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Résumé court en francais

Notre compréhension de l'univers repose sur d’une part le modele standard pour les
interactions de la matiere a des échelles infiniment petites et la relativité général qui
nous permet de comprendre notre univers a des échelles infiniment grandes. Néanmoins,
en étudiant des objets tels que les trous noirs ou ni les effets de la gravité ni les effets
quantique ne sont négligeable nous arrivons a la conclusion que le modele standard et
la relativité général sont incompatible. Nous avons donc besoin d’une théorie qui puisse
inclure a la fois le modele standard et la relativité générale. Cette théorie est appelé
gravité quantique.

La théorie des cordes est le candidat le plus prometteur pour la gravité quantique
reproduisant dans certaines limites de basses énergies la relativité général et le modele
standard. Néanmoins la théories des cordes possedes des particularités intrigantes voir
problématiques. Une de ces particularités est que la théorie des cordes requiert des dimen-
sions d’espaces temps supplémentaires: dix dimensions d’espace temps pour les versions
supersymétrique de la théorie des cordes et onze dimensions pour la théorie M qui unifie
les cinq théories des cordes. Dans notre vie quotidienne nous n’observons que quatre
dimensions d’espace temps. Un probleme central de la théorie des cordes est donc de
comprendre ou serait cachées ces dimensions supplémentaires.

Une fagon simple de comprendre ces dimensions supplémentaire est de prendre I’exemple
d’un funambule sur une corde. Le funambule ne peut se déplacer que dans une seule di-
rection, il ne peut aller que soit en avant soit en arriere. Maintenant prenons une fourmi
se déplacant elle aussi sur la corde du funambule. La taille de la fourmi étant de 'ordre
du rayon de la corde la fourmi pourra aussi se déplacer le long de la dimension circulaire
de la corde.

Nous utiliserons un point de vue exactement analogue pour les dimensions supplémen-
taires de la théorie des cordes. Nous considérerons que ces dimensions supplémentaires
forment une variété compact que nous appellerons variété interne en opposition a la var-
iété externe sur laquelle nous vivons. Exactement comme dans I'exemple du funambule
cette variété interne est si petite que nous ne pouvons pas 1’observer.

Tant que notre but est de donner des prédictions de la théorie des cordes et de la théorie
M pour 'univers de dimension quatre que nous observons, nous pouvons nous concentrer
sur la théorie effective qui ne garde que les excitations de la théorie qui correspondent a
notre échelle d’énergie.

Tout d’abord au lieu de considérer la théorie des cordes nous nous concentrerons sur
sa limite de basse énergie, la supergravité. La théorie des cordes contient un ensemble
infini d’états dont la masse est inversement proportionnelle au carré de la longueur de la
corde, [, et un ensemble finis de mode non massif. Etant donné que [ est petit pour des

vii
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processus a notre échelle d’énergies nous pouvons négliger les modes massifs et garder
seulement les modes non massifs qui sont décris par la supergravité dix dimensionnelle
(onze dimensionnelle pour la théorie M).

Nous devons maintenant prendre en compte les effets de la compactification sur cette
supergravité. Pour étudier comment la réduction dimensionnelle fonctionne et compren-
dre idées que nous utiliserons dans le reste de la thése nous allons présenter un exemple
plus simple, la réduction de Kaluza-Klein de cinq a quatre dimensions.

Considérons la gravité d’Einstein a cinq dimensions. En plus d’un espace Minkowski
a cinq dimensions il existe d’autre solutions aux équations d’Einstein notamment une
solution correspondant & une compactification spontanée

./\/15:./\/l4><51 (1)

ou ’espace-temps est le produit d’un espace Minkowski de quatre dimensions M, avec un
espace compact trés simple, le cercle S*. On notera zM = {z#, y} les coordonnées cing
dimensionnelles, z* les coordonnées sur My et 0 < y < 27 R la coordonnée du cercle.

La théorie effective est obtenue en étudie les fluctuations autour du vide (.1). Etant
donné que la solution (.1) brise l'invariance de Poincaré a SO(3,1) x U(1), on peut
organiser les degrés de liberté en fonction de leur nombre quantique quatre dimensionnel.

GuN = (gw/ :(;b;;l“Ay _f?i“) ) (:2)

ol g, est la métrique a quatre dimensions, A, est un vecteur 4-d et ¢ est un scalaire 4-d.
Leur valeur moyenne du vide donne la métrique du vide

<gul/> = Ny » <AH> =0, <(Z5> =1.

Comme S! est compact on peut développer en série de Fourier sur S! tout les champs.
Par exemple le développement du scalaire ¢ est

O(z,y) = ——== Y dnlx
2nR neZ
ou z représente les coordonnées quatre dimensionnelles. Les coefficient dans les développe-
ment représentent les champs de quatre dimensions dont la masse est donnée par la valeur
propre du d’Alembertien de S', ces champs sont les états de Kaluza Klein. Pour les fluc-
tuations du scalaire on obtient:

n2

8M8ﬂ¢n(xu) - m2¢n(x,u) =0 < 777,2 = ﬁ .

Des développements similaires peuvent étre obtenu pour les autres champs de (.2). Et
donc compactifier la gravité a cing dimensions sur un cercle donne une gravité a qua-
tre dimensions couplé a des tours infinis d’états de Kaluza-Klein dont les masses sont
proportionnelles a l'inverse du rayon du cercle.

Le rayon R du cercle précise ’échelle d’énergie a laquelle les modes massifs peuvent
étre exclus: en prenant R tres petit les modes massifs deviennent extrémement massifs
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et peuvent étre tronqués et donc on obtient une théorie effective avec un nombre finis de
champs correspondant aux champs non massifs.

L’utilisation d’un tel argument est possible seulement lorsque le rayon de l’espace
interne peut étre arbitrairement petit. Lorsque cela est le cas nous avons ce que 'on
appelle un séparation d’échelle entre I’espace interne et externe. C’est le cas par exemple
pour les compactification sur des espace de Calabi-Yau avec comme espace externes un
espace Minkowski. Néanmoins en supregravité nous rencontrons beaucoup d’exemple ou
il n’y a pas de tel séparation d’échelle. C’est le cas des compactifications ou ’espace
externe est un espace Anti de Sitter. Nous pourrions aussi étre intéressé par garder des
états massifs et non massifs dans la théorie effective.

Dans ce cas nous avons recourt & ce que 'on appel une troncature cohérente. Une
troncature cohérente est une procédure de sélection d’un sous ensembles de champs de
la théorie de sorte que les champs gardés ne soient couplé a aucun des champs non
sélectionnés. Donnons nous un exemple pour illustrer cette définition. Nous voulons
tronquer le modele suivant

L =500+ 5(09)* — 390p” — 3m*\?,
a un modele avec un champ. En étudiant les équations du mouvement
?p=ghp and O*\=m?\+ %g(p2,

nous observons qu’a cause du terme ¢?, le scalaire A ne peut pas étre tronqué de facon
cohérente, tandis que cela est possible pour ¢. Le résultat est le Lagrangien d’un champ
massif A. Nous pouvons comprendre ce résultat en terme de symétries. Le Lagrangien de
départ possede une symétrie Z, selon laquelle le champ ¢ est chargé alors que le champ
A est invariant.

Y= =¥

A=A

La troncature cohérente est obtenue en ne gardant que les modes invariant selon ce Z»
de symétrie. L’idée d’utiliser un groupe de symétrie pour sélectionner un nombre finis
d’états qui définissent une théorie effective est au coeur des troncatures cohérentes et de
cette these.

Dans cette these nous appliquerons cette idée de troncature cohérente a la supergravité
a 10/11-dimensions. Nous utiliserons le formalisme de la géométrie généralisée exception-
nelle, une extension de la géométrie différentielle qui permet d’unifier transformation de
coordonnés de 'espace-temps et transformations de jauge des potentiels de la théorie de
cordes dans des difféomorphismes généralisés. Nous verrons que nous pourrons utiliser des
groupes de structures sur le tangent exceptionnel de ’espace interne pour obtenir de fagon
systématique des troncature cohérente. Cela nous permettra dans le cas de troncature
a des théories effective de cinq dimensions de donner une classifications des théories qui
peuvent étre obtenues comme un troncature cohérente de la théorie des cordes. Ensuite
nous donnerons pour certaines troncations le calculs explicite de la théorie effective.
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Chapter |

Introduction

Our understanding of the universe is very well described at small scales by the Stan-
dard Model and at very large scales by General Relativity. Unfortunately the two theories
show signs of incompatibility when combined to describe systems, black hole for instance,
where neither gravity nor quantum effects can be neglected. The theory that would embed
the quantum field theory of Standard Model and General Relativity is usually referred to
as quantum gravity.

String theory is one of the most promising theory of quantum gravity and is be-
lieved to reproduce the Standard Model and general relativity as low energy limits. But
string theory have some very particular and intriguing features. One of them is that it
requires extra dimensions of space-time: in superstring theory the space-time must be
ten-dimensional while for M-theory, the theory that unifies all five versions of string the-
ory, the dimensions are eleven. In our everyday life we only experience four dimensions
of space-time. Hence a central problem of string theory is what to do with the extra
dimensions.

A simple way of thinking of the extra dimensions is to take the example of a tightrope
walker. On the tightrope the walker is able to walk only in one direction, either he goes
forward or backwards. Now take an ant on that tightrope. Since the ant is much smaller
than the walker and its scale is about the scale of the radius of the tightrope the ant has
access to the circular direction of the rope.

In string compactifications we will take exactly this point of view. We will consider
that the extra dimensions of string theory form a small compact manifold, which we will
call internal as opposed to the non compact external manifold that we experience. In
this way the space-time of string theory will be a product of the external and internal
manifolds. As in the example of the tightrope walker, the internal manifold is so small
compared to our scale that we cannot have access to it.

As long as we are interested in making predictions from string theory or M-theory
about observables in our four dimensional, non-compact universe, we can rely on effective
theories that only capture the excitations that are relevant at our energy scales.

First, rather than considering the full string theory, we will consider its low energy
limit, supergravity. String theory contains an infinite set of modes with masses inversely
proportional to the square of the string length, [, and a finite set of massless modes.
Because of the smallness of [ for processes at our energy scales we can neglect the mas-
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sive modes and only keep the massless ones, which are described by a ten-dimensional
supergravity.

Once we have supergravity, we must take into account the effect of the compactifica-
tion. To see how it works and illustrate the ideas we will use in the rest of the thesis,
we can start with the simple example of the Kaluza-Klein reduction from five to four
dimensions.

Consider pure Einstein gravity in five dimensions. Beside 5-dimensional Minkowski
space, there exists another solution of Einstein equation corresponding to a spontaneous
compactification

Ms = My x S (I.1)

where the space-time is the product of four-dimensional Minkowksi M, times a very sim-
ple compact space, the circle S'. We denote 2™ = {z#, y} the 5-dimensional coordinates
with # the coordinates on My and 0 < y < 27 R the coordinate on the circle. The effec-
tive theory is constructed by looking at the fluctuations around the vacuum (I.1). Since
the solution (I.1) breaks the five-dimensional Poincaré invariance to SO(3,1) x U(1), we
can arrange the degrees of freedom according to their four-dimensional quantum numbers

GMN — (glll/ :szquy _f?iN) , (12)

where g, is the 4-d metric, A, is a 4-d vector, and ¢ is a 4-d scalar. Their vacuum
expectation values give the background metric

<guu> = Nuv » (A,u> =0, <¢> =1.
Since S' is compact, we can Fourier expand all the fields on S!. For example, for the
scalar ¢ this gives

nezZ

where x denote the four-dimensional coordinates. The coefficients in the expansion rep-
resent 4d fields with mass given by the eigenvalues of the wave operator on S': these are
the Kaluza Klein states. For instance, for the scalar fluctuation one has

2
n
M0y () — m2¢n($u) =0 < m’= Vo

Similar expansions hold for the other fields in (I.2). Thus compactifying pure five-
dimensional gravity on a circle gives a four-dimensional gravity theory coupled to infinite
towers of fields, the Kaluza-Klein states, with masses proportional to the inverse of the
circle radius. The radius R of the circle set the energy scale at which the massive modes
can be discarded: by taking R very small the massive modes become heavy and, for
energies lower than R~2, can be truncated away to get an effective theory with only a
finite set of fields, the massless ones.

A key element here is that the scale R of the internal circle is completely uncorrelated
from the scale of the external manifold. This implies that we can take R arbitrarily small
and induce a separation of scales between the massless modes of the truncated theory and
the rest of the KK towers. In string theory, if the compactification admits a separation



of scales, we can obtain a lower-dimensional low-energy effective supergravity theory by
truncating out modes above the cut-off scale. This is what happens in compactifications
on special holonomy manifolds to Minkowski space-time, where the effective theory is
obtained by keeping only the massless modes, namely the zero-modes of appropriate
differential operators on the internal space.

However in supergravity /string theory we encounter many examples where we cannot
rely on scale separation. This is the case of compactifications to Anti de Sitter space-
times, where the scales of the external and internal manifolds are related. Or we might
be interested in constructions where we keep both some light and massive modes within
the truncation.

In this case we must instead resort to what is called a consistent truncation [1]. A
consistent truncation is a procedure to truncate a theory to a subset of fields in such a way
that there is no coupling between the modes that are kept and those that are discarded.
Let us consider again a simple a toy model. We would like to truncate the following model

L=100)? +1(0p)? — Lgrp? — Im?)?,
to a single field. From the equations of motion
?p=ghp and O*\=m*\+ %g(pQ,

we see that, because of the term (2, the scalar A cannot be truncated away in a consistent
way, while this is possible for . The results is a Lagrangian for one massive field \. We
could interpret it in terms of symmetries. The original Lagrangian has a Zy symmetry
under which the field ¢ is charged whereas the field A is invariant

p— =
A=A

The consistent truncation is obtained by keeping only the singlet under the Zs symmetry
group. The idea of using a symmetry group to select the finite set of fields of the effective
theory is at the heart of consistent truncations and of the rest of this thesis.

When compactifying string-theory /supergravity on an internal manifold M, the Kaluza-
Klein towers are obtained by expanding on a basis of tensors on the internal space, a
generalization of the Fourier modes, which are associated to symmetries of the internal
manifolds and contain the dependence on the coordinates of the internal manifold. A
consistent truncation is a choice of such a basis that allows to truncate to a finite set of
singlet fields in such a way that the dependence of the higher-dimensional fields on the
internal manifold factorises out once the truncation ansatz is plugged in the equations of
motion. This condition is what makes consistent truncations relatively rare and hard to
prove (see for instance [1, 5].

When looking for supergravity solutions, such as domain wall or black-holes, it is often
convenient to do that in lower-dimensional gauged supergravity models corresponding to
truncations of the 10/11-dimensional supergravity, since the equations of motion or the
supersymmetry variations are simpler. If the truncation is consistent, all solutions of the
lower-dimensional theory also satisfy the equations of motion of 10-/11-dimensional su-
pergravity. This is very important as, for example, a vacuum that appears stable within
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a lower-dimensional supergravity might suffer from instabilities triggered by modes not
kept in the truncation [0], or vacua which appear different within the lower-dimensional
model may actually be identified in the full 10/11-dimensional theory [7]. These exam-
ples highlight how important it is to know which lower-dimensional theories can arise as
consistent truncations of 10-/11-dimensional supergravity.

The best known examples of consistent truncations are provided by Scherk-Schwarz
reductions on group manifolds. These are parallelisable manifolds admitting a basis of
left(right) invariant forms. A consistent truncation is obtained by expanding all the fields
of the higher-dimensional theory on such basis and only keeping the singlet components.
The truncation procedure preserves all supersymmetries of the higher-dimensional theory
and gives a maximally supersymmetric truncated theory.

In recent years a lot of progress has been done in the study of consistent truncations
by exploiting the geometric structures of the compactification manifolds.

For instance it has been shown [!] that G-structures allow to construct consistent
truncations on manifolds that are not necessarily homogeoneous. Suppose a manifold
M has a reduced structure group Gg with singlet intrinsic torsion. Then a consistent
truncation is obtained by expanding all the field in Gg representations and keeping only
the Gg-singlets. This can preserve different fractions of supersymmetry, depending on
how many G g-invariant spinors exist on M.

Moreover the data of the Gg structure, namely the Gg-invariant no-where vanishing
tensors, determine the full field content and gauge interactions of the truncated theory.
Examples of this type in M-theory are the truncations based on Sasaki-Einstein and
weak-G2 holonomy manifolds of [3], and the tri-Sasakian reduction of [9].

However there are consistent truncations that cannot be interpreted in terms of con-
ventional G-structures. Classic examples are the maximally supersymmetric consistent
truncations on spheres, such as eleven-dimensional supergravity on S7 [10] and S* [11].

These examples have a natural interpretation in Exceptional Generalised Geometry
and Exceptional Field Theory. In this thesis I will focus on the Exceptional Generalised
Geometry approach of consistent truncations. Exceptional Generalised Geometry is a
reformulation of 11/10-dimensional supergravity that allows to treat diffeomorphisms and
gauge transformations of the higher-rank gauge fields of supergravity in a geometric way.
It replaces the tangent bundle T'M with an extended tangent bundle E, whose fibres
transform in a representation of the exceptional group Ey) rather than GL(d,R). Then
diffeomorphism and gauge transformations are unified as generalised diffeomorphisms on
E. As for ordinary Gg structures, if the generalised structure group of £ can be reduced
to a subgroup G'g C Ep(s) we say the manifold admits a generalised G'g structure.

The notion of generalised Gg structure plays a central role in this thesis since it allows
for a systematic approach to consistent truncations with different amounts of supersym-
metry: there is a consistent truncation any time a supergravity theory is reduced on a
manifold M admitting a generalised Gg structure with constant singlet intrinsic torsion
1.

In this framework all maximally supersymmetric truncations, both conventional Scherk—
Schwarz reductions and sphere truncations, can be seen as generalised Scherk—Schwarz
reductions on generalised parallelisable manifolds [12, 13, 14, 15, 16, 17, 18, 19, 20]. In
particular, the notion of a generalised parallelisation allowed to prove the long-standing
conjecture of the consistency of type IIB supergravity on S° [12, 21, 16]. Considering



larger generalised Gg-structure group allows to treat half-maximal truncations [22, 23,
, 25, 26, 1] and N = 2 truncations.

As for generalised Scherk—Schwarz reductions one can show that it is possible to
determine the lower-dimensional supergravity directly from the data of the generalised
G structure, a priori of any explicit substitution into the equations of motion.

This approach also provides a proof of the conjecture of [27] that for any supersym-
metric AdSg X M vacuum there is consistent truncation on M to a gauged supergravity
with the same amount of supersymmetry [24, 1], based on the fact that the conditions
for a supersymmetric AdSy Xy M vacuum can be rephrased as the requirement that M
admits a generalised G g structure with vanishing non-singlet intrinsic torsion [28, 29, 30)].

This thesis collect the work I have done during my PhD on the derivation of consistent
truncations in the framework of Exceptional Generalised Geometry.

In the first chapter I will describe the general framework for constructing consis-
tent truncations with different amounts of supersymmetry (including non-supersymmetric
truncations), based on the generalized G-structures. I will first recall how the construction
works for ordinary Gg-structures and then show how this naturally extends to generalised
ones. The key requirement is that G-structure has only singlet “intrinsic torsion” [28].
Then I will discuss how this formalism allows one to easily determine all the features of
the lower-dimensional gauged supergravity, such as the amount of supersymmetry, the
coset manifold of the scalars, the number of gauge and tensor fields, and the gauging, all
directly from the geometry.

In order to make the formalism more explicit I will focus on truncations of eleven
dimensional supergravity to five dimensional gauged supergravities with N’ = 2 super-
symmetry. The analysis for half-maximal truncations can be found treated in [1].

I will then apply this formalism to two different kind of problems. I will apply it to
derive a classification of which A = 2 gauged supergravities in five dimensions can be
obtained as consistent truncations of of eleven dimensional or type IIB supergravity. In
this case the relevant exceptional group is Fg(g). The classification is purely algebraic: we
identify the possible Gs C FEg(g) structures that lead to N = 2 supergravities, we work
under the hypothesis that they only admit constant singlet intrinsic torsion, and then we
analyse the field content and gaugings. This means that the list of 5d supergravities we
find might be further reduced once the differential condition of having constant intrinsic
torsion are verified in explicit examples.

Finally I will show how this formalism can be used concretely to derive explicit exam-
ples of five dimensional N/ = 2 consistent truncations: the largest truncation containing
N = 2 Maldacena—Nuiiez [31] and also the one containing the “BBBW?” [32] backgrounds.

The main text of the thesis only covers part of the results I obtained during my PhD.
These are contained in three papers [1, 2, 3] which are presented in the Appendix.
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Chapter ||

Consistent truncation and generalised
(¢ structures

We are interested in consistent truncations of eleven/ten-dimensional supegravity on back-

grounds of the type
M=XxM

where My is a compact d-dimensional manifold and X is a non compact external space
of dimension 11 — d or 10 — d, respectively.

Typically a consistent truncation relies on some geometrical properties of the compact-
ification manifold My. The best known examples are Scherk—Schwarz reductions on group
manifolds. A d-dimensional group manifold M = ¢ admits a basis of globally defined
left-invariant vectors and a basis of dual of left-invariant one-forms {e®}, a = 1,...,d.
By expanding all fields of the higher-dimensional theory on these basis and keeping only
modes invariant under the group action provides a consistent truncation.

Scherk—Schwarz reductions are particularly simple examples of a more general con-
struction, based on the notion of G-structure, which allows to derive consistent truncations
for more general manifolds than group manifolds or homogeneous spaces [3, 33, 34, 35,

, 9, 37].

Consider a d-dimensional manifold M. At each point p of M we can define a local

frame 657? ), namely a local basis for the tangent bundle 7'M, so that any vector v can be

(a)

expanded as v = vzz)em . On two overlapping patches U, and Ug the components of v
are related by a GL(d,R) transformation

Uy = (Map)" nv(s) -

Since one can repeat this construction at every point on M, the the matrices M,z can
be seen as functions from U, N Upg to GL(d,R). These are called transition functions and
contain all the information about the non-trivial topology of the bundle T'M. They must
satisfy the consistency conditions

Moc,BMﬁa Ua N U/g

MogMpgy = M UsNUgNU,

so that they form a group, the structure group.

7
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In the general case the structure group is of a d-dimensional manifold is GL(d,R). If
the structure group of M is a subgroup Gs C GL(d,R) we say that the manifold has a
Gg-structure. The Gg-structure is defined by a set of Gg-invariant, nowhere vanishing
tensors {Z;}.! For example, a Riemannian manifold admits a no-where vanishing metric
g or, equivalently, a subset of orthonormal frames on M, which defines a Gg = O(d)
structure. This also implies that for Riemannian manifolds the possible Gg-structure are
all subgroups of O(d).

A Gg-structure is characterised by its intrinsic torsion. For Riemannian manifolds
the intrinsic torsion can be defined via the action of the Levi-Civita connection on the
invariant tensors =;

= ni..nr — niy =.4q..Nr .. Ny = N1...q9
Vm‘_‘l P1.--Ps — Km q—t P1..-Ps + + Km q— P1.--Ps

_ q = .ni..ny . q /= NnN1..Ny
Km p1—i g..ps T K, ps—i P1.--q >

(IL1)

with the indices m and n,p spanning T*M and A%T*M, respectively. From its index
structure it follows that K,,", must be a section of T* M ® A>T* M. However decomposing
A’T*M ~ SO(d) = g ® g+, where g is the Lie algebra of G5 and using the fact that Z;
are Gg-invariant, we see that K is actually a section of T*M ® g*.

The intrinsic torsion is the part of the torsion that does not depend on the choice of
connection and is defined in terms of K as

(Tint)mnp - Knpm - Kmpn .

Tint can be decomposed into Gg representations, known as the “torsion classes” of the
structure. For consistent truncations we are interested in G g-structures whose non-zero
torsion components are singlets under Gg.

Let us now see how G-structures are related to consistent truncations. Suppose a
manifold M admits a Gg structure, with GGg invariant tensors Z; and constant singlet
intrinsic torsion. The 11/10-dimensional supergravity can be consistently truncated on
M by expanding all bosonic fields on the basis of tensors =;, which encode the dependence
on the internal space, and only keeping the fields that are Gg singlets. Since the intrinsic
torsion has only singlet components, (II.1) implies that the derivatives of the singlet fields
can only contain singlets. Thus the truncation is necessarily consistent, since products of
singlet representations can never source the non-singlet representations that were trun-
cated away. For the spinors the truncations works in the same way. The Gg-structure
lifts to a Gg C Spin(d) structure and we simply have to expand the spinor fields in terms
of the spinors invariant under G.

The Gg-structure completely determines the field content and gauge interactions of
the truncated theory. For example it is easy to find the scalar and vector fields that
come from the reduction of the higher-dimensional metric. The scalars are the Gg singlet
components of the metric. Since the metric parameterises the coset GL(d,R)/O(d), these
are given by the GL(d,R) deformations of a reference metric that commute with Gg
modulo the O(d) deformations that commute with Gg

Cer@r) (Gs)
Cowr)(Gs) ’

'Formally a Gs-structure defines a Gs-principal sub-bundle P of the GL(d,R) frame bundle. ITn most
cases the two definitions are equivalent.

metric scalars <« H €




where Cp(A) denotes the commutant of the subgroup A of B inside B.
The vectors coming from the metric are given by the Gg-invariant one-forms n* € {Z;}.
If we call %, the singlet vectors dual to n® we have

metric gauge fields < Aj 7, .

The components of the singlet intrinsic torsion are completely determined by the Lie
derivatives of the invariant tensors

La,Zi = fa’ 25, (I1.2)

where f,;7 are constants. They also give the gauge algebra of the metric gauge fields via
the Lie bracket

[ﬁcw f’b] = fabc ﬁc . (113)

Let us consider again Scherk—Schwarz reductions on a group manifold M = G. The
basis of globally defined (left-invariant) one-forms, {e®} € T*M, reduce the structure
group to Gg =1 (i.e. M is parallelisable). Furthermore, the group action implies that

de® = %fbca e’ e,

where fp.® are the structure constants of the Lie algebra Lie¥. This means that the
identity structure has singlet, constant intrinsic torsion (singlet because de® is expressed
in terms of the invariant {e®} basis, and constant because the coefficients of the expansion
are constant). Then the truncated theory is obtained by expanding all higher-dimensional
fields on the basis of left-invariant forms and plugging them in the equations of motion.
Since only singlet tensors are generated we conclude that the truncation is consistent.
Examples of such consistent truncations in the context of M-theory can be found in |

Y ) ]'

The scalar fields of the truncated theory parameterise the coset

)

Covw(1) _ GL(d,R)
Cso(ay(1) 50(d)

The one-forms define d gauge fields with a Lie algebra given by the Lie bracket (I1.3).
The consistent truncation ansatz for the metric is

ds? = g, dztdz” + hay(e® + A%) (e? 4 A°)

where hgp() is matrix of scalar fields and Afj(x) are gauge fields in the adjoint of Gs.
Since the spin bundle is also trivialised, Scherk—Schwarz reductions preserve the full su-
persymmetry of the higher-dimensional theory.

Another interesting example is the reduction of M-theory and type IIB on a Sasaki-
Einstein manifold M of dimension d = 2n + 1 [¢, 35, 36]. The manifold admits an
Gs = SU(n) C GL(d,R) structure defined by a real one-form 7, a real two-form w and a
complex n-form 2 satisfying

dn = 2w, dQ=i(n+1)nAQ. (I1.4)
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Since only invariant tensors appear on the right-hand side of the differential conditions
(I1.4), the intrinsic torsion has only constant singlet components. In this case the metric

scalar manifold is
CGL(2n+1,R)(SU(n)) _ Rt xC — Rt xRt
Cso(2n+1,r)(SU(n)) U(1) '
As there is a single invariant one-form 7 the truncated theory will contain only one
gauge field A, (x) coming from the metric. The ansatz for the metric is

ds? = gy datda” + eVds3, + €2V (n + A)?,

where ds3,, is the (local) 2n-dimensional Kihler-Einstein metric defined by (w,2). The
scalars fields U(z) and V (z) parametrise the scalar manifold.

The construction of consistent truncations based on Gg-structures is very powerful,
but does not cover very well-known examples such as the reductions of eleven-dimensional
supergravity on S7 [10] and on S* [11], where the consistency is not a consequence of any
manifest symmetry.

The main result of this thesis is that extending the notion of the Gg-structure to
exceptional generalised geometry [11, 12] allows the previous examples of compactifica-
tion on S” and S” to be treated on the same footing as the conventional Scherk-Schwarz
reductions. More generally, it provides a new systematic way to study consistent trun-
cations with a generic amount of supersymmetry: reducing a supergravity theory on any
manifold M admitting a generalised Gg-structure with constant singlet intrinsic torsion
gives a consistent truncation [!]. In the rest of the chapter, we will give the main ideas
without entering into the details of a specific theory or compactification. We will then
specify to truncations of M-theory to five dimensions.

Exceptional generalised geometry replaces the tangent bundle T'M with a larger bun-
dle E on M, whose fibres transform in a representation of the exceptional group Ey). In
this way, the diffeomorphisms and gauge symmetries of higher-dimensional supergravity
are unified as generalised diffeomorphisms on E. Then, one can generalise all conventional
notions of differential geometry such as tensors, connections, and Lie derivatives.

The bundle F is called the generalised tangent bundle, and its sections are generalised
vectors. The dual generalised vectors are sections of the bundle E*, and generalised
tensors are obtained by tensoring E and/or E*. For example, we will need the dual
weighted vectors Z,, which are sections of the bundle? N ~ detT*M ® E*, and the
generalised metric, which is a section of the symmetric product S?(E*). In analogy with
an ordinary metric on M, a generalised metric G parameterises, at each point on M, the
coset
ELaa)

Hy '’

where Hy is the maximally compact subgroup of Ej4). Spinors can also be introduced as

G e

sections of the spinor bundle S, transforming in the spinorial representation of Hy, the
double cover of the group Hy.

The action of an infinitesimal generalised diffeomorphism is generated by the gener-
alised Lie derivative along a generalised vector. We denote by adF' the adjoint bundle,

2We consider only orientable manifolds. Then, det T M is trivial and we can define arbitrary powers
(det T* M)P for any real p.
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namely the bundle whose fibres transform in the adjoint of Ey). Then, in analogy with
the conventional Lie derivative, we define the generalised one as [13],

(Ly VM = VNONV™M — (8 xaq; V)M NV, (IL5)

where VM are the components of the generalised vector V in a standard coordinate basis,
Oy = O are viewed as sections of the dual tangent bundle, and the projection onto the
adjoint bundle is X,q; : £* ® £ — adF.

The definition of a generalised G g-structure is a natural extension of the conventional
one. A generalised Gg-structure on M is the reduction of the generalised structure group
Eq(4) to a subgroup Gg, and it is defined by a set of nowhere vanishing Gg-invariant
generalised tensors {@;}. For instance, the generalised metric defines a Gg = Hy structure
on M [13, 41]. In what follows, we will always assume that M admits an Hy structure,
and we will always consider generalised structures Gg C Hy.

Given a generalised Gg-structure, with Gg C Hy, defined by a set of Gg-invariant
generalised tensors {Q;}, we can define its intrinsic torsion from the Lie derivative of a
generalised tensor « along a generalised vector V' [28]:

(L2 - Ly)a=T(V)-a

Here Ly is the generalised Lie derivative defined in (I1.5), and LE is the generalised Lie
derivative calculated using a Gg-compatible connection > D. The torsion can be seen as
a map from the generalised tangent bundle into the adjoint one, T : I'(E) — I'(adF),
so that T (V) acts on « via the adjoint action. The intrinsic torsion Tiy is then the
component of T that is independent of the choice of compatible connection D and can be
decomposed into representations of Gg.

Consider now eleven-dimensional or type II supergravity on a product space X x M,
where M is a d-dimensional manifold and X is a D-dimensional Lorentzian space with
D =11 — d in M-theory and D — 10 in type II supergravity. We assume d < 7.

As we discussed above, the GL(D,R) structure group of conventional geometry on M
is extended to Ey(g). The idea is then to rearrange the supergravity fields into generalised
tensors transforming as representations of GL(D,R) x Egy4y and to interpret the theory
as a D-dimensional theory on X with an infinite number of fields. The fields in X will
be scalar, vectors, and two-forms according to their GL(D,R) representation *.

The scalar degrees of freedom on X are given by the components of all supergravity
fields (metric and higher-rank potentials) with all internal indices and are repackaged into
a generalised metric. The GL(D,R) one-forms and vectors are sections of the generalised

3 A generalised connection D is compatible with the Gg-structure if DQ; = 0 for all Q;. The definition
of a generalised connection is the same as in conventional differential geometry. However, in generalised
geometry, the conditions of being torsion free and metric compatible do not uniquely determine the
connection. However, only certain projections of the action of the connection appear in the supergravity,
and these are unique [13].

“We do not consider higher form-field degrees of freedom, as in the tensor hierarchy [45, 46], since they
are dual to the scalar, vector, and two-forms and therefore do not introduce new degrees of freedom. In
particular, this means that for D = 4, AHM contain both the vectors and their duals, and in D = 6,
B, contain both the two-forms and their duals.
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tangent space E, while the two-forms are sections of the bundle N. In summary, we have

scalars: Gun(z,y) € T(S?E"),
vectors: AM(z,y) eT(T*X @ E),
two-forms: B, MY (z,y) € T(A’T*X ® N),

where x and y are coordinates on X and M, respectively, and the capital index M denotes
components of vectors in F or E*.

The equations of motion and the supersymmetry variations are also organised ac-
cording to the representations above, and the dynamics of the supergravity is completely
determined by the Levi-Civita connection on the external space X and a generalised
connection on M.

If the manifold M has a generalised Gg-structure, Gg C Hg, with only constant,
singlet intrinsic torsion, we can construct a consistent truncation in the following way.
Expand all bosonic fields in terms of the Gg invariant tensors {Q;} defining the structure,
and keep only those transforming as singlets under the structure group. The coefficient
of the expansion will depend on the external coordinates x, while the dependence on the
internal space is only in the tensors {Q;} .

Since there are only singlet representations in the intrinsic torsion, the generalised
Levi-Civita connection acts on any invariant generalised tensor Q); as

DyQi =%Xm - Qi

where X); is a section of E* ® ad Hy that is completely determined in terms of the
constant singlet torsion. Here, ad Hy denotes the bundle of tensors transforming in the
adjoint representation of Hy. This means the derivatives of all the truncated fields are
also expanded in terms of singlets only. Since products of singlet representations cannot
source non-singlet representations, keeping only all possible singlets gives a consistent
truncation.

To extend the truncation to the fermionic sector of the supergravity theory, it is
enough to lift the structure group Gg to Gg C Hy and to expand all the fermionic fields
in terms of G singlets.

From the data of the Gg-structure, we can determine the number of scalars, vectors,
one-forms, and two-forms of the truncated theory, as well as the possible gaugings.

All scalars of the truncated theory are given by the Gg singlets in the generalised
metric Gpsny. These are singlet deformations of the structure modulo, those singlet de-
formations that do not deform the metric

CEd(d)(GS ) g

scalars M = —————— = — . 1.6
Cu,(Gs) H (IL6)

Consider now the vectors of the truncated theory. Being sections of T*X ® FE, they
are determined by the number of Gg invariant generalised vectors {K7}:

vectors: AN (z,y) = A,/ (x) K} € T(T"M ® V), (IL7)

where V C I'(E) is the vector space spanned by the {K;}.
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Similarly the two-forms are determined by the Gg singlets in the bundle N:
two-forms: B, MY (x,y) = By 1(x) K[MY € T(A*T*X ® B),

where {K/} is a basis generating the Gg-invariant vector space B C I'(N).

The representations above determine the full content of the theory, namely the fields
coming from the reduction of the metric and the higher-rank potentials of the supergravity
theory. In particular, this means that the vectors Kj generate all symmetries of the
reduced theories, coming both from the metric and the higher-rank potentials. This is
an important difference with respect to the reductions based on the conventional Gg-
structure.

The Gg-structure also determines the embedding tensor (see [17, 18] for a review of
this formalism) and hence the gaugings of the reduced theory in terms of the singlet
intrinsic torsion. Since the Gg-structure has only singlet intrinsic torsion, in analogy
with (I1.2), the generalised Lie derivative of the Gg-invariant generalised tensors along
any invariant generalised vector K can be written as

Lg,Qi = —Tint(Kr) - Qi (IL.8)

where Tiy is a map from the space V of the Gg invariant vector to the Gg singlets in
the adjoint bundle. This is the embedding tensor. Notice that Tin (/K1) must correspond
to the elements in the adjoint that commute with GGg, namely the Lie algebra of the
commutant group G = Cg » d>(Gs). G is the subgroup of the isometry group of the scalar
manifold that can a priori be gauged in the truncated theory.
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Chapter Il

M-theory truncation to five dimensions

In this chapter we will make the previous discussion more concrete by focusing on consis-
tent truncations of the eleven dimensional supergravity on

M1 = X5 x Mg

to five dimensional supergravity with A/ = 2 supersymmetry.
Our conventions for eleven-dimensional supergravity are the same as in [13]. The
eleven-dimensional bosonic action is (we denote by a hat the 11d quantities)

The six-form potential A dual to the three-form A may be introduced via the first-order
relation

$dA+LANdA = dA, (IIL.1)

whose exterior derivative gives the Maxwell equation.

.1 E4) generalised geometry

Eleven-dimensional supergravity compactified on a six-dimensional manifold can be re-
formulated in terms of Egg) X RT generalised geometry, which we will review below.

To the internal manifold M we associate a generalised tangent bundle F, whose sec-
tions transform in the real 27* representation' of Eg(6), the generalised structure group,
with weight one under R™. The ordinary structure group GL(6) embeds in Eg(6) % RT
and can be used to decompose the generalised tangent bundle as

E ~ TM & A*T*M @ A°T*M . (I11.2)

LGiven a representation n we will use n* and 7 for the dual and conjugate representations, respectively.
For non-compact groups these may not be equivalent.

15
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The sections of F are called generalised vectors and, using (II1.2), can be seen as (local)
sums of a vector, a two-form and a five-form on M,

V=v+w+o.
The dual bundle E* is defined as
E* ~ T*M & A’TM & A°TM ,

with sections

Z=0+w+4,
where ¥ is one-form, @ is a two-vector and & is a five-vector. Generalised vectors and dual
generalised vectors have a natural pairing given by

(Z,V) = 0™ + L 6™ + & 5™ Gy

The Eg(g) cubic invariant is defined on £ and E* as?

c(V,V,V)==6l,wA0—wAwAw,
2,2, 2) = -6l NG—DADNG. (IIL.3)

The frame bundle F' for E defines an FEge) x RT principal bundle. By considering
bundles whose fibres transform in different representations of Eg ) x R, we can then define
other generalised tensors. To describe the bosonic sector of the supergravity theories we
will need, besides the generalised vectors, weighted dual vectors, adjoint tensors and the
generalised metric. Adjoint tensors R are sections of the adjoint bundle ad F' of the form

adF ~R® (TM @ T*M) & A3T*M & AST*M & A3TM @ ASTM |
R=l+r+a+a+a+a,

and hence transform in the 1+ 78 of Eg) with weight zero under the R™ action. Locally
[ is a function, r a section of End(7T'M), a is a three-form and so on. One notes that in
the exceptional geometric reformulation, the internal components of the gauge potentials
of type II or M-theory, are embedded in the adjoint bundle.

The action of an adjoint element R on a generalised vector V € I'(E) and on a dual
generalised vector Z is also denoted by - and is defined as

V=RV Z'=R-Z,
where the components of V' are

V=lw+r-v+tasw—alo,
W=lw+r-wtviat+aio, (II1.4)

o=lo+r-o+viatarw,

2This is 6 times the cubic invariant given in [19]. Because of this, we introduced a compensating factor
of 6 in the formulae (II1.16) and (II1.17).
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and those of Z’ are

N A~ N N N ~
U =—l0+r-0—0ia+daa,
O =—lo+r-O—asd—6la, (ITL.5)
6 =—l6+r-6—ait—aln®.

The action of an adjoint element R on another adjoint element R’ is given by the
commutator, R” = [R, R']. In components, R” reads

1" %(a_lal—o/_la)—l—%(&/_l&—d_ldl),

" =[r,”| + jasjad — jo! sja— 3(asd —a sa)l,

+jé& sja—jaoja — 3@ sa—asa)l,
a'=r-d—-r-a+dia—a.id, (IT1.6)
a'=r-a —r-a—-and,
o' =r-o—r'-a+d sa-asd,
d"=r-d—-r-a-and,
where - denotes the gl(6) action.
It will be useful to also define weighted dual vectors Z, as sections of the bundle

N ~ det T*M ® E* which has RT weight two®. Concretely one finds

N~T*M @ AT*M @ (T*M @ A°T*M) ,
Zb:>\+p+7'.

An important object in our construction is generalised metric, which encodes the
internal components of all bosonic fields. The generalised metric G is a positive-definite,
symmetric rank-2 tensor

G eI'(det T*M @ S2E™*),

so that, given two generalised vectors V,W € T'(E), the inner product G(V,W) is a
top form. Just as an ordinary metric g, at each point on M, parameterises the coset
GL(6)/0(6), a generalised metric at a point p € M corresponds to an element of the

coset
EG(G) X R+

v € Top®)/Zs

In order to include fermionic fields of M-theory we arrange them into representations
of USp(8), the double cover of the maximal compact subgroup USp(8)/Z2 of Eg). For
instance, supersymmetry parameters are section of the generalsied spinor bundle S, trans-
forming in the 8 of USp(8). The R-symmetry of the reduced five-dimensional theory is
in general then some subgroup G C USp(8).

Now that we have introduce all the relevant objects of the exceptional generalised
geometry. We now arrange the eleven-dimensional bosonic fields into generalised tensors
transforming in representations of GL(5,R) x Eg), where GL(5,R) gives the tensorial

3Note that det T* M is just a different notation for the top-form bundle AST* M that stresses that it is
a real line bundle. In the following we will assume that the manifold is orientable and hence det T* M is
trivial. Thus, we can define arbitrary powers (det 7" M )P for any real p.
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structure of the fields in the five-dimensional theory obtained after reduction. We sepa-
rate the eleven-dimensional coordinates in coordinates x*, 4 = 0,...,4, on the external
spacetime X, and z™, m =1,...,6, on the internal manifold M.

The bosonic fields of eleven-dimensional supergravity are decomposed as

§=e* g, detdz” + gDz D2
A= %AmnpDzm"p + %Aumndx“ A Dz™" 4 %Auymdxm/ AD2™ 1 % Auup dzhve
;1 = éAmL..mﬁDzmlmmﬁ‘ + éﬁuml.,,m5dxu/\D2ml"'m5 + ﬁ;l,uuml..,m4d$'uy/\DZml"'m4

(ITL.7)

_l’_

ey

where Dz™ = dz™ — h,"dz#, and all tensor field components may depend both on x#
and 2", except for the external metric, for which we assume a dependence on the external
coordinates only, g, = guv ().

The barred fields need to be redefined. In Appendix D of [2] we provide a justification
for these redefinitions by studying the gauge transformations of the metric and three-form
potential. For the three-form components we introduce the new fields A, ., 4., via

Ao = Ay — W Aium s Aywp = Ap + b hoP Ay (IT1.8)

Similar redefinitions apply to the six-form components with at least two external indices,
however we will not discuss them in detail here.

The supergravity fields having all components on the internal manifold M arrange
into the inverse generalised metric

GMN <~ {A’ 9mns Amnp: Aml...me} ,

in the following way*

(Gfl)mn _ e2Agmn
(G_l)mn1n2 - eQAgmpAImlm

(G_l)mnl...n5 - e2Agmp(Ap[n1n2An3n4n5} + Apnl...ng,)

—1 2A
(G )m1m2 ning — € (gmlmz,nlm =+ gqupm1m2Aqn1n2})

-1 _ L 2A
(G mima n1ns = € [Gmyma [nina Angnans)

+ gpq(ApmlmQ (Aq[n1n2 An3n4n5} + Aqnl...n5 )]

(Gil)ml...mg) ni..ns — e2A [gm1...m57 ni...n5

+ gpq(Ap[m1m2 Am3m4m5] + Apm1~-m5)(Aq[n1n2An3n4n5} + Aqnl...n5)] )

(I11.9)

Where gmyms, ning = Imy[n19jmalng]» and similarly for gm, . ms, ny..ns- Since the generalised

metric is a scalar on the external spacetime, after imposing our truncation ansatz it will
provide the scalar fields of the reduced five-dimensional theory.

“This expression follows straightforwardly from the elements of the conformal split frame given in [43].
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The density & introduced in the next section when defining the HV structure is re-
lated to the determinant of the generalised metric and is an Fg () invariant. For eleven-
dimensional metrics of the form (IIL.7), this is given by [13, 19]

k2 = 32 /det gmn - (I11.10)

The tensors with one external leg arrange into a generalised vector A, on M, with
components

A,uM = {huma Aumna A,uml...m5 } ) (HI.ll)

and will provide the gauge potentials of the reduced theory. The tensors with two anti-
symmetrised external indices define a weighted dual vector B, on M, which is a section
of det T*M ® E*, with components

B;u/M = {Auuma A,uuml...m47 guuml...m&n}, (11112)

and will give the two-form fields of the reduced theory. The last term in (II1.12) is related
to the dual graviton and we will not discuss it further here.

The tensors with three antisymmetrised external indices arrange into the generalised
tensor

& _ e ~
Cuvp”™ = {Apvps Apvpmimomss Guvpmi..msn}

which is a section of (a sub-bundle of) the weighted adjoint bundle det T* M ®ad F', whose
components are labeled by & =1,...,57. See e.g. [50, 46] for more details on this tensor
hierarchy.

So far the formalism is fully generic for truncations preserving any amount of super-
symmetry. In the rest of this chapter we will focus on A/ = 2 five dimensional truncations.
The study of the half maximal case is in Section 3 of [1].

111.2 Five dimensional ' = 2 truncations

In this section we focus on consistent truncations with A" = 2 supersymmetry. For N' = 2
supersymmetry we need two invariant supercharges in the spinor bundle § implying that
we need subgroups Gg C USp(8) that give only two singlets when decomposing the 8 of
USp(8).

The largest structure group giving N' = 2 supersymmetry is Gg = USp(6): under the

breaking
USp(8) D USp(6) x SU(2)r, (IT1.13)

the spinorial representation decomposes as
8=1(6,1)®(1,2). (I11.14)

The SU(2)g factor in (II1.13) is the R-symmetry of the reduced theory under which the
two spinors singlets form a doublet, as expected for A/ = 2 supersymmetry parameters.
Under (II1.13) the fundamental and adjoint of Egy decompose as

27" =(1,1)® (14,1) ® (6,2),

78 =(1,3) @ (6,2) @ (21,1) @ (14,1) @ (14',2) . (I11.15)
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The Gg = USp(6) structure is often called an HV structure [51, 19, 30] and can also be
defined in terms of a triplet of non-vanishing invariant adjoint tensors and a generalised
vector, corresponding to the singlets under Gg = USp(6) in (II1.15). As they will be useful
in the rest of the thesis, let us first introduce the vector and hypermultiplet structures
that these tensors separately define.

A vector-multiplet structure, or V structure, is given by a globally defined generalised
vector K € I'(E) of positive norm with respect to the Fg) cubic invariant,

¢(K,K,K) := 6k%2>0, (I1.16)

where k, the density introduced earlier, is a section of (det T*M)'/2. The vector K is
the (1,1) singlet in the decomposition of the 27* in (II1.15) and is stabilised by Fy4) C
Eg)- A hypermultiplet structure, or H structure, is determined by a pair (Ja, k%) where
Jo €T(adF) (v =1,2,3) is a triplet that define a basis for a highest root suy subalgebra
of ¢g(6) and hence satisfy

[Jos Jg] = 2€apydy tr(JaJg) = —bag

while k is a section of (det T*M)/? as above. The .J, correspond to the (1,3) triplet in
the decomposition of the 78 in (II1.15) and are stabilised by SU*(6) C Eg -

The HV structure corresponds to a V and an H structure, such that the two k densities
are the same and in addition compatibility constraint

Jo K =0, (ITL.17)

is satisfied, where - denotes the adjoint action. The common stabiliser of compatible K
and J, is

From the general dictionary (I1.7) we see immediately that an HV structure will give
truncations to minimal five dimensional A/ = 2 supergravity since there is only one singlet
vector, which gives the graviphoton. In order to have matter multiplets we need to look
for further reduced structure groups Gis C USp(6) such that in the decomposition

USp(8) D USp(6) x SU(2)gr D Gs x SU(2)R,

additional Gg singlets beyond those defined by the USp(6) structure appear in 27* and
the 78, but none in the 8. This means the 6 in the decomposition (III.14) cannot contain
any singlets, and hence that all the singlets in the 27" must transform trivially under
SU(2)g.

Each Gg C USp(6) singlet will give a Gg-invariant generalised tensor in the corre-
sponding bundle. In particular, the singlets in 27* will span a sub-bundle Eggjet

E D Egnglet ~ M x V. (I11.18)

The bundle is by definition trivial and hence can be written as a product where V is the
fibre. The vector space V transforms as a representation of the commutant C Ee(e)(GS)
of Gg in Ege). In particular, from the discussion above, there must be an R-symmetry
subgroup SU(2)r C Cggy (Gs) that acts trivially on V (and hence Eginglet). Furthermore,
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the corresponding Lie algebra su(2) must correspond to a highest root in eg). Let us
define Gy as the simple subgroup of Cg, (Gs) that contains such a highest root SU(2).
We can then also identify the corresponding trivial sub-bundle of the adjoint bundle®

adF DadFgy ~ M X gn, (II1.19)

where gy is the Lie algebra of G. Note that by definition R-v = 0 for all v € I'( Eginglet )
and R € I'(ad Fgy,).

Given any trivial Gg-invariant vector bundle P ~ M x R™ and G g-compatible gener-
alised connection D, one can define a constant section s € T'(P) by Ds = 0. Furthermore,
the definition is independent of the choice of D since the bundle transforms trivially un-
der Gg. For the sub-bundles Egnglet and ad Fgy, we can identify V and U ~ gy with the
spaces of constant sections

V= {v € T (Esinglet) : Dv = 0} ,
gn ~U ={Rel(adFg,): DR=0},

giving a natural realisation of the isomorphisms (III.18) and (III.19). Note that the
elements of U generate a global Gy symmetry. The Gg-structure also defines a constant
invariant section k2 € I'(det T*M). Hence for each v € V the expression

C(v,v,v) = Kk 2c(v,v,v), (II1.20)

where c is the ) cubic invariant, defines a map into R (or more precisely to constant
functions on M). We can always choose a basis of normalised nowhere-vanishing linearly
independent vectors and adjoint elements for V and U

{K;,Ja}, I=0,...,dimv—1, A=1,...,dimGy,

where by definition we have

Ja-K;=0, VI, A.
In this basis, the components C}j; of the map (II1.20) are given by

o(Kj, K7 Kr) =6KCijz (I11.21)
and define a symmetric, constant tensor, while the adjoint tensor basis J4 satisfy

[Ja, JB] = fas®Jc,

where fap® are the structure constants of gy. Finally, we can normalise

tr(JaJB) = naB,

SNote that there are singlets in the adjoint bundle that are not in ad Fg;;. In addition to elements
generating the other possible factors in C Eg (o) (Gs) there are also elements of the form V ®,q W, where
V' is a section of Fginglet, W is a section of the dual bundle E;nglet and ®aq is the projection onto the
adjoint bundle. However these will not play a relevant role in our construction.
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where n4p is a diagonal matrix with —1 and +1 entries in correspondence with compact
and non-compact generators of Gy, respectively. Note that in the “minimal” case of
Gs = USp(6) with the HV structure (K, J,) the spaces V and U are one- and three-
dimensional, with basis vectors K and J,, respectively.

When Gs C USp(6) we naturally obtain a moduli space of Gg-invariant HV struc-
tures. Note that the moduli do not necessarily consist of massless scalar fields from the
point of view of the reduced N/ = 2 five-dimensional theory, but rather will lead to a
consistent truncation. The idea is that we can use the Gg singlet vectors and adjoint
tensors to define reference USp(6) structure. Then we can use it to build a reference gen-
eralised metric using the definition (IV.26). The physical moduli are then generated by
acting on the structure with elements of Fg(g) that commute with G, modulo elements
of USp(8)/Z2, that leave the generalised metric invariant. The moduli obtained this way
hence parameterise the coset

Cusp(s)/z,(Gs)

By definition we are only considering Gg that only admits N' = 2 supersymmetry, in

other words we are not interested in theories that are subsectors of more supersymmetric

ones. This means there are no elements of Cg, (Gs) that lead to two different USp(6)

structures with the same generalised metric. Hence C Eg(6) (Gg) must factorise into groups
that act separately on V and U, that is

CE6(6)(GS) = CGu (GS) X CGV (GS) ) (111.23)

where Gy and Gy are the subgroups of Ege) that leave fixed all elements of U and
V), respectively. Consequently, the moduli space M factorises into V structure and H
structure moduli spaces, as expected from N = 2 supergravity,

M = Myt x My = Cay (Gs) % Cay(Gs) _ Gyt % @7
Cu,(Gs)  Cny(Gs)  Hyvr  Hu
where, similarly, Hy; and Hy are the subgroups of USp(8)/Zs that leave U and V fixed,
respectively. In general there are common factors that cancel between the numerators
and denominators in the commutator group expression for the cosets; for example the
centre C(Gg) is always a subgroup common to both. Thus it is useful to introduce the
notation Gy, Gy, Hyt and Hy for the numerators and denominators that remain in the
quotients in (II1.24) once all the common factors have been cancelled (except when there
are no hypermultiplets in which case we take Gy = Hy = SU(2)). For My, one finds
G is the simple subgroup of Cp, (Gs) that contains a highest root SU(2), consistent

with our definition of Gy above.

The V structure moduli space corresponds to deformations of K that leave J, in-
variant, while the H structure moduli space describes deformations of J, that leave K
invariant. When given a dependence on the external spacetime coordinates, these de-
formations provide the scalar fields in the truncated theory, with Myt and My being
identified with the vector multiplet and the hypermultiplet scalar manifolds, respectively.

M =

(111.22)

(I11.24)

~We can identify the moduli explicitly as follows. Consider first MvyT. Using the basis
KT, a general vector K € V can be written as a linear combination

i
K =h'K;,
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where hi, I=0,...,nyr, are real parameters. Fixing 2 in (II1.16), and using (I11.21),
gives

Ciyahh hE =1,

showing that the nyt + 1 parameters Al are constrained by one real relation and thus
define an nyp-dimensional hypersurface, just as in (11.6),

Myrp = {hl: CryehnnE =1},

The space Myt is the moduli space of the V structure and, in the truncation, will
determine the vector multiplet scalar manifold of the five-dimensional theory. The metric
on My is obtained by evaluating the generalised metric on the invariant generalised
vectors,
1
ajj =3 G(K; Kj).

It is straightforward to verify that, using (IV.26), the expression above reproduces the
five-dimensional expression (IV.35).

Consider now My. The family of H structures is obtained by parameterising the
possible choices of suy algebra. Recall that by definition & ~ gy, so we are interested
in the space of highest root su(2) C gy subalgebras. Fixing x? and modding out by the
SU 2 symmetry that relates equivalent triples J, we have the moduli space

Gy

Mu = SU2)g - Cay (SUR)R)’

(111.25)

that is, comparing with (II1.24), we have Hy = SU(2)g - Cqy(SU(2)R). Points in My
can be parameterised by starting from a reference subalgebra j ~ sus C gy and then
acting on a basis {j1, j2, j3} of j by the adjoint action of group elements h € Gy, defined
as

Jo = aday jo = hjah™".

One has to mod out by the elements of Gy that have a trivial action, namely h €
SU(2)r ~ exp(j) and h € Cgy (SU(2)r). The resulting symmetric spaces (II1.25) and are
all quaternionic—Kéhler, in agreement with the identification of My with the hyperscalar
manifold in five-dimensional supergravity.

111.2.1 The data of the truncation

Any generalised Gg structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a consistent truncation of eleven-dimensional or type II supergravity with
spacetime X x M to a gravitational theory on X [I, 2]. In this section we focus on
truncations to five-dimensional N/ = 2 supergravity and recall how the the generalised
Gs C USp(6) structure encodes the data of the truncated theory, as summarised in
Section 2 of [3].

The field content of the truncated theory is completely determined by the G g-invariant
spaces U and V and the moduli space of HV structures, while the gauging is determined
by the singlet torsion.
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The scalars of the truncated theory are given by the moduli space (II1.22) of gener-
alised metrics on M that factors (I11.24) into

VM scalars:  ¢(x)" <> Myt = Gvr ,
Hyr

. X _Gu _
HM scalars: ¢(z)" <> My = Hi = SU@)n % Can(SU@n)"

where x# are the coordinates on X.

By construction, both spaces are homogeneous and so correspond to one of the cases
listed in Section 2 of [3]. As discussed in Section III.2, the metrics can be explicitly
constructed in terms of the basis vectors Kj and J4. In particular, the cubic invariant
on V, which fixes the metric on My, is given by (I11.20).

The other bosonic fields are the vectors and two-forms. As we will see in a moment,
the singlet intrinsic torsion allows one to decompose the space of constant vectors as
VY =R @ T so that the basis vectors split

{K;} ={K1} U{Kum},

where {K} with I = 0,...,ny are a basis for R and {Ks} with M =ny +1,...,nyr
are a basis for 7. The vector fields and two-forms are in one-to-one correspondence with
a basis in R and T respectively®

vectors:  A,!(z) + K,

two-forms: B, M (x) < Ky .

The gauge interactions of the truncated theory are determined by the intrinsic torsion
of the Gg-structure, which in turn is captured by the constants appearing in (II.8). The
first relation defines a bracket [-,-] : V® V — V on V given by

[[v,w]]l~ = (Lwa)I~ = tjf(fvjwf(, Yo,weV.

Since the generalised Lie derivative satisfies L, (L,w) = L ,w + Ly(Ly,w) the bracket
defines a Leibniz algebra. As in Section 2 of [3], one can then choose a splitting V = R®T,
where T is the image of the symmetrised bracket, such that R is the space of vector
multiplets and T the space of tensors.

For a consistent gauging we need to check the conditions given in Section 2 of [3].
They follow from the properties of the generalised Lie derivative as we now show. Recall
first that (¢,)7; = v&tz;7 is an element of the Lie algebra Lie Gyt C ¢g(6)- Since ¢ and
K2 are Eg(6) invariants, the action of ¢, must preserve the cubic tensor C given by (II1.20)
and hence we satisfy one of the conditions mentionned before. Furthermore, by definition

Lyw+ Lyv =d(v®@y w), (I11.26)

SIn the general formalism given in [1, 2] the two-forms were valued in constant sections of the singlet
sub-bundle of N ~ detT*M ® E*, written using dual basis vectors K“, and isomorphic to elements of
V*. The relation to the fields here is that the I index is raised using the symplectic form Q™' defined by
the singlet torsion. Note also that one can consider AL and Bi,, defined for all values of I. However, once
the non-propagating fields are eliminated only Aﬂ and B% are dynamical and the Lagrangian takes the
form given in Section 2 of [3]
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where d is the exterior derivative and ® is the projection onto N ~ det T*M ® E* given
by v @y w = ¢(v,w,-). If v,w € V then the left-hand side of (II1.26) is by definition an
element of 7. Using (I11.20), the right-hand side is just the sequence of maps described in
Section of [3], where the symplectic form on 7 is defined by the composition Q2! = dok?.
Hence (II1.26) implies we satisfy the second condition required for a consistent gauging.

To complete the description of the gauging we identify the embedding tensor and
the Killing vector fields on Myt and My. Since both manifolds are coset spaces, from
(I11.23), the group of isometries is Giso = Gy X G and the embedding tensor is a map

O: V — giso = LieGy1 ® LieGy .

The corresponding gauged Killing vectors k}(qb) and l;:;( (¢) on MyT and My are given
in Section 2 of [3]. If we view K = h!(¢)K; as giving the embedding of Myt in V and
Jo = mi(q)J4 as giving the embedding of My in U then, we can identify the Killing
vectors explicitly from the relations

igpd apig pJ I K
k;0ih” = ©;"k,0ih” = tiz"h™
l%;(axmé = Ok Oxmi = piptm?B

Thus we can identify the embedding tensor as an element of Lie Gy @ Lie Gy

_(epE 0
@f< 0 <p1~>AB>'

Using the Leibniz property that Ly, (Lk ;o) = Lz, k)& + Li;(Lk;) for any gener-
I

alised tensor «, it follows that each set of vectors forms a representation of ggauge. In

other words, we have

K K
trts] =ti5 ti, lpi 5l =tii Pk -

Finally, it is worth noting that the Killing prepotentials descend directly from the moment
maps for generalised diffeomorphisms that appear in integrability conditions for an HV
structure [19] and are given by

g P = e (Js(Lic,Js))

where as above .J, = mZ(q).Ja is the dressed triplet.

It is important to note that generic N = 2 supergravity allows gaugings defined by
an embedding tensor © that is a general element of V* ® giso. However, the fact that our
theory comes from a consistent truncations will typically restrict the form of © to only lie
in certain Gyt X Gy representations in the decomposition of V* ® gis,. For this reason, in
the following we will use 1" to denote the embedding tensor that appears in the consistent
truncations to distinguish it from the more general ©. As a consequence, we will see that
not all the allowed N/ = 2 gaugings can arise from consistent truncations.
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111.3 Classification of 5d N = 2 truncations

We can use the formalism presented in the previous section to provide a classification of
the five-dimensional gauged supergravities that can be obtained as consistent truncations
of M-theory or type IIB.

As discussed above there are two conditions in the derivation of a consistent truncation
using a generalised G g structure: one topological, the existence of Gg, and one differential,
the constant singlet intrinsic torsion.

For our classification we will focus on the topological part and perform a scan of the
possible subgroups Gg of USp(6) that gives inequivalent A/ = 2 truncations. We will as-
sume that the differential condition of having constant singlet intrinsic torsion is satisfied.
Under this assumption a purely algebraic analysis allow to classify the field content and
gaugings of the truncated theory [3]. Already look at the algebraic constaints consideably
reduces the number of possible theory and their gaugings. From the example of maxi-
mally supersymmetric gauged supergravity we know that the differential condition puts
important restrictions on the allowed gauged supergravities [20, 52, 53]. Thus We expect
that not all cases we find in our analyis are actually realised on explicit constructions.
can be solved.

The algebraic problem then consists of the following steps. We first scan for all possible
inequivalent ways of breaking USp(8) to Gg C USp(6) that admit only two singlets in the
fundamental representation of USp(8). Given a Gg with these features, it will embed in
E6(6) as

Eg6) D Gs + Chy (Gs) s

where we are using the “central product”’. We then check whether under this break-
ing the 27° and 78 of Eg) contain Gg singlets, which will determine the vector and
hyper-multiplets of the truncated theory. In each case the singlets will transform under
Chy(s)(Gs) which also determines the form of the scalar manifold M of the truncated
theory

CEy() (Gs)

~ Cusps)/z,(Gs)

(111.27)

Note that by construction the scalar manifolds are always necessarily symmetric spaces
and furthermore are always a product M = Myt X My of vector-tensor multiplet and
hypermultiplet scalar manifolds as in (I11.24).

By scanning all continuous Lie subgroups Gg C USp(6), we find that there are only
a small number of inequivalent Gg structures with the properties above. We list them
here according to the type of breaking of USp(6) that they correspond to. All other
cases either give rise to extra singlets in the 6 of USp(6) or can be obtained as subgroups
of the Gg-structures listed below without giving rise to any new fields in the consistent
truncation.

Br.1 Gg = SU(2) x Spin(p), 2 <p <5.

"By definition, for any group G and subgroup H, the commutant Cq(H) of H in G includes the centre
Z(H) of H. The central product is defined to be H - Cq(H) = (H x Cq(H))/Z(H) where one modes out
by the diagonal Z(H) subgroup. In this case Z(USp(6)) = Z2 and the central product reflects the fact
that the maximal compact subgroup of Eg(g) is USp(8)/Z2 and not USp(8).
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Br.2

Br.3

Br.4

Br.5

These are obtained from the embedding
USp(6) D USp(4) x SU(2) ~ Spin(5) x SU(2),

which gives
6=(4,1)®(1,2),

and by further breaking the USp(4) factor
USp(4) D SU(2) x SU(2) ~ Spin(4),
USp(4) D SU(2) x SU(2) D SU(2)p ~ Spin(3),
USp(4) C SU(2) x SU(2) D SU(2)p € U(1)p ~ Spin(2).

The corresponding branching of the 6 of USp(6) are

6=(2,1,1)®(1,2,1)®(1,1,2),
6=2-(2,1)®(1,2),
6=2-1192-1_1h 2,

for the breaking to Spin(4) x SU(2), Spin(3) x SU(2) and Spin(2) x SU(2), respec-
tively.

Gs = S50(3) and Gg = SU(2).
The relevant breaking is
USp(6) D SO(3) x SU(2),
with the 6 of USp(6) branching as
6=(3,2). (I11.28)
Taking Gs = SO(3) or Gg = SU(2) leads to two different consistent truncations.
Gs = SU(3).
This comes from the breaking
USp(6) > SU(3) x U(1)

which gives

6=3,93_;.

