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Elaborating on work by Abouzaid and Mescher, we prove that the Morse cochain complex of a Morse function can be endowed with an ΩBAs-algebra structure by counting perturbed Morse gradient trees. We then introduce the notion of an ΩBAs-morphism between two ΩBAs-algebras and construct geometric ΩBAs-morphisms between Morse cochain complexes by counting twocolored perturbed Morse gradient trees. We use explicit realizations of the associahedra and the multiplihedra as polytopes and moduli spaces of metric trees to show that an ΩBAs-morphism between ΩBAs-algebras naturally induces an A ∞ -morphism between A ∞ -algebras. We then introduce the notion of a n-morphism between A ∞ -algebras and of a n-morphism between ΩBAsalgebras. The set of higher morphisms between two A ∞ -algebras defines in fact a simplicial set which is a Kan complex and we explicitly compute its simplicial homotopy groups. The n-morphisms are moreover encoded by new families of polytopes that we call the n-multiplihedra and which generalize the standard multiplihedra. We then construct geometric n -ΩBAs-morphisms between Morse cochain complexes by counting perturbed Morse gradient trees associated to admissible simplices of perturbation data. We show in particular that the simplicial set consisting of higher morphisms defined by a count of perturbed Morse gradient trees is a Kan complex which is contractible. This gives a higher categorical meaning to the fact that continuation morphisms in Morse theory are well-defined up to homotopy at chain level. We subsequently compare our constructions to the higher structures defined by counts of pseudo-holomorphic quilts in symplectic topology. We finally describe two research projects on which we are currently working : the definition of a homotopy symmetric monoidal category structure on the category of A ∞ -algebras with A ∞ -morphisms between them and the construction of a V ∞ -algebra structure on the symplectic chains of a Liouville manifold.

Résumé

Étant donnée une fonction de Morse sur une variété fermée orientée, nous nous inspirons de travaux d'Abouzaid et de Mescher pour munir son complexe de cochaînes de Morse d'une structure de ΩBAs-algèbre définie par un comptage d'arbres de gradient de Morse perturbé. Nous définissons également la notion de ΩBAs-morphisme entre deux ΩBAs-algèbres et construisons des ΩBAs-morphismes géométriques entre complexes de cochaînes de Morse par un comptage d'arbres de gradient perturbé 2-colorés. Nous utilisons des réalisations explicites des associaèdres et des multiplièdres en tant que polytopes et en tant qu'espaces de modules d'arbres métriques pour montrer qu'un ΩBAsmorphisme entre ΩBAs-algèbres induit naturellement un A ∞ -morphisme entre A ∞ -algèbres. Nous définissons ensuite la notion de n-morphismes entre A ∞algèbres et de n-morphismes entre ΩBAs-algèbres. L'ensemble des morphismes supérieurs entre deux A ∞ -algèbres définit alors un ensemble simplicial qui a la propriété d'être un complexe de Kan et dont nous calculons les groupes d'homotopie simpliciaux de manière explicite. Les n-morphismes sont de plus encodés par de nouvelles familles de polytopes que nous appelons les n-multiplièdres et qui généralisent les multiplièdres standard. Nous construisons dans un second temps des n -ΩBAs-morphismes géométriques entre complexes de cochaînes de Morse en comptant des arbres de gradient perturbé associés à des simplexes de données de perturbation admissibles. Nous prouvons en particulier que l'ensemble simplicial des morphismes supérieurs définis par un comptage d'arbres de gradient perturbé est un complexe de Kan qui est contractile. Cela donne une formulation rigoureuse en algèbre supérieure de l'unicité à homotopie près des morphismes de continuation en théorie de Morse. Nous comparons ensuite nos constructions aux structures supérieures définies en topologie symplectique par des comptages de courbes cousues pseudo-holomorphes. Nous décrivons finalement nos avancées sur deux projets de recherche : la définition d'une structure de catégorie symétrique monoïdale à homotopie près sur la catégorie des A ∞ -algèbres et des A ∞ -morphismes et la construction d'une structure de V ∞ -algèbre sur les chaînes symplectiques d'une variété de Liouville.
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Introduction

Chapitre 1

Présentation du contexte

Théorie des opérades

Le paradigme de la théorie des opérades consiste à concevoir l'ensemble des opérations encodant une structure algébrique, ainsi que les relations qu'elles satisfont entre elles, comme une entité algébrique à part entière que l'on peut étudier de manière systématique : cette entité algébrique est appelée opérade. Dit autrement, une opérade P encode une catégorie de P -algèbres. Les algèbres associatives sont ainsi encodées par l'opérade As, engendrée par une unique opération qui satisfait la relation d'associativité = .

Le point de vue opéradique permet donc d'étudier différentes propriétés de la catégorie des Palgèbres en manipulant directement l'opérade P . Initialement développée au cours des années 60 pour l'étude de différents problèmes de topologie algébrique, la théorie des opérades a connu des développements impressionnants à partir des années 90 et irrigue depuis de nombreux domaines des mathématiques modernes : déformation par quantification, topologie des cordes, géométrie algébrique, théorie des noeuds, ainsi que la théorie de Morse et la topologie symplectique sur lesquelles nous revenons en détails plus bas. Nous renvoyons à [MSS02] pour une introduction historique détaillée du domaine.

La théorie de la dualité de Koszul des opérades et son application à l'étude de la théorie de l'homotopie des P -algèbres sont deux exemples frappants de la puissance du paradigme opéradique. Étant donnée une dg-opérade P (où dg est l'abréviation que nous utiliserons pour différentielle graduée dans la suite de ce manuscrit) on souhaiterait en effet formuler une notion de P -algèbre à homotopie près qui serait invariante sous la relation d'équivalence d'homotopie des dg-modules sous-jacents. La théorie de l'homotopie des dg-opérades montre que, pour une résolution cofibrante Q → P , la structure de Q-algèbre fournit bien une telle notion de P -algèbre à homotopie près. On dispose en particulier dans ce cas d'un théorème de transfert homotopique qui s'exprime comme suit. Considérons un diagramme de rétracte par déformation

(A, ∂ A ) (H, ∂ H ) , h p i où id A -ip = [∂, h]
et A est une P -algèbre. Alors, la structure de P -algèbre sur A se transfère naturellement en une structure de Q-algèbre sur H. Ce théorème est appelé le théorème de transfert homotopique. Nous renvoyons à [MSS02] pour une preuve générale de ce théorème ainsi qu'à l'article [Mar06] qui démontre le théorème de transfert homotopique dans le cas particulier de la résolution A ∞ → As que nous rencontrerons plus bas.

Il s'avère que la théorie de la dualité de Koszul des opérades permet de construire de telles résolutions. De manière sommaire, à tout opérade dite quadratique (c'est-à-dire correspondant à la donnée d'une collection d'opérations génératrices satisfaisant des relations quadratiques entre elles), on peut associer une nouvelle opérade P ∞ := ΩP ¡ . Ici P ¡ est une coopérade construite à partir de la donnée quadratique de P et Ω désigne la construction cobar opéradique, transformant une coopérade Q en une opérade quasi-libre ΩQ. Si l'opérade P a en plus la propriété d'être de Koszul, alors P ∞ → P est une résolution cofibrante de P . C'est par exemple le cas des opérades As, Com et Lie encodant respectivement les dg-algèbres associatives, commutatives et de Lie. Nous renvoyons à [Val20] pour plus de détails sur la théorie de l'homotopie des algèbres encodées par une opérade de Koszul. Mentionnons également que tout opérade P admet une résolution cofibrante universelle ΩBP → P , où B est la construction bar opéradique transformant une opérade en coopérade quasi-libre. La notion de ΩBP -algèbre fournit alors en particulier une autre notion de P -algèbre à homotopie près.

On peut spécialiser la discussion ci-dessus à l'étude de la théorie de l'homotopie des dgalgèbres. Étant donnée une résolution cofibrante Q de l'opérade As encodant les dg-algèbres (associatives), on appellera Q-algèbre une algèbre fortement associative à homotopie près. La dualité de Koszul donne une première résolution cofibrante A ∞ → As. Une structure de A ∞algèbre sur un dg-module A correspond à la donnée d'une collection d'opérations m n : A ⊗ → A de degré 2n pour n ⩾ 2, satisfaisant les équations

[∂ A , m n ] = i 1 +i 2 +i 3 =n 2⩽i 2 ⩽n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ).
En représentant m n comme une corolle d'arité n 12 n , ces équations se représentent comme suit

[∂ A , 1 2 n ] = h+k=n+1 2⩽h⩽n-1 1⩽i⩽k ± 1 k i 1 h .
Autrement dit, A ∞ est l'opérade quasi-libre engendrée en arité n par une corolle m n d'arité n, et dont la différentielle est donnée par la somme des arbres obtenus par l'éclatement de l'unique sommet de m n . L'équation d'arité 2 implique que le produit m 2 est compatible avec la différentielle ∂ A , tandis que l'équation d'arité 3 exhibe m 3 comme l'homotopie encodant le défaut d'associativité de m 2 : l'opération m 2 induit en particulier une structure d'algèbre graduée (associative) sur la cohomologie H * (A). Les opérations m n d'arité supérieure peuvent être interprétées comme la famille cohérente d'homotopies supérieures encodant le défaut d'associativité de m 2 .

L'opérade A ∞ est en fait encodée par une famille de polytopes, appelés associaèdres. Ces polytopes définis pour la première fois dans l'article fondateur de Stasheff [Sta63] sur les H-espaces, sont depuis apparus dans de nombreux champs de recherche des mathématiques modernes : en topologie symplectique (cf. plus bas), en combinatoire ou dans l'étude des variétés toriques par exemple. Mentionnons également ici que la résolution cofibrante universelle de As, l'opérade ΩBAs, fournit un modèle alternatif d'algèbre associative à homotopie près. L'opérade ΩBAs peut alors être décrite comme l'opérade quasi-libre engendrée par tous les types d'arbres enrubannés t,

ΩBAs := F( , , , , • • • , SRT n , • • • ) ,
où SRT n désigne l'ensemble des types d'arbres enrubannés t. Le bord d'une opération m t est donné par la somme des arbres obtenus en contractant exactement une arête de l'arbre t ou en brisant exactement une de ses arêtes.

Topologie symplectique

Une variété symplectique correspond à la donnée d'une variété lisse M munie d'une 2-forme fermée non-dégénérée ω. Un des objectifs de la topologie symplectique est l'étude des propriétés géométriques des variétés symplectiques (M, ω), ainsi que de la manière dont elles sont préservées par des transformations lisses préservant la structure symplectique. Le paradigme de la topologie algébrique, qui associe des invariants algébriques aux espaces topologiques afin de les distinguer et de comprendre certaines de leurs propriétés, peut être appliqué à l'étude des variétés symplectiques. L'implémentation des outils de la topologie algébrique en topologie symplectique a été propulsée par les articles fondateurs de Gromov sur les espaces de modules de courbes pseudo-holomorphes [Gro85] et de Floer sur l'homologie de Floer lagrangienne [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF]. Le travail de Gromov implique que le comptage de points d'espaces de modules de courbes pseudo-holomorphes de dimension 0 définis dans la variété symplectique (M, ω) permet de définir des invariants algébriques rendant compte de la géométrie de (M, ω). Floer associe quant à lui à deux sous-variétés lagrangiennes L 0 , L 1 ⊂ M s'intersectant transversalement un complexe de chaînes définissant l'homologie de Floer lagrangienne F H * (L 0 , L 1 ). Ces groupes d'homologie permettent de comprendre la théorie de l'intersection des lagrangiennes L 0 et L 1 .

La construction de la catégorie de Fukaya Fuk(M, ω) d'une variété symplectique (M, ω) poursuit cette lignée d'idées. C'est une A ∞ -catégorie, c'est-à-dire une catégorie dont la composition a été relaxée à homotopie près au moyen d'une suite d'homotopies encodées par l'opérade A ∞ , contenant une grande quantité d'informations sur la théorie de l'intersection des sous-variétés lagrangiennes de (M, ω), dont les groupes d'homologie F H * (L 0 , L 1 ). Ses objets sont les sousvariétés lagrangiennes de M et ses compositions supérieures m n sont définies par des comptages de disques à n+1 points marqués sur leur bord et satisfaisant une condition au bord lagrangienne (voir le schéma 1). Nous renvoyons aux excellents articles de Auroux [Aur14] et Smith [Smi15] pour une introduction plus détaillée sur les catégories de Fukaya, et mentionnons également les ouvrages fondateurs de Seidel [Sei08] et Fukaya, Oh, Ota et Ono [START_REF] Fukaya | Lagrangian intersection Floer theory[END_REF] et [START_REF] Fukaya | Lagrangian intersection Floer theory[END_REF].

x n x n-1 x 1 x 2 y L n-1 L 1 L 0 L n M Figure 1
-Un exemple de disque pseudo-holomorphe à condition au bord sur les lagrangiennes L 0 , . . . , L n avec n + 1 points marqués qui s'envoient sur les points y, x 1 , . . . , x n dans M Il y a en fait un lien étroit entre la théorie des opérades et les structures algébriques définies en topologie symplectique. Prenons en pour exemple la structure de A ∞ -catégorie sur la catégorie de Fukaya. Ses opérations d'arité n sont définies en réalisant en topologie symplectique l'espace de modules M n,1 , qui est l'espace de modules de disques à n + 1 points marqués sur leur bord, dont n points sont vus comme entrants et 1 est vu comme sortant. Cet espace de modules peut alors être compactifié et muni d'une topologie de sorte à ce que sa compactification soit isomorphe à l'associaèdre, comme le démontre par exemple Seidel dans [Sei08]. Autrement dit, les espaces de modules de disques compactifiés M n,1 réalisent l'opérade A ∞ . Nous résumons cela dans le diagramme ci-dessous. La grande diversité de structures algébriques pouvant être observées sur des complexes de Floer en topologie symplectique s'explique également par le lien étroit entre la topologie symplectique et la topologie des cordes, qui a joué un rôle prépondérant dans le développement de la théorie des opérades. Viterbo montre ainsi par exemple dans [START_REF] Viterbo | Functors and computations in Floer homology with applications Part II[END_REF] que la cohomologie symplectique du cotangent d'une variété M à coefficients dans Z/2Z est isomorphe à l'homologie de son espace de lacets libres, SH - * (T * M ) ≃ H * (LM ). Ses travaux ont ensuite été complétés par ceux de Salamon et Weber [START_REF] Salamon | Floer homology and the heat flow[END_REF], Abbondandolo et Schwarz [START_REF] Abbondandolo | On the Floer homology of cotangent bundles[END_REF], Abouzaid [START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF] et Kragh [START_REF] Kragh | The Viterbo transfer as a map of spectra[END_REF]. Abouzaid construit dans [START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF] une structure de BV-algèbre sur la cohomologie symplectique SH - * (T * M ) telle que l'isomorphisme précédent soit un isomorphisme de BV-algèbre en munissant H * (LM ) de sa structure de BV-algèbre construite dans [START_REF] Chas | String topology[END_REF]. Cieliebak, Hingston et Oancea ont également démontré des résultats de dualité de Poincaré pour les espaces de lacets en utilisant l'homologie de Rabinowitz Floer dans [START_REF] Cieliebak | Poincaré duality for loop spaces[END_REF].

Opérations en topologie symplectique (par exemple sur la catégorie de Fukaya) Espaces de modules de courbes pseudo-holomorphes (par exemple disques à condition au bord lagrangienne) Espaces de modules de courbes compactifiés (par exemple M n,1 )

Entité opéradique (par exemple l'opérade A ∞ )

Encode

Comptage des points d'espaces de modules de dimension 0 Théorie de Floer Foncteur C * cell Citons enfin le travail de Bottman, qui réalise parfaitement la philosophie du diagramme cihaut. Il cherche actuellement à trouver un modèle algébrique pour la notion de (A ∞ , 2)-catégorie, qui serait encodée par les espaces de modules de witch curves. Si l'on comprend une A ∞ -catégorie comme une catégorie dont la composition a été relaxée à homotopie près, une (A ∞ , 2)-catégorie représenterait alors une 2-catégorie dont les opérations auraient été relaxées à homotopie près. Son objectif ultime est de montrer qu'il existe une (A ∞ , 2)-catégorie Symp dont les objets seraient des variétés symplectiques fermées et dont la A ∞ -catégorie de morphismes entre deux variétés symplectiques M et N serait la catégorie de Fukaya Symp(M, N ) := Fuk(M -× N ). Nous renvoyons à deux de ses articles récents [Bot19b] et [BC21] ainsi qu'à la section 3 de la partie 3 de ce manuscrit pour plus de détails à ce sujet.

Théorie de Morse

La théorie de Morse correspond à l'étude des variétés munies d'une fonction de Morse, c'està-dire une fonction dont les points critiques sont non-dégénérés. Considérons une variété M , munie d'une fonction de Morse f : M → R ainsi que d'une métrique riemannienne g. Pour une métrique générique g on peut alors associer à (M, f ) un dg-module, appelé complexe de Morse. Celui-ci est librement engendré en degré k par l'ensemble des points critiques d'indice k de la fonction f

C k (f ) := x∈Crit(f ) |x|=k Z • x ,
où l'indice de x est défini comme |x| := dim W S (x) et W S (x) est la variété stable de x pour le champ de vecteurs -∇ g f . Notons T (y; x) := W S (y) ∩ W U (x)/R

THÉORIE DE MORSE

l'espace de modules des trajectoires de gradient négatif de f reliant un point critique x à un point critique y, avec x ̸ = y. Sous l'hypothèse générique dite de Morse-Smale sur la métrique g, cet espace de modules est une variété de dimension dim (T (y; x)) = |y| -|x| -1.

La différentielle de Morse ∂ M orse est alors définie par un comptage d'éléments d'espaces de modules de trajectoires de gradient négatif de dimension 0

∂ M orse (x) := |y|=|x|+1 #T (y; x) • y .
En notant C * (f ) le complexe de cochaînes ainsi défini, on appelle cohomologie de Morse sa cohomologie. Cette cohomologie est en fait exactement la cohomologie singulière de la variété M sous-jacente H * sing (M ) ≃ H * (f ), comme le montre par exemple Salamon dans [START_REF] Salamon | Morse theory, the Conley index and Floer homology[END_REF]. La donnée d'une fonction de Morse sur la variété M contient en fait bien plus d'informations que l'homologie singulière de la variété M . L'analyse des ensembles de niveaux de la fonction f montre qu'elle permet de reconstruire M par une suite de recollements d'anse associés à chaque point critique de f . Nous renvoyons au livre [START_REF] Milnor | Morse theory[END_REF] de Milnor pour plus de détails à ce sujet.

La topologie symplectique peut en fait être interprétée comme une quantification de la topologie différentielle, comme l'expliquent Fukaya et Oh dans [START_REF] Fukaya | Zero-loop open strings in the cotangent bundle and Morse homotopy[END_REF] : la théorie des courbes pseudo-holomorphes correspond alors à la quantification de la théorie de Morse. L'homologie de Floer lagrangienne peut en effet être interprétée comme une homologie de Morse en dimension infinie où la variété M est remplacée par l'espace des chemins P(L 0 , L 1 ) reliant L 0 à L 1 et la fonction de Morse f : M → R par une fonctionnelle sur P(L 0 , L 1 ) que nous ne détaillons pas. Ces points critiques sont alors en bijection avec les points d'intersection de L 0 et L 1 et sa différentielle est définie par un comptage de bandes pseudo-holomorphes reliant deux points d'intersection x et y dans L 0 ∩ L 1 (voir [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF] pour plus de détails).

Dans cette veine, Fukaya et Oh utilisent la théorie de Morse pour associer à une variété M une A ∞ -catégorie Morse(M ) dans [Fuk97], [START_REF] Fukaya | Morse homotopy, A∞-category, and Floer homologies[END_REF] et [START_REF] Fukaya | Zero-loop open strings in the cotangent bundle and Morse homotopy[END_REF]. Les objets de cette catégorie sont des fonctions f i : M → R et les espaces de morphismes entre deux fonctions f i et f j (telles que f if j soit de Morse) sont les cochaînes de Morse C * (f if j ). Les multiplications supérieures de Morse(M ) sont alors définies en comptant des arbres de gradient dont les arêtes sont des trajectoires de gradient négatif des fonctions de Morse f if j . Nous représentons sur le schéma 2 l'espace de modules définissant la composition m 2 . On parle en fait d'une A ∞catégorie topologique, car les objets sont les points d'un espace topologique X (l'espace des fonctions f : M → R) et les espaces de morphismes et leurs compositions supérieures sont définis uniquement pour des n-uplets d'objets dans un sous-ensemble de Baire de X (ce qui signifie ici qu'ils sont définis en prenant des conditions génériques sur les fonctions f i ).

À toute variété M correspond maintenant une variété symplectique, son cotangent T * M , et à toute fonction f : M → R la lagrangienne Λ f ⊂ T * M définie comme le graphe de la différentielle de la fonction f , Λ f := {(p, df p ), p ∈ M }. Posons de plus Λ ε f := {(p, εdf p ), p ∈ M }. Fukaya et Oh montrent par un argument de limite adiabatique dans [START_REF] Fukaya | Zero-loop open strings in the cotangent bundle and Morse homotopy[END_REF] que, pour ε assez petit, les espaces de modules définissant les compositions supérieures de la catégorie de Fukaya Fuk(M, ε) formée par les lagrangiennes de la forme Λ ε f coïncident avec les espaces de modules définissant les compositions supérieures de la A ∞ -catégorie Morse(M ). En particulier, Morse(M ) ≃ Fuk # (M, ε). Mentionnons également le travail plus récent de Ekholm [START_REF] Ekholm | Morse flow trees and Legendrian contact homology in 1-jet spaces[END_REF] qui démontre l'équivalence entre courbes pseudo-holomorphes et arbres de gradient pour une legendrienne de la variété de contact des 1-jets T * M × R.

Notons de plus que l'opération d'arité 2 de Morse(M ) représentée sur le schéma 2, réalise exactement le produit cup sur la cohomologie singulière. Nous renvoyons également vers l'article de Betz et Cohen [START_REF] Ralph | Morse theory, graphs, and string topology[END_REF], qui associe en général à tout graphe planaire Γ un élément

q(Γ, M ) ∈ n 1 i=1 H * (M ) ⊗ n 2 j=1 H * (M )
défini en réalisant le graphe Γ en théorie de Morse. Ils recouvrent de la sorte plusieurs opérations et invariants de topologie algébrique classique, dont la classe d'Euler ou la classe fondamentale de M par exemple. 

* (f 0 -f 1 ) ⊗ C * (f 1 -f 2 ) → C * (f 0 -f 2 ).

Point de départ des travaux de thèse

Fukaya et Oh affirment dans [START_REF] Fukaya | Zero-loop open strings in the cotangent bundle and Morse homotopy[END_REF] qu'il faut en fait penser à la A ∞ -catégorie Morse(M ) comme à une A ∞ -algèbre. Cette interprétation est réalisée plus tard par Abouzaid dans [Abo11]. Étant donnée une fonction de Morse f : M → R, il définit une structure de A ∞ -algèbre sur les cochaînes de Morse C * (f ) en comptant des arbres de gradient perturbé. De manière sommaire, étant donné que l'on travaille désormais avec une unique fonction de Morse, on ne peut plus considérer des arbres de gradient dont toutes les arêtes correspondent au gradient négatif -∇f . En effet, les seuls espaces de modules non vides seraient ceux dont les arêtes entrantes sont toutes issues du même point critique, étant donné que deux trajectoires de gradient issues de deux points critiques différents ne peuvent s'intersecter. Ces espaces de modules non vides ne satisferaient en fait alors même pas d'hypothèses de transversalité. Abouzaid règle cette question en choisissant de perturber l'équation satisfaite par la trajectoire de gradient au voisinage de chaque sommet de l'arbre. Nous représentons cela sur le schéma 3. Son travail a ensuite été repris par Mescher

x 1 -∇f -∇f x 3 -∇f y -∇f x 2 -∇f
Perturbation du champ de gradient négatif au voisinage de chaque sommet de l'arbre

x 1 -∇f -∇f x 3 -∇f y -∇f x 2 -∇f -∇f + X -∇f + X Figure 3
dans [Mes18]. Mentionnons également l'article très récent [START_REF] Abbaspour | Morse complexes and multiplicative structures[END_REF] de Abbaspour et Laudenbach qui construisent la structure de A ∞ -algèbre sur C * (f ) par une méthode différente.

La construction d'Abouzaid peut en fait être expliquée à la lumière du théorème de transfert homotopique rappelé au début de cette introduction. La cohomologie de Morse est non seulement isomorphe à la cohomologie singulière de la variété M , mais les cochaînes de Morse C * (f ) forment en fait un rétracte par déformation des cochaînes singulières comme le montre Hutchings dans [Hut08] (C * sing (M ), ∂ sing ) (C * (f ), ∂ M orse ) .

h p i fine, est déduite de la décomposition de T n comme union des espaces de modules d'arbres métriques T n (t) modelés sur un arbre enrubanné t. Voir le schéma 1 pour les deux décompositions de K 4 . L'image de cette décomposition fine sous le foncteur des chaînes cellulaires réalise alors l'opérade ΩBAs. C'est l'opérade quasi-libre engendrée en arité n par les arbres enrubannés t d'arité n, là où A ∞ est l'opérade quasi-libre engendrée en arité n par une unique corolle d'arité n. Cette opérade, qui peut être également construite comme image de l'opérade As sous les foncteurs opéradiques bar B et cobar Ω, donne un modèle alternatif pour la notion d'algèbre fortement associative à homotopie près. Ces espaces de modules admettent également une compactification naturelle en autorisant les longueurs des arêtes internes à tendre vers l'infini, en tenant cette fois compte des relations sur les longueurs imposées par les couleurs de l'arbre 2-coloré sous-jacent. Sa compactification CT n est alors isomorphe au multiplièdre J n . Il peut à son tour être muni de deux décompositions cellulaires. La première est à nouveau appelée grossière et est déduite de l'isomorphisme avec le multiplièdre J n . La deuxième, appelée fine, est celle découlant de la décomposition de CT n comme union des espaces de modules d'arbres métriques CT n (t c ) modelés sur un arbre 2-coloré enrubanné t c . Nous renvoyons au schéma 2 pour une illustration des deux décompositions de J 3 . L'image de cette décomposition fine sous le foncteur des chaînes cellulaires définit cette fois un nouveau bimodule opéradique : le bimodule opéradique ΩBAs -Morph qui encode la notion nouvelle d'un ΩBAs-morphisme entre ΩBAs-algèbres.

Définition 16. Un ΩBAs-morphisme correspond à la donnée d'une opération pour chaque type d'arbre 2-coloré enrubanné, et dont la différentielle est modelée sur le bord de codimension 1 de l'espace de module CT n (t c ) dans CT n . Nous notons ΩBAs -Morph le bimodule opéradique encodant cette notion. 1.1.5. Signes et étude détaillée des espaces de modules et des polytopes. Dans les sections 4 et 5, nous nous attelons à une étude détaillée des signes apparaissant dans les équations des A ∞ et ΩBAs-algèbres et des A ∞ et ΩBAs-morphismes. Nous donnons en particulier des réalisations explicites des associaèdres K n et des multiplièdres J n , reprises de [MTTV21] et [LAM], et montrons que les conventions de signes pour les A ∞ -algèbres et A ∞ -morphismes que nous utilisons dans cet article sont dictées par la structure du bord de ces polytopes. Nous rappelons également la définition de l'opérade ΩBAs utilisée dans [MS06], et recourons au Figure 2 -Le multiplièdre J 3 muni de sa décomposition A ∞ à gauche et de sa décomposition ΩBAs à droite langage de cet article pour définir rigoureusement le bimodule opéradique ΩBAs -Morph. La majeure partie de la section 5 est consacrée à l'étude détaillée des signes apparaissant dans le bord des espaces de modules compactifiés CT n . Nous utilisons enfin les réalisations explicites de K n et de J n pour donner une preuve géométrique de la proposition suivante.

Propositions 2 et 3. Il existe un morphisme d'opérades A ∞ → ΩBAs et un morphisme de bimodules opéradiques A ∞ -Morph → ΩBAs -Morph. En particulier, une structure de ΩBAs-algèbre induit naturellement une structure de A ∞ -algèbre et un ΩBAs-morphisme entre ΩBAs-algèbres induit naturellement un A ∞ -morphisme entre A ∞ -algèbres.

1.2. Géométrie. La partie 2 est consacrée à la réalisation en théorie de Morse des espaces de modules d'arbres métriques T n et CT n comme espaces de modules d'arbres de gradient perturbé. Nous travaillons dans cette partie avec une fonction de Morse f définie sur une variété riemannienne fermée et orientée M et satisfaisant la condition de Morse-Smale.

1.2.1. La structure de ΩBAs-algèbre sur les cochaînes de Morse. Nous rappelons dans la section 1 la notion d'arbre de gradient (perturbé) associé à une donnée de perturbation sur un arbre métrique enrubanné telle que définie dans [Abo11]. La langage que nous utilisons pour décrire ces données de perturbation est tiré de [Mes18]. Étant donné un type d'arbre enrubanné t d'arité n, ainsi qu'une collection de points critiques x 1 , . . . , x n , y de la fonction f , nous définissons l'espace de modules T Xt t (y; x 1 , . . . , x n ) des arbres de gradient modelés sur t, associés à un choix de données de perturbation X t sur l'espace T n (t), et reliant les points critiques x 1 , . . . , x n au point critique y. Sous une hypothèse satisfaite génériquement sur les données de perturbation X t , ces espaces de modules sont des variétés orientables dont la dimension dépend de l'indice des points critiques et de l'arbre t. Sous de nouvelles hypothèses dites admissibles sur les données de perturbation X, les espaces de modules d'arbres de gradient de dimension 1 admettent alors une compactification en une variété à bord de dimension 1 et dont le bord est modelé sur le bord des espaces de modules T n (t). Nous prouvons alors les deux théorèmes suivants.

Théorème 7. Il existe un choix de données de perturbation admissible sur la collection des espaces de modules T n .

Théorème 9. Soit X un choix de données de perturbation admissible sur les espaces de modules T n . On définit pour tout arbre enrubanné t d'arité n l'opération m t comme

m t : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (f ) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |-e(t)
#T X t (y;

x 1 , • • • , x n ) • y .
Cette collection d'opérations définit alors une structure de ΩBAs-algèbre sur les cochaînes de Morse C * (f ).

Cette structure de ΩBAs-algèbre sur C * (f ) est plus canonique que la structure de A ∞ -algèbre de [Abo11], car elle résulte du choix de décomposition cellulaire des espaces de modules T n qui s'impose naturellement lorsqu'on souhaite les réaliser en théorie de Morse. Notons également que l'on retrouve la structure de A ∞ -algèbre sur C * (f ) an appliquant la Proposition 2.

1.2.2. ΩBAs-morphismes entre cochaînes de Morse. Soient f et g deux fonctions de Morse sur M . Choisissons deux données de perturbation admissibles X f et X g définissant une structure de ΩBAs-algèbre respectivement sur C * (f ) et C * (g). Nous construisons dans la section 2 un ΩBAs-morphisme de C * (f ) vers C * (g), en réalisant cette fois les espaces de modules CT n comme espaces de modules d'arbres de gradient : pour un arbre 2-coloré t c , les arêtes situées au-dessus de la jauge correspondent alors à des trajectoires de gradient perturbé de f , et celles en-dessous de la jauge à des trajectoires de gradient perturbé de g. Pour un choix de données de perturbation Y tc sur CT n (t c ) on note ces espaces de modules CT Y tc (y; x 1 , • • • , x n ) où x 1 , . . . , x n ∈ Crit(f ) et y ∈ Crit(g). On dispose alors des mêmes résultats que précédemment. Sous de nouvelles hypothèses d'admissibilité sur les données de perturbation Y sur les espaces de modules CT n , les espaces de modules d'arbres de gradient 2-colorés de dimension 1 admettent alors une compactification en une variété à bord de dimension 1 et dont le bord est modelé sur le bord des espaces de modules CT n (t c ). On portera toutefois attention au fait que les choix de données de perturbation sur CT n doivent en plus être compatibles avec X f et X g .

Théorème 10. Il existe un choix de donnée de perturbations admissible sur les espaces de modules CT n qui est compatible avec les données de perturbation X f et X g .

Théorème 12. Soit Y un tel choix de données de perturbation admissible sur CT n . On définit pour tout arbre enrubanné t c d'arité n l'opération µ tc comme

µ Y tc : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |+|tc| #CT Y tc (y; x 1 , • • • , x n ) • y .
Ces opérations définissent alors un ΩBAs-morphisme µ Y : (C * (f ), m X f t ) → (C * (g), m X g t ).

En munissant C * (f ) et C * (g) de leurs structures de A ∞ -algèbre induites, le Théorème 12 couplé à la Proposition 3 fournit en particulier un A ∞ -morphisme de C * (f ) vers C * (g).

1.2.3. Transversalité, orientations et signes. Les sections 3 et 4 sont consacrées à la preuve des propositions et théorèmes des sections 1 et 2. Dans la section 3, on montre l'existence de données de perturbation admissibles en utilisant un argument de Taubes tiré de [MS12]. On traite la question des signes apparaissant dans les équations ΩBAs des Théorèmes 9 et 12 dans la section 4. Cela implique de comprendre les orientations définies sur les espaces de modules d'arbres de gradient utilisés dans la définition des opérations ΩBAs. Nous utilisons à cet effet le langage idoine des suites exactes courtes signées de fibrés vectoriels. Nous prouvons en particulier un lemme technique permettant de construire des applications de recollement pour ces espaces de modules. Nous montrons de plus que les opérations définies dans les Théorèmes 9 et 12 satisfont bien les équations ΩBAs, au détail près qu'il est nécessaire de modifier par un signe la différentielle apparaissant dans [∂ M orse , m t ] et [∂ M orse , µ tc ].

1.3. Perspectives. Nous montrons dans la section 1 de la partie 3 la proposition suivante : Proposition 20. Le ΩBAs-morphisme µ Y : (C * (f ), m X f t ) -→ (C * (g), m X g t ) construit dans le Théorème 12 est un quasi-isomorphisme.

La section 2 est consacrée à une suite de remarques sur l'équivalence des points de vue A ∞ et ΩBAs comme modèles pour les algèbres fortement associatives à homotopie près et leurs morphismes préservant le produit à homotopie près. La section 3 explique de manière concise comment les structures A ∞ apparaissent plus généralement en topologie symplectique. Nous donnons en fait de plus amples détails à ce sujet dans le chapitre 1 de la partie 3 de ce manuscrit. On détaille finalement dans la section 4 deux problématiques majeures découlant naturellement des constructions effectuées dans cet article.

Higher algebra of A ∞ and ΩBAs-algebras in Morse theory II

Ce deuxième article est également disponible sur arXiv (2102.08996, 79 pages) et soumis pour publication. La numérotation des pages que nous utiliserons dans sa reproduction dans la partie 2 est celle de l'article original. La première problématique formulée à la fin de [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF] constitue son point de départ et se formule de la manière suivante. Soient f, g deux fonctions de Morse, X f et X g deux choix de données de perturbation sur T n et Y et Y ′ deux choix de données de perturbation sur CT n compatibles à X f et X g . Le morphisme µ Y est-il toujours homotope au morphisme µ Y ′ au sens des A ∞ -morphismes ou des ΩBAs-morphismes ? Autrement dit, est-il toujours possible de remplir le diagramme suivant (au sens A ∞ ou ΩBAs)

C * (f ) C * (g) µ Y µ Y ′ ?
Comment se formule alors rigoureusement, en algèbre supérieure, l'unicité à homotopie près de tels morphismes géométriques ?

2.1. Morphismes supérieurs entre A ∞ et ΩBAs-algèbres.

2.1.1. Définition des morphismes supérieurs entre A ∞ -algèbres. Nous débutons la partie 1 en définissant dans la section 1 une notion satisfaisante de A ∞ -homotopie entre A ∞ -morphismes, et plus généralement de morphismes supérieurs (ou homotopies supérieures) entre A ∞ -algèbres. Nous commençons à cet effet par rappeler la définition d'une A ∞ -homotopie donnée dans [LH02] et ses différentes formulations équivalentes en terme de construction bar et d'opérations. L'argument crucial est que l'on peut voir la catégorie des A ∞ -algèbres avec les A ∞ -morphismes comme une sous-catégorie pleine de la catégorie des dg-cogèbres A ∞alg ⊂ dg -Cog. Nous définissons ensuite la dg-cogèbre cosimpliciale ∆ ∆ ∆ n , munie du coproduit de Alexander-Whitney. Nous rappelons également le langage des partitions chevauchantes d'un simplexe de [MS03], qui apparaît naturellement dans la combinatoire du coproduit de Alexander-Whitney. Définition 6. Soient A et B deux A ∞ -algèbres. Un n-morphisme de A vers B est défini comme un morphisme de dg-cogèbres

F : ∆ ∆ ∆ n ⊗ T (sA) -→ T (sB) .
En utilisant la propriété universelle de la construction bar, cette définition se reformule bien en termes opéradiques : Les A ∞ -morphismes correspondent alors bien aux 0-morphismes et les A ∞ -homotopies correspondent bien aux 1-morphismes. Nous formulons une troisième définition équivalente de la notion de n-morphisme dans la Proposition 2 :

Proposition 2. Soient A et B deux A ∞ -algèbres. Un n-morphisme de A vers B se définit de manière équivalente comme un A ∞ -morphisme A → ∆ ∆ ∆ n ⊗ B.
Dans cette proposition, ∆ ∆ ∆ n est la dg-algèbre duale de ∆ ∆ ∆ n et ∆ ∆ ∆ n ⊗ B est muni de la structure de A ∞ -algèbre déduite des structures de dg-algèbre sur ∆ ∆ ∆ n et de A ∞ -algèbre sur B.

2.1.2.

Les n-multiplièdres. L'objectif de la section 2 est de construire une famille de polytopes n -J m appelés n-multiplièdres et encodant la notion de n-morphisme entre A ∞ -algèbres, de la même manière que les associaèdres encodent la structure de A ∞ -algèbre et les multiplièdres encodent la notion de A ∞ -morphisme. Nous commençons à cet effet par rappeler le relèvement du coproduit de Alexander-Whitney en une application polytopale AW : ∆ n → ∆ n × ∆ n défini dans [MTTV21]. Nous montrons alors dans la Proposition 6 que les applications AW

•s := (id ×(s-1) × AW) • • • • • (id × AW)
• AW induisent un raffinement de la décomposition polytopale de ∆ n , dont les faces de dimension maximale sont en correspondance bijective avec les partitions chevauchantes de ∆ n . Nous définissons enfin des applications polytopales AW a a a généralisant les itérées AW •s et induisant une décomposition polytopale de ∆ n identique à celle décrite pour les applications AW •s . Nous pouvons alors définir les n-multiplièdres n -J m comme suit : Définition 12. Le n-multiplièdre n -J m est défini comme le polytope ∆ n × J m muni d'une décomposition polytopale plus fine construite à l'aide des subdivisions de ∆ n induites par les applications AW a a a . Il modèle la combinatoire des équations A ∞ pour les n-morphismes.

Le 1-multiplièdre 1 -J 3 est représenté sur le schéma 3. 2.1.3. Morphismes supérieurs entre ΩBAs-algèbres. Dans la section 3, nous définissons de manière similaire la notion d'un n-morphisme entre ΩBAs-algèbres.

Définition 13. Un n-morphisme entre ΩBAs-algèbres est encodé par le bimodule opéradique quasi-libre engendré par les paires (face I ⊂ ∆ n , arbre 2-coloré enrubanné), n -ΩBAs -Morph := F ΩBAs,ΩBAs ( I , I , Ces morphismes supérieurs entre ΩBAs-algèbres sont encodés par les n-multiplièdres n -J m munis d'une décomposition polytopale plus fine : le facteur J m de ∆ n × J m est cette fois muni de sa décomposition ΩBAs et non plus de sa décomposition A ∞ . Les n-multiplièdres encodent la notion de n-morphismes entre A ∞ -algèbres lorsqu'ils sont munis de leur décomposition A ∞ , et la notion de n-morphismes entre ΩBAs-algèbres lorsqu'ils sont munis de leur décomposition ΩBAs. On en déduit donc la proposition suivante.

I , I , • • • , (I, SCRT n ), • • • ; I ⊂ ∆ n ) ,
Proposition 9. Un n-morphisme entre ΩBAs-algèbres induit naturellement un n-morphisme entre A ∞ -algèbres.

2.1.4. Signes pour les morphismes supérieurs. Nous détaillons dans la section 4 les conventions de signe des équations A ∞ pour les morphismes supérieurs. Ces conventions de signe sont en particulier dictées par le bord de réalisations explicites des n-multiplièdres. Nous définissons finalement la notion de n-morphismes entre ΩBAs-algèbres dans de plus grands détails, en prêtant de nouveau une attention particulière aux calculs de signes.

Les ensembles simpliciaux HOM

A∞-Alg (A, B) • . La collection des dg-cogèbres ∆ ∆ ∆ n formant une dg-cogèbre cosimpliciale, les morphismes supérieurs entre deux A ∞ -algèbres A et B s'agencent naturellement en un ensemble simplicial HOM A∞-Alg (A, B) • := Hom dg-Cog (∆ ∆ ∆ • ⊗ T (sA), T (sB)) .
La partie 2 a pour but d'étudier les propriétés de cet ensemble simplicial. 2.2.1. ∞-catégories, complexes de Kan et résolutions cosimpliciales. Nous rappelons à cet effet dans la section 1 quelques notions de base sur les ∞-catégories. Une ∞-catégorie est un ensemble simplicial X admettant la propriété de relèvement à gauche pour toutes les inclusions de cornets internes Λ k n → ∆ n , où n ⩾ 2 et 0 < k < n. La notion d'une ∞-catégorie fournit un modèle alternatif à celui d'une A ∞ -catégorie pour la notion de "catégorie dont la composition est associative à homotopie près". Si X admet également la propriété de relèvement à gauche pour toutes les inclusions de cornets externes Λ k n → ∆ n , où n ⩾ 2 et k = 0, n, on parle alors d'un complexe de Kan. Nous rappelons également un lemme de [Hir03] sur les résolutions cosimpliciales dans les catégories de modèles, qui sera crucial dans la preuve du Théorème 1. 2.2.2. Le complexe de Kan HOM A∞-Alg (A, B) • . Nous formulons l'un des théorèmes principaux de cet article dans la section 2. Théorème 1. Si A et B sont deux A ∞ -algèbres, alors l'ensemble simplicial HOM A∞ (A, B) • est un complexe de Kan.

Si l'on s'intéresse uniquement à la structure de ∞-catégorie de HOM A∞-Alg (A, B) • , on peut en fait entièrement décrire les remplissages de cornets internes

Λ k n → ∆ n .
Proposition 11. Soit Λ k n ⊂ ∆ n un cornet interne de ∆ n . On dispose alors d'une correspondance bijective entre les remplissages

Λ k n HOM A∞ (A, B) • ∆ n et les familles de morphismes f (m) ∆ n : A ⊗m → B de degré 1 -m -n où m ⩾ 1. Dit autrement, le complexe de Kan HOM A∞ (A, B) • est en particulier une ∞-catégorie algébrique.
Tandis que la preuve du Théorème 1 utilise le lemme de [Hir03] sur les résolutions cosimpliciales dans la catégorie de modèles dg -Cogc des dg-cogèbres cocomplètes, la Proposition 11 admet une preuve purement combinatoire en utilisant la définition des n-morphismes du point de vue opéradique. Nous calculons ensuite de manière explicite tous les groupes d'homotopie simpliciaux du complexe de Kan HOM A∞-Alg (A, B) • ainsi que leur loi de composition dans le Théorème 2. 2.2.3. n-A ∞ -foncteurs et pré-transformations naturelles entre A ∞ -catégories. Dans la section 3, nous commençons par généraliser la notion d'un n-morphisme entre A ∞ -algèbres à celle d'un n-foncteur entre A ∞ -catégories. Les 0-foncteurs correspondent alors toujours aux A ∞ -foncteurs et les 1-foncteurs correspondent aux A ∞ -homotopies entre A ∞ -foncteurs. Nous définissons également l'ensemble simplicial HOM A∞-Cat (A, B) • formé des foncteurs supérieurs entre les A ∞catégories A et B. Nous nous attendons à ce que cet ensemble simplicial soit à nouveau un complexe de Kan, en adaptant la preuve du Théorème 1 au cadre de la théorie de l'homotopie des dg-cocatégories.

Nous comparons ensuite l'ensemble simplicial HOM A∞-Cat (A, B) • à la A ∞ -catégorie des A ∞foncteurs Func A,B définie par Fukaya dans [Fuk02]. En appliquant à cette A ∞ -catégorie le nerf simplicial N A∞ défini par Faonte dans [START_REF] Faonte | Simplicial nerve of an A∞-category[END_REF], on obtient en effet un nouvel ensemble simplicial N A∞ (Func A,B ) qui a la propriété d'être une ∞-catégorie. Nous en explicitons en particulier les n-simplexes. Nous expliquons ensuite pourquoi les ensembles simpliciaux HOM A∞-Cat (A, B) • et N A∞ (Func A,B ) diffèrent fondamentalement l'un de l'autre. Les simplexes de HOM A∞-Cat (A, B) • correspondent à des homotopies supérieures, tandis que les simplexes de N A∞ (Func A,B ) doivent être interprétés comme des transformations naturelles supérieures entre les A ∞ -catégories A et B. L'ensemble simplicial HOM A∞-Cat (A, B) • est donc un complexe de Kan car une homotopie est toujours inversible à homotopie près, tandis que l'ensemble simplicial N A∞ (Func A,B ) est une ∞-catégorie car un A ∞ -foncteur n'est pas nécessairement toujours inversible à homotopie près. 2.2.4. La ∞-catégorie des A ∞ -algèbres ? Dans la section 4, nous nous intéressons au problème du relèvement de la composition des A ∞ -morphismes aux n -A ∞ -morphismes . L'objectif est ici de montrer que les ensembles simpliciaux HOM A∞-Alg (A, B) • forment en fait un enrichissement simplicial de la catégorie A ∞alg. Nous détaillons à cet effet deux approches. La première utilise la formulation ∆ ∆ ∆ n ⊗ T (sA) → T (sB) pour les n-morphismes. Nous montrons que du fait que le coproduit de Alexander-Whitney vu comme morphisme de la dg-cogèbre ∆ ∆ ∆ n vers la dg-cogèbre ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n n'est pas compatible aux coproduits, l'approche naturelle pour composer les morphismes supérieurs en utilisant cette définition ne peut aboutir. On peut toutefois montrer que le morphisme de Alexander-Whitney s'étend en fait en un A ∞ -morphisme de la dgcogèbre ∆ ∆ ∆ n vers la dg-cogèbre ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n . La deuxième approche consiste à utiliser la Proposition 2 et à définir un n-morphisme comme un A ∞ -morphisme A → ∆ ∆ ∆ n ⊗ B. En utilisant la donnée d'une diagonale sur le multiplièdre (voir par exemple [LAM]), il est alors possible de relever la composition sur les A ∞ -morphismes à une composition sur les morphismes supérieurs. Savoir si cette composition respecte bien les faces et dégénérescences simpliciales et si elle est associative demeure toutefois une question ouverte que nous comptons étudier dans le futur. S'en suit finalement une discussion sur les travaux de Faonte, Lyubashenko, Fukaya et Bottman traitant de la preuve d'un résultat de nature similaire utilisant les A ∞ -catégories Func A,B . Nous renvoyons au chapitre 1 de la partie 3 de ce manuscrit pour plus de détails au sujet de leurs travaux.

Morphismes supérieurs en théorie de Morse.

2.3.1. Construction de morphismes supérieurs entre ΩBAs-algèbres en théorie de Morse. Dans la section 1, nous réalisons en théorie de Morse cette algèbre supérieure des ΩBAsalgèbres. Dit autrement, nous construisons des morphismes supérieurs géométriques entre les ΩBAs-algèbres de deux fonctions de Morse

(C * (f ), m X f t ) et (C * (g), m X g t ).
Nous définissons à cet effet la notion de n-simplexe de données de perturbation Y ∆ n ,tc sur les espaces de modules CT (t c ). Soient x 1 , . . . , x m des points critiques de la fonction de Morse f et y un point critique de g. On peut alors définir l'espace de modules Sous certaines hypothèses génériques sur Y ∆ n ,tc , cet espace de modules est une variété orientable dont la dimension dépend de t c , n et des indices de x 1 , . . . , x m et y. Nous détaillons alors des conditions de compatibilité pour le recollement sur les n-simplexes de données de perturbations : elles sont choisie de sorte à ce qu'un espace de modules CT ∆ n ,tc (y; x 1 , . . . , x m ) de dimension 1 se compactifie en une variété orientable dont le bord est modelé sur les équations ΩBAs pour les n-morphismes. La formulation de ces conditions de recollement utilise en particulier le relèvement du coproduit de Alexander-Whitney au niveau des polytopes AW que nous avions utilisé pour définir les n-multiplièdres. Un n-simplexe de données de perturbation vérifiant ces conditions est dit admissible.

CT Y ∆ n ,tc
Théorème 4. Il existe un n-simplexe de données de perturbations admissible et compatible avec les données de perturbation X f et X g . Théorème 6. Soit (Y I,m ) m⩾1

I⊂∆ n un n-simplexe de données de perturbation admissible. On définit pour tout arbre 2-coloré t c et tout

I ⊂ ∆ n l'opération µ I,tc comme µ I,tc : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x m -→ |y|= m i=1 |x i |+|t I,c | #CT Y I,tc I,tc (y; x 1 , • • • , x m ) • y .
Ces opérations définissent alors un n-morphisme entre les ΩBAs-algèbres des cochaînes de Morse

(C * (f ), m X f t ) et (C * (g), m X g t ).
Il apparaît de plus clair qu'étant donné deux variétés symplectiques M et N , cette construction en théorie de Morse devrait pouvoir s'adapter en théorie de Floer pour définir des n-foncteurs géométriques entre les catégories de Fukaya Fuk(M ) et Fuk(N ). Ces n-foncteurs seraient définis par des comptages de disques cousus pseudo-holomorphes dont la couture s'envoie sur une correspondance lagrangienne de M 0 vers M 1 . L'étude de tels espaces de modules fait l'objet de l'article [MWW18] et nous renvoyons à la sous-section 2.1 de la partie 3 de ce manuscrit pour plus de détails à ce sujet.

2.3.2. Propriétés de remplissage pour les morphismes supérieurs géométriques. Définissons pour tout n ⩾ 0,

HOM geom ΩBAs (C * (f ), C * (g)) n ⊂ HOM ΩBAs (C * (f ), C * (g)
) n le sous-ensemble des n-morphismes µ de C * (f ) vers C * (g) pour lesquels il existe un n-simplexe de données de perturbation Y ∆ n tel que µ = µ Y ∆ n . On dispose alors des propriétés de remplissage suivantes.

Théorèmes 7 et 8. Pour tout choix de données de perturbations admissibles Y S paramétré par un sous-complexe simplicial S ⊂ ∆ n , il existe un n-simplexe admissible de données de perturbation Y ∆ n qui étend Y S . Par conséquent, l'ensemble HOM geom ΩBAs (C * (f ), C * (g)) n définit bien un ensemble simplicial qui est un sous-ensemble simplicial de

HOM ΩBAs (C * (f ), C * (g)) • . L'ensemble simplicial HOM geom ΩBAs (C * (f ), C * (g))
• est de plus alors un complexe de Kan qui est contractile.

En corollaire direct de ce théorème se trouve la réponse à la problématique ayant initialement motivé cet article.

Corollaire 1. Soient Y et Y ′ deux choix de données de perturbation admissibles sur les espaces de modules CT m . Alors les morphismes µ Y et µ Y ′ sont toujours homotopes en tant que ΩBAs-morphismes,

C * (f ) C * (g) µ Y µ Y ′ .
Suit finalement la section 2 contenant les détails techniques sur les arguments de transversalité, les orientations des espaces de modules et les signes, et les preuves des Théorèmes 4 et 7. Les arguments analytiques invoqués sont en particulier de même nature que ceux utilisés dans notre premier article.

Développements et pistes de recherche futures

3.1. Algèbre supérieure des arbres multi-jaugés et des surfaces cousues. Commençons par formuler la deuxième problématique découlant de notre premier article. Considérons trois fonctions de Morse f 0 , f 1 , f 2 , des données de perturbation admissibles X i et des données de perturbation admissibles Y ij définissant trois ΩBAs-morphismes

µ Y 01 : (C * (f 0 ), m X 0 t ) -→ (C * (f 1 ), m X 1 t ) , µ Y 12 : (C * (f 1 ), m X 1 t ) -→ (C * (f 2 ), m X 2 t ) , µ Y 02 : (C * (f 0 ), m X 0 t ) -→ (C * (f 2 ), m X 2 t ) .
Est-il possible de construire une ΩBAs-homotopie telle que µ Y 02 ≃ µ Y 12 • µ Y 01 ? Ce premier chapitre est consacré à la résolution de cette question ainsi qu'à une série de développements et d'idées autour de l'algèbre supérieure encodée par les espaces de modules d'arbres multi-jaugés et les espaces de modules de surfaces cousues.

3.1.1. Espaces de modules d'arbres bijaugés métriques. Nous débutons la section 1 par la définition d'une composition associative pour les ΩBAs-morphismes induisant la composition standard de ΩBAs-morphismes sous le morphisme de bimodules opéradiques A ∞ -Morph → ΩBAs -Morph. Nous décrivons ensuite les espaces de modules d'arbres métriques bijaugés 2GT m ainsi que leur compactification. Nous montrons alors que l'intuition première de réaliser une ΩBAs-homotopie entre les ΩBAs-morphismes µ Y 02 et µ Y 12 • µ Y 01 en comptant des arbres de gradient bijaugés ne peut se réaliser de manière immédiate. La description des strates de bord des espaces de modules compactifiés 2GT m ne correspond en effet pas à la combinatoire attendue d'une telle ΩBAs-homotopie, et certaines de ces strates sont de plus identifiées à des produits fibrés, donc ne se comportent pas de manière satisfaisante sous le foncteur des chaînes cellulaires. Si l'on souhaite produire une ΩBAs-homotopie µ Y 02 ≃ µ Y 12 •µ Y 01 il est donc nécessaire de trouver un argument supplémentaire s'appliquant directement au niveau de la théorie de Morse.

3.1.2. Espaces de modules de disques cousus. Mau, Wehrheim et Woodward rencontrent un problème de nature similaire dans [MWW18], en étudiant la composition de A ∞ -foncteurs géométriques entre catégories de Fukaya. Nous rappelons deux résultats majeurs de leurs travaux dans la section 2.

Nous décrivons dans un premier temps la construction de [MWW18] d'un A ∞ -foncteur ϕ L 01 : Fuk(M 0 ) → Fuk(M 1 ) associé à une correspondance lagrangienne L 01 entre deux variétés symplectiques (fermées monotones) M 0 et M 1 . Ses opérations d'arité n sont définies par un comptage de disques cousus pseudo-holomorphes, dont le bord contient n points marqués et s'envoie sur des lagrangiennes de M 0 , et dont la couture s'envoie sur la correspondance lagrangienne L 01 . Nous expliquons alors comment Mau, Wehrheim et Woodward parviennent à construire une A ∞ -homotopie ϕ L 01 •L 12 ≃ ϕ L 12 • ϕ L 01 où L 01 • L 12 désigne la composition géométrique de deux correspondances lagrangiennes L 01 et L 12 , à travers un comptage de disques bicousus pseudoholomorphes à points marqués sur leur bord et dont la première couture s'envoie sur L 01 et la deuxième sur L 12 . Il est clair que leurs arguments devraient également s'appliquer dans le cas des ΩBAs-morphismes entre cochaînes de Morse, résolvant la question initiale de la section 1.

Nous décrivons ensuite leur construction d'un A ∞ -foncteur de catégorification

Fuk(M - 0 × M 1 ) -→ Func (Fuk(M 0 ), Fuk(M 1 )) défini par un comptage de disques cousus pseudo-holomorphes à points marqués sur leur bord et leur couture, et où Func (Fuk(M 0 ), Fuk(M 1 )) désigne la A ∞ -catégorie des A ∞ -foncteurs de Fuk(M 0 ) vers Fuk(M 1 ). Il relève en fait au niveau dg le foncteur de 2-catégories Floer → Cat construit dans [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF], où Floer désigne la 2-catégorie dont les objets sont des variétés symplectiques et dont les catégories de morphismes sont les catégories de Donaldson Don(M - 0 × M 1 ). 3.1.3. Vers la définition de la (A ∞ ,2)-catégorie Symp. La première question découlant naturellement du travail de [WW10a] est de savoir s'il est possible de relever leur construction au niveau dg, c'est-à-dire de remplacer les catégories de Donaldson Don(M - 0 × M 1 ) par des catégories de Fukaya Fuk(M - 0 × M 1 ). Tandis qu'une 2-catégorie peut être définie comme une catégorie enrichie en catégories, il n'existe toutefois pas pour le moment de notion satisfaisante d'une catégorie qui serait enrichie en A ∞ -catégories. Nous décrivons dans la section 3 les avancées de Bottman dans cette direction, qui se propose de définir une (A ∞ , 2)-catégorie dont les objets seraient des variétés symplectiques fermées monotones M et les A ∞ -catégories de morphismes les catégories de Fukaya Fuk(M - 0 × M 1 ). Il conjecture que les espaces de modules 2M n n n de witch curves, qui sont des sphères multi-cousues dont les coutures se rencontrent en un unique point, devraient encoder la notion recherchée d'une telle catégorie enrichie en A ∞ -catégories. Il montre de plus dans [Bot19b] que la compactification des espaces de modules 2M n n n admet une stratification qui se décrit de manière ad hoc par des polytope abstraits, appelés les 2-associaèdres et définis dans [Bot19a]. Ces compactifications font toutefois de nouveau apparaître des produits fibrés dans leurs strates de bord, ce qui rend leur réalisation au niveau dg problématique.

Nous concluons cette section en formulant un ensemble de conjectures autour des liens entre les 2-associaèdres de [Bot19b] et les n-multiplièdres définis [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF]. De manière sommaire, nous conjecturons que (i) Le polytope [0, 1] × J m peut être muni d'une décomposition polytopale raffinée, contenant à la fois la décomposition polytopale du 2-associaèdre 2QD m,1 et celle du 1multiplièdre 1 -J m .

(ii) Les espaces de modules compactifiés de disques à n coutures et m + 1 points marqués sur leur bord nQD m,1 devraient permettre de définir des diagrammes de (n -1) -A ∞ foncteurs entre catégories de Fukaya.

Ces deux conjectures sont illustrées dans le schéma 4. On représente à gauche la décomposition polytopale sur [0, 1] × J 3 raffinant celles du 2-associaèdre 2QD 3,1 et du 1-multiplièdre 1 -J 3 . Le diagramme de droite correspond à un diagramme dont les sommets sont des A ∞ -foncteurs, les 1-flèches de A ∞ -homotopies et les 2-flèches des 2-A ∞ -foncteurs, qui serait déduit d'un comptage de disques tricousus pseudo-holomorphes à points marqués sur leur bord et donc la i-ème couture s'envoie sur la correspondance lagrangienne L i-1,i .

ϕ L 23 • ϕ L 12 • ϕ L 01 ϕ L 12 •L 23 • ϕ L 01 ϕ L 23 • ϕ L 01 •L 12 ϕ L 01 •L 12 •L 23 . Figure 4 3.1.4. Le "2-foncteur" Symp → A ∞ -Cat.
Nous décrivons finalement dans la section 4 plusieurs constructions réalisées par Fukaya dans [Fuk17], dans l'optique de définir un "2-foncteur"

Symp → A ∞ -Cat entre les "2-catégories" Symp et A ∞ -Cat.
3.2. Produits tensoriels de A ∞ -algèbres et de A ∞ -morphismes. Nous exposons dans la section 1 les premiers résultats d'une collaboration en cours avec Guillaume Laplante-Anfossi autour de la définition d'une structure de catégorie symétrique monoïdale à homotopie près sur la catégorie A ∞alg. Nous rappelons en premier lieu que la donnée d'un morphisme d'opérades A ∞ → A ∞ ⊗ A ∞ permet de définir de manière naturelle une structure de A ∞ -algèbre sur le produit tensoriel A ⊗ B de deux A ∞ -algèbres A et B. Un telle diagonale pour l'opérade A ∞ est définie dans [MS06], puis relevée au niveau des polytopes comme une famille d'applications polytopales ∆ Kn :

K n → K n × K n dans [MTTV21].
Guillaume Laplante-Anfossi et moi-même adaptons dans [LAM] les méthodes de [MTTV21] afin de définir une diagonale ∆ Jn : J n → J n × J n sur les multiplièdres. En posant M ∞ := A ∞ -Morph, on en déduit alors un morphisme de bimodules opéradiques M ∞ → M ∞ ⊗ M ∞ compatible à la diagonale de [MS06] sur l'opérade A ∞ , dont nous calculons en particulier une formule explicite. La donnée de cette diagonale sur M ∞ nous permet finalement de définir le produit tensoriel de deux A ∞ -morphismes

F 1 : A 1 → B 1 et F 2 : A 2 → B 2 , que nous notons F 1 ⊗ ∞ F 2 : A 1 ⊗ ∞ B 1 → A 2 ⊗ ∞ B 2 .
Un certain nombre de résultats prouvés dans [MSS02] et [MS06] suggèrent que la structure induite sur la catégorie A ∞alg par la donnée d'une diagonale sur A ∞ et d'une diagonale sur M ∞ , serait celle d'une structure de catégorie symétrique monoïdale à homotopie près. Dans l'optique de parvenir à la définition d'une telle structure sur A ∞alg, nous nous proposons comme première étape de comprendre quelles homotopies supérieures découlent au niveau des polytopes du défaut de coassociativité de la diagonale définie sur les associaèdres K n dans [MTTV21].

Nous décrivons finalement deux applications possibles à la définition du produit tensoriel de A ∞ -algèbres et de A ∞ -morphimes. La première est un résultat d'Amorim qui démontre dans [START_REF] Amorim | The Künneth theorem for the Fukaya algebra of a product of Lagrangians[END_REF] une formule de Künneth pour l'algèbre de Fukaya d'une lagrangienne : la

A ∞ -algèbre de Fukaya F(L 1 × L 2 ) d'une lagrangienne produit L 1 × L 2 est A ∞ -quasi-isomorphe au produit tensoriel des algèbres de Fukaya des lagrangiennes F(L 1 × L 2 ) ≃ F(L 1 ) ⊗ ∞ F(L 2 ).
Ce résultat est en fait adapté au niveau des catégories de Fukaya dans [Fuk17], et est en lien avec les constructions décrites sur Symp dans le chapitre 1. La deuxième application est un travail en cours de Lipshitz, Oszváth et Thurston en homologie de Heegaard Floer, dont l'article [LOT21] constitue la première étape.

3.3.

Nouvelles structures algébriques sur les chaînes symplectiques et sur les chaînes de Rabinowitz-Floer. L'objectif de ce dernier chapitre est de décrire les grandes lignes d'un travail en cours sur la construction de nouvelles opérations sur les chaînes symplectiques SC * (W ) et les chaînes de Rabinowitz-Floer SC * (∂W ), qui sont deux dg-modules associés à une variété de Liouville W et dont la différentielle est définie en théorie de Floer. Le point de départ de ce projet est la série d'articles en cours [START_REF] Cieliebak | Poincaré duality for loop spaces[END_REF], [START_REF] Cieliebak | Multiplicative structures on cones and duality[END_REF] et [CHOb] de Cieliebak, Hingston et Oancea sur un théorème de dualité de Poincaré pour l'homologie de Rabinowitz-Floer.

Nous décrivons dans la section 1 un programme en plusieurs étapes dont l'objectif final est la réalisation d'une structure de V ∞ -algèbre au sens de [START_REF] Tradler | Algebraic string operations[END_REF] sur les chaînes symplectiques SC * (W ) d'une variété de Liouville W . De manière sommaire, une structure de V ∞ -algèbre sur un dg-module A correspond à la donnée d'opérations à m entrées et k sorties définies sur A, telles que m + k ⩾ 2 et k ⩾ 1 et qui peuvent être représentées par des disques avec m pointes positives et k pointes négatives sur leur bord. La différentielle d'une telle opération est alors définie par une certaine somme de disques nodaux avec des pointes sur leur bord, tels que le disque marqué obtenu par recollement au niveau de leur unique noeud soit exactement le disque étiquetant l'opération considérée. La structure de V ∞ -algèbre est en fait encodée par une diopérade, appelée la diopérade V ∞ . Poirier et Tradler montre dans [START_REF] Poirier | Koszuality of the V (d) dioperad[END_REF] que cette diopérade fournit exactement une résolution cofibrante V ∞ := ΩV ¡ → V dans le cadre de la dualité de Koszul des diopérades de [START_REF] Liang Gan | Koszul duality for dioperads[END_REF], où V est la diopérade encodant la structure d'algèbre associative munie d'un coproduit interne symétrique et invariant.

La structure de V ∞ -algèbre est encodée par une famille de polytopes, appelés assocoipaèdres et que Poirier et Tradler construisent dans [START_REF] Poirier | The combinatorics of directed planar trees[END_REF]. Ils montrent en fait que les assocoipaèdres sont les polytopes ∆ n ×K m munis d'une décomposition polytopale plus fine. Tandis que leur construction des assocoipaèdres s'appuie sur la méthode secondary polytope de [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF], nous prévoyons de montrer que ces polytopes s'obtiennent en fait de manière similaire aux n-multiplièdres, en raffinant directement la subdivision de ∆ n selon chaque face de K m . L'objectif suivant serait alors de montrer qu'il est possible de réaliser ces polytopes de manière géométrique, comme espaces de modules de disques à m + 1 points marqués sur leur bord et munis d'une famille de 1-formes paramétrée par ∆ n . La règle de compactification pour ces espaces de modules découlerait de la description des subdivisions de ∆ n définies par l'opérade V ∞ . De tels espaces de modules se réaliseraient finalement sur les chaînes symplectiques SC * (W ) d'une variété de Liouville, en utilisant les techniques de courbes pseudo-holomorphes de [START_REF] Cieliebak | Multiplicative structures on cones and duality[END_REF].

Il serait également intéressant de définir la notion d'un V ∞ -morphisme entre V ∞ -algèbres, de manière à définir la catégorie V ∞alg des V ∞ -algèbres avec V ∞ -morphismes. Une telle définition de V ∞ -morphisme devrait en particulier s'inscrire dans un théorème de transfert homotopique pour les V ∞ -algèbres. Une piste serait de comprendre le cadre de la dualité de Koszul de [START_REF] Liang Gan | Koszul duality for dioperads[END_REF] afin d'associer un analogue de la construction bar classique à une V ∞ -algèbre, qui permettrait une définition naturelle de la notion des V ∞ -morphisme et de leur composition. Nous mentionnons que nous sommes tout de même déjà parvenus à définir la notion de V 2 -morphisme entre V 2 -algèbres, en recourant au point de vue de [START_REF] Tradler | Infinity structure of Poincaré duality spaces. With an appendix by Dennis Sullivan[END_REF].

Nous donnons enfin dans la section 2 plusieurs pistes de réflexion à explorer une fois cette première étape réalisée. Nous souhaiterions en premier lieu comprendre quelle structure serait induite sur les chaînes de Rabinowitz-Floer par la structure de V ∞ -algèbre sur les chaînes symplectiques. D'après [START_REF] Venkatesh | Rabinowitz Floer homology and mirror symmetry[END_REF] et [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF], l'homologie de Rabinowitz-Floer peut en effet être construite comme le cône d'une application de chaînes SC - * (W ) → SC * (W ) qui est canonique à homotopie près. Dans cette direction, Cieliebak, Hingston et Oancea montrent également dans [START_REF] Cieliebak | Poincaré duality for loop spaces[END_REF] que la cohomologie de Rabinowitz-Floer d'une variété de Liouville peut être munie d'une structure de bigèbre de coFrobenius involutive et biunitaire. Un objectif à plus long terme serait également de parvenir à construire de nouvelles opérations en topologie des cordes à partir des nouvelles structures ainsi obtenues, en mettant en pratique la devise générale que toute structure sur les chaînes symplectiques du cotangent T * M d'une variété M devrait avoir une contrepartie sur les chaînes singulières de l'espace de lacets libres LM de M .

Première partie

Higher algebra of A ∞ and ΩBAs-algebras in Morse theory I Elaborating on works by Abouzaid and Mescher, we prove that for a Morse function on a smooth compact manifold, its Morse cochain complex can be endowed with an ΩBAs-algebra structure by counting moduli spaces of perturbed Morse gradient trees. This rich structure descends to its already known A∞-algebra structure. We then introduce the notion of ΩBAs-morphism between two ΩBAs-algebras and prove that given two Morse functions, one can construct an ΩBAs-morphism between their associated ΩBAs-algebras by counting moduli spaces of two-colored perturbed Morse gradient trees. This morphism induces a standard A∞-morphism between the induced A∞-algebras.

