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Résumé court en français

Notre compréhension de l’univers repose sur d’une part le modèle standard pour les
interactions de la matière à des échelles infiniment petites et la relativité général qui
nous permet de comprendre notre univers à des échelles infiniment grandes. Néanmoins,
en étudiant des objets tels que les trous noirs où ni les effets de la gravité ni les effets
quantique ne sont négligeable nous arrivons à la conclusion que le modèle standard et
la relativité général sont incompatible. Nous avons donc besoin d’une théorie qui puisse
inclure à la fois le modèle standard et la relativité générale. Cette théorie est appelé
gravité quantique.

La théorie des cordes est le candidat le plus prometteur pour la gravité quantique
reproduisant dans certaines limites de basses énergies la relativité général et le modèle
standard. Néanmoins la théories des cordes possèdes des particularités intrigantes voir
problématiques. Une de ces particularités est que la théorie des cordes requiert des dimen-
sions d’espaces temps supplémentaires: dix dimensions d’espace temps pour les versions
supersymétrique de la théorie des cordes et onze dimensions pour la théorie M qui unifie
les cinq théories des cordes. Dans notre vie quotidienne nous n’observons que quatre
dimensions d’espace temps. Un problème central de la théorie des cordes est donc de
comprendre où serait cachées ces dimensions supplémentaires.

Une façon simple de comprendre ces dimensions supplémentaire est de prendre l’exemple
d’un funambule sur une corde. Le funambule ne peut se déplacer que dans une seule di-
rection, il ne peut aller que soit en avant soit en arrière. Maintenant prenons une fourmi
se déplaçant elle aussi sur la corde du funambule. La taille de la fourmi étant de l’ordre
du rayon de la corde la fourmi pourra aussi se déplacer le long de la dimension circulaire
de la corde.

Nous utiliserons un point de vue exactement analogue pour les dimensions supplémen-
taires de la théorie des cordes. Nous considérerons que ces dimensions supplémentaires
forment une variété compact que nous appellerons variété interne en opposition à la var-
iété externe sur laquelle nous vivons. Exactement comme dans l’exemple du funambule
cette variété interne est si petite que nous ne pouvons pas l’observer.

Tant que notre but est de donner des prédictions de la théorie des cordes et de la théorie
M pour l’univers de dimension quatre que nous observons, nous pouvons nous concentrer
sur la théorie effective qui ne garde que les excitations de la théorie qui correspondent à
notre échelle d’énergie.

Tout d’abord au lieu de considérer la théorie des cordes nous nous concentrerons sur
sa limite de basse énergie, la supergravité. La théorie des cordes contient un ensemble
infini d’états dont la masse est inversement proportionnelle au carré de la longueur de la
corde, l, et un ensemble finis de mode non massif. Étant donné que l est petit pour des
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processus à notre échelle d’énergies nous pouvons négliger les modes massifs et garder
seulement les modes non massifs qui sont décris par la supergravité dix dimensionnelle
(onze dimensionnelle pour la théorie M).

Nous devons maintenant prendre en compte les effets de la compactification sur cette
supergravité. Pour étudier comment la réduction dimensionnelle fonctionne et compren-
dre idées que nous utiliserons dans le reste de la thèse nous allons présenter un exemple
plus simple, la réduction de Kaluza-Klein de cinq à quatre dimensions.

Considérons la gravité d’Einstein à cinq dimensions. En plus d’un espace Minkowski
à cinq dimensions il existe d’autre solutions aux équations d’Einstein notamment une
solution correspondant à une compactification spontanée

M5 = M4 × S1 (.1)

où l’espace-temps est le produit d’un espace Minkowski de quatre dimensions M4 avec un
espace compact très simple, le cercle S1. On notera xM = {xµ, y} les coordonnées cinq
dimensionnelles, xµ les coordonnées sur M4 et 0 ≤ y < 2πR la coordonnée du cercle.

La théorie effective est obtenue en étudie les fluctuations autour du vide (.1). Étant
donné que la solution (.1) brise l’invariance de Poincaré à SO(3, 1) × U(1), on peut
organiser les degrés de liberté en fonction de leur nombre quantique quatre dimensionnel.

GMN =
(
gµν − ϕAµAν −ϕAµ

−ϕAν −ϕ

)
, (.2)

où gµν est la métrique à quatre dimensions, Aµ est un vecteur 4-d et ϕ est un scalaire 4-d.
Leur valeur moyenne du vide donne la métrique du vide

⟨gµν⟩ = ηµν , ⟨Aµ⟩ = 0 , ⟨ϕ⟩ = 1 .

Comme S1 est compact on peut développer en série de Fourier sur S1 tout les champs.
Par exemple le développement du scalaire ϕ est

ϕ(x, y) = 1√
2πR

∑

n∈Z

ϕn(x)e
i n y
R

où x représente les coordonnées quatre dimensionnelles. Les coefficient dans les développe-
ment représentent les champs de quatre dimensions dont la masse est donnée par la valeur
propre du d’Alembertien de S1, ces champs sont les états de Kaluza Klein. Pour les fluc-
tuations du scalaire on obtient:

∂µ∂µϕn(xµ) −m2ϕn(xµ) = 0 ⇔ m2 = n2

R2 .

Des développements similaires peuvent être obtenu pour les autres champs de (.2). Et
donc compactifier la gravité à cinq dimensions sur un cercle donne une gravité à qua-
tre dimensions couplé à des tours infinis d’états de Kaluza-Klein dont les masses sont
proportionnelles à l’inverse du rayon du cercle.

Le rayon R du cercle précise l’échelle d’énergie à laquelle les modes massifs peuvent
être exclus: en prenant R très petit les modes massifs deviennent extrêmement massifs
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et peuvent être tronqués et donc on obtient une théorie effective avec un nombre finis de
champs correspondant aux champs non massifs.

L’utilisation d’un tel argument est possible seulement lorsque le rayon de l’espace
interne peut être arbitrairement petit. Lorsque cela est le cas nous avons ce que l’on
appelle un séparation d’échelle entre l’espace interne et externe. C’est le cas par exemple
pour les compactification sur des espace de Calabi-Yau avec comme espace externes un
espace Minkowski. Néanmoins en supregravité nous rencontrons beaucoup d’exemple où
il n’y a pas de tel séparation d’échelle. C’est le cas des compactifications ou l’espace
externe est un espace Anti de Sitter. Nous pourrions aussi être intéressé par garder des
états massifs et non massifs dans la théorie effective.

Dans ce cas nous avons recourt à ce que l’on appel une troncature cohérente. Une
troncature cohérente est une procédure de sélection d’un sous ensembles de champs de
la théorie de sorte que les champs gardés ne soient couplé à aucun des champs non
sélectionnés. Donnons nous un exemple pour illustrer cette définition. Nous voulons
tronquer le modèle suivant

L = 1
2(∂λ)2 + 1

2(∂φ)2 − 1
2gλφ

2 − 1
2m

2λ2 ,

à un modèle avec un champ. En étudiant les équations du mouvement

∂2φ = gλφ and ∂2λ = m2λ+ 1
2gφ

2 ,

nous observons qu’à cause du terme φ2, le scalaire λ ne peut pas être tronqué de façon
cohérente, tandis que cela est possible pour φ. Le résultat est le Lagrangien d’un champ
massif λ. Nous pouvons comprendre ce résultat en terme de symétries. Le Lagrangien de
départ possède une symétrie Z2 selon laquelle le champ φ est chargé alors que le champ
λ est invariant.

φ → −φ
λ → λ

.

La troncature cohérente est obtenue en ne gardant que les modes invariant selon ce Z2
de symétrie. L’idée d’utiliser un groupe de symétrie pour sélectionner un nombre finis
d’états qui définissent une théorie effective est au coeur des troncatures cohérentes et de
cette thèse.

Dans cette thèse nous appliquerons cette idée de troncature cohérente à la supergravité
à 10/11-dimensions. Nous utiliserons le formalisme de la géométrie généralisée exception-
nelle, une extension de la géométrie différentielle qui permet d’unifier transformation de
coordonnés de l’espace-temps et transformations de jauge des potentiels de la théorie de
cordes dans des difféomorphismes généralisés. Nous verrons que nous pourrons utiliser des
groupes de structures sur le tangent exceptionnel de l’espace interne pour obtenir de façon
systématique des troncature cohérente. Cela nous permettra dans le cas de troncature
à des théories effective de cinq dimensions de donner une classifications des théories qui
peuvent être obtenues comme un troncature cohérente de la théorie des cordes. Ensuite
nous donnerons pour certaines troncations le calculs explicite de la théorie effective.
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Chapter I
Introduction

Our understanding of the universe is very well described at small scales by the Stan-
dard Model and at very large scales by General Relativity. Unfortunately the two theories
show signs of incompatibility when combined to describe systems, black hole for instance,
where neither gravity nor quantum effects can be neglected. The theory that would embed
the quantum field theory of Standard Model and General Relativity is usually referred to
as quantum gravity.

String theory is one of the most promising theory of quantum gravity and is be-
lieved to reproduce the Standard Model and general relativity as low energy limits. But
string theory have some very particular and intriguing features. One of them is that it
requires extra dimensions of space-time: in superstring theory the space-time must be
ten-dimensional while for M-theory, the theory that unifies all five versions of string the-
ory, the dimensions are eleven. In our everyday life we only experience four dimensions
of space-time. Hence a central problem of string theory is what to do with the extra
dimensions.

A simple way of thinking of the extra dimensions is to take the example of a tightrope
walker. On the tightrope the walker is able to walk only in one direction, either he goes
forward or backwards. Now take an ant on that tightrope. Since the ant is much smaller
than the walker and its scale is about the scale of the radius of the tightrope the ant has
access to the circular direction of the rope.

In string compactifications we will take exactly this point of view. We will consider
that the extra dimensions of string theory form a small compact manifold, which we will
call internal as opposed to the non compact external manifold that we experience. In
this way the space-time of string theory will be a product of the external and internal
manifolds. As in the example of the tightrope walker, the internal manifold is so small
compared to our scale that we cannot have access to it.

As long as we are interested in making predictions from string theory or M-theory
about observables in our four dimensional, non-compact universe, we can rely on effective
theories that only capture the excitations that are relevant at our energy scales.

First, rather than considering the full string theory, we will consider its low energy
limit, supergravity. String theory contains an infinite set of modes with masses inversely
proportional to the square of the string length, l, and a finite set of massless modes.
Because of the smallness of l for processes at our energy scales we can neglect the mas-
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2 Chapter I. Introduction

sive modes and only keep the massless ones, which are described by a ten-dimensional
supergravity.

Once we have supergravity, we must take into account the effect of the compactifica-
tion. To see how it works and illustrate the ideas we will use in the rest of the thesis,
we can start with the simple example of the Kaluza-Klein reduction from five to four
dimensions.

Consider pure Einstein gravity in five dimensions. Beside 5-dimensional Minkowski
space, there exists another solution of Einstein equation corresponding to a spontaneous
compactification

M5 = M4 × S1 (I.1)

where the space-time is the product of four-dimensional Minkowksi M4 times a very sim-
ple compact space, the circle S1. We denote xM = {xµ, y} the 5-dimensional coordinates
with xµ the coordinates on M4 and 0 ≤ y < 2πR the coordinate on the circle. The effec-
tive theory is constructed by looking at the fluctuations around the vacuum (I.1). Since
the solution (I.1) breaks the five-dimensional Poincaré invariance to SO(3, 1) × U(1), we
can arrange the degrees of freedom according to their four-dimensional quantum numbers

GMN =
(
gµν − ϕAµAν −ϕAµ

−ϕAν −ϕ

)
, (I.2)

where gµν is the 4-d metric, Aµ is a 4-d vector, and ϕ is a 4-d scalar. Their vacuum
expectation values give the background metric

⟨gµν⟩ = ηµν , ⟨Aµ⟩ = 0 , ⟨ϕ⟩ = 1 .

Since S1 is compact, we can Fourier expand all the fields on S1. For example, for the
scalar ϕ this gives

ϕ(x, y) = 1√
2πR

∑

n∈Z

ϕn(x)e
i n y
R

where x denote the four-dimensional coordinates. The coefficients in the expansion rep-
resent 4d fields with mass given by the eigenvalues of the wave operator on S1: these are
the Kaluza Klein states. For instance, for the scalar fluctuation one has

∂µ∂µϕn(xµ) −m2ϕn(xµ) = 0 ⇔ m2 = n2

R2

Similar expansions hold for the other fields in (I.2). Thus compactifying pure five-
dimensional gravity on a circle gives a four-dimensional gravity theory coupled to infinite
towers of fields, the Kaluza-Klein states, with masses proportional to the inverse of the
circle radius. The radius R of the circle set the energy scale at which the massive modes
can be discarded: by taking R very small the massive modes become heavy and, for
energies lower than R−2, can be truncated away to get an effective theory with only a
finite set of fields, the massless ones.

A key element here is that the scale R of the internal circle is completely uncorrelated
from the scale of the external manifold. This implies that we can take R arbitrarily small
and induce a separation of scales between the massless modes of the truncated theory and
the rest of the KK towers. In string theory, if the compactification admits a separation
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of scales, we can obtain a lower-dimensional low-energy effective supergravity theory by
truncating out modes above the cut-off scale. This is what happens in compactifications
on special holonomy manifolds to Minkowski space-time, where the effective theory is
obtained by keeping only the massless modes, namely the zero-modes of appropriate
differential operators on the internal space.

However in supergravity/string theory we encounter many examples where we cannot
rely on scale separation. This is the case of compactifications to Anti de Sitter space-
times, where the scales of the external and internal manifolds are related. Or we might
be interested in constructions where we keep both some light and massive modes within
the truncation.

In this case we must instead resort to what is called a consistent truncation [4]. A
consistent truncation is a procedure to truncate a theory to a subset of fields in such a way
that there is no coupling between the modes that are kept and those that are discarded.
Let us consider again a simple a toy model. We would like to truncate the following model

L = 1
2(∂λ)2 + 1

2(∂φ)2 − 1
2gλφ

2 − 1
2m

2λ2 ,

to a single field. From the equations of motion

∂2φ = gλφ and ∂2λ = m2λ+ 1
2gφ

2 ,

we see that, because of the term φ2, the scalar λ cannot be truncated away in a consistent
way, while this is possible for φ. The results is a Lagrangian for one massive field λ. We
could interpret it in terms of symmetries. The original Lagrangian has a Z2 symmetry
under which the field φ is charged whereas the field λ is invariant

φ → −φ
λ → λ

.

The consistent truncation is obtained by keeping only the singlet under the Z2 symmetry
group. The idea of using a symmetry group to select the finite set of fields of the effective
theory is at the heart of consistent truncations and of the rest of this thesis.

When compactifying string-theory/supergravity on an internal manifoldM , the Kaluza-
Klein towers are obtained by expanding on a basis of tensors on the internal space, a
generalization of the Fourier modes, which are associated to symmetries of the internal
manifolds and contain the dependence on the coordinates of the internal manifold. A
consistent truncation is a choice of such a basis that allows to truncate to a finite set of
singlet fields in such a way that the dependence of the higher-dimensional fields on the
internal manifold factorises out once the truncation ansatz is plugged in the equations of
motion. This condition is what makes consistent truncations relatively rare and hard to
prove (see for instance [4, 5].

When looking for supergravity solutions, such as domain wall or black-holes, it is often
convenient to do that in lower-dimensional gauged supergravity models corresponding to
truncations of the 10/11-dimensional supergravity, since the equations of motion or the
supersymmetry variations are simpler. If the truncation is consistent, all solutions of the
lower-dimensional theory also satisfy the equations of motion of 10-/11-dimensional su-
pergravity. This is very important as, for example, a vacuum that appears stable within
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a lower-dimensional supergravity might suffer from instabilities triggered by modes not
kept in the truncation [6], or vacua which appear different within the lower-dimensional
model may actually be identified in the full 10/11-dimensional theory [7]. These exam-
ples highlight how important it is to know which lower-dimensional theories can arise as
consistent truncations of 10-/11-dimensional supergravity.

The best known examples of consistent truncations are provided by Scherk-Schwarz
reductions on group manifolds. These are parallelisable manifolds admitting a basis of
left(right) invariant forms. A consistent truncation is obtained by expanding all the fields
of the higher-dimensional theory on such basis and only keeping the singlet components.
The truncation procedure preserves all supersymmetries of the higher-dimensional theory
and gives a maximally supersymmetric truncated theory.

In recent years a lot of progress has been done in the study of consistent truncations
by exploiting the geometric structures of the compactification manifolds.

For instance it has been shown [1] that G-structures allow to construct consistent
truncations on manifolds that are not necessarily homogeoneous. Suppose a manifold
M has a reduced structure group GS with singlet intrinsic torsion. Then a consistent
truncation is obtained by expanding all the field in GS representations and keeping only
the GS-singlets. This can preserve different fractions of supersymmetry, depending on
how many GS-invariant spinors exist on M .

Moreover the data of the GS structure, namely the GS-invariant no-where vanishing
tensors, determine the full field content and gauge interactions of the truncated theory.
Examples of this type in M-theory are the truncations based on Sasaki–Einstein and
weak-G2 holonomy manifolds of [8], and the tri-Sasakian reduction of [9].

However there are consistent truncations that cannot be interpreted in terms of con-
ventional G-structures. Classic examples are the maximally supersymmetric consistent
truncations on spheres, such as eleven-dimensional supergravity on S7 [10] and S4 [11].

These examples have a natural interpretation in Exceptional Generalised Geometry
and Exceptional Field Theory. In this thesis I will focus on the Exceptional Generalised
Geometry approach of consistent truncations. Exceptional Generalised Geometry is a
reformulation of 11/10-dimensional supergravity that allows to treat diffeomorphisms and
gauge transformations of the higher-rank gauge fields of supergravity in a geometric way.
It replaces the tangent bundle TM with an extended tangent bundle E, whose fibres
transform in a representation of the exceptional group Ed(d) rather than GL(d,R). Then
diffeomorphism and gauge transformations are unified as generalised diffeomorphisms on
E. As for ordinary GS structures, if the generalised structure group of E can be reduced
to a subgroup GS ⊂ E6(6) we say the manifold admits a generalised GS structure.

The notion of generalised GS structure plays a central role in this thesis since it allows
for a systematic approach to consistent truncations with different amounts of supersym-
metry: there is a consistent truncation any time a supergravity theory is reduced on a
manifold M admitting a generalised GS structure with constant singlet intrinsic torsion
[1].

In this framework all maximally supersymmetric truncations, both conventional Scherk–
Schwarz reductions and sphere truncations, can be seen as generalised Scherk–Schwarz
reductions on generalised parallelisable manifolds [12, 13, 14, 15, 16, 17, 18, 19, 20]. In
particular, the notion of a generalised parallelisation allowed to prove the long-standing
conjecture of the consistency of type IIB supergravity on S5 [12, 21, 16]. Considering
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larger generalised GS-structure group allows to treat half-maximal truncations [22, 23,
24, 25, 26, 1] and N = 2 truncations.

As for generalised Scherk–Schwarz reductions one can show that it is possible to
determine the lower-dimensional supergravity directly from the data of the generalised
GS structure, a priori of any explicit substitution into the equations of motion.

This approach also provides a proof of the conjecture of [27] that for any supersym-
metric AdSd ×M vacuum there is consistent truncation on M to a gauged supergravity
with the same amount of supersymmetry [24, 1], based on the fact that the conditions
for a supersymmetric AdSd ×w M vacuum can be rephrased as the requirement that M
admits a generalised GS structure with vanishing non-singlet intrinsic torsion [28, 29, 30].

This thesis collect the work I have done during my PhD on the derivation of consistent
truncations in the framework of Exceptional Generalised Geometry.

In the first chapter I will describe the general framework for constructing consis-
tent truncations with different amounts of supersymmetry (including non-supersymmetric
truncations), based on the generalized G-structures. I will first recall how the construction
works for ordinary GS-structures and then show how this naturally extends to generalised
ones. The key requirement is that G-structure has only singlet “intrinsic torsion” [28].
Then I will discuss how this formalism allows one to easily determine all the features of
the lower-dimensional gauged supergravity, such as the amount of supersymmetry, the
coset manifold of the scalars, the number of gauge and tensor fields, and the gauging, all
directly from the geometry.

In order to make the formalism more explicit I will focus on truncations of eleven
dimensional supergravity to five dimensional gauged supergravities with N = 2 super-
symmetry. The analysis for half-maximal truncations can be found treated in [1].

I will then apply this formalism to two different kind of problems. I will apply it to
derive a classification of which N = 2 gauged supergravities in five dimensions can be
obtained as consistent truncations of of eleven dimensional or type IIB supergravity. In
this case the relevant exceptional group is E6(6). The classification is purely algebraic: we
identify the possible GS ⊂ E6(6) structures that lead to N = 2 supergravities, we work
under the hypothesis that they only admit constant singlet intrinsic torsion, and then we
analyse the field content and gaugings. This means that the list of 5d supergravities we
find might be further reduced once the differential condition of having constant intrinsic
torsion are verified in explicit examples.

Finally I will show how this formalism can be used concretely to derive explicit exam-
ples of five dimensional N = 2 consistent truncations: the largest truncation containing
N = 2 Maldacena–Nuñez [31] and also the one containing the “BBBW” [32] backgrounds.

The main text of the thesis only covers part of the results I obtained during my PhD.
These are contained in three papers [1, 2, 3] which are presented in the Appendix.
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Chapter II
Consistent truncation and generalised
GS structures

We are interested in consistent truncations of eleven/ten-dimensional supegravity on back-
grounds of the type

M = X ×M

where Md is a compact d-dimensional manifold and X is a non compact external space
of dimension 11 − d or 10 − d, respectively.

Typically a consistent truncation relies on some geometrical properties of the compact-
ification manifold Md. The best known examples are Scherk–Schwarz reductions on group
manifolds. A d-dimensional group manifold M = G admits a basis of globally defined
left-invariant vectors and a basis of dual of left-invariant one-forms {ea}, a = 1, . . . , d.
By expanding all fields of the higher-dimensional theory on these basis and keeping only
modes invariant under the group action provides a consistent truncation.

Scherk–Schwarz reductions are particularly simple examples of a more general con-
struction, based on the notion ofG-structure, which allows to derive consistent truncations
for more general manifolds than group manifolds or homogeneous spaces [8, 33, 34, 35,
36, 9, 37].

Consider a d-dimensional manifold M . At each point p of M we can define a local
frame e(α)

m , namely a local basis for the tangent bundle TM , so that any vector v can be
expanded as v = vm(α)e

(α)
m . On two overlapping patches Uα and Uβ the components of v

are related by a GL(d,R) transformation

vm(α) = (Mαβ)mnvn(β) .

Since one can repeat this construction at every point on M , the the matrices Mαβ can
be seen as functions from Uα ∩Uβ to GL(d,R). These are called transition functions and
contain all the information about the non-trivial topology of the bundle TM . They must
satisfy the consistency conditions

MαβMβα Uα ∩ Uβ

MαβMβγ = Mαγ Uα ∩ Uβ ∩ Uγ

so that they form a group, the structure group.

7
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In the general case the structure group is of a d-dimensional manifold is GL(d,R). If
the structure group of M is a subgroup GS ⊂ GL(d,R) we say that the manifold has a
GS-structure. The GS-structure is defined by a set of GS-invariant, nowhere vanishing
tensors {Ξi}.1 For example, a Riemannian manifold admits a no-where vanishing metric
g or, equivalently, a subset of orthonormal frames on M , which defines a GS = O(d)
structure. This also implies that for Riemannian manifolds the possible GS-structure are
all subgroups of O(d).

A GS-structure is characterised by its intrinsic torsion. For Riemannian manifolds
the intrinsic torsion can be defined via the action of the Levi-Civita connection on the
invariant tensors Ξi

∇mΞin1...nr
p1...ps = Km

n1
qΞiq...nrp1...ps + · · · +Km

nr
qΞin1...q

p1...ps

−Km
q
p1Ξin1...nr

q...ps + · · · −Km
q
psΞin1...nr

p1...q ,
(II.1)

with the indices m and n, p spanning T ∗M and Λ2T ∗M , respectively. From its index
structure it follows that Km

n
p must be a section of T ∗M⊗Λ2T ∗M . However decomposing

Λ2T ∗M ≃ SO(d) = g ⊕ g⊥, where g is the Lie algebra of GS and using the fact that Ξi
are GS-invariant, we see that K is actually a section of T ∗M ⊗ g⊥.

The intrinsic torsion is the part of the torsion that does not depend on the choice of
connection and is defined in terms of K as

(Tint)mnp = Kn
p
m −Km

p
n .

Tint can be decomposed into GS representations, known as the “torsion classes” of the
structure. For consistent truncations we are interested in GS-structures whose non-zero
torsion components are singlets under GS .

Let us now see how G-structures are related to consistent truncations. Suppose a
manifold M admits a GS structure, with GS invariant tensors Ξi and constant singlet
intrinsic torsion. The 11/10-dimensional supergravity can be consistently truncated on
M by expanding all bosonic fields on the basis of tensors Ξi, which encode the dependence
on the internal space, and only keeping the fields that are GS singlets. Since the intrinsic
torsion has only singlet components, (II.1) implies that the derivatives of the singlet fields
can only contain singlets. Thus the truncation is necessarily consistent, since products of
singlet representations can never source the non-singlet representations that were trun-
cated away. For the spinors the truncations works in the same way. The GS-structure
lifts to a G̃S ⊂ Spin(d) structure and we simply have to expand the spinor fields in terms
of the spinors invariant under G̃S .

The GS-structure completely determines the field content and gauge interactions of
the truncated theory. For example it is easy to find the scalar and vector fields that
come from the reduction of the higher-dimensional metric. The scalars are the GS singlet
components of the metric. Since the metric parameterises the coset GL(d,R)/O(d), these
are given by the GL(d,R) deformations of a reference metric that commute with GS
modulo the O(d) deformations that commute with GS

metric scalars ⇔ H ∈ CGL(d,R)(GS)
CO(d,R)(GS) ,

1Formally a GS-structure defines a GS-principal sub-bundle P of the GL(d,R) frame bundle. In most
cases the two definitions are equivalent.
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where CB(A) denotes the commutant of the subgroup A of B inside B.
The vectors coming from the metric are given by theGS-invariant one-forms ηa ∈ {Ξi}.

If we call η̂a the singlet vectors dual to ηa we have

metric gauge fields ⇔ Aaµ η̂a .

The components of the singlet intrinsic torsion are completely determined by the Lie
derivatives of the invariant tensors

Lη̂aΞi = fai
j Ξj , (II.2)

where faij are constants. They also give the gauge algebra of the metric gauge fields via
the Lie bracket

[η̂a, η̂b] = fab
c η̂c . (II.3)

Let us consider again Scherk–Schwarz reductions on a group manifold M = G. The
basis of globally defined (left-invariant) one-forms, {ea} ∈ T ∗M , reduce the structure
group to GS = 1 (i.e. M is parallelisable). Furthermore, the group action implies that

dea = 1
2fbc

a eb ∧ ec ,

where fbc
a are the structure constants of the Lie algebra Lie G . This means that the

identity structure has singlet, constant intrinsic torsion (singlet because dea is expressed
in terms of the invariant {ea} basis, and constant because the coefficients of the expansion
are constant). Then the truncated theory is obtained by expanding all higher-dimensional
fields on the basis of left-invariant forms and plugging them in the equations of motion.
Since only singlet tensors are generated we conclude that the truncation is consistent.
Examples of such consistent truncations in the context of M-theory can be found in [38,
39, 40, 37].

The scalar fields of the truncated theory parameterise the coset

CGL(d)(1)
CSO(d)(1) = GL(d,R)

SO(d) .

The one-forms define d gauge fields with a Lie algebra given by the Lie bracket (II.3).
The consistent truncation ansatz for the metric is

ds2 = gµνdxµdxν + hab
(
ea +Aa

)(
eb +Ab

)
,

where hab(x) is matrix of scalar fields and Aaµ(x) are gauge fields in the adjoint of GS .
Since the spin bundle is also trivialised, Scherk–Schwarz reductions preserve the full su-
persymmetry of the higher-dimensional theory.

Another interesting example is the reduction of M-theory and type IIB on a Sasaki–
Einstein manifold M of dimension d = 2n + 1 [8, 35, 36]. The manifold admits an
GS = SU(n) ⊂ GL(d,R) structure defined by a real one-form η, a real two-form ω and a
complex n-form Ω satisfying

dη = 2ω, dΩ = i (n+ 1) η ∧ Ω . (II.4)
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Since only invariant tensors appear on the right-hand side of the differential conditions
(II.4), the intrinsic torsion has only constant singlet components. In this case the metric
scalar manifold is

CGL(2n+1,R)(SU (n))
CSO(2n+1,R)(SU (n)) = R+ × C

U(1) = R+ × R+.

As there is a single invariant one-form η the truncated theory will contain only one
gauge field Aµ(x) coming from the metric. The ansatz for the metric is

ds2 = gµνdxµdxν + e2Uds2
2n + e2V (η +A)2,

where ds2
2n is the (local) 2n-dimensional Kähler–Einstein metric defined by (ω,Ω). The

scalars fields U(x) and V (x) parametrise the scalar manifold.
The construction of consistent truncations based on GS-structures is very powerful,

but does not cover very well-known examples such as the reductions of eleven-dimensional
supergravity on S7 [10] and on S4 [11], where the consistency is not a consequence of any
manifest symmetry.

The main result of this thesis is that extending the notion of the GS-structure to
exceptional generalised geometry [41, 42] allows the previous examples of compactifica-
tion on S7 and S7 to be treated on the same footing as the conventional Scherk–Schwarz
reductions. More generally, it provides a new systematic way to study consistent trun-
cations with a generic amount of supersymmetry: reducing a supergravity theory on any
manifold M admitting a generalised GS-structure with constant singlet intrinsic torsion
gives a consistent truncation [1]. In the rest of the chapter, we will give the main ideas
without entering into the details of a specific theory or compactification. We will then
specify to truncations of M-theory to five dimensions.

Exceptional generalised geometry replaces the tangent bundle TM with a larger bun-
dle E on M , whose fibres transform in a representation of the exceptional group Ed(d). In
this way, the diffeomorphisms and gauge symmetries of higher-dimensional supergravity
are unified as generalised diffeomorphisms on E. Then, one can generalise all conventional
notions of differential geometry such as tensors, connections, and Lie derivatives.

The bundle E is called the generalised tangent bundle, and its sections are generalised
vectors. The dual generalised vectors are sections of the bundle E∗, and generalised
tensors are obtained by tensoring E and/or E∗. For example, we will need the dual
weighted vectors Z♭, which are sections of the bundle2 N ∼ detT ∗M ⊗ E∗, and the
generalised metric, which is a section of the symmetric product S2(E∗). In analogy with
an ordinary metric on M , a generalised metric G parameterises, at each point on M , the
coset

G ∈ Ed(d)
Hd

,

where Hd is the maximally compact subgroup of Ed(d). Spinors can also be introduced as
sections of the spinor bundle S, transforming in the spinorial representation of H̃d, the
double cover of the group Hd.

The action of an infinitesimal generalised diffeomorphism is generated by the gener-
alised Lie derivative along a generalised vector. We denote by adF the adjoint bundle,

2We consider only orientable manifolds. Then, detT ∗M is trivial and we can define arbitrary powers
(detT ∗M)p for any real p.
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namely the bundle whose fibres transform in the adjoint of Ed(d). Then, in analogy with
the conventional Lie derivative, we define the generalised one as [43],

(LV V ′)M = V N∂NV
′M − (∂ ×adj V )MNV

′N , (II.5)

where VM are the components of the generalised vector V in a standard coordinate basis,
∂M = ∂m are viewed as sections of the dual tangent bundle, and the projection onto the
adjoint bundle is ×adj : E∗ ⊗ E → adF .

The definition of a generalised GS-structure is a natural extension of the conventional
one. A generalised GS-structure on M is the reduction of the generalised structure group
Ed(d) to a subgroup GS , and it is defined by a set of nowhere vanishing GS-invariant
generalised tensors {Qi}. For instance, the generalised metric defines a GS = Hd structure
on M [43, 44]. In what follows, we will always assume that M admits an Hd structure,
and we will always consider generalised structures GS ⊂ Hd.

Given a generalised GS-structure, with GS ⊆ Hd, defined by a set of GS-invariant
generalised tensors {Qi}, we can define its intrinsic torsion from the Lie derivative of a
generalised tensor α along a generalised vector V [28]:

(
LD̃V − LV

)
α = T (V ) · α

Here LV is the generalised Lie derivative defined in (II.5), and LD̃V is the generalised Lie
derivative calculated using a GS-compatible connection 3 D̃. The torsion can be seen as
a map from the generalised tangent bundle into the adjoint one, T : Γ(E) → Γ(adF ),
so that T (V ) acts on α via the adjoint action. The intrinsic torsion Tint is then the
component of T that is independent of the choice of compatible connection D̃ and can be
decomposed into representations of GS .

Consider now eleven-dimensional or type II supergravity on a product space X ×M ,
where M is a d-dimensional manifold and X is a D-dimensional Lorentzian space with
D = 11 − d in M-theory and D − 10 in type II supergravity. We assume d ≤ 7.

As we discussed above, the GL(D,R) structure group of conventional geometry on M
is extended to Ed(d). The idea is then to rearrange the supergravity fields into generalised
tensors transforming as representations of GL(D,R) × Ed(d) and to interpret the theory
as a D-dimensional theory on X with an infinite number of fields. The fields in X will
be scalar, vectors, and two-forms according to their GL(D,R) representation 4.

The scalar degrees of freedom on X are given by the components of all supergravity
fields (metric and higher-rank potentials) with all internal indices and are repackaged into
a generalised metric. The GL(D,R) one-forms and vectors are sections of the generalised

3A generalised connection D̃ is compatible with the GS-structure if D̃Qi = 0 for all Qi. The definition
of a generalised connection is the same as in conventional differential geometry. However, in generalised
geometry, the conditions of being torsion free and metric compatible do not uniquely determine the
connection. However, only certain projections of the action of the connection appear in the supergravity,
and these are unique [43].

4We do not consider higher form-field degrees of freedom, as in the tensor hierarchy [45, 46], since they
are dual to the scalar, vector, and two-forms and therefore do not introduce new degrees of freedom. In
particular, this means that for D = 4, Aµ

M contain both the vectors and their duals, and in D = 6,
BµνMN contain both the two-forms and their duals.
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tangent space E, while the two-forms are sections of the bundle N . In summary, we have

scalars: GMN (x, y) ∈ Γ(S2E∗) ,

vectors: Aµ
M (x, y) ∈ Γ(T ∗X ⊗ E) ,

two-forms: BµνMN (x, y) ∈ Γ(Λ2T ∗X ⊗N) ,

where x and y are coordinates on X and M , respectively, and the capital index M denotes
components of vectors in E or E∗.

The equations of motion and the supersymmetry variations are also organised ac-
cording to the representations above, and the dynamics of the supergravity is completely
determined by the Levi–Civita connection on the external space X and a generalised
connection on M .

If the manifold M has a generalised GS-structure, GS ⊂ Hd, with only constant,
singlet intrinsic torsion, we can construct a consistent truncation in the following way.
Expand all bosonic fields in terms of the GS invariant tensors {Qi} defining the structure,
and keep only those transforming as singlets under the structure group. The coefficient
of the expansion will depend on the external coordinates x, while the dependence on the
internal space is only in the tensors {Qi} .

Since there are only singlet representations in the intrinsic torsion, the generalised
Levi–Civita connection acts on any invariant generalised tensor Qi as

DMQi = ΣM ·Qi ,

where ΣM is a section of E∗ ⊗ adHd that is completely determined in terms of the
constant singlet torsion. Here, adHd denotes the bundle of tensors transforming in the
adjoint representation of Hd. This means the derivatives of all the truncated fields are
also expanded in terms of singlets only. Since products of singlet representations cannot
source non-singlet representations, keeping only all possible singlets gives a consistent
truncation.

To extend the truncation to the fermionic sector of the supergravity theory, it is
enough to lift the structure group GS to G̃S ⊂ H̃d and to expand all the fermionic fields
in terms of G̃S singlets.

From the data of the GS-structure, we can determine the number of scalars, vectors,
one-forms, and two-forms of the truncated theory, as well as the possible gaugings.

All scalars of the truncated theory are given by the GS singlets in the generalised
metric GMN . These are singlet deformations of the structure modulo, those singlet de-
formations that do not deform the metric

scalars: M =
CEd(d)(GS)
CHd(GS) = G

H . (II.6)

Consider now the vectors of the truncated theory. Being sections of T ∗X ⊗ E, they
are determined by the number of GS invariant generalised vectors {KI}:

vectors: AM
µ (x, y) = Aµ

I(x)KM
I ∈ Γ(T ∗M ⊗ V) , (II.7)

where V ⊂ Γ(E) is the vector space spanned by the {KI}.
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Similarly the two-forms are determined by the GS singlets in the bundle N :

two-forms: BµνMN (x, y) = Bµν I(x)KIMN
♭ ∈ Γ(Λ2T ∗X ⊗ B) ,

where {KI
♭ } is a basis generating the GS-invariant vector space B ⊂ Γ(N).

The representations above determine the full content of the theory, namely the fields
coming from the reduction of the metric and the higher-rank potentials of the supergravity
theory. In particular, this means that the vectors KI generate all symmetries of the
reduced theories, coming both from the metric and the higher-rank potentials. This is
an important difference with respect to the reductions based on the conventional GS-
structure.

The GS-structure also determines the embedding tensor (see [47, 48] for a review of
this formalism) and hence the gaugings of the reduced theory in terms of the singlet
intrinsic torsion. Since the GS-structure has only singlet intrinsic torsion, in analogy
with (II.2), the generalised Lie derivative of the GS-invariant generalised tensors along
any invariant generalised vector KI can be written as

LKIQi = −Tint(KI) ·Qi , (II.8)

where Tint is a map from the space V of the GS invariant vector to the GS singlets in
the adjoint bundle. This is the embedding tensor. Notice that Tint(KI) must correspond
to the elements in the adjoint that commute with GS , namely the Lie algebra of the
commutant group G = CEd(d)(GS). G is the subgroup of the isometry group of the scalar
manifold that can a priori be gauged in the truncated theory.
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Chapter III
M-theory truncation to five dimensions

In this chapter we will make the previous discussion more concrete by focusing on consis-
tent truncations of the eleven dimensional supergravity on

M11 = X5 ×M6

to five dimensional supergravity with N = 2 supersymmetry.
Our conventions for eleven-dimensional supergravity are the same as in [43]. The

eleven-dimensional bosonic action is (we denote by a hat the 11d quantities)

Ŝ = 1
2

∫ (
R̂ ∗̂ 1 − 1

2 F̂ ∧ ∗F̂ − 1
6Â ∧ F̂ ∧ F̂

)
,

where F̂ = dÂ and Â is the three-form potential. The equations of motion are

R̂µ̂ν̂ − 1
12

(
F̂µ̂ρ̂1ρ̂2ρ̂3F̂ν̂

ρ̂1ρ̂2ρ̂3 − 1
12 ĝµ̂ν̂F̂

2
)

= 0 ,

d ∗̂ F̂ + 1
2 F̂ ∧ F̂ = 0 .

The six-form potential ˆ̃A dual to the three-form Â may be introduced via the first-order
relation

∗̂ dÂ+ 1
2 Â ∧ dÂ = d ˆ̃A , (III.1)

whose exterior derivative gives the Maxwell equation.

III.1 E6(6) generalised geometry
Eleven-dimensional supergravity compactified on a six-dimensional manifold can be re-
formulated in terms of E6(6) × R+ generalised geometry, which we will review below.

To the internal manifold M we associate a generalised tangent bundle E, whose sec-
tions transform in the real 27∗ representation1 of E6(6), the generalised structure group,
with weight one under R+. The ordinary structure group GL(6) embeds in E6(6) × R+

and can be used to decompose the generalised tangent bundle as

E ≃ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M . (III.2)
1Given a representation n we will use n∗ and n for the dual and conjugate representations, respectively.

For non-compact groups these may not be equivalent.

15
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The sections of E are called generalised vectors and, using (III.2), can be seen as (local)
sums of a vector, a two-form and a five-form on M ,

V = v + ω + σ .

The dual bundle E∗ is defined as

E∗ ≃ T ∗M ⊕ Λ2TM ⊕ Λ5TM ,

with sections
Z = v̂ + ω̂ + σ̂ ,

where v̂ is one-form, ω̂ is a two-vector and σ̂ is a five-vector. Generalised vectors and dual
generalised vectors have a natural pairing given by

〈
Z, V

〉
= v̂mv

m + 1
2 ω̂

mnωmn + 1
5! σ̂

mnpqrσmnpqr .

The E6(6) cubic invariant is defined on E and E∗ as2

c(V, V, V ) = − 6 ιv ω ∧ σ − ω ∧ ω ∧ ω ,

c∗(Z,Z,Z) = − 6 ιv̂ ω̂ ∧ σ̂ − ω̂ ∧ ω̂ ∧ ω̂ . (III.3)

The frame bundle F for E defines an E6(6) × R+ principal bundle. By considering
bundles whose fibres transform in different representations of E6(6)×R+, we can then define
other generalised tensors. To describe the bosonic sector of the supergravity theories we
will need, besides the generalised vectors, weighted dual vectors, adjoint tensors and the
generalised metric. Adjoint tensors R are sections of the adjoint bundle adF of the form

adF ≃ R ⊕ (TM ⊗ T ∗M) ⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM ,

R = l + r + a+ ã+ α+ α̃ ,

and hence transform in the 1 + 78 of E6(6) with weight zero under the R+ action. Locally
l is a function, r a section of End(TM), a is a three-form and so on. One notes that in
the exceptional geometric reformulation, the internal components of the gauge potentials
of type II or M-theory, are embedded in the adjoint bundle.

The action of an adjoint element R on a generalised vector V ∈ Γ(E) and on a dual
generalised vector Z is also denoted by · and is defined as

V ′ = R · V Z ′ = R · Z ,

where the components of V ′ are

v′ = lv + r · v + α ⌟ω − α̃ ⌟σ ,
ω′ = lω + r · ω + v ⌟ a+ α ⌟σ ,
σ′ = lσ + r · σ + v ⌟ ã+ a ∧ ω ,

(III.4)

2This is 6 times the cubic invariant given in [49]. Because of this, we introduced a compensating factor
of 6 in the formulae (III.16) and (III.17).
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and those of Z ′ are
v̂′ = −lv̂ + r · v̂ − ω̂ ⌟ a+ σ̂ ⌟ ã ,
ω̂′ = −lω̂ + r · ω̂ − α ⌟ v̂ − σ̂ ⌟ a ,
σ̂′ = −lσ̂ + r · σ̂ − α̃ ⌟ v̂ − α ∧ ω̂ .

(III.5)

The action of an adjoint element R on another adjoint element R′ is given by the
commutator, R′′ = [R,R′]. In components, R′′ reads

l′′ = 1
3(α ⌟ a′ − α′ ⌟ a) + 2

3(α̃′ ⌟ ã− α̃ ⌟ ã′) ,
r′′ = [r, r′] + jα ⌟ ja′ − jα′ ⌟ ja− 1

3(α ⌟ a′ − α′ ⌟ a) 1 ,

+ jα̃′ ⌟ jã− jα̃ ⌟ jã′ − 2
3(α̃′ ⌟ ã− α̃ ⌟ ã′) 1 ,

a′′ = r · a′ − r′ · a+ α′ ⌟ ã− α ⌟ ã′ ,

ã′′ = r · ã′ − r′ · ã− a ∧ a′ ,

α′′ = r · α′ − r′ · α+ α̃′ ⌟ a− α̃ ⌟ a′ ,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ ,

(III.6)

where · denotes the gl(6) action.
It will be useful to also define weighted dual vectors Z♭ as sections of the bundle

N ≃ detT ∗M ⊗ E∗ which has R+ weight two3. Concretely one finds

N ≃ T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) ,
Z♭ = λ+ ρ+ τ .

An important object in our construction is generalised metric, which encodes the
internal components of all bosonic fields. The generalised metric G is a positive-definite,
symmetric rank-2 tensor

G ∈ Γ(detT ∗M ⊗ S2E∗) ,

so that, given two generalised vectors V,W ∈ Γ(E), the inner product G(V,W ) is a
top form. Just as an ordinary metric g, at each point on M , parameterises the coset
GL(6)/O(6), a generalised metric at a point p ∈ M corresponds to an element of the
coset

G|p ∈ E6(6) × R+

USp(8)/Z2
.

In order to include fermionic fields of M-theory we arrange them into representations
of USp(8), the double cover of the maximal compact subgroup USp(8)/Z2 of E6(6). For
instance, supersymmetry parameters are section of the generalsied spinor bundle S, trans-
forming in the 8 of USp(8). The R-symmetry of the reduced five-dimensional theory is
in general then some subgroup GR ⊆ USp(8).

Now that we have introduce all the relevant objects of the exceptional generalised
geometry. We now arrange the eleven-dimensional bosonic fields into generalised tensors
transforming in representations of GL(5,R) × E6(6), where GL(5,R) gives the tensorial

3Note that detT ∗M is just a different notation for the top-form bundle Λ6T ∗M that stresses that it is
a real line bundle. In the following we will assume that the manifold is orientable and hence detT ∗M is
trivial. Thus, we can define arbitrary powers (detT ∗M)p for any real p.
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structure of the fields in the five-dimensional theory obtained after reduction. We sepa-
rate the eleven-dimensional coordinates in coordinates xµ, µ = 0, . . . , 4, on the external
spacetime X, and zm, m = 1, . . . , 6, on the internal manifold M .

The bosonic fields of eleven-dimensional supergravity are decomposed as

ĝ = e2∆ gµν dxµdxν + gmnDz
mDzn ,

Â = 1
3!AmnpDz

mnp + 1
2Aµmndxµ ∧Dzmn + 1

2 Āµνmdxµν ∧Dzm + 1
3! Āµνρ dxµνρ ,

ˆ̃A = 1
6!Ãm1...m6Dz

m1...m6 + 1
5!Ãµm1...m5dxµ∧Dzm1...m5 + 1

2·4!
¯̃Aµνm1...m4dxµν∧Dzm1...m4

+ . . . , (III.7)

where Dzm = dzm − hµ
mdxµ, and all tensor field components may depend both on xµ

and zm, except for the external metric, for which we assume a dependence on the external
coordinates only, gµν = gµν(x).

The barred fields need to be redefined. In Appendix D of [2] we provide a justification
for these redefinitions by studying the gauge transformations of the metric and three-form
potential. For the three-form components we introduce the new fields Aµνm, Aµνρ via

Āµνm = Aµνm − h[µ
nAν]nm , Āµνρ = Aµνρ + h[µ

nhν
pAρ]np . (III.8)

Similar redefinitions apply to the six-form components with at least two external indices,
however we will not discuss them in detail here.

The supergravity fields having all components on the internal manifold M arrange
into the inverse generalised metric

GMN ↔ {∆, gmn, Amnp, Ãm1...m6} ,

in the following way4

(G−1)mn = e2∆gmn

(G−1)mn1n2 = e2∆gmpApn1n2

(G−1)mn1...n5 = e2∆gmp(Ap[n1n2An3n4n5] + Ãpn1...n5)

(G−1)m1m2 n1n2 = e2∆(gm1m2,n1n2 + gpqApm1m2Aqn1n2])

(G−1)m1m2 n1...n5 = e2∆[gm1m2,[n1n2An3n4n5]

+ gpq(Apm1m2(Aq[n1n2An3n4n5] + Ãqn1...n5)]

(G−1)m1...m5 n1...n5 = e2∆[gm1...m5, n1...n5

+ gpq(Ap[m1m2Am3m4m5] + Ãpm1...m5)(Aq[n1n2An3n4n5] + Ãqn1...n5)] ,
(III.9)

where gm1m2, n1n2 = gm1[n1g|m2|n2], and similarly for gm1...m5, n1...n5 . Since the generalised
metric is a scalar on the external spacetime, after imposing our truncation ansatz it will
provide the scalar fields of the reduced five-dimensional theory.

4This expression follows straightforwardly from the elements of the conformal split frame given in [43].
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The density κ introduced in the next section when defining the HV structure is re-
lated to the determinant of the generalised metric and is an E6(6) invariant. For eleven-
dimensional metrics of the form (III.7), this is given by [43, 49]

κ2 = e3∆√det gmn . (III.10)

The tensors with one external leg arrange into a generalised vector Aµ on M , with
components

Aµ
M = {hµm, Aµmn, Ãµm1...m5 } , (III.11)

and will provide the gauge potentials of the reduced theory. The tensors with two anti-
symmetrised external indices define a weighted dual vector Bµν on M , which is a section
of detT ∗M ⊗ E∗, with components

Bµν M = {Aµνm, Ãµνm1...m4 , g̃µνm1...m6,n} , (III.12)

and will give the two-form fields of the reduced theory. The last term in (III.12) is related
to the dual graviton and we will not discuss it further here.

The tensors with three antisymmetrised external indices arrange into the generalised
tensor

Cµνρα̂ = {Aµνρ, Ãµνρm1m2m3 , g̃µνρm1...m5,n} ,
which is a section of (a sub-bundle of) the weighted adjoint bundle detT ∗M⊗adF , whose
components are labeled by α̂ = 1, . . . , 57. See e.g. [50, 46] for more details on this tensor
hierarchy.

So far the formalism is fully generic for truncations preserving any amount of super-
symmetry. In the rest of this chapter we will focus on N = 2 five dimensional truncations.
The study of the half maximal case is in Section 3 of [1].

III.2 Five dimensional N = 2 truncations
In this section we focus on consistent truncations with N = 2 supersymmetry. For N = 2
supersymmetry we need two invariant supercharges in the spinor bundle S implying that
we need subgroups GS ⊂ USp(8) that give only two singlets when decomposing the 8 of
USp(8).

The largest structure group giving N = 2 supersymmetry is GS = USp(6): under the
breaking

USp(8) ⊃ USp(6) × SU (2)R , (III.13)

the spinorial representation decomposes as

8 = (6,1) ⊕ (1,2) . (III.14)

The SU (2)R factor in (III.13) is the R-symmetry of the reduced theory under which the
two spinors singlets form a doublet, as expected for N = 2 supersymmetry parameters.
Under (III.13) the fundamental and adjoint of E6(6) decompose as

27∗ = (1,1) ⊕ (14,1) ⊕ (6,2) ,
78 = (1,3) ⊕ (6,2) ⊕ (21,1) ⊕ (14,1) ⊕ (14′,2) .

(III.15)
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The GS = USp(6) structure is often called an HV structure [51, 49, 30] and can also be
defined in terms of a triplet of non-vanishing invariant adjoint tensors and a generalised
vector, corresponding to the singlets under GS = USp(6) in (III.15). As they will be useful
in the rest of the thesis, let us first introduce the vector and hypermultiplet structures
that these tensors separately define.

A vector-multiplet structure, or V structure, is given by a globally defined generalised
vector K ∈ Γ(E) of positive norm with respect to the E6(6) cubic invariant,

c(K,K,K) := 6κ2 > 0 , (III.16)

where κ, the density introduced earlier, is a section of (detT ∗M)1/2. The vector K is
the (1,1) singlet in the decomposition of the 27∗ in (III.15) and is stabilised by F4(4) ⊂
E6(6). A hypermultiplet structure, or H structure, is determined by a pair (Jα,κ2) where
Jα ∈ Γ(adF ) (α = 1, 2, 3) is a triplet that define a basis for a highest root su2 subalgebra
of e6(6) and hence satisfy

[Jα, Jβ] = 2ϵαβγJγ , tr(JαJβ) = −δαβ ,

while κ is a section of (detT ∗M)1/2 as above. The Jα correspond to the (1,3) triplet in
the decomposition of the 78 in (III.15) and are stabilised by SU∗(6) ⊂ E6(6).

The HV structure corresponds to a V and an H structure, such that the two κ densities
are the same and in addition compatibility constraint

Jα ·K = 0 , (III.17)

is satisfied, where · denotes the adjoint action. The common stabiliser of compatible K
and Jα is

SU∗(6) ∩ F4(4) ≃ USp(6) .

From the general dictionary (II.7) we see immediately that an HV structure will give
truncations to minimal five dimensional N = 2 supergravity since there is only one singlet
vector, which gives the graviphoton. In order to have matter multiplets we need to look
for further reduced structure groups GS ⊂ USp(6) such that in the decomposition

USp(8) ⊃ USp(6) × SU (2)R ⊃ GS × SU (2)R ,

additional GS singlets beyond those defined by the USp(6) structure appear in 27∗ and
the 78, but none in the 8. This means the 6 in the decomposition (III.14) cannot contain
any singlets, and hence that all the singlets in the 27∗ must transform trivially under
SU (2)R.

Each GS ⊂ USp(6) singlet will give a GS-invariant generalised tensor in the corre-
sponding bundle. In particular, the singlets in 27∗ will span a sub-bundle Esinglet

E ⊃ Esinglet ≃ M × V . (III.18)

The bundle is by definition trivial and hence can be written as a product where V is the
fibre. The vector space V transforms as a representation of the commutant CE6(6)(GS)
of GS in E6(6). In particular, from the discussion above, there must be an R-symmetry
subgroup SU (2)R ⊂ CE6(6)(GS) that acts trivially on V (and hence Esinglet). Furthermore,
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the corresponding Lie algebra su(2) must correspond to a highest root in e6(6). Let us
define GH as the simple subgroup of CE6(6)(GS) that contains such a highest root SU (2).
We can then also identify the corresponding trivial sub-bundle of the adjoint bundle5

adF ⊃ adFGH ≃ M × gH , (III.19)

where gH is the Lie algebra of GH. Note that by definition R · v = 0 for all v ∈ Γ(Esinglet)
and R ∈ Γ(adFGH).

Given any trivial GS-invariant vector bundle P ≃ M × Rn and GS-compatible gener-
alised connection D̃, one can define a constant section s ∈ Γ(P ) by D̃s = 0. Furthermore,
the definition is independent of the choice of D̃ since the bundle transforms trivially un-
der GS . For the sub-bundles Esinglet and adFGH we can identify V and U ≃ gH with the
spaces of constant sections

V =
{
v ∈ Γ(Esinglet) : D̃v = 0

}
,

gH ≃ U =
{
R ∈ Γ(adFGH) : D̃R = 0

}
,

giving a natural realisation of the isomorphisms (III.18) and (III.19). Note that the
elements of U generate a global GH symmetry. The GS-structure also defines a constant
invariant section κ2 ∈ Γ(detT ∗M). Hence for each v ∈ V the expression

C(v, v, v) = κ−2c(v, v, v) , (III.20)

where c is the E6(6) cubic invariant, defines a map into R (or more precisely to constant
functions on M). We can always choose a basis of normalised nowhere-vanishing linearly
independent vectors and adjoint elements for V and U

{KĨ , JA} , Ĩ = 0, . . . ,dim V − 1, A = 1, . . . ,dimGH ,

where by definition we have

JA ·KĨ = 0 , ∀ Ĩ , A .

In this basis, the components CĨJ̃K̃ of the map (III.20) are given by

c(KĨ ,KJ̃ ,KK̃) = 6κ2CĨJ̃K̃ , (III.21)

and define a symmetric, constant tensor, while the adjoint tensor basis JA satisfy

[JA, JB] = fAB
CJC ,

where fABC are the structure constants of gH. Finally, we can normalise

tr(JAJB) = ηAB ,

5Note that there are singlets in the adjoint bundle that are not in adFGH . In addition to elements
generating the other possible factors in CE6(6) (GS) there are also elements of the form V ⊗ad W , where
V is a section of Esinglet, W is a section of the dual bundle E∗

singlet and ⊗ad is the projection onto the
adjoint bundle. However these will not play a relevant role in our construction.
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where ηAB is a diagonal matrix with −1 and +1 entries in correspondence with compact
and non-compact generators of GH, respectively. Note that in the “minimal” case of
GS = USp(6) with the HV structure (K, Jα) the spaces V and U are one- and three-
dimensional, with basis vectors K and Jα, respectively.

When GS ⊂ USp(6) we naturally obtain a moduli space of GS-invariant HV struc-
tures. Note that the moduli do not necessarily consist of massless scalar fields from the
point of view of the reduced N = 2 five-dimensional theory, but rather will lead to a
consistent truncation. The idea is that we can use the GS singlet vectors and adjoint
tensors to define reference USp(6) structure. Then we can use it to build a reference gen-
eralised metric using the definition (IV.26). The physical moduli are then generated by
acting on the structure with elements of E6(6) that commute with GS , modulo elements
of USp(8)/Z2, that leave the generalised metric invariant. The moduli obtained this way
hence parameterise the coset

M =
CE6(6)(GS)

CUSp(8)/Z2(GS) . (III.22)

By definition we are only considering GS that only admits N = 2 supersymmetry, in
other words we are not interested in theories that are subsectors of more supersymmetric
ones. This means there are no elements of CE6(6)(GS) that lead to two different USp(6)
structures with the same generalised metric. Hence CE6(6)(GS) must factorise into groups
that act separately on V and U , that is

CE6(6)(GS) = CGU (GS) × CGV (GS) , (III.23)
where GU and GV are the subgroups of E6(6) that leave fixed all elements of U and
V, respectively. Consequently, the moduli space M factorises into V structure and H
structure moduli spaces, as expected from N = 2 supergravity,

M = MVT × MH = CGU (GS)
CHU (GS) × CGV (GS)

CHV (GS) = GVT
HVT

× GH
HH

, (III.24)

where, similarly, HU and HV are the subgroups of USp(8)/Z2 that leave U and V fixed,
respectively. In general there are common factors that cancel between the numerators
and denominators in the commutator group expression for the cosets; for example the
centre C(GS) is always a subgroup common to both. Thus it is useful to introduce the
notation GVT, GH, HVT and HH for the numerators and denominators that remain in the
quotients in (III.24) once all the common factors have been cancelled (except when there
are no hypermultiplets in which case we take GH = HH = SU (2)). For MH, one finds
GH is the simple subgroup of CE6(6)(GS) that contains a highest root SU (2), consistent
with our definition of GH above.

The V structure moduli space corresponds to deformations of K that leave Jα in-
variant, while the H structure moduli space describes deformations of Jα that leave K
invariant. When given a dependence on the external spacetime coordinates, these de-
formations provide the scalar fields in the truncated theory, with MVT and MH being
identified with the vector multiplet and the hypermultiplet scalar manifolds, respectively.

We can identify the moduli explicitly as follows. Consider first MVT. Using the basis
K Ĩ , a general vector K ∈ V can be written as a linear combination

K = hĨKĨ ,
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where hĨ , Ĩ = 0, . . . , nVT, are real parameters. Fixing κ2 in (III.16), and using (III.21),
gives

CĨJ̃K̃h
ĨhJ̃hK̃ = 1 ,

showing that the nVT + 1 parameters hĨ are constrained by one real relation and thus
define an nVT-dimensional hypersurface, just as in (II.6),

MVT = {hĨ : CĨJ̃K̃h
ĨhJ̃hK̃ = 1 } .

The space MVT is the moduli space of the V structure and, in the truncation, will
determine the vector multiplet scalar manifold of the five-dimensional theory. The metric
on MVT is obtained by evaluating the generalised metric on the invariant generalised
vectors,

aĨJ̃ = 1
3 G(KĨ ,KJ̃) .

It is straightforward to verify that, using (IV.26), the expression above reproduces the
five-dimensional expression (IV.35).

Consider now MH. The family of H structures is obtained by parameterising the
possible choices of su2 algebra. Recall that by definition U ≃ gH, so we are interested
in the space of highest root su(2) ⊂ gH subalgebras. Fixing κ2 and modding out by the
SU 2 symmetry that relates equivalent triples Jα we have the moduli space

MH = GH
SU (2)R · CGH(SU (2)R) , (III.25)

that is, comparing with (III.24), we have HH = SU (2)R · CGH(SU (2)R). Points in MH
can be parameterised by starting from a reference subalgebra j ≃ su2 ⊂ gH and then
acting on a basis {j1, j2, j3} of j by the adjoint action of group elements h ∈ GH, defined
as

Jα = adGH jα = h jα h
−1 .

One has to mod out by the elements of GH that have a trivial action, namely h ∈
SU (2)R ≃ exp(j) and h ∈ CGH(SU (2)R). The resulting symmetric spaces (III.25) and are
all quaternionic–Kähler, in agreement with the identification of MH with the hyperscalar
manifold in five-dimensional supergravity.

III.2.1 The data of the truncation
Any generalised GS structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a consistent truncation of eleven-dimensional or type II supergravity with
spacetime X × M to a gravitational theory on X [1, 2]. In this section we focus on
truncations to five-dimensional N = 2 supergravity and recall how the the generalised
GS ⊆ USp(6) structure encodes the data of the truncated theory, as summarised in
Section 2 of [3].

The field content of the truncated theory is completely determined by the GS-invariant
spaces U and V and the moduli space of HV structures, while the gauging is determined
by the singlet torsion.
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The scalars of the truncated theory are given by the moduli space (III.22) of gener-
alised metrics on M that factors (III.24) into

VM scalars: ϕ(x)i ↔ MVT = GVT
HVT

,

HM scalars: q(x)X ↔ MH = GH
HH

= GH
SU (2)R × CGH(SU (2)R) ,

where xµ are the coordinates on X.
By construction, both spaces are homogeneous and so correspond to one of the cases

listed in Section 2 of [3]. As discussed in Section III.2, the metrics can be explicitly
constructed in terms of the basis vectors KĨ and JA. In particular, the cubic invariant
on V, which fixes the metric on MVT, is given by (III.20).

The other bosonic fields are the vectors and two-forms. As we will see in a moment,
the singlet intrinsic torsion allows one to decompose the space of constant vectors as
V = R ⊕ T so that the basis vectors split

{KĨ} = {KI} ∪ {KM} ,

where {KI} with I = 0, . . . , nV are a basis for R and {KM} with M = nV + 1, . . . , nVT
are a basis for T . The vector fields and two-forms are in one-to-one correspondence with
a basis in R and T respectively6

vectors: Aµ
I(x) ↔ KI ,

two-forms: Bµν
M (x) ↔ KM .

The gauge interactions of the truncated theory are determined by the intrinsic torsion
of the GS-structure, which in turn is captured by the constants appearing in (II.8). The
first relation defines a bracket J·, ·K : V ⊗ V → V on V given by

Jv, wKĨ := (Lvw)Ĩ = tJ̃K̃
ĨvJ̃wK̃ , ∀ v, w ∈ V .

Since the generalised Lie derivative satisfies Lu(Lvw) = LLuvw + Lv(Luw) the bracket
defines a Leibniz algebra. As in Section 2 of [3], one can then choose a splitting V = R⊕T ,
where T is the image of the symmetrised bracket, such that R is the space of vector
multiplets and T the space of tensors.

For a consistent gauging we need to check the conditions given in Section 2 of [3].
They follow from the properties of the generalised Lie derivative as we now show. Recall
first that (tv)J̃ Ĩ = vK̃tK̃Ĩ

J̃ is an element of the Lie algebra LieGVT ⊂ e6(6). Since c and
κ2 are E6(6) invariants, the action of tv must preserve the cubic tensor C given by (III.20)
and hence we satisfy one of the conditions mentionned before. Furthermore, by definition

Lvw + Lwv = d(v ⊗N w) , (III.26)
6In the general formalism given in [1, 2] the two-forms were valued in constant sections of the singlet

sub-bundle of N ≃ detT ∗M ⊗ E∗, written using dual basis vectors K♭Ĩ , and isomorphic to elements of
V∗. The relation to the fields here is that the Ĩ index is raised using the symplectic form Ω−1 defined by
the singlet torsion. Note also that one can consider AĨµ and BĨµν defined for all values of Ĩ. However, once
the non-propagating fields are eliminated only AIµ and BMµν are dynamical and the Lagrangian takes the
form given in Section 2 of [3]
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where d is the exterior derivative and ⊗N is the projection onto N ≃ detT ∗M ⊗E∗ given
by v ⊗N w = c(v, w, ·). If v, w ∈ V then the left-hand side of (III.26) is by definition an
element of T . Using (III.20), the right-hand side is just the sequence of maps described in
Section of [3], where the symplectic form on T is defined by the composition Ω−1 = d◦κ2.
Hence (III.26) implies we satisfy the second condition required for a consistent gauging.

To complete the description of the gauging we identify the embedding tensor and
the Killing vector fields on MVT and MH. Since both manifolds are coset spaces, from
(III.23), the group of isometries is Giso = GVT ×GH and the embedding tensor is a map

Θ : V → giso = LieGVT ⊕ LieGH .

The corresponding gauged Killing vectors ki
Ĩ
(ϕ) and k̃X

Ĩ
(q) on MVT and MH are given

in Section 2 of [3]. If we view K = hĨ(ϕ)KĨ as giving the embedding of MVT in V and
Jα = mA

α (q)JA as giving the embedding of MH in U then, we can identify the Killing
vectors explicitly from the relations

ki
Ĩ
∂ih

J̃ = ΘĨ
akia∂ih

J̃ = tĨK̃
J̃hK̃ ,

k̃X
Ĩ
∂Xm

A
α = ΘĨ

mk̃Xm∂Xm
A
α = pĨB

AmB
α .

Thus we can identify the embedding tensor as an element of LieGVT ⊕ LieGH

ΘĨ =
(

(tĨ)J̃ K̃ 0
0 (pĨ)AB

)
.

Using the Leibniz property that LKĨ (LKJ̃α) = L(LK
Ĩ
KJ̃ )α + LKJ̃ (LKĨα) for any gener-

alised tensor α, it follows that each set of vectors forms a representation of ggauge. In
other words, we have

[tĨ , tJ̃ ] = tĨJ̃
K̃tK̃ , [pĨ , pJ̃ ] = tĨJ̃

K̃pK̃ .

Finally, it is worth noting that the Killing prepotentials descend directly from the moment
maps for generalised diffeomorphisms that appear in integrability conditions for an HV
structure [49] and are given by

g Pα
Ĩ

= 1
8 ϵ

αβγ tr
(
Jβ(LKĨJγ)

)
,

where as above Jα = mA
α (q)JA is the dressed triplet.

It is important to note that generic N = 2 supergravity allows gaugings defined by
an embedding tensor Θ that is a general element of V∗ ⊗ giso. However, the fact that our
theory comes from a consistent truncations will typically restrict the form of Θ to only lie
in certain GVT ×GH representations in the decomposition of V∗ ⊗giso. For this reason, in
the following we will use T to denote the embedding tensor that appears in the consistent
truncations to distinguish it from the more general Θ. As a consequence, we will see that
not all the allowed N = 2 gaugings can arise from consistent truncations.
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III.3 Classification of 5d N = 2 truncations
We can use the formalism presented in the previous section to provide a classification of
the five-dimensional gauged supergravities that can be obtained as consistent truncations
of M-theory or type IIB.

As discussed above there are two conditions in the derivation of a consistent truncation
using a generalised GS structure: one topological, the existence of GS , and one differential,
the constant singlet intrinsic torsion.

For our classification we will focus on the topological part and perform a scan of the
possible subgroups GS of USp(6) that gives inequivalent N = 2 truncations. We will as-
sume that the differential condition of having constant singlet intrinsic torsion is satisfied.
Under this assumption a purely algebraic analysis allow to classify the field content and
gaugings of the truncated theory [3]. Already look at the algebraic constaints consideably
reduces the number of possible theory and their gaugings. From the example of maxi-
mally supersymmetric gauged supergravity we know that the differential condition puts
important restrictions on the allowed gauged supergravities [20, 52, 53]. Thus We expect
that not all cases we find in our analyis are actually realised on explicit constructions.
can be solved.

The algebraic problem then consists of the following steps. We first scan for all possible
inequivalent ways of breaking USp(8) to GS ⊂ USp(6) that admit only two singlets in the
fundamental representation of USp(8). Given a GS with these features, it will embed in
E6(6) as

E6(6) ⊃ GS · CE6(6)(GS) ,

where we are using the “central product”7. We then check whether under this break-
ing the 27∗ and 78 of E6(6) contain GS singlets, which will determine the vector and
hyper-multiplets of the truncated theory. In each case the singlets will transform under
CE6(6)(GS) which also determines the form of the scalar manifold M of the truncated
theory

M =
CE6(6)(GS)

CUSp(8)/Z2(GS) . (III.27)

Note that by construction the scalar manifolds are always necessarily symmetric spaces
and furthermore are always a product M = MVT × MH of vector-tensor multiplet and
hypermultiplet scalar manifolds as in (III.24).

By scanning all continuous Lie subgroups GS ⊂ USp(6), we find that there are only
a small number of inequivalent GS structures with the properties above. We list them
here according to the type of breaking of USp(6) that they correspond to. All other
cases either give rise to extra singlets in the 6 of USp(6) or can be obtained as subgroups
of the GS-structures listed below without giving rise to any new fields in the consistent
truncation.

Br.1 GS = SU (2) × Spin(p), 2 ≤ p ≤ 5.
7By definition, for any group G and subgroup H, the commutant CG(H) of H in G includes the centre

Z(H) of H. The central product is defined to be H · CG(H) = (H × CG(H))/Z(H) where one modes out
by the diagonal Z(H) subgroup. In this case Z(USp(6)) = Z2 and the central product reflects the fact
that the maximal compact subgroup of E6(6) is USp(8)/Z2 and not USp(8).
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These are obtained from the embedding

USp(6) ⊃ USp(4) × SU (2) ≃ Spin(5) × SU (2) ,

which gives
6 = (4,1) ⊕ (1,2) ,

and by further breaking the USp(4) factor

USp(4) ⊃ SU (2) × SU (2) ≃ Spin(4) ,
USp(4) ⊃ SU (2) × SU (2) ⊃ SU (2)D ≃ Spin(3) ,
USp(4) ⊂ SU (2) × SU (2) ⊃ SU (2)D ⊂ U (1)D ≃ Spin(2) .

The corresponding branching of the 6 of USp(6) are

6 = (2,1,1) ⊕ (1,2,1) ⊕ (1,1,2) ,
6 = 2 · (2,1) ⊕ (1,2) ,
6 = 2 · 11 ⊕ 2 · 1−1 ⊕ 20 ,

for the breaking to Spin(4) × SU (2), Spin(3) × SU (2) and Spin(2) × SU (2), respec-
tively.

Br.2 GS = SO(3) and GS = SU (2).
The relevant breaking is

USp(6) ⊃ SO(3) × SU (2) ,

with the 6 of USp(6) branching as

6 = (3,2) . (III.28)

Taking GS = SO(3) or GS = SU (2) leads to two different consistent truncations.

Br.3 GS = SU (3).
This comes from the breaking

USp(6) ⊃ SU (3) × U (1)

which gives
6 = 31 ⊕ 3−1 .

Br.4 GS = SU (2) × U (1)
This truncation is obtained by further breaking the SU (3) group of the previous
case. Under SU (3) ⊃ SU (2) × U (1), we get

6 = 21,1 ⊕ 1−2,1 ⊕ 2−1,−1 ⊕ 12,−1 .

Br.5 GS = U (1).
This comes from the same breaking SU (3) ⊃ SU (2) × U (1) as Br.4 but taking only
the U (1) factor as the structure group.
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Br.6 GS = U (1).

This comes from the same breaking as Br.3 and taking the U (1) factor as structure
group.

The breaking listed above can give rise to gauged supergravities with different matter
content and we summarise our results in Table III.1: we list the GS structure group, the
number of vector/tensor multiplets nVT and hypermultiplets nH, and the associated scalar
manifolds. We see that the possible consistent truncations are limited. In particular, we
find the largest possible truncation consists of only 14 vector/tensor multiplets.

nVT

nH 0 1 2

0 GS = USp(6)
M = 1

GS = SU (3)
M = SU(2,1)

S(U(2)×U(1))

GS = SO(3)
M = G2(2)

SO(4)

1 GS = SU (2)×Spin(5)
M = R+

GS = SU (2) × U (1)
M = R+ × SU(2,1)

S(U(2)×U(1))
-

2 GS = SU (2)×Spin(4)
M = R+ × SO(1, 1)

GS = U (1)
M = R+ ×SO(1, 1)× SU(2,1)

S(U(2)×U(1))
-

3
GS = SU (2)×Spin(3)

M = R+ × SO(2,1)
SO(2)

GS = U (1)
M = R+× SO(2,1)

SO(2) × SU(2,1)
S(U(2)×U(1))

-

4
GS = SU (2)×Spin(2)

M = R+ × SO(3,1)
SO(3)

GS = U (1)
M = R+× SO(3,1)

SO(3) × SU(2,1)
S(U(2)×U(1))

-

5

GS = SU (2)
M = SL(3,R)

SO(3)

GS = SU (2) × Z2
M = R+ × SO(4,1)

SO(4)

- -

6
GS = SU (2) × Z2
M = R+ × SO(5,1)

SO(5)
- -

8
GS = U (1)

M = SL(3,C)
SU(3)

- -

14
GS = Z2

M = SU∗(6)
USp(6)

- -

Table III.1: List of all possible consistent truncation with nVT vector/tensor multiplets,
nH hypermultiplets, and the required GS ⊂ E6(6) structure group, as well as the associated
scalar manifold M.
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Let us again reiterate that the consistent truncations that can be actually realised
will be a subset of those presented in the group-theoretic analysis here. This is because
the requirement that a given GS structure has singlet intrinsic torsion will introduce non-
trivial differential constraints that a given manifold M must satisfy and which we do not
analyse here.

For every consistent truncations, by looking at the intrinsic torsion it is possible to
determine the allowed gauging. We refer to Section 4 of [3] for the detailed analysis, Here
we will simply summarise our results and stress that only a few gaugings are possible.

As already mentioned we did not Verify that the differential constraint of having
constant intrinsic torsion are actually satisfied. Instead we can show that in some cases it
is possible to find a geometry that realises the GS structure with constant singlet intrinsic
torsion. This will be the subject of our next chapter.

III.3.1 Truncations to only vector and tensor multiplets
We analyse first the possible consistent truncations that give rise to a theory with only
vector/tensor multiplets. Since a consistent truncation necessarily gives rise to a sym-
metric scalar manifold (see Section 2 of [3]), the vector/tensor scalar manifolds that one
can obtain must be symmetric “very special real” manifolds, as classified in [54, 55, 56].

This classification consists of a generic case, possible for arbitrary number of vec-
tor/tensor multiplets, where the tensor CĨJ̃K̃ factorises, with the only non-zero compo-
nents given by

C0ij = ηij , i, j = 1, . . . , nVT . (III.29)
Here ηij has signature (1, nVT − 1) and the scalar manifold is given by

MVT = R+ × SO(nVT − 1, 1)
SO(nVT − 1) . (III.30)

Additionally, there are a number of “special” cases that only exist for specific values
of nVT and for which CĨJ̃K̃ does not factorise. These are given by

MVT = SL(3,R)
SO(3) , nVT = 5 ,

MVT = SL(3,C)
SU(3) , nVT = 8 ,

MVT = SU∗(6)
USp(6) , nVT = 14 ,

MVT =
E(6,−26)

F4
, nVT = 26 .

(III.31)

Finally, there is a second “generic case”, which exists for arbitrary nVT > 1, but where
the tensor CĨJ̃K̃ does not factorise [56]. The associated scalar manifolds are given by

MVT = SO(nVT, 1)
SO(nVT) . (III.32)

We want to determine which of these gauged supergravities can arise from a consistent
truncation and how can they be classified in terms of the structure groups GS listed in
the previous section.
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In order to have a consistent truncation with only vector/tensor multiplets, the gen-
eralised tensors defining the GS structure must consist of the triplet of adjoint tensor Jα,
α = 1, 2, 3 corresponding to an H-structure (see Section III.2) and of nVT + 1 generalised
vectors KĨ , Ĩ = 0, 1, . . . nVT satisfying

Jα ·KĨ = 0 ,
κ−2c(KĨ , KJ̃ , KK̃) = CĨJ̃K̃ ,

(III.33)

with constant CĨJ̃K̃ .
Since the Jα are stabilised by SU∗(6) ⊂ E6(6), the structure group must be a subgroup

of SU∗(6). Under the breaking E6(6) ⊃ SU∗(6) · SU (2)R, we have

27∗ = (15∗,1) ⊕ (6,2) ,
78 = (35,1) ⊕ (20,2) ⊕ (1,3) ,

where the triplet of Jα belong to (1,3) and generate the SU (2)R symmetry. Then, the
first condition in (III.33), implies that the vectors KĨ must be invariant under SU (2)R
and therefore must lie in the real vector space

V ⊆ (15∗,1) .

Thus, we can have at most nVT = 14 vector/tensor multiplets and we can immediately
rule out the case nVT = 26 in (III.31), as well as the case nVT > 14 in (III.30).

The family (III.32) is also ruled out, because the isometries of the corresponding scalar
manifolds are not linearly realised. As we discussed in Section III.2, the isometry group of
the scalar manifold is the commutant in E6(6) of the structure group and by construction it
acts linearly on the set of singlet generalised vectors. As a result, the gauged supergravities
with vector/tensor scalar manifolds (III.32) do not arise from consistent truncations.

All other cases can in principle arise in consistent truncations and in the next subsec-
tion we will discuss from which generalised structure GS they can be obtained and then
use GS to study the intrinsic torsion and hence find the admissible gaugings.

a) Generic case

The generic case with scalar manifold (III.30) corresponds to the structure groups

GS = Spin(6 − nVT) × SU (2) , (III.34)

of item (Br.1) of the list in the previous section, where for notational convenience we let
Spin(1) = Spin(0) = Z2. Note that (III.34) implies that we can have at most nVT = 6
vector/tensor multiplets in the truncation. Moreover, the case nVT = 5 and nVT = 6
have identical structure groups. This means that any background admitting a truncation
with nVT = 5 actually admits a truncation with nVT = 6, with the former truncation
being a subtruncation of the latter.

To see how these structure groups arise, note that the structure (III.29) of the tensor
CĨJ̃K̃ implies that the vectors KĨ can be split into a vector K0 and nVT vectors Ki such
that for any i, j, k = 1, . . . , nVT,

c(K0,K0, ·) = 0 , c(Ki,Kj ,Kk) = 0 , c(K0,Ki,Kj) = ηij , (III.35)
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where ηij has signature (5, 1). The vector K0 corresponds to the graviphoton of the
truncated theory.

By studying the form of (III.35), we can deduce the stabiliser group of the generalised
vector fields KĨ as follows. Being in the 15∗ of SU∗(6), the vectors KĨ can be seen as
six-dimensional two-forms. Then the first condition in (III.35) is equivalent to

K0 ∧K0 = 0 ,

with ∧ the standard wedge product of p-forms. Thus, K0 must be decomposable and we
can choose a basis of independent six-dimensional one-forms such that

K0 = e5 ∧ e6 .

