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Résumé

Les sujets de recherche présentés dans cette thèse se situent à l’interface entre certains aspects
théoriques et phénoménologiques de la Théorie des Cordes et de la Supergravité, se concentrant
sur leurs conséquences à basse énergie. Le premier chapitre traite d’un nouveau type de termes
de Fayet-Iliopoulos (FI) en supergravité N = 1, D = 4, qui peuvent être écrits sans jauger la
symétrie R. Nous introduisons cette construction et développons une nouvelle classe de termes
de FI invariants de Kähler, paramétrés par une fonction de la masse du gravitino vue comme
fonctionnelle des superchamps chiraux. Nous montrons alors en supergravité de type no-scale que
cette fonction peut produire un vide de Sitter et un potentiel inflationnaire compatible avec les
données observationnelles. Les deux dernières parties de cette thèse s’intéressent à la possibilité
que l’échelle de la corde puisse être beaucoup plus basse que la masse de Planck, en utilisant
soit un couplage des cordes très faible, ou des dimensions supplémentaires larges. La première
possibilité mène à la théorie appelée Little String Theory, dont le dual holographique est étudié
dans le second chapitre. Nous revoyons tout d’abord sa structure supersymétrique minimale,
qui repose sur un jaugement abélien d’une supergravité N = 2, D = 5 couplée à un multiplet
vectoriel, produisant ainsi un background dilaton linéaire. Nous compactifions ce modèle sur
S1/Z2 et décrivons la théorie effective N = 1, D = 4. Enfin, la troisème partie de cette thèse
exploite le cadre des dimensions supplémentaires larges afin d’aborder le problème de l’écart
dans le moment magnétique anomal du muon. Nous montrons que la contribution des états de
Kaluza-Klein du boson de jauge du nombre leptonique peut combler cet écart, à condition que
certains d’entre eux soient plus légers que l’énergie du LEP ∼ 200 GeV, et construisons ensuite
les configurations minimales de D-branes réalisant cette proposition.

Mots-clés : supergravité, théories effectives supersymétriques à basse énergie, échelle des cordes
basse, dimensions supplémentaires (larges), background dilaton linéaire, modèles de D-branes
s’entrecoupant.
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Abstract

The research topics presented in this thesis lie at the interface between theoretical and
phenomenological aspects of String Theory and Supergravity, focusing on their low-energy con-
sequences. The first chapter deals with new kind of Fayet-Iliopoulos (FI) terms in N = 1,
D = 4 supergravity, which can be written without gauging the R-symmetry. We review this
construction and build a new class of Kähler invariant FI terms parametrised by a function of
the gravitino mass as functional of the chiral superfields. We then show in no-scale supergravity
that this function can provide a de Sitter vacuum and an inflationary potential compatible with
the observational data. The last two parts of this thesis deal with the possibility that the string
scale might be much lower than the Planck mass, using either an ultra weak string coupling, or
large extra dimensions. The first possibility leads to the so-called Little String Theory, whose
holographic dual is studied in the second chapter. We first revisit the construction of its minimal
supersymmetric embedding, which relies on an abelian gauging of a N = 2, D = 5 supergravity
coupled to one vector multiplet, hence producing a linear dilaton background. We compactify
this model on S1/Z2 and describe the effective N = 1, D = 4 theory. Finally, the third part of
this thesis uses the framework of large extra dimensions to address the issue of the discrepancy
in the anomalous magnetic moment of the muon. We show that the contribution of the Kaluza-
Klein states of the lepton number gauge boson can bridge the gap in the discrepancy, provided
the existence of states lighter than the LEP energy ∼ 200 GeV, and then build the minimal
D-brane configurations realising this proposal.

Keywords: supergravity, supersymmetric low-energy effective theories, low string scale, (large)
extra dimensions, linear dilaton background, intersecting D-brane models.
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Introduction

General Relativity and Quantum Field Theory are two main achievements carried out in
theoretical physics during the twentieth century, both of them experimentally tested at an spec-
tacular level of accuracy. General Relativity (GR) describes physics at large scales where gravity
dominates. It has predicted new astrophysical objects and phenomena, which have been observed
from the very early ages of the theory until our days, like, for the most recent ones, the detection
of gravitational waves in 2015, or the first picture of a black hole taken in 2019, a century after
their theoretical prediction by Einstein. GR provides the theoretical background upon which
has been built modern cosmology, the theory that describes the Universe and its content as a
whole. The minimal cosmological model able to describe the main observable properties of our
Universe, such as the structure of the Cosmic Microwave Background, the large-scale structure
of the galaxies and the accelerating expansion of the Universe, is called the standard model of
cosmology or Lambda-Cold Dark Matter (ΛCDM) model. On the other hand, Quantum Field
Theory (QFT) provides a quantum consistent framework to describe physics at the microscopic
scales, combining the laws of quantum mechanics and special relativity in an elegant way. Its
theoretical predictions have been experimentally verified with a precision never reached before
in the history of science. QFT provides the theoretical background upon which the Standard
Model (SM) of particle physics has been built, which describes all known fundamental particles
and the way they interact through three of the four known forces: the electromagnetism as well
as the strong and weak interactions.

Despite their respective successes, both theories suffer from theoretical and conceptual in-
consistencies. General Relativity predicts its own death in region of spacetime with infinite
curvature, called singularities, such as the Big Bang or the singularity appearing in the center
of black holes. In these regions, quantum mechanical effects cannot be neglected anymore, and
a correct description of these extreme regimes would require a consistent theory of Quantum
Gravity, which is still unknown so far. On the other hand, many features tend to indicate that
the Standard Model of particle physics is not a fundamental theory, but rather an effective the-
ory valid at least up to the electroweak scale and which must break down at higher energies.
First, the SM might look in itself inelegant: it does not explain why it is based on the gauge
group SU(3)c×SU(2)w×U(1)Y , why does it contain three generations of fermions neither why
there are about 19 free parameters, whose values are not theoretically predicted but have to be
measured experimentally. But the biggest conceptual issue of the SM is the so-called hierarchy
problem, the question of why the electroweak scale and the Planck scale are separated by about
16 orders of magnitude, and how the electroweak scale can be stable under quantum corrections.
The SM also does not include gravity, and contains no potential dark matter candidates in its
spectrum. Many ideas beyond the SM have been proposed in order to tackle the above men-
tioned issues, such as Grand Unified Theories, supersymmetry or extra spacetime dimensions,
but none of them address the problem of the quantization of gravity.
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2 Introduction

String Theory is the only theory attempting to unify all the four known fundamental forces
in a common framework, and is one of the most promising theory of Quantum Gravity. Its basic
assumption is to replace the point-like particles of Quantum Field Theory by 1-dimensional ex-
tended objects, called strings. All the elementary matter particles as well as the force carriers that
we know then correspond to different excitation modes of such strings. Its theoretical consistency
requires in particular two ingredients: supersymmetry and extra spacetime dimensions. The for-
mer ensures that the theory contains no tachyon and produces spacetime fermions. On the other
hand, while a classical string can live in any spacetime dimensions, its quantization requires
the spacetime to be 10-dimensional. In order to accommodate with our observed 4-dimensional
world, we must compactify six extra dimensions on a 6-dimensional compact manifold whose
characteristic sizes must be sufficiently small to not be accessible by the current experiments.

Supersymmetry and its breaking as well as extra spacetime dimensions lie at the core of this
thesis, and we now introduce the basic ideas of these two concepts.

Supersymmetry and supergravity

All modern theoretical physics is based on the concept of symmetries. The Standard Model
of Particle Physics is built from the assumption that physical laws are invariant under the
action of spacetime rotations and translations. This set of transformations forms the Poincaré
group, which is the Minkowski spacetime isometry group. One possible fundamental approach
to supersymmetry is based on the following question: is it possible to enlarge this Minkowski
spacetime symmetry group? The Coleman-Mandula theorem [1] brings some parts of the answer.
It states that the S-matrix of a quantum field theory in Minkowski space is invariant at most
under Poincaré symmetries, and so, that the Poincaré group is a priori the biggest symmetry
group of Minkowski spacetime. However, this no-go theorem contains two main loopholes which
can be used to circumvent it. The first one is that it assumes the existence of the S-matrix.
For a massless theory where the S-matrix does not exist, a new symmetry, the scale invariance,
can be added. This leads to the conformal group which contains the Poincaré group 1. The
second one arises from the assumption that the spacetime symmetries are described by an
algebra, namely that its generators are bosonic. Considering fermionic generators gives a so-
called superalgebra, which leads to supersymmetry. In the simplest case when one fermionic
generators Q is introduced, called N = 1 supersymmetry, it is defined through the following
(anti-)commutation relations:

[Mµν ,Mρσ] = η[µ[ρMσ]ν], [Mµν , Pρ] = ηνρPµ − ηµρPν , [Pµ, Pν ] = 0,

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ, [Qα,Mµν ] = (σµν)βαQβ, [Qα, Pµ] = 0. (1)

Indices {α, β, α̇, β̇} run from one to two and denote two-component Weyl spinors, while indices
{µ, ν, ρ, σ} run from zero to three and denote Lorentz four-vectors. The first line alone defines the
Poincaré algebra, spanned by the generators Pµ andMµν of translations and Lorentz transforma-
tions. The four {Qα, Q̄β̇} introduced in the second line are called supercharges, and transform

1. While the conformal group will not be addressed in this thesis, conformal symmetry seen as a mathematical
tool rather than a physical spacetime symmetry will be discussed in Section 1.5.



Introduction 3

as spinors under Lorentz transformations. The graded commutation relations (1) define the
so-called N = 1 super-Poincaré algebra. Representations of this superalgebra are called super-
multiplets, or multiplets in the following. Because of the fermionic nature of the supercharges
Q’s, different elements of a given multiplet will have different Lorentz spins. Symbolically denot-
ing B and F a bosonic and fermionic field belonging to the same multiplet, a supersymmetry
transformation schematically reads:

δB = ε̄F, δF = /∂Bε, (2)

where ε has to be a fermionic parameter in order to be consistent with the bosonic and fermionic
nature of B and F . In global supersymmetry, this parameter is constant. The commutator of
two supersymmetric transformations is given by

[δε1 , δε2 ]B ∝ ε̄2/∂Bε1 = ε̄2γ
µε1∂µB ≡ ξµ∂µB, (3)

where ξµ is a vector field. We deduce that a globally invariant supersymmetric theory is also
necessarily invariant under translations. However, it is known that all fundamental interactions
can be described in terms of gauge symmetries, namely symmetries acting differently at each
spacetime point. It is therefore legitimate to also try to promote supersymmetry into a local
symmetry, that is, replacing the constant parameter ε by a spacetime point dependent parameter
ε(x). The vector field ξµ now also depends on x via ξµ(x) ≡ ε̄2(x)γµε1(x), and the supersymmetry
algebra therefore closes into diffeomorphisms:

[δε1 , δε2 ]B ∝ ξµ(x)∂µB. (4)

We conclude that a locally invariant supersymmetric theory is also necessarily invariant under
diffeomorphisms, and therefore includes gravity. Such theory of local supersymmetry is therefore
called supergravity.

From a top-down perspective, supergravity arises as the low-energy effective realization of
superstring theory. Such limit is obtained when the characteristic length scale of the string is
much smaller than the curvature of spacetime, so that the effects of the extended nature of the
string can be neglected. If String Theory has anything to do with the real world, there must exist
a 4-dimensional supergravity theory describing most of its observable low-energy consequences,
in particle physics as well as in cosmology.

Cosmological models should be able to describe at least the dark energy content of our
Universe, responsible of its currently observed accelerating expansion, as well as the cosmic
inflation, which today is very often seen as part of the standard cosmological model as the theory
describing its primordial phase. In the minimal ΛCDM model, the dark energy is described by a
small and positive cosmological constant Λ, providing a de Sitter (dS) vacuum at the minimum
of the scalar potential where the Universe is supposed to sit today. On the other hand, most
inflationary models assume a period in early cosmology where the Universe was in a state
dominated by an almost flat potential energy, associated to a slowly rolling scalar field: the
inflaton. The description of these two regimes therefore requires very specific features for the
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potential energy. However, supersymmetry severely restricts the form of the scalar potential in
supergravity theories, making the construction of such cosmological models challenging. Besides
non-linear realization of supersymmetry, another attempt to obtain dS vacua in supergravity
relies on the introduction of Fayet-Iliopoulos (FI) terms, in order to uplift the vacuum energy
from anti de Sitter (AdS) to dS. However, the standard FI terms in N = 1, D = 4 supergravity
are highly constrained. They can only be written when the associated U(1) gauge symmetry
is a R-symmetry, preventing the presence of a constant superpotential which is required in
AdS supergravity. Recently, new FI terms which do not require the gauging of the R-symmetry
have been written, first in pure supergravity, and then in the presence of matter, allowing such
constant uplift from AdS to dS vacua.

The Chapter 1 of this thesis focuses on the construction of cosmological models based on
these new FI terms. We first review the two original constructions, without and with chiral
matter multiplets. We then revisit and generalise them in N = 1, D = 4 supergravity coupled
to one vector multiplet and an arbitrary number of chiral multiplets, building a new class of
Kähler invariant FI terms parametrised by a function of the gravitino mass as functional of the
chiral matter fields. This function leads to FI terms which can be chosen constant or field de-
pendent, while preserving Kähler invariance in the latter case. As in the previous constructions,
a constant term can be used in order to fine-tune the vacuum energy to a positive or null value,
while the field dependent terms can now be used in inflationary models. We then apply this
construction in two no-scale supergravity models coupled to one vector and one chiral multiplet,
showing how our new FI terms can be used to build an inflationary model compatible with the
Cosmic Microwave Background observational constraints. The scalar potential obtained in this
way satisfies the slow-roll conditions during inflation and possesses a de Sitter vacuum where
supersymmetry is spontaneously broken by D and F-terms. The origin of these new FI terms in
String Theory is an interesting open problem which might be addressed in future projects.

Supergravity theories arising in the low-energy limit of superstring theories live in ten space-
time dimensions, and the associated super-algebras have one or two fermionic generators. The
simplest compactification on 6-dimensional torus will preserve all supersymmetries, producing
a 4-dimensional theory with N = 4 or N = 8 supercharges. On the other hand, one of the most
important property of the SM is the chirality of the gauge interactions in the electroweak sec-
tor. However, any 4-dimensional theories with N > 1 supersymmetries are non-chiral, and are
thus phenomenologically excluded. One must therefore consider more involved compactification
procedures, preserving no more than N = 1 supersymmetry in four spacetime dimensions. Such
compactifications are called supersymmetric compactifications. They can be obtained through
non-perturbative effects, or by applying appropriate projections like orbifold projections, or
considering non-trivial backgrounds in the internal manifold.

The Chapter 2 of this thesis deals with this third possibility. We study the linear dilaton
background solution of a gauged vector-coupled N = 2, D = 5 supergravity theory. The interest-
ing point about this non-trivial background is that it is precisely a 1/2-BPS solution, preserving
half of the original supersymmetries. We first describe the breaking N = 2→ N = 1 induced by
the background, then perform the dimensional reduction and find the resulting N = 1, D = 4
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low-energy effective theory. The phenomenological motivation for studying this model as well as
the main results obtained are described in the following section.

Low string scale and (large) extra dimensions

The string scale, the fundamental mass scale of the string excitations, as well as the com-
pactification scale, the inverse of the size of the six extra spacetime dimensions, are the two
most fundamental energy scales in String Theory. A natural question which then arises is: what
are their characteristic magnitudes? It has long been thought that both of them must be Planck
sized. However, one of the main conceptual revolution in String Theory that arose in the 90’s is
that this is not necessarily the case: the string scale and the size of the extra dimensions might
not be tied to the 4-dimensional Planck mass [2, 3]. This can be easily understood from the
10-dimensional gravitational effective action, common to all superstring theories, given by

Sgrav =
∫
d10x

M8
s

g2
s

R(10), (5)

where gs is the string coupling, Ms the string scale and R(10) the 10-dimensional Ricci scalar.
Upon compactification to four dimensions on a 6-dimensional compact manifold of volume V(6),
the (observed) 4-dimensional Planck Mass MPl is given in terms of the above quantities by:

M2
Pl =

M8
s V(6)
g2
s

. (6)

Experimental signatures of String Theory at colliders would be available in the case that the
fundamental string scale Ms would be much lower than the Planck scale. According to the
relation (6), this situation can be obtained in two distinct ways:

• The first possibility arises if the internal volume V(6) is of order the string scale, V(6) ∼M−6
s .

The observed value for the 4-dimensional Planck mass can then be explained in this case
by an ultra weak string coupling, gs << 1. Considering gauge fields living on D-branes,
the gauge coupling square g2

YM is proportional to gs, and therefore infinitesimally small
in the limit gs << 1. One must then address an important question, whether it is possible
to get interacting gauge fields with gauge coupling g2

YM ∼ O(1). This can be obtained
by considering (Neveu-Schwarz) NS5-branes: in this case the gauge coupling of the theory
living on the branes is independent of gs and can thus be of order one even in the limit of an
infinitesimally small string coupling. In the strict limit gs = 0, a stack of coincident NS5-
branes gives rise to a non-trivial interacting theory, the so-called Little String Theory. It
is a non-gravitational theory with stringy-like excitations, hence exhibiting an interesting
intermediate structure between String Theory and Field Theory. It has been shown that
Little String Theory is holographically dual to a gravitational theory in one more spacetime
dimension, on a particular background given by the Minkowski metric (in the string frame)
times the real line along which the dilaton varies linearly. In order to get a realistic model
with gravity, one must then turn on a small non-vanishing string coupling gs << 1, hence
generating interactions between the theory on the NS5-branes and gravity in the bulk.
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• The second possibility arises when gs is of order 1. The observed value for the 4-dimensional
Planck mass can then be explained in this case by an internal volume V(6) large compared
to the string scale, V(6) >> M−6

s [4, 5]. This mechanism does not require String Theory
for its low energy realization: it simply relies on the existence of extra dimensions in which
gravity spreads. However, String Theory provides a UV consistent framework in which this
scenario can be embedded. In String Theory, the Standard Model fields (without gravity)
can be localized on (p+1)-dimensional extended objects called Dp-branes, and thus cannot
probe all spacetime dimensions where only gravity is free to propagate. Among the (p+ 1)
dimensions of the brane, 4 are the non-compact dimensions we observe in experiments,
while the remaining p − 3 longitudinal dimensions must be compactified in order to be
inaccessible at current energies, at a scale which can be as small as the TeV. On the other
hand, the 9 − p dimensions transverse to the brane, which are probed only by gravity
but not by the Standard Model fields, can be much larger since experimental bounds
on gravitational experiments are much weaker: the compactification scale of such extra
dimensions can be of order or larger than 10−15 TeV. Let us assume that we have n = 1, ..., 6
large extra dimensions (namely with a characteristic length larger than M−1

s ), and 6− n
dimensions at the string scale. The internal volume is then given by V(6) = V(n)M

n−6
s , so

that the relation (6) yields M2
Pl = M2+n

s V(n). Writing V(n) = Rn, one gets for the average
size R of the large extra dimensions

R = 1
Ms

(
MPl

Ms

) 2
n

. (7)

For a string scale Ms = 10 TeV, we get R = 10 30
n
−1 TeV−1. The different values of R for each

n are given in Table 1, where we have used TeV−1 ∼ 10−19 m. Obviously, the case n = 1 is

n 1 2 3 4 5 6

R
1029 TeV−1 1014 TeV−1 109 TeV−1 107 TeV−1 105 TeV−1 104 TeV−1

1010 m 10−5 m 10−10 m 10−13 m 10−14 m 10−15 m

Table 1 – Average size R of large extra dimensions for a given number n of them, in the case of
a string scale Ms = 10 TeV.

excluded by observations, while n = 2 is in tension with the Cavendish-type experiments probing
gravity at short distances. But the cases n ≥ 3 are compatible with the current experimental
bounds.

The Chapter 2 of this thesis deals with the first situation where gs << 1. We focus on
the holographic dual of Little String Theory in a 5-dimensional spacetime toy model, and in
particular on its effective supergravity theory, which in the minimal case is a N = 2, D = 5
supergravity theory coupled to one vector multiplet. The linear dilaton (LD) background then
arises through a particular gauging along the U(1)R subgroup of the 5D SU(2)R symmetry
group. We first show that such 5D vector-coupled supergravity with this background is actually
unique, and then perform the dimensional reduction on S1/Z2, which requires to generalize
the standard Kaluza-Klein (KK) compactification in the more general case where the different
fields may depend on the compactified coordinate. The main result obtained here is that the
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background induces a Higgs mechanism for the KK vector Gµ5 coming from the 5D metric,
which becomes massive by absorbing the string frame radion. This mechanism can be mimicked
for the 4D vector coming from the 5D Kalb-Ramond two-form, so that the LD background
yields two massive vectors which can be packaged into a spin-3/2 massive multiplet. It is then
shown that the massless limit yields a 4D N = 1 supersymmetric theory, containing half of the
original degrees of freedom.

The Chapter 3 is based on the second scenario of large extra dimensions, V(6) >> M−6
s . We

follow a phenomenological approach, motivated by the recent result of the Fermilab Muon g− 2
experiment, which has confirmed a deviation of the measured muon anomalous magnetic mo-
ment from the Standard Model prediction. Recently, it has been shown that this discrepancy can
be explained in the framework of low mass scale strings and large extra dimensions by consider-
ing the contribution of KK excitations of the lepton number gauge boson Lµ. Re-investigating
this result, we show that the constraints on KK masses and couplings are more stringent than
originally thought, our conclusion being that the g − 2 muon discrepancy can be explained in
this context, with Lµ propagating in one extra dimension transverse to the SM branes, provid-
ing the existence of few KK modes with masses lighter than the LEP energy ∼ 200 GeV. We
then explicitly construct a minimal embedding of the SM into D-brane configurations for such a
bulk lepton number gauge boson which does not participate to the hypercharge. We show that
the minimal configuration realising this framework contains five stacks of branes: three of them
are the SM branes, while two additional U(1) extended in the bulk are required, among which
the leptonic U(1)L. In this construction, the total bulk transverse to the SM branes exhibits
an interesting inhomogeneous structure. First, we have one large extra dimension in which the
Lµ boson propagates, with a size RL ∼ (10 − 102 GeV)−1 in order to explain the muon g − 2
discrepancy. Then, at most five large extra dimensions, with an average size RG ∼ (0.1 GeV)−1

larger than RL, needed to lower the string scale in the >∼ O(10 TeV) region.
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Chapter 1

Cosmological models in supergravity
through generalized Kähler invariant

Fayet-Iliopoulos terms

1.1 Introduction

The simplest extension of pure N = 1 supergravity in flat spacetime is the anti de Sitter
(AdS) supergravity, where a negative cosmological constant Λ is included [10]. In order to pre-
serve local supersymmetry, a gravitino effective mass term has to be added, linked to Λ through
Λ = −3m2

3/2, which describes a massless gravitino in AdS spacetime. It is simply obtained by
considering a constant superpotential W = m3/2. An arbitrary cosmological constant cannot be
introduced without breaking explicitly supersymmetry, or considering non-linear realisation [11].
In the presence of an abelian vector multiplet a constant Fayet-Iliopoulos (FI) term can be in-
troduced only if the U(1) gauges the R-symmetry, in which case a constant superpotential is
forbidden, leading to a de Sitter (dS) supergravity describing a massive gravitino through cur-
vature effects [12, 13].

Recently, a new type of constant FI-term was introduced which does not require the gauging
of the R-symmetry [14]. It assumes that the D-auxiliary component of the U(1) vector multiplet
has a non-vanishing vacuum expectation value (VEV) breaking spontaneously supersymmetry,
in which case it can be expanded asD + fermion terms of higher dimensions. In the unitary gauge
where the gravitino absorbs the U(1) gaugino and becomes massive, the fermion terms vanish
and the new FI-term amounts adding a positive contribution to the cosmological constant of the
AdS supergravity, since a constant superpotential is now allowed as the U(1) does not gauge the
R-symmetry. In the presence of matter, the construction of [14] leads to a scalar potential but
breaks Kähler invariance. On the other hand, the new and standard FI-terms can coexist in the
case of gauge R-symmetry, providing interesting models of D-term inflation [15]. An alternative
construction was made in [16] preserving Kähler invariance and leading to a constant FI-term
in the presence of matter, that generates a constant uplift of the vacuum energy. More recently,
such FI-terms were written in N = 2 supergravity exhibiting a much richer structure [17].

In this first project, we generalise the above constructions in N = 1 supergravity, preserving
the Kähler invariance and keeping the form of the bosonic action to be linear in D up to a field
dependent coefficient. We show that the most general FI-term is characterised by an arbitrary
function of the gravitino mass, taken as a functional of the chiral superfields. We then study
applications to cosmology, building new models of inflation compatible with CMB observations

9
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and possessing a dS vacuum with tuneable (tiny) energy. We specialise to no-scale models [18, 19]
of one chiral multiplet containing the inflaton, supplemented by a U(1) gauge symmetry with the
new FI-term. Moreover, we choose for the latter a simple characteristic function of the gravitino
mass which is a single power and an additive constant, thus depending on three parameters. We
show that there is a region in the parameter space where the resulting scalar potential possesses
an inflationary plateau describing successfully the cosmological observations with the inflaton
rolling down to a minimum with tuneable vacuum energy, where the gravitino mass and the
supersymmetry breaking scale are fixed in terms of the parameters of the model.

The Chapter 1 is organised as follows. Important concepts in supersymmetry and super-
gravity are reminded in Sections 1.3 and 1.4. Section 1.5 introduces the matter-coupled N = 1,
D = 4 supergravity in the superconformal formalism, which will be the framework used in the
rest of this chapter. In Section 1.6.1, we review the recent construction of the new FI-term in
N = 1 supergravity without gauging the R-symmetry, and its generalisation to a Kähler invari-
ant FI Lagrangian leading to a positive constant uplift of the scalar potential in the presence of
arbitrary matter chiral multiplets. In Section 1.6.2, we propose the most general modification
of this construction that preserves Kähler invariance and is characterised by an arbitrary func-
tion of the gravitino mass as functional of chiral multiplets. We then study the consequences
of such terms on inflation and supersymmetry breaking in a de Sitter vacuum with tuneable
energy in Section 1.7, for the case of two no-scale models and for a simple choice of the func-
tional dependence of the new FI D-term. Finally in Section 1.7.3, we discuss the gauging of
the shift symmetry that gets rid of the massless particles in the spectrum without altering the
inflationary predictions. Moreover, inspired by the low-energy limit of the heterotic string, we
identify the inflaton with the string dilaton and gauge the perturbative axionic symmetry by
the Green-Schwarz anomaly cancellation mechanism. These models provide new examples of
inflation by supersymmetry breaking [20], where the inflaton belongs to the same multiplet with
the Goldstino [21, 22], without gauging the R-symmetry. Our conclusions are presented in Sec-
tion 1.8. Finally, this chapter is related to three appendices, reminding basic elements about
Kähler manifolds and their symmetries (Appendix A), containing a summary of the conformal
supergravity multiplets calculus (Appendix B) and details of the computation of the fermion
masses in our models (Appendix C).

1.2 Conventions and notations

Throughout this thesis, we will use natural units ~ = c ≡ 1. The reduced Planck mass

κ−1 = (8πG)−1/2 = 2.4× 1018 GeV,

is set equal to one, and numerical values are given in these units.
In this first chapter, we work exclusively in 4 spacetime dimensions, and adopt the metric
convention (−,+,+,+). The indices used throughout the Chapter 1 are defined according to
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the following pattern:

µ, ν... = 0, ..., 3 4D spacetime curved indices

a, b... = 0, ..., 3 4D spacetime flat indices

i, j... = 1, ...,dimRM real coordinates of complex manifoldsM

α, β... = 1, ...,dimCM complex coordinates of complex manifoldsM

α, β... = 1, 2 or 1, ..., 4 spacetime spinor indices for Weyl or Majorana spinors respectively

A,B... = 1, ...,dim G internal gauge group indices for a given gauge group G

The indices α, β... denote either complex coordinates of complex manifolds or spacetime spinor
indices, depending on the context which will be obvious. Curved and flat indices in 4D are
related through the vierbein eaµ according to

Xµ = eaµXa. (1.1)

The four-dimensional Dirac matrices γa satisfy the Clifford algebra{
γa, γb

}
= 2ηab14×4. (1.2)

In any spacetime dimension, an irreducible representation of the Clifford algebra induces a spinor
representation of the Lorentz algebra, which is in general reducible. This is the case in D = 4
spacetime dimension: 4-dimensional Dirac spinors are irreducible representations of the Clifford
algebra, but reducible representations of the Lorentz algebra. In 4D, they contain 4 complex off-
shell degrees of freedom. Irreducible spinor representations of the Lorentz algebra can be obtained
from a 4-dimensional Dirac spinor either from a chirality projection or a reality projection. The
former leads to Weyl spinors, written in a two-component spinor notation, while the latter
leads to Majorana spinors, written in a four-component spinor notation. Both of them have 4
real off-shell degrees of freedom. Two-component spinors are commonly used in the literature
dealing with 4-dimensional N = 1 global supersymmetry, while four-component spinors are
more convenient in 4-dimensional N = 1 supergravity, since they can be easily generalized to
higher spacetime dimensions and extended supersymmetry. We will use both formalisms in this
chapter, which focuses on N = 1, D = 4 global supersymmetry and supergravity.

Two-component Weyl spinors are denoted by θα and θ̄α̇, and are left-handed and right-
handed spinors transforming under the (1

2 , 0) and (0, 1
2) representations of the Lorentz group

respectively. This two-component notation will be used in Sections 1.3.1 and 1.4 following the
conventions of [23]. The four-component spinor notation will be used in Sections 1.3.2, 1.5, 1.6,
1.7, as well as in Appendix B and C following the conventions of [10]. These spinors are Majorana
spinors, defined by the reality condition

λ∗ = Bλ, (1.3)

where B is a matrix satisfying in four dimensions γ∗µ = BγµB
−1. In this formalism, a barred
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spinor λ̄ is the Majorana conjugate of a four-component spinor λ defined by

λ̄ ≡ λTC, (1.4)

with C the charge conjugation matrix, satisfying in four dimensions γTµ = −CγµC−1. Chiral
fermions can be obtained from a given four-component fermion by applying the left or right
projection operators

PL ≡
1
2(1 + γ?), PR ≡

1
2(1− γ?), (1.5)

where γ? ≡ iγ0γ1γ2γ3. The chiral projections λL and λR of a four-component spinor λ are then
defined by:

λL ≡ PLλ, λR ≡ PRλ. (1.6)

Let us note that in 4 spacetime dimension, the Weyl and Majorana conditions cannot be imposed
simultaneously, so that for a Majorana λ, PL,Rλ is Weyl but no longer Majorana.

1.3 Basics of supersymmetry and supergravity

1.3.1 Most general chiral models in N = 1 supersymmetry

The aim of this section is to derive the geometric structure of the scalar sector of any
supersymmetric theory with chiral matter fields, an important feature which will be ubiquitous
in this chapter. In N = 1 supersymmetry, the most general renormalizable supersymmetric
Lagrangian involving N chiral and anti-chiral superfields Φα, Φ†ᾱ, α and ᾱ running from 1 to
N , is:

LΦ =
∫
d2θd2θ̄ Φ†ᾱΦα +

[∫
d2θ

(
aαΦα + 1

2mαβΦαΦβ + 1
3yαβγΦαΦβΦγ

)
+ h.c.

]
, (1.7)

where aα, mαβ, yαβγ are constant couplings. The θ expansion of the chiral fields are:

Φα(y, θ) = ϕα(y) +
√

2θΩα(y) + θθFα(y) (1.8)

= ϕα(x) +
√

2θΩα(x) + θθFα(x) + iθσµθ̄∂µϕ
α(x)

− i√
2
θθ∂µΩα(x)σµθ̄ + 1

4θ
2θ̄22ϕα(x), (1.9)

where yµ = xµ + iθσµθ̄, and similarly for the anti-chirals Φ†ᾱ by taking the hermitian conjugate
of the previous expansions. However, we are ultimately interested in supergravity, which is an
effective non-renormalizable theory. Thus, renormalizability is in fact not a criterion, and we
look at the most general Lagrangian that can be built from chiral superfields. The modification
of the Lagrangian (1.7) into its most general form is carried out by introducing two arbitrary
real and chiral superfields K(Φ,Φ†) and W (Φ), respectively real and holomorphic functions of
Φ, according to:

LΦ =
∫
d2θd2θ̄ K(Φ,Φ†) +

[∫
d2θ W (Φ) + h.c.

]
. (1.10)
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First and foremost, let us notice that this Lagrangian is invariant under a so-called Kähler
transformation,

K(Φα,Φ†β̄)→ K(Φα,Φ†β̄) + J(Φα) + J̄(Φ†β̄), (1.11)

where J and J̄ are chiral and anti-chiral superfields, holomorphic and anti-holomorphic functions
of Φα and Φ†β̄ respectively. This symmetry will lie at the core of this first chapter, and in
particular will be the cornerstone of the construction carried out in Section 1.6.2.

In order to highlight the geometrical structure hidden behind the superspace Lagrangian
(1.7), we would like to write it in terms of component fields. From Eq.(1.8), one can easily
expand the superpotential W (Φ) as:

W (Φ) = W (ϕ) +
√

2θΩαWα + θθ

[
FαWα −

1
2ΩαΩβWαβ

]
, (1.12)

with all component fields functions of yµ = xµ + iθσµθ̄ and where we have defined Wα ≡ ∂W
∂ϕα .

Expanding in terms of xµ will not bring any new θθ-terms, and we can immediately deduce[∫
d2θ W (Φ) + h.c.

]
= FαWα −

1
2ΩαΩβWαβ + h.c. (1.13)

The component expansion of K(Φ,Φ†) is more involved, since now we have to consider the ex-
pansion of the different fields in terms of xµ. We will not present in full details this computation,
which is a standard expansion without any conceptual subtleties, and which can be found for in-
stance in [23, 24]. Instead, we focus on the bosonic sector and put the chiral fermions Ωα to zero.
This turns out to be sufficient to highlight the most important geometrical structure we are inter-
ested in concerning the supersymmetric chiral model. With Ωα = 0, the expansion (1.9) reduces
to Φα = ϕα(x)+δα(x), where we have defined δα(x) ≡ θθFα(x)+ iθσµθ̄∂µϕ

α(x)+ 1
4θ

2θ̄22ϕα(x).
Since any cubic or higher order terms in δ vanishes, we deduce the expansion for K:

K(Φ,Φ†) = K(ϕ(x), ϕ̄(x)) + δαKα + δ̄β̄Kβ̄ + 1
2δ

αδβKαβ + 1
2 δ̄

ᾱδ̄β̄Kᾱβ̄ + δαδ̄β̄Kαβ̄. (1.14)

From δαδβ = 1
2θ

2θ̄2∂µϕ
α∂µϕβ and δαδ̄β̄ = θ2θ̄2

(
−1

2∂µϕ
α∂µϕ̄β̄ + FαF̄ β̄

)
, we find the θ2θ̄2 com-

ponent of K:

K(Φ,Φ†)
∣∣∣
θ2θ̄2

= 1
42ϕ

αKα + 1
42ϕ̄

β̄Kβ̄ + 1
4∂µϕ

α∂µϕβKαβ + 1
4∂µϕ̄

ᾱ∂µϕ̄β̄Kᾱβ̄

+
(
−1

2∂µϕ
α∂µϕ̄β̄ + FαF̄ β̄

)
Kαβ̄

= 1
4∂µ∂

µK +
(
−∂µϕα∂µϕ̄β̄ + FαF̄ β̄

)
Kαβ̄ (1.15)

The crucial point in this derivation is to notice that the first four terms of K|θ2θ̄2 are equal
to 1

4∂µ∂
µK − 1

2∂µϕ
α∂µϕ̄β̄. The total derivative can then be discarded, and as a consequence,

the purely holomorphic and anti-holomorphic terms ∝ Kαβ,Kᾱβ̄ do no longer appear in the
Lagrangian, only the mixed terms ∝ Kαβ̄ remaining. This is a first indication of a geometrical
Kähler structure, as we will see soon. Eqs. (1.13) and (1.15) give the bosonic components of the
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chiral Lagrangian:

LΦ|Ω=0 =
(
−∂µϕα∂µϕ̄β̄ + FαF̄ β̄

)
Kαβ̄ + FαWα + F̄ β̄W̄β̄. (1.16)

Eliminating the auxiliary fields F through their equations of motion, Fα = −W̄β̄K
αβ̄, F̄ β̄ =

−WαK
αβ̄, we end with:

LΦ|Ω=0 = −Kαβ̄∂µϕ
α∂µϕ̄β̄ −WαW̄β̄K

αβ̄. (1.17)

This is the bosonic part of the Lagrangian describing the most general supersymmetric coupling
of chiral multiplets. The kinetic term for the complex scalars ϕα takes the form of a non-
linear σ-model with target space characterized by the metric gαβ̄ ≡ ∂α∂β̄K. Combined with
gαβ = gᾱβ̄ = 0, these three conditions precisely define what is called a Kähler manifold. Such
manifolds are described in more details in Appendix A.

The analysis of this section has shown that any supersymmetric chiral theory is determined
by a superpotential W (ϕ) and a Kähler potential K(ϕ, ϕ̄) functions of the complex scalar fields,
both of them being the lowest components of the superfields K(Φ,Φ†) and W (Φ) introduced in
Eq. (1.10). The complex scalars can then be seen as the coordinates of a Kähler manifold whose
metric is given by the second derivative of this Kähler potential, namely gαβ̄ ≡ ∂α∂β̄K. The
Kähler transformations (1.11) on the superfield K(Φ,Φ†) act on the Kähler potential K(ϕ, ϕ̄)
as K(ϕ, ϕ̄)→ K(ϕ, ϕ̄) +f(ϕ) + f̄(ϕ̄), with f and f̄ holomorphic and anti-holomorphic functions
respectively. From the expression of gαβ̄, it is therefore obvious that these transformations leave
the metric invariant.

1.3.2 Pure N = 1, D = 4 supergravity and Anti-de Sitter supergravity

As qualitatively explained in the Introduction of this thesis, a theory of local supersymmetry
must contain gravity. Moreover, turning a global symmetry to a local one, that is in our case
replacing εα → εα(x), requires the introduction of a gauge field. Since εα carries a spinor index,
the gauge field will be a vector-spinor field ψµα(x). This spin-3/2 field, called the gravitino, is
the superpartner of the vierbein eaµ, the graviton. The Lagrangian of pure N = 1 supergravity
will thus contain both the Einstein-Hilbert Lagrangian LEH of General Relativity, plus the
Rarita-Schwinger Lagrangian LRS for massless free spin-3/2 field:

Lsugra = LEH + LRS = 1
2ee

aµebνRµνab(ω)− 1
2eψ̄µγ

µνρDνψρ, (1.18)

where we have defined e ≡ det eaµ and Dνψρ ≡ ∂νψρ + 1
4ωνabγ

abψρ. ψµ is a Majorana spinor, and
the second and third rank Clifford algebra elements are respectively given by γµν = 1

2 [γµ, γν ],
γµνρ = 1

2{γ
µ, γνρ}. This Lagrangian is invariant at lowest order in the fermions [10] under the

following supersymmetry transformation rules: 1

δeaµ = 1
2 ε̄γ

aψµ, δψµ = Dµε(x) ≡ ∂µε+ 1
4ωµabγ

abε. (1.19)

1. It is worth noting that the Einstein equations coming from δLRS arise from the algebra of Dirac γ-matrices.
This therefore tells us that there is already some spinorial structure behind General Relativity.
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Anti-de Sitter (AdS) supergravity can then be seen as the simplest extension of pure N = 1
supergravity. It naturally arises from the question: can a cosmological constant be compatible
with a local supersymmetric action? Adding a cosmological constant to the Lagrangian (1.18),
Lcc = −eΛ, obviously breaks supersymmetry. However, as we are now going to discuss, su-
persymmetry can be recovered by adding an effective gravitino mass term to the Lagrangian,
Lm3/2 = e

m3/2
2 ψ̄µγ

µνψν , and considering the local supersymmetric transformations [25]:

δeaµ = 1
2 ε̄γ

aψµ, δψµ = Dµε+ gγµε, (1.20)

where a mass-like term gγµε has been added to the variation of the gravitino. The coupling con-
stant g ∈ R will turn out to be the only free parameter of this model. The full AdS supergravity
Lagrangian then reads

LAdS = LEH + LRS + Lm3/2 + Lcc. (1.21)

At lowest order in the fermions, its supersymmetric variation can be evaluated via:

δLRS = −eψ̄µγµνρDνδψρ = −δLEH − eψ̄µγµνρDν(gγρε)

= −δLEH − egψ̄µ γµνργρ︸ ︷︷ ︸
(D−2)γµν

Dνε, (1.22)

δLm3/2 = em3/2ψ̄µγ
µνδψν = em3/2ψ̄µγ

µνDνε+ egm3/2ψ̄µ γµνγν︸ ︷︷ ︸
(D−1)γµ

ε, (1.23)

δLcc = −Λδe = −Λe2 ε̄γ
ρψρ. (1.24)

The second term of (1.22) plus the first one of (1.23) cancel if m3/2 = g(D−2), while the second
term of (1.23) plus (1.24) cancel if Λ = −2gm3/2(D − 1), which implies in D = 4 spacetime
dimension that

Λ = −12g2 < 0, Λ = −3m2
3/2. (1.25)

At lowest order in the fermions 2, we have thus found that only a negative cosmological constant
can be added to the pure N = 1 supergravity action in a supersymmetric way. This requires
the addition of an effective mass-term 3 for the gravitino, which cannot be chosen independently
from Λ but has to satisfy the relation Λ = −3m2

3/2. Any uplift of Λ from this value will then
break supersymmetry.

The construction of AdS supergravity in four dimension follows an interesting pattern. Both
the shift in the supersymmetry transformation of the gravitino as well as the effective gravitino
mass term are linear in the coupling g. Supersymmetry then closes at order g2 via the introduc-
tion of a cosmological constant quadratic in g. This pattern is actually much more general and
encodes the gauging procedure of any N > 1 extended supergravity theory. In this case, the cos-
mological constant is replaced by a scalar potential O(g2), while closure of supersymmetry still
requires the introduction of a shift O(g) in the supersymmetry transformations of the fermions
as well as O(g) fermion mass terms. We will encounter such situation in the Chapter 2, whose

2. This analysis turns out to be true to all orders in fermions for D = 4, while only true at the quadratic order
in fermions in D = 11.

3. The correct interpretation of this mass-term is the description of a massless gravitino is AdS spacetime [26].



16 Chapter 1 – Cosmological models in supergravity through Kähler invariant Fayet-Iliopoulos terms

second half-part is based on an abelian gauging of a given N = 2, D = 5 supergravity theory, a
procedure which will be presented in Section 2.5.2.

1.4 Spontaneous supersymmetry breaking and Fayet-Iliopoulos
terms in supersymmetry and supergravity

The commutation relation [Qα, Pµ] = 0 of the Poincaré superalgebra (1) implies that bosonic
and fermionic superpartners have the same mass. This situation being obviously not observed
in Nature, supersymmetry must be broken at least at the electroweak energy scale. This can be
carried out in two ways:

• An explicit symmetry breaking: the symmetry is broken at the Lagrangian level, for in-
stance by some terms which are negligible in the IR and become only relevant in the UV.
In such case, the theory is invariant under the symmetry at low energies, but no longer at
high energies.

• A spontaneous symmetry breaking: the Lagrangian and thus the theory are invariant under
the symmetry regardless of the considered energy scale, but the vacuum is not invariant
below a given energy scale.

In local supersymmetry, the first case is inconsistent as long as there is a spin 3/2 in the spectrum,
while it suffers from a lack of predictivity in global supersymmetry. In the same time, the second
procedure provides some appealing dynamical processes for symmetry breaking, and is valid in
both global and local susy. We will therefore not consider explicit symmetry breaking in the
following, and focus only on spontaneous supersymmetry breaking.

1.4.1 Spontaneous global supersymmetry breaking

Let us start this discussion by reminding that the energy E = P 0 of any state in the Hilbert
space H of a global supersymmetric theory is always positive. To see this, we write ∀ |Φ〉 ∈
H, ∀α, α̇ = 1, 2, 0 ≤ ‖Qα |Φ〉 ‖2 + ‖Q̄α̇ |Φ〉 ‖2 = 〈Φ| (Q̄α̇Qα + QαQ̄α̇) |Φ〉 = 〈Φ| {Qα, Q̄α̇} |Φ〉 =
2σµαα̇ 〈Φ|Pµ |Φ〉. Taking the trace of this expression and using Tr σµ = 2δµ0, we get:

4 〈Φ|P0 |Φ〉 ≥ 0. (1.26)

Let us now assume a vacuum |Ω〉 preserving supersymmetry, i.e. being annihilated by all four
supercharges, Qα |Ω〉 = Q̄α̇ |Ω〉 = 0. It follows from the discussion above that 〈Φ|P0 |Φ〉 = 0.
Conversely, if 〈Φ|P0 |Φ〉 > 0, one needs at least one supercharge such that Qα |Ω〉 6= 0, and
supersymmetry is broken in the vacuum. We therefore conclude that in a globally supersymmetric
theory, ground states of vanishing energy preserve supersymmetry, while those of strictly positive
energy break supersymmetry spontaneously.