Gs=5U(2) x U(1)
This truncation is obtained by further breaking the SU(3) group of the previous
case. Under SU(3) D SU(2) x U(1), we get

6=21191 21DP21_1D1y_1.

Gs = U(1).

This comes from the same breaking SU(3) D SU(2) x U(1) as Br.4 but taking only
the U(1) factor as the structure group.
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Br.6 Gs = U(1).

This comes from the same breaking as Br.3 and taking the U(1) factor as structure

group.

The breaking listed above can give rise to gauged supergravities with different matter
content and we summarise our results in Table III.1: we list the Gg structure group, the
number of vector /tensor multiplets nyt and hypermultiplets ny, and the associated scalar
manifolds. We see that the possible consistent truncations are limited. In particular, we
find the largest possible truncation consists of only 14 vector/tensor multiplets.

nV’T”‘H 0 1 2
o | ez Go-guy  [G=g0w
M=1 M= S(U@)xU()) M = SO(4)
. Gg = SU(2) x Spin(5) Gs =+S U (2)SXU (g 1()1) )
M =R* M=RT x STRXTM)
5 Gg = SU(2) x Spin(4) Gs=U(1) )
M =R" x SO(1,1) M =R*x S0(1,1) x 5rmgiss;
3| SR b | L gesoan D svey :
= 502 = 502 *S(T@xUD)
| G TSIIOENY | RS sven :
= 5003) = S0(3) *“S(T@xUM)
Gs = SU(2)
5 M= 308 _ _
Gs = SU(2) x Z,
M =R* x S35
o | primas - -
M =RT x 505)
8 ES_ZSL[{?)(}:% - -
- SU®3)
s R - -

Table IIL.1: List of all possible consistent truncation with nyrt vector/tensor multiplets,
nyg hypermultiplets, and the required Gg C Eg(g) structure group, as well as the associated

scalar manifold M.
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Let us again reiterate that the consistent truncations that can be actually realised
will be a subset of those presented in the group-theoretic analysis here. This is because
the requirement that a given Gg structure has singlet intrinsic torsion will introduce non-
trivial differential constraints that a given manifold M must satisfy and which we do not
analyse here.

For every consistent truncations, by looking at the intrinsic torsion it is possible to
determine the allowed gauging. We refer to Section 4 of [3] for the detailed analysis, Here
we will simply summarise our results and stress that only a few gaugings are possible.

As already mentioned we did not Verify that the differential constraint of having
constant intrinsic torsion are actually satisfied. Instead we can show that in some cases it
is possible to find a geometry that realises the G g structure with constant singlet intrinsic
torsion. This will be the subject of our next chapter.

111.3.1 Truncations to only vector and tensor multiplets

We analyse first the possible consistent truncations that give rise to a theory with only
vector/tensor multiplets. Since a consistent truncation necessarily gives rise to a sym-
metric scalar manifold (see Section 2 of [3]), the vector/tensor scalar manifolds that one
can obtain must be symmetric “very special real” manifolds, as classified in [541, 55, 50].

This classification consists of a generic case, possible for arbitrary number of vec-
tor/tensor multiplets, where the tensor Cjj; factorises, with the only non-zero compo-
nents given by

Coij =i, Gj=1,....nvr. (I11.29)
Here n;; has signature (1,nyr — 1) and the scalar manifold is given by
SO(TLVT -1 1)
My =R" ’ I11.30
VTR X TS0yt — 1) (IT1.30)

Additionally, there are a number of “special” cases that only exist for specific values
of nyr and for which Cjj; does not factorise. These are given by

SL(3,R)
= — = 5
Myt = —5 @) nyr =9,
SL(3,C
Myt = SL(3,¢) ; nyt =8,
SU(3)
. (I11.31)
Myt = SUt6) nyr = 14
E(67_26)
Myr = ———, nyT = 26.
Fy
Finally, there is a second “generic case”, which exists for arbitrary nym > 1, but where
the tensor Cjjz does not factorise [56]. The associated scalar manifolds are given by
SO(TLVT, 1)
=27 111.32
MVT SO(nVT) ( )

We want to determine which of these gauged supergravities can arise from a consistent
truncation and how can they be classified in terms of the structure groups Gg listed in
the previous section.
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In order to have a consistent truncation with only vector/tensor multiplets, the gen-
eralised tensors defining the Gg structure must consist of the triplet of adjoint tensor J,,
a = 1,2, 3 corresponding to an H-structure (see Section II1.2) and of ny + 1 generalised
vectors K7y, I=0,1,...nyr satisfying

(I11.33)

with constant Cf 5.
Since the J, are stabilised by SU*(6) C Egg), the structure group must be a subgroup
of SU%(6). Under the breaking Fge) D SU*(6) - SU(2)r, we have

27 = (15*,1) @ (6,2) ,
78 = (35,1) @ (20,2) ® (1,3) ,

where the triplet of J, belong to (1,3) and generate the SU(2)r symmetry. Then, the
first condition in (II1.33), implies that the vectors K; must be invariant under SU(2)pr
and therefore must lie in the real vector space

Y C(15%,1) .

Thus, we can have at most nyp = 14 vector/tensor multiplets and we can immediately
rule out the case nyr = 26 in (II1.31), as well as the case nyr > 14 in (II1.30).

The family (II1.32) is also ruled out, because the isometries of the corresponding scalar
manifolds are not linearly realised. As we discussed in Section II1.2, the isometry group of
the scalar manifold is the commutant in Egg) of the structure group and by construction it
acts linearly on the set of singlet generalised vectors. As a result, the gauged supergravities
with vector/tensor scalar manifolds (II1.32) do not arise from consistent truncations.

All other cases can in principle arise in consistent truncations and in the next subsec-
tion we will discuss from which generalised structure Gg they can be obtained and then
use Gg to study the intrinsic torsion and hence find the admissible gaugings.

a) Generic case

The generic case with scalar manifold (II1.30) corresponds to the structure groups
Gg = Spin(6 — nyr) x SU(2), (I11.34)

of item (Br.1) of the list in the previous section, where for notational convenience we let
Spin(1) = Spin(0) = Z3. Note that (II1.34) implies that we can have at most nyr = 6
vector/tensor multiplets in the truncation. Moreover, the case nyr = 5 and nyp = 6
have identical structure groups. This means that any background admitting a truncation
with nyr = 5 actually admits a truncation with nyt = 6, with the former truncation
being a subtruncation of the latter.

To see how these structure groups arise, note that the structure (II1.29) of the tensor
Cji implies that the vectors Kj can be split into a vector Ko and nyr vectors K; such
that for any 7,5,k =1,...,nyT,

C(K07K07 ) =0, C(K17K]>Kk) =0, C(K()a K, KJ) = MNij » (11135)
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where 7;; has signature (5,1). The vector K corresponds to the graviphoton of the
truncated theory.

By studying the form of (II1.35), we can deduce the stabiliser group of the generalised
vector fields K as follows. Being in the 15* of SU*(6), the vectors Kj can be seen as
six-dimensional two-forms. Then the first condition in (II1.35) is equivalent to

KoNKyg=0,

with A the standard wedge product of p-forms. Thus, Ky must be decomposable and we
can choose a basis of independent six-dimensional one-forms such that

Ko=¢e5Neq.
The stabiliser of Ky is SU(4) x SU(2), embedded in SU*(6) as
SU%6) D SU*(4) x SU(2) x U(1),
15" = (4%,2), ® (6,1)_,® (1,1), ,

with K¢ € (1,1),. This forces the G g structure to be a subgroup of SU*(4) x SU(2). The
other conditions in (II1.35) become

KO/\Ki/\Kj:nija Ki/\Kj/\KkZO, (11136)
where the metric 7;; is invariant under SU*(4) ~ Spin(5,1). From (II1.36) it follows that
K, e (6, 1)_2 .

Thus, there can be at most six vector multiplets of this type.
The structure group Gg can now be easily determined. Since the nyt singlets K;
satisfy the inner product (III.36) of signature (1,nyT — 1) they break SU%(4) to

SU*(4) ~ Spin(5,1) D Spin(6 — nyT) x Spin(nyt — 1,1),

where the factor Spin(6 —nyr) is the stabiliser of the K; while the factor Spin(nyt —1,1)
rotates the K; into each other. Thus, the structure group is given by

Gs = Spin(6 — nyt) x SU(2).

Although the structure groups and the isometry groups are Spin subgroups of Eg ), the
generalised vectors K; never appear in spinorial representations of Gg and hence only see
the orthogonal groups and not their double covers. This is the reason why the case with
nyT = b vectors/tensors can always be enhanced to nyr = 6: on the two-forms K the
Zs structure group acts trivially. Moreover, this is why the coset spaces can be reduced
to take the form (II1.30):

ChEye) (G's) SO(nyr —1,1)
M = Myt = e =R" x !
vt Cusps)/z,(Gs) SO(nyt — 1)

The corresponding isometry group is

Giso = RT x SO(?’LVT -1, 1) X SU(2)R,
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where as discussed above we take Gy = SU(2)Rg, even though there are no hypermulti-
plets, in order to include the R-symmetry. Under Gjs, the space of vectors transforms
as

V=(1,12&(1,n)_1 > (v°,0"),

where the first entries are the SU(2)g representations, n is the vector representation of
SO(nyT —1,1), the subscripts are the R* charges, and i = 1,...,nyr denotes SO(nyT —
1,1) indices.

We can also determine the embedding tensor of the truncated theory and the possible
gaugings. These are encoded in the intrinsic torsion of the Gg structure, which must
only contain Gg singlets for the truncation to be consistent. The detailed analysis is
given in [3]. In Table II1.2 we summarise the allowed gaugings for truncations with only
vectors/tensor multiplet of generic type. Whenever we list a product group, the individual
factors can also be gauged separately even though they are not listed as such. Whenever
there are abelian factors in Ggayge, the U(1)r can also be gauged diagonally with some
combination of these factors.

nyT Giso G gauge nr
1 SU(2)RXR+ U(l)R -
U)r -

+
2 | SU2)r x SO(1,1) xR SO(1,1) 5

SO0(2,1) x U)r

3 | SU(2)r x SO(2,1) x RT 50(2), SO(1,1)

\)

SO(2,1) x U(L)r, SOB3) x U(1)r,
1SO(2) x U(1)g, SU(2)r
50(2) X U(l R, SO(L 1) X U(l)R,
SO(1,1)

4 | SU(2)g x SO(3,1) x R

SO(3) x SO(2,1) x U(L)z, SO(2,1) x SU(2)z,
1S0(2) x U(1)
SO(2,1) x U(1) x U(1)r, SO(3) x SO(2) x U(1)g,
6 | SUR)rx SO(5,1) xRT | 50(3) x SO(1,1) x U(1)g, ISO(2) x U(1) x U(1)g,
SO(2) x SU(2)r, SO(1,1) x SU(2)g
U(l) X U(l)R, SO(L 1) X U(l)R
SO(1,1)

Table II1.2: Allowed gaugings Ggauge Of the global isometry groups Gig, in the generic
cases with nyp vector/tensor multiplets. The first column gives the total number of
vectors and tensor multiplets, the second the global isometry group, the third the allowed
gaugings and the last one the number of vectors that are dualised to tensors in each case.

b) Special cases

The special cases (II1.31) are also associated to some of the generalised Gg-structures we
listed at the beginning of this section. We now discuss case by case what the associated
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structure groups are, we determine the corresponding embedding tensor and hence the
possible gaugings of the truncated theory.

Differently from the generic case it is quite cumbersome to analyse in full generality
the constraints imposed on the gaugings by the Leibniz condition and hence the allowed
gaugings. Thus in this section we will limit ourselves to study what are the largest
reductive groups and largest compact groups that can be gauged.

b).1 nyr =5: This truncation is associated to a Gg = SU(2) generalised structure.
The structure group is taken to be the SU(2) factor in the breaking (Br.2) of USp(6) and
it embeds in SU*(6) as SU%(6) D SL(3,R) x SU(2). Under this embedding we have

15* = (6*,1) @ (3,3)

so that V = (6*,1) and there are six independent singlet vectors giving rise to nyp = 5
vector multiplets. It is easy to check that we also get the expected scalar manifold

M= Mo — Chy(Gs)  SL(3,R)
YT Cusys)z.(Gs) — SO@3)

with isometry group

b).2 nyr =8: This truncation arises for the case (Br.6) and corresponds to a Gg =

U(1) structure group. Under the branching SU*(6) D SL(3,C) x U(1) the vectors decom-
8

pose as

15" =(3®3)®35®3",,

> (,Uadv Ve l_)O'é) )

where raised o« and & indices denote the fundamental representation 3 and conjugate-
fundamental representation 3 of SL(3,C) respectively. Thus for example, since 15* is
real, the two components v* and v“ are related by complex conjugation (v*)* = v and
(v¥B)* = vB% We see that the U 1-singlet space V = (3 ® 3)g is nine-dimensional giving
rise to nyT = 8 vector multiplets.

It is easy to check that (II1.27) gives the expected scalar manifold

M= M . CE6(6)(GS) o SL(3,C)
YT Cuspsyza(Gs) — SU@B)

with isometry group
G =SL(3,C) x SU(2)r .

8Recall that for SL(3,C) the dual and conjugate representations are not equivalent. Here we denote
them by n* and @, respectively.
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b).3 nyr = 14: This is the maximal case, where the invariant vectors span the whole
VY = 15* of SU(6). It does not correspond to any of the generalised structures listed at
the beginning of this section and therefore must correspond to a discrete structure group.
Indeed, since all the K are stabilised and from (II1.27) we have

M= Cry) (Gs) _ SU*(6)
Cuspe)(Gs)  USp(6)’

it is easy to identify the generalised structure as
Gs =2y C Eg) -
The Zy acts diagonally as —1 in USp(6), leading to the global isometry group
Giso = Cly g (Z2) = SU(2)r - SU*(6) .

As before, by studying the intrinsic torsion we can determine the possible gaugings.
In Table ITI.3 we summarise the maximal reductive and compact gauge groups for the
special cases of purely vector/tensor multiplet truncations of this section. As in the
previous table, whenever we list a product of groups, the individual factors can also be
gauged separately even though they are not listed as such. Whenever there are abelian
factors in Ggauge, the U(1)g can also be gauged diagonally with some combination of
these factors.

nyr Giso Ggauge nrt

SL(2,R) x R? =

5 | SU2)r x SL(3,R) SLO.R) X V(i ,

8 | SU(2)gr x SL(3,C) | SUB)xU(1)g, SUR,1)xU(l)g | —
SUG)

14 | SU@2)r x SU*(6)

SU3) x UL)g, SU(3) x U(1) 6

Table I11.3: Maximal reductive and compact gauge groups in the special cases of purely
vector/tensor multiplet truncations. The first column gives the total number of vectors
and tensor multiplets, the second the global isometry group, the third the allowed gaugings
and the last one the number of vectors that are dualised to tensors in each case.

111.3.2 Truncations with only hypermultiplets

Let us now analyse which consistent truncations are possible with only hypermultiplets
and no vector multiplets.

Truncations of this kind are associated to a generalised structures Gg that is defined
by a single generalised vector K in the 27" of Fj), defining a V-structure, and a set of
adjoint tensors J4, A =1,...,dim(Gpy), satisfying

Ja-K=0.
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Since the stabiliser of the V-structure is Fy4) C Eg(), we must have Gg C Fy(y). Finally,
by construction, the scalar manifold must be symmetric

Gu

My = ,
T SU@)g- Cusp(6)(Gs)

(111.37)

where Gy = Cpg 4, (Gg) is the group generated by the singlets J4.
The above considerations already restrict the possible scalar manifolds for the hyper-
multiplets to the following list [57, 58]

My = Fu =7
SU(2)-USp(6) ’
800(4,]7)
MH — 5 nyg = p7 p < 5’
20(4) x SO(p) (I11.38)
2(2)
_ =2
Mu =550y e
SU(2,1
MH = ( ! ) nyg = 17

S(U(2) xU(1))’

where SO¢ (4, p) denotes the connected component of the SO(4, p).

However the first two manifolds do not arise from truly N' = 2 truncations. This is
because they correspond to generalised structure groups that lead to extra singlets in the
decomposition of the 6 of USp(6). For My = %, the structure group is trivial,
Gs = 1, since it is given by the commutant in Fyy of the isometry group. Thus this
truncation always comes from a sub-truncation of five-dimensional maximal supergravity.

Similarly, for the My = %%, with p <5, the structure group has to be

GS = Spln(5 _p) y

with Spin(0) = Spin(1) = Z,. The decomposition of the 6 of USp(6) under Gg always
contains two extra singlets, so that these cases are sub-truncations of half-maximal gauged
supergravity. Indeed, from the commutant of G5 in the full Fg) and USp(8) groups,

Cy (e, (SPIN(5 — p)) = Spin(5,p) x R*,  Cygp(s)(Spin(5 — p)) = USp(4) x Spin(p),

one can easily check that Gg = Spin(5 — p) actually allows for a half-maximal truncation
with p vector multiplets and scalar manifold

__ Spin(5,p)
USp(4) x Spin(p)

M x RT.

This leaves only the two last manifolds in (II1.38) as truly A/ = 2 truncations.

e The case with ny; = 2 hypermultiplets corresponds to a Gg = SO 3 that is obtained
from (Br.2). The structure group embeds as

F4(4) D SU(2> X G2(2)

’ (I11.39)
USp(6) > SU(2) x SU(2) .
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Decomposing the 78 of Eg(g) in representations of Gg = SU(2) gives 6 compact
and 8 non-compact singlets. Altogether they correspond to the generators of Gy(g),
while the compact ones give its SO(4) maximal compact subgroup. Then (II1.37)
gives the expected scalar manifold

Go(2)
SO(4)

M= My =

It is also easy to check that there are no vector/tensor multiplets in the truncation,
since there are no singlets in the 26 of F'y(4) under the branching (II1.39).

The case with ny = 1 tensor multiplet corresponds to the generalised structure
Gs = SU(3) (Br.3). This is embedded as

F4(4) D SU(3) X SU(?, 1),
USp(6) > SU(3) x U(1).

In the decomposition of the 78 of SU(3) one finds 4 compact and 4 non-compact
singlets, which generate SU(2,1). The compact ones give the compact subgroup
SU(2) x U(1) so that we recover the hyperscalar manifold

SU(2,1)

M=M= 50 < @)y

As, again, there are no singlets in the 26 of F44) under the branching to Gg =
SU(3), there are no vector multiplets.

The study of the intrinsic torsions and the gauging for the truncations with only

hypermultiplets is very simple. As the only vector in the theory is the graviphoton in
the universal multiplet, only abelian gaugings are possible. Moreover, in all cases, the
intrinsic torsion only contains the adjoint representation of the isometry group

A
Wit =adGu 2 79 B,

with A, B=1,...dim Gy so that the map T : V — gy, iS

T(W°) = 97y, A=1,...,dimGy.

The generalised Lie derivative on the adjoint singlets is

LiyJa = [Jry, Ja] = —T(Ko) - Ja = poa®Jp,

with the component of the embedding tensor

B A
boA” =ToB>

and the graviphoton can gauge any one-dimensional subgroup of Gy.
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111.3.3 Truncations with vector/tensor and hypermultiplets

The last class of truncations that can arise consists of truncations with both vector/tensor
and hypermultiplets. One way to study this class is to start from the truncations with only
hypermultiplets discussed in the previous section and look for a subgroup of the structure
group Gg that allows for extra singlet vectors but no extra singlets in the branching of the
6 under USp(6) D Gg. This last condition is necessary to have a truly /' = 2 truncation
and leaves only two possible cases: ny = 2 with Gg = SU(2) (Br.2) or ng = 1 and
Ggs = SU(3) (Br.3).
The case with ng = 2 hypermultiplets and hyperscalar manifold

Ga(2)

Mu = SO(4)’

(I11.40)

is immediately ruled out since any further reduction of the Gg = SU(2) structure group
necessarily gives rise to a singlet in the 6 of USp(6). This can be easily see from (I11.28) by
breaking the second SU(2) factor. Therefore consistent truncations with hypermultiplets
forming the scalar manifold (II1.40) and vector/tensor multiplets necessarily arise from
subtruncations of ' > 2 gauged supergravity.

We are left with the case with ny = 1 hypermultiplet and hyperscalar manifold

SU(2,1)

Mu = S(UQ2) x U(L)

The structure group is SU(3) and we can consider two non-trivial subgroups Gg =
SU(2) x U(1) (Br4) and Gg = U(1) (Br.5). As we will discuss below, they allow for
nyt = 1 and nyT = 4 vector multiplets, respectively. Cases with nyT = 2,3 can only be
obtained as sub-truncations of the nyt = 4 case and therefore we will not discuss them
here.

Recall that the scalar manifold of the vector/tensor multiplets in the truncation can
now be computed from the commutant of Gg within the stabiliser groups Gy and Hyy,
in Ege) and USp8/Zs respectively, of the space U of Ja that define the hypermultiplet
moduli. One finds

Gy = SL(3, C) C EG(G) ,

with compact subgroup
Hy = SU(S) C US])(8)/ZQ .

The scalar manifold of the vector/tensor multiplets is then

Ca,(Gs)  Csinee)(Gs)
M = u = ! . 111.41
VTT C,(Gs) — Csue(Gs) ( )

We thus find the two following possible truncations.

e nyt = 1,ng = 1: Consider first the structure group Gg = SU(2) x U(1).
The 27" of Fj() contains two Gg singlets so that V is two-dimensional and nyr = 1.
Thus, the scalar manifold is
SU(2,1)
S(U(2) x U(1))

Myt =R7, My =
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The decomposition of the adjoint of Eg ) gives four compact and five non-compact
G singlets that are the generators of the isometry group

Giso = RT x SU(2,1).

nyr = 4,ng = 1: Keeping only Gg = U(1) C SU(2) x U(1) as structure group
the 27* contains five Gg singlets so that V is five-dimensional and nyr = 4. The
commutators of Gg = U(1) in SL(3,C) and SU(3)

Csr3,0)(U(1)) =SL(2,C) x U(1) x R*,
Csu3)(U(1)) =SU((2) x U(1).
and hence, from (III.41), the scalar manifold is

_50(3,1) n B
Myt = S0(3) x R™, My =

SU(2,1)
S(U(2) x U(1))

The adjoint of Eg) contains seven compact and seven non-compact Gg singlet
elements corresponding to the isometry group

Giso = SO(3,1) x R x SU(2,1).

The analysis of the gauging of the vector/tensor multiplet isometries is the same as for
the nyt = 4 generic case without hypermultiplets, so that the possible gauge groups are
S0O(2,1), SO(3), 150(2), when there are no tensor multiplets, and SO(2) or SO(1,1)
with tensor multiplets. In Table II1.4 we give the list of possible gauging for truncations
with vector/tensor and hypermultiplets. For simplicity we give a list of product groups,
but the individual factors can also be gauged separately. Ggauge, the U(1)r can also be
gauged diagonally with some combination of these factors.

nyrt | NH Giso Ggauge nr
1| 1| sue 1) xs0(1,1) xR U(l)g x RT
S0(2,1) x R x U(1)r, SO(3) x R* x U(1)g,
+ +
A 1| SU@.1) % S0(3.1) x R ISO(2) x RT x U(1)r, SU(2)r xR

SO(2) x U(1)r xR, SO(1,1) x U(1)g x RT
SO(1,1)

Table I11.4: Summary of the gauge groups in the mixed cases. The first column gives the
total number of vectors and tensor multiplets, the second the global isometry group, the
third the allowed gaugings and the last one the number of vectors that are dualised to
tensors in each case.




Chapter IV

Examples

In this chapter we will show that some of the truncations we classified in the previous
section are actually geometrically realised in the sense that we can find a geometry that
admit a certain structure group with a constant singlet intrinsic torsion.

We will derive two consistent truncations corresponding to two different U(1) structure
group. The first one gives four vector multiplets and one hypermultipet and contains the
N = 2 Maldacena-Nunez solution, while the second one will give two vector multiplets
and one hypermultipet and contains the Bah, Beem, Bobev, Wecht (BBBW) solution.

The second example is a consistent truncation that contains a more general class of
warpped Mb5-branes the Bah, Beem, Bobev, Wecht solutions.

IV.1 Truncation containing Maldacena Nunez solution

The Maldacena-Nufiez [31] correspond to warped AdSs backgrounds of eleven-dimensional
supergravity that describe the near-horizon region of M5-branes wrapping a a Riemann
surface  (of negative constant curvature) in a Calabi—Yau geometry.

The world volume theory is topologically twisted in order to preserve supersymmetry.
This amounts in requiring that the spin connection on is identified with a U(1) connec-
tion the SO(5) R-symmetry group of the M5-brane theory. The theory preserves N' = 2
or N' = 1 superconformal symmetry in four dimensions, depending on how the U(1) is
chosen inside SO(5).

The corresponding supergravity solutions are warped products of AdSs times a six-
dimensional manifold, M, which is the fibration of a deformed S* over . The SO(5)
is realised via the action of the isometry group of the round S*. The structure of the
fibration reflects the twist of the world-volume theory and determines the amount of
supersymmetry of the solutions, which in five-dimensional language is either N = 4 or
N = 2, respectively. In this chapter we will focus on the A/ = 2 Maldacena Nunez
solution, which we will call "MN1". The derivation of the largest consistent truncation
containing the N/ = 4 MN solution is worked out in Section 5 of [1].

39
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The eleven-dimensional metric of MN1 is !

§ = e*® gaas, + 96,

where gaqgs, is the Anti de Sitter metric with radius ¢ = %R, R being the length scale of
the internal space M, the warp factor is

2A 2\ /3 2 ~\1/3
™ =3 (34 cos“ ()7

The metric on M takes the form

31/3 1/3 sin? ¢
96:R2W(3+C082C) g +dc2+m((f%+ag+(03+’l})2) .

Here, g is the uniform metric on (a quotient of) the hyperbolic plane = H?, with Ricci
scalar curvature R = —2, while v is the spin connection on satisfying

dv = —vol ,

with vol the volume form on .? The deformed S* is described as a foliation of a round
S3 over an interval, with the interval coordinate being ¢ € [0, 7], while o4, o = 1,2,3, are
the standard SU(2)ef-invariant forms on S3, expressed in terms of Euler angles {6, ¢, 1}.
Their explicit expression can be found in Appendix D of [2], together with more details
on the parameterisation of S*.

The four-form reads

3 2
= RT msin?’CdC/\al/\ag/\(og—{—v) vy
+ sin( (—d(/\03+ ?)Sj—nc(isg)(al /\O‘Q) A vol ] .
Note that the invariant volume form (III.10) is given by
k% = R*vol Avoly, (IV.2)

where voly is the volume form of the round S* of radius R.
The solution has SU(2)iet X U(1)right symmetry, which embeds in the SO(5) isometry
group of a round S* as

50(5) D) 50(4) ~ SU(Q)]eft X SU(2)right D) SU(2)]eft X U(l)right- (IV.?))

We present the solution in a form similar to the one given in [59, Sect. 5]. The precise dictionary with
this reference is: o = ¢, v = —¢, Yamsw = ¥, e2> =22, m~! = lpdsy = %R, where the variables on the
left-hand side are those of [59] while the variables on the right-hand side are those used here. The length
scale R that appears in our expressions is equal to the radius of S* in the related AdS7 x S* Freund-Rubin
solution of eleven-dimensional supergravity. The four-form Fin (IV.1) has an overall opposite sign with
respect to the one of [59], F = —Foumsw; this sign does not affect the equations of motion, it just modifies
the projection condition satisfied by the supersymmetry spinor parameter.
dz?4dy?

2

2Choosing local coordinates z,y on the hyperbolic plane, one can write g = ,vol = dzAdy
_dz

y "

)

and v =
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This symmetry is manifest as the solution is given in terms of the o,. The globally-defined
combination (o3 + v) describes a fibration of S* over , such that the U (1)rignt action on
S4 is used to cancel the U(1) holonomy of

The U(1)rignt factor provides the R-symmetry of the holographically dual N' = 1
SCFT, while SU(2)jef; corresponds to a flavour symmetry. The dual N' = 1 SCFT has
been described in [60].

IV.1.1 Generalised U(1) structure of the MN1 solution

The MN1 solution admits a generalised U(1)g structure, which will be the basis for
constructing the consistent truncation. In order to characterise it we proceed in two
steps. The first is purely group theoretical: it consists in embedding the relevant U(1)g in
FEg(6), computing its commutant and the corresponding decompositions of the generalised
tangent and adjoint bundles. To this end, it is convenient to decompose Eg(g) according
to its maximal compact subgroup USp(8)/Zs. Since the usp(8) algebra can be given in
terms of Cliff(6) gamma matrices (see Appendix E of [2]), this reduces the problem to
gamma matrix algebra. The details of the derivation can be found in Appendix E of [2];
here we will just give the results. Once the relevant U(1)g singlets are identified, the
second step is to express them in terms of the geometry of the six-dimensional manifold
M.

The generalised U(1)g structure of the MN1 solution is the diagonal of the ordinary
geometrical U(1) ~ SO(2) C GL(2,R) structure on the Riemann surface and a U(1)
factor in the SO(5) C SL(5,R) =~ FEjy(4) generalised structure for the generalised tangent
space of the four-sphere. In terms of the isometry group decomposition (IV.3) this can
be identified with U(1)yignt. If we denote by 1 to 4 the directions in M along S4 and by
5,6 those along , the generator of U(1)g can be written as a usp(8) element as

O
u(l)s =1ils — §(F12 —I'34), (IV.4)

where T',, are six-dimensional gamma matrices. The first term corresponds to the U(1)
holonomy of ~ while the second one is the U(1)yight in SO(5). By computing the commu-
tators of (IV.4) in USp(8) we find that the U(1)g structure embeds in USp(8) as®

USp(8) D SU(2) x SU(2)g x U(1) x U(1)g,

where as above we distinguish the factor SU(2)y that gives the R-symmetry of the five-
dimensional supergravity theory. Under this splitting, the spinorial representation of
USp(8) decomposes as

8 = (1’ 2)0 S (2’ 1)1 S (27 1)—1 @ (1’ 1)2 b (1’ 1)—2 )

where the elements in the brackets denote the SU(2) x SU(2)y representations and the
subscript gives the U(1)g charge. We then see that there are only two spinors that are
singlets under U(1)g and that transform as a doublet of SU(2)y as required by N = 2
supersymmetry.

3Here and below we give expressions ignoring subtleties involving the centres of each group; thus for
instance we will not distinguish between embeddings in USp(8) and USp(8)/Z,.
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The embedding of the U(1)s structure in the full Fg) is obtained in a similar way
(see Appendix E of [2] for details)

Eg(6) 2 Cry) (U(1)s) = R™ x Spin(3,1) x SU(2,1) x U(1)s, (IV.5)

where Cpg (U(1)s) is the commutant of U(1)s in Ege). We can now determine how
many generalised vectors and adjoint elements are U(1)g singlets. Under (IV.5) the 27
decomposes as

(—3,-2)

27 = (1,1)(0,8) ® (4, 1)0,—4) © (2,1)(3,-2) (EZ (IV.6)
(2,3)(-1,2)

@(1;3)(2, _4) @ (1, 3)( _y®(2,3)1 @

where the first subscript denotes the U(1)g charge and the second one the Rt charge. We
see that there are five singlets Ky, I =0,1,...,4, where

Ko € (1,1)(0g)
is only charged under the R™, while
{K0, Ko, K3, Ka} € (4,1)(0,—4)

form a vector of SO(3,1).

The singlets in the 78 adjoint representation are the generators of the commutant
CEg (U(1)s). However only the generators of the SU(2,1) subgroup are relevant for the
structure. Indeed, (IV.6) shows that the generators of RT x SO(3,1) do not leave the
singlet vectors invariant, and therefore do not contribute to the truncation. We denote
by Ja, A =1,...,8, the elements of the adjoint bundle generating sus ;. Four of them
are in the 36 of USp(8) and generate the compact subalgebra sus Gu;, and four more are
in the 42 of USp(8) and generate the rest of sus ;.

The U(1)g structure is then defined by

{K;,Ja}, I=0,...,4, A=1,...,8.

The derivation of the explicit expressions for these generalised tensors relies on the
way the solution of [31] is constructed by deforming the AdS7 x S* background dual to flat
Mb5-branes so as to describe their backreaction when wrapping a Riemann surface . The
world-volume theory on the wrapped Mb-branes is made supersymmetric by a topological
twist, where the spin connection on the Riemann surface is cancelled by switching on a
background gauge field for a U(1) subgroup of the SO(5) R-symmetry. On the dual
background the topological twist implies that M is an S* fibration over

St LM

lﬂ (IV.7)

The generalised tangent bundle for S is given by

L~ TS @ A2T*S%, (IV.8)
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and transforms under SL(5,R) =~ Ej4). It is generalised parallelisable, meaning it admits
a globally defined frame [12]. The idea is then to consider first the direct product —x S4,
express the Egg) generalised tensors on this manifold in terms of the frame on  and the
parallelisation on S*, and then implement the twist of S* over so as to make globally
well-defined objects. In the decomposition

Eg6) O GL(2,R) x SL(5,R),

where GL(2,R) is the structure group of the conventional tangent bundle on  and
SL(5,R) =~ FEjq4) is the structure group of the generalised tangent bundle on S4, the
Eg(6) generalised tangent bundle on X 5S4 decomposes as

E~T &((T" ®N)® (AT @N)) @ Ey, (IV.9)
and the adjoint bundle as

adF ~ adFy & (TS @ T*Y) & (T*S ® Ey)

o » 9 . (IV.10)
A TEQRNy) & (TE® E)) & (A*TE @ Ny).

In the expressions above Ej is the generalised tangent bundle on S4 introduced in (IV.8),
ad Fy is the adjoint bundle on §*,
ad Fy ~ R (TS* @ T*5%) @ A3T*5* @ A3TS4,
and Ny and Nj are the following bundles on S,
Ny ~ T*S* @ A*T*S%,
N} ~ R® A3T*S*.
The bundles E4, Ns and Nj admit the globally defined generalised frames
Ej; € T(Ey), EeT(Ny, Eel(N), ij=1,...,5,

see Appendix D of [2] for their expression in a coordinate basis and note that they include a
contribution from the three-form gauge potential Aga of the flux on the S*. Geometrically
this defines a generalised identity structure on S*. Given the way U(1)s is embedded in
USp(8), we will find it useful to also introduce the following linear combinations of the
generalised frame elements E;; on S4,

[1]

1=FEi3+ FEoy, EZo=FEi4—FEy, Z3=FE— E34,
1= FE13 — FEoy, 9=F14+ Fo3, E3=FEi2+ FE3.

[
[1

Since their restriction to T'M corresponds to the Killing vectors generating the SU(2)jef X
SU(2)right ~ SO(4) C SO(5) isometries of S* (see Appendix D of [2] for their explicit
expression), =, and éa, a =1,2,3, may be seen as generalised Killing vectors generating
the corresponding generalised isometries.

As for the Riemann surface , it can be (a quotient of) the hyperbolic plane H? as in
the MN1 solution reviewed earlier, but we can also take a torus 72, or a sphere S?. We
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introduce orthonormal co-frame one-forms ey, es on , such that the constant curvature
metric and the compatible volume form on are given by

g = (e1)? + (e2)?, vol =ejNey. (IV.11)

The metric is normalised so that the Ricci scalar curvature is R = 2k, where k = +1
for S2, k = 0 for T? and k = —1 for H? (and quotients thereof). We also define the U(1)
spin connection, v, on  as

d(e; +ie2) = ivA(er +iea), dv = Kk vol . (IV.12)

The decompositions (IV.9) and (IV.10) allow us to express the U(1)g invariant gen-
eralised tensors in terms of tensors on  and the S* generalised frames introduced above.
We provide the derivation in Appendix D of [2] and here just present the resulting ex-
pressions. Let us first focus on the singlet generalised vectors K;. These can be written
as

KO = eT : (R2 vol A Eé), K172’3 = eT . §17273, K4 = eT : Eg, (IV13)

where T is a section of the adjoint bundle implementing the twist of S* over asin (IV.7),
ensuring that these are globally defined objects on the six-dimensional manifold. Recall
that in the MN1 solution, the U(1) that is used to twist the four-sphere and compensate
the spin connection v on  is the Cartan of SU(2).ighs C SO(5). The Egg) twist element
T is constructed in a way similar to the one used in [1], albeit with a different choice of
U(1) in SO(5). We embed the connection one-form v in a generalised dual vector, the
Killing vector generating the Cartan of SU(2)ignt in the generalised vector Z3 introduced
above, and we project their product onto the adjoint of Ege). That is,

T = —gvxadag,

where x,q denotes the projection onto the adjoint and again R is the radius of S*.
Evaluating its action in (IV.13), we find that this is trivial for all the K;’s except for Ky,
and we obtain our final expressions

Ky = R%?vol A Eé, K1,273 = 21’2’3, Ky =Z3— RvuAFE5. (IV14)

A similar procedure applies to the singlets J4, A = 1,...,8, in the adjoint bundle. In



IV.1 TRUNCATION CONTAINING MALDACENA NUNEZ SOLUTION 45

this way we obtain (see Appendix E of [2] for the derivation)

1.7 - = 1= 5 1= 5
J1 = € - (—R€1 Xadil—R€2 Xad::2+R :T Xad€1+R :; Xadeg),

1T _ —_ 1= ~ 1= ~
Jo = 5€e - (R61 Xad =20 — Reg X021 — R :3 Xad €1 + R :9{ Xadeg),
J3 = %GT' (é1®€2—é2®61—R62 Xad\Il15+R_1\I/>{5 Xad €2

* *
- E5[1 Xad E2]5 + E5[3 Xad E4]5) s

J = 1T (R = — R = R le=x 6, — Rl=* A
4 = 5€ - ( €1 Xad =2 €2 Xad =1 + =9 Xad €1 =1 Xad 62),

1T _ —_ 1= ~ 1= ~
J5 =5€ - (R€1 Xad =1 + Rey Xad =+ R :T Xad €1 + R :; X ad 62), (IV~15)

4
1.7 ~ A

Jﬁz—ge '(el®€1+62®€2+ZE;'k5XadEz'5+2)7

=1
Jr = e¥ - (Reg Xaq U15 + RIS, xaq é2)

Jg = ﬁef (61 ®ea — e ®e; —3Reg Xaq Uis + 3R Wis Xoq &2

— B3y Xad Eajs + E3j3 Xad Eys)

where the superscript * denotes dual generalised vectors, transforming in the 27, and we
introduced Vi; = Re; A E; and Vo = Reg A E;. The adjoint action of eT is evaluated
using the formula (II1.4); we do not show the resulting expressions as they are rather
lengthy. Evaluating the commutators [J4, Jp] using again (II1.6), we checked that the
J 4 satisfy precisely the SU(2,1) commutation relations (the choice of SU(2,1) structure
constants is given in the Appendix F of [2]).

IV.1.2 The V and H structure moduli spaces

We now construct the V structure and H structure moduli spaces. Applying the general
discussion of Section II1.2 we have

CEye) (Gs) Spin(3,1) SU(2,1)
My x My = 6) = R" x 7 x ’ , IV.16
v T Cusps)/z(Gs) SU2) — SU2)m x U(1) ( )

As we now show the first two factors give the V structure moduli space and the last factor
the H structure moduli space.
The V structure

Evaluating (II1.21) for the K constructed above we obtain the constant, symmetric tensor
CryKi. Using the invariant volume (IV.2), we find that the non-vanishing components of
Crji are given by

CO]J:C[()J:C[JOZ%T][J, for I,J=1,...,4,

where
n = diag(—1,—-1,—1,1).
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A family of V structures is then obtained by defining K as the linear combination
I
K =h"Kj,

where h!, I = 0,...,ny, are real parameters spanning My. Fixing & and imposing
(II1.21) it follows that our V structure moduli space is the hypersurface

CrihTh W = B (=(h')? = (h%)? = (B*)2 + (h*)?) = 1. (IV.17)
It will be convenient to redefine the A! in terms of the parameters
(S, H', H? H H*}
as
B =52,
Wl =—-xH', T1=1,...,4, (IV.18)

so that
K = 22K, - (H1K1 + H?Ky + H3K5 + H4K4) .

From (IV.17) we see that H' are coordinates on the unit hyperboloid Ssoé?éﬁ),

—(H')? = (H?)? = (H°)* + (H*)* =1,

while 3 (that we assume strictly positive) is a coordinate on R™, whose powers in (IV.18)
are dictated by the weight of the K;’s under the action of the R™ that commutes with
the generalised structure.
The resulting V structure moduli space thus is
S0O(3,1)
My = Rt x —/—2
v S0(3)

and will determine ny = 4 vector multiplets in five-dimensional N = 2 supergravity. Note
that by identifying SU(2) ~ Spin(3) this matches the first two factors in (IV.16). The
isometry group is SO(3, 1) because the h! form a vector rather than a spinor representation
of Spin(3,1).

The H structure

We next turn to the H structure moduli space, again following the general discussion
given in Section III.2. Since the commutant of SU(2)y in SU(2,1) is U(1), from (I11.22)
we obtain that the H structure moduli space is?

SU(2,1)

Mir = SU@)y x UL

(IV.19)

“More precisely one has My = SU(2,1)/S(U(2) x U(1)).
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This is a simple quaternionic-Kahler manifold of quaternionic dimension ny = 1. We will
denote by

{90757917 62}

the coordinates on this space. In Appendix F of [2] we give the explicit parameterisation
chosen for the coset space as well as the explicit form of the “dressed” su(2) elements
Ja, depending on {p,&, 01,62}, in terms of su(2,1) elements. Below we will use this
dressed triplet to construct the generalised metric. In Appendix F of [2] we also give the
SU(2,1) invariant metric on My, which will provide the hyperscalar kinetic term in the
five-dimensional theory.

IV.1.3 Intrinsic torsion and gauging

For the U(1)g structure constructed in the previous section to lead to a consistent trun-
cation, it must be checked that its intrinsic torsion only contains U(1)g singlets, and that
these are constant. In particular we need to show that the generalised Lie derivatives
closes on the singlets of the truncation (II.8), on the V structure and on the H structure.
For the two conditions we evaluate the generalised Lie derivatives of the tensors K; and
Ja in (IV.14) and (IV.15), using the action of generalised Lie derivative on a generalised
vector and on sections of the adjoint bundle given in Appendix A of [2].

Consider first the algebra of the generalised vectors (IV.14). Using the fact that, under
the generalised Lie derivative, the S* frames E;; generate an so(5) algebra

Lp,Ew=—R" (0Ej — 6aEj, + 6By — 6;1Eu)
one can show that the only non-zero Lie derivatives are
Lk Kpg = —% eapy Ky, a,B,7v=1,2,3, (IV.20)

so that the vectors K, o = 1,2, 3, lead to an SO(3) factor in the gauge group in the five-
dimensional supergravity.> This embeds in the SO(3,1) factor of the global symmetry
group of the ungauged theory in the obvious way. Hence (IV.20) determines the compo-
nents of the embedding tensor acting on the vector multiplet sector of the five-dimensional
supergravity theory.

We thus have that the non-vanishing structure constants are fo5, = —2e€,3, and
the gauge coupling constant is g = %. The non-trivial vector multiplet scalar covariant
derivatives are

DH* = dH" — % ¢*3, A’ H"

while the gauge field strengths read
Fo=dd,  Fr=dA"— L AP nAT, Fl=dAl (IV.21)

In order to determine the gauging in the hypersector we also need to compute the Lie
derivative of the J4 along the generalised vectors K;. We find that the J4 are neutral
under the action of the SO(3) generators K,

Lk, ,Ja =0, A=1,...8,

S5For simplicity, we use the indices o, 8 = 1,2, 3 both to label the generators of the SU(2)u entering in
the definition of the H structure and the generators of the SU(2) in the V structure, although these are
different subgroups of Eg ).
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consistently with the fact that the gauging in the vector multiplet sector does not affect
the hypersector. On the other hand, the remaining generalised vectors Ky and Ky act
non-trivially on the J4, and determine an abelian gauging of the SU(2,1) generators. In
detail, the generalised Lie derivative of the J4 along K gives

Licy(Ji — J5) =0, LicoJs = =556
Lio(Ji+ J5) = §(Ja + Ju), LicyJo = =55 (J3 + 2J7 — V3Jg) (v.22)
Liy(Jo+Ji) =0, LiyJ7 = %76, '
Lio(Jo— Js) = =5 (1 — J5) Ly, Js = T@JG,
while the one along K, yields
Li,(Ji = J5) = —2(Ja + Ja) LryJs = 55 J6
Licy(Ji+ J5) = = 2(Jo — Ja) — & (Jo + Ju) Li,Jo = 55 (Js + 2J7 — V/3J3) |
Li,(Jo+Js) = 2(J1 — J5), Lg,J: =—%Js,
Li,(J2 = Ja) = (J1 + J5) + 5(J1 = J5) Li,Js = =35 Jg .
(IV.23)

The actions (IV.22) and (IV.23) can equivalently be expressed in terms of an adjoint
action as

LioyJa = [J(ry)s Jal L, Ja = [J(ky)s Jal s A=1,...,8,
where the sections of the adjoint bundle
Jiio) = 11 (Js +2J7 — V3Js)
i) = —15 (Js+2J7 —V3Js) — % (Js + 757%)

correspond to SU(2,1) generators acting on the H-structure moduli space (IV.19) as
isometries. We denote by ko and k4 the corresponding Killing vectors on My. We refer
to the Appendix B of [2] for this computation.

ko = O,
ky = —k 85 + 2 (928@1 — 91892) . (IV.24)

These Killing vectors specify the isometries of My that are gauged in the five-dimensional
supergravity. The hyperscalar covariant derivatives are determined as

D(0y +i6s) = d(61 +162) — 1A% () +i65),
DE = dé+ A0 — =A% (IV.25)

The triholomorphic Killing prepotentials P;* obtained by evaluating the moment maps
read

={0,0, ;¢*},
2 = {V2eP01, V2eP0y,—1+ e (207 + 205 — k) },
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with P* = P3* = Pg* = 0.

The information above completely characterises the five-dimensional N’ = 2 super-
gravity obtained upon reduction on M. This will be discussed in Section IV.1.5. Before
coming to that, we provide the explicit bosonic truncation ansatz.

IV.1.4 The truncation ansatz

The bosonic part of the truncation ansatz is obtained by imposing that the generalised
tensors are expanded in singlets of the Gg structure. The generalised metric is obtained
by constructing the K and J, parameterising a family of HV structures as detailed in
Section II1.2, and plugging these generalised tensors in the formula (IV.26). The resulting
generalised metric depends on the H and V structure moduli; when given a dependence
on the external coordinates x*, these are then identified with the hyperscalar and vector
multiplet scalar fields of the truncated N = 2 theory, respectively. Thus we have

K = hl(z)K;

iving GMY (z) £ IV.27),
T — L(l’)jaL(l‘)_l} giving () from ( )

where L is the representative of the coset M. Given this HV structure, one can construct
the generalised metric as

(KK VY2 oK V,V) oK, Js-V,J5-V)
-2 4 IV.2
(K KR! AR KR T ax xR ) V)

G(V,V) = 3 (3

where ¢ is the Egg) cubic invariant and V' is a generalised vector.

For the purpose of constructing the truncation ansatz by comparing with (II1.11), we
will also need the inverse generalised metric. We can exploit the isomorphism between
the generalised tangent bundle E and its dual E* provided by the generalised metric to
construct a USp(6) singlet K* € T'(E*) as K*(V) = G(K, V'), where V is any generalised
vector. Then, denoting by Z € I'(E*) a generic dual vector, the inverse generalised metric
is given by

C*(K*,K*,K*)2 - C*(K*,K*,K*) C*(K*,K*,K*)

(Iv.27)
the cubic invariant ¢* and of the adjoint elements J, on the dual generalised vectors have
been defined in (IIL.3) and (IIL.5). Comparing the expression for the inverse generalised
metric with its general form (III.9), we obtain the truncation ansatz for A, gmn, Amnp
(as well as A, g, whenever it is needed). Note that k2 given in (II1.10) is independent
of the scalar fields h!(z) and L(z), so it can be evaluated using any chosen representative
of the family of HV structures defined by the Gg structure.

The gauge potentials A, (z) on the external space-time are defined by taking

* * * 2 * * * * . .
Gl(Z,Z)—3<3 (K*, K*, Z) ) (K*, Z,7) 4c(K,J3 Z,J3 Z)>’

A, = A (x)K; € T(T*X) @ span({K }) (IV.28)

where span({K;}) C I'(E) is the vector space spanned by the set of Gg singlets K7,
I1=0,1,...,ny. Similarly the two-form fields are given by

B = Bui(z) K] € D(A’T*X) @ span({K]}), (IV.29)
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where span({K/}) C I'(det T*M ® E*) is the vector space spanned by the weighted dual
basis vectors K/, the latter being defined by K/ (K ) = 3k? 4§’ ;. We also have

Cuvp = Cuup” (2) Ty € T(AT*X) @ span({J1}), (IV.30)

where span({.J%}) C T'(det T*M ® ad(F)) is spanned by the Gg singlets in the weighted
adjoint bundle, here denoted by J,b4 and given by J,b4 = k2J4. In Appendix C of [2] we
show that these expressions, together with the field redefinitions (II1.8), lead to the correct
five-dimensional covariant objects, consistent with the expected gauge transformations.

We compute the inverse generalised metric (IV.27) out of the U(1)g invariant gener-
alised tensors. This depends on the V structure moduli {, H', H? H?, H*} and on the
H structure moduli {p, &, 01,02}, which are now promoted to scalar fields in the external,
five-dimensional spacetime. Then we evaluate the generalised tensors A, By, Cpyp using
(IV.28)—(IV.30). Separating the components of these tensors as described in Appendix C
of [3], we obtain the ansatz for the eleven-dimensional metric § and three-form potential
A.

We start from the covariantised differentials D2" = dz"™ —h,"da#* of the coordinates
on M, that appear in (IIL.7). From (IIL.11) and (IV.28) we see that h, = h, 0y, is given
by

hy, = Aﬁ Krlrar

where Kj|pps is the restriction of K to the tangent bundle of M. Evaluating the right
hand side using the explicit form (IV.14) of the generalised vectors K7, we obtain

hy = % (A% &+ AL &), (IV.31)

where we recall that &, €4, o = 1,2,3, are the pull-back to TM of the SU(2)jef- and
SU(2)rignt-invariant vectors on 53, respectively, whose coordinate expression is given
in the corresponding paper in (VI). It follows that Dz™, and thus both the eleven-
dimensional metric and three-form, contain the five-dimensional gauge potentials A,
A%, gauging the SU(2)ete x U (1)rignt isometries of S3 in M. Notice that A° does not
appear in (IV.31) as K does not have a component in T'M, hence it will not enter in the
eleven-dimensional metric. However Ky will appear in the ansatz for the three-form, as
it does have a component in A2T*M.

In order to express our ansatz in a more compact way, it will be convenient to introduce
new one-forms €2, and ﬁa, a = 1,2,3, adapted to the symmetries of the problem, that
incorporate the covariantised differentials above but also include some more terms. Recall
that we describe S* as a foliation of S3, parameterised by Euler angles {#, ¢, %}, over an
interval, parameterised by (. We define

Q1 =cosy DO+ sinysinf Do, lecos¢D9+sin¢sin9D¢,
Qy = —sinv DO + cos¢sinf D¢, Qs = sin ¢ DO — cos ¢sin 6 Dip
Q3 = Dt + cos 0 D¢, Q3 = D¢ + cos 6 D1,

which are analogous to the left- and right-invariant forms o4, 4 given in (VI), but with the
ordinary differential of the coordinates being replaced by the new covariantised differential
D. This extends the differential D given above and is defined as

D2 = dz" — Z(A“ET + ALY,
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with

Al = %(9261 —9162), A% = %(9161 +92€2), A3 = —§U+A4,

AY = A, a=1,23, (IV.32)
where the five-dimensional scalars 61, 65 are two of the H structure moduli, and we recall
that ey, eo are the vielbeine on the Riemann surface  while v is the connection on
The local one-forms A%, A* gauge all the left- and right- isometries of S3, respectively,
and would correspond to SO(4) ~ SU(2)1est X SU(2)right gauge potentials in the reduction
of eleven-dimensional supergravity on S* down to seven-dimensional supergravity. How-
ever, in the further reduction on  of interest here only A%, A* become five-dimensional
gauge fields, while the rest of (IV.32) implements the twist on the Riemann surface and
introduces the five-dimensional scalars 61, 6.

We are now in the position to give the truncation ansatz for the eleven-dimensional
metric
g = e2Angx“d:U” + gmn D2 D2" .

The warp factor is
eQA _ A1/3 (eapz)4/5 7

while the part with at least one internal leg reads

Gmn D2 D2" = R251/3(e@2)76/5 g + RZA72/3e20/55,73/5 [(6_29"23 sin? ¢ + H_ cos? C) d¢?

+ LH, sin® (6%, ® Q5 — Lsin? ¢ H* Q, ®, Q3 — cos Csin  d¢ @4 d6H+} :

where ®, is the symmetrised tensor product, defined as Q ®, Q = 1o Q+Q®Q). In
these expressions we introduced the function

A = (e’2“"23)_4/5 cos® ( + (e*2W23)1/5H+ sin® ¢,
as well as
Hy = H*+ (Hlsinesin¢—stinﬁcosqﬁ—i—H?’cosG) ,
d¢H, = H'd(sin@sin ¢) — H? d(sinf cos ¢) + H> d cos .

Note that in the last expression the exterior derivative acts on the internal coordinates
and not on the scalars H!, which only depend on the external coordinates.

We next come to the eleven-dimensional three-form potential A. We first give our
result and then make some comments. The ansatz for A reads

A= —1R%cos( [2+sin®¢ A e 2em3) 45O A Qo A Q
+ IR sin® CAT N (e 2SS AC A HO Q0 A Qs
+ R? cos ¢ (D€ — 61D0 + 6,D6,) Avol +1R3cos¢ (29% +202 - m) vol AQ3
+ %R2COSC(}"4 AQ3 — F*AQq) 4 R cos ¢ S x5 FO

+ 535 B cos [ (DOs A el — Dby A e?) A+ (D01 A el + Dby A e?) A QL{1V.33)
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where the five-dimensional gauge field strengths, F, and the covariant derivatives, D, of
the five-dimensional scalars were given in (IV.21) and (IV.25), respectively.

Equation (IV.33) has been obtained by first computing A through the general pro-
cedure of Section III.1, then implementing a gauge shift by an exact three-form so as
to obtain a nicer expression (this is why derivatives of the external fields appear), and
finally dualising away the five-dimensional two- and three-forms, so that the only five-
dimensional degrees of freedom contained in the ansatz are scalar and vector fields, in
addition to the metric g,,,. Let us outline how this dualisation is performed. Evaluating
(IV.29) and (IV.30), we find that only one external two-form B and one external three-
form C appear in the ansatz for A. These are paired up with the generalised tensors Fs
and Ef on S*, which, as generalised tensors on M, are sections of det 7*M ® E* and
det T*M ® ad F, respectively. The combination entering in A is

[BEs +CEf], = RBAdcos¢+ RCcos¢ = (C—dB)Rcos¢ +d (BRcos() ,

where the subscript on the left-hand side indicates the restriction to the three-form part,
and the last term in the expression is removable via a gauge transformation of A. Hence B
and C only appear in the combination (C —dB). This means that the two-form gets eaten
by the three-form via the Stuckelberg mechanism, giving it a mass. While a massless
three-form in five-dimensions is dual to a scalar field, here we dualise the two-form at the
same time and also obtain a vector field. The duality relation is obtained considering the
duality between the eleven-dimensional three-form A and six-form A given in (IT1.1), and
looking at the relevant terms with three external indices. In this way we find that

C—dB = S x5 dA” — A" AdAY + A* ANdAY — J5eap AN AT A AT

We have used this expression to eliminate (C —dB) completely from the truncation ansatz.
This explains the 57" term appearing in (IV.33).

Our truncation ansatz reproduces the Maldacena—Nufiez solution upon taking kK = —1
and setting the scalars to

H'=H*=H=0,=0,=£(=0, H'=Y=1, ¢p=1log}. (IV.34)

The consistent truncation of [1] is recovered as a subtruncation that projects out the
fields transforming under SU(2)ief, that is setting A* = H* = 0, o = 1,2, 3, which also
implies H* = 1.5 The further truncation to minimal gauged supergravity is obtained by
setting the scalars to their AdS value (IV.34) and taking A% = —A*.

One can obtain a slightly larger subtruncation by projecting out only the modes
charged under U(1)eg, rather than SU(2)ieq, namely setting A' = A2 = H' = H? = 0.
This leaves us with two vector multiplets, one hypermultiplet and just the abelian gauging
generated by the Killing vectors (IV.24), which is the same as the one in the truncation
of [61]. A generalisation of this subtruncation will be discussed in Section IV.2.

5Then the one-forms €, essentially reduce to those in [61], up to slightly different conventions, while
ﬁa drop out of the ansatz. When comparing our truncation ansatz with the one given in Section 4.1 of
[61], one should take into account that A" = —A"™NR (this is seen from comparing our 11d Maxwell
equation with the one in [62], which provides the 7d to 11d uplift formulae used in [61]). Moreover
Chere — CFNR _'_7_[_/27 ./44 x AFNR7 AO x Xll-?NR’ N = 21/32FNR’ eQn,a — 2(62¢)FNR’ ‘0172| — %|91’2|FNR7

¢ = LgFNR
3 .
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The truncation of [61] was obtained via a reduction of gauged seven-dimensional su-
pergravity on the Riemann surface . Similarly, we can obtain our truncation ansatz by
combining the well-known truncation of eleven-dimensional supergravity on S* [11], lead-
ing to seven-dimensional maximal SO(5) supergravity, with a further truncation reducing
the seven-dimensional theory on . Starting from the convenient form of the bosonic
truncation ansatz on S* given in [63], we have explicitly checked that this procedure
works out as expected and reproduces the ansatz above.

IV.1.5 The five-dimensional theory

We now put together the ingredients defining the truncated five-dimensional theory and
discuss it in more detail. This is an N = 2 gauged supergravity coupled to four vector
multiplets and one hypermultiplet. The vector multiplet scalar manifold is

S0O(3,1)
— Rt x 2222~/
My *750(3)
while the hypermultiplet scalar manifold is

SU(2,1)

My

T SUQ)u x UQ)

As discussed before, these have a geometric origin as the V and H structure moduli spaces
of the internal manifold. At the bosonic level, the vector multiplets are made of gauge
fields A’ and constrained scalar fields h!, I = 0,1,...,4, which we have parameterised
in terms of ¥ and H', I = 1,...,4, in (IV.18). The latter scalars satisfy the constraint
nryH'H? = 1, with n = diag(—1, -1, —1,1). We have also found that the non-vanishing
components of the symmetric tensor Cyjx are given by

Cors = Cros = Crio = 5717, I,J=1,...,4.

The kinetic terms in the vector multiplet sector are controlled by the matrix ajs, given
by the general formula

ary = 3hrhy — 2Cyh’ (IV.35)
which in our case reads
agy = £ %7,
apy =0,
a[J:%E_z (Qn[KHKUJLHL—T]]J) 5 I,J:L...,4. (IV36)

The hypermultiplet comprises the scalars ¢X = {, &, 601,60}, and the kinetic term is
given by the quaternionic-Kéhler metric on My that we derived in Appendix B of [2],

gxydg¥dg" = 2dg? +¢* (d67 + d63) + § e (d¢ — 010> + 02d01)* . (IV.37)

The gauge group is SO(3) x U(1) x R. The symmetries being gauged are the SO(3) C
S0O(3,1) isometries of My and two abelian isometries in My, generated by the Killing
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vectors (IV.24). Note that the O¢ term generates the non-compact R factor and the
0209, — 6010y, term generates the compact U(1).
We recall for convenience the gauge field strengths

FO=dA®, Fe=dA® —gep AP NAT,  Fl=dA', a=1,23,
and the covariant derivatives of the charged scalars,
DH = dH* — %2 ¢35, A° H",
D0y +165) = (01 +i62) — Z2i A% (6 +1i62),
D¢ = dg+ A — £ A,

where the gauge coupling constant is given by the inverse S* radius, g = %. The scalars

¥, H* and ¢ remain uncharged. The gauging in the hypersector is the same as in [(1],

while the gauging in the vector multiplet sector is a novel feature of our truncation.
Plugging these data in the general form of the N’ = 2 supergravity action given in

Appendix B of [2], we obtain the bosonic action for our model,
1 4
_ _ _ 1vdp0 0_ 3 1 J _ oy—2
S = 167rG5/[(R 2V) x 1 — LSAFO A« F QI;IWF A F7 = 2572d8 A +dS
4 ’ 4
—3 3" aD(SH) A+D(SHY) — gxy DX AxDg” + Y g A N FIAF],
1,J=1 I,J=1

where G5 is the five-dimensional Newton constant.” The scalar potential V is obtained
from the Killing prepotentials of the gauged isometries as in Appendix B of [2].

1 (et 2H*e?
V:R2{4E4_ S + 22 =24 ¢ (2((H")? — 1) (6} + 63) — k)
+ ée4“0(2(H4)2 — 1) (207 + 263 — H)ﬂ} : (IV.38)

The supersymmetric AdS vacuum conditions summarised in are easily solved and give
the scalar field values

H' =H>=H>=6,=0,=0, H*=%=1, ¢p=1logt (IV.39)

that is precisely the values (IV.34) that reproduce the MN1 solution reviewed in earlier in
the section. The negative curvature k = —1 for the Riemann surface arises as a positivity
condition for the scalars ¥ and e*?. The critical value of the scalar potential yields the
cosmological constant A =V = —%, corresponding to an AdSs radius ¢ = %R, again in
harmony with the MN1 solution.

" As discussed in [30], the five-dimensional Newton constant is given by (G5) ™' fM 32 volg = fM K2
In the present case, f o k? = R?Vol Voly, where Vol = @ is the standard volume of a Riemann

surface of genus g and Voly = %R‘l is the volume of a round S* with radius R.
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By extremising the scalar potential (IV.38) we can search for further AdS; vacua
within our truncation. Then, by analysing the mass matrix of the scalar field fluctuations
around the extrema we can test their perturbative stability. In the following we discuss
the outcome of this analysis for the three extrema that we have found.

o We recover the supersymmetric vacuum (IV.39). Being supersymmetric, this is sta-
ble. The supergravity field fluctuations source SU (2, 2|1) superconformal multiplets
in the dual N =1 SCFT [60], with the supergravity mass eigenvalues providing the
conformal dimension A of the operators in the multiplets. The field fluctuations that
were also considered in [(1] correspond to the energy-momentum multiplet (contain-
ing the energy-momentum tensor with A = 4 and the R-current with A = 3) and
to a long vector multiplet of conformal dimension A = 1 + /7 (see [(1] for more
details). The additional SO(3) vector multiplet included in this paper sources a
conserved SO(3) flavour current multiplet in the dual SCFT. The three scalar oper-
ators in this multiplet have conformal dimension A = 2 (once) and A = 4 (twice),
while the SO(3) flavour current has conformal dimension A = 3, as required for a
conserved current. Another piece of information about the dual SCFT is given by
the Weyl anomaly coefficients; these are obtained from the five-dimensional Newton

constant G5 and the AdSs radius £ through the formula a = ¢ = %.

e When k = —1 we also recover the non-supersymmetric vacuum discussed in [61],
that was originally found in [64]. The analysis of the scalar mass matrix shows
that the fluctuation of H* has a mass squared m2¢? ~ —4.46, which is below the
Breitenlohner-Freedman bound ¢*m3, = —4. We thus establish that this vacuum
is perturbatively unstable. Note that the unstable mode lies outside the truncation

of [61].

e For k = +1, we find a non-supersymmetric vacuum with non zero value of the
H-scalars, given by

_3V5 21/6

21/3 A
= 62@:* H 01:92:0, EZBW

=5 3 1

R,
where £ is the AdS radius. This appears to be a new solution. It represents an SO(3)
worth of vacua really, since the scalars H¢, o = 1, 2, 3, can take any value such that
VHY)?2 + (H?2)2+ (H3)?2 = /(HY)2-1= @. We find that a linear combination
of the fluctuations of ¥, ¢ and H* has mass squared m2¢? ~ —5.86 < m%FEQ, hence
this vacuum is perturbatively unstable. Nevertheless, it allowed us to perform a
non-trivial check of our truncation ansatz for non-vanishing H-fields, as we have
verified that its uplift does satisfy the equations of motion of eleven-dimensional
supergravity.

IV.2 Truncations for more general wrapped Mb-branes

The N =2 and N = 4 Maldacena—Nuriez solutions are special cases of an infinite family
of N' = 2 solutions [65, 32],® describing M5-branes wrapping a Riemann surface in a

8See also [66], where a subset of the solutions was previously found.
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Calabi—Yau geometry. These solutions, which we will denote as BBBW solutions, have
the same general features of the MN1 solution. In particular, they all admit a generalised
U(1)g structure, which we use to derive the most general consistent truncation to N' = 2
gauged supergravity in five dimensions associated with such backgrounds. As we will
see, the truncated theory has two vector multiplets, one hypermultiplet and gauge group
U(1) x R. It generalises the U(1)yjgnt invariant subtruncation of the truncation presented
in the previous section: the matter content is the same and the gauging is deformed by
one (discrete) parameter. Our systematic approach allows us to complete the consistent
truncation derived from seven-dimensional maximal SO(5) supergravity on  previously
presented in [67] by including all scalar fields in the hypermultiplet and directly deriving
the gauging.