The stabiliser of K0 is SU∗(4) × SU (2), embedded in SU∗(6) as

SU∗(6) ⊃ SU∗(4) × SU (2) × U(1) ,
15∗ = (4∗,2)1 ⊕ (6,1)−2 ⊕ (1,1)4 ,

with K0 ∈ (1,1)4. This forces the GS structure to be a subgroup of SU∗(4)×SU (2). The
other conditions in (III.35) become

K0 ∧Ki ∧Kj = ηij , Ki ∧Kj ∧Kk = 0 , (III.36)

where the metric ηij is invariant under SU∗(4) ≃ Spin(5, 1). From (III.36) it follows that

Ki ∈ (6,1)−2 .

Thus, there can be at most six vector multiplets of this type.
The structure group GS can now be easily determined. Since the nVT singlets Ki

satisfy the inner product (III.36) of signature (1, nVT − 1) they break SU∗(4) to

SU∗(4) ≃ Spin(5, 1) ⊃ Spin(6 − nVT) × Spin(nVT − 1, 1) ,

where the factor Spin(6−nVT) is the stabiliser of the Ki while the factor Spin(nVT −1, 1)
rotates the Ki into each other. Thus, the structure group is given by

GS = Spin(6 − nVT) × SU (2) .

Although the structure groups and the isometry groups are Spin subgroups of E6(6), the
generalised vectors Ki never appear in spinorial representations of GS and hence only see
the orthogonal groups and not their double covers. This is the reason why the case with
nVT = 5 vectors/tensors can always be enhanced to nVT = 6: on the two-forms Ki the
Z2 structure group acts trivially. Moreover, this is why the coset spaces can be reduced
to take the form (III.30):

M = MVT =
CE6(6)(GS)

CUSp(8)/Z2(GS) = R+ × SO(nVT − 1, 1)
SO(nVT − 1) .

The corresponding isometry group is

Giso = R+ × SO(nVT − 1, 1) × SU (2)R ,
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where as discussed above we take GH = SU (2)R, even though there are no hypermulti-
plets, in order to include the R-symmetry. Under Giso the space of vectors transforms
as

V = (1,1)2 ⊕ (1,n)−1 ∋ (v0, vi) ,

where the first entries are the SU (2)R representations, n is the vector representation of
SO(nVT − 1, 1), the subscripts are the R+ charges, and i = 1, . . . , nVT denotes SO(nVT −
1, 1) indices.

We can also determine the embedding tensor of the truncated theory and the possible
gaugings. These are encoded in the intrinsic torsion of the GS structure, which must
only contain GS singlets for the truncation to be consistent. The detailed analysis is
given in [3]. In Table III.2 we summarise the allowed gaugings for truncations with only
vectors/tensor multiplet of generic type. Whenever we list a product group, the individual
factors can also be gauged separately even though they are not listed as such. Whenever
there are abelian factors in Ggauge, the U(1)R can also be gauged diagonally with some
combination of these factors.

nVT Giso Ggauge nT

1 SU(2)R × R+ U(1)R –

2 SU(2)R × SO(1, 1) × R+ U(1)R –
SO(1, 1) 2

3 SU(2)R × SO(2, 1) × R+ SO(2, 1) × U(1)R –
SO(2), SO(1, 1) 2

4 SU(2)R × SO(3, 1) × R+

SO(2, 1) × U(1)R, SO(3) × U(1)R, –
ISO(2) × U(1)R, SU(2)R

SO(2) × U(1)R, SO(1, 1) × U(1)R, 2
SO(1, 1) 4

6 SU(2)R × SO(5, 1) × R+

SO(3) × SO(2, 1) × U(1)R, SO(2, 1) × SU(2)R, –
ISO(2) × U(1)R

SO(2, 1) × U(1) × U(1)R, SO(3) × SO(2) × U(1)R,
2SO(3) × SO(1, 1) × U(1)R, ISO(2) × U(1) × U(1)R,

SO(2) × SU(2)R, SO(1, 1) × SU(2)R
U(1) × U(1)R, SO(1, 1) × U(1)R 4

SO(1, 1) 6

Table III.2: Allowed gaugings Ggauge of the global isometry groups Giso in the generic
cases with nVT vector/tensor multiplets. The first column gives the total number of
vectors and tensor multiplets, the second the global isometry group, the third the allowed
gaugings and the last one the number of vectors that are dualised to tensors in each case.

b) Special cases

The special cases (III.31) are also associated to some of the generalised GS-structures we
listed at the beginning of this section. We now discuss case by case what the associated
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structure groups are, we determine the corresponding embedding tensor and hence the
possible gaugings of the truncated theory.

Differently from the generic case it is quite cumbersome to analyse in full generality
the constraints imposed on the gaugings by the Leibniz condition and hence the allowed
gaugings. Thus in this section we will limit ourselves to study what are the largest
reductive groups and largest compact groups that can be gauged.

b).1 nVT = 5: This truncation is associated to a GS = SU (2) generalised structure.
The structure group is taken to be the SU (2) factor in the breaking (Br.2) of USp(6) and
it embeds in SU∗(6) as SU∗(6) ⊃ SL(3,R) × SU (2). Under this embedding we have

15∗ = (6∗,1) ⊕ (3,3) ,

so that V = (6∗,1) and there are six independent singlet vectors giving rise to nVT = 5
vector multiplets. It is easy to check that we also get the expected scalar manifold

M = MVT =
CE6(6)(GS)

CUSp(8)/Z2(GS) = SL(3,R)
SO(3) ,

with isometry group
Giso = SU (2)R × SL(3,R) .

b).2 nVT = 8: This truncation arises for the case (Br.6) and corresponds to a GS =
U(1) structure group. Under the branching SU∗(6) ⊃ SL(3,C) ×U(1) the vectors decom-
pose as8

15∗ = (3 ⊗ 3)0 ⊕ 3∗
2 ⊕ 3∗

−2 ,

∋ (vαα̇, vα, v̄α̇) ,

where raised α and α̇ indices denote the fundamental representation 3 and conjugate-
fundamental representation 3 of SL(3,C) respectively. Thus for example, since 15∗ is
real, the two components vα and v̄α̇ are related by complex conjugation (vα)∗ = v̄α and
(vαβ̇)∗ = vβα̇. We see that the U 1-singlet space V = (3 ⊗ 3)0 is nine-dimensional giving
rise to nVT = 8 vector multiplets.

It is easy to check that (III.27) gives the expected scalar manifold

M = MVT =
CE6(6)(GS)

CUSp(8)/Z2(GS) = SL(3,C)
SU(3) ,

with isometry group
G = SL(3,C) × SU (2)R .

8Recall that for SL(3,C) the dual and conjugate representations are not equivalent. Here we denote
them by n∗ and n, respectively.
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b).3 nVT = 14: This is the maximal case, where the invariant vectors span the whole
V = 15∗ of SU∗(6). It does not correspond to any of the generalised structures listed at
the beginning of this section and therefore must correspond to a discrete structure group.
Indeed, since all the KĨ are stabilised and from (III.27) we have

M =
CE6(6)(GS)

CUSp(6)(GS) = SU∗(6)
USp(6) ,

it is easy to identify the generalised structure as

GS = Z2 ⊂ E6(6) .

The Z2 acts diagonally as −1 in USp(6), leading to the global isometry group

Giso = CE6(6)(Z2) = SU (2)R · SU∗(6) .

As before, by studying the intrinsic torsion we can determine the possible gaugings.
In Table III.3 we summarise the maximal reductive and compact gauge groups for the
special cases of purely vector/tensor multiplet truncations of this section. As in the
previous table, whenever we list a product of groups, the individual factors can also be
gauged separately even though they are not listed as such. Whenever there are abelian
factors in Ggauge, the U(1)R can also be gauged diagonally with some combination of
these factors.

nVT Giso Ggauge nT

5 SU(2)R × SL(3,R) SL(2,R) ⋉ R2 –
SL(2,R) × U(1)R 2

8 SU(2)R × SL(3,C) SU(3) × U(1)R, SU(2, 1) × U(1)R –

14 SU(2)R × SU∗(6) SU(3, 1) –
SU(3) × U(1)R, SU(3) × U (1) 6

Table III.3: Maximal reductive and compact gauge groups in the special cases of purely
vector/tensor multiplet truncations. The first column gives the total number of vectors
and tensor multiplets, the second the global isometry group, the third the allowed gaugings
and the last one the number of vectors that are dualised to tensors in each case.

III.3.2 Truncations with only hypermultiplets

Let us now analyse which consistent truncations are possible with only hypermultiplets
and no vector multiplets.

Truncations of this kind are associated to a generalised structures GS that is defined
by a single generalised vector K in the 27∗ of E6(6), defining a V-structure, and a set of
adjoint tensors JA, A = 1, . . . ,dim(GH), satisfying

JA ·K = 0 .
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Since the stabiliser of the V-structure is F4(4) ⊂ E6(6), we must have GS ⊂ F4(4). Finally,
by construction, the scalar manifold must be symmetric

MH = GH
SU(2)R · CUSp(6)(GS) , (III.37)

where GH = CE6(6)(GS) is the group generated by the singlets JA.
The above considerations already restrict the possible scalar manifolds for the hyper-

multiplets to the following list [57, 58]

MH =
F4(4)

SU(2) · USp(6) , nH = 7 ,

MH = SO0(4, p)
SO(4) × SO(p) , nH = p , p ≤ 5 ,

MH =
G2(2)
SO(4) , nH = 2 ,

MH = SU(2, 1)
S(U(2) × U(1)) , nH = 1 ,

(III.38)

where SO0(4, p) denotes the connected component of the SO(4, p).
However the first two manifolds do not arise from truly N = 2 truncations. This is

because they correspond to generalised structure groups that lead to extra singlets in the
decomposition of the 6 of USp(6). For MH = F4(4)

SU(2)·USp(6) , the structure group is trivial,
GS = 1, since it is given by the commutant in F4(4) of the isometry group. Thus this
truncation always comes from a sub-truncation of five-dimensional maximal supergravity.
Similarly, for the MH = SO0(4,p)

SO(4)×SO(p) , with p ≤ 5, the structure group has to be

GS = Spin(5 − p) ,

with Spin(0) = Spin(1) = Z2. The decomposition of the 6 of USp(6) under GS always
contains two extra singlets, so that these cases are sub-truncations of half-maximal gauged
supergravity. Indeed, from the commutant of GS in the full E6(6) and USp(8) groups,

CE6(6)(Spin(5 − p)) = Spin(5, p) × R+ , CUSp(8)(Spin(5 − p)) = USp(4) × Spin(p) ,

one can easily check that GS = Spin(5 − p) actually allows for a half-maximal truncation
with p vector multiplets and scalar manifold

M = Spin(5, p)
USp(4) × Spin(p) × R+ .

This leaves only the two last manifolds in (III.38) as truly N = 2 truncations.

• The case with nH = 2 hypermultiplets corresponds to a GS = SO 3 that is obtained
from (Br.2). The structure group embeds as

F4(4) ⊃ SU(2) × G2(2) ,

USp(6) ⊃ SU(2) × SU(2) .
(III.39)
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Decomposing the 78 of E6(6) in representations of GS = SU(2) gives 6 compact
and 8 non-compact singlets. Altogether they correspond to the generators of G2(2),
while the compact ones give its SO(4) maximal compact subgroup. Then (III.37)
gives the expected scalar manifold

M = MH =
G2(2)
SO(4) .

It is also easy to check that there are no vector/tensor multiplets in the truncation,
since there are no singlets in the 26 of F4(4) under the branching (III.39).

• The case with nH = 1 tensor multiplet corresponds to the generalised structure
GS = SU(3) (Br.3). This is embedded as

F4(4) ⊃ SU(3) × SU(2, 1) ,
USp(6) ⊃ SU(3) × U(1) .

In the decomposition of the 78 of SU(3) one finds 4 compact and 4 non-compact
singlets, which generate SU(2, 1). The compact ones give the compact subgroup
SU(2) × U(1) so that we recover the hyperscalar manifold

M = MH = SU(2, 1)
S(U (2) × U (1)) .

As, again, there are no singlets in the 26 of F4(4) under the branching to GS =
SU(3), there are no vector multiplets.

The study of the intrinsic torsions and the gauging for the truncations with only
hypermultiplets is very simple. As the only vector in the theory is the graviphoton in
the universal multiplet, only abelian gaugings are possible. Moreover, in all cases, the
intrinsic torsion only contains the adjoint representation of the isometry group

Wint = adGH ∋ τA0 B ,

with A,B = 1, . . .dimGH so that the map T : V → giso is

T (v0) = v0τA0B , A = 1, . . . ,dimGH .

The generalised Lie derivative on the adjoint singlets is

LK0JA = [JK0 , JA] = −T (K0) · JA = p0A
BJB ,

with the component of the embedding tensor

p0A
B = τA0B ,

and the graviphoton can gauge any one-dimensional subgroup of GH.
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III.3.3 Truncations with vector/tensor and hypermultiplets
The last class of truncations that can arise consists of truncations with both vector/tensor
and hypermultiplets. One way to study this class is to start from the truncations with only
hypermultiplets discussed in the previous section and look for a subgroup of the structure
group GS that allows for extra singlet vectors but no extra singlets in the branching of the
6 under USp(6) ⊃ GS . This last condition is necessary to have a truly N = 2 truncation
and leaves only two possible cases: nH = 2 with GS = SU(2) (Br.2) or nH = 1 and
GS = SU(3) (Br.3).

The case with nH = 2 hypermultiplets and hyperscalar manifold

MH =
G2(2)
SO(4) , (III.40)

is immediately ruled out since any further reduction of the GS = SU(2) structure group
necessarily gives rise to a singlet in the 6 of USp(6). This can be easily see from (III.28) by
breaking the second SU(2) factor. Therefore consistent truncations with hypermultiplets
forming the scalar manifold (III.40) and vector/tensor multiplets necessarily arise from
subtruncations of N > 2 gauged supergravity.

We are left with the case with nH = 1 hypermultiplet and hyperscalar manifold

MH = SU(2, 1)
S(U (2) × U (1)) .

The structure group is SU(3) and we can consider two non-trivial subgroups GS =
SU(2) × U(1) (Br.4) and GS = U(1) (Br.5). As we will discuss below, they allow for
nVT = 1 and nVT = 4 vector multiplets, respectively. Cases with nVT = 2, 3 can only be
obtained as sub-truncations of the nVT = 4 case and therefore we will not discuss them
here.

Recall that the scalar manifold of the vector/tensor multiplets in the truncation can
now be computed from the commutant of GS within the stabiliser groups GU and HU ,
in E6(6) and USp 8/Z2 respectively, of the space U of JA that define the hypermultiplet
moduli. One finds

GU = SL(3,C) ⊂ E6(6) ,

with compact subgroup
HU = SU(3) ⊂ USp(8)/Z2 .

The scalar manifold of the vector/tensor multiplets is then

MVT = CGU (GS)
CHU (GS) =

CSL(3,C)(GS)
CSU(3)(GS) . (III.41)

We thus find the two following possible truncations.

• nVT = 1,nH = 1: Consider first the structure group GS = SU(2) × U(1).
The 27∗ of E6(6) contains two GS singlets so that V is two-dimensional and nVT = 1.
Thus, the scalar manifold is

MVT = R+ , MH = SU(2, 1)
S(U (2) × U (1)) .
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The decomposition of the adjoint of E6(6) gives four compact and five non-compact
GS singlets that are the generators of the isometry group

Giso = R+ × SU(2, 1) .

• nVT = 4,nH = 1: Keeping only GS = U(1) ⊂ SU(2) × U(1) as structure group
the 27∗ contains five GS singlets so that V is five-dimensional and nVT = 4. The
commutators of GS = U(1) in SL(3,C) and SU(3)

CSL(3,C)(U(1)) = SL(2,C) × U(1) × R+ ,

CSU(3)(U(1)) = SU(2) × U(1) .

and hence, from (III.41), the scalar manifold is

MVT = SO(3, 1)
SO(3) × R+ , MH = SU(2, 1)

S(U (2) × U (1)) .

The adjoint of E6(6) contains seven compact and seven non-compact GS singlet
elements corresponding to the isometry group

Giso = SO(3, 1) × R+ × SU(2, 1) .

The analysis of the gauging of the vector/tensor multiplet isometries is the same as for
the nVT = 4 generic case without hypermultiplets, so that the possible gauge groups are
SO(2, 1), SO(3), ISO(2), when there are no tensor multiplets, and SO(2) or SO(1, 1)
with tensor multiplets. In Table III.4 we give the list of possible gauging for truncations
with vector/tensor and hypermultiplets. For simplicity we give a list of product groups,
but the individual factors can also be gauged separately. Ggauge, the U(1)R can also be
gauged diagonally with some combination of these factors.

nVT nH Giso Ggauge nT

1 1 SU (2, 1) × SO(1, 1) × R+ U (1)R × R+ –

4 1 SU (2, 1) × SO(3, 1) × R+

SO(2, 1) × R+ × U (1)R, SO(3) × R+ × U (1)R, –ISO(2) × R+ × U (1)R, SU (2)R × R+

SO(2) × U (1)R × R+, SO(1, 1) × U (1)R × R+ 2
SO(1, 1) 4

Table III.4: Summary of the gauge groups in the mixed cases. The first column gives the
total number of vectors and tensor multiplets, the second the global isometry group, the
third the allowed gaugings and the last one the number of vectors that are dualised to
tensors in each case.



Chapter IV

Examples

In this chapter we will show that some of the truncations we classified in the previous
section are actually geometrically realised in the sense that we can find a geometry that
admit a certain structure group with a constant singlet intrinsic torsion.

We will derive two consistent truncations corresponding to two different U (1) structure
group. The first one gives four vector multiplets and one hypermultipet and contains the
N = 2 Maldacena-Nunez solution, while the second one will give two vector multiplets
and one hypermultipet and contains the Bah, Beem, Bobev, Wecht (BBBW) solution.

The second example is a consistent truncation that contains a more general class of
warpped M5-branes the Bah, Beem, Bobev, Wecht solutions.

IV.1 Truncation containing Maldacena Nunez solution

The Maldacena-Nuñez [31] correspond to warped AdS5 backgrounds of eleven-dimensional
supergravity that describe the near-horizon region of M5-branes wrapping a a Riemann
surface Σ (of negative constant curvature) in a Calabi–Yau geometry.

The world volume theory is topologically twisted in order to preserve supersymmetry.
This amounts in requiring that the spin connection on Σ is identified with a U (1) connec-
tion the SO(5) R-symmetry group of the M5-brane theory. The theory preserves N = 2
or N = 1 superconformal symmetry in four dimensions, depending on how the U (1) is
chosen inside SO(5).

The corresponding supergravity solutions are warped products of AdS5 times a six-
dimensional manifold, M , which is the fibration of a deformed S4 over Σ. The SO(5)
is realised via the action of the isometry group of the round S4. The structure of the
fibration reflects the twist of the world-volume theory and determines the amount of
supersymmetry of the solutions, which in five-dimensional language is either N = 4 or
N = 2, respectively. In this chapter we will focus on the N = 2 Maldacena Nunez
solution, which we will call "MN1". The derivation of the largest consistent truncation
containing the N = 4 MN solution is worked out in Section 5 of [1].

39
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The eleven-dimensional metric of MN1 is 1

ĝ = e2∆ gAdS5 + g6 ,

where gAdS5 is the Anti de Sitter metric with radius ℓ = 3
2R, R being the length scale of

the internal space M , the warp factor is

e2∆ =
(2

3

)2/3
(3 + cos2 ζ)1/3 .

The metric on M takes the form

g6 = R2 31/3

24/3

(
3 + cos2 ζ

)1/3
[
gΣ + dζ2 + sin2 ζ

3 + cos2 ζ

(
σ2

1 + σ2
2 + (σ3 + υ)2

)]
.

Here, gΣ is the uniform metric on (a quotient of) the hyperbolic plane Σ = H2, with Ricci
scalar curvature RΣ = −2, while υ is the spin connection on Σ satisfying

dυ = − volΣ ,

with volΣ the volume form on Σ.2 The deformed S4 is described as a foliation of a round
S3 over an interval, with the interval coordinate being ζ ∈ [0, π], while σα, α = 1, 2, 3, are
the standard SU (2)left-invariant forms on S3, expressed in terms of Euler angles {θ, ϕ, ψ}.
Their explicit expression can be found in Appendix D of [2], together with more details
on the parameterisation of S4.

The four-form reads

F̂ = R3

4

[
15 + cos2 ζ

(3 + cos2 ζ)2 sin3 ζ dζ ∧ σ1 ∧ σ2 ∧ (σ3 + υ)

+ sin ζ
(

−dζ ∧ σ3 + sin(2ζ)
3 + cos2 ζ

σ1 ∧ σ2

)
∧ volΣ

]
.

(IV.1)

Note that the invariant volume form (III.10) is given by

κ2 = R2 volΣ ∧ vol4 , (IV.2)

where vol4 is the volume form of the round S4 of radius R.
The solution has SU (2)left ×U (1)right symmetry, which embeds in the SO(5) isometry

group of a round S4 as

SO(5) ⊃ SO(4) ≃ SU (2)left × SU (2)right ⊃ SU (2)left × U (1)right . (IV.3)
1We present the solution in a form similar to the one given in [59, Sect. 5]. The precise dictionary with

this reference is: α = ζ, ν = −ϕ, ψGMSW = ψ, e2λ = e2∆, m−1 = ℓAdS5 = 3
2R, where the variables on the

left-hand side are those of [59] while the variables on the right-hand side are those used here. The length
scale R that appears in our expressions is equal to the radius of S4 in the related AdS7 ×S4 Freund-Rubin
solution of eleven-dimensional supergravity. The four-form F̂ in (IV.1) has an overall opposite sign with
respect to the one of [59], F̂ = −FGMSW; this sign does not affect the equations of motion, it just modifies
the projection condition satisfied by the supersymmetry spinor parameter.

2Choosing local coordinates x, y on the hyperbolic plane, one can write gΣ = dx2+dy2

y2 , volΣ = dx∧dy
y2 ,

and υ = − dx
y

.
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This symmetry is manifest as the solution is given in terms of the σα. The globally-defined
combination (σ3 + υ) describes a fibration of S4 over Σ, such that the U (1)right action on
S4 is used to cancel the U (1) holonomy of Σ.

The U(1)right factor provides the R-symmetry of the holographically dual N = 1
SCFT, while SU (2)left corresponds to a flavour symmetry. The dual N = 1 SCFT has
been described in [60].

IV.1.1 Generalised U (1) structure of the MN1 solution
The MN1 solution admits a generalised U(1)S structure, which will be the basis for
constructing the consistent truncation. In order to characterise it we proceed in two
steps. The first is purely group theoretical: it consists in embedding the relevant U(1)S in
E6(6), computing its commutant and the corresponding decompositions of the generalised
tangent and adjoint bundles. To this end, it is convenient to decompose E6(6) according
to its maximal compact subgroup USp(8)/Z2. Since the usp(8) algebra can be given in
terms of Cliff(6) gamma matrices (see Appendix E of [2]), this reduces the problem to
gamma matrix algebra. The details of the derivation can be found in Appendix E of [2];
here we will just give the results. Once the relevant U(1)S singlets are identified, the
second step is to express them in terms of the geometry of the six-dimensional manifold
M .

The generalised U(1)S structure of the MN1 solution is the diagonal of the ordinary
geometrical U (1) ≃ SO(2) ⊂ GL(2,R) structure on the Riemann surface and a U (1)
factor in the SO(5) ⊂ SL(5,R) ≃ E4(4) generalised structure for the generalised tangent
space of the four-sphere. In terms of the isometry group decomposition (IV.3) this can
be identified with U(1)right. If we denote by 1 to 4 the directions in M along S4 and by
5,6 those along Σ, the generator of U (1)S can be written as a usp(8) element as

u(1)S = i Γ̂56 − i
2(Γ̂12 − Γ̂34) , (IV.4)

where Γ̂m are six-dimensional gamma matrices. The first term corresponds to the U (1)
holonomy of Σ while the second one is the U (1)right in SO(5). By computing the commu-
tators of (IV.4) in USp(8) we find that the U (1)S structure embeds in USp(8) as3

USp(8) ⊃ SU (2) × SU (2)H × U (1) × U (1)S ,

where as above we distinguish the factor SU (2)H that gives the R-symmetry of the five-
dimensional supergravity theory. Under this splitting, the spinorial representation of
USp(8) decomposes as

8 = (1,2)0 ⊕ (2,1)1 ⊕ (2,1)−1 ⊕ (1,1)2 ⊕ (1,1)−2 ,

where the elements in the brackets denote the SU (2) × SU (2)H representations and the
subscript gives the U(1)S charge. We then see that there are only two spinors that are
singlets under U (1)S and that transform as a doublet of SU (2)H as required by N = 2
supersymmetry.

3Here and below we give expressions ignoring subtleties involving the centres of each group; thus for
instance we will not distinguish between embeddings in USp(8) and USp(8)/Z2.
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The embedding of the U(1)S structure in the full E6(6) is obtained in a similar way
(see Appendix E of [2] for details)

E6(6) ⊃ CE6(6)(U(1)S) = R+ × Spin(3, 1) × SU (2, 1) × U(1)S , (IV.5)

where CE6(6)(U(1)S) is the commutant of U(1)S in E6(6). We can now determine how
many generalised vectors and adjoint elements are U(1)S singlets. Under (IV.5) the 27
decomposes as

27 = (1,1)(0,8) ⊕ (4,1)(0,−4) ⊕ (2,1)(3,−2) ⊕ (2̄,1)(−3,−2)

⊕ (1,3)(2,−4) ⊕ (1, 3̄)(−2,−4) ⊕ (2̄,3)(1,2) ⊕ (2, 3̄)(−1,2) ,
(IV.6)

where the first subscript denotes the U(1)S charge and the second one the R+ charge. We
see that there are five singlets KI , I = 0, 1, . . . , 4, where

K0 ∈ (1,1)(0,8)

is only charged under the R+, while

{K1,K2,K3,K4} ∈ (4,1)(0,−4)

form a vector of SO(3, 1).
The singlets in the 78 adjoint representation are the generators of the commutant

CE6(6)(U(1)S). However only the generators of the SU (2, 1) subgroup are relevant for the
structure. Indeed, (IV.6) shows that the generators of R+ × SO(3, 1) do not leave the
singlet vectors invariant, and therefore do not contribute to the truncation. We denote
by JA, A = 1, . . . , 8, the elements of the adjoint bundle generating su2,1. Four of them
are in the 36 of USp(8) and generate the compact subalgebra su2 ⊕u1, and four more are
in the 42 of USp(8) and generate the rest of su2,1.

The U(1)S structure is then defined by

{KI , JA} , I = 0, . . . , 4 , A = 1, . . . , 8 .

The derivation of the explicit expressions for these generalised tensors relies on the
way the solution of [31] is constructed by deforming the AdS7 ×S4 background dual to flat
M5-branes so as to describe their backreaction when wrapping a Riemann surface Σ. The
world-volume theory on the wrapped M5-branes is made supersymmetric by a topological
twist, where the spin connection on the Riemann surface is cancelled by switching on a
background gauge field for a U(1) subgroup of the SO(5) R-symmetry. On the dual
background the topological twist implies that M is an S4 fibration over Σ

S4 M

Σ

i

π (IV.7)

The generalised tangent bundle for S4 is given by

E4 ≃ TS4 ⊕ Λ2T ∗S4 , (IV.8)
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and transforms under SL(5,R) ≃ E4(4). It is generalised parallelisable, meaning it admits
a globally defined frame [12]. The idea is then to consider first the direct product Σ ×S4,
express the E6(6) generalised tensors on this manifold in terms of the frame on Σ and the
parallelisation on S4, and then implement the twist of S4 over Σ so as to make globally
well-defined objects. In the decomposition

E6(6) ⊃ GL(2,R) × SL(5,R) ,

where GL(2,R) is the structure group of the conventional tangent bundle on Σ and
SL(5,R) ≃ E4(4) is the structure group of the generalised tangent bundle on S4, the
E6(6) generalised tangent bundle on Σ × S4 decomposes as

E ≃ TΣ ⊕ (T ∗Σ ⊗N4) ⊕ (Λ2T ∗Σ ⊗N ′
4) ⊕ E4 , (IV.9)

and the adjoint bundle as

adF ≃ adF4 ⊕ (TΣ ⊗ T ∗Σ) ⊕ (T ∗Σ ⊗ E4)
⊕ (Λ2T ∗Σ ⊗N4) ⊕ (TΣ ⊗ E∗

4) ⊕ (Λ2TΣ ⊗N∗
4 ) .

(IV.10)

In the expressions above E4 is the generalised tangent bundle on S4 introduced in (IV.8),
adF4 is the adjoint bundle on S4,

adF4 ≃ R ⊕ (TS4 ⊗ T ∗S4) ⊕ Λ3T ∗S4 ⊕ Λ3TS4 ,

and N4 and N ′
4 are the following bundles on S4,

N4 ≃ T ∗S4 ⊕ Λ4T ∗S4 ,

N ′
4 ≃ R ⊕ Λ3T ∗S4 .

The bundles E4, N4 and N ′
4 admit the globally defined generalised frames

Eij ∈ Γ(E4) , Ei ∈ Γ(N4) , E′
i ∈ Γ(N ′

4) , i, j = 1, . . . , 5 ,

see Appendix D of [2] for their expression in a coordinate basis and note that they include a
contribution from the three-form gauge potential AS4 of the flux on the S4. Geometrically
this defines a generalised identity structure on S4. Given the way U (1)S is embedded in
USp(8), we will find it useful to also introduce the following linear combinations of the
generalised frame elements Eij on S4,

Ξ1 = E13 + E24 , Ξ2 = E14 − E23 , Ξ3 = E12 − E34 ,

Ξ̃1 = E13 − E24 , Ξ̃2 = E14 + E23 , Ξ̃3 = E12 + E34 .

Since their restriction to TM corresponds to the Killing vectors generating the SU (2)left ×
SU (2)right ≃ SO(4) ⊂ SO(5) isometries of S4 (see Appendix D of [2] for their explicit
expression), Ξα and Ξ̃α, α = 1, 2, 3, may be seen as generalised Killing vectors generating
the corresponding generalised isometries.

As for the Riemann surface Σ, it can be (a quotient of) the hyperbolic plane H2 as in
the MN1 solution reviewed earlier, but we can also take a torus T 2, or a sphere S2. We
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introduce orthonormal co-frame one-forms e1, e2 on Σ, such that the constant curvature
metric and the compatible volume form on Σ are given by

gΣ = (e1)2 + (e2)2 , volΣ = e1 ∧ e2 . (IV.11)

The metric is normalised so that the Ricci scalar curvature is RΣ = 2κ, where κ = +1
for S2, κ = 0 for T 2 and κ = −1 for H2 (and quotients thereof). We also define the U(1)
spin connection, υ, on Σ as

d(e1 + i e2) = i υ ∧ (e1 + i e2) , dυ = κ volΣ . (IV.12)

The decompositions (IV.9) and (IV.10) allow us to express the U(1)S invariant gen-
eralised tensors in terms of tensors on Σ and the S4 generalised frames introduced above.
We provide the derivation in Appendix D of [2] and here just present the resulting ex-
pressions. Let us first focus on the singlet generalised vectors KI . These can be written
as

K0 = eΥ · (R2 volΣ ∧ E′
5) , K1,2,3 = eΥ · Ξ̃1,2,3 , K4 = eΥ · Ξ3 , (IV.13)

where Υ is a section of the adjoint bundle implementing the twist of S4 over Σ as in (IV.7),
ensuring that these are globally defined objects on the six-dimensional manifold. Recall
that in the MN1 solution, the U(1) that is used to twist the four-sphere and compensate
the spin connection υ on Σ is the Cartan of SU (2)right ⊂ SO(5). The E6(6) twist element
Υ is constructed in a way similar to the one used in [1], albeit with a different choice of
U (1) in SO(5). We embed the connection one-form υ in a generalised dual vector, the
Killing vector generating the Cartan of SU (2)right in the generalised vector Ξ3 introduced
above, and we project their product onto the adjoint of E6(6). That is,

Υ = −R

2 υ ×ad Ξ3 ,

where ×ad denotes the projection onto the adjoint and again R is the radius of S4.
Evaluating its action in (IV.13), we find that this is trivial for all the KI ’s except for K4,
and we obtain our final expressions

K0 = R2 volΣ ∧ E′
5 , K1,2,3 = Ξ̃1,2,3 , K4 = Ξ3 −Rυ ∧ E5 . (IV.14)

A similar procedure applies to the singlets JA, A = 1, . . . , 8, in the adjoint bundle. In
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this way we obtain (see Appendix E of [2] for the derivation)

J1 = 1
2 eΥ · (−Re1 ×ad Ξ1 −Re2 ×ad Ξ2 +R−1 Ξ∗

1 ×ad ê1 +R−1 Ξ∗
2 ×ad ê2

)
,

J2 = 1
2 eΥ · (Re1 ×ad Ξ2 −Re2 ×ad Ξ1 −R−1 Ξ∗

2 ×ad ê1 +R−1 Ξ∗
1 ×ad ê2

)
,

J3 = 1
2 eΥ · (ê1 ⊗ e2 − ê2 ⊗ e1 −Re2 ×ad Ψ15 +R−1 Ψ∗

15 ×ad ê2

− E∗
5[1 ×ad E2]5 + E∗

5[3 ×ad E4]5
)
,

J4 = 1
2 eΥ · (Re1 ×ad Ξ2 −Re2 ×ad Ξ1 +R−1 Ξ∗

2 ×ad ê1 −R−1 Ξ∗
1 ×ad ê2

)
,

J5 = 1
2 eΥ · (Re1 ×ad Ξ1 +Re2 ×ad Ξ2 +R−1 Ξ∗

1 ×ad ê1 +R−1 Ξ∗
2 ×ad ê2

)
,

J6 = −1
3 eΥ · (ê1 ⊗ e1 + ê2 ⊗ e2 +

4∑

i=1
E∗
i5 ×ad Ei5 + 2

)
,

J7 = eΥ · (Re2 ×ad Ψ15 +R−1 Ψ∗
15 ×ad ê2

)
,

J8 = 1
2
√

3 eΥ · (ê1 ⊗ e2 − ê2 ⊗ e1 − 3Re2 ×ad Ψ15 + 3R−1 Ψ∗
15 ×ad ê2

− E∗
5[1 ×ad E2]5 + E∗

5[3 ×ad E4]5
)
,

(IV.15)

where the superscript ∗ denotes dual generalised vectors, transforming in the 27, and we
introduced Ψ1i = Re1 ∧ Ei and Ψ2i = Re2 ∧ Ei. The adjoint action of eΥ is evaluated
using the formula (III.4); we do not show the resulting expressions as they are rather
lengthy. Evaluating the commutators [JA, JB] using again (III.6), we checked that the
JA satisfy precisely the SU (2, 1) commutation relations (the choice of SU (2, 1) structure
constants is given in the Appendix F of [2]).

IV.1.2 The V and H structure moduli spaces

We now construct the V structure and H structure moduli spaces. Applying the general
discussion of Section III.2 we have

MV × MH =
CE6(6)(GS)

CUSp(8)/Z2(GS) = R+ × Spin(3, 1)
SU (2) × SU (2, 1)

SU (2)H × U (1) , (IV.16)

As we now show the first two factors give the V structure moduli space and the last factor
the H structure moduli space.

The V structure

Evaluating (III.21) for the KI constructed above we obtain the constant, symmetric tensor
CIJK . Using the invariant volume (IV.2), we find that the non-vanishing components of
CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, . . . , 4 ,

where
η = diag(−1,−1,−1, 1) .
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A family of V structures is then obtained by defining K as the linear combination

K = hĨKĨ ,

where hI , I = 0, . . . , nV, are real parameters spanning MV. Fixing κ and imposing
(III.21) it follows that our V structure moduli space is the hypersurface

CIJKh
IhJhK = h0

(
−(h1)2 − (h2)2 − (h3)2 + (h4)2

)
= 1 . (IV.17)

It will be convenient to redefine the hI in terms of the parameters

{Σ, H1, H2, H3, H4}

as

h0 = Σ−2 ,

hI = −ΣHI , I = 1, . . . , 4 , (IV.18)

so that
K = Σ−2K0 − Σ

(
H1K1 +H2K2 +H3K3 +H4K4

)
.

From (IV.17) we see that HI are coordinates on the unit hyperboloid SO(3,1)
SO(3) ,

−(H1)2 − (H2)2 − (H3)2 + (H4)2 = 1 ,

while Σ (that we assume strictly positive) is a coordinate on R+, whose powers in (IV.18)
are dictated by the weight of the KI ’s under the action of the R+ that commutes with
the generalised structure.

The resulting V structure moduli space thus is

MV = R+ × SO(3, 1)
SO(3) ,

and will determine nV = 4 vector multiplets in five-dimensional N = 2 supergravity. Note
that by identifying SU (2) ≃ Spin(3) this matches the first two factors in (IV.16). The
isometry group is SO(3, 1) because the hI form a vector rather than a spinor representation
of Spin(3, 1).

The H structure

We next turn to the H structure moduli space, again following the general discussion
given in Section III.2. Since the commutant of SU (2)H in SU (2, 1) is U (1), from (III.22)
we obtain that the H structure moduli space is4

MH = SU (2, 1)
SU (2)H × U (1) . (IV.19)

4More precisely one has MH = SU (2, 1)/S(U (2) × U (1)).
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This is a simple quaternionic-Kähler manifold of quaternionic dimension nH = 1. We will
denote by

{φ, ξ, θ1, θ2}
the coordinates on this space. In Appendix F of [2] we give the explicit parameterisation
chosen for the coset space as well as the explicit form of the “dressed” su(2) elements
Jα, depending on {φ, ξ, θ1, θ2}, in terms of su(2, 1) elements. Below we will use this
dressed triplet to construct the generalised metric. In Appendix F of [2] we also give the
SU (2, 1) invariant metric on MH , which will provide the hyperscalar kinetic term in the
five-dimensional theory.

IV.1.3 Intrinsic torsion and gauging
For the U(1)S structure constructed in the previous section to lead to a consistent trun-
cation, it must be checked that its intrinsic torsion only contains U(1)S singlets, and that
these are constant. In particular we need to show that the generalised Lie derivatives
closes on the singlets of the truncation (II.8), on the V structure and on the H structure.
For the two conditions we evaluate the generalised Lie derivatives of the tensors KI and
JA in (IV.14) and (IV.15), using the action of generalised Lie derivative on a generalised
vector and on sections of the adjoint bundle given in Appendix A of [2].

Consider first the algebra of the generalised vectors (IV.14). Using the fact that, under
the generalised Lie derivative, the S4 frames Eij generate an so(5) algebra

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) ,

one can show that the only non-zero Lie derivatives are

LKαKβ = − 2
R ϵαβγKγ , α, β, γ = 1, 2, 3 , (IV.20)

so that the vectors Kα, α = 1, 2, 3, lead to an SO(3) factor in the gauge group in the five-
dimensional supergravity.5 This embeds in the SO(3, 1) factor of the global symmetry
group of the ungauged theory in the obvious way. Hence (IV.20) determines the compo-
nents of the embedding tensor acting on the vector multiplet sector of the five-dimensional
supergravity theory.

We thus have that the non-vanishing structure constants are fαβγ = −2 ϵαβγ and
the gauge coupling constant is g = 1

R . The non-trivial vector multiplet scalar covariant
derivatives are

DHα = dHα − 2
R ϵ

α
βγAβ Hγ ,

while the gauge field strengths read

F0 = dA0 , Fα = dAα − 1
R ϵ

α
βγAβ ∧ Aγ , F4 = dA4 . (IV.21)

In order to determine the gauging in the hypersector we also need to compute the Lie
derivative of the JA along the generalised vectors KI . We find that the JA are neutral
under the action of the SO(3) generators Kα,

LKαJA = 0 , A = 1, . . . 8 ,
5For simplicity, we use the indices α, β = 1, 2, 3 both to label the generators of the SU (2)H entering in

the definition of the H structure and the generators of the SU (2) in the V structure, although these are
different subgroups of E6(6).
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consistently with the fact that the gauging in the vector multiplet sector does not affect
the hypersector. On the other hand, the remaining generalised vectors K0 and K4 act
non-trivially on the JA, and determine an abelian gauging of the SU (2, 1) generators. In
detail, the generalised Lie derivative of the JA along K0 gives

LK0(J1 − J5) = 0 ,

LK0(J1 + J5) = 1
R(J2 + J4) ,

LK0(J2 + J4) = 0 ,

LK0(J2 − J4) = − 1
R(J1 − J5) ,

LK0J3 = − 1
2RJ6 ,

LK0J6 = − 1
2R
(
J3 + 2J7 −

√
3J8

)
,

LK0J7 = 1
RJ6 ,

LK0J8 =
√

3
2RJ6 ,

(IV.22)

while the one along K4 yields

LK4(J1 − J5) = − 2
R(J2 + J4) ,

LK4(J1 + J5) = − 2
R(J2 − J4) − κ

R (J2 + J4) ,

LK4(J2 + J4) = 2
R(J1 − J5) ,

LK4(J2 − J4) = 2
R(J1 + J5) + κ

R(J1 − J5) ,

LK4J3 = κ
2RJ6 ,

LK4J6 = κ
2R
(
J3 + 2J7 −

√
3J8

)
,

LK4J7 = − κ
RJ6 ,

LK4J8 = −
√

3κ
2R J6 .

(IV.23)
The actions (IV.22) and (IV.23) can equivalently be expressed in terms of an adjoint
action as

LK0JA = [J(K0), JA] , LK4JA = [J(K4), JA] , A = 1, . . . , 8 ,

where the sections of the adjoint bundle

J(K0) = 1
4R
(
J3 + 2J7 −

√
3J8

)
,

J(K4) = − κ
4R
(
J3 + 2J7 −

√
3J8

)− 1
R

(
J3 + 1√

3J8
)

correspond to SU (2, 1) generators acting on the H-structure moduli space (IV.19) as
isometries. We denote by k0 and k4 the corresponding Killing vectors on MH. We refer
to the Appendix B of [2] for this computation.

k0 = ∂ξ ,

k4 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) . (IV.24)

These Killing vectors specify the isometries of MH that are gauged in the five-dimensional
supergravity. The hyperscalar covariant derivatives are determined as

D(θ1 + i θ2) = d(θ1 + i θ2) − 2
R i A4 (θ1 + i θ2) ,

Dξ = dξ + 1
RA0 − κ

RA4 . (IV.25)

The triholomorphic Killing prepotentials PαI obtained by evaluating the moment maps
read

Pα0 =
{
0 , 0 , 1

4 e2φ} ,

Pα4 =
{√

2 eφθ1 ,
√

2 eφθ2 ,−1 + 1
4 e2φ(2θ2

1 + 2θ2
2 − κ

) }
,
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with Pα1 = Pα2 = Pα3 = 0.
The information above completely characterises the five-dimensional N = 2 super-

gravity obtained upon reduction on M . This will be discussed in Section IV.1.5. Before
coming to that, we provide the explicit bosonic truncation ansatz.

IV.1.4 The truncation ansatz
The bosonic part of the truncation ansatz is obtained by imposing that the generalised
tensors are expanded in singlets of the GS structure. The generalised metric is obtained
by constructing the K and Jα parameterising a family of HV structures as detailed in
Section III.2, and plugging these generalised tensors in the formula (IV.26). The resulting
generalised metric depends on the H and V structure moduli; when given a dependence
on the external coordinates xµ, these are then identified with the hyperscalar and vector
multiplet scalar fields of the truncated N = 2 theory, respectively. Thus we have

K = hI(x)KI

Jα = L(x)jαL(x)−1

}
giving GMN (x) from (IV.27) ,

where L is the representative of the coset MH. Given this HV structure, one can construct
the generalised metric as

G(V, V ) = 3
(

3 c(K,K, V )2

c(K,K,K)2 − 2 c(K,V, V )
c(K,K,K) + 4 c(K,J3 · V, J3 · V )

c(K,K,K)

)
, (IV.26)

where c is the E6(6) cubic invariant and V is a generalised vector.
For the purpose of constructing the truncation ansatz by comparing with (III.11), we

will also need the inverse generalised metric. We can exploit the isomorphism between
the generalised tangent bundle E and its dual E∗ provided by the generalised metric to
construct a USp(6) singlet K∗ ∈ Γ(E∗) as K∗(V ) = G(K,V ), where V is any generalised
vector. Then, denoting by Z ∈ Γ(E∗) a generic dual vector, the inverse generalised metric
is given by

G−1(Z,Z) = 3
(

3 c∗(K∗,K∗, Z)2

c∗(K∗,K∗,K∗)2 − 2 c∗(K∗, Z, Z)
c∗(K∗,K∗,K∗) + 4 c

∗(K∗, J3 · Z, J3 · Z)
c∗(K∗,K∗,K∗)

)
,

(IV.27)
the cubic invariant c∗ and of the adjoint elements Jα on the dual generalised vectors have
been defined in (III.3) and (III.5). Comparing the expression for the inverse generalised
metric with its general form (III.9), we obtain the truncation ansatz for ∆, gmn, Amnp
(as well as Ãm1...m6 , whenever it is needed). Note that κ2 given in (III.10) is independent
of the scalar fields hI(x) and L(x), so it can be evaluated using any chosen representative
of the family of HV structures defined by the GS structure.

The gauge potentials Aµ
I(x) on the external space-time are defined by taking

Aµ = Aµ
I(x)KI ∈ Γ(T ∗X) ⊗ span({KI}) (IV.28)

where span({KI}) ⊂ Γ(E) is the vector space spanned by the set of GS singlets KI ,
I = 0, 1, . . . , nV. Similarly the two-form fields are given by

Bµν = Bµν I(x)KI
♭ ∈ Γ(Λ2T ∗X) ⊗ span({KI

♭ }) , (IV.29)
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where span({KI
♭ }) ⊂ Γ(detT ∗M ⊗E∗) is the vector space spanned by the weighted dual

basis vectors KI
♭ , the latter being defined by KI

♭ (KJ) = 3κ2 δIJ . We also have

Cµνρ = CµνρA(x) J ♭A ∈ Γ(Λ3T ∗X) ⊗ span({J ♭A}) , (IV.30)

where span({J ♭A}) ⊂ Γ(detT ∗M ⊗ ad(F )) is spanned by the GS singlets in the weighted
adjoint bundle, here denoted by J ♭A and given by J ♭A = κ2JA. In Appendix C of [2] we
show that these expressions, together with the field redefinitions (III.8), lead to the correct
five-dimensional covariant objects, consistent with the expected gauge transformations.

We compute the inverse generalised metric (IV.27) out of the U (1)S invariant gener-
alised tensors. This depends on the V structure moduli {Σ, H1, H2, H3, H4} and on the
H structure moduli {φ, ξ, θ1, θ2}, which are now promoted to scalar fields in the external,
five-dimensional spacetime. Then we evaluate the generalised tensors Aµ,Bµν , Cµνρ using
(IV.28)–(IV.30). Separating the components of these tensors as described in Appendix C
of [3], we obtain the ansatz for the eleven-dimensional metric ĝ and three-form potential
Â.

We start from the covariantised differentials Dzm = dzm−hµmdxµ of the coordinates
on M , that appear in (III.7). From (III.11) and (IV.28) we see that hµ = hµ

m∂m is given
by

hµ = AI
µKI |TM ,

where KI |TM is the restriction of KI to the tangent bundle of M . Evaluating the right
hand side using the explicit form (IV.14) of the generalised vectors KI , we obtain

hµ = 2
R

(Aα
µ ξ̃α + A4

µ ξ3
)
, (IV.31)

where we recall that ξα, ξ̃α, α = 1, 2, 3, are the pull-back to TM of the SU (2)left- and
SU (2)right-invariant vectors on S3, respectively, whose coordinate expression is given
in the corresponding paper in (VI). It follows that Dzm, and thus both the eleven-
dimensional metric and three-form, contain the five-dimensional gauge potentials Aα,
A4, gauging the SU (2)left × U (1)right isometries of S3 in M . Notice that A0 does not
appear in (IV.31) as K0 does not have a component in TM , hence it will not enter in the
eleven-dimensional metric. However K0 will appear in the ansatz for the three-form, as
it does have a component in Λ2T ∗M .

In order to express our ansatz in a more compact way, it will be convenient to introduce
new one-forms Ωα and Ω̃α, α = 1, 2, 3, adapted to the symmetries of the problem, that
incorporate the covariantised differentials above but also include some more terms. Recall
that we describe S4 as a foliation of S3, parameterised by Euler angles {θ, ϕ, ψ}, over an
interval, parameterised by ζ. We define

Ω1 = cosψDθ + sinψ sin θDϕ , Ω̃1 = cosϕDθ + sinϕ sin θDψ ,
Ω2 = − sinψDθ + cosψ sin θDϕ , Ω̃2 = sinϕDθ − cosϕ sin θDψ ,
Ω3 = Dψ + cos θDϕ , Ω̃3 = Dϕ+ cos θDψ ,

which are analogous to the left- and right-invariant forms σα, σ̃α given in (VI), but with the
ordinary differential of the coordinates being replaced by the new covariantised differential
D. This extends the differential D given above and is defined as

Dzm = dzm − 2
R

(
Aαξmα + Ãαξ̃mα

)
,
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with

A1 = R√
2 (θ2e1 − θ1e2) , A2 = R√

2 (θ1e1 + θ2e2) , A3 = −R
2 υ + A4 ,

Ãα = Aα , α = 1, 2, 3 , (IV.32)

where the five-dimensional scalars θ1, θ2 are two of the H structure moduli, and we recall
that e1, e2 are the vielbeine on the Riemann surface Σ while υ is the connection on Σ.
The local one-forms Ãα,Aα gauge all the left- and right- isometries of S3, respectively,
and would correspond to SO(4) ≃ SU (2)left ×SU (2)right gauge potentials in the reduction
of eleven-dimensional supergravity on S4 down to seven-dimensional supergravity. How-
ever, in the further reduction on Σ of interest here only Aα,A4 become five-dimensional
gauge fields, while the rest of (IV.32) implements the twist on the Riemann surface and
introduces the five-dimensional scalars θ1, θ2.

We are now in the position to give the truncation ansatz for the eleven-dimensional
metric

ĝ = e2∆gµνdxµdxν + gmnDz
mDzn .

The warp factor is
e2∆ = ∆̄1/3 (eφΣ)4/5 ,

while the part with at least one internal leg reads

gmnDz
mDzn = R2∆̄1/3(eφΣ)−6/5 gΣ +R2∆̄−2/3e2φ/5Σ−3/5

[(
e−2φΣ3 sin2 ζ +H− cos2 ζ

)
dζ2

+ 1
4H+ sin2 ζ δαβΩα ⊗ Ωβ − 1

2 sin2 ζ Hα Ω̃α ⊗s Ω3 − cos ζ sin ζ dζ ⊗s d6H+
]
,

where ⊗s is the symmetrised tensor product, defined as Ω ⊗s Ω̃ = 1
2(Ω ⊗ Ω̃ + Ω̃ ⊗ Ω). In

these expressions we introduced the function

∆̄ =
(
e−2φΣ3)−4/5 cos2 ζ +

(
e−2φΣ3)1/5

H+ sin2 ζ ,

as well as

H± = H4 ±
(
H1 sin θ sinϕ−H2 sin θ cosϕ+H3 cos θ

)
,

d6H+ = H1 d(sin θ sinϕ) −H2 d(sin θ cosϕ) +H3 d cos θ .

Note that in the last expression the exterior derivative acts on the internal coordinates
and not on the scalars HI , which only depend on the external coordinates.

We next come to the eleven-dimensional three-form potential Â. We first give our
result and then make some comments. The ansatz for Â reads

Â = −1
8R

3 cos ζ
[
2 + sin2 ζ ∆̄−1(e−2φΣ3)−4/5 ]Ω1 ∧ Ω2 ∧ Ω3

+ 1
4R

3 sin3 ζ ∆̄−1(e−2φΣ3)1/5 dζ ∧Hα Ω̃α ∧ Ω3

+R3 cos ζ
(Dξ − θ1Dθ2 + θ2Dθ1

) ∧ volΣ +1
4R

3 cos ζ
(
2θ2

1 + 2θ2
2 − κ

)
volΣ ∧Ω3

+ 1
2R

2 cos ζ
(F4 ∧ Ω3 − Fα ∧ Ω̃α

)
+R cos ζ Σ4 ∗5 F0

+ 1
2
√

2 R
3 cos ζ

[(
Dθ2 ∧ e1 − Dθ1 ∧ e2

)
∧ Ω1 +

(
Dθ1 ∧ e1 + Dθ2 ∧ e2

)
∧ Ω2

]
,(IV.33)
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where the five-dimensional gauge field strengths, F , and the covariant derivatives, D, of
the five-dimensional scalars were given in (IV.21) and (IV.25), respectively.

Equation (IV.33) has been obtained by first computing Â through the general pro-
cedure of Section III.1, then implementing a gauge shift by an exact three-form so as
to obtain a nicer expression (this is why derivatives of the external fields appear), and
finally dualising away the five-dimensional two- and three-forms, so that the only five-
dimensional degrees of freedom contained in the ansatz are scalar and vector fields, in
addition to the metric gµν . Let us outline how this dualisation is performed. Evaluating
(IV.29) and (IV.30), we find that only one external two-form B and one external three-
form C appear in the ansatz for Â. These are paired up with the generalised tensors E5
and E′

5 on S4, which, as generalised tensors on M , are sections of detT ∗M ⊗ E∗ and
detT ∗M ⊗ adF , respectively. The combination entering in Â is

[BE5 + CE′
5
]
3 = RB ∧ d cos ζ +R C cos ζ = (C − dB)R cos ζ + d (BR cos ζ) ,

where the subscript on the left-hand side indicates the restriction to the three-form part,
and the last term in the expression is removable via a gauge transformation of Â. Hence B
and C only appear in the combination (C − dB). This means that the two-form gets eaten
by the three-form via the Stuckelberg mechanism, giving it a mass. While a massless
three-form in five-dimensions is dual to a scalar field, here we dualise the two-form at the
same time and also obtain a vector field. The duality relation is obtained considering the
duality between the eleven-dimensional three-form Â and six-form ˆ̃A given in (III.1), and
looking at the relevant terms with three external indices. In this way we find that

C − dB = Σ4 ∗5 dA0 − A4 ∧ dA4 + Aα ∧ dAα − 1
3R ϵαβγAα ∧ Aβ ∧ Aγ .

We have used this expression to eliminate (C−dB) completely from the truncation ansatz.
This explains the ∗5F0 term appearing in (IV.33).

Our truncation ansatz reproduces the Maldacena–Nuñez solution upon taking κ = −1
and setting the scalars to

H1 = H2 = H3 = θ1 = θ2 = ξ = 0 , H4 = Σ = 1 , φ = 1
2 log 4

3 . (IV.34)

The consistent truncation of [61] is recovered as a subtruncation that projects out the
fields transforming under SU (2)left, that is setting Ãα = Hα = 0, α = 1, 2, 3, which also
implies H4 = 1.6 The further truncation to minimal gauged supergravity is obtained by
setting the scalars to their AdS value (IV.34) and taking A0 = −A4.

One can obtain a slightly larger subtruncation by projecting out only the modes
charged under U (1)left, rather than SU (2)left, namely setting Ã1 = Ã2 = H1 = H2 = 0.
This leaves us with two vector multiplets, one hypermultiplet and just the abelian gauging
generated by the Killing vectors (IV.24), which is the same as the one in the truncation
of [61]. A generalisation of this subtruncation will be discussed in Section IV.2.

6Then the one-forms Ωα essentially reduce to those in [61], up to slightly different conventions, while
Ω̃α drop out of the ansatz. When comparing our truncation ansatz with the one given in Section 4.1 of
[61], one should take into account that Âhere = −ÂFNR (this is seen from comparing our 11d Maxwell
equation with the one in [62], which provides the 7d to 11d uplift formulae used in [61]). Moreover
ζhere = ζFNR + π/2 , A4 ∝ AFNR, A0 ∝ χFNR

1 , Σ = 21/3ΣFNR, e2φ = 2(e2φ)FNR, |θ1,2| = 1√
2 |θ1,2|FNR,

ξ = 1
2ξ

FNR.
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The truncation of [61] was obtained via a reduction of gauged seven-dimensional su-
pergravity on the Riemann surface Σ. Similarly, we can obtain our truncation ansatz by
combining the well-known truncation of eleven-dimensional supergravity on S4 [11], lead-
ing to seven-dimensional maximal SO(5) supergravity, with a further truncation reducing
the seven-dimensional theory on Σ. Starting from the convenient form of the bosonic
truncation ansatz on S4 given in [63], we have explicitly checked that this procedure
works out as expected and reproduces the ansatz above.

IV.1.5 The five-dimensional theory
We now put together the ingredients defining the truncated five-dimensional theory and
discuss it in more detail. This is an N = 2 gauged supergravity coupled to four vector
multiplets and one hypermultiplet. The vector multiplet scalar manifold is

MV = R+ × SO(3, 1)
SO(3) ,

while the hypermultiplet scalar manifold is

MH = SU (2, 1)
SU (2)H × U (1) .

As discussed before, these have a geometric origin as the V and H structure moduli spaces
of the internal manifold. At the bosonic level, the vector multiplets are made of gauge
fields AI and constrained scalar fields hI , I = 0, 1, . . . , 4, which we have parameterised
in terms of Σ and HI , I = 1, . . . , 4, in (IV.18). The latter scalars satisfy the constraint
ηIJH

IHJ = 1, with η = diag(−1,−1,−1, 1). We have also found that the non-vanishing
components of the symmetric tensor CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , I, J = 1, . . . , 4 .

The kinetic terms in the vector multiplet sector are controlled by the matrix aIJ , given
by the general formula

aIJ = 3hIhJ − 2CIJKhK , (IV.35)

which in our case reads

a00 = 1
3 Σ4 ,

a0J = 0 ,

aIJ = 2
3 Σ−2

(
2ηIKHKηJLH

L − ηIJ
)
, I, J = 1, . . . , 4 . (IV.36)

The hypermultiplet comprises the scalars qX = {φ, ξ, θ1, θ2}, and the kinetic term is
given by the quaternionic-Kähler metric on MH that we derived in Appendix B of [2],

gXY dqXdqY = 2 dφ2 + e2φ
(
dθ2

1 + dθ2
2
)

+ 1
2 e4φ (dξ − θ1dθ2 + θ2dθ1)2 . (IV.37)

The gauge group is SO(3) × U (1) × R. The symmetries being gauged are the SO(3) ⊂
SO(3, 1) isometries of MV and two abelian isometries in MH, generated by the Killing
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vectors (IV.24). Note that the ∂ξ term generates the non-compact R factor and the
θ2∂θ1 − θ1∂θ2 term generates the compact U(1).

We recall for convenience the gauge field strengths

F0 = dA0 , Fα = dAα − g ϵαβγAβ ∧ Aγ , F4 = dA4 , α = 1, 2, 3 ,

and the covariant derivatives of the charged scalars,

DHα = dHα − 2
R ϵ

α
βγAβ Hγ ,

D(θ1 + i θ2) = d(θ1 + i θ2) − 2
R i A4 (θ1 + i θ2) ,

Dξ = dξ + 1
RA0 − κ

R A4 ,

where the gauge coupling constant is given by the inverse S4 radius, g = 1
R . The scalars

Σ, H4 and φ remain uncharged. The gauging in the hypersector is the same as in [61],
while the gauging in the vector multiplet sector is a novel feature of our truncation.

Plugging these data in the general form of the N = 2 supergravity action given in
Appendix B of [2], we obtain the bosonic action for our model,

S = 1
16πG5

∫ [
(R − 2V) ∗ 1 − 1

2 Σ4F0 ∧ ∗F0 − 3
2

4∑

I,J=1
aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

4∑

I,J=1
aIJD(ΣHI) ∧ ∗D(ΣHJ) − gXY DqX ∧ ∗DqY +

4∑

I,J=1
ηIJA0 ∧ FI ∧ FJ

]
,

where G5 is the five-dimensional Newton constant.7 The scalar potential V is obtained
from the Killing prepotentials of the gauged isometries as in Appendix B of [2].

V = 1
R2

{ e4φ

4Σ4 − 2H4 e2φ

Σ + Σ2
[

− 2 + e2φ
(
2
(
(H4)2 − 1

)(
θ2

1 + θ2
2
)− κ

)

+ 1
8 e4φ(2(H4)2 − 1

)(
2θ2

1 + 2θ2
2 − κ

)2]
}
. (IV.38)

The supersymmetric AdS vacuum conditions summarised in are easily solved and give
the scalar field values

H1 = H2 = H3 = θ1 = θ2 = 0 , H4 = Σ = 1 , φ = 1
2 log 4

3 , (IV.39)

that is precisely the values (IV.34) that reproduce the MN1 solution reviewed in earlier in
the section. The negative curvature κ = −1 for the Riemann surface arises as a positivity
condition for the scalars Σ and e2φ. The critical value of the scalar potential yields the
cosmological constant Λ ≡ V = − 8

3R2 , corresponding to an AdS5 radius ℓ = 3
2R, again in

harmony with the MN1 solution.
7As discussed in [30], the five-dimensional Newton constant is given by (G5)−1 ∝

∫
M

e3∆ vol6 =
∫
M
κ2.

In the present case,
∫
M
κ2 = R2 VolΣ Vol4, where VolΣ = 4π(1−g)

κ
is the standard volume of a Riemann

surface of genus g and Vol4 = 8π3

3 R4 is the volume of a round S4 with radius R.
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By extremising the scalar potential (IV.38) we can search for further AdS5 vacua
within our truncation. Then, by analysing the mass matrix of the scalar field fluctuations
around the extrema we can test their perturbative stability. In the following we discuss
the outcome of this analysis for the three extrema that we have found.

• We recover the supersymmetric vacuum (IV.39). Being supersymmetric, this is sta-
ble. The supergravity field fluctuations source SU (2, 2|1) superconformal multiplets
in the dual N = 1 SCFT [60], with the supergravity mass eigenvalues providing the
conformal dimension ∆ of the operators in the multiplets. The field fluctuations that
were also considered in [61] correspond to the energy-momentum multiplet (contain-
ing the energy-momentum tensor with ∆ = 4 and the R-current with ∆ = 3) and
to a long vector multiplet of conformal dimension ∆ = 1 +

√
7 (see [61] for more

details). The additional SO(3) vector multiplet included in this paper sources a
conserved SO(3) flavour current multiplet in the dual SCFT. The three scalar oper-
ators in this multiplet have conformal dimension ∆ = 2 (once) and ∆ = 4 (twice),
while the SO(3) flavour current has conformal dimension ∆ = 3, as required for a
conserved current. Another piece of information about the dual SCFT is given by
the Weyl anomaly coefficients; these are obtained from the five-dimensional Newton
constant G5 and the AdS5 radius ℓ through the formula a = c = πℓ3

8G5
.

• When κ = −1 we also recover the non-supersymmetric vacuum discussed in [61],
that was originally found in [64]. The analysis of the scalar mass matrix shows
that the fluctuation of H4 has a mass squared m2ℓ2 ≃ −4.46, which is below the
Breitenlohner–Freedman bound ℓ2m2

BF = −4. We thus establish that this vacuum
is perturbatively unstable. Note that the unstable mode lies outside the truncation
of [61].

• For κ = +1, we find a non-supersymmetric vacuum with non zero value of the
H-scalars, given by

Σ = 21/3

51/6 , e2φ = 8
3 , H4 = 3

√
5

4 , θ1 = θ2 = 0 , ℓ = 3 21/6

55/6R ,

where ℓ is the AdS radius. This appears to be a new solution. It represents an SO(3)
worth of vacua really, since the scalars Hα, α = 1, 2, 3, can take any value such that√

(H1)2 + (H2)2 + (H3)2 =
√

(H4)2 − 1 =
√

29
4 . We find that a linear combination

of the fluctuations of Σ, φ and H4 has mass squared m2ℓ2 ≃ −5.86 < m2
BFℓ

2, hence
this vacuum is perturbatively unstable. Nevertheless, it allowed us to perform a
non-trivial check of our truncation ansatz for non-vanishing H-fields, as we have
verified that its uplift does satisfy the equations of motion of eleven-dimensional
supergravity.

IV.2 Truncations for more general wrapped M5-branes
The N = 2 and N = 4 Maldacena–Nuñez solutions are special cases of an infinite family
of N = 2 solutions [65, 32],8 describing M5-branes wrapping a Riemann surface in a

8See also [66], where a subset of the solutions was previously found.
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Calabi–Yau geometry. These solutions, which we will denote as BBBW solutions, have
the same general features of the MN1 solution. In particular, they all admit a generalised
U(1)S structure, which we use to derive the most general consistent truncation to N = 2
gauged supergravity in five dimensions associated with such backgrounds. As we will
see, the truncated theory has two vector multiplets, one hypermultiplet and gauge group
U (1) × R. It generalises the U (1)right invariant subtruncation of the truncation presented
in the previous section: the matter content is the same and the gauging is deformed by
one (discrete) parameter. Our systematic approach allows us to complete the consistent
truncation derived from seven-dimensional maximal SO(5) supergravity on Σ previously
presented in [67] by including all scalar fields in the hypermultiplet and directly deriving
the gauging.

IV.2.1 The BBBW solutions
The BBBW solutions describe M5-branes wrapped on a Riemann surface Σ, such that
the (2, 0) theory on the branes has a twisting over Σ depending on two integer parameters
p and q. The way the Riemann surface is embedded in the ambient space determines the
local structure of the latter. The authors of [65, 32] showed that there is an infinite family
of allowed geometries, corresponding to the fibration L1 ⊕ L2 ↪→ Σ of two complex line
bundles over the Riemann surface, so that the total space is Calabi–Yau. The degrees of
these line bundles are identified with the integers that parameterise the twist of the M5
world-volume theory, p = deg L1 and q = deg L2. By the Calabi–Yau condition p and q
must satisfy p+ q = 2g − 2, with g the genus of Σ. In this setup, the N = 1 and N = 2
twistings considered in [31] arise from setting p = q and q = 0 (or p = 0), respectively.

The corresponding AdS5 ×w M supergravity solutions are generalisation of the MN1
solution reviewed in Section IV.1. The eleven-dimensional metric is a warped product

ĝ = e2∆gAdS5 + g6 ,

with warp factor
e2∆ ℓ2 = e2f0∆̄1/3 .

where ℓ is the AdS radius. The six-dimensional manifold M is still a fibration of a
squashed four-sphere over the Riemann surface, with metric

g6 = ∆̄1/3e2g0gΣ + 1
4 ∆̄−2/3g4 ,

where the Riemann surface metric gΣ satisfies (IV.11), (IV.12), and the metric on the
squashed and fibered S4 is

g4 = X−1
0 dµ2

0 +
∑

i=1,2
X−1
i

(
dµ2

i + µ2
i (dφi +A(i))2) . (IV.40)

The angles φ1, φ2 vary in [0, 2π],9 and

µ0 = cos ζ , µ1 = sin ζ cos θ2 , µ2 = sin ζ sin θ
2 ,

9They are related to the angles of Section IV.1 by φ1 = −(ϕ+ ψ)/2 and φ2 = (ϕ− ψ)/2.
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with ζ, θ ∈ [0, π]. The two circles φ1 and φ2 are independently fibered over the Riemann
surface, with connections

A(1) = −1 + z

2 υ A(2) = −1 − z

2 υ ,

where υ is again the connection on Σ and the discrete parameter z is related to the integers
p and q as

z = p− q

p+ q
.

The warping function ∆̄ and the constants f0, g0 depend on z and on the curvature κ of
the Riemann surface as

∆̄ =
2∑

I=0
XIµ

2
I , ef0 = X−1

0 , e2g0 = −1
8 κX1X2 [(1 − z)X1 + (1 + z)X2] ,

with
X0 = (X1X2)−2 ,

X1X
−1
2 = 1 + z

2z − κ
√

1 + 3z2 ,

X5
1 = 1 + 7z + 7z2 + 33z3 + κ(1 + 4z + 19z2)

√
1 + 3z2

4z(1 − z)2 .

The four-form flux is given by

F̂ = − 1
4 ∆̄−5/2

[ 2∑

I=0
(X2

Iµ
2
I − ∆̄XI) + 2∆̄X0

]
vol4

+ 1
16∆̄−1/2

2∑

i=1
X−2
i ∗4

[
d(µ2

i ) ∧ (dφi +A(i))
] ∧ dA(i) ,

where the Hodge star ∗4 is computed using the metric (IV.40).
The solution has two U(1) isometries corresponding to shifts of the angles φ1, φ2 that

parameterise the two diagonal combinations of the U(1)right and U(1)left subgroups of
SO(5). It turns out that neither of them corresponds to the superconformal R-symmetry
of the dual N = 1 SCFT, which is given by a linear combination involving X1, X2 [65, 32].

IV.2.2 Generalised U (1)S structure
The construction of the generalised structure associated to the BBBW solutions follows
the same lines as for the MN1 solution. We first embed the ordinary U(1) structure in
E6(6) and then look for the invariant generalised tensors. The generalised U(1)S structure
of the solutions is determined by the topological twist of the M5 world-volume theory, as
a linear combination of the U(1) holonomy of Σ and the U(1)right and U(1)left subgroups
of the SO(5) R-symmetry group

U(1)S ∼ U(1)Σ − U(1)right − z U(1)left .
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This embeds in E6(6) as an element of its compact subgroup USp(8) with generator

u(1)S = i Γ̂56 − i
p+ q

(
p Γ̂12 − q Γ̂34

)
, (IV.41)

where Γ̂56 is the usp8 element generating U(1)Σ and 1
2(Γ̂12 ± Γ̂34) generate U(1)left/right.

When p = q we recover the U (1)S structure group of the MN1 solution, whereas q = 0
(or p = 0) gives the MN2 structure considered in [1]. Below we assume that p, q are
generic, and do not fulfill these special conditions which as we have seen lead to a larger
truncation.

By looking at the singlets under u(1)S in the 27 and 78 representations of E6(6), we
find that the U (1)S structure is defined by eight JA, A = 1, . . . , 8, in the adjoint bundle
and three generalised vectors KI , I = 0, 1, 2. The singlets in the adjoint bundle have the
same form (IV.15) as for the MN1 solution, while the three singlet generalised vectors
take the same form as a subset of the MN1 generalised vectors,10

K0 = eΥ · (R2 volΣ ∧E′
5) ,

K1 = eΥ · Ξ̃3 ,

K2 = eΥ · Ξ3 .

However now the twisting element Υ has a more general form dictated by the embedding
(IV.41), that is

Υ = − R

p+ q
υ ×ad (pE12 − q E34) . (IV.42)

This makes our generalised tensors globally well-defined. We emphasise that these depend
on the integers p, q only through (IV.42).

IV.2.3 Features of the truncation
The number of U(1)S singlets in the 27 and 78 implies that the truncated supergravity
theory contains two vector multiplets and one hypermultiplet. The H structure moduli
space is the same as for the MN1 case,

MH = SU (2, 1)
SU (2)H × U(1) .

As before, this is parameterised by real coordinates qX = {φ, ξ, θ1, θ2} and the metric
is given by Eq. (IV.37). The V structure moduli space is determined again following
our discussion in Section III.2, and is a subspace of the one for the MN1 truncation.

10Before acting with Υ, the singlets for the BBBW solutions are related to those used for the MN1
solutions as

K0 = KMN1
0 , K1 = KMN1

3 , K2 = KMN1
4 ,

and to the structure of the MN2 solution in [1] as

K0 = 1
2 (KMN2

5 −KMN2
8 ) , K1 = KMN2

0 + 1
2 (KMN2

5 +KMN2
8 ) ,

K2 = KMN2
0 − 1

2 (KMN2
5 +KMN2

8 ) .
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Evaluating the cubic invariant on the singlets KI as in (III.21), we obtain that the non-
zero components of the CIJK tensor are

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, 2 ,

with η = diag(−1, 1) . Parameterising the V structure moduli as in (IV.18), with I = 1, 2,
the constraint (III.21) gives the equation of the unit hyperboloid SO(1, 1),

−(H1)2 + (H2)2 = 1 ,

while again Σ parameterises R+. Thus the V structure moduli space is

MV = R+ × SO(1, 1) .

The kinetic matrix aIJ then takes the same form (IV.36), that is

a00 = 1
3 Σ4 ,

a01 = a02 = 0 ,

aIJ = 2
3 Σ−2

(
2(H1)2 + 1 −2H1H2

−2H1H2 2(H2)2 − 1

)
, I, J = 1, 2 .

The gauging of the reduced theory is obtained from the generalised Lie derivative LKI
acting on the KJ and the JA. The Lie derivatives among vectors are now trivial,

LKIKJ = 0 , I, J = 0, 1, 2 . (IV.43)

The Lie derivatives LKIJA are conveniently expressed as the adjoint action of SU(2, 1)
generators,

LK0JA = [J(K0), JA] , LK1JA = [J(K1), JA] , LK2JA = [J(K2), JA] .

Evaluating the generalised Lie derivatives we find

J(K0) = 1
4R
(
J3 + 2J7 −

√
3J8

)
,

J(K1) = 1
4R κ z

(
J3 + 2J7 −

√
3J8

)
,

J(K2) = − 1
4R κ

(
J3 + 2J7 −

√
3J8

)− 1
R

(
J3 + 1√

3J8
)
. (IV.44)

Eq. (IV.43) implies that the vector multiplet sector is not gauged, so the field strengths
are all abelian,

FI = dAI ,

while (IV.44) specifies the gauging in the hypermultiplet sector in terms of κ and z. The
SU (2, 1) generators act as isometries on MH; the corresponding Killing vectors can again
be computed as before and read

k0 = ∂ξ ,

k1 = κ z ∂ξ ,

k2 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) .



60 Chapter IV. Examples

It follows that the covariant derivatives of the charged scalars are

D(θ1 + i θ2) = d(θ1 + i θ2) − 2
R iA2 (θ1 + i θ2) ,

Dξ = dξ + 1
R A0 + 1

R κ
(
zA1 − A2

)
,

where again the inverse S4 radius 1
R plays the role of the gauge coupling constant. The

Killing prepotentials can be computed using formulas in the Appendix B of [2], and read

Pα0 =
{
0 , 0 , 1

4 e2φ} ,

Pα1 =
{
0 , 0 , 1

4 κ z e2φ} ,

Pα2 =
{√

2 eφθ1 ,
√

2 eφθ2 ,−1 + 1
4 e2φ (2θ2

1 + 2θ2
2 − κ

) }
. (IV.45)

Notice that for z = 0 (that is p = q), the quantities above reduce to those obtained for
the MN1 structure in Section IV.1.3.

The five-dimensional bosonic action is then determined to be

S = 1
16πG5

∫ [
(R − 2V) ∗ 1 − 1

2 Σ4F0 ∧ ∗F0 − 3
2

2∑

I,J=1
aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

2∑

I,J=1
aIJ d(ΣHI) ∧ ∗d(ΣHJ) − gXY DqX ∧ ∗DqY − A0 ∧ (F1 ∧ F1 − F2 ∧ F2)] ,

where the scalar potential reads

V = 1
R2

{ e4φ

4Σ4 − 2 e2φH2

Σ + Σ2
[

− 2 + e2φ
(
2(H1)2(θ2

1 + θ2
2
)− κ

)

+ 1
8 e4φ((H1)2 + (H2)2)(2θ2

1 + 2θ2
2 − κ

)2

+ z κ
(
zκ (H1)2 + zκ (H2)2 + 4H1H2(2θ2

1 + θ2
2 − κ

)) ]}
.

It is straightforward to analyse the supersymmetric AdS5 vacuum conditions. The
hyperino equation gives

θ1 = θ2 = 0 ,

Σ−3 = κ
(
zH1 −H2

)
, (IV.46)

where we assume κ = ±1 (hence leaving aside the case κ = 0). The gaugino equation
gives

2Σ−3 Pα0 +H1Pα1 +H2Pα2 = 0 ,

H2Pα1 +H1Pα2 = 0 .

Plugging the Killing prepotentials (IV.45) and using (IV.46) we obtain

3κ e2φ
(
zH1 −H2

)
− 4H2 = 0 ,

κ e2φ(z H2 −H1) − 4H1 = 0 .
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Taking into account the allowed range of the scalar fields, the solution to these equations
is

H1

H2 = 1 + κ
√

1 + 3z2

3z , e2φ = 4√
1 + 3z2 − 2κ

.

For κ = 1, well-definiteness of the fields requires |z| > 1, as in [32], while z can be generic
for κ = −1. The MN1 case z = 0 is recovered as a limiting case after fixing κ = −1. The
critical value of the scalar potential determines the AdS radius ℓ as

ℓ =
(
κ− 9κz2 + (1 + 3z2)3/2

4z2

)1/3
R .

Although we do not present the uplift formulae for this truncation, we have checked
that the supersymmetric vacuum identified above matches the BBBW solution sum-
marised in Section IV.2.1. To do so, we have computed the inverse generalised metric G−1

associated with the U (1)S structure under consideration; this depends on the V struc-
ture and H structure parameters. From the generalised metric we have reconstructed the
ordinary metric g6 and the three-form potential on M , as well as the warp factor e2∆.
Substituting the values for the scalars found above, we find agreement with the solution
in Section IV.2.1 upon fixing the S4 radius as R = 1

2 and implementing the following
dictionary:

e2φ = 4 e−2g0− 1
2f0 ,

Σ3 = 4 e−2g0+ 3
4f0 ,

H1 = 1
2X

1
4
0 (X1 −X2) ,

H2 = 1
2X

1
4
0 (X1 +X2) ,

with our AdS radius being given in terms of the quantities appearing there as

ℓ = 22/3 ef0+ 2
3g0R .

