different levels such as per port, per flow
and per packet.

In terms of performance, vSwitch also widely adopts user-space accelerated drivers to provide
high-performance virtual networks. To reduce the packet copying times from VM to the
physical NIC, existing vSwitches have shifted from traditional kernel modules to a pure user-
space component to leverage kernel bypass technology[55, 56]. On the one hand, it can reduce
the number of memory copying times during the packet delivery procedure, and on the other
hand, it is more convenient to use a series of user-space components, such as DPDK[11],
netmap[57] and Vector Packet Processing (VPP)[58], to accelerate packet processing. For
example, the most widely used Open vSwitch[59, 60], VALE[61], BESS[62], snabbswitch[63],
and Microsoft Cloud’s VFP[64] all adopt the design of pure user-space data path.

Nowadays, the typical user-space vSwitch architecture and logic are shown in Fig. 2.2. Each
virtual or physical NIC is connected to the vSwitch in the form of a port, and the packet
processing logic driven by these devices is also integrated into the vSwitch. In vSwitch, the
most important module is the Polling Mode Driver (PMD) thread that executes the main
workload. It runs in a polling mode, traversing each port to receive packets, process and
forward them. The running logic of the PMD thread is shown in the shadow part of Fig. 2.2.
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Figure 2.2 The typical vSwitch structure and logic

It first collects a batch of packets on each port, then looks up in the flow table to query the
destination port, and finally calls the driver on the destination port to send packets out. Since
the physical resources that can be used in vSwitch for network forwarding are limited, the core
working modules (see the orange part in Fig. 2.2) are all shared to improve efficiency.

Through the above description and analysis, it can be seen that in order to realize the network
virtualization for VMs, CSPs have gone through the stages of using TAP/TUN virtual device
communication, Linux Bridge switching, and finally developed today’s powerful user-space
vSwitch. The widespread deployment of vSwitches also marks the maturity of virtual switching
technology in large-scale cloud networks, and the problems of performance and flexibility that
have plagued CSPs for a long time have been resolved. However, it also needs to be recognized
that the current vSwitch has just solved the basic problem of whether it can provide tenants
with virtual network services. When the resource integrated with vSwitches is getting higher
and a series of sharing designs are adopted, how to provide a secure and stable virtual network
environment for tenants has become a new challenge for CSPs.

2.1.3 The isolation requirements

As the goal of cloud computing is to allow lots of tenants to deploy VMs flexibly and elastically
on the same platform, isolation and interference avoidance are the most basic requirements. At
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the virtual network level, the requirements for isolation are reflected in three aspects: network
performance, network failure, and security.

The network performance isolation in the vSwitch is mainly reflected in the network QoS
guarantee for tenants. Usually, when a tenant purchases a VM on the cloud platform, an SLA
network performance is included, that is, the network bandwidth and latency indicators. The
vSwitch needs to ensure that the tenant can always achieve the purchased network performance
when using the VM. On the other hand, SLA network performance is also an important basis for
differentiated services. Therefore, the network performance isolation requires that the vSwitch
can always ensure the tenant’s stable SLA network performance when forwarding traffic for
high-density deployed VMs.

Network failure isolation in vSwitch refers to the prevention of data plane DoS attacks that
paralyze innocent tenants’ network communication due to tenant’s actions. In the forwarding
process of the vSwitch, the TX/RX operations are relatively simple and implemented by the
device drivers, so there is no resource sharing and possible common failure points. However,
the packet classification module is much more complicated, and it contains many shared data
structures to ensure high efficiency, which leads to the possible common failure points. If the
packet classification process in the shared flow table fails, the normal packet forwarding of
all tenants will come down. Therefore, for the flow table structure design in the vSwitch, it
is necessary to provide tenant-level isolation, so as to prevent the common failure point from
affecting innocent VMs on the same platform.

The security isolation in the vSwitch is mainly reflected in the defense against possible attacks
in I/O operations and memory access. In the virtualized environment, security has always been
the most concerned issue for CSPs, such as I/O edge channel attacks and illegal memory access.
Most of these attacks are based on memory access, so there is a potential attack surface in
vSwitch for that it directly takes over large amounts of device memory and driver logic. Since
the memory operations in vSwitch mainly occur in packets I/O, the I/O operation design needs
to ensure the highest security isolation as much as possible, and cannot be exploited to create
attacks.

The rest of this chapter presents the existing works on these three isolation guarantees, as well
as their remaining deficiencies.
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2.2 Works on network performance isolation

Performance isolation is a relatively old topic and has been researched in hardware switches
for a long time. This section will introduce the QoS method and its theoretical basis used
on hardware switches to ensure tenant network performance isolation, and then analyze the
difficulties and deficiencies of these existing methods applied to vSwitches.

2.2.1 Network QoS methods

As an important means of realizing tenant network performance isolation, the network QoS
guarantee method has undergone decades of research, and a mature theoretical system has
been established to support differentiated network services. From the implementation principle,
it can be divided into two types of mechanisms: token bucket mechanism and fair queue
mechanism.
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Figure 2.3 The principles of two kinds of QoS mechanisms

The token bucket mechanism is a lightweight method to ensure tenant network bandwidth.
Its main idea is to accurately limit the sending rate according to the definition of bandwidth
(bps= passed_bits/seconds). The examples include the qdisc[12–14] token bucket mechanism
in the Linux kernel, and single/two rate three color marker (srTCM/trTCM)[65, 66] token
bucket algorithm in RFC standard. These token bucket mechanisms may have some differences
in implementation, but the basic principles are generally the same. As shown in Fig. 2.3(a),
a token bucket structure is allocated to each tenant in the forwarding device, and the number
of tokens (such as bits) is stored in the token bucket. The token generation rate is determined
by the bandwidth purchased by the tenant. Taking a tenant with 1 Mbps bandwidth as an
example, the token bucket can generate 1M bits of tokens per second. When the tenant has
packets to send, the forwarding device will check the number of tenant’s tokens. The number
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of tokens left in the bucket is used as the basis to decide how many bits of packets can be
forwarded. The packets that exceed the number of tokens will be selectively discarded or left
in the queue to wait for the next forwarding opportunity according to the policy. In the token
bucket mechanism, most of the existing works focus on how to determine the bucket depth to
face the bursty traffic[67], how to achieve robustness[15], and how to avoid conflicts, etc. But
no matter how to improve, token buckets can only limit bandwidth, and cannot guarantee the
packet latency along with fairness.

Compared with the token bucket, the fair queue mechanism is much more complex and involves
more diverse scheduling algorithms. Its core function is to queue packets of different tenants
according to the priority, weight and other factors, and then send packets out in order. Since the
total bandwidth of the forwarding device is fixed, the fair queue can not only limit the sending
rate of each queue, but also ensure the latency and fairness of the packets in different queues.
As shown in Fig. 2.3(b), when there are three queues of packets to be sent, the forwarding
device takes different numbers of packets from each queue in turn, and thus forms a queue with
specific order on the sending port. So it not only guarantees bandwidth but also avoids blocking
and unfair waiting. The granularity of the fair queue’s early implementation is relatively coarse,
and it is based on packets, which cannot cope with variable-length packet traffic. Therefore, a
series of fine-grained scheduling mechanisms were proposed, such as GPS[16], DRR[17] and
WFQ[18], etc. Currently, the existing works dedicate to the efficient implementation of these
mechanisms [68, 19, 20].

2.2.2 Limitations

However, these well-studied QoS guarantee methods are all based on the premise that the
performance of the forwarding device is constant, that is, the total bandwidth is constant. It is
generally applicable on traditional hardware switches, but in software vSwitches using CPU
cores to forward packets, this premise no longer exists.

In the vSwitch, the forwarding capacity of the CPU core processing engine is variable, and
the CPU overhead required for forwarding different packets often varies by more than ten
times[23]. Therefore, the packet forwarding tasks of different tenants will compete for the
variable processing capacity in vSwitch. Even worse, only limited CPU cores can be bound to
PMD threads in vSwitches for packet forwarding, because CSPs need to sell most of the CPU
resources to tenants for maximizing profits. For example, in the deployment case of Google
Cloud, only two CPU cores are used to allocate to PMD threads for forwarding[69], which
further aggravates the competition for resources. The latest work of Cisco and Google Cloud
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both revealed that the traditional QoS method cannot cope with the competition of physical
resources and volatile forwarding capability in vSwitches. But these works only add a module
of CPU resource isolation in addition to the traditional QoS module. Unfortunately, this newly
added module still cannot solve the uncertainty caused by the variable forwarding capacity in
vSwitch, so it is difficult to meet the service stability requirements in cloud networks.

2.3 Works on network failure isolation

Tenant network failure isolation is one of the most important capabilities in cloud networks, and
one of the most common network failures is caused by DoS attacks that paralyze forwarding
devices. However, since the introduction of SDN, the decoupling and interaction design of its
data plane and control plane has provided new possibilities for DoS attacks. This section will
introduce in detail the DoS attacks and defense mechanisms under SDN, and then focus on
their real implementations in vSwitch.

2.3.1 Data plane DoS attack and defense

The SDN has been popular because it gives the network flexible programmability since it was
proposed ten years ago. The basis of its flexibility lies in the decoupling of the data plane and
control plane. The CSPs only need to configure and manage the rules on the control plane, and
they can realize the management of each forwarding device in the complex network. One of the
most important features is that whenever the forwarding device receives a packet that fails to
match in the local flow table, the device will send a "packet_in" message to the controller. Then
the controller configures rule and delivers the corresponding flow table entry to the local flow
table of the forwarding device. This feature simplifies the network configuration and ensures
network self-learning, but it also brings a new attack surface to the data plane.

Some works have warned that the interaction mechanism of the data plane and control plane
in SDN will bring new security threats[24, 25]. The threat model is shown in Fig. 2.4. A
malicious tenant only needs three steps to achieve a DoS attack on a switch and even the entire
data plane: 1) malicious tenant sends carefully constructed traffic consisting of packets with the
quintuples distributed very discrete; 2) When the traffic reaches the forwarding device for flow
table lookup and forwarding, the packets will frequently miss in the local flow table and thus
“pull” a large number of flow table entries from the controller; 3) Since new flow table entries
are frequently added to the forwarding devices, there may be a shortage of storage, or the
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Figure 2.4 The principles of data plane DoS attacks under SDN

complexity of packet classification algorithm may increase. For example, in a hardware switch,
frequent swap-in and swap-out operations may occur because the TCAM memory is full, which
affects the packet matching operation of other normal traffic; while in a software-implemented
forwarding device, the time complexity of packet classification algorithm is changed due to
adding too much rule entries which results in a substantial decrease in the overall matching
performance. Although there are little differences in attacks on the software and hardware
devices, the results are the same–the forwarding devices suffer from DoS attacks, thus affecting
the network experience of all tenants.

To defend the DoS attacks leveraging SDN rule update mechanism to cause failures in the flow
table of forwarding devices, existing works attempt to detect and block the attack flows[26, 27].
Due to the attack traffic rate required for frequently “pulling” rules into flow table to form the
attack is not low, some works try to use big flow detection mechanisms (such as sketch, etc.) to
detect and prevent the malicious traffic. Another idea is to limit the frequency of the controller
issuing rules to the local flow table, so that the malicious traffic cannot achieve the purpose of
“pulling” a large number of useless rules into the flow table in a short time.

2.3.2 Limitations

However, most of these attack methods under SDN are too idealized and not close to the
real environment, so they have received little attention. Moreover, the mainstream hardware
switches can also be set to allocate independent flow table storage space for different flows,
ports, and tenants. The flow table update behaviors of different tenants do not interfere with
each other, so the DoS attack on these devices can hardly work. But inside the software vSwitch,
things are much different. For efficiency, the resources and structures like flow tables are shared
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to achieve higher performance, so compared with hardware switches, the vSwitch will face
more possible DoS attacks.

Recently, Csikor et al. in [28, 29] implemented a Tuple Space Explosion (TSE) attack against
vSwitches. Malicious tenants only need to construct packets with random headers and send low
rate traffic, the DoS attacks can be carried out on the widely used OVS-DPDK. Under the attack,
OVS-DPDK will pull down a large number of useless flow table entries from the controller,
resulting in a sharp increase in the time complexity of the Tuple Space Search (TSS)[70]
classification algorithm. Experiments show that the TSE attack can cause the forwarding failure
of the vSwitch and reduce the network performance of all tenants by 80%.

The existing defense mechanisms cannot isolate common failure points and prevent this kind
of TSE attack. Since TSE attack only requires a low attack traffic rate, the defense mechanisms
such as big flow detection can be easily bypassed[26]. Other solutions will greatly affect
the QoS of the vSwitch while preventing the attack. For example, in the case of limiting the
frequency of “pulling” rules, the vSwitch may not be able to withstand traffic bursts, and even
cannot serve concurrent access to the website well.

2.4 Works on memory security isolation

Secure isolation problems mostly occur in I/O operations and memory access behaviors. This
section will introduce the evolution of VNIO and the memory isolation issues it introduces.
Then, an analysis of related solutions and their limitations will be given.

2.4.1 Isolation issue in virtualized network I/O solutions

VNIO is an important means of transmitting packets between the VM and the host. A packet
sent from the VM should be transferred from the VM memory to the host side memory through
the VNIO technology. After that, the subsequent search and forwarding operations can be
performed in vSwitch. In the past decade of exploration and evolution, the expectation for this
technology lies in how to greatly improve performance.

Initially, the VNIO technology was realized by the hypervisor. This solution uses hypervisor
processes such as QEMU to simulate interrupts for realizing the packet transmission. But the
"VM-Exit" operation and multiple memory copying times result in poor performance. So in
2005, IBM proposed the para-virtualization standard–virtio[71] to solve the VNIO performance
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dilemma. After three generations of improvements, the virtio para-virtualization standard has
become a prerequisite for deploying VMs on the cloud platforms.
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Figure 2.5 The evolution of virtio-based para-virtualized network I/O mechanisms

Fig. 2.5 shows the evolution of virtio based VNIO. In the virtio standard, the function of VNIO
is completed by the “front-end” and “back-end”. The front-end is driven by the vNIC inside
the VM and will not be easily changed, while the back-end is the actual performer of packet
copying and I/O operations. With the continuous pursuit of performance, the implementation
and position of the back-end are constantly changing. In the first-generation solution (see
virtio-net in Fig. 2.5(a)), the back-end is integrated into the QEMU process. In this solution,
each QEMU process performs the packet copying tasks for one VM inside it, and then writes
the packet to the TAP device for virtual switching in Linux Bridge. However, this solution
brings too much burden to QEMU, and even the normal operation of the VM is affected in the
case of high-speed network communication, so the researchers proposed the second-generation
vhost-net mechanism[72]. As shown in Fig. 2.5(b), in the vhost-net mechanism, the back-end
is transferred from QEMU to the vhost-net module in the kernel space, and this kernel module
will uniformly respond to all VMs’ network I/O requests. With the rise of kernel bypass and
high-performance user-space vSwitches in recent years, the vhost-net mechanism has gradually
moved up to the user space and evolved into vhost-user (as shown in Fig. 2.5(c)). Under the
vhost-user mechanism, the vSwitch realizes the back-end function through mapping all the
VMs’ memory to its own memory space. The whole packet transmission is completed in the
user space without interruption and privileged instructions, thus greatly improving the I/O
performance and becoming the mainstream deployed mechanism in the industry.
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Throughout the evolution of virtio-based VNIO mechanisms, it can be seen that too many
components and even memory isolation problems are gradually introduced due to the pursuit
of ultimate performance. In both virtio-net and vhost-net solutions, the privileged processes
are used to implement back-end I/O functions. For example, virtio-net chooses QEMU, which
is originally the hypervisor process responsible for managing VM memory, to implement
the back-end function; while in the vhost-net, the back-end function is implemented by a
kernel module, which also has sufficient permissions to access the VM memory. Thus, there
is no memory isolation issue in the previous two generations of mechanisms. However, in
the vhost-user, the vSwitch process is a user-space process and is restricted from accessing
VM memory. In order to implement I/O operations, the memory sharing mechanism (the VM
memory is completely shared with the vSwitch) is introduced. That brings the risk of illegal
memory access and attacks to the VMs while providing a high-performance data path.

2.4.2 The limitations of reinforcement works

There have been studies and warnings on the risk of illegal memory access in the vhost-user
mechanism. From the open-source community, Wang et al. reported a DMA attack based on
the shared memory of vhost-user[39, 41, 40]. As long as malicious tenants take advantage of
vulnerabilities or software flaws to control the user-space vSwitch, they can access all other
tenants’ memory without restriction. To solve this issue, a solution called vIOMMU is proposed.
Its idea is to create a vIOMMU virtual device in the QEMU process to implement the address
translation and legality check for vSwitch memory access. When the vSwitch needs to access
VM memory, it first needs to send a request to QEMU for legality check and address translation,
so as to prevent illegal memory access to the VMs[41–43]. However, this vIOMMU solution
will greatly increase the inter-process communication overhead. Experimental results show that
it will reduce the system performance to 20% of the original, which is unaffordable for CSPs.

At the same time, some other VNIO mechanisms have been proposed in academic papers,
such as NetVM[34], IVSHMEM[35, 36] and ClickOS[73]. But these mechanisms all use
shared memory to speed up packet copying, which also causes isolation risks and security
problems. In addition, due to the lack of standardization and community support, they also
have shortcomings in compatibility. Therefore, none of these solutions can be used for cloud
platforms





Chapter 3

C2QoS: CPU-cycle Isolation based
Network QoS Method

3.1 Introduction

As the foundation of cloud computing, virtualization technology allows tenants to flexibly
deploy various services on the cloud platform in the form of VMs. In the cloud virtualization
environment, VM deployment density is usually high, that is, a large number of VMs belonging
to different tenants and running different services are deployed on the same physical server.
These VMs share various resources of the host, including CPU, memory, and network. There-
fore, how to design mechanisms to allocate these resources and provide differentiated services
is the most concern for CSPs.

On the server of a cloud platform, VM network resources are provided by software vSwitch.
The vSwitch connecting NIC to the VMs provides all VMs’ network connectivity. All packets
sent from the VMs need to go through steps such as classification and forwarding in vSwitch
before they can be sent out via the NIC. Therefore, the upper limit of bandwidth and latency
these VMs can achieve are determined by the processing capabilities of the vSwitch[64, 59].
But for a CSP, it is a common practice to increase the share of CPU resources with VMs,
and thus very limited CPU resources are left for vSwitch’s forwarding tasks, e.g., the Google
cloud uses no more than two dedicated physical cores to perform forwarding tasks[69]. As a
result, all the VMs compete with each other for the limited processing capacity of the vSwitch,
essentially for the CPU resources occupied by the vSwitch.
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Meanwhile, the CPU resources needed to maintain particular network performance are hard
to predict in vSwitch. Different from the hardware switch that has a constant forwarding
capacity, the vSwitch’s processing capacity with these IO-dedicated CPU cores is variable
when being used to forward traffic with different characteristics. For example, at the same bps
rate, compared to forwarding the traffic with 1518-byte packets, forwarding the traffic with
64-byte packets consumes 10 times more CPU cycles[22, 23]. As a result, the vSwitch can
hardly guarantee all tenants’ network SLA performance in all situations.