IV.2.1 The BBBW solutions

The BBBW solutions describe Mb5-branes wrapped on a Riemann surface , such that
the (2,0) theory on the branes has a twisting over  depending on two integer parameters
p and gq. The way the Riemann surface is embedded in the ambient space determines the
local structure of the latter. The authors of [65, 32] showed that there is an infinite family
of allowed geometries, corresponding to the fibration £1 & Lo —  of two complex line
bundles over the Riemann surface, so that the total space is Calabi—Yau. The degrees of
these line bundles are identified with the integers that parameterise the twist of the M5
world-volume theory, p = deg £1 and ¢ = deg L5. By the Calabi—Yau condition p and ¢
must satisfy p + ¢ = 2¢g — 2, with g the genus of . In this setup, the ' =1 and N = 2
twistings considered in [31] arise from setting p = ¢ and ¢ = 0 (or p = 0), respectively.
The corresponding AdSs5 Xy, M supergravity solutions are generalisation of the MIN1
solution reviewed in Section IV.1. The eleven-dimensional metric is a warped product

4§ =e* gags, + 96,

with warp factor
Q20 2 — 2f0AL/3

where ¢ is the AdS radius. The six-dimensional manifold M is still a fibration of a
squashed four-sphere over the Riemann surface, with metric

g6 = Al/3e2004 | %5—2/3947

where the Riemann surface metric g satisfies (IV.11), (IV.12), and the metric on the
squashed and fibered S* is

g1 = Xg ' dug + D X7 (dpif + i (depy + AW)?). (IV.40)
i=1,2

The angles @1, @2 vary in [0,27],” and

o = cos m:sinCcosg, Mgzsingsing,

9They are related to the angles of Section IV.1 by ¢1 = —(¢ +1)/2 and 2 = (¢ — ) /2.
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with ¢, 0 € [0,7]. The two circles ¢ and g are independently fibered over the Riemann
surface, with connections

—1+Z’U A(z):_l—z
2 2

AD —

v,

where v is again the connection on and the discrete parameter z is related to the integers
p and q as
_p—q
z = —.
p+q
The warping function A and the constants fo, go depend on z and on the curvature & of
the Riemann surface as

2
A=Y"Xpg, e=x7', e =-1rX1X5[(1-2)X1+ (1+2)Xs],

1=0
with
Xo = (X1X2)7?,
_ 142
X1 X, = ,
2 2z — kV1 + 322
o L+ T2 722 4+ 3323 + k(1 + 4z + 192%)V/1 + 322
r 42(1 — 2)2 '
The four-form flux is given by
. 1- 2 _ _
P=— A7 | S0 (XFud — AXy) + 24X, voly
1=0

1~ 2 , A
+ = ATYENT X [d(pd) A (dg + AD) ) AAAD
=1

where the Hodge star #4 is computed using the metric (IV.40).

The solution has two U(1) isometries corresponding to shifts of the angles ¢1, 2 that
parameterise the two diagonal combinations of the U(1)yigns and U(1)ief subgroups of
SO(5). It turns out that neither of them corresponds to the superconformal R-symmetry
of the dual ' = 1 SCFT, which is given by a linear combination involving X7, Xs [65, 32].

IV.2.2 Generalised U(1)s structure

The construction of the generalised structure associated to the BBBW solutions follows
the same lines as for the MN1 solution. We first embed the ordinary U(1) structure in
FEg(6) and then look for the invariant generalised tensors. The generalised U(1)gs structure
of the solutions is determined by the topological twist of the M5 world-volume theory, as
a linear combination of the U(1) holonomy of and the U(1)yigns and U(1)ies subgroups
of the SO(5) R-symmetry group

U(l)s ~ U(l) - U(l)right -z U(l)left .
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This embeds in Fgg) as an element of its compact subgroup USp(8) with generator

N i N N
u(l S = iF56—7 pF12—qF34 s V.41
M . ) (IV.41)

where ['sg is the uspg element generating U(1) and %(fm + I'34) generate U (1) Jright -
When p = ¢ we recover the U(1)g structure group of the MN1 solution, whereas ¢ = 0
(or p = 0) gives the MN2 structure considered in [!]. Below we assume that p,q are
generic, and do not fulfill these special conditions which as we have seen lead to a larger
truncation.

By looking at the singlets under u(1)s in the 27 and 78 representations of Eg ), we
find that the U(1)g structure is defined by eight J4, A =1,...,8, in the adjoint bundle
and three generalised vectors K7, I = 0,1,2. The singlets in the adjoint bundle have the
same form (IV.15) as for the MN1 solution, while the three singlet generalised vectors
take the same form as a subset of the MN1 generalised vectors,'”

Ko = e¥ - (R*vol AEY),
Ky = eT'E3a
KQ = eT-Eg.

However now the twisting element T has a more general form dictated by the embedding
(IV.41), that is

T = UV Xad (p E12 — qE34) . (IV42)

Pt
This makes our generalised tensors globally well-defined. We emphasise that these depend
on the integers p, ¢ only through (IV.42).

IV.2.3 Features of the truncation

The number of U(1)g singlets in the 27 and 78 implies that the truncated supergravity
theory contains two vector multiplets and one hypermultiplet. The H structure moduli
space is the same as for the MN1 case,

SU(2,1)

Mu = T2 < U

As before, this is parameterised by real coordinates ¢* = {¢, €, 601,62} and the metric
is given by Eq. (IV.37). The V structure moduli space is determined again following
our discussion in Section III.2, and is a subspace of the one for the MN1 truncation.

10Before acting with Y, the singlets for the BBBW solutions are related to those used for the MN1
solutions as
Ko= KMNU g = gMNU o pgeMNL

and to the structure of the MN2 solution in [1] as

Kl — KéV[NZ + (Ké\/[NZ + ]{é\/INQ)7

1
Ko = %(Ké\’lNz _ Ké\/IN2)7 Ko = KMN2 _ g(KéwNz KN
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Evaluating the cubic invariant on the singlets K as in (II1.21), we obtain that the non-
zero components of the Cjji tensor are

Cors =Cros =Crjo= 317, for I,J=1,2,

with n = diag(—1, 1) . Parameterising the V structure moduli as in (IV.18), with I =1, 2,
the constraint (II1.21) gives the equation of the unit hyperboloid SO(1,1),

—(HY)? + (H?)? =1,
while again ¥ parameterises RT. Thus the V structure moduli space is
My = R" x SO(1,1).
The kinetic matrix ay; then takes the same form (IV.36), that is
agy = 3 54,
apr = ap2 =0,

20HY? +1 —2H'H? )

2 y—2
= 5 2 I, J - 1, 2 .
MI=3 ( _9H'H?  2(H?)? -1

The gauging of the reduced theory is obtained from the generalised Lie derivative L,
acting on the K; and the J4. The Lie derivatives among vectors are now trivial,

Li,K;=0, 1,J=0,1,2. (IV.43)

The Lie derivatives Lk, J4 are conveniently expressed as the adjoint action of SU(2,1)
generators,

Ly Ja = [J(xy)s Jal L, Ja = [J(ky)s Jal L, Ja = [J(ky)s Ja] -
Evaluating the generalised Lie derivatives we find
o) = 15 (J3 +2J7 — V3J3)
Jiry) = 1 k7 (J3+ 207 — V3Js)
Ty = —qg £ (J3 + 27 = V3Js) — § (J3 + 5 Js) - (IV.44)
Eq. (IV.43) implies that the vector multiplet sector is not gauged, so the field strengths

are all abelian,
Fl=dAT,

while (IV.44) specifies the gauging in the hypermultiplet sector in terms of x and z. The
SU(2,1) generators act as isometries on Myy; the corresponding Killing vectors can again
be computed as before and read

ko = O |
k1 = kz0g,
ky = —kK O + 2 (0209, — 010p,) -
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It follows that the covariant derivatives of the charged scalars are
D(91 + 192) = d(91 + 192) — % i.A2 ((91 + 102) ,
D¢ = d§+%AO+%ﬁ(zA1—A2> ,
1

where again the inverse S* radius % Pplays the role of the gauge coupling constant. The
Killing prepotentials can be computed using formulas in the Appendix B of [2], and read

Py ={0,0, e},

Pt = {0,0, %K,ZGZ‘D},

Py = {V2e%01, V2e%0y, 1+ 1e* (207 + 205 — k) } . (IV.45)
Notice that for z = 0 (that is p = ¢), the quantities above reduce to those obtained for

the MN1 structure in Section IV.1.3.
The five-dimensional bosonic action is then determined to be
_ 1 1 v4 0 0 3 2 I J -2
S = 167rG5/ [(R—2V)*1—§E FoNxF _5121@]}— A*F7 —2¥74dY A *xdX

2
=33 ap dSH) Axd(SH) — gxyDg* A¥Dg" — AP A (FUAFH = F2 A IQ)} :
I,J=1

where the scalar potential reads

v 1 ety 2e2¢ F2
T R? {424 DS

+ ¥ { —24e% (2(H1)2(9% +63) — m)

1
5 (Y + (1)) (267 + 203 — )

+zK (zm (HY)? + 2k (H?)* + AH"H? (267 + 65 — m)) } } :
It is straightforward to analyse the supersymmetric AdSs vacuum conditions. The
hyperino equation gives
01 =60,=0,
»3 =g (zHl - H2) , (IV.46)

where we assume k = £1 (hence leaving aside the case k = 0). The gaugino equation
gives

2N 3PS + H'PP + H?PS =0,
H*PY + H'PY =0.

Plugging the Killing prepotentials (IV.45) and using (IV.46) we obtain
3k 02 (szl - H2) —4H? = 0,

ke (z H? — HY) —4H' = 0.
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Taking into account the allowed range of the scalar fields, the solution to these equations

is
H' 1+ k5vV1+322 20 4
_ o2P —

e 3z 7 V14322 -2
For k = 1, well-definiteness of the fields requires |z| > 1, as in [32], while z can be generic
for k = —1. The MNI1 case z = 0 is recovered as a limiting case after fixing K = —1. The
critical value of the scalar potential determines the AdS radius /¢ as

. 2 21\3/2\ 1/3
- (® 9kz" + (1 + 3279) R
422

Although we do not present the uplift formulae for this truncation, we have checked
that the supersymmetric vacuum identified above matches the BBBW solution sum-
marised in Section IV.2.1. To do so, we have computed the inverse generalised metric G~*
associated with the U(1)g structure under consideration; this depends on the V struc-
ture and H structure parameters. From the generalised metric we have reconstructed the
ordinary metric gg and the three-form potential on M, as well as the warp factor e?2.
Substituting the values for the scalars found above, we find agreement with the solution
in Section IV.2.1 upon fixing the S* radius as R = % and implementing the following
dictionary:

2% — 46—290—%1”0 ,

3 — 4e_290+%f°,
1
H' = 1X§ (X1 — X)),
1
H? = 1XJ (X1 + X)),
with our AdS radius being given in terms of the quantities appearing there as
¢ = 92/3 efoJr%goR‘

By extremising the scalar potential'l we recover the supersymmetric vacuum and also

find new non-supersymmetric vacua, where the scalar field values are rather complicated
functions of the parameter z. As an example, we give the numerical values for one chosen
value of z, that we take z = % When k£ = —1 we find a new extremum of the potential at

¥ ~0.9388, ©~0.1109, H?~1.0217, 6, =060,=0, {=1.5276 R,
while when k = 1 we find an extremum at

¥~ 08631, ¢~02812, H?~15506, 60, =60,=0, {=1.0644 R,
and another one at

Y~ 1.1580, ¢ ~0.8455, H?>~1.9847, 60, =0,=0, ¢=0.6198 R,

where for each solution we have also indicated the corresponding AdS radius /.

1To do so, it is convenient to parameterise H' = sinh o, H? = cosh , and extremise with respect to
a.
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Chapter V

Conclusions

In this thesis we discussed how generalised geometry provides a systematic approach to
consistent truncations. Generalised geometry is a reformulation of eleven or ten dimen-
sional supergravity on a d-dimensional manifold M that treats diffeomorphism and gauge
transformations of higher rank potentials as a generalised diffeomorphism on an exten-
sion of the tangent space to M whose generalised structure group is E;4). This allows to
generalised the ordinary notion of Gg structure to a generalised one. A generalised Gg
structure is associated to a set of nowhere-vanishing tensors that are invariant under Gg.
As for ordinary Gg structure, a generalised Gg structure is characterised by its intrinsic
torsion.

The main result of this thesis is the prove that any manifold M that admits an excep-
tional Gg-structure with singlet intrinsic generalised torsion can give rise to a consistent
truncation of eleven or ten dimensional supergravity on it. The consistent truncation is
given by expanding the eleven/ten dimensional fields in terms of the Gg invariant gener-
alised tensors. Plugging the fields in the equations of motion, the singlet intrinsic torsion
guarantees that only singlet fields can appear and hence the truncation is consistent.
Moreover the Gg singlet invariant tensors and the intrinsic torsion completely fix the
field content and the gauging of the truncated theory. In particular, the number of Gg
singlets in the fundamental and adjoint representations of FEg) determine the vector and
hyermultiplets, respectively.

This construction encompasses all the truncations obtained in the past using ordinary
(g structures. However, since a generalised Gg structures need not to correspond to
an ordinary one, our construction enlarges the class of consistent truncations one can
construct and moreover allows for a systematic way to study and classify truncations in
different dimensions and with different supersymmetry.

As an example, after the discussion of the general results, we focused on truncations
of the eleven dimensional or type IIB supergravity to five dimensional N = 2 gauged
supergravity. In this case the relevant generalised geometry is R* x E¢ (), whose maximal
compact subgroup USp(8) determines the R-symmetry of the reduced theory. In order to
have A/ = 2 supersymmetry in five dimensions, the R-symmetry must be SU(2) C USp(8)
and the spinorial representation must contain only two singlets under the generalised
structure group transforming as a doublet of the SU(2). This implies that the relevant
generalised structures are Gg C USp(6). In particular an USp(6) structure corresponds
to the minimal five dimensional A/ = 2 supergravity, while smaller structure group allows
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for extra matter. Scanning all the possible continuous subgroups of USp(6) and the cor-
responding singlet invariant tensors allows to give a classification of all five dimensional
N = 2 theories that can be obtained as consistent truncations (corresponding to continu-
ous structure groups). The classification is given in Table III.1. For each case we give the
number of vector/tensor multiplets and hypermultiplets and their scalar manifolds. We
also assumed that the generalised Gg structure has singlet intrinsic and then analyzed
the possible gaugings. We refer to the Section 4 of [3] for this analysis. The result is
that a very limited number of theories can be found. For the half maximal case a similar
classification, although simpler, has been done in Section 3 of [1].

Our classification is of particular interest for theories with AdS vacua. It is conjectured
that no AdS vacua of string theory admit scale separation [68]. Hence it is not possible
to write an effective AV = 2 theory in this case. Thus we are led to conjecture that those
gauged supergravities that cannot come from consistent truncations and which have AdS
vacua must belong to the “swampland”. Put differently, these gauged supergravities are
lower-dimensional artefacts that are not related to string theory.

We should stress that our classification only determines what are the possible 5d
theories that have an eleven or ten dimensional origin but do not guarantees that they
are actually realised. An important issue that we do not address here is whether we can
actually solve the differential conditions imposed by the intrinsic torsion, that are required
for the consistent truncation to exist.

This would require determining the explicit form of the manifold M and checking
the differential constraints associated to having singlet intrinsic torsion. The analogous
condition is known to limit the possible gaugings in the maximally supersymmetric case
[12, 69, 19, 20, 52, 53]. So it is to be expected that the number of actual truncations is
even more restricted than what we present here.

We leave this issue for future work. In this thesis we provided particular examples
where we found an internal geometry on which the constraint is solved.

One example is the most general truncation around the Maldacena—Nunez [31] with
N = 2 supersymmetries. The solution describes the near horizon geometry of M5-branes
wrapping a Riemann surface of negative curvature. The geometry is a warped product of
AdS5 times a 6-dimensional manifold that is a fibration of S* over the Riemann surface.
The truncation gives a five-dimensional N' = 2 supergravity with four vector multiplets,
one hypermultiplet and a non-abelian gauging. This is one of the cases in our list. We
worked out the full bosonic truncation ansatz and checked that the truncated theory
admits an N’ =2 AdS5 vacuum corresponding to the MN solution. This extends the
truncation of [61] by SO(3) vector multiplets.

The Maldacena—Nufiez solution is a particular case of a family of solutions founds
in [65, 32], which corresponding to different ways in which the M5 wrap the Riemann
surfaces. It is easy to extend our construction to truncations on these geometries. we
obtained a truncation featuring two vector multiplets, one hypermultiplet and an abelian
gauging, completing the truncation in [67]. Although in this case we did not give all
details of the truncation ansatz, it should be clear that it can be obtained by following
precisely the same steps presented for the case of Maldacena—Nufiez geometry.

Note that our consistent truncations can equivalently be obtained as truncations on
a Riemann surface of maximal SO(5) supergravity, that comes from the reduction of
eleven-dimensional supergravity on S* [70].
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What is discussed in this thesis does not cover all the results I obtained during the
PhD. The rest can be found in the three papers in the appendix.

There are many directions one can explore in the future.

One direction is to continue the classification programme. Combined with the results
obtained for the maximal five dimensional truncations, a classification for any amount of
supersymmetry for five dimensional truncation is almost complete, up to discrete struc-
ture group and solving the differential constraints in A/ = 2. The next challenge is to do
the same kind of classification in different dimensions. We have developed an algorithmic
way of deriving all the consistent truncation for a given dimension with any amount of
supersymmetry, with a continuous structure group. The algorithm relies on roots systems
associated to the different exceptional groups and their maximal compact subgroup asso-
ciated to the particular dimension. We are currently considering the case of reductions
to four dimensions and we hope to be able to provide soon an equivalent classification as
for the five dimensional truncations.

As already mentioned above, it is important to have a better control on the constraint
of having a singlet constant generalised intrinsic torsion. It would also be interesting to
see whether the approach of [20] can be extended to non-maximally super- symmetric
truncations and to use the the five-dimensional embedding tensor to determine what the
uplifted geometry should be. We leave this to future work.

It would also be interesting to study whether or not in the truncations we have found
there exist an AdS vacua. The existence conditions of such a vacua are given in [71] and
can be easily translated into the exceptional geometry language.

Another direction is to construct new explicit examples of truncations. In M-theory,
it would be nice to apply the construction of Section IV.1 to the general ansatz for
half-maximal AdSs solutions of [72]. In particular, this would provide new consistent
truncations containing the AdSs solutions of [73], describing M5-branes wrapped on Rie-
mann surfaces with punctures. A first step in that direction might be given by extending
the work of [74] to non maximal cases. A similar construction is conceivable for the su-
pergravity description of D3-branes wrapped on Riemann surfaces [31], however in this
case one would need to use the Fg(g) generalised geometry, which is not fully developed
yet (though see [75, 76]).

Finally, the work of [77] showed that the generalised formalism can be used to compute
the Kaluza-Klein spectrum for deformations of maximally supersymmetric compactifica-
tions. It would be very interesting to extend the spectroscopy for solutions with reduced
supersymmetry. It is likely that the generalisation relies on an accurate study of the
generalised intrinsic torsion.
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1 Introduction

A common problem in string theory and supergravity is how to derive lower-dimensional
effective theories. Given a Kaluza-Klein reduction on a compact manifold, a consistent
truncation is a procedure to truncate the infinite tower of Kaluza-Klein states to a finite
set in a consistent way, such that solutions of equations of motion of the truncated system
are also always solutions of the original theory. In other words, the dependence of the
higher-dimensional fields on the internal manifold factorises out once the truncation ansatz
is plugged in the equations of motion. The classic example, known as a Scherk-Schwarz
reduction, is when the internal space is a group manifold G (or a quotient G/T" thereof by a
freely-acting discrete group I') [1]. Consistency is a consequence of keeping only modes in-
variant under the group action. Aside from these cases, consistent truncations are relatively
rare and hard to construct, see for instance [2, 3]. Classic examples of consistent truncations
on spaces that are not group manifolds are the truncations of eleven-dimensional supergrav-
ity on S” [4] and on S* [5] both leading to a maximally supersymmetric truncated theory.

Recently, the reformulation of supergravity using Generalised Geometry and Excep-
tional Field Theory has provided a new framework for giving a systematic geometrical de-
scription of maximally supersymmetric consistent truncations, both of conventional Scherk-
Schwarz type and the exotic sphere truncations [6-11]. In particular, the notion of a gen-
eralised parallelisation allows one to show that all known such truncations are a form of
generalised Scherk-Schwarz reductions and to prove the long-standing conjecture of the
consistency of type IIB supergravity on S° [6, 10, 12]. Extensions of these ideas have also
recently been considered in the case of half-maximal truncations in [13-17], mostly focused
on reductions to seven- and six-dimensional supergravities, although [15] also discusses
more general cases. An appealing feature of the maximal generalised Scherk-Schwarz re-
ductions is that one can determine the lower-dimensional supergravity directly from the
generalised geometry, a priori of any explicit substitution into the equations of motion. It
is therefore natural to ask whether generalised geometry can give a similar characterisation
of generic consistent truncations with any amount of supersymmetry.

In this paper, we derive such a unified framework for constructing consistent trun-
cations with different amounts of supersymmetry (including non-supersymmetric trunca-
tions), based on the G-structure of the generalised geometry. The key requirement is that
the so-called “intrinsic torsion” [18] of the G-structure contains only singlets. This for-
malism allows one to easily determine all the features of the lower-dimensional gauged
supergravity, such as the amount of supersymmetry, the coset manifold of the scalars, the
number of gauge and tensor fields, and the gauging, all directly from the geometry. It also
provides a general proof of the conjecture of [19], stating that to any supersymmetric solu-
tion to ten- or eleven-dimensional supergravity of the warped product form AdSp xy M,
there is a consistent truncation to pure gauged supergravity in D dimensions containing
that solution and having the same supersymmetry. As we will see, this statement follows
from observing that supersymmetric AdSp x4 M solutions always define a “maximal”
supersymmetric generalised G-structure, and the G-invariant tensors then can be used to
define a consistent truncation. When the actual generalised G-structure is a subgroup of



the maximal one, we show that one may go further and obtain a consistent truncation
which includes matter multiplets and in some cases preserves more supersymmetry than
the vacuum.

The structure of the paper and the main results are as follows. In section 2 we describe
the general ideas and apply them to a number of simple cases, notably identifying the max-
imal G-structure for a given amount of supersymmetry and thus proving the conjecture
of [19], and also deriving the field content of the supersymmetric truncations that arise
from reductions to D = 4 and D = 5 on conventional G-structure manifolds, reproducing a
number of known results in the literature. In section 3 we focus on truncations leading to
half-maximal supergravity in five dimensions, which are based on Eg ) generalised geome-
try. This case was first considered in the general analysis of [15], but here we give a number
of new results. In particular, we show that the relevant SO(5 —n) C SO(5,5) C Eg(s) gen-
eralised structure is fully specified by a set of 6 + n generalised vectors on the internal
manifold. We argue that if the algebra of generalised diffeomorphisms (that is, diffeomor-
phisms together with form-field gauge transformations) generated by these vectors closes
with constant coefficients, then the generalised structure has singlet intrinsic torsion and
the consistent truncation exists. The resulting five-dimensional half-maximal supergravity
is coupled to n vector multiplets, and its gauge algebra is the one generated by the 6 + n
generalised vectors. We give detailed formulae based on these vectors specifying the full
bosonic truncation ansatz. In particular, we provide an expression for the generalised met-
ric on the internal manifold, which gives the complete scalar truncation ansatz. This is one
of the main results of our work.

In section 4 we apply our formalism to consistent truncations of type IIB supergravity
on five-dimensional manifolds preserving half-maximal supersymmetry (that is, 16 out of 32
supercharges). We first illustrate how the formalism works by reproducing the truncation
of type IIB supergravity on squashed Sasaki-Einstein manifolds derived in [20, 21]. This is
half-maximal supergravity coupled to two vector multiplets and with a U(1) x Heiss gauging,
where Heiss denotes the Heisenberg group. Then we argue that when the Sasaki-Einstein
manifold is toric, the exact same truncated theory is also obtained by deforming the internal
geometry via the TsT transformation of [22] with parameter 3. Another way to say this
is that we TsT-transform the full truncation ansatz, rather than just the AdS solution.
We thus obtain a continuous family of uplifts of the U(1) x Heiss gauged five-dimensional
supergravity, parameterised by 8. At the technical level, this is shown by exploiting the fact
that the TsT transformation has a simple action in generalised geometry via a bi-vector
field. It was recently shown in the S® case that such backgrounds admitted a truncation
to minimal gauged supergravity (8 supercharges) [23]. Our result shows that they in fact
admit a much larger truncation to half-maximal supergravity with two vector multiplets.

In section 5 we derive a consistent truncation of eleven-dimensional supergravity on
Maldacena-Nifiez geometries where S fibers over a Riemann surface [24], leading to half-
maximal supergravity coupled to three vector multiplets and with a U(1) x ISO(3) gauge
algebra. We note that the existence of such a consistent truncation, as well as an analy-
sis of its sub-truncations and vacua, was very recently proven using a different approach,
considering the explicit truncation directly from seven-dimensional maximal gauged su-



pergravity [25]. We conclude in section 6 outlining some directions of future research
including some more consistent truncations that it would be interesting to explore using
our approach.

2 Consistent truncations from G-structures

2.1 Conventional G-structure constructions

Before turning to the generalised geometry picture, let us review the role of conven-
tional G-structures in consistent truncations. Through the study of several cases such
as [20, 21, 26-30], it is now understood that any G-structure with constant, singlet intrin-
sic torsion leads to a consistent truncation.

The idea is as follows. In conventional Scherk-Schwarz reductions on a group manifold
M = G all the higher-dimensional fields in the theory can be decomposed into representa-
tions of G. By keeping all the singlet representations and nothing else, one ensures that
the truncation is consistent, since products of singlet representations can never source the
non-singlet representations that were truncated away. However, this argument extends:
the key point is not that the manifold has isometries but that the structure group Gg is
reduced, since this allows one to decompose all tensor fields into Gg representations and
then keep only those fields transforming as singlets. In the case of a group manifold the
structure group is trivial since the manifold is parallelisable, but more generally one can
consider cases with larger structure groups.! Explicitly, one has

Theorem 1. Let M be a d-dimensional manifold with a Gg-structure defining a set of
invariant tensors {E;} with Gg C O(n) and only constant, singlet intrinsic torsion. Any
field theory has a consistent truncation on M defined by expanding all fields in terms of
the invariant tensors.

If the theory includes spinors, then the Gg-structure lifts to a Gg C Spin(d) structure
and we can include fermions in the truncation by expanding any spinor fields in terms of
spinors invariant under Gs.

To explain this in a little more detail, first recall that a choice of Gg-structure on a
d-dimensional manifold M is a reduction of the structure group. Formally, a Gg-structure
defines a Gg-principal sub-bundle P of the GL(d,R) frame bundle. In most cases, the
structure can equivalently be defined by a set of Gg-invariant, nowhere vanishing tensors
{E:}. The existence of a Gg-structure means that all tensor fields can be decomposed into
irreducible representations of Gg. For example, a choice of Gg = O(d) structure defines a
subset, of orthonormal frames, or equivalently is defined by an invariant metric tensor g. A
given Gg-structure P is characterised by its intrinsic torsion. If Gg C O(d), this is defined

IThe same symmetry argument used for Scherk-Schwarz reductions implies that dimensional reductions
on coset manifolds M = G/H keeping all G-invariant Kaluza-Klein modes and nothing else are consistent.
In this case, there is a nice connection with the other argument given above, based on the G-structure of
M. Indeed one can show that if H contains no nontrivial invariant subgroup of G, then G/H admits a
G-invariant H-structure (see e.g. [31, appendix A]). The G-invariant truncation and the truncation based
on singlets of the H-structure then coincide.



in the following simple way (see for example [32]). Since Gg C O(d) the structure defines
a metric g and hence a corresponding Levi-Civita connection V. Acting on each invariant
tensor =; we have

- ni..n _ ny —=.gq..n . Ny = Ni...q
VinZi "preps = K gEi T py s + + K" g5 P1---Ds

_ q = .ni.ngy L q = .ni..ngy
Km p1—1 q.--Ps + Km Ps—1 p1---q»

(2.1)

which uniquely defines K,,", as a section of T*M ® gt with m and n, p denoting the T*M
and gt indices respectively. Here we have decomposed A2T*M ~ so(d) = g @ g with g
the Lie algebra of Gg. Note that the T*M ® g part is missing in K because, by definition
=; is Gg-invariant. The tensor K defines the intrinsic torsion (Ting)mn? = KnPm — KmnPn.
Note that equivalently one can define a new torsionful connection V.= V — K that is
compatible with the structure, that is @Ei = 0 for all Z;. The intrinsic torsion T}, is then
the torsion of V. In general Tiyy will decompose into Gg representations, known as the
“torsion classes” of the Gg-structure. Note that in many examples, the invariant tensors =;
are all differential forms and the intrinsic torsion is completely determined by the exterior
derivatives d=;.

As for reduction on group manifolds, the proof of theorem 1 is very straightforward. By
expanding in terms of invariant tensors, all the fields one keeps transform as singlets under
the structure group, with the only dependence on the internal space coming from the {Z;}.
Furthermore since the intrinsic torsion has only singlet components (and is independent of
the internal space) any derivative of a field is given by the right-hand side of (2.1) and is
itself an expansion in terms of singlets. So long as we keep all possible singlets and nothing
else, given the equations of motion can be written as generalised tensors, the truncation is
then necessarily consistent, since products of singlet representations can never source the
non-singlet representations that were truncated away.

Focusing on the gravity sector, the scalars and vector fields in the consistent truncation
appear in the following way. Recall that the choice of metric parameterises a GL(d, R)/ O(d)
coset. To count the number of Gg singlets in the metric we can use the commutant of Gg
in GL(d,R) and O(d). The scalars in the consistent truncation coming from the metric

thus parameterise
Carar)(Gs)
Co)(Gs)

where Cg (A) denotes the commutant of A C K inside K. We can also count the number of

metric scalars < H € (2.2)

vectors coming from the metric, by counting the number of invariant one-forms n® € {Z;},
giving
metric gauge fields < A%, (2.3)

where 7, are the dual singlet vectors. For singlet torsion, the torsion is completely deter-
mined by the Lie derivatives of the invariant tensors

La.Zi = fai’ Z5, (2.4)

where f,;/ are constants, fixed by the intrinsic torsion. For example, the gauging of the
truncated theory depends on the Lie bracket

[ﬁauﬁb} = fab“ e, (2.5)



and we see that the singlet intrinsic torsion determines the gauge algebra of the metric
gauge fields.

To see how the construction works in practice consider the reduction on a Sasaki-
Einstein manifold M of dimension d = 2n + 1, which appeared in the context of reductions
of M-theory and type IIB in [26] and [20, 21] respectively. The invariant tensors (7, w, §2),
where 7 is a real one-form, w a real two-form and 2 a complex n-form on M, define an
Ggs = SU(n) C GL(d,R) structure and satisfy

dn = 2w, dQ=i(n+1)nAQ, (2.6)

implying we indeed have constant singlet torsion, since only invariant tensors appear on
the right-hand sides of these equations. In this case the metric scalar manifold is

Car(zn+1,R) (SU(R)) _ Rt xC
CSO(2n+1)(SU(n)) U(1)

= RT x RY, (2.7)

where the first RT comes from Cgy(2,,41)(GL(21)) and C from Cgr,(2,,)(SU(n)). There is
a single invariant one-form 7 and so there will be a single gauge field A,(x) coming from
the metric. Concretely the consistent truncation on M is defined by

ds® = g datde” +e*Vds3, + e (n + A)?, (2.8)

where ds3 is the (local) 2n-dimensional Kihler-Einstein metric defined by (w,). The
scalars fields U(z) and V(x) parametrise the scalar manifold H.

The Scherk-Schwarz reduction M = G is of course itself also an example. The group
structure picks out a preferred co-frame {e*} € T*M of (say) left-invariant one-forms.
Geometrically the one-forms define an “identity structure” Gg = 1 D GL(d) (or paralleli-
sation). Since Ck (1) = K, the scalar fields are in the coset

Cer (1)  GL(d,R)
Csow(1) ~ SO(d) 29

The one-forms define d gauge fields with a Lie algebra given by the Lie bracket (2.5). The
consistent truncation ansatz for the metric is

ds? = gupdatda” + hep(e” + A%) (e + A, (2.10)

where hgp(7) is matrix of scalar fields and the Af,(z) are gauge fields in the adjoint of Gs.

Any number of other examples can be constructed. We note that the standard con-
sistent truncation keeping a volume modulus on an orientable manifold can be thought of
arising from the corresponding SL(n, C)-structure. Similarly the universal sector of type II
Calabi-Yau compactifications arises from keeping SU(n)-singlet fields in the metric and
form-field degrees of freedom.



2.2 Generalised G-structure constructions

We can now extend this picture to generalised geometry to describe the consistent trunca-
tions of eleven-dimensional and type II supergravities on d- and (d — 1)-dimensional man-
ifolds M respectively. The generalisation is straightforward: we replace the conventional
Gg-structures with generalised G-structure on the generalised tangent space E associated
to M. The generic structure group on E is the exceptional group Eg(4) which has a maxi-
mal compact R-symmetry subgroup Hy (see table 1). If a Gg C Hy structure is defined by
a set of generalised invariant tensors the idea is then to expand the supergravity fields in
terms of the tensors used to define the consistent truncation. This is a generalisation of the
construction given in [6], where it was shown that maximally supersymmetric consistent
truncations corresponded to “Leibniz parallelisations”, that is, identity structures Gg =1
with constant intrinsic torsion.

2.2.1 Main theorem

Let us start by stating the result and then discuss more details of the generalised geometry
and the proof of the statement. We claim

Theorem 2. Let M be a d-dimensional (respectively (d — 1)-dimensional) manifold with
a generalised Gg-structure defining a set of invariant tensors {Q;} with Gg C Hy and
only constant, singlet intrinsic torsion. Then there is a consistent truncation of eleven-
dimensional (respectively type II) supergravity on M defined by expanding all bosonic fields
in terms of the invariant tensors. If Hy is the double cover of Hy, acting on fermions
the structure group lifts to Gg C Hy; and the truncation extends to the fermionic sector,
provided again one expands the spinor fermion fields in terms of Gs singlets.

To see how this works, we start by summarising the generalised geometry reformulation
of eleven-dimensional or type II supergravity on a product space X x M where X is a D-
dimensional Lorentzian space, and the internal manifold M is d-dimensional, or, in the
case of type II supergravity, (d — 1)-dimensional. In generalised geometry, the GL(d,R)
or GL(d — 1,R) structure group of conventional geometry on M is extended to Eg for
d < 7[33, 34]. This allows one to reformulate supergravity, so that the bosonic supergravity
fields and their equations of motion are rearranged into generalised tensors transforming as
representations of GL(D,R) xEg(4). The GL(D, R) scalar degrees of freedom are repackaged
into a generalised metric, that is a symmetric generalised tensor G € T'(S2E*) which is
invariant under the R-symmetry subgroup Hy C Eg4). Thus geometrically the generalised
metric defines an Hy-structure [35, 36]. The GL(D,R) one-form, vector degrees of freedom
are sections of the generalised tangent space F, while the two-form tensor degrees of freedom
are sections of a generalised tensor bundle here denoted N [37—41]. In summary we have

scalars: Gun(z,y) € T(S*E"),
vectors: A Mz, y) e T(T*X ® E), (2.11)
two-forms: B, MY (z,y) € T(A*T*X @ N),

where = and y are coordinates on X and M respectively, the index M denotes compo-
nents of vectors in E (or E* if lowered) and we are using the fact that N C S?E. One



Eq(a) E N W Hy

E7(7) 56 133 912356 SU(8) 8®8

Eg(s) 27 27 351927 USp(8)

Spin(5,5) 16° 10 144°®16°  USp(4) x USp(4) (4,1)® (1,4)
SL(5,R) 10 5  40®15' ®10" USp(4) 4

Table 1. Generalised geometry groups, bundles and representations.

can also further introduce higher form-field degrees of freedom following the tensor hierar-
chy [42, 43]. However, these do not introduce new degrees of freedom but are dual to the
scalar, vector and two-forms.? The relevant groups and Ej(q) representations are all listed
in table 1. Note that H; is actually the double cover of H;. The dynamics of the super-
gravity is completely determined by the Levi-Civita connection on the external space and
a generalised connection D on the internal space. The latter is the generalised analogue of
the Levi-Civita connection: it has vanishing generalised torsion and is compatible with the
generalised metric. We also include in table 1 the Eg4) representation of the generalised
tensor bundle W in which the generalised torsion lies and the H; representation of the
spinor bundle § in which the supersymmetry parameter lies [36].

Now suppose we have a reduced structure group Gg C Hy defined by a set of Gg-
invariant generalised tensors {Q;}. As described in [18], one can again define an intrinsic
torsion Tyt for the generalised G g-structure, and decompose it into representations of Gg.
The definition is as follows. Let D be a generalised connection compatible with the Gg-
structure, that is, sastisfying DQ; = 0 for all Q;. Formally, the generalised torsion T' of D
is defined by, acting on any generalised tensor «,

(L2 = Ly)a=T(V) -« (2.12)

where L is the generalised Lie derivative, LD is the generalised Lie derivative calculated
using D and we view the torsion as a map T : I'(E) — I'(ad F') where ad F is the Eq) xR
adjoint bundle, so that T'(V') acts via the adjoint action on a. The intrinsic torsion is then
the component of T that is independent of the choice of compatible connection D. We are
interested in the case where only singlet representations appear in the intrinsic torsion. This
means we can define a generalised Levi-Civita connection such that, in analogy with (2.1),
acting on any invariant generalised tensor ();,

DyQi=%n - Qi (2.13)

where ¥,/ is a section of E* ® ad Py, that is completely determined in terms of the singlet
torsion.®> Here we are using a notion where ad Py, is the bundle of tensors transforming
on the adjoint representation of Hy.

*Note that for D = 4 this means the .A,™ contain both the vectors and their duals, and in D = 6 the
BWMN contain both the two-forms and their duals.

3Note there is a subtlety that the connection D is not uniquely determined by the conditions of compat-
ibility with the generalised metric and being torsion-free. However only certain projections of the action of
D appear in the supergravity and these are unique [35]. In equation (2.13), we are choosing a particular
torsion-free compatible D. Equivalently, one can show that the unique projected operators, acting on Q;,
are completely determined by the singlet intrinsic torsion.



The proof of consistency is just as before. By expanding in terms of invariant tensors,
all the fields one keeps transform as singlets under the structure group, with the only
dependence on the internal space coming from the {Q;}. Furthermore from (2.13) the
derivatives of all the truncated fields also have expansions in terms of singlets. So long as
we keep all possible singlets and nothing else, the truncation is then necessarily consistent,
since products of singlet representations can never source the non-singlet representations

that were truncated away.

2.2.2 Structure of the truncated theory

So far we have made a general argument that a Gg-structure with singlet intrinsic torsion
will lead to a consistent truncation of eleven-dimensional or type II supergravity. However,
one can go further and deduce the structure of the truncated theory from the Gg-structure
and the torsion. We will find that in all cases, even when there is no preserved supersym-
metry, it is described by a version of the embedding tensor formalism (see e.g. [44, 45] for
a review of this formalism).

We start by identifying the Gg-singlet truncated degrees of freedom. Since Gg C Hy
the structure encodes the generalised metric Gp;y. In the truncation we want to keep
singlet deformations of the structure, modulo those singlet deformations that do not deform
the metric. At each point in M the metric is an element of the coset Eg(q) /Hg, thus we
can generate the singlet deformations of the metric by acting on the structure by elements
of Eg(q) that commute with G's modulo elements of Hy that commute with G, since the
latter will not change the metric. Thus we find the scalars parametrise the coset

: I _ Ceia(Gs) _ G
scalars: h' (z) € Mgeal = Cn(Gs) " H (2.14)
Recall that the vector fields are sections of T*X @ E. If { K 4} is a basis for the Gg-invariant
generalised vectors, spanning a vector space V C I'(F), then we have

vectors: A, Mz) K4 € D(T*M) @ V. (2.15)

If {Jx} is a basis generating the Gg-invariant vector space B C I'(N), we similarly have
the two-form degrees of freedom

two-forms: B, " (x)Js € T(A*T*X) ® B. (2.16)

Note that by definition V and B are both representation spaces for the action of the
commutant group G. Note we also have N C S2E and so we can use the projection map
x y and embedding to define the constants d 45> and dxA8

Kaoxn Kp=dag™Js, Js = ds"PK 4 ® Kp, (2.17)

intertwining the representation spaces.
Turning to the singlet intrinsic torsion, we note that, since DK 4 = 0, in analogy
with (2.4), we have
L Qi = ~Tiue(Ka) - Qs (2.18)



where we recall that L is the generalised Lie derivative. Since Tiy is a singlet, then Tiy (K 4)
must be a singlet of ad F, but such singlets are precisely the Lie algebra of the commutant
group G = Cg,, (Gs). Thus —Tjy defines an “embedding tensor” [44, 45], that is a
linear map

©:V — Lieg. (2.19)
Acting on the K 4, we get
LKAKBZGA-KB:@Ad(td)BcKC = XABCKC, (2.20)

where (td)gc are the representations of the generators of LieG acting on V. The Leib-
niz property of the generalised Lie derivative then implies [6, 35] the standard quadratic
condition on the embedding tensor

(X4, X5) = =X a5 Xc (2.21)

where we are viewing (X 4)5° = X 45° as a matrix. Thus we can view the K 4 as generating
a Lie algebra with structure constants X AB]C- Since the image of © may not be the whole
of Lie G, we see that the vector fields describe a gauge group

gauge group:  Ggauge € G, (2.22)

where Lie Ggayge = ImV C Lie G under the embedding tensor map ©. The X 4 then define
the adjoint representation and © defines how the gauge action embeds as an action in G.
By reducing the generalised geometry/EFT reformulation of supergravity of [35-41],
we can then summarise the structure and gauging of the truncated theory, which match
the standard formulae for gauging of a tensor hierarchy via an embedding tensor [44, 45]:

e The fields in the truncated theory are as follows

Cey(Gs) G
lars: W (2) € Mgea) = 222 = =
scalars (x) scal Cu,(Gs) o o
vectors: A:f(a:) Ky el(T"X)®V, (2:23)
two-forms: BEV(JU) Jr  eT(A’T*X)®B.

o The theory is gauged by Ggange © G with the scalar covariant derivatives

Dyh' = 9,h" — A7 ©.4%ks" (2.24)
where kg are the Killing vectors on Mgeal generating the action of the Lie G .
o The gauge transformations of the vectors and two-forms are
SAL = 0, A + Xge (AB A€ — =5

(2.25)

0B%, = 2da5” (0,54 + 2Xep A, Z0F — AAHE, — Al AT

where E;j‘B =2, %ds™® and HA = dAA + XpcA(AB A AC + BZdsC).

o Given a lift Gg C Hgy, the number of supersymmetries preserved by the truncated
theory is given by the number of Gg-singlets in the generalised spinor bundle S.



H, Gy

SU(8) SU —N)

USp(8) USp(8 — 2/N)

USp(4) x USp(4) USp(4 —2Ny) x USp(4 — 2N_)
USp(4) USp(4 — 2N)

Table 2. Maximal generalised structure subgroups G+ C Hy preserving A supersymmetries in
the truncated theory. Note that for d = 5 we have six-dimensional supergravity with (N, N_)
supersymmetry.

The key point here is that the geometrical data of the Gg-structure and its singlet
intrinsic torsion completely determine the truncated theory. The precise relationship be-
tween these expressions and the uplifted supergravity fields depends on the normalisations
of the basis vectors K 4 and Jy;, and the explicit expression for the generalised metric G sy
in terms of the relevant normalised invariant tensors. We will turn to the details of these
relationships in the explicit example of half-maximal truncations in the following sections.

2.3 Maximal structure groups and pure supergravities

To see how the truncated theories arise for some specific structure groups and match known
consistent truncations, in this and the next sub-section let us focus on truncations preserv-
ing a given amount of supersymmetry in D = 11 — d dimensions. For N supersymmetries
the generalised spinor bundle & must have A singlets when decomposed under the struc-
ture group Gg C H;* Let Gy be the mazimal subgroup of H, for which this is true,
that is the largest possible generalised structure group that preserves A supersymmetries.
These groups are listed in table 2.

We can then use our formalism to determine the corresponding consistent truncations.
In each case we need to find the commutant groups G and H and the spaces of vector and
tensor multiplets. Both are fixed once one knows the embedding G+ C Eg(g). The results
are summarised in table 3. For the vector and two-form degrees of freedom we include
only the minimum dynamical set. In particular, in D = 4 and D = 5, the two-forms are
dual to scalars and vectors respectively, and so are not listed. For vectors in D = 4 and
two-forms in D = 6 we include both the fields and their duals. In D = 6 the self- and anti-
self-dual two-forms are distinguished by their transformation under the two R-symmetry
groups. Comparing with the standard literature (see for example the review in [46]) we see
that these theories are in one-to-one correspondence with the possible pure supergravity
theories. This includes, in particular, the maximally supersymmetric cases of the sphere
reductions. In each case, the gauging of the theory will depend on the singlet torsion, as
described for the sphere cases in [6].

From one perspective, this is not surprising — the representation theory is the same as
that giving each pure supergravity theory as truncation of the maximally supersymmetric

4Note that here and in the following subsection we will ignore discrete factors in the structure group
and hence ignore the possible distinction between Gs and Gs.

~10 -



Eqa) N G = Cg,, (Gs) H =Cg (Gs) % B
Er7(7) 1 U(1) U(1) -
2 SU(2)xU(1) SU(2)xU(1) 161
3 SU@B3)xUQ) SU@3)xU(1)  3@3
4 SU(4) xSL(2,R) SU4)xU(1) (6,2)
5 SUG5,1) SUG(G)xU(1) 20
6  SO*(12) SUB)xU(1) 32
8 E7(7) SU(8) 56
Eé(6) 1 USp(2) USp(2) 1
2 USp(4)xR* USp(4) 5+1
3 SU%(6) USp(6) 15
4 Egq USp(8) 27
Spin(5,5) (1,0) USp(2) USp(2) — 1
(1,1) USp(2)xUSp(2)xR™ USp(2)xUSp(2) (2,2) 2-(1,1)
(2,0) USp(4) USp(4) — 5
(2,1) SU*(4)xUSp(2) USp(4)xUSp(2) (4,2) (6,1)
(2,2) Spin(5,5) USp(4)xUSp(4) 16 10
SL(5,R) 1 USp(2) xR* USp(2) 3 1
2 SL(5,R) USp(4) 10 5

Table 3. Commutant groups and G-representations of vectors and two-forms for Gs-structure
consistent truncations.

one in that dimensions. However, this analysis does allow us to give a proof of the conjecture
in [19] (see also [47, 48]):

Corollary. Any supergravity solution with a D-dimensional AdS (or Minkowski) factor
preserving N supersymmetries, defines a consistent truncation to the corresponding pure

supergravity theory.

The proof follows from the analysis of supersymmetric background in [18, 49, 50]. There
it was showed that solutions with AdS (or Minkowski) factors with N supersymmetries
correspond to Gar generalised structures with singlet torsion. The corollary then follows
as a direct application of Theorem 2. For the Minkowski space case, the intrinsic torsion
vanishes and the truncated theory is ungauged.

2.4 Supersymmetric truncations from conventional G-structures

The more interesting case is when the structure group Gg is a subgroup of G but one still
has the same number of supersymmetries, that is, the same number of Gg-singlets in the
generalised spin bundle S, since this can allow for truncated theories with non-trivial matter

- 11 -



Bya N Gs  G=Cp (Gs) H = Cg,,, (Gs) )%
E;q 1 Go  SL(2R) U(1) -

2 SU(3) SU(2,1) x SL(2,R) SU(2) x U(1)? 2-(1,2)

4 SU(2) SO(6,3) x SL(2,R) SO(6) x SO(3) x U(1) (9,2)
Egey 1 SU(3) SU(2,1) SU(2) x U(1) 1

2 SU(2) SO(5,2) x RT SO(5) x SO(2) 7To1

Table 4. Commutant groups and G-representations of the vector fields for consistent truncations
using conventional G-structures.

content. A simple way to achieve this situation is to consider the case of a conventional
G-structure that corresponds to the appropriate number of supersymmetries. This analysis
will allow us to connect to a number of known consistent truncations, including cases that
require considerable calculation to derive the structure of the truncated theory.

For definiteness we consider the cases of truncations of eleven-dimensional and type
IIB supergravity to D = 4 or D = 5 on manifolds with G2, SU(3) or SU(2) conventional
G-structures. Calculating the commutant groups and the representation of the space of
vector fields V we find the structure of the truncated theory is the same, independent of
whether it came from eleven-dimensional or type IIB supergravity. We list the relevant
groups and representations in table 4. Note that for D = 4 we give both the vectors and
their duals, forming doublets of the SL(2,R) subgroup of G.

In each case we can identify the multiplet structure of the truncated theory and match
to known examples of truncations, as follows:

G2 C Er(7) structure. This case only refers to eleven-dimensional supergravity. Singlet
intrinsic torsion implies a weak Go manifold. The D = 4 truncated theory is N' = 1
supergravity coupled to a single chiral multiplet

SL(2,R)

Mscal = W7

(2.26)

and there are no vector multiplets, matching the truncation first derived in [26].

SU(3) C E7(7y structure. The D = 4 truncated theory is N = 2 supergravity coupled
to a single hypermultiplet and a single vector multiplet, with the scalar manifolds

SL(2,R)  SU(2,1)
U) SU@) x Uy

Mieal = Mhyper X Myector = (227)

For eleven-dimensional supergravity this includes the case of consistent truncation on a
Sasaki-Einstein seven-manifold first derived in [26]. For type IIB, it includes the case of
the universal sector of nearly Kdhler reductions, the analogue of the IIA case considered
in [27, 28].

- 12 —



SU(2) C Eg(yy structure. The D = 4 truncated theory is N' = 4 (half-maximal)
supergravity coupled to three vector multiplets, with scalar manifold

SL(2,R) S0(6,3)
U1) < SO(6) x SO(3)

Meeal = (2.28)
For eleven-dimensional supergravity this includes the case consistent truncation on a tri-
Sasaki seven-manifold first derived in [29].

SU(3) C Eg) structure. This case only refers to eleven-dimensional supergravity.
The D = 5 truncated theory is minimal supergravity coupled to a single hypermultiplet

SU(2,1)

Mscal = m )

(2.29)
and has only the graviphoton with no extra gauge fields. For the case of vanishing in-
trinsic torsion the theory is just the universal sector of eleven-dimensional supergravity
compactified on a Calabi-Yau manifold.

SU(2) C Eg(e) structure. The D = 5 truncated theory is half-maximal supergravity
coupled to two vector multiplets, with the scalar manifolds

S0(5,2)

_ pt+
Mscal = RT X o5 5 % 5002) °

(2.30)
For type IIB supergravity this includes the case of consistent truncation on a Sasaki-
Einstein five-manifold derived in [20, 21]. We will analyse this case in considerable detail
in section 4.2.

In each of these cases the gauging of the theory will depend on the particular intrinsic
torsion, via the embedding tensor © defined by (2.18). Rather than work through the
details in each case here we will focus in the following sections on the particular class of
half-maximal D = 5 truncations. This will in particular include the details of the Sasaki-
Einstein five-manifold example. We will also go further and discuss more involved examples.
Finally, we note that we could also have considered cases above where Gg is a subgroup of
the conventional SU(3) or SU(2) structure groups such that we still have the same amount of
supersymmetry. These would be relevant for example, to the consistent truncation of type
IIB on the T1! coset space [51, 52] (which admits a left-invariant U(1) C SU(2) structure)
and of eleven-dimensional supergravity on the various coset spaces considered in [30].

3 Half-maximal truncations to five dimensions

In order to make the general formalism more explicit, in the following sections we will focus
on the case of consistent truncations of type IIB and eleven-dimensional supergravity to
five dimensions, preserving half-maximal supersymmetry. In this section we will give the
details of the generic formalism, identifying the possible structure groups Gg, the invariant
generalised tensors and, in particular, how they determine the generalised metric. Concrete
examples will be discussed in the following sections. We note that the case of half-maximal
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truncations to five (and other) dimensions using exceptional field theory was first considered
in the general analysis of [15]. Here we give a number of new results, both for how the
generalised structure is defined and how the truncations are constructed. For the general
structure of half-maximal supergravity in five dimensions we refer to [53] (see also [54]).

3.1 SO(5 — n) generalised structures

Dimensional reductions of eleven-dimensional supergravity on a six-dimensional manifold
or of type IIB supergravity on a five-dimensional manifold are described by Eg) X RT
generalised geometry. The R-symmetry group of five-dimensional supergravity is contained
in USp(8), the maximal compact subgroup of Egg). For half-maximal supergravity, USp(8)
must be broken to

USp(8) > USp(4) s x USp(4)s 2 USp(4)g x G, (3.1)

where the factor USp(4)g is identified with the R-symmetry of half-maximal supergravity,
while the other USp(4)s factor contains the (double cover of) the reduced structure group,
Gs C USp(4). Under the first embedding in (3.1), the spinorial representation of USp(8)
decomposes as 8 = (4,1) @ (1,4), and we can identify the four spinor parameters of half-
maximal supergravity as those that transform in the (4,1) representation, in the 4 of
USp(4) g and singlets of Gg. Since we are focussing on dimensional reductions that do not
have more than half-maximal supersymmetry, we also require that there are no further
Gs-singlets in the (1,4) representation. This (essentially) restricts the possible structure
groups® to be Gg = SO(5 —n), n = 0,...,3. (Here we are ignoring the possibility of
finite structure groups, hence exclude n = 4). Thus half-maximal truncations correspond
to dimensional reductions on (the double cover of) Gg = SO(5 —n) generalised structures.
This structure group is embedded in Egg) as:

Gs =80(5—-mn) CSO(5)s C SO(5,5) C Eg) - (3.2)
There are two extra cases of Gg C SO(5)g not included in this sequence. These come from
the embeddings
SU(2) x SU(2)

Zy

Choosing either G5 = SU(2) x U(1) or Gg = U(1)? still gives a half-maximal truncation.
However, it is easy to show that the commutant subgroups and Gg-singlets are the same
as the case of Gg = SO(4). Thus although the structure is different the resulting truncated

SO(5)s O SO(4) = 5 SU(2) x U(1) > U(1) x U(1). (3.3)

theory is the same, meaning we can restrict to the sequence (3.2).

As discussed in the previous section, the vector fields in the truncation are in one-to-
one correspondence with the Gg-singlets in the fundamental representation of Eg), while
the scalar fields parameterise the coset

CEG(G) (GS)
Cusp(s)(Gs)

S5For spinorial representations we of course need the double cover Gs. Thus, for instance USp(4) is the

_ o1y x 06n G (3.4)

Micar = SO(5) xSO(n) ~ H’

double cover of SO(5), but when discussing bosonic representations we can use SO(5) at the place of USp(4).
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where as before Cg  (Gs) and Cygp(s)(Gs) are the commutants of G in Eg(g) and USp(8),
respectively. This matches the standard structure of the scalar manifold for half-maximal
supergravity coupled to n vector multiplets [53]. The single scalar in the gravity multiplet
parameterises the O(1,1) factor® while the scalars in the vector multiplets parameterise
the % coset space.

We can also identify the number of singlets in the generalised tangent space, which
determines the number of vector fields in the truncation. They also form a representation
of G. Recall that the generalised tangent space E transforms in the 27 of Eg). Under

SO(1,1) x SO(5,5) C Eg(g) we have the decomposition

E=FEy® Ei0® Es,
27=1_4,610, 6 16_1, (35)

where the subscripts denote the SO(1,1) weights. Under SO(5) x SO(5) we have
16_; = (4,4). By construction the 4 representation has no singlets under G'g and hence
there are no singlets in the 16_; component. On the other hand, the 102 representation
decomposes as

104 = (5 + n, 1)2 D (1, 5 — ’I’L)g, (3.6)
under O(1,1) x SO(5,n) x SO(5 —n) C O(1,1) x SO(5,5). Thus we see that we get
6 + n singlets, one from the 1_4 representation and 5 + n from 10y. In summary, as a
G = 0(1,1) x SO(5,n) representation, we have the space of vector fields

V=1_,® (5 -+ n)2,

{Kp} ={Ko,Ka:A=1,...,5+n}, (3.7)
where we are using the index A = 0,1,...,5+n. In terms of the half-maximal supergravity
six of these vectors come from the gravity multiplet and n of them from the additional
vector multiplets.

In generalised geometry, the Eg) cubic invariant, acting on the generalised tangent

space E, gives amap ¢ : S3E — det T* M, which can be used to choose a natural parametri-
sation of the invariant generalised vectors. From the decompositions (3.5) and (3.6) we have

C(Ko,K(),V) =0, VVEF(E),
o(Ka,Kp,Kc)=0, YA B,C, (3.8)

and hence, independent of the choice of K 4, an SO(5,5) metric n on Ejg given by
(Ko, V, W) = n(V, W) vol, (3.9)

where vol is a volume form on det 7M. Since the K4 are fixed up to SO(5,5) rotations,
we can use this to fix an orthonormal basis, and hence also the volume form vol, by

n(Ka, Kp) =nap, (3.10)

SPreviously we denoted such factor by R*, while here we use O(1, 1) to match the standard supergravity

literature.
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where
nap = diag(—1,—-1,-1,—-1,—1,+1,...,+1) (3.11)

is the flat SO(5,n) metric.” Note that the freedom in the normalisation of 7 in (3.9) and
hence of the K 4 vectors via rescaling Ky + A\2Kq with K4 — A 'K 4 is just the action
of the O(1,1) subgroup of G. Note that specifying a set of vectors {K 4} satisfying (3.8)
and (3.10) fixes an SO(5 — n) C Ege) structure. That is, the structure is completely
determined by the vectors and no other generalised tensors are needed.

Turning to the two-form fields, for Eg(g) generalised geometry we have

N ~detT*M @ E* = Ny @ Nig ® Nig,
27 =1, 910_5 @ 16’1, (3.12)

where again we decompose under SO(1,1) x SO(5,5) C Egg). The same argument as for
FE then gives the space of singlet two-forms Jx

B:14®(5+n)_2,
(T4 ={J%J4A=1,... . 5+n}, (3.13)

where the isomorphism N ~ det T*M ® E* allows us to identify the usual ¥ index on the
basis with the dual of the index on K 4. It is natural to normalise

(JA, Kg) = 645 vol (3.14)

where <VV, V> denotes the natural pairing between a vector and the (weighted) dual vector.
The cubic invariant provides the intertwining maps (2.17) via

JA = nAPe(Ky, Kp, ). (3.15)
It will be helpful in what follows to also define
JO=vol-K5,  JA=n"Bvol - K}, (3.16)
so that {K} are a set on E*, dual to {K 4}, satisfying
(Ko, Ko)=1,  (Ki,Kp)=mnap, (K Ka)= (K} Ko)=0. (3.17)

Having identified the matter content of the truncated theory, we now turn to its gaug-
ing. From the general discussion, this is determined by the intrinsic torsion of the structure,
which encodes an embedding tensor. Since in this case, the generalised vectors determine
the Gg-structure, all the information of the intrinsic torsion should be encoded in (2.20),
namely

Ly ,Kp=X45°Ke . (3.18)

"The overall sign in 7 is chosen so as to allow a straightforward identification with the SO(5,n) metric
normally used in half-maximal supergravity [53].
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The analysis of gaugings of half-maximal supergravity in five dimensions can be found
in [53]. The embedding tensor has components fapc = JiaBc), §aB = §ap) and §a. For
simplicity we will only discuss the case £4 = 0, although it would be straightforward to
include the general case £4 # 0. The remaining components have to satisfy the conditions

fia® fepi =0, &a” fope =0, (3.19)

where the indices are raised/lowered using the SO(5,n) metric n4p. Using the composite
index A = {0, A}, the components can be assembled into the gauge group generators
(X 4)5¢ = X5 as:

Xap® = —fa5%,  Xoa® = —€4", (3.20)

with the other components vanishing. Then the (X 4)5° generators satisfy the commutation
relations:

(X4, X)) = =X a5 Xec (3.21)

Thus, in general, we expect that any consistent truncation (leading to a gauging with
&4 = 0) should have a generalised Lie derivative algebra (3.18) with the components of
X 45° given by (3.20). Note that, in the generalised geometry, the algebraic conditions
fasc = flapc), a = §ap) follow from consistency of the generalised algebra (3.18) with
the conditions (3.8) and (3.10).

Having determined the number n of vector multiplets and the embedding tensor from
the generalised SO(5 — n) structure, we have fully characterised the five-dimensional half-
maximal supergravity theory that is obtained after truncation. However we still need
to provide the truncation ansatz, namely the embedding of the lower-dimensional fields
into the higher-dimensional ones. This is necessary to uplift any solution of the lower-
dimensional theory. In order to be able to do this we need a further geometrical ingredient,
that is the construction of the generalised metric on the exceptional tangent bundle starting
from the generalised vectors defining the SO(5 — n) structure. This will be instrumental
to specifying the scalar truncation ansatz.

3.2 The generalised metric

Recall that, in the generalised geometry reformulation, the generalised metric Gsn can be
viewed as an element of the coset Egg) x R*/(USp(8)/Z2). Here we have a G5 = SO(5—n)
structure. Given the embedding (3.1), since Gg C USp(8), the structure determines the
metric. Since the structure is completely determined by the vectors {K 4} this means we
should be able to use them to construct G explicitly.

The easiest way to see how this construction works is to use the embedding (3.2).
The choice of Ko and Kj fixes the SO(1,1) x SO(5,5) C Eg( subgroup and gives a
decomposition of the generalised tangent space (3.5). This in turn gives a decomposition
of the metric into orthogonal metrics on Ey, F19 and E1¢ subspaces,

G =Gy+ G+ Gis - (3.22)
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We can then use our knowledge of SO(5) x SO(5) € SO(5,5) generalised structures to
construct the three pieces of the metric as:

Gro(V, V) = 28°(K;, VIEG, V) +n(V, V), (3.24)
Gis(V,V) = —4V2 (K- K5 -V, V), (3.25)
where we have denoted the first five generalised vectors {K,} by an index a = 1,...,5.

Recall from (3.10) that these satisfy (K, Kp) = —dgp-

Let us explain these formulae. The metric Gy is simply obtained by projecting onto
the singlet. For G1p, we use the fact that Eig is the generalised tangent bundle for the
SO(5,5) geometry and that the structure SO(5) x SO(5) € SO(5,5) induces a split of Eg
into positive- and negative-definite eigenspaces

FEpow=CLoC_. (326)

Then the SO(5,5) invariant metric 7 given in (3.9) and the generalised metric G can be

written as

77(V7V) :G+_G—7
Gio=G++G_, (3.27)

where GG+ are metrics on C'y. Since the K, form a basis for C_, we have
G_(V,V) = "™ K V){K;, V). (3.28)

Hence Gigp = G+ + G- = 2G_ + 1, and we recover (3.24).
For G we recall that, given the SO(5) x SO(5) structure, the positive definite inner
product on SO(5,5) spinors is
(U, 7T (3.29)

where < : > is the Mukai pairing and T'(*) is the chirality operator on C., that is
r*=rf-..r;, (3.30)

where we decompose the SO(5,5) gamma matrices into {I'f} U {T'; } spanning C; and
C_. In this case, the Mukai pairing is just the natural pairing between ¥ € I'(E) and
U* € I'(E*). Thus we can write G as

Gis(V,V) = —4V2(K;--- K5 -V, V), (3.31)

where the Clifford actions of K, map between E and E* and are given by

C(I/Va \Pa )
vol

W0 = WMLy 0% = vol - ¢*(W*,0%,.)  eT(E).

W= WM, U = eT'(£"),

(3.32)
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Here we define V* =n(V,-) € I'(E*), and ¢*(-, -, ") is the Eg( cubic invariant on £*. Note
that one does not need to project V onto Ejg since as defined G1g will vanish identically
when acting on sections of Ey or Fqg.

We will also need the inverse generalised metric G~!, which acts on dual generalised
vectors Z € I'(E*). Its expression is closely related to the one for G and reads

GEI(Z7 Z) = <Z¢ K0><Za KO) )
G0 (Z,7) = 26"(Z, K)(Z, Ko) + 117 (2, Z),
Gid(Z2,Z) = —4V2(Z, K- K5 - Z), (3.33)

where n~1(Z, Z) = vol - ¢*(K{, Z, Z) is the inverse of the SO(5,5) metric .

3.3 The truncation ansatz

We provide here the main steps of the construction of the truncation ansatz, which is
entirely based on the generalised vectors K 4 defining the SO(5—n) structure. More explicit
formulae will be provided in the next sections, where we will specialise the formalism to
both type IIB supergravity or M-theory, and discuss some concrete examples.