By extremising the scalar potential11 we recover the supersymmetric vacuum and also
find new non-supersymmetric vacua, where the scalar field values are rather complicated
functions of the parameter z. As an example, we give the numerical values for one chosen
value of z, that we take z = 1

2 . When κ = −1 we find a new extremum of the potential at

Σ ≃ 0.9388 , φ ≃ 0.1109 , H2 ≃ 1.0217 , θ1 = θ2 = 0 , ℓ = 1.5276R ,

while when κ = 1 we find an extremum at

Σ ≃ 0.8631 , φ ≃ 0.2812 , H2 ≃ 1.5506 , θ1 = θ2 = 0 , ℓ = 1.0644R ,

and another one at

Σ ≃ 1.1580 , φ ≃ 0.8455 , H2 ≃ 1.9847 , θ1 = θ2 = 0 , ℓ = 0.6198R ,

where for each solution we have also indicated the corresponding AdS radius ℓ.
11To do so, it is convenient to parameterise H1 = sinhα, H2 = coshα, and extremise with respect to

α.
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Chapter V
Conclusions

In this thesis we discussed how generalised geometry provides a systematic approach to
consistent truncations. Generalised geometry is a reformulation of eleven or ten dimen-
sional supergravity on a d-dimensional manifold M that treats diffeomorphism and gauge
transformations of higher rank potentials as a generalised diffeomorphism on an exten-
sion of the tangent space to M whose generalised structure group is Ed(d). This allows to
generalised the ordinary notion of GS structure to a generalised one. A generalised GS
structure is associated to a set of nowhere-vanishing tensors that are invariant under GS .
As for ordinary GS structure, a generalised GS structure is characterised by its intrinsic
torsion.

The main result of this thesis is the prove that any manifold M that admits an excep-
tional GS-structure with singlet intrinsic generalised torsion can give rise to a consistent
truncation of eleven or ten dimensional supergravity on it. The consistent truncation is
given by expanding the eleven/ten dimensional fields in terms of the GS invariant gener-
alised tensors. Plugging the fields in the equations of motion, the singlet intrinsic torsion
guarantees that only singlet fields can appear and hence the truncation is consistent.
Moreover the GS singlet invariant tensors and the intrinsic torsion completely fix the
field content and the gauging of the truncated theory. In particular, the number of GS
singlets in the fundamental and adjoint representations of E6(6) determine the vector and
hyermultiplets, respectively.

This construction encompasses all the truncations obtained in the past using ordinary
GS structures. However, since a generalised GS structures need not to correspond to
an ordinary one, our construction enlarges the class of consistent truncations one can
construct and moreover allows for a systematic way to study and classify truncations in
different dimensions and with different supersymmetry.

As an example, after the discussion of the general results, we focused on truncations
of the eleven dimensional or type IIB supergravity to five dimensional N = 2 gauged
supergravity. In this case the relevant generalised geometry is R+ ×E6(6), whose maximal
compact subgroup USp(8) determines the R-symmetry of the reduced theory. In order to
have N = 2 supersymmetry in five dimensions, the R-symmetry must be SU (2) ⊂ USp(8)
and the spinorial representation must contain only two singlets under the generalised
structure group transforming as a doublet of the SU (2). This implies that the relevant
generalised structures are GS ⊆ USp(6). In particular an USp(6) structure corresponds
to the minimal five dimensional N = 2 supergravity, while smaller structure group allows

63
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for extra matter. Scanning all the possible continuous subgroups of USp(6) and the cor-
responding singlet invariant tensors allows to give a classification of all five dimensional
N = 2 theories that can be obtained as consistent truncations (corresponding to continu-
ous structure groups). The classification is given in Table III.1. For each case we give the
number of vector/tensor multiplets and hypermultiplets and their scalar manifolds. We
also assumed that the generalised GS structure has singlet intrinsic and then analyzed
the possible gaugings. We refer to the Section 4 of [3] for this analysis. The result is
that a very limited number of theories can be found. For the half maximal case a similar
classification, although simpler, has been done in Section 3 of [1].

Our classification is of particular interest for theories with AdS vacua. It is conjectured
that no AdS vacua of string theory admit scale separation [68]. Hence it is not possible
to write an effective N = 2 theory in this case. Thus we are led to conjecture that those
gauged supergravities that cannot come from consistent truncations and which have AdS
vacua must belong to the “swampland”. Put differently, these gauged supergravities are
lower-dimensional artefacts that are not related to string theory.

We should stress that our classification only determines what are the possible 5d
theories that have an eleven or ten dimensional origin but do not guarantees that they
are actually realised. An important issue that we do not address here is whether we can
actually solve the differential conditions imposed by the intrinsic torsion, that are required
for the consistent truncation to exist.

This would require determining the explicit form of the manifold M and checking
the differential constraints associated to having singlet intrinsic torsion. The analogous
condition is known to limit the possible gaugings in the maximally supersymmetric case
[12, 69, 19, 20, 52, 53]. So it is to be expected that the number of actual truncations is
even more restricted than what we present here.

We leave this issue for future work. In this thesis we provided particular examples
where we found an internal geometry on which the constraint is solved.

One example is the most general truncation around the Maldacena–Nuñez [31] with
N = 2 supersymmetries. The solution describes the near horizon geometry of M5-branes
wrapping a Riemann surface of negative curvature. The geometry is a warped product of
AdS5 times a 6-dimensional manifold that is a fibration of S4 over the Riemann surface.
The truncation gives a five-dimensional N = 2 supergravity with four vector multiplets,
one hypermultiplet and a non-abelian gauging. This is one of the cases in our list. We
worked out the full bosonic truncation ansatz and checked that the truncated theory
admits an N = 2 AdS5 vacuum corresponding to the MN solution. This extends the
truncation of [61] by SO(3) vector multiplets.

The Maldacena–Nuñez solution is a particular case of a family of solutions founds
in [65, 32], which corresponding to different ways in which the M5 wrap the Riemann
surfaces. It is easy to extend our construction to truncations on these geometries. we
obtained a truncation featuring two vector multiplets, one hypermultiplet and an abelian
gauging, completing the truncation in [67]. Although in this case we did not give all
details of the truncation ansatz, it should be clear that it can be obtained by following
precisely the same steps presented for the case of Maldacena–Nuñez geometry.

Note that our consistent truncations can equivalently be obtained as truncations on
a Riemann surface of maximal SO(5) supergravity, that comes from the reduction of
eleven-dimensional supergravity on S4 [70].
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What is discussed in this thesis does not cover all the results I obtained during the
PhD. The rest can be found in the three papers in the appendix.

There are many directions one can explore in the future.
One direction is to continue the classification programme. Combined with the results

obtained for the maximal five dimensional truncations, a classification for any amount of
supersymmetry for five dimensional truncation is almost complete, up to discrete struc-
ture group and solving the differential constraints in N = 2. The next challenge is to do
the same kind of classification in different dimensions. We have developed an algorithmic
way of deriving all the consistent truncation for a given dimension with any amount of
supersymmetry, with a continuous structure group. The algorithm relies on roots systems
associated to the different exceptional groups and their maximal compact subgroup asso-
ciated to the particular dimension. We are currently considering the case of reductions
to four dimensions and we hope to be able to provide soon an equivalent classification as
for the five dimensional truncations.

As already mentioned above, it is important to have a better control on the constraint
of having a singlet constant generalised intrinsic torsion. It would also be interesting to
see whether the approach of [20] can be extended to non-maximally super- symmetric
truncations and to use the the five-dimensional embedding tensor to determine what the
uplifted geometry should be. We leave this to future work.

It would also be interesting to study whether or not in the truncations we have found
there exist an AdS vacua. The existence conditions of such a vacua are given in [71] and
can be easily translated into the exceptional geometry language.

Another direction is to construct new explicit examples of truncations. In M-theory,
it would be nice to apply the construction of Section IV.1 to the general ansatz for
half-maximal AdS5 solutions of [72]. In particular, this would provide new consistent
truncations containing the AdS5 solutions of [73], describing M5-branes wrapped on Rie-
mann surfaces with punctures. A first step in that direction might be given by extending
the work of [74] to non maximal cases. A similar construction is conceivable for the su-
pergravity description of D3-branes wrapped on Riemann surfaces [31], however in this
case one would need to use the E8(8) generalised geometry, which is not fully developed
yet (though see [75, 76]).

Finally, the work of [77] showed that the generalised formalism can be used to compute
the Kaluza-Klein spectrum for deformations of maximally supersymmetric compactifica-
tions. It would be very interesting to extend the spectroscopy for solutions with reduced
supersymmetry. It is likely that the generalisation relies on an accurate study of the
generalised intrinsic torsion.
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Davide Cassani,a Grégoire Josse,b Michela Petrinib and Daniel Waldramc

aINFN, Sezione di Padova,

Via Marzolo 8, 35131 Padova, Italy
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1 Introduction

A common problem in string theory and supergravity is how to derive lower-dimensional

effective theories. Given a Kaluza-Klein reduction on a compact manifold, a consistent

truncation is a procedure to truncate the infinite tower of Kaluza-Klein states to a finite

set in a consistent way, such that solutions of equations of motion of the truncated system

are also always solutions of the original theory. In other words, the dependence of the

higher-dimensional fields on the internal manifold factorises out once the truncation ansatz

is plugged in the equations of motion. The classic example, known as a Scherk-Schwarz

reduction, is when the internal space is a group manifold G (or a quotient G/Γ thereof by a

freely-acting discrete group Γ) [1]. Consistency is a consequence of keeping only modes in-

variant under the group action. Aside from these cases, consistent truncations are relatively

rare and hard to construct, see for instance [2, 3]. Classic examples of consistent truncations

on spaces that are not group manifolds are the truncations of eleven-dimensional supergrav-

ity on S7 [4] and on S4 [5] both leading to a maximally supersymmetric truncated theory.

Recently, the reformulation of supergravity using Generalised Geometry and Excep-

tional Field Theory has provided a new framework for giving a systematic geometrical de-

scription of maximally supersymmetric consistent truncations, both of conventional Scherk-

Schwarz type and the exotic sphere truncations [6–11]. In particular, the notion of a gen-

eralised parallelisation allows one to show that all known such truncations are a form of

generalised Scherk-Schwarz reductions and to prove the long-standing conjecture of the

consistency of type IIB supergravity on S5 [6, 10, 12]. Extensions of these ideas have also

recently been considered in the case of half-maximal truncations in [13–17], mostly focused

on reductions to seven- and six-dimensional supergravities, although [15] also discusses

more general cases. An appealing feature of the maximal generalised Scherk-Schwarz re-

ductions is that one can determine the lower-dimensional supergravity directly from the

generalised geometry, a priori of any explicit substitution into the equations of motion. It

is therefore natural to ask whether generalised geometry can give a similar characterisation

of generic consistent truncations with any amount of supersymmetry.

In this paper, we derive such a unified framework for constructing consistent trun-

cations with different amounts of supersymmetry (including non-supersymmetric trunca-

tions), based on the G-structure of the generalised geometry. The key requirement is that

the so-called “intrinsic torsion” [18] of the G-structure contains only singlets. This for-

malism allows one to easily determine all the features of the lower-dimensional gauged

supergravity, such as the amount of supersymmetry, the coset manifold of the scalars, the

number of gauge and tensor fields, and the gauging, all directly from the geometry. It also

provides a general proof of the conjecture of [19], stating that to any supersymmetric solu-

tion to ten- or eleven-dimensional supergravity of the warped product form AdSD ×w M ,

there is a consistent truncation to pure gauged supergravity in D dimensions containing

that solution and having the same supersymmetry. As we will see, this statement follows

from observing that supersymmetric AdSD ×w M solutions always define a “maximal”

supersymmetric generalised G-structure, and the G-invariant tensors then can be used to

define a consistent truncation. When the actual generalised G-structure is a subgroup of

– 1 –
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the maximal one, we show that one may go further and obtain a consistent truncation

which includes matter multiplets and in some cases preserves more supersymmetry than

the vacuum.

The structure of the paper and the main results are as follows. In section 2 we describe

the general ideas and apply them to a number of simple cases, notably identifying the max-

imal G-structure for a given amount of supersymmetry and thus proving the conjecture

of [19], and also deriving the field content of the supersymmetric truncations that arise

from reductions to D = 4 and D = 5 on conventional G-structure manifolds, reproducing a

number of known results in the literature. In section 3 we focus on truncations leading to

half-maximal supergravity in five dimensions, which are based on E6(6) generalised geome-

try. This case was first considered in the general analysis of [15], but here we give a number

of new results. In particular, we show that the relevant SO(5− n) ⊂ SO(5, 5) ⊂ E6(6) gen-

eralised structure is fully specified by a set of 6 + n generalised vectors on the internal

manifold. We argue that if the algebra of generalised diffeomorphisms (that is, diffeomor-

phisms together with form-field gauge transformations) generated by these vectors closes

with constant coefficients, then the generalised structure has singlet intrinsic torsion and

the consistent truncation exists. The resulting five-dimensional half-maximal supergravity

is coupled to n vector multiplets, and its gauge algebra is the one generated by the 6 + n

generalised vectors. We give detailed formulae based on these vectors specifying the full

bosonic truncation ansatz. In particular, we provide an expression for the generalised met-

ric on the internal manifold, which gives the complete scalar truncation ansatz. This is one

of the main results of our work.

In section 4 we apply our formalism to consistent truncations of type IIB supergravity

on five-dimensional manifolds preserving half-maximal supersymmetry (that is, 16 out of 32

supercharges). We first illustrate how the formalism works by reproducing the truncation

of type IIB supergravity on squashed Sasaki-Einstein manifolds derived in [20, 21]. This is

half-maximal supergravity coupled to two vector multiplets and with a U(1)×Heis3 gauging,

where Heis3 denotes the Heisenberg group. Then we argue that when the Sasaki-Einstein

manifold is toric, the exact same truncated theory is also obtained by deforming the internal

geometry via the TsT transformation of [22] with parameter β. Another way to say this

is that we TsT-transform the full truncation ansatz, rather than just the AdS solution.

We thus obtain a continuous family of uplifts of the U(1) ×Heis3 gauged five-dimensional

supergravity, parameterised by β. At the technical level, this is shown by exploiting the fact

that the TsT transformation has a simple action in generalised geometry via a bi-vector

field. It was recently shown in the S5 case that such backgrounds admitted a truncation

to minimal gauged supergravity (8 supercharges) [23]. Our result shows that they in fact

admit a much larger truncation to half-maximal supergravity with two vector multiplets.

In section 5 we derive a consistent truncation of eleven-dimensional supergravity on

Maldacena-Núñez geometries where S4 fibers over a Riemann surface [24], leading to half-

maximal supergravity coupled to three vector multiplets and with a U(1) × ISO(3) gauge

algebra. We note that the existence of such a consistent truncation, as well as an analy-

sis of its sub-truncations and vacua, was very recently proven using a different approach,

considering the explicit truncation directly from seven-dimensional maximal gauged su-

– 2 –
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pergravity [25]. We conclude in section 6 outlining some directions of future research

including some more consistent truncations that it would be interesting to explore using

our approach.

2 Consistent truncations from G-structures

2.1 Conventional G-structure constructions

Before turning to the generalised geometry picture, let us review the role of conven-

tional G-structures in consistent truncations. Through the study of several cases such

as [20, 21, 26–30], it is now understood that any G-structure with constant, singlet intrin-

sic torsion leads to a consistent truncation.

The idea is as follows. In conventional Scherk-Schwarz reductions on a group manifold

M = G all the higher-dimensional fields in the theory can be decomposed into representa-

tions of G. By keeping all the singlet representations and nothing else, one ensures that

the truncation is consistent, since products of singlet representations can never source the

non-singlet representations that were truncated away. However, this argument extends:

the key point is not that the manifold has isometries but that the structure group GS is

reduced, since this allows one to decompose all tensor fields into GS representations and

then keep only those fields transforming as singlets. In the case of a group manifold the

structure group is trivial since the manifold is parallelisable, but more generally one can

consider cases with larger structure groups.1 Explicitly, one has

Theorem 1. Let M be a d-dimensional manifold with a GS-structure defining a set of

invariant tensors {Ξi} with GS ⊂ O(n) and only constant, singlet intrinsic torsion. Any

field theory has a consistent truncation on M defined by expanding all fields in terms of

the invariant tensors.

If the theory includes spinors, then the GS-structure lifts to a G̃S ⊂ Spin(d) structure

and we can include fermions in the truncation by expanding any spinor fields in terms of

spinors invariant under G̃S .

To explain this in a little more detail, first recall that a choice of GS-structure on a

d-dimensional manifold M is a reduction of the structure group. Formally, a GS-structure

defines a GS-principal sub-bundle P of the GL(d,R) frame bundle. In most cases, the

structure can equivalently be defined by a set of GS-invariant, nowhere vanishing tensors

{Ξi}. The existence of a GS-structure means that all tensor fields can be decomposed into

irreducible representations of GS . For example, a choice of GS = O(d) structure defines a

subset of orthonormal frames, or equivalently is defined by an invariant metric tensor g. A

given GS-structure P is characterised by its intrinsic torsion. If GS ⊂ O(d), this is defined

1The same symmetry argument used for Scherk-Schwarz reductions implies that dimensional reductions

on coset manifolds M = G/H keeping all G-invariant Kaluza-Klein modes and nothing else are consistent.

In this case, there is a nice connection with the other argument given above, based on the G-structure of

M . Indeed one can show that if H contains no nontrivial invariant subgroup of G, then G/H admits a

G-invariant H-structure (see e.g. [31, appendix A]). The G-invariant truncation and the truncation based

on singlets of the H-structure then coincide.
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in the following simple way (see for example [32]). Since GS ⊂ O(d) the structure defines

a metric g and hence a corresponding Levi-Civita connection ∇. Acting on each invariant

tensor Ξi we have

∇mΞi
n1...nr

p1...ps = Km
n1
qΞi

q...nr
p1...ps + · · ·+Km

nr
qΞi

n1...q
p1...ps

−Km
q
p1Ξi

n1...nr
q...ps + · · · −Km

q
psΞi

n1...nr
p1...q,

(2.1)

which uniquely defines Km
n
p as a section of T ∗M ⊗ g⊥ with m and n, p denoting the T ∗M

and g⊥ indices respectively. Here we have decomposed Λ2T ∗M ' so(d) = g ⊕ g⊥ with g

the Lie algebra of GS . Note that the T ∗M ⊗ g part is missing in K because, by definition

Ξi is GS-invariant. The tensor K defines the intrinsic torsion (Tint)mn
p = Kn

p
m −Km

p
n.

Note that equivalently one can define a new torsionful connection ∇̃ = ∇ − K that is

compatible with the structure, that is ∇̃Ξi = 0 for all Ξi. The intrinsic torsion Tint is then

the torsion of ∇̃. In general Tint will decompose into GS representations, known as the

“torsion classes” of the GS-structure. Note that in many examples, the invariant tensors Ξi
are all differential forms and the intrinsic torsion is completely determined by the exterior

derivatives dΞi.

As for reduction on group manifolds, the proof of theorem 1 is very straightforward. By

expanding in terms of invariant tensors, all the fields one keeps transform as singlets under

the structure group, with the only dependence on the internal space coming from the {Ξi}.
Furthermore since the intrinsic torsion has only singlet components (and is independent of

the internal space) any derivative of a field is given by the right-hand side of (2.1) and is

itself an expansion in terms of singlets. So long as we keep all possible singlets and nothing

else, given the equations of motion can be written as generalised tensors, the truncation is

then necessarily consistent, since products of singlet representations can never source the

non-singlet representations that were truncated away.

Focusing on the gravity sector, the scalars and vector fields in the consistent truncation

appear in the following way. Recall that the choice of metric parameterises a GL(d,R)/O(d)

coset. To count the number of GS singlets in the metric we can use the commutant of GS
in GL(d,R) and O(d). The scalars in the consistent truncation coming from the metric

thus parameterise

metric scalars ⇔ H ∈
CGL(d,R)(GS)

CO(d)(GS)
, (2.2)

where CK(A) denotes the commutant of A ⊂ K inside K. We can also count the number of

vectors coming from the metric, by counting the number of invariant one-forms ηa ∈ {Ξi},
giving

metric gauge fields ⇔ Aa η̂a, (2.3)

where η̂a are the dual singlet vectors. For singlet torsion, the torsion is completely deter-

mined by the Lie derivatives of the invariant tensors

Lη̂aΞi = fai
j Ξj , (2.4)

where fai
j are constants, fixed by the intrinsic torsion. For example, the gauging of the

truncated theory depends on the Lie bracket
[
η̂a, η̂b

]
= fab

c η̂c , (2.5)

– 4 –
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and we see that the singlet intrinsic torsion determines the gauge algebra of the metric

gauge fields.

To see how the construction works in practice consider the reduction on a Sasaki-

Einstein manifold M of dimension d = 2n+ 1, which appeared in the context of reductions

of M-theory and type IIB in [26] and [20, 21] respectively. The invariant tensors (η, ω,Ω),

where η is a real one-form, ω a real two-form and Ω a complex n-form on M , define an

GS = SU(n) ⊂ GL(d,R) structure and satisfy

dη = 2ω, dΩ = i (n+ 1) η ∧ Ω , (2.6)

implying we indeed have constant singlet torsion, since only invariant tensors appear on

the right-hand sides of these equations. In this case the metric scalar manifold is

CGL(2n+1,R)(SU(n))

CSO(2n+1)(SU(n))
=

R+ × C
U(1)

= R+ × R+, (2.7)

where the first R+ comes from CGL(2n+1)(GL(2n)) and C from CGL(2n)(SU(n)). There is

a single invariant one-form η and so there will be a single gauge field Aµ(x) coming from

the metric. Concretely the consistent truncation on M is defined by

ds2 = gµνdxµdxν + e2Uds2
2n + e2V (η +A)2, (2.8)

where ds2
2n is the (local) 2n-dimensional Kähler-Einstein metric defined by (ω,Ω). The

scalars fields U(x) and V (x) parametrise the scalar manifold H.

The Scherk-Schwarz reduction M = G is of course itself also an example. The group

structure picks out a preferred co-frame {ea} ∈ T ∗M of (say) left-invariant one-forms.

Geometrically the one-forms define an “identity structure” GS = 1 ⊃ GL(d) (or paralleli-

sation). Since CK(1) = K, the scalar fields are in the coset

CGL(d)(1)

CSO(d)(1)
=

GL(d,R)

SO(d)
. (2.9)

The one-forms define d gauge fields with a Lie algebra given by the Lie bracket (2.5). The

consistent truncation ansatz for the metric is

ds2 = gµνdxµdxν + hab
(
ea +Aa

)(
eb +Ab

)
, (2.10)

where hab(x) is matrix of scalar fields and the Aaµ(x) are gauge fields in the adjoint of GS .

Any number of other examples can be constructed. We note that the standard con-

sistent truncation keeping a volume modulus on an orientable manifold can be thought of

arising from the corresponding SL(n,C)-structure. Similarly the universal sector of type II

Calabi-Yau compactifications arises from keeping SU(n)-singlet fields in the metric and

form-field degrees of freedom.

– 5 –
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2.2 Generalised G-structure constructions

We can now extend this picture to generalised geometry to describe the consistent trunca-

tions of eleven-dimensional and type II supergravities on d- and (d− 1)-dimensional man-

ifolds M respectively. The generalisation is straightforward: we replace the conventional

GS-structures with generalised G-structure on the generalised tangent space E associated

to M . The generic structure group on E is the exceptional group Ed(d) which has a maxi-

mal compact R-symmetry subgroup Hd (see table 1). If a GS ⊂ Hd structure is defined by

a set of generalised invariant tensors the idea is then to expand the supergravity fields in

terms of the tensors used to define the consistent truncation. This is a generalisation of the

construction given in [6], where it was shown that maximally supersymmetric consistent

truncations corresponded to “Leibniz parallelisations”, that is, identity structures GS = 1
with constant intrinsic torsion.

2.2.1 Main theorem

Let us start by stating the result and then discuss more details of the generalised geometry

and the proof of the statement. We claim

Theorem 2. Let M be a d-dimensional (respectively (d − 1)-dimensional) manifold with

a generalised GS-structure defining a set of invariant tensors {Qi} with GS ⊂ Hd and

only constant, singlet intrinsic torsion. Then there is a consistent truncation of eleven-

dimensional (respectively type II) supergravity on M defined by expanding all bosonic fields

in terms of the invariant tensors. If H̃d is the double cover of Hd , acting on fermions

the structure group lifts to G̃S ⊂ H̃d and the truncation extends to the fermionic sector,

provided again one expands the spinor fermion fields in terms of G̃S singlets.

To see how this works, we start by summarising the generalised geometry reformulation

of eleven-dimensional or type II supergravity on a product space X ×M where X is a D-

dimensional Lorentzian space, and the internal manifold M is d-dimensional, or, in the

case of type II supergravity, (d − 1)-dimensional. In generalised geometry, the GL(d,R)

or GL(d − 1,R) structure group of conventional geometry on M is extended to Ed(d) for

d ≤ 7 [33, 34]. This allows one to reformulate supergravity, so that the bosonic supergravity

fields and their equations of motion are rearranged into generalised tensors transforming as

representations of GL(D,R)×Ed(d). The GL(D,R) scalar degrees of freedom are repackaged

into a generalised metric, that is a symmetric generalised tensor G ∈ Γ(S2E∗) which is

invariant under the R-symmetry subgroup Hd ⊂ Ed(d). Thus geometrically the generalised

metric defines an Hd -structure [35, 36]. The GL(D,R) one-form, vector degrees of freedom

are sections of the generalised tangent space E, while the two-form tensor degrees of freedom

are sections of a generalised tensor bundle here denoted N [37–41]. In summary we have

scalars: GMN (x, y) ∈ Γ(S2E∗) ,

vectors: AµM (x, y) ∈ Γ(T ∗X ⊗ E) ,

two-forms: BµνMN (x, y) ∈ Γ(Λ2T ∗X ⊗N) ,

(2.11)

where x and y are coordinates on X and M respectively, the index M denotes compo-

nents of vectors in E (or E∗ if lowered) and we are using the fact that N ⊂ S2E. One
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Ed(d) E N W H̃d S
E7(7) 56 133 912⊕ 56 SU(8) 8⊕ 8̄

E6(6) 27 27′ 351⊕ 27′ USp(8) 8

Spin(5, 5) 16s 10 144s ⊕ 16c USp(4)×USp(4) (4,1)⊕ (1,4)

SL(5,R) 10 5′ 40⊕ 15′ ⊕ 10′ USp(4) 4

Table 1. Generalised geometry groups, bundles and representations.

can also further introduce higher form-field degrees of freedom following the tensor hierar-

chy [42, 43]. However, these do not introduce new degrees of freedom but are dual to the

scalar, vector and two-forms.2 The relevant groups and Ed(d) representations are all listed

in table 1. Note that H̃d is actually the double cover of Hd . The dynamics of the super-

gravity is completely determined by the Levi-Civita connection on the external space and

a generalised connection D on the internal space. The latter is the generalised analogue of

the Levi-Civita connection: it has vanishing generalised torsion and is compatible with the

generalised metric. We also include in table 1 the Ed(d) representation of the generalised

tensor bundle W in which the generalised torsion lies and the H̃d representation of the

spinor bundle S in which the supersymmetry parameter lies [36].

Now suppose we have a reduced structure group GS ⊂ Hd defined by a set of GS-

invariant generalised tensors {Qi}. As described in [18], one can again define an intrinsic

torsion Tint for the generalised GS-structure, and decompose it into representations of GS .

The definition is as follows. Let D̃ be a generalised connection compatible with the GS-

structure, that is, sastisfying D̃Qi = 0 for all Qi. Formally, the generalised torsion T of D̃

is defined by, acting on any generalised tensor α,
(
LD̃V − LV

)
α = T (V ) · α (2.12)

where L is the generalised Lie derivative, LD̃ is the generalised Lie derivative calculated

using D̃ and we view the torsion as a map T : Γ(E)→ Γ(ad F̃ ) where ad F̃ is the Ed(d)×R+

adjoint bundle, so that T (V ) acts via the adjoint action on α. The intrinsic torsion is then

the component of T that is independent of the choice of compatible connection D̃. We are

interested in the case where only singlet representations appear in the intrinsic torsion. This

means we can define a generalised Levi-Civita connection such that, in analogy with (2.1),

acting on any invariant generalised tensor Qi,

DMQi = ΣM ·Qi (2.13)

where ΣM is a section of E∗⊗ adPHd
that is completely determined in terms of the singlet

torsion.3 Here we are using a notion where adPHd
is the bundle of tensors transforming

on the adjoint representation of Hd .

2Note that for D = 4 this means the AµM contain both the vectors and their duals, and in D = 6 the

BµνMN contain both the two-forms and their duals.
3Note there is a subtlety that the connection D is not uniquely determined by the conditions of compat-

ibility with the generalised metric and being torsion-free. However only certain projections of the action of

D appear in the supergravity and these are unique [35]. In equation (2.13), we are choosing a particular

torsion-free compatible D. Equivalently, one can show that the unique projected operators, acting on Qi,

are completely determined by the singlet intrinsic torsion.
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The proof of consistency is just as before. By expanding in terms of invariant tensors,

all the fields one keeps transform as singlets under the structure group, with the only

dependence on the internal space coming from the {Qi}. Furthermore from (2.13) the

derivatives of all the truncated fields also have expansions in terms of singlets. So long as

we keep all possible singlets and nothing else, the truncation is then necessarily consistent,

since products of singlet representations can never source the non-singlet representations

that were truncated away.

2.2.2 Structure of the truncated theory

So far we have made a general argument that a GS-structure with singlet intrinsic torsion

will lead to a consistent truncation of eleven-dimensional or type II supergravity. However,

one can go further and deduce the structure of the truncated theory from the GS-structure

and the torsion. We will find that in all cases, even when there is no preserved supersym-

metry, it is described by a version of the embedding tensor formalism (see e.g. [44, 45] for

a review of this formalism).

We start by identifying the GS-singlet truncated degrees of freedom. Since GS ⊂ Hd

the structure encodes the generalised metric GMN . In the truncation we want to keep

singlet deformations of the structure, modulo those singlet deformations that do not deform

the metric. At each point in M the metric is an element of the coset Ed(d)/Hd , thus we

can generate the singlet deformations of the metric by acting on the structure by elements

of Ed(d) that commute with GS modulo elements of Hd that commute with GS , since the

latter will not change the metric. Thus we find the scalars parametrise the coset

scalars: hI(x) ∈Mscal =
CEd(d)(GS)

CHd
(GS)

:=
G
H . (2.14)

Recall that the vector fields are sections of T ∗X⊗E. If {KA} is a basis for the GS-invariant

generalised vectors, spanning a vector space V ⊂ Γ(E), then we have

vectors: AµA(x)KA ∈ Γ(T ∗M)⊗ V . (2.15)

If {JΣ} is a basis generating the GS-invariant vector space B ⊂ Γ(N), we similarly have

the two-form degrees of freedom

two-forms: BµνΣ(x)JΣ ∈ Γ(Λ2T ∗X)⊗ B. (2.16)

Note that by definition V and B are both representation spaces for the action of the

commutant group G. Note we also have N ⊂ S2E and so we can use the projection map

×N and embedding to define the constants dABΣ and d̃Σ
AB

KA ×N KB = dABΣJΣ, JΣ = d̃Σ
ABKA ⊗KB , (2.17)

intertwining the representation spaces.

Turning to the singlet intrinsic torsion, we note that, since D̃KA = 0, in analogy

with (2.4), we have

LKAQi = −Tint(KA) ·Qi , (2.18)
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where we recall that L is the generalised Lie derivative. Since Tint is a singlet, then Tint(KA)

must be a singlet of ad F̃ , but such singlets are precisely the Lie algebra of the commutant

group G = CEd(d)(GS). Thus −Tint defines an “embedding tensor” [44, 45], that is a

linear map

Θ : V → LieG . (2.19)

Acting on the KA, we get

LKAKB = ΘA ·KB = ΘAα̂(tα̂)BCKC := XABCKC , (2.20)

where (tα̂)BC are the representations of the generators of Lie G acting on V. The Leib-

niz property of the generalised Lie derivative then implies [6, 35] the standard quadratic

condition on the embedding tensor

[XA, XB] = −XABCXC , (2.21)

where we are viewing (XA)BC = XABC as a matrix. Thus we can view the KA as generating

a Lie algebra with structure constants X[AB]
C . Since the image of Θ may not be the whole

of LieG, we see that the vector fields describe a gauge group

gauge group: Ggauge ⊆ G , (2.22)

where LieGgauge = ImV ⊆ LieG under the embedding tensor map Θ. The XA then define

the adjoint representation and Θ defines how the gauge action embeds as an action in G.

By reducing the generalised geometry/EFT reformulation of supergravity of [35–41],

we can then summarise the structure and gauging of the truncated theory, which match

the standard formulae for gauging of a tensor hierarchy via an embedding tensor [44, 45]:

• The fields in the truncated theory are as follows

scalars: hI(x) ∈Mscal =
CEd(d)(GS)

CHd
(GS)

:=
G
H ,

vectors: AAµ (x)KA ∈ Γ(T ∗X)⊗ V ,
two-forms: BΣ

µν(x) JΣ ∈ Γ(Λ2T ∗X)⊗ B .

(2.23)

• The theory is gauged by Ggauge ⊆ G with the scalar covariant derivatives

D̂µh
I = ∂µh

I −AAµ ΘAα̂kα̂
I , (2.24)

where kα̂ are the Killing vectors on Mscal generating the action of the LieG .

• The gauge transformations of the vectors and two-forms are

δAAµ = ∂µΛA +XBCA
(
ABµ ΛC − ΞBCµ

)
,

δBΣ
µν = 2dABΣ

(
∂[µΞABν] + 2XCDAAC[µ ΞDBν] − ΛAHBµν −AA[µ δABν]

)
,

(2.25)

where ΞABµ = Ξµ
Σd̃Σ

AB and HA = dAA +XBCA(AB ∧ AC + BΣd̃Σ
BC) .

• Given a lift G̃S ⊆ H̃d , the number of supersymmetries preserved by the truncated

theory is given by the number of G̃S-singlets in the generalised spinor bundle S.
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H̃d GN

SU(8) SU(8−N )

USp(8) USp(8− 2N )

USp(4)×USp(4) USp(4− 2N+)×USp(4− 2N−)

USp(4) USp(4− 2N )

Table 2. Maximal generalised structure subgroups GN ⊂ H̃d preserving N supersymmetries in

the truncated theory. Note that for d = 5 we have six-dimensional supergravity with (N+,N−)

supersymmetry.

The key point here is that the geometrical data of the GS-structure and its singlet

intrinsic torsion completely determine the truncated theory. The precise relationship be-

tween these expressions and the uplifted supergravity fields depends on the normalisations

of the basis vectors KA and JΣ and the explicit expression for the generalised metric GMN

in terms of the relevant normalised invariant tensors. We will turn to the details of these

relationships in the explicit example of half-maximal truncations in the following sections.

2.3 Maximal structure groups and pure supergravities

To see how the truncated theories arise for some specific structure groups and match known

consistent truncations, in this and the next sub-section let us focus on truncations preserv-

ing a given amount of supersymmetry in D = 11− d dimensions. For N supersymmetries

the generalised spinor bundle S must have N singlets when decomposed under the struc-

ture group GS ⊂ H̃d .4 Let GN be the maximal subgroup of H̃d for which this is true,

that is the largest possible generalised structure group that preserves N supersymmetries.

These groups are listed in table 2.

We can then use our formalism to determine the corresponding consistent truncations.

In each case we need to find the commutant groups G and H and the spaces of vector and

tensor multiplets. Both are fixed once one knows the embedding GN ⊂ Ed(d). The results

are summarised in table 3. For the vector and two-form degrees of freedom we include

only the minimum dynamical set. In particular, in D = 4 and D = 5, the two-forms are

dual to scalars and vectors respectively, and so are not listed. For vectors in D = 4 and

two-forms in D = 6 we include both the fields and their duals. In D = 6 the self- and anti-

self-dual two-forms are distinguished by their transformation under the two R-symmetry

groups. Comparing with the standard literature (see for example the review in [46]) we see

that these theories are in one-to-one correspondence with the possible pure supergravity

theories. This includes, in particular, the maximally supersymmetric cases of the sphere

reductions. In each case, the gauging of the theory will depend on the singlet torsion, as

described for the sphere cases in [6].

From one perspective, this is not surprising — the representation theory is the same as

that giving each pure supergravity theory as truncation of the maximally supersymmetric

4Note that here and in the following subsection we will ignore discrete factors in the structure group

and hence ignore the possible distinction between GS and G̃S .
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Ed(d) N G = CEd(d)(GS) H = CH̃d
(GS) V B

E7(7) 1 U(1) U(1) –

2 SU(2)×U(1) SU(2)×U(1) 1⊕1

3 SU(3)×U(1) SU(3)×U(1) 3⊕3̄

4 SU(4)×SL(2,R) SU(4)×U(1) (6,2)

5 SU(5, 1) SU(5)×U(1) 20

6 SO∗(12) SU(6)×U(1) 32

8 E7(7) SU(8) 56

E6(6) 1 USp(2) USp(2) 1

2 USp(4)×R+ USp(4) 5 + 1

3 SU∗(6) USp(6) 15

4 E6(6) USp(8) 27

Spin(5, 5) (1, 0) USp(2) USp(2) – 1

(1, 1) USp(2)×USp(2)×R+ USp(2)×USp(2) (2,2) 2·(1,1)

(2, 0) USp(4) USp(4) – 5

(2, 1) SU∗(4)×USp(2) USp(4)×USp(2) (4,2) (6,1)

(2, 2) Spin(5, 5) USp(4)×USp(4) 16 10

SL(5,R) 1 USp(2)×R+ USp(2) 3 1

2 SL(5,R) USp(4) 10 5

Table 3. Commutant groups and G-representations of vectors and two-forms for GN -structure

consistent truncations.

one in that dimensions. However, this analysis does allow us to give a proof of the conjecture

in [19] (see also [47, 48]):

Corollary. Any supergravity solution with a D-dimensional AdS (or Minkowski) factor

preserving N supersymmetries, defines a consistent truncation to the corresponding pure

supergravity theory.

The proof follows from the analysis of supersymmetric background in [18, 49, 50]. There

it was showed that solutions with AdS (or Minkowski) factors with N supersymmetries

correspond to GN generalised structures with singlet torsion. The corollary then follows

as a direct application of Theorem 2. For the Minkowski space case, the intrinsic torsion

vanishes and the truncated theory is ungauged.

2.4 Supersymmetric truncations from conventional G-structures

The more interesting case is when the structure group GS is a subgroup of GN but one still

has the same number of supersymmetries, that is, the same number of GS-singlets in the

generalised spin bundle S, since this can allow for truncated theories with non-trivial matter
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Ed(d) N GS G = CH̃d
(GS) H = CEd(d)(GS) V

E7(7) 1 G2 SL(2,R) U(1) –

2 SU(3) SU(2, 1)× SL(2,R) SU(2)×U(1)2 2 · (1,2)

4 SU(2) SO(6, 3)× SL(2,R) SO(6)× SO(3)×U(1) (9,2)

E6(6) 1 SU(3) SU(2, 1) SU(2)×U(1) 1

2 SU(2) SO(5, 2)× R+ SO(5)× SO(2) 7⊕ 1

Table 4. Commutant groups and G-representations of the vector fields for consistent truncations

using conventional G-structures.

content. A simple way to achieve this situation is to consider the case of a conventional

G-structure that corresponds to the appropriate number of supersymmetries. This analysis

will allow us to connect to a number of known consistent truncations, including cases that

require considerable calculation to derive the structure of the truncated theory.

For definiteness we consider the cases of truncations of eleven-dimensional and type

IIB supergravity to D = 4 or D = 5 on manifolds with G2, SU(3) or SU(2) conventional

G-structures. Calculating the commutant groups and the representation of the space of

vector fields V we find the structure of the truncated theory is the same, independent of

whether it came from eleven-dimensional or type IIB supergravity. We list the relevant

groups and representations in table 4. Note that for D = 4 we give both the vectors and

their duals, forming doublets of the SL(2,R) subgroup of G.

In each case we can identify the multiplet structure of the truncated theory and match

to known examples of truncations, as follows:

G2 ⊂ E7(7) structure. This case only refers to eleven-dimensional supergravity. Singlet

intrinsic torsion implies a weak G2 manifold. The D = 4 truncated theory is N = 1

supergravity coupled to a single chiral multiplet

Mscal =
SL(2,R)

U(1)
, (2.26)

and there are no vector multiplets, matching the truncation first derived in [26].

SU(3) ⊂ E7(7) structure. The D = 4 truncated theory is N = 2 supergravity coupled

to a single hypermultiplet and a single vector multiplet, with the scalar manifolds

Mscal =Mhyper ×Mvector =
SL(2,R)

U(1)
× SU(2, 1)

SU(2)×U(1)
. (2.27)

For eleven-dimensional supergravity this includes the case of consistent truncation on a

Sasaki-Einstein seven-manifold first derived in [26]. For type IIB, it includes the case of

the universal sector of nearly Kähler reductions, the analogue of the IIA case considered

in [27, 28].
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SU(2) ⊂ E7(7) structure. The D = 4 truncated theory is N = 4 (half-maximal)

supergravity coupled to three vector multiplets, with scalar manifold

Mscal =
SL(2,R)

U(1)
× SO(6, 3)

SO(6)× SO(3)
. (2.28)

For eleven-dimensional supergravity this includes the case consistent truncation on a tri-

Sasaki seven-manifold first derived in [29].

SU(3) ⊂ E6(6) structure. This case only refers to eleven-dimensional supergravity.

The D = 5 truncated theory is minimal supergravity coupled to a single hypermultiplet

Mscal =
SU(2, 1)

SU(2)×U(1)
, (2.29)

and has only the graviphoton with no extra gauge fields. For the case of vanishing in-

trinsic torsion the theory is just the universal sector of eleven-dimensional supergravity

compactified on a Calabi-Yau manifold.

SU(2) ⊂ E6(6) structure. The D = 5 truncated theory is half-maximal supergravity

coupled to two vector multiplets, with the scalar manifolds

Mscal = R+ × SO(5, 2)

SO(5)× SO(2)
. (2.30)

For type IIB supergravity this includes the case of consistent truncation on a Sasaki-

Einstein five-manifold derived in [20, 21]. We will analyse this case in considerable detail

in section 4.2.

In each of these cases the gauging of the theory will depend on the particular intrinsic

torsion, via the embedding tensor Θ defined by (2.18). Rather than work through the

details in each case here we will focus in the following sections on the particular class of

half-maximal D = 5 truncations. This will in particular include the details of the Sasaki-

Einstein five-manifold example. We will also go further and discuss more involved examples.

Finally, we note that we could also have considered cases above where GS is a subgroup of

the conventional SU(3) or SU(2) structure groups such that we still have the same amount of

supersymmetry. These would be relevant for example, to the consistent truncation of type

IIB on the T 1,1 coset space [51, 52] (which admits a left-invariant U(1) ⊂ SU(2) structure)

and of eleven-dimensional supergravity on the various coset spaces considered in [30].

3 Half-maximal truncations to five dimensions

In order to make the general formalism more explicit, in the following sections we will focus

on the case of consistent truncations of type IIB and eleven-dimensional supergravity to

five dimensions, preserving half-maximal supersymmetry. In this section we will give the

details of the generic formalism, identifying the possible structure groups GS , the invariant

generalised tensors and, in particular, how they determine the generalised metric. Concrete

examples will be discussed in the following sections. We note that the case of half-maximal
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truncations to five (and other) dimensions using exceptional field theory was first considered

in the general analysis of [15]. Here we give a number of new results, both for how the

generalised structure is defined and how the truncations are constructed. For the general

structure of half-maximal supergravity in five dimensions we refer to [53] (see also [54]).

3.1 SO(5 − n) generalised structures

Dimensional reductions of eleven-dimensional supergravity on a six-dimensional manifold

or of type IIB supergravity on a five-dimensional manifold are described by E6(6) × R+

generalised geometry. The R-symmetry group of five-dimensional supergravity is contained

in USp(8), the maximal compact subgroup of E6(6). For half-maximal supergravity, USp(8)

must be broken to

USp(8) ⊃ USp(4)R ×USp(4)S ⊇ USp(4)R × G̃S , (3.1)

where the factor USp(4)R is identified with the R-symmetry of half-maximal supergravity,

while the other USp(4)S factor contains the (double cover of) the reduced structure group,

G̃S ⊆ USp(4). Under the first embedding in (3.1), the spinorial representation of USp(8)

decomposes as 8 = (4,1)⊕ (1,4), and we can identify the four spinor parameters of half-

maximal supergravity as those that transform in the (4,1) representation, in the 4 of

USp(4)R and singlets of G̃S . Since we are focussing on dimensional reductions that do not

have more than half-maximal supersymmetry, we also require that there are no further

G̃S-singlets in the (1,4) representation. This (essentially) restricts the possible structure

groups5 to be GS = SO(5 − n), n = 0, . . . , 3. (Here we are ignoring the possibility of

finite structure groups, hence exclude n = 4). Thus half-maximal truncations correspond

to dimensional reductions on (the double cover of) GS = SO(5−n) generalised structures.

This structure group is embedded in E6(6) as:

GS = SO(5− n) ⊆ SO(5)S ⊂ SO(5, 5) ⊂ E6(6) . (3.2)

There are two extra cases of GS ⊂ SO(5)S not included in this sequence. These come from

the embeddings

SO(5)S ⊃ SO(4) =
SU(2)× SU(2)

Z2
⊃ SU(2)×U(1) ⊃ U(1)×U(1). (3.3)

Choosing either GS = SU(2) × U(1) or GS = U(1)2 still gives a half-maximal truncation.

However, it is easy to show that the commutant subgroups and GS-singlets are the same

as the case of GS = SO(4). Thus although the structure is different the resulting truncated

theory is the same, meaning we can restrict to the sequence (3.2).

As discussed in the previous section, the vector fields in the truncation are in one-to-

one correspondence with the GS-singlets in the fundamental representation of E6(6), while

the scalar fields parameterise the coset

Mscal =
CE6(6)

(GS)

CUSp(8)(GS)
= O(1, 1)× SO(5, n)

SO(5)× SO(n)
:=
G
H , (3.4)

5For spinorial representations we of course need the double cover G̃S . Thus, for instance USp(4) is the

double cover of SO(5), but when discussing bosonic representations we can use SO(5) at the place of USp(4).
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where as before CE6(6)
(GS) and CUSp(8)(GS) are the commutants of GS in E6(6) and USp(8),

respectively. This matches the standard structure of the scalar manifold for half-maximal

supergravity coupled to n vector multiplets [53]. The single scalar in the gravity multiplet

parameterises the O(1, 1) factor6 while the scalars in the vector multiplets parameterise

the SO(5,n)
SO(5)×SO(n) coset space.

We can also identify the number of singlets in the generalised tangent space, which

determines the number of vector fields in the truncation. They also form a representation

of G. Recall that the generalised tangent space E transforms in the 27 of E6(6). Under

SO(1, 1)× SO(5, 5) ⊂ E6(6) we have the decomposition

E = E0 ⊕ E10 ⊕ E16 ,

27 = 1−4 ⊕ 102 ⊕ 16−1 , (3.5)

where the subscripts denote the SO(1, 1) weights. Under SO(5) × SO(5) we have

16−1 = (4,4). By construction the 4 representation has no singlets under GS and hence

there are no singlets in the 16−1 component. On the other hand, the 102 representation

decomposes as

102 = (5 + n,1)2 ⊕ (1,5 − n)2, (3.6)

under O(1, 1) × SO(5, n) × SO(5 − n) ⊂ O(1, 1) × SO(5, 5). Thus we see that we get

6 + n singlets, one from the 1−4 representation and 5 + n from 102. In summary, as a

G = O(1, 1)× SO(5, n) representation, we have the space of vector fields

V = 1−4 ⊕ (5 + n)2,

{KA} = {K0,KA : A = 1, . . . , 5 + n}, (3.7)

where we are using the index A = 0, 1, . . . , 5+n. In terms of the half-maximal supergravity

six of these vectors come from the gravity multiplet and n of them from the additional

vector multiplets.

In generalised geometry, the E6(6) cubic invariant, acting on the generalised tangent

space E, gives a map c : S3E → detT ∗M , which can be used to choose a natural parametri-

sation of the invariant generalised vectors. From the decompositions (3.5) and (3.6) we have

c(K0,K0, V ) = 0 , ∀V ∈ Γ(E) ,

c(KA,KB,KC) = 0 , ∀A,B,C , (3.8)

and hence, independent of the choice of KA, an SO(5, 5) metric η on E10 given by

c(K0, V,W ) = η(V,W ) vol , (3.9)

where vol is a volume form on det T ∗M . Since the KA are fixed up to SO(5, 5) rotations,

we can use this to fix an orthonormal basis, and hence also the volume form vol, by

η(KA,KB) = ηAB , (3.10)

6Previously we denoted such factor by R+, while here we use O(1, 1) to match the standard supergravity

literature.
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where

ηAB = diag(−1,−1,−1,−1,−1,+1, . . . ,+1) (3.11)

is the flat SO(5, n) metric.7 Note that the freedom in the normalisation of η in (3.9) and

hence of the KA vectors via rescaling K0 7→ λ2K0 with KA 7→ λ−1KA is just the action

of the O(1, 1) subgroup of G. Note that specifying a set of vectors {KA} satisfying (3.8)

and (3.10) fixes an SO(5 − n) ⊂ E6(6) structure. That is, the structure is completely

determined by the vectors and no other generalised tensors are needed.

Turning to the two-form fields, for E6(6) generalised geometry we have

N ' detT ∗M ⊗ E∗ = N0 ⊕N10 ⊕N16 ,

27′ = 14 ⊕ 10−2 ⊕ 16′1, (3.12)

where again we decompose under SO(1, 1) × SO(5, 5) ⊂ E6(6). The same argument as for

E then gives the space of singlet two-forms JΣ

B = 14 ⊕ (5 + n)−2 ,

{JA} = {J0, JA : A = 1, . . . , 5 + n} , (3.13)

where the isomorphism N ' detT ∗M ⊗ E∗ allows us to identify the usual Σ index on the

basis with the dual of the index on KA. It is natural to normalise

〈
JA,KB

〉
= δAB vol , (3.14)

where
〈
W,V

〉
denotes the natural pairing between a vector and the (weighted) dual vector.

The cubic invariant provides the intertwining maps (2.17) via

J0 =
1

5 + n
ηAB c(KA,KB, ·) ,

JA = ηABc(K0,KB, ·) . (3.15)

It will be helpful in what follows to also define

J0 = vol ·K∗0 , JA = ηAB vol ·K∗B , (3.16)

so that {K∗A} are a set on E∗, dual to {KA}, satisfying

〈
K∗0 ,K0

〉
= 1 ,

〈
K∗A,KB

〉
= ηAB ,

〈
K∗0 ,KA

〉
=
〈
K∗A,K0

〉
= 0 . (3.17)

Having identified the matter content of the truncated theory, we now turn to its gaug-

ing. From the general discussion, this is determined by the intrinsic torsion of the structure,

which encodes an embedding tensor. Since in this case, the generalised vectors determine

the GS-structure, all the information of the intrinsic torsion should be encoded in (2.20),

namely

LKAKB = XABCKC . (3.18)

7The overall sign in η is chosen so as to allow a straightforward identification with the SO(5, n) metric

normally used in half-maximal supergravity [53].
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The analysis of gaugings of half-maximal supergravity in five dimensions can be found

in [53]. The embedding tensor has components fABC = f[ABC], ξAB = ξ[AB] and ξA. For

simplicity we will only discuss the case ξA = 0, although it would be straightforward to

include the general case ξA 6= 0. The remaining components have to satisfy the conditions

f[AB
EfCD]E = 0 , ξA

DfDBC = 0 , (3.19)

where the indices are raised/lowered using the SO(5, n) metric ηAB. Using the composite

index A = {0, A}, the components can be assembled into the gauge group generators

(XA)BC = XABC as:

XAB
C = −fABC , X0A

B = −ξAB , (3.20)

with the other components vanishing. Then the (XA)BC generators satisfy the commutation

relations:

[XA, XB] = −XABCXC . (3.21)

Thus, in general, we expect that any consistent truncation (leading to a gauging with

ξA = 0) should have a generalised Lie derivative algebra (3.18) with the components of

XABC given by (3.20). Note that, in the generalised geometry, the algebraic conditions

fABC = f[ABC], ξAB = ξ[AB] follow from consistency of the generalised algebra (3.18) with

the conditions (3.8) and (3.10).

Having determined the number n of vector multiplets and the embedding tensor from

the generalised SO(5− n) structure, we have fully characterised the five-dimensional half-

maximal supergravity theory that is obtained after truncation. However we still need

to provide the truncation ansatz, namely the embedding of the lower-dimensional fields

into the higher-dimensional ones. This is necessary to uplift any solution of the lower-

dimensional theory. In order to be able to do this we need a further geometrical ingredient,

that is the construction of the generalised metric on the exceptional tangent bundle starting

from the generalised vectors defining the SO(5 − n) structure. This will be instrumental

to specifying the scalar truncation ansatz.

3.2 The generalised metric

Recall that, in the generalised geometry reformulation, the generalised metric GMN can be

viewed as an element of the coset E6(6)×R+/(USp(8)/Z2). Here we have a GS = SO(5−n)

structure. Given the embedding (3.1), since G̃S ⊂ USp(8), the structure determines the

metric. Since the structure is completely determined by the vectors {KA} this means we

should be able to use them to construct G explicitly.

The easiest way to see how this construction works is to use the embedding (3.2).

The choice of K0 and K∗0 fixes the SO(1, 1) × SO(5, 5) ⊂ E6(6) subgroup and gives a

decomposition of the generalised tangent space (3.5). This in turn gives a decomposition

of the metric into orthogonal metrics on E0, E10 and E16 subspaces,

G = G0 +G10 +G16 . (3.22)
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We can then use our knowledge of SO(5) × SO(5) ⊂ SO(5, 5) generalised structures to

construct the three pieces of the metric as:

G0(V, V ) =
〈
K∗0 , V

〉〈
K∗0 , V

〉
, (3.23)

G10(V, V ) = 2 δab〈K∗a , V 〉〈K∗b , V 〉+ η(V, V ) , (3.24)

G16(V, V ) = −4
√

2 〈K1 · · ·K5 · V, V 〉 , (3.25)

where we have denoted the first five generalised vectors {Ka} by an index a = 1, . . . , 5.

Recall from (3.10) that these satisfy η(Ka,Kb) = −δab.
Let us explain these formulae. The metric G0 is simply obtained by projecting onto

the singlet. For G10, we use the fact that E10 is the generalised tangent bundle for the

SO(5, 5) geometry and that the structure SO(5)× SO(5) ⊂ SO(5, 5) induces a split of E10

into positive- and negative-definite eigenspaces

E10 = C+ ⊕ C− . (3.26)

Then the SO(5, 5) invariant metric η given in (3.9) and the generalised metric G10 can be

written as

η(V, V ) = G+ −G− ,
G10 = G+ +G− , (3.27)

where G± are metrics on C±. Since the Ka form a basis for C−, we have

G−(V, V ) = δab
〈
K∗a , V

〉〈
K∗b , V

〉
. (3.28)

Hence G10 = G+ +G− = 2G− + η, and we recover (3.24).

For G16 we recall that, given the SO(5) × SO(5) structure, the positive definite inner

product on SO(5, 5) spinors is 〈
Ψ,Γ(+)Ψ

〉
, (3.29)

where
〈
·, ·
〉

is the Mukai pairing and Γ(+) is the chirality operator on C+, that is

Γ+ = Γ+
1 · · ·Γ+

5 , (3.30)

where we decompose the SO(5, 5) gamma matrices into {Γ+
a } ∪ {Γ−â } spanning C+ and

C−. In this case, the Mukai pairing is just the natural pairing between Ψ ∈ Γ(E) and

Ψ∗ ∈ Γ(E∗). Thus we can write G16 as

G16(V, V ) = −4
√

2
〈
K1 · · ·K5 · V, V

〉
, (3.31)

where the Clifford actions of Ka map between E and E∗ and are given by

W ·Ψ := WMΓMΨ =
c(W,Ψ, ·)

vol
∈ Γ(E∗) ,

W ·Ψ∗ := WMΓMΨ∗ = vol · c∗(W ∗,Ψ∗, ·) ∈ Γ(E) .

(3.32)
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Here we define V ∗ = η(V, ·) ∈ Γ(E∗), and c∗(·, ·, ·) is the E6(6) cubic invariant on E∗. Note

that one does not need to project V onto E16 since as defined G16 will vanish identically

when acting on sections of E0 or E10.

We will also need the inverse generalised metric G−1, which acts on dual generalised

vectors Z ∈ Γ(E∗). Its expression is closely related to the one for G and reads

G−1
0 (Z,Z) = 〈Z,K0〉〈Z,K0〉 ,

G−1
10 (Z,Z) = 2δab〈Z,Ka〉〈Z,Kb〉+ η−1(Z,Z) ,

G−1
16 (Z,Z) = −4

√
2 〈Z,K1 · · ·K5 · Z〉 , (3.33)

where η−1(Z,Z) = vol · c∗(K∗0 , Z, Z) is the inverse of the SO(5, 5) metric η.

3.3 The truncation ansatz

We provide here the main steps of the construction of the truncation ansatz, which is

entirely based on the generalised vectors KA defining the SO(5−n) structure. More explicit

formulae will be provided in the next sections, where we will specialise the formalism to

both type IIB supergravity or M-theory, and discuss some concrete examples.

We start from the ansatz for the vector fields. By taking the higher-dimensional

supergravity fields with one external index we make a generalised vector AMµ , where we

recall that µ is an external spacetime index while M labels the components of a generalised

vector, which in E6(6) generalised geometry transform in the 27. We expand this generalised

vector as in (2.15)

AMµ (x, y) =
5+n∑

A=0

AAµ (x)KM
A (y) , (3.34)

where AAµ are the five-dimensional supergravity vector fields. Similarly, the supergravity

fields with two antisymmetrised external indices can be arranged in a generalised tensor,

as a section of the bundle N . Exploiting the isomorphism N ' detT ∗M ⊗ E∗, we can

write this as a weighted dual vector Bµν M , and express the truncation ansatz (2.16) as

Bµν M (x, y) =

5+n∑

A=0

BµνA(x)JAM (y) . (3.35)

The ansatz for the scalar fields is more elaborated as it requires the generalised metric.

This is specified by choosing a metric on the coset space (3.4), which is also the scalar man-

ifold of half-maximal supergravity in five dimensions. We parameterise the O(1, 1) factor

by a non-vanishing scalar Σ. The SO(5,n)
SO(5)×SO(n) factor is described by a coset representative

(VAa,VAa) ∈ SO(5, n) and its inverse (VaA,VaA)T , where a = 1, . . . , 5 and a = 1, . . . , n are

local SO(5) and SO(n) indices, respectively. The coset representative satisfies

ηAB = −δab VAaVBb + δab VAaVBb ,
MAB = δab VAaVBb + δab VAaVBb . (3.36)

Note that the matrix MAB is a metric on the coset, with inverse MAB = ηACMCD η
DB.
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The construction of the generalised metric now goes as follows. We introduce the

“dressed” generalised vectors

K̃0 = Σ2K0 , K̃a = Σ−1 VaAKA , K̃a = Σ−1 VaAKA , (3.37)

and their duals

K̃∗0 = Σ−2K∗0 , K̃∗a = ΣVaAK∗A , K̃∗a = ΣVaAK∗A . (3.38)

The generalised metric and its inverse are defined as in (3.23)–(3.25), this time using

the dressed generalised vectors K̃0 and K̃a, a = 1, . . . , 5. The generalised metric is then

G = G0 +G10 +G16, with

G0(V, V ) = Σ−4
〈
K∗0 , V

〉〈
K∗0 , V

〉
,

G10(V, V ) = Σ2
(

2 δabVaAVbB
〈
K∗A, V

〉〈
K∗B, V

〉
+ η(V, V )

)
,

G16(V, V ) = −4
√

2

5!
Σ−1 εabcdeVaAVbBVcCVdDVeE

〈
KA · · ·KE · V, V

〉
. (3.39)

Similarly, the inverse generalised metric G−1 = G−1
0 +G−1

10 +G−1
16 is given by

G−1
0 (Z,Z) = Σ4

〈
Z,K0

〉〈
Z,K0

〉
,

G−1
10 (Z,Z) = Σ−2

(
2 δabVaAVbB

〈
Z,KA

〉〈
Z,KB

〉
+ η−1(Z,Z)

)
,

G−1
16 (Z,Z) = −4

√
2

5!
Σ εabcdeVaAVbBVcCVdDVeE

〈
Z,KA · · ·KE · Z

〉
. (3.40)

Notice that the SO(5)×SO(n) invariant matrices 2 δabVaAVbB = MAB−ηAB, MABCDE =

εabcdeVaAVbBVcCVdDVeE are familiar from the construction of half-maximal supergravity

in five dimensions [53]. Also note that to get the correct power of Σ in the G16 and G−1
16

expressions it is important to keep track of how many of the Clifford actions are with K̃a

and how many with K̃∗a .

The scalar ansatz is obtained by equating the inverse generalised metric with the one

obtained from the split frame [6, 35], which encodes all supergravity fields with purely

internal indices (including the warp factor of the external metric). By separating the

different tensorial structures on the internal manifold M , we obtain the scalar ansatz for

the individual higher-dimensional supergravity fields.

4 Type IIB truncations

In this section we specialise our formalism to dimensional reductions of type IIB super-

gravity on five-dimensional manifolds. To this end, we first recall the details of type IIB

E6(6) geometry and present the truncation anzatz adapted to the type IIB fields. Then

we discuss concrete examples of consistent truncations. The first is the truncation on

squashed Sasaki-Einstein manifolds of [20, 21], leading to half-maximal supergravity cou-

pled to two vector multiplets. Although this truncation is not new and can be understood
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based on ordinary SU(2) structure, it will serve to illustrate the validity of our approach in

a relatively simple case. This will also make clear how generalised goemetry fully charac-

terises the lower-dimensional theory even before the lower-dimensional Lagrangian is con-

structed from the truncation of the higher-dimensional equations of motion. We will then

consider a β-deformed Sasaki-Einstein manifold and will show that there is a consistent

truncation on such manifolds leading to the same half-maximal supergravity obtaind from

the Sasaki-Einstein truncation. This truncation includes the supersymmetric, β-deformed

AdS5 solution.

4.1 E6(6) geometry for type IIB

We recall here some basic definitions of the E6(6) generalised geometry for type IIB super-

gravity on a five-dimensional manifold M . A more detailed account is given in appendix A

following the conventions of [55, appendix E].

It is convenient to decompose the generalised tangent bundle E, whose fibers transform

in the 27 of E6(6), according to the GL(5)× SL(2) subgroup of E6(6)

E ' TM ⊕ (T ∗M ⊕ T ∗M)⊕ Λ3T ∗M ⊕ (Λ5T ∗M ⊕ Λ5T ∗M) , (4.1)

where the two copies of T ∗M and the two copies of Λ5T ∗M transform as SL(2) doublets.

A generalised vector can be written as

V = v + λα + ρ+ σα , (4.2)

where v is a vector, λα is an SL(2) doublet of one-forms, ρ is a three-form and σα is

an SL(2) doublet of five-forms, α = {+,−} being the SL(2) index. The dual bundle

decomposes accordingly as

E∗ ' T ∗M ⊕ (TM ⊕ TM)⊕ Λ3TM ⊕ (Λ5TM ⊕ Λ5TM) , (4.3)

with sections

Z = v̂ + λ̂α + ρ̂+ σ̂α , (4.4)

where v̂ is a one-form, λ̂α is an SL(2) doublet of vectors, ρ̂ is a three-vector, and σ̂α is an

SL(2) doublet of five-vectors. The natural pairing between a generalised vector and a dual

one is 〈
Z, V

〉
= v̂mv

m + λ̂mα λ
α
m +

1

3!
ρ̂mnpρmnp +

1

5!
σ̂mnpqrα σαmnpqr . (4.5)

The cubic invariant is defined on E and E∗, respectively, as

c(V, V, V ) = −3
(
ιvρ ∧ ρ+ εαβ ρ ∧ λα ∧ λβ − 2 εαβ ιv λ

ασβ
)
, (4.6)

c∗(Z,Z,Z) = −3
(
v̂yρ̂ ∧ ρ̂+ εαβ ρ̂ ∧ λ̂α ∧ λ̂β − 2 εαβ v̂y λ̂ασ̂β

)
. (4.7)

The bosonic fields of type IIB supergravity are the metric, the dilaton φ, the axion C0,

an SL(2) doublet of two-form potentials B̂α (B̂+ being the NSNS two-form and B̂− being

the RR one), a self-dual four-form Ĉ, and a doublet of six-form potentials ˆ̃Bα that are on-

shell dual to the two-forms.8 When dimensionally reducing on a five-dimensional manifold,

8In this subsection the symbol hat denotes ten-dimensional fields.
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the ten-dimensional fields are decomposed according to the SO(1, 9) ⊃ SO(1, 4) × SO(5)

splitting of the Lorentz group. We will use coordinates xµ, µ = 0, . . . , 4 for the external

spacetime and ym, m = 1, . . . , 5 for the internal manifold M . Then the type IIB metric

takes the form

g10 = e2∆ gµν dxµdxν + gmnDy
mDyn , (4.8)

where Dym = dym − hµmdxµ and ∆(x, y) is the warp factor of the external metric gµν(x).

The form fields decompose as

B̂α =
1

2
Bα
m1m2

Dym1m2 +Bα
µmdxµ∧Dym+

1

2
Bα
µνdxµν ,

Ĉ =
1

4!
Cm1...m4Dy

m1...m4 +
1

3!
Cµm1m2m3dxµ∧Dym1m2m3 +

1

4
Cµνm1m2dxµν∧Dym1m2 +. . . ,

ˆ̃Bα =
1

5!
B̃α
µm1...m5

dxµ∧Dym1...m5 +
1

2·4!
B̃α
µνm1...m4

dxµν∧Dym1...m4 +. . . , (4.9)

where dxµν = dxµ ∧ dxν and Dym1...mp = Dym1 ∧ · · · ∧ Dymp . The ellipsis denote forms

with more than two external indices which we will not need. The expansion in Dy instead

of dy ensures covariance of the components under internal diffeomorphisms.

As discussed in e.g. [56, 57], covariance under generalised diffeomorphisms also requires

a redefinition of the barred fields in the expansion above. We adopt a notation such

that Bµ,p indicates the components of a one-form in the external spacetime which are p-

forms in the internal manifold. Similarly, Bµν,p are the components of a two-form in the

external spacetime that are p-forms in the internal manifold. We perform the following

field redefinitions of the one-forms in the external spacetime:

Bα
µ,1 = Bα

µ,1 ,

Cµ,3 = Cµ,3 +
1

2
εαβB

α
µ,1 ∧Bβ ,

B̃α
µ,5 = B̃α

µ,5 −
1

2
Bα
µ,1 ∧ C −

1

2
Cµ,3 ∧Bα , (4.10)

where Bα, C are just internal. The external two-forms are redefined as

Bα
µν = Bα

µν + h[µyBα
ν] ,

Cµν,2 = Cµν,2 +
1

2
εαβB

α
µν B

β ,

B̃α
µν,4 = B̃α

µν,4 +
1

2
Bα
µν C +

1

2
Cµν,2 ∧Bα −Bα

[µ,1 ∧ Cν],3 . (4.11)

The new (unbarred) fields transform covariantly both under internal diffeomorphisms and

form gauge transformations, that is under generalised diffeomorphisms.

The next step is to arrange the redefined fields into the inverse generalised metric GMN ,

the generalised vectors AMµ and the tensors BµνM . The generalised metric is made by all

the type IIB supergravity fields with only internal indices, including the warp factor ∆,

GMN ↔ {∆, gmn, φ, C0, B
α
m1m2

, Cm1...m4} . (4.12)
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Its precise expression is given in (A.23). The fields with one external index can be arranged

into the generalised vector AMµ ∈ Γ(E),

AµM = {hµm, Bα
µm, Cµm1m2m3 , B̃

α
µm1...m5

} . (4.13)

Similarly the fields with two external indices form the generalised tensor Bµν M , that is a

section of N ' detT ∗M ⊗ E∗ (see (A.11), (A.12) for its GL(5)× SL(2) decomposition),

Bµν M = {Bµν α, Cµνm1m2 , B̃µνm1...m4 α, g̃µνm1...m5,n} . (4.14)

Here, the SL(2) index α on the type IIB fields has been lowered with εαβ , and g̃ ∈
Γ(Λ7T ∗M10 ⊗ T ∗M10) is a tensor related to the dual graviton in ten dimensions. The

latter is not part of type IIB supergravity in its standard form and will not play a role in

the specific truncations we will discuss below.

We have thus decomposed the ten-dimensional tensors according to their external or

internal legs and repackaged the components into generalised geometry objects. We can

then specify the dependence of these fields on the internal coordinates by making the

consistent truncation ansatz described in section 3.3.

4.2 Truncation from generalised SU(2) structure on Sasaki-Einstein manifolds

We discuss type IIB supergravity on a five-dimensional a Sasaki-Einstein manifold M ,

which admits a consistent truncation to half-maximal gauged supergravity with two vector

multiplets [20], see also [21, 58, 59].

4.2.1 Generalised SU(2) structure

Five-dimensional Sasaki-Einstein (SE5) structures are examples of ordinary SU(2) struc-

tures, whose torsion is also an SU(2)-singlet. The SU(2) structure is defined by a vector

ξ, a one-form η and a triplet of real two-forms ji, i = 1, 2, 3, satisfying the compatibility

conditions9

ξyji = 0 ξyη = 1 ,

ji ∧ jj = 0 for i 6= j ,
1

2
ji ∧ jj ∧ η = δij vol ,

(4.15)

where vol is the volume form compatible with the SE5 metric

gSE5 = gKE + η2 , (4.16)

which is taken with canonical normalization Rmn = 4gmn. Locally this metric describes a

fibration over a four-dimensional Kähler-Einstein base with metric gKE. In a neighbour-

hood, the fibre direction corresponds to the orbit of the vector ξ, which is also an isometry

and is called the Reeb vector. In addition the SU(2) invariant forms satisfy the differential

conditions

dη = 2j3 , dj3 = 0 , d(j1 + i j2) = 3 i η ∧ (j1 + i j2) . (4.17)

9The ji are identified with the forms used in eq. (2.6) as j3 = ω and j1 + i j2 = Ω.
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The AdS5×SE5 supersymmetric solution of type IIB supergravity has string frame metric

g10 = `2 (gAdS5 + gSE5) , (4.18)

where gAdS5 is the unit AdS5 metric and ` sets the overall scale. The solution also contains

a non-trivial self-dual five-form flux whose internal part is proportional to the SE5 volume,

F fl = dC = κ vol , ξyC = 0 , (4.19)

where κ is a constant related to the overall scale as `4 = κ
4 eφ0 .10 The second expression

in (4.19) is just a convenient gauge choice for the four-form potential.

The consistent truncation was originally constructed by expanding the type IIB su-

pergravity fields in the most general way possible in the basis of SU(2)-singlets given

above [20, 21]. We now show how this truncation is easily derived from E6(6) generalised

geometry; this will also give the opportunity to illustrate the general statements made in

section 3 in a concrete example. We thus lift the Sasaki-Einstein SU(2) structure to the

generalised tangent bundle, and take GS = SU(2) ⊂ USp(4). Under

USp(8) ⊃ USp(4)R ×USp(4) ⊃ USp(4)R ×U(1)× SU(2)S , (4.20)

the spinorial representation decomposes as

8→ (4,1)⊕ (1,4)→ (4,1)⊕ (1,21)⊕ (1,2−1) , (4.21)

so we have precisely four GS-singlets and the truncation preserves half-maximal supersym-

metry. In order to count the vector fields in the truncation, we embed SU(2) ∼ SO(3)

in E6(6)

E6(6) ⊃ SO(5, 5)× SO(1, 1) ⊃ SO(1, 1)× SO(5, 2)× SO(3)S , (4.22)

and decompose the fundamental representation of E6(6),

27→ 102 ⊕ 16−1 ⊕ 1−4 → (7,1)2 ⊕ (1,3)2 ⊕ (8,2)−1 ⊕ (1,1)−4 . (4.23)

We find 8 singlets of SO(3), 7 transforming in the fundamental of SO(5, 2) and one neutral.

This matches the vector field content of half-maximal supergravity coupled to two vector

multiplets.

From (4.20), (4.22), we see that the scalar manifold of the truncated theory is

Mscal =
CE6(6)

(SU(2)S)

CUSp(8)(SU(2)S)
= SO(1, 1)× SO(5, 2)

SO(5)× SO(2)
, (4.24)

that is the scalar manifold of half-maximal supergravity coupled to two vector multiplets.11

The eight generalised vectors KA, with A = {0, A} = 0, 1, . . . , 7, defining the gen-

eralised SU(2) structure are constructed from the tensors defining the ordinary SU(2)

10The parameter κ is related to the N units of five-form flux as κ = 27πN .
11Precisely the same group-theoretical arguments described here were used in [60, 61] to identify a con-

sistent truncation of maximal SO(6) supergravity to half-maximal supergravity with two vector multiplets.

Although the matter content of the five-dimensional theory is the same, the gauging is different.
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structure on the Sasaki-Einstein manifold. For the generalised vectors to contain all the

information about the background, we should also include a twist by the four-form C

satisfying (4.19),

KA = eCǨA , (4.25)

where ǨA denotes the untwisted vectors and the adjoint action of C on a generalised vector

is given in (A.10). We find that the generalised SU(2) structure is defined by

K0 = ξ ,

Ki =
1√
2
η ∧ ji i = 1, 2, 3 ,

K4 =
1√
2

(n η − r vol− n η ∧ C) ,

K5 =
1√
2

(−r η − n vol + r η ∧ C) ,

K6 =
1√
2

(n η + r vol− n η ∧ C) ,

K7 =
1√
2

(−r η + n vol + r η ∧ C) , (4.26)

where

nα =

(
1

0

)α
, rα =

(
0

1

)α
(4.27)

are a basis for the SL(2) doublets. Using (4.6) for the cubic invariant, it is straightforward

to verify that the compatibility relations (3.8), (3.10) are satisfied, with n = 2.

We will also need the dual vectors K∗A. Evaluating (3.15), (3.16), we find that these

are

K∗0 = η ,

K∗i = − 1√
2
ĵi ∧ ξ , i = 1, 2, 3 ,

K∗4 =
1√
2

(
− r̂ ξ + n̂ Cyv̂ol + n̂ v̂ol

)
,

K∗5 =
1√
2

(
n̂ ξ + r̂ Cyv̂ol + r̂ v̂ol

)
,

K∗6 =
1√
2

(
r̂ ξ + n̂ Cyv̂ol + n̂ v̂ol

)
,

K∗7 =
1√
2

(
− n̂ ξ + r̂ Cyv̂ol + r̂ v̂ol

)
, (4.28)

where ĵi, are the two-vectors dual to the two forms ji, v̂ol is the five-vector dual to the

volume form, and

r̂α = εαβ r
β =

(
1

0

)

α

, n̂α = −εαβ nβ =

(
0

1

)

α

. (4.29)

The gauging of the five-dimensional theory is obtained by computing the generalised

Lie derivative between the set of generalised vectors, as in (3.18). The definition of the
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type IIB generalised Lie derivative can be found in (A.16). We find that the algebra closes

into the non-vanishing structure constants

X01
2 = −X02

1 = 3 ,

X04
5 = −X05

4 = −X04
7 = −X07

4 = X05
6 = X06

5 = −X06
7 = X07

6 =
κ

2
,

X34
5 = −X34

7 = −X35
4 = X35

6 = X36
5 = −X36

7 = −X37
4 = X37

6 =
√

2 ,

X45
3 = X47

3 = −X56
3 = X67

3 =
√

2 , (4.30)

where the terms in the last two lines are antisymmetric in the lower indices. From (3.20)

we conclude that the embedding tensor components are

ξ12 = 3 , ξ45 = ξ47 = −ξ56 = ξ67 =
κ

2
,

f345 = f347 = −f356 = f367 =
√

2 . (4.31)

This is fully consistent with the embedding tensor found in [20].12 As discussed there, the

corresponding gauge algebra is Heis3×U(1), where Heis3 is the three-dimensional Heisen-

berg algebra. The remaining four generators, that transform in a non-adjoint representation

of the gauge algebra, determine the vector fields that are eaten-up by two-form fields via

a Stückelberg mechanism.

4.2.2 Generalised metric

In order to recover the scalar truncation ansatz we need to construct the generalised metric

evaluating the formulae (3.40). We first derive the generalised metric for the background

solution AdS5×SE5 using (3.33), since this is simpler and it allows one to see how the

construction works. Then in the next subsection we will discuss the generalised metric for

the dressed generalised vectors, allowing for general Σ, V, and extract the scalar ansatz.

For simplicity, we also momentarily set the four-form C to zero, that is we work with the

untwisted vectors, and reintroduce it in a second step.

Recalling the decomposition (4.4) of the arbitrary dual generalised vector Z, we find

that G−1
0 in (3.40) is

G−1
0 (Z,Z) = (ξmv̂m)2 , (4.32)

while the two terms defining G−1
10 evaluate to

2δab〈Z,Ka〉〈Z,Kb〉 =
1

4

∑

i=1,2,3

(
ηmji np ρ̂

mnp
)2

+
∑

α=1,2

(ηmλ̂
m
α )2 +

1

5!

∑

α=1,2

(σ̂mnpqrα )2 , (4.33)

and
c∗(K∗0 , Z, Z)

v̂ol
= − 1

12
ηmρ̂

mnpρ̂qrsεnpqrs + 2 εαβ ηmλ̂
m
α ∗σ̂β . (4.34)

12The precise matching between the embedding tensor components in (4.31) and those in [20, eq. (4.20)]

is obtained upon renaming the indices (1234567)here = (3451267)there (which can be achieved by a trivial

SO(5) transformation), multiplying all components in (4.31) by −
√

2 (which is a harmless rescaling of the

gauge group generators) and noticing from comparing the five-form fluxes that κhere = 2kthere.
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The term involving the ji projects ηmρ̂
mnp on its anti-self-dual part on the Kähler-Einstein

basis, hence it can be written as

1

4

∑

i

(
ηmji npρ̂

mnp
)2

=
1

4

(
ηmρ̂

mnp − 1

2
ηmε

mnpqrρ̂qrsη
s
)2

=
1

2
(ηmρ̂

mnp)2 +
1

12
ηmρ̂

mnpρ̂qrsεnpqrs . (4.35)

Adding up the two contributions we obtain

G−1
10 (Z,Z) =

∑

α=1,2

(ηmλ̂
m
α )2 +

1

2
(ηp ρ̂

pmn)2 +
1

5!