We work with integer coecients, and provide to this extent a detailed account on the sign conventions for A∞ (resp. ΩBAs)-algebras and A∞ (resp. ΩBAs)-morphisms, using polytopes (resp. moduli spaces) which explicitly realize the dg-operadic objects encoding them. Our proofs also involve showing at the level of polytopes that an ΩBAs-morphism between ΩBAs-algebras naturally induces an A∞-morphism between A∞-algebras. This paper is adressed to people acquainted with either dierential topology or algebraic operads, and written in a way to be hopefully understood by both communities. It comes in particular with a short survey on operads, A∞-algebras and A∞-morphisms, the associahedra and the multiplihedra. All the details on transversality, gluing maps, signs and orientations for the moduli spaces dening the algebraic structures on the Morse cochains are thorougly carried out. It moreover lays the basis for a second article in which we solve the problem of nding a satisfactory homotopic notion of higher morphisms between A∞-algebras and between ΩBAs-algebras, and show how this higher algebra of A∞ and ΩBAs-algebras naturally arises in the context of Morse theory.

The associahedron K 4 and the multiplihedron J 3 ...

Introduction

Outline of the paper and main results. Our rst part begins with concise and self-contained recollections on the theory of algebraic (non-symmetric) operads, that we subsequently specialize to the case of A ∞ -algebras, A ∞ -morphisms between them and their homotopy theory. We introduce in particular the convenient setting of operadic bimodules to dene the operadic bimodule A ∞ -Morph encoding A ∞ -morphisms between A ∞ -algebras. We then recall how the operad A ∞ (resp. the operadic bimodule A ∞ -Morph) can be realized using families of polytopes, known as the associahedra (resp. multiplihedra). The associahedra can themselves be realized as geometric moduli spaces : the compactied moduli spaces of metric stable ribbon trees T n . These moduli spaces come with a rened cell decomposition encoding the operad ΩBAs. Likewise, the multiplihedra can be realized as the compactied moduli spaces of two-colored metric stable ribbon trees CT n . Endowing these moduli spaces with a rened cell decomposition, we introduce a new operadic bimodule : the operadic bimodule ΩBAs -Morph, encoding ΩBAs-morphisms between ΩBAs-algebras. Denition 16. The operadic bimodule ΩBAs -Morph is the quasi-free (ΩBAs, ΩBAs)-operadic bimodule generated by the set of two-colored stable ribbon trees

ΩBAs -Morph := F ΩBAs,ΩBAs ( , , , , • • • ) ,
where a two-colored stable ribbon tree t g with e(t) internal edges and whose gauge crosses j vertices has degree |t g | := je(t) -1. The dierential of a two-colored stable ribbon tree t g is given by the signed sum of all two-colored stable ribbon trees obtained from t g under the rule prescribed by the top dimensional strata in the boundary of CT n (t g ).

The ΩBAs framework provides another template to study algebras which are homotopy-associative, together with morphisms between them which preserve the product up to homotopy. This is followed by a comprehensive study on the A ∞ and ΩBAs sign conventions. In the A ∞ case, we show how the two usual sign conventions for A ∞ -algebras and A ∞ -morphisms are naturally induced by the shifted bar construction viewpoint. Using the Loday realizations of the associahedra [START_REF] Masuda | The diagonal of the associahedra[END_REF] and the Forcey-Loday realizations of the multiplihedra [MMV], we give a complete proof of the following two folklore propositions :

Propositions 4 and 5. The Loday realizations of the associahedra and the Forcey-Loday realizations of the multiplihedra determine the usual sign conventions for A ∞ -algebras and A ∞ -morphisms between them.

On the ΩBAs side, we start by recalling the formulation of the operad ΩBAs by Markl and Shnider [MS06]. We then proceed to study the moduli spaces of stable two-colored metric ribbon trees CT n (t g ) and compute the signs arising in the top dimensional strata of their boundary in Propositions 8 to 12. This allows us to complete our denition of the operadic bimodule ΩBAs -Morph by making explicit the signs for the action-composition maps and the dierential. We nally give an alternative and more geometric construction of the morphism of operads A ∞ → ΩBAs dened in [MS06], using the realizations of the associahedra as geometric moduli spaces. We then build an explicit morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph applying the same ideas to the moduli spaces realizing the multiplihedra.

Propositions 2 and 3. There exist a geometric morphism of operads A ∞ → ΩBAs and a geometric morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph.

Morse theory corresponds to the study of manifolds endowed with a Morse function, i.e. a function whose critical points are non-degenerate. Given a smooth compact manifold M , Fukaya constructed in [Fuk97] an A ∞ -category whose objects are functions f i on M , whose spaces of morphisms between two functions f i and f j (such that f i -f j is Morse) are the Morse cochain complexes C * (f i -f j ), and whose higher multiplications are dened by counting moduli spaces of Morse ribbon trees. Adapting this construction to the case of a single Morse function f on M , Abouzaid denes in [Abo11] an A ∞ -algebra structure on the Morse cochains C * (f ) by counting moduli spaces of perturbed Morse gradient ribbon trees. His work was subsequently continued by Mescher in [Mes18]. In the second part of this paper, we adapt the constructions of Abouzaid [Abo11], using the terminology of Mescher [Mes18], to perform two constructions on the Morse cochains C * (f ). Firstly, we introduce the notion of smooth choices of perturbation data X n on the moduli spaces T n that we use to dene the moduli spaces of perturbed Morse gradient trees T Xt t (y; x 1 , . . . , x n ) modeled on a stable ribbon tree type t.

Theorems 7 and 8. Under some generic assumptions on the choice of perturbation data {X n } n 2 , the moduli spaces T Xt t (y; x 1 , . . . , x n ) are orientable manifolds. If they have dimension 0, they are compact. If they have dimension 1, they can be compactied to compact manifolds with boundary, whose boundary is modeled on the boundary of the moduli spaces T n (t).

We then show that under a generic choice of perturbation data {X n } n 2 the Morse cochains C * (f ) can be endowed with an ΩBAs-algebra structure, by counting 0-dimensional moduli spaces of Morse gradient ribbon trees.

Theorem 9. Dening for every n and every stable ribbon tree type t of arity n the operation m t as

m t : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (f ) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |-e(t) #T X t (y; x 1 , • • • , x n ) • y ,
these operations endow the Morse cochains C * (f ) with an ΩBAs-algebra structure.

This ΩBAs-algebra structure is more canonical than the A ∞ -algebra structure of Abouzaid, as the ΩBAs-cell decomposition of the associahedra is the natural cell decomposition arising when realizing the moduli spaces of stable metric ribbon trees in Morse theory. This cell decomposition is also more appropriate for a rigorous proof of Theorem 7, than the A ∞ -cell decomposition used in [Abo11]. We recover the A ∞ -algebra structure of Abouzaid using the morphism A ∞ → ΩBAs of Proposition 2. Given now two Morse functions f and g, we can perform the same constructions in Morse theory using this time the moduli spaces CT n as blueprints. The counterparts of Theorems 7 and 8 still hold. Moreover, given two generic choices of perturbation data X f and X g , we construct an ΩBAsmorphism between the ΩBAs-algebras C * (f ) and C * (g) by counting 0-dimensional moduli spaces of two-colored Morse gradient trees. This construction provides a rst geometric and explicit instance of the newly dened notion of ΩBAs-morphism.

Theorem 12. Let (Y n ) n 1 be a generic choice of perturbation data on the moduli spaces CT n . Dening for every n and every two-colored stable ribbon tree type t g of arity n the operations µ tg as

µ Y tg : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |+|tg| #CT Y tg (y; x 1 , • • • , x n ) • y .
these operations t into an ΩBAs-morphism

µ Y : (C * (f ), m X f t ) → (C * (g), m X g t ).
This ΩBAs-morphism yields in particular an A ∞ -morphism between two A ∞ -algebras, using the morphism of Proposition 3. These constructions are followed by a section dedicated to a comprehensive proof of Theorems 7 and 10, which claries and completes the constructions of [Abo11]. Our last section on signs and orientations is dedicated to a thorough sign check for Theorems 9 and 12.

We show that we have in fact dened a twisted ΩBAs-algebra structure on the Morse cochains, and a twisted ΩBAs-morphism between two Morse cochains complexes : when the manifold M is odd-dimensional, the word "twisted" can be dropped. Denition 39. A twisted A ∞ -algebra is a dg-Z-module A endowed with two dierent dierentials ∂ 1 and ∂ 2 , and a sequence of degree 2n operations m n :

A ⊗n → A such that [∂, m n ] = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) ,
where [∂, •] denotes the bracket for the maps (A ⊗n , ∂ 1 ) → (A, ∂ 2 ). A twisted ΩBAs-algebra and a twisted ΩBAs-morphism are dened similarly.

Our computations are performed using the convenient viewpoint of signed short exact sequences of vector bundles. This last section also gives us the opportunity to recall in detail the basic method to compute the relations satised by algebraic operations dened in the context of Morse theory or symplectic topology : counting the points on the boundary of an oriented 1-dimensional manifold. We moreover pay a particular attention to the construction of explicit gluing maps for the 1-dimensional moduli spaces of perturbed Morse gradient trees. Finally, the third and last part is composed of a series of developments on the algebraic and geometric constructions performed in the rst two parts. We show in particular that :

Proposition 20. The twisted ΩBAs-morphism µ Y : (C * (f ), m X f t ) -→ (C * (g), m X g t ) constructed in Theorem 12 is a quasi-isomorphism.
We also give a brief overview on the A ∞ -structures appearing in symplectic topology through Floer theory, which is sometimes presented as an innite-dimensional analogue of Morse theory. In the last section we formulate two problems naturally arising from our constructions. Problem 1 is solved in our second article [Maz21] while Problem 2 is still a work in progress. Towards article II. This article completes the existing works on strongly homotopy associative structures arising from Morse theory and claries the analytical and algebraic technicalities that they involve. It moreover lays the ground for a second article [Maz21] dealing with two questions. First, understand and dene a suitable homotopic notion of higher morphisms between A ∞ -algebras, which would give a satisfactory description of the higher algebra of A ∞ -algebras. Secondly, elaborating on the work of Abouzaid and Mescher on perturbed Morse gradient trees, realize these higher morphisms through moduli spaces in Morse theory.

Part 1 Algebra 1. Operadic algebra Our rst section is devoted to some basic recollections on operadic algebra, and the particular case of the operad A ∞ . The specialist already acquainted with these notions will only have to read sections 1.3 and 1.5, which introduce the operadic bimodule viewpoint on A ∞ -morphisms through the (A ∞ , A ∞ )-operadic bimodule A ∞ -Morph. All the signs of this section are worked out in section 4.2, and will temporarily be written ± here.

We let in the rest of this section C be one the following two monoidal categories : the category of dierential graded Z-modules with cohomological convention (dg -Zmod, ⊗) and the category of polytopes (Poly, ×), introduced in detail in subsection 2.1.2. We will write ⊗ for the tensor product on C, and I for its identity element. Sections 1.1 and 1.2 are derived from [START_REF] Loday | Algebraic operads[END_REF]. Apart from the operadic bimodule viewpoint, most of the material presented in sections 1.4 and 1.5 is inspired from [START_REF] Loday | Algebraic operads[END_REF] and [START_REF] Vallette | Algebra + homotopy = operad[END_REF]. 1.1. Operads. 1.1.1. Denition. Denition 1. A (non-symmetric) C-operad P consists in the data of a collection of objects {P n } n 1 of C together with a unit element e ∈ P 1 and with compositions

P k ⊗ P i 1 ⊗ • • • ⊗ P i k -→ c i 1 ,...,i k P i 1 +•••+i k
which are unital and associative. The objects P n are to be thought as spaces encoding arity n operations while the compositions c i 1 ,...,i k dene how to compose these operations together.

Operads can be dened in an equivalent fashion using partial compositions instead of total compositions. An operad is then the data of a collection of objects {P n } n 1 together with a unit element e ∈ P 1 and with partial composition maps

• i : P k ⊗ P h -→ P h+k-1 , 1 i k
which are unital and associative. Finally a morphism of operads P → Q is a sequence of maps P n → Q n compatible with the compositions and preserving the identity. 1.1.2. Schur functors. There is a third equivalent denition of operads using the notion of Schur functors. Call any collection P = {P n } of objects of C a N-module. To each N-module one can associate its Schur functor, which is the endofunctor S P : C → C dened as

C -→ ∞ n=1 P n ⊗ C ⊗n .
Given two N-modules P and Q, composing their Schur functors gives the following formula

S P • S Q : C -→ ∞ n=1   i 1 +•••+i k =n P k ⊗ Q i 1 ⊗ • • • ⊗ Q i k   ⊗ C ⊗n .
In other words, there is a N-module associated to the composition of the Schur functors of two N-modules, and it is given by

P • Q = { i 1 +•••+i k =n P k ⊗ Q i 1 ⊗ • • • ⊗ Q i k } n 1 .
The category (End(C), •, Id C ), endowed with composition of endofunctors, is a monoidal category. In particular, there is a well-dened notion of monoid in End(C). A monoid structure on an endofunctor F : C → C is the data of natural transformations µ F : F • F → F and e : Id C → F , which satisfy the usual commutative diagrams for monoids. This viewpoint yields the following equivalent denition of an operad. Albeit tedious, it will prove useful in the following section when considering operadic modules. Denition 2. A C-operad is the data of a N-module P = {P n } of C together with a monoid structure on its Schur functor S P . 1.2. P -algebras. Let A be a dg-Z-module and n 1. Dene the graded Z-module Hom(A ⊗n , A) i of i-graded maps A ⊗n → A, and endow it with the dierential

[∂, f ] = ∂f -(-1) |f | f ∂. The N- module End A (n) := Hom(A ⊗n , A)
in dg-Z-modules can then naturally be endowed with an operad structure, where composition maps are dened as one expects. Let P be a (dg -Zmod)-operad. A structure of P -algebra on A is dened to be the datum of a morphism of operads

P -→ End A ,
in other words the datum of a way to interpret each operation of P n in Hom(A ⊗n , A), such that abstract composition in P coincides with actual composition in End A .

A morphism of P -algebras between A and B is then simply a dg-map f : A → B, which commutes with every operation of P n interpreted in A and B. In other words, for every m n ∈ P n ,

m B n • f ⊗n = f • m A n .
1.3. It is simply the data of an object R of D, together with action maps λ : A ⊗ R → R and µ : R ⊗ B → R which are compatible with the product on A and B, act trivially under their identity elements and satisfy the obvious associativity conditions. Take for instance D to be the category dg -Zmod. A monoid in D is then a unital associative dierential graded algebra, and the notion of bimodules in the previous paragraph then coincides with the usual notion of bimodules over dg-algebras. Denition 3. Given P and Q two operads seen as their Schur functors S P and S Q , let R = {R n } be a N-module of C seen as its Schur functor S R . A (P, Q)-operadic bimodule structure on R is a (S P , S Q )-bimodule structure λ :

S P • S R → S R and µ : S R • S Q → S R on S R in (End(C), •, Id C ).
1.3.2. Operadic bimodules with operations. This denition is of course of no use for actual computations. Unraveling the denitions, we get an equivalent denition for (P, Q)-operadic bimodules. Denition 4. A (P, Q)-operadic bimodule structure on R is the data of action-composition maps

R k ⊗ Q i 1 ⊗ • • • ⊗ Q i k -→ µ i 1 ,...,i k R i 1 +•••+i k , P h ⊗ R j 1 ⊗ • • • ⊗ R j h -→ λ j 1 ,...,j h R j 1 +•••+j h ,
which are compatible with one another, with identities, and with compositions in P and Q. Note that the action of Q on R can be reduced to partial action-composition maps

• i : R k ⊗ Q h -→ R h+k-1 1 i k ,
as Q has an identity. This cannot be done for the action of P on R, as R does not necessarily have an identity. 1.3.3. The (End B , End A )-operadic bimodule Hom(A, B). Let A and B be two dg-Z-modules. We have seen that they each determine an operad, End A and End B respectively. Then the N-module Hom(A, B) := {Hom(A ⊗n , B)} n 1 in dg-Z-modules is a (End B , End A )-operadic bimodule where the action-composition maps are dened as one could expect. 1.4. The operad A ∞ . 1.4.1. Suspension of a dg-Z-module. Let A be a graded Z-module. We dene sA to be the graded Zmodule (sA) i := A i-1 . In other words, |sa| = |a| -1. It is merely a notation that gives a convenient way to handle certain degrees. Note for instance that a degree 2n map A ⊗n → A is simply a degree +1 map (sA) ⊗n → sA. This will be used thoroughly in the rest of this part. 1.4.2. A ∞ -algebras. Let A be a dg-Z-module with dierential m 1 . Recall that we are working in the cohomological framework hence m 1 has degree +1. A structure of A ∞ -algebra on A is the data of a collection of degree 2n maps

m n : A ⊗n -→ A , n 1,
extending m 1 and which satisfy the following equations, called the A ∞ -equations

[m 1 , m n ] = i 1 +i 2 +i 3 =n 2 i 2 n-1 ±m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ).
We refer to section 4.2 for the signs. Representing m n as 12 n , this equation reads as

[m 1 , 1 2 n ] = h+k=n+1 2 h n-1 1 i k ± 1 k i 1 h .

We have in particular that

[m 1 , m 2 ] = 0 , [m 1 , m 3 ] = m 2 (id ⊗ m 2 -m 2 ⊗ id) .
Dening H * (A) to be the cohomology of A relative to m 1 , the last two equations show that m 2 descends to an associative product on H * (A). An A ∞ -algebra is simply a correct notion of a dgalgebra whose product is associative up to homotopy. Indeed to dene such a notion, we have to keep track of all the higher homotopies coming with the fact that the product is associative up to homotopy : these higher homotopies are exactly the m n . 1.4.3. The operad A ∞ . The A ∞ -algebra structure dened previously is actually governed by the following operad : Denition 5. The operad A ∞ is the quasi-free dg -Zmod-operad generated in arity n 2 by one operation m n of degree 2n and whose dierential is dened by

∂(m n ) = i 1 +i 2 +i 3 =n 2 i 2 n-1 ±m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) .

This is often written as

A ∞ = F( , , , • • • ) where ∂( 1 2 n ) = h+k=n+1 2 h n-1 1 i k ± 1 k i 1 h .
Recall that quasi-free means that the operad is freely generated by the operations 12 n as a graded object, with the additional datum of a dierential on its generating operations that is non-canonical. We then check that an A ∞ -algebra structure on a dg-Z-module A amounts simply to a morphism of operads A ∞ → End A . 1.4.4. The bar construction. A ∞ -algebras can also be dened using the bar construction. Dene the reduced tensor coalgebra of a graded Z-module V to be

T V := V ⊕ V ⊗2 ⊕ • • • endowed with the coassociative comultiplication ∆ T V (v 1 . . . v n ) := n-1 i=1 v 1 . . . v i ⊗ v i+1 . . . v n .
Then, we have a correspondence collections of morphisms of degree 2n

m n : A ⊗n → A , n 1 ←→ collections of morphisms of degree +1 b n : (sA) ⊗n → sA , n 1 coderivations D of degree +1 of T (sA)
.

Indeed, to each family of maps b n : (sA) ⊗n → sA of degree +1 one can associate a map D : T (sA) → T (sA) of degree +1 whose restriction to the (sA) ⊗n summand is given by

i 1 +i 2 +i 3 =n ±id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 .
Then the map D is a coderivation of T (sA).

There is a second correspondence

   collections of morphisms of degree 2 -n m n : A ⊗n → A , n 1, satisfying the A ∞ -equations    ←→ coderivations D of degree +1 of T (sA) such that D 2 = 0 .

Hence, the following proposition

Proposition 1. There is a one-to-one correspondence between A ∞ -algebra structures on A and coderivations D : T (sA) → T (sA) of degree +1 which square to 0.

1.5. A ∞ -morphisms. 1.5.1. dg-morphisms between A ∞ -algebras. Using the denition of section 1.2, a morphism between two A ∞ -algebras A and B is simply a dg-morphism f : A → B which is compatible with all the m n . This notion of morphism is however not satisfactory from an homotopy-theoretic point of view. Indeed, an A ∞ -algebra being an algebra whose product is associative up to homotopy, the correct homotopy notion of a morphism between two A ∞ -algebras would be that of a map which preserves the product m 2 up to homotopy, i.e. of a dg-morphism f 1 : A → B together with higher coherent homotopies, the rst one satisfying

[∂, f 2 ] = f 1 m A 2 -m B 2 (f 1 ⊗ f 1 ) .
1.5.2. A ∞ -morphisms. Denition 6. An A ∞ -morphism between two A ∞ -algebras A and B is a dg-coalgebra morphism F : (T (sA), D A ) → (T (sB), D B ) between their bar constructions.

As previously, we have a one-to-one correspondence collections of morphisms of degree 1n

f n : A ⊗n → B , n 1,
←→ morphisms of graded coalgebras

F : T (sA) → T (sB) .
The component of F mapping (sA) ⊗n to (sB) ⊗s is given by

i 1 +•••+is=n ±f i 1 ⊗ • • • ⊗ f is .
A coalgebra morphism preserves the dierentials if and only if for all n 1,

i 1 +i 2 +i 3 =n ±f i 1 +1+i 3 (id ⊗i 1 ⊗ m A i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=n ±m B s (f i 1 ⊗ • • • ⊗ f is ) .
( ) These equations can be rewritten as

[m 1 , f n ] = i 1 +i 2 +i 3 =n i 2 2 ±f i 1 +1+i 3 (id ⊗i 1 ⊗ m A i 2 ⊗ id ⊗i 3 ) + i 1 +•••+is=n s 2 ±m B s (f i 1 ⊗ • • • ⊗ f is ) . ( )
This yields the following equivalent denition : Denition 7. An A ∞ -morphism between two A ∞ -algebras A and B is a family of maps f n : A ⊗n → B of degree 1n satisfying equations . See section 4.2 for signs. We check that we recover in particular [∂,

f 2 ] = f 1 m A 2 -m B 2 (f 1 ⊗ f 1 ) .
As a result, an A ∞ -morphism of A ∞ -algebras induces a morphism of associative algebras on the level of cohomology. An A ∞ -quasi-isomorphism is then dened to be an A ∞ -morphism inducing an isomorphism in cohomology. 1.5.3. Composing A ∞ -morphisms. Given two coalgebra morphisms F : T V → T W and G : T W → T Z, the family of morphisms associated to G • F is given by

(G • F ) n := i 1 +•••+is=n ±g s (f i 1 ⊗ • • • ⊗ f is ) .
Hence, the composition of two A ∞ -morphisms f : A → B and g : B → C is dened to be

(g • f ) n := i 1 +•••+is=n ±g s (f i 1 ⊗ • • • ⊗ f is ) .
In particular one can dene A ∞alg, the category of A ∞ -algebras with A ∞ -morphisms between them, whose composition is dened by the previous formula. 1.5.4. The (A ∞ ,A ∞ )-operadic bimodule encoding A ∞ -morphisms. In fact there is an (A ∞ ,A ∞ )operadic bimodule encoding the notion of A ∞ -morphisms of A ∞ -algebras. Denition 8. The operadic bimodule A ∞ -Morph is the quasi-free (A ∞ , A ∞ )-operadic bimodule generated in arity n 1 by one operation f n of degree 1n and whose dierential is dened by

∂(f n ) = i 1 +i 2 +i 3 =n i 2 2 ±f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) + i 1 +•••+is=n s 2 ±m s (f i 1 ⊗ • • • ⊗ f is ) .
Representing the generating operations of the operad A ∞ acting on the right in blue 12 n and the ones of the operad A ∞ acting on the left in red 12 n , we represent f n by 12 n . This operadic bimodule can then be written as

A ∞ -Morph = F A∞,A∞ ( , , , , • • • ) , with dierential dened as ∂( 1 2 n ) = h+k=n+1 1 i k h 2 ± 1 k i 1 h + i 1 +•••+is=n s 2 ± 1 is i1 1 .
Consider A and B two A ∞ -algebras, which we can see as two morphisms of operads A ∞ → End A and A ∞ → End B . Recall from subsection 1.3.3 that Hom(A, B) is a (End B , End A )-operadic bimodule. The previous two morphisms of operads make Hom(A, B) into an (A ∞ ,A ∞ )-operadic bimodule. An A ∞ -morphism between A and B is then simply a morphism of (A ∞ ,A ∞ )-operadic bimodules

A ∞ -Morph -→ Hom(A, B) .
It is in that sense that A ∞ -Morph is the (A ∞ ,A ∞ )-operadic bimodule encoding the notion of A ∞ -morphisms of A ∞ -algebras. 1.5.5. The framework of two-colored operads. In fact, our choice of notation 12 n reveals that the natural framework to work with the operad A ∞ and the operadic bimodule A ∞ -Morph is provided by the quasi-free two-colored operad

A 2 ∞ := F( , , , • • • , , , , • • • , , , , , • • • ) ,
where the dierential on the generating operations is given by the previous formulae. A two-colored operad can be roughly dened as an operad whose operations have entries and output labeled either in red or in blue, and whose operations can only be composed along the same color. See [START_REF] Yau | Colored operads[END_REF] for a complete denition. 1.6. Homotopy theory of A ∞ -algebras. A ∞ -algebras with A ∞ -morphisms between them provide a suitable framework to study homotopy theory of dg-associative algebras. This is because the twocolored operad A 2 ∞ is a resolution

A 2 ∞ -→As 2 ,
of the two-colored operad encoding associative algebras with morphisms of algebras, and a brantcobrant object in the model category of two-colored operads in dg-Z-modules. See [START_REF] Markl | Homotopy diagrams of algebras[END_REF]. We illustrate these statements with two fundamental theorems. We refer moreover to [Mar06] for a more general version of Theorem 1. Theorem 1 (Homotopy transfer theorem [START_REF] Kadei²vili | On the theory of homology of ber spaces[END_REF]). Let (A, ∂ A ) and (H, ∂ H ) be two cochain complexes. Suppose that H is a deformation retract of A, that is that they t into a diagram

(A, ∂ A ) (H, ∂ H ) , h p i where id A -ip = [∂, h]. Then if (A, ∂ A )
is endowed with an associative algebra structure, H can be made into an A ∞ -algebra such that i and p extend to A ∞ -morphisms.

Theorem 2 (Fundamental theorem of A ∞ -quasi-isomorphisms [LH02]). For every A ∞ -quasi-isomorphism f : A → B there exists an A ∞ -quasi-isomorphism B → A which inverts f on the level of cohomology.

Operads in polytopes

We recall in the rst section the monoidal category Poly dened in [START_REF] Masuda | The diagonal of the associahedra[END_REF], which yields a good framework to handle operadic calculus in a category whose objects are polytopes. We then introduce in sections 2.2 and 2.3 the two main combinatorial objects of this article : the associahedra and the multiplihedra, which are polytopes that respectively encode A ∞ -algebras and A ∞ -morphisms between them. Explicit realizations of the associahedra and the multiplihedra will be given in sections 4.3 and 4.4.

2.1. Three monoidal categories and their operadic algebra. 2.1.1. Dierential graded Z-modules and CW-complexes. Consider dg -Zmod to be the category with objects dierential graded Z-modules with cohomological convention, and morphisms the morphisms of dg-Z-modules. It is a monoidal category with the classical tensor product of dg-Z-modules and unit the underlying eld seen as a dg-Z-module concentrated in degree 0.

Likewise, dene CW to be the category whose objects are nite CW-complexes and whose morphisms are CW-maps between CW-complexes. This category is again a monoidal category with product the usual cartesian product and unit the point * . The cellular chain functor C cell * : CW → dg -Zmod is then strong monoidal, i.e. it satises

C cell * (P × Q) = C cell * (P ) ⊗ C cell * (Q) .
To be consistent with the cohomological degree convention on A ∞ -algebras, we will actually work with the strong monoidal functor

C cell - * : CW -→ dg -Z -mod ,
where C cell - * (P ) is simply the Z-module C cell * (P ) taken with its opposite grading.

The category of polytopes ([MTTV19]

). Dene a polytope to be the convex hull of a nite number of points in a Euclidean space R n . A polytopal complex is then a nite collection P of polytopes satisfying three conditions :

(i) ∅ ∈ P , (ii) if P ∈ P then all the faces of P are also in P , (iii) if P and Q are two polytopes of P then the intersection P ∩ Q belongs to P. The realisation of a polytopal complex is simply

|P| := P ∈P P .
Given P a polytope, we say in particular that a polytopal complex Q is a polytopal subdivision of P if |Q| = P . Every polytope P comes with a polytopal complex L(P ) consisting of all its faces, which realizes a polytopal subdivision of P .

Following [START_REF] Masuda | The diagonal of the associahedra[END_REF], we then dene the category Poly as : Objects. Polytopes. Morphisms. A continuous map f : P → Q which is a homeomorphism P → |D| where D is a polytopal subcomplex of L(Q) and f -1 (D) is a polytopal subdivision of P . Such a map will be called a polytopal map. This is a monoidal category with product the usual cartesian product and unit the polytope reduced to a point * . It is in fact a monoidal subcategory of CW. 2.1.3. From operadic algebra in Poly to operadic algebra in dg -Zmod. Let {X n } be a Polyoperad, that is a collection of polytopes X n together with polytopal maps

• i : X k × X h -→ X h+k-1 ,
satisfying the compatibility conditions of partial compositions. Then, the functor C cell - * yields a new dg -Zmod-operad {P n } dened by P n := C cell - * (X n ) and whose partial compositions are

• i : C cell - * (X k ) ⊗ C cell - * (X h ) -→C cell - * (X k × X h ) -→ C cell - * (• i ) C cell - * (X h+k-1 ) .
In the same way, let {X n } and {Y n } be two Poly-operads, and {Z n } be a ({X n }, {Y n })-operadic bimodule, that is a collection of polytopes {Z n } together with polytopal action-composition maps

X s × Z i 1 × • • • × Z is µ -→ Z i 1 +•••+is , Z k × Y h -→ • i Z h+k-1 ,
which are compatible with the composition maps of {X n } and {Y n }. Then, the functor C cell - * yields a new operadic-bimodule in dg -Zmod as follows. Denote

P n = C cell - * (X n ) and Q n = C cell - * (Y n ).
These are both operads in dg -Zmod. Dening R n := C cell - * (Z n ), this is a (P, Q)-operadic bimodule with action-composition maps dened by

C cell - * (X s ) ⊗ C cell - * (Z i 1 ) ⊗ • • • ⊗ C cell - * (Z is ) -→C cell - * (X s × Z i 1 × • • • × Z is ) C cell - * (µ) -→ C cell - * (Z i 1 +•••+is ) , C cell - * (Z k ) ⊗ C cell - * (Y h ) -→C cell - * (Z k × Y h ) -→ C cell - * (• i ) C cell - * (Z h+k-1 ) .
2.2. The associahedra. The dg -Zmod-operad A ∞ actually stems from a Poly-operad : Theorem 3

([MTTV19]

). There exists a collection of polytopes, called the associahedra and denoted

{K n }, endowed with a structure of operad in the category Poly and whose image under the functor

C cell - * yields the operad A ∞ .
We refer to section 4.3 in the appendix for a detailed construction and a proof that

A ∞ (n) = C cell - * (K n ),
and only list noteworthy properties of these polytopes in the following paragraphs.

As A ∞ (n) = C cell - * (K n ), we know that K n has to have a unique cell [K n ] of dimension n -2 whose image under ∂ cell is the A ∞ -equation, that is such that ∂ cell [K n ] = ± • i ([K k ] ⊗ [K h ]) .
In fact, these polytopes are constructed such that the boundary of K n is exactly

∂K n = h+k=n+1 2 h n-1 1 i k K k × i K h ,
where × i is in fact the standard × cartesian product, and such that partial compositions are then simply polytopal inclusions of K k × K h in the boundary of K h+k-1 . The rst three associahedra K 2 , K 3 and K 4 are represented in gure 3, labeling their cells by the operations they dene in A ∞ when seen in C cell - * (K n ). 

([MMV]

). There exists a collection of polytopes, called the multiplihedra and denoted {J n }, endowed with a structure of ({K n }, {K n })-operadic bimodule, i.e. with polytopal actioncomposition maps

K s × J i 1 × • • • × J is µ -→ J i 1 +•••+is , J k × K h -→ • i J h+k-1 , whose image under the functor C cell - * yields the (A ∞ , A ∞ )-operadic bimodule A ∞ -Morph.
We refer this time to section 4.4 for details and conclude again by listing the main noteworthy properties of the

J n . Knowing that A ∞ -Morph(n) = C cell - * (J n ), we know that J n has to have a unique n -1-dimensional cell [J n ] whose image under ∂ cell is the A ∞ -equation for A ∞ -morphisms, that is such that ∂ cell [J n ] = ± • i ([J k ] ⊗ [K h ]) + ±µ([K s ] ⊗ [J i 1 ] ⊗ • • • ⊗ [J is ]) .
In fact, the polytopes J n have the following properties (i) the boundary of J n is exactly

∂J n = h+k=n+1 h 2 1 i k J k × i K h ∪ i 1 +•••+is=n s 2 K s × J i 1 × • • • × J is ,
where × k is the standard cartesian product ×, (ii) action-compositions are polytopal inclusions of faces in the boundary of J n . The rst three polytopes J 1 , J 2 and J 3 are represented in gure 4, labeling their cells by the operations they dene in A ∞ -Morph.

3. Moduli spaces of metric trees The associahedra and the multiplihedra are the polytopes governing the structures of A ∞ -algebras and A ∞ -morphisms between them. We show in this section that these polytopes can in fact be Figure 4. The multiplihedra J 1 , J 2 and J 3 realized as geometric moduli spaces : the associahedra are the compactied moduli spaces of stable metric ribbon trees T n , while the multiplihedra are the compactied moduli spaces of stable twocolored metric ribbon trees CT n .

These moduli spaces will come with two cell decompositions : their A ∞ -cell decomposition, corresponding to the cell decomposition of the associahedra (resp. multiplihedra), and a rened decomposition, called the ΩBAs-cell decomposition. This second cell decomposition recovers the operad ΩBAs in the case of T n , and an (ΩBAs, ΩBAs)-operadic bimodule denoted ΩBAs -Morph in the case of CT n . They are respectively related to the operad A ∞ and the operadic bimodule A ∞ -Morph by a morphism of operads A ∞ → ΩBAs and a morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph (Propositions 2 and 3). 3.1. The associahedra and metric ribbon trees. We refer to section 2 of [MW10] and section 7 of [Abo11] for the moduli space viewpoint on the associahedra. 3.1.1. Denitions. We begin by giving the denitions of the trees we will need in the rest of the section. The best way to understand them is with the examples depicted in gure 5. Denition 9.

(i) A (rooted) ribbon tree, is the data of a tree together with a cyclic ordering on the edges at each vertex of the tree and a distinguished vertex adjacent to an external edge called the root. This external edge is then called the outgoing edge, while all the other external edges are called the incoming edges. For a ribbon tree t, we will write E(t) for the set of its internal edges, E(t) for the set of all its edges, and e(t) for its number of internal edges. (ii) A metric ribbon tree is the data of a ribbon tree, together with a length l e ∈]0, +∞[ for each of its internal edges e. The external edges are thought as having length equal to +∞. (iii) A ribbon tree is called stable if all its inner vertices are at least trivalent. It is called binary if all its inner vertices are trivalent. We denote SRT n the set of all stable ribbon trees, and BRT n the set of all binary ribbon trees. Note in particular that for a binary tree t ∈ BRT n we have that e(t) = n -2.

Moduli spaces of stable metric ribbon trees.

A ribbon tree l1 l2

A metric ribbon tree l1 l2

A stable metric ribbon tree l1 l2

A binary metric ribbon tree

Denition 10. Dene T n to be moduli space of stable metric ribbon trees with n incoming edges.

For each stable ribbon tree type t, we dene moreover T n (t) ⊂ T n to be the moduli space T n (t) := {stable metric ribbon trees of type t} . We then have that

T n = t∈SRTn T n (t) .
Writing e(t) the number of internal edges for a ribbon tree of type t, each T n (t) is naturally topologized as ]0, +∞[ e(t) , and they form a stratication of T n . This is illustrated in gures 6 and 7.

Interpreting a length in ]0, +∞[ e(t) which goes towards 0 as the contraction of the corresponding edge of t, the strata T n (t) can in fact be consistently glued together. With this observation, one can prove that the space T n is in fact itself homeomorphic to R n-2 . Allowing lengths of internal edges to go to +∞, this moduli space can be compactied into a (n -2)-dimensional CW-complex T n , where T n is seen as its unique (n -2)-dimensional stratum. The codimension 1 stratum of this CW-complex is given by

h+k=n+1 2 h n-1 1 i k T k × i T h ,
where × i is the standard cartesian product ×, and the i means that the outgoing edge of a tree in T h connects to the i-th incoming edge of a tree in T k . It corresponds to metric trees with one internal edge of innite length. More generally, the codimension m stratum is given by metric trees with m internal edges of innite lengths. This cell decomposition of T n will be called its A ∞ -cell decomposition.

Theorem 5. The moduli space T n endowed with its A ∞ -cell decomposition is isomorphic as a CW-complex to the associahedron K n .

This was rst noticed in section 1.4. of Boardman-Vogt [BV73]. See two examples on gure 7. 3.1.3. The second cell decomposition of T n . In fact the previous compactication can be obtained by rst compactifying each cell T n (t) individually and then gluing consistently all compactications together. For t ∈ RT n , the stratum T n (t) is homeomorphic to ]0, +∞[ e(t) and its compactication in t) . A length equal to 0 simply corresponds to collapsing one edge of t and a length equal to +∞ is interpreted as breaking this edge. This is illustrated in the instance of a cell of T 4 (t) in gure 6. Denition 11. A broken ribbon tree is a ribbon tree some of whose internal edges may be broken. Equivalently, it is the datum of a nite collection of (unbroken) ribbon trees together with a way

T n is homeomorphic to [0, +∞] e(
l1 l2 l 1 l 2 l 1 l 2 l 1 l 2 Figure 6.
Compactication of a stratum of T 4 of arranging this collection into a new tree (with broken edges). A broken ribbon tree is said to be stable if every unbroken ribbon tree forming it is stable.

The viewpoint introduced in the previous paragraph yields a new cell decomposition of T n , an example of which is given in gure 7. Its cells are indexed by broken stable ribbon trees, a broken stable ribbon tree with i nite internal edges labeling an i-dimensional cell.

l l l 1 l 2 l 1 l 2 l 1 l 2 l 1 l 2 l 1 l 2 Figure 7.
The compactied moduli spaces T 3 and T 4 with their cell decomposition by broken stable ribbon tree type 3.1.4. The operad ΩBAs. Endowing the T n with this new cell decomposition, the maps

T k × T h -→ • i T h+k-1
are then cellular maps, and hence form a new operad in CW. Taking its image under the functor C cell - * yields an operad in dg -Zmod : the operad ΩBAs. We refer to section 5.1 for a complete description of this operad and its sign conventions.

Denition 12. The operad ΩBAs is the quasi-free operad generated by the set of stable ribbon trees, where a stable ribbon tree t has degree |t| := -e(t). Its dierential on a stable ribbon tree t is given by the signed sum of all stable ribbon trees obtained from t by breaking or collapsing exactly one of its internal edges.

In other words, it is the quasi-free operad

ΩBAs := F( , , , , • • • , SRT n , • • • )
where for instance

| | = -2 , ∂( ) = ± ± ± ± .
As the choice of notation ΩBAs suggests, this dg -Zmod-operad is in fact the bar-cobar construction of the operad As, usually denoted ΩBAs. To put it shortly, the classical cobar-bar adjunction for standard algebras and coalgebras Ω : conilpotent dgcoalgebras augmented dgalgebras : B , admits a counterpart in the realm of operads and cooperads

Ω : coaugmented dg -cooperads augmented dg -operads : B ,
and the previously obtained operad is exactly equal to ΩBAs. We refer the curious reader to section 6.5 in Loday-Vallette [START_REF] Loday | Algebraic operads[END_REF], for more details on that matter. 3.1.5. From the operad A ∞ to the operad ΩBAs. The dg -Zmod-operads A ∞ and ΩBAs are in fact related by the following proposition :

Proposition 2. There exists a morphism of operads A ∞ → ΩBAs given on the generating operations of A ∞ by

m n -→ t∈BRTn ±m t .
This morphism stems from the image under the functor C cell - * of the identity map id : (T n ) A∞ → (T n ) ΩBAs rening the cell decomposition on T n . The formula on m n then simply corresponds to associating to the n -2-dimensional cell of T n with the A ∞ -cell decomposition, the signed sum of all n -2-dimensional cells of T n with the ΩBAs-cell decomposition.

This geometric construction of the morphism A ∞ → ΩBAs is an adaptation of the algebraic construction by Markl and Shnider in [MS06] and is detailed in subsection 5.1.4. Proposition 2 dates in fact back to [START_REF] Getzler | Operads, homotopy algebra and iterated integrals for double loop spaces[END_REF], and is built in the theory of Koszul duality, as explained in sections 7 and 9 of [START_REF] Loday | Algebraic operads[END_REF]. We moreover point out that the morphism A ∞ → ΩBAs will be crucial in the rest of this paper. It implies indeed that in order to construct a structure of A ∞ -algebra on a cochain complex, it is enough to endow it with a structure of ΩBAs-algebra. 3.2. The multiplihedra and two-colored metric ribbon trees. We have seen in the previous section that the polytopes K n can be realized as the compactied moduli spaces of stable metric ribbon trees. So can the polytopes J n : they are the compactied moduli spaces of stable two-colored metric ribbon trees.

3.2.1. Two-colored metric ribbon trees. Denition 13. A stable two-colored metric ribbon tree or stable gauged metric ribbon tree is dened to be a stable metric ribbon tree together with a length λ ∈ R. This length is to be thought of as a gauge drawn over the metric tree, at distance λ from its root, where the positive direction is pointing down.

The gauge divides the tree into two parts, each of which we think of as being colored in a dierent color. See an instance on gure 8. This denition, despite being visual, will prove dicult to manipulate when trying to compactify moduli spaces of stable two-colored metric ribbon trees. We thus proceed to give an equivalent denition, which will provide a natural way of compactifying these moduli spaces. The equivalence between the two denitions is depicted on an example in gure 8. Denition 14.

(i) A two-colored ribbon tree is dened to be a ribbon tree together with a distinguished subset of vertices E col (T ) called the colored vertices. This set is such that, either there is exactly one colored vertex in every non-self crossing path from an incoming edge to the root and none in the path from the outgoing edge to the root, or there is no colored vertex in any non-self crossing path from an incoming edge to the root and exactly one in the path from the outgoing edge to the root. These colored vertices are to be thought as the intersection points of the gauge with the ribbon tree. (ii) A two-colored ribbon tree is called stable if all its non-colored vertices are at least trivalent.

We denote SCRT n the set of all stable two-colored ribbon trees, and CBRT n the set of all two-colored binary ribbon trees whose gauge does not cross any vertex of the underlying binary ribbon tree. (iii) A two-colored metric ribbon tree is the data of a length for all internal edges l e ∈]0, +∞[, such that the lengths of all non self-crossing paths from a colored vertex to the root are all equal.

λ l l2 l1 l3 Figure 8. An example of a stable two-colored metric ribbon tree with the two denitions : here l 1 = l 3 = -λ and l = l 1 + l 2 These two denitions of two-colored metric ribbon trees are easily seen to be equivalent, by viewing the colored vertices as the intersection points between the gauge and the edges. In the rest of the paper, the notations t c and t g will both stand for a two-colored stable ribbon tree, seen respectively from the colored vertices and from the gauged viewpoint. The symbol t will then denote the underlying stable ribbon tree. 3.2.2. Moduli spaces of stable two-colored metric ribbon trees. The results presented in this subsection can be found in section 7 of Mau-Woodward [MW10], where they are formulated in the two-colored viewpoint.

Denition 15. For n 2, we dene CT n to be the moduli space of stable two-colored metric ribbon trees. It has a cell decomposition by stable two-colored ribbon tree type,

CT n = tc∈SCRTn CT n (t c ) .
We also denote CT 1 := { } the space whose only element is the unique two-colored ribbon tree of arity 1.

The space CT n is homeomorphic to R n-1 : T n is homeomorphic to R n-2 and, using the gauge description, the datum of a gauge adds a factor R. Allowing again internal edges of metric trees to go to +∞ by using the second denition for two-colored metric ribbon trees, this moduli space CT n can be compactied into a (n -1)-dimensional CW-complex CT n . It has one n -1 dimensional stratum given by CT n . Its codimension 1 stratum is given by

i 1 +•••+is=n T s × CT i 1 × • • • × CT is ∪ i 1 +i 2 +i 3 =n CT i 1 +1+i 3 × T i 2 .
This cell decomposition of CT n will be called its A ∞ -cell decomposition. Two sequences of stable two-colored metric ribbon trees converging in the compactication CT 3 are represented in gure 9. ). The moduli space CT n endowed with its A ∞ -cell decomposition is isomorphic as a CW-complex to the multiplihedron J n .

This theorem is illustrated in gure 11. 3.2.3. The second cell decomposition of CT n . As for T n , the compactied moduli space CT n can be endowed with a rened cell decomposition. This subsection sums up some of the main results of section 5.2, where we provide an extensive study of the strata of this rened cell decomposition. Let t g be a gauged stable ribbon tree. Writing again e(t) for the number of internal edges of the underlying stable ribbon tree, the stratum CT n (t g ) is a polyhedral cone in R e(t)+1 . For instance, There is for instance one vertex intersected by the gauge in . The stratum CT n (t g ) then has dimension e(t) + 1j, but is not naturally isomorphic to ]0, +∞[ e(t)+1-j , in the sense that its compactication will not coincide with a (e(t) + 1j)-dimensional cube.

CT 4 ( ) = {(λ, l 1 , l 2 ) such that l 1 > 0 ; l 2 > 0 ; 0 < -λ < l 1 , l 2 } .
Switching now to the colored vertices viewpoint, the polyhedral cones CT n (t c ) can be compactied, by allowing lengths of internal edges to go towards 0 or +∞. The compactication CT n is simply obtained by gluing the previous compactications. See an instance of the compactication of CT 3 ( ) = {(λ, l) such that l > 0 ; -λ > l} in gure 10.

This yields a new cell decomposition of CT n , where each cell is labeled by a broken two-colored stable ribbon tree. A two-colored stable ribbon tree t g with e(t) internal edges and whose gauge crosses j vertices labels a e(t) + 1j-dimensional cell. The dimension of a cell labeled by a broken two-colored tree can then simply be obtained by adding the dimensions associated to each of the pieces of the broken tree. The cell decompositions for CT 2 and CT 3 are represented in gure 11. Endowing the moduli spaces T n with their ΩBAs-cell decomposition and the moduli spaces CT n with this new cell decomposition, the maps

T s × CT i 1 × • • • × CT is -→ CT i 1 +•••+is , CT k × T h -→ • i CT h+k-1 ,
are cellular : the N-module {CT n } is a ({T n }, {T n })-operadic bimodule for this new cell decomposition.

The operadic bimodule

ΩBAs -Morph. The functor C cell - * sends the previous operadic bimodule in CW to an (ΩBAs, ΩBAs)-operadic bimodule in dg -Zmod, that we will denote ΩBAs -Morph. We refer to section 5.3 for a complete description of ΩBAs -Morph and explicit sign computations. Denition 16. The operadic bimodule ΩBAs -Morph is the quasi-free (ΩBAs, ΩBAs)-operadic bimodule generated by the set of two-colored stable ribbon trees. A two-colored stable ribbon tree t g with e(t) internal edges and whose gauge crosses j vertices has degree |t g | := je(t) -1. The dierential of a two-colored stable ribbon tree t c is given by the signed sum of all two-colored stable ribbon trees obtained from t c under the rule prescribed by the top dimensional strata in the boundary of CT n (t c ).

Before giving tedious written details for the dierential rule, we refer the reader to gure 10 and to the upcoming example. Consider the following two-colored stable ribbon tree . Which codimension 1 phenomena can happen ?

(i) The gauge can be moved to cross exactly one vertex of : these situations are given by , and . (ii) An internal edge can break above the gauge : and . (iii) Both internal edges can break below the gauge : . Note that unlike for CT 3 ( ), no internal edge can collapse in this example : that would be a codimension 2 phenomenon. These two examples list all four possible codimension 1 phenomena that can happen : the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree (gauge-vertex) ; an internal edge located above the gauge or intersecting it breaks or, when the gauge is below the root, the outgoing edge breaks between the gauge and the root (abovebreak) ; edges (internal or incoming) that are possibly intersecting the gauge, break below it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root (below-break) ; an internal edge that does not intersect the gauge collapses (int-collapse).

In other words, we constructed the quasi-free (ΩBAs, ΩBAs)-operadic bimodule

ΩBAs -Morph := F ΩBAs,ΩBAs ( , , , ,

• • • , SCRT n , • • • ) ,
where for instance

| | = -3 , ∂( ) = ± ± ± ± ± ± .
Note that the symbol used here is the same as the one used for the only arity 2 generating operation of A ∞ -Morph. It will however be clear from the context what stands for in the rest of this paper. Consider A and B two ΩBAs-algebras, which we can see as two morphisms of operads ΩBAs → End A and ΩBAs → End B . We then dene an ΩBAs-morphism A → B to be a morphism of (ΩBAs, ΩBAs)-operadic bimodules ΩBAs -Morph → Hom(A, B). It is equivalent to a collection of operations µ tg : A ⊗n → B, t g ∈ SCRT n , satisfying the equations prescribed by the dierential on ΩBAs -Morph. Note that in order to dene the category ΩBAsalg of ΩBAs-algebras with ΩBAs-morphisms between them, it remains to dene the composition of two ΩBAs-morphisms. This question will be explored in an upcoming article.

From

A ∞ -Morph to ΩBAs -Morph. The morphism of operads A ∞ → ΩBAs makes the (ΩBAs, ΩBAs)-operadic bimodule ΩBAs -Morph into an (A ∞ , A ∞ )-operadic bimodule. Proposition 3. There exists a morphism of (A ∞ , A ∞ )-operadic bimodules A ∞ -Morph → ΩBAs - Morph given on the generating operations of A ∞ -Morph by f n -→ tg∈CBRTn ±f tg .
As a result, to construct an A ∞ -morphism between two A ∞ -algebras whose A ∞ -algebra structure comes from an ΩBAs-algebra structure, it is enough to construct an ΩBAs-morphism between them. As in subsection 3.1.5, this morphism stems again from the image under the functor C cell - * of the identity morphism on CT n rening its cell decomposition. The formula for f n is obtained by sending the n -1-dimensional cell of CT n appearing in the A ∞ -cell decomposition, to the signed sum of all n -1-dimensional cells CT n appearing in the ΩBAs-cell decomposition. We refer to subsection 5.3.5 for a complete proof and the details on signs. 3.3. Résumé. The moduli space of stable metric ribbon trees T n can be compactied by allowing lengths of internal edges to go towards +∞. This compactication comes with two cell decompositions. The rst one, by considering the moduli spaces T n as (n -2)-dimensional strata, yields a CW-complex isomorphic to the associahedron K n . Its realization under the functor C cell - * then yields the operad A ∞ . The second one is obtained by considering the stratication of T n by strata labeled by stable ribbon tree types. It is sent under the functor C cell - * to the operad ΩBAs. These two operads in dg -Zmod are then related by a morphism of operads A ∞ → ΩBAs.

The moduli space of stable two-colored metric ribbon trees CT n can be compactied by allowing lengths to go towards +∞. There are again two cell decompositions for this compactication. Considering the moduli spaces CT n as (n-1)-dimensional strata yields a rst CW-complex isomorphic to the multiplihedron

J n . Its image under C cell - * is the (A ∞ , A ∞ )-operadic bimodule A ∞ -Morph.
Likewise, considering the stratication of CT n by strata labeled by two-colored stable ribbon tree types, we obtain a second cell decomposition. The functor C cell - * sends it to the (ΩBAs, ΩBAs)-operadic bimodule ΩBAs -Morph. The morphism of operads

A ∞ → ΩBAs makes ΩBAs -Morph into a (A ∞ , A ∞ )-operadic bimodule. It is related to A ∞ -Morph by a morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph.
4. Signs and polytopes for A ∞ -algebras and A ∞ -morphisms The goal of this section is twofold : work out all the signs written as ± in the A ∞ -equations in section 1 and provide explicit realizations for the associahedra and multiplihedra as polytopes. We begin by introducing the basic Koszul sign rules to work in a graded algebraic framework, and explain how to compute signs by comparing orientations on the boundary of a manifold with boundary. We then recall two equivalent sign conventions for A ∞ -algebras and A ∞ -morphisms and show how they naturally ensue from the bar construction viewpoint. We subsequently detail explicit polytopal realizations of the associahedra and the multiplihedra, introduced in [MTTV19] and [MMV], and conclude by showing that these polytopes determine indeed the A ∞ -sign conventions previously dened. 4.1. Basic conventions for signs and orientations. 4.1.1. Koszul sign rule. All formulae in this section will be written using the Koszul sign rule that we briey recall. We will work exclusively with cohomological conventions.

Given A and B two dg Z-modules, the dierential on A ⊗ B is dened as

∂ A⊗B (a ⊗ b) = ∂ A a ⊗ b + (-1) |a| a ⊗ ∂ B b .
Given A and B two dg Z-modules, we consider the graded Z-module Hom(A, B) whose degree r component is given by all maps A → B of degree r. We endow it with the dierential

∂ Hom(A,B) (f ) := ∂ B • f -(-1) |f | f • ∂ A =: [∂, f ] .
Given f : A → A and g : B → B two graded maps between dg-Z-modules, we set

(f ⊗ g)(a ⊗ b) = (-1) |g||a| f (a) ⊗ g(b) .

Finally, given

f : A → A , f : A → A , g : B → B and g : B → B , we dene (f ⊗ g ) • (f ⊗ g) = (-1) |g ||f | (f • f ) ⊗ (g • g) .
We check in particular that with this sign rule, the dierential on a tensor product

A 1 ⊗ • • • ⊗ A n is given by ∂ A 1 ⊗•••⊗An = n i=1 id A 1 ⊗ • • • ⊗ ∂ A i ⊗ • • • ⊗ id An .
4.1.2. Orientation of the boundary of a manifold with boundary. Let (M, ∂M ) be an oriented nmanifold with boundary. We choose to orient its boundary ∂M as follows : given x ∈ ∂M , a basis e 1 , . . . , e n-1 of T x (∂M ), and an outward pointing vector ν ∈ T x M , the basis e 1 , . . . , e n-1 is positively oriented if and only if the basis ν, e 1 , . . . , e n-1 is a positively oriented basis of T x M . Note that in the particular case when the manifold with boundary is a half-space inside the Euclidean space R n , dened by an inequality

n i=1 a i x i C ,
the vector (a 1 , . . . , a n ) is outward-pointing. We recover under this convention the classical singular and cubical dierentials. Take X a topological space. Given a singular simplex σ : ∆ n → X, its dierential is classically dened as

∂ sing (σ) := n i=0 (-1) i σ i ,
where σ i stands for the restriction

[0 < • • • < î < • • • < n] → ∆ n → X.
Realizing ∆ n as a polytope in R n and orienting it with the canonical orientation of R n , we check that its boundary reads exactly as

∂∆ n = n i=0 (-1) i ∆ n-1 i , where ∆ n-1 i is the (n -1)-simplex corresponding to the face [0 < • • • < î < • • • < n].
The sign (-1) i means that the orientation of ∆ n-1 i induced by its canonical identication with ∆ n-1 and its orientation as the boundary of ∆ n , dier by a (-1) i sign.

Similarly, given a singular cube σ : I n → X, its dierential is

∂ cub σ := n i=1 (-1) i (σ i,0 -σ i,1 ) ,
where σ i,0 denotes the singular cube I n-1 → X obtained from σ by setting its i-th entry to 0, and σ i,1 is dened similarly. We check again that considering I n ⊂ R n as a polytope of R n , its boundary reads as

∂I n = n i=1 (-1) i (I n-1 i,0 ∪ -I n-1 i,1 )
, where I n-1 i,0 is the face of I n obtained by setting the i-th coordinate equal to 0, and I n-1 i,1 is dened likewise. 4.1.3. Coorientations. Our convention for orienting the boundary of an oriented manifold with boundary (M, ∂M ) can in fact be rephrased as follows : the boundary ∂M is cooriented by the outward pointing vector eld ν.

More generally consider an oriented manifold N and a submanifold S ⊂ N . A coorientation of S is dened to be an orientation of the normal bundle to S. Given any complement bundle

ν S to T S in T N | S , T N | S = ν S ⊕ T S ,
this orientation induces in turn an orientation on ν S , the normal bundle being canonically isomorphic to ν S . The manifold S is then orientable if and only if it is coorientable. This can be proven using the rst Stiefel-Whitney class for instance. Given a coorientation for S, the induced orientation on S is set to be the one whose concatenation with that of ν S , in the order (ν S , T S), gives the orientation on T N | S . 4.2. Signs for A ∞ -algebras and A ∞ -morphisms using the bar construction. There exist various conventions on signs for A ∞ -algebras and A ∞ -morphisms between them, which can seem inexplicable when met out of context. The goal of this section is twofold : to give a comprehensive account of the two sign conventions coming from the bar construction, and to state our choice of signs for the rest of the paper. The eager reader can straightaway jump to subsection 4.2.4, where our choice of signs is given.

4.2.1.

A ∞ -algebras. We will rst be interested in the following two sign conventions for A ∞ -algebras :

[m 1 , m n ] = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 i 2 +i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , (A) [m 1 , m n ] = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , (B)
which can we rewritten as

i 1 +i 2 +i 3 =n (-1) i 1 i 2 +i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) = 0 , (A) i 1 +i 2 +i 3 =n (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) = 0 . (B)
First, note that these two sign conventions are equivalent in the following sense : given a sequence of operations m n : A ⊗n → A satisfying equations (A), we check that the operations m n := (-1) ( n 2 ) m n satisfy equations (B). This sign change does not come out of the blue, and appears in the following proof that these equations come indeed from the bar construction.

Introduce the suspension and desuspension maps

s : A -→ sA w : sA → A a -→ sa sa -→ a ,
which are respectively of degree -1 and +1. We check that with the Koszul sign rule,

w ⊗n • s ⊗n = (-1) ( n 2 ) id A ⊗n .
Then, note that a degree 2n map m n : A ⊗n → A yields a degree +1 map b n := sm n w ⊗n : (sA) ⊗n → sA. Consider now a collection of degree 2n maps m n : A ⊗n → A, and the associated degree +1 maps b n : (sA) ⊗n → sA. Denoting D the unique coderivation on T (sA) associated to the b n , the equation D 2 = 0 is then equivalent to the equations

i 1 +i 2 +i 3 =n b i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = 0 .
There are now two ways to unravel the signs from these equations.
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The rst way consists in simply replacing the b i by their denition. It leads to the (A) sign conventions :

i 1 +i 2 +i 3 =n b i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +i 2 +i 3 =n sm i 1 +1+i 3 (w ⊗i 1 ⊗ w ⊗ w ⊗i 3 )(id ⊗i 1 ⊗ sm i 2 w ⊗i 2 ⊗ id ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 3 sm i 1 +1+i 3 (w ⊗i 1 ⊗ m i 2 w ⊗i 2 ⊗ w ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 3 +i 1 i 2 sm i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 )(w ⊗i 1 ⊗ w ⊗i 2 ⊗ w ⊗i 3 ) =s i 1 +i 2 +i 3 =n (-1) i 1 i 2 +i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) w ⊗n .
The second way consists in rst composing and post-composing by w and s ⊗n and then replacing the b i by their denition. It leads to the (B) sign conventions and makes the (-1) ( n 2 ) sign change appear:

i 1 +i 2 +i 3 =n wb i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 )s ⊗n = i 1 +i 2 +i 3 =n wb i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 )(s ⊗i 1 ⊗ s ⊗i 2 ⊗ s ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 1 wb i 1 +1+i 3 (s ⊗i 1 ⊗ b i 2 s ⊗i 2 ⊗ s ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 1 wsm i 1 +1+i 3 w ⊗i 1 +1+i 3 (s ⊗i 1 ⊗ sm i 2 w ⊗i 2 s ⊗i 2 ⊗ s ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 1 m i 1 +1+i 3 w ⊗i 1 +1+i 3 (s ⊗i 1 ⊗ (-1) ( i 2 2 ) sm i 2 ⊗ s ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 1 +i 2 i 3 m i 1 +1+i 3 w ⊗i 1 +1+i 3 s ⊗i 1 +1+i 3 (id ⊗i 1 ⊗ (-1) ( i 2 2 ) m i 2 ⊗ id ⊗i 3 ) = i 1 +i 2 +i 3 =n (-1) i 1 +i 2 i 3 (-1) ( i 1 +1+i 3 2 ) m i 1 +1+i 3 (id ⊗i 1 ⊗ (-1) ( i 2 2 ) m i 2 ⊗ id ⊗i 3 ) .

4.2.2.

A ∞ -morphisms. We now dwell into the two sign conventions for A ∞ -morphisms that are coming with the bar construction viewpoint. They are as follows :

[m 1 , f n ] = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 i 2 +i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (A) - i 1 +•••+is=n s 2 (-1) A m s (f i 1 ⊗ • • • ⊗ f is ) , [m 1 , f n ] = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (B) - i 1 +•••+is=n s 2 (-1) B m s (f i 1 ⊗ • • • ⊗ f is ) ,
which can we rewritten as

i 1 +i 2 +i 3 =n (-1) i 1 i 2 +i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=n (-1) A m s (f i 1 ⊗ • • • ⊗ f is ) , (A) i 1 +i 2 +i 3 =n (-1) i 1 +i 2 i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=n (-1) B m s (f i 1 ⊗ • • • ⊗ f is ) , (B) where 
A = s u=1 i u u<t s (1 -i t ) , B = s u=1 (s -u)(1 -i u ) .
These two sign conventions are again equivalent : given a sequence of operations m n and f n satisfying equations (A), we check that the operations m n := (-1) ( n 2 ) m n and f n := (-1) ( n 2 ) f n satisfy equations (B). The (-1) ( n 2 ) twist will again appear in the following proof, from the formula

w ⊗n • s ⊗n = (-1) ( n
2 ) id A ⊗n . Consider now two dg-modules A and B, together with a collection of degree 2n maps m n : A ⊗n → A and m n : B ⊗n → B (we use the same notation for sake of readability), and a collection of degree 1n maps f n : A ⊗n → B. We associate again to the m n the degree +1 maps b n , and also associate to the f n the degree 0 maps F n := sf n w ⊗n : (sA) ⊗n → sB. We denote D A and D B the unique coderivations acting respectively on T (sA) and T (sB), and F : T (sA) → T (sB) the unique coalgebra morphism associated to the F n . The equation

F D A = D B F is then equivalent to the equations i 1 +i 2 +i 3 =n F i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=n b s (F i 1 ⊗ • • • ⊗ F is ) .
There are again two ways to unravel the signs from these equations, which will lead to conventions (A) and (B). The proofs proceed exactly as in subsection 4.2.1.

Composition of

A ∞ -morphisms. Let f n : A ⊗n → B and g n : B ⊗n → C be two A ∞ -morphisms under conventions (A). The arity n component of their composition g • f is dened as i 1 +•••+is=n (-1) A g s (f i 1 ⊗ • • • ⊗ f is ) , (A)
where A is as previously.

Let f n : A ⊗n → B and g n : B ⊗n → C be two A ∞ -morphisms under conventions (B). The arity n component of their composition g • f is this time dened as

i 1 +•••+is=n (-1) B g s (f i 1 ⊗ • • • ⊗ f is ) , (B)
where B is as previously.

We check that in each case, this newly dened morphism satises the A ∞ -equations, respectively under the sign conventions (A) and (B). This can again be proven using the bar construction and applying the previous transformations. 4.2.4. Choice of convention in this paper. We will work in the rest of this paper under the set of conventions (B). The operations m n of an A ∞ -algebra will satisfy equations

[m 1 , m n ] = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , an A ∞ -morphism between two A ∞ -algebras will satisfy equations [m 1 , f n ] = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) - i 1 +•••+is=n s 2 (-1) B m s (f i 1 ⊗ • • • ⊗ f is ) ,
and two A ∞ -morphisms will be composed as

i 1 +•••+is=n (-1) B g s (f i 1 ⊗ • • • ⊗ f is ) , where B = s u=1 (s -u)(1 -i u ).
This choice of conventions will be accounted for in the next two sections : the signs are the ones which arise naturally from the realizations of the associahedra and the multiplihedra à la Loday. We also point out that a choice of convention for the signs on A ∞ -algebras completely determines the conventions on A ∞ -morphisms and their composition. 4.3. Loday associahedra and signs. A ∞ -structures were introduced for the rst time in two seminal papers by Stashe on homotopy associative H-spaces [Sta63]. In the rst paper of the series, he dened cell complexes K n ⊂ I n-2 which govern A n -structures on topological spaces, and hence realize the associahedra as cell complexes. The associahedra were later realized as polytopes by Haiman in [START_REF] Haiman | Constructing the associahedron[END_REF], Lee in [START_REF] Lee | The associahedron and triangulations of the n-gon[END_REF] or Loday in [Lod04]. They were recently endowed with an operad structure in the category Poly by Masuda, Thomas, Tonks and Vallette in [MTTV19], using the notion of weighted Loday realizations.

Following [START_REF] Masuda | The diagonal of the associahedra[END_REF], we explain the construction of these realizations. We then show that the sign convention (B) for A ∞ -algebras is determined by these realizations : this gives a more geometric explanation of these signs, which does not come from a (-1) ( n 2 ) twist after reading the signs on the bar construction. This also provides an explicit proof with signs of the statement in [START_REF] Masuda | The diagonal of the associahedra[END_REF], that these polytopes are sent to the operad A ∞ by the functor C cell - * (Proposition 4). These realizations moreover achieve the rst step towards constructing the morphism of operads of Markl-Shnider A ∞ → ΩBAs.

Realizations of the associahedra à la Loday. Denition 17 ([MTTV19]

). Given n 1, dene a weight ω to be a list of n positive integers (ω 1 , . . . , ω n ). The Loday realization of weight ω of K n is dened as the common intersection in R n-1 of the hyperplane of equation

H ω : n-1 i=1 x i = 1 k<l n ω k ω l
and of the half-spaces of equation

D i 1 ,i 2 ,i 3 : x i 1 +1 + • • • + x i 1 +i 2 -1 i 1 +1 k<l i 1 +i 2 ω k ω l , for all i 1 + i 2 + i 3 = n and 2 i 2 n -1. This polytope is denoted K ω .
Figure 12. The Loday realizations K (1,1) and K (1,1,1) : the lighter grey depicts H ω , while the darker grey stands for K ω . The Loday realizations K (1,1) and K (1,1,1) are represented in gure 12. The polytope K ω being dened as an intersection of half-spaces inside the (n -2)-dimensional space H ω , it has dimension n -2. In fact, denoting 1 n the weight of length n whose entries are all equal to 1, it is one of the main results of [START_REF] Masuda | The diagonal of the associahedra[END_REF] that the collection of polytopes (K 1n ) n 1 can be made into an operad in the category Poly. The goal of this section is to show the following proposition : Proposition 4. The Loday associahedra determine the sign conventions (B) for A ∞ -algebras.

That is, after orienting each polytope K n := K 1n the boundary of K n reads as

∂K n = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 K i 1 +1+i 3 × K i 2 ,
where

K i 1 +1+i 3 × K i 2 is sent to m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) under the functor C cell - * .
The signs mean that after comparing the product orientation on K i 1 +1+i 3 × K i 2 induced by the orientations of K i 1 +1+i 3 and K i 2 , to the orientation of the boundary of K n , they dier by the sign -(-1) i 1 +i 2 i 3 . We explain now how to obtain the set-theoretic decomposition of the boundary

∂K n = i 1 +i 2 +i 3 =n 2 i 2 n-1 K i 1 +1+i 3 × K i 2 ,
and inspect the signs in the next section.