We then remind that in a globally supersymmetric field theory with chiral multiplets (ϕ,ψ, F )
and vector multiplets (vµ, λ,D) coupled to each other, the scalar potential reads:

V =
∑

chiral superfields
|F |2 + 1

2
∑

vector superfields
D2. (1.27)
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Therefore, supersymmetry breaking is controlled by the vacuum expectation values of the auxil-
iary fields, and in order to break global supersymmetry, we must have either 〈F 〉 6= 0, or 〈D〉 6= 0,
or both. The first case is called the F -type or O’Raifeartaigh mechanism [27], while the second
one is called the D-type or Fayet-Iliopoulos mechanism [28]. Since this chapter deals with D-
term supersymmetry breaking, we are not going to discuss the O’Raifeartaigh mechanism in the
following and only focus on the Fayet-Iliopoulos one. In order to introduce it, let us consider the
case of two chiral superfields Φ± = (ϕ±, ψ±, F±), with the same mass m and U(1) charges ±1,
coupled to a U(1) vector superfield V = (vµ, λ,D) in the Wess-Zumino gauge. The superspace
Lagrangian for this model reads:

LΦ+V =
∫
d4θ

(
Φ†+egV Φ+ + Φ†−e−gV Φ−

)
+
[∫

d2θ

(
mΦ+Φ− + 1

4W
2
)

+ h.c.

]
. (1.28)

The idea of the Fayet-Iliopoulos (FI) procedure is to notice that the integral of V over all the
superspace,

LFI = −2ξ
∫
d4θ V = −ξD, (1.29)

is gauge invariant (in the case of an abelian U(1) gauge symmetry), and can therefore be added
to the Lagrangian LΦ+V . The gauge invariance of LFI can be seen by explicitly writting its gauge
transformation

∫
d4θ V →

∫
d4θ (V +Λ+Λ̄) =

∫
d4θ V − 1

4
∫
d2θ D̄D̄Λ− 1

4
∫
d2θ̄ DDΛ̄ =

∫
d4θ V ,

where we have used
∫
d2θ̄ = −1

4D̄D̄,
∫
d2θ = −1

4DD, and then D̄α̇Λ = 0 = DαΛ̄, for chiral Λ
and anti-chiral Λ̄. The components of the superfields entering in the Lagrangian (1.28) are given
by [23]:

WαWα|θθ = −2iλσµ∂µλ̄−
1
2F

µνFµν + i

4F
µνF ρσεµνρσ +D2, (1.30)

Φ+Φ−|θθ = ϕ+(y)F−(y) + ϕ−(y)F+(y)− ψ+(y)ψ−(y), (1.31)

Φ†egV Φ
∣∣∣
θθθ̄θ̄

= FF̄ + ϕ2ϕ̄+ i∂µψ̄σ̄
µψ + gvµ

(1
2 ψ̄σ̄

µψ + i

2 ϕ̄∂
µϕ− i

2∂
µϕ̄ϕ

)
− ig√

2
(ϕλ̄ψ̄ − ϕ̄λψ) + 1

2

(
gD − 1

2g
2vµv

µ
)
ϕ̄ϕ, (1.32)

with yµ = xµ − iθσµθ̄, and where the last expansion has been evaluated in the Wess-Zumino
gauge, where V 3 = 0. Since we are interested in the scalar potential V of this model, we focus on
the scalar sector, putting fermions, vectors and derivative terms to zero. In particular, expanding
the fields in terms of x will not bring additional terms to the scalar potential. We deduce:

−V = |F+|2 + |F−|2 + gD

2 (|ϕ+|2 − |ϕ−|2) +m
(
ϕ+F− + ϕ−F+ + ϕ̄+F̄− + ϕ̄−F̄+

)
+ 1

2D
2 − ξD.
(1.33)

Replacing the auxiliary fields D,F± using their equations of motion,

D = g

2
(
|ϕ−|2 − |ϕ+|2

)
+ ξ, F+ = −mϕ̄−, F− = −mϕ̄+, (1.34)

we find the scalar potential

V =
(
m2 − gξ

2

)
|ϕ+|2 +

(
m2 + gξ

2

)
|ϕ−|2 + g2

8
(
|ϕ+|2 − |ϕ−|2

)2
+ ξ2

2 . (1.35)
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If ξ = 0, the minimum of V is obtained for ϕ+ = ϕ− = 0, and following (1.34), the vacuum is
therefore supersymmetric. If ξ 6= 0, the system presents two phases:

• m2 ± ξg
2 > 0: the minimum is reached at ϕ+ = ϕ− = 0, and V 6= 0 at the minimum:

supersymmetry is spontaneously broken while the gauge symmetry remains unbroken.
From the auxiliary fields equations of motion (1.34), we see that at the minimum, 〈F 〉 = 0
and 〈D〉 6= 0: supersymmetry breaking is purely of D-type. The Goldstino is the gaugino.

• m2± ξg
2 < 0: the minimum is reached at ϕ+ 6= 0, ϕ− 6= 0, and V 6= 0 at the minimum: both

supersymmetry and gauge symmetry are spontaneously broken. We now have 〈F 〉 6= 0 and
〈D〉 6= 0, and supersymmetry breaking is thus of mixed D and F -types. The Golstino is a
linear combination of the chiral fermions and the gaugino.

Therefore, this model shows how a FI term
∫
d4θV produces a spontaneous breaking of global

supersymmetry. The idea to keep in mind is that supersymmetry breaking is controlled by non-
vanishing vacuum expectation values (vev) of auxiliary fields, while gauge symmetry breaking
is controlled by non-vanishing vev of dynamical fields. In the next section, we discuss the fun-
damental origin of FI terms in global supersymmetry, before studying in Section 1.4.3 why does
the procedure described in the current section fail in supergravity, and how a FI term can be
written in this case.

1.4.2 Theoretical approach to Fayet-Iliopoulos terms in global supersymme-
try

Before introducing FI terms in supergravity, let us discuss their fundamental origin in global
supersymmetry. We explained in Section 1.3.1 how Kähler geometry naturally arises is global
supersymmetry. In particular, we found that the scalar sector can be described in terms of a
Kähler manifoldM, whose coordinates are the complex scalar fields and the metric is given by
the second derivative of a Kähler potential. On the other hand, the FI Lagrangian (1.29) involves
the highest component D of a vector multiplet. From the Kähler geometry point of view, vector
multiplets are included in a supersymmetric chiral theory by gauging the isometries ofM.

In a very general way, symmetries of a manifold are defined by Killing vectors. In Appendix
A.2, we discuss the symmetries of a Kähler manifold and show that such symmetries are deter-
mined in a simpler and more restrictive way than those of a given manifold. Indeed, they are
defined by holomorphic Killing vectors kαA(ϕ), each of them, in turn, being characterized by real
functions PA(ϕ, ϕ̄) called moment maps or Killing potentials. They are defined up to constants
ξA, PA → PA + ξA. Denoting G the Lie group of global symmetries ofM, a subgroup G0 ⊂ G

is chosen as the gauge group. In general, G0 will be a non-abelian group, whose generators
are labelled by the index A. Each Killing vectors kA will be associated to a vector multiplet
(AAµ , λA, DA). The kA generate a Lie algebra whose structure is defined by the Lie brackets
[kA, kB] = fAB

CkC , [k̄A, k̄B] = fAB
C k̄C , and [kA, k̄B] = 0. It can be shown [23] that the moment

maps PA can be chosen to transform in the adjoint representation of G0, namely:(
kαA∂α + kᾱA∂ᾱ

)
PB(ϕ, ϕ̄) = fAB

CPC(ϕ, ϕ̄). (1.36)

This relation, called equivariance relation, fixes the constants ξA for non-abelian groups. How-
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ever, an undetermined ξA constant remains for each U(1) factors of G0. As we are now going to
discuss, these ξA constants are actually Fayet-Iliopoulos constants.

In order to get an action both supersymmetric and gauge invariant under the gauge group
G0, the kinetic term of (1.17) has to be modified into [10]:

−Kαβ̄∂µϕ
α∂µϕ̄β̄ → −Kαβ̄Dµϕ

iDµϕ̄j̄−iDAkαAKα = −Kαβ̄Dµϕ
iDµϕ̄j̄+DAPA(ϕ, ϕ̄)+iDArA(ϕ),

(1.37)
with Dµϕ

α ≡ ∂µϕα −AAµ kαA. The last equality follows from the relation (A.2.8) between K and
PA, derived in Appendix A.2 and which is reproduced here for convenience:

PA(ϕ, ϕ̄) = i (kαAKα(ϕ, ϕ̄)− rA(ϕ)) . (1.38)

In the case when rA(ϕ) are restricted to be imaginary constants, the moment maps then take
the form PA = ikαAKα + ξA, where ξA ≡ −irA ∈ R are called Fayet-Iliopoulos constants. The
last term of (1.37) then produces a new term in the action,

SFI = −
∫
d4x ξAD

A, (1.39)

which is precisely a FI action as already introduced in Eq. (1.29). From the supersymmetric
and gauge transformations of DA, δs(ε)DA = i

2 ε̄γ∗γ
µ
(
∂µλ

A + λCABµ fBC
A
)

and δg(θ)DA =
θCDBfBC

A, we see that SFI is both supersymmetric and gauge invariant if

ξAf
A
BC = 0, ∀B,C. (1.40)

Thus, for a non-abelian index A, ξA must vanish, while ξA 6= 0 is possible for any abelian A.

In summary, for abelian symmetries of M, constant shifts in the associated moment maps
PA are mathematically allowed. Physically, these constant shifts correspond to new terms in
the action of gauged supersymmetry: the so-called Fayet-Iliopoulos terms. Such terms, which
have been introduced by hand in the previous section through the Lagrangian (1.29), actually
arise from the fact that a U(1) gauge group gives some freedom in the definition of the moment
maps. For each U(1)A factor of the total gauge group G0 of the isometries ofM, there will be
an associated FI parameter ξA.

1.4.3 Fayet-Iliopoulos terms in supergravity: Freedman model

In local supersymmetry, the gauge invariance of the Lagrangian (1.29) is no longer guaran-
teed. This basically comes from the fact that in curved space, the covariant generalizations of
the chiral projection operators D2 and D̄2 are given by (DD − 8R̄) and (D̄D̄ − 8R), with R
the chiral superspace curvature [23]. While we still have −1

4
∫
d2Θ2E D̄D̄Λ = 0, the new curved

space contribution 2
∫
d2Θ2E RΛ does not vanish in general and

∫
d4θEV is thus not gauge

invariant.
The introduction of FI terms in supergravity has first been carried out by Freedman in [12],

where it has been shown that such terms require the U(1) symmetry associated to the vector
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field V to be a R-symmetry. Before describing the Freedman model, let us first remind the
basic ideas of a R-symmetry in supersymmetry. Besides the super-Poincaré generators (1), one
can also add internal symmetry generators, which are Lorentz scalars and whose commutation
relations define a compact Lie algebra. In supersymmetry, two kinds of internal symmetry are
possible:

• A symmetry whose generators commute with the supercharges, called a gauge symmetry.
As a consequence, such symmetry acts uniformly on all fields in a given multiplet, and has
to leave the superpotential invariant.

• A symmetry whose generators do not commute with the supercharges, called aR-symmetry.
As a consequence, such symmetry acts differently on different components of a given mul-
tiplet, and acts as a phase transformation on the gauge field of supersymmetry, that is the
gravitino ψµ. In addition, the R-symmetry commutes with the Lorentz, translation and
gauge generators. In the superspace formalism, rotating the superchages implies that the
R-symmetry rotates the fermionic superspace coordinates {θ, θ̄}. In order for the superpo-
tential Lagrangian

∫
d2θW to be invariant, this implies that the R-symmetry also rotates

the superpotential.

We now show why writting a FI term in supergravity requires the associated U(1) symmetry to
be a R-symmetry. Following [13], let us consider the superspace Lagrangian

LFreedman FI = −3
∫
d4θEe

2
3 ξV , (1.41)

where E is the determinant of the supervierbein, and ξ a constant parameter as in (1.29). This
Lagrangian is not invariant under a U(1) gauge transformation

V → V + Λ + Λ̄, (1.42)

with Λ a chiral superfield, D̄α̇Λ = 0. However, one can remind that the superspace integral
together with E transform under a super-Weyl rescaling according to [23]:∫

d4θE →
∫
d4θEe2Σ+2Σ̄, (1.43)

with Σ a chiral superfield. The Freedman Lagrangian (1.41) is therefore gauge invariant if the
gauge transformation (1.42) is followed by a super-Weyl transformation (1.43), provided that Λ
and Σ are related through:

2Σ = −2
3ξΛ. (1.44)

The full transformation (1.42)+(1.43) rotates the gravitino, and is thus a R-symmetry. We still
have to show that the Lagrangian (1.41) effectively produces a constant FI term. The so-called
Freedman model in superspace is given by:

L = LFreedman FI + Lgauge = −3
∫
d4θEe

2
3 ξV + 1

4

(∫
d2Θ2EW2 + h.c.

)
. (1.45)
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The gauge Lagrangian is given in component fields by 4 e−1Lgauge
∣∣
λ=0 = −1

4F
µνFµν+ 1

2D
2, where

the topological term FF̃ has been discarded since it does not play any role in the following. In
the Wess-Zumino gauge, the Freedman Lagrangian can be expanded as

LFreedman FI = −3
∫
d4θEe

2
3 ξV = −3

∫
d4θE − 2ξ

∫
d4θEV − 2

3ξ
2
∫
d4θEV 2. (1.46)

To write it in terms of component fields, we need the following components of the superfields V
and E, which can be found for instance in [23, 29]:

V |λ=0 = −θσµθ̄vµ(x) + 1
2θθθ̄θ̄D(x), (1.47)

V 2 = −1
2θθθ̄θ̄v

µvµ, (1.48)

E|θ=θ̄=0 = e, (1.49)

E|θθ̄ = −2
3eθσ

µθ̄bµ −
e

4(θ̄σ̄µψµ)(θσνψ̄ν) + e

4(θ̄σ̄µψν)(θσνψ̄µ), (1.50)

E|θθθ̄θ̄ = 1
6eR+ 1

12eε
µνρσ(ψµσνDρψ̄σ − ψ̄µσ̄νDρψσ) + e

9MM∗ − e

9b
µbµ. (1.51)

We want to explicitly show that the U(1) symmetry gauges the R-symmetry (i.e. that the
gravitino is charged under the U(1)), and we thus expect a minimal coupling between the
gravitino and the vector field. It turns out that this coupling comes from the two last terms of
(1.50). We therefore explicitly detail their integration, while the others, more straightforward,
are left implicit. Denoting with ... the remaining terms in the product EV , we have:∫

d4θEV =
∫
d4θ

e

4
[
vρ(θασραα̇θ̄α̇)(θ̄β̇σ̄

µβ̇βψµβ)(θγσνγγ̇ψ̄γ̇ν )

−vρ(θασραα̇θ̄α̇)(θ̄β̇σ̄
µβ̇βψνβ)(θγσνγγ̇ψ̄γ̇µ)

]
+ ...

=
∫
d4θ

e

4vρ
[1

4ε
αγ(σραα̇δα̇β̇ σ̄

µβ̇βψµβ)(σνγγ̇ψ̄γ̇ν )

−1
4ε

αγ(σραα̇δα̇β̇ σ̄
µβ̇βψνβ)(σνγγ̇ψ̄γ̇µ)

]
θθθ̄θ̄ + ...

= e

16vρ
[
σραα̇σ̄

µα̇βψµβε
αγσνγγ̇ε

γ̇δ̇ψ̄νδ̇ − σ
ρ
αα̇σ̄

µα̇βψνβε
αγσνγγ̇ε

γ̇δ̇ψ̄µδ̇

]
+ ...

= e

16vρ
[
ψ̄νδ̇(σ̄

νδ̇ασραα̇σ̄
µα̇β)ψµβ − ψ̄µδ̇(σ̄

νδ̇ασραα̇σ̄
µα̇β)ψνβ

]
+ ...

= e

16vρ
[
ψ̄νδ̇(σ̄

νσρσ̄µ − σ̄µσρσ̄ν)δ̇βψµβ
]

+ ..., (1.52)

where, in the second equality, we have used θαθγ = −1
2ε
αγθθ, θ̄α̇θ̄β̇ = −1

2δ
α̇
β̇
θ̄θ̄, and in the fourth

equality, εαγσνγγ̇εγ̇δ̇ = σ̄νδ̇α. From the σ-matrices relation σ̄νσρσ̄µ − σ̄µσρσ̄ν = −2iενρµσσ̄σ, we
deduce ∫

d4θEV = − ie8 ε
νρµσψ̄ν σ̄σψµvρ + ... . (1.53)

This term is precisely a minimal coupling between the gravitino ψµ and the vector vρ. Therefore,
the gravitino is charged under the U(1) symmetry, and this U(1) is thus a R-symmetry, as already
expected with the superfield point of view from the relation (1.44). Bringing everything together,

4. The gaugino λ is put to zero for compactness in all this section.
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the Lagrangian (1.45) in component fields reads:

e−1 L|λ=0 = −1
2R+ 1

4ε
µνρσ(ψ̄µσ̄νDρψσ − ψµσνDρψ̄σ)− 1

3MM∗ + 1
3b

µbµ −
iξ

4 ε
µνρσψ̄µσ̄νψρvσ

+2
3ξb

µvµ + 1
3ξ

2vµvµ − ξD −
1
4F

µνFµν + 1
2D

2. (1.54)

Eliminating the auxiliary fields through their equations of motion, namely M = 0, bµ = −ξvµ
and D = ξ, yields:

e−1 L|λ=0 = −1
2R+ 1

4ε
µνρσ(ψ̄µσ̄νDρψσ−ψµσνDρψ̄σ)−1

4F
µνFµν−

iξ

4 ε
µνρσψ̄µσ̄νψρvσ−

ξ2

2 . (1.55)

This Lagrangian contains the Einstein-Hilbert, Rarita-Schwinger and Maxwell Lagrangians, to-
gether with a gravitino/vector minimal coupling and a constant FI term ξ2/2. We have therefore
shown that in supergravity, writting a FI term associated to a U(1) gauge multiplet (vµ, λ,D) is
possible provided that we promote the vector vµ to be the gauge field of the R-symmetry, rotating
the gravitino and the other fermions.

1.5 Superconformal approach to N = 1 supergravity

One of the approach to study N = 1, D = 4 supergravity coupled to gauge and chiral mul-
tiplets is the superconformal formalism. It is based on the idea that N = 1, D = 4 supergravity
can be seen as a gauge fixed superconformal gauge theory, in a similar way that Einstein’s Gen-
eral Relativity can itself be seen as a gauge fixed conformal gauge theory. The goal of this section
is not to present an exhaustive derivation of the superconformal approach to supergravity, which
is too broad to be strictly presented in this thesis and which can be found in details in [10], on
which this section is largely based. Rather, it aims to present and summarize the basic ideas
of this formalism, to highlight in a different perspective some of the concepts already discussed
previously, especially Kähler transformations, FI terms in supergravity and AdS supergravity,
as well as to introduce the formalism which will be used in Section 1.6.

1.5.1 SU(2, 2|N = 1) superconformal algebra

Conformal supergravity can be seen as the gauge theory of the superconformal algebra
SU(2, 2|1). This superalgebra contains the conformal algebra SU(2, 2) ' SO(4, 2) in its Lie
subalgebra, spanned by the generators Pa, Mab, D and Ka of translations, Lorentz transforma-
tions, dilatations and special conformal transformations. Its bosonic subalgebra also contains a
U(1) factor, which is an R-symmetry and whose generator is denoted T . The fermionic gener-
ators are the usual Poincaré supercharge Qα together with the conformal supercharge Sα. The
latter can be understood in the following way: its square is the special conformal generator
Ka, in the same way that the square of Qα is a translation Pa. The superalgebra SU(2, 2|1) is
determined by the following set of (anti-)commutation relations. First, the conformal algebra
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SU(2, 2) ' SO(4, 2) is determined by the non-vanishing commutators:

[Mab,Mcd] = 4η[a[cMd]b], [Pa,Mbc] = 2ηa[bPc],

[Ka,Mbc] = 2ηa[bKc], [Pa,Kb] = 2(ηabD +Mab), (1.56)

[D,Pa] = Pa, [D,Ka] = −Ka.

Qα and Sα being Lorentz spinors, we have:

[Mab, Qα] = −1
2 (γab)βαQβ, [Mab, Sα] = −1

2 (γab)βα Sβ. (1.57)

Non-vanishing commutators involving D are:

[D,Pa] = Pa, [D,Qα] = 1
2Qα, [D,Sα] = −1

2Sα, [D,Ka] = −Ka. (1.58)

The U(1) generator T commutes with all generators of the conformal algebra. T being an R-
symmetry, it rotates the supercharges through a chiral transformation:

[T,Qα] = −3
2 i(γ∗)α

βQβ, [T, Sα] = 3
2 i(γ∗)α

βSβ. (1.59)

The last non-vanishing commutators are:

[Ka, Qα] = γaSα, [Pa, Sα] = γaQα. (1.60)

Finally, the anti-commutators of the fermionic generators are:

{Qα, Qβ} = −1
2(γa)αβPa, {Sα, Sβ} = −1

2(γa)αβKa,

{Qα, Sβ} = −1
2δα

βD − 1
4(γab)α

β
Mab + 1

2 i(γ∗)
β
αT. (1.61)

In a nutshell, gauging a symmetry group requires to introduce a gauge fieldBµ for each generators
of the group, and then replace partial derivatives by covariant derivatives of the form Dµ ≡
∂µ−BA

µ ΣA, with ΣA the generators and A running from 1 to the dimension of the gauge group.
For the gauge group SU(2, 2|1), the generators and their associated gauge fields, forming the
so-called Weyl multiplet 5, are listed in Table 1.1.

SU(2, 2|1) superconformal algebra
Bosonic subalgebra: SU(2, 2)× U(1) Representation formed by fermionic generators
Pa Mab D Ka T Qα Sα

eaµ ωabµ bµ faµ Aµ ψαµ φαµ

Table 1.1 – Generators and gauge fields of the superconformal algebra SU(2, 2|1).

In addition to the usual Lorentz spins (j1, j2), multiplet components are characterized in the
superconformal approach by two other parameters (w, c), respectively called Weyl and chiral
weights, specifying the properties under the dilatation D and chiral T transformations. These

5. In the Weyl multiplet (eaµ, ωabµ , bµ, faµ , Aµ, ψαµ , φαµ), only eaµ, bµ, Aµ and ψαµ are independent fields. ωabµ , faµ
and φαµ have to be seen as composite fields, functions of the four independent fields.
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weights are defined by the transformation property of the lowest component C of the multiplet
through:

δD(λD)C = wλDC, δT (λT )C = icλTC. (1.62)

Conformal weights for the Weyl multiplet and gauge multiplet are uniquely fixed, and can be
found for instance in [10]. For the following discussion, we need to keep in mind the weights
of the vierbein, w(eaµ) = −1, c(eaµ) = 0. Conformal weights for chiral and real multiplets are
arbitrary. Let us consider first a chiral multiplet (Z,PLχ, F ), with w(Z) ≡ w, c(Z) ≡ c. Ap-
plying the commutator [D,Qα] = 1

2Qα to Z, and using DZ = wZ, QαZ = 1√
2PLχα, we get

DPLχα = (w+ 1
2)PLχα, that is, w(PLχ) = w+ 1

2 . Similarly, one can find w(F ) = w+1. In a simi-
lar way, chiral weights are found from the commutator [T,Qα] = −3

2 i(γ∗)α
βQβ. If c(Z) ≡ c, then

c(PLχ) = c − 3
2 , and c(F ) = w − 3. We then consider a real multiplet (C,PLζ,H, Bµ, PRλ,D).

The lowest component C being real, it cannot undergo a complex transformation, and therefore
c(C) = 0. With w(C) ≡ w, applying the same reasoning as above gives w(D) = w + 2 and
c(D) = 0. This is everything we will need regarding the conformal weights to write invariant
actions.

In order to write superconformal invariant actions, we need to generalize the F and D terms
of global supersymmetry. Those were the highest components of chiral and real multiplets, and
what we need in the superconformal case is thus two applications extracting superconformal
invariant quantities from chiral and real multiplets. For this, the operation [ ]F is defined as
acting on a chiral multiplet (Z,PLχ, F ) of weights (3, 3) by:

[ ]F : (Z,PLχ, F )→ [Z]F ≡
e

2

[
F + 1√

2
ψ̄µγ

µPLχ+ 1
2Zψ̄µγ

µνPRψν + h.c.

]
. (1.63)

The operation [ ]D is defined as acting on a real multiplet (C,PLζ,H, Bµ, PRλ,D) of weights
(2, 0) by:

[ ]D : (C, ζ,H, Bµ, λ,D) → [C]D ≡
e

2

[
D − 1

2 ψ̄µγ
µiγ∗λ−

1
3CR(ω)

+1
6
(
Cψ̄µγ

µρσ − iζ̄γρσγ∗
)
R′ρσ(Q) (1.64)

+1
4ε

abcdψ̄aγbψc

(
Bd −

1
2 ψ̄dζ

)]
,

with R(ω) and R′(Q) the graviton and gravitino curvatures. The weights of the multiplets
the operations [ ]F and [ ]D act on are fixed by the requirement that the total weights of
the Lagrangian vanishes, and by the weights of the determinant of the vierbein, w(e) = −4,
c(e) = 0. To compensate them, we need F to have weights (w, c) = (4, 0), which implies from
the discussion of the previous paragraph Z to have weights (w, c) = (3, 3). Similarly, we need
D to have weights (4, 0), which implies C to have weights (w, c) = (2, 0). As shown in [10],
these operations can then be used to build superconformal invariant actions from chiral and real
multiplets, respectively according to:

SF =
∫
d4x [Z]F , SD =

∫
d4x [C]D. (1.65)
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From now on, we denote by X = (XI , I = 0, ..., n) a set of n+ 1 chiral fields, with Weyl weights
chosen as w(XI) = 1, and by {λA, A = 1, ..., nV } the gauginos of nV vector multiplets. Using
these notations and the definitions introduced above, the (ungauged) superconformal invariant
action of N = 1 supergravity coupled to n+ 1 chiral and nV vector multiplets is written as:

L =
[
N(X, X̄)

]
D

+ [Σ(X)]F −
1
4
[
fAB(X)λ̄APLλB

]
F
. (1.66)

The two first terms are respectively the kinetic and potential terms of the chiral multiplets, while
the third one is the kinetic term for the gauge multiplets. This action is completely characterized
by three functions: a real Kähler potential N(X, X̄), a holomorphic superpotential Σ(X), and a
holomorphic gauge kinetic function fAB(X). The requirement of conformal symmetry imposes
the following additional conditions on these three functions 6:

• The Kähler potential: a conformal invariant action
∫
d4x [N(X, X̄)]D can be obtained

provided that w(N(X, X̄)) = 2. Since N(X, X̄) must also be real, it is homogeneous of
first degree in both X and X̄. We deduce that N must satisfy:

N(λX, λ̄X̄) = λλ̄N(X, X̄), ∀λ ∈ C. (1.67)

• The superpotential: a conformal invariant action
∫
d4x [Σ(X)]F can be obtained provided

that w(Σ(X)) = 3. On the one hand, by definition of the Weyl weight w, we have δDΣ(X) =
w(Σ(X))λDΣ(X) = 3λDΣ(X). On the other hand, using the chain rule and w(XI) = 1, we
have δDΣ(X) = ΣIδDX

I = ΣIw(XI)λDXI = ΣIλDX
I . We deduce that Σ must satisfy:

XIΣI = 3Σ(X). (1.68)

• The gauge kinetic function: similarly to the superpotential, the quantity fAB(X)λ̄APLλB

must have Weyl weight w(fAB(X)λ̄APLλB) = 3. Since λ̄APLλB already has Weyl weight
3, fAB must have vanishing Weyl weight, namely δDfAB(X) = 0 = fAB,IδDX

I

= fAB,Iw(XI)λDXI = fAB,IX
IλD. We deduce that fAB must satisfy:

XIfAB,I = 0. (1.69)

Each terms of (1.66) are independently superconformal invariant, provided that N(X, X̄), Σ(X)
and fAB(X) satisfy the relations (1.67), (1.68), and (1.69).

In Section 1.3.1, we have seen how Kähler manifolds serve as the scalar field target space
in a supersymmetric nonlinear σ-model. This is still the case in supergravity 7. The chiral fields
{XI , I = 0, ..., n} can be seen as the coordinates of a (n + 1)-dimensional Kähler manifold
called the embedding manifold. So far, {XI , I = 0, ..., n} was an arbitrary holomorphic set of

6. We use the notations GIJ̄ = NIJ̄ ≡ ∂2N
∂XI∂X̄J̄

, ΣI ≡ ∂Σ(X)
∂XI

and fAB,I ≡ ∂fAB(X)
∂XI

.
7. In supergravity, further conditions on the Kähler manifold are required compared to global N = 1 super-

symmetry. For instance, in N = 1 supergravity, the target space is not a pure Kähler manifold, but has to be a
Kähler-Hodge manifold. We will not discuss them in this thesis, but mathematical definition and their origin in
supergravity can be found in [10].
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coordinates. Requiring them to be homogeneous, they can be defined by the set {s0, z
α, α =

1, ..., n} through functions ZI(z) according to:

XI = s0Z
I(z). (1.70)

The simplest choice for the ZI is Z0 = 1, Zα = zα. In the variables {s0, z
α}, homogeneity

requires that N is the product s0s̄0 times a function of z and z̄. We can thus write N as:

N(X, X̄) = −a s0s̄0 e
−K(z,z̄)

a , (1.71)

where a is a constant which will be specified later. On the other hand, (1.68) means that the
superpotential Σ(X) on the embedding manifold is a homogeneous holomorphic function of third
degree. It is thus given in terms of s0 and zα by

Σ(X) = s3
0W (z). (1.72)

In the {s0, z
α} coordinates, the superconformal invariant Lagrangian (1.66) therefore reads:

L = −a
[
S0S̄0e

−K(z,z̄)
a

]
D

+
[
S3

0W (z)
]
F
− 1

4
[
fAB(X)λ̄APLλB

]
F
. (1.73)

S0, S̄0 are chiral and anti-chiral multiplets called compensator multiplets, that we write in com-
ponent form as S0 = (s0, PLΩ0, F0) and S̄0 = (s̄0, PRΩ0, F̄0).

In order to get the physical matter-coupled supergravity Lagrangian from the superconformal
Lagrangian (1.73), we need to gauge fix the superconformal symmetries that are not in the super-
Poincaré algebra, namely Ka, S, D and T . Special conformal transformations can be fixed by
imposing bµ = 0, while gauge fixing conformal S-supersymmetry is obtained by imposing the
chiral (anti-chiral) fermion PLΩ0 (PRΩ0) superpartner of the compensator scalars s0 (s̄0) to
vanish, which thus removes one extra fermion field. Since N transforms under the scaling as
δN = 2λDN , one can fix the dilatation gauge by imposing a constant N 8, N(X, X̄) = −a. This
gauge condition amounts to fix the modulus of s0, as can be seen in the following way. Let us
write −a = N(X, X̄) = XINIJ̄X̄

J̄ = s0s̄0Z
I(z)NIJ̄ Z̄

J̄(z̄), where we have used the homogeneity
property of N in the second equality and the decomposition (1.70) in the third one. This implies:

s0s̄0 = −a
(
ZI(z)GIJ̄ Z̄ J̄(z̄)

)−1
, (1.74)

so that |s0| is determined in terms of the physical scalars zα, z̄ᾱ. Finally, the T superconformal
symmetry can be gauge fixed imposing s0 = s̄0, which amounts to fix the phase of s0. These
results are summarized in Table 1.2.

8. Restoring the (reduced) Planck mass κ−1 = 2.4× 1018GeV, we have N(X, X̄) = −aκ−2. The Planck mass
in a (super)gravitational theory can thus be mathematically seen as arising from the breaking of the dilatation
symmetry in a conformally invariant embedding theory.
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Gauge fixing conditions
K-gauge bµ = 0
S-gauge Ω0 = 0
D-gauge N(X, X̄) = −a
T-gauge s0 = s̄0

Table 1.2 – Gauge fixing conditions reducing the SU(2, 2|N = 1) superconformal algebra to
the N = 1 super-Poincaré algebra

The value of a depends on the theory considered. For N = 1 supergravity, in order to get a
canonically normalized Einstein-Hilbert action, we need to choose a = 3, which we will keep in
the following. Using the D and T-gauge conditions into (1.71), one gets

s0 = s̄0 = e
K(z,z̄)

6 , (1.75)

which will be the gauge fixing condition for the compensating scalars that we will use in the
following. In pure N = 1 supergravity where K(z, z̄) = 0, it reduces to s0 = s̄0 = 1.

In conclusion, the S-gauge condition has eliminated the fermion Ω0, while the D and T-
gauge conditions have fixed the s0, s̄0 scalars in terms of the zα and z̄ᾱ, so that s0 and s̄0 are
no longer independent physical scalars. The gauge-fixing procedure has therefore removed the
chiral and anti-chiral compensating multiplets S0 and S̄0, so that the gauge fixed theory (i.e.
N = 1 supergravity) contains n chiral multiplets while the superconformal theory contained
n+ 1 ones. Only the n zα will remain as the physical chiral matter fields. Their complex scalar
lowest components form the coordinates of a n-dimensional Kähler manifold, called the projective
manifold. The real function K(z, z̄) is the Kähler potential of this physical scalar field target
space.

1.5.2 New perspectives from the superconformal formalism

Kähler transformations

In the superconformal formalism, Kähler transformations arise from the relation (1.70) be-
tween the arbitrary holomorphic basis {XI} and the physical basis {s0, z

α} of the embedding
Kähler manifold. Indeed, we see that if we redefine the second set according to

s0 → s′0 = s0e
f(z)
a , ZI(z)→ Z ′I(z) = ZI(z)e−

f(z)
a , (1.76)

then the original ones {XI} are unchanged. Combining Eqs. (1.74) and (1.75), we get
K(z, z̄) = −a ln(−a−1ZIGIJ̄ Z̄

J̄). Using Z ′I in this latter equation, we see that under a trans-
formation (1.76), K transforms according to

K(z, z̄)→ K ′(z, z̄) = K(z, z̄) + f(z) + f̄(z̄), (1.77)

which is precisely a Kähler transformation as already defined in Section 1.3.1. While the homo-
geneity property (1.67) of the Kähler potential N(X, X̄) of the embedding Kähler manifold does
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not permit Kähler transformations on N , Kähler transformations of the Kähler potential K(z, z̄)
of the projective Kähler manifold are allowed. From the superconformal point of view, Kähler
transformations can therefore be seen as transformations in the projective space, arising from
the ambiguity (1.76) to define coordinates in the embedding space. Let us consider a general
function V (z, z̄) transforming under Kähler transformations as

V (z, z̄)→ V ′(z, z̄) = V (z, z̄)e−a−1(w+f(z)+w−f̄(z̄)). (1.78)

Such functions are said to have Kähler weights (w+, w−). Assuming V to be scalar under complex
coordinate transformations on the projective manifold 9, it is therefore natural to define its
covariant derivatives as:

∇αV (z, z̄) ≡ ∂αV (z, z̄)+w+a
−1 (∂αK)V (z, z̄), ∇̄ᾱV (z, z̄) ≡ ∂ᾱV (z, z̄)+w−a−1 (∂ᾱK)V (z, z̄).

(1.79)
One can check that these quantities are indeed covariant under Kähler transformations as re-
quired for a covariant derivative, namely ∇αV (z, z̄) → ∇αV (z, z̄)e−a−1(w+f(z)+w−f̄(z̄)). In this
terminology, ZI(z), Z̄ Ī(z̄) have Kähler weights (1, 0) and (0, 1), while s0, s̄0 have weights (−1, 0)
and (0,−1). On the other hand, we have already seen that the superpotentials of the embedding
and the projective manifold Σ and W are related by Σ = s3

0W (z). For Σ to be Kähler invariant,
W (z) must then carry Kähler weights (3, 0). With the choice a = 3, the Kähler transformations
of W and s0 are thus given by:

W (z) → W ′(z) = W (z)e−f(z), (1.80)

s0 → s′0 = s0e
f(z)

3 , (1.81)

while the covariant derivatives of ZI and W read:

∇αZI ≡ ∂αZ
I + 1

3 (∂αK)ZI , (1.82)

∇αW ≡ ∂αW + (∂αK)W. (1.83)

These transformations and Kähler covariant quantities will be at the core of the constructions
presented in Section 1.6.

Fayet-Iliopoulos terms and R-symmetry

The supergravity action (1.73) discussed so far is invariant under the SU(2, 2|1) supercon-
formal algebra, as well as under Yang-Mills gauge symmetries which commute with local super-
conformal symmetries. Yang-Mills symmetries are local internal symmetries of the embedding
Kähler manifold. Symmetries of Kähler metrics are discussed in Appendix A.2. The main result
obtained here is that such symmetries are determined by real moment maps:

PA(z, z̄) = i (kαA∂αK(z, z̄)− rA(z)) = −i
(
kᾱA∂ᾱK(z, z̄)− r̄A(z̄)

)
, (1.84)

9. If V does transform under complex coordinate transformations, that is if V carries α or ᾱ indices, then the
Christoffel connection has to be added to its covariant derivatives.
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where rA(z) are arbitrary holomorphic functions, and kαA are the holomorphic Killing vectors
characterizing each symmetries labelled by the index A. They are holomorphic functions of the
scalars {XI , I = 0, ...n}, and can be expanded on this basis according to kA(X) = kIA

∂
∂XI . Denot-

ing θA the gauge parameters of the gauge transformations, infinitesimal gauge transformations
on the scalar fields {XI , I = 0, ...n} are given by:

δXI = θAkJA
∂XI

∂XJ
= θAkIA, (1.85)

while those on the coordinates {s0, z
α} are [10]:

δzα = θAkαA(z), δs0 = 1
3θ

As0rA(z). (1.86)

We would like to study the relation between FI terms irA and the R-symmetry. To this purpose,
let us first compute the relation between the Killing vectors kIA of the embedding manifold and
those kαA of the projective manifold. Using the relation (1.70) XI = s0Z

I(zα) and the chain rule,
infinitesimal gauge transformations on XI can be written as

δXI = δs0Z
I(zα) + s0δZ

I(zα)

= δs0Z
I(zα) + s0δz

α∂αZ
I(zα)

= 1
3θ

As0rAZ
I + s0θ

AkαA∂αZ
I , (1.87)

where the last equality follows from the gauge transformations (1.86) of the physical coordinates
{s0, z

α}. Expressing rA in terms of the moment maps PA using (1.84), we get:

δXI = θAs0

[1
3 (iPA + kαA∂αK)ZI + kαA∂αZ

I
]

= θAs0

[
i

3PAZ
I + kαA∇αZI

]
, (1.88)

where in the second equality we have brought together the second and third term of the first
equality into the covariant derivative ∇αZI (1.82). Identification with δXI = θAkIA gives the
following relation between kIA and kαA:

kIA = s0

[
i

3PAZ
I + kαA∇αZI

]
, ∀A. (1.89)

We now use the invariance of Σ under gauge symmetries, namely δΣ = θAkIAΣI = 0. Eq.(1.89)
therefore implies that

∀A, 0 = s0

[
i

3PAZ
I + kαA∇αZI

]
ΣI

= iPAW + kαA∇αW, (1.90)

where the last equality follows from the relations s0ΣIZ
I = ΣIX

I = 3Σ = 3s3
0W and s0ΣI∇αZI =

∇αΣ = s3
0∇αW . Finally, using again the expression of the moment map PA (1.84) as well as the
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covariant derivative ∇αW (1.83), we deduce that:

kαA∂αW (z) = −rA(z)W (z), ∀A. (1.91)

The relation (1.91) is of utmost importance for the physics of Fayet-Iliopoulos terms in super-
gravity. It tells us that the gauge properties of the physical superpotential W (z) are related
to the holomorphic functions rA(z). In particular, we find that if a Fayet-Iliopoulos constant
ξA ≡ −irA(z) 6= 0 (that is, if the compensator field s0 is charged under the gauge transforma-
tions according to (1.86)), then the superpotential W (z) cannot be gauge invariant under the
associated U(1)A. This gauge symmetry is therefore a R-symmetry. We thus find back through
the superconformal formalism the result already derived in Section 1.4.3.

Anti-de Sitter supergravity

In the superconformal formalism, the Lagrangian of pure N = 1 supergravity is simply the
D-term of (1.73) with a vanishing Kähler potential and a = 3, namely

Lsugra = −3
[
S0S̄0

]
D
, (1.92)

with the chiral and anti-chiral compensator multiplets given by S0 = (s0, PLΩ0, F0) and S̄0 =
(s̄0, PRΩ0, F̄0). After gauge fixing the conformal symmetries, it yields the action [10]:

Ssugra =
∫
d4x

e

2
[
R(ω(e, ψ))− ψ̄µγµνρDνψρ + 6AµAµ − 6F0F̄0

]
, (1.93)

with Dνψρ ≡
(
∂ν + 1

4ωνab(e, ψ)γab
)
ψρ. The complex scalar F0 and the real vector Aµ are the

auxiliary fields of the gravitational multiplet, corresponding to the auxiliary complex scalar
M and real vector bµ introduced in the superspace formalism in Section 1.4.3. They can be
eliminated from the action using their trivial classical equations of motion F0 = 0, Aµ = 0. We
then find back the pure N = 1 supergravity action (1.18).

As explained in Section 1.3.2, the simplest extension of pure N = 1 supergravity is the
so-called anti-de Sitter supergravity. It is obtained from the superconformal formalism by sup-
plementing the pure supergravity action with a constant superpotential of the projective space,
W (z) = W0. The Lagrangian thus reads:

LAdS = −3
[
S0S̄0

]
D

+
[
S3

0W0
]
F
. (1.94)

Using the result (B.0.9) of Appendix B, the composite chiral multiplet with lowest component
s3

0W0 is given by

S3
0W0 = W0(s3

0, 3s2
0PLΩ0, 3s2

0F0 − 3s0Ω̄0PLΩ0)

= (W0, 0, 3W0F0), (1.95)

where in the second line we have used the S-gauge fixing condition Ω0 = 0 as well as the D and
T-gauge fixing condition (1.75) s0 = s̄0 = 1. Using (1.63), the new term in the action is given
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by:
SW0 =

∫
d4x

e

2

[
3W0(F0 + F̄0) + 1

2W0ψ̄µγ
µνψν

]
. (1.96)

Considering the full action SAdS ≡ Ssugra + SW0 , the field equations for the auxiliary fields give
Aµ = 0 as previously, but now a non-vanishing F0 = W0

2 . Using this expression for F0 in the
total action, we find:

SAdS =
∫
d4x

e

2
[
R(ω(e, ψ))− ψ̄µγµνρDνψρ +m3/2ψ̄µγ

µνψν − 2Λ
]
, (1.97)

with m3/2 = W0
2 , Λ = −3

4W
2
0 = −3m2

3/2.
Again, we find back with the superconformal formalism a result already derived in Section

1.3.2: the value of the gravitino mass and the AdS cosmological constant are not independent
parameters, both of them being set by the constant superpotential W0. In order to be able to
tune the cosmological constant independently from the gravitino mass, one might want to add
a constant FI term to the action (1.97). However, as explained in Sections 1.4.3 and 1.5.2, this
necessarily implies the gauging of the R-symmetry and so forbids the constant superpotential
written there. This issue motivates the construction of a new kind of FI term which does not
require the gauging of the R-symmetry, which is the topic of the next section.

1.6 Fayet-Iliopoulos terms in supergravity without gauged R-
symmetry

1.6.1 The original construction and an improved version

So far, we have discussed through the Freedman model in Section 1.4.3 and the supercon-
formal approach in Section 1.5.2 why, in N = 1 supergravity, does a Fayet-Iliopoulos term
associated to a U(1) gauge multiplet require this U(1) to be a R-symmetry. However, in [14], a
new type of FI term which does not imply the gauging of the R-symmetry has been developped.
The idea is to replace the Freedman Lagrangian (1.41) by:

LFreedman FI = −3
∫
d4θEe

2
3 ξV → −3

∫
d4θE + Lnew FI , (1.98)

with
Lnew FI = 8ξ

∫
d4θE

W2W̄2

D2W2D̄2W̄2D
αWα. (1.99)

Let us first look how such Lagrangian produces a constant FI term in the case of global su-
persymmetry. Putting the gaugino λ to zero, the component expansion of the square of the
supersymmetric field strength is 10

W2
∣∣∣
λ=0

= (D2 − 1
2F

µνFµν)θ2. (1.100)

10. Up to the Chern-Simons term i
4 ε
µνρσFµνFρσ which does not play a role in this discussion and is thus

discarded.