∑

α=1,2

(σ̂mnpqrα )2 . (4.36)

We see that the tensor structure of G−1
0 and G−1

10 is such that at least one index is along

the fiber of the Sasaki-Einstein manifold. It remains to evaluate G−1
16 : as explained in

the general discussion of section 3, this is obtained by the recursive Clifford action of K5,

K∗4 ,K3,K
∗
2 ,K1 on a dual vector Z, and by finally pairing up the resulting vector with Z

itself. After a long but relatively straightforward computation, we find

G−1
16 (Z,Z) = gmnKE v̂mv̂n + δαβgKE

mn λ̂
m
α λ̂

m
β +

1

6
gKE
mq g

KE
nr g

KE
ps ρ̂mnpρ̂qrs . (4.37)

Hence G−1
16 is just a generalised metric on the four-dimensional Kähler-Einstein base.

Adding up the three contributions, we arrive at

G−1(Z,Z) = gmnv̂mv̂n + δαβgmnλ̂
m
α λ̂

m
β +

1

6
ρ̂mnpρ̂mnp + δαβσ̂mnpqrα σ̂β,mnpqr , (4.38)

where gmn is the Sasaki-Einstein metric (4.16), which is also used to lower the curved

indices in the last two terms.

The metric associated with the twisted generalised vectors KA = eCǨA is easily ob-

tained by recalling that the E6(6) cubic invariant is preserved by the twist,

c(eCV, eCV ′, eCV ′′) = c(V, V ′, V ′′) . (4.39)

This means that the generalised metric with non-trivial four-form potential can be com-

puted using the untwisted K’s ((4.26) with C = 0) and e−CZ. Thus, to reintroduce C, it

is sufficient to consider (4.38) and to make the following substitutions

v̂ → v̂ + ρ̂yC ,
λ̂α → λ̂α − Cyσ̂α . (4.40)

Comparing the generalised metric and (A.23) with only non-zero gmn and four-form C,

we recover the metric and four-form potential of the AdS5×SE5 solution of type IIB

supergravity.
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4.2.3 Recovering the truncation ansatz

In [20], the scalar truncation ansatz based on the Sasaki-Einstein structure is given in the

Einstein frame by13

g10 = e−
2
3

(4U+V )gµνdxµdxν + e2UgKE + e2V η2

B+ = bi ji , B− = ci ji , C = C fl − a j3 ∧ j3 , (4.41)

where {U, V, bi, ci, a}, with i = 1, 2, 3, together with the axion C0 and the dilaton φ, are

eleven scalar fields depending just on the external coordinates, and C fl is the background

four-form potential that we called C in the previous subsection, satisfying (4.19). These

eleven scalars parameterise the coset manifold (4.24). Specifically, the SO(1, 1) factor is

parameterised by the combination Σ = e−
2
3

(U+V ). For the SO(5,2)
SO(5)×SO(2) coset representative,

it is convenient to use a solvable parametrization, which is obtained exponentiating the

Cartan and positive root generators of the coset. The explicit form of {VAb,VAb} (with

b = 1, . . . , 5 and b = 1, 2) chosen in [20] reads14




1 0 0 e−
φ1
2 (−c1+C0b1) −e−

φ2
2 b1 e−

φ1
2 (c1−C0b1) e−

φ2
2 b1

0 1 0 e−
φ1
2 (−c2+C0b2) −e−

φ2
2 b2 e−

φ1
2 (c2−C0b2) e−

φ2
2 b2

0 0 1 e−
φ1
2 (−c3+C0b3) −e−

φ2
2 b3 e−

φ1
2 (c3−C0b3) e−

φ2
2 b3

c1 c2 c3
e−

φ1
2

2 (eφ1 +c−+C0a+) e
φ2
2

2 C0− e−
φ2
2

2 a+
e−

φ1
2

2 (eφ1−c−−C0a+) e
φ2
2

2 C0+ e−
φ2
2

2 a+

b1 b2 b3
e−

φ1
2

2 (a−−C0b−) e−
φ2
2

2 (eφ2 +b−) e−
φ1
2

2 (−a−+C0b−) e−
φ2
2

2 (eφ2−b−)

c1 c2 c3
e−

φ1
2

2 (eφ1−c++C0a+) e
φ2
2

2 C0− e−
φ2
2

2 a+
e−

φ1
2

2 (eφ1 +c+−C0a+) e
φ2
2

2 C0+ e−
φ2
2

2 a+

b1 b2 b3
e−

φ1
2

2 (a−+C0b+) e−
φ2
2

2 (eφ2−b+) e−
φ1
2

2 (−a−−C0b+) e−
φ2
2

2 (eφ2 +b+)




(4.42)

where we defined φ1 = 4U − φ, φ2 = 4U + φ, and

a+ = 2a+ bici , a− = 2a− bici ,
b+ = 1 + bibi , b− = 1− bibi ,
c+ = 1 + cici , c− = 1− cici . (4.43)

Note that the solvable parameterisation has a nice interpretation in terms of E6(6)

adjoint action (recall (A.9))

(
K̃a

K̃a

)
= e−(B++B−+C) ·m · r · e−l ·

(
Ka

Ka

)
= Σ−1

(VaB
VaB

)
KB , (4.44)

13Compared to [20] we have renamed b1 = RebΩ, b2 = ImbΩ, b3 = bJ , and similarly for ci.
14Compared to [20], we have renamed the indices (1234567)here = (3451267)there via an SO(5)

transformation.
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where

B+ = bi ji , B− = ci ji , C = −a j3 ∧ j3 , mα
β =

(
e
φ
2 0

e
φ
2C0 e−

φ
2

)
, (4.45)

r = diag
(
eV , eU , eU , eU , eU

)
, l =

1

3
tr(r) =

1

3
(4U + V ) (4.46)

so that the action is by only supergravity fields, with no need to introduce the poly-vector

components in the E6(6) adjoint.15

Having chosen an explicit parameterisation of the coset representative V, we can com-

pute the full generalised metric using formula (3.40). This will depend on the eleven scalars

{U, V,C0, φ, bi, ci, a}. Comparing the expression obtained in this way with form (A.23) of

the generalised metric, we can extract the truncation ansatz for the supergravity fields gmn,

C0, φ, Bα
mn, Cmnpq, as well as the warp factor ∆.16

Although straightforward in principle, the computations are lengthy and we just discuss

the final result. The warp factor is easily extracted using (A.24), (A.25) and reads17

e2∆ = e−
2
3

(4U+V ) , (4.47)

while the internal metric is given by

e−2∆(G−1)mn = gmn = e−2UgmnKE + e−2V ξmξn . (4.48)

Proceeding in a similar way for the other supergravity fields, we recover precisely the scalar

ansatz (4.41).

The ansatz for the five-dimensional vectors follows straightforwardly from (3.34). We

construct the linear combination of generalised vectors AAµKA, where the coefficients AAµ
are vectors in five dimensions, and we equate it to the generalised vector (4.13), with the

fields Bα
µ,1, Cµ,3, and B̃α

µ,5 being defined as in (4.10). Separating the fields transforming in

different representations of GL(5), we find:

hµ = A0
µ ξ ,

B+
µ,1 =

1√
2

(
A4
µ +A6

µ

)
η ,

B−µ,1 = − 1√
2

(
A5
µ +A7

µ

)
η ,

Cµ,3 =
1√
2
Aiµ ji ∧ η ,

B̃+
µ,5 = − 1√

2

(
A5
µ −A7

µ

)
vol +

1√
2

(
A4
µ +A6

µ

)
C fl ∧ η ,

B̃−µ,5 = − 1√
2

(
A4
µ −A6

µ

)
vol +

1√
2

(
A5
µ +A7

µ

)
C fl ∧ η . (4.49)

15The GL(5) matrix r is given in the basis of vielbeine that makes the metric diagonal. This should not

be confused with the SL(2) doublet rα.
16A minor subtlety is that the truncation of [20] was derived in the Einstein frame of type IIB supergravity,

while the generalised metric in (A.23) is adapted to the string frame; however (A.23) can be turned to

the Einstein frame by simply ignoring the explicit factors of e−φ appearing there, and we do so in our

computation.
17In this case ∆ is not really a warp factor as it is independent of the internal coordinates. It is just a

Weyl rescaling setting the external metric in the Einstein frame.
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The ansatz for the two-form fields follows from (3.35). The weighted dual vectors JA

can be computed by multiplying the dual vectors K∗A in (4.28) by the internal volume form

as in (3.16). Doing so we find:

J0 = vol⊗ η ,

J i =
1√
2
ji ,

J4 =
1√
2

(−n̂+ r̂ vol4−n̂ C fl) ,

J5 =
1√
2

(−r̂ − n̂ vol4−r̂ C fl) ,

J6 =
1√
2

(n̂+ r̂ vol4 +n̂ C fl) ,

J7 =
1√
2

(r̂ − n̂ vol4 +r̂ C fl) , (4.50)

where we defined vol4 = ξy vol. Equating BµνAJAM to the weighted dual vector (4.14)

and separating the terms in different GL(5) representations, we find

Bµν,0 + =
1√
2

(Bµν 7 − Bµν 5) ,

Bµν,0− =
1√
2

(Bµν 6 − Bµν 4) ,

Cµν,2 =
1√
2
Bµν i ji ,

B̃µν,4 + =
1√
2

(Bµν 4 + Bµν 6) vol4 +
1√
2

(Bµν 7 − Bµν 5)C fl ,

B̃µν,4− = − 1√
2

(Bµν 5 + Bµν 7) vol4 +
1√
2

(Bµν 6 − Bµν 4)C fl . (4.51)

The tensor g̃ associated with the dual graviton would be expanded as Bµν 0 vol⊗η, but we

will not need this.

This ansatz for the one-form and two-form fields agrees with the one of [20]. We have

thus shown how the full bosonic truncation ansatz for type IIB supergravity on Sasaki-

Einstein manifolds can be derived from our general approach to half-maximal truncations.

We observe that the particular Sasaki-Einstein manifold given by the T 1,1 = SU(2)×SU(2)
U(1)

coset space admits a further reduced U(1) ⊂ SU(2) structure. In the generalised geometry,

this introduces an additional singlet vector K8 = η ∧ Φ, where Φ in the only harmonic

two-form in the Sasaki-Einstein metric on T 1,1. On T 1,1 one can also twist the generalised

tangent bundle by NSNS and RR three-form fluxes proportional to the cohomologically

non-trivial three-form η∧Φ. Following the same steps as above including the extra vector,

we would retrieve the larger consistent truncation of [51, 52], yielding half-maximal gauged

supergravity coupled to three vector multiplets.

4.3 Truncations for β-deformed backgrounds

It was shown in [19] that for any AdS5 solution to type IIB supergravity preserving minimal

supersymmetry, and hence dual to an N = 1 SCFT4, there is a consistent truncation to
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pure gauged supergravity in five dimensions containing that AdS5 solution. A class of such

backgrounds is provided by the β-deformation of Lunin and Maldacena [22]. For the case

where the internal manifold is S5, the explicit truncation ansatz of type IIB supergravity on

the β-deformed geometry to pure gauged supergravity has been given very recently in [23].

Here we show that if one starts from a toric Sasaki-Einstein manifold, the generalised

SU(2) structure of the β-deformed background allows for a much larger truncation. The

resulting five-dimensional supergravity is in fact just the same half-maximal supergravity

with two vector multiplets that arises from type IIB supergravity on squashed Sasaki-

Einstein manifolds. One way to see this is to observe that the full truncation ansatz on

toric Sasaki-Einstein manifolds can be β-deformed.

4.3.1 The β-deformed T 1,1 background

In [22], Lunin and Maldacena showed that, given an N = 1 background with two U(1)

isometries commuting with the R-symmetry, a new supersymmetric solution can be ob-

tained by applying a TsT transformation, namely a sequence of T-duality along one of the

U(1), a shift along the second U(1) and another T-duality along the first one. Any toric

Sasaki-Einstein manifold can be deformed in this way. We will present explicit formulae

for the T 1,1 manifold, however our results apply to any toric Sasaki-Einstein five-manifold.

The canonically normalised Sasaki-Einstein metric on T 1,1 is

gSE5 =
1

6

∑

i=1,2

(
dθ2

i + sin2 θidφ
2
i

)
+

1

9
(dψ + cos θ1dφ1 + cos θ2dφ2)2 , (4.52)

and for the internal part of the four-form potential satisfying (4.19) we choose the gauge

C = − κ

108
ψ sin θ1 sin θ2 dθ1 ∧ dφ1 ∧ dθ2 ∧ dφ2 . (4.53)

The dilaton is constant and all other fields vanish, φ = φ0 = const, C0 = Bα = 0.18

The β-deformed solution19 given in [22] reads

g10 = `2

{
gAdS5 +

sin2 θ1 sin2 θ2

324f
dψ2+

1

6

(
dθ2

1 +dθ2
2

)

+G
[
h

(
dφ1+

cosθ1 cosθ2

9h
dφ2+

cosθ1

9h
dψ

)2

+
f

h

(
dφ2+

cosθ2 sin2 θ1

54f
dψ
)2
]}

,

e2φ = e2φ0G ,

B+ = 2γ`4Gf
(

dφ1+
cosθ1 cosθ2

9h
dφ2+

cosθ1

9h
dψ

)
∧
(

dφ2+
cosθ2 sin2 θ1

54f
dψ

)
,

B−=
κγ

54
cosθ1 sinθ2 dθ2∧dψ ,

F fl =κG volSE , (4.54)

18The axion C0 is set to zero for simplicity, although any constant value would be allowed.
19This is a solution for a real deformation β. The generalisation to a complex deformation is straightfor-

ward and amounts to an SL(2,R) rotation.
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where `4 = κ
4 eφ0 and γ is a real parameter. Moreover one has the functions

G−1 = 1 + 4γ2`4f ,

h =
cos θ2

1

9
+

sin2 θ1

6
, f =

1

54

(
cos2 θ2 sin2 θ1 + cos2 θ1 sin2 θ2

)
+

1

36
sin2 θ1 sin2 θ2 .

(4.55)

4.3.2 The β-deformation in generalised geometry

We next show that the type IIB β-deformation has a very simple interpretation in gen-

eralised geometry as the E6(6) action by a bi-vector with components along the two U(1)

isometries commuting with the Reeb vector.20 For the T 1,1 metric (4.52), these corre-

spond to the rotations by angles φ1 and φ2. Then the β deformed solution is generated by

the bivector

βα =

(
0

β

)
=

(
0

−2γ ∂φ1 ∧ ∂φ2

)
, (4.56)

where γ is a real constant. This acts on a generalised vector V = v + λα + ρ + σα in the

adjoint of E6(6) as (see (A.9)):

V ′ = eβ · V = V + β · V
= (v − εαββαyλβ) + (λα + βαyρ) + (ρ+ εαββ

αyσβ) + σα . (4.57)

In particular it is easy to show that the deformation (4.56) maps the generalised vector

KA, (4.26), defining the generalised SU(2) structure into new generalised vectors

K ′0 = ξ ,

K ′i =
1√
2

[rβy (η ∧ ji) + η ∧ ji] i = 1, 2, 3 ,

K ′4 =
1√
2

[−βyη + n η + βy (η ∧ C)− r vol− n η ∧ C] ,

K ′5 =
1√
2

[βyη − r η + βyvol− n vol + r η ∧ C] ,

K ′6 =
1√
2

[−βyη + n η + βy (η ∧ C) + r vol− n η ∧ C] ,

K ′7 =
1√
2

[βyη − r η − βyvol + n vol + r η ∧ C] , (4.58)

that are still globally defined. Since the new KA, A = 0, . . . , 7, are obtained from the origi-

nal ones by an E6(6) transformation, they still satisfy the conditions (3.8), (3.10) with n = 2,

and therefore define a generalised SU(2) structure. Moreover, evaluating the generalised Lie

derivative between them, one can check that they satisfy exactly the same algebra (4.30)

as the original generalised vectors associated with the Sasaki-Einstein structure.

We conclude that there exists a consistent truncation on the β-deformed geometry,

which leads to the very same five-dimensional half-maximal gauged supergravity obtained

via reduction on Sasaki-Einstein manifolds.
20Similarly, the β-deformation of AdS4 solutions to M-theory is generated by a tri-vector in E7(7) gener-

alised geometry, see [62].
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To compute the algebra for the deformed generalised vectors it is helpful to make

an explicit choice of parametrisation for the SU(2) structure on T 1,1. We introduced the

coframe one-forms

e1 =
1

3
(dψ + cos θ1dφ1 + cos θ2dφ2) , e2 =

1√
6

(
cos

ψ

2
sin θ1dφ1 − sin

ψ

2
dθ1

)
,

e3 =
1√
6

(
sin

ψ

2
sin θ2dφ2 + cos

ψ

2
dθ2

)
, e4 =

1√
6

(
cos

ψ

2
sin θ2dφ2 − sin

ψ

2
dθ2

)
,

e5 =
1√
6

(
sin

ψ

2
sin θ1dφ1 + cos

ψ

2
dθ1

)
, (4.59)

such that the Sasaki-Einstein metric (4.52) is gSE =
∑5

a=1(ea)2, and the SU(2) struc-

ture (4.15) is given by

ξ = −3 ∂ψ , η = −e1 ,

j1 = e24 + e35 , j2 = e23 − e45 , j3 = e25 − e34 .
(4.60)

The RR four-form potential satisfying (4.19) can be written as

C = −1

6
κψ j3 ∧ j3 . (4.61)

For completeness we can also list the β-deformed generalised dual vectors

K∗′0 = η − nβyη ,

K∗′i = − 1√
2

(
ĵi ∧ ξ − β ∧ ĵi ∧ ξ

)
, i = 1, 2, 3 ,

K∗′4 =
1√
2

(
−r̂ ξ + n̂ Cyv̂ol− β ∧ Cyv̂ol + n̂ v̂ol

)
,

K∗′5 =
1√
2

(
n̂ ξ + r̂ Cyv̂ol− β ∧ ξ + r̂ v̂ol

)
,

K∗′6 =
1√
2

(
r̂ ξ + n̂ Cyv̂ol− β ∧ Cyv̂ol + n̂ v̂ol

)
,

K∗′7 =
1√
2

(
−n̂ ξ + r̂ Cyv̂ol + β ∧ ξ + r̂ v̂ol

)
. (4.62)

As for the Sasaki-Einstein case, the inverse generalised metric is computed by plugging

the β-deformed generalised vectors and their duals in (3.33). The computation is long but

relatively straightforward. Comparing the result with (A.23), we can then extract the

supergravity fields describing the β-deformed solution. We illustrate here the main steps.

From (A.25) one finds that the deformed solution has trivial warp factor

e∆′ = (detH)−1/20 = 1 . (4.63)

The inverse metric (G−1)mn = gmn reproduces the metric in (4.54),

g′5 =
1

6

∑

i=1,2

(dθ2
i +G sinθidφ

2
i )+

1

9
G(dψ+cosθ1dφ1+cosθ2dφ2)2+

γ2

81
G sin2 θ1 sin2 θ2dψ2 ,

(4.64)

– 33 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
7

which we have written in a way that will make the comparison with the truncation ansatz

easier. The relation

B′αmn = Gm[p(G
−1)pαn] , (4.65)

gives the NS and RR two-form potentials

B′+ = γ G
[
2fdφ1 ∧ dφ2 +

1

27
(sin2 θ1 cos θ2 dφ1 − sin2 θ2 cos θ1 dφ2) ∧ dψ

]
,

B′− = −κ γ
54

sin θ1 sin θ2 dθ1 ∧ dθ2 . (4.66)

While the NS two-form is exactly the same as in (4.54), the RR two-form is related to the

one of [22] by a gauge transformation B−LM = B′− + dΛ with Λ = −γκ
54ψ cos θ1 sin θ2dθ2.

Next we use the component (G−1)α βmn in (A.23) to extract the axio-dilaton

e−φ
′
hαβ =

1

5

[
(G−1)mn(G−1)α βnm + (G−1)mαn(G−1)nβm

]
=

(
1 0

0 G−1

)
. (4.67)

From (A.19) we see that C0 is zero (as we set it to zero in the undeformed solution) and the

dilaton reproduces the one in the solution of [22]. Finally, from the component (G−1)mnpq
we find the four-form potential

C ′ =
κψ

108
G
[
− γ2

54
sin θ1 sin θ2

(
cos θ2 sin2 θ1dφ1 − cos θ1 sin2 θ2 dφ2

)
∧ dθ1 ∧ dθ2 ∧ dψ

+
(
1 + 2γ2f

)
dθ1 ∧ dθ2 ∧ dφ1 ∧ dφ2

]
, (4.68)

which gives the five-form of [22],

F ′5 ≡ dC ′ +
1

2

(
B′+ ∧ dB′− −B′− ∧ dB′+

)
= G κ volSE , (4.69)

where volSE is the T 1,1 volume form in the undeformed solution.

An equivalent way to compute the generalised metric for the deformed background is

to act with a β-deformation on the generalised metric of the Sasaki-Einstein solution. We

consider the action of a nilpotent bivector, β∧β = 0. This is not the most general bivector

deformation, but it is enough to describe the β-deformation of Lunin and Maldacena. The

transformed metric is

G′−1 = eβ ·G−1 · e−β = G−1 + β ·G−1 −G−1 · β − β ·G−1 · β . (4.70)

For the purpose of extracting the type IIB supergravity fields, we will only need the fol-

lowing components of the β-transformed generalised metric

(G′−1)mn = (G−1)mn−βmpα (G−1)αnp +(G−1)mγ
pβ

pn
γ −βmpα (G−1)αγpq β

qn
γ ,

(G′−1)mγn = (G−1)mγn+
1

2
(G−1)mnpqβ

γ pq−βmpα (G−1)αγpn ,

(G′−1)αγmn = (G−1)αγmn+
1

2
βαpq(G−1)mpq

γ
n+

1

2
(G−1)αmnpqβ

γ pq+
1

4
βαpq(G−1)mpqnrsβ

γ rs ,

(G′−1)mnpq = (G−1)mnpq−βrsα (G−1)mα
npqrs . (4.71)
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Plugging in the formulae above the metric, dilaton and four-form potential of the AdS5 ×
T 1,1 solution and the form (4.56) of the bivector β, we recover exactly the expressions for

the different fields of the β-deformed solution discussed above.

In the specific example of T 1,1, one can also include the β deformation of the generalised

vector K8 introduced in the previous section

K ′8 = Φ ∧ η + βy(η ∧ Φ)n . (4.72)

The β-transformed vector should still preserve the algebra and, after also introducing three-

form fluxes, the corresponding enhanced truncation contains the β-transformed Klebanov-

Strassler solution discussed in the appendix of [22].

4.3.3 The truncation ansatz

The truncation ansatz for the vectors is obtained substituting in (3.34) the generalised

vectors defining the generalised SU(2) structure on the beta-deformed T 1,1 are given

in (4.58), (4.62)

hµ = A0
µ ξ −

1√
2

(
A4
µ +A6

µ

)
βyη ,

B+
µ,1 =

1√
2

(
A4
µ +A6

µ

)
η ,

B−µ,1 = − 1√
2

(
A5
µ +A7

µ

)
η +

1√
2
Aiµ βy (ji ∧ η) ,

Cµ,3 =
1√
2
Aiµ ji ∧ η −

1√
2

(
A4
µ +A6

µ

)
βy
(
η ∧ C fl

)
+

1√
2

(
A5
µ −A7

µ

)
βy vol ,

B̃+
µ,5 = − 1√

2

(
A5
µ −A7

µ

)
vol− 1√

2

(
A4
µ +A6

µ

)
C fl ∧ η ,

B̃−µ,5 = − 1√
2

(
A4
µ −A6

µ

)
vol +

1√
2

(
A5
µ +A7

µ

)
C fl ∧ η . (4.73)

To give the ansatz for the two-forms one has to compute the tensors JA in the bundle

N ' detT ∗M ⊗ E∗. As for the Sasaki-Einstein truncation, these are obtained acting on

the dual generalised vectors K∗ with the internal volume, as in (3.16),

J0 = η ⊗ vol + r̂ βy(η ⊗ vol) ,

J i =
1√
2

(r̂ βyji + ji) ,

J4 =
1√
2

(
−n̂+ βyC fl + r̂ vol4 − n̂ C fl

)
,

J5 =
1√
2

(
−r̂ + βyvol4 − n̂ vol4 − r̂ C fl

)
,

J6 =
1√
2

(
n̂− βyC fl + r̂ vol4 + n̂ C fl

)
,

J7 =
1√
2

(
r̂ + βyvol4 − n̂ vol4 + r̂ C fl

)
, (4.74)
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where again we are using vol4 = ξy vol. Then equating the components of the generalised

tensor (4.14) with the linear combination BµνAJA, we find

Bµν,0 + =
1√
2

(Bµν 7 − Bµν 5)− 1√
2

(Bµν 1 βyj1 + Bµν 2 βyj2) ,

Bµν,0− =
1√
2

(Bµν 6 − Bµν 4) ,

Cµν, 2 =
1√
2

[
Bµν i ji +

(
Bµν 4 − Bµν 6

)
βyC fl +

(
Bµν 5 + Bµν 7

)
βyvol4

]
,

B̃µν,4 + = −Bµν 0 βy(η ⊗ vol) +
1√
2

(Bµν 4 + Bµν 6) vol4 +
1√
2

(Bµν 7 − Bµν 5)C fl ,

B̃µν,4− = − 1√
2

(Bµν 5 + Bµν 7) vol4 +
1√
2

(Bµν 6 − Bµν 4)C fl . (4.75)

The generalised metric contains the ansatz for the internal fields, metric and form

potential, the dilaton and the warp factor. Here we give the final result for the internal

and mixed components of the ten-dimensional metric (4.8):

gmnDy
mDyn = F−1

[1

3
e2A1 (γf1 dθ1 + γf2 dθ2 + f0Dψ)2 +

1

3
eA1E1Dψ

2

+
1

6
eA2E2

(
dθ2

1 + dθ2
2

)
+

9

2
eA1+A2

(
sin2 θ1Dφ

2
1 + sin2 θ2Dφ

2
2

)

+
1

3
e2A1 (3 cos θ1Dφ1 + 3 cos θ2Dφ2 + f0Dψ)2

+ γ eA1 sin2 θ1 sin2 θ2

( ∑

i=1,2

gi sin θiDφi dθ1 +
∑

i=1,2

hi sin θiDφi dθ2

)]
,

(4.76)

where the differentials D contain the shift by the five-dimensional vectors

Dψ = dψ + 3A0 ,

Dφ1 = dφ1 +

√
2

3
γ cos θ2(A4 +A6) ,

Dφ2 = dφ2 −
√

2

3
γ cos θ1(A4 +A6) . (4.77)

For simplicity of notation we defined A1 = 8
3(U+V ), A2 = 2

3(7U+V ), A3 = 1
3(3φ−8U+4V )

as well as the functions

b+12 = b1 cosψ + b2 sinψ ,

b−12 = b2 cosψ − b1 sinψ ,

f0 = 3− γ b+12 sin θ1 sin θ2 ,

f1 = b−12 cos θ1 sin θ2 + b3 sin θ1 cos θ2 ,

f2 = b−12 sin θ1 cos θ2 − b3 cos θ1 sin θ2 ,

F = 3 eA1f2
0 + γ2eA2+A3

[
2 eA1

(
cos2 θ1 sin2 θ2 + sin2 θ1 cos2 θ2

)
+ 3 sin2 θ1 sin2 θ2 eA2

]
,

(4.78)
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and

g1 = (3 eA2 + 2 eA1 cot2 θ1)b−12 + 2 eA1b3 cot θ1 cot θ2 ,

g2 = (3 eA2 + 2 eA1 cot2 θ2)b3 + 2 eA1b−12 cot θ1 cot θ2 ,

h1 = (3 eA2 + 2 eA1 cot2 θ1)b3 − 2 eA1b−12 cot θ1 cot θ2 ,

h2 = (3 eA2 + 2 eA1 cot2 θ2)b−12 − 2 eA1b3 cot θ1 cot θ2 ,

E1 = e2A2+A3γ2 sin2 θ1 sin2 θ2 − eA1 f2
0 ,

E2 = F + 3γ2eA1
(
(b−12)2 + b23

)
sin2 θ1 sin2 θ2 . (4.79)

In line with the results of [19], there exists a subtruncation to minimal five-dimensional

gauged supergravity, that has recently been made explicit in [23]. The bosonic sector of

minimal five-dimensional supergravity is made of the metric, a single vector (the gravipho-

ton) and no scalars. It is obtained from the truncation derived here, by setting all two-form

and scalar fields to zero except for eU = eV = `, taking

A1 = A2 = A4 = A5 = A6 = A7 = 0 , (4.80)

and identifying the other two gauge fields with the graviphoton A as

A = 3A0 = −A3 . (4.81)

In this case it is easy to see that the generalised metric is the same as for the background

solution, so that the internal fields are not modified. The ansatz for the full ten-dimensional

metric becomes

g10 = gµν dxµdxν+
1

6

(
dθ2

1 +dθ2
2

)
+
G
6

(
sin2 θ1dφ2

1+sin2 θ2dφ2
2

)

+
G
9

(
dψ+cosθ1dφ1+cosθ2dφ2+3A0

)2
+
γ2

81
G sin2 θ1 sin2 θ2

(
dψ+3A0

)2
, (4.82)

where we have set ` = 1. Note that the purely internal part coincides with (4.64).

5 M-theory truncations including a Maldacena-Núñez AdS5 solution

In this section, we construct a generalised U(1) ⊂ USp(4) structure on a manifold M6 given

by a fibration of S4 over Σ, where Σ is a constant curvature Riemann surface. Specifically,

Σ can be the hyperbolic plane H2, the flat space R2, a sphere S2, or a quotient thereof.

We argue that in each case the generalised structure provides a consistent truncation to

five-dimensional half-maximal gauged supergravity coupled to three vector multiplets and

with a U(1)×ISO(3) gauging. The embedding tensor depends on the curvature of Σ. When

Σ is negatively curved, there is a fully supersymmetric AdS5 solution which uplifts to the

AdS5 ×w M6 solution of [24] preserving 16 supercharges.21 This describes the low-energy

limit of M5 branes wrapped on Σ, which is an N = 2 SCFT4, and our truncation captures

some deformations of such theory.

21The symbol ×w denotes the warped product.
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Generic AdS5 ×w M6 solutions of eleven-dimensional supergravity preserving half-

maximal supersymmetry were classified in [63]. It was shown in [64] that for all such solu-

tions, there is a consistent truncation to pure half-maximal supergravity with U(1)×SU(2)

gauging, such that the supersymmetric AdS5 vacuum uplifts to the AdS5 ×w M6 solution.

In section 2 we discussed how this statement follows from restricting to the singlet sector of

the USp(4) generalised structure on M6. The results of this section show that, at least for

the specific M6 geometry of [24], the generalised structure is further reduced to U(1) and

correspondingly the truncation can be enlarged to half-maximal supergravity with three

vector multiplets.

We note that the existence of such a consistent truncation, as well as a detailed analysis

of its sub-truncations and vacua, was very recently proven using a complementary approach

in [25]. These authors considered an explicit truncation directly from seven-dimensional

maximal gauged supergravity. As we will see, the generalised structure we find is indeed

built using the generalised parallelisation on S4 that defines the seven-dimensional maximal

gauged supergravity, thus giving a direct connection to the construction in [25].

5.1 E6(6) generalised geometry for M-theory

We start by recalling some basic notions of E6(6) generalised geometry for M-theory, which is

relevant for dimensional reductions of eleven-dimensional supergravity on a six-dimensional

manifold M . Again we follow the conventions of [55, appendix E].

Under GL(6), the exceptional tangent bundle on M decomposes as:

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M , (5.1)

so that a generalised vector reads

V = v + ω + σ , (5.2)

where v ∈ TM , ω ∈ Λ2T ∗M and σ ∈ Λ5T ∗M . The E6(6) cubic invariant is defined as22

c(V, V, V ) = − 6 ιvω ∧ σ − ω ∧ ω ∧ ω . (5.3)

The bundle N ' detT ∗M ⊗ E∗ similarly decomposes as:

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) , (5.4)

so the sections are the sum of a one-form, a four-form and a tensor made of the product

of a one-form and a volume form.

The eleven-dimensional supergravity fields, that is the metric g11, the three-form

potential Â and its six-form dual ˆ̃A, can be decomposed according to the SO(1, 10) →
SO(1, 4)×SO(6) splitting of the Lorentz group similarly to the discussion in subsection 4.1

22This is 6 times the cubic invariant given in [55].
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for type IIB supergravity:

g11 = e2∆ gµν dxµdxν + gmnDy
mDyn ,

Â =
1

3!
Am1m2m3Dy

m1m2m3 +
1

2
Aµm1m2dxµ ∧Dym1m2 +

1

2
Aµνmdxµν ∧Dym + . . . ,

ˆ̃A =
1

6!
Ãm1...m6Dy

m1...m6 +
1

5!
Ãµm1...m5dxµ∧Dym1...m5

+
1

2 · 4!
Ãµνm1...m4dxµν∧Dym1...m4 + . . . , (5.5)

where Dym = dym − hµ
mdxµ ensures covariance under internal diffeomorphisms, and

∆(x, y) is the warp factor of the external metric gµν(x). We can organise the eleven-

dimensional supergravity fields into the inverse generalised metric on M ,23

GMN ↔ {∆, gmn, Am1m2m3 , Ãm1...m6} , (5.6)

the generalised vectors

AµM = {hµm, Aµmn, Ãµm1...m5 } , (5.7)

and the weighted dual vectors

Bµν M = {Aµνm, Ãµνm1...m4 , g̃µνm1...m6,n} , (5.8)

where as in type IIB we will not need the last term, related to the dual graviton. The

bosonic truncation ansatz is obtained by equating these generalised geometry objects to

the corresponding terms given in section 3.

5.2 Generalised U(1) structure

The internal geometry of the half-maximal AdS5 ×w M6 solution of [24] is constructed as

a fibration of S4 over Σ, where Σ is a negatively curved Riemann surface. This M6 has

a U(1) ⊂ GL(6) structure in conventional geometry. As we will see below, this defines a

consistent truncation to half-maximal supergravity coupled to three vector multiplets. Ex-

plicitly under the embedding SO(2)× SO(5, 3) ⊂ SO(5, 5) ⊂ E6(6) of (3.2), the generalised

tangent space E decomposes as

27 = 10 + 8v0 + 1+ + 1− + 8s+ + 8s− , (5.9)

where 8v and 8s are vector and spinor representations and the subscript denotes the

SO(2) ' U(1) charge. Thus we have nine singlets under U(1), which correspond to the

generalised vectors KA, A = 0, . . . , 8. Under SO(5)× SO(3) these decompose as

1 + 8v = (1,1) + (5,1) + (1,3) ,

Γ(E) 3 K0 ∪ {K1, . . . ,K5} ∪ {K6,K7,K8} .
(5.10)

The explicit form of these vectors is determined by the S4 fibration structure of the M6

geometry. To see how they arise, we will first consider the direct product Σ×S4 and recall

23The precise expression for the inverse generalised metric in terms of the eleven-dimensional supergravity

fields is easily obtained from the conformal split frame given in [35].
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some generalised geometry on S4, and then implement the twist of S4 over Σ. On Σ× S4

we can decomposes the generalised tangent space under GL(2,R)× SL(5,R) ⊂ E6(6) where

GL(2,R) is the structure group of the conventional tangent space on Σ and SL(5,R) ' E4(4)

is the structure group of the generalised tangent space on S4. Explicitly we have

E ' TΣ⊕ (T ∗Σ⊗N4)⊕ (Λ2T ∗Σ⊗N ′4)⊕ E4 ,

27 = (2,1)⊕ (2,5′)⊕ (1,5)⊕ (1,10) ,
(5.11)

where in the second line we denote the SL(2,R)× SL(5,R) representations, and where we

have introduced the generalised bundles on S4

E4 ' TS4 ⊕ Λ2T ∗S4 ,

N4 ' T ∗S4 ⊕ Λ4T ∗S4 ,

N ′4 ' R⊕ Λ3T ∗S4 ,

(5.12)

E4 being the generalised tangent space on S4.

As discussed in [6], on S4 these bundles are parallelisable, that is, they admit global

frames, constructed as follows. Let us parameterise the round four-sphere S4 of radius R

with coordinates Ryi, i = 1, . . . , 5, constrained by the condition δijy
iyj = 1. The metric

and the volume form induced from R5 are

g4 = R2 δijdy
idyj , vol4 =

1

4!
R4 εi1i2i3i4i5 y

i1dyi2 ∧ dyi3 ∧ dyi4 ∧ dyi5 . (5.13)

We can define the generalised frames

Eij = vij +R2 ∗4(dyi ∧ dyj) + ιvijA ∈ Γ(E4) ,

Ei = R dyi − yi vol4 +R dyi ∧A ∈ Γ(N4) ,

E′i = yi +R ∗4dyi + yiA ∈ Γ(N ′4) ,

(5.14)

where vij ∈ Γ(TS4) are the Killing vector fields generating the SO(5) isometries, the Hodge

star ∗4 is computed using (5.13), and the M-theory three-form A is chosen such that

F = dA = 3R−1 vol4 . (5.15)

The frames (5.14) are globally-defined and therefore parallelise the respective bundles.

Furthermore, under the generalised Lie derivative, the Eij generate an so(5) algebra

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) . (5.16)

This parallelisation is the basis of the generalised Scherk-Schwarz reduction of eleven-

dimensional supergravity on S4 [6], which reproduces the well-known consistent truncation

to maximal SO(5) supergravity in seven dimensions [5]. In the generalised Scherk-Schwarz

reduction, the Eij define the truncation ansatz for the seven-dimensional scalar and vector

fields, while the Ei and E′i define the ansatz for the two-form and three-form potentials.
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In the solutions of [24], the internal space is a fibration

S4 M6

Σ

i

π (5.17)

where topologically the sphere is twisted by a U(1) subgroup of the SO(5) isometry group.

Here Σ can be a negatively curved Riemann surface as in [24], but we can also allow it to be

a torus T 2, or a sphere S2. Let the one-forms e1, e2 be an orthonormal co-frame such that

gΣ = (e1)2 + (e2)2 , volΣ = e1 ∧ e2 (5.18)

are the constant curvature metric and compatible volume form on Σ, all of which can be

pulled back to M6 using the projection map π. The twisting of the co-tangent space T ∗Σ
defines a U(1) spin-connection υ on Σ given by

d(e1 + i e2) = i υ ∧ (e1 + i e2) , dυ =
κ

R2
volΣ , (5.19)

where κ = −1 for H2, κ = 0 for R2 and κ = +1 for S2 (and quotients thereof), and for

convenience we are identifying the overall scale of Σ with the radius R of S4. To preserve su-

persymmetry one needs to choose the U(1) twisting of the sphere so that it cancels the U(1)

twisting of the cotangent space. For the half-maximal case one can choose conventions such

that the twisting is the U(1) generated by, for example, the v12 Killing vector that appears in

generalised frame E12. In terms of the embedding in E6(6) we thus have the breaking pattern

E6(6) ⊃ SL(2,R)× SL(5,R) ⊃ SO(2)× SO(5) ⊃ SO(2)× SO(2)× SO(3) ⊃ U(1) , (5.20)

where the final U(1) is the diagonal subgroup of SO(2)×SO(2) ' U(1)2. By calculating the

commutants one can see that this structure indeed corresponds to the case of half-maximal

supersymmetry with n = 3 vector multiplets, as claimed.

Having identified the U(1) structure we can now directly construct the singlet vectors

in the generalised tangent space. Given the decomposition (5.11), we note that these should

come from E12 ∈ Γ(E4), Eαβ ∈ Γ(E4) and volΣ ∧E′α ∈ Γ(Λ2T ∗Σ⊗N ′4) with α, β ∈ {3, 4, 5},
since these are neutral under the U(1) action generated by v12. In addition we get a complex

generalised vector of the form (e1 + ie2) ∧ (E1 + iE2) ∈ Γ(T ∗Σ ⊗ N4) since the twisting

means that the U(1) action on the first term is cancelled by the U(1) action on the second

term. Concretely we find the nine globally defined generalised vectors KA on M6 with

A = 0, . . . , 8:

K0 =
1

2
eΥ · E12 ,

K1 + iK2 = (e1 + ie2) ∧ eΥ · (E1 + iE2) ,

Kα =
1

2
εαβγ eΥ · Eβγ + volΣ ∧ eΥ · E′α ,

K3+α =
1

2
εαβγ eΥ · Eβγ − volΣ ∧ eΥ · E′α ,

(5.21)
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with α = 3, 4, 5 and εαβγ the antisymmetric symbol such that ε345 = 1. Note that each

of the frame vectors on S4 is twisted by the exponentiated SO(5) adjoint action (defined

in [55, appendix E.1]) of an element of the e6(6) ⊕ R algebra:24

Υ = −Rυ ×ad E12

= −R
[
v12 ⊗ υ + υ ∧ ∗4(R2 dy1 ∧ dy2) + υ ∧ ιv12A

]
,

(5.22)

where the tensor product ×ad contains a projection on the adjoint representation and υ is

the spin-connection on Σ. Concretely one finds

eΥ · E12 = E12 ,

eΥ · (E1 + iE2) = (E1 + iE2) + iRυ ∧ (E′1 + iE′2) ,

1

2
εαβγ eΥ · Eβγ =

1

2
εαβγEβγ +Rυ ∧ Eα ,

eΥ · E′α = E′α +
1

2
R2 εαβγ υ ∧ dyβ ∧ dyγ .

(5.23)

Note that the last term in the fourth line drops out when wedged with volΣ in Kα and

K3+α above. One can check that these KA do satisfy the conditions (3.8), (3.10) for a

generalised U(1) structure, where K1, . . .K5 are the negative norm vectors transforming

in the fundamental representation of SO(5), while the K3+α are the positive norm ones

forming an SO(3) triplet. Since the frame vectors on S4 have been twisted by the same

element Υ of E6(6), one can actually check the (3.8), (3.10) using the untwisted basis. In

particular, the twisting implies that, since dEi = 0 and dE′i = 1
R Ei,

d
[
eΥ · (E1 + iE2)

]
= −i υ ∧ eΥ · (E1 + iE2) + volΣ ∧(. . .) , (5.24)

which just cancels the exterior derivative of e1 + ie2 in (5.19) giving

d(K1 + iK2) = 0 . (5.25)

The reason for the twisting by Υ is straightforward. Given the fibration (5.17), al-

though vectors on S4 push forward via the inclusion map i : S4 →M6, we need a choice of

U(1) connection in order to push forward forms on S4 to globally defined forms on M6. If

ψ is a coordinate on S5 such that v12 = R−1∂/∂ψ this means replacing dψ in any form on

S4 with dψ + υ. This is exactly what the action of the first term in (5.22) does. However,

in the seven-dimensional consistent truncation on S4 the U(1) gauging actually comes from

E12 not just the leading isometry term v12. Thus to match with the construction in [24],

we should actually twist by the connection in (5.22), where the effect of the extra terms

is to turn on additional F flux. This is the generalised geometry counterpart of the topo-

logical twist of the M5-brane (2, 0) theory on Σ. Our construction should also make it

clear that the truncation we are going to define can equivalently be seen as a truncation of

seven-dimensional maximal supergravity on Σ.

24This is reminiscent of the construction in the context of O(d, d) generalised geometry in [65].
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5.3 The gauge algebra and the embedding tensor

We now compute the algebra generated by the twisted generalised vectors KA in (5.23).

The M-theory generalised Lie derivative on M6 is defined as:

LV V
′ = Lvv′ +

(
Lvω′ − ιv′dω

)
+
(
Lvσ′ − ιv′dσ − ω′ ∧ dω

)
. (5.26)

In order to perform the computations, we find it convenient to use a parameterisation of

the generalised vectors in terms of angular coordinates on S4. This is given in appendix B.

We find that the only non-vanishing generalised Lie derivatives are:

LK0(K1 + iK2) =
i

2R
(K1 + iK2) , (5.27)

where we crucially used (5.25), and

LRαRβ = − 1

R
εαβγRγ , LRαTβ = LTαRβ = − 1

R
εαβγTγ , LTαTβ = 0 , (5.28)

where we introduced the combinations

Rα :=
1

2
[(1− κ)Kα + (1 + κ)K3+α] ,

Tα :=
1

2
[Kα −K3+α] , α = 1, 2, 3 . (5.29)

It follows that K0 generates a U(1) under which K1 + iK2 is charged, and Rα, Tα generate

the ISO(3) algebra, with Rα generating the SO(3) rotations and Tα generating the R3

translations. As is apparent from the form of the Rα, the way the SO(3) subgroup of

ISO(3) is embedded in SO(5, 3) depends on the value of κ. If κ = −1 then SO(3) ⊂
SO(5) ⊂ SO(5, 3), if κ = 0 then SO(3) is the diagonal subgroup of SO(3, 3) ⊂ SO(5, 3),

and if κ = +1 then SO(3) is the commutant of SO(5) in SO(5, 3).

Since all generalised Lie derivatives yield a combination of the KA with constant coeffi-

cients, the consistent truncation will go through, giving half-maximal gauged supergravity

in five dimensions coupled to three vector multiplets. Recalling (3.18), (3.20), we can deter-

mine the embedding tensor. We find that the non-trivial embedding tensor components are:

ξ12 = − 1

2R
,

fαβγ = −3 + κ

2R
εαβγ , fαβ(γ+3) = −1 + κ

2R
εαβγ ,

fα(β+3)(γ+3) =
1− κ
2R

εαβγ , f(α+3)(β+3)(γ+3) =
3− κ
2R

εαβγ .

(5.30)

We note that these indeed agree with the embedding tensor derived in [25].

When κ = −1, the gauging satisfies the conditions for a half-maximal AdS5 vacuum

spelled out in [66]. This supersymmetric AdS5 vacuum uplifts to the AdS5 ×w M6 solu-

tion of [24]. In [67] the general conditions for five-dimensional half-maximal supergravity

to admit supersymmetric flows between AdS fixed points were given. Inspection of the

gauging (5.30) shows that the consistent truncation cannot admit such a flow, the basic

reason being that the way S4 is twisted over the Riemann surface is fixed in our truncation

ansatz. It follows that the truncation cannot describe a flow from the AdS5 vacuum pre-

serving 16 supercharges to another supersymmetric vacuum. Nevertheless, it may contain

other interesting solutions that it might be worth exploring.
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5.4 Recovering the truncation to pure half-maximal supergravity

The general formulae of section 3.3 provide an algorithmic construction of the full

bosonic truncation ansatz for eleven-dimensional supergravity on M6, leading to the five-

dimensional half-maximal supergravity coupled to three vector multiplets described above.

In the following we make this completely explicit for a sub-truncation of that theory: we

recover the truncation to pure half-maximal supergravity given in [64]. This is only possible

when Σ is a negatively curved Riemann surface. Indeed in order to be able to throw away

the three vector multiplets consistently and be left with just the gravity multiplet we need

the gauge algebra to close on the first six generalised vectors, K0, . . . ,K5, so that we have

a USp(4) generalisd structure with singlet torsion. From (5.30) we see that this requires

κ = −1. The gauging thus obtained is SU(2)×U(1) and the half-maximal supergravity is

the one dubbed N = 4+ in [68].

In order to determine how the only scalar field Σ of pure half-maximal supergravity

embeds in the eleven-dimensional fields we evaluate the inverse generalised metric (3.40),

where we set VaA = δa
A as we are now truncating all other scalar fields. In particular, from

(G−1)mn = e2∆gmn ,

(G−1)mnp = e2∆ gmqAqnp , (5.31)

we can extract the internal metric and the internal part of the three-form potential, after

having computed the warp factor ∆. The latter is given by the general formula [36]

volG ≡ (detGMN )−
9−d

2 dimE =
√

det gmn e(9−d)∆ , (5.32)

where we need to take d = 6 and dimE = 27.25 Equivalently we can write:

e9∆ = (det G−1MN )
1
18 (detG−1mn)

1
2 . (5.33)

We explicitly evaluate the inverse generalised metric and express it in terms of the M6

coordinates introduced in appendix B. In this way we find that (5.33) gives for the warp

factor:

e6∆ = ∆̄ , (5.34)

where we introduced the function

∆̄ = cos2 θ +
Σ3

2
√

2
sin2 θ . (5.35)

Inverting (G−1)mn, we obtain the internal metric gmn = e2∆Gmn, which reads

g6 = R2∆̄1/3

[√
2

Σ

(
dθ2 + gΣ

)
+

√
2

Σ∆̄
sin2 θ (dψ + υ)2 +

Σ2

2∆̄
cos2 θ gS2

]
, (5.36)

where gΣ is the uniform metric on Σ and gS2 is the unit metric on the 2-sphere inside S4.

The second line of (5.31) gives for the internal part of the three-form potential:

A =
R3

2∆̄
cos3 θ

[
−2∆̄ υ +

(
Σ3

√
2
− 2

)
sin2 θ (dψ + υ)− 6ψ tan θ ∆̄ dθ

]
∧ volS2 , (5.37)

25We correct a typo in footnote 3 of [36]: detG appearing there should actually be (detG)1/2.
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whose field strength is

dA=
R3 cos3 θ

2∆̄2

[((√
2Σ3+2∆̄

)
tanθdθ+

1√
2

sin2 θd
(
Σ3
))
∧(dψ+υ)+

2∆̄

R2
volΣ

]
∧volS2 .

(5.38)

In this way we have obtained the embedding of the five-dimensional scalar Σ into the

eleven-dimensional supergravity fields. We note that the value of Σ giving the AdS5×wM6

solution of [24] is Σ = 21/6.

We can go on and use our general formulae to determine the embedding of the

five-dimensional vector and two-form fields. For the mixed components of the eleven-

dimensional metric we get

hµ
m =

1

2
A0
µ v

m
12 +

1

2
εαβγAαµ vmβγ , (5.39)

where we recall that α = 3, 4, 5. Then using (5.5) we reconstruct the full eleven-dimensional

metric:

g11 = ∆̄1/3 g5 +R2∆̄1/3

[√
2

Σ
(dθ2 + gΣ) +

√
2

Σ∆̄
sin2 θ

(
dψ + υ − 1

2
A0

)2

+
Σ2

2∆̄
cos2 θ ĝS2

]

(5.40)

where A0 gauges the shifts of the angle ψ, while ĝS2 denotes the metric on S2 where

the SO(3) isometries are gauged by A3,A4,A5. When S2 is described by constrained

coordinates such that µαµα = 1, this reads

ĝS2 = DµαDµα , (5.41)

with

Dµα = dµα − 1

2
εβγδAδ vαβγ , (5.42)

vαβγ being the S2 Killing vectors v45, v53, v34 expressed in the µα coordinates.

In order to determine the remaining part of the three-form potential we compute

AA∧KA|2 =
1

2
R2 cos3 θA0∧volS2

+Re
[
Reiψ(A1−iA2)∧(e1+ie2)∧(cosθdθ+i sinθ (dψ+υ))

]

+Aα∧
[
−R2 d(cosθµα)∧(dψ+υ)+R2 d

[
µαd

(
ψ cos3 θ

)]
+cosθµαvolΣ

]
,

BA∧JA|1 =
R

2

[
Re
(

i (B1−iB2)∧(e1+ie2) sinθ eiψ
)

+Bα∧d(cosθµα)
]
, (5.43)

where KA|2 and JA|1 denote the 2-form and 1-form parts of KA and JA, respectively

(cf. appendix B). Then the full eleven-dimensional three-form potential is

Â = A+AA ∧KA|2 + BA ∧ JA|1 , (5.44)

where we also need to implement the shifts dψ → dψ − 1
2A0 and dµα → Dµα so as to

achieve covariance under internal diffeomorphisms.
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We can now compare with the consistent truncation ansatz given in [64]. To this

extent, we redefine our scalar Σ into the scalar X appearing there as Σ = 21/6X−1, and fix

the scale of M6 as R = 1. Then the eleven-dimensional metric (5.40) precisely matches the

one given in [64, eq. (3.1)].26 We also checked that the eleven-dimensional four-form field

strength matches the corresponding one given in [64] after the five-dimensional one-form

and two-form potentials are set to zero. Checking agreement of the remaining part of the

eleven-dimensional four-form requires a little further work. Indeed our four-form, being

constructed from the three-form potential, automatically satisfies the Bianchi identity,

while the Bianchi identity of the four-form given in [64] is not automatic and defines part

of the lower-dimensional equations of motion. Moreover in the embedding tensor formalism

adopted in this paper one keeps the vector fields as propagating degrees of freedom, while

the two-form potentials are auxiliary, non-propagating fields introduced just to ensure

closure of the gauge algebra; on the other hand, in [64] two of the six vector fields in the

half-maximal gravity multiplet are dualised into propagating two-forms and do not appear

in the five-dimensional Lagrangian. These two descriptions are related by dualisation of

some of the fields.27 One starts from the on-shell duality between the eleven-dimensional

three-form and six-form potentials Â and ˆ̃A,

∗11 dÂ+
1

2
Â ∧ dÂ = d ˆ̃A . (5.45)

Plugging our truncation ansatz in, this yields a set of duality relations between five-

dimensional fields, in particular between one- and two-form potentials. Using these re-

lations we can trade some of the fields appearing in our three-form potential for those

appearing in the dual six-form. In particular, it is possible to remove the dBα, α = 3, 4, 5,

from dÂ and replace them by ∗ dAα (the reason being that in the expression for Â given

by (5.43), (5.44), Bα wedges a closed one-form, implying that in dÂ only dBα, and not Bα,

appears). On the other hand, in dÂ the two-forms B1,B2 are Stückelberg-coupled to the

one-forms A1,A2 as d(A1 − iA2) − i
2(B1 − iB2) and cannot be removed. If desired, one

could instead dualise A1− iA2 into B1− iB2 so that the latter becomes propagating in the

five-dimensional theory, matching in this way the description of [64].

6 Conclusions

In this paper we have discussed how generalised geometry provides a formalism to under-

stand consistent truncations of string and M-theory preserving varying amounts of super-

symmetry, including non-supersymmetric cases.

When the generalised structure group GS is just the identity, and the generalised

intrinsic torsion is a GS-singlet, one has a generalised Leibniz parallelisation [6] and can

perform a generalised Scherk-Schwarz reduction; this is a consistent truncation preserving

maximal supersymmetry. When instead GS is non-trivial, and the intrinsic torsion is still a

26After making the obvious identifications of the supergravity gauge fields and of the connection one-form

on Σ, as well as a trivial, constant rescaling of the external metric.
27See also [29, section 3.2] for a discussion of the procedure leading to select the relevant degrees of

freedom from dual pairs in a related context.
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GS-singlet, one obtains a consistent truncation preserving only a fraction of supersymmetry.

As we discussed in section 2, the matter content of the reduced theory is obtained by

evaluating the commutant of GS in Ed(d) in the relevant representations, while the gauging

follows from the algebra of GS-singlets under generalised diffeomorphisms. In this way the

lower-dimensional theory is completely determined. Our formalism is completely general,

extending to less intuitive examples than the case where the consistent truncation is based

on an ordinary GS-structure. For instance we can allow for a non-trivial warp factor, or use

generalised tensor fields whose fixed-rank components can vanish at points on the internal

manifold, but the full generalised tensor is nowhere vanishing.

After illustrating the general principles, in section 3 we have discussed in detail trun-

cations to five dimensions preserving half-maximal supersymmetry. These are based on

SO(5 − n) ⊆ USp(4) ⊂ E6(6) structures. In this case, the generalised structure is entirely

characterised by a set of generalised vectors KA, A = 0, 1, . . . , 5 + n, and the truncation

contains n vector multiplets. The sub-algebra of generalised diffeomorphisms generated by

the KA determines the gauging of the five-dimensional supergravity. We have given an

algorithmic prescription to construct the full bosonic truncation ansatz. In particular, we

provided an expression for the generalised metric on the internal manifold in terms of the

KA, and using this we specified the scalar field ansatz for the truncated theory.

We gave evidence for two new consistent truncations preserving half-maximal super-

symmetry: the first is obtained from type IIB supergravity on β-deformed toric Sasaki-

Einstein five-manifolds, and the second from eleven-dimensional supergravity on half-

maximal Maldacena-Núñez geometries [24] (the latter recently independently derived using

the truncation from seven-dimensional maximal supergravity in [25]). In both cases, we

showed how the generalised geometry completely characterises the truncated theory. For

the type IIB reduction we also discussed the bosonic truncation ansatz, while for the

M-theory one we recovered the ansatz for the sub-truncation to pure half-maximal super-

gravity previously given in [64].

There are many other possible truncations that it would be intriguing to explore using

our formalism. We sketch here some possibilities directly related to the cases we have

studied. In type IIB E6(6) geometry, it would be interesting to construct a generalised

U(1) structure on the Y p,q family [69] of Sasaki-Einstein manifolds, and check if it admits

a U(1)-singlet intrinsic torsion. If so, this would give a half-maximal consistent truncation

on Y p,q manifolds extending the one based on generic Sasaki-Einstein SU(2) structure by

one Betti vector multiplet, as in the Y 1,0 ' T 1,1 truncation of [51, 52]. For this to go

through, one would need the full flexibility of generalised geometry in order to circumvent

the issue pointed out in [70] relevant working with ordinary G-structures.

In M-theory, it would be nice to extend the construction presented in section 5, which is

based on the geometry of [24], to the general ansatz for half-maximal AdS5 solutions of [63].

In particular, this would provide new consistent truncations containing the AdS5 solutions

of [71], describing M5-branes wrapped on Riemann surfaces with punctures. A similar con-

struction is conceivable for the supergravity description of D3-branes wrapped on Riemann

surfaces [24], however in this case one would need to use the more complicated type IIB

E8(8) generalised geometry formalism, which is not fully developed yet (though see [72, 73]).

– 47 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
7

M5-branes wrapped on Riemann surfaces also give rise to AdS5 ×w M6 supergravity

solutions preserving just one quarter of the supersymmetry, which are dual to N = 1

four-dimensional SCFTs [24, 74]. Our general analysis can be used to predict the form of

the corresponding consistent truncations. For the quarter-supersymmetric solution of [24],

the structure is again U(1) but embedded in a different way in E6(6). It is easy to see

that in this case, there are only two singlet spinors, and so the truncation is to minimal

five-dimensional supergravity. The scalar moduli space is

Mscal =
CE6(6)

(U(1))

CUSp(8)(U(1))
= R+ × SO(3, 1)

SO(3)
× SU(2, 1)

SU(2)×U(1)
, (6.1)

and there are five singlet vectors in the generalised tangent space. We see that the trun-

cated theory is minimal five-dimensional supergravity coupled to four vector multiplets

and a single hypermultiplet. The first factor in (6.1) gives the homogeneous very special

real geometry describing the four additional vector multiplets, while the second factor is

the standard homogeneous quaternionic space for a single hypermultiplet. The singlet

generalised vectors KA are again constructed starting from the frames on S4 but now the

relevant twist connection is

Υ =
1

2
υ ×ad (E14 − E23) . (6.2)

The details of this truncation will be discussed in future work. Although none of the

truncations constructed in this way are expected to contain the domain wall solutions

connecting the different AdS5×wM6 supergravity solutions (which are dual to conjectured

RG flows between the corresponding SCFTs), the generalised geometry approach may

suggest how to make the twist “dynamical” so that it can evolve along the flow.

Half-maximal consistent truncations of massive type IIA supergravity can also be en-

gineered by combining the formalism of the present paper with the one of [56, 75], where

the maximally supersymmetric case was discussed.

Besides consistent truncations, a physically relevant motivation for developing half-

maximal structures is to study the moduli space of half-maximal AdS solutions to super-

gravity theories, which is dual to the conformal manifold (i.e. the space of exactly marginal

deformations) of SCFTs with eight Poincaré and eight conformal supercharges, in the

large N limit. In the quarter-supersymmetric case, a study of marginal deformations us-

ing generalised geometry was done in [62, 76]. The additional constraint of half-maximal

supersymmetry may allow to go further in the analysis. In particular, it may allow one to

compare in great detail with field theory results, where the Kähler metric on the conformal

manifold follows from the S4 partition function [77], which is computable using supersym-

metric localization. It would also be interesting to compare with the results found in [66]

by means of a purely five-dimensional supergravity setup.
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A Type IIB E6(6) generalised geometry

We briefly recall the exceptional geometry for type IIB compactifications on a five-

dimensional manifold M , following the conventions of [55, appendix E]. The type IIB

generalised tangent bundle on M has fibres transforming in the 27 of E6(6) and decom-

poses under the geometric GL(5) subgroup of E6(6) as

E ' TM ⊕ T ∗M ⊕ Λ5T ∗M ⊕ ΛoddT ∗M , (A.1)

where ΛoddT ∗ = T ∗ ⊕ Λ3T ∗ ⊕ Λ5T ∗. A generalised vector V ∈ Γ(E) can be written as

V = v + λ+ σ + ω , (A.2)

where ω = ω1 +ω3 +ω5 is a poly-form of odd degree. Alternatively, the generalised tangent

bundle can be decomposed in a way that also makes the action of SL(2) manifest. The

GL(5)× SL(2) covariant decomposition is

E ' TM ⊕ (S ⊗ T ∗M)⊕ Λ3T ∗M ⊕ (S ⊗ Λ5T ∗M) , (A.3)

where S denotes an SL(2) doublet. In this picture a generalised vector can be expressed as

V = v + λα + ρ+ σα , (A.4)

where the index α = {+,−} labels the states in the SL(2) doublet. In this paper we use

the second description.

The dual generalised vector bundle decomposes accordingly as

E∗ ' T ∗M ⊕ (S∗ ⊗ TM)⊕ Λ3TM ⊕ (S∗ ⊗ Λ5TM) , (A.5)

and a generalised dual vectors Z ∈ Γ(E∗) can be written as

Z = v̂ + λ̂α + ρ̂+ σ̂α . (A.6)

The adjoint bundle is defined as

adF =R⊕(TM⊗T ∗M)⊕(S⊗S∗)⊕(S⊗Λ2TM)⊕(S⊗Λ2T ∗M)⊕Λ4TM⊕Λ4T ∗M (A.7)
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with elements

R = l + r + aαβ + βα +Bα + γ + C (A.8)

where l ∈ Γ(R), r ∈ End(TM), aαβ is an element of SL(2), βα and Bα are an SL(2) doublet

of bi-vectors and two-forms respectively, γ is a four-vector and C a four-form. The adjoint

action of R ∈ Γ(ad) on V ∈ Γ(E), denoted by V ′ = R · V , is defined as:

v′ = lv + r · v + γyρ+ εαββ
αyλβ ,

λ′α = lλα + r · λα + aαβλ
β − γyσα + vyBα + βαyρ ,

ρ′ = lρ+ r · ρ+ vyC + εαββ
αyσβ + εαβλ

α ∧Bβ ,

σ′α = lσα + r · σα + aαβσ
β − C ∧ λα + ρ ∧Bα , (A.9)

where εαβ is defined as ε+− = −ε−+ = 1, ε++ = ε−− = 0, and for the definition of the gl(5)

action r· and of the contraction y we refer to [55].

A generalised vector can be twisted by elements of the adjoint bundle. In particular,

the twisted generalised vector V = eB
α+C V̌ is given by

v = v̌ ,

λα = λ̌α + v̌yBα ,

ρ = ρ̌+ v̌yC + εαβλ̌
α ∧Bβ +

1

2
εαβ v̌yBα ∧Bβ ,

σα = σ̌α − C ∧ λ̌α + ρ̌ ∧Bα − 1

2
v̌yBα ∧ C +

1

2

(
v̌yC + εαβλ̌

β ∧Bγ
)
∧Bα . (A.10)

Another bundle of interest is the bundle N ' detT ∗M ⊗E∗. This a sub-bundle of the

symmetrised product of two copies of the generalised tangent bundle. Its fibres transform

in the 27′ of E6(6) and its GL(5)× SL(2) decomposition reads

N ' (S∗ ⊗ R)⊕ Λ2T ∗M ⊕ (S∗ ⊗ Λ4T ∗M)⊕ (detT ∗M ⊗ T ∗M) , (A.11)

with sections

J = sα + ω2 + ω4α + ς . (A.12)

The E6(6) cubic invariant acting on three generalised vectors is defined as

c(V, V ′, V ′′) = −1

2

(
ιvρ
′ ∧ ρ′′ + εαβ ρ ∧ λ′α ∧ λ′′β − 2εαβ ιvλ

′ασ′′β
)

+ symm. perm. .

(A.13)

The cubic invariant acting on dual vectors is

c∗(Z,Z ′, Z ′′) = −1

2

(
ιv̂ρ̂
′ ∧ ρ̂′′ + εαβ ρ̂ ∧ λ̂′α ∧ λ̂′′β − 2εαβ ιv̂λ̂

′
ασ̂
′′
β

)
+ symm. perm. , (A.14)

where εαβ is defined as a matrix with the same components as εαβ .

The product between an element V ∈ 27 and Z ∈ 27 is defined as

〈
Z, V

〉
= v̂mv

m + λ̂mα λ
α
m +

1

3!
ρ̂mnpρmnp +

1

5!
σ̂mnpqrα σαmnpqr . (A.15)
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The generalised Lie derivative between two twisted generalised vectors V, V ′ is given by

LV V
′ = Lvv′ + (Lvλ′α − ιv′dλα) + (Lvρ′ − ιv′dρ+ εαβdλα ∧ λ′β)

+ Lvσ′α − dλα ∧ ρ′ + λ′α ∧ dρ . (A.16)

The generalised metric is defined as

G(V, V ′) = vmv′m + hαβλ
mαλ′βm +

1

3!
ρmnpρ′mnp +

1

5!
σmnpqrσ′mnpqr , (A.17)

where V and V ′ are the twisted generalised vectors defined in (A.10) and the latin indices

are lowered/raised using the ordinary metric gmn or its inverse gmn. The matrix hαβ
parameterises the coset SL(2)/ SO(2) and is given by

hαβ = eφ

(
C2

0 + e−2φ −C0

−C0 1

)
, (A.18)

with inverse

hαβ = eφ

(
1 C0

C0 C
2
0 + e−2φ

)
. (A.19)

Note that hαβ = εαα
′
εββ

′
hα′β′ .

The inverse generalised metric can be obtained from a generalised local frame

EA ∈ Γ(E), A = 1, . . . , 27, as

G−1 = δABEA ⊗ EB

= δabEa ⊗ Eb + δabδ
α̂β̂Eaα̂ ⊗ Ebβ̂ +

1

3!
δa1b1δa2b2δa3b3E

a1a2a3 ⊗ Eb1b2b3

+
1

5!
δa1b1 · · · δa5b5δ

α̂β̂Ea1...a5
α̂ ⊗ Eb1...b5

β̂
, (A.20)

where a, b, . . . are flat GL(5) indices while α̂, β̂ are flat SL(2) indices. Starting from an

untwisted frame ĚA, the generalised frame EA is defined as [6]

EA = e∆ eφ f̂α̂
α eB

α+C · ĚA , (A.21)

where f̂α̂
α =

(eφ/2 C0eφ/2

0 e−φ/2
)
. The action of the warp factor e∆ is defined by exponentiating the

adjoint element given by l = ∆, while the dilaton action eφ is defined by exponentiating

the adjoint element given by l + r = φ
4 (−1 + 1) [55]. Decomposing the flat index A in

GL(5)× SL(2) representations, the generalised frame may be written as

Ea = e∆

(
êa+ιêaB

α+ιêaC+
1

2
εαβιêaB

α∧Bβ+ιêaC∧Bα+
1

6
εβγ ιêaB

β∧Bγ∧Bα

)

Eaα̂ = e∆ e−φ/2
(
f̂α̂

αea+f̂α̂
αεαβe

a∧Bβ−f̂α̂αC∧ea+
1

2
f̂α̂

βεβγe
a∧Bγ∧Bα

)

Ea1a2a3 = e∆ e−φ (ea1a2a3 +ea1a2a3∧Bα)

Ea1...a5
α̂ = e∆e−3φ/2f̂α̂

α ea1...a5 , (A.22)
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where ea1...an = ea1 ∧ · · · ∧ ean . Using this expression for the frame, we obtain for the

different components of the inverse generalised metric:

(G−1)mn = e2∆gmn

(G−1)mβn = e2∆gmpBβ
pn

(G−1)mnpq = e2∆gmr
(
Crnpq +

3

2
εαβB

α
r[nB

β
pq]

)

(G−1)mβnpqrs = e2∆gmu
(

10Cu[npqB
β
rs] + 5εγδB

γ
u[nB

δ
pqB

β
rs]

)

(G−1)α βmn = e2∆
(

e−φhαβgmn −Bα
mpg

pqBβ
qn

)

(G−1)αmnpq = e2∆

(
3e−φhαβεβγgm[nB

γ
pq] −B

α
mrg

rsCsnpq −
3

2
εβγB

α
mrg

rsBβ
s[nB

γ
pq]

)

(G−1)αβmnpqrs = e2∆e−φ
(
−5hαβgm[nCpqrs] + 15hαγεγδgm[nB

δ
pqB

β
rs]

)

(G−1)mnp qrs = e2∆

[
gtu
(
Ctmnp +

3

2
εαβB

α
t[mB

β
np]

)(
Cuqrs +

3

2
εγδB

γ
u[qB

δ
rs]

)

+ 9 e−φhαβB
α
[mngp][qB

β
rs] + 6 e−2φgmnp,qrs

]
, (A.23)

where in the last line we defined gmnp,qrs = gq[mgn|r|gp]s. We will not need the expressions

for the remaining components (G−1)αmnpqr stu and (G−1)α β
mnpqr stuvw.

The warp factor e∆ is in principle extracted by evaluating the determinant of the whole

generalised metric. However, for type IIB we can follow the same shortcut given in [56] for

type IIA. We introduce

H−1 =

(
(G−1)mn (G−1)m+

n

(G−1)+
m
n (G−1)++

mn

)
= e2∆

(
gmn (g−1B)mn

−(Bg−1)m
n (g −Bg−1B)mn

)
, (A.24)

where B+ is the NSNS two-form potential and observe that the matrix on the right hand

side has unit determinant. Therefore we obtain28

e∆ = (detH)−
1
4d . (A.25)

B Generalised vectors in angular coordinates on M6

In this appendix we provide explicit expressions for the generalised vectors KA,

A = 0, 1, . . . , 8, defining the generalised U(1) structure on the six-manifold discussed in

section 5. We start by relating the constrained coordinates yi, i = 1, . . . , 5, used in the

28The expressions above are given in string frame. In Einstein frame the term gmn in (A.24) becomes

eφgmn, and (A.25) becomes

e∆+φ
4 = (detH)−

1
4d .
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main text to angular coordinates (θ, ψ, χ, φ) on a round S4 of unit radius:

y1 = sin θ cosψ ,

y2 = sin θ sinψ ,

y3 = cos θ µ3 = cos θ cosχ ,

y4 = cos θ µ4 = cos θ sinχ cosφ ,

y5 = cos θ µ5 = cos θ sinχ sinφ . (B.1)

Notice that ψ parameterises U(1) rotations in the 1−2 plane, while χ, φ parameterise SO(3)

rotations in the 3 − 4 − 5 space and thus describe a round S2. The latter is equivalently

described by the constrained coordinates µα, α = 3, 4, 5, satisfying δαβµ
αµβ = 1; we use

either one or the other description according to convenience. The round metric on S4 and

the associated volume form (5.13) read

g4 = R2
(
dθ2 + sin2 θ dψ2 + cos2 θ gS2

)
,

vol4 = R4 cos2 θ sin θ dθ ∧ dψ ∧ volS2 , (B.2)

where

gS2 = δαβdµαdµβ = dχ2 + sin2 χ dφ2 ,

volS2 =
1

2
εαβγ µ

αdµβ ∧ dµγ = sinχ dχ ∧ dφ (B.3)

are the unit metric and volume form on the two-sphere identified above. The S4 Killing

vectors generating the u(1)⊕su(2) algebra of interest are expressed in terms of these angular

coordinates as:

v12 = R−1 ∂

∂ψ
,

v45 = R−1 ∂

∂φ
,

v53 = R−1

(
− sinφ

∂

∂χ
− cotχ cosφ

∂

∂φ

)
,

v34 = R−1

(
cosφ

∂

∂χ
− cotχ sinφ

∂

∂φ

)
. (B.4)

For the M-theory three-form potential on S4 satisfying (5.15), we choose

A = −3R3 ψ cos2 θ sin θ dθ ∧ volS2 . (B.5)

As for the Riemann surface Σ, we do not need to introduce explicit coordinates; we

rather use the one-forms e1, e2 satisfying (5.18), (5.19).
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Evaluating the twisted K’s (5.21) in these coordinates, we find the following

expressions:

K0 =
1

2
v12+

1

2
R2c3

θ volS2 ,

K1+iK2 =Reiψ (e1+ie2)∧(cθ dθ+isθ (dψ+υ))+R4 eiψ c2
θ (e1+ie2)∧

∧
[(
s2
θ (1−3iψ)(dψ+υ)+c2

θ υ
)
∧dθ+icθ sθ υ∧dψ

]
∧volS2 ,

K3 = v45−R2 d(cθ cχ)∧(dψ+υ)+R2 d
[
cχd

(
ψc3

θ

)]
+cθ cχvolΣ

−R3cθsθ volΣ∧
(
cθsθcχdψ∧volS2 +s2

χdθ∧dψ∧dφ+3ψc2
θ cχdθ∧volS2

)

−R5 c3
θ sθ cχυ∧dθ∧dψ∧volS2 ,

K4 = v53−R2d(cθ sχ cφ)∧(dψ+υ)+R2 d
[
sχ cφd

(
ψc3

θ

)]
+cθ sχ cφvolΣ

+R3 cθsθ volΣ∧
[
cφ
(
cχsχdθ∧dψ∧dφ−cθ sθ sχdψ∧volS2−3ψc2

θ sχdθ∧volS2

)

+sφdθ∧dψ∧dχ
]
−R5 c3

θ sθ sχ cφυ∧dθ∧dψ∧volS2 ,

K5 = v34−R2 d(cθ sχsφ)∧(dψ+υ)+R2 d
[
sχsφd

(
ψc3

θ

)]
+cθ sχsφvolΣ

+R3 cθsθ volΣ∧
[
sφ
(
cχsχdθ∧dψ∧dφ−cθ sθ sχdψ∧volS2−3ψc2

θ sχdθ∧volS2

)

−cφdθ∧dψ∧dχ
]
−R5 c3

θ sθ sχ sφυ∧dθ∧dψ∧volS2 , (B.6)

with K6,K7,K8 being obtained from K3,K4,K5, respectively, by sending volΣ → − volΣ .

In these formulae, we are using the shorthand notation cθ = cos θ, sθ = sin θ, and similarly

for the angles χ, φ. The terms in (B.6) proportional to ψ are those coming from the action of

the three-form A in the S4 frames (5.14). The terms proportional to υ are those generated

by the twist (5.23) (that is, setting υ = 0 we recover the generalised vectors on the direct

product Σ × S4). We see that the latter transformation shifts dψ by the connection one-

form on Σ, such that dψ → (dψ + υ), and also introduces some additional five-form parts

in the generalised vectors.

The weighted dual vectors JA ∈ Γ(N) that give the ansatz for the supergravity two-

forms can be computed from the KA using (3.15). We find:

J0 = 2R4 cθsθ volΣ∧dθ∧dψ+2R(υ+3ψcθsθ dθ+s2
θ dψ)⊗vol6 ,

J1+iJ2 =
R

2
sθ i eiψ(e1+ie2)−R

4

2
eiψ(e1+ie2)∧

[
c2
θ dθ+isθ d

(
ψc3

θ

)]
∧volS2 ,

J3 =
R

2
d(cθcχ)+

R4

2
cθ
[
sθs

2
χvolΣ∧dθ∧dφ−cθcχ(volΣ+cθsθ dθ∧dψ)∧volS2

]

−R
2
c2
θ s

2
χdφ⊗vol6 ,

J4 =
R

2
d(cθcφsχ)−R

4

2
cθ
[
sθcφcχsχvolΣ∧dθ∧dφ+sθsφvolΣ∧dθ∧dχ

+cθcφsχ(volΣ+cθsθ dθ∧dψ)∧volS2

]
+
R

2
c2
θ(sφdχ+cφcχsχdφ)⊗vol6 ,

J5 =
R

2
d(cθsφsχ)+

R4

2
cθ
[
−sθcχsχsφvolΣ∧dθ∧dφ+sθcφvolΣ∧dθ∧dχ

−cθsφsχ(volΣ+cθsθ dθ∧dψ)∧volS2

]
+
R

2
c2
θ(−cφdχ+cχsφsχdφ)⊗vol6 , (B.7)

and again J6, J7, J8 are obtained from J3, J4, J5, respectively, by sending volΣ → − volΣ
and vol6 → − vol6.
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1 Introduction

Consistent Kaluza-Klein truncations are a precious tool for constructing compactifying so-
lutions to ten or eleven-dimensional supergravity using a simpler lower-dimensional theory.
Given a splitting of the higher-dimensional spacetime into an internal manifold M and an
external spacetime X, a consistent truncation selects a finite subset of the KK modes of
the higher-dimensional theory on M and provides an effective theory on X describing their
non-linear dynamics. The selected KK modes must form a protected sector, in the sense
that they do not mix in the equations of motion with the modes that have been truncated
out. In this way all solutions of the lower-dimensional theory on X are guaranteed to also
be solutions of the original higher-dimensional theory.

For such non-trivial reduction to be possible, the internal manifold M should have a
special geometric structure. The simplest case is when M admits a homogeneous action
of a group G , that is M = G /H for some subgroup H ⊂ G . Then one can decompose
all higher-dimensional fields into representations of G and truncate to the G -singlets. This
G -invariant truncation is consistent, since the singlet fields can never source the non-singlet
fields. When in particular M is a group manifold, M = G , one has a conventional Scherk-
Schwarz reduction [1]. Examples of such consistent truncations in the context of M-theory
— which is our principal interest in this paper — can be found in [2–5].

As a step towards more general classes of truncations, it is convenient to think about
reductions on homogeneous manifolds using the language of G-structures. Let us consider
Scherk-Schwarz reductions for definiteness. A group manifold M = G admits a basis of
globally defined left-invariant one-forms, {ea}, a = 1, . . . , dimM , that reduces the struc-
ture group to the identity (i.e. M is parallelisable). Furthermore, the group action implies
that dea = 1

2fbc
aeb ∧ ec, where fbca are the structure constants of the Lie algebra Lie G .