The top dimensional strata in the boundary of some K ω are obtained by allowing exactly one of the inequalities

x i 1 +1 + • • • + x i 1 +i 2 -1 i 1 +1 k<l i 1 +i 2 ω k ω l ,
to become an equality. We write H i 1 ,i 2 ,i 3 for these hyperplanes. Dening two new weights

ω := (ω 1 , . . . , ω i 1 , ω i 1 +1 + • • • + ω i 1 +i 2 , ω i 1 +i 2 +1 , . . . , ω n ) , ω := (ω i 1 +1 , . . . , ω i 1 +i 2 ) , the map θ : R i 1 +i 3 × R i 2 -1 -→ R n-1 (x 1 , . . . , x i 1 +i 3 ) × (y 1 , . . . , y i 2 -1 ) -→ (x 1 , . . . , x i 1 , y 1 , . . . , y i 2 -1 , x i 1 +1 , . . . , x i 1 +i 3 )
induces a bijection between K ω × K ω and the codimension 1 face of K ω corresponding to the intersection with H i 1 ,i 2 ,i 3 . 4.3.2. Recovering signs from these realizations. The directing hyperplane H ω of the ane hyperplane H ω has basis

e ω j = (1, 0, • • • , 0, -1 j+1 , 0, • • • , 0) ,
where -1 is in the j + 1-th spot, and we add a superscript ω for later use. We choose this basis as a positively oriented basis for H ω : this denes our orientation of K ω . Choosing any (a 1 , . . . , a n-1 ) ∈ H ω , the basis e ω j parametrizes H ω under the map

(y 1 , . . . , y n-2 ) -→ ( n-2 j=1 y j + a 1 , -y 1 + a 2 , . . . , -y n-2 + a n-1 ) .
Hence in the coordinates of the basis e ω j , the half-space

H ω ∩ D i 1 ,i 2 ,i 3 reads as when i 1 = 0 : -y i 2 -1 -• • • -y n-2 C , when i 1 1 : y i 1 + • • • + y i 1 +i 2 -2 C ,
where C denotes some constant that we are not interested in. Hence, in the basis e ω j , an outward pointing vector for the boundary

H ω ∩ H i 1 ,i 2 ,i 3 is when i 1 = 0 : ν := (0, . . . , 0, -1 i 2 -1 , . . . , -1 n-2 ) ,
when i 1 1 : ν := (0, . . . , 0, 1 i 1 , . . . , 1 i 1 +i 2 -2 , 0, . . . , 0) . We have chosen orienting bases for the directing hyperplanes H ω , and computed all outward pointing vectors for the boundaries in these bases. It only remains to study the image of these bases under the maps θ. We write e ω j for the orienting basis of K ω and e ω j for the one of K ω . We distinguish two cases.

When i 1 = 0, the map θ reads as θ(x 1 , . . . , x i 3 , y 1 , . . . , y i 2 -1 ) = (y 1 , . . . , y i 2 -1 , x 1 , . . . , x i 3 ) , and we compute that :

θ(e ω j ) = -e ω i 2 -1 + e ω j+i 2 -1 θ(e ω j ) = e ω j .
The determinant then has value

det e ω j ν, θ(e ω j ), θ(e ω j ) = -i 3 (-1) i 2 i 3 .
Thus, we recover the -(-1)

i 1 +i 2 i 3 K i 1 +1+i 3 × K i 2 oriented component of the boundary.
When i 1 1, the map θ now reads as

θ(x 1 , . . . , x i 3 , y 1 , . . . , y i 2 -1 ) = (x 1 , . . . , x i 1 , y 1 , . . . , y i 2 -1 , x i 1 +1 , . . . , x i 1 +i 3 ) ,
and we compute that :

j i 1 -1 , θ(e ω j ) = e ω j j i 1 , θ(e ω j ) = e ω j+i 2 -1 θ(e ω j ) = e ω j+i 1 -e ω i 1 .
This time,

det e ω j ν, θ(e ω j ), θ(e ω j ) = -(i 2 -1)(-1) i 1 +i 2 i 3 .
We nd again the -(-1) i 1 +i 2 i 3 K i 1 +1+i 3 × K i 2 oriented component of the boundary, which concludes the proof of Proposition 4. 4.4. Forcey-Loday multiplihedra and signs. Iwase and Mimura realized the multiplihedra as cell complexes in [START_REF] Iwase | Higher homotopy associativity[END_REF] following the hints of Stashe in [Sta63]. The multiplihedra were later realized as polytopes in [For08]. This will be adapted in an upcoming paper by Masuda, Vallette and the author [MMV], which uses again the notion of weighted Loday realizations. The goal of this section is to show that the sign convention (B) for A ∞ -morphisms is naturally determined by the weighted Loday realizations of [MMV]. In this regard, we lay out the explicit construction of [MMV], and follow the same lines of proof as in the previous section. This also provides a proof with signs that these polytopes are sent to the operadic bimodule A ∞ -Morph by the functor C cell - * (Proposition 5). 4.4.1. Forcey-Loday realizations of the multiplihedra. Denition 18 ( [MMV]). Given n 1, choose a weight ω = (ω 1 , . . . , ω n ). The Forcey-Loday realization of weight ω of J n is dened as the intersection in R n-1 of the half-spaces of equation

D i 1 ,i 2 ,i 3 : x i 1 +1 + • • • + x i 1 +i 2 -1 i 1 +1 k<l i 1 +i 2 ω k ω l ,
for all i 1 + i 2 + i 3 = n and i 2 2, with the half-spaces of equation

D i 1 ,...,is : x i 1 + x i 1 +i 2 + • • • + x i 1 +•••+i s-1 2 1 t<u s Ω t Ω u for all i 1 + • • • + i s = n,
with each i t 1 and s 2, and where

Ω t := it a=1 ω i 1 +•••+i t-1 +a . This polytope is denoted J ω .
Figure 13. The Forcey-Loday realizations J (1,1,1) and J (1,1,1,1) The Forcey-Loday realizations J (1,1,1) and J (1,1,1,1) are depicted in gure 13. The polytope J ω being an intersection of half-spaces in R n-1 , it has dimension n -1. Setting J n := J 1n , it is proven in [MMV] that the collection of polytopes {J n } n 1 can be made into a ({K n }, {K n })-operadic bimodule in the category Poly.

Proposition 5. The Forcey-Loday realizations determine the sign conventions (B) for A ∞ -morphisms.

More precisely our goal is to prove that, after orienting the K n as before and choosing an orientation for the J n , the boundary of J n reads as

∂J n = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 J i 1 +1+i 3 × K i 2 ∪ - i 1 +•••+is=n s 2 (-1) B K s × J i 1 × • • • × J is ,
where B is as in subsection 4.2.4 ;

K i 1 +1+i 3 × K i 2 is sent to f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) while K s × J i 1 × • • • × J is is sent to m s (f i 1 ⊗ • • • ⊗ f is )
by the functor C cell - * . We conclude this section with a proof of the set-theoretic equality for the boundary

∂J n = i 1 +i 2 +i 3 =n i 2 2 J i 1 +1+i 3 × K i 2 ∪ i 1 +•••+is=n s 2 K s × J i 1 × • • • × J is ,
and postpone the processing of signs to the next subsection. The top dimensional strata in the boundary of a J ω are obtained by allowing exactly one of the inequalities

x i 1 +1 + • • • + x i 1 +i 2 -1 i 1 +1 k<l i 1 +i 2 ω k ω l , x i 1 + x i 1 +i 2 + • • • + x i 1 +•••+i s-1 2 1 t<u s Ω t Ω u ,
to become an equality. We write H i 1 ,i 2 ,i 3 and H i 1 ,...,is for these hyperplanes.

Begin with the H i 1 ,i 2 ,i 3 component. Dening two new weights

ω := (ω 1 , . . . , ω i 1 , ω i 1 +1 + • • • + ω i 1 +i 2 , ω i 1 +i 2 +1 , . . . , ω n ) , ω := (ω i 1 +1 , . . . , ω i 1 +i 2 ) , the map θ : R i 1 +i 3 × R i 2 -1 -→ R n-1 (x 1 , . . . , x i 1 +i 3 ) × (y 1 , . . . , y i 2 -1 ) -→ (x 1 , . . . , x i 1 , y 1 , . . . , y i 2 -1 , x i 1 +1 , . . . , x i 1 +i 3 )
induces a bijection between J ω × K ω and the codimension 1 face of J ω corresponding to the intersection with H i 1 ,i 2 ,i 3 .

In the case of the H i 1 ,...,is component, we dene the weights

ω := ( √ 2Ω 1 , . . . , √ 2Ω s ) , ω t := (ω i 1 +•••+i t-1 +1 , . . . , ω i 1 +•••+i t-1 +it ) , 1 t s .
This time, the map

θ : R s-1 × R i 1 -1 × • • • × R is-1 -→ R n-1 sends an element (x 1 , . . . , x s-1 ) × (y 1 1 , . . . , y 1 i 1 -1 ) × • • • × (y s 1 , . . . , y s is-1 ) to (y 1 1 , . . . , y 1 i 1 -1 , x 1 , y 2 1 , . . . , y 2 i 2 -1 , x 2 , y 3 1 , . . . , x s-1 , y s 1 , . . . , y s is-1 ) .
It induces a bijection between K ω × J ω 1 × • • • × J ωs and the codimension 1 face of J ω corresponding to the intersection with H i 1 ,...,is . 4.4.2. Processing the signs for these realizations. We set the orientation on R n-1 , and hence on J ω , to be such that the vectors

f ω j := (0, 0, • • • , 0, -1 j , 0, • • • , 0) ,
dene a positively oriented basis of R n-1 . In the coordinates of the basis f ω j , the half-space D i 1 ,i 2 ,i 3 reads as

z i 1 +1 + • • • + z i 1 +i 2 -1 - i 1 +1 k<l i 1 +i 2 ω k ω l ,
and the half-space D i 1 ,...,is as

-z i 1 -z i 1 +i 2 -• • • -z i 1 +•••+i s-1 2 1 t<u s Ω t Ω u
In this basis, an outward pointing vector for the boundary H i 1 ,i 2 ,i 3 is then ν := (0, . . . , 0, 1 i 1 +1 , . . . , 1 i 1 +i 2 -1 , 0, . . . , 0) , while an outward pointing vector for the boundary

H i 1 ,••• ,is is ν := (0, . . . , 0, -1 i 1 , 0, . . . , 0, -1 i 1 +i 2 , 0, . . . . . . , 0, -1 i 1 +i 2 +•••+i s-1 , 0, . . . , 0) .
Now that we have chosen positively oriented bases for the J ω , and chosen outward pointing vectors for each component of their boundaries, we conclude again by computing the image of these bases under the maps θ.

In the case of a boundary component

H i 1 ,i 2 ,i 3 , j i 1 , θ(f ω j ) = f ω j j i 1 + 1 , θ(f ω j ) = f ω j+i 2 -1 θ(e ω j ) = -f ω i 1 +1 + f ω i 1 +j+1 .
The determinant against the basis f ω j then has value

det f ω j ν, θ(f ω j ), θ(e ω j ) = (i 2 -1)(-1) i 1 +i 2 i 3 .
Thus, we recover the (-1)

i 1 +i 2 i 3 J i 1 +1+i 3 × K i 2 oriented component of the boundary.
Finally, in the case of a boundary component H i 1 ,...,is , we compute that

θ(e ω j ) = -f ω i 1 + f ω i 1 +•••+i j+1 θ(f ωt j ) = f ω j+i 1 +•••+i t-1 .
This time,

det f ω j ν, θ(e ω j ), θ(f ω 1 j ), . . . , θ(f ωs j ) = -(s -1)(-1) B .
We nd again the -(-1)

B K s × J i 1 × • • • × J is oriented
component of the boundary, which concludes the proof of Proposition 5. 5. Signs and moduli spaces for ΩBAs-algebras and ΩBAs-morphisms This section completes section 3 by explicitly describing the two families of moduli spaces of metric trees T n (t) and CT n (t g ), working out the induced signs for ΩBAs-algebras and ΩBAs-morphisms and eventually constructing the morphisms of Propositions 2 and 3.

More precisely, we begin by recalling the denition of the operad ΩBAs from Markl-Shnider, using the formalism of orientations on broken stable ribbon trees. This establishes a direct link to the moduli spaces T n (t). Using the fact that the dual decomposition on the associahedron coincides with its ΩBAs decomposition, we give a new proof of the morphism of operads A ∞ → ΩBAs, that relies uniquely on polytopes and not on sign computations. We then attend to the denition of the operadic bimodule ΩBAs -Morph. This goes through a long and comprehensive study of the signs ensuing from orientations of the codimension 1 strata of the compactied moduli spaces CT n (t g ). We nally dene the morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph, using again solely the realizations of the multiplihedra from [MMV]. This is an opportunity to state a MacLane's coherence theorem encoded by the multiplihedra, while the classical MacLane's coherence theorem on monoidal categories is encoded by the associahedra (see subsection 5.3.4). 5.1. The operad ΩBAs. 5.1.1. Denition of the operad ΩBAs. The denition of the operad ΩBAs that we now lay out is the one given by Markl and Shnider in [MS06]. We only expose the material necessary to our construction, and refer to their paper for further details and proofs. In the rest of the section, the notation t stands for a stable ribbon tree, and the notation t br denotes a broken stable ribbon tree. Observe that a stable ribbon tree is a broken stable ribbon tree with 0 broken edge. As a result, all constructions performed for broken stable ribbon trees in the upcoming subsections will hold in particular for stable ribbon trees. Denition 19 ([MS06]). Given a broken stable ribbon tree t br , an ordering of t br is dened to be an ordering of its i nite internal edges e 1 , . . . , e i . Two orderings are said to be equivalent if one passes from one ordering to the other by an even permutation. An orientation of t br is then dened to be an equivalence class of orderings, and written ω := e 1 ∧ • • • ∧ e i . Each tree t br has exactly two orientations. Given an orientation ω of t br we will write -ω for the second orientation on t br , called its opposite orientation. Denition 20 ([MS06]). Consider the Z-module freely generated by the pairs (t br , ω) where t br is a broken stable ribbon tree and ω an orientation of t br . We dene the arity n space of operations ΩBAs(n) * to be the quotient of this Z-module under the relation

(t br , -ω) = -(t br , ω) .
A pair (t br , ω) where t br has i nite internal edges, is dened to have degree -i. The partial compositions are then

(t br , ω) • k (t br , ω ) = (t br • k t br , ω ∧ ω ) ,
where the tree t br • k t br is the broken ribbon tree obtained by grafting t br to the k-th incoming edge of t br , and the edge resulting from the grafting is broken. The dierential

∂ ΩBAs on ΩBAs(n) * is nally set to send an element (t br , e 1 ∧ • • • ∧ e i ) to i j=1 (-1) j ((t br /e j , e 1 ∧ • • • ∧ êj ∧ • • • ∧ e i ) -((t br ) j , e 1 ∧ • • • ∧ êj ∧ • • • ∧ e i )) ,
where t br /e j is the tree obtained from t by collapsing the edge e j and (t br ) j is the tree obtained from t br by breaking the edge e j . It can be checked that the collection of dg-Z-modules ΩBAs(n) * denes indeed an operad in dg -Zmod.

Choosing a distinguished orientation for every stable ribbon tree t ∈ SRT , this denition of the operad ΩBAs yields the denition as the quasi-free operad

F( , , , , • • • , SRT n , • • • ) ,
given in subsection 3.1.4. Our denition with the pairs (t, ω), albeit more tedious at rst sight, allows however for easier computations of signs.

Canonical orientations for the binary ribbon trees ([MS06]

). For a xed n 2, the set of binary ribbon trees BRT n can be endowed with a partial order that Tamari introduced in his thesis [START_REF] Tamari | Monoïdes préordonnés et chaînes de Malcev[END_REF]. Denition 21. The Tamari order on BRT n is the partial order generated by the covering relations

t 2 t 1 t 3 t 4 > t 2 t 1 t 3 t 4
where t 1 , t 2 , t 3 and t 4 are binary ribbon trees. The left-hand side in the above covering relation will be called a right-leaning conguration, and the right-hand side a left-leaning conguration. Hence given two trees t and t in BRT n , the inequality t t holds if and only one can pass from t to t by successive transformations of a right-leaning conguration into a left-leaning conguration. For example in the case of BRT 4 , we obtain the Hasse diagram in gure 14.

The Tamari poset has a unique maximal element and a unique minimal element, respectively given by the right-leaning and left-leaning combs, denoted t max and t min . Given moreover a binary ribbon tree t, its immediate neighbours are by denition the trees obtained from t by either transforming exactly one right-leaning conguration of t into a left-leaning conguration, or transforming exactly one left-leaning conguration of t into a right-leaning conguration. 

ω can := e 1 ∧ • • • ∧ e n-2 .
Using the Tamari order, we can now build inductively canonical orientations on all binary trees. We start at the maximal binary ribbon tree, and use the following rule on the covering relations

t 2 t 1 t 3 t 4 e ω = • • • ∧ e ∧ • • • -→ t 2 t 1 t 3 t 4 e -ω = • • • ∧ (-e) ∧ • • • ,
to dene the orientations of its immediate neighbours. We then repeat this rule while going down the Tamari poset until the minimal binary tree is reached. This process is consistent (see subsection 5.3.4), i.e. it does not depend on the path taken in the Tamari poset from the maximal binary tree to the binary tree whose orientation is being dened. A full example for BRT 4 is illustrated in gure 14. Denition 22 ([MS06]). The orientations obtained under this process are called the canonical orientations and written ω can . 5.1.3. The moduli spaces T n realize the operad ΩBAs. We explained in subsection 3.1.3 that the compactied moduli space T n comes with a ne cell decomposition, which is labeled by all broken stable ribbon trees with n incoming edges. Consider then a cell T n (t br ) ⊂ T n , where t br is a broken stable ribbon tree. An ordering of its nite internal edges e 1 , . . . , e i induces an isomorphism

T n (t br ) -→ [0, +∞] i ,
where the length l e j is seen as the j-th coordinate in [0, +∞] i . This ordering induces in particular an orientation on T n (t br ), by taking the image of the canonical orientation of ]0, +∞[ i under the isomorphism. We check that two orderings of t br dene the same orientation on T n (t br ) if and only if they are equivalent : in other words, an orientation of t br amounts to an orientation of T n (t br ).

Consider now the Z-module freely generated by the pairs (T n (t br ), choice of orientation ω on the cell T n (t br )) , where t br is a broken stable ribbon tree. The complex C cell - * (T n ) can simply be dened to be the quotient of this Z-module under the relation

-(T n (t br ), ω) = (T n (t br ), -ω) .
The dierential of an element (T n (t br ), ω) is moreover given by the classical cubical dierential on [0, +∞] i . Dening the cell chain complex in this way, it becomes tautological that : Proposition 6. The functor C cell - * sends the operad T n to the operad ΩBAs.

What's more, it can be easily seen that given a binary ribbon tree t, the cells labeled by the immediate neighbours to the tree t in the Tamari order are exactly the cells having a codimension 1 stratum in common with the cell T n (t). 5.1.4. The morphism of operads A ∞ → ΩBAs. The moduli space T n endowed with its A ∞ -cell decomposition is isomorphic to the Loday realization K n of the associahedron. In fact, tedious computations show that under this isomorphism, the ΩBAs-decomposition is sent to the dual subdivision of K n . See appendix C of [START_REF] Loday | Algebraic operads[END_REF] and an illustration in gure 7 for instance. The goal of this section is to prove the following proposition : Proposition 7. The map id : (T n ) A∞ → (T n ) ΩBAs is sent under the functor C cell - * to the morphism of operads A ∞ → ΩBAs acting as

m n -→ t∈BRTn (t, ω can ) .
For this purpose, we will work with the Loday realizations of the associahedra. We will show that taking the restriction of the orientation of K n chosen in section 4.3 to the top dimensional cells of its dual subdivision yields the canonical orientations on these cells in the T n viewpoint.

We begin by proving this statement for the cell labeled by the right-leaning comb t max . Consider the orientation on the cell T n (t max ) induced by the canonical ordering e 1 , . . . , e n-2 under the isomorphism

T n (t max ) -→ [0, +∞] n-2 .
The face of T n (t max ) associated to the breaking of the i-th edge corresponds to the face H i,n-i,0 when seen in the Loday polytope. An outward-pointing vector for the face H i,n-i,0 is moreover

ν i := (0, . . . , 0, 1 i , . . . , 1 n-2 ) ,
where coordinates are taken in the basis e ω j . The orientation dened by the canonical basis of [0, +∞] n-2 being exactly the one dened by the ordered list of the outwarding-point vectors to the +∞ boundary, it is sent to the orientation of the basis (ν 1 , . . . , ν n-2 ) in the Loday polytope. We then check that

det e ω j (ν j ) = 1 . le 1 l e 1 l e 2 l f 1 l f 2 l e 2 l f 2 l f 1 l e 1 le 2 = l f 2 = 0 ve 2 ve 1 ve 2 = -v f 2 ve 1 = v f 1 Figure 15.
Gluing the cells T n (t max ) and T n (t) along their common boundary : on this diagram, a vector of the form v e is the vector orienting the axis associated to the length l e Hence the orientation of K n and the one induced by the canonical orientation are the same for the cell T n (t max ).

As explained in the previous subsection, the cells labeled by the immediate neighbours of the right-leaning comb t max in the Tamari order are exactly the cells having a codimension 1 stratum in common with this cell. Choose an immediate neighbour t, and write e for the edge that has been collapsed to obtain the common codimension 1 stratum. We detail the process to obtain the induced orientation on T n (t) following gure 15. Gluing the cells T n (t max ) and T n (t) along their common boundary, we obtain a new copy of [0, +∞] n-2 which can be divided into two halves t max and t. We then orient the total space [0, +∞] n-2 as the t max half. Reading the induced orientation on the t half, it is the one obtained from the t max half by reversing the axis associated to the edge e. By construction, this orientation is exactly the one obtained by restricting the global orientation on K n to an orientation on T n (t).

Finally, going down the Tamari order, we can read the induced orientation on the top dimensional cells one immediate neighbour after another. And the rule to do this step-by-step process is exactly the one given in 5.1.2 on the covering relations. Hence, by construction, the global orientation on K n restricts to the canonical orientations on binary trees, which concludes the proof of Proposition 2. 5.2. The moduli spaces CT n (t br,g ). We give a detailed denition of the moduli spaces of gauged stable metric ribbon trees CT n (t g ), introduced in part 3.2. Building on these explicit realizations, we then thoroughly compute the signs appearing in the codimension 1 strata of the compactied moduli spaces CT n (t g ). This yields in particular the signs which will appear in subsection 5.3.1, in the denition of the dierential on the operadic bimodule ΩBAs -Morph. 5.2.1. Denition. In the rest of the section, we will write t br,g for a broken gauged stable ribbon tree, and t g for an unbroken gauged stable ribbon tree. Denition 23. We set to be the unique stable gauged tree of arity 1, and will call it the trivial gauged tree. We dene the underlying broken stable ribbon tree t br of a t br,g to be the ribbon tree obtained by rst deleting all the in t br,g , and then forgetting all the remaining gauges of t br,g . We refer moreover to a gauge in t br,g which is associated to a non-trivial gauged tree, as a non-trivial gauge of t br,g .

Figure 16. An instance of association t br,g → t br We now dene the moduli spaces CT n (t br,g ) in three steps. Consider a gauged stable ribbon tree t g whose gauge does not intersect any of its vertices. Locally at any vertex directly adjacent to the gauge, the intersection between the gauge and the edges of t corresponds to one of the following two cases

v v .
Write r for the root, the unique vertex adjacent to the outgoing edge. For a vertex v, we denote d(r, v) the distance separating it from the root : the sum of the lengths of the edges appearing in the unique non self-crossing path going from r to v. Associating lengths l e > 0 to all edges of t, we then associate the following inequalities to the two above cases

-λ > d(r, v) -λ < d(r, v ) .
Note that this set of inequalities amounts to seeing the gauge as going towards -∞ when going up, and towards +∞ as going down. The moduli space CT n (t g ) is then dened as

CT n (t g ) := (λ, {l e } e∈E(t) ) , λ ∈ R, l e > 0, -λ > d(r, v), -λ < d(r, v ) ,
where the set of inequalities on λ is prescribed by the gauged tree t g . Consider now a gauged stable ribbon tree t g whose gauge may intersect some of its vertices. To the two previous local pictures, one has to add the case v to which we associate the equality

-λ = d(r, v ) .
The moduli space CT n (t g ) is this time dened as

CT n (t g ) := (λ, {l e } e∈E(t) ) , λ ∈ R, l e > 0, -λ > d(r, v), -λ < d(r, v ), -λ = d(r, v ) ,
where the set of equalities and inequalities on λ is prescribed by the gauged tree t g .

Finally, consider a gauged broken stable ribbon tree t br,g , whose gauges may intersect some of its vertices. We order the non-trivial unbroken gauged ribbon trees appearing in t br,g from left to right, as

t 1,1 br t 1,i 1 br t 1 g t s,1 br t s,is br t s g t br
where t 1,1 br , . . . , t 1,i 1 br , . . . , t s,1 br , . . . , t s,is br and t br are broken stable ribbon trees, and the non-trivial unbroken gauged ribbon trees are represented in the picture as gauged corollae t 1 g , . . . , t s g for the sake of readability. We write moreover r 1 , . . . , r s and λ 1 , . . . , λ s for their respective roots and gauges. The moduli space CT n (t br,g ) is this time dened as

CT n (t br,g ) := (λ 1 , . . . , λ s , {l e } e∈E(t br ) ) , λ i ∈ R, l e > 0, -λ i > d(r i , v), -λ i < d(r i , v ), -λ i = d(r i , v ) ,
where the set of equalities and inequalities on λ i is prescribed by the unbroken gauged tree t i g . 5.2.2. Orienting the moduli spaces CT n (t br,g ). Denition 24. Dene an orientation on a broken gauged stable ribbon tree t br,g , to be an orientation e 1 ∧ • • • ∧ e i on t br .

We now explain how to orient the moduli spaces CT n (t br,g ), following the previous three steps approach. Begin with a gauged stable ribbon tree t g whose gauge does not intersect any of its vertices. An orientation ω on t g identies CT n (t g ) with a polyhedral cone

CT n (t g ) ⊂] -∞, +∞[×]0, +∞[ e(t) ,
dened by the inequalities -λ > d(r, v) and -λ < d(r, v ). This polyhedral cone has dimension e(t) + 1, and we choose to orient it as an open subset of ] -∞, +∞[×]0, +∞[ e(t) endowed with its canonical orientation.

Consider now a gauged stable ribbon tree t g whose gauge may intersect some of its vertices. This time, an orientation ω on t g identies CT n (t g ) with a polyhedral cone

CT n (t g ) ⊂] -∞, +∞[×]0, +∞[ e(t) ,
dened by the inequalities -λ > d(r, v) and -λ < d(r, v ), to which we add the equalities -λ = d(r, v ). If there are exactly j gauge-vertex intersections in the gauged tree t g , this polyhedral cone has dimension e(t) + 1j. Order now the j intersections from left to right

v 1 v j ,
and consider the tree t g obtained by replacing these intersections by

v 1 v j .
One can see t g as lying in the boundary of t g , by allowing the inequalities

-λ > d(r, v k ) to become equalities -λ = d(r, v k ) for k = 1, . . . , j.
This determines in particular j vectors ν k corresponding to the outwarding-pointing vectors to the boundary of the half-space -λ d(r, v k ). We nally choose to coorient (and hence orient) ) with the vectors (ν 1 , . . . , ν j ).

CT n (t g ) inside ] -∞, +∞[×]0, +∞[ e(t
Lastly, consider a gauged broken stable ribbon tree t br,g , whose gauges may intersect some of its vertices. Suppose there are exactly s non-trivial unbroken gauged trees t 1 g , . . . , t s g appearing in t br,g , which are ordered from left to right as previously. Suppose also that in each tree t i g , there are j i gauge-vertex intersections. An orientation ω on t br,g identies CT n (t br,g ) with a polyhedral cone

CT n (t br,g ) ⊂] -∞, +∞[ s ×]0, +∞[ e(t br ) ,
dened by the set of equalities and inequalities on the λ i , and where the factor ] -∞, +∞[ s corresponds to (λ 1 , . . . , λ s ). This polyhedral cone has dimension e(t br ) + s -s i=1 j i . Now, as in the previous paragraph, order all gauge-vertex intersections from left to right in every tree t i g , and construct a new tree t br,g . Seeing CT n (t br,g ) as lying in the boundary of CT n (t br,g ), this determines again a collection of outward-pointing vectors ν i,1 , . . . , ν i,j i for i = 1, . . . , s. We then coorient CT n (t br,g ) inside ] -∞, +∞[ s ×]0, +∞[ e(t br ) with the vectors (ν 1,1 , . . . , ν 1,j 1 , . . . , ν s,1 , . . . , ν s,js ). Denition 25. We dene CT n (t br,g , ω) to be the moduli space CT n (t br,g ) endowed with the previous orientation.

We moreover insist on the fact that for a given broken stable ribbon tree type t br all gauged trees t br,g whose underlying ribbon tree is t br form polyhedral cones ⊂] -∞, +∞[ s ×]0, +∞[ e(t br ) , and the collection of these polyhedral cones is a partition of ] -∞, +∞[ s ×]0, +∞[ e(t br ) . This is illustrated in gure 17. 5.2.3. Compactication. Recall from section 3.2 that each broken gauged ribbon tree t br,g can be seen as a broken two-colored ribbon tree t br,c . Using the two-colored metric trees viewpoint, the compactication of CT n (t br,c ) is dened by allowing lengths of internal edges to go towards 0 or +∞, where combinatorics are induced by the equalities dened by the colored vertices. The compactication rule for gauged metric trees is then simply dened by transporting the compactication rule from the two-colored viewpoint to the gauged viewpoint. We do not give further details here, as we won't need them in our upcoming computations.

For a gauged stable ribbon tree t g , the compactied moduli space CT n (t g ) has codimension 1 strata given by the four components (int-collapse), (gauge-vertex), (above-break) and (belowbreak). Choose an orientation ω for t g . As for the moduli spaces T n (t, ω), the question is now to determine which signs appear in the boundary of the compactication of the oriented moduli space CT n (t g , ω). We will inspect this matter in the four upcoming sections, computing the signs for each boundary component. Note that this time the compactication is much more elaborate than the cubical compactication of the T n (t, ω), and as a result we will not be able to write nice and elegant formulae. We will rather give recipes to compute the signs in each case. 5.2.4. The (int-collapse) boundary component. Consider a gauged stable ribbon tree t g . The (intcollapse) boundary corresponds to the collapsing of an internal edge that does not intersect the gauge of the tree t. Choosing an ordering ω = e 1 ∧ • • • ∧ e i , suppose that it is the p-th edge of t which collapses. Write moreover (t/e p ) g for the resulting gauged tree, and ω p := e 1 ∧ • • • ∧ e p ∧ • • • ∧ e i for the induced ordering on the edges of t/e p .

We begin by considering the case of a gauged tree t g whose gauge does not intersect any of its vertices. Suppose rst that the collapsing edge is located above the gauge. A neighbordhood of the boundary can then be parametrized as

] -1, 0] × CT n ((t/e p ) g , ω p ) -→ CT n (t g , ω) (δ, λ, l 1 , . . . , l p , . . . , l i ) -→ (λ, l 1 , . . . , l p := -δ, . . . , l i ) .
This map has sign (-1) p+1 , and the component CT n ((t/e p ) g , ω p ) consequently bears a (-1) p+1 sign in the boundary of CT n (t g , ω).

Suppose next that the collapsing edge is located below the gauge. We dene a parametrization of a neighborhood of the boundary

] -1, 0] × CT n ((t/e p ) g , ω p ) -→ CT n (t g , ω)
as follows : λ is sent to λ + δ ; if the edge e q is located directly below a gauge-edge intersection e q , then we send l q to l q -δ ; for all the other edges e q of (t/e p ), we send l q to l q ; nally, we set l p := -δ.

We check again that this map has sign (-1) p+1 . Hence, in general, for a gauged tree t g whose gauge does not intersect any of its vertices, the component CT n ((t/e p ) g , ω p ) bears a (-1) p+1 sign in the boundary of CT n (t g , ω).

Move on to the case of a gauged stable ribbon tree t g whose gauge may intersect some of its vertices. Order the j gauge-vertex intersections from left to right as depicted in subsection 5.2.2. We are going to distinguish three cases, but will eventually end up with the same sign in each case. Suppose to begin with that the collapsing edge e p is located above the gauge, and is not adjacent to a gauge-vertex intersection. Then, denoting (t/e p ) g the tree obtained via the same process as t g , we check that the rst parametrization introduced in this section

Φ : ] -1, 0] × CT n ((t/e p ) g , ω p ) -→ CT n (t g , ω) ,
restricts to a parametrization of a neighborhood of the boundary

φ : ] -1, 0] × CT n ((t/e p ) g , ω p ) -→ CT n (t g , ω) .
We also check that Φ sends the outward-pointing vectors ν (t/ep) k associated to the gauge-vertex intersections in (t/e p ) g , to the outward-pointing vectors ν t k associated to the gauge-vertex intersections in t g . Computing the sign of φ amounts to computing the sign of Φ and then exchanging the direction δ with the outward-pointing vectors ν t 1 , . . . , ν t j . The total sign is hence (-1) p+1+j . Suppose, as second case, that the collapsing edge e p is located above the gauge, and directly adjacent to a gauge-vertex intersection. We cannot use the trees (t/e p ) g and t g as in the last paragraph, as the gauge would then cut the edge e p in the gauged tree t g . A small change is required. We form the tree t g as the tree t g , but instead of moving the gauge up at the vertex v k , we move it down. The tree (t/e p ) g is dened similarly. Applying the same argument as previously, we compute again a (-1) p+1+j sign for the boundary.

Finally, suppose that the collapsing edge e p is located below the gauge. It may this time be directly adjacent to a gauge-vertex intersection. Introducing again the trees (t/e p ) g and t g , and using this time the second parametrization introduced in this section, we nd a (-1) p+1+j sign for the boundary. Note that there is a small adjustment to make in the proof for the outward-pointing vectors. Indeed, the outward-pointing vector ν (t/ep) k gets again sent to the outward-pointing vector ν t k , except if the edge e p is located in the non-self crossing path going from the vertex v k intersected by the gauge to the root. For such an intersection, the vector ν (t/ep) k is sent to ν t ke p by the map Φ, where e p is the positive direction for the length l p . Though the vector ν t ke p is not equal to 5.2.5. The (gauge-vertex) boundary component. Consider a gauged stable ribbon tree t g whose gauge may intersect some of its vertices. We order the gauge-vertex intersections from left to right as depicted in subsection 5.2.2. The (gauge-vertex) boundary corresponds to the gauge crossing exactly one additional vertex of t. We suppose that this intersection takes place between the k-th and k + 1th intersections of t g . We write moreover t 0 g for the resulting gauged tree, and introduce again the tree t g of subsection 5.2.2. Proposition 9. Suppose the crossing results from a move .

ν t k , it
Then the boundary component CT n (t 0 g , ω) has sign (-1) j+k in the boundary of CT n (t g , ω).

Indeed the orientation induced on CT n (t 0 g , ω) in the boundary of CT n (t g , ω), is dened by the coorientation (ν 1 , . . . , ν k , ν, ν k+1 , . . . , ν j , ν) inside CT n (t g , ω). The orientation dened by ω on CT n (t 0 g , ω), is the one dened by the coorientation (ν 1 , . . . , ν k , ν, ν k+1 , . . . , ν j ) inside CT n (t g , ω). Hence, these two orientations dier by a (-1) j+k sign.

Proposition 10. Suppose the crossing results from a move . Then the boundary component CT n (t 0 g , ω) has sign (-1) j+k+1 in the boundary of CT n (t g , ω).

Again the orientation induced on CT n (t 0 g , ω) in the boundary of CT n (t g , ω), is dened by the coorientation (ν 1 , . . . , ν k , ν, ν k+1 , . . . , ν j , -ν) inside CT n (t g , ω). The orientation dened by ω on CT n (t 0 g , ω), is the one dened by the coorientation (ν 1 , . . . , ν k , ν, ν k+1 , . . . , ν j ) inside CT n (t g , ω). Hence, these two orientations dier by a (-1) j+k+1 sign. 5.2.6. The (above-break) boundary component. The (above-break) boundary corresponds either to the breaking of an internal edge of t, that is located above the gauge or intersects the gauge, or, when the gauge is below the root, to the outgoing edge breaking between the gauge and the root. Choosing an ordering ω = e 1 ∧ • • • ∧ e i , suppose that it is the p-th edge of t which breaks and write moreover (t p ) g for the resulting broken gauged tree.

We begin by considering the case of a gauged tree t g whose gauge does not intersect any of its vertices. Suppose rst that the breaking edge does not intersect the gauge. A neighborhood of the boundary can then be parametrized as

]0, +∞] × CT n ((t p ) g , ω p ) -→ CT n (t g , ω) (δ, λ, l 1 , . . . , l p , . . . , l i ) -→ (λ, l 1 , . . . , l p := δ, . . . , l i ) .
This map has sign (-1) p . In the case when the breaking edge does intersect the gauge, a neighbordhood of the boundary can be parametrized as

]0, +∞] × CT n ((t p ) g , ω p ) -→ CT n (t g , ω) (δ, λ, l 1 , . . . , l p , . . . , l i ) -→ (λ, l 1 , . . . , l p := δ -λ, . . . , l i ) ,
where we set this time l p := δλ in order for the inequality -λ < d(r, v ) to hold in this case. This parametrization again has sign (-1) p .

The case of a gauged tree t g whose gauge may intersect some of its vertices is treated as in subsection 5.2.4. We check again that the parametrization maps Φ introduced in the previous paragraph, restrict to parametrizations of a neighborhood of the boundary

]0, +∞] × CT n ((t p ) g , ω p ) -→ CT n (t g , ω) ,
and that Φ sends moreover the coorientation of CT n ((t p ) g , ω p ) to the coorientation of CT n (t g , ω). These coorientations introduce as previously an additional (-1) j sign.

Finally, suppose that the gauge of t g intersects its outgoing edge and compute the sign of the (above-break) boundary component corresponding to the gauge going towards +∞. A parametrization of a neighborhood of the boundary is simply given by

]0, +∞] × CT n ((t 0 ) g , ω p ) -→ CT n (t g , ω) (δ, l 1 , . . . , l i ) -→ (λ := δ, l 1 , . . . , l i ) .
This map has sign 1.

Proposition 11. For a gauged stable ribbon tree t g whose gauge intersects j vertices, the boundary component CT n ((t p ) g , ω p ) corresponding to the breaking of the p-th edge of t bears a (-1) p+j sign in the boundary of CT n (t g , ω), where we set e 0 for the outgoing edge of t. 5.2.7. The (below-break) boundary component. The (below-break) boundary corresponds to the breaking of edges of t that are located below the gauge or intersect it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root. Write (t br ) g for the resulting broken gauged tree. Consider now an ordering ω = e 1 ∧ • • • ∧ e i of t g . We order again from left to right the s non-trivial unbroken gauged trees t 1 g , . . . , t s g of (t br ) g , and denote moreover e j 1 , . . . , e js the internal edges of t whose breaking produce the trees t 1 g , . . . , t s g . Beware that we do not necessarily have that j 1 < • • • < j s . We assume in the next paragraphs that j 1 = 1, . . . , j s = s, and will explain how to deal with the general case at the end of this section. We set to this extent

ω br := e s+1 ∧ • • • ∧ e i .
We introduce two more pieces of notation. We will denote E ∞ the set of incoming edges of t which are crossed by the gauge and correspond to the trivial gauged trees in (t br ) g . In other words, the set of edges which are breaking in the (below-break) boundary component associated to (t br ) g is E ∞ ∪ {e j 1 , . . . , e js }. For an edge e, internal or external, we will moreover write w e for the vertex adjacent to e which is closest to the root r of t, and set w u := w eu for u = 1, . . . , s.

Start by considering the case of a gauged tree t g whose gauge does not intersect any of its vertices. Suppose rst that among the breaking internal edges, none of them intersects the gauge. We dene a parametrization of a neighbourhood of the boundary

]0, +∞] × CT n ((t br ) g , ω br ) -→ CT n (t g , ω)
by sending (δ, λ 1 , . . . , λ s , l s+1 , . . . , l i ) to the element of CT n (t g , ω) whose entries are dened as

λ := -δ + s u=1 (λ u -d(r, w u )) - e∈E∞ d(r, w e ) , l v := δ + u=1,...,s u =v (-λ u + d(r, w u )) + e∈E∞ d(r, w e )
for v = e 1 , . . . , e s , l k := l k for k = s + 1, . . . , i . We compute that this map has sign -1.

Suppose now that among the breaking internal edges of t g , some of them may intersect the gauge. We denote N ∩ ⊂ {1, . . . , s} for the set of indices corresponding to the breaking internal edges which intersect the gauge, and N ∅ ⊂ {1, . . . , s} for the set of indices corresponding to the breaking of internal edges which do not intersect the gauge. We dene this time a parametrization of a neighbourhood of the boundary

]0, +∞] × CT n ((t br ) g , ω br ) -→ CT n (t g , ω)
by sending (δ, λ 1 , . . . , λ s , l s+1 , . . . , l i ) to the element of CT n (t g , ω) whose entries are set to be

λ := -δ + u∈N ∅ (λ u -d(r, w u )) - u∈N∩ d(r, w u ) - e∈E∞ d(r, w e ) , l v := δ + u∈N ∅ u =v (-λ u + d(r, w u )) + u∈N∩ d(r, w u ) + e∈E∞ d(r, w e ) for v ∈ N ∅ , l v := δ + λ v + u∈N ∅ (-λ u + d(r, w u )) + u∈N∩ u =v d(r, w u ) + e∈E∞ d(r, w e ) for v ∈ N ∩ , l k := l k for k = s + 1, . . . , i .
We compute that this map has again sign -1.

Consider now the case of a gauged tree t g whose gauge intersects j of its vertices. We check as in the previous sections that the parametrization maps introduced in the previous paragraphs, restrict to parametrizations of a neighborhood of the boundary

]0, +∞] × CT n ((t br ) g , ω br ) -→ CT n (t g , ω) ,
and that these maps send moreover the coorientation of CT n ((t br ) g , ω br ) to the coorientation of CT n (t g , ω). These coorientations introduce an additional (-1) j sign.

We have thus computed the sign of the (below-break) boundary when j 1 = 1, . . . , j s = s. Now, consider the general case where we dot no necessarily have that j 1 = 1, . . . , j s = s. We denote ε(j 1 , . . . , j s ; ω) the sign obtained after modifying ω by moving e j k to the k-th spot in ω, and write ω 0 for the newly obtained orientation on t g . Twisting the orientation on CT n (t g , ω) by (-1) ε(j 1 ,...,js;ω) amounts to identifying it with CT n (t g , ω 0 ). We can apply the previous constructions and nd the desired sign for the associated (below-break) component.

Proposition 12. For a gauged stable ribbon tree t g whose gauge intersects j vertices, the boundary component CT n ((t br ) g , ω br ) corresponding to the breaking of the internal edges e j 1 , . . . , e js of t bears a (-1) ε(j 1 ,...,js;ω)+1+j sign in the boundary of CT n (t g , ω).

The operadic bimodule

ΩBAs -Morph. 5.3.1. Denition of the operadic bimodule ΩBAs -Morph. We choose to dene the operadic bimodule ΩBAs -Morph with the formalism of orientations on gauged trees, so that it be compatible with the denition of Markl-Shnider for the operad ΩBAs. As before, t br,g will stand for a broken gauged stable ribbon tree, while t g will denote an unbroken gauged stable ribbon tree. We also respectively write t br and t for the underlying stable ribbon trees. Denition 26 (Spaces of operations and action-composition maps). Consider the Z-module freely generated by the pairs (t br,g , ω). We dene the arity n space of operations ΩBAs -Morph(n) * to be the quotient of this Z-module under the relation

(t br,g , -ω) = -(t br,g , ω) .
An element (t br,g , ω) where t br,g has e(t br ) nite internal edges and g non-trivial gauges which intersect j vertices of t br is dened to have degree j -(e(t br ) + g). The operad ΩBAs then acts on ΩBAs -Morph as follows

(t br,g , ω) • i (t br , ω ) = (t br,g • i t br , ω ∧ ω ) , µ((t br , ω), (t 1 br,g , ω 1 ), . . . , (t s br,g , ω s )) = (-1) † (µ(t br , t 1 br,g . . . , t s br,g ), ω ∧ ω 1 ∧ • • • ∧ ω s ) ,
where the tree t br,g • i t br is the gauged broken ribbon tree obtained by grafting t br to the i-th incoming edge of t br,g and µ(t br , t 1 br,g . . . , t s br,g ) is the gauged broken ribbon tree dened by grafting each t j br,g to the j-th incoming edge of t br . Writing g i for the number of non-trivial gauges and j i for the number of gauge-vertex intersections of t i br,g , i = 1, . . . , s, and setting t 0 br := t br and g 0 = j 0 = 0, † := s i=1

g i i-1 l=0 e(t l br ) + s i=1 j i i-1 l=0 (e(t l br ) + g l -j l ) , or equivalently † = s i=1 g i |t br | + i-1 l=1 |t l br | + s i=1 j i |t br | + i-1 l=1 |t l br,g | .
Choosing a distinguished orientation for every gauged stable ribbon tree t g ∈ SCRT , this denition of the operadic bimodule ΩBAs -Morph amounts to dening it as the free operadic bimodule in graded Z-modules

F ΩBAs,ΩBAs ( , , , , • • • , SCRT n , • • • ) .
It remains to dene a dierential on the generating operations (t g , ω) to recover the denition given in subsection 3.2.4. Denition 27 (Dierential). The dierential of a gauged stable ribbon tree (t g , ω) is dened as the signed sum of all codimension 1 contributions

∂(t g , ω) = ±(int -collapse) + ±(gauge -vertex) + ±(above -break) + ±(below -break) ,
where the signs are as computed in Propositions 8 to 12. For instance, choosing the ordering e 1 ∧ e 2 on e1 e2

, the signs in the computation of subsection 3.2.4 are

∂ , e 1 ∧ e 2 = , e 1 ∧ e 2 - , e 1 ∧ e 2 - , e 1 ∧ e 2 +   , e 1   -   , e 2   - , ∅ .

The moduli spaces

CT n realize the operadic bimodule ΩBAs -Morph. We only have to check that the signs for the action-composition maps of ΩBAs -Morph are indeed the ones determined by the moduli spaces CT n , to conclude that the moduli spaces CT n endowed with their ne cell decomposition realize the operadic bimodule ΩBAs -Morph under the functor C cell - * . The computation for • i is straighforward. Consider now the map

µ : T (t br , ω) × CT (t 1 br,g , ω 1 ) × • • • × CT (t s br,g , ω s ) -→ CT (µ(t br , t 1 br,g . . . , t s br,g ), ω ∧ ω 1 ∧ • • • ∧ ω s ) (L ω , (Λ 1 , L ω 1 ), . . . , (Λ s , L ωs )) -→ (Λ 1 , . . . , Λ s , L ω , L ω 1 , . . . , L ωs ) ,
where L ω i stands for the list of lengths of t i br according to the ordering ω i , and Λ i := (λ i,1 , . . . , λ i,g i ) stands for the list of non-trivial gauges of t i br,g . We compute that, in the absence of gauge vertex intersections, this map has sign

(-1) s i=1 g i i-1 l=0 e(t l br ) .
Assuming that there are some gauge-vertex intersections, the combinatorics of coorientations introduce an additional sign

(-1) s i=1 j i i-1 l=0 (e(t l br )+g l -j l ) .
In total, we recover the sign (-1) † , which concludes the proof.

HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY I 51 5.3.3. Canonical orientations for the gauged binary ribbon trees. For a xed n 2, the set of gauged binary ribbon trees CBRT n can be endowed with a partial order, inspired by the Tamari order on BRT n . It is introduced in [MMV]. Denition 28 ( [MMV]). The Tamari order on CBRT n is the partial order generated by the covering relations

t 1 t 2 t 3 > t 1 t 2 t 3 (A)
where t 1 , t 2 and t 3 are binary ribbon trees,

t 2 g t 1 g t 3 g t > t 2 g t 1 g t 3 g t (B.1)
where t 1 g , t 2 g , t 3 g are gauged binary ribbon trees and t is a binary ribbon tree, and

t 2 t 1 t 3 t g > t 2 t 1 t 3 t g (B.2)
where t 1 , t 2 , t 3 are binary ribbon trees and t g is a gauged binary ribbon tree. For example in the case of CBRT 4 , we obtain the Hasse diagram in gure 18. This Tamarilike poset has a unique maximal element and a unique minimal element, respectively given by the right-leaning comb whose gauge intersects the outgoing edge, and the left-leaning comb whose gauge intersects all incoming edges. The canonical orientation on the maximal gauged binary tree is dened as e1 en-2

ω can := e 1 ∧ • • • ∧ e n-2 .
Using this Tamari-like order, we can now build inductively canonical orientations on all gauged binary trees. We start at the maximal gauged binary tree, and transport the orientation ω can to its immediate neighbours as follows : the immediate neighbours of t max g obtained under the covering relation (A) are endowed with the orientation ω can , while the ones obtained under the covering relations (B) are endowed with the orientation -ω can . We then repeat this operation while going down the poset until the minimal gauged binary tree is reached. This process is consistent (see next section), i.e. it does not depend on the path taken in the poset from t max g to the gauged binary tree whose orientation is being dened. A full example for CBRT 3 is illustrated in gure 18. Denition 29. The such obtained orientations will again be called the canonical orientations and written ω can . They coincide in fact with the canonical orientations on the underlying binary trees. 5.3.4. MacLane's coherence. We stated in subsections 5.1.2 and 5.3.3 that our process of transforming orientations is consistent, i.e. it does not depend on the path taken in the Tamari poset from the maximal tree to the tree whose orientation is being dened. In fact, our rules to transform orientations under the covering relations enable us to transport the orientation ω of any (gauged) tree t (g) to any (gauged) tree t (g) , along a path in the Tamari poset. The following result then holds : for a given oriented (gauged) tree (t (g) , ω), any two paths in the Tamari poset from t (g) to t (g) yield the same orientation on t (g) .

As pointed out by Markl and Shnider in [MS06], an adaptation of the proof of MacLane's coherence theorem shows that it is enough to prove that the diagram described by K 4 commutes to conclude that this statement holds for BRT n . And this is the case as shown in gure 14. In the case of CBRT n , an adaptation of these arguments shows this time that it is enough to prove that the diagrams described by K 4 and J 3 commute in order to conclude. This is again the case.

A conceptual explanation for these two "coherence theorems" can be given as follows. In the case of BRT n , a path between two trees t and t in the Tamari poset corresponds to a path in the 1-skeleton of K n . The faces of the 2-skeleton of K n consist moreover of the products

K 2 × • • • × K 2 × K 3 × K 2 × • • • × K 2 × K 3 × K 2 × • • • × K 2 , K 2 × • • • × K 2 × K 4 × K 2 × • • • × K 2 .
The rst type of face corresponds to a square diagram that tautologically commutes, while the second type of face corresponds to the K 4 diagram. Given now two paths from t to t , they delineate a family of faces in the 2-skeleton of K n . Translating this into algebra, as all faces translate into commuting diagrams, the two paths produce the same orientation. 5.3.5. The morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph. The moduli space CT n endowed with its A ∞ -cell decomposition is isomorphic to the Forcey-Loday realization J n of the multiplihedron. Forcey shows in [For08] that under this isomorphism, the ΩBAs-decomposition is sent to the dual subdivision of J n . This is illustrated on gure 11 for instance. The goal of this section is again to show that : Proposition 13. The map id :

(CT n ) A∞ → (CT n ) ΩBAs is sent under the functor C cell - * to the morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph acting as f n -→ tg∈CBRTn (t g , ω can ) .
We prove that taking the restriction of the orientation of J n chosen in section 4.4 to the top dimensional cells of its dual subdivision, yields the canonical orientations on these cells in the CT n viewpoint. We follow in this regard the exact same line of proof as in subsection 5.1.4.

This statement is at rst shown for the maximal gauged binary tree t max g , the right-leaning comb whose gauge crosses the outgoing edge. The orientation on the cell CT n (t max g ) induced by the canonical orientation e 1 ∧ • • • ∧ e n-2 denes an isomorphism

CT n (t max g ) -→ [0, +∞] × [0, +∞] n-2 ,
where the factor [0, +∞] corresponds to the gauge λ, and the factor [0, +∞] n-2 to the lengths of the inner edges. The face of CT n (t max g ) associated to the gauge going to +∞ corresponds to the face H 0,n,0 when seen in the Forcey-Loday polytope, while the face associated to the breaking of the i-th edge corresponds to the face H i,n-i,0 . An outward-pointing vector for the face H i,n-i,0 is moreover

ν i := (0, . . . , 0, 1 i+1 , . . . , 1 n-1 ) ,
where coordinates are taken in the basis f ω j . The orientation dened by the canonical basis of [0, +∞]×[0, +∞] n-2 is exactly the one dened by the ordered list of the outward-pointing vectors to the +∞ boundary. This orientation is thus sent to the orientation dened by the basis (ν 0 , . . . , ν n-2 ) in the Forcey-Loday polytope. It remains to check that

det f ω j (ν j ) = 1 .
As a result, the orientation induced by J n and the one dened by the canonical orientation coincide for the cell CT n (t max g

).

The rest of the proof is a mere adaptation of the proof of subsection 5.1.4. The cells labeled by the gauged binary trees which are immediate neighbours of the maximal gauged binary tree, are exactly the ones having a codimension 1 stratum in common with CT n (t max g ). Choosing one such tree t g , and gluing the cells CT n (t g ) and CT n (t max g ) along their common boundary, one can read the induced orientation on CT n (t g ). In the case when the immediate neighbour t g is obtained under the covering relation (A), the cells CT n (t g ) and CT n (t max g ) are in fact both oriented as subspaces of ] -∞, +∞[×]0, +∞[ n-2 . In the case when the immediate neighbour t g is obtained under the covering relations (B), we send the reader back to subsection 5.1.4 for explanations on why a -1 twist of the orientation has to be introduced. In each case, the induced orientation is exactly the canonical orientation on CT n (t g ). This argument can now be repeated going down the poset, and the induced orientation will always coincide with the canonical orientation on the cell, which concludes the proof of Proposition 3.

Part 2 Geometry 1. A ∞ and ΩBAs-algebra structures on the Morse cochains Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. Following [Hut08], the Morse cochains C * (f ) form a deformation retract of the singular cochains on M . The cup product naturally endows the singular cochains C * sing (M ) with a dg-algebra structure. The homotopy transfer theorem then ensures that it can be transferred to an A ∞ -algebra structure on the Morse cochains C * (f ). The following question then naturally arises. The dierential on the Morse cochains is dened by a count of moduli spaces of gradient trajectories connecting critical points of f . Is it possible to dene higher multiplications m n on C * (f ) by a count of moduli spaces such that they t in a structure of A ∞ -algebra ?

We have seen in the previous part that the polytopes encoding the operad A ∞ are the associahedra and that they can be realized as the compactied moduli spaces of stable metric ribbon trees. A natural candidate would thus be an interpretation of metric ribbon trees in Morse theory. A naive approach would be to dene trees each edge of which corresponds to a Morse gradient trajectory as in gure 19. These moduli spaces are however not well dened, as two trajectories coming from two distinct critical points cannot intersect. A second problem is that moduli spaces of trajectories issued from the same critical point do not intersect transversely. In his article [Abo11], Abouzaid bypasses this problem by perturbing the equation around each vertex, so that a transverse intersection can be achieved. See also [Mes18]. This is illustrated in gure 19.

x 1 -∇f -∇f x 3 -∇f y -∇f x 2 -∇f
Perturbing the gradient vector eld around each vertex of the tree

x 1 -∇f -∇f x 3 -∇f y -∇f x 2 -∇f -∇f + X -∇f + X Figure 19
Trees obtained in this way will be called perturbed Morse gradient trees. Let t be a stable ribbon tree type and y, x 1 , . . . , x n a collection of critical points of the Morse function f . We prove in this section that for a generic choice of perturbation data X t on the moduli space T n (t), the moduli space of perturbed Morse gradient trees modeled on t and connecting x 1 , . . . , x n to y, denoted T t (y; x 1 , . . . , x n ), is an orientable manifold (Proposition 15). Under some additional generic assumptions on the choices of perturbation data X t , these moduli spaces are compact in the 0-dimensional case, and can be compactied to compact manifolds with boundary in the 1-dimensional case (Theorems 7 and 8). We are nally able to dene operations on the Morse cochains C * (f ) by counting the 0-dimensional moduli spaces of Morse gradient trees : these operations dene an ΩBAs-algebra structure on C * (f ) (Theorem 9). Our constructions are carried out using the formalism introduced in [Abo11] and some terminology of [Mes18]. Technical details are moreover postponed to sections 3 and 4.

Note that in Floer theory, A ∞ -structures arise from the fact that moduli spaces of closed pointed disks naturally yield the A ∞ -cell decompositions of the associahedra. This is not the case in our situation, where it is the ΩBAs-cell decompositions that naturally arise. 1.1. Conventions. We refer to section 4.2 for additional details on the moduli spaces introduced in this section. We will study Morse theory of the Morse function f : M → R using its negative gradient vector eld -∇f . Denote d the dimension of the manifold M and φ s the ow of -∇f . For a critical point x dene its unstable and stable manifolds

W U (x) := {z ∈ M, lim s→-∞ φ s (z) = x} W S (x) := {z ∈ M, lim s→+∞ φ s (z) = x} .
Their dimensions are such that dim(W U (x)) + dim(W S (x)) = d. We then dene the degree of a critical point x to be |x| := dim(W S (x)). This degree is often referred to as the coindex of x in the litterature.

We will moreover work with Morse cochains. For two critical point x = y, dene

T (y; x) := W S (y) ∩ W U (x)/R
to be the moduli space of negative gradient trajectories connecting x to y. Denote moreover T (x; x) = ∅. Under the Morse-Smale assumption on f and the Riemannian metric on M , for x = y the moduli space T (y; x) has dimension dim (T (y;

x)) = |y| -|x| -1. The Morse dierential ∂ M orse : C * (f ) → C * (f )
is then dened to count descending negative gradient trajectories

∂ M orse (x) := |y|=|x|+1 #T (y; x) • y .
1.2. Perturbed Morse gradient trees. Denition 30 ([Abo11]). Let T := (t, {l e } e∈E(t) ) be a metric tree, where {l e } e∈E(t) are the lengths of its internal edges. A choice of perturbation data on T consists of the following data : (i) a vector eld

[0, l e ] × M -→ Xe T M ,
that vanishes on [1, l e -1], for every internal edge e of t ; (ii) a vector eld

[0, +∞[×M -→ Xe 0 T M ,
that vanishes away from [0, 1], for the outgoing edge e 0 of t ; (iii) a vector eld

] -∞, 0] × M -→ Xe i T M ,
that vanishes away from [-1, 0], for every incoming edge e i (1 i n) of t.
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Note that when l e 2, the vanishing condition on [1, l e -1] is empty, that is we do not require any specic vanishing property for X e . For brevity's sake we will write D e for all segments [0, l e ] as well as for all semi-innite segments ] -∞, 0] and [0, +∞[ in the rest of the paper. Denition 31 ([Abo11]). A perturbed Morse gradient tree T M orse associated to (T, X) is the data for each edge e of t of a smooth map γ e : D e → M such that γ e is a trajectory of the perturbed negative gradient -∇f + X e , i.e. γe (s) = -∇f (γ e (s)) + X e (s, γ e (s)) , and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree T . Choosing perturbation data X for this metric tree, we have that

φ 1,X = φ l 1 g,X • φ l 2 f,X • φ 1 e 1 ,X , φ 2,X = φ l 1 g,X • φ l 2 f,X • φ 1 e 2 ,X , φ 3,X = φ l 1 g,X • φ 1 e 3 ,X and φ 4,X = φ 1 e 4 ,X
A perturbed Morse gradient tree T M orse associated to (T, X) is determined by the data of the time -1 points on its incoming edges plus the time 1 point on its outgoing edge. Indeed, for each edge e of t, we write φ e,X for the ow of -∇f + X e . We moreover dene for every incoming edge e i (1 i n) of T , the dieomorphism φ i,X to be the composition of all ows obtained by following the time -1 point of the metric tree on e i along the only non-self crossing path connecting it to the root. We also set φ 0,X for the ow of φ e 0 ,X at time -1, where e 0 is the outgoing edge of t. This is depicted on gure 20. Setting

Φ T,X : M × • • • × M -→ φ 0,X ו••×φ n,X M × • • • × M ,
and ∆ for the thin diagonal of

M × • • • × M , it is then clear that : Proposition 14 ([Abo11]
). There is a one-to-one correspondence perturbed Morse gradient trees associated to (T, X)

←→ (Φ T,X ) -1 (∆) .
The vector elds on the external edges are equal to -∇f away from a length 1 segment, hence the trajectories associated to these edges all converge to critical points of the function f . For critical points y and x 1 , . . . , x n , the map Φ T,X can be restricted to

W S (y) × W U (x 1 ) × • • • × W U (x n ) ,
such that the inverse image of the diagonal yields all perturbed Morse gradient trees associated to (T, X) connecting x 1 , . . . , x n to y.

1.3. Moduli spaces of perturbed Morse gradient trees. Recall that E(t) stands for the set of internal edges of t, and E(t) for the set of all its edges. We previously saw that a choice of perturbation data on a metric ribbon tree T := (t, {l e } e∈E(t) ) is the data of maps X T,f :

D f × M -→ T M , for every edge f ∈ E(t) of t. Dene the cone C f ⊂ T n (t) × R R e(t)+1 to be (i) {((l e ) e∈E(t) , s) such that 0 s l f } if f is an internal edge ; (ii) {((l e ) e∈E(t) , s) such that s 0} if f is an incoming edge ; (iii) {((l e ) e∈E(t)
, s) such that s 0} if f is the outgoing edge. Then a choice of perturbation data for every metric ribbon tree in T n (t) yields a map

X t,f : C f × M -→ T M ,
for every edge f of t. This choice of perturbation data is said to be smooth if all these maps are smooth. Denition 32. Let X t be a smooth choice of perturbation data on T n (t). For critical points y and x 1 , . . . , x n , we dene the moduli space

T Xt t (y; x 1 , . . . , x n ) := perturbed Morse gradient trees associated to (T, X T )
and connecting x 1 , . . . , x n to y, for T ∈ T n (t)

.

Introduce now the map

φ Xt : T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1 ,
whose restriction to every T ∈ T n (t) is as dened previously :

Proposition 15.

(i) The moduli space T Xt t (y; x 1 , . . . , x n ) can be rewritten as

T Xt t (y; x 1 , . . . , x n ) = φ -1 Xt (∆) ,
where ∆ is the thin diagonal of M ×n+1 . (ii) Given a choice of perturbation data X t making φ Xt transverse to the diagonal ∆, the moduli space T Xt t (y; x 1 , . . . , x n ) is an orientable manifold of dimension

dim (T t (y; x 1 , . . . , x n )) = e(t) + |y| - n i=1 |x i | .
(iii) Choices of perturbation data X t such that φ Xt is transverse to ∆ exist.

Item (i) is straightforward and item (ii) stems from the fact that if φ Xt transverse to ∆, the moduli spaces T Xt t (y; x 1 , . . . , x n ) are manifolds of codimension

codim (T t (y; x 1 , . . . , x n )) = codim M ×n+1 (∆) = nd ,
where d := dim(M ). Note that we have chosen to grade the Morse cochains using the coindex in order for this convenient dimension formula to hold. We refer to sections 3 for details on item (iii). that have dimension 1 to 1-dimensional manifolds with boundary. They are dened as the inverse image in

T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) of the diagonal ∆ under φ Xt .
The boundary components in the compactication should hence come from those of T n (t), of the W U (x i ), and of W S (y) : that is they will respectively come from internal edges of the perturbed Morse gradient tree collapsing, or breaking at a critical point (boundary of T n (t)), its semi-innite incoming edges breaking at a critical point (boundary of W U (x i )) and its semi-innite outgoing edge breaking at a critical point (boundary of W S (y)). Some of these phenomena are represented on gure 21.

x 1 x 3 y z x 2 z x 3 y x 1 x 2 Figure 21
. Two examples of perturbed Morse gradient trees breaking at a critical point Choose smooth perturbation data X t for all t ∈ SRT i , 2 i n. We denote X n := (X t ) t∈SRTn and call it a choice of perturbation data on the moduli space T n . We construct the boundary of the compactication of the moduli space T Xt t (y; x 1 , . . . , x n ) by using the perturbation data (X t ) t∈SRT i 1 i n . It is given by the spaces (i) corresponding to an internal edge collapsing (int-collapse) :

T X t t (y; x 1 , . . . , x n )
where t ∈ SRT n are all the trees obtained by collapsing exactly one internal edge of t ; (ii) corresponding to an internal edge breaking (int-break) :

T Xt 1 t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T Xt 2 t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ),
where t 2 is seen to lie above the i 1 + 1-incoming edge of t 1 ; (iii) corresponding to an external edge breaking (Morse) :

T (y; z) × T Xt t (z; x 1 , . . . , x n ) and T Xt t (y; x 1 , . . . , z, . . . , x n ) × T (z; x i ) .
While the (Morse) boundary simply comes from the fact that external edges are Morse trajectories away from a length 1 segment, the analysis for the (int-collapse) and (int-break) boundaries requires to rene our denitions of perturbation data. It namely appears here why we had to choose more perturbation data than X t , as they will appear in the boundary of the compactied moduli space.

We begin by tackling the conditions coming with the (int-collapse) boundary. Let t be a stable ribbon tree type and consider a choice of perturbation data on T n (t) : it is a choice of perturbation data X T for every T ∈ T n (t) ]0, +∞[ e(t) . Denote coll(t) ⊂ SRT n the set of all trees obtained by collapsing internal edges of t. A choice of perturbation data (X t ) t ∈coll(t) then corresponds to a choice of perturbation data X T for every T ∈ [0, +∞[ e(t) . Following section 1.3, such a choice of perturbation data is equivalent to a map

Xt,f : Cf × M -→ T M ,
for every edge f of t, where Cf ⊂ [0, +∞[ e(t) ×R is dened in a similar fashion to C f . Denition 33. A choice of perturbation data (X t ) t ∈coll(t) is said to be smooth if all maps Xt,f are smooth. A choice of perturbation data X n is said to be smooth if for every t ∈ SRT n , the choice of perturbation data (X t ) t ∈coll(t) is smooth.

We now tackle the conditions coming with the (int-break) boundary. We work again with a xed stable ribbon tree type t. Consider a choice of perturbation data X t = (X t,e ) e∈E(t) on T n (t). We have to specify what happens on the X t,e when the length of an internal edge f of t, denoted l f , goes towards +∞. Write t 1 and t 2 for the trees obtained by breaking t at the edge f .

(i) For e ∈ E(t) and = f , assuming for instance that e ∈ t 1 , we require that

lim l f →+∞ X t,e = X t 1 ,e .
(ii) For f = e, X t,f yields two parts when l f → +∞ : the part corresponding to the innite edge in t 1 and the part corresponding to the innite edge in t 2 . We then require that they coincide respectively with X t 1 ,f and X t 2 ,f . Two examples illustrating these two cases are detailed in the following paragraphs.

Begin with an example of the rst case, where e = f . This is represented on gure 22. We only represent the perturbation X t,f 3 on this gure for clarity's sake. The perturbation datum X ∞ t,f 3 could a priori depend on l f 1 : the requirement X ∞ t,f 3 = X t 1 ,f 3 says in particular that it is independent of

l f 1 . t f1 f1 f2 f2 f3 f3 X t,f 3 l f2 -→ +∞ t 1 f3 f3 X ∞ t,f 3 t 2 f1 f1
Figure 22 Similarly, we illustrate the second case, where e = f , on gure 23. A priori, X + t,f 2 and X - t,f 2 can depend on both l f 1 and l f 3 : the requirement X + t,f 2 = X t 2 ,f 2 says exactly that X + t,f 2 is independent of l f 3 , and similarly for X - t,f 2 = X t 1 ,f 2 with respect to l f 1 . Denition 34. A choice of perturbation data (X i ) 2 i n is said to be gluing-compatible if it satises conditions (i) and (ii) for lengths of edges going toward +∞. A choice of perturbation data (X n ) n 2 being both smooth and gluing-compatible, and such that all maps φ Xt are transverse to ∆, is said to be admissible.

t f1 f1 f2 f2 f3 f3 X t,f 2 l f2 -→ +∞ t 1 f3 f3 X - t,f 2 t 2 f1 f1 X + t,f 2 Figure 23
Theorem 7. Admissible choices of perturbation data on the moduli spaces T n exist.

Theorem 8. Let (X n ) n 2 be an admissible choice of perturbation data. The 0-dimensional moduli spaces T Xt t (y; x 1 , . . . , x n ) are compact. The 1-dimensional moduli spaces T Xt t (y; x 1 , . . . , x n ) can be compactied to 1-dimensional manifolds with boundary T Xt t (y; x 1 , . . . , x n ), whose boundary is described at the beginning of this section.

We refer to section 3 for a proof of Theorem 7. Theorem 8 is proven in chapter 6 of [Mes18]. Using the results of [START_REF] Wehrheim | Smooth structures on Morse trajectory spaces, featuring nite ends and associative gluing[END_REF], we could in fact try to prove that all moduli spaces T Xt t (y; x 1 , . . . , x n ) can be compactied to compact manifolds with corners. The analysis involved therein goes however beyond the scope of this paper.

Consider now a stable ribbon tree t together with an internal edge f ∈ E(t) and write t 1 and t 2 for the trees obtained by breaking t at the edge f , where t 2 is seen to lie abpve t 1 . Given critical points y, z, x 1 , . . . , x n suppose moreover that the moduli spaces T t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) and T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) are 0-dimensional. Let T M orse 1 and T M orse 2 be two perturbed Morse gradient trees which belong respectively to the former and the latter moduli spaces. Theorem 8 implies in particular that there exists R > 0 and an embedding

# T M orse 1 ,T M orse 2 : [R, +∞] -→ T t (y; x 1 , . . . , x n ) parametrizing a neighborhood of the boundary {T M orse 1 } × {T M orse 2 } ⊂ ∂T M orse t , i.e. sending +∞ to (T M orse 1 , T M orse 2 ) ∈ ∂T M orse t
. Such a map is called a gluing map for T M orse 1 and T M orse 2 . Explicit gluing maps are constructed in subsection 4.4.3. 1.5. ΩBAs -algebra structure on the Morse cochains. We now have all the necessary material to dene an ΩBAs-algebra structure on the Morse cochains C * (f ).