Existing network QoS strategies in software vSwitch are inherited from the interface-based
solutions of hardware switches, and do not consider the issues of CPU resources competition
among tenants, as well as the variable vSwitch forwarding capacity. As a result, they cannot
ensure VMs’ SLA performance targets. Our experimental results on a multi-tenant cloud
platform in Section 3.2, show that the innocent VM bandwidth can be decreased by up to
20% due to the competition of IO-dedicated CPU usage. In terms of latency, all VM’s latency
increase hundreds of times, since all VMs’ forwarding tasks compete for the limited CPU
cores in terms of timing and are not processed in a differentiated manner. Some works[21, 22]
have noticed the resources competition issue, and they added a module for CPU resources
isolation before the QoS module. The effects of these works were limited because they are still
interface-based and the variable vSwitch forwarding capacity is still ignored.

Different from existing solutions, in this chapter we propose a new CPU-Cycle based QoS
strategy (C2QoS) to completely solve this issue. As the “virtual” network resources are realized
by the IO-dedicated CPU cores, we guarantee VM’s network SLA performance by directly
apportioning these CPU cycles to VMs. The challenges of achieving this goal include: 1) How
to establish a correspondence between VM’s bandwidth and CPU usage. 2) How to assign CPU
cycles to VM to strictly guarantee its bandwidth. 3) How to ensure the SLA latency, especially
for the delay-sensitive applications (e.g., the web and video servers require lower response
latency than file system servers).

To address these challenges, this chapter makes the following main contributions:

• We propose a modeling methodology to build the correspondence between forwarding
capacity and CPU resources in vSwitch. The model characterizes the effect of different
working conditions over the vSwitch forwarding capacity. These conditions include the
tenant traffic characteristics, as well as the deployment configurations.

• Based on the model, we propose the C2QoS strategy, containing a CPU-Cycle based
Token Bucket (C2TB) mechanism for performing isolation enhanced rate limiting and a
Hierarchical Batch Scheduling (HBS) mechanism for providing latency guarantee.
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• We implement the C2QoS strategy on the OVS-DPDK[11, 59] platform. The experi-
ments on a multi-tenant cloud platform show that compared with existing strategies, the
influence of CPU resource congestion on bandwidth is eliminated and that on latency is
reduced by 80%.

3.2 Problem define and motivation

3.2.1 Network QoS in vSwitch

Network QoS strategy is a well-studied topic in hardware switch, and a lot of works have been
proposed. According to the implementation and function, the QoS strategies can be divided
into two types: the token bucket mechanisms, and the fair queuing mechanisms. The token
bucket mechanisms are used to limit the bandwidth sharing with little overhead, but they cannot
ensure latency[12–14, 67]. In contrast, the fair queuing and traffic scheduling mechanisms
represented by GPS, WFQ, and DRR, are proposed to guarantee SLA bandwidth and latency
more finely, while bringing relatively high complexity[16, 18, 17].

When realizing these two kinds of QoS strategies in the hardware switch, the sufficient process-
ing capacity inside the switch brings significant advantages. The main reasons are argued in
[15]: the overhead of processing each packet is fixed; the token buckets and queues are imple-
mented by hardware and they can complete the corresponding functions without compromising
the performance; high-precision clock and hardware feedback support[74, 75].

Unfortunately, none of the above advantages exists in software vSwitch. As mentioned in
Section 3.1, the CPU cores left for vSwitch are limited, and meanwhile their processing capacity
is variable when being used to forward traffic with different characteristics. For example, in
Google’s experiments, forwarding a flow with 64-byte packets at a speed of 512 Mbps will
consume more CPU cycles than forwarding a flow with 1518-byte packets at a speed of
2.4 Gbps[22]. On the other hand, as a software-based process, the vSwitch has particular
bottleneck and resource competition points, which are completely different from hardware
switches. These differences make that the QoS strategies inherited from hardware switches
cannot work well in the vSwitch. We will further demonstrate in this section that, existing QoS
solutions can cause performance issues in both bandwidth and latency.
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3.2.2 Bandwidth issue

The existing rate limiting methods in the vSwitch of cloud servers usually use the light-
loaded token bucket for efficiency, e.g. the MBFQ rate limiting method used by Microsoft is
implemented with a token bucket algorithm[15]. These existing token bucket mechanisms are
all based on bps or pps, and directly limit the number or bits of packets that can be forwarded
to guarantee tenants’ SLA bandwidth. As the IO-dedicated CPU resources are limited and the
processing capacity is variable when being used to forward different traffic, one tenant may
legally squeeze the CPU resources and harm the bandwidth of others.

In this section, we adopt the best-performing three color marker (TCM) rate limiting algorithm[67,
65, 66] in the OVS-DPDK platform to demonstrate the issue. On one server, we launch two
VMs to connect to the OVS-DPDK as the sender, and then use another directly connected
server with the same hardware configurations as the receiver. We use pkt-gen from netmap[57]
inside the two VMs as packet generators. It should be noted that all experiments in this chapter
use the same platform configurations: Intel Xeon CPU E5-4603 v2 2.20GHz (32 logical cores
on 4 NUMA nodes), 64GB DDR3 memory at 1333MHz, one Intel 82599ES 10-Gigabit Dual
Port NICs and Ubuntu 16.04.1 (kernel 4.8.0) as operation system. The cloud platform is built
on QEMU 2.10, DPDK 17.11.2 and OVS 2.9.2. Every VM is assigned with 2 GB memory and
1 logical CPU core.

In Fig. 3.1(a) and Fig. 3.1(b), we show how the bps-based token bucket mechanism fails to
ensure VM bandwidth. The VM1 and VM2 share one dedicated CPU core in OVS-DPDK for
forwarding, and their bandwidths are limited to 2 Gbps and 8 Gbps respectively. Within the first
10 seconds, they send 512-byte packets and their bps bandwidths are precisely limited. Starting
from the 10th second, VM1 sends small packets (changing the packet size to 64-byte). In order
to achieve the same bps throughput (2 Gbps) as before, VM1’s forwarding tasks in vSwitch
consume 20% more CPU resources as shown in Fig. 3.1(b). This leads to a drop in the CPU
consumption of VM2’s forwarding tasks, which in turn reduces VM2’s available bandwidth.
Eventually, the innocent VM2 was affected by the tenant behavior inside VM1, resulting in an
approximately 20% decrease in VM2’s bandwidth.

The same situation also occurs in the pps-based token bucket mechanism. In Fig. 3.1(c) and
Fig. 3.1(d), VM1 and VM2 also share one CPU core in OVS-DPDK for forwarding, and their
bandwidths are limited to 0.6 Mpps and 2.4 Mpps respectively. Within the first 10 seconds,
they behave well and both send a single flow. The VM1 starts to send multiple flows from the
10th second (change configurations in pkt-gen), which makes it require more CPU resources
as the packet classification in OVS-DPDK gets slower. Similarly, to achieve the previous pps
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Figure 3.1 The bandwidth isolation issue in existing token bucket mechanisms

bandwidth, VM1 preempts part of the CPU resources belonging to VM2 as shown in Fig. 3.1(d),
which leads to a 16% decrease in VM2 bandwidth.

These two experiments demonstrate that, even the tenant behavior inside a small-weight VM
can influence the other innocent VMs’ bandwidth. The reason is that the VM forwarding tasks
compete for the IO-dedicated CPU cores in vSwitch, which is ignored in the existing rate
limiting mechanisms. By exploiting this flaw, greedy tenants can obtain more CPU resources,
or an attacker can construct specific traffic to harm the network performance of all tenants
on the server. In either case, CSPs cannot provide the well-behaved tenants a stable network
performance.

3.2.3 Latency issue

In addition to the bandwidth issue, the existing traffic scheduling mechanisms inherited from
the hardware switch also cause latency issues in vSwitch. As processing engine and logic are
very different between the hardware switch and the vSwitch, the resource competition occurs at
different stages. Simply applying the previous strategy cannot solve the competition problem
on a different platform.



36 C2QoS: CPU-cycle Isolation based Network QoS Method

As shown in Fig. 3.2, we present the abstract of packet processing logic in the hardware
switch and the software vSwitch to analyze the different requirements of scheduling in the two
architectures. In the hardware switch, the circuits with powerful processing capabilities make
the resource contentions mainly occur at the egress stage, where the traffic of multiple in_ports
is gathered for sending out on a particular port (see port P6 in Fig. 3.2(a)). The existing traffic
scheduling mechanisms working at this stage[20, 68, 76] can queue up packets of different
in_ports so as to guarantee differentiated latencies. However, in the software vSwitch, the
packet processing capacity of CPU cores is far inferior to the hardware circuits that can achieve
line speed. With the common practice in the cloud platform that very limited CPU cores are
used for vSwitch, concurrent VMs compete for these CPU cores to execute the expensive batch
I/O processing in the ingress stage (see Fig. 3.2(b)). Due to the absence of task scheduling at
the ingress stage, VMs indiscriminately queue up for batch I/O tasks to be completed, which
causes mutual influence and high latency. In the worst case, on a server running n VMs, each
VM will suffer from the additional latency caused by n−1 times of batch I/O processing.

ingress egress
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circuits
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Figure 3.2 The comparison between hardware switch and software vSwitch

We also use experiments to demonstrate this issue. To simulate the multi-tenant scenario on
the cloud, we increase the number of VMs to 16 on one server and measure the TCP latency.
One CPU core is used to forward traffic in the OVS-DPDK. To measure TCP latency, we run
qperf[77] as a client-side program in all VMs simultaneously, while the server-side program
is run in another directly connected physical server. We measure 20 sets of data for each
experiment to avoid accidents.
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Figure 3.3 The TCP latency with different numbers of VMs deployed

The results are shown in Fig. 3.3, where the latency in each case is shown in the form of a box
diagram. It can be seen that when there is only 1 VM running on the server, its TCP latency is
stable and maintained at 26–27 us. But with the number of VMs growing, the TCP latencies
become unstable and all increase exponentially. When deploying up to 16 VMs on this server,
all VMs suffer from hundreds of times higher latency indiscriminately due to waiting for the
one IO-dedicated CPU core to sequentially process other VMs’ batch I/O processing at the
ingress stage.

3.2.4 Motivation

The reason that VM’s bandwidth and latency cannot be guaranteed is that the existing QoS
strategies ignore the IO-dedicated CPU resources competition inside the vSwitch. The lack of
management and apportionment of CPU resources brings a series of flaws including bandwidth
isolation and undifferentiated high latency. Some previous works have mentioned this issue, and
some solutions have been proposed, e.g., Addanki et al. [21] considered separately apportioning
IO-dedicated CPU resources and bandwidth on the software router, and Kumar et al. [22]
proposed a method by using a CPU-based weighted fair queue to isolate CPU competition
among VMs. But all of these works have limited effects because they only add a CPU isolation
module before or after the existing interface-based QoS mechanisms, but fail to consider the
variable vSwitch forwarding capacity and the different resource competition points in the
software vSwitch process.

Essentially, the network forwarding capacity of vSwitches is not a kind of physical resource, but
a kind of “virtual” resource provided by IO-dedicated CPU resources in the vSwitch. Starting
from this point, the motivation of this work is to adopt the CPU resources apportionment, that
reflects the network forwarding capacity more directly, in the VM network QoS solution. In
order to do that, we first propose a modeling methodology to build the relationship between
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CPU resources and network forwarding capacity in vSwitch. Based on the vSwitch network
performance model, we design and implement a new VM network QoS strategy.

3.3 Bandwidth–CPU model

To guide the design of QoS strategy, we first need to model the correspondence between
forwarding capacity and CPU utilization in vSwitch. Our modeling of the vSwitch forwarding
procedure is based on the OVS-DPDK platform, which is a state-of-the-art implementation
and has been widely adopted by the industry. As the OVS-DPDK platform represents a lot of
vSwitches in terms of packet processing logic, the modeling method can be easily applied to
other vSwitch platforms.

3.3.1 Packet forwarding procedure in vSwitch

In OVS-DPDK, several PMD threads are launched and bound to the limited IO-dedicated CPU
cores. For efficiency, these PMD threads use batch processing mode to process tasks.
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Figure 3.4 The processing logic in OVS-DPDK

As shown in Fig. 3.4, the batch I/O processing procedure in the OVS-DPDK consists of three
stages delivering packets from the VM to the external network. The first stage is ingress, the
PMD thread copies a batch of packets from the VM memory to the vSwitch’s buffer. Next, in
the classification stage, the PMD thread looks up their destination port based on the five tuples.
If the five-tuple is found in the Exact Match Cache (EMC), we go to the next stage. But if it
is missed, the PMD thread will use more CPU cycles to look up in the more comprehensive
classifiers (the datapath classifier in Fig. 3.4) and then go to the next stage. Finally, it is in
the egress stage that the PMD thread writes the packet descriptors to the NIC queue, and then
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the NIC can send packets out. According to these three stages, we also divide the CPU cycles
consumed by the VM forwarding tasks into three parts as shown in the equation below:

C =Cingress +Cclassi f ication +Cegress (1)

Where Cingress indicates the CPU cycles consumed in the ingress stage, Cclassi f ication refers to
that consumed in the classification stage and Cegress corresponds to the CPU cycles consumed
in the egress stage.

It is worth noting that in the classification stage, the EMC capacity is limited, e.g., it has only
8192 entries in OVS-DPDK, so it can only store the most recently searched five-tuples. The
datapath classifier is the main body of the classifier algorithm like tuple-search-space (TSS)[70]
and contains all the rules in the vSwitch. Each time a five-tuple search is hit in EMC, the
Cclassi f ication only contains lookup cost in EMC. But if a lookup is missed in EMC and hit in
the datapath classifier, the hit entry needs to be added to EMC[59]. Therefore, the Cclassi f ication

under this case contains the lookup cost in EMC and datapath classifier, and the update cost in
EMC. Obviously, the latter is much larger than the former, and the specific value will depend
on the number and complexity of the rules.

3.3.2 Factors affecting CPU consumption

During the whole packet forwarding procedure in vSwitch, many factors can affect the CPU
consumption in the three stages, e.g. throughput, the number of flows, the number of VMs,
and so on. According to the main bodies that control them, we divide these factors into two
types: traffic characteristics managed by tenants and VM deployment configurations managed
by CSPs. We will experiment to study how the three parts of CPU consumption in Eq. (1) are
affected by these factors, and then use the measurement-based methodology to model CPU
consumption under different situations.

1) Impact of network traffic characteristics

The first factor we consider is the network traffic characteristics, which can be changed by the
tenant behavior inside a VM: sending rate, packet size and the number of flows. We launch one
VM on the OVS-DPDK platform and assign one CPU core as the IO-dedicated CPU resources
on one server. The impacts of the three traffic characteristics on CPU usage for forwarding are
shown in Fig. 3.5. During each experiment, we vary one characteristic and record the results,
while keeping the other two with a certain value.
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Figure 3.5 The impact of traffic characteristics on the CPU consumption for forwarding

Sending rate (pps). We keep the packet size at 1500-byte and keep the number of flows at 1
during this experiment. In Fig. 3.5(a), we find the CPU cycles consumed in all three stages
are proportional to the pps. So this is the basis and premise of all existing bps/pps-based rate
limiting methods: with no other traffic characteristics changed, the CPU competition will not
occur.

Packet size. In this experiment, we keep the pps at 105 and keep the number of flows at 1. The
results of different packet sizes are shown in Fig. 3.5(b), and it can be seen that increasing the
packet size will only increase Cingress and have nothing to do with Cclassi f ication and Cegress. The
increase of Cingress is due to the fact that only the stage ingress contains packet copying, so the
larger packet requires more time to copy. For example, the Cingress under the case of forwarding
1500-byte packets is more than twice that of forwarding 64-byte packets at the same pps rate.

Number of flows. We keep the pps at 105 and keep the packet size at 1500 bytes during this
experiment. The result of concurrent flows is shown in Fig. 3.5(c). Compared with only sending
one flow (“single” in the figure), sending a large number of concurrent flows (“multiple” in
the figure, we range dst ip from 0.0.0.0 to 255.255.255.255 and at the same time randomize
the port number) will cause the packet classification frequently misses in EMC lookup and the
packet will enter the longer search path, and thus Cclassi f ication is increased. In our experiment,
the Cclassi f ication in the worst case is 1.67 times more than that in the best case. But it should be
noted that, the number and complexity of the rules in the flow table will affect this ratio.

2) Impact of deployment issues

When deploying multiple VMs on the same physical server, some deployment configurations
will influence the CPU consumption in packet forwarding. These deployment issues in the case
of multi-tenancy scenario include: VM memory location (on which NUMA nodes[78, 79] of the
physical server), the number of VMs on the same server and the number of IO-dedicated CPU
cores. As these factors are mainly independent of each other, the influence can be expressed as
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∏Ri ∗Csingle, where Ri represents the growth rate of CPU consumption under the influence of
each factor.
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Figure 3.6 The impact of real deployment issues on the CPU consumption for forwarding

VM memory location. The influence of NUMA architecture on memory access widely exists in
today’s commercial servers, so we need to evaluate it. We have described the CPU information
in Section 3.2.2, and there are 4 NUMA nodes on our servers. In the experiment setting, the
vSwitch’s IO-dedicated CPU cores and memory are located on NUMA node 0. So the memory
on nodes 1, 2 and 3 requires the CPU cores in vSwitch to access memory across nodes, which
is slower than accessing the memory on node 0. At the same forwarding rate, the CPU cycles
required by the forwarding task of VM deployed on each NUMA node are shown in Fig. 3.6(a).
It can be seen the VMs on nodes 1, 2 and 3 need 40% more CPU cycles than the VM on node 0
to complete the forwarding task, and that is mainly due to the increase of Cingress by memory
access across nodes. So for the VMs on nodes 1, 2 and 3, the coefficient R in this factor is 1.4.

Number of VMs. As the number of VMs grows, the competition on memory bus and cache
will increase the CPU consumption of all VMs’ three forwarding steps. As shown in Fig. 3.6(b),
when the number of VMs is less than 8, the additional CPU consumption caused by competition
for cache will greatly increase, while it will be almost the same after VM grows more than 10.
The maximum and minimum curves in the figure show the CPU consumption increase ratio
when deploying VMs on the same NUMA node (the worst case) and on different nodes (the
best case). The former situation will lead to higher competition. The coefficient in this scenario
is changeable and needs to be measured through actual experiments. For example, according to
Fig. 3.6(b), if 4 VMs are deployed on the same NUMA node, the CPU resources consumed by
each VM will be 1.14 times more than that under the single VM case. But if the 4 VMs are
deployed on different NUMA nodes, the ratio changes to 1.07.

Number of CPU cores. Finally, we increase the number of IO-dedicated CPU cores to 2 in
vSwitch and the result is shown in Fig. 3.6(c). Comparing Fig. 3.6(b) and Fig. 3.6(c), it can
be found that using 2 logical cores for forwarding will consume about 1.47 times more CPU



42 C2QoS: CPU-cycle Isolation based Network QoS Method

cycles than one logical core for forwarding in any case. It is mainly due to competition for
locks in the code, e.g. the synchronization among multiple PMD threads.

Therefore, when considering the CPU cycles assigned to a particular VM in the practical
environment, CSPs need to multiply the Csingle, the necessary CPU cycles measured under
the single-VM case, by all the increase coefficients recorded in the above experiment results.
For example, if 4 VMs are deployed in NUMA node 1, and two IO-dedicated CPU cores are
assigned to forward traffic for them in vSwitch, the coefficients to be multiplied under the above
three deployment configurations are 1.4, 1.14 and 1.47, respectively, according to Fig. 3.6.
Only when all these factors are considered, the CPU cycles allocated to each VM can ensure its
purchased bandwidth.

