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Résumé

Les sujets de recherche présentés dans cette these se situent a 'interface entre certains aspects
théoriques et phénoménologiques de la Théorie des Cordes et de la Supergravité, se concentrant
sur leurs conséquences a basse énergie. Le premier chapitre traite d’un nouveau type de termes
de Fayet-Iliopoulos (FI) en supergravité N' =1, D = 4, qui peuvent étre écrits sans jauger la
symétrie R. Nous introduisons cette construction et développons une nouvelle classe de termes
de FI invariants de Kéhler, paramétrés par une fonction de la masse du gravitino vue comme
fonctionnelle des superchamps chiraux. Nous montrons alors en supergravité de type no-scale que
cette fonction peut produire un vide de Sitter et un potentiel inflationnaire compatible avec les
données observationnelles. Les deux derniéres parties de cette these s’intéressent a la possibilité
que I’échelle de la corde puisse étre beaucoup plus basse que la masse de Planck, en utilisant
soit un couplage des cordes tres faible, ou des dimensions supplémentaires larges. La premiere
possibilité mene a la théorie appelée Little String Theory, dont le dual holographique est étudié
dans le second chapitre. Nous revoyons tout d’abord sa structure supersymétrique minimale,
qui repose sur un jaugement abélien d’une supergravité N' = 2, D = 5 couplée a un multiplet
vectoriel, produisant ainsi un background dilaton linéaire. Nous compactifions ce modele sur
S1/Z5 et décrivons la théorie effective N' = 1, D = 4. Enfin, la troiséme partie de cette these
exploite le cadre des dimensions supplémentaires larges afin d’aborder le probleme de 1’écart
dans le moment magnétique anomal du muon. Nous montrons que la contribution des états de
Kaluza-Klein du boson de jauge du nombre leptonique peut combler cet écart, a condition que
certains d’entre eux soient plus légers que I’énergie du LEP ~ 200 GeV, et construisons ensuite

les configurations minimales de D-branes réalisant cette proposition.

Mots-clés : supergravité, théories effectives supersymétriques a basse énergie, échelle des cordes
basse, dimensions supplémentaires (larges), background dilaton linéaire, modeles de D-branes

s’entrecoupant.






Abstract

The research topics presented in this thesis lie at the interface between theoretical and
phenomenological aspects of String Theory and Supergravity, focusing on their low-energy con-
sequences. The first chapter deals with new kind of Fayet-Iliopoulos (FI) terms in N' = 1,
D = 4 supergravity, which can be written without gauging the R-symmetry. We review this
construction and build a new class of Kéahler invariant FI terms parametrised by a function of
the gravitino mass as functional of the chiral superfields. We then show in no-scale supergravity
that this function can provide a de Sitter vacuum and an inflationary potential compatible with
the observational data. The last two parts of this thesis deal with the possibility that the string
scale might be much lower than the Planck mass, using either an ultra weak string coupling, or
large extra dimensions. The first possibility leads to the so-called Little String Theory, whose
holographic dual is studied in the second chapter. We first revisit the construction of its minimal
supersymmetric embedding, which relies on an abelian gauging of a N/ = 2, D = 5 supergravity
coupled to one vector multiplet, hence producing a linear dilaton background. We compactify
this model on S1/Zy and describe the effective N' = 1, D = 4 theory. Finally, the third part of
this thesis uses the framework of large extra dimensions to address the issue of the discrepancy
in the anomalous magnetic moment of the muon. We show that the contribution of the Kaluza-
Klein states of the lepton number gauge boson can bridge the gap in the discrepancy, provided
the existence of states lighter than the LEP energy ~ 200 GeV, and then build the minimal

D-brane configurations realising this proposal.

Keywords: supergravity, supersymmetric low-energy effective theories, low string scale, (large)

extra dimensions, linear dilaton background, intersecting D-brane models.
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Introduction

General Relativity and Quantum Field Theory are two main achievements carried out in
theoretical physics during the twentieth century, both of them experimentally tested at an spec-
tacular level of accuracy. General Relativity (GR) describes physics at large scales where gravity
dominates. It has predicted new astrophysical objects and phenomena, which have been observed
from the very early ages of the theory until our days, like, for the most recent ones, the detection
of gravitational waves in 2015, or the first picture of a black hole taken in 2019, a century after
their theoretical prediction by Einstein. GR provides the theoretical background upon which
has been built modern cosmology, the theory that describes the Universe and its content as a
whole. The minimal cosmological model able to describe the main observable properties of our
Universe, such as the structure of the Cosmic Microwave Background, the large-scale structure
of the galaxies and the accelerating expansion of the Universe, is called the standard model of
cosmology or Lambda-Cold Dark Matter (ACDM) model. On the other hand, Quantum Field
Theory (QFT) provides a quantum consistent framework to describe physics at the microscopic
scales, combining the laws of quantum mechanics and special relativity in an elegant way. Its
theoretical predictions have been experimentally verified with a precision never reached before
in the history of science. QFT provides the theoretical background upon which the Standard
Model (SM) of particle physics has been built, which describes all known fundamental particles
and the way they interact through three of the four known forces: the electromagnetism as well

as the strong and weak interactions.

Despite their respective successes, both theories suffer from theoretical and conceptual in-
consistencies. General Relativity predicts its own death in region of spacetime with infinite
curvature, called singularities, such as the Big Bang or the singularity appearing in the center
of black holes. In these regions, quantum mechanical effects cannot be neglected anymore, and
a correct description of these extreme regimes would require a consistent theory of Quantum
Gravity, which is still unknown so far. On the other hand, many features tend to indicate that
the Standard Model of particle physics is not a fundamental theory, but rather an effective the-
ory valid at least up to the electroweak scale and which must break down at higher energies.
First, the SM might look in itself inelegant: it does not explain why it is based on the gauge
group SU(3). x SU(2)w x U(1)y, why does it contain three generations of fermions neither why
there are about 19 free parameters, whose values are not theoretically predicted but have to be
measured experimentally. But the biggest conceptual issue of the SM is the so-called hierarchy
problem, the question of why the electroweak scale and the Planck scale are separated by about
16 orders of magnitude, and how the electroweak scale can be stable under quantum corrections.
The SM also does not include gravity, and contains no potential dark matter candidates in its
spectrum. Many ideas beyond the SM have been proposed in order to tackle the above men-
tioned issues, such as Grand Unified Theories, supersymmetry or extra spacetime dimensions,

but none of them address the problem of the quantization of gravity.



2 Introduction

String Theory is the only theory attempting to unify all the four known fundamental forces
in a common framework, and is one of the most promising theory of Quantum Gravity. Its basic
assumption is to replace the point-like particles of Quantum Field Theory by 1-dimensional ex-
tended objects, called strings. All the elementary matter particles as well as the force carriers that
we know then correspond to different excitation modes of such strings. Its theoretical consistency
requires in particular two ingredients: supersymmetry and extra spacetime dimensions. The for-
mer ensures that the theory contains no tachyon and produces spacetime fermions. On the other
hand, while a classical string can live in any spacetime dimensions, its quantization requires
the spacetime to be 10-dimensional. In order to accommodate with our observed 4-dimensional
world, we must compactify six extra dimensions on a 6-dimensional compact manifold whose
characteristic sizes must be sufficiently small to not be accessible by the current experiments.

Supersymmetry and its breaking as well as extra spacetime dimensions lie at the core of this

thesis, and we now introduce the basic ideas of these two concepts.

Supersymmetry and supergravity

All modern theoretical physics is based on the concept of symmetries. The Standard Model
of Particle Physics is built from the assumption that physical laws are invariant under the
action of spacetime rotations and translations. This set of transformations forms the Poincaré
group, which is the Minkowski spacetime isometry group. One possible fundamental approach
to supersymmetry is based on the following question: is it possible to enlarge this Minkowski
spacetime symmetry group? The Coleman-Mandula theorem [1] brings some parts of the answer.
It states that the S-matrix of a quantum field theory in Minkowski space is invariant at most
under Poincaré symmetries, and so, that the Poincaré group is a priori the biggest symmetry
group of Minkowski spacetime. However, this no-go theorem contains two main loopholes which
can be used to circumvent it. The first one is that it assumes the existence of the S-matrix.
For a massless theory where the S-matrix does not exist, a new symmetry, the scale invariance,
can be added. This leads to the conformal group which contains the Poincaré group'. The
second one arises from the assumption that the spacetime symmetries are described by an
algebra, namely that its generators are bosonic. Considering fermionic generators gives a so-
called superalgebra, which leads to supersymmetry. In the simplest case when one fermionic
generators @ is introduced, called N' = 1 supersymmetry, it is defined through the following

(anti-)commutation relations:

[Muw Mpo} = U[u[pMa}u], [M,ulla Pp] = nzszy - nupPl/v [Pua PI/] =0,
{Qq, QB} = QUZBPW Qo Muu] = (JW)QQ& [Qa»PM] = 0. (1)

Indices {a, 3, &, ﬁ} run from one to two and denote two-component Weyl spinors, while indices
{1, v, p,o} run from zero to three and denote Lorentz four-vectors. The first line alone defines the
Poincaré algebra, spanned by the generators P, and M,,, of translations and Lorentz transforma-

tions. The four {Qq, Q /3’} introduced in the second line are called supercharges, and transform

1. While the conformal group will not be addressed in this thesis, conformal symmetry seen as a mathematical
tool rather than a physical spacetime symmetry will be discussed in Section 1.5.
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as spinors under Lorentz transformations. The graded commutation relations (1) define the
so-called N/ = 1 super-Poincaré algebra. Representations of this superalgebra are called super-
multiplets, or multiplets in the following. Because of the fermionic nature of the supercharges
Q’s, different elements of a given multiplet will have different Lorentz spins. Symbolically denot-
ing B and F' a bosonic and fermionic field belonging to the same multiplet, a supersymmetry

transformation schematically reads:
0B =€F, O0F = (Be, (2)

where € has to be a fermionic parameter in order to be consistent with the bosonic and fermionic
nature of B and F'. In global supersymmetry, this parameter is constant. The commutator of

two supersymmetric transformations is given by
(0,5 0ey| B o €20 Bey = ey 10, B = £"9,,B, (3)

where £ is a vector field. We deduce that a globally invariant supersymmetric theory is also
necessarily invariant under translations. However, it is known that all fundamental interactions
can be described in terms of gauge symmetries, namely symmetries acting differently at each
spacetime point. It is therefore legitimate to also try to promote supersymmetry into a local
symmetry, that is, replacing the constant parameter € by a spacetime point dependent parameter
€(x). The vector field £ now also depends on z via £#(z) = é(x)y"€1(x), and the supersymmetry

algebra therefore closes into diffeomorphisms:
[0e10e,] B ox ()0, B. (4)

We conclude that a locally invariant supersymmetric theory is also necessarily invariant under
diffeomorphisms, and therefore includes gravity. Such theory of local supersymmetry is therefore

called supergravity.

From a top-down perspective, supergravity arises as the low-energy effective realization of
superstring theory. Such limit is obtained when the characteristic length scale of the string is
much smaller than the curvature of spacetime, so that the effects of the extended nature of the
string can be neglected. If String Theory has anything to do with the real world, there must exist
a 4-dimensional supergravity theory describing most of its observable low-energy consequences,
in particle physics as well as in cosmology.

Cosmological models should be able to describe at least the dark energy content of our
Universe, responsible of its currently observed accelerating expansion, as well as the cosmic
inflation, which today is very often seen as part of the standard cosmological model as the theory
describing its primordial phase. In the minimal ACDM model, the dark energy is described by a
small and positive cosmological constant A, providing a de Sitter (dS) vacuum at the minimum
of the scalar potential where the Universe is supposed to sit today. On the other hand, most
inflationary models assume a period in early cosmology where the Universe was in a state
dominated by an almost flat potential energy, associated to a slowly rolling scalar field: the

inflaton. The description of these two regimes therefore requires very specific features for the
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potential energy. However, supersymmetry severely restricts the form of the scalar potential in
supergravity theories, making the construction of such cosmological models challenging. Besides
non-linear realization of supersymmetry, another attempt to obtain dS vacua in supergravity
relies on the introduction of Fayet-Iliopoulos (FI) terms, in order to uplift the vacuum energy
from anti de Sitter (AdS) to dS. However, the standard FI terms in N’ = 1, D = 4 supergravity
are highly constrained. They can only be written when the associated U(1) gauge symmetry
is a R-symmetry, preventing the presence of a constant superpotential which is required in
AdS supergravity. Recently, new FI terms which do not require the gauging of the R-symmetry
have been written, first in pure supergravity, and then in the presence of matter, allowing such

constant uplift from AdS to dS vacua.

The Chapter 1 of this thesis focuses on the construction of cosmological models based on
these new FI terms. We first review the two original constructions, without and with chiral
matter multiplets. We then revisit and generalise them in N' = 1, D = 4 supergravity coupled
to one vector multiplet and an arbitrary number of chiral multiplets, building a new class of
Ké&hler invariant FI terms parametrised by a function of the gravitino mass as functional of the
chiral matter fields. This function leads to FI terms which can be chosen constant or field de-
pendent, while preserving Kéhler invariance in the latter case. As in the previous constructions,
a constant term can be used in order to fine-tune the vacuum energy to a positive or null value,
while the field dependent terms can now be used in inflationary models. We then apply this
construction in two no-scale supergravity models coupled to one vector and one chiral multiplet,
showing how our new FI terms can be used to build an inflationary model compatible with the
Cosmic Microwave Background observational constraints. The scalar potential obtained in this
way satisfies the slow-roll conditions during inflation and possesses a de Sitter vacuum where
supersymmetry is spontaneously broken by D and F-terms. The origin of these new FI terms in

String Theory is an interesting open problem which might be addressed in future projects.

Supergravity theories arising in the low-energy limit of superstring theories live in ten space-
time dimensions, and the associated super-algebras have one or two fermionic generators. The
simplest compactification on 6-dimensional torus will preserve all supersymmetries, producing
a 4-dimensional theory with A' = 4 or N’ = 8 supercharges. On the other hand, one of the most
important property of the SM is the chirality of the gauge interactions in the electroweak sec-
tor. However, any 4-dimensional theories with A/ > 1 supersymmetries are non-chiral, and are
thus phenomenologically excluded. One must therefore consider more involved compactification
procedures, preserving no more than A/ = 1 supersymmetry in four spacetime dimensions. Such
compactifications are called supersymmetric compactifications. They can be obtained through
non-perturbative effects, or by applying appropriate projections like orbifold projections, or

considering non-trivial backgrounds in the internal manifold.

The Chapter 2 of this thesis deals with this third possibility. We study the linear dilaton
background solution of a gauged vector-coupled N' = 2, D = 5 supergravity theory. The interest-
ing point about this non-trivial background is that it is precisely a 1/2-BPS solution, preserving
half of the original supersymmetries. We first describe the breaking N' = 2 — A = 1 induced by
the background, then perform the dimensional reduction and find the resulting N' =1, D = 4
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low-energy effective theory. The phenomenological motivation for studying this model as well as

the main results obtained are described in the following section.

Low string scale and (large) extra dimensions

The string scale, the fundamental mass scale of the string excitations, as well as the com-
pactification scale, the inverse of the size of the six extra spacetime dimensions, are the two
most fundamental energy scales in String Theory. A natural question which then arises is: what
are their characteristic magnitudes? It has long been thought that both of them must be Planck
sized. However, one of the main conceptual revolution in String Theory that arose in the 90’s is
that this is not necessarily the case: the string scale and the size of the extra dimensions might
not be tied to the 4-dimensional Planck mass [2, 3]. This can be easily understood from the

10-dimensional gravitational effective action, common to all superstring theories, given by

MS
Sgrav = /dlox 7287%(10)’ (5)
9s
where g, is the string coupling, M, the string scale and R(19 the 10-dimensional Ricci scalar.

Upon compactification to four dimensions on a 6-dimensional compact manifold of volume V),
the (observed) 4-dimensional Planck Mass Mp; is given in terms of the above quantities by:
2 M Vio)
MPl = 92 : (6)

s

Experimental signatures of String Theory at colliders would be available in the case that the
fundamental string scale My would be much lower than the Planck scale. According to the

relation (6), this situation can be obtained in two distinct ways:

o The first possibility arises if the internal volume V(g is of order the string scale, V() ~ M 6,
The observed value for the 4-dimensional Planck mass can then be explained in this case
by an ultra weak string coupling, g; << 1. Considering gauge fields living on D-branes,
the gauge coupling square g¥,, is proportional to gs, and therefore infinitesimally small
in the limit g; << 1. One must then address an important question, whether it is possible
to get interacting gauge fields with gauge coupling g,;, ~ O(1). This can be obtained
by considering (Neveu-Schwarz) NS5-branes: in this case the gauge coupling of the theory
living on the branes is independent of g; and can thus be of order one even in the limit of an
infinitesimally small string coupling. In the strict limit g; = 0, a stack of coincident NS5-
branes gives rise to a non-trivial interacting theory, the so-called Little String Theory. It
is a non-gravitational theory with stringy-like excitations, hence exhibiting an interesting
intermediate structure between String Theory and Field Theory. It has been shown that
Little String Theory is holographically dual to a gravitational theory in one more spacetime
dimension, on a particular background given by the Minkowski metric (in the string frame)
times the real line along which the dilaton varies linearly. In order to get a realistic model
with gravity, one must then turn on a small non-vanishing string coupling gs << 1, hence

generating interactions between the theory on the NS5-branes and gravity in the bulk.
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e The second possibility arises when g is of order 1. The observed value for the 4-dimensional
Planck mass can then be explained in this case by an internal volume V() large compared
to the string scale, V(g) >> My 6 [4, 5]. This mechanism does not require String Theory
for its low energy realization: it simply relies on the existence of extra dimensions in which
gravity spreads. However, String Theory provides a UV consistent framework in which this
scenario can be embedded. In String Theory, the Standard Model fields (without gravity)
can be localized on (p+ 1)-dimensional extended objects called Dp-branes, and thus cannot
probe all spacetime dimensions where only gravity is free to propagate. Among the (p+ 1)
dimensions of the brane, 4 are the non-compact dimensions we observe in experiments,
while the remaining p — 3 longitudinal dimensions must be compactified in order to be
inaccessible at current energies, at a scale which can be as small as the TeV. On the other
hand, the 9 — p dimensions transverse to the brane, which are probed only by gravity
but not by the Standard Model fields, can be much larger since experimental bounds
on gravitational experiments are much weaker: the compactification scale of such extra
dimensions can be of order or larger than 10715 TeV. Let us assume that we haven =1, ...,6
large extra dimensions (namely with a characteristic length larger than M;!), and 6 — n
dimensions at the string scale. The internal volume is then given by Vig) = V(,,) M, =6 50
that the relation (6) yields M]%l =M 3+”V(n). Writing V(,,) = R", one gets for the average

size R of the large extra dimensions

2
1 MPZ)"
R = — . 7
M <Ms )
For a string scale My = 10 TeV, we get R = 107! TeV~!. The different values of R for each

n are given in Table 1, where we have used TeV~! ~ 107! m. Obviously, the case n = 1 is

n 1 2 3 4 5 6
1022 TeV—1 10 Tev—' 10° TeV~' 107 TeV~! 10° TeV~! 10* TeV !
R
1010 m 107° m 10719 m 10713 m 1074 m 1071% m

Table 1 — Average size R of large extra dimensions for a given number n of them, in the case of
a string scale My = 10 TeV.

excluded by observations, while n = 2 is in tension with the Cavendish-type experiments probing
gravity at short distances. But the cases n > 3 are compatible with the current experimental
bounds.

The Chapter 2 of this thesis deals with the first situation where g; << 1. We focus on
the holographic dual of Little String Theory in a 5-dimensional spacetime toy model, and in
particular on its effective supergravity theory, which in the minimal case is a N =2, D = 5
supergravity theory coupled to one vector multiplet. The linear dilaton (LD) background then
arises through a particular gauging along the U(1)r subgroup of the 5D SU(2)r symmetry
group. We first show that such 5D vector-coupled supergravity with this background is actually
unique, and then perform the dimensional reduction on S'/Zy, which requires to generalize
the standard Kaluza-Klein (KK) compactification in the more general case where the different

fields may depend on the compactified coordinate. The main result obtained here is that the



Introduction 7

background induces a Higgs mechanism for the KK vector G5 coming from the 5D metric,
which becomes massive by absorbing the string frame radion. This mechanism can be mimicked
for the 4D vector coming from the 5D Kalb-Ramond two-form, so that the LD background
yields two massive vectors which can be packaged into a spin-3/2 massive multiplet. It is then
shown that the massless limit yields a 4D N = 1 supersymmetric theory, containing half of the
original degrees of freedom.

The Chapter 3 is based on the second scenario of large extra dimensions, Vig) >> M 6. We
follow a phenomenological approach, motivated by the recent result of the Fermilab Muon g — 2
experiment, which has confirmed a deviation of the measured muon anomalous magnetic mo-
ment from the Standard Model prediction. Recently, it has been shown that this discrepancy can
be explained in the framework of low mass scale strings and large extra dimensions by consider-
ing the contribution of KK excitations of the lepton number gauge boson L,. Re-investigating
this result, we show that the constraints on KK masses and couplings are more stringent than
originally thought, our conclusion being that the g — 2 muon discrepancy can be explained in
this context, with L, propagating in one extra dimension transverse to the SM branes, provid-
ing the existence of few KK modes with masses lighter than the LEP energy ~ 200 GeV. We
then explicitly construct a minimal embedding of the SM into D-brane configurations for such a
bulk lepton number gauge boson which does not participate to the hypercharge. We show that
the minimal configuration realising this framework contains five stacks of branes: three of them
are the SM branes, while two additional U(1) extended in the bulk are required, among which
the leptonic U(1)r. In this construction, the total bulk transverse to the SM branes exhibits
an interesting inhomogeneous structure. First, we have one large extra dimension in which the
L, boson propagates, with a size Ry, ~ (10 — 102 GeV)~! in order to explain the muon g — 2
discrepancy. Then, at most five large extra dimensions, with an average size Rg ~ (0.1 GeV)~!

larger than Ry, needed to lower the string scale in the 2 O(10 TeV) region.
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D.2.

o [8] L.A. Anchordoqui, I. Antoniadis, X. Huang, D. Liist, F. Rondeau and T.R. Taylor,
Leptophilic U(1) Massive Vector Bosons from Large Extra Dimensions: Reexamination of
Constraints from LEP Data, Phys. Lett. B 828 (2022) 137014 [2110.01247],

whose new results are presented in Section 3.2.

o [9] I. Antoniadis and F. Rondeau, Minimal embedding of the Standard Model into inter-
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CHAPTER 1

Cosmological models in supergravity
through generalized Kahler invariant

Fayet-Iliopoulos terms

1.1 Introduction

The simplest extension of pure N' = 1 supergravity in flat spacetime is the anti de Sitter
(AdS) supergravity, where a negative cosmological constant A is included [10]. In order to pre-
serve local supersymmetry, a gravitino effective mass term has to be added, linked to A through
A= —3m§ /20 which describes a massless gravitino in AdS spacetime. It is simply obtained by
considering a constant superpotential W = mj3 /5. An arbitrary cosmological constant cannot be
introduced without breaking explicitly supersymmetry, or considering non-linear realisation [11].
In the presence of an abelian vector multiplet a constant Fayet-Iliopoulos (FI) term can be in-
troduced only if the U(1) gauges the R-symmetry, in which case a constant superpotential is
forbidden, leading to a de Sitter (dS) supergravity describing a massive gravitino through cur-
vature effects [12, 13].

Recently, a new type of constant FI-term was introduced which does not require the gauging
of the R-symmetry [14]. It assumes that the D-auxiliary component of the U (1) vector multiplet
has a non-vanishing vacuum expectation value (VEV) breaking spontaneously supersymmetry,
in which case it can be expanded as D + fermion terms of higher dimensions. In the unitary gauge
where the gravitino absorbs the U(1) gaugino and becomes massive, the fermion terms vanish
and the new FI-term amounts adding a positive contribution to the cosmological constant of the
AdS supergravity, since a constant superpotential is now allowed as the U(1) does not gauge the
R-symmetry. In the presence of matter, the construction of [14] leads to a scalar potential but
breaks Kéhler invariance. On the other hand, the new and standard FI-terms can coexist in the
case of gauge R-symmetry, providing interesting models of D-term inflation [15]. An alternative
construction was made in [16] preserving Kéahler invariance and leading to a constant FI-term
in the presence of matter, that generates a constant uplift of the vacuum energy. More recently,
such FI-terms were written in N/ = 2 supergravity exhibiting a much richer structure [17].

In this first project, we generalise the above constructions in A/ = 1 supergravity, preserving
the Kéhler invariance and keeping the form of the bosonic action to be linear in D up to a field
dependent coefficient. We show that the most general FI-term is characterised by an arbitrary
function of the gravitino mass, taken as a functional of the chiral superfields. We then study

applications to cosmology, building new models of inflation compatible with CMB observations

9
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and possessing a dS vacuum with tuneable (tiny) energy. We specialise to no-scale models [18, 19]
of one chiral multiplet containing the inflaton, supplemented by a U(1) gauge symmetry with the
new Fl-term. Moreover, we choose for the latter a simple characteristic function of the gravitino
mass which is a single power and an additive constant, thus depending on three parameters. We
show that there is a region in the parameter space where the resulting scalar potential possesses
an inflationary plateau describing successfully the cosmological observations with the inflaton
rolling down to a minimum with tuneable vacuum energy, where the gravitino mass and the

supersymmetry breaking scale are fixed in terms of the parameters of the model.

The Chapter 1 is organised as follows. Important concepts in supersymmetry and super-
gravity are reminded in Sections 1.3 and 1.4. Section 1.5 introduces the matter-coupled N = 1,
D = 4 supergravity in the superconformal formalism, which will be the framework used in the
rest of this chapter. In Section 1.6.1, we review the recent construction of the new FI-term in
N = 1 supergravity without gauging the R-symmetry, and its generalisation to a Kéhler invari-
ant FI Lagrangian leading to a positive constant uplift of the scalar potential in the presence of
arbitrary matter chiral multiplets. In Section 1.6.2, we propose the most general modification
of this construction that preserves Kéahler invariance and is characterised by an arbitrary func-
tion of the gravitino mass as functional of chiral multiplets. We then study the consequences
of such terms on inflation and supersymmetry breaking in a de Sitter vacuum with tuneable
energy in Section 1.7, for the case of two no-scale models and for a simple choice of the func-
tional dependence of the new FI D-term. Finally in Section 1.7.3, we discuss the gauging of
the shift symmetry that gets rid of the massless particles in the spectrum without altering the
inflationary predictions. Moreover, inspired by the low-energy limit of the heterotic string, we
identify the inflaton with the string dilaton and gauge the perturbative axionic symmetry by
the Green-Schwarz anomaly cancellation mechanism. These models provide new examples of
inflation by supersymmetry breaking [20], where the inflaton belongs to the same multiplet with
the Goldstino [21, 22], without gauging the R-symmetry. Our conclusions are presented in Sec-
tion 1.8. Finally, this chapter is related to three appendices, reminding basic elements about
Kéhler manifolds and their symmetries (Appendix A), containing a summary of the conformal
supergravity multiplets calculus (Appendix B) and details of the computation of the fermion

masses in our models (Appendix C).

1.2 Conventions and notations

Throughout this thesis, we will use natural units A = ¢ = 1. The reduced Planck mass
k= (87G) Y2 = 2.4 x 10'® GeV,

is set equal to one, and numerical values are given in these units.
In this first chapter, we work exclusively in 4 spacetime dimensions, and adopt the metric

convention (—,+,+,+). The indices used throughout the Chapter 1 are defined according to
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the following pattern:

p,v...=0,...,3 4D spacetime curved indices

a,b...=0,...,3 4D spacetime flat indices

1,7... = 1,...,dimrM real coordinates of complex manifolds M
a,B...=1,...,dimcM complex coordinates of complex manifolds M
a,B...=1,2  or 1,...,4 spacetime spinor indices for Weyl or Majorana spinors respectively

A,B...=1,...,dim G internal gauge group indices for a given gauge group GG

The indices «, 8... denote either complex coordinates of complex manifolds or spacetime spinor

indices, depending on the context which will be obvious. Curved and flat indices in 4D are

a

related through the vierbein e}

according to
Xu=e€,Xa. (1.1)
The four-dimensional Dirac matrices v satisfy the Clifford algebra

{ya,yb} = 277ab14x4. (1.2)

In any spacetime dimension, an irreducible representation of the Clifford algebra induces a spinor
representation of the Lorentz algebra, which is in general reducible. This is the case in D = 4
spacetime dimension: 4-dimensional Dirac spinors are irreducible representations of the Clifford
algebra, but reducible representations of the Lorentz algebra. In 4D, they contain 4 complex off-
shell degrees of freedom. Irreducible spinor representations of the Lorentz algebra can be obtained
from a 4-dimensional Dirac spinor either from a chirality projection or a reality projection. The
former leads to Weyl spinors, written in a two-component spinor notation, while the latter
leads to Majorana spinors, written in a four-component spinor notation. Both of them have 4
real off-shell degrees of freedom. Two-component spinors are commonly used in the literature
dealing with 4-dimensional A/ = 1 global supersymmetry, while four-component spinors are
more convenient in 4-dimensional A/ = 1 supergravity, since they can be easily generalized to
higher spacetime dimensions and extended supersymmetry. We will use both formalisms in this

chapter, which focuses on N/ = 1, D = 4 global supersymmetry and supergravity.

Two-component Weyl spinors are denoted by 6, and 6%, and are left-handed and right-
3
respectively. This two-component notation will be used in Sections 1.3.1 and 1.4 following the

handed spinors transforming under the (1,0) and (0, 3) representations of the Lorentz group

conventions of [23]. The four-component spinor notation will be used in Sections 1.3.2, 1.5, 1.6,
1.7, as well as in Appendix B and C following the conventions of [10]. These spinors are Majorana

spinors, defined by the reality condition
A = B, (1.3)

where B is a matrix satisfying in four dimensions v, = BVMB_l. In this formalism, a barred
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spinor \ is the Majorana conjugate of a four-component spinor \ defined by
r=2"c, (1.4)

with C' the charge conjugation matrix, satisfying in four dimensions 73 = —CVMC_I. Chiral
fermions can be obtained from a given four-component fermion by applying the left or right
projection operators

1

Pr=S(1+%),  Pe=5(1-7), (1.5)

where v, = iv07v17273.- The chiral projections A\;, and A of a four-component spinor A are then
defined by:

DN |

)\LEPL)\, )\REPR)\. (16)

Let us note that in 4 spacetime dimension, the Weyl and Majorana conditions cannot be imposed

simultaneously, so that for a Majorana A, P, g\ is Weyl but no longer Majorana.

1.3 Basics of supersymmetry and supergravity

1.3.1 Most general chiral models in A/ = 1 supersymmetry

The aim of this section is to derive the geometric structure of the scalar sector of any
supersymmetric theory with chiral matter fields, an important feature which will be ubiquitous
in this chapter. In A/ = 1 supersymmetry, the most general renormalizable supersymmetric
Lagrangian involving N chiral and anti-chiral superfields ®*, ®'®, o and @ running from 1 to
N, is:

pu 1 1
£¢:/ﬁ%f9@MW+{/d@<@@a+QmMQ%W+3%wﬂW¢%W>+h@y (1.7)

where an, mag, Yoy are constant couplings. The 6 expansion of the chiral fields are:

Oy, 0) = ¢"(y)+V209%(y) + 00F(y) (1.8)
= ¢"(2) + V200" (z) + 00F (x) + b0+ 000" (x)
—\}2998u9a(x)aﬂe+-ieQH%Jw“(x% (1.9)

where y# = z* + i0c*0, and similarly for the anti-chirals ®® by taking the hermitian conjugate
of the previous expansions. However, we are ultimately interested in supergravity, which is an
effective non-renormalizable theory. Thus, renormalizability is in fact not a criterion, and we
look at the most general Lagrangian that can be built from chiral superfields. The modification
of the Lagrangian (1.7) into its most general form is carried out by introducing two arbitrary
real and chiral superfields K (®,®") and W (®), respectively real and holomorphic functions of

®, according to:
ﬁéz/ﬁ%feK@AM+[/f0W@w+na. (1.10)
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First and foremost, let us notice that this Lagrangian is invariant under a so-called Kdhler
transformation,
K(®%, o) = K (&%, &1F) 4 J(%) 4 J(219), (1.11)

where J and J are chiral and anti-chiral superfields, holomorphic and anti-holomorphic functions
of ®* and ®# respectively. This symmetry will lie at the core of this first chapter, and in

particular will be the cornerstone of the construction carried out in Section 1.6.2.

In order to highlight the geometrical structure hidden behind the superspace Lagrangian
(1.7), we would like to write it in terms of component fields. From Eq.(1.8), one can easily

expand the superpotential W (®) as:
1
W (®) = W(p) + V209 W, + 06 [FaWa W) (1.12)

with all component fields functions of y# = z* + ifo*0 and where we have defined W, = 37%-

Expanding in terms of z* will not bring any new 60-terms, and we can immediately deduce
1
[/ 020 W(®) + h.c.] = P Wy — 5000 Wag + hc. (1.13)

The component expansion of K (®, @T) is more involved, since now we have to consider the ex-
pansion of the different fields in terms of x#. We will not present in full details this computation,
which is a standard expansion without any conceptual subtleties, and which can be found for in-
stance in [23, 24]. Instead, we focus on the bosonic sector and put the chiral fermions 2% to zero.
This turns out to be sufficient to highlight the most important geometrical structure we are inter-
ested in concerning the supersymmetric chiral model. With Q% = 0, the expansion (1.9) reduces
to @ = %(x)+0%(x), where we have defined 6%(z) = 00F(x) +i00"00,9(x) + 102620p%(z).

Since any cubic or higher order terms in § vanishes, we deduce the expansion for K:
_ -5 1 J— =3
K(®,0") = K(p(z),¢(z)) + 0“Ka + 6" K5 + 55“551(&5 - 55%51{&3 +0°0P K. (1.14)

From 6%0° = %02526M<p0‘8“90'8 and 3958 = 6202 (—%@m“@“@ﬁ_ + F“Z*:'B), we find the 6262 com-
ponent of K:

1 1 3 1 1 = 3
K(®, o) = ;09" Ko+ 08 K5+ 10,6 0"  Kop + 0,5°0"F K55

626° 4 4
1 _ o
+ (—2 YOt 4 FaFﬁ) K,j

1 — _ =
= (00K + (~0,0°0"¢" + FUF7) K 5 (1.15)

The crucial point in this derivation is to notice that the first four terms of K|pz are equal
to i@uc'?“K — %auwau@/? . The total derivative can then be discarded, and as a consequence,
the purely holomorphic and anti-holomorphic terms o« Kq3, K55 do no longer appear in the
Lagrangian, only the mixed terms o Kz remaining. This is a first indication of a geometrical

Kaéhler structure, as we will see soon. Egs. (1.13) and (1.15) give the bosonic components of the
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chiral Lagrangian:
Lolog = (~0up°0"@" + FOF?) K5+ F*Wo + FWj. (1.16)

Eliminating the auxiliary fields F' through their equations of motion, F'* = _WBK aB , F B =
—W,K* we end with:

Lolg_g = —K,50,0" 0" 3" — WoWzK*. (1.17)

This is the bosonic part of the Lagrangian describing the most general supersymmetric coupling
of chiral multiplets. The kinetic term for the complex scalars ¢® takes the form of a non-
linear o-model with target space characterized by the metric g,5 = 9,05K. Combined with
9ap = 955 = 0, these three conditions precisely define what is called a Kdhler manifold. Such
manifolds are described in more details in Appendix A.

The analysis of this section has shown that any supersymmetric chiral theory is determined
by a superpotential W (y) and a Kahler potential K (p, ¢) functions of the complex scalar fields,
both of them being the lowest components of the superfields K (®, ®') and W (®) introduced in
Eq. (1.10). The complex scalars can then be seen as the coordinates of a Kéahler manifold whose
metric is given by the second derivative of this Kahler potential, namely g,5 = 8Q8BK . The
Kihler transformations (1.11) on the superfield K (®,®') act on the Kahler potential K (i, )
as K(p, @) — K(p, @)+ f()+ f(@), with f and f holomorphic and anti-holomorphic functions
respectively. From the expression of g, 5 it is therefore obvious that these transformations leave

the metric invariant.

1.3.2 Pure N =1, D = 4 supergravity and Anti-de Sitter supergravity

As qualitatively explained in the Introduction of this thesis, a theory of local supersymmetry
must contain gravity. Moreover, turning a global symmetry to a local one, that is in our case
replacing €, — €,(z), requires the introduction of a gauge field. Since ¢, carries a spinor index,
the gauge field will be a vector-spinor field 1, (x). This spin-3/2 field, called the gravitino, is
the superpartner of the vierbein e, the graviton. The Lagrangian of pure N = 1 supergravity
will thus contain both the Einstein-Hilbert Lagrangian Lgp of General Relativity, plus the
Rarita-Schwinger Lagrangian Lrg for massless free spin-3/2 field:

1 1 -
Lsugra = Lrn + Lrs = ieea“eb”Rwab(w) — iewl/y“”le,wp, (1.18)
where we have defined e = det e}, and Dy, = 0,9, + iwmb’yabwp. 1, is a Majorana spinor, and
the second and third rank Clifford algebra elements are respectively given by v*¥ = %[7“ 7],

yHvP = L{y# 4¥P} This Lagrangian is invariant at lowest order in the fermions [10] under the

following supersymmetry transformation rules: !

a 1— a 1 a
def = €7 Yy, 01y = Dye(r) = Ope + Wnaby be. (1.19)

1. It is worth noting that the Einstein equations coming from 6 Lrs arise from the algebra of Dirac y-matrices.
This therefore tells us that there is already some spinorial structure behind General Relativity.
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Anti-de Sitter (AdS) supergravity can then be seen as the simplest extension of pure N’ =1
supergravity. It naturally arises from the question: can a cosmological constant be compatible
with a local supersymmetric action? Adding a cosmological constant to the Lagrangian (1.18),
L. = —el\, obviously breaks supersymmetry. However, as we are now going to discuss, su-

persymmetry can be recovered by adding an effective gravitino mass term to the Lagrangian,

L, 2= em‘;’/ 2 1;“7‘“’ ¥, and considering the local supersymmetric transformations [25]:

a 1— a
dej, = €7 Yy, 0y = Dye+ gyue, (1.20)

where a mass-like term g7,€ has been added to the variation of the gravitino. The coupling con-
stant ¢ € R will turn out to be the only free parameter of this model. The full AdS supergravity
Lagrangian then reads

Laas = Len + Lrs + Ling ), + Lec. (1.21)

At lowest order in the fermions, its supersymmetric variation can be evaluated via:

0LRs = —evf)ufy“l’pDﬁ% = —0LgH — eiﬁuvupry(gvpe)

= —0Lgg — 6912;1 ’Vul/p'yp Dye, (1'22)

——

(D—=2)y#
5£m3/2 = 67713/27/1“’7“”51% = €m3/2¢u’YWDu€ + €9m3/21/1u Yy € (1.23)

(D=1)y#
€ _

0Lee = —Nde= —Aiefypwp. (1.24)

The second term of (1.22) plus the first one of (1.23) cancel if m3/, = g(D —2), while the second
term of (1.23) plus (1.24) cancel if A = —2gms/5(D — 1), which implies in D = 4 spacetime
dimension that

A=-124* <0, A= -3mj,. (1.25)

At lowest order in the fermions ?, we have thus found that only a negative cosmological constant
can be added to the pure N/ = 1 supergravity action in a supersymmetric way. This requires
the addition of an effective mass-term * for the gravitino, which cannot be chosen independently
from A but has to satisfy the relation A = —Smg /2 Any uplift of A from this value will then
break supersymmetry.