Theorem 9. Let X := (X n ) n 2 be an admissible choice of perturbation data. Dening for every n and t ∈ SRT n the operations m t as

m t : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (f ) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |-e(t) #T X t (y; x 1 , • • • , x n ) • y ,
they endow the Morse cochains C * (f ) with an ΩBAs-algebra structure.

The proof of this theorem is detailed in section 4.4. Putting it shortly, counting the boundary points of the 1-dimensional orientable compactied moduli spaces T X t (y; x 1 , • • • , x n ) whose boundary is described in the previous section yields the ΩBAs-equations

[∂ M orse , m t ] = t ∈coll(t) ±m t + t 1 # i t 2 =t ±m t 1 • i m t 2 .
In fact, the collection of operations {m t } does not exactly dene an ΩBAs-algebra structure : one of the two dierentials ∂ M orse appearing in the bracket [∂ M orse , •] has to be twisted by a specic sign for the ΩBAs-equations to hold. We will speak about a twisted ΩBAs-algebra structure. In the case when M is odd-dimensional, this twisted ΩBAs-algebra is exactly an ΩBAs-algebra.

If we want to recover an A ∞ -algebra structure on the Morse cochains, it suces to apply the morphism of operads A ∞ → ΩBAs described in section 3.1.5. In his paper [Abo11], Abouzaid constructs a geometric A ∞ -morphism C * sing (M ) → C * (f ), where the Morse cochains are endowed with the A ∞ -algebra structure constructed in this subsection. This A ∞ -morphism is in fact a quasiisomorphism. This implies in particular that the Morse cochains C * (f ) endowed with the A ∞ -algebra structure constructed in this subsection are quasi-isomorphic as an A ∞ -algebra to the Morse cochains endowed with the A ∞ -algebra structure induced by the homotopy transfer theorem. His construction of the A ∞ -morphism C * sing (M ) → C * (f ) could be adapted to our present framework, and lifted to an ΩBAs-morphism. We will however not give more details on that matter.

A ∞ and ΩBAs-morphisms between the Morse cochains

Let M be an oriented closed Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. We have proven in the previous section that, upon choosing admissible perturbation data on the moduli spaces of stable metric ribbon trees T n (t), we can dene moduli spaces of perturbed Morse gradient trees, whose count will dene the operations m t , t ∈ SRT , of an ΩBAs-algebra structure on the Morse cochains C * (f ).

Consider now another Morse function g on M . Apply again the homotopy transfer theorem to C * (f ) and C * (g), which are deformation retracts of the singular cochains on M . Endowing them with their induced A ∞ -algebra structures, the theorem yields a diagram

(C * (f ), m ind n ) -→(C * sing (M ), ∪) -→(C * (g), m ind n ) ,
where each arrow is an

A ∞ -quasi-isomorphism, hence an A ∞ -quasi-isomorphism (C * (f ), m ind n ) → (C * (g), m ind n ).
Let X g be an admissible perturbation data for g. This motivates the following question : endowing C * (f ) and C * (g) with their ΩBAs-algebra structures, can we construct an

ΩBAs-morphism (C * (f ), m X f t ) -→ (C * (g), m X g t ) ?
While stable metric ribbon trees control ΩBAs-algebra structures, we have seen that two-colored stable metric ribbon trees control ΩBAs-morphisms. The answer to the previous question is then of course positive, and the morphism will be constructed using moduli spaces of two-colored perturbed Morse gradient trees. As in section 1, two-colored Morse gradient trees will be dened by perturbing Morse gradient equations around each vertex of the tree, where the Morse gradient is -∇f above the gauge, and -∇g below the gauge. This is illustrated in gure 24. The gure is incorrect, because

-∇f -∇f -∇f -∇f -∇f + X f -∇f + X f -∇f -∇f -∇f + Y -∇g + Y -∇g -∇g -∇g + X g -∇g x 1 x 2 x 3 x 4 y Figure 24.
An example of a perturbed two-colored Morse gradient tree, where the x i are critical points of f and y is a critical point of g we won't choose the perturbation to be equal to X f above the gauge and to X g below, but gives the correct intuition on the construction we unfold in this section.

The structure of this section follows the same lines as the previous section, and the only diculty will consist in adapting properly our arguments to the combinatorics of two-colored ribbon trees. Under a generic choice of perturbation data on the moduli spaces CT n , the moduli spaces of two-colored perturbed Morse gradient trees connecting x 1 , . . . , x n ∈ Crit(g) to y ∈ Crit(g), that we denote CT tg (y; x 1 , . . . , x n ), are orientable manifolds. They are moreover compact when 0-dimensional and can be compactied to compact manifolds with boundary when 1-dimensional (Theorems 10 and 11). Counting 0-dimensional moduli spaces of two-colored Morse gradient trees then denes an ΩBAs-morphism from C * (f ) to C * (g) (Theorem 12). 2.1. Notation. A two-colored ribbon tree will be written t g using the gauge viewpoint, and t c using the colored vertices viewpoint. The tree t g then comes with an underlying stable ribbon tree t, while the tree t c is already a ribbon tree (though not necessarily stable because of its colored vertices).

A two-colored stable metric ribbon tree T will be written (t g , (l e ) e∈E(t) , λ) using the gauge viewpoint. The lengths associated to the underlying metric ribbon tree with colored vertices will then be written L fc ((l e ) e∈E(t) , λ) where f c ∈ E(t c ). For instance, on gure 8,

L 1 = -λ L 2 = l + λ L 3 = -λ .
For the sake of readability, we do not write the dependence on ((l e ) e∈E(t) , λ) in the sequel. 2.2. Perturbed two-colored Morse gradient trees. Denition 35. Let T g = (t g , (l e ) e∈E(t) , λ) be a two-colored metric ribbon tree. A choice of perturbation data Y on T g is dened to be a choice of perturbation data on the associated metric ribbon tree (t c , L fc ) in the sense of section 1.2. Denition 36. A two-colored perturbed Morse gradient tree T M orse g associated to a pair two-colored metric ribbon tree and perturbation data (T g , Y) is the data (i) for each edge f c of t c which is above the gauge, of a smooth map

D fc -→ γ fc M ,
such that γ fc is a trajectory of the perturbed negative gradient -∇f + Y fc , (ii) for each edge f c of t c which is below the gauge, of a smooth map

D fc -→ γ fc M ,
such that γ fc is a trajectory of the perturbed negative gradient -∇g + Y fc , and such that the endpoints of these trajectories coincide as prescribed by the edges of the tree t c . Note that the above denitions still work for . A choice of perturbation data for is the data of vector elds

[0, +∞[×M -→ Y + T M , ] -∞, 0] × M -→ Y - T M ,
which vanish away from a length 1 segment, and a two-colored perturbed Morse gradient tree associated to ( , Y) is then simply the data of two smooth maps

] -∞, 0] -→ γ - M , [0, +∞[ -→ γ + M , such that γ -is a trajectory of -∇f + Y -and γ + is a trajectory of -∇g + Y + .
There is also an equivalent formulation for two-colored perturbed Morse gradient trees, by following the ows of -∇f + Y and -∇g + Y along the the metric ribbon tree (t c , L fc ). That is, a two-colored perturbed Morse gradient tree is determined by the data of the time -1 points on its incoming edges plus the time 1 point on its outgoing edge. Introduce again the map

Φ Tg,Y : M × • • • × M -→ φ 0,Y ו••×φ n,Y M × • • • × M ,
dened as before, and set ∆ for the diagonal of M ×n+1

Proposition 16. There is a one-to-one correspondence two-colored perturbed Morse gradient trees associated to (T g , Y)

←→ (Φ Tg,Y ) -1 (∆) .
The vector elds on the incoming edges are equal to -∇f away from a length 1 segment, hence the trajectories associated to these edges all converge to critical points of the function f , while the vector eld on the outgoing edge is equal to -∇g away from a length 1 segment, hence the trajectory associated to these edge converges to a critical point of the function g. For critical points y of the function g and x 1 , . . . , x n of the function f , the map Φ T,Y can be restricted to

W S g (y) × W U f (x 1 ) × • • • × W U f (x n ) ,
such that the inverse image of the diagonal yields all two-colored perturbed Morse gradient trees associated to (T, Y) connecting x 1 , . . . , x n to y.

2.3. Moduli spaces of two-colored perturbed Morse gradient trees. Choose a two-colored stable ribbon tree t g ∈ SCRT n whose underlying stable ribbon tree is t and whose associated ribbon tree with colored vertices is t c . We write ( * ) tg for the set of inequalities and equalities on {l e } e∈E(t) and λ, which dene the polyedral cone CT n (t g ) ⊂ R e(t)+1 . See part 1 section 5.2 for more details. Dene for all f c ∈ E(t c ), the cone

C fc ⊂ CT n (t g ) × R ⊂ R e(t)+1 × R to be (i) {((l e ) e∈E(T ) , λ, s) such that ( * ) tg , 0 s L fc ((l e ) e∈E(T ) , λ)} if f c is an internal edge ; (ii) {((l e ) e∈E(T ) , λ, s) such that ( * ) tg , s 0} if f c is an incoming edge ;
(iii) {((l e ) e∈E(T ) , λ, s) such that ( * ) tg , s 0} if f c is the outgoing edge. Then a choice of perturbation data for every two-colored metric ribbon tree in CT n (t g ), yields maps Y tg,fc : C fc × M -→ T M for every edge f c of t c . These perturbation data are said to be smooth if all these maps are smooth. Denition 37. Let Y tg be a smooth choice of perturbation data on the stratum CT n (t g ). Given y ∈ Crit(g) and x 1 , . . . , x n ∈ Crit(f ), we dene the moduli spaces CT Yt g tg (y; x 1 , . . . , x n ) := two-colored perturbed Morse gradient trees associated to (T g , Y Tg )

and connecting x 1 , . . . , x n to y for T g ∈ CT n (t g )

.

Using the smooth map

φ Yt g : CT n (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1 ,
this moduli space can be rewritten as

CT Yt g tg (y; x 1 , . . . , x n ) = φ -1 Yt g (∆) .
Proposition 17.

(i) Given a choice of perturbation data Y tg making φ Yt g transverse to the diagonal ∆ ⊂ M ×n+1 , the moduli spaces CT Yt g tg (y; x 1 , . . . , x n ) are orientable manifolds of dimension

dim CT tg (y; x 1 , . . . , x n ) = +|y| - n i=1 |x i | -|t g | .
(ii) Choices of perturbation data Y tg such that φ Yt g is transverse to the diagonal ∆ exist.

The proof of this proposition is again postponed to section 3. 2.4. Compactications. We nally proceed to compactify the moduli spaces CT Yt g tg (y; x 1 , . . . , x n ) that have dimension 1 to 1-dimensional manifolds with boundary. Their boundary components are going to be given by those coming from the compactication of CT n (t g ), and the compactications of the W U (x i ) and of W S (y).

Choose admissible perturbation data X f and X g for the functions f and g. Choose moreover smooth perturbation data Y tg for all t g ∈ SCRT i , 1 i n. We will again denote Y n := (Y tg ) tg∈SCRTn , and call it a choice of perturbation data on CT n . Fixing a two-colored stable ribbon tree t g ∈ SCRT n we would like to compactify the 1-dimensional moduli space CT Yt g tg (y; x 1 , . . . , x n ) using the perturbation data X f , X g and (Y i ) 1 i n . Its boundary will be given by the following phenomena (i) an external edge breaks at a critical point (Morse) :

T (y; z) × CT Yt g tg (z; x 1 , . . . , x n ) and CT Yt g tg (y; x 1 , . . . , z, . . . , x n ) × T (z; x i ) ;

(ii) an internal edge of the tree t collapses (int-collapse) :

CT Y t g t g (y; x 1 , . . . , x n )
where t g ∈ SCRT n are all the two-colored trees obtained by collapsing exactly one internal edge, which does not cross the gauge ; (iii) the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree (gauge-vertex) :

CT Y t g t g (y; x 1 , . . . , x n )
where t g ∈ SCRT n are all the two-colored trees obtained by moving the gauge to cross exactly one additional vertex of t ; (iv) an internal edge located above the gauge or intersecting it breaks or, when the gauge is below the root, the outgoing edge breaks between the gauge and the root (above-break) :

CT Y t 1 g t 1 g (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T X f t 2 t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) ;
(v) edges (internal or incoming) that are possibly intersecting the gauge, break below it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root (below-break) :

T X g t 0 t 1 (y; y 1 , . . . , y s ) × CT Y t 1 g t 1 g (y 1 ; x 1 , . . . ) × • • • × CT Y t s g t s g (y s ; . . . , x n ) .
The (Morse) boundaries are again a simple consequence of the fact that external edges are Morse trajectories away from a length 1 segment. Perturbation data that behave well with respect to the (int-collapse) and (gauge-vertex) boundaries are dened using simple adjustments of the discussion in section 1.4. Hence, it only remains to specify the required behaviours under the breaking of edges.

We begin with the (above-break) boundary. Writing t c for the two-colored ribbon tree associated to t g , it corresponds to the breaking of an internal edge f c of t c situated above the set of colored vertices. Denote t 1 c and t 2 the trees obtained by breaking t c at the edge f c , where t 2 is seen to lie above t 1 c . We have to specify, for each edge e c ∈ E(t c ), what happens to the perturbation Y tc,e at the limit.

(i) For e c ∈ E(t 2 ) and = f c , we require that

lim Y tc,ec = X f t 2 ,ec .
(ii) For e c ∈ E(t 1 c ) and = f c , we require that lim Y tc,ec = Y t 1 c ,ec .

(iii) For f c = e c , Y tc,fc yields two parts at the limit : the part corresponding to the outgoing edge of t 1 and the part corresponding to the incoming edge of t 1 c . We then require that they coincide respectively with the perturbation X f t 2 ,ec and Y t 1 c ,ec .

t g Y tg,ec lim Y tg,ec = X f t 2 ,ec t 1 g t 2
(above-break) case (i)

t g Y tg,ec lim Y tg,ec = Y t 1 g ,ec t 1 g t 2
(above-break) case (ii)

t g Y tg,ec lim t 1 g Y tg,ec = Y t 1 g ,ec lim t 2 Y tg,ec = X f t 2 ,ec t 1 g t 2
(above-break) case (iii)

Leaving the notations aside, an example of each case is illustrated in gure 25.

We conclude with the (below-break) boundary. Denote t 1 g , . . . , t s g and t 0 the trees obtained by the chosen breaking of t g below the gauge, where t 1 g , . . . , t s g are seen to lie above t 0 . (i) For e c ∈ E(t i c ) and not among the breaking edges, we require that lim Y tc,ec = Y t i c ,ec .

(ii) For e c ∈ E(t 1 ) and not among the breaking edges, we require that lim Y tc,ec = X g t 0 ,ec .

(iii) For f c among the breaking edges, Y tc,fc yields two parts at the limit : the part corresponding to the outgoing edge of a t j c and the part corresponding to the incoming edge of t 0 . We then require that they coincide respectively with the perturbation Y t j c and X g t 0 . This is again illustrated on gure 26. Denition 38. A choice of perturbation data Y on the moduli spaces CT n is said to be smooth if it is compatible with the (int-collapse) and (gauge-vertex) boundaries. A smooth choice of perturbation data is said to be gluing-compatible w.r.t. X f and X g if it satises the (above-break) and (belowbreak) conditions described in this section. Smooth and consistent choices of perturbation data

t g Y tg,ec lim Y tg,ec = Y t 1 g ,ec t 1 t 1 g t 2 g (below-break) case (i) t g Y tg,ec lim Y tg,ec = X g t 0 ,ec t 0 t 1 g t 2 g (below-break) case (ii) t g Y tg,ec lim t 1 Y tg,ec = X g t 0 ,ec lim t 2 g Y tg,ec = Y t 2 g ,ec t 0 t 1 g t 2 g (below-break) case (iii)
Figure 26 (Y n ) n 1 such that all maps φ Yt g are transverse to the diagonal ∆ are called admissible w.r.t. X f and X g or simply admissible.

Theorem 10. Given admissible choices of perturbation data X f and X g on the moduli spaces T n , choices of perturbation data on the moduli spaces CT n that are admissible w.r.t. X f and X g exist.

Theorem 11. Let (Y n ) n 1 be an admissible choice of perturbation data on the moduli spaces CT n . The 0-dimensional moduli spaces CT Yt g tg (y; x 1 , . . . , x n ) are compact. The 1-dimensional moduli spaces CT Yt g tg (y; x 1 , . . . , x n ) can be compactied to 1-dimensional manifolds with boundary, whose boundary is described at the beginning of this section.. Theorem 10 is proven in section 3. Theorem 11 is a consequence of the results in chapter 6 of [Mes18]. We moreover point out that Theorem 11 implies in particular the existence of gluing maps

# above-break T 1,M orse g ,T 2,M orse : [R, +∞] -→ CT tg (y; x 1 , . . . , x n ) # below-break T 0,M orse ,T 1,M orse g ,...,T s,M orse g : [R, +∞] -→ CT tg (y; x 1 , . . . , x n )
where notations are as in section 1.4. Such gluing maps are constructed in subsection 4.5.4. 2.5. The ΩBAs-morphism between Morse cochains. Let X f and X g be admissible choices of perturbation data for the Morse functions f and g. Denote (C * (f ), m X f t ) and (C * (g), m X g t ) the ΩBAs-algebras constructed in section 1.5.

Theorem 12. Let (Y n ) n 1 be a choice of perturbation on the moduli spaces CT n that is admissible w.r.t. X f and X g . Dening for every n and t g ∈ SCRT n the operations µ tg as

µ Y tg : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x n -→ |y|= n i=1 |x i |+|tg| #CT Y tg (y; x 1 , • • • , x n ) • y . they t into an ΩBAs-morphism µ Y : (C * (f ), m X f t ) → (C * (g), m X g t ).
Again, the collection of operations {µ tg } does not exactly dene an ΩBAs-morphism but rather a twisted ΩBAs-morphism. In the case when M is odd-dimensional, this twisted ΩBAs-morphism is exactly an ΩBAs-morphism between two ΩBAs-algebras. All sign computations are detailed in section 4. If we want to go back to the more classical algebraic framework of A ∞ -algebras, an A ∞ -morphism between the induced A ∞ -algebra structures on the Morse cochains is simply obtained under the morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph.

Transversality

The goal of this section is to prove Theorems 7 and 10. In this regard, we recall at rst the parametric transversality lemma and then build an admissible choice of perturbation data (X n ) n 2 on the moduli spaces T n , proceeding by induction on the number of internal edges e(t) of a stable ribbon tree t. It moreover appears in our construction that all arguments adapt nicely to the framework of two-colored trees and admissible choices of perturbation data (Y n ) n 1 on the moduli spaces CT n . 3.1. Parametric transversality lemma. We begin by recalling Smale's generalization of the classical Sard theorem. See [START_REF] Smale | An innite dimensional version of Sard's theorem[END_REF] or [MS12] for a detailed proof : Theorem 13 (Sard-Smale theorem). Let X and Y be separable Banach manifolds. Suppose that

f : X → Y is a Fredholm map of class C l with l max(1, ind(f ) + 1). Then the set Y reg (f ) of regular values of f is residual in Y in the sense of Baire.
This theorem implies in particular the following corollary in transversality theory, that will constitute the cornerstone of our proof of Theorem 7 : Corollary 1 (Parametric transversality lemma). Let X be a Banach space, M and N two nitedimensional manifolds and S ⊂ N a submanifold of N . Suppose that f : X × M → N is a map of class C l with l max(1, dim(M ) + dim(S)dim(N ) + 1) and that it is transverse to S. Then the set X S := {X ∈ X such that f X S} is residual in X in the sense of Baire.

Proof. The map f being transverse to S, the inverse image f -1 (S) is a Banach submanifold of X × M . Consider the standard projection p X : X × M → X and denote π := p X | f -1 (S) . Following Lemma 19.2 in [START_REF] Abraham | Transversal mappings and ows[END_REF], this map is Fredholm and has index dim(M ) + dim(S)dim(N ). Moreover, drawing from an argument in section 3.2. of [MS12], there is an equality X reg (π) = X S . One can then conclude by applying the Sard-Smale theorem to the map π. 3.2. Proof of theorem 7. 3.2.1. The case e(t) = 0. If e(t) = 0, the tree t is a corolla. Fix an integer l such that

l max 1, e(t) + |y| - n i=1 |x i | + 1 .
We dene C l -choices of perturbation data in a similar fashion to smooth choices of perturbation data. A C l -choice of perturbation data X t on T n (t) then simply corresponds to a C l -choice of perturbation datum on each external edge of t. Dene the parametrization space X l t := {C l -perturbation data X t on the moduli space T n (t)} . This parametrization space is a Banach space. The linear combination of choices of perturbation data is simply dened as the linear combination of each perturbation datum X t,e with e an external edge of t. The vector space X l t is moreover Banach as each perturbation datum X t,e vanishes away from a length 1 segment in D e .

Given critical points y and x 1 , . . . , x n , introduce the C l -map

φ t : X l t × T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1 ,
such that for every X t ∈ X l t , φ t (X t , •) = φ Xt . Note that we should in fact write φ y,x 1 ,...,xn t as the domain of φ t depends on y, x 1 , . . . , x n . The map φ t is then a submersion. This is proven in Lemma 7.3. of [Abo11] and Abouzaid explains it informally in the following terms : "[this lemma] is the innitesimal version of the fact that perturbing the gradient ow equation on a bounded subset of an edge integrates to an essentially arbitrary dieomorphism".

In particular the map φ t is transverse to the diagonal ∆ ⊂ M ×n+1 . Applying the parametric transversality theorem of subsection 3.1, there exists a residual set Y l;y,x 1 ,...xn t ⊂ X l t such that for every choice of perturbation data X t ∈ Y l;y,x 1 ,...xn t the map φ Xt is transverse to the diagonal ∆ ⊂ M ×n+1 . Considering the intersection

Y l t := y,x 1 ,...,xn Y y,x 1 ,...xn t ⊂ X t
which is again residual, any X t ∈ Y l t yields a C l -choice of perturbation data on T n (t) such that all the maps φ Xt are transverse to the diagonal ∆ ⊂ M ×n+1 . It remains to prove this statement in the smooth case. 3.2.2. Achieving smoothness à la Taubes. Using an argument drawn from section 3.2. of [MS12] and attributed to Taubes, we now prove that the set Y t := smooth choices of perturbation data X t on T n (t) such that all the maps φ Xt are transverse to the diagonal ∆ ⊂ M ×n+1 is residual in the Fréchet space X t := {smooth choices of perturbation data X t on T n (t)} . Choose an exhaustion by compact sets 

L 0 ⊂ L 1 ⊂ L 2 ⊂ • • • of the space T n (t)×W S (y)×W U (x 1 )× • • • × W U (x n ). Dene Y t
: if the map φ X 0 t is transverse on L m to the diagonal ∆ ⊂ M ×n+1 then for X t ∈ X l t suciently close to X 0 t the map φ Xt is again transverse on L m to the diagonal on L m . Let now X t ∈ X t . As X t ∈ X l t and the set Y l t is dense in X l t , there exists a sequence X l t ∈ Y l t such that for all l ||X t -X l t || C l 2 -l . Note that X l t ∈ Y l t,Lm . Now since the set Y l t,Lm is open in X l t for the C l -topology, there exists ε l > 0 such that for all X l t ∈ X l t if ||X l t -X l t || C l min(2 -l , ε l ) , then X l t ∈ Y l t,Lm
. Choosing X l t to be smooth, this yields a sequence of smooth choices of perturbation data lying in Y t,Lm and converging to X t , which concludes the proof. 3.2.3. Induction step and conclusion. Let k 0 and suppose that we have constructed an admissible choice of perturbation data (X 0 t ) e(t) k . This notation should not be confused with the notation (X i ) i k : the former corresponds to a choice of perturbation data on the strata T (t) of dimension k while the latter corresponds to a choice of perturbation data on the moduli spaces T i with i k. Let t be a stable ribbon tree with e(t) = k + 1. We want to construct a choice of perturbation data X t on T n (t) which is smooth, gluing-compatible and such that each map φ Xt is transverse to the diagonal ∆ ⊂ M ×n+1 .

Under a choice of identication T n (t) [0, +∞] e(t) , dene T n (t) ⊂ T n (t) as the inverse image of [0, +∞[ e(t) . Introduce the parametrization space

X l t :=      C l -perturbation data X t on T n (t) such that X t | T (t ) = X 0 t for all t ∈ coll(t) and such that lim le→+∞ X t = X 0 t 1 # e X 0 t 2 for all e ∈ E(t)      ,
where t 1 # e t 2 = t, and lim le→+∞ X t = X 0 t 1 # e X 0 t 2 denotes the gluing-compatibility condition described in section 1.4. Following [Mes18] this parametrization space is an ane space which is Banach. One can indeed show that the l e → +∞ conditions imply that each X t ∈ X l t is bounded in the C l -norm, and that the C l -norm is thus well dened on X l t although T n (t) is not compact.

Consider the C l -map

φ t : X l t × T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1 .
Using the same argument as in subsection 3.2.1, the map φ t is again transverse to the diagonal ∆ ⊂ M ×n+1 . Applying the parametric transversality theorem and proceeding as in the case e(t) = 0, there exists a residual set Y l t ⊂ X l t such that for every choice of perturbation data X t ∈ Y l t the map φ Xt is transverse to the diagonal ∆ ⊂ M ×n+1 . Using the previous argument à la Taubes, we can moreover prove the same statement in the smooth context. By denition of the parametrization spaces X t this construction yields indeed an admissible choice of perturbation data (X t ) e(t) k+1 , which concludes the proof of Theorem 7 by induction.

4. Signs, orientations and gluing We now complete and conclude the proofs of Theorems 9 and 12, by expliciting all orientations conventions on the moduli spaces of Morse gradient trees and computing the signs involved therein. We use to this extent the ad hoc formalism of signed short exact sequences of vector bundles. Particular attention will be paid to the behaviour of orientations under gluing in our proof. 4.1. More on signs and orientations. 4.1.1. Additional tools for orientations. Consider a short exact sequence of vector spaces

0 -→ V 2 -→ W -→ V 1 -→ 0 .
It induces a direct sum decomposition W = V 1 ⊕ V 2 . Suppose that the vector spaces W , V 1 and V 2 are oriented. We denote (-1) ε the sign obtained by comparing the orientation on W to the one induced by the direct sum V 1 ⊕ V 2 . We will then say that the short exact sequence has sign (-1) ε . In particular, when (-1) ε = 1, we will say that the short exact sequence is positive. Now, consider two short exact sequences

0 -→ V 2 -→ W -→ V 1 -→ 0 and 0 -→ V 2 -→ W -→ V 1 -→ 0 
, of respective signs (-1) ε and (-1) ε . Then the short exact sequence obtained by summing them

0 -→ V 2 ⊕ V 2 -→ W ⊕ W -→ V 1 ⊕ V 1 -→ 0 , has sign (-1) ε+ε +dim(V 1 )dim(V 2 )
. Indeed, the direct sum decomposition writes as

W ⊕ W = (-1) ε (V 1 ⊕ V 2 ) ⊕ (-1) ε (V 1 ⊕ V 2 ) (-1) ε+ε +dim(V 1 )dim(V 2 ) V 1 ⊕ V 1 ⊕ V 2 ⊕ V 2 .
4.1.2. Orientation and transversality. Given two manifolds M, N , a codimension k submanifold S ⊂ N and a smooth map

φ : M -→ N
which is tranverse to S, the inverse image φ -1 (S) is a codimension k submanifold of M . Moreover, choosing a complementary ν S to T S, the transversality assumption yields the following short exact sequence of vector bundles

0 -→ T φ -1 (S) -→ T M | φ -1 (S) -→ dφ ν S -→ 0 .
Suppose now that M , N and S are oriented. The orientations on N and S induce an orientation on ν S . The submanifold φ -1 (S) is then oriented by requiring that the previous short exact sequence be positive. We will refer to this choice of orientation as the natural orientation on φ -1 (S).

In the particular case of two submanifolds S and R of M which intersect transversely, we will use the inclusion map S → M , which is transverse to R ⊂ M , to dene the intersection S ∩ R. The orientation will then be dened using the positive short exact sequence

0 -→ T (S ∩ R) -→ T S| S∩R -→ ν R -→ 0 ,
or equivalently with the direct sum decomposition

T S = ν R ⊕ T (S ∩ R) .
The intersection R ∩ S (in contrast to S ∩ R) is oriented by interchanging S and R in the above discussion. The two orientations on the intersection dier then by a (-1) codim(S)codim(R) sign. 4.2. Basic moduli spaces in Morse theory and their orientations. 4.2.1. Orienting the unstable and stable manifolds. Recall that for a critical point x of a Morse function f , its unstable and stable manifolds are respectively dened as

W U (x) := {z ∈ M, lim s→-∞ φ s (z) = x} W S (x) := {z ∈ M, lim s→+∞ φ s (z) = x} ,
where we denote φ s the ow of -∇f , and its degree is dened as |x| := dim(W S (x)).

The unstable and stable manifolds are respectively dieomorphic to a (d -|x|)-dimensional ball and a |x|-dimensional ball. They are hence orientable. They intersect moreover transversely in a unique point, which is x. Assume now that the manifold M is orientable and oriented. We choose for the rest of this section an arbitrary orientation on W U (x), and endow W S (x) with the unique orientation such that the concatenation of orientations or W U (x) ∧ or W S (x) at x coincides with the orientation or M . 4.2.2. Orienting the moduli spaces T (y; x). For two critical points x = y, the moduli spaces of negative gradient trajectories T (y; x) can be dened in two ways. The rst point of view hinges on the fact that R acts on W S (y) ∩ W U (x), by dening s

• p = φ s (p) for s ∈ R and p ∈ W S (y) ∩ W U (x).
The moduli space T (y; x) is then dened by considering the quotient associated to this action, i.e. by dening T (y; x) := W S (y) ∩ W U (x)/R. The second point of view is to consider the transverse intersection with the level set of a regular value a,

T (y; x) := W S (y) ∩ W U (x) ∩ f -1 (a) .
Using this description, and coorienting the level set f -1 (a) with -∇f , the spaces T (y; x) can easily be oriented with the formalism of section 4.1.2 on transverse intersections :

T W S (y) T W S (x) ⊕ T W S (y) ∩ W U (x) T W S (x) ⊕ -∇f ⊕ T T (y; x) .
Note that the space W S (y) ∩ W U (x) consists in a union of negative gradient trajectories γ : R → M . We will therefore use the notation γ for -∇f , which will become handy in the next section.

We point out that the moduli spaces T (y; x) are constructed in a dierent way than the moduli spaces T t (y; x 1 , . . . , x n ) : they cannot naturally be viewed as an arity 1 case of the moduli spaces of gradient trees. This observation will be of importance in our upcoming discussion on signs for the ΩBAs-algebra structure on the Morse cochains.

Finally, the moduli spaces T (y; x) are manifolds of dimension

dim(T (y; x)) = |y| -|x| -1 ,
which can be compactied to manifolds with corners T (y; x), by allowing convergence towards broken negative gradient trajectories. See for instance [START_REF] Wehrheim | Smooth structures on Morse trajectory spaces, featuring nite ends and associative gluing[END_REF]. In the case where they are 1-dimensional, their boundary is given by the signed union

∂T (y; x) = z∈Crit(f ) -T (y; z) × T (z; x) .
We moreover recall from section 1.1 that we work under the convention T (x; x) = ∅. 4.2.3. Compactications of the unstable and stable manifolds. Using the moduli spaces T (y; x), we can now compactify the manifolds W S (y) and W U (x) to compact manifolds with corners W S (y) and W U (x). See [Hut08] for instance. With our choices of orientations detailed in the previous section, the top dimensional strata in their boundary are given by

∂W S (y) = z∈Crit(f ) (-1) |z|+1 W S (z) × T (y; z) , ∂W U (x) = z∈Crit(f ) (-1) (d-|z|)(|x|+1) W U (z) × T (z; x) ,
where d is the dimension of the ambient manifold M . The pictures in the neighborhood of the critical point z are represented in gure 27. For instance, in the case of ∂W S (y), an element of W S (y) is seen as lying on a negative semi-innite trajectory converging to y, and an outward-pointing vector to the boundary is given byγ. We hence have that -→U z ⊂ M , such that φ(0) = z and such that the function f and the metric g read as

-γ ⊕ T W S (z) ⊕ T T (y; z) = (-1) |z| T W S (z) ⊕ -γ ⊕ T T (y; z) = (-1) |z|+1 T W S (y) . γ W S (z) - γ W S (y) z y W U (x) γ W U (z) γ x z .
f (x 1 , . . . , x n-|z| , y 1 , . . . , y |z| ) = f (p) - 1 2 (x 2 1 + • • • + x 2 n-|z| ) + 1 2 (y 2 1 + • • • + y 2 |z| ) g = n-|z| i=1 dx i ⊗ dx i + |z| i=1 dy i ⊗ dy i in the chart φ.
In this chart, we then have that

W U (z) := {y 1 = • • • = y |z| = 0} W S (z) := {x 1 = • • • = x n-|z| = 0} ,
and

M = W U (z) × W S (z).
Hence any point of U z can be uniquely written as a sum x + y where x ∈ W U (z) and y ∈ W S (z). Choosing now s ∈ R such that the the image of x + y under the Morse ow map φ s still lies in U z , we have that

φ s (x + y) = e s
x + e -s y .

These observations will reveal crucial in the proof of subsection 4.4.3. 4.3. Preliminaries for section 4.4. 4.3.1. Counting the points on the boundary of an oriented 1-dimensional manifold. Consider an oriented 1-dimensional manifold with boundary. Then its boundary ∂M is oriented. Assume it can be written set-theoretically as a disjoint union

∂M = i N i .
Suppose now that each N i comes with its own orientation, and write (-1) † i for the sign obtained by comparing this orientation to the boundary orientation. As oriented manifolds, the union writes as

∂M = i (-1) † i N i .
The N i being 0-dimensional, they can be seen as collections of points each coming with a + orsign. Noticing that an orientable 1-dimensional manifold with boundary is either a segment or a circle, and writing #N i for the signed count of points of N i , the previous equality nally implies that

(-1) † i #N i = 0 .
This basic observation is key to constructing most algebraic structures arising in symplectic topology (and in particular Morse theory).

For instance, for a critical point x, counting the boundary points of the 1-dimensional manifolds T (y; x) proves that

∂ M orse • ∂ M orse (x) = y∈Crit(f ) |y|=|x|+2 z∈Crit(f ) |z|=|x|+1 #T (y; z)#T (z; x) • y = 0 .
The equations for ΩBAs-algebras and ΩBAs-morphisms will be proven using this method in the following two subsections. 4.3.2. Reformulating the ΩBAs-equations. We x for each t ∈ SRT n an orientation ω t . Given a t ∈ SRT n the orientation ω t denes an orientation of the moduli space T n (t), and we write moreover m t for the operations (t, ω). The ΩBAs-equations for an ΩBAs-algebra then read as

[∂, m t ] = t ∈coll(t) (-1) † ΩBAs m t + t 1 # i t 2 =t (-1) † ΩBAs m t 1 • i m t 2 ,
where the notations for trees are as dened previously. The signs (-1) † ΩBAs are obtained as in section 5.1, by computing the signs of T n (t ) and T i 1 +1+i 3 (t 1 ) × i T i 2 (t 2 ) in the boundary of T n (t). We will not need to compute their explicit value, and will hence keep this useful notation (-1) ΩBAs to refer to them. 4.3.3. Twisted A ∞ -algebras and twisted ΩBAs-algebras. It is clear using this counting method, that the operations m t of section 1.5 will endow the Morse cochains C * (f ) with a structure of ΩBAsalgebra over Z/2. Working over integers will prove more dicult, and we will prove a weaker result in this case. We introduce to this extent the notion of twisted A ∞ -algebras and twisted ΩBAs-algebras. Denition 39. A twisted A ∞ -algebra is a dg-Z-module A endowed with two dierent dierentials ∂ 1 and ∂ 2 , and a sequence of degree 2n operations m n :

A ⊗n → A such that [∂, m n ] = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) ,
where [∂, •] denotes the bracket for the maps (A ⊗n , ∂ 1 ) → (A, ∂ 2 ). A twisted ΩBAs-algebra is dened similarly.

We make explicit the formulae obtained by evaluating the ΩBAs-equations on A ⊗n , as we will need them in our next proof :

-∂ 2 m t (a 1 , . . . , a n ) + (-1) |t|+ i-1 j=1 |a j | m t (a 1 , . . . , a i-1 , ∂ 1 a i , a i+1 , . . . , a n ) + t 1 #t 2 =t (-1) † ΩBAs +|t 2 | i 1 j=1 |a j | m t 1 (a 1 , . . . , a i 1 , m t 2 (a i 1 +1 , . . . , a i 1 +i 2 ), a i 1 +i 2 +1 , . . . , a n ) + t ∈coll(t) (-1) † ΩBAs m t (a 1 , . . . , a n ) = 0 .
We refer to them as "twisted", as these algebras will occur in the upcoming lines by setting ∂ 2 := (-1) σ ∂ 1 , that is by simply twisting the dierential ∂ 1 by a specic sign.

Note that these two denitions cannot be phrased in terms of operads, as Hom((A, ∂ 1 ), (A, ∂ 2 )) is an (End (A,∂ 1 ) , End (A,∂ 2 ) )-operadic bimodule but is NOT an operad : the composition maps on Hom((A, ∂ 1 ), (A, ∂ 2 )) are associative, but they fail to be compatible with the dierential [∂, •]. As a result, a twisted A ∞ -algebra cannot be described as a morphism of operads from A ∞ to Hom((A, ∂ 1 ), (A, ∂ 2 )). However, a twisted ΩBAs-algebra structure always transfers to a twisted A ∞ -algebra structure. Indeed, while the functorial proof of 3.1.5 does not work anymore, we point out that the morphism of operads A ∞ → ΩBAs still contains the proof that a sequence of operations m t dening a twisted ΩBAs-algebra structure on A can always be arranged in a sequence of operations m n dening a twisted A ∞ -algebra structure on A. 4.3.4. The maps ψ e i ,Xt . Consider again a stable ribbon tree t and order its external edges clockwise, starting with e 0 at the outgoing edge. Given a choice of perturbation data X t , we illustrate in gure 28 a mean to visualize the map

φ Xt : T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1
dened in section 1.3. We introduce a family of maps dened in a similar fashion. Consider e i an incoming edge of t. Dene the map

ψ e i ,Xt : T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x i ) × • • • × • • • × W U (x n ) -→ M ×n
to be the map which for a xed metric tree T takes a point of a W U (x j ) for j = i to the point in M obtained by following the only non-self crossing path from the time -1 point on e j to the time -1 point on e i in T through the perturbed gradient ow maps associated to X T , and which takes a point of W s (y) to the point in M obtained by following the only non-self crossing path from the time 1 point on e 0 to the time -1 point on e i in T through the perturbed gradient ow maps associated to X T . The map ψ e 0 ,Xt is dened similarly for the outgoing edge e 0 . These two denitions are two be understood as depicted on two examples in gure 28. (i) We dene T X t (y; x 1 , . . . , x n ) to be the oriented manifold T X t (y; x 1 , . . . , x n )

W U (x3) W S (y) W U (x1) W U (x2) φ Xt W U (x3) W S (y) W U (x1) ψ e 2 ,Xt W U (x3) W U (x1) W U (x2) ψ e 0 ,Xt
whose natural orientation has been twisted by a sign of parity σ(t; y; x 1 , . . . , x n ) := dn(1

+ |y| + |t|) + |t||y| + d n i=1 |x i |(n -i) .
(ii) Similarly, we dene T (y; x) to be the oriented manifold T (y; x) whose natural orientation has been twisted by a sign of parity σ(y; x) := 1 .

The operations m t and the dierential on C * (f ) are then dened as

m t (x 1 , . . . , x n ) = |y|= n i=1 |x i |+|t| # T X t (y; x 1 , . . . , x n ) • y , ∂ M orse (x) = |y|=|x|+1 # T (y; x) • y .
Proposition 18. If T t (y; x 1 , . . . , x n ) is 1-dimensional, its boundary decomposes as the disjoint union of the following components

(i) (-1) |y|+ † ΩBAs +|t 2 | i 1 i=1 |x i | T t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) ; (ii) (-1) |y|+ † ΩBAs T t (y; x 1 , . . . , x n ) for t ∈ coll(t) ; (iii) (-1) |y|+ † Koszul +(d+1)|x i | T t (y; x 1 , . . . , z, . . . , x n ) × T (z; x i ) where † Koszul = |t| + i-1 j=1 |x j | ; (iv) (-1) |y|+1 T (y; z) × T t (z; x 1 , . . . , x n ).
Applying the method of subsection 4.3.1 nally proves that : Theorem 9. The operations m t dene a twisted ΩBAs-algebra structure on

(C * (f ), ∂ T w M orse , ∂ M orse ),
where

(∂ T w M orse ) k = (-1) (d+1)k ∂ k M orse .
4.4.2. Signs for the (int-break) boundary. We resort to the formalism of short exact sequences of vector bundles to handle orientations in this section. For the sake of readability, we will write N rather than T N for the tangent bundle of a manifold N in the upcoming computations.

The moduli space T t (y; x 1 , . . . , x n ) is dened as the inverse image of the diagonal ∆ ⊂ M ×n+1 under the map

φ Xt : T n (t) × W S (y) × W U (x 1 ) × • • • × W U (x n ) -→ M ×n+1 ,
where the factors of M ×n+1 are labeled in the order M y × M x 1 × • • • × M xn . Orienting the domain and codomain of φ Xt by taking the product orientations, and orienting ∆ as M , denes the natural orientation on T t (y; x 1 , . . . , x n ) as in subsection 4.1.2. Choose M ×n labeled by x 1 , . . . , x n as complementary to ∆. Then the orientation induced on M ×n by the orientations on M ×n+1 and on ∆, diers by a (-1) d 2 n sign from the product orientation of M ×n . In the language of short exact sequences, T t (y; x 1 , . . . , x n ) is oriented by the short exact sequence

0 -→ T t (y; x 1 , . . . , x n ) -→ T n (t) × W S (y) × n i=1 W U (x i ) -→ M ×n -→ 0 ,
which has a sign of parity dn .

(A)

In the case of T M orse t 1 := T t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ), we choose M ×i 1 +1+i 3 labeled by y, x 1 , . . . , x i 1 , x i 1 +i 2 +1 , . . . , x n as complementary to ∆. The orientation induced on M ×i 1 +1+i 3 , by the orientations on M ×i 1 +2+i 3 and on ∆, diers by a (-1) d 2 i 3 sign from the product orientation of M ×i 1 +1+i 3 . Hence the short exact sequence

0 -→ T M orse t 1 -→ T i 1 +1+i 3 (t 1 ) × W S (y) × i 1 i=1 W U (x i ) × W U (z) × n i=i 1 +i 2 +1 W U (x i ) -→ M ×i 1 +1+i 3 → 0 ,
has a sign of parity di 3 .

(B)

In the case of T M orse t 2 := T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ), we choose M ×i 2 labeled by x i 1 +1 , . . . , x i 1 +i 2 as complementary to ∆. The orientation induced on M ×i 2 diers this time by a (-1) d 2 i 2 sign from the product orientation. The short exact sequence

0 -→ T M orse t 2 -→ T i 2 (t 2 ) × W S (z) × i 1 +i 2 i=i 1 +1 W U (x i ) -→ M ×i 2 → 0 ,
has now a sign given by the parity of di 2 .

(C)

Following the convention of subsection 4.1.1, taking the product

0 -→ T M orse t1 × T M orse t2 -→ T i1+1+i3 (t 1 ) × W S (y) × i1 i=1 W U (x i )×W U (z) × n i=i1+i2+1 W U (x i ) × T i2 (t 2 ) × W S (z) × i1+i2 i=i1+1 W U (x i ) -→ M ×i1+1+i3 × M ×i2 → 0
doesn't introduce a sign, as T M orse t 1 and T M orse t 2 are 0-dimensional. In the previous short exact sequence, M ×i 1 +1+i 3 × M ×i 2 is labeled by y, x 1 , . . . , x i 1 , x i 1 +i 2 +1 , . . . , x n , x i 1 +1 , . . . , x i 1 +i 2 .

We rearrange this labeling into y, x 1 , . . . , x n , which induces a sign given by the parity of di 2 i 3 .

(D)

We also rearrange the expression

T i 1 +1+i 3 (t 1 ) × W S (y) × i 1 i=1 W U (x i ) × W U (z) × n i=i 1 +i 2 +1 W U (x i ) × T i 2 (t 2 ) × W S (z) × i 1 +i 2 i=i 1 +1 W U (x i ) , into W U (z) × W S (z) × T i 1 +1+i 3 (t 1 ) × T i 2 (t 2 ) × W S (y) × n i=1 W U (x i ) .
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The parity of the produced sign is that of

|z| |t 2 | + n i=i 1 +i 2 +1 (d -|x i |) + m |t 1 | + |y| + i 1 i=1 (d -|x i |) (E) + |t 2 | |y| + i 1 i=1 (d -|x i |) + n i=i 1 +i 2 +1 (d -|x i |) + i 1 +i 2 i=i 1 +1 (d -|x i |) n i=i 1 +i 2 +1 (d -|x i |) .
Introduce now the factor [L, +∞[, corresponding to the length l e increasing towards +∞, where e is the edge of t whose breaking produces t 1 and t 2 . Following convention 4.1.2, the short exact sequence

0 -→ [L, +∞[×T M orse t1 × T M orse t2 -→ [L, +∞[×W U (z) × W S (z) × T (t 1 ) × T (t 2 ) × ×W S (y) × n i=1 W U (x i ) -→ M ×n+1 -→ 0 ,
induces a sign change whose parity is given by d(n + 1) .

(F)

Dene the map

ψ : M × T n (t) × W S (y) × n i=1 W U (x i ) -→ M × M ×n+1 ,
which is dened on the factors T n (t) × W S (y) × n i=1 W U (x i ) as φ and is dened on M × T n (t) by seeing M as the point lying in the middle of the edge e in t. This map is depicted on gure 29. The inverse image of the diagonal of M × M ×n+1 is exactly T t (y; x 1 , . . . , x n ). Fix now a suciently great L > 0. We prove in subsection 4.4.3 that orienting [L, +∞[×T M orse t 1 × T M orse t 2 with the previous short exact sequence, the orientation induced on T M orse t by gluing is the exactly the one given by the short exact sequence

0 T M orse t [L, +∞[ × M × T (t 1 ) × T (t 2 ) × W S (y) × n i=1 W U (x i ) M ×n+1 0 dψ ,
where our convention on orientations for the unstable and stable manifolds of z implies that W U (z)× W S (z) yields indeed the orientation of M , and M ×n+1 is labeled by y, x 1 , . . . , x n .

M W U (x3) W S (y) W U (x1) W U (x2) ψ Figure 29
. Representation of the map ψ Transform the coorientation labeled by y, x 1 , . . . , x n into the coorientation labeled by M, x 1 , . . . , x n and rearrange the factors 

[L, +∞[ × M × T (t 1 ) × T (t 2 ) × • • • into M × [L, +∞[ × T (t 1 ) × T (t 2 ) × • • •

(G)

We can moreover now delete the two M factors associated to the label M to obtain the short exact sequence

0 -→ T t (y; x 1 , . . . , x n ) -→ [L, +∞[×T (t 1 ) × T (t 2 ) × W S (y) × n i=1 W U (x i ) -→ M ×n -→ 0 , where M ×n = M x 1 × • • • × M xn .
Transforming nally [L, +∞[×T (t 1 ) × T (t 2 ) into T n (t) gives a sign of parity † ΩBAs .

(H)

In closing, the short exact sequence

0 -→ T t (y; x 1 , . . . , x n ) -→ T n (t) × W S (y) × n i=1 W U (x i ) -→ M ×n -→ 0 ,
has sign given by the parity of A when T M orse t is endowed with its natural orientation. It has sign given by the parity of

B + C + D + E + F + G + H when T M orse t is endowed with the orientation induced by [L, +∞[×T M orse t 1 × T M orse t 2
, where the rst factor is the length l e and determines the outward-pointing direction ν e to the boundary component

T M orse t 1 × T M orse t 2 .
We thus obtain that with our choice of orientation on the moduli spaces T M orse t , the sign of T t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) in the boundary of the 1-dimensional moduli space T t (y; x 1 , . . . , x n ) is given by the parity of

( * ) A + B + C + D + E + F + G + H = |z||t 2 | + d|y| + d|t 1 | + (n + 1)d + i 1 i=1 d|x i | + |t 2 ||y| + di 1 |t 2 | + di 2 n i=i 1 +i 2 +1 |x i | + † ΩBAs + |t 2 | i 1 i=1 |x i | .
Hence the sign of T t 1 (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) in the boundary of the 1-dimensional moduli space T t (y; x 1 , . . . , x n ) is given by the parity of σ(t; y; x 1 , . . . , x n ) + σ(t 1 ; y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) + σ(t 2 ; z; x i 1 +1 , . . . , x i 1 +i 2 ) + ( * )

= |y| + † ΩBAs + |t 2 | i 1 i=1 |x i | .

Gluing and orientations. We prove in this subsection that after orienting

[L, +∞[×T M orse t 1 × T M orse t 2
with the short exact sequence

0 [L, +∞[ × T M orse t1 × T M orse t2 [L, +∞[ × W U (z) × W S (z) × T (t 1 ) × T (t 2 ) × W S (y) × n i=1 W U (x i ) M ×n+1 0 ,
the orientation induced on T M orse t by gluing is the one given by the short exact sequence

0 T M orse t [L, +∞[ × M × T (t 1 ) × T (t 2 ) × W S (y) × n i=1 W U (x i ) M ×n+1 0 dψ .
The proof boils down to the following lemma.

Lemma 1. Let M and N be manifolds and S ⊂ N a submanifold of N . Suppose that M , N and S are orientable and oriented. Let f : [0, 1] × M → N be a smooth map such that

f 1 := f (1, •) : M → N is transverse to S. Let x ∈ f -1 1 (S).
Then there exist an open subset V of M containing x and

0 t 1 < 1 such that (i) The map f | [t 1 ,1]×V : [t 1 , 1] × V → N is transverse to S.
In particular the inverse image

f | -1 [t 1 ,1]×V (S) is then a submanifold of [t 1 , 1] × V . (ii)
There exists an orientation-preserving embedding

f | -1 [t 1 ,1]×V (S) -→ [t 1 , 1] × f -1 1 (S)
equal to the identity on f 1 | -1 V (S) and preserving the t coordinate, where we orient

[t 1 , 1] × f -1 1 (S)
with the short exact sequence ) with the short exact sequence

0 -→ [t 1 , 1] × f -1 1 (S) -→ [0, 1] × M -→ ν S -→ 0 and we orient f | -1 [t 1 ,1]×V (S
0 -→ f | -1 [t 1 ,1]×V (S) -→ [0, 1] × M -→ ν S -→ 0 .
Proof. Choose an adapted chart for S around f 1 (x), i.e. a chart φ :

U ⊂ N → R n such that φ(U ∩ S) = {(y 1 , . . . , y n-s , x 1 , . . . , x s ) ∈ R n , y 1 = • • • = y n-s = 0} ,
where n and s respectively denote the dimensions of N and S. Using the local normal form theorem for submersions, there exists a local chart ψ : U ⊂ M → R m around x such that the map f 1 reads as (y 1 , . . . , y n-s , x 1 , . . . , x m+s-n ) -→ (y 1 , . . . , y n-s , F 1 ( y, x), . . . , F s ( y, x))

in the local charts ψ and φ, where the F i are smooth maps and y := y 1 , . . . , y n-s , x := x 1 , . . . , x m+s-n and m := dim(M ). In these local charts,

U ∩ f -1 1 (U ∩ S) = {(y 1 , . . . , y n-s , x 1 , . . . , x m+s-n ) ∈ R m , y 1 = • • • = y n-s = 0} .
The property "being transverse to S" being open, there exists a neighborhood W of x in M and t 0 ∈ [0, 1[ such that the map f | [t 0 ,1]×W : [t 0 , 1] × W → N is transverse to S. Suppose W ⊂ U and consider now the projection π : R m → R m+s-n given by (y 1 , . . . , y n-s , x 1 , . . . , x m+s-n ) -→ (x 1 , . . . , x m+s-n )

and dene the smooth map

ι := id t × π : f | -1 [t 0 ,1]×W (S) -→ [0, 1] × f -1 1 (S)
in the local charts φ and ψ. The dierential of this map is invertible at (1, x). The inverse function theorem then ensures that there exits t 1 ∈ [t 0 , 1[ and a neighborhood V ⊂ W of x such that the map

ι : f | -1 [t 1 ,1]×V (S) -→ [0, 1] × f -1 1 (S)
is a dieomorphism on its image.

Orient now ) with the previous short exact sequences. It remains to show that the map ι is orientation-preserving. The proof of this result can be reduced to a proof in linear algebra, i.e. by considering a smooth family of linear maps f : [0, 1] × R m → R n such that f 1 reads as (y 1 , . . . , y n-s , x 1 , . . . , x m+s-n ) -→ (y 1 , . . . , y n-s , F 1 ( y, x), . . . , F s ( y, x)) , and the linear subspace S = {0} × R s ⊂ R n . Then there exists t 0 ∈ [0, 1] such that f | [t 0 ,1]×R m is transverse to S, and we can consider the smooth map

[0, 1] × f -1 1 (S) and f | -1 [t 1 ,1]×V (S
ι := id t × π : f | -1 [t 0 ,1]×R m (S) -→ [0, 1] × f -1 1 (S)
which is a dieomorphism on its image. Basic computations nally show that the map ι is indeed orientation-preserving. We now go back to our initial problem. Let T M orse

1 ∈ T M orse 1 and T M orse 2 ∈ T M orse 2
, where we refer to subsection 4.4.2 for notations. Consider a local Euclidean chart φ z : U z → R d for the critical point z as in subsection 4.2.4. Introduce the map ev : [0, +∞] × U z → U z × U z reading as (δ, x + y) -→ (e -2δ x + y, x + e -2δ y) in the chart φ z . The pair ev(δ, x + y) corresponds to the two endpoints of the unique nite Morse trajectory parametrized by [-δ, δ] and meeting e -δ x + e -δ y at time 0.

Consider the trajectory γ e,1 : ] -∞, 0] → M and the trajectory γ e,2 : [0, +∞[→ M , respectively associated to the incoming edge of T M orse 1 and to the outgoing edge of T M orse 2 which result from the breaking of the edge e in t. Choose L large enough such that γ e,1 (-L) and γ e,2 (L) belong to U z .

Introduce the map

f := ev × (φ -(L-1) ) ×i 1 +1+i 3 • ψ e,Xt 1 × (φ L-1 ) ×i 2 • ψ e,Xt 2 acting as [0, +∞] × U z × T i1+1+i3 (t 1 ) × W S (y) × i1 i=1 W U (x i ) × n i=i1+i2+1 W U (x i ) × T i2 (t 2 ) × i1+i2 i=i1+1 W U (x i ) -→ M ×2 × M ×i1+1+i3 × M ×i2 ,
where φ L-1 stands for the time L-1 Morse ow and the maps ψ e,Xt 2 and ψ e,Xt 1 have been introduced in subsection 4.2.4. This map is depicted in gure 30. 4.5.1. Reformulating the ΩBAs-equations. We set again for the rest of this section an orientation ω for each t g ∈ SCRT n , which endows each moduli space CT n (t g ) with an orientation, and write moreover µ tg for the operations (t g , ω) of ΩBAs -Morph. The ΩBAs-equations for an ΩBAsmorphism then read as

W U (x1) W U (x2) W U (x3) W S (y) z Uz M ψ e,X t 2 φ L-1 ψ e,X t 1 φ -(L-1)
[∂, µ tg ] = t g ∈coll(tg) (-1) † ΩBAs µ t g + t g ∈g-vert(tg) (-1) † ΩBAs µ t g + t 1 g # i t 2 =tg (-1) † ΩBAs µ t 1 g • i m t 2 + t 0 #(t 1 g ,...,t s g )=tg (-1) † ΩBAs m t 0 • (µ t 1 g ⊗ • • • ⊗ µ t s g ) ,
where the notations for trees are transparent. The signs (-1) † ΩBAs are obtained as in subsection 4.3.2. 4.5.2. Twisted A ∞ -morphisms and twisted ΩBAs-morphisms. Again, it is clear using the counting method of 4.3.1 that if we work over Z/2, the operations µ tg of 2.5 dene an ΩBAs-morphism. We will prove a weaker result in the case of integers, introducing for this matter the notion of twisted A ∞ -morphisms and twisted ΩBAs-morphisms.

Denition 41. Let (A, ∂ 1 , ∂ 2 , m n ) and (B, ∂ 1 , ∂ 2 , m n ) be two twisted A ∞ -algebras. A twisted A ∞ - morphism from A to B is dened to be a sequence of degree 1 -n operations f n : A ⊗n → B such that [∂, f n ] = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) - i 1 +•••+is=n s 2 (-1) B m s (f i 1 ⊗ • • • ⊗ f is ) ,
where [∂, •] denotes the bracket for the maps (A ⊗n , ∂ 1 ) → (B, ∂ 2 ). A twisted ΩBAs-morphism between twisted ΩBAs-algebras is dened similarly. The formulae obtained by evaluating the ΩBAs-equations on A ⊗n then become

-∂ 2 µ tg (a 1 , . . . , a n ) + (-1) |tg|+ i-1 j=1 |a j | µ tg (a 1 , . . . , a i-1 , ∂ 1 a i , a i+1 , . . . , a n ) + t 1 g #t 2 =t (-1) † ΩBAs +|t 2 | i 1 j=1 |a j | µ t 1 g (a 1 , . . . , a i 1 , m t 2 (a i 1 +1 , . . . , a i 1 +i 2 ), a i 1 +i 2 +1 , . . . , a n ) + t 1 #(t 1 g ,...,t s g )=tg (-1) † ΩBAs + † Koszul m t 0 (µ t 1 g (a 1 , . . . , a i 1 ), . . . , µ t s g (a i 1 +•••+i s-1 +1 , . . . , a n )) + t g ∈coll(tg) (-1) † ΩBAs µ t g (a 1 , . . . , a n ) + t g ∈g-vert(tg) (-1) † ΩBAs µ t g (a 1 , . . . , a n ) = 0 ,
where

† Koszul = s r=1 |t r g |   r-1 t=1 it j=1 |a i 1 +•••+a i t-1 +j |   .
Again these two denitions cannot be phrased using an operadic viewpoint. However, a twisted ΩBAs-morphism between twisted ΩBAs-algebras always descends to a twisted A ∞ -morphism between twisted A ∞ -algebras, for the same reason as in subsection 4.3.3. 4.5.3. Summary of the proof of Theorem 12. Let X f and X g be admissible choices of perturbation data on the moduli spaces T n for the Morse functions f and g, and Y be a choice of perturbation data on the moduli spaces CT n that is admissible w.r.t. X f and X g . Denition 42. We dene CT Y tg (y; x 1 , . . . , x n ) to be the oriented manifold CT Y tg (y; x 1 , . . . , x n ) whose natural orientation has been twisted by a sign of parity σ(t g ; y; x 1 , . . . , x n ) := dn(1

+ |y| + |t g |) + |t g ||y| + d n i=1 |x i |(n -i) .
The moduli spaces T (y; x) and T t (y; x 1 , . . . , x n ) are moreover dened as in section 4.4. We dene the operations µ tg : C * (f ) ⊗n → C * (g) as

µ tg (x 1 , . . . , x n ) = |y|= n i=1 |x i |+|tg| # CT Y tg (y; x 1 , . . . , x n ) • y .
Proposition 19. If CT tg (y; x 1 , . . . , x n ) is 1-dimensional, its boundary decomposes as the disjoint union of the following components

(i) (-1) |y|+ † ΩBAs +|t 2 | i 1 i=1 |x i | CT t 1 g (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x n ) × T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) ; (ii) (-1) |y|+ † ΩBAs + † Koszul T t 1 (y; y 1 , . . . , y s ) × CT t 1 g (y 1 ; x 1 , . . . ) × • • • × CT t s g (y s ; . . . , x n ) ; (iii) (-1) |y|+ † ΩBAs CT t g (y; x 1 , . . . , x n ) for t ∈ coll(t) ; (iv) (-1) |y|+ † ΩBAs CT t g (y; x 1 , . . . , x n ) for t ∈ g -vert(t) ; (v) (-1) |y|+ † Koszul +(m+1)|x i | CT tg (y; x 1 , . . . , z, . . . , x n ) × T (z; x i ) where † Koszul = |t g | + i-1 j=1 |x j | ; (vi) (-1) |y|+1 T (y; z) × CT tg (z; x 1 , . . . , x n ).
Applying the method of subsection 4.3.1 again nally proves that : Theorem 12. The operations µ tg dene a twisted ΩBAs-morphism between the Morse cochains

(C * (f ), ∂ T w M orse , ∂ M orse ) and (C * (g), ∂ T w M orse , ∂ M orse ).
4.5.4. Gluing. We construct explicit gluing maps in the two-colored framework using Lemma 1. Gluing maps for the (above-break) boundary components are built as in subsection 4.4.3. In the (below-break) case, consider critical points y, y 1 , . . . , y s ∈ Crit(g) and x 1 , . . . , x n ∈ Crit(f ) such that the moduli spaces T t 0 (y; y 1 , . . . , y s ) and CT t r g (y r ;

x i 1 +•••+i r-1 +1 , . . . , x i 1 +•••+ir ) are 0-dimensional. Let T 0,M orse ∈ T M orse t 0 and T r,M orse g ∈ CT M orse t r g
. Fix moreover an Euclidean neighborhood U zr of each critical point z r and choose L large enough such that for r = 1, . . . , s, γ er,T 0,M orse (-L) and γ e 0 ,T r,M orse g (L) belong to U zr . Dene nally the map σ e 0 ,X t 0 : M → M ×s in a similar fashion to the maps ψ e i ,Xt , as depicted for instance in gure 31. Gluing maps for the perturbed Morse trees T 0,M orse and T r,M orse g can then be dened by applying Lemma 1 to the map

[0, +∞] × s r=1 U zr × T s (t 0 ) × W S (y) × s r=1   CT ir (t r g ) × i1+•••+ir i=i1+•••+ir-1+1 W U (x i )   -→ M ×2s × M ×s × s r=1 M ×ir .
dened as follows :

(i) the factor T s (t 0 ) × W S (y) is sent to M ×s under the map (φ -(L-1) ) ×s • σ e 0 ,t 0 ;

(ii) the factor CT ir (t r g ) × W U (x i ) is sent to M ×ir under the map (φ (L-1) ) ×ir • σ e 0 ,t r g ; (iii) the factor [0, +∞] × s r=1 U zr is sent to M ×2s under the map ev Uz 1

l 1 δ × • • • × ev Uz s l s δ
where δ denotes the parameter in [0, +∞] and the lengths l r δ are dened as in subsection 5.2.7 of part 1 in order for them to dene a two-colored metric ribbon tree. In particular, we have explicit formulae depending on δ for the resulting edges in the glued tree.

W S (y) σ e 0 ,X t 1 Figure 31. Representation of the map σ e 0 ,X t 1 . 4.6. On these twisted structures. Note rst that if we work with coecients in Z/2, the operations m t dene of course an ΩBAs-algebra structure on the Morse cochains. The operations µ tg then dene an ΩBAs-morphism between two ΩBAs-algebras. We will say that the structure we dened are untwisted. We hence work now over the integers Z. It appears from the denition of ∂ T w M orse that when M is odd-dimensional, the structures we dene are untwisted. In the even-dimensional case, the structures are twisted, and it remains to be proven that all the operations m t could be twisted in order to get an untwisted structure.

We also point out that the twisted structures arise from the two uncompatible orientation conventions on an intersection R ∩ S and S ∩ R detailed in 4.1.2. Indeed, we decided to orient T (y; x) inside the intersection W S (y) ∩ W U (x). The signs then compute nicely for the boundary component T (y; z) × CT tg (z; x 1 , . . . , x n ), and the twist in ∂ T w M orse arises in CT tg (y; x 1 , . . . , z, . . . , x n ) × T (z; x i ). Orienting T (y; x) inside the intersection W U (x) ∩ W S (y) makes these two boundary components switch roles. In that case, redening the twist on the orientation of the moduli space T (y; x) as given by the parity of σ(y; x) := 1 + |x| , we check that the operations m t dene a twisted ΩBAs-algebra structure on

(C * (f ), ∂ M orse , ∂ T w M orse ).
The operations µ tg on their side dene a twisted ΩBAs-morphism between

(C * (f ), ∂ M orse , ∂ T w M orse ) and (C * (g), ∂ M orse , ∂ T w M orse ).

Part 3

Further developments 1. The map µ Y is a quasi-isomorphism The goal of this section is to prove the following proposition :

Proposition 20. The twisted ΩBAs-morphism µ Y : (C * (f ), m X f t ) -→ (C * (g), m X g t ) constructed in Theorem 12 is a quasi-isomorphism.
In other words we want to prove that the arity 1 component µ Y : C * (f ) → C * (g) is a map which induces an isomorphism in cohomology. The map µ Y is a dg-map

(C * (f ), ∂ T w M orse ) → (C * (g), ∂ M orse ),
but the cohomologies dened by the dierentials ∂ T w M orse and ∂ M orse are equal. In this regard, we will prove that given three perturbation data on

CT 1 := { }, Y f g , Y gf and Y f f , dening dg-maps µ Y ij : (C * (i), ∂ T w M orse ) -→ (C * (j), ∂ M orse ) ,
we can construct a homotopy h :

C * (f ) → C * (f ) such that (-1) d µ Y gf • µ Y f g -µ Y f f = ∂ M orse h + h∂ T w M orse .
Specializing to the case where Y f f is null, µ Y f f = id and this yields the desired result. For the sake of readability, we will write Y ij := Y ij in the rest of this section. Note also that the choice of perturbation data X f and X g are not necessary for this construction.

In the last paragraph of subsection 1.5 of part 2, we explained that given any Morse function f together with an admissible choice of perturbation data X f , the Morse cochains C * (f ) and the singular cochains C * sing (M ) are quasi-isomorphic as twisted ΩBAs-algebras. In particular, given another Morse function g together with an admissible choice of perturbation data X g , the Morse cochains C * (f ) and C * (g) are quasi-isomorphic as twisted ΩBAs-algebras. Proposition 20 show that the twisted ΩBAs-morphism µ Y realizes such a quasi-isomorphism explicitly. 1.1. The moduli space H(y; x). Begin by considering the moduli space of metric trees H, represented in two equivalent ways in gure 32. Adapting the discussions of section 1.2, we infer without diculty the notion of smooth choice of perturbation data on H. Given such a choice of perturbation data W, we then say that it is consistent with the Y ij if it is such that, when l → 0, lim(W) = Y f f , and when l → +∞, the limit lim(W) on the above part of the broken tree is Y f g and the limit lim(W) on the bottom part of the broken tree is Y gf .