3.3.3 Modeling methodology

According to experiments and analysis, CSPs can build their bandwidth-CPU models in their
vSwitch platforms. When the tenant requirements and configuration information are given,
the CPU resources required for the tenant’s VM to achieve SLA network performance can
be calculated. In the following, we will present the modeling procedure and the required
information to guide CSPs to implement in the real environment.

Firstly, the CSPs need to perform measurements in advance to establish a bandwidth-CPU
model as described in Section 3.3.2. For the impact of traffic characteristics, some preset values
can be selected for measurement and the results can be stored in a table. For example, the
packet size can be {64, 128, 256, 512, 1024, 1500}, and the number of flows can be {single,
multiple}. With this table, a particular input like (pps = 10000, packet size = 1024, number of
flow = single) will get a certain output Csingle. Next, for the deployment configurations, CSPs
can also use the experiments to get the corresponding configuration and its coefficient Ri, and
store it in tables. As the example shown in Section 3.3.2, given the input (the number of VMs
= 4), we will get a coefficient Ri as 1.14.

After the measurement-based model is built, in the second step, the CSPs rely on two types of
information to form the inputs of the model when deploying VMs: the traffic characteristic
preference from the tenant’s choice and VM deployment configurations. For the three traffic
characteristics, they can be included in the SLA and tenants can choose them when purchasing
the VM. As the iMIX traffic [80, 81] represents an average level of all tenants’ traffic, CSPs
can also set its characteristics as the default values to meet most tenants’ requirements. For
deployment configurations, CSPs can easily detect them. But as they may change frequently
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with the creation and deletion of VM instances, that requires CSPs to change the inputs in
real-time. Then according to the formula ∏Ri ∗Csingle, the required CPU resources for each
VM to achieve SLA network performance can be calculated based on the tables in the first step.

3.4 Design

Based on the bandwidth-CPU modeling methodology, we are able to design C2QoS strategy.
The premise of C2QoS is that the number of VMs to be deployed is in accordance with
the resources on physical servers and there is no overprovision. As each VM’s required IO-
dedicated CPU resources can be calculated based on the model, we define that under the C2QoS
strategy, the deployment of VMs should follow two rules: the sum of all VMs’ purchased
bandwidth should not be more than the NIC bandwidth; and the sum of CPU resources that we
calculate for each VM according to the model should not exceed the IO-dedicated CPU cores.
Without these rules, the resource shortage will occur all the time, and no strategy can work.

In C2QoS, we propose the C2TB mechanism and the HBS mechanism to provide isolation
enhanced rate limiting and hierarchical latency respectively. In this section, we will illustrate in
detail the design.

3.4.1 CPU-cycle based token bucket mechanism

To guarantee VM bandwidth through the CPU resources apportionment, C2TB needs two
steps: allocating the IO-dedicated CPU resources to particular VMs; using the allocated CPU
resources to strictly limit the forwarding rate.

3.4.1.1 CPU resources allocation

Firstly, we construct a new kind of token bucket for each VM. Different from the traditional
token bucket algorithms that use the bits or number of packets as tokens, the tokens in C2TB
represent the remaining usable IO-dedicated CPU cycles of each VM. The token generation
rate of each VM is the IO-dedicated CPU cycles/s allocated to it. We use Calloc to indicate
the CPU cycles/s required by each VM to achieve purchased bandwidth. Using the modeling
methodology in Section 3.3, we can set the token generation rate to the fit value of Calloc, and it
can strictly ensure tenants’ purchased bandwidth in practice.
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Meanwhile, besides the Calloc, the idle part of the IO-dedicated CPU resources also needs to
be entirely allocated to VMs for the MIN-MAX bandwidth allocation policy[82, 15], which is
widely used in industry. An example of the MIN-MAX bandwidth guarantee under C2TB is
shown in Fig. 3.7. The MIN bandwidth (the purchased bandwidth) is ensured by only assigning
basic Calloc to the particular VM, while the MAX bandwidth is obtained by assigning the Calloc

plus Cidle, which means the idle CPU cycles of the IO-dedicated CPU cores. In the example, we
assume the CPU resources required to achieve 1 Gbps and 2 Gbps bandwidth are 0.2G cycles/s
and 0.4G cycles/s, respectively. After their purchased bandwidth are guaranteed, there are still
1G cycles/s left idle on the 2.2GHz CPU core and it can be fully assigned. For the 4 VMs, they
can share the Cidle of 1G cycles/s according to their weights to achieve their MAX bandwidth.
Therefore, the maximum CPU resources allocated to them are 0.36G cycles/s, 0.36G cycles/s,
0.72G cycles/s and 0.72G cycles/s, respectively.

1 1 2 2weight
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1 Gbps 
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Figure 3.7 The CPU-cycle based token bucket mechanism

After we entirely allocate the IO-dedicated CPU resources to VMs, another problem may occur
that the allocated CPU resources may overflow from the token bucket and be wasted, when
VM’s network load is light. In this condition, we also need to reallocate these unused CPU
resources. For example, if one or two VMs in Fig. 3.7 are sleeping and no traffic is generated,
their tokens will always overflow and this part of the overflowed tokens can be redistributed to
other VMs according to their weights. We present this reallocation logic in the token update
function as shown in Algorithm 1. It will be called at regular intervals (its value is invl in
the function) to count the number of tokens in the token buckets for all VMs on this server.
The variable loop_unused_cc is used to collect all the overflowed CPU cycles in this loop and
at last it will be stored in sum_unused_cc for reallocation next time to update tokens. In the
loop, each VM will calculate the number of tokens generated at the rate of Calloc + Cidle within
the invl time. Then, each VM will get some overflowed CPU cycles based on its weight. We
should point out that the V Mi.weight in the algorithm is a ratio, calculated by dividing the
VM’s weight by the sum of all VMs’ weights. So at last the tokens added into the token bucket
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contain two parts: the generated tokens and overflowed tokens. The last step in the loop is
to check whether the number of tokens exceeds the bucket depth. If yes, the overflowed part
needs to be taken out and saved for next token update.

Algorithm 1 C2TB token update function
1: function C2TB_UPDATE_CALLBACK

2: loop_unused_cc← 0
3: unused_cc← 0
4: for i = 0→V M_cnt do
5: gene_cc← invl ∗ (V Mi.Calloc +V Mi.Cidle)
6: unused_cc← sum_unused_cc∗V Mi.weight
7: sum_unused_cc−= unused_cc
8: V Mi.tokens += gene_cc+unused_cc
9: if V Mi.tokens > bucket_depth then

10: loop_unused_cc +=V Mi.tokens−bucket_depth
11: V Mi.tokens← bucket_depth
12: end if
13: end for
14: sum_unused_cc ← loop_unused_cc
15: end function

3.4.1.2 Rate limiting

The last part of C2TB is to use the allocated CPU cycles in VMs’ token buckets to limit their
forwarding rates. In the traditional token bucket algorithm, the number or bits of packets are
calculated during the batch I/O processing and the packets exceeding the available tokens
will be dropped exactly. But in C2TB, since it does not know how many CPU cycles will be
consumed, it is impossible to decide how many packets should be dropped. For efficiency, we
adopt the following policy: we allow the number of tokens to be negative, and whether the
tokens are greater than 0 determines whether this batch I/O processing task can be executed.
For each VM, only if its tokens are greater than 0, it can send out a batch of packets, and the
number of CPU cycles consumed is subtracted from its token bucket after the batch processing
completes. As the CPU cycles used for each VM’s packet forwarding tasks are reasonably
assigned in C2TB, the VM bandwidth can be guaranteed with good isolation.
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3.4.2 Hierarchical batch scheduling mechanism

As the existing scheduling mechanisms only work at the egress stage and cannot avoid the high
latency of CPU resources contention in the other stages, we turn to think about scheduling the
entire batch I/O processing procedure (including ingress, classification and egress) for VMs. In
the field of CPU task scheduling, we find the batch task scheduling model in vSwitch is much
closer to the works in [83, 19]. These works schedule tasks on CPU cores to ensure that tasks
with light load will not be blocked too long by heavy load tasks. Though these works still fail
to make it flexible to meet the hierarchical latency guarantee like HQoS[84], they inspire us to
propose the HBS to break the undifferentiated execution in polling mode and schedule VMs’
batch I/O tasks on the limited IO-dedicated CPU cores hierarchically.

The main goal of HBS is to achieve latency differentiation. In the field of task scheduling, we
have chosen a useful scheduling mechanism — the priority queuing, which has been widely
used in operation systems and traffic control in datacenter[85–88]. The batch processing task
in our environment is to forward packets from VM to NIC, so using a priority queue to reduce
the waiting delay of high-priority tasks is equivalent to reducing the delay of packets inside
them. Next, we introduce the HBS design in detail.

3.4.2.1 Class-based priority queues

The HBS design is shown in Fig. 3.8. To achieve hierarchical latency guarantee in HBS, as
shown in Fig. 3.8(a), VMs are classified into 8 classes according to their priorities. The priority
of each VM is determined by CSPs, e.g. the latency-sensitive services such as web or video
can be set higher priority. These priorities will affect the order in which they are scheduled to
perform batch I/O processing. On the data path shown in Fig. 3.8(b), all VMs’ virtual structures
are placed in virtual queues, and there are two kinds of queues: waiting queue and ready queue.
As the C2TB allows the CPU to skip VMs with tokens less than 0, we put these VMs that
should be skipped into the waiting queue. The VMs with tokens greater than 0 are queued
in the corresponding ready queues according to their classes. The IO-dedicated CPU cores
will only poll and dequeue the VM structures in the ready queues and do batch I/O forwarding
tasks.

In the ready queues, to ensure that VMs in higher priority queues have lower latency, the higher
priority queue has absolute execution privileges than the lower priority queue. For a queue with
priority N, it will be executed dequeue operations only when there are no items in all N−1
queues with higher priorities. So in this case, the PMD threads poll each queue and perform
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Figure 3.8 The hierarchical batch scheduling mechanism

batch execution according to the priority level. For example, in the case shown in Fig. 3.8(b),
although the number of tokens in VM2 is the smallest among the VMs in the ready queues,
VM2 will be dequeued and forwarded one batch of packets firstly because it has the highest
priority. After the batch processing, VM2 is placed into the waiting queue for it has consumed
41000 tokens and its available tokens are negative. To ensure fairness that VMs in the same
queue have similar latency, each virtual queue in the HBS follows the first-in-first-out (FIFO)
policy.

3.4.2.2 Worst latency

With hierarchical execution privileges, the worst latency of VMs in each queue can be guaran-
teed and calculated. Although it is almost impossible to guarantee a specific value of the latency
for each VM in software forwarding due to the uncertain hardware processing capacity, we still
can guarantee the worst latency of VMs in each queue under HBS. We assume a case that the
number of VMs in all 8 ready queues is {N1,N2,N3, · · ·,N8}, respectively. The time used for
one batch processing is c. So the worst-case latency of VMs in these queues is {N1 ∗ c,(N1 ∗
k1 +N2)∗c,(N1 ∗k1 +N2 ∗k2 +N3)∗c, · · ·,(N1 ∗k1 +N2 ∗k2 + · · ·+N7 ∗k7 +N8)∗c}(ki ≥ 1).
The variable ki we use in this formula means that when a low-priority VM sends out one batch
of packets, the higher-priority VMs may send out several batches of packets. So compared with
original sequential execution that each VM equally suffers the worst ∑Ni ∗ c latency, HBS can
provide hierarchical worst latency guarantee for VMs with different requirements. That helps
CSPs formulate more flexible SLA policies based on the tenants’ latency sensitivities.
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3.4.2.3 Starvation avoidance

The last but most common problem in the HBS is how to avoid tasks starvation, which is the
inherent problem in priority-based scheduling mechanisms. In HBS, starvation will occur in
two situations: 1) The first one is that the low-priority VMs cannot achieve their purchased
bandwidths when we prefer to use many resources to forward traffic for VMs with higher
priorities. But in fact, when CPU resources are strictly allocated and isolated in C2TB, there
is no case that the bandwidth of low-priority VMs is squeezed by others. 2) The second one
will happen when many high-priority VMs have no traffic, but the CPU will still give priority
to them and consume the allocated cycles. In this case, the low-priority VMs can get better
network performance, but they still need to wait for CPU cores wasting time on the idle VMs.
To avoid this, we allow the HBS to hold a dynamic priority for each VM. When a VM has
no traffic to send during several consecutive batch I/O processing loops, the priority of this
VM will be gradually dropped. But once it is found that the VM sends traffic again, it will be
directly adjusted to the original priority.

3.5 Implementation

According to the design in Section 3.4, we implement the C2QoS strategy in the OVS-DPDK
platform. As shown in Fig. 3.9, We modified the PMD thread’s main loop function and the
original port ingress policy, which are implemented by srTCM in the ovs-vswitchd module[67].
For each PMD thread, it has an independent HBS module to manage several VMs that it needs
to be responsible for packet forwarding. Different PMD threads will not have access to each
other’s priority queues, so there are no competition and lock issues. The original sequentially
polling running mode in the main loop of PMD threads is replaced by HBS that finds VM
with the highest priority in the ready queues to execute batch I/O processing. The batch I/O
processing logic of PMD threads has not changed, but before each batch processing, the rate
limit strategies on VM ports are replaced with C2TB.

In order to make it easier for the CSPs to configure the VM’s rate limiting and schedul-
ing parameters on the command line, we also add two new commands to the OVS-DPDK.
These commands realize our C2TB and HBS configurations through the ovs-vsctl module as
shown in Fig. 3.9. For example, we can use command “ovs-vsctl set interface vhost-user-1
ingress_policing_cpucycles=10000” to allocate VM1, connected to “vhost-user-1” port, with
10000 CPU cycles per second for packet forwarding. The command “ovs-vsctl set Interface
vhost-user-1 options:priority=1” can set VM1’s priority as 1 in HBS scheduling. It should be
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Figure 3.9 The modifications to original OVS-DPDK

noted that the C2QoS is a kind of general strategy, and in our implementation it can be used on
all kinds of virtual ports such as “vport” and “dpdk” ports. All of these modifications require no
more than 300 lines of code, which is easy to realize and meanwhile will not affect the original
functions.

The biggest challenge in realizing C2TB is that it requires frequent measurement and calculation
of CPU consumption in packet forwarding procedure, which will cause a great impact on
vSwitch’s forwarding performance without lightweight implementation. We use the rdtsc[89]
instruction to solve it. The instruction rdtsc is to get CPU cycles from booting by reading the
value in registers, so it has almost no overhead and can be widely used in data path. Another
overhead comes from maintaining queues in HBS, and is undertaken by another manager thread.
If it runs in busy polling mode, our strategy will consume one more entitle CPU core than
the native OVS-DPDK, which is unacceptable. So we set the manager thread to be woken up
every 50us to update the token number of each VM. The wake-up interval is a kind of trade-off
that can be set to meet different needs. For example, setting a longer interval can reduce the
additional CPU usage but will face a decrease in scheduling accuracy, while a smaller interval
will consume more CPU resources. In our implementation here, we set it as the average time
used for one batch I/O processing task to achieve the trade-off between accuracy and CPU
consumption. The effectiveness and overhead of C2QoS will be evaluated in Section 3.6.

3.6 Evaluation

The main contribution of C2QoS is to ensure the bandwidth and latency of VMs on the physical
server, so in this section, we evaluate the VM network QoS guarantee under C2QoS and the
OVS-DPDK existing “ovs-ingress-policy” QoS strategy. Our experiments include the following
aspects:
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• Bandwidth and latency guarantee tests: Comparing the VM’s TCP bandwidth and latency
guarantee of C2QoS with that of ovs-ingress-policy.

• Accuracy: Measuring the accuracy of rate limiting in C2TB, and the latency levels of
different priority queues in HBS.

• Application experiments: Comparing the throughput of the Ftp[90] server and response
latency of the Nginx[91] server under the C2QoS and ovs-ingress-policy.

• CPU overhead: Measuring the additional CPU overhead that C2QoS brings to OVS-
DPDK.

The hardware and platform configurations are the same as described in Section 3.2.2.

3.6.1 TCP bandwidth and latency

In this experiment, we use iperf[92] and qperf[77] tools to evaluate VMs’ TCP bandwidth and
latency. We launch 4 VMs with 4 Gbps, 4 Gbps, 1 Gbps, and 1 Gbps purchased bandwidth,
respectively, and use one dedicated CPU core in OVS-DPDK for forwarding. The purchased
bandwidths are guaranteed based on the SLA that sets the preferred packet size to 1024
bytes and the number of flows to 1. According to our pre-measured model (as described in
Section 3.3), when deploying 4 VMs on NUMA node 1, the VMs with (4 Gbps, 1024-byte
packet, single flow) need 0.792G cycles/s (36%) CPU resources for packet forwarding, and the
VMs with (1 Gbps, 1024-byte packet, single flow) need 0.198G cycles/s (9%) CPU resources.

In our benchmark setting, VM1 acts as a well-behaved tenant and sends 1024-byte packets
at the maximum rate all the time while the other 3 VMs behave as malicious users or noisy
neighbors. In order to more clearly show the difference between C2TB and the original rate
limiting method in OVS-DPDK, we design such a circumstance: 1) In the first 10 seconds,
VM1 and VM3 send traffic with 1024-byte packets. The VM2 and VM4 are sleeping and
generate no traffic. 2) From 10th second to 20th second, VM1 and VM3 keep sending traffic
with 1024-byte packets, while VM2 and VM4 send traffic with 64-byte packets. 3) In the last
10 seconds, VM1 still sends traffic with 1024-byte packets, while VM2, VM3 and VM4 send
traffic with 64-byte packets at the maximum speed. The TCP bandwidth and CPU consumption
of the 4 VMs under three strategies are shown in Fig. 3.10, Fig. 3.11 and Fig. 3.12. In these
figures, “C2TB-strict” means we only assign each VM the fixed Calloc for packet forwarding,
and the “C2TB-MINMAX” supports to entirely allocate Cidle and unused CPU resources to
VMs for completing MIN-MAX bandwidth allocation.
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Figure 3.10 The VM network bandwidth and CPU usage under “ovs-ingress-policy”

Fig. 3.10 shows the results under default ovs-ingress-policy. It can be seen that VM1 and VM3
work well and keep their purchased bandwidth within the first 10 seconds. But from the 10th
second, VM2 and VM4 start sending 64-byte packets, and they both compete and occupy 20%
of the CPU resources. As shown in Fig. 3.10(b), the behavior of VM2 and VM4 severely
squeezes the CPU resources that were originally used by VM1 and VM3. As a result, VM1
bandwidth drops by 12%. But for VM3, although the available CPU resources of VM3 have
been squeezed, they are still enough to support VM3’s purchased bandwidth. In the last 10
seconds, an interesting thing comes that the bandwidth and CPU usage of VM1 increase with
the VM3 changes packet size from 1024 bytes to 64 bytes. But VM3 does not benefit from the
change of traffic characteristics. We print all the log information and find this is caused by the
running mode of OVS-DPDK. The sequential execution in the PMD thread makes it equal in
the number of batch I/O processing loops performed for each VM per second. As VM3 reduces
the packet size, the number of batch processing loops of each VM per second is increased.
For VM1, the increase in the number of batch processing loops per second means that more
packets can be sent per second (before the bandwidth reaches the rate limiting threshold),
which increases bandwidth and CPU consumption. So under the OVS default BPS-based rate
limiting strategy, the behavior of the tenants will cause unpredictable CPU allocation, and
cannot guarantee VM bandwidth.