This means that the left-invariant identity structure has singlet, constant intrinsic torsion
(singlet because dea is expressed in terms of the invariant {ea} basis, and constant be-
cause the coefficients of the expansion are constant). The truncation ansatz is defined by
expanding all higher-dimensional fields in the basis of invariant tensors of the structure.
When this is plugged into the equations of motion, we can again invoke the argument that
only singlet tensors are generated and conclude that the truncation is consistent. Since the
spin bundle is also trivialised, Scherk-Schwarz reductions preserve the full supersymmetry
of the higher-dimensional theory. More generally, G -invariant consistent truncations on
coset manifolds M = G /H are based on the existence of an H structure with constant,
singlet intrinsic torsion, and preserve only a fraction of supersymmetry or none at all.

Interestingly, the argument based on G-structure applies also to internal manifolds M
that are not homogeneous. It is sufficient that M has a structure group GS with only
constant, singlet intrinsic torsion; then the truncation to the GS-singlets is guaranteed to
be consistent. This can preserve different fractions of supersymmetry, depending on how
many GS-invariant spinors exist on M . In fact the GS structure data determine the full
field content and gauge interactions of the truncated theory. Examples of this type in
M-theory are the truncations based on Sasaki-Einstein and weak-G2 holonomy manifolds
of [6], and the tri-Sasakian reduction of [7].
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However there are consistent truncations that are not captured by conventional G-
structures. Classic examples are the maximally supersymmetric consistent truncations on
spheres, such as eleven-dimensional supergravity on S7 [8] and S4 [9]. M-theory trunca-
tions preserving less supersymmetry and containing warped AdS solutions can be found
in [10–13].1 Building on the evidence emerging from these examples, a conjecture was for-
mulated in [11] stating that for any warped, supersymmetric AdSD×wM solution to higher-
dimensional supergravity, there is a consistent truncation on M down to D-dimensional
pure gauged supergravity with the same amount of supersymmetry.

Exceptional Generalised Geometry and Exceptional Field Theory offer an understand-
ing of these more complicated examples that unifies them with the conventional ones.
Exceptional Generalised Geometry uses an extension of the ordinary tangent bundle TM
to a larger bundle E on M , whose fibres transform in a representation of the exceptional
group Ed(d). In this way the diffeomorphism and gauge symmetries of higher-dimensional
supergravity are unified as generalised diffeomorphisms on E. The notion of generalised
GS structure, that is a GS structure of E, rather than of TM , leads to a new systematic ap-
proach to consistent truncations with different amounts of supersymmetry: one can argue
that there is a consistent truncation any time a supergravity theory is reduced on a mani-
fold M admitting a generalised GS structure with constant singlet intrinsic torsion [14]. In
particular, all maximally supersymmetric truncations, both conventional Scherk-Schwarz
reductions and sphere truncations, can be seen as generalised Scherk-Schwarz reductions on
generalised parallelisable manifolds [15–23]. This also provides a connection to Poisson-Lie
T-duality as described in [24] (see also [25]). Truncations preserving less supersymmetry
are based on generalised structures larger than the identity, the half-maximal case having
been explored rather extensively by now [14, 26–30]. Moreover, a proof of the conjecture
of [11] was given in this framework [14, 27], based on the fact that the conditions for a
supersymmetric AdSD ×w M vacuum can be rephrased as the requirement that M admits
a generalised GS structure with vanishing non-singlet intrinsic torsion [31–33].

Although the general ideas were illustrated in [14] for any amount of supersymme-
try, the Exceptional Generalised Geometry approach to consistent truncations has been
developed just for maximal and half-maximal supersymmetry so far. In this paper we en-
large this framework and discuss in detail truncations of eleven-dimensional supergravity
preserving minimal N = 2 supersymmetry in five dimensions.

While a strict USp(6) ⊂ E6(6) generalised structure leads to a truncation to minimal
N = 2 gauged supergravity in five dimensions, smaller GS ⊂ USp(6) structures lead to
matter coupled supergravity. We show how the GS ⊂ USp(6) structure defines a continuous
family of USp(6) structures, and identify the moduli space of this family with the vector
multiplet and hypermultiplet scalar manifolds in the truncated five-dimensional theory. We
also show how the generalised Lie derivative acting on the generalised tensors defining the
GS structure specifies the isometries of the scalar manifold that are being gauged. This
fully determines the truncated N = 2 supergravity theory.

1Note that whenever there is non-trivial warping the truncation falls out of the conventional G-structure
framework.
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We then derive general expressions that encode the uplift formulae for how the eleven-
dimensional bosonic fields are encoded in terms of the moduli and the generalised tensors
defining the GS structure. In order to make this truncation ansatz explicit we need to solve
a number of technical issues. One is that, in contrast to the maximal and half-maximal
case, the structure is not entirely characterised by the generalised vectors KI (i.e. sections
of E, transforming in the fundamental of E6(6)) which control the vector multiplet sector
of the truncated theory. We also need to consider generalised tensors JA belonging to the
E6(6) adjoint bundle, which eventually control the hypermultiplet sector. A related point,
that is crucial to derive the scalar truncation ansatz, is the construction of the generalised
metric on E, which receives contributions both from the KI and the JA. A significant
advantage of the formalism however, is that the expressions are universal. The ansatz can
be applied to any N = 2 background once one identifies the KI and JA singlets.

As application, we discuss M-theory truncations on geometries associated with M5-
branes wrapping a Riemann surface Σ. The near-horizon geometry of this brane configura-
tion is given by a warped AdS5×wM solution to eleven-dimensional supergravity, where M
is a fibration of a deformed S4 over Σ [34, 35]. The fibration corresponds to a topological
twist in the dual superconformal field theory on the M5-branes, where the holonomy of the
Riemann surface is cancelled by a U (1) in the SO(5) R-symmetry, which in the supergrav-
ity background is realised geometrically as the isometries of S4. Depending on which U (1)
is chosen, one obtains different AdS5×w M solutions, and correspondingly different U (1)S
generalised structures.

We start with the N = 2 background of Maldacena-Nuñez [34]: specifying its U (1)S
generalised structure and discussing its singlet intrinsic torsion, we obtain a consistent
truncation to five-dimensional N = 2 supergravity including four vector multiplets, one
hypermultiplet, and a non-abelian SO(3) × U (1) × R gauging. This extends the abelian
truncation of [36] (see also [10, 37] for previous subtruncations) by adding SO(3) vector
multiplets, which in the dual superconformal field theory source SO(3) flavour current
multiplets. We also spell out the full bosonic truncation ansatz. The same construction
also applies to the “BBBW” solutions [35, 38], as the corresponding generalised structure
is a simple deformation of the Maldacena-Nuñez one, controlled by a (discrete) parameter
describing the choice of U (1)S in SO(5). The corresponding truncation features only two
N = 2 vector multiplets, one hypermultiplet and an abelian gauging. We show that the
Maldacena-Nuñez truncation admits a new non-supersymmetric AdS5 solution when the
Riemann surface is a sphere, which turns out to be perturbatively unstable. We also find
new non-supersymmetric vacua in the BBBW truncations. Together with the consistent
truncation including the N = 4 solution of [34], whose U (1)S generalised structure embeds
in USp(4) ⊂ USp(6) and leads to half-maximal supergravity [14, 39], the present study
completes the landscape of what we believe are the most general consistent truncations that
can be derived from eleven-dimensional supergravity on known smooth solutions associated
with M5-branes wrapped over Riemann surfaces.2

2It may be possible to find other consistent truncations, that are not subsectors of the ones given here by
using large structure groups, in analogy with the consistent truncation on S7 viewed as a Sasaki-Einstein
manifold [6] rather than a generalised parallelised sphere. However such truncations will have fewer fields.
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The rest of the paper is organised as follows. In section 2 we characterise the generalised
structure relevant for M-theory truncations on a six-dimensional manifold preserving N = 2
supersymmetry. In section 3 we specify the truncation ansatz and discuss how the gauging
is determined from the generalised structure. In sections 4 and 5 we apply our formalism
to consistent truncations associated with M5-branes wrapping a Riemann surface, first
for Maldacena-Nuñez backgrounds and then for BBBW ones. We conclude in section 6.
The appendices contains a brief account of E6(6) generalised geometry, a summary of five-
dimensional N = 2 gauged supergravity and some technical details of our computations.

2 M-theory generalised structures and N = 2 supersymmetry

In this section we first recall some basic notions of Exceptional Generalised Geometry
for the case of interest here, namely eleven-dimensional supergravity on a six-dimensional
manifold, and then we illustrate how the general procedure described in [14] applies to
consistent truncations to five-dimensional N = 2 gauged supergravity. A more extended
review of the relevant generalised geometry can be found in appendix A.

2.1 The HV structure

Consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold
M are based on E6(6) × R+ generalised geometry. This extends the tangent bundle TM
to the generalised tangent bundle E on M , and the corresponding structure group GL(6)
to E6(6). The group E6(6) contains GL(6) as its geometrical subgroup, and we can use the
latter to decompose the generalised tangent bundle as

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M . (2.1)

Therefore the sections of E consist, locally, of the sum of a vector, a two-form and a
five-form on M ,

V = v + ω + σ . (2.2)

These are called generalised vectors and transform in the 27 of E6(6).
All geometric structures of conventional geometry onM , such as tensors, Lie derivative,

connections etc, admit an extension to E [40–42]. In particular, generalised tensors are
defined by considering bundles whose fibers transform in different representations of E6(6).
We can define dual generalised vectors Z as the sections of the dual tangent bundle

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM , (2.3)

transforming in the 27 of E6(6). Locally the dual vectors are sums of a one-form v̂, a
two-vector ω̂ and a five-vector σ̂,

Z = v̂ + ω̂ + σ̂ . (2.4)

The adjoint bundle transforms in the 1 + 78 of E6(6) and, in terms of GL(6) tensors, is
defined as

adF ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM , (2.5)
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with sections
R = l + r + a+ ã+ α+ α̃ , (2.6)

where, locally, l ∈ R, r ∈ End(TM), a ∈ Λ3T ∗M is a three-form, ã ∈ Λ6T ∗M is a six-form
and α ∈ Λ3TM and α̃ ∈ Λ6TM . This bundle plays an important role as the components
of the M-theory three-form and six-form gauge potentials are embedded in adF .

As we will see, the bosonic fields of eleven-dimensional supergravity can be unified
into generalised tensors. The supergravity spinors on the other hand arrange into repre-
sentations transforming under USp(8), the double cover of the maximal compact subgroup
USp(8)/Z2 of E6(6). For example the supersymmetry parameters are section of the gener-
alsied spinor bundle S, transforming in the 8 of USp(8). It will be this compact USp(8)
or more generally a subgroup of it, that determines the R-symmetry of the reduced five-
dimensional theory.

The manifold M admits a generalised structure, GS ⊂ USp(8)/Z2, when the structure
group E6(6) is reduced to the subgroup GS . Typically this can be characterised by the
existence of globally defined generalised tensors that are invariant under GS . The amount
of supersymmetry of the eleven-dimensional theory that is preserved by the GS structure
is given by the number of GS singlets in the spinor bundle, S.3

In this paper we are interested in structures preserving N = 2 supersymmetry. The
generic case is provided by what has been called an HV structure [33, 43, 44]. It consists
of a triplet of globally defined tensors in the adjoint bundle, Jα ∈ Γ(adF ), with α = 1, 2, 3,
satisfying

[Jα, Jβ ] = 2εαβγJγ , tr(JαJβ) = −δαβ , (2.7)

together with a globally defined generalised vector K ∈ Γ(E) having positive norm with
respect to the E6(6) cubic invariant,

c(K,K,K) := 6κ2 > 0 , (2.8)

where κ is a section4 of (detT ∗M)1/2, and satisfying the compatibility condition

Jα ·K = 0 , (2.9)

where · denotes the adjoint action.5 See appendix A for a definition of the cubic invariant
and the other generalised geometry operations appearing in these formulae.

The HV structure {Jα,K} defines a reduction of the structure group to USp(6) ⊂ E6(6).
Indeed the vector K is stabilised by F4(4) ⊂ E6(6), while the Jα are invariant under the
subgroup SU∗(6). The compatible K and Jα have SU∗(6) ∩ F4(4) ' USp(6) as a common
stabiliser. The globally defined vector K ∈ Γ(E) with positive norm is called a vector-
multiplet structure, or V structure for short. A triplet of Jα ∈ Γ(adF ) that define the

3Here we will assume that either GS is simply connected or is U(1) so that it lifts to a GS subgroup of
USp(8).

4Recall that detT ∗M is just a different notation for the top-form bundle Λ6T ∗M that stresses that it is
a real line bundle. Here we are assuming that the manifold is orientable and hence detT ∗M is trivial and
so we can define arbitrary powers (detT ∗M)p for any real p.

5 Note that we are using slightly different conventions for the Jα tensors compared with [44]. In particular
JAW
α = κJhere

α ∈ Γ((detT ∗M)1/2 ⊗ adF ).
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highest root su2 subalgebra of e6(6) and satisfy the conditions (2.7) is called a hypermultiplet
structure, or H structure. This justifies the name HV structure for the compatible pair
{Jα,K}.

It is easy to check that the amount of supersymmetry preserved by a HV structure is
N = 2. Under the breaking

USp(8) ⊃ USp(6)× SU (2)H . (2.10)

the spinorial representation decomposes as 8 = (6,1) ⊕ (1,2) and we see that the are
only two USp(6) singlets. The SU (2)H factor in (2.10) is the R-symmetry of the reduced
theory so that the two singlets form an R-symmetry doublet, as expected for N = 2
supersymmetry parameters.

A strict USp(6) structure is not the only option to obtain N = 2 supersymmetry.
In fact, any subgroup GS that embeds in USp(6) in such a way that there are no extra
singlets in the decomposition of the spinorial representation of USp(8) does the job. Al-
though the number spinor singlets is unchanged, when the structure group is smaller than
USp(6) in general one finds more GS singlets in the decomposition of the 27 and the 78
representations. Let us denote by

KI , I = 0, . . . , nV , (2.11)

the set of independent generalised vectors corresponding to GS singlets in the 27, and by

JA , A = 1, . . . , dimH , (2.12)

the set of independent sections of the adjoint bundle corresponding to GS singlets in the
78 that also satisfy the condition6

JA ·KI = 0 ∀ I and ∀A . (2.13)

The latter generate a subgroup H ⊂ CE6(6)(GS), where CE6(6)(GS) is the commutant of GS
in E6(6), so that

[JA, JB] = fAB
CJC , (2.14)

with fABC being the structure constants of H. The generalised structure GS ⊆ USp(6) is
fully characterised as the group preserving the set

{KI , JA} . (2.15)

We can always normalise such that the nV + 1 generalised vectors satisfy

c(KI ,KJ ,KK) = 6κ2CIJK , (2.16)
6Note that there are singlets in the adjoint bundle that do not satisfy (2.13). These are given by

KI ×ad K
∗
J , where K∗J is the dual of the generalised vector KJ and ×ad is the projection onto the adjoint

bundle, and will not play a relevant role in our construction.
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with CIJK a symmetric, constant tensor and κ is a section of (detT ∗M)1/2 fixed by the
structure. In addition we can normalise the adjont singlets to satisfy

tr(JAJB) = ηAB , (2.17)

where ηAB is a diagonal matrix with −1 and +1 entries in correspondence with compact
and non-compact generators of H, respectively.

Any generalised structure has an associated intrinsic torsion [31], which is defined as
follows. Let D̃ be a generalised connection compatible with the GS-structure, that is,
sastisfying D̃Qi = 0 for all i, where Qi is the set of invariant generalised tensors that
define the structure. Formally, the generalised torsion T of D̃ is defined by, acting on any
generalised tensor α, (

LD̃V − LV
)
α = T (V ) · α , (2.18)

where L is the generalised Lie derivative, LD̃ is the generalised Lie derivative calculated
using D̃ and · is the adjoint action on α.7 The intrinsic torsion is the component of T that
is independent of the choice of compatible connection D̃, and hence is fixed only by the
choice of generalised structure. In general, one can decompose the intrinsic torsion into
representations of GS . In particular, for a consistent truncation we will be interested in
the case where only the singlet representations are non-zero.

2.2 The generalised metric

An important ingredient to derive a consistent truncation is the generalised metric G on
M . This is a positive-definite, symmetric rank-2 tensor on the generalised tangent bundle,

G : E ⊗ E → R+

(V, V ′) 7→ G(V, V ′) = GMNV
MV ′N , (2.19)

that encodes the degrees of freedom of eleven-dimensional supergravity that correspond
to scalars in the reduced theory. We provide the explicit relation between the generalised
metric and the supergravity fields on M in eq. (3.19). The generalised metric is defined
in analogy to the ordinary metric: a metric g on M can be seen as an O(6) structure on
TM that at each point on M parameterises the coset GL(6)/O(6). Similarly, at each point
p ∈M a choice of a generalised metric corresponds to an element of the coset

G|p ∈
E6(6) × R+

USp(8)/Z2
. (2.20)

Since a GS ⊂ USp(8)/Z2, the GS structure will determine a GS-invariant generalised
metric, given in terms of the invariant tensors that are used to define the GS structure. The
expression of GMN that is relevant for truncations preserving maximal and half-maximal
supersymmetry was given in [14, 15, 22]. Here we will discuss the N = 2 case.

Consider first the case of a generic USp(6) structure. As discussed in the previous
section this is specified by an invariant generalised vector, K, together with an su(2) triplet

7We view the torsion as a map T : Γ(E)→ Γ(adF ) where adF is the Ed(d) × R+ adjoint bundle.
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of sections of the adjoint bundle Jα, α = 1, 2, 3. These objects define a USp(6)-invariant
generalised metric through the formula

G(V, V ) = 3
(

3 c(K,K, V )2

c(K,K,K)2 − 2 c(K,V, V )
c(K,K,K) + 4 c(K,J3 · V, J3 · V )

c(K,K,K)

)
. (2.21)

This formula can be motivated as follows. The globally defined K induces the splitting of
the 27 of E6(6) into orthogonal subspaces

V = V0 + V26 (2.22)

in the singlet and 26 representation of F4(4); correspondingly, the E6(6) cubic invariant on
the 26 reduces to the symmetric invariant form of F4(4)

c(K,V, V ) = c(K,V0, V0) + c(K,V26, V26) . (2.23)

This expression however is not positive definite, since the symmetric form of F4(4) has
signature (14, 12) and overall (2.23) has signature (14, 13). The first term in (2.21) contains
the contribution from the singlet component V0 and makes the metric positive definite in the
singlet. To do the same in the 26 we need the full HV structure. Under SU (2)H ×USp(6)
the 27 decomposes as

27 = 1⊕ (1,14)⊕ (2,6) , (2.24)

and the action Jα on V projects on the (2,6) part, as the rest is an SU (2)H singlet. Then
we can write the contribution to the metric in the (2,6) as

c(K,J3 · V, J3 · V ) , (2.25)

and add it in (2.21) to make it positive definite. Note that (2.21) only contains one element
of the triplet Jα, that we chose to be J3. This is because, for each Jα,

c(K,Jα · V, Jα · V ) = −c(K,V, (Jα)2 · V ) = c(K,V(2,6), V(2,6)) , (2.26)

where there is no sum over α and in the last equality we have used that (Jα)2 = −1 in
the V(2,6) subspace. We see that the action of each of the Jα gives the same result. This
reflects the fact that the generalised metric is independent of the action of the SU (2)H
supergravity R-symmetry.

For the purpose of constructing the truncation ansatz by comparing with (3.19), we
will also need the inverse generalised metric. We can exploit the isomorphism between
the generalised tangent bundle E and its dual E∗ provided by the generalised metric to
construct a USp(6) singlet K∗ ∈ Γ(E∗) as K∗(V ) = G(K,V ), where V is any generalised
vector. Then, denoting by Z ∈ Γ(E∗) a generic dual vector, the inverse generalised metric
is given by

G−1(Z,Z) = 3
(

3 c∗(K∗,K∗, Z)2

c∗(K∗,K∗,K∗)2 − 2 c∗(K∗, Z, Z)
c∗(K∗,K∗,K∗) + 4 c

∗(K∗, J3 · Z, J3 · Z)
c∗(K∗,K∗,K∗)

)
,

(2.27)
where the action of the cubic invariant c∗ and of the adjoint elements Jα on the dual
generalised vectors can be found in appendix A.
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2.3 The HV structure moduli space and the intrinsic torsion

When the GS structure is a subgroup of USp(6) (and there is no supersymmetry enhance-
ment), it determines an USp(6) structure and hence by definition defines a generalised
metric. However, a given GS structure can determine several different USp(6) structures.
Thus one gets a family of generalised metrics that can be obtained from the GS-invariant
tensors, depending on which USp(6) structure one chooses. Concretely, we use the KI and
JA tensors characterising the GS structure to construct a generalised vector K and a triplet
of Jα satisfying (2.7)–(2.9), which then we use to build the generalised metric as in (2.21).
The parameterisation of K and Jα in terms of KI and JA provides a set of deformations
of a reference USp(6)-invariant metric, that correspond to acting on the structure with
elements of E6(6) that commute with GS , modulo elements of USp(8)/Z2 that commute
with GS . The resulting generalised metric thus parameterises the coset

M =
CE6(6)(GS)

CUSp(8)/Z2(GS) . (2.28)

This is the moduli space of our GS structure, namely the space of deformations of the
reference USp(6) structure that preserve the GS structure. For the N = 2 structures of
interest in this paper, this splits in the product

M =MV ×MH , (2.29)

whereMV is the V structure moduli space, corresponding to deformations of K that leave
Jα invariant, whileMH is the H structure moduli space, which describes deformations of Jα
that leave K invariant. The fact that these deformations are independent follows from the
requirement (2.13). When given a dependence on the external spacetime coordinates these
deformations provide the scalar fields in the truncated theory, with MV and MH being
identified with the vector multiplet and the hypermultiplet scalar manifolds, respectively.

We next outline how to construct the V and H structure moduli spaces. The procedure
will be further illustrated in sections 4 and 5, where concrete examples will be discussed
in detail.

The V structure moduli space. A family of V structures is obtained by parameterising
the generalised vector K as the linear combination

K = hIKI , (2.30)

where hI , I = 0, . . . , nV, are real parameters, and imposing the property (2.8). Using (2.16),
this is equivalent to

CIJKh
IhJhK = 1 , (2.31)

showing that the nV +1 parameters hI are constrained by one real relation and thus define
an nV-dimensional hypersurface,

MV = {hI : CIJKh
IhJhK = 1 } . (2.32)
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This is our V structure moduli space. It will be identified with the vector multiplet scalar
manifold in five-dimensional supergravity. The metric on MV is obtained by evaluating
the generalised metric on the invariant generalised vectors,

aIJ = 1
3 G(KI ,KJ) . (2.33)

Using (2.21), it is straightforward to see that this gives

aIJ = 3hIhJ − 2CIJKhK , (2.34)

where hI = CIKLh
KhL. Then gambient = 3

2 aIJdhIdhJ gives the metric on the ambient
space,8 and the metric onMV is obtained as the induced metric on the hypersurface.

The H structure moduli space. A family of H structures is obtained by parameterising
the possible su2 subalgebras of the algebra spanned by the JA. The fact that we only have
two singlet spinors means that CUSp(8)/Z2(GS) must contain an SU (2)H factor (as in (2.10))
that acts on the two singlet spinors. Furthermore, the corresponding su2 algebra must be
generated by a highest root in e6(6). The Lie algebra h = LieH generated by the JA is
the simple subalgebra of the Lie algebra of CE6(6)(GS) that contains the su2 factor. Since
h ⊂ e6(6) the su2 algebra is generated by a highest root in h.

The H structure moduli space is the space of choices of such highest root su2 algebras
in h, namely the symmetric space9

MH = H
SU (2)H × CH(SU (2)H) . (2.35)

Such spaces are known as “Wolf spaces” and are all quaternionic-Kähler, as expected from
the fact that MH is going to be identified with hyperscalar manifold in five-dimensional
supergravity. Points inMH can be parameterised by starting from a reference subalgebra
j ' su2 ⊂ h and then acting on a basis {j1, j2, j3} of j by the adjoint action of group
elements h ∈ H, defined as

Jα = adH jα = h jα h
−1 . (2.36)

Clearly, this action acts trivially on j if h ∈ SU (2)H ' exp(j), or if h belongs to the
commutant of this SU (2)H in H, that is h ∈ CH(SU (2)H). This way, we obtain a triplet
of “dressed” generalised tensors Jα, α = 1, 2, 3, which depend on the coset coordinates and
parameterise our family of H structures.

The intrinsic torsion. This picture that the GS-structure defines a family of HV struc-
tures also allows us to give a characterisation of the intrinsic torsion. As discussed in [44],
the intrinsic torsion of an HV structure is encoded in the three quantities

LKK, LKJα, µα (2.37)
8The normalisation is chosen so as to match standard conventions in N = 2 supergravity, see appendix B.
9Note the strictly the denominator group is not quite the product SU (2)H ×CH(SU (2)H) but generally

involves modding out correctly by terms in the centre of each factor. Here we will ignore these subtleties.
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where, given a generalised vector V ∈ Γ(E), one defines a triplet of functions10

µα(V ) = −1
2 εαβγ

∫

M
κ2 tr (Jβ(LV Jγ)) (2.38)

that formally are moment maps for the action of the generalised diffeomorphism group on
the space of H structures.

In general, if KGS is the space of GS-compatible connections, then the definition (2.18)
defines a map τ : KGS → W where now we view the generalised torsion T as a section of
W ⊂ E∗ ⊗ adF .11 The GS-intrinsic torsion is then an element of WGS

int = W/WGS where
WGS = Im τ . Now let p ∈ M be a particular point in the family of HV structures (2.28)
and USp(6)p ⊂ E6(6) be the corresponding structure group. By construction, GS is the
common subgroup of all the USp(6)p subgroups. This means that

KGS =
⋂

p

KUSp(6)p , (2.39)

that is, only a GS-compatible connection is compatible with every HV structure in the
family. Hence WGS = ⋂

pWUSp(6)p and so

WGS
int =

⋃

p

W
USp(6)p
int . (2.40)

In other words, knowing the intrinsic torsion of every HV structure in the family fixes the
intrinsic torsion of the GS structure.

Now, recall that each K in the family of HV structures is a linear combination of KI

(with constant coefficients), while each Jα is defined by the exponentiated adjoint action of
a linear combination of JA (with constant coefficients) on a fixed reference su(2) algebra.
Hence the intrinsic torsion components LKK and LKJα for the whole family are determined
by knowing

LKIKJ , LKIJA. (2.41)

These also determine µα(V ) when V has the form V = V IKI , even when the components
V I are functions because of the condition (2.13). Thus the final components of the GS
intrinsic torsion are determined by

∫

M
κ2 tr(JA(LWJB)) , (2.42)

where we require c(KI ,KJ ,W ) = 0, which defines a generalised vector that is orthogonal
to those of the form V = V IKI . Note that the expressions (2.41) and (2.42) are in general
not independent, but are sufficient to determine the intrinsic torsion.

3 M-theory truncations to N = 2 supergravity in five dimensions

Any generalised GS structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a consistent truncation of eleven-dimensional or type II supergravity on M .

10Recall the change of conventions from those of [44] discussed in footnote 5.
11For E6(6) generalised geometry W transforms in the 27 + 351 representation.
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While the general ideas (along with the details for five-dimensional truncations preserv-
ing half-maximal supersymmetry) were given in [14], here we focus on the specific case
of truncations of eleven-dimensional supergravity leading to N = 2 supergravity in five
dimensions, based on GS ⊆ USp(6) structures.

Although some of the formulae giving the truncation ansatz in terms of the structure
are necessarily quite involved, a great advantage is that they are universal expressions
good for any N = 2 consistent truncation. One does not have to search for the correct set
of consistent modes on a case-by-case basis. All the particulars of the given truncations
are encoded in terms of the given GS structure defined by the set of KI and JA singlets.
For example, following the discussion in the previous section, the scalar matter content
is determined by the commutant of GS in E6(6), giving nV vector multiplets and nH hy-
permultiplets, whose scalar manifolds are identified with the V structure and H structure
moduli spaces, respectively. The gauge interactions of the truncated theory are determined
by the torsion of the GS-structure, which in turn depends only the generalised Lie deriva-
tives LKIKJ and LKIJA. Together this data completely specifies the full five-dimensional
supergravity.

3.1 The gauging

The gauge interactions of the truncated theory are determined by the intrinsic torsion of
the generalised structure GS . As already emphasised, we assume that the intrinsic torsion
takes values in the singlet representation of GS , with components that are constant on M .
As explained in [14], this means that the generalised Lie derivative along the invariant
vectors KI acting on any invariant tensor Qi, is given by

LKIQi = −Tint(KI) ·Qi , (3.1)

where Tint(KI) is a GS singlet in the adjoint bundle. This means that Tint(KI) is in the
Lie algebra of the commutant group G = CEd(d)(GS). Thus −Tint defines an “embedding
tensor” [45, 46], that is a linear map

Θ : span({KI})→ LieG . (3.2)

The image of this map defines the Lie algebra of the gauge group Ggauge of the truncated
theory and also how it embeds LieGgauge = Im Θ ⊆ LieG, thus giving Ggauge as a subgroup
of the commutant group

Ggauge ⊆ G = CEd(d)(GS) . (3.3)

For the structures of interest in the present paper, the relevant invariant tensors are
the vectors KI and the adjoint bundle singlets JA that generate H ⊂ G. The former are
the generators of the gauge algebra with structure constants f[IJ ]

L given by

LKIKJ = ΘI ·KJ = ΘI
A(tA)JLKL := fIJ

LKL , (3.4)

where (tA)JL are the representations of the generators of LieG acting on V. For the JA
singlets we have

LKIJA = ΘI · JA = [J(KI), JA] = ΘI
BfBA

CJC := pIA
BJB , (3.5)
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where fABC are the H structure constants, as in (2.14). For convenience we have also
defined the linear combination of the JA with constant coefficients,

J(KI) := ΘI
AJA , (3.6)

so that the action of the generalised vector KI on JA is represented by the adjoint action
of J(KI). Recall that generally the intrinsic torsion of the GS structure is captured by the
expressions (2.41) and (2.42). The condition that one has singlet, constant intrinsic torsion
is thus that (3.4) and (3.5) are satisfied with constant fIJK and pIAB and in addition that

∫

M
κ2 tr(JA(LWJB)) = 0 , (3.7)

where the generalised vector W satisfies c(KI ,KJ ,W ) = 0. The condition on W implies
it transforms non-trivially under GS and hence, since JA are singlets, the corresponding
intrinsic torsion cannot be a singlet and so must vanish. Alternatively, recall from the
discussion in section 2.3 that (3.7) is equivalent to the vanishing of the moment maps
µα(W ) given in (2.38) for all H structures in the family of HV structures defined by the
GS structure. Any one H structure is related to another by the action of H, as in (2.36).
Furthermore it is straightforward to show that µα(W ) is invariant under this action. Hence
if µα(W ) = 0 with c(KI ,KJ ,W ) = 0 at any point in the family then it vanishes for all
and (3.7) holds.

We now show how the singlet intrinsic torsion determines the gauging of the lower-
dimensional N = 2 theory. The constants fIJL and ΘI

A, defined in (3.4) and (3.5) re-
spectively, can be identified with the embedding tensor components that encode generic
gaugings of five-dimensional N = 2 supergravity theories, including those involving vector
fields that transform in non-adjoint representations of the gauge group, as well as antisym-
metric rank-2 tensor fields.12 For simplicity, here we just discuss the case where (3.4) define
the structure constants of a Lie algebra, implying that it is not necessary to introduce an-
tisymmetric rank-2 tensor fields. These determine the symmetries of the scalar manifold
that are gauged, and hence all matter couplings of the N = 2 theory, completely fixing the
five-dimensional Lagrangian (see appendix B for a brief account of N = 2 supergravity in
five dimensions). In particular, the vector multiplet scalar covariant derivatives and the
gauge field strengths are given by

DhI = dhI + g fJK
IAJ hK , (3.8)

FI = dAI + 1
2 g fJK

IAJ ∧ AK , (3.9)

where g is the gauge coupling constant and AI = AIµdxµ are the five-dimensional gauge
fields. In order to obtain the hyperscalar covariant derivatives, we need the Killing vectors
on the H structure moduli space (2.35) that generate the gauged isometries. These can be
constructed from (3.6) using the standard formalism of coset spaces, see e.g. [49]. Given

12The embedding tensor formalism is most commonly used to describe the gauging of maximal and
half-maximal supergravity [45, 46], see however [47, 48] for its use in an N = 2 context.
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the left-action of a generator J(KI) on the coset representative L ∈ H, the corresponding
Killing vector kI onMH is determined by the equation

L−1J(KI) L ∼ g ιkI (L−1dL) , (3.10)

where the symbol ∼ means that the equality holds up to an element of the algebra one
is modding out by, which in the present case is SU (2)H × CH(SU (2)H).13 Writing kI =
kXI

∂
∂qX

, where qX denote the coordinates on MH, the hyperscalar covariant derivatives
then read

DqX = dqX + gAIkXI . (3.11)

From the Killing vectors kI we can then compute the triholomorphic Killing prepo-
tentials PαI , α = 1, 2, 3, that determine the fermionic shifts and the scalar potential of
the N = 2 supergravity theory, see appendix B for the relevant formulae. These Killing
prepotentials are moment maps of the isometries being gauged, and as such can be nicely
computed from the generalised geometry formalism. Recalling the definition of the moment
map µ in (2.38), they are given by

g PαI = 1
8 ε

αβγ
∫

M
κ2 tr (Jβ(LKIJγ))

/∫

M
κ2

= 1
8 ε

αβγ tr (Jβ(LKIJγ)) .
(3.12)

In this formula, recall that the Jα are the dressed triplet, hence the resulting moment maps
are function of the H structure moduli. In the second line, we have used the fact that the
singlet torsion components tr (Jβ(LKIJγ)) are constant on M and hence the integrals over
κ2 cancel.

3.2 The truncation ansatz

Our conventions for eleven-dimensional supergravity are as in [42]. The eleven-dimensional
bosonic action is (we denote by a hat the 11d quantities)

Ŝ = 1
2

∫ (
R̂ ∗̂ 1− 1

2 F̂ ∧ ∗F̂ −
1
6Â ∧ F̂ ∧ F̂

)
, (3.13)

where F̂ = dÂ and Â is the three-form potential. The equations of motion are

R̂µ̂ν̂ −
1
12

(
F̂µ̂ρ̂1ρ̂2ρ̂3F̂ν̂

ρ̂1ρ̂2ρ̂3 − 1
12 ĝµ̂ν̂F̂

2
)

= 0 ,

d ∗̂ F̂ + 1
2 F̂ ∧ F̂ = 0 .

(3.14)

The six-form potential ˆ̃A dual to the three-form Â may be introduced via the first-order
relation

∗̂ dÂ+ 1
2 Â ∧ dÂ = d ˆ̃A , (3.15)

whose exterior derivative gives the Maxwell equation.
13A similar construction could be made for the Killing vectors that gauge isometries in the V structure

moduli space, starting from the sections of the adjoint bundle that generateMV mentioned in Footnote 6.
However, this will not be needed for our purposes.
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As first step of the truncation procedure, we arrange the eleven-dimensional bosonic
fields into generalised tensors transforming in representations of GL(5,R) × E6(6), where
GL(5,R) gives the tensorial structure of the fields in the five-dimensional theory obtained
after reduction. Then we expand each E6(6) representation in terms of the GS invariant
tensors transforming in the same representation. We separate the eleven-dimensional coor-
dinates in coordinates xµ, µ = 0, . . . , 4, on the external spacetime X, and zm, m = 1, . . . , 6,
on the internal manifold M .

The bosonic fields of eleven-dimensional supergravity are decomposed as

ĝ = e2∆ gµν dxµdxν + gmnDz
mDzn ,

Â = 1
3!AmnpDz

mnp + 1
2Aµmndxµ ∧Dzmn + 1

2 Āµνmdxµν ∧Dzm + 1
3! Āµνρ dxµνρ ,

ˆ̃A = 1
6!Ãm1...m6Dz

m1...m6 + 1
5!Ãµm1...m5dxµ∧Dzm1...m5 + 1

2 · 4!
¯̃Aµνm1...m4dxµν∧Dzm1...m4

+ . . . , (3.16)

where Dzm = dzm − hµmdxµ, and all tensor field components may depend both on xµ

and zm, except for the external metric, for which we assume a dependence on the external
coordinates only, gµν = gµν(x).

The barred fields need to be redefined. In appendix C we provide a justification for
these redefinitions by studying the gauge transformations of the metric and three-form
potential. For the three-form components we introduce the new fields Aµνm, Aµνρ via

Āµνm = Aµνm − h[µ
nAν]nm , Āµνρ = Aµνρ + h[µ

nhν
pAρ]np . (3.17)

Similar redefinitions apply to the six-form components with at least two external indices,
however we will not discuss them in detail here.

The supergravity fields having all components on the internal manifold M arrange into
the inverse generalised metric

GMN ↔ {∆, gmn, Amnp, Ãm1...m6} , (3.18)

in the following way14

(G−1)mn = e2∆gmn

(G−1)mn1n2 = e2∆gmpApn1n2

(G−1)mn1...n5 = e2∆gmp(Ap[n1n2An3n4n5] + Ãpn1...n5)
(G−1)m1m2 n1n2 = e2∆(gm1m2,n1n2 + gpqApm1m2Aqn1n2])

(G−1)m1m2 n1...n5 = e2∆[gm1m2,[n1n2An3n4n5]

+ gpq(Apm1m2(Aq[n1n2An3n4n5] + Ãqn1...n5)]
(G−1)m1...m5 n1...n5 = e2∆[gm1...m5, n1...n5

+ gpq(Ap[m1m2Am3m4m5] + Ãpm1...m5)(Aq[n1n2An3n4n5] + Ãqn1...n5)] ,
(3.19)

14This expression follows straightforwardly from the elements of the conformal split frame given in [42].
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where gm1m2, n1n2 = gm1[n1g|m2|n2], and similarly for gm1...m5, n1...n5 . Since the generalised
metric is a scalar on the external spacetime, after imposing our truncation ansatz it will
provide the scalar fields of the reduced five-dimensional theory.

The density κ introduced in section 2.1 when defining the HV structure is related to
the determinant of the generalised metric and is an E6(6) invariant. For eleven-dimensional
metrics of the form (3.16), this is given by [42, 44]

κ2 = e3∆√det gmn . (3.20)

The tensors with one external leg arrange into a generalised vector Aµ on M , with
components

AµM = {hµm, Aµmn, Ãµm1...m5 } , (3.21)

and will provide the gauge potentials of the reduced theory. The tensors with two anti-
symmetrised external indices define a weighted dual vector Bµν on M , which is a section
of detT ∗M ⊗ E∗, with components

Bµν M = {Aµνm, Ãµνm1...m4 , g̃µνm1...m6,n} , (3.22)

and will give the two-form fields of the reduced theory. The last term in (3.22) is re-
lated to the dual graviton and we will not discuss it further here. The tensors with three
antisymmetrised external indices arrange into the generalised tensor

Cµνρα̂ = {Aµνρ, Ãµνρm1m2m3 , g̃µνρm1...m5,n} , (3.23)

which is a section of (a sub-bundle of) the weighted adjoint bundle detT ∗M ⊗ adF , whose
components are labeled by α̂ = 1, . . . , 57. See e.g. [50, 51] for more details on this tensor
hierarchy.

As discussed in [14], the bosonic part of the truncation ansatz is obtained by imposing
that the generalised tensors above are expanded in singlets of the GS structure. The
generalised metric is obtained by constructing the K and Jα parameterising a family of
HV structures as detailed in section 2.3, and plugging these generalised tensors in the
formula (2.27). The resulting generalised metric depends on the H and V structure moduli;
when given a dependence on the external coordinates xµ, these are then identified with the
hyperscalar and vector multiplet scalar fields of the truncated N = 2 theory, respectively.
Thus we have

K = hI(x)KI

Jα = L(x)jαL(x)−1

}
giving GMN (x) from (2.27) , (3.24)

where L is the representative of the cosetMH. Comparing the expression for the generalised
metric with its general form (3.19), we obtain the truncation ansatz for ∆, gmn, Amnp (as
well as Ãm1...m6 , whenever it is needed). Note that κ2 given in (3.20) is independent of the
scalar fields hI(x) and L(x), so it can be evaluated using any chosen representative of the
family of HV structures defined by the GS structure.
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The gauge potentials AµI(x) on the external space-time are defined by taking

Aµ = AµI(x)KI ∈ Γ(T ∗X)⊗ span({KI}) (3.25)

where span({KI}) ⊂ Γ(E) is the vector space spanned by the set of GS singlets KI ,
I = 0, 1, . . . , nV. Similarly the two-form fields are given by

Bµν = Bµν I(x)KI
[ ∈ Γ(Λ2T ∗X)⊗ span({KI

[ }) , (3.26)

where span({KI
[ }) ⊂ Γ(detT ∗M ⊗ E∗) is the vector space spanned by the weighted dual

basis vectors KI
[ , the latter being defined by KI

[ (KJ) = 3κ2 δIJ . We also have

Cµνρ = CµνρA(x) J [A ∈ Γ(Λ3T ∗X)⊗ span({J [A}) , (3.27)

where span({J [A}) ⊂ Γ(detT ∗M ⊗ ad(F )) is spanned by the GS singlets in the weighted
adjoint bundle, here denoted by J [A and given by J [A = κ2JA. In appendix C we show
that these expressions, together with the field redefinitions (3.17), lead to the correct five-
dimensional covariant objects, consistent with the expected gauge transformations.

4 N = 2 truncations on Maldacena-Nuñez geometries

We now apply the above formalism to consistent truncations of eleven-dimensional su-
pergravity based on generalised structures arising from M5-branes wrapping a Riemann
surface.

We start with the N = 2 AdS5 ×w M solution of Maldacena and Nuñez [34] and show
that the manifold M admits a generalised U (1) structure with singlet intrinsic torsion,
and therefore can be used to construct a consistent truncation. As we have stressed above,
once we identify the singlet KI and JA tensors defining the structure it is straightforward
to read off the form of the N = 2 supergravity.

We already observed in [14] that this process yields N = 2 supergravity with one
hypermultiplet and four vector multiplets. Here we give the details of the construction
and derive the gauging, which defines an SO(3) × U (1) × R gauge group. Our truncation
includes as a subtruncation the reduction to N = 2 supergravity with one vector multiplet,
one hypermultiplet and U (1)× R gauging recently obtained in [36].

4.1 The MN1 solution

We are interested in warped AdS5 solutions to eleven-dimensional supergravity that de-
scribe the near-horizon region of M5-branes wrapping supersymmetric cycles in a Calabi-
Yau geometry. The amount of supersymmetry of the solutions depends on how the cycle is
embedded in the ambient geometry. This corresponds to a topological twist of the world-
volume (0, 2) theory on the M5-branes. The simplest examples are the solutions found by
Maldacena and Nuñez [34] describing the near-horizon geometry of M5-branes wrapped on
a Riemann surface Σ of negative constant curvature. The topological twist of the (0, 2)
world-volume theory is realised by identifying the spin connection on Σ with a U (1) connec-
tion in the SO(5) R-symmetry group of the M5-brane theory. The theory preserves N = 2
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or N = 1 superconformal symmetry in four dimensions, depending on how the U (1) is
chosen inside SO(5). The corresponding supergravity solutions are warped products of
AdS5 times a six-dimensional manifold, M , which is the fibration of a deformed S4 over Σ.
The SO(5) is realised via the action of the isometry group of the round S4. The structure
of the fibration reflects the twist of the world-volume theory and determines the amount
of supersymmetry of the solutions, which in five-dimensional language is either N = 4 or
N = 2, respectively.

In this paper we focus on the N = 2 solution, which we call the “MN1 solution” in the
following. The eleven-dimensional metric is15

ĝ = e2∆ gAdS5 + g6 , (4.1)

where gAdS5 is the Anti de Sitter metric with radius ` = 3
2R, R being the length scale of

the internal space M . The metric on M takes the form

g6 = R2 31/3

24/3

(
3 + cos2 ζ

)1/3
[
gΣ + dζ2 + sin2 ζ

3 + cos2 ζ

(
σ2

1 + σ2
2 + (σ3 + υ)2

)]
. (4.2)

Here, gΣ is the uniform metric on (a quotient of) the hyperbolic plane Σ = H2, with Ricci
scalar curvature RΣ = −2, while υ is the spin connection on Σ satisfying

dυ = − volΣ , (4.3)

with volΣ the volume form on Σ.16 The deformed S4 is described as a foliation of a round
S3 over an interval, with the interval coordinate being ζ ∈ [0, π], while σα, α = 1, 2, 3, are
the standard SU (2)left-invariant forms on S3, expressed in terms of Euler angles {θ, φ, ψ}.
Their explicit expression can be found in appendix D, together with more details on the
parameterisation of S4.

The warp factor is

e2∆ =
(2

3

)2/3
(3 + cos2 ζ)1/3 , (4.4)

while the four-form reads

F̂ = R3

4

[
15 + cos2 ζ

(3 + cos2 ζ)2 sin3 ζ dζ ∧ σ1 ∧ σ2 ∧ (σ3 + υ)

+ sin ζ
(
−dζ ∧ σ3 + sin(2ζ)

3 + cos2 ζ
σ1 ∧ σ2

)
∧ volΣ

]
.

(4.5)

15We present the solution in a form similar to the one given in [52, Sect. 5]. The precise dictionary with
this reference is: α = ζ, ν = −φ, ψGMSW = ψ, e2λ = e2∆, m−1 = `AdS5 = 3

2R, where the variables on the
left-hand side are those of [52] while the variables on the right-hand side are those used here. The length
scale R that appears in our expressions is equal to the radius of S4 in the related AdS7 ×S4 Freund-Rubin
solution of eleven-dimensional supergravity. The four-form F̂ in (4.5) has an overall opposite sign with
respect to the one of [52], F̂ = −FGMSW; this sign does not affect the equations of motion, it just modifies
the projection condition satisfied by the supersymmetry spinor parameter.

16Choosing local coordinates x, y on the hyperbolic plane, one can write gΣ = dx2+dy2
y2 , volΣ = dx∧dy

y2 ,
and υ = −dx

y
.
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Note that the invariant volume form (3.20) is given by

κ2 = R2 volΣ ∧ vol4 , (4.6)

where vol4 is the volume form of the round S4 of radius R.
The solution has SU (2)left×U (1)right symmetry, which embeds in the SO(5) isometry

group of a round S4 as

SO(5) ⊃ SO(4) ' SU (2)left × SU (2)right ⊃ SU (2)left × U (1)right . (4.7)

This symmetry is manifest as the solution is given in terms of the σα. The globally-defined
combination (σ3 + υ) describes a fibration of S4 over Σ, such that the U (1)right action on
S4 is used to cancel the U (1) holonomy of Σ.

The U(1)right factor provides the R-symmetry of the holographically dual N = 1
SCFT, while SU (2)left corresponds to a flavour symmetry. The dual N = 1 SCFT has
been described in [53].

4.2 Generalised U (1) structure of the MN1 solution

The solution reviewed above admits a generalised U(1)S structure, which will be the basis
for constructing our consistent truncation. In order to characterise it we proceed in two
steps. The first is purely group theoretical: it consists in embedding the relevant U(1)S in
E6(6), computing its commutant and the corresponding decompositions of the generalised
tangent and adjoint bundles. To this end, it is convenient to decompose E6(6) according to
its maximal compact subgroup USp(8)/Z2. Since the usp(8) algebra can be given in terms
of Cliff(6) gamma matrices (see appendix E.1), this reduces the problem to gamma matrix
algebra. The details of the derivation can be found in appendix E; here we will just give
the results. Once the relevant U(1)S singlets are identified, the second step is to express
them in terms of the geometry of the six-dimensional manifold M .

The generalised U(1)S structure of the MN1 solution is the diagonal of the ordinary
geometrical U (1) ' SO(2) ⊂ GL(2,R) structure on the Riemann surface and a U (1) factor
in the SO(5) ⊂ SL(5,R) ' E4(4) generalised structure for the generalised tangent space of
the four-sphere. In terms of the isometry group decomposition (4.7) this can be identified
with U(1)right. If we denote by 1 to 4 the directions in M along S4 and by 5,6 those along
Σ, the generator of U (1)S can be written as a usp(8) element as

u(1)S = i Γ̂56 −
i
2(Γ̂12 − Γ̂34) , (4.8)

where Γ̂m are six-dimensional gamma matrices. The first term corresponds to the U (1)
holonomy of Σ while the second one is the U (1)right in SO(5). By computing the commu-
tators of (4.8) in USp(8) we find that the U (1)S structure embeds in USp(8) as17

USp(8) ⊃ SU (2)× SU (2)H × U (1)× U (1)S , (4.9)
17Here and below we give expressions ignoring subtleties involving the centres of each group; thus for

instance we will not distinguish between embeddings in USp(8) and USp(8)/Z2.
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where as above we distinguish the factor SU (2)H that gives the R-symmetry of the five-
dimensional supergravity theory. Under this splitting, the spinorial representation of
USp(8) decomposes as

8 = (1,2)0 ⊕ (2,1)1 ⊕ (2,1)−1 ⊕ (1,1)2 ⊕ (1,1)−2 , (4.10)

where the elements in the brackets denote the SU (2) × SU (2)H representations and the
subscript gives the U(1)S charge. We then see that there are only two spinors that are
singlets under U (1)S and that transform as a doublet of SU (2)H as required by N = 2
supersymmetry.

The embedding of the U(1)S structure in the full E6(6) is obtained in a similar way
(see appendix E.2 for details)

E6(6) ⊃ CE6(6)(U(1)S) = R+ × Spin(3, 1)× SU (2, 1)× U(1)S , (4.11)

where CE6(6)(U(1)S) is the commutant of U(1)S in E6(6). We can now determine how
many generalised vectors and adjoint elements are U(1)S singlets. Under (4.11) the 27
decomposes as

27 = (1,1)(0,8) ⊕ (4,1)(0,−4) ⊕ (2,1)(3,−2) ⊕ (2̄,1)(−3,−2)

⊕ (1,3)(2,−4) ⊕ (1, 3̄)(−2,−4) ⊕ (2̄,3)(1,2) ⊕ (2, 3̄)(−1,2) ,
(4.12)

where the first subscript denotes the U(1)S charge and the second one the R+ charge. We
see that there are five singlets KI , I = 0, 1, . . . , 4, where

K0 ∈ (1,1)(0,8) (4.13)

is only charged under the R+, while

{K1,K2,K3,K4} ∈ (4,1)(0,−4) (4.14)

form a vector of SO(3, 1).
The singlets in the 78 adjoint representation are the generators of the commutant

CE6(6)(U(1)S). However only the generators of the SU (2, 1) subgroup are relevant for the
structure. Indeed, (4.12) shows that the generators of R+ × SO(3, 1) do not leave the
singlet vectors invariant, and therefore, as discussed in section 2.1, do not contribute to the
truncation. As shown in (E.40) and (E.41), they can be obtained as products KI ×ad K

∗
J .

We denote by JA, A = 1, . . . , 8, the elements of the adjoint bundle generating su2,1. Four
of them are in the 36 of USp(8) and generate the compact subalgebra su2 ⊕ u1, and four
more are in the 42 of USp(8) and generate the rest of su2,1.

The U(1)S structure is then defined by

{KI , JA} , I = 0, . . . , 4 , A = 1, . . . , 8 . (4.15)

The derivation of the explicit expressions for these generalised tensors relies on the
way the solution of [34] is constructed by deforming the AdS7×S4 background dual to flat
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M5-branes so as to describe their backreaction when wrapping a Riemann surface Σ. The
world-volume theory on the wrapped M5-branes is made supersymmetric by a topological
twist, where the spin connection on the Riemann surface is cancelled by switching on
a background gauge field for a U(1) subgroup of the SO(5) R-symmetry. On the dual
background the topological twist implies that M is an S4 fibration over Σ

S4 M

Σ

i

π (4.16)

The generalised tangent bundle for S4 is given by

E4 ' TS4 ⊕ Λ2T ∗S4 , (4.17)

and transforms under SL(5,R) ' E4(4). It is generalised parallelisable, meaning it admits
a globally defined frame [15]. The idea is then to consider first the direct product Σ× S4,
express the E6(6) generalised tensors on this manifold in terms of the frame on Σ and the
parallelisation on S4, and then implement the twist of S4 over Σ so as to make globally
well-defined objects. In the decomposition

E6(6) ⊃ GL(2,R)× SL(5,R) , (4.18)

where GL(2,R) is the structure group of the conventional tangent bundle on Σ and
SL(5,R) ' E4(4) is the structure group of the generalised tangent bundle on S4, the E6(6)
generalised tangent bundle on Σ× S4 decomposes as

E ' TΣ⊕ (T ∗Σ⊗N4)⊕ (Λ2T ∗Σ⊗N ′4)⊕ E4 , (4.19)

and the adjoint bundle as

adF ' adF4 ⊕ (TΣ⊗ T ∗Σ)⊕ (T ∗Σ⊗ E4)
⊕ (Λ2T ∗Σ⊗N4)⊕ (TΣ⊗ E∗4)⊕ (Λ2TΣ⊗N∗4 ) .

(4.20)

In the expressions above E4 is the generalised tangent bundle on S4 introduced in (4.17),
adF4 is the adjoint bundle on S4,

adF4 ' R⊕ (TS4 ⊗ T ∗S4)⊕ Λ3T ∗S4 ⊕ Λ3TS4 , (4.21)

and N4 and N ′4 are the following bundles on S4,

N4 ' T ∗S4 ⊕ Λ4T ∗S4 ,

N ′4 ' R⊕ Λ3T ∗S4 .
(4.22)

The bundles E4, N4 and N ′4 admit the globally defined generalised frames

Eij ∈ Γ(E4) , Ei ∈ Γ(N4) , E′i ∈ Γ(N ′4) , i, j = 1, . . . , 5 , (4.23)
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see appendix D for their expression in a coordinate basis and note that they include a
contribution from the three-form gauge potential AS4 of the flux on the S4. Geometrically
this defines a generalised identity structure on S4. Given the way U (1)S is embedded in
USp(8), we will find it useful to also introduce the following linear combinations of the
generalised frame elements Eij on S4,

Ξ1 = E13 + E24 , Ξ2 = E14 − E23 , Ξ3 = E12 − E34 ,

Ξ̃1 = E13 − E24 , Ξ̃2 = E14 + E23 , Ξ̃3 = E12 + E34 . (4.24)

Since their restriction to TM corresponds to the Killing vectors generating the SU (2)left×
SU (2)right ' SO(4) ⊂ SO(5) isometries of S4 (again see appendix D for their explicit
expression), Ξα and Ξ̃α, α = 1, 2, 3, may be seen as generalised Killing vectors generating
the corresponding generalised isometries.

As for the Riemann surface Σ, it can be (a quotient of) the hyperbolic plane H2 as
in the MN1 solution reviewed in section 4.1, but we can also take a torus T 2, or a sphere
S2. We introduce orthonormal co-frame one-forms e1, e2 on Σ, such that the constant
curvature metric and the compatible volume form on Σ are given by

gΣ = (e1)2 + (e2)2 , volΣ = e1 ∧ e2 . (4.25)

The metric is normalised so that the Ricci scalar curvature is RΣ = 2κ, where κ = +1 for
S2, κ = 0 for T 2 and κ = −1 for H2 (and quotients thereof). We also define the U(1) spin
connection, υ, on Σ as

d(e1 + i e2) = i υ ∧ (e1 + i e2) , dυ = κ volΣ . (4.26)

The decompositions (4.19) and (4.20) allow us to express the U(1)S invariant gener-
alised tensors in terms of tensors on Σ and the S4 generalised frames introduced above.
We provide the derivation in appendix E and here just present the resulting expressions.
Let us first focus on the singlet generalised vectors KI . These can be written as

K0 = eΥ · (R2 volΣ ∧ E′5) , K1,2,3 = eΥ · Ξ̃1,2,3 , K4 = eΥ · Ξ3 , (4.27)

where Υ is a section of the adjoint bundle implementing the twist of S4 over Σ as in (4.16),
ensuring that these are globally defined objects on the six-dimensional manifold. Recall
that in the MN1 solution, the U(1) that is used to twist the four-sphere and compensate
the spin connection υ on Σ is the Cartan of SU (2)right ⊂ SO(5). The E6(6) twist element
Υ is constructed in a way similar to the one used in [14], albeit with a different choice
of U (1) in SO(5). We embed the connection one-form υ in a generalised dual vector, the
Killing vector generating the Cartan of SU (2)right in the generalised vector Ξ3 introduced
above, and we project their product onto the adjoint of E6(6). That is,

Υ = −R2 υ ×ad Ξ3 , (4.28)
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where ×ad denotes the projection onto the adjoint and again R is the radius of S4. Evalu-
ating its action in (4.27), we find that this is trivial for all the KI ’s except for K4, and we
obtain our final expressions

K0 = R2 volΣ ∧ E′5 , K1,2,3 = Ξ̃1,2,3 , K4 = Ξ3 −Rυ ∧ E5 . (4.29)

A similar procedure applies to the singlets JA, A = 1, . . . , 8, in the adjoint bundle. In this
way we obtain (see appendix E for the derivation)

J1 = 1
2 eΥ · (−Re1 ×ad Ξ1 −Re2 ×ad Ξ2 +R−1 Ξ∗1 ×ad ê1 +R−1 Ξ∗2 ×ad ê2

)
,

J2 = 1
2 eΥ · (Re1 ×ad Ξ2 −Re2 ×ad Ξ1 −R−1 Ξ∗2 ×ad ê1 +R−1 Ξ∗1 ×ad ê2

)
,

J3 = 1
2 eΥ · (ê1 ⊗ e2 − ê2 ⊗ e1 −Re2 ×ad Ψ15 +R−1 Ψ∗15 ×ad ê2

− E∗5[1 ×ad E2]5 + E∗5[3 ×ad E4]5
)
,

J4 = 1
2 eΥ · (Re1 ×ad Ξ2 −Re2 ×ad Ξ1 +R−1 Ξ∗2 ×ad ê1 −R−1 Ξ∗1 ×ad ê2

)
,

J5 = 1
2 eΥ · (Re1 ×ad Ξ1 +Re2 ×ad Ξ2 +R−1 Ξ∗1 ×ad ê1 +R−1 Ξ∗2 ×ad ê2

)
,

J6 = −1
3 eΥ · (ê1 ⊗ e1 + ê2 ⊗ e2 +

4∑

i=1
E∗i5 ×ad Ei5 + 2

)
,

J7 = eΥ · (Re2 ×ad Ψ15 +R−1 Ψ∗15 ×ad ê2
)
,

J8 = 1
2
√

3
eΥ · (ê1 ⊗ e2 − ê2 ⊗ e1 − 3Re2 ×ad Ψ15 + 3R−1 Ψ∗15 ×ad ê2

− E∗5[1 ×ad E2]5 + E∗5[3 ×ad E4]5
)
,

(4.30)

where the superscript ∗ denotes dual generalised vectors, transforming in the 27, and we
introduced Ψ1i = Re1∧Ei and Ψ2i = Re2∧Ei. The adjoint action of eΥ is evaluated using
the formula (A.21); we do not show the resulting expressions as they are rather lengthy.
Evaluating the commutators [JA, JB] using again (A.21), we checked that the JA satisfy
precisely the SU (2, 1) commutation relations (see (F.4) for our choice of SU (2, 1) structure
constants).

4.3 The V and H structure moduli spaces

We now construct the V structure and H structure moduli spaces. Applying the general
discussion of section 2.3 we have

MV ×MH =
CE6(6)(GS)

CUSp(8)/Z2(GS) = R+ × Spin(3, 1)
SU (2) × SU (2, 1)

SU (2)H × U (1) , (4.31)

As we now show the first two factors give the V structure moduli space and the last factor
the H structure moduli space.
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The V structure. Evaluating (2.16) for the KI constructed above we obtain the con-
stant, symmetric tensor CIJK . Using the invariant volume (4.6), we find that the non-
vanishing components of CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, . . . , 4 , (4.32)

where
η = diag(−1,−1,−1, 1) . (4.33)

A family of V structures is then obtained by defining K as the linear combination (2.30)
and imposing the condition (2.31). It follows that our V structure moduli space is the
hypersurface

CIJKh
IhJhK = h0

(
−(h1)2 − (h2)2 − (h3)2 + (h4)2

)
= 1 . (4.34)

It will be convenient to redefine the hI in terms of the parameters

{Σ, H1, H2, H3, H4} (4.35)

as

h0 = Σ−2 ,

hI = −ΣHI , I = 1, . . . , 4 , (4.36)

so that
K = Σ−2K0 − Σ

(
H1K1 +H2K2 +H3K3 +H4K4

)
. (4.37)

From (4.34) we see that HI are coordinates on the unit hyperboloid SO(3,1)
SO(3) ,

− (H1)2 − (H2)2 − (H3)2 + (H4)2 = 1 , (4.38)

while Σ (that we assume strictly positive) is a coordinate on R+, whose powers in (4.36)
are dictated by the weight of the KI ’s under the action of the R+ that commutes with the
generalised structure. The resulting V structure moduli space thus is

MV = R+ × SO(3, 1)
SO(3) , (4.39)

and will determine nV = 4 vector multiplets in five-dimensional N = 2 supergravity.
Note that by identifying SU (2) ' Spin(3) this matches the first two factors in (4.31). The
isometry group is SO(3, 1) because the hI form a vector rather than a spinor representation
of Spin(3, 1).

The H structure. We next turn to the H structure moduli space, again following the
general discussion given in section 2.3. Since the commutant of SU (2)H in SU (2, 1) is
U (1), from (2.35) we obtain that the H structure moduli space is18

MH = SU (2, 1)
SU (2)H × U (1) . (4.40)

18More precisely one hasMH = SU (2, 1)/S(U (2)×U (1)).
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This is a simple quaternionic-Kähler manifold of quaternionic dimension nH = 1. We will
denote by

{ϕ, ξ, θ1, θ2} (4.41)
the coordinates on this space. In appendix F we give the explicit parameterisation chosen
for the coset space as well as the explicit form of the “dressed” su(2) elements Jα, depending
on {ϕ, ξ, θ1, θ2}, in terms of su(2, 1) elements. Below we will use this dressed triplet to
construct the generalised metric. In appendix F we also give the SU (2, 1) invariant metric
onMH , which will provide the hyperscalar kinetic term in the five-dimensional theory.

4.4 Intrinsic torsion and gauging

For the U(1)S structure constructed in the previous section to lead to a consistent trun-
cation, it must be checked that its intrinsic torsion only contains U(1)S singlets, and that
these are constant. In particular we need to show that equations (3.4), (3.5) and (3.7) hold.
For the first two conditions we evaluate the generalised Lie derivatives of the tensors KI

and JA in (4.29) and (4.30), using the action of generalised Lie derivative on a generalised
vector and on sections of the adjoint bundle given in appendix A.

Consider first the algebra of the generalised vectors (4.29). Using the fact that, under
the generalised Lie derivative, the S4 frames Eij generate an so(5) algebra

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) , (4.42)

one can show that the only non-zero Lie derivatives are

LKαKβ = − 2
R
εαβγKγ , α, β, γ = 1, 2, 3 , (4.43)

so that the vectors Kα, α = 1, 2, 3, lead to an SO(3) factor in the gauge group in the five-
dimensional supergravity.19 This embeds in the SO(3, 1) factor of the global symmetry
group of the ungauged theory in the obvious way. Hence (4.43) determines the compo-
nents of the embedding tensor acting on the vector multiplet sector of the five-dimensional
supergravity theory.

We thus have that the non-vanishing structure constants are fαβγ = −2 εαβγ and the
gauge coupling constant is g = 1

R . Recalling (3.8), the non-trivial vector multiplet scalar
covariant derivatives are

DHα = dHα − 2
R
εαβγAβ Hγ , (4.44)

while the gauge field strengths read

F0 = dA0 , Fα = dAα − 1
R
εαβγAβ ∧ Aγ , F4 = dA4 . (4.45)

In order to determine the gauging in the hypersector we also need to compute the Lie
derivative of the JA along the generalised vectors KI . We find that the JA are neutral
under the action of the SO(3) generators Kα,

LKαJA = 0 , A = 1, . . . 8 , (4.46)
19For simplicity, we use the indices α, β = 1, 2, 3 both to label the generators of the SU (2)H entering in

the definition of the H structure and the generators of the SU (2) in the V structure, although these are
different subgroups of E6(6).
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consistently with the fact that the gauging in the vector multiplet sector does not affect
the hypersector. On the other hand, the remaining generalised vectors K0 and K4 act
non-trivially on the JA, and determine an abelian gauging of the SU (2, 1) generators. In
detail, the generalised Lie derivative of the JA along K0 gives

LK0(J1 − J5) = 0 ,

LK0(J1 + J5) = 1
R

(J2 + J4) ,

LK0(J2 + J4) = 0 ,

LK0(J2 − J4) = − 1
R

(J1 − J5) ,

LK0J3 = − 1
2RJ6 ,

LK0J6 = − 1
2R
(
J3 + 2J7 −

√
3J8

)
,

LK0J7 = 1
R
J6 ,

LK0J8 =
√

3
2RJ6 ,

(4.47)

while the one along K4 yields

LK4(J1 − J5) = − 2
R

(J2 + J4) ,

LK4(J1 + J5) = − 2
R

(J2 − J4)− κ

R
(J2 + J4) ,

LK4(J2 + J4) = 2
R

(J1 − J5) ,

LK4(J2 − J4) = 2
R

(J1 + J5) + κ

R
(J1 − J5) ,

LK4J3 = κ

2RJ6 ,

LK4J6 = κ

2R
(
J3 + 2J7 −

√
3J8

)
,

LK4J7 = − κ
R
J6 ,

LK4J8 = −
√

3κ
2R J6 .

(4.48)
The actions (4.47) and (4.48) can equivalently be expressed in terms of an adjoint action as

LK0JA = [J(K0), JA] , LK4JA = [J(K4), JA] , A = 1, . . . , 8 , (4.49)

where the sections of the adjoint bundle

J(K0) = 1
4R

(
J3 + 2J7 −

√
3J8

)
,

J(K4) = − κ

4R
(
J3 + 2J7 −

√
3J8

)− 1
R

(
J3 + 1√

3
J8
)

(4.50)

correspond to SU (2, 1) generators acting on the H-structure moduli space (4.40) as isome-
tries. We denote by k0 and k4 the corresponding Killing vectors on MH. These can be
calculated applying (3.10) to the coset representative L given in appendix F, and read

k0 = ∂ξ ,

k4 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) . (4.51)

These Killing vectors specify the isometries ofMH that are gauged in the five-dimensional
supergravity. The hyperscalar covariant derivatives (3.11) are determined as

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA4 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 − κ

R
A4 . (4.52)
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The triholomorphic Killing prepotentials PαI obtained by evaluating the moment
maps (3.12) read

Pα0 =
{

0 , 0 , 1
4 e2ϕ

}
,

Pα4 =
{√

2 eϕθ1 ,
√

2 eϕθ2 ,−1 + 1
4 e2ϕ(2θ2

1 + 2θ2
2 − κ

) }
, (4.53)

with Pα1 = Pα2 = Pα3 = 0.
The information above completely characterises the five-dimensional N = 2 supergrav-

ity obtained upon reduction on M . This will be discussed in section 4.6. Before coming to
that, we provide the explicit bosonic truncation ansatz.

4.5 The truncation ansatz

The truncation ansatz is built following the general procedure described in section 3.2. We
compute the inverse generalised metric (2.27) out of the U (1)S invariant generalised tensors.
This depends on the V structure moduli {Σ, H1, H2, H3, H4} and on the H structure moduli
{ϕ, ξ, θ1, θ2}, which are now promoted to scalar fields in the external, five-dimensional
spacetime. Then we evaluate the generalised tensors Aµ,Bµν , Cµνρ using (3.25)–(3.27).
Separating the components of these tensors as described in section 3.2, we obtain the
ansatz for the eleven-dimensional metric ĝ and three-form potential Â.

We start from the covariantised differentials Dzm = dzm− hµmdxµ of the coordinates
on M , that appear in (3.16). From (3.21) and (3.25) we see that hµ = hµ

m∂m is given by

hµ = AIµKI |TM , (4.54)

where KI |TM is the restriction of KI to the tangent bundle of M . Evaluating the right
hand side using the explicit form (4.29) of the generalised vectors KI , we obtain

hµ = 2
R

(Aαµ ξ̃α +A4
µ ξ3

)
, (4.55)

where we recall that ξα, ξ̃α, α = 1, 2, 3, are the pull-back to TM of the SU (2)left-
and SU (2)right-invariant vectors on S3, respectively, whose coordinate expression is given
in (D.2) and (D.3). It follows that Dzm, and thus both the eleven-dimensional met-
ric and three-form, contain the five-dimensional gauge potentials Aα, A4, gauging the
SU (2)left×U (1)right isometries of S3 inM . Notice that A0 does not appear in (4.55) as K0
does not have a component in TM , hence it will not enter in the eleven-dimensional metric.
However K0 will appear in the ansatz for the three-form, as it does have a component in
Λ2T ∗M .

In order to express our ansatz in a more compact way, it will be convenient to introduce
new one-forms Ωα and Ω̃α, α = 1, 2, 3, adapted to the symmetries of the problem, that
incorporate the covariantised differentials above but also include some more terms. Recall
that we describe S4 as a foliation of S3, parameterised by Euler angles {θ, φ, ψ}, over an
interval, parameterised by ζ. We define

Ω1 = cosψDθ + sinψ sin θDφ , Ω̃1 = cosφDθ + sinφ sin θDψ ,
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Ω2 = − sinψDθ + cosψ sin θDφ , Ω̃2 = sinφDθ − cosφ sin θDψ ,
Ω3 = Dψ + cos θDφ , Ω̃3 = Dφ+ cos θDψ , (4.56)

which are analogous to the left- and right-invariant forms σα, σ̃α given in (D.6) and (D.7),
but with the ordinary differential of the coordinates being replaced by the new covariantised
differential D. This extends the differential D given above and is defined as

Dzm = dzm − 2
R

(
Aαξmα + Ãαξ̃mα

)
, (4.57)

with

A1 = R√
2

(θ2e1 − θ1e2) , A2 = R√
2

(θ1e1 + θ2e2) , A3 = −R2 υ +A4 ,

Ãα = Aα , α = 1, 2, 3 , (4.58)

where the five-dimensional scalars θ1, θ2 are two of the H structure moduli, and we recall
that e1, e2 are the vielbeine on the Riemann surface Σ while υ is the connection on Σ.
The local one-forms Ãα,Aα gauge all the left- and right- isometries of S3, respectively, and
would correspond to SO(4) ' SU (2)left × SU (2)right gauge potentials in the reduction of
eleven-dimensional supergravity on S4 down to seven-dimensional supergravity. However,
in the further reduction on Σ of interest here only Aα,A4 become five-dimensional gauge
fields, while the rest of (4.58) implements the twist on the Riemann surface and introduces
the five-dimensional scalars θ1, θ2.

We are now in the position to give the truncation ansatz for the eleven-dimensional
metric

ĝ = e2∆gµνdxµdxν + gmnDz
mDzn . (4.59)

The warp factor is
e2∆ = ∆̄1/3 (eϕΣ)4/5 , (4.60)

while the part with at least one internal leg reads

gmnDz
mDzn =R2∆̄1/3(eϕΣ)−6/5 gΣ+R2∆̄−2/3e2ϕ/5Σ−3/5

[(
e−2ϕΣ3 sin2 ζ+H− cos2 ζ

)
dζ2

+ 1
4H+ sin2 ζ δαβΩα⊗Ωβ−

1
2 sin2 ζHα Ω̃α⊗sΩ3−cosζ sinζ dζ⊗sd6H+

]
,

(4.61)

where ⊗s is the symmetrised tensor product, defined as Ω ⊗s Ω̃ = 1
2(Ω ⊗ Ω̃ + Ω̃ ⊗ Ω). In

these expressions we introduced the function

∆̄ =
(
e−2ϕΣ3)−4/5 cos2 ζ +

(
e−2ϕΣ3)1/5H+ sin2 ζ , (4.62)

as well as

H± = H4 ±
(
H1 sin θ sinφ−H2 sin θ cosφ+H3 cos θ

)
,

d6H+ = H1 d(sin θ sinφ)−H2 d(sin θ cosφ) +H3 d cos θ . (4.63)
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Note that in the last expression the exterior derivative acts on the internal coordinates and
not on the scalars HI , which only depend on the external coordinates.

We next come to the eleven-dimensional three-form potential Â. We first give our
result and then make some comments. The ansatz for Â reads

Â = −1
8R

3 cos ζ
[
2 + sin2 ζ ∆̄−1(e−2ϕΣ3)−4/5 ]Ω1 ∧ Ω2 ∧ Ω3

+ 1
4R

3 sin3 ζ ∆̄−1(e−2ϕΣ3)1/5 dζ ∧Hα Ω̃α ∧ Ω3

+R3 cos ζ
(Dξ − θ1Dθ2 + θ2Dθ1

) ∧ volΣ +1
4R

3 cos ζ
(
2θ2

1 + 2θ2
2 − κ

)
volΣ ∧Ω3

+ 1
2R

2 cos ζ
(F4 ∧ Ω3 −Fα ∧ Ω̃α

)
+R cos ζ Σ4 ∗5 F0

+ 1
2
√

2
R3 cos ζ

[(
Dθ2 ∧ e1 −Dθ1 ∧ e2

)
∧ Ω1 +

(
Dθ1 ∧ e1 +Dθ2 ∧ e2

)
∧ Ω2

]
, (4.64)

where the five-dimensional gauge field strengths, F , and the covariant derivatives, D, of
the five-dimensional scalars were given in (4.45) and (4.52), respectively.

Equation (4.64) has been obtained by first computing Â through the general procedure
of section 3.2, then implementing a gauge shift by an exact three-form so as to obtain a
nicer expression (this is why derivatives of the external fields appear), and finally dualising
away the five-dimensional two- and three-forms, so that the only five-dimensional degrees
of freedom contained in the ansatz are scalar and vector fields, in addition to the metric
gµν . Let us outline how this dualisation is performed. Evaluating (3.26) and (3.27), we
find that only one external two-form B and one external three-form C appear in the ansatz
for Â. These are paired up with the generalised tensors E5 and E′5 on S4, which, as
generalised tensors on M , are sections of detT ∗M ⊗E∗ and detT ∗M ⊗ adF , respectively.
The combination entering in Â is

[BE5 + CE′5
]
3 = RB ∧ d cos ζ +R C cos ζ = (C − dB)R cos ζ + d (BR cos ζ) , (4.65)

where the subscript on the left-hand side indicates the restriction to the three-form part,
and the last term in the expression is removable via a gauge transformation of Â. Hence
B and C only appear in the combination (C − dB). This means that the two-form gets
eaten by the three-form via the Stuckelberg mechanism, giving it a mass. While a massless
three-form in five-dimensions is dual to a scalar field, here we dualise the two-form at the
same time and also obtain a vector field. The duality relation is obtained considering the
duality between the eleven-dimensional three-form Â and six-form ˆ̃A given in (3.15), and
looking at the relevant terms with three external indices. In this way we find that

C − dB = Σ4 ∗5 dA0 −A4 ∧ dA4 +Aα ∧ dAα − 1
3R εαβγAα ∧ Aβ ∧ Aγ . (4.66)

We have used this expression to eliminate (C −dB) completely from the truncation ansatz.
This explains the ∗5F0 term appearing in (4.64).

Our truncation ansatz reproduces the Maldacena-Nuñez solution given in section 4.1
upon taking κ = −1 and setting the scalars to

H1 = H2 = H3 = θ1 = θ2 = ξ = 0 , H4 = Σ = 1 , ϕ = 1
2 log 4

3 . (4.67)
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The consistent truncation of [36] is recovered as a subtruncation that projects out the
fields transforming under SU (2)left, that is setting Ãα = Hα = 0, α = 1, 2, 3, which also
implies H4 = 1.20 The further truncation to minimal gauged supergravity is obtained by
setting the scalars to their AdS value (4.67) and taking A0 = −A4.

One can obtain a slightly larger subtruncation by projecting out only the modes
charged under U (1)left, rather than SU (2)left, namely setting Ã1 = Ã2 = H1 = H2 = 0.
This leaves us with two vector multiplets, one hypermultiplet and just the abelian gauging
generated by the Killing vectors (4.51), which is the same as the one in the truncation
of [36].21 A notable generalisation of this subtruncation will be discussed in section 5.

The truncation of [36] was obtained via a reduction of gauged seven-dimensional su-
pergravity on the Riemann surface Σ. Similarly, we can obtain our truncation ansatz by
combining the well-known truncation of eleven-dimensional supergravity on S4 [9], leading
to seven-dimensional maximal SO(5) supergravity, with a further truncation reducing the
seven-dimensional theory on Σ. Starting from the convenient form of the bosonic trunca-
tion ansatz on S4 given in [56], we have explicitly checked that this procedure works out
as expected and reproduces the ansatz above.

4.6 The five-dimensional theory

We now put together the ingredients defining the truncated five-dimensional theory and
discuss it in more detail. This is an N = 2 gauged supergravity coupled to four vector
multiplets and one hypermultiplet. The vector multiplet scalar manifold is

MV = R+ × SO(3, 1)
SO(3) , (4.68)

while the hypermultiplet scalar manifold is

MH = SU (2, 1)
SU (2)H × U (1) . (4.69)

As discussed before, these have a geometric origin as the V and H structure moduli spaces
of the internal manifold. At the bosonic level, the vector multiplets are made of gauge
fields AI and constrained scalar fields hI , I = 0, 1, . . . , 4, which we have parameterised
in terms of Σ and HI , I = 1, . . . , 4, in (4.36). The latter scalars satisfy the constraint
ηIJH

IHJ = 1, with η = diag(−1,−1,−1, 1). We have also found that the non-vanishing
components of the symmetric tensor CIJK are given by

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , I, J = 1, . . . , 4 . (4.70)

20Then the one-forms Ωα essentially reduce to those in [36], up to slightly different conventions, while Ω̃α
drop out of the ansatz. When comparing our truncation ansatz with the one given in section 4.1 of [36], one
should take into account that Âhere = −ÂFNR (this is seen from comparing our 11d Maxwell equation with
the one in [54], which provides the 7d to 11d uplift formulae used in [36]). Moreover ζhere = ζFNR + π/2 ,
A4 ∝ AFNR, A0 ∝ χFNR

1 , Σ = 21/3ΣFNR, e2ϕ = 2(e2ϕ)FNR, |θ1,2| = 1√
2 |θ1,2|FNR, ξ = 1

2ξ
FNR.