For x and y critical points of the function f , introduce now the moduli space H W (y; x) consisting of perturbed Morse gradient trees modeled on , and such that the two external edges correspond to perturbed Morse equations for f , and the internal edge corresponds to a perturbed Morse equation l l

Figure 32 for g. We then check that a generic choice of perturbation data W makes them into orientable manifolds of dimension

dim(H W (y; x)) = |y| -|x| + 1 .
The 1-dimensional moduli spaces H(y; x) can be compactied into compact manifolds with boundary H(y; x), whose boundary is given by the three following phenomena : (i) an external edge breaks at a critical point of f (Morse) ;

(ii) the length of the internal edge tends towards 0 : this yields the moduli spaces

CT Y f f (y; x) ;
(iii) the internal edge breaks at a critical point of g : this yields the moduli spaces

z∈Crit(g) CT Y gf (y; z) × CT Y f g (z; x) .
Dening the map h :

C * (f ) → C * (f ) as h(x) := |y|=|x|-1 #H W (y; x)
• y, a signed count of the boundary points of the 1-dimensional compactied moduli spaces H W (y; x) then proves that : Proposition 21. The map h denes an homotopy between (-1) d µ Y gf • µ Y f g and µ Y f f i.e. is such that

(-1) d µ Y gf • µ Y f g -µ Y f f = ∂ M orse h + h∂ T w M orse .
Proposition 20 is then a simple corollary to this proposition. 1.2. Proof of Propositions 20 and 21. We dene the moduli space H(y; x) as before, by introducing the map

φ W : H × W S (y) × W U (x) -→ M × M ,
and setting H(y; x) := φ -1 (∆) where ∆ is the diagonal of M × M . We recall moreover that σ( ; y; x) = d(1 + |y|), σ(y; x) = 1 and that

µ Y ij (x) = |y|=|x| # CT Y ij (y; x) • y ∂ M orse (x) = |y|=|x|+1 # T (y; x) • y .
We then set σ( ; y; x) = (d + 1)|y| , and write H(y; x) for the moduli space H(y; x) endowed with the orientation obtained by twisting its natural orientation by a sign of parity σ( ; y; x). We can now dene the map h :

C * (f ) → C * (f ) by h(x) := |y|=|x|-1 # H(y; x) • y .
If H(y; x) is 1-dimensional, its boundary decomposes as the disjoint union of the following four types of components

(-1) |y|+d CT Y gf (y; z) × CT Y f g (z; x) (-1) |y|+1 CT Y f f (y; x) (-1) |y|+1 T (y; z) × H(z; x) (-1) |y|+1+(d+1)|x| H(y; z) × T (z; x) .
Counting the boundary points of these 1-dimensional moduli spaces implies that

(-1) d µ Y gf • µ Y f g -µ Y f f = ∂ M orse h + h∂ T w M orse .
To prove Proposition 20, it remains to note that this relation descends in cohomology to the relation

(-1) d [µ Y gf ] • [µ Y f g ] = [µ Y f f ] .
2. More on the ΩBAs viewpoint We stated in section 1.6 that because the two-colored operad A 2 ∞ is a brant-cobrant replacement of As 2 in the model category of two-colored operads, the category of A ∞ -algebras with A ∞morphisms between them yields a nice homotopic framework to study the notion of "dg-algebras which are associative up to homotopy". In fact, most classical theorems for A ∞ -algebras can be proven using the machinery of model categories, on the model category of two-colored operads in dg-Z-modules. We can thus similarly introduce the two-colored operad ΩBAs 2 , which is again a brant-cobrant replacement of As 2 in the model category of two-colored operads. The category of ΩBAs-algebras with ΩBAs-morphisms between them yields another satisfactory homotopic framework to study "dg-algebras which are associative up to homotopy", in which most classical theorems for A ∞ -algebras still hold.

We also point out that while there exists a morphism of operads A ∞ → ΩBAs which is canonically given by rening the cell decompositions on the associahedra, Markl and Shnider constructed in [MS06] an explicit non-canonical morphism of operads ΩBAs → A ∞ . The operads ΩBAs and A ∞ being brant-cobrant replacements of As, model category theory tells us that there necessarily exist two morphisms A ∞ → ΩBAs and ΩBAs → A ∞ . Hence the noteworthy property of these two morphisms is not that they exist, but that they are explicit and computable.

Switching to the two-colored operadic viewpoint, model category theory tells us again that there necessarily exist two morphisms A 2 ∞ → ΩBAs 2 and ΩBAs 2 → A 2 ∞ . We have already introduced the necessary material to dene an explicit and computable morphism of two-colored operads A 2 ∞ → ΩBAs 2 . To render explicit a morphism ΩBAs 2 → A 2 ∞ it would be enough to construct a morphism of operadic bimodules ΩBAs-Morph → A ∞ -Morph. To our knowledge, this has not yet been done, but we conjecture that the construction of Markl-Shnider should adapt nicely to the multiplihedra to dene such a morphism.

A ∞ -structures in symplectic topology

We explained in this article how the associahedra can be realized as compactied moduli spaces of stable metric ribbon trees. In fact, writing D n,1 for the moduli space of stable disks with n + 1 marked points on their boundary, where n points are seen as incoming, and 1 as outgoing, the moduli space D n,1 can be compactied and topologized in such a way that it is isomorphic as a CW-complex to the associahedron K n . See [Sei08] for instance. Mau-Woodward also prove in [MW10] that the multiplihedra J n can be realized as the compactied moduli spaces of stable quilted disks QD n,1 . The objects of QD n,1 are disks with n + 1 points z 0 , z 1 , • • • , z n marked on the boundary, with an additional interior disk passing through the point z 0 . An instance is depicted in gure 33. These families of moduli spaces however only contain the A ∞ -cell decompositions of the associahedra resp. multiplihedra, and do not contain their ΩBAs-cell decompositions.

A symplectic manifold corresponds to the data of a smooth manifold M together with a closed non-degenerate 2-form ω on M . The purpose of symplectic topology is the study of the geometrical properties of symplectic manifolds (M, ω), and of the way they are preserved under smooth transformations preserving the symplectic structure. As algebraic topology seeks to associate algebraic invariants to topological spaces, in the hope of distinguishing them and understanding some of their topological properties, the same modus operandi can be applied to the study of symplectic manifolds. This point view was prompted by the seminal work of Gromov [Gro85] on moduli spaces of pseudoholomorphic curves. By counting the points of 0-dimensional moduli spaces of pseudo-holomorphic curves, one will be able to dene algebraic operations stemming from the geometry of the underlying symplectic manifolds.

The most famous example is that of the Fukaya category Fuk(M ) of a symplectic manifold M (with additional technical assumptions). It is an A ∞ -category whose higher multiplications are dened by counting moduli spaces of pseudo-holomorphic disks with Lagrangian boundary conditions and n+ 1 marked points on their boundary, in other words by realizing the moduli spaces D n,1 in symplectic topology. We refer for instance to [Smi15] and [Aur14] for introductions to the subject. The moduli spaces of quilted disks can be similarly realized as pseudo-holomorphic curves in symplectic topology as in [MWW18], to construct A ∞ -functors between Fukaya categories.

x n x n-1 x 1 x 2 y L n-1 L 1 L 0 L n M z 3 z 2 z 1 z 0 Figure 33.
On the left, an example of a pseudo-holomorphic disk with Lagrangian boundary conditions on the Lagrangian submanifolds L 0 , . . . , L n whose n + 1 marked points are sent to the points y, x 1 , . . . , x n in M . On the right, an example of a quilted disk in QD 3,1 .

It is also worth mentioning the work of Bottman on that matter. He is currently developing an algebraic model for the notion of (A ∞ , 2)-categories, using moduli spaces of witch curves. The goal is to prove that one can then dene an (A ∞ , 2)-category Symp whose objects would be symplectic manifolds (with suitable technical assumptions), and such that the space of morphisms between two symplectic manifolds M and N would be the Fukaya category Fuk(M -× N ). We refer to his recent papers [Bot19a] and [Bot19b] for more details.

HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY I 91 4. Towards higher algebra In closing, two questions naturally arise from this construction. They will respectively represent the starting points to the parts II and III to this article. Problem 1. Given two Morse functions f, g, choices of perturbation data X f and X g , and choices of perturbation data Y and Y , is µ Y always A ∞ -homotopic (resp. ΩBAs-homotopic) to µ Y ? I.e., when can the following diagram be lled in the A ∞ (resp. ΩBAs) world

C * (f ) C * (g) µ Y µ Y ?
In which sense, with which notion of homotopy can it be lled ? And in general, which notion of higher operadic algebra naturally encodes this type of problem ? Problem 2. Given three Morse functions f 0 , f 1 , f 2 , choices of perturbation data X i , and choices of perturbation data Y ij dening morphisms

µ Y 01 : (C * (f 0 ), m X 0 t ) -→ (C * (f 1 ), m X 1 t ) , µ Y 12 : (C * (f 1 ), m X 1 t ) -→ (C * (f 2 ), m X 2 t ) , µ Y 02 : (C * (f 0 ), m X 0 t ) -→ (C * (f 2 ), m X 2 t ) ,
can we construct an A ∞ -homotopy (or an ΩBAs-homotopy), such that µ Y 12 • µ Y 01 µ Y 02 through this homotopy ? That is, can the following cone be lled in the A ∞ (resp. ΩBAs) world

C * (f 0 ) C * (f 1 ) C * (f 2 ) µ Y 02 µ Y 01 µ Y 12 ?
Which higher operadic algebra naturally arises from this basic question ? Note that the construction of section 1 solves the arity 1 step of this problem. Problem 1 is solved in [Maz21] by introducing the notions of n -A ∞ -morphisms and n -ΩBAsmorphisms. Problem 2 will be adressed in an upcoming paper, in which it will appear that the higher algebra of n -A ∞ -morphisms provides a natural framework to solve this problem. Abstract. This paper introduces the notion of n-morphisms between two A∞-algebras, such that 0-morphisms correspond to standard A∞-morphisms and 1-morphisms correspond to A∞homotopies between A∞-morphisms. The set of higher morphisms between two A∞-algebras then denes a simplicial set which has the property of being a Kan complex, whose simplicial homotopy groups can be explicitly computed. The operadic structure of n -A∞-morphisms is also encoded by new families of polytopes, which we call the n-multiplihedra and which generalize the standard multiplihedra. These are constructed from the standard simplices and multiplihedra by lifting the Alexander-Whitney map to the level of simplices. Rich combinatorics arise in this context, as conveniently described in terms of overlapping partitions. Shifting from the A∞ to the ΩBAs framework, we dene the analogous notion of n-morphisms between ΩBAs-algebras, which are again encoded by the n-multiplihedra, endowed with a rened cell decomposition by stable gauged ribbon tree type. We then realize this higher algebra of A∞ and ΩBAs-algebras in Morse theory. Given two Morse functions f and g, we construct n-ΩBAs-morphisms between their respective Morse cochain complexes endowed with their ΩBAs-algebra structures, by counting perturbed Morse gradient trees associated to an admissible simplex of perturbation data. We moreover show that the simplicial set consisting of higher morphisms dened by a count of perturbed Morse gradient trees is a contractible Kan complex.

The 1-multiplihedron ∆ 1 × J 3 ...

Introduction

Summary and results of article I. This article is the direct sequel to [Maz21]. We thus begin by summarizing our rst article, after which we outline the main results and constructions carried out in the present paper.

The structure of strong homotopy associative algebra, or equivalently A ∞ -algebra, was introduced in the seminal paper of Stashe [Sta63]. It provides an operadic model for the notion of dierential graded algebra whose product is associative up to homotopy. It is dened as the datum of a set of operations {m m : A ⊗m → A} m 2 of degree 2m on a dg-Z-module (A, ∂), which satisfy the sequence of equations

[∂, m m ] = i 1 +i 2 +i 3 =m 2 i 2 m-1 ±m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ).
The rst two equations respectively ensure that m 2 is compatible with ∂ and that it is associative up to the homotopy m 3 . This algebraic structure is encoded by an operad in dg-Z-modules, called the operad A ∞ . As shown in [MTTV21], this operad stems in fact from an operad in the category of polytopes, whose arity m space of operations is dened to be the (m -2)-dimensional associahedron K m .

Similarly, the notion of A ∞ -morphism between two A ∞ -algebras A and B oers an operadic model for the notion of morphism of strong homotopy associative algebras which preserves the product up to homotopy. It is dened as the datum of a set of operations {f m : A ⊗m → B} m 1 of degree 1m which satisfy the sequence of equations

[∂, f m ] = i 1 +i 2 +i 3 =m i 2 2 ±f i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) + i 1 +•••+is=m s 2 ±m s (f i 1 ⊗ • • • ⊗ f is ) .
The rst two equations show this time that f 1 commutes with the dierentials and that it preserves the product up to the homotopy f 2 . From the point of view of operadic algebra, A ∞ -morphisms are encoded by an operadic bimodule in dg-Z-modules : the operadic bimodule A ∞ -Morph. It occurs from an operadic bimodule in polytopes, whose arity m space of operations is the (m-1)-dimensional multiplihedron J m as shown in [LAM].

A ∞ -algebras and A ∞ -morphisms between them provide a satisfactory framework for homotopy theory. The most famous instance of this statement is the homotopy transfer theorem : given (A, ∂ A ) and (H, ∂ H ) two cochain complexes and a homotopy retract diagram

(A, d A ) (H, d H ) , h p i if (A, ∂ A )
is endowed with an A ∞ -algebra structure, then H can be made into an A ∞ -algebra such that i and p extend to A ∞ -morphisms. See also [Val20] and [LH02] for an extensive study on the homotopy theory of A ∞ -algebras.

The associahedra and multiplihedra, respectively encoding the operad A ∞ and the operadic bimodule A ∞ -Morph, can in fact be both realized as moduli spaces of metric trees. The associahedron K m is isomorphic as a CW-complex to the compactied moduli space of stable metric ribbon trees T m as rst pointed out in [BV73]. The multiplihedron J m is isomorphic as a CW-complex to the compactied moduli space of stable gauged metric ribbon trees CT m as shown in [For08] and [MW10]. These moduli spaces come in fact with rened cell decompositions, called their ΩBAs-cell decompositions : the cell decomposition by stable ribbon tree type for T m , and the cell decomposition by stable gauged ribbon tree type for CT m . These rened decompositions provide another operadic model for strong homotopy associative algebras with morphisms preserving the product up to homotopy between them : the standard operad ΩBAs and the operadic bimodule ΩBAs -Morph introduced in [Maz21]. We show moreover in [Maz21] that one can naturally shift from the ΩBAs to the A ∞ framework via a geometric morphism of operads A ∞ → ΩBAs and a geometric morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph.

Consider now a Morse function f on a closed oriented Riemannian manifold M together with a Morse-Smale metric. Following [Hut08], the Morse cochain complex C * (f ) is a homotopy retract of the singular cochain complex C * sing (M ) which is a dg-algebra with respect to the standard cup product. The dg-algebra structure on C * sing (M ) can thus be transferred to an A ∞ -algebra structure on C * (f ) using the homotopy transfer theorem. We show in [Maz21] that one can in fact directly dene an ΩBAs-algebra structure on the Morse cochains C * (f ) by realizing the moduli spaces of stable metric ribbon trees T m in Morse theory. Given a choice of perturbation data {X m } m 2 on the moduli spaces T m as introduced by Abouzaid in [Abo11] and further studied by Mescher in [Mes18], we dene the moduli spaces of perturbed Morse gradient trees modeled on a stable ribbon tree type t and connecting the critical points x 1 , . . . , x m ∈ Crit(f ) to the critical point y ∈ Crit(f ), denoted T X t (y; x 1 , . . . , x m ). We prove in [Maz21] that under generic assumptions on the choice of perturbation data, these moduli spaces are in fact orientable manifolds of nite dimension. If they have dimension 1, they can moreover be compactied to 1-dimensional manifolds with boundary, whose boundary is modeled on the top dimensional strata in the boudary of the compactied moduli space T m . The ΩBAs-algebra structure on the Morse cochains C * (f ) is nally dened by counting the points of the 0-dimensional moduli spaces T X t (y; x 1 , . . . , x m ). The induced geometric A ∞ -algebra structure on C * (f ) is then quasi-isomorphic to the A ∞ -algebra structure on C * (f ) given by the homotopy transfer theorem.

Consider now two Morse functions f and g on M together with generic choices of perturbation data X f and X g . Endow the Morse cochains C * (f ) and C * (g) with their associated ΩBAs-algebra structures. We prove in [Maz21] that one can adapt the construction of the previous paragraph, to dene an ΩBAs-morphism from the ΩBAs-algebra C * (f ) to the ΩBAs-algebra C * (g). We count this time 0-dimensional moduli spaces of perturbed Morse stable gauged trees modeled on a stable gauged ribbon tree type t g and connecting the critical points x 1 , . . . , x m ∈ Crit(f ) to the critical point y ∈ Crit(g), denoted CT Y tg (y; x 1 , . . . , x m ), after making a generic choice of perturbation data Y on the moduli spaces CT m .

Motivational question. Let Y and Y be two admissible choices of perturbations data on the moduli spaces CT m . Writing µ Y resp. µ Y for the ΩBAs-morphisms they dene, the question which motivates this paper is to know whether µ Y and µ Y are always homotopic or not

C * (f ) C * (g) µ Y µ Y .
In particular, one needs to determine what is the correct notion of a homotopy between two ΩBAsmorphisms.

Outline of the present paper and main results. The rst step towards answering this problem is carried out on the algebraic side in part 1, where we dene the notion of n-morphisms between A ∞algebras and n-morphisms between ΩBAs-algebras. In section 1, we recall at rst the suspended bar construction point of view on A ∞ -algebras and the denition of an A ∞ -homotopy between A ∞ -morphisms from [LH02]. After introducing the cosimplicial dg-coalgebra ∆ ∆ ∆ n together with the language of overlapping partitions, we can nally dene a n-morphism between two A ∞ -algebras A and B : Denition 6. Let A and B be two A ∞ -algebras. A n-morphism from A to B is dened to be a morphism of dg-coalgebras

F : ∆ ∆ ∆ n ⊗ T (sA) -→ T (sB) ,
where T (sA) denotes the suspended bar construction of A (see subsection 1.1).

Using the universal property of the bar construction, this denition is equivalent to the following one in terms of operations :

Denition 7. Let A and B be two A ∞ -algebras. A n-morphism from A to B is dened to be a collection of maps f (m)

I : A ⊗m -→ B of degree 1 -m -dim(I) for I ⊂ ∆ n and m 1, that satisfy ∂, f (m) I = dim(I) j=0 (-1) j f (m) ∂j I + (-1) |I| i1+i2+i3=m i2 2 ±f (i1+1+i3) I (id ⊗i1 ⊗ m i2 ⊗ id ⊗i3 ) + i1+•••+is=m I1∪•••∪Is=I s 2 ±m s (f (i1) I1 ⊗ • • • ⊗ f (is) Is ) .
We show in Proposition 2 that the datum of a n-morphism is also equivalent to the datum of a morphism of A ∞ -algebras A → ∆ ∆ ∆ n ⊗ B, where ∆ ∆ ∆ n is the dg-algebra dual to the dg-coalgebra ∆ ∆ ∆ n . While the operad A ∞ stems from the associahedra K m and the operadic bimodule A ∞ -Morph stems from the multiplihedra J m , we introduce in section 2 a family of polytopes encoding the A ∞equations for n-morphisms : the n-multiplihedra n-J m . In this regard, we begin by introducing a lift of the Alexander-Whitney coproduct AW at the level of the polytopes ∆ n , following [MTTV21]. The map

AW •s := (id ×(s-1) × AW) • • • • • (id × AW)
• AW then induces a rened polytopal subdivision of ∆ n , whose top dimensional cells can be labeled by all overlapping (s + 1)-partitions of ∆ n . After introducing the maps AW a a a , which generalize the maps AW •s and still induce the previous subdivisions on the simplices ∆ n , we construct a rened polytopal subdivision of the polytopes

∆ n × J m :
Denition 12. The polytopes ∆ n × J m endowed with the polytopal subdivisions induced by the maps AW a a a will be called the n-multiplihedra and denoted n -J m .

The boundaries of the n-multiplihedra n -J m yield the n -A ∞ -equations :

Proposition 8. The boundary of the top dimensional cell [n -J m ] of the n-multiplihedron n -J m is given by

∂ sing [n -J m ] ∪ h+k=m+1 1 i k h 2 [n -J k ] × i [K h ] ∪ i 1 +•••+is=m I 1 ∪•••∪Is=∆ n s 2 [K s ] × [dim(I 1 ) -J i 1 ] × • • • × [dim(I s ) -J is ] ,
where

I 1 ∪ • • • ∪ I s = ∆ n is an overlapping partition of ∆ n .
In other words, the n-multiplihedra encode the A ∞ -equations for n-morphisms.

We then show in section 3 that these constructions can be transported from the A ∞ to the ΩBAs realm. We dene n-morphisms between ΩBAs-algebras as follows :

Denition 13. n -ΩBAs-morphisms are the higher morphisms between ΩBAs-algebras encoded by the quasi-free operadic bimodule generated by all pairs (face I ⊂ ∆ n , two-colored stable ribbon tree), n -ΩBAs -Morph := F ΩBAs,ΩBAs ( I , I ,

I , I , • • • , (I, SCRT n ), • • • ; I ⊂ ∆ n ) .
An operation t I,g := (I, t g ), whose underlying stable ribbon tree t has e(t) inner edges, and such that its gauge crosses j vertices of t, is dened to have degree |t I,g | := j -1-e(t)-dim(I) = |I|+|t g |. The dierential of t I,g is given by the rule prescribed by the top dimensional strata in the boundary of CT m (t g ) combined with the algebraic combinatorics of overlapping partitions, added to the simplicial dierential of I, i.e.

∂t I,g = t ∂ sing I,g + ±(∂ CT m t g ) I .

We show that the n -ΩBAs-equations are also encoded by the n-multiplihedra, endowed this time with a rened cell decomposition taking the ΩBAs-decomposition of the multiplihedra J m into account. What's more, a n-morphism between ΩBAs-algebras naturally yields a n-morphism between A ∞ -algebras :

Proposition 9. There exists a morphism of

(A ∞ , A ∞ )-operadic bimodules n -A ∞ -Morph → n -ΩBAs -Morph.
Using the same tools as in [Maz21], we nally unravel all sign conventions in section 4.

In part 2, we study the simplicial set HOM A∞-Alg (A, B) • of higher morphisms from A to B, whose n-simplices are the n-morphisms from A to B. We recall at rst basic results on ∞-categories and Kan complexes, which are simplicial sets having the left-lifting property with respect to the inner horn inclusions resp. to all horn inclusions Λ k n ⊂ ∆ n . We also introduce the convenient setting of cosimplicial resolutions in model categories, following [Hir03]. We can then prove the following theorem in section 2 : Theorem 1. For A and B two A ∞ -algebras, the simplicial set HOM A∞ (A, B) • is a Kan complex. This Kan complex is in particular an algebraic ∞-category as explained in Proposition 11. Fix now F : A → B an A ∞ -morphism, i.e. a point of the simplicial set HOM A∞ (A, B) • . We proceed to compute the simplicial homotopy groups with basepoint F of this Kan complex in subsection 2.4 : Theorem 2.

(i) For n 1, the set π n (HOM A∞-Alg (A, B) • , F ) consists of the equivalence classes of collections of degree -n maps F (m) ∆ n : (sA) ⊗m → sB satisfying the following equations

(-1) n i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) ∆ n id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ F (l) ∆ n ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ,
where two such collections of maps (F (m) ∆ n ) m 1 and (G (m) ∆ n ) m 1 are equivalent if and only if there exists a collection of degree -(n + 1) maps H (m) : (sA) ⊗m → sB such that

G (m) ∆ n -F (m) ∆ n + (-1) n+1 i 1 +i 2 +i 3 =m H (i 1 +1+i 3 ) (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t (F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ H (l) ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ) . (ii) If n = 1, given two such collection of maps (F (m) ∆ 1 ) m 1 and (G (m) ∆ 1 ) m 1 , the composition law on π 1 (HOM A∞-Alg (A, B) • , F ) is given by the formula G (m) ∆ 1 + F (m) ∆ 1 - i1+•••+is+l1 +j1+•••+jt+l2 +k1+•••+ku=m b s+t+u+2 (F (i1) ⊗ • • • ⊗ F (is) ⊗ F (l1) ∆ 1 ⊗ F (j1) ⊗ • • • ⊗ F (jt) ⊗ G (l2) ∆ 1 ⊗ F (k1) ⊗ • • • ⊗ F (ku) ) .
(iii) If n 2, given two such collection of maps (F (m) ∆ n ) m 1 and (G (m) ∆ n ) m 1 , the composition law on π n (HOM A∞-Alg (A, B) • , F ) is given by the formula

G (m) ∆ n + F (m) ∆ n .
In section 3, we begin by generalizing the notion of a n-morphism between A ∞ -algebras to that of a n-functor between A ∞ -categories. We dene the simplicial set HOM A∞-Cat (A, B) • of higher functors between two A ∞ -categories, which we expect to also be a Kan complex. We then recall the denition of the A ∞ -category of A ∞ -functors Func A,B of [Fuk02], as well as the simplicial nerve functor N A∞ of [START_REF] Faonte | Simplicial nerve of an A∞-category[END_REF]. These constructions yield a new simplicial set N A∞ (Func A,B ) which has the property of being an ∞-category. Although the simplicial sets HOM A∞-Cat (A, B) • and N A∞ (Func A,B ) bear many similarities, they actually dier fundamentally : while the simplices of HOM A∞-Cat (A, B) • correspond to higher homotopies between A ∞ -functors, the simplices of N A∞ (Func A,B ) correspond to higher natural transformations between A ∞ -functors A → B. Heuristically, the simplicial set N A∞ (Func A,B ) has thereby no reason to be a Kan complex, as homotopies are reversible whether functors are not. Nevertheless, the Kan complex HOM A∞-Cat (A, B) • and the A ∞ -category Func A,B each dene a notion of homotopy between A ∞ -functors, that we compare when the A ∞ -category B is unital by recalling a proposition of [Fuk17]. In section 4, we nally explore two approaches to lift the composition of A ∞ -morphisms to a composition between n -A ∞ -morphisms. We fall however short of dening a natural simplicial enrichment of the category A ∞ -Alg. We also discuss the results of Faonte, Lyubashenko, Fukaya and Bottman concerning a statement of a similar nature involving the A ∞ -categories Func A,B .

In part 3 we illustrate how n-morphisms naturally arise in geometry, here in the context of Morse theory, solving our motivational question at the same time. In section 1 we detail the construction of n-morphisms between ΩBAs-algebras in Morse theory. Given two Morse functions f and g on a closed oriented manifold M , endow their Morse cochains with their ΩBAs-algebra structure coming from a choice of perturbation data on the moduli spaces T m . A n-morphism between C * (f ) and C * (g) can be constructed by adapting the techniques of [Abo11] and [Mes18] that we used in [Maz21] for moduli spaces of perturbed Morse gradient trees. We dene to this extent the notion of n-simplices of perturbation data Y ∆ n : Denition 22. A n-simplex of perturbation data for a gauged metric stable ribbon tree T g is dened to be a choice of perturbation data Y δ,Tg for T g for every δ ∈ ∆n .

Given a smooth n-simplex of perturbation data Y ∆ n ,tg on the moduli space CT m (t g ), we introduce the following moduli spaces of perturbed Morse gradient trees : Denition 24. Let y ∈ Crit(g) and x 1 , . . . , x m ∈ Crit(f ), we dene the moduli spaces

CT Y ∆ n ,tg ∆ n ,tg (y; x 1 , . . . , x m ) := δ∈ ∆n CT Y δ,tg tg (y; x 1 , . . . , x m ) .
As in [Maz21], these moduli spaces are orientable manifolds under some generic transversality assumptions on the perturbation data : Theorems 4 and 5. Under some generic assumptions on the choice of perturbation data (Y I,m ) m 1 I⊂∆ n , the moduli spaces CT I,tg (y; x 1 , . . . , x m ) are orientable manifolds. If they have dimension 0 they are moreover compact. If they have dimension 1 they can be compactied to 1-dimensional manifolds with boundary, whose boundary is modeled on the boundary of the n-multiplihedron n -J m endowed with its n -ΩBAs -cell decomposition.

Perturbation data (Y I,m ) m 1

I⊂∆ n satisfying the generic assumptions under which Theorems 4 and 5 hold will be called admissible. Given admissible choices of perturbation data X f and X g , we construct a n -ΩBAs-morphism between the ΩBAs-algebras C * (f ) and C * (g) by counting 0-dimensional moduli spaces of Morse gradient trees : Theorem 6. Let (Y I,m ) m 1 I⊂∆ n be an admissible choice of perturbation data. For every m and t g ∈ SCRT m , and every I ⊂ ∆ n we dene the operation µ I,tg as

µ I,tg : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x m -→ |y|= m i=1 |x i |+|t I,g | #CT Y I,tg I,tg (y; x 1 , • • • , x m ) • y .

This set of operations then denes a

n -ΩBAs-morphism (C * (f ), m X f t ) → (C * (g), m X g t ).
This n-morphism is in fact a twisted n-morphism as dened in [Maz21]. We subsequently prove a lling theorem for simplicial complexes of perturbation data :

Theorem 7. For every admissible choice of perturbation data Y S parametrized by a simplicial subcomplex S ⊂ ∆ n , there exists an admissible n-simplex of perturbation data Y ∆ n extending Y S .

Dening HOM geom ΩBAs (C * (f ), C * (g)) • to be the simplicial subset of HOM ΩBAs (C * (f ), C * (g)) • consisting of higher morphisms dened by a count of perturbed Morse gradient trees, we prove that Theorem 7 implies the following theorem : Theorem 8. The simplicial set HOM geom ΩBAs (C * (f ), C * (g)) • is a Kan complex which is contractible. This solves in particular the motivational question to this paper. It is quite clear that given two compact symplectic manifolds M and N , one should be able to construct n-functors between their Fukaya categories Fuk(M ) and Fuk(N ) by counting pseudo-holomorphic quilted disks with Lagrangian correspondence seam condition, as suggested by the construction of geometric A ∞ -functors between Fukaya categories in [MWW18].

All transversality arguments and sign computations are performed in section 2 : they are mere adaptations of the analogous constructions in [Maz21]. We nally recall the second question stated at the end of [Maz21] in section 3, which is going to be tackled in an upcoming article.

Part 1

Higher morphisms between A ∞ and ΩBAs-algebras

1. n -A ∞ -morphisms
This section is dedicated to the study of the higher algebra of A ∞ -algebras. Our starting point is the study of homotopy theory in the category of A ∞ -algebras. Putting it simply, considering two A ∞ -morphisms F, G between A ∞ -algebras, we would like to determine which notion would give a satisfactory meaning to the sentence "F and G are homotopic". This question is solved in section 1.2 following [LH02], where we dene the notion of an A ∞ -homotopy.

Studying higher algebra of A ∞ -algebras means that we will be concerned with the higher homotopy theory of A ∞ -algebras. Typically, the questions arising are the following ones. Homotopies being dened, what is now a good notion of a homotopy between homotopies ? And of a homotopy between two homotopies between homotopies ? And so on. Higher algebra is a general term standing for all problems that involve dening coherent sets of higher homotopies (also called n-morphisms) when starting from a basic homotopy setting.

The sections following the denition of A ∞ -homotopies will then be concerned with dening a good notion of n-morphisms between A ∞ -algebras, i.e. such that A ∞ -morphisms correspond to 0morphisms and A ∞ -homotopies to 1-morphisms. This will be done using the viewpoint of section 1.1, which denes the category of A ∞ -algebras as a full subcategory of the category of dg-coalgebras. Sections 1.3 and 1.4 consist in a pedestrian approach to the construction of these n-morphisms, and section 1.6 sums it all up. In section 1.5 we moreover introduce an equivalent denition of n-morphisms, that we will need in section 4.3 of part 2. We postpone all sign computations to section 4.2.

1.1. Recollections and denitions. Let A be a graded Z-module. We introduce its suspension sA dened as the graded Z-module (sA) i := A i+1 . In other words, |sa| = |a| -1. This is merely a notation that gives a convenient way to handle certain degrees. Note for instance that a degree 2n map A ⊗n → A is simply a degree +1 map (sA) ⊗n → sA.

Our main category of interest will be the category whose objects are A ∞ -algebras and whose morphisms are A ∞ -morphisms. It will be written as A ∞ -Alg. Recall that a structure of A ∞ -algebra on a dg-Z-module A can equivalently be dened as a collection of operations m n : A ⊗n → A satisfying the A ∞ -equations, or as a codierential D A on its shifted bar construction T (sA). Similarly, an A ∞ -morphism is equivalently dened as a collection of operations f n : A ⊗n → B satisfying the A ∞ -equations, or as a morphism of dg-coalgebras (T (sA), D A ) → (T (sB), D B ). We refer to the rst article of this series [Maz21] for a detailed discussion on these results.

As a consequence, the shifted bar construction functor identies the category A ∞ -Alg with a full subcategory of the category of dg-coalgebras dg -Cog, that is

A ∞ -Alg ⊂ dg -Cog .
This basic idea is the key to our rst construction of n-morphisms in this section. We will perform some natural constructions in the category dg -Cog, and then specialize them to the category A ∞ -Alg using the above inclusion. As before, these natural constructions will then admit an interpretation in terms of operations A ⊗n → B, using the universal property of the bar construction.

1.2.

A ∞ -homotopies. The material presented in this section is taken from the thesis of Lefèvre-Hasegawa [LH02].

Homotopies between morphisms of dg-coalgebras. Denition 1 ([LH02]

). Let C and C be two dg-coalgebras. Let F and G be morphisms

C → C of dg-coalgebras. A (F, G)-coderivation is dened to be a map H : C → C such that ∆ C H = (F ⊗ H + H ⊗ G)∆ C .
The morphisms F and G are then said to be homotopic if there exists a (F, G)-coderivation H of degree -1 such that

[∂, H] = G -F .

Introduce the dg-coalgebra

∆ ∆ ∆ 1 := Z[0] ⊕ Z[1] ⊕ Z[0 < 1] .

Its dierential is the singular dierential

∂ sing ∂ sing ([0 < 1]) = [1] -[0] ∂ sing ([0]) = 0 ∂ sing ([1]) = 0 ,
its coproduct is the Alexander-Whitney coproduct

∆ ∆ ∆ ∆ 1 ([0 < 1]) = [0] ⊗ [0 < 1] + [0 < 1] ⊗ [1] ∆ ∆ ∆ ∆ 1 ([0]) = [0] ⊗ [0] ∆ ∆ ∆ ∆ 1 ([1]) = [1] ⊗ [1] ,
the elements [0] and [1] have degree 0, and the element [0 < 1] has degree -1. We refer to subsection 1.3.1 for a broader interpretation of ∆ ∆ ∆ 1 .

Proposition 1 ([LH02]

). There is a one-to-one correspondence between (F, G)-coderivations and morphisms of dg-coalgebras

∆ ∆ ∆ 1 ⊗ C -→ C .
Proof. One checks indeed that :

(i) F and G are the restrictions to the summands Z[0] ⊗ C and Z[1] ⊗ C, H is the restriction to the summand Z[0 < 1] ⊗ C ; (ii) the coderivation relation is given by the compatibility with the coproduct ; (iii) the homotopy relation is given by the compatibility with the dierential. 1.2.2. A ∞ -homotopies. Using the inclusion A ∞ -Alg ⊂ dg -Cog, this yields a notion of homotopy between two A ∞ -morphisms, which we call a A ∞ -homotopy : Denition 2 ( [LH02]). Let (T (sA), D A ) and (T (sB), D B ) be two A ∞ -algebras. Given two A ∞morphisms F, G : (T (sA), D A ) → (T (sB), D B ), an A ∞ -homotopy from F to G is dened to be a morphism of dg-coalgebras

H : ∆ ∆ ∆ 1 ⊗ T (sA) -→ T (sB) ,
whose restriction to the [0] summand is F and whose restriction to the [1] summand is G.

An alternative and equivalent denition ensues then as follows (see subsection 1.4.2 for a more general proof of the equivalence between the two denitions) :

Denition 3 ([LH02]). An A ∞ -homotopy between two A ∞ -morphisms (f n ) n 1 and (g n ) n 1 of A ∞ -
algebras A and B is dened to be a collection of maps

h n : A ⊗n -→ B ,
of degree -n, which satisfy the equations

[∂, h n ] =g n -f n + i 1 +i 2 +i 3 =m i 2 2 ±h i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) + i 1 +•••+is+l +j 1 +•••+jt=n s+1+t 2 ±m s+1+t (f i 1 ⊗ • • • ⊗ f is ⊗ h l ⊗ g j 1 ⊗ • • • ⊗ g jt ) .
The signs will be made explicit in section 4.2. Using the same symbolic formalism as in [Maz21], this can be represented as

[∂, [0 < 1] ] = [1] - [0] + ± [0 < 1] + ± [1] [1] [0 < 1] [0] [0] [0] [1]
,

where we denote [0] , [0 < 1] and [1] respectively for the f n , the h n and the g n .

1.2.3. On this notion of homotopy. The relation being A ∞ -homotopic on the class of A ∞ -morphisms is in fact an equivalence relation. It is moreover stable under composition. These results cannot be proven using naive tools, and are obtained through considerations of model categories. We refer to Lefèvre-Hasegawa [LH02] for the reader interested in the proof of these two results.

1.3. Some denitions.

1.3.1. The cosimplicial dg-coalgebra ∆ ∆ ∆ n . Denition 4. Dene ∆ ∆ ∆ n to be the graded Z-module generated by the faces of the standard n-simplex

∆ n , ∆ ∆ ∆ n = 0 i 0 <•••<i k n Z[i 0 < • • • < i k ] ,
where the grading is |I| := -dim(I) for I a face of ∆ n . We endow this graded Z-module with a dg-coalgebra structure, whose dierential is the simplicial dierential

∂ ∆ ∆ ∆ n ([i 0 < • • • < i k ]) := k j=0 (-1) j [i 0 < • • • < i j < • • • < i k ] ,
and whose coproduct is the Alexander-Whitney coproduct

∆ ∆ ∆ ∆ n ([i 0 < • • • < i k ]) := k j=0 [i 0 < • • • < i j ] ⊗ [i j < • • • < i k ] .
These dg-coalgebras are to be seen as the realizations of the simplices ∆ n in the world of dgcoalgebras. The collection of dg-coalgebras ∆ ∆ ∆ • := {∆ ∆ ∆ n } n 0 is then naturally a cosimplicial dgcoalgebra. The coface map

δ i : ∆ ∆ ∆ n-1 -→ ∆ ∆ ∆ n , 0 i n ,
is obtained by seeing the simplex ∆ n-1 as the i-th face of the simplex ∆ n . The codegeneracy map

σ i : ∆ ∆ ∆ n+1 -→ ∆ ∆ ∆ n , 0 i n ,
is dened as

[j 0 < • • • < j r < î < j r+1 < • • • < j s ] -→ [j 0 < • • • < j r < j r+1 -1 < • • • < j s -1] , [j 0 < • • • < j r < i + 1 < j r+1 < • • • < j s ] -→ [j 0 < • • • < j r < j r+1 -1 < • • • < j s -1] , [j 0 < • • • < j s ] -→ 0 if [i < i + 1] ⊂ [j 0 < • • • < j s ] .
In other words, the face

[0 < • • • < î < • • • < n + 1]
and its subfaces are identied with ∆ n and its subfaces. The same goes for

[0 < • • • < i + 1 < • • • < n + 1]
and its subfaces. All faces of ∆ n+1 that contain [i < i + 1] are taken to 0.

Heuristically, the coface and codegeneracy maps are obtained by applying the functor

C sing - * : Spaces -→ dg -Cog
to the cosimplicial space ∆ n , and then quotienting out each C sing - * (∆ n ) by the subcomplex generated by all degenerate singular simplices. For instance, the codegeneracy map σ i : ∆ n+1 → ∆ n is obtained by contracting the edge [i < i + 1] of ∆ n+1 , which yields the above codegeneracy map σ i : ∆ ∆ ∆ n+1 → ∆ ∆ ∆ n . We refer to [START_REF] Goerss | Simplicial homotopy theory[END_REF] for more details on the matter.

Overlapping partitions. Denition 5 ([MS03]

). Let I be a face of ∆ n . An overlapping partition of I is dened to be a sequence of faces (I l ) 1 s of I such that (i) the union of this sequence of faces is I, i.e. ∪ 1 s I l = I ; (ii) for all 1 < s, max(I ) = min(I +1 ).

These two requirements then imply in particular that min(I 1 ) = min(I) and max(I s ) = max(I). If the overlapping partition has s components I , we will refer to it as an overlapping s-partition. These sequences of faces are those which naturally arise when applying several times the Alexander-Whitney coproduct to a face I. For instance, the Alexander-Whitney coproduct corresponds to the sum of all overlapping 2-partitions of I. Iterating n times the Alexander-Whitney coproduct, we get the sum of all overlapping (n + 1)-partitions of I. An overlapping 6-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [0 < 1] ∪ [1] ∪ [1 < 2] ∪ [2] .
1.4. n-morphisms between A ∞ -algebras. We now want to dene a notion of higher homotopies, or n-morphisms, between A ∞ -algebras, such that 0-morphisms are A ∞ -morphisms and 1-morphisms are A ∞ -homotopies. Since A ∞ -morphisms correspond to the set

Hom dg-Cog (T (sA), T (sB))
and A ∞ -homotopies correspond to the set

Hom dg-Cog (∆ ∆ ∆ 1 ⊗ T (sA), T (sB)) ,
a natural candidate for the set of n-morphisms is

HOM A∞-Alg (A, B) n := Hom dg-Cog (∆ ∆ ∆ n ⊗ T (sA), T (sB)) .
1.4.1. n-morphisms between dg -coalgebras. We begin by making explicit the n-simplices of the HOM-simplicial sets

HOM dg-Cog (C, C ) n := Hom dg-Cog (∆ ∆ ∆ n ⊗ C, C ) .
Take a morphism of dg-coalgebras

f : ∆ ∆ ∆ n ⊗ C -→ C . Write f [i 0 <•••<i k ] : C → C for its restriction to the Z[i 0 < • • • < i k ]⊗C summand.
Then the property that f is a morphism of dg-Z-modules is equivalent to the system of equations (1.1)

[∂, f [i 0 <•••<i k ] ] = k j=0 (-1) j f [i 0 <•••< i j <•••<i k ] ,
while the property that f is a morphism of coalgebras is equivalent to the system of equations (1.2)

∆ C f [i 0 <•••<i k ] = k j=0 (f [i 0 <•••<i j ] ⊗ f [i j <•••<i k ] )∆ C .
These two sets of equations of morphisms hence characterize the n-simplices of the HOM-simplicial sets HOM dg-Cog (C, C ) • , i.e. the n-morphisms between the dg-coalgebras C and C . 1.4.2. n-morphisms between A ∞ -algebras. We now use the previous characterization of n-morphisms between dg-coalgebras to obtain a simpler denition for n-morphisms between two A ∞ -algebras : Denition 6. Let A and B be two A ∞ -algebras. A n-morphism from A to B is dened to be a morphism of dg-coalgebras

F : ∆ ∆ ∆ n ⊗ T (sA) -→ T (sB) .
We will write b n for the degree +1 maps associated to the A ∞ -operations m n , which dene the codierentials on T (sA) and T (sB). The property of being a morphism of coalgebras is equivalent to the property of satisfying equations 1.2. Using the universal property of the bar construction, this is equivalent to saying that the n-morphism is given by a collection of maps of degree |I|,

F (m) I : (sA) ⊗m -→ sB ,
where I is a face of ∆ n and m 1. The restriction of the map F I : T (sA) → T (sB) to (sA) ⊗m is then given by

F (m) I + i 1 +i 2 =m I 1 ∪I 2 =I F (i 1 ) I 1 ⊗ F (i 2 ) I 2 + • • • + i 1 +•••+is=m I 1 ∪•••∪Is=I F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is + • • • + I 1 ∪•••∪Im=I F (1) I 1 ⊗ • • • ⊗ F (1) Im ,
where I 1 ∪ • • • ∪ I s = I stands for an overlapping partition of I. Corestricting to B ⊗s yields the morphism

i 1 +•••+is=m I 1 ∪•••∪Is=I F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is : (sA) ⊗m -→ (sB) ⊗s .
The property of being compatible with the dierentials is equivalent to the property of satisfying equations 1.1. This is itself equivalent to the fact that the collection of morphisms F (m) I satises the following family of equations involving morphisms (sA) ⊗m → sB,

dim(I) j=0 (-1) j F (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=m I 1 ∪•••∪Is=I b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) .
We unwind the signs obtained by changing the b n into the m n and the degree |I| maps F (m)

I : (sA) ⊗m -→ sB into degree 1 -m + |I| maps f (m) I : A ⊗m -→ B in subsection 4.2.3. The nal equations read as ∂, f (m) I = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m i 2 2 ±f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) ( ) + i 1 +•••+is=m I 1 ∪•••∪Is=I s 2 ±m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) ,
or equivalently and more visually,

[∂, I ] = dim(I) j=0 (-1) j ∂ sing j I + I 1 ∪•••∪Is=I ± Is I1 + ± I .
Denition 7. Let A and B be two A ∞ -algebras. A n-morphism from A to B is dened to be a collection of maps f (m)

I : A ⊗m -→ B of degree 1 -m + |I| for I ⊂ ∆ n
and m 1, that satisfy equations . 1.5. An equivalent denition for n-morphisms. We show in this section that given A and B two A ∞ -algebras, the datum of a n-morphism from A to B is equivalent to the datum of a morphism of

A ∞ -algebras A → ∆ ∆ ∆ n ⊗ B.
Consider rst C a dg-algebra and B an A ∞ -algebra. Then the tensor product C ⊗ B can be naturally endowed with an A ∞ -algebra structure by dening m n : (A ⊗ B) ⊗n → A ⊗ B as

m n := ((m A 2 ) •n-1 ⊗ m B n ) • τ n ,
where τ n denotes the map rearranging an element a 1 b 1 . . . a n b n of (A ⊗ B) ⊗n into an element a 1 . . . a n b 1 . . . b n of A ⊗n ⊗ B ⊗n and (m A 2 ) •n-1 : A ⊗n → A denotes the (n -1)-th iterate of the multiplication m A 2 on A. We moreover dene ∆ ∆ ∆ n to be the simplicial dg-algebra ∆ ∆ ∆ n := Hom(∆ ∆ ∆ n , Z) dual to the cosimplicial dg-coalgebra ∆ ∆ ∆ n . Its underlying graded module is in particular

∆ ∆ ∆ n = 0 i 0 <•••<i k n Z[i 0 < • • • < i k ]
where the grading is |I| ∆ ∆ ∆n := dim(I) for I a face of ∆ n . It is endowed with the standard cup product.

An

A ∞ -morphism F : A → ∆ ∆ ∆ n ⊗ B then corresponds to a collection of degree 1 -m maps F (m) : A ⊗m → ∆ ∆ ∆ n ⊗ B which can be rewritten as a collection of degree 1 -m -dim(I) maps f (m) I : A ⊗m → B such that F (m) = I⊂∆ n I ⊗ f (m) I .
We denote π I : ∆ ∆ ∆ n → Z • I the projection from ∆ ∆ ∆ n to its summand labeled by I. Then, the

A ∞ -equations for the A ∞ -morphism F : A → ∆ ∆ ∆ n ⊗ B read as ∂, F (m) = i 1 +i 2 +i 3 =m i 2 2 ±F (i 1 +1+i 3 ) (id ⊗i 1 ⊗ m A i 2 ⊗ id ⊗i 3 ) + i 1 +•••+is=m s 2 ±m ∆ ∆ ∆n⊗B s (F (i 1 ) ⊗ • • • ⊗ F (is) ) ,
and their images under the map π I yield exactly the A ∞ -equations for the collection of morphisms

f (m) I .
Proposition 2. Let A and B be two A ∞ -algebras. A n-morphism from A to B can be equivalently dened as an

A ∞ -morphism A → ∆ ∆ ∆ n ⊗ B.
We will only need this equivalent denition of n-morphisms in subsection 4.3 of part 2, and will stick to the denition ∆ ∆ ∆ n ⊗ T (sA) → T (sB) and to the denition in terms of operations in the rest of this paper. We moreover point out that the natural sign convention for n-morphisms arising from this new denition diers slightly from the one arising from the two previous denitions, as we explain in subsection 4.2.4. 1.6. Résumé. Given A and B two A ∞ -algebras, we dene a n-morphism between A and B to be an element of the simplicial set

HOM A∞-Alg (A, B) n := Hom dg-Cog (∆ ∆ ∆ n ⊗ T (sA), T (sB)) ,
or equivalently a collection of operations I : A ⊗m → B of degree 1mdim(I) for all faces I of ∆ n and all m 1, satisfying the A ∞ -equations

[∂, I ] = dim(I) j=0 (-1) j ∂ sing j I + I 1 ∪•••∪Is=I ± Is I1 + ± I ,
where we refer to subsection 4.2.3 for signs.

The n-multiplihedra

Recall from [Maz21] that, in the language of operadic algebra, A ∞ -algebras are governed by the operad A ∞ , and A ∞ -morphisms are governed by the (A ∞ , A ∞ )-operadic bimodule A ∞ -Morph. These two operadic objects actually stem from collections of polytopes. Under the functor C cell - * the associahedra {K m } realise the operad A ∞ , while the multiplihedra

{J m } form a ({K m }, {K m })- operadic bimodule realising A ∞ -Morph.
The rst section shows that the operadic bimodule formalism for A ∞ -morphisms can be generalised to the setting of n -A ∞ -morphisms : for each n 0 there exists an (A ∞ , A ∞ )-operadic bimodule n -A ∞ -Morph, which encodes n-morphisms between A ∞ -algebras. In fact, they t into a cosimplicial operadic bimodule {n -A ∞ -Morph} n 0 . Reproducing the previous progression, we would like to realise the combinatorics of n-morphisms at the level of polytopes. The rst step in this direction is performed in section 2.2 : we explain how to lift the Alexander-Whitney coproduct to the level of the standard simplices ∆ n and study the rich combinatorics that arise in this problem. Section 2.3 subsequently introduces the n-multiplihedra n-J m , which are the polytopes ∆ n ×J m endowed with a rened polytopal subdivision. These polytopes do not form a ({K m }, {K m })-operadic bimodule, but they suce to recover all the combinatorics of n-morphisms.

2.1. The cosimplicial (A ∞ , A ∞ )-operadic bimodule encoding higher morphisms.

The

(A ∞ , A ∞ )-operadic bimodules n -A ∞ -Morph. The (A ∞ , A ∞ )-operadic bimodule en- coding A ∞ -morphisms is the quasi-free (A ∞ , A ∞ )-operadic bimodule generated in arity n by one operation of degree 1 -n, A ∞ -Morph = F A∞,A∞ ( , , , , • • • ) .
Representing the generating operations of the operad A ∞ acting on the right in blue and the ones of the operad A ∞ acting on the left in red , its dierential is dened by

∂( 1 2 m ) = h+k=m+1 1 i k h 2 ± 1 k i 1 h + i 1 +•••+is=m s 2 ± 1 is i1 1 . Denition 8. The (A ∞ , A ∞ )-operadic bimodule encoding n -A ∞ -morphisms is the quasi-free (A ∞ , A ∞ )
-operadic bimodule generated in arity m by the operations f (m)

I

of degree 1m + |I|, for all faces I of ∆ n , and whose dierential is dened by

∂(f (m) I ) = dimI j=0 (-1) j f (m) ∂ sing j I + i1+i2+i3=m i2 2 ±f (i1+1+i3) I (id ⊗i1 ⊗ m i2 ⊗ id ⊗i3 ) + i1+•••+is=m I1∪•••Is=I s 2 ±m s (f (i1) I1 ⊗ • • • ⊗ f (is) Is ) .
Representing the operations f (m) I as I , this can be rewritten as

n -A ∞ -Morph = F A∞,A∞ ( I , I , I , I , • • • ; I ⊂ ∆ n ) .
where

∂( I ) = dimI j=0 (-1) j ∂ sing j I + I 1 ∪•••∪Is=I ± Is I1 + ± I .
The collection of (A ∞ , A ∞ )-operadic bimodules {n -A ∞ -Morph} n 0 forms a cosimplicial (A ∞ , A ∞ )-operadic bimodule whose coface and codegeneracy maps are built out of those of section 1.3. Given two A ∞ -algebras A ∞ → Hom(A) and A ∞ → Hom(B), the set of n-morphisms is then simply given by ,,,• • • ,,,,• • • ,,,,,• • • ) , with dierential given by the A ∞ -algebra relations on the one-colored operations, and the A ∞morphism relations on the two-colored operations.

HOM A∞-Alg (A, B) n = Hom (A∞,A∞)-op.bimod. (n -A ∞ -Morph, Hom(A, B)) .

The two-colored operadic viewpoint. Recall that A ∞ -algebras and A ∞ -morphisms between them are naturally encoded by the quasi-free two-colored operad

A 2 ∞ := F(
Similarly, A ∞ -algebras and n -A ∞ -morphisms between them are naturally encoded by the quasifree two-colored operad

n -A 2 ∞ := F( , , , • • • , , , , • • • , ( I , I , I , I , • • • ; I ⊂ ∆ n )) ,
with dierential given by the A ∞ -algebra relations on the one-colored operations, and the n -A ∞morphism relations on the two-colored operations. The collection of two-colored operads {n -

A 2
∞ } n 0 constitutes again a cosimplicial two-colored operad.

2.2. Polytopal subdivisions on ∆ n induced by the Alexander-Whitney coproduct. One way of interpreting the Alexander-Whitney coproduct

∆ ∆ ∆ ∆ n : ∆ ∆ ∆ n -→ ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n
is to say that it is a diagonal on the dg-Z-module ∆ ∆ ∆ n . The following natural question then arises. Does there exist a diagonal (i.e. a polytopal map that is homotopic to the usual diagonal -the usual diagonal map failing to be polytopal in general) on the standard n-simplex ∆ n ,

AW : ∆ n -→ ∆ n × ∆ n ,
such that its image under the functor

C cell - * is AW - * = ∆ ∆ ∆ ∆ n ?
The answer to this question is positive, and contains rich combinatorics that we now lay out. 2.2.1. The map AW. We recall in this section the construction of a diagonal on the standard simplices explained in [MTTV21] (example 1 of section 2.3.).

Denition 9 ([MTTV21]

). Consider the realizations of the standard n-simplices

∆ n := conv{(1, . . . , 1, 0, . . . , 0) ∈ R n } = {(z 1 , . . . , z n ) ∈ R n |1 z 1 • • • z n 0} .
We dene the map AW by the formula

AW(z 1 , • • • , z n ) = ((2z 1 -1, . . . , 2z i -1, 0, . . . , 0), (1, • • • , 1, 2z i+1 , . . . , 2z n )) , for 1 z 1 • • • z i 1/2 z i+1 • • • z n 0.
In particular, the map AW comes with a rened polytopal subdivision of ∆ n , whose n + 1 top dimensional strata are given by the subsets

{(z 1 , . . . , z n ) ∈ R n |1 > z 1 > • • • > z i > 1/2 > z i+1 > • • • > z n > 0} ⊂ ∆ n ,
and whose i-codimensional strata are simply obtained by replacing i symbols ">" by a symbol "=" in the previous sequence of inequalities. This rened subdivision is represented on the gures 1, 2 and 3, together with the value of AW on each stratum of the subdivision. Figure 2. Values of AW on ∆ 1 : the stratum to which AW is applied is colored in red 2.2.2. The polytopal map AW is not coassociative. The Alexander-Whitney coproduct ∆ ∆ ∆ ∆ n on the dg-level is coassociative. However, the diagonal map AW is not ! This can be checked for the 1-simplex ∆ 1 :

(AW × id) • AW(2/5) = AW × id(0, 4/5) = (0, 0, 4/5) (id × AW) • AW(2/5) = id × AW(0, 4/5) = (0, 3/5, 1) .
Proposition 3. The polytopal map AW is not coassociative.

The polytopal subdivisions that the polytopal maps

(AW × id) • AW : ∆ n -→ ∆ n × ∆ n × ∆ n , (id × AW) • AW : ∆ n -→ ∆ n × ∆ n × ∆ n
induce on ∆ n are also dierent. See an instance on gure 4. An overlapping s-partition as dened in denition 5 is then simply a (s -1)-overlapping s-partition.

A 1-overlapping 3-partition for [0 < 1 < 2] is for instance

[0 < 1 < 2] = [0] ∪ [0] ∪ [1 < 2] .
2.2.4. Polytopal subdivisions of ∆ n induced by iterations of AW.

Denition 11. Dene the s-th right iterate of the map AW as For each s 1, the map AW •s induces a rened polytopal subdivision of ∆ n . These subdivisions will be called the AW •s -subdivisions of ∆ n . They can be described rather simply. While the AWsubdivision is obtained by dividing ∆ n into pieces using all hyperplanes z i = 1/2 for 1 i n, the AW •s -subdivision can be constructed as follows :

AW •s := (id ×(s-1) × AW) • • • • • (id × AW) • AW : ∆ n -→ (∆ n ) ×s+1 .
Proposition 4. The AW •s -subdivision of ∆ n is the subdivision obtained by dividing ∆ n using all hyperplanes z i = (1/2) k , for 1 i n and 1 k s.

The rst three subdivisions of ∆ 2 are represented in gure 5. Note that a dierent choice for AW •s , for instance AW •2 = (AW × id) • AW, would have yielded a dierent subdivision of ∆ n . Choices have to be made, because AW is not coassociative.

The n-dimensional cells of ∆ n endowed with its AW •s -subdivision are then dened by inequalities

• • • z i k (1/2) k z i k +1 • • • for 1 k s.
We write C i 1 ,...,is for such a cell. An explicit formula for the map AW •s : ∆ n → (∆ n ) ×s+1 can then be computed as follows. Its projection on the k-th factor

∆ n of (∆ n ) ×s+1 restricted to C i 1 ,...,is ⊂ ∆ n is (z 1 , . . . , z n ) -→ (1, . . . , 1, 2 k z i k-1 +1 -1, . . . , 2 k z i k -1, 0, . . . , 0) for 1 k s, (z 1 , . . . , z n ) -→ (1, . . . , 1, 2 s z is+1 , . . . , 2 s z n ) for k = s + 1.
This explicit formula for the map AW •s implies the following proposition : Proposition 5. The map AW •s sends the cell C i 1 ,...,is ⊂ ∆ n homeomorphically to the face

[0 < • • • < i 1 ] × [i 1 < • • • < i 2 ] × • • • × [i s < • • • < n] ⊂ (∆ n ) ×s+1 .
Hence not only does the map AW •s determine a subdivision of the simplex ∆ n but it also determines a labeling of its strata. They are labeled by the term of (∆ ∆ ∆ n ) ⊗s+1 which they determine after taking the image of AW •s under the functor C cell - * . Proposition 5 implies that the top-dimensional strata dened by the inequalities

• • • > z i k > (1/2) k > z i k +1 > • • • are labeled by [0 < • • • < i 1 ] ⊗ [i 1 < • • • < i 2 ] ⊗ • • • ⊗ [i s < • • • < n] .
Proposition 6.

(i) The codimension i strata of the AW •s -subdivision of ∆ n lying in the interior of ∆ n are in one-to-one correspondence with the (si)-overlapping (s + 1)-partitions of ∆ n . More generally, given a face I ⊂ ∆ n , the strata of the AW •s -subdivision of ∆ n which are lying in the interior of I and have codimension i w.r.t. the dimension of I are in one-to-one correspondence with the (si)-overlapping (s + 1)-partitions of I.

(ii) Consider a codimension i stratum of the AW •s -subdivision of ∆ n lying in the interior of ∆ n . This stratum is dened by si inequalities of the form

• • • > z i k > (1/2) k > z i k +1 > • • • ,
and i equalities of the form

• • • > z i k = (1/2) k > z i k +1 > • • • .
The labeling of this stratum can then be obtained under the following simple transformation rules :

• • • > z i k > (1/2) k > z i k +1 > • • • -→ • • • < i k ] ⊗ [i k < • • • , • • • > z i k = (1/2) k > z i k +1 > • • • -→ • • • < i k -1] ⊗ [i k < • • • .
This recipe easily carries over to the case of strata lying in the boundary of ∆ n . The AW and AW •2 subdivisions of ∆ 2 are represented in gure 6.

Figure 6. The AW and AW •2 subdivisions of ∆ 2 2.2.5. The AW a a a -subdivisions of ∆ n . Let now a a a be a sequence of real numbers

1 > a 1 > • • • > a s > 0,
where we denote |a a a| := s the length of a a a. We call such a sequence a dividing sequence. We dene the AW a a a -subdivision of ∆ n to be the subdivision obtained after dividing ∆ n by all hyperplanes z i = a k , for 1 i n and 1 k |a a a|. We denote ∆ n a a a for ∆ n endowed with its AW a a a -subdivision. The cells

C i 1 ,...,is
a a a of ∆ n a a a are again dened by the inequalities

• • • z i k a k z i k +1 • • • ,
for 1 k |a a a|. We dene moreover the map AW a a a : ∆ n → (∆ n ) ×|a a a|+1 as follows. Its projection on the k-th factor ∆ n of (∆ n ) ×|a a a|+1 restricted to the cell C i 1 ,...,is a a a ⊂ ∆ n a a a is dened by the formula

(z 1 , . . . , z n ) -→ (1, . . . , 1, (z i k-1 -a k ) a k-1 -a k , . . . , (z i k -a k ) a k-1 -a k
, 0, . . . , 0) for 1 k |a a a|, (z 1 , . . . , z n ) -→ (1, . . . , 1, z i |a a a| +1 /a |a a a| , . . . , z n /a |a a a| ) for k = |a a a| + 1, where we have set a 0 := 1. We check in particular that for a a a = 1/2 > • • • > (1/2) s we have AW a a a := AW •s . The maps AW a a a are to be understood as generalizations of the maps AW •s , that still realize the |a a a|-th iterate of the Alexander-Whitney coproduct under the functor C cell - * . In particular, the analogous statements of Propositions 3, 5 and 6 still hold for the maps AW a a a .

We can now state a coassociativity-like property that the maps AW a a a satisfy, which did not hold when only using the map AW as proven in Proposition 3. 

cell - * is the (A ∞ , A ∞ )-operadic bimodule A ∞ -Morph.
The faces of codimension i of J m are labeled by all possible broken two-colored trees obtained by blowing-up i times the two-colored m-corolla. See for instance [Maz21] for pictures of the multiplihedra J 1 , J 2 and J 3 . The multiplihedra J m can moreover be realized as the compactications of moduli spaces of stable two-colored metric ribbon trees CT m , where each CT m is seen as the unique (m -1)-dimensional stratum of CT m . 2.3.2. The n-multiplihedra n -J m . Consider the polytope ∆ n × J m for n 0 and m 1. It is the most natural candidate for a polytope encoding n-morphisms between A ∞ -algebras. However, it does not fulll that property as it is. Indeed, its faces correspond to the data of a face of ∆ n , that is of some I ⊂ ∆ n , and of a face of J m , that is of a broken two-colored tree obtained by blowingup several times the two-colored m-corolla. This labeling is too coarse, as it does not contain the following trees, that appear in the A ∞ -equations for n-morphisms

Is I1
.

We resolve this issue by constructing a rened polytopal subdivision of ∆ n × J m . Consider a face F of J m labeled by a broken two-colored tree t br,c such that exactly s unbroken two-colored trees t i c for r = 1, . . . , s appear in t br,c . We see the trees t r c as ordered from left to right in t br,c , write i r for the number of incoming edges of t br c located above t r c in t br,c , and recall that t br,c has arity m. We have in particular that i 1 + • • • + i s = m. Dene the dividing sequence a a a t br,c of length s -1 as

i 1 + • • • + i s-1 m > i 1 + • • • + i s-2 m > • • • > i 1 m .
We then rene the polytopal subdivision of

∆ n × F into ∆ n a a at br,c
× F , where ∆ n a a at br,c denotes ∆ n endowed with its AW a a at br,c -subdivision. This renement process is moreover consistent : for two faces F ⊂ F , the subdivision on ∆ n dened by the face F is a renement of the subdivision on ∆ n dened by the face F .

Denition 12. The n-multiplihedra are dened to be the polytopes ∆ n × J m endowed with the previous polytopal subdivision. We denote them n -J m .

See some examples in gures 8, 9 and 10. We illustrate denition 12 with the construction of the 2-multiplihedron ∆ 2 × J 2 depicted on gure 9. The polytope ∆ 2 has one 2-dimensional face labeled by [0 < 1 < 2] and three 1-dimensional faces labeled by [0 < 1], [1 < 2] and [0 < 2]. The polytope J 2 has one 1-dimensional face labeled by and has two 0-dimensional faces labeled by and . Consider now the product polytope ∆ 2 × J 2 . Its has one unique 3-dimensional face labeled by [0 < 1 < 2] × and ve 2-dimensional faces. The faces

[0 < 1] × , [1 < 2] × , [0 < 2] × and [0 < 1 < 2] × that
are left unchanged under the construction of the previous paragraph, as they each feature only 1 unbroken two-colored tree. They respectively correspond to the faces A, B, F and G on gure 9. The fth face is the face [0 < 1 < 2] × . It features 2 unbroken two-colored trees : we thus have to rene the polytopal subdivision of ∆ 2 × into ∆ 2 AW × . This renement produces the strata

([0] ⊗ [0 < 1 < 2]) × , ([0 < 1] ⊗ [1 < 2]) × and ([0 < 1 < 2] ⊗ [2]
) × , which respectively correspond to the labels C, D and E on gure 9. This concludes the construction of the 2-multiplihedron ∆ 2 × J 2 . , where I 1 ∪ • • • ∪ I s = ∆ n is an overlapping partition of ∆ n . This stratum does not appear in the polytopal subdivision of n -J m . Hence these polytopes do not recover the 

(A ∞ , A ∞ )-operadic bimodule n -A ∞ -Morph.
∂ sing [n -J m ] ∪ h+k=m+1 1 i k h 2 [n -J k ] × i [K h ] ∪ i 1 +•••+is=m I 1 ∪•••∪Is=∆ n s 2 [K s ] × [dim(I 1 ) -J i 1 ] × • • • × [dim(I s ) -J is ] ,
where

I 1 ∪ • • • ∪ I s = ∆ n is an overlapping partition of ∆ n .
Details on the orientation of the top dimensional strata in this boundary are worked out in section 4.3. Note moreover that the collection {n -J m } n 0 is a cosimplicial polytope. This implies that the image of each cell [dim(I) -J m ] under the functor C cell - * yields an element whose boundary is exactly given by the A ∞ -equations for n-morphisms. It is in that sense that the n -J m encode n-morphisms. The previous boundary formula also implies that the n -J m will constitute a good parametrizing space for constructing moduli spaces in symplectic topology, whose count should give rise to n-morphisms between Floer complexes.

n -ΩBAs-morphisms

The multiplihedra J m can be realized by compactifying the moduli spaces of stable two-colored metric ribbon trees CT m and come with two cell decompositions. The rst one consists in considering each CT m as a (m -1)-dimensional stratum and encodes the operadic bimodule A ∞ -Morph. The second one is obtained by considering the stratication of the moduli spaces CT m by two-colored stable ribbon tree types, and encodes the operadic bimodule ΩBAs -Morph. The ΩBAs-cell decomposition is moreover a renement of the A ∞ -cell decomposition. As a consequence, there exists a morphism of operadic bimodules A ∞ -Morph → ΩBAs -Morph, as shown in [Maz21]. It is hence sucient to construct an ΩBAs-morphism between ΩBAs-algebras to then naturally get an A ∞ -morphism between A ∞ -algebras.

We dene in this section n-ΩBAs-morphisms between ΩBAs-algebras. Building on the viewpoint of the previous paragraph, we then explain how, by rening the cell decomposition of the polytope n -J m , we get a new cell decomposition encoding n -ΩBAs-morphisms. This construction yields in particular a morphism of operadic bimodules n -A ∞ -Morph → n -ΩBAs -Morph. All sign computations are moreover postponed to section 4.4.

3.1. n -ΩBAs-morphisms.

3.1.1. Recollections on ΩBAs-morphisms. ΩBAs-morphisms are the morphisms between ΩBAsalgebras encoded by the quasi-free operadic bimodule generated by all two-colored stable ribbon trees

ΩBAs -Morph := F ΩBAs,ΩBAs ( , , , , • • • , SCRT n , • • • ) .
A two-colored stable ribbon tree t g whose underlying stable ribbon tree t has e(t) inner edges, and such that its gauge crosses j vertices of t, has degree |t g | := j -1e(t).

The dierential of a two-colored stable ribbon tree t g is given by the signed sum of all two-colored stable ribbon trees obtained from t g under the rule prescribed by the top dimensional strata in the boundary of CT n (t g ). : the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree (gauge-vertex) ; an internal edge located above the gauge or intersecting it breaks or, when the gauge is below the root, the outgoing edge breaks between the gauge and the root (above-break) ; edges (internal or incoming) that are possibly intersecting the gauge, break below it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root (below-break) ; an internal edge that does not intersect the gauge collapses (int-collapse).

3.1.2. n -ΩBAs-morphisms.

Denition 13. n -ΩBAs-morphisms are the higher morphisms between ΩBAs-algebras encoded by the quasi-free operadic bimodule generated by all pairs (face I ⊂ ∆ n , two-colored stable ribbon tree), n -ΩBAs -Morph := F ΩBAs,ΩBAs ( I , I ,

I , I , • • • , (I, SCRT n ), • • • ; I ⊂ ∆ n ) .
An operation t I,g := (I, t g ) is dened to have degree |t I,g | := |I| + |t g |. The dierential of t I,g is given by the rule prescribed by the top dimensional strata in the boundary of CT m (t g ) combined with the algebraic combinatorics of overlapping partitions, added to the simplicial dierential of I, i.e.