The construction of AdS supergravity in four dimension follows an interesting pattern. Both
the shift in the supersymmetry transformation of the gravitino as well as the effective gravitino
mass term are linear in the coupling g. Supersymmetry then closes at order g2 via the introduc-
tion of a cosmological constant quadratic in g. This pattern is actually much more general and
encodes the gauging procedure of any N' > 1 extended supergravity theory. In this case, the cos-
mological constant is replaced by a scalar potential O(g?), while closure of supersymmetry still
requires the introduction of a shift O(g) in the supersymmetry transformations of the fermions

as well as O(g) fermion mass terms. We will encounter such situation in the Chapter 2, whose

2. This analysis turns out to be true to all orders in fermions for D = 4, while only true at the quadratic order
in fermions in D = 11.
3. The correct interpretation of this mass-term is the description of a massless gravitino is AdS spacetime [26].
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second half-part is based on an abelian gauging of a given N' = 2, D = 5 supergravity theory, a

procedure which will be presented in Section 2.5.2.

1.4 Spontaneous supersymmetry breaking and Fayet-Iliopoulos

terms in supersymmetry and supergravity

The commutation relation [Qq, P,] = 0 of the Poincaré superalgebra (1) implies that bosonic
and fermionic superpartners have the same mass. This situation being obviously not observed
in Nature, supersymmetry must be broken at least at the electroweak energy scale. This can be

carried out in two ways:

e An explicit symmetry breaking: the symmetry is broken at the Lagrangian level, for in-
stance by some terms which are negligible in the IR and become only relevant in the UV.
In such case, the theory is invariant under the symmetry at low energies, but no longer at

high energies.

« A spontaneous symmetry breaking: the Lagrangian and thus the theory are invariant under
the symmetry regardless of the considered energy scale, but the vacuum is not invariant

below a given energy scale.

In local supersymmetry, the first case is inconsistent as long as there is a spin 3/2 in the spectrum,
while it suffers from a lack of predictivity in global supersymmetry. In the same time, the second
procedure provides some appealing dynamical processes for symmetry breaking, and is valid in
both global and local susy. We will therefore not consider explicit symmetry breaking in the

following, and focus only on spontaneous supersymmetry breaking.

1.4.1 Spontaneous global supersymmetry breaking

Let us start this discussion by reminding that the energy E = PP of any state in the Hilbert
space H of a global supersymmetric theory is always positive. To see this, we write V|®) €
M, Vo,a=1,2, 0 < [Qa|®)[I” + Qa|®) [ = (P (QaQa + QaQa) [P) = (2{Qa, Qu} @) =

20, (®| P, |®). Taking the trace of this expression and using Tr o# = 26"9, we get:
4(®| Py |®) > 0. (1.26)

Let us now assume a vacuum |{2) preserving supersymmetry, i.e. being annihilated by all four
supercharges, Qq [2) = Q4|Q) = 0. It follows from the discussion above that (®| Py |®) = 0.
Conversely, if (®| Py |®) > 0, one needs at least one supercharge such that Q, |Q) # 0, and
supersymmetry is broken in the vacuum. We therefore conclude that in a globally supersymmetric
theory, ground states of vanishing energy preserve supersymmetry, while those of strictly positive
energy break supersymmetry spontaneously.

We then remind that in a globally supersymmetric field theory with chiral multiplets (¢, ¥, F')

and vector multiplets (v,, A, D) coupled to each other, the scalar potential reads:

v= Y  |FP+ % > DA (1.27)

chiral superfields vector superfields
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Therefore, supersymmetry breaking is controlled by the vacuum expectation values of the auxil-
iary fields, and in order to break global supersymmetry, we must have either (F') # 0, or (D) # 0,
or both. The first case is called the F-type or O’Raifeartaigh mechanism [27], while the second
one is called the D-type or Fayet-Iliopoulos mechanism [28]. Since this chapter deals with D-
term supersymmetry breaking, we are not going to discuss the O’Raifeartaigh mechanism in the
following and only focus on the Fayet-Iliopoulos one. In order to introduce it, let us consider the
case of two chiral superfields ®4 = (o4, 94, Fy), with the same mass m and U(1) charges +1,
coupled to a U(1) vector superfield V' = (v,, A, D) in the Wess-Zumino gauge. The superspace

Lagrangian for this model reads:
1
Loy — /d49 (Lo, ol Vo) U 226 <m(I>+<I>_ + 4)/\/2) + h.c.] L (1.28)

The idea of the Fayet-Iliopoulos (FI) procedure is to notice that the integral of V over all the

superspace,

Lrr= —2£/d40 V = —¢D, (1.29)

is gauge invariant (in the case of an abelian U(1) gauge symmetry), and can therefore be added
to the Lagrangian L4 . The gauge invariance of L can be seen by explicitly writting its gauge
transformation [d*0 V — [d*0 (V+A+A) = [d*0V —1 [d?0 DDA—2 [d?0 DDA = [d*0V,
where we have used [ d%0 = —%BD, [d*0 = —iDD, and then DgA = 0 = D, A, for chiral A
and anti-chiral A. The components of the superfields entering in the Lagrangian (1.28) are given
by [23]:

_ 1 3

WWalgy = —2iA0"0A = SF™ Fy + iF"”F”"ewpg + D2, (1.30)
1P _gg = er(WF-(y) + - (W) F(y) — Y ()-(y), (1.31)

i ' o . .

BV | = FF g5+ 0,00+ gu, (3000 + L0 — 505
0660 2 2 2
Zg - - _ 1 1 2 ) _

— (M) — @) + = (gD — = gPvt 1.32
ﬂ(so Y= eM) + 5 (g 59 vt | P, (1.32)

with y# = z# — ifo*f, and where the last expansion has been evaluated in the Wess-Zumino
gauge, where V3 = 0. Since we are interested in the scalar potential V of this model, we focus on
the scalar sector, putting fermions, vectors and derivative terms to zero. In particular, expanding

the fields in terms of x will not bring additional terms to the scalar potential. We deduce:

gD = = 1
V= B+ PP+ T2 (s — o)+ m (9 Fo + o-Fy + 04 F_ + ¢_Fy) + 5 D* €D,
(1.33)

Replacing the auxiliary fields D, Fiy using their equations of motion,

g _ _
D=2 (le-P ~lp+P) +& Fr=-mp_, F_=-mgp,, (1.34)

we find the scalar potential

v (m Yo r (w2 LY o P (ol -l )+ S sy
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If £ = 0, the minimum of V is obtained for p; = ¢_ = 0, and following (1.34), the vacuum is

therefore supersymmetric. If £ # 0, the system presents two phases:

e m? =+ %g > 0: the minimum is reached at ¢4 = ¢_ = 0, and V # 0 at the minimum:
supersymmetry is spontaneously broken while the gauge symmetry remains unbroken.
From the auxiliary fields equations of motion (1.34), we see that at the minimum, (F') =0

and (D) # 0: supersymmetry breaking is purely of D-type. The Goldstino is the gaugino.

o« m>+ %g < 0: the minimum is reached at ¢4 # 0, ¢ # 0, and V # 0 at the minimum: both
supersymmetry and gauge symmetry are spontaneously broken. We now have (F') # 0 and
(D) # 0, and supersymmetry breaking is thus of mixed D and F-types. The Golstino is a

linear combination of the chiral fermions and the gaugino.

Therefore, this model shows how a FI term [ d*@V produces a spontaneous breaking of global
supersymmetry. The idea to keep in mind is that supersymmetry breaking is controlled by non-
vanishing vacuum expectation values (vev) of auxiliary fields, while gauge symmetry breaking
is controlled by non-vanishing vev of dynamical fields. In the next section, we discuss the fun-
damental origin of FI terms in global supersymmetry, before studying in Section 1.4.3 why does
the procedure described in the current section fail in supergravity, and how a FI term can be

written in this case.

1.4.2 Theoretical approach to Fayet-Iliopoulos terms in global supersymme-

try

Before introducing FI terms in supergravity, let us discuss their fundamental origin in global
supersymmetry. We explained in Section 1.3.1 how Kéhler geometry naturally arises is global
supersymmetry. In particular, we found that the scalar sector can be described in terms of a
Kahler manifold M, whose coordinates are the complex scalar fields and the metric is given by
the second derivative of a Kdhler potential. On the other hand, the FI Lagrangian (1.29) involves
the highest component D of a vector multiplet. From the Kéhler geometry point of view, vector
multiplets are included in a supersymmetric chiral theory by gauging the isometries of M.

In a very general way, symmetries of a manifold are defined by Killing vectors. In Appendix
A2, we discuss the symmetries of a Kahler manifold and show that such symmetries are deter-
mined in a simpler and more restrictive way than those of a given manifold. Indeed, they are
defined by holomorphic Killing vectors k% (¢), each of them, in turn, being characterized by real
functions P4 (e, p) called moment maps or Killing potentials. They are defined up to constants
€A, Pa — Pa+ €a. Denoting G the Lie group of global symmetries of M, a subgroup Gog C G
is chosen as the gauge group. In general, Gy will be a non-abelian group, whose generators
are labelled by the index A. Each Killing vectors k* will be associated to a vector multiplet
(A;‘,)\A,DA). The k4 generate a Lie algebra whose structure is defined by the Lie brackets
[ka, kp] = fasCke, [ka,kp] = fakc, and [k, kp] = 0. It can be shown [23] that the moment

maps P4 can be chosen to transform in the adjoint representation of G, namely:
(K0 + K30x) P (2, @) = fa“Po(p, @). (1.36)

This relation, called equivariance relation, fixes the constants £4 for non-abelian groups. How-
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ever, an undetermined 4 constant remains for each U(1) factors of Gy. As we are now going to
discuss, these £4 constants are actually Fayet-Iliopoulos constants.

In order to get an action both supersymmetric and gauge invariant under the gauge group
G, the kinetic term of (1.17) has to be modified into [10]:

~K 50,003 — —K 5D, '@ —iDAKG Ko = — K, 3D,0' DPE + DAP (0, §)+iDAr a (),
(1.37)
with D,,p% = 0,9 — Aﬁk‘j. The last equality follows from the relation (A.2.8) between K and

P4, derived in Appendix A.2 and which is reproduced here for convenience:

Pale, ) =i (EiKa(p, @) —ralp)). (1.38)

In the case when 74(p) are restricted to be imaginary constants, the moment maps then take
the form Py = ikG K + £a, where 4 = —iry € R are called Fayet-Iliopoulos constants. The

last term of (1.37) then produces a new term in the action,
Spr = — /d% £4D4, (1.39)

which is precisely a FI action as already introduced in Eq. (1.29). From the supersymmetric
and gauge transformations of D4, §,(e)DA = %Efy*’y“ ((%AA + )\CAEfBCA) and 5g(9)DA =
0¢ DB fpc?, we see that Spy is both supersymmetric and gauge invariant if

éafgo=0,  VB,C. (1.40)

Thus, for a non-abelian index A, £ 4 must vanish, while £4 # 0 is possible for any abelian A.

In summary, for abelian symmetries of M, constant shifts in the associated moment maps
P4 are mathematically allowed. Physically, these constant shifts correspond to new terms in
the action of gauged supersymmetry: the so-called Fayet-Iliopoulos terms. Such terms, which
have been introduced by hand in the previous section through the Lagrangian (1.29), actually
arise from the fact that a U(1) gauge group gives some freedom in the definition of the moment
maps. For each U(1) 4 factor of the total gauge group Gy of the isometries of M, there will be

an associated FI parameter 4.

1.4.3 Fayet-Iliopoulos terms in supergravity: Freedman model

In local supersymmetry, the gauge invariance of the Lagrangian (1.29) is no longer guaran-
teed. This basically comes from the fact that in curved space, the covariant generalizations of
the chiral projection operators D? and D? are given by (DD — 8R) and (DD — 8R), with R
the chiral superspace curvature [23]. While we still have —1 [ d>©2€ DDA = 0, the new curved
space contribution 2 [ d?©2€ RA does not vanish in general and [d*¢EV is thus not gauge
invariant.

The introduction of FI terms in supergravity has first been carried out by Freedman in [12],

where it has been shown that such terms require the U(1) symmetry associated to the vector
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field V to be a R-symmetry. Before describing the Freedman model, let us first remind the
basic ideas of a R-symmetry in supersymmetry. Besides the super-Poincaré generators (1), one
can also add internal symmetry generators, which are Lorentz scalars and whose commutation
relations define a compact Lie algebra. In supersymmetry, two kinds of internal symmetry are

possible:

e A symmetry whose generators commute with the supercharges, called a gauge symmetry.
As a consequence, such symmetry acts uniformly on all fields in a given multiplet, and has

to leave the superpotential invariant.

e A symmetry whose generators do not commute with the supercharges, called a R-symmetry.
As a consequence, such symmetry acts differently on different components of a given mul-
tiplet, and acts as a phase transformation on the gauge field of supersymmetry, that is the
gravitino . In addition, the R-symmetry commutes with the Lorentz, translation and
gauge generators. In the superspace formalism, rotating the superchages implies that the
R-symmetry rotates the fermionic superspace coordinates {6, é}. In order for the superpo-
tential Lagrangian [ d?60W to be invariant, this implies that the R-symmetry also rotates

the superpotential.

We now show why writting a FI term in supergravity requires the associated U(1) symmetry to

be a R-symmetry. Following [13], let us consider the superspace Lagrangian
Lhveedman 71 = —3 / Q9B (1.41)

where E is the determinant of the supervierbein, and ¢ a constant parameter as in (1.29). This

Lagrangian is not invariant under a U(1) gauge transformation
V> V+A+A, (1.42)

with A a chiral superfield, DyA = 0. However, one can remind that the superspace integral

together with E transform under a super-Weyl rescaling according to [23]:
/ dOE / JOESTH, (1.43)

with ¥ a chiral superfield. The Freedman Lagrangian (1.41) is therefore gauge invariant if the
gauge transformation (1.42) is followed by a super-Weyl transformation (1.43), provided that A
and X are related through:

25 — —§§A. (1.44)

The full transformation (1.42)+(1.43) rotates the gravitino, and is thus a R-symmetry. We still
have to show that the Lagrangian (1.41) effectively produces a constant FI term. The so-called

Freedman model in superspace is given by:

1
L = Lpreedman FI + Lgauge = —3 / d*0Ee3sY + 1 < / d?O2EW? + h.c.> . (1.45)
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The gauge Lagrangian is given in component fields by * e‘lﬁgauge| ) = —%F m W—{—%DQ, where
the topological term F'F has been discarded since it does not play any role in the following. In

the Wess-Zumino gauge, the Freedman Lagrangian can be expanded as
2
Lhvecdman 71 = —3 / OB — _3 / d*0E — 2¢ / OBV — ¢ / d0EV?.  (1.46)

To write it in terms of component fields, we need the following components of the superfields V'

and E, which can be found for instance in [23, 29]:

Vig = —0"0u,(x) + J0000D(x). (1.47)
1

Vo= —500000"v,, (1.48)
Elp_g—o = € (1.49)

2 — e - v T e - v
Blog = —5e00"0by — 7 (06"4,)(00"dy) + 7 (0" 40) (00 ), (1.50)

1 1 -

Elgggs = gelt+ 3¢ (YuoPobe — 00 Dpts) + gMM* — gbﬂbﬂ. (1.51)

We want to explicitly show that the U(1) symmetry gauges the R-symmetry (i.e. that the
gravitino is charged under the U(1)), and we thus expect a minimal coupling between the
gravitino and the vector field. It turns out that this coupling comes from the two last terms of
(1.50). We therefore explicitly detail their integration, while the others, more straightforward,

are left implicit. Denoting with ... the remaining terms in the product E'V, we have:

/ d'9EV = / d49Z[vp(eaagdéd)(éﬁ-aﬂﬁﬁm)(ma;@)
—0(0°0840%) (B35 40 0) (07 0% 0) | + .

e 1 I —5
= [ o [ otatto ot
1 (P sG=pBB VoY )
G (améﬁa Yup)(ohs1,) | 0000 + ...

e 4 2§ T — 114 67
T 16 (004510, V0%, 100, 5 — 06,5 e Vol 00 ] + .

e - _ 5 _ . —_ _ 5 _ .
= 1—6'Up |:wy6(0'1/ aggdguaﬁ)wufj - 1/JMS(UV ao’gédoﬂuaﬁ)wyﬂ} + ...

o o
= 6% {ww;(a”apa“ - a“apa”)‘mw#,g} + .. (1.52)

where, in the second equality, we have used 6%07 = —%em%, éé‘éB = —%52‘55, and in the fourth
equality, ea'ya’;&ew = g¥% From the o-matrices relation 6”c?Gt — ghloPG" = —2ie’PH7G,, we
deduce _

/ dEV = —%ewﬂ%y&gwu% . (1.53)

This term is precisely a minimal coupling between the gravitino ¢, and the vector v,. Therefore,
the gravitino is charged under the U(1) symmetry, and this U (1) is thus a R-symmetry, as already
expected with the superfield point of view from the relation (1.44). Bringing everything together,

4. The gaugino A is put to zero for compactness in all this section.
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the Lagrangian (1.45) in component fields reads:

1 1 - - 1 1 j -
e ! L.y = —§R + Ze“"p"(w#@,Dp@bg — Y0, Dpihg) — gMM* + gb"b# - %eﬂ”l’”zﬁﬂ(}ywpvo
2 1 1 1
+ g, + —&%vi, — €D — —FME,, + ~ D> (1.54)
3 3 4 2
Eliminating the auxiliary fields through their equations of motion, namely M = 0, b, = —§v,,
and D = ¢, yields:
—1 1 1 nvpo () = n 1 uv Zg nrpo ) = 52
e L= _§R+Z€ (¢MO'VD01/JO——1/JMO'VDP¢O—)—ZF FW_ZE @buauw;ﬂ’a—?- (1.55)

This Lagrangian contains the Einstein-Hilbert, Rarita-Schwinger and Maxwell Lagrangians, to-
gether with a gravitino/vector minimal coupling and a constant FI term ¢2/2. We have therefore
shown that in supergravity, writting a FI term associated to a U(1) gauge multiplet (v,, A, D) is
possible provided that we promote the vector v, to be the gauge field of the R-symmetry, rotating

the gravitino and the other fermions.

1.5 Superconformal approach to A/ = 1 supergravity

One of the approach to study N =1, D = 4 supergravity coupled to gauge and chiral mul-
tiplets is the superconformal formalism. It is based on the idea that A" = 1, D = 4 supergravity
can be seen as a gauge fived superconformal gauge theory, in a similar way that Einstein’s Gen-
eral Relativity can itself be seen as a gauge fixed conformal gauge theory. The goal of this section
is not to present an exhaustive derivation of the superconformal approach to supergravity, which
is too broad to be strictly presented in this thesis and which can be found in details in [10], on
which this section is largely based. Rather, it aims to present and summarize the basic ideas
of this formalism, to highlight in a different perspective some of the concepts already discussed
previously, especially Kéhler transformations, FI terms in supergravity and AdS supergravity,

as well as to introduce the formalism which will be used in Section 1.6.

1.5.1 SU(2,2|N = 1) superconformal algebra

Conformal supergravity can be seen as the gauge theory of the superconformal algebra
SU(2,2|1). This superalgebra contains the conformal algebra SU(2,2) ~ SO(4,2) in its Lie
subalgebra, spanned by the generators P,, M, D and K, of translations, Lorentz transforma-
tions, dilatations and special conformal transformations. Its bosonic subalgebra also contains a
U(1) factor, which is an R-symmetry and whose generator is denoted T'. The fermionic gener-
ators are the usual Poincaré supercharge ), together with the conformal supercharge S,. The
latter can be understood in the following way: its square is the special conformal generator
K,, in the same way that the square of @, is a translation P,. The superalgebra SU(2,2|1) is

determined by the following set of (anti-)commutation relations. First, the conformal algebra
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SU(2,2) ~ SO(4,2) is determined by the non-vanishing commutators:

[Mabv Mcd] = 477[a[ch]b]a [Paa Mbc] = 277(1[ch},
[Ka, M| = 20Ky, [Pa, Kb) = 2(NapD + Map), (1.56)
(D, P,] = P,, (D, K,] = —K,.

Q. and S, being Lorentz spinors, we have:

1 1
[Maln Qa] = _5 (7ab)§ Qﬁ; [Maln Soz] = _5 (7ab)§ S,B (157)
Non-vanishing commutators involving D are:
1 1
[D,Pa] :Paa [Dan] = 5@07 [D,Sa] = _58047 [DvKa] = _Ka‘ (1'58)

The U(1) generator T' commutes with all generators of the conformal algebra. T being an R-

symmetry, it rotates the supercharges through a chiral transformation:

7.Qu] = ~5i(3)" Q5. [T15] = Si1)a”S5 (1.59)

The last non-vanishing commutators are:

[Kaa Qa] = 'YaSaa [Pm Sa] = ’YaQa- (160)

Finally, the anti-commutators of the fermionic generators are:

1 a 1 a
{Qanﬁ} = *5(7 )aﬁPaa {SO“Sﬂ} = *5(7 )aﬁKaa
1 1, o B 1.
{Qa, 5"} = —§5aﬁD - 1(7 ")a" Map + 51(7*)§T. (1.61)

In a nutshell, gauging a symmetry group requires to introduce a gauge field B,, for each generators
of the group, and then replace partial derivatives by covariant derivatives of the form D, =
Ou— B/’fZ A, with ¥4 the generators and A running from 1 to the dimension of the gauge group.
For the gauge group SU(2,2|1), the generators and their associated gauge fields, forming the
so-called Weyl multiplet®, are listed in Table 1.1.

SU(2,2|1) superconformal algebra

Bosonic subalgebra: SU(2,2) x U(1) || Representation formed by fermionic generators
P, Mg, D K, T Qa Sa

b
G “u bu fu Ay Vi O

Table 1.1 — Generators and gauge fields of the superconformal algebra SU(2,2|1).

In addition to the usual Lorentz spins (j1, j2), multiplet components are characterized in the
superconformal approach by two other parameters (w,c), respectively called Weyl and chiral

weights, specifying the properties under the dilatation D and chiral T transformations. These

5. In the Weyl multiplet (ez,wgb,bu,fﬁ,Amwg,(ﬁﬁ), only e}, b., A, and ¢y, are independent fields. wzb, I

and ¢;; have to be seen as composite fields, functions of the four independent fields.
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weights are defined by the transformation property of the lowest component C of the multiplet
through:
dp(Ap)C = wApC, orp(Ap)C =icArC. (1.62)

Conformal weights for the Weyl multiplet and gauge multiplet are uniquely fixed, and can be

found for instance in [10]. For the following discussion, we need to keep in mind the weights

a
0

arbitrary. Let us consider first a chiral multiplet (Z, Pry, F'), with w(Z) = w, ¢(Z) = c. Ap-

plying the commutator [D, Q] = %Qa to Z, and using DZ = wZ, Q.Z = %PLXQ, we get

DPpxa = (w+3)PrXa, that is, w(Prx) = w+ 3. Similarly, one can find w(F) = w+1. In a simi-

of the vierbein, w(e) = —1, ¢(ef;) = 0. Conformal weights for chiral and real multiplets are

lar way, chiral weights are found from the commutator [T, Q,] = —%i(%)a'BQﬁ. If ¢(Z) = ¢, then
c(Prx) =c— %, and ¢(F') = w — 3. We then consider a real multiplet (C, Pr¢, H, By, PrA, D).
The lowest component C' being real, it cannot undergo a complex transformation, and therefore
¢(C) = 0. With w(C) = w, applying the same reasoning as above gives w(D) = w + 2 and
¢(D) = 0. This is everything we will need regarding the conformal weights to write invariant

actions.

In order to write superconformal invariant actions, we need to generalize the F' and D terms
of global supersymmetry. Those were the highest components of chiral and real multiplets, and
what we need in the superconformal case is thus two applications extracting superconformal
invariant quantities from chiral and real multiplets. For this, the operation [ | is defined as

acting on a chiral multiplet (Z, Ppy, F') of weights (3,3) by:

e 1 - 1 _ -
HFﬂZH%F%»MhE2{F+V§WWHX+2ZMWU%%+hQ. (1.63)
The operation [ |p is defined as acting on a real multiplet (C, PL(, H, By, PrA, D) of weights
(2,0) by:

[ ]D : (Ca C7H7Bu7)\aD) — [C]D = |:D — %7]}“’7#2’)/*)\ — %CR(LU)

(&
2
CPur™” =iy ) Rpo(Q) (1.64)

1

5
L abed 7 L

43 Gunbe (Ba 504
with R(w) and R'(Q) the graviton and gravitino curvatures. The weights of the multiplets
the operations [ | and [ |p act on are fixed by the requirement that the total weights of
the Lagrangian vanishes, and by the weights of the determinant of the vierbein, w(e) = —4,
c(e) = 0. To compensate them, we need F' to have weights (w,c) = (4,0), which implies from
the discussion of the previous paragraph Z to have weights (w,c) = (3,3). Similarly, we need
D to have weights (4,0), which implies C' to have weights (w,c) = (2,0). As shown in [10],
these operations can then be used to build superconformal invariant actions from chiral and real

multiplets, respectively according to:

&z/#xmﬂ ,%:/fxmn (1.65)
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From now on, we denote by X = (X!,I =0, ...,n) a set of n -+ 1 chiral fields, with Weyl weights
chosen as w(XI) =1, and by {)\A,A = 1,...,ny} the gauginos of ny vector multiplets. Using
these notations and the definitions introduced above, the (ungauged) superconformal invariant

action of N' = 1 supergravity coupled to n + 1 chiral and ny vector multiplets is written as:

_ 1

+[E(X)]F - [fAB(X)X‘APL)\B}F- (1.66)

The two first terms are respectively the kinetic and potential terms of the chiral multiplets, while

the third one is the kinetic term for the gauge multiplets. This action is completely characterized

by three functions: a real Kihler potential N (X, X), a holomorphic superpotential (X)), and a

holomorphic gauge kinetic function fap(X). The requirement of conformal symmetry imposes

the following additional conditions on these three functions °:

« The Kihler potential: a conformal invariant action [d*z [N(X,X)]p can be obtained
provided that w(N(X, X)) = 2. Since N(X, X) must also be real, it is homogeneous of
first degree in both X and X. We deduce that N must satisfy:

N(AX,AX)=MN(X,X), VieC. (1.67)

« The superpotential: a conformal invariant action [ d*z [X(X)]r can be obtained provided
that w(3(X)) = 3. On the one hand, by definition of the Weyl weight w, we have dpX(X) =
w(X(X)ApE(X) = 3ApX(X). On the other hand, using the chain rule and w(X?) = 1, we
have 6p%(X) = X10p X! = Srw(XHAp X! = X Ap X!, We deduce that ¥ must satisfy:

X'y =3%(X). (1.68)

+ The gauge kinetic function: similarly to the superpotential, the quantity f4p(X)A\APL AP
must have Weyl weight w(fap(X)APLAB) = 3. Since APy AP already has Weyl weight
3, fap must have vanishing Weyl weight, namely dp fap(X) =0 = fap dp X!
= fABJw(XI))\DXI = fABJXI/\D. We deduce that f4p must satisfy:

X' faps=0. (1.69)

Each terms of (1.66) are independently superconformal invariant, provided that N (X, X), £(X)
and fap(X) satisfy the relations (1.67), (1.68), and (1.69).

In Section 1.3.1, we have seen how Ké&hler manifolds serve as the scalar field target space
in a supersymmetric nonlinear o-model. This is still the case in supergravity . The chiral fields
{XI T = 0,...,n} can be seen as the coordinates of a (n + 1)-dimensional Kéhler manifold

called the embedding manifold. So far, {X',I = 0,...,n} was an arbitrary holomorphic set of

92N _ 9%(X) —
oxXI1oxX I’ EI = ox1I and fAB,I =

7. In supergravity, further conditions on the Kahler manifold are required compared to global N’ = 1 super-
symmetry. For instance, in N/ = 1 supergravity, the target space is not a pure Kihler manifold, but has to be a
Kéhler-Hodge manifold. We will not discuss them in this thesis, but mathematical definition and their origin in
supergravity can be found in [10].

6. We use the notations G;; = N; 5 = af%#x).
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coordinates. Requiring them to be homogeneous, they can be defined by the set {sg, 2% a =

1,...,n} through functions Z/(z) according to:
X1 =5021(2). (1.70)

The simplest choice for the Z1 is Z° = 1,Z% = 2®. In the variables {sg, 2}, homogeneity

requires that N is the product s¢5p times a function of z and z. We can thus write N as:

— K(z,z)

N(X,X)=—-aso5o e« , (1.71)

where a is a constant which will be specified later. On the other hand, (1.68) means that the
superpotential ¥(X) on the embedding manifold is a homogeneous holomorphic function of third

degree. It is thus given in terms of sg and z% by
Y(X) = ssW(2). (1.72)

In the {sg, 2%} coordinates, the superconformal invariant Lagrangian (1.66) therefore reads:

K(z,z)

L=—a [sogoe— : ]D [sswe)] - i [Fas(XOXPLAY] (1.73)

So, So are chiral and anti-chiral multiplets called compensator multiplets, that we write in com-
ponent form as So = (Sg, PLQO, Fo) and 50 = (50, PRQQ, Fo)

In order to get the physical matter-coupled supergravity Lagrangian from the superconformal
Lagrangian (1.73), we need to gauge fix the superconformal symmetries that are not in the super-
Poincaré algebra, namely K,, S, D and T. Special conformal transformations can be fixed by
imposing b, = 0, while gauge fixing conformal S-supersymmetry is obtained by imposing the
chiral (anti-chiral) fermion PrQg (Pr€y) superpartner of the compensator scalars sy (59) to
vanish, which thus removes one extra fermion field. Since N transforms under the scaling as
SN = 2\pN, one can fix the dilatation gauge by imposing a constant N ®, N(X, X) = —a. This
gauge condition amounts to fix the modulus of sg, as can be seen in the following way. Let us
write —a = N(X, X) = XINIjX'j = SOEOZI(Z)NIij(E), where we have used the homogeneity
property of N in the second equality and the decomposition (1.70) in the third one. This implies:

s0s0 = —a (2'(2)G1;27(2)) (1.74)

so that |sg| is determined in terms of the physical scalars z%, z%. Finally, the T' superconformal
symmetry can be gauge fixed imposing sg = Sp, which amounts to fix the phase of sg. These

results are summarized in Table 1.2.

8. Restoring the (reduced) Planck mass ™' = 2.4 x 10'8GeV, we have N(X, X) = —ax~2. The Planck mass
in a (super)gravitational theory can thus be mathematically seen as arising from the breaking of the dilatation
symmetry in a conformally invariant embedding theory.
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Gauge fixing conditions
K-gauge b,=0
S-gauge Qo =0
D-gauge | N(X,X) = —a
T-gauge S0 = S0

Table 1.2 — Gauge fixing conditions reducing the SU(2,2|N = 1) superconformal algebra to
the N/ = 1 super-Poincaré algebra

The value of a depends on the theory considered. For N' = 1 supergravity, in order to get a
canonically normalized Einstein-Hilbert action, we need to choose a = 3, which we will keep in

the following. Using the D and T-gauge conditions into (1.71), one gets

K(z,z)

So=8 =€ 6 (1.75)

which will be the gauge fixing condition for the compensating scalars that we will use in the

following. In pure N = 1 supergravity where K(z,z) = 0, it reduces to sp = 59 = 1.

In conclusion, the S-gauge condition has eliminated the fermion €y, while the D and T-
gauge conditions have fixed the sg, 59 scalars in terms of the z® and z%, so that sy and 5y are
no longer independent physical scalars. The gauge-fixing procedure has therefore removed the
chiral and anti-chiral compensating multiplets Sy and Sp, so that the gauge fixed theory (i.e.
N = 1 supergravity) contains n chiral multiplets while the superconformal theory contained
n + 1 ones. Only the n 2% will remain as the physical chiral matter fields. Their complex scalar
lowest components form the coordinates of a n-dimensional Kéhler manifold, called the projective
manifold. The real function K(z,z) is the Kéhler potential of this physical scalar field target

space.

1.5.2 New perspectives from the superconformal formalism
Kaiahler transformations

In the superconformal formalism, Kéhler transformations arise from the relation (1.70) be-
tween the arbitrary holomorphic basis {X’} and the physical basis {sg, 2%} of the embedding

Kahler manifold. Indeed, we see that if we redefine the second set according to

(2) (2)
5o sh=see e, Z1(2) = 20(2) = Z1(2)e (1.76)

then the original ones { X’} are unchanged. Combining Eqs. (1.74) and (1.75), we get
K(z,2) = —aln(—a='Z1G;;Z7). Using Z'! in this latter equation, we see that under a trans-

formation (1.76), K transforms according to

K(z,2) = K'(2,2) = K(2,2) + f(2) + f(2), (1.77)

which is precisely a Kéhler transformation as already defined in Section 1.3.1. While the homo-
geneity property (1.67) of the Kihler potential N (X, X) of the embedding Kéhler manifold does
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not permit Kéhler transformations on N, Kahler transformations of the Kéhler potential K (z, z)
of the projective Kéhler manifold are allowed. From the superconformal point of view, Kéhler
transformations can therefore be seen as transformations in the projective space, arising from
the ambiguity (1.76) to define coordinates in the embedding space. Let us consider a general

function V'(z, z) transforming under Kéahler transformations as
V(z,2) = V/(2,2) = V(z,2)e  (wi/DHtw-f), (1.78)

Such functions are said to have Kéahler weights (w,w_). Assuming V' to be scalar under complex
coordinate transformations on the projective manifold?, it is therefore natural to define its

covariant derivatives as:

VoV (2,2) = 04V (2,2) +wia H (0.K)V(2,2), VaV(z,2) =03V (z,2)+w_a ' (0:K)V(z,Z2).

(1.79)
One can check that these quantities are indeed covariant under Kéhler transformations as re-
quired for a covariant derivative, namely V,V(z,2) — VQV(Z,Z)e_afl(w+f(z)+w‘f(2)). In this
terminology, Z(z), Z! (%) have Kihler weights (1,0) and (0,1), while sq, 5o have weights (—1,0)
and (0, —1). On the other hand, we have already seen that the superpotentials of the embedding
and the projective manifold ¥ and W are related by ¥ = s3W (2). For ¥ to be Kihler invariant,
W (z) must then carry Kéhler weights (3,0). With the choice a = 3, the Kéahler transformations
of W and sg are thus given by:

W(z) — W'(z)=W()e ), (1.80)
, f(2)
so — Sy =Soe 3 , (1.81)

while the covariant derivatives of Z! and W read:

Vo2t A % (0.K) Z1, (1.82)
VoW = 0,W + (0.K)W. (1.83)

These transformations and Kéhler covariant quantities will be at the core of the constructions

presented in Section 1.6.

Fayet-Iliopoulos terms and R-symmetry

The supergravity action (1.73) discussed so far is invariant under the SU(2,2|1) supercon-
formal algebra, as well as under Yang-Mills gauge symmetries which commute with local super-
conformal symmetries. Yang-Mills symmetries are local internal symmetries of the embedding
Kahler manifold. Symmetries of Kéhler metrics are discussed in Appendix A.2. The main result

obtained here is that such symmetries are determined by real moment maps:

Pa(z2) = i (kG0aK (2,2) = 1a(2)) = —i (k40K (2, 2) = 7a(2)) (1.84)

9. If V does transform under complex coordinate transformations, that is if V' carries a or & indices, then the
Christoffel connection has to be added to its covariant derivatives.
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where r4(z) are arbitrary holomorphic functions, and k% are the holomorphic Killing vectors
characterizing each symmetries labelled by the index A. They are holomorphic functions of the
scalars { X!, = 0,...n}, and can be expanded on this basis according to k4 (X) = ki% Denot-
ing A4 the gauge parameters of the gauge transformations, infinitesimal gauge transformations

on the scalar fields { X!, I = 0,...n} are given by:

;ox1t

6XT = QAkAW = 04%1, (1.85)
while those on the coordinates {sg, 2%} are [10]:
1
62% = 04k5(2),  bsp= gﬂAsorA(z). (1.86)

We would like to study the relation between FI terms ir4 and the R-symmetry. To this purpose,
let us first compute the relation between the Killing vectors k% of the embedding manifold and
those k5 of the projective manifold. Using the relation (1.70) X = s9Z!(2%) and the chain rule,

infinitesimal gauge transformations on X! can be written as

X1 = 05021 (2%) + 50627 (2%)
= 55027 (2%) + 500270521 (2%)
1

= 30AsorAZI + 500 kS0, 27, (1.87)

where the last equality follows from the gauge transformations (1.86) of the physical coordinates

{s0,2“}. Expressing 74 in terms of the moment maps P4 using (1.84), we get:
1
sXT = 645 [3 (iPa + k%0uK) Z1 + k50,21 ]
= 045 [;PAZ] + kzvazﬂ , (1.88)

where in the second equality we have brought together the second and third term of the first
equality into the covariant derivative V,Z! (1.82). Identification with §XT = 04kl gives the

following relation between ki and k%:
kL = so [;PAZ] + kjﬂ;vazﬂ , VA (1.89)

We now use the invariance of ¥ under gauge symmetries, namely 63 = GAkIIL‘E 1 =0. Eq.(1.89)

therefore implies that

VA, 0 = S0

%PAZI n kf;vazf} >
= iPAW + kS W, (1.90)

where the last equality follows from the relations soX; Z = ¥; X = 3% = 3s3W and 502,V 2! =
VoY = 53V, W. Finally, using again the expression of the moment map P4 (1.84) as well as the
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covariant derivative V,W (1.83), we deduce that:
kX0 W (2) = —ra(z)W(z), VA. (1.91)

The relation (1.91) is of utmost importance for the physics of Fayet-Iliopoulos terms in super-
gravity. It tells us that the gauge properties of the physical superpotential W (z) are related
to the holomorphic functions r4(z). In particular, we find that if a Fayet-Iliopoulos constant
&4 = —ira(z) # 0 (that is, if the compensator field sg is charged under the gauge transforma-
tions according to (1.86)), then the superpotential W (z) cannot be gauge invariant under the
associated U(1) 4. This gauge symmetry is therefore a R-symmetry. We thus find back through

the superconformal formalism the result already derived in Section 1.4.3.

Anti-de Sitter supergravity

In the superconformal formalism, the Lagrangian of pure N’ = 1 supergravity is simply the

D-term of (1.73) with a vanishing Ké&hler potential and a = 3, namely

Lougra = —3[S00)] (1.92)

D )
with the chiral and anti-chiral compensator multiplets given by Sy = (s, P, Fo) and Sy =
(50, Pr, Fy). After gauge fixing the conformal symmetries, it yields the action [10]:

Sougra = / d's 5 [R(w(e, %)) = duy"* Doy + 64, 4" — 6FFy | (1.93)
with Dy, = <8,, + iwyab(e,wh“b) p. The complex scalar Fj and the real vector A, are the
auxiliary fields of the gravitational multiplet, corresponding to the auxiliary complex scalar
M and real vector b, introduced in the superspace formalism in Section 1.4.3. They can be
eliminated from the action using their trivial classical equations of motion Fy = 0, A, = 0. We
then find back the pure N/ = 1 supergravity action (1.18).