We start from the ansatz for the vector fields. By taking the higher-dimensional
M
'LL )
recall that p is an external spacetime index while M labels the components of a generalised

supergravity fields with one external index we make a generalised vector A", where we
vector, which in Eg ) generalised geometry transform in the 27. We expand this generalised

vector as in (2.15)
5+n

A (z,y) =D A @)K (), (3.34)
A=0

where Al“j‘ are the five-dimensional supergravity vector fields. Similarly, the supergravity
fields with two antisymmetrised external indices can be arranged in a generalised tensor,
as a section of the bundle N. Exploiting the isomorphism N ~ detT*M ® E*, we can
write this as a weighted dual vector By, ys, and express the truncation ansatz (2.16) as

54+n
By ni(,y) = Y Buyala) T (y). (3.35)
A=0

The ansatz for the scalar fields is more elaborated as it requires the generalised metric.
This is specified by choosing a metric on the coset space (3.4), which is also the scalar man-
ifold of half-maximal supergravity in five dimensions. We parameterise the O(1, 1) factor
by a non-vanishing scalar . The % factor is described by a coset representative
(V4%,Va%) € SO(5,n) and its inverse (Vo4 V,?)7, wherea =1,...,5and a = 1,...,n are

local SO(5) and SO(n) indices, respectively. The coset representative satisfies

NaB = —0ap VA VEY + 0y Va2V52,
Mag = b6up VAaVBb + (5@ VAQVBQ. (3.36)

Note that the matrix Mg is a metric on the coset, with inverse MA45 = nACMCD nDB.
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The construction of the generalised metric now goes as follows. We introduce the
“dressed” generalised vectors

Ko = Y%Ky, K,=Y""V4K 4, K, =YV, Ky, (3.37)
and their duals
K;=%7°K;, K;=%V, Kj, K;=3V"K}. (3.38)

The generalised metric and its inverse are defined as in (3.23)—(3.25), this time using
the dressed generalised vectors Ko and K4, a = 1,...,5. The generalised metric is then
G = Gy + Gio + Grg, with

Go(V,V) = 571 (K5, V(K5 V),
Gro(V, V) = 22 (2 SV AV (K, VWK, VY +n(V, V)) ,

4
Gi6(V,V) = —i S e Y AV BY CVPVE (Ko K-V, V). (3.39)

Similarly, the inverse generalised metric G™1 = G 1+ Gl_ol + G1_61 is given by

Gy'(Z2,2) = £ (2, Ko)(Z,Ko),
G (2.2) = 7% (20"V V(2 Ka) (2, K) + 7 (2,2) ) |

G (2,2) = —45‘( 2 ey AVBVEVPVE(Z, K K- Z). (3.40)
Notice that the SO(5) x SO(n) invariant matrices 2 6V, AV, P = MAB —nAB  NABCDE —
gabedey) Ay, By O Dy E are familiar from the construction of half-maximal supergravity
in five dimensions [53]. Also note that to get the correct power of ¥ in the G and G4
expressions it is important to keep track of how many of the Clifford actions are with K,
and how many with K.

The scalar ansatz is obtained by equating the inverse generalised metric with the one
obtained from the split frame [6, 35], which encodes all supergravity fields with purely
internal indices (including the warp factor of the external metric). By separating the
different tensorial structures on the internal manifold M, we obtain the scalar ansatz for
the individual higher-dimensional supergravity fields.

4 Type IIB truncations

In this section we specialise our formalism to dimensional reductions of type IIB super-
gravity on five-dimensional manifolds. To this end, we first recall the details of type IIB
Eg(s) geometry and present the truncation anzatz adapted to the type IIB fields. Then
we discuss concrete examples of consistent truncations. The first is the truncation on
squashed Sasaki-Einstein manifolds of [20, 21], leading to half-maximal supergravity cou-
pled to two vector multiplets. Although this truncation is not new and can be understood
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based on ordinary SU(2) structure, it will serve to illustrate the validity of our approach in
a relatively simple case. This will also make clear how generalised goemetry fully charac-
terises the lower-dimensional theory even before the lower-dimensional Lagrangian is con-
structed from the truncation of the higher-dimensional equations of motion. We will then
consider a [-deformed Sasaki-Einstein manifold and will show that there is a consistent
truncation on such manifolds leading to the same half-maximal supergravity obtaind from
the Sasaki-Einstein truncation. This truncation includes the supersymmetric, S-deformed
AdSs solution.

4.1 Eg) geometry for type IIB

We recall here some basic definitions of the Eg) generalised geometry for type IIB super-
gravity on a five-dimensional manifold M. A more detailed account is given in appendix A
following the conventions of [55, appendix E].

It is convenient to decompose the generalised tangent bundle E, whose fibers transform
in the 27 of Eg), according to the GL(5) x SL(2) subgroup of Eg)

E~TM® (T*M @& T*M) ® A3T*M @ (AST*M @ AST*M), (4.1)

where the two copies of T*M and the two copies of A°T*M transform as SL(2) doublets.
A generalised vector can be written as

V=v+X4+p+0%, (4.2)

where v is a vector, A* is an SL(2) doublet of one-forms, p is a three-form and o is
an SL(2) doublet of five-forms, o = {4, —} being the SL(2) index. The dual bundle
decomposes accordingly as

E*~T*M & (TM ®TM)® A*TM & (A°TM & A°TM), (4.3)

with sections
Z=04+ A+ p+ a0, (4.4)

where © is a one-form, Ao is an SL(2) doublet of vectors, p is a three-vector, and &, is an
SL(2) doublet of five-vectors. The natural pairing between a generalised vector and a dual
one is

1
pmnp + = a,mnpqro,a (45)

“ 1
<Z, V> - '[)mvm + )\m)\?n + o'"P 51 o mnpqr *

o 5 P

The cubic invariant is defined on F and E*, respectively, as
c(V,V,V)==3(topAp+eappANA*A M —2e45 1, )\aaﬂ) , (4.6)
NZ,2,Z) = =3 (00p N p+ e PpAda AAg— 2P 05 0005) . (4.7)

The bosonic fields of type IIB supergravity are the metric, the dilaton ¢, the axion Cp,
an SL(2) doublet of two-form potentials B* (B* being the NSNS two-form and B~ being

the RR one), a self-dual four-form C , and a doublet of six-form potentials éa that are on-
shell dual to the two-forms.® When dimensionally reducing on a five-dimensional manifold,

8In this subsection the symbol hat denotes ten-dimensional fields.
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the ten-dimensional fields are decomposed according to the SO(1,9) D SO(1,4) x SO(5)
splitting of the Lorentz group. We will use coordinates x*, u = 0,...,4 for the external
spacetime and y™, m = 1,...,5 for the internal manifold M. Then the type IIB metric
takes the form

g0 = e2A G dxt'dx” 4 gDy Dy™ (4.8)

where Dy™ = dy™ — h,"*da" and A(z,y) is the warp factor of the external metric g, (z).
The form fields decompose as

A~

B“ fBo‘ Dymlmz—l—Ba dxt ADy™ + BO‘ dxt |

2 mima
A1 — 15
C= Ecml.__m4Dym1...m4 + 70Mm1m2m3dquDym1m2m3 + zcuumlmzdxuy/\DymlmZ +...,
B 1o dzHA Dy™ -+ ms 4L Be dzMADy™ M4 (4.9)

5 pmi...ms 2 4[ MV .Y

where dz"” = da* A dz¥ and Dy ™ = Dy™ A --- A Dy™». The ellipsis denote forms
with more than two external indices which we will not need. The expansion in Dy instead
of dy ensures covariance of the components under internal diffeomorphisms.

As discussed in e.g. [56, 57], covariance under generalised diffeomorphisms also requires
a redefinition of the barred fields in the expansion above. We adopt a notation such
that B, indicates the components of a one-form in the external spacetime which are p-
forms in the internal manifold. Similarly, B, , are the components of a two-form in the
external spacetime that are p-forms in the internal manifold. We perform the following
field redefinitions of the one-forms in the external spacetime:

Bii=DB,,
_ 1
C‘u’g = Cﬂ,g + 5 eaﬁBﬁ,l A B’B,
~ = 1 — 1 —
Bs=B5— 3 Bl NC — 3 CuzNB”, (4.10)

where B%, C' are just internal. The external two-forms are redefined as
le/ = B,Z[V + h[H_IBCVX] P
1
eapBS, BY
2
B0, 4= B”‘V4+ B"‘ C+ - Cm,g/\B —Bj, ANCy3 . (4.11)

C,ul/,2 = 6#1/2 + 3

The new (unbarred) fields transform covariantly both under internal diffeomorphisms and
form gauge transformations, that is under generalised diffeomorphisms.

The next step is to arrange the redefined fields into the inverse generalised metric GM |
the generalised vectors Afy and the tensors B, ). The generalised metric is made by all
the type 1IB supergravity fields with only internal indices, including the warp factor A,

GMN <_> {A gmrn ¢)7 CO) m1m27 le...’n’L4} . (412)
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Its precise expression is given in (A.23). The fields with one external index can be arranged
into the generalised vector Afy eI'(E),
'AHM = {hﬂm7 B/O;m’ C,umlmgmg, Bgml...ms} . (413)

Similarly the fields with two external indices form the generalised tensor By, s, that is a
section of N ~ det T*M ® E* (see (A.11), (A.12) for its GL(5) x SL(2) decomposition),

B,ul/M = {Buuom C;u/m1m27 B,ul/ml...m4 a guuml...mg,,n} . (414)

Here, the SL(2) index « on the type IIB fields has been lowered with e,5, and § €
D(A"T* Mg ® T*Myp) is a tensor related to the dual graviton in ten dimensions. The
latter is not part of type IIB supergravity in its standard form and will not play a role in
the specific truncations we will discuss below.

We have thus decomposed the ten-dimensional tensors according to their external or
internal legs and repackaged the components into generalised geometry objects. We can
then specify the dependence of these fields on the internal coordinates by making the
consistent truncation ansatz described in section 3.3.

4.2 Truncation from generalised SU(2) structure on Sasaki-Einstein manifolds

We discuss type IIB supergravity on a five-dimensional a Sasaki-Einstein manifold M,
which admits a consistent truncation to half-maximal gauged supergravity with two vector
multiplets [20], see also [21, 58, 59].

4.2.1 Generalised SU(2) structure

Five-dimensional Sasaki-Einstein (SEs5) structures are examples of ordinary SU(2) struc-
tures, whose torsion is also an SU(2)-singlet. The SU(2) structure is defined by a vector
&, a one-form 7 and a triplet of real two-forms j;, i = 1,2, 3, satisfying the compatibility

conditions’
§1ji =0 =1,
C L 1. (4.15)
JiNg; =0 fori#j, §]¢A]jAn:5ijvol,
where vol is the volume form compatible with the SE5 metric
9sEs = gKE +1° (4.16)

which is taken with canonical normalization Ry, = 4gmn». Locally this metric describes a
fibration over a four-dimensional Kahler-Einstein base with metric gkg. In a neighbour-
hood, the fibre direction corresponds to the orbit of the vector £, which is also an isometry
and is called the Reeb vector. In addition the SU(2) invariant forms satisfy the differential
conditions

dn = 273, djs =0, d(j1 +ij2) = 3in A (j1 +1ij2)- (4.17)

9The j; are identified with the forms used in eq. (2.6) as js = w and j; +ij2 = Q.
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The AdSs x SE5 supersymmetric solution of type IIB supergravity has string frame metric

910 = £* (gadss + 9sEs) » (4.18)

where gagqs; is the unit AdSs metric and ¢ sets the overall scale. The solution also contains
a non-trivial self-dual five-form flux whose internal part is proportional to the SE5 volume,

F'=dC = kvol, £.C =0, (4.19)

where k is a constant related to the overall scale as ¢4 = %e% 19 The second expression
in (4.19) is just a convenient gauge choice for the four-form potential.

The consistent truncation was originally constructed by expanding the type IIB su-
pergravity fields in the most general way possible in the basis of SU(2)-singlets given
above [20, 21]. We now show how this truncation is easily derived from Eg) generalised
geometry; this will also give the opportunity to illustrate the general statements made in
section 3 in a concrete example. We thus lift the Sasaki-Einstein SU(2) structure to the
generalised tangent bundle, and take Gg = SU(2) C USp(4). Under

USp(8) D USp(4)r x USp(4) D USp(4)r x U(1) x SU(2)s, (4.20)
the spinorial representation decomposes as
8—(4,1)®(1,4) - (4,1)®(1,27)®(1,2_4), (4.21)

so we have precisely four Gg-singlets and the truncation preserves half-maximal supersym-
metry. In order to count the vector fields in the truncation, we embed SU(2) ~ SO(3)
in E6(6)

Eg(6) 2 SO(5,5) x SO(1,1) D SO(1,1) x SO(5,2) x SO(3)s, (4.22)

and decompose the fundamental representation of Egg),
27 1009161014 — (7,1),®(1,3),®(8,2)_; & (1,1)_,. (4.23)

We find 8 singlets of SO(3), 7 transforming in the fundamental of SO(5,2) and one neutral.
This matches the vector field content of half-maximal supergravity coupled to two vector
multiplets.

From (4.20), (4.22), we see that the scalar manifold of the truncated theory is

CEa(a) (SU(Q)S
Cusp(s)(SU(2)s)
that is the scalar manifold of half-maximal supergravity coupled to two vector multiplets.!!

The eight generalised vectors K 4, with A = {0,A} = 0,1,...,7, defining the gen-
eralised SU(2) structure are constructed from the tensors defining the ordinary SU(2)

~—

SO(5,2)
SO(5) x SO(2)

Maear = = S0(1,1) x (4.24)

10The parameter & is related to the N units of five-form flux as x = 277 N.

"Precisely the same group-theoretical arguments described here were used in [60, 61] to identify a con-
sistent truncation of maximal SO(6) supergravity to half-maximal supergravity with two vector multiplets.
Although the matter content of the five-dimensional theory is the same, the gauging is different.
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structure on the Sasaki-Einstein manifold. For the generalised vectors to contain all the
information about the background, we should also include a twist by the four-form C
satisfying (4.19),

Kai=e"Ky, (4.25)

where K 4 denotes the untwisted vectors and the adjoint action of C on a generalised vector
is given in (A.10). We find that the generalised SU(2) structure is defined by

K[)Zga
1 . )
Kz:7277/\31 1=1,2,3,
1
K4:—2(n77—rvol—nn/\0),
1
K5:—2(—r77—nvol—|—7“17/\0) ,
1
K6:—2(nn+rvol—nn/\0),
1
K7 = —2(—7“17—|—nv01—|—7‘n/\C) , (4.26)

where

(). ()

are a basis for the SL(2) doublets. Using (4.6) for the cubic invariant, it is straightforward
to verify that the compatibility relations (3.8), (3.10) are satisfied, with n = 2.
We will also need the dual vectors K%. Evaluating (3.15), (3.16), we find that these

are
Ky =mn,
« 1. .
Ki :_72.71/\57 2:172737
_— P NP,
K4:—2(—r5+n0w01+nvol),
1 - -
ngﬁ(Af+fCJVOl+fVOl),
1 A R
ngﬁ(f—i—ﬁ(j_nvol—i—ﬁvol),
1 N R
K7 = 7 (—n&+7Covol + Fvol), (4.28)

where j;, are the two-vectors dual to the two forms j;, vol is the five-vector dual to the

1
Fo = €apr’ = <0> . Na=—€qpn’ = <(1)> : (4.29)

The gauging of the five-dimensional theory is obtained by computing the generalised

volume form, and

Lie derivative between the set of generalised vectors, as in (3.18). The definition of the
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type IIB generalised Lie derivative can be found in (A.16). We find that the algebra closes
into the non-vanishing structure constants

X1 = X' =3,

K
Xo4® = —Xo5* = —Xou" = —Xor* = Xo5° = Xo6° = —Xo6' = Xo7° = 3
X34° = — X3, = —X35* = X355 = X36° = —X36" = —X37? = X375 = V2,
Xu5% = Xur® = —Xs56® = Xo7° = V2, (4.30)

where the terms in the last two lines are antisymmetric in the lower indices. From (3.20)
we conclude that the embedding tensor components are

K
&12 =3, §45:§47:_§56:§67:§>

faas = faar = — fas6 = fagr = V2. (4.31)

This is fully consistent with the embedding tensor found in [20].12 As discussed there, the
corresponding gauge algebra is Heisg x U(1), where Heiss is the three-dimensional Heisen-
berg algebra. The remaining four generators, that transform in a non-adjoint representation
of the gauge algebra, determine the vector fields that are eaten-up by two-form fields via
a Stiickelberg mechanism.

4.2.2 Generalised metric

In order to recover the scalar truncation ansatz we need to construct the generalised metric
evaluating the formulae (3.40). We first derive the generalised metric for the background
solution AdSsxSEs using (3.33), since this is simpler and it allows one to see how the
construction works. Then in the next subsection we will discuss the generalised metric for
the dressed generalised vectors, allowing for general 3, V, and extract the scalar ansatz.
For simplicity, we also momentarily set the four-form C to zero, that is we work with the
untwisted vectors, and reintroduce it in a second step.

Recalling the decomposition (4.4) of the arbitrary dual generalised vector Z, we find
that Gy in (3.40) is

GJI(Za Z) = (gm{}m)Q ) (4'32)

while the two terms defining Gl_o1 evaluate to

a 1 ; AT 2 \m 1 ~mnpqr
262, K2 ) =7 3 (mdinp 8777) 4 D0 (2P + 55 D0 (60)?, (4.33)

|
4 i=1,2,3 a=1,2 5! a=1,2
and (K3, Z,Z 1
c ) &y A~ A~ N A~
(351) = =5 "D enpgrs + 2 €27 AT %65 (4.34)

12The precise matching between the embedding tensor components in (4.31) and those in [20, eq. (4.20)]
is obtained upon renaming the indices (1234567 )nere = (3451267)¢here (which can be achieved by a trivial
SO(5) transformation), multiplying all components in (4.31) by —+/2 (which is a harmless rescaling of the
gauge group generators) and noticing from comparing the five-form fluxes that Knere = 2Kk¢here.
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The term involving the j; projects 1,,0™"P on its anti-self-dual part on the Kéhler-Einstein
basis, hence it can be written as

1 L 2 1 ) 1 2
L5 (™) =0~ I )
i

1 ~Mmnp 1 ANP AqTS

= i(nmp ) + ﬁ Im P P Enpgrs - (435)
Adding up the two contributions we obtain

3 . 1 . 1 .

G0 (2,2) =Y () + 5 (") + 5l > (e, (4.36)
a=1,2 Ta=1,2

We see that the tensor structure of G L and Gfol is such that at least one index is along
the fiber of the Sasaki-Einstein manifold. It remains to evaluate Gfﬁlz as explained in
the general discussion of section 3, this is obtained by the recursive Clifford action of K3,
K}, K3, K3, K1 on a dual vector Z, and by finally pairing up the resulting vector with Z
itself. After a long but relatively straightforward computation, we find

G5 (Z,2) = gitfi dmn + 6P g N0 NG + é I Iy s PP (4.37)

Hence Gfﬁl is just a generalised metric on the four-dimensional Kéahler-Einstein base.
Adding up the three contributions, we arrive at

PN 1
G_l(Za Z) = gmn@m{)n + 6aﬁgmn)\gz)\gl + = 6 pmnppmn + 5046 mnpqro,ﬁ mnpqr s (438)

where ¢, is the Sasaki-Einstein metric (4.16), which is also used to lower the curved
indices in the last two terms.

The metric associated with the twisted generalised vectors K4 = €K 4 is easily ob-
tained by recalling that the Egg) cubic invariant is preserved by the twist,

c(e“V, eV CVY = ¢(V, V!, V). (4.39)

This means that the generalised metric with non-trivial four-form potential can be com-
puted using the untwisted K’s ((4.26) with C' = 0) and e~“Z. Thus, to reintroduce C, it
is sufficient to consider (4.38) and to make the following substitutions

v — 0+ puC,
Ao = Aa — C by . (4.40)
Comparing the generalised metric and (A.23) with only non-zero g, and four-form C,

we recover the metric and four-form potential of the AdSsxSEs5 solution of type IIB
supergravity.
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4.2.3 Recovering the truncation ansatz

In [20], the scalar truncation ansatz based on the Sasaki-Einstein structure is given in the
Einstein frame by!?

2
g0 = e_§(4U+V)gMVdCC'udIL’V + eQUgKE + 62V7’]2

B =b;ji, B =ciji, C=C"—aj3njs, (4.41)

where {U,V,b;,¢;,a}, with i = 1,2,3, together with the axion Cj and the dilaton ¢, are
eleven scalar fields depending just on the external coordinates, and Cf! is the background
four-form potential that we called C' in the previous subsection, satisfying (4.19). These
eleven scalars parameterise the coset manifold (4.24). Specifically, the SO(1,1) factor is
parameterised by the combination ¥ = e~ 3WU+Y) For the % coset representative,
it is convenient to use a solvable parametrization, which is obtained exponentiating the
Cartan and positive root generators of the coset. The explicit form of {Va® V4%} (with

b=1,...,5and b=1,2) chosen in [20] reads'*

©-

91 b2 1

1 00 e 2 (—Cl—l-Cobl) —e 2 e_T(Cl—Cobl) e 2b;
010 e_%(—CQ—l—Cobg) —e_¢72b2 e_%(CQ—Con) e_%bg
001 e_%l(—63—|-00b3) —e_%ng e_%(C;g—Cobg) e_%bg
1 e c3 S5 (P4 +Chay) S5-Co—S5-ay S5 (e —c_—Cpay) S-Co+S5—ay
9 _92 _9 _92
by by by S5(a——Cpb_) S (e?2+4b_) S (—a_4+Cob_) S5(e?2—b_)
c1 ¢ cg C 5 (e¢1—C++C()Cl+) e2 Co—¢ 5 04 S 5 (e¢1+c+—Cga+) e2 Co+& 7 04
bi by by S5—(a-+Coby)  S5—(e”2-by) S5(—a_—Coby) S5—(e?+by)
(4.42)
where we defined ¢1 = 4U — ¢, ¢ = 4U + ¢, and

ar =2a+bic;, a_ =2a— b,

by =1+bb;, b_=1-bb;,

4 = 1+ C;C; , (. =1-— C;C; . (443)

Note that the solvable parameterisation has a nice interpretation in terms of Egg)
adjoint action (recall (A.9))

f(a —(B*+B—+C o (K -1 VP
<Ka>:e( + +).m-T-e . KQ = VQB KB7 (444)

13Compa,red to [20] we have renamed by = Rebﬂ, by = Ime, by = bJ, and similarly for c;.
1 Compared to [20], we have renamed the indices (1234567)nere = (3451267)there via an SO(5)
transformation.
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where

+ . _ . . . a e% 0
BT =1b;j;, B™ =¢;ji, C=—ajsNjs, mig=| 4 o |, (4.45)
e2Cy e 2
1 1
r = diag (ev, eV, eV, &Y, eU) , 1= gtr(r) =3 (4U +V) (4.46)
so that the action is by only supergravity fields, with no need to introduce the poly-vector

components in the Egg) adjoint.'?

Having chosen an explicit parameterisation of the coset representative V), we can com-
pute the full generalised metric using formula (3.40). This will depend on the eleven scalars
{U,V,Cy, ¢,b;,c;,a}. Comparing the expression obtained in this way with form (A.23) of
the generalised metric, we can extract the truncation ansatz for the supergravity fields g,
Co, ¢, Byny Cmnpg, as well as the warp factor A16

Although straightforward in principle, the computations are lengthy and we just discuss
the final result. The warp factor is easily extracted using (A.24), (A.25) and reads'”

)

eQA _ e—§(4U+V) (447)
while the internal metric is given by
efQA(Gfl)mn — gmn — efQUgf(ng + 672V€m€n ) (4.48)
Proceeding in a similar way for the other supergravity fields, we recover precisely the scalar
ansatz (4.41).
The ansatz for the five-dimensional vectors follows straightforwardly from (3.34). We
construct the linear combination of generalised vectors AﬁlK A, where the coeflicients Aﬁ‘

are vectors in five dimensions, and we equate it to the generalised vector (4.13), with the
fields Bf; |, C.3, and 33‘75 being defined as in (4.10). Separating the fields transforming in

1>
different representations of GL(5), we find:
0
h’u = Ap, 5 )
1
+ 4 6
Bia= ﬁ (Au +‘AM) m,

1

B =——

w1 \/ﬁ
1 .

Cus = EAL]”\U’

(AR + AL,

~ 1 1
Bls =5 (AL = AL vol 5 (AL + A4) O .

~ 1

1
B; 5 = —
’ V2 V2
5The GL(5) matrix r is given in the basis of vielbeine that makes the metric diagonal. This should not
be confused with the SL(2) doublet r<.
16 A minor subtlety is that the truncation of [20] was derived in the Einstein frame of type ITB supergravity,

while the generalised metric in (A.23) is adapted to the string frame; however (A.23) can be turned to
the Einstein frame by simply ignoring the explicit factors of e~® appearing there, and we do so in our

(Aj, — AD) vol +—= (A%, + A7) C" Ay (4.49)

computation.
"In this case A is not really a warp factor as it is independent of the internal coordinates. It is just a
Weyl rescaling setting the external metric in the Einstein frame.
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The ansatz for the two-form fields follows from (3.35). The weighted dual vectors JA
can be computed by multiplying the dual vectors K% in (4.28) by the internal volume form
as in (3.16). Doing so we find:

J? =vol®@mn,

J' = 12.7@,

Jt = 12(—ﬁ + 7 voly —n C’ﬂ),

J? = 12(—f —ivvoly —r C™MY |

JS = 12( + #voly +n C™)

J' = L(A — fuvoly +7 CY (4.50)

S

where we defined voly = {.vol. Equating B, AJAr to the weighted dual vector (4.14)
and separating the terms in different GL(5) representations, we find
1

Buvo+ = NG (Buv7 — Buws) ,
Buo- = \}i (Buve — Buva) ,
Couvz = Jli Buwidi
Bunis = —= (Bt + Bg) vola +—= (Bt — Bus) O

V2

uwd— = —\ﬁ (Blﬂ/5 + B‘uy 7) voly —}—\2 (Bw,(j - B'LW4) Cﬂ . (4.51)
The tensor g associated with the dual graviton would be expanded as B,,, o vol @7, but we
will not need this.

This ansatz for the one-form and two-form fields agrees with the one of [20]. We have
thus shown how the full bosonic truncation ansatz for type IIB supergravity on Sasaki-
Einstein manifolds can be derived from our general approach to half-maximal truncations.

We observe that the particular Sasaki-Einstein manifold given by the 71! = %
coset space admits a further reduced U(1) C SU(2) structure. In the generalised geometry,
this introduces an additional singlet vector Kg = n A ®, where ® in the only harmonic
two-form in the Sasaki-Einstein metric on 75!, On T%! one can also twist the generalised
tangent bundle by NSNS and RR three-form fluxes proportional to the cohomologically
non-trivial three-form n A ®. Following the same steps as above including the extra vector,
we would retrieve the larger consistent truncation of [51, 52], yielding half-maximal gauged
supergravity coupled to three vector multiplets.

4.3 Truncations for B-deformed backgrounds

It was shown in [19] that for any AdS5 solution to type IIB supergravity preserving minimal
supersymmetry, and hence dual to an N' = 1 SCFTy, there is a consistent truncation to
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pure gauged supergravity in five dimensions containing that AdSs solution. A class of such
backgrounds is provided by the S-deformation of Lunin and Maldacena [22]. For the case
where the internal manifold is S®, the explicit truncation ansatz of type IIB supergravity on
the S-deformed geometry to pure gauged supergravity has been given very recently in [23].
Here we show that if one starts from a toric Sasaki-Einstein manifold, the generalised
SU(2) structure of the S-deformed background allows for a much larger truncation. The
resulting five-dimensional supergravity is in fact just the same half-maximal supergravity
with two vector multiplets that arises from type IIB supergravity on squashed Sasaki-
Einstein manifolds. One way to see this is to observe that the full truncation ansatz on
toric Sasaki-Einstein manifolds can be S-deformed.

4.3.1 The B-deformed T'! background

In [22], Lunin and Maldacena showed that, given an N' = 1 background with two U(1)

isometries commuting with the R-symmetry, a new supersymmetric solution can be ob-

tained by applying a TsT transformation, namely a sequence of T-duality along one of the

U(1), a shift along the second U(1) and another T-duality along the first one. Any toric

Sasaki-Einstein manifold can be deformed in this way. We will present explicit formulae

for the 7! manifold, however our results apply to any toric Sasaki-Einstein five-manifold.
The canonically normalised Sasaki-Einstein metric on 7! is

1 1
gse; = > (d67 + sin® 6:dg?) + g (¥ + cos61dey + cos fodgn)? (4.52)
i=1,2

and for the internal part of the four-form potential satisfying (4.19) we choose the gauge

C = —%8 W sin 0y sin By 6y A ddy A dfg A debs . (4.53)

The dilaton is constant and all other fields vanish, ¢ = ¢ = const, Cp = B* = 0.8
The S-deformed solution!? given in [22] reads
sin2 (91 sin2 92

1
gro =02 {QAdS5 + dy? + G (467 +do3)

324f
cos 1 cos By cos b 2 f cos By sin? 6, 2
h bt Satie'] S R Rl
+g <d¢1+ odoa+ =0 dw> (a0 ) |
e2¢262¢0g’
01 cos6 cosf cosfysin 6
Bt =294 Gf (g, + S27LE82 Lag ) A ((dgg+ 2725 71 g
Y gf<¢1+ oh P2+ oh (0 P+ 517 v,
B = % cos b sin By dfy A1)
F'= kGvolgg, (4.54)

18The axion Cp is set to zero for simplicity, although any constant value would be allowed.
19This is a solution for a real deformation 8. The generalisation to a complex deformation is straightfor-
ward and amounts to an SL(2,R) rotation.
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where ¢4 = %e‘bo and 7y is a real parameter. Moreover one has the functions
G =1+ 4%,

cosf?  sin?6;

h:
9 6

1 1
f= w1 (C082 0, sin® 01 + cos?® 0 sin® 92) + 6 sin® 0 sin® 6, .
(4.55)
4.3.2 The B-deformation in generalised geometry

We next show that the type IIB [S-deformation has a very simple interpretation in gen-
eralised geometry as the Eg(g) action by a bi-vector with components along the two U(1)
isometries commuting with the Reeb vector.?’ For the T1! metric (4.52), these corre-
spond to the rotations by angles ¢1 and ¢2. Then the 5 deformed solution is generated by

o (0) 0
7= (ﬁ) B (—27% /\3¢>2) ’ (45

where v is a real constant. This acts on a generalised vector V = v + A% 4+ p 4+ ¢® in the
adjoint of Eg) as (see (A.9)):

the bivector

V= V=V4+p5.V
=(v— eagﬂa_v\ﬁ) + (A4 8%p) + (p+ eagﬂa_JO"B) + o (4.57)

In particular it is easy to show that the deformation (4.56) maps the generalised vector
K 4, (4.26), defining the generalised SU(2) structure into new generalised vectors

Ky =¢,
1
Ki=—]|r NJi) +n A Gi 1=1,2,3,
ﬂ[[h(n Ji) +n A il
1
Ki=-—=[-Bm+nn+pinAC)—rvol—nnAC],
V2
1
Ké:\ﬁ[6_177—r77+5_:v01—nv01+r77/\0],
1
Ki=—=[-Bm+nn+Bs(nAC)+rvol—nnAC],
V2
1
Ké:7[ﬁ_m—rn—ﬁ_:vol—l—nvol—l-rn/\C], (4.58)

V2

that are still globally defined. Since the new K4, A =0,...,7, are obtained from the origi-
nal ones by an Eg g transformation, they still satisfy the conditions (3.8), (3.10) with n = 2,
and therefore define a generalised SU(2) structure. Moreover, evaluating the generalised Lie
derivative between them, one can check that they satisfy exactly the same algebra (4.30)
as the original generalised vectors associated with the Sasaki-Einstein structure.

We conclude that there exists a consistent truncation on the S-deformed geometry,
which leads to the very same five-dimensional half-maximal gauged supergravity obtained
via reduction on Sasaki-Einstein manifolds.

20Gimilarly, the S-deformation of AdS, solutions to M-theory is generated by a tri-vector in E7(7) gener-
alised geometry, see [62].
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To compute the algebra for the deformed generalised vectors it is helpful to make
an explicit choice of parametrisation for the SU(2) structure on TH!. We introduced the
coframe one-forms

1 1 ) .
el — 3 (dv) + cos 1dgy + cos Oades) , e = 7\/6 (cos;ﬂ sin 61d¢, — sin % d91> ,
1 LY. P 1 (U .Y
3 _ hd hdl 4 _ Al _ hdl
e’ = 7 <s1n 5 sin Oad g9 + cos 5 d02> , e NG (cos 5 sin #od¢s — sin 5 dés |,
1 (.Y . (i
5
_ ¥ v A
e 7 (sm 5 Sin 01d¢y + cos 5 d91> , (4.59)

such that the Sasaki-Einstein metric (4.52) is gsg = Y.o_,(e*)?, and the SU(2) struc-
ture (4.15) is given by

=30y, = —e!,
N S (460
J1=e"+e’, Jo =€ —e™, Jz=e" —e’.
The RR four-form potential satisfying (4.19) can be written as
1 o
C= —gﬁ¢j3 A Js . (4.61)
For completeness we can also list the S-deformed generalised dual vectors
[>)kl =1n—- nﬁ—”? )
* 1 A A .
Kzlz—ﬁ(]l/\é—ﬁ/\jl/\g)a 2217273a
1 A N R
o 7 (—fg +ACvol — B A Cvol + ﬁvol) :
1 . .
K3 = —= (R +7Cvol = BAE+7vol) |
5 \/Q 5 J 5 5
1 N n R
Ky =5 (7&+nCvol = B A Covol + ivvol)
Ki' = —= (=g +7 Covol + BAE+7vol) | 4.62
7 \/i g - /6 § ( )

As for the Sasaki-Einstein case, the inverse generalised metric is computed by plugging
the -deformed generalised vectors and their duals in (3.33). The computation is long but
relatively straightforward. Comparing the result with (A.23), we can then extract the
supergravity fields describing the S-deformed solution. We illustrate here the main steps.
From (A.25) one finds that the deformed solution has trivial warp factor

A = (detH) /P =1. (4.63)

The inverse metric (G~1)™" = g™ reproduces the metric in (4.54),

1 1 2
g5=75 D_ (A0;+Gsin;do]) + G (dw+cosbrder +cos 92d¢2)2+%gsin2 6 sin? By dep?
i=1,2

(4.64)
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which we have written in a way that will make the comparison with the truncation ansatz
easier. The relation

B;)Olln = Gm[p(Gil)pz] > (465)
gives the NS and RR two-form potentials
1
Bt =~G |2fd¢1 A dps + 2—7(sin2 01 cos By dgy — sin® By cos y dgo) A dap|
B~ = —"5% sin 6 sin 05 A6y A dfs . (4.66)

While the NS two-form is exactly the same as in (4.54), the RR two-form is related to the
one of [22] by a gauge transformation By, = B'~ 4+ dA with A = —I71 cos 0y sin 62dbs.
Next we use the component (G—l)?nﬁ in (A.23) to extract the axio-dilaton

—¢' paB _
e 0G-1

ot =

(G H™(G e h+ (GYma G = (l ’ > S e

From (A.19) we see that Cj is zero (as we set it to zero in the undeformed solution) and the
dilaton reproduces the one in the solution of [22]. Finally, from the component (G=1)™,,,,
we find the four-form potential

2
= % [ — % sin @ sin @5 (cos 05 sin? H1d¢hy — cos 0y sin? 65 d¢2) A dBy A dby A dyp
+ (14 292f) df1 A s A depy Adsl (4.68)

which gives the five-form of [22],
1
Fl = dC" + 3 (B AdB'™ — B AdB"™") = Gk volsg, (4.69)

where volgg is the T1! volume form in the undeformed solution.

An equivalent way to compute the generalised metric for the deformed background is
to act with a S-deformation on the generalised metric of the Sasaki-Einstein solution. We
consider the action of a nilpotent bivector, 8 A S = 0. This is not the most general bivector
deformation, but it is enough to describe the S-deformation of Lunin and Maldacena. The
transformed metric is

Gl=.Glef=Grrp.c -Gt B-58-G7L 5. (4.70)

For the purpose of extracting the type IIB supergravity fields, we will only need the fol-
lowing components of the S-transformed generalised metric

(G = (G =BG (G B = B (G )R BT

(@Y= (@Y (G 1= BTG5

2 pn>
—1\« —1\«o 1 e — 1 -\« 1 « - s
(G = (G5B GC Dmpa i 5 (G 5mpaB7P04 1 B°PU G mpgmrs 7
(G/_l)mnpq = (G_l)mnpq_ﬁgcs(c_l)mgpqrs . (471)
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Plugging in the formulae above the metric, dilaton and four-form potential of the AdSs x
T solution and the form (4.56) of the bivector 3, we recover exactly the expressions for
the different fields of the S-deformed solution discussed above.

In the specific example of 71!, one can also include the 3 deformation of the generalised
vector Kg introduced in the previous section

K{=®An+Bi(nAP)n. (4.72)

The S-transformed vector should still preserve the algebra and, after also introducing three-
form fluxes, the corresponding enhanced truncation contains the g-transformed Klebanov-
Strassler solution discussed in the appendix of [22].

4.3.3 The truncation ansatz

The truncation ansatz for the vectors is obtained substituting in (3.34) the generalised
vectors defining the generalised SU(2) structure on the beta-deformed T'!' are given
n (4.58), (4.62)

1
hM:Agg—E(AfL+Aﬁ) Ban,
1
Bilzﬁ(Aﬁ+Aﬁ)77’
B

1
wl = 7 \/§(A5+A7)n+\/> ;;,6—‘(.72/\77)

1 1 1

Cus = EA“JZ' Am— 7 (Aﬁ —i—Aﬁ) Ba(nnch) + 7 (AZ —AZ) Bavol,
~ 1 1

Bjs= -5 (A5 — A7) vol — NG (AL +A5) M A,

- 1 1
By = == (AL = ) vol + = (4] + A7) 7 . (4.73)

To give the ansatz for the two-forms one has to compute the tensors J# in the bundle
N ~ detT*"M ® E*. As for the Sasaki-Einstein truncation, these are obtained acting on
the dual generalised vectors K* with the internal volume, as in (3.16),

J? = n® vol + 7 f(n @ vol),
It = —= (7 Baji + i)
(<A +8.C" + 7 voly —aCl) |
( 7+ Bavoly — nvoly — 7 C’f1>
(A= BoC" + #voly +7CT)
(7

+ favoly — nuvoly + 7 Cﬂ> (4.74)

E\HE\HE\HE\HE\H
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where again we are using voly = £vol. Then equating the components of the generalised
tensor (4.14) with the linear combination B, 4J%, we find

1 1

B},LV,O-‘r = ﬁ (B;U/7 - B,uVS) - ﬁ (Buul ﬁ—‘jl + Buu? /B—‘jQ) )
1
B;,LV,O— = ﬁ (BMVG - B,uu4) )
1 .
CMV,Q = ﬁ [B,uuiji + (BMVZL - BMVG)/B—‘CH + (BMV5 + B,uu 7)5—‘V014] )
~ 1 1
Bm/,4+ = _BHVO /BJ(U & VOl) + E (B,U,V4 + BMVG) VOl4 + ﬁ (Bm/’? - B,ul/5) Cﬂ y
- 1 1
BMV74— = — \/i (BHV5 + BHV7) voly + ﬁ (B'uyﬁ — B;w4) Cﬂ . (4.75)

The generalised metric contains the ansatz for the internal fields, metric and form
potential, the dilaton and the warp factor. Here we give the final result for the internal
and mixed components of the ten-dimensional metric (4.8):

1 1
G Dy Dy = F~ |2 (1161 + 3 f2d0 + fo DY)’ + 5 o™ By DY
1
+ 6 2y (dG% + dﬁg) + geA1+A2 (sin2 61 D¢? + sin? 92D¢%)
1
+3 41 (3cos 01 D¢y + 3cos O Dy + foDip)?

4y e gin2 6 sin® 0, ( S gisin6:Dg;d6y + S hysin6;De; d@)] ,

i=1,2 i=1,2
(4.76)
where the differentials D contain the shift by the five-dimensional vectors
Dy =dip +3A°,
D¢ = doy + ?7 cos 02(/14 + AG) ,
D¢y = dog — \f’y cos 01(A4 + .Aﬁ) . (4.77)

For simplicity of notation we defined A; = $(U+V), Ay = 2(TU+V), A3 = £(3¢—8U+4V)
as well as the functions

bB = by cosy + by sin),
bly, = bacostp — by sin,
fo=3—blysinb sinfy,
f1 = bj, cos By sin by + bz sin 01 cos b,
fa = by sinf; cos B — bz cos Oy sin by,
F=3 eAlfg + 72eA2+A3 [2 e (0082 6, sin® 0y + sin? 61 cos® 92) + 3 sin? 0y sin? 6y eAQ] ,
(4.78)
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and

g1 =(3 e 4+ 21 cot? 01)bl5 + 2 e1b3 cot O cot Oy,
g2=(3 ed2 4+ 2041 cot? 02)bs + 2 eAlbl_2 cot 01 cot Oy ,
hi=(3 e 4 21 cot? 01)bs — 2 eAlbf2 cot 61 cot Oy ,
he = (3 ed2 4 2641 cot? )by, — 2 e1b3 cot 0 cot By,
Ey = A2t 4342 6in2 0 sin? 0y — M1 f2

Ey = F 437%™ ((byy)” + 13) sin® 6y sin® 6 (4.79)

In line with the results of [19], there exists a subtruncation to minimal five-dimensional
gauged supergravity, that has recently been made explicit in [23]. The bosonic sector of
minimal five-dimensional supergravity is made of the metric, a single vector (the gravipho-
ton) and no scalars. It is obtained from the truncation derived here, by setting all two-form
and scalar fields to zero except for eV = eV = ¢, taking

./41:‘/42:‘/44:‘/45:“46:./47:07 (480)
and identifying the other two gauge fields with the graviphoton A as
A=3A"= A3 (4.81)

In this case it is easy to see that the generalised metric is the same as for the background
solution, so that the internal fields are not modified. The ansatz for the full ten-dimensional
metric becomes

1
910 = gy dada” + 2 (doF+d63) +g (sin? 61 d¢p? +sin® fodp3)
2
+g (dp+cosBrdey +cosBadpa+3.A°) g g—lg sin? 0, sin? 0, (d¢+3,40)2 . (4.82)

where we have set £ = 1. Note that the purely internal part coincides with (4.64).

5 M-theory truncations including a Maldacena-Niunez AdS5 solution

In this section, we construct a generalised U(1) C USp(4) structure on a manifold Mg given
by a fibration of S* over X, where X is a constant curvature Riemann surface. Specifically,
3 can be the hyperbolic plane H?, the flat space R?, a sphere S2, or a quotient thereof.
We argue that in each case the generalised structure provides a consistent truncation to
five-dimensional half-maximal gauged supergravity coupled to three vector multiplets and
with a U(1) xISO(3) gauging. The embedding tensor depends on the curvature of . When
2 is negatively curved, there is a fully supersymmetric AdSs solution which uplifts to the
AdSs5 x Mg solution of [24] preserving 16 supercharges.?! This describes the low-energy
limit of M5 branes wrapped on Z, which is an N' = 2 SCFT}, and our truncation captures
some deformations of such theory.

21The symbol Xy denotes the warped product.
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Generic AdSs xy Mg solutions of eleven-dimensional supergravity preserving half-
maximal supersymmetry were classified in [63]. It was shown in [64] that for all such solu-
tions, there is a consistent truncation to pure half-maximal supergravity with U(1) x SU(2)
gauging, such that the supersymmetric AdSs vacuum uplifts to the AdSs Xy Mg solution.
In section 2 we discussed how this statement follows from restricting to the singlet sector of
the USp(4) generalised structure on Mg. The results of this section show that, at least for
the specific Mg geometry of [24], the generalised structure is further reduced to U(1) and
correspondingly the truncation can be enlarged to half-maximal supergravity with three
vector multiplets.

We note that the existence of such a consistent truncation, as well as a detailed analysis
of its sub-truncations and vacua, was very recently proven using a complementary approach
in [25]. These authors considered an explicit truncation directly from seven-dimensional
maximal gauged supergravity. As we will see, the generalised structure we find is indeed
built using the generalised parallelisation on S* that defines the seven-dimensional maximal
gauged supergravity, thus giving a direct connection to the construction in [25].

5.1 [Eg6) generalised geometry for M-theory

We start by recalling some basic notions of Eg ) generalised geometry for M-theory, which is
relevant for dimensional reductions of eleven-dimensional supergravity on a six-dimensional
manifold M. Again we follow the conventions of [55, appendix EJ.

Under GL(6), the exceptional tangent bundle on M decomposes as:
E ~TM & AN*T*M © AST*M , (5.1)
so that a generalised vector reads
V=v+w+o, (5.2)
where v € TM, w € A’T*M and o € A°T*M. The Eg(6) cubic invariant is defined as??
c(V,V,V)==6LwAho—wAwAw. (5.3)
The bundle N ~ det T*M ® E* similarly decomposes as:
N ~T*M @& AT*M @ (T*M @ AST*M), (5.4)

so the sections are the sum of a one-form, a four-form and a tensor made of the product
of a one-form and a volume form.

The eleven-dimensional supergravity fields, that is the metric g11, the three-form
potential A and its six-form dual A, can be decomposed according to the SO(1,10) —
SO(1,4) x SO(6) splitting of the Lorentz group similarly to the discussion in subsection 4.1

22This is 6 times the cubic invariant given in [55].
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for type IIB supergravity:

gi1 = GQA Guv datdz” + gmnDymDyn )

A= %Am1m2m3Dym1m2m3 + %Aumlmzdx“ A Dy™im2 4 %Awmd:z’” ANDy™+ ...,
/:1 = éfimlmmﬁDyml”'mﬁ + %fluml_.msdx“/\Dyml'“m5
+ ﬁzzlwml._,,de’“’/\Dyml"'m4 + ..., (5.5)
where Dy™ = dy™ — h,"dx* ensures covariance under internal diffeomorphisms, and

A(z,y) is the warp factor of the external metric g, (x). We can organise the eleven-
dimensional supergravity fields into the inverse generalised metric on M ,?3

GMN — {A, Imn, Am1m2m37 Aml.--ms}; (56)

the generalised vectors
‘AMM = {hum7 AumnaAuml...ms }> (57)

and the weighted dual vectors

B,ul/M = {AMV’VTH Auuml...mm guum1...m6,n}7 (58)

where as in type IIB we will not need the last term, related to the dual graviton. The
bosonic truncation ansatz is obtained by equating these generalised geometry objects to
the corresponding terms given in section 3.

5.2 Generalised U(1) structure

The internal geometry of the half-maximal AdSs x Mg solution of [24] is constructed as
a fibration of S* over ¥, where X is a negatively curved Riemann surface. This Mg has
a U(1) C GL(6) structure in conventional geometry. As we will see below, this defines a
consistent truncation to half-maximal supergravity coupled to three vector multiplets. Ex-
plicitly under the embedding SO(2) x SO(5,3) C SO(5,5) C Eg(g) of (3.2), the generalised
tangent space E decomposes as

27T=10+85+1,.+1_+8, +8°, (5.9)

where 8% and 8° are vector and spinor representations and the subscript denotes the
SO(2) ~ U(1) charge. Thus we have nine singlets under U(1), which correspond to the
generalised vectors K 4, A=0,...,8. Under SO(5) x SO(3) these decompose as

1+8 =(1,1)+ (5,1) + (1,3),

(5.10)
F(E) > KO U{Kl)"'7K5}U{K67K77K8}‘

The explicit form of these vectors is determined by the S* fibration structure of the Mg
geometry. To see how they arise, we will first consider the direct product ¥ x S* and recall

Z3The precise expression for the inverse generalised metric in terms of the eleven-dimensional supergravity
fields is easily obtained from the conformal split frame given in [35].
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some generalised geometry on S, and then implement the twist of S* over . On X x S*
we can decomposes the generalised tangent space under GL(2,R) x SL(5,R) C Eg) where
GL(2,R) is the structure group of the conventional tangent space on < and SL(5, R) =~ Ey4)
is the structure group of the generalised tangent space on S*. Explicitly we have

E~TE® (T*S® Ny) @ (A*T*E ® N}) @ Ey,

(5.11)
27=(2,1)® (2,5) @ (1,5) & (1,10),

where in the second line we denote the SL(2,R) x SL(5,R) representations, and where we
have introduced the generalised bundles on S*

Ey~TS*® A*T*5*,
Ny~ T*S* @ AT*S4, (5.12)
Nj ~Ra& AT*S*,

E, being the generalised tangent space on S%.

As discussed in [6], on S% these bundles are parallelisable, that is, they admit global
frames, constructed as follows. Let us parameterise the round four-sphere S* of radius R
with coordinates Ry’, i = 1,...,5, constrained by the condition 6ijyiyj = 1. The metric
and the volume form induced from R® are

g1 = R? dijdy'dy’ voly = IR4 €iyigigigis Y 1Y Ady® Ady*t Ady* . (5.13)
We can define the generalised frames

E;j = v + R? x4 (dy; A dy;) + LvijA € I'(Ey),
E; = Rdy; —y;voluy +Rdy; N A S F(N4) , (5.14)
Ez, =19; + R *4dy; + 1y, A € F(Ni),

where v;; € ['(T'S%) are the Killing vector fields generating the SO(5) isometries, the Hodge
star %4 is computed using (5.13), and the M-theory three-form A is chosen such that

F=dA=3R vol, . (5.15)

The frames (5.14) are globally-defined and therefore parallelise the respective bundles.
Furthermore, under the generalised Lie derivative, the E;; generate an so(5) algebra

Lg,En = —R" (0aEj — 6aEj + 6By — 6j1Eq) - (5.16)

This parallelisation is the basis of the generalised Scherk-Schwarz reduction of eleven-
dimensional supergravity on S [6], which reproduces the well-known consistent truncation
to maximal SO(5) supergravity in seven dimensions [5]. In the generalised Scherk-Schwarz
reduction, the E;; define the truncation ansatz for the seven-dimensional scalar and vector
fields, while the E; and E] define the ansatz for the two-form and three-form potentials.
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In the solutions of [24], the internal space is a fibration

S4 #) M6
l’r (5.17)
2z

where topologically the sphere is twisted by a U(1) subgroup of the SO(5) isometry group.
Here X can be a negatively curved Riemann surface as in [24], but we can also allow it to be
a torus T2, or a sphere S2. Let the one-forms e, es be an orthonormal co-frame such that

g5 = (e1)” + (e2)?, vols = e1 A ez (5.18)

are the constant curvature metric and compatible volume form on X, all of which can be
pulled back to Mg using the projection map w. The twisting of the co-tangent space T*Z
defines a U(1) spin-connection v on X given by

R

d(e1 +iez) =ivA(e; +iea), dv = Hz vols , (5.19)
where k = —1 for H2, k = 0 for R? and x = +1 for S? (and quotients thereof), and for
convenience we are identifying the overall scale of X with the radius R of S*. To preserve su-
persymmetry one needs to choose the U(1) twisting of the sphere so that it cancels the U(1)
twisting of the cotangent space. For the half-maximal case one can choose conventions such
that the twisting is the U(1) generated by, for example, the v12 Killing vector that appears in
generalised frame 3. In terms of the embedding in Eg(g) we thus have the breaking pattern

Eg() O SL(2,R) x SL(5,R) D SO(2) x SO(5) D SO(2) x SO(2) x SO(3) D U(1), (5.20)

where the final U(1) is the diagonal subgroup of SO(2) x SO(2) ~ U(1)2. By calculating the
commutants one can see that this structure indeed corresponds to the case of half-maximal
supersymmetry with n = 3 vector multiplets, as claimed.

Having identified the U(1) structure we can now directly construct the singlet vectors
in the generalised tangent space. Given the decomposition (5.11), we note that these should
come from E12 € I'(Ey), Eop € T'(Ey) and voly AE/, € T(A’T*Z® N}) with «, 8 € {3,4,5},
since these are neutral under the U(1) action generated by v12. In addition we get a complex
generalised vector of the form (e; + ie2) A (E1 + iE») € I'(T*X ® Ny) since the twisting
means that the U(1) action on the first term is cancelled by the U(1) action on the second
term. Concretely we find the nine globally defined generalised vectors K4 on Mg with
A=0,...,8:

1
Ko=3 el - By,
K +iKy = (61 + ieg) A eT . (El + IEQ) ,
1 (5.21)
K, = ieam el . Eg, + vols A el . E& ,
1
Ko = Eeaﬁ'y el . Egy — vols A el . E. .
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with o = 3,4,5 and €,3, the antisymmetric symbol such that €345 = 1. Note that each
of the frame vectors on S? is twisted by the exponentiated SO(5) adjoint action (defined
in [55, appendix E.1]) of an element of the egq) @ R algebra:**

T=—-Rv Xad E12

) (5.22)
=—-R [1112 Qv+ vAxg(R dyy Ady2) +v A LU12A] ,

where the tensor product x,q contains a projection on the adjoint representation and v is
the spin-connection on Z. Concretely one finds

el Eip = Fia,
el (Ey+iEy) = (E1 +iEy) +iRv A (B} +1EY),
1

1
560(57 el . Eg,y = ieag,yEg,y + RuvAE,,

(5.23)
T / / 1 2
e -Ea:Ea+§R €apy U Ndyg Ady, .

Note that the last term in the fourth line drops out when wedged with vols in K, and
Ks.o above. One can check that these K4 do satisfy the conditions (3.8), (3.10) for a
generalised U(1) structure, where K7, ... K5 are the negative norm vectors transforming
in the fundamental representation of SO(5), while the K3, are the positive norm ones
forming an SO(3) triplet. Since the frame vectors on S* have been twisted by the same
element T of Eg), one can actually check the (3.8), (3.10) using the untwisted basis. In
particular, the twisting implies that, since dE; = 0 and dE, = % E;,

dfe¥ (By+iBs)] = —ivAel - (B +iE) +vols A(...), (5.24)
which just cancels the exterior derivative of e; + ies in (5.19) giving
d(K;+iK32)=0. (5.25)

The reason for the twisting by Y is straightforward. Given the fibration (5.17), al-
though vectors on S* push forward via the inclusion map i : S* — Mjg, we need a choice of
U(1) connection in order to push forward forms on S* to globally defined forms on Mg. If
1 is a coordinate on S° such that viy = R~19/0 this means replacing di in any form on
S* with dy + v. This is exactly what the action of the first term in (5.22) does. However,
in the seven-dimensional consistent truncation on S* the U(1) gauging actually comes from
E12 not just the leading isometry term v12. Thus to match with the construction in [24],
we should actually twist by the connection in (5.22), where the effect of the extra terms
is to turn on additional F' flux. This is the generalised geometry counterpart of the topo-
logical twist of the M5-brane (2,0) theory on X. Our construction should also make it
clear that the truncation we are going to define can equivalently be seen as a truncation of
seven-dimensional maximal supergravity on 2.

?4This is reminiscent of the construction in the context of O(d, d) generalised geometry in [65].
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5.3 The gauge algebra and the embedding tensor

We now compute the algebra generated by the twisted generalised vectors K 4 in (5.23).
The M-theory generalised Lie derivative on Mg is defined as:

Ly V' = L' + (Low' — tydw) + (Lyo’ — tydo — W' Adw) . (5.26)

In order to perform the computations, we find it convenient to use a parameterisation of
the generalised vectors in terms of angular coordinates on S*. This is given in appendix B.
We find that the only non-vanishing generalised Lie derivatives are:

i

LKO(Kl—FiKQ) =~ SR (Kl"‘iKQ), (527)
where we crucially used (5.25), and
1 1
Li Ry = —FéasnBy, LTy = Li,Rs = —peasy Ty, LpTs =0, (5.28)

where we introduced the combinations
1
Rai= 5 (1= 0)Ko + (14 0)Kspa]
1
T, := 3 (Ko — K314l , a=1,2,3. (5.29)
It follows that K generates a U(1) under which K; +iK> is charged, and Ry, T, generate
the 1SO(3) algebra, with R, generating the SO(3) rotations and T, generating the R?
translations. As is apparent from the form of the R,, the way the SO(3) subgroup of
ISO(3) is embedded in SO(5,3) depends on the value of k. If K = —1 then SO(3) C
SO(5) € SO(5,3), if K = 0 then SO(3) is the diagonal subgroup of SO(3,3) C SO(5,3),
and if Kk = 41 then SO(3) is the commutant of SO(5) in SO(5, 3).

Since all generalised Lie derivatives yield a combination of the K 4 with constant coeffi-
cients, the consistent truncation will go through, giving half-maximal gauged supergravity
in five dimensions coupled to three vector multiplets. Recalling (3.18), (3.20), we can deter-
mine the embedding tensor. We find that the non-trivial embedding tensor components are:

1
512 — _ﬁ 3
3+ kK 1+k
fa,@w = _ﬁ €afy s fozﬁ(v+3) = _W €afy » (5'30)

1-k 3—K
Ja+3)0+3) = SR By Jars)(B+3)(+3) = R by
We note that these indeed agree with the embedding tensor derived in [25].

When k = —1, the gauging satisfies the conditions for a half-maximal AdS5 vacuum
spelled out in [66]. This supersymmetric AdSs vacuum uplifts to the AdSs Xy Mg solu-
tion of [24]. In [67] the general conditions for five-dimensional half-maximal supergravity
to admit supersymmetric flows between AdS fixed points were given. Inspection of the
gauging (5.30) shows that the consistent truncation cannot admit such a flow, the basic
reason being that the way S* is twisted over the Riemann surface is fixed in our truncation
ansatz. It follows that the truncation cannot describe a flow from the AdSs vacuum pre-
serving 16 supercharges to another supersymmetric vacuum. Nevertheless, it may contain
other interesting solutions that it might be worth exploring.
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5.4 Recovering the truncation to pure half-maximal supergravity

The general formulae of section 3.3 provide an algorithmic construction of the full
bosonic truncation ansatz for eleven-dimensional supergravity on Mg, leading to the five-
dimensional half-maximal supergravity coupled to three vector multiplets described above.
In the following we make this completely explicit for a sub-truncation of that theory: we
recover the truncation to pure half-maximal supergravity given in [64]. This is only possible
when X is a negatively curved Riemann surface. Indeed in order to be able to throw away
the three vector multiplets consistently and be left with just the gravity multiplet we need
the gauge algebra to close on the first six generalised vectors, Ky, ..., K5, so that we have
a USp(4) generalisd structure with singlet torsion. From (5.30) we see that this requires
k = —1. The gauging thus obtained is SU(2) x U(1) and the half-maximal supergravity is
the one dubbed A = 4" in [68].

In order to determine how the only scalar field ¥ of pure half-maximal supergravity
embeds in the eleven-dimensional fields we evaluate the inverse generalised metric (3.40),
where we set V,4 = 6,” as we are now truncating all other scalar fields. In particular, from

(G—l)mn — e2Agmn 7
(Gil)mnp = GQA gquqnp ) (5.31)

we can extract the internal metric and the internal part of the three-form potential, after
having computed the warp factor A. The latter is given by the general formula [36]

volg = (det GMN)_Zgi_n?E = \/det gy eO7DA (5.32)

where we need to take d = 6 and dim E = 27.?° Equivalently we can write:
92 = (det GTMMN) 35 (det G )z (5.33)

We explicitly evaluate the inverse generalised metric and express it in terms of the Mg
coordinates introduced in appendix B. In this way we find that (5.33) gives for the warp
factor:

2 = A, (5.34)

where we introduced the function

_ 3
A =cos? 0 + Wi sin4. (5.35)

Inverting (G_l)m", we obtain the internal metric g, = eQAGmn, which reads

_ D) 2 2
g6 = R2AY/3 [\Zf (d92 +g5) + E\[A sin? 0 (dy + v)? + A cos® 6 g52:| , (5.36)
where gs is the uniform metric on X and gg2 is the unit metric on the 2-sphere inside S*.

The second line of (5.31) gives for the internal part of the three-form potential:

3 B 23 B
A= %cos?’ﬁ |:—2A’U + (\& - 2> sin? 0 (de + v) — 64 tanHAd@] Avolgz,  (5.37)

ZWe correct a typo in footnote 3 of [36]: det G appearing there should actually be (det G)

1/2
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whose field strength is

3 3 - 1 2A
dA= 32%29 K(ﬁz%m) tan0d9+ﬂsin2ed(z3)>A(d¢+v)+Rzvolz Avolgz.

(5.38)

In this way we have obtained the embedding of the five-dimensional scalar ¥ into the
eleven-dimensional supergravity fields. We note that the value of X giving the AdSs x Mg
solution of [24] is ¥ = 21/6.

We can go on and use our general formulae to determine the embedding of the
five-dimensional vector and two-form fields. For the mixed components of the eleven-
dimensional metric we get

1 1
h,™ = 5,43 o7 + 3 €apy Al VR (5.39)

where we recall that « = 3,4, 5. Then using (5.5) we reconstruct the full eleven-dimensional
metric:

V2

_ AL/3 2x1/3 2 V2 ., L o 2 3 29 A
g1i=A"’gs + R°A g(de +9s) + == sin“ 0 d@b—|—v—§.,4 + —cos“ 0 gg2

SA 2A
(5.40)

where A? gauges the shifts of the angle 1), while §g2 denotes the metric on S? where
the SO(3) isometries are gauged by A3, A* A°. When S? is described by constrained
coordinates such that u*u® = 1, this reads

gs2 = Dp®Dp® (5.41)
with 1
Dy = dp® — 3 egrs A’ Vg, | (5.42)

vg‘,y being the S? Killing vectors vys, vs3, v34 expressed in the u coordinates.
In order to determine the remaining part of the three-form potential we compute

AANK 4o = %RQ cos® 0 A% Avolge
+Re [Reiw(.Al—iAz)/\(el—Heg)/\(cosGdG—i-i sin@(di/}—kv))}
+AYN [—R2 d(cos O p®) A (dy+v)+R2d (pd (v cos® 0)]+cosdu*vols ]|,

BunJA| = g [Re <i (B1—iB2)A(e1+ieg) sin0e1w> —i—Ba/\d(cosﬁ,uo‘)} , (5.43)

where K 4|o and J#|; denote the 2-form and 1-form parts of K4 and J4, respectively
(cf. appendix B). Then the full eleven-dimensional three-form potential is

A:A+AA/\KA|2+BA/\J‘A’1, (5.44)

where we also need to implement the shifts diy — dy — %AO and du® — Dp® so as to
achieve covariance under internal diffeomorphisms.
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We can now compare with the consistent truncation ansatz given in [64]. To this
extent, we redefine our scalar ¥ into the scalar X appearing there as ¥ = 21/6 X1 and fix
the scale of Mg as R = 1. Then the eleven-dimensional metric (5.40) precisely matches the
one given in [64, eq. (3.1)].26 We also checked that the eleven-dimensional four-form field
strength matches the corresponding one given in [64] after the five-dimensional one-form
and two-form potentials are set to zero. Checking agreement of the remaining part of the
eleven-dimensional four-form requires a little further work. Indeed our four-form, being
constructed from the three-form potential, automatically satisfies the Bianchi identity,
while the Bianchi identity of the four-form given in [64] is not automatic and defines part
of the lower-dimensional equations of motion. Moreover in the embedding tensor formalism
adopted in this paper one keeps the vector fields as propagating degrees of freedom, while
the two-form potentials are auxiliary, non-propagating fields introduced just to ensure
closure of the gauge algebra; on the other hand, in [64] two of the six vector fields in the
half-maximal gravity multiplet are dualised into propagating two-forms and do not appear
in the five-dimensional Lagrangian. These two descriptions are related by dualisation of
some of the fields.?” One starts from the on-shell duality between the eleven-dimensional

three-form and six-form potentials A and /21,
N 1 - ~ S

Plugging our truncation ansatz in, this yields a set of duality relations between five-
dimensional fields, in particular between one- and two-form potentials. Using these re-
lations we can trade some of the fields appearing in our three-form potential for those
appearing in the dual six-form. In particular, it is possible to remove the dB,, a = 3,4, 5,
from dA and replace them by *dA% (the reason being that in the expression for A given
by (5.43), (5.44), B, wedges a closed one-form, implying that in dA only dB,, and not By,
appears). On the other hand, in dA the two-forms By, By are Stiickelberg-coupled to the
one-forms A', A% as d(A' —iA4?) — (B —iB;) and cannot be removed. If desired, one
could instead dualise A' —iA4? into By —iBy so that the latter becomes propagating in the
five-dimensional theory, matching in this way the description of [64].

6 Conclusions

In this paper we have discussed how generalised geometry provides a formalism to under-
stand consistent truncations of string and M-theory preserving varying amounts of super-
symmetry, including non-supersymmetric cases.

When the generalised structure group Gg is just the identity, and the generalised
intrinsic torsion is a Gg-singlet, one has a generalised Leibniz parallelisation [6] and can
perform a generalised Scherk-Schwarz reduction; this is a consistent truncation preserving
maximal supersymmetry. When instead Gg is non-trivial, and the intrinsic torsion is still a

26 After making the obvious identifications of the supergravity gauge fields and of the connection one-form
on ¥, as well as a trivial, constant rescaling of the external metric.