∂t I,g = t ∂ sing I,g + ±(∂ CT m t g ) I .
We refer to section 4.4 for a more complete denition and sign conventions. The sign computations are in particular more involved, as we did not describe an ad hoc construction analogous to the shifted bar construction as in the A ∞ case. We also point out that the symbol I used here is the same as the one used for the arity 2 generating operation of n -A ∞ -Morph. It will however be clear from THIBAUT MAZUIR the context what I stands for in the rest of this paper. We moreover compute the dierential in the following instance

| [0 < 1 < 2] | = -5 , ∂( [0 < 1 < 2] ) = ± [1 < 2] ± [0 < 2] ± [0 < 1] ± [0 < 1 < 2] ± [0 < 1 < 2] ± [0 < 1 < 2] ± [0 < 1 < 2] ± [0 < 1 < 2] ± [0] [0 < 1 < 2] ± [0 < 1] [1 < 2] ± [0 < 1 < 2] [2] .
3.1.3. From n -ΩBAs-morphisms to n -A ∞ -morphisms. A n -ΩBAs-morphism between two ΩBAs-algebras naturally yields a n -A ∞ -morphism between the induced A ∞ -algebras :

Proposition 9. There exists a morphism of

(A ∞ , A ∞ )-operadic bimodules n -A ∞ -Morph → n -ΩBAs -Morph given on the generating operations of n -A ∞ -Morph by f I,m -→ tg∈CBRTm ±f I,tg ,
where CBRT m denotes the set of two-colored binary ribbon trees of arity m.

This proposition is proven in subsection 4.4.7. Note that the collection of operadic bimodules {n -ΩBAs -Morph} n 0 is once again a cosimplicial operadic bimodule, where the cofaces and codegeneracies are as in subsection 1.3.1. This sequence of morphisms of operadic bimodules denes then in fact a morphism of cosimplicial operadic bimodules

{n -A ∞ -Morph} n 0 -→ {n -ΩBAs -Morph} n 0 .
3.2. The n-multiplihedra encode n -ΩBAs-morphisms.

3.2.1. The n -ΩBAs-cell decomposition of ∆ n × CT m . The polytopes encoding n -A ∞ -morphisms have been dened to be the polytopes ∆ n ×J m endowed with a rened polytopal subdivision induced by the maps AW a a a . These rened subdivisions incorporate the combinatorics of i-overlapping spartitions in the boundary of the polytopes ∆ n × J m . Consider now the multiplihedra J m = CT m endowed with its ΩBAs-cell decomposition, i.e. its cell decomposition by broken stable two-colored ribbon tree type. We can dene a rened cell decomposition on the product CW-complex ∆ n × CT m following the construction of subsection 2.3.2. Each stratum CT m (t br,c ) of the moduli space CT m determines again a dividing sequence a a a t br,c obtained from the unbroken two-colored trees of the two-colored tree t br,c labeling it. We then rene the cell decomposition of

∆ n × CT m (t br,c ) into ∆ n a a at br,c
× CT m (t br,c ). This renement process can again be done consistently in order to obtain a rened cell decomposition of ∆ n × CT m . Denition 14. We dene the n -ΩBAs-cell decomposition of the n-multiplihedron ∆ n × CT m to be the cell decomposition described in the previous paragraph.

See some examples in gures 11 and 12. By construction, the n -ΩBAs-cell decomposition of 3.2.2. These CW-complexes encode n -ΩBAs-morphisms. Consider the associahedra K m = T m endowed with their ΩBAs-cell decompositions. We endow moreover the spaces ∆ n × CT m with their n -ΩBAs-cell decompositions. As in the A ∞ case, the collection of CW-complexes {∆ n × CT m } m 1 is not a ({T m }, {T m })-operadic bimodule. Carrying over the details of subsection 2.3.3, it contains however enough combinatorics to recover a n -ΩBAs-morphism. What's more, the collection {∆ n × CT m } n 0 is again a cosimplicial CW-complex.

∆ n × CT m is moreover a renement of the n -A ∞ -cell decomposition of ∆ n × CT m .

Résumé. The higher homotopies or n-morphisms extending the notion of A ∞ -morphisms and

A ∞ -homotopies between A ∞ -algebras are dened to be the morphisms of dg-coalgebras

∆ ∆ ∆ n ⊗ T (sA) -→ T (sB) .
From an operadic viewpoint, they are naturally encoded by the operadic bimodule,

n -A ∞ -Morph = F A∞,A∞ ( I , I , I , I , • • • ; I ⊂ ∆ n ) .
where the dierential is dened as

[∂, I ] = dim(I) j=0 (-1) j ∂ sing j I + I 1 ∪•••∪Is=I ± Is I1 + ± I .
The combinatorics of this dierential are encoded by new families of polytopes called the n-multiplihedra, which are the data of the polytopes ∆ n × J m together with a polytopal subdivision induced by the maps AW a a a . They will constitute a good parametrizing space for constructing moduli spaces in symplectic topology, whose count should recover a n-morphism between Floer complexes. On the other side, the natural n-morphisms extending the notion of ΩBAs-morphisms are dened by adapting the operadic viewpoint on n -A ∞ -morphisms. They are naturally encoded by the operadic bimodule,

n -ΩBAs -Morph = F ΩBAs,ΩBAs ( I , I , I , I , • • • , (I, SCRT m ), • • • ; I ⊂ ∆ n ) ,
where the dierential is again dened as a signed sum prescribed by a rule on two-colored trees combinatorics combined with the algebraic combinatorics of overlapping partitions, added to the simplicial dierential. This dierential is encoded in the data of the polytopes ∆ n × J m endowed with a rened cell decomposition induced by two-colored stable ribbon tree types and the maps AW a a a . It is moreover sucient to construct a n -ΩBAs-morphism between ΩBAs-algebras in order to recover a n-A ∞ -morphism between the induced A ∞ -algebras, thanks to the morphism of operadic bimodules

n -A ∞ -Morph -→ n -ΩBAs -Morph .
We show in part 3 that the previous CW-complexes constitute a good parametrizing space for moduli spaces in Morse theory, whose count will recover a n -ΩBAs-morphism between Morse cochain complexes.

Signs for n-morphisms

We now work out all the signs left uncomputed in the previous sections of this part. These computations will be done resorting to the basic conventions on signs and orientations that we were already using in [Maz21], and that we briey recall in the rst section. In the next two sections, we display and explain the two natural sign conventions for n -A ∞ -morphisms ensuing from the bar construction viewpoint, and then show that one of these conventions is in fact contained in the polytopes n -J m . We nally give a complete denition of the operadic bimodule n -ΩBAs -Morph and build the morphism of operadic bimodules n -A ∞ -Morph → n -ΩBAs -Morph of Proposition 9. 4.1. Conventions for signs and orientations. 4.1.1. Koszul sign rule. The formulae in this section will be written using the Koszul sign rule. We will moreover work exclusively with cohomological conventions.

Given A and B two dg Z-modules, the dierential on A ⊗ B is dened as

∂ A⊗B (a ⊗ b) = ∂ A a ⊗ b + (-1) |a| a ⊗ ∂ B b .
Given A and B two dg Z-modules, we consider the graded Z-module Hom(A, B) whose degree r component is given by all maps A → B of degree r. We endow it with the dierential

∂ Hom(A,B) (f ) := ∂ B • f -(-1) |f | f • ∂ A =: [∂, f ] .
Given f : A → A and g : B → B two graded maps between dg-Z-modules, we set

(f ⊗ g)(a ⊗ b) = (-1) |g||a| f (a) ⊗ g(b) .
Finally, given f : A → A , f : A → A , g : B → B and g : B → B , we dene

(f ⊗ g ) • (f ⊗ g) = (-1) |g ||f | (f • f ) ⊗ (g • g) .
We check in particular that with this sign rule, the dierential on a tensor product

A 1 ⊗ • • • ⊗ A n is given by ∂ A 1 ⊗•••⊗An = n i=1 id A 1 ⊗ • • • ⊗ ∂ A i ⊗ • • • ⊗ id An .
4.1.2. Tensor product of dg-coalgebras. Given A and B two dg Z-modules, dene the twist map

τ : A ⊗ B → B ⊗ A, τ (a ⊗ b) = (-1) |a||b| b ⊗ a .
Suppose now that A and B are dg-coalgebras, with respective coproducts ∆ A and ∆ B . The tensor product A ⊗ B can then be endowed with a structure of dg-coalgebra whose coproduct is dened as

∆ A⊗B := A ⊗ B -→ ∆ A ⊗∆ B A ⊗ A ⊗ B ⊗ B -→ id A ⊗τ ⊗id B (A ⊗ B) ⊗ (A ⊗ B) ,
and whose dierential is the product dierential

∂ A⊗B = ∂ A ⊗ id B + id A ⊗ ∂ B .
4.1.3. Orientation of the boundary of a manifold with boundary. Let (M, ∂M ) be an oriented nmanifold with boundary. We choose to orient its boundary ∂M as follows : given x ∈ ∂M , a basis e 1 , . . . , e n-1 of T x (∂M ), and an outward pointing vector ν ∈ T x M , the basis e 1 , . . . , e n-1 is positively oriented if and only if the basis ν, e 1 , . . . , e n-1 is a positively oriented basis of T x M . Under this convention, given two manifolds with boundary K and L, the boundary of the product manifold K × L is then

∂(K × L) = ∂K × L ∪ (-1) dim(K) K × ∂L ,
where the (-1) dim(K) sign means that the product orientation of K × ∂L diers from its orientation as the boundary of K × L by a (-1) dim(K) sign. This convention also recovers the classical singular and cubical dierentials as detailed in [Maz21] :

∂∆ n = n i=0 (-1) i ∆ n-1 i and ∂I n = n i=1 (-1) i (I n-1 i,0 ∪ -I n-1 i,1 ) .
4.2. Signs for n -A ∞ -morphisms. We now work out the signs in the A ∞ -equations for n -A ∞morphisms, thus completing denition 7. More precisely, we will unwind two sign conventions using the bar construction viewpoint. The impatient reader can straightaway jump to subsection 4.2.3 where the signs used in the rest of this paper are made explicit.

4.2.1. Recollections on the bar construction and A ∞ -algebras. Let A be a dg-Z-module. Dene the suspension and desuspension maps

s : A -→ sA w : sA → A a -→ sa sa -→ a ,
which are respectively of degree -1 and +1. We verify that with the Koszul sign rule,

w ⊗m • s ⊗m = (-1) ( m 2 ) id A ⊗m .
Then, note for instance that a degree 2m map m m : A ⊗m → A yields a degree +1 map b m := sm m w ⊗m : (sA) ⊗m → sA.

To the set of operations b m one can associate a unique coderivation D on T (sA). We proved in [Maz21] using this viewpoint that the equation D 2 = 0 yields two sign conventions for the A ∞equations

[m 1 , m m ] = - i 1 +i 2 +i 3 =m 2 i 2 n-1 (-1) i 1 i 2 +i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , (A) [m 1 , m m ] = - i 1 +i 2 +i 3 =m 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , (B) 
and that these conventions are related by a (-1) ( m 2 ) twist applied to the operation m m , which comes from the formula w ⊗m • s ⊗m = (-1) ( m 2 ) id A ⊗m . We will adopt the exact same approach to work out two sign conventions for n -A ∞ -morphisms in the following subsection : rst by writing A ∞ -equations without signs using the viewpoint of a morphism between bar constructions F : ∆ ∆ ∆ n ⊗ T (sA) → T (sB), and secondly by unfolding the signs coming from the suspension and desuspension maps. 4.2.2. The two conventions coming from the bar construction. The two conventions for the A ∞equations for n -A ∞ -morphisms are

m 1 , f (m) I = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m i 2 2 (-1) i 1 i 2 +i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (A) - i 1 +•••+is=m I 1 ∪•••∪Is=I s 2 (-1) A m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) , m 1 , f (m) 
I = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m i 2 2 (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (B) - i 1 +•••+is=m I 1 ∪•••∪Is=I s 2 (-1) B m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) ,
which can we rewritten as

dim(I) j=0 ( -1) j f (m) 
∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 i 2 +i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (A) = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) A m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) , dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) (B) = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) B m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) , where A = s j=1 (s -j)|I j | + s j=1 i j   s k=j+1 (1 -i k -|I k |)   , B = s j=1   i j s k=j+1 |I k |   + s j=1 (s -j)(1 -i j -|I j |) .
These two sign conventions are equivalent : given a sequence of operations m m and f (m) I satisfying equations (A), we check that the operations m m := (-1) ( m 2 ) m m and f (m)

I := (-1) ( m 2 ) f (m) I satisfy equations (B).
Consider now two dg-Z-modules A and B, together with a collection of degree 2m maps m m : A ⊗m → A and m m : B ⊗m → B (we use the same notation for sake of readability), and a (sA) ⊗m → sB. We denote D A and D B the unique coderivations coming from the maps b m acting respectively on T (sA) and T (sB), and F : ∆ ∆ ∆ n ⊗ T (sA) → T (sB) the unique morphism of coalgebras associated to the maps F (m) I . The equation

F (∂ sing ⊗ id T (sA) + id ∆ ∆ ∆ n ⊗ D A ) = D B F is then equivalent to the equations dim(I) j=0 (-1) j F (m) ∂ j I +(-1) |I| i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) I (id ⊗i 1 ⊗b i 2 ⊗id ⊗i 3 ) = i 1 +•••+is=m I 1 ∪•••∪Is=I b s (F (i 1 ) I 1 ⊗• • •⊗F (is) Is ) .
There are now two ways to unravel the signs from these equations, which will lead to conventions (A) and (B).

The rst way consists in simply replacing the b m and the F (m) I by their denition. It yields sign conventions (A). The left-hand side transforms as

dim(I) j=0 (-1) j F (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = dim(I) j=0 (-1) j sf (m) ∂ j I w ⊗m + (-1) |I| i 1 +i 2 +i 3 =m sf (i 1 +1+i 3 ) I w ⊗i 1 +1+i 3 (id ⊗i 1 ⊗ sm i 2 w ⊗i 2 ⊗ id ⊗i 3 ) = dim(I) j=0 (-1) j sf (m) ∂ j I w ⊗m + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 3 sf (i 1 +1+i 3 ) I (w ⊗i 1 ⊗ wsm i 2 w ⊗i 2 ⊗ w ⊗i 3 ) = dim(I) j=0 (-1) j sf (m) ∂ j I w ⊗m + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 i 2 +i 3 sf (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 )(w ⊗i 1 ⊗ w ⊗i 2 ⊗ w ⊗i 3 ) =s   dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 i 2 +i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 )   w ⊗m ,
while the right-hand side transforms as

i 1 +•••+is=m I 1 ∪•••∪Is=I b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) = i 1 +•••+is=m I 1 ∪•••∪Is=I sm s w ⊗s (sf (i 1 ) I 1 w ⊗i 1 ⊗ • • • ⊗ sf (is) Is w ⊗is ) = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) s j=1 (s-j)|I j | sm s (wsf (i 1 ) I 1 w ⊗i 1 ⊗ • • • ⊗ wsf (is) Is w ⊗is ) =s     i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) A m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is )     w ⊗m , where A = s j=1 (s -j)|I j | + s j=1 i j s k=j+1 (1 -i k -|I k |)
. The second way consists in rst composing and post-composing by w and s ⊗m and then replacing the b m and F (m) I by their denition. It yields the (B) sign conventions. We will denote m m := (-1) ( m 2 ) m m and f (m)

I := (-1) ( m 2 ) f (m) I
. The left-hand side then transforms as

dim(I) j=0 (-1) j wF (m) ∂ j I s ⊗m + (-1) |I| i 1 +i 2 +i 3 =m wF (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 )s ⊗m = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 f (i 1 +1+i 3 ) I w ⊗i 1 +1+i 3 (s ⊗i 1 ⊗ sm i 2 w ⊗i 2 s ⊗i 2 ⊗ s ⊗i 3 ) = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I w ⊗i 1 +1+i 3 s ⊗i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =m (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , 36 THIBAUT MAZUIR
while the right-hand side transforms as

i 1 +•••+is=m I 1 ∪•••∪Is=I wb s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is )s ⊗m = i 1 +•••+is=m I 1 ∪•••∪Is=I m s w ⊗s (sf (i 1 ) I 1 w ⊗i 1 ⊗ • • • ⊗ sf (is) Is w ⊗is )s ⊗m = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) s j=1 (ij s k=j+1 |I k |) m s w ⊗s (sf (i 1 ) I 1 w ⊗i 1 s ⊗i 1 ⊗ • • • ⊗ sf (is) Is w ⊗is s ⊗is ) = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) B m s w ⊗s s ⊗s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) = i 1 +•••+is=m I 1 ∪•••∪Is=I (-1) B m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) , where B = s j=1 i j s k=j+1 |I k | + s j=1 (s -j)(1 -i j -|I j |).
4.2.3. Choice of convention in this paper. We will work in the rest of this paper with the set of conventions (B). The operations m m of an A ∞ -algebra will satisfy equations

[∂, m m ] = - i 1 +i 2 +i 3 =m 2 i 2 n-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) ,
and a n -A ∞ -morphism between two A ∞ -algebras will satisfy equations

∂, f (m) 
I = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) - i 1 +•••+is=m I 1 ∪•••∪Is=I s 2 (-1) B m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) , where B = s j=1 i j s k=j+1 |I k | + s j=1 (s -j)(1 -i j -|I j |).
In [Maz21] we had chosen conventions (B) for A ∞ -algebras and A ∞ -morphisms because they were the ones naturally arising in the realizations of the associahedra and the multiplihedra à la Loday. We prove a similar result in the following section : these sign conventions are contained in the polytopes n -J m = ∆ n × J m where J m is a Forcey-Loday realization of the multiplihedron. 4.2.4. The sign conventions coming from Proposition 2. We proved in Proposition 2 that the datum of a n-morphism from A to B is equivalent to the datum of an A ∞ -morphism A → ∆ ∆ ∆ n ⊗ B. In fact, the two sign conventions arising from this equivalent denition dier slightly from the two conventions (A) and (B) for n-morphisms computed from the bar construction formulation. Indeed, we can check that if we work with convention (A) (resp. (B)) for A ∞ -morphisms (not higher morphisms !) and if we write as in subsection 1.5 the A ∞ -morphism

F : A → ∆ ∆ ∆ n ⊗ B as F (m) = I⊂∆ n I ⊗ f (m) I ,
then the signs for the A ∞ -equations for F read exactly as the signs for the A ∞ -equations for nmorphisms computed in the previous subsection, apart from the simplicial dierential terms which read this time as

dim(I) j=0 (-1) j+|I|+1 f (m) ∂ j I .
4.3. Signs and the polytopes n -J m . 4.3.1. Loday associahedra and Forcey-Loday multiplihedra. In [Maz21] we introduced explicit polytopal realizations of the associahedra and the multiplihedra : the weighted Loday realizations K ω of the associahedra from [MTTV21] and the weighted Forcey-Loday realizations J ω of the multiplihedra from [LAM]. We then proved using basic considerations on ane geometry that, under the convention of section 4.1, their boundaries were equal to

∂K ω = - i 1 +i 2 +i 3 =n 2 i 2 n-1 (-1) i 1 +i 2 i 3 K ω × K ω , ∂J ω = i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 J ω × K ω ∪ - i 1 +•••+is=m s 2 (-1) ε B K ω × J ω 1 × • • • × J ωs
where the weights ω, ω and ω t are derived from the weights ω, and

ε B = s j=1 (s -j)(1 -i j ) .
In particular, these polytopes contain sign conventions (B) for A ∞ -algebras and A ∞ -morphisms.

4.3.2. The boundary of n-J m . Consider now a n-multiplihedron ∆ n ×J ω , where J ω is a Forcey-Loday realization of the multiplihedron J m . Forgetting for now about its rened polytopal subdivision, its boundary reads as

∂(∆ n × J ω ) = ∂∆ n × J ω ∪ (-1) n ∆ n × ∂J ω .
Recall moreover that given any dividing sequence a a a of length s, each top dimensional cell in the AW a a a -polytopal subdivision of ∆ n labeled by an overlapping partition

I 1 ∪ • • • ∪ I s+1 = ∆ n is in fact isomorphic to the product I 1 × • • • × I s+1 .
We write this as

∆ n a a a = I 1 ∪•••∪Is=∆ n I 1 × • • • × I s .
Proposition 10. The n-multiplihedra ∆ n × J ω endowed with their n -A ∞ -polytopal subdivision contain sign conventions (B) for n -A ∞ -morphisms.
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Proof. The rst component of the boundary of ∆ n × J ω is given by

∂∆ n × J ω = n i=0 (-1) i ∆ n-1 i × J ω .
The second, by the rst part of the boundary of ∂J ω ,

(-1) n i 1 +i 2 +i 3 =m i 2 2 (-1) i 1 +i 2 i 3 (∆ n × J ω ) × K ω .
The third and last component transforms as follows :

(-1) n ∆ n × (-1)

i 1 +•••+is=m s 2 (-1) ε B K ω × J ω 1 × • • • × J ωs =(-1) n+1 i 1 +•••+is=m s 2 (-1) ε B ∆ n × K ω × J ω 1 × • • • × J ωs =(-1) n+1 i 1 +•••+is=m s 2 (-1) ε B I 1 ∪•••∪Is=∆ n I 1 × • • • × I s × K ω × J ω 1 × • • • × J ωs =(-1) n+1 i 1 +•••+is=m s 2 I 1 ∪•••∪Is=∆ n (-1) ε B +s s j=1 |I j | K ω × I 1 × • • • × I s × J ω 1 × • • • × J ωs = -(-1) n i 1 +•••+is=m I 1 ∪•••∪Is=∆ n s 2 (-1) ε B +sn+ s j=1 (i j -1)( s k=j+1 |I k |) K ω × (I 1 × J ω 1 ) × • • • × (I s × J ωs ) .
We then check that B = n + ε B + sn + s j=1 (i j -1)

s k=j+1 |I k | modulo 2.
Hence, the polytopes n -J m contain indeed sign conventions (B) for n -A ∞ -morphisms. 4.4. The operadic bimodule n -ΩBAs -Morph. In [Maz21], we computed the signs for ΩBAsmorphisms as follows. Endowing the compactied moduli spaces CT m with their ΩBAs-cell decompositions, we dene the operadic bimodule ΩBAs -Morph to be the realization under the functor C cell - * of the operadic bimodule {CT m } m 1 . The signs in the dierential are then computed as the signs arising in the top dimensional strata in the boundary of the moduli spaces CT m (t g ). The signs for the action-composition maps are the signs ensuing from the image under the functor C cell - * of the action-composition maps for the moduli spaces CT m (t g ).

The goal of this section is to completely state denition 13, with explicit signs and formulae. We have however seen in subsection 3.2.2 that there is no operadic bimodule in compactied moduli spaces whose image under the functor C cell - * could realize the operadic bimodule n -ΩBAs -Morph. We will still compute the signs for the action-composition maps by introducing some suitable spaces of metric trees, which do not dene an operadic bimodule but will however carry enough structure for our computations. The dierential will simply be dened by reading the signs arising in the top dimensional strata of the boundary of the CW-complex ∆ n × CT m endowed with its n -ΩBAs-cell decomposition. 4.4.1. Notation. As in [Maz21], we choose to use the formalism of orientations on trees to dene the operadic bimodule n -ΩBAs -Morph. Recall that this formalism originates from [MS06].

Denition 15. Given a broken stable ribbon tree t br , an ordering of t br is dened to be an ordering of its i nite internal edges e 1 , . . . , e i . Two orderings are said to be equivalent if one passes from one ordering to the other by an even permutation. An orientation of t br is then dened to be an equivalence class of orderings, and written ω := e 1 ∧ • • • ∧ e i . Each tree t br has exactly two orientations. Given an orientation ω of t br we will write -ω for the second orientation on t br , called its opposite orientation.

In this section, we write t br,g for a broken gauged stable ribbon tree, and t g for an unbroken gauged stable ribbon tree. Denition 16. We set to be the unique stable gauged tree of arity 1 and call it the trivial gauged tree. We dene the underlying broken stable ribbon tree t br of a t br,g to be the ribbon tree obtained by rst deleting all the in t br,g , and then forgetting all the remaining gauges of t br,g . We will moreover refer to a gauge in t br,g which is associated to a non-trivial gauged tree, as a non-trivial gauge of t br,g . An orientation on a broken gauged stable ribbon tree t br,g is then dened to be an orientation ω on t br .

An instance of association t br,g → t br Denition 17. Consider a gauged tree t br,g which has b gauges, trivial or not. A list I := (I 1 , . . . , I b ) of faces I a ⊂ ∆ n will be called a ∆ n -labeling of t br,g . The tree t br,g endowed with its labeling will be written (I, t br,g ).

We think of (I, t br,g ) as depicted in the gure below, where trees are represented as corollae for the sake of readability. Denition 18 (Spaces of operations). Consider the Z-module freely generated by the pairs (I, t br,g , ω),

where ω is an orientation on t br,g and I is a ∆ n -labeling of t br,g . We dene the arity m space of operations n -ΩBAs -Morph(m) * to be the quotient of this Z-module under the relation (I, t br,g , -ω) = -(I, t br,g , ω) . 4.4.3. The oriented spaces CT m (I, t br,g , ω). Consider a ∆ n -labeled gauged tree (I, t br,g ), together with a choice of orientation ω on t br,g . We dene the spaces

Introducing the notation

CT m (I, t br,g , ω) := I 1 × • • • × I b × CT m (t br,g , ω) .
An element of CT m (I, t br,g , ω) is thus of the form

(δ 1 , . . . , δ b , λ 1 , . . . , λ g , l e 1 , . . . , l e(t br ) ) ∈ I 1 × • • • × I b ×] -∞, +∞[ g ×]0, +∞[ e(t br ) ,
where the λ i are the non-trivial gauges of t br,g ordered from left to right, and the l e i are the lengths of the nite internal edges of t br ordered according to ω. These spaces are then simply oriented by taking the product orientation of their factors.

4.4.4. Denition of the action-compositions maps. We may now introduce the "action-composition" maps on the spaces CT m (I, t br,g ), that we will use to dene the signs of the action-composition maps for n -ΩBAs -Morph. Dene the maps

O i : CT (I, t br,g , ω) × T (t br , ω ) = I × CT (t br,g , ω) × T (t br , ω ) -→ I × CT (t br,g • i t br , ω ∧ ω ) = CT (I, t br,g • i t br , ω ∧ ω )
where I stands for the product I 1 × • • • × I b , and the arrow corresponds to the action-composition map

CT (t br,g , ω) × T (t br , ω ) -→ CT (t br,g • i t br , ω ∧ ω ) ,
of the operadic bimodule {CT m } m 1 . Dene also the maps

M : T (t br , ω) × CT (I 1 , t 1 br,g , ω 1 ) × • • • × CT (I s , t s br,g , ω s ) -→ I 1 × • • • × I s × T (t br , ω) × CT (t 1 br,g , ω 1 ) × • • • × CT (t s br,g , ω s ) -→ CT (I 1 ∪ • • • ∪ I s , µ(t br , t 1 br,g . . . , t s br,g ), ω ∧ ω 1 ∧ • • • ∧ ω s )
where the second arrow corresponds to the action-composition map

T (t br , ω) × CT (t 1 br,g , ω 1 ) × • • • × CT (t s br,g , ω s ) -→ CT (µ(t br , t 1 br,g . . . , t s br,g ), ω ∧ ω 1 ∧ • • • ∧ ω s ) .
The maps O i have sign +1. The maps M have sign (-1) † , where † is dened as follows. Writing g i for the number of non-trivial gauges and j i for the number of gauge-vertex intersections of t i br,g , i = 1, . . . , s, and setting t 0 br := t br and g 0 = j 0 = dim(I 0 ) = 0, † :=

s i=1 |I i | |t br | + i-1 l=1 |t l br,g | + s i=1 g i |t br | + i-1 l=1 |t l br | + s i=1 j i |t br | + i-1 l=1 |t l br,g | .
Denition 19 (Action-composition maps). The action of the operad ΩBAs on n -ΩBAs -Morph is dened as

(I, t br,g , ω) • i (t br , ω ) = (I, t br,g • i t br , ω ∧ ω ) ,
µ((t br , ω), (I 1 , t 1 br,g , ω 1 ), . . . , (I s , t s br,g , ω s )) = (-1)

† (I 1 ∪ • • • ∪ I s , µ(t br , t 1 br,g . . . , t s br,g ), ω ∧ ω 1 ∧ • • • ∧ ω s ) .
Using for instance the maps O i and M , and remembering the Koszul sign rules, we can check that these action-composition maps satisfy indeed all the associativity conditions for an operadic bimodule. What's more, choosing a distinguished orientation for every gauged stable ribbon tree This concludes the construction of the operadic bimodule n -ΩBAs -Morph.

The morphism of operadic bimodules

n -A ∞ -Morph → n -ΩBAs -Morph. To conclude, it remains to dene the morphism of operadic bimodules n -A ∞ -Morph → n -ΩBAs -Morph.
It is enough to dene this morphism on the generating operations of n -A ∞ -Morph and to check that it is compatible with the dierentials.

Proposition 9. The map

n-A ∞ -Morph → n-ΩBAs-Morph dened on the generating operations of n -A ∞ -Morph as f I,m -→ tg∈CBRTm (I, t g , ω can ) is a morphism of (A ∞ , A ∞ )-operadic bimodules.
We refer to section I.5.3 of [Maz21] for the denition of the canonical orientations ω can . It is easy to check that this map is indeed compatible with the dierentials : either making explicit signs computations, or noting that this morphism corresponds to the renement of the n -A ∞ -cell decomposition of n -J m to its n -ΩBAs-cell decomposition.

Part 2

The simplicial sets HOM A ∞ -Alg (A, B) • 1. ∞-categories, Kan complexes and cosimplicial resolutions 1.1. ∞-categories and Kan complexes.

1.1.1. Motivation. The operads A ∞ and ΩBAs provide two equivalent frameworks to study the notion of "dg-algebras which are associative up to homotopy". See section III.2 of [Maz21] for a detailed account on the matter. In fact, the operad A ∞ can also be used to dene the notion of "dg-categories whose composition is associative up to homotopy" : these categories are called A ∞categories. We recall their denition in subsection 3.1. They are of prime interest in symplectic topology for instance, where they appear as the Fukaya categories of symplectic manifolds. The notion of ΩBAs-categories could be dened similarly, but it has never appeared in the litterature to the author's knowledge.

A ∞ -categories are thus "categories" which are endowed with a collection of operations corresponding to all the higher coherent homotopies arising from the associativity up to homotopy of their composition. They are thus operadic in essence. The notion of ∞-category that we are going to dene below, provides another framework to study "categories whose composition is associative up to homotopy" but is, on the other hand, not operadic : it does not come with a specic set of operations encoding rigidly all the higher coherent homotopies.

1.1.2. Intuition. A category can be seen as the data of a set of points, its objects, together with a set of arrows between them, the morphisms. The composition is then simply an operation which produces from two arrows

A → B and B → C a new arrow A → C.
Part of the data of an ∞-category will also consist in a set of objects and arrows between them. The dierence will lie in the notion of composition. Given two arrows u : A → B and v : B → C, an ∞-category will have the property that there always exists a new arrow A → C, which can be called a composition of u and v. But this arrow is not necessarily unique, and above all, it results from a property of the "category" and is not produced by an operation of composition. It is in this sense that an ∞-category is not operadic. 1.1.3. Denition. The correct framework to formulate this paradigm is the one of simplicial sets. We write ∆ n for the simplicial set naturally realizing the standard n-simplex ∆ n , and Λ k n for the simplicial set realizing the simplicial subcomplex obtained from ∆ n by removing the faces

[0 < • • • < n] and [0 < • • • < k < • • • < n]. The simplicial set Λ k n is called a horn, if 0 < k < n it is called an inner horn, and if k = 0 or k = n it is called an outer horn.
An ∞-category is then dened to be a simplicial set X which has the left-lifting property with respect to all inner horn inclusions Λ k n → ∆ n : for each n 2 and each 0 < k < n, every simplicial map u : Λ k n → X extends to a simplicial map u : ∆ n → X whose restriction to Λ k n is u. This is illustrated in the diagram below.

Λ k n X ∆ n u ∃ u
The vertices of X are then to be seen as objects, while its edges correspond to morphisms. An ∞-groupoid, also called Kan complex, is dened to be a simplicial set X which has the left-lifting property with respect to all horn inclusions.

For an ∞-category, the left-lifting property with respect to Λ 1 2 → ∆ 2 ensures that the following diagram can always be lled by the dashed arrows

0 1 2 .
The [0 < 2] edge will represent a composition of the morphisms associated to

[0 < 1] and [1 < 2].
For an ∞-groupoid, the left-lifting property with respect to the outer horns

Λ 0 2 → ∆ 2 and Λ 2 2 → ∆ 2
ensures that every morphism is invertible up to homotopy (hence the name ∞-groupoid ). The intuition of subsection 1.1.2 is thus realized, and gives rise to a wide range of higher homotopies controlled by the combinatorics of simplicial algebra.

1.1.4. Simplicial homotopy groups of a Kan complex ([GJ99]). Let X X X := {X n } n 0 be a simplicial set. It is straighforward to dene its set of path components π 0 (X). We dene a simplicial homotopy between two simplicial maps f, g : ∆ n → X to be a simplicial map h : ∆ 1 × ∆ n → X such that h • (id × d 1 ) = g and h • (id × d 0 ) = f , i.e. such that the following diagram commutes

∆ n ∆ 1 × ∆ n X ∆ n id×d 0 f h id×d 1 g .
Suppose now that X X X is a Kan complex and choose a vertex x ∈ X 0 . One can associate to the pair (X X X, x) a sequence of groups called its simplicial homotopy groups. For n 1, consider the set of simplicial maps ∆ n → X X X taking ∂∆ n to x. We say that two such maps f, g : ∆ n → X X X are equivalent if there exists a simplicial homotopy h from f to g, that maps ∆ 1 × ∂∆ n to x. We dene π n (X X X, x) to be the set of equivalence classes of such maps under this equivalence relation. It can be endowed with a composition law as follows. Given two representatives f and g in π n (X X X, x), dene the inner horn φ f,g : Λ n n+1 → X X X to send the i-th face to x for i = 0, . . . , n -2, the (n -1)-th face to f and the (n + 1)-th face to g. The simplicial set X X X being a Kan complex, this horn can be lled to a (n + 1)-simplex Φ : ∆ n+1 → X X X. We then dene [f ] • [g] ∈ π n (X X X, x) to be the equivalence class of the n-th face of Φ.

The assumption that X X X is a Kan complex then ensures that this composition law is well-dened, and that the set π n (X, x) endowed with this composition law is indeed a group, called the n-th (simplicial) homotopy group of X X X at x. This group is abelian when n 2. Moreover, it is naturally isomorphic to the classical homotopy group π n (|X X X|, x) of the geometric realization |X X X| of X X X.

1.2. Cosimplicial resolutions in model categories. One way to produce Kan complexes is through cosimplicial resolutions in model categories. All the results stated in this section are drawn from [Hir03]. We refer to chapters 7 and 8 for basics on model categories, and will only list the technical details that we will need in the proof of Theorem 1.

We dene the simplex category ∆ to be the category whose objets are nonnegative integers [n] and whose sets of morphisms ∆([n], [m]) consists of the increasing maps from {0, . . . , n} to {0, . . . , m}. This is the category encoding cosimplicial objects : a cosimplicial object in a category C corresponds to a functor ∆ → C. We denote C ∆ the category of cosimplicial objects, whose morphisms are the morphisms of cosimplicial objects, i.e. the natural transformations between the associated functors ∆ → C. For an object C ∈ C we denote moreover const * C the constant cosimplicial object whose cofaces and codegeneracies are the identity maps of C.

Let now C be a model category. The category of cosimplicial objects C ∆ can then also be endowed with a model category structure, called its Reedy model category structure. Its weak equivalences are the maps of cosimplicial objects that are level-wise weak equivalences in C. Its cobrants objects are the cosimplicial objects C C C := {C n } such that the latching maps L n C C C → C n are cobrations in C. We refer to chapters 15 and 16 of [Hir03] Lemma 1 (Lemma 16.5.3 of [Hir03]). If C C C → const * C is a cosimplicial resolution in C and D is a brant object of C, then the simplicial set C(C C C, D) is a Kan complex.

Following [START_REF] Dwyer | Function complexes in homotopical algebra[END_REF], the simplicial set C(C C C, D) is called a function complex or homotopy function complex from C to D, and its homotopy type is sometimes called the derived hom space from C to D.

2. The HOM-simplicial sets HOM A∞-Alg (A, B) • 2.1. The HOM-simplicial set HOM A∞ (A, B) • is a Kan complex. The HOM-simplicial sets HOM A∞-Alg (A, B) • provide a satisfactory framework to study the higher algebra of A ∞ -algebras thanks to the following theorem : Theorem 1. For A and B two A ∞ -algebras, the simplicial set HOM A∞ (A, B) • is a Kan complex.

The simplicial homotopy groups of this Kan complex are computed in subsection 2.4. In fact, we can moreover give an explicit description of all inner horn llers : Proposition 11. For every inner horn Λ k n ⊂ ∆ n , there is a one-to-one correspondence

             llers Λ k n HOM A∞ (A, B) • ∆ n              ←→
families of maps of degree -n

F (m) ∆ n : (sA) ⊗m → sB, m 1 .
In other words, the Kan complex HOM A∞ (A, B) • is in particular an algebraic ∞-category.

Note that our choice of terminology algebraic ∞-category is borrowed from [START_REF] Robert | Higher Lie theory[END_REF]. One aspect of this construction needs however to be claried. The points of these ∞-groupoids are the A ∞ -morphisms, and the arrows between them are the A ∞ -homotopies. This can be misleading at rst sight, but the points are the morphisms and NOT the algebras and the arrows are the homotopies and NOT the morphisms.

2.2. Proof of Theorem 1.

2.2.1. The model category structure on dg -Cogc. Let C be a dg-coalgebra. Dene for every n 2,

∆ (n) := (id ⊗n-2 ⊗ ∆) • (id ⊗n-3 ⊗ ∆) • • • • • ∆ F n C := Ker(∆ (n+1) ) .
We say that C is cocomplete if C = ∪ n 1 F n C. Every tensor coalgebra T V is cocomplete. Given any coalgebra C and any cocomplete coalgebra D, their tensor product C ⊗ D is also a cocomplete dg-coalgebra.

We denote dg -Cogc ⊂ dg -Cog the full subcategory of cocomplete dg-coalgebras. We introduce moreover dg -Alg, the category of dg-algebras with morphisms of dg-algebras between them. These two categories can then be related through the classical bar-cobar adjunction

Ω : dg -Cogc dg -Alg : B .
Theorem 1.3.1.2 of [LH02] states that the category dg -Cogc can be made into a model category with the three following classes of morphisms :

(i) the class of weak equivalences is the class of morphisms f : C → C such that Ωf : ΩC → ΩC is a quasi-isomorphism ; (ii) the class of cobrations is the class of morphisms which are monomorphisms when seen as standard morphisms between cochain complexes ; (iii) the class of brations is the class of morphisms which admit the right-lifting property with respect to trivial cobrations.

We point out that a weak equivalence between cocomplete dg-coalgebras is always a quasi-isomorphism, but the converse is not true. We list in Lemma 2 some noteworthy properties of this model category structure on dg -Cogc that we will need in our upcoming proof of Theorem 1. They can all be found in section 1.3 of [LH02].

Let C be a dg-Z-module. A ltration of C is dened to be a sequence of sub-dg-Z-modules

C i ⊂ C such that C 0 ⊂ C 1 ⊂ • • • ⊂ C i ⊂ C i+1 ⊂ • • • .
It is admissible if colim(C i ) = C and C 0 = 0. Given two ltered dg-Z-modules C and C , one can then dene a ltered morphism f : C → C to be a dg-morphism such that ∀i, f (C i ) ⊂ C i . It is dened to be a ltered quasi-isomorphism if ∀i, the induced morphism

f i : C i /C i-1 -→ C i /C i-1
is a quasi-isomorphism. A ltered dg-coalgebra is then dened to be a coalgebra in the category of ltered dg-Z-modules, in other words a dg-coalgebra together with a ltration C i on its underlying dg-Z-module and whose coproduct satises

∆ C (C i ) ⊂ p+q=i C p ⊗ C q ∀i .

Lemma 2 ([LH02]).

(1) Every dg-coalgebra in dg -Cogc is cobrant. (2) A dg-coalgebra in dg -Cogc is brant if and only if it is isomorphic as a graded coalgebra to a tensor coalgebra T V . (3) Filtered quasi-isomorphisms between admissible ltered cocomplete dg-coalgebras are weak equivalences.

2.2.2. Proof of Theorem 1. Recall that the simplicial set HOM A∞-Alg (A, B) • is dened as

HOM A∞-Alg (A, B) n = Hom dg-Cogc (∆ ∆ ∆ n ⊗ T (sA), T (sB)) .
Following Lemma 2, the cocomplete dg-coalgebra T (sB) is brant. It is thus enough to prove that the cosimplicial cocomplete dg-coalgebra C C C := {∆ ∆ ∆ n ⊗ T (sA)} n 0 is a cosimplicial replacement of T (sA) and then apply Lemma 1 in the model category dg -Cogc, to conclude that HOM A∞-Alg (A, B) • is a Kan complex. Following subsection 1.2, we have to prove that :

(i) the latching maps L n C C C → C n = ∆ ∆ ∆ n ⊗ T (sA) are cobrations, i.e. they are injective ;

(ii) the maps p ⊗ Id T (sA) : ∆ ∆ ∆ n ⊗ T (sA) → ∆ ∆ ∆ 0 ⊗ T (sA) = T (sA) are weak equivalences in the model category dg -Cogc, where p : ∆ ∆ ∆ n → ∆ ∆ ∆ 0 is the map collapsing the simplex ∆ n on one of its vertices.

The latching map L n C C C → C n simply corresponds to the inclusion ∂∆ ∂∆ ∂∆ n ⊗ T (sA) → ∆ ∆ ∆ n ⊗ T (sA), hence is injective. See chapters 15 and 16 of [Hir03] for details on how to compute L n C C C. This proves point (i).

To prove point (ii), Lemma 2 states that it is enough to show that p ⊗ Id T (sA) is in fact a ltered quasi-isomorphism. Endow ∆ ∆ ∆ n ⊗ T (sA) with the ltration

F i ∆ ∆ ∆ n ⊗ T (sA) := ∆ ∆ ∆ n ⊗ i j=1 (sA) ⊗j .
This ltration is admissible. To prove that p ⊗ Id T (sA) is a ltered quasi-isomorphism of admissible ltered dg-coalgebras, we have to prove that the maps p ⊗ Id (sA) ⊗i : ∆ ∆ ∆ n ⊗ (sA) ⊗i -→ (sA) ⊗i are quasi-isomorphisms. This is a simple consequence of the fact that the dg-module ∆ ∆ ∆ n is a deformation retract of ∆ ∆ ∆ 0 . Indeed, dening the degree 0 dg-morphism i : ∆ ∆ ∆ 0 → ∆ ∆ ∆ n as [0] → [0] and the degree -1 map h : ∆ ∆ ∆ n → ∆ ∆ ∆ n as

[i 0 < • • • < i k ] -→ 0 if i 0 = 0 , [i 0 < • • • < i k ] -→ [0 < i 0 < • • • < i k ] if i 0 = 0 , we check that pi = Id and Id -ip = [∂, h].
This concludes the proof of Theorem 1.

2.3. Proof of Proposition 11.

2.3.1. Proof of Proposition 11. Let A and B be two A ∞ -algebras. We now prove Proposition 11, using the shifted bar construction framework, that is by dening an A ∞ -algebra to be a set of degree +1 operations b n : (sA) ⊗n → sA satisfying equations

i 1 +i 2 +i 3 =n b i 1 +1+i 3 (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = 0 .
The proof will mainly consist of easy but tedious combinatorics. We recommend reading it in two steps : rst ignoring the signs ; then adding them at the second reading stage and referring to section 4.2 for the sign conventions on the shifted A ∞ -equations.

Consider an inner horn Λ k n → HOM A∞ (A, B) • , where 0 < k < n. It corresponds to a collection of degree -dim(I) morphisms 

∂ j I +(-1) |I| i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) I (id ⊗i 1 ⊗b i 2 ⊗id ⊗i 3 ) = i 1 +•••+is=m I 1 ∪•••∪Is=I b s (F (i 1 ) I 1 ⊗• • •⊗F (is) Is ) .
Filling this horn amounts then to dening a collection of operations

F (m) [0<•••< k<•••<n]
: (sA) ⊗m -→ sB and F (m)

∆ n : (sA) ⊗m -→ sB , of respective degree -(n -1) and -n, and respectively satisfying the equations

n-1 l=0 (-1) l F (m) ∂ l [0<•••< k<•••<n] +(-1) n-1 i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) [0<•••< k<•••<n] (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=m I 1 ∪•••∪Is=[0<•••< k<•••<n] b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) , (i) and n j=0 (-1) j F (m) ∂ j ∆ n +(-1) n i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) ∆ n (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is=m I 1 ∪•••∪Is=∆ n b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) . (ii)
We begin by pointing out that the operations F (m) ∆ n indeed completely determine the maps

F (m) [0<•••< k<•••<n] under the formula F (m) [0<•••< k<•••<n] = (-1) k     n j=0 j =k (-1) j+1 F (m) [0<•••< j<•••<n] + i 1 +•••+is=m I 1 ∪•••∪Is=∆ n b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) +(-1) n+1 i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) ∆ n (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) .
To prove Proposition 11, it remains to show that for any collection of operations (F (m) ∆ n ) m 1 , we can ll the inner horn Λ k n → HOM A∞ (A, B) • by dening the operations

F (m) [0<•••< k<•••<n] as above. Note that the F (m) [0<•••< k<•••<n]
are well-dened as all the morphisms F (m) I appearing in their denition correspond to faces of the horn Λ k n or to the F (m) ∆ n . It is clear that this choice of ller satises equations (ii), and we have now to verify that equations (i) are satised. For the sake of readability, we will only carry out the details of the proof in the case where F (m) ∆ n = 0 for all m. In this regard, we will list one by one the terms of the left-hand side and right-hand side of this equality with their signs, and use the A ∞ -equations for the b i and the where I ⊂ Λ k n , in order to show that the two sides are indeed equal. The left-hand side consists of the following terms :

(-1) l F (m) ∂ l [0<•••< k<•••<n] (A)
for l = 0, . . . , n -1 ;

(-1) n+k+j F (i 1 +1+i 3 ) [0<•••< j<•••<n] (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) (B)
for i 1 + i 2 + i 3 = m and j = 0, . . . , k, . . . , m ;

(-1) n-1+k b s (F (j 1 )

I 1 ⊗ • • • ⊗ F (js) Is )(id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) (C) for i 1 + i 2 + i 3 = m, j 1 + • • • + j s = i 1 + 1 + i 3 and I 1 ∪ • • • ∪ I s = ∆ n with I u = ∆ n for all u.
The right-hand side has the following terms :

b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) (D) for i 1 + • • • + i s = m and I 1 ∪ • • • ∪ I s = [0 < • • • < k < • • • < n] with I u = [0 < • • • < k < • • • < n]
for all u ;

(-1) k b s (F (i 1 )

I 1 ⊗ • • • ⊗ F (i t-1 ) I t-1 ⊗ b q (F (j 1 ) J 1 ⊗ • • • ⊗ F (jq) Jq ) ⊗ F (i t+1 ) I t+1 ⊗ • • • ⊗ F (is) Is ) (E)
where, setting

I t = J 1 ∪ • • • ∪ J q , i t = j 1 + • • • + j q , i 1 + • • • + i s = m and I 1 ∪ • • • ∪ I s = ∆ n
, with I t = ∆ n and J r = ∆ n for all r ;

(-1) j+k+1 b s (F (i 1 ) 

I 1 ⊗ • • • ⊗ F (it) It ⊗ • • • ⊗ F (is) Is ) (F)
+ • • • + i s = m and I 1 ∪ • • • ∪ I s = [0 < • • • < j < • • • < n] with I t = [0 < • • • < j < • • • < n].
Our goal is to prove that A + B + C = D + E + F or equivalently, that

A + B + C -D -E -F = 0 .
Applying the A ∞ -equations for the

F (m) [0<•••< j<•••<n] , j = k, we have that A + B -F = G ,
the terms of the sum G being of the form

(-1) j+k+1 b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (is) Is ) (G)
where j = 0, . . . , k, . . . , n, i

1 + • • • + i s = m and I 1 ∪ • • • ∪ I s = [0 < • • • < j < • • • < n] with I u = [0 < • • • < j < • • • < n] for all u.
Applying now the A ∞ -equations for the F (iu) Iu , where I u = ∆ n , yields the equality

C -D + G = H ,
the terms of the sum H having the form

(-1) n-1+k+ s u=t |Iu| b s (F (i 1 ) I 1 ⊗ • • • ⊗ F (i t-1 ) I t-1 ⊗ b q (F (j 1 ) J 1 ⊗ • • • ⊗ F (jq) Jq ) ⊗ F (i t+1 ) I t+1 ⊗ • • • ⊗ F (is) Is ) (H)
where, setting

I t = J 1 ∪ • • • ∪ J q and i t = j 1 + • • • + j q , i 1 + • • • + i s = m and I 1 ∪ • • • ∪ I s = ∆ n with I u = ∆ n for all u.
Finally, applying the A ∞ -equations for the b i proves the equality

-E + H = 0 ,
which concludes the proof.

2.3.2. Remark on the proof. We point out that this proof does not adapt to the more general case of a HOM-simplicial set HOM dg-Cog (C, C ) • . Indeed, while we can always solve the equation

[∂, f ∆ n ] = n j=0 (-1) j f [0<•••< j<•••<n] ,
by setting

f ∆ n = 0 and f [0<•••< k<•••<n] = (-1) k n j=0, =k (-1) j+1 f [0<•••< j<•••<n]
, this choice of morphisms falls short to satisfy the equation

∆ C f ∆ n = I 1 ∪I 2 =∆ n (f I 1 ⊗ f I 2 )∆ C .
2.4. Homotopy groups. The simplicial set HOM A∞-Alg (A, B) • being a Kan complex, we can in particular compute its simplicial homotopy groups. We x throughout the rest of this subsection an A ∞ -morphism F from A to B, i.e. a point of HOM A∞-Alg (A, B) • . We will moreover work with the suspended denition of n-morphisms that we already used in subsection 2.3.1. Proposition 12. The set of path components π 0 (HOM A∞-Alg (A, B) • ) corresponds to the set of equivalence classes of A ∞ -morphisms from A to B under the equivalence relation "being A ∞ -homotopic".

A simplicial map ∆ n → HOM A∞-Alg (A, B) • taking ∂∆ n to F corresponds to a n-morphism m) for all I such that dim(I) = 0 and F (m) I = 0 for all I such that 0 < dim(I) < n. In other words, this simplicial map simply corresponds to the data of maps

(F (m) I ) m 1 I⊂∆ n such that F (m) I = F (
F (m)
∆ n : (sA) ⊗m → sB of degree -n such that

(-1) n i 1 +i 2 +i 3 =m F (i 1 +1+i 3 ) ∆ n id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ F (l) ∆ n ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) .
( ) Proposition 13. Let F, G : ∆ n → HOM A∞-Alg (A, B) • be two simplicial maps taking ∂∆ n to F , that we will respectively denote (F (m) ∆ n ) and (G (m) ∆ n ). Two such maps are then equivalent under the simplicial homotopy relation if and only if there exists a collection of maps H (m) : (sA) ⊗m → sB of degree -(n + 1) such that

G (m) ∆ n -F (m) ∆ n + (-1) n+1 i 1 +i 2 +i 3 =m H (i 1 +1+i 3 ) (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t (F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ H (l) ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ) .
Proof. Recall from subsection 1.1.4 that a simplicial homotopy from F to G is dened to be a simplicial map H : ∆ 1 × ∆ n → HOM A∞-Alg (A, B) • such that H| [0]×∆ n = F, H| [1]×∆ n = G and that maps ∆ 1 ×∂∆ n to F . Beware that the datum of a simplicial map H : ∆ 1 ×∆ n → HOM A∞-Alg (A, B) • is in general NOT equivalent to a morphism of dg-coalgebras ∆ ∆ ∆ 1 ⊗ ∆ ∆ ∆ n ⊗ T (sA) → T (sB). To understand the map H, we rst have to make explicit the non-degenerate simplices of the simplicial set ∆ 1 × ∆ n .

Recall that the k-simplices of the simplicial set ∆ m are the monotone sequences of integers bounded by 0 and m

i 0 i 1 • • • i k where 0 i 0 i 1 • • • i k m .
Following [START_REF] Milnor | The geometric realization of a semi-simplicial complex[END_REF], the non-degenerate k-simplices of the simplicial set ∆ 1 × ∆ n are then labeled by all pairs composed of a k-simplex σ of ∆ 1 and a k-simplex σ of ∆ n such that there does not exist 0 j < k such that σ j = σ j+1 and σ j = σ j+1 . For instance, the following two pairs of sequences label non-degenerate 3-simplices of ∆ 1 × ∆ 3 0 0 0 1 0 1 2 3 0 0 1 1 0 1 1 2 , while the following pair of sequences is a degenerate 3-simplex of ∆ 1 × ∆ 3 0 0 0 1 0 1 1 3 .

We will use the following properties of the non-degenerate simplices of the simplicial set ∆ 1 × ∆ n in our proof of proposition 13 : (iii) For K the k-th inner non-degenerate n-simplex, we will write L (m) 

(-1) k+1 L (m) k+1 + (-1) k L (m) k + (-1) n+1 i 1 +i 2 +i 3 =m H (i 1 +1+i 3 ) k (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t (F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ H (l) k ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ) .
Using this characterization of a simplicial homotopy from F to G, we check that the collection of degree -(n + 1) maps

H (m) := n k=0 (-1) k H (m) k is such that G (m) ∆ n -F (m) ∆ n + (-1) n+1 i 1 +i 2 +i 3 =m H (i 1 +1+i 3 ) (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t (F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ H (l) ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ) .
Conversely, we check that such a collection of maps can be arranged into a simplical homotopy from This concludes the proof of the proposition.

We nally make explicit the composition law on these simplicial homotopy groups. Consider

(F (m) ∆ n ) m 1 and (G (m) ∆ n ) m 1 two representatives in π n (HOM A∞-Alg (A, B) • , F ). Filling the cone φ F ∆ n ,G ∆ n : Λ n n+1 → HOM A∞-Alg (A, B)
• dened in subsection 1.1.4 with φ (m) ∆ n+1 = 0 as in the proof of Proposition 11, we get that a representative for

[F] • [G] is G (m) ∆ 1 + F (m) ∆ 1 - i1+•••+is+l1 +j1+•••+jt+l2 +k1+•••+ku=m b s+t+u+2 (F (i1) ⊗ • • • ⊗ F (is) ⊗ F (l1) ∆ 1 ⊗ F (j1) ⊗ • • • ⊗ F (jt) ⊗ G (l2) ∆ 1 ⊗ F (k1) ⊗ • • • ⊗ F (ku) ) .
in the n = 1 case, and

G (m) ∆ n + F (m) ∆ n if n 2.
We get in particular that this composition law is indeed abelian when n 2. All of our computations are summarized in the following theorem : Theorem 2.

(i) For n 1, the set π n (HOM A∞-Alg (A, B) • , F ) corresponds to the equivalence classes of collections of degree -n maps F (m) ∆ n : (sA) ⊗m → sB satisfying equations , where two such collections of maps (F (m) ∆ n ) m 1 and (G (m) ∆ n ) m 1 are equivalent if and only if there exists a collection of degree -(n + 1) maps H (m) : (sA) ⊗m → sB such that

G (m) ∆ n -F (m) ∆ n + (-1) n+1 i 1 +i 2 +i 3 =m H (i 1 +1+i 3 ) (id ⊗i 1 ⊗ b i 2 ⊗ id ⊗i 3 ) = i 1 +•••+is+l +j 1 +•••+jt=m b s+1+t (F (i 1 ) ⊗ • • • ⊗ F (is) ⊗ H (l) ⊗ F (j 1 ) ⊗ • • • ⊗ F (jt) ) .
(ii) The composition law on π 1 (HOM A∞-Alg (A, B) • , F ) is given by the formula

G (m) ∆ 1 + F (m) ∆ 1 - i1+•••+is+l1 +j1+•••+jt+l2 +k1+•••+ku=m b s+t+u+2 (F (i1) ⊗ • • • ⊗ F (is) ⊗ F (l1) ∆ 1 ⊗ F (j1) ⊗ • • • ⊗ F (jt) ⊗ G (l2) ∆ 1 ⊗ F (k1) ⊗ • • • ⊗ F (k U ) ) .
(iii) If n 2, the composition law on π n (HOM A∞-Alg (A, B) • , F ) is given by the formula The proof without signs should follow the same lines as the proof without signs of Theorem 1, working this time with stable ribbon trees and gauged stable ribbon trees instead of corollae. The sign computations will however be much more complicated, as we did not describe a construction analogous to the shifted bar construction which would yield ad hoc sign conventions.

G (m) ∆ n + F (m) ∆ n .
3. Higher functors and pre-natural transformations between A ∞ -categories 3.1. n-functors between A ∞ -categories. Recall that an A ∞ -category A is dened to be the data (i) of a collection of objects Ob(A) ; (ii) for every A 0 , A 1 ∈ Ob(A) of a dg-module A(A 0 , A 1 ) ; (iii) for every A 0 , . . . , A n ∈ Ob(A) of a degree 2n map

m n : A(A 0 , A 1 ) ⊗ • • • ⊗ A(A n-1 , A n ) -→ A(A 0 , A n ) ,
such that the maps m n satisfy a categorical version of the A ∞ -equations for A ∞ -algebras.

The maps m n are called the higher compositions of A and are to be thought of as the higher homotopies encoding the lack of associativity of the composition maps m 2 . In particular, an A ∞category A induces an ordinary category H * (A) in cohomology. We refer to subsection 3.3 for a discussion of the existence of identity morphisms in H * (A).

An A ∞ -functor between two A ∞ -categories F : A → B is then dened to be the data (i) of a map F : Ob(A) → Ob(B) ;

(ii) for every A 0 , . . . , A n ∈ Ob(A) of a degree 1n map

f n : A(A 0 , A 1 ) ⊗ • • • ⊗ A(A n-1 , A n ) -→ B(F(A 0 ), F(A n )) ,
such that the maps f n satisfy a categorical version of the A ∞ -equations for A ∞ -morphisms.

A ∞ -functors correspond to functors between A ∞ -categories that preserve the composition up to higher coherent homotopies, and induce ordinary functors H * (F) : H * (A) → H * (B) between the cohomological categories.

One can then similarly dene a categorical generalization of n-morphisms between A ∞ -algebras given by n-functors between A ∞ -categories. The sets of n-functors between two A ∞ -categories A and B then t into a simplicial set

HOM A∞-Cat (A, B) • .
It is straightforward from the proof of subsection 2.3.1 that these simplicial sets are again algebraic ∞-categories. In analogy with Theorem 1, we expect that these simplicial sets are Kan complexes. The proof of this statement would rely on working out the homotopy theory of dg-cocategories.

3.2. The A ∞ -category of A ∞ -functors Func A,B and the simplicial nerve functor. Given two A ∞ -categories A and B, Fukaya constructed in [Fuk02] an A ∞ -category Func A,B whose objects are A ∞ -functors from A to B. See also [LH02] and [Sei08]. The goal of this section is to compare the construction of [Fuk02] to the Kan complex HOM A∞-Cat (A, B) • .

We begin by dening the A ∞ -category Func A,B . The objects of Func A,B are A ∞ -functors A → B. Given two A ∞ -functors F 0 = {f (m) 0 } and F 1 = {f (m) 1 }, an element F 01 ∈ Func A,B (F 0 , F 1 ) is called a pre-natural transformation and consists of a collection of morphisms

f (m) 01 : A(A 0 , A 1 ) ⊗ • • • ⊗ A(A n-1 , A n ) -→ B(F 0 (A 0 ), F 1 (A n ))
for m 0, where f (0) 01 corresponds to an element of B(F 0 (A), F 1 (A)) for all A ∈ A. A pre-natural transformation has degree r if each morphism f (m) 01 has degree rm. The dierential m 1 on Func A,B (F 0 , F 1 ) is then dened as

(m 1 (F 01 )) (m) := i 1 +i 2 +i 3 =m ±f (i 1 +1+i 3 ) 01 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) + |i i i 0 |+l+|i i i 1 |=m ±m s (f f f i i i 0 0 ⊗ f (l) 01 ⊗ f f f i i i 1 1 ) ,
where for a list i i i 0 := (i 1 0 , . . . , i k 0 0 ) of indices, we denote

|i i i 0 | := k 0 j=1 i j 0 l(i i i 0 ) := k 0 f f f i i i 0 0 := f (i 1 0 ) 0 ⊗ • • • ⊗ f (i k 0 0 ) 0 ,
and where s := l(i i i 0 ) + 1 + l(i i i 1 ) in the second sum. The A ∞ -operation

m n := Func A,B (F 0 , F 1 ) ⊗ • • • ⊗ Func A,B (F n-1 , F n ) → Func A,B (F 0 , F n ) evaluated on an element F 01 ⊗ • • • ⊗ F n-1,n is dened as (m n (F 01 , . . . , F n-1,n )) (m) := n r=0 |i i ir|+ n-1 r=0 l r,r+1 =m ±m s (f f f i i i 0 0 ⊗ f (l 01 ) 01 ⊗ f f f i i i 1 1 ⊗ • • • ⊗ f (l n-1,n ) n-1,n ⊗ f f f i i in n ) ,
where s := n + s r=0 l(i i i r ).

In [START_REF] Faonte | Simplicial nerve of an A∞-category[END_REF], Faonte denes the simplicial nerve N A∞ of an A ∞ -category. Given an A ∞ -category C, the simplicial nerve N A∞ of C is a simplicial set N A∞ (C) which has the property of being an ∞-category. A n-simplex in this simplicial set corresponds to the data for every 0 i n of an object f i ∈ C and for every

0 i 0 < • • • < i k n with k 1 of an element f i 0 ...i k ∈ C(f i 0 , f i k ) of degree 1 -k, such that m 1 (f i 0 ...i k ) = k-1 j=1 (-1) j f i 0 ... îj ...i k + 0<j 1 <•••<j s-1 <k s 2 ±m s (f i 0 ...i j 1 , . . . , f i j s-1 ...i k ) .
One can thereby consider the simplicial set N A∞ (Func A,B ), which is an ∞-category. Its n-simplices correspond to the data of (i) an A ∞ -functor

F [i] = (f (m) [i]
) m 1 from A to B for every 0 i n, (ii) and of a pre-natural transformation

F I = (f (m) I ) m 0 of degree 1 -m + |I| for every I ⊂ ∆ n such that dim(I) 1,
which satisfy the following equations

∂, f (m) I = dim(I)-1 j=1 (-1) j f (m) ∂ j I + i1+i2+i3=m i2 2 ±f (i1+1+i3) I (id ⊗i1 ⊗ m i2 ⊗ id ⊗i3 ) + i1+•••+is=m I1∪•••∪Is=I s 2 ±m s (f (i1) I1 ⊗ • • • ⊗ f (is) Is ) .
These equations are almost but not exactly identical to the A ∞ -equations for n-functors dened in this article. Indeed, the sum for the simplicial dierential now runs over j = 1, . . . , dim(I) -1 and the operations f (m) I dening the n-simplex can have arity 0 when dim(I) 1. These seemingly minor dierences account for the fact that the simplicial sets HOM A∞-Cat (A, B) • and N A∞ (Func A,B ) dier fundamentally. Indeed, the 1-simplices of the simplicial set HOM A∞-Cat (A, B) • correspond to A ∞ -homotopies between two A ∞ -functors and its higher simplices are to be understood as the higher coherent homotopies generalizing A ∞ -homotopies. The simplices of the simplicial set N A∞ (Func A,B ) are to be interpreted dierently. The equations computed in the previous paragraph show that a 1-simplex F 01 of N A∞ (Func A,B ) corresponds exactly to an A ∞ -natural transformation between two A ∞ -functors F 0 and F 1 . A 1-simplex F 01 corresponds indeed to a collection of operations from the A ∞ -category A to the A ∞ -category B, and the arity 0 and 1 part of the equations they satisfy show that F 01 descends to an ordinary natural transformation H * (F 01 ) : H * (F 0 ) ⇒ H * (F 1 ). This is also the reason why the morphisms of the A ∞ -category Func A,B are called pre-natural transformations. The n-simplices of N A∞ (Func A,B ) are then to be understood as higher A ∞ -natural transformations between A ∞ -functors. This interpretation explains in particular why the simplicial set HOM A∞-Cat (A, B) • is a Kan complex while N A∞ (Func A,B ) is an ∞-category but not necessarily a Kan complex : homotopies should always be invertible (up to homotopy), but this has no reason to hold in general for natural transformations.

Two notions of homotopies between

A ∞ -functors. The A ∞ -category Func A,B provides in fact an alternative framework to dene a homotopy equivalence relation between A ∞ -functors. Following [Fuk17], we compare in this subsection this homotopy equivalence relation to our equivalence relation induced by A ∞ -homotopies between A ∞ -functors. Dene a unital A ∞ -algebra B to be an A ∞ -algebra B together with an element e ∈ B such that ∂e = 0, m 2 (e, •) = m 2 (•, e) = id and m n (• • • , e, • • • ) = 0 when n 3. A unital A ∞ -algebra yields in particular a unital algebra H * (B) in cohomology. One denes the notion of a unital A ∞ -category B in a similar fashion. A unital A ∞ -category yields in fact an ordinary category H * (B) whose identity morphisms correspond to the cohomology classes of its unit morphisms. For two A ∞ -categories A and B such that B is unital, one can moreover check that the A ∞ -category Func A,B is again unital.

We suppose in the rest of this subsection that the A ∞ -category B is unital. Following [Fuk17], dene a homotopy equivalence between two A ∞ -functors F and G to be a degree 0 pre-natural transformation T ∈ Func A,B (F, G) for which there exists a degree 0 pre-natural transformation T ∈ Func A,B (G, F) such that (i) m 1 (T ) = 0 and m 1 (T ) = 0, i.e. the pre-natural transformations T and T are A ∞ -natural transformations as dened in the previous subsection ; (ii) m 2 (T , T ) -Id F ∈ Im(m 1 ) and m 2 (T , T ) -Id G ∈ Im(m 1 ), where Id F denotes the unit of

Func A,B (F, F).
Two A ∞ -functors F and G are said to be homotopy equivalent if there exists a homotopy equivalence between them. The A ∞ -natural transformations T and T then induce natural equivalences H * (T ) : H * (F) ⇒ H * (G) and H * (T ) : H * (G) ⇒ H * (F) which are inverse to one another. In particular, if F and G are homotopy equivalent then

H * (T ) • H * (F) • H * (T ) -1 = H * (G).
We say that two A ∞ -functors F and G are homotopic if there exists an A ∞ -homotopy between them. Two homotopic A ∞ -functors F and G dene in particular the same functor H * (F) = H * (G) in cohomology. These two notions of homotopy on A ∞ -functors are related by the following proposition proven by Fukaya in [Fuk17] : Proposition 14. Let B be a unital A ∞ -category and F, G : A → B be two A ∞ -functors. If F and G are homotopic then they are homotopy equivalent.

The converse is however not true in general.

The ∞-category of A ∞ -algebras ?

Given three A ∞ -algebras A, B and C together with two n-morphisms going respectively from A to B and from B to C, we have not yet dened a way to compose them. In other words, we have not dened a simplicial enrichment of the category A ∞ -Alg.

4.1. Simplicially enriched categories. A simplicially enriched category D, or simplicial category for short, is the data of (i) a collection of objects Ob(D) ; (ii) for every two objects A and B a simplicial set of morphisms between A and B, that we write HOM D (A, B) n ; (iii) simplicial composition maps

HOM D (A, B) n × HOM D (B, C) n -→ HOM D (A, C) • ;
which satisfy the standard axioms of an ordinary category. Dening a simplicial enrichment of an ordinary category C consists then in dening a simplicial category C ∆ having the same objects as C and such that the sets of vertices of its HOM-simplicial sets are exactly the sets of morphisms of C, in other words HOM C ∆ (A, B) 0 = Hom C (A, B) for each n. In the particular case of the category C := A ∞ -Alg we have already constructed the HOMsimplicial sets, and we would now like to dene simplicial composition maps

HOM A∞-Alg (A, B) n × HOM A∞-Alg (B, C) n -→ HOM A∞-Alg (A, C) n .
It is enough to construct these simplicial maps for dg -Cog, i.e. to dene simplicial composition maps

HOM dg-Cog (A, B) n × HOM dg-Cog (B, C) n -→ HOM dg-Cog (A, C) n ,
which are associative, preserve the identity and lift the composition on HOM 0 = Hom.

4.2.

A natural candidate that fails to preserve the coproduct. Let F : ∆ ∆ ∆ n ⊗ C → C and G : ∆ ∆ ∆ n ⊗ C → C be two morphisms of dg-coalgebras. The only natural candidate to construct a composition is the Alexander-Whitney coproduct ∆ ∆ ∆ ∆ n , i.e. we dene G • F to be the following composite of maps

∆ ∆ ∆ n ⊗ C ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n ⊗ C ∆ ∆ ∆ n ⊗ C C ∆ ∆ ∆ ∆ n ⊗id C id ∆ ∆ ∆ n ⊗F G .
Note that we use the word "map" and not "morphism" because we have yet to check that this composite is indeed a morphism of dg-coalgebras. Before moving on, we point out that for the composition of continuous maps of topological spaces ∆ n × X → Y we use the diagonal map of ∆ n ,

∆ n × X -→ diag ∆ n ×id X ∆ n × ∆ n × X -→ id ∆ n ×F ∆ n × Y -→ G Z .
This construction cannot be reproduced in our case, as the diagonal map ∆ ∆ ∆ n → ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n does not respect the gradings, nor does it respect the dierentials.