The bandwidth and CPU consumption of each VM under the C2TB-strict strategy are shown
in Fig. 3.11. According to the modeling results, the CPU resources that we should allocate to
the 4 VMs are 36%, 36%, 9% and 9%, respectively. We analyze the bandwidth of each VM
separately. For VM1, since its behavior keeps unchanged, its bandwidth is stable and keeps at
4 Gbps by using 36% of the CPU resources for forwarding all the time. For VM3, changing
the packet size to 64 bytes in the last 10 seconds can only reduce its own bandwidth. For the
two attackers (i.e. VM2 and VM4), in the event of sending 64-byte packets, the CPU resources
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Figure 3.11 The VM network bandwidth and CPU usage under “C2TB-strict”

allocated to them can only achieve very low bandwidth, and they cannot interfere with other
VMs by competing for more CPU resources. It should be noted that in the last 10 seconds,
VM3 and VM4 get extremely low bandwidth, and it seems they face starvation. But in fact,
that is exactly what we want to achieve. The problem of bandwidth isolation is caused by these
VMs using special traffic characteristics, rather than their preferences, to compete for more
IO-dedicated CPU resources. The solution in C2TB is to let these “noisy” VMs only affect their
own network performance by restricting CPU consumption for each VM. Compared with the
ovs-ingress-policy, CBTB-strict can guarantee well-behaved VMs’ bandwidth and eliminate
the CPU resources competition.
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Figure 3.12 The VM network bandwidth and CPU usage under “C2TB-MINMAX”

While providing good isolation, the C2TB-strict still causes a waste of CPU resources in the
vSwitch, as shown in Fig. 3.11(b), nearly 75% of CPU resources are wasted in the first 10
seconds. So the C2TB-MINMAX is used to solve this kind of waste. Comparing Fig. 3.11(a)
and Fig. 3.12(a), it can be seen that the main difference between C2TB-MINMAX and C2TB-
strict happens in the first 10 seconds. With C2TB-MINMAX, VM1 and VM3 make full use of
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all idle CPU resources on the server and achieve higher bandwidth (6.3 Gbps and 2.1 Gbps)
than the bandwidth they purchased (4 Gbps and 1 Gbps). So this rate limiting method also has
good robustness while guaranteeing the network QoS of VMs.
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Figure 3.13 The experimental results of TCP latency

On the aspect of TCP latency, we separately use qperf to measure the VM1 latency under
the ovs-ingress-policy, “C2TB only”, and C2TB+HBS strategies. The results are shown in
Fig. 3.13. Under the ovs-ingress-policy, in the first 10 seconds, only VM3 competes with VM1
for the CPU core to do batch I/O processing tasks, which leads to a slight increase in VM1
TCP latency. In the following 20 seconds, the latency of VM1 becomes unstable and increases
significantly (more than 1ms in the worst case) due to the competition of the other three VMs.
Compared to ovs-ingress-policy, “C2TB only” can reduce part of the additional latency of VM1
by skipping ports with negative tokens. Another reason for the lower latency under C2TB is
that it keeps the packets not being sent inside the VM, forming a “back-pressure” to the senders
and adjusting the sending rate of the TCP protocol stack in VMs. But the latency under “C2TB
only” is still unstable. With HBS, we set VM1 to be placed in the Priority 1 queue which
ensures VM1’s forwarding tasks always to be executed first. The results show that the VM1
latency under C2TB+HBS is close to the native performance and is not affected by other VMs.

Therefore, with these experiments, C2QoS can provide good isolation from the CPU level.
That enables C2QoS to provide tenants with good network SLA performance guarantees under
the conditions of CPU resources competition and variable processing capacity in vSwitch.

3.6.2 Accuracy

In addition to the advantages on isolation, we also need to evaluate the accuracy of C2QoS.
Based on the functions of C2TB and HBS, the accuracy is reflected in two aspects: the accuracy
of rate limiting and the hierarchy of the worst latency.
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We first evaluate the deviations of C2TB under mixed-size packets and the results are shown in
Fig. 3.14(a). In this experiment, we use pkt-gen in VM to send packets with mixed sizes but
keep a fixed average size. Then we set the average packet size parameter for C2TB according
to the modeling methodology in Section 3.3.3. We can see that the range of the packet size has
little effect on the accuracy. Most of the results show that the deviation is greater than 0, which
means that in most cases, we can guarantee that the VM’s available bandwidth is greater than
or equal to its purchased bandwidth. On average, the deviation of C2TB under mixed packet
size is between (-2%, 3%).
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Figure 3.14 The accuracy evaluation

In Fig. 3.14(b), we increase the number of VMs and deploy them on every NUMA node to
compare their real bandwidth with their purchased bandwidth. The increase in the number
of VMs did not have large impacts on the deviation. But it can be concluded that the more
variables introduced in the modeling, the greater the deviations are. When using only one
CPU core for forwarding in vSwitch, the deviation is between (-2%, 4%). But in the case
of using two cores for forwarding, resource competition becomes even more unpredictable,
so the deviation has almost doubled to (-3%, 6%). Although the accuracy of the C2TB is
incomparable to the traditional precise rate limiting methods, the CSPs believe the rate limiting
under software forwarding does not need to be so precise and occupies many resources[15]. So
the deviations of C2TB are acceptable.

To evaluate what kind of latency levels can HBS provide, we run 16 VMs belonging to 4
priorities on one dedicated CPU core for forwarding, and evaluate their TCP latencies under
the case that all VMs are sending traffic concurrently. The results are shown in Fig. 3.14(c).
The “average” in this figure is the average latency of all 16 VMs under the C2TB mechanism
only. In this case, since all VMs need to wait for batch I/O processing, their latencies are high
and unstable. In HBS mechanism, we can see that although the latencies of VMs in different
priority queues have intersections, the latency levels in most cases are obviously different.
The latency of VMs with priority 1 and 2 is less than average latency, while the latency of
VMs with priority 3 and 4 is much worse than the average. Another fact is that the latency
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distribution of high-priority VMs is very concentrated. But as the VM priority decreases, the
frequency of these VMs’ batch I/O processing will be more uncertain, which contributes to the
high discreteness. The different latency levels brought by HBS will be useful when providing
differentiated services for tenants.

3.6.3 Application results

To make it more practical, we consider some common applications on the public cloud.
For example, the latency-sensitive VMs (such as website and video services) compete with
bandwidth-sensitive VMs (such as online disks) for vSwitch forwarding resources on the same
physical server. So we evaluate the bandwidth of the Ftp server and response latency of the
Nginx server in this experiment. We choose Nginx not only because it is a latency-sensitive
service, but also because of its special traffic characteristics. The traffic of Nginx is usually
composed of small packets, and the five-tuple segments of these packets are discrete in the
case of high concurrency. That will cause more CPU consumption in classification stage (as
described in Section 3.3.2). For test configurations, 2 VMs with 4 Gbps bandwidth are deployed
as Ftp servers and 2 VMs with 1 Gbps are deployed as Nginx servers. The Ftp servers keep
sending traffic while the Nginx servers bear pressure test during 30th-70th seconds using the
wrk[93] tool.
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Figure 3.15 The performance results of applications

The Ftp bandwidth is shown in Fig. 3.15(a), the Nginx servers’ concurrent traffic during
30th-70th seconds causes a bandwidth drop of about 11% on the Ftp servers under ovs-ingress-
policy, while C2TB strictly guarantees the bandwidth of Ftp servers all the time. For the latency
in the Nginx pressure test, we obtain the request response time distribution in Fig. 3.15(b).
Under ovs-ingress-policy, the response time of Nginx requests is doubled compared to native
performance. When only using C2TB, 50% additional latency is reduced by skipping ports with
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tokens less than 0. But with the C2QoS containing both C2TB and HBS, the additional latency
is reduced by more than 80% and these Nginx servers achieve almost the native performance.
Therefore, the C2QoS can ensure the network performance of both latency-sensitive and
bandwidth-sensitive services while sharing the same physical resources in vSwitch.

3.6.4 Overhead

As we added a new module to vSwitch, it may bring new overhead. The overhead mainly
reflects on two aspects: the performance decrease and the additional CPU overhead.

For the first concern, in the single-VM and multi-VM experiments, the OVS-DPDK using
C2QoS strategy has no performance drop compared with the original version. This is because
we have not made big changes to the data path, and the additional function added to PMD
threads only contains CPU cycles counting. The CPU cycles counting function is composed of
rdtsc instruction[89], which occupies only several cycles and has very little effect on forwarding
performance.

For the additional CPU overhead, we tested the CPU consumption of C2QoS. On the IO-
dedicated CPU cores, only 0.018% of the CPU usage is used for C2QoS. This part of CPU
usage will not go up with the increase in the number of VMs because it is added in the batch I/O
processing of all VMs’ ports. Besides the overhead on IO-dedicated CPU cores, the manager
thread’s CPU overhead also needs to be considered. When deploying 28 VMs, 2.08% more
CPU usage is used for token counting and queue managing. Moreover, the CPU usage of
the manager thread can also be reduced by sacrificing accuracy and extending the wake-up
interval. Although it is a trade-off, from our experimental results, the additional CPU resources
consumed by the manager thread will not be too much (no more than 3%). So the additional
CPU overhead in C2QoS is also acceptable for cloud platforms.

3.7 Conclusion

This chapter focuses on VM network performance isolation on the cloud platform, and solves
the key problem that existing QoS methods ignore I/O-dedicated CPU resource competition in
vSwitch. Specifically, the VMs’ network forwarding tasks compete for limited CPU resources
in vSwitch in terms of utilization and timing, which seriously affects tenant network experience
and cannot guarantee stable network QoS. To resolve the issue, we proposed C2QoS to
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apportion and schedule IO-dedicated CPU resources to VMs for network SLA guarantee.
C2QoS consists of two mechanisms, C2TB and HBS. In C2TB, according to a measurement-
driven bandwidth-CPU model, we limited VM’s bandwidth by directly assigning CPU cycles
to a particular VM. To address the high additional latency issue brought by the undifferentiated
execution, the HBS mechanism scheduled the VMs’ entire batch I/O forwarding tasks on
the IO-dedicated CPU cores, which provided hierarchical latencies for VMs according to
sensitivities. The implementation on the OVS-DPDK platform showed that compared with
existing strategies, C2QoS eliminated the influence of CPU resource congestion on bandwidth
and reduced the effect on latency by 80%.imanyis





Chapter 4

D-TSE: Flow Table Isolation based Data
Plane Attack Defense Mechanism

4.1 Introduction

Public cloud is becoming a popular trend as it allows tenants to deploy services flexibly in the
form of VMs[9]. To realize the network connectivity between the VMs and external devices,
vSwitch is introduced to implement packet classification and forwarding for the multiple VMs
on the physical server[69, 64]. As a software process that uses CPU for packet forwarding, the
flexibility and performance of vSwitch have been concerned for a long time.

In existing vSwitches, SDN is widely supported to solve these concerns. With the “match +
actions” abstraction, vSwitch can separate the packet matching from the actions to be performed
on the packets. So the various types of tables in vSwitch, such as routing table, ACL table,
NAT table, etc., can all be replaced by a unified flow table. At the same time, to improve
efficiency and maximize performance, all tenants in vSwitches share the key data structure
and processing logic. In this way, each packet can be quickly matched in the centralized flow
tables to determine the actions to be executed and whether the packet should be sent to the
SDN controller for “pulling” new rules.

However, the cost is that the vSwitch will face the risks of isolation breakage and DoS attacks.
Since all the tenants share data structure and CPU resources for packet classification, their
network performance can easily be affected. That provides an attack surface for the malicious
tenants. A large number of studies in the last ten years have shown that the performance of
packet classification in vSwitch can be reduced to an extremely low level to exhaust CPU
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resources by sending specific traffic with carefully designed packet header fields[24–27, 94].
But most of the preconditions of these attacks are not realistic enough. For example, they
require to send malicious traffic at a very high rate or need to know the rules in the SDN
controller in advance.

Recently, Csikor et al. make it more practical to realize. They proposed an attack called TSE
on the OVS-DPDK[59, 11] that only requires low-rate traffic with arbitrary packet header
fields[28]. The malicious traffic will “pull” numerous useless rules from the SDN controller to
the shared flow tables in OVS-DPDK, and greatly increase the time/space complexity of the
TSS packet classification algorithm. As a result, the CPU resources are short and all tenants
suffer from low network performance. That threatens the stability of cloud services and needs
to be resolved urgently.

In this chapter, we first reproduce the TSE attack on the OVS-DPDK platform and analyze how
the attack works. Different from some limited solutions focusing on a specific algorithm or
system[95, 28, 30], we analyze the root causes of TSE attack and its premises from a more
basic and general perspective. From the resources management in the whole vSwitch system,
we find two premises to realize the TSE attack. The first one is the lack of isolation in the flow
tables. As all the tenants share the same flow table structure for classification, the malicious
tenant can easily change the time/space complexity of other tenants’ packet classification. The
second one is the absence of CPU isolation. Since the CPU resources that vSwitch can use are
limited, malicious tenants can increase their classification complexity and compete for most of
the IO-dedicated CPU resources, which will also leads to a DoS attack.

Based on these two attack premises, we propose D-TSE, the defense strategy to protect the
innocent tenants from TSE attack. D-TSE is also an algorithm/platform independent design
principle, which can guide the design of vSwitches to avoid possible attack risks. In order to
achieve this goal, this chapter makes the following contributions:

• We propose a tenant-level flow tables isolation mechanism. By adding a lightweight
PRECLS classifier to distinguish and redirect traffic to each tenant’s own flow tables for
stateful packet matching, each tenant enjoys independent lookup time/space complexity.

• We present a fine-grained CPU resources isolation mechanism for tenants. We limit the
CPU cycles that each tenant’s forwarding tasks can consume per second to enhance the
physical resource isolation.

• We implement the D-TSE strategy on the OVS-DPDK platform. The experiments show
that it defends against TSE attack at the cost of less than 5% performance drop.
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4.2 Background and motivation

As an indispensable component of network virtualization, the vSwitch takes the task of provid-
ing network connectivity for VMs, while supporting a series of features like subnet isolation
and network discovery in the cloud network. Although the services provided by vSwitches are
becoming extremely complex under the current cloud scale, the main logic of packet processing
remains unchanged.

The packets received from the NIC will go through ingress, packet classification and egress
(packet copying between host and VM memory) procedures to be obtained by the VMs, and
vice versa. Among them, the operations performed by the vSwitch in the two stages of ingress
and egress are very simple and usually done by the driver, while the classification stage contains
complex “match + actions”. Therefore the performance during classification stage is easily
affected, which makes vSwitch vulnerable to DoS attacks.

4.2.1 Packet classification in vSwitch

Since OVS-DPDK is the most widely used open source vSwitch and represents the mainstream
design, we first use it to analyze the packet classification in vSwitch.

The workflow of packet classification in OVS-DPDK is shown in Fig. 4.1. According to the
workload, the CSPs can launch one or several PMD threads in OVS-DPDK and bind them to
dedicated CPU cores. These PMD threads receive packets from the VM ports or NIC ports that
they are responsible for, then classify and execute actions for these received packets. In order to
improve performance and enhance scalability, the packet classification in OVS-DPDK adopts a
three-level classifier structure which is composed of Exact Matching Cache (EMC), Megaflow
cache (MFC) and OpenFlow classifier. The search performance in each level classifier is about
O(1) : O(10) : O(100)[59]. Each PMD thread maintains only one EMC classifier regardless
how many ports it needs to poll, and each port has its own MFC in the PMD thread. So tenants
inevitably share these classifiers/flow tables. We will introduce briefly how a packet lookup is
performed in these classifiers.

When a packet is received from a port, it will be firstly sent to EMC for packet matching. Each
PMD thread maintains only one EMC classifier with 8192 entries by default, so it can be said
that all tenants share the EMC storage space for these 8192 rules. As an accelerator for packet
classification, EMC’s design is very simple. The entire EMC is implemented as a hash table, so
that PMD thread only needs to perform one hash lookup for each packet to determine whether
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Figure 4.1 The three-level classifier structure in OVS-DPDK

matched or not. A hit in the EMC can end the matching process and speed up the packet
processing.

If the packet fails to get matched entry in EMC, it will be continue to match in its corresponding
MFC based on its received port. Each MFC corresponds to a distinct port. That means from the
direction of VM-to-NIC, each VM has its own independent MFC classifier, but all VMs share
one MFC in NIC-to-VM direction (see Fig. 4.1). By adopting TSS algorithm, MFC contains
many subtables to support wildcard matching. The rules with the same prefix length are stored
in the same subtable and there is none overlapping rules. For packet matching, the PMD thread
will perform a hash lookup in each subtable in sequence. Considering the all possible prefix
length in ⟨dst_ip,dst_port,src_ip,src_port⟩, there could be up to 32∗16∗32∗16 = 262144
subtables in MFC and 262144 hash lookup in the worst case. So it can be seen that the number
of subtables has huge impacts on the MFC lookup performance.

When the packet matching missed in both EMC and MFC, the PMD thread will send an “upcall”
to the OpenFlow classifier and specific thread will handle it. The OpenFlow classifier stores the
original rules came from the controller and CSP’s command line input. With the inter-thread
communication and unoptimized structure, it has a poor lookup performance. After the packet
finally get matched entry in OpenFlow classifier, the matched rule will be inserted into EMC
and MFC. That means the traffic can change the number and distribution of rules in the first
two level flow tables.

Through the above analysis, we can see that the traffic can change the number and distribution
of rules in the first two level of flow tables by “pulling” rules from the OpenFlow classifier. This
is an important guarantee for simplifying network configuration and enhancing flexibility under
SDN. But considering the fact that these classifiers/flow tables are shared among tenants (e.g.
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see Fig. 4.1, the EMC in VM-to-NIC direction, both EMC and MFC in NIC-to-VM direction),
this feature will also bring the opportunity for attacks.

4.2.2 TSE attack and existing defense mechanisms

By exploiting the feature in SDN that traffic can “pull” rules from controller and insert them into
the shared flow tables, some works have already warned that attackers can used well-designed
traffic to trigger DoS attacks[24]. They can cause innocent tenants suffering from frequent
packet matching failures through “pulling” a large number of useless rules to the shared flow
tables. But most of these works are far from real environment, because they require high rate
traffic or need to know existing rules in SDN controller in advance.

Recently, a practical attack called TSE is proposed and implemented on the popular OVS-DPDK
platform[28]. The prerequisites of TSE attack are close to the real production environment.
The attacker only needs to send low-rate traffic with arbitrary packet header fields to achieve
DoS attack on OVS-DPDK. The malicious traffic first “pulls” rules to exhaust the space in
EMC and then inserts as much as possible useless rules with different prefix length into MFC
from the OpenFlow classifier. So the malicious traffic greatly increases the time complexity of
packet matching in these shared classifiers. None of the other VMs deployed on this physical
server are immune to the dramatic decrease in network performance.

We use experiments to reproduce and analyze the TSE attack. In this experiment setting, we run
3 VMs as victims (with 3 Gbps purchased bandwidth) and 1 VM as the malicious tenant (with
1 Gbps purchased bandwidth). We use the testcenter from Spirent[96] as the traffic generator,
and run DPDK l2fwd program inside these VMs to forward traffic back. In addition to the
basic routing rules, we add 2 ACL rules1 for VM4 in the OVS-DPDK with a prefix length of 24.
According to the methods in [28], up to 24∗24 = 576 subtables with different prefix lengths
can be generated in MFC through “pulling” rules. Then we use testcenter to send normal traffic
with only randomized src_ip to the 3 victim VMs all the time, and send malicious traffic with
randomized src_ip,dst_ip,src_port and dst_port to VM4 during the 60th-120th seconds.