As explained in Section 1.3.2, the simplest extension of pure N' = 1 supergravity is the
so-called anti-de Sitter supergravity. It is obtained from the superconformal formalism by sup-
plementing the pure supergravity action with a constant superpotential of the projective space,
W (z) = Wy. The Lagrangian thus reads:

Lags = =3 [SOSO]D + [SSWO} (1.94)

.
Using the result (B.0.9) of Appendix B, the composite chiral multiplet with lowest component
seWy is given by

SSWO = Wo(sg, 388PLQQ, 38%F0—3SOQ()PLQO)
= (W()a 07 3W0F0)7 (195)

where in the second line we have used the S-gauge fixing condition Qg = 0 as well as the D and

T-gauge fixing condition (1.75) s9 = 5o = 1. Using (1.63), the new term in the action is given
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by:
_ 1 _
SWO = /d4l’ g |:3W0(F0 + F()) + 2W0w#’}/uy7,/)y:| . (1.96)
Considering the full action Saqs = Ssugra + Sy, the field equations for the auxiliary fields give

A, = 0 as previously, but now a non-vanishing Fy = % Using this expression for Fp in the

total action, we find:

€ n v " v
Saas = [ d'a & [Rlw(e, ) = 6" Dty + mapth i, — 24 (1.97)
with mg /9 = %, A= —%Wo2 = —3m§/2.

Again, we find back with the superconformal formalism a result already derived in Section
1.3.2: the value of the gravitino mass and the AdS cosmological constant are not independent
parameters, both of them being set by the constant superpotential Wy. In order to be able to
tune the cosmological constant independently from the gravitino mass, one might want to add
a constant FI term to the action (1.97). However, as explained in Sections 1.4.3 and 1.5.2, this
necessarily implies the gauging of the R-symmetry and so forbids the constant superpotential
written there. This issue motivates the construction of a new kind of FI term which does not

require the gauging of the R-symmetry, which is the topic of the next section.

1.6 Fayet-Iliopoulos terms in supergravity without gauged R-

symmetry

1.6.1 The original construction and an improved version

So far, we have discussed through the Freedman model in Section 1.4.3 and the supercon-
formal approach in Section 1.5.2 why, in N' = 1 supergravity, does a Fayet-Iliopoulos term
associated to a U(1) gauge multiplet require this U(1) to be a R-symmetry. However, in [14], a
new type of FI term which does not imply the gauging of the R-symmetry has been developped.
The idea is to replace the Freedman Lagrangian (1.41) by:

*CFreedman FI = _3/d4¢9E6%§V — —3/d4¢9E + »Cnew FI, (198)

with B
W22
DQwZ@Z W2

Let us first look how such Lagrangian produces a constant FI term in the case of global su-

Loew F1 = 8¢ / d*0E DW,,. (1.99)

persymmetry. Putting the gaugino A to zero, the component expansion of the square of the

supersymmetric field strength is '’

1 v
WQ‘AZO = (D? = P )0 (1.100)

10. Up to the Chern-Simons term ie“”p"FWFpg which does not play a role in this discussion and is thus
discarded.
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W2W? already being a 6202 term, only the lowest components of the remaining superfields

entering in the Lagrangian (1.99) will play a role in the integration. They are given by

DW,| = —2D, (1.101)
DW?| = 2F"F,, - 4D, (1.102)

where X| denotes the lowest component of the superfield X. In global supersymmetry, the

bosonic part of the new FI Lagrangian is thus given by

2792 DQ—lFMVFI,Q
85/ DW= s 2 )

D2W2D2W? (2FHv Fpy, — 4D?)? (=2D) + 0N, A) = —€D +EO(A, ),

(1.103)
which is a constant FI term. One can henceforth notice that this term makes sense only when
(D) # 0: supersymmetry is thus spontaneously broken by a D-term, and the goldstino is iden-
tified with the gaugino A.

In order to discuss the supergravity generalisation of this new FI Lagrangian, we now
adopt the superconformal formalism presented in Section 1.5. In this formalism, denoting Sy =
(50, PLQo, Fy) and Sy = (30, PrQo, Fy) the chiral and anti-chiral compensator fields, with con-
formal weights (1,1) and (1, —1) respectively, the new FI Lagrangian (1.99) reads:

W22

Lrr=—§|So0 OW(V)D . (1.104)

¢ is a constant parameter, (V)p is a real linear multiplet defined by
(V)p = (D, DA, 0, D Fp, —PPA, ~0°D), (1.105)

whose lowest component D is the real auxiliary field of the vector superfield V, the latter having
(anti)-chiral field strength (W) W given by

APL A W — APrA

2 _
W - Sg ) - S(Q) )

(1.106)

so that (V)p is given by the super-covariant derivative of W. The chiral projection operator
T acts on an anti-chiral multiplet X of weights (1, —1) to produce a chiral multiplet T'(X) of
weights (2, 2) according to:

T:X=(X,PrQ),F) — T(X)=(F,DPrQ,0°X). (1.107)
AP\ has weights (3, 3) and reads, in components form:

_ _ 1 . _ N
AP\ = </\PL>\; V2P, (—27 Py z'D) N2APLPA+ F~ P — D2> , (1.108)
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with the covariant field strength F,, and the self-dual and anti self-dual tensors [’ aib given by

DN | =

Fab = 6565(28[MAV} + 1[)[”’71,])\), ﬁ; (ﬁab + Fab)- (1.109)

The dual field strength is léab = —%ieabcdl*%d, while the covariant derivative D, A is defined by

3 1 3. 1 N 1.
DA = (aﬂ _ §bu + szb%b _ 22%/4“) A\ — <47abpab + 227*D) Yy (1.110)

As discussed in Section 1.5.1, the fields b, wzb and A, are the gauge fields corresponding to
dilatations, Lorentz transformations and 7" symmetry of the conformal algebra respectively. In
this subsection, we summarize the results obtained in [14, 16]. The technical details are postponed
to Section 1.6.2, which presents a generalization of the scalar potential obtained in these two

papers that has been carried out during this first project.

Let us first consider the Lagrangian of Anti-de Sitter supergravity, described in Sections
1.3.2 and 1.5.2, coupled to an abelian U(1) gauge multiplet plus the FI term (1.104). The full

Lagrangian reads:

_ 1 o
- _ 3 _
L=-3 [SOSO]D + [SOWO}F 1 [APLA}F + Lrr. (1.111)
Supersymmetry is broken via a non-vanishing VEV of the D-auxiliary component of the vector
multiplet driven by the linear term in D, with the goldstino being the U (1) gaugino. In component
form, after having gauge fixed the scalar compensator through sy = 1, integrated the auxiliary

fields, and in the unitary gauge where the goldstino vanishes, one gets [14]:

_ 1 - - 1 1
e L= (R — P Dy, + m3/21/1u7m'1/)u> - 4—ngWFW - (—3m§ Jo + 2§2> . (1112)
with mg /s = %, a constant superpotential. Therefore, in the absence of chiral matter superfields,
any ¢ # 0 uplifts the vacuum energy by a constant term Vp; = £2/2 and breaks supersymmetry.
One can then tune ¢ to get a de Sitter vacuum configuration, matching with the observational
data. For instance, £ = v/6ms /2 gives a massive gravitino in flat Minkowski spacetime with

spontaneously broken supersymmetry.

Introducing chiral matter multiplets X in the previous model, the Lagrangian is now given

bv:
' 1

£— s[5 S*Oe—K(X“@/?’]D + [sgwixh)] | i

[XPLA]F + L. (1.113)

In component form, after having gauge fixed the scalar compensator through sq = e%/6 and
integrated the auxiliary fields, the bosonic part of the previous Lagrangian reads [14]:
ezl —ir- Lpwp, _cooxiiaxi- K (VW2 = 3|W ) + @62/?“ (1.114)
bos 2 4g2 i Y ! 2 ' .
Therefore, when matter fields are coupled, the scalar potential contribution from (1.104) becomes
field dependent, Vr; = #eﬂ{ /3, and no longer Kihler invariant, which basically comes from the

fact that the FI Lagrangian (1.104) is not itself Kahler invariant. To remedy this, a generalized
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Kahler invariant FI term has been built in [16]. From the generic Kéhler transformations for a
Kahler potential K (X, X ), a superpotential W (X) and the compensator Sy,

K(X,X) —» KX, X)+J(X)+ J(X),
W(X) — W(X)e /), (1.115)

S() — S()@J(X)/3,

this new construction is based on the modification of the FI term (1.104) by introducing in it

the Kéhler potential according to

__ 5 o~ K/3y-3 APLA)(APRA)
Lrr=—¢ (S()S() ) T(W’Q)T(W’Q) (V)D D. (1.116)

The modified and henceforth Kéhler invariant gauge field strengths are given by '!

AP\ _ APp)\
Wi=__ -2 W2 ___ = 1.117
(SQSO€_K/3)2 (SoSoe_K/3)2 ( )

£2g%
2 )

which is constant whether matter fields are included or not. The first aim of the project presented

The new bosonic contribution to the scalar potential arising from this new term reads Vp; =

in this chapter has been to generalise the work carried out in [14, 16] by building the most general
extended FI terms whose bosonic component is linear in the auxiliary field D, up to a general
field dependent coefficient, while preserving Kéhler invariance at the same time. This work is

presented in the next subsection.

1.6.2 A set of Kihler invariant Fayet-Iliopoulos terms

The starting point of our new construction is to modify the field strengths (1.106) by intro-
ducing the superpotential W in order to make them Kéhler invariant. This can be done in the
following way '*: -

" APLA

B APRA
S2W(X)3

V2
w 5
3

= A (1.118)
S§W(X)

I

where the % exponent of W (X) is uniquely fixed by the Kéhler transformations (1.115) to get
Kihler invariant W2 and W2. The superpotential W has vanishing Weyl and Chiral weights
and is assumed to have a non-vanishing VEV. Therefore, W? and W? have the same (Weyl,
Chiral) weights (1,1) and (1, —1) as those of (1.106), and one can thus still apply the (anti-)
chiral projection operators (T') T. The resulting multiplets T'(W?) and T(W?) then carry weights
(2,2) and (2,—2). The operation | |p has to act on a multiplet of weights (2,0). (V)p having

already weights (2,0), we need to multiply it with a multiplet with vanishing weights, which
—1 APLA)(APRrA)
h T(W2)T(W?)
(3,3) of Sp and AP\, respectively. The Kéhler potential K and the superpotential W having

vanishing weights, we can include them for free in the previous combination in the following

can be chosen (SoSp) as it can be easily checked knowing the weights (1,1) and

11. Note that these superfields are no longer chiral, contrary to the previous ones of Eq. (1.106).
12. Besides Kéahler invariance, the new gauge field strengths (1.118) are again chiral like those of Eq. (1.106).
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form:

o (APLA)(APRA)

— qQ 71€nK aTy, VAN
R(V)p = (S050) wew TOV)TOV?)

(V)p, (1.119)

where at this point the parameters n and « are arbitrary. As it can be seen from (1.115), the

quantity R(V)p is Kéhler invariant provided that n and « are related by

1
n=z+ta (1.120)

Therefore, the most general Kéhler invariant FI term involving both the Kéhler potential
and the superpotential is in fact a set of Lagrangians labelled by one free parameter « according

to:

(1.121)

o G \—1 (L = o APLA)(AP.
L) = ¢, l(SOSo) 1t ypagye ALLAALR) ) 1 .
D

TOW2)T(W?)
We now add a series of terms (1.121) in A/ = 1 supergravity coupled to the U(1) gauge multiplet
(whose gauge kinetic function is chosen to be one for simplicity), plus a set of matter chiral
multiplets denoted generically {X}. Before gauge fixing the superconformal generators, the

lagrangian for this model reads:

1

L=-3 [S 13 eK()i’X)} + [siw (X))
o 020 D 0 F 4g2

AP+ Z[,;?;), (1.122)

where the sum is running for now over an arbitrary set of parameters «;.

We are interested in the contribution of Eq. (1.121) to the scalar potential, and in particular
we would like to check that Kéhler invariance is preserved. For simplicity and in order to highlight
the cosmological applications, we focus on the bosonic sector. The contribution to the fermion
masses arising from these new FI terms is studied in Appendix C. Putting all fermions to zero

for now, the remaining components of the chiral multiplet APy given in Eq. (1.108) are:
AP\ = (o, 0, F~ - F~ — D2) . (1.123)

With the chiral and anti-chiral compensators Sy = (s, Pr.Q0, Fo) and Sy = (50, PrQo, Fp), one
can use the composition laws (B.0.9) to find the bosonic components of the composite chiral
and anti-chiral multiplets Sy NP\ and ga INPrX:

SyIAPLA = (0, 0, sy {(F~ - F~ — D%)

= (0, 0, =255 (F~-F~ = D?), 0, 0, 0, 0), (1.124)
Sy 'APRA = (0, 0, 5, (F* - F* — D?))

= (0, 0, 0, =25, (F*-F* —D?0, 0, 0). (1.125)

Similarly, the bosonic components of the chiral superfield W2 given in Eq. (1.118) are:

W2 = (0, 0, sg?W =5 (F~ - F~ - D), (1.126)
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from which we deduce the components of the anti-chiral superfield T(W?):
TW?) = (sg®W=5 (B~ - F~ = D%, 0, 0). (1.127)

The product of the multiplets (1.124) and (1.125) already being a 6262 term, only the lowest
components of the remaining quantities entering in the Lagrangian (1.121) will contribute to

the bosonic sector. We can therefore rewrite it as:

(5+ai) Koy ai
a; e s WaiWwei D
LE) = —g—— — Rlp, (1.128)
(s080) 2(WW)"3(F~ - F~ — D?)(F* - F+ — D?)
with the real multiplet R defined as:
R = (Sy ' APLA)(Sy ' APRN). (1.129)

Looking at the seven-components notation (1.124) and (1.125) for the multiplets Sy 'APLA and
5(; IXPgA and the multiplication law (B.0.8), we see that the only non-vanishing bosonic term

of R arises from % fij K ‘17 in its D-component. More precisely, it reads
(R)p = %finiHj _ %fglel = 9(sese) " M(F- - B — DY)(BF- Bt — D). (1.130)
The operation [ |p defined in (B.0.7) immediately leads to
[Rlp = g(R)D = e(sod0) " Y(F~ - F~ — D*)(F* . F+ — D?). (1.131)
The FI Lagrangian (1.128) is therefore given by:

eilﬁgj}i) = —§i$0§06(ai+%)K(WW)ai+%D. (1.132)

Since we are interested in matter coupled N’ = 1 supergravity, we use the Einstein frame where
the conformal symmetry is gauge fixed through sy = 59 = ¢ . This leads to a set of Kahler

invariant terms parametrised by some constants {«;, &} according to:
e L) = e TSy eti D = —gelt3)9D, (1.133)

where G = K + In|W|?. Therefore, after gauge fixing the conformal symmetry and integrating

out the auxiliary fields, the pure bosonic sector arising from the Lagrangian (1.122) is given by

11 5
e LB = SR = P — G, ;0x1-0x7 —v (1.134)

with the scalar potential
V=9 (019 G 0,6 - 3) + V1. (1.135)

The new FI contribution to the scalar potential, Vg7, arising from Eq. (1.133) reads

2
Ver = % (Zfie(af+§)g> , (1.136)
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which is obviously Kéhler invariant while field dependent at the same time.

The above construction therefore provides a way to obtain an arbitrary set of (Kéhler in-
variant) FI terms from a single U(1) gauge field, in the presence of a superpotential W with
non-vanishing expectation value. Each term of the sum is parametrised by two real constants &;
and «;. A constant FI term is obviously recovered by choosing one «;, = —2/3. For this value,
the bosonic part of the Lagrangian (1.121) is equal to the one of the Lagrangian (1.116). Being
independent of W, it is in particular valid even for vanishing superpotential, like the new FI
term (1.116). However, it is not clear that the fermionic parts of the Lagrangians (1.121) and

(1.116) are equal, as well, for a;, = —2/3.

A general sum appearing in the Lagrangian (1.122), involving terms of the form (1.133),
using that e9/2 = my /2 [X], amounts to adding a general function of the gravitino mass mg /2 [X]
considered as a functional of the scalar fields {X }:

2
(B)

e Ly = —f(mgp[X])D  — Vrr= % | f(ms3/2[X]) 2 (1.137)

This construction allows us to refine the scalar potential by adding new field dependent and
Kahler invariant terms. In the following, we will restrict ourselves as an illustration to the study
of the simple case of one term of the type (1.133) up to an additive constant, corresponding
to the choice i = 1,2 with oy an arbitrary parameter and oy = —2/3. Considering the Kéhler
potential of no-scale type and a constant superpotential, we will show that this choice is sufficient
to produce inflationary models compatible with the slow-roll conditions and consistent with the
CMB observations, with the inflaton rolling towards a de Sitter vacuum with tuneable energy

and spontaneously broken supersymmetry.

1.7 No-scale models and cosmological applications

In this section, we study the cosmological consequences of the previous modified FI-term
construction in the case of simple no-scale models. Considering one chiral superfield X associated

to the inflaton, we successively choose the Kéhler potentials
KX, X)=-In(X+X) and K(X,X)=-3In(X +X), (1.138)

together with a constant superpotential W = Wy and an exponential one W (X) = e?X, respec-
tively. In the context of string theory, these forms of Kéhler potentials arise in all toroidal/orbifold
compactifications as well as in the large volume limit of Calabi-Yau compactifications, both in
heterotic string and in type II orientifolds. In this context, the first K&hler potential could de-
scribe for instance the kinetic term of the dilaton, associated to the string coupling, while the
second may describe the internal volume of the 3-complex dimensional compact space. We will
therefore refer to the “dilaton case” and “compact volume case” to describe these two models.
From now on, we also restrict the sum (1.136) to only two terms parametrised by three constants

&1, a1 = a and &, while ag = _%.
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1.7.1 Dilaton case

We first consider the Kahler potential K = —In(X + X). In terms of the gravitino mass
mg /2= Y, this yields the scalar potential:

1 2
V= —2miy + 5 (a0m3p) P &) (1.139)

where we have redefined the parameters & to absorb the gauge coupling constant g. As we
will show below, there is a region of the parameter space &1, & and «, such that the above
potential has an inflational plateau allowing slow-roll inflation compatible with the cosmological
observations, and a minimum, where supersymmetry is spontaneously broken, with a tuneable
vacuum energy by a fine tuning of the parameters (for instance to obtain a vanishing cosmological
constant in the vacuum).

In order to compute the slow-roll parameters, one needs to work with the canonically nor-
malised field y, defined by its kinetic term through

m = %@LXa“x + ... (1.140)

where the dots denote terms containing the imaginary part of X, which has no influence on the
discussion of this section. We will come back to it in Section 1.7.3, where the shift symmetry
associated to this imaginary part will be gauged by the U(1). Focusing on the real part for now,
we deduce from (1.140)

ReX = eV2x, (1.141)
and thus )
M3, =¥ = m;O' emV2x, (1.142)

In the following, the ‘dilaton’ y will be identified with the inflaton, dynamically driving infla-
tion starting from a large value, slightly rolling down along the potential, attaining the horizon
exit denoted by x. and ending at a value yenqa Wwhen slow-roll stops. The field then continues to
fall down towards the minimum, when reheating takes place. From now on, quantities observed

at the horizon exit are specified with a star *

, and the approximation of large inflaton field
X >> 1 is assumed in this region '*. The gravitino mass (1.142) vanishes exponentially and the
potential (1.139) for a > —2/3 is therefore dominated by a constant, as required by slow-roll
inflation. In the following, we will thus restrict to the region o > —2/3, with V, ~ % In terms

of the canonical field y, the slow-roll parameters are given as usual by

2
SRYCULNL L 19
At large field x, by further assuming o > 1/3, they can be expanded into
4m§/2 2 1, 8m§/2
s < & ) erat 2T & (1.144)

13. x >> 1 corresponds to weak coupling, which is necessary for the validity of an effective supergravity theory.
However, the large field approximation is not really needed; instead, the required condition is that msz,o — 0.
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Actually, the large field condition is not really necessary. The required approximation is that
the gravitino mass (1.142) should be small during inflation, so that the potential (1.139) is
approximately constant. This is an important point, implying that the models we study are
consistent with small field inflation, avoiding trans-planckian initial conditions for the normalised
inflaton field.

A central quantity to be taken into account in inflation is the number N of e-folds between
the horizon exit and the end of inflation, a period observable through the CMB. This quantity,
which must be set within the range [40, 60] to satisfy CMB observations, is given by:

Xend dX
Xox 2¢(x)

N:

€ [40,60]. (1.145)

Two other observable quantities at the horizon exit are the amplitude of primordial density
fluctuations Ag and the spectral index, or tilt ns, respectively given by
Ag = Vi 994 1079, (1.146)
2472e,
ng = 14 2n, —6e, =0.96, (1.147)

where the numerical equalities also follow from the CMB data.

To be consistent with observations, the inflaton potential during inflation should respect
the three conditions (1.145), (1.146) and (1.147), which we now use in order to constrain the
three parameters &1, {3 and a. In the large field limit at the horizon exit, the tilt (1.147) gives
ng =14 2n, — 6e, ~ 1+ 2n, — %nz ~14+2n.=1- 16m§?2/§% ~ 0.96, from which we deduce
that 3 ~ 400m§32. Moreover, the amplitude (1.146) leads to 76§ﬂ2 mé%z = 2.2 x 1072, Therefore,
in the large field limit, the & and « dependence drops, and one can immediately find from these

two relations the numerical values for the parameter £ and the gravitino mass at the horizon

: *2 .
exit mj /2 namely:

¢2 1.04 x 10710, (1.148)
mij, = 2.6x 107" (1.149)

From the value of € at the horizon, given by the first equation of (1.144), and the two relations
(1.148) and (1.149), we find the predicted value for the tensor-to-scalar ratio of primordial

perturbations to be:

16m:2,\ 2
r = 16¢, ~ < j”) =1.6x 1073, (1.150)

which is fixed and independent of any parameters of the model, as long as a > 1/3 is considered.
14

On the other hand, the condition to have a (almost) vanishing potential at its minimum **,
for a value of the gravitino mass denoted m§ /2 in what follows, can then be used in order to
determine the parameter & in terms of a.. This is obtained by numerically solving V(m3 /2) =0,

with the result denoted & () in the following. In order to constrain the last remaining parameter

14. This is obviously an approximation since the cosmological constant is extremely small but nonzero. But the
point to keep in mind is that in this model, the cosmological constant can be tuned to any small positive value.
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a via the number of e-folds equation (1.145), we first need to determine the value of the inflaton
field at the end of inflation, depending on «. Inflation stops when y reaches a value yenq such
that €(Xend) = 1 or |7(Xend)| = 1. In this model, the condition first fulfilled turns out to be
N(Xend) = —1, which leads to the equation:

1 2\?
o - G (e 3) )

—&1(@)éa(mj end)a+2/3 (1 +2 (a + §>2> - 523 = 0. (1.151)

This equation is solved numerically to get mg /gnd in terms of a. The number of e-folds is then

used in order to determine the parameter «. Indeed, equation (1.145) becomes:

2
Ny = L [ —tmy + e )+ 6 indyy
Thz,  2m2, — (a+ DEH)(m2 1B — (a + 2)&1(a)Ea(md )22 w2,
(1.152)

Using mg /gnd given by the largest solution of Eq. (1.151), the value for &2 (1.148), and the
expression for & () given from the solution of V(1 /2) = 0, the above integral can be numerically
evaluated in terms of «. It turns out that any « larger or approximately equal to 1 leads to an
acceptable e-fold number N € [40, 60]. Thus, the only fine tuning of the model, besides fixing the
overall scale of the potential by its asymptotic value determined by &», is related to the vacuum
energy. The gravitino mass at the minimum of the potential /3,5 can be between 10'°TeV and

the Planck scale by choosing a between 1 and 10.5 respectively.

As an illustration, we now choose o ~ 1, which gives &1 (o = 1) ~ 10!, 15 With these values,
the scalar potential and the slow-roll parameters are plotted in terms of y in Figures 1.1 and
1.2 respectively, where we have also set Wy = v/2. The vertical grey lines indicate the horizon
exit and the end of inflation (from the right to the left). The corresponding numerical values
for the gravitino mass are m§?2 =2.64 x 10713 and mg‘;gd = 1.56 x 10~ in Planck units. The

minimum is reached at ﬁzg j2 = 5.29 x 1071, The associated values for the inflaton field are

X= = 2048+ J51n WOl Nena = 17.59 + 5 In WOl and ¢ = 16.73 + I Mo Notice that the

values of the mﬂaton can be made less than one for an appropriate choice of Wy, as we already

mentioned in the begining of the section. Finally, note that because of the space-time curvature
during inflation, the value of m3/, entering in the Lagrangian is not the physical gravitino mass,
which should be computed taking into account the curvature contribution in an approximate de
Sitter spacetime [30, 31].

The spectrum at the minimum contains the imaginary part of X and the U(1) gauge boson,

which remain massless in this model, as it can be seen from the expression of the scalar potential,

15. Despite the large value of &, one can check that the approximation V. = £2 /2 at the horizon, assumed in
the computation of the tilt and of the amplitude, is valid. Indeed, with the numerical values a ~ 1, & ~ 10'%,

—5 2 13 €1 (m37,)+2/3 _5
&2 ~ 107" and m3;, = 2.64 X 10777, we get 3 ~6x107°.
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Figure 1.1 — Scalar potential as a function of Figure 1.2 — Slow-roll parameters € and 7 as
the canonically normalised field x, for a« = 1 a function of y, for a =1

as well as the massive gravitino and inflaton whose masses are given by:

2
_ o =246 x 10710, (1.153)

~ 11 ~
M3y =5.29 x 1071, = G

2
X
X=Xmin
There is also a massive spin-1/2 fermion corresponding to a linear combination of the U (1) gaug-
ino and the fermionic component of the inflaton superfield, orthogonal to the Goldstino direction.
Indeed at the minimum, supersymmetry is spontaneously broken by a non-vanishing expectation
value of both a D and F-term. The Goldstino Prv is thus a linear combination of the gaugino
A and of the chiral fermion Q: Prv = %QXgX)—(FX — %DPL)\, with FX = —eK/ZgXXVXW,
evaluated at the minimum. In order to compute the direction of supersymmetry breaking, we

consider:

IFIl = FXgxgFX = /e90xGGXX03G = my)o, (1.154)
ID| = &e?* + & = &(m3,)"° + &. (1.155)

At the minimum, we have:

D - - _
HFH = [61(m3)5)7/° + &2(A3 p) /2] > 15, (1.156)
m3 /2

where we have used the values & = 10, & = 107° and m§/2 = 5.29 x 10~ obtained previously.
At the minimum, the Goldstino is thus an approximately equal mixing of the chiral fermion (2
and the gaugino A.

The computation of the fermion masses is detailed in Appendix C. The mass squared mfc of the
physical fermion which remains after elimination of the Goldstino is given in Eq. (C.0.36). For

p = 1, its numerical value at the minimum where m§/2 =5.29 x 10~ is (in Planck units):

m$ =5.9x 107" (1.157)
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1.7.2 Compact volume case

In this subsection, we consider the no-scale model with Kéhler potential K (X, X) = —31In(X+
X ). If one takes a constant superpotential as in the previous subsection, the F-term of the scalar
potential will vanish, and the new Fayet-Iliopoulos term will be ill-defined at the minimum, where

D now vanishes 16

. Instead, we consider a superpotential of the form W(X) = ePX | with 8 a
real constant. Note that the the imaginary shift of X becomes now a (global) R-symmetry [20].

The full scalar potential is then given by:

(&1(m3 o)+ + 52)2. (1.158)

V=ml, {—3+;(5(X+X)—3)2] +%

Choosing 8 << (X + X)~!

well as during the inflationary period. However, outside of the inflationary plateau, the D-term

, the first term of (1.158) can be neglected at the horizon exit as
*

starts decreasing significantly and the F-term cannot be neglected anymore. Supersymmetry at
the minimum of the potential is then spontaneously broken by non-vanishing expectation values
of both D and F-terms, and a tuning of the parameters would be required in order to get a
vanishing potential at its minimum, as in the previous case studied above. We will not study
this region in the following, focusing on the inflationary period where the F contribution to V

can be neglected and the scalar potential is only given by its D-term:
1 2
Vlina, = 5 (51 (m§/2)a+2/3 + 52) . (1.159)

Now the normalised field y and the gravitino mass are given by:

2 2
ReX:e\/gx - om?2 Wi = Wi e Vox

_ _ 1.1
COBR T X+ X)) 8 (1.160)

Like in the previous subsection, the potential at the horizon exit, where x >> 1 is assumed ',
is given by V, = £2/2. The slow-roll parameters expanded in this limit read:
1268 (0 + §)2(m3 )0 1261 o+ 3)%(m3 )8

= ~ 1.161
x>>1 & NSS! € ) ( )

€

and thus 7?2 §>1 12(a+ %)26. With these two quantities, the tilt and amplitude analysis yields:
X

1 1.02x 108
51 (Oé+2/3)3 '

_6x10°°

fg(a) = m , (m§?2)a+2/3(§1’a) = (1162)

The gravitino mass at the end of inflation, mg /62nd, is still given by the condition n(mg /‘3nd) =

16. Of course, the vanishing of the F-part of the scalar potential is a tree-level result and can be circumvented
by considering quantum corrections in the Kéhler potential.

17. x >> 1 now corresponds to a large volume of the compact space, which is compatible with the effective
theory where higher derivatives are neglected.
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41, which is now solution of the equation:

22 endy2a+4/3 [ 1 2)? 2 endya+2/3 2)\° £a()?
El(m3/2 ) §:F12 Oé-{-g +£1§2(a)(m3/2 ) 1:|:6 Oé—{—g +T:0
(1.163)
This can be solved analytically at fixed «, yielding:
o 1 2/3)? —2 2 2/3)2+£1
( %/%nd)i+2/3(§ ,Ot) — _52(0‘) % + 6(0& + /3) \/g(a + /3)\/3(05 + /3) ' (1164)
&1 1 F 24(a +2/3)?
On the other hand, the number of e-folds is given by:
2
Ne() = | migt G [Gmd ) P+ ()] e 165
(o) = ——~ ) :
200+ 2) Jmgtyerey  EmE P+ GEa(a) (2 )" 2 md
1
which is independent of &1, as can be seen from the change of variable m% jo = m% /2§f‘ 275 and

by using the second equation of (1.162) and Eq. (1.164).

Two regions for a have to be considered: (i) —% <a< @, where n(mg /an) =1 is first

fulfilled, and where the gravitino mass at the end of inflation and the number of e-folds are

respectively given by (m3 /‘;nd)+ and Ni; (i) o > \/33_2, where 7(m3 /%nd) = —1 is first fulfilled,
and where the gravitino mass at the end of inflation and the number of e-folds are respectively
given by (mg /‘;“d)_ and N_. Both e-fold numbers are plotted in terms of « in Figures 1.3
and 1.4. Any a & —0.46 leads to an acceptable N € [40,60], while the parameter £; remains

undetermined. From the value of € at the horizon given by the first equation of (1.161) and

E-folds number N E-folds number N
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Figure 1.3 — Number of e-folds IV, as a func- Figure 1.4 — Number of e-folds N_ as a func-
tion of «, for —% <a< @ tion of a, for av > @

the two relations (1.162), one sees that the predicted value for the tensor-to-scalar ratio r of

primordial perturbations remains independent of &1, and depends only on a:

12(a +2/3)°€E (m3},)* 3 (61,0) 5.4 x 1074
&(@) (e +2/3)2

r(a) = 16 e.(a) = 16 (1.166)

Thus, o can be chosen such that the tensor-to-scalar ratio is large and close to the experimental
bound, for instance r(a = —0.45) ~ 1072 with N4 (a = —0.45) ~ 41.
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1.7.3 Gauging the axion shift symmetry

In the two previous models, the spectrum contained two massless particles: the imaginary
part of the complex inflaton field X, and the U(1) gauge boson A,, which is an unwanted
phenomenological property. This can be avoided by gauging the imaginary shift symmetry by
the U(1). Under a gauge transformation A, — A, — 20, A, one then has for the complex scalar
X — X +ic), with X\ the gauge parameter and ¢ a constant related to the charge e® of the field
eX. In terms of superfields, this transformation reads X — X + cA, with A a chiral superfield
gauge parameter. The gauge transformation of the vector superfield V is V. — V —A—A. In order
to keep a gauge invariant Kihler potential with shift symmetry, K(X + X) must be modified
as:

KX+X)=KX+X+cV). (1.167)

Note that this modification does not change the pure bosonic part of the FI Lagrangian (1.121).
Indeed, when fermions are put to zero, the only non-vanishing components of the chiral multiplets
APr )\ and APg) are their 00 and 00 components. Therefore, only the lowest components of the
other superfields involved in (1.121) contribute to the bosonic sector, and the lowest component
(at+3)

of e K does not receive additional contributions from ¢V in the Wess-Zumino gauge.

In order to see how a massive gauge boson arises from this gauging, we work in global
supersymmetry and compute the (bosonic) new terms appearing from this modification. Putting

fermions to zero and expanding in components, we have

_ _ 1 4= o
X+ X+cV| =2ReX —05"0(cA, +20,ImX) + §9292(cD — 0*ReX) + 0%F + 6°F, (1.168)

bos

from which we deduce:

"

_ K’ K _
KX +X+cV)| ., =45 (cD~ 0*ReX) — (A + 20,ImX)* + K"FF. (1.169)

022

It follows that

/ dOK(X + X + V) = / dOK(X + X) - fK”AMA“ ~ K" A,0"ImX + SK'D + fermions.

(1.170)
As a result, there is a mass term for the gauge boson A,;, as well as a new field dependent FI term
—&(X)D, with £(x) = —cK’/2. It modifies the D-term of the scalar potential (1.136) according
to D = ¢? [—cK’/Q + Z&'e(aiﬂ/g)g}, which leads to the following D-term contribution to the
scalar potential: '

9 2
Vi = % (Z&e(aﬁ?)g - gK’> . (1.171)

It is easy to show that the extra contribution proportional to ¢, due to the gauging of the shift
symmetry, does not alter the inflationary predictions discussed in the previous section, when
restricting the D-auxiliary field to only two non-vanishing terms, as in the previous section.
Consider for example the compact volume case with a Kihler potential K = —3In(X + X).

The second term in (1.171) then becomes proportional to mgg which may be identified as a
particular case of the potential (1.159) studied before for & = —1/3 and & = (3¢g)/(2|Wo|¥/?).
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&» can then be obtained from the first sum in (1.171) by choosing one non-vanishing term, say
& with ag = —2/3. The analysis is then reduced to the one of the last section, in the compact
volume case with a fixed value of the parameter a = —1/3, which is within the allowed region
of the parameter space compatible with observational data, as seen in Fig. 1.3.

Let us finally consider another example inspired by the heterotic string with X identified
with the string dilaton, as in the first model considered in the previous section, where its axionic
imaginary part is dual to the Neveu-Schwarz antisymmetric tensor in four dimensions. In this
case, the constant c is related to a U(1) anomaly which is cancelled by a Green-Schwarz term.
The gauging of the shift symmetry is a consequence of the anomaly cancellation and the axion is
absorbed by the U(1) becoming massive and no massless particle remains in the spectrum [32].
The gauge coupling is not anymore constant but is fixed by X: g> = 1/ReX, corresponding to a
gauge kinetic function linear in X. The scalar potential can be easily obtained from Eq. (1.171)
using K = —In(X + X) and the expressions (1.141) and (1.142):

e—V2x
2

2
V= —2m3, + <Z€i€(ai+§)g + Ze\/?x> : (1.172)

Again we restrict the D-term to only two non-vanishing contributions. In order to get an asymp-
%, while a1 = % is chosen to be able
to absorb the constant ¢ in &. We obtain in this way a potential with the same form as in

Eq. (1.139):

totically constant potential at infinity, we choose ag = —

1 2
V= —2mi, + 5 (60m3)Y +6) (1.173)

where we have defined &} = 511/‘}? + \/chg and &) = %V\f-

The potential is thus the same as the one of Eq. (1.139), with o = %. This is an acceptable
value since it leads to a number of e-folds N(5/6) ~ 51. The numerical predictions obtained in
Section 1.7.1 are not modified by the gauging of the shift symmetry. The main improvement is
that now the imaginary part of the inflaton has been absorbed by the U(1) gauge boson which
acquires a mass. In order to compute this mass, one needs to rescale A, — gA, so that the
gauge field kinetic term becomes canonical. After this rescaling, the gauge boson mass square
reads:

B—Sﬁx ) 96

m%(x) = g ¢ = §c2. (1.174)

With the values of x at the horizon crossing and at the minimum found above, we get m124 in

terms of the parameters ¢ and W:

2

m = 184x 10798 (1.175)
0
C2

m%md = 3.05 x 10—34ﬁ, (1.176)
0
02

mh = 1.93x 107 —, (1.177)
0

which can therefore vary in a large range of values consistent with all experimental bounds. The

rest of the masses do not present any significant change from the previous analysis in the dilaton
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case without the gauging.

1.8 Conclusion

In this first project, we generalised the construction of new FI D-terms in N' = 1 supergravity
that do not require the gauging of R-symmetry and preserve invariance under ordinary Kéhler
transformations. Their bosonic part is just linear in the D-auxiliary field with a multiplicative
factor which is an arbitrary function of the gravitino mass, expressed as a functional of the chiral
multiplets. We then used these terms to construct new models of D-term inflation. Considering
just a U(1) and the inflaton multiplet with a no-scale Kéhler potential and constant superpo-
tential, we restricted to a simple form of the function associated to the new FI D-term which is a
single positive power of the gravitino mass up to an additive constant. The later dominates the
inflationary period by an asymptotically de Sitter regime, because the gravitino mass vanishes
asymptotically in this region. The resulting models are consistent with observational CMB data
and share common properties with the Starobinsky R? model [33] on one hand and with the
models of inflation by supersymmetry breaking on the other hand, where the inflaton is identi-
fied with the superpartner of the goldstino [15, 20]. Moreover, they predict a variable range of
primordial gravitational waves that can be within experimental reach. After the end of inflation,
the inflaton rolls down to the minimum of the potential which has a tuneable (tiny) vacuum
energy and supersymmetry is broken by a combination of F and D-term VEVs. An interesting
open problem is whether there exists a microscopic origin of these new FI D-terms, for instance

within string theory.



CHAPTER 2

Compactification on a linear dilaton

background

2.1 Introduction

Little String Theory (LST) is a 6-dimensional non-gravitational theory, obtained for instance
in type IIB or heterotic string theory by considering a stack of k coincident (Neveu-Schwarz)
NS5-branes, in the limit of vanishing string coupling constant gg [34, 35, 36, 37]. With closed
string amplitudes being proportional to gg, in this limit the branes and bulk dynamics decouple.
However, and in constrast with the D-brane case, the gauge coupling of the effective U (k) gauge
theory on the NS5-branes is independent of gg and therefore remains finite in the limit gg — 0.
We are left with an interacting non-gravitational theory living on the NS5-branes.

Being a non-local and strongly coupled theory without any Lagrangian description, LST is
easier studied through its 7-dimensional holographic dual, obtained in the near horizon limit
of the NS5-branes. It is a weakly coupled string theory on the background R>! x Ry, with
the dilaton varying linearly in the coordinate y of the real line R, [38]. The main features of
LST phenomenology can be captured in a simpler model where two dimensions of the bulk are
compactified on T2, leading to a gravitational holographic dual of LST on R3! x Ry, whose action
is a simple graviton-dilaton model with a runaway scalar potential [39, 40].

The vanishing limit of the string coupling constant leads to an interesting phenomenological
application of LST in the context of the hierarchy problem [40, 41]. The string scale can be indeed
separated from the Planck mass to much lower energies, such as in the (multi)TeV region using
an ultra-weak string coupling. The hierarchy problem then amounts to explain the smallness of
the coupling [42]. This question has also been addressed more recently in the so-called clockwork
mechanism [43, 44], which was shown to have as continuum limit the five-dimensional (5D) linear
dilaton theory [45, 46, 47].