Set ∆ ∆ ∆ n 1 := ∆ ∆ ∆ n , ∆ ∆ ∆ n 2 := ∆ ∆ ∆ n and write ∆ ∆ ∆ ∆ n : ∆ ∆ ∆ n → ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n
2 for the Alexander-Whitney map seen as a map from the dg-coalgebra ∆ ∆ ∆ n to the product dg-coalgebra

∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 . In the previous composition, it is sucient to prove that ∆ ∆ ∆ ∆ n : ∆ ∆ ∆ n → ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n
2 is a morphism of dg-coalgebras to prove that G • F is a morphism of dg-coalgebras. This map does preserve the dierential, but it does not preserve the coproduct ! Indeed, consider the following diagram

∆ ∆ ∆ n ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ⊗ ∆ ∆ ∆ n 2 ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n (∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ) ⊗ (∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ) ∆ ∆ ∆ ∆ n ∆ ∆ ∆ ∆ n ∆ ∆ ∆ ∆ n 1 ⊗∆ ∆ ∆ ∆ n 2 id⊗τ ⊗id ∆ ∆ ∆ ∆ n ⊗∆ ∆ ∆ ∆ n .
Up to specifying the correct signs, the upper composite path of the square is the map

I -→ I 1 ∪I 2 ∪I 3 ∪I 4 =I I 1 ⊗ I 3 ⊗ I 2 ⊗ I 4 ,
where I 1 ∪ I 2 ∪ I 3 ∪ I 4 denotes an overlapping partition of the face I ⊂ ∆ n , while the lower composite path of the square is the map

I -→ I 1 ∪I 2 ∪I 3 ∪I 4 =I I 1 ⊗ I 2 ⊗ I 3 ⊗ I 4 .
These two maps are not equal, the square does not commute. The map G • F is in particular not a morphism of dg-coalgebras, and as a result does not belong to HOM dg-Cog (A, C) n . It ensues that the composition fails to be lifted to higher morphisms with this naive approach. Still, something more can be said about the previous non-commutative square. Again, up to computing the correct signs, the map

∆ ∆ ∆ n -→ (∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ) ⊗ (∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 ) I -→ I 1 ∪I 2 ∪I 3 ∪I 4 ∪I 5 =I I 1 ⊗ I 3 ⊗ (I 2 ∪ I 4 ) ⊗ I 5 ,
denes a homotopy between the upper composite path and the lower composite path of the square : it lls the square to make it homotopy-commutative. In the language introduced in [MS03], the upper composite path is equal to 1324, the lower one is equal to 1234, and the ller is equal to 13234. Using the results of [MS03], the author proves in [Maz] that : Theorem 3. The Alexander-Whitney coproduct can be lifted to an A ∞ -morphism between the dgcoalgebras ∆ ∆ ∆ n and ∆ ∆ ∆ n 1 ⊗ ∆ ∆ ∆ n 2 , whose rst higher homotopy is the map 13234. 4.3. A second approach using the tensor product of A ∞ -morphisms. We proved in subsection 1.5 of part 1 that a n-morphism from A to B can equivalently be dened as a morphism of A ∞ -algebras A → ∆ ∆ ∆ n ⊗ B. Using this denition, we can construct the composition of two

n-morphisms A → ∆ ∆ ∆ n ⊗ B and B → ∆ ∆ ∆ n ⊗ C as G • F := A -→ F ∆ ∆ ∆ n ⊗ B -→ id ∆ ∆ ∆n ⊗G ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n ⊗ C -→ ∪⊗idc ∆ ∆ ∆ n ⊗ C .
In this composition, we write tensor products of A ∞ -morphisms id ∆ ∆ ∆n ⊗G and ∪⊗id c between tensor A ∞ -algebras. This requires some further explanations.

Given two A ∞ -algebras A and B, it is not straightforward to dene an A ∞ -algebra structure on the tensor dg-module A ⊗ B. Indeed, if we dene naively the operations m A⊗B n as

m A⊗B n (a 1 ⊗ b 1 , • • • , a n ⊗ b n ) := ±m A n (a 1 , • • • , a n ) ⊗ m B n (b 1 , • • • , b n ) ,
they fail to satisfy the A ∞ -equations and do not even have the right degree. As explained in [MS06], the denition of a natural tensor product of A ∞ -algebras can be done by constructing a morphism of operads

A ∞ → A ∞ ⊗ A ∞ , where A ∞ ⊗ A ∞ (n) := A ∞ (n) ⊗ A ∞ (n)
denotes the Hadamard product of operads. In [MTTV21], the authors construct such a morphism of operads by constructing a polytopal diagonal on the associahedra K m and recover the formula originally computed on the dglevel by Markl and Shnider in [MS06]. In the particular case of a dg-algebra A and an A ∞ -algebra B, the A ∞ -structure on A ⊗ B deduced from a diagonal on the operad A ∞ is moreover exactly the one described at the beginning of subsection 1.5 of part 1. The A ∞ -algebras appearing in the denition of the

A ∞ -morphism G • F : A → ∆ ∆ ∆ n ⊗ C are all of this form. Given two A ∞ -morphisms f A : A 1 → A 2 and f B : B 1 → B 2 , we would also like to dene a morphism f A ⊗ f B : A 1 ⊗ B 1 → A 2 ⊗ B 2 between the tensor A ∞ -algebras A 1 ⊗ B 1 and A 2 ⊗ B 2 .

This involves dening this time a morphism of operadic bimodules

A ∞ -Morph → A ∞ -Morph ⊗ A ∞ -Morph, compatible with the morphism of operads A ∞ → A ∞ ⊗ A ∞ introduced
in the previous paragraph. Guillaume Laplante-Anfossi together with the author dene such a morphism in an upcoming article [LAM], following the method of [MTTV21] by constructing an explicit polytopal diagonal on the multiplihedra J m . See also the work of Lipshitz, Ozsváth and Thurston in [LOT21].

In the particular case when the A ∞ -algebras A 1 and A 2 are dg-algebras and the morphism f A is a morphism of dg-algebras, the datum of a diagonal on A ∞ -Morph is not necessary to dene the A ∞ -morphism f A ⊗ f B . It can indeed simply be dened as

(f A ⊗ f B ) m (a 1 ⊗ b 1 , . . . , a m ⊗ b m ) := ±f A 1 (a 1 • • • • • a m ) ⊗ f B m (b 1 , . . . , b m ) ,
where a 1 • • • • • a m denotes the product of the elements a 1 , . . . , a m . The map id ∆ ∆ ∆n ⊗ G in the composition G • F is of this form. However, such a diagonal is necessary to dene the tensor A ∞morphism ∪ ⊗ id C , as the map ∪ is this time an A ∞ -morphism and not a mere morphism between dg-algebras. Here the map ∪ denotes indeed the A ∞ -morphism between the dg-algebras ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n and ∆ ∆ ∆ n , deduced from the A ∞ -morphism between the dg-coalgebras ∆ ∆ ∆ n and ∆ ∆ ∆ n ⊗ ∆ ∆ ∆ n of theorem 3. Hence, the datum of a diagonal on the operadic bimodule A ∞ -Morph, as constructed in [LAM] or [LOT21], allows us to dene the composition of two n-morphisms A → ∆ ∆ ∆ n ⊗ B and B → ∆ ∆ ∆ n ⊗ C. It is however not immediately clear that this composition denes a map of simplicial sets

HOM A∞ (A, B) n × HOM A∞ (B, C) n -→ HOM A∞ (A, C) • ,
nor that this composition is associative. It is thereby still an open question to know whether these HOM-simplicial sets could t into a simplicial enrichment of the category A ∞ -Alg. This would then endow A ∞ -Alg with a structure of ∞-category, following Proposition 1.1.5.10. of [START_REF] Lurie | Higher topos theory[END_REF]. The author plans to inspect these questions in an upcoming paper. 4.4. Enriching A ∞ -Cat using the A ∞ -categories Func A,B . In [START_REF] Faonte | A∞-functors and homotopy theory of dg-categories[END_REF], Faonte claims that the simplicial sets N A∞ (Func A,B ) enhance the category A ∞ -Cat of A ∞ -categories with A ∞ -functors between them to an (∞, 2)-category. The same diculties that were tackled in this section and section 4.2 seem however to arise when lifting the composition of A ∞ -functors to the level of the simplicial sets N A∞ (Func A,B ).

In the same vein, Lyubashenko constructs in [Lyu03] an A ∞ -bifunctor

Func A,B × Func B,C -→ Func A,C
dened as the composition of A ∞ -functors on objects. We refer to his paper for a denition of an A ∞ -bifunctor and simply stress here that the notation Func A,B × Func B,C is a mere notation and does not refer to the tensor product of the A ∞ -categories Func A,B and Func B,C . Fukaya then proves in [Fuk17] that this composition A ∞ -bifunctor is associative up to homotopy equivalence. This suggests that the A ∞ -categories Func A,B should t into an enrichment in A ∞ -categories of the category A ∞ -Cat. This enrichment should in particular induce in cohomology the 2-category structure on the category Cat, whose objects are ordinary categories, whose 1-morphisms are functors and whose 2-morphisms are natural transformations. The structure of a category enriched in A ∞categories has however not been dened to this day. Bottman is currently working on such a denition, which he calls an (A ∞ , 2)-category structure. See for instance [BC21]. The A ∞ -categories Func A,B and the problem of dening the notion of a category enriched in A ∞ -categories arise in fact naturally in symplectic topology when considering moduli spaces of pseudo-holomorphic quilts dening operations on Fukaya categories Fuk(M ) of symplectic manifolds M . See for instance [MWW18], [Fuk17], [Bot20] and [START_REF] Bottman | Moduli spaces of witch curves topologically realize the 2-associahedra[END_REF] for more details on the subject.

Part 3

Higher morphisms in Morse theory

n-morphisms in Morse theory

Let M be a closed oriented Riemannian manifold endowed with a Morse function f together with a Morse-Smale metric. In [Maz21], we explored how to realize the moduli spaces of stable metric ribbon trees T m and the moduli spaces of stable two-colored metric ribbon trees CT m in Morse theory. It was proven that, upon choosing admissible perturbation data X f on the moduli spaces T m for the function f , the Morse cochains C * (f ) can be endowed with an ΩBAs-algebra structure whose operations m t for t ∈ SRT m are dened by counting 0-dimensional moduli spaces T X f t (y; x 1 , . . . , x m ). Similarly, choose an additional Morse function g together with admissible perturbation data X g on the moduli spaces T m , and admissible perturbation data Y on the moduli spaces CT m which are compatible with X f and X g . We can then dene an ΩBAs-morphism µ

Y : (C * (f ), m X f t ) → (C * (g), m X g t ),
whose operations µ tg for t g ∈ SCRT m are dened by counting the 0-dimensional moduli spaces

CT Y tg (y; x 1 , . . . , x m ).
The goal of this section is to realize the n-multiplihedra n -J m endowed with their n -ΩBAs-cell decomposition in Morse theory. We rst introduce the notion of n-simplices of perturbation data on the moduli spaces CT m (denitions 22 and 23), generalizing the notion of perturbation data on these moduli spaces dened in [Maz21]. We then use n-simplices of perturbation data to dene the moduli spaces CT I,tg (y; x 1 , . . . , x m ), I ⊂ ∆ n . Under generic assumptions on the simplices of perturbation data, these moduli spaces are orientable manifolds (Proposition 15). Requiring some additional compatibilities involving the maps AW a a a on the simplices of perturbation data, the 1dimensional moduli spaces CT I,tg (y; x 1 , . . . , x m ) can be compactied to 1-dimensional manifolds with boundary, whose boundary is modeled on the boundary of ∆ n ×CT m endowed with its n-ΩBAs-cell decomposition (Theorems 4 and 5). We construct as a result a n -ΩBAs-morphism between the Morse cochains C * (f ) and C * (g) (Theorem 6), by counting the signed points of the 0-dimensional oriented manifolds CT I,tg (y; x 1 , . . . , x m ). We nally prove a lling theorem for perturbation data parametrized by a simplicial subcomplex S ⊂ ∆ n (Theorem 7), solving as a corollary the question that initially motivated this paper (corollary 1).

1.1. Conventions. We will study Morse theory of the Morse function f : M → R using its negative gradient vector eld -∇f . Denote d the dimension of the manifold M and φ s the ow of -∇f . For a critical point x dene its unstable and stable manifolds

W U (x) := {z ∈ M, lim s→-∞ φ s (z) = x} W S (x) := {z ∈ M, lim s→+∞ φ s (z) = x} .
Their dimensions are such that dim(W U (x)) + dim(W S (x)) = d. We then dene the degree of a critical point x to be |x| := dim(W S (x)). This degree is often referred to as the coindex of x in the litterature. 1.2. n-simplices of perturbation data on a stratum CT m (t g ). Fix a gauged stable metric ribbon tree T g = (t g , λ, {l e } e∈E(t) ). Let T c = (t c , L fc ) be its associated two-colored metric ribbon tree, E(t c ) the set of all edges of t c and E(t c ) ⊂ E(t c ) the set of internal edges of t c . We point out that L fc is a linear combination of the parameters λ, {l e } e∈E(t) and that we should in fact write L fc (λ, {l e } e∈E(t) ). Recall from [Maz21] that : Denition 21 ([Maz21]). A choice of perturbation data on T g consists of the following data :

(i) a vector eld [0, L fc ] × M -→ X fc T M , that vanishes on [1, L fc -1], for every internal edge f c of t c ; (ii) a vector eld [0, +∞[×M -→ X f 0 T M ,
that vanishes away from [0, 1], for the outgoing edge f 0 of t c ; (iii) a vector eld

] -∞, 0] × M -→ X f i T M ,
that vanishes away from [-1, 0], for every incoming edge f i (1 i n) of t c .

In the rest of the paper, we will moreover write D fc for all segments [0, L fc ], as well as for all semi-innite segments ] -∞, 0] and [0, +∞[. Denition 22. A n-simplex of perturbation data for T g is dened to be a choice of perturbation data Y δ,Tg for every δ ∈ ∆n . Equivalently, it is the datum of a vector eld

∆n × D fc × M -→ Y ∆ n ,Tg ,fc T M
for every edge f c ∈ E(t c ), abiding by the previous vanishing conditions on D fc . We will denote it as Y ∆ n ,Tg := {Y δ,Tg } δ∈ ∆n .

Introduce the cone C fc ⊂ CT m (t g ) × R dened as (i) {((λ, {l e } e∈E(t) ), s) such that (λ, {l e } e∈E(t) ) ∈ CT m (t g ) and 0 s L fc } if f c is an internal edge ; (ii) {((λ, {l e } e∈E(t) ), s) such that (λ, {l e } e∈E(t) ) ∈ CT m (t g ) and s 0} if f c is an incoming edge ; (iii) {((λ, {l e } e∈E(t) ), s) such that (λ, {l e } e∈E(t) ) ∈ CT m (t g ) and s 0} if f c is the outgoing edge. Denition 23. A n-simplex of perturbation data on CT m (t g ), or choice of perturbation data on CT m (t g ) parametrized by ∆ n , is dened to be the data of a n-simplex of perturbation data Y ∆ n ,Tg for every T g ∈ CT m (t g ). A n-simplex of perturbation data Y ∆ n ,tg denes maps

Y ∆ n ,tg,fc : ∆n × D fc × M -→ T M ,
for every edge f c of t c . It is said to be smooth if all these maps are smooth.

1.3. The moduli spaces CT I,tg (y; x 1 , . . . , x m ). Recall from [Maz21] that given an admissible choice of perturbation data Y on the moduli spaces CT m , the moduli spaces CT Y tg (y; x 1 , . . . , x m ) are dened as the inverse image of the thin diagonal ∆ ⊂ M ×m+1 under the ow map

φ Yt g : CT m (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x m ) -→ M ×m+1 .
Denition 24. Let Y ∆ n ,tg be a smooth n-simplex of perturbation data on CT m (t g ). Given y ∈ Crit(g) and x 1 , . . . , x m ∈ Crit(f ), we dene the moduli spaces

CT Y ∆ n ,tg ∆ n ,tg (y; x 1 , . . . , x m ) := δ∈ ∆n CT Y δ,tg tg (y; x 1 , . . . , x m ) =
( δ , two-colored perturbed Morse gradient tree associated to (T g , Y δ,Tg ) which connects x 1 , . . . , x m to y), for T g ∈ CT m (t g ) and δ ∈ ∆n .

x 1

x 2 x 3 x 4 y Figure 14. An example of a perturbed two-colored Morse gradient tree associated to the perturbation data Y δ for a δ ∈ ∆n . The black segments above the gauge correspond to -∇f and the green ones to -∇f + Y δ . As for the segments below the gauge, replace f by g in these formulae.

An example of a perturbed two-colored Morse gradient tree associated to the perturbation data Y δ for a δ ∈ ∆n is represented on gure 14. Introduce the ow map

φ Y ∆ n ,tg : ∆n × CT m (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x m ) -→ M ×m+1 , whose restriction to every δ ∈ ∆n is φ Y δ,tg : CT m (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x m ) -→ M ×m+1 . Proposition 15. (i) The moduli space CT Y ∆ n ,tg
∆ n ,tg (y; x 1 , . . . , x m ) can be rewritten as

CT Y ∆ n ,tg ∆ n ,tg (y; x 1 , . . . , x m ) = φ -1 Y ∆ n ,tg (∆) ,
where ∆ ⊂ M ×m+1 is the thin diagonal of M ×m+1 .

(ii) Given a n-simplex of perturbation data Y ∆ n ,tg making φ Y ∆ n ,tg transverse to ∆, the moduli space CT ∆ n ,tg (y; x 1 , . . . , x m ) is an orientable manifold of dimension

dim CT ∆ n ,tg (y; x 1 , . . . , x m ) = -|t ∆ n ,g | + |y| - m i=1 |x i | . (iii) n-simplices of perturbation data Y ∆ n ,tg such that φ Y ∆ n ,tg is transverse to ∆ exist.
Replacing ∆ n by any face I ⊂ ∆ n , the moduli spaces CT Y I,tg I,tg (y; x 1 , . . . , x m ) can be dened in the same way and made into orientable manifolds of dimension

dim CT I,tg (y; x 1 , . . . , x m ) = -|t I,g | + |y| - m i=1 |x i | .
We refer to section 2 for the details on transversality and orientability. 1.4. Compactications.

1.4.1. The compactied moduli spaces CT I,tg (y; x 1 , . . . , x m ). We now would like to compactify the 1-dimensional moduli spaces CT I,tg (y; x 1 , . . . , x m ) to 1-dimensional manifolds with boundary. They are dened as the inverse image in I ×CT m (t g )×W S (y)×W U (x 1 )ו • •×W U (x m ) of the thin diagonal ∆ ⊂ M ×m+1 under the ow map φ Y I,tg . The boundary components in the compactication should come from those of W S (y), of the W U (x i ) and of I × CT m (t g ). However, rather than considering the boundary components coming from the separate compactications of I and CT m (t g ), we will consider the n-ΩBAs-decomposition of I ×CT m (t g ) and model the remaining boundary components on this decomposition.

Choose admissible perturbation data X f and X g for the functions f and g. Choose moreover smooth simplices of perturbation data Y I,tg for all t g ∈ SCRT i , 1 i m and I ⊂ ∆ n . We denote

(Y I,m ) I⊂∆ n := (Y I,tg ) tg∈SCRTm I⊂∆ n
, and call it a choice of perturbation data on CT m parametrized by ∆ n . Fixing a two-colored stable ribbon tree type t g ∈ SCRT m and I ⊂ ∆ n we want to compactify the moduli space CT Y I,tg I,tg (y; x 1 , . . . , x m ) using the perturbation data X f , X g and (Y I,k ) k m I⊂∆ n . The boundary will be described by the following phenomena :

(i) the parameter δ ∈ I tends towards the codimension 1 boudary of I (∂ sing I) ; (ii) an external edge breaks at a critical point (Morse) ; (iii) an internal edge of the tree t collapses (int-collapse) :

CT Y I,t g I,t g (y; x 1 , . . . , x m )
where t g ∈ SCRT n are all the two-colored trees obtained by collapsing exactly one internal edge, which does not cross the gauge ; (iv) the gauge moves to cross exactly one additional vertex of the underlying stable ribbon tree (gauge-vertex) :

CT Y I,t g I,t g (y; x 1 , . . . , x m )
where t g ∈ SCRT n are all the two-colored trees obtained by moving the gauge to cross exactly one additional vertex of t ;

(v) an internal edge located above the gauge or intersecting it breaks or, when the gauge is below the root, the outgoing edge breaks between the gauge and the root (above-break) :

CT Y I,t 1 g I,t 1 g (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x m ) × T X f t 2 t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 ) ,
where the tree resulting from grafting the outgoing edge of t 2 to the i 1 + 1-th incoming edge of t 1 g is t g ; (vi) edges (internal or incoming) that are possibly intersecting the gauge, break below it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root (below-break) ; the simplex of perturbation data Y I,tg then "breaks" according to the combinatorics of the Alexander-Whitney coproduct : where the tree resulting from grafting for each r the outgoing edge of t r g to the r-th incoming edge of t 0 is t g , and

I 1 ∪ • • • ∪ I s = I is an overlapping partition of I.
Note that the (Morse) boundaries are a simple consequence of the fact that external edges are Morse trajectories away from a length 1 segment. 1.4.2. Smooth choice of perturbation data Y I⊂∆ n ,m . We begin by tackling the conditions coming with the (∂ sing I), (int-collapse) and (gauge-vertex) boundaries. Let t g ∈ SCRT m and denote coll ∪ gv(t g ) ⊂ SCRT m the set consisting of all stable gauged trees obtained by collapsing internal edges of t and/or moving the gauge to cross additional vertices of t. In particular, t g ∈ coll ∪ gv(t g ). We dene

CT m (t g ) := t g ∈coll∪g-v(tg) CT m (t g )
for the stratum CT m (t g ) ⊂ CT m together with its inner boundary components. A choice of perturbation data (Y I,t g ) t g ∈coll∪g-v(tg) for a xed I ⊂ ∆ n corresponds to a dim(I)-simplex of perturbation data on CT m (t g ). Following section 1.2, such a choice of perturbation data is equivalent to a map ỸI,tg,fc : I × Cfc × M -→ T M , for every edge f c of t c , where Cfc ⊂ CT m (t g ) × R is dened in a similar fashion to C fc . Denition 25. A choice of perturbation data (Y I,m ) I⊂∆ n is said to be smooth if all maps

Ỹ∆ n ,tg,fc : ∆ n × Cfc × M -→ T M ,
are smooth, where we extended ∆n to ∆ n by dening Ỹ∆ n ,tg,fc := ỸI,tg,fc on a face I ⊂ ∆ n . 1.4.3. The (above-break) boundary. The (above-break) conditions are tackled as in [Maz21]. Write t c for the two-colored ribbon tree associated to t g . The (above-break) boundary corresponds to the breaking of an internal edge f c of t c located above the set of colored vertices. Denote t 1 c and t 2 the trees obtained by breaking t c at the edge f c , where t 2 is seen to lie above t 1 c . We have to specify for each edge e c ∈ E(t c ) and each δ ∈ I, what happens to the perturbation Y δ,tc,ec at the limit.

(i) For e c ∈ E(t 2 ) and = f c , we require that lim Y δ,tc,ec = X f t 2 ,ec .

(ii) For e c ∈ E(t 1 c ) and = f c , we require that lim Y δ,tc,ec = Y δ,t 1 c ,ec .

(iii) For f c = e c , Y δ,tc,fc yields two parts at the limit : the part corresponding to the outgoing edge of t 2 and the part corresponding to the incoming edge of t 1 c . We then require that they coincide respectively with the perturbation X f t 2 and Y δ,t 1 c . An example of each case is illustrated in gure 15.

t c Y δ,tc,ec lim Y δ,tc,ec = X f t 2 ,ec t 1 c t 2 (above-break) case (i) t c Y δ,tc,ec lim Y δ,tc,ec = Y δ,t 1 c ,ec t 1 c t 2 (above-break) case (ii) t c Y δ,tc,ec lim t 1 c Y δ,tc,ec = Y δ,t 1 c ,ec lim t 2 Y δ,tc,ec = X f t 2 ,ec t 1 c t 2 
(above-break) case (iii)

1.4.4. The (below-break) boundary. Denote t 1 c , . . . , t s c and t 0 the trees obtained by breaking t c below the gauge, where the trees t r c for r = 1, . . . , s are seen to lie above t 0 and are ordered from left to right. We write i r for the arity of t r c and introduce the dividing sequence a a a dened as

i 1 + • • • + i s-1 m > i 1 + • • • + i s-2 m > • • • > i 1 m ,
as in subsection 2.3.2 of part 1. Consider now the map AW a a a : I → I s . It comes with s maps pr r • AW a a a : I -→ I for 1 r s corresponding to the projection on the r-th factor of I s . For the sake of readability we will simply denote them pr r .

We have to specify for each edge e c ∈ E(t c ) and each δ ∈ I, what happens to the perturbation Y δ,tc,ec at the limit. The maps pr r will allow us to produce the overlapping partitions combinatorics on the parameter δ.

(i) For e c ∈ E(t r c ) and not among the breaking edges, we require that lim Y δ,tc,ec = Y pr r (δ),t r c ,ec .

(ii) For e c ∈ E(t 0 ) and not among the breaking edges, we require that lim Y δ,tc,ec = X g t 0 ,ec .

(iii) For f c among the breaking edges, Y δ,tc,fc yields two parts at the limit : the part corresponding to the outgoing edge of t r c and the part corresponding to the incoming edge of t 0 . We then require that they coincide respectively with the perturbations Y pr r (δ),t r c ,ec and X g t 0 ,ec . This is again illustrated in gure 16. We also point out that Proposition 7 ensures that the limit condition (iii) on the perturbation Y δ,tc,ec is consistent.

t c Y δ,tc,ec lim Y δ,tc,ec = Y pr 1 (δ),t 1 c ,ec t 0 t 1 c t 2 c (below-break) case (i) t c Y δ,tc,ec lim Y δ,tc,ec = X g t 0 ,ec t 0 t 1 c t 2 c (below-break) case (ii) t c Y δ,tc,ec lim t 2 Y δ,tc,ec = X g t 0 ,ec lim t 2 c Y δ,tc,ec = Y pr 2 (δ),t 2 c ,ec t 0 t 1 c t 2 c (below-break) case (iii)
Figure 16 1.4.5. Admissible n-simplices of perturbation data.

Denition 26. A smooth choice of perturbation data (Y I,m ) m 1 I⊂∆ n is said to be gluing-compatible w.r.t. X f and X g if it satises the (above-break) and (below-break) conditions described in subsections 1.4.3 and 1.4.4. Smooth and gluing-compatible perturbation data (Y I,m ) m 1 I⊂∆ n such that all maps φ Y I,tg are transverse to the diagonal ∆ are called admissible w.r.t. X f and X g or simply admissible. Theorem 4. Admissible choices of perturbation data

(Y I,m ) m 1 I⊂∆ n exist. Theorem 5. Let (Y I,m ) m 1
I⊂∆ n be an admissible choice of perturbation data. The 0-dimensional moduli spaces CT I,tg (y; x 1 , . . . , x m ) are compact. The 1-dimensional moduli spaces CT I,tg (y; x 1 , . . . , x m ) can be compactied to 1-dimensional manifolds with boundary CT I,tg (y; x 1 , . . . , x m ), whose boundary is described in subsection 1.4.1.

The proof of Theorem 4 is postponed to subsection 2.1.1 and will proceed as in [Maz21]. Theorem 5 is a direct consequence of the analysis carried out in chapter 6 of [Mes18]. For this reason, we will not give details of its proof. We only point out that all spaces

T X g t 0 t 0 (y; y 1 , . . . , y s ) × CT Y I 1 ,t 1 g I 1 ,t 1 g (y 1 ; x 1 , . . . ) × • • • × CT Y Is,t s g Is,t s g (y s ; . . . , x m )
where I 1 ∪ • • • ∪ I s = I is an i-overlapping s-partition of I, could a priori appear in the boudary of CT I,tg (y; x 1 , . . . , x m ). The assumption that our choice of perturbation data is admissible ensures however in particular that whenever I 1 ∪ • • • ∪ I s = I is not an (s -1)-overlapping s-partition of I the previous space is empty, as at least one of its factors then has negative dimension.

Theorem 5 implies moreover the existence of gluing maps , T 2,M orse and T 0,M orse , T 1,M orse I 1 ,g , . . . , T s,M orse Is,g respectively lie in a 0-dimensional moduli space, and where notations are as in items (v) and (vi) of subsection 1.4.1. The constructions of explicit gluing maps in subsections II.4.4.3 and II.4.5.4 of [Maz21] in the case of the moduli spaces CT tg (y 1 ; x 1 , . . . , x n ) can be adapted without problems to the present setting.

1.5. n -ΩBAs-morphisms between Morse cochains. Let X f and X g be admissible choices of perturbation data for the Morse functions f and g. Denote (C * (f ), m X f t ) and (C * (g), m X g t ) the Morse cochains endowed with their ΩBAs-algebra structures constructed in [Maz21]. Theorem 6. Let (Y I,m ) m 1 I⊂∆ n be a choice of perturbation that is admissible w.r.t. X f and X g . Dening for every m and t g ∈ SCRT m , and every I ⊂ ∆ n the operations µ I,tg as

µ I,tg : C * (f ) ⊗ • • • ⊗ C * (f ) -→ C * (g) x 1 ⊗ • • • ⊗ x m -→ |y|= m i=1 |x i |+|t I,g | #CT Y I,tg I,tg (y; x 1 , • • • , x m ) • y , they t into a n -ΩBAs-morphism (C * (f ), m X f t ) → (C * (g), m X g t )
homotopy groups are trivial. In particular, Theorem 7 implies that HOM geom ΩBAs (C * (f ), C * (g)) • has trivial homotopy groups hence is contractible.

Shifting from the ΩBAs to the A ∞ viewpoint, we can dene in a similar fashion the simplicial subset

HOM geom A∞ (C * (f ), C * (g)) • ⊂ HOM A∞ (C * (f ), C * (g)) • .
The simplicial set HOM geom A∞ (C * (f ), C * (g)) • is then again a Kan complex which is contractible. Given an admissible horn of perturbation data Y Λ k n , Theorem 1 implies that the induced horn Λ k n → HOM A∞ (C * (f ), C * (g)) • can always be lled algebraically. The fact that HOM geom A∞ (C * (f ), C * (g)) • is a Kan complex implies something stronger : this horn can not only be lled algebraically, but also geometrically. We moreover point out that we should in fact work with twisted n -A ∞ and n -ΩBAs-morphisms, as explained in section 2.4. However, the constructions of this section still hold in that context.

The following proposition is a direct corollary to Theorem 8 and solves the motivational question formulated in the introduction :

Corollary 1. Let Y and Y be two admissible choices of perturbation data on the moduli spaces CT m . The ΩBAs-morphisms µ Y and µ Y are then ΩBAs-homotopic

C * (f ) C * (g) µ Y µ Y .
2. Transversality, signs and orientations 2.1. Proof of theorems 4 and 7.

2.1.1. Proof of theorem 4. We detailed in section II.3. of [Maz21] how to build an admissible choice of perturbation data (X n ) n 2 on the moduli spaces T m . Drawing from this construction, we provide a sketch of the proof of Theorem 4 in this subsection : admissible n-simplices of perturbation data

(Y I,m ) m 1
I⊂∆ n on the moduli spaces CT (t g ) exist. The proof proceeds again by induction on the integer N = dim(CT (t g )) + dim(I).

If N = 0, dim(I) = 0 and the gauged tree t g is a corolla whose gauge intersects its root. Let y ∈ Crit(g) and x 1 , • • • , x m ∈ Crit(f ) and x an integer l such that

l max 1, |y| - m i=1 |x i | + 1 .
Dene the parametrization space X l tg := {C l -perturbation data Y tg on CT m (t g )} , and introduce the C l -map

φ tg : X l tg × CT m (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x m ) -→ M ×m+1 ,
such that for every Y tg ∈ X l tg , φ tg (Y tg , •) = φ Yt g . Note that we should in fact write φ y,x 1 ,...,xn tg as the domain of φ tg depends on y, x 1 , . . . , x n . The space X l tg is then a Banach space and the map φ tg is a 2.3.2. Twisted n -A ∞ -morphisms and twisted n -ΩBAs-morphisms. Denition 27. (i) A twisted A ∞ -algebra is a dg-Z-module A endowed with two dierent differentials ∂ 1 and ∂ 2 , and a collection of degree 2m operations m m :

A ⊗m → A such that [∂, m m ] = - i 1 +i 2 +i 3 =m 2 i 2 m-1 (-1) i 1 +i 2 i 3 m i 1 +1+i 3 (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) , where [∂, •] denotes the bracket for the maps (A ⊗m , ∂ 1 ) → (A, ∂ 2 ). (ii) Let (A, ∂ 1 , ∂ 2 , m m ) and (B, ∂ 1 , ∂ 2 , m m ) be two twisted A ∞ -algebras. A twisted n -A ∞ - morphism from A to B is dened to be a sequence of degree 1 -m + |I| operations f (m) I : A ⊗m → B such that ∂, f (m) 
I = dim(I) j=0 (-1) j f (m) ∂ j I + (-1) |I| i 1 +i 2 +i 3 =n i 2 2 (-1) i 1 +i 2 i 3 f (i 1 +1+i 3 ) I (id ⊗i 1 ⊗ m i 2 ⊗ id ⊗i 3 ) - i 1 +•••+is=m I 1 ∪•••∪Is=I s 2 (-1) B m s (f (i 1 ) I 1 ⊗ • • • ⊗ f (is) Is ) ,
where [∂, •] denotes the bracket for the maps (A ⊗m , ∂ 1 ) → (B, ∂ 2 ). (iii) A twisted ΩBAs-algebra and a twisted n -ΩBAs-morphism between twisted ΩBAs-algebras are dened similarly.

The explicit formulae obtained by evaluating the n -ΩBAs-equations of a twisted n -ΩBAsmorphism on A ⊗m then read as follows :

-∂ 2 µ I,tg (a 1 , . . . , a m ) + (-1) |I|+|tg|+ i-1 j=1 |a j | µ I,tg (a 1 , . . . , a i-1 , ∂ 1 a i , a i+1 , . . . , a m )

+ t 1 g #t 2 =t (-1) |I|+ † ΩBAs +|t 2 | i 1 j=1 |a j | µ I,t 1 g (a 1 , . . . , a i 1 , m t 2 (a i 1 +1 , . . . , a i 1 +i 2 ), a i 1 +i 2 +1 , . . . , a m ) + t 0 #(t 1 g ,...,t s g )=tg I 1 ∪•••∪Is=I (-1) |I|+ † ΩBAs + † Koszul m t 0 (µ I 1 ,t 1 g (a 1 , . . . , a i 1 ), . . . , µ Is,t s g (a i 1 +•••+i s-1 +1 , . . . , a m )) + t g ∈coll(tg) (-1) |I|+ † ΩBAs µ I,t g (a 1 , . . . , a m ) + t g ∈g-vert(tg) (-1) |I|+ † ΩBAs µ I,t g (a 1 , . . . , a m ) + dim(I) l=0 (-1) l µ ∂ sing l I,tg (a 1 , . . . , a m ) = 0 , where † Koszul = s r=1 (|I r | + |t r g |)   r-1 t=1 it j=1 |a i 1 +•••+a i t-1 +j |   .
As explained in [Maz21], these denitions cannot be phrased using an operadic viewpoint. However, a twisted n -ΩBAs-morphism between twisted ΩBAs-algebras still always descends to a twisted n -A ∞ -morphism between twisted A ∞ -algebras.

2.4. Proof of Theorem 6.

2.4.1. Recollections on twisted ΩBAs-algebra structures on the Morse cochains. We prove in [Maz21] that given a Morse function f and an admissible choice of perturbation data X on the moduli spaces T m , the Morse cochains C * (f ) can be endowed with a twisted ΩBAs-algebra structure by counting the 0-dimensional moduli spaces T Xt t (y; x 1 , . . . , x n ).

We twist to this end the natural orientation on the moduli spaces T X t (y; x 1 , . . . , x m ) dened in subsection 2.2.2, by a sign of parity σ(t; y; x 1 , . . . , x m ) := dm(1

+ |y| + |t|) + |t||y| + d m i=1 |x i |(m -i) ,
and the orientation on the moduli spaces T (y; x) by a sign of parity σ(y; x) := 1 , where d denotes the dimension of the manifold M . The moduli spaces T X t (y; x 1 , . . . , x m ) and T (y; x) endowed with these new orientations are then respectively written T X t (y; x 1 , . . . , x m ) and T (y; x). The operations m t and the dierential on C * (f ) are then dened as

m t (x 1 , . . . , x m ) = |y|= m i=1 |x i |+|t| # T X t (y; x 1 , . . . , x m ) • y , ∂ M orse (x) = |y|=|x|+1 # T (y; x) • y .
Counting the signed points in the boundary of the oriented 1-dimensional manifolds T t (y; x 1 , . . . , x m ) proves that the operations m t dene a twisted ΩBAs-algebra structure on

(C * (f ), ∂ T w M orse , ∂ M orse ),
where

(∂ T w M orse ) k = (-1) (d+1)k ∂ k M orse .
In particular, either working with coecients in Z/2, or with coecients in Z and an odd-dimensional manifold M , the operations m t dene an ΩBAs-algebra structure on the Morse cochains.

2.4.2. Twisted n -ΩBAs-morphisms between the Morse cochains. Let X f and X g be admissible choices of perturbation data for the Morse functions f and g. Denote (C * (f ), m X f t ) and (C * (g), m X g t )

the Morse cochains endowed with their ΩBAs-algebra structures. Given an admissible n-simplex of perturbation data (Y I,m ) m 1 I⊂∆ n , we now construct a twisted n -ΩBAs-morphism

µ I,tg : (C * (f ), ∂ T w M orse , ∂ M orse ) -→ (C * (g), ∂ T w M orse , ∂ M orse ) , I ⊂ ∆ n , t g ∈ SCRT ,
which completes the proof of Theorem 6.

The moduli space CT Y I,tg I,tg (y; x 1 , . . . , x m ) is dened as the inverse image of the diagonal ∆ ⊂ M ×m+1 under the map

φ Y I,tg : I × CT m (t g ) × W S (y) × W U (x 1 ) × • • • × W U (x m ) -→ M ×m+1 .
Orienting the domain and codomain of φ Y I,tg with the product orientation, and orienting the diagonal ∆ ⊂ M ×m+1 as M , denes a natural orientation on CT I,tg (y; x 1 , . . . , x m ) as explained in subsection 2.2.2. Proposition 16. If the moduli space CT I,tg (y; x 1 , . . . , x m ) is 1-dimensional, its boundary decomposes as the disjoint union of the following components

(i) (-1) |y|+|I|+ † ΩBAs +|t 2 | i 1 i=1 |x i | CT I,t 1 g (y; x 1 , . . . , x i 1 , z, x i 1 +i 2 +1 , . . . , x m )× T t 2 (z; x i 1 +1 , . . . , x i 1 +i 2 );
(ii) (-1) |y|+|I|+ † ΩBAs + † Koszul T t 0 (y; y 1 , . . . , y s ) × CT I 1 ,t 1 g (y 1 ; x 1 , . . . ) × • • • × CT Is,t s g (y s ; . . . , x m ) ; (iii) (-1) |y|+|I|+ † ΩBAs CT I,t g (y; x 1 , . . . , x m ) for t g ∈ coll(t) ; (iv) (-1) |y|+|I|+ † ΩBAs CT I,t g (y; x 1 , . . . , x m ) for t g ∈ g -vert(t) ; (v) (-1) |y|+ † Koszul +(m+1)|x i | CT I,tg (y; x 1 , . . . , z, . . . , x m ) × T (z; x i ) where we have set

† Koszul = |I| + |t g | + i-1 j=1 |x j | ; (vi) (-1) |y|+1 T (y; z) × CT I,tg (z; x 1 , . . . , x m ) ; (vii) (-1) |y|+l CT ∂ sing l I,tg (y; x 1 , . . . , x m ).

Dene the operations µ

I,tg : C * (f ) ⊗m → C * (g) as µ I,tg (x 1 , . . . , x m ) = |y|= m i=1 |x i |+|t I,g | # CT Y I,tg (y; x 1 , . . . , x m ) • y .
Counting the points in the boundary of the oriented 1-dimensional manifolds CT I,tg (y; x 1 , . . . , x m ) nally proves that : Theorem 6. The operations µ I,tg dene a twisted n -ΩBAs-morphism between the Morse cochains

(C * (f ), ∂ T w M orse , ∂ M orse ) and (C * (g), ∂ T w M orse , ∂ M orse ).
We send the reader back to [Maz21] for the complete check of signs in the case of the operations m t , which easily transports to the case of the operations µ I,tg . Again, either working with coecients in Z/2, or with coecients in Z and an odd-dimensional manifold M , the operations µ I,tg t into a standard n -ΩBAs-morphism between ΩBAs-algebras.

Towards the problem of the composition

At the end of [Maz21] we stated two main questions. The rst was the motivational question solved in this article and the second one came as follows : Problem 2. Given three Morse functions f 0 , f 1 , f 2 , choices of perturbation data X i , and choices of perturbation data Y ij dening morphisms

µ Y 01 : (C * (f 0 ), m X 0 t ) -→ (C * (f 1 ), m X 1 t ) , µ Y 12 : (C * (f 1 ), m X 1 t ) -→ (C * (f 2 ), m X 2 t ) , µ Y 02 : (C * (f 0 ), m X 0 t ) -→ (C * (f 2 ), m X 2 t ) ,
can we construct an ΩBAs-homotopy such that µ Y 12 • µ Y 01 µ Y 02 through this homotopy ? That is, can the following cone be lled in the ΩBAs realm

C * (f 0 ) C * (f 1 ) C * (f 2 ) µ Y 02 µ Y 01 µ Y 12 ?
The author plans to prove in an upcoming article that the answer to this question is positive. This simple problem will in fact again generalize to a wider range of constructions in Morse theory, involving the n-morphisms introduced in this article as well as some new interesting combinatorics.

Troisième partie

Further developments

Chapitre 1

Higher algebra from multi-gauged trees and quilted curves

Moduli spaces of bigauged metric trees

At the end of [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory I[END_REF], we stated two main questions. The first question was the starting point of [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF]. The second one was formulated as follows. Given three Morse functions f 0 , f 1 , f 2 , choices of perturbation data X i , and choices of perturbation data Y ij defining morphisms

µ Y 01 : (C * (f 0 ), m X 0 t ) -→ (C * (f 1 ), m X 1 t ) , µ Y 12 : (C * (f 1 ), m X 1 t ) -→ (C * (f 2 ), m X 2 t ) , µ Y 02 : (C * (f 0 ), m X 0 t ) -→ (C * (f 2 ), m X 2 t ) , can we construct an ΩBAs-homotopy such that µ Y 02 ≃ µ Y 12 • µ Y 01 ?
More generally, which higher operadic algebra naturally arises in this context ? 1.1. Composing ΩBAs-morphisms. While we have introduced a satisfactory notion of a ΩBAs-homotopy between ΩBAs-morphisms, we have yet to define how to compose two ΩBAsmorphisms. Using the bar construction viewpoint in the A ∞ context, the composition of two A ∞ -morphisms F : T (sA) → T (sB) and G : T (sB) → T (sC) is defined as the standard composition of morphisms of dg-coalgebras G • F . This reads on the level of operations as

(G • F ) n := i 1 +•••+is=n ±g s (f i 1 ⊗ • • • ⊗ f is ) .
This composition can be defined on the operadic level as a morphism of (

A ∞ , A ∞ )-operadic bimodules A ∞ -Morph -→ A ∞ -Morph • A∞ A ∞ -Morph .
Starting from this formula, it is clear how to define the unsigned composition of ΩBAsmorphisms. Given two ΩBAs-morphisms {f tg : A ⊗m → B} and {g tg : B ⊗m → C} between ΩBAs-algebras A, B and C, we define their composition g • f as

(g • f ) tg := g t ′ g (f t 1 g ⊗ • • • ⊗ f t s g ) ,
where the sum runs over gauged trees t ′ g ∈ sCRT s and t r g ∈ sCRT ir such that (i) the gauged tree obtained by grafting each underlying ribbon tree t r of t r g to the r-th incoming edge of t ′ g is equal to t g , i.e. t ′ g #(t 1 , . . . , t s ) = t g , (ii) and the gauge of the gauged tree t r g does not intersect the vertices of t r for r = 1, . . . , s. It can be checked that this formula indeed defines a morphism satisfying the ΩBAs-equations, and that the composition defined in this way is moreover associative. For instance,

(g • f ) = g f + g f + g (f ⊗ f ) .
The morphism of (ΩBAs, ΩBAs)-operadic bimodules induced by this unsigned composition

• : ΩBAs -Morph -→ ΩBAs -Morph • ΩBAs ΩBAs -Morph then fits into a commutative diagram of morphisms of (A ∞ , A ∞ )-operadic bimodules A ∞ -Morph A ∞ -Morph • A∞ A ∞ -Morph ΩBAs -Morph ΩBAs -Morph • ΩBAs ΩBAs -Morph .
More concretely, consider f and g two ΩBAs-morphisms and compose them to form a new ΩBAs-morphism g • f . Write f , g and g • f for the induced A ∞ -morphisms. Then g

• f = g • f ,
where the • on the left-hand side denotes the composition of A ∞ -morphisms.

Hence the difficulty in defining the composition of ΩBAs-morphisms does not lie in working out the trees combinatorics, but in working out the proper signs for these combinatorics. Indeed notice that the operad ΩBAs and the operadic bimodule ΩBAs -Morph in dg -Vect have been defined using the moduli spaces T m (t) and CT m (t g ), but not using an intrinsic algebraic formalism as in the A ∞ context. We do not know yet how to solve this difficulty and will thereby work over Z/2Z in the rest of this subsection.

We also point out that the composition of ΩBAs-morphisms could have been defined by replacing conditions (i) and (ii) by (i ') the gauged tree obtained by grafting each gauged tree t r g to the r-th incoming edge of the underlying ribbon tree t ′ of t ′ g is equal to t g , i.e. t ′ #(t 1 g , . . . , t s g ) = t g , (ii ') and the gauge of the gauged tree t ′ g does not intersect the vertices of t ′ . The composition • ′ for ΩBAs-morphisms would then still be associative and compatible with the composition of A ∞ -morphisms. We expect in fact that the composition morphisms • and • ′ could be proven to be homotopy equivalent in some sense. We will work in the rest of this chapter with the composition •.

1.2. Moduli spaces of bigauged metric trees. The naive intuition to construct a homotopy between the ΩBAs-morphisms µ Y 02 and µ Y 12 • µ Y 01 would be to introduce moduli spaces of bigauged stable metric ribbon trees and realize them in Morse theory as moduli spaces of bigauged perturbed Morse gradient trees. Define a bigauged stable metric ribbon tree to be a stable metric ribbon tree together with two lengths λ 1 and λ 2 in R, such that λ 2 < λ 1 . We think of these lengths as gauges drawn over the metric tree, at distance λ i from its root, where the positive direction is pointing down. The two gauges moreover divide the tree into three parts, each of which we imagine being painted in a different color. Two instances of bigauged stable metric ribbon trees are represented in figure 1. We will refer to the gauge associated to the length λ i as the i-th gauge. We moreover define the inter-gauge gap as δ := λ 1λ 2 ∈]0, +∞[. We finally point out that, as for metric trees with a single gauge, there is a definition of bigauged metric trees as three-colored metric trees, which we will not write down.

For m ⩾ 1, denote 2GT m the moduli space of bigauged stable metric ribbon trees. This space is homeomorphic to R m : the moduli space of stable metric ribbon trees T m is homeomorphic to R m-2 and the datum of the two gauges adds the factor {(λ 1 , λ 2 ) , λ 2 < λ 1 } ⊂ R 2 . This moduli space admits moreover a cell decomposition by bigauged stable ribbon tree type, that we will not describe for the sake of concision. We set in the rest of this section GT m := CT m for the moduli spaces of metric gauged ribbon trees, in order to be consistent with the notation 2GT m . The moduli space 2GT m comes with a natural compactification 2GT m defined by allowing length of internal edges towards +∞ and taking the two gauges into account in the process. We describe the phenomena producing the codimension 1 boundary strata of 2GT m : (i) the two gauges meet to produce a single-gauged metric tree. The corresponding boundary stratum is canonically identified with GT m ;

(ii) an internal edge located above the second gauge or intersecting it breaks or, when the two gauges are below the root, the outgoing edge breaks between the second gauge and the root. The corresponding boundary stratum is canonically identified with

2GT i 1 +1+i 3 × T i 2 ,
where i 1 + i 2 + i 3 = m ;

(iii) edges (internal or incoming) that are located below the first gauge and possibly intersecting it, break below it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root, and such that the inter-gauge gaps of bigauged stable ribbon trees obtained in this way are equal. The corresponding boundary stratum can be described as a fiber product

T s × 2GT i 1 × ]0,+∞[ • • • × ]0,+∞[ 2GT is ,
where i 1 + • • • + i s = m and the fiber product is taken over the inter-gauge gap maps δ r : 2GT ir →]0, +∞[ ;

(iv) edges (internal or incoming) that are located between the two gauges and possibly intersecting them, break between the two gauges, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root. This boundary stratum can be described as

GT s × GT i 1 × • • • × GT is , where i 1 + • • • + i s = m. (i) (ii) (iii) δ1 = δ2 δ1 δ2 (iv) 
Figure 2 -Examples of configurations of metric trees in the codimension 1 boundary of 2GT 4 . We only represent the inter-gauge gaps in (iii), in order to illustrate the fiber product description of this boundary stratum.

Examples of elements lying in these boundary strata are depicted in figure 2, following the previous labeling. Considering the compactification of a cell 2GT m (t g 1 ,g 2 ) ⊂ 2GT m inside 2GT m , where t g 1 ,g 2 is a bigauged stable ribbon tree type, would simply add boundary strata of type (gauge-vertex) and (int-collapse). We refer to subsection 3.2.4 in part 1 of [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory I[END_REF] for a description of these two boundary strata.

We return now to the question formulated at the beginning of this section. We would like to construct an ΩBAs-homotopy between the ΩBAs-morphisms µ Y 02 and µ Y 12 • µ Y 01 by counting the points of 0-dimensional moduli spaces of bigauged perturbed Morse gradient trees 2GT tg 1 ,g 2 (y; x 1 , . . . , x m ) .

To prove that the operations associated to these counts define an ΩBAs-homotopy, we have to inspect the boundary of the 1-dimensional compactified moduli spaces 2GT tg 1 ,g 2 (y; x 1 , . . . , x m ). A boundary will again decompose as the disjoint union of the (Morse) boundary components and the (2GT m ) boundary components. This is where we encounter a serious obstacle.

Indeed, until now we had described moduli spaces of metric trees encoding universally the algebraic structures we were interested in. Said differently, we described moduli spaces whose images under the functor C cell - * model these algebraic structure. This is not the case for the compactification of 2GT m . The first reason is that in general fiber products do not behave well under the functor C cell - * . The second reason is that, in order for the moduli spaces 2GT tg 1 ,g 2 (y; x 1 , . . . , x m ) to encode a homotopy between µ Y 02 and µ Y 12 • µ Y 01 , we would need the boundary strata

T s × 2GT i 1 × ]0,+∞[ • • • × ]0,+∞[ 2GT is
to be replaced by the boundary strata

T s+1+t × GT i1 × • • • × GT is × 2GT l × (GT j1 × (GT m 1 1 × • • • × GT m 1 j 1 )) × • • • × (GT jt × (GT m t 1 × • • • × GT m t j t
)) , where l +

s r=1 i r + t r=1 jr i=1 m r i .
We would then recover the following term in the ΩBAs-equations

i 1 +•••+is+l +k 1 +•••+kt=m s+1+t⩾2 ±m s+1+t µ Y 02 i 1 ⊗ • • • ⊗ µ Y 02 is ⊗ h l ⊗ (µ Y 12 • µ Y 01 ) k 1 ⊗ • • • ⊗ (µ Y 12 • µ Y 01 ) kt ,
which we have written here in the A ∞ -context for the sake of readability.

As a result, we can state that the moduli spaces 2GT m cannot universally encode ΩBAshomotopies between an indivisible ΩBAs-morphism and the composite of two ΩBAs-morphisms (we should in fact write A ∞ instead of ΩBAs here, as we do not consider the cells 2GT m (t g 1 ,g 2 ) but the full moduli space 2GT m ). So in order to produce out of the moduli spaces 2GT tg 1 ,g 2 (y; x 1 , . . . , x m ) a homotopy between µ Y 02 and µ Y 12 • µ Y 01 , we have to come up with an argument living directly at the level of Morse theory. A solution to this problem will be explained at the end of subsection 2.2.

Higher algebra from moduli spaces of quilted disks

As a matter of fact, Mau, Wehrheim and Woodward encounter in [MWW18] the exact same type of problem formulated at the end of subsection 1.2, when studying geometric A ∞functors between Fukaya categories. The goal of this section is to provide an exposition to the moduli spaces and algebraic structures appearing in their article. We describe in subsection 2.1 the moduli spaces of quilted disks involved in the definition of geometric A ∞ -functors between Fukaya categories, and explain in subsection 2.2 how Mau, Wehrheim and Woodward solve the problem of the comparison between algebraic and geometric composition in that framework. We expect that their method should in particular be applicable to a Morse theoretic setup and solve the motivational question to section 1. We then explain their construction of a categorification A ∞ -functor Fuk(M - 0 × M 1 ) → Func (Fuk(M 0 ), Fuk(M 1 )) in [MWW18] and of a 2-functor Floer → Cat in [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF], where Floer denotes the 2-category whose objects are closed monotone symplectic manifolds and whose categories of morphisms are the Donaldson categories Don(M - 0 × M 1 ). We moreover point out that their constructions take place in the context of quilted Floer cohomology, as explained in subsection 2.5.

2.1.

A ∞ -functors associated to Lagrangian correspondences. Consider a closed monotone symplectic manifold (M, ω). The Fukaya category Fuk(M, ω) is an A ∞ -category which is defined as follows. The objects of Fuk(M ) are the closed monotone and graded Lagrangians L ⊂ M . The space of morphisms from a Lagrangian L 0 to a Lagrangian L 1 is the Z-module CF * (L 0 , L 1 ) freely generated by the points of L 0 ∩ L 1 and graded using the Maslov index. For

x 1 ∈ L 0 ∩ L 1 , . . . , x n ∈ L n-1 ∩ L n and y ∈ L 0 ∩ L n ,
introduce the moduli space of pseudoholomorphic disks with Lagrangian boundary conditions on the L i , n + 1 marked boundary points that are clockwise sent to the x i and y, and that solve a Cauchy-Riemann equation with suitable Hamiltonian perturbation, as depicted in figure 3. We denote it as D n,1 (y; x 1 , . . . , x n ) , where the n, 1 simply means that we see the pseudo-holomorphic disks with n entries x 1 , . . . , x n and one exit y. The higher compositions of Fuk(M, ω) are then defined by counting the points of the 0-dimensional moduli spaces D n,1 (y; x 1 , . . . , x n ).

We are well-aware that the assumptions made in the previous paragraph are insufficient to rigorously define the Fukaya category of a symplectic manifold. However, as our main goal is to put the emphasis on the algebraic constructions arising from Fukaya categories, we will keep the same level of details in the rest of this chapter in order not to obscure our algebraic statements. We refer for instance to [Aur14] and [Sei08] for more details on the technicalities necessary to define a Fukaya category. One would now like to construct geometric A ∞ -functors between two Fukaya categories Fuk(M 0 ) and Fuk(M 1 ). Following Weinstein [START_REF] Weinstein | Symplectic geometry[END_REF], a Lagrangian L 01 ⊂ M - 0 × M 1 can be interpreted as a morphism from M 0 to M 1 , where M - 0 × M 1 denotes the symplectic manifold (M 0 × M 1 , -ω 0 ⊕ ω 1 ). These Lagrangians will be called Lagrangian correspondences from M 0 to M 1 . Lagrangian correspondences generalize the notion of symplectomorphism, as every symplectomorphism ψ : M 0 → M 1 defines a Lagrangian correspondence {(x, ψ(x)), x ∈ M 0 } ⊂ M - 0 ×M 1 . Following this idea, Mau, Wehrheim and Woodward associate to a Lagrangian correspondence L 01 ⊂ M - 0 × M 1 an A ∞ -functor ϕ L 01 : Fuk(M 0 ) → Fuk(M 1 ) in [MWW18]. Their construction goes as follows.

We define a quilted disk with n + 1 marked boundary points to be the data of a disk D ⊂ C, distinct points z 0 , z 1 , . . . , z n ordered clockwise on ∂D, and a circle C ⊂ D such that 0 < radius(C) < radius(D), and which is tangent to z 0 . The circle C is called the seam of the quilt, and divides the interior of D into two components, called the patches. An example of a quilted disk with four marked boundary points is depicted in figure 4. Mau and Woodward provide an extensive study of the moduli spaces of quilted disks in [MW10] and show in particular that the moduli spaces QD n,1 provide another realization of the multiplihedra in the realm of geometry. where π M 1 denotes the projection M 0 × M - 0 × M 1 → M 1 and × M 0 is the fiber product over M 0 . See subsection 2.5 for more details on the definition of ϕ L 01 (L 0 ). Let L 0 , . . . , L n be Lagrangian submanifolds of M 0 . For x 1 ∈ L 0 ∩L 1 , . . . , x n ∈ L n-1 ∩L n and y ∈ ϕ L 01 (L 0 )∩ϕ L 01 (L n ), introduce the moduli space of pseudo-holomorphic quilted disks with Lagrangian boundary conditions on the L i , seam condition on L 01 and n + 1 marked boundary points that are clockwise sent to the x i and y, as depicted in figure 4. The labelings M 0 and M 1 mean that each patch comes with a map u i from this patch to M i , while the seam condition means that the map (u 0 , u 1 ) which is defined on the seam takes its values in L 01 . We denote this moduli space as

z 3 z 2 z 1 z 0 C x n x n-1 x 1 x 2 y L n-1 L 1 L 0 L n M 0 M 1 L 01
QD L 01
n,1 (y; x 1 , . . . , x n ) .

The operations of the A ∞ -functor ϕ L 01 : Fuk(M 0 ) -→ Fuk(M 1 ) can then finally be defined by counting pseudo-holomorphic quilted disks of this form.

2.2. Algebraic composition versus geometric composition. We now consider three monotone symplectic manifolds (M 0 , ω 0 ), (M 1 , ω 1 ) and (M 2 , ω 2 ) and two Lagrangian correspondences L 01 ⊂ M - 0 × M 1 and L 12 ⊂ M - 1 × M 2 . They can be composed into a third Lagrangian correspondence L 01 • L 12 ⊂ M - 0 × M 2 , by defining L 01 • L 12 := π M 0 ×M 2 (L 01 × M 1 L 12 ). We assume from now on that this Lagrangian correspondence is smooth and embedded in M 0 × M 2 . Consider the three A ∞ -functors ϕ L 01 , ϕ L 12 and ϕ L 01 •L 12 . The first main result of [MWW18] is the construction of an A ∞ -homotopy between the two A ∞ -functors

ϕ L 01 •L 12 ≃ ϕ L 12 • ϕ L 01 .
The natural approach they follow is to introduce moduli spaces of biquilted disks and their pseudo-holomorphic counterparts.

We define a biquilted disk with n + 1 marked boundary points to be the data of a disk D ⊂ C, distinct points z 0 , z 1 , . . . , z n ordered clockwise on ∂D, and two circles C 1 , C 2 ⊂ D such that 0 < radius(C 1 ) < radius(C 2 ) < radius(D), and which are tangent to z 0 . The circle C i is called the i-th seam of the quilt, and the two seams divide the interior of D into three patches. We moreover define the radii ratio as ρ := radius(C 2 )/radius(C 1 ) -1 : it lies in ]0, +∞[. An instance of a biquilted disk with four marked boundary points is illustrated in figure 5.

z 3 z 2 z 1 z 0 C 1 C 2 x n x n-1 x 1 x 2 y L n-1 L 1 L 0 L n M 0 M 1 L 01 M 2 L 12
Figure 5 -On the left, a biquilted disk in 2QD 3,1 . On the right, a pseudoholomorphic biquilted disk with Lagrangian boundary conditions on the L i , seam conditions on L 01 and L 12 , and n + 1 marked boundary points

For n ⩾ 1, denote 2QD n,1 the moduli space of biquilted disks with n + 1 marked points on their boundary. These moduli spaces can be topologized and compactified in such a way that the codimension 1 boundary of 2QD n,1 reads exactly as the one of 2GT n . As a result, the same problem formulated at the end of section 1.2 arises from the boundary strata

D s,1 × 2QD i 1 ,1 × ]0,+∞[ • • • × ]0,+∞[ 2QD is,1 ,
where the fiber product is defined over the radii ratio maps ρ r : 2QD ir →]0, +∞[. Let L 0 , . . . , L n be Lagrangian submanifolds of M 0 . For x 1 ∈ L 0 ∩ L 1 , . . . , x n ∈ L n-1 ∩ L n and y ∈ ϕ L 01 •L 12 (L 0 ) ∩ ϕ L 01 •L 12 (L n ), define 2QD L 01 ,L 12 n,1 (y; x 1 , . . . , x n ) to be the moduli space of pseudo-holomorphic biquilted disks with Lagrangian boundary conditions on the L i , seam conditions on L 01 and L 12 , and n + 1 marked boundary points that are clockwise sent to the x i and y, as represented in figure 5.

As explained in subsection 1.2, we cannot naively count the points of these 0-dimensional moduli spaces in order to produce an A ∞ -homotopy ϕ L 01 •L 12 ≃ ϕ L 12 • ϕ L 01 . We have to come up with an argument living directly at the level of the pseudo-holomorphic biquilted disks. Mau, Wehrheim and Woodward show that, under some generic assumptions, the moduli spaces 2QD n,1 (y; x 1 , . . . , x n ) can be used to produce a sequence of A ∞ -functors F i and A ∞ -homotopies H i,i+1 between them,

ϕ L 01 •L 12 = F 0 F 1 • • • F n = ϕ L 12 • ϕ L 01 H 0,1 H 1,2 H n-1,n
.

Composing these A ∞ -homotopies finally produces an A ∞ -homotopy

ϕ L 01 •L 12 ≃ ϕ L 12 • ϕ L 01 .
As a matter of fact, the previous sequence of A ∞ -homotopies is not finite in general, but the A ∞ -homotopy can nevertheless always be defined using an inductive limit argument.

The details of their proof go beyond the scope of this section. We only warn the reader that their construction does not consist in transforming the boundary strata of the moduli spaces of pseudo-holomorphic biquilted disks

D s,1 × 2QD i 1 ,1 × ]0,+∞[ • • • × ]0,+∞[ 2QD is,1 into strata D s+1+t × QD i1 × • • • × QD is × 2QD l × (QD j1 × (QD m 1 1 × • • • × QD m 1 j 1 )) × • • • × (QD jt × (QD m t 1 × • • • × QD m t j t
)) ,

where we omit to write the (y; x 1 , . . . , x n ) and replace the notation D s+1+t,1 by D s+1+t in the second formula for the sake of readability. The proof comes however with a detailed analysis of these fiber products, in order to produce the sequence of A ∞ -functors and A ∞ -homotopies. We also mention that their proof crucially depends on an adiabatic limit type argument relying on strip-shrinking analysis, and which is explained in [START_REF] Wehrheim | Floer cohomology and geometric composition of Lagrangian correspondences[END_REF].

We expect that the proof of [MWW18] should apply to the Morse-theoretic setup described in section 1. Couting the points of 0-dimensional moduli spaces of perturbed Morse bigauged trees should exhibit a ΩBAs-homotopy µ Y 02 ≃ µ Y 12 • µ Y 01 . The proof of this statement would in fact again involve working out the tree combinatorics arising from the decomposition of the moduli spaces 2GT m by bigauged ribbon tree types.

2.3. The categorification A ∞ -functor. The second main result of [MWW18] is the construction of an A ∞ -functor (⋆) Fuk(M - 0 × M 1 ) -→ Func (Fuk(M 0 ), Fuk(M 1 )) where M 0 and M 1 are two closed monotone symplectic manifolds, and Func (Fuk(M 0 ), Fuk(M 1 )) denotes the A ∞ -category whose objects are A ∞ -functors from Fuk(M 0 ) to Fuk(M 1 ) and morphisms are pre-natural transformations from Fuk(M 0 ) to Fuk(M 1 ). We describe this A ∞ -category thorougly in subsection 3.2 of part 2 in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF], drawing from [Sei08]. The A ∞ -functor (⋆) is referred to as a categorification A ∞ -functor in [MWW18] and [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF].

The categorification A ∞ -functor is constructed as follows. It is defined on objects as L → ϕ L , where ϕ L is the A ∞ -functor Fuk(M 0 ) → Fuk(M 1 ) constructed in subsection 2.1. Let L 0 , . . . , L m be Lagrangian correspondences in M - 0 × M 1 and L 0 , . . . , L n be Lagrangian submanifolds of M 0 . Let x 1 ∈ L 0 ∩ L 1 , . . . , x n ∈ L n-1 ∩ L n , y 1 ∈ L 0 ∩ L 1 , . . . , y m ∈ L m-1 ∩ L m and z ∈ ϕ L 0 (L 0 ) ∩ ϕ Lm (L n ). Introduce the moduli space of pseudo-holomorphic quilted disks with Lagrangian boundary conditions on the L i and n + 1 marked boundary points that are clockwise sent to the x i and z, and seam conditions on the L j with m marked seam points that are clockwise sent to the y j . An example of such a quilted disk is depicted in figure 6. We denote these moduli spaces as QD n,m,1 (z; y 1 , . . . , y m ; x 1 , . . . , x n ) .

The operations of the categorification A ∞ -functor are then defined by counting pseudo-holomorphic quilted disks of the previous form : a sequence of intersection points y 1 ∈ L 0 ∩ L 1 , . . . , y m ∈ L m-1 ∩ L m is sent to the pre-natural transformation whose n-ary operations are defined as

CF * (L 0 , L 1 ) ⊗ • • • ⊗ CF * (L n-1 , L n ) -→ CF * (ϕ L 0 (L 0 ), ϕ Lm (L n ))
x 1 ⊗ • • • ⊗ x n -→ #QD n,m,1 (z; y 1 , . . . , y m ; x 1 , . . . , x n ) • z .

We point out that there are four type of moduli spaces arising in the construction of the categorification A ∞ -functor :

(i) The moduli spaces of disks with marked boundary points, encoding the operations of the A ∞ -categories Fuk(M 0 ) and Fuk(M 1 ).

(ii) The moduli spaces of quilted spheres with marked seam points, encoding the operations of the A ∞ -category Fuk(M - 0 × M 1 ). The crucial point here is that quilted spheres with two patches can be identified with disks mapping to the product, and that the moduli spaces of quilted spheres with marked seam points realize the associahedra.

(iii) The moduli spaces of quilted disks with marked boundary points, encoding the operations of the A ∞ -functors ϕ L : Fuk(M 0 ) → Fuk(M 1 ).

(iv) The moduli spaces of quilted disks with marked seam points and marked boundary points, encoding the operations of the categorification A ∞ -functor itself.

A careful analysis of the boundary of the compactification of the 1-dimensional moduli spaces QD n,m,1 (z; y 1 , . . . , y n ; x 1 , . . . , x m ) then shows that it features combinations of these four moduli spaces of pseudo-holomorphic curves and that it is exactly modeled on the A ∞ -equations that the categorification A ∞ -functor has to satisfy. In other words, a 2-category is simply a category enriched in categories. The objects of C(X, Y ) are called the 1-morphisms of C and their morphisms its 2-morphisms. The category Cat of categories together with functors as 1-morphisms and natural transformations as 2-morphisms defines in particular a 2-category. We moreover define a 2-functor F : C → D between 2-categories to be a functor between categories enriched in categories, i.e. the data of a map F : Ob(C) → Ob(D) and of functors C(X, Y ) → D(F(X), F(Y )) respecting the composition and the identities.

In [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF], Wehrheim and Woodward define a Weinstein-Floer 2-category Floer whose objects are (closed monotone) symplectic manifolds as follows. For M 0 and M 1 two symplectic manifolds, we define 2.5. Quilted Floer cohomology and technical assumptions. This section was written without any technical assumptions, as our main focus was to give an overview of the algebraic constructions in [MWW18] and [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF] without dwelling into technical details. We refer the reader interested in the exact technical assumptions on the symplectic manifolds and their Lagrangians to these two papers.