The throughput results of all VMs during 0-180th seconds are shown in Fig. 4.2(a). It is
obvious that all 3 victim VMs suffer from 70% bandwidth drop during the TSE attack period
(60th-120th seconds). The reason of the network bandwidth drop can be found in Fig. 4.2(b)
and Fig. 4.2(c). Under TSE attack, the low-rate malicious traffic firstly “pulls” rules to exhaust
all the 8192 entries in EMC and then increases the number of subtables in MFC. On average,

1The public CSPs all allow tenants to add their own ACL rules to the vSwitch[69, 64]
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the traffic from VM4 contributes nearly 400 subtables in the shared MFC of PMD thread 2,
while traffic from the other 3 victim VMs only add 60 subtables. With the increase of subtables
in MFC, the CPU resources of PMD thread 2 spent on MFC lookup also increase significantly.
As shown in Fig. 4.2(c), the CPU consumption of the MFC table lookup under the TSE attack
increases by more than 2 times, and occupies 78% of the whole CPU core.
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Figure 4.2 The reproduction and analysis of TSE attack

Some intuitive and simple mechanisms are proposed to detect malicious traffic and limit the
frequency of upcalls[26–28]. However, these methods can only reduce the effect of TSE attack,
but cannot fundamentally solve this problem. To make matters worse, normal traffic will be
treated as malicious traffic in some cases. For example, for the website services, the src_ip and
src_port of its packets are also discrete. These simple defense mechanisms will harm the QoS
in these scenarios.

4.2.3 Motivation

From our views, the feature in SDN and the classification algorithm should not be blamed. In
fact, TSE attack represents a type of attacks that exploit the lack of isolation in the flow tables
of vSwitch, and that challenges the stability of public cloud. With the design that tenants share
flow tables, malicious tenants have the chance to change the time/space complexity of other
tenants’ packet classification. As shown in Fig. 4.2(b) and Fig. 4.2(c), the useless rules “pulled”
by the malicious traffic can increase the time complexity of packet matching and consume most
of the IO-dedicated CPU resources. As a result, the forwarding capacity of vSwitch drops to an
extremely low level, and a DoS attack is formed.

In this chapter, we want to design strategy to improve the isolation among tenants in terms
of flow tables and CPU resources, so as to thoroughly prevent TSE and other attacks based
on isolation breakage. To isolate flow tables in NIC-to-VM direction, the challenge comes
that how to break the paradox to determine the destination VM of each packet before the
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classification stage. For CPU resources isolation, the challenge is how to achieve fine-grained
CPU consumption limitation. In the next section, we will describe our solutions.

4.3 Design

To prevent TSE attack, D-TSE strategy should achieve tenant-level isolation on two aspects:
isolating flow tables; and isolating the IO-dedicated CPU resources. We will separately illustrate
in detail how we solve the challenges to achieve this two types of isolation. Although we take
OVS-DPDK as an example, the design principles are platform independent and can be easily
applied to other vSwitches.

4.3.1 Separated flow table structure

This subsection will show the proposed split flow table design to provide independent table
lookup performance and fault point isolation, and the proposed early classification design to
break the paradox.

4.3.1.1 Separated three-level flow table

To isolating the possible common failure point, the shared data structures must be isolated for
tenants in the vSwitch. Specifically, we need to isolate the three-level flow table/classifier at the
granularity of tenant in vSwitches. As can be seen in Fig. 4.1, the shared flow table in native
OVS-DPDK includes: 1) EMC in each PMD thread; 2) MFC in the NIC-to-VM direction. For
the OpenFlow classifier, its main role is to store the original rules from the controller, and its
I/O-dedicated CPU consumption is negligible even under TSE attack (see Fig. 4.2(c)), so it is
not necessary isolate it in this mechanism design.

Fig. 4.3(a) shows the design of the separated flow table in the direction of the VM-to-NIC.
Since the packets from different tenants can be judged by the receiving ports, it is easy to
realize the isolation. In this direction, there is no isolation issue in MFC because each port
corresponds to one dedicated MFC classifier. For EMC, a separated EMC needs to be assigned
to each VM port. In this way, each time the PMD thread receives a batch of packets from one
VM port, it can directly send them to the private EMC and MFC classifiers for classification.
That ensures each VM has its own isolated flow table structure along with the classification
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Figure 4.3 The design of separated three-level flow table

performance. Besides, this change also makes it more convenient for CSPs to manage the flow
table capacity in EMC and MFC classifiers for tenants.

In the direction of NIC-to-VM, we similarly assigns an independent EMC and MFC to each
VM in Fig. 4.3(b), but encounters an actual issue. The PMD thread 2 only needs to receive
packets from the NIC port, and these packets may belong to any VMs on the server. So it
is impossible to directly judge the belongings of the packets according to the port before
classifying them in the shared EMC and MFC classifiers. But on the other hand, if the packets
go through the matching process in the shared EMC and MFC, then the isolation mechanism
to defend against attacks is invalid. Therefore, that requires the design of a lightweight early
classification mechanism to determine the belongings of packets and redirect them to separated
EMC and MFC classifiers.

4.3.1.2 Early classification

In order to break the paradox on the premise of ensuring performance, we add PRECLS, a hash
table based lightweight classifier, before the EMC matching process. The aim of PRECLS is
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to quickly distinguish the belonging VM of each received packet, and redirect the packet to
corresponding EMC and MFC for subsequent process.

<dstip/srcip, vni> EMC addr
<10.0.0.1, 1> 0x00100
<10.0.0.2, 1> 0x00200
<10.0.0.1, 2> 0x00300

PRECLS

EMC_10x00100

EMC_30x00300

Figure 4.4 The design of PRECLS

Fig. 4.4 shows the structure of PRECLS. In the cloud environment, the table stored in the
PRECLS is not a flow table, but a simple mapping table. In this mapping table, the key of
each entry is ⟨dstip⟩ of the packet (the VM’s IP adress), or add VXLAN Network Identifier
(VNI) as ⟨dstip,vni⟩ when it is necessary. The value of each entry is the address pointed to
the EMC classifier of the packet’s belonging VM. When a packet arrives at the NIC, the PMD
thread will first look up in PRECLS and find its private EMC classifier, and then redirect the
packet to its private EMC classifier. The subsequent stateful packet matching and forwarding
operations are performed separately for each VM’s packets. The lookup process in PRECLS
only consumes one hash lookup, and the entries in the entire table will not exceed the number
of VMs deployed on the server. So it has little impact on performance.
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For the consistency of the data plane logic, we also adds a PRECLS in the direction of VM-
to-NIC. As shown in the Fig. 4.5, the entry’s key in PRECLS adopts is the packet’s ⟨srcip⟩
(the VM’s IP adress). This can facilitate service fast discovery for tenants with multiple VMs.
As can be seen from the purple part in the Fig. 4.5, the VMs belonging to the same tenant are
combined into a “group”, which is mapped to the same EMC and MFC classifiers through
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PRECLS. In this way, if VM3 communicates with the outside devices and adds a new entry
into PRECLS. According to the locality principle, it is very likely that VM4 owned by the same
tenant will also use this entry in a short period of time, thus saving update time in VM4’s flow
tables.

The maintenance of the PRECLS is completed by the virtualization platform and the vSwitch.
Each time when a new VM instance is deployed, the vSwitch will create a set of private EMC
and MFC flow tables for it, and then its IP address will be inserted into the PRECLS table.
When a VM instance is deleted or migrated to another server, its private flow tables will be
destoryed and its entry in PRECLS will be deleted accordingly.

4.3.1.3 Rule update

Since the D-TSE mechanism changes the structure of the three-level flow table in the vSwitch,
the rule update process will also be changed accordingly. Under the network abstraction of
SDN, there are two situations for updating flow table rules: 1) The controller actively issues
rule updates; 2) When the forwarding device receives a packet that fails to match in flow table,
it will send a "packet_in" message to request the update. In the following, we describes the
changes of these two update behaviors under the D-TSE mechanism.

For the active update from the controller, there are generally two cases. The first one is that the
controller needs to update the rules in local flow tables of all forwarding devices due to changes
in the global route and gateway IP in the cloud network. In the native OVS-DPDK, this update
only requires one time of update in the shared flow table. But under the separate flow table
structure of D-TSE, this update requires updates in all tenants’ separated flow tables on the
server. So the update cost of this part increases by n times (n depends on the number of VMs).
Considering that this kind of update is infrequent, it has little impact on the vSwitch. The
second case of update comes from the rules added by tenants, such as ACL rules and security
group settings. In this case, the D-TSE mechanism does not increase the times of rule update,
but only changes the rule update in the shared flow table into the rule update in the specific
tenant’s flow table.

For the rule update initiated by the forwarding device, it is strongly related to the behavior of
the tenants. Because the resources that tenants access vary greatly, the flow entries required by
vSwitch to forward packets are also quite different. Under this premise, the D-TSE mechanism
will not introduce increases in the number of updates. In the native OVS-DPDK, each time
tenants send traffic to access the external resources, the controller will be triggered to issue



4.3 Design 69

rules and insert them into the shared flow table. After adopting the D-TSE mechanism, the
change is just to select the corresponding tenant’s flow table structure to update.

Except for selecting which flow table to update, other operations during rule update maintain
unchanged compared to the native OVS-DPDK. This is due to that the D-TSE mechanism does
not change the original look up algorithm, and the rule update operations in each separated
flow table still follows the TSS algorithm.

4.3.2 Batch re-aggregation

Although the PRECLS does not introduce too much overhead, the packet redirection operations
in NIC-to-VM direction will break the efficient batch processing, thereby drop the performance.
This section describes how to address possible performance degradations, as well as the
overhead analysis.

4.3.2.1 Aggregation process

In the native OVS-DPDK, the batch processing mode runs through the entire PMD thread: a
batch of packets are received from the NIC port, and then this batch of packets enters the EMC,
MFC and OpenFlow classifiers for matching. Finally, according to the matching results, this
batch of packets will be sent to the corresponding destination ports. The high efficiency of
batch processing comes from amortizing the overhead of redundant operations such as fetching
addresses, and improving the cache hit rate. So the batch processing is extremely important for
high-performance data path.

However, due to the introduction of the PRECLS, each batch of packets received from the
NIC will be broken up and redirected to different EMC and MFC classifiers for matching and
subsequent processing. If we continue to use the previous batch processing and perform stateful
flow table matching for each packet, the cache line will inevitably be flushed and reloaded.
Thus the processing performance will be degraded as the continuity is broken.

In order to solve this problem, we implements a batch re-aggregation mechanism. After the
PRECLS matching is completed, the packets with same destination VM are re-aggregated to
maintain the batch processing logic in the subsequent processing. As shown in lines 5-7 of the
Algorithm 2, we reorganize the packets and divide them into an batch array. The size of the
array is equal to the number of VMs. Then the PMD thread performs complex packet matching
and forwarding for each batch in this array, which ensures the cache hit rate.
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However, the number of packets in NIC-to-VM direction after re-aggregation may be too few.
For example, we assume 30 packets are received from the NIC. After the re-aggregation ends,
each VM has only 1-2 packets in the batch array, which greatly reduces the efficiency brought
by batch processing. So in vSwitch, different batch sizes can be set for the NIC port and VM
port respectively. This is also a common practice in the actual production environment, e.g.
Google Cloud[69] sets the batch size of the NIC port to 120, and the batch size of the VM port
is set to 30. Secondly, we provide a number threshold and a waiting time threshold for each
packet in the batch array. So that after the re-aggregation operation, the PMD thread will check
each VM’s packets in the array, and process them only if the number of packets or the waiting
time exceeds the threshold.

Algorithm 2 Batch processing of PMD thread 2
1: function PMD MAIN LOOP

2: while true do
3: batch← receive_from_NIC()
4: PRECLS_processing(batch)
5: for i = 0→V M_cnt do
6: rebatch[i]← gather_with_destination(batch, i)
7: end for
8: for i = 0→V M_cnt do
9: update_tokens(C_avail[i])

10: if rebatch[i].size == 0 or C_avail[i]< 0 then
11: continue
12: end if
13: start_tsc← get_tsc()
14: EMC_processing(rebatch[i], f ound_array)
15: if rebatch[i].size! = 0 then
16: MFC_processing(rebatch[i], f ound_array)
17: if rebatch[i].size! = 0 then
18: send_upcall(rebatch[i], f ound_array)
19: end if
20: end if
21: execute_actions( f ound_array)
22: send_to_VM( f ound_array)
23: C_avail[i]−= (get_tsc()− start_tsc)
24: end for
25: end while
26: end function
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4.3.2.2 Overhead analysis

According to the description in the previous chapter, the CPU consumption during the three
stages of packet forwarding can be named as Cingress, Cclassi f ication and Cegress. Compared with
the native OVS-DPDK, the packet matching in PRECLS is added to Cingress. This part of the
overhead is little and will not increase with the number of VMs. The overhead of re-aggregation
will add to Cclassi f ication and Cegress, and that is mainly due to the n (number of VMs) times of
function calls at the beginning of each loop. So this part of the overhead will increase as the
number of VMs increases. Fortunately, due to the large proportion of Cclassi f ication and Cegress

(more than 80%), the impact of n times of redundant logic code is trivial.

4.3.3 IO-dedicated CPU resources restriction

With all the shared flow tables are isolated, the attackers cannot interfere with other tenants’
packet matching by “pulling” rules in the flow table. But they can still drop the experience of
other tenants by competing for more IO-dedicated CPU resources[22, 21]. So we also need
to isolate that. To achieve fine-grained CPU resources isolation, we provide each tenant with
IO-dedicated CPU resources allocation at the “cycle” granularity based on the CPU-cycle based
token bucket (C2TB) mechanism that we proposed in [47, 48]. Here we present briefly the two
steps to achieve CPU resources isolation.

Modeling. In the first step, CSP can measure and model the relationship between CPU
consumption and bandwidth on the specific software and hardware platforms. For example,
under some bandwidth specifications (e.g. packet size in 64, 128, 256, 512, 1024 and 1518) and
flow table status (e.g. number of entries or subtables), the correspondence can be established
by generating traffic and measuring the consumption of IO-dedicated CPU resources in the
vSwitch. And these relationships are stored in the configuration file. When a tenant purchases
a VM, the required CPU resources (cycles/s) can be calculated according to the values in the
pre-measured configuration file.

CPU resources limitation. The second step is to use the C2TB rate limiting method to restrict
the IO-dedicated CPU resources for each VM. Different from the traditional token bucket
algorithms that use the bits or number of packets as tokens, the tokens in C2TB represent
the available IO-dedicated CPU cycles of each VM. The token generation rate of each VM
is the CPU cycles/s we allocated to it. During each loop in PMD thread processing, after
the PRECLS processing, we will update the tokens in each VM’s token bucket (see line 9 in
Algorithm 2). Then if the number of tokens is negative, we will jump this VM and process
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packets for next VM. Only if the number of tokens is greater than 0, we will continue to perform
the classification and egress for current VM. After that, the consumed CPU cycles will be
subtracted from the token bucket (see line 24 in Algorithm 2).

4.4 Implementation

We implemented the D-TSE strategy based on OVS 2.9.2 with DPDK 17.11.2. The modifica-
tions are focused on the file lib/dpif-netdev.c, especially in the pmd_thread_main() function
which is the main loop of PMD threads. In order to achieve FI, we modified the allocation
principle of EMC and MFC, but did not modify their algorithms. In addition, we implemented
an independent PRECLS classifier for each PMD thread. It is formed by a hash table based on
the existing cuckoo hash function[97] in OVS. For the VM ports, the key in PRECLS is ⟨srcip⟩,
while it is ⟨dstip,vni⟩ for the NIC port. When each VM instance is created and assigned an IP
address, the correspondence of key and EMC address will be added to PRECLS. For realizing
CPU resources isolation, we implemented a C2TB token bucket for each VM. It obtains the
current CPU cycles through the rdtsc instruction[89], which only needs one cycle to read the
value in register. So it can be widely used on the datapath without worrying about performance
overhead.

All these modifications are easy to realize, and it takes about 200 lines of code to implement.
We should note that the D-TSE is not only a strategy to prevent TSE attack, but also a design
principle of vSwitches, that can be applied to more vSwitch designs and implementations in
the future. We will further demonstrate in Section 4.5 that the performance cost of achieving
isolation in vSwitch is negligible.

4.5 Evaluation

In this section, we first evaluate the defensive effect of D-TSE against TSE attack. Then we
need to evaluate its cost – the performance degradation.

To build our cloud platform environment in these experiments, we use the following configu-
rations: Intel Xeon CPU E5-4603 v2 2.20GHz (32 logical cores on 4 NUMA nodes), 64GB
DDR3 memory at 1333MHz, one Intel 82599ES 10-Gigabit Dual Port NICs and Ubuntu 16.04.1
(kernel 4.8.0) as operation system. The cloud platform is built on QEMU 2.10, DPDK 17.11.2
and OVS 2.9.2. In OVS-DPDK, we use 2 PMD threads bound to 2 dedicated CPU cores to
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forward packets in the VM-to-NIC and NIC-to-VM directions respectively (see Fig. 4.1). Each
VM is assigned with 2GB memory and 1 logical core in all conditions.

4.5.1 Defensive effect

In order to measure the effectiveness of the proposed D-TSE mechanism, we measures the effect
of TSE attack under Flow table isolation (FI) and CPU resources isolation (CI) successively.
In this experiment, we run 3 victim VMs (the purchased bandwidth of VM1, VM2 and VM3
are all 3 Gbps), and use VM4 (purchased bandwidth of 1 Gbps) to generate malicious traffic
within 60-120 seconds. The results are shown in the Fig. 4.6.

In Fig. 4.6(a), it can be seen that when only FI works, malicious tenants can still achieve
attacks. This is because malicious tenants can still change the matching complexity in their own
flow tables, seize more CPU resources, and then causes the CPU resource contention problem
described in Chapter 3. In order to prove this point of view, we counts the number of subtables
in each VM’s MFC, and shows them in Fig. 4.6(b). We also calculates the CPU consumption
for each VMs’ packet processing, and draw the Fig. 4.6(c). It turns out that the FI can protect
the victim VMs from malicious VM4 polluting the flow table entries and creating forwarding
failure points. But the result of “Attack+FI” in Fig. 4.6(c) shows that VM4 can still occupy
the CPU resources of the victim VMs. In this experiment, VM4 consumes ten times the CPU
resources of the three victim VMs, which is also the main reason for the bandwidth drop of the
victim VMs. Therefore, after integrating the CI provided by the C2TB mechanism, the TSE
attack will no longer have any effect (see Fig. 4.6(a) “FI+CI” dotted line).
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Figure 4.6 The defensive effect under D-TSE strategy

In Fig. 4.6(c), we can also see the efficiency of PRECLS. The cost of searching in PRECLS
with no attack is negligible and less than the cost of searching in flow tables of each VM, but it
is almost the same when the attack is happening. That is not caused by the attack, but caused
by more traffic from VM4 which needs to be processed in PRECLS. The most CPU-consuming
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operation in PRECLS is to parse each field in the packet header, which is originally done in
the EMC lookup. So if the batch size on the NIC port is increased, the CPU resources used by
PRECLS searching will further decrease.