32 Chapter 1 – Cosmological models in supergravity through Kähler invariant Fayet-Iliopoulos terms

W2W̄2 already being a θ2θ̄2 term, only the lowest components of the remaining superfields
entering in the Lagrangian (1.99) will play a role in the integration. They are given by

DαWα| = −2D, (1.101)

D2W2
∣∣∣ = 2FµνFµν − 4D2, (1.102)

where X| denotes the lowest component of the superfield X. In global supersymmetry, the
bosonic part of the new FI Lagrangian is thus given by

8ξ
∫
d4θ

W2W̄2

D2W2D̄2W̄2D
αWα = 8ξ

(D2 − 1
2F

µνFµν)2

(2FµνFµν − 4D2)2 (−2D) + ξO(λ, λ̄) = −ξD + ξO(λ, λ̄),

(1.103)
which is a constant FI term. One can henceforth notice that this term makes sense only when
〈D〉 6= 0: supersymmetry is thus spontaneously broken by a D-term, and the goldstino is iden-
tified with the gaugino λ.

In order to discuss the supergravity generalisation of this new FI Lagrangian, we now
adopt the superconformal formalism presented in Section 1.5. In this formalism, denoting S0 =
(s0, PLΩ0, F0) and S̄0 = (s̄0, PRΩ0, F̄0) the chiral and anti-chiral compensator fields, with con-
formal weights (1, 1) and (1,−1) respectively, the new FI Lagrangian (1.99) reads:

LFI = −ξ
[
S0S̄0

W2W̄2

T (W̄2)T̄ (W2)
(V )D

]
D

. (1.104)

ξ is a constant parameter, (V )D is a real linear multiplet defined by

(V )D = (D, /Dλ, 0,DbF̂ab,−/D /Dλ,−2CD), (1.105)

whose lowest component D is the real auxiliary field of the vector superfield V , the latter having
(anti)-chiral field strength (W̄) W given by

W2 = λ̄PLλ

S2
0
, W̄2 = λ̄PRλ

S̄2
0
, (1.106)

so that (V )D is given by the super-covariant derivative of W. The chiral projection operator
T acts on an anti-chiral multiplet X̄ of weights (1,−1) to produce a chiral multiplet T (X̄) of
weights (2, 2) according to:

T : X̄ = (X̄, PRΩ, F̄ ) 7−→ T (X̄) = (F̄ , /DPRΩ,2CX̄). (1.107)

λ̄PLλ has weights (3, 3) and reads, in components form:

λ̄PLλ =
(
λ̄PLλ;

√
2PL

(
−1

2γ · F̂ + iD

)
λ; 2λ̄PL /Dλ+ F̂− · F̂− −D2

)
, (1.108)
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with the covariant field strength F̂ab and the self-dual and anti self-dual tensors F̂±ab given by

F̂ab = eµae
ν
b (2∂[µAν] + ψ̄[µγν]λ), F̂±ab = 1

2(F̂ab ± ˜̂
Fab). (1.109)

The dual field strength is ˜̂
Fab = −1

2 iεabcdF̂
cd, while the covariant derivative Dµλ is defined by

Dµλ =
(
∂µ −

3
2bµ + 1

4w
ab
µ γab −

3
2 iγ∗Aµ

)
λ−

(1
4γ

abF̂ab + 1
2 iγ∗D

)
ψµ. (1.110)

As discussed in Section 1.5.1, the fields bµ, wabµ and Aµ are the gauge fields corresponding to
dilatations, Lorentz transformations and T symmetry of the conformal algebra respectively. In
this subsection, we summarize the results obtained in [14, 16]. The technical details are postponed
to Section 1.6.2, which presents a generalization of the scalar potential obtained in these two
papers that has been carried out during this first project.

Let us first consider the Lagrangian of Anti-de Sitter supergravity, described in Sections
1.3.2 and 1.5.2, coupled to an abelian U(1) gauge multiplet plus the FI term (1.104). The full
Lagrangian reads:

L = −3
[
S0S̄0

]
D

+
[
S3

0W0
]
F
− 1

4g2

[
λ̄PLλ

]
F

+ LFI . (1.111)

Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the goldstino being the U(1) gaugino. In component
form, after having gauge fixed the scalar compensator through s0 = 1, integrated the auxiliary
fields, and in the unitary gauge where the goldstino vanishes, one gets [14]:

e−1L = 1
2
(
R− ψ̄µγµνρDνψρ +m3/2ψ̄µγ

µνψν
)
− 1

4g2F
µνFµν −

(
−3m2

3/2 + 1
2ξ

2
)
. (1.112)

withm3/2 = W0
2 , a constant superpotential. Therefore, in the absence of chiral matter superfields,

any ξ 6= 0 uplifts the vacuum energy by a constant term VFI = ξ2/2 and breaks supersymmetry.
One can then tune ξ to get a de Sitter vacuum configuration, matching with the observational
data. For instance, ξ =

√
6m3/2 gives a massive gravitino in flat Minkowski spacetime with

spontaneously broken supersymmetry.
Introducing chiral matter multiplets Xi in the previous model, the Lagrangian is now given

by:
L = −3

[
S0S̄0e

−K(Xi,X̄i)/3
]
D

+
[
S3

0W (Xi)
]
F
− 1

4g2

[
λ̄PLλ

]
F

+ LFI . (1.113)

In component form, after having gauge fixed the scalar compensator through s0 = eK/6 and
integrated the auxiliary fields, the bosonic part of the previous Lagrangian reads [14]:

e−1L
∣∣∣
bos

= 1
2R−

1
4g2F

µνFµν −Gij̄∂X
i · ∂X̄ j̄ −

(
eK(|∇iW |2 − 3|W |2) + ξ2g2

2 e2/3K
)
. (1.114)

Therefore, when matter fields are coupled, the scalar potential contribution from (1.104) becomes
field dependent, VFI = ξ2g2

2 e2K/3, and no longer Kähler invariant, which basically comes from the
fact that the FI Lagrangian (1.104) is not itself Kähler invariant. To remedy this, a generalized
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Kähler invariant FI term has been built in [16]. From the generic Kähler transformations for a
Kähler potential K(X, X̄), a superpotential W (X) and the compensator S0,

K(X, X̄) → K(X, X̄) + J(X) + J̄(X̄),

W (X) → W (X)e−J(X), (1.115)

S0 → S0e
J(X)/3,

this new construction is based on the modification of the FI term (1.104) by introducing in it
the Kähler potential according to

LFI = −ξ
[
(S0S̄0e

−K/3)−3 (λ̄PLλ)(λ̄PRλ)
T (W̄ ′2)T̄ (W ′2)

(V )D
]
D

. (1.116)

The modified and henceforth Kähler invariant gauge field strengths are given by 11

W ′2 = λ̄PLλ

(S0S̄0e−K/3)2 , W̄ ′2 = λ̄PRλ

(S0S̄0e−K/3)2 . (1.117)

The new bosonic contribution to the scalar potential arising from this new term reads VFI = ξ2g2

2 ,
which is constant whether matter fields are included or not. The first aim of the project presented
in this chapter has been to generalise the work carried out in [14, 16] by building the most general
extended FI terms whose bosonic component is linear in the auxiliary field D, up to a general
field dependent coefficient, while preserving Kähler invariance at the same time. This work is
presented in the next subsection.

1.6.2 A set of Kähler invariant Fayet-Iliopoulos terms

The starting point of our new construction is to modify the field strengths (1.106) by intro-
ducing the superpotential W in order to make them Kähler invariant. This can be done in the
following way 12:

W2 = λ̄PLλ

S2
0W (X) 2

3
, W̄2 = λ̄PRλ

S̄2
0W̄ (X̄)

2
3
, (1.118)

where the 2
3 exponent of W (X) is uniquely fixed by the Kähler transformations (1.115) to get

Kähler invariant W2 and W̄2. The superpotential W has vanishing Weyl and Chiral weights
and is assumed to have a non-vanishing VEV. Therefore, W2 and W̄2 have the same (Weyl,
Chiral) weights (1, 1) and (1,−1) as those of (1.106), and one can thus still apply the (anti-)
chiral projection operators (T̄ ) T . The resulting multiplets T (W̄2) and T̄ (W2) then carry weights
(2, 2) and (2,−2). The operation [ ]D has to act on a multiplet of weights (2, 0). (V )D having
already weights (2, 0), we need to multiply it with a multiplet with vanishing weights, which
can be chosen (S0S̄0)−1 (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2) as it can be easily checked knowing the weights (1, 1) and
(3, 3) of S0 and λ̄PLλ, respectively. The Kähler potential K and the superpotential W having
vanishing weights, we can include them for free in the previous combination in the following

11. Note that these superfields are no longer chiral, contrary to the previous ones of Eq. (1.106).
12. Besides Kähler invariance, the new gauge field strengths (1.118) are again chiral like those of Eq. (1.106).
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form:
R(V )D ≡ (S0S̄0)−1enKWαW̄α (λ̄PLλ)(λ̄PRλ)

T (W̄2)T̄ (W2)
(V )D, (1.119)

where at this point the parameters n and α are arbitrary. As it can be seen from (1.115), the
quantity R(V )D is Kähler invariant provided that n and α are related by

n = 1
3 + α. (1.120)

Therefore, the most general Kähler invariant FI term involving both the Kähler potential
and the superpotential is in fact a set of Lagrangians labelled by one free parameter α according
to:

L(α)
FI = −ξα

[
(S0S̄0)−1e( 1

3 +α)KWαW̄α (λ̄PLλ)(λ̄PRλ)
T (W̄2)T̄ (W2)

(V )D
]
D

. (1.121)

We now add a series of terms (1.121) in N = 1 supergravity coupled to the U(1) gauge multiplet
(whose gauge kinetic function is chosen to be one for simplicity), plus a set of matter chiral
multiplets denoted generically {X}. Before gauge fixing the superconformal generators, the
lagrangian for this model reads:

L = −3
[
S0S̄0e

−K(X,X̄)
3

]
D

+
[
S3

0W (X)
]
F
− 1

4g2

[
λ̄PLλ

]
F

+
∑
i

L(αi)
FI , (1.122)

where the sum is running for now over an arbitrary set of parameters αi.

We are interested in the contribution of Eq. (1.121) to the scalar potential, and in particular
we would like to check that Kähler invariance is preserved. For simplicity and in order to highlight
the cosmological applications, we focus on the bosonic sector. The contribution to the fermion
masses arising from these new FI terms is studied in Appendix C. Putting all fermions to zero
for now, the remaining components of the chiral multiplet λ̄PLλ given in Eq. (1.108) are:

λ̄PLλ =
(
0, 0, F̂− · F̂− −D2

)
. (1.123)

With the chiral and anti-chiral compensators S0 = (s0, PLΩ0, F0) and S̄0 = (s̄0, PRΩ0, F̄0), one
can use the composition laws (B.0.9) to find the bosonic components of the composite chiral
and anti-chiral multiplets S−1

0 λ̄PLλ and S̄−1
0 λ̄PRλ:

S−1
0 λ̄PLλ = (0, 0, s−1

0 (F̂− · F̂− −D2))

= (0, 0, −2s−1
0 (F̂− · F̂− −D2), 0, 0, 0, 0), (1.124)

S̄−1
0 λ̄PRλ = (0, 0, s̄−1

0 (F̂+ · F̂+ −D2))

= (0, 0, 0, −2s̄−1
0 (F̂+ · F̂+ −D2) 0, 0, 0). (1.125)

Similarly, the bosonic components of the chiral superfield W2 given in Eq. (1.118) are:

W2 =
(
0, 0, s−2

0 W−
2
3 (F̂− · F̂− −D2)

)
, (1.126)
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from which we deduce the components of the anti-chiral superfield T̄ (W2):

T̄ (W2) =
(
s−2

0 W−
2
3 (F̂− · F̂− −D2), 0, 0

)
. (1.127)

The product of the multiplets (1.124) and (1.125) already being a θ2θ̄2 term, only the lowest
components of the remaining quantities entering in the Lagrangian (1.121) will contribute to
the bosonic sector. We can therefore rewrite it as:

L(αi)
FI = −ξi

e( 1
3 +αi)KWαiW̄αiD

(s0s̄0)−2(WW̄ )− 2
3 (F− · F− −D2)(F+ · F+ −D2)

[R]D , (1.128)

with the real multiplet R defined as:

R ≡ (S−1
0 λ̄PLλ)(S̄−1

0 λ̄PRλ). (1.129)

Looking at the seven-components notation (1.124) and (1.125) for the multiplets S−1
0 λ̄PLλ and

S̄−1
0 λ̄PRλ and the multiplication law (B.0.8), we see that the only non-vanishing bosonic term

of R arises from 1
2fijK

iHj in its D-component. More precisely, it reads

(R)D = 1
2fijK

iHj = 1
2f21K

2H1 = 2(s0s̄0)−1(F̂− · F̂− −D2)(F̂+ · F̂+ −D2). (1.130)

The operation [ ]D defined in (B.0.7) immediately leads to

[R]D = e

2(R)D = e(s0s̄0)−1(F̂− · F̂− −D2)(F̂+ · F̂+ −D2). (1.131)

The FI Lagrangian (1.128) is therefore given by:

e−1L(αi)
FI = −ξis0s̄0e

(αi+ 1
3 )K(WW̄ )αi+

2
3D. (1.132)

Since we are interested in matter coupled N = 1 supergravity, we use the Einstein frame where
the conformal symmetry is gauge fixed through s0 = s̄0 = e

K
6 . This leads to a set of Kähler

invariant terms parametrised by some constants {αi, ξi} according to:

e−1L(αi)
FI = −ξie(αi+

2
3)K(WW̄ )αi+

2
3D = −ξie(αi+

2
3)GD, (1.133)

where G ≡ K + ln |W |2. Therefore, after gauge fixing the conformal symmetry and integrating
out the auxiliary fields, the pure bosonic sector arising from the Lagrangian (1.122) is given by

e−1L(B) = 1
2R−

1
4FµνF

µν −GIJ̄∂X
I · ∂X̄ J̄ − V (1.134)

with the scalar potential
V = eG

(
∂IG GIJ̄ ∂J̄G − 3

)
+ VFI . (1.135)

The new FI contribution to the scalar potential, VFI , arising from Eq. (1.133) reads

VFI = 1
2

(∑
i

ξie
(αi+ 2

3)G
)2

, (1.136)
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which is obviously Kähler invariant while field dependent at the same time.

The above construction therefore provides a way to obtain an arbitrary set of (Kähler in-
variant) FI terms from a single U(1) gauge field, in the presence of a superpotential W with
non-vanishing expectation value. Each term of the sum is parametrised by two real constants ξi
and αi. A constant FI term is obviously recovered by choosing one αi0 = −2/3. For this value,
the bosonic part of the Lagrangian (1.121) is equal to the one of the Lagrangian (1.116). Being
independent of W , it is in particular valid even for vanishing superpotential, like the new FI
term (1.116). However, it is not clear that the fermionic parts of the Lagrangians (1.121) and
(1.116) are equal, as well, for αi0 = −2/3.

A general sum appearing in the Lagrangian (1.122), involving terms of the form (1.133),
using that eG/2 = m3/2[X], amounts to adding a general function of the gravitino mass m3/2[X]
considered as a functional of the scalar fields {X}:

e−1L(B)
FI = −f(m3/2[X])D −→ VFI = g2

2 | f(m3/2[X]) |2 (1.137)

This construction allows us to refine the scalar potential by adding new field dependent and
Kähler invariant terms. In the following, we will restrict ourselves as an illustration to the study
of the simple case of one term of the type (1.133) up to an additive constant, corresponding
to the choice i = 1, 2 with α1 an arbitrary parameter and α2 = −2/3. Considering the Kähler
potential of no-scale type and a constant superpotential, we will show that this choice is sufficient
to produce inflationary models compatible with the slow-roll conditions and consistent with the
CMB observations, with the inflaton rolling towards a de Sitter vacuum with tuneable energy
and spontaneously broken supersymmetry.

1.7 No-scale models and cosmological applications

In this section, we study the cosmological consequences of the previous modified FI-term
construction in the case of simple no-scale models. Considering one chiral superfieldX associated
to the inflaton, we successively choose the Kähler potentials

K(X, X̄) = − ln(X + X̄) and K(X, X̄) = −3 ln(X + X̄), (1.138)

together with a constant superpotential W = W0 and an exponential one W (X) = eβX , respec-
tively. In the context of string theory, these forms of Kähler potentials arise in all toroidal/orbifold
compactifications as well as in the large volume limit of Calabi-Yau compactifications, both in
heterotic string and in type II orientifolds. In this context, the first Kähler potential could de-
scribe for instance the kinetic term of the dilaton, associated to the string coupling, while the
second may describe the internal volume of the 3-complex dimensional compact space. We will
therefore refer to the “dilaton case” and “compact volume case” to describe these two models.
From now on, we also restrict the sum (1.136) to only two terms parametrised by three constants
ξ1, α1 ≡ α and ξ2, while α2 = −2

3 .
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1.7.1 Dilaton case

We first consider the Kähler potential K = − ln(X + X̄). In terms of the gravitino mass
m2

3/2 = eG , this yields the scalar potential:

V = −2m2
3/2 + 1

2
(
ξ1(m2

3/2)α+2/3 + ξ2
)2

, (1.139)

where we have redefined the parameters ξi to absorb the gauge coupling constant g. As we
will show below, there is a region of the parameter space ξ1, ξ2 and α, such that the above
potential has an inflational plateau allowing slow-roll inflation compatible with the cosmological
observations, and a minimum, where supersymmetry is spontaneously broken, with a tuneable
vacuum energy by a fine tuning of the parameters (for instance to obtain a vanishing cosmological
constant in the vacuum).

In order to compute the slow-roll parameters, one needs to work with the canonically nor-
malised field χ, defined by its kinetic term through

∂µX∂
µX̄

(X + X̄)2 = 1
2∂µχ∂

µχ+ ... (1.140)

where the dots denote terms containing the imaginary part of X, which has no influence on the
discussion of this section. We will come back to it in Section 1.7.3, where the shift symmetry
associated to this imaginary part will be gauged by the U(1). Focusing on the real part for now,
we deduce from (1.140)

ReX = e
√

2χ, (1.141)

and thus
m2

3/2 = eG = |W0|2

2 e−
√

2χ. (1.142)

In the following, the ‘dilaton’ χ will be identified with the inflaton, dynamically driving infla-
tion starting from a large value, slightly rolling down along the potential, attaining the horizon
exit denoted by χ∗ and ending at a value χend when slow-roll stops. The field then continues to
fall down towards the minimum, when reheating takes place. From now on, quantities observed
at the horizon exit are specified with a star *, and the approximation of large inflaton field
χ >> 1 is assumed in this region 13. The gravitino mass (1.142) vanishes exponentially and the
potential (1.139) for α ≥ −2/3 is therefore dominated by a constant, as required by slow-roll
inflation. In the following, we will thus restrict to the region α > −2/3, with V∗ ' ξ2

2
2 . In terms

of the canonical field χ, the slow-roll parameters are given as usual by

ε ≡ 1
2

(
∂V/∂χ

V

)2
; η ≡ ∂2V/∂χ2

V
. (1.143)

At large field χ, by further assuming α > 1/3, they can be expanded into

ε ≈
χ>>1

(4m2
3/2
ξ2

2

)2

≈
χ>>1

1
4η

2 ; η ≈
χ>>1

−
8m2

3/2
ξ2

2
. (1.144)

13. χ >> 1 corresponds to weak coupling, which is necessary for the validity of an effective supergravity theory.
However, the large field approximation is not really needed; instead, the required condition is that m3/2 → 0.
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Actually, the large field condition is not really necessary. The required approximation is that
the gravitino mass (1.142) should be small during inflation, so that the potential (1.139) is
approximately constant. This is an important point, implying that the models we study are
consistent with small field inflation, avoiding trans-planckian initial conditions for the normalised
inflaton field.

A central quantity to be taken into account in inflation is the number N of e-folds between
the horizon exit and the end of inflation, a period observable through the CMB. This quantity,
which must be set within the range [40, 60] to satisfy CMB observations, is given by:

N =
∫ χend

χ∗

dχ√
2ε(χ)

∈ [40, 60]. (1.145)

Two other observable quantities at the horizon exit are the amplitude of primordial density
fluctuations AS and the spectral index, or tilt ns, respectively given by

AS = V∗
24π2ε∗

= 2.2× 10−9, (1.146)

nS = 1 + 2η∗ − 6ε∗ = 0.96, (1.147)

where the numerical equalities also follow from the CMB data.
To be consistent with observations, the inflaton potential during inflation should respect

the three conditions (1.145), (1.146) and (1.147), which we now use in order to constrain the
three parameters ξ1, ξ2 and α. In the large field limit at the horizon exit, the tilt (1.147) gives
nS = 1 + 2η∗ − 6ε∗ ' 1 + 2η∗ − 3

2η
2
∗ ≈ 1 + 2η∗ = 1 − 16m∗23/2/ξ

2
2 ' 0.96, from which we deduce

that ξ2
2 ' 400m∗23/2. Moreover, the amplitude (1.146) leads to 1

768π2
ξ6
2

m∗43/2
= 2.2× 10−9. Therefore,

in the large field limit, the ξ1 and α dependence drops, and one can immediately find from these
two relations the numerical values for the parameter ξ2 and the gravitino mass at the horizon
exit m∗23/2, namely:

ξ2
2 = 1.04× 10−10, (1.148)

m∗23/2 = 2.6× 10−13. (1.149)

From the value of ε at the horizon, given by the first equation of (1.144), and the two relations
(1.148) and (1.149), we find the predicted value for the tensor-to-scalar ratio of primordial
perturbations to be:

r = 16ε∗ '
(16m∗23/2

ξ2
2

)2

= 1.6× 10−3, (1.150)

which is fixed and independent of any parameters of the model, as long as α > 1/3 is considered.
On the other hand, the condition to have a (almost) vanishing potential at its minimum 14,

for a value of the gravitino mass denoted m̃2
3/2 in what follows, can then be used in order to

determine the parameter ξ1 in terms of α. This is obtained by numerically solving V(m̃2
3/2) = 0,

with the result denoted ξ1(α) in the following. In order to constrain the last remaining parameter

14. This is obviously an approximation since the cosmological constant is extremely small but nonzero. But the
point to keep in mind is that in this model, the cosmological constant can be tuned to any small positive value.



40 Chapter 1 – Cosmological models in supergravity through Kähler invariant Fayet-Iliopoulos terms

α via the number of e-folds equation (1.145), we first need to determine the value of the inflaton
field at the end of inflation, depending on α. Inflation stops when χ reaches a value χend such
that ε(χend) = 1 or |η(χend)| = 1. In this model, the condition first fulfilled turns out to be
η(χend) = −1, which leads to the equation:

6m2 end
3/2 − ξ2

1(α)(m2 end
3/2 )2α+4/3

(
1
2 + 4

(
α+ 2

3

)2
)

−ξ1(α)ξ2(m2 end
3/2 )α+2/3

(
1 + 2

(
α+ 2

3

)2
)
− ξ2

2
2 = 0. (1.151)

This equation is solved numerically to get m2 end
3/2 in terms of α. The number of e-folds is then

used in order to determine the parameter α. Indeed, equation (1.145) becomes:

N(α) = −1
4

∫ m2 end
3/2 (α)

m∗23/2

−4m2
3/2 +

[
ξ1(α)(m2

3/2)α+2/3 + ξ2
]2

2m2
3/2 − (α+ 2

3)ξ2
1(α)(m2

3/2)2α+4/3 − (α+ 2
3)ξ1(α)ξ2(m2

3/2)α+2/3

dm2
3/2

m2
3/2

.

(1.152)
Using m2 end

3/2 given by the largest solution of Eq. (1.151), the value for ξ2
2 (1.148), and the

expression for ξ1(α) given from the solution of V(m̃2
3/2) = 0, the above integral can be numerically

evaluated in terms of α. It turns out that any α larger or approximately equal to 1 leads to an
acceptable e-fold number N ∈ [40, 60]. Thus, the only fine tuning of the model, besides fixing the
overall scale of the potential by its asymptotic value determined by ξ2, is related to the vacuum
energy. The gravitino mass at the minimum of the potential m̃3/2 can be between 1010TeV and
the Planck scale by choosing α between 1 and 10.5 respectively.

As an illustration, we now choose α ' 1, which gives ξ1(α = 1) ' 1011. 15 With these values,
the scalar potential and the slow-roll parameters are plotted in terms of χ in Figures 1.1 and
1.2 respectively, where we have also set W0 =

√
2. The vertical grey lines indicate the horizon

exit and the end of inflation (from the right to the left). The corresponding numerical values
for the gravitino mass are m∗23/2 = 2.64× 10−13 and m2end

3/2 = 1.56× 10−11 in Planck units. The
minimum is reached at m̃2

3/2 = 5.29 × 10−11. The associated values for the inflaton field are
χ∗ = 20.48 + 1√

2 ln |W0|2
2 , χend = 17.59 + 1√

2 ln |W0|2
2 and χ̃ = 16.73 + 1√

2 ln |W0|2
2 . Notice that the

values of the inflaton can be made less than one for an appropriate choice of W0, as we already
mentioned in the begining of the section. Finally, note that because of the space-time curvature
during inflation, the value of m3/2 entering in the Lagrangian is not the physical gravitino mass,
which should be computed taking into account the curvature contribution in an approximate de
Sitter spacetime [30, 31].

The spectrum at the minimum contains the imaginary part of X and the U(1) gauge boson,
which remain massless in this model, as it can be seen from the expression of the scalar potential,

15. Despite the large value of ξ1, one can check that the approximation V∗ = ξ2
2/2 at the horizon, assumed in

the computation of the tilt and of the amplitude, is valid. Indeed, with the numerical values α ∼ 1, ξ1 ∼ 1011,

ξ2 ∼ 10−5 and m∗23/2 = 2.64× 10−13, we get
ξ1(m∗23/2)α+2/3

ξ2
∼ 6× 10−5.
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Figure 1.1 – Scalar potential as a function of
the canonically normalised field χ, for α = 1
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Figure 1.2 – Slow-roll parameters ε and η as
a function of χ, for α = 1

as well as the massive gravitino and inflaton whose masses are given by:

m̃2
3/2 = 5.29× 10−11, m̃2

χ = ∂2V

∂χ2

∣∣∣∣∣
χ=χmin

= 2.46× 10−10. (1.153)

There is also a massive spin-1/2 fermion corresponding to a linear combination of the U(1) gaug-
ino and the fermionic component of the inflaton superfield, orthogonal to the Goldstino direction.
Indeed at the minimum, supersymmetry is spontaneously broken by a non-vanishing expectation
value of both a D and F-term. The Goldstino PLν is thus a linear combination of the gaugino
λ and of the chiral fermion Ω: PLν = 1√

2ΩXgXX̄ F̄
X̄ − i

2DPLλ, with F̄ X̄ ≡ −eK/2gXX̄∇XW ,
evaluated at the minimum. In order to compute the direction of supersymmetry breaking, we
consider:

‖F‖ ≡
√
FXgXX̄ F̄

X̄ =
√
eG∂XGGXX̄∂X̄G = m3/2, (1.154)

‖D‖ ≡ ξ1e
5/3G + ξ2 = ξ1(m2

3/2)5/3 + ξ2. (1.155)

At the minimum, we have:∥∥∥∥DF
∥∥∥∥
m̃3/2

=
[
ξ1(m̃2

3/2)7/6 + ξ2(m̃2
3/2)−1/2

]
' 1.5 , (1.156)

where we have used the values ξ1 = 1011, ξ2 = 10−5 and m̃2
3/2 = 5.29×10−11 obtained previously.

At the minimum, the Goldstino is thus an approximately equal mixing of the chiral fermion Ω
and the gaugino λ.
The computation of the fermion masses is detailed in Appendix C. The mass squared m2

f of the
physical fermion which remains after elimination of the Goldstino is given in Eq. (C.0.36). For
p = 1, its numerical value at the minimum where m̃2

3/2 = 5.29× 10−11 is (in Planck units):

m2
f = 5.9× 10−12. (1.157)
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1.7.2 Compact volume case

In this subsection, we consider the no-scale model with Kähler potentialK(X, X̄) = −3 ln(X+
X̄). If one takes a constant superpotential as in the previous subsection, the F-term of the scalar
potential will vanish, and the new Fayet-Iliopoulos term will be ill-defined at the minimum, where
D now vanishes 16. Instead, we consider a superpotential of the form W (X) = eβX , with β a
real constant. Note that the the imaginary shift of X becomes now a (global) R-symmetry [20].
The full scalar potential is then given by:

V = m2
3/2

[
−3 + 1

3
(
β(X + X̄)− 3

)2
]

+ 1
2
(
ξ1(m2

3/2)α+2/3 + ξ2
)2
. (1.158)

Choosing β << (X + X̄)−1
∣∣∣
∗
, the first term of (1.158) can be neglected at the horizon exit as

well as during the inflationary period. However, outside of the inflationary plateau, the D-term
starts decreasing significantly and the F-term cannot be neglected anymore. Supersymmetry at
the minimum of the potential is then spontaneously broken by non-vanishing expectation values
of both D and F-terms, and a tuning of the parameters would be required in order to get a
vanishing potential at its minimum, as in the previous case studied above. We will not study
this region in the following, focusing on the inflationary period where the F contribution to V
can be neglected and the scalar potential is only given by its D-term:

V|infla. = 1
2
(
ξ1(m2

3/2)α+2/3 + ξ2
)2

. (1.159)

Now the normalised field χ and the gravitino mass are given by:

ReX = e
√

2
3χ ; m2

3/2 = |W |2

(X + X̄)3 = |W |
2

8 e−
√

6χ . (1.160)

Like in the previous subsection, the potential at the horizon exit, where χ >> 1 is assumed 17,
is given by V∗ = ξ2

2/2. The slow-roll parameters expanded in this limit read:

ε ≈
χ>>1

12ξ2
1(α+ 2

3)2(m2
3/2)2α+4/3

ξ2
2

; η ≈
χ>>1

12ξ1(α+ 2
3)2(m2

3/2)α+2/3

ξ2
, (1.161)

and thus η2 ≈
χ>>1

12(α+ 2
3)2ε. With these two quantities, the tilt and amplitude analysis yields:

ξ2(α) = 6× 10−6

α+ 2/3 , (m∗23/2)α+2/3(ξ1, α) = − 1
ξ1

1.02× 10−8

(α+ 2/3)3 . (1.162)

The gravitino mass at the end of inflation, m2 end
3/2 , is still given by the condition η(m2 end

3/2 ) =

16. Of course, the vanishing of the F-part of the scalar potential is a tree-level result and can be circumvented
by considering quantum corrections in the Kähler potential.
17. χ >> 1 now corresponds to a large volume of the compact space, which is compatible with the effective

theory where higher derivatives are neglected.
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±1, which is now solution of the equation:

ξ2
1 (m2 end

3/2 )2α+4/3
(

1
2 ∓ 12

(
α+ 2

3

)2
)

+ξ1 ξ2(α) (m2 end
3/2 )α+2/3

(
1∓ 6

(
α+ 2

3

)2
)

+ ξ2(α)2

2 = 0 .

(1.163)
This can be solved analytically at fixed α, yielding:

(m2 end
3/2 )α+2/3

± (ξ1, α) = −ξ2(α)
ξ1
× 1∓ 6(α+ 2/3)2 − 2

√
3(α+ 2/3)

√
3(α+ 2/3)2 ± 1

1∓ 24(α+ 2/3)2 . (1.164)

On the other hand, the number of e-folds is given by:

N±(α) = −1
12(α+ 2

3)

∫ m2 end
3/2 ±

(ξ1,α)

m∗23/2(ξ1,α)

[
ξ1(m2

3/2)α+2/3 + ξ2(α)
]2

ξ2
1(m2

3/2)2α+4/3 + ξ1ξ2(α)(m2
3/2)α+2/3

dm2
3/2

m2
3/2

, (1.165)

which is independent of ξ1, as can be seen from the change of variable m2
3/2 → m2

3/2ξ
1

α+2/3
1 and

by using the second equation of (1.162) and Eq. (1.164).
Two regions for α have to be considered: (i) −2

3 < α <
√

3−2
3 , where η(m2 end

3/2 ) = 1 is first
fulfilled, and where the gravitino mass at the end of inflation and the number of e-folds are
respectively given by (m2 end

3/2 )+ and N+; (ii) α ≥
√

3−2
3 , where η(m2 end

3/2 ) = −1 is first fulfilled,
and where the gravitino mass at the end of inflation and the number of e-folds are respectively
given by (m2 end

3/2 )− and N−. Both e-fold numbers are plotted in terms of α in Figures 1.3
and 1.4. Any α >∼ −0.46 leads to an acceptable N ∈ [40, 60], while the parameter ξ1 remains
undetermined. From the value of ε at the horizon given by the first equation of (1.161) and
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Figure 1.4 – Number of e-folds N− as a func-
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3

the two relations (1.162), one sees that the predicted value for the tensor-to-scalar ratio r of
primordial perturbations remains independent of ξ1, and depends only on α:

r(α) = 16 ε∗(α) = 16
12(α+ 2/3)2ξ2

1(m∗23/2)2α+4/3(ξ1, α)
ξ2

2(α) ' 5.4× 10−4

(α+ 2/3)2 . (1.166)

Thus, α can be chosen such that the tensor-to-scalar ratio is large and close to the experimental
bound, for instance r(α = −0.45) ' 10−2 with N+(α = −0.45) ' 41.
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1.7.3 Gauging the axion shift symmetry

In the two previous models, the spectrum contained two massless particles: the imaginary
part of the complex inflaton field X, and the U(1) gauge boson Aµ, which is an unwanted
phenomenological property. This can be avoided by gauging the imaginary shift symmetry by
the U(1). Under a gauge transformation Aµ → Aµ − 2∂µλ, one then has for the complex scalar
X → X + icλ, with λ the gauge parameter and c a constant related to the charge ec of the field
eX . In terms of superfields, this transformation reads X → X + cΛ, with Λ a chiral superfield
gauge parameter. The gauge transformation of the vector superfield V is V → V −Λ−Λ̄. In order
to keep a gauge invariant Kähler potential with shift symmetry, K(X + X̄) must be modified
as:

K(X + X̄)→ K(X + X̄ + cV ) . (1.167)

Note that this modification does not change the pure bosonic part of the FI Lagrangian (1.121).
Indeed, when fermions are put to zero, the only non-vanishing components of the chiral multiplets
λ̄PLλ and λ̄PRλ are their θθ and θ̄θ̄ components. Therefore, only the lowest components of the
other superfields involved in (1.121) contribute to the bosonic sector, and the lowest component
of e(α+ 1

3 )K does not receive additional contributions from cV in the Wess-Zumino gauge.
In order to see how a massive gauge boson arises from this gauging, we work in global

supersymmetry and compute the (bosonic) new terms appearing from this modification. Putting
fermions to zero and expanding in components, we have

X + X̄ + cV
∣∣∣
bos

= 2ReX − θσµθ̄(cAµ + 2∂µImX) + 1
2θ

2θ̄2(cD− ∂2ReX) + θ2F + θ̄2F̄ , (1.168)

from which we deduce:

K(X + X̄ + cV )
∣∣∣
θ2θ̄2

= K ′

2 (cD − ∂2ReX)− K ′′

4 (cAµ + 2∂µImX)2 +K ′′FF̄ . (1.169)

It follows that∫
d4θK(X + X̄ + cV ) =

∫
d4θK(X + X̄)− c2

4 K
′′AµA

µ − cK ′′Aµ∂µImX + c

2K
′D + fermions .

(1.170)
As a result, there is a mass term for the gauge boson Aµ, as well as a new field dependent FI term
−ξ(X)D, with ξ(χ) = −cK ′/2. It modifies the D-term of the scalar potential (1.136) according
to D = g2

[
−cK ′/2 +∑

i
ξie

(αi+2/3)G
]
, which leads to the following D-term contribution to the

scalar potential:

VFI = g2

2

(∑
i

ξie
(αi+ 2

3)G − c

2K
′
)2

. (1.171)

It is easy to show that the extra contribution proportional to c, due to the gauging of the shift
symmetry, does not alter the inflationary predictions discussed in the previous section, when
restricting the D-auxiliary field to only two non-vanishing terms, as in the previous section.
Consider for example the compact volume case with a Kähler potential K = −3 ln(X + X̄).
The second term in (1.171) then becomes proportional to m2/3

3/2 which may be identified as a
particular case of the potential (1.159) studied before for α = −1/3 and ξ1 = (3cg)/(2|W0|2/3).
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ξ2 can then be obtained from the first sum in (1.171) by choosing one non-vanishing term, say
ξ2 with α2 = −2/3. The analysis is then reduced to the one of the last section, in the compact
volume case with a fixed value of the parameter α = −1/3, which is within the allowed region
of the parameter space compatible with observational data, as seen in Fig. 1.3.

Let us finally consider another example inspired by the heterotic string with X identified
with the string dilaton, as in the first model considered in the previous section, where its axionic
imaginary part is dual to the Neveu-Schwarz antisymmetric tensor in four dimensions. In this
case, the constant c is related to a U(1) anomaly which is cancelled by a Green-Schwarz term.
The gauging of the shift symmetry is a consequence of the anomaly cancellation and the axion is
absorbed by the U(1) becoming massive and no massless particle remains in the spectrum [32].
The gauge coupling is not anymore constant but is fixed by X: g2 = 1/ReX, corresponding to a
gauge kinetic function linear in X. The scalar potential can be easily obtained from Eq. (1.171)
using K = − ln(X + X̄) and the expressions (1.141) and (1.142):

V = −2m2
3/2 + e−

√
2χ

2

(∑
i

ξie
(αi+ 2

3)G + c

4e
−
√

2χ
)2

. (1.172)

Again we restrict the D-term to only two non-vanishing contributions. In order to get an asymp-
totically constant potential at infinity, we choose α2 = −7

6 , while α1 = 1
3 is chosen to be able

to absorb the constant c in ξ1. We obtain in this way a potential with the same form as in
Eq. (1.139):

V = −2m2
3/2 + 1

2
(
ξ′1(m2

3/2)3/2 + ξ′2

)2
, (1.173)

where we have defined ξ′1 ≡ ξ1
√

2
W0

+ c√
2W 3

0
and ξ′2 ≡ ξ2

√
2

W0
.

The potential is thus the same as the one of Eq. (1.139), with α = 5
6 . This is an acceptable

value since it leads to a number of e-folds N(5/6) ' 51. The numerical predictions obtained in
Section 1.7.1 are not modified by the gauging of the shift symmetry. The main improvement is
that now the imaginary part of the inflaton has been absorbed by the U(1) gauge boson which
acquires a mass. In order to compute this mass, one needs to rescale Aµ → gAµ so that the
gauge field kinetic term becomes canonical. After this rescaling, the gauge boson mass square
reads:

m2
A(χ) = e−3

√
2χ

8 c2 = g6

8 c
2. (1.174)

With the values of χ at the horizon crossing and at the minimum found above, we get m2
A in

terms of the parameters c and W0:

m∗2A = 1.84× 10−38 c2

W 6
0
, (1.175)

m2end
A = 3.05× 10−34 c2

W 6
0
, (1.176)

m̃2
A = 1.93× 10−31 c2

W 6
0
, (1.177)

which can therefore vary in a large range of values consistent with all experimental bounds. The
rest of the masses do not present any significant change from the previous analysis in the dilaton
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case without the gauging.

1.8 Conclusion

In this first project, we generalised the construction of new FI D-terms in N = 1 supergravity
that do not require the gauging of R-symmetry and preserve invariance under ordinary Kähler
transformations. Their bosonic part is just linear in the D-auxiliary field with a multiplicative
factor which is an arbitrary function of the gravitino mass, expressed as a functional of the chiral
multiplets. We then used these terms to construct new models of D-term inflation. Considering
just a U(1) and the inflaton multiplet with a no-scale Kähler potential and constant superpo-
tential, we restricted to a simple form of the function associated to the new FI D-term which is a
single positive power of the gravitino mass up to an additive constant. The later dominates the
inflationary period by an asymptotically de Sitter regime, because the gravitino mass vanishes
asymptotically in this region. The resulting models are consistent with observational CMB data
and share common properties with the Starobinsky R2 model [33] on one hand and with the
models of inflation by supersymmetry breaking on the other hand, where the inflaton is identi-
fied with the superpartner of the goldstino [15, 20]. Moreover, they predict a variable range of
primordial gravitational waves that can be within experimental reach. After the end of inflation,
the inflaton rolls down to the minimum of the potential which has a tuneable (tiny) vacuum
energy and supersymmetry is broken by a combination of F and D-term VEVs. An interesting
open problem is whether there exists a microscopic origin of these new FI D-terms, for instance
within string theory.



Chapter 2

Compactification on a linear dilaton
background

2.1 Introduction

Little String Theory (LST) is a 6-dimensional non-gravitational theory, obtained for instance
in type IIB or heterotic string theory by considering a stack of k coincident (Neveu-Schwarz)
NS5-branes, in the limit of vanishing string coupling constant gS [34, 35, 36, 37]. With closed
string amplitudes being proportional to gS , in this limit the branes and bulk dynamics decouple.
However, and in constrast with the D-brane case, the gauge coupling of the effective U(k) gauge
theory on the NS5-branes is independent of gS and therefore remains finite in the limit gS → 0.
We are left with an interacting non-gravitational theory living on the NS5-branes.

Being a non-local and strongly coupled theory without any Lagrangian description, LST is
easier studied through its 7-dimensional holographic dual, obtained in the near horizon limit
of the NS5-branes. It is a weakly coupled string theory on the background R5,1 × Ry, with
the dilaton varying linearly in the coordinate y of the real line Ry [38]. The main features of
LST phenomenology can be captured in a simpler model where two dimensions of the bulk are
compactified on T 2, leading to a gravitational holographic dual of LST on R3,1×Ry whose action
is a simple graviton-dilaton model with a runaway scalar potential [39, 40].

The vanishing limit of the string coupling constant leads to an interesting phenomenological
application of LST in the context of the hierarchy problem [40, 41]. The string scale can be indeed
separated from the Planck mass to much lower energies, such as in the (multi)TeV region using
an ultra-weak string coupling. The hierarchy problem then amounts to explain the smallness of
the coupling [42]. This question has also been addressed more recently in the so-called clockwork
mechanism [43, 44], which was shown to have as continuum limit the five-dimensional (5D) linear
dilaton theory [45, 46, 47].

In order to obtain a finite string coupling and thus a four-dimensional Planck mass, the extra
dimension Ry is compactified on a segment S1/Z2. The dimensional reduction on a linear dilaton
(LD) background reveals very distinguishable features. In particular the generic spectrum, such
as that of the graviton, is a massless 4D zero mode with a flat wave-function along the extra
dimension, followed by an infinite tower of Kaluza-Klein (KK) states starting from a mass gap
fixed by the slope of the linear dilaton. In this thesis, we first extend this analysis to the KK
gauge sector of the metric which has not been studied so far. It turns out that the situation is
different from the scalar and spin-2 excitations: due to the non-trivial background, we show that
the zero mode of the KK vector acquires a mass by absorbing the scalar radion, while its wave-
function is no longer flat along the extra dimension but rather localised around the origin and

47
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away exponentially suppressed. This result follows from a theoretical gauge symmetry analysis,
which generalises the standard KK reduction in the more general case where the fields may
depend on the extra coordinate. Within the gravitational sector, the reduction is performed in
the ADM formalism [48], crucially taking into account the Gibbons-Hawking boundary terms
at the end-points of the interval.

Since the holographic dual of LST is actually a string theory, one can study its effective
supergravity theory, a construction which has been first carried out in [49, 50]. It relies on a
U(1)R gauging of the SU(2) R-symmetry of N = 2, D = 5 supergravity coupled to one vector
multiplet [51, 52, 53]. Besides minimal couplings between the gauge field and the fermions, the
gauging generates fermion mass terms as well as a scalar potential, both highly constrained
by supersymmetry. The family of the scalar potentials obtained in this way is parametrised
by two independent parameters. The observation made in [49, 50] is that the vanishing of one
parameter precisely reproduces the runaway potential leading to the LD background solution.
Here we revisit this construction in order to show that the five-dimensional supergravity theory
with this property is actually unique.

In addition to possible phenomenological implications mentioned above, the gravity dual
of LST can also be used as a framework to study supersymmetry breaking, which will be the
viewpoint adopted in the second part of this chapter. The crucial point is that the LD background
preserves 1/2 of the original supersymmetries [50]. We shall show that the NS5-branes, already
introduced at the bosonic level by the junction conditions, remain consistent in a supersymmetric
context, namely they preserve the remaining supersymmetries, and this choice of branes is
unique. Motivated by the massive vector field obtained in the KK reduction of the metric, we
perform the full dimensional reduction of the bosonic sector of the supergravity action in order
to find a similar mechanism in the Maxwell sector. Obtaining a second massive vector, one can
arrange the massive (non KK) spectrum into a massive 4D N = 1 spin-3/2 multiplet which
contains half of the total degrees of freedom. With the two free parameters of the theory, the
slope α of the LD background and the compactification radius L, one can then consider two
different limits.

• The low energy limit |α| → ∞, L → 0, where all masses are sent to infinity and only the
massless spectrum remains, which we show to be described by an effective D = 4, N = 1
supergravity. Moreover, such a truncation is consistent with a N = 2 → N = 1 orbifold
projection, under which half of the degrees of freedom are assigned a Z2-odd parity.