In order to obtain a finite string coupling and thus a four-dimensional Planck mass, the extra
dimension R, is compactified on a segment S 1/Z5. The dimensional reduction on a linear dilaton
(LD) background reveals very distinguishable features. In particular the generic spectrum, such
as that of the graviton, is a massless 4D zero mode with a flat wave-function along the extra
dimension, followed by an infinite tower of Kaluza-Klein (KK) states starting from a mass gap
fixed by the slope of the linear dilaton. In this thesis, we first extend this analysis to the KK
gauge sector of the metric which has not been studied so far. It turns out that the situation is
different from the scalar and spin-2 excitations: due to the non-trivial background, we show that
the zero mode of the KK vector acquires a mass by absorbing the scalar radion, while its wave-

function is no longer flat along the extra dimension but rather localised around the origin and

47
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away exponentially suppressed. This result follows from a theoretical gauge symmetry analysis,
which generalises the standard KK reduction in the more general case where the fields may
depend on the extra coordinate. Within the gravitational sector, the reduction is performed in
the ADM formalism [48], crucially taking into account the Gibbons-Hawking boundary terms
at the end-points of the interval.

Since the holographic dual of LST is actually a string theory, one can study its effective
supergravity theory, a construction which has been first carried out in [49, 50]. It relies on a
U(1)g gauging of the SU(2) R-symmetry of N'= 2, D = 5 supergravity coupled to one vector
multiplet [51, 52, 53]. Besides minimal couplings between the gauge field and the fermions, the
gauging generates fermion mass terms as well as a scalar potential, both highly constrained
by supersymmetry. The family of the scalar potentials obtained in this way is parametrised
by two independent parameters. The observation made in [49, 50] is that the vanishing of one
parameter precisely reproduces the runaway potential leading to the LD background solution.
Here we revisit this construction in order to show that the five-dimensional supergravity theory
with this property is actually unique.

In addition to possible phenomenological implications mentioned above, the gravity dual
of LST can also be used as a framework to study supersymmetry breaking, which will be the
viewpoint adopted in the second part of this chapter. The crucial point is that the LD background
preserves 1/2 of the original supersymmetries [50]. We shall show that the NS5-branes, already
introduced at the bosonic level by the junction conditions, remain consistent in a supersymmetric
context, namely they preserve the remaining supersymmetries, and this choice of branes is
unique. Motivated by the massive vector field obtained in the KK reduction of the metric, we
perform the full dimensional reduction of the bosonic sector of the supergravity action in order
to find a similar mechanism in the Maxwell sector. Obtaining a second massive vector, one can
arrange the massive (non KK) spectrum into a massive 4D N = 1 spin-3/2 multiplet which
contains half of the total degrees of freedom. With the two free parameters of the theory, the
slope a of the LD background and the compactification radius L, one can then consider two

different limits.

o The low energy limit |a| — oo, L — 0, where all masses are sent to infinity and only the
massless spectrum remains, which we show to be described by an effective D = 4, N’ =1
supergravity. Moreover, such a truncation is consistent with a A" = 2 — A = 1 orbifold

projection, under which half of the degrees of freedom are assigned a Zs-odd parity.

e The intermediate limit where « is kept finite and L — 0, keeping all massive and mass-
less zero modes and projecting out only the KK excitations. The possibility to describe a
consistent 4D supergravity theory in this limit is not clear and remains a non-trivial open
question. This would potentially lead to a very interesting example of partial supersym-

metry breaking N'= 2 — N =1 using only vector multiplets.

The Chapter 2 is organised as follows. In Section 2.2 we summarise our conventions and
notations used throughout this chapter. In Section 2.3, we review the main characteristics of
the five dimensional graviton-dilaton system, in the presence of a runaway scalar potential
corresponding to a non-critical string, stressing some important points often left implicit in the

litterature. The compactification of this model on a LD background is then performed in Section



2.2. Conventions and notations 49

2.4, shedding light in particular on the KK gauge sector. The minimal supersymmetrisation
of this model, seen as the holographic dual of LST, is then introduced in Section 2.5. We
first remind the formalism of N' = 2, D = 5 supergravity, together with its U(1)r gauging,
before listing the different supergravity theories coupled to one vector multiplet whose gauging
reproduces the scalar potential of LST and we show that they are all equivalent. We then
study the supersymmetries preserved both by the background and by the NS5-branes sitting
at the boundaries. The complete compactification down to D = 4 is presented in Section 2.6,
where we highlight a similar Higgs mechanism for a second vector, and show that a N' = 1
supersymmetric theory can be obtained in the massless limit. Our conclusions are presented in
Section 2.7. Finally, this chapter is related to two appendices, revewing some important aspects
of General Relativity on a manifold with boundaries (Appendix D) and then identifying the
5D supergravity studied here with the effective action of a (non-critical) heterotic string theory
(Appendix E).

Our new results are presented in Sections 2.4, 2.5.3, 2.5.5 and 2.6, as well as in Appendix
D.2.

2.2 Conventions and notations

In this second chapter, we start working in 5 spacetime dimensions before compactifying
down to 4D. We adopt the metric convention (—,+,+,+,+), and write the five-dimensional
Minkowski space coordinates as 2™ = (z*,v). The indices used throughout the Chapter 2 are

defined according to the following pattern:

M,N...=0,..,3,5 5D spacetime curved indices
m,n..=0,..,3,5 5D spacetime flat indices
V. =0,..,3 4D spacetime curved indices
a,b...=0,...,3 4D spacetime flat indices
I,J..=0,...,ny vector field labels
z,y...=1,...,ny scalar manifold curved indices
ab..=1,...ny scalar manifold flat indices
i,j...=1,2 fundamental representation of SU(2)r

Curved and flat indices in 5D (4D) are related through the fiinfbein e} (vierbein ej;) according

to
Xy = ey Xm (Xu=e€,Xa). (2.1)

Similarly, curved and flat indices of the scalar manifold are related through the ny-bein f2

according to
o" = ()71t = fie" (22)

The five-dimensional Dirac matrices v satisfy the Clifford algebra

{v™, 9"} = 20" 1axa. (2.3)
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In particular,

2
2
(+*) =) =1. (24)
Antisymmetrized products of v matrices are defined with weight one, y™1-r = ylm1__~mrl Tp
particular, )
7" =50 =) (2.5)

Spinors in D = 5 dimensions can be equivalently described either in terms of unconstrained
Dirac spinors, which have 4 complex components, or either in terms of pairs of spinors x*,
i =1,...,N = 2k satisfying a reality condition. The pairs are called symplectic since the position

of the indices is raised and lowered according to
X' =Y, Xi = X’ Qji, (2.6)
where ;5 is a 2k x 2k matrix satisfying
QFQy; = —dl. (2.7)
The Dirac and Majorana conjugates of a spinor x* are respectively defined by
=0, () =00 (2.8)

with C' the charge conjugation matrix, satisfying in five dimensions ’yAT4 = CyyC~t The
symplectic-Majorana condition then imposes the Dirac conjugate of x’ to be equal to its Majo-

rana conjugate, namely:
x7°=oh)Te. (2.9)

Since (2.9) relates the components of x’ to those of its complex conjugate, this is a reality
condition which projects out half of the degrees of freedom of the k pairs of spinors, ending
with 2 x 4k real components. Both descriptions in terms of one Dirac spinor or one pair of
symplectic-Majorana spinors are thus equivalent, both of them describing 8 real off-shell degrees
of freedom. In practice however, only the symplectic formulation is used, since it makes explicit

the action of the R-symmetry group USp(N) in D = 5 dimensions.
For the case N' = 2 we are considering in this chapter, €;; = €;;. Since ¢;; is an SU(2)-
invariant tensor, the indices i, j = 1,2 are referred to the SU(2)g indices, therefore raised and

lowered according to the NorthWest-SouthEast convention

X' = €’y;, Xi = X €ji, (2.10)
and where we choose €15 = €2 = 1 = —ey; = —€?!. In particular, bilinears of fermions satisfy

where the first equality is a standard Majorana flip in D = 5 dimension and the second one
follows from (2.10). Let us finally highlight that in five dimensions, the bilinear quantities A\*x;

and S\iWXi built from symplectic-Majorana spinors are pure imaginary and real respectively.
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2.3 The Linear Dilaton model

2.3.1 The 5D theory on R"? x S'/Z,

The work carried out in this chapter is based on the five-dimensional dilaton-gravity theory

whose action is given by
1
S = /d5$\/—ge_‘/§¢ 573(5) [gmN] + g(@qﬁ)Q —Al, (2.12)

where gp/ny is the five-dimensional metric in the string frame (not to be confused with the
Einstein frame metric Gjsy which will be introduced below), ¢ the dilaton field, and A a
constant introducing a runaway dilaton potential, characteristic of non-critical string theory.
Varying S with respect to ¢ and gM¥ yields the equation of motion of the dilaton and the
five-dimensional Einstein equations, respectively given by:
V3 3v3
2

V=g e V3¢ {R(5)—

5 (09) + 305¢ — \/§A} =0, (2.13)

1
V=g e V39 {RMN - §9MNR(5) +V3VnOnd — V3aung 9V pogs

+;gMN(a¢)2 + gMNA} =0. (2.14)

One can easily check that these equations are solved by the five-dimensional Minkowski metric,
in addition of a linearly varying dilaton along the fifth direction y, breaking the 5D Poincaré

invariance into a 4D one,

gMN = 1MN; (2.15)
6 = ay, (2.16)

provided that the bulk “cosmological constant” A and the parameter « are related by

A= —§a2.

: (2.17)

In order to have a finite four-dimensional Planck mass, the fifth direction R, must be com-
pactified, on a space chosen to be an interval S'/Zy of length L, in complete analogy with
the Randall-Sundrum model [54]. The Z; symmetry which must have the background therefore
imposes to replace the solution (2.16) by

¢ = alyl. (2.18)

Denoting here and all along this chapter differentiation with respect to the fifth coordinate y
with a prime, we have ¢ = asgny' and ¢" = 2a[d(y) — 6(y — L)], so that boundary terms
will arise from the terms Os¢ and g¥9V pOg¢ of the equations of motion. Consistency of the

1. The sign function is defined as yielding +1 depending of the sign of its argument. An ambiguity remains
at 0, and it is worth noticing that as long as sgn0 # 0, no inconsistency appears and one can arbitrarily choose
sgn(0 = +1.



52 Chapter 2 — Compactification on a linear dilaton background

equations of motion then requires to add boundary terms to the action (2.12), which is modified

into:

S = /dst {\/—796_\/% BR(S) lgmn] + %((‘M)Q — A}
—V/=g1e” V() — V=gae T Vad(y — L)}, (2.19)

with ¢g; and go the determinant of the induced metrics at the two four-dimensional boundaries.
The additional terms describe branes located at the fixed points y = 0 and y = L of the orbifold
S'/Z5, and contain four parameters: oy and s characterizing the nature of the branes, and their
tensions V1 and Va. As we are now going to show, these parameters can be fully determined by

the classical equations of motion following from the action (2.19).

The dilaton equation of motion (2.13) is modified into

V=g e V3 {‘fn@) — 3*2/5(8@2 +305¢ — \/§A}
—  onV/=gie " Vid(y) — aay/—gae **Vad(y — L) =0, (2.20)

while the five-dimensional Einstein equations split into equations for the 4-dimensional scalar

gs5, the 4-dimensional metric g, and the 4-dimensional vector g,5 as:

Rss —%g5sR(5) +V3V505¢ — V35597 OV pdgo + 2955(5@2 + gs5A =0, (2.21)
V75 5 R 50RO +VBY,0,0 ~ VB OV p006 + 3000 + g )
+ g (V=g Vi) + Vmgae *Vad(y — L)} = 0, (2:22)
Rys —39#572(5) +V3V,05¢ — V3gusg OV pdge + ggus(&b)g +gush = 0, (2.23)
where greek indices p, v ... denote only 4D spacetime. The dilaton and 4-dimensional graviton

equations of motion (2.20) and (2.22) can be respectively rewritten as:

\gg RO 3\2/3((%))2 + 3056 — V3A — algg)_ée(\/g_alelé(y)
— aagyteVoy5(y — 1) =, (2.24)
and
Ry, — %QWR@ +V3Y,.0,6 — V399" IV pdge + gguu(3¢)2 + g
gt (V) 4+ e VPeos(y - 1)} =0 (2.25)

It is then straightforward to check that they are still solved by gy = nuny and ¢ = aly|,
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provided that the bulk “cosmological constant” A and the parameter « are related by ?

3
A= —§a2 sgn’y. (2.26)

In addition, the boundary terms at y = 0 and y = L lead to four equations relating «, oy, as,
V1 and V3,

6 = a1V 6 = —age(‘/g_‘m)o‘LVg, (2.27)
2/3a =V 2/3q = —e(V3-a2)alyy, (2.28)

which are obviously solved by

Vi = 2V3a= -V, (2.29)
= ag=+3. (2.30)

Eq. (2.29) thus shows that consistency of the equations of motion requires a system of branes
of opposite tensions to set at the fixed points y = 0 and y = L of the S'/Z, orbifold, similarly
to the Randall-Sundrum model. * Eq. (2.30) tells us about the nature of these branes: from the
action (2.19), one sees that a; = as = /3 correspond to a brane tension o g—lg, with g2 = V39
the string coupling constant. Therefore, the solution at the boundaries arising from the classical

equations of motion consists of NS5-branes, as expected from the LST string theory approach.

Having found the nature of the branes sitting at the two boundaries, one can then move

from the string frame to the Einstein frame metric by means of the Weyl transformation
_l¢
Gun =€ V3"gun, (2.31)

where Gpsn is the Einstein frame metric and gpsn the string frame one. The Einstein frame
bulk action Spq then reads
Sm = Sgn + Sait + S, (2.32)

with the Einstein-Hilbert action Sgg, the dilaton action Sg; and the 5D cosmological constant

action S given by:

S = [ ev=G6 N oys0x0, (2.34)
Sy = —/d%\/—Ge%d’A. (2.35)

On a bounded manifold, it is well-known that the Einstein-Hilbert action must be supplemented
by the so-called Gibbons-Hawking (GH) boundary action S, given in the Einstein frame by

the integral over the boundary of the square root of the determinant of the induced metric on it

2. One sees here a first inconsistency the choice sgn0 = 0 would imply: a cosmological constant A constant
everywhere except at y = 0 where it would vanish, while sgn 0 = £1 remain consistent.
3. In the string context, a negative contribution to the tension can be provided by orientifolds.
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times the trace of its extrinsic curvature tensor*. Although the GH term is seldom considered
in the literature dealing with this linear dilaton model, it is an important piece which will turn
out to be crucial in the Kaluza-Klein reduction performed in Section 2.4. Thus, in addition to
the bulk action (2.32), the five dimensional LD model presented here contains also a boundary

action Sguq given by

2
Som =Y (Snss, + San,) , (2.36)
i=1
with, in the Einstein frame:
1
Snss, = —W/d5xv—ge“§¢5(y—yi), (2.37)

Squ, = /d4x\/—gK¢. (2.38)

The indice 7 labels the two four-dimensional boundaries of M, located at y = y;. K; is the trace
of their extrinsic curvature tensor, g the determinant of the 4D induced metric on them, and the

constants A, V7 and V5 have been computed in (2.17) and (2.29), and are given by A = —%az,

Vi = =V, = 2¢/3a.

The total 5D action we will work with in Section 2.4 is then
S =5Sm+ Soms (2:39)

with S and Sy respectively given by (2.32) and (2.36).

2.3.2 Spectrum of bosonic fields on a LD background

The aim of this subsection is to remind some general results regarding the spectrum of
bosonic fields on a linear dilaton background, and then motivate the first part of the work
carried out in this chapter, which will be described in Section 2.4. We start with the case of
a bulk scalar and vector fields in five dimensions, an analysis which can be found for instance
in [55, 56], before moving to the spin-0 and spin-1 spectrum of the 5D dilaton-gravity theory

described in the previous subsection.

Scalar field on a LD background

Let us first consider a given 5D massless scalar field x on a LD background, distinct from the
dilaton field ¢ of the previous section. The string frame Lagrangian of such a scalar y would be
obtained by merely adding the standard kinetic term —%(8)()2 in the bracket of the Lagrangian
(2.12), which yields at quadratic order

1
L= —§e*anMXaMX, (2.40)

4. In the string frame, the background metric is trivial, so that the GH action does not modify the analysis
on the nature of the branes carried out above and can thus be neglected. However, in the Einstein frame, second
derivatives of the background metric now contain delta functions, and we need the GH term in order to cancel
them and clearly identify the spectrum of the KK vector G5, as done below.
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where (@ is a constant related to « in (2.16), but kept as an arbitrary parameter in this subsection.

The equation of motion for x following from (2.40) is easily found to be

Oux +x —Qy =0. (2.41)

Considering the mode expansion
w .
X(@y) = foy(@)e??, (2.42)
n=0

we get for the internal wave functions f,)(y) of the Kaluza-Klein modes:

Fomy W) = Qftoy (W) = P2 fay (W) = 0, ¥n > 0, (2.43)
with p2 = —m2. The most general solution reads
f(n) (y) = Ae"tY + Be® Y, (2.44)

Qt+/Q2—4m2
2

L= 0, it is then easy to see that the

where A and B are two constants, and x4 are given by x4 = . Imposing Neumann

boundary conditions at y = 0 and y = L, 05f() (y)’ .
y=0,

lowest mode compatible with the boundary conditions is massless, mg = 0, with a constant

2

internal wave function, fo(y) = constant. We then have excited modes with masses m; =

(%)2 + %Q,Vn > 0, with wavefunctions given by

nmy  2nmw nwy

N 9y (. _
f(n)(y) =ez2 <Sln i3 OL cos 17 ) , Vn >0, (2.45)

up to an overall normalisation constant, irrelevant for the discussion here. In the case of Neumann
boundary conditions, a 5D massless bulk scalar therefore gives rise, from the 4D point of view,
to a single massless zero mode with constant wavefunction, followed by discrete KK excited

states on top of a mass gap fixed by Q:

my = 07
2.46
{ m2 = (”%)24-%2, Yn >0, (246)

n

which is a distinctive feature of the linear dilaton background.

Vector field on a LD background

A very similar analysis can be carried out for a given 5D massless bulk vector field Ays in

the LD background. The equations of motion for Ay, following from the Lagrangian

L= —%e‘QyFMNFMN = —%e—Qy (aMANaM AN — 9y AnON AM ) , (2.47)

read
oy FMN — QF™N =, (2.48)
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which split into:

0445 —050,A" =0, (2.49)
044, +A4, = QA, — 0, (9,4" + 854° — QA®) = 0. (2.50)

Similarly to the scalar case described above, we expand A, in modes

n=0
and impose in addition the gauge condition
D5 A% = QAs, (2.52)

which in the flat case @ = 0 reduces to the standard gauge of toroidal KK compactification
where Aj is a function of x only. For the zero mode with a flat internal wave function fy(y) =

constant, one gets the equation of motion
044 (z) — 0,0,4" " (z) = 0, (2.53)

which describes a massless vector with its remaining 4-dimensional gauge symmetry. Applying
0¥ to (2.50), we see that the KK modes Aftn), n > 0, satisfy GMA“(”) = 0, so that the differential
equation satisfied by the internal profiles f(,,)(y) reads:

Fiy @) = QF oy (y) — P fmy () = 0, Yn >0, (2.54)

with p2 = —D4A5Ln). This is the same equation as obtained previously in the scalar case, and we

thus conclude that the spin-1 KK masses are given by:

m2 = (T)z + Cf, Vi > 0. (2.55)
Regarding the scalar As;, the gauge condition (2.52) imposes the zero mode of As to be of
the form Aéo) (z,y) = eQA5(z), describing a massless 4-dimensional scalar as follows from the
equation of motion (2.49).

The dimensional reduction of a given 5-dimensional vector field on a LD background therefore
leads to a 4-dimensional massless scalar, together with a 4-dimensional massless vector followed
by massive KK vector excitations, as in the toroidal case. The LD background prints distin-
guishable features both on the scalar sector, through the exponential profile of its zero mode, as
well as in the vector sector, through the mass gap above which the KK tower of massive states

starts.

Dilaton-gravity sector on a LD background

In the five-dimensional LD model introduced in Section 2.3.1, the spectrum for the four-

dimensional graviton has been computed in [40]. Starting from the 5D Einstein-frame metric
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parametrisation

_2 h 0
Gy = e Vil (”g v 1>, (2.56)

the spectrum of the gravitational excitations h,,,, for Neumann boundary conditions, has been
found to be the same as the ones described in the above subsections: a massless zero mode
with wavefunction independent of y, followed by discrete KK modes with masses m?2 = (%)2 +
%aQ, Vn > 0.

The spectrum analysis in the scalar sector has been carried out in [42]. Putting the 4D vector
and tensor fluctuations to zero, the metric parametrisation considered here, at linear order in

the scalars, is of the form

(2.57)

Guin — =55l <(1 +20) 0, 0 )

0 1+2r

where o and r are respectively the trace of the 4D metric excitations h,, and the radion Gss.
A crucial point to notice is that the three scalar fluctuations d¢, o and r are not independent,

but instead related by the following two constraints [57]:

r+20c = 0, (2.58)
V3ar + 3sgn yal +adp = 0. (2.59)

The first one is the usual constraint on the trace of the metric tensor, corresponding to the Weyl
transformation one has to perform on the four dimensional metric in order to bring its kinetic
term into a canonical form. The second one is only relevant in the case of a LD background °:
in the general case a # 0, it implies that only one linear combination of the scalars r and
0¢ is dynamical [58], while the orthogonal combination can be eliminated by a gauge choice
on part of the 5-dimensional diffeomorphisms, and is thus unphysical. The spectrum for the
remaining physical scalar is given in [42]. Although the analysis has been done in the more
general case where the radion is stabilised, the unstabilised case we are considering here can be
easily recovered: one finds exactly the same spectrum as for the 4D metric, namely a massless
zero mode with wavefunction independent of y, followed by massive KK excitations with masses
m2 = (25)% 4 302 wn > 0.

So far two points were left out in the literature: what is happening to the vanishing 0-mode
scalar degree of freedom, which must be recovered as a physical degree of freedom in the limit
a — 0, as well as the analysis for the Kaluza-Klein vector ;57 The aim of the next section is
to clarify these two points. We will show that the zero mode of the unphysical scalar is actually
absorbed by the zero mode of the KK vector, providing it with a mass via a gauge-fixing that
is reminiscent of the Stiickelberg term. To this purpose, we first have to find the most general
parametrisation for the metric tensor Gy including the KK vector G5, which reduces to
(2.56) or (2.57) in the relevant limits, and whose components transform appropriately under

four-dimensional diffeomorphisms. We also want this parametrisation to be valid not only at

5. In the flat case a = 0, it simply imposes r = 0, which is the usual gauge choice for the radion in standard
Kaluza-Klein reduction on a circle.
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the linear level in the scalars, but to all orders in order to be able to find not only the scalar

spectrum but also the full scalar potential of the dimensionally reduced 4D theory.

2.4 Kaluza-Klein reduction on a linear dilaton background

2.4.1 4D residual gauge symmetry

The five-dimensional Einstein frame metric Gy;n is written, in the most general case, as

function of x and y according to

G G5
G — 24 I > x’y . 260
MN (Gus s (z,9) (2.60)

In order to parametrise the form of the metric as well as its y dependence compatible with the
dimensional reduction D =5 — D = 4, we start from the 5D diffeomorphism transformations,
with parameter £¥ = (¢#(z,y),£%(z,y)). Under £, the transformation of Gy,

6Gun = P0pGrN 4+ GrpOne” + GypoEr, (2.61)

splits for G, G5 and G5 into:

6Gmx = f”apr, + 2Gp(,u,81/)§p + 556561#1/ + 2G5(,u,ay)§57 (262)
0G5 = €Y0,Gu5 + Gu05E” + G5,0,8" + 205G 15 + Gus056° + G550,8°,  (2.63)
6Gss = EM0,Gss + 2G 505" + £°05Gs5 + 2G5505E". (2.64)

Let us first consider the 4D diffeomorphisms, parametrised by the 4-vector £#(z,y). From (2.62),

one sees that G, already transforms as a rank-2 tensor under £, namely
Oep G = EP0, Gy + 2G 5,0, 8" (2.65)
The transformation of G5 reads:
0erGus = £70,Gus + G5,0,8" + G 058" (2.66)

The last term, being independent of G5, is a shift in the transformation which can be used in
order to gauge fix to zero the KK excitations of G5, as long as 05" # 0. Since all functions
&¥(x,y) which are not constant in y can be used for this purpose, we end up with a residual 4D
diffeomorphisms invariance parametrised by all functions £# constant in y. Under such £#(x),
one sees that G5 and G55 transform indeed correctly as a 4D vector and a Lorentz scalar
respectively.

We next turn to the U(1) g i transformations, parametrised by the 4D Lorentz scalar function
€°(z,y). Let us first recall that the equations of motion are solved, in the Einstein frame, by the

background metric

_ _2 , 0
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We thus define the radion r, which is the fluctuation of G55 around the background solution
through:
—Zaly| 2r(z,y)
Gss(x,y) =e V3B e Y, (2.68)

The &5 part of the transformation (2.64) on 7 then reads:

OgsT = D565 — % sgny&® + 5057 (2.69)
Defining
K, = S (2.70)
T Gss' '

and using the transformations (2.63) for G5 and (2.64) for G55, one finds:
S5 I, = 0,8° — K,058° + €905 K. (2.71)

In order for K, to transform as a gauge field under U(1)xx, and assuming that the z and y

dependences of £° and K u factorize, one sees that they must satisfy

55 = f(y)g‘r’(x), K, = f(y)ffu(a?), (2.72)

where f(y) is an arbitrary function of y, and £(z) and K, (z) two arbitrary functions of z.
Similarly, defining

Guv
guu = B - KuKm (273)
G5

we have
5§5g,uzl = 5585g;w - 2guva5'£5- (2.74)

In a similar way that we have used a subset of the functions £#(z,y) to gauge fix the KK
modes of the vector G5, one can now use a subset of the functions €5(x,y) in order to gauge
fix a series of KK modes of the scalars. From the 5D point of view, two scalar fields are present:
the radion r and the dilaton §¢, whose transformations with respect to £° are respectively given

by:

@
V3
0es(09) = asgnyé® + £2050¢. (2.76)

dgsr = D55 — sgn y€5 + 5057, (2.75)

One can then choose to gauge fix the excitations of r, of §¢, or of a combination of both.
All possibilities are obviously physically equivalent, and our choice will be motivated by the
requirement that the 4D metric must remain inert under the residual gauge freedom which has

not been fixed. The canonically normalised 4D metric g, is related to g, by
G =€ G (2.77)
From the transformations (2.74) and (2.75), one finds the transformation of g, under &°,

5§5§;w = 35§5§w/ - \/ga sgn y§5§w/ + €585§;w' (278)
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2

\/35 ¢, which transforms

This transformation motivates us to consider the linear combination r —

under &5 according to:

2 2
d¢s <r — \/§5¢> = 9585 — V3Basgn y&® + €205 (1" — \/§6¢> . (2.79)
Again V&5 (z,y) # e\/ga|y‘§~5(m), the two first terms of the transformation are non zero constant
shifts, which can thus be used to gauge fix the KK modes of the scalar r — %&[). Therefore,
we end up with a residual gauge freedom which cannot be fixed for now, associated with the

parameter

¢5 = V3l (), (2.80)

Under such ¢°, one immediately verifies that the constant terms in the transformation (2.78)
of gy, vanish. Then, the zero mode of g,,, independent of y, does not transform under £ as

required. Having found the form of ¢°, we deduce from (2.72) that
K, = V3K, (2). (2.81)

The final parametrisation of the 5D metric Gp;n therefore reads:

Gy = =Sl (€ (@) + VIVELE, (@) oMK () (2.82)
e‘/go“wK,,(:L") 1 ’
whose inverse is given by:
GMN _ el —2r ¥ g (x) —eV3elledr K4 () (2.83)
—e\/gaw‘e?””f(”(x) 1+ 62\/§a|y|e3’”1~(2(a@) ’ ‘

with K# = " K,, K? = ™ K\K,. The metric Gy/n thus reduces in the appropriate limits
to the two forms (2.56) or (2.57) previously studied in the literature, namely by turning off the

spin-1 excitations, as well as the scalar or the graviton fluctuations.

At that point, let us summarise the approach followed here. Using the gauge freedom as-
sociated to the {#(x,y), we first set to zero the KK modes of the vector G5, ending with a
residual 4D diffeomorphism invariance associated with the vectors £#(x). Under such £#(x), all
the fields G, G5 and Gss respectively transform as a 4D rank-2 tensor, Lorentz vector and
Lorentz scalar. Next, we have used the gauge freedom associated to the £°(z,y) in order to get
rid of the KK modes of the scalar r — %&ﬁ. The remaining U(1)gx gauge transformation is
associated with the scalar function &° = e\/ga\ylé (), under which the different fields transform

according to:

S5y = £ 059w, (2.84)
0es K, = 0,8 (2), (2.85)

dgsr = f;gsgny§5+§585r, (2.86)
5es(0¢) = asgny® + £°050¢. (2.87)
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Denoting by ¢_ and ¢4 the orthogonal combinations
= 2 0 =r+ ! 0 (2.88)
_=r——=00, =r+—=09, .
v \/g o \/g
their transformations under £ are given by:

Sesp- = 050, (2.89)
Sespr = V3asgnyl® + 50, (2.90)

The shift in the transformation of ¢, resembles that of a Goldstone mode, and can be used
in order to eliminate it through a suitable U(1)xx gauge transformation. The breaking of the
remaining U(1)x invariance will be reflected in the emergence of a mass term for the KK
vector K, in a manner that is reminiscent of the Stiickelberg term, which is why we will be
referring to ¢4 as the Stiickelberg field in the following. The aim of the next two subsections is
to compute the dimensionally reduced action in order to clarify the origin of the mass term for
the KK vector, and then find the scalar potential associated to the zero mode of the remaining

physical scalar ¢_.

At this point, it is instructive to move from the Einstein to the string frame in order to get
more physical intuition about the fields ¢4 and ¢_. The Einstein frame metric (2.82), given in
the basis (¢p_, p4) by

—(p_+2 ~ 203aly| - 7 V3alyl &
G =B oo (7Tl 4 SEMEI) V)

eV3allfg, (z) 1
can be brought, by means of the 5D Weyl transformation (2.31), to the string frame metric

Gy = <gﬁl’(x) + 62%62\/5@"1!'[%#[21/(55) 62%6\/%'?/[%#(55)) ) (2.92)

6250-0- e\/galy‘R—V(x) €2<P+

from which we deduce that ¢ is actually the string frame radion. The 4D string frame metric

gﬁy is related to the 4D Einstein frame metric g, by the 4D Weyl transformation
Ty = € Gy (2.93)
Regarding ¢_, we remind that in our normalisation in which the 5D action reads
56 — /d5 Nawerrs f5¢2 (R[G5 +3(260)° + ... (2.94)
the 4D dilaton d¢4 is defined such that the 4D action is

8(4)—/d4 S ~Vaigs L [R(“)[ ]+3(85¢4)2+...}. (2.95)

From the above equation then it follows that ¢_ is simply proportionnal to the 4D dilaton
according to

_ = —V/358¢s. (2.96)
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2.4.2 Stiickelberg “mechanism”

Let us now compute the four-dimensional effective bosonic action from the five-dimensional

one introduced in Section 2.3.1, whose structure is reminded here for convenience:

2
S:SEH+Sdil+SA+Z(SNS5i+SGHZ~)- (2.97)

i=1
The three first terms correspond to the bulk action given in (2.33)-(2.35), while the last two
are the boundary terms given in (2.37)-(2.38). The computation of the dilaton kinetic term
Sail, cosmological constant Sy and NS5-brane contributions Sygs, is straightforward. Using the

general metric decomposition found in (2.82), its inverse (2.83) and ¢ = aly| + d¢, we get:

1
Sgii = —3 / d5xe_‘/§a|y|\/—§ {6_37"042 + (asgnyK, — 8u5¢)2
+(e7% + K?) ((5¢,)2 + 2asgn yéqzbl) - 2K“8H5¢5¢/} , (2.98)
Sy = za2/d5x6_‘/§a|y|\/—§eH\%M}, (2.99)
Snsgs, = ﬂx/éa/d%e—ﬁ’a'y‘\/—96*2’"*%5%@ — ). (2.100)

The computation of the gravitational action Sqg = Sgg + Sar is more involved. We perform
the analysis in analogy to the ADM framework, splitting the five dimensional spacetime M into
timelike slices of constant y. The general framework of a d + 1 spacetime decomposition with
boundaries is reviewed in Appendix D.1, and the particular computation for the metric (2.82)
is detailed in Appendix D.2. The total gravitational action (D.2.20), up to quadratic order in
K, reads:

Sqg = /d5xe_‘/§a|y‘\/—§ {6_3T [2a2 + 2v/3assgn yrl + Z(T/)Q}

2
3~ / 1 3
_§KM8HT _ Z€3T§W§WFMPFW - (a sgnykK, — f@m) } ,  (2.101)
where we have ignored the term K uﬁu(r/r) which is irrelevant for the discussion here, used (2.81)
to write (K 2)/ = 2v/3asgnyK?, and finally arranged the radion kinetic term, the mass term for
K, and their mixing into a perfect square. From (2.98) and (2.101), one sees that the dilaton
and gravitational actions contain the terms

21

’ -3 (%@—)2} (2.102)

1
Sait +S¢ D /d%eﬂ/ga'y‘ V=7 {—2 {a sgny K, — %8H<P+

where we have introduced back the combinations ¢_ and ¢4 defined in (2.88). Using the gauge
transformation (2.90) to fix the Stiickelberg field ¢ to zero, one immediately reads the mass
term for the U(1) gk boson K,:

MY () e = 70 (2.103)

The dimensional reduction from five to four dimensions of the metric tensor on a linear dilaton
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background therefore provides a very peculiar spectrum, parametrised by two parameters: the
slope of the linear dilaton «, and the radius of compactification L. In the KK excitation modes,
the situation is similar to the flat case (o = 0): a scalar combination ¢_ of the radion and the
dilaton as well as the U(1) gk vector K, have infinite towers of states which can be gauge fixed
to zero, providing three additional polarisations to the excitation modes of the 4D graviton,
which acquire masses o« 1/L. The difference from the flat case comes from the mass gap above
the zero mode, on top of which the tower of KK states starts. Proportionnal to «, this gap is a
characteristic feature of the LD background, and vanishes in the flat limit o — 0, thus recovering
the usual case of toroidal compactification. In the zero mode sector, the 4D graviton as well
as w_ have a massless zero mode. The zero mode of the scalar orthogonal combination ¢ is
absorbed by the zero mode of K, which acquires a mass o «, in sharp contrast with the flat
case where all the zero modes of the different components of the metric remain massless. The
main result here is thus that the residual U(1)x g symmetry, which remains in standard KK
compactification on a flat background a = 0, is here broken at a scale mQU(l)KK = %042 fixed by
the slope a of the LD background.

One may wonder if the low-energy limit that corresponds to decouple all massive states, not
only the KK modes, by sending formally the LD slope |a| — oo, corresponds to an orbifold
reduction. Indeed, the y-parity projects out the KK vector boson K, but keeps the dilaton and
radion which should also be projected, as it plays the role of the longitudinal polarisation of
K, (in the string frame). A possible answer is to extend the orbifold by the T-duality which
in the string frame inverts the radion and thus makes ¢ odd. Consistency of the theory then
requires to add also the NS antisymmetric tensor Bysn since the vector Bs, is exchanged with
G's, under T-duality (to linear order). This will be done indeed in the supersymmetric case that

we study in the following.

2.4.3 Effective scalar potential

Having found the mass term for the KK vector K, as well as its associated Stiickelberg field,
we can now focus on the scalar sector, putting K, = 0. Combining the results found above, the

total scalar action, before gauge fixing ¢4 to zero, is given by:

Sscalar = /d5x67\/§a|y\ V _g {_;(8115(;5)2 - %(aﬂr)Z

e [ Sa? (14 )~ 2/Bad " 6(y) - 8(y - L)

+g(r,)2 — %(6@5/)2 +2V3asgnyr — asgn y&gb/} } . (2.104)
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Varying it with respect to d¢ and r, we respectively get the equations of motion:

!

" 1 , ,
04 d¢+ e_grégb — 3arsgn ye‘3r (r + \/§5¢> 373, 56

V3a2e 3" (1 — 62(T+\}§5¢)> + 20e73" (1 - er+\}§5¢) (0(y) —d(y — L) =0, (2.105)

" 1 ' / !
O4 r—2e3"r +2v3asgnye™™ (r + \/gdqb) +e73" ((5d> )2+ 3(r )2>

+ e (1 - 62(’”+¢1§‘5¢)> - \%ae?”“ (1 - er+¢1§5¢> (5(y) — 6(y — L) = 0. (2.106)

Integrating these two equations on a infinitesimal interval [y; — €,y; + €], where y; denotes
the location of the two branes, we find the jump conditions for the derivatives of the scalar

fluctuations d¢ and r:

’ r4-L ’ 4o r+-6¢
AS ——2a<1—e+~/§6¢>, A =22 (1—e+\/§ ) 2.107
¢ 7 (2.107)
where AX = X(y; + €) — X (y; — €). In terms of the fields ¢ and ¢ introduced in (2.88), the
equations of motion (2.105) and (2.106) yields for ¢_:

O4 ¢ — 26_3Tg0:,r + 4v/3asgn ye_g”’cp:r + 36_37"902 + 3a2e73" (1 - 629‘”)
—  4VBae (1 — ) (6(y) — d(y — L) = 0, (2.108)

with the jump condition
Ap_=0. (2.109)

Therefore, imposing for the zero modes the gauge condition
vt =0, (2.110)

the equation of motion of the zero mode of ¢_ simplifies into the one of a massless 4D scalar
field,
Oyp_ = 0. (2.111)

It follows that the zero mode of the only physical scalar field ¢_ is not only massless, but has
also vanishing scalar potential. This is expected from the fact that the interbrane distance L has
not been stabilised, and ¢_ plays the role of the modulus for this parameter. The vanishing of
the full scalar potential can of course be checked at the level of the action (2.104), first noticing
that %(7’/)2 — %(5(5)2 = 0 in the gauge o4 =7+ %&zﬁ = 0. Then, regarding the last two terms
in Sscalars they read 2v3asgnyr — asgnydd = v3asgn ycp:r + v3asgn ygol_. The first term
vanishes due to the gauge condition, while the second is zero on the zero mode of ¢_ which is
independent of y. Hence, for the zero mode of the physical scalar ¢_, the last line of (2.104)

vanishes and we end up with

Sscalar= / Pre V3l /=5 {—i(@ugo)Q—l—e_?’T [3a2 —2V3a(8(y) — d(y — L))} } . (2.112)
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Denoting V the volume factor

L L 1 _ e—V3aL
V= / dye_\/go“y| = 2/ dye_‘/go‘y S (2.113)
~L 0

V3a

the integration of the second term yields

L
/ dye_‘/ga|y‘\/—§e_3r3a2 =302%\/—ge 3"V = 2v3a/—ge " (1 — e_\/go‘L) , (2.114)
~L

which is cancelled by the delta function terms. Hence, the full scalar potential of the zero mode
of ¢_ vanishes, and the effective 4D scalar action is simply given by the kinetic term of ¢_, in

agreement with the analysis of the equations of motion carried out above:

Sscalar = _Z/d4x V —§ g“yau(;@—au(ﬂ—- (2115)

2.5 Minimal supersymmetric extension

The minimal supersymmetric extension of the bosonic linear dilaton model introduced above
has been constructed in [49, 50]. It is based on a gauging of N' = 2 supergravity coupled to one
vector multiplet along the U(1)r subgroup of the SU(2)r symmetry group, a construction
holographically dual to Little String Theory.