27See also [29, section 3.2] for a discussion of the procedure leading to select the relevant degrees of
freedom from dual pairs in a related context.
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(Gg-singlet, one obtains a consistent truncation preserving only a fraction of supersymmetry.
As we discussed in section 2, the matter content of the reduced theory is obtained by
evaluating the commutant of Gg in Eg(4) in the relevant representations, while the gauging
follows from the algebra of G g-singlets under generalised diffeomorphisms. In this way the
lower-dimensional theory is completely determined. Our formalism is completely general,
extending to less intuitive examples than the case where the consistent truncation is based
on an ordinary Gg-structure. For instance we can allow for a non-trivial warp factor, or use
generalised tensor fields whose fixed-rank components can vanish at points on the internal
manifold, but the full generalised tensor is nowhere vanishing.

After illustrating the general principles, in section 3 we have discussed in detail trun-
cations to five dimensions preserving half-maximal supersymmetry. These are based on
SO(5 —n) € USp(4) C Eg(g) structures. In this case, the generalised structure is entirely
characterised by a set of generalised vectors K4, A = 0,1,...,54 n, and the truncation
contains n vector multiplets. The sub-algebra of generalised diffeomorphisms generated by
the K4 determines the gauging of the five-dimensional supergravity. We have given an
algorithmic prescription to construct the full bosonic truncation ansatz. In particular, we
provided an expression for the generalised metric on the internal manifold in terms of the
K 4, and using this we specified the scalar field ansatz for the truncated theory.

We gave evidence for two new consistent truncations preserving half-maximal super-
symmetry: the first is obtained from type IIB supergravity on S-deformed toric Sasaki-
Einstein five-manifolds, and the second from eleven-dimensional supergravity on half-
maximal Maldacena-Nunez geometries [24] (the latter recently independently derived using
the truncation from seven-dimensional maximal supergravity in [25]). In both cases, we
showed how the generalised geometry completely characterises the truncated theory. For
the type IIB reduction we also discussed the bosonic truncation ansatz, while for the
M-theory one we recovered the ansatz for the sub-truncation to pure half-maximal super-
gravity previously given in [64].

There are many other possible truncations that it would be intriguing to explore using
our formalism. We sketch here some possibilities directly related to the cases we have
studied. In type IIB Eg) geometry, it would be interesting to construct a generalised
U(1) structure on the Y74 family [69] of Sasaki-Einstein manifolds, and check if it admits
a U(1)-singlet intrinsic torsion. If so, this would give a half-maximal consistent truncation
on YP? manifolds extending the one based on generic Sasaki-Einstein SU(2) structure by
one Betti vector multiplet, as in the Y1? ~ Tb! truncation of [51, 52]. For this to go
through, one would need the full flexibility of generalised geometry in order to circumvent
the issue pointed out in [70] relevant working with ordinary G-structures.

In M-theory, it would be nice to extend the construction presented in section 5, which is
based on the geometry of [24], to the general ansatz for half-maximal AdSs solutions of [63].
In particular, this would provide new consistent truncations containing the AdSs solutions
of [71], describing M5-branes wrapped on Riemann surfaces with punctures. A similar con-
struction is conceivable for the supergravity description of D3-branes wrapped on Riemann
surfaces [24], however in this case one would need to use the more complicated type 11B
Eg(s) generalised geometry formalism, which is not fully developed yet (though see [72, 73]).
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M5-branes wrapped on Riemann surfaces also give rise to AdSs5 X Mg supergravity
solutions preserving just one quarter of the supersymmetry, which are dual to N = 1
four-dimensional SCFTs [24, 74]. Our general analysis can be used to predict the form of
the corresponding consistent truncations. For the quarter-supersymmetric solution of [24],
the structure is again U(1) but embedded in a different way in Eg). It is easy to see
that in this case, there are only two singlet spinors, and so the truncation is to minimal
five-dimensional supergravity. The scalar moduli space is

ey (UA)) t, SOG.1) SU(2,1)

Mscal = Cusps) (U(1) SO(3) ~ SU(2) x U(1)’

(6.1)

and there are five singlet vectors in the generalised tangent space. We see that the trun-
cated theory is minimal five-dimensional supergravity coupled to four vector multiplets
and a single hypermultiplet. The first factor in (6.1) gives the homogeneous very special
real geometry describing the four additional vector multiplets, while the second factor is
the standard homogeneous quaternionic space for a single hypermultiplet. The singlet
generalised vectors K 4 are again constructed starting from the frames on S* but now the
relevant twist connection is 1

T = 5 UV Xad (E14 — Egg) . (6.2)
The details of this truncation will be discussed in future work. Although none of the
truncations constructed in this way are expected to contain the domain wall solutions
connecting the different AdSs X Mg supergravity solutions (which are dual to conjectured
RG flows between the corresponding SCEFTs), the generalised geometry approach may
suggest how to make the twist “dynamical” so that it can evolve along the flow.

Half-maximal consistent truncations of massive type ITA supergravity can also be en-
gineered by combining the formalism of the present paper with the one of [56, 75], where
the maximally supersymmetric case was discussed.

Besides consistent truncations, a physically relevant motivation for developing half-
maximal structures is to study the moduli space of half-maximal AdS solutions to super-
gravity theories, which is dual to the conformal manifold (i.e. the space of exactly marginal
deformations) of SCFTs with eight Poincaré and eight conformal supercharges, in the
large N limit. In the quarter-supersymmetric case, a study of marginal deformations us-
ing generalised geometry was done in [62, 76]. The additional constraint of half-maximal
supersymmetry may allow to go further in the analysis. In particular, it may allow one to
compare in great detail with field theory results, where the Kéhler metric on the conformal
manifold follows from the S* partition function [77], which is computable using supersym-
metric localization. It would also be interesting to compare with the results found in [66]
by means of a purely five-dimensional supergravity setup.
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A Type IIB Eg6) generalised geometry

We briefly recall the exceptional geometry for type IIB compactifications on a five-
dimensional manifold M, following the conventions of [55, appendix E]. The type IIB
generalised tangent bundle on M has fibres transforming in the 27 of Eg) and decom-
poses under the geometric GL(5) subgroup of Eg(6) as

E~TM®T*M® AT*M @ A°YT* M , (A.1)
where AT = T* @ A3T* @ AST*. A generalised vector V € T'(E) can be written as
V=v+A+o0+w, (A.2)

where w = w1 +ws +ws is a poly-form of odd degree. Alternatively, the generalised tangent
bundle can be decomposed in a way that also makes the action of SL(2) manifest. The
GL(5) x SL(2) covariant decomposition is

ExTM@®(S@T*M)® A3T*M & (S ® A°T*M), (A.3)
where S denotes an SL(2) doublet. In this picture a generalised vector can be expressed as
V=v+AX"+p+0%, (A.4)

where the index o = {4, —} labels the states in the SL(2) doublet. In this paper we use
the second description.
The dual generalised vector bundle decomposes accordingly as

E*~T*M & (S*®@TM) ® A*’TM & (S* @ A°TM), (A.5)
and a generalised dual vectors Z € T'(E*) can be written as
Z=0+Na+p—+06a. (A.6)
The adjoint bundle is defined as

adF =R&(TMRT*M)®(S®S")®(SOA*TM)®(SOA*T*M)SATMSA T M (A7)
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with elements
R=1l+r+a°s+p*+B“+v+C (A.8)

where ! € I'(R), 7 € End(T M), a“s is an element of SL(2), 3% and B* are an SL(2) doublet
of bi-vectors and two-forms respectively, v is a four-vector and C' a four-form. The adjoint

action of R € I'(ad) on V € T'(E), denoted by V' = R -V, is defined as:

V=lw+r-v+yip+ eagﬁa_n)\ﬁ ,
N =N 47X+ a3\ —y.0% +viBY + B%p,

P =lp+7 p+viC+eapB a0’ + g * A BP |
a/a:lao‘+r-aa+a°‘50’3—C’/\)\O‘—i—p/\Ba, (A.9)

where €, is defined as e, — = —e_; =1, 4y = e__ = 0, and for the definition of the gl(5)
action 7+ and of the contraction s we refer to [55].

A generalised vector can be twisted by elements of the adjoint bundle. In particular,
the twisted generalised vector V = eB“*tCV is given by

” 1
p:p+640+6a5Aa/\BB+§6a,317_|B°‘/\Bﬁ,
. 1 1 .
aa=5a—cma+pABa—§mBaAc+§(mc+ea5A5Am) ABY.  (A.10)

Another bundle of interest is the bundle N ~ det T*M ® E*. This a sub-bundle of the
symmetrised product of two copies of the generalised tangent bundle. Its fibres transform
in the 27’ of Eg() and its GL(5) x SL(2) decomposition reads

N~ (S*®R)® A’T*M @ (S* @ A'T*M) @ (det T*M @ T* M), (A.11)
with sections
J =84 +wy+wia+s. (A.12)

The Eg ) cubic invariant acting on three generalised vectors is defined as

1
c(V, V', V") = —3 (va' NP+ eapp AN A NP — 2€qp Lv)\'aa"ﬁ) + symm. perm. .
(A.13)

The cubic invariant acting on dual vectors is

1 “ “ N
cz,72',7") = -5 (L@ﬁ, AP+ B AN A Aj — 267 L@Xa&@ + symm. perm., (A.14)

where €? is defined as a matrix with the same components as €aB-
The product between an element V' € 27 and Z € 27 is defined as
~Amnpqr __o

1
Pmnp + 5 0 o p— (A.15)

. 1
(Z,V) = 0™ + NPAS, + o= p™"7 =1 0

o ﬁp
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The generalised Lie derivative between two twisted generalised vectors V, V' is given by
Ly V' = L0 4+ (LN = 1 dXNY) 4 (L) — tyrdp + €adX® A NP)
+ Lo —dXN* AP N Adp. (A.16)

The generalised metric is defined as

1 1
G(‘/v V,) = Umvfm + haﬁ)‘ma)\;’g + gpmnpp{mnp + aa-mnpqra’:nnpqr ’ (A17)

where V and V' are the twisted generalised vectors defined in (A.10) and the latin indices
are lowered/raised using the ordinary metric g, or its inverse g™". The matrix hqg
parameterises the coset SL(2)/SO(2) and is given by

2 20 _
hap = €” (CO j_Ceg 1CO> : (A.18)

with inverse

. 1 G
noB — ob <CO e e_2¢> . (A.19)

Note that h? = @' ¢f8'p, 8-
The inverse generalised metric can be obtained from a generalised local frame
E sel(E), A=1,...,27, as
G ' ="PE)® Fp
Y 1
= 5abEa ® Ep + 5ab5aﬂEg X Eg + iéalbl 5a2b25a3b3Ea1a2a3 X Eb1b2b3

1 A
+ 20y Sasby 02 B2 @ Egl~~-"5 , (A.20)

where a,b,... are flat GL(5) indices while &, 3 are flat SL(2) indices. Starting from an
untwisted frame E4, the generalised frame E4 is defined as [6]

Eg=eRe? f12eB 0 By, (A.21)
; 09/2 Cped/? . . .
where fa* = ( 0 oso/2 ) The action of the warp factor 2 is defined by exponentiating the
adjoint element given by | = A, while the dilaton action e? is defined by exponentiating
the adjoint element given by I +r = %(—1 + 1) [55]. Decomposing the flat index A in
GL(5) x SL(2) representations, the generalised frame may be written as

1 1
E,=e” <éa+ééa3a+béac+zeaméaBaABﬁﬂéaC/\B%6% LéaBﬁ/\BMBa>

A A « 1 .
Eo=ele?? (fdaeuf&%aﬁeMBﬂ—fdameuQf&B%eaABVABa>
Fa1a2a3 — oA o —¢ (e119203 4 010203 \ Q)

Eg1...a5 _ eAe—3¢/2fda 0105 ’ (A.22)
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where e = % A ... A e Using this expression for the frame, we obtain for the
different components of the inverse generalised metric:

(G—l)mn — eQAgmn

(Gfl)mﬁ — e2AgmpB5n

n

_ 3
(G 1)mnpq = e2Ang <Cmpq + geangf[ B )

n""pq]
(G s = €229 (100u[nqufs] + 5€véBZ[nBz6qufs})
(G2 S = A (e—thaﬁgmn _ Bgnpgqugn>
(G i = (M By B Co — S P
(G tars = 22 (=51 gy Cogreg + 1507 €510 By BL )

_ 3 3
(G 1)mnpqrs =™ [gtu (Ctmnp + 2€aﬁBtcme£p]> <Cuq7’5 + 26“/5BZ[QB;§3})
+9 e_(bhﬂéﬁBﬁnngp] [QBES] +6 e_2¢gmnp,qm:| ) (A.23)

where in the last line we defined gmnp,grs = gg(m9n|r|gp)s- We will not need the expressions
and (G127

mnpqr stuvw*

is in principle extracted by evaluating the determinant of the whole

for the remaining components (G~*
A

) «
mnpqr stu

The warp factor e
generalised metric. However, for type IIB we can follow the same shortcut given in [56] for
type ITA. We introduce

1 _ (G_l)mn (G—l)mx _ gmn (g_lB)mn
1L = ((G—l)jr-ln (G_l);;j;) — o2 (_(Bg—l)mn (g — Bg_lB)mn> ) (A.24)

where B is the NSNS two-form potential and observe that the matrix on the right hand

side has unit determinant. Therefore we obtain?®

e® = (detH) 1. (A.25)

B Generalised vectors in angular coordinates on Mg

In this appendix we provide explicit expressions for the generalised vectors K 4,
A=0,1,...,8, defining the generalised U(1) structure on the six-manifold discussed in
section 5. We start by relating the constrained coordinates y;, ¢ = 1,...,5, used in the

28The expressions above are given in string frame. In Einstein frame the term gmn in (A.24) becomes
€®gmn, and (A.25) becomes

A = (det?—[)fﬁ .
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main text to angular coordinates (6,1, x, ) on a round S* of unit radius:

y!t = sinfcosp,

y? =sinfsinv,

y® = cos b p® = cosb cosy,

y* = cosb p* = cosb sin y cos ¢,

y® = cos 0 p° = cos 0 sinysing. (B.1)

Notice that ¢ parameterises U(1) rotations in the 1—2 plane, while x, ¢ parameterise SO(3)
rotations in the 3 — 4 — 5 space and thus describe a round S2. The latter is equivalently
described by the constrained coordinates pu®, o = 3,4, 5, satisfying 5a5u°‘u5 = 1; we use
either one or the other description according to convenience. The round metric on S* and
the associated volume form (5.13) read

g4 = R* (d6? + sin® 0 dyp® + cos® 0 gg2)
voly = R*cos? @sinfdf A dip A volge (B.2)

where

g2 = 5a5d,u°‘duﬁ = dy? 4 sin? y d¢?,
1
volg2 = S CaBy pdp? A dp? = sinx dy A de (B.3)
are the unit metric and volume form on the two-sphere identified above. The S* Killing

vectors generating the u(1)@®su(2) algebra of interest are expressed in terms of these angular
coordinates as:

0
_ p-1
vis = R 78@0’
0
_ p-1
s = R 78(;5’

VU3 = R7! <—sin¢(§1 — cotxcosd)(f) ,
v3y = Rt <cos¢)86;< — cot x sin ¢ ;ﬁ) . (B.4)
For the M-theory three-form potential on S* satisfying (5.15), we choose
A= —3R3% cos®sinfdh A volge . (B.5)

As for the Riemann surface 2, we do not need to introduce explicit coordinates; we
rather use the one-forms ey, ey satisfying (5.18), (5.19).
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Evaluating the twisted K’s (5.21) in these coordinates, we find the following

expressions:

1 1
Ky= 5’1)12—|-§R263 volgz ,

Ki+iKy = Re'V (e1+ieg) A(cgdf+isg (dip+v))+ R eV c3 (e1+iea) A
A[ (5 (1=3i9) (dip+v)+cgv) Adf+icy sgvAdy] Avolge
Ky=vs5—R*d(cpe )N (dy+v)+R*d [eyd (1) ] +epey vols
— R3¢gsgvols A (c(;s@cx dip Avolge —i—si dOAdyY Adp+3 cg Cy dH/\VOlSQ)
.y cg spcy vAdONdY Avolgz ,
Ky =vs53—R*d(cpsyce) N(dp+v)+R*d [sycod (v cg)] +cg 5y cyVvols
+R3¢gsgvols A [c¢, (chXdH/\dz/J/\dqﬁ—ce 59 5y dyp Avolgz =3 cg Sy d0/\v0152)
+54 dGAdedx] .y cg 59 5y cp UAAONdY Avolge,
Ks=wv34—R?d(cy 5yS¢) A (d+v) +R%d [5x5¢ d (1/1 cg)] +cp 5554 Vols
+R3cpsgvols A [s¢ (chXdH/\dw/\dd>—09 59 5y dipAvolgz =31 cg Sy d9/\volsz)
—cydOAdYAdX] — R ¢ s 5y Sp vADONdY AvOlge (B.6)
with Kg, K7, Kg being obtained from K3, K4, K5, respectively, by sending vols — — vols .
In these formulae, we are using the shorthand notation ¢y = cos @, sy = sin 6, and similarly
for the angles y, ¢. The terms in (B.6) proportional to ¢ are those coming from the action of
the three-form A in the S* frames (5.14). The terms proportional to v are those generated
by the twist (5.23) (that is, setting v = 0 we recover the generalised vectors on the direct
product = x S%). We see that the latter transformation shifts di by the connection one-
form on X, such that diyp — (di) + v), and also introduces some additional five-form parts
in the generalised vectors.
The weighted dual vectors J# ['(N) that give the ansatz for the supergravity two-
forms can be computed from the K 4 using (3.15). We find:

J% =2R*¢gsgvols AdOAdY+2R(v+31p cgsgdf+ sz dip) @volg,

. 4 .
J1+iJ2:§SQielw<€1+i62)—R7e”p(€1—‘rieg)/\[ng0+189d(¢cg)]/\V0152,
s_ R R 2 _
J° = 5 d(cgey)+ 5 0 [sesxvolz ANdOAdD cecx(volz+6939d0/\d¢)/\\70152]
—%cg sidd)@volG,

4
J= %d(CG%SX) - %co [sec¢cxsx vols AdOAd¢+sgse vols AdOAdY
R
+cgcgsy (vols +cpsg dO Ady) Avolge | +§C§(S¢ dx+cpeysyde)@vols,
R R*
J? = id(c(gs(z,sx)—i—?co [—sacxsxs¢volz NdOANdp+spcy vols AdOAdY
R
—c95¢sx(volz+0959d9/\d¢)/\volgz]+§cg(—c¢dx+cxs¢sxd¢)®volg, (B.7)
and again JO, J7, J® are obtained from J3,J*, J?, respectively, by sending vols — — vols
and volg — — volg.
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1 Introduction

Consistent Kaluza-Klein truncations are a precious tool for constructing compactifying so-
lutions to ten or eleven-dimensional supergravity using a simpler lower-dimensional theory.
Given a splitting of the higher-dimensional spacetime into an internal manifold M and an
external spacetime X, a consistent truncation selects a finite subset of the KK modes of
the higher-dimensional theory on M and provides an effective theory on X describing their
non-linear dynamics. The selected KK modes must form a protected sector, in the sense
that they do not mix in the equations of motion with the modes that have been truncated
out. In this way all solutions of the lower-dimensional theory on X are guaranteed to also
be solutions of the original higher-dimensional theory.

For such non-trivial reduction to be possible, the internal manifold M should have a
special geometric structure. The simplest case is when M admits a homogeneous action
of a group ¢, that is M = ¢/ for some subgroup  C ¢. Then one can decompose
all higher-dimensional fields into representations of ¢ and truncate to the ¥-singlets. This
¢-invariant truncation is consistent, since the singlet fields can never source the non-singlet
fields. When in particular M is a group manifold, M = ¥, one has a conventional Scherk-
Schwarz reduction [1]. Examples of such consistent truncations in the context of M-theory
— which is our principal interest in this paper — can be found in [2-5].

As a step towards more general classes of truncations, it is convenient to think about
reductions on homogeneous manifolds using the language of G-structures. Let us consider
Scherk-Schwarz reductions for definiteness. A group manifold M = ¢ admits a basis of
globally defined left-invariant one-forms, {€*}, a = 1,...,dim M, that reduces the struc-
ture group to the identity (i.e. M is parallelisable). Furthermore, the group action implies
that de® = % foc%e® A €°, where f,.% are the structure constants of the Lie algebra Lie¥.
This means that the left-invariant identity structure has singlet, constant intrinsic torsion
(singlet because de® is expressed in terms of the invariant {e®} basis, and constant be-
cause the coefficients of the expansion are constant). The truncation ansatz is defined by
expanding all higher-dimensional fields in the basis of invariant tensors of the structure.
When this is plugged into the equations of motion, we can again invoke the argument that
only singlet tensors are generated and conclude that the truncation is consistent. Since the
spin bundle is also trivialised, Scherk-Schwarz reductions preserve the full supersymmetry
of the higher-dimensional theory. More generally, ¢-invariant consistent truncations on
coset manifolds M = &/ are based on the existence of an .7 structure with constant,
singlet intrinsic torsion, and preserve only a fraction of supersymmetry or none at all.

Interestingly, the argument based on G-structure applies also to internal manifolds M
that are not homogeneous. It is sufficient that M has a structure group Gg with only
constant, singlet intrinsic torsion; then the truncation to the Gg-singlets is guaranteed to
be consistent. This can preserve different fractions of supersymmetry, depending on how
many G g-invariant spinors exist on M. In fact the Gg structure data determine the full
field content and gauge interactions of the truncated theory. Examples of this type in
M-theory are the truncations based on Sasaki-Einstein and weak-Gy holonomy manifolds
of [6], and the tri-Sasakian reduction of [7].



However there are consistent truncations that are not captured by conventional G-
structures. Classic examples are the maximally supersymmetric consistent truncations on
spheres, such as eleven-dimensional supergravity on S7 [8] and S* [9]. M-theory trunca-
tions preserving less supersymmetry and containing warped AdS solutions can be found
in [10-13].! Building on the evidence emerging from these examples, a conjecture was for-
mulated in [11] stating that for any warped, supersymmetric AdS p X M solution to higher-
dimensional supergravity, there is a consistent truncation on M down to D-dimensional
pure gauged supergravity with the same amount of supersymmetry.

Exceptional Generalised Geometry and Exceptional Field Theory offer an understand-
ing of these more complicated examples that unifies them with the conventional ones.
Exceptional Generalised Geometry uses an extension of the ordinary tangent bundle T'M
to a larger bundle E on M, whose fibres transform in a representation of the exceptional
group Eyg). In this way the diffeomorphism and gauge symmetries of higher-dimensional
supergravity are unified as generalised diffeomorphisms on E. The notion of generalised
Gg structure, that is a Gg structure of F, rather than of T'M, leads to a new systematic ap-
proach to consistent truncations with different amounts of supersymmetry: one can argue
that there is a consistent truncation any time a supergravity theory is reduced on a mani-
fold M admitting a generalised Gg structure with constant singlet intrinsic torsion [14]. In
particular, all maximally supersymmetric truncations, both conventional Scherk-Schwarz
reductions and sphere truncations, can be seen as generalised Scherk-Schwarz reductions on
generalised parallelisable manifolds [15-23]. This also provides a connection to Poisson-Lie
T-duality as described in [24] (see also [25]). Truncations preserving less supersymmetry
are based on generalised structures larger than the identity, the half-maximal case having
been explored rather extensively by now [14, 26-30]. Moreover, a proof of the conjecture
of [11] was given in this framework [14, 27], based on the fact that the conditions for a
supersymmetric AdSp X M vacuum can be rephrased as the requirement that M admits
a generalised Gg structure with vanishing non-singlet intrinsic torsion [31-33].

Although the general ideas were illustrated in [14] for any amount of supersymme-
try, the Exceptional Generalised Geometry approach to consistent truncations has been
developed just for maximal and half-maximal supersymmetry so far. In this paper we en-
large this framework and discuss in detail truncations of eleven-dimensional supergravity
preserving minimal N = 2 supersymmetry in five dimensions.

While a strict USp(6) C Eg(g) generalised structure leads to a truncation to minimal
N = 2 gauged supergravity in five dimensions, smaller Gg C USp(6) structures lead to
matter coupled supergravity. We show how the Gg C USp(6) structure defines a continuous
family of USp(6) structures, and identify the moduli space of this family with the vector
multiplet and hypermultiplet scalar manifolds in the truncated five-dimensional theory. We
also show how the generalised Lie derivative acting on the generalised tensors defining the
(g structure specifies the isometries of the scalar manifold that are being gauged. This
fully determines the truncated N' = 2 supergravity theory.

!Note that whenever there is non-trivial warping the truncation falls out of the conventional G-structure
framework.



We then derive general expressions that encode the uplift formulae for how the eleven-
dimensional bosonic fields are encoded in terms of the moduli and the generalised tensors
defining the G g structure. In order to make this truncation ansatz explicit we need to solve
a number of technical issues. One is that, in contrast to the maximal and half-maximal
case, the structure is not entirely characterised by the generalised vectors K (i.e. sections
of F, transforming in the fundamental of FEg)) which control the vector multiplet sector
of the truncated theory. We also need to consider generalised tensors J4 belonging to the
Eg(6) adjoint bundle, which eventually control the hypermultiplet sector. A related point,
that is crucial to derive the scalar truncation ansatz, is the construction of the generalised
metric on E, which receives contributions both from the K; and the J4. A significant
advantage of the formalism however, is that the expressions are universal. The ansatz can
be applied to any N = 2 background once one identifies the K; and .J4 singlets.

As application, we discuss M-theory truncations on geometries associated with M5-
branes wrapping a Riemann surface . The near-horizon geometry of this brane configura-
tion is given by a warped AdSs X M solution to eleven-dimensional supergravity, where M
is a fibration of a deformed S* over < [34, 35]. The fibration corresponds to a topological
twist in the dual superconformal field theory on the M5-branes, where the holonomy of the
Riemann surface is cancelled by a U(1) in the SO(5) R-symmetry, which in the supergrav-
ity background is realised geometrically as the isometries of S*. Depending on which U(1)
is chosen, one obtains different AdSs X M solutions, and correspondingly different U(1)g
generalised structures.

We start with the A' = 2 background of Maldacena-Nuniez [34]: specifying its U(1)g
generalised structure and discussing its singlet intrinsic torsion, we obtain a consistent
truncation to five-dimensional A/ = 2 supergravity including four vector multiplets, one
hypermultiplet, and a non-abelian SO(3) x U(1) x R gauging. This extends the abelian
truncation of [36] (see also [10, 37] for previous subtruncations) by adding SO(3) vector
multiplets, which in the dual superconformal field theory source SO(3) flavour current
multiplets. We also spell out the full bosonic truncation ansatz. The same construction
also applies to the “BBBW” solutions [35, 38], as the corresponding generalised structure
is a simple deformation of the Maldacena-Nunez one, controlled by a (discrete) parameter
describing the choice of U(1)g in SO(5). The corresponding truncation features only two
N = 2 vector multiplets, one hypermultiplet and an abelian gauging. We show that the
Maldacena-Nunez truncation admits a new non-supersymmetric AdSs solution when the
Riemann surface is a sphere, which turns out to be perturbatively unstable. We also find
new non-supersymmetric vacua in the BBBW truncations. Together with the consistent
truncation including the A" = 4 solution of [34], whose U(1)g generalised structure embeds
in USp(4) C USp(6) and leads to half-maximal supergravity [14, 39], the present study
completes the landscape of what we believe are the most general consistent truncations that
can be derived from eleven-dimensional supergravity on known smooth solutions associated

with M5-branes wrapped over Riemann surfaces.?

2Tt may be possible to find other consistent truncations, that are not subsectors of the ones given here by
using large structure groups, in analogy with the consistent truncation on S7 viewed as a Sasaki-Einstein
manifold [6] rather than a generalised parallelised sphere. However such truncations will have fewer fields.



The rest of the paper is organised as follows. In section 2 we characterise the generalised
structure relevant for M-theory truncations on a six-dimensional manifold preserving N' = 2
supersymmetry. In section 3 we specify the truncation ansatz and discuss how the gauging
is determined from the generalised structure. In sections 4 and 5 we apply our formalism
to consistent truncations associated with Mb5-branes wrapping a Riemann surface, first
for Maldacena-Nufiez backgrounds and then for BBBW ones. We conclude in section 6.
The appendices contains a brief account of Fgg) generalised geometry, a summary of five-
dimensional N' = 2 gauged supergravity and some technical details of our computations.

2 M-theory generalised structures and N = 2 supersymmetry

In this section we first recall some basic notions of Exceptional Generalised Geometry
for the case of interest here, namely eleven-dimensional supergravity on a six-dimensional
manifold, and then we illustrate how the general procedure described in [14] applies to
consistent truncations to five-dimensional N' = 2 gauged supergravity. A more extended
review of the relevant generalised geometry can be found in appendix A.

2.1 The HV structure

Consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold
M are based on Egg) x RT generalised geometry. This extends the tangent bundle T'M
to the generalised tangent bundle E on M, and the corresponding structure group GL(6)
to Eg(g). The group Egg) contains GL(6) as its geometrical subgroup, and we can use the
latter to decompose the generalised tangent bundle as

E ~ TM @ AN*T*M & A°T*M . (2.1)

Therefore the sections of E consist, locally, of the sum of a vector, a two-form and a
five-form on M,
V=vt+w+o. (2.2)

These are called generalised vectors and transform in the 27 of F).

All geometric structures of conventional geometry on M, such as tensors, Lie derivative,
connections etc, admit an extension to E [40-42]. In particular, generalised tensors are
defined by considering bundles whose fibers transform in different representations of Eg ).
We can define dual generalised vectors Z as the sections of the dual tangent bundle

E* ~ T*M @ A*TM & A°TM , (2.3)

transforming in the 27 of Eg). Locally the dual vectors are sums of a one-form 0, a

two-vector @ and a five-vector &,
Z=04+0w+7. (2.4)

The adjoint bundle transforms in the 1 + 78 of Eg) and, in terms of GL(6) tensors, is
defined as

adF ~ R® (TM @ T*M) & A3T*M & AST*M & APTM & ASTM , (2.5)



with sections
R=Il+r+a+a+a+a, (2.6)

where, locally, | € R, r € End(T'M), a € A>T*M is a three-form, a € AST*M is a six-form
and a € A>TM and & € ASTM. This bundle plays an important role as the components
of the M-theory three-form and six-form gauge potentials are embedded in adF'.

As we will see, the bosonic fields of eleven-dimensional supergravity can be unified
into generalised tensors. The supergravity spinors on the other hand arrange into repre-
sentations transforming under USp(8), the double cover of the maximal compact subgroup
USp(8)/Zz of Egs). For example the supersymmetry parameters are section of the gener-
alsied spinor bundle S, transforming in the 8 of USp(8). It will be this compact USp(8)
or more generally a subgroup of it, that determines the R-symmetry of the reduced five-
dimensional theory.

The manifold M admits a generalised structure, Gg C USp(8)/Za, when the structure
group FEgg) is reduced to the subgroup Gg. Typically this can be characterised by the
existence of globally defined generalised tensors that are invariant under Gg. The amount
of supersymmetry of the eleven-dimensional theory that is preserved by the Gg structure
is given by the number of Gg singlets in the spinor bundle, S.3

In this paper we are interested in structures preserving N' = 2 supersymmetry. The
generic case is provided by what has been called an HV structure [33, 43, 44]. It consists
of a triplet of globally defined tensors in the adjoint bundle, J, € I'(ad F'), with o = 1,2, 3,
satisfying

[Ja, Jg] = 2€apyJy, tr(JoJg) = —dags, (2.7)

together with a globally defined generalised vector K € I'(F) having positive norm with
respect to the Fgg) cubic invariant,

¢o(K,K,K) :== 6k%>0, (2.8)
where k is a section? of (det T* M )1/ 2 and satisfying the compatibility condition
Jo- K =0, (2.9)

where - denotes the adjoint action.® See appendix A for a definition of the cubic invariant
and the other generalised geometry operations appearing in these formulae.

The HV structure {J,, K} defines a reduction of the structure group to USp(6) C Eg .
Indeed the vector K is stabilised by Fyy4) C Eg), while the J, are invariant under the
subgroup SU*(6). The compatible K and J, have SU*(6) N Fy4y ~ USp(6) as a common
stabiliser. The globally defined vector K € I'(E) with positive norm is called a vector-
multiplet structure, or V structure for short. A triplet of J, € T'(adF’) that define the

3Here we will assume that either G's is simply connected or is U(1) so that it lifts to a G's subgroup of
USp(8).

4Recall that det T* M is just a different notation for the top-form bundle AST* M that stresses that it is
a real line bundle. Here we are assuming that the manifold is orientable and hence det T M is trivial and
so we can define arbitrary powers (det 7" M )P for any real p.

5 Note that we are using slightly different conventions for the J, tensors compared with [44]. In particular
JAV = gJhere € T((det T*M)Y? @ ad F).



highest root suy subalgebra of ¢g(g) and satisfy the conditions (2.7) is called a hypermultiplet
structure, or H structure. This justifies the name HV structure for the compatible pair
{Jo, K}.

It is easy to check that the amount of supersymmetry preserved by a HV structure is
N = 2. Under the breaking

USp(8) D USp(6) x SU(2) g . (2.10)

the spinorial representation decomposes as 8 = (6,1) @ (1,2) and we see that the are
only two USp(6) singlets. The SU(2)y factor in (2.10) is the R-symmetry of the reduced
theory so that the two singlets form an R-symmetry doublet, as expected for N' = 2
supersymmetry parameters.

A strict USp(6) structure is not the only option to obtain N' = 2 supersymmetry.
In fact, any subgroup Gg that embeds in USp(6) in such a way that there are no extra
singlets in the decomposition of the spinorial representation of USp(8) does the job. Al-
though the number spinor singlets is unchanged, when the structure group is smaller than
USp(6) in general one finds more Gg singlets in the decomposition of the 27 and the 78
representations. Let us denote by

K], IZO,...,TL\/, (2.11)
the set of independent generalised vectors corresponding to Gg singlets in the 27, and by
Ja, A=1,...,dimH, (2.12)

the set of independent sections of the adjoint bundle corresponding to Gg singlets in the
78 that also satisfy the condition®

Ja-K;=0 VIandVA. (2.13)

The latter generate a subgroup H C Cpg,q (Gs), where Cp, , (Gs) is the commutant of Gg
in Egg), so that
[Ja, JB] = fap“Je, (2.14)

with f4p® being the structure constants of H. The generalised structure G'g C USp(6) is
fully characterised as the group preserving the set

{K1,Ja}. (2.15)
We can always normalise such that the ny + 1 generalised vectors satisfy

(K1, K;,Kg) =6KCryk, (2.16)

®Note that there are singlets in the adjoint bundle that do not satisfy (2.13). These are given by
K1 Xaq K7, where K7 is the dual of the generalised vector K; and X,q is the projection onto the adjoint
bundle, and will not play a relevant role in our construction.



with Cyyx a symmetric, constant tensor and k is a section of (det T*M)'/? fixed by the
structure. In addition we can normalise the adjont singlets to satisfy

tr(JAJB) = 1MAB, (2.17)

where n4p is a diagonal matrix with —1 and +1 entries in correspondence with compact
and non-compact generators of H, respectively.

Any generalised structure has an associated intrinsic torsion [31], which is defined as
follows. Let D be a generalised connection compatible with the Gg-structure, that is,
sastisfying DQ; = 0 for all i, where Q; is the set of invariant generalised tensors that
define the structure. Formally, the generalised torsion T of D is defined by, acting on any
generalised tensor c«, i

(LY —Ly)a=TV) «a, (2.18)

where L is the generalised Lie derivative, LD is the generalised Lie derivative calculated
using D and - is the adjoint action on «.” The intrinsic torsion is the component of T' that
is independent of the choice of compatible connection D, and hence is fixed only by the
choice of generalised structure. In general, one can decompose the intrinsic torsion into
representations of GGg. In particular, for a consistent truncation we will be interested in
the case where only the singlet representations are non-zero.

2.2 The generalised metric

An important ingredient to derive a consistent truncation is the generalised metric G on
M. This is a positive-definite, symmetric rank-2 tensor on the generalised tangent bundle,

G:EFE®FE—R"
(V, V)= GV, V') = GunVMV'Y (2.19)

that encodes the degrees of freedom of eleven-dimensional supergravity that correspond
to scalars in the reduced theory. We provide the explicit relation between the generalised
metric and the supergravity fields on M in eq. (3.19). The generalised metric is defined
in analogy to the ordinary metric: a metric g on M can be seen as an O(6) structure on
TM that at each point on M parameterises the coset GL(6)/O(6). Similarly, at each point
p € M a choice of a generalised metric corresponds to an element of the coset

E6(6) X R+

Ch € Tsp@)/Zs

(2.20)
Since a Gg C USp(8)/Za, the Gg structure will determine a Gg-invariant generalised
metric, given in terms of the invariant tensors that are used to define the Gg structure. The
expression of Gpsn that is relevant for truncations preserving maximal and half-maximal
supersymmetry was given in [14, 15, 22]. Here we will discuss the N' = 2 case.
Consider first the case of a generic USp(6) structure. As discussed in the previous
section this is specified by an invariant generalised vector, K, together with an su(2) triplet

"We view the torsion as a map 7' : I'(E) — I'(ad F') where ad F is the Ey4) x RT adjoint bundle.



of sections of the adjoint bundle J,, e = 1,2,3. These objects define a USp(6)-invariant
generalised metric through the formula

c(K,K,V)? (K, V,V) (K, J3-V,J3-V)

= — 2.21

GV.V) 3<30(K,K,K)2 ¢(K,K,K) ¢(K,K,K) ( )
This formula can be motivated as follows. The globally defined K induces the splitting of

the 27 of Eg () into orthogonal subspaces
V =Vo+ Vag (2.22)

in the singlet and 26 representation of Fy4); correspondingly, the Eg) cubic invariant on
the 26 reduces to the symmetric invariant form of Fjy)

C(K7‘/:V) = C(K7 V07V0) + C(Ka V267V26) . (223)

This expression however is not positive definite, since the symmetric form of Fj) has
signature (14, 12) and overall (2.23) has signature (14, 13). The first term in (2.21) contains
the contribution from the singlet component Vg and makes the metric positive definite in the
singlet. To do the same in the 26 we need the full HV structure. Under SU(2)gy x USp(6)
the 27 decomposes as

27 =16 (1,14) @ (2,6), (2.24)

and the action J, on V projects on the (2, 6) part, as the rest is an SU(2)y singlet. Then
we can write the contribution to the metric in the (2,6) as

C(K, J3 . ‘/7 J3 . V) s (2.25)

and add it in (2.21) to make it positive definite. Note that (2.21) only contains one element
of the triplet J,, that we chose to be J3. This is because, for each J,,

(K, JoV.Ja-V)=—c(K,V,(Ja)* - V) = c(K,Vi26), Vi26)) - (2.26)

where there is no sum over a and in the last equality we have used that (J,)? = —1 in
the V(3 6) subspace. We see that the action of each of the J, gives the same result. This
reflects the fact that the generalised metric is independent of the action of the SU(2)n
supergravity R-symmetry.

For the purpose of constructing the truncation ansatz by comparing with (3.19), we
will also need the inverse generalised metric. We can exploit the isomorphism between
the generalised tangent bundle F and its dual E* provided by the generalised metric to
construct a USp(6) singlet K* € T'(E*) as K*(V) = G(K,V), where V is any generalised
vector. Then, denoting by Z € I'(E*) a generic dual vector, the inverse generalised metric
is given by
cH(K*, K*, 7)? Ly c(K*,Z,7) A c(K* J3-Z,J3- Z)
C*(K*,K*,K*)2 C*(K*,K*,K*) C*(K*,K*,K*) )

(2.27)
where the action of the cubic invariant ¢* and of the adjoint elements J, on the dual

GYz,2)=3 (3

generalised vectors can be found in appendix A.



2.3 The HV structure moduli space and the intrinsic torsion

When the Gg structure is a subgroup of USp(6) (and there is no supersymmetry enhance-
ment), it determines an USp(6) structure and hence by definition defines a generalised
metric. However, a given Gg structure can determine several different USp(6) structures.
Thus one gets a family of generalised metrics that can be obtained from the Gg-invariant
tensors, depending on which USp(6) structure one chooses. Concretely, we use the K and
J 4 tensors characterising the G g structure to construct a generalised vector K and a triplet
of J, satisfying (2.7)-(2.9), which then we use to build the generalised metric as in (2.21).
The parameterisation of K and J, in terms of K; and J4 provides a set of deformations
of a reference USp(6)-invariant metric, that correspond to acting on the structure with
elements of Ege) that commute with G's, modulo elements of USp(8)/Z that commute
with Gg. The resulting generalised metric thus parameterises the coset

_ Chy()(Gs)
Cusp(s)/z.(Gs)

(2.28)

This is the moduli space of our Gg structure, namely the space of deformations of the
reference USp(6) structure that preserve the Gg structure. For the N' = 2 structures of
interest in this paper, this splits in the product

M= My x My, (2.29)

where My is the V structure moduli space, corresponding to deformations of K that leave
J invariant, while My is the H structure moduli space, which describes deformations of .J,
that leave K invariant. The fact that these deformations are independent follows from the
requirement (2.13). When given a dependence on the external spacetime coordinates these
deformations provide the scalar fields in the truncated theory, with My and My being
identified with the vector multiplet and the hypermultiplet scalar manifolds, respectively.

We next outline how to construct the V and H structure moduli spaces. The procedure
will be further illustrated in sections 4 and 5, where concrete examples will be discussed
in detail.

The V structure moduli space. A family of V structures is obtained by parameterising
the generalised vector K as the linear combination

K =hK;, (2.30)

where h!, I = 0,..., ny, are real parameters, and imposing the property (2.8). Using (2.16),
this is equivalent to
Crigh'h/h® =1, (2.31)

showing that the ny 4 1 parameters h! are constrained by one real relation and thus define
an ny-dimensional hypersurface,

My ={hl: Cryxh'h/nE =1}. (2.32)



This is our V structure moduli space. It will be identified with the vector multiplet scalar
manifold in five-dimensional supergravity. The metric on My is obtained by evaluating
the generalised metric on the invariant generalised vectors,

1
arjy = gG(K},KJ) (233)
Using (2.21), it is straightforward to see that this gives
ary = 3hrhy — 2Cr b, (2.34)

where h; = Crxrh® hL. Then Gambient = %a[ gdhtdh’ gives the metric on the ambient
space,® and the metric on My is obtained as the induced metric on the hypersurface.

The H structure moduli space. A family of H structures is obtained by parameterising
the possible suy subalgebras of the algebra spanned by the J4. The fact that we only have
two singlet spinors means that Cgy(s)/z,(Gs) must contain an SU(2) g factor (as in (2.10))
that acts on the two singlet spinors. Furthermore, the corresponding susy algebra must be
generated by a highest root in eg@). The Lie algebra h = Lie’H generated by the J4 is
the simple subalgebra of the Lie algebra of Cgg (Gg) that contains the suy factor. Since
b C ¢g6) the suy algebra is generated by a highest root in b.

The H structure moduli space is the space of choices of such highest root su, algebras

in b, namely the symmetric space?

H
SUQ2)g x Cy(SUQ2)m)

My = (2.35)
Such spaces are known as “Wolf spaces” and are all quaternionic-Kéhler, as expected from
the fact that My is going to be identified with hyperscalar manifold in five-dimensional
supergravity. Points in My can be parameterised by starting from a reference subalgebra
j ~ suy C b and then acting on a basis {j1,j2,j3} of j by the adjoint action of group
elements h € H, defined as

Jo=ady jo = hjah7'. (2.36)

Clearly, this action acts trivially on j if h € SU(2)g ~ exp(j), or if h belongs to the
commutant of this SU(2)y in H, that is h € Cy(SU(2)x). This way, we obtain a triplet
of “dressed” generalised tensors J,, a = 1,2, 3, which depend on the coset coordinates and
parameterise our family of H structures.

The intrinsic torsion. This picture that the Gg-structure defines a family of HV struc-
tures also allows us to give a characterisation of the intrinsic torsion. As discussed in [44],
the intrinsic torsion of an HV structure is encoded in the three quantities

LK, LiJa, ja (2.37)

8The normalisation is chosen so as to match standard conventions in N = 2 supergravity, see appendix B.
9Note the strictly the denominator group is not quite the product SU(2)g x C (SU(2)x) but generally
involves modding out correctly by terms in the centre of each factor. Here we will ignore these subtleties.
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where, given a generalised vector V € T'(E), one defines a triplet of functions'’

1

a(V) = = caps /M w2 tr (J5(LyJ,)) (2.38)

that formally are moment maps for the action of the generalised diffeomorphism group on
the space of H structures.

In general, if K, is the space of Gg-compatible connections, then the definition (2.18)
defines a map 7 : Kgg, — W where now we view the generalised torsion 7" as a section of
W C E* ® ad F.'' The Gg-intrinsic torsion is then an element of VVgtS = W/Wg4 where
Wgs =Im7. Now let p € M be a particular point in the family of HV structures (2.28)
and USp(6), C Eg6) be the corresponding structure group. By construction, Gg is the

common subgroup of all the USp(6), subgroups. This means that
Kas = m Kysp), (2.39)
P

that is, only a Gg-compatible connection is compatible with every HV structure in the
family. Hence Wag = (N, Wysp(s), and so

(2.40)

VVigtS — U I/Vir[{tspw)p'
P

In other words, knowing the intrinsic torsion of every HV structure in the family fixes the

intrinsic torsion of the Gg structure.

Now, recall that each K in the family of HV structures is a linear combination of Kj
(with constant coefficients), while each J,, is defined by the exponentiated adjoint action of
a linear combination of J4 (with constant coefficients) on a fixed reference su(2) algebra.
Hence the intrinsic torsion components L K and L J, for the whole family are determined
by knowing

Lk, Ky, Lk, Ja. (2.41)

These also determine ji, (V) when V has the form V = VI K, even when the components
V1 are functions because of the condition (2.13). Thus the final components of the Gg
intrinsic torsion are determined by

/ w2 tr(Ja(Lw J5)) | (2.42)
M

where we require ¢(K, Ky, W) = 0, which defines a generalised vector that is orthogonal
to those of the form V' = V! K. Note that the expressions (2.41) and (2.42) are in general
not independent, but are sufficient to determine the intrinsic torsion.

3 M-theory truncations to A/ = 2 supergravity in five dimensions

Any generalised G g structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a comnsistent truncation of eleven-dimensional or type II supergravity on M.

Y9Recall the change of conventions from those of [44] discussed in footnote 5.
HEor Eg(6) generalised geometry W transforms in the 27 + 351 representation.
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While the general ideas (along with the details for five-dimensional truncations preserv-
ing half-maximal supersymmetry) were given in [14], here we focus on the specific case
of truncations of eleven-dimensional supergravity leading to N' = 2 supergravity in five
dimensions, based on Gs C USp(6) structures.

Although some of the formulae giving the truncation ansatz in terms of the structure
are necessarily quite involved, a great advantage is that they are universal expressions
good for any N = 2 consistent truncation. One does not have to search for the correct set
of consistent modes on a case-by-case basis. All the particulars of the given truncations
are encoded in terms of the given G g structure defined by the set of K; and J4 singlets.
For example, following the discussion in the previous section, the scalar matter content
is determined by the commutant of Gg in Fg), giving ny vector multiplets and ny hy-
permultiplets, whose scalar manifolds are identified with the V structure and H structure
moduli spaces, respectively. The gauge interactions of the truncated theory are determined
by the torsion of the G g-structure, which in turn depends only the generalised Lie deriva-
tives Ly, Ky and Lk, Ja. Together this data completely specifies the full five-dimensional

supergravity.

3.1 The gauging

The gauge interactions of the truncated theory are determined by the intrinsic torsion of
the generalised structure Gg. As already emphasised, we assume that the intrinsic torsion
takes values in the singlet representation of Gg, with components that are constant on M.
As explained in [14], this means that the generalised Lie derivative along the invariant
vectors K acting on any invariant tensor @);, is given by

Lk, Qi = —Tint (K1) - Qi (3.1)

where T (K7) is a Gg singlet in the adjoint bundle. This means that Ti,(K7) is in the
Lie algebra of the commutant group ¢ = Cg, d)(GS)~ Thus —Tiyt defines an “embedding
tensor” [45, 46], that is a linear map

© :span({K;}) — LieG. (3.2)

The image of this map defines the Lie algebra of the gauge group Ggauge of the truncated
theory and also how it embeds Lie Ggauge = Im © C Lie G, thus giving Ggauge as a subgroup
of the commutant group

Ggauge cg= CEd(d) (GS) . (33)

For the structures of interest in the present paper, the relevant invariant tensors are
the vectors K7 and the adjoint bundle singlets J4 that generate H C G. The former are
the generators of the gauge algebra with structure constants f|; J]L given by

L, Ky =01 -K;=0;4ta) 2Ky = f1/°Ky, (3.4)

where (t4);7 are the representations of the generators of LieG acting on V. For the Ju
singlets we have

L, Ja =071 Ja = [Jxp), Ja] = O fpaCJc = pra®Jp, (3.5)
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where fip© are the H structure constants, as in (2.14). For convenience we have also
defined the linear combination of the J4 with constant coefficients,

Jirey) = 01, (3.6)

so that the action of the generalised vector K; on J4 is represented by the adjoint action
of J(k;). Recall that generally the intrinsic torsion of the G g structure is captured by the
expressions (2.41) and (2.42). The condition that one has singlet, constant intrinsic torsion
is thus that (3.4) and (3.5) are satisfied with constant f;;% and p;4® and in addition that

/ w2 tr(Ja(LwJg)) = 0, (3.7)
M

where the generalised vector W satisfies ¢(K, Ky, W) = 0. The condition on W implies
it transforms non-trivially under Gg and hence, since J4 are singlets, the corresponding
intrinsic torsion cannot be a singlet and so must vanish. Alternatively, recall from the
discussion in section 2.3 that (3.7) is equivalent to the vanishing of the moment maps
to (W) given in (2.38) for all H structures in the family of HV structures defined by the
Gg structure. Any one H structure is related to another by the action of H, as in (2.36).
Furthermore it is straightforward to show that p, (W) is invariant under this action. Hence
if po(W) = 0 with ¢(K;, K;,W) = 0 at any point in the family then it vanishes for all
and (3.7) holds.

We now show how the singlet intrinsic torsion determines the gauging of the lower-
dimensional ' = 2 theory. The constants fr;* and ©74, defined in (3.4) and (3.5) re-
spectively, can be identified with the embedding tensor components that encode generic
gaugings of five-dimensional N = 2 supergravity theories, including those involving vector
fields that transform in non-adjoint representations of the gauge group, as well as antisym-
metric rank-2 tensor fields.!? For simplicity, here we just discuss the case where (3.4) define
the structure constants of a Lie algebra, implying that it is not necessary to introduce an-
tisymmetric rank-2 tensor fields. These determine the symmetries of the scalar manifold
that are gauged, and hence all matter couplings of the A/ = 2 theory, completely fixing the
five-dimensional Lagrangian (see appendix B for a brief account of N' = 2 supergravity in
five dimensions). In particular, the vector multiplet scalar covariant derivatives and the
gauge field strengths are given by

Dhl = dh! + g frt AT RE (3.8)
1
Fl=aAl + B g fJKI.AJ A AE ) (3.9)
where ¢ is the gauge coupling constant and A! = Aﬁdx“ are the five-dimensional gauge
fields. In order to obtain the hyperscalar covariant derivatives, we need the Killing vectors

on the H structure moduli space (2.35) that generate the gauged isometries. These can be
constructed from (3.6) using the standard formalism of coset spaces, see e.g. [49]. Given

12The embedding tensor formalism is most commonly used to describe the gauging of maximal and
half-maximal supergravity [45, 46], see however [47, 48] for its use in an A = 2 context.
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the left-action of a generator Ji,) on the coset representative L € H, the corresponding
Killing vector kr on My is determined by the equation

L Jgp L ~ gu, (L71dL), (3.10)

where the symbol ~ means that the equality holds up to an element of the algebra one
is modding out by, which in the present case is SU(2)y x Cx(SU(2)y).'* Writing k; =
k:f( 8%“ where ¢X denote the coordinates on My, the hyperscalar covariant derivatives
then read

D¢~ =dgX + g ATk (3.11)

From the Killing vectors k; we can then compute the triholomorphic Killing prepo-
tentials Py, o = 1,2, 3, that determine the fermionic shifts and the scalar potential of
the N/ = 2 supergravity theory, see appendix B for the relevant formulae. These Killing
prepotentials are moment maps of the isometries being gauged, and as such can be nicely
computed from the generalised geometry formalism. Recalling the definition of the moment
map 4 in (2.38), they are given by

1
g P = —eam/ K2 tr(JB(LKIJ’Y))// K’
8 M M

| (3.12)
=3 e tr (Ja(Lk, ) -

In this formula, recall that the J, are the dressed triplet, hence the resulting moment maps
are function of the H structure moduli. In the second line, we have used the fact that the
singlet torsion components tr (Jg(Lg,Jy)) are constant on M and hence the integrals over

k2 cancel.

3.2 The truncation ansatz
Our conventions for eleven-dimensional supergravity are as in [42]. The eleven-dimensional
bosonic action is (we denote by a hat the 11d quantities)

~ 1 A 1. . XA
S:2/<R§<1—2F/\*F— A/\F/\F), (3.13)

where F' = dA and A is the three-form potential. The equations of motion are

R 1 /. 1.
Rpp — 12 (Fﬂﬁ1ﬁ2ﬁ3Fl§p1p2ﬂd 12 AzﬁF2> =0,
(3.14)

The six-form potential A dual to the three-form A may be introduced via the first-order
relation

~ 1 - ~ 2
FdA+ S Andd=di, (3.15)

whose exterior derivative gives the Maxwell equation.

13 A similar construction could be made for the Killing vectors that gauge isometries in the V structure
moduli space, starting from the sections of the adjoint bundle that generate M~ mentioned in Footnote 6.
However, this will not be needed for our purposes.
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As first step of the truncation procedure, we arrange the eleven-dimensional bosonic
fields into generalised tensors transforming in representations of GL(5,R) x Eg), where
GL(5,R) gives the tensorial structure of the fields in the five-dimensional theory obtained
after reduction. Then we expand each Eg(g) representation in terms of the Gg invariant
tensors transforming in the same representation. We separate the eleven-dimensional coor-
dinates in coordinates z#, u = 0, ..., 4, on the external spacetime X, and 2™, m =1,...,6,
on the internal manifold M.

The bosonic fields of eleven-dimensional supergravity are decomposed as

§=e G dat'dx” + grmpn D2 D2"

~ 1 1 1 - 1

A= Ay DZ™ 5 A A D™ o A A D"+ o5 Ay ™,

2 1 -~ 1 - 1 -

A= @Aml...mepzml"'m6 + gAuml,,_m5d.fCu/\Dzm1"'m5 + ﬁAMle...m4dxuy/\DZml"'m4
+o (3.16)

where Dz = dz™ — h,™dz#, and all tensor field components may depend both on x#
and 2™, except for the external metric, for which we assume a dependence on the external
coordinates only, g, = guv ().

The barred fields need to be redefined. In appendix C we provide a justification for
these redefinitions by studying the gauge transformations of the metric and three-form
potential. For the three-form components we introduce the new fields A, A,., via

A'ul,m = A;wm — h[unAl,}nm , Auup = Auyp + h[unthAp]np . (317)

Similar redefinitions apply to the six-form components with at least two external indices,
however we will not discuss them in detail here.

The supergravity fields having all components on the internal manifold M arrange into
the inverse generalised metric

GMN <> {Ay 9mn, Amnpa Aml...ma}g (318)

in the following way'*

(Gil)mn = ezAgm”
(G YY"y = eQAgmpApnmz
(G 15 = 2™ (Apting Angnans] + Apny..ns)
(G—l)m1m2 I e2A(gm1m2mn2 + gqupmlmqun1n2])
(G_l)mﬂnz n1..ms = e2A[
+ 9P (Apmyma (Agining Angnans] + Aqm“m)]
(G_l)ml...m5 ni..ng = eQA[

+ gpq(Ap[mlmg Am3m4m5} =+ Apm1---m5)(‘4q[n1n2 An3n4n5} + ’Zlqnl--ﬂw)] )
(3.19)

gm1m27["1n2"4n3n4n5]

9Imy..ms5,n1...n5

! This expression follows straightforwardly from the elements of the conformal split frame given in [42].
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where gimymg, niny = Ymy[nyYjma|ns), a0d similarly for gim,  ms ny..ns. Since the generalised
metric is a scalar on the external spacetime, after imposing our truncation ansatz it will
provide the scalar fields of the reduced five-dimensional theory.

The density k introduced in section 2.1 when defining the HV structure is related to
the determinant of the generalised metric and is an Eg () invariant. For eleven-dimensional
metrics of the form (3.16), this is given by [42, 44]

k2 = 32\ /det gom - (3.20)

The tensors with one external leg arrange into a generalised vector .4, on M, with
components

'AMM = {huma Aumm;luml...ms }7 (3.21)

and will provide the gauge potentials of the reduced theory. The tensors with two anti-
symmetrised external indices define a weighted dual vector B, on M, which is a section
of det T*M ® E*, with components

B,uuM - {A,uzxma Auuml.“mp guuml...mg,n}v (3'22)

and will give the two-form fields of the reduced theory. The last term in (3.22) is re-
lated to the dual graviton and we will not discuss it further here. The tensors with three
antisymmetrised external indices arrange into the generalised tensor

Cul/pa - {Aul/m Auﬂpm1mzmsa guﬂpm1...m5,n}a (3-23)

which is a section of (a sub-bundle of) the weighted adjoint bundle det T*M ® ad F', whose
components are labeled by & = 1,...,57. See e.g. [50, 51] for more details on this tensor
hierarchy.

As discussed in [14], the bosonic part of the truncation ansatz is obtained by imposing
that the generalised tensors above are expanded in singlets of the Gg structure. The
generalised metric is obtained by constructing the K and J, parameterising a family of
HV structures as detailed in section 2.3, and plugging these generalised tensors in the
formula (2.27). The resulting generalised metric depends on the H and V structure moduli;
when given a dependence on the external coordinates x*, these are then identified with the
hyperscalar and vector multiplet scalar fields of the truncated N' = 2 theory, respectively.
Thus we have

hI (LL‘)K]
L(x)jaL(x)™"

K s MN

giving GV (z) from (2.27), (3.24)
Ja
where L is the representative of the coset My. Comparing the expression for the generalised
metric with its general form (3.19), we obtain the truncation ansatz for A, gmn, Amnp (as
well as Ay, . me, whenever it is needed). Note that &2 given in (3.20) is independent of the

scalar fields h!(z) and L(z), so it can be evaluated using any chosen representative of the
family of HV structures defined by the Gg structure.
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The gauge potentials AMI () on the external space-time are defined by taking
A, = A (2)K; € T(T*X) @ span({ K }) (3.25)

where span({K;}) C I'(E) is the vector space spanned by the set of Gg singlets K,
1=0,1,...,ny. Similarly the two-form fields are given by

By =By r(x) K] € T(A*T*X) @ span({K}}), (3.26)

where span({K/}) C I'(det T*M ® E*) is the vector space spanned by the weighted dual
basis vectors Kbl, the latter being defined by KbI(KJ) = 3k% 6 ;. We also have

Cuvp = Cowp () J) € D(APT*X) @ span({J}}), (3.27)

where span({J%}) C T'(det T*M ® ad(F)) is spanned by the Gg singlets in the weighted
adjoint bundle, here denoted by JE‘ and given by JZ = k2J4. In appendix C we show
that these expressions, together with the field redefinitions (3.17), lead to the correct five-
dimensional covariant objects, consistent with the expected gauge transformations.

4 N =2 truncations on Maldacena-Nuiiez geometries

We now apply the above formalism to consistent truncations of eleven-dimensional su-
pergravity based on generalised structures arising from Mb5-branes wrapping a Riemann
surface.

We start with the A' = 2 AdSs Xy, M solution of Maldacena and Nuniez [34] and show
that the manifold M admits a generalised U(1) structure with singlet intrinsic torsion,
and therefore can be used to construct a consistent truncation. As we have stressed above,
once we identify the singlet K; and Jy4 tensors defining the structure it is straightforward
to read off the form of the NV = 2 supergravity.

We already observed in [14] that this process yields N' = 2 supergravity with one
hypermultiplet and four vector multiplets. Here we give the details of the construction
and derive the gauging, which defines an SO(3) x U(1) x R gauge group. Our truncation
includes as a subtruncation the reduction to N’ = 2 supergravity with one vector multiplet,
one hypermultiplet and U(1) x R gauging recently obtained in [36].

4.1 The MN1 solution

We are interested in warped AdSs solutions to eleven-dimensional supergravity that de-
scribe the near-horizon region of M5-branes wrapping supersymmetric cycles in a Calabi-
Yau geometry. The amount of supersymmetry of the solutions depends on how the cycle is
embedded in the ambient geometry. This corresponds to a topological twist of the world-
volume (0, 2) theory on the M5-branes. The simplest examples are the solutions found by
Maldacena and Nuiiez [34] describing the near-horizon geometry of M5-branes wrapped on
a Riemann surface X of negative constant curvature. The topological twist of the (0,2)
world-volume theory is realised by identifying the spin connection on Z with a U(1) connec-
tion in the SO(5) R-symmetry group of the M5-brane theory. The theory preserves N = 2
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or N' = 1 superconformal symmetry in four dimensions, depending on how the U(1) is
chosen inside SO(5). The corresponding supergravity solutions are warped products of
AdSs5 times a six-dimensional manifold, M, which is the fibration of a deformed S* over .
The SO(5) is realised via the action of the isometry group of the round S*. The structure
of the fibration reflects the twist of the world-volume theory and determines the amount
of supersymmetry of the solutions, which in five-dimensional language is either NV = 4 or
N = 2, respectively.

In this paper we focus on the N' = 2 solution, which we call the “MN1 solution” in the

following. The eleven-dimensional metric is'®

9 =e* gaas; + 96 (4.1)

where gaqs, is the Anti de Sitter metric with radius ¢ = %R, R being the length scale of
the internal space M. The metric on M takes the form
1/3

3 1/3
g6 = R? 2473 (3 + cos? C)

;2
2 sin” ¢ 2 2 2
gs +d¢" + Ty (01 + 05+ (03 +v) )1 . (4.2)

Here, g5 is the uniform metric on (a quotient of) the hyperbolic plane = = H?, with Ricci
scalar curvature Ry = —2, while v is the spin connection on Z satisfying

dv = —vols (4.3)

with vols the volume form on X.'® The deformed S* is described as a foliation of a round
S3 over an interval, with the interval coordinate being ¢ € [0, 7], while 0, a = 1,2,3, are
the standard SU (2)jef-invariant forms on S3, expressed in terms of Euler angles {6, ¢,v}.
Their explicit expression can be found in appendix D, together with more details on the
parameterisation of S%.

The warp factor is

A 2 2/3
e = (3> (34 cos? ()13 (4.4)
while the four-form reads
. R3| 15+4cos’¢ . 4
F= e msm ¢d{ANo1 Aoz A (03 +v)
» (4.5)
+ sin ¢ (—dC A o3+ Zisj—néogz)c o1 N\ 02> A VOlz] .

!5We present the solution in a form similar to the one given in [52, Sect. 5]. The precise dictionary with

e24 2 R, where the variables on the

this reference is: a = ¢, v = —¢, Yamsw = ¥, e = ,mTt = Ladass = 3
left-hand side are those of [52] while the variables on the right-hand side are those used here. The length
scale R that appears in our expressions is equal to the radius of S* in the related AdS; x §* Freund-Rubin

solution of eleven-dimensional supergravity. The four-form F in (4.5) has an overall opposite sign with

respect to the one of [52], = —FaMmsw; this sign does not affect the equations of motion, it just modifies
the projection condition satisfied by the supersymmetry spinor parameter.
~ 2 2
'8 Choosing local coordinates x,y on the hyperbolic plane, one can write gs = %, voly = dxy%dy,

_dz
v

and v =
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Note that the invariant volume form (3.20) is given by
k% = R?vols Avoly, (4.6)

where voly is the volume form of the round S* of radius R.
The solution has SU(2)jefs X U(1)rignht symmetry, which embeds in the SO(5) isometry
group of a round S* as

50(5) D) 50(4) ~ SU(2)1eft X SU(Q)right D SU(2)left X U(l)right- (47)

This symmetry is manifest as the solution is given in terms of the o,. The globally-defined
combination (o3 + v) describes a fibration of S* over X, such that the U (1)rignt action on
S4 is used to cancel the U(1) holonomy of Z.

The U(1)rignte factor provides the R-symmetry of the holographically dual N' = 1
SCFT, while SU(2)ef corresponds to a flavour symmetry. The dual N' = 1 SCFT has
been described in [53].

4.2 Generalised U(1) structure of the MN1 solution

The solution reviewed above admits a generalised U(1)g structure, which will be the basis
for constructing our consistent truncation. In order to characterise it we proceed in two
steps. The first is purely group theoretical: it consists in embedding the relevant U(1)g in
FE¢(6), computing its commutant and the corresponding decompositions of the generalised
tangent and adjoint bundles. To this end, it is convenient to decompose Egg) according to
its maximal compact subgroup USp(8)/Z3. Since the usp(8) algebra can be given in terms
of Cliff(6) gamma matrices (see appendix E.1), this reduces the problem to gamma matrix
algebra. The details of the derivation can be found in appendix E; here we will just give
the results. Once the relevant U(1)g singlets are identified, the second step is to express
them in terms of the geometry of the six-dimensional manifold M.