21Curiously, this five-dimensional supergravity with two vector multiplets and one hypermultiplet looks
closely related to the N = 2 “Betti-vector” model obtained in [55, Section 7] as a consistent truncation of
IIB supergravity on T 1,1. The two models are not the same though, as the details of the couplings between
the fields are different.
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The kinetic terms in the vector multiplet sector are controlled by the matrix aIJ , given by
the general formula (2.34), which in our case reads

a00 = 1
3 Σ4 ,

a0J = 0 ,

aIJ = 2
3 Σ−2

(
2ηIKHKηJLH

L − ηIJ
)
, I, J = 1, . . . , 4 . (4.71)

The hypermultiplet comprises the scalars qX = {ϕ, ξ, θ1, θ2}, and the kinetic term is
given by the quaternionic-Kähler metric onMH that we derived in appendix F,

gXY dqXdqY = 2 dϕ2 + e2ϕ
(
dθ2

1 + dθ2
2
)

+ 1
2 e4ϕ (dξ − θ1dθ2 + θ2dθ1)2 . (4.72)

The gauge group is SO(3)×U (1)×R. The symmetries being gauged are the SO(3) ⊂
SO(3, 1) isometries of MV and two abelian isometries in MH, generated by the Killing
vectors (4.51). Note that the ∂ξ term generates the non-compact R factor and the θ2∂θ1 −
θ1∂θ2 term generates the compact U(1).

We recall for convenience the gauge field strengths

F0 = dA0 , Fα = dAα − g εαβγAβ ∧ Aγ , F4 = dA4 , α = 1, 2, 3 , (4.73)

and the covariant derivatives of the charged scalars,

DHα = dHα − 2
R
εαβγAβ Hγ ,

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA4 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 − κ

R
A4 , (4.74)

where the gauge coupling constant is given by the inverse S4 radius, g = 1
R . The scalars Σ,

H4 and ϕ remain uncharged. The gauging in the hypersector is the same as in [36], while
the gauging in the vector multiplet sector is a novel feature of our truncation.

Plugging these data in the general form of the N = 2 supergravity action given in
appendix B, we obtain the bosonic action for our model,

S = 1
16πG5

∫ [
(R− 2V) ∗ 1− 1

2 Σ4F0 ∧ ∗F0 − 3
2

4∑

I,J=1
aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

4∑

I,J=1
aIJD(ΣHI) ∧ ∗D(ΣHJ)− gXYDqX ∧ ∗DqY +

4∑

I,J=1
ηIJA0 ∧ F I ∧ FJ

]
,

(4.75)

where G5 is the five-dimensional Newton constant.22 The scalar potential V is obtained
from the Killing prepotentials of the gauged isometries as summarised in appendix B. The

22As discussed in [33], the five-dimensional Newton constant is given by (G5)−1 ∝
∫
M

e3∆ vol6 =
∫
M
κ2.

In the present case,
∫
M
κ2 = R2 VolΣ Vol4, where VolΣ = 4π(1−g)

κ
is the standard volume of a Riemann

surface of genus g and Vol4 = 8π3

3 R4 is the volume of a round S4 with radius R.
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Killing prepotentials were already given in (4.53). We can check this expression by starting
from the Killing vectors (4.51) and evaluating (B.15) using a standard parameterisation
for the universal hypermultiplet; we have verified that indeed the same result is obtained.
Then (B.17) gives for the scalar potential

V = 1
R2

{ e4ϕ

4Σ4 −
2H4 e2ϕ

Σ + Σ2
[
− 2 + e2ϕ

(
2
(
(H4)2 − 1

)(
θ2

1 + θ2
2
)− κ

)

+ 1
8 e4ϕ(2(H4)2 − 1

)(
2θ2

1 + 2θ2
2 − κ

)2]
}
. (4.76)

The supersymmetric AdS vacuum conditions summarised in eq. (B.18) are easily solved
and give the scalar field values

H1 = H2 = H3 = θ1 = θ2 = 0 , H4 = Σ = 1 , ϕ = 1
2 log 4

3 , (4.77)

that is precisely the values (4.67) that reproduce the MN1 solution reviewed in section 4.1.
The negative curvature κ = −1 for the Riemann surface arises as a positivity condition
for the scalars Σ and e2ϕ. The critical value of the scalar potential yields the cosmological
constant Λ ≡ V = − 8

3R2 , corresponding to an AdS5 radius ` = 3
2R, again in harmony with

the solution in section 4.1.
By extremising the scalar potential (4.76) we can search for further AdS5 vacua within

our truncation. Then, by analysing the mass matrix of the scalar field fluctuations around
the extrema we can test their perturbative stability. In the following we discuss the outcome
of this analysis for the three extrema that we have found.

• We recover the supersymmetric vacuum (4.77). Being supersymmetric, this is stable.
The supergravity field fluctuations source SU (2, 2|1) superconformal multiplets in the
dual N = 1 SCFT [53], with the supergravity mass eigenvalues providing the confor-
mal dimension ∆ of the operators in the multiplets. The field fluctuations that were
also considered in [36] correspond to the energy-momentum multiplet (containing the
energy-momentum tensor with ∆ = 4 and the R-current with ∆ = 3) and to a long
vector multiplet of conformal dimension ∆ = 1 +

√
7 (see [36] for more details). The

additional SO(3) vector multiplet included in this paper sources a conserved SO(3)
flavour current multiplet in the dual SCFT. The three scalar operators in this mul-
tiplet have conformal dimension ∆ = 2 (once) and ∆ = 4 (twice), while the SO(3)
flavour current has conformal dimension ∆ = 3, as required for a conserved current.
Another piece of information about the dual SCFT is given by the Weyl anomaly
coefficients; these are obtained from the five-dimensional Newton constant G5 and
the AdS5 radius ` through the formula a = c = π`3

8G5
.

• When κ = −1 we also recover the non-supersymmetric vacuum discussed in [36],
that was originally found in [57]. The analysis of the scalar mass matrix shows
that the fluctuation of H4 has a mass squared m2`2 ' −4.46, which is below the
Breitenlohner-Freedman bound `2m2

BF = −4. We thus establish that this vacuum
is perturbatively unstable. Note that the unstable mode lies outside the truncation
of [36].
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• For κ = +1, we find a non-supersymmetric vacuum with non zero value of the H-
scalars, given by

Σ = 21/3

51/6 , e2ϕ = 8
3 , H4 = 3

√
5

4 , θ1 = θ2 = 0 , ` = 3 21/6

55/6R , (4.78)

where ` is the AdS radius. This appears to be a new solution. It represents an SO(3)
worth of vacua really, since the scalars Hα, α = 1, 2, 3, can take any value such that√

(H1)2 + (H2)2 + (H3)2 =
√

(H4)2 − 1 =
√

29
4 . We find that a linear combination

of the fluctuations of Σ, ϕ and H4 has mass squared m2`2 ' −5.86 < m2
BF`

2, hence
this vacuum is perturbatively unstable. Nevertheless, it allowed us to perform a non-
trivial check of our truncation ansatz for non-vanishing H-fields, as we have verified
that its uplift does satisfy the equations of motion of eleven-dimensional supergravity.

5 Truncations for more general wrapped M5-branes

The N = 2 and N = 4 Maldacena-Nuñez solutions are special cases of an infinite family
of N = 2 solutions [35, 38],23 describing M5-branes wrapping a Riemann surface in a
Calabi-Yau geometry. These solutions, which we will denote as BBBW solutions, have
the same general features of the MN1 solution. In particular, they all admit a generalised
U(1)S structure, which we use to derive the most general consistent truncation to N = 2
gauged supergravity in five dimensions associated with such backgrounds. As we will
see, the truncated theory has two vector multiplets, one hypermultiplet and gauge group
U (1)× R. It generalises the U (1)right invariant subtruncation of the truncation presented
in the previous section: the matter content is the same and the gauging is deformed by
one (discrete) parameter. Our systematic approach allows us to complete the consistent
truncation derived from seven-dimensional maximal SO(5) supergravity on Σ previously
presented in [37] by including all scalar fields in the hypermultiplet and directly deriving
the gauging.24

5.1 The BBBW solutions

The BBBW solutions describe M5-branes wrapped on a Riemann surface Σ, such that the
(2, 0) theory on the branes has a twisting over Σ depending on two integer parameters p
and q. The way the Riemann surface is embedded in the ambient space determines the
local structure of the latter. The authors of [35, 38] showed that there is an infinite family
of allowed geometries, corresponding to the fibration L1 ⊕ L2 ↪→ Σ of two complex line
bundles over the Riemann surface, so that the total space is Calabi-Yau. The degrees of
these line bundles are identified with the integers that parameterise the twist of the M5
world-volume theory, p = degL1 and q = degL2. By the Calabi-Yau condition p and q

must satisfy p + q = 2g − 2, with g the genus of Σ. In this setup, the N = 1 and N = 2
twistings considered in [34] arise from setting p = q and q = 0 (or p = 0), respectively.

23See also [58], where a subset of the solutions was previously found.
24We thank Nikolay Bobev and Alberto Zaffaroni for pointing out this reference.
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The corresponding AdS5 ×w M supergravity solutions are generalisation of the MN1
solution reviewed in section 4.1. The eleven-dimensional metric is a warped product

ĝ = e2∆gAdS5 + g6 , (5.1)

with warp factor
e2∆ `2 = e2f0∆̄1/3 . (5.2)

where ` is the AdS radius. The six-dimensional manifoldM is still a fibration of a squashed
four-sphere over the Riemann surface, with metric

g6 = ∆̄1/3e2g0gΣ + 1
4 ∆̄−2/3g4 , (5.3)

where the Riemann surface metric gΣ satisfies (4.25), (4.26), and the metric on the squashed
and fibered S4 is

g4 = X−1
0 dµ2

0 +
∑

i=1,2
X−1
i

(
dµ2

i + µ2
i (dϕi +A(i))2) . (5.4)

The angles ϕ1, ϕ2 vary in [0, 2π],25 and

µ0 = cos ζ , µ1 = sin ζ cos θ2 , µ2 = sin ζ sin θ2 , (5.5)

with ζ, θ ∈ [0, π]. The two circles ϕ1 and ϕ2 are independently fibered over the Riemann
surface, with connections

A(1) = −1 + z

2 υ A(2) = −1− z
2 υ , (5.6)

where υ is again the connection on Σ and the discrete parameter z is related to the integers
p and q as

z = p− q
p+ q

. (5.7)

The warping function ∆̄ and the constants f0, g0 depend on z and on the curvature κ of
the Riemann surface as

∆̄ =
2∑

I=0
XIµ

2
I , ef0 = X−1

0 , e2g0 = −1
8 κX1X2 [(1− z)X1 + (1 + z)X2] , (5.8)

with

X0 = (X1X2)−2 ,

X1X
−1
2 = 1 + z

2z − κ
√

1 + 3z2 ,

X5
1 = 1 + 7z + 7z2 + 33z3 + κ(1 + 4z + 19z2)

√
1 + 3z2

4z(1− z)2 .

(5.9)

25They are related to the angles of section 4.1 by ϕ1 = −(φ+ ψ)/2 and ϕ2 = (φ− ψ)/2.
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The four-form flux is given by

F̂ = −1
4 ∆̄−5/2

[ 2∑

I=0
(X2

Iµ
2
I − ∆̄XI) + 2∆̄X0

]
vol4

+ 1
16∆̄−1/2

2∑

i=1
X−2
i ∗4

[
d(µ2

i ) ∧ (dϕi +A(i))
] ∧ dA(i) , (5.10)

where the Hodge star ∗4 is computed using the metric (5.4).

The solution has two U(1) isometries corresponding to shifts of the angles ϕ1, ϕ2 that
parameterise the two diagonal combinations of the U(1)right and U(1)left subgroups of
SO(5). It turns out that neither of them corresponds to the superconformal R-symmetry
of the dual N = 1 SCFT, which is given by a linear combination involving X1, X2 [35, 38].

5.2 Generalised U (1)S structure

The construction of the generalised structure associated to the BBBW solutions follows
the same lines as for the MN1 solution. We first embed the ordinary U(1) structure in
E6(6) and then look for the invariant generalised tensors. The generalised U(1)S structure
of the solutions is determined by the topological twist of the M5 world-volume theory, as
a linear combination of the U(1) holonomy of Σ and the U(1)right and U(1)left subgroups
of the SO(5) R-symmetry group

U(1)S ∼ U(1)Σ − U(1)right − z U(1)left . (5.11)

This embeds in E6(6) as an element of its compact subgroup USp(8) with generator

u(1)S = i Γ̂56 −
i

p+ q

(
p Γ̂12 − q Γ̂34

)
, (5.12)

where Γ̂56 is the usp8 element generating U(1)Σ and 1
2(Γ̂12 ± Γ̂34) generate U(1)left/right.

When p = q we recover the U (1)S structure group of the MN1 solution, whereas q = 0 (or
p = 0) gives the MN2 structure considered in [14]. Below we assume that p, q are generic,
and do not fulfill these special conditions which as we have seen lead to a larger truncation.

By looking at the singlets under u(1)S in the 27 and 78 representations of E6(6), we
find that the U (1)S structure is defined by eight JA, A = 1, . . . , 8, in the adjoint bundle
and three generalised vectors KI , I = 0, 1, 2. The singlets in the adjoint bundle have the
same form (4.30) as for the MN1 solution, while the three singlet generalised vectors take
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the same form as a subset of the MN1 generalised vectors,26

K0 = eΥ · (R2 volΣ ∧E′5) ,
K1 = eΥ · Ξ̃3 ,

K2 = eΥ · Ξ3 .

(5.13)

However now the twisting element Υ has a more general form dictated by the embed-
ding (5.12), that is

Υ = − R

p+ q
υ ×ad (pE12 − q E34) . (5.14)

This makes our generalised tensors globally well-defined. We emphasise that these depend
on the integers p, q only through (5.14).

5.3 Features of the truncation

The number of U(1)S singlets in the 27 and 78 implies that the truncated supergravity
theory contains two vector multiplets and one hypermultiplet. The H structure moduli
space is the same as for the MN1 case,

MH = SU (2, 1)
SU (2)H × U(1) . (5.15)

As before, this is parameterised by real coordinates qX = {ϕ, ξ, θ1, θ2} and the metric
is given by eq. (4.72). The V structure moduli space is determined again following our
discussion in section 2, and is a subspace of the one for the MN1 truncation. Evaluating
the cubic invariant on the singlets KI as in (2.16), we obtain that the non-zero components
of the CIJK tensor are

C0IJ = CI0J = CIJ0 = 1
3 ηIJ , for I, J = 1, 2 , (5.16)

with η = diag(−1, 1) . Parameterising the V structure moduli as in (4.36), with I = 1, 2,
the constraint (2.31) gives the equation of the unit hyperboloid SO(1, 1),

− (H1)2 + (H2)2 = 1 , (5.17)

while again Σ parameterises R+. Thus the V structure moduli space is

MV = R+ × SO(1, 1) . (5.18)
26Before acting with Υ, the singlets for the BBBW solutions are related to those used for the MN1

solutions as
K0 = KMN1

0 , K1 = KMN1
3 , K2 = KMN1

4 ,

and to the structure of the MN2 solution in [14] as

K0 = 1
2(KMN2

5 −KMN2
8 ) , K1 = KMN2

0 + 1
2 (KMN2

5 +KMN2
8 ) ,

K2 = KMN2
0 − 1

2 (KMN2
5 +KMN2

8 ) .
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The kinetic matrix aIJ then takes the same form (4.71), that is

a00 = 1
3 Σ4 ,

a01 = a02 = 0 ,

aIJ = 2
3 Σ−2

(
2(H1)2 + 1 −2H1H2

−2H1H2 2(H2)2 − 1

)
, I, J = 1, 2 . (5.19)

The gauging of the reduced theory is obtained from the generalised Lie derivative LKI
acting on the KJ and the JA. The Lie derivatives among vectors are now trivial,

LKIKJ = 0 , I, J = 0, 1, 2 . (5.20)

As discussed in section 2, the Lie derivatives LKIJA are conveniently expressed as the
adjoint action of SU(2, 1) generators,

LK0JA = [J(K0), JA] , LK1JA = [J(K1), JA] , LK2JA = [J(K2), JA] . (5.21)

Evaluating the generalised Lie derivatives we find

J(K0) = 1
4R

(
J3 + 2J7 −

√
3J8

)
,

J(K1) = 1
4R κz

(
J3 + 2J7 −

√
3J8

)
,

J(K2) = − 1
4R κ

(
J3 + 2J7 −

√
3J8

)− 1
R

(
J3 + 1√

3
J8

)
. (5.22)

Eq. (5.20) implies that the vector multiplet sector is not gauged, so the field strengths are
all abelian,

FI = dAI , (5.23)

while (5.22) specifies the gauging in the hypermultiplet sector in terms of κ and z. The
SU (2, 1) generators act as isometries onMH; the corresponding Killing vectors can again
be computed using (3.10) and read

k0 = ∂ξ ,

k1 = κ z ∂ξ ,

k2 = −κ ∂ξ + 2 (θ2∂θ1 − θ1∂θ2) . (5.24)

It follows that the covariant derivatives of the charged scalars are

D(θ1 + i θ2) = d(θ1 + i θ2)− 2
R

iA2 (θ1 + i θ2) ,

Dξ = dξ + 1
R
A0 + 1

R
κ
(
zA1 −A2

)
, (5.25)

where again the inverse S4 radius 1
R plays the role of the gauge coupling constant. The

Killing prepotentials can be computed either from (3.12) or from (B.15), and read

Pα0 =
{

0 , 0 , 1
4 e2ϕ

}
,
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Pα1 =
{

0 , 0 , 1
4 κ z e2ϕ

}
,

Pα2 =
{√

2 eϕθ1 ,
√

2 eϕθ2 ,−1 + 1
4 e2ϕ (2θ2

1 + 2θ2
2 − κ

) }
. (5.26)

Notice that for z = 0 (that is p = q), the quantities above reduce to those obtained for the
MN1 structure in section 4.4.

The five-dimensional bosonic action is then determined to be

S = 1
16πG5

∫ [
(R− 2V) ∗ 1− 1

2 Σ4F0 ∧ ∗F0 − 3
2

2∑

I,J=1
aIJFI ∧ ∗FJ − 2Σ−2dΣ ∧ ∗dΣ

− 3
2

2∑

I,J=1
aIJ d(ΣHI) ∧ ∗d(ΣHJ)− gXYDqX ∧ ∗DqY −A0 ∧ (F1 ∧ F1 −F2 ∧ F2)

]
,

(5.27)

where the scalar potential reads

V = 1
R2

{ e4ϕ

4Σ4 −
2 e2ϕH2

Σ + Σ2
[
− 2 + e2ϕ

(
2(H1)2(θ2

1 + θ2
2
)− κ

)

+ 1
8 e4ϕ((H1)2 + (H2)2)(2θ2

1 + 2θ2
2 − κ

)2

+ z κ
(
zκ (H1)2 + zκ (H2)2 + 4H1H2(2θ2

1 + θ2
2 − κ

)) ]}
. (5.28)

It is straightforward to analyse the supersymmetric AdS5 vacuum conditions (B.18).
The hyperino equation gives

θ1 = θ2 = 0 ,

Σ−3 = κ
(
zH1 −H2

)
, (5.29)

where we assume κ = ±1 (hence leaving aside the case κ = 0). The gaugino equation gives

2Σ−3 Pα0 +H1Pα1 +H2Pα2 = 0 ,
H2Pα1 +H1Pα2 = 0 . (5.30)

Plugging the Killing prepotentials (5.26) and using (5.29) we obtain

3κ e2ϕ
(
zH1 −H2

)
− 4H2 = 0 ,

κ e2ϕ(z H2 −H1)− 4H1 = 0 . (5.31)

Taking into account the allowed range of the scalar fields, the solution to these equations is

H1

H2 = 1 + κ
√

1 + 3z2

3z , e2ϕ = 4√
1 + 3z2 − 2κ

. (5.32)

For κ = 1, well-definiteness of the fields requires |z| > 1, as in [35], while z can be generic
for κ = −1. The MN1 case z = 0 is recovered as a limiting case after fixing κ = −1. The
critical value of the scalar potential determines the AdS radius ` as

` =
(
κ− 9κz2 + (1 + 3z2)3/2

4z2

)1/3
R . (5.33)
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Although we do not present the uplift formulae for this truncation, we have checked
that the supersymmetric vacuum identified above matches the BBBW solution summarised
in section 5.1. To do so, we have computed the inverse generalised metric G−1 associated
with the U (1)S structure under consideration; this depends on the V structure and H
structure parameters. From the generalised metric we have reconstructed the ordinary
metric g6 and the three-form potential on M , as well as the warp factor e2∆. Substituting
the values for the scalars found above, we find agreement with the solution in section 5.1
upon fixing the S4 radius as R = 1

2 and implementing the following dictionary:

e2ϕ = 1
4 e−2g0− 1

2f0 ,

Σ3 = 1
4 e−2g0+ 3

4f0 ,

H1 = 1
2X

1
4
0 (X1 −X2) ,

H2 = 1
2X

1
4
0 (X1 +X2) ,

(5.34)

with our AdS radius being given in terms of the quantities appearing there as

` = 22/3 ef0+ 2
3g0R . (5.35)

By extremising the scalar potential27 we recover the supersymmetric vacuum and also
find new non-supersymmetric vacua, where the scalar field values are rather complicated
functions of the parameter z. As an example, we give the numerical values for one chosen
value of z, that we take z = 1

2 . When κ = −1 we find a new extremum of the potential at

Σ ' 0.9388 , ϕ ' 0.1109 , H2 ' 1.0217 , θ1 = θ2 = 0 , ` ' 1.5276R , (5.36)

while when κ = 1 we find an extremum at

Σ ' 0.8631 , ϕ ' 0.2812 , H2 ' 1.5506 , θ1 = θ2 = 0 , ` ' 1.0644R , (5.37)

and another one at

Σ ' 1.1580 , ϕ ' 0.8455 , H2 ' 1.9847 , θ1 = θ2 = 0 , ` ' 0.6198R , (5.38)

where for each solution we have also indicated the corresponding AdS radius `.

6 Conclusions

In this paper we have illustrated the Exceptional Generalised Geometry approach to N = 2
consistent truncations of eleven-dimensional supergravity on a six-dimensional manifoldM .
We have argued that for the truncation to go through, M must admit a generalised
GS ⊆ USp(6) structure with constant singlet intrinsic torsion, and we have explained how
this completely determines the resulting five-dimensional supergravity theory. We have

27To do so, it is convenient to parameterise H1 = sinhα, H2 = coshα, and extremise with respect to α.
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also given an algorithm to construct the full bosonic truncation ansatz. This formalism
provides a geometric understanding of the origin of the truncations, in particular those
that are not based on invariants of conventional G-structures on the tangent bundle. It
also sidesteps the need to reduce the equations of motion in order to uncover the matter
content and couplings of the truncated theory.

The main technically involved part of this formalism is deriving the truncation ansatz.
However a significant advantage is that once this is done the relevant expressions can be
used to derive the uplift formulae for any N = 2 consistent truncation. One does not
have postulate the set of consistent modes case-by-case. Furthermore the structure of the
resulting gauged supergravity is then simply determined by the generalised structure.

To demonstrate the concrete effectiveness of the formalism we worked out the full
bosonic truncation ansatz on Maldacena-Nuñez geometries, leading to five-dimensional
N = 2 supergravity with four vector multiplets, one hypermultiplet and a non-abelian
gauging, having the N = 2 AdS5 solution of [34] as a vacuum solution. This extends the
truncation of [36] by SO(3) vector multiplets. For the BBBW geometries [35, 38], we
obtained a truncation featuring two vector multiplets, one hypermultiplet and an abelian
gauging, completing the truncation obtained in [37]. This can be seen as a one-parameter
deformation of the truncation obtained from the one on Maldacena-Nuñez geometry by
imposing invariance under the Cartan of SO(3). Although in this case we did not give all
details of the truncation ansatz, it should be clear that it can be obtained by following
precisely the same steps presented for the case of Maldacena-Nuñez geometry. Since the
generalised geometry tensors on S4 used in these trucations are a subset of those appearing
in the reduction of eleven-dimensional supergravity to maximal SO(5) supergravity in seven
dimensions, it should also be clear that our consistent truncations can equivalently be
obtained as truncations of maximal SO(5) supergravity on a Riemann surface.

Together with the half-maximal truncation presented in [14, 39], which is based on
the N = 4 solution of [34], this work provides the largest possible consistent truncations
of eleven-dimensional supergravity that have as seed known AdS5 ×w M supersymmetric
solutions describing M5-branes wrapped on a Riemann surface (larger truncations may be
possible by including degrees of freedom that go beyond eleven-dimensional supergravity,
such as membrane degrees of freedom).

It would be interesting to explore further the relatively simple five-dimensional super-
gravity models obtained in this paper and construct new solutions thereof. These would
have an automatic uplift to eleven dimensions, and may have an interpretation in the dual
SCFT. For the subtruncation with no SO(3) vector multiplet, solutions of holographic
interest have been discussed in [36]. Our larger consistent truncation may offer the possi-
bility to obtain solutions where non-abelian gauge fields are activated, which are quite rare
in holography. For instance, constructing a supersymmetric, asymptotically AdS5 black
hole with non-abelian hair would represent a qualitatively new type of solutions.

It will be natural to adapt our construction to truncations of eleven-dimensional su-
pergravity on a seven-dimensional manifold, leading to four-dimensional gauged N = 2
supergravity. This uses GS ⊆ SU (6) structures in E7(7) generalised geometry, and would
allow one to derive new consistent truncations based on the generalised structures under-
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lying the AdS4 ×w M7 solutions of [59, 60], which in terms of ordinary G-structures only
admit a local SU (2) structure. The solutions of [59] are the most general N = 2 AdS4
solutions to eleven-dimensional supergravity supported by purely magnetic four-form flux;
they represent the near-horizon region of M5-branes wrapping a special lagrangian three-
cycle in M7. The solutions of [60] have both electric and magnetic flux, and should arise
from M2-M5 brane systems. Analysing the respective generalised structure it will become
possible to enhance the truncation to minimal gauged supergravity obtained in [11] and [61]
(for the solutions of [59] and [60], respectively) by adding matter multiplets. One example
of this construction has been given in [62].

It will also be useful to extend our formalism to N = 2 truncations of type II su-
pergravity. Minimally supersymmetric AdS5 solutions of type IIB and massive type IIA
supergravity were classified in [63] and [64], respectively. It would be useful to reformu-
late the classification of explicit solutions in terms of generalised GS ⊆ USp(6) structures;
this would be a first step towards constructing consistent truncations to five-dimensional
supergravity using our approach. One concrete application would be to check if the IIB
solution of [65], given by a warped product of AdS5 and a deformed S5, admits a consis-
tent truncation to five-dimensional supergravity including (massive) KK modes that do not
belong to the well-known IIB truncation leading to maximal SO(6) gauged supergravity.
This would be somewhat analogous to the IIB consistent truncation on Sasaki-Einstein
structures [66, 67], where only a subset of the retained KK modes are also captured by
SO(6) gauged supergravity.

A more challenging generalisation of our formalism would be the one to truncations
preserving onlyN = 1 supersymmetry in four dimensions. Although a considerable amount
of work remains to be done, it should be clear that the generalised structure approach to
consistent truncations has the potential to classify all possible consistent truncations of
higher-dimensional supergravity that preserve any given amount of supersymmetry.
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A E6(6) generalised geometry for M-theory

In this section we briefly recall the main features of the generalised geometry of M-theory
compactifications on a six-dimensional manifoldM . For a more detailed discussion we refer
to [42] and [44, App. E].
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We use the following conventions for wedges and contractions among tensors on M

(v ∧ u)a1...ap+p′ = (p+ p′)!
p! p′! v[a1...apuap+1...ap+p′ ],

(λ ∧ ρ)a1...aq+q′ = (q + q′)!
q! q′! λ[a1...aqρaq+1...aq+q′ ],

(v yλ)a1...aq−p = 1
p!v

b1...bpλb1...bpa1...aq−p if p ≤ q,

(v yλ)a1...ap−q = 1
q!v

a1...ap−qb1...bqλb1...bq if p ≥ q,

(jv y jλ)ab = 1
(p− 1)!v

ac1...cp−1λbc1...cp−1 ,

(jλ ∧ ρ)a, a1...ad
= d!

(q − 1)!(d+ 1− q)! λa[a1...aq−1ρaq ...ad] . (A.1)

We will denote by · the gl(6) action on tensors: given a frame {êa} for TM and a co-frame
{ea} for T ∗M , a = 1, . . . , 6, the action, for instance, on a vector and a two-form is

(r · v)a = rabv
b (r · ω)ab = −rcaωcb − rcbωac . (A.2)

For M-theory on a six-dimensional manifold we use E6(6) × R+ generalised geometry.
The generalised tangent bundle E is

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M , (A.3)

where, as customary, we decompose the various bundles in representations of GL(6), the
geometric subgroup of E6(6). The sections of E, the generalised vectors, transform in the
27 of E6(6) and can be written as

V = v + ω + σ , (A.4)

where v is an ordinary vector field, ω is a two-form and σ is a five-form.28

28The generalised tangent bundle E has a non-trivial structure that takes into account the non-trivial
gauge potentials of M-theory. To be more precise the sections of E are defined as

V = eA+Ã · V̌ , (A.5)

where A+Ã is an element of the adjoint bundle, V̌ = v+ω+σ, with v ∈ Γ(TM) are vectors, ω ∈ Γ(Λ2T ∗M)
and σ ∈ Γ(Λ5T ∗M), and · defines the adjoint action defined in (A.23). The patching condition on the
overlaps Uα ∩ Uβ is

V(α) = edΛ(αβ)+dΛ̃(αβ) · V(β) , (A.6)
where Λ(αβ) and Λ̃(αβ) are a two- and five-form, respectively. This corresponds to the gauge-transformation
of the three- and six-form potentials in (A.5) as

A(α) = A(β) + dΛ(αβ) ,

Ã(α) = Ã(β) + dΛ̃(αβ) −
1
2dΛ(αβ) ∧A(β) . (A.7)

The respective gauge-invariant field-strengths reproduce the supergravity ones:

F = dA ,
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The dual bundle E∗ is defined as

E∗ ' T ∗M ⊕ Λ2TM ⊕ Λ5TM , (A.9)

with sections
Z = v̂ + ω̂ + σ̂ , (A.10)

where v̂ is one-form, ω̂ is a two-vector and σ̂ is a five-vector. Generalised vectors and dual
generalised vectors have a natural pairing given by

〈
Z, V

〉
= v̂mv

m + 1
2 ω̂

mnωmn + 1
5! σ̂

mnpqrσmnpqr . (A.11)

We will also need the bundle N ' detT ∗M ⊗ E∗. In terms of GL(6) tensors, N
decomposes as

N ' T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) , (A.12)

and correspondingly its sections Z[ decompose as

Z[ = λ+ ρ+ τ . (A.13)

The bundle N is obtained from the symmetric product of two generalised vectors via the
map ⊗N : E ⊗ E → N with

λ = v yω′ + v′ yω ,
ρ = v yσ′ + v′ yσ − ω ∧ ω′ ,
τ = jω ∧ σ′ + jω′ ∧ σ .

(A.14)

The E6(6) cubic invariant is defined on E and E∗as29

c(V, V, V ) = − 6 ιv ω ∧ σ − ω ∧ ω ∧ ω ,
c∗(Z,Z,Z) = − 6 ιv̂ ω̂ ∧ σ̂ − ω̂ ∧ ω̂ ∧ ω̂ . (A.15)

The adjoint bundle is defined as

adF ' R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM , (A.16)

with sections
R = l + r + a+ ã+ α+ α̃ , (A.17)

where locally l ∈ R, r ∈ End(TM), a ∈ Λ3T ∗M , etc. The ed(d) sub-algebra is obtained by
fixing the factor l in terms of the trace of r as l = 1

3 tr r. This choice fixes the weight of
the generalised tensors under the R+ factor. In particular it implies that a scalar of weight
k is a section of (detT ∗M)k/3: 1k ∈ Γ((detT ∗M)k/3).

F̃ = dÃ− 1
2A ∧ F . (A.8)

29This is 6 times the cubic invariant given in [44]. Because of this, we introduced a compensating factor
of 6 in the formulae (2.8) and (2.9).
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It is also useful to introduce the weighted adjoint bundle

(detT ∗M)⊗ adF ⊃ R⊕ Λ3T ∗M ⊕ (TM ⊗ Λ5TM) , (A.18)

whose sections are locally given by the sum

R[ = φ̃+ φ+ ψ , (A.19)

where φ̃, φ and ψ are obtained from the adjoint elements r ∈ TM ⊗ T ∗M , α ∈ Λ3TM ,
α̃ ∈ Λ3TM as

φ̃ = α̃yvol6 φ = αyvol6 ψ = r · vol6 , (A.20)

where vol6 is a reference volume form.
The action of an adjoint element R on another adjoint element R′ is given by the

commutator, R′′ = [R,R′]. In components, R′′ reads

l′′ = 1
3(α y a′ − α′ y a) + 2

3(α̃′ y ã− α̃ y ã′) ,

r′′ = [r, r′] + jα y ja′ − jα′ y ja− 1
3(α y a′ − α′ y a) 1 ,

+ jα̃′ y jã− jα̃ y jã′ − 2
3(α̃′ y ã− α̃ y ã′) 1 ,

a′′ = r · a′ − r′ · a+ α′ y ã− α y ã′ ,
ã′′ = r · ã′ − r′ · ã− a ∧ a′ ,
α′′ = r · α′ − r′ · α+ α̃′ y a− α̃ y a′ ,
α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ ,

(A.21)

where · denotes the gl(6) action defined in (A.2).
The action of an adjoint element R on a generalised vector V ∈ Γ(E) and on a dual

generalised vector Z is also denoted by · and is defined as

V ′ = R · V Z ′ = R · Z , (A.22)

where the components of V ′ are

v′ = lv + r · v + α yω − α̃ yσ ,
ω′ = lω + r · ω + v y a+ α yσ ,
σ′ = lσ + r · σ + v y ã+ a ∧ ω ,

(A.23)

and those of Z ′ are
v̂′ = −lv̂ + r · v̂ − ω̂ y a+ σ̂ y ã ,
ω̂′ = −lω̂ + r · ω̂ − α y v̂ − σ̂ y a ,
σ̂′ = −lσ̂ + r · σ̂ − α̃ y v̂ − α ∧ ω̂ .

(A.24)

The e6(6) Killing form on two elements of the adjoint bundle is given by

tr(R,R′) = 1
2

(1
3 tr(r)tr(r′) + tr(rr′) + α y a′ + α′ y a− α̃ y ã′ − α̃′ y ã

)
. (A.25)
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The combination of diffeomorphisms and gauge transformations by the three-form and
six-form potentials defines the generalised diffeomorphisms. The action of an infinitesimal
generalised diffeomorphism is generated by the generalised Lie (or Dorfman) derivative
along a generalised vector. The Lie derivative between two ordinary vectors v and v′ on
TM can be written in components as a gl(6) action

(Lvv′)m = vn ∂nv
′m − (∂ × v)mn v′n , (A.26)

where the symbol × denotes the projection onto the adjoint of the product of the funda-
mental and dual representation of GL(6). The generalised Lie derivative is defined in an
analogous way; we introduce the operators ∂M = ∂m as sections of the dual tangent bundle
and we define the generalised Lie derivative as

(LV V ′)M = V N∂NV
′M − (∂ ×ad V )MNV

′N , (A.27)

where VM , M = 1, . . . , 27, are the components of V in a standard coordinate basis, and
×ad is the projection onto the adjoint bundle,

×ad : E∗ ⊗ E → adF , (A.28)

whose explicit expression can be found in [42, Eq.(C.13)]. In terms of GL(6) tensors, (A.27)
becomes

LV V
′ = Lvv′ +

(Lvω′ − ιv′dω
)

+
(Lvσ′ − ιv′dσ − ω′ ∧ dω

)
. (A.29)

The action of the generalised Lie derivative on a section of the adjoint bundle (A.17) is

LVR = (Lvr + jα y jdω − 1
3 1α y dω − jα̃ y jdσ + 2

3 1α̃ y dσ) + (Lva+ r · dω − α y dσ)

+ (Lvã+ r · dσ + dω ∧ a) + (Lvα− α̃ y dω) + Lvα̃ . (A.30)

We will also need the action of LV on the elements of the bundle N . Given a section
Z[ = λ+ ρ+ τ of N , its Lie derivative along the generalised vector V = v + ω + σ is

LV Z[ = Lvλ+ (Lvρ− λ ∧ dω) + (Lvτ − jρ ∧ dω + jλ ∧ dσ) . (A.31)

Since Z[ = V ′ ⊗N V ′′, this is easily obtained by applying the Leibniz rule for LV .

LV (Z[) = LV V
′ ⊗N V ′′ + V ′ ⊗N LV V

′′ . (A.32)

It is also straightforward to verify that

dZ[ = LV V
′ + LV ′V , (A.33)

for any element Z[ = V ⊗N V ′ ∈ N .
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B Five-dimensional N = 2 gauged supergravity

In this appendix we summarise some essential features of matter-coupled five-dimensional
N = 2 gauged supergravity [68–70], following the conventions of [70].30 We limit ourselves
to the bosonic sector and only consider gaugings that do not require the introduction of
two-form fields, as these are enough to describe our examples in sections 4 and 5.

The fields of five-dimensional N = 2 supergravity arrange into the gravity multiplet,
nV vector multiplets and nH hypermultiplets. The bosonic content consists of the vielbein
eaµ, nV + 1 vector fields AIµ, I = 0, . . . , nV, together with nV vector multiplet scalars φx,
x = 1, . . . , nV, and 4nH hypermultiplet scalars qX , X = 1, . . . , 4nH. The φx parameterise a
‘very special real’ manifoldMV, with metric gxy, while the qX parameterise a quaternionic-
Kähler manifoldMH, with metric gXY . All together, the scalar manifold of the theory is
the direct product

M =MV ×MH . (B.1)

A very special real manifold MV is a hypersurface that is conveniently described in
terms of nV + 1 embedding functions hI(φ), I = 0, . . . , nV, satisfying the constraint

CIJKh
IhJhK = 1 , (B.2)

where CIJK is a completely symmetric constant tensor. The metric onMV is given by

gxy = hIxh
J
y aIJ , (B.3)

where
hIx = −

√
3
2 ∂xh

I , (B.4)

and
aIJ = 3hIhJ − 2CIJKhK , (B.5)

with the lower-index functions being

hI = CIKLh
KhL = aIKh

K . (B.6)

The matrix aIJ is assumed invertible, and also controls the gauge kinetic terms.
In the gauged theory, a subgroup of the isometries of the scalar manifoldM, which are

global symmetries of the Lagrangian, is promoted to a gauge group. The gauge generators
tI satisfy [tI , tJ ] = −fIJKtK , with the structure constants fIJK obeying fI(JHCKL)H = 0.
The gauge covariant derivatives of the scalars are given by

Dµφx = ∂µφ
x + g kxIAIµ ,

DµqX = ∂µq
X + g kXI AIµ ,

(B.7)

30However, in order to match the normalisations defined by our truncation ansatz, we rescale the gauge
fields appearing in [70] asAIhere = −

√
2
3A

I
there. Since we maintain the same form of the covariant derivatives,

it follows that the gauge coupling constant g is rescaled as ghere = −
√

3
2 gthere. This implies that the

expression for the scalar potential given in (B.13) below acquires a multiplicative 2/3 factor compared to
the one in [70].
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where kxI (φ) and kXI (q) are the Killing vector fields generating the gauged isometries in
the vector multiplet and hypermultiplet scalar manifolds, respectively. Equivalently, the
vector multiplet scalar covariant derivatives can be expressed in terms of the embedding
functions hI as

DµhI = ∂µh
I + g fJK

IAJµ hK = ∂xh
IDµφx . (B.8)

One also has the gauge field-strengths

FIµν = 2∂[µAIν] + g fJK
IAJµAKν . (B.9)

We now have all the elements to write down the bosonic Lagrangian. This reads

e−1L = 1
2 R− V −

3
8 aIJF

I
µνFJµν −

1
2 gxyDµφ

xDµφy − 1
2 gXYDµq

XDµqY

− 1
8 e
−1εµνλρσ CIJKAIµ

[
FJνλFKρσ + gfMN

JAMν ANλ
(
−1

2 F
K
ρσ + 1

10 gfHL
KAHρ ALσ

)]
.

(B.10)

The vector multiplet scalar kinetic term can also be written in terms of the constrained
scalars hI using the identity

gxyDµφxDµφy = 3
2 aIJDµh

IDµhJ . (B.11)

Using a differential form notation, the action reads

S =
∫ 1

2 (R− 2V) ∗ 1− 3
4 aIJF

I ∧ ∗FJ − 3
4 aIJDh

I ∧ ∗DhJ − 1
2 gXYDq

X ∧ ∗DqY

+ 1
8 CIJKA

I ∧
[
4FJ ∧ FK + g fMN

JAM ∧ AN ∧
(
−FK + 1

10 gfHL
KAH ∧ AL

)]
.

(B.12)

The scalar potential V is given as a sum of squares as

V = 4
3 g

2
(
−2~P · ~P + gxy ~Px · ~Py +NiAN iA

)
, (B.13)

where

~P = hI ~PI ,

~Px = hIx ~PI ,

N iA =
√

6
4 hIkXI f

iA
X , (B.14)

are the fermionic shifts, also appearing in the supersymmetry variations of the fermion
fields: ~P is the gravitino shift, ~Px is the gaugino shift, and N iA is the hyperino shift.
Here, the arrow symbol denotes a triplet of the SU (2)H R-symmetry, and f iAX are the
quaternionic vielbeins, satisfying f iAX fY iA = gXY . The Killing prepotentials ~PI onMH are
defined for nH 6= 0 by

4nH ~PI = ~JX
Y∇Y kXI , (B.15)
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where ~JXY is the triplet of almost complex structures defined on any quaternionic-Kähler
manifold. Plugging these expressions in (B.13) and using the identity (cf. [70, App. C])

gxyhIxh
J
y = aIJ − hIhJ , (B.16)

we can express the scalar potential as

V = 2
3 g

2
[(

2aIJ − 6hIhJ
)
~PI · ~PJ + 3

4 gXY k
X
I k

Y
J h

IhJ
]
. (B.17)

Notice that the Killing vectors kxI onMV do not appear here, i.e. the gauging in the vector
multiplet sector does not contribute to the scalar potential. This is true as long as we
restrict to gaugings that do not require the introduction of two-form fields.

Supersymmetric AdS5 vacua are obtained by setting all gauge fields to zero, all scalar
fields to constant, and imposing that the gaugino and hyperino shifts vanish,

hIx ~PI = 0 , hIkXI = 0 . (B.18)

Then the gravitino shift gives the AdS cosmological constant via

Λ ≡ V = −8
3 g

2 ~P · ~P . (B.19)

C Gauge transformations

In this appendix, we study the reduction gauge transformations of eleven-dimensional su-
pergravity to five dimensions. We first repackage them in terms of generalised geometric
objects and then use our truncation ansatz to derive the gauge transformations of five-
dimensional N = 2 supergravity.

The infinitesimal gauge transformations of the eleven-dimensional metric and three-
and six-form potentials are

δĝ = L̂v̂ ĝ ,
δÂ = L̂v̂Â− d̂λ̂ ,

δ ˆ̃A = L̂v̂ ˆ̃A− d̂ˆ̃λ+ 1
2dλ ∧A , (C.1)

where v̂ is a vector field, λ̂ a two-form and ˆ̃λ a five-form. The hat on the Lie and exterior
derivative operators emphasises that the derivatives are taken with respect to all the eleven-
dimensional coordinates. The fields g, Â and ˆ̃A are decomposed as in (3.16), while the gauge
parameters are expanded as

v̂ = v = vm
∂

∂zm
,

λ̂ = λ− λ̄µdxµ + 1
2 λ̄µνdxµν ,

ˆ̃λ = λ̃+ ¯̃λµdxµ + 1
2

¯̃λµνdxµν + 1
3!

¯̃λµνρdxµνρ + . . . , (C.2)
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where, in the last line we omitted the terms that are not relevant in what follows. We only
consider internal diffeomorphisms, as the external ones have the standard action dictated
by the tensorial structure of the field. That is why the vector v̂ has only components on
M . As in (3.16), we do not impose any restriction on the dependence of the fields on the
coordinates {xµ, zm}.

In (C.2) and the rest of this section we use a notation that manifestly displays the
external indices and always contracts the internal ones. For the metric components we
define

g = gmndzmdzn , hµ = hµ
m ∂

∂zm
, (C.3)

and for a generic p-form ω

ω = 1
p! ωm1...mpdzm1...mp ,

ωµ = 1
(p− 1)! ωµm1...mp−1dzm1...mp−1 ,

ωµν = 1
(p− 2)!ωµνm1...mp−2dzm1...mp−2 , (C.4)

We already mentioned in section 3.2 that the barred components of the three- and
six-form must be redefined as31

Āµν = Aµν − ιh[µAν] ,

Āµνρ = Aµνρ − ιh[µιhνAρ] ,
(C.6)

and similar redefinitions of the six-form. An analogous redefinition for the barred gauge
parameters will be given later.

As discussed in section 3.2, the components of the metric, warp factor, three and six-
form potentials and the dual graviton g̃ with the same number of external legs fit into E6(6)
representations

G−1 ↔ {∆, g, A, Ã} (C.7)
Aµ = hµ +Aµ + Ãµ , (C.8)
Bµν = Aµν + Ãµν + g̃µν , (C.9)
Cµνρ = Aµνρ + Ãµνρ + g̃µνρ , (C.10)

where GMN is the inverse generalised metric, Aµ ∈ E is a generalised vector, Bµν ∈ N is a
weighted dual vector and Cµνρ is a section of the weighted E6(6) adjoint bundle (detT ∗)⊗
adF . The same holds for the gauge parameter, which we arrange into a generalised vector

31The contractions are defined as follows

ιh[µAν] = h[µ
mAν]mndzn ιh[µAνρ] = h[µ

mAνρ]m ιh[µιhνAρ] = h[µ
mhν

nAρ]nm (C.5)
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Λ, a weighted dual vector Ξ̄µ and a section of a sub-bundle of the 78, Φ̄µν ,

Λ = v + λ+ λ̃ ,

Ξ̄µ = λ̄µ + ¯̃λµ + . . . ,

Φ̄µν = λ̄µν + ¯̃λµν + . . . .

(C.11)

In (C.7)–(C.10) we introduced the dual graviton to give the full E6(6) representation. How-
ever in this paper we will not discuss the dual graviton since it is not relevant for the
truncation we are interested in.

We can now decompose the gauge transformations given above. We find that the fields
with no or purely internal legs transform as

δ e2∆ = Lv e2∆ ,

δg = Lv g ,
δA = LvA− dλ ,

δÃ = LvÃ− dλ̃+ 1
2dλ ∧A , (C.12)

where the Lie derivative L and the exterior derivative d are taken with respect to the
internal coordinates only, although the fields and gauge parameters depend on both the
internal and external coordinates. When repackaging all the fields with no external legs
into the inverse generalised metric, the transformations (C.12) become the action of the
generalised Lie derivative along the generalised vector Λ,

δΛG
−1 = LΛG

−1 . (C.13)

Consider now the fields with one external leg. Their gauge transformations are

δhµ = −∂µv + Lvhµ ,
δAµ = −∂µλ+ dλµ − ιhµdλ+ LvAµ ,
δÃµ = −∂µλ̃+ dλ̃µ − ιhµdλ̃− dλ ∧Aµ + LvÃµ , (C.14)

and it is straightforward to verify that they can be recast into

δAµ = −∂µΛ + LΛAµ + dΞµ , (C.15)

where
LΛAµ = (Lvhµ) + (LvAµ − ιhµdλ) + (LvÃµ − ιhµdλ̃−Aµ ∧ dλ) ,
LAµΛ = (Lhµv) + (Lhµλ− ιvdAµ) + (Lhµ λ̃− ιvdÃµ − λ ∧ dAµ) .

(C.16)

By redefining the gauge parameters32

Ξµ = Ξµ −Aµ ⊗N Λ , (C.18)
32In components the redefinition (C.18) reads

λµ = λµ − ιhµλ− ιvAµ ,

λ̃µ = λ̃µ − ιhµ λ̃− ιvÃµ + λ ∧Aµ .
(C.17)

– 50 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

with Aµ ⊗N Λ = (ιhµλ+ ιvAµ) + (ιhµ λ̃+ ιvÃµ − λ ∧Aµ), and using (A.33) to compute

dΞµ = dΞµ − LAµΛ− LΛAµ , (C.19)

we bring the variation (C.15) to an appropriate form to compare with five-dimensional
gauged supergravity

δAµ = −∂µΛ− LAµΛ + dΞµ . (C.20)

The variations of the fields with two external legs are

δAµν =− 2 ∂[µλν] − dλµν + ιh[µ∂ν]λ− ιh[µdλν] + LvAµν − ι∂[µvAν] ,

δÃµν = −2∂[µλ̃ν] − dλ̃µν + ιh[µ∂ν]λ̃− ιh[µdλ̃ν] + LvÃµν − ι∂[µv y Ãν]

+ (∂[µλ− dλ[µ) ∧Aν] + dλ ∧Aµν .
(C.21)

By a lengthy but straightforward computation (C.21) can be written as

δBµν = −2 ∂[µΞν] − 2LA[µΞν] +Hµν ⊗N Λ− δA[µ ⊗N Aν]

+ LA[µAν] ⊗N Λ + 2LA[µΛ⊗N Aν] + LΛA[µ ⊗N Aν]

− d[Φµν − 2A[µ ×ad Ξ̄ν] − Bµν ×ad Λ] ,

(C.22)

where we defined the field strength

Hµν = dBµν + LA[µAν] + 2∂[µAν] . (C.23)

Applying the Leibniz rule for the generalised Lie derivative and (A.33) one can show that

LA[µAν] ⊗N Λ + 2LA[µΛ⊗N Aν] + LΛA[µ ⊗N Aν] = d[A[µ ×ad (Aν] ⊗N Λ)] (C.24)

and the variation of Bµν can be written in a form compatible with five-dimensional gauged
supergravity

δBµν = −2 ∂[µΞν] − 2LA[µΞν] +Hµν ⊗N Λ− δA[µ ⊗N Aν] − dΦµν (C.25)

where we have made the following redefinition of the gauge parameters33

Φµν = Φµν + 2A[µ ×ad Ξν] + Bµν ×ad Λ−A[µ ×ad (Aν] ⊗N Λ) . (C.27)

Finally we should consider the variations of the fields with three external legs. To our
purposes it is enough to study the three-form

δAµνρ = LvAµνρ − 3∂[µλνρ] − 3ιh[µ(2 ∂[νλρ] + dλνρ])

+ 2ιh[µιhν (∂ρ]λ− dλρ])− 2 ι∂[µvιhνAρ] .
(C.28)

33In components

λµν = (λµν − ιvAµν − 2ιh[µλν] + ιh[µ ιhν]λ+ ιh[µ ιvAν]) ,

λ̃µν = (λ̃µν − ιvÃµν − 2ιh[µ λ̃ν + ιh[µ ιhν λ̃+ ιh[µ ιvÃν] − 2λ[µ ∧Aν] − λ ∧Aµν
− λ ∧ ιh[µAν] + (ιvA[µ) ∧Aν]) .

(C.26)
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In generalised geometry (C.28) embeds in the lowest component of the variation of the
tensor Cµνρ in (C.10). We introduce the modified field strength for the three-form field
Cµνρ,

Hµνρ = −dCµνρ + 3∂[µBνρ] + 3LA[µBνρ] +A[µ ⊗N (3∂νAρ] + LAνAρ]) , (C.29)

and by manipulations similar to what we did previously we can recast the gauge varia-
tions as

δCµνρ = −3∂[µΦνρ] − 3LA[µΦνρ] + 3H[µν ×ad Ξρ] +Hµνρ ×ad Λ

− 3B[µν ×ad δAρ] −A[µ ×ad (Aν ×ad δAρ]) ,
(C.30)

up to terms involving a four-form gauge parameter, which would continue the tensor hier-
archy.

The five-dimensional gauge transformations are obtained by plugging the reduction
ansatz in the variations (C.20), (C.25) and (C.30). The fields AµI(x) are expanded as
in (3.25)

Aµ = AµI(x)KI , (C.31)
where KI are the generalised vectors that are singlets of the GS structure. In (3.26), the
two-from fields are expanded on the weighted duals KI

[ of the generalised vectorsKI . These
are elements of the bundle N and can also written as

KJ
[ = DIJKKJ ⊗N KK (C.32)

where the tensor DIJK satisfies DIKLCJKL = 1/2δIJ where CIJK is defined in (2.16). So
the two-forms are expanded as

Bµν = Bµν I(x)DIJKKJ ⊗N KK . (C.33)

The gauge parameters have a similar expansion

Λ = −ΛI(x)KI , Ξµ = −1
2Ξµ,I(x)DIJKKJ ⊗N KK . (C.34)

With the ansatze (C.31) and (C.34) for Aµ and the gauge parameters, the varia-
tions (C.20) of the one-forms become

δAµI(x) = ∂µΛI(x) + f IJKAJµ(x)ΛK(x)− f I(JK)D
JKLΞµ,L , (C.35)

where we used the algebra of the vectors KI (3.4) and (A.33).
The variations of two-forms are reduced in a similar way. We expand the field strength

HJµν as in (C.31) and use again the generalised Lie derivative of vectors KI given in (3.4).
In this way we obtain for the gauge variations of the five-dimensional two-forms Bµν,I(x)

δBµν,I = D[µΞν],I − 2CIJKHJµνΛK − 2CIJKδAJ[µAKν] −ΘI
AΦAµν , (C.36)

where Φµν = ΦAµνJ
[A and

D[µΞν],I(x) = ∂[µΞν],I(x) + 2XK
IJAJ[µ(x)Ξν],K(x) , (C.37)

with
XK
IJ = CILMD

KMNfLJN . (C.38)
This is in agreemement with five-dimensional supergravity. The variation δCµνρ reduces
analogously.
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D Parameterisation of S4 and generalised frames

The six-dimensional geometry of interest in this paper is given by a four-sphere S4 fibered
over a Riemann surface Σ. In this appendix we describe S4 as a foliation of S3 over an
interval and review the generalised frames on S4.

D.1 Parameterisation of S3

In terms of the standard Euler angles 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π, the unit metric
on the round S3 reads

gS3 = 1
4
(
dθ2 + dφ2 + dψ2 + 2 cos θ dφ dψ

)
. (D.1)

The Killing vectors generating its SO(4) ' SU (2)left × SU (2)right isometries can be split
into SU (2)left-invariant Killing vectors ξα, α = 1, 2, 3, generating the SU (2)right isometries,
and SU (2)right-invariant Killing vectors ξ̃α, generating the SU (2)left isometries. The left-
invariant vectors read

ξ1 = − cot θ sinψ ∂ψ + cosψ ∂θ + sinψ
sin θ ∂φ ,

ξ2 = − cot θ cosψ ∂ψ − sinψ ∂θ + cosψ
sin θ ∂φ ,

ξ3 = ∂ψ , (D.2)

while the right-invariant ones are

ξ̃1 = sinφ
sin θ ∂ψ + cosφ∂θ − cot θ sinφ∂φ ,

ξ̃2 = −cosφ
sin θ ∂ψ + sinφ∂θ + cot θ cosφ∂φ ,

ξ̃3 = ∂φ . (D.3)

These satisfy

Lξαξβ = εαβγ ξγ , Lξ̃α ξ̃β = −εαβγ ξ̃γ , Lξα ξ̃β = 0 , (D.4)

where L is the ordinary Lie derivative. We also introduce the one-form counterparts of
these Killing vectors, namely left-invariant one-forms σα and right-invariant one-forms σ̃α.
These satisfy

ιξασβ = δαβ , ιξ̃α σ̃β = δαβ ,

dσα = −1
2 εαβγσβ ∧ σγ , dσ̃α = 1

2 εαβγ σ̃β ∧ σ̃γ , (D.5)

and their coordinate expression is

σ1 = cosψ dθ + sinψ sin θ dφ ,
σ2 = − sinψ dθ + cosψ sin θ dφ ,
σ3 = dψ + cos θ dφ ,

(D.6)
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σ̃1 = cosφ dθ + sinφ sin θ dψ ,
σ̃2 = sinφ dθ − cosφ sin θ dψ ,
σ̃3 = dφ+ cos θ dψ .

(D.7)

The metric (D.1) may also be expressed as

gS3 = 1
4
(
σ2

1 + σ2
2 + σ2

3
)

= 1
4
(
σ̃2

1 + σ̃2
2 + σ̃2

3
)
. (D.8)

We fix the orientation on S3 by defining the volume form as

volS3 = 1
8 σ1 ∧ σ2 ∧ σ3 = 1

8 σ̃1 ∧ σ̃2 ∧ σ̃3 = 1
8 sin θ dθ ∧ dφ ∧ dψ . (D.9)

D.2 Parameterisation of S4

The round four-sphere of radius R can be described via constrained R5 coordinates Ryi,
i = 1, . . . , 5, satisfying δijyiyj = 1. In these coordinates, the metric and the volume form
read

g4 = R2 δijdyidyj , vol4 = 1
4!R

4 εi1i2i3i4i5 y
i1dyi2 ∧ dyi3 ∧ dyi4 ∧ dyi5 . (D.10)

The constrained coordinates can be mapped into angular coordinates {ζ, θ, φ, ψ}, where
0 ≤ ζ ≤ π, and {θ, φ, ψ} are the Euler angles on S3 introduced above, as

y1 + i y2 = sin ζ cos θ2 e
i
2 (φ+ψ) ,

y3 + i y4 = sin ζ sin θ2 e
i
2 (φ−ψ) ,

y5 = cos ζ . (D.11)

Then the metric and volume form in (D.10) become

g4 = R2
(
dζ2 + sin2 ζ ds2

S3

)
,

= R2
[
dζ2 + 1

4 sin2 ζ
(
dθ2 + dφ2 + dψ2 + 2 cos θ dφ dψ

)]
,

vol4 = R4 sin3 ζ dζ ∧ volS3 = 1
8R

4 sin3 ζ sin θ dζ ∧ dθ ∧ dφ ∧ dψ . (D.12)

We denote by vij = v[ij] the Killing vector fields generating the isometries of S4. These
satisfy the so5 algebra,

Lvijvkl = R−1 (δikvlj − δilvkj − δjkvli + δjlvki) . (D.13)

Demanding that the constrained coordinates transform in the fundamental representation,

Lvijyk ≡ ιvijdyk = R−1 (yiδjk − yjδik) , (D.14)

and using the map (D.11), we can work out the expression for the Killing vectors in the
basis defined by the angular coordinates {ζ, θ, φ, ψ}. In particular, we obtain the following
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embedding of the SU (2)right and SU (2)left generators given in (D.2), (D.3) into the SO(5)
generators:

2
R
ξ1 = v13 + v24 ,

2
R
ξ2 = v14 − v23 ,

2
R
ξ3 = v12 − v34 ,

2
R
ξ̃1 = v13 − v24 ,

2
R
ξ̃2 = v23 + v14 ,

2
R
ξ̃3 = v12 + v34 . (D.15)

D.3 Generalised frames on S4

In generalised geometry all spheres are generalised parallelisable as they admit globally
defined frames on their exceptional tangent bundle [15]. In particular the generalised
tangent bundle on S4 is

E4 ' TS4 ⊕ Λ2T ∗S4 , (D.16)

and its fibres transform in the 10 of the structure group SL(5,R). We will also need the
bundles

N4 ' T ∗S4 ⊕ Λ4T ∗S4 ,

N ′4 ' R⊕ Λ3T ∗S4 ,
(D.17)

whose fibres transform in the 5 and 5′ representations, respectively. These bundles admit
globally defined frames, which in constrained coordinates read

Eij = vij +R2 ∗4(dyi ∧ dyj) + ιvijAS4 ∈ Γ(E4) ,
Ei = R dyi − yi vol4 +R dyi ∧AS4 ∈ Γ(N4) ,
E′i = yi +R ∗4dyi + yiAS4 ∈ Γ(N ′4) ,

(D.18)

where the Hodge star ∗4 is computed using (D.10), and the three-form potential AS4 must
satisfy

dAS4 = 3R−1 vol4 . (D.19)

This is the flux relevant for the AdS7×S4 supersymmetric Freund-Rubin solution to eleven-
dimensional supergravity; the twist over the Riemann surface discussed in the main text
will modify it. The Eij are generalised Killing vectors generating the so5 algebra via the
action of the generalised Lie derivative,

LEijEkl = −R−1 (δikEjl − δilEjk + δjlEik − δjkEil) . (D.20)

In the main text we will need the following linear combinations,

Ξ1 = E13 + E24 , Ξ2 = E14 − E23 , Ξ3 = E12 − E34 ,

Ξ̃1 = E13 − E24 , Ξ̃2 = E14 + E23 , Ξ̃3 = E12 + E34 . (D.21)

Using the map (D.11), the frame elements (D.18) can equivalently be expressed in
terms of angular coordinates on S4. In particular, choosing a gauge such that the potential
AS4 satisfying (D.19) is SU (2)left × SU (2)right invariant,

AS4 = 1
32R

3 (cos(3ζ)− 9 cos ζ) σ1 ∧ σ2 ∧ σ3 , (D.22)
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we find that the combinations (D.21) are expressed in terms of the SU (2)left and SU (2)right
invariant tensors as

Ξα = 2
R
ξα + R2

2 d (cos ζ σα) ,

Ξ̃α = 2
R
ξ̃α −

R2

2 d (cos ζ σ̃α) . (D.23)

The Ξα can be seen as left-invariant generalised Killing vectors generating the SU (2)right ⊂
SO(4) ⊂ SO(5) generalised isometries, while Ξ̃α are right-invariant generalised Killing
vectors generating the SU (2)left generalised isometries. We will also need the expressions
for Ei and E′i in terms of angular coordinates, in fact just for i = 5. These read

E5 = −R sin ζ dζ + R4

8 sin(2ζ) dζ ∧ σ1 ∧ σ2 ∧ σ3 , (D.24)

E′5 = cos ζ − R3

16 (cos(2ζ) + 3)σ1 ∧ σ2 ∧ σ3 . (D.25)

Notice that dE′5 = 1
R E5.

E Details on the generalised U(1) structure of MN1 solution

In this appendix we give the details of the construction of the U(1) structure discussed in
section 4.2. In order to identify the correct U(1) subgroup of E6(6)×R+ and its commutant
it is convenient to decompose E6(6) under its maximal compact subgroup USp(8) and then
express the USp(8) representations in terms of Cliff(6) gamma matrices. For the latter step
we also need the decomposition of E6(6) under SL(6)×SL(2). We first give a brief summary
of the decomposition of E6(6) under USp(8) and SL(6)× SL(2) and then we apply this to
the construction of the U(1) structure, which reduces to simple gamma matrix algebra.

E.1 USp(8) and SL(6)× SL(2) decompositions

In this section we mostly use the conventions of [71]. Consider first the decomposition
of E6(6) under USp(8). We denote by M,N, · · · = 1, . . . , 27 the E6(6) indices and by
α, β, . . . = 1, . . . , 8 the USp(8) ones.

The fundamental of E6(6) is irreducible under USp(8) and is defined by an anti-
symmetric traceless tensor

V αβ = V [αβ] V α
α = 0 . (E.1)

The USp(8) indices are raised and lowered by the USp(8) symplectic form Ωαβ and its
inverse. The dual vectors in the 27 are denoted by Zαβ . The adjoint of E6(6) decomposes as

78 = 36 + 42 , (E.2)

where the 36 is the adjoint of USp(8) and the 42 contains the non-compact generators.
The elements of the 36 are 8× 8 matrices µαβ satisfying

µαβ = µβα (E.3)
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with µαβ = (Ω−1)αγµγβ . The non compact generators µαβγδ ∈ 42 are anti-symmetric
tensors satisfying

µαβγδ(Ω−1)αβ = 0 . (E.4)

The adjoint action on the 27 is

(µV )αβ = µαγV
γβ − µβγV γα − µαβγδVγδ (E.5)

and the E6(6) commutators are

[µ, ν]αβ = µαγν
γβ − 1

3µ
αγδενγδε

β − (µ↔ ν) (E.6)

[µ, ν]αβγδ = −4µ[α
εν
βγδ]ε − (µ↔ ν) . (E.7)

Given the generalised vectors V , V ′, V ′′ and the duals Z, Z ′, Z ′′, the E6(6) quadratic
form becomes

〈V,Z〉 = V αβZαβ , (E.8)

and the cubic invariants are

c(V, V ′, V ′′) = V α
βV
′β
γV
′′γ
α ,

c∗(Z,Z ′, Z ′′) = Zα
βZ ′ γβ Z ′′αγ .

(E.9)

We will also need the projection into the adjoint of the product of a generalised vector
V and a dual generalised vector Z

(V × Z)αβ = 2V (α
γZ
|γ|β)

(V × Z)αβγδ = 6
(
V [αβZγδ] + V [α

εZ
|ε|βΩγδ + 1

3 tr(V Z)Ω[αβΩγδ]
)
.

(E.10)

Consider now the decomposition of E6(6) under SL(6)× SL(2). We denote the SL(6)
indices with m,n, . . . = 1, . . . , 6 and the SL(2) indices ı̂, ̂ . . . = 1, 2. Under SL(6)× SL(2)
the 27 and 27 decompose as

27 = (6̄,2) + (15,1) VM = (vı̂m, V mn) ,
27 = (6, 2̄) + (15,1) ZM = (zmı̂ , Zmn) ,

(E.11)

where V mn and Zmn are anti-symmetric. The components in (E.11) are related to the
GL(6) tensors (A.3) and (A.4) as follows

V = ω v1 = v v2 y vol6 = σ ,

Z = ω̂ z1 = v̂ol6 yσ z2 = v̂ .
(E.12)

The adjoint of E6(6) decomposes as

78 = (35,1)⊕ (1,3)⊕ (20,2) µMN = (µmn , µı̂ ̂ , µı̂mnp) , (E.13)

where µmn are real, traceless, 6×6 matrices generating SL(6), µı̂ ̂ are real and traceless and
generate SL(2) and µı̂mnp are a pair of real fully antisymmetric tensors in the (20,2). The
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matrices µmn are identified with the traceless part of the GL(6) matrix r, with the trace
given by the diagonal non-compact generator of SL(2), where we have also set l = 1

3 tr(r),

µmn = rmn −
1
6 tr(r)δmn µ1

1 = −µ2
2 = 1

2 tr(r) . (E.14)

The compact and remaining non-compact generator of SL(2) are identified with the com-
binations of six-form and six-vector transformation ã± α̃.

The tensors µı̂mnp correspond to the three-forms and three-vectors

µ1
mnp = αmnp , µ2

mnp = amnp . (E.15)

Using Cliff(6,R) gamma matrices one can relate USp(8) and SL(6)× SL(2) represen-
tations. We introduce the doublet of matrices

Γ̂mı̂ =
(
Γ̂m, i Γ̂mΓ̂7) , ı̂ = 1, 2 . (E.16)

Then the 27 and 27 of USp(8) are given in terms of SL(6)× SL(2) representation by

V αβ = 1
2
√

2
[
vı̂m(Γ̂mı̂ )αβ + i

2V
mn(Γ̂mn7)αβ

]
,

Zαβ = 1
2
√

2
[
zmı̂ (Γ̂ı̂m)αβ + i

2Zmn(Γ̂mn7)αβ
]
,

(E.17)

where Γmn7 denotes the anti-symmetric product of two gamma’s and Γ7. The 36 and the
42 of USp(8) are given

µαβ = 1
4
[
µmn(Γ̂mn) + i εı̂ ̂µı̂ ı̂Γ̂7 + 1

6 εı̂
̂µı̂mnpΓ̂mnΓ̂p̂

]
αβ
, (E.18)

µαβγδ = 1
8
[
−µmn(Γ̂ı̂m ⊗ Γ̂nı̂ − Γ̂mp7 ⊗ Γ̂pn7) + µı̂ ̂Γ̂mı̂ ⊗ Γ̂̂m + iµı̂mnpΓ̂mı̂ ⊗ Γ̂np7

][αβγδ]

where ⊗ denotes the tensor product of two gamma’s, µmn is traceless and µı̂mnp are anti-
symmetric in the three lower indices.

We take the Cliff(6,R) gammas Γ̂m with m = 1, . . . , 6 such that

Γ̂Tm = Ĉ−1Γ̂mĈ (E.19)

where Ĉ is the charge conjugation matrix satisfying ĈT = −Ĉ, which we identify with the
USp(8) symplectic invariant Ω. The chiral gamma is given by

Γ̂7 = i Γ̂1 · · · Γ̂6 . (E.20)

Since the six-dimensional manifolds we are interested in are S4 fibrations over
a Riemann surface, we further decompose the Cliff(6) gamma matrices according to
SO(4)× SO(2). We take m = 5, 6 to be directions along the Riemann surface

Γ̂m = 1⊗ Γm m = 1, 2, 3, 4 ,
Γ̂5 = γ1 ⊗ Γ5 ,

Γ̂6 = γ2 ⊗ Γ5 ,

(E.21)

where Γm are the SO(4) gamma matrices with Γ5 = Γ1234 and γ1, γ2 are the SO(2) ones.
Then the six-dimensional chirality matrix becomes

Γ̂7 = i γ12 ⊗ Γ5 . (E.22)
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E.2 The U (1) structure

We can now give the details of the construction of the U(1)S structure discussed in sec-
tion 4.2. The N = 2 solution of [34] has an U(1)S structure corresponding to the diagonal
of the SO(2) holonomy on the Riemann surface Σ, and the U(1)right subgroup of the SO(5)
isometry of the four-sphere, according to the embedding

SO(5) ⊃ SO(4) ' SU(2)left × SU(2)right ⊃ SU(2)left × U(1)right . (E.23)

Seen as an element of E6(6), the U(1)S corresponds to a compact generator and therefore
belongs to USp(8). Using the expression (E.18) for the generators of USp(8), and now
taking the indicesm = 5, 6 for the direction along the Riemann surface, the U(1)S generator
can be written as

u(1)S = i Γ̂56 −
i
2 (Γ̂12 − Γ̂34) , (E.24)

where Γ̂56 is the generator of the SO(2) holonomy of Σ and i
2(Γ̂12 − Γ̂34) generates

U(1)right ⊂ SO(5).
To embed this generator in E6(6) and determine the invariant generalised tensors it

is convenient to decompose all E6(6) representations into USp(8) one’s and then use the
parameterisation of USp(8) in terms of gamma matrices of section E.1. In this way the
computation of the commutant, CE6(6)(U(1)S), of U(1)S in E6(6) and the determination of
the U(1)S singlets reduce to simple gamma matrix algebra.

We first compute the commutators of U(1)S with the generic elements of the 36 and
42 in (E.18). This will allow to determine the number of U(1)S singlets in the 78 and the
commutant CE6(6)(U(1)S). Using (E.6) we find that there are eight singlets in the 36. Five
correspond to elements of SO(6) ⊂ SL(6),

S
(36)
1 = Γ̂56 ,

S
(36)
2 = Γ̂12 ,

S
(36)
3 = Γ̂34 ,

S
(36)
4 = 1

2(Γ̂24 − Γ̂13) ,

S
(36)
5 = 1

2(Γ̂14 + Γ̂23) ,
(E.25)

two are compact elements of (20,2) associated to

S
(36)
6 = 1

2(Γ̂135 + Γ̂146 − Γ̂236 + Γ̂245) ,

S
(36)
7 = 1

2(Γ̂136 − Γ̂145 + Γ̂235 + Γ̂246) ,
(E.26)

and the last one is the generator of SO(2) ⊂ SL(2) corresponding to the anti-symmetric
part of µ12,

S
(36)
8 = i Γ̂7 . (E.27)
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A similar computation gives the singlets in the 42: four are non compact elements of
SL(6)

S
(42)
1 = −1

4(Γ̂1 ⊗ Γ̂1 + Γ̂2 ⊗ Γ̂2 − Γ̂5 ⊗ Γ̂5 − Γ̂6 ⊗ Γ̂6)

S
(42)
2 = −1

4(Γ̂3 ⊗ Γ̂3 − Γ̂5 ⊗ Γ̂5 − Γ̂6 ⊗ Γ̂6)

S
(42)
3 = −1

2(Γ̂1 ⊗ Γ̂4 + Γ̂4 ⊗ Γ̂1 + Γ̂2 ⊗ Γ̂3 + Γ̂3 ⊗ Γ̂2)

S
(42)
4 = −1

2(Γ̂2 ⊗ Γ̂4 + Γ̂4 ⊗ Γ̂2 − Γ̂1 ⊗ Γ̂3 − Γ̂3 ⊗ Γ̂1) ,

(E.28)

two are the non-compact generators of SL(2)

S
(42)
5 = 1

4(Γ̂m ⊗ Γ̂m + Γ̂mΓ̂7 ⊗ Γ̂mΓ̂7)

S
(42)
6 = i

4(Γ̂m ⊗ Γ̂mΓ̂7 + Γ̂mΓ̂7 ⊗ Γ̂m) ,
(E.29)

and the remaining ones are in the (20,2)

S
(42)
7 = −1

4(Γ̂6 ⊗ Γ̂237 − Γ̂5 ⊗ Γ̂137 − Γ̂5 ⊗ Γ̂247 − Γ6 ⊗ Γ147)

S
(42)
8 = −1

4(Γ̂6 ⊗ Γ̂247 − Γ̂5 ⊗ Γ̂147 + Γ̂5 ⊗ Γ̂237 + Γ̂6 ⊗ Γ̂137) .
(E.30)

These singlets generate the commutant of U(1)S in E6(6). Given the number of singlets
this must be

CE6(6)(U(1)S) = R+ × Spin(3, 1)× SU (2, 1)× U(1)S . (E.31)

From the commutators (E.6) and (E.7) it is easy to see that the factor R+ is generated by
the combination

JR = S
(42)
1 + S

(42)
2 . (E.32)

Similarly it is straightforward to identify the generators of the group SO(3, 1) as

J
SO(3,1)
1 = i

2(S(36)
2 + S

(36)
3 ) ,

J
SO(3,1)
2 = i

2S
(36)
4 ,

J
SO(3,1)
3 = i

2S
(36)
5 ,

K
SO(3.1)
1 = i

4(S(42)
1 − S(42)

2 ) ,

K
SO(3,1)
2 = − i

4S
(42)
3 ,

K
SO(3,1)
3 = i

4S
(42)
4 .

(E.33)

The remaining singlets give SU(2, 1). The compact generators are defined as

J
SU(2,1)
1 = − i

2S
(36)
7

J
SU(2,1)
2 = i

2S
(36)
8

J
SU(2,1)
3 = − i

4(S(36)
1 + S

(36)
2 − S(36)

3 − S(36)
8 )

J
SU(2,1)
8 = − i

4
√

3
(S(36)

1 + S
(36)
2 − S(36)

3 + 3S(36)
8 ) ,

(E.34)
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while the non-compact ones are

J
SU(2,1)
4 = − i

2S
(42)
7

J
SU(2,1)
5 = i

2S
(42)
8

J
SU(2,1)
6 = − i

2S
(42)
6

J
SU(2,1)
7 = i

2S
(42)
5 .

(E.35)

The compact singlets give the commutant of U(1)S into USp(6),

CUSp(8)(U(1)S) = SU (2)× SU (2)H × U(1)× U(1)S . (E.36)

We also need the U(1)S singlets in the 27. Computing the action (E.5) of U(1)S on a
generic element of the 27, given in (E.17), we find five singlets

27 = (1,1)(0,8) ⊕ (4,1)(0,−4) ⊕ (2,1)(3,−2) ⊕ (2̄,1)(−3,−2)

⊕ (1,3)(2,−4) ⊕ (1, 3̄)(−2,−4) ⊕ (2̄,3)(1,2) ⊕ (2, 3̄)(−1,2) ,
(E.37)

One is a singlet of both SO(3, 1) and SU(2, 1) and has charge 8 under R+,

K0 ∼ i Γ̂56Γ̂7 = 1⊗ Γ5 , (E.38)

where in the second equality we used (E.21) for the gamma matrices. The other singlets
are invariant under SU(2, 1) and form a quadruplet of SO(3, 1) of charge −4 under R+

K1 ∼ i (Γ̂13 − Γ̂24)Γ̂7 = γ(2) ⊗ (Γ13 − Γ24) ,
K2 ∼ i (Γ̂14 + Γ̂23)Γ̂7 = γ(2) ⊗ (Γ14 + Γ23) ,
K3 ∼ i (Γ̂12 + Γ̂34)Γ̂7 = γ(2) ⊗ (Γ12 + Γ34) ,
K4 ∼ i (Γ̂12 − Γ̂34)Γ̂7 = γ(2) ⊗ (Γ12 − Γ34) .

(E.39)

The singlets in the 27 and 78 are all we need to specify the generalised U(1)S structure.
However, the generators of SO(3, 1) and R+ in (E.31) do not leave the singlets generalised
vectors invariant and hence do not belong to the U(1)S structure. Using (E.10), one can
show that they are obtained as products of the singlets in the 27 and their duals

JSO(3,1)
α = 2i εαβγ(Kβ ×ad K

∗
γ) , KSO(3,1)

α = −i (Kα ×ad K
∗
4 ) , α = 1, 2, 3 , (E.40)

and
JR = 4(K0 ×ad K

∗
0 )− 4(K4 ×ad K

∗
4 ) . (E.41)

In summary the generalised U(1)S structure is defined by the five generalised vectors
and the eight generators of SU(2, 1)

{KI , JA} I = 0, . . . , 4, A = 1, . . . , 8 . (E.42)

The last step is to derive explicit expressions for these generalised tensors in terms of
geometrical objects on the six-dimensional internal manifold M . We use the fact that, in
our case,M is a fibration of the four sphere over a Riemann surface and that the four-sphere
is generalised parallelisable as reviewed in appendix D.3.