The formalism of ungauged N’ = 2, D = 5 supergravity coupled to an arbitrary number
ny of vector multiplets as well as its abelian gauging are reminded in the following Subsections
2.5.1 and 2.5.2 respectively. Following [50], we will restrict ourselves to the case ny = 1, and
thus only one physical real scalar ¢! is present, associated to the dilaton degree of freedom. The

multiplet content of the theory is then
mo i 0 1 i1 %
(eM 5 wM s AM>7 <AM s A , P = 8\/5) s (2116)

with %, the two gravitini, A, the graviphoton, A}, the U(1) vector field, A’ the two dilatini and
¢ the canonically normalized dilaton. The coordinates of the ny +1 = 2-dimensional embedding
scalar manifold are called ¢! = ¢! and £°, the latter being an unphysical scalar field which will

be fixed in terms of the physical one (! after imposing the constraint
F=pCryrée’e™ =1, (2.117)

where C1 i are completely symmetric real constants which define the theory, and with g = \/g .
The functions &/(¢) are related to the h!(¢) introduced in the next Subsection 2.5.1 by &/(¢) =

B0 (¢).

2.5.1 Vector-coupled N =2, D =5 ungauged supergravity

Pure N =2, D = 5 supergravity is built out of the supergravity multiplet

(R ¥he s A%), (2.118)
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which contains, in addition of the graviton €7}, two symplectic-Majorana gravitini ¢¢,, with
i = 1,2 the SU(2)g index, and a vector field A, called the graviphoton. The most general
N =2, D = 5 matter-coupled supergravity can then be obtained by coupling the supergravity
multiplet with a given numbers of vector, tensor and hypermultiplets. In this thesis, we will not
consider the case of tensor and hypermultiplets and refer to [59, 60] for a general description
of N =2, D = 5 supergravity coupled to these matter multiplets. Instead, we focus on N' = 2
Maxwell-Einstein supergravity, obtained by coupling a given number ny of vector multiplets to

the supergravity multiplet (2.118) [52]. A N' = 2 vector multiplet,

(AM CN go), (2.119)

contains a vector field Ay, a SU(2)g doublet of symplectic-Majorana spin-1/2 fermions \?,
called dilatini, and a real scalar . The total field content of the theory is thus

enr s Vs Al AL, @7, (2.120)

with I = 0,1,...,ny. The real scalars ¢® describe a real ny-dimensional manifold M, whose
structure has been called very special real geometry, and whose coordinate and local frame
indices are respectively written x = 1,...,ny and @ = 1, ...,ny. M is equipped with a metric g,
and a ny-bein f4 related through:

9oy = £330, (2.121)

It turns out that M is better described as a submanifold of a (ny + 1)-dimensional Riemannian

space, with coordinates h! ("), with an embedding defined through the constraint
F =Crhlh/hf =1. (2.122)

Cryi are completely symmetric real constants, which will turn out to uniquely determine the

whole theory. From Cr;r and h!(¢®), we define another set of variables hy(¢®) through

1
0 Crxrh’WEht = Cryh? hX, (2.123)

hy=--2
= 30n!

so that hrh! = 1, as well as a symmetric tensor G77(¢®) which can be seen as the metric tensor
of the embedding (ny + 1)-dimensional space, raising and lowering the indices I, J... according

to
hr=Grsh?,  hl=Ghy. (2.124)

Gr1y(¢") will appear to be the kinetic matrix of the vector fields. From the additional condition
that Gy GE7 = 5}], it is easy to check that it can be written as

Gry = —2C[JKhK+3h]hJ. (2.125)

Introducing the quantities

3 3
hl = —\Eﬁzhl, hie = Grshl = \/;ath, (2.126)
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the metric g,y (¢”) of M is then defined as being the pullback of G1;(¢*) to M:
9oy = Grshlhy) = —2C1 chihi . (2.127)
Finally, we define the symmetric T,.(¢") tensor by

3 3
Tyz = \/;hh;yhi = —\/;hhhé;z = CryxhLh)h%, (2.128)

where a semicolon ";" denotes the covariant derivative associated with the Levi-Civita connection

on M, such that gg,., = 0, as well as the quantity ®r,,(¢”) symmetric in its last two indices:

2/1
Dy = \/; (4gxyh1 + Tmyzh7> . (2.129)

With the formalism and notations introduced above, the Lagrangian of N' = 2, D = 5 super-
gravity coupled to ny vector multiplets can then be written as [52]:

_ 1 1 1 e !
e L0 = RO — —gu, 00" Y — ~GriFiyFMN 4 —— Oy NPORE]  FRo AR
2 2 4 616
1-. 1. s _ P
= UMY DN g = SN (Dard™ 4 QPO 6") A = SN M N oy g”
1 . i o -
+ Zh%%M YNP i Fiep + 12 TN AMNAN R (2.130)
3i — o
N 8\/6}” (,QD?WVMNPQQ’Z)NZF]I;Q + QwMZ¢ZNF]{4N> + £4—fermions'
The action S = [ d®2L£© is invariant under the following N' = 2 supersymmetry transforma-
tions:
m 14& m
dery = €Y, (2.131)

. i oy 1 N
Shmi = Du(@)e + mhleﬁ'} (Ymnt€i — Amnyier) F™ — ﬁeﬂ’mnﬁj)\?’yn)\?

1 nlya 1 J 1 m ., n_jy\a a
+ 48€M’7mnl€ Iy Aj + 6eMe )\Z'ym)\ oM e A Ymn S, (2.132)
5" = §ﬂkf‘f§7 (2.133)
1 ,
5AL, = —26T4?7mA“hI+\[¢MeZhI (2.134)
0N} = —ff&fyM(‘o‘Mso) = 6" QTN + Ty,
Ny & iNb.myé 1 iYb.mnyé
— 4[ (—36JA§?Aj+7meJA% )\j—i-i’ymne])\g’y /\j>. (2.135)
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The hatted quantities X are the supercovariantization of the unhatted ones X, namely:

~ Lo i
men(e) = Wan(e) - Z (%’YM%ZJW + 27pM’7[n¢m]z> , (2.136)
1
Dy(@)e; = Ope + Zaﬁ"(e)'ymnei, (2.137)
. ivV6 - _. s
Finy = Fin+ Thlw[wmi + héwa’YN] AT (2.138)
3 x x Uoyp 7i NG
Oup)® = Oue” = 5 fivnAj. (2.139)

Knowing the symmetric constants Cyx, one can find the functions h!(¢%) by solving the con-
straint (2.122), then deduce the functions hr(¢®), Grj(©"), Gay(¥"), Tay-(¢") and Pruy(p")
using Egs. (2.123), (2.125), (2.127), (2.128) and (2.129) respectively, and thus completely deter-
mine the above Lagrangian and susy transformations. Therefore, even for a fixed number ny
of vector multiplets, several matter-coupled N' = 2, D = 5 supergravity theories are possible,
depending on the geometry of the scalar manifold M, in turn determined by the constants C7 k.
In Section 2.5.3, we list the different N' = 2, D = 5 supergravity theories coupled to ny = 1
vector multiplet whose U (1) gauging produces the runaway scalar potential of the non-critical

string, and we now recall the main ideas of the U(1)r gauging of N’ = 2, D = 5 supergravity.

2.5.2 U(1)g gauging of N' =2, D =5 supergravity

The global symmetry group G of the Lagrangian (2.130) can be written as G = H x SU(2)g,
where H is the group of linear transformations acting on h! and leaving C7 g invariant©, and
SU(2)g the R-symmetry group acting on the fermions ¢4, and A?. One can then arbitrarily
choose to gauge the U(1)r subgroup of SU(2)g ", a subgroup of H or a combination of both.
These general gaugings have been described in [61], and we will only consider in the following
the simplest case of the U(1)g gauging alone, following [51, 53].

The gauging along the U(1)r subgroup of the SU(2)r R-symmetry group is achieved by
defining the U(1)g gauge field as a linear combination of the ny + 1 vector fields A},

Ay = v ALy, (2.140)

with vy a set of ny 4+ 1 real constants. In the same time, we promote the Lorentz covariant

derivatives of the fermionic fields to Lorentz-U (1) covariant derivatives®

DyA™ = (DyA")' = Dy A™ + gAnd ], (2.141a)
Dty = (Duton)' = Dyl + g A1), (2.141b)

where g is the U(1)r coupling constant. These replacements in the original Lagrangian £(©)

(2.130) and in the susy transformations (2.131)-(2.135) will break the supersymmetry. It can be

6. Note that in the most general case, H is only a subgroup of the isometry group of M.

7. Since the vector fields are invariant under SU(2)g, they cannot be used as non-Abelian gauge fields for
SU(2)r, and the full SU(2)r group cannot be gauged.

8. The scalars ¢” are kept uncharged under the U(1)r, and their partial derivatives are thus not replaced by
covariant derivatives in the gauging procedure.



2.5. Minimal supersymmetric extension 69

recovered via the addition to £(?) of a scalar potential P and fermion mass terms, given by

iV6 i wN 9 sia M 19 yiayjb
—?g@bﬁw’y @Z)?V&UPQ—EAM’V ¢‘]7\461'jpd+ 2\/6)\“1)\] 5’5de5’ (2142)

as well as adding new g-dependent parts to the original susy transformations (2.132) and (2.135)

e if = —92P

of the gravitini and dilatini, of the form:

ig

Sni = 2\/6P0'7M6ij5jk€k, (2.143)
gxd = T phc gk, (2.144)

V2

Supersymmetry then requires the new functions P(¢”), Py(¢®), P%(¢”) and P,; to satisfy

P = —P}+ PPY (2.145)

Py = 2hlvy, (2.146)

Pt = V2pliy;, (2.147)
1 c

Py = §5d5P0+2\/§TaI;5P. (2.148)

2.5.3 Runaway scalar potential from 5D gauged supergravity

In this subsection we want to come back on the work carried out in [49, 50] in order to
classify all possible D = 5, N' = 2 supergravity theories, coupled to ny = 1 vector multiplet,
whose U(1)gr gauging exactly produces the runaway scalar potential of the non-critical string.
The approach followed here is to start from the wanted scalar potential and trace back the
construction carried out in [51] towards the different allowed 5D prepotentials, which completely
define the theory. In the ny = 1 case, the two functions Py and P; introduced by the gauging

and defined in Appendix 2.5.2 are expressed in terms of two arbitrary constants A and B by:
-2 % -2 B 2
Py=Ae V3" + BeV3, P; = Ae V3 —56\/37 (2.149)
so that the full scalar potential P reads:

. -¢ B =2

P=-P2+P,P"=-3B (Ae o ﬁ‘f’) : (2.150)
where a denotes the flat indices of the scalar manifold, which take just one value if ny = 1; ¢ is
the canonically normalised dilaton whose kinetic term is —%(8(15)2. The scalar metric gzy = gzs
in the ny = 1 case is therefore simply given in this basis by g., = 1, and similarly for the scalar
manifold einbein f2 defined in (2.121). In the following we will thus not distinguish flat indices
a and curved indices = of the scalar manifold, and simply write P,. The Py and P, can be seen
as the coordinates of the constants v; defined in (2.140) in the basis (hy, k) according to

1 ,
vr = SPohi(6) + ?thl(qﬁ), VI =0,1, (2.151)
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where the prime denotes differentiation with respect to ¢. Knowing from (2.149) the Py and P,

(2.151) is a first-order differential equation for the hy, whose general solution is given by

4oy ol 24
hi(¢) = 3B +2ACr)e v3 —BCrevs™, VI =0,1, (2.152)
with C7 the constants of integration. The completely symmetric constants Cfjx, which enter the
5D prepotential F through F = Cf JhTh? K , are then related to the h;y and their derivatives
according to:

C[JK = h[thK h’IthK (2153)

sl + 7o
Plugging the result (2.152) and its derivative into the relation (2.153), we then find the four

independent constants Cryx expressed in terms of the six constants A, B, vy and Cf by:

Cry;=-9B <ACJ+ g) |:2 (AC[+ 2UI> Cy+ (ACJ+ zg) C[:| , VI, J = {0,1}. (2.154)

After these general considerations, we now focus on the particular case A = 0, B # 0, which

reproduces the runaway potential of the non-critical string’

3 2
P=-P}+ P,P* = —ZB%M’, (2.155)
& %
with Py = BeVv3, P, = —ge\/g, and gives for the constants Crjx:
4UJ
C]JJ:—f (2viCy 4+ v;Cr), VI,J ={0,1}. (2.156)

Since we are interested in ny = 1 gauged supergravity theories leading to the runaway scalar
potential (2.155), we need to investigate which choices of the different constants are compatible
with the system of the four equations (2.156).

Without lost of generality, one can impose as a starting point Cpi; to be non-vanishing,
which from (2.156) implies v; # 0. Two cases can then be considered, depending if Cy vanishes

or not.

e If C; =0, it implies C111 = 0, and necessarily Cy # 0 since Cp11 # 0. But there remains

a freedom on the choice of vg which can vanish or not, leading to Cig9p = Cpog = 0 or
Cho0 # 0, Cogo # 0.

e In the second case C7 # 0, we have C111 # 0. There are then three subcases, depending on
the choice of vy and Cy. If vg = 0, since Cp11 # 0, we must have Cy # 0. But if vy is non
vanishing, the two possibilities for Cy to vanish or not are allowed, respectively leading to
(Cooo = 0, C100 # 0) and (Cooo # 0, C100 # 0).

These results are summarised in Table 2.1. We end up with five different possibilities for the
choice of the constants C7jx, and therefore five different theories leading to the scalar potential
(2.155). The associated values for the constants v; and CT are given in the second vertical part
of the table, from which one can find all relevant quantities, among which the functions h; and

the kinetic matrix Gy .

9. The A term cannot be considered as a string loop correction either.
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Co11 Cin C1o0 Cooo || v1 C1 V0 Co
@) | #0 0 0 0 |20 0 0 20
®) | £0 0 20 20 | £0 0 20 20
© | #0 20 0 0 |20 20 0 20
d) | #0 20 20 0 | #£0 20 20 0
(e) | #0 #0 # 0 #0 || #0 #0 #0 #0

Table 2.1 — The five different supergravity theories (defined by the Cryx on the left part) coupled
to one vector multiplet whose U(1) g gauging reproduces the potential of LST, and the associated
constants (on the right part).

However, while being a priori distinct, these five cases have actually the same physical con-
tent. The scalar potential as well as the scalar metric having been fixed, it is sufficient to check
that the actions of the vectors are equivalent for these different cases. According to (2.130), the
gauge field part of the action contains the kinetic term —iG r7FTF7 and the topological term
Crix AIF/FX | where spacetime indices, respectively contracted with the 5D metric and 5D
Levi-Civita tensor, have been left implicit in both cases. In the simplest case (a), the vector

kinetic matrix G%) and topological term E(ggw reads:

4
a 3B2C2ev3? 0
ng) = ( 0 SU% _2¢)7 (2157)
0 3pz€ V?
£ = ConA°FYF 4+ 200, A PR, (2.158)

Starting with the case (e), the kinetic metric and the topological terms are respectively given
by:

2 4 2 4
© ;};82 e Vil 4+ 3BZC§eﬁ¢ Buon e V3 +3B2C,Crevi?
Grl = | oy~ 20 2 S6 8} —-Z¢ 202,759 (2.159)
#e V3" 4+ 3B“CyChe V3 37126 V3T +3B“Cievs
ﬁgé = C()llAOFlFl + 20011A1F1F0 + ClooAlFOFO + 2C1OQAOF1FO
+0111A1F1F1 +C000AOFOFO. (2.160)
Since Cy # 0 and vy # 0, we are free to consider the field redefinitions
0 0 1 1 1 Yo 40
which bring Ggf]) into the diagonal form
3B2 (Co—Clvfo)Qe%(ﬁ 0
GgeJ) - G(IeJ) = " ] c 2 _lqg ) (2162)
0 352 (v1 — Uoc—é) e V3

while the Chern-Simons terms are sent to:

20v9v1 C B 121)%012 n 42}80%

£l e = (e + 20 2CH i

) (A°F'F! 4 24T FOFY) - (2.163)
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These are indeed equivalent to (2.157)-(2.158) of the case (a). The theories (b) and (c) are
immediately obtained from (e) by simply turning off C or vp, respectively. Finally, for the case

(d) where Cp = 0, one has to consider instead the field redefinition

Afy — Afy — %A}w, (2.164)
which brings G%) and E(CC% into
% —%47 0
Gt — &) =" e (2.165)
0 3B2C2VA
Ly = L& = Cro0A'FOF + 20100 AP FOF" (2.166)

This simply corresponds to an exchange between the 0 and 1 vectors compared to the case (a),
as can be immediately checked from Egs. (2.157)-(2.158).

Hence, after appropriate field redefinitions, the five theories of Table 2.1 turn out to be
physically equivalent, and we can then restrict without lost of generality to the simplest one (a),

where C111 = Ci99 = Cooo = 0. Its prepotential
F =" (2.167)

has been considered in the five-dimensional heterotic string theory compactified on K3 x S! in
[62], where 1/£° has been identified with the heterotic string coupling. It corresponds to the

choice of the only non-vanishing constant C7jx

1
Coi1 = T (2.168)

In particular, one can easily find from (2.168) the gauge kinetic matrix

le%(b 0
Gry=|? 2y (2.169)
0 e V3
as well as the various functions k!, hy, hl and h? defined in Appendix 2.5.1:
2 _2 2 L

H=y/5e vi?, Bt = \/;eﬁ¢, (2.170)

1 24 2 -1
ho = —=eVv3", hy=4/-e V37, 2.171
0= 75 =y (2171)

2 — 24 1 ¢

W .5 , hl = ——eV3, 2.172
1 V3 1 V3 ( )

7 1 24 1 1 _e
h = —=ev3?, hl=———e V5. 2.173
0 \/g 1 \/g ( )

The minimal supersymmetric extension of the dilaton-gravity theory we are working with
is therefore described in the Einstein frame by the Lagrangian £ = £©) + £’ where £ is
the Lagrangian of the ungauged theory given in (2.130) and L' the part added by the gauging
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(2.142). From the results for G7; and P found above, it is easy to see that its bosonic part is
given by:

e tLhos = %R(5)[GMN]—%8M¢8M¢—6%¢A

1 4 1 =2
—geﬂd’F&NFMNO—Ze VaP L FMN (2.174)
L
61/6

In addition of the terms on the first line, already present in the analysis of the Sections 2.3

Copp VPR (A(]]\/[F]{IPFC,IQR + 2A}\4FJIVPFQ%R) ~

and 2.4, the Lagrangian also contains the kinetic terms for the two gauge bosons as well as
a five-dimensional Chern-Simons term, with FY, and Fj,, the abelian field strengths of the
graviphoton and the U(1) vector respectively. From the 5D point of view, the only effect of the

gauging in the bosonic sector appears in the scalar potential.

This theory is invariant under N' = 2 supersymmetries in four dimensions, namely has 8 real
conserved supercharges. In the following subsection 2.5.4, we remind that the background solu-
tion ¢ = a|y| preserves 1/2 of the supersymmetries, and compute the direction of the unbroken
one. A second source of supersymmetry breaking can then arise from the compactification of the
theory on S!/Zs, and from the introduction of branes on the boundaries. We will then check in
subsection 2.5.5 that the supersymmetry preserved by the LD background is also preserved by
the branes located at the singular points of the orbifold.

2.5.4 The LD background as a 1/2-BPS solution

In the vacuum of the theory where all fermions and vectors vanish, the relevant parts of the

supersymmetry transformations for the gravitini and dilatini read:

1 o b .
(5(61, 62)1/)]\4,‘ = 8Mei + Zwﬁ"(e)’ymnei — Q—ﬁeﬁenj\}[’ymeijykek, (2.175)
. 5 '
5(61, 62))\1' = —%6%’ym8M¢€i + %eﬁﬁij(sjkék, (2.176)

where the last terms proportional to « arise from the gauging. In order to compute their explicit

forms in the background, we recall the background metric and frame field in the Einstein frame:
_2 4

Gun =e ﬁalylnMN, ey =e ﬁaly‘&ﬁ. (2.177)

The relation between the spin-connection wf;"(e) and the frame field e},
wift(e) = 2eN[m8[Mer]i;] - eN[me"]Qqu({)Negg, (2.178)

leads to the following components for the spin-connection:

wzb(e) = wi(e) = w(e) =0, (2.179a)
5 o @ !/ a _ OC
wy’(e) = —%\m 6 = G sgn(y)d,,.- (2.179b)
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The transformations (2.175) and (2.176) in the background ¢ = a|y| therefore read:

« 1o’

GE i = Ome — sgn Yot YaV5€i — STt Ymei; 0/ e, 2.180
(€1,€2)Vm e 2\/§gyM7756 2\/§M’Y €507 €k ( )

b )
5(61, 62))\2' = evs [—’i Sgn Yyvys€; + Eijykek} . (2.181)
Setting the transformations (2.180) and (2.181) to zero, we obtain the Killing equations
which need to be solved in order to study the existence or not of preserved supersymmetries in
the vacuum. We start with the Killing equations for the fifth components of the two gravitini,

which form the system of coupled partial differential equations

1
(€1, €2)1h51 = Os€1 — 2352 = 0, (2.182a)
1
0(eq, e = 0569 + ——=75¢1 = 0, 2.182b
(€1, €2)52 = Os€a Wl ( )
whose solutions are given by:
ciw,y) = e 2 e(@),  ea(w,y) = isgn(y)e V5 (). (2.183)
Plugging these solutions into the Killing equations for the 4-dimensional gravitini,
5(er, €0)thpi = Opes — —= sen(y)8%yayse; — £5a7a6i‘5jk€k =0 (2.184)
Iz Iz 23 I 9/3 H1e

we find that they are satisfied provided that e(z) is a constant spinor, €(x) = €. The solutions

to the Killing equations are thus given by

eily) = e 2, (2.185a)
ex(y) = isgn(y)e 23 yse, (2.185b)

and the direction of unbroken supersymmetry is obviously:

e2(y) = isgn(y)yser(y). (2.186)

It is then straightforward to check that the dilatini Killing equations are also satisfied, namely
d(e1, €2 = isgnyryser) A = (1, €2 = isgnyyser)Ag = 0.

We thus conclude that the linear dilaton background ¢ = «|y| breaks N/ = 2 supersymmetry
to N' = 1, with the 4 remaining real supercharges associated with the 4 components of the
Killing spinor e.

In the following we will define the supersymmetric transformation in the direction of the

preserved supersymmetry by:
dr, = d(e1, €2 = isgn(y)vyse€1), (2.187)

while the transformation in the direction of the broken supersymmetry would be given by dnr =

d(€e1, €2 = —isgn(y)vyser)-
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2.5.5 Preserved supersymmetry and NS5-branes
As described in Section 2.3.1, introducing a Zs symmetry on the background solution pro-
duces discontinuous terms in the equations of motion, whose cancellation requires adding brane
contributions to the original Lagrangian. In the Einstein frame, these brane Lagrangians are
given by:
= —2v3ae! ef(;( )s Lo = 2\/§ae(4)6%5(y - L), (2.188)

with e® the Einstein frame four-dimensional vierbein induced on the branes. The aim of this
subsection is to show how the boundary terms coming from the supersymmetric variation of
the bulk Lagrangian are cancelled by the supersymmetric variations of the brane Lagrangians
(2.188), up to linear order in the dilatini A\; and gravitini ¢5s;. The part of the bulk Lagrangian

whose supersymmetric variation brings terms linear in A reads:

L= LY+ L + Lorg + L5 + L) + L5, (2.189)
with, in the Einstein frame:

eIy = —%8M¢6M¢, (2.190)
Y - —%XiﬂyMDM(w)Ai _ —%MM@M 4 %wﬁ"%n)xi, (2.191)
e gy = —%8N¢5\i’yM7N¢M¢, (2.192)
e 1l = %aze%‘ﬁ, (2.193)
e 1L = —4%65’%%51-]-, (2.194)
1L = %e%XWM@b{wéij, (2.195)

and where the superscript (*) means that the corresponding terms arise from the gauging. The
relevant parts of the supersymmetric transformations of the dilaton, dilatini and gravitini are

respectively given by:

5 = %wi, (2.196)
SN = —f@gbe ef5” (2.197)
5y = Dy(w)é +—5Mfym5’ €. (2.198)

2v/3

In the bulk, the variation of the dilaton and dilatini kinetic terms, as well as Ly, yields:

0Ly, = —50ueddM N = S0M OueEN, (2.199)
e 10LY, = $0MOnoNe + SOneN Ty Dyy(w)e
b . : o . :
—%ﬁeﬁ)\zagzﬁekeijéjk - %eﬁ)\llﬁ(w)ekeiﬂjk, (2.200)
; _. 3o o .
6_15£¢>\¢, = —%8N¢)\Z’)/M’YNDM(W)€7;+4 3 ev3\ (?qﬁeke” . (2.201)
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One can already check that without the gauging, i.e. taking o = 0, and using €); = —\'¢;, the
three above variations cancel, 5(£fm + Egm + Lsxrp) = 0 as expected. The gauging produces
A

kin

£§\°‘) + Eg\oj\) + Ef\ojp), as it can be checked by computing:

extra terms in 0Ly, and 0Ly, proportional to «, which are cancelled by the variation of

e loL = “fa%«%%i, (2.202)
;2
~15p(a) O eNig QT 26530 <k
e 0L = ———=eV3N' PPl i + —=e V3 Nexd; 2.203
M TV R AW : (2:203)
2 _. .
etocl?) = %e%%w%wmj (2.204)
o . Sia? 24
= %eﬁ)\’lp(w)ej&j + 4%6\/5%\’6;65?. (2.205)
From (2.199), (2.200), (2.201), (2.202), (2.203) and (2.205), we see that 5(£fm + L+ Loxg +

EE\Q) + E&a)\) + Eg\a)) = 0 at linear order in \.

We now consider the boundary terms on S'/Z,. They arise from integrations by part done in
the bulk variations, as well as from the brane Lagrangians (2.188). In the bulk analysis carried
out above, two integrations by parts have been done, in the variations of the dilatini and dilaton

kinetic terms:

@ .
(i) In 6L£7, , the integration by parts brings a total derivative of the form 0s(eev3 X6 );).

kin>
At the linear level in the fluctuations \;, we evaluate 6\; at the background level, which vanishes

in the direction of the preserved supersymmetry
i = 0(€1, €2 = isgnyyser)\; = 0. (2.206)

We therefore conclude that the dilatini kinetic term does not bring additional boundary contri-

butions in the variation of the Lagrangian.

(ii) In 65&.”, the integration by parts yields

5L

kin

i 5oy ) L L oM iy
—505 (edPpein) + 50" O g N, (2.207)

The first term is a total derivative integrated on the interval [—L, L]. The integrand 05 (ed°¢e'\; )

being an even function of y, its integral on [—L, L] is 2 times its integral on [0, L], giving, at
linear order in \;, —ia [e_\/g"@'?)\i} zzg The second term of (2.207) cancels with the first one
of (2.200), like in the bulk analysis, and we thus conclude that in the direction of the preserved
+ L3 ) brings the boundary contribution

kin

supersymmetry €s = ¢ sgn yvys€1, 6(£¢

kin

y=L

+ L) = —ior [emVEllEN ] (2.208)

@
6(£ kin y=0

kin
It is then straightforward to check that this contribution is indeed cancelled by the supersym-
metric variation of the brane Lagrangians (2.188). Using (2.196), the variation of the dilaton ¢
yields:
)i ), i
0Ly = —ieMeVEE N5 (y), dpLo = ice'VeV3e'Nd(y — L). (2.209)
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Since we are interested in the variations linear in the fluctuations );, we replace ¢ and e® by

4
their background values ¢ = aly| and e(*) = e_ﬁalm, leading to
(5¢£1 = —iae_ﬁa|y‘?Ai5(y), (5¢£2 = iae_\/g‘X'y‘Ei)\ié(y - L), (2.210)

so that:
y=L

8s(Lr + L) = i [e™V3WIEl | (2.211)

y=0"

which exactly cancels the boundary terms (2.208) coming from the bulk variations.
Finally, we consider the supersymmetric variations linear in the gravitini ¥,s;,. The part of

the bulk Lagrangian whose supersymmetric variation brings terms linear in tys; is simply the

Einstein-Hilbert action,
1 (5) 1 M _N mn
Len = 567?/ (w) = 5¢€m €n Ry n™ (w), (2.212)

whose supersymmetric variation contains two terms:

1

1
¢ —eeMeN SRy N (w). (2.213)

0Lpn = — 5

(RMN - ;GMNR(5)> eyl +

From Ry ™" (w) = Dpown™ — Dydwp™", we see that the second term is a total derivative
whose integral would vanish in the absence of boundaries. Taking into account the boundaries
in the fifth direction, it remains the total derivative (95(66261]0\7 dwn"P). Contracting the general

variation of the spin connection wasp,
eNendwnmpy = (Disder))ern — (Dindep))enrn + (Dipdes ) enn (2.214)

with GTM | we see that eZeévéwN"p = 0 and thus the second term of (2.213) vanishes. In order
to evaluate the first one at linear order in the perturbation wlN , we plug the background values

in the Einstein tensor, which yields
1
Ry = 5GunR® = =2v3anun[8(y) = 6(y — L)] +2v3a03,03[(y) = 0(y — L))+, (2.215)

where the dots denote bulk terms. In the contraction with e~ wiN , the terms with M = N =5
_5
cancel, and after considering the background value e = e Vil and writing v# = ety?* =
a 2
ex/ﬁ‘y|5g’y“, Vi =GPy = e\/§a|y|n”p1/1pi, we end with

5Ln = V3ae VA MEsy . (5(y) — 5y — L)) (2.216)

Again we want to check that this contribution is cancelled by the supersymmetric variation of
the brane Lagrangians (2.188). From the variation of the determinant of the four-dimensional

vierbein

se® = %e(%@y%m, (2.217)

we deduce that

6 Py
0Ly = —\/gae(‘l)eﬁ?'y“wmé(y), 0eLo = \/goze(‘l)eﬁ?’y“@buﬁ(y —L). (2.218)
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Since we are interested in the variations linear in the fluctuations 1,,;, we replace the other fields
_4 e

by their background values ¢ = alyl|, e@=¢ ﬂah", and write again v* = efy* = e\/§|y|5fj’y“,

which leads to:

de Ly = —\/gae_%a|y‘€i(55'y“¢m5(y), deLo = \/gae_%aly@égvawm&(y —L). (2.219)

Again, these brane variations exactly cancel the boundary terms (2.216) coming from the bulk
variation of Lggy. We thus conclude that the original N' = 1 supersymmetry preserved by
the linear dilaton background on R'* remains preserved after the compactification of the fifth
direction on S'/Z,, provided the branes added at the two boundaries of the interval are NS5-

branes.

2.6 Compactified D = 4 effective theory

The total bosonic Lagrangian of the A' = 2, D = 5 supergravity theory introduced in Section
2.5.3 has been written in (2.174). The compactification of the graviton-dilaton system performed
in Section 2.4 has revealed two important features: on the LD background, the KK vector K,
coming from the 5D metric becomes massive by absorbing a scalar combination ¢, identified
with the string frame radion, while only the orthogonal combination ¢_, identified as the 4D
dilaton, remains massless, with a vanishing effective scalar potential. Since we know that the LD
background breaks 1/2 of the original supersymmetries, we should be able to write the effective
N =1, D = 4 supergravity after identifying all massive states and decoupling them from the
massless spectrum. To this purpose, in the following two subsections we will first dimensionally
reduce the remaining part of the bosonic action, taking into account that the zero modes of the
fields may depend on the compactified coordinate y, in contrast with standard KK reduction.
Then, in the scalar sector we will first need to identify the massless 4D scalars and complexify
them in a consistent way to form a chiral matter multiplet. In the vector sector, since we already
know that the KK vector K, becomes massive, we will need to identify a second massive vector,
so that both of them could form the bosonic content of a massive spin-3/2 multiplet, decoupled

from the spectrum in the low energy limit.

2.6.1 General considerations on dimensional reduction

The five-dimensional action of the two vectors A9, and A}, contains, in addition to the

kinetic terms Si;,, a Chern-Simons term Scog,

S = Sin + Scs, (2.220)

with
St = [ da/=G {_;e%%mpm _ ie—ﬁg%ﬂlmﬁwl} L (2221)
Sos = / d5x6\1/60011€MNPQR (A% Blep F + 243 Plep E) (2.222)
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where we have denoted all the five dimensional quantities with a hat in order to distinguish
them from their four dimensional counterparts. The standard dimensional reduction of a given
tensor field is usually performed in the vielbein formalism rather than the metric one. Using
local Lorentz transformations, one can write the 5D Einstein frame fiinfbein €'}, and its inverse

s M
€, as

_ 1l 1. 1
ér]\'} _ e_%‘w <e QTSZ(ZE) eTKMECC,y)> , é% _ e%h’l (egTeg(iU) —ezTKa(fvay)> , (2_223)
e

whose squares obviously reproduce the metric (2.82) and its inverse (2.83). The dimensional
reduction of the vector kinetic terms is then carried out in the following way: we first identify
the five and four dimensional vectors fla and A, on flat indices, and then we use the fiinfbein

parametrisation (2.223) to relate five and four-dimensional vectors with curved indices:

A A

Ag= Ay =eMAy = et A, + 8 Ay = evslesret (A, — A5K,), (2.224)

where we have defined 1415 = As. This construction automatically implies invariance of the 4D
vector A, = AM — A5 K, under the U(1) gk '’. A similar analysis for the field strength yields:

Fyp=Fy = evi®Waene {28[MA14+2A58[#K,,]—2K[H85(AV]+A5KV})}, (2.225)

By = eva®Mle—dran (o, A5 — 85(A, + AsK,)}. (2.226)

_sa
Putting everything together, using vV—G = ¢ V3 ly‘e”\/ —¢g and moving from the scalar basis

(r,00) to (p—,py), we get the vector kinetic action in terms of the four-dimensional quantities:

1 2
Skin= - 3 / DoVl /=5 {62«4%0 [ Fy (A7) + ASF,, (K) — 2K1,05(A)) + ASK,))]
2
2020 [a A — 35(A2+AgK#)}}
Lof s Valyl =) e 1 1 1 1 2
- 2 / de V=i [Fu(AY) + ALE, (K) — 2K,05(AL) + ALK,)]

2
+2e7204 [9, 4L — 05(AL + ALK,,)] } , (2.227)

where in the right-hand-side (RHS), contractions are made with the 4D metric g, (z). The
dimensional reduction of the Chern-Simons term works in a similar way. We first write its
expression in terms of flat indices and then identify the four and five-dimensional Levi-Civita
tensors to be equal on flat indices, %@ = ¢%bcd Thig leads to:

CrygeMNPRR AL FJ‘\]fPFé(R = CpgV—Gemmrar AL [ pK

m* np* qr

= CxV=Ge™™ (BLELAK —aBLFLAK) . (2.228)

10. d¢5 A, = 0 holds only in the standard case when A, is independent of the compactified coordinate. If A,
has a y-dependence, it transforms under the U(1)xx according to dg5 A, = P05 A,,.
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Using the expressions for Fu, Fus and A, obtained above, converting back flat into curved

indices and integrating by parts, we obtain:

Cryc MNPORAL B p By = Cryxcee {3ALF,, (A)FS(A) + BALALFLS (A)F o (K)

+ AAJAS o (K) Fpo(K) — 4(F,, (A) + A3 Fu (K))K(,05 A7 A5

+ AUEL(A) + AL (K))0s A AR + 8K(,05A11(0,4] — 05 A7) AK ). (2.229)
The difference compared to standard KK compactification, where the zero modes of the fields
are assumed to be independent of the compactified coordinates, lies in the terms proportional
to O5(...): they must be kept in the framework of the LD background, since the latter may
introduce an explicit y-dependence even on the zero modes of the fields. These considerations
are general in the sense that they do not depend on the background, and can be used in other

frameworks where the fields may have given dependences on the compactified coordinates.

2.6.2 N =1, D =4 effective theory

Having performed the dimensional reduction of the spin-1 action, one can now find the 4D
spectrum of the zero modes of the different fields, and in particular check that the massless spec-
trum arranges into a A/ = 1 supersymmetric effective theory. Since we are ultimately interested
in the massless limit, we can set the massive Kaluza-Klein vector K, = 0 in the dimensionally
reduced action obtained above. Up to quadratic order in A{L, AL the kinetic action (2.227) then

reads:
1 1
Skin = / d’z\/—§ {—8e\/§“|ye—%@+2%’+ngF0W - Ze_\/go‘ly‘e‘p*FﬁyFl“” (2.230)

1 1
—Zeﬁa‘yle*%— (8, A2 — 95A9) — ie*\/galllleﬂso+ (9, A} — 35A;)2} :
while the Chern-Simons action (2.229), for Cp11 # 0 only, yields:

1 g
Ses = / P Cone ™™ (SAVEL ), + GALEL L), (2.231)
In order to ease the comparison between the Einstein and Maxwell sectors, both of which should
contribute to the N’ = 1 effective supergravity, we also recall the (quadratic) dimensionally
reduced action of the Kaluza-Klein vector K, and the scalars ¢_ and ¢ coming from the 5D

dilaton and gravitational actions, obtained previously in Section 2.4.2:

1
Sdil+a = /d5xe—\/§a|y\/jﬁ{—4e¢—+2v+F2(K)

2

3 1 1
-5 [04 sgny K, — %au‘:0+ - 4(8u<»0)2} : (2.232)

2

The point is that we would like to determine which are the massless A/ = 1 multiplets and the
corresponding truncation of the dimensionally reduced action.

In the scalar sector, the exponentials in front of the kinetic terms of A? and A} in (2.230)

tell us that p_ and ¢, must be complexified with A2 and A} respectively. From the action for
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¢_ found in section 2.4.3, S[p_] = —1 [ doze™ V3alyl, /= G(0,p—)?, one sees that the exponential

of y factorizes out of the kinetic terms of A2 and ¢_ if and only if A? is of the form

A = V3l 10(3), (2.233)
which gives for the scalar action:
1 —\3a _ _ N
Sieatar = — [ e =G {(0p-)? + €70 (0,4} (2.234)
Defining the complex scalar field
S = e?= +iA(z), (2.235)

the above scalar action can then be rewriten as

8 SorS
S+ST

scalar = /d5xe fa\y| vV —

(2.236)

from which we deduce the Kahler potential to be K(S,S) = —In(S + S).