4.5.2 Multi-tenant performance

Besides isolation enhancement and attack defense, this section also evaluates the overhead of
the D-TSE mechanism in terms of performance degradation. The overhead of D-TSE mainly
comes from two aspects, the one time of hash lookup overhead in PRECLS, and the overhead
in batch re-aggregation. According to the analysis in Section 4.3.2.2, since the overhead in
batch re-aggregation is related to the number of VMs, it is necessary to measure the impact of
the D-TSE mechanism on the VM network performance in multi-tenant scenario.
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Figure 4.7 The performance comparison under multi-tenant scenarios

In order to measure the network throughput of VMs in multi-tenant scenario, we run 4 VMs on
the same platform in this experiment. We use Spirent’s TestCenter[96] as the traffic generator,
and run DPDK l2fwd program in the VMs to forward traffic back to TestCenter. The results
are shown in Fig. 4.7. Compared with the native OVS-DPDK (“original” in the figure), the
D-TSE mechanism reduces the throughput of the vSwitch by 3–5%. The performance drop
is the largest when sending 1024-byte packets , and the drop is smallest with 64-byte packets.
From the experimental results, it can be seen that the D-TSE mechanism has little impact on
the forwarding performance, and the difference in throughput drop is caused by the fact that
cache hit rate has a greater impact on the forwarding performance of larger packets. In addition,
in the case of forwarding 1518-byte packets, since the throughput exceeds the 20 Gbps link
limit, the throughput under the native OVS-DPDK and D-TSE mechanisms are the same.

This experiment proves the effectiveness of batch re-aggregation, which prevents the network
forwarding performance from being greatly reduced. In more extensive experiments, we find
that as the number of VMs increased, the performance degradation caused by batch processing
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breaking did not exceed 5% at most. If the CSPs are willing to increase the batch size on the
NIC port, the throughput drop can be further reduced.

4.5.3 TCP performance

In addition to the network performance under multi-tenancy, we also consider the TCP per-
formance inside a single VM, as this scenario will be directly related to the tenant’s network
experience.
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Figure 4.8 The TCP performance under D-TSE strategy

In this experiment, qperf[77] is used to measure the TCP performance within a single VM, and
the results are shown in Fig. 4.8. Since the default kernel driver is used inside the VM, the
main bottleneck for network performance is the kernel protocol stack processing. As can be
seen from the figure, compare with the native OVS-DPDK, there is no significant difference in
throughput or latency when using D-TSE mechanism. The difference between the two cases
is within 1%. Therefore, although D-TSE slightly reduces the network forwarding capability
provided by the vSwitch in the case of multi-tenancy, it has little impact on the experience of
each tenant. That make it can be accepted by cloud platforms.

4.6 Conclusion

This chapter focused on the DoS attack and failure isolation issue in vSwitches of public
cloud platform. Specifically, we prevented the TSE attack and a type of attacks, which exploit
the isolation breakage that all tenants share data structure and physical resources for packet
classification. To solve that, we proposed D-TSE strategy based on flow table structure
isolation to isolate possible common failure point. In order to meet the challenges in design
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and implementation, this chapter proposes a lightweight PRECLS to break the paradox in
the design of separated flow table structure, and proposes an efficient batch re-aggregation
mechanism to ensure performance. These innovations make the proposed mechanism easier to
implement in the real environment. Finally, the evaluation on the OVS-DPDK platform proves
that the D-TSE mechanism can isolate common failure point and prevented the data plane DoS
attack represented by TSE, at the cost of less than 5% performance drop.



Chapter 5

S2H: Memory Access Isolation based
Virtualized Network I/O Mechanism

5.1 Introduction

Cloud computing has become a popular paradigm for service provision, due to its ability
to provide flexibility, dedicated execution and isolation to a vast number of services. These
benefits are achieved thanks to advanced network virtualization techniques, which provide each
tenant a VM with its own network topology and traffic control strategy [9]. The VM is an
independent operating system running inside the hypervisor (also known as VMM) with an
isolated running environment, and can flexibly reuse the resources on the physical server. To
realize network virtualization, a software vSwitch is run to provide packet exchange and traffic
control for these high-density deployed VMs. As its most crucial part, the Virtualized Network
I/O (VNIO) technology permits the delivery of packets through different I/O paths connecting
NICs to VMs.

There are mainly two types of VNIO solutions: hardware-assisted and software-based. Hardware-
assisted solutions are shown in Fig. 5.1(a). They attain “bare-metal” performance by using
Single Root I/O Virtualization (SR-IOV[98–100]) that can bypass the virtualization layer so
that multiple VMs directly access a single NIC via different Virtual Functions (VFs). However,
these solutions lose the flexibility enabled by virtualization (e.g., memory overcommitment
support[101], VM live migration[102], etc.) and face the risks of I/O channel attack[103]. For
these reasons, hardware-assisted solutions are not widely adopted in enterprise cloud computing
services [32, 104, 69, 105].
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Figure 5.1 The types of virtualized network I/O mechanisms

In contrast, software-based solutions can support full-virtualization (see Fig. 5.1(b)) and
achieve a high-level of flexibility, but at the expensive cost of reducing system performance
due to multiple times of packet copying. To alleviate this crucial issue, para-virtualization
(see Fig. 5.1(c))is proposed for reducing the times of packet copying and more efficiently
transferring the I/O data, with the sharing of memory between VMs and vSwitch. By providing
a good trade-off between performance and flexibility, para-virtualized VNIO has been supported
by all well-known vSwitches[106] and widely adopted in many real-world cloud platforms,
e.g., Google’s Andromeda [69] and Alibaba Cloud[105] all adopt virtio based para-virtualized
VNIO [71]. Nonetheless, the shared memory in para-virtualization goes against strict VM
isolation and creates potential risks, e.g., a malicious tenant may escape from its private VM
environment and gain access to the shared memory that belongs to other VMs. This isolation
issue significantly challenges the security and stability of cloud computing services.

In this chapter, we categorize existing para-virtualized VNIO solutions into two types of models,
i.e., VM to vSwitch (V2S) and vSwitch to VM (S2V), according to their memory-sharing
models. In the V2S model, VMs share their private memory with a vSwitch process, that
launches several PMD threads for the Packet Delivery (PD) tasks. As the user-space vSwitch
process has the privilege to access all VMs’ whole memory, the isolation between VMs and the
host is broken. On the contrary, in the S2V model, vSwitch allocates a piece of monolithic I/O
memory to share with all VMs and the PD procedure is completed inside each VM. A malicious
VM may cross its boundary and access other ones’ packets, which violates the isolation among
VMs.
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These isolation issues brought by insecure memory-sharing models have already been noticed,
but the reinforcement solutions are all at the expense of significant degradation in performance.
For example, the community has reported a type of DMA attack under the V2S model[39, 41,
40], and they proposed a solution called vIOMMU[41–43] to restrict the memory access by
reinforcing the address translation procedures. Unfortunately, this solution can only prevent
illegal memory access during PD operations, and the insecure shared memory still exists. To
make matters worse, the system performance after using vIOMMU will be severely degraded to
∼20%. Other memory access protection mechanisms, such as the hardware-based SGX[89], are
rarely used in the data path of the systems and the use case in Network Function Virtualization
(NFV) scenarios has shown that these hardware-based protection mechanisms also severely
reduce performance[45].

To effectively guarantee VM isolation under the premise of ensuring performance, we propose
a new memory-sharing model for para-virtualized VNIO called S2H, which exploits the
hypervisor to transfer I/O data between VMs and vSwitch. Compared with the S2V and
V2S models where vSwitch and VM communicate directly, S2H uses the hypervisor as an
intermediate “setter” 1 that isolates VM and vSwitch. Since the hypervisor is maintained
by the service provider and has access to the VM memory by default, it is more reliable to
use it for memory sharing and packet delivery. On the aspect of performance, in order to
maintain the advantage of high throughput brought by memory-sharing, some more innovations
in concurrent memory access and scalability are required. First, an efficient framework for
memory sharing and access is needed to support the transfer of packets between vSwitch and a
number of hypervisor processes. Second, we need to efficiently schedule the concurrent PD
procedures, which are distributed in hypervisor processes, to improve the VNIO scalability.

Thus the main contributions of this chapter are summarized as follows:

• We classify the memory-sharing models of existing para-virtualized VNIO solutions into
S2V and V2S, and then analyze how they violate the memory isolation. To guarantee
the isolation without degrading the system performance, we propose a new S2H model
that adopts hypervisor processes for sharing memory with vSwitch and completing PD
procedures.

• To efficiently deliver packets via the shared host I/O memory between the vSwitch
and hypervisor processes, we take advantage of the DPDK memory management in

1The “setter” in volleyball sport is responsible for passing the ball, and we use it here to describe that hypervisor
delivers I/O data between VM and vSwitch.
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hypervisor processes for concurrent memory access, and well design the conflict-free
packet delivery pipeline for high-speed packet processing.

• To support scalability and run a large number of VMs on a single server, we propose
a “batch-grained” scheduling strategy, which schedules PD procedures on limited CPU
cores according to batch processing workload instead of uncontrollable time slices. This
kind of scheduling strategy brings more efficiency and flexibility.

• We implement the S2H prototype based on the vHost-User architecture as it is the de-facto
para-virtualization standard which has been widely adopted in commercial products. We
show that S2H can be simply realized by adding less than 1000 lines of code to the existing
solutions. Extensive evaluations are conducted in diversified scenarios and settings
including data-path performance, inter-VM performance, application performance, and
scalability. The results show that S2H can achieve comparable throughput with 9% more
latency than those of the native vHost-User architecture, while effectively guaranteeing
VM isolation.

5.2 Problem define and motivation

In virtualization technology, the software that creates and runs VMs is called VMM or hypervi-
sor. The host is the physical server on which a hypervisor runs one or more VMs. Each VM
is called a guest VM. Generally, a hypervisor contains both user-space processes and kernel
modules. For example, in the QEMU/KVM[5, 6] implementation, a hypervisor layer consists
of independent user-space QEMU processes and a KVM module. Each VM is actually virtual
CPU (vCPU) thread(s) launched by the corresponding QEMU process and interacts with the
KVM module.

VNIO is an important building block of virtualization, and it is responsible for delivering
traffic among VMs and NICs. In a full-virtualization VNIO solution, the hypervisor serves as a
dividing layer between the host and the guest VM. The hypervisor emulates a full function of
NIC, that can be driven by the native driver in a guest VM. The full-virtualization is flexible, but
the device emulation causes significant performance overheads [107]. Authors in [108] proved
that optimizing software interrupts for reducing VM-exit in device emulations can greatly
improve the performance of full-virtualization. So in order to break the bottleneck in device
emulations and software interrupts for better I/O performance, various para-virtualization
solutions are proposed [71].
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As shown in Fig. 5.2(a), a para-virtualized VNIO solution consists of two parts: a front-end
driver in the guest VM and a back-end driver in the host. The front-end handles the virtual
device emulation in the guest Operating System (OS), while the back-end performs I/O data
transfer between host and guest VM. In this chapter, we focus on the back-end as the I/O
operations mainly happen there.
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Figure 5.2 The architecture and data path of para-virtualized network I/O

Fig. 5.2(b) illustrates a typical para-virtualized VNIO environment, with one VM running
on the host. As it shows, the back-end consists of a PD procedure and vSwitch. The PD
procedure exchanges I/O data between the two blocks of I/O memory residing in the VM and
the vSwitch, respectively, while vSwitch is responsible for forwarding traffic among virtual and
physical ports. For example, if a packet arrives at a port in the NIC, the vSwitch component
first captures and holds the packet in the I/O memory (the orange colored block in Fig. 5.2(b)).
The vSwitch then parses the packet, looks for its forwarding information, and finally notifies
the PD procedure to copy the packet from the host to a particular VM.

It is worth noting that, these two blocks of I/O memory in Fig. 5.2(b) belong to different memory
spaces, i.e., host memory space and VM memory space2. When the back-end (vSwitch) used
to run in the kernel-space, it can access VM memory and do packet copying by default. But in
the last decade, to improve performance, vSwitch has been transferred from the kernel-space
(known as the bridge in Linux kernel) to user-space to exploit high-performance drivers like
DPDK and netmap [57]. As a result, the vSwitch and the VM are isolated from each other’s
memory accesses. To implement the memory copying operations in the PD procedure, a

2The host memory space here indicates the memory space of vSwitch process. As the vSwitch is deployed
directly on the host OS and we need to distinguish its memory from VM’s memory, we introduce the concept of
host memory space.
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memory-sharing model is needed, i.e., either sharing the I/O memory from vSwitch to VM
(S2V), or from VM to vSwitch (V2S), which introduces isolation issues.

5.2.1 Existing memory sharing models and isolation issues

The shared memory largely boosts the I/O performance, as the PD procedure can directly access
both the source and destination memory addresses during memory copying. However, there is
a trade-off between performance and isolation. As the motivation of this work, we classify and
analyze the user-space memory-sharing models in para-virtualized VNIO solutions.

According to Fig. 5.2, the memory-sharing model consists of two blocks of I/O memory (on
VM and host sides), three participants (VM, hypervisor, and vSwitch), and a PD procedure. As
the PD procedure needs the privilege to access the I/O memory on both sides, the choice of I/O
memory-sharing models depends on the location where the PD procedure performs, and vice
versa.

Depending on the locations of the shared memory and PD procedure, we categorize the existing
para-virtualization solutions into 2 models, S2V shown in Fig. 5.3(a) and V2S shown in
Fig. 5.3(b). In each figure, the PD procedure and three participants (VM, hypervisor, and
vSwitch) are on the left, while the two blocks of I/O memory are on the right. The arrow lines
present the memory access from the participants to the I/O memory. In particular, a solid line
indicates that the memory access is granted by default, while a dashed line indicates that the
access is implemented via the memory-sharing model.

Fig. 5.3(a) illustrates the V2S model, which is followed by virtio vHost-User[31], Google’s
Andromeda[69] and ELVIS[32]. Taking the virtio vHost-User solution in QEMU/KVM imple-
mentation as an example, VM and QEMU hypervisor are granted access to the VM’s memory,
while the vSwitch is granted the access to the I/O memory on both sides. For vSwitch, the
access to the host side I/O memory is granted by default, and the one to the VM side I/O
memory is implemented by the V2S memory-sharing model via a series of mmap() operations.
Several threads (one in default, more with the increase in the VM count or workload) are
created in the vSwitch process to deliver packets for all VMs.

Fig. 5.3(b) illustrates the S2V model, which is followed by NetVM [34], IVSHMEM [35, 36]
and ClickOS[73]. Compared with the V2S model in Fig. 5.3(a), VM is granted access to the
block of I/O memory on the host side. Meanwhile, the PD procedure is moved from the host
side to the VM side. Taking the NetVM VNIO solution as an example, vSwitch allocates a
block of memory and shares it with the VM. A virtual PCI (vPCI) device is created in the VM,
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and the device memory is redirected to the block of shared-memory. Therefore, each VM can
complete its PD procedure via the virtual device.
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Figure 5.3 The existing memory-sharing models

The Table 5.1 lists all current VNIO mechanisms and which memory-sharing models they
belong to. It can be seen that almost all VNIO mechanisms use the S2V or V2S memory
sharing model. But unfortunately, both the S2V model and the V2S model commonly have the
isolation issue either among VMs or between the VM and the host. The issue is critical in the
cloud computing environment, where the per-host VM density is sufficiently high[109]. Taking
the V2S virtio vHost-User as an example, the shared memory should be ideally restricted within
the I/O memory region in the VM. However, we cannot predict the I/O memory addresses if
they are dynamically allocated at run-time. As a result, the VM’s whole memory is shared
with vSwitch in the practical usage of virtio. The user-space vSwitch process, granted access
to all VMs’ whole memory, can easily become the Achilles’ heel. Further, existing vSwitch
implementations are not reliable. Even OVS[59, 60], the most popular vSwitch project,
has security vulnerabilities reported in the Common Vulnerabilities and Exposures (CVE)
database[110, 111]. With a compromised vSwitch process, the hijacker can arbitrarily access
and even overwrite any piece of memory in VMs via I/O operations. The community has
already noticed the security issue, and a type of DMA attack has been reported[39, 41, 40].
The issue also exists in NetVM and IVSHMEM S2V models. Malicious tenants inside the VM
could rewrite the vPCI device driver or exploit existing vulnerabilities and software bugs in the
driver to access the host I/O memory without any restrictions[112].



84 S2H: Memory Access Isolation based Virtualized Network I/O Mechanism

Table 5.1 The comparison of existing virtualized network I/O mechanisms

Solution/Mechanism Memory-sharing model Performance Isolation
vHost-User[31] V2S • ◦
Andromeda[69] V2S • ◦

ELVIS[32] V2S • ◦
Xen1[33] V2S • ◦

NetVM[34] S2V • ◦
IVSHMEM[35, 36] S2V • ◦

clickOS[73] S2V • ◦
Xen2[37] S2V • ◦
Xen3[38] V2S ◦ •

vIOMMU[41, 42] V2S ◦ •
Zcopy-vhost[113] N/A (page flipping) ◦ •
Hyper-switch[114] N/A (kernel-space PD) ◦ •

To solve these isolation problems, the current related works are devoted to simply restricting
the memory access under existing architectures. For example, to reinforce memory address
translation functions, vIOMMU was proposed to prevent DMA attacks[41–43]. Unfortunately,
these reinforcement attempts have severely degraded the VNIO performance (to ∼20% of
the original performance) and therefore cannot be adopted. Other memory access protection
mechanisms, such as the hardware-based SGX[89], are rarely used in the data path of the
systems and the practice in NFV scenarios has shown that these hardware-based protection
mechanisms also severely reduce performance[45].

We also notice that some other VNIO mechanisms take a different approach. They do not use
shared memory, but seek kernel-level EPT[115] page table mapping, or directly implement
data path in kernel space[113, 114]. But they come at a price of low performance. It has been
proved that the performance of today’s kernel-space packet processing under the acceleration
of the latest XDP[116] and eBPF[117] technologies is still far less than the datapath in user
space[118], so it is not necessary to roll back VNIO performance to ten years ago for isolation.

In addition to the isolation design for VNIO, this chapter also investigates some other memory
access protection mechanisms, such as hardware-based Intel SGX[89] and ARM TrustZone[119].
However, the basic principle of this type of technology is to encrypt key memory. Even the
OS cannot directly obtain data from memory without authorization. Although it can provide
the best memory security, it will cause large encryption and decryption overhead for memory-
intensive applications. The practice in the NFV scenario shows that the system performance
can be reduced by 90% just by placing the flow table rules in the protected memory[45].



5.3 Secure memory sharing model design 85

5.2.2 Motivation

Rethinking the two models shown in Fig. 5.3(a) and Fig. 5.3(b), we can conclude that because
packets need to be delivered between vSwitch and VM, it is natural to make them share the
memory with each other. But both models have isolation issues and cannot be simply reinforced.
It is noteworthy that, until now the hypervisor has not participated in either memory-sharing
or PD procedure. However, if the hypervisor process can complete the PD procedure, it has
two advantages. First, the hypervisor process can access VM’s whole memory by default
without memory-sharing. Taking the QEMU/KVM virtualization as an example, each time
when booting a VM, a QEMU process needs to be launched with command line parameters
that present the properties of a VM. These VM properties include the memory size, the devices’
information, etc. The QEMU process then emulates devices and allocates the memory for
the VM according to these parameters. Therefore, each QEMU can access the memory of its
corresponding VM. The second benefit is, compared with the uncontrollable behavior inside
the individual VMs, compromising a hypervisor process is known to be much more difficult as
it is typically well maintained and monitored by the platform provider[120]. This motivates us
to re-examine the existing strategies, and design a new memory-sharing model and architecture
with the use of hypervisor to facilitate the memory access.