The generalised U(1)g structure of the MN1 solution is the diagonal of the ordinary
geometrical U(1) ~ SO(2) C GL(2,R) structure on the Riemann surface and a U(1) factor
in the SO(5) C SL(5,R) =~ Ejy(4) generalised structure for the generalised tangent space of
the four-sphere. In terms of the isometry group decomposition (4.7) this can be identified
with U(1)ight. If we denote by 1 to 4 the directions in M along S4 and by 5,6 those along
>, the generator of U(1)g can be written as a usp(8) element as

PN RPN -
u(l)s =il's6 — 5 (T2 — I'sq), (4.8)

where T, are six-dimensional gamma matrices. The first term corresponds to the U(1)
holonomy of X while the second one is the U(1)yignt in SO(5). By computing the commu-
tators of (4.8) in USp(8) we find that the U(1)g structure embeds in USp(8) as'’

USp(8) © SU(2) x SU2)y x U(1) x U(l)s, (4.9)

"Here and below we give expressions ignoring subtleties involving the centres of each group; thus for
instance we will not distinguish between embeddings in USp(8) and USp(8)/Z.
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where as above we distinguish the factor SU(2)y that gives the R-symmetry of the five-
dimensional supergravity theory. Under this splitting, the spinorial representation of
USp(8) decomposes as

8=(1,2)0® (2,11 ®(2,1)1©(1,1)® (1,1)_s, (4.10)

where the elements in the brackets denote the SU(2) x SU(2)y representations and the
subscript gives the U(1)g charge. We then see that there are only two spinors that are
singlets under U(1)g and that transform as a doublet of SU(2)y as required by N' = 2
supersymmetry.

The embedding of the U(1)g structure in the full Eg) is obtained in a similar way
(see appendix E.2 for details)

Eg(6) O Crye,(U(1)s) = RY x Spin(3,1) x SU(2,1) x U(1)s, (4.11)

where Cpg, (U(1)s) is the commutant of U(1)s in Ege). We can now determine how
many generalised vectors and adjoint elements are U(1)g singlets. Under (4.11) the 27
decomposes as

27 =(1,1)(0,8) ® (4,1)(0,—4) © (2,1)(3,—9)

( (4.12)
@ (1, 3)(27_4) @ (1, 3)(_2’_4) @ (2 3) 2) @

2,1)(-3,-9)
(2,3)(—1,2)»

where the first subscript denotes the U(1)g charge and the second one the Rt charge. We
see that there are five singlets K;, I =0,1,...,4, where

Ko € (1,1)0g) (4.13)
is only charged under the R™, while
{K17K27K37K4} S (4,1)(07,4) (414)

form a vector of SO(3,1).

The singlets in the 78 adjoint representation are the generators of the commutant
CEg)(U(1)s). However only the generators of the SU(2,1) subgroup are relevant for the
structure. Indeed, (4.12) shows that the generators of RT x SO(3,1) do not leave the
singlet vectors invariant, and therefore, as discussed in section 2.1, do not contribute to the
truncation. As shown in (E.40) and (E.41), they can be obtained as products K x,q K7.
We denote by J4, A =1,...,8, the elements of the adjoint bundle generating sus ;. Four
of them are in the 36 of USp(8) and generate the compact subalgebra sus @ uy, and four
more are in the 42 of USp(8) and generate the rest of sus 1.

The U(1)g structure is then defined by

(K, Ja}, I=0,...,4, A=1,...,8. (4.15)

The derivation of the explicit expressions for these generalised tensors relies on the
way the solution of [34] is constructed by deforming the AdS7 x S* background dual to flat
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M5-branes so as to describe their backreaction when wrapping a Riemann surface 2. The
world-volume theory on the wrapped Mb5-branes is made supersymmetric by a topological
twist, where the spin connection on the Riemann surface is cancelled by switching on
a background gauge field for a U(1) subgroup of the SO(5) R-symmetry. On the dual
background the topological twist implies that M is an S* fibration over =

St M
k (4.16)
>

The generalised tangent bundle for S* is given by
Ey ~ TS @ A*T*S*, (4.17)

and transforms under SL(5,R) ~ Ejy(4). It is generalised parallelisable, meaning it admits
a globally defined frame [15]. The idea is then to consider first the direct product ¥ x S4,
express the Eg ) generalised tensors on this manifold in terms of the frame on Z and the
parallelisation on S*, and then implement the twist of S* over T so as to make globally
well-defined objects. In the decomposition

E6(6) D GL(2,R) x SL(5,R), (4.18)

where GL(2,R) is the structure group of the conventional tangent bundle on X and
SL(5,R) =~ Ejy4) is the structure group of the generalised tangent bundle on 5S4, the Eg6)
generalised tangent bundle on ¥ x S* decomposes as

E~TI®(T'ZQ Ny @ (A*T*S® N,) @ E;y, (4.19)
and the adjoint bundle as

adF ~ adFy @ (TE®T*Y) @ (T"E ® Ey)

2k * 2 * (420)

In the expressions above Ej is the generalised tangent bundle on S* introduced in (4.17),
ad Fy is the adjoint bundle on S*,

ad Fy ~R@ (TS* @ T*S*) @ A3T*S* @ A3TS*, (4.21)
and Ny and Nj are the following bundles on S4,

Ny ~ T*S* @ AT* 5%,

4.22
Nj ~ R® A3T*S?. (4.22)

The bundles F4, Ny and Nj admit the globally defined generalised frames
Ej; € T(Ey), E;c€T(Ny), E.eT(Ny, i,j=1,...,5, (4.23)
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see appendix D for their expression in a coordinate basis and note that they include a
contribution from the three-form gauge potential Ags of the flux on the S*. Geometrically
this defines a generalised identity structure on S*. Given the way U(1)g is embedded in
USp(8), we will find it useful to also introduce the following linear combinations of the
generalised frame elements F;; on sS4,

[1]
(1]

1= FEi3+ Foy,
1= FE13— Foy,

9 =K1y —FEo3, Z3=F19— L34,

o = F14+ Eo3, Eg = Fi9+ E34. (4.24)

[t
[1I?

Since their restriction to T'M corresponds to the Killing vectors generating the SU(2)est X
SU(2)sight ~ SO(4) C SO(5) isometries of S* (again see appendix D for their explicit
expression), =, and ia, a = 1,2,3, may be seen as generalised Killing vectors generating
the corresponding generalised isometries.

As for the Riemann surface %, it can be (a quotient of) the hyperbolic plane H? as
in the MN1 solution reviewed in section 4.1, but we can also take a torus 72, or a sphere
S2. We introduce orthonormal co-frame one-forms eq, es on X, such that the constant
curvature metric and the compatible volume form on 2 are given by

gs = (e1)* + (e2)?, vols =ej Aesy. (4.25)

The metric is normalised so that the Ricci scalar curvature is Ry = 2k, where k = +1 for
5% k=0 for T? and k = —1 for H? (and quotients thereof). We also define the U(1) spin
connection, v, on Z as

d(e1 +iez) =ivA(er +iea), dv = k vols . (4.26)

The decompositions (4.19) and (4.20) allow us to express the U(1)g invariant gener-
alised tensors in terms of tensors on X and the S* generalised frames introduced above.
We provide the derivation in appendix E and here just present the resulting expressions.
Let us first focus on the singlet generalised vectors Kj. These can be written as

Ky = el . (R2 voly A Eé) , K17273 =el. 217273, K, = el . =3, (4.27)

where T is a section of the adjoint bundle implementing the twist of $* over X as in (4.16),
ensuring that these are globally defined objects on the six-dimensional manifold. Recall
that in the MNT1 solution, the U(1) that is used to twist the four-sphere and compensate
the spin connection v on Z is the Cartan of SU(2)righe C SO(5). The Egg) twist element
T is constructed in a way similar to the one used in [14], albeit with a different choice
of U(1) in SO(5). We embed the connection one-form v in a generalised dual vector, the
Killing vector generating the Cartan of SU(2)yight in the generalised vector =3 introduced
above, and we project their product onto the adjoint of Eg). That is,

T = —% UV Xad Eg, (4.28)
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where x,q denotes the projection onto the adjoint and again R is the radius of S*. Evalu-
ating its action in (4.27), we find that this is trivial for all the K;’s except for K4, and we
obtain our final expressions

Ko=R*vols A B,  Kio3=CEi23, Ki=E53—RuAEFEs. (4.29)

A similar procedure applies to the singlets J4, A =1,...,8, in the adjoint bundle. In this
way we obtain (see appendix E for the derivation)

1 T _ — i A —1= 5
J1=§e - (—Re1 Xaa B1 — Reg Xaa B2 + R B Xaq €1 + R B} Xaq é2),
1
T = = C) 2 = 2
J2:§e - (Re1 Xaa B2 — Reg Xaa B1 — R E5 Xaq €1 + R E] Xaq €2),
1 e ~ A~ -1 * 2
J3:§e (1 ®ey—Ea®e; — Reg Xag Wis + R Ul5 Xag €2
— EX Xad Eois + Eiig Xad Eys)
5[1 ~ad £2]5 5(3 “ad £4]5) 5
L v
— - 1= 5 -1z é
J4:§e -(RelxadZQ—R€2Xad:1+R E) Xad €1 — R :TXade2)’
. ) B L A . R (4.30)
Js=ge - (Rer xaa S1 4 Reg Xaa Bz + BT E] Xaa &1 + BT Ej Xaa €2)
) 4
T (4 A
Jﬁz—ge ~(61®61+62®62+ZE:5XadEi5+2)’
i=1

Jr=eb . (Reg Xaq U154+ R W35 Xoq &2),
1 . . 1ok .
ngr\/geT'(61@62—62@61—3R€2Xad\I/15+3R 1\1115 X ad €2

— By Xad Eojs + E3j3 Xad Eys)

where the superscript * denotes dual generalised vectors, transforming in the 27, and we
introduced ¥1; = Re; A FE; and Vo, = Reo A E;. The adjoint action of eT is evaluated using
the formula (A.21); we do not show the resulting expressions as they are rather lengthy.
Evaluating the commutators [J4, Jp] using again (A.21), we checked that the J4 satisfy
precisely the SU(2,1) commutation relations (see (F.4) for our choice of SU(2,1) structure
constants).

4.3 The V and H structure moduli spaces

We now construct the V structure and H structure moduli spaces. Applying the general
discussion of section 2.3 we have
Chy(6)(Gs) L Spin(3,1) SU(2,1)

My X My = =R™ x X , 4.31
v M= G z(C) SUR < ST@n < U (4.31)

As we now show the first two factors give the V structure moduli space and the last factor
the H structure moduli space.
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The V structure. Evaluating (2.16) for the K constructed above we obtain the con-
stant, symmetric tensor Cyjg. Using the invariant volume (4.6), we find that the non-
vanishing components of Cjjx are given by

1
Corg =Crog =Crjo = 30T for I,J=1,...,4, (4.32)

where
n = diag(—1,—-1,—1,1). (4.33)

A family of V structures is then obtained by defining K as the linear combination (2.30)
and imposing the condition (2.31). It follows that our V structure moduli space is the
hypersurface

Croch! W R = RO (=(h1)? = (1) = (h%)? + (h)?) = 1., (4.34)

It will be convenient to redefine the A’ in terms of the parameters

{2, HY, H? H3, H*} (4.35)
as
hO — 2—2
W=-xsH' K6 1=1,...,4, (4.36)
so that
K =%"2Ko— % (H'Ky + H*Ky + H3 Ky + H'Ky) . (4.37)

From (4.34) we see that H' are coordinates on the unit hyperboloid %,

— (HY? — (H»)? — (H?)?* + (HY? =1, (4.38)

while 3 (that we assume strictly positive) is a coordinate on R*, whose powers in (4.36)
are dictated by the weight of the K’s under the action of the RT that commutes with the
generalised structure. The resulting V structure moduli space thus is

S0(3,1)
My =Rt x —/——~ 4.39
% 5003) (4.39)
and will determine ny = 4 vector multiplets in five-dimensional N’ = 2 supergravity.
Note that by identifying SU(2) ~ Spin(3) this matches the first two factors in (4.31). The
isometry group is SO(3, 1) because the h! form a vector rather than a spinor representation

of Spin(3,1).

The H structure. We next turn to the H structure moduli space, again following the
general discussion given in section 2.3. Since the commutant of SU(2)gy in SU(2,1) is
U(1), from (2.35) we obtain that the H structure moduli space is'®
B SU(2,1)

SUQ)g x U(1)’

8 More precisely one has My = SU(2,1)/S(U(2) x U(1)).

My (4.40)

— 24 —



This is a simple quaternionic-Kéhler manifold of quaternionic dimension nyg = 1. We will
denote by
{,€,01,02} (4.41)

the coordinates on this space. In appendix F we give the explicit parameterisation chosen
for the coset space as well as the explicit form of the “dressed” su(2) elements J,, depending
on {p,& 61,02}, in terms of su(2,1) elements. Below we will use this dressed triplet to
construct the generalised metric. In appendix F we also give the SU(2,1) invariant metric
on My, which will provide the hyperscalar kinetic term in the five-dimensional theory.

4.4 Intrinsic torsion and gauging

For the U(1)g structure constructed in the previous section to lead to a consistent trun-
cation, it must be checked that its intrinsic torsion only contains U(1)g singlets, and that
these are constant. In particular we need to show that equations (3.4), (3.5) and (3.7) hold.
For the first two conditions we evaluate the generalised Lie derivatives of the tensors Ky
and Jy4 in (4.29) and (4.30), using the action of generalised Lie derivative on a generalised
vector and on sections of the adjoint bundle given in appendix A.

Consider first the algebra of the generalised vectors (4.29). Using the fact that, under
the generalised Lie derivative, the S frames E;; generate an so(5) algebra

LEij Ekl = —Ril (5ikEjl — (51'[Ejk + 5leik - 5jkEz'l) ) (4‘42)
one can show that the only non-zero Lie derivatives are
2
LKaK,B = _EEO&,B’YK'ya aaﬁ77 = 1a253, (443)

so that the vectors K,, a = 1,2, 3, lead to an SO(3) factor in the gauge group in the five-
dimensional supergravity.!? This embeds in the SO(3,1) factor of the global symmetry
group of the ungauged theory in the obvious way. Hence (4.43) determines the compo-
nents of the embedding tensor acting on the vector multiplet sector of the five-dimensional
supergravity theory.

We thus have that the non-vanishing structure constants are f,g, = —2€,3, and the
gauge coupling constant is g = %. Recalling (3.8), the non-trivial vector multiplet scalar

covariant derivatives are 5
DH® =dH" — g AP HY (4.44)

while the gauge field strengths read
1
F=dA’, Fr=dA"- = g ATNAT, Fr=dAt (4.45)

In order to determine the gauging in the hypersector we also need to compute the Lie
derivative of the J4 along the generalised vectors K;. We find that the J4 are neutral
under the action of the SO(3) generators K,,

Lx,Ja=0, A=1,..38, (4.46)

9For simplicity, we use the indices a, 8 = 1,2,3 both to label the generators of the SU(2)y entering in
the definition of the H structure and the generators of the SU(2) in the V structure, although these are
different subgroups of Eg ).
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consistently with the fact that the gauging in the vector multiplet sector does not affect
the hypersector. On the other hand, the remaining generalised vectors Ky and Ky act
non-trivially on the J4, and determine an abelian gauging of the SU(2,1) generators. In
detail, the generalised Lie derivative of the J4 along K gives

1

Ly (Ji —J5) =0, LKOJ?):_EJGa
1 1
Li,(J1 + Js5) = = (Jo + J4) , LiyJo = — = (J3 4+ 2J7 — V3.J3),
’ R = (4.47)
LKO(J2+J4) =0, LK0J7: EJG,
Li,(Jo — Jy) = —*(Jl Js) V3
0 Lg,Js = ﬁJG,
while the one along K, yields
2 K
Li,(Ji —J5) = _§<J2 + Ju), Lk, Js = ﬁJm
Ly, (J1+J5) = 2J J " Jo + J. Lg,Jo6 = - (J3+2J7*\[J8)
k(i J5) = =5 (o= Jo) = 5 (L + ), 1 2R
2 __
Lii(J2 +Ja) = 5(J1 = J5), Lrydr = RJﬁ’
2 K \/gﬁ
LK4(J2—J4) = E(J1+J5)+E(J1—J5), LK4J8: - oR Jg .

(4.48)
The actions (4.47) and (4.48) can equivalently be expressed in terms of an adjoint action as

LKOJAZ[J(KO),JA}, LK4JA=[J(K4),JA], A=1,...,8, (4.49)

where the sections of the adjoint bundle

J(KO) 4R (Jg +2J7 — \/i]g)
1
V3

correspond to SU(2,1) generators acting on the H-structure moduli space (4.40) as isome-

Jiky) = iR (Jg +2J7 — fJS) J3 + Js) (4.50)

R(

tries. We denote by kg and k4 the corresponding Killing vectors on My. These can be
calculated applying (3.10) to the coset representative L given in appendix F, and read

ko = 85 ,
ks = —k 8§ + 2 (92891 — 91892) . (4.51)

These Killing vectors specify the isometries of My that are gauged in the five-dimensional
supergravity. The hyperscalar covariant derivatives (3.11) are determined as

2
D(91 +i92) Zd(91+i92) — §1A4 (91+i92),

Eat (4.52)

_ L0
Dg_d§+RA =
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The triholomorphic Killing prepotentials Pj* obtained by evaluating the moment
maps (3.12) read

1
P = {0,0, 4e2¢} :

1
P = {\@e%l V2605, -1+ i e? (207 + 205 — k) } , (4.53)

with P{* = P3* = P = 0.

The information above completely characterises the five-dimensional N = 2 supergrav-
ity obtained upon reduction on M. This will be discussed in section 4.6. Before coming to
that, we provide the explicit bosonic truncation ansatz.

4.5 The truncation ansatz

The truncation ansatz is built following the general procedure described in section 3.2. We
compute the inverse generalised metric (2.27) out of the U(1)g invariant generalised tensors.
This depends on the V structure moduli {¥, H', H?, H3, H*} and on the H structure moduli
{¢,&, 01,602}, which are now promoted to scalar fields in the external, five-dimensional
spacetime. Then we evaluate the generalised tensors A, By, Cpuu, using (3.25)—(3.27).
Separating the components of these tensors as described in section 3.2, we obtain the
ansatz for the eleven-dimensional metric § and three-form potential A.

We start from the covariantised differentials Dz™ = dz" — h,""dx* of the coordinates
on M, that appear in (3.16). From (3.21) and (3.25) we see that h, = h,0p, is given by

hy = Al Kilrar (4.54)

where K7|ras is the restriction of K to the tangent bundle of M. Evaluating the right
hand side using the explicit form (4.29) of the generalised vectors K7, we obtain

2 -
hu = (AT Ea + A} &), (4.55)

where we recall that &, &, a = 1,2,3, are the pull-back to TM of the SU(2)1eft-
and SU(2)yight-invariant vectors on 53, respectively, whose coordinate expression is given
in (D.2) and (D.3). It follows that Dz™, and thus both the eleven-dimensional met-
ric and three-form, contain the five-dimensional gauge potentials A%, A*, gauging the
SU(2)1est X U(1)right isometries of S3in M. Notice that A° does not appear in (4.55) as Ko
does not have a component in T'M, hence it will not enter in the eleven-dimensional metric.
However K, will appear in the ansatz for the three-form, as it does have a component in
A2T*M.

In order to express our ansatz in a more compact way, it will be convenient to introduce
new one-forms (2, and Qa, a = 1,2,3, adapted to the symmetries of the problem, that
incorporate the covariantised differentials above but also include some more terms. Recall
that we describe S* as a foliation of S3, parameterised by Euler angles {6, ¢, v}, over an
interval, parameterised by (. We define

Q1 = cosy DO + sin)sin§ D¢, Q1 = cos ¢ DO + sin ¢ sin 6 Dy
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Q9 = —sint DO + cos 1 sin 6§ D, Qy = sin ¢ DO — cos ¢ sin 6 D1,
Q3 = Dy + cos 0 Do, Q3 = D¢ + cos 6 D1, (4.56)
which are analogous to the left- and right-invariant forms o4, J, given in (D.6) and (D.7),

but with the ordinary differential of the coordinates being replaced by the new covariantised
differential D. This extends the differential D given above and is defined as

2 o
Dz =dz™ — E(Aafgf + Aaﬁgl) , (4.57)
with
Al = jﬁ (9261 — 9162) , A% = iﬁ (9161 + 9262) , A3 = —g v+ A4,
AY = A~ a=1,23, (4.58)

where the five-dimensional scalars 61,65 are two of the H structure moduli, and we recall
that e1, ey are the vielbeine on the Riemann surface Z while v is the connection on Z.
The local one-forms A%, A* gauge all the left- and right- isometries of S3, respectively, and
would correspond to SO(4) ~ SU(2)iery X SU(2)right gauge potentials in the reduction of
eleven-dimensional supergravity on S* down to seven-dimensional supergravity. However,
in the further reduction on X of interest here only A%, A* become five-dimensional gauge
fields, while the rest of (4.58) implements the twist on the Riemann surface and introduces
the five-dimensional scalars 61, 05.
We are now in the position to give the truncation ansatz for the eleven-dimensional
metric
g= ezAngx“dm” + gmnD2"DZ" . (4.59)

The warp factor is

e2A = A3 (ePx)/5 (4.60)

while the part with at least one internal leg reads
Jmn D2 D2 = R251/3(e‘p2)_6/5 gs + R2AT2/320/55,-3/5 [(e_Q‘/’EB sin? (4 H_ cos® C) d¢?

1 1 ~
+ M sin? €0 Q, @05 — 3 sin? ¢ H* Qo ®5Q3—cos sin ¢ d¢@4dg H,

)

(4.61)

where ®; is the symmetrised tensor product, defined as Q ®, Q = F(OQ® Q+0Q®Q). In
these expressions we introduced the function

A= (e_2@023)_4/5 cos? ¢ + (6_2‘923)1/5HJr sin? ¢, (4.62)
as well as

Hy=H*'+ (Hlsinesinqﬁ—H2sin0008¢+H3c059) ,
d¢H, = H" d(sin 0 sin ¢) — H* d(sin  cos ¢) + H> dcos@. (4.63)
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Note that in the last expression the exterior derivative acts on the internal coordinates and
not on the scalars H’, which only depend on the external coordinates.

We next come to the eleven-dimensional three-form potential A. We first give our
result and then make some comments. The ansatz for A reads

~ 1 -
A= —gRP’ cos( [2+ sin? ¢ A_l(e_29023)_4/5] Q1 AQaAQ3
1 _ -
+ ZR3 sin® C A" He 22835 d¢ A HY Qo A Q3
1
+ R® cos ¢ (DE — 610 + 6,D61) A volz + R cos (267 + 203 — &) vols A

1 ~
+§R2COSC(J—"4/\93 — F* A Q) + R cos ¢ X% x5 FO
1
2V/2

where the five-dimensional gauge field strengths, F, and the covariant derivatives, D, of

+ R3cos( [(Deg Ael — Dy A 62) AQ + (Del Ael + Dby A 62) A QQ} , (4.64)

the five-dimensional scalars were given in (4.45) and (4.52), respectively.

Equation (4.64) has been obtained by first computing A through the general procedure
of section 3.2, then implementing a gauge shift by an exact three-form so as to obtain a
nicer expression (this is why derivatives of the external fields appear), and finally dualising
away the five-dimensional two- and three-forms, so that the only five-dimensional degrees
of freedom contained in the ansatz are scalar and vector fields, in addition to the metric
guv- Let us outline how this dualisation is performed. Evaluating (3.26) and (3.27), we
find that only one external two-form B and one external three-form C appear in the ansatz
for A. These are paired up with the generalised tensors E5 and E. on S%, which, as
generalised tensors on M, are sections of det T*M ® E* and det T* M ® ad F', respectively.
The combination entering in A is

[BEs 4+ CE5], = RBAdcos¢+ RCcos¢ = (C—dB)Rcos¢+d(BRcos¢) ,  (4.65)

where the subscript on the left-hand side indicates the restriction to the three-form part,
and the last term in the expression is removable via a gauge transformation of A. Hence
B and C only appear in the combination (C — dB). This means that the two-form gets
eaten by the three-form via the Stuckelberg mechanism, giving it a mass. While a massless
three-form in five-dimensions is dual to a scalar field, here we dualise the two-form at the
same time and also obtain a vector field. The duality relation is obtained considering the
duality between the eleven-dimensional three-form A and six-form A given in (3.15), and
looking at the relevant terms with three external indices. In this way we find that

C—dB =" x5dA° — A* AdA* + A A dA™ — AXNAP N AT (4.66)

1
3R b
We have used this expression to eliminate (C — dB) completely from the truncation ansatz.
This explains the x5 F° term appearing in (4.64).
Our truncation ansatz reproduces the Maldacena-Nuiiez solution given in section 4.1
upon taking x = —1 and setting the scalars to

, 1, 4
H'=H*=H*=60,=0,=¢(=0, H'=%=1, = 5log 5. (4.67)
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The consistent truncation of [36] is recovered as a subtruncation that projects out the
fields transforming under SU(2)jef;, that is setting A® = H* =0, a = 1,2, 3, which also
implies H* = 1.2 The further truncation to minimal gauged supergravity is obtained by
setting the scalars to their AdS value (4.67) and taking A° = —A%.

One can obtain a slightly larger subtruncation by projecting out only the modes
charged under U(1)jef;, rather than SU(2)jes, namely setting Al = A2 =H'=H?2=0.
This leaves us with two vector multiplets, one hypermultiplet and just the abelian gauging
generated by the Killing vectors (4.51), which is the same as the one in the truncation
of [36].2! A notable generalisation of this subtruncation will be discussed in section 5.

The truncation of [36] was obtained via a reduction of gauged seven-dimensional su-
pergravity on the Riemann surface 2. Similarly, we can obtain our truncation ansatz by
combining the well-known truncation of eleven-dimensional supergravity on S* [9], leading
to seven-dimensional maximal SO(5) supergravity, with a further truncation reducing the
seven-dimensional theory on 2. Starting from the convenient form of the bosonic trunca-
tion ansatz on S* given in [56], we have explicitly checked that this procedure works out
as expected and reproduces the ansatz above.

4.6 The five-dimensional theory

We now put together the ingredients defining the truncated five-dimensional theory and
discuss it in more detail. This is an N = 2 gauged supergravity coupled to four vector
multiplets and one hypermultiplet. The vector multiplet scalar manifold is

S0(3,1)
=Rt x /7" 4.68
My *750(3) (4.68)
while the hypermultiplet scalar manifold is
SU(2,1)

Mnu (4.69)

- SU2)g x U(1)°
As discussed before, these have a geometric origin as the V and H structure moduli spaces
of the internal manifold. At the bosonic level, the vector multiplets are made of gauge
fields A’ and constrained scalar fields k!, I = 0,1,...,4, which we have parameterised
in terms of ¥ and H!, I = 1,...,4, in (4.36). The latter scalars satisfy the constraint
nryH'H’ = 1, with n = diag(—1, -1, —1,1). We have also found that the non-vanishing
components of the symmetric tensor Cjyx are given by

1
CDIJ:CIDJ:CIjozgnIJa I,j=1,...,4. (4.70)

20Then the one-forms €, essentially reduce to those in [36], up to slightly different conventions, while 5a
drop out of the ansatz. When comparing our truncation ansatz with the one given in section 4.1 of [36], one
should take into account that A" = — AFNR (this is seen from comparing our 11d Maxwell equation with
the one in [54], which provides the 7d to 11d uplift formulae used in [36]). Moreover ¢P*® = ¢FNE 4 7/9
At oc AFNR A0 o \FNR 3 _ I/35IFNR 20 _ 9(2¢)FNR 19, | %‘01’2|FNR’ €= %gFNR'

21 Curiously, this five-dimensional supergravity with two vector multiplets and one hypermultiplet looks
closely related to the N' = 2 “Betti-vector” model obtained in [55, Section 7] as a consistent truncation of
IIB supergravity on TV, The two models are not the same though, as the details of the couplings between
the fields are different.
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The kinetic terms in the vector multiplet sector are controlled by the matrix a;;, given by
the general formula (2.34), which in our case reads

1
ago = §Z4,
apy =0,
2 _
ary =572 (2171KHK77JLHL—771J) , I,J=1,....4. (4.71)

The hypermultiplet comprises the scalars ¢* = {, &, 61,602}, and the kinetic term is
given by the quaternionic-Kéahler metric on My that we derived in appendix F,

1
gxydg¥dg” = 2dp? + &% (daf - deg) +3 e (A€ — 61dOy + 02d0;)* . (4.72)

The gauge group is SO(3) x U(1) x R. The symmetries being gauged are the SO(3) C
S0O(3,1) isometries of My and two abelian isometries in My, generated by the Killing
vectors (4.51). Note that the J¢ term generates the non-compact R factor and the 6205, —
010p, term generates the compact U(1).

We recall for convenience the gauge field strengths

FO=dA,  Fr=dA* —gep AN A,  Fl=dA', a=1,2,3, (4.73)

and the covariant derivatives of the charged scalars,

2
DH® =dH" - gy A HY
2
D(91 +i92) = d(@l +i92> — Ei.A4 (91 +i92) R

1 K
DE=de+ A — At 4.74
E=di+ A - Z AT (4.74)

where the gauge coupling constant is given by the inverse S* radius, g = %. The scalars 3,
H* and ¢ remain uncharged. The gauging in the hypersector is the same as in [36], while
the gauging in the vector multiplet sector is a novel feature of our truncation.

Plugging these data in the general form of the NV = 2 supergravity action given in
appendix B, we obtain the bosonic action for our model,

1 1 3 &
S = / {(R—zw x1— SIFONFO = = 3" apy FIA«F) - 2572d8 A +dS
167Gs 2 2,52,
3 4 4
-5 3" anDEH) A¥D(EH) - 9xvDg* A¥DgY + 3 nrs A AFIAF |
I,J=1 1,J=1

(4.75)

where G5 is the five-dimensional Newton constant.?? The scalar potential V is obtained
from the Killing prepotentials of the gauged isometries as summarised in appendix B. The

22 As discussed in [33], the five-dimensional Newton constant is given by (G5) ™! fM e*2 volg = fM K2,

dn(1—g)

In the present case, f Iy k2 = R?Vols Vols, where Vols = is the standard volume of a Riemann

surface of genus g and Voly = %R‘l is the volume of a round S* with radius R.
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Killing prepotentials were already given in (4.53). We can check this expression by starting
from the Killing vectors (4.51) and evaluating (B.15) using a standard parameterisation
for the universal hypermultiplet; we have verified that indeed the same result is obtained.
Then (B.17) gives for the scalar potential

1 { ele 2 HAL

% + 22 =242 (2((H)?2 - 1) (63 + 63) — x)

TRZ\4xt T
1
+3 M (2(H")? — 1) (267 + 263 — K)Q] } . (4.76)

The supersymmetric AdS vacuum conditions summarised in eq. (B.18) are easily solved
and give the scalar field values

1. 4
H'=H?>=H?=0,=0,=0, H*=%=1, cpzilogg,

that is precisely the values (4.67) that reproduce the MNT1 solution reviewed in section 4.1.

(4.77)

The negative curvature k = —1 for the Riemann surface arises as a positivity condition
for the scalars ¥ and e??. The critical value of the scalar potential yields the cosmological

constant A =V = corresponding to an AdSs radius ¢ = %R, again in harmony with

_%’
the solution in section 4.1.

By extremising the scalar potential (4.76) we can search for further AdS; vacua within
our truncation. Then, by analysing the mass matrix of the scalar field fluctuations around
the extrema we can test their perturbative stability. In the following we discuss the outcome

of this analysis for the three extrema that we have found.

o We recover the supersymmetric vacuum (4.77). Being supersymmetric, this is stable.
The supergravity field fluctuations source SU(2, 2|1) superconformal multiplets in the
dual N'=1 SCFT [53], with the supergravity mass eigenvalues providing the confor-
mal dimension A of the operators in the multiplets. The field fluctuations that were
also considered in [36] correspond to the energy-momentum multiplet (containing the
energy-momentum tensor with A = 4 and the R-current with A = 3) and to a long
vector multiplet of conformal dimension A = 1+ /7 (see [36] for more details). The
additional SO(3) vector multiplet included in this paper sources a conserved SO(3)
flavour current multiplet in the dual SCFT. The three scalar operators in this mul-
tiplet have conformal dimension A = 2 (once) and A = 4 (twice), while the SO(3)
flavour current has conformal dimension A = 3, as required for a conserved current.
Another piece of information about the dual SCFT is given by the Weyl anomaly
coefficients; these are obtained from the five-dimensional Newton constant G5 and

the AdSs radius £ through the formula a = ¢ = %.

o When x = —1 we also recover the non-supersymmetric vacuum discussed in [36],
that was originally found in [57]. The analysis of the scalar mass matrix shows
that the fluctuation of H* has a mass squared m2¢? ~ —4.46, which is below the
Breitenlohner-Freedman bound ¢?m3, = —4. We thus establish that this vacuum

is perturbatively unstable. Note that the unstable mode lies outside the truncation
of [36].
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e For k = 41, we find a non-supersymmetric vacuum with non zero value of the H-
scalars, given by

21/3
:W,

21/6
eN:g? H4=37\/g, th=0:=0, =3 _%R, (4.78)

2 55/6

where ¢ is the AdS radius. This appears to be a new solution. It represents an SO(3)
worth of vacua really, since the scalars HY, o = 1,2, 3, can take any value such that
VHY? + (H?2)2+ (H3)? = /(H*)2 -1 = %7279. We find that a linear combination
of the fluctuations of ¥, ¢ and H* has mass squared m?¢? ~ —5.86 < m%F€2, hence

this vacuum is perturbatively unstable. Nevertheless, it allowed us to perform a non-
trivial check of our truncation ansatz for non-vanishing H-fields, as we have verified
that its uplift does satisfy the equations of motion of eleven-dimensional supergravity.

5 Truncations for more general wrapped Mb5-branes

The N = 2 and N' = 4 Maldacena-Nufiez solutions are special cases of an infinite family
of N' = 2 solutions [35, 38],23 describing Mb-branes wrapping a Riemann surface in a
Calabi-Yau geometry. These solutions, which we will denote as BBBW solutions, have
the same general features of the MN1 solution. In particular, they all admit a generalised
U(1)g structure, which we use to derive the most general consistent truncation to N' = 2
gauged supergravity in five dimensions associated with such backgrounds. As we will
see, the truncated theory has two vector multiplets, one hypermultiplet and gauge group
U(1) x R. It generalises the U(1)yjgn invariant subtruncation of the truncation presented
in the previous section: the matter content is the same and the gauging is deformed by
one (discrete) parameter. Our systematic approach allows us to complete the consistent
truncation derived from seven-dimensional maximal SO(5) supergravity on X previously
presented in [37] by including all scalar fields in the hypermultiplet and directly deriving
the gauging.?*

5.1 The BBBW solutions

The BBBW solutions describe Mb5-branes wrapped on a Riemann surface Z, such that the
(2,0) theory on the branes has a twisting over ¥ depending on two integer parameters p
and ¢q. The way the Riemann surface is embedded in the ambient space determines the
local structure of the latter. The authors of [35, 38] showed that there is an infinite family
of allowed geometries, corresponding to the fibration £1 & Lo — X of two complex line
bundles over the Riemann surface, so that the total space is Calabi-Yau. The degrees of
these line bundles are identified with the integers that parameterise the twist of the M5
world-volume theory, p = deg £ and ¢ = degLs. By the Calabi-Yau condition p and ¢
must satisfy p + ¢ = 2¢g — 2, with ¢ the genus of Z. In this setup, the N =1 and N = 2
twistings considered in [34] arise from setting p = ¢ and ¢ = 0 (or p = 0), respectively.

#See also [58], where a subset of the solutions was previously found.
24We thank Nikolay Bobev and Alberto Zaffaroni for pointing out this reference.
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The corresponding AdSs Xy, M supergravity solutions are generalisation of the MN1
solution reviewed in section 4.1. The eleven-dimensional metric is a warped product

§ =€ gaas; + 96, (5.1)

with warp factor

e?A (2 = PP ALS, (5.2)

where ¢ is the AdS radius. The six-dimensional manifold M is still a fibration of a squashed
four-sphere over the Riemann surface, with metric

_ 1-
g = Al/3c20045 1 ZA 230, (5.3)

where the Riemann surface metric g5 satisfies (4.25), (4.26), and the metric on the squashed
and fibered S* is

g1 =X tdpg + Y XN (dpd + pi(des + ADY2) (5.4)
=12

The angles 1, 2 vary in [0,27],%° and

0 0
1o = cos 1 = sin  cos 2 o = sin ( sin 23 (5.5)

with ¢,0 € [0,7]. The two circles ¢; and @y are independently fibered over the Riemann
surface, with connections

—1+ZU A(z):_l—z
2 2

AW = v, (5.6)
where v is again the connection on 2 and the discrete parameter z is related to the integers
p and ¢ as

p—q

z=—. 5.7
s (5.7)

The warping function A and the constants fy, go depend on z and on the curvature k of
the Riemann surface as

2
_ 1
A=Y"Xpyg, el=xgl, &= —gFX X [(1-2) X1+ (1+2) %], (5:8)
I1=0
with

Xo = (X1X2) 72,
1+ 2

XX, = ,
2 2z — kV1+ 322 (5.9)
X5 _ 1+ 724722 + 3323 + k(1 + 42 + 1922)V/1 + 322
1 —_— .

42(1 — 2)?

ZThey are related to the angles of section 4.1 by 1 = —(¢ +)/2 and @2 = (¢ — 1) /2.
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The four-form flux is given by

1 - 2

o —5/2 2 2 A A
F=— 1A [[%(Xm] — AXy) + 2AXo| voly
1 - 2 . ‘
+ 1—6A*1/2 STX g [d(p?) A (dpi + ADY] A dAD) (5.10)
=1

where the Hodge star #4 is computed using the metric (5.4).

The solution has two U(1) isometries corresponding to shifts of the angles ¢1, 2 that
parameterise the two diagonal combinations of the U(1)ygnt and U(1)iey subgroups of
SO(5). It turns out that neither of them corresponds to the superconformal R-symmetry
of the dual N'=1 SCFT, which is given by a linear combination involving X7, X5 [35, 38].

5.2 Generalised U(1)g structure

The construction of the generalised structure associated to the BBBW solutions follows
the same lines as for the MN1 solution. We first embed the ordinary U(1) structure in
FEg(s) and then look for the invariant generalised tensors. The generalised U(1)g structure
of the solutions is determined by the topological twist of the M5 world-volume theory, as
a linear combination of the U(1) holonomy of X~ and the U(1)yight and U(1)iess subgroups
of the SO(5) R-symmetry group

Ul)s ~ U(l)s = U(D)right — 2 U (1)1efs - (5.11)

This embeds in Fg(g) as an element of its compact subgroup USp(8) with generator

. i . .
u(l)s =ils6 — ——(pT'12 —qT'34), 5.12
(1) p+q( ) (5.12)

where T'sq is the uspg element generating U(1)s and %(flz + f34) generate U(1)ef /right-
When p = g we recover the U(1)g structure group of the MNT1 solution, whereas ¢ = 0 (or
p = 0) gives the MN2 structure considered in [14]. Below we assume that p, g are generic,
and do not fulfill these special conditions which as we have seen lead to a larger truncation.

By looking at the singlets under u(1)s in the 27 and 78 representations of Eg ), we
find that the U(1)g structure is defined by eight J4, A = 1,...,8, in the adjoint bundle
and three generalised vectors Ky, I = 0,1,2. The singlets in the adjoint bundle have the
same form (4.30) as for the MN1 solution, while the three singlet generalised vectors take
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the same form as a subset of the MN1 generalised vectors,?®

Ko=¢e - (R*vols AEL),
K1 :eT-ig, (513)

However now the twisting element T has a more general form dictated by the embed-
ding (5.12), that is

R
T=-— UV Xad pE12 — qE34 . 5.14
v Xaa ) (5.14)

This makes our generalised tensors globally well-defined. We emphasise that these depend

on the integers p, ¢ only through (5.14).

5.3 Features of the truncation

The number of U(1)g singlets in the 27 and 78 implies that the truncated supergravity
theory contains two vector multiplets and one hypermultiplet. The H structure moduli
space is the same as for the MN1 case,

SU(2,1)

Mu = S5, < U

(5.15)

As before, this is parameterised by real coordinates ¢* = {p,&, 61,62} and the metric
is given by eq. (4.72). The V structure moduli space is determined again following our
discussion in section 2, and is a subspace of the one for the MN1 truncation. Evaluating
the cubic invariant on the singlets K as in (2.16), we obtain that the non-zero components
of the Cr k tensor are

1
Corg = Crog = Crjo = 3 forI,J=1,2, (5.16)

with = diag(—1, 1) . Parameterising the V structure moduli as in (4.36), with [ = 1,2,
the constraint (2.31) gives the equation of the unit hyperboloid SO(1,1),

—(HY)? + (HY)? =1, (5.17)
while again ¥ parameterises RT. Thus the V structure moduli space is

My =R" x SO(1,1). (5.18)

26Before acting with Y, the singlets for the BBBW solutions are related to those used for the MN1
solutions as
Ko= KMNU g, — gMNU g, gMNL

and to the structure of the MN2 solution in [14] as

(K302 4 ™),

K, = K(I)\/IN2 + %
— %(Ké\/IN2 + Kévmz)‘

1, MmN MN
Ko = §(K5 ’ — Ka 2)7 Ky = KMN2
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The kinetic matrix ar; then takes the same form (4.71), that is

1
a00:§E4,

agr = ag2 =0,
2 (2(}11)2 +1 —2H'H? >

e
a oH'H? 2(H?)? -1

. I,J=1,2. (5.19)

The gauging of the reduced theory is obtained from the generalised Lie derivative L,
acting on the Ky and the J4. The Lie derivatives among vectors are now trivial,

Li,K;=0, 1,J=0,1,2. (5.20)

As discussed in section 2, the Lie derivatives Lg,J4 are conveniently expressed as the
adjoint action of SU(2,1) generators,

Lg,Ja = [Jiky):Jals  LryJa=[Jiky),Jal,  LioJa =[x, Ja] - (5.21)

Evaluating the generalised Lie derivatives we find
1
J(Ko) = E (Jg +2J7 — \/gjg) ,
1
J(Kl) = @ Kz (Jg + 2J7 — \/32]8) ,
L <J + 1J> (5.22)
R 3 \/§ 8 . .

Eq. (5.20) implies that the vector multiplet sector is not gauged, so the field strengths are

1
Ty = =5 % (Js + 2J7 = V3J5)

all abelian,
Fl=aAl, (5.23)

while (5.22) specifies the gauging in the hypermultiplet sector in terms of x and z. The
SU(2,1) generators act as isometries on My; the corresponding Killing vectors can again
be computed using (3.10) and read

ko = 85 ,
ki1 =rz0¢,
ko = —k (95 + 2 (928@1 — 91892) . (5.24)

It follows that the covariant derivatives of the charged scalars are

2
D(91 + 102) = d(91 + 192) — E iA2 (91 + 192) ,
1

_ 1 0
DE=dg+ 5 A+

K (z.Al — AQ) ) (5.25)

where again the inverse S* radius % plays the role of the gauge coupling constant. The
Killing prepotentials can be computed either from (3.12) or from (B.15), and read

1
Py = {0,0, 4e2‘/’},
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Py = {O 0, ﬁzeQ“’}

P = {VBe0 Va1 1 (20 20— ) | (5.26)

Notice that for z = 0 (that is p = ¢), the quantities above reduce to those obtained for the
MNT1 structure in section 4.4.

The five-dimensional bosonic action is then determined to be

1 1 2
/ {(R—2V)*1—224J-“0A*}"0—3 > agFIA«F! —2572d8 A #dS

~ 167Gs 2,52
g ;2; arg A(SH) A+d(ZH?) — gxyDg™ AxDg¥ — A A (FPAF = F2A ﬂ)} :
. (5.27)
where the scalar potential reads
. % {Z‘; B 2e2;H2 +22[72+62@ (2(H1)2(0%+0§) _ ;@)
" ée‘”((H D2 (H?)?) (267 + 263 — )’
t 25 (2k (HY)? + 26 (H?)? + AH' H? (203 + 03 — 1)) | } . (5.28)

It is straightforward to analyse the supersymmetric AdSs; vacuum conditions (B.18).
The hyperino equation gives

01 =60=0,

»7% =k (2H' - H?) (5.29)
where we assume k = +1 (hence leaving aside the case k = 0). The gaugino equation gives
NP4+ H'PY + H*PS =0,

H?PY+ H'Pg =0. (5.30)
Plugging the Killing prepotentials (5.26) and using (5.29) we obtain
3k 02 (zH1 - H2) _4H? =0,

ke (z H? — H'Y) —4H' = 0. (5.31)
Taking into account the allowed range of the scalar fields, the solution to these equations is
H' 1+ kV1+ 322 4
. S (5.32)
H 3z V14322 -2k

For k = 1, well-definiteness of the fields requires |z| > 1, as in [35], while z can be generic
for kK = —1. The MN1 case z = 0 is recovered as a limiting case after fixing kK = —1. The
critical value of the scalar potential determines the AdS radius ¢ as

. 2 2\3/2\ 1/3
- (% 9kz" + (1 + 329) R
422

(5.33)
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Although we do not present the uplift formulae for this truncation, we have checked
that the supersymmetric vacuum identified above matches the BBBW solution summarised
in section 5.1. To do so, we have computed the inverse generalised metric G~! associated
with the U(1)g structure under consideration; this depends on the V structure and H
structure parameters. From the generalised metric we have reconstructed the ordinary
metric gg and the three-form potential on M, as well as the warp factor e>2. Substituting
the values for the scalars found above, we find agreement with the solution in section 5.1
upon fixing the S* radius as R = % and implementing the following dictionary:

1 1
2¢ _ Z a—290—3 fo
e ¢ ,
53 _ L 200250
4 b
T (5.34)
H = §X04(X1 - Xo),
1 1
H? = 5 X0 (X1 + Xa),
with our AdS radius being given in terms of the quantities appearing there as
¢ =92%3cfoting. (5.35)

By extremising the scalar potential?” we recover the supersymmetric vacuum and also
find new non-supersymmetric vacua, where the scalar field values are rather complicated
functions of the parameter z. As an example, we give the numerical values for one chosen
value of z, that we take z = % When k = —1 we find a new extremum of the potential at

¥~ 09388, ©=~0.1109, H?~1.0217, 6;=0,=0, 0~15276 R, (5.36)
while when x = 1 we find an extremum at

¥ ~0.8631, ©=~0.2812, H?~1.5506, 60 =60,=0, ¢~1.0644R, (5.37)
and another one at

Y~ 1.1580, ©~0.8455, H?~1.9847, 60, =60,=0, ¢~0.6198R, (5.38)

where for each solution we have also indicated the corresponding AdS radius /.

6 Conclusions

In this paper we have illustrated the Exceptional Generalised Geometry approach to N' = 2
consistent truncations of eleven-dimensional supergravity on a six-dimensional manifold M.
We have argued that for the truncation to go through, M must admit a generalised
Gg C USp(6) structure with constant singlet intrinsic torsion, and we have explained how
this completely determines the resulting five-dimensional supergravity theory. We have

2TTo do so, it is convenient to parameterise H' = sinh o, H? = cosh a, and extremise with respect to c.
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also given an algorithm to construct the full bosonic truncation ansatz. This formalism
provides a geometric understanding of the origin of the truncations, in particular those
that are not based on invariants of conventional G-structures on the tangent bundle. It
also sidesteps the need to reduce the equations of motion in order to uncover the matter
content and couplings of the truncated theory.

The main technically involved part of this formalism is deriving the truncation ansatz.
However a significant advantage is that once this is done the relevant expressions can be
used to derive the uplift formulae for any N' = 2 consistent truncation. One does not
have postulate the set of consistent modes case-by-case. Furthermore the structure of the
resulting gauged supergravity is then simply determined by the generalised structure.

To demonstrate the concrete effectiveness of the formalism we worked out the full
bosonic truncation ansatz on Maldacena-Nunez geometries, leading to five-dimensional
N = 2 supergravity with four vector multiplets, one hypermultiplet and a non-abelian
gauging, having the N' = 2 AdSj solution of [34] as a vacuum solution. This extends the
truncation of [36] by SO(3) vector multiplets. For the BBBW geometries [35, 38], we
obtained a truncation featuring two vector multiplets, one hypermultiplet and an abelian
gauging, completing the truncation obtained in [37]. This can be seen as a one-parameter
deformation of the truncation obtained from the one on Maldacena-Nunez geometry by
imposing invariance under the Cartan of SO(3). Although in this case we did not give all
details of the truncation ansatz, it should be clear that it can be obtained by following
precisely the same steps presented for the case of Maldacena-Nunez geometry. Since the
generalised geometry tensors on S* used in these trucations are a subset of those appearing
in the reduction of eleven-dimensional supergravity to maximal SO(5) supergravity in seven
dimensions, it should also be clear that our consistent truncations can equivalently be
obtained as truncations of maximal SO(5) supergravity on a Riemann surface.

Together with the half-maximal truncation presented in [14, 39], which is based on
the A = 4 solution of [34], this work provides the largest possible consistent truncations
of eleven-dimensional supergravity that have as seed known AdSs X, M supersymmetric
solutions describing M5-branes wrapped on a Riemann surface (larger truncations may be
possible by including degrees of freedom that go beyond eleven-dimensional supergravity,
such as membrane degrees of freedom).

It would be interesting to explore further the relatively simple five-dimensional super-
gravity models obtained in this paper and construct new solutions thereof. These would
have an automatic uplift to eleven dimensions, and may have an interpretation in the dual
SCFT. For the subtruncation with no SO(3) vector multiplet, solutions of holographic
interest have been discussed in [36]. Our larger consistent truncation may offer the possi-
bility to obtain solutions where non-abelian gauge fields are activated, which are quite rare
in holography. For instance, constructing a supersymmetric, asymptotically AdSs black
hole with non-abelian hair would represent a qualitatively new type of solutions.

It will be natural to adapt our construction to truncations of eleven-dimensional su-
pergravity on a seven-dimensional manifold, leading to four-dimensional gauged N = 2
supergravity. This uses Gg C SU(6) structures in Ey(7) generalised geometry, and would
allow one to derive new consistent truncations based on the generalised structures under-
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lying the AdSy Xy, M7 solutions of [59, 60], which in terms of ordinary G-structures only
admit a local SU(2) structure. The solutions of [59] are the most general N' = 2 AdS,
solutions to eleven-dimensional supergravity supported by purely magnetic four-form flux;
they represent the near-horizon region of M5-branes wrapping a special lagrangian three-
cycle in My7. The solutions of [60] have both electric and magnetic flux, and should arise
from M2-M5 brane systems. Analysing the respective generalised structure it will become
possible to enhance the truncation to minimal gauged supergravity obtained in [11] and [61]
(for the solutions of [59] and [60], respectively) by adding matter multiplets. One example
of this construction has been given in [62].

It will also be useful to extend our formalism to A/ = 2 truncations of type II su-
pergravity. Minimally supersymmetric AdSs solutions of type IIB and massive type ITA
supergravity were classified in [63] and [64], respectively. It would be useful to reformu-
late the classification of explicit solutions in terms of generalised Gg C USp(6) structures;
this would be a first step towards constructing consistent truncations to five-dimensional
supergravity using our approach. One concrete application would be to check if the 1IB
solution of [65], given by a warped product of AdSs and a deformed S°, admits a consis-
tent truncation to five-dimensional supergravity including (massive) KK modes that do not
belong to the well-known IIB truncation leading to maximal SO(6) gauged supergravity.
This would be somewhat analogous to the IIB consistent truncation on Sasaki-Einstein
structures [66, 67], where only a subset of the retained KK modes are also captured by
SO(6) gauged supergravity.

A more challenging generalisation of our formalism would be the one to truncations
preserving only A/ = 1 supersymmetry in four dimensions. Although a considerable amount
of work remains to be done, it should be clear that the generalised structure approach to
consistent truncations has the potential to classify all possible consistent truncations of
higher-dimensional supergravity that preserve any given amount of supersymmetry.
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A Eg() generalised geometry for M-theory

In this section we briefly recall the main features of the generalised geometry of M-theory
compactifications on a six-dimensional manifold M. For a more detailed discussion we refer
to [42] and [44, App. E].
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We use the following conventions for wedges and contractions among tensors on M

/
(p + P )' v[al...apuap+1..

(v Au) ot = o],
p!p'!
(¢ +4")!
()\ A p)al...aq+ql = W [al...aqpaq+1...aq+q/}>
1 .
(U—‘)\)al...aq_p = Z?Ublmb]p)\bl..,bpal...aq,p if p<g,
\)a1ap—g — 1 a1...ap,qb1...bq)\ if p>
(vaA) " biby P>,
L 1
(JvajA)% = WUGCI"'C”*l)\bCL..cp_u

. d!
(])‘ N p)a,al...ad = (q — 1)'(d 11— Q)' )‘a[al...aq,1paq...ad] .

(A1)

We will denote by - the gl(6) action on tensors: given a frame {é,} for TM and a co-frame
{eq} for T*M, a =1,...,6, the action, for instance, on a vector and a two-form is

(T : U)a = rabvb (T : w)ab = —1%Weh — T pWac - (AQ)

For M-theory on a six-dimensional manifold we use Egg) x RT generalised geometry.
The generalised tangent bundle F is

E ~ TM @ A*T*M @ AST*M , (A.3)

where, as customary, we decompose the various bundles in representations of GL(6), the
geometric subgroup of FEge). The sections of E, the generalised vectors, transform in the
27 of FEg) and can be written as

V=vt+w+o, (A4)

where v is an ordinary vector field, w is a two-form and ¢ is a five-form.?®

28The generalised tangent bundle E has a non-trivial structure that takes into account the non-trivial
gauge potentials of M-theory. To be more precise the sections of F are defined as

V=ettA v, (A.5)

where A+ A is an element of the adjoint bundle, V = v+w+o, with v € I'(T'M) are vectors, w € T'(A2T* M)
and ¢ € T(A’T*M), and - defines the adjoint action defined in (A.23). The patching condition on the
overlaps U, NUpg is i

Viay = e T8 v, (A.6)

where A(o5) and A(aﬁ) are a two- and five-form, respectively. This corresponds to the gauge-transformation
of the three- and six-form potentials in (A.5) as

Afa) = Ap) +dA(ap) »

. . . 1

Afa) = Ag) + dA(ap) = 5d0ap) A Agg) - (A7)
The respective gauge-invariant field-strengths reproduce the supergravity ones:

F=dA,
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The dual bundle E* is defined as
E* ~ T*M @& A*TM & A°TM , (A.9)
with sections
Z=0+0+6, (A.10)

where 0 is one-form, @ is a two-vector and & is a five-vector. Generalised vectors and dual
generalised vectors have a natural pairing given by

1 1
(Z,V) = 0m0™ + 5 0™ wonn + 57 8™ Oy - (A.11)

We will also need the bundle N ~ detT*M ® E*. In terms of GL(6) tensors, N
decomposes as
N ~T*M @ AT*M @ (T*M @ AST*M), (A.12)

and correspondingly its sections Z, decompose as
Zb:)\—i-p—i-'r. (A13)

The bundle N is obtained from the symmetric product of two generalised vectors via the
map Qn : F @ E — N with
A=viw +7 Lw,
p=vic +v 0 —-wAd, (A.14)
T=jwAo +ju Ao
The Eg() cubic invariant is defined on £ and E*as?

c(V,V,V)==6ly,who—wAwAw,
ML L2, Z) = -6 NG —DADNG. (A.15)

The adjoint bundle is defined as
adF ~ R® (TM @ T*M) & A3T*M & AST*M & A3TM & ASTM | (A.16)
with sections

R=Il+r+a+a+a+a, (A.17)

where locally [ € R, r» € End(TM), a € A>T*M, etc. The ¢q(q) sub-algebra is obtained by
fixing the factor [ in terms of the trace of r as | = %tr r. This choice fixes the weight of

the generalised tensors under the R factor. In particular it implies that a scalar of weight
k is a section of (det T*M)k/g‘: 1, € T'((det T*M)k/3).

F:d[l—%A/\F. (A.8)

29This is 6 times the cubic invariant given in [44]. Because of this, we introduced a compensating factor
of 6 in the formulae (2.8) and (2.9).
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It is also useful to introduce the weighted adjoint bundle
(detT*M)®adF > R®AT*M @ (TM @ ASTM), (A.18)
whose sections are locally given by the sum
R=¢+6+7v, (A.19)

where ¢, ¢ and v are obtained from the adjoint elements r € TM @ T*M, a € A3TM,
a € N3TM as

é = avolg ¢ = aavolg 1 =r-volg, (A.20)
where volg is a reference volume form.

The action of an adjoint element R on another adjoint element R’ is given by the
commutator, R” = [R, R']. In components, R” reads

1 2
"= g(a_na/—o/_na)—I—g(d/_n&—éud/)a
1
" =[r,r] + jasjd — jo Jja— g(cua’—o/m)l,
2
+ja& sja—jasja — (& sa—asa)l,
3 (A.21)
d"=r-d—1r-a+dsa—asd,
i"=r-ad —r-a—and,
o =r-d —r-a+d sa—asd,

~ 1 ~/ !~ /
a =r-a—r-a—alha,

where - denotes the gl(6) action defined in (A.2).
The action of an adjoint element R on a generalised vector V' € I'(F) and on a dual
generalised vector Z is also denoted by - and is defined as

V =R-V Z'=R-Z, (A.22)
where the components of V' are

V=Ww+r-v+taiw—alo,
W =lw+r-wtviat+alo, (A.23)

o=lo+r-c+viat+talw,

and those of Z' are

N A A A~ A ~

v =—-l0+r-0—&ia+do.aa,

A/ A A A A

W ==lo+r-O—ast—-06ua, (A.24)
N N ~ ~ ~

0 =—l6+r-6—ai0—aNhb.

The ¢4(6) Killing form on two elements of the adjoint bundle is given by

1
tr(R,R) = (3 tr(r)tr(r’) + tr(rr’) + aod + o’ sa—asd — &' o d) . (A.25)

| =
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The combination of diffeomorphisms and gauge transformations by the three-form and
six-form potentials defines the generalised diffeomorphisms. The action of an infinitesimal
generalised diffeomorphism is generated by the generalised Lie (or Dorfman) derivative
along a generalised vector. The Lie derivative between two ordinary vectors v and v' on
TM can be written in components as a gl(6) action

(L") =" 00" — (0 x v) ™ 0", (A.26)
where the symbol x denotes the projection onto the adjoint of the product of the funda-
mental and dual representation of GL(6). The generalised Lie derivative is defined in an
analogous way; we introduce the operators 0y; = Oy, as sections of the dual tangent bundle
and we define the generalised Lie derivative as

(Ly V)M = VNON V'™ — (0 xaa V)M N V'Y, (A.27)

where VM M =1,...,27, are the components of V in a standard coordinate basis, and
Xad is the projection onto the adjoint bundle,

Xad : E*® E — adF, (A.28)

whose explicit expression can be found in [42, Eq.(C.13)]. In terms of GL(6) tensors, (A.27)
becomes

Ly V' =L + (Low' — tydw) + (Lyo’ — tydo — w' A dw) . (A.29)

The action of the generalised Lie derivative on a section of the adjoint bundle (A.17) is

1 2
LyR = (Lyr + jasjdw — gla_:dw—dejdo—l—gld_nda)—{—(ﬁva—f—r-dw—aJda)
+ (Lya+r-do+dwAa)+ (Lya—aodw)+ Lya. (A.30)

We will also need the action of Ly on the elements of the bundle N. Given a section
Z, = A+ p+ 7 of N, its Lie derivative along the generalised vector V = v +w + o is

LyvZ, = LA+ (Lyp— ANdw) + (Ly7 — jpAdw + jAAdo). (A.31)
Since Z, = V' @y V", this is easily obtained by applying the Leibniz rule for Ly .
Lv(Z) = LyV' @n V' + V' @n LyV". (A.32)
It is also straightforward to verify that
A%, = Ly V' + Ly/V (A.33)

for any element Z, =V @y V' € N.
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B Five-dimensional N/ = 2 gauged supergravity

In this appendix we summarise some essential features of matter-coupled five-dimensional
N = 2 gauged supergravity [68-70], following the conventions of [70].3° We limit ourselves
to the bosonic sector and only consider gaugings that do not require the introduction of
two-form fields, as these are enough to describe our examples in sections 4 and 5.

The fields of five-dimensional N/ = 2 supergravity arrange into the gravity multiplet,

ny vector multiplets and ny hypermultiplets. The bosonic content consists of the vielbein
€
x=1,...,ny, and 4nyg hypermultiplet scalars ¢~, X =1,...,4ny. The ¢* parameterise a

ny + 1 vector fields AL, I =0,...,ny, together with ny vector multiplet scalars ¢*,

‘very special real’ manifold My, with metric g,,, while the ¢ parameterise a quaternionic-
Ké&hler manifold My, with metric gxy. All together, the scalar manifold of the theory is
the direct product

M= My x My. (B.1)

A very special real manifold My is a hypersurface that is conveniently described in
terms of ny + 1 embedding functions h'(¢), I =0, ..., ny, satisfying the constraint

Crixh'h/hf =1, (B.2)

where Cjx is a completely symmetric constant tensor. The metric on My is given by

Gzy = hihj arj, (B3)
where
hl = —\/gazhf : (B.4)
and
ary = 3hrhy — 2C1 b, (B.5)
with the lower-index functions being
hr = C]KLhKhL = a[KhK. (B.6)

The matrix ay; is assumed invertible, and also controls the gauge kinetic terms.

In the gauged theory, a subgroup of the isometries of the scalar manifold M, which are
global symmetries of the Lagrangian, is promoted to a gauge group. The gauge generators
tr satisfy [tr,t;] = —fr7%tx, with the structure constants fr; obeying fI(JHCKL)H =0.
The gauge covariant derivatives of the scalars are given by

Dud)x = 8u¢x +9g k%A}IL ’

(B.7)
Dqu = 8qu + gki(A;IL )

39However, in order to match the normalisations defined by our truncation ansatz, we rescale the gauge
fields appearing in [70] as A{ ., = — \/gAfhere. Since we maintain the same form of the covariant derivatives,
it follows that the gauge coupling constant g is rescaled as ghere = —\/g Jthere- This implies that the
expression for the scalar potential given in (B.13) below acquires a multiplicative 2/3 factor compared to
the one in [70].
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where k%(¢) and ki (q) are the Killing vector fields generating the gauged isometries in
the vector multiplet and hypermultiplet scalar manifolds, respectively. Equivalently, the
vector multiplet scalar covariant derivatives can be expressed in terms of the embedding
functions h! as

Duh' = 0uh" + g fr A WK = 0,0 D" . (B.8)

One also has the gauge field-strengths
Fpy = 20, A0+ g fr" A AL (B.9)
We now have all the elements to write down the bosonic Lagrangian. This reads

_ 1 3 1 1
e 1L = sR-V-gu g Fh, FIm — 5 9y Dud" DY — o gxyDuq X Dq¥
1 . 1 1
— g Cpuc AL | FAFI + ot AYAY (=3 i+ 5 afm AL AL
(B.10)

The vector multiplet scalar kinetic term can also be written in terms of the constrained
scalars h! using the identity

3
guyDud"D"¢" = S ar sD W DFRT (B.11)
Using a differential form notation, the action reads
1 3 3 1
S = /5(7%— 2V) x 1 — Zau]:l/\*]:‘] — ZaUDhI/\*Dh‘] — §ngDqX A «Dg¥

1 1
+ *C]JKAI/\ [4;J/\.FK+ngNJAM/\AN/\ <—.7:K+ mngLK.AH/\.AL>:| .

8
(B.12)
The scalar potential V is given as a sum of squares as
V= §92 (—213.13+g$913x.13y+MANiA) , (B.13)
where
P=nlP,
P, =hlPy,
N = ‘fhfkf i (B.14)

are the fermionic shifts, also appearing in the supersymmetry variations of the fermion
fields: P is the gravitino shift, P, is the gaugino shift, and A% is the hyperino shift.
Here, the arrow symbol denotes a triplet of the SU(2)y R-symmetry, and f)i(A are the
quaternionic vielbeins, satisfying fé(A fyia = gxy. The Killing prepotentials ]31 on My are
defined for nyg # 0 by

AngPr = JxY Vyki, (B.15)
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where JxY is the triplet of almost complex structures defined on any quaternionic-Kéahler
manifold. Plugging these expressions in (B.13) and using the identity (cf. [70, App. C])

g*Yhlh) =a' — W', (B.16)

we can express the scalar potential as

_2

V=3

e [(Qal‘] —6h'n’) P Py + ggxykfk}/hlh‘] . (B.17)
Notice that the Killing vectors k¥ on My do not appear here, i.e. the gauging in the vector
multiplet sector does not contribute to the scalar potential. This is true as long as we
restrict to gaugings that do not require the introduction of two-form fields.

Supersymmetric AdSs vacua are obtained by setting all gauge fields to zero, all scalar
fields to constant, and imposing that the gaugino and hyperino shifts vanish,

WpPr=0, AWlEf=o0. (B.18)
Then the gravitino shift gives the AdS cosmological constant via

A=V=—-¢°P.P. (B.19)

C Gauge transformations

In this appendix, we study the reduction gauge transformations of eleven-dimensional su-
pergravity to five dimensions. We first repackage them in terms of generalised geometric
objects and then use our truncation ansatz to derive the gauge transformations of five-
dimensional N' = 2 supergravity.