• The intermediate limit where α is kept finite and L → 0, keeping all massive and mass-
less zero modes and projecting out only the KK excitations. The possibility to describe a
consistent 4D supergravity theory in this limit is not clear and remains a non-trivial open
question. This would potentially lead to a very interesting example of partial supersym-
metry breaking N = 2→ N = 1 using only vector multiplets.

The Chapter 2 is organised as follows. In Section 2.2 we summarise our conventions and
notations used throughout this chapter. In Section 2.3, we review the main characteristics of
the five dimensional graviton-dilaton system, in the presence of a runaway scalar potential
corresponding to a non-critical string, stressing some important points often left implicit in the
litterature. The compactification of this model on a LD background is then performed in Section
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2.4, shedding light in particular on the KK gauge sector. The minimal supersymmetrisation
of this model, seen as the holographic dual of LST, is then introduced in Section 2.5. We
first remind the formalism of N = 2, D = 5 supergravity, together with its U(1)R gauging,
before listing the different supergravity theories coupled to one vector multiplet whose gauging
reproduces the scalar potential of LST and we show that they are all equivalent. We then
study the supersymmetries preserved both by the background and by the NS5-branes sitting
at the boundaries. The complete compactification down to D = 4 is presented in Section 2.6,
where we highlight a similar Higgs mechanism for a second vector, and show that a N = 1
supersymmetric theory can be obtained in the massless limit. Our conclusions are presented in
Section 2.7. Finally, this chapter is related to two appendices, revewing some important aspects
of General Relativity on a manifold with boundaries (Appendix D) and then identifying the
5D supergravity studied here with the effective action of a (non-critical) heterotic string theory
(Appendix E).

Our new results are presented in Sections 2.4, 2.5.3, 2.5.5 and 2.6, as well as in Appendix
D.2.

2.2 Conventions and notations

In this second chapter, we start working in 5 spacetime dimensions before compactifying
down to 4D. We adopt the metric convention (−,+,+,+,+), and write the five-dimensional
Minkowski space coordinates as xM = (xµ, y). The indices used throughout the Chapter 2 are
defined according to the following pattern:

M,N... = 0, ..., 3, 5 5D spacetime curved indices

m,n... = 0, ..., 3, 5 5D spacetime flat indices

µ, ν... = 0, ..., 3 4D spacetime curved indices

a, b... = 0, ..., 3 4D spacetime flat indices

I, J... = 0, ..., nV vector field labels

x, y... = 1, ..., nV scalar manifold curved indices

ã, b̃... = 1, ..., nV scalar manifold flat indices

i, j... = 1, 2 fundamental representation of SU(2)R

Curved and flat indices in 5D (4D) are related through the fünfbein emM (vierbein eaµ) according
to

XM = emMXm (Xµ = eaµXa). (2.1)

Similarly, curved and flat indices of the scalar manifold are related through the nV -bein f ãx

according to
ϕx = (f ãx )−1ϕã = fxãϕ

ã. (2.2)

The five-dimensional Dirac matrices γm satisfy the Clifford algebra

{γm, γn} = 2ηmn14×4. (2.3)
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In particular, (
γ5
)2

= (γ5)2 = 1. (2.4)

Antisymmetrized products of γ matrices are defined with weight one, γm1...mr = γ[m1 ...γmr]. In
particular,

γmn ≡ 1
2(γmγn − γnγm). (2.5)

Spinors in D = 5 dimensions can be equivalently described either in terms of unconstrained
Dirac spinors, which have 4 complex components, or either in terms of pairs of spinors χi,
i = 1, ...,N = 2k satisfying a reality condition. The pairs are called symplectic since the position
of the indices is raised and lowered according to

χi = Ωijχj , χi = χjΩji, (2.6)

where Ωij is a 2k × 2k matrix satisfying

ΩikΩkj = −δij . (2.7)

The Dirac and Majorana conjugates of a spinor χi are respectively defined by

χ̄i ≡ (χi)†γ0, (χi)C ≡ (χi)TC, (2.8)

with C the charge conjugation matrix, satisfying in five dimensions γTM = CγMC
−1. The

symplectic-Majorana condition then imposes the Dirac conjugate of χi to be equal to its Majo-
rana conjugate, namely:

χ†iγ
0 = (χi)TC. (2.9)

Since (2.9) relates the components of χi to those of its complex conjugate, this is a reality
condition which projects out half of the degrees of freedom of the k pairs of spinors, ending
with 2 × 4k real components. Both descriptions in terms of one Dirac spinor or one pair of
symplectic-Majorana spinors are thus equivalent, both of them describing 8 real off-shell degrees
of freedom. In practice however, only the symplectic formulation is used, since it makes explicit
the action of the R-symmetry group USp(N ) in D = 5 dimensions.

For the case N = 2 we are considering in this chapter, Ωij = εij . Since εij is an SU(2)-
invariant tensor, the indices i, j = 1, 2 are referred to the SU(2)R indices, therefore raised and
lowered according to the NorthWest-SouthEast convention

χi = εijχj , χi = χjεji, (2.10)

and where we choose ε12 = ε12 = 1 = −ε21 = −ε21. In particular, bilinears of fermions satisfy

λ̄iχi = χ̄iλ
i = −χ̄iλi, (2.11)

where the first equality is a standard Majorana flip in D = 5 dimension and the second one
follows from (2.10). Let us finally highlight that in five dimensions, the bilinear quantities λ̄iχi
and λ̄iγµχi built from symplectic-Majorana spinors are pure imaginary and real respectively.
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2.3 The Linear Dilaton model

2.3.1 The 5D theory on R1,3 × S1/Z2

The work carried out in this chapter is based on the five-dimensional dilaton-gravity theory
whose action is given by

S =
∫
d5x
√
−ge−

√
3φ
[1

2R
(5)[gMN ] + 3

2(∂φ)2 − Λ
]
, (2.12)

where gMN is the five-dimensional metric in the string frame (not to be confused with the
Einstein frame metric GMN which will be introduced below), φ the dilaton field, and Λ a
constant introducing a runaway dilaton potential, characteristic of non-critical string theory.
Varying S with respect to φ and gMN yields the equation of motion of the dilaton and the
five-dimensional Einstein equations, respectively given by:

√
−g e−

√
3φ

{√
3

2 R
(5) − 3

√
3

2 (∂φ)2 + 325φ−
√

3Λ
}

= 0, (2.13)

√
−g e−

√
3φ

{
RMN −

1
2gMNR(5) +

√
3∇M∂Nφ−

√
3gMNg

PQ∇P∂Qφ

+3
2gMN (∂φ)2 + gMNΛ

}
= 0. (2.14)

One can easily check that these equations are solved by the five-dimensional Minkowski metric,
in addition of a linearly varying dilaton along the fifth direction y, breaking the 5D Poincaré
invariance into a 4D one,

gMN = ηMN , (2.15)

φ = αy, (2.16)

provided that the bulk “cosmological constant” Λ and the parameter α are related by

Λ = −3
2α

2. (2.17)

In order to have a finite four-dimensional Planck mass, the fifth direction Ry must be com-
pactified, on a space chosen to be an interval S1/Z2 of length L, in complete analogy with
the Randall-Sundrum model [54]. The Z2 symmetry which must have the background therefore
imposes to replace the solution (2.16) by

φ = α|y|. (2.18)

Denoting here and all along this chapter differentiation with respect to the fifth coordinate y
with a prime, we have φ′ = α sgn y 1 and φ

′′ = 2α [δ(y)− δ(y − L)], so that boundary terms
will arise from the terms 25φ and gPQ∇P∂Qφ of the equations of motion. Consistency of the

1. The sign function is defined as yielding ±1 depending of the sign of its argument. An ambiguity remains
at 0, and it is worth noticing that as long as sgn 0 6= 0, no inconsistency appears and one can arbitrarily choose
sgn 0 = ±1.
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equations of motion then requires to add boundary terms to the action (2.12), which is modified
into:

S =
∫
d5x

{√
−ge−

√
3φ
[1

2R
(5)[gMN ] + 3

2(∂φ)2 − Λ
]

−
√
−g1e

−α1φV1δ(y)−
√
−g2e

−α2φV2δ(y − L)
}
, (2.19)

with g1 and g2 the determinant of the induced metrics at the two four-dimensional boundaries.
The additional terms describe branes located at the fixed points y = 0 and y = L of the orbifold
S1/Z2, and contain four parameters: α1 and α2 characterizing the nature of the branes, and their
tensions V1 and V2. As we are now going to show, these parameters can be fully determined by
the classical equations of motion following from the action (2.19).

The dilaton equation of motion (2.13) is modified into

√
−g e−

√
3φ

{√
3

2 R
(5) − 3

√
3

2 (∂φ)2 + 325φ−
√

3Λ
}

− α1
√
−g1e

−α1φV1δ(y)− α2
√
−g2e

−α2φV2δ(y − L) = 0, (2.20)

while the five-dimensional Einstein equations split into equations for the 4-dimensional scalar
g55, the 4-dimensional metric gµν and the 4-dimensional vector gµ5 as:

R55 −1
2g55R(5) +

√
3∇5∂5φ−

√
3g55g

PQ∇P∂Qφ+ 3
2g55(∂φ)2 + g55Λ = 0, (2.21)

√
−g e−

√
3φ
{
Rµν −

1
2gµνR

(5) +
√

3∇µ∂νφ−
√

3gµνgPQ∇P∂Qφ+ 3
2gµν(∂φ)2 + gµνΛ

}
+ gµν

{√
−g1e

−α1φV1δ(y) +
√
−g2e

−α2φV2δ(y − L)
}

= 0, (2.22)

Rµ5 −1
2gµ5R(5) +

√
3∇µ∂5φ−

√
3gµ5g

PQ∇P∂Qφ+ 3
2gµ5(∂φ)2 + gµ5Λ = 0, (2.23)

where greek indices µ, ν . . . denote only 4D spacetime. The dilaton and 4-dimensional graviton
equations of motion (2.20) and (2.22) can be respectively rewritten as:

√
3

2 R(5) −3
√

3
2 (∂φ)2 + 325φ−

√
3Λ− α1g

− 1
2

55 e
(
√

3−α1)φV1δ(y)

− α2g
− 1

2
55 e

(
√

3−α2)φV2δ(y − L) = 0, (2.24)

and

Rµν − 1
2gµνR

(5) +
√

3∇µ∂νφ−
√

3gµνgPQ∇P∂Qφ+ 3
2gµν(∂φ)2 + gµνΛ

+ gµνg
− 1

2
55

{
e(
√

3−α1)φV1δ(y) + e(
√

3−α2)φV2δ(y − L)
}

= 0. (2.25)

It is then straightforward to check that they are still solved by gMN = ηMN and φ = α|y|,
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provided that the bulk “cosmological constant” Λ and the parameter α are related by 2

Λ = −3
2α

2 sgn2 y. (2.26)

In addition, the boundary terms at y = 0 and y = L lead to four equations relating α, α1, α2,
V1 and V2,

6α = α1V1 6α = −α2e
(
√

3−α2)αLV2, (2.27)

2
√

3α = V1 2
√

3α = −e(
√

3−α2)αLV2, (2.28)

which are obviously solved by

V1 = 2
√

3α = −V2, (2.29)

α1 = α2 =
√

3. (2.30)

Eq. (2.29) thus shows that consistency of the equations of motion requires a system of branes
of opposite tensions to set at the fixed points y = 0 and y = L of the S1/Z2 orbifold, similarly
to the Randall-Sundrum model. 3 Eq. (2.30) tells us about the nature of these branes: from the
action (2.19), one sees that α1 = α2 =

√
3 correspond to a brane tension ∝ 1

g2
s
, with g2

s = e
√

3φ

the string coupling constant. Therefore, the solution at the boundaries arising from the classical
equations of motion consists of NS5-branes, as expected from the LST string theory approach.

Having found the nature of the branes sitting at the two boundaries, one can then move
from the string frame to the Einstein frame metric by means of the Weyl transformation

GMN = e
− 2√

3
φ
gMN , (2.31)

where GMN is the Einstein frame metric and gMN the string frame one. The Einstein frame
bulk action SM then reads

SM = SEH + Sdil + SΛ, (2.32)

with the Einstein-Hilbert action SEH , the dilaton action Sdil and the 5D cosmological constant
action SΛ given by:

SEH = 1
2

∫
d5x
√
−GR(5)[GMN ], (2.33)

Sdil = −1
2

∫
d5x
√
−GGMN∂Mφ∂Nφ, (2.34)

SΛ = −
∫
d5x
√
−Ge

2√
3
φΛ. (2.35)

On a bounded manifold, it is well-known that the Einstein-Hilbert action must be supplemented
by the so-called Gibbons-Hawking (GH) boundary action SGH , given in the Einstein frame by
the integral over the boundary of the square root of the determinant of the induced metric on it

2. One sees here a first inconsistency the choice sgn 0 = 0 would imply: a cosmological constant Λ constant
everywhere except at y = 0 where it would vanish, while sgn 0 = ±1 remain consistent.

3. In the string context, a negative contribution to the tension can be provided by orientifolds.
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times the trace of its extrinsic curvature tensor 4. Although the GH term is seldom considered
in the literature dealing with this linear dilaton model, it is an important piece which will turn
out to be crucial in the Kaluza-Klein reduction performed in Section 2.4. Thus, in addition to
the bulk action (2.32), the five dimensional LD model presented here contains also a boundary
action S∂M given by

S∂M =
2∑
i=1

(SNS5i + SGHi) , (2.36)

with, in the Einstein frame:

SNS5i = −Vi
∫
d5x
√
−ge

1√
3
φ
δ(y − yi), (2.37)

SGHi =
∫
d4x
√
−gKi. (2.38)

The indice i labels the two four-dimensional boundaries ofM, located at y = yi. Ki is the trace
of their extrinsic curvature tensor, g the determinant of the 4D induced metric on them, and the
constants Λ, V1 and V2 have been computed in (2.17) and (2.29), and are given by Λ = −3

2α
2,

V1 = −V2 = 2
√

3α.
The total 5D action we will work with in Section 2.4 is then

S = SM + S∂M, (2.39)

with SM and S∂M respectively given by (2.32) and (2.36).

2.3.2 Spectrum of bosonic fields on a LD background

The aim of this subsection is to remind some general results regarding the spectrum of
bosonic fields on a linear dilaton background, and then motivate the first part of the work
carried out in this chapter, which will be described in Section 2.4. We start with the case of
a bulk scalar and vector fields in five dimensions, an analysis which can be found for instance
in [55, 56], before moving to the spin-0 and spin-1 spectrum of the 5D dilaton-gravity theory
described in the previous subsection.

Scalar field on a LD background

Let us first consider a given 5D massless scalar field χ on a LD background, distinct from the
dilaton field φ of the previous section. The string frame Lagrangian of such a scalar χ would be
obtained by merely adding the standard kinetic term −1

2(∂χ)2 in the bracket of the Lagrangian
(2.12), which yields at quadratic order

L = −1
2e
−Qy∂Mχ∂

Mχ, (2.40)

4. In the string frame, the background metric is trivial, so that the GH action does not modify the analysis
on the nature of the branes carried out above and can thus be neglected. However, in the Einstein frame, second
derivatives of the background metric now contain delta functions, and we need the GH term in order to cancel
them and clearly identify the spectrum of the KK vector Gµ5, as done below.
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whereQ is a constant related to α in (2.16), but kept as an arbitrary parameter in this subsection.
The equation of motion for χ following from (2.40) is easily found to be

24χ+ χ
′′ −Qχ′ = 0. (2.41)

Considering the mode expansion

χ(x, y) =
∞∑
n=0

f(n)(y)eipn·x, (2.42)

we get for the internal wave functions f(n)(y) of the Kaluza-Klein modes:

f ′′(n)(y)−Qf ′(n)(y)− p2
nf(n)(y) = 0, ∀n ≥ 0, (2.43)

with p2
n = −m2

n. The most general solution reads

f(n)(y) = Aex+y +Bex−y, (2.44)

where A and B are two constants, and x± are given by x± = Q±
√
Q2−4m2

n

2 . Imposing Neumann
boundary conditions at y = 0 and y = L, ∂5f(n)(y)

∣∣∣
y=0,L

= 0, it is then easy to see that the
lowest mode compatible with the boundary conditions is massless, m0 = 0, with a constant
internal wave function, f0(y) = constant. We then have excited modes with masses m2

n =(
nπ
L

)2 + Q2

4 , ∀n > 0, with wavefunctions given by

fN(n)(y) = e
Q
2 y
(

sin nπy
L
− 2nπ
QL

cos nπy
L

)
, ∀n > 0, (2.45)

up to an overall normalisation constant, irrelevant for the discussion here. In the case of Neumann
boundary conditions, a 5D massless bulk scalar therefore gives rise, from the 4D point of view,
to a single massless zero mode with constant wavefunction, followed by discrete KK excited
states on top of a mass gap fixed by Q:{

m0 = 0,
m2
n =

(
nπ
L

)2 + Q2

4 , ∀n > 0,
(2.46)

which is a distinctive feature of the linear dilaton background.

Vector field on a LD background

A very similar analysis can be carried out for a given 5D massless bulk vector field AM in
the LD background. The equations of motion for AM , following from the Lagrangian

L = −1
4e
−QyFMNF

MN = −1
2e
−Qy

(
∂MAN∂

MAN − ∂MAN∂NAM
)
, (2.47)

read
∂MF

MN −QF 5N = 0, (2.48)
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which split into:

24A5 −∂5∂µA
µ = 0, (2.49)

24Aν +A′′ν −QA
′
ν − ∂ν

(
∂µA

µ + ∂5A
5 −QA5

)
= 0. (2.50)

Similarly to the scalar case described above, we expand Aµ in modes

Aµ(x, y) =
∞∑
n=0

f(n)(y)A(n)
µ (x), (2.51)

and impose in addition the gauge condition

∂5A
5 = QA5, (2.52)

which in the flat case Q = 0 reduces to the standard gauge of toroidal KK compactification
where A5 is a function of x only. For the zero mode with a flat internal wave function f0(y) =
constant, one gets the equation of motion

24A
(0)
µ (x)− ∂ν∂µAµ(0)(x) = 0, (2.53)

which describes a massless vector with its remaining 4-dimensional gauge symmetry. Applying
∂ν to (2.50), we see that the KK modes A(n)

µ , n > 0, satisfy ∂µAµ(n) = 0, so that the differential
equation satisfied by the internal profiles f(n)(y) reads:

f ′′(n)(y)−Qf ′(n)(y)− p2
nf(n)(y) = 0, ∀n ≥ 0, (2.54)

with p2
n = −24A

(n)
µ . This is the same equation as obtained previously in the scalar case, and we

thus conclude that the spin-1 KK masses are given by:

m2
n =

(
nπ

L

)2
+ Q2

4 , ∀n > 0. (2.55)

Regarding the scalar A5, the gauge condition (2.52) imposes the zero mode of A5 to be of
the form A

(0)
5 (x, y) = eQyÃ5(x), describing a massless 4-dimensional scalar as follows from the

equation of motion (2.49).
The dimensional reduction of a given 5-dimensional vector field on a LD background therefore

leads to a 4-dimensional massless scalar, together with a 4-dimensional massless vector followed
by massive KK vector excitations, as in the toroidal case. The LD background prints distin-
guishable features both on the scalar sector, through the exponential profile of its zero mode, as
well as in the vector sector, through the mass gap above which the KK tower of massive states
starts.

Dilaton-gravity sector on a LD background

In the five-dimensional LD model introduced in Section 2.3.1, the spectrum for the four-
dimensional graviton has been computed in [40]. Starting from the 5D Einstein-frame metric
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parametrisation

GMN = e
− 2√

3
α|y|

(
ηµν + hµν 0

0 1

)
, (2.56)

the spectrum of the gravitational excitations hµν , for Neumann boundary conditions, has been
found to be the same as the ones described in the above subsections: a massless zero mode
with wavefunction independent of y, followed by discrete KK modes with masses m2

n =
(
nπ
L

)2 +
3
4α

2, ∀n > 0.
The spectrum analysis in the scalar sector has been carried out in [42]. Putting the 4D vector

and tensor fluctuations to zero, the metric parametrisation considered here, at linear order in
the scalars, is of the form

GMN = e
− 2√

3
α|y|

(
(1 + 2σ)ηµν 0

0 1 + 2r

)
, (2.57)

where σ and r are respectively the trace of the 4D metric excitations hµν and the radion G55.
A crucial point to notice is that the three scalar fluctuations δφ, σ and r are not independent,
but instead related by the following two constraints [57]:

r + 2σ = 0, (2.58)
√

3αr + 3 sgn yσ′ + αδφ = 0. (2.59)

The first one is the usual constraint on the trace of the metric tensor, corresponding to the Weyl
transformation one has to perform on the four dimensional metric in order to bring its kinetic
term into a canonical form. The second one is only relevant in the case of a LD background 5:
in the general case α 6= 0, it implies that only one linear combination of the scalars r and
δφ is dynamical [58], while the orthogonal combination can be eliminated by a gauge choice
on part of the 5-dimensional diffeomorphisms, and is thus unphysical. The spectrum for the
remaining physical scalar is given in [42]. Although the analysis has been done in the more
general case where the radion is stabilised, the unstabilised case we are considering here can be
easily recovered: one finds exactly the same spectrum as for the 4D metric, namely a massless
zero mode with wavefunction independent of y, followed by massive KK excitations with masses
m2
n =

(
nπ
L

)2 + 3
4α

2, ∀n > 0.
So far two points were left out in the literature: what is happening to the vanishing 0-mode

scalar degree of freedom, which must be recovered as a physical degree of freedom in the limit
α → 0, as well as the analysis for the Kaluza-Klein vector Gµ5? The aim of the next section is
to clarify these two points. We will show that the zero mode of the unphysical scalar is actually
absorbed by the zero mode of the KK vector, providing it with a mass via a gauge-fixing that
is reminiscent of the Stückelberg term. To this purpose, we first have to find the most general
parametrisation for the metric tensor GMN including the KK vector Gµ5, which reduces to
(2.56) or (2.57) in the relevant limits, and whose components transform appropriately under
four-dimensional diffeomorphisms. We also want this parametrisation to be valid not only at

5. In the flat case α = 0, it simply imposes r
′

= 0, which is the usual gauge choice for the radion in standard
Kaluza-Klein reduction on a circle.
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the linear level in the scalars, but to all orders in order to be able to find not only the scalar
spectrum but also the full scalar potential of the dimensionally reduced 4D theory.

2.4 Kaluza-Klein reduction on a linear dilaton background

2.4.1 4D residual gauge symmetry

The five-dimensional Einstein frame metric GMN is written, in the most general case, as
function of x and y according to

GMN =
(
Gµν Gµ5

Gν5 G55

)
(x, y). (2.60)

In order to parametrise the form of the metric as well as its y dependence compatible with the
dimensional reduction D = 5→ D = 4, we start from the 5D diffeomorphism transformations,
with parameter ξP = (ξµ(x, y), ξ5(x, y)). Under ξP , the transformation of GMN ,

δGMN = ξP∂PGMN +GMP∂Nξ
P +GNP∂Mξ

P , (2.61)

splits for Gµν , Gµ5 and G55 into:

δGµν = ξρ∂ρGµν + 2Gρ(µ∂ν)ξ
ρ + ξ5∂5Gµν + 2G5(µ∂ν)ξ

5, (2.62)

δGµ5 = ξν∂νGµ5 +Gµν∂5ξ
ν +G5ν∂µξ

ν + ξ5∂5Gµ5 +Gµ5∂5ξ
5 +G55∂µξ

5, (2.63)

δG55 = ξµ∂µG55 + 2Gµ5∂5ξ
µ + ξ5∂5G55 + 2G55∂5ξ

5. (2.64)

Let us first consider the 4D diffeomorphisms, parametrised by the 4-vector ξµ(x, y). From (2.62),
one sees that Gµν already transforms as a rank-2 tensor under ξµ, namely

δξρGµν = ξρ∂ρGµν + 2Gρ(µ∂ν)ξ
ρ. (2.65)

The transformation of Gµ5 reads:

δξρGµ5 = ξν∂νGµ5 +G5ν∂µξ
ν +Gµν∂5ξ

ν . (2.66)

The last term, being independent of Gµ5, is a shift in the transformation which can be used in
order to gauge fix to zero the KK excitations of Gµ5, as long as ∂5ξ

ν 6= 0. Since all functions
ξν(x, y) which are not constant in y can be used for this purpose, we end up with a residual 4D
diffeomorphisms invariance parametrised by all functions ξµ constant in y. Under such ξµ(x),
one sees that Gµ5 and G55 transform indeed correctly as a 4D vector and a Lorentz scalar
respectively.

We next turn to the U(1)KK transformations, parametrised by the 4D Lorentz scalar function
ξ5(x, y). Let us first recall that the equations of motion are solved, in the Einstein frame, by the
background metric

ḠMN = e
− 2√

3
α|y|

(
ηµν 0
0 1

)
. (2.67)
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We thus define the radion r, which is the fluctuation of G55 around the background solution
through:

G55(x, y) = e
− 2√

3
α|y|

e2r(x,y). (2.68)

The ξ5 part of the transformation (2.64) on r then reads:

δξ5r = ∂5ξ
5 − α√

3
sgn yξ5 + ξ5∂5r. (2.69)

Defining
Kµ ≡

Gµ5
G55

, (2.70)

and using the transformations (2.63) for Gµ5 and (2.64) for G55, one finds:

δξ5Kµ = ∂µξ
5 −Kµ∂5ξ

5 + ξ5∂5Kµ. (2.71)

In order for Kµ to transform as a gauge field under U(1)KK , and assuming that the x and y

dependences of ξ5 and Kµ factorize, one sees that they must satisfy

ξ5 = f(y)ξ̃5(x), Kµ = f(y)K̃µ(x), (2.72)

where f(y) is an arbitrary function of y, and ξ̃5(x) and K̃µ(x) two arbitrary functions of x.
Similarly, defining

gµν ≡
Gµν
G55
−KµKν , (2.73)

we have
δξ5gµν = ξ5∂5gµν − 2gµν∂5ξ

5. (2.74)

In a similar way that we have used a subset of the functions ξµ(x, y) to gauge fix the KK
modes of the vector Gµ5, one can now use a subset of the functions ξ5(x, y) in order to gauge
fix a series of KK modes of the scalars. From the 5D point of view, two scalar fields are present:
the radion r and the dilaton δφ, whose transformations with respect to ξ5 are respectively given
by:

δξ5r = ∂5ξ
5 − α√

3
sgn yξ5 + ξ5∂5r, (2.75)

δξ5(δφ) = α sgn yξ5 + ξ5∂5δφ. (2.76)

One can then choose to gauge fix the excitations of r, of δφ, or of a combination of both.
All possibilities are obviously physically equivalent, and our choice will be motivated by the
requirement that the 4D metric must remain inert under the residual gauge freedom which has
not been fixed. The canonically normalised 4D metric g̃µν is related to gµν by

gµν = e−3rg̃µν . (2.77)

From the transformations (2.74) and (2.75), one finds the transformation of g̃µν under ξ5,

δξ5 g̃µν = ∂5ξ
5g̃µν −

√
3α sgn yξ5g̃µν + ξ5∂5g̃µν . (2.78)
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This transformation motivates us to consider the linear combination r− 2√
3δφ, which transforms

under ξ5 according to:

δξ5

(
r − 2√

3
δφ

)
= ∂5ξ

5 −
√

3α sgn yξ5 + ξ5∂5

(
r − 2√

3
δφ

)
. (2.79)

Again ∀ξ5(x, y) 6= e
√

3α|y|ξ̃5(x), the two first terms of the transformation are non zero constant
shifts, which can thus be used to gauge fix the KK modes of the scalar r − 2√

3δφ. Therefore,
we end up with a residual gauge freedom which cannot be fixed for now, associated with the
parameter

ξ5 ≡ e
√

3α|y|ξ̃5(x). (2.80)

Under such ξ5, one immediately verifies that the constant terms in the transformation (2.78)
of g̃µν vanish. Then, the zero mode of g̃µν , independent of y, does not transform under ξ5 as
required. Having found the form of ξ5, we deduce from (2.72) that

Kµ = e
√

3α|y|K̃µ(x). (2.81)

The final parametrisation of the 5D metric GMN therefore reads:

GMN = e
− 2√

3
α|y|

e2r
(
e−3rg̃µν(x) + e2

√
3α|y|K̃µK̃ν(x) e

√
3α|y|K̃µ(x)

e
√

3α|y|K̃ν(x) 1

)
, (2.82)

whose inverse is given by:

GMN = e
2√
3
α|y|

e−2r
(

e3rg̃µν(x) −e
√

3α|y|e3rK̃µ(x)
−e
√

3α|y|e3rK̃ν(x) 1 + e2
√

3α|y|e3rK̃2(x)

)
, (2.83)

with K̃µ = g̃µνK̃ν , K̃2 = g̃λσK̃λK̃σ. The metric GMN thus reduces in the appropriate limits
to the two forms (2.56) or (2.57) previously studied in the literature, namely by turning off the
spin-1 excitations, as well as the scalar or the graviton fluctuations.

At that point, let us summarise the approach followed here. Using the gauge freedom as-
sociated to the ξµ(x, y), we first set to zero the KK modes of the vector Gµ5, ending with a
residual 4D diffeomorphism invariance associated with the vectors ξµ(x). Under such ξµ(x), all
the fields Gµν , Gµ5 and G55 respectively transform as a 4D rank-2 tensor, Lorentz vector and
Lorentz scalar. Next, we have used the gauge freedom associated to the ξ5(x, y) in order to get
rid of the KK modes of the scalar r − 2√

3δφ. The remaining U(1)KK gauge transformation is
associated with the scalar function ξ5 ≡ e

√
3α|y|ξ̃5(x), under which the different fields transform

according to:

δξ5 g̃µν = ξ5∂5g̃µν , (2.84)

δξ5K̃µ = ∂µξ̃
5(x), (2.85)

δξ5r = 2α√
3

sgn yξ5 + ξ5∂5r, (2.86)

δξ5(δφ) = α sgn yξ5 + ξ5∂5δφ. (2.87)
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Denoting by ϕ− and ϕ+ the orthogonal combinations

ϕ− ≡ r −
2√
3
δφ, ϕ+ ≡ r + 1√

3
δφ, (2.88)

their transformations under ξ5 are given by:

δξ5ϕ− = ξ5∂5ϕ−, (2.89)

δξ5ϕ+ =
√

3α sgn yξ5 + ξ5∂5ϕ+. (2.90)

The shift in the transformation of ϕ+ resembles that of a Goldstone mode, and can be used
in order to eliminate it through a suitable U(1)KK gauge transformation. The breaking of the
remaining U(1)KK invariance will be reflected in the emergence of a mass term for the KK
vector Kµ in a manner that is reminiscent of the Stückelberg term, which is why we will be
referring to ϕ+ as the Stückelberg field in the following. The aim of the next two subsections is
to compute the dimensionally reduced action in order to clarify the origin of the mass term for
the KK vector, and then find the scalar potential associated to the zero mode of the remaining
physical scalar ϕ−.

At this point, it is instructive to move from the Einstein to the string frame in order to get
more physical intuition about the fields ϕ+ and ϕ−. The Einstein frame metric (2.82), given in
the basis (ϕ−, ϕ+) by

GMN = e
− 2√

3
α|y|

e
2
3 (ϕ−+2ϕ+)

(
e−(ϕ−+2ϕ+)g̃µν(x) + e2

√
3α|y|K̃µK̃ν(x) e

√
3α|y|K̃µ(x)

e
√

3α|y|K̃ν(x) 1

)
, (2.91)

can be brought, by means of the 5D Weyl transformation (2.31), to the string frame metric

GSMN =
(
gSµν(x) + e2ϕ+e2

√
3α|y|K̃µK̃ν(x) e2ϕ+e

√
3α|y|K̃µ(x)

e2ϕ+e
√

3α|y|K̃ν(x) e2ϕ+

)
, (2.92)

from which we deduce that ϕ+ is actually the string frame radion. The 4D string frame metric
gSµν is related to the 4D Einstein frame metric g̃µν by the 4D Weyl transformation

gSµν = e−ϕ− g̃µν . (2.93)

Regarding ϕ−, we remind that in our normalisation in which the 5D action reads

S(5) =
∫
d5x

√
−GSe−

√
3δφ 1

2
[
R(5)[GS ] + 3(∂δφ)2 + . . .

]
, (2.94)

the 4D dilaton δφ4 is defined such that the 4D action is

S(4) =
∫
d4x

√
−gSe−

√
3δφ4 1

2
[
R(4)[gS ] + 3(∂δφ4)2 + . . .

]
. (2.95)

From the above equation then it follows that ϕ− is simply proportionnal to the 4D dilaton
according to

ϕ− = −
√

3δφ4. (2.96)
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2.4.2 Stückelberg “mechanism”

Let us now compute the four-dimensional effective bosonic action from the five-dimensional
one introduced in Section 2.3.1, whose structure is reminded here for convenience:

S = SEH + Sdil + SΛ +
2∑
i=1

(SNS5i + SGHi) . (2.97)

The three first terms correspond to the bulk action given in (2.33)-(2.35), while the last two
are the boundary terms given in (2.37)-(2.38). The computation of the dilaton kinetic term
Sdil, cosmological constant SΛ and NS5-brane contributions SNS5i is straightforward. Using the
general metric decomposition found in (2.82), its inverse (2.83) and φ = α|y|+ δφ, we get:

Sdil = −1
2

∫
d5xe−

√
3α|y|√−g̃ {e−3rα2 + (α sgn yKµ − ∂µδφ)2

+(e−3r + K̃2)
(
(δφ′)2 + 2α sgn yδφ′

)
− 2Kµ∂µδφδφ

′}
, (2.98)

SΛ = 3
2α

2
∫
d5xe−

√
3α|y|√−g̃e−r+ 2√

3
δφ
, (2.99)

SNS5i = ±2
√

3α
∫
d5xe−

√
3α|y|√−g̃e−2r+ 1√

3
δφ
δ(y − yi). (2.100)

The computation of the gravitational action SG ≡ SEH +SGH is more involved. We perform
the analysis in analogy to the ADM framework, splitting the five dimensional spacetimeM into
timelike slices of constant y. The general framework of a d + 1 spacetime decomposition with
boundaries is reviewed in Appendix D.1, and the particular computation for the metric (2.82)
is detailed in Appendix D.2. The total gravitational action (D.2.20), up to quadratic order in
Kµ, reads:

SG =
∫
d5xe−

√
3α|y|√−g̃{e−3r

[
2α2 + 2

√
3α sgn yr′ + 3

2(r′)2
]

−3
2K̃

µ∂µr
′ − 1

4e
3rg̃µν g̃ρσFµρFνσ −

(
α sgn yKµ −

√
3

2 ∂µr

)2
 , (2.101)

where we have ignored the term K̃µ∂µ(r′r) which is irrelevant for the discussion here, used (2.81)
to write (K2)′ = 2

√
3α sgn yK2, and finally arranged the radion kinetic term, the mass term for

Kµ and their mixing into a perfect square. From (2.98) and (2.101), one sees that the dilaton
and gravitational actions contain the terms

Sdil + SG ⊃
∫
d5xe−

√
3α|y|√−g̃{−3

2

[
α sgn yKµ −

1√
3
∂µϕ+

]2
− 1

4 (∂µϕ−)2
}

(2.102)

where we have introduced back the combinations ϕ− and ϕ+ defined in (2.88). Using the gauge
transformation (2.90) to fix the Stückelberg field ϕ+ to zero, one immediately reads the mass
term for the U(1)KK boson Kµ:

m2
U(1)KK = 3

2α
2. (2.103)

The dimensional reduction from five to four dimensions of the metric tensor on a linear dilaton
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background therefore provides a very peculiar spectrum, parametrised by two parameters: the
slope of the linear dilaton α, and the radius of compactification L. In the KK excitation modes,
the situation is similar to the flat case (α = 0): a scalar combination ϕ− of the radion and the
dilaton as well as the U(1)KK vector Kµ have infinite towers of states which can be gauge fixed
to zero, providing three additional polarisations to the excitation modes of the 4D graviton,
which acquire masses ∝ 1/L. The difference from the flat case comes from the mass gap above
the zero mode, on top of which the tower of KK states starts. Proportionnal to α, this gap is a
characteristic feature of the LD background, and vanishes in the flat limit α→ 0, thus recovering
the usual case of toroidal compactification. In the zero mode sector, the 4D graviton as well
as ϕ− have a massless zero mode. The zero mode of the scalar orthogonal combination ϕ+ is
absorbed by the zero mode of Kµ, which acquires a mass ∝ α, in sharp contrast with the flat
case where all the zero modes of the different components of the metric remain massless. The
main result here is thus that the residual U(1)KK symmetry, which remains in standard KK
compactification on a flat background α = 0, is here broken at a scale m2

U(1)KK = 3
2α

2 fixed by
the slope α of the LD background.

One may wonder if the low-energy limit that corresponds to decouple all massive states, not
only the KK modes, by sending formally the LD slope |α| → ∞, corresponds to an orbifold
reduction. Indeed, the y-parity projects out the KK vector boson Kµ but keeps the dilaton and
radion which should also be projected, as it plays the role of the longitudinal polarisation of
Kµ (in the string frame). A possible answer is to extend the orbifold by the T-duality which
in the string frame inverts the radion and thus makes ϕ+ odd. Consistency of the theory then
requires to add also the NS antisymmetric tensor BMN since the vector B5µ is exchanged with
G5µ under T-duality (to linear order). This will be done indeed in the supersymmetric case that
we study in the following.

2.4.3 Effective scalar potential

Having found the mass term for the KK vector Kµ as well as its associated Stückelberg field,
we can now focus on the scalar sector, putting Kµ = 0. Combining the results found above, the
total scalar action, before gauge fixing ϕ+ to zero, is given by:

Sscalar =
∫
d5xe−

√
3α|y|√−g̃{−1

2(∂µδφ)2 − 3
4(∂µr)2

+e−3r
[3

2α
2
(

1 + e
2(r+ 1√

3
δφ)
)
− 2
√

3αer+
1√
3
δφ(δ(y)− δ(y − L))

+3
2(r′)2 − 1

2(δφ′)2 + 2
√

3α sgn yr′ − α sgn yδφ′
]}

. (2.104)
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Varying it with respect to δφ and r, we respectively get the equations of motion:

24 δφ+ e−3rδφ
′′ − 3α sgn ye−3r

(
r + 1√

3
δφ

)′
− 3e−3rr

′
δφ
′

−
√

3α2e−3r
(

1− e2(r+ 1√
3
δφ)
)

+ 2αe−3r
(

1− er+
1√
3
δφ
)

(δ(y)− δ(y − L) = 0, (2.105)

24 r − 2e−3rr
′′ + 2

√
3α sgn ye−3r

(
r + 1√

3
δφ

)′
+ e−3r

(
(δφ′)2 + 3(r′)2

)
+ α2e−3r

(
1− e2(r+ 1√

3
δφ)
)
− 8√

3
αe−3r

(
1− er+

1√
3
δφ
)

(δ(y)− δ(y − L) = 0. (2.106)

Integrating these two equations on a infinitesimal interval [yi − ε, yi + ε], where yi denotes
the location of the two branes, we find the jump conditions for the derivatives of the scalar
fluctuations δφ and r:

∆δφ′ = −2α
(

1− er+
1√
3
δφ
)
, ∆r′ = − 4α√

3

(
1− er+

1√
3
δφ
)
, (2.107)

where ∆X ≡ X(yi + ε)−X(yi − ε). In terms of the fields ϕ− and ϕ+ introduced in (2.88), the
equations of motion (2.105) and (2.106) yields for ϕ−:

24 ϕ− − 2e−3rϕ
′′
+ + 4

√
3α sgn ye−3rϕ

′
+ + 3e−3rϕ

′2
+ + 3α2e−3r

(
1− e2ϕ+

)
− 4

√
3αe−3r (1− eϕ+) (δ(y)− δ(y − L) = 0, (2.108)

with the jump condition
∆ϕ′− = 0. (2.109)

Therefore, imposing for the zero modes the gauge condition

ϕ+ = 0, (2.110)

the equation of motion of the zero mode of ϕ− simplifies into the one of a massless 4D scalar
field,

24ϕ− = 0. (2.111)

It follows that the zero mode of the only physical scalar field ϕ− is not only massless, but has
also vanishing scalar potential. This is expected from the fact that the interbrane distance L has
not been stabilised, and ϕ− plays the role of the modulus for this parameter. The vanishing of
the full scalar potential can of course be checked at the level of the action (2.104), first noticing
that 3

2(r′)2 − 1
2(δφ′)2 = 0 in the gauge ϕ+ = r + 1√

3δφ = 0. Then, regarding the last two terms
in Sscalar, they read 2

√
3α sgn yr′ − α sgn yδφ′ =

√
3α sgn yϕ′+ +

√
3α sgn yϕ′−. The first term

vanishes due to the gauge condition, while the second is zero on the zero mode of ϕ− which is
independent of y. Hence, for the zero mode of the physical scalar ϕ−, the last line of (2.104)
vanishes and we end up with

Sscalar=
∫
d5xe−

√
3α|y|√−g̃{−1

4(∂µϕ−)2+e−3r
[
3α2 − 2

√
3α(δ(y)− δ(y − L))

]}
. (2.112)
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Denoting V the volume factor

V ≡
∫ L

−L
dye−

√
3α|y| = 2

∫ L

0
dye−

√
3αy = 21− e−

√
3αL

√
3α

, (2.113)

the integration of the second term yields
∫ L

−L
dye−

√
3α|y|√−g̃e−3r3α2 = 3α2√−g̃e−3rV = 2

√
3α
√
−g̃e−3r

(
1− e−

√
3αL

)
, (2.114)

which is cancelled by the delta function terms. Hence, the full scalar potential of the zero mode
of ϕ− vanishes, and the effective 4D scalar action is simply given by the kinetic term of ϕ−, in
agreement with the analysis of the equations of motion carried out above:

Sscalar = −V4

∫
d4x

√
−g̃ g̃µν∂µϕ−∂νϕ−. (2.115)

2.5 Minimal supersymmetric extension

The minimal supersymmetric extension of the bosonic linear dilaton model introduced above
has been constructed in [49, 50]. It is based on a gauging of N = 2 supergravity coupled to one
vector multiplet along the U(1)R subgroup of the SU(2)R symmetry group, a construction
holographically dual to Little String Theory.

The formalism of ungauged N = 2, D = 5 supergravity coupled to an arbitrary number
nV of vector multiplets as well as its abelian gauging are reminded in the following Subsections
2.5.1 and 2.5.2 respectively. Following [50], we will restrict ourselves to the case nV = 1, and
thus only one physical real scalar ϕ1 is present, associated to the dilaton degree of freedom. The
multiplet content of the theory is then

(
emM , ψiM , A0

M

)
,

(
A1
M , λi , ϕ1 = e

φ√
3

)
, (2.116)

with ψiM the two gravitini, A0
M the graviphoton, A1

M the U(1) vector field, λi the two dilatini and
φ the canonically normalized dilaton. The coordinates of the nV +1 = 2-dimensional embedding
scalar manifold are called ξ1 ≡ ϕ1 and ξ0, the latter being an unphysical scalar field which will
be fixed in terms of the physical one ϕ1 after imposing the constraint

F ≡ β3CIJKξ
IξJξK = 1, (2.117)

where CIJK are completely symmetric real constants which define the theory, and with β ≡
√

2
3 .

The functions ξI(φ) are related to the hI(φ) introduced in the next Subsection 2.5.1 by ξI(φ) =
β−1hI(φ).