– 61 –



J
H
E
P
0
2
(
2
0
2
1
)
2
3
2

We decompose the six-dimensional bundles in representation of GL(2,R), the ordinary
structure group on the Riemann surface, and SL(5,R), the exceptional structure group of
S4. Under

E6(6) ⊃ GL(2,R)× SL(5,R) , (E.43)

the generalised tangent bundle decomposes as

E ' TΣ⊕ (T ∗Σ⊗N4)⊕ (Λ2T ∗Σ⊗N ′4)⊕ E4 ,

27 = (2,1)⊕ (2,5′)⊕ (1,5)⊕ (1,10) ,
(E.44)

where E4, N4 and N ′4 are defined in appendix D.3. Using (E.17) and defining Cliff(5,R)
gamma matrices as

Γi = {Γ1, . . . ,Γ5} , (E.45)

we can identify the components of the 27 in (E.44) as

{γ1 ⊗ 1, γ2 ⊗ 1} ∈ (2,1)
{γ1 ⊗ ΓI , γ2 ⊗ ΓI} ∈ (2,5)

1⊗ Γi ∈ (1,5)
γ(2) ⊗ Γij ∈ (1,10) .

(E.46)

In terms of generalised vectors, the elements of the (2,1) embed as

R−1
(
ê1
ê2

)
, (E.47)

while those in the (2,5) and (1,5) can be written as

Ψi = R

(
e1 ∧ Ei,
e2 ∧ Ei

)
and R2 volΣ ∧ E′i , i = 1, . . . , 5 , (E.48)

where volΣ = e1 ∧ e2 is the volume form on the Riemann surface, R is the S4 radius, and
Ei and E′i are the sections of N4 and N ′4 defined in appendix D.3. The elements of the
(1,10) are the Ξα, Ξ̃α, with α = 1, 2, 3, defined in (D.21), and Ei5 with i = 1, 2, 3, 4.

Comparing with (E.38) and (E.39), we see that

K0 ∈ (1,5) ∼ Λ2T ∗Σ⊗N ′4 , KI ∈ (1,10) ∼ E4 , for I = 1, . . . , 4 , (E.49)

and can then be written as generalised vectors on M as

K0 ∼ R2volΣ ∧ E′5 , Kα ∼ Ξ̃α , K4 ∼ Ξ3 , (E.50)

where α = 1, 2, 3. To have the final expressions for these five generalised vectors we still have
to implement the twist of S4 as described in section 4.2. The E6(6) element implementing
the twist is

Υ = −R2 υ ×ad Ξ3 ,
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= −ξ3 ⊗ υ −
1
4 R

3 υ ∧ d(cos ζ σ3) , (E.51)

and acts on the frames Eij , Ei as

eΥ · Eij = Eij + 1
2 υ ∧ E5(δ1[iδj]2 + δ3[iδj]4)− 1

2 δ5[iPj]
kυ ∧ Ek ,

eΥ · Ei = Ei + 1
2 υ ∧

(
E′[1δ2]i + E′[3δ4]i

)
, (E.52)

where Pij is the matrix

Pi
j =




−1
1

−1
1



. (E.53)

It is then straightforward to check that only K4 is modified by the twist, and the expres-
sions (4.29) are obtained.

Finally we need the expressions for the singlets in the 78 generating SU (2, 1). Under
E6(6) ⊃ GL(2,R)× SL(5,R) as

adF ' adF4 ⊕ (TΣ⊗ T ∗Σ)⊕ (T ∗Σ⊗ E4)⊕ (Λ2T ∗Σ⊗N4)⊕ (TΣ⊗ E∗4)⊕ (Λ2TΣ⊗N∗4 )
78 ∼ (1,24)⊕ (4,1)⊕ (2,10)⊕ (1,5)⊕ (2,10)⊕ (1,5) (E.54)

where adF4 is the adjoint bundle on S4

adF4 ' R⊕ (TS4 ⊗ T ∗S4)⊕ Λ3T ∗S4 ⊕ Λ3TS4 . (E.55)

The expressions for the singlets are easily obtained from (E.10) as products of the 27 and
27. In this way we obtain precisely the expressions given in eq. (4.30), where the twisting
by Υ can be evaluated with the aid of (E.52).

F Parameterisation of the H structure moduli space

We discuss here our parameterisation of the coset space MH = SU(2,1)
SU(2)×U(1) that describes

the hypermultiplet structure moduli space. We model the generators of SU (2, 1) on the
matrices jA, A = 1, . . . , 8, defined as:

j1,2,3 = −iλ1,2,3 , j4,5,6,7 = λ4,5,6,7 , j8 = −iλ8 , (F.1)

where λA, A = 1, . . . , 8, are the standard Gell-Mann matrices generating the su3 algebra
in the fundamental representation. These generators satisfy

j†Am+m jA = 0 , with m = diag(−1,−1, 1) , (F.2)
tr
(
jA jB

)
= 2 ηAB with η = diag(−1,−1,−1, 1, 1, 1, 1,−1) , (F.3)

as well as the commutation relations

[j1, j2] = 2j3, [j3, j1] = 2j2, [j2, j3] = 2j1,
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[j4, j5] = −(j3 +
√

3j8)
[1

2(j3 +
√

3j8), j4
]

= 2j5,
[
j5,

1
2(j3 +

√
3j8)

]
= 2j4,

[j6, j7] = −(−j3 +
√

3j8),
[1

2(−j3 +
√

3j8), j6
]

= 2j7,
[
j7,

1
2(−j3 +

√
3j8)

]
= 2j6,

[j1, j4] = j7, [j7, j1] = j4, [j4, j7] = −j1,
[j2, j4] = j6, [j6, j2] = j4, [j4, j6] = −j2,
[j1, j5] = −j6, [j6, j1] = −j5, [j5, j6] = j1,
[j2, j5] = j7, [j7, j2] = j5, [j5, j7] = −j2,
[j1, j8] = [j2, j8] = [j3, j8] = 0,

[j4,
√

3j3 − j8] = [j5,
√

3j3 − j8] = [j6,
√

3j3 + j8] = [j7,
√

3j3 + j8] = 0, (F.4)

where the first three lines show the three su2 subalgebras. Note that {j1, j2, j3, j8} generate
the compact subgroup SU (2) × U (1) ⊂ SU (2, 1). It is convenient to choose a solvable
parameterisation for the remaining generators, describing the coset space SU(2,1)

SU(2)×U(1) . Fol-
lowing the appendix D of [72], we define34

T1 = 1
2
√

2
( j1 − j2 − j4 − j5) , T2 = 1

2
√

2
( j1 + j2 + j4 − j5) ,

T• = 1
4
(
2 j7 + j3 −

√
3 j8
)
, H0 = 1

2 j6 . (F.5)

These span the Borel subalgebra of the SU (2, 1) algebra and satisfy the commutation
relations

[H0, T•] = T• , [H0, T1] = 1
2 T1 , [H0, T2] = 1

2 T2 , [T1, T2] = T• . (F.6)

A parameterisation of the coset is obtained by exponentiating the Borel subalgebra as

L = e−(θ1+θ2)T1+(θ1−θ2)T2+ξ T• e−2ϕH0 , (F.7)

where {ϕ, ξ, θ1, θ2} are the four real coordinates. Starting from the coset representa-
tive (F.7), we compute the Maurer-Cartan form L−1dL and then identify the coset vielbeine
as the coefficients of its expansion in the coset generators,

L−1dL = −2 dϕH0−eϕ(dθ1+dθ2)T1+eϕ(dθ1−dθ2)T2+e2ϕ (dξ − θ1dθ2 + θ2dθ1)T• . (F.8)

In this way we obtain the following Einstein metric on SU(2,1)
SU(2)×U(1) ,

ds2 = 2 dϕ2 + e2ϕ
(
dθ2

1 + dθ2
2
)

+ 1
2 e4ϕ (dξ − θ1dθ2 + θ2dθ1)2 . (F.9)

The normalisation is chosen so that the Ricci scalar is R = −12, in agreement with our
five-dimensional supergravity conventions.

In the main text, we need the “dressed” su2 algebra constructed via the adjoint action
of the coset representative on the su2 algebra generated by {j1, j2, j3}, that is

ĵ1 = L j1 L−1 , ĵ2 = L j2 L−1 , ĵ3 = L j3 L−1 . (F.10)
34We rearrange the indices of their 3× 3 matrices as 1there → 3here, 2there → 1here, 3there → 2here.
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An explicit evaluation using (F.7) gives

ĵ1 = 1
2 eϕ(j1+j5)+ 1

4 eϕ
(
θ2

2−3θ2
1 +2e−2ϕ)(j1−j5)+ 1

2 eϕ (ξ−2θ1θ2)(j2+j4)+ 1√
2

eϕθ2j6

− 1
2
√

2
eϕθ1

(
3j3+

√
3 j8
)
+ 1

4
√

2

[
eϕ(θ3

1 +θ1θ
2
2−2θ2ξ

)−2e−ϕθ1
](

j3+2 j7−
√

3 j8
)
,

ĵ2 = 1
2 eϕ(j2−j4)+ 1

4 eϕ
(
θ2

1−3θ2
2 +2e−2ϕ)(j2+j4)− 1

2 eϕ (ξ+2θ1θ2)(j1−j5)− 1√
2

eϕθ1j6

− 1
2
√

2
eϕθ2

(
3j3+

√
3 j8
)
+ 1

4
√

2

[
eϕ
(
θ3

2 +θ2
1θ2+2θ1ξ

)−2e−ϕθ2
](

j3+2 j7−
√

3 j8
)
,

ĵ3 =− 1
4
√

2

[
e2ϕ(θ3

1 +θ1θ
2
2 +2θ2ξ

)−6θ1
]
(j1−j5)− 1

4
√

2

[
e2ϕ(θ3

2 +θ2
1θ2−2θ1ξ

)−6θ2
]
(j2+j4)

+ 1
2
√

2
e2ϕ [θ1(j1+j5)+θ2(j2−j4)]− 1

2 e2ϕ(ξ j6+j7)+ 1
8
[
2−e2ϕ(θ2

1 +θ2
2
)(

3j3+
√

3 j8
)]

+ 1
32
[
e2ϕ(θ2

1 +θ2
2
)2+4e2ϕ(1+ξ2)−12

(
θ2

1 +θ2
2
)
+4e−2ϕ

](
j3+2 j7−

√
3 j8
)
. (F.11)

Now we can replace the matrices jA with the generalised tensors JA invariant under the
U (1) generalised structure. This provides our four-parameter family of H structures.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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Abstract: Using exceptional generalised geometry, we classify which five-dimensional

N = 2 gauged supergravities can arise as a consistent truncation of 10-/11-dimensional

supergravity. Exceptional generalised geometry turns the classification into an algebraic

problem of finding subgroups GS ⊂ USp(8) ⊂ E6(6) that preserve exactly two spinors.

Moreover, the intrinsic torsion of the GS structure must contain only constant singlets

under GS , and these, in turn, determine the gauging of the five-dimensional theory. The

resulting five-dimensional theories are strongly constrained: their scalar manifolds are nec-

essarily symmetric spaces and only a small number of matter multiplets can be kept, which

we completely enumerate. We also determine the largest reductive and compact gaugings

that can arise from consistent truncations.
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1 Introduction

When studying compactifications of 10- and 11-dimensional supergravities, the low-energy

limits of string theory, it is useful to have a lower-dimensional theory which captures key

aspects of the physics. If the compactification leads to a separation of scales, we can obtain a

lower-dimensional low-energy effective supergravity theory by integrating out modes above

the cut-off scale. This is the case for compactifications on special holonomy manifolds to

Minkowski space-time, where the effective theory is obtained by keeping only the massless

modes, namely the zero-modes of appropriate differential operators on the internal space.

However, when there is no separation of scales, or if we want to keep both some light

and massive modes within the truncation, we must instead resort to a consistent truncation

of 10-/11-dimensional supergravity [1]. A consistent truncation ensures that all solutions

of the lower-dimensional theory also satisfy the equations of motion of 10-/11-dimensional

supergravity. Consistent truncations are therefore particularly relevant for anti-de Sitter

– 1 –



(AdS) compactifications, where no explicit scale-separated example is known. This is even

conjectured to be true for all AdS compactifications of string theory [2].

Constructing consistent truncations is a notoriously difficult problem, due to the highly

non-linear equations of motion of 10/11-dimensional supergravity (see e.g. [1, 3]). Thus it

might be tempting to use lower-dimensional gauged supergravity models without a clear

higher-dimensional origin. However, this is fraught with dangers. For example, a vacuum

that appears stable within a lower-dimensional supergravity might suffer from instabilities

triggered by modes not kept in the truncation [4], or vacua which appear different within

the lower-dimensional model may actually be identified in the full 10/11-dimensional theory

[5]. These examples highlight how important it is to know which lower-dimensional theories

can arise as consistent truncations of 10-/11-dimensional supergravity.

Until recently, the only systematic approach to consistent truncations relied on consid-

ering manifolds with reduced structure group and keeping all the modes that are singlets

under the reduced group. For example, group manifolds (and freely-acting discrete quo-

tients thereof) have a trivial structure group and give the classic Scherk–Schwarz reductions

[6]. Alternatively one can consider, for example, Sasaki–Einstein and weak-G2 holonomy

manifolds of [7–10], or tri-Sasakian manifolds [11]. However, there are also famous consis-

tent truncations, such as those of 11-dimensional supergravity on S7 [12] and S4 [13, 14],

that cannot be explained by this traditional group action argument.

Recently, it has become clear that the appropriate framework for understanding gen-

eral consistent truncations of 10-/11-dimensional supergravity is given by generalised GS-

structures in exceptional generalised geometry and exceptional field theory.

Exceptional generalised geometry and exceptional field theory are reformulations of

10/11-dimensional supergravity in a way which unifies fluxes and metric degrees of freedom

into exceptional symmetry groups. In exceptional generalised geometry, for instance, the

exceptional groups appear as structure groups of the generalised tangent bundle of the

compactification manifold, which is an extension of the tangent bundle by appropriate

exterior powers of the cotangent bundle. A reduction of the exceptional structure group to a

subgroup GS defines a reduced “generalised structure group”. Given such generalised a GS

structure one can define its “intrinsic torsion” [15]. In analogy to the case of conventional

G structures, this is a differential object that measures the obstruction to finding a torsion-

free connection, compatible with the structure. For a given structure, it can decomposed

into generalised tensors transforming in particular GS representations.

It is now understood [16] that generalised GS structures provide a systematic and

general derivation of consistent truncations: any generalised GS structure with constant

singlet intrinsic torsion defines a consistent truncation of 10-/11-dimensional supergravity.

For instance, all maximally supersymmetric truncations are associated to generalised iden-

tity structure and so can be seen as generalised Scherk-Schwarz reductions [17–19]. This

provides a unified description of the consistent truncations of 11-dimensional supergravity

on S7 and S4, as well as of IIB supergravity on S5 and massive IIA on spheres [20, 21],

and give a framework for analysing generic maximally supersymmetric truncations [22–24].

Moreover, considering larger generalised structure groups, we obtain consistent truncations

preserving less supersymmetry [16, 25–27].

– 2 –



What is particularly interesting in this approach is that a good deal of information

about the reduced lower-dimensional theory is derived from purely algebraic considerations.

The embedding of the generalised structure group GS in En(n) completely fixes the field

content and the allowed components of the embedding tensor of the reduced theory, as well

as the truncation ansatz.

One is then left with the problem of solving the differential consistency condition that

the GS structure has constant, singlet intrinsic torsion. This will determine whether there

exists an internal manifold that realises any of the reduced theories allowed by the algebraic

analysis.

In this paper, we apply these ideas to classify consistent truncations of M-theory and

type IIB supergravities to five-dimensional N = 2 gauged supergravities. In this case the

relevant exceptional group is E6(6). We focus on the algebraic part of the problem, that

is identifying the possible GS ⊂ E6(6) structures, and work under the hypothesis that the

differential one is solved.

We first classify all the continuous subgroups of E6(6) that give rise to only two spinor

supercharges in five-dimensions, as required by N = 2 supersymmetry, and we derive,

in each case, the field content of the reduced theory. This allows us to show that the

structure of the five-dimensionalN = 2 gauged supergravities that can arise from consistent

truncations of type II/11-dimensional supergravity is very constrained. For example, the

scalar manifolds of such gauged supergravities must necessarily be symmetric, and there

is a maximum number of vector and hypermultiplets that can be coupled. Indeed, we find

that only a handful of matter contents can arise from consistent truncations.

We can then further constrain the allowed truncated theories as follows. Under the

assumption that the compactification manifolds satisfy the differential constraint of con-

stant singlet intrinsic torsion, we determine the embedding tensors of the reduced theory

and analyse the possible gaugings. Again purely group-theoretical arguments allow us to

fully determine the gauging of the reduced theory. As expected these include as special

cases the known truncations [27, 28] that arise from the N = 2 Maldacena–Nuñez [29] and

“BBBW” [30] backgrounds. We find in general that the embedding tensor is constrained,

so that generically not all gaugings that are allowed from a five-dimensional point of view

are realised as consistent truncations. The result is that the gauged supergravities that

can be obtained as consistent truncations are a very small subset of those that can be

constructed from a purely five-dimensional point of view.

It is worth stressing that while our analysis gives the list of the reduced theories that

can a priori be obtained as consistent truncations, this does not mean that all of them

can actually be realised. First, one must find compactification manifolds that admit the

appropriate GS generalised structure groups. Secondly, we must show that they satisfy the

condition of constant singlet intrinsic torsion, and then analyse the non-zero components

of intrinsic torsion/embedding tensor to see which gauge algebras in fact appear. The anal-

ogous condition is known to limit the possible gaugings in the maximally supersymmetric

case [17, 21–24, 31]. So it is to be expected that the number of actual truncations is even

more restricted than what we present here.

This result is of particular interest for theories with AdS vacua. It is conjectured
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that no AdS vacua of string theory admit scale separation [2]. Hence it is not possible

to write an effective N = 2 theory in this case. Thus we are led to conjecture that those

gauged supergravities that cannot come from consistent truncations and which have AdS

vacua must belong to the “swampland”. Put differently, these gauged supergravities are

lower-dimensional artefacts that are not related to string theory.

This paper is structured as follows. In Section 2 we recall the main features of 5-

dimensional N = 2 gauged supergravity. In particular, we describe the gauging procedure

in terms of Leibniz algebras, as this is the natural language to make the connection to ex-

ceptional generalised geometry. The exceptional generalised geometry formalism for N = 2

truncations to five dimensions is reviewed in Section 3. We first introduce E6(6) generalised

geometry, which is the relevant one for compactifications to five dimensions. Then we dis-

cuss theGS structures that are associated toN = 2 truncations and establish the dictionary

between the GS structure data and those of the truncated theory. Section 4 contains the

main results of the paper, namely the classification of the gauged supergravity that can

come from consistent truncations of M-theory or type IIB supergravities. We organise the

list according to the field content, first theories with only vector and tensor multiplets,

then only hypermultiplets and finally those with both vector/tensor and hypermultiplets.

Appendix A contains more details about E6(6) exceptional geometry, while in Appendix

B, for concreteness, we provide the explicit computation of the intrinsic torsion for the

truncation with nVT vector multiplets. Finally in Appendix C we discuss the truncation

ansatz.

2 5d N = 2 gauged supergravity: moduli spaces and gaugings

In this section, we summarise the features of five-dimensional N = 2 gauged supergravity

coupled to matter [32–34] that we want to reproduce from consistent truncations of M-

theory or type IIB theory. We follow the conventions of [34].

We are interested in 5d N = 2 supergravity coupled to nV vector multiplets, nT tensor

multiplets and nH hyper-multiplets. The gravity multiplet consists of the graviton, two

gravitini transforming as a doublet of the R-symmetry group SU(2)R and the graviphoton,

{gµν , ψ
x̃
µ, Aµ}. (2.1)

The index x̃ = 1, 2 denotes the SU(2)R R-symmetry. Each vector multiplet contains a

vector, two spin-1/2 fermions in the fundamental of SU(2)R and a complex scalar φ. Since

in five dimensions a vector is dual to a two-form, a tensor multiplet has the same number

of degrees of freedom. Thus we have vector and tensors multiplets

{Aµ, λ
x̃, φ}, {Bµν , λ

x̃, φ}, x̃ = 1, 2 . (2.2)

If we have nV vector multiplets and nT tensor multiplets we will use the notation AI
µ

with I = 0, . . . , nV to denote the graviphoton and the vectors fields and BM
µν with M =

nV + 1, . . . nV + nT for the two-form fields. The scalars of the vector and tensor multiplets

are grouped together into φi, with i = 1, . . . , nV + nT. These scalars parametrise a very

special real manifold, MVT.
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There are also hypermultiplets, each of which consists of four real scalars and an R-

symmetry doublet of spin-1/2 fermions

{ζ x̃, qu} , u = 1, . . . , 4 , x̃ = 1, 2 . (2.3)

If we have nH hypermultiplets, the scalars are grouped into qX , with X = 1, . . . , 4nH,

and parameterise a quaternionic-Kähler manifold,MH. It is also convenient to collect the

spinors ζ into ζ α̃, with α̃ = 1, . . . , 2nH, transforming in the fundamental representation of

USp(2nH).

The very special real manifold can be described as an nVT-dimensional cubic hyper-

surface in an (nVT + 1)-dimensional ambient space, where nVT = nV + nT. Viewing

hĨ = hĨ(φi), with Ĩ = 0, . . . , nVT, as embedding coordinates, MVT is given by

C(h) = CĨJ̃K̃h
ĨhJ̃hK̃ = 1 , (2.4)

where CĨ J̃K̃ is a completely symmetric constant tensor.

The metric on MVT is given by

gij = hĨ
i h

J̃
j aĨ J̃ , (2.5)

where aĨ J̃ is the metric on the ambient space

aĨ J̃ = 3hĨhJ̃ − 2CĨ J̃K̃h
K̃ , (2.6)

and

hĨ
i = −

√
3
2 ∂ih

Ĩ ,

hĨ = CĨ J̃K̃h
K̃hL̃ = aĨK̃h

K̃ .
(2.7)

The homogeneous “very special real” manifolds have been classified in [35]. For the

symmetric ones, which are the only ones we will need, a classification is possible based

on whether the polynomial (2.4) or, equivalently, the tensor CĨ J̃K̃ is factorisable or not

[36–38]. We will discuss this classification in Section 4.

The 4nH scalars of the hypermultiplets parameterise a quaternionic Kähler manifold

MH , of real dimension 4nH with metric

gXY = Cα̃β̃ǫx̃ỹfX
α̃x̃fY

β̃ỹ , (2.8)

where fX
α̃x̃ are the quaternionic vielbeine and Cα̃β̃ is the flat metric on USp(2nH). On

MH there exist a (local) triplet of complex structures ~JX
Y satisfying

[Jα, Jβ] = 2ǫαβγJq , (Jα)2 = −Id , α, β = 1, 2, 3 , (2.9)

with respect to which the metric gXY is hermitian.

As for the vector multiplets, only symmetric spaces will be relevant for consistent

truncations. The Riemannian symmetric quaternionic–Kähler spaces were first considered

by Wolf in [39] and then classified by Alekseevsky in [40]. This was then extended to the
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pseudo-Riemannian class by Alekseevsky and Cortés in [41]. We will discuss the relevant

ones in Section 4.

Together, the scalar manifold of the theory is the direct product

M =MVT ×MH , (2.10)

with isometries Giso = GVT × GH, where GVT and GH are the isometry groups of MVT

and MH respectively and define the global symmetries of the ungauged theory.1

The most general gauged theory is described in [34]. It is useful for what follows to

translate it into the language of Leibniz algebras (or more precisely “G-algebras” [23]). In

doing so we also see how the gauging picks out the space of vector and tensor multiplets.

Let V be the vector space of dimension nVT +1 formed by the graviphoton, the nV vectors

and nT tensors. The gauging defines a Leibniz algebra a, on V, that is a bilinear bracket

Jv,wK that satisfies a Leibniz-relation

Ju, Jv,wKK = JJu, vK, wK + Jv, Ju,wKK , ∀u, v, w ∈ V. (2.11)

Choosing a basis, the algebra defines a set of structure constants tJ̃K̃
Ĩ via

Jv,wKĨ = tJ̃K̃
ĨvJ̃wK̃ , ∀ v,w ∈ V. (2.12)

Note that in general Jv,wK 6= −Jw, vK (that is tJ̃K̃
Ĩ 6= −tK̃J̃

Ĩ) so the bracket does not

define a Lie algebra.

We then define the subspace T ⊂ V as the image of the symmetrised bracket

T = {Jv,wK + Jw, vK : v,w ∈ V} , (2.13)

and identify elements of T with tensor multiplets, so that dim T = nT. Note that the

Leibniz condition (2.11) implies that

Jb, vK = 0 , ∀ b ∈ T , v ∈ V . (2.14)

Thus Jv, bK = Jv, bK + Jb, vK ∈ T and hence T forms a two-sided ideal. As a consequence,

if we identify the space of vector multiplets as the quotient R = V/T , then the bracket

descends to an ordinary Lie bracket on R defining what we will call the “extended Lie

algebra” gext. Note that by construction V is a reducible representation of gext where T
forms an invariant subspace.

If one chooses a particular splitting so V = R ⊕ T and fixes a basis, where I =

0, 1, . . . , nV labels components in R and M = nV +1, . . . , nVT labels components in T , this

structure means that one has

tIJ
K = fIJ

K , tMĨ
J̃ = 0 , t(IJ̃)

I = 0 , (2.15)

1 In the case of no hypermultiplets, we define GH = SU(2) so that Giso still matches the global symme-

tries.
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where fIJ
K = −fJI

K are the structure constants of the Lie algebra gext. In summary, we

see that the splitting into vector and tensor multiplets is defined by the choice of Leibniz

algebra.

The choice of Leibniz algebra is not completely general if it is to lead to a consistent

gauging. Note first that we can define the adjoint action given some v ∈ V as

tv : V → V ,
w 7→ tvw := Jv,wK ,

(2.16)

so that, in components tv is the matrix (tv)
J̃

Ĩ = vK̃tK̃Ĩ
J̃ . From the Leibniz condition, the

commutator is given by

[tv, tw] = tJv,wK , (2.17)

and furthermore tb = 0 for all b ∈ T . Hence the adjoint action defines a Lie algebra. In

terms of the split basis, we have the generators [42] (see also [43]),

(tI)J̃
K̃ =

(
(tI)J

K (tI)J
N

0 (tI)M
N

)
,

I, J,K = 0, . . . , nV ,

M,N = nV + 1, . . . , nT ,
(2.18)

such that

[tI , tJ ] = −fIJ
KtK , (2.19)

where fIJ
K are the structure constants of gext. The components (tI)J̃

N give the repre-

sentation of the gauge group on the tensors. The off-diagonal components (tI)J
N can

be non-zero only in the case of non-compact groups since these allow for non-completely

reducible representations [42, 43].

Consistency requires that the symmetric tensor C in (2.4) is invariant under the action

of tv
C(tv(w), w,w) = 0 , ∀ v,w ∈ V , (2.20)

and that the expression

C(b, v, w) = Ω(1
2 tv(w) + 1

2tw(v), b) , ∀ b ∈ T, v, w ∈ V , (2.21)

defines a symplectic form Ω on T . This implies, in particular, that the bracket defines a

symplectic representation of gext on T . Invariance of C in turn means that the action of

tv is an isometry of the metric on MVT. In components, these conditions read

t(IJ̃)
M = ΩMNCNIJ̃ , tI(J̃

H̃CK̃L̃)H̃ = 0 . (2.22)

Note that the first condition is equivalent to requiring that the map V ⊗ V → T defined

by (v,w) 7→ Jv,wK + Jw, vK factors through V∗ via

V ⊗ V V∗ T .C Ω−1

(2.23)

That is, it can be viewed as a map to V∗ given by (v,w) 7→ C(v,w, ·) followed by the action

of Ω−1.
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The gauging of the five-dimensional theory can be expressed in terms of the embedding

tensor [44, 45]. This is a map

Θ : V → giso , (2.24)

where giso is the Lie algebra of isometries of the scalar manifold of the underlying rigid

supersymmetric theory. In this case, this means the product of the real cone over MVT

(that is the ambient space V) with the hyper-Kähler cone over MH. Given v ∈ V the

embedding tensor Θ(v) specifies how the action of tv gauges the isometries. That is, it

defines the embedding of the gauge algebra, ggauge, inside the isometry algebra of the

scalar manifold, where we define

ggauge = a/Ker Θ . (2.25)

The matter fields of the N = 2 gauged supergravity are charged under ggauge rather than

the larger gext, which generically is a central extension of ggauge.

For N = 2 supersymmetry the isometry algebra splits giso = gVT ⊕ gH where gVT and

gH are the Lie algebras of isometries on the vector and hypermultiplet rigid moduli spaces

respectively. For very special real and quaternionc Kähler homogeneous spaces these are

just the Lie algebras of the numerator groups GVT and GH, except when there are no

hypermultiplets in which case GH = SU(2), in line with footnote 1. The embedding tensor

thus splits into two parts [46, 47]. For the vector multiplets the isometries on the cone are

generated by a basis composed of Killing vectors ki
a on MVT, where a = 1, . . . ,dim gVT.

For the hypermultiplets the isometries on the hyper-Kähler cone are generated by a basis

composed of Killing vectors k̃X
m , with m = 1, . . . ,dim gH, together with su(2)R elements

~Pm that are the Killing prepotentials2 for each k̃X
m . The generators that are gauged are

then given by

ki
Ĩ
(φ) = ΘĨ

aki
a(φ) , k̃X

Ĩ
(q) = ΘĨ

mk̃X
m(q) , ~PĨ = ΘĨ

m ~Pm , (2.26)

where Ĩ , J̃ , K̃ = 0, . . . , nVT and X,Y = 1, . . . , 4nH. The two pieces of the embedding

tensor ΘI
a and ΘI

m are thus constant (ñV +1)×dim gVT and (ñV +1)×dim gH matrices,

whose rank determines the dimension of the gauge group. The kĨ vectors are required to

act linearly on the embedding coordinates hĨ such that

ki
Ĩ
∂ih

J̃ = tĨK̃
J̃hK̃ , (2.27)

thus relating ΘĨ
a to the structure constants tĨ J̃

K̃ . Given a splitting V = R⊕ T , one then

has kM = k̃M = 0 and

[kI , kJ ]i = fIJ
K ki

K ,

[k̃I , k̃J ]X = fIJ
K k̃X

K ,
(2.28)

realising the gauge algebra ggauge.

2In the case where there are no hypermultiplets, one can still have constant prepotentials ~Pm with

m = 1, 2, 3 that can lead to Fayet–Iliopoulos terms.
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On the scalars the gauging defines covariant derivatives

Dµφ
i = ∂µφ

i + g ki
IAI

µ ,

Dµq
X = ∂µq

X + g k̃X
I AI

µ .
(2.29)

The bosonic Lagrangian of the gauged theory is then given by

e−1L =
1

2
R− V(φ, q)− 1

4
aĨ J̃H

Ĩ
µνH

J̃µν − 3

4
aĨ J̃Dµh

ĨDµhJ̃ − 1

2
gXYDµq

XDµq
Y

+
e−1

16g
ǫµνρστΩMNB

M
µν(∂ρB

N
στ + 2gtNIJA

I
ρF

J
στ + gtNIPA

I
ρB

P
στ )

+
1

12

√
2

3
e−1ǫµνρστCIJKA

I
µ

[
F J

νρF
K
στ + fJ

FGA
F
ν A

G
ρ

(
−1

2
FK

στ +
g2

10
fK

HLA
H
σ A

L
τ

)]

− 1

8
e−1ǫµνρστ ΩMN t

M
IKt

N
FGA

I
µA

F
ν A

G
ρ

(
−g

2
FK

στ +
g2

10
fK

HLA
H
σ A

L
τ

)
.

(2.30)

The kinetic terms for the vector/tensor3 and hypermultiplets are controlled by the metrics

aĨ J̃ and gXY , defined in (2.6) and (2.8). The gauge field strengths

FI = dAI − 1
2gf

I
JKA

J ∧AK , (2.33)

and the anti-symmetric tensors Bµν are grouped into the tensors H Ĩ
µν = (FI

µν , B
M
µν). We

see that the gauge field strengths are indeed elements of the extended algebra gext, while

the matter fields have non-trivial charge only under the action of the gauge algebra ggauge.

In general, the scalar potential V is a function of the Killing vectors on the scalar

manifolds MVT and MH, and on the Killing prepotentials, ~PI , on MH
4

V = 2g2
(
gij ~Pi · ~Pj − 2~P · ~P + gijKiKj +Nα̃x̃N α̃x̃

)
, (2.35)

where the arrow denotes a triplet of su(2)R elements and

~P = hI ~PI ,
~Pi = ∂i

~P = hI
i
~PI ,

Ki =
√

6
4 h

Iki
I ,

N α̃x̃ =
√

6
4 h

I k̃X
I fX

α̃x̃ .
(2.36)

Notice that due to the identity hĨki
Ĩ

= 0, the Killing vectors onMVT do not contribute to

the potential when there are no tensor multiplets.

3The vector multiplet scalar kinetic term can also be written in terms of the scalar fields φi and the

metric gij on MVT using

DµhĨ = ∂µhĨ + g f Ĩ
J̃K̃AJ̃

µ hK̃ = ∂ih
ĨDµφi , (2.31)

and the identity
3
2

aĨJ̃DµhĨDµhJ̃ = gijDµφiDµφj . (2.32)

4The Killing prepotentials ~PI are defined by

4nH
~PI = ~JX

Y ∇Y k̃X
I , (2.34)

where ~JX
Y is the triplet of (local) complex structures on MH.
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The functions in (2.36) also control the bosonic part of the supersymmetry variations:

δψx̃
µ = Dµǫ

x̃ +
ig√
6
P x̃ỹγµǫỹ + . . . ,

δλix̃ = gKiǫx̃ + gP ix̃ỹǫỹ + . . . ,

δζ α̃ = gN α̃
x̃ǫ

x̃ + . . . .

(2.37)

where we have written out the explicit adjoint action of the su(2)R elements ~P and ~Pi.

3 N = 2 supergravities from generalised geometry

In the language of exceptional generalised geometry, consistent truncations are associated

to generalised GS-structures. If a d-dimensional manifold M admits a generalised GS-

structure, namely a set of globally defined generalised invariant tensors, with constant

intrinsic torsion, a consistent truncation of type II or eleven-dimensional supergravity on

M is obtained by expanding all supergravity fields on such tensors and keeping only the

GS -singlet modes. Knowing the generalised structure is enough to determine all the data of

the truncated theory. This approach has been successfully applied to the study of consistent

truncations with several amount of supersymmetry [16, 17, 21] (see also for the exceptional

field theory version of this approach [18, 20, 25, 26]). In particular, [27] provides the generic

framework to study type IIB or M-theory consistent truncations to five dimensions with

N = 2 supersymmetry. The purpose of this paper is to use this formalism to classify

the possible consistent truncations of type IIB or M-theory to five-dimensional N = 2

supergravity.

In this section, we give a brief summary of the exceptional generalised geometry rele-

vant for type IIB or M-theory reductions to five dimensions and then in the next section

we review the formalism of [27].

3.1 Generalised GS structures and N = 2 supersymmetry

Type IIB or M-theory supergravity on a d-dimensional manifold M , with d = 5 for type IIB

and d = 6 for M-theory, are conveniently reformulated in terms of E6(6) × R+ generalised

geometry5. For definiteness, we will focus on the M-theory case, though the formalism is

equally applicable in type IIB.

To the manifold M we associate a generalised tangent bundle E, whose sections trans-

form in the real 27∗ representation6 of E6(6), the generalised structure group, with weight

one under R+. The ordinary structure group GL(d) embeds in E6(6)×R+ and can be used

to decompose the generalised tangent bundle as

E ≃ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M . (3.1)

5See Appendix A for a more detailed review of E6(6) × R+ generalised geometry
6Given a representation n we will use n∗ and n for the dual and conjugate representations, respectively.

For non-compact groups these may not be equivalent.
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The sections of E are called generalised vectors and, using (3.1), can be seen as (local)

sums of a vector, a two-form and a five-form on M ,

V = v + ω + σ . (3.2)

The frame bundle F for E defines an E6(6) × R+ principal bundle. By considering

bundles whose fibres transform in different representations of E6(6)×R+, we can then define

other generalised tensors. To describe the bosonic sector of the supergravity theories we

will need, besides the generalised vectors, weighted dual vectors, adjoint tensors and the

generalised metric. Adjoint tensors R are sections of the adjoint bundle adF of the form

adF ≃ R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM ,

R = l + r + a+ ã+ α+ α̃ ,
(3.3)

and hence transform in the 1 + 78 of E6(6) with weight zero under the R+ action. Locally

l is a function, r a section of End(TM), a is a three-form and so on. One notes that in

the exceptional geometric reformulation, the internal components of the gauge potentials

of type II or M-theory, are embedded in the adjoint bundle.

It will be useful to also define weighted dual vectors Z as sections of the bundle

N ≃ detT ∗M ⊗E∗ which has R+ weight two7. Concretely one finds

N ≃ T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) ,

Z = λ+ ρ+ τ .
(3.4)

Finally the generalised metric G is a positive-definite, symmetric rank-2 tensor

G ∈ Γ(detT ∗M ⊗ S2E∗) , (3.5)

so that, given two generalised vectors V,W ∈ Γ(E), the inner product G(V,W ) is a

top form. Just as an ordinary metric g, at each point on M , parameterises the coset

GL(6)/O(6), a generalised metric at a point p ∈M corresponds to an element of the coset

G|p ∈
E6(6) × R+

USp(8)/Z2
. (3.6)

The generalised metric encodes the internal components of all bosonic fields of type II or

M-theory on M .

The fermionic fields of type IIB or M-theory are arranged into representations of

USp(8), the double cover of the maximal compact subgroup USp(8)/Z2 of E6(6). For

instance, supersymmetry parameters are section of the generalsied spinor bundle S, trans-

forming in the 8 of USp(8). The R-symmetry of the reduced five-dimensional theory is in

general then some subgroup GR ⊆ USp(8).

7Note that detT ∗M is just a different notation for the top-form bundle Λ6T ∗M that stresses that it is

a real line bundle. In the following we will assume that the manifold is orientable and hence det T ∗M is

trivial. Thus, we can define arbitrary powers (detT ∗M)p for any real p.
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A generalised GS structure is the reduction of the generalised structure group E6(6)×R+

to a subgroup GS . For all the structure groups that we discuss here, this is equivalent to

the existence on M of globally defined generalised tensors that are invariant under GS .8

For example, the generalised metric G in (3.5) defines an USp(8)/Z2 structure. In what

follows, since we always assume the existence of a generalised metric, we will consider GS

structures that are subgroups of USp(8)/Z2. Moreover, we are interested in generalised

structures preserving some amount of supersymmetry and hence we need the structure

group to lift to a subgroup G̃S of USp(8) acting on the spinor bundle S and to keep track

of how many spinors are singlets of G̃S . In all the cases considered here we have G̃S ≃ GS .

Hence for simplicity we will from now on write GS for both. For N = 2 supersymmetry we

need two invariant supercharges in the spinor bundle S implying that we need subgroups

GS ⊂ USp(8) that give only two singlets when decomposing the 8 of USp(8).

The largest structure group giving N = 2 supersymmetry is GS = USp(6): under the

breaking

USp(8) ⊃ USp(6)× SU(2)R , (3.7)

the spinorial representation decomposes as

8 = (6,1) ⊕ (1,2) . (3.8)

The SU(2)R factor in (3.7) is the R-symmetry of the reduced theory under which the two

spinors singlets form a doublet, as expected for N = 2 supersymmetry parameters. One

also has the decompositions for the E6(6) representations

27∗ = (1,1) ⊕ (14,1)⊕ (6,2) ,

78 = (1,3) ⊕ (6,2) ⊕ (21,1)⊕ (14,1)⊕ (14′,2) .
(3.9)

Note that the embedding of the structure USp(6) ⊂ E6(6), in contrast to (3.7), defines the

subgroup

E6(6) ⊃ USp(6) · SU(2)R , (3.10)

where we are using the “central product” between USp(6) and SU(2)R. By definition, for

any group G and subgroup H, the commutant9 CG(H) of H in G includes the centre Z(H)

of H. The central product is defined to be H · CG(H) = (H × CG(H))/Z(H) where one

modes out by the diagonal Z(H) subgroup. In this case Z(USp(6)) = Z2 and the central

product reflects the fact that the maximal compact subgroup of E6(6) is USp(8)/Z2 and

not USp(8).

The GS = USp(6) structure is often called an HV structure [48–50] and can also

be defined in terms of non-vanishing invariant adjoint tensors and a generalised vector,

corresponding to the singlets under GS = USp(6) in (3.9). As they will be useful in the

8For non-simple (and discrete) groups, you can in principle have GS groups that are not defined as

stabilizer groups of tensors.
9Throughout this paper we will use the notation CG(H), with H ⊂ G, for the commutant (or centralizer)

of H within G.
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rest of the paper, let us first introduce the vector and hypermultiplet structures that these

tensors separately define.

A vector-multiplet structure, or V structure, is given by a globally defined generalised

vector K ∈ Γ(E) of positive norm with respect to the E6(6) cubic invariant,

c(K,K,K) := 6κ2 > 0 , (3.11)

where κ is a section of (detT ∗M)1/2. The vector K is the (1,1) singlet in the decomposition

of the 27∗ in (3.9) and is stabilised by F4(4) ⊂ E6(6). A hypermultiplet structure, or H

structure, is determined by a pair (Jα,κ
2) where Jα ∈ Γ(adF ) (α = 1, 2, 3) is a triplet that

define a basis for a highest root su2 subalgebra of e6(6) and hence satisfy

[Jα, Jβ ] = 2ǫαβγJγ , tr(JαJβ) = −δαβ , (3.12)

while κ is a section of (detT ∗M)1/2 as above. The Jα correspond to the (1,3) triplet in

the decomposition of the 78 in (3.9) and are stabilised by SU∗(6) ⊂ E6(6).

The HV structure corresponds to a V and an H structure, such that the two κ densities

are the same and in addition compatibility constraint

Jα ·K = 0 , (3.13)

is satisfied, where · denotes the adjoint action (see Appendix A for all relevant definitions).

The common stabiliser of compatible K and Jα is

SU∗(6) ∩ F4(4) ≃ USp(6) . (3.14)

As shown in [27], given an USp(6) structure, one can construct a generalised metric as

G(V, V ) = 3

(
3
c(K,K, V )2

c(K,K,K)2
− 2

c(K,V, V )

c(K,K,K)
+ 4

c(K,J3 · V, J3 · V )

c(K,K,K)

)
, (3.15)

where c is the E6(6) cubic invariant and V is a generalised vector.

As we will discuss later, in terms of the multiplets of the truncated theory, an HV

structure, that is one where GS = USp(6), implies that there are neither vector multiplets

nor hypermultiplets present; the reduced theory is minimal N = 2 supergravity. To allow

for vectors or hypermultiplets, one has to look for reduced structure groups GS ⊂ USp(6)

such that in the decomposition

USp(8) ⊃ USp(6)× SU(2)R ⊃ GS × SU(2)R , (3.16)

additional GS singlets beyond those defined by the USp(6) structure appear in 27∗ and

the 78, but none in the 8. This means the 6 in the decomposition (3.8) cannot admit any

singlets, and hence that all the singlets in the 27∗ must transform trivially under SU(2)R.

Each GS ⊂ USp(6) singlet will give a GS-invariant generalised tensor in the corre-

sponding bundle. In particular, the singlets in 27∗ will span a sub-bundle Esinglet

E ⊃ Esinglet ≃M × V . (3.17)
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The bundle is by definition trivial and hence can be written as a product where V is the

fibre. The vector space V transforms as a representation of the commutant CE6(6)
(GS)

of GS in E6(6). In particular, from the discussion above, there must be an R-symmetry

subgroup SU(2)R ⊂ CE6(6)
(GS) that acts trivially on V (and hence Esinglet). Furthermore,

the corresponding Lie algebra su(2) must correspond to a highest root in e6(6). Let us

define GH as the simple subgroup of CE6(6)
(GS) that contains such a highest root SU(2).

We can then also identify the corresponding trivial sub-bundle of the adjoint bundle10

adF ⊃ adFGH
≃M × gH , (3.18)

where gH is the Lie algebra of GH. Note that by definition R · v = 0 for all v ∈ Γ(Esinglet)

and R ∈ Γ(adFGH
).

Given any trivial GS -invariant vector bundle P ≃ M × Rn and GS-compatible gener-

alised connection D̃, one can define a constant section s ∈ Γ(P ) by D̃s = 0. Furthermore,

the definition is independent of the choice of D̃ since the bundle transforms trivially under

GS . For the sub-bundles Esinglet and adFGH
we can identify V and U ≃ gH with the spaces

of constant sections
V =

{
v ∈ Γ(Esinglet) : D̃v = 0

}
,

gH ≃ U =
{
R ∈ Γ(adFGH

) : D̃R = 0
}
,

(3.19)

giving a natural realisation of the isomorphisms (3.17) and (3.18). Note that the elements

of U generate a global GH symmetry. The GS-structure also defines a constant invariant

section κ2 ∈ Γ(detT ∗M). Hence for each v ∈ V the expression

C(v, v, v) = κ−2c(v, v, v) , (3.20)

where c is the E6(6) cubic invariant, defines a map into R (or more precisely to constant

functions on M). We can always choose a basis of normalised nowhere-vanishing linearly

independent vectors and adjoint elements for V and U

{KĨ , JA} , Ĩ = 0, . . . ,dimV − 1, A = 1, . . . ,dimGH , (3.21)

where by definition we have

JA ·KĨ = 0 , ∀ Ĩ , A . (3.22)

In this basis, the components CĨ J̃K̃ of the map (3.20) are given by

c(KĨ ,KJ̃ ,KK̃) = 6κ2CĨ J̃K̃ , (3.23)

and define a symmetric, constant tensor, while the adjoint tensor basis JA satisfy

[JA, JB ] = fAB
CJC , (3.24)

10Note that there are singlets in the adjoint bundle that are not in ad FGH . In addition to elements

generating the other possible factors in CE6(6)
(GS) there are also elements of the form V ⊗ad W , where V

is a section of Esinglet, W is a section of the dual bundle E∗
singlet and ⊗ad is the projection onto the adjoint

bundle. However these will not play a relevant role in our construction.
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where fAB
C are the structure constants of gH. Finally, we can normalise

tr(JAJB) = ηAB , (3.25)

where ηAB is a diagonal matrix with −1 and +1 entries in correspondence with compact

and non-compact generators of GH, respectively. Note that in the “minimal” case of

GS = USp(6) with the HV structure (K, Jα) the spaces V and U are one- and three-

dimensional, with basis vectors K and Jα, respectively.

3.1.1 Moduli space of HV structures

A strict USp(6) structure is rigid, up to an overall scaling of κ2. However, a reduced GS ⊂
USp(6) structure group naturally leads to a moduli space of GS-invariant HV structures.

Note that the moduli do not necessarily consist of massless scalar fields from the point of

view of the reduced N = 2 five-dimensional theory, but rather will lead to a consistent

truncation.

Out of the invariant tensors KĨ and JA defining the GS structure, we can define an

HV structure by constructing a vector K ∈ V and a triplet Jα ∈ U that form a basis for a

highest root su(2) algebra in gH. Any such HV structure is related to another by the local

action of g ∈ E6(6)×R+. The R+ factor rescales κ2 and can be absorbed by rescaling of the

metric in the reduced theory. It therefore does not define a modulus and we can consider

only g ∈ E6(6). In order for the deformed HV structure to remain in V and U , the action

g needs to lie in the commutant group CE6(6)
(GS) and to be constant in the sense that

Dg = 0 for any GS compatible connection D̃. In other words, different points in the moduli

space of GS-invariant HV structures are related by global CE6(6)
(GS) transformations.

However, the actual physical moduli come from the generalised metric. Given a ref-

erence USp(6) structure, we can build a reference generalised metric using the definition

(3.15). The physical moduli are then generated by acting on the structure with elements

of E6(6) that commute with GS , modulo elements of USp(8)/Z2, that leave the generalised

metric invariant. The moduli obtained this way hence parameterise the coset

M =
CE6(6)

(GS)

CUSp(8)/Z2
(GS)

. (3.26)

By definition we are only considering GS that only admits N = 2 supersymmetry, in

other words we are not interested in theories that are subsectors of more supersymmetric

ones. This means there are no elements of CE6(6)
(GS) that lead to two different USp(6)

structures with the same generalised metric. Hence CE6(6)
(GS) must factorise into groups

that act separately on V and U , that is

CE6(6)
(GS) = CGU (GS)× CGV (GS) , (3.27)

where GU and GV are the subgroups of E6(6) that leave fixed all elements of U and V,

respectively. Consequently, the moduli spaceM factorises into V structure and H structure

moduli spaces, as expected from N = 2 supergravity,

M = MVT ×MH =
CGU (GS)

CHU (GS)
× CGV (GS)

CHV (GS)
=
GVT

HVT
× GH

HH
, (3.28)
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where, similarly, HU and HV are the subgroups of USp(8)/Z2 that leave U and V fixed,

respectively. In general there are common factors that cancel between the numerators

and denominators in the commutator group expression for the cosets; for example the

centre C(GS) is always a subgroup common to both. Thus it is useful to introduce the

notation GVT, GH, HVT and HH for the numerators and denominators that remain in the

quotients in (3.28) once all the common factors have been cancelled (except when there

are no hypermultiplets in which case we take GH = HH = SU(2)). For MH, one finds GH

is the simple subgroup of CE6(6)
(GS) that contains a highest root SU(2), consistent with

our definition of GH above .

The V structure moduli space corresponds to deformations ofK that leave Jα invariant,

while the H structure moduli space describes deformations of Jα that leave K invariant.

When given a dependence on the external spacetime coordinates, these deformations pro-

vide the scalar fields in the truncated theory, withMVT andMH being identified with the

vector multiplet and the hypermultiplet scalar manifolds, respectively.

We can identify the moduli explicitly as follows. Consider firstMVT. Using the basis

K Ĩ , a general vector K ∈ V can be written as a linear combination

K = hĨKĨ , (3.29)

where hĨ , Ĩ = 0, . . . , nVT, are real parameters. Fixing κ2 in (3.11), and using (3.23), gives

CĨJ̃K̃h
ĨhJ̃hK̃ = 1 , (3.30)

showing that the nVT + 1 parameters hĨ are constrained by one real relation and thus

define an nVT-dimensional hypersurface, just as in (2.4),

MVT = {hĨ : CĨ J̃K̃h
ĨhJ̃hK̃ = 1 } . (3.31)

The spaceMVT is the moduli space of the V structure and, in the truncation, will determine

the vector multiplet scalar manifold of the five-dimensional theory. The metric onMVT is

obtained by evaluating the generalised metric on the invariant generalised vectors,

aĨ J̃ = 1
3 G(KĨ ,KJ̃ ) . (3.32)

It is straightforward to verify that, using (3.15), the expression above reproduces the five-

dimensional expression (2.6).

Consider now MH. The family of H structures is obtained by parameterising the

possible choices of su2 algebra. Recall that by definition U ≃ gH, so we are interested in

the space of highest root su(2) ⊂ gH subalgebras. Fixing κ2 and modding out by the SU(2)

symmetry that relates equivalent triples Jα we have the moduli space

MH =
GH

SU(2)R · CGH
(SU(2)R)

, (3.33)

that is, comparing with (3.28), we have HH = SU(2)R · CGH
(SU(2)R). Points in MH can

be parameterised by starting from a reference subalgebra j ≃ su2 ⊂ gH and then acting on

a basis {j1, j2, j3} of j by the adjoint action of group elements h ∈ GH, defined as
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Jα = adGH
jα = h jα h

−1 . (3.34)

One has to mod out by the elements of GH that have a trivial action, namely h ∈
SU(2)R ≃ exp(j) and h ∈ CGH

(SU(2)R). The resulting symmetric spaces (3.33) and are

all quaternionic–Kähler, in agreement with the identification of MH with the hyperscalar

manifold in five-dimensional supergravity.

3.1.2 Singlet generalised intrinsic torsion

Any generalised GS structure has an associated intrinsic torsion [15]. Given aGS-compatible

generalised connection, D̃, its torsion T is defined as

(
LD̃

V − LV

)
α = T (V ) · α , (3.35)

where α is a generic generalised tensor, L is the generalised Lie derivative (see Appendix

A), LD̃ is the generalised Lie derivative calculated using D̃ and · is the adjoint action on

α.

As a generalised tensor, the torsion T belongs to the sub-bundle

W ∈ E∗ ⊕K ⊂ E∗ ⊗ adF , (3.36)

with E∗ transforming in the 27 representation and K in the 351 representation.

Let Σ = D̃− D̃′ be the difference between two GS-compatible generalised connections.

It is a generalised tensor, specifically a section of KGS
= E∗⊗adFGS

, where adFGS
⊂ adF

is the GS-adjoint subbundle defined by the structure. Using (3.35) one can define a map

from KGS
to W , the space of generalised torsions,

τ : KGS
→W ,

Σ 7→ τ(Σ) = T − T ′ ,
(3.37)

as the difference of the torsions of the connections D̃ and D̃′. The image of the map τ is

not necessarily surjective, that is Im τ = WGS
⊂ W . The part of W that is not spanned

by WGS
is the intrinsic torsion of the generalised structure GS , i.e.

WGS
int = W/WGS

. (3.38)

The intrinsic torsion Tint is the component of T that is independent of the choice of com-

patible connection D̃ and is fixed only by the choice of generalised structure. When

GS ∈ USp(8)/Z2 and therefore defines a generalised metric, the norm defined by the

generalised metric G allows one to decompose the space of generalised torsions as11

W = WGS
⊕WGS

int . (3.39)

We can always decompose the intrinsic torsion into representations of GS . For a

consistent truncation we will be interested in generalised structures whose only non-zero

components are in singlet representations of GS .

11See Appendix B for an explict example.
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As for ordinary G-structures, the intrinsic torsion of a generalised structure GS can be

encoded in first-order differential expressions in theGS invariant generalised tensors. Recall

that KĨ and JA form a basis for the invariant tensors and by definition, D̃KĨ = D̃JA = 0

for any GS-compatible connection. It was shown in [27] that the intrinsic torsion is encoded

in the expressions

LKĨ
KJ̃ , LKĨ

JA , (3.40)

and ∫

M
κ2tr(JA(LWJB)) , (3.41)

where the generalised vector W is orthogonal to the generalised vectors in V in the sense

that

c(KĨ ,KJ̃ ,W ) = 0 . (3.42)

Note that the expressions (3.40) and (3.41) are in general not independent, but are sufficient

to determine the intrinsic torsion.

For a consistent truncation we need to require that the intrinsic torsion lies only in the

singlet representation of GS and is constant. This is equivalent to requiring

LKĨ
KJ̃ = −Tint(KĨ) ·KJ̃ = tĨ J̃

K̃KK̃ ,

LKĨ
JA = −Tint(KĨ) · JA = pĨA

BJB ,
(3.43)

where the tĨ J̃
K̃ and pĨA

B are constants and that (3.41) vanishes for all W . The latter

follows from the fact that the condition on W implies that it transforms non-trivially

under GS and hence, since JA are singlets, the corresponding intrinsic torsion cannot be a

singlet and so must vanish. Recall that Tint(V ) is a section of the adjoint bundle adF . For

singlet torsion, Tint(KĨ) must act in sub-bundle defined by the commutant12 CE6(6)
(GS).

From the factorisation (3.27) we see that we can view the matrices (tĨ)J̃
K̃ and (pĨ)A

B as

elements of Lie algebras of GVT and GH respectively.

3.1.3 The data of the truncation

Any generalised GS structure on a manifold M with only constant, singlet intrinsic torsion

gives rise to a consistent truncation of eleven-dimensional or type II supergravity with

spacetime X × M to a gravitational theory on X [16, 27]. In this section we focus on

truncations to five-dimensionalN = 2 supergravity and recall how the the generalised GS ⊆
USp(6) structure encodes the data of the truncated theory, as summarised in Section 2.

The field content of the truncated theory is completely determined by the GS -invariant

spaces U and V and the moduli space of HV structures,13 while the gauging is determined

by the singlet torsion.

12Note that strictly speaking the singlet torsion also allows Tint(KĨ) to act in the R+ factor of ad F . This

would correspond to a gauging of the “trombone symmetry” in the 5d theory [51]. Such theories do not

have an action and for simplicity we do not consider them here.
13For completeness we give in Appendix C the explicit form of the truncation ansatz.
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The scalars of the truncated theory are given by the moduli space (3.26) of generalised

metrics on M that factors (3.28) into

VM scalars: φ(x)i ↔MVT =
GVT

HVT
,

HM scalars: q(x)X ↔MH =
GH

HH
=

GH

SU(2)R × CGH
(SU(2)R)

,
(3.44)

where xµ are the coordinates on X.

By construction, both spaces are homogeneous and so correspond to one of the cases

listed in Section 2. As discussed in Section 3.1.1, the metrics can be explicitly constructed

in terms of the basis vectors KĨ and JA. In particular, the cubic invariant on V, which

fixes the metric on MVT, is given by (3.20).

The other bosonic fields are the vectors and two-forms. As we will see in a moment, the

singlet intrinsic torsion allows one to decompose the space of constant vectors as V = R⊕T
so that the basis vectors split

{KĨ} = {KI} ∪ {KM} , (3.45)

where {KI} with I = 0, . . . , nV are a basis for R and {KM} with M = nV + 1, . . . , nVT

are a basis for T . The vector fields and two-forms are in one-to-one correspondence with

a basis in R and T respectively14

vectors: AI
µ(x)↔ KI ,

two-forms: BM
µν(x)↔ KM .

(3.46)

The gauge interactions of the truncated theory are determined by the intrinsic torsion

of the GS-structure, which in turn is captured by the constants appearing in (3.43). The

first relation defines a bracket J·, ·K : V ⊗ V → V on V given by

Jv,wKĨ := (Lvw)Ĩ = tJ̃K̃
ĨvJ̃wK̃ , ∀ v,w ∈ V , (3.47)

just as in (2.12). Since the generalised Lie derivative satisfies Lu(Lvw) = LLuvw+Lv(Luw)

the bracket defines a Leibniz algebra. As in Section 2, one can then choose a splitting

V = R⊕T , where T is the image of the symmetrised bracket, such that R is the space of

vector multiplets and T the space of tensors.

For a consistent gauging we need to check the conditions (2.20) and (2.21). They each

follow from the properties of the generalised Lie derivative as we now show. Recall first,

from the discussion below (3.43), that (tv)
J̃

Ĩ = vK̃tK̃Ĩ
J̃ is an element of the Lie algebra of

GVT and so

ggauge ⊂ LieGVT ⊂ e6(6) . (3.48)

14In the general formalism given in [16, 27] the two-forms were valued in constant sections of the singlet

sub-bundle of N ≃ det T ∗M ⊗ E∗, written using dual basis vectors K♭Ĩ , and isomorphic to elements of V∗.

The relation to the fields here is that the Ĩ index is raised using the symplectic form Ω−1 defined by the

singlet torsion. Note also that one can consider AĨ
µ and BĨ

µν defined for all values of Ĩ. However, once the

non-propagating fields are eliminated only AI
µ and BM

µν are dynamical and the Lagrangian takes the form

(2.30).
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Since c and κ2 are E6(6) invariants, the action of ggauge must preserve the cubic tensor C

given by (3.20) and hence we satisfy (2.20). Furthermore, by definition

Lvw + Lwv = d(v ⊗N w) , (3.49)

where d is the exterior derivative and ⊗N is the projection (A.10) onto N ≃ detT ∗M ⊗E∗

given by v ⊗N w = c(v,w, ·). If v,w ∈ V then the left-hand side of (3.49) is by definition

an element of T . Using (3.20), the right-hand side is just the sequence of maps in (2.23),

where the symplectic form on T is defined by the composition Ω−1 = d ◦ κ2. Hence (3.49)

implies we satisfy the second condition (2.21) required for a consistent gauging.

To complete the description of the gauging we identify the embedding tensor and the

Killing vector fields onMVT andMH. Since both manifolds are coset spaces, from (3.27),

the group of isometries is Giso = GVT ×GH and the embedding tensor is a map

Θ : V → giso = LieGVT ⊕ LieGH . (3.50)

The corresponding gauged Killing vectors ki
Ĩ
(φ) and k̃X

Ĩ
(q) onMVT andMH are given by

(2.26). If we view K = hĨ(φ)KĨ as giving the embedding ofMVT in V and Jα = mA
α (q)JA

as giving the embedding ofMH in U then, from (3.43), we can identify the Killing vectors

explicitly from the relations

ki
Ĩ
∂ih

J̃ = ΘĨ
aki

a∂ih
J̃ = tĨK̃

J̃hK̃ ,

k̃X
Ĩ
∂Xm

A
α = ΘĨ

mk̃X
m∂Xm

A
α = pĨB

AmB
α .

(3.51)

Thus we can identify the embedding tensor as an element of LieGVT ⊕ LieGH

ΘĨ =

(
(tĨ)J̃

K̃ 0

0 (pĨ)A
B

)
. (3.52)

Using the Leibniz property that LKĨ
(LKJ̃

α) = L(LK
Ĩ
KJ̃ )α+LKJ̃

(LKĨ
α) for any generalised

tensor α, it follows that each set of vectors forms a representation of ggauge as in (2.28). In

other words, we have

[tĨ , tJ̃ ] = tĨ J̃
K̃tK̃ , [pĨ , pJ̃ ] = tĨ J̃

K̃pK̃ . (3.53)

Finally, it is worth noting that the Killing prepotentials descend directly from the moment

maps for generalised diffeomorphisms that appear in integrability conditions for an HV

structure [49] and are given by

g Pα
Ĩ

= 1
8 ǫ

αβγtr
(
Jβ(LKĨ

Jγ)
)
, (3.54)

where as above Jα = mA
α (q)JA is the dressed triplet.

It is important to note that generic N = 2 supergravity allows gaugings defined by

an embedding tensor Θ that is a general element of V∗ ⊗ giso. However, the fact that our

theory comes from a consistent truncations will typically restrict the form of Θ to only lie

in certain GVT ×GH representations in the decomposition of V∗ ⊗ giso. For this reason, in

the following we will use T to denote the embedding tensor that appears in the consistent

truncations to distinguish it from the more general Θ. As a consequence, we will see that

not all the allowed N = 2 gaugings can arise from consistent truncations.
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4 Classification of N = 2 truncations to five-dimensions

In this section, we discuss the main result of the paper, namely the classification of the

consistent truncations to N = 2 gauged supergravity in five-dimensions that can a priori

be obtained from M-theory and type IIB.

As the data of a consistent truncation are encoded in the generalised structure GS

that is defined on the compactification manifold M , the problem reduces to classifying the

possible GS ⊂ E6(6) structures with constant intrinsic torsion that preserve N = 2 super-

symmetry. Therefore, the classification consists of an algebraic problem – the existence of

an appropriate GS ⊂ E6(6) structure – and a differential one – the existence of constant

singlet intrinsic torsion. In the following, we will study the algebraic problem in general,

but will simply assume that the differential condition of having constant singlet intrinsic

torsion can be solved. From the example of maximally supersymmetric gauged supergravity

we know that the differential condition puts important restrictions on the allowed gauged

supergravities [22–24]. Strikingly, even when ignoring this additional constraint, we find

that for N = 2 theories the algebraic conditions alone significantly constrain the possible

gaugings that can arise.

Let us recall from Section 3.1 what the main idea is. Demanding that the truncated

theory is supersymmetric implies that the internal manifold must be spin and that the

structure group must be a subgroup of USp(8), the maximal compact subgroup of E6(6).

The largest structure giving N = 2 supersymmetry is GS = USp(6). Under the breaking

USp(8) ⊃ USp(6)× SU(2)R , (4.1)

the spinorial representation of USp(8) decomposes as

8 = (6,1) ⊕ (1,2) , (4.2)

where the (1,2) is associated to the two supersymmetry parameters of the truncated theory.

Since under

E6(6) ⊃ USp(6) · SU(2)R , (4.3)

the only singlets in the 27∗ and 78 are the K and Jα of the HV structure, the theory

obtained form a GS = USp(6) only contains the gravity multiplet. To have extra vector-

or hyper-multiplets we need the structure group GS to be a subgroup of USp(6).

The algebraic problem then consists of the following steps. We first scan for all possible

inequivalent ways of breaking USp(8) to GS ⊂ USp(6) that admit only two singlets in the

fundamental representation of USp(8). Given a GS with these features, it will embed in

E6(6) as

E6(6) ⊃ GS · CE6(6)
(GS) , (4.4)

where CE6(6)
(GS) is the commutant group. We then check whether under this breaking

the 27∗ and 78 of E6(6) contain GS singlets, which will determine the vector and hyper-

multiplets of the truncated theory. In each case the singlets will transform under CE6(6)
(GS)

which also determines the form of the scalar manifold M of the truncated theory

M =
CE6(6)

(GS)

CUSp(8)/Z2
(GS)

. (4.5)
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We stress again that by construction the scalar manifolds are always necessarily symmetric

spaces and furthermore are always a productM =MVT ×MH of vector-tensor multiplet

and hypermultiplet scalar manifolds as in (3.28).

We have performed a complete scan for all Lie subgroups15 GS ⊂ USp(6). We find

that there are only a small number of inequivalent GS structures with the properties above.

We list them here according to the type of breaking of USp(6) that they correspond to.

All other cases either give rise to extra singlets in the 6 of USp(6) or can be obtained as

subgroups of the GS-structures listed below without giving rise to any new fields in the

consistent truncation.

Br.1 GS = SU(2)× Spin(p), 2 ≤ p ≤ 5.

These are obtained from the embedding

USp(6) ⊃ USp(4)× SU(2) ≃ Spin(5)× SU(2) , (4.6)

which gives

6 = (4,1) ⊕ (1,2) , (4.7)

and by further breaking the USp(4) factor

USp(4) ⊃ SU(2) × SU(2) ≃ Spin(4) ,

USp(4) ⊃ SU(2) × SU(2) ⊃ SU(2)D ≃ Spin(3) ,

USp(4) ⊂ SU(2) × SU(2) ⊃ SU(2)D ⊂ U(1)D ≃ Spin(2) .

(4.8)

The corresponding branching of the 6 of USp(6) are

6 = (2,1,1) ⊕ (1,2,1) ⊕ (1,1,2) ,

6 = 2 · (2,1) ⊕ (1,2) ,

6 = 2 · 11 ⊕ 2 · 1−1 ⊕ 20 ,

(4.9)

for the breaking to Spin(4)×SU(2), Spin(3)×SU(2) and Spin(2)×SU(2), respectively.

Br.2 GS = SO(3) and GS = SU(2).

The relevant breaking is

USp(6) ⊃ SO(3)× SU(2) , (4.10)

with the 6 of USp(6) branching as

6 = (3,2) . (4.11)

Taking GS = SO(3) or GS = SU(2) leads to two different consistent truncations.

15In the following section we will also discuss a few examples of GS = Z2 structures that are easily

identified, but we do not provide an exhaustive analysis of discrete subgroups of USp(6).
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Br.3 GS = SU(3).

This comes from the breaking

USp(6) ⊃ SU(3)×U(1) (4.12)

which gives

6 = 31 ⊕ 3−1 . (4.13)

Br.4 GS = SU(2)×U(1)

This truncation is obtained by further breaking the SU(3) group of the previous case.

Under SU(3) ⊃ SU(2)×U(1), we get

6 = 21,1 ⊕ 1−2,1 ⊕ 2−1,−1 ⊕ 12,−1 . (4.14)

Br.5 GS = U(1).

This comes from the same breaking SU(3) ⊃ SU(2) × U(1) as Br.4 but taking only

the U(1) factor as the structure group.

Br.6 GS = U(1).

This comes from the same breaking as Br.3 and taking the U(1) factor as structure

group.

Once the possible GS structure have been identified, we need to study their singlet

intrinsic torsion as this determines the embedding tensor and thus the gaugings of the

truncated theory. The details of this calculation for GS = SU(2) × Spin(p) are discussed

in Appendix B. The condition of having only components of the intrinsic torsion that are

singlets of GS imposes differential constraints on the compactification manifold that can be

complicated to solve in general. In our analysis, we assume that these differential conditions

are satisfied and instead solely study the intrinsic torsion’s algebraic properties. We will

see that this is still enough to significantly restrict the possible gaugings obtainable by a

consistent truncation.

We will first decompose the singlet intrinsic torsion into representations of the global

isometry group Giso. This will allow us to identify the various components of the embedding

tensor of the truncated theory. We then impose the Leibniz condition on these singlets16.

The resulting embedding tensor components determine the Leibniz algebra a and hence the

extended Lie algebra gext. As discussed in Section 3, the matter in the theory is charged

under the gauge algebra ggauge that is generically a quotient of gext by a central subalgebra.

The embedding tensor then also describes the embedding of ggauge into the Lie algebra giso

16If the differential conditions on the intrinsic torsion are satisfied, the Leibniz condition is also auto-

matically satisfied as discussed in Section 3.1.3. However, since here we are not analysing whether the

differential conditions can be solved, we must impose the Leibniz condition as a restriction. Put differ-

ently, only for those singlet components of the intrinsic torsion which obey the Leibniz condition, can the

differential conditions on the compactification manifold be satisfied.
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of the isometry group. In the following we will refer to a group as “gauged” if it is part of

the corresponding group Ggauge.

In general, solving the Leibniz conditions for all singlets of GS can be very cumbersome.

It is hence sometimes useful to streamline the search for possible gauge groups Gext as

follows. First, consider the decomposition of V under a putative gauge group Ggauge ⊂
GVT ⊂ Giso. We must impose that there is a subset of the nVT vectors transforming in the

adjoint of Ggauge. Once this condition is satisfied, we keep only those components of the

intrinsic torsion that are Ggauge-singlets. Finally, we impose the Leibniz condition (2.11) on

the singlet intrinsic torsion. From the resulting Leibniz bracket, we can read off the gauge

groups and tensor multiplets. In particular, if nVT > dimGgauge and the nVT− dimGgauge

extra vectors are uncharged under Gext, then they are central elements filling out the

full gauge algebra gext, while if they are charged they either enlarge the ggauge algebra

or correspond to charged tensor multiplets. The two charged cases are distinguished by

whether or not the extra vectors are in the image of the symmetrised Leibniz bracket, as

discussed in (2.13).

It is worth stressing that we do not mean to give an exhaustive list of all possible

gaugings. Where we cannot solve the Leibniz condition in general, we will instead limit

ourselves to the largest reductive groups and largest compact groups that can be gauged.

We will find that only a handful of gaugings are possible.

Finally, the computation we perform bears some resemblance to the purely five-di-

mensional analysis that would have to be performed to find possible gaugings. However,

crucially, in order to have a consistent truncation, we are analysing the intrinsic torsion

that descends from the E6(6) generalised Lie derivative, and thus lives in the Wint ⊂ 351

of E6(6). By contrast, the five-dimensional computation would search for gaugings living

in the V∗ ⊗ giso ⊇ Wint, where V denotes the space of vector fields of the five-dimensional

supergravity. Therefore, it is not a priori clear whether all gaugings that are allowed

from a five-dimensional perspective can also arise from consistent truncations. In fact,

as we will see, some five-dimensional gaugings cannot arise from consistent truncations.

For example, in theories with scalar manifolds MVT = R+ × SO(nVT−1,1)
SO(nVT−1) and no hyper

multiplets, consistent truncations only lead to gaugings where the tensor multiplets are

charged under the graviphoton and not any of the other nVT − 1 vector fields.

In the following sections, we will derive the consistent truncations associated to the

GS structures listed here and derive their field content and invariant tensors. For sake of

exposition, we will first discuss the consistent truncations including only vector and tensor

multiplets in Section 4.1, then only hypermultiplets in Section 4.2, before giving the mixed

cases with vector/tensor and hypermultiplets in Section 4.3.

We summarise the matter content of the consistent truncations that arise from our

scan in Table 1: we list the GS structure group, the number of vector/tensor multiplets

nVT and hypermultiplets nH, and the associated scalar manifolds. We see that the possible

consistent truncations are limited. In particular,

we find the largest possible truncation consists of only 14 vector/tensor multiplets.

Let us again reiterate that the consistent truncations that can be actually realised will
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nVT

nH
0 1 2

0
GS = USp(6)

M = 1

GS = SU(3)

M = SU(2,1)
S(U(2)×U(1))

GS = SO(3)

M =
G2(2)

SO(4)

1
GS = SU(2)× Spin(5)

M = R+

GS = SU(2)×U(1)

M = R+ × SU(2,1)
S(U(2)×U(1))

-

2
GS = SU(2)× Spin(4)

M = R+ × SO(1, 1)

GS = U(1)

M = R+ × SO(1, 1) × SU(2,1)
S(U(2)×U(1))

-

3
GS = SU(2)× Spin(3)

M = R+ × SO(2,1)
SO(2)

GS = U(1)

M = R+× SO(2,1)
SO(2) ×

SU(2,1)
S(U(2)×U(1))

-

4
GS = SU(2)× Spin(2)

M = R+ × SO(3,1)
SO(3)

GS = U(1)

M = R+× SO(3,1)
SO(3) ×

SU(2,1)
S(U(2)×U(1))

-

5

GS = SU(2)

M = SL(3,R)
SO(3)

GS = SU(2)× Z2

M = R+ × SO(4,1)
SO(4)

- -

6
GS = SU(2)× Z2

M = R+ × SO(5,1)
SO(5)

- -

8
GS = U(1)

M = SL(3,C)
SU(3)

- -

14
GS = Z2

M = SU∗(6)
USp(6)

- -

Table 1. List of all possible consistent truncation with nVT vector/tensor multiplets, nH hyper-

multiplets, and the required GS ⊂ E6(6) structure group, as well as the associated scalar manifold

M.

be a subset of those presented in the group-theoretic analysis here. This is because the

requirement that a given GS structure has singlet intrinsic torsion will introduce non-trivial

differential constraints that a given manifold M must satisfy and which we do not analyse

here.

However some of the cases listed in Table 1 do have an explicit geometric realisation.

For instance the mixed cases with nH = 1 and nVT = 1, nVT = 2 and nVT = 4 correspond

to consistent truncations of eleven-dimensional supergravity that have recently obtained.

These are truncations around backgrounds with N = 2 supersymmetry describing the near-

horizon limit of M5-branes wrapping a Riemann surface: the Maldacena–Nuñez (MN)
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solution [29] and its generalisations called the BBBW solutions [30]. In particular the

truncation with nVT = 4 and nH = 1 with gauge group Ggauge = SO(3) × U(1)R × R+ is

the largest possible truncation around the MN solution , while the case with nVT = 2 and

nH = 1 and gauge group Ggauge = U(1)R × R+ gives the consistent truncation around the

BBBW solutions [27]. The subtruncation to nVT = 1 and nH = 1 was obtained in [28].

4.1 Truncations to only vector and tensor multiplets

We analyse first the possible consistent truncations that give rise to a theory with only

vector/tensor multiplets. Since a consistent truncation necessarily gives rise to a symmetric

scalar manifold (see Section 3), the vector/tensor scalar manifolds that one can obtain must

be symmetric “very special real” manifolds, as classified in [36–38].

This classification consists of a generic case, possible for arbitrary number of vec-

tor/tensor multiplets, where the tensor CĨJ̃K̃ factorises, with the only non-zero components

given by

C0ij = ηij , i, j = 1, . . . , nVT . (4.15)

Here ηij has signature (1, nVT − 1) and the scalar manifold is given by

MVT = R+ × SO(nVT − 1, 1)

SO(nVT − 1)
. (4.16)

Additionally, there are a number of “special” cases that only exist for specific values

of nVT and for which CĨ J̃K̃ does not factorise. These are given by

MVT =
SL(3,R)

SO(3)
, nVT = 5 ,

MVT =
SL(3,C)

SU(3)
, nVT = 8 ,

MVT =
SU∗(6)
USp(6)

, nVT = 14 ,

MVT =
E(6,−26)

F4
, nVT = 26 .

(4.17)

Finally, there is a second “generic case”, which exists for arbitrary nVT > 1, but where the

tensor CĨ J̃K̃ does not factorise [38]. The associated scalar manifolds are given by

MVT =
SO(nVT, 1)

SO(nVT)
. (4.18)

We want to determine which of these gauged supergravities can arise from a consistent

truncation and how can they be classified in terms of the structure groups GS listed in the

previous section.

In order to have a consistent truncation with only vector/tensor multiplets, the gen-

eralised tensors defining the GS structure must consist of the triplet of adjoint tensor Jα,

α = 1, 2, 3 corresponding to an H-structure (see Section 3.1) and of nVT + 1 generalised

vectors KĨ , Ĩ = 0, 1, . . . nVT satisfying

Jα ·KĨ = 0 ,

κ−2c(KĨ , KJ̃ , KK̃) = CĨ J̃K̃ ,
(4.19)
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with constant CĨ J̃K̃ .

Since the Jα are stabilised by SU∗(6) ⊂ E6(6), the structure group must be a subgroup

of SU∗(6). Under the breaking E6(6) ⊃ SU∗(6) · SU(2)R, we have

27∗ = (15∗,1)⊕ (6,2) ,

78 = (35,1)⊕ (20,2)⊕ (1,3) ,
(4.20)

where the triplet of Jα belong to (1,3) and generate the SU(2)R symmetry. Then, the

first condition in (4.19), implies that the vectors KĨ must be invariant under SU(2)R and

therefore must lie in the real vector space

V ⊆ (15∗,1) . (4.21)

Thus, we can have at most nVT = 14 vector/tensor multiplets and we can immediately

rule out the case nVT = 26 in (4.17), as well as the case nVT > 14 in (4.16).

The family (4.18) is also ruled out, because the isometries of the corresponding scalar

manifolds are not linearly realised. As we discussed in Section 3, the isometry group of the

scalar manifold is the commutant in E6(6) of the structure group and by construction it

acts linearly on the set of singlet generalised vectors. As a result, the gauged supergravities

with vector/tensor scalar manifolds (4.18) do not arise from consistent truncations.

All other cases can in principle arise in consistent truncations and in the next subsection

we will discuss from which generalised structure GS they can be obtained and then use GS

to study the intrinsic torsion and hence find the admissible gaugings.

4.1.1 Generic case

The generic case with scalar manifold (4.16) corresponds to the structure groups

GS = Spin(6− nVT)× SU(2) , (4.22)

of item (Br.1) of the list in the previous section, where for notational convenience we let

Spin(1) = Spin(0) = Z2. Note that (4.22) implies that we can have at most nVT = 6

vector/tensor multiplets in the truncation. Moreover, the case nVT = 5 and nVT = 6 have

identical structure groups. This means that any background admitting a truncation with

nVT = 5 actually admits a truncation with nVT = 6, with the former truncation being a

subtruncation of the latter.