There is however an important part of these constructions that we have eluded until now. They do not take place in the framework of ordinary Lagrangian Floer cohomology, but of quilted Floer cohomology. To put it shortly, the A ∞ -categories Fuk(M -×N ) have to be replaced by A ∞categories Fuk # (M, N ) which are defined as follows. Their objects are generalized Lagrangian correspondences, which are defined as sequences of Lagrangian correspondences

L : M = M 0 -→ L 01 M 1 -→ L 12 • • • -→ L n-1,n M n = N
where an arrow L i,i+1 : M i → M i+1 denotes a Lagrangian correspondence L i,i+1 ⊂ M - i × M i+1 . Their morphism spaces CF * (L, L ′ ) are then defined in a similar way to Lagrangian Floer cohomology, replacing pseudo-holomorphic strips by pseudo-holomorphic quilted strips with seam conditions on the Lagrangian correspondences of L and L ′ . We refer to [START_REF] Wehrheim | Quilted Floer cohomology[END_REF] for more details on the definition of the quilted Floer cohomology groups. In the same fashion, the moduli This A ∞ -functor is the categorification A ∞ -functor of [MWW18], as moduli spaces of pseudoholomorphic quilts with marked seam points whose left patch is sent to a point correspond exactly to moduli spaces of quilted disks with marked boundary and seam points. Bottman suggests that the higher operations of Symp should then be encoded by generalizing the pseudo-holomorphic quilts of the previous subsection and allowing for more than three patches (and still requiring that the seams all intersect at a single common point). He calls these moduli spaces the moduli spaces of witch curves and denotes them 2M n n n . They are studied in [Bot19b]. The stratification of the compactified moduli spaces of witch curves 2M n n n can in fact be described by a family of abstract polytopes, called the 2-associahedra and studied in [Bot19a]. The moduli spaces of witch curves with more than four patches feature unfortunately yet again fiber products in their boundary, hence do not naturally encode a dg-operadic object. In [BC21], Bottman and Carmeli however bypass this issue by defining a relative 2-operad structure on the moduli spaces of witch curves. More precisely, they prove that the 2-associahedra 2M n n n form a 2-operad in topological spaces relative to the associahedra M r . Using this formalism, they then manage to provide an explicit definition of an (A ∞ , 2)-category on the dg-level, using the notion of a linear category over a relative 2-operad in topological spaces. Beware however that the relative 2-operad in topological spaces (2M n n n , M r ) still does not yield a relative 2-operad in dg-modules under the image of the cellular chains functor. In other words, the relative 2-operadic viewpoint does not yield a dg-model for the 2-associahedra.

3.3. Conjectures on the 2-associahedra and the n-multiplihedra. We have seen in subsection 2.2 that the moduli spaces of biquilted disks 2QD m,1 with m+1 marked points on their boundary can be represented in Floer theory to define an A ∞ -homotopy between algebraic and geometric composition of A ∞ -functors associated to Lagrangian correspondences. The moduli space of biquilted disks 2QD m,1 is in fact isomorphic to ]0, +∞[×QD m,1 where the ]0, +∞[ factor corresponds to the radii ratio value. The compactified moduli space of biquilted disks 2QD m,1 then fibers over [0, +∞] and its fibers can be described as follows :

(i) The fiber over any δ ∈ [0, +∞[ corresponds to a copy of the multiplihedron J m , where the two-colored corollae labeling the top dimensional stratum of J m can be seen as labeled by a biquilted disk with fixed radii ratio δ.

(ii) The fiber over +∞ corresponds to a CW-complex whose top dimensional strata can be consistently labeled by all three-colored trees arising in the definition of the composition of two A ∞ -morphisms.

We conjecture in fact that (i) There exists a refined polytopal decomposition of J m which can be consistently labeled by all three-colored trees arising in the definition of the composition of two A ∞morphisms. This decomposition is illustrated in the case of J 3 in figure 9 and will be called the • A∞ -polytopal decomposition of J m .

(ii) The compactified moduli space 2QD m,1 is then isomorphic as a CW-complex to the polytope [0, 1] × J m , whose face {1} × J m is endowed with its • A∞ -polytopal decomposition.

Figure 9 -The • A∞ -polytopal decomposition on J 3 on the left, and the polytopal decomposition on [0, 1] × J 3 refining the 1-multiplihedron and the • A∞ polytopal decompositions on the right

The 1-multiplihedra 1 -J m that we defined in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF] and which encode A ∞ -homotopies between A ∞ -morphisms, were in fact also defined by refining the polytopal decomposition on [0, 1] × J m . We suspect in fact that there should exist a polytopal decomposition on [0, 1] × J m that refines simultaneously its 1-multiplihedron and its • A∞ -decompositions. This decomposition is represented on figure 9 in the case of [0, 1] × J 3 . It would then be interesting to know whether one could endow the moduli spaces 2QD m,1 with a refined compactification rule, such that their boundary reads exactly as the boundary of this newly defined refined polytopal decomposition of [0, 1] × J m . More generally, moduli spaces of n-quilted disks nQD m with marked boundary points could be expected to produce (n-1)-morphisms between Fukaya categories. A first step in that direction would be to understand how exactly they are linked to the n-multiplihedra n -J m that we introduced in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF]. We think for instance that moduli spaces of 3-quilted disks with marked boundary points should give rise to the following diagram of A ∞ -functors, A ∞ -homotopies and 2 -A ∞ -functors between Fukaya categories defined by Lagrangian correspondences

ϕ L 23 • ϕ L 12 • ϕ L 01 ϕ L 12 •L 23 • ϕ L 01 ϕ L 23 • ϕ L 01 •L 12 ϕ L 01 •L 12 •L 23
.

The combinatorics of the moduli spaces of witch curves could then be expected to be governed at the same time by the combinatorics of higher functors between A ∞ -categories as defined in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF] and by the combinatorics of pre-natural transformations between A ∞ -categories, which would respectively arise from the number of seams of the quilted sphere and from the marked points on these seams.

4.2. Technical assumptions and relation to the work of Mau, Wehrheim and Woodward. The symplectic manifolds considered in [Fuk17] are only required to be closed, while they were also required to be monotone in [MWW18] and [START_REF] Wehrheim | Functoriality for Lagrangian correspondences in Floer theory[END_REF]. The Lagrangian submanifolds are moreover required to be immersed but not necessarily embedded. His results are thereby stated in a greater generality than those of [MWW18]. This however implies several adjustments in the definition of the Fukaya category Fuk(M ).

The objects of Fuk(M ) are this time Lagrangian submanifolds endowed with a bounding cochain. The datum of a bounding cochain is indeed necessary in order to define Lagrangian Floer cohomology groups without the monotonicity assumption. See [START_REF] Fukaya | Lagrangian intersection Floer theory[END_REF] and [START_REF] Akaho | Immersed Lagrangian Floer theory[END_REF] for instance. We point out that in general, bounding cochains do not exist for all Lagrangian submanifolds. Lagrangian submanifolds that admit bounding cochains are in particular said to be unobstructed. However, under the monotonicity assumptions of [MWW18], all Lagrangian submanifolds were unobstructed. The A ∞ -category Fuk(M ) of [Fuk17] is moreover a curved filtered unital A ∞ -category. Filtered refers to the fact that this A ∞ -category is defined over the Novikov ring Λ 0 , curved to the fact that it features nonzero arity 0 operations m L 0 ∈ CF * (L, L) for all Lagrangians and unital was defined in subsection 3.3. of part 2 in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF].

As Fukaya works with unobstructed Lagrangians, it is necessary to know whether unobstructedness is preserved under the constructions described in the previous subsection. The answer to this problem is positive and is in fact one of the main results of [Fuk17]. He proves that the composition L 01 • L 12 of two unobstructed immersed Lagrangian correspondences L 01 and L 12 remains unobstructed, and that if L ⊂ M 0 and L 01 ⊂ M - 0 × M 1 are unobstructed, then the immersed Lagrangian ϕ L 01 (L) is also unobstructed. We point out that he choses to work with immersed but not embedded Lagrangians, as the geometric composition of two generic embedded Lagrangians is immersed but not embedded in general. We finally mention that while the work of Mau, Wehrheim, Woodward and Bottman relies on the analysis of strip-shrinking and figure eight bubbling, the work of Fukaya is based on an argument of Lekili and Lipyanskiy in [START_REF] Lekili | Geometric composition in quilted Floer theory[END_REF] and on an extensive use of Yoneda functors and homological algebra in the A ∞ setting.

Chapitre 2

Tensor products of A ∞ -algebras and A ∞ -morphisms 1. Diagonals on the associahedra and the multiplihedra 1.1. Polytopal diagonals on the associahedra and the multiplihedra. We write A ∞alg for the category of A ∞ -algebras with A ∞ -morphisms between them. Given A and B two A ∞ -algebras, we would like to define an A ∞ -algebra structure on the tensor product A ⊗ B. The naive approach to define the A ∞ -operations on A⊗B would be to set m A⊗B n := (m A n ⊗m B n )•τ , where τ denotes the map rearranging an element of (A ⊗ B) ⊗n into an element of A ⊗n ⊗ B ⊗n . One can however check that these maps do not satisfy the A ∞ -equations and in fact do not even have the correct degree.

Define a diagonal on the operad A ∞ to be the datum of a morphism of operads A ∞ → A ∞ ⊗ A ∞ , where P ⊗ Q(n) := P (n) ⊗ Q(n) denotes the Hadamard product of two operads P and Q. Recall moreover that an A ∞ -algebra structure on A corresponds to a morphism of operads A ∞ → End A . Using this viewpoint and given a diagonal on the operad A ∞ , one can define an A ∞ -algebra structure on A ⊗ B as

A ∞ -→ A ∞ ⊗ A ∞ -→ End A ⊗ End B -→ End A⊗B ,
where it is straighforward to define the map of operads End A ⊗ End B → End A⊗B .

An explicit formula for a diagonal on the operad A ∞ was computed for the first time in [MS06]. Using the general theory of positively oriented polytopes and fiber polytopes, Masuda, Thomas, Tonks and Vallette then constructed in [MTTV21] a family of polytopal maps ∆ Kn : K n → K n × K n which fit into a morphism of operads in polytopes, and whose image under the cellular chains functor recovers exactly the diagonal A ∞ → A ∞ ⊗ A ∞ of [MS06]. The problem of the definition of a diagonal on the associahedra was also studied in [START_REF] Saneblidze | Diagonals on the permutahedra, multiplihedra and associahedra[END_REF] and [START_REF] Loday | The diagonal of the Stasheff polytope[END_REF].

For the sake of readibility, we set from now on M ∞ := A ∞ -Morph. In [LAM], Laplante-Anfossi and myself adapt the method of [MTTV21] in order to define a diagonal on the multiplihedra ∆ Jn : J n → J n × J n compatible with both the {K n }-operadic bimodule structure on the polytopes J n and the diagonal ∆ Kn constructed in [MTTV21]. The image of this polytopal diagonal under the cellular chains functors then yields on the dg-level a morphism of operadic bimodules M ∞ → M ∞ ⊗ M ∞ , which is compatible with the morphism of operads A ∞ → A ∞ ⊗ A ∞ and that we explictly compute. The datum of this diagonal on M ∞ finally allows us to define the tensor product of two A ∞ -morphisms F 1 : A 1 → B 1 and F 2 : A 2 → B 2 , that we denote

F 1 ⊗ ∞ F 2 : A 1 ⊗ ∞ B 1 → A 2 ⊗ ∞ B 2 ,
where A ⊗ ∞ B stands for the dg-module A ⊗ B endowed with the tensor A ∞ -algebra structure defined by the diagonal on A ∞ .

1.2. The homotopy monoidal category structure on A ∞alg ? We would now like to know if the tensor product ⊗ ∞ defined using the diagonal ∆ A∞ introduced in [MS06] and the diagonal ∆ M∞ that we construct in [LAM], endows the category A ∞alg with a symmetric monoidal category structure, where Z is taken to be the identity object. More precisely, we have to prove that there exist functorial isomorphisms α A,B,C : A ⊗ ∞ (B ⊗ ∞ C) → (A ⊗ ∞ B) ⊗ ∞ C and τ A,B : A ⊗ ∞ B → B ⊗ ∞ A that fit into the usual diagrams for a monoidal category, and that which is a homotopy equivalence to its image. This A ∞ -functor and the categorification A ∞functor then fit into a diagram (⋆)

Fuk(M 0 ) ⊗ Fuk(M 1 ) -→ Fuk(M - 0 × M 1 ) -→ Func(Fuk(M 0 ), Fuk(M 1 )) .

It would in fact be interesting to know when the A ∞ -functors in (⋆) become homotopy equivalences. Given A and B two A ∞ -categories, one could also ask whether there exists a purely algebraic A ∞ -functor A ⊗ B -→ Func(A, B) , such that the previous composition is homotopy equivalent to this A ∞ -functor when A := Fuk(M 0 ) and B := Fuk(M 1 ). A third question of interest could finally be to understand how the tensor product of A ∞ -functors could be realized in symplectic topology, using Lagrangian correspondences.

2.2. The work of Lipshitz, Oszváth and Thurston. In [LOT21], Lipshitz, Oszváth and Thurston also study diagonals on the operad A ∞ and on the operadic bimodule M ∞ . They however work exclusively on the dg-level, constructing abstract diagonals by using the fact that A ∞ and M ∞ are contractible. They show in particular that one can construct a trigonal M ∞ → M ⊗3 ∞ in order to produce a natural quasi-isomorphism

A 0 ⊗ ∞ (A 2 ⊗ ∞ A 3 ) ≃ (A 1 ⊗ ∞ A 2 ) ⊗ ∞ A 3 .
This provides an alternative construction for a quasi-isomorphism of this form, which has already been constructed in subsection 1.2 using the theory of Hopf operads and minimal models.

The goal of their work is to study bordered Heegaard Floer homology of 3-manifolds. Given a 3-manifold Y with two boundary components, they are working to construct a bimodule twisted complex CF DD -(Y ), also called a type DD-bimodule. The definition of such an object uses a diagonal on A ∞ . A diagonal on M ∞ is then needed in order to relate the categories of bimodules defined with different diagonals on A ∞ , which in turn is needed for properties like associativity of tensor products. The authors also expect that diagonals on M ∞ could be needed in a distant future to define A ∞ -morphisms between bimodule twisted complexes arising from a cobordism between two 3-manifolds Y 1 and Y 2 .

The previous paragraph is drawn from a private communication with Robert Lipshitz and remains very vague as their work on Heegaard Floer homology relying on [LOT21] is still in progress. We however insist that their construction differs greatly from the one explained in subsection 2.1. Amorim and Fukaya use a diagonal on A ∞ in order to respectively prove a Künneth theorem for Fukaya algebras and Fukaya categories, while Lipshitz, Oszváth and Thurston resort to diagonals on A ∞ and M ∞ in order to define and study the properties of the bimodule twisted complex CF DD -(Y ).

Chapitre 3

New algebraic structures on the symplectic and Rabinowitz-Floer chains

Let W be a Liouville domain, i.e. an exact symplectic manifold with convex boundary ∂W . There are several Floer-type (co)homologies associated to W . Among them are the Rabinowitz-Floer homology SH * (∂W ) and the symplectic homology SH * (W ) and cohomology SH * (W ). We refer to [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF] for their definition. Rabinowitz-Floer homology can in fact be computed as the homology of a cone, defined by a canonical up to homotopy chain map SC - * (W ) → SC * (W ) relating the chain complexes that respectively define symplectic cohomology SH - * (W ) and symplectic homology SH * (W ), as proven in [START_REF] Venkatesh | Rabinowitz Floer homology and mirror symmetry[END_REF] and [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF].

In [START_REF] Cieliebak | Poincaré duality for loop spaces[END_REF], [START_REF] Cieliebak | Multiplicative structures on cones and duality[END_REF] and [CHOb], it is proven that Rabinowitz-Floer homology SH * (∂W ) can be endowed with a biunital involutive coFrobenius bialgebra structure in the sense of [CHOa]. In this regard, Cieliebak and Oancea are brought to study the following algebraic question. Given two dg-modules A and M and a chain map c : M → A, what is the structure on the pair (M, A) that defines an A ∞ -algebra structure on Cone(c) ? More specifically, which structure to define on A in order to get an A ∞ -algebra structure on the cone associated to a pair of the form (A ∨ , A). The arity 2 case is studied in [CO20] but the higher arity cases are left unsolved. This problem is the starting point to a series of projects that we are currently working on and that we will describe in this section.

1. The V ∞ -algebra structure on the symplectic chains 1.1. V ∞ -algebras. Some preliminary (unsigned) computations that we performed suggest that the correct structure to consider on A in the previous problem would be that of a V ∞ -algebra as defined in [START_REF] Tradler | Algebraic string operations[END_REF]. From left to right, one operation with n inputs and 1 output and one operation in

A ⊗2 ⊗ (A ∨ ) ⊗2 ⊗ A ⊗ A ∨ ⊗ A ⊗ A ∨ .
Throughout this section we will consider operations with multiple inputs and outputs A ⊗m → A ⊗k . For the sake of readibility, we will write these operations as elements of

A ⊗ (A ∨ ) ⊗i 1 ⊗ • • • ⊗ A ⊗ (A ∨ ) ⊗i k ,
Poirier and Tradler construct more precisely in [PT18] a cell complex whose cells can be labeled by all directed planar trees. In particular, the codimension 1 strata of this cell complex encode exactly the V ∞ -equations. The choice of denomination assocoipahedra was inspired from the associahedra : while the former encodes a homotopy version of associ(ative) algebras, the latter encodes a homotopy version of asso(ciative algebras with) co-i(nner) p(roduct). Beware however that they do not construct a dioperad in Poly realizing the dioperad V ∞ as in [MTTV21]. They show moreover that the assocoipahedron whose inner cell is labeled by an operation m i 1 ,...,i k corresponds to the polytope K i 1 +•••+i k +k-1 × ∆ k-1 endowed with a refined polytopal decomposition. The projection to the factor K i 1 +•••+i k +k-1 is defined by mapping a directed planar tree to the planar tree obtained after distinguishing one output and forgetting all its edge directions, while the factor ∆ k-1 keeps track of all possible edge expansion directions. We refer for instance to figure 2 for a representation of the assocoipahedron associated to the operation A → A ⊗3 . Poirier and Tradler construct in fact the assocoipahedra as convex hulls of some particular sets of points in the Euclidean spaces obtained by using the secondary polytope method of [START_REF] Gelfand | Discriminants, resultants, and multidimensional determinants[END_REF]. They also mention that an alternative convex hull realization of the assocoipahedra could be expected by applying the same method as Loday in [Lod04]. We conjecture that the assocoipahedra can be constructed in a third way, by refining directly the polytopal decomposition on ∆ k-1 for each face of K i 1 +•••+i k +k-1 . The hyperplanes refining the decomposition of the simplex ∆ k-1 := {(z 1 , . . . , z k-1 ) ∈ R k-1 , 0 ⩽ z 1 ⩽ • • • ⩽ z k-1 ⩽ 1} would be defined by equations of the form z j = z i + a for 0 ⩽ i < j ⩽ k -1 and 0 < a < 1, where we set z 0 := 1. We stress that albeit the constructions of the n-multiplihedra and the assocoipahedra are similar in appearance, the structures they encode do not arise in the same algebraic context. 1.3. Geometric realizations of the assocoipahedra and the V ∞ -algebra structure on the symplectic chains. We also conjecture that the assocoipahedra can be realized as moduli spaces of curves whose points should correspond to the datum of a disk with m + 1 marked boundary points on its boundary and equipped with a family of 1-forms parametrized by ∆ n . The compactification rule defined on these moduli spaces would model the combinatorics of the dioperad V ∞ on the family of 1-forms using the new realizations of the assocoipahedra defined in the previous subsection. This compactification would in particular correspond to a geometric refinement of the cell decomposition on D m,1 × ∆ n , where D m,1 denotes the compactified moduli space of disks with m + 1 marked points on their boundary. We then plan to realize these moduli spaces as moduli spaces of pseudo-holomorphic curves in symplectic topology in order to define a V ∞ -algebra structure on the Floer chains SC * (W ) defining symplectic homology SH * (W ). These V ∞ -operations would in particular extend the operations of arity 1, 2 and 3 described in [START_REF] Cieliebak | Multiplicative structures on cones and duality[END_REF], that are defined using moduli spaces of pseudo-holomorphic curves of the previous form.

1.4. The category of V ∞ -algebras ? We also plan to inspect how to define the category V ∞alg of V ∞ -algebras. While its objects have already been defined, it remains to define the notion of a morphism which preserves the product and the co-inner product up to homotopy and a way to compose such morphisms, which we will call V ∞ -morphisms. This is where we encounter a serious obstacle. Indeed, A ∞ -morphisms and their composition were straightforward to define in the case of the category A ∞alg by using the bar construction viewpoint. Such a well-suited formulation is unfortunately currently lacking in the case of V ∞ -algebras. We would in particular like to have a notion of V ∞ -morphism that behaves well with respect to a homotopy transfer theorem for V ∞ -algebras.

While V 1 -morphisms between V 1 -algebras correspond exactly to A ∞ -morphisms between A ∞algebras, we can define the notion of V 2 -morphisms between V 2 -algebras as follows. Given an A ∞algebra A, one can endow its dual A ∨ with the structure of an A ∞ -bimodule over the A ∞ -algebra A by setting

(a 1 ⊗ • • • ⊗ a n ) ⊗ ϕ ⊗ (a n+1 ⊗ • • • ⊗ a n+m ) -→ (a → ϕ (
m n+m+1 (a n+1 , . . . a n+m , a, a 1 , . . . , a n )) , where a k ∈ A and ϕ ∈ A ∨ . The A ∞ -algebra A carries moreover naturally the structure of an A ∞ -bimodule over itself. As proven in [START_REF] Tradler | Infinity structure of Poincaré duality spaces. With an appendix by Dennis Sullivan[END_REF], a V 2 -algebra can then equivalently be defined as the data of an A ∞ -algebra A together with a morphism of A ∞ -bimodules A ∨ → A. The operations of this A ∞ -bimodule morphism correspond indeed to maps A ⊗i 1 ⊗ A ∨ ⊗ A ⊗i 2 → A, thus can be rewritten as elements m i 1 ,i 2 ∈ (A ∨ ) ⊗i 1 ⊗ A ⊗ (A ∨ ) ⊗i 2 ⊗ A. The A ∞ -equations for the A ∞ -bimodule morphism A ∨ → A then yield exactly the V 2 -equations for the maps m i 1 ,i 2 . A V 2 -algebra was in fact referred to as an A ∞ -algebra with homotopy co-inner product in [START_REF] Tradler | Infinity structure of Poincaré duality spaces. With an appendix by Dennis Sullivan[END_REF] and motivated later on the introduction of the notion of a V ∞ -algebra in [START_REF] Tradler | Algebraic string operations[END_REF].

Let now A and B be two V 2 -algebras. To begin with, a V 2 -morphism A → B should contain the datum of an A ∞ -morphism A → B. Using the datum of such an A ∞ -morphism one can endow B and B ∨ with A ∞ -bimodule structures over A. Consider then the following diagram of morphisms of A ∞ -bimodules over A

B ∨ A ∨ B A .
where the horizontal arrows are to be interpreted as the A ∞ -analogue of pre-composition and post-composition by the A ∞ -morphism A → B. We can define two distinct notions of a V 2morphism from A to B using this diagram :

(i) Either it corresponds to the datum of an A ∞ -morphism A → B such that the previous diagram commutes. In other words, a V 2 -morphism is an A ∞ -morphism which is "compatible" with the m i 1 ,i 2 operations of A and B. The composition of V 2 -morphisms is then simply defined as the composition of A ∞ -morphisms.

(ii) Or we can also require that this diagram commutes up to homotopy of morphisms of A ∞ -bimodules over A. Homotopies of morphisms of A ∞ -bimodules can be defined in a similar fashion to A ∞ -homotopies for A ∞ -morphisms. In that case, it would amount to a collection of operations f i 1 ,i 2 ∈ (A ∨ ) ⊗i 1 ⊗B⊗(A ∨ ) ⊗i 2 ⊗B satisfying an equation encoding the lack of compatibility of the A ∞ -morphism A → B with the m i 1 ,i 2 operations of A and B. The composition of V 2 -morphisms can then be defined as the composition of A ∞ -morphisms together with the homotopy obtained by composing the two homotopies in the following diagram

C ∨ B ∨ A ∨ C B A .
We expect that the correct homotopy notion a V 2 -morphism is given by definition (ii), and will refer to a V 2 -morphism using this definition in the following paragraph.

In general, such a nice algebraic description of the structure of a V k -algebra in terms of morphisms of A ∞ -bimodules is unfortunately not possible for k ⩾ 3. Heuristically this stems from the fact that extending a V 2 -algebra structure to a V k -algebra structure for k ⩾ 3 does not add cohomologically meaningful operations to the V 2 -operations : the only operations compatible with the differential are c ∈ A ⊗ A and m 2 : A ⊗ A → A and all the other operations should be interpreted as the higher coherent homotopies encoding the structure of a homotopy associative algebra with symmetric and invariant co-inner product. While we manage to understand how to generalize the notion of a V 2 -morphism to that of V k -morphism by writing down the explicit V 2equations for V 2 -morphisms in terms of operations, we do not understand yet the combinatorics involved in the definition of the composition of V k -morphisms for k ⩾ 3.

We plan thereby on inspecting how Koszul duality for dioperads as defined in [START_REF] Liang Gan | Koszul duality for dioperads[END_REF] might be applied to the dioperads V and V ∞ in order to define a well-suited framework for the notion of V ∞ -algebras and V ∞ -morphisms together with a way to compose them. Understanding the homotopy theory of dioperadic bimodules (and in fact defining the notion of a dioperadic bimodule first) and their cofibrant replacements might also be of interest for that question.

Further directions

2.1. Algebraic structures on the symplectic and Rabinowitz-Floer cochains. Once these questions have been solved, we first plan to clarify which exact structure is induced on the cone associated to the pair (A ∨ , A) by a V ∞ -algebra structure on A. Venkatesh as well as Cieliebak and Oancea prove indeed respectively in [START_REF] Venkatesh | Rabinowitz Floer homology and mirror symmetry[END_REF] and [START_REF] Cieliebak | Symplectic homology and the Eilenberg-Steenrod axioms[END_REF] that Rabinowitz-Floer homology SH * (∂W ) can be computed as the homology of a cone defined by a canonical up to homotopy chain map SC - * (W ) → SC * (W ). It is moreover shown in [CHOb] that Rabinowitz-Floer homology SH * (∂W ) carries the structure of a biunital involutive coFrobenius bialgebra, not only that of an associative algebra induced by the V ∞ -algebra structure on SC * (W ). A comprehensive study of the V ∞ -operations on SC * (W ) may show that some of them are in fact null, exhibiting stronger relations satisfied in the particular case of SH * (∂W ).

In [START_REF] Abouzaid | Symplectic cohomology and Viterbo's theorem[END_REF], Abouzaid defines a BV-algebra structure on the symplectic homology of a cotangent bundle T * M using moduli spaces of curves with asymptotic markers. Bottman defines in [START_REF] Bottman | A simplicial version of the 2-dimensional Fulton-MacPherson operad[END_REF] a simplicial version of the Fulton-MacPherson operad and states that he expects that this operad in topological spaces could be used to lift the BV-algebra structure to a homotopy BV-algebra structure on the symplectic chains of T * M . It would therefore be interesting to clarify if the V ∞ -algebra structure and the expected homotopy BV-algebra structure on SC * (T * M ) could fit into a satisfactory common operadic framework. This problem may feature operations similar to the algebraic string operations introduced in [START_REF] Tradler | Algebraic string operations[END_REF].

  Floer Introduction Chapitre 1. Présentation du contexte 1. Théorie des opérades 2. Topologie symplectique 3. Théorie de Morse 4. Point de départ des travaux de thèse Chapitre 2. Contenu du manuscrit 1. Higher algebra of A ∞ and ΩBAs-algebras in Morse theory I 2. Higher algebra of A ∞ and ΩBAs-algebras in Morse theory II 3. Développements et pistes de recherche futures partie 1. Higher algebra of A ∞ and ΩBAs-algebras in Morse theory I partie 2. Higher algebra of A ∞ and ΩBAs-algebras in Morse theory II partie 3. Further developments Chapitre 1. Higher algebra from multi-gauged trees and quilted curves 1. Moduli spaces of bigauged metric trees 2. Higher algebra from moduli spaces of quilted disks 3. Towards the (A ∞ , 2)-category Symp 4. Towards the homotopy 2-functor Symp → A ∞ -Cat

Figure 2 -

 2 Figure 2 -L'arbre de gradient d'arité 2 dont le comptage réalise la compositionm 2 : C * (f 0f 1 ) ⊗ C * (f 1f 2 ) → C * (f 0f 2 ).

Figure 1 -

 1 Figure 1 -L'associaèdre K 4 muni de sa décomposition A ∞ à gauche et de sa décomposition ΩBAs à droite

Définition 7 .,

 7 Soient A et B deux A ∞ -algèbres. Un n-morphisme de A vers B correspond de manière équivalente à la donnée d'une collection d'applications f (m) I : A ⊗m -→ B de degrés respectifs 1m + |I| pour I ⊂ ∆ n et m ⩾ 1, et qui satisfont les équations suivantes, où les opérations m B n sont représentées par les corolles rouges , les opérations m A n par les corolles bleues et les opérations f (m) I par les corolles 2-colorées I .

Figure 3 -

 3 Figure 3 -Le 1-multiplièdre ∆ 1 × J 3 où SCRT n désigne l'ensemble des types d'arbres 2-colorés enrubannés t c . Une opération t I,c := (I, t c ) est de degré |t I,c | := |I| + |t c |. Sa différentielle est donnée par la règle prescrite par le bord de l'espace de modules compactifié CT m (t c ) que l'on combine à la combinatoire des partitions chevauchantes, et à laquelle on ajoute la différentielle simpliciale de I. Autrement dit, ∂t I,c = t ∂ sing I,c + ±(∂ CT m t c ) I .

∆

  n ,tc (y; x 1 , . . . , x m ) := δ∈ ∆n CT Y δ,tc tc (y; x 1 , . . . , x m ) .

Figure 3 .

 3 Figure 3. The associahedra K 2 , K 3 and K 4 2.3. The multiplihedra. Just like the operad A ∞ , the dg -Zmod-operadic bimodule A ∞ -Morph is the image under the functor C cell - * of a Poly-operadic bimodule : Theorem 4([MMV]). There exists a collection of polytopes, called the multiplihedra and denoted

Figure 9 .

 9 Figure 9. Two sequences of stable two-colored metric ribbon trees converging in the compactication CT 3 Theorem 6 ([MW10]). The moduli space CT n endowed with its A ∞ -cell decomposition is isomorphic

Figure 10 .

 10 Figure 10. Compactication of a stratum of CT 3

Figure 11 .

 11 Figure 11. The compactied moduli spaces CT 2 and CT 3 with their cell decomposition by stable two-colored ribbon tree type

-e 1 ∧ e 2 Figure 14 .

 214 Figure 14. On the left, the Hasse diagram of the Tamari poset, where the maximal element is written at the top. On the right, all the canonical orientations for BRT 4 computed going down the Tamari poset. The canonical orientation on the maximal binary tree is dened as

  Figure17

Figure 18 .

 18 Figure 18. On the left, the Hasse diagram of the poset CBRT 3 , where the maximal element is written at the top. On the right, all the canonical orientations for CBRT 3 computed going down the poset.

  Figure20. Choosing perturbation data X for this metric tree, we have that φ 1,X =

Figure 28 .

 28 Figure 28. Representations of a map φ Xt , a map ψ e 2 ,Xt and a map ψ e 0 ,Xt 4.4. The twisted ΩBAs-algebra structure on the Morse cochains. 4.4.1. Summary of the proof of Theorem 9. Denition 40.

  sign change of parity d + d ≡ 0 .

Figure 30 .

 30 Figure30. Representation of the map f . The label M corresponds to the point e -δ x + e -δ y and not to the point x + y.
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 1 Figure 1. The AW-subdivision of ∆ 1 and ∆ 2

Figure 3 .

 3 Figure 3. Values of AW on ∆ 2

Figure 4 .

 4 Figure 4. The (AW × id) • AW-subdivision and the (id × AW) • AW-subdivision of ∆ 2

Figure 5 .

 5 Figure 5. The rst three subdivisions of ∆ 2

  For two dividing sequences a a a and b b b, we write a a a > b b b if a |a a a| > b 1 , and we then denote a a a • b b b the concatenation a 1 > • • • > a |a a a| > b 1 > • • • > b |b b b| . Proposition 7. Let a a a, b b b and c c c be three dividing sequences such that a a a > b b b > c c c. Then, AW a a a•b b b•c c c = (id ×|a a a| × AW b b b × id ×|c c c| ) • AW a a a•c c c , where b b b is the dividing sequence 1 > (b 1c 1 )/(a a a ac 1 ) > • • • > (b b b bc 1 )/(a a a ac 1 ) > 0 which is obtained from b b b by shifting by c 1 and then rescaling by 1/(a a a ac 1 ). This proposition will be used in subsection 1.4.4 of part 3. We illustrate it on the simplex ∆ 2 in gure 7, where a a a := 6/7, 5/7, b b b := 4/7, 3/7 and c c c := 2/7, 1/7, which implies that b b b := 2/3, 1/3. On the left is represented the AW a a a•b b b•c c c -subdivision of ∆ 2 , in the middle its AW a a a•c c c -subdivision and on the right the subdivision induced by the map (id ×|a a a| × AW b b b × id ×|c c c| ) • AW a a a•c c c , where the red lines represent the subdivision induced by AW b b b . The left and right subdivisions then coincide.

Figure 7 2

 7 Figure 7

Figure 8 .

 8 Figure 8. The 1-multiplihedron ∆ 1 × J 2

Figure 10 .

 10 Figure10. The 1-multiplihedron ∆ 1 × J 3 However, the polytopal subdivision of n -J m still contains enough combinatorics to recover a n-morphism. This polytope has a unique (n + m -1)-dimensional cell [n -J m ], which is labeled by∆ n

Figure 11 .

 11 Figure 11. The 1 -ΩBAs-cell decomposition of ∆ 1 × CT 2

  collection of degree 1m + |I| maps f (m) I : A ⊗m → B.We associate to the maps m m the degree +1 maps b m := sm m w ⊗m , and also associate to the maps f (m) I the degree |I| maps F(m) 

  2. Denition of the spaces of operations.

  |I| := b a=1 |I a |, a pair (I, t br,g , ω) is then dened to have degree |(I, t br,g , ω)| := |I| + |t br,g | .

  for a denition of latching objects and latching maps, together with a complete description of the Reedy model category structure on C ∆ . Let C ∈ C. A cosimplicial resolution of C is dened to be a cobrant approximation C C C of const * C in the model category C ∆ . In other words, it is the data of a cosimplicial object C C C := {C n } n 0 of C together with a cosimplicial morphism C C C → const * C, such that the maps C n → C are weak equivalences in C and the latching maps L n C C C → C n are cobrations in C.

F

  ) ⊗m -→ sB for I ⊂ Λ k n , which satisfy the A ∞ -equations

F

  

K

  . For a xed k, the maps L (m) k satisfy the same A ∞ -equations ( ) as F(m) ∆ n and G (m) ∆ n . We moreover set L Finally, we denote H (m) k for the collection of maps associated to the k-th (n + 1)-simplex. It satises the following A ∞ -equations

F∆

  to G, by dening L (mn for k 1, H (m) 0 := H (m) and H (m) k := 0 for k 1.

  2.5. A conjecture on the HOM-simplicial sets HOM ΩBAs-Alg (A, B) • . Given A and B two ΩBAs-algebras, we dene the HOM-simplicial set HOM ΩBAs-Alg (A, B) n := Hom (ΩBAs,ΩBAs)-op.bimod. (n -ΩBAs -Morph, Hom(A, B)) .Drawing from Theorem 1, we conjecture the following result : Conjecture 1. The simplicial sets HOM ΩBAs-Alg (A, B) • are ∞-categories.

  HIGHER ALGEBRA OF A∞ AND ΩBAs-ALGEBRAS IN MORSE THEORY II 63We will moreover work with Morse cochains. For two critical point x = y, deneT (y; x) := W S (y) ∩ W U (x)/Rto be the moduli space of negative gradient trajectories connecting x to y. Denote moreover T (x; x) = ∅. Under the Morse-Smale assumption on f and the Riemannian metric on M , for x = y the moduli space T (y; x) has dimension dim (T (y;x)) = |y| -|x| -1. The Morse dierential ∂ M orse : C * (f ) → C * (f )is then dened to count descending negative gradient trajectories ∂ M orse (x) := |y|=|x|+1 #T (y; x) • y .

  M orse : [R, +∞] -→ CT I,tg (y; x 1 , . . . , x n ) , # below-break T 0,M orse ,T 1,M orse I 1 ,g ,...,T s,M orse Is,g : [R, +∞] -→ CT I,tg (y; x 1 , . . . , x n ) , whenever the perturbed Morse trees T 1,M orse I,g

  We dene CT Y I,tg I,tg (y; x 1 , . . . , x m ) to be the oriented manifold CT Y I,tg I,tg (y; x 1 , . . . , x m ) whose natural orientation has been twisted by a sign of parity σ(t I,g ; y; x 1 , . . . , x m ) := dm(1 + |y| + |t I,g |) + |t I,g ||y| + d m i=1 |x i |(mi) .

Figure 1 -

 1 Figure 1 -Two instances of bigauged stable metric ribbon trees

Figure 3 -

 3 Figure 3 -A pseudo-holomorphic disk with Lagrangian boundary conditions on the L i and n + 1 marked boundary points

Figure 4 -

 4 Figure 4 -On the left, a quilted disk in QD 3,1 . On the right, a pseudoholomorphic quilted disk with Lagrangian boundary conditions on the L i , seam condition on L 01 and n + 1 marked boundary points The A ∞ -functor ϕ L 01 of [MWW18] is defined on objects as ϕ L 01 (L 0 ) := π M 1 (L 0 × M 0 L 01 ) ,

Figure 6 -

 6 Figure 6 -On the left, a biquilted disk with Lagrangian boundary conditions and Lagrangian correspondence seam conditions. On the right, an example of a quilted sphere with 4 marked seam points.

  Floer(M 0 , M 1 ) := Don(M - 0 × M 1 ) , where the category Don(M ) is the category whose objects are Lagrangian submanifolds of M and whose morphism spaces are the Floer cohomology groups of M , i.e. Don(M ) := H * (Fuk(M )).Its composition bifunctorDon(M - 0 × M 1 ) × Don(M - 1 × M 2 ) -→ Don(M - 0 × M 2 ) is definedon objects as (L 01 , L 12 ) → L 01 • L 12 (see subsection 2.5 for more details on that notation) and on the categories of morphisms by counting pseudo-holomorphic quilted pair of pants as represented in figure 7. The categorification A ∞ -functor for Fukaya categories constructed in subsection 2.3 then defines a categorification 2-functor Floer -→ Cat , defined on objects as M → Don(M ) and on the categories of morphisms as Floer(M 0 , M 1 ) = Don(M - 0 × M 1 ) -→ Fun (Don(M 0 ), Don(M 1 )) .

Figure 7 -

 7 Figure 7 -An example of a pseudo-holomorphic quilted pair of pants

Figure 8 -

 8 Figure 8 -An example of a pseudo-holomorphic quilt with figure eight singularity

Figure 1 -

 1 Figure 1 -Two operations represented as disks with marked boundary points. From left to right, one operation with n inputs and 1 output and one operation inA ⊗2 ⊗ (A ∨ ) ⊗2 ⊗ A ⊗ A ∨ ⊗ A ⊗ A ∨ .

Figure 2 -

 2 Figure 2 -The assocoipahedron associated to the operation A → A ⊗3
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	Abstract.

  Operadic bimodules. 1.3.1. Denition with Schur functors. Let now (D, ⊗ D , I) be any monoidal category, and (A, µ A ) and (B, µ B ) be two monoids in D. Reproducing the diagrams of usual algebra, one can dene the notion of an (A, B)-bimodule in D.

  Compactications. We now would like to compactify the moduli spaces T Xt
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	1.4.	

t (y; x 1 , . . . , x n )

  ,Lm := smooth choices of perturbation data X t on T n (t) such that all maps φ Xt are transverse on L m to the diagonal of M ×n+1 and note that We will prove that each Y t,Lm ⊂ Y t is open and dense in X t to conclude that Y t is indeed residual. Fix m 0. To prove that the set Y t,Lm is open in X t it suces to prove that for every l, the set Y l t,Lm is open in X l t , where Y l t,Lm is dened by replacing "smooth" by "C l " in the denition of Y t,Lm . This last result is a simple consequence of the fact that "being transverse on a compact subset" is an open property

	+∞	
	Y t =	Y t,Lm .
	m=0	

  Euclidean neighborhood of a critical point. Following[START_REF] Wehrheim | Smooth structures on Morse trajectory spaces, featuring nite ends and associative gluing[END_REF], we will assume in the rest of this part that the pair (Morse function,metric) on the manifold M is Euclidean. Denote B k δ := {x ∈ R k , |x| < δ}. Such a pair is said to Euclidean if it is Morse-Smale and is such that for each critical point z ∈ Crit(f ) there exists a local chart φ : B d-|z|

	4.2.4.
	Figure 27

δ × B |z| δ
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1. HIGHER ALGEBRA FROM MULTI-GAUGED TREES AND QUILTED CURVES

TENSOR PRODUCTS OF A∞-ALGEBRAS AND A∞-MORPHISMS

Remerciements Acknowledgements. My rst thanks go to my advisor Alexandru Oancea, for his continuous help and support through the settling of this series of papers. I also express my gratitude to Bruno Vallette for his constant reachability and his suggestions and ideas on the algebra underlying this work. I specially thank Jean-Michel Fischer and Guillaume Laplante-Anfossi who repeatedly took the time to oer explanations on higher algebra and ∞-categories. I nally adress my thanks to Florian Bertuol, Thomas Massoni, Amiel Peier-Smadja and Victor Roca Lucio for useful discussions.

Acknowledgements. My rst thanks go to my advisor Alexandru Oancea, for his continuous help and support through the settling of this series of papers. I also express my gratitude to Bruno Vallette for his constant reachability and his suggestions and ideas on the algebra underlying this work. I specially thank Jean-Michel Fischer and Guillaume Laplante-Anfossi who repeatedly took the time to oer explanations on higher algebra and ∞-categories. I nally adress my thanks to Florian Bertuol, Thomas Massoni, Amiel Peier-Smadja, Victor Roca Lucio, Georoy Horel, Brice Le Grignou, Nate Bottman and the members of the Roberta seminar for useful discussions.

Dene the 2d-dimensional submanifold Λ ⊂ M ×2 × M ×i 1 +1+i 3 × M ×i 2 to be

z , m 2 z , m y , m 1 , . . . , m i 1 , m i 1 +1+i 2 , . . . , m n , m i 1 +1 , . . . , m i 1 +i 2 )

The pair (T M orse 1 , T M orse

2

) then belongs to the inverse image f -1 +∞ (Λ). By assumption on the choice of perturbation data (X n ) n 2 , the map f +∞ is moreover transverse to Λ. Applying Lemma 1 to the map f at the point (T M orse 1 , T M orse 2 ), there exists R > 0 and an embedding

Note that the parameter δ corresponds to an edge of length 2L+2δ in the resulting glued tree. Upon reordering the factors of the domain of f , it is nally easy to check that this lemma also implies the result on orientations stated at the beginning of this subsection. 4.4.4. Signs for the (int-collapse) and (Morse) boundary. Repeating the beginning of the previous section, for the moduli spaces T t (y; x 1 , . . . , x n ), where t ∈ coll(t), and T t (y; x 1 , . . . , x n ), we choose M ×n labeled by x 1 , . . . , x n as complementary to the diagonal ∆ ⊂ M ×n+1 . The parity of the total sign change coming from these coorientation choices is dn + dn = 0 .

(A)

Introduce the factor ]0, L], corresponding to the length l e going towards 0, where e is the edge of t whose collapsing produces t . Applying again Lemma 1 and following convention 4.1.1, the short exact sequence 0 -→ T t (y; x 1 , . . . , x n ) =]0, L] × T t (y; x 1 , . . . , x n ) -→]0, L] × T n (t ) × W S (y) × n i=1 W U (x i ) -→ M ×n -→ 0 , introduces a sign change whose parity is given by dn .

(B)

Transforming nally ]0, L] × T n (t ) into T n (t) gives a sign of parity † ΩBAs .

(C)

Adding these contributions, we obtain that the sign of T t (y; x 1 , . . . , x n ) in the boundary of the 1-dimensional moduli space T t (y; x 1 , . . . , x n ) is given by the parity of

(*) The sign of T t (y; x 1 , . . . , x n ) in the boundary of the 1-dimensional moduli space T t (y; x 1 , . . . , x n ) is hence given by the parity of σ(t; y; x 1 , . . . , x n ) + σ(t ; y; x 1 , . . . , x n ) + ( * ) = |y| + † ΩBAs .

Finally, the signs for the (Morse) boundary can be computed following the exact same lines of the two previous proofs. 4.5. The twisted ΩBAs-morphism between the Morse cochains. It remains to dene a dierential on the generating operations (I, t g , ω) to recover denition 13. 4.4.5. The boundary of the compactied moduli spaces CT m (t g ). Before dening the dierential on the operadic bimodule n -ΩBAs -Morph, we recall the signs for the top dimensional strata in the boundary of the compactied moduli spaces CT m (t g ) that were computed in section I.5.2 in [Maz21].

We x for the rest of this subsection a gauged stable ribbon tree t g whose gauge intersects j of its vertices. We also choose an orientation e 1 ∧ • • • ∧ e i on t g and order the j gauge-vertex intersections from left to right

The (int-collapse) boundary corresponds to the collapsing of an internal edge that does not intersect the gauge of the tree t. Suppose that it is the p-th edge e p of t which collapses. Write moreover (t/e p ) g for the resulting gauged tree and ω p := e 1 ∧ • • • ∧ e p ∧ • • • ∧ e i for the induced orientation on the edges of t/e p . The boundary component CT m ((t/e p ) g , ω p ) bears a sign

The (gauge-vertex) boundary corresponds to the gauge crossing exactly one additional vertex of t. We suppose that this intersection takes place between the k-th and (k + 1)-th intersections of t g and write t 0 g for the resulting gauged tree. The (above-break) boundary corresponds either to the breaking of an internal edge of t, that is located above the gauge or intersects the gauge, or, when the gauge is below the root, to the outgoing edge breaking between the gauge and the root. Denote e 0 the outgoing edge of t. Suppose that it is the p-th edge e p of t which breaks and write moreover (t p ) g for the resulting broken gauged tree. The boundary component CT m ((t p ) g , ω p ) bears a sign

The (below-break) boundary corresponds to the breaking of edges of t that are located below the gauge or intersect it, such that there is exactly one edge breaking in each non-self crossing path from an incoming edge to the root. Write (t br ) g for the resulting broken gauged tree. We order from left to right the s non-trivial unbroken gauged trees t 1 g , . . . , t s g of (t br ) g and denote e j 1 , . . . , e js the internal edges of t whose breaking produces the trees t 1 g , . . . , t s g . Beware that we do not necessarily have that j 1 < • • • < j s . To this extent, we denote ε(j 1 , . . . , j s ; ω) the sign obtained after modifying ω by moving e j k to the k-th spot in ω. We write ω br for the induced orientation on (t br ) g , which is obtained by deleting the edges e j k in ω. The boundary component CT m ((t br ) g , ω br ) has sign (-1) ε(j 1 ,...,js;ω)+1+j (below-break) in the boundary of CT m (t g , ω). (-1) † ΩBAs (I, intcollapse(t g , ω))

+ (-1) |I| (-1) † ΩBAs (I, gaugevertex(t g , ω)) + (-1) |I| (-1) † ΩBAs (I, abovebreak(t g , ω))

where b denotes the number of gauges of belowbreak(t g ) and the signs (-1) † ΩBAs denote the ΩBAs -Morph signs listed in the previous subsection.

For instance, choosing the orientation e 1 ∧ e 2 on e1 e2

, the signs in the computation of subsection 3.1.2 are

On the left, the labeling of the non-degenerate simplices of ∆ 1 × ∆ 1 . On the right, the (unlabeled) non-degenerate simplices of ∆ 1 × ∆ 2 . The two inner non-degenerate 2-simplices of ∆ 1 × ∆ 2 are colored in red and in blue.

(i) There are exactly n + 1 non-degenerate (n + 1)-simplices, labeled by the pairs of sequences

The non-degenerate (n + 1)-simplex labeled by the above pair of sequences will be called the k-th non-degenerate

(iii) All simplices of dimension n + 2 are degenerate. (iv) There are exactly n non-degenerate n-simplices lying in the interior of ∆ 1 × ∆ n . They are labeled by the pairs of sequences

The non-degenerate n-simplex labeled by the above pair of sequences will be called the k-th inner non-degenerate n-simplex of ∆ 1 × ∆ n .

We point out that taking the l-th face of a simplex of ∆ 1 × ∆ n simply corresponds to deleting the l-th column of the array labeling it. For instance,

which moreover satisfy the A ∞ -equations for higher morphisms. According to the previous description of the non-degenerate simplices of m) . This also implies that all non-degenerate n-simplices K lying in ∆ 1 × ∂∆ n are such that H (m)
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The proof is postponed to section 2.4. It boils down to counting the boundary points of the 1dimensional oriented compactied moduli spaces CT Y I,tg (y; x 1 , • • • , x m ) whose boundary is described in the subsection 1.4.1. As a matter of fact, the set of operations {µ I,tg } does not exactly dene a n -ΩBAs-morphism. One of the two dierentials ∂ M orse in the bracket [∂ M orse , µ I,tg ] appearing in the n -ΩBAs-equations has to be twisted by a specic sign for the n -ΩBAs-equations to hold. We will speak about a twisted n -ΩBAs-morphism between twisted ΩBAs-algebras. In the case where M is odd-dimensional, this twisted n -ΩBAs-morphism is a standard n -ΩBAs-morphism.

As explained in subsection 3.1.3 of part 1, if we want moreover to go back to the algebraic framework of A ∞ -algebras, a n -A ∞ -morphism between the induced A ∞ -algebra structures on the Morse cochains can simply be obtained under the morphism of operadic bimodules n-A ∞ -Morph → n -ΩBAs -Morph.

1.6. Filling properties in Morse theory. Consider a simplicial subcomplex S ⊂ ∆ n . Denitions 23 and 26 can be straightforwardly extended to dene an admissible choice of perturbation data parametrized by S on the moduli spaces CT m , that we will denote Y S := (Y I,m ) m 1 I⊂S . The following theorem is proven in section 2.1 : Theorem 7. For every admissible choice of perturbation data Y S parametrized by a simplicial subcomplex S ⊂ ∆ n , there exists an admissible n-simplex of perturbation data Y ∆ n extending Y S .

We dene for every n 0,

to be the set of n-ΩBAs-morphisms µ from C * (f ) to C * (g) for which there exists an admissible n-simplex of perturbation data

Theorem 8. The sets HOM geom ΩBAs (C * (f ), C * (g)) n dene a simplicial subset of the simplicial set HOM ΩBAs (C * (f ), C * (g)) • . The simplicial set HOM geom ΩBAs (C * (f ), C * (g)) • has the property of being a Kan complex which is contractible.

Proof. We rst prove that the face and degeneracy maps of HOM ΩBAs (C * (f ), C * (g)) • preserve the sets HOM geom ΩBAs (C * (f ), C * (g)) • . This is clear for the face maps. Consider a n-simplex µ Y ∆ n ∈

HOM geom

ΩBAs (C * (f ), C * (g)) n and a degeneracy map

We have to construct an admissible (n+1)-simplex of perturbation data Y such that σ i (µ

Using the realizations

we dene s i : ∆ n+1 → ∆ n as s i (z 1 , . . . , z n+1 ) := (z 1 , . . . , ẑi , . . . , z n+1 ). The (n+1)-simplex of perturbation data dened as

is then an admissible simplex of perturbation data which has the desired property.

It is clear from Theorem 7 that the simplicial set HOM geom ΩBAs (C * (f ), C * (g)) • is a Kan complex. A Kan complex is contractible if and only if all its simplicial homotopy groups are trivial. One can moreover check on the denition of the homotopy relation in subsection 1.1.4 of part 1 that if a Kan complex X • has the property that each simplicial subcomplex S ⊂ ∆ n can be lled in X • , then its THIBAUT MAZUIR submersion. The map φ tg is in particular transverse to the diagonal ∆ ⊂ M ×m+1 . The parametric transversality lemma implies that there exists a subset Y l;y,x 1 ,...xm tg ⊂ X l tg which is residual in the sense of Baire, and such that for every choice of perturbation data Y tg ∈ Y l;y,x 1 ,...xm t the map φ Yt g is transverse to the diagonal ∆ ⊂ M ×m+1 . Any Y tg in the intersection

then yields a C l -choice of perturbation data on CT (t g ) such that all maps φ Yt g are transverse to the diagonal ∆ ⊂ M ×m+1 . Using an argument à la Taubes we prove that one can in fact construct a residual set Y tg ⊂ X tg , where X tg is the Fréchet space dened by replacing "C l " by "smooth" in the denition of X l tg , and such that any Y tg ∈ Y tg yields a smooth choice of perturbation data such that all maps φ Yt g are transverse to the diagonal ∆ ⊂ M ×m+1 . See subsection II.3.2.2 of [Maz21] for more details on that last point. This wraps up the rst step of the induction.

Let N 0 and suppose that we have constructed an admissible choice of perturbation data

and x an integer l such that

We introduce the parametrization space This parametrization space is a Banach ane space. Dene again the C l -map φ I,tg :

The map φ I,tg is then transverse to the diagonal ∆ ⊂ M ×m+1 . Applying the parametric transversality theorem and proceeding as in the case N = 0, there exists a residual set Y l I,tg ⊂ X l I,tg such that for every choice of perturbation data Y I,tg ∈ Y l I,tg the map φ Y I,tg is transverse to the diagonal ∆ ⊂ M ×m+1 . Resorting again to an argument à la Taubes, we can prove the same statement in the smooth context. By denition of the parametrization spaces X I,tg this construction yields an admissible choice of perturbation data (Y I,tg ), where the indices I and t g are such that dim(CT (t g )) + dim(I) N + 1. This concludes the proof of Theorem 4 by induction.

2.1.2. Proof of theorem 7. The proof of Theorem 7 proceeds exactly as the previous proof, by replacing the requirements in the denition of X l I,tg by the conditions prescribed by the simplicial subcomplex S ⊂ ∆ n .

Orientation and transversality.
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It induces a direct sum decomposition W = V 1 ⊕ V 2 . Suppose that the vector spaces W , V 1 and V 2 are oriented. We denote (-1) ε the sign obtained by comparing the orientation on W to the one induced by the direct sum V 1 ⊕ V 2 . We will then say that the short exact sequence has sign (-1) ε . In particular, when (-1) ε = 1, we will say that the short exact sequence is positive.

2.2.2. Orientation and transversality. Given now two manifolds M, N , a codimension k submanifold S ⊂ N and a smooth map

which is tranverse to S, the inverse image φ -1 (S) is a codimension k submanifold of M . Moreover, choosing a complementary ν S to T S, the transversality assumption yields the following short exact sequence of vector bundles

Suppose now that M , N and S are oriented. The orientations on N and S induce an orientation on ν S . The submanifold φ -1 (S) is then oriented by requiring that the previous short exact sequence be positive. We will refer to this choice of orientation as the natural orientation on φ -1 (S).

For instance, the moduli space T X t (y; x 1 , . . . , x m ) is dened as the inverse image of the diagonal ∆ ⊂ M ×m+1 under the map

Orienting the domain and codomain of φ Xt by taking the product orientation, and orienting the diagonal ∆ ⊂ M ×m+1 as M , denes a natural orientation on T t (y; x 1 , . . . , x m ).

Algebraic preliminaries.

2.3.1. Reformulating the n -ΩBAs-equations. We set for the rest of this section an orientation ω for each t g ∈ SCRT n , which endows each moduli space CT n (t g ) with an orientation. We write moreover µ I,tg for the operations (I, t g , ω) of n -ΩBAs -Morph. The ΩBAs-equations for a n -ΩBAs-morphism then read as

The signs (-1) † ΩBAs need not be made explicit, but can be computed as in section I.5.2 of [Maz21].

spaces of pseudo-holomorphic disks with Lagrangian boundary conditions can be adapted to the quilted framework in order to define the operations of the A ∞ -category Fuk # (M, N ). The Fukaya categories Fuk(M ) and the Donaldson categories Don(M ) and Don(M -× N ) then also have to be replaced by their enlargement Fuk # (M ) := Fuk # (pt, M ), Don # (M ) and Don # (M -× N ).

Towards the (A ∞ , 2)-category Symp

In subsection 2.4 we recalled the construction in [WW10a] of a 2-category Floer whose objects are closed manifolds M and morphism spaces are the Donaldson categories Don(M - 0 × M 1 ). A natural question to ask is whether this 2-category can be lifted to the dg-level, by defining a homotopy 2-category whose objects are symplectic manifolds and morphism spaces the Fukaya categories Fuk(M - 0 × M 1 ). In other words, a category enriched in A ∞ -categories. This expected category is referred to as the (A ∞ , 2)-category Symp by Bottman, and we will expose in the subsections 3.1 and 3.2 his current progress towards its definition. We will then expose in subsection 3.3 a series of conjectures that relates the work of Bottman and our work in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF].

3.1. Pseudo-holomorphic quilts with figure eight singularity. In order to define the category Symp, we would first like to define an A ∞ -bifunctor

) is a mere notation, and we do not think of it as a tensor product of A ∞ -categories. We refer however to section 2 for more details on the tensor product of Fukaya categories.

In order to define an A ∞ -bifunctor of this form, Bottman studies in [Bot20] the moduli spaces of pseudo-holomorphic quilts with marked points on their seams and figure eight singularity. An example of such a pseudo-holomophic quilt is depicted in figure 8. He expects that counting the points of 0-dimensional moduli spaces of pseudo-holomorphic quilts of this form should define the A ∞ -bifunctor sketched in the previous paragraph. Here one of the crucial argument is again that quilted spheres with two patches can be identified with disks mapping to the product.

We moreover point out that such a bifunctor would recover the categorification A ∞ -functor of [MWW18]. Indeed, setting M 0 := {pt} it would yield an A ∞ -bifunctor

) , which can be shown to yield an A ∞ -functor

Towards the homotopy 2-functor

Fukaya tackles in [Fuk17] the issue of the construction of a homotopy 2-functor Symp → A ∞ -Cat, where Symp and A ∞ -Cat are informally defined as the homotopy 2-category whose objects are closed symplectic manifolds and A ∞ -categories of morphisms are the Fukaya categories Fuk(M - 0 × M 1 ) resp. whose objects are A ∞ -categories and A ∞ -categories of morphisms are the A ∞ -categories Func(A, B). This informal homotopy 2-functor is defined on objects as M → Fuk(M ) and on morphisms as Fuk(M - 0 × M 1 ) → Func(Fuk(M 0 ), Fuk(M 1 )). We point out that he however does not exhibit an explicit satisfactory definition of a homotopy 2-category to consider in that context. The notion of an (A ∞ , 2)-category that Bottman is currently trying to define could provide a well-suited definition for his construction.

4.1. Results. Let M 0 , M 1 and M 2 be three closed symplectic manifolds. Fukaya constructs to begin with a composition A ∞ -bifunctor between Fukaya categories

, by counting pseudo-holomorphic quilts. This A ∞ -bifunctor is then homotopy associative, meaning that the diagram

commutes up to homotopy equivalence. The notion of a homotopy equivalence has been recalled in subsection 3.3. of part 2 in [START_REF] Mazuir | Higher algebra of A∞ and ΩBAs-algebras in Morse theory II[END_REF]. Given three A ∞ -categories A 0 , A 1 , A 2 it is also possible to define a composition A ∞ -bifunctor

following [Lyu03]. Fukaya proves that this composition A ∞ -bifunctor is again homotopy associative, meaning that the diagram

commutes up to homotopy equivalence.

As explained at the end of subsection 3.1, a categorification A ∞ -functor

) , can then simply be deduced by setting M 2 = {pt}. Fukaya finally proves that this categorification A ∞ -functor has the property that the following diagram is homotopy commutative

We point out that Fukaya however does not work out the full set of higher coherent homotopies that should arise from the homotopy commutativity property of the three previous diagrams. this tensor product is functorial i.e. that given A ∞ -morphisms F i : A i → B i and G i : B i → C i for i = 1, 2, the following identity is satisfied

We refer to [START_REF] Mac | Categories for the working mathematician[END_REF] for the complete definition of a symmetric monoidal category structure.

Applying the theory of Hopf operads and minimal models to the Hopf operad Ass endowed with the obvious diagonal and its minimal model A ∞ → Ass, it is proven in [MSS02] and [MS06] that there exists a homotopy of morphisms of operads between (∆ A∞ ⊗ id) • ∆ A∞ and (id ⊗ ∆ A∞ ) • ∆ A∞ . Following for instance [START_REF] Fukaya | Cyclic symmetry and adic convergence in Lagrangian Floer theory[END_REF], this means that there exists a quasi-isotopy between the

thus in particular that there exists an A ∞ -quasi-isomorphism between them. A similar method also shows that A ⊗ ∞ B ≃ B ⊗ ∞ A. It is however unclear why these collections of quasi-isomorphisms should fit into natural transformations α and τ defining the associator and the symmetry of a symmetric monoidal category structure on A ∞alg. It is moreover proven in [MS06] that a diagonal on A ∞ can in fact never be coassociative, i.e. that for any morphism of operads

We also prove in [LAM] that a diagonal on M ∞ can never be functorial.

It is thus impossible to endow the category A ∞alg with a symmetric monoidal category structure from the perspective of diagonals on the operad A ∞ and the operadic bimodule M ∞ . Guillaume Laplante-Anfossi and myself therefore plan to inspect in which sense this data would endow A ∞alg with a "homotopy" monoidal category structure. It is not yet clear to us which explicit model for such a category one would have to choose. Understanding which higher coherent homotopies arise from the lack of associativity of ∆ Kn and ∆ Jn on the level of polytopes could for instance be a first step towards solving that problem. Given two diagonals ∆ i A∞ and ∆ i M∞ for i = 1, 2, it would also be interesting to know how the two "homotopy" monoidal category structures defined on A ∞alg would then be related. A first result in that direction is again given in [MS06]. Two diagonals ∆ 1 A∞ and ∆ 2 A∞ on the operad A ∞ are always homotopic as morphisms of operads, which implies that the A ∞ -algebras A ⊗ ∞ 1 B and A ⊗ ∞ 2 B are always quasi-isomorphic. We finally point out that such a homotopy monoidal category structure on A ∞alg could then be easily adapted to define a homotopy monoidal category structure on the category of A ∞ -categories with A ∞ -functors.

Tensor products in symplectic topology

2.1. A Künneth theorem in Lagrangian Floer theory. Let M be a closed symplectic manifold and L ⊂ M a closed spin Lagrangian submanifold. Using Lagrangian Floer theory and pseudo-holomorphic disks curves with Lagrangian boundary conditions, Fukaya constructs in [START_REF] Fukaya | Cyclic symmetry and adic convergence in Lagrangian Floer theory[END_REF] a unital A ∞ -algebra F(L) associated to the Lagrangian L, called the Fukaya algebra of L. In [START_REF] Amorim | The Künneth theorem for the Fukaya algebra of a product of Lagrangians[END_REF], Amorim shows that given two symplectic manifolds M 1 and M 2 together with Lagrangians L i ⊂ M i , the Fukaya algebra of the product Lagrangian L 1 × L 2 is quasi-isomorphic to the tensor product of their Fukaya algebras, i.e. F(L 1 ×L 2 ) ≃ F(L 1 )⊗ ∞ F(L 2 ). His proof relies on a theorem that he proves in [START_REF] Amorim | Tensor product of filtered A∞-algebras[END_REF], giving a criterion for an A ∞ -algebra C to be quasiisomorphic to the tensor product A ⊗ ∞ B of two commuting A ∞ -subalgebras A ⊂ C and B ⊂ C, which he then applies to the two A ∞ -subalgebras

Fukaya generalizes this result in [Fuk17], working this time on the level of Fukaya categories. He proves that for two closed symplectic manifolds M 0 and M 1 there exists a unital A ∞ -functor

where k j=1 i j = m, even when the dg-module A is not finite-dimensional. These operations will be represented as disks with marked points on their boundary : the inputs will be labeled with + while the outputs will be labeled with -. See figure 1 for two illustrations of these notations. In this formalism, the unsigned A ∞ -equation of arity 3 for A ∞ -algebras then reads for instance as

where we have represented the equivalent equation in terms of trees on the right-hand side.

Following [START_REF] Tradler | Algebraic string operations[END_REF], we define a V ∞ -algebra structure on a dg-module A as follows. It is the datum for each k ⩾ 1 and i 1 , . . . , i k ⩾ 0 of operations

where we require that m 1 = ∂ and k + k j=1 i j ⩾ 2. An operation m i 1 ,...,i k is then defined to have degree 4 -k j=1 i j -2k. These operations have to satisfy the following symmetry condition : writing τ for the map rearranging an element of A

) ⊗i 1 and ε for the sign of τ , we require that m i 2 ,...,i k ,i 1 = (-1) ε τ m i 1 ,i 2 ,...,i k .

As explained in the previous paragraph, we can now denote an operation m i 1 ,...,i k as a disk with k + k j=1 i j marked boundary points, whose boundary points are labeled by going around the boundary circle following the factors A ⊗ (A ∨ ) ⊗i 1 ⊗ • • • ⊗ A ⊗ (A ∨ ) ⊗i k and replacing A by and A ∨ by +. Notice that the conditions on k and the i j mean that we consider operations associated to all possible labelings of disks with at least two marked boundary points and at least one output. The symmetry condition implies moreover that writing these operations as disks with marked boundary points is indeed consistent, as the symmetry of the notation carries the same symmetry as these operations.

The V ∞ -equation for the operation m i 1 ,...,i k seen as a disk with marked boundary points is then defined to be the signed sum of all nodal disks with exactly one node such that :

(i) The disk with marked boundary points obtained by gluing the nodal disk along the node is exactly m i 1 ,...,i k .

(ii) Each of the two disks composing the nodal disk has at least two marked boundary points and at least one output.

(iii) The common marked point of the two disks composing the nodal disk cannot be simultaneously labeled with + or simultaneously labeled with -.

The V ∞ -equations for the operations A → A ⊗2 and A → A ⊗3 write for instance respectively as

Tradler and Zeinalian also define the notion of a V k -algebra to be a collection of operations m i 1 ,...,i h for all 1 ⩽ h ⩽ k that satisfy the previous degree, symmetry and boundary conditions. A V 1 -algebra structure on A then corresponds exactly to an A ∞ -algebra structure on A. Notice however that the collection of operations with exactly 1 input do not fit into an A ∞ -coalgebra structure on A. The operation A → A ⊗2 indeed has degree -1 and is not even compatible with the differential, as illustrated in the previous example. The only operations that are compatible with the differental are in fact the product m 2 : A ⊗2 → A and the element c ∈ A ⊗ A, hence are the only ones that induce operations in cohomology. They moreover both have degree 0.

The structure of a V ∞ -algebra is in fact encoded by a dioperad, as proven in [START_REF] Poirier | Koszuality of the V (d) dioperad[END_REF]. We refer to it as the dioperad V ∞ . Roughly speaking, a dioperad is nothing more than an operad whose operations are allowed to have multiple outputs using the partial compositions viewpoint. We point out that a dioperad is the simplest operadic object that can be expected to encode V ∞algebras, as their definition features operations with multiple outputs and partial compositions in the V ∞ -equations. Define a symmetric and invariant co-inner product on an associative algebra A to be the datum of an element c := c 1 ⊗ c 2 ∈ A ⊗ A such that

where c := c 1 ⊗ c 2 are Sweedler's notations. Define moreover V to be the dioperad encoding the structure of an associative algebra with symmetric and invariant co-inner product. In [START_REF] Poirier | Koszuality of the V (d) dioperad[END_REF], Poirier and Tradler use the Koszul duality theory for dioperads of [START_REF] Liang Gan | Koszul duality for dioperads[END_REF] to show that the dioperad V ∞ is Koszul auto-dual and that the dioperad V ∞ then corresponds exactly to the resolution V ∞ := ΩV ¡ → V . In particular, a structure of V ∞ -algebra on A induces a structure of associative algebra with symmetric and invariant co-inner product on H * (A), whose product is [m 2 ] and whose co-inner product is [c].

1.2. The assocoipahedra. The combinatorics of the dioperad V ∞ is in fact governed by families of polytopes called the assocoipahedra, that were introduced by Poirier and Tradler in [START_REF] Poirier | The combinatorics of directed planar trees[END_REF]. They perform their constructions by seeing operations of V ∞ as encoded by trees rather than disks. They work thereby in their article with the viewpoint of directed planar trees, which are all the trees that can be obtained under partial compositions in the dioperad V ∞ , rather than the equivalent viewpoint of nodal disks with marked boundary points that we used in the previous subsections. We choose to adopt their point of view in order to describe the assocoipahedra in the following paragraph.