The infinitesimal gauge transformations of the eleven-dimensional metric and three-
and six-form potentials are

6.@:217@7
5A— £oA - a5,
SA=£,A—d)+ %d/\/\A, (C.1)

where ¥ is a vector field, \ a two-form and j\ a five-form. The hat on the Lie and exterior
derivative operators emphasises that the derivatives are taken with respect to all the eleven-
dimensional coordinates. The fields g, A and A are decomposed as in (3.16), while the gauge
parameters are expanded as

D=v= vm—a
T 9am)
R _ 1-
A= A= Auda? + 5 Adat,
2 ~ = 1= 1=
A=A+ da? + 5)\de’“’ + 30 qpdatP 4+ (C.2)
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where, in the last line we omitted the terms that are not relevant in what follows. We only
consider internal diffeomorphisms, as the external ones have the standard action dictated
by the tensorial structure of the field. That is why the vector ¢ has only components on
M. As in (3.16), we do not impose any restriction on the dependence of the fields on the
coordinates {z#, 2"}.

In (C.2) and the rest of this section we use a notation that manifestly displays the
external indices and always contracts the internal ones. For the metric components we

define
g = gmndz"dz", hy=h," — (C.3)

and for a generic p-form w

1
v ol wmln.mpdzml--.mp :
p!
1
w,u == mwﬂmlmmp,ldzml---mp,l 7
1
W = Mw“”ml---mp,zdzmlmmpﬂ 7 (04)

We already mentioned in section 3.2 that the barred components of the three- and
six-form must be redefined as®!
A;W = Aul/ - Lh[MAu] )

_ (C.6)
Apvp = Apvp — Lhy, thy Ap) 5

and similar redefinitions of the six-form. An analogous redefinition for the barred gauge
parameters will be given later.

As discussed in section 3.2, the components of the metric, warp factor, three and six-
form potentials and the dual graviton g with the same number of external legs fit into Egg)

representations
G {A, g, A A} (C.7)
Ay =hy+ A+ A, (C.8)
B;w = A,uz/ + Auv + g/,Ll/ ) (CQ)
C/u/p = A;wp + Auup + g/uxp ) (C.lO)

where GMY is the inverse generalised metric, A, € E is a generalised vector, B, € N is a
weighted dual vector and C,,, is a section of the weighted g adjoint bundle (det T*) ®
adF. The same holds for the gauge parameter, which we arrange into a generalised vector

31The contractions are defined as follows

Lh[#A,,] = h[umA,,]m"dZn Lh[,uAup] = h[HmAl,p]m Lh[y,LhVAp] = h[umhynAp]nm (05)
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A, a weighted dual vector éu and a section of a sub-bundle of the 78, <i>,w,
A=v+A+A,
Ep= At At (C.11)
Dy =Ny + A+

In (C.7)-(C.10) we introduced the dual graviton to give the full Eg) representation. How-
ever in this paper we will not discuss the dual graviton since it is not relevant for the
truncation we are interested in.

We can now decompose the gauge transformations given above. We find that the fields
with no or purely internal legs transform as

562A — LUG2A,

6g:£vga
SA= oA —d),
5A=LoA—di+ %d)\/\A, (C.12)

where the Lie derivative £ and the exterior derivative d are taken with respect to the
internal coordinates only, although the fields and gauge parameters depend on both the
internal and external coordinates. When repackaging all the fields with no external legs
into the inverse generalised metric, the transformations (C.12) become the action of the
generalised Lie derivative along the generalised vector A,

SZGTl=L,G7L. (C.13)
Consider now the fields with one external leg. Their gauge transformations are

Ohy = —0,v + Lyhy,
§A, = =8+ Ay, — 1, AN + Lo Ay,
§A, = =9 A+ AN, — tn, dX —dAA A, + LA, (C.14)

and it is straightforward to verify that they can be recast into

6A, = —OuA + Ly A, +dE,, (C.15)
where
LaAy = (Lohy) + (LoAy — 1, dN) + (Lo Ay — i, dX — Ay AdN), (€.16)
La, A= (Lp,v)+ (Lp,A—todAy) + (Lo, A — tpdA, — XA dA). '
By redefining the gauge parameters®?
E.=E,—A, QN A, (C.18)
32In components the redefinition (C.18) reads
M= A A= o (C.17)
Ap = Ap = thy A= Ay + ANA, .

"

— 50 —



with A, @y A = (b, A + 1w Ay) + (tn, A+ LA, — AA Ay), and using (A.33) to compute
dZ, =d=E, — L4, A — LaA,, (C.19)

we bring the variation (C.15) to an appropriate form to compare with five-dimensional
gauged supergravity
0A, = =0\ — La, A+ d=,. (C.20)

The variations of the fields with two external legs are
0A,, =—2 3[,;”} —dAu + Lhy, O A — Lh[udxy] + Lo Ay — toy,0 AL
A = =20, M) — A + thy, Oy A — 1, ANy + LoApy — L0 0 Ay (C.21)
+ (O A —dA) AA+dAAA Ay, .
By a lengthy but straightforward computation (C.21) can be written as
OBy = =201,y — 2L4,Z0) + Huw ON A — 6A), @N Ay
+ Lay, Ay On A+ 2L g, A QN Ay + LAy, QN Ay (C.22)
—d[®p — 24, Xad Zy) — Buy Xad A,
where we defined the field strength
Huy = dBpy + L, Ay +20,A,) . (C.23)
Applying the Leibniz rule for the generalised Lie derivative and (A.33) one can show that
La, Ay @®nA+2L4, AN A+ LyAy, @ Ay = d[Ay, Xaa (A On A)] (C.24)

and the variation of By, can be written in a form compatible with five-dimensional gauged
supergravity

0B, = —2 8[“5,,] — 2LA[MEZ/] +Huw N A — 5./4[“ QN .A,,] —do,, (C.25)
where we have made the following redefinition of the gauge parameters3?
e, = EIW + 2-’4[# Xad EV] + B/“, Xad A — A[H Xad (Au] QN A). (0.27)

Finally we should consider the variations of the fields with three external legs. To our
purposes it is enough to study the three-form

5A;wp = EUAW,p - 38[u)\ — 3Lh[M (2 O[Z,Xp] + dXVp])
+ 2Lh[MLhu(ap]>\ - pr]) -2 La[HULhUAp] .

vl (C.28)

33In components

)‘HV = (X,W — LUAW, — 2Lh[u>\V] =+ Lh[“Lhu]A + Lh[uLvAy]) s

M = (M — Ay — 2Lh[H5\y + tny, Lhy A+ thy, vaflu] — 20 NA = ANAL (C.26)
—AA Lh[“AV] + (LUA[H) A\ Al,]) .
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In generalised geometry (C.28) embeds in the lowest component of the variation of the
tensor Cpy, in (C.10). We introduce the modified field strength for the three-form field

C;U/pa

Hyvp = —dCpup + 30,8, + BLA[;LBVP] + A On (30, A, + La,Ay) (C.29)

and by manipulations similar to what we did previously we can recast the gauge varia-

tions as
0Cp = _Sa[u(l)up] — BLA[H(I)VP} + 3H [ Xad =p) + Hpwp Xad A

— 38[,[“, Xad 5.Ap] - ‘A[M Xad (Ay Xad (5./4/)]) s

up to terms involving a four-form gauge parameter, which would continue the tensor hier-

(C.30)

archy.

The five-dimensional gauge transformations are obtained by plugging the reduction
ansatz in the variations (C.20), (C.25) and (C.30). The fields A,’(z) are expanded as
in (3.25)

A, = A (z) Ky, (C.31)
where K are the generalised vectors that are singlets of the Gg structure. In (3.26), the
two-from fields are expanded on the weighted duals K bI of the generalised vectors Kj. These
are elements of the bundle NV and can also written as

K/ = DVEK; oy Kk (C.32)

where the tensor D!/K satisfies D'5LCpp = 1/26§ where Crk is defined in (2.16). So

the two-forms are expanded as

BMV = B#V](:C) DIJKKJ QN Ki . (C.33)
The gauge parameters have a similar expansion
- 1_
A=-AN(2)K;, E,= —§:M7I(x)DUKK 7 ON Kk . (C.34)

With the ansatze (C.31) and (C.34) for A, and the gauge parameters, the varia-
tions (C.20) of the one-forms become

0A! (x) = B! (2) + [l A (@)A" () = 50 DT B (C.35)

where we used the algebra of the vectors K (3.4) and (A.33).

The variations of two-forms are reduced in a similar way. We expand the field strength
’H;{V as in (C.31) and use again the generalised Lie derivative of vectors K given in (3.4).
In this way we obtain for the gauge variations of the five-dimensional two-forms By, r(x)

0By = DZuy1 — 2011k Hp AN = 2011k 0 A7, Al — O P, (C.36)
where ®,, = (IDAWJI’A and
D[MEV],I(x) = 8[MEV],I(x) + QXII?]A([,]LL(QJ)EV],K(ZE) > (037)
with
XE = Crpy DEMY fE (C.38)

This is in agreemement with five-dimensional supergravity. The variation 6C,, reduces
analogously.
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D Parameterisation of S* and generalised frames

The six-dimensional geometry of interest in this paper is given by a four-sphere S* fibered
over a Riemann surface ¥. In this appendix we describe S as a foliation of S? over an
interval and review the generalised frames on S*.

D.1 Parameterisation of S°

In terms of the standard Euler angles 0 < 0 <7, 0 < ¢ < 27, 0 < ¢ < 4, the unit metric
on the round S3 reads

g2 = 7 (467 + A6 +d? + 2c0s0dg ) (D.1)

The Killing vectors generating its SO(4) ~ SU(2)iefc X SU(2)rignt isometries can be split
into SU(2)efe-invariant Killing vectors &, o = 1,2, 3, generating the SU(2)yight isometries,
and SU(2)yigns-invariant Killing vectors £., generating the SU (2)1efy isometries. The left-

invariant vectors read

§1 = —cotOsint) Oy + cos v Oy + sinig 04 ,
. cos 1)
£ = —cotf cosp Oy — sin Oy + ] 04 ,
§3 =0y, (D.2)

while the right-invariant ones are

£ = Zizz Oy + cos ¢ Oy — cot fsin ¢ 0y,
£y = C?S(g Oy + sin ¢ 9y + cot f cos ¢ 0,
&y = 0 - (D.3)
These satisfy
Le ls=€apr &y, Lils=—€apyly,  Lelp=0, (D.4)

where L is the ordinary Lie derivative. We also introduce the one-form counterparts of
these Killing vectors, namely left-invariant one-forms o, and right-invariant one-forms &,,.

These satisfy
L, 08 = 0ug Lg, 08 = 0ag
doy = —% €aBy08 N\ Oy, dG = - €apy G NGy, (D.5)
and their coordinate expression is

01 =cosydf 4+ sinysinfde,
09 = —siny df 4 cosysinfde, (D.6)
o3 =dy + cosfdo,
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61 = cos pdf + sin ¢psin 0 dap
09 = sin ¢ df — cos ¢psinfdy, (D.7)
03 =d¢ + cosfdy.

The metric (D.1) may also be expressed as

g = i (63 +03+03) = i (62 +53+463) . (D.8)

We fix the orientation on S® by defining the volume form as
1 1. 1.
volgs = §01 Aog Ao3 = gal NGy N\ o3 = gsmﬁd@/\dqﬁ/\dw. (D.9)

D.2 Parameterisation of S*

The round four-sphere of radius R can be described via constrained R coordinates Ry,
i =1,...,5, satisfying 5ijyiyj = 1. In these coordinates, the metric and the volume form
read

g4 = R*§;;dy'dy’ voly = ER”‘ €iviginiais Y Ay A dy® A dy® A dy® . (D.10)

The constrained coordinates can be mapped into angular coordinates {(, 6, ¢,v}, where
0<(¢ <, and {0,4,9} are the Euler angles on S® introduced above, as

yt +iy? =sin¢ cos g e2(#+) ,
y® +iy? =sin( sin g e2(4=¥) )
y° = cos(. (D.11)
Then the metric and volume form in (D.10) become
g1 = R (dg2 + sin2 gdsgg) :
— R? [dC2 + isnﬂ ¢ (d92 +d¢? + dip? + 2cos § dop dw)] ,
voly = R*sin® ¢ d¢ A volgs = éR“ sin® ¢Csinfd¢ A dO A de A dip. (D.12)

We denote by v;; = v};;) the Killing vector fields generating the isometries of S4. These
satisfy the sos algebra,

‘CUij’Ukl = R (5ik'Ulj - 5il’Uk:j - 5jkvli + 5jlvki) . (D,13)
Demanding that the constrained coordinates transform in the fundamental representation,
Loyyn = to,dyr = R (idj — y50un) (D.14)

and using the map (D.11), we can work out the expression for the Killing vectors in the
basis defined by the angular coordinates {(, 0, ¢,1}. In particular, we obtain the following
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embedding of the SU(2)ight and SU(2)iefe generators given in (D.2), (D.3) into the SO(5)
generators:

&1 =13 + v, §2 = V14 — V23, §3 = V12 — V34,

£l = v13 — vag, €9 = Vo3 + V14, €3 = V12 + v34. (D.15)

=RV
=RV
=] ESR=VIE

D.3 Generalised frames on S*

In generalised geometry all spheres are generalised parallelisable as they admit globally
defined frames on their exceptional tangent bundle [15]. In particular the generalised
tangent bundle on S* is

By ~ TS* @ A’T*S*, (D.16)

and its fibres transform in the 10 of the structure group SL(5,R). We will also need the

bundles

Ny ~ T*S* @ AT+ 54,
Nj ~ R APT*5*, (D-17)

whose fibres transform in the 5 and 5’ representations, respectively. These bundles admit
globally defined frames, which in constrained coordinates read

E;j = vij + R? x4 (dy; A dyj) + Lvi]’AS‘l € I'(Ey),
FE; = Rdy; — y; voly +Rdy; A AS4 S F(N4) , (D18)
EZ{:y@'—I—R xqdy; + Y Aga S F(Ni),

where the Hodge star #4 is computed using (D.10), and the three-form potential Ags must

satisfy
dAgs = 3R ' voly . (D.19)

This is the flux relevant for the AdS7 x S* supersymmetric Freund-Rubin solution to eleven-
dimensional supergravity; the twist over the Riemann surface discussed in the main text
will modify it. The E;; are generalised Killing vectors generating the sos algebra via the
action of the generalised Lie derivative,

Lg,En=—R " (0aEj — 6aEj + 6By — 6j1.Eq) - (D.20)
In the main text we will need the following linear combinations,

Hy = F13+ Fog, Ho = F14 — FEo3, E3 = E12 — E34,
E1=FEi3— Ey, By = By + Eag3, B3 = FEio+ B3y (D.21)

Using the map (D.11), the frame elements (D.18) can equivalently be expressed in
terms of angular coordinates on S*. In particular, choosing a gauge such that the potential
Aga satisfying (D.19) is SU(2)1ee X SU(2)rignt invariant,

1 .
Ags = @Rd (cos(3¢) —9cos() o1 Aoa A os, (D.22)
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we find that the combinations (D.21) are expressed in terms of the SU(2)iee and SU(2)yight
invariant tensors as

2
BEo = §£a+ d(cos( 0q) ,
2

—_
— j—
—

2
2
2
“TR 2

- R
o — —d(cosC dq) . (D.23)
The Z, can be seen as left-invariant generalised Killing vectors generating the SU(2)ight C
S0(4) ¢ SO(5) generalised isometries, while =, are right-invariant generalised Killing
vectors generating the SU(2)je, generalised isometries. We will also need the expressions
for E; and E in terms of angular coordinates, in fact just for ¢ = 5. These read

4
Es; = —Rsin{d{ + % sin(2¢)d¢ A o1 Ao A os, (D.24)
RS
Ef =cos¢ — 6 (cos(2¢) +3) o1 Noa A os. (D.25)

Notice that dE} = + Es.

E Details on the generalised U(1) structure of MIN1 solution

In this appendix we give the details of the construction of the U(1) structure discussed in
section 4.2. In order to identify the correct U(1) subgroup of Egg) % RT and its commutant
it is convenient to decompose Ep ) under its maximal compact subgroup USp(8) and then
express the USp(8) representations in terms of Cliff(6) gamma matrices. For the latter step
we also need the decomposition of Eg) under SL(6)x SL(2). We first give a brief summary
of the decomposition of Fgg) under USp(8) and SL(6) x SL(2) and then we apply this to
the construction of the U(1) structure, which reduces to simple gamma matrix algebra.

E.1 USp(8) and SL(6) x SL(2) decompositions

In this section we mostly use the conventions of [71]. Consider first the decomposition
of Eg under USp(8). We denote by M,N,--- = 1,...,27 the g indices and by
a,f,...=1,...,8 the USp(8) ones.

The fundamental of FEgeg) is irreducible under USp(8) and is defined by an anti-
symmetric traceless tensor

yed —ylafl  ye g, (E.1)

The USp(8) indices are raised and lowered by the USp(8) symplectic form Q% and its
inverse. The dual vectors in the 27 are denoted by Z,s. The adjoint of Eg() decomposes as

78 = 36 + 42, (E.2)

where the 36 is the adjoint of USp(8) and the 42 contains the non-compact generators.
The elements of the 36 are 8 x 8 matrices u®g satisfying

Haof = Hpa (E.3)
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with pag = (Qfl)a%uﬂfg. The non compact generators pingys € 42 are anti-symmetric
tensors satisfying
pP Q5 =0, (E.4)

The adjoint action on the 27 is
(uV)* = o V0 — P v — o0y (E.5)

and the Fgg) commutators are

1
()7 = 2 — 2w — (0 v) (E-6)
(11, V)97 = —dple P — (5 v) . (E.7)

Given the generalised vectors V, V', V" and the duals Z, Z’, Z", the Eg() quadratic
form becomes

<VY7 Z> = VaﬂZaﬁ 5 (ES)
and the cubic invariants are
C(V, V,, V//) — V%V’%V’”a ’

E.9
2,2',2") = Z." 23 7). (E9)

We will also need the projection into the adjoint of the product of a generalised vector
V and a dual generalised vector Z

(V x Z)aﬁ _ Qv(avzhw)

E.10
(V x 2)*9 = ¢ (VWZW + Ve ZIBgr ;tr(VZ)Q[afBQ'Y‘S]) . (£.10)

Consider now the decomposition of Eg) under SL(6) x SL(2). We denote the SL(6)
indices with m,n,...=1,...,6 and the SL(2) indices 7,7... =1,2. Under SL(6) x SL(2)
the 27 and 27 decompose as

27 = (6,

27 = (6

)+ (15,1) VM = (i vy

(E.11)
)+ (35,1)  Zar = (2", Zonm) »

NN

where V™" and Z,,,, are anti-symmetric. The components in (E.11) are related to the
GL(6) tensors (A.3) and (A.4) as follows

1 2

V=w vt =0 v? Jvolg = o,
R (E.12)
Z =w Z1:V016_|J 22:@.
The adjoint of Fg) decomposes as
78 = (357 1) ® (17 3) S (201 2) MMN = (an 7,Uij ) Mznnp) ) (ElS)

where '™, are real, traceless, 6 x 6 matrices generating SL(6), ,uij are real and traceless and
generate SL(2) and p,,,,, are a pair of real fully antisymmetric tensors in the (20,2). The
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matrices p™, are identified with the traceless part of the GL(6) matrix r, with the trace
given by the diagonal non-compact generator of SL(2), where we have also set [ = %tr(r),
1 1
Pl =1 = (T = = (). (E14)
The compact and remaining non-compact generator of SL(2) are identified with the com-
binations of six-form and six-vector transformation a =+ é&.
The tensors annp correspond to the three-forms and three-vectors

— omnp

Minnp ) M12nnp = Omnp - (E15)

Using Cliff(6,R) gamma matrices one can relate USp(8) and SL(6) x SL(2) represen-
tations. We introduce the doublet of matrices

= (0™, i), 1=1,2. (E.16)
Then the 27 and 27 of USp(8) are given in terms of SL(6) x SL(2) representation by

1 A i N
Vel = ST 4 gV )]

v : (E.17)
Za _ m f\i af + *Zmn fmn? af ’

where I'},,,7 denotes the anti-symmetric product of two gamma’s and I';. The 36 and the
42 of USp(8) are given
1 ~

Pafg = 1 [an(rmn) + lei]MZiF7 4 6 ei]:uinnprmnl_‘]?] aB’ (E18)
1 e " .- s - <o [aByd]
P8 = = [ (0 @ T = Doy @ T97) 507 © 0, 1 07 0 177

where ® denotes the tensor product of two gamma’s, u™, is traceless and annp are anti-
symmetric in the three lower indices.

A

We take the Cliff(6,R) gammas I';, with m =1,...,6 such that
rt = ¢-r,,C (E.19)
where C' is the charge conjugation matrix satisfying C7 = —C, which we identify with the
USp(8) symplectic invariant 2. The chiral gamma is given by
Iy =ilt...T9. (E.20)
Since the six-dimensional manifolds we are interested in are S* fibrations over

a Riemann surface, we further decompose the Cliff(6) gamma matrices according to
SO(4) x SO(2). We take m = 5,6 to be directions along the Riemann surface

Ip=1®T,, m=12234,
5= ®Ts, (E.21)
=7 ®Ts,

where '), are the SO(4) gamma matrices with I's = I'1934 and 71, 7y2 are the SO(2) ones.
Then the six-dimensional chirality matrix becomes

[7 =iy ®Ts. (E.22)
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E.2 The U(1) structure

We can now give the details of the construction of the U(1)g structure discussed in sec-
tion 4.2. The N = 2 solution of [34] has an U(1)g structure corresponding to the diagonal
of the SO(2) holonomy on the Riemann surface Z, and the U(1)yignt subgroup of the SO(5)
isometry of the four-sphere, according to the embedding

50(5) D) 50(4) ~ SU(Q)]eft X SU(Q)right D) SU(Q)]eft X U(l)right . (E.23)

Seen as an element of Eg(g), the U (1)g corresponds to a compact generator and therefore
belongs to USp(8). Using the expression (E.18) for the generators of USp(8), and now
taking the indices m = 5, 6 for the direction along the Riemann surface, the U(1)g generator
can be written as

P RN -
u(l)s =il'se — 3 (I'12 = T'34) (E.24)

where I'sg is the generator of the SO(2) holonomy of ¥ and %(f‘lg — I's4) generates
U(1)right C SO(5).

To embed this generator in Eg) and determine the invariant generalised tensors it
is convenient to decompose all Fgg) representations into USp(8) one’s and then use the
parameterisation of USp(8) in terms of gamma matrices of section E.1. In this way the
computation of the commutant, Cgg (U(1)s), of U(1)s in Eg() and the determination of
the U(1)g singlets reduce to simple gamma matrix algebra.

We first compute the commutators of U(1)g with the generic elements of the 36 and
42 in (E.18). This will allow to determine the number of U(1)g singlets in the 78 and the
commutant Crg . (U(1)s). Using (E.6) we find that there are eight singlets in the 36. Five
correspond to elements of SO(6) C SL(6),

S0 — Py, 1. -
! o6 Sf’ﬁ) = —(I'y4 — T'13),

a 2
T P (E.25)
R SO — 2 (P, +Tag),
5?536) — I3y, 5 2( 14 + I'23)
two are compact elements of (20, 2) associated to
1 A, A, A A
Sé%) = §(F135 + a6 — oz + Toss)
(E.26)

36) 1 = o 3 o
CORE 5 (T'136 = P1as + Lags + age)
and the last one is the generator of SO(2) C SL(2) corresponding to the anti-symmetric

part of pulo,
SP9 =ity (E.27)
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A similar computation gives the singlets in the 42: four are non compact elements of
SL(6)
1 A A A A, A A A A
S\ — O el 4ol -9 I° - o)

1T oo o aaea
412 _ _Z(F?’ @I%—D5@I° —Ts® I

! (E.28)
$3Y = —s(MeM+ Dol + Do+ Ty o 1?)
1 - A N N A N N A
S el el - el® -l
two are the non-compact generators of SL(2)
1 - A AL A A A
S\ = Z(0" @y + T @ Dl'y)
! (E.29)
S = ;@ @Dyl + Il @ ),
and the remaining ones are in the (20, 2)
S$42) _ _l(f‘ﬁ ® D237 _ 15 @ [137 _ 15 o 247 _ 6 g 147
4 (E.30)

_}(fﬁ @ DT 5 g PUT |5 g P2IT | 6 g PIST

(42) _

These singlets generate the commutant of U(1)s in Egg). Given the number of singlets

this must be
CEy, (U(1)s) = RT x Spin(3,1) x SU(2,1) x U(1)s.. (E.31)

From the commutators (E.6) and (E.7) it is easy to see that the factor R is generated by

the combination
Jr =S 4 g1 (E.32)

Similarly it is straightforward to identify the generators of the group SO(3,1) as

S0 i S0(3. 1, .4 4
JEOBI L g0 00N L Lg gy
JSO(3 1) _ 55(36) : K2SO(3’1) _ _i5§42) : (E.33)
JSO(3 1) ;5(36) ’ K§0(3,1) _ %ng) ‘

The remaining singlets give SU(2,1). The compact generators are defined as

SU(2,1 1 (36

g - L g

gsu@1) _ 7S(36)

2 8

SU(2,1) (36) (36) (36) (36) (E.34)
J3 :_Z( 18y =837 = 557)

SU(2,1 i 36 36 36 36

FUEN = (01 09 004 5500,
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while the non-compact ones are

JfU(Z,l) _ —%Sé‘m JéS*U(Q,l) _ _%Séz;z)
SU@2,1) 1 4(42) SU@2,1) 1 4(42) (E.35)
J5 ’ == 5‘98 J7 ’ - 585 .
The compact singlets give the commutant of U(1)g into USp(6),
CUSp(S)(U(l)S) = SU(Q) X SU(Q)H X U(l) X U(l)g . (E.?)G)

We also need the U(1)g singlets in the 27. Computing the action (E.5) of U(1)g on a
generic element of the 27, given in (E.17), we find five singlets

27 = (1,1)(0,8) ® (4, 1) (0,—0) D (2,1)(3,-2) @ (2,1)(_5 _9)

_ _ (E.37)

® (1,3)(2,—4) D (1,3)(—2,—4) D (2,3)(1,2) ® (2,3)(—1,2) »

One is a singlet of both SO(3,1) and SU(2,1) and has charge 8 under R™,
Ky ~ if56f7 =1®TI75, (E38)

where in the second equality we used (E.21) for the gamma matrices. The other singlets
are invariant under SU(2,1) and form a quadruplet of SO(3,1) of charge —4 under R*

Ky ~ i(Dy3 —T20)l7 = y2) ® (T'13 — a4,
Ky ~ 1(1j14 + 1?23)1?7 =72 ® (T'1a +T23) (E.39)
Ky ~ i(Th2+T34)l'7 = y2) ® (T12 + T's4),
Ky ~ (D —Tag)ly = Y2) ® (T'12 — T3q) .

The singlets in the 27 and 78 are all we need to specify the generalised U(1)g structure.
However, the generators of SO(3,1) and R™ in (E.31) do not leave the singlets generalised
vectors invariant and hence do not belong to the U(1)g structure. Using (E.10), one can
show that they are obtained as products of the singlets in the 27 and their duals

JOGY = 2icop (Kp xaa K2),  K3OGY = —i (Ko xaa K}),  a=1,2,3, (E.40)

and
Jr = 4(Ko xaq Kq) — 4(K4 xaa K7) - (E.41)

In summary the generalised U(1)g structure is defined by the five generalised vectors
and the eight generators of SU(2,1)
{K7,Ja} 1=0,....4, A=1,...,8. (E.42)

The last step is to derive explicit expressions for these generalised tensors in terms of
geometrical objects on the six-dimensional internal manifold M. We use the fact that, in
our case, M is a fibration of the four sphere over a Riemann surface and that the four-sphere
is generalised parallelisable as reviewed in appendix D.3.
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We decompose the six-dimensional bundles in representation of GL(2,R), the ordinary
structure group on the Riemann surface, and SL(5,R), the exceptional structure group of
S4. Under

Eg6) O GL(2,R) x SL(5,R), (E.43)

the generalised tangent bundle decomposes as

E~T>® (T*S® Ny) @ (A*T*X ® N}) @ Ey,

(E.44)
27=(2,1)® (2,5") ® (1,5) & (1,10),

where Ey, Ny and N are defined in appendix D.3. Using (E.17) and defining Cliff(5,R)
gamma matrices as

Fi:{rla"'vr5}7 (E45)

we can identify the components of the 27 in (E.44) as

melyrelle(21)
RI,vI'r} € (2,5
{meln,nelr}te(2,5) (F.46)
1@T; € (1,5)
Y2) ® Ty € (1,10).

In terms of generalised vectors, the elements of the (2,1) embed as

R! <f1> , (E.47)
€2
while those in the (2,5) and (1,5) can be written as

e1 \E;, .
\I/i:R<612/\EZi> and R?vols A E, 1=1,...,5, (E.48)

where vols = e; A e is the volume form on the Riemann surface, R is the S* radius, and

E; and E! are the sections of Ny and Nj defined in appendix D.3. The elements of the

(1,10) are the =, éa, with a = 1,2,3, defined in (D.21), and E;5 with ¢ = 1,2, 3, 4.
Comparing with (E.38) and (E.39), we see that

Ko € (1,5) ~ A’°T*3 @ Ny, Kre(1,10)~Ey, forI=1,....4, (E.49)
and can then be written as generalised vectors on M as
Ko~ R>ols A B,  K,~Z,, Ki~E3, (E.50)

where a = 1,2, 3. To have the final expressions for these five generalised vectors we still have
to implement the twist of S* as described in section 4.2. The Eg(6) element implementing
the twist is

R _
T:—EUXad:{g,
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1
=—-{v— ZRgv/\d(cosgag), (E.51)

and acts on the frames E;;, E; as
T 1 1 k
e - Eij = Eij + 50 A Es (011052 + 03030534) — 5 95F" v A Bk

eT . EZ — Ez =+ %U A (E[lléz]l + E[,354]z> R (E52)

where P is the matrix

pi— _ (E.53)

It is then straightforward to check that only K is modified by the twist, and the expres-
sions (4.29) are obtained.

Finally we need the expressions for the singlets in the 78 generating SU(2,1). Under
E6(6) > GL(Q, R) X SL(5, R) as

adF ~ad Fy @ (T @ T*Y) @ (T*S @ Ey) @ (A*T*S @ Ny) @ (TE @ E;) @ (AT @ Nj)
78 ~ (1,24) & (4,1) ® (2,10) & (1,5) & (2,10) @& (1,5) (E.54)

where ad F} is the adjoint bundle on S*
ad Fy ~R@ (TS* @ T*S*) @ A3T*5* @ A3TS*. (E.55)

The expressions for the singlets are easily obtained from (E.10) as products of the 27 and
27. In this way we obtain precisely the expressions given in eq. (4.30), where the twisting
by T can be evaluated with the aid of (E.52).

F Parameterisation of the H structure moduli space

SU(2,1 ]
W that describes

the hypermultiplet structure moduli space. We model the generators of SU(2,1) on the

We discuss here our parameterisation of the coset space My =

matrices ja, A =1,...,8, defined as:
j123=—iX123, J4,5,6,7 = Aa56,7 5 jg = —iAg, (F.1)
where Aq, A = 1,...,8, are the standard Gell-Mann matrices generating the sug algebra

in the fundamental representation. These generators satisfy

iim+mja=0, with m = diag(—1, —1,1), (F.2)

tr(jAjB) =2n4B with n = diag(—-1,-1,-1,1,1,1,1, 1), (F.3)
as well as the commutation relations

[j17j2] = 2.]3) [j?n.jl] = 2.]2’ [j?)j3] = 2.]15
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li,J5] = — (i3 + V3js) B(J:s + \/5]8),]4] = 2js, {j5, %(J:& + \/gjs)] = 2j4,
iir) = (= + VB, [5(ia + Jéjsma] = 2, [J7, (- + V)| =2

2
i1, Ja] = j7, l7,J1] = i, j7] = =1,
[i2, ja] = js> lig: Jo] = [ia,J6] = —i2,
i1, 5] = —Je; 6, 1] = —is, 5+ J6] =
li2, Js] = Jr, [i7,J2] = [is, 7] = =2,
li1,Js] = [iz,is] = [is;Js] = 0,
lia, V/3js — js] = [is, V'3js — js] = [i6, V33 + Js] = [ir, V3j3 +Js] = 0, (F.4)

where the first three lines show the three suy subalgebras. Note that {ji,j2,j3,js} generate
the compact subgroup SU(2) x U(1) C SU(2,1). It is convenient to choose a solvable
parameterisation for the remaining generators, describing the coset space % Fol-

lowing the appendix D of [72], we define3*

1
T Cii—is) | Ty = — (i 4iotis—is) .
1= 2\[( —J2—ia—ls) P 2\/§(J1 j2 +ja —Js)
T, = ! (2j7 +Js — \/gjs) Hy = }J.6- (F.5)
4 ’ 2
These span the Borel subalgebra of the SU(2,1) algebra and satisfy the commutation
relations
1 1
[Hy, Te) =T, , [Hy, T1] = §T1 , [Hy, To] = §T2, [Th,T5] =T,. (F.6)

A parameterisation of the coset is obtained by exponentiating the Borel subalgebra as

I = e—(91+92)T1+(91—92)T2+$T- e—QSDHO (F?)

I

where {p,&, 601,02} are the four real coordinates. Starting from the coset representa-
tive (F.7), we compute the Maurer-Cartan form L~'dL and then identify the coset vielbeine
as the coefficients of its expansion in the coset generators,

L~ 'dL = -2 ngHo—egp(del +d(92)T1 —i—e“’(dﬁl —déb)Tg —&-6250 (d§ — 61d6s + 62(191) T, . (FS)

SU(2,1)

In this way we obtain the following Einstein metric on SURXUQ)

1
ds? = 2dg? + 2 (d6} + do3 ) + 5 €7 (dg — 0162 + 02060,)° . (F.9)

The normalisation is chosen so that the Ricci scalar is R = —12, in agreement with our
five-dimensional supergravity conventions.

In the main text, we need the “dressed” sus algebra constructed via the adjoint action
of the coset representative on the sus algebra generated by {ji,j2,j3}, that is

h=LiL™, Ja=LjpL™", js=LjzL" . (F.10)

34 We rearrange the indices of their 3 x 3 matrices as lthere — 3here, 2there — lhere, Sthere — 2here-
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An explicit evaluation using (F.7) gives

A 1 .. 1 _ L 1 .. 1 )
Jl:56“"(J1+J5)+Ze(p(9§—39%+2€ 2“0)(J1—J5)+§e“0(€—29192)(J2+J4)+ﬁe“09216

1 : : _ } ) :
— ——¢%0;(3j3+V3js) + {ew(9?+919§ —262§) —2e @91} (i3+2j7—V3js)

1
22 42
. 1 1 1 1
e Lowip2 ap2 —20\ /; N T VY o
2=ge (j2 J4)+4e (07 —305+2e~%) (j2+ja) 5¢ (§+260102) (j1—Js5) 75° 61j6

1 1
%@e%Qﬁw@@+%@k(%+%%+%ﬁ)2e94%+%7V®@,
? L [ 2093 2 — L
— —— [e(63 46,63 +2656) —66. | (1—j5) — —=
I3 WG [e (01 +0103+265€) 1} (J1—Js) VGl
1 20 . . . . 1 20 (¢ . 1 20 (2 2 . .
t575¢ 01litis) +0202—ja)] - 5e (§J6+J7)+§[2—e (63 +63) (3j3+ V3]s
1
+35 (€22 (02-+03) "+ 4622 (1462) ~12(0F +03) +4¢ 2| (js+2j7 — V3]s) . (F.11)

Now we can replace the matrices j4 with the generalised tensors J4 invariant under the

U(1) generalised structure. This provides our four-parameter family of H structures.

(€22 (63-+630>—2601€) — 665 (j2+])
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ABSTRACT: Using exceptional generalised geometry, we classify which five-dimensional
N = 2 gauged supergravities can arise as a consistent truncation of 10-/11-dimensional
supergravity. Exceptional generalised geometry turns the classification into an algebraic
problem of finding subgroups Gs C USp(8) C Eg) that preserve exactly two spinors.
Moreover, the intrinsic torsion of the Gg structure must contain only constant singlets
under Gg, and these, in turn, determine the gauging of the five-dimensional theory. The
resulting five-dimensional theories are strongly constrained: their scalar manifolds are nec-
essarily symmetric spaces and only a small number of matter multiplets can be kept, which
we completely enumerate. We also determine the largest reductive and compact gaugings
that can arise from consistent truncations.
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1 Introduction

When studying compactifications of 10- and 11-dimensional supergravities, the low-energy
limits of string theory, it is useful to have a lower-dimensional theory which captures key
aspects of the physics. If the compactification leads to a separation of scales, we can obtain a
lower-dimensional low-energy effective supergravity theory by integrating out modes above
the cut-off scale. This is the case for compactifications on special holonomy manifolds to
Minkowski space-time, where the effective theory is obtained by keeping only the massless
modes, namely the zero-modes of appropriate differential operators on the internal space.

However, when there is no separation of scales, or if we want to keep both some light
and massive modes within the truncation, we must instead resort to a consistent truncation
of 10-/11-dimensional supergravity [1]. A consistent truncation ensures that all solutions
of the lower-dimensional theory also satisfy the equations of motion of 10-/11-dimensional
supergravity. Consistent truncations are therefore particularly relevant for anti-de Sitter



(AdS) compactifications, where no explicit scale-separated example is known. This is even
conjectured to be true for all AdS compactifications of string theory [2].

Constructing consistent truncations is a notoriously difficult problem, due to the highly
non-linear equations of motion of 10/11-dimensional supergravity (see e.g. [1, 3]). Thus it
might be tempting to use lower-dimensional gauged supergravity models without a clear
higher-dimensional origin. However, this is fraught with dangers. For example, a vacuum
that appears stable within a lower-dimensional supergravity might suffer from instabilities
triggered by modes not kept in the truncation [4], or vacua which appear different within
the lower-dimensional model may actually be identified in the full 10/11-dimensional theory
[5]. These examples highlight how important it is to know which lower-dimensional theories
can arise as consistent truncations of 10-/11-dimensional supergravity.

Until recently, the only systematic approach to consistent truncations relied on consid-
ering manifolds with reduced structure group and keeping all the modes that are singlets
under the reduced group. For example, group manifolds (and freely-acting discrete quo-
tients thereof) have a trivial structure group and give the classic Scherk—Schwarz reductions
[6]. Alternatively one can consider, for example, Sasaki-Einstein and weak-Gy holonomy
manifolds of [7-10], or tri-Sasakian manifolds [11]. However, there are also famous consis-
tent truncations, such as those of 11-dimensional supergravity on S” [12] and S* [13, 14],
that cannot be explained by this traditional group action argument.

Recently, it has become clear that the appropriate framework for understanding gen-
eral consistent truncations of 10-/11-dimensional supergravity is given by generalised G-
structures in exceptional generalised geometry and exceptional field theory.

Exceptional generalised geometry and exceptional field theory are reformulations of
10/11-dimensional supergravity in a way which unifies fluxes and metric degrees of freedom
into exceptional symmetry groups. In exceptional generalised geometry, for instance, the
exceptional groups appear as structure groups of the generalised tangent bundle of the
compactification manifold, which is an extension of the tangent bundle by appropriate
exterior powers of the cotangent bundle. A reduction of the exceptional structure group to a
subgroup Gg defines a reduced “generalised structure group”. Given such generalised a Gg
structure one can define its “intrinsic torsion” [15]. In analogy to the case of conventional
G structures, this is a differential object that measures the obstruction to finding a torsion-
free connection, compatible with the structure. For a given structure, it can decomposed
into generalised tensors transforming in particular Gg representations.

It is now understood [16] that generalised Gg structures provide a systematic and
general derivation of consistent truncations: any generalised Gg structure with constant
singlet intrinsic torsion defines a consistent truncation of 10-/11-dimensional supergravity.
For instance, all maximally supersymmetric truncations are associated to generalised iden-
tity structure and so can be seen as generalised Scherk-Schwarz reductions [17-19]. This
provides a unified description of the consistent truncations of 11-dimensional supergravity
on S7 and S*, as well as of IIB supergravity on S° and massive ITA on spheres [20, 21],
and give a framework for analysing generic maximally supersymmetric truncations [22—24].
Moreover, considering larger generalised structure groups, we obtain consistent truncations
preserving less supersymmetry [16, 25-27].



What is particularly interesting in this approach is that a good deal of information
about the reduced lower-dimensional theory is derived from purely algebraic considerations.
The embedding of the generalised structure group Gg in E,,) completely fixes the field
content and the allowed components of the embedding tensor of the reduced theory, as well
as the truncation ansatz.

One is then left with the problem of solving the differential consistency condition that
the Gg structure has constant, singlet intrinsic torsion. This will determine whether there
exists an internal manifold that realises any of the reduced theories allowed by the algebraic
analysis.

In this paper, we apply these ideas to classify consistent truncations of M-theory and
type IIB supergravities to five-dimensional N' = 2 gauged supergravities. In this case the
relevant exceptional group is Eg). We focus on the algebraic part of the problem, that
is identifying the possible Gg C Eg() structures, and work under the hypothesis that the
differential one is solved.

We first classify all the continuous subgroups of Eg(g) that give rise to only two spinor
supercharges in five-dimensions, as required by N' = 2 supersymmetry, and we derive,
in each case, the field content of the reduced theory. This allows us to show that the
structure of the five-dimensional N' = 2 gauged supergravities that can arise from consistent
truncations of type II/11-dimensional supergravity is very constrained. For example, the
scalar manifolds of such gauged supergravities must necessarily be symmetric, and there
is a maximum number of vector and hypermultiplets that can be coupled. Indeed, we find
that only a handful of matter contents can arise from consistent truncations.

We can then further constrain the allowed truncated theories as follows. Under the
assumption that the compactification manifolds satisfy the differential constraint of con-
stant singlet intrinsic torsion, we determine the embedding tensors of the reduced theory
and analyse the possible gaugings. Again purely group-theoretical arguments allow us to
fully determine the gauging of the reduced theory. As expected these include as special
cases the known truncations [27, 28] that arise from the ' = 2 Maldacena—Nuitiez [29] and
“BBBW” [30] backgrounds. We find in general that the embedding tensor is constrained,
so that generically not all gaugings that are allowed from a five-dimensional point of view
are realised as consistent truncations. The result is that the gauged supergravities that
can be obtained as consistent truncations are a very small subset of those that can be
constructed from a purely five-dimensional point of view.

It is worth stressing that while our analysis gives the list of the reduced theories that
can a priori be obtained as consistent truncations, this does not mean that all of them
can actually be realised. First, one must find compactification manifolds that admit the
appropriate Gg generalised structure groups. Secondly, we must show that they satisfy the
condition of constant singlet intrinsic torsion, and then analyse the non-zero components
of intrinsic torsion/embedding tensor to see which gauge algebras in fact appear. The anal-
ogous condition is known to limit the possible gaugings in the maximally supersymmetric
case [17, 21-24, 31]. So it is to be expected that the number of actual truncations is even
more restricted than what we present here.

This result is of particular interest for theories with AdS vacua. It is conjectured



that no AdS vacua of string theory admit scale separation [2]. Hence it is not possible
to write an effective N/ = 2 theory in this case. Thus we are led to conjecture that those
gauged supergravities that cannot come from consistent truncations and which have AdS
vacua must belong to the “swampland”. Put differently, these gauged supergravities are
lower-dimensional artefacts that are not related to string theory.

This paper is structured as follows. In Section 2 we recall the main features of 5-
dimensional N' = 2 gauged supergravity. In particular, we describe the gauging procedure
in terms of Leibniz algebras, as this is the natural language to make the connection to ex-
ceptional generalised geometry. The exceptional generalised geometry formalism for N' = 2
truncations to five dimensions is reviewed in Section 3. We first introduce Eg ) generalised
geometry, which is the relevant one for compactifications to five dimensions. Then we dis-
cuss the Gg structures that are associated to N' = 2 truncations and establish the dictionary
between the Gg structure data and those of the truncated theory. Section 4 contains the
main results of the paper, namely the classification of the gauged supergravity that can
come from consistent truncations of M-theory or type IIB supergravities. We organise the
list according to the field content, first theories with only vector and tensor multiplets,
then only hypermultiplets and finally those with both vector/tensor and hypermultiplets.
Appendix A contains more details about Eg) exceptional geometry, while in Appendix
B, for concreteness, we provide the explicit computation of the intrinsic torsion for the
truncation with nyr vector multiplets. Finally in Appendix C we discuss the truncation
ansatz.

2 5d N =2 gauged supergravity: moduli spaces and gaugings

In this section, we summarise the features of five-dimensional N' = 2 gauged supergravity
coupled to matter [32-34] that we want to reproduce from consistent truncations of M-
theory or type IIB theory. We follow the conventions of [34].

We are interested in 5d N' = 2 supergravity coupled to ny vector multiplets, nt tensor
multiplets and ny hyper-multiplets. The gravity multiplet consists of the graviton, two
gravitini transforming as a doublet of the R-symmetry group SU(2)g and the graviphoton,

{gum 7/)27 Au} (2'1)

The index & = 1,2 denotes the SU(2)r R-symmetry. Each vector multiplet contains a
vector, two spin-1/2 fermions in the fundamental of SU(2)g and a complex scalar ¢. Since
in five dimensions a vector is dual to a two-form, a tensor multiplet has the same number
of degrees of freedom. Thus we have vector and tensors multiplets

{A,, A\ 6y, {Buw, N, ¢}, F=1,2. (22)

If we have ny vector multiplets and nt tensor multiplets we will use the notation Ai
with I = 0,...,ny to denote the graviphoton and the vectors fields and B% with M =
ny +1,...ny + nr for the two-form fields. The scalars of the vector and tensor multiplets
are grouped together into ¢, with i = 1,...,ny + np. These scalars parametrise a very

special real manifold, My.



There are also hypermultiplets, each of which consists of four real scalars and an R-
symmetry doublet of spin-1/2 fermions

{c*, q“}, u=1,...,4, #=1,2. (2.3)

If we have ny hypermultiplets, the scalars are grouped into ¢, with X = 1,...,4ngy,
and parameterise a quaternionic-Kéhler manifold, My. It is also convenient to collect the
spinors ¢ into (%, with & = 1, ..., 2ng, transforming in the fundamental representation of
USp(QTLH).

The very special real manifold can be described as an nyr-dimensional cubic hyper-
sqrface~ in an (nyt + 1)-dimensional ambient space, where nyr = ny + np. Viewing
h!' = h1(¢"), with I=0,...,nyr, as embedding coordinates, My is given by

C(h) = Ciiphn/n® =1, (2.4)

where Cjj; is a completely symmetric constant tensor.
The metric on My is given by

gij = hih] ajz, (2.5)

where aj; is the metric on the ambient space

afj=3hjhj—20fjkhk, (2.6)
and )
hi=—\/30:n",
2.7)

The homogeneous “very special real” manifolds have been classified in [35]. For the
symmetric ones, which are the only ones we will need, a classification is possible based
on whether the polynomial (2.4) or, equivalently, the tensor C;;x is factorisable or not
[36-38]. We will discuss this classification in Section 4.

The 4ng scalars of the hypermultiplets parameterise a quaternionic Kéhler manifold
My, of real dimension 4ny with metric

9xy = C'&gfaégfxdffyﬁg, (2.8)

where fx® are the quaternionic vielbeine and Cp is the flat metric on USp(2ng). On

My there exist a (local) triplet of complex structures JxY satisfying
[J%, JP) = 2627, (J)?=-1d, «,8=123, (2.9)

with respect to which the metric gxy is hermitian.

As for the vector multiplets, only symmetric spaces will be relevant for consistent
truncations. The Riemannian symmetric quaternionic-Kéahler spaces were first considered
by Wolf in [39] and then classified by Alekseevsky in [40]. This was then extended to the



pseudo-Riemannian class by Alekseevsky and Cortés in [41]. We will discuss the relevant
ones in Section 4.
Together, the scalar manifold of the theory is the direct product

M = Myt x My, (2.10)

with isometries Giso = Gyt X G, where Gyt and Gy are the isometry groups of My
and My respectively and define the global symmetries of the ungauged theory.!

The most general gauged theory is described in [34]. It is useful for what follows to
translate it into the language of Leibniz algebras (or more precisely “G-algebras” [23]). In
doing so we also see how the gauging picks out the space of vector and tensor multiplets.
Let V be the vector space of dimension nyT + 1 formed by the graviphoton, the ny vectors
and nr tensors. The gauging defines a Leibniz algebra a, on V), that is a bilinear bracket
v, w] that satisfies a Leibniz-relation

[w, [v, w]] = [[w, v], w] + [v, [u, w]], Vu,v,w € V. (2.11)

Choosing a basis, the algebra defines a set of structure constants ¢ jf(f via

[[v,w]]l~ =t v Wk, Vo, we V. (2.12)

Note that in general [v,w] # —[w,v] (that is ¢ jf(f # —tg jf ) so the bracket does not
define a Lie algebra.
We then define the subspace 7 C V as the image of the symmetrised bracket

T = {[v,w] + [w,v] : v,w € V} , (2.13)

and identify elements of 7 with tensor multiplets, so that dim7 = np. Note that the
Leibniz condition (2.11) implies that

[b,v] =0, VbeT,vel. (2.14)

Thus [v,b] = [v,b] + [b,v] € T and hence T forms a two-sided ideal. As a consequence,
if we identify the space of vector multiplets as the quotient R = V/T, then the bracket
descends to an ordinary Lie bracket on R defining what we will call the “extended Lie
algebra” geyt. Note that by construction V is a reducible representation of geyt where T
forms an invariant subspace.

If one chooses a particular splitting so V = R & 7 and fixes a basis, where I =
0,1,...,ny labels components in R and M = ny+1,...,nyr labels components in 7, this
structure means that one has

t™ =, ty? =0, gt =0, (2.15)

! In the case of no hypermultiplets, we define Gu = SU(2) so that Gis still matches the global symme-
tries.



where f[JK =—fir K are the structure constants of the Lie algebra gext. In summary, we
see that the splitting into vector and tensor multiplets is defined by the choice of Leibniz
algebra.

The choice of Leibniz algebra is not completely general if it is to lead to a consistent
gauging. Note first that we can define the adjoint action given some v € V as

ty : V>V,

(2.16)
w = tyw = v, w],

Ky

so that, in components t, is the matrix (tv)j F=ot e Ij . From the Leibniz condition, the

commutator is given by
[tva tw] = t[[v,w]] 3 (217)

and furthermore ¢, = 0 for all b € 7. Hence the adjoint action defines a Lie algebra. In
terms of the split basis, we have the generators [42] (see also [43]),

i _ [~ s~ ILJJK=0,... nv,
(tr);" = , (2.18)
M,N=ny+1,...,n7,

such that
tr,ty] = —frs5tx, (2.19)

where fr 7K are the structure constants of gext- The components (¢7) jN give the repre-
sentation of the gauge group on the tensors. The off-diagonal components (¢7);V can
be non-zero only in the case of non-compact groups since these allow for non-completely
reducible representations [42, 43].
Consistency requires that the symmetric tensor C' in (2.4) is invariant under the action
of t,
C(ty(w), w,w) =0, Yo,weV, (2.20)

and that the expression
C(b,v,w) = Q5t,(w) + 3t (v),b), VoeT, vyweV, (2.21)

defines a symplectic form €2 on 7. This implies, in particular, that the bracket defines a
symplectic representation of gexy on 7. Invariance of C' in turn means that the action of
t, is an isometry of the metric on MvyT. In components, these conditions read

M _ OMN Heoo oo
Note that the first condition is equivalent to requiring that the map V ® ¥V — T defined
by (v,w) + [v,w] 4+ [w,v] factors through V* via

vy S,y 2L 7 (2.23)

That is, it can be viewed as a map to V* given by (v, w) — C(v,w, -) followed by the action
of Q1



The gauging of the five-dimensional theory can be expressed in terms of the embedding
tensor [44, 45]. This is a map

O :V = giso, (2.24)

where gis, is the Lie algebra of isometries of the scalar manifold of the underlying rigid
supersymmetric theory. In this case, this means the product of the real cone over My
(that is the ambient space V) with the hyper-Kéahler cone over My. Given v € V the
embedding tensor O(v) specifies how the action of t, gauges the isometries. That is, it
defines the embedding of the gauge algebra, ggauge, inside the isometry algebra of the
scalar manifold, where we define

Jgauge = a/Ker O. (2.25)

The matter fields of the V' = 2 gauged supergravity are charged under ggauge rather than
the larger gex, which generically is a central extension of ggauge-

For N/ = 2 supersymmetry the isometry algebra splits giso = gvr @ g where gyt and
gu are the Lie algebras of isometries on the vector and hypermultiplet rigid moduli spaces
respectively. For very special real and quaternionc Kéahler homogeneous spaces these are
just the Lie algebras of the numerator groups Gyt and Gy, except when there are no
hypermultiplets in which case G = SU(2), in line with footnote 1. The embedding tensor
thus splits into two parts [46, 47]. For the vector multiplets the isometries on the cone are
generated by a basis composed of Killing vectors k% on My, where a = 1,...,dim gyr.
For the hypermultiplets the isometries on the hyper-Kéhler cone are generated by a basis
composed of Killing vectors 1255, with m = 1,...,dim gy, together with su(2)r elements
P,, that are the Killing prepotentials® for each l%fn( . The generators that are gauged are
then given by

ki) = ©7°ki(¢),  kF(9) =O;"kn(a),  Pr=0;"Fn, (2.26)
where f, j,f( =0,...,nyy and X, Y = 1,...,4n. The two pieces of the embedding
tensor O;% and ©;™ are thus constant (ny + 1) x dim gyt and (v + 1) x dim gy matrices,
whose rank determines the dimension of the gauge group. The kj vectors are required to

act linearly on the embedding coordinates h! such that

Keogh? = i nE (2.27)

thus relating ©;% to the structure constants tijf(. Given a splitting V =R @© T, one then
has ky = kpy = 0 and

kr, k)" = fr™ K (2.28)
ke, kgl = fr" ki |

realising the gauge algebra ggauge-

2In the case where there are no hypermultiplets, one can still have constant prepotentials B, with
m = 1,2, 3 that can lead to Fayet—Iliopoulos terms.



On the scalars the gauging defines covariant derivatives

Du¢' = 0ud' + g ki A,

X X X gl (2.29)
Duq” =0uq™ +9gki A, .
The bosonic Lagrangian of the gauged theory is then given by
“ip=lpoy Loml HIw 20 DrT — gD XD,
e - 5 - ((ba Q) - ZG’IJ uv - ZU’IJ H - §gXY ndq ndq
-1
e
+ @e“”p‘”ﬁ MNBuL(0,BY. + 2911 ATFY + gtip ALBE)
12—1;Ll/p0'7' I|pJ K J aF 16 Lok 92KHL
+E 56 € C[JKA# prFaT+fFGAVAp <_§FO'T+EfHLAO' AT)
171/1,1//)0'7’ M ;N I 4F 4G 9 K 921( H 4L
— ge € QMNtIKtFGAuAI/Ap _§F0'T+EfHLAO' AT .
(2.30)

The kinetic terms for the vector/tensor® and hypermultiplets are controlled by the metrics
ajj and gxy, defined in (2.6) and (2.8). The gauge field strengths

Fh=aAl - Lgfi A7 n AKX, (2.33)

and the anti-symmetric tensors B,,, are grouped into the tensors H gy = (.7-"/51,, B/%) We
see that the gauge field strengths are indeed elements of the extended algebra geyt, while
the matter fields have non-trivial charge only under the action of the gauge algebra ggauge-

In general, the scalar potential V is a function of the Killing vectors on the scalar

manifolds My and My, and on the Killing prepotentials, ]31, on My
V= 292 (gijﬁi . ]3] —2P.- P+ gij/Ci/Cj +N&j/\/‘di> , (2.35)

where the arrow denotes a triplet of su(2)g elements and

P=hlP, Ki = YOpTki (2.36)
P =8P =nlP, NOE — YBpIEX fy 0%

Notice that due to the identity wl k} = 0, the Killing vectors on Myt do not contribute to
the potential when there are no tensor multiplets.

3The vector multiplet scalar kinetic term can also be written in terms of the scalar fields ¢° and the
metric gi;; on My using ) ) ) o )
Duh' = d.h" + g iz AL RS = 0:h'Dug’ (2.31)
and the identity ) )
3 a;5Duh' D" = gi; D' DH ¢ (2.32)

“The Killing prepotentials P; are defined by
dnuPr = jXYVY];;(, (2.34)

where J; Y is the triplet of (local) complex structures on M.



The functions in (2.36) also control the bosonic part of the supersymmetry variations:

oy, = Dye” + %Pmyfyueg + ..,

AT = gl + gPijgeg + ...,
5Cd :gN&jej—I_... .

(2.37)

where we have written out the explicit adjoint action of the su(2)r elements P and P,

3 N =2 supergravities from generalised geometry

In the language of exceptional generalised geometry, consistent truncations are associated
to generalised Gg-structures. If a d-dimensional manifold M admits a generalised Gg-
structure, namely a set of globally defined generalised invariant tensors, with constant
intrinsic torsion, a consistent truncation of type II or eleven-dimensional supergravity on
M is obtained by expanding all supergravity fields on such tensors and keeping only the
G s-singlet modes. Knowing the generalised structure is enough to determine all the data of
the truncated theory. This approach has been successfully applied to the study of consistent
truncations with several amount of supersymmetry [16, 17, 21] (see also for the exceptional
field theory version of this approach [18, 20, 25, 26]). In particular, [27] provides the generic
framework to study type IIB or M-theory consistent truncations to five dimensions with
N = 2 supersymmetry. The purpose of this paper is to use this formalism to classify
the possible consistent truncations of type IIB or M-theory to five-dimensional N = 2
supergravity.

In this section, we give a brief summary of the exceptional generalised geometry rele-
vant for type IIB or M-theory reductions to five dimensions and then in the next section
we review the formalism of [27].

3.1 Generalised Gg structures and A = 2 supersymmetry

Type IIB or M-theory supergravity on a d-dimensional manifold M, with d = 5 for type IIB
and d = 6 for M-theory, are conveniently reformulated in terms of Egg) x RT generalised
geometry®. For definiteness, we will focus on the M-theory case, though the formalism is
equally applicable in type I1B.

To the manifold M we associate a generalised tangent bundle E, whose sections trans-
form in the real 27* representation® of Eg(6), the generalised structure group, with weight
one under RT. The ordinary structure group GL(d) embeds in Eg(6) x R™ and can be used
to decompose the generalised tangent bundle as

E ~ TM@®A*T*M & A°T*M . (3.1)

5See Appendix A for a more detailed review of Eg(6) ¥ R™ generalised geometry
5Given a representation n we will use n* and 7@ for the dual and conjugate representations, respectively.
For non-compact groups these may not be equivalent.
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The sections of E are called generalised vectors and, using (3.1), can be seen as (local)
sums of a vector, a two-form and a five-form on M,

V=v4+w+o. (3.2)

The frame bundle F' for E defines an Eg) x R principal bundle. By considering
bundles whose fibres transform in different representations of Eg(g) % RT, we can then define
other generalised tensors. To describe the bosonic sector of the supergravity theories we
will need, besides the generalised vectors, weighted dual vectors, adjoint tensors and the
generalised metric. Adjoint tensors R are sections of the adjoint bundle ad F' of the form

adF ~R® (TM @ T*M) & A3T*M & AST*M @ A3TM @ ASTM ,

(3.3)
R=l+r+a+a+a+a,

and hence transform in the 1 + 78 of Eg) with weight zero under the R™ action. Locally
[ is a function, r a section of End(T'M), a is a three-form and so on. One notes that in
the exceptional geometric reformulation, the internal components of the gauge potentials
of type II or M-theory, are embedded in the adjoint bundle.

It will be useful to also define weighted dual vectors Z as sections of the bundle
N ~ det T*M ® E* which has RT weight two’. Concretely one finds

N ~T*M @®A*T*M @ (T*M @ AST*M),

(3.4)
Z=A+p+rT.
Finally the generalised metric G is a positive-definite, symmetric rank-2 tensor
G eT(detT*M ® S*E*), (3.5)

so that, given two generalised vectors V,WW € T'(FE), the inner product G(V,W) is a
top form. Just as an ordinary metric g, at each point on M, parameterises the coset
GL(6)/0(6), a generalised metric at a point p € M corresponds to an element of the coset

Eﬁ(ﬁ) X RJr

G| € ————=—. 3.6
€ USp(®)/2s (30
The generalised metric encodes the internal components of all bosonic fields of type II or

M-theory on M.

The fermionic fields of type IIB or M-theory are arranged into representations of
USp(8), the double cover of the maximal compact subgroup USp(8)/Zy of Egg ). For
instance, supersymmetry parameters are section of the generalsied spinor bundle S, trans-
forming in the 8 of USp(8). The R-symmetry of the reduced five-dimensional theory is in
general then some subgroup Gr C USp(8).

"Note that det T*M is just a different notation for the top-form bundle AST*M that stresses that it is
a real line bundle. In the following we will assume that the manifold is orientable and hence det T" M is
trivial. Thus, we can define arbitrary powers (det 7" M )P for any real p.

— 11 —



A generalised Gg structure is the reduction of the generalised structure group Egg) x RT
to a subgroup Gg. For all the structure groups that we discuss here, this is equivalent to
the existence on M of globally defined generalised tensors that are invariant under Gg.%
For example, the generalised metric G in (3.5) defines an USp(8)/Zy structure. In what
follows, since we always assume the existence of a generalised metric, we will consider Gg
structures that are subgroups of USp(8)/Zs. Moreover, we are interested in generalised
structures preserving some amount of supersymmetry and hence we need the structure
group to lift to a subgroup Gg of USp(8) acting on the spinor bundle S and to keep track
of how many spinors are singlets of GS. In all the cases considered here we have CNTYS ~ Gg.
Hence for simplicity we will from now on write Gg for both. For N = 2 supersymmetry we
need two invariant supercharges in the spinor bundle § implying that we need subgroups
Ggs C USp(8) that give only two singlets when decomposing the 8 of USp(8).

The largest structure group giving N' = 2 supersymmetry is Gg = USp(6): under the
breaking

USp(8) D USp(6) x SU(2)x, (3.7)

the spinorial representation decomposes as
8=(6,1)d(1,2). (3.8)

The SU(2)g factor in (3.7) is the R-symmetry of the reduced theory under which the two
spinors singlets form a doublet, as expected for N/ = 2 supersymmetry parameters. One
also has the decompositions for the Eg) representations

27" =(1,1) ® (14,1) ® (6,2),

(3.9)
78 =(1,3)® (6,2) ¢ (21,1) ® (14,1) & (14/,2) .

Note that the embedding of the structure USp(6) C Egg), in contrast to (3.7), defines the
subgroup

E6(6) D USp(6) : SU(Q)R, (3.10)

where we are using the “central product” between USp(6) and SU(2)g. By definition, for
any group G and subgroup H, the commutant? Cg(H) of H in G includes the centre Z(H)
of H. The central product is defined to be H - Cq(H) = (H x Cq(H))/Z(H) where one
modes out by the diagonal Z(H) subgroup. In this case Z(USp(6)) = Z and the central
product reflects the fact that the maximal compact subgroup of Eg) is USp(8)/Z2 and
not USp(8).

The Gg = USp(6) structure is often called an HV structure [48-50] and can also
be defined in terms of non-vanishing invariant adjoint tensors and a generalised vector,
corresponding to the singlets under Gg = USp(6) in (3.9). As they will be useful in the

8For non-simple (and discrete) groups, you can in principle have G's groups that are not defined as
stabilizer groups of tensors.

9Throughout this paper we will use the notation Cg(H), with H C G, for the commutant (or centralizer)
of H within G.
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rest of the paper, let us first introduce the vector and hypermultiplet structures that these
tensors separately define.

A vector-multiplet structure, or V structure, is given by a globally defined generalised
vector K € I'(E) of positive norm with respect to the Eg) cubic invariant,

¢(K,K,K) := 6k%2>0, (3.11)

where k is a section of (det T*M)'/2. The vector K is the (1,1) singlet in the decomposition
of the 27* in (3.9) and is stabilised by Fyu) C Ege). A hypermultiplet structure, or H
structure, is determined by a pair (J., k%) where J, € I'(adF) (a = 1,2, 3) is a triplet that
define a basis for a highest root suz subalgebra of ¢g) and hence satisty

[JQ,JB] = 2€a8yJSy, tl"(Jan) = =003, (3.12)

while & is a section of (det T*M)Y/? as above. The J, correspond to the (1,3) triplet in
the decomposition of the 78 in (3.9) and are stabilised by SU*(6) C Eg)-

The HV structure corresponds to a V and an H structure, such that the two k densities
are the same and in addition compatibility constraint

Jo K =0, (3.13)

is satisfied, where - denotes the adjoint action (see Appendix A for all relevant definitions).
The common stabiliser of compatible K and J, is

SU*(6) N F () = USp(6) . (3.14)

As shown in [27], given an USp(6) structure, one can construct a generalised metric as

(3.15)

2 . .
G(‘/,V) _ 3(3 C(K,K,V) 2C(K,‘/,V) C(Ka*]3 ‘/7*]3 V)) ,

oK. K K)?  “c(K,K.K) (K, K, K)
where c is the Eg) cubic invariant and V' is a generalised vector.