In the vector sector, the N/ = 1 spectrum can be found by considering the 4D Chern-Simons
term (2.231). Denoting f(S) the holomorphic gauge kinetic function, the resulting N' = 1 theory
must have a topological term of the form ImfF A F. Such term can only come from the first one
of (2.231) A2F1F! which is consistent with the fact that AL, being complexified with ¢, must
ultimately be projected out of the spectrum. We therefore deduce that the A}L vector remains
massless and sit in a N/ = 1 vector multiplet, while Ag must acquire a mass, by absorbing A?.
From the kinetic terms (2.230), one sees that such a mechanism can be obtained by assuming a

mixing of the zero modes of the vectors of the form

1_ 5 V3a 0
Al = Al (x) + V3 A (2). (2.237)

The factor in the exponential, a priori arbitrary, is found by requiring the two massive vectors
K, and Ag to have the same mass, since they should form together with the massive gravitino

a massive N' = 1 spin-3/2 multiplet, namely

sz(l)KK = m?](l)o = ia . (2238)

In the low energy limit, obtained by truncating the massive spectrum, the remaining bosonic
action reads (we denote F' = F(A(z)):

—Vou ~ q 1 v 1 Im vpo
Shos. = / dPre~ V3l /=G {asagKaﬂsaMS— ZRefF;VFlﬂ 4 1S wpe 1 g } (2.239)

S \/fg et po
which, after integration on y, gives the bosonic Lagrangian of a D = 4, N' = 1 supersymmetric
theory, defined by the Kahler potential K, superpotential W and gauge kinetic function f given
by:

K(S,8)=—-In(S+5),  W(S)=0, f(S)=S. (2.240)

It is easy to check that these results are consistent with a N' = 1 supersymmetric spectrum
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N = 2 supergravity multiplet || A = 2 vector multiplet N = 2 vector multiplet
G 9us Ag e¥- + Zflg AL e+ + z'A%
+ - - + + -

Table 2.2 — Bosonic content of the D = 4, N' = 2 multiplets and their Zs-parity.

obtained from a standard orbifold compactification. The four-dimensional theory contains two
N = 2 vector multiplets (A9, e¥~ +iAQ) and (AL, e#+ +iAL). Two truncations N' =2 — N =1
can then be considered, putting A}L and e¥- —|—i[lg to zero, or Ag and e¥+ +iA} to zero. The first
case is obviously excluded, since no topological term would remain in (2.231), which is consistent
with the gauge ¢4 = 0 set in Section 2.4.2, where we also identified ¢_ with the massless scalar
field. We are thus forced to truncate the Ag and A}, by assigning them a Zj-odd parity, while
A}l and A? are kept even. In Appendix E we show that the 5D vector A9, is dual to the 5D
Kalb-Ramond two form Bjsy. Truncating Ag therefore amounts to assigning an orbifold Z,-odd
parity to By, and thus an even parity to B, the 4D dual of AY. Regarding the string frame
radion ¢4, it is obviously even under the Zy of the orbifold, and odd under the discrete Z,
subgroup of the T-duality group, which inverts the radius of compactification and interchanges
at the same time B,;5 with the KK vector K. The full truncation must therefore combine both
Z- transformations; it projects out half of the degrees of freedom of the original theory, namely
6 bosonic and 6 fermionic on-shell degrees of freedom. These results are summarised in Table
2.2.

The N = 1, D = 4 multiplet content is then easily obtained after dimensional reduction
of the supersymmetry (susy) transformations introduced in Section 2.5.1, using in particular
the 5D frame field parametrisation (2.223). In the following, we will also work with the linear

combinations of the fermions Ay and A_ defined by
Ar = A1+ isgnyysAg, AL = A1 —isgnyyse. (2.241)

From the susy transformation of the dilaton (2.133), we deduce the transformation of the physical

scalar ¢_ in the direction of the preserved supersymmetry:
1
Spe?~ = ——=e¥ e\ 2.242
\/§ + ( )

Since we know the y-dependence of the spinor €',

el = ¢ avallg, (2.243)

with € the constant Killing spinor associated with the A/ = 1 preserved supersymmetry, we

deduce that the zero mode of the spinor A must satisfy
Ay = evi¥3 L (2), (2.244)

where A, (z) is a spinor independent of y. Similarly, the transformations of the 5D vectors (2.134)
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yields for the 4D scalars AY:
1
5, AY = —%e*\/ﬁaw‘e%’— sy (2.245)

The combination €'y5\; being independent of y, we find again that A2 must be of the form

A) = e_*/gaw‘flg(x), as already obtained above. The transformation of the complex scalar S =
e~ + z'fig is thus given by: .
i

618 = ——=e?" & (1 + v5) A4 2.246

L /3 ( V5) A+ ( )

In the vector sector, the susy transformations of Alll in the direction of the preserved super-
symmetry is given by: )
1 _ flga_ —1~a
oLA, = ﬁe 29 € (T)YaA- (2.247)
Similarly as for Ay, using €' = ¢ 2v3Ylg and the fact that A}L is a function of x only tell us that

A_ must have a y-dependence of the form

@

S

A =e2

VS (2). (2.248)

The transformations of the fermions A, and A_ respectively read:

oAy = %e%|y|e%(ww‘p*)ég(:ﬁ)v“@#(gp,+2g0+)61 (2.249)
1 4da a
+ ety eVillem8e-150+(9, A9 — 9;A0) — eV3Vlev o394 (9,41 — 85AL)| 1,
1 4a o
oA = 273 Séﬁf(az)ég(az)’y“yb [eﬁwe_é@+§“"+F£V—e¢§|ye§‘p+é‘p+Fl}V €1. (2.250)

After gauge fixing the scalars ¢4 and A} to zero, truncating Ag and using AY = e*ﬁa\ylﬁg (x)
and that A}L = fl}t(x) when Ag = 0, they lead for the four-dimensional spinors Ay (x) and A_(x):

- ) 1 ~
ohi(z) = %eéwféz%xwwfe(a:)+ﬁéf;(mav%—%@fauA2<x>e<x>, (2.251)
Sph_(z) = — ! eg“’—ég‘(aj)él’j(a:)fy“’bejl,e(x). (2.252)

2v/3

The gravitational multiplet is then easily obtained from

1 o
0ré,(z) = §ex/§|y‘e%‘p*+%‘p+élya¢u7, (2.253)
where we have defined v, = 1 — isgnyys¢u2 and used ef] = ef%w'e_%"é‘;(x). The same

argument as for A+ imposes the 4D gravitino v, to be of the form
Yy = e 2V, (), (2.254)
so that the 4D transformation, after gauge fixing ¢4 = 0, reads:

5184(r) = et ? E(e)y Ty (1) (2:255)
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Finally, one has to rescale the different fermions in order to get both canonical kinetic terms
and standard susy transformations. Since we want to keep standard gravitino transformation of
the form 071, = Ou€e + ..., the parameter € and the gravitino 1, have to be rescaled by the

same powers of e#~, and we thus define the normalised fermions &(x) and u— () by:

E(x) = e &(x), P, (x) = e, (2). (2.256)

The correct normalisations for the chiral fermion A, and the gaugino A_ can be obtained from

their kinetic terms, which after dimensional reduction are found to be:

~ 1 1 1 = ~
Liin(Ax) = —Ze*ﬁalyl\/—ge*aw—*wui(x)é;(x)»yaauxi(x). (2.257)

Defining the normalised fermions Ay (z) and A_(x) by,

< 1
2

Ap(z) = e A (2), A_(z)=e 19 A_(a), (2.258)

their kinetic terms have now the correct powers of e~ matching with the ones of their bosonic

partners, namely (in the gauge ¢4 = 0):
Lom(Ry) = —seVBabl/Them2e- X (2)e8 (2)790, A (1), (2.250)
Liin(Ao) = ——e V3l /ZGer-X_(2)e%(2)y 0 M (x). (2.260)

With these normalisations, the different factors of e¥— disappear in the susy transformations,
and we end up with the standard N/ = 1 supersymmetric transformations involving only four-

dimensional z-dependent fields:

. ) .
5.8 = f%E(l +y5) Ay, AL = S5O (2.261)
5 i . 1

op[(1+75)A4] = %(1 +75)PSe, OLA— = —ﬁ’Y“VVFﬁy@ (2.262)

where all z-dependences have been now left implicit for compactness. These results are sum-

marised in Table 2.3.

N = 1 supergravity multiplet | A/ = 1 vector multiplet N =1 chiral multiplet
e, QZ“_ A, A S =ev +iAY  (14+75)Ap
1 1 1 , 1
—3 ~5 0 5 05 —1) 6

Table 2.3 — N =1, D = 4 field content

In the second row we have listed the constants n which appear in the exponent of the internal

wave functions of the zero modes of the five-dimensional fields ®(x,y) through ®©)(z,y) =
e”‘/ga‘y@(x).
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2.7 Conclusion

The work carried out in this chapter analysed different aspects of the linear dilaton back-
ground arising from a runaway scalar potential in five dimensions, in relation to two different
perspectives: compactification and supersymmetry breaking.

On the one hand, we performed the KK compactification down to four dimensions of the
dilaton-gravity action of a non-critical string, emphasising the new features emerging from the
non-trivial background compared to the standard (toroidal) flat case. Besides the known mass
gap between the 4D zero mode of the 5D fields and the lowest state of their KK tower, it has
been shown how the LD background may induce an exponential profile of the wavefunction of
the zero modes of some fields. In the case of spin-1, this behaviour brings a vector mass term
which breaks the residual gauge symmetry, inherited from the original higher dimensional one,
at a scale proportional to the slope of the LD background. This mechanism has been explicitly
described in the case of the KK vector G5 arising from the 5D metric Gy, through a gauge
symmetry analysis which generalises the well-known results of the toroidal case.

On the other hand in a supersymmetric theory, the LD background behaves as a 1/2-BPS so-
lution and can thus be used to study supersymmetry breaking. This aspect has been investigated
in the framework of the A = 2, D = 5 gauged supergravity coupled to one vector multiplet,
built as a holographic dual of Little String Theory.

Both aspects are then combined together by carrying out the compactification down to four
dimensions of the full bosonic sector of the above 5D supergravity theory. We have shown how
the lowest massive spectrum associated to the mass gap, induced by an exponential profile of
the vector wavefunctions, can be decoupled from the massless sector in the low energy limit, so
that the remaining degrees of freedom arrange into N' = 1 multiplets under the supersymmetry
preserved by the background. The corresponding supersymmetric truncation is consistent with
a standard orbifold projection.

The possibility to describe a consistent N' = 2, D = 4 supergravity theory by including
the above lowest massive modes is an interesting open problem. A starting point would be to
examine if the LD background induces a gauging in the 4-dimensional A/ = 2 theory that can
lead to a (spontaneous) partial supersymmetry breaking N' =2 — N = 1. This could bring new
insights regarding the partial supersymmetry breaking in supergravity, which is highly restrictive

and requires so far the use of hypermultiplets [63, 64, 65] (see also [10]).






CHAPTER 3

Intersecting D-brane models and the
anomalous magnetic moment of the

Imuon

3.1 The anomalous magnetic moment of the muon: a review

The Landé g-factor of a particle is a proportionality constant between its spin § and magnetic
moment /i defined by .
A=95-3 (3.1)
where e and m are the electric charge and mass of the particle, and § = 1/25 for a spin-1/2
particle, with & the Pauli matrices. The Dirac equation for an elementary spin-1/2 particle
implies that g = 2. However, quantum corrections will deviate the value of g from 2, leading to

an anomalous magnetic moment defined by a = (g — 2)/2.

In Quantum Electrodynamics (QED), the value of the Landé g-factor of a lepton and its
loop corrections can be extracted from the general lepton scattering process depicted in Figure
3.1, as discussed in standard textbooks like [66, 67]. Using Lorentz invariance, the Ward identity

ppMH* =0 and the fact that QED is parity-conserving, we can parametrize this amplitude as:

2

2
iM orders = —i€ U(q2) l’Y“fl (f;) + (1 +@2)" f2 (p >] u(qr). (3.2)

m2

I (q1) 1" (q2)

Figure 3.1 — Amplitude iM%, . containing all-order contributions to the anomalous
magnetic moment of a lepton [~.

87
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The Gordon identity for on-shell spinors,

2m u(g2)v"u(q1) = u(q2)(q) + g5 + iv" ' pu)ulqr), (3.3)

allows us to rewrite the second term of (3.2) in terms of v#¥ = %[fy“, ~¥], yielding:

2 UV 2
, - p iy"p p
IME rders = —1€ U(g2) [7“}71 <m2> + o “F, (nﬂ)] u(q)- (3.4)

F1 and Fy are functions of %22 called form factors. At tree level, it is easy to see that F; = 1 and
F5 = 0. These functions contain all the properties of the interaction between a lepton with an
electromagnetic field: F;(0) gives the electric charge of the lepton, while F»(0) gives its Landé
g-factor according to:

F5(0) = ——. (3.5)

Therefore, computing the QED one-loop correction to the anomalous magnetic moment amounts
to extract from the process represented in Figure 3.1 the one-loop correction to F,. This is a
standard computation which can be found for instance in [66, 67]. In this section, we summarise
the main steps of this derivation, in the more general case where the boson propagating in the
loop is massive. This will be the starting point of the analysis carried out in the next section,
where we consider the correction to g coming from an infinite tower of (leptophilic) massive

vectors.

There is a single one-loop Feynman diagram contributing to Fb, depicted in Figure 3.2.
Straight lines represent the lepton of mass m, the external wavy line a photon, while the internal
wavy line depicts in the general case a massive gauge boson of mass M. The particular QED

result, involving a photon running in the loop, will be recovered by taking M = 0.

Figure 3.2 — Amplitude i/\/l‘ltloop containing the one-loop contribution to the anomalous

magnetic moment of a lepton [~.

The corresponding amplitude is given by:

4 . .
My = [ s D) i) (i)

i(f +m)
k2 — m?2 + e

x (—iey") (—igvp)ulqr), (3.6)
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where D"P(k — q1) is the propagator of the massive gauge boson, which reads in the unitary

gauge:

The second term in (3.7) will not contribute to the lepton magnetic moment, so that the relevant

part of the amplitude (3.6) we have to consider reads:

. d*k  NH
’I/M'u = *926 /(271_)4145%\1, (38)
where we have defined
A=k —m? + e, B=(p+k)? —m? +ie, (3.9)
C=(k—q)?—M?+ie NF = a(q2)y (p + F +m)y" (k+m)y"u(q). (3.10)

In order to evaluate the integral (3.8), we use the Feynman parametrization

1 1 1
1 1
= 1) 1
2/0 dxdydzd(z +y + =z )(62—A+i6)3’ (3.12)

where we moved from the first to the second line using z+y+ 2z = 1 and momentum conservation

p' + ¢ = ¢b, introducing the quantities
F =k + ypt — 2¢Y, A= —zyp® + (1 —2)°m? + zM>. (3.13)

Let us now focus on the numerator N* in (3.10). Using the relation ~,v*~v” = —2+*, we can first
rewrite it as N* = —2u(qa) (k’y“yﬁ + FyE+ m2yt — 2m(2kF + p/‘)) u(q1). Writing it in terms of

£ using the relations

4 4 4 v 2
/(37]_?4 fltfw?) =0, /(2d7rl;4 f,ugl/f(EQ) _ /(;i7rl;4 g“4€ f(f2), (3‘14)

for any function f of the magnitude of ¢, and after some Dirac algebra, one obtains:

1
Nt = 2e) o (50 (=01 )+ (1 22— P
@+ d)mz(z — 1) +p'm(z — 2)(z — y)] u(q). (3.15)
The third term proportional to p* is odd under x <+ y, while the denominator of (3.8) is even
under x <> y, as can be seen from (3.12). This term therefore vanishes after integration. The

second term of (3.15) proportional to ¢ + ¢4 can be rewritten using the Gordon identity (3.3),
leading to:

N* = —2u(ge) {'y“ <—£2 +(1—2)1—y)p*+ (1 —4z + 22)m2) —iy"p,mz(z — 1) | u(qr).  (3.16)

As explained above, only the second term proportional to v** will contribute to the magnetic
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moment. Using the identity

d*e 1 i
= — 3.17
/ (2m)4 (12— A +ie)3 32m2A’ (3.17)
the part of the amplitude (3.8) proportional to v#* then reads:
2

, g-em
MF D
! 1672

z(z—l).

x (3.18)

1
ﬂ(qz)v“”U(qﬁpu/ drdydzé(x +y+ 2 — 1)
0

Comparing with (3.4), we find that the one-loop correction to the form factor F; is given by:

2 2,2 1
P g m z2(1—2)
|l —|= dxdydzd -1 1

2 <m2> 472 /0 rdyd=0(x +y + 2 )—xyp2—|—(1—z)2m2—i—zMQ’ (3.19)

so that the one-loop correction to the anomalous magnetic moment a = 97_2 = F5(0) reads:
2,02 1
g m z2(1—2)
= dxdydzo -1 . 3.20
“T e /0 wdydz0(z+y +2 )(1—2)2m2+zM2 (3:20)

In QED, the one-loop correction to the magnetic moment comes from the diagram represented
in Figure 3.2 with a photon running in the loop. It is simply obtained from (3.20) by taking
M = 0, leading to

QED _ &
a = — 3.21
5. (3:21)
with a = % the fine structure constant. This is a historically famous result obtained by

Schwinger in 1948 [68], whose agreement with experimental data for the magnetic moment

of the electron has been one of the biggest success of Quantum Electrodynamics.

The case of the anomalous magnetic moment of the muon ((g — 2),) is more involved. The
theoretical calculation, involving QED, electroweak and hadronic contributions, yields a result
GEM =(g— 2)EM/2 = 116 591 810(43) x 10711 [69], smaller than the experimental measurement
from the Brookhaven National Laboratory (BNL) experiment E821 by 3.7¢ [70]. The recent
Muon g — 2 experiment at Fermilab has confirmed the BNL results [71], pushing the discrepancy
with the SM theoretical prediction to 4.7¢, with a difference !

Aay = a® — ;M = (2.51 £ 0.59) x 107°. (3.22)

The anomalous magnetic moment of the muon might therefore be one of the most promising
signals of new physics beyond the Standard Model, and it is worth studying new ingredients
able to explain the above mentioned discrepancy, which is the aim of the third chapter of this

thesis.

1. This result must be tempered by the theoretical uncertainties coming from strong interaction effects. The
analysis for the hadronic vacuum polarisation contribution has been carried out in [72, 73, 74]. A recent result
from lattice QCD reduce the discrepancy to 1.6 [75], while producing tensions with other quantities at the same
time [76, 77], so that the hadronic contributions to the muon (g — 2),, remains an open issue to be addressed by
future lattice simulations.
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The Chapter 3 is organised as follows. In Section 3.2, we revisit a new solution to the muon
g — 2 discrepancy recently proposed in the framework of low mass scale strings and large extra
dimensions. It relies on the contribution to the (g — 2), of the Kaluza-Klein modes of the
lepton number gauge boson, which could bridge the gap in the discrepancy if some of them
are sufficiently light. The Section 3.3 reminds some basic concepts of the physics of intersecting
D-branes, which are then used in Section 3.4 in order to build a minimal embedding of the SM
into such intersecting D-brane configurations realising this proposal. In Section 3.4.1, we show
that the gauge group of this model is SU(3)e X SU(2)w X U(1)e x U(1)y x U(1) x U(1) x U(1)f,
and construct various D-brane configurations realising it, listing the different possibilities for the
quantum numbers of the SM spectrum and the allowed Yukawa couplings for the quarks and
leptons. The anomaly analysis of these models is performed in Section 3.4.2 without the right-
handed neutrino, in the non-supersymmetric case as well as in the minimal supersymmetric
extension, and then in Section 3.4.3 with the inclusion of the right-handed neutrino. Section
3.4.4 discusses the gauge bosons mass spectrum arising from the four-dimensional generalisation
of the Green-Schwarz mechanism. The inclusion of Dark Matter candidates in this framework is
described in Section 3.4.5. Finally, in Section 3.4.6, we investigate the possibility of introducing
lepton flavour non-universality by gauging only the muonic lepton number that can explain the
(9 —2), discrepancy due to the exchange of KK excitations that couple only to muons and are
thus not constrained by the LEP and LHC bounds. Our conclusions are presented in Section
3.5.

3.2 Accommodating the (g — 2), discrepancy with leptophilic

Kaluza-Klein states

The possibility to explain the muon g — 2 discrepancy in the framework of low mass scale
strings and large extra dimensions has been recently studied in [78], where three contributions
to the muon anomalous magnetic moment have been examined: from Regge excitations of the
string, from anomalous U(1) gauge bosons, as well as from Kaluza-Klein (KK) modes of a bulk
vector field. While the first contribution is strongly suppressed, it has been shown how the second
one can reduce, but not fully bridge, the discrepancy.

However, the most interesting contribution comes from the KK modes of the lepton number
gauge boson, denoted L, in the following, living on a lepton brane U(1)r, extended along some
extra dimensions of the bulk. The zero mode of L, is anomalous and acquires a mass through
a four-dimensional generalisation of the Green-Schwarz mechanism. If its mass is of order the
string scale, it is too heavy to accommodate the (g — 2), discrepancy. If it is lighter due to
volume suppression, it can only partially explain the discrepancy since the zero mode is a linear
combination of the various U(1) factors, coupled to both quarks and leptons and thus subject
to stringent LHC bounds [78, 79]. On the other hand, the KK excitations couple only to leptons
to lowest order. Therefore, such modes evade the LHC bounds, and their masses can be made
sufficiently light to provide a significant contribution to the (g —2), [79]. The aim of this section
is to reexamine the consistency of this scenario with model constraints from LEP data. While

the constraints on KK masses and couplings are more stringent than earlier thought in [79], we
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show that the discrepancy can still be explained assuming the existence of a few leptophilic KK
modes lighter than the LEP energy, v/s|;gp ~ 200 GeV.

At the leading order in the U(1)r coupling constant g, the contribution of massive vector
bosons to the (g —2), has been derived in Section 3.1. We have obtained the result (3.20) which

is reproduced here for convenience:

aLmi z2(1—2)

(1 —2)2m2 +zM?’

1
Aa, = / dxdydzo(x +y+ 2z —1) (3.23)
0

™

where M is the mass of the boson, m,, the muon mass and af, = g% /(47). One can then consider

three different cases, depending whether M > m,,, M ~ m, or M < m,,.

Case 1: M > m,,

When all KK states have masses much bigger than the muon mass, the sum of the integral

(3.23) over all the KK states can be approximated by

m

lar(n)
Aal(}) = Z 3T . M2 (3.24)

SR N

n

where M,, is the mass of the nth KK excitation [79].

The bound from LEP data on the so-called compositeness scale associated to 4-fermion

operators is given by [80]:

< B~ (10 TeV) ™2, (3.25)

where s is the square of the center-of-mass energy?. For M, > /s, (3.25) reduces to
S,arn(n)/M? < B. Thus, the sum of the KK exchange given in (3.24) is constrained by the
compositeness bound, yielding Aa,(}) ~ O(10711): a result which is independent on the number
of extra dimensions. Hence, one needs at least few KK modes lighter than LEP energy in order
to provide a significant contribution able to bridge the gap in the muon anomalous magnetic

moment.

A crucial point to take into account is that the gauge coupling is suppressed by the volume

of the compact space V| ~ (RM,)?,
91 = 9s/V1, (3.26)

where g5 is the string coupling, R is the compactification scale, My is the string scale, and d

stands for the number of extra dimensions in which L propagates. For d = 1, we have M,, = n/R

2. For fine-tuned values of M, close to /s, the vector boson propagator appearing in the left-hand side of
(3.25) is regulated by replacing 3_3/12 by — = -:ir,, Y with I';, the decay rate of the n-th KK mode. Since the
number of possible decay channels of the KK excitations increase for higher modes, I',, increases with n and its
explicit computation would require a model dependent analysis.
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and after substituting these figures into (3.24), Aa,(}) becomes *

2
gsm
Aal) = £ 2
Y= oMM, (3:27)
The observed value of Aa, then implies
My Mg ~ g, x5 x 10* GeV?, (3.28)

where g5 < 47 to remain in the perturbative regime.

As an illustration, if we take M, = 10 TeV* then we have M; ~ gs x 5 GeV, so that
the highest possible value for the compactification scale M, obtained for g; = 4m, is of order
M, ~ 60 GeV, which is consistent with the condition m, < M; < /s for all the approximations.
The associated gauge coupling is then of order g, ~ 107!, Taking /sl gp = 209 GeV, the total
KK contribution to the LEP bound is given by

~ 1072 TevV—2, (3.29)

and hence the bound (3.25) is satisfied.

Case 2: M ~my,

In the case of a massive boson with a mass of order of the muon mass m,,, its contribution
(3.23) to (g — 2), is given by
ar —9+ 237
Aal?) = —— (3.30)
If the lightest KK state have a mass M; ~ m,, the total contribution to the muon anomalous
magnetic moment is therefore the sum of Aa,(}) (Eq. (3.24) for n > 1) and Aa,(f) (Eq. (3.30)),

which in the case of one extra dimension yields:

gs my [ =9+ 231 1 1
Aa, = = — 4 = — . 31
T ur2 M, < 18 +3n§>:1n2 (3.31)

The (g —2), discrepancy can then be accommodated for a string scale at My ~ g, X 3 x 10% TeV,
yielding a coupling gr, ~ 5 x 10™%, now independent of g,. With M; = m,, = 105 MeV, we now
get

~107* TeV 2, (3.32)

2
Z 9L
— 47(s — n®M?)

so that the bound (3.25) is also satisfied.

3. We have neglected here the n-dependence of the gauge coupling of the n-th KK excitation, given in the case

2
of one extra dimension by gr(n) = gL exp {—cn2%}, with ¢ a positive (model dependent) numerical constant.

When M; < M, as it is the case in the large extra dimension scenario considered here, the exponential is of
order 1 for all n < M= and the gauge coupling can indeed be taken constant. The exponential suppression of gr,

My
becomes significant only for higher KK modes with n > %j , which give a negligible contribution to Aaf}).

4. In order to lower the string scale in this region, one assumes in general additional large extra dimensions
transverse to both SM and L stacks of branes. They do not play any role in the current analysis and will be briefly
discussed in Section 3.4.
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Case 3: M < my,

We can also consider the situation where some of the lightest KK states have masses much

lower than the muon mass, in which case the integral (3.23) gives a constant contribution F&.

Multiplying by %, the number of states with masses below m,,, and assuming again one extra

dimension, we get the contribution

3) _ 9s My
Aai) = = R (3.33)

The total contribution to the muon anomalous magnetic moment is then the sum of Aa,(}) (Eq.
(3.24) for n > T 4+ 1), Aaf) (Eq. (3.30)) and Aaf;’ (Eq. (3.33)), that is, in the case of one

extra dimension:

-942v3 2 1
S EEICLNELTESS

gs my
Aa, = 1+2 —|. 3.34
=g |t 13 3M;, 2~ n? (3.34)
n:k—f‘l‘+2
As an example, let us take n]\j[—‘; = 10, in which case Aq, ~ 89752%, accommodating the discrep-

ancy for a string scale M ~ g, x 5 x 102 TeV. With M; = 76 = 10.5 MeV, one gets a coupling

gr, ~ 107*, again independent of g,, from which we can evaluate

~6x 107 TeV 2, (3.35)

Z g%
— Ar(s —n?M})
again satisfying the bound (3.25).

Let us note that unlike the discrepancy between the experimental value and the SM prediction
_ SM _

P =ap® —ayt = (251 £

59) x 107!, the discrepancy of the electron anomalous magnetic moment is negative, Aa®P =

a®P — aSM = —88(36) x 10~ [81]. The contributions coming from the KK excitations being

positive, they will increase the discrepancy of (g — 2)., and we thus have to check that this

of the muon anomalous magnetic moment which is positive, Aa

contribution is lower than or of order of the experimental error on (g — 2)e, that is < 10713,
Assuming M; > m,. where m, is the electron mass, this contribution is simply obtained by

replacing the muon mass m,, by the electron mass m, in (3.24), namely

m? m2g
A, = —SAal) = <2 3.36
B A TV VA (3.36)

For the different values obtained above for M; and M,, we get in the case 1 Aa, ~ 107, and

in the cases 2 and 3 Aa, ~ 10713, indeed smaller than or of order of the error on (g — 2).

This scenario can be easily described in terms of intersecting D-brane models, where extra
dimensions and extra U(1) bosons are ubiquitous. In the next section, we first remind the basic
ideas of such D-brane configurations, and then use this framework in Section 3.4 in order to
embed the Standard Model in this scenario with a leptophilic gauge boson propagating along

one extra dimension.
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3.3 Elements of intersecting D-brane physics

A Dp-brane is an object extended along p spatial dimensions. It spans a (p + 1)-dimensional
worldvolume, which can be seen at weak coupling as a subspace of spacetime on which open
strings end. Let us denote d the number of spatial dimensions, D = d + 1 the total number
of spacetime dimensions, {z"; ..., 2P} the spacetime coordinates tangential to the Dp-brane and
{xP*1, .. 2%} the spacetime coordinates normal to the brane. Denoting 7 € R and o € [0, 7] the
string worldsheet coordinates, its embedding spacetime coordinates XM (7,0), M = 0,...,D —1,
are split in a similar pattern according to {X*+, X~ X*, n=2,...,p}, and {X?, i =p+1,...,d},
for the coordinates tangential and normal to the brane respectively. We now consider an open
string whose both endpoints lie on the Dp-brane. Its coordinates normal to the brane must
therefore satisfy Dirichlet-Dirichlet (DD) boundary conditions, while the ones tangential to the

brane must satisfy Neumann-Neumann (NN) boundary conditions:

Xi(T,o)‘ = 0, i=p+1,...d, (DD)
0y X"(7,0) 0, u=2,....,p, (NN). (3.37)

o=0,1

The mode expansions compatible with these boundary conditions read:

i

Xi(r,0) = V2a' Y Dsin(no)e ™, (DD) (3.38)
n#0 n

’ I )
XH(r,0) = 2 +2apit+iv2 ) In cos(no)e™"7, (NN) (3.39)
n
n#0

where x# and p* are the center of mass coordinate and momentum of the string and «,, the
oscillation modes. The 2-dimensional worldsheet fermions )™ (1,0), superpartners of the worl-
i
M
Majorana-Weyl spinors. Splitting again the spacetime index M into u = 2,...,p for the direc-

sheet bosons XM (1, 0), are written ™ = < ), where wﬂ\r/[ and Y™ are 2M 2-dimensional

tions tangential to the brane (in the light-cone gauge), and i = p + 1,...,d for the directions
normal to the brane, the % must satisfy DD boundary conditions, while the 14 must satisfy

NN boundary conditions, which are respectively given by:

1/11(7’,0:0) = ' (r,0=0), ’(ZJi(T,O’Z?T)Z*ET,[)i(T,O‘ZTF) i=p+1,...d, (DD)
Y (r,o=0) = (1,0 =0), wi(T,azw)zewﬁ(T,azw), w=2,..p, (NN), (3.40)

with € = —1 for the worldsheet fermions in the Neveu-Schwarz (NS) sector, and € = +1 for
the worldsheet fermions in the Ramond (R) sector. The mode expansions compatible with these

boundary conditions read:

Pi(r,0) = ii@me—ww (DD) (3.41)

Vo) = iﬁzwﬁe"“ﬂ), (NN) (3.42)
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with r € Z + % in the NS sector, and r € Z in the R sector.

Since we are interested in the spacetime bosons, we focus on the NS sector. The NS ground-
state |0)yg is defined as being annihilated by positive modding operators, namely

ap [O)ns =0, ) 15[00ng =0, Yn>0, VP=2,..d (3.43)

n

The bosonic massless spectrum of an open superstring with both ends satisfying DD boundary
conditions in d — p directions and NN boundary conditions in p + 1 directions then arises from
1/}1_)1/2 |0)ng- Since a Dp-brane breaks the Lorentz group into SO(1,d) — SO(1,p) x SO(d—p), we
must therefore arrange the states into representations of the residual symmetry group according

to:

¢11/2‘0>Ns - ¢, (3.44)
¢51/2‘0>NS — Ay, (3.45)

where ¢ is a SO(d —p) vector and A, a SO(1, p) vector. From the point of view of the Dp-brane
worldvolume with the Lorentz group SO(1,p), we thus get a vector field A, and d — p real
scalars ¢'. The ¢’ can be seen as Goldstone bosons arising from the spontaneous breaking of the
translational symmetry induced by the brane, and describe the fluctuations of the brane in the

d — p transverse directions.

Let us then consider a stack of N parallel and coincident Dp-branes. An open string stretching
from the brane a =1, ..., N to the brane b = 1, ..., N is said to sit in the ab sector. Since strings
are oriented, the ab and ba sectors are different, and we end with N? different open string sectors.
The open string spectrum of a stack of N parallel and coincident Dp-branes is thus given by N?
copies of the spectrum of a single Dp-brane that we found above. The N? gauge bosons can then
interact in the following way. Let us consider two open strings in the ab and bc sectors. Since
the end of the first string and the beginning of the second string lie on the same brane, they can
join together yielding an open string in the ac sector. We thus get N? interacting massless gauge
fields, so that the gauge group is enhanced to U(N). The two independent labels a,b =1, ..., N
at both ends of the open strings are discrete degrees of freedom called Chan-Paton indices. The
addition of parallel and coincident Dp-branes therefore provides an easy way to generate non-
abelian gauge groups in String Theory, which lie at the core of any models of particle physics.
However, another cornerstone of the Standard Model is the chirality of its fermionic spectrum,

which cannot be obtained yet in such coincident Dp-brane framework.

Chirality in four dimensions is a violation of 4-dimensional parity. However, 4-dimensional
parity is related to the parity in the six extra dimensions. In order to violate 4-dimensional
chirality, one must therefore violate 6-dimensional parity. This cannot be obtained with a single
stack of N coincident branes, since this configuration does not produce a preferred orientation
in the 6-dimensional internal space. To this purpose, one must consider at least two stacks of
Ny and Ny branes which intersect over a 4-dimensional subspace of their worldvolumes. The
rotation from the first stack to the second one provides an orientation in the transverse 6-
dimensional space, breaking 6D parity and hence leading to 4-dimensional chirality. In the R

sector, an open string stretching between two intersecting stacks of N7 and Ns branes leads to
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a massless 4-dimensional chiral fermion localized at the intersection of their worldvolumes. If
a string stretching from the stack 1 to the stack 2 gives a left-handed fermion, then its right-
handed counterpart will correspond to an oppositely oriented string stretching from the stack
2 to the stack 1. Such states transform in the bi-fundamental representation (NLNZ)L—I of
the gauge group U(Ny) x U(N3), with the subscripts denoting the U(1); x U(1)a charges. This
charge assignment is required to get consistent string interactions. Let us consider an open string
stretching from the stack 1 to the stack 2, in the a1bs sector, and another string stretching from
the stack 2 to the stack 1, in the byc; sector, with ay,c; = 1, ..., Ny and bs = 1, ..., Na. Interactions
of such open strings happen on the b, brane in the stack 2, when the end of the first one joins the
beginning of the second one. This requires their U(1)2 charges to be opposite, hence justifying
the charge assignment given above. Finally, in the NS sector, an open string stretching between
two intersecting stacks of branes gives a light spectrum of complex scalars, in which can be
embedded the Higgs sector of the SM.

To summarise, a single D-brane gives rise to a U(1) gauge theory living on its worldvolume,
with the associated gauge boson corresponding to an open string with both ends attached to
this brane. Non-abelian gauge symmetries arise from a stack of N coincident D-branes, giving
rise to a U(N) gauge symmetry. The (chiral) matter fields then correspond to open strings
stretching between intersecting D-branes, living in their common worldvolume. These so-called
intersecting D-brane models thus provide an elegant framework to obtain phenomenologically
consistent particle physics models from String Theory [82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92].

The minimal intersecting D-brane models which can reproduce the SM gauge group Ggar =
SU(3)e x SU(2)y x U(1)y and its matter spectrum charged under Ggps contain three stacks
of branes giving rise to a gauge symmetry U(3). x U(2),, x U(1) [93, 94]°. The “color” stack
U(3). and “weak” stack U(2),, are obtained by considering three and two coincident D-branes
respectively. For phenomenological reasons, a third U(1) factor arising from a single D-brane is

necessary to accommodate the SM.

An open string with one end on the color branes transforms in the 3 (or 3) of SU(3),;
similarly, an open string with one end on the weak branes transforms as a doublet of SU(2),,.
The non-abelian structure partially fixes the assignments of the SM particles. The quark doublet
() corresponds to an open string with one end on the color stack and the other on the weak
stack of D-branes, while the anti-quark singlets ©“ and d® have one of their ends on the color
stack. The lepton doublet L as well as Higgs doublet(s) H must have one of their ends attached
to the weak stack of branes. However, the abelian structure is not uniquely determined since the

hypercharge can be a linear combination of the different abelian factors.

The standard normalisation for the U(N) ~ SU(N) x U(1) 5 generators that we will consider
in the next section is Tr7TT® = §%° /2, while the corresponding U(1) y charges are measured with
respect to the coupling g /v2N, with gy the SU(NN) coupling constant, so that the fundamental
representation of SU(N) has U(1)y charge unity.

5. The U(2),, may be reduced to Sp(1) ~ SU(2), reducing the number of U(1) factors to two.
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3.4 Minimal embedding of the Standard Model into intersecting
D-brane configurations with a bulk leptonic U(1)

The aim of this section is to realise the proposal of Section 3.2 in the framework of intersecting
D-brane models presented in Section 3.3, with matter and gauge fields corresponding to open
strings ending on D-branes. We build a minimal embedding of the Standard Model (SM) into
such intersecting D-brane configurations with a gauged lepton number associated to an abelian
U(1)r D-brane. The crucial point to take into account is that such leptonic brane should extend
into some extra dimensions transverse to the SM stacks of branes, in order to give rise to
the leptophilic KK excitations required to bridge the gap in the muon anomalous magnetic
moment. As a consequence, the corresponding U(1); cannot contribute to the hypercharge
linear combination, since this would lead to an unrealistic small gauge coupling suppressed by
the volume of the extra dimensions. Assuming that the lepton number gauge boson propagates
into one “large” extra dimension, the associated compactification scale M; must then satisfy
Mp, ~ O(10 — 102 GeV) for a string scale M 2 10 TeV, as described in Section 3.2. The total
bulk transverse to the SM branes is then made of two inhomogeneous parts. First, the one
with one large extra dimension described above along which the U(1)z brane extends, called
“L-bulk” in the following, whose size Ry, = M; ' ~ (10 — 10> GeV)~! must be sufficiently low
to explain the (g — 2), discrepancy. Then, a second part with the remaining (at most five)
additional extra dimensions transverse to both SM and L stacks of branes, called “gravitational
bulk”, with an average size larger than the L-bulk in order to lower the string scale in the
2 O(10 TeV) region [4, 5]. From the string theoretic relation M3, = g7 >M:V g, with Mp; the
four-dimensional Planck mass, gs the string coupling (assumed to be of order 1), My the string
scale and V(g) = RLR‘E’; the volume of the six-dimensional internal space, one gets an average
size Rg of the gravitational bulk of the order Rg ~ (0.1 GeV)~1.% This special hierarchy of
scales is summarized and depicted in Figure 3.3. In the following, using the term “bulk” alone
will refer to some extra dimensions transverse to the SM branes when there is no need to specify
whether such dimension(s) are in the L-bulk or in (part of) the gravitational bulk.

Besides the Standard Model color U(3)., weak U(2),, and abelian U(1) stacks of branes
localised effectively in four dimensions and the L-bulk U(1) brane, we show that the minimal
embedding of the SM in such configuration requires a fifth U(1)" brane extended in the bulk, so
that the total gauge group is SU(3)e X SU(2) x U(1)ex U (1) x U(1)x U (1) xU (1)1 Identifying
U(1). with the baryon number (B), we find two possible models, depending on whether the anti-
quark u® or d° couples to the U(1)". If U(1), is not identified with the baryon number, a third
model is possible, described here for completeness although not phenomenologically relevant
since it forbids the presence of a mass term for the up-type quarks and may lead to dangerous
baryon number violating processes. We will thus focus in the models where U(1), is identified
with the baryon number. In this case, it is shown that there is one anomaly-free U (1) combination
besides the hypercharge, which does not couple to the SM spectrum and which can thus remain
massless or acquire a mass. The minimal supersymmetric extension of our model is also briefly

discussed in the context of the anomaly analysis, and we show that the inclusion of the Higgsinos

6. In case of less than six large extra dimensions, V(s) = RpRg with n <5, Rg becomes larger.
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in the spectrum does not modify the result for the non-anomalous vector bosons obtained in the
non-supersymmetric case. The presence of two branes extended in the bulk allows to introducing
the right-handed neutrino vp as a state of an open string stretched between these two branes.
When vp is included in the spectrum, the SM particles are now charged under a second anomaly-
free U(1) combination given by B — L. Depending on the charges of the right-handed neutrino,
a third non-anomalous vector can arise, which remains invisible from the SM spectrum as in the
situation without vg. These two bulk branes can also be used to introduce in a similar way Dark
Matter (DM) particle candidates, as Dirac fermions corresponding to open strings stretched
between them. By computing the cross-section of the annihilation process of the DM fermions
into SM leptons, mediated by the KK excitations of L, we find the masses of such DM particles

which yield the correct DM relic density, in terms of the compactification scale M.