2.5.1 Vector-coupled N = 2, D = 5 ungauged supergravity

Pure N = 2, D = 5 supergravity is built out of the supergravity multiplet(
emM , ψiM , A0

M

)
, (2.118)
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which contains, in addition of the graviton emM , two symplectic-Majorana gravitini ψiM , with
i = 1, 2 the SU(2)R index, and a vector field A0

M , called the graviphoton. The most general
N = 2, D = 5 matter-coupled supergravity can then be obtained by coupling the supergravity
multiplet with a given numbers of vector, tensor and hypermultiplets. In this thesis, we will not
consider the case of tensor and hypermultiplets and refer to [59, 60] for a general description
of N = 2, D = 5 supergravity coupled to these matter multiplets. Instead, we focus on N = 2
Maxwell-Einstein supergravity, obtained by coupling a given number nV of vector multiplets to
the supergravity multiplet (2.118) [52]. A N = 2 vector multiplet,(

AM , λi , ϕ
)
, (2.119)

contains a vector field AM , a SU(2)R doublet of symplectic-Majorana spin-1/2 fermions λi,
called dilatini, and a real scalar ϕ. The total field content of the theory is thus

emM , ψiM , AIM , λãi , ϕ
x, (2.120)

with I = 0, 1, ..., nV . The real scalars ϕx describe a real nV -dimensional manifold M, whose
structure has been called very special real geometry, and whose coordinate and local frame
indices are respectively written x = 1, ..., nV and ã = 1, ..., nV .M is equipped with a metric gxy
and a nV -bein f ãx , related through:

gxy = f ãxδãb̃f
b̃
y . (2.121)

It turns out thatM is better described as a submanifold of a (nV + 1)-dimensional Riemannian
space, with coordinates hI(ϕx), with an embedding defined through the constraint

F ≡ CIJKhIhJhK = 1. (2.122)

CIJK are completely symmetric real constants, which will turn out to uniquely determine the
whole theory. From CIJK and hI(ϕx), we define another set of variables hI(ϕx) through

hI ≡
1
3
∂

∂hI
CJKLh

JhKhL = CIJKh
JhK , (2.123)

so that hIhI = 1, as well as a symmetric tensor GIJ(ϕx) which can be seen as the metric tensor
of the embedding (nV + 1)-dimensional space, raising and lowering the indices I, J... according
to

hI ≡ GIJhJ , hI ≡ GIJhJ . (2.124)

GIJ(ϕx) will appear to be the kinetic matrix of the vector fields. From the additional condition
that GIKGKJ = δJI , it is easy to check that it can be written as

GIJ = −2CIJKhK + 3hIhJ . (2.125)

Introducing the quantities

hIx ≡ −
√

3
2∂xh

I , hIx ≡ GIJhJx =
√

3
2∂xhI , (2.126)
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the metric gxy(ϕx) ofM is then defined as being the pullback of GIJ(ϕx) toM:

gxy ≡ GIJhIxhJy = −2CIJKhIxhJkhK . (2.127)

Finally, we define the symmetric Txyz(ϕx) tensor by

Txyz ≡
√

3
2hIx;yh

I
z = −

√
3
2hIxh

I
y;z = CIJKh

I
xh

J
yh

K
z , (2.128)

where a semicolon ";" denotes the covariant derivative associated with the Levi-Civita connection
onM, such that gxy;z = 0, as well as the quantity ΦIxy(ϕx) symmetric in its last two indices:

ΦIxy ≡
√

2
3

(1
4gxyhI + Txyzh

z
I

)
. (2.129)

With the formalism and notations introduced above, the Lagrangian of N = 2, D = 5 super-
gravity coupled to nV vector multiplets can then be written as [52]:

e−1L(0) = 1
2R

(5) − 1
2gxy∂Mφ

x∂Mφy − 1
4GIJF

I
MNF

MNJ + e−1

6
√

6
CIJKε

MNPQRF IMNF
J
PQA

K
R

− 1
2 ψ̄

i
Mγ

MNPDNψPi −
1
2 λ̄

iãγM
(
DMδ

ãb̃ + Ωãb̃
x ∂Mφ

x
)
λb̃i −

i

2 λ̄
iãγMγNψMif

a
x∂Nφ

x

+ 1
4h

ã
I λ̄

iãγMγNPψMiF
I
NP + i

4ΦIãb̃λ̄
iãγMNλb̃iF

I
MN (2.130)

− 3i
8
√

6
hI
(
ψ̄iMγ

MNPQψNiF
I
PQ + 2ψ̄MiψNi F

I
MN

)
+ L4-fermions.

The action S =
∫
d5xL(0) is invariant under the following N = 2 supersymmetry transforma-

tions:

δemM = 1
2 ε̄

iγmψMi, (2.131)

δψMi = DM (ω̂)εi + i

4
√

6
hIe

m
M (γmnlεi − 4ηmnγlεi) F̂nlI −

1
12e

m
Mγmnε

j λ̄ãi γ
nλãj

+ 1
48e

m
Mγmnlε

j λ̄ãi γ
nlλãj + 1

6e
m
M ε

j λ̄ãi γmλ
ã
j −

1
12e

m
Mγ

nεj λ̄ãi γmnλ
ã
j , (2.132)

δϕx = i

2 ε̄
iλãi f

x
ã , (2.133)

δAIM = −1
2e

m
M ε̄

iγmλ
ã
i h

I
ã + i

√
6

4 ψ̄iM εih
I , (2.134)

δλãi = − i2f
ã
xγ

M (∂̂Mϕ)xεi − δϕxΩãb̃
x λ

b̃
i + 1

4h
ã
Iγ

mnεiF̂
I
mn

− i

4
√

6
T ã
b̃c̃

(
−3εj λ̄b̃iλc̃j + γmε

j λ̄b̃iγ
mλc̃j + 1

2γmnε
j λ̄b̃iγ

mnλc̃j

)
. (2.135)
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The hatted quantities X̂ are the supercovariantization of the unhatted ones X, namely:

ω̂Mmn(e) ≡ ωMmn(e)− 1
4
(
ψ̄inγMψmi + 2ψ̄iMγ[nψm]i

)
, (2.136)

DM (ω̂)εi ≡ ∂M εi + 1
4 ω̂

mn
M (e)γmnεi, (2.137)

F̂ IMN ≡ F IMN + i
√

6
4 hI ψ̄i[MψN ]i + hIãψ̄

j
[MγN ]λ

ã
j , (2.138)

(∂̂Mϕ)x ≡ ∂Mϕ
x − i

2f
x
ã ψ̄

j
Mλ

ã
j . (2.139)

Knowing the symmetric constants CIJK , one can find the functions hI(ϕx) by solving the con-
straint (2.122), then deduce the functions hI(ϕx), GIJ(ϕx), gxy(ϕx), Txyz(ϕx) and ΦIxy(ϕx)
using Eqs. (2.123), (2.125), (2.127), (2.128) and (2.129) respectively, and thus completely deter-
mine the above Lagrangian and susy transformations. Therefore, even for a fixed number nV
of vector multiplets, several matter-coupled N = 2, D = 5 supergravity theories are possible,
depending on the geometry of the scalar manifoldM, in turn determined by the constants CIJK .
In Section 2.5.3, we list the different N = 2, D = 5 supergravity theories coupled to nV = 1
vector multiplet whose U(1)R gauging produces the runaway scalar potential of the non-critical
string, and we now recall the main ideas of the U(1)R gauging of N = 2, D = 5 supergravity.

2.5.2 U(1)R gauging of N = 2, D = 5 supergravity

The global symmetry group G of the Lagrangian (2.130) can be written as G = H×SU(2)R,
where H is the group of linear transformations acting on hI and leaving CIJK invariant 6, and
SU(2)R the R-symmetry group acting on the fermions ψiM and λãi . One can then arbitrarily
choose to gauge the U(1)R subgroup of SU(2)R 7, a subgroup of H or a combination of both.
These general gaugings have been described in [61], and we will only consider in the following
the simplest case of the U(1)R gauging alone, following [51, 53].

The gauging along the U(1)R subgroup of the SU(2)R R-symmetry group is achieved by
defining the U(1)R gauge field as a linear combination of the nV + 1 vector fields AIM ,

AM ≡ vIAIM , (2.140)

with vI a set of nV + 1 real constants. In the same time, we promote the Lorentz covariant
derivatives of the fermionic fields to Lorentz-U(1)R covariant derivatives 8

DMλ
ãi → (DMλã)i ≡ DMλ

ãi + gAMδ
ijλãj , (2.141a)

DMψ
i
N → (DMψN )i ≡ DMψ

i
N + gAMδ

ijψNj , (2.141b)

where g is the U(1)R coupling constant. These replacements in the original Lagrangian L(0)

(2.130) and in the susy transformations (2.131)-(2.135) will break the supersymmetry. It can be

6. Note that in the most general case, H is only a subgroup of the isometry group ofM.
7. Since the vector fields are invariant under SU(2)R, they cannot be used as non-Abelian gauge fields for

SU(2)R, and the full SU(2)R group cannot be gauged.
8. The scalars ϕx are kept uncharged under the U(1)R, and their partial derivatives are thus not replaced by

covariant derivatives in the gauging procedure.
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recovered via the addition to L(0) of a scalar potential P and fermion mass terms, given by

e−1L′ = −g2P − i
√

6
8 gψ̄iMγ

MNψjNδijP0 −
g√
2
λ̄iãγMψjMδijPã + ig

2
√

6
λ̄iãλjb̃δijPãb̃, (2.142)

as well as adding new g-dependent parts to the original susy transformations (2.132) and (2.135)
of the gravitini and dilatini, of the form:

δ′ψMi = − ig

2
√

6
P0γM εijδ

jkεk, (2.143)

δ′λãi = − g√
2
P ãεijδ

jkεk. (2.144)

Supersymmetry then requires the new functions P (ϕx), P0(ϕx), P ã(ϕx) and Pãb̃ to satisfy

P = −P 2
0 + PãP

ã, (2.145)

P0 = 2hIvI , (2.146)

P ã =
√

2hIãvI , (2.147)

Pãb̃ = 1
2δãb̃P0 + 2

√
2Tãb̃c̃P

c̃. (2.148)

2.5.3 Runaway scalar potential from 5D gauged supergravity

In this subsection we want to come back on the work carried out in [49, 50] in order to
classify all possible D = 5, N = 2 supergravity theories, coupled to nV = 1 vector multiplet,
whose U(1)R gauging exactly produces the runaway scalar potential of the non-critical string.
The approach followed here is to start from the wanted scalar potential and trace back the
construction carried out in [51] towards the different allowed 5D prepotentials, which completely
define the theory. In the nV = 1 case, the two functions P0 and Pã introduced by the gauging
and defined in Appendix 2.5.2 are expressed in terms of two arbitrary constants A and B by:

P0 = Ae
− 2√

3
φ +Be

φ√
3 , Pã = Ae

− 2√
3
φ − B

2 e
φ√
3 , (2.149)

so that the full scalar potential P reads:

P = −P 2
0 + PãP

ã = −3B
(
Ae
− φ√

3 + B

4 e
2√
3
φ
)
, (2.150)

where ã denotes the flat indices of the scalar manifold, which take just one value if nV = 1; φ is
the canonically normalised dilaton whose kinetic term is −1

2(∂φ)2. The scalar metric gxy = gxx

in the nV = 1 case is therefore simply given in this basis by gxx = 1, and similarly for the scalar
manifold einbein f ãx defined in (2.121). In the following we will thus not distinguish flat indices
ã and curved indices x of the scalar manifold, and simply write Px. The P0 and Px can be seen
as the coordinates of the constants vI defined in (2.140) in the basis (hI , h

′
I) according to

vI = 1
2P0hI(φ) +

√
3

2 Pxh
′
I(φ), ∀I = 0, 1, (2.151)
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where the prime denotes differentiation with respect to φ. Knowing from (2.149) the P0 and Px,
(2.151) is a first-order differential equation for the hI , whose general solution is given by

hI(φ) =
(4vI

3B + 2ACI
)
e
− φ√

3 −BCIe
2√
3
φ
, ∀I = 0, 1, (2.152)

with CI the constants of integration. The completely symmetric constants CIJK , which enter the
5D prepotential F through F = CIJKh

IhJhK , are then related to the hI and their derivatives
according to:

CIJK = hIhJhK −
3

2β2h
′

(Ih
′
JhK) + 1√

2β3h
′
Ih
′
Jh
′
K . (2.153)

Plugging the result (2.152) and its derivative into the relation (2.153), we then find the four
independent constants CIJK expressed in terms of the six constants A, B, vI and CI by:

CIJJ = −9B
(
ACJ + 2vJ

3B

)[
2
(
ACI + 2vI

3B

)
CJ +

(
ACJ + 2vJ

3B

)
CI

]
, ∀I, J = {0, 1}. (2.154)

After these general considerations, we now focus on the particular case A = 0, B 6= 0, which
reproduces the runaway potential of the non-critical string 9

P = −P 2
0 + PxP

x = −3
4B

2e
2√
3
φ
, (2.155)

with P0 = Be
φ√
3 , Px = −B

2 e
φ√
3 , and gives for the constants CIJK :

CIJJ = −4vJ
B

(2vICJ + vJCI) , ∀I, J = {0, 1}. (2.156)

Since we are interested in nV = 1 gauged supergravity theories leading to the runaway scalar
potential (2.155), we need to investigate which choices of the different constants are compatible
with the system of the four equations (2.156).

Without lost of generality, one can impose as a starting point C011 to be non-vanishing,
which from (2.156) implies v1 6= 0. Two cases can then be considered, depending if C1 vanishes
or not.

• If C1 = 0, it implies C111 = 0, and necessarily C0 6= 0 since C011 6= 0. But there remains
a freedom on the choice of v0 which can vanish or not, leading to C100 = C000 = 0 or
C100 6= 0, C000 6= 0.

• In the second case C1 6= 0, we have C111 6= 0. There are then three subcases, depending on
the choice of v0 and C0. If v0 = 0, since C011 6= 0, we must have C0 6= 0. But if v0 is non
vanishing, the two possibilities for C0 to vanish or not are allowed, respectively leading to
(C000 = 0, C100 6= 0) and (C000 6= 0, C100 6= 0).

These results are summarised in Table 2.1. We end up with five different possibilities for the
choice of the constants CIJK , and therefore five different theories leading to the scalar potential
(2.155). The associated values for the constants vI and CI are given in the second vertical part
of the table, from which one can find all relevant quantities, among which the functions hI and
the kinetic matrix GIJ .

9. The A term cannot be considered as a string loop correction either.
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C011 C111 C100 C000 v1 C1 v0 C0

(a) 6= 0 0 0 0 6= 0 0 0 6= 0
(b) 6= 0 0 6= 0 6= 0 6= 0 0 6= 0 6= 0
(c) 6= 0 6= 0 0 0 6= 0 6= 0 0 6= 0
(d) 6= 0 6= 0 6= 0 0 6= 0 6= 0 6= 0 0
(e) 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0 6= 0

Table 2.1 – The five different supergravity theories (defined by the CIJK on the left part) coupled
to one vector multiplet whose U(1)R gauging reproduces the potential of LST, and the associated
constants (on the right part).

However, while being a priori distinct, these five cases have actually the same physical con-
tent. The scalar potential as well as the scalar metric having been fixed, it is sufficient to check
that the actions of the vectors are equivalent for these different cases. According to (2.130), the
gauge field part of the action contains the kinetic term −1

4GIJF
IF J and the topological term

CIJKA
IF JFK , where spacetime indices, respectively contracted with the 5D metric and 5D

Levi-Civita tensor, have been left implicit in both cases. In the simplest case (a), the vector
kinetic matrix G(a)

IJ and topological term L(a)
CS reads:

G
(a)
IJ =

3B2C2
0e

4√
3
φ 0

0 8v2
1

3B2 e
− 2√

3
φ

 , (2.157)

L(a)
CS = C011A

0F 1F 1 + 2C011A
1F 1F 0. (2.158)

Starting with the case (e), the kinetic metric and the topological terms are respectively given
by:

G
(e)
IJ =

 8v2
0

3B2 e
− 2√

3
φ + 3B2C2

0e
4√
3
φ 8v0v1

3B2 e
− 2√

3
φ + 3B2C0C1e

4√
3
φ

8v0v1
3B2 e

− 2√
3
φ + 3B2C0C1e

4√
3
φ 8v2

1
3B2 e

− 2√
3
φ + 3B2C2

1e
4√
3
φ

 , (2.159)

L(e)
CS = C011A

0F 1F 1 + 2C011A
1F 1F 0 + C100A

1F 0F 0 + 2C100A
0F 1F 0

+C111A
1F 1F 1 + C000A

0F 0F 0. (2.160)

Since C0 6= 0 and v1 6= 0, we are free to consider the field redefinitions

A0
M → A0

M −
C1
C0
A1
M , A1

M → A1
M −

v0
v1
A0
M , (2.161)

which bring G(e)
IJ into the diagonal form

G
(e)
IJ → G

(e)
IJ =

3B2
(
C0 − C1

v0
v1

)2
e

4√
3
φ 0

0 8
3B2

(
v1 − v0

C1
C0

)2
e
− 2√

3
φ

 , (2.162)

while the Chern-Simons terms are sent to:

L(e)
CS → L

(e)
CS =

(
C011 + 20v0v1C1

B
− 12v2

0C
2
1

BC0
+ 4v3

0C
3
1

Bv1C2
0

)(
A0F 1F 1 + 2A1F 0F 1

)
. (2.163)
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These are indeed equivalent to (2.157)-(2.158) of the case (a). The theories (b) and (c) are
immediately obtained from (e) by simply turning off C1 or v0, respectively. Finally, for the case
(d) where C0 = 0, one has to consider instead the field redefinition

A0
M → A0

M −
v1
v0
A1
M , (2.164)

which brings G(d)
IJ and L(d)

CS into

G
(d)
IJ → G

(d)
IJ =

 8v2
0

3B2 e
− 2√

3
φ 0

0 3B2C2
1e

4√
3
φ

 , (2.165)

L(d)
CS → L(d)

CS = C100A
1F 0F 0 + 2C100A

0F 0F 1. (2.166)

This simply corresponds to an exchange between the 0 and 1 vectors compared to the case (a),
as can be immediately checked from Eqs. (2.157)-(2.158).

Hence, after appropriate field redefinitions, the five theories of Table 2.1 turn out to be
physically equivalent, and we can then restrict without lost of generality to the simplest one (a),
where C111 = C100 = C000 = 0. Its prepotential

F = ξ0(ϕ1)2 (2.167)

has been considered in the five-dimensional heterotic string theory compactified on K3 × S1 in
[62], where 1/ξ0 has been identified with the heterotic string coupling. It corresponds to the
choice of the only non-vanishing constant CIJK

C011 = 1
3β3 . (2.168)

In particular, one can easily find from (2.168) the gauge kinetic matrix

GIJ =

1
2e

4√
3
φ 0

0 e
− 2√

3
φ

 , (2.169)

as well as the various functions hI , hI , hIã and hãI defined in Appendix 2.5.1:

h0 =
√

2
3e
− 2√

3
φ
, h1 =

√
2
3e

1√
3
φ
, (2.170)

h0 = 1√
6
e

2√
3
φ
, h1 =

√
2
3e
− 1√

3
φ
, (2.171)

h0
1̃ = 2√

3
e
− 2√

3
φ
, h1

1̃ = − 1√
3
e
φ√
3 , (2.172)

h1̃
0 = 1√

3
e

2√
3
φ
, h1̃

1 = − 1√
3
e
− φ√

3 . (2.173)

The minimal supersymmetric extension of the dilaton-gravity theory we are working with
is therefore described in the Einstein frame by the Lagrangian L = L(0) + L′ , where L(0) is
the Lagrangian of the ungauged theory given in (2.130) and L′ the part added by the gauging
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(2.142). From the results for GIJ and P found above, it is easy to see that its bosonic part is
given by:

e−1Lbos = 1
2R

(5)[GMN ]− 1
2∂Mφ∂

Mφ− e
2√
3
φΛ

−1
8e

4√
3
φ
F 0
MNF

MN0 − 1
4e
− 2√

3
φ
F 1
MNF

MN1 (2.174)

+ e−1

6
√

6
C011ε

MNPQR
(
A0
MF

1
NPF

1
QR + 2A1

MF
1
NPF

0
QR

)
.

In addition of the terms on the first line, already present in the analysis of the Sections 2.3
and 2.4, the Lagrangian also contains the kinetic terms for the two gauge bosons as well as
a five-dimensional Chern-Simons term, with F 0

MN and F 1
MN the abelian field strengths of the

graviphoton and the U(1) vector respectively. From the 5D point of view, the only effect of the
gauging in the bosonic sector appears in the scalar potential.

This theory is invariant under N = 2 supersymmetries in four dimensions, namely has 8 real
conserved supercharges. In the following subsection 2.5.4, we remind that the background solu-
tion φ = α|y| preserves 1/2 of the supersymmetries, and compute the direction of the unbroken
one. A second source of supersymmetry breaking can then arise from the compactification of the
theory on S1/Z2, and from the introduction of branes on the boundaries. We will then check in
subsection 2.5.5 that the supersymmetry preserved by the LD background is also preserved by
the branes located at the singular points of the orbifold.

2.5.4 The LD background as a 1/2-BPS solution

In the vacuum of the theory where all fermions and vectors vanish, the relevant parts of the
supersymmetry transformations for the gravitini and dilatini read:

δ(ε1, ε2)ψMi = ∂M εi + 1
4ω

mn
M (e)γmnεi −

iα

2
√

3
e
φ√
3 emMγmεijδ

jkεk, (2.175)

δ(ε1, ε2)λi = − i2e
M
m γ

m∂Mφεi + α

2 e
φ√
3 εijδ

jkεk, (2.176)

where the last terms proportional to α arise from the gauging. In order to compute their explicit
forms in the background, we recall the background metric and frame field in the Einstein frame:

GMN = e
− 2√

3
α|y|

ηMN , emM = e
− 1√

3
α|y|

δmM . (2.177)

The relation between the spin-connection ωmnM (e) and the frame field emM ,

ωmnM (e) = 2eN [m∂[Me
n]
N ] − e

N [men]QeMq∂Ne
q
Q, (2.178)

leads to the following components for the spin-connection:

ωabµ (e) = ωab5 (e) = ωa5
5 (e) = 0, (2.179a)

ωa5
µ (e) = − α√

3
|y|′δaµ = − α√

3
sgn(y)δaµ. (2.179b)
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The transformations (2.175) and (2.176) in the background φ = α|y| therefore read:

δ(ε1, ε2)ψMi = ∂M εi −
α

2
√

3
sgn yδaMγaγ5εi −

iα

2
√

3
δmMγmεijδ

jkεk, (2.180)

δ(ε1, ε2)λi = α

2 e
φ√
3
[
−i sgn yγ5εi + εijδ

jkεk
]
. (2.181)

Setting the transformations (2.180) and (2.181) to zero, we obtain the Killing equations
which need to be solved in order to study the existence or not of preserved supersymmetries in
the vacuum. We start with the Killing equations for the fifth components of the two gravitini,
which form the system of coupled partial differential equations

δ(ε1, ε2)ψ51 = ∂5ε1 −
iα

2
√

3
γ5ε2 = 0, (2.182a)

δ(ε1, ε2)ψ52 = ∂5ε2 + iα

2
√

3
γ5ε1 = 0, (2.182b)

whose solutions are given by:

ε1(x, y) = e
− α

2
√

3
|y|
ε(x), ε2(x, y) = i sgn(y)e−

α

2
√

3
|y|
γ5ε(x). (2.183)

Plugging these solutions into the Killing equations for the 4-dimensional gravitini,

δ(ε1, ε2)ψµi = ∂µεi −
α

2
√

3
sgn(y)δaµγaγ5εi −

iα

2
√

3
δaµγaεijδ

jkεk = 0 (2.184)

we find that they are satisfied provided that ε(x) is a constant spinor, ε(x) = ε. The solutions
to the Killing equations are thus given by

ε1(y) = e
− α

2
√

3
|y|
ε, (2.185a)

ε2(y) = i sgn(y)e−
α

2
√

3
|y|
γ5ε, (2.185b)

and the direction of unbroken supersymmetry is obviously:

ε2(y) = i sgn(y)γ5ε1(y). (2.186)

It is then straightforward to check that the dilatini Killing equations are also satisfied, namely
δ(ε1, ε2 = i sgn yγ5ε1)λ1 = δ(ε1, ε2 = i sgn yγ5ε1)λ2 = 0.

We thus conclude that the linear dilaton background φ = α|y| breaks N = 2 supersymmetry
to N = 1, with the 4 remaining real supercharges associated with the 4 components of the
Killing spinor ε.

In the following we will define the supersymmetric transformation in the direction of the
preserved supersymmetry by:

δL ≡ δ(ε1, ε2 = i sgn(y)γ5ε1), (2.187)

while the transformation in the direction of the broken supersymmetry would be given by δNL ≡
δ(ε1, ε2 = −i sgn(y)γ5ε1).
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2.5.5 Preserved supersymmetry and NS5-branes
As described in Section 2.3.1, introducing a Z2 symmetry on the background solution pro-

duces discontinuous terms in the equations of motion, whose cancellation requires adding brane
contributions to the original Lagrangian. In the Einstein frame, these brane Lagrangians are
given by:

L1 = −2
√

3αe(4)e
φ√
3 δ(y), L2 = 2

√
3αe(4)e

φ√
3 δ(y − L), (2.188)

with e(4) the Einstein frame four-dimensional vierbein induced on the branes. The aim of this
subsection is to show how the boundary terms coming from the supersymmetric variation of
the bulk Lagrangian are cancelled by the supersymmetric variations of the brane Lagrangians
(2.188), up to linear order in the dilatini λi and gravitini ψMi. The part of the bulk Lagrangian
whose supersymmetric variation brings terms linear in λ reads:

L = Lφkin + Lλkin + Lφλψ + L(α)
Λ + L(α)

λλ + L(α)
λψ , (2.189)

with, in the Einstein frame:

e−1Lφkin = −1
2∂Mφ∂

Mφ, (2.190)

e−1Lλkin = −1
2 λ̄

iγMDM (ω)λi = −1
2 λ̄

iγM (∂M + 1
4ω

mn
M γmn)λi, (2.191)

e−1Lφλψ = − i2∂Nφλ̄
iγMγNψMi, (2.192)

e−1L(α)
Λ = 3

2α
2e

2√
3
φ
, (2.193)

e−1L(α)
λλ = − iα

4
√

3
e
φ√
3 λ̄iλjδij , (2.194)

e−1L(α)
λψ = α

2 e
φ√
3 λ̄iγMψjMδij , (2.195)

and where the superscript (α) means that the corresponding terms arise from the gauging. The
relevant parts of the supersymmetric transformations of the dilaton, dilatini and gravitini are
respectively given by:

δφ = i

2 ε̄
iλi, (2.196)

δλi = − i2
/∂φεi − α

2 e
φ√
3 δijεj , (2.197)

δψiM = DM (ω)εi + iα

2
√

3
δmMγmδ

ijεj . (2.198)

In the bulk, the variation of the dilaton and dilatini kinetic terms, as well as Lφλψ, yields:

e−1δLφkin = − i2∂Mφε̄
i∂Mλi = i

2∂
M∂Mφε̄

iλi, (2.199)

e−1δLλkin = i

2∂
M∂Mφλ̄

iεi + i

2∂Nφλ̄
iγMγNDM (ω)εi

− α

2
√

3
e
φ√
3 λ̄i/∂φεkεijδ

jk − α

2 e
φ√
3 λ̄i /D(ω)εkεijδjk, (2.200)

e−1δLφλψ = − i2∂Nφλ̄
iγMγNDM (ω)εi + 3α

4
√

3
e
φ√
3 λ̄i/∂φεkεijδ

jk. (2.201)
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One can already check that without the gauging, i.e. taking α = 0, and using ε̄iλi = −λ̄iεi, the
three above variations cancel, δ(Lφkin + Lλkin + Lφλψ) = 0 as expected. The gauging produces
extra terms in δLλkin and δLφλψ, proportional to α, which are cancelled by the variation of
L(α)

Λ + L(α)
λλ + L(α)

λψ , as it can be checked by computing:

e−1δL(α)
Λ = i

√
3

2 α2e
2√
3
φ
ε̄iλi, (2.202)

e−1δL(α)
λλ = − α

4
√

3
e
φ√
3 λ̄i/∂φεjδij + iα2

4
√

3
e

2√
3
φ
λ̄iεkδ

k
i (2.203)

e−1δL(α)
λψ = α

2 e
2√
3
φ
λ̄iγMδψjMδij (2.204)

= α

2 e
φ√
3 λ̄i /D(ω)εjδij + 5iα2

4
√

3
e

2√
3
φ
λ̄iεkδ

k
i . (2.205)

From (2.199), (2.200), (2.201), (2.202), (2.203) and (2.205), we see that δ(Lφkin +Lλkin +Lφλψ +
L(α)

Λ + L(α)
λλ + L(α)

λψ ) = 0 at linear order in λ.

We now consider the boundary terms on S1/Z2. They arise from integrations by part done in
the bulk variations, as well as from the brane Lagrangians (2.188). In the bulk analysis carried
out above, two integrations by parts have been done, in the variations of the dilatini and dilaton
kinetic terms:

(i) In δLλkin, the integration by parts brings a total derivative of the form ∂5(ee
φ√
3 λ̄iγ5δλi).

At the linear level in the fluctuations λ̄i, we evaluate δλi at the background level, which vanishes
in the direction of the preserved supersymmetry

δLλi ≡ δ(ε1, ε2 = i sgn yγ5ε1)λi = 0. (2.206)

We therefore conclude that the dilatini kinetic term does not bring additional boundary contri-
butions in the variation of the Lagrangian.

(ii) In δLφkin, the integration by parts yields

δLφkin = − i2∂5
(
e∂5φε̄iλi

)
+ i

2e∂
M∂Mφε̄

iλi. (2.207)

The first term is a total derivative integrated on the interval [−L,L]. The integrand ∂5
(
e∂5φε̄iλi

)
being an even function of y, its integral on [−L,L] is 2 times its integral on [0, L], giving, at
linear order in λi, −iα

[
e−
√

3α|y|ε̄iλi
]y=L

y=0
. The second term of (2.207) cancels with the first one

of (2.200), like in the bulk analysis, and we thus conclude that in the direction of the preserved
supersymmetry ε2 = i sgn yγ5ε1, δ(Lφkin + Lλkin) brings the boundary contribution

δ(Lφkin + Lλkin) = −iα
[
e−
√

3α|y|ε̄iλi
]y=L

y=0
. (2.208)

It is then straightforward to check that this contribution is indeed cancelled by the supersym-
metric variation of the brane Lagrangians (2.188). Using (2.196), the variation of the dilaton φ
yields:

δφL1 = −iαe(4)e
φ√
3 ε̄iλiδ(y), δφL2 = iαe(4)e

φ√
3 ε̄iλiδ(y − L). (2.209)
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Since we are interested in the variations linear in the fluctuations λi, we replace φ and e(4) by
their background values φ = α|y| and e(4) = e

− 4√
3
α|y|, leading to

δφL1 = −iαe−
√

3α|y|ε̄iλiδ(y), δφL2 = iαe−
√

3α|y|ε̄iλiδ(y − L), (2.210)

so that:
δφ(L1 + L2) = iα

[
e−
√

3α|y|ε̄iλi
]y=L

y=0
, (2.211)

which exactly cancels the boundary terms (2.208) coming from the bulk variations.
Finally, we consider the supersymmetric variations linear in the gravitini ψMi. The part of

the bulk Lagrangian whose supersymmetric variation brings terms linear in ψMi is simply the
Einstein-Hilbert action,

LEH = 1
2eR

(5)(ω) = 1
2ee

M
m e

N
n RMN

mn(ω), (2.212)

whose supersymmetric variation contains two terms:

δLEH = −1
2e
(
RMN −

1
2GMNR(5)

)
ε̄iγMψNi + 1

2ee
M
m e

N
n δRMN

mn(ω). (2.213)

From δRMN
mn(ω) = DMδωN

mn −DNδωM
mn, we see that the second term is a total derivative

whose integral would vanish in the absence of boundaries. Taking into account the boundaries
in the fifth direction, it remains the total derivative ∂5(ee5

ne
N
p δωN

np). Contracting the general
variation of the spin connection ωMnp

enNe
p
P δωMnp = (D[Mδe

n
N ])ePn − (D[Nδe

n
P ])eMn + (D[P δe

n
M ])eNn (2.214)

with GPM , we see that e5
ne
N
p δωN

np = 0 and thus the second term of (2.213) vanishes. In order
to evaluate the first one at linear order in the perturbation ψNi , we plug the background values
in the Einstein tensor, which yields

RMN −
1
2GMNR(5) = −2

√
3αηMN [δ(y)− δ(y−L)] +2

√
3αδ5

Mδ
5
N [δ(y)− δ(y−L)]+ . . . , (2.215)

where the dots denote bulk terms. In the contraction with ε̄iγMψNi , the terms with M = N = 5
cancel, and after considering the background value e = e

− 5√
3
α|y| and writing γµ = eµaγ

a =
e
α√
3
|y|
δµaγ

a, ψνi = Gνρψρi = e
2√
3
α|y|

ηνρψρi, we end with

δLEH =
√

3αe−
2√
3
α|y|

ε̄iδµaγ
aψµi[δ(y)− δ(y − L)]. (2.216)

Again we want to check that this contribution is cancelled by the supersymmetric variation of
the brane Lagrangians (2.188). From the variation of the determinant of the four-dimensional
vierbein

δe(4) = 1
2e

(4)ε̄iγµψµi, (2.217)

we deduce that

δeL1 = −
√

3αe(4)e
φ√
3 ε̄iγµψµiδ(y), δeL2 =

√
3αe(4)e

φ√
3 ε̄iγµψµiδ(y − L). (2.218)
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Since we are interested in the variations linear in the fluctuations ψµi, we replace the other fields
by their background values φ = α|y|, e(4) = e

− 4√
3
α|y|, and write again γµ = eµaγ

a = e
α√
3
|y|
δµaγ

a,
which leads to:

δeL1 = −
√

3αe−
2√
3
α|y|

ε̄iδµaγ
aψµiδ(y), δeL2 =

√
3αe−

2√
3
α|y|

ε̄iδµaγ
aψµiδ(y − L). (2.219)

Again, these brane variations exactly cancel the boundary terms (2.216) coming from the bulk
variation of LEH . We thus conclude that the original N = 1 supersymmetry preserved by
the linear dilaton background on R1,4 remains preserved after the compactification of the fifth
direction on S1/Z2, provided the branes added at the two boundaries of the interval are NS5-
branes.

2.6 Compactified D = 4 effective theory

The total bosonic Lagrangian of the N = 2, D = 5 supergravity theory introduced in Section
2.5.3 has been written in (2.174). The compactification of the graviton-dilaton system performed
in Section 2.4 has revealed two important features: on the LD background, the KK vector Kµ

coming from the 5D metric becomes massive by absorbing a scalar combination ϕ+, identified
with the string frame radion, while only the orthogonal combination ϕ−, identified as the 4D
dilaton, remains massless, with a vanishing effective scalar potential. Since we know that the LD
background breaks 1/2 of the original supersymmetries, we should be able to write the effective
N = 1, D = 4 supergravity after identifying all massive states and decoupling them from the
massless spectrum. To this purpose, in the following two subsections we will first dimensionally
reduce the remaining part of the bosonic action, taking into account that the zero modes of the
fields may depend on the compactified coordinate y, in contrast with standard KK reduction.
Then, in the scalar sector we will first need to identify the massless 4D scalars and complexify
them in a consistent way to form a chiral matter multiplet. In the vector sector, since we already
know that the KK vector Kµ becomes massive, we will need to identify a second massive vector,
so that both of them could form the bosonic content of a massive spin-3/2 multiplet, decoupled
from the spectrum in the low energy limit.

2.6.1 General considerations on dimensional reduction

The five-dimensional action of the two vectors A0
M and A1

M contains, in addition to the
kinetic terms Skin, a Chern-Simons term SCS ,

S = Skin + SCS , (2.220)

with

Skin =
∫
d5x
√
−G

{
−1

8e
4√
3
φ
F̂ 0
MN F̂

MN0 − 1
4e
− 2√

3
φ
F̂ 1
MN F̂

MN1
}
, (2.221)

SCS =
∫
d5x

1
6
√

6
C011ε̂

MNPQR
(
Â0
M F̂

1
NP F̂

1
QR + 2Â1

M F̂
1
NP F̂

0
QR

)
, (2.222)
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where we have denoted all the five dimensional quantities with a hat in order to distinguish
them from their four dimensional counterparts. The standard dimensional reduction of a given
tensor field is usually performed in the vielbein formalism rather than the metric one. Using
local Lorentz transformations, one can write the 5D Einstein frame fünfbein êmM and its inverse
êMm as:

êmM = e
− α√

3
|y|
(
e−

1
2 rẽaµ(x) erKµ(x, y)

0 er

)
, êMm = e

α√
3
|y|
(
e

1
2 rẽµa(x) −e 1

2 rKa(x, y)
0 e−r

)
, (2.223)

whose squares obviously reproduce the metric (2.82) and its inverse (2.83). The dimensional
reduction of the vector kinetic terms is then carried out in the following way: we first identify
the five and four dimensional vectors Âa and Aa on flat indices, and then we use the fünfbein
parametrisation (2.223) to relate five and four-dimensional vectors with curved indices:

Aa ≡ Âa = êMa ÂM = êµaÂµ + ê5
aÂ5 = e

α√
3
|y|
e

1
2 rẽµa(Âµ −A5Kµ), (2.224)

where we have defined Â5 = A5. This construction automatically implies invariance of the 4D
vector Aµ = Âµ −A5Kµ under the U(1)KK 10. A similar analysis for the field strength yields:

Fab ≡ F̂ab = e
2√
3
α|y|

erẽµa ẽ
ν
b

{
2∂[µAν] + 2A5∂[µKν] − 2K[µ∂5(Aν] +A5Kν])

}
, (2.225)

F̂a5 = e
2√
3
α|y|

e−
1
2 rẽµa {∂µA5 − ∂5(Aµ +A5Kµ)} . (2.226)

Putting everything together, using
√
−G = e

− 5α√
3
|y|
e−r
√
−g̃ and moving from the scalar basis

(r, δφ) to (ϕ−, ϕ+), we get the vector kinetic action in terms of the four-dimensional quantities:

Skin = − 1
8

∫
d5xe

√
3α|y|√−g̃{e2ϕ+−ϕ−

[
Fµν(A0) +A0

5Fµν(K)− 2K[µ∂5(A0
ν] +A0

5Kν])
]2

+2e−2ϕ−
[
∂µA

0
5 − ∂5(A0

µ +A0
5Kµ)

]2}
− 1

4

∫
d5xe−

√
3α|y|√−g̃{eϕ− [Fµν(A1) +A1

5Fµν(K)− 2K[µ∂5(A1
ν] +A1

5Kν])
]2

+2e−2ϕ+
[
∂µA

1
5 − ∂5(A1

µ +A1
5Kµ)

]2}
, (2.227)

where in the right-hand-side (RHS), contractions are made with the 4D metric g̃µν(x). The
dimensional reduction of the Chern-Simons term works in a similar way. We first write its
expression in terms of flat indices and then identify the four and five-dimensional Levi-Civita
tensors to be equal on flat indices, ε̂abcd5 = εabcd. This leads to:

CIJK ε̂
MNPQRÂIM F̂

J
NP F̂

K
QR = CIJK

√
−Gε̂mnpqrÂImF̂ JnpF̂Kqr

= CIJK
√
−Gεabcd

(
F̂ IabF̂

J
cdÂ

K
5 − 4F̂ IabF̂ Jc5ÂKd

)
. (2.228)

10. δξ5Aµ = 0 holds only in the standard case when Aµ is independent of the compactified coordinate. If Aµ
has a y-dependence, it transforms under the U(1)KK according to δξ5Aµ = ξ5∂5Aµ.
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Using the expressions for F̂ab, F̂a5 and Âa obtained above, converting back flat into curved
indices and integrating by parts, we obtain:

CIJK ε̂MNPQRÂIM F̂
J
NP F̂

K
QR = CIJKε

µνρσ
{

3AI5F Jµν(A)FKρσ(A) + 3AI5AJ5FKµν(A)Fρσ(K)

+ AI5A
J
5A

K
5 Fµν(K)Fρσ(K)− 4(F Iµν(A) +AI5Fµν(K))K[ρ∂5Â

J
σ]A

K
5

+ 4(F Iµν(A) +AI5Fµν(K))∂5Â
J
ρA

K
σ + 8K[µ∂5Â

I
ν](∂ρAJ5 − ∂5Â

J
ρ )AKσ

}
. (2.229)

The difference compared to standard KK compactification, where the zero modes of the fields
are assumed to be independent of the compactified coordinates, lies in the terms proportional
to ∂5(. . . ): they must be kept in the framework of the LD background, since the latter may
introduce an explicit y-dependence even on the zero modes of the fields. These considerations
are general in the sense that they do not depend on the background, and can be used in other
frameworks where the fields may have given dependences on the compactified coordinates.

2.6.2 N = 1, D = 4 effective theory

Having performed the dimensional reduction of the spin-1 action, one can now find the 4D
spectrum of the zero modes of the different fields, and in particular check that the massless spec-
trum arranges into a N = 1 supersymmetric effective theory. Since we are ultimately interested
in the massless limit, we can set the massive Kaluza-Klein vector Kµ = 0 in the dimensionally
reduced action obtained above. Up to quadratic order in AIµ, AI5, the kinetic action (2.227) then
reads:

Skin =
∫
d5x

√
−g̃

{
−1

8e
√

3α|y|e−ϕ−+2ϕ+F 0
µνF

0µν − 1
4e
−
√

3α|y|eϕ−F 1
µνF

1µν (2.230)

−1
4e
√

3α|y|e−2ϕ−(∂µA0
5 − ∂5A

0
µ)2 − 1

2e
−
√

3α|y|e−2ϕ+(∂µA1
5 − ∂5A

1
µ)2
}
,

while the Chern-Simons action (2.229), for C011 6= 0 only, yields:

SCS =
∫
d5x

1
6
√

6
C011ε

µνρσ
(
3A0

5F
1
µνF

1
ρσ + 6A1

5F
1
µνF

0
ρσ

)
. (2.231)

In order to ease the comparison between the Einstein and Maxwell sectors, both of which should
contribute to the N = 1 effective supergravity, we also recall the (quadratic) dimensionally
reduced action of the Kaluza-Klein vector Kµ and the scalars ϕ− and ϕ+ coming from the 5D
dilaton and gravitational actions, obtained previously in Section 2.4.2:

Sdil+G =
∫
d5xe−

√
3α|y|√−g̃{−1

4e
ϕ−+2ϕ+F 2(K)

−3
2

[
α sgn yKµ −

1√
3
∂µϕ+

]2
− 1

4(∂µϕ−)2
}
. (2.232)

The point is that we would like to determine which are the massless N = 1 multiplets and the
corresponding truncation of the dimensionally reduced action.

In the scalar sector, the exponentials in front of the kinetic terms of A0
5 and A1

5 in (2.230)
tell us that ϕ− and ϕ+ must be complexified with A0

5 and A1
5 respectively. From the action for
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ϕ− found in section 2.4.3, S[ϕ−] = −1
4
∫
d5xe−

√
3α|y|√−g̃(∂µϕ−)2, one sees that the exponential

of y factorizes out of the kinetic terms of A0
5 and ϕ− if and only if A0

5 is of the form

A0
5 = e−

√
3α|y|Ã0

5(x), (2.233)

which gives for the scalar action:

Sscalar = −1
4

∫
d5xe−

√
3α|y|√−g̃ {(∂µϕ−)2 + e−2ϕ−(∂µÃ0

5(x))2
}
. (2.234)

Defining the complex scalar field
S = eϕ− + iÃ0

5(x), (2.235)

the above scalar action can then be rewriten as

Sscalar = −
∫
d5xe−

√
3α|y|√−g̃ ∂µS∂µS̄

(S + S̄)2 , (2.236)

from which we deduce the Kahler potential to be K(S, S̄) = − ln(S + S̄).
In the vector sector, the N = 1 spectrum can be found by considering the 4D Chern-Simons

term (2.231). Denoting f(S) the holomorphic gauge kinetic function, the resulting N = 1 theory
must have a topological term of the form ImfF ∧F . Such term can only come from the first one
of (2.231) A0

5F
1F 1, which is consistent with the fact that A1

5, being complexified with ϕ+, must
ultimately be projected out of the spectrum. We therefore deduce that the A1

µ vector remains
massless and sit in a N = 1 vector multiplet, while A0

µ must acquire a mass, by absorbing A1
5.

From the kinetic terms (2.230), one sees that such a mechanism can be obtained by assuming a
mixing of the zero modes of the vectors of the form

A1
µ = Ã1

µ(x) + e
√

3α|y|A0
µ(x). (2.237)

The factor in the exponential, a priori arbitrary, is found by requiring the two massive vectors
Kµ and A0

µ to have the same mass, since they should form together with the massive gravitino
a massive N = 1 spin-3/2 multiplet, namely

m2
U(1)KK = m2

U(1)0 = 3
2α

2. (2.238)

In the low energy limit, obtained by truncating the massive spectrum, the remaining bosonic
action reads (we denote F 1 ≡ F (Ã1(x)):

Sbos. =
∫
d5xe−

√
3α|y|√−g̃{∂S∂S̄K∂µS∂µS̄ − 1

4RefF
1
µνF

1µν + 1
8
Imf√
−g̃

εµνρσF 1
µνF

1
ρσ

}
, (2.239)

which, after integration on y, gives the bosonic Lagrangian of a D = 4, N = 1 supersymmetric
theory, defined by the Kahler potential K, superpotential W and gauge kinetic function f given
by:

K(S, S̄) = − ln(S + S̄), W (S) = 0, f(S) = S. (2.240)

It is easy to check that these results are consistent with a N = 1 supersymmetric spectrum



82 Chapter 2 – Compactification on a linear dilaton background

N = 2 supergravity multiplet N = 2 vector multiplet N = 2 vector multiplet
gµν gµ5 A0

µ eϕ− + iÃ0
5 A1

µ eϕ+ + iA1
5

+ − − + + −

Table 2.2 – Bosonic content of the D = 4, N = 2 multiplets and their Z2-parity.

obtained from a standard orbifold compactification. The four-dimensional theory contains two
N = 2 vector multiplets (A0

µ, e
ϕ− + iÃ0

5) and (A1
µ, e

ϕ+ + iA1
5). Two truncations N = 2→ N = 1

can then be considered, putting A1
µ and eϕ−+ iÃ0

5 to zero, or A0
µ and eϕ+ + iA1

5 to zero. The first
case is obviously excluded, since no topological term would remain in (2.231), which is consistent
with the gauge ϕ+ = 0 set in Section 2.4.2, where we also identified ϕ− with the massless scalar
field. We are thus forced to truncate the A0

µ and A1
5, by assigning them a Z2-odd parity, while

A1
µ and A0

5 are kept even. In Appendix E we show that the 5D vector A0
M is dual to the 5D

Kalb-Ramond two form BMN . Truncating A0
µ therefore amounts to assigning an orbifold Z2-odd

parity to Bµ5, and thus an even parity to Bµν , the 4D dual of A0
5. Regarding the string frame

radion ϕ+, it is obviously even under the Z2 of the orbifold, and odd under the discrete Z2

subgroup of the T-duality group, which inverts the radius of compactification and interchanges
at the same time Bµ5 with the KK vector Kµ. The full truncation must therefore combine both
Z2 transformations; it projects out half of the degrees of freedom of the original theory, namely
6 bosonic and 6 fermionic on-shell degrees of freedom. These results are summarised in Table
2.2.