To see how these structure groups arise, note that the structure (4.15) of the tensor

CĨ J̃K̃ implies that the vectors KĨ can be split into a vector K0 and nVT vectors Ki such

that for any i, j, k = 1, . . . , nVT,

c(K0,K0, ·) = 0 , c(Ki,Kj ,Kk) = 0 , c(K0,Ki,Kj) = ηij , (4.23)

where ηij has signature (5, 1). The vector K0 corresponds to the graviphoton of the trun-

cated theory.

By studying the form of (4.23), we can deduce the stabiliser group of the generalised

vector fields KĨ as follows. Being in the 15∗ of SU∗(6), the vectors KĨ can be seen as

six-dimensional two-forms. Then the first condition in (4.23) is equivalent to

K0 ∧K0 = 0 , (4.24)

– 27 –



with ∧ the standard wedge product of p-forms. Thus, K0 must be decomposable and we

can choose a basis of independent six-dimensional one-forms such that

K0 = e5 ∧ e6 . (4.25)

The stabiliser of K0 is SU∗(4) × SU(2), embedded in SU∗(6) as

SU∗(6) ⊃ SU∗(4)× SU(2)×U(1) ,

15∗ = (4∗,2)1 ⊕ (6,1)−2 ⊕ (1,1)4 ,
(4.26)

with K0 ∈ (1,1)4. This forces the GS structure to be a subgroup of SU∗(4) × SU(2). The

other conditions in (4.23) become

K0 ∧Ki ∧Kj = ηij , Ki ∧Kj ∧Kk = 0 , (4.27)

where the metric ηij is invariant under SU∗(4) ≃ Spin(5, 1). From (4.27) it follows that

Ki ∈ (6,1)−2 . (4.28)

Thus, there can be at most six vector multiplets of this type.

The structure group GS can now be easily determined. Since the nVT singlets Ki

satisfy the inner product (4.27) of signature (1, nVT − 1) they break SU∗(4) to

SU∗(4) ≃ Spin(5, 1) ⊃ Spin(6− nVT)× Spin(nVT − 1, 1) , (4.29)

where the factor Spin(6−nVT) is the stabiliser of the Ki while the factor Spin(nVT− 1, 1)

rotates the Ki into each other. Thus, the structure group is given by

GS = Spin(6− nVT)× SU(2) . (4.30)

Although the structure groups and the isometry groups are Spin subgroups of E6(6), the

generalised vectors Ki never appear in spinorial representations of GS and hence only see

the orthogonal groups and not their double covers. This is the reason why the case with

nVT = 5 vectors/tensors can always be enhanced to nVT = 6: on the two-forms Ki the

Z2 structure group acts trivially. Moreover, this is why the coset spaces can be reduced to

take the form (4.16):

M =MVT =
CE6(6)

(GS)

CUSp(8)/Z2
(GS)

= R+ × SO(nVT − 1, 1)

SO(nVT − 1)
. (4.31)

The corresponding isometry group is

Giso = R+ × SO(nVT − 1, 1) × SU(2)R , (4.32)

where as discussed above we take GH = SU(2)R, even though there are no hypermultiplets,

in order to include the R-symmetry. Under Giso the space of vectors transforms as

V = (1,1)2 ⊕ (1,n)−1 ∋ (v0, vi) , (4.33)
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where the first entries are the SU(2)R representations, n is the vector representation of

SO(nVT−1, 1), the subscripts are the R+ charges, and i = 1, . . . , nVT denotes SO(nVT−1, 1)

indices.

We can now determine the embedding tensor of the truncated theory and the possible

gaugings. These are encoded in the intrinsic torsion of the GS structure, which must only

contain GS singlets for the truncation to be consistent. We assume that this occurs and

decompose the intrinsic torsion in representations of the global isometry group (4.32)

Wint = (3,1)−2 ⊕ (3,n)1 ⊕ (1,n)1 ⊕ (1,ad)−2 ⊕ (1,X)1

∋ (τa
0 b, τ

a
i b, τi, τ

i
0 j, τ[ijk]) ,

(4.34)

where ad and X denote the adjoint and the rank-3 anti-symmetric17 representations of

SO(nVT − 1, 1), respectively, and a, b = 1, 2, 3 are SU(2)R indices. The case nVT = 5 is

different, but can be obtained as a subtruncation of the case nVT = 6. Therefore, we will

not consider nVT = 5 here.

Now we need the map (3.50), which gives the generalised geometry embedding tensor,

and which we denote by T : V → giso to distinguish it from the generic 5d embedding

tensor. Given an element v ∈ V, the intrinsic torsion defines T as having the non-zero

components

T (v)ab = v0τa
0 b + viτa

i b ∈ su(2)R ,

T (v)ij = v0τ i
0 j + vkτk

i
j ∈ so(nVT − 1, 1) ,

T (v)(0) = viτi ∈ u(1) .

(4.35)

The adjoint action on the vectors in V

(T (v) · w)0 = 2T (v)(0)w
0 ,

(T (v) · w)i = −T (v)(0)w
i + T (v)ijw

j ,
(4.36)

defines the Leibniz bracket T (v) ·w = tv(w) = Jv,wK. The Leibniz condition (2.11) gives a

set of constraints on the torsion components

τ[jk
mτl]m

i = 0 , τ0 i
kτjk

l = 0 , τi = 0 , (4.37)

so that the Leibniz bracket simplifies to

Jv,wK0 = 0 ,

Jv,wKi = −vjwkτjk
i − v0wkτ0k

i .
(4.38)

From (2.14) we see that the rank of τ0i
j determines the number of tensor multiplets, while

τij
k form the structure constants of the gauge algebra. Finally, τa

0b and τa
ib determine how

the SU(2)R is gauged. Moreover, the gauging of the SU(2)R R-symmetry must form a

representation of gext as in (3.53). Explicitly, this implies

(T (v) · T (w)− T (w) · T (v))a
b = − (T (Jv,wK))a

b , (4.39)

17In some cases the representation X might be reducible.
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which for (4.35) imposes

τa
i cτ

c
0 b − τa

0 cτ
c
i b = 0 , τ0k

iτa
i b = 0 , τa

i cτ
c
j b − τa

j cτ
c
i b = τij

kτa
k b . (4.40)

Then the first line in (4.35) gives the embedding tensor for the SU(2)R symmetry

p0a
b = τ b

0a , pia
b = τ b

ia , (4.41)

while the non-zero components of the embedding tensor on the vector isometries are

t0k
i = −τ0k

i , tjk
i = −τjki . (4.42)

Since τi = 0, we note that the R+ can never be gauged. Also from (4.38), we see that

the graviphoton v0 cannot contribute to non-abelian gaugings. Moreover, from (4.34) and

(4.38), we can already see that not all gaugings of five-dimensional N = 2 supergravity

can arise from a consistent truncation. In particular, the tensor multiplets can only be

charged under the graviphoton v0 and not any of the nVT − 1 vector fields transforming

non-trivially under SO(nVT − 1, 1), as for example constructed in [32].

From (4.40) we can also determine in general how the SU(2)R global symmetry can be

gauged. Whenever an SO(3) ⊂ SO(nVT − 1, 1) is gauged, those SO(3) vectors can also be

used to gauge the SU(2)R via τa
ib. Alternatively, any combination of abelian vector fields,

including the graviphoton can gauge a U(1)R ⊂ SU(2)R subgroup.

Let us now find which gaugings of the SO(nVT− 1, 1) global symmetry group ofMVT

are possible, beginning with nVT = 1 and working up to the maximal case nVT = 6.

nVT = 1: In this case the isometry group is Giso = SU(2)R ×R+ and the structure group

is GS = Spin(5) × SU(2).

Any combination of the two vectors can gauge a U(1)R subgroup of the R-symmetry.

nVT = 2: The structure group is GS = Spin(4)× SU(2) and the isometry group is Giso =

SU(2)R×SO(1, 1)×R+. There are three singlet vectors with the following SO(1, 1)×R+ ≃
R+ × R+ charges

v = (v0, v+, v−) ∈ V = 10,2 ⊕ 12,−1 ⊕ 1−2,−1 . (4.43)

The conditions (4.37) are now trivially satisfied since τijk = 0. From the intrinsic torsion

Wint ∋ (τa
0 b , τ

a
+ b , τ

a
− b, τ

+
0 −) , (4.44)

we see that, when τ+
0 − = 0, any combination of all three vectors can gauge a U(1)R

symmetry. Alternatively, when τ+
0 − 6= 0, two vectors are dualised to tensors and the

remaining v0 can gauge the SO(1, 1) under which the two tensors are charged, as well as a

U(1)R symmetry.
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nVT = 3: The structure group is GS = Spin(3)× SU(2) and the isometry group is Giso =

SU(2)R × SO(2, 1) × R+. As there are three vector multiplets in the adjoint of SO(2, 1) it

is a priori possible to gauge it. The conditions (4.37) now imply that either τijk 6= 0 or

τ0 i
j 6= 0.

• τijk := τ̂ ǫijk 6= 0, τ0 i
j = 0.

The Leibniz algebra, given v = (v0, vi) and w = (w0, wi), takes the form

Jv,wKi = −τ̂ vjwkǫjk
i , Jv,wK0 = 0 . (4.45)

Thus the full SO(2, 1) can be gauged and we can use the singlet vector v0 to gauge

a U(1)R.

• τijk = 0. We now have a purely abelian gauge group. When τ0 i
j 6= 0 two of the

vectors are dualised to tensor multiplets. By choosing the tensors to be both spacelike

or one spacelike and one timelike under SO(2, 1) we get different charges for the tensor

multiplets under the action of v0, leading to either an SO(2) or SO(1, 1) gauging. In

addition, a linear combination of v0 and the uncharged vectors can also gauge the

U(1)R symmetry.

nVT = 4: The structure group is GS = Spin(2)× SU(2) and the isometry group is Giso =

SU(2)R × SO(3, 1) × R+.

The conditions (4.37) now imply that either τijk 6= 0 or τ0 i
j 6= 0. We thus have the

following possibilities.

• τijk 6= 0, τ0 i
j = 0. We can write τijk = ǫijklA

l. Depending on whether Ai is

spacelike, timelike or null with respect to SO(3, 1), we can have the gauge groups

SO(2, 1), SO(3) or ISO(2), respectively. In all cases, there are no tensor multiplets.

This can be seen as follows.

If A is timelike, we can always perform an SO(3, 1) rotation such that it lies along

the timelike direction and we have

ταβγ = ǫαβγ1A
1 := τ̂ ǫαβγ , (4.46)

where we split the SO(3, 1) indices as i = 1 for the timelike direction and α, β, γ =

2, 3, 4 the spacelike ones. Writing v = (v0, vα, v1) ∈ V we find the brackets

Jv,wKα = −τ̂ vβwγǫβγ
α , Jv,wK0 = Jv,wK1 = 0 , (4.47)

leading to a gauging of the compact subgroup SO(3) ⊂ SO(3, 1). In addition, either

a combination of v0 and v1 can be used to gauge a U(1)R or the vα can gauge the

full SU(2)R via τa
αb.

For a spacelike A we proceed in the same way. By an SO(3, 1) rotation we bring τijk
to the form

ταβγ = ǫαβγ4A
4 := τ̂ ǫαβγ , (4.48)
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where now α, β, γ = 1, 2, 3. The vector decompose as v = (v0, vα, v4) and we get the

algebra

Jv,wKα = −τ̂ vβwγǫβγ
α , Jv,wK0 = Jv,wK4 = 0 , (4.49)

which gauges an SO(2, 1) subgroup. As above, the v0 and v4 can be used to gauge

the U(1)R.

Finally if A is null, by an SO(3, 1) rotation we can reduce to two non-zero components

for τijk

τ234 = ǫ2341A
1 , τ123 = ǫ1234A

4 , A1 = A4 := τ̂ . (4.50)

It is useful to decompose the vectors as v = (v0, v2, v3, v−, v+) where v± = v1 ± v4.

The Leibniz algebra then becomes

Jv,wK0 = 0
Jv,wK2 = τ̂(v+w3 − w+v3) ,

Jv,wK3 = −τ̂(v+w2 − w+v2) ,

Jv,wK+ = 0 ,

Jv,wK− = 2 τ̂ (v2w3 − w2v3) ,
(4.51)

This defines a Lie algebra that is the semi-direct sum of so(2) with the 3-dimensional

Heisenberg algebra. The vector v− generates the so(2), under which v2 and v3 are

charged. On the other hand, {v2, v3, v+} form a Heisenberg algebra, with v+ the

central element. Since v+ is central, the gauge group (2.25) under which matter is

charged is just ISO(2), generated by {v−, v2, v3}. Additionally, the graviphoton v0

can gauge the U(1)R.

• τijk = 0. We now have a purely abelian gauging and 0, 2 or 4 tensor multiplets,

depending on the rank of τ0 i
j . Depending on whether the tensors are timelike or

spacelike we get different charges for the tensor multiplets under the abelian group

generated by v0, as discussed for nVT = 3. As a result, we either have two tensor

multiplets charged under a SO(2) or SO(1, 1), or four tensor multiplets charged under

the SO(1, 1). In addition, v0 and, when present, any combination of the uncharged

vectors can also gauge the U(1)R.

nVT = 6: The structure group is GS = Z2 × SU(2) and the isometry group is Giso =

SU(2)R × SO(5, 1) × R+.

In this case, we will not solve the Leibniz conditions directly but instead we perform a

case by case analysis of the possible gauge groups with a given number of tensor multiplets.

Since there are 6 vectors, if there are no tensors, we can gauge at most the following semi-

simple subgroups of the global SO(5, 1) isometries: SO(4), SO(3, 1) or SO(3) × SO(2, 1).

These are only possible if the singlet vectors transform in the adjoint of one of these groups

and the torsion contains singlets of the gauge groups.

It is straightforward to see that SO(4) and SO(3, 1) cannot be gauged. Under the

breaking SO(5, 1) ⊃ SO(4)×SO(1, 1) (respectively SO(5, 1) ⊃ SO(3, 1)×SO(2)) the vector

representation 6 decomposes as

6 = 40 ⊕ 12 ⊕ 1−2 , (4.52)
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where 4 is the vector representation of SO(4) (respectively SO(3, 1)) and the subscripts

denote the SO(1, 1) (respectively SO(2)) charges. Manifestly we see that in each case the

decomposition does not include the adjoint represention.

On the other hand, we can gauge SO(3) × SO(2, 1) ⊂ SO(5, 1). In this case, the six

vectors decompose as

6 = (3,1) ⊕ (1,3) , (4.53)

containing the adjoint of SO(3)×SO(2, 1). We denote these by vα and vα̇, where α = 1, 2, 3

labels the adjoint of SO(3) and α̇ = 4, 5, 6 the adjoint of SO(2, 1). This gauging consists

of having

ταβγ = Aǫαβγ , τα̇β̇γ̇ = B ǫα̇β̇γ̇ , A,B 6= 0 . (4.54)

Note that therefore (4.37) implies that τ0 i
j = 0 so that we have no tensor multiplets. The

Leibniz bracket becomes

Jv,wKα = −vβwγτβγ
α ,

Jv,wKα̇ = −vβ̇wγ̇τβ̇γ̇
α̇ ,

(4.55)

reproducing the gauge algebra of SO(3)× SO(2, 1). The graviphoton can gauge the U(1)R
symmetry or the vectors vα can gauge the diagonal of SO(3) and SU(2)R.

Let us now study gaugings that could include tensor multiplets. These will have

τ0 i
j 6= 0. When τ0 i

j has rank 2, two vectors are dualised into tensors which are charged

under v0, and the gaugings can only be given by the other four vectors. Depending on the

signature of the SO(5, 1) metric evaluated in the directions of the tensor multiplets we can

have

SO(3) × SO(1, 1) ×U(1)R , SO(2, 1) ×U(1)×U(1)R ,

SO(3) ×U(1)×U(1)R , ISO(2) ×U(1)×U(1)R ,

SO(1, 1) × SU(2)R , U(1) × SU(2)R ,

(4.56)

where the factors SO(1, 1) or U(1) are gauged by the graviphoton and U(1)R by any

combination of v0 and the vector that does not gauge the non-abelian factor. Note that

in (4.56) we list the largest group that can be gauged. It is clearly possible to gauge only

some factors of the products above.

When τ0 i
j has rank 4 or 6, the only possible gauge group is the abelian factor gauged by

v0 and the U(1)R. Depending on whether the image of τ0 i
j includes the negative eigenvalue

of the SO(5, 1) signature, or not, we get different charges for the tensor multiplets under

the action of v0, which hence gauges either a U(1) or SO(1, 1) group. In addition, v0 and,

when present, any combination of the uncharged vectors can also gauge the U(1)R.

In Table 2 we summarise the allowed gaugings for truncations with only vectors/tensor

multiplet of generic type. Whenever we list a product group, the individual factors can

also be gauged separately even though they are not listed as such. Whenever there are

abelian factors in Ggauge, the U(1)R can also be gauged diagonally with some combination

of these factors.
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nVT Giso Ggauge nT

1 SU(2)R × R+ U(1)R –

2 SU(2)R × SO(1, 1) × R+ U(1)R –

SO(1, 1) 2

3 SU(2)R × SO(2, 1) × R+ SO(2, 1) ×U(1)R –

SO(2), SO(1, 1) 2

4 SU(2)R × SO(3, 1) × R+

SO(2, 1) ×U(1)R, SO(3)×U(1)R,
–

ISO(2)×U(1)R, SU(2)R
SO(2)×U(1)R, SO(1, 1) ×U(1)R, 2

SO(1, 1) 4

6 SU(2)R × SO(5, 1) × R+

SO(3) × SO(2, 1) ×U(1)R, SO(2, 1) × SU(2)R,
–

ISO(2) ×U(1)R

SO(2, 1) ×U(1)×U(1)R, SO(3) × SO(2)×U(1)R,

2SO(3) × SO(1, 1) ×U(1)R, ISO(2)×U(1) ×U(1)R,

SO(2)× SU(2)R, SO(1, 1) × SU(2)R

U(1)×U(1)R, SO(1, 1) ×U(1)R 4

SO(1, 1) 6

Table 2. Allowed gaugings Ggauge of the global isometry groups Giso in the generic cases with nVT

vector/tensor multiplets. The first column gives the total number of vectors and tensor multiplets,

the second the global isometry group, the third the allowed gaugings and the last one the number

of vectors that are dualised to tensors in each case.

4.1.2 Special cases

The special cases (4.17) are also associated to some of the generalised GS-structures we

listed at the beginning of this section. We now discuss case by case what the associated

structure groups are, we determine the corresponding embedding tensor and hence the

possible gaugings of the truncated theory.

Differently from the generic case it is quite cumbersome to analyse in full generality

the constraints imposed on the gaugings by the Leibniz condition (2.11) and hence the

allowed gaugings. Thus in this section we will limit ourselves to study what are the largest

reductive groups and largest compact groups that can be gauged.

nVT = 5: This truncation is associated to a GS = SU(2) generalised structure. The

structure group is taken to be the SU(2) factor in the breaking (Br.2) of USp(6) and it

embeds in SU∗(6) as SU∗(6) ⊃ SL(3,R) × SU(2). Under this embedding we have

15∗ = (6∗,1)⊕ (3,3) , (4.57)

so that V = (6∗,1) and there are six independent singlet vectors giving rise to nVT = 5

vector multiplets. It is easy to check that we also get the expected scalar manifold

M =MVT =
CE6(6)

(GS)

CUSp(8)/Z2
(GS)

=
SL(3,R)

SO(3)
, (4.58)

– 34 –



with isometry group

Giso = SU(2)R × SL(3,R) . (4.59)

We can decompose the elements of V according to Giso

V = (1,6∗) ∋ vij , i, j = 1, 2, 3 . (4.60)

The GS singlet intrinsic torsion decomposes under Giso as

Wint = (3,6) ⊕ (1,15∗)⊕ (1,3∗)

∋ {τ (ij)a
b, τ

i
(jk), τi} ,

(4.61)

where τ i
ik = 0. If v(ij) ∈ V the map T : V → giso is defined as

T (V )ab = v(ij)τ
(ij)a

b ,

T (V )ij = ǫimnv(ml)τ
l
(nj) + ǫimnv(mj)τn ,

(4.62)

and gives the bracket

Jv,wKij = T (v)k(iwj)k = t(kl)(mn)
(ij)vklwmn

= −ǫmpk[τ l
p(iδ

n
j) + τpδ

l
iδ

n
j ]vklwmn .

(4.63)

Thus the components of the embedding tensor are

t(kl)(mn)
(ij) =

1

2
ǫpm(k[τ l)

p(iδ
n

j) + τpδ
l)

(iδ
n

j)] + (m↔ n) , p(ij)a
b = τ (ij)a

b . (4.64)

We now want to determine the largest non-abelian gaugings that can arise from the

consistent truncation. The compact gaugings are quite limited. It is easy to see that it

is not possible to gauge the maximal compact subgroup SO(3) of SL(3,R). Indeed, the

6 vectors decompose as 6∗ = 5 ⊕ 1 and therefore do not contain the adjoint of SO(3).

However, the singlet in the decomposition can be used to gauge the U(1)R symmetry, as

can also be seen from the intrinsic torsion, which contains only an SO(3) singlet in τ (ij)a
b.

We see that only compact abelian gaugings are a priori possible.

Consider now the non-compact gauging SL(2,R) ≃ Spin(2, 1). This is obtained via

the embedding SL(3,R) ⊃ SL(2,R) × R+, under which the vectors decompose as 6∗ =

32 ⊕ 2−1 ⊕ 1−4. Thus we expect to be able to gauge SL(2,R), with the two vectors that

are charged under SL(2,R) dualised into tensors. To see whether this gauging is possible,

we must look at the intrinsic torsion and the bracket (4.63). The vectors decompose as

v(ij) = {v(αβ), vα, v0} , (4.65)

where α = 1, 2 are fundamental indices of SL(2,R). The intrinsic torsion contains the

SL(2,R) singlets

Wint ⊃ 1−4 ⊕ 12⊕ ∈ 1−2 ∋ (τa
0b, τ̂ = τ0

00, τ = τ0) , (4.66)
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and the brackets (4.63) reduce to

Jv,wKαβ = (τ + τ̂)ǫγδvδ(αwβ)γ ,

Jv,wKα = τǫγδ(vδαwγ + vδwαγ) + τ̂ ǫγδ(vδαwγ − 3vδwαγ) ,

Jv,wK0 = (τ − 3τ̂ )ǫγδvδwγ .

(4.67)

The Leibniz condition (2.11) now imposes that either τ = 3τ̂ or τ̂ = 0. These two cases

lead to different gaugings.

• τ = 3τ̂ . In this case, the Leibniz bracket (4.67) becomes

Jv,wKαβ = 4τ̂ ǫγδvδ(αwβ)γ ,

Jv,wKα = 4τ̂ ǫγδvδαwγ ,

Jv,wK0 = 0 .

(4.68)

We get an SL(2,R) gauging, generated by the vαβ vector fields. The vα are in the

image of the symmetric part of the Leibniz bracket and thus are dualised to tensor

fields, charged under the SL(2,R) gauge group. The graviphoton v0 can gauge U(1)R.

• τ̂ = 0. Now the Leibniz bracket immediately reduces to the Lie bracket

Jv,wKαβ = τǫγδvδ(αwβ)γ ,

Jv,wKα = τǫγδ(vδαwγ − wδαvγ) ,

Jv,wK0 = τǫγδvδwγ ,

(4.69)

and the vectors vα no longer commute with each other. Therefore, the vα’s cannot

be dualised to tensor multiplets and instead contribute to a larger non-abelian gauge

group. In particular, we find that the algebra enhances to that of SL(2,R) ⋉ Heis,

with Heis the 3-dimensional Heisenberg group. Here vαβ generate the semi-simple

SL(2,R) part, vα transform as doublets of SL(2,R) and v0 is the central element of

Heis. Therefore, {vα, v0} generate the Heis factor. However, the gauge group under

which matter is charged is SL(2,R) ⋉ R2.

We see explicitly that the consistent truncation analysis differs from the purely five-

dimensional one. In five dimensions, the embedding tensor belongs to the full bundle

V∗ ⊗ giso = (1,6)⊗ [(3,1)⊕ (1,8)] = (3,6) ⊕ (1,3∗ ⊕ 6⊕ 15∗ ⊕ 24∗) , (4.70)

where we are decomposing under SU(2)R × SL(3,R), and therefore contains more repre-

sentation than those arising in (4.61).

As a result, not all five-dimensional gaugings for nVT = 5 can arise from consistent

truncations. For example, in five dimensions, we can have an embedding tensor in 10 ⊗ 30

of SL(2,R) × R+, but coming from the (1,15∗) ⊕ (1,24∗) of SU(2)R × SL(3,R). This

embedding tensor would lead to a U(1) gauging with four tensor multiplets with charges

±2, ±4. However, this gauging cannot arise from a consistent truncation, since the intrinsic

torsion (4.61) does not contain the (1,24∗) representation.
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nVT = 8: This truncation arises for the case (Br.6) and corresponds to a GS = U(1)

structure group. Under the branching SU∗(6) ⊃ SL(3,C) × U(1) the vectors decompose

as18

15∗ = (3⊗ 3)0 ⊕ 3∗
2 ⊕ 3

∗
−2 ,

∋ (vαα̇, vα, v̄α̇) ,
(4.71)

where raised α and α̇ indices denote the fundamental representation 3 and conjugate-

fundamental representation 3 of SL(3,C) respectively. Thus for example, since 15∗ is

real, the two components vα and v̄α̇ are related by complex conjugation (vα)∗ = v̄α and

(vαβ̇)∗ = vβα̇. We see that the U(1)-singlet space V = (3 ⊗ 3)0 is nine-dimensional giving

rise to nVT = 8 vector multiplets.

It is easy to check that (4.5) gives the expected scalar manifold

M =MVT =
CE6(6)

(GS)

CUSp(8)/Z2
(GS)

=
SL(3,C)

SU(3)
, (4.72)

with isometry group

G = SL(3,C)× SU(2)R . (4.73)

The singlet intrinsic torsion can be written as

Wint = (3∗ ⊗ 3
∗
,3)⊕ (3∗ ⊗ 3

∗
,1)⊕ (3∗ ⊗ 6,1)⊕ (6⊗ 3

∗
,1)

∋ {ταα̇
a
b, ταα̇, τα

β̇γ̇ , τ̄αβ
γ̇} ,

(4.74)

where a, b = 1, 2, 3 are SU(2)R indices. Given vαα̇ ∈ V the non-zero components of the

map T are

T (v)ab = vαα̇ταα̇
a
b ,

T (v)αβ = vαβ̇τββ̇ − 1
3δ

α
βv

δδ̇τδδ̇ + ǫβγρv
γδ̇τρα

δ̇ ,

T (v)α̇β̇ = −vβα̇τββ̇ + 1
3δ

α̇
β̇v

δδ̇τδδ̇ − ǫβ̇γ̇ρ̇v
δγ̇ τ̄δ

ρ̇α̇ .

(4.75)

Let us now consider the possible gaugings. If we focus on maximal simple subgroups

of SL(3,C), there are three possibilities: SU(3), SU(2, 1) and SL(3,R). It is easy to show

that the real form SL(3,R) cannot be gauged. For the subgroup SL(3,R) ⊂ SL(3,C) the

real and conjugate representations are isomorphic, and we can write

v̄α̇ = δα̇
α v

α . (4.76)

The nine real vectors in 3⊗ 3 of SL(3,C) then decompose as

3⊗ 3 ≃ 3⊗ 3 = 6⊕ 3∗ . (4.77)

We see explicitly that this does not include the adjoint and hence SL(3,R) cannot be

gauged.

18Recall that for SL(3, C) the dual and conjugate representations are not equivalent. Here we denote

them by n∗ and n, respectively.
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Consider now SU(3) and SU(2, 1). In these two cases the conjugate and dual repre-

sentations are isomorphic since we can write

v∗
α = ηαα̇v̄

α̇ , (4.78)

where ηαα̇ is the invariant Hermitian form, with signature (3, 0) and (2, 1) for SU(3) and

SU(2, 1) respectively. The nine real vectors in 3⊗ 3 of SL(3,C) decompose as

3⊗ 3 = 8⊕ 1 ∋ (v̂α
β, v0) , (4.79)

where v̂α
α = 0 and

vαα̇ = v̂α
βη

βα̇ + 1
3η

αα̇v0 . (4.80)

The eight vectors v̂α
β form the adjoint of SU(3) or SU(2, 1). Decomposing the intrinsic

torsion (4.74) under SU(3) × SU(2)R (SU(2, 1) × SU(2)R) we get

Wint = (1,3) ⊕ (8,3) ⊕ (1,1) ⊕ 3 · (8,1) ⊕ (10,1) ⊕ (10,1) , (4.81)

where the four singlet components are

ταα̇
a
b = ηαα̇τ

a
b , ταα̇ = τ ηαα̇ . (4.82)

Given two vectors v = (v̂α
β, v0) and w = (ŵα

β, w0), the Leibniz bracket then reads

Jv,wKα
β = −τ (v̂α

γŵ
γ

β − ŵα
γ v̂

γ
β) ,

Jv,wK0 = 0 .
(4.83)

Thus, we see that we can gauge either SU(3) or SU(1, 2). The extra vector singlet v0 can

gauge the U(1)R.

nVT = 14: This is the maximal case, where the invariant vectors span the whole V = 15∗

of SU∗(6). It does not correspond to any of the generalised structures listed at the beginning

of this section and therefore must correspond to a discrete structure group. Indeed, since

all the KĨ are stabilised and from (4.5) we have

M =
CE6(6)

(GS)

CUSp(6)(GS)
=

SU∗(6)
USp(6)

, (4.84)

it is easy to identify the generalised structure as

GS = Z2 ⊂ E6(6) . (4.85)

The Z2 acts diagonally as −1 in USp(6), leading to the global isometry group

Giso = CE6(6)
(Z2) = SU(2)R · SU∗(6) . (4.86)

Decomposing under Giso we can hence write vectors in V as

V = (1,15∗) ∋ vij , (4.87)
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where vij = v[ij] and i, j = 1, . . . , 6.

The singlet intrinsic torsion arranges into representations of Giso as

Wint = (3,15)⊕ (1,21)⊕ (1,105)

∋ (τ ija
b, τ

ij , τ ijk
l) .

(4.88)

where τ ija
b = τ [ij]a

b, τ
ij = τ (ij) and τ ijk

l = τ [ijk]
l with τ ijl

l = 0. The map T : V → giso is

T (v)ab = 1
2vijτ

ija
b , T (v)ij = vklτ

ikl
j + vikτ

kj , (4.89)

with bracket
Jv,wK[ij] = −T (v)k [iwj]k = t[kl][mn]

[ij]v[kl]w[mn]

= −τklm
[iwj]mvkl + τ (kl)vk[iwj]l .

(4.90)

As there are 15 vectors, the largest semi-simple groups we can gauge are different

real forms of SU(4) ≃ Spin(6). However SU(4) and SU(2, 2) ≃ Spin(4, 2) do not embed

in SU∗(6), and we are left with SU∗(4) ≃ Spin(5, 1) and SU(3, 1) ≃ Spin∗(6). These are

embedded as

SU∗(6) ⊃ SU∗(4)× SU(2)× R+ , and SU∗(6) ⊃ SU(3, 1)/Z2 ≃ SO∗(6) . (4.91)

From the decomposition of the vectors

15∗ = (6,1)−2 ⊕ (4∗,2)1 ⊕ (1,1)4 ,

15∗ = 15 ,
(4.92)

under SU∗(4) × SU(2) × R+ and SO∗(6) we see that only SO∗(6) can be gauged.

The intrinsic torsion contains an SO∗(6) singlet from the decomposition of the 21 of

SU∗(6)
Wint ∋ (0, τ δij , 0) , (4.93)

where δij is the invariant metric of SO∗(6). Then the bracket (4.90) becomes

Jv,wKi
j = 1

2τ
(
vi

kw
kj − vi

kw
kj
)
, (4.94)

where we have raised indices using the SO∗(6) metric. We easily recognise the SO∗(6) Lie

algebra. Note that the vectors vij satisfy a reality condition of the form

(v∗)̄ij̄ = Jk
ī J

l
j̄ vkl , (4.95)

where J i
j̄ is the complex structure of SU∗(6). If we take δij to have the standard form, the

individual components of vij are not real. This is why the gauging is SO∗(6) not SO(6).

For compact gaugings, the largest possible subgroups of SU∗(6) are USp(4) × SU(2)

and USp(4). However their adjoints are not contained in the 15 representation. The next

largest possible gauge group is SU(3)×U(1), which we will now investigate.

To study the SU(3) × U(1) gauge group, it is useful to consider it as a subgroup of

SO∗(6) which preserves the U(3) Hermitian form. This way, we can also consider the gauge
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group SU(2, 1) × U(1) ⊂ SO∗(6) ⊂ SU∗(6) by instead choosing a split-signature Hermitian

form.

Thus, both SU(3)×U(1) and SU(2, 1) ×U(1) are embedded in SO∗(6) via

15∗ = 80 ⊕ 31 ⊕ 3−1 ⊕ 10 ,

vij = (vα
β , vαβ = ǫαβγv

γ , v̄αβ = ǫαβγ v̄γ , v
0) .

(4.96)

Here α = 1, 2, 3 denotes the fundamental representation of SU(3) or SU(2, 1), respectively,

and the vectors satisfy vα
α = 0 as well as the reality conditions

(vα
β)∗ = vβ

α , (v̄α)∗ = vα , (v0)∗ = v0 . (4.97)

Thus, we can expect that the vectors (vα
β, v

0) ∈ 8⊕1 gauge SU(3)×U(1) or SU(2, 1)×U(1),

respectively, and the other six are dualised into tensors.

To see whether this can arise, we investigate the intrinsic torsion (4.88). We find that

the intrinsic torsion contains singlets under SU(3) × U(1), SU(2, 1) × U(1), respectively,

given by

ταβ
γ,ρ = τγρ

α,β = τ̃1δ
αβ
γρ , τα

β = τ̃2δ
α
β , and τα

β
a
b = δα

β τ̃
0a

b. (4.98)

Thus, the map T becomes

T (v)αβ = (τ̃2 − τ̃1)vα
β + 1

3 (τ̃2 + 2τ̃1)δ
α

βv
0 ,

T (v)αβ = (τ̃1 + τ̃2)ǫ
αβγ v̄γ ,

T (v)ab = v0τ̃0a
b ,

(4.99)

with the others following from the above by complex conjugation. This leads to the Leibniz

bracket

Jv,wKα
β = 1

2(τ̃2 − τ̃1)(vγ
βw

α
γ − wγ

βv
α

γ) + 1
2(τ̃1 + τ̃2)(v

αw̄β − wαv̄β)

− 1
6δ

α
β(τ̃1 + τ̃2)(v

γw̄γ − wγ v̄γ) ,

Jv,wKα = 1
2 τ̃1(v

α
βw

β + wα
βv

β)− 1
2 τ̃2(v

α
βw

β − wα
βv

β)

+ 1
3 τ̃2(v0w

α − w0v
α) + 1

3 τ̃1(2v0w
α − w0v

α) ,

Jv,wK0 = (τ̃1 + τ̃2)(v
αw̄α − wαv̄α) ,

(4.100)

with Jv,wKα = (Jv,wKα)∗.
The Leibniz condition now reduces to

τ̃1(τ̃1 + τ̃2) = 0 . (4.101)

The two solutions τ̃1 = 0 and τ̃1 = −τ̃2 lead to two different gaugings. When τ̃1 = 0

we recover the previous case where SU(3, 1) is gauged. For τ̃1 = −τ̃2 the Leibniz bracket

becomes

Jv,wKα
β = τ̃2(v

γ
βw

α
γ −wγ

βv
α

γ) ,

Jv,wKα = −τ̃2vα
βw

β − 1
3 τ̃2v0w

α ,

Jv,wK0 = 0 .

(4.102)
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We recognise the Lie algebra of SU(3)×U(1) and SU(2, 1)×U(1), respectively, generated

by the vα
β and v0. The vα and v̄α are in the image of the symmetrised Leibniz bracket and

therefore correspond to tensor multiplets which transform in the 31⊕ 3̄−1 of SU(3)×U(1)

or SU(2, 1) ×U(1). The U(1) generator v0 can also gauge the U(1)R via τ0a
b.

In Table 3 we summarise the maximal reductive and compact gauge groups for the

special cases of purely vector/tensor multiplet truncations of this section. As in the previous

table, whenever we list a product of groups, the individual factors can also be gauged

separately even though they are not listed as such. Whenever there are abelian factors in

Ggauge, the U(1)R can also be gauged diagonally with some combination of these factors.

nVT Giso Ggauge nT

5 SU(2)R × SL(3,R)
SL(2,R) ⋉ R2 –

SL(2,R) ×U(1)R 2

8 SU(2)R × SL(3,C) SU(3)×U(1)R, SU(2, 1) ×U(1)R –

14 SU(2)R × SU∗(6)
SU(3, 1) –

SU(3)×U(1)R, SU(3) ×U(1) 6

Table 3. Maximal reductive and compact gauge groups in the special cases of purely vector/tensor

multiplet truncations. The first column gives the total number of vectors and tensor multiplets,

the second the global isometry group, the third the allowed gaugings and the last one the number

of vectors that are dualised to tensors in each case.

4.2 Truncations with only hypermultiplets

Let us now analyse which consistent truncations are possible with only hypermultiplets

and no vector multiplets.

Truncations of this kind are associated to a generalised structures GS that is defined

by a single generalised vector K in the 27∗ of E6(6), defining a V-structure, and a set of

adjoint tensors JA, A = 1, . . . ,dim(GH), satisfying

JA ·K = 0 . (4.103)

Since the stabiliser of the V-structure is F4(4) ⊂ E6(6),

we must have GS ⊂ F4(4). Finally, by construction, the scalar manifold must be

symmetric (see Section 3)

MH =
GH

SU(2)R · CUSp(6)(GS)
, (4.104)

where GH = CE6(6)
(GS) is the group generated by the singlets JA.

The above considerations already restrict the possible scalar manifolds for the hyper-
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multiplets to the following list [40, 41]

MH =
F4(4)

SU(2) ·USp(6)
, nH = 7 ,

MH =
SO0(4, p)

SO(4) × SO(p)
, nH = p , p ≤ 5 ,

MH =
G2(2)

SO(4)
, nH = 2 ,

MH =
SU(2, 1)

S(U(2)×U(1))
, nH = 1 ,

(4.105)

where SO0(4, p) denotes the connected component of the SO(4, p).

However the first two manifolds do not arise from truly N = 2 truncations. This is

because they correspond to generalised structure groups that lead to extra singlets in the

decomposition of the 6 of USp(6). For MH =
F4(4)

SU(2)·USp(6) , the structure group is trivial,

GS = 1, since it is given by the commutant in F4(4) of the isometry group. Thus this

truncation always comes from a sub-truncation of five-dimensional maximal supergravity.

Similarly, for theMH = SO0(4,p)
SO(4)×SO(p) , with p ≤ 5, the structure group has to be

GS = Spin(5− p) , (4.106)

with Spin(0) = Spin(1) = Z2. The decomposition of the 6 of USp(6) under GS always

contains two extra singlets, so that these cases are sub-truncations of half-maximal gauged

supergravity. Indeed, from the commutant of GS in the full E6(6) and USp(8) groups,

CE6(6)
(Spin(5− p)) = Spin(5, p) × R+ , CUSp(8)(Spin(5− p)) = USp(4)× Spin(p) ,

(4.107)

one can easily check that GS = Spin(5 − p) actually allows for a half-maximal truncation

with p vector multiplets and scalar manifold

M =
Spin(5, p)

USp(4)× Spin(p)
× R+ . (4.108)

This leaves only the two last manifolds in (4.105) as truly N = 2 truncations.

• The case with nH = 2 hypermultiplets corresponds to a GS = SO(3) that is obtained

from (Br.2). The structure group embeds as

F4(4) ⊃ SU(2) ×G2(2) ,

USp(6) ⊃ SU(2) × SU(2) .
(4.109)

Decomposing the 78 of E6(6) in representations of GS = SU(2) gives 6 compact and

8 non-compact singlets. Altogether they correspond to the generators of G2(2), while

the compact ones give its SO(4) maximal compact subgroup. Then (4.104) gives the

expected scalar manifold

M =MH =
G2(2)

SO(4)
. (4.110)

It is also easy to check that there are no vector/tensor multiplets in the truncation,

since there are no singlets in the 26 of F4(4) under the branching (4.109).
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• The case with nH = 1 tensor multiplet corresponds to the generalised structure GS =

SU(3) (Br.3). This is embedded as

F4(4) ⊃ SU(3) × SU(2, 1) ,

USp(6) ⊃ SU(3) ×U(1) .
(4.111)

In the decomposition of the 78 of SU(3) one finds 4 compact and 4 non-compact

singlets, which generate SU(2, 1). The compact ones give the compact subgroup

SU(2) ×U(1) so that we recover the hyperscalar manifold

M =MH =
SU(2, 1)

S(U(2) ×U(1))
. (4.112)

As, again, there are no singlets in the 26 of F4(4) under the branching to GS = SU(3),

there are no vector multiplets.

The study of the intrinsic torsions and the gauging for the truncations with only

hypermultiplets is very simple. As the only vector in the theory is the graviphoton in the

universal multiplet, only abelian gaugings are possible. Moreover, in all cases, the intrinsic

torsion only contains the adjoint representation of the isometry group

Wint = adGH ∋ τA
0 B , (4.113)

with A,B = 1, . . . dimGH so that the map T : V → giso is

T (v0) = v0τA
0 B , A = 1, . . . ,dimGH . (4.114)

The generalised Lie derivative on the adjoint singlets is

LK0JA = [JK0 , JA] = −T (K0) · JA = p0A
BJB , (4.115)

with the component of the embedding tensor

p0A
B = τA

0 B , (4.116)

and the graviphoton can gauge any one-dimensional subgroup of GH.

4.3 Truncations with vector/tensor and hypermultiplets

The last class of truncations that can arise consists of truncations with both vector/tensor

and hypermultiplets. One way to study this class is to start from the truncations with only

hypermultiplets discussed in the previous section and look for a subgroup of the structure

group GS that allows for extra singlet vectors but no extra singlets in the branching of the 6

under USp(6) ⊃ GS . This last condition is necessary to have a truly N = 2 truncation and

leaves only two possible cases: nH = 2 with GS = SU(2) (Br.2) or nH = 1 and GS = SU(3)

(Br.3).

The case with nH = 2 hypermultiplets and hyperscalar manifold

MH =
G2(2)

SO(4)
, (4.117)
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is immediately ruled out since any further reduction of the GS = SU(2) structure group

necessarily gives rise to a singlet in the 6 of USp(6). This can be easily see from (4.11) by

breaking the second SU(2) factor. Therefore consistent truncations with hypermultiplets

forming the scalar manifold (4.117) and vector/tensor multiplets necessarily arise from

subtruncations of N > 2 gauged supergravity.

We are left with the case with nH = 1 hypermultiplet and hyperscalar manifold

MH =
SU(2, 1)

S(U(2) ×U(1))
. (4.118)

The structure group is SU(3) and we can consider two non-trivial subgroups GS = SU(2)×
U(1) (Br.4) and GS = U(1) (Br.5). As we will discuss below, they allow for nVT = 1 and

nVT = 4 vector multiplets, respectively. Cases with nVT = 2, 3 can only be obtained as

sub-truncations of the nVT = 4 case and therefore we will not discuss them here.

Recall that the scalar manifold of the vector/tensor multiplets in the truncation can

now be computed from the commutant of GS within the stabiliser groups GU and HU ,

in E6(6) and USp(8)/Z2 respectively, of the space U of JA that define the hypermultiplet

moduli. One finds

GU = SL(3,C) ⊂ E6(6) , (4.119)

with compact subgroup

HU = SU(3) ⊂ USp(8)/Z2 . (4.120)

The scalar manifold of the vector/tensor multiplets is then

MVT =
CGU (GS)

CHU (GS)
=

CSL(3,C)(GS)

CSU(3)(GS)
. (4.121)

We thus find the two following possible truncations.

nVT = 1,nH = 1: Consider first the structure group GS = SU(2)×U(1).

The 27∗ of E6(6) contains two GS singlets so that V is two-dimensional and nVT = 1.

Thus, the scalar manifold is

MVT = R+ , MH =
SU(2, 1)

S(U(2)×U(1))
. (4.122)

The decomposition of the adjoint of E6(6) gives four compact and five non-compact GS

singlets that are the generators of the isometry group

Giso = R+ × SU(2, 1) . (4.123)

Under this group the vectors decompose as

V = 12 ⊕ 1−1 ∋ (v0, v1) . (4.124)

where the subscripts denote the R+ charges.

To determine the possible gaugings we find that the intrinsic torsion has components

Wint = 8−2 ⊕ 81 ⊕ 11 ∋ (τA
0 B , τ

A
1 B , τ1) , (4.125)
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which give the adjoint action

T (v)AB = v0τA
0 B + v1τA

1 B , (4.126)

and T (v)(0) = v1τ1 = 0 by the Leibniz condition. Furthermore (3.53) implies τA
0 B and τA

1B

commute. Thus, the two vectors can gauge a one- or two-dimensional abelian subgroup of

SU(2, 1), while the R+ symmetry cannot be gauged.

nVT = 4,nH = 1: Keeping only GS = U(1) ⊂ SU(2) × U(1) as structure group the 27∗

contains five GS singlets so that V is five-dimensional and nVT = 4. The commutators of

GS = U(1) in SL(3,C) and SU(3)

CSL(3,C)(U(1)) = SL(2,C) ×U(1)× R+ ,

CSU(3)(U(1)) = SU(2)×U(1) .
(4.127)

and hence, from (4.121), the scalar manifold is

MVT =
SO(3, 1)

SO(3)
× R+ , MH =

SU(2, 1)

S(U(2)×U(1))
. (4.128)

The adjoint of E6(6) contains seven compact and seven non-compact GS singlet elements

corresponding to the isometry group

Giso = SO(3, 1) × R+ × SU(2, 1) . (4.129)

The intrinsic torsion components arrange themselves in representations of the isometry

group Giso

Wint = (4,8)−1 ⊕ (1,8)2 ⊕ (6,1)−2 ⊕ 2 · (4,1)1 ∋ (τA
i B , τ

A
0 B, τ

i
0 j, τi, τ

[ijk]) , (4.130)

where A,B = 1, 2, 3 and i = 1, . . . , 4 are SU(2, 1) and SO(3, 1) indices and the subscript

denotes the R+ charges. The T map is defined as:

T (v)AB = v0τA
0 B + viτA

i B ,

T (v)ij = v0τ i
0 j + vkτk

i
j ,

(4.131)

where again τi = 0 because of the Leibniz condition (4.37).

The analysis of the gauging of the vector/tensor multiplet isometries is the same as for

the nVT = 4 generic case without hypermultiplets, so that the possible gauge groups are

SO(2, 1), SO(3), ISO(2), when there are no tensor multiplets, and SO(2) or SO(1, 1) with

tensor multiplets.

The gauging of SU(2)R or U(1)R subgroups of SU(2, 1) global symmetry group ofMH

are also given by the analysis of the case with only nVT = 4 vector multiplets.

To see whether other subgroups of the SU(2, 1) are possible one has to analyse condition

(3.53), which now implies

τ0 i
jτA

j B = 0 , τA
0 Bτ

B
i C − τA

i Bτ
B
0 C = 0 , τA

i Cτ
C
j B − τA

j Cτ
C
i B = τij

kτA
k B . (4.132)

We again consider two cases, to solve the constraints (4.37):
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• τijk = 0 and τ0 i
j 6= 0. In this case we only have abelian gaugings and the rank of

τ0 i
j determines the number of tensor multiplets. If it has rank 4, then τi

A
B = 0

and the only possibility is that v0 gauges a one-dimensional subgroup of SU(2, 1) via

τA
0 B. If τ0 i

j has rank 0 or 2, any two linearly independent combinations of v0 and

vi can gauge a 1- or 2-dimensional abelian subgroup of SU(2, 1), with the embedding

determined by τA
0 B and τA

i B.

• τijk 6= 0, τ0 i
j = 0. In this case the first equation of (4.132) is trivially verified. The

gauge groups are the same as for the generic case. Indeed in the generic case the

gauge groups are given by how the tensor τijk decomposes. Here this tensor gives

in the third equation of (4.132) directly the structure constant of the gauging inside

SU(2, 1). So we obtain the same possible gaugings as for the generic case but with

two different embedding. We could either gauge a subgroup of SO(3, 1) or a diagonal

subgroup of SO(3, 1) subgroup and SU(2, 1) subgroup.

In Table 4 we give the list of possible gauging for truncations with vector/tensor and

hypermultiplets. For simplicity we give a list of product groups, but the individual factors

can also be gauged separately. Gext, the U(1)R can also be gauged diagonally with some

combination of these factors.

nVT nH Giso Ggauge nT

1 1 SU(2, 1) × SO(1, 1) × R+ U(1)R × R+ –

4 1 SU(2, 1) × SO(3, 1) × R+

SO(2, 1) × R+ ×U(1)R, SO(3) × R+ ×U(1)R,
–

ISO(2)× R+ ×U(1)R, SU(2)R × R+

SO(2) ×U(1)R × R+, SO(1, 1) ×U(1)R × R+ 2

SO(1, 1) 4

Table 4. Summary of the gauge groups in the mixed cases. The first column gives the total number

of vectors and tensor multiplets, the second the global isometry group, the third the allowed gaugings

and the last one the number of vectors that are dualised to tensors in each case.

5 Conclusions

In this paper, we used exceptional generalised geometry to classify which five-dimensional

N = 2 gauged supergravities can arise as consistent truncations of 10-/11-dimensional

supergravity. From the higher-dimensional point of view any truncation is associated to

a generalised GS ⊂ E6(6) structure on the compactification manifold M , with constant

intrinsic torsion. The field content of the truncated theory is determined by the nowhere

vanishing generalised tensors on M that define the GS structure, while the embedding

tensor is given by the constant singlet intrinsic torsion.

Requiring that the GS structure has constant, singlet intrinsic torsion imposes differ-

ential conditions on the structure on M that we do not analyse in this paper. Instead we

assume that such conditions are satisfied, and we show that already the algebraic analysis
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of the allowed GS structures and possible singlet intrinsic torsion severely restricts which

five-dimensional N = 2 gauged supergravities can be obtained by a consistent truncation.

In particular, we find that the scalar manifolds must necessarily be symmetric spaces

and that there is a very limited number of possible truncations. If there are just vec-

tor/tensor multiplets, we can only have

MVT = R+ × SO(nVT − 1, 1)

SO(nVT − 1)
, nVT ≤ 6 ,

MVT =
SL(3,R)

SO(3)
, nVT = 5 ,

MVT =
SL(3,C)

SU(3)
, nVT = 8 ,

MVT =
SU∗(6)
USp(6)

, nVT = 14 ,

(5.1)

while if there are just hypermultiplets, the only possibilities are

MH =
G2(2)

SO(4)
, nH = 2 ,

MH =
SU(2, 1)

S(U(2)×U(1))
, nH = 1 .

(5.2)

Finally, for vector/tensor and hypermultiplets, the only theories with higher-dimensional

origin are of the form

MH =
SU(2, 1)

S(U(2) ×U(1))
, nH = 1 ,

MVT = R+ × SO(nVT − 1, 1)

SO(nVT − 1)
, nVT ≤ 4 ,

(5.3)

Any other five-dimensional N = 2 gauged supergravity cannot be uplifted via a consistent

truncation to 10-/11-dimensional supergravity19.

For each of the above cases, we give the corresponding GS structure and study what

gaugings can arise. Algebraically, these are encoded in the singlets of the intrinsic torsion

subject to the Leibniz condition. The results are summarised in Tables 2, 3 and 4. For

gauged supergravities with only vector/tensor multiplets, we recover many of the results of

[32], where the allowed gaugings are discussed from a purely five-dimensional point of view.

However, we can also exclude certain of the five-dimensional gaugings that appear in [32].

For example in the case ofMVT = R+×SO(nVT−1,1)
SO(nVT−1) , we find that gaugings where the tensors

are charged under a vector transforming non-trivially under SO(nVT − 1, 1) cannot arise

from consistent truncations. For truncations with only hypermultiplets the gaugings are

trivial since they reduce to gauging the U(1)R symmetry. What is probably more surprising

is the very limited number of truncations with both vector- and hypermultiplets.

19The theories with hyperscalar manifolds MH =
F4(4)

SU(2)·USp(6)
, or MH = SO0(4,p)

SO(4)×SO(p)
, as well as with

hyperscalar manifolds MH =
G2(2)

SO(4)
and some vector multiplets are necessarily subtruncations of N > 2

supergravities.
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Our findings are particularly important for the study of gauged supergravities con-

taining AdS vacua. Since no AdS vacuum is believed to admit scale separation [2], those

gauged supergravities that cannot be uplifted by a consistent truncation cannot have a

higher-dimensional string theory origin. Therefore, they should belong to the swampland

of lower-dimensional theories.

An important issue that we do not address here is whether we can actually solve the

differential conditions imposed by the intrinsic torsion, that are required for the consistent

truncation to exist. This would involve constructing explicit examples of background that

admit the GS structure listed in this paper and checking that the intrinsic torsion has

only singlet constant components. We leave this analysis for future work. It would also be

interesting to see whether the approach of [22–24] can be extended to non-maximally super-

symmetric truncations and to use the the five-dimensional embedding tensor to determine

what the uplifted geometry should be. In any case, we expect that imposing the differential

conditions from the intrinsic torsion will further restrict which consistent truncations exist.

It is also worth stressing that we scanned all possible generalised structures where GS

is a Lie group. It is possible that looking at discrete structure groups might increase the

number of possible truncations. We leave this as a problem for the future.

Another direction of future research is to extend our analysis to other dimensions

and amounts of supersymmetry. For example, it would be interesting to classify which

four-dimensional N = 2 gauged supergravities can be uplifted by consistent truncations

to 10-/11-dimensional supergravity. More ambitious would be to extend our method to

three dimensions, where N = 1 and N = 2 gauged supergravities admit deformations cor-

responding to real/holomorphic superpotentials that are not induced by gaugings [52]. It

would be interesting to explore which of these can arise from consistent truncations. The

appropriate framework would be E8(8) Exceptional Field Theory [53], where the generalised

Lie derivative does not close without the addition of shift symmetries, leading to technical

challenges. Similar questions can be asked in two dimensions, where subgroups of affine

global symmetry groups, such as E9(9) for maximal supersymmetry, can be gauged and

scalar and vector fields transform in infinite-dimensional representations of the affine sym-

metry. This question can in principle be addressed with E9(9) Exceptional Field Theory

[54–56], which however requires infinitely-large generalised tangent bundles.
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A E6(6) generalised geometry for M-theory

This section is a brief recall of the main features of the generalised geometry of M-theory

compactifications on a six-dimensional manifold M . For a more detailed discussion we refer

to [57] and [49, App. E].

For M-theory on a six-dimensional manifold we use E6(6) × R+ generalised geometry.

The generalised tangent bundle E and the dual bundle E∗ are

E ≃ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ,

E∗ ≃ T ∗M ⊕ Λ2TM ⊕ Λ5TM ,
(A.1)

where we decompose the various bundles in representations of GL 6, the geometric subgroup

of E6(6). The sections of E and E∗, the generalised vectors and its dual, transform in the

27∗ and the 27 of E6(6) and can be written as

V = v + ω + σ ,

Z = v̂ + ω̂ + σ̂ ,
(A.2)

where v is an ordinary vector field, ω is a two-form, σ is a five-form20, v̂ is one-form, ω̂ is

a two-vector and σ̂ is a five-vector. Generalised vectors and dual generalised vectors have

a natural pairing given by

〈
Z, V

〉
= v̂mv

m + 1
2 ω̂

mnωmn + 1
5! σ̂

mnpqrσmnpqr . (A.7)

We will also need the bundle N ≃ detT ∗M ⊗ E∗. In terms of

GL6 tensors, N decomposes as

N ≃ T ∗M ⊕ Λ4T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M) , (A.8)

20The generalised tangent bundle E has a non-trivial structure that takes into account the non-trivial

gauge potentials of M-theory. To be more precise the sections of E are defined as

V = eA+Ã · V̌ , (A.3)

where A+Ã is an element of the adjoint bundle, V̌ = v+ω+σ, with v ∈ Γ(TM) are vectors, ω ∈ Γ(Λ2T ∗M)

and σ ∈ Γ(Λ5T ∗M), and · defines the adjoint action defined in (A.22). The patching condition on the

overlaps Uα ∩ Uβ is

V(α) = edΛ(αβ)+dΛ̃(αβ) · V(β) , (A.4)

where Λ(αβ) and Λ̃(αβ) are a two- and five-form, respectively. This corresponds to the gauge-transformation

of the three- and six-form potentials in (A.3) as

A(α) = A(β) + dΛ(αβ) ,

Ã(α) = Ã(β) + dΛ̃(αβ) − 1

2
dΛ(αβ) ∧ A(β) . (A.5)

The respective gauge-invariant field-strengths reproduce the supergravity ones:

F = dA ,

F̃ = dÃ − 1

2
A ∧ F . (A.6)
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and correspondingly its sections Z♭ decompose as

Z♭ = λ+ ρ+ τ . (A.9)

The bundle N is obtained from the symmetric product of two generalised vectors via the

map ⊗N : E ⊗ E → N with

λ = v yω′ + v′ yω ,
ρ = v yσ′ + v′ yσ − ω ∧ ω′ ,

τ = jω ∧ σ′ + jω′ ∧ σ .
(A.10)

Wedges and contractions among tensors on M are defined with the following conventions:

(v ∧ u)a1...ap+p′ =
(p+ p′)!
p! p′!

v[a1...apuap+1...ap+p′ ],

(λ ∧ ρ)a1...aq+q′ =
(q + q′)!
q! q′!

λ[a1...aq
ρaq+1...aq+q′ ],

(v yλ)a1...aq−p =
1

p!
vb1...bpλb1...bpa1...aq−p , if p ≤ q,

(v yλ)a1...ap−q =
1

q!
va1...ap−qb1...bqλb1...bq , if p ≥ q,

(jv y jλ)ab =
1

(p− 1)!
vac1...cp−1λbc1...cp−1 ,

(jλ ∧ ρ)a, a1...ad
=

d!

(q − 1)!(d + 1− q)! λa[a1...aq−1
ρaq ...ad] . (A.11)

The E6(6) cubic invariant is defined on E and E∗as21

c(V, V, V ) = − 6 ιv ω ∧ σ − ω ∧ ω ∧ ω ,
c∗(Z,Z,Z) = − 6 ιv̂ ω̂ ∧ σ̂ − ω̂ ∧ ω̂ ∧ ω̂ . (A.12)

The adjoint bundle is defined as

adF ≃ R⊕ (TM ⊗ T ∗M)⊕ Λ3T ∗M ⊕ Λ6T ∗M ⊕ Λ3TM ⊕ Λ6TM , (A.13)

with sections

R = l + r + a+ ã+ α+ α̃ , (A.14)

where locally l ∈ R, r ∈ End(TM), a ∈ Λ3T ∗M , etc. In order to obtain the ed(d) sub-

algebra we need to fix the factor l in terms of the trace of r as l = 1
3trr. This choice fixes

the weight of the generalised tensors under the R+ factor. In particular it implies that a

scalar of weight k is a section of (detT ∗M)k/3: 1k ∈ Γ((detT ∗M)k/3).

It is also useful to introduce the weighted adjoint bundle

(detT ∗M)⊗ adF ⊃ R⊕ Λ3T ∗M ⊕ (TM ⊗ Λ5TM) , (A.15)

21This is 6 times the cubic invariant given in [49]. Because of this, we introduced a compensating factor

of 6 in the formulae (3.11) and (3.13).
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whose sections are locally given by the sum

R♭ = φ̃+ φ+ ψ , (A.16)

where φ̃, φ and ψ are obtained from the adjoint elements r ∈ TM ⊗ T ∗M , α ∈ Λ3TM ,

α̃ ∈ Λ3TM as

φ̃ = α̃yvol6 φ = αyvol6 ψ = r · vol6 , (A.17)

where vol6 is a reference volume form. We denote by · the gl(6) action on tensors: given

a frame {êa} for TM and a co-frame {ea} for T ∗M , a = 1, . . . , 6, the action, for instance,

on a vector and a two-form is

(r · v)a = ra
bv

b (r · ω)ab = −rc
aωcb − rc

bωac . (A.18)

The action of an adjoint element R on another adjoint element R′ is given by the

commutator, R′′ = [R,R′]. In components, R′′ reads

l′′ = 1
3(α y a′ − α′ y a) + 2

3(α̃′ y ã− α̃ y ã′) ,

r′′ = [r, r′] + jα y ja′ − jα′ y ja − 1
3(α y a′ − α′ y a) 1 ,

+ jα̃′ y jã− jα̃ y jã′ − 2
3 (α̃′ y ã− α̃ y ã′) 1 ,

a′′ = r · a′ − r′ · a+ α′ y ã− α y ã′ ,

ã′′ = r · ã′ − r′ · ã− a ∧ a′ ,

α′′ = r · α′ − r′ · α+ α̃′ y a− α̃ y a′ ,

α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ ,

(A.19)

where · denotes the gl(6) action defined in (A.18).

The e6(6) Killing form on two elements of the adjoint bundle is given by

tr(R,R′) = 1
2

(
1
3 tr(r)tr(r′) + tr(rr′) + α y a′ + α′ y a− α̃ y ã′ − α̃′ y ã

)
. (A.20)

An element R of the adjoint bundle can act on a generalised vector V ∈ Γ(E) and on

a dual generalised vector Z as

V ′ = R · V , Z ′ = R · Z , (A.21)

where the components of V ′ are

v′ = lv + r · v + α yω − α̃ yσ ,
ω′ = lω + r · ω + v y a+ α yσ ,
σ′ = lσ + r · σ + v y ã+ a ∧ ω ,

(A.22)

and those of Z ′ are
v̂′ = −lv̂ + r · v̂ − ω̂ y a+ σ̂ y ã ,
ω̂′ = −lω̂ + r · ω̂ − α y v̂ − σ̂ y a ,
σ̂′ = −lσ̂ + r · σ̂ − α̃ y v̂ − α ∧ ω̂ .

(A.23)
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In this formalism, diffeomorphisms and gauge transformations by the three-form and

six-form potentials combines to define the generalised diffeomorphisms. The action of an

infinitesimal generalised diffeomorphism is generated by the generalised Lie (or Dorfman)

derivative along a generalised vector. The generalised Lie derivative is defined in an anal-

ogous way as the Lie derivative between two ordinary vectors v and v′ on TM , written in

components as a gl(6) action

(Lvv
′)m = vn ∂nv

′ m − (∂ × v)mn v
′ n , (A.24)

the symbol × is the projection onto the adjoint bundle of the product of the fundamental

and dual representation of GL 6 . We introduce the operators ∂M = ∂m as sections of the

dual tangent bundle and we define the generalised Lie derivative as

(LV V
′)M = V N∂NV

′M − (∂ ×ad V )M NV
′N , (A.25)

where V M , M = 1, . . . , 27, are the components of V in a standard coordinate basis, and

×ad is the projection onto the adjoint bundle,

×ad : E∗ ⊗ E → adF , (A.26)

whose explicit expression can be found in [57, Eq. (C.13)]. In terms of

GL6 tensors, (A.25) becomes

LV V
′ = Lvv

′ +
(
Lvω

′ − ιv′dω
)

+
(
Lvσ

′ − ιv′dσ − ω′ ∧ dω
)
. (A.27)

The action of the generalised Lie derivative on a section of the adjoint bundle (A.14) is

LVR = (Lvr + jα y jdω − 1
3 1α ydω − jα̃ y jdσ + 2

3 1α̃ ydσ) + (Lva+ r · dω − α ydσ)

+ (Lvã+ r · dσ + dω ∧ a) + (Lvα− α̃ ydω) + Lvα̃ . (A.28)

Given a section Z♭ = λ+ ρ+ τ of N , its Lie derivative along the generalised vector V is

LV Z♭ = Lvλ+ (Lvρ− λ ∧ dω) + (Lvτ − jρ ∧ dω + jλ ∧ dσ) . (A.29)

Since Z♭ = V ′ ⊗N V ′′, this is obtained by applying the Leibniz rule for LV .

LV (Z♭) = LV V
′ ⊗N V ′′ + V ′ ⊗N LV V

′′ . (A.30)

It is also straightforward to verify that

dZ♭ = LV V
′ + LV ′V , (A.31)

for any element Z♭ = V ⊗N V ′ ∈ N .
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B Intrinsic torsion for GS = SU(2)× Spin(6− nVT) structures

The intrinsic torsion of a given GS structure plays an important role in the derivation of

the truncated theory as it determines the embedding tensors and the possible gaugings.

As discussed in Section 3.1.2, the generalised intrinsic torsion of a GS structure is given

by quotient

WGS
int = W/WGS

, (B.1)

where W is the bundle of the generalised torsion, which in our case is in the 351 of E6(6),

and WGS
is the image of the map τ : KGS

→W from the space KGS
= E∗ ⊗ adGS of GS

compatible connections to W . Moreover, since in all our cases the GS ⊂ USp(8), one can

define a generalised metric G and use the norm defined by G to decompose the bundles W

and KGS
as [15]

W = WGS
⊕Wint ,

KGS
= WGS

⊕ UGS
.

(B.2)

In this appendix we show how to compute Wint for two of the examples discussed in

Section 4.1.1. These two cases allow to illustrate all the subtleties one might encounter in

this kind of computation.

We consider first the truncation to nVT = 6 vector multiplets. The structure group is

GS = SU(2)×Z2 and the isometry group is Giso = SU(2)R × SO(5, 1)× R+. We use (B.2)

to compute the intrinsic torsion Wint of the GS structure.

We first decompose the generalised torsion under GS × Giso and keep only the GS

singlets

W |s = (3,1)−2 ⊕ (3,6)1 ⊕ (1,n)1 ⊕ (1,15)−2 ⊕ (1,10)1 ⊕ (1,10)1 , (B.3)

where the first entries are SU(2)R representations and the second ones SO(5, 1) represen-

tations and the subscripts are the R+ charges.

Then we look for the GS singlets in the space of GS connections, KGS
. The intrinsic

torsion will be given by the terms in (B.3) that are not contained in KG. Since the 27 does

not contain terms in the adjoint of GS , the product22

KGS
= [(1,1,1)−2 ⊕ (1,6,1)1 ⊕ (1,4,2)−1/2 ⊕ (2, 4̄,1)−1/2 ⊕ (2,1,2)−1/2]⊗ [(1,1,3)0]

can never contain GS singlets. This means that the intrinsic torsion of the GS structure is

entirely given by W |s
Wint = (3,1)−2 ⊕ (3,6)1 ⊕ (1,n)1 ⊕ (1,15)−2 ⊕ (1,10)1 ⊕ (1,10)1 , (B.4)

and we do not have to bother about possible kernels of the map τ : KGS
→W .

Consider now the case with nVT = 4 vector multiplets, which has structure group

GS = SU(2)×U(1) and isometry group is Giso = SU(2)R×SO(3, 1)×R+. The GS singlets

in the generalised torsion are

W |s = (3,1)−2 ⊕ (3,4)1 ⊕ 2 · (1,4)1 ⊕ (1,6)−2 ⊕ (1,4)−1 ⊕ (1,1)−2 , (B.5)

22In this expression the last entries denote the representations of the structure group.
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where again the first entries are SU(2)R representations and the second ones SO(3, 1)

representations, while the subscripts are the R+ charges. The GS singlets in the generalised

connection are

KGS
= [(1,2,2)−1/2,1 ⊕ (1, 2̄,2)−1/2,−1 ⊕ (1,4,1)1,0

⊕(1,1,1)1,2 ⊕ (1,1,1)1,−2 ⊕ (1,1,1)−2,0

⊕(2,2,1)−1/2,1 ⊕ (2, 2̄,1)−1/2,−1 ⊕ (2,1,2)1,0]⊗ [(1,1,3)0,0 ⊕ (1,1,1)0,0]

→ [(1,4,1)1,0 ⊕ (1,1,1)−2,0] . (B.6)

Again from (B.2) the intrinsic torsion is given by the elements of W |s that are not contained

in (B.6)

Wint ⊇ (3,1)−2 ⊕ (3,4)1 ⊕ (1,4)1 ⊕ (1,6)−2 ⊕ (1,4)−1 . (B.7)

In this case, one should make sure that the map τ has no kernel so that the relation above

is an equality. The explicit definition of the map τ : KG → W is via the generalised Lie

derivative. Given a GS compatible connection

D̃MW
N = ∂MW

N + ΩM
N

PW
P , (B.8)

the intrinsic torsion can be defined as

T (V )M NW
N =

(
LD̃

V W
)M −

(
LVW

)M

= V P
(
ΩP

M
N − ΩN

M
P + α cMSQcRNQ ΩS

R
P

)
WN =: V PTP

M
NW

N ,

(B.9)

where V and W are generalised vectors and, in the second line, we plugged (B.8) and we

used the explicit expression for the E6(6) adjoint action in the generalised Lie derivative

(A.25) (
LVW

)M
= V N∂NW

M −WN∂NV
M + α cMPQcRNQ∂PV

RWN . (B.10)

The second line in (B.9) defines the map τ as

τ(Ω)P
M

N = TP
M

N . (B.11)

By computing (B.11) one can check the that there is indeed no kernel, as can also be

seen in terms of representations

T (v0)ab ←→ (3,1)0 ∈ 12 ⊗ (3,1)−2 ,

T (v0)ij ←→ (1,ad)0 ∈ 12 ⊗ (3,1)1 ,

T (vi)ab ←→ (3,1)0 ∈ n−1 ⊗ (3,1)1 ,

T (vi)(0) ←→ (1,ad)0 ∈ n−1 ⊗ (1,n)1 ,

T (vi)jk ←→ (1,ad)0 ∈ n−1 ⊗ (1,X)1 .

(B.12)

We have not directly checked that there are no singlet intrinsic torsion kernels for the

other GS structures that appear in paper, although our expectation is that there are not.
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C The truncation ansatz

In this section we discuss the truncation ansatz for ruductions of eleven-dimensional su-

pergravity to five dimensions. The ansatz gives the explicit relation between the eleven-

dimensional fields and those of the reduced theory. The discussion for type IIB reduction

follows the same lines.

We consider eleven-dimensional supergravity on a background X ×M , where X is a

non-compact five-dimensional space-time and M is a six-dimensional compact space. We

focus on the bosonic sector of eleven-dimensional supergravity, which consists of the metric

ĝ, a three-form potentia Â and a six-form potential ˆ̃A. We use the conventions of [57].

The first step of the truncation consists in decomposing the eleven-dimensional fields

according to GL(6,R) × E6(6), where GL(6,R), the structure group of X, determines the

tensorial structure of the fields in the five-dimensional theory

ĝ = e2∆ gµν dxµdxν + gmnDz
mDzn ,

Â = 1
3!AmnpDz

mnp + 1
2Aµmndxµ ∧Dzmn + 1

2 Āµνmdxµν ∧Dzm + 1
3! Āµνρ dxµνρ ,

ˆ̃A = 1
6! Ãm1...m6Dz

m1...m6 + 1
5! Ãµm1...m5dx

µ∧Dzm1...m5

+ 1
2·4!

¯̃Aµνm1...m4dx
µν∧Dzm1...m4 + . . . , (C.1)

with xµ, µ = 0, . . . , 4, and ym, m = 1, . . . , 6, the coordinates on X and M , respectively, and

Dym = dym− hµ
mdxµ. All the components in (C.1) may depend both on xµ and ym, the

only exception being the external metric, which only depends on the external coordinates

only, gµν = gµν(x).

Then we arrange the fields in (C.1) according to E6(6) representations.23

The field with all components on the internal manifold M arrange into the inverse

generalised metric

GMN ←→ {∆, gmn, Amnp, Ãm1...m6} . (C.2)

The explicit embedding is given by

(G−1)mn = e2∆gmn ,

(G−1)mn1n2 = e2∆gmpApn1n2 ,

(G−1)mn1...n5 = e2∆gmp(Ap[n1n2
An3n4n5] + Ãpn1...n5) ,

(G−1)m1m2 n1n2 = e2∆(gm1m2,n1n2 + gpqApm1m2Aqn1n2]) ,

(G−1)m1m2 n1...n5 = e2∆[gm1m2,[n1n2
An3n4n5] + gpq(Apm1m2(Aq[n1n2

An3n4n5] + Ãqn1...n5)] ,

(G−1)m1...m5 n1...n5 = e2∆gpq(Ap[m1m2
Am3m4m5] + Ãpm1...m5)(Aq[n1n2

An3n4n5] + Ãqn1...n5)

+ e2∆gm1...m5, n1...n5 , (C.3)

23Note that, in order to reproduce the gauge transformation of the reduced theory, the barred components

of three- and six-form potentials must be redefined, Appendix C of [27]. The expressions for the redefined

fields, which we denote by unbarred A and Ã are not relevant for this work.
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where gm1m2, n1n2 = gm1[n1
g|m2|n2], and similarly for gm1...m5, n1...n5 .

The tensors with one external leg arrange into a generalised vector Aµ on M , with

components

Aµ
M (x, y) = {hµ

m, Aµmn, Ãµm1...m5 } ∈ Γ(T ∗M ⊗ E) , (C.4)

while those with two external anti-symmetric indices define a weighted dual vector in the

bundle N

Bµν M = {Aµνm, Ãµνm1...m4 , g̃µνm1...m6,n} ∈ Γ(Λ2T ∗M ⊗N) , (C.5)

The last term in (C.5) is related to the dual graviton and is not necessary in the truncation.

Finally, the tensors with three antisymmetrised external indices arrange into the generalised

tensor

Cµνρ
α̂ = {Aµνρ, Ãµνρm1m2m3 , g̃µνρm1...m5,n} ∈ Γ(C ′) , (C.6)

where C ′ is a sub-bundle of the weighted adjoint bundle detT ∗M⊗adF , whose components

are labeled by α̂ = 1, . . . , 78. See e.g. [58, 59] for more details on this tensor hierarchy.

The truncation ansatz for the bosonic sector of eleven-dimensional supergravity is

obtained by expanding the generalised tensors define above into singlets of theGS structure.

The scalars of the truncated theory are determined by the generalised metric. To

obtain the ansatz for the scalars one first needs to construct a family of HV structures in

terms of the GS singlets as described in Section 3.1.1

K(x, y) = hĨ(x)KĨ(y) ,

Jα(z, y) = L(x)jα(y)L(x)−1 ,
(C.7)

where L is the representative of the coset MH and h parameterise MVT. Then plugging

K and Jα in the expression (3.15) gives the generalised metric, which now depends on the

H and V structure moduli. These are identified with the hyperscalar and vector multiplet

scalar fields of the truncated theory. Comparing the generalised metric obtained this way

with its general form (C.3), we obtain the truncation ansatz for ∆, gmn, Amnp, Ãm1...m6 (if

needed).

The gauge potential of the five-dimensional theory are given by expanding the gener-

alised vector (C.4) on the GS invariant vectors KĨ

Aµ(x, y) = Aµ
Ĩ(x)KĨ(y) . (C.8)

As for the metric, identifying the components on the two sides of the equation above

gives the truncation ansatz for hm
µ , Aµmn and Ãµm1...m5 .

Similarly the two-form fields and the ansatz for the field with two antisymmetrised

external indices are obtained from

Bµν(x, y) = Bµν Ĩ(x)K
Ĩ
♭ (y) , (C.9)

where K Ĩ
♭ are the GS singlet weighted dual basis vectors, which are defined by K Ĩ

♭ (KJ̃ ) =

3κ2 δĨ
J̃ .We can also give the ansatx for the three-forms of the reduced theory

Cµνρ = Cµνρ
A(x)J ♭

A , (C.10)

where J ♭
A = κ2JA are the GS singlets in the weighted adjoint bundle.
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Grégoire Josse 7 juin 2022

Sujet : Structure de compactification de la théorie des cordes

Résumé : La cohérence interne de la théorie des cordes implique que l’espace-temps soit de onze
dimensions. Pour expliquer pourquoi nous n’observons que quatre dimensions d’espace-temps,
nous supposons que l’espace-temps est le produit de l’espace-temps que nous observons et d’un
espace interne, compact, de taille si petite qu’on ne peut l’observer. Un problème centrale de la
théorie des cordes est donc de déduire des actions effective qui reproduisent le modèle standard et
la relativité générale à partir de ces réductions dimensionnelles. Ma thèse porte sur une des méth-
odes que nous avons de construire de telles actions effectives en basses dimensions: les troncatures
cohérentes. L’idée est d’utiliser les symétrie étendues qui caractérisent la théorie des cordes pour
sélectionner, parmi le nombre infinis d’états de la théorie, un nombre fini qui contribuent à la
théorie effective. Dans ma thèse je montrerais comment le formalisme de la géométrie généralisée,
une extension de la géométrie différentielle qui permet d’unifier transformation de coordonnés
de l’espace-temps et transformations de jauge des potentiels de la théorie de cordes dans des
difféomorphismes généralisés, permet d’obtenir des troncatures cohérente de façon systématique
et ainsi d’établir une classification des théories effectives qui peuvent être obtenue en théories des
cordes. Cette méthode permet d’obtenir des théories effectives en différentes dimensions, dans
cette thèse je me concentrerais sur le cas des réductions à cinq dimensions en vue d’applications
à la dualité holographique entre théories de jauge et théorie de cordes.

Mots clés : Théorie des cordes, compactification, théorie effective, troncature cohérente

Subject : The structure of string theory compactification

Abstract: The internal consistency of string theory implies that the space time is eleven
dimensional. In order to explain why we only observe four dimensions of space time we will make
the assumption that the space time is a product of the space time that we observe with an internal
compact space that is so small that we cannot observe it. A central problem of string theory
is then to obtain effective theories that reproduce the standard model and general relativity. In
my thesis I will focus on a technique to obtain such lower dimensional effective theories namely
consistent truncations. The idea is to use the extended symmetries of string theory in order to
select a finite set of modes involved in the effective theory inside the infinte set of reduced fields.
In my thesis I will show how the formalism of generalised geometry, an extension of differential
geometry that unifies space time coordinates transformation and gauge transformation of string
theory potentials in generalised diffeomorphism, allow to obtain in a systematic way consistent
truncations and thus classify effective theories that can be obtained from string theory. This
method is general for any dimensions but in order to apply it to holographic duality between
gauge theories and sting theory I will at some point specify to five dimensions reductions.

Keywords : String theory, compactification, effective theory, consistent truncation
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