As already mentioned above, the anomalous gauge bosons must get a mass through a four-
dimensional generalisation of the Green-Schwarz (GS) mechanism [95, 96, 97]. Such bosons form
in general linear combinations of the various abelian factors associated to each stack of branes,
some of them being (effectively) localised in four dimensions while some others propagating
into (large) extra dimensions. We will show that such combinations are dominated in the large
volume limit by the (zero mode of the) vectors propagating in the bulk which enter in the linear
combination defining the anomalous bosons and can become massive with a string scale mass

O(M;) independent of the compactification scale.

Compactification scales

Electroweak

Gravitational

Planck scale  String scale scale L-bulk bulk
| | | | o
pl-l Ms-1 IVlw-1 RL RG
10 Tev? 10" TeVv* 102 GeV* 102-10" GeV™* 10GeV*
10¥m 10 m 10®m 1010 m 10™m

Figure 3.3 — Scale hierarchy in our model.
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3.4.1 The models

In our construction, since we want to obtain leptophilic KK excitations, we require the lepton
number gauge boson to be in the bulk and therefore one must consider a bulk leptonic U(1)y,
brane. As a starting point, let us consider it to be added to the minimal three stacks model

U(3)e x U(2)y x U(1) mentioned in Section 3.3, namely we consider the total gauge group:
G=5U(3)cxSU(2)y xU(1)exU(1)y xU1) xU(1)L. (3.46)

Only the lepton doublet L and singlet ¢ must have an end attached to the U(1)y. In order
to have a lepton number, L and e“ must have opposite g7 charges, choosen to be +1 and
—1 respectively. The other ends of L and ¢ must be attached to the U(2),, and U(1) branes
respectively. The ¢; charge of ¢ and the ¢ = g, charge of L can be defined to be +1. The ¢
charge v of the quark doublet @) can be either +1 or —1 if ) belongs to the fundamental 2 or
anti-fundamental 2 of SU(2),,. The g3 = q. charge of @ is fixed to 1, while the ones of u¢ and
d® are chosen to be —1 in order to get a baryon number *. As in the three stacks configuration
described above, u¢ and d° must have one of their ends attached on the U(3). branes, while
the other end can be attached to the U(1) brane ({z,y} = £1) or be in the bulk (x = 0 and/or

y = 0). The total matter content and their quantum numbers therefore reads: ®

(3 2;1,v,0,0); /6 ( )
(3, 1707%0)72/3 (3.48)
d® (3,1;-1,0,y,0)/3 (3.49)
(1 2;0,1,0,1)_, 5 (3.50)
(1,1;0,0,1,—1)4, ( )

with the hypercharge of each species indicated as a subscript for completeness. Since U(1)f, is

in the bulk, it should not contribute to the hypercharge, thus given by the combination

qy = €3q3 + C2G2 + 141, (3.52)

where c3, ¢ and c; are constants. The quantum numbers v, z and y as well as the constants c;

are now constrained by requiring the different states to have the correct hypercharge.

The charges of the leptons e and L fixes ¢; = 1 and ¢ = —% respectively. The charges of
the quark doublet ) then imposes c3 = % + 5. Finally, the anti-quarks u® and d© respectively
leabdsto:v——f—i—2 and y = 2—1—2 Since v = +1, we have either x = 0 or y = 0, so that
there is at least one end of the u® or d¢ strings elsewhere, which requires the existence of an
additional brane U (1)/ besides the SM and L branes. To leave open the possibility of having
this brane extended in the bulk, in order to avoid again an extremely small gauge coupling, we

assume that U(l)l does not participate to the hypercharge, therefore still given by (3.52). The

7. The other possible choice +2 for the g3 charge of the anti-quarks u® or d°, which breaks the baryon number
symmetry, is discussed below.
8. Here we are considering identical embedding for each of the three generations of quarks and leptons.
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total gauge group now reads
G=58U(3)ex SU2)w x U(1)e x U(1)y x U(1) x U(1) x U(1)y, (3.53)

under which the matter content has the following quantum numbers:

Q@ (3,2;1,0,0,0,0)16 (3.54)
u® (3,1; —1,0,2,2,0)_9/3 (3.55)
d° (3,1;-1,0,y,w,0)q3 (3.56)
L (1,2;0,1,0,0,1)_1 (3.57)
e (1,1;0,0,1,0,—1);. (3.58)

Again, the constant v = +1 specifies whether the quark doublet () belongs to the fundamental
2 or anti-fundamental 2 representation of SU(2),. The only ambiguities lie in the quantum
numbers of the anti-quarks u®, d°: they must have one of their ends attached to the U (3). branes,
while the other ends can be tied to the U(1) or U(1)" branes. This choice, which will be fixed by
assigning the correct hypercharges to the states, is encoded in the constants z,y, z, w = {0, £1}.

We have as previously ¢; = 1, ¢o = —% and c3 = % + 5, while the charges = and y are given
by x = —% + 35 and y = % + 5. Two different models can then be considered, depending on
whether v = +1 or v = —1.

e In the first case v = +1, we get ¢c3 = %, x = 0 and y = 1, which enforces z to be non-
vanishing and w = 0. The u® string has thus one end on the bulk brane U(1)" while d° is

stretched between two branes participating to the hypercharge.

e The second case v = —1 amounts to exchange the u® and d® anti-quarks. Here we get
c3 = —%, x = —1 and y = 0, which implies necessarily that z = 0 and w is non-vanishing,
so that u® is now stretched between two branes participating to the hypercharge while d¢
has one end on the bulk brane U(1)".

These two models, defined by the choice v = 1, will be respectively denoted A and B in the
following. Since U (1)/ does not contribute to the hypercharge, the non-vanishing constants z in
model A and w in model B can be independently chosen to +1. Without lost of generality, we
fix them to be +1.

One can then implement the Higgs doublets. It is easy to check that for each of the models
A and B, two Higgs doublets (together with their complex conjugates) with vanishing charges
@3 and @ and hypercharge +1/2 are possible, given by:

Model A : Hy(1,2;0,~1,-1,0,0) 15,  H,(1,2;0,~1,0,~1,0), s, (3.59)
Model B @ H,(1,2;0,1,1,0,0) /9,  Hg(1,2;0,1,0,-1,0)_y 5. (3.60)

The allowed Yukawa couplings then read:

Model A : Qd°Hy, QuH,, Le® Hy, (3.61)
Model B : Qd“Hy,, Qu°H,, Le“H . (3.62)
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These results are summarized in Tables 3.1 and 3.2, and the two models are represented picto-

rially in Figure 3.4.

a3 42 41 % qar || 9y
Q| 1 1 0 0 0| ¢
u | -1 0 0 1 0 || -2
d® || -1 0 1 0 0| 3
Lo 1 0 0 1| -3
e“ | 0 0 1 0 -1 1
Hy | 0 —1 —1 0 —1
H, | 0 ~1 0 -1 3

Table 3.1 — Model A with gy = 25 — 2¢2 + 1

q3 q2 q1 QE qL qy

Q| 1 —1 0 0 0| &
uC || -1 0 ~1 0 0| -2
de || -1 0 0 1 0 3
L o 1 0 0 1| —3

e |l 0 0 1 0 -1 1
H,| 0 1 1 0 i
Hy || 0 1 0 -1 -1
Table 3.2 — Model B with ¢y = —1g5 — 32 + &1
u@3), de u@) U(3), ue u(1)
u(), u(2),

.....
4444

ec

ue g ‘ de . ‘
SL § SoL §
* u(1), ) u(1),

. u(1y - u(a)y

eC

Figure 3.4 — Pictorial representation of models A and B.

One can also consider a model where the anti-quark «© has both ends attached to the U(3)
stack of branes and its orientifold image, corresponding to the 3 of SU(3) obtained as the
antisymmetric product of two 3’s. Repeating the analysis described above, we get the matter

content summarized in Table 3.3.
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a3 a2 0 % qar || v
Q -1 0 0 0 i
u® || 2 0 0 0 0 | -3
dc | -1 0 0 1 0| 2
L | o 1 0 0 1| -3
e“ |l 0 0 1 0 -1 1
He || 0 1 1 0 3
Hyl|l 0 -1 0 1 :

Table 3.3 — Model C with gy = —3¢5 — 3¢2 + @1

In this case, an up quark mass term is no longer allowed since Qu® has a non-vanishing g3

charge. The only possible Yukawa couplings are
Qd°H},  Le“H], (3.63)
where H; and H. have been defined in Table 3.3. Let us note that in this model, the role of

u® and d© is not symmetric, and there is no consistent model with d° in the 3 of SU(3). The

model C is represented pictorially in Figure 3.5.
U(3), u@)

u u@),

-
-
"

ec

de
SoL
) U(1),

- u@y

Figure 3.5 — Pictorial representation of model C.

3.4.2 Anomaly analysis

In order to find the anomalous and anomaly free combinations of the U(1)’s in the different
models constructed above, we compute the anomaly matrix K;; = TrTIQQ 7, built from the
mixed gauge and gravitational anomalies. The column of indices J = {c, w, 1, 1/, L} labels the
abelian generators @ 7, while the line indices are I = {SU(3),SU(2),Y, Grav}, with TGy = 1
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for the gravitational anomalies. One gets, for the two models A and B:

1 1
0o 131 0
A 3200 1!
Model A : KW =] 2 7 = " 21, (3.64)
2 3 3 3 "2
0 8 4 3 1
1 1
0o -1 -3 1 0
B 51 0 o &
Model B : K® =12~ " = 2 (3.65)
2 3 3 3 2
0 —4 -2 3 1

Diagonalizing the matrices K ' K, one finds the anomaly free U(1)’s as the eigenvectors asso-
ciated to the vanishing eigenvalues, the other eigenvectors being anomalous. In addition to the

hypercharge gy, one finds in both models a second anomaly free U(1) given by:

1 1 /
Model A : ¢= 393~ 5@ +q, +qr, (3.66)
2 1 /
Model B : ¢g= B 52 @ +qr. (3.67)

It is easy to see that the g charges of the SM particles are minus their hypercharge gy, namely
the SM sees only one anomaly free U(1) as expected. The second anomaly free combination

reads q3 — g2 + q1 + q/l + g1, and is invisible from the SM as one can easily check.

The analysis in the model C is carried out in a similar way. In that case, the anomaly matrix

reads

3 1

210 1L o0
3 1
s =1 0 0 3

K9=12 " - 2 1. (3.68)

2 3 3 T2
9 —4 1 3 1

and it turns out that the hypercharge ¢y is the only anomaly free U(1).

One can wonder whether the supersymmetrisation of our models modify the results of the
anomaly analysis. In the Minimal Supersymmetric extension of the Standard Model (MSSM),
each SM particle gets a superpartner: the quark and lepton fermions are paired with the sleptons
and squarks, the SM gauge bosons are paired with the gauginos, while the spin-1/2 fermionic
partners of the Higgs scalars are the Higgsinos. Being chiral, the Higgsinos H can modify the
anomalous and anomaly-free U(1) combinations obtained in the non-supersymmetric models.
In our case, their introduction in the spectrum gives new contributions to the entries Kj; for
I,J = {2,3,4} of the anomaly matrix K. For model A, where the quantum numbers of the

Higgsinos are

Hd(172;07_17_17070)71/27 Hu(172;0)_1707_170)1/2) (369)
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one gets the anomaly matrix

1 1
o 1 L 1 0
3 1 1 1
A 31 -3 -3
R (3.70)
2 3 6 6 2
0 4 2 1 1

It is then easy to check that the vectors associated to the zero eigenvalues of the matrix
(Kﬁ?S)SM> Kls/[AS)SM are g, and ¢ given by (3.66), so that the minimal supersymmetric exten-
sion of model A does not modify the result obtained in the non-supersymmetric case.

On the other hand, the minimal supersymmetric extension of model B would require the
introduction of a third Higgs doublet, since with the two Higgs doublets (3.60) the Yukawa
couplings (3.62) would violate holomorphy of the superpotential.

Let us note that an anomaly-free U(1) is not necessarily massless because of underlying 6-
dimensional anomalies [98, 99, 100]. One therefore needs to impose additional model-dependent
constraints to ensure that the hypercharge remains massless in four dimensions. As an example,
let us assume that our framework arises from a given type ITA orientifold compactification with
D6-branes and orientifold O6-planes: we denote by ¢ a stack of N; D6-branes giving rise to a
factor U(N;) in the gauge group, and ¢ its orientifold image. The D6;-branes span 4-dimensional
Minkowski space and are wrapped on 3-cycles II; in the internal space Xg. In general, 3-cycles in
6-dimensional compact space intersect several times. Introducing the 3-homology class [II;] of the
3-cycle II;, the homological intersection number of the stacks ¢ and j is given by I;; = [II;] - [IL;].
The data N; and I;; are then sufficient to determine the massless chiral spectrum of the 4-

dimensional theory *:

» ij sector: open strings stretching between the stacks ¢ et j correspond to I;; 4D chiral
fermions in the bi-fundamental representation (Nj, Nj) of U(N;) x U(Nj).

e i j sector: open strings stretching between the stacks ¢ and the orientifold image j of the
stack j correspond to I;z 4D chiral fermions in the bi-fundamental representation (N;, Nj)
of U(NZ) X U(N])

In this framework, an anomaly free U(1) linear combination
v =Y cig; (3.71)
i
remains massless if the following condition holds [101]:
>N (L~ 1) =0, (3.72)
i#j
for every j, where the sum runs over ¢. Let us take as an example the minimal supersymmetric

extension of model B built in Section 3.4.1, where the constants ¢; defining the hypercharge

linear combination are c3 = —%, cy = —%, c1 = 1 and ¢y = ¢1;, = 0. Using the intersection

9. We do not discuss the sector i 7 which does not play a role in our analysis.
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numbers corresponding to the fermionic spectrum of Table 3.2,
Isp =3, I33j=-3, Isyr=-3, Iy, =3, I, =3, (3.73)

one can easily check that the constraints (3.72) for j = {3,11} are indeed satisfied. With
the intersection numbers I,; = 1 and Iy = 1, corresponding to the two Higgsinos doublet
superpartners of the Higgs scalars H, and H, defined in Table 3.2, the constraints (3.72) for
j ={2,1,1'} are not satisfied. It would be the case if we could have for instance the intersection
number I,; = 3 and Ip;» = 3. This amounts of introducing two additional Higgs doublet pairs
in the (2,1) and (2,1’), which do not modify our phenomenological analysis presented here.
Note finally that the local D-brane configurations built in this section may also be obtained
from other string constructions which do not admit such interpretation in terms of intersecting
D-branes (such as ordinary type I orbifolds, or non-commuting magnetized D-branes), for which

the above conditions do not apply as such.

3.4.3 Right-handed neutrino

Finally, we can implement the right-handed neutrino vg. The existence in the total gauge
group of two abelian factors which do not participate to the hypercharge easily allows to intro-
duce such SM singlet state vg, corresponding either to an open string with one end on the U(l),
brane and the other on the U(1); brane, or with both ends on one of the two branes. ' The
right-handed neutrino enters the anomaly analysis only through the gravitational anomalies,
modifying the entries K44 and K45 of the anomaly matrices computed above. In the following
we will focus on model A, the analysis in the two other models can be carried out in a com-
pletely similar way and does not bring any new relevant physical results. In the case when the
open string associated to vp stretches between the U(1)g, and U(1)" branes, the four different
possibilities for the charge assignments of vp together with the associated anomaly-free U(1)

combinations is listed in Table 3.4 1.

Configurations || vr quantum numbers || Anomaly-free U(1) (besides the hypercharge)
1 vr(1,1;0,0,0,~1,1) ¢=3543— 3@+ a1+
2 vr(1,1;0,0,0,1, 1) i=3¢-3e+q
3 vr(1,1;0,0,0,—1,—1)g —2q3+4qr
4 vr(1,1;0,0,0,1, 1) i=2¢—3p+q 5 —itata

Table 3.4 — Anomaly-free U(1) in configurations with right-handed neutrinos (model A)

The first configuration does not modify the result (3.66) obtained in the absence of vg: the SM
particles see one anomaly-free U(1), the hypercharge gy, while there is a second anomaly free
combination g3 — g2 + ¢1 + qll + qr, invisible from the SM. The second configuration contains

also an extra anomaly-free U(1), ¢ = %q;g — %qz + qll. In that case, one observes that the §

charges of the SM particles are given by B — L — ¢y '%: the SM spectrum is thus charged under

10. For notational simplicity, we call a charged open string with ends on the same brane when it stretches
between the brane and its orientifold image.

11. It is easy to check that these results remain unchanged in the minimal supersymmetric extension of the
model, introducing the Higgsinos (3.69) in the spectrum.

12. The B — L charges are defined as usual: 1/3 for @, —1/3 for u® and d°, —1 for L and 1 for e and vg.
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two anomaly-free U(1)’s, gy and B — L. The situation is similar in the third configuration,
with B — L still anomaly free and now given by %qg — qr. Finally, the fourth configuration
combines the features of the three previous ones: there are now two anomaly-free U(1)’s besides
the hypercharge, § = %qg — %qg —i—qll and %(B —qr.. The § charges of the SM particles are given, as
in the second configuration, by B — L — gy, so that the SM sees again two anomaly-free U(1)’s,
qy and B — L. The third anomaly-free combination, invisible from the SM, is given as in the
first configuration by g3 — g2 + q1 + qll +qr.

In configurations 2, 3 and 4, the anomaly-free B — L boson may then acquire a mass as a
consequence of 6-dimensional anomalies as mentioned at the end of Section 3.4.2, or through a

standard Higgs mechanism.

Regarding the vp mass, only the fourth configuration allows for a Yukawa coupling Lv®H,,.
One way to obtain a small Dirac neutrino mass compatible with the experimental bounds is
to allow v to propagate in the bulk, in which case the Dirac mass my, coming from such
Yukawa coupling is suppressed by the volume V)| of the extra transverse dimensions, namely
My ~ \/LVT’ with v the vev of the Higgs field [102]. This can be obtained in our framework
if the U(1)" brane extends along the extra dimension of the U(1)y, so that vp propagates in
the L-bulk. In that case however, the L-bulk having one extra dimension, it is easy to see that
such Dirac neutrino mass is much above the upper limit > m,, < 0.1 €V, so that the fourth
configuration is phenomenologically excluded. A Yukawa coupling Ly H, is forbidden in the
three first cases, since such a term would not be neutral under U(1)" or U(1),. However, a Dirac
mass term can still arise through non-perturbative effects, taking the form LVRHue_ﬁ, with g
the string coupling and « a model-dependent numerical factor [103].

On the other hand, neutrino Majorana masses are perturbatively forbidden since such terms

break the (global) lepton number symmetry, but can also arise from non-perturbative instanton
effects [104].

3.4.4 Mass spectrum

The U(1) combinations orthogonal to the anomaly free U(1)’s, Y, (3.66), (3.67) or listed
in Table 3.4, are anomalous and acquire a mass through a 4-dimensional generalisation of the
Green-Schwarz (GS) mechanism. In our model, such anomalous bosons form linear combination
of some U(1) localised in 4-dimensions and some others extended in the bulk. The aim of this
section is to clarify how this situation impacts the anomaly analysis, and in particular if the

compactification scale enters the mass of the anomalous bosons.

To simplify the analysis, let us consider a toy model with three U(1) bosons: B, (z) and
C,(x) are localised in four dimensions, while X, (z,y) is a bulk vector. Their U(1) charges are
respectively denoted @3, Q2 and )1, while their kinetic action is given by

2F0)] -

493

1
S / dPrF*(X). (3.74)
1(5)

1
Shin = /d% [F2 B
493 B) 4g

The standard KK reduction is carried out by expanding X, and X5 according to X, (z,y) =
Y onez Xﬁn) (z)e'® and X5(z,y) = Y onez Xén) (z)e' . Integrating then the second term of (3.74)
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over y, we get:

1
Spin = /d4 [—F2B —FQC}
A P~ P (O)
/d4 )+ > EREE 42 (9, x( )) (3.75)
n#0
4 X n) ﬂX(n) ) ( X(—”) @X(_") )
2gl/dm7§)<a R (@) )\ OuXs V(@) + R X (@) )

where we have defined the four-dimensional effective gauge coupling g1 from the five-dimensional

one gy by
1 Vv
= = L 7 (3.76)
91

with V| the volume of the extra dimensions. In the gauge in which Vn # 0, X én) = 0, the KK
excitations X ,Sn), n # 0, become massive. The gauge symmetries associated to these states having
been fixed, the bosons X ,Sn), n # 0, do not contribute to anomalies, so that only combinations
of B,(x), C,(z) and the zero mode XL(LO) (x) of X,,(z,y) can be anomalous. In the following, we

will denote the basis (B, Cy, Xlso)) as the “D-brane basis”.

We next consider the basis formed by the hypercharge Y}, and two anomalous vectors A, and
A;L, all of three orthogonal to each other, denoted “hypercharge basis” in the following. In the
most general case, the hypercharge Y, is a linear combination of all the bosons of the D-brane
basis localised in four dimensions, namely in this model B, (x) and Cy(x), while A, and A;L
can be combinations of all the D-brane basis bosons, including X ,SO) (z). We parametrise these

combinations as:

Qy = c3Q3 + 202, (3.77a)
QA = 2Q3 — c3Q2 + 1Q1, (3.77b)

Qy = c2Q3 — c3Q2 — %+ CSQ (3.77¢)

In order to relate the original D-brane basis (B, Cy, X, ff’)) to the hypercharge basis (Y}, A, A;L),
we write the covariant derivatives of the bosons in both bases (assuming a canonical normalisa-

tion of their kinetic terms):

D, = 8u—i%QgBM(x)—i%QQCH(m)—inglX/SO)(m) (3.78)
= 0 —igyQyYu(z) — igaQaAu(z) —ig,y QA (x). (3.79)

Using the relations (3.77), one can identify the different terms and get the resulting 3 x 3 rotation
matrix R relating (B, CM,X,SO)) to (Y, Ay, A;L):

Y,u \/>037 262% 0 B

Ayl = f@g’; —203% glggfl‘ c. |- (3.80)
! 9a' 9, +c2 g, 0

AM \/6629% —263 gA2 _% gAl X,L(L)
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Imposing the orthogonality condition for R, 2?21 R%j =1,Vi = 1,2,3, we get the well-known

relations between the coupling constants of the vector bosons in the two bases:

1 6c2  4c2

=2+, (3.81a)
9y 93 93

1 6 2 4 2 2

S =2 A (3.81D)
9a g3 92 91

2

1 6c3  4c3 5+c3) 1

Lot g (ata) 1 (3.81c)
QA/ g3 93 C1 91

Using then (3.76) relating the five dimensional coupling constant g;(5) and the four dimensional
one gp, one sees that the relations for g4 and g, are dominated in the large volume limit by

the g1 coupling, namely

+ —2, (3.82a)
9% 9 &

1 2 2

S~ d oy L (3.82b)
9a 91 9i(5)

2 2

1 2 2 1 2 2 1

e (2ES) Loy (2Ts)) (3.82¢)
Iy C1 91 &1 91(5)

The above rotation matrix in Eq. (3.80) has thus the following structure:

Y, (1) o(1) 0 B,
Al ~0(a=) O(a=) O || ¢ | (3.83)
’ 1 1 (0)
A, O(=) O(a) 0)) \ X

so that, in the large volume limit, the bosons A, and A;L are simply given by the zero mode of
the bulk vector X,.

The anomalies being localised in four dimensions, the effective action involved in the GS

anomaly cancellation is given by

a
M;

1 1
4 2
S = /dxl—4giFi—2(6ua+MsA“) + §IjkITrFIAFI

1 1 / r\ 2 a/ ’
4 2
- / d'z [— i Fy =5 (9ud + M.4,) " + A zlj Ky TeFy A Ffl o (3:84)
where Fy4 (F/) is the field strength of the anomalous U(1)4 (U(1)4/), ga (g4 ) the associated
gauge coupling, and a (a/) the pseudo-scalar axion responsible for the anomaly cancellation.
The indice I in the sum over Pontryagin densities denotes SU(3), SU(2) and Y for the mixed

gauge anomalies, F; are the associated field strengths and the constants kj (k/]) are given by
kr = TeT?Qa (ky = TrT?Q ) 2.

13. The gravitational anomalies are also canceled by a similar term of the form 13-kgRA R, where kg = TrQ 4,

and similarly for A/, a.
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In the most general case where both the axion and the anomalous vector propagate into
some extra dimensions of the bulk, the mass M4 of the anomalous gauge boson is of order
My x \/%M s, where V, and V4 denote the volume of the space where the axion a and the
vector A, propagate, respectively [98]. If a is localised in four dimensions, then My o %,
and thus, for one extra dimension at a scale My ~ 10 GeV and a string scale Mg ~ 10 TeV,
we get My ~ 10% GeV. This mass being too low and subject to stringent phenomenological
constraints, one needs to have V, = V4 in order to get a mass of the anomalous boson of the
order of the string scale. We conclude that the axions which cancel the anomalies of anomalous

U(1) combinations which have a component along L, must also propagate in the L-bulk.

3.4.5 Dark Matter model

In this section, we briefly describe how the models built in this chapter can easily provide
Dark Matter (DM) candidates, as Dirac fermions (called x in the following) corresponding to
open strings stretched between bulk branes, similar to the right-handed neutrinos. The simplest
situation arises when y has one end on the U(1)y, brane and the other on the U(1)" brane. If
the extra dimension(s) along which the U(1)" extends is (are) orthogonal to the L-bulk, then

Ln) of the lepton

x is localised in four dimensions and has no KK modes. The KK excitations L
number gauge boson, which couple to both y and the SM leptons [, then provide a mediator
between the dark and the (leptonic) visible sector, allowing DM annihilation process xy — n
through the s-channel diagram represented in Figure 3.6. Its amplitude is given by:

—1i

M, =—————
" s—nZMz

[0(p2)(—igry")u(p1)] [u(ps)(—igryu)v(pa)] s (3.85)

with M/, the compactification scale of the extra dimension of the L-bulk where L, propagates,
u and v the on-shell external spinors satisfying p, u(p1) = mu(p1), v(p2)p, = —mv(p2), and gr,
the U(1)r, coupling assumed to be independent of n .

X(p2) I(pa)

L

x(p1) I(p3)

Figure 3.6 — Dark matter annihilation into SM leptons mediated by the KK excitations LLn) of
the lepton number gauge boson.

The total tree-level amplitude M for the process xx — Il is given by the sum over the

2
2 ]VIL

14. The gauge coupling of the n-th KK excitation is given by gr(n) = gLeicn MZ | with ¢ a positive numerical
constant. When M, < My, as it is the case in the large extra dimension scenario considered in this chapter, the

exponential is of order 1 for all n < 1]\\442, and the gauge coupling can indeed be taken constant. For higher KK

modes with n > %, one has to consider the exponential suppression of gr, and the analysis would be modified.
For the values Ms ~ 10 TeV and My ~ 10 GeV that will be considered below, the result presented in this section
is thus valid for the first O(10%) KK excitations.
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KK modes of the vector boson mediator, M = >°°, M,,. Averaging |M|? over the incoming

helicities and summing over the outgoing helicities of the fermions, one gets

2
e 1
MP =29} |3 ——aam| (4 u® +ds(m +mf) —2(m +m})?),  (3.86)
=1 S—n L

where we have defined [M|? = § Y g ins [M|?, my and my are the DM and lepton masses respec-

tively, and s, ¢t and u are the Mandelstam variables defined by

s=(p1+p2)? t=(p1—p3)® u=(p1—ps)> (3.87)

In the center of mass frame, writing the 4-momentums py = (¥, p;), p2 = (E, —p;), p3 = (£, pf),
pa = (E,—py) with E = /s/2, 6 the angle between the incoming p; and outgoing p¥, and

neglecting the lepton mass m;, we get:

2

> 1 dm
14 cos®0+ —X(1—cos?0)| . (3.88)
s

>

n=11-—n2=k

M2 = g7

We can then compute the differential cross-section of the DM annihilation process, given in the

center of mass frame for 2 — 2 particle scattering by:

do 1 |p
dQ)  64m2s |pj

M2 (3.89)

Explicitly writting the sum in Eq. (3.88) in terms of the cotangent function and using |p;| =
\E? —m2, [py| = E, one gets:

4m?
1+cos?f+ —X(1—cos?0)|. (3.90)
s

2
do g1 1 ( 1 LTV <7r s
— = —— co
dQ) 64m2s 4m?2 2 2M7, M;,
Vi-=*
In the non-relativistic limit, s can be expressed in terms of the relative velocity v, of the anni-

hilating particles as
s = 4m>2< + mivf + O(v}). (3.91)

Expanding the expression (3.90) in terms of v, yields:

do gt 2mym 2m,m\\? 1
Qo _ 9L (4 - 2). 92
09 = 256mm? ( + cot ( )) + O(vy) (3.92)

At lowest order in v,, the differential cross section is thus independent of 6 so that the total

annihilation cross section reads:

4 9 9 2
ovy, = L (—1+ mX”m( mX”)) . (3.93)

- 6471'm§< My, My,

For a string scale Mg ~ 10 TeV, M} and g; must be of order My ~ 10 GeV and gy, ~ 1072

in order to accommodate the muon anomalous magnetic moment discrepancy, as described in
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Section 3.2. For such values, the annihilation cross-section (3.93) is plotted in terms of the DM
mass m, in Figure 3.7. The horizontal grey line indicates the annihilation cross section which
yields the observed value for the DM relic density, given by '°

10726 cm3 - 571 1079 Gev—2
~ - ~01X ———. (3.94)

(ovy) (ovy)

Oh?

The cross-section diverges for all m, = n%, and is regulated taking into account the width

10%<0v,> (GeV™2)
20

05 L J
0.0 ‘ * ‘ ' my (GeV)
15 X

5 10 20

Figure 3.7 — Annihilation cross section 10? x (ov,) (GeV~?) in terms of the DM mass m, (GeV),
for a compactification scale M, ~ 10 GeV and a coupling g7, ~ 1072

of the KK resonances, by replacing the vector boson propagator S_%\/Ig by with

I'), the decay rate of L,(Ln)

s—Mﬁ—iiFnMn’
. We thus have to check how this regularisation modifies the function
(ov,) and in particular if it brings the local maxima of the cross-section below the critical value
10 x {ov,) = 1 GeV~2. For the lowest KK modes n, the width of L,(Ln) is dominated by decays
into SM leptons, with the corresponding decay rate given by

2 2 2
n n_ 9L my my
Do(L — 1) = {EM, (1 + 2M,3> L= 4O (M, = 2m), (3.95a)
2
= %Mn@(Mn — 2my) + O(m}). (3.95b)

For g7, ~ 1072, we get Fn(LLn) — 1l) ~ 107°M,, so that T, can indeed be neglected for
the lowest n. For higher KK modes, other decay channels contribute to the width, such as
the decay of L,(Ln) into lighter KK states, and the analysis would be modified. Focusing on the
lightest modes from now on, one thus gets from the plot of Figure 3.7 that the correct DM relic
density is obtained for several values of the y-fermion mass m, centred around integer multiple
of % For My ~ 10 GeV, the two first lightest possible DM masses are in tension with the
phenomenological constraints coming from dwarf galaxies v-ray and CMB observations, which

yield a lower bound on the DM mass around 10 — 15 GeV [105, 106]. In our example, these

15. The annihilation cross section ov, given in Eq. (3.93) being independent of v, the thermal average (ov.)
entering in the expression of the DM relic density is trivial in our case: (ov.) = ov,.
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constraints are thus satisfied for DM masses centred around m, = n%, n 2 3. Obviously, the

constraints are automatically satisfied for My 2 30 GeV.

Since direct couplings between the DM y and the SM particles are forbidden, no Yukawa
couplings between y and the SM leptons are allowed. In model A introduced in Section 3.4.1,
this means that among the four possible configurations for y, the one x(1,1;0,0,0,1,—1)¢ is
not allowed. For the three other quantum number assignments, namely x(1,1;0,0,0,—1,1)o,
x(1,1;0,0,0,1,1)¢ and x(1,1;0,0,0,—1,—1)g, the Yukawa coupling LxH, is forbidden, and
the mass of y can arise for instance from brane separation, when the U(1) and U(1)" branes

are localised at two different points in the extra (large) dimensions of the gravitational bulk.

Obviously, a global (top-down) construction of a fully consistent string model may require the
presence of additional branes. Such (hidden) branes or/and corresponding “messenger” states

may provide alternative DM candidates besides the minimal possibility discussed above.

3.4.6 Lepton flavour non-universality and the muon g — 2

Implicit in the construction carried out above was the assumption of lepton flavour univer-
sality, namely that the three families of charged leptons are identical copies of each other (appart
from the mass) and that the lepton number gauge boson L, couples with the same strength to
each of them. Another possibility to address the discrepancy of the anomalous magnetic moment
of the muon would be to gauge only the muonic lepton number U(1); . replacing the L-brane
in Figure 3.4 and identifying the leptons of the first and third generation by open strings that do
not end on the L brane. They could for instance end on a 6-th brane that gauges L(¢) 4+ L(7),
or end on the U(1)" brane in the minimal case, breaking the total lepton number. As a result,
this construction leads to lepton flavour non-universality (LEFNU) but its main achievement is
to avoid LEP and LHC bounds while still use light KK-excitations of the U(1) () gauge boson
L,(f ) in order to account for the (9 — 2), discrepancy. Their contribution to the muon vertex

correction is given by:

2 2
_ 9w My
Aa, = E 12#27’ (3.96)

n
where my, is the muon mass, g; ) the gauge coupling of the U(1),(, and M, the mass of the
nth KK excitation of LEL“ ). Since LEL“ ) does not couple to electrons, its coupling and KK masses

evade the LEP bounds and are thus now completely unconstrained.

As mentioned above, a LFNU model can easily be obtained in the framework built in this

chapter, by replacing the U(1)z brane by a muonic U(1), . associated to a gauge boson L,(f )

with corresponding gauge couplings g; (). Assuming again that U(1); (. extends along one large

M (w
M,

extra dimension with a compactification scale M; (.), we have g%( W = Us with g the string

coupling, and M,, = nMj ), so that the contribution (3.96) reads:

2
gsmu

Aag, = ————.
T TaM ) M,

(3.97)

Such contribution can therefore accomodate the discrepancy (3.22) for a compactification scale
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and a string scale satisfying
My 9 My ~ g x 5 x 10 GeV?2. (3.98)

For a string scale M, = 10 TeV, we thus get a compactification scale M ) ~ gs x5 GeV. In the
perturbative regime where & < 1, M., can therefore vary from the O(GeV) to O(10% GeV).
Let us note that if L,(f ) also propagates along some extra smaller dimensions with a size larger
but near the string length, g, is suppressed by the volume of these dimensions, further increasing

the range of possible values for the compactification scale M ).

3.5 Conclusion

The Brookhaven National Laboratory experiment E821 together with the recent Muon g — 2
experiment at Fermilab have pushed the discrepancy between the measured value of the muon
anomalous magnetic moment and its Standard Model prediction to 4.70, providing a strong
hint of new physics beyond the SM. This discrepancy can be explained in the framework of
low mass scale strings and large extra dimensions, assuming that the SM lepton number global
symmetry (or even the muonic lepton number) is gauged and that the associated gauge boson
propagates along (at least) one large extra dimension, so that the main contribution to (¢ —2),
is due to the exchange of its lightest Kaluza-Klein excitations. The work carried out here realised
this proposal, by building the minimal embedding of the Standard Model into intersecting D-
brane configurations with a gauged lepton number associated to a U(1)r brane extended along
one large extra dimension and which does not participate to the hypercharge combination, as
required for phenomenological reasons. Consistency of the models requires the introduction of a
fifth brane in a way that all SM mixed anomalies cancel.

The presence of the two extra branes, beyond the SM ones, allows to introduce in a simple way
the right handed neutrino as well as a Dark Matter candidate. For a string scale M, = 10 TeV,
the bulk of these models exhibits an interesting non-homogeneous structure, with one large extra
dimension with a compactification scale in the range of O(10 — 10? GeV) required to explain the
(9 —2), discrepancy, and several larger extra dimensions with an average compactification scale
< O(0.1 GeV) in order to lower the string scale in the O(10 TeV) region. Within this framework,
the anomalous magnetic moment of the muon may provide a hint for the low mass scale strings

proposal accessible in future high energy particle colliders.



APPENDIX A

Kahler geometry

A.1 Complex manifolds and Kahler manifolds

Let us consider a smooth even dimensional manifold M, with dimgrM = 2m, and two
coordinate patches U; and Us on M which intersect each others. Given a point p € U; N Us,

2m) and

its local coordinates in the patches U; and Uy are respectively denoted by (z!,...,z
(y!,...,4*>™). The coordinate transformation (z!,...,2%™) — (y!,...,y?™) is then required to be
smooth, usually C*. It is then natural to try to pair up these coordinates into 2z = x2~! 4 iz
and w® =y~ 4+iy*, for all i = 1, ..., m. However, the coordinate transformation on the 2m real
coordinates ' — y'(x),i = 1,...,2m will, in general, lead to the coordinate transformations on
the m complex coordinates z* — w'(z!,...,2™, 2!, ..., ™), which is usually not holomorphic. A
complex manifold is not only a smooth even dimensional manifold, but also a manifold where such
change of coordinates can be done holomorphically, namely such that Vi,j =1, ..., m, %wj = 0.

To this end, an additional structure needs to be added on M.

In a similar way that a Riemannian manifold is built from a given smooth manifold by
adding on it a Riemannian structure, namely the metric tensor g;;(x), a complex manifold can
be built from a given even dimensional smooth manifold by adding the so-called almost complex
structure on it. This is a real-valued tensor Jij (z) on the tangent space of the manifold, satisfying
the property

JEJI = —67, (A.1.1)

which obviously mimics > = —1. One can show [107] that the coordinate transformations of
the complex coordinates can then be done holomorphically if and only if the almost complex

structure satisfies the additional condition:
JHOT} — 0;JF) — JHOJf — 9;JF) = 0. (A.1.2)

M equipped with an almost complex structure Jg satisfying Eq.(A.1.2) is then called a complez
manifold. One can then consider the coordinate basis {a%, 8%}, in which the complex structure

takes the form:

JB s o8 0
J=| ¢ %] = @ -1. A.1.3
2o e it (A.13)

In physical applications, a manifold is generally already endowed by a Riemannian structure
9ij, and it is therefore natural to try to combine it with the complex structure introduced above.
On the one hand, in analogy with the Levi-Civita connection, we impose the complex structure

to be covariantly constant. On the other hand, we require the metric to be invariant under
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the action of the complex structure. These two requirements lead to the so-called compatibility

conditions:
VzJ,g = 0, gliikJ]l- = Gij- (A.1.4)

A manifold equipped with a Riemannian and a complex structure satisfying the compatibility

conditions (A.1.4) is then called a Kdhler manifold. It is then convenient to introduce the 2-form

Q= —g;jJidz" Nda? = —2ig,5dz" N dég, (A.1.5)

written in real and complex coordinates, called the Kdhler form. The second compatibility
condition is equivalent to gos = g55 = 0, as can be seen from (A.1.3). Such a metric is said to be
hermitian. One can show that the first of the compatibility conditions (A.1.4) is satisfied if and
only if the Kéhler form is closed, namely d2 = 0. The definition (A.1.4) of a Kéhler manifold

can thus be rephrased into:

A Kaihler manifold is a complex manifold with hermitian metric whose fundamental 2-form )

is closed.
The closeness of 2 leads to
0=dQ = —2i87ga3d27 Adz® AdZP + c.c
= —i(049a5 — Oag,5)dz? Nd2* NdZ + cec., (A.1.6)

or, in components, dyg,;5 — 804975 = 0= 03905 — 059,5- This implies that locally, the metric can
be expressed as
9j = 0a05K (2, 7). (A.L7)

The real locally defined function K(z,z) is called the Kdhler potential. The so-called Kahler
transformations
K(2,2) = K'(2,2) = K(2,2) + f(2) + f(2) (A.1.8)

obviously leaves 9,5 invariant. The compatibility conditions (A.1.4) defining a K&hler manifold

can therefore be rephrased into

9ap = 9a5 = 0, 9op = 0a05K (2, 2), (A.1.9)

the last equation being valid in each coordinate patches, but not globally over the manifold *.