The N = 1, D = 4 multiplet content is then easily obtained after dimensional reduction
of the supersymmetry (susy) transformations introduced in Section 2.5.1, using in particular
the 5D frame field parametrisation (2.223). In the following, we will also work with the linear
combinations of the fermions λ+ and λ− defined by

λ+ ≡ λ1 + i sgn yγ5λ2, λ− ≡ λ1 − i sgn yγ5λ2. (2.241)

From the susy transformation of the dilaton (2.133), we deduce the transformation of the physical
scalar ϕ− in the direction of the preserved supersymmetry:

δLe
ϕ− = − i√

3
eϕ− ε̄1λ+. (2.242)

Since we know the y-dependence of the spinor ε̄1,

ε̄1 = e
− α

2
√

3
|y|
ε̄, (2.243)

with ε the constant Killing spinor associated with the N = 1 preserved supersymmetry, we
deduce that the zero mode of the spinor λ+ must satisfy

λ+ = e
α

2
√

3
|y|
λ̃+(x), (2.244)

where λ̃+(x) is a spinor independent of y. Similarly, the transformations of the 5D vectors (2.134)
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yields for the 4D scalars A0
5:

δLA
0
5 = − 1√

3
e−
√

3α|y|eϕ− ε̄1γ5λ+. (2.245)

The combination ε̄1γ5λ+ being independent of y, we find again that A0
5 must be of the form

A0
5 = e−

√
3α|y|Ã0

5(x), as already obtained above. The transformation of the complex scalar S =
eϕ− + iÃ0

5 is thus given by:
δLS = − i√

3
eϕ− ε̄1(1 + γ5)λ+. (2.246)

In the vector sector, the susy transformations of A1
µ in the direction of the preserved super-

symmetry is given by:
δLA

1
µ = 1

2
√

3
e−

1
2ϕ− ε̄1ẽaµ(x)γaλ−. (2.247)

Similarly as for λ+, using ε̄1 = e
− α

2
√

3
|y|
ε̄ and the fact that A1

µ is a function of x only tell us that
λ− must have a y-dependence of the form

λ− = e
α

2
√

3
|y|
λ̃−(x). (2.248)

The transformations of the fermions λ+ and λ− respectively read:

δLλ+ = i√
3
e
α√
3
|y|
e

1
6 (ϕ−+2ϕ+)ẽµa(x)γa∂µ(ϕ− + 2ϕ+)ε1 (2.249)

+ 1√
3
ẽµa(x)γaγ5

[
e

4α√
3
|y|
e−

5
6ϕ−+ 1

3ϕ+(∂µA0
5 − ∂5A

0
µ)− e

α√
3
|y|
e

1
6ϕ−−

2
3ϕ+(∂µA1

5 − ∂5A
1
µ)
]
ε1,

δLλ− = 1
2
√

3
ẽµa(x)ẽνb (x)γaγb

[
e

4α√
3
|y|
e−

1
3ϕ−+ 4

3ϕ+F 0
µν − e

α√
3
|y|
e

2
3ϕ−+ 1

3ϕ+F 1
µν

]
ε1. (2.250)

After gauge fixing the scalars ϕ+ and A1
5 to zero, truncating A0

µ and using A0
5 = e−

√
3α|y|Ã0

5(x)
and that A1

µ = Ã1
µ(x) when A0

µ = 0, they lead for the four-dimensional spinors λ̃+(x) and λ̃−(x):

δLλ̃+(x) = i√
3
e

1
6ϕ− ẽµa(x)γa∂µϕ−ε(x) + 1√

3
ẽµa(x)γaγ5e−

5
6ϕ−∂µÃ

0
5(x)ε(x), (2.251)

δLλ̃−(x) = − 1
2
√

3
e

2
3ϕ− ẽµa(x)ẽνb (x)γaγbF 1

µνε(x). (2.252)

The gravitational multiplet is then easily obtained from

δLẽ
a
µ(x) = 1

2e
α√
3
|y|
e

1
6ϕ−+ 1

3ϕ+ ε̄1γaψµ−, (2.253)

where we have defined ψµ− ≡ ψµ1 − i sgn yγ5ψµ2 and used eaµ = e
− α√

3
|y|
e−

1
2 rẽaµ(x). The same

argument as for λ± imposes the 4D gravitino ψµ− to be of the form

ψµ− = e
− α

2
√

3
|y|
ψ̃µ−(x), (2.254)

so that the 4D transformation, after gauge fixing ϕ+ = 0, reads:

δLẽ
a
µ(x) = 1

2e
1
6ϕ− ε̄(x)γaψ̃µ−(x). (2.255)
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Finally, one has to rescale the different fermions in order to get both canonical kinetic terms
and standard susy transformations. Since we want to keep standard gravitino transformation of
the form δLψµ = ∂µε + . . . , the parameter ε and the gravitino ψµ have to be rescaled by the
same powers of eϕ− , and we thus define the normalised fermions ε̃(x) and ψ̃µ−(x) by:

ε̃(x) = e
1
12ϕ− ε̃(x), ψ̃µ−(x) = e

1
12ϕ−ψ̃µ−(x). (2.256)

The correct normalisations for the chiral fermion λ̃+ and the gaugino λ̃− can be obtained from
their kinetic terms, which after dimensional reduction are found to be:

Lkin(λ̃±) = −1
4e
−
√

3α|y|√−g̃e− 1
6ϕ−−

1
3ϕ+ ¯̃λ±(x)ẽaµ(x)γa∂µλ̃±(x). (2.257)

Defining the normalised fermions λ̃+(x) and λ̃−(x) by,

λ̃+(x) = e
11
12ϕ− λ̃+(x), λ̃−(x) = e−

7
12ϕ− λ̃−(x), (2.258)

their kinetic terms have now the correct powers of eϕ− matching with the ones of their bosonic
partners, namely (in the gauge ϕ+ = 0):

Lkin(λ̃+) = −1
4e
−
√

3α|y|√−g̃e−2ϕ− ¯̃λ+(x)ẽaµ(x)γa∂µλ̃+(x), (2.259)

Lkin(λ̃−) = −1
4e
−
√

3α|y|√−g̃eϕ− ¯̃λ−(x)ẽaµ(x)γa∂µλ̃−(x). (2.260)

With these normalisations, the different factors of eϕ− disappear in the susy transformations,
and we end up with the standard N = 1 supersymmetric transformations involving only four-
dimensional x-dependent fields:

δLS = − i√
3
ε̄(1 + γ5)λ̃+, δLA

1
µ = 1

2
√

3
ε̄γµλ̃−, (2.261)

δL[(1 + γ5)λ̃+] = i√
3

(1 + γ5)/∂Sε, δLλ̃− = − 1
2
√

3
γµγνF 1

µνε, (2.262)

where all x-dependences have been now left implicit for compactness. These results are sum-
marised in Table 2.3.

N = 1 supergravity multiplet N = 1 vector multiplet N = 1 chiral multiplet
eaµ ψ̃µ− A1

µ λ̃− S = eϕ− + iÃ0
5 (1 + γ5)λ̃+

−1
3 −1

6 0 1
6 (0 ; −1) 1

6

Table 2.3 – N = 1, D = 4 field content

In the second row we have listed the constants n which appear in the exponent of the internal
wave functions of the zero modes of the five-dimensional fields Φ(x, y) through Φ(0)(x, y) =
en
√

3α|y|Φ̃(x).
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2.7 Conclusion

The work carried out in this chapter analysed different aspects of the linear dilaton back-
ground arising from a runaway scalar potential in five dimensions, in relation to two different
perspectives: compactification and supersymmetry breaking.

On the one hand, we performed the KK compactification down to four dimensions of the
dilaton-gravity action of a non-critical string, emphasising the new features emerging from the
non-trivial background compared to the standard (toroidal) flat case. Besides the known mass
gap between the 4D zero mode of the 5D fields and the lowest state of their KK tower, it has
been shown how the LD background may induce an exponential profile of the wavefunction of
the zero modes of some fields. In the case of spin-1, this behaviour brings a vector mass term
which breaks the residual gauge symmetry, inherited from the original higher dimensional one,
at a scale proportional to the slope of the LD background. This mechanism has been explicitly
described in the case of the KK vector Gµ5 arising from the 5D metric GMN , through a gauge
symmetry analysis which generalises the well-known results of the toroidal case.

On the other hand in a supersymmetric theory, the LD background behaves as a 1/2-BPS so-
lution and can thus be used to study supersymmetry breaking. This aspect has been investigated
in the framework of the N = 2, D = 5 gauged supergravity coupled to one vector multiplet,
built as a holographic dual of Little String Theory.

Both aspects are then combined together by carrying out the compactification down to four
dimensions of the full bosonic sector of the above 5D supergravity theory. We have shown how
the lowest massive spectrum associated to the mass gap, induced by an exponential profile of
the vector wavefunctions, can be decoupled from the massless sector in the low energy limit, so
that the remaining degrees of freedom arrange into N = 1 multiplets under the supersymmetry
preserved by the background. The corresponding supersymmetric truncation is consistent with
a standard orbifold projection.

The possibility to describe a consistent N = 2, D = 4 supergravity theory by including
the above lowest massive modes is an interesting open problem. A starting point would be to
examine if the LD background induces a gauging in the 4-dimensional N = 2 theory that can
lead to a (spontaneous) partial supersymmetry breaking N = 2→ N = 1. This could bring new
insights regarding the partial supersymmetry breaking in supergravity, which is highly restrictive
and requires so far the use of hypermultiplets [63, 64, 65] (see also [10]).





Chapter 3

Intersecting D-brane models and the
anomalous magnetic moment of the

muon

3.1 The anomalous magnetic moment of the muon: a review

The Landé g-factor of a particle is a proportionality constant between its spin ~s and magnetic
moment ~µ defined by

~µ = g
e

2m~s, (3.1)

where e and m are the electric charge and mass of the particle, and ~s = 1/2~σ for a spin-1/2
particle, with ~σ the Pauli matrices. The Dirac equation for an elementary spin-1/2 particle
implies that g = 2. However, quantum corrections will deviate the value of g from 2, leading to
an anomalous magnetic moment defined by a ≡ (g − 2)/2.

In Quantum Electrodynamics (QED), the value of the Landé g-factor of a lepton and its
loop corrections can be extracted from the general lepton scattering process depicted in Figure
3.1, as discussed in standard textbooks like [66, 67]. Using Lorentz invariance, the Ward identity
pµMµ = 0 and the fact that QED is parity-conserving, we can parametrize this amplitude as:

iMµ
all-orders = −ie ū(q2)

[
γµf1

(
p2

m2

)
+ (q1 + q2)µf2

(
p2

m2

)]
u(q1). (3.2)

γ, Z

γ(p)

l−(q2)l−(q1)

Figure 4

�
Figure 5

2

Figure 3.1 – Amplitude iMµ
all-orders containing all-order contributions to the anomalous
magnetic moment of a lepton l−.
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The Gordon identity for on-shell spinors,

2m ū(q2)γµu(q1) = ū(q2)(qµ1 + qµ2 + iγµνpν)u(q1), (3.3)

allows us to rewrite the second term of (3.2) in terms of γµν ≡ i
2 [γµ, γν ], yielding:

iMµ
all-orders = −ie ū(q2)

[
γµF1

(
p2

m2

)
+ iγµνpν

2m F2

(
p2

m2

)]
u(q1). (3.4)

F1 and F2 are functions of p2

m2 called form factors. At tree level, it is easy to see that F1 = 1 and
F2 = 0. These functions contain all the properties of the interaction between a lepton with an
electromagnetic field: F1(0) gives the electric charge of the lepton, while F2(0) gives its Landé
g-factor according to:

F2(0) = g − 2
2 . (3.5)

Therefore, computing the QED one-loop correction to the anomalous magnetic moment amounts
to extract from the process represented in Figure 3.1 the one-loop correction to F2. This is a
standard computation which can be found for instance in [66, 67]. In this section, we summarise
the main steps of this derivation, in the more general case where the boson propagating in the
loop is massive. This will be the starting point of the analysis carried out in the next section,
where we consider the correction to g coming from an infinite tower of (leptophilic) massive
vectors.

There is a single one-loop Feynman diagram contributing to F2, depicted in Figure 3.2.
Straight lines represent the lepton of mass m, the external wavy line a photon, while the internal
wavy line depicts in the general case a massive gauge boson of mass M . The particular QED
result, involving a photon running in the loop, will be recovered by taking M = 0.

L
(n)
µ

χ(p1)

χ̄(p2) l̄(p4)

l(p3)

Figure 1

pγ

p+ k

k − q1

k

q1 q2

µ− µ−

Figure 2

pγ

p+ k

k − q1

k

q1 q2

l− l−

Figure 3

1

Figure 3.2 – Amplitude iMµ
1−loop containing the one-loop contribution to the anomalous
magnetic moment of a lepton l−.

The corresponding amplitude is given by:

iMµ
1−loop =

∫
d4k

(2π)4 Dνρ(k − q1) ū(q2)(−igγν)
i(/p+ /k +m)

(p+ k)2 −m2 + iε

× (−ieγµ) i(/k +m)
k2 −m2 + iε

(−igγρ)u(q1), (3.6)
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where Dνρ(k − q1) is the propagator of the massive gauge boson, which reads in the unitary
gauge:

Dνρ(k − q1) = −i
(k − q1)2 −M2 + iε

(
gνρ − (k − q1)ν(k − q1)ρ

M2

)
. (3.7)

The second term in (3.7) will not contribute to the lepton magnetic moment, so that the relevant
part of the amplitude (3.6) we have to consider reads:

iMµ = −g2e

∫
d4k

(2π)4
Nµ

ABC
, (3.8)

where we have defined

A ≡ k2 −m2 + iε, B ≡ (p+ k)2 −m2 + iε, (3.9)

C ≡ (k − q1)2 −M2 + iε, Nµ ≡ ū(q2)γν(/p+ /k +m)γµ(/k +m)γνu(q1). (3.10)

In order to evaluate the integral (3.8), we use the Feynman parametrization

1
ABC

= 2
∫ 1

0
dxdydzδ(x+ y + z − 1) 1

(xA+ yB + zC)3 (3.11)

= 2
∫ 1

0
dxdydzδ(x+ y + z − 1) 1

(`2 −∆ + iε)3 , (3.12)

where we moved from the first to the second line using x+y+z = 1 and momentum conservation
pµ + qµ1 = qµ2 , introducing the quantities

`µ ≡ kµ + ypµ − zqµ1 , ∆ ≡ −xyp2 + (1− z)2m2 + zM2. (3.13)

Let us now focus on the numerator Nµ in (3.10). Using the relation γνγµγν = −2γµ, we can first
rewrite it as Nµ = −2ū(q2)

(
/kγµ/p+ /kγµ/k +m2γµ − 2m(2kµ + pµ)

)
u(q1). Writing it in terms of

`µ, using the relations
∫

d4`

(2π)4 `µf(`2) = 0,
∫

d4`

(2π)4 `µ`νf(`2) =
∫

d4`

(2π)4
gµν`2

4 f(`2), (3.14)

for any function f of the magnitude of `, and after some Dirac algebra, one obtains:

Nµ = −2ū(q2)
[
γµ
(
−1

2`
2 + (1− x)(1− y)p2 + (1− 2z − z2)m2

)
+(qµ1 + qµ2 )mz(z − 1) + pµm(z − 2)(x− y)]u(q1). (3.15)

The third term proportional to pµ is odd under x ↔ y, while the denominator of (3.8) is even
under x ↔ y, as can be seen from (3.12). This term therefore vanishes after integration. The
second term of (3.15) proportional to qµ1 + qµ2 can be rewritten using the Gordon identity (3.3),
leading to:

Nµ = −2ū(q2)
[
γµ

(
−`

2

2 + (1− x)(1− y)p2 + (1− 4z + z2)m2
)
− iγµνpνmz(z − 1)

]
u(q1). (3.16)

As explained above, only the second term proportional to γµν will contribute to the magnetic
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moment. Using the identity
∫

d4`

(2π)4
1

(l2 −∆ + iε)3 = − i

32π2∆ , (3.17)

the part of the amplitude (3.8) proportional to γµν then reads:

iMµ ⊃ g2em

16π2 ū(q2)γµνu(q1)pν
∫ 1

0
dxdydzδ(x+ y + z − 1)z(z − 1)

∆ . (3.18)

Comparing with (3.4), we find that the one-loop correction to the form factor F2 is given by:

F2

(
p2

m2

)
= g2m2

4π2

∫ 1

0
dxdydzδ(x+ y + z − 1) z(1− z)

−xyp2 + (1− z)2m2 + zM2 , (3.19)

so that the one-loop correction to the anomalous magnetic moment a ≡ g−2
2 = F2(0) reads:

a = g2m2

4π2

∫ 1

0
dxdydzδ(x+ y + z − 1) z(1− z)

(1− z)2m2 + zM2 . (3.20)

In QED, the one-loop correction to the magnetic moment comes from the diagram represented
in Figure 3.2 with a photon running in the loop. It is simply obtained from (3.20) by taking
M = 0, leading to

aQED = α

2π , (3.21)

with α = e2

4π the fine structure constant. This is a historically famous result obtained by
Schwinger in 1948 [68], whose agreement with experimental data for the magnetic moment
of the electron has been one of the biggest success of Quantum Electrodynamics.

The case of the anomalous magnetic moment of the muon ((g − 2)µ) is more involved. The
theoretical calculation, involving QED, electroweak and hadronic contributions, yields a result
aSM
µ ≡ (g− 2)SM

µ /2 = 116 591 810(43)× 10−11 [69], smaller than the experimental measurement
from the Brookhaven National Laboratory (BNL) experiment E821 by 3.7σ [70]. The recent
Muon g−2 experiment at Fermilab has confirmed the BNL results [71], pushing the discrepancy
with the SM theoretical prediction to 4.7σ, with a difference 1

∆aµ ≡ aexp
µ − aSM

µ = (2.51± 0.59)× 10−9. (3.22)

The anomalous magnetic moment of the muon might therefore be one of the most promising
signals of new physics beyond the Standard Model, and it is worth studying new ingredients
able to explain the above mentioned discrepancy, which is the aim of the third chapter of this
thesis.

1. This result must be tempered by the theoretical uncertainties coming from strong interaction effects. The
analysis for the hadronic vacuum polarisation contribution has been carried out in [72, 73, 74]. A recent result
from lattice QCD reduce the discrepancy to 1.6σ [75], while producing tensions with other quantities at the same
time [76, 77], so that the hadronic contributions to the muon (g − 2)µ remains an open issue to be addressed by
future lattice simulations.
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The Chapter 3 is organised as follows. In Section 3.2, we revisit a new solution to the muon
g − 2 discrepancy recently proposed in the framework of low mass scale strings and large extra
dimensions. It relies on the contribution to the (g − 2)µ of the Kaluza-Klein modes of the
lepton number gauge boson, which could bridge the gap in the discrepancy if some of them
are sufficiently light. The Section 3.3 reminds some basic concepts of the physics of intersecting
D-branes, which are then used in Section 3.4 in order to build a minimal embedding of the SM
into such intersecting D-brane configurations realising this proposal. In Section 3.4.1, we show
that the gauge group of this model is SU(3)c×SU(2)w×U(1)c×U(1)w×U(1)×U(1)′ ×U(1)L
and construct various D-brane configurations realising it, listing the different possibilities for the
quantum numbers of the SM spectrum and the allowed Yukawa couplings for the quarks and
leptons. The anomaly analysis of these models is performed in Section 3.4.2 without the right-
handed neutrino, in the non-supersymmetric case as well as in the minimal supersymmetric
extension, and then in Section 3.4.3 with the inclusion of the right-handed neutrino. Section
3.4.4 discusses the gauge bosons mass spectrum arising from the four-dimensional generalisation
of the Green-Schwarz mechanism. The inclusion of Dark Matter candidates in this framework is
described in Section 3.4.5. Finally, in Section 3.4.6, we investigate the possibility of introducing
lepton flavour non-universality by gauging only the muonic lepton number that can explain the
(g − 2)µ discrepancy due to the exchange of KK excitations that couple only to muons and are
thus not constrained by the LEP and LHC bounds. Our conclusions are presented in Section
3.5.

3.2 Accommodating the (g − 2)µ discrepancy with leptophilic
Kaluza-Klein states

The possibility to explain the muon g − 2 discrepancy in the framework of low mass scale
strings and large extra dimensions has been recently studied in [78], where three contributions
to the muon anomalous magnetic moment have been examined: from Regge excitations of the
string, from anomalous U(1) gauge bosons, as well as from Kaluza-Klein (KK) modes of a bulk
vector field. While the first contribution is strongly suppressed, it has been shown how the second
one can reduce, but not fully bridge, the discrepancy.

However, the most interesting contribution comes from the KK modes of the lepton number
gauge boson, denoted Lµ in the following, living on a lepton brane U(1)L extended along some
extra dimensions of the bulk. The zero mode of Lµ is anomalous and acquires a mass through
a four-dimensional generalisation of the Green-Schwarz mechanism. If its mass is of order the
string scale, it is too heavy to accommodate the (g − 2)µ discrepancy. If it is lighter due to
volume suppression, it can only partially explain the discrepancy since the zero mode is a linear
combination of the various U(1) factors, coupled to both quarks and leptons and thus subject
to stringent LHC bounds [78, 79]. On the other hand, the KK excitations couple only to leptons
to lowest order. Therefore, such modes evade the LHC bounds, and their masses can be made
sufficiently light to provide a significant contribution to the (g−2)µ [79]. The aim of this section
is to reexamine the consistency of this scenario with model constraints from LEP data. While
the constraints on KK masses and couplings are more stringent than earlier thought in [79], we
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show that the discrepancy can still be explained assuming the existence of a few leptophilic KK
modes lighter than the LEP energy,

√
s|LEP ∼ 200 GeV.

At the leading order in the U(1)L coupling constant gL, the contribution of massive vector
bosons to the (g−2)µ has been derived in Section 3.1. We have obtained the result (3.20) which
is reproduced here for convenience:

∆aµ =
αLm

2
µ

π

∫ 1

0
dxdydzδ(x+ y + z − 1) z(1− z)

(1− z)2m2
µ + zM2 , (3.23)

whereM is the mass of the boson, mµ the muon mass and αL = g2
L/(4π). One can then consider

three different cases, depending whether M � mµ, M ∼ mµ or M � mµ.

Case 1: M � mµ

When all KK states have masses much bigger than the muon mass, the sum of the integral
(3.23) over all the KK states can be approximated by

∆a(1)
µ =

∑
n

1
3
αL(n)
π

m2
µ

M2
n

, (3.24)

where Mn is the mass of the nth KK excitation [79].

The bound from LEP data on the so-called compositeness scale associated to 4-fermion
operators is given by [80]: ∣∣∣∣∣∑

n

αL(n)
s−M2

n

∣∣∣∣∣ < B ∼ (10 TeV)−2 , (3.25)

where s is the square of the center-of-mass energy 2. For Mn �
√
s, (3.25) reduces to∑

n αL(n)/M2
n < B. Thus, the sum of the KK exchange given in (3.24) is constrained by the

compositeness bound, yielding ∆a(1)
µ ∼ O(10−11); a result which is independent on the number

of extra dimensions. Hence, one needs at least few KK modes lighter than LEP energy in order
to provide a significant contribution able to bridge the gap in the muon anomalous magnetic
moment.

A crucial point to take into account is that the gauge coupling is suppressed by the volume
of the compact space V⊥ ∼ (RMs)d,

g2
L = gs/V⊥, (3.26)

where gs is the string coupling, R is the compactification scale, Ms is the string scale, and d

stands for the number of extra dimensions in which L propagates. For d = 1, we haveMn = n/R

2. For fine-tuned values of Mn close to
√
s, the vector boson propagator appearing in the left-hand side of

(3.25) is regulated by replacing 1
s−M2

n
by 1

s−M2
n+iΓnMn

, with Γn the decay rate of the n-th KK mode. Since the
number of possible decay channels of the KK excitations increase for higher modes, Γn increases with n and its
explicit computation would require a model dependent analysis.
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and after substituting these figures into (3.24), ∆a(1)
µ becomes 3

∆a(1)
µ =

gsm
2
µ

72M1Ms
. (3.27)

The observed value of ∆aµ then implies

M1 Ms ∼ gs × 5× 104 GeV2, (3.28)

where gs <∼ 4π to remain in the perturbative regime.
As an illustration, if we take Ms = 10 TeV 4 then we have M1 ∼ gs × 5 GeV, so that

the highest possible value for the compactification scale M1, obtained for gs = 4π, is of order
M1 ∼ 60 GeV, which is consistent with the conditionmµ �M1 �

√
s for all the approximations.

The associated gauge coupling is then of order gL ∼ 10−1. Taking
√
s|LEP = 209 GeV, the total

KK contribution to the LEP bound is given by∣∣∣∣∣∑
n

g2
L

4π(s− n2M2
1 )

∣∣∣∣∣ ∼ 10−2 TeV−2, (3.29)

and hence the bound (3.25) is satisfied.

Case 2: M ∼ mµ

In the case of a massive boson with a mass of order of the muon mass mµ, its contribution
(3.23) to (g − 2)µ is given by

∆a(2)
µ = αL

π

−9 + 2
√

3π
18 . (3.30)

If the lightest KK state have a mass M1 ∼ mµ, the total contribution to the muon anomalous
magnetic moment is therefore the sum of ∆a(1)

µ (Eq. (3.24) for n > 1) and ∆a(2)
µ (Eq. (3.30)),

which in the case of one extra dimension yields:

∆aµ = gs
4π2

mµ

Ms

(
−9 + 2

√
3π

18 + 1
3
∑
n>1

1
n2

)
. (3.31)

The (g−2)µ discrepancy can then be accommodated for a string scale atMs ∼ gs×3×102 TeV,
yielding a coupling gL ∼ 5× 10−4, now independent of gs. With M1 = mµ = 105 MeV, we now
get ∣∣∣∣∣∑

n

g2
L

4π(s− n2M2
1 )

∣∣∣∣∣ ∼ 10−4 TeV−2, (3.32)

so that the bound (3.25) is also satisfied.

3. We have neglected here the n-dependence of the gauge coupling of the n-th KK excitation, given in the case
of one extra dimension by gL(n) = gL exp

{
−cn2M2

1
M2
s

}
, with c a positive (model dependent) numerical constant.

When M1 � Ms, as it is the case in the large extra dimension scenario considered here, the exponential is of
order 1 for all n <∼

Ms
M1

, and the gauge coupling can indeed be taken constant. The exponential suppression of gL
becomes significant only for higher KK modes with n� Ms

M1
, which give a negligible contribution to ∆a(1)

µ .
4. In order to lower the string scale in this region, one assumes in general additional large extra dimensions

transverse to both SM and L stacks of branes. They do not play any role in the current analysis and will be briefly
discussed in Section 3.4.
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Case 3: M � mµ

We can also consider the situation where some of the lightest KK states have masses much
lower than the muon mass, in which case the integral (3.23) gives a constant contribution αL

2π .
Multiplying by mµ

M1
, the number of states with masses below mµ, and assuming again one extra

dimension, we get the contribution

∆a(3)
µ = gs

8π2
mµ

Ms
. (3.33)

The total contribution to the muon anomalous magnetic moment is then the sum of ∆a(1)
µ (Eq.

(3.24) for n >
mµ
M1

+ 1), ∆a(2)
µ (Eq. (3.30)) and ∆a(3)

µ (Eq. (3.33)), that is, in the case of one
extra dimension:

∆aµ = gs
8π2

mµ

Ms

1 + 2 · −9 + 2
√

3π
18 + 2

3
mµ

M1

∑
n=mµ

M1
+2

1
n2

 . (3.34)

As an example, let us take mµ
M1

= 10, in which case ∆aµ ∼ gs
8π2

mµ
Ms

, accommodating the discrep-
ancy for a string scale Ms ∼ gs × 5× 102 TeV. With M1 = mµ

10 = 10.5 MeV, one gets a coupling
gL ∼ 10−4, again independent of gs, from which we can evaluate∣∣∣∣∣∑

n

g2
L

4π(s− n2M2
1 )

∣∣∣∣∣ ∼ 6× 10−4 TeV−2, (3.35)

again satisfying the bound (3.25).

Let us note that unlike the discrepancy between the experimental value and the SM prediction
of the muon anomalous magnetic moment which is positive, ∆aexp

µ ≡ aexp
µ − aSM

µ = (251 ±
59)× 10−11, the discrepancy of the electron anomalous magnetic moment is negative, ∆aexp

e ≡
aexp
e − aSM

e = −88(36) × 10−14 [81]. The contributions coming from the KK excitations being
positive, they will increase the discrepancy of (g − 2)e, and we thus have to check that this
contribution is lower than or of order of the experimental error on (g − 2)e, that is <∼ 10−13.
Assuming M1 � me where me is the electron mass, this contribution is simply obtained by
replacing the muon mass mµ by the electron mass me in (3.24), namely

∆ae = m2
e

m2
µ

∆a(1)
µ = m2

egs
72M1Ms

. (3.36)

For the different values obtained above for M1 and Ms, we get in the case 1 ∆ae ∼ 10−14, and
in the cases 2 and 3 ∆ae ∼ 10−13, indeed smaller than or of order of the error on (g − 2)e.

This scenario can be easily described in terms of intersecting D-brane models, where extra
dimensions and extra U(1) bosons are ubiquitous. In the next section, we first remind the basic
ideas of such D-brane configurations, and then use this framework in Section 3.4 in order to
embed the Standard Model in this scenario with a leptophilic gauge boson propagating along
one extra dimension.
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3.3 Elements of intersecting D-brane physics

A Dp-brane is an object extended along p spatial dimensions. It spans a (p+ 1)-dimensional
worldvolume, which can be seen at weak coupling as a subspace of spacetime on which open
strings end. Let us denote d the number of spatial dimensions, D = d + 1 the total number
of spacetime dimensions, {x0, ..., xp} the spacetime coordinates tangential to the Dp-brane and
{xp+1, ..., xd} the spacetime coordinates normal to the brane. Denoting τ ∈ R and σ ∈ [0, π] the
string worldsheet coordinates, its embedding spacetime coordinates XM (τ, σ), M = 0, ..., D− 1,
are split in a similar pattern according to {X+, X−, Xµ, µ = 2, ..., p}, and {Xi, i = p+1, ..., d},
for the coordinates tangential and normal to the brane respectively. We now consider an open
string whose both endpoints lie on the Dp-brane. Its coordinates normal to the brane must
therefore satisfy Dirichlet-Dirichlet (DD) boundary conditions, while the ones tangential to the
brane must satisfy Neumann-Neumann (NN) boundary conditions:

Xi(τ, σ)
∣∣∣
σ=0,π

= 0, i = p+ 1, ..., d, (DD)

∂σX
µ(τ, σ)|σ=0,π = 0, µ = 2, ..., p, (NN). (3.37)

The mode expansions compatible with these boundary conditions read:

Xi(τ, σ) =
√

2α′
∑
n6=0

αin
n

sin(nσ)e−inτ , (DD) (3.38)

Xµ(τ, σ) = xµ + 2α′pµτ + i
√

2α′
∑
n6=0

αµn
n

cos(nσ)e−inτ , (NN) (3.39)

where xµ and pµ are the center of mass coordinate and momentum of the string and αn the
oscillation modes. The 2-dimensional worldsheet fermions ψM (τ, σ), superpartners of the worl-

sheet bosons XM (τ, σ), are written ψM =
(
ψM+

ψM−

)
, where ψM+ and ψM− are 2M 2-dimensional

Majorana-Weyl spinors. Splitting again the spacetime index M into µ = 2, ..., p for the direc-
tions tangential to the brane (in the light-cone gauge), and i = p + 1, ..., d for the directions
normal to the brane, the ψi± must satisfy DD boundary conditions, while the ψµ± must satisfy
NN boundary conditions, which are respectively given by:

ψi+(τ, σ = 0) = −ψi−(τ, σ = 0), ψi+(τ, σ = π) = −εψi−(τ, σ = π) i = p+ 1, ..., d, (DD)

ψµ+(τ, σ = 0) = ψµ−(τ, σ = 0), ψµ+(τ, σ = π) = εψµ−(τ, σ = π), µ = 2, ..., p, (NN), (3.40)

with ε = −1 for the worldsheet fermions in the Neveu-Schwarz (NS) sector, and ε = +1 for
the worldsheet fermions in the Ramond (R) sector. The mode expansions compatible with these
boundary conditions read:

ψi±(τ, σ) = ± i

√
α′

2
∑
r

ψire
−ir(τ±σ), (DD) (3.41)

ψµ±(τ, σ) = i

√
α′

2
∑
r

ψµr e
−ir(τ±σ), (NN) (3.42)
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with r ∈ Z + 1
2 in the NS sector, and r ∈ Z in the R sector.

Since we are interested in the spacetime bosons, we focus on the NS sector. The NS ground-
state |0〉NS is defined as being annihilated by positive modding operators, namely

αPn |0〉NS = 0, ψPn−1/2 |0〉NS = 0, ∀n > 0, ∀P = 2, ..., d. (3.43)

The bosonic massless spectrum of an open superstring with both ends satisfying DD boundary
conditions in d− p directions and NN boundary conditions in p+ 1 directions then arises from
ψP−1/2 |0〉NS. Since a Dp-brane breaks the Lorentz group into SO(1, d)→ SO(1, p)×SO(d−p), we
must therefore arrange the states into representations of the residual symmetry group according
to:

ψi−1/2 |0〉NS → φi, (3.44)

ψµ−1/2 |0〉NS → Aµ, (3.45)

where φi is a SO(d−p) vector and Aµ a SO(1, p) vector. From the point of view of the Dp-brane
worldvolume with the Lorentz group SO(1, p), we thus get a vector field Aµ and d − p real
scalars φi. The φi can be seen as Goldstone bosons arising from the spontaneous breaking of the
translational symmetry induced by the brane, and describe the fluctuations of the brane in the
d− p transverse directions.

Let us then consider a stack ofN parallel and coincident Dp-branes. An open string stretching
from the brane a = 1, ..., N to the brane b = 1, ..., N is said to sit in the ab sector. Since strings
are oriented, the ab and ba sectors are different, and we end with N2 different open string sectors.
The open string spectrum of a stack of N parallel and coincident Dp-branes is thus given by N2

copies of the spectrum of a single Dp-brane that we found above. The N2 gauge bosons can then
interact in the following way. Let us consider two open strings in the ab and bc sectors. Since
the end of the first string and the beginning of the second string lie on the same brane, they can
join together yielding an open string in the ac sector. We thus get N2 interacting massless gauge
fields, so that the gauge group is enhanced to U(N). The two independent labels a, b = 1, ..., N
at both ends of the open strings are discrete degrees of freedom called Chan-Paton indices. The
addition of parallel and coincident Dp-branes therefore provides an easy way to generate non-
abelian gauge groups in String Theory, which lie at the core of any models of particle physics.
However, another cornerstone of the Standard Model is the chirality of its fermionic spectrum,
which cannot be obtained yet in such coincident Dp-brane framework.

Chirality in four dimensions is a violation of 4-dimensional parity. However, 4-dimensional
parity is related to the parity in the six extra dimensions. In order to violate 4-dimensional
chirality, one must therefore violate 6-dimensional parity. This cannot be obtained with a single
stack of N coincident branes, since this configuration does not produce a preferred orientation
in the 6-dimensional internal space. To this purpose, one must consider at least two stacks of
N1 and N2 branes which intersect over a 4-dimensional subspace of their worldvolumes. The
rotation from the first stack to the second one provides an orientation in the transverse 6-
dimensional space, breaking 6D parity and hence leading to 4-dimensional chirality. In the R
sector, an open string stretching between two intersecting stacks of N1 and N2 branes leads to
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a massless 4-dimensional chiral fermion localized at the intersection of their worldvolumes. If
a string stretching from the stack 1 to the stack 2 gives a left-handed fermion, then its right-
handed counterpart will correspond to an oppositely oriented string stretching from the stack
2 to the stack 1. Such states transform in the bi-fundamental representation (N1,N2)1,−1 of
the gauge group U(N1)× U(N2), with the subscripts denoting the U(1)1 × U(1)2 charges. This
charge assignment is required to get consistent string interactions. Let us consider an open string
stretching from the stack 1 to the stack 2, in the a1b2 sector, and another string stretching from
the stack 2 to the stack 1, in the b2c1 sector, with a1, c1 = 1, ..., N1 and b2 = 1, ..., N2. Interactions
of such open strings happen on the b2 brane in the stack 2, when the end of the first one joins the
beginning of the second one. This requires their U(1)2 charges to be opposite, hence justifying
the charge assignment given above. Finally, in the NS sector, an open string stretching between
two intersecting stacks of branes gives a light spectrum of complex scalars, in which can be
embedded the Higgs sector of the SM.

To summarise, a single D-brane gives rise to a U(1) gauge theory living on its worldvolume,
with the associated gauge boson corresponding to an open string with both ends attached to
this brane. Non-abelian gauge symmetries arise from a stack of N coincident D-branes, giving
rise to a U(N) gauge symmetry. The (chiral) matter fields then correspond to open strings
stretching between intersecting D-branes, living in their common worldvolume. These so-called
intersecting D-brane models thus provide an elegant framework to obtain phenomenologically
consistent particle physics models from String Theory [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92].

The minimal intersecting D-brane models which can reproduce the SM gauge group GSM =
SU(3)c × SU(2)w × U(1)Y and its matter spectrum charged under GSM contain three stacks
of branes giving rise to a gauge symmetry U(3)c × U(2)w × U(1) [93, 94] 5. The “color” stack
U(3)c and “weak” stack U(2)w are obtained by considering three and two coincident D-branes
respectively. For phenomenological reasons, a third U(1) factor arising from a single D-brane is
necessary to accommodate the SM.

An open string with one end on the color branes transforms in the 3 (or 3̄) of SU(3)c;
similarly, an open string with one end on the weak branes transforms as a doublet of SU(2)w.
The non-abelian structure partially fixes the assignments of the SM particles. The quark doublet
Q corresponds to an open string with one end on the color stack and the other on the weak
stack of D-branes, while the anti-quark singlets uC and dC have one of their ends on the color
stack. The lepton doublet L as well as Higgs doublet(s) H must have one of their ends attached
to the weak stack of branes. However, the abelian structure is not uniquely determined since the
hypercharge can be a linear combination of the different abelian factors.

The standard normalisation for the U(N) ' SU(N)×U(1)N generators that we will consider
in the next section is TrT aT b = δab/2, while the corresponding U(1)N charges are measured with
respect to the coupling gN/

√
2N , with gN the SU(N) coupling constant, so that the fundamental

representation of SU(N) has U(1)N charge unity.

5. The U(2)w may be reduced to Sp(1) ' SU(2), reducing the number of U(1) factors to two.
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3.4 Minimal embedding of the Standard Model into intersecting
D-brane configurations with a bulk leptonic U(1)

The aim of this section is to realise the proposal of Section 3.2 in the framework of intersecting
D-brane models presented in Section 3.3, with matter and gauge fields corresponding to open
strings ending on D-branes. We build a minimal embedding of the Standard Model (SM) into
such intersecting D-brane configurations with a gauged lepton number associated to an abelian
U(1)L D-brane. The crucial point to take into account is that such leptonic brane should extend
into some extra dimensions transverse to the SM stacks of branes, in order to give rise to
the leptophilic KK excitations required to bridge the gap in the muon anomalous magnetic
moment. As a consequence, the corresponding U(1)L cannot contribute to the hypercharge
linear combination, since this would lead to an unrealistic small gauge coupling suppressed by
the volume of the extra dimensions. Assuming that the lepton number gauge boson propagates
into one “large” extra dimension, the associated compactification scale ML must then satisfy
ML ∼ O(10 − 102 GeV) for a string scale Ms >∼ 10 TeV, as described in Section 3.2. The total
bulk transverse to the SM branes is then made of two inhomogeneous parts. First, the one
with one large extra dimension described above along which the U(1)L brane extends, called
“L-bulk” in the following, whose size RL = M−1

L ∼ (10 − 102 GeV)−1 must be sufficiently low
to explain the (g − 2)µ discrepancy. Then, a second part with the remaining (at most five)
additional extra dimensions transverse to both SM and L stacks of branes, called “gravitational
bulk”, with an average size larger than the L-bulk in order to lower the string scale in the
>∼ O(10 TeV) region [4, 5]. From the string theoretic relation M2

Pl = g−2
s M8

s V(6), with MPl the
four-dimensional Planck mass, gs the string coupling (assumed to be of order 1), Ms the string
scale and V(6) = RLR

5
G the volume of the six-dimensional internal space, one gets an average

size RG of the gravitational bulk of the order RG ∼ (0.1 GeV)−1. 6 This special hierarchy of
scales is summarized and depicted in Figure 3.3. In the following, using the term “bulk” alone
will refer to some extra dimensions transverse to the SM branes when there is no need to specify
whether such dimension(s) are in the L-bulk or in (part of) the gravitational bulk.

Besides the Standard Model color U(3)c, weak U(2)w and abelian U(1) stacks of branes
localised effectively in four dimensions and the L-bulk U(1)L brane, we show that the minimal
embedding of the SM in such configuration requires a fifth U(1)′ brane extended in the bulk, so
that the total gauge group is SU(3)c×SU(2)w×U(1)c×U(1)w×U(1)×U(1)′×U(1)L. Identifying
U(1)c with the baryon number (B), we find two possible models, depending on whether the anti-
quark uC or dC couples to the U(1)′ . If U(1)c is not identified with the baryon number, a third
model is possible, described here for completeness although not phenomenologically relevant
since it forbids the presence of a mass term for the up-type quarks and may lead to dangerous
baryon number violating processes. We will thus focus in the models where U(1)c is identified
with the baryon number. In this case, it is shown that there is one anomaly-free U(1) combination
besides the hypercharge, which does not couple to the SM spectrum and which can thus remain
massless or acquire a mass. The minimal supersymmetric extension of our model is also briefly
discussed in the context of the anomaly analysis, and we show that the inclusion of the Higgsinos

6. In case of less than six large extra dimensions, V(6) = RLR
n
G with n < 5, RG becomes larger.
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in the spectrum does not modify the result for the non-anomalous vector bosons obtained in the
non-supersymmetric case. The presence of two branes extended in the bulk allows to introducing
the right-handed neutrino νR as a state of an open string stretched between these two branes.
When νR is included in the spectrum, the SM particles are now charged under a second anomaly-
free U(1) combination given by B −L. Depending on the charges of the right-handed neutrino,
a third non-anomalous vector can arise, which remains invisible from the SM spectrum as in the
situation without νR. These two bulk branes can also be used to introduce in a similar way Dark
Matter (DM) particle candidates, as Dirac fermions corresponding to open strings stretched
between them. By computing the cross-section of the annihilation process of the DM fermions
into SM leptons, mediated by the KK excitations of Lµ, we find the masses of such DM particles
which yield the correct DM relic density, in terms of the compactification scale ML.

As already mentioned above, the anomalous gauge bosons must get a mass through a four-
dimensional generalisation of the Green-Schwarz (GS) mechanism [95, 96, 97]. Such bosons form
in general linear combinations of the various abelian factors associated to each stack of branes,
some of them being (effectively) localised in four dimensions while some others propagating
into (large) extra dimensions. We will show that such combinations are dominated in the large
volume limit by the (zero mode of the) vectors propagating in the bulk which enter in the linear
combination defining the anomalous bosons and can become massive with a string scale mass
O(Ms) independent of the compactification scale.
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Figure 3.3 – Scale hierarchy in our model.
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3.4.1 The models

In our construction, since we want to obtain leptophilic KK excitations, we require the lepton
number gauge boson to be in the bulk and therefore one must consider a bulk leptonic U(1)L
brane. As a starting point, let us consider it to be added to the minimal three stacks model
U(3)c × U(2)w × U(1) mentioned in Section 3.3, namely we consider the total gauge group:

G = SU(3)c × SU(2)w × U(1)c × U(1)w × U(1)× U(1)L. (3.46)

Only the lepton doublet L and singlet eC must have an end attached to the U(1)L. In order
to have a lepton number, L and eC must have opposite qL charges, choosen to be +1 and
−1 respectively. The other ends of L and eC must be attached to the U(2)w and U(1) branes
respectively. The q1 charge of eC and the q2 ≡ qw charge of L can be defined to be +1. The q2

charge v of the quark doublet Q can be either +1 or −1 if Q belongs to the fundamental 2 or
anti-fundamental 2̄ of SU(2)w. The q3 ≡ qc charge of Q is fixed to 1, while the ones of uC and
dC are chosen to be −1 in order to get a baryon number 7. As in the three stacks configuration
described above, uC and dC must have one of their ends attached on the U(3)c branes, while
the other end can be attached to the U(1) brane ({x, y} = ±1) or be in the bulk (x = 0 and/or
y = 0). The total matter content and their quantum numbers therefore reads: 8

Q (3,2; 1, v, 0, 0)1/6 (3.47)

uC (3̄,1;−1, 0, x, 0)−2/3 (3.48)

dC (3̄,1;−1, 0, y, 0)1/3 (3.49)

L (1,2; 0, 1, 0, 1)−1/2 (3.50)

eC (1,1; 0, 0, 1,−1)1, (3.51)

with the hypercharge of each species indicated as a subscript for completeness. Since U(1)L is
in the bulk, it should not contribute to the hypercharge, thus given by the combination

qY = c3q3 + c2q2 + c1q1, (3.52)

where c3, c2 and c1 are constants. The quantum numbers v, x and y as well as the constants ci
are now constrained by requiring the different states to have the correct hypercharge.