5.3 Secure memory sharing model design

According to the motivation of using hypervisor to achieve secure memory sharing, in this sec-
tion we will describe the proposed memory sharing model in detail, and make a comprehensive
isolation and security analysis, then lead to the implementation challenges.

5.3.1 S2H model

We propose a new memory-sharing model (see Fig. 5.4(a)) which shares the host-side I/O
memory from vSwitch to Hypervisor (S2H) process. Significantly different from S2V and
V2S models, neither VM nor vSwitch process in the S2H model can access the I/O memory
that does not belong to itself. Instead, the hypervisor is granted to access the blocks of I/O
memory on both sides. Consequently, the PD procedure is moved to the hypervisor layer, and a
hypervisor process launches a dedicated PD thread for the corresponding VM.
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Figure 5.4 The secure memory-sharing model and virtualized network I/O architecture

Fig. 5.4(b) shows the S2H VNIO architecture, where the hypervisor containing a PD procedure
works as a “setter” between the front-end and the original back-end. If the PD procedure
follows the existing communication protocol, neither front-end driver nor back-end (the part in
vSwitch process) needs any modification.

5.3.2 Secure isolation analysis

The main goal of this work is to resolve the VM isolation issues to improve the security of
para-virtualized VNIO. We first analyze the isolation capability of the proposed S2H model
from two perspectives, isolation among VMs and isolation between a VM and the host.

Isolation among VMs: In the S2V model, a malicious tenant could exploit existing vulnera-
bilities and software bugs in the vNIC driver to acquire or modify other tenants’ I/O data via
out-of-boundary memory access on the host side. In the proposed S2H model, no I/O memory
is directly shared with the VM. Instead, the PD procedure in the hypervisor works as a barrier
to prevent unauthorized memory access. As a result, S2H has better isolation among VMs.

Isolation between VM and host: In the V2S model, taking the virtio vHost-User as an
example, the host-side user-space vSwitch process is granted access to all VMs’ whole memory.
If a vSwitch process is compromised, a hijacker can arbitrarily access and even overwrite any
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piece of memory in VMs via I/O operations. In contrast, in the proposed S2H model, no I/O
memory is shared from VM to the host, so it has better isolation between a VM and the host.

Table 5.2 The memory access comparison under different memory-sharing models

model each VM each hypervisor vSwitch
V2S VM VM hostbuf+all VMs
S2V VM+hostbuf VM+hostbuf hostbuf
S2H VM VM+hostbuf hostbuf

To illustrate the improved security owing to better memory isolation, we show the memory
range that each component can access under different memory-sharing models in Table 5.2.
In the table, we can see the proposed S2H minimizes the shared memory size. Compared
with the S2V and V2S models, S2H improves the security in two aspects. On the one hand,
according to existing security issues, the most common DMA attacks[39] and buffer overflow
attacks [121, 111] on VNIO require direct manipulation of sensitive memory addresses. As
the proposed S2H can isolate the memory spaces of VM and vSwitch, these well-known
attack models cannot work. On the other hand, the S2H introduces few security risks while
providing better isolation. The hypervisor is the foundation of the virtualization environment
and is commonly well maintained by service providers. Compared with VM operating systems
or vSwitch software, the hypervisor is more secure since its size is relatively small and the
exported attack surfaces for guest domains are considerably less[120]. Last but not least, in
the proposed S2H model, we only add the PD procedure (memory copying workload) to the
hypervisor. That means the introduced code is very low and executes as a separate thread which
is independent of the existing code in hypervisor. So the newly added PD procedure is easy to
control and maintain.

5.3.3 Implementation challenges

Despite the potential of providing better isolation and security, the realization of the proposed
S2H model faces two major challenges. First, as a “setter” process between the front-end driver
and the back-end component (vSwitch process), the PD procedure in the hypervisor adds the
overhead to the VNIO processing. The sharing of memory between the vSwitch process and the
concurrent hypervisor processes is more complex and will affect the performance. Secondly,
the CPU resources that can be occupied by PD are very limited. Cloud service providers prefer
to assign most of the computing resources to VMs and leave very few for VNIO processing. In
the Google cloud, no more than two physical CPU cores per physical server are assigned to the
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PD procedures [69]. Therefore, efficiency and scalability are the main design challenges to
realizing S2H. We will enhance the efficiency of S2H from two perspectives.

• Sharing memory among concurrent processes. As each VM has a dedicated PD
procedure in its parent hypervisor process, the shared memory will be accessed by
multiple threads that belong to different processes. The block of shared memory is
divided into small pieces to store I/O data and notifications belonging to different VMs,
which are occupied, modified and freed by the concurrent PD threads and vSwitch
processes. We need an efficient memory sharing framework to deal with the potential
conflicts and contention from concurrent processes.

• Thread scheduling. As PD procedures run concurrently on limited CPU resources,
scheduling these threads with a granularity of time slice is inefficient and will increase
the competition, as well as context switching[83]. We need an efficient scheduling
mechanism with granularity that can be properly set according to the working mode of
PD procedures.

5.4 VNIO mechanism design and prototyping

To address the above challenges of realizing S2H, in this section, we will elaborate on our
proposed innovations for efficient memory sharing among concurrent processes and scalable
scheduling of PD threads. We introduce our designs in the context of a prototype system.
However, our sharing and scheduling strategies are general and can be used to guide the design
and implementation over other VNIO architectures.

To demonstrate the function and prove its simplicity in realization, we prototype the S2H system
over the vHost-User (V2S) architecture, as it is a state-of-the-art design and has been widely
used in the production environment. The virtio de-facto standard that vHost-User follows is
also supported by the QEMU/KVM virtualization platform, as well as the kernels of most
operating systems such as Linux and Windows.

In this section, we first introduce the basic vHost-User platform and our prototype implemen-
tation, and then describe the principles and realization of our proposed memory sharing and
thread scheduling mechanism.
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5.4.1 vHost-User and basic platform

On the vHost-User architecture, the user-space QEMU process and the KVM kernel module
provide VMs with the virtual execution environment. A corresponding QEMU process is
created for each VM. OVS[59, 60, 122], as the back-end in vHost-User, handles the packet
classification and forwarding. For high-speed packet processing, OVS is compiled into the
DPDK framework[11], which possesses unique features, such as user-space network driver
and efficient memory management. When the OVS-DPDK is running, it launches one PMD
thread by default, to look up packet destination in flow tables and implement the PD tasks on
all physical and virtual ports. The number of PMD threads in OVS-DPDK can be increased as
the workload goes up, and each PMD thread must be bound to one dedicated CPU core.
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Figure 5.5 The implementation of vHost-User and S2H prototype

The data exchange of vHost-User architecture is shown in Fig. 5.5(a). As a typical V2S model,
the QEMU process does not participate in either the memory-sharing or the PD procedure. On
the contrary, OVS is granted access to the memory both in the host and in VM. According to the
function, a PD procedure can be divided into two parts: the notification path for the transmission
of packet descriptors and the data path for packet transmission. There are also two types of
memory infrastructure involved. In the first type, rings are used to buffer packet descriptors,
e.g. the pNIC-ring stores packet descriptors in the host-side memory and the virtqueue, as
part of virtio standard, stores descriptors on the VM side. As the second type, packet buffers
are applied to store packets on both the host side and the VM side. The host-buffer is a block
of memory managed by DPDK and used for storing packets received from all OVS’s ports,
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while pkt-buffer is allocated by the VM driver and used for receiving packets from hosts (e.g.
skb_buff in Linux kernel).

Both notification path and data path are bidirectional. We take the traffic-in-VM as an example.
After NIC receives packets and stores them in the host-buffer with DMA, the OVS PMD thread
can poll the pNIC-rings to access the packets according to the descriptors. It decides which
VM is the destination based on the matching of the parsed packet header with the entries in the
flow table. Then, the PMD thread finds the available pkt-buffer addresses from virtqueue of
the destination VM and copies packets from the host-buffer to the pkt-buffer. After the packet
copying is completed, the PMD thread updates the virtqueue of the receiving direction to notify
VM for getting packets. The procedure in the opposite direction is similar.

5.4.2 Prototype design and implementation

We modify the vHost-User architecture and implement S2H as shown in Fig. 5.5(b). The key
of S2H architecture is that each QEMU process acts as a “setter” and runs a PD thread between
the corresponding VM and OVS to provide the VM isolation. Since each VM has its own
QEMU process to complete the PD procedure, OVS needs to share the memory with all QEMU
processes on this server. To keep the data path unchanged and avoid additional overhead, we
use the host-buffer as the shared memory, and OVS directly exposes the host-buffer to all
QEMU processes. On the notification path, due to the need of transmitting packet descriptors
between QEMU and OVS, a pair of separated shared-rings is allocated and shared between
each QEMU and OVS process. Each time when OVS needs to send packets to VM, its PMD
thread only needs to copy the packet descriptors from pNIC-ring to the particular shared-rings
to be accessed by the corresponding QEMU process, according to the flow table lookup results.

To efficiently complete tasks on both data path and notification path, we create a dedicated PD
thread running in the polling mode for each QEMU. The major workload of the PMD thread
on each vhost-port in vHost-User solution is transferred to the PD thread of the corresponding
QEMU process. As a result, the data path workload remains about the same as that there is no
extra packet copying added, comparing with the primitive solution in Fig. 5.5(a). Meanwhile,
as shown in Fig. 5.5(b), only one extra packet descriptor copying operation is added to the PMD
thread of OVS on the notification path. As the descriptor data structure only contains the packet
address information, the increased overhead is negligible. Now we also take traffic-in-VM as
an example. After NIC receives packets and stores them in the host-buffer via DMA, the OVS
PMD thread can poll the pNIC-rings to get the descriptors for the access of packets in the host
buffer. Then after the flow table lookup, it copies the packet descriptors from pNIC-rings to
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the destination QEMU’s shared-rings and the PMD thread completes its job. In QEMU, the
PD thread polls shared-rings and obtains packet descriptors pointing to the host-buffer. The
following steps are the same as those of in vHost-User—getting available pkt-buffers, copying
packets and updating the virtqueue.

Compared to the vHost-User, the heaviest workload, packet copying in the PD procedures, is
undertaken by the PD threads in QEMU processes. The work done by the PMD threads in OVS
is reduced to only the lookup in the flow table and the copying of packet descriptors. As the
workload changes, we should allocate most of the CPU resources used by the OVS PMD threads
in the native vHost-User to the PD threads of QEMUs. We also design a thread scheduling
mechanism for these threads to run on limited CPU resources, which will be described in
Section 5.4.4.

The native vHost-User is modified to prototype the proposed S2H. We only add less than 1000
lines of codes into QEMU to implement the PD thread and make a few changes to OVS. As
the interface to the virtqueue from the PD thread remains unchanged from that of vHost-User,
the components inside VM (such as the kernel, VM driver and virtqueue) do not need to
be modified and are compatible with the configurations in native vHost-User. Though the
prototype implementation is based on QEMU/KVM virtualization platform, S2H can also be
adopted to other virtualization platforms (e.g. Xen, VMware), as a general VNIO architecture.

5.4.3 Memory sharing with concurrent access

As the foundation of VNIO, the shared memory is used to exchange packets between VMs and
the host. For example, in vHost-User, each VM shares its memory space (blue in Fig. 5.5(a))
to the OVS process. It is very efficient and there are no conflicts during the shared memory
access as it is essentially a single-producer single-consumer (SPSC) issue. But in S2H, the
shared memory (blue in Fig. 5.5(b)) consists of two parts: the public host-buffer part and
the private shared-ring part. The public shared host-buffer is a block of memory, that will be
operated (allocate, access and free) by the PD threads of different QEMU processes and the
OVS PMD thread simultaneously. So it will lead to a multi-producer multi-consumer (MPMC)
issue. For each pair of shared-rings, it is newly added and only shared privately between the
corresponding QEMU process and the OVS process.

We first introduce how we build these two parts of shared memory. For the public shared host
buffer, as the fact that mbuf pool is managed by OVS-DPDK in the native vHost-User, we
directly let OVS-DPDK share the mbuf pool with all QEMU processes as shown in Fig. 5.6.



92 S2H: Memory Access Isolation based Virtualized Network I/O Mechanism

QEMU 1 QEMU 2

OVS-DPDK

allocate

free

mbuf mbuf
T R

shared_ring
(private)

T R

mbuf pool
(public)

write

read

allocate

free write

read

shared_ring
(private)

Figure 5.6 The concurrent shared memory access in S2H

To let these QEMU processes have access to the mbuf pool, we add “-mem-file = /path-to-
rte_config” to the command line parameters for each QEMU process to find and map the mbuf
pool to its own address space. Once a QEMU process starts and the initialization is completed,
the mbuf pool has been accessible by its PD thread. For shared-ring, OVS will create a separate
small piece of memory for each QEMU process. Then, each QEMU process attaches to this
block of private shared memory. Both types of shared memory are constructed by calling
mmap() functions to map the files into the process memory space.

To solve the MPMC issue in the public shared host buffer, we take the advantage of DPDK
memory management to make the PD threads of all QEMU processes access this block of
memory efficiently. As the access to the shared mbuf pool is in the form of reading or
writing packets, we need unified memory management and also an efficient conflict-free packet
processing pipeline. As the DPDK memory management is designed for processing packets
at high speed to efficiently solve the MPMC issue, we implement the same data structures in
QEMU as those in DPDK for accessing the mbuf pool. With the same memory management,
both QEMU and OVS-DPDK can allocate or free mbuf (mbuf is a data structure used for storing
a single packet, like skb_buffer in Linux kernel). So we design a conflict-free packet delivery
pipeline as shown in Fig. 5.6. The allocation and free of mbuf are performed by the most
suitable process according to the direction of the PD procedure. For example, the packet sender
process (whether it is OVS-DPDK or QEMU) is responsible for allocating mbuf from mbuf
pool, and the receiver process needs to free it after fetching the packet. Combined with the
efficient DPDK memory management, packets are able to be transferred among processes via
mbufs at high speed.

In the two kinds of shared memory, host-buffer (mbuf pool) is consistent with that in vHost-
User, but the private shared-ring is newly added. As an intermediate, temporary storage area
for the transfer of descriptor, its size may affect the S2H VNIO performance. We construct
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performance evaluation with varying traffic loads, and find that when the shared-ring size is 4
times greater than the batch size, the system can completely deal with traffic bursts and achieve
a reasonable performance. However, if the ring size continues to grow, the throughput will not
rise anymore. Thus, we set the shared-ring size to be 4 times of the batch size.

Besides the performance concerns, the shared memory in S2H also needs to support other
features in VNIO like reconnection and live migration, which are crucial in a practical environ-
ment. We propose the following schemes for realizing these features under our shared memory
implementation. For reconnection, according to the order of shared memory initialization
procedure, we let QEMU processes do the munmap and free operations on the mbuf pool
immediately after OVS goes down. When the OVS restarts and successfully allocates the new
mbuf pool, then all QEMU processes attach to it again. For the live migration, because the
shared memory is allocated by OVS, a VM cannot be migrated to another server unless all
the packets in the shared memory are processed. As a result, in S2H, before QEMU starts the
migration, we need to ensure that all packets referred in the shared-ring have been delivered to
VM.

5.4.4 Scalability Support

Scalability is an important feature of the cloud platform, which contains two aspects: scalability
among VMs and scalability inside a VM. For cloud service providers, the cost is one of their
biggest concerns. In a multi-tenant scenario, the biggest scalability issue among VMs is how
to use limited CPU resources to support the PD procedures of a large number of VMs. For a
single VM, how to increase the receiving and sending queues in vNIC is the key to improving
the VM network performance and achieving the scalability inside the VM.

In native vHost-User, OVS PMD threads naturally support these two types of scalability. As
mentioned before in Section 5.3, centralized PMD threads poll all the virtqueues of each VMs
in sequence and do PD on the corresponding ports. The number of PMD threads is equal to
the number of CPU cores that are required to complete PD procedures. For multi-queue, OVS
needs to add multiple virtqueues of a single VM to the polling queue of the PMD threads. It
works well for the two types of scalability, and the only limitation is that the PDs of all VMs
are executed sequentially and are not flexible enough.

In S2H, the situation is the opposite. As the PD procedures are distributed in PD threads of
different QEMU processes, it brings the nature of flexibility. The out-of-order execution of
different VMs’ PD procedures can support some SLA and QoS strategies of service providers
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that were not available in traditional architectures. For multi-queue, because the interaction
between the PD thread and virtqueue remains the same, we only need to increase the number
of shared-rings to the same number as virtqueues. But as each VM has a dedicated PD thread
to perform its PD procedure, the number of PD threads would be relatively large. We need to
bind multiple PD threads on limited CPU cores and schedule the PD threads on the same core
to achieve scalability among VMs.

5.4.4.1 “Batch-grained” thread scheduling

However, binding many PD threads on the same CPU core will bring serious performance
issues. By default, these PD threads bound to the same CPU core are managed under the Linux
scheduling policy “SCHED_OTHER”, which is a kind of completely fair scheduling (CFS)
policy. Under the CFS policy, each PD thread is allocated with a fixed time slice to run its
workload. After the time slice is used up, the core will be preempted by other PD threads. As
the scheduling granularity is too small, frequent context switching among different PD threads
will result in huge performance overhead. In addition, PD threads may be preempted when
operating the shared data structure and then lock each other. Usually, this situation happens
when the PD thread enters the critical zone. For example, as shown in Fig. 5.7(a), allocating
and freeing mbuf requires the threads to enter the critical zone, which is common in the main
loop of PD threads. We use the CPU task pipeline under default scheduling in Fig. 5.7(b) to
show this issue. Each “stage” in this figure represents the time period of a PD thread occupying
the CPU to execute workload until the context switching. In stage 1, the PD thread 1 is still in
the critical zone when being preempted by PD thread 2. In stage 2, PD thread 2 will be blocked
when it tries to enter the critical zone to allocate mbufs. As a result, the time slice is wasted in
stage 2. In stage 3, PD thread 1 completes its work and leaves the critical zone, then PD thread
2 will be able to continue its workload after it preempts CPU in the next stage.