1. If K were a globally defined function on the manifold, then the Kihler form Q = —2i0,0;K dz® A dz’?
would be exact, 2 = dA, with A globally defined. Denoting m = dimcM, Q™ is a top degree form and can
therefore be chosen as a volume form. However, on a compact manifold without boundary, this would lead to
f ™ (dA)™ = 0 for a globally defined A. Therefore, for compact manifolds without boundary, the Kahler potential
cannot be globally defined.
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A.2 Symmetries of Kidhler manifolds

A symmetry of a Kéhler manifold is defined as a coordinate change preserving both the
hermitian and the complex structures. As in the real case, the generators of such coordinate
transformations are vector fields k called Killing vectors, defined in the Kéhler case such that

the Lie derivatives of the metric tensor and the complex structure both vanish:

Lrgi; = Vikj+V;ki =0, (A-2.1)
Lyl = KNIk g - vk gl =0, (A22)
=0

where the first term of the second equation vanishes by definition of a Kdhler manifold.

Let us first look at the consequences of the second equality. Taking ¢ — « and j — 3, we
get ValilB — VikP I = i(Vok? — Vok?) = 0, which vanishes trivially and thus do not bring
any new informations. However, considering ¢ — @ and j — (3, we get V@kljlﬁ — VikPJL =
2iVak? = 2i(0ak? + T2k = 2i95k%, where the last equality follows from T'2, = 0 for Kéhler
metrics, for any 4 holomorphic or anti-holomorphic indices. We deduce that k° are functions of
2% only and not z%?, and Killing vectors can thus be written as k% = {k%(z), k%(2)}.

The conditions (A.2.1) and (A.2.2) imply that £;Q = Ly (—gileidxk A dxj) = 0. From the
definition L = ird + diy, where i;, and d are the interior and exterior derivatives respectively,
and using the fact that 2 is closed, namely d€2 = 0, we deduce that dip{2 = 0. The Poincaré

lemma then states that locally, there exists a 0-form P such that
i) = —2dP(z,z), (A.2.3)

where the —2 factor is introduced for convenience. From the definition of the interior derivative,
we have ixQ = ix(—J;jdz’ A da?) = —2kt Jdat = —2lilkgkidxi = —Qikagagdié + Qikggagdza,
where in the last equality we moved from real to complex coordinates and have used (A.1.3).
Eq. (A.2.3) can then be written as:

gagk® = —i05P(2,2), ok’ = i10aP(2,2). (A.2.4)

Let us now consider the consequences of Eq. (A.2.1), which splits in complex coordinates
into Vokg + Vgka = 0 and Vakg + ?Bka = 0. The first one is trivial, since V kg = gmvam =
9870,k7 = 0, where in the penultimate equality we have used again I'7; = 0 for Kéhler metrics.
The second one is satisfied provided that there is a moment map P satisfying the equations
(A.2.4). Indeed, if (A.2.4) are satisfied, we have Vakz 4+ Vika = Va(g,3k7) + V5(gayk?) =
—iVa(95P) + iV 50, P = —i0,05P + 1050, P = 0. Therefore, a symmetry of a Kéhler manifold
defined by the holomorphic Killing vector k is characterized by the real moment map P(z, z)
satisfying:

k*(z) = —2'90‘58573(2',2), k%(2) = ig"® 5P (2, 2). (A.2.5)

2. Let us notice that this is only true for the upper vector components k%, k%, since for the lower vector
components we have dakp = 0a[gsy(2, Z2)k7 (Z)] # 0 in general.
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Applying V,, to the second equation above, using V,k%(z) = 0 and the fact that g% is invertible,

we deduce that P(z, 2) satisfies the equation:
Va0sP(2,2) = 0. (A.2.6)

We can now understand why Ké&hler manifolds are so attractive and in fact simpler than an
arbitrary manifold. In a similar way that a Kéhler metric is determined by a single real function,
the Kéhler potential K(z, z), a Killing vector of a Kédhler manifold is also determined by a single
real function, the moment map or Killing potential P(z,z). With the ingredients presented
above, we can now find a relation between these two functions. By definition, an isometry of a
manifold leaves the metric invariant, which is the meaning of Eq. (A.2.1). However, in the case
of a Kédhler manifold, the Kéhler potential does not need to be invariant, and can transform by

a Kéhler transformation (A.1.8) under the symmetry:
OK =0 (k00 + k05 ) K(2,2) = 0(r(2) + 7(2)), (A.2.7)

with 7(z) and 7(Z) arbitrary holomorphic and anti-holomorphic functions. On the one hand,
we have kg = ggak” = kP030sK = 0s(k°03K). On the other hand, Eq. (A.2.4) gives
ka = —i0sP. Integrating these equations yields P = i (k*0,K + ((z)), with ((z) an arbi-

trary holomorphic function. To determine it, we use the reality of P, P — P = 0, which gives

(k%0q + k%05) K (2,2) = —((2) — ((Z). Comparing this with Eq. (A.2.7) gives ((z) = —7(z),

((z) = —7(2). Therefore, the Killing potential P and Kéhler potential K are related by:

P(2,2) = i (K*0uK (2,2) = 7(2)) = i (K*0aK (2,2) = 7(2)) . (A.2.8)



APPENDIX B

Multiplet calculus

This appendix, based on [108], summarises the conformal supergravity multiplets calculus

used in the Chapter 1. A general complex scalar multiplet is given by
C=(C,2,M,K, By, A\D), (B.0.1)

where C, H, K and D are complex scalars, Z and A are Dirac fermions, and B, is a Lorentz
vector. A chiral multiplet is obtained from a complex multiplet by imposing PrZ = 0, K = 0,
B, =iD,C, A = 0 and D = 0. Renaming C = Z, it is written, in a seven-components notation,
as

(Z,—iV2Prx, —2F,0,iD,Z,0,0), (B.0.2)

and similarly for its anti-chiral counterpart:
(Z,iV2Pgx,0,—2F,—iD,Z,0,0). (B.0.3)

The chiral and anti-chiral multiplets are also usually written in a three-components notation
according to:
(Z7PLX7F)7 (vaRX?F) (B04)

A real multiplet is obtained from a complex multiplet by imposing its lowest component

C = C to be real. This implies Z = ¢ and A = X to be Majorana spinors, B, = B, and D = D

to be real, while K = # is still complex. A real multiplet is thus written in a six-components
notation according to

(C,¢,H, By, A\, D). (B.0.5)

Throughout the Chapter 1, the operation | |r is defined as acting on a chiral multiplet
(Z, Prx, F) of weights (3,3) by:

[1r:(Z, P, F) = [Z)r = {F + 121;WNPLX + %Z@ZWWPR% + h.c.] . (B.0.6)

V2

The operation [ |p is defined as acting on a real multiplet (C, ¢, H, By, A, D) of weights (2,0) by:

|

e

2
(Cohur” — ilr"y.) B (Q) (B.0.7)

P ypte (Bd - ;%Cﬂ ;

10+ (€6 HBuAD) = [Clo=5 D 5" - 5ORE)

L1
6
1

4
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where R(w) and R}, (Q) are the graviton and gravitino curvatures. Both operations are used to
build superconformal invariant actions from chiral and real multiplets, respectively, according
to Sp = [d*x [Z]F and Sp = [ d*z [C]p.

Given a set of complex multiplets C* = (Ci,Zi,Hi,/Ci,BL,Ai,Di), 1 = 1...n, one can build
another complex multiplet C = (C, Z,H,K, B,, A, D) whose lowest component is given by an
arbitrary function f of the first components of C?’s: C = f(C%). The other components of C are

then given by:

Z = fiZ,
H o= fiH -~ %fijZiPLZj :
K = fiK'— %fijZiPRZja
By = fiB,+ 5ifyZ P2, (B.03)
A = fNi+ % fij (7B + PLC + PpH’ —PC') 27 — i finZi 2 Z*,
D = fD+ % fii (K'H! = B'- B = DC - DCT — 2027 — ZP27)
- i fisn 2 (i + PLK + Prit?) 28 + % fimZ'PL 21 25 PR 2L,
with f; = % and so on for higher order derivatives. The bar on spinors are the Majorana

conjugate defined by 1) = 1T C, with C the charge conjugation matrix satisfying fyg = —Cv,C~L.

In the first chapter of this thesis, we often deal with chiral multiplets, and it is therefore
convenient to write the form taken by the composition laws (B.0.8) in that particular case.
Considering one chiral multiplet, written in the three-components notation as (X1, P, F1),
one can consider a second chiral multiplet (Xs, P12, F») whose lowest component is built from
a given function f(X1). One can also consider the product of two chiral multiplets X3 and Xy,
yielding another chiral multiplet X5. The composition laws (B.0.8) then simplify and give the

following chiral multiplets:
Xy = f(Xy), X5 = X3X4,
PrQe = f1 Py, PrQs = X3Py + X4 PrQs, (B.0.9)

1 _ _
= fiF — §f1191PL917 Fs = F3Xy + Fy X3 — Q3 PSy.
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Fermion masses

In this appendix, we compute the fermion masses in the no-scale models presented in Section

1.7. We recall the full Lagrangian considered here:
_ % 1 - o
L=-3 [SOSOeK()g X)] + 3w, -5 [, + 28 + 257, (C.0.1)
D F 4
with the new FI-terms given by:

(C.0.2)

© _ ¢ [(Sogo)_lewmwav—v 2 APLAPR) ] |
D

TW)T(W?)

We write the fermion mass terms as £, = £§2) + £,€'¥ , with £,(2) arising from the usual matter-
coupled NV = 1 supergravity Lagrangian, namely the three first terms of (C.0.1), and £F7 arising
from the FI Lagrangians E% I) + E( 2/ 3) 5,(2) reads:

1 . 1 i
671551(1]) = §m3/2%PR’YW¢V + 1/}//)’# (\/iQaeK/QvaW + 27DAPL)\A)

1 () _ 1 (0«
—imfgﬁo‘ﬂﬁ —m QoA — §m§§’}BAAPLAB +hec., (C.0.3)

where 9, denotes the gravitino, Q¢ the chiral fermions, and A the gauginos. The various masses

are given by [10]:

m3/2 = GK/QW (004)

m) = PV NVgW = K12 (9, + 0.K) VW — KI2T7 VW, (C.0.5)
1

m% = V2 (aaPA - Jana(Ref)™ BC%) =m®, (C.0.6)

mi)y = —§eK/2fAB a9 B%W (C.0.7)

In the no-scale models with Kéhler potential K = —pIn(X + X) studied in Section 1.7, we
consider only one chiral matter multiplet and one gauge multiplet, therefore the index « and
A take only one value. The Christoffel symbols are given by I'? of = gV‘sﬁagﬁg, which reduce

to only one non-vanishing component I'§ y = The moment map P is defined by P =

X+X
i(k“0o K — 1), where k% is the Killing vector associated to the gauged symmetry and r is the
corresponding FI constant. In Section 1.7 we considered » = 0. When the chiral multiplet
becomes charged under the gauged shift symmetry, the associated constant Killing vector is

kX = ic. Focussing on the ungauged case considered in Section 1.7, we thus have P = 0. Finally,
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the gauge kinetic function f4p being constant, we end up with:

( p(p—1) )

mgj2 = K2, mg;)g)z =m3/2 =0, mE\A =0. (C.0.8)

X rxp M

We now turn to the fermion mass contributions arising from the FI Lagrangians. Keeping

only quadratic terms in fermions containing no derivatives, the FI Lagrangian (C.0.2) can be

written as ( _ )
o D(WW)« .
TOW2)T(W?) b
with R(® the real multiplet defined by
R(@) = eGTOKXX) (g1X P A)(Sy 'APRA), (C.0.10)

which is a function of the chiral multiplets Sy IXPr), X, and their anti-chiral counterparts. In

the seven-components notation, they are given by:

SoIAPLA = (sg'APpA, 2s5'DPp), 255 2Fo AP A + 255" D%, 0, 0, 0, 0), (C.0.11)
X = (X, —iv2P.Q, —2F, 0, 0, 0, 0), (C.0.12)
So'APrRA = (55'APr\, 25, DPg), 0, 25,2 FopAPrA + 25, D?, 0, 0, 0), (C.0.13)
X = (X, iV2PrQ, 0, —2F, 0, 0, 0), (C.0.14)

Writing R(® = (0,0,0, (R(®)z,, (R@)y, (R(®)p), its contribution to the fermion masses arises

from:

5@)] — € (RO, _ L m (R
R =5 ((R)p 50 7.(R,). (C.0.15)
The tensor calculus (B.0.8) gives:

(R@)p, = [izfzaxe<a+1/3>nglgng35\PLQ—zaXe(a+1/3>K351551D2FZ\PL/\

+ 26K 2 D2 RAPLA| + hec. 4 2eTYIKG 15Dt (€.0.16)
(R@), = 2e@t)Kp3glstn, (C.0.17)

Combining this with

D(WW)~

TV (WW)e+2/3D=3252 _ o(Wy)a+2/3 (sosgg%APL/\ - h.c.) . (C.0.18)

one obtains:

(i) The gravitino-gaugino mixing:
_ i -
e 1ol 5 iwy%e(a“/i”)%x (C.0.19)
Considering £ + Eg?}) + E;:IQ/ 3 , we get the following gravitino/spin-1/2 mixing Lagrangian:

_ 1 ;
e mix = ™ <\/§QeK/2VXW + %(gle<a+2/3>9 + 52)PL)\> + h.c., (C.0.20)
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from which we identify the Goldstino as the linear combination:

1
Py = =5 Qe VW — 5 L(&el @299 4 g) Py, (C.0.21)

(ii) The fermion mass terms:
e L) 5 —ivag(a+ )8XK6(°‘+1/3)Q(WW)1/33030)\PLQ
1
+&(o+ )aXKe<a+1/3> (WW)1/350§0—>\PL)\ (C.0.22)

1
+eelots) (WW)1/350§0 Fospoy+ hee.

Considering from now on E&?}) + E( 2/ 3 , we define for simplicity of the expressions the following
quantities:
— (a14+3)G -1g T\1/3. =
Dyos = (516 37+ e s ) (WW) 5030
= gela+do 4 52, (C.0.23)

v = 0xK <§1(a1 + 3) ele1+3)9 _ 5326_?1)9) (WW)Y3s45
= OxK <§1(a1 + %)éaﬁ%)g - 532) . (C.0.24)
One can already read from (C.0.22) the gaugino/chiral fermion mixing mass term:
mbl = iv2y. (C.0.25)

In order to find the gaugino mass term mf ){ , we have to eliminate the auxiliary fields D, F' and
Fy using their equations of motion. The part of the total Lagrangian containing the auxiliary
field D, up to quadratic order in fermions, is:

1 1. 3_1
e LD §D — DyosD + Dbos

)\PL)\-F’Y )\PL)\—I—}L C) (0.0.26)
so that the equation of motion for D reads D3 — DyosD? — {(DbossalFo +YF)APLA + h.c.} =0.

Solving it analytically and expanding the solution up to quadratic order in fermions, we find

Dbosso FO +F
D2

bos

D = Dy + ( AP+ h.c. ) + higher order in fermions. (C.0.27)

Replacing (C.0.27) in (C.0.26), we find the following quadratic contribution in fermions:

e LD AP\ + h.c. (C.0.28)

bos

We now eliminate the auxiliary fields Fy and F, associated to the compensator and X chiral

multiplet, respectively. The part of the total Lagrangian containing the auxiliary fields Fp, F,
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up to the quadratic order in fermions, reads:

_ 1 _
eI o 3¢ KPR Fy + 353 WFy + 353 W Ry + GIxxFF+ geK/Z’vXWF

1 jjpe — - 1 _
+§eK/2VXWF+ 5 (Dpose K76 Fy + yF)APLA (C.0.29)

bos
1

Db (DboseiK/GFO + ’YF)S\PRAa

_l’_

which yields, after elimination of Fy and F":
_ K/2 - _ -
1L D K (3WW = VaWg ¥ VW) + S5 (DoosWAPLA = 3¢ XV g WAAPLA + hec.)
b (€.0.30)
The first two terms correspond to the usual F-contribution to the scalar potential, while the
last two terms give the contribution to the gaugino mass mf ){ from the FI-terms. For a constant

superpotential, it reads:

m
mil = =272 [Dyos + 3(X + X)]. (C.031)
Dros

At the minimum of the potential where dxV = 0 and V = 0, m5 4 and mi{ given in Eqs. (C.0.25)

and (C.0.31) simplify, and the entries of the fermion mass matrix can be written as:

moa = mY =m rp=1) __1)
QQ 3/2 (X —{—X)27
oy — mEl V2 PDrpos
2 QA 6 X+X’
may = mil = —2my), (1 - g) . (C.0.32)

In order to study the spin-1/2 fermions mass matrix, we have to get rid of the gravitino-
Goldstino mixing (C.0.20). This can be done by carrying out a supersymmetry transformation,

bringing the gravitino 1), into the physical, massive, one ¥, through [10]:

2
0, PLv —

Pripy, — PV, = Pri, —
I 1 I 3m§/2 ma)

YuPRV- (C.0.33)

The mixing term between the gravitino and the Goldstino then vanishes, and ¥, is the massive
gravitino in Minkowski space with physical mass m3 ;. In addition, the transformation (C.0.33)
brings new contributions to the spin-1/2 fermion mass terms. Writing the Goldstino Prv as a
linear combination of the gaugino A and the chiral fermion €2, namely Prv = AQ+ BP; A where

A and B are given in this model by Eq. (C.0.21), these new contributions read:

v _ 4
Mo = 3m§/2 7

R S}
ox 3m§/2 ’

) 4
m) = 5B (C.0.34)

3/2



The most general structure of a spin-1/2 mass term m(9) is then given by m9

mPl + m® | with m(® the contribution from the original Lagrangian —3 |SySpe™

D
[SEW (X)) — % P\PL)\}F, mPT the contribution from the new FI terms E%O}) + E%_IQ/?’), and
m®) the shifts (C.0.34) upon elimination of the gravitino-Goldstino mixing. From Eqs. (C.0.8),

(C.0.32) and (C.0.34), we deduce the fermion mass matrix at the minimum of the potential:

(9) (9) -3 i
e (m m) _ ( 2t ?ﬁDbos) (C.0.35)

mézg;\ mf\g)? %\/ﬁDbos §m3/2

A normalisation factor for mggz and mg))\ has been introduced due to the non-canonical kinetic
term of the chiral fermion, while the gaugino already has canonical kinetic term since the gauge
kinetic function f has been set to one. Using D, = —2(p — S)mg /o at the minimum of the
potential, one immediately sees that the determinant of M vanishes, while its non-zero eigenvalue

my, corresponding to the mass of the physical fermion, is given by:

4 4

where we excluded the value p = 3 for which, in the case of a constant superpotential, the D-
term vanishes in the minimum, making the new FI-term singular, and a different superpotential

is used in Section 1.7.2.






APPENDIX D

Gravitational action on a bounded

manifold

D.1 d—+1 decomposition and Gibbons-Hawking boundary term:

a review

Let us consider a d 4+ 1-dimensional space-time manifold M, equipped with a metric Gun
and foliated with a set of co-dimension 1 hypersurfaces X,. Such hypersurfaces can be defined
by an arbitrary scalar field y(2™) such that y is constant on each of these hypersurfaces. The
unit normal vector nas to 3, is then proportional to dary, and normalized such that nMny =
GMNpyny =€, with € = +1 if ¥, is timelike, and € = —1 if ¥, is spacelike.

In order to relate the coordinate systems on each hypersurfaces, we consider a congruence of
curves which intersect each ¥, once and only once. The coordinates z* on each hypersurfaces are
now chosen such that points on the same curves have the same coordinates z* on the different
slices 3. Therefore, considering two infinitesimally closed hypersurfaces 3, and X, 4,, the
vector y™ tangent to the curve points from a point with coordinates z* on Yy to a point with
the same coordinates on X, 4,. This construction therefore allows us to move from the original
coordinate system ™ to a new one (y,z*). The vectors y™ tangent to the curves and El]y
tangent to X, are respectively given by:

M M
M = %fcy . EM = 8;2“ , (D.1.1)

zH Yy

The Eﬂ/l can be seen as a map from ®?7Tp*(M), an arbitrary tensor product of the cotangent
spaces of M, to ®4Tp*(%,), an arbitrary tensor product of the cotangent spaces of ¥/, projecting
any Xug..m, € UTp*(M) down to a Xy, ,, € ®@ITp*(%,) through

B Xagyoty — Xy = Xong, BB (D.1.2)

With this projection map, one can define the induced metric g, and the extrinsic curvature

K, respectively by

gw = GunENEY, (D.1.3)
K. = EYENVyny, (D.1.4)

with V M the covariant derivative compatible with the metric G mN- While g, characterises

127
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the local intrinsic geometry of X, IA(W describes how the hypersurface is embedded in the
ambient space M, and the data of both is sufficient to completely characterise the geometry of
¥, embedded into M.

The vector y™ tangent to the curves can be decomposed in the basis provided by normal

n™ and tangent vectors Eliw according to

yM = NnM 4 5“E}y (D.1.5)

The components N and B* are respectively called the lapse function and the shift vector. Their
physical interpretation follows from the construction described above: the lapse describes the
orthogonal distance between the two slices, while the shift describes how the coordinate systems
of the two infinitesimally closed hypersurfaces are transversally shifted one with respect to the
other. Using

oxM oxM

deM = =4
v oy vt Ozt

dzt = (Nn™ + grEM ) dy + EM dz, (D.1.6)

it is easy to find the following decomposition of the line element in terms of the lapse N, the
shift 5# and the induced metric g, :

ds* = eN%dy? + G, (B*dy + dz") (87 dy + d2"). (D.1.7)

This is the famous ADM decomposition, first introduced in [48], which corresponds to the ADM

metric tensor
. . G0 3"
Gun = (Agu o gwiﬁ > ; (D.1.8)
gupﬁp eN +gpoﬁpﬁa

whose inverse reads

R % N—Q wRy o N—Q o
GMN:<9 eV TIPEET e B). (D.1.9)

—eN—2pv eN~2

We now suppose that M is bounded in the y direction by two hypersurfaces 3,, and ¥,
located at y; and y2. The total gravitational action Sg is now the sum of the Einstein-Hilbert

bulk term Sgpg and the Gibbons-Hawking boundary term Sg:
S¢ = Sen + ScH, (D.1.10)
with
Spn = ;/M dd“m\/—iéR(d“)[éMN], (D.1.11)

Sop = _e/ ddx,/|g|f(+e/ dlz\/ 19| K. (D.1.12)
Eyl ECUQ

Here K is the trace of the extrinsic curvature, K = ng{ uv, and the relative sign between the
two terms in the GH action comes from the fact that both normals to ¥,, and X, point along

the increasing y, and are thus directed respectively inward and outward of M.
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Starting from the Gauss equation

A A A

RunpoEY EYEYES = Ruvpo + (Ko Kyp — KupKoo), (D.1.13)

which relates the tangential components of the curvature tensor of M on the LHS with the
intrinsic and extrinsic curvature tensors of ¥ on the RHS, one can find the relation between the
(d + 1)-dimensional Ricci scalar R(@*+1 evaluated on Yy and the intrinsic curvature scalar R
of Xy

R [GyN] = RY )[gu,,] +e(K? — R“”KHV) +2eVy (nN@NnM - nM@NnN) . (D.1.14)

The first two terms R4[g,,] and (K? — K*K,,) depend respectively on the intrinsic and
extrinsic geometry of X,. The third term contains second normal derivatives, which will cancel
with the GH boundary term as we are now going to show. In the foliated spacetime M =
¥y x S1/Z,, the EH action (D.1.11) reads:

2/ Ay \/71% ) [Gyry] = 3 dy/ dde\/7 DG + (K2 Kﬂ”f(w,)]
+ E/M dde\/zVM [nNVNn — nM@NnN] . (D.1.15)
Using Gauss’s theorem, the second term can be written as:
I = G/M dde\/—i@@M [nN@NnM — nM@NnN} ,
= 6/('9./\/1 {nN@NnM — nM@NnN} A . (D.1.16)

I is the sum of two contributions at each boundaries ¥, and ¥,, of M. On X, (£,,), the
surface element is given by dXy; = —eny\/[9]d%% (dXar = +enary/]g]d%e), where the minus

(plus) sign takes into account the inward (outward) direction of the normal of ¥, (3,,). Using

nyn™ = e and nyVynM =0, we find:

I= e/ ddx./yg\f(—e/ diz\/|9|K, (D.1.17)
2?/1 Ey2

which is exactly cancelled by the GH boundary term (D.1.12). Hence, the total gravitational
action Sg = Sgy + Sgy reads:

. 1 [v2 d < 1A (d)A -2 v 1
Se = 2/;;1 dy/zyd eN/1g] [RD[g] + (B2 = K" Ry)| . (D.1.18)
The d-dimensional Ricci scalar is given by:
~ 1 A AUV N ~ \ Al By v
RG] = 30u (\/ 919" N) Oy Ing+0,NO, (\/ 919" ) N\/19I1%,0,9"
-0, (ol + Fa,0/lalg™)). (D.1.19)

with fﬁy the d-dimensional Christoffel symbols computed from the metric g,,. The last term
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in the above expression is a total derivative in the unbounded z* directions, and can thus be
discarded. In order to express the extrinsic curvature tensor K v = E/]y E,fv \Y MmNy in terms of
the induced metric g, and the ADM variables N and By, we start by writing the derivative of

Juv With respect to y as:
G = Ly = Ly(GunENEY) = (£,Gun)ENEY, (D.1.20)
where, in the last equality, we have used
LyEN = [y, )M = (9, 0] = 0. (D.1.21)
The Lie derivative of the metric Gy is given by:

L,Gun = Vuyn +Vym
= @M(NRN‘FBN)"‘@N(NHM-F/BM)
= nNaMN + nMaNN + N(@MHN + @NHM) + @Mﬁ]\] + @NBM (D.1.22)

Contracting with Eﬁ/[ EXN | the two first terms vanish since Eﬁ/l and njs are orthognal. The third
term yields the extrinsic curvature, while the last ones give the intrinsic covariant derivative of
the shift vector. We deduce the extrinsic curvature tensor K v expressed in terms of the induced
metric g,,, the lapse N and shift B

o1

A DS A A S A
K#V ﬁ ( %% —@ v#(gVPB'D) —@ vl/(gﬂpﬁp)) ) (D123)

an expression which is directly used in the computation of the gravitational action in Section

2.4.2, whose technical details are developed in the following subsection.

D.2 Computation in the framework of the LD background

We now want to compute the gravitational action in the framework of the Section 2.4.2, on a
5D manifold with two boundaries along the fifth direction, with the metric (2.82) and its inverse

(2.83) which we reproduce here ':

GMN _ 6_%a‘y|e27q(x’y) (6_3T(z7y)§w/(x) + BuBu(xvy) Bu(x7y)> (D 2 1)
BV(xay) 1 7
3r ~uv P
GMN  _ e%aly\e—% ( e’ g (x, y) 9A By(x,y) > _ (D.2.2)
—9""By(z,y) 1+ 9" B\Bs(z,y)

Rescaling the ADM 4D induced metric §,, according to g,, — N 2§W, the ADM metric Gy
(D.1.8) and its inverse GMN (D.1.9), in the case of timelike hypersurfaces (¢ = 1) we are

1. In this subsection we denote the KK vector B, instead of K, to avoid confusion with the extrinsic curvature,
also called K.
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interested in, read:

~ ~ G 0 P R R Ay WRY R
Gun = N? (Ag" , gf"’ﬁp J), GMN = N2 (g Hi e b ) (D.2.3)
gl/pﬁ 1 +gpaﬁ B - 1

They turn out to be very similar to the parametrisations (D.2.1) and (D.2.2), and are in fact

equivalent, noticing the identification:

N?(1+ §,0878%) = N2, N=2 = N*(1+ ¢ B,B,),
N?3,,8° = N7?B,, N=2pt = N2gh°B,, (D.2.4)
NQQ;W = N_Q(QW + BMBV)v N_Q@W +pHBY) = NQQW7

with the overall factor N given by
N = evall=", (D.2.5)

One easily finds for the inverse metric of N2§W, N2 = N%(g"v — xBFBY), x = ﬁ.

The main result (D.1.18) of the previous subsection giving the total gravitational action
S¢ = Spm + Sc, in the case of timelike (¢ = 1) hypersurfaces of dimension d = 4, and for the

rescaled 4D induced metric N QQW reads:

A

_ 1 v 4 N \78 A (4)[AT2 A 2 prur g
So=5 | dy [ dwNyIN [RO[Ng,) + (B2 = K" Ry, (D.2.6)
Y1 Y

where g = det g, IA(W is the extrinsic curvature associated to the metric NQQW, Km =
N*‘lgﬂﬂg'mf(pg, and K = N*2§/“’IA(W. According to the result (D.1.23) derived earlier, the
extrinsic curvature tensor is given by
A 1
B =55

((23) =D V,(N2g,,87) —O 9, (824,,87)) (D.2.7)

where (4)@H denotes the covariant derivative compatible with the metric N 29, Using the
identification (D.2.4), one can express the extrinsic curvature tensor in terms of the variables

N, g, and B,. The computation yields:

/

K., = fN\/1+BQ *(gu + BuBy)| — N"%(0,B, + 0,B,) +2xN*I* B
% % (7 H uvp

+22N 2B [B(,,F#)U + Bod(B,y)| + 20N (g + BuB,)B9,N |, (D.2.8)

where I',, are the Christoffel symbols computed from the metric g,,,, and F),,, is the field strength
of B, F,, = 0,B, — 9, B,,. Since we are interested in the spectrum of the theory and especially
in the mass term for the KK vector B,,, we work up to quadratic order in B. Ignoring interaction

terms, we get for the extrinsic curvature

K = N\/l—i—B?{[ *(gu + B,B )] — N72(8,B, + 9,B,)

+2N"2T%, B, + 2N ~5g,, B*,N } + h.ot., (D.2.9)
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where here and in the following, h.o.t. will denote higher order terms in B, but also terms of
the form B? x r. From K = N?(g" — xB*B")K, = N?(¢g"* — B*B")K,, + h.o.t., we get
16 ,

160( / /
K2—N21+B2{ o+ —sgnyr +4(r)?
( )13 5 Sy ()

8 ,
+ <O‘ sgny + 4r > (g“"@uBy — B, g" + 4Bpa,,r)

V3

+g"" 9*° 0, B, 0, By —

4o

V3

Similarly, using K** = N*(g" — xB"BFf)(¢"° — 2B"B°)K,, = N*(g"’g"° — g"*B"B° —
"’ B*BP)K ), + h.0.t., one finds

sgny(BQ)/} + h.o.t. (D.2.10)

1 16 16 / /
K'"WK,, = 4N2(1+B2){3a2+\/gsgnyr +4(r')?

8ar ’

+ (\/3 sgny + 4r ) (g“”auBl, - B,I, 9" + 4Bp8pfr>
4
+4¢"*9"?0,B,0,B, — 2o

V3

sgny(BQ)/} +h.o.t., (D.2.11)

and therefore

1 1 / /
K? - KM"K,, = zNQ(l—l—BZ){;aQ—l—jgsgnyr +4(r')?

8 ,
sgny + 4r ) (g’“’@uBy — BT, g" + 4Bﬂapr) (D.2.12)

Q

+

S

4o

V3

Regarding the determinant of the metric det(N2g,,) = det(N~2(g,w + BuBy)), we use the
relation det(gu, + B,B,) = (detg,,)det(6, + B’B,) = (detg,,)(1 + B?B,) + h.o.t. Using

Gup = 6_3T§W), we deduce:

S B?
\/ —det(N2g,,) = N~ /=g (1 + 2) + h.o.t. (D.2.13)
From the identification (D.2.4), we have N = N~1(14+ B2?)~1/2 = N~1(1 — %2) +h.o.t., so that

Ny/—det(N2§,,) = N5\ /=g + h.o.t. (D.2.14)

Combining the results (D.2.12) and (D.2.14), we get:

+=(9""9" — ¢"°9")0,B,0,Bs — —= sgn y(BQ)/} +h.o.t.

ol i

15 V r3
§N |NBg| (K2 - K;wKW) = e“/§°‘|y|e—37"\/—g {2042 + 2v/3asgnyr + 5(7“ )2

3.
+ (\/ga sgny + 3" ) (g‘“’(?“Bl, — B, I, 9" + 4B"’8pr)

1
+§(g“”gp" - g"9"?)0,B,0,Bs
V3a
2

seny(B?) + 2a232} + h.o.t. (D.2.15)
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The third line is the kinetic term for B, —ig’“’ 9’ F,pFye, up to higher order terms of the
form B? x r, as can be seen after integrations by part on the unbounded directions z*, whose
total derivatives vanish. The linear terms in B on the second line can be arranged noticing that
9" 0By, — B,I'f,,g"" = 0,B" + BT, = 0,B" + B"(f‘fw —60,7), where f‘ﬁl, are the Christoffel
symbols computed from the metric g,,,,. Using f’ﬁa = \/%780\/7 , integrating by part and again

discarding a total derivative J,, we get the final result:
%N \1\78@] (K2 — KWK’“’) = e_\/gawle_&'“\/—if] {2@2 + 230 sgn yr’ + g(r’)2
+ B"0, {—27“/ +V3asgnyr + 27",7"] (D.2.16)
- ig“l’gp”FupFW - \/an sgny(B?) + 2a2B2} + h.o.t.
Finally, the d-dimensional Ricci scalar (D.1.19),
RD[N?,,] = %au ( - det(]\?2gw)]\72g“"]\7) 9, In (— det(NZgW))

+0,Nd, ( —det(Nzgw)N2g“”)

S T A - \T—2 AV
—5 /= det(829,,)1%,9, (82, (D.2.17)

expressed in terms of the variables N, g,, and B, reads:

ROIN"%(g,, + BuB,)] = %ay In (= det(N~2(gu, + BuB,)))

x O, <\/— det(N=2(gw + B,B,))N?(g" — xB*BY)N (1 + 32)1/2>

+0, (N7 (1+ BH)7?) 9, W —det(N (g + BuB,))(N*(g" — xBﬂB”»)

— %N‘l(l + BQ)_l/Z\/— det(N~2(g + B.B,))IY,0, (NQ(gW — xB“B”)) , (D.2.18)

with I'/,, the Christoffel symbols computed from the metric N ~2(guw + B, By). Although rather
involved, it is easy to see that this expression does not bring additional B, terms up to quadratic
order in B: in the first two terms of (D.2.18), quadratic terms in B always appear in the form
~ B26MN ~ 328“7“, which is an interaction term, while in the third term, quadratic terms in
B are multiplied by Christoffel symbols, and are thus again of the form B? x fluctuations. One

can hence set B, to zero in the previous expression, and the computation then gives:

%R(d) [N“2g,,] = —%e*\/ga“”' vV —=gg"" 0,10, + h.o.t. (D.2.19)

Combining the results (D.2.16) and (D.2.19), we deduce the total gravitational action, up to
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quadratic order in the KK vector B,;:

3 /7 3 !
S = /d5xe_‘/§°‘|y|\/—§ {—4(@7‘)2 4 e [2@2 + 2V/3asgnyr + i(r )2]
~ 3 3
+B"0, (—27' + V3asgnyr + 57 r)
1 3 ~o. 1 ~
~ 165" " FupFus — ‘[20‘ sgny(B2) + 2a2B2} +ho.t., (D.2.20)

where we have replaced B* = g’ B, = 3§ B, = ¢’ B, B? = g BB, = 63"§‘“’BMBV =
3r 2
e’" B~.



APPENDIX E

Effective theory of the heterotic

string

In this appendix, we check that the supergravity theory introduced in Section 2.5 is an
effective theory of an heterotic string theory, in agreement with [62]. We recall the Lagrangian

(2.174) of its bosonic sector, in the Einstein frame:

1 1 2
epL" = SROGTN] - 50190 é — VA
1 4 1 _ 2
—éeﬁ¢F]?4NFMNO -3¢ VEO Ly FMN (E.0.1)

-1
G\f

where e stands for the 5D Einstein frame fiinfbein, while eg will denote later its string frame

CoppeMNFPOR (A FypFop + 2A}\/IF]1VPF8R> ;

counterpart. In order to show the heterotic nature of this action, one must dualize the gravipho-
ton AJO\/[ into the Kalb-Ramond (KR) two-form Bjsy, whose completely antisymmetric three-
form field strength will be written Hynp = dpy By p)- To this purpose, we consider the action

as being a functionnal of FY,, rather than A9, and add the Lagrange multiplier term

1
Ly = ZéMNPQRFJ(\ZNHPQRv (E.0.2)

so that the equation of motion of By enforces F© to be closed. On the other hand, the equation

: 0
of motion for Fy;y,

4 2C
FMNO _  ~1,7 5% MNPQR (HPQR-i- \/(331 APFQR> (E.0.3)

can be used in order to completely eliminate it in £°% + £/, leading to:

_ 1 1 3 4 20 2
ep LPS A+ Ly = §R(5) [GYrn] — §8M¢8M¢ — 3¢ va? (HPQR + \/O»HA[PF(}?RO

1 =2 2
—¢ VOl N FMNL _ o 50N (E.0.4)
In order to move from the Einstein to the string frame, we perform the Weyl transformation
GMN = 672OGMN, (E05)
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which leads, in D space-time dimensions, to the well-known relations

ep = e Doeg, (E.0.6)
RDGE N = ¥ [RU’) [G3n] +2(D —1)00 — (D = 1)(D — 2)G§4N8M08No—}.(E.0.7)
For o = %, D = 5 and after discarding a total derivative, we get the string frame Lagrangian
£ = ege V30 L Lp@as 1y 2au60Me - 3 (Hpop+ 250 a1 g1 Y
S = €S 9 MN 2M 9 PQR /6 [PTQR]
1
R A} , (E.0.8)

which is indeed the effective Lagrangian density of an heterotic superstring theory. The topolog-
ical term present in (E.0.1) in the vector formulation is translated in the KR formulation into a
gauge Chern-Simons term w3 = A' A dA!, which combines with Hpgr to form the generalized
field strength Hsz ~ Hs3 + w3 satisfying the modified Bianchi identity dH3 ~ dA' A dA!.

This analysis therefore shows that the 4D vector Ag, which becomes massive after compact-
ification on a LD background as shown in Section 2.6, is the dual of the vector B,;5 coming from

the dimensional reduction of the 5D KR two-form Bpsn.
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