The charges of the leptons eC and L fixes c1 = 1 and c2 = −1
2 respectively. The charges of

the quark doublet Q then imposes c3 = 1
6 + v

2 . Finally, the anti-quarks uC and dC respectively
leads to x = −1

2 + v
2 and y = 1

2 + v
2 . Since v = ±1, we have either x = 0 or y = 0, so that

there is at least one end of the uC or dC strings elsewhere, which requires the existence of an
additional brane U(1)′ besides the SM and L branes. To leave open the possibility of having
this brane extended in the bulk, in order to avoid again an extremely small gauge coupling, we
assume that U(1)′ does not participate to the hypercharge, therefore still given by (3.52). The

7. The other possible choice +2 for the q3 charge of the anti-quarks uC or dC , which breaks the baryon number
symmetry, is discussed below.

8. Here we are considering identical embedding for each of the three generations of quarks and leptons.
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total gauge group now reads

G = SU(3)c × SU(2)w × U(1)c × U(1)w × U(1)× U(1)′ × U(1)L, (3.53)

under which the matter content has the following quantum numbers:

Q (3,2; 1, v, 0, 0, 0)1/6 (3.54)

uC (3̄,1;−1, 0, x, z, 0)−2/3 (3.55)

dC (3̄,1;−1, 0, y, w, 0)1/3 (3.56)

L (1,2; 0, 1, 0, 0, 1)−1/2 (3.57)

eC (1,1; 0, 0, 1, 0,−1)1. (3.58)

Again, the constant v = ±1 specifies whether the quark doubletQ belongs to the fundamental
2 or anti-fundamental 2̄ representation of SU(2)w. The only ambiguities lie in the quantum
numbers of the anti-quarks uC , dC : they must have one of their ends attached to the U(3)c branes,
while the other ends can be tied to the U(1) or U(1)′ branes. This choice, which will be fixed by
assigning the correct hypercharges to the states, is encoded in the constants x, y, z, w = {0,±1}.

We have as previously c1 = 1, c2 = −1
2 and c3 = 1

6 + v
2 , while the charges x and y are given

by x = −1
2 + v

2 and y = 1
2 + v

2 . Two different models can then be considered, depending on
whether v = +1 or v = −1.

• In the first case v = +1, we get c3 = 2
3 , x = 0 and y = 1, which enforces z to be non-

vanishing and w = 0. The uC string has thus one end on the bulk brane U(1)′ while dC is
stretched between two branes participating to the hypercharge.

• The second case v = −1 amounts to exchange the uC and dC anti-quarks. Here we get
c3 = −1

3 , x = −1 and y = 0, which implies necessarily that z = 0 and w is non-vanishing,
so that uC is now stretched between two branes participating to the hypercharge while dC

has one end on the bulk brane U(1)′ .

These two models, defined by the choice v = ±1, will be respectively denoted A and B in the
following. Since U(1)′ does not contribute to the hypercharge, the non-vanishing constants z in
model A and w in model B can be independently chosen to ±1. Without lost of generality, we
fix them to be +1.

One can then implement the Higgs doublets. It is easy to check that for each of the models
A and B, two Higgs doublets (together with their complex conjugates) with vanishing charges
Q3 and QL and hypercharge ±1/2 are possible, given by:

Model A : Hd(1,2; 0,−1,−1, 0, 0)−1/2, Hu(1,2; 0,−1, 0,−1, 0)1/2, (3.59)

Model B : Hu(1,2; 0, 1, 1, 0, 0)1/2, Hd(1,2; 0, 1, 0,−1, 0)−1/2. (3.60)

The allowed Yukawa couplings then read:

Model A : QdCHd, QuCHu, LeCHd, (3.61)

Model B : QdCHd, QuCHu, LeCH†u. (3.62)
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These results are summarized in Tables 3.1 and 3.2, and the two models are represented picto-
rially in Figure 3.4.

q3 q2 q1 q′1 qL qY

Q 1 1 0 0 0 1
6

uC −1 0 0 1 0 −2
3

dC −1 0 1 0 0 1
3

L 0 1 0 0 1 −1
2

eC 0 0 1 0 −1 1
Hd 0 −1 −1 0 0 −1

2
Hu 0 −1 0 −1 0 1

2

Table 3.1 – Model A with qY = 2
3q3 − 1

2q2 + q1

q3 q2 q1 q′1 qL qY

Q 1 −1 0 0 0 1
6

uC −1 0 −1 0 0 −2
3

dC −1 0 0 1 0 1
3

L 0 1 0 0 1 −1
2

eC 0 0 1 0 −1 1
Hu 0 1 1 0 0 1

2
Hd 0 1 0 −1 0 −1

2

Table 3.2 – Model B with qY = −1
3q3 − 1

2q2 + q1
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Figure 3.4 – Pictorial representation of models A and B.

One can also consider a model where the anti-quark uC has both ends attached to the U(3)
stack of branes and its orientifold image, corresponding to the 3̄ of SU(3) obtained as the
antisymmetric product of two 3’s. Repeating the analysis described above, we get the matter
content summarized in Table 3.3.
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q3 q2 q1 q′1 qL qY

Q 1 −1 0 0 0 1
6

uC 2 0 0 0 0 −2
3

dC −1 0 0 1 0 1
3

L 0 1 0 0 1 −1
2

eC 0 0 1 0 −1 1
He 0 1 1 0 0 1

2
Hd 0 −1 0 1 0 1

2

Table 3.3 – Model C with qY = −1
3q3 − 1

2q2 + q1

In this case, an up quark mass term is no longer allowed since QuC has a non-vanishing q3

charge. The only possible Yukawa couplings are

QdCH†d, LeCH†e , (3.63)

where Hd and He have been defined in Table 3.3. Let us note that in this model, the role of
uC and dC is not symmetric, and there is no consistent model with dC in the 3̄ of SU(3). The
model C is represented pictorially in Figure 3.5.
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c

U(2)
w

U(1)

U(1)’

U(1)
L

Q

L
dc

uc

ec

H
e

H
d

Figure 3.5 – Pictorial representation of model C.

3.4.2 Anomaly analysis

In order to find the anomalous and anomaly free combinations of the U(1)’s in the different
models constructed above, we compute the anomaly matrix KIJ = TrT 2

IQJ , built from the
mixed gauge and gravitational anomalies. The column of indices J =

{
c, w, 1, 1′ , L

}
labels the

abelian generators QJ , while the line indices are I = {SU(3), SU(2), Y, Grav}, with TGrav = 1
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for the gravitational anomalies. One gets, for the two models A and B:

Model A : K(A) =


0 1 1

2
1
2 0

3
2 2 0 0 1

2
−3

2
2
3

4
3

4
3 −1

2
0 8 4 3 1

 , (3.64)

Model B : K(B) =


0 −1 −1

2
1
2 0

3
2 −1 0 0 1

2
−3

2
1
3 −1

3
1
3 −1

2
0 −4 −2 3 1

 . (3.65)

Diagonalizing the matrices K>K, one finds the anomaly free U(1)’s as the eigenvectors asso-
ciated to the vanishing eigenvalues, the other eigenvectors being anomalous. In addition to the
hypercharge qY , one finds in both models a second anomaly free U(1) given by:

Model A : q ≡ 1
3q3 −

1
2q2 + q

′
1 + qL, (3.66)

Model B : q ≡ −2
3q3 −

1
2q2 − q

′
1 + qL. (3.67)

It is easy to see that the q charges of the SM particles are minus their hypercharge qY , namely
the SM sees only one anomaly free U(1) as expected. The second anomaly free combination
reads q3 − q2 + q1 + q

′
1 + qL, and is invisible from the SM as one can easily check.

The analysis in the model C is carried out in a similar way. In that case, the anomaly matrix
reads

K(C) =


3
2 −1 0 1

2 0
3
2 −1 0 0 1

2
5
2

1
3 1 1

3 −1
2

9 −4 1 3 1

 , (3.68)

and it turns out that the hypercharge qY is the only anomaly free U(1).

One can wonder whether the supersymmetrisation of our models modify the results of the
anomaly analysis. In the Minimal Supersymmetric extension of the Standard Model (MSSM),
each SM particle gets a superpartner: the quark and lepton fermions are paired with the sleptons
and squarks, the SM gauge bosons are paired with the gauginos, while the spin-1/2 fermionic
partners of the Higgs scalars are the Higgsinos. Being chiral, the Higgsinos H̃ can modify the
anomalous and anomaly-free U(1) combinations obtained in the non-supersymmetric models.
In our case, their introduction in the spectrum gives new contributions to the entries KIJ for
I, J = {2, 3, 4} of the anomaly matrix K. For model A, where the quantum numbers of the
Higgsinos are

H̃d(1,2; 0,−1,−1, 0, 0)−1/2, H̃u(1,2; 0,−1, 0,−1, 0)1/2, (3.69)
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one gets the anomaly matrix

K
(A)
MSSM =


0 1 1

2
1
2 0

3
2 1 −1

2 −1
2

1
2

−3
2 −1

3
5
6

5
6 −1

2
0 4 2 1 1

 . (3.70)

It is then easy to check that the vectors associated to the zero eigenvalues of the matrix(
K

(A)
MSSM

)>
K

(A)
MSSM are qy and q given by (3.66), so that the minimal supersymmetric exten-

sion of model A does not modify the result obtained in the non-supersymmetric case.
On the other hand, the minimal supersymmetric extension of model B would require the

introduction of a third Higgs doublet, since with the two Higgs doublets (3.60) the Yukawa
couplings (3.62) would violate holomorphy of the superpotential.

Let us note that an anomaly-free U(1) is not necessarily massless because of underlying 6-
dimensional anomalies [98, 99, 100]. One therefore needs to impose additional model-dependent
constraints to ensure that the hypercharge remains massless in four dimensions. As an example,
let us assume that our framework arises from a given type IIA orientifold compactification with
D6-branes and orientifold O6-planes: we denote by i a stack of Ni D6-branes giving rise to a
factor U(Ni) in the gauge group, and ĩ its orientifold image. The D6i-branes span 4-dimensional
Minkowski space and are wrapped on 3-cycles Πi in the internal space X6. In general, 3-cycles in
6-dimensional compact space intersect several times. Introducing the 3-homology class [Πi] of the
3-cycle Πi, the homological intersection number of the stacks i and j is given by Iij = [Πi] · [Πj ].
The data Ni and Iij are then sufficient to determine the massless chiral spectrum of the 4-
dimensional theory 9:

• ij sector: open strings stretching between the stacks i et j correspond to Iij 4D chiral
fermions in the bi-fundamental representation (Ni,Nj) of U(Ni)× U(Nj).

• i j̃ sector: open strings stretching between the stacks i and the orientifold image j̃ of the
stack j correspond to Iij̃ 4D chiral fermions in the bi-fundamental representation (Ni,Nj)
of U(Ni)× U(Nj).

In this framework, an anomaly free U(1) linear combination

qY =
∑
i

ciqi (3.71)

remains massless if the following condition holds [101]:

∑
i 6=j

ciNi

(
Iji − Ijĩ

)
= 0 , (3.72)

for every j, where the sum runs over i. Let us take as an example the minimal supersymmetric
extension of model B built in Section 3.4.1, where the constants ci defining the hypercharge
linear combination are c3 = −1

3 , c2 = −1
2 , c1 = 1 and c1′ = c1L = 0. Using the intersection

9. We do not discuss the sector i ĩ which does not play a role in our analysis.
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numbers corresponding to the fermionic spectrum of Table 3.2,

I32 = 3, I31̃ = −3, I31′ = −3, I21̃L = 3, I11L = 3, (3.73)

one can easily check that the constraints (3.72) for j = {3, 1L} are indeed satisfied. With
the intersection numbers I21̃ = 1 and I21′ = 1, corresponding to the two Higgsinos doublet
superpartners of the Higgs scalars Hu and Hd defined in Table 3.2, the constraints (3.72) for
j = {2, 1, 1′} are not satisfied. It would be the case if we could have for instance the intersection
number I21̃ = 3 and I21′ = 3. This amounts of introducing two additional Higgs doublet pairs
in the (2,1) and (2,1′), which do not modify our phenomenological analysis presented here.

Note finally that the local D-brane configurations built in this section may also be obtained
from other string constructions which do not admit such interpretation in terms of intersecting
D-branes (such as ordinary type I orbifolds, or non-commuting magnetized D-branes), for which
the above conditions do not apply as such.

3.4.3 Right-handed neutrino

Finally, we can implement the right-handed neutrino νR. The existence in the total gauge
group of two abelian factors which do not participate to the hypercharge easily allows to intro-
duce such SM singlet state νR, corresponding either to an open string with one end on the U(1)′

brane and the other on the U(1)L brane, or with both ends on one of the two branes. 10 The
right-handed neutrino enters the anomaly analysis only through the gravitational anomalies,
modifying the entries K44 and K45 of the anomaly matrices computed above. In the following
we will focus on model A, the analysis in the two other models can be carried out in a com-
pletely similar way and does not bring any new relevant physical results. In the case when the
open string associated to νR stretches between the U(1)L and U(1)′ branes, the four different
possibilities for the charge assignments of νR together with the associated anomaly-free U(1)
combinations is listed in Table 3.4 11.

Configurations νR quantum numbers Anomaly-free U(1) (besides the hypercharge)
1 νR(1,1; 0, 0, 0,−1, 1)0 q ≡ 1

3q3 − 1
2q2 + q

′
1 + qL

2 νR(1,1; 0, 0, 0, 1, 1)0 q̃ ≡ 2
3q3 − 1

2q2 + q
′
1

3 νR(1,1; 0, 0, 0,−1,−1)0 −1
3q3 + qL

4 νR(1,1; 0, 0, 0, 1,−1)0 q̃ ≡ 2
3q3 − 1

2q2 + q
′
1 ; −1

3q3 + qL

Table 3.4 – Anomaly-free U(1) in configurations with right-handed neutrinos (model A)

The first configuration does not modify the result (3.66) obtained in the absence of νR: the SM
particles see one anomaly-free U(1), the hypercharge qY , while there is a second anomaly free
combination q3 − q2 + q1 + q

′
1 + qL invisible from the SM. The second configuration contains

also an extra anomaly-free U(1), q̃ ≡ 2
3q3 − 1

2q2 + q
′
1. In that case, one observes that the q̃

charges of the SM particles are given by B −L− qY 12: the SM spectrum is thus charged under
10. For notational simplicity, we call a charged open string with ends on the same brane when it stretches

between the brane and its orientifold image.
11. It is easy to check that these results remain unchanged in the minimal supersymmetric extension of the

model, introducing the Higgsinos (3.69) in the spectrum.
12. The B − L charges are defined as usual: 1/3 for Q, −1/3 for uC and dC , −1 for L and 1 for eC and νR.
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two anomaly-free U(1)’s, qY and B − L. The situation is similar in the third configuration,
with B − L still anomaly free and now given by 1

3q3 − qL. Finally, the fourth configuration
combines the features of the three previous ones: there are now two anomaly-free U(1)’s besides
the hypercharge, q̃ ≡ 2

3q3− 1
2q2 +q

′
1 and 1

3q3−qL. The q̃ charges of the SM particles are given, as
in the second configuration, by B −L− qY , so that the SM sees again two anomaly-free U(1)’s,
qY and B − L. The third anomaly-free combination, invisible from the SM, is given as in the
first configuration by q3 − q2 + q1 + q

′
1 + qL.

In configurations 2, 3 and 4, the anomaly-free B − L boson may then acquire a mass as a
consequence of 6-dimensional anomalies as mentioned at the end of Section 3.4.2, or through a
standard Higgs mechanism.

Regarding the νR mass, only the fourth configuration allows for a Yukawa coupling LνRHu.
One way to obtain a small Dirac neutrino mass compatible with the experimental bounds is
to allow νR to propagate in the bulk, in which case the Dirac mass mνR coming from such
Yukawa coupling is suppressed by the volume V⊥ of the extra transverse dimensions, namely
mνR ∼ v√

V⊥
, with v the vev of the Higgs field [102]. This can be obtained in our framework

if the U(1)′ brane extends along the extra dimension of the U(1)L, so that νR propagates in
the L-bulk. In that case however, the L-bulk having one extra dimension, it is easy to see that
such Dirac neutrino mass is much above the upper limit ∑mνi

<∼ 0.1 eV, so that the fourth
configuration is phenomenologically excluded. A Yukawa coupling LνRHu is forbidden in the
three first cases, since such a term would not be neutral under U(1)′ or U(1)L. However, a Dirac
mass term can still arise through non-perturbative effects, taking the form LνRHue

− α
gs , with gs

the string coupling and α a model-dependent numerical factor [103].
On the other hand, neutrino Majorana masses are perturbatively forbidden since such terms

break the (global) lepton number symmetry, but can also arise from non-perturbative instanton
effects [104].

3.4.4 Mass spectrum

The U(1) combinations orthogonal to the anomaly free U(1)’s, Y , (3.66), (3.67) or listed
in Table 3.4, are anomalous and acquire a mass through a 4-dimensional generalisation of the
Green-Schwarz (GS) mechanism. In our model, such anomalous bosons form linear combination
of some U(1) localised in 4-dimensions and some others extended in the bulk. The aim of this
section is to clarify how this situation impacts the anomaly analysis, and in particular if the
compactification scale enters the mass of the anomalous bosons.

To simplify the analysis, let us consider a toy model with three U(1) bosons: Bµ(x) and
Cµ(x) are localised in four dimensions, while Xµ(x, y) is a bulk vector. Their U(1) charges are
respectively denoted Q3, Q2 and Q1, while their kinetic action is given by

Skin =
∫
d4x

[
− 1

4g2
3
F 2(B)− 1

4g2
2
F 2(C)

]
− 1

4g2
1(5)

∫
d5xF 2(X). (3.74)

The standard KK reduction is carried out by expanding Xµ and X5 according to Xµ(x, y) =∑
n∈ZX

(n)
µ (x)e

iny
R and X5(x, y) = ∑

n∈ZX
(n)
5 (x)e

iny
R . Integrating then the second term of (3.74)
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over y, we get:

Skin =
∫
d4x

[
− 1

4g2
3
F 2(B)− 1

4g2
2
F 2(C)

]

− 1
4g2

1

∫
d4x

F 2
(0)(X) +

∑
n6=0

F (n)
µν F

µν(−n) + 2
(
∂µX

(0)
5

)2
 (3.75)

− 1
2g2

1

∫
d4x

∑
n6=0

(
∂µX

(n)
5 (x)− in

R
X(n)
µ (x)

)(
∂µX

(−n)
5 (x) + in

R
X(−n)
µ (x)

)
,

where we have defined the four-dimensional effective gauge coupling g1 from the five-dimensional
one g1(5) by

1
g2

1
= V⊥
g2

1(5)
, (3.76)

with V⊥ the volume of the extra dimensions. In the gauge in which ∀n 6= 0, X(n)
5 = 0, the KK

excitationsX(n)
µ , n 6= 0, become massive. The gauge symmetries associated to these states having

been fixed, the bosons X(n)
µ , n 6= 0, do not contribute to anomalies, so that only combinations

of Bµ(x), Cµ(x) and the zero mode X(0)
µ (x) of Xµ(x, y) can be anomalous. In the following, we

will denote the basis (Bµ, Cµ, X(0)
µ ) as the “D-brane basis”.

We next consider the basis formed by the hypercharge Yµ and two anomalous vectors Aµ and
A
′
µ, all of three orthogonal to each other, denoted “hypercharge basis” in the following. In the

most general case, the hypercharge Yµ is a linear combination of all the bosons of the D-brane
basis localised in four dimensions, namely in this model Bµ(x) and Cµ(x), while Aµ and A

′
µ

can be combinations of all the D-brane basis bosons, including X(0)
µ (x). We parametrise these

combinations as:

QY = c3Q3 + c2Q2, (3.77a)

QA = c2Q3 − c3Q2 + c1Q1, (3.77b)

QA′ = c2Q3 − c3Q2 −
c2

2 + c2
3

c1
Q1. (3.77c)

In order to relate the original D-brane basis (Bµ, Cµ, X(0)
µ ) to the hypercharge basis (Yµ, Aµ, A

′
µ),

we write the covariant derivatives of the bosons in both bases (assuming a canonical normalisa-
tion of their kinetic terms):

Dµ = ∂µ − i
g3√

6
Q3Bµ(x)− ig2

2 Q2Cµ(x)− ig1Q1X
(0)
µ (x) (3.78)

= ∂µ − igYQY Yµ(x)− igAQAAµ(x)− igA′QA′A
′
µ(x). (3.79)

Using the relations (3.77), one can identify the different terms and get the resulting 3×3 rotation
matrix R relating (Bµ, Cµ, X(0)

µ ) to (Yµ, Aµ, A
′
µ):


Yµ

Aµ

A
′
µ

 =


√

6c3
gY
g3

2c2
gY
g2

0
√

6c2
gA
g3

−2c3
gA
g2

c1
gA
g1√

6c2
g
A
′

g3
−2c3

g
A
′

g2
− c22+c23

c1

g
A
′

g1



Bµ

Cµ

X
(0)
µ

 . (3.80)
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Imposing the orthogonality condition for R, ∑3
j=1R2

ij = 1,∀i = 1, 2, 3, we get the well-known
relations between the coupling constants of the vector bosons in the two bases:

1
g2
Y

= 6c2
3

g2
3

+ 4c2
2

g2
2
, (3.81a)

1
g2
A

= 6c2
2

g2
3

+ 4c2
3

g2
2

+ c2
1
g2

1
, (3.81b)

1
g2
A′

= 6c2
2

g2
3

+ 4c2
3

g2
2

+
(
c2

2 + c2
3

c1

)2 1
g2

1
. (3.81c)

Using then (3.76) relating the five dimensional coupling constant g1(5) and the four dimensional
one g1, one sees that the relations for gA and gA′ are dominated in the large volume limit by
the g1 coupling, namely

1
g2
Y

= 6c2
3

g2
3

+ 4c2
2

g2
2
, (3.82a)

1
g2
A

∼ c2
1
g2

1
= V⊥

c2
1

g2
1(5)

, (3.82b)

1
g2
A′
∼
(
c2

2 + c2
3

c1

)2 1
g2

1
= V⊥

(
c2

2 + c2
3

c1

)2 1
g2

1(5)
. (3.82c)

The above rotation matrix in Eq. (3.80) has thus the following structure:


Yµ

Aµ

A
′
µ

 ∼

O(1) O(1) 0
O
(

1√
V⊥

)
O
(

1√
V⊥

)
O(1)

O
(

1√
V⊥

)
O
(

1√
V⊥

)
O(1)



Bµ

Cµ

X
(0)
µ

 , (3.83)

so that, in the large volume limit, the bosons Aµ and A′µ are simply given by the zero mode of
the bulk vector Xµ.

The anomalies being localised in four dimensions, the effective action involved in the GS
anomaly cancellation is given by

S =
∫
d4x

[
− 1

4g2
A

F 2
A −

1
2 (∂µa+MsAµ)2 + a

Ms

∑
I

kITrFI ∧ FI
]

+
∫
d4x

[
− 1

4g2
A′
F 2
A′
− 1

2
(
∂µa

′ +MsA
′
µ

)2
+ a

′

Ms

∑
I

k
′
ITrFI ∧ FI

]
, (3.84)

where FA (FA′ ) is the field strength of the anomalous U(1)A (U(1)A′ ), gA (gA′ ) the associated
gauge coupling, and a (a′) the pseudo-scalar axion responsible for the anomaly cancellation.
The indice I in the sum over Pontryagin densities denotes SU(3), SU(2) and Y for the mixed
gauge anomalies, FI are the associated field strengths and the constants kI (k′I) are given by
kI = TrT 2

IQA (k′I = TrT 2
IQA′ ) 13.

13. The gravitational anomalies are also canceled by a similar term of the form a
Ms
kGR∧R, where kG = TrQA,

and similarly for A
′
, a
′
.
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In the most general case where both the axion and the anomalous vector propagate into
some extra dimensions of the bulk, the mass MA of the anomalous gauge boson is of order
MA ∝

√
Va
VA
Ms, where Va and VA denote the volume of the space where the axion a and the

vector Aµ propagate, respectively [98]. If a is localised in four dimensions, then MA ∝ Ms√
VA

,
and thus, for one extra dimension at a scale ML ∼ 10 GeV and a string scale Ms ∼ 10 TeV,
we get MA ∼ 102 GeV. This mass being too low and subject to stringent phenomenological
constraints, one needs to have Va = VA in order to get a mass of the anomalous boson of the
order of the string scale. We conclude that the axions which cancel the anomalies of anomalous
U(1) combinations which have a component along Lµ must also propagate in the L-bulk.

3.4.5 Dark Matter model

In this section, we briefly describe how the models built in this chapter can easily provide
Dark Matter (DM) candidates, as Dirac fermions (called χ in the following) corresponding to
open strings stretched between bulk branes, similar to the right-handed neutrinos. The simplest
situation arises when χ has one end on the U(1)L brane and the other on the U(1)′ brane. If
the extra dimension(s) along which the U(1)′ extends is (are) orthogonal to the L-bulk, then
χ is localised in four dimensions and has no KK modes. The KK excitations L(n)

µ of the lepton
number gauge boson, which couple to both χ and the SM leptons l, then provide a mediator
between the dark and the (leptonic) visible sector, allowing DM annihilation process χχ̄ → ll̄

through the s-channel diagram represented in Figure 3.6. Its amplitude is given by:

Mn = −i
s− n2M2

L

[v̄(p2)(−igLγµ)u(p1)] [ū(p3)(−igLγµ)v(p4)] , (3.85)

with ML the compactification scale of the extra dimension of the L-bulk where Lµ propagates,
u and v the on-shell external spinors satisfying /p1u(p1) = mu(p1), v̄(p2)/p2 = −mv̄(p2), and gL
the U(1)L coupling assumed to be independent of n 14.

L
(n)
µ

χ(p1)

χ̄(p2) l̄(p4)

l(p3)

Figure 1

1

Figure 3.6 – Dark matter annihilation into SM leptons mediated by the KK excitations L(n)
µ of

the lepton number gauge boson.

The total tree-level amplitude M for the process χχ̄ → ll̄ is given by the sum over the

14. The gauge coupling of the n-th KK excitation is given by gL(n) = gLe
−cn2 M

2
L

M2
s , with c a positive numerical

constant. When ML �Ms, as it is the case in the large extra dimension scenario considered in this chapter, the
exponential is of order 1 for all n <∼

Ms
ML

, and the gauge coupling can indeed be taken constant. For higher KK
modes with n� Ms

ML
, one has to consider the exponential suppression of gL and the analysis would be modified.

For the values Ms ∼ 10 TeV and ML ∼ 10 GeV that will be considered below, the result presented in this section
is thus valid for the first O(103) KK excitations.
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KK modes of the vector boson mediator, M = ∑∞
n=1Mn. Averaging |M|2 over the incoming

helicities and summing over the outgoing helicities of the fermions, one gets

|M|2 = 2g4
L

∣∣∣∣∣
∞∑
n=1

1
s− n2M2

L

∣∣∣∣∣
2

(t2 + u2 + 4s(m2
χ +m2

l )− 2(m2
χ +m2

l )2), (3.86)

where we have defined |M|2 ≡ 1
4
∑

Spins |M|2, mχ and ml are the DM and lepton masses respec-
tively, and s, t and u are the Mandelstam variables defined by

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (3.87)

In the center of mass frame, writing the 4-momentums p1 = (E, ~pi), p2 = (E,−~pi), p3 = (E, ~pf ),
p4 = (E,− ~pf ) with E =

√
s/2, θ the angle between the incoming ~pi and outgoing ~pf , and

neglecting the lepton mass ml, we get:

|M|2 = g4
L

∣∣∣∣∣∣
∞∑
n=1

1
1− n2M

2
L
s

∣∣∣∣∣∣
2 [

1 + cos2 θ +
4m2

χ

s
(1− cos2 θ)

]
. (3.88)

We can then compute the differential cross-section of the DM annihilation process, given in the
center of mass frame for 2→ 2 particle scattering by:

dσ

dΩ = 1
64π2s

| ~pf |
|~pi|
|M|2. (3.89)

Explicitly writting the sum in Eq. (3.88) in terms of the cotangent function and using |~pi| =√
E2 −m2

χ, | ~pf | = E, one gets:

dσ

dΩ = g4
L

64π2s

1√
1− 4m2

χ

s

(
−1

2 + π
√
s

2ML
cot

(
π
√
s

ML

))2 [
1 + cos2 θ +

4m2
χ

s
(1− cos2 θ)

]
. (3.90)

In the non-relativistic limit, s can be expressed in terms of the relative velocity vr of the anni-
hilating particles as

s = 4m2
χ +m2

χv
2
r +O(v4

r ). (3.91)

Expanding the expression (3.90) in terms of vr yields:

dσ

dΩ = g4
L

256π2m2
χ

(
−1 + 2mχπ

ML
cot

(2mχπ

ML

))2 1
vr

+O(vr). (3.92)

At lowest order in vr, the differential cross section is thus independent of θ so that the total
annihilation cross section reads:

σvr = g4
L

64πm2
χ

(
−1 + 2mχπ

ML
cot

(2mχπ

ML

))2
. (3.93)

For a string scale Ms ∼ 10 TeV, ML and gL must be of order ML ∼ 10 GeV and gL ∼ 10−2

in order to accommodate the muon anomalous magnetic moment discrepancy, as described in
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Section 3.2. For such values, the annihilation cross-section (3.93) is plotted in terms of the DM
mass mχ in Figure 3.7. The horizontal grey line indicates the annihilation cross section which
yields the observed value for the DM relic density, given by 15

Ωh2 ∼ 10−26 cm3 · s−1

〈σvr〉
∼ 0.1× 10−9 GeV−2

〈σvr〉
. (3.94)

The cross-section diverges for all mχ = nML
2 , and is regulated taking into account the width

5 10 15 20

mχ (GeV)0.0

0.5

1.0

1.5

2.0

10
9<σvr> (GeV

-2)

Figure 3.7 – Annihilation cross section 109×〈σvr〉 (GeV−2) in terms of the DM mass mχ(GeV),
for a compactification scale ML ∼ 10 GeV and a coupling gL ∼ 10−2.

of the KK resonances, by replacing the vector boson propagator 1
s−M2

n
by 1

s−M2
n+iΓnMn

, with
Γn the decay rate of L(n)

µ . We thus have to check how this regularisation modifies the function
〈σvr〉 and in particular if it brings the local maxima of the cross-section below the critical value
109 × 〈σvr〉 = 1 GeV−2. For the lowest KK modes n, the width of L(n)

µ is dominated by decays
into SM leptons, with the corresponding decay rate given by

Γn(L(n)
µ → ll̄) = g2

L

4πMn

(
1 + 2m

2
l

M2
n

)√
1− 4m

2
l

M2
n

Θ(Mn − 2ml), (3.95a)

= g2
L

4πMnΘ(Mn − 2ml) +O(m4
l ). (3.95b)

For gL ∼ 10−2, we get Γn(L(n)
µ → ll̄) ∼ 10−5Mn, so that Γn can indeed be neglected for

the lowest n. For higher KK modes, other decay channels contribute to the width, such as
the decay of L(n)

µ into lighter KK states, and the analysis would be modified. Focusing on the
lightest modes from now on, one thus gets from the plot of Figure 3.7 that the correct DM relic
density is obtained for several values of the χ-fermion mass mχ centred around integer multiple
of ML

2 . For ML ∼ 10 GeV, the two first lightest possible DM masses are in tension with the
phenomenological constraints coming from dwarf galaxies γ-ray and CMB observations, which
yield a lower bound on the DM mass around 10 − 15 GeV [105, 106]. In our example, these
15. The annihilation cross section σvr given in Eq. (3.93) being independent of vr, the thermal average 〈σvr〉

entering in the expression of the DM relic density is trivial in our case: 〈σvr〉 = σvr.
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constraints are thus satisfied for DM masses centred around mχ = nML
2 , n >∼ 3. Obviously, the

constraints are automatically satisfied for ML >∼ 30 GeV.

Since direct couplings between the DM χ and the SM particles are forbidden, no Yukawa
couplings between χ and the SM leptons are allowed. In model A introduced in Section 3.4.1,
this means that among the four possible configurations for χ, the one χ(1,1; 0, 0, 0, 1,−1)0 is
not allowed. For the three other quantum number assignments, namely χ(1,1; 0, 0, 0,−1, 1)0,
χ(1,1; 0, 0, 0, 1, 1)0 and χ(1,1; 0, 0, 0,−1,−1)0, the Yukawa coupling LχHu is forbidden, and
the mass of χ can arise for instance from brane separation, when the U(1)L and U(1)′ branes
are localised at two different points in the extra (large) dimensions of the gravitational bulk.

Obviously, a global (top-down) construction of a fully consistent string model may require the
presence of additional branes. Such (hidden) branes or/and corresponding “messenger” states
may provide alternative DM candidates besides the minimal possibility discussed above.

3.4.6 Lepton flavour non-universality and the muon g − 2

Implicit in the construction carried out above was the assumption of lepton flavour univer-
sality, namely that the three families of charged leptons are identical copies of each other (appart
from the mass) and that the lepton number gauge boson Lµ couples with the same strength to
each of them. Another possibility to address the discrepancy of the anomalous magnetic moment
of the muon would be to gauge only the muonic lepton number U(1)L(µ) replacing the L-brane
in Figure 3.4 and identifying the leptons of the first and third generation by open strings that do
not end on the L(µ) brane. They could for instance end on a 6-th brane that gauges L(e) +L(τ),
or end on the U(1)′ brane in the minimal case, breaking the total lepton number. As a result,
this construction leads to lepton flavour non-universality (LFNU) but its main achievement is
to avoid LEP and LHC bounds while still use light KK-excitations of the U(1)L(µ) gauge boson
L

(µ)
µ in order to account for the (g − 2)µ discrepancy. Their contribution to the muon vertex

correction is given by:

∆aµ =
∑
n

g2
L(µ)

12π2
m2
µ

M2
n

, (3.96)

where mµ is the muon mass, gL(µ) the gauge coupling of the U(1)L(µ) and Mn the mass of the
nth KK excitation of L(µ)

µ . Since L(µ)
µ does not couple to electrons, its coupling and KK masses

evade the LEP bounds and are thus now completely unconstrained.

As mentioned above, a LFNU model can easily be obtained in the framework built in this
chapter, by replacing the U(1)L brane by a muonic U(1)L(µ) associated to a gauge boson L(µ)

µ

with corresponding gauge couplings gL(µ) . Assuming again that U(1)L(µ) extends along one large
extra dimension with a compactification scaleML(µ) , we have g2

L(µ) = gs
M
L(µ)
Ms

, with gs the string
coupling, and Mn = nML(µ) , so that the contribution (3.96) reads:

∆aµ =
gsm

2
µ

72ML(µ)Ms
. (3.97)

Such contribution can therefore accomodate the discrepancy (3.22) for a compactification scale
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and a string scale satisfying

ML(µ)Ms ∼ gs × 5× 104 GeV2. (3.98)

For a string scale Ms = 10 TeV, we thus get a compactification scale ML(µ) ∼ gs×5 GeV. In the
perturbative regime where gs

4π
<∼ 1, ML(µ) can therefore vary from the O(GeV) to O(102 GeV).

Let us note that if L(µ)
µ also propagates along some extra smaller dimensions with a size larger

but near the string length, gs is suppressed by the volume of these dimensions, further increasing
the range of possible values for the compactification scale ML(µ) .

3.5 Conclusion

The Brookhaven National Laboratory experiment E821 together with the recent Muon g−2
experiment at Fermilab have pushed the discrepancy between the measured value of the muon
anomalous magnetic moment and its Standard Model prediction to 4.7σ, providing a strong
hint of new physics beyond the SM. This discrepancy can be explained in the framework of
low mass scale strings and large extra dimensions, assuming that the SM lepton number global
symmetry (or even the muonic lepton number) is gauged and that the associated gauge boson
propagates along (at least) one large extra dimension, so that the main contribution to (g− 2)µ
is due to the exchange of its lightest Kaluza-Klein excitations. The work carried out here realised
this proposal, by building the minimal embedding of the Standard Model into intersecting D-
brane configurations with a gauged lepton number associated to a U(1)L brane extended along
one large extra dimension and which does not participate to the hypercharge combination, as
required for phenomenological reasons. Consistency of the models requires the introduction of a
fifth brane in a way that all SM mixed anomalies cancel.

The presence of the two extra branes, beyond the SM ones, allows to introduce in a simple way
the right handed neutrino as well as a Dark Matter candidate. For a string scale Ms >∼ 10 TeV,
the bulk of these models exhibits an interesting non-homogeneous structure, with one large extra
dimension with a compactification scale in the range of O(10−102 GeV) required to explain the
(g− 2)µ discrepancy, and several larger extra dimensions with an average compactification scale
<∼ O(0.1 GeV) in order to lower the string scale in the O(10 TeV) region. Within this framework,
the anomalous magnetic moment of the muon may provide a hint for the low mass scale strings
proposal accessible in future high energy particle colliders.



Appendix A

Kähler geometry

A.1 Complex manifolds and Kähler manifolds

Let us consider a smooth even dimensional manifold M, with dimRM = 2m, and two
coordinate patches U1 and U2 on M which intersect each others. Given a point p ∈ U1 ∩ U2,
its local coordinates in the patches U1 and U2 are respectively denoted by (x1, ..., x2m) and
(y1, ..., y2m). The coordinate transformation (x1, ..., x2m) → (y1, ..., y2m) is then required to be
smooth, usually C∞. It is then natural to try to pair up these coordinates into zi = x2i−1 + ix2i

and wi = y2i−1 + iy2i, for all i = 1, ...,m. However, the coordinate transformation on the 2m real
coordinates xi → yi(x), i = 1, ..., 2m will, in general, lead to the coordinate transformations on
the m complex coordinates zi → wi(z1, ..., zm, z̄1, ..., z̄m), which is usually not holomorphic. A
complex manifold is not only a smooth even dimensional manifold, but also a manifold where such
change of coordinates can be done holomorphically, namely such that ∀i, j = 1, ...,m, ∂

∂z̄i
wj = 0.

To this end, an additional structure needs to be added onM.
In a similar way that a Riemannian manifold is built from a given smooth manifold by

adding on it a Riemannian structure, namely the metric tensor gij(x), a complex manifold can
be built from a given even dimensional smooth manifold by adding the so-called almost complex
structure on it. This is a real-valued tensor J ji (x) on the tangent space of the manifold, satisfying
the property

Jki J
j
k = −δji , (A.1.1)

which obviously mimics i2 = −1. One can show [107] that the coordinate transformations of
the complex coordinates can then be done holomorphically if and only if the almost complex
structure satisfies the additional condition:

J li (∂lJkj − ∂jJkl )− J lj(∂lJki − ∂iJkl ) = 0. (A.1.2)

M equipped with an almost complex structure J ji satisfying Eq.(A.1.2) is then called a complex
manifold. One can then consider the coordinate basis { ∂

∂zα ,
∂
∂z̄ᾱ }, in which the complex structure

takes the form:

J =

Jβα J β̄α

Jβᾱ J β̄ᾱ

 =

iδβα 0
0 −iδβ̄ᾱ

 . (A.1.3)

In physical applications, a manifold is generally already endowed by a Riemannian structure
gij , and it is therefore natural to try to combine it with the complex structure introduced above.
On the one hand, in analogy with the Levi-Civita connection, we impose the complex structure
to be covariantly constant. On the other hand, we require the metric to be invariant under

115
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the action of the complex structure. These two requirements lead to the so-called compatibility
conditions:

∇iJ jk = 0, gklJ
k
i J

l
j = gij . (A.1.4)

A manifold equipped with a Riemannian and a complex structure satisfying the compatibility
conditions (A.1.4) is then called a Kähler manifold. It is then convenient to introduce the 2-form

Ω = −gijJ ikdxk ∧ dxj = −2igαβ̄dz
α ∧ dz̄β̄, (A.1.5)

written in real and complex coordinates, called the Kähler form. The second compatibility
condition is equivalent to gαβ = gᾱβ̄ = 0, as can be seen from (A.1.3). Such a metric is said to be
hermitian. One can show that the first of the compatibility conditions (A.1.4) is satisfied if and
only if the Kähler form is closed, namely dΩ = 0. The definition (A.1.4) of a Kähler manifold
can thus be rephrased into:

A Kähler manifold is a complex manifold with hermitian metric whose fundamental 2-form Ω
is closed.

The closeness of Ω leads to

0 = dΩ = −2i∂γgαβ̄dz
γ ∧ dzα ∧ dz̄β̄ + c.c

= −i(∂γgαβ̄ − ∂αgγβ̄)dzγ ∧ dzα ∧ dz̄β̄ + c.c., (A.1.6)

or, in components, ∂γgαβ̄−∂αgγβ̄ = 0 = ∂β̄gαγ̄ −∂γ̄gαβ̄. This implies that locally, the metric can
be expressed as

gαβ̄ = ∂α∂β̄K(z, z̄). (A.1.7)

The real locally defined function K(z, z̄) is called the Kähler potential. The so-called Kähler
transformations

K(z, z̄)→ K ′(z, z̄) = K(z, z̄) + f(z) + f̄(z̄) (A.1.8)

obviously leaves gαβ̄ invariant. The compatibility conditions (A.1.4) defining a Kähler manifold
can therefore be rephrased into

gαβ = gᾱβ̄ = 0, gαβ̄ = ∂α∂β̄K(z, z̄), (A.1.9)

the last equation being valid in each coordinate patches, but not globally over the manifold 1.

1. If K were a globally defined function on the manifold, then the Kähler form Ω = −2i∂α∂β̄K dzα ∧ dz̄β̄
would be exact, Ω = dΛ, with Λ globally defined. Denoting m = dimCM, Ωm is a top degree form and can
therefore be chosen as a volume form. However, on a compact manifold without boundary, this would lead to∫
M(dΛ)m = 0 for a globally defined Λ. Therefore, for compact manifolds without boundary, the Kähler potential

cannot be globally defined.
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A.2 Symmetries of Kähler manifolds

A symmetry of a Kähler manifold is defined as a coordinate change preserving both the
hermitian and the complex structures. As in the real case, the generators of such coordinate
transformations are vector fields k called Killing vectors, defined in the Kähler case such that
the Lie derivatives of the metric tensor and the complex structure both vanish:

Lkgij = ∇ikj +∇jki = 0, (A.2.1)

LkJ ji = kl∇lJ ji︸ ︷︷ ︸
=0

+∇ikl J jl −∇lk
j J li = 0, (A.2.2)

where the first term of the second equation vanishes by definition of a Kähler manifold.
Let us first look at the consequences of the second equality. Taking i → α and j → β, we

get ∇αklJβl − ∇lkβJ lα = i(∇αkβ − ∇αkβ) = 0, which vanishes trivially and thus do not bring
any new informations. However, considering i → ᾱ and j → β, we get ∇ᾱklJβl − ∇lkβJ lᾱ =
2i∇ᾱkβ = 2i(∂ᾱkβ + Γβᾱiki) = 2i∂ᾱkβ, where the last equality follows from Γβᾱi = 0 for Kähler
metrics, for any i holomorphic or anti-holomorphic indices. We deduce that kβ are functions of
zα only and not z̄ᾱ 2, and Killing vectors can thus be written as ki = {kα(z), kᾱ(z̄)}.