We propose a “batch-grained” scheduling strategy to avoid blocking and make it more CPU-
friendly. For efficiency, the scheduling granularity needs to be well designed: how long each
PD thread can occupy the CPU and when it can yield the CPU. We use one batch as granularity.
First, we set all PD threads’ scheduling policy to “SCHED_FIFO”. Because the threads under
“SCHED_FIFO” will not be preempted unless they yield the CPU by themselves. That gives
us the ability to determine the granularity of the schedule by workload rather than uncertain
time slice. As the main loop of each PD thread contains polling virtqueue and shared-ring to
transfer one batch of packets, we allow each QEMU’s PD thread to run one loop before it goes
to sleep and yields the CPU for other threads. The pipeline is shown in Fig. 5.7(b), it can be
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while(1)
{

copy packets from OVS to VM; 
free mbufs;

allocate mbufs;
copy packets from VM to OVS;

}
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Figure 5.7 The “batch-grained” scheduling

seen this kind of scheduling strategy avoids the blocking caused by context switching in the
critical zones and also makes the context switching less frequent.
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Figure 5.8 An example of SLA strategy under “batch-grained” scheduling

Besides efficiency, the “batch-grained” scheduling also provides more flexibility that can be
used to design more complex SLA policies. Its details can be found in Section 3.4[47, 48].
Here we show it can be easily implemented in S2H without modifying the architecture. The
logic is shown in Fig. 5.8, each PD thread is set with a priority and sleep time threshold. OVS
wakes up the corresponding PD thread based on the sleep time and whether there are enough
packets to send. But the woken-up PD threads do not immediately occupy the CPU, they stay
in a ready queue based on arrival time and priority. For example, the orange-colored PD thread
indicates that it has higher priority, while the blue color indicates lower priority. When the PD4
with the highest priority is woken up, it will be inserted into the head of the ready queue, but
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the PD3 with the lowest priority will be placed at the tail. After the PD thread gets the CPU
and completes its job, it will go to sleep and wait for the OVS to wake up again. The strategy
in this example makes S2H flexible to implement a differentiated latency guarantee. A simple
test result is shown in Fig. 5.9, the test VM is set with a fixed sleep time threshold and highest
priority. When the background traffic gets larger, the test VM under S2H can maintain the
original latency of 30us, while the latency under the original vHost-User is increased by 50%
to 45us.
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Figure 5.9 The differential latency under “batch-grained” scheduling

5.4.4.2 Overhead analysis

The main overhead of “batch-grained” scheduling comes from the context switching among
PD threads. As the scheduling only changes the order of threads waiting on the PD cores, it
does not affect the processing capacity of the PD cores. It is the context switching in thread
scheduling that affects PD cores’ processing capacity. We test the context switching times on a
single PD core which serves different numbers of VMs with different sizes of packets to show
how it affects the performance. The results of perf are shown in Table 5.3. The overhead of
context switching is independent of the number of VMs. As the packet size increases, the effect
of context switching becomes smaller. That is because each context switching only happens
after each batch process. The time used for one context switching is fixed, while the time used
for copying a batch of 1518-byte packets is far much more than copying a batch of 64-byte
packets. So, when transferring 1518-byte packets, there will be much fewer times of context
switching per second. The worst-case happens when copying 64-byte packets, and nearly 10%
of the CPU is used for context switching, while the rate with 1518-byte packets drops to less
than 1%. This overhead is acceptable for better isolation and flexibility.

In addition to these benefits, there is still a problem that may occur when we bind so many
“SCHED_FIFO” scheduled PD threads to the same CPU core. The core cannot be scheduled
to any other threads with the default scheduling policy, even if they belong to the kernel. For
example, some system calls, like page fault interrupts, would run a small piece of codes on
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Table 5.3 The context switching frequency under different configurations and workloads

Workload 2VMs 4VMs 8VMs
no traffic 1.512M/sec 1.524M/sec 1.454M/sec

64-byte packet 0.196M/sec 0.206M/sec 0.194M/sec
512-byte packet 0.045M/sec 0.043M/sec 0.043M/sec

1518-byte packet 0.017M/sec 0.017M/sec 0.017M/sec

each core of the physical server platform. This problem can be easily solved by isolating the
PD cores in the grub file.

5.5 Evaluation

In Section 5.3, we have illustrated that S2H can provide two types of isolation — isolation
among VMs and isolation between a VM and the host, which greatly reduces security risks.
As the use of hypervisor and newly added shared-ring may introduce additional overheads,
in this section, we will evaluate the performance of S2H and compare it with that of native
vHost-User.

The performance evaluation and comparisons are from three perspectives. As our goal is to
measure VNIO performance, we firstly evaluate and compare the VNIO data path performance
of S2H with that of vHost-User. But considering the PD capacity in the VNIO data path is
ultimately reflected in the application performance inside the VM, so we deploy various types
of applications (e.g., IP lookup, TCP, Nginx and VM-to-VM communication) inside the VM
to compare the application experience under the two architectures. Besides, to measure the
scalability of a single VM and the entire physical server, we compare the performance in the
multi-queue and multi-tenant scenarios under the two architectures.

In the experimental setup, we use a server with two Xeon CPU E5-2640 v3 2.60GHz (2x8 cores
and 2 logical cores in each physical core) for running the whole cloud platform for the two
architectures. The other configurations of the server are as follows: 128GB DDR4 memory at
1866MHz, one Intel 82599ES 10-Gigabit Dual Port NICs, ubuntu 16.04.1 (kernel 4.8.0) as both
host OS and guest OS, QEMU 2.10, DPDK 17.11.2 and OVS-2.9.2. Every VM is allocated
with 2GB memory and one logical core for all tests.

We use TestCenter from Spirent[96] as traffic generator for the test of packet forwarding and
use qperf on a directly connected server with the same configuration for the evaluation of the
TCP performance. In all test scenarios, the VM configurations in the two architectures are
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consistent, and we repeat 10 times of running experiments to eliminate the accidental errors.
For S2H, the PD thread sleep time threshold is set little enough to achieve its peak performance.

5.5.1 Datapath performance

We first compare VNIO datapath performance by measuring the forwarding rate of VM on
S2H with that of vHost-User. The DPDK driver is used inside a VM to ensure that the VM’s
internal network processing will not become a bottleneck. To evaluate the performance of the
data path with PD running on a single core on vHost-User, OVS launches a PMD thread, which
is bound to one logical core. For S2H, as the packet copying by the PD threads in QEMUs take
most of the workload originally taken by the PMD thread on vHost-User, we also assign them
with a logical core. However, although the OVS PMD thread in S2H only has very lighted
look-up workload, it still needs to consume little CPU resources. So in our implementation,
S2H requires a little more CPU resources than vHost-User in any case, because its architecture
decouples flow table lookup and PD procedure. The experimental configuration follows RFC
2544[123] — throughput and latency are evaluated with zero packet loss. Different sizes of
packets (64, 128, 256, 512, 1024, 1518 bytes) are generated by TestCenter and forwarded back
via the VM internal DPDK l2fwd program.
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Figure 5.10 The performance comparison of datapath

Fig. 5.10(a) shows the datapath throughput of S2H and that of vHost-User. S2H achieves up to
14% throughput improvement with 1024-byte packet and 11% average throughput improvement
compared to vHost-User. The throughput improvement of S2H is mainly due to two reasons, 1)
a running PD thread cannot be preempted by any other threads thus avoiding the overhead due
to unnecessary context switching, and 2) the little CPU resources used by the OVS PMD thread
undertakes some flow table lookup workload. In Fig. 5.10(b), the latency of S2H increases by
2–9% under different packet sizes, up to 2µs compared to those of vHost-User. The increase
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in latency is caused by the additional workload on the notification path. As mentioned in
Section 5.4.2, we add one packet descriptor copying operation during each packet delivery. The
increase in latency is constant and independent of the packet size.

5.5.2 Performance of Applications

For a more realistic study, we consider applications and the kernel protocol stack deployed
in the VM of S2H and vHost-User. The performance of the applications including IP lookup,
TCP, Nginx and VM-to-VM communication are evaluated.
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Figure 5.11 The performance comparison of IP lookup

IP lookup. Running Network NFV applications on the cloud platform is a common trend.
To evaluate the performance of NFV in both architectures, we use VM with DPDK driver to
enable high-performance IP lookup. Fig. 5.11(a) shows the throughput of IP lookup on S2H
and vHost-User, respectively. S2H achieves up to 20% throughput improvement with 128-byte
packet and 9% for average improvement compared to that using vHost-User. Fig. 5.11(b) shows
the latency of IP lookup in S2H and vHost-User. The latency of S2H is 4–9% higher than that
of vHost-User. The performance differences in the two implementations are caused, similarly,
by CPU resources and the operations of shared-ring on S2H, as illustrated in VNIO datapath
performance. There is a 10–15% decline in throughput compared to that on the datapath due to
the workload of IP lookup in VMs.

TCP stream. TCP performance is an important indicator to measure the stability of VNIO.
TCP bandwidth and latency are tested by qperf[77]. The qperf client runs in a VM and the qperf
server runs in another direct-connected physical server. Fig. 5.12(a) shows the TCP bandwidth
of S2H and vHost-User. S2H achieves up to 4% throughput improvement with 128-byte packet
and 2% improvement on average compared to vHost-User. Fig. 5.12(b) shows the latency of
TCP packet transmission by VM using S2H and vHost-User. The latency is relatively stable
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Figure 5.12 The comparison of TCP bandwidth and latency

and almost the same in the two implementations, as the performance in this case is mainly
affected by packet processing in the VM kernel protocol stack.

Nginx. As a high-performance HTTP server and reverse proxy, Nginx [91] has been widely
deployed on the cloud platform. We further evaluate the performance of Nginx on S2H and
vHost-User. The Nginx 1.10.3 is deployed in one VM of S2H and vHost-User respectively.
We use the Apache Bench running on another directly connected server to test the throughput
and response time of Nginx on VM for HTTP requests. The throughput is 9733 responses per
second for S2H and 9431 for vHost-User. The average latency per response is 208ms in S2H
and 205ms in vHost-User. The performance of Nginx application on the two architectures is
very close. The main reason is that the bottleneck appears at the VM kernel protocol stack and
the Nginx application, which are configured the same for both architectures.
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Figure 5.13 The performance comparison under VM-to-VM scenarios

VM-to-VM. VM-to-VM communication is not very common on cloud tenant platforms.
But in some other scenarios like NFV and distributed computing, VM-to-VM performance
significantly affects the performance of user’s applications. We test the VM-to-VM performance
by using two VMs to form a service chain. The traffic generated by TestCenter is sent to one
VM (say VM1) through NIC, and then forwarded to another VM (say VM2) through DPDK



5.5 Evaluation 101

l2fwd program. Finally, VM2 uses l2fwd program to forward it back to the TestCenter. As
shown in Fig. 5.13(a), S2H achieves up to 10% throughput improvement with 128-byte packets
and 7% for the average improvement compared to vHost-User. Due to the overhead of context
switching, the S2H throughput in 64-byte packets is slightly worse than vHost-User. In Fig.
5.13(b), the latency of S2H increases by 22–30% under different packet sizes. The high latency
in S2H VM-to-VM test is caused by the multiple times of packet descriptor copying during
each packet’s PD procedure and the synchronization overhead among shared mbuf pool. To
alleviate the heavy overhead of S2H during the VM-to-VM communication, we can adopt a
VM-to-VM fast-path[124, 125] to bypass the vSwitch and reduce times of memory copying.

5.5.3 Scalability

Multi-tenant and multi-queue scenarios of S2H are evaluated in this section.

Multi-tenants scalability. Scalability in the multi-tenant scenario is evaluated by the network
I/O performance with the growing number of VMs on a physical server. To simulate a real
cloud platform environment, we run up to 32 VMs on a server. These VMs are all configured
with kernel drivers and set the forwarding rules using iptables[126], which can forward traffic
back to the TestCenter. Two logical cores are assigned to PD procedures in both architectures
to undertake the heavy packet copying workload.
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Figure 5.14 The scalability comparison in multi-tenant scenarios

The results are shown in Fig. 5.14. S2H achieves good scalability, especially in the case of large
packets. Both S2H and vHost-User achieve the maximum overall throughput when running 4
VMs, where the throughput of S2H is 25% higher than that of vHost-User. As shown in the
figure, the throughput per VM and the total throughput decrease with the number of running
VMs being increased to 8 or more due to the competition of computing, memory and virtual
network I/O resources. This is an inherent issue in OVS and it has nothing to do with this work.
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Comparing these figures, it can be seen that the throughput of two architectures have different
sensitivity with different packet sizes. The throughput of S2H is slightly worse than that
of vHost-User when delivering 64-byte packets. But as packet size increases, S2H has an
advantage over vHost-User. When running 8 VMs, S2H’s total throughput is about 40% higher
than that of vHost-User with 1518-byte packets and 20% higher with 512-byte packets. This is
caused by the context switching of PD threads as illustrated in Section 5.4.2.

Multi-queue scalability. Multi-queue is a crucial feature to improve the packets processing
ability inside a VM. We evaluate the scalability of multi-queue in the S2H architecture by
continuously adding the number of queues in a single VM. The PD procedure is bound to one
logical core, and the VM running kernel iptables NAT forwarding is given enough resources
(one core for each queue).
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Figure 5.15 The multi-queue performance of S2H

Fig. 5.15(a) shows the throughput of a single VM with the number of queues varying from
1 to 4. Each time one more queue is added, the VM throughput increases by an average of
0.76 times the single queue performance. The throughput increment decreases as the packet
size goes down, for about 0.8 times of the single queue performance with 64-byte packets and
only 0.67 times with 1518-byte packets. This is because the PD thread has more packets to
deliver in one batch as the number of queues increases, and that greatly reduces the impact
of context switching overhead, especially when the packet size is small. The latency of the
architecture with different numbers of queues is shown in Fig. 5.15(b). Since the multi-queue
scheme increases the processing capability of VM without introducing additional overheads
on both data path and notification path, the latency does not change as the number of queues
increases.
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5.5.4 Summary of performance evaluation

Compared with the native vHost-User, the S2H prototype system achieves up to 11% improve-
ment on data path throughput, but suffers from 2-9% latency increase. These performance
fluctuations are negligible, and have no effect on the network applications where the processing
bottleneck is inside the VM kernel protocol stack rather than VNIO. S2H also shows good
scalability in multi-tenant scenarios. But as limited by the context switching overhead, S2H is
at a little performance disadvantage compared to vHost-User in the case of delivering small
packets. So in a word, the S2H prototype system is performance-friendly, which can maintain
the high efficiency as the native vHost-User while guaranteeing memory isolation.

5.6 Conclusion

This chapter focuses on the secure isolation issues in VNIO mechanisms implemented by
vSwitch. VNIO is an enabling technology in the context of cloud computing. Existing para-
virtualized VNIO solutions often pursue the performance at the expensive cost of VM isolation.
In this work, we classified existing para-virtualized solutions into S2V and V2S memory-
sharing models and then analyzed their isolation issues. To solve this problem, we proposed a
new S2H model, which shares the host-side I/O memory to the hypervisor. In order to adopt the
S2H model in the VNIO design, we implemented an efficient shared memory access method
which exploits the DPDK memory management to address the MPMC issue. In addition, we
proposed a “batch-grained” scheduling strategy for PD threads to ensure network performance
in multi-tenant scenarios. We integrated the de-facto software-based VNIO standard, vHost-
User architecture into our prototype S2H system and evaluated its performance. The prototype
exhibited a good trade-off between the isolation and the performance. It can achieve the VM
isolation with the comparable throughput and less than 9% latency increase compared to the
techniques based on the native vHost-User. The results also demonstrated the effectiveness of
the proposed concurrent shared memory access and scheduling strategy in ensuring scalability.





Chapter 6

Conclusion

As cloud computing has become the trend and paradigm of service deployment, enterprises
and individuals tend to purchase VMs on cloud platforms to deploy their own services. The
deployment density of VMs on today’s cloud platform servers is getting higher, and tenants’
requirements for isolation are also increasing. However, the vSwitch, which provides network
forwarding and connection for VMs, has become a high-privileged user-space component with
resource sharing and intensive I/O operations in the continuous pursuit of higher performance.
While these evolutions provide tenants with efficient virtual networks, they also bring potential
isolation issues. Specifically, due to the sharing of physical resources, the competition among
tenants makes the traditional QoS methods can no longer guarantee tenant’s network perfor-
mance isolation; due to the sharing of data structures, malicious tenants can create common
failure points and form DoS attacks to interfere other tenants; finally, in terms of I/O operation
and memory security, the existing VNIO using shared memory for acceleration brings the
secure isolation risk of illegal memory access. Therefore, how to design effective mechanisms
in the vSwitch to ensure VM isolation in terms of network performance, network failure and
security is critical to the cloud platforms.

In order to realize the network performance isolation for tenants, this paper proposes a CPU-
cycle isolation based network QoS guarantee method (C2QoS). Aiming at the volatile pro-
cessing capability of CPU cores in vSwitch, C2QoS establishes a model between network
performance and CPU resource consumption through the measurement-driven method, and
then allocates I/O-dedicated CPU resources to VMs according to the model. To ensure the
isolation on CPU resources, C2QoS implements a C2TB mechanism, which performs packet
forwarding tasks for each VM according to the available CPU resources, so as to ensure VM
network bandwidth isolation. To solve the competition of CPU resources in timing, C2QoS im-



106 Conclusion

plements an HBS scheduling mechanism to realize differentiated latency through priority-based
forwarding task scheduling. The experimental results on the OVS-DPDK platform prove that,
compared with the existing packet/flow-based QoS guarantee methods, the C2QoS method
proposed in this paper can achieve strict tenant network bandwidth isolation with 2% CPU
overhead. At the same time, the additional latency caused by competition is reduced by 80%.

In order to realize the network fault isolation for tenants, this paper proposes a flow table
isolation based data plane DoS attack defense mechanism (D-TSE). For the failure caused by
the malicious tenant on the classification of the shared flow table in vSwitch, D-TSE attributes
the attack to the sharing of data structure and processing procedure through experiments. To
solve the isolation issue caused by the sharing of flow table structure, D-TSE implements
a separated three-level flow table architecture to isolate possible common failure points. In
order to break the paradox of needing to predict the belongings of packets before classification,
D-TSE designed a lightweight PRECLS module before flow tables to realize fast packet
redirection. For efficiency, D-TSE designs a batch re-aggregation mechanism to ensure the
performance of packet forwarding after PRECLS redirection. The experimental results on the
OVS-DPDK platform show that, compared with the native non-isolation system, the D-TSE
mechanism proposed in this paper achieves the tenant network failure isolation at the cost of no
more than a 5% performance drop.

In order to realize the security isolation for tenants, this paper proposes a memory access
isolation based VNIO mechanism (S2H). Aiming at the security isolation introduced by the
shared memory between VM and vSwitch in the existing VNIO solutions, S2H proposes a
secure memory sharing model by introducing hypervisor into the data path. According to the
model, a secure para-virtualized network I/O mechanism – S2H, is proposed to be compatible
with the existing cloud platform infrastructure. For efficiency, this paper uses an efficient
concurrent shared memory framework to solve the MPMC problem, and proposes a “batch-
grained” thread scheduling method to save CPU resources. By implementing the prototype
system of S2H mechanism on the QEMU/KVM and OVS-DPDK platforms, this paper fully
verified its effectiveness. Compared with the widely used vHost-User mechanism, the S2H
mechanism guarantees the secure isolation of VM memory at the cost of only a 2–9% increase
in latency, while keeping the same performance and scalability.

On the basis of the above research content, we will continue to carry out research in the
following two aspects in the future:

1). Realizing the isolation among tenants in the vSwitch accelerated by the smart NICs. When
software-based vSwitch reaches the performance ceiling, smart NIC acceleration has become
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an inevitable trend in the development of cloud networks. Under the co-design of software and
hardware, the packet processing procedure becomes more complex and unpredictable. In the
next step, we plan to use the methodology in existing research to achieve tenant isolation in
cloud network for this complex scenario.

2). Congestion control and back-pressure mechanism under cloud-scale overlay network.
Although the works in this paper have achieved network performance guarantee for tenants
through isolation mechanisms, these methods can only solve the contention and congestion of
packets in the vSwitch processing stage. However, some of the congestion situations in the
cloud network occur in the NIC receiving packets, which leads to the problem of unfair packet
loss in the NIC queue. To make matters worse, the network configuration and routing in the
overlay network are more complex, and the existing mechanisms such as DCQCN and ECN
cannot be directly applied to cloud-scale virtual networks. So our next plan is to design a set
of congestion control and backpressure mechanisms for the congestion that occurs in virtual
networks to achieve self-healing for congestion.
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