The conditions (A.2.1) and (A.2.2) imply that LkΩ = Lk
(
−gijJ ikdxk ∧ dxj

)
= 0. From the

definition Lk = ikd + dik, where ik and d are the interior and exterior derivatives respectively,
and using the fact that Ω is closed, namely dΩ = 0, we deduce that dikΩ = 0. The Poincaré
lemma then states that locally, there exists a 0-form P such that

ikΩ = −2dP(z, z̄), (A.2.3)

where the −2 factor is introduced for convenience. From the definition of the interior derivative,
we have ikΩ = ik(−Jijdxi ∧ dxj) = −2klJlidxi = −2klJkl gkidxi = −2ikαgαβ̄dz̄β̄ + 2ikβ̄gαβ̄dzα,
where in the last equality we moved from real to complex coordinates and have used (A.1.3).
Eq. (A.2.3) can then be written as:

gαβ̄k
α = −i∂β̄P(z, z̄), gαβ̄k

β̄ = i∂αP(z, z̄). (A.2.4)

Let us now consider the consequences of Eq. (A.2.1), which splits in complex coordinates
into ∇αkβ +∇βkα = 0 and ∇αkβ̄ + ∇̄β̄kα = 0. The first one is trivial, since ∇αkβ = gβγ̄∇αkγ̄ =
gβγ̄∂αk

γ̄ = 0, where in the penultimate equality we have used again Γγ̄αi = 0 for Kähler metrics.
The second one is satisfied provided that there is a moment map P satisfying the equations
(A.2.4). Indeed, if (A.2.4) are satisfied, we have ∇αkβ̄ + ∇̄β̄kα = ∇α(gγβ̄kγ) + ∇̄β̄(gαγ̄kγ̄) =
−i∇α(∂β̄P) + i∇̄β̄∂αP = −i∂α∂β̄P + i∂β̄∂αP = 0. Therefore, a symmetry of a Kähler manifold
defined by the holomorphic Killing vector k is characterized by the real moment map P(z, z̄)
satisfying:

kα(z) = −igαβ̄∂β̄P(z, z̄), kᾱ(z̄) = igβᾱ∂βP(z, z̄). (A.2.5)

2. Let us notice that this is only true for the upper vector components kα, kᾱ, since for the lower vector
components we have ∂ᾱkβ = ∂ᾱ[gβγ̄(z, z̄)kγ̄(z̄)] 6= 0 in general.
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Applying∇α to the second equation above, using∇αkᾱ(z̄) = 0 and the fact that gβᾱ is invertible,
we deduce that P(z, z̄) satisfies the equation:

∇α∂βP(z, z̄) = 0. (A.2.6)

We can now understand why Kähler manifolds are so attractive and in fact simpler than an
arbitrary manifold. In a similar way that a Kähler metric is determined by a single real function,
the Kähler potential K(z, z̄), a Killing vector of a Kähler manifold is also determined by a single
real function, the moment map or Killing potential P(z, z̄). With the ingredients presented
above, we can now find a relation between these two functions. By definition, an isometry of a
manifold leaves the metric invariant, which is the meaning of Eq. (A.2.1). However, in the case
of a Kähler manifold, the Kähler potential does not need to be invariant, and can transform by
a Kähler transformation (A.1.8) under the symmetry:

δK = θ
(
kα∂α + kᾱ∂ᾱ

)
K(z, z̄) = θ(r(z) + r̄(z̄)), (A.2.7)

with r(z) and r̄(z̄) arbitrary holomorphic and anti-holomorphic functions. On the one hand,
we have kᾱ = gβᾱk

β = kβ∂β∂ᾱK = ∂ᾱ(kβ∂βK). On the other hand, Eq. (A.2.4) gives
kᾱ = −i∂ᾱP. Integrating these equations yields P = i (kα∂αK + ζ(z)), with ζ(z) an arbi-
trary holomorphic function. To determine it, we use the reality of P, P − P̄ = 0, which gives(
kα∂α + kᾱ∂ᾱ

)
K(z, z̄) = −ζ(z) − ζ̄(z̄). Comparing this with Eq. (A.2.7) gives ζ(z) = −r(z),

ζ̄(z̄) = −r̄(z̄). Therefore, the Killing potential P and Kähler potential K are related by:

P(z, z̄) = i (kα∂αK(z, z̄)− r(z)) = −i
(
kᾱ∂ᾱK(z, z̄)− r̄(z̄)

)
. (A.2.8)



Appendix B

Multiplet calculus

This appendix, based on [108], summarises the conformal supergravity multiplets calculus
used in the Chapter 1. A general complex scalar multiplet is given by

C = (C,Z,H,K,Bµ,Λ,D), (B.0.1)

where C, H, K and D are complex scalars, Z and Λ are Dirac fermions, and Bµ is a Lorentz
vector. A chiral multiplet is obtained from a complex multiplet by imposing PRZ = 0, K = 0,
Bµ = iDµC, Λ = 0 and D = 0. Renaming C = Z, it is written, in a seven-components notation,
as

(Z,−i
√

2PLχ,−2F, 0, iDµZ, 0, 0), (B.0.2)

and similarly for its anti-chiral counterpart:

(Z̄, i
√

2PRχ, 0,−2F̄ ,−iDµZ̄, 0, 0). (B.0.3)

The chiral and anti-chiral multiplets are also usually written in a three-components notation
according to:

(Z,PLχ, F ), (Z̄, PRχ, F̄ ). (B.0.4)

A real multiplet is obtained from a complex multiplet by imposing its lowest component
C = C to be real. This implies Z = ζ and Λ = λ to be Majorana spinors, Bµ = Bµ and D = D

to be real, while K = H̄ is still complex. A real multiplet is thus written in a six-components
notation according to

(C, ζ,H, Bµ, λ,D). (B.0.5)

Throughout the Chapter 1, the operation [ ]F is defined as acting on a chiral multiplet
(Z,PLχ, F ) of weights (3, 3) by:

[ ]F : (Z,PLχ, F )→ [Z]F ≡
e

2

[
F + 1√

2
ψ̄µγ

µPLχ+ 1
2Zψ̄µγ

µνPRψν + h.c.

]
. (B.0.6)

The operation [ ]D is defined as acting on a real multiplet (C, ζ,H, Bµ, λ,D) of weights (2, 0) by:

[ ]D : (C, ζ,H, Bµ, λ,D) → [C]D ≡
e

2

[
D − 1

2 ψ̄µγ
µiγ∗λ−

1
3CR(ω)

+1
6
(
Cψ̄µγ

µρσ − iζ̄γρσγ∗
)
R′ρσ(Q) (B.0.7)

+1
4ε

abcdψ̄aγbψc

(
Bd −

1
2 ψ̄dζ

)]
,
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where R(ω) and R′ρσ(Q) are the graviton and gravitino curvatures. Both operations are used to
build superconformal invariant actions from chiral and real multiplets, respectively, according
to SF =

∫
d4x [Z]F and SD =

∫
d4x [C]D.

Given a set of complex multiplets Ci = (Ci,Z i,Hi,Ki,Biµ,Λi,Di), i = 1...n, one can build
another complex multiplet C = (C,Z,H,K,Bµ,Λ,D) whose lowest component is given by an
arbitrary function f of the first components of Ci’s: C = f(Ci). The other components of C are
then given by:

Z = fiZ i,

H = fiHi −
1
2fijZ̄

iPLZj ,

K = fiKi −
1
2fijZ̄

iPRZj ,

Bµ = fiBiµ + 1
2 ifijZ̄

iPLγµZj , (B.0.8)

Λ = fiΛi + 1
2fij

(
iγ∗/B

i + PLKi + PRHi − /DCi
)
Zj − 1

4fijkZ
iZ̄jZk,

D = fiDi + 1
2fij

(
KiHj − Bi · Bj −DCi · DCj − 2Λ̄iZj − Z̄ i /DZj

)
,

− 1
4fijkZ̄

i
(
iγ∗/B

j + PLKj + PRHj
)
Zk + 1

8fijklZ̄
iPLZjZ̄kPRZ l,

with fi ≡ ∂f
∂Ci and so on for higher order derivatives. The bar on spinors are the Majorana

conjugate defined by ψ̄ = ψTC, with C the charge conjugation matrix satisfying γTµ = −CγµC−1.

In the first chapter of this thesis, we often deal with chiral multiplets, and it is therefore
convenient to write the form taken by the composition laws (B.0.8) in that particular case.
Considering one chiral multiplet, written in the three-components notation as (X1, PLΩ1, F1),
one can consider a second chiral multiplet (X2, PLΩ2, F2) whose lowest component is built from
a given function f(X1). One can also consider the product of two chiral multiplets X3 and X4,
yielding another chiral multiplet X5. The composition laws (B.0.8) then simplify and give the
following chiral multiplets:

X2 = f(X1), X5 = X3X4,

PLΩ2 = f1PLΩ1, PLΩ5 = X3PLΩ4 +X4PLΩ3, (B.0.9)

F2 = f1F1 −
1
2f11Ω̄1PLΩ1, F5 = F3X4 + F4X3 − Ω̄3PLΩ4.



Appendix C

Fermion masses

In this appendix, we compute the fermion masses in the no-scale models presented in Section
1.7. We recall the full Lagrangian considered here:

L = −3
[
S0S̄0e

−K(X,X̄)
3

]
D

+
[
S3

0W (X)
]
F
− 1

4
[
λ̄PLλ

]
F

+ L(α)
FI + L(−2/3)

FI , (C.0.1)

with the new FI-terms given by:

L(α)
FI = −ξ

[
(S0S̄0)−1e( 1

3 +α)KWαW̄α (λ̄PLλ)(λ̄PRλ)
T (W̄2)T̄ (W2)

(V )D
]
D

. (C.0.2)

We write the fermion mass terms as Lm = L(0)
m + LFIm , with L(0)

m arising from the usual matter-
coupled N = 1 supergravity Lagrangian, namely the three first terms of (C.0.1), and LFIm arising
from the FI Lagrangians L(α)

FI + L(−2/3)
FI . L(0)

m reads:

e−1L(0)
m = 1

2m3/2ψ̄µPRγ
µνψν + ψ̄µγ

µ
( 1√

2
ΩαeK/2∇αW + i

2PAPLλ
A
)

−1
2m

(0)
αβΩ̄αΩβ −m(0)

αAΩ̄αλA − 1
2m

(0)
ABλ̄

APLλ
B + h.c., (C.0.3)

where ψµ denotes the gravitino, Ωα the chiral fermions, and λA the gauginos. The various masses
are given by [10]:

m3/2 = eK/2W, (C.0.4)

m
(0)
αβ = eK/2∇α∇βW ≡ eK/2 (∂α + ∂αK)∇βW − eK/2Γγαβ∇γW, (C.0.5)

m
(0)
αA = i

√
2
(
∂αPA −

1
4fAB,α(Ref)−1 BCPC

)
= m

(0)
Aα, (C.0.6)

m
(0)
AB = −1

2e
K/2fAB,αg

αβ̄∇̄β̄W̄ . (C.0.7)

In the no-scale models with Kähler potential K = −p ln(X + X̄) studied in Section 1.7, we
consider only one chiral matter multiplet and one gauge multiplet, therefore the index α and
A take only one value. The Christoffel symbols are given by Γγαβ = gγδ̄∂αgβδ̄, which reduce
to only one non-vanishing component ΓXXX = − 2

X+X̄ . The moment map P is defined by P =
i(kα∂αK − r), where kα is the Killing vector associated to the gauged symmetry and r is the
corresponding FI constant. In Section 1.7 we considered r = 0. When the chiral multiplet
becomes charged under the gauged shift symmetry, the associated constant Killing vector is
kX = ic. Focussing on the ungauged case considered in Section 1.7, we thus have P = 0. Finally,
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the gauge kinetic function fAB being constant, we end up with:

m3/2 = eK/2W, m
(0)
ΩΩ = m3/2

p(p− 1)
(X + X̄)2 , m

(0)
Ωλ = 0, m

(0)
λλ = 0. (C.0.8)

We now turn to the fermion mass contributions arising from the FI Lagrangians. Keeping
only quadratic terms in fermions containing no derivatives, the FI Lagrangian (C.0.2) can be
written as

L(α)
FI = −ξ D(WW̄ )α

T (W̄2)T̄ (W2)

[
R̂(α)

]
D
, (C.0.9)

with R̂(α) the real multiplet defined by

R̂(α) ≡ e( 1
3 +α)K(X,X̄)(S−1

0 λ̄PLλ)(S̄−1
0 λ̄PRλ), (C.0.10)

which is a function of the chiral multiplets S−1
0 λ̄PLλ, X, and their anti-chiral counterparts. In

the seven-components notation, they are given by:

S−1
0 λ̄PLλ = (s−1

0 λ̄PLλ, 2s−1
0 DPLλ, 2s−2

0 F0λ̄PLλ+ 2s−1
0 D2, 0, 0, 0, 0), (C.0.11)

X = (X, −i
√

2PLΩ, −2F, 0, 0, 0, 0), (C.0.12)

S̄−1
0 λ̄PRλ = (s̄−1

0 λ̄PRλ, 2s̄−1
0 DPRλ, 0, 2s̄−2

0 F̄0λ̄PRλ+ 2s̄−1
0 D2, 0, 0, 0), (C.0.13)

X̄ = (X̄, i
√

2PRΩ, 0, −2F̄ , 0, 0, 0), (C.0.14)

Writing R̂(α) ≡ (0, 0, 0, (R̂(α))Bµ , (R̂(α))λ, (R̂(α))D), its contribution to the fermion masses arises
from: [

R̂(α)
]
D

= e

2

(
(R̂(α))D −

i

2 ψ̄ · γγ∗(R̂
(α))λ

)
. (C.0.15)

The tensor calculus (B.0.8) gives:

(R̂(α))D =
[
i2
√

2∂Xe(α+1/3)Ks−1
0 s̄−1

0 D3λ̄PLΩ− 2∂Xe(α+1/3)Ks−1
0 s̄−1

0 D2Fλ̄PLλ

+ 2e(α+1/3)K s̄−1
0 s−2

0 D2F0λ̄PLλ
]

+ h.c.+ 2e(α+1/3)K s̄−1
0 s−1

0 D4, (C.0.16)

(R̂(α))λ = 2e(α+ 1
3 )KD3s−1

0 s̄−1
0 λ. (C.0.17)

Combining this with

D(WW̄ )α

T (W̄2)T̄ (W2)
= (WW̄ )α+2/3D−3s2

0s̄
2
0 − 2(WW̄ )α+2/3

(
s0s̄

2
0
F0
D5 λ̄PLλ+ h.c.

)
, (C.0.18)

one obtains:
(i) The gravitino-gaugino mixing:

e−1L(α)
FI ⊃

i

2 ψ̄µγ
µξe(α+2/3)Gγ∗λ. (C.0.19)

Considering L(0) + L(α)
FI + L(−2/3)

FI , we get the following gravitino/spin-1/2 mixing Lagrangian:

e−1Lmix = ψ̄µγ
µ
( 1√

2
ΩeK/2∇XW + i

2(ξ1e
(α+2/3)G + ξ2)PLλ

)
+ h.c., (C.0.20)
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from which we identify the Goldstino as the linear combination:

PLν = − 1√
2

ΩeK/2∇XW −
i

2(ξ1e
(α+2/3)G + ξ2)PLλ. (C.0.21)

(ii) The fermion mass terms:

e−1L(α)
FI ⊃ −i

√
2ξ(α+ 1

3)∂XKe(α+1/3)G(WW̄ )1/3s0s̄0λ̄PLΩ

+ξ(α+ 1
3)∂XKe(α+1/3)G(WW̄ )1/3s0s̄0

F

D
λ̄PLλ (C.0.22)

+ξe(α+ 1
3 )G(WW̄ )1/3s0s̄0

s−1
0 F0
D

λ̄PLλ+ h.c.

Considering from now on L(α)
FI +L(−2/3)

FI , we define for simplicity of the expressions the following
quantities:

Dbos ≡
(
ξ1e

(α1+ 1
3 )G + ξ2e

− 1
3G
)

(WW̄ )1/3s0s̄0

= ξ1e
(α1+ 2

3 )G + ξ2, (C.0.23)

γ ≡ ∂XK

(
ξ1(α1 + 1

3)e(α1+ 1
3 )G − ξ2

3 e
− 1

3G
)

(WW̄ )1/3s0s̄0

= ∂XK

(
ξ1(α1 + 1

3)e(α1+ 2
3 )G − ξ2

3

)
. (C.0.24)

One can already read from (C.0.22) the gaugino/chiral fermion mixing mass term:

mFI
Ωλ = i

√
2γ. (C.0.25)

In order to find the gaugino mass term mFI
λλ , we have to eliminate the auxiliary fields D, F and

F0 using their equations of motion. The part of the total Lagrangian containing the auxiliary
field D, up to quadratic order in fermions, is:

e−1L ⊃ 1
2D

2 −DbosD +
(
Dbos

s−1
0 F0
D

λ̄PLλ+ γ
F

D
λ̄PLλ+ h.c.

)
, (C.0.26)

so that the equation of motion for D reads D3−DbosD
2−

[
(Dboss

−1
0 F0 + γF )λ̄PLλ+ h.c.

]
= 0.

Solving it analytically and expanding the solution up to quadratic order in fermions, we find

D = Dbos +
(
Dboss

−1
0 F0 + γF

D2
bos

λ̄PLλ+ h.c.

)
+ higher order in fermions. (C.0.27)

Replacing (C.0.27) in (C.0.26), we find the following quadratic contribution in fermions:

e−1L ⊃ Dboss
−1
0 F0 + γF

Dbos
λ̄PLλ+ h.c. (C.0.28)

We now eliminate the auxiliary fields F0 and F , associated to the compensator and X chiral
multiplet, respectively. The part of the total Lagrangian containing the auxiliary fields F0, F ,
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up to the quadratic order in fermions, reads:

e−1L ⊃ −3e−K/3F0F̄0 + 3eK/3WF0 + 3eK/3W̄ F̄0 + 1
9gXX̄FF̄ + 1

3e
K/2∇XWF

+1
3e

K/2∇̄X̄W̄ F̄ + 1
Dbos

(Dbose
−K/6F0 + γF )λ̄PLλ (C.0.29)

+ 1
Dbos

(Dbose
−K/6F̄0 + γF̄ )λ̄PRλ,

which yields, after elimination of F0 and F :

e−1L ⊃ eK
(
3WW̄ −∇XWgXX̄∇̄X̄W̄

)
+ eK/2

Dbos

(
DbosW̄ λ̄PLλ− 3gXX̄∇̄X̄W̄γλ̄PLλ+ h.c.

)
.

(C.0.30)
The first two terms correspond to the usual F -contribution to the scalar potential, while the
last two terms give the contribution to the gaugino mass mFI

λλ from the FI-terms. For a constant
superpotential, it reads:

mFI
λλ = −2

m3/2
Dbos

[
Dbos + 3(X + X̄)γ

]
. (C.0.31)

At the minimum of the potential where ∂XV = 0 and V = 0,mFI
ΩΛ andmFI

ΛΛ given in Eqs. (C.0.25)
and (C.0.31) simplify, and the entries of the fermion mass matrix can be written as:

mΩΩ = m
(0)
ΩΩ = m3/2

p(p− 1)
(X + X̄)2 ,

mΩλ = mFI
Ωλ = − i

√
2

6
pDbos

X + X̄
,

mλλ = mFI
λλ = −2m3/2

(
1− p

2

)
. (C.0.32)

In order to study the spin-1/2 fermions mass matrix, we have to get rid of the gravitino-
Goldstino mixing (C.0.20). This can be done by carrying out a supersymmetry transformation,
bringing the gravitino ψµ into the physical, massive, one Ψµ through [10]:

PLψµ → PLΨµ = PLψµ −
2

3m2
3/2

∂µPLν −
1

3m3/2
γµPRν. (C.0.33)

The mixing term between the gravitino and the Goldstino then vanishes, and Ψµ is the massive
gravitino in Minkowski space with physical mass m3/2. In addition, the transformation (C.0.33)
brings new contributions to the spin-1/2 fermion mass terms. Writing the Goldstino PLν as a
linear combination of the gaugino λ and the chiral fermion Ω, namely PLν = AΩ +BPLλ where
A and B are given in this model by Eq. (C.0.21), these new contributions read:

m
(ν)
ΩΩ = − 4

3m2
3/2

A2,

m
(ν)
Ωλ = − 4

3m2
3/2

AB,

m
(ν)
λλ = − 4

3m2
3/2

B2. (C.0.34)
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The most general structure of a spin-1/2 mass term m(g) is then given by m(g) ≡ m(0) +
mFI + m(ν), with m(0) the contribution from the original Lagrangian −3

[
S0S̄0e

−K(X,X̄)
3

]
D

+[
S3

0W (X)
]
F −

1
4

[
λ̄PLλ

]
F
, mFI the contribution from the new FI terms L(α)

FI + L(−2/3)
FI , and

m(ν) the shifts (C.0.34) upon elimination of the gravitino-Goldstino mixing. From Eqs. (C.0.8),
(C.0.32) and (C.0.34), we deduce the fermion mass matrix at the minimum of the potential:

M =

m(g)
ΩΩ m

(g)
Ωλ

m
(g)
Ωλ m

(g)
λλ

 =
(

p−3
3 m3/2

i
√

2
6
√
pDbos

i
√

2
6
√
pDbos

p
3m3/2

)
(C.0.35)

A normalisation factor for m(g)
ΩΩ and m(g)

Ωλ has been introduced due to the non-canonical kinetic
term of the chiral fermion, while the gaugino already has canonical kinetic term since the gauge
kinetic function f has been set to one. Using D2

bos = −2(p − 3)m2
3/2 at the minimum of the

potential, one immediately sees that the determinant ofM vanishes, while its non-zero eigenvalue
mf , corresponding to the mass of the physical fermion, is given by:

m2
f = m2

3/2

(4
9p

2 − 4
3p+ 1

)
, ∀p 6= 3 , (C.0.36)

where we excluded the value p = 3 for which, in the case of a constant superpotential, the D-
term vanishes in the minimum, making the new FI-term singular, and a different superpotential
is used in Section 1.7.2.





Appendix D

Gravitational action on a bounded
manifold

D.1 d + 1 decomposition and Gibbons-Hawking boundary term:
a review

Let us consider a d + 1-dimensional space-time manifold M, equipped with a metric ĜMN

and foliated with a set of co-dimension 1 hypersurfaces Σy. Such hypersurfaces can be defined
by an arbitrary scalar field y(xM ) such that y is constant on each of these hypersurfaces. The
unit normal vector nM to Σy is then proportional to ∂My, and normalized such that nMnM =
ĜMNnMnN = ε, with ε = +1 if Σy is timelike, and ε = −1 if Σy is spacelike.

In order to relate the coordinate systems on each hypersurfaces, we consider a congruence of
curves which intersect each Σy once and only once. The coordinates zµ on each hypersurfaces are
now chosen such that points on the same curves have the same coordinates zµ on the different
slices Σy. Therefore, considering two infinitesimally closed hypersurfaces Σy and Σy+dy, the
vector yM tangent to the curve points from a point with coordinates zµ on Σy to a point with
the same coordinates on Σy+dy. This construction therefore allows us to move from the original
coordinate system xM to a new one (y, zµ). The vectors yM tangent to the curves and EMµ

tangent to Σy are respectively given by:

yM = ∂xM

∂y

∣∣∣∣∣
zµ

, EMµ = ∂xM

∂zµ

∣∣∣∣∣
y

. (D.1.1)

The EMµ can be seen as a map from ⊗qTP ?(M), an arbitrary tensor product of the cotangent
spaces ofM, to ⊗qTP ?(Σy), an arbitrary tensor product of the cotangent spaces of Σy, projecting
any XM1...Mq ∈ ⊗qTP ?(M) down to a Xµ1...µq ∈ ⊗qTP ?(Σy) through

EMµ : XM1...Mq 7−→ Xµ1...µq = XM1...MqE
M1
µ1 ...E

Mq
µq . (D.1.2)

With this projection map, one can define the induced metric ĝµν and the extrinsic curvature
K̂µν respectively by

ĝµν = ĜMNE
M
µ E

N
ν , (D.1.3)

K̂µν = EMµ E
N
ν ∇̂MnN , (D.1.4)

with ∇̂M the covariant derivative compatible with the metric ĜMN . While ĝµν characterises
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the local intrinsic geometry of Σy, K̂µν describes how the hypersurface is embedded in the
ambient spaceM, and the data of both is sufficient to completely characterise the geometry of
Σy embedded intoM.

The vector yM tangent to the curves can be decomposed in the basis provided by normal
nM and tangent vectors EMµ according to

yM = N̂nM + βµEMµ . (D.1.5)

The components N̂ and βµ are respectively called the lapse function and the shift vector. Their
physical interpretation follows from the construction described above: the lapse describes the
orthogonal distance between the two slices, while the shift describes how the coordinate systems
of the two infinitesimally closed hypersurfaces are transversally shifted one with respect to the
other. Using

dxM = ∂xM

∂y
dy + ∂xM

∂zµ
dzµ = (N̂nM + βµEMµ )dy + EMµ dz

µ, (D.1.6)

it is easy to find the following decomposition of the line element in terms of the lapse N̂ , the
shift βµ and the induced metric ĝµν :

ds2 = εN̂2dy2 + ĝµν(βµdy + dzµ)(βνdy + dzν). (D.1.7)

This is the famous ADM decomposition, first introduced in [48], which corresponds to the ADM
metric tensor

ĜMN =
(
ĝµν ĝµρβ

ρ

ĝνρβ
ρ εN̂2 + ĝρσβ

ρβσ

)
, (D.1.8)

whose inverse reads

ĜMN =
(
ĝµν + εN̂−2βµβν −εN̂−2βµ

−εN̂−2βν εN̂−2

)
. (D.1.9)

We now suppose that M is bounded in the y direction by two hypersurfaces Σy1 and Σy2

located at y1 and y2. The total gravitational action SG is now the sum of the Einstein-Hilbert
bulk term SEH and the Gibbons-Hawking boundary term SGH :

SG = SEH + SGH , (D.1.10)

with

SEH = 1
2

∫
M
dd+1x

√
−ĜR(d+1)[ĜMN ], (D.1.11)

SGH = −ε
∫

Σy1
ddx

√
|ĝ|K̂ + ε

∫
Σy2

ddx
√
|ĝ|K̂. (D.1.12)

Here K̂ is the trace of the extrinsic curvature, K̂ ≡ ĝµνK̂µν , and the relative sign between the
two terms in the GH action comes from the fact that both normals to Σy1 and Σy2 point along
the increasing y, and are thus directed respectively inward and outward ofM.
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Starting from the Gauss equation

RMNPQE
M
µ E

N
ν E

P
ρ E

Q
σ = Rµνρσ + ε(K̂µσK̂νρ − K̂µρK̂νσ), (D.1.13)

which relates the tangential components of the curvature tensor of M on the LHS with the
intrinsic and extrinsic curvature tensors of Σ on the RHS, one can find the relation between the
(d+ 1)-dimensional Ricci scalar R(d+1) evaluated on Σy and the intrinsic curvature scalar R(d)

of Σy:

R(d+1)[ĜMN ] = R(d)[ĝµν ] + ε(K̂2 − K̂µνK̂µν) + 2ε∇̂M
(
nN∇̂NnM − nM∇̂NnN

)
. (D.1.14)

The first two terms R(d)[ĝµν ] and (K̂2 − K̂µνK̂µν) depend respectively on the intrinsic and
extrinsic geometry of Σy. The third term contains second normal derivatives, which will cancel
with the GH boundary term as we are now going to show. In the foliated spacetime M =
Σy × S1/Z2, the EH action (D.1.11) reads:

1
2

∫
M
dd+1x

√
−ĜR(d+1)[ĜMN ] = 1

2

∫ y2

y1
dy

∫
Σy
ddxN̂

√
|ĝ|
[
R(d)[ĝµν ] + ε(K̂2 − K̂µνK̂µν)

]
+ ε

∫
M
dd+1x

√
−Ĝ∇̂M

[
nN∇̂NnM − nM∇̂NnN

]
. (D.1.15)

Using Gauss’s theorem, the second term can be written as:

I ≡ ε

∫
M
dd+1x

√
−Ĝ∇̂M

[
nN∇̂NnM − nM∇̂NnN

]
,

= ε

∫
∂M

[
nN∇̂NnM − nM∇̂NnN

]
dΣM . (D.1.16)

I is the sum of two contributions at each boundaries Σy1 and Σy2 of M. On Σy1 (Σy2), the
surface element is given by dΣM = −εnM

√
|ĝ|ddx (dΣM = +εnM

√
|ĝ|ddx), where the minus

(plus) sign takes into account the inward (outward) direction of the normal of Σy1 (Σy2). Using
nMn

M = ε and nM∇̂NnM = 0, we find:

I = ε

∫
Σy1

ddx
√
|ĝ|K̂ − ε

∫
Σy2

ddx
√
|ĝ|K̂, (D.1.17)

which is exactly cancelled by the GH boundary term (D.1.12). Hence, the total gravitational
action SG = SEH + SGH reads:

SG = 1
2

∫ y2

y1
dy

∫
Σy
ddxN̂

√
|ĝ|
[
R(d)[ĝµν ] + ε(K̂2 − K̂µνK̂µν)

]
. (D.1.18)

The d-dimensional Ricci scalar is given by:

R(d)[ĝµν ] = 1
2∂µ

(√
|ĝ|ĝµνN̂

)
∂ν ln ĝ + ∂µN̂∂ν

(√
|ĝ|ĝµν

)
− 1

2N̂
√
|ĝ|Γ̂ρµν∂ρĝµν

−∂µ
(
N̂ ĝµν∂ν

√
|ĝ|+ N̂∂ν(

√
|ĝ|ĝµν)

)
, (D.1.19)

with Γ̂ρµν the d-dimensional Christoffel symbols computed from the metric ĝµν . The last term
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in the above expression is a total derivative in the unbounded xµ directions, and can thus be
discarded. In order to express the extrinsic curvature tensor K̂µν = EMµ E

N
ν ∇̂MnN in terms of

the induced metric ĝµν and the ADM variables N̂ and βµ, we start by writing the derivative of
ĝµν with respect to y as:

ĝ
′
µν ≡ Ly ĝµν = Ly(ĜMNE

M
µ E

N
ν ) = (LyĜMN )EMµ ENν , (D.1.20)

where, in the last equality, we have used

LyEMµ = [y,Eµ]M = [∂y, ∂xµ ]M = 0. (D.1.21)

The Lie derivative of the metric ĜMN is given by:

LyĜMN = ∇̂MyN + ∇̂NyM
= ∇̂M (N̂nN + βN ) + ∇̂N (N̂nM + βM )

= nN∂M N̂ + nM∂N N̂ + N̂(∇̂MnN + ∇̂NnM ) + ∇̂MβN + ∇̂NβM . (D.1.22)

Contracting with EMµ ENν , the two first terms vanish since EMµ and nM are orthognal. The third
term yields the extrinsic curvature, while the last ones give the intrinsic covariant derivative of
the shift vector. We deduce the extrinsic curvature tensor K̂µν expressed in terms of the induced
metric ĝµν , the lapse N̂ and shift βρ:

K̂µν = 1
2N̂

(
ĝ
′
µν −(d) ∇̂µ(ĝνρβρ)−(d) ∇̂ν(ĝµρβρ)

)
, (D.1.23)

an expression which is directly used in the computation of the gravitational action in Section
2.4.2, whose technical details are developed in the following subsection.

D.2 Computation in the framework of the LD background

We now want to compute the gravitational action in the framework of the Section 2.4.2, on a
5D manifold with two boundaries along the fifth direction, with the metric (2.82) and its inverse
(2.83) which we reproduce here 1:

GMN = e
− 2√

3
α|y|

e2r(x,y)
(
e−3r(x,y)g̃µν(x) +BµBν(x, y) Bµ(x, y)

Bν(x, y) 1

)
, (D.2.1)

GMN = e
2√
3
α|y|

e−2r
(
e3rg̃µν(x, y) −gµρBρ(x, y)
−gνρBρ(x, y) 1 + gλσBλBσ(x, y)

)
. (D.2.2)

Rescaling the ADM 4D induced metric ĝµν according to ĝµν → N̂2ĝµν , the ADM metric ĜMN

(D.1.8) and its inverse ĜMN (D.1.9), in the case of timelike hypersurfaces (ε = 1) we are

1. In this subsection we denote the KK vector Bµ instead ofKµ to avoid confusion with the extrinsic curvature,
also called K.
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interested in, read:

ĜMN = N̂2
(
ĝµν ĝµρβ

ρ

ĝνρβ
ρ 1 + ĝρσβ

ρβσ

)
, ĜMN = N̂−2

(
ĝµν + βµβν −βµ

−βν 1

)
. (D.2.3)

They turn out to be very similar to the parametrisations (D.2.1) and (D.2.2), and are in fact
equivalent, noticing the identification:

N̂2(1 + ĝρσβ
ρβσ) = N−2, N̂−2 = N2(1 + gρσBρBσ),

N̂2ĝµρβ
ρ = N−2Bµ, N̂−2βµ = N2gµρBρ, (D.2.4)

N̂2ĝµν = N−2(gµν +BµBν), N̂−2(ĝµν + βµβν) = N2gµν ,

with the overall factor N given by
N = e

α√
3
|y|−r

. (D.2.5)

One easily finds for the inverse metric of N̂2ĝµν , N̂−2ĝµν = N2(gµν − xBµBν), x ≡ 1
1+B2 .

The main result (D.1.18) of the previous subsection giving the total gravitational action
SG = SEH + SGH , in the case of timelike (ε = 1) hypersurfaces of dimension d = 4, and for the
rescaled 4D induced metric N̂2ĝµν reads:

SG = 1
2

∫ y2

y1
dy

∫
Σy
d4xN̂

√
|N̂8ĝ|

[
R(4)[N̂2ĝµν ] + (K̂2 − K̂µνK̂µν)

]
, (D.2.6)

where ĝ ≡ det ĝµν , K̂µν is the extrinsic curvature associated to the metric N̂2ĝµν , K̂µν =
N̂−4ĝµρĝνσK̂ρσ, and K̂ = N̂−2ĝµνK̂µν . According to the result (D.1.23) derived earlier, the
extrinsic curvature tensor is given by

K̂µν = 1
2N̂

(
(N̂2ĝµν)′ −(4) ∇̂µ(N̂2ĝνρβ

ρ)−(4) ∇̂ν(N̂2ĝµρβ
ρ)
)
, (D.2.7)

where (4)∇̂µ denotes the covariant derivative compatible with the metric N̂2ĝµν . Using the
identification (D.2.4), one can express the extrinsic curvature tensor in terms of the variables
N , gµν and Bρ. The computation yields:

Kµν = 1
2N

√
1 +B2

{[
N−2(gµν +BµBν)

]′
−N−2(∂µBν + ∂νBµ) + 2xN−2ΓρµνBρ

+2xN−2Bρ
[
B(νFµ)σ +Bσ∂(µBν)

]
+ 2xN−3(gµν +BµBν)Bρ∂ρN

}
, (D.2.8)

where Γρµν are the Christoffel symbols computed from the metric gµν , and Fµν is the field strength
of Bµ, Fµν = ∂µBν − ∂νBµ. Since we are interested in the spectrum of the theory and especially
in the mass term for the KK vector Bµ, we work up to quadratic order in B. Ignoring interaction
terms, we get for the extrinsic curvature

Kµν = 1
2N

√
1 +B2

{[
N−2(gµν +BµBν)

]′
−N−2(∂µBν + ∂νBµ)

+2N−2ΓρµνBρ + 2N−3gµνB
ρ∂ρN

}
+ h.o.t., (D.2.9)
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where here and in the following, h.o.t. will denote higher order terms in B, but also terms of
the form B2 × r. From K = N2(gµν − xBµBν)Kµν = N2(gµν −BµBν)Kµν + h.o.t., we get

K2 = N2(1 +B2)
{16

3 α
2 + 16α√

3
sgn yr′ + 4(r′)2

+
( 8α√

3
sgn y + 4r′

)(
gµν∂µBν −BρΓρµνgµν + 4Bρ∂ρr

)
+gµνgρσ∂µBν∂ρBσ −

4α√
3

sgn y(B2)′
}

+ h.o.t. (D.2.10)

Similarly, using Kµν = N4(gµρ − xBµBρ)(gνσ − xBνBσ)Kρσ = N4(gµρgνσ − gµρBνBσ −
gνσBµBρ)Kρσ + h.o.t., one finds

KµνKµν = 1
4N

2(1 +B2)
{16

3 α
2 + 16α√

3
sgn yr′ + 4(r′)2

+
( 8α√

3
sgn y + 4r′

)(
gµν∂µBν −BρΓρµνgµν + 4Bρ∂ρr

)
+4gµρgνσ∂µBν∂ρBσ −

4α√
3

sgn y(B2)′
}

+ h.o.t., (D.2.11)

and therefore

K2 −KµνKµν = 3
4N

2(1 +B2)
{16

3 α
2 + 16α√

3
sgn yr′ + 4(r′)2

+
( 8α√

3
sgn y + 4r′

)(
gµν∂µBν −BρΓρµνgµν + 4Bρ∂ρr

)
(D.2.12)

+4
3(gµνgρσ − gµρgνσ)∂µBν∂ρBσ −

4α√
3

sgn y(B2)′
}

+ h.o.t.

Regarding the determinant of the metric det(N̂2ĝµν) = det(N−2(gµν + BµBν)), we use the
relation det(gµν + BµBν) = (det gµρ) det(δρν + BρBν) = (det gµρ)(1 + BσBσ) + h.o.t. Using
gµρ = e−3rg̃µρ, we deduce:

√
−det(N̂2ĝµν) = N−4e−6r√−g̃(1 + B2

2

)
+ h.o.t. (D.2.13)

From the identification (D.2.4), we have N̂ = N−1(1 +B2)−1/2 = N−1(1− B2

2 ) +h.o.t., so that

N̂
√
−det(N̂2ĝµν) = N−5e−6r√−g̃ + h.o.t. (D.2.14)

Combining the results (D.2.12) and (D.2.14), we get:

1
2N̂

√
|N̂8ĝ|

(
K2 −KµνK

µν
)

= e−
√

3α|y|e−3r√−g̃{2α2 + 2
√

3α sgn yr′ + 3
2(r′)2

+
(√

3α sgn y + 3
2r
′
)(

gµν∂µBν −BρΓρµνgµν + 4Bρ∂ρr
)

+1
2(gµνgρσ − gµρgνσ)∂µBν∂ρBσ

−
√

3α
2 sgn y(B2)′ + 2α2B2

}
+ h.o.t. (D.2.15)
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The third line is the kinetic term for Bµ, −1
4g
µνgρσFµρFνσ, up to higher order terms of the

form B2 × r, as can be seen after integrations by part on the unbounded directions xµ, whose
total derivatives vanish. The linear terms in B on the second line can be arranged noticing that
gµν∂µBν −BρΓρµνgµν = ∂µB

µ +BσΓσµσ = ∂µB
µ +Bσ(Γ̃σµσ− 6∂σr), where Γ̃ρµν are the Christoffel

symbols computed from the metric g̃µν . Using Γ̃µµσ = 1√
−g̃∂σ

√
−g̃, integrating by part and again

discarding a total derivative ∂σ, we get the final result:

1
2N̂

√
|N̂8ĝ|

(
K2 −KµνK

µν
)

= e−
√

3α|y|e−3r√−g̃{2α2 + 2
√

3α sgn yr′ + 3
2(r′)2

+ Bµ∂µ

[
−3

2r
′ +
√

3α sgn yr + 3
2r
′
r

]
(D.2.16)

− 1
4g

µνgρσFµρFνσ −
√

3α
2 sgn y(B2)′ + 2α2B2

}
+ h.o.t.

Finally, the d-dimensional Ricci scalar (D.1.19),

R(d)[N̂2ĝµν ] = 1
2∂µ

(√
−det(N̂2ĝµν)N̂−2ĝµνN̂

)
∂ν ln

(
−det(N̂2ĝµν)

)
+∂µN̂∂ν

(√
−det(N̂2ĝµν)N̂−2ĝµν

)
−1

2N̂
√
−det(N̂2ĝµν)Γ̂ρµν∂ρ

(
N̂−2ĝµν

)
, (D.2.17)

expressed in terms of the variables N , gµν and Bρ, reads:

R(d)[N−2(gµν +BµBν)] = 1
2∂ν ln

(
−det(N−2(gµν +BµBν))

)
× ∂µ

(√
−det(N−2(gµν +BµBν))N2(gµν − xBµBν)N−1(1 +B2)−1/2

)
+ ∂µ

(
N−1(1 +B2)−1/2

)
∂ν

(√
−det(N−2(gµν +BµBν))(N2(gµν − xBµBν))

)
− 1

2N
−1(1 +B2)−1/2

√
−det(N−2(gµν +BµBν))Γρµν∂ρ

(
N2(gµν − xBµBν)

)
, (D.2.18)

with Γρµν the Christoffel symbols computed from the metric N−2(gµν +BµBν). Although rather
involved, it is easy to see that this expression does not bring additional Bµ terms up to quadratic
order in B: in the first two terms of (D.2.18), quadratic terms in B always appear in the form
∼ B2∂µN ∼ B2∂µr, which is an interaction term, while in the third term, quadratic terms in
B are multiplied by Christoffel symbols, and are thus again of the form B2 × fluctuations. One
can hence set Bµ to zero in the previous expression, and the computation then gives:

1
2R

(d)[N−2gµν ] = −3
4e
−
√

3α|y|√−g̃g̃µν∂µr∂νr + h.o.t. (D.2.19)

Combining the results (D.2.16) and (D.2.19), we deduce the total gravitational action, up to
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quadratic order in the KK vector Bµ:

SG =
∫
d5xe−

√
3α|y|√−g̃{−3

4(∂µr)2 + e−3r
[
2α2 + 2

√
3α sgn yr′ + 3

2(r′)2
]

+B̃µ∂µ

(
−3

2r
′ +
√

3α sgn yr + 3
2r
′
r

)
−1

4e
3rg̃µν g̃ρσFµρFνσ −

√
3α
2 sgn y(B̃2)′ + 2α2B̃2

}
+ h.o.t., (D.2.20)

where we have replaced Bµ = gµνBν = e3rg̃µνBν ≡ e3rB̃µ, B2 = gµνBµBν = e3rg̃µνBµBν ≡
e3rB̃2.



Appendix E

Effective theory of the heterotic
string

In this appendix, we check that the supergravity theory introduced in Section 2.5 is an
effective theory of an heterotic string theory, in agreement with [62]. We recall the Lagrangian
(2.174) of its bosonic sector, in the Einstein frame:

eE
−1Lbos = 1

2R
(5)[GEMN ]− 1

2∂Mφ∂
Mφ− e

2√
3
φΛ

−1
8e

4√
3
φ
F 0
MNF

MN0 − 1
4e
− 2√

3
φ
F 1
MNF

MN1 (E.0.1)

+eE
−1

6
√

6
C011ε

MNPQR
(
A0
MF

1
NPF

1
QR + 2A1

MF
1
NPF

0
QR

)
,

where eE stands for the 5D Einstein frame fünfbein, while eS will denote later its string frame
counterpart. In order to show the heterotic nature of this action, one must dualize the gravipho-
ton A0

M into the Kalb-Ramond (KR) two-form BMN , whose completely antisymmetric three-
form field strength will be written HMNP = ∂[MBNP ]. To this purpose, we consider the action
as being a functionnal of F 0

MN rather than A0
M , and add the Lagrange multiplier term

LLM = 1
4ε

MNPQRF 0
MNHPQR, (E.0.2)

so that the equation of motion of BMN enforces F 0 to be closed. On the other hand, the equation
of motion for F 0

MN ,

FMN0 = eE
−1e
− 4√

3
φ
εMNPQR

(
HPQR + 2C011√

6
A1
PF

1
QR

)
, (E.0.3)

can be used in order to completely eliminate it in Lbos + LLM , leading to:

eE
−1Lbos + LLM = 1

2R
(5)[GEMN ]− 1

2∂Mφ∂
Mφ− 3

2e
− 4√

3
φ
(
HPQR + 2C011√

6
A1

[PF
1
QR]

)2

−1
4e
− 2√

3
φ
F 1
MNF

MN1 − e
2√
3
φΛ. (E.0.4)

In order to move from the Einstein to the string frame, we perform the Weyl transformation

GEMN = e−2σGSMN , (E.0.5)

135
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which leads, in D space-time dimensions, to the well-known relations

eE = e−DσeS , (E.0.6)

R(D)[GEMN ] = e2σ
[
R(D)[GSMN ] + 2(D − 1)2σ − (D − 1)(D − 2)GMN

S ∂Mσ∂Nσ
]
.(E.0.7)

For σ = φ√
3 , D = 5 and after discarding a total derivative, we get the string frame Lagrangian

LbosS = eSe
−
√

3φ
{

1
2R

(5)[GSMN ] + 3
2∂Mφ∂

Mφ− 3
2

(
HPQR + 2C011√

6
A1

[PF
1
QR]

)2

−1
4F

1
MNF

MN1 − Λ
}
, (E.0.8)

which is indeed the effective Lagrangian density of an heterotic superstring theory. The topolog-
ical term present in (E.0.1) in the vector formulation is translated in the KR formulation into a
gauge Chern-Simons term ω3 = A1 ∧ dA1, which combines with HPQR to form the generalized
field strength H3 ∼ H3 + ω3 satisfying the modified Bianchi identity dH3 ∼ dA1 ∧ dA1.

This analysis therefore shows that the 4D vector A0
µ, which becomes massive after compact-

ification on a LD background as shown in Section 2.6, is the dual of the vector Bµ5 coming from
the dimensional reduction of the 5D KR two-form BMN .
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