As we will discuss later, in terms of the multiplets of the truncated theory, an HV
structure, that is one where Gg = USp(6), implies that there are neither vector multiplets
nor hypermultiplets present; the reduced theory is minimal N' = 2 supergravity. To allow
for vectors or hypermultiplets, one has to look for reduced structure groups Gs C USp(6)
such that in the decomposition

USp(8) S USp(6) x SU2)r > Gs x SU2)R (3.16)

additional Gg singlets beyond those defined by the USp(6) structure appear in 27* and
the 78, but none in the 8. This means the 6 in the decomposition (3.8) cannot admit any
singlets, and hence that all the singlets in the 27* must transform trivially under SU(2)g.
Each Gg C USp(6) singlet will give a Gg-invariant generalised tensor in the corre-
sponding bundle. In particular, the singlets in 27* will span a sub-bundle Eggiet

ED Esinglet ~MxYV. (317)
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The bundle is by definition trivial and hence can be written as a product where V is the
fibre. The vector space V transforms as a representation of the commutant Cggg, (Gs)
of Gg in Ege). In particular, from the discussion above, there must be an R-symmetry
subgroup SU(2)r C Chg () (Gs) that acts trivially on V (and hence Fgipglet). Furthermore,
the corresponding Lie algebra su(2) must correspond to a highest root in egi). Let us
define Gy as the simple subgroup of Cgg (Gs) that contains such a highest root SU(2).
We can then also identify the corresponding trivial sub-bundle of the adjoint bundle!”

ad F D ad Fgy ~ M X gn, (3.18)

where gy is the Lie algebra of Gy. Note that by definition R -v = 0 for all v € I'( Eginglet)
and R € I'(ad Fgy, ).

Given any trivial Gg-invariant vector bundle P ~ M x R"™ and Gg-compatible gener-
alised connection D, one can define a constant section s € I'(P) by Ds = 0. Furthermore,
the definition is independent of the choice of D since the bundle transforms trivially under
Gs. For the sub-bundles Egi,g1et and ad Fy; we can identify V and U ~ gy with the spaces

of constant sections

V= {U € F(E‘singlet) : Dv = O} >
- (3.19)
o~ U = {R € D(ad Fg,) : DR = 0} ,

giving a natural realisation of the isomorphisms (3.17) and (3.18). Note that the elements
of U generate a global Gy symmetry. The Gg-structure also defines a constant invariant
section k? € I'(det T*M). Hence for each v € V the expression

C(v,v,v) = Kk 2c(v,v,v), (3.20)

where c is the Eg(g) cubic invariant, defines a map into R (or more precisely to constant
functions on M). We can always choose a basis of normalised nowhere-vanishing linearly
independent vectors and adjoint elements for V and U

{K;,Ja}, I=0,...,dimv—1, A=1,...,dimGy, (3.21)
where by definition we have
Ja-K;=0, VI, A. (3.22)
In this basis, the components Cf;z of the map (3.20) are given by
o(Kj, K, Kg) =6K%Cii (3.23)
and define a symmetric, constant tensor, while the adjoint tensor basis J4 satisfy

[Ja,JB) = fa®Jc, (3.24)

"Note that there are singlets in the adjoint bundle that are not in ad Fg,. In addition to elements

generating the other possible factors in Cggq, (Gs) there are also elements of the form V ®aq W, where V/
is a section of Eginglet, W is a section of the dual bundle Ef, 4 and ®aaq is the projection onto the adjoint
bundle. However these will not play a relevant role in our construction.
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where fap© are the structure constants of gy. Finally, we can normalise

tr(JaJB) = nan, (3.25)

where n4p is a diagonal matrix with —1 and +1 entries in correspondence with compact
and non-compact generators of Gy, respectively. Note that in the “minimal” case of
Gs = USp(6) with the HV structure (K, J,) the spaces V and U are one- and three-
dimensional, with basis vectors K and J,, respectively.

3.1.1 Moduli space of HV structures

A strict USp(6) structure is rigid, up to an overall scaling of k2. However, a reduced Gg C
USp(6) structure group naturally leads to a moduli space of Gg-invariant HV structures.
Note that the moduli do not necessarily consist of massless scalar fields from the point of
view of the reduced N/ = 2 five-dimensional theory, but rather will lead to a consistent
truncation.

Out of the invariant tensors Kj and J4 defining the Gg structure, we can define an
HYV structure by constructing a vector K € V and a triplet J, € U that form a basis for a
highest root su(2) algebra in gg. Any such HV structure is related to another by the local
action of g € Egg) X R*. The RT factor rescales k? and can be absorbed by rescaling of the
metric in the reduced theory. It therefore does not define a modulus and we can consider
only g € Eg). In order for the deformed HV structure to remain in V and U, the action
g needs to lie in the commutant group Cgg g, (Gg) and to be constant in the sense that
Dg = 0 for any Gg compatible connection D. In other words, different points in the moduli
space of Gg-invariant HV structures are related by global Cggg, (Gg) transformations.

However, the actual physical moduli come from the generalised metric. Given a ref-
erence USp(6) structure, we can build a reference generalised metric using the definition
(3.15). The physical moduli are then generated by acting on the structure with elements
of Eg() that commute with G5, modulo elements of USp(8)/Z2, that leave the generalised
metric invariant. The moduli obtained this way hence parameterise the coset

CEg(g) (GS)

M = )
Cusp(8)/z.(Gs)

(3.26)

By definition we are only considering Gs that only admits N’ = 2 supersymmetry, in
other words we are not interested in theories that are subsectors of more supersymmetric
ones. This means there are no elements of Cg,, (Gs) that lead to two different USp(6)
structures with the same generalised metric. Hence CE6(6) (Gs) must factorise into groups
that act separately on V and U, that is

CEG(G) (Gs) = Cay (Gg) x Cay, (Gs), (3.27)

where Gy and Gy are the subgroups of Egg) that leave fixed all elements of U and V,
respectively. Consequently, the moduli space M factorises into V structure and H structure
moduli spaces, as expected from N = 2 supergravity,

Cg,(Gs) _ Cgy(Gs)  Gvr _ Gu

M=M X My = X = X —
vE t Cu,(Gs) Cnu,(Gs) Hyr Hnu

(3.28)
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where, similarly, Hy; and Hy are the subgroups of USp(8)/Zy that leave U and V fixed,
respectively. In general there are common factors that cancel between the numerators
and denominators in the commutator group expression for the cosets; for example the
centre C'(Gg) is always a subgroup common to both. Thus it is useful to introduce the
notation Gy, Gy, Hyt and Hy for the numerators and denominators that remain in the
quotients in (3.28) once all the common factors have been cancelled (except when there
are no hypermultiplets in which case we take Gy = Hy = SU(2)). For My, one finds Gy
is the simple subgroup of Cg, (Gs) that contains a highest root SU(2), consistent with
our definition of Gy above .

The V structure moduli space corresponds to deformations of K that leave .J, invariant,
while the H structure moduli space describes deformations of J, that leave K invariant.
When given a dependence on the external spacetime coordinates, these deformations pro-
vide the scalar fields in the truncated theory, with My and My being identified with the
vector multiplet and the hypermultiplet scalar manifolds, respectively.

~ We can identify the moduli explicitly as follows. Consider first Myr. Using the basis
K’ a general vector K € V can be written as a linear combination

K =hK;, (3.29)
where hi, I=0,...,nyr, are real parameters. Fixing &2 in (3.11), and using (3.23), gives
Ciiah h/hE =1, (3.30)

showing that the nyt + 1 parameters Wl are constrained by one real relation and thus
define an nyp-dimensional hypersurface, just as in (2.4),

Myt = {hf : ijkhfhjhk =1}. (3.31)

The space M~y is the moduli space of the V structure and, in the truncation, will determine
the vector multiplet scalar manifold of the five-dimensional theory. The metric on My is
obtained by evaluating the generalised metric on the invariant generalised vectors,

aj; =+ G(K;, Kj). (3.32)

It is straightforward to verify that, using (3.15), the expression above reproduces the five-
dimensional expression (2.6).

Consider now My. The family of H structures is obtained by parameterising the
possible choices of suy algebra. Recall that by definition U ~ gy, so we are interested in
the space of highest root su(2) C gy subalgebras. Fixing k2 and modding out by the SU(2)
symmetry that relates equivalent triples J, we have the moduli space

— GH
" SU@2)r - Cay (SU2)R)

that is, comparing with (3.28), we have Hy = SU(2)r - Cg, (SU(2)g). Points in My can
be parameterised by starting from a reference subalgebra j ~ suy C gg and then acting on

My (3.33)

a basis {j1,jo2,j3} of j by the adjoint action of group elements h € Gy, defined as
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Jo =adgy jo = hja bt (3.34)

One has to mod out by the elements of Gy that have a trivial action, namely h €
SU(2)r =~ exp(j) and h € Cg,(SU(2)gr). The resulting symmetric spaces (3.33) and are
all quaternionic—Kahler, in agreement with the identification of My with the hyperscalar
manifold in five-dimensional supergravity.

3.1.2 Singlet generalised intrinsic torsion

Any generalised G g structure has an associated intrinsic torsion [15]. Given a G'g-compatible
generalised connection, D, its torsion T is defined as

(L2~ Ly)a=T(V)-a, (3.35)

where « is a generic generalised tensor, L is the generalised Lie derivative (see Appendix
A), LD is the generalised Lie derivative calculated using D and - is the adjoint action on
Q.

As a generalised tensor, the torsion T" belongs to the sub-bundle

WeE @K CE ®adF, (3.36)

with E* transforming in the 27 representation and K in the 351 representation.

Let ¥ = D — D’ be the difference between two Gg-compatible generalised connections.
It is a generalised tensor, specifically a section of Kg, = E* ®ad Fgg, where ad Fg, C ad F
is the Gg-adjoint subbundle defined by the structure. Using (3.35) one can define a map
from Kgg to W, the space of generalised torsions,

T: Kgg - W,

(3.37)
S r(X)=T-T,

as the difference of the torsions of the connections D and D’. The image of the map 7 is
not necessarily surjective, that is Im7 = Wg, C W. The part of W that is not spanned
by Wgy is the intrinsic torsion of the generalised structure G, i.e.
G

Wint =W/ Was . (3.38)
The intrinsic torsion Ti,; is the component of T' that is independent of the choice of com-
patible connection D and is fixed only by the choice of generalised structure. When
Gs € USp(8)/Zy and therefore defines a generalised metric, the norm defined by the

generalised metric G allows one to decompose the space of generalised torsions as'!

W =Wg, & WSS (3.39)

int

We can always decompose the intrinsic torsion into representations of Gg. For a
consistent truncation we will be interested in generalised structures whose only non-zero
components are in singlet representations of Gg.

1See Appendix B for an explict example.
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As for ordinary G-structures, the intrinsic torsion of a generalised structure Gg can be
encoded in first-order differential expressions in the Gg invariant generalised tensors. Recall
that K7 and J4 form a basis for the invariant tensors and by definition, DK P= DJ 4=0
for any Gg-compatible connection. It was shown in [27] that the intrinsic torsion is encoded
in the expressions

L. Kj;,  LiJa, (3.40)

and
/ k*tr(Ja(LwJB)), (3.41)
M

where the generalised vector W is orthogonal to the generalised vectors in V in the sense
that
C(Kj, K3, W)=0. (3.42)

Note that the expressions (3.40) and (3.41) are in general not independent, but are sufficient
to determine the intrinsic torsion.

For a consistent truncation we need to require that the intrinsic torsion lies only in the
singlet representation of Gg and is constant. This is equivalent to requiring

K
L Kj=—Tin(Kj) - Kj=t;;" K,

. (3.43)
Li;Ja=—Tnt(Kj) - Ja=pj,~ JB,

where the ;7 Jj{ and pj AB are constants and that (3.41) vanishes for all W. The latter
follows from the fact that the condition on W implies that it transforms non-trivially
under Gg and hence, since J4 are singlets, the corresponding intrinsic torsion cannot be a
singlet and so must vanish. Recall that Ti (V) is a section of the adjoint bundle ad F'. For

singlet torsion, Tin (/A7) must act in sub-bundle defined by the commutant CE6(6) (Gg).

From the factorisation (3.27) we see that we can view the matrices (t7) 7 and (p;)a®” as

elements of Lie algebras of Gy and Gy respectively.

3.1.3 The data of the truncation

Any generalised Gg structure on a manifold M with only constant, singlet intrinsic torsion
gives rise to a consistent truncation of eleven-dimensional or type Il supergravity with
spacetime X x M to a gravitational theory on X [16, 27]. In this section we focus on
truncations to five-dimensional N' = 2 supergravity and recall how the the generalised Gg C
USp(6) structure encodes the data of the truncated theory, as summarised in Section 2.

The field content of the truncated theory is completely determined by the Gg-invariant
spaces U and V and the moduli space of HV structures,'® while the gauging is determined
by the singlet torsion.

2Note that strictly speaking the singlet torsion also allows Tins(K7) to act in the R™ factor of ad F'. This
would correspond to a gauging of the “trombone symmetry” in the 5d theory [51]. Such theories do not
have an action and for simplicity we do not consider them here.

13For completeness we give in Appendix C the explicit form of the truncation ansatz.
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The scalars of the truncated theory are given by the moduli space (3.26) of generalised
metrics on M that factors (3.28) into

VM scalars:  ¢(z)" <> Myt = Gvr
(3.44)

HM scalars: ¢(z)% & My = — =

where z# are the coordinates on X.

By construction, both spaces are homogeneous and so correspond to one of the cases
listed in Section 2. As discussed in Section 3.1.1, the metrics can be explicitly constructed
in terms of the basis vectors K and J4. In particular, the cubic invariant on V), which
fixes the metric on My, is given by (3.20).

The other bosonic fields are the vectors and two-forms. As we will see in a moment, the
singlet intrinsic torsion allows one to decompose the space of constant vectors as V = R®T
so that the basis vectors split

{K;} = {K1} U{Ku}, (3.45)

where {K7} with I = 0,...,ny are a basis for R and {Ky/} with M =ny +1,...,nyr
are a basis for 7. The vector fields and two-forms are in one-to-one correspondence with
a basis in R and T respectively'4

vectors: Ai(x) «~ Ky,

3.46
two-forms: B%(l‘) — Ky . (3.46)

The gauge interactions of the truncated theory are determined by the intrinsic torsion
of the Gg-structure, which in turn is captured by the constants appearing in (3.43). The
first relation defines a bracket [-,-] : V®V — V on V given by

v,wi:: vaf:t”fvij, Yo,weV, 3.47
JK

just as in (2.12). Since the generalised Lie derivative satisfies Ly, (L,w) = L1, oW+ Ly (Lyw)
the bracket defines a Leibniz algebra. As in Section 2, one can then choose a splitting
VYV =R&T, where T is the image of the symmetrised bracket, such that R is the space of
vector multiplets and 7 the space of tensors.

For a consistent gauging we need to check the conditions (2.20) and (2.21). They each
follow from the properties of the generalised Lie derivative as we now show. Recall first,
from the discussion below (3.43), that (tv)j i= ny i Ij is an element of the Lie algebra of
GvT and so

Hgauge C LieGvyr C e6(6) - (3.48)

1411 the general formalism given in [16, 27] the two-forms were valued in constant sections of the singlet
sub-bundle of N ~ det T* M ® E*, written using dual basis vectors K”, and isomorphic to elements of V*.
The relation to the fields here is that the I index is raised using the symplectic form Q™! defined by the
singlet torsion. Note also that one can consider Aﬁ and Bi, defined for all values of I. However, once the
non-propagating fields are eliminated only Aﬂ and B% are dynamical and the Lagrangian takes the form
(2.30).
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Since ¢ and k? are Eg(6) invariants, the action of ggauge must preserve the cubic tensor C
given by (3.20) and hence we satisfy (2.20). Furthermore, by definition

Lyw+ Lyv =d(v®y w), (3.49)

where d is the exterior derivative and @y is the projection (A.10) onto N ~ det T*M @ E*
given by v @y w = ¢(v,w,-). If v,w € V then the left-hand side of (3.49) is by definition
an element of 7. Using (3.20), the right-hand side is just the sequence of maps in (2.23),
where the symplectic form on 7T is defined by the composition Q=1 = d o k2. Hence (3.49)
implies we satisfy the second condition (2.21) required for a consistent gauging.

To complete the description of the gauging we identify the embedding tensor and the
Killing vector fields on Myt and My. Since both manifolds are coset spaces, from (3.27),
the group of isometries is Giso = Gy X G and the embedding tensor is a map

O :V — giso = LieGyr ® Lie Gy . (3.50)

The corresponding gauged Killing vectors k}(qﬁ) and l;:;( (¢) on Myt and My are given by
(2.26). If we view K = hj(gzﬁ)KI~ as giving the embedding of My in V and J, = m#(q)Ja
as giving the embedding of My in U then, from (3.43), we can identify the Killing vectors

explicitly from the relations
in1d _q.eningrd _ 4 J1K
) k;0ih” = @Iak:zﬁzh =tjz"h", (3.50)
kff@xmﬁ = Gfmk‘gg@xmﬁ = prAmaB.

Thus we can identify the embedding tensor as an element of Lie Gyt @ Lie Gy

@f:((tf)jf{ 0 ) (3.52)

0 (pp)a®
Using the Leibniz property that L (Lk;a) = Ly, K)ot Lk; (Lk; ) for any generalised
I
tensor a, it follows that each set of vectors forms a representation of ggauge as in (2.28). In
other words, we have

K K
trtid =t te,  Prpjl =t ri- (3.53)
Finally, it is worth noting that the Killing prepotentials descend directly from the moment

maps for generalised diffeomorphisms that appear in integrability conditions for an HV
structure [49] and are given by

g Pf =L (Jp(Li,Jy)) (3.54)

where as above J, = mZ(q).Ja is the dressed triplet.

It is important to note that generic N' = 2 supergravity allows gaugings defined by
an embedding tensor © that is a general element of V* ® giso. However, the fact that our
theory comes from a consistent truncations will typically restrict the form of © to only lie
in certain Gy X Gy representations in the decomposition of V* ® giso. For this reason, in
the following we will use 1" to denote the embedding tensor that appears in the consistent
truncations to distinguish it from the more general ©. As a consequence, we will see that
not all the allowed A/ = 2 gaugings can arise from consistent truncations.
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4 Classification of N/ = 2 truncations to five-dimensions

In this section, we discuss the main result of the paper, namely the classification of the
consistent truncations to N’ = 2 gauged supergravity in five-dimensions that can a priori
be obtained from M-theory and type IIB.

As the data of a consistent truncation are encoded in the generalised structure Gg
that is defined on the compactification manifold M, the problem reduces to classifying the
possible Gs C Eg) structures with constant intrinsic torsion that preserve N = 2 super-
symmetry. Therefore, the classification consists of an algebraic problem — the existence of
an appropriate Gs C Eg) structure — and a differential one — the existence of constant
singlet intrinsic torsion. In the following, we will study the algebraic problem in general,
but will simply assume that the differential condition of having constant singlet intrinsic
torsion can be solved. From the example of maximally supersymmetric gauged supergravity
we know that the differential condition puts important restrictions on the allowed gauged
supergravities [22-24]. Strikingly, even when ignoring this additional constraint, we find
that for N' = 2 theories the algebraic conditions alone significantly constrain the possible
gaugings that can arise.

Let us recall from Section 3.1 what the main idea is. Demanding that the truncated
theory is supersymmetric implies that the internal manifold must be spin and that the
structure group must be a subgroup of USp(8), the maximal compact subgroup of Eg(g).
The largest structure giving N' = 2 supersymmetry is Gg = USp(6). Under the breaking

USp(8) D USp(6) x SU(2)r, (4.1)
the spinorial representation of USp(8) decomposes as
8= (6,1) & (1,2), (4.2)

where the (1, 2) is associated to the two supersymmetry parameters of the truncated theory.
Since under

E6(6) > USp(G) . SU(2)R, (4.3)

the only singlets in the 27* and 78 are the K and J, of the HV structure, the theory
obtained form a G = USp(6) only contains the gravity multiplet. To have extra vector-
or hyper-multiplets we need the structure group Gg to be a subgroup of USp(6).

The algebraic problem then consists of the following steps. We first scan for all possible
inequivalent ways of breaking USp(8) to Gs C USp(6) that admit only two singlets in the
fundamental representation of USp(8). Given a Gg with these features, it will embed in
Eg(6) as

E6(6) D) GS . CEG(G) (Gs) , (4.4)
where Cgg g (Gg) is the commutant group. We then check whether under this breaking
the 27" and 78 of Eg(g) contain Gg singlets, which will determine the vector and hyper-
multiplets of the truncated theory. In each case the singlets will transform under Cgy g, (Gs)
which also determines the form of the scalar manifold M of the truncated theory

. CE6(6) (Gs)
Cusp(s)/z.(Gs)

(4.5)
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We stress again that by construction the scalar manifolds are always necessarily symmetric

spaces and furthermore are always a product M = My X Mg of vector-tensor multiplet

and hypermultiplet scalar manifolds as in (3.28).

We have performed a complete scan for all Lie subgroups!® G € USp(6). We find

that there are only a small number of inequivalent Gg structures with the properties above.

We list them here according to the type of breaking of USp(6) that they correspond to.

All other cases either give rise to extra singlets in the 6 of USp(6) or can be obtained as

subgroups of the Gg-structures listed below without giving rise to any new fields in the

consistent truncation.

Br.1

Br.2

Gs =SU(2) x Spin(p), 2 <p < 5.

These are obtained from the embedding
USp(6) D USp(4) x SU(2) ~ Spin(5) x SU(2), (4.6)

which gives
6= (4,1) & (1,2), (4.7)

and by further breaking the USp(4) factor

USp(4) D SU(2) x SU(2) ~ Spin(4),
USp(4) D SU(2) x SU(2) D SU(2)p =~ Spin(3), (4.8)
USp(4) € SU(2) x SU(2) D SU(2)p € U(1)p ~ Spin(2).

The corresponding branching of the 6 of USp(6) are

6:(27171)@(1a271)@(17172)7
6-2.1, 21,62,

for the breaking to Spin(4) x SU(2), Spin(3) x SU(2) and Spin(2) x SU(2), respectively.

Gs =S0(3) and Gg = SU(2).

The relevant breaking is
USp(6) D SO(3) x SU(2), (4.10)

with the 6 of USp(6) branching as
6=(3,2). (4.11)

Taking Gs = SO(3) or Gg = SU(2) leads to two different consistent truncations.

15T the following section we will also discuss a few examples of Gs = Z structures that are easily

identified, but we do not provide an exhaustive analysis of discrete subgroups of USp(6).
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Br.3 Gg = SU(3).

This comes from the breaking
USp(6) D SU(3) x U(1) (4.12)

which gives
6=3®3_;. (4.13)

Br.4 Gg = SU(2) x U(1)

This truncation is obtained by further breaking the SU(3) group of the previous case.
Under SU(3) D SU(2) x U(1), we get

6=21,D1 01321 1D1y 1. (4.14)

Br.5 Gg =U(1).

This comes from the same breaking SU(3) D SU(2) x U(1) as Br.4 but taking only
the U(1) factor as the structure group.

Br.6 Gg=U(1).
This comes from the same breaking as Br.3 and taking the U(1) factor as structure
group.

Once the possible Gg structure have been identified, we need to study their singlet
intrinsic torsion as this determines the embedding tensor and thus the gaugings of the
truncated theory. The details of this calculation for Gg = SU(2) x Spin(p) are discussed
in Appendix B. The condition of having only components of the intrinsic torsion that are
singlets of G'g imposes differential constraints on the compactification manifold that can be
complicated to solve in general. In our analysis, we assume that these differential conditions
are satisfied and instead solely study the intrinsic torsion’s algebraic properties. We will
see that this is still enough to significantly restrict the possible gaugings obtainable by a
consistent truncation.

We will first decompose the singlet intrinsic torsion into representations of the global
isometry group Giso. This will allow us to identify the various components of the embedding
tensor of the truncated theory. We then impose the Leibniz condition on these singlets'©.
The resulting embedding tensor components determine the Leibniz algebra a and hence the
extended Lie algebra gext. As discussed in Section 3, the matter in the theory is charged
under the gauge algebra ggauge that is generically a quotient of gex by a central subalgebra.
The embedding tensor then also describes the embedding of ggauge into the Lie algebra giso

161f the differential conditions on the intrinsic torsion are satisfied, the Leibniz condition is also auto-
matically satisfied as discussed in Section 3.1.3. However, since here we are not analysing whether the
differential conditions can be solved, we must impose the Leibniz condition as a restriction. Put differ-
ently, only for those singlet components of the intrinsic torsion which obey the Leibniz condition, can the
differential conditions on the compactification manifold be satisfied.
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of the isometry group. In the following we will refer to a group as “gauged” if it is part of
the corresponding group Ggauge-

In general, solving the Leibniz conditions for all singlets of Gg can be very cumbersome.
It is hence sometimes useful to streamline the search for possible gauge groups Gext as
follows. First, consider the decomposition of V under a putative gauge group Ggauge C
Gvt C Giso- We must impose that there is a subset of the nyT vectors transforming in the
adjoint of Ggauge- Once this condition is satisfied, we keep only those components of the
intrinsic torsion that are Ggayge-singlets. Finally, we impose the Leibniz condition (2.11) on
the singlet intrinsic torsion. From the resulting Leibniz bracket, we can read off the gauge
groups and tensor multiplets. In particular, if nyt > dim Ggauge and the nyt — dim Ggauge
extra vectors are uncharged under Gey, then they are central elements filling out the
full gauge algebra gex, while if they are charged they either enlarge the ggauge algebra
or correspond to charged tensor multiplets. The two charged cases are distinguished by
whether or not the extra vectors are in the image of the symmetrised Leibniz bracket, as
discussed in (2.13).

It is worth stressing that we do not mean to give an exhaustive list of all possible
gaugings. Where we cannot solve the Leibniz condition in general, we will instead limit
ourselves to the largest reductive groups and largest compact groups that can be gauged.
We will find that only a handful of gaugings are possible.

Finally, the computation we perform bears some resemblance to the purely five-di-
mensional analysis that would have to be performed to find possible gaugings. However,
crucially, in order to have a consistent truncation, we are analysing the intrinsic torsion
that descends from the Egg) generalised Lie derivative, and thus lives in the Wiy C 351
of Eg). By contrast, the five-dimensional computation would search for gaugings living
in the V* ® giso 2 Wint, where V denotes the space of vector fields of the five-dimensional
supergravity. Therefore, it is not a priori clear whether all gaugings that are allowed
from a five-dimensional perspective can also arise from consistent truncations. In fact,
as we will see, some five-dimensional gaugings cannot arise from consistent truncations.
For example, in theories with scalar manifolds Myt = RT x %
multiplets, consistent truncations only lead to gaugings where the tensor multiplets are

and no hyper

charged under the graviphoton and not any of the other nyt — 1 vector fields.

In the following sections, we will derive the consistent truncations associated to the
(g structures listed here and derive their field content and invariant tensors. For sake of
exposition, we will first discuss the consistent truncations including only vector and tensor
multiplets in Section 4.1, then only hypermultiplets in Section 4.2, before giving the mixed
cases with vector/tensor and hypermultiplets in Section 4.3.

We summarise the matter content of the consistent truncations that arise from our
scan in Table 1: we list the Gg structure group, the number of vector/tensor multiplets
nyT and hypermultiplets ny, and the associated scalar manifolds. We see that the possible
consistent truncations are limited. In particular,

we find the largest possible truncation consists of only 14 vector/tensor multiplets.

Let us again reiterate that the consistent truncations that can be actually realised will
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nH

0 1 2
nyr
= Gg =SU(3 Gg =S0(3
0 Gs = USp(6) o SU(2§1)) o Gm())
M=1 = SOE@xUm) = 50
) Gs = SU(2) x Spin(5) Gs =5SU(2) x U(1)
M =R* SO@ <0
M =R* xS0(1,1) M =R* xSO(1,1) X grtmsiottmy
; Gg = SU(2) x Spin(3) Gs =U(1)
SO(2,1 . SO(2,1 SU(2,1
M =R" x —30((2)) M =R" x sé(z)) X S(U(2)(><U)(1))
A Gs = SU(2) x Spin(2) Gs=U(1)
- SO(3,1) B SO(3,1) SU(2,1)
M =R" x SO(@3) M =R"x 50(3) X SU@)xUM)
Gs =SU(2)
SL(3,R
5 M= sc(>(3))
Gs =SU 2) X 22
SO(4,1
M =Rt x SO(( ))
6 GS = SU(2) X 22
SO(5,1 -
M =Rt x so(( ))
8 Gs ZSL(Pglc))
M = i3
14 s S5
SU* (6 -
M = USpgﬁg

Table 1. List of all possible consistent truncation with nyr vector/tensor multiplets, ngy hyper-

multiplets, and the required G's C Eg(g) structure group, as well as the associated scalar manifold

M.

be a subset of those presented in the group-theoretic analysis here. This is because the

requirement that a given Gg structure has singlet intrinsic torsion will introduce non-trivial

differential constraints that a given manifold M must satisfy and which we do not analyse

here.

However some of the cases listed in Table 1 do have an explicit geometric realisation.

For instance the mixed cases with ng = 1 and nyt = 1, nyt = 2 and nyt = 4 correspond

to comnsistent truncations of eleven-dimensional supergravity that have recently obtained.

These are truncations around backgrounds with A" = 2 supersymmetry describing the near-

horizon limit of M5-branes wrapping a Riemann surface: the Maldacena—Nunez (MN)
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solution [29] and its generalisations called the BBBW solutions [30]. In particular the
truncation with nyr = 4 and ng = 1 with gauge group Ggauge = SO(3) x U(1)g x R is
the largest possible truncation around the MN solution , while the case with nyt = 2 and
nu = 1 and gauge group Ggauge = U(1)r x R gives the consistent truncation around the
BBBW solutions [27]. The subtruncation to nyt = 1 and ny = 1 was obtained in [28].

4.1 Truncations to only vector and tensor multiplets

We analyse first the possible consistent truncations that give rise to a theory with only
vector/tensor multiplets. Since a consistent truncation necessarily gives rise to a symmetric
scalar manifold (see Section 3), the vector/tensor scalar manifolds that one can obtain must
be symmetric “very special real” manifolds, as classified in [36-38].

This classification consists of a generic case, possible for arbitrary number of vec-
tor/tensor multiplets, where the tensor Cf 7 factorises, with the only non-zero components

given by
Coij =mij,  ,j=1,...,nyr. (4.15)
Here 7;; has signature (1,nyt — 1) and the scalar manifold is given by
SO(nVT -1 1)
My =R" x === 4.16
VT SO(nvr — 1) (4.16)

Additionally, there are a number of “special” cases that only exist for specific values
of nyr and for which Cj5; does not factorise. These are given by

_ SL(3,R)

Myt = W(S) 5 nyt =9,
~ SL(3,C) B
Myt = SU(3) nyt =8, )
Myt = SUT(6) nyt = 14 |
Ei_
Myp = 26229 nyt = 26.
Fy

Finally, there is a second “generic case”, which exists for arbitrary nyt > 1, but where the
tensor C5j does not factorise [38]. The associated scalar manifolds are given by
SO(nVT 1)
Myr = ——"+=.
SO(nVT)

We want to determine which of these gauged supergravities can arise from a consistent

(4.18)

truncation and how can they be classified in terms of the structure groups Gg listed in the
previous section.

In order to have a consistent truncation with only vector/tensor multiplets, the gen-
eralised tensors defining the Gg structure must consist of the triplet of adjoint tensor J,,
a = 1,2,3 corresponding to an H-structure (see Section 3.1) and of nyt + 1 generalised
vectors K7y, I=0,1,...nyr satisfying

JaKf: ;

) (4.19)
K~ C(Kf, Kj, Kf() = Cssp
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with constant Cfjz-
Since the J,, are stabilised by SU*(6) C Egg), the structure group must be a subgroup
of SU(6). Under the breaking Egg) D SU*(6) - SU(2)g, we have

27" = (15%,1) & (6, 2) ,

(4.20)
78 = (35,1) @ (20,2) ® (1,3) ,

where the triplet of J, belong to (1,3) and generate the SU(2)g symmetry. Then, the
first condition in (4.19), implies that the vectors K; must be invariant under SU(2)g and
therefore must lie in the real vector space

Y C (15%,1) . (4.21)

Thus, we can have at most nyr = 14 vector/tensor multiplets and we can immediately
rule out the case nyt = 26 in (4.17), as well as the case nyt > 14 in (4.16).

The family (4.18) is also ruled out, because the isometries of the corresponding scalar
manifolds are not linearly realised. As we discussed in Section 3, the isometry group of the
scalar manifold is the commutant in Eg) of the structure group and by construction it
acts linearly on the set of singlet generalised vectors. As a result, the gauged supergravities
with vector/tensor scalar manifolds (4.18) do not arise from consistent truncations.

All other cases can in principle arise in consistent truncations and in the next subsection
we will discuss from which generalised structure Gg they can be obtained and then use Gg
to study the intrinsic torsion and hence find the admissible gaugings.

4.1.1 Generic case

The generic case with scalar manifold (4.16) corresponds to the structure groups
Gg = Spin(6 — nyr) x SU(2), (4.22)

of item (Br.1) of the list in the previous section, where for notational convenience we let
Spin(1) = Spin(0) = Zy. Note that (4.22) implies that we can have at most nyt = 6
vector/tensor multiplets in the truncation. Moreover, the case nyt = 5 and nyr = 6 have
identical structure groups. This means that any background admitting a truncation with
nyT = b actually admits a truncation with nyt = 6, with the former truncation being a
subtruncation of the latter.

To see how these structure groups arise, note that the structure (4.15) of the tensor
Cjji implies that the vectors Kj can be split into a vector Ky and nyr vectors K; such
that for any i, 7,k =1,...,nyT,

C(KQ,K(),-) :O, C(Ki,Kj,Kk) :O, C(Ko,Ki,Kj) :nija (423)
where 7;; has signature (5,1). The vector K corresponds to the graviphoton of the trun-
cated theory.

By studying the form of (4.23), we can deduce the stabiliser group of the generalised

vector fields K; as follows. Being in the 15* of SU*(6), the vectors K; can be seen as
six-dimensional two-forms. Then the first condition in (4.23) is equivalent to

KoAKo=0, (4.24)
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with A the standard wedge product of p-forms. Thus, Ky must be decomposable and we
can choose a basis of independent six-dimensional one-forms such that

Ky=e5ANeq. (4.25)
The stabiliser of Ky is SU*(4) x SU(2), embedded in SU*(6) as

SU%(6) D SU*(4) x SU(2) x U(1),

(4.26)
15* = (4%,2), @ (6,1) , ®(1,1),,

with Ky € (1,1),. This forces the Gg structure to be a subgroup of SU*(4) x SU(2). The
other conditions in (4.23) become

KO/\Ki/\Kj:nija Ki/\Kj/\Kk:O, (427)
where the metric 7;; is invariant under SU*(4) ~ Spin(5,1). From (4.27) it follows that
K; € (6,1)_, . (4.28)

Thus, there can be at most six vector multiplets of this type.
The structure group Gg can now be easily determined. Since the nyT singlets K;
satisfy the inner product (4.27) of signature (1, nyt — 1) they break SU*(4) to

SU*(4) ~ Spin(5,1) D Spin(6 — nyT) X Spin(nyt —1,1), (4.29)

where the factor Spin(6 — nyr) is the stabiliser of the K; while the factor Spin(nyt —1,1)
rotates the K; into each other. Thus, the structure group is given by

Gg = Spin(6 — nyr) x SU(2). (4.30)

Although the structure groups and the isometry groups are Spin subgroups of Egg), the
generalised vectors K; never appear in spinorial representations of Gg and hence only see
the orthogonal groups and not their double covers. This is the reason why the case with
nyt = b vectors/tensors can always be enhanced to nyr = 6: on the two-forms K; the
Zs structure group acts trivially. Moreover, this is why the coset spaces can be reduced to
take the form (4.16):

Chy(6)(Gs) SO(nyr —1,1)
M=M = © =Rt x —+—— 2~ 4.31
vr Cusp(s)/z,(Gs) SO(nyt — 1) (4.31)

The corresponding isometry group is

Giso = Rt x SO(nyt — 1,1) x SU(2)g, (4.32)

where as discussed above we take Gy = SU(2)g, even though there are no hypermultiplets,
in order to include the R-symmetry. Under Gig, the space of vectors transforms as

V=(1,1)® (1,n)_; > (2°,2%), (4.33)
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where the first entries are the SU(2)g representations, n is the vector representation of
SO(nyr—1,1), the subscripts are the RT charges, and i = 1,. .., nyr denotes SO(nyr—1,1)
indices.

We can now determine the embedding tensor of the truncated theory and the possible
gaugings. These are encoded in the intrinsic torsion of the Gg structure, which must only
contain Gg singlets for the truncation to be consistent. We assume that this occurs and
decompose the intrinsic torsion in representations of the global isometry group (4.32)

M/int = (3, 1)72 D (3, n)1 D (1,n)1 D (1,ad),2 D (1,X)1

e (4.34)
3 (T0bs Tibs Tis T0 > Tlijik]) »

where ad and X denote the adjoint and the rank-3 anti-symmetric'” representations of
SO(nyt — 1,1), respectively, and a,b = 1,2,3 are SU(2)r indices. The case nyr = 5 is
different, but can be obtained as a subtruncation of the case nyt = 6. Therefore, we will
not consider nyT = 5 here.

Now we need the map (3.50), which gives the generalised geometry embedding tensor,
and which we denote by T : V — g5, to distinguish it from the generic 5d embedding
tensor. Given an element v € V, the intrinsic torsion defines T as having the non-zero
components

T(v)% = 97, + 0’78 € su(2)r,
T(’U)ij = ’UOTéj + ’Ukaij eso(nyr —1,1), (4.35)
T(U)(O) = UiTi S u(l) .
The adjoint action on the vectors in V
(T'(v) - ’w)o =2 T(v)(o)wo , (4.36)
(T(v) - w)' = ~T() oy’ +T(v) |

defines the Leibniz bracket T'(v) - w = t,(w) = [v,w]. The Leibniz condition (2.11) gives a

set of constraints on the torsion components
T[jkmn]mi =0, T()iijkl =0, =0, (4.37)
so that the Leibniz bracket simplifies to

v,w]’ = R
Lo wl” =0 o (4.38)

[[v,w]]i = —vjwijki — Okt
From (2.14) we see that the rank of 7o;/ determines the number of tensor multiplets, while
Tz‘jk form the structure constants of the gauge algebra. Finally, 75 and 7} determine how

the SU(2)gr is gauged. Moreover, the gauging of the SU(2)r R-symmetry must form a
representation of gext as in (3.53). Explicitly, this implies

(T'(w) - T(w) = T(w) - T()*s = = (T([v,w]))"s, (4.39)

17In some cases the representation X might be reducible.
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which for (4.35) imposes
T eTob — ToeTib =0, ok T = 0, T eTib — T eTib = i Ty . (4.40)
Then the first line in (4.35) gives the embedding tensor for the SU(2)r symmetry
Poa” =T, Pia’ =Tin, (4.41)
while the non-zero components of the embedding tensor on the vector isometries are
ton' = —Tok',  tp' = -1 (4.42)

Since 7; = 0, we note that the RT can never be gauged. Also from (4.38), we see that

the graviphoton v

cannot contribute to non-abelian gaugings. Moreover, from (4.34) and
(4.38), we can already see that not all gaugings of five-dimensional N' = 2 supergravity
can arise from a consistent truncation. In particular, the tensor multiplets can only be
charged under the graviphoton v° and not any of the nyr — 1 vector fields transforming
non-trivially under SO(nyt — 1, 1), as for example constructed in [32].

From (4.40) we can also determine in general how the SU(2) g global symmetry can be
gauged. Whenever an SO(3) C SO(nyt — 1,1) is gauged, those SO(3) vectors can also be
used to gauge the SU(2)g via 7. Alternatively, any combination of abelian vector fields,

including the graviphoton can gauge a U(1)r C SU(2)g subgroup.

Let us now find which gaugings of the SO(nyt — 1, 1) global symmetry group of My
are possible, beginning with nyt = 1 and working up to the maximal case nyt = 6.

nyr = 1: In this case the isometry group is Giso = SU(2)g x RT and the structure group
is Gg = Spin(b) x SU(2).

Any combination of the two vectors can gauge a U(1)g subgroup of the R-symmetry.

nyp = 2: The structure group is Gg = Spin(4) x SU(2) and the isometry group is Giso =
SU(2)g x SO(1,1) x RT. There are three singlet vectors with the following SO(1,1) x R*
RT x R* charges

12

v=>" v v )EV=102D1a 101 2 1. (4.43)

The conditions (4.37) are now trivially satisfied since 7;;; = 0. From the intrinsic torsion

Wint 2 (76, T4 T2 4 7o) (4.44)

+

we see that, when 7" = 0, any combination of all three vectors can gauge a U(1)r
symmetry. Alternatively, when 7, # 0, two vectors are dualised to tensors and the
remaining v° can gauge the SO(1, 1) under which the two tensors are charged, as well as a

U(1)r symmetry.
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nyt = 3: The structure group is Gs = Spin(3) x SU(2) and the isometry group is Giso =
SU(2)g x SO(2,1) x RT. As there are three vector multiplets in the adjoint of SO(2,1) it
is a priori possible to gauge it. The conditions (4.37) now imply that either 7;;, # 0 or

704’ # 0.

® Tiji i=Tek # 0, 107 = 0.

0

The Leibniz algebra, given v = (v°,v%) and w = (w°, w"), takes the form

[v,w]" = —FviwFe;, [v,w]’ =0. (4.45)

Thus the full SO(2,1) can be gauged and we can use the singlet vector v° to gauge
a U(l) R-

e 755 = 0. We now have a purely abelian gauge group. When 10 # 0 two of the
vectors are dualised to tensor multiplets. By choosing the tensors to be both spacelike
or one spacelike and one timelike under SO(2, 1) we get different charges for the tensor
multiplets under the action of v°, leading to either an SO(2) or SO(1,1) gauging. In
addition, a linear combination of v and the uncharged vectors can also gauge the
U(1)r symmetry.

nyp = 4: The structure group is Gg = Spin(2) x SU(2) and the isometry group is Giso =
SU(2)g x SO(3,1) x RT.

The conditions (4.37) now imply that either 7,5 # 0 or 79;/ # 0. We thus have the
following possibilities.

o Tk # 0, 170+ = 0. We can write Tijk = eijklAl. Depending on whether A? is
spacelike, timelike or null with respect to SO(3,1), we can have the gauge groups
SO(2,1), SO(3) or ISO(2), respectively. In all cases, there are no tensor multiplets.
This can be seen as follows.

If A is timelike, we can always perform an SO(3,1) rotation such that it lies along
the timelike direction and we have

Tafy = 6a571A1 = T€aBy (4.46)

where we split the SO(3,1) indices as i = 1 for the timelike direction and «, 3,y =
2, 3,4 the spacelike ones. Writing v = (v°,v%,v!) € V we find the brackets

[v,w]* = —FvPwes, ™, [v,w]® = [v,w]' =0, (4.47)

leading to a gauging of the compact subgroup SO(3) C SO(3,1). In addition, either
a combination of v and v! can be used to gauge a U(1)g or the v can gauge the
full SU(2)g via 7.
For a spacelike A we proceed in the same way. By an SO(3,1) rotation we bring 7
to the form

Tapy = €apaAt i= Feapy, (4.48)
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where now «, 8,7 = 1,2,3. The vector decompose as v = (v°,v% v%) and we get the
algebra

[v,w]® = —7FvPwes,, [v,w]° = [v,w]* =0, (4.49)

which gauges an SO(2, 1) subgroup. As above, the v* and v* can be used to gauge

the U(l)R.
Finally if A is null, by an SO(3, 1) rotation we can reduce to two non-zero components
for Tijk
T234 = 62341A1 ) T123 = 61234144, Al =AY =17, (4.50)
0

It is useful to decompose the vectors as v = (v°,v2,v3,v™,vT) where v = v £ 0%,

The Leibniz algebra then becomes

[v,w]? = #(vTw? —wte?), [v,w]t =0,

0
=0
[v, w] Hv’w]]ii _ —72(7)+w2 _ w+v2) ;o v, w] = 2%(U2w3 — w2v3) ,

(4.51)

This defines a Lie algebra that is the semi-direct sum of s0(2) with the 3-dimensional
Heisenberg algebra. The vector v~ generates the s0(2), under which v? and v? are
charged. On the other hand, {v?, v3, v} form a Heisenberg algebra, with v™ the
central element. Since v is central, the gauge group (2.25) under which matter is

2

charged is just ISO(2), generated by {v—,v? v3}. Additionally, the graviphoton v°

can gauge the U(1)g.

e 7;;x = 0. We now have a purely abelian gauging and 0, 2 or 4 tensor multiplets,
depending on the rank of 79;7. Depending on whether the tensors are timelike or
spacelike we get different charges for the tensor multiplets under the abelian group
generated by 1", as discussed for nyt = 3. As a result, we either have two tensor
multiplets charged under a SO(2) or SO(1, 1), or four tensor multiplets charged under
the SO(1,1). In addition, v and, when present, any combination of the uncharged
vectors can also gauge the U(1)pg.

nyp = 6: The structure group is Gg = Zy x SU(2) and the isometry group is Giso =
SU(2)g x SO(5,1) x RT.

In this case, we will not solve the Leibniz conditions directly but instead we perform a
case by case analysis of the possible gauge groups with a given number of tensor multiplets.
Since there are 6 vectors, if there are no tensors, we can gauge at most the following semi-
simple subgroups of the global SO(5, 1) isometries: SO(4), SO(3,1) or SO(3) x SO(2,1).
These are only possible if the singlet vectors transform in the adjoint of one of these groups
and the torsion contains singlets of the gauge groups.

It is straightforward to see that SO(4) and SO(3,1) cannot be gauged. Under the
breaking SO(5,1) D SO(4) x SO(1, 1) (respectively SO(5,1) D SO(3,1) x SO(2)) the vector
representation 6 decomposes as

6=40912P1 5, (452)
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where 4 is the vector representation of SO(4) (respectively SO(3,1)) and the subscripts
denote the SO(1,1) (respectively SO(2)) charges. Manifestly we see that in each case the
decomposition does not include the adjoint represention.

On the other hand, we can gauge SO(3) x SO(2,1) € SO(5,1). In this case, the six
vectors decompose as

6=(3,1)®(1,3), (4.53)

containing the adjoint of SO(3) x SO(2,1). We denote these by v® and v*, where oo = 1,2, 3
labels the adjoint of SO(3) and & = 4,5,6 the adjoint of SO(2,1). This gauging consists
of having

Tapy = A€apy Tagy = Begpy A,B#0. (4.54)

Note that therefore (4.37) implies that 79,/ = 0 so that we have no tensor multiplets. The
Leibniz bracket becomes

v, w]* = —U’Bw%'g «,
. o (4.55)
v, w]¢ = —vaVTBﬁa,
reproducing the gauge algebra of SO(3) x SO(2,1). The graviphoton can gauge the U(1)r
symmetry or the vectors v® can gauge the diagonal of SO(3) and SU(2)x.

Let us now study gaugings that could include tensor multiplets. These will have
70/ # 0. When 79;/ has rank 2, two vectors are dualised into tensors which are charged
under v°, and the gaugings can only be given by the other four vectors. Depending on the
signature of the SO(5, 1) metric evaluated in the directions of the tensor multiplets we can

have
SO(3) x SO(1,1) x U(1)g, SO(2,1) x U(1) x U(1)g,
SO(3) x U(1) x U(1)g, ISO(2) x U(1) x U(1)R, (4.56)
SO(1,1) x SU(2)g, U(1) x SU(2)&,

where the factors SO(1,1) or U(1) are gauged by the graviphoton and U(1)gr by any
combination of v? and the vector that does not gauge the non-abelian factor. Note that
in (4.56) we list the largest group that can be gauged. It is clearly possible to gauge only
some factors of the products above.

When 79,7 has rank 4 or 6, the only possible gauge group is the abelian factor gauged by
v? and the U(1)z. Depending on whether the image of 79,7 includes the negative eigenvalue
of the SO(5, 1) signature, or not, we get different charges for the tensor multiplets under
the action of v", which hence gauges either a U(1) or SO(1, 1) group. In addition, v* and,
when present, any combination of the uncharged vectors can also gauge the U(1)g.

In Table 2 we summarise the allowed gaugings for truncations with only vectors/tensor
multiplet of generic type. Whenever we list a product group, the individual factors can
also be gauged separately even though they are not listed as such. Whenever there are
abelian factors in Ggauge, the U(1)g can also be gauged diagonally with some combination
of these factors.
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nyr Giso Ggauge nrt

1 SU(Q)R X R+ U(l)R B
2 | SU(2)g x SO(1,1) x R+ SI(J)((ll),Ii) ;

SO(2,1) x U(1)g -
3 | SU(2)r x SO(2,1) x Rt S S0l 2

SO(2,1) x U(1)g, SO(3) x U(1)g,
180(2) X U(l)R, SU(Q)R
SO(2) x U(1)gr, SO(1,1) x U(1)R,

SO(1,1) 4

4 | SU(2)r x SO(3,1) x RT

SO(3) x SO(2,1) x U1)z, SO(2,1) x SU(2)z,
1SO(2) x U(1)
SO(2,1) x U(1) x U(1)r, SO(3) x SO(2) x U(1)z,
6 | SU2)r x SO(5,1) x R™ | 30(3) x SO(1,1) x U(1)x, ISO(2) x U(1) x U)k, | 2
SO(2) x SU(2)r, SO(1,1) x SU(2)r
U(1) x U(1)g, SO(1,1) x U(1)g 4
SO(1,1)

Table 2. Allowed gaugings Ggauge Of the global isometry groups Gig, in the generic cases with nyr
vector /tensor multiplets. The first column gives the total number of vectors and tensor multiplets,
the second the global isometry group, the third the allowed gaugings and the last one the number
of vectors that are dualised to tensors in each case.

4.1.2 Special cases

The special cases (4.17) are also associated to some of the generalised Gg-structures we
listed at the beginning of this section. We now discuss case by case what the associated
structure groups are, we determine the corresponding embedding tensor and hence the
possible gaugings of the truncated theory.

Differently from the generic case it is quite cumbersome to analyse in full generality
the constraints imposed on the gaugings by the Leibniz condition (2.11) and hence the
allowed gaugings. Thus in this section we will limit ourselves to study what are the largest
reductive groups and largest compact groups that can be gauged.

nyt = 5: This truncation is associated to a Gg = SU(2) generalised structure. The
structure group is taken to be the SU(2) factor in the breaking (Br.2) of USp(6) and it
embeds in SU*(6) as SU%(6) D SL(3,R) x SU(2). Under this embedding we have

15" =(6",1) @ (3,3) , (4.57)

so that V = (6*,1) and there are six independent singlet vectors giving rise to nyt = 5

vector multiplets. It is easy to check that we also get the expected scalar manifold
CE6(6) (GS) o SL(?), R)

M = My = = ,
Y1 Cuspeyza(Gs) — SO(3)

(4.58)
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with isometry group
Giso = SU(2)r x SL(3,R). (4.59)

We can decompose the elements of V according to Giso
V= (1,6*) 2 Vij 1,7 =1,2,3. (460)
The Gg singlet intrinsic torsion decomposes under Gig, as

Wint = (3,6) ® (1,15%) & (1,3%)

. . 4.61
> {T(Z])al” Tl(jk)7 Ti}7 ( )
where 7%, = 0. If v(ij) € V the map T': V — gigo is defined as
T(V)"% = v, (4.62)
TV)' = €™ 0 (n) + €™ V) T |
and gives the bracket
[, wlij = T(0)* gy = t*™ gy opwpmn (4.63)
= — Pk [Tlp(icsnj) + Tp5li5nj]vklwmn )
Thus the components of the embedding tensor are
1 y y
t(kl)(mn) (’L]) = 5 pm(k [Tl)p(l(sn]) + Tp5l) (1(5”])] + (m <~ n) s p(l])ab = T(U)ab . (464)

We now want to determine the largest non-abelian gaugings that can arise from the
consistent truncation. The compact gaugings are quite limited. It is easy to see that it
is not possible to gauge the maximal compact subgroup SO(3) of SL(3,R). Indeed, the
6 vectors decompose as 6* = 5 @ 1 and therefore do not contain the adjoint of SO(3).
However, the singlet in the decomposition can be used to gauge the U(1)r symmetry, as
can also be seen from the intrinsic torsion, which contains only an SO(3) singlet in 7(7)%,
We see that only compact abelian gaugings are a priori possible.

Consider now the non-compact gauging SL(2,R) ~ Spin(2,1). This is obtained via
the embedding SL(3,R) D SL(2,R) x R™, under which the vectors decompose as 6* =
3, @2 1 ®1_4. Thus we expect to be able to gauge SL(2,R), with the two vectors that
are charged under SL(2,R) dualised into tensors. To see whether this gauging is possible,
we must look at the intrinsic torsion and the bracket (4.63). The vectors decompose as

v(ij) = {V(ag): Vas 0} (4.65)

where o = 1,2 are fundamental indices of SL(2,R). The intrinsic torsion contains the
SL(2,R) singlets

Wint D14 @ 1o® € 19 3 (7%, 7 = 7000, 7 = 70) , (4.66)
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and the brackets (4.63) reduce to
[0, wap = (T +7)e V50 wg)
[v,w]a = T€7° (VsaW~y + V5Wary) + 7“‘6“"5(11504w7 — 3U5Wary) , (4.67)
[v,wlo = (1 — 37)vsw, .

The Leibniz condition (2.11) now imposes that either 7 = 37 or 7 = 0. These two cases
lead to different gaugings.

e 7 = 37. In this case, the Leibniz bracket (4.67) becomes
[v, wlap = 4750 wg) |

[v,w]a = 4?6751)5&1% , (4.68)
[v,wlo =0.

We get an SL(2,R) gauging, generated by the v,g vector fields. The v, are in the
image of the symmetric part of the Leibniz bracket and thus are dualised to tensor
fields, charged under the SL(2, R) gauge group. The graviphoton v° can gauge U(1)x.

o 7

0. Now the Leibniz bracket immediately reduces to the Lie bracket

[v, wlap = 7€ V50 wp),
[v, w]a = vaé(véaw'y - wéav’y) ) (4.69)

[v, wlo = 75w,

and the vectors v, no longer commute with each other. Therefore, the v,’s cannot
be dualised to tensor multiplets and instead contribute to a larger non-abelian gauge
group. In particular, we find that the algebra enhances to that of SL(2,R) x Heis,
with Heis the 3-dimensional Heisenberg group. Here v,z generate the semi-simple
SL(2,R) part, v, transform as doublets of SL(2,R) and v is the central element of
Heis. Therefore, {v,, vo} generate the Heis factor. However, the gauge group under
which matter is charged is SL(2,R) x R.

We see explicitly that the consistent truncation analysis differs from the purely five-
dimensional one. In five dimensions, the embedding tensor belongs to the full bundle

V*®@ giso = (1,6) @ [(3,1) & (1,8)] = (3,6) & (1,3* © 6 ® 15" @ 24%), (4.70)

where we are decomposing under SU(2)r x SL(3,R), and therefore contains more repre-
sentation than those arising in (4.61).

As a result, not all five-dimensional gaugings for nyt = 5 can arise from consistent
truncations. For example, in five dimensions, we can have an embedding tensor in 19 ® 3¢
of SL(2,R) x R*, but coming from the (1,15*) & (1,24*) of SU(2)r x SL(3,R). This
embedding tensor would lead to a U(1) gauging with four tensor multiplets with charges
42, +4. However, this gauging cannot arise from a consistent truncation, since the intrinsic
torsion (4.61) does not contain the (1,24%) representation.

— 36 —



nyt = 8 This truncation arises for the case (Br.6) and corresponds to a Gg = U(1)
structure group. Under the branching SU*(6) D SL(3,C) x U(1) the vectors decompose
as!®

15" =(393)® 3583 ,,

= (vadavaaqjd) )

(4.71)

where raised a and & indices denote the fundamental representation 3 and conjugate-
fundamental representation 3 of SL(3,C) respectively. Thus for example, since 15* is
real, the two components v® and o are related by complex conjugation (v*)* = #* and
(UO‘B )* = 7% We see that the U(1)-singlet space V = (3 ® 3)g is nine-dimensional giving
rise to nyT = 8 vector multiplets.
It is easy to check that (4.5) gives the expected scalar manifold
Cig) (Gs)  SL(3,C)

M = Myr = - , 479
vt Cusp(s)/z.(Gs)  SU(3) (4.72)

with isometry group
G =SL(3,C) x SU(2)R . (4.73)

The singlet intrinsic torsion can be written as

Wi =(3"©3",3)0 (3" ©3",1)®(3*©6,1) ® (6®3",1) )

> {Tadabu Tacds TaB’Y ) %aﬂ’y} P

where a,b = 1,2,3 are SU(2)y indices. Given v*® € V the non-zero components of the
map T are

T(v)% = v**Taa%
(v
(v

Let us now consider the possible gaugings. If we focus on maximal simple subgroups
of SL(3,C), there are three possibilities: SU(3), SU(2,1) and SL(3,R). It is easy to show
that the real form SL(3,R) cannot be gauged. For the subgroup SL(3,R) C SL(3,C) the
real and conjugate representations are isomorphic, and we can write

T(v)*s = vo‘ﬁTﬁB — %50‘5v6(5755 + EMPWJT"% , (4.75)
T'(v)

dﬁ' = _’UﬁdTBﬁ‘ + %(5dﬁ"0557'55 — 65',.ypv5'.y?5ﬁd .

7% = 6% 0. (4.76)

(0%
The nine real vectors in 3 ® 3 of SL(3,C) then decompose as
3®3~3®3=6®3". (4.77)

We see explicitly that this does not include the adjoint and hence SL(3,R) cannot be
gauged.

18Recall that for SL(3,C) the dual and conjugate representations are not equivalent. Here we denote
them by n* and 7@, respectively.
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Consider now SU(3) and SU(2,1). In these two cases the conjugate and dual repre-
sentations are isomorphic since we can write

vy = nadf}d , (4.78)

where 7,4 is the invariant Hermitian form, with signature (3,0) and (2,1) for SU(3) and
SU(2,1) respectively. The nine real vectors in 3 ® 3 of SL(3,C) decompose as

33=8d1> (0“,v0) , (4.79)
where 7%, = 0 and
v = 0P %nadvo . (4.80)

The eight vectors 7%g form the adjoint of SU(3) or SU(2,1). Decomposing the intrinsic
torsion (4.74) under SU(3) x SU(2)r (SU(2,1) x SU(2)r) we get

Wine = (1,3) @ (8,3) @ (1,1) ®3- (8,1) ® (10,1) @ (10,1), (4.81)

where the four singlet components are

Taa"b = Naa T Tad = T Nag - (4.82)

Given two vectors v = (9%g,vp) and w = (W*g, wp), the Leibniz bracket then reads

[v,w]*s = —7 (V%W g — W*,07g) ,

o1l — 0. (4.83)

Thus, we see that we can gauge either SU(3) or SU(1,2). The extra vector singlet vy can
gauge the U(1)p.

nyT = 14: This is the maximal case, where the invariant vectors span the whole V = 15*
of SU*(6). It does not correspond to any of the generalised structures listed at the beginning
of this section and therefore must correspond to a discrete structure group. Indeed, since
all the K are stabilised and from (4.5) we have

Cige) (Gs)  SU¥(6)

= Cuspo)(@s) ~ USP(6) (484
it is easy to identify the generalised structure as
Gs =2y C Eg - (4.85)
The Zy acts diagonally as —1 in USp(6), leading to the global isometry group
Giso = Cigg (Z2) = SU(2)g - SUY6) . (4.86)
Decomposing under Gig, we can hence write vectors in V as
V= (1,15%) 5 vy, (4.87)
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where v;; = v;; and 4,5 = 1,...,6.
The singlet intrinsic torsion arranges into representations of Gis, as

Wing = (3,15) ® (1,21) © (1,105

et ( )(k )& ) (4.88)
S (TY%, 7Y, 7).

where 749, = rlila, 71 — 7(9) and 79k, = 715k, with 79!, = 0. The map T : V — Uiso 18

T(U)ab = %’U,;jTijab, T(’U)ij = ’Uleiklj + Uikaj s (4.89)

with bracket k )
[v,w] lij] = —T(v) Wk = lkl][mn]

= —Tklm[iwﬂm’l)kl + T(kl)vk[iw]’]l .

[i5] Y[kl Wimn]

(4.90)

As there are 15 vectors, the largest semi-simple groups we can gauge are different
real forms of SU(4) ~ Spin(6). However SU(4) and SU(2,2) ~ Spin(4,2) do not embed
in SU(6), and we are left with SU*(4) ~ Spin(5,1) and SU(3,1) ~ Spin*(6). These are
embedded as

SU%(6) D SU*(4) x SU(2) x RT, and SU%6) D SU(3,1)/Z ~ SO*(6).  (4.91)
From the decomposition of the vectors

15* = (6, 1)_2 D (4*, 2)1 (&) (1, 1)4,

4.92
15* = 15, (4.92)

under SU*(4) x SU(2) x R* and SO*(6) we see that only SO*(6) can be gauged.
The intrinsic torsion contains an SO*(6) singlet from the decomposition of the 21 of
SU6)
Wint 3 (0,767,0), (4.93)

where §% is the invariant metric of SO*(6). Then the bracket (4.90) becomes
[v,w]’j = 37 (v w5 — v pwky) (4.94)

where we have raised indices using the SO*(6) metric. We easily recognise the SO*(6) Lie
algebra. Note that the vectors v;; satisfy a reality condition of the form

(v )55 = "5 500, (4.95)

where J ’j is the complex structure of SU*(6). If we take % to have the standard form, the
individual components of v;; are not real. This is why the gauging is SO*(6) not SO(6).
For compact gaugings, the largest possible subgroups of SU*(6) are USp(4) x SU(2)
and USp(4). However their adjoints are not contained in the 15 representation. The next
largest possible gauge group is SU(3) x U(1), which we will now investigate.
To study the SU(3) x U(1) gauge group, it is useful to consider it as a subgroup of
SO*(6) which preserves the U(3) Hermitian form. This way, we can also consider the gauge
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group SU(2,1) x U(1) € SO*6) C SU%6) by instead choosing a split-signature Hermitian
form.
Thus, both SU(3) x U(1) and SU(2,1) x U(1) are embedded in SO*(6) via

15*:80@31@5_1@10,

598 — b1 0 (4.96)

— (O _
Vij = (v BrVapB = Eaﬁ’yvva

Here o = 1,2, 3 denotes the fundamental representation of SU(3) or SU(2, 1), respectively,
and the vectors satisfy v*, = 0 as well as the reality conditions

W) =170,  (Ta) =0, () =", (4.97)

Thus, we can expect that the vectors (v¥g,v%) € 8®1 gauge SU(3) x U(1) or SU(2,1)xU(1),
respectively, and the other six are dualised into tensors.

To see whether this can arise, we investigate the intrinsic torsion (4.88). We find that
the intrinsic torsion contains singlets under SU(3) x U(1), SU(2,1) x U(1), respectively,
given by

TP =7, = 71575‘?, 7Y = Tobg, and T%% = 5%70% (4.98)

Thus, the map T becomes
T(0)s = (72 — 1o + § (7 + 271)5% ",
T(0)* = (f1 + 7)o, (4.99)

T(U)a UOTOab7

> ™
Il

o
I

with the others following from the above by complex conjugation. This leads to the Leibniz
bracket
[v,w]*s = 5(72 = 71) (07 gwy — w?5v",) + 5(71 + 72) (VD5 — W Tp)
— l5a5(7~'1 + %2)(QJ'Y’L1_)7 — w'yz_)y)
[v,w]* = $71 (v* sw? + w®goP) — 7 (v sw® —wgvP) (4.100)
+ %TQ(UQU) — wov®) + §T1(2U0w — wov®),
[v,w]® = (71 + o) (VD0 — W*Ty)

with [v, w]s = (Jv, w]*)*.
The Leibniz condition now reduces to

’7‘1(’7‘14-7:2) =0. (4.101)
The two solutions 71 = 0 and 7| = —7y lead to two different gaugings. When 7 = 0
we recover the previous case where SU(3,1) is gauged. For 7y = —7 the Leibniz bracket

becomes

[v, w]®s = T2 (v g™y — w”gv%),
[v, w]® = —Fov® gw’ — LFwouw®, (4.102)
[o,w]° =0.
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We recognise the Lie algebra of SU(3) x U(1) and SU(2,1) x U(1), respectively, generated
by the v*g and vY. The v® and @, are in the image of the symmetrised Leibniz bracket and
therefore correspond to tensor multiplets which transform in the 3; & 3_1 of SU(3) x U(1)
or SU(2,1) x U(1). The U(1) generator v° can also gauge the U(1)g via 7°%,.

In Table 3 we summarise the maximal reductive and compact gauge groups for the
special cases of purely vector /tensor multiplet truncations of this section. As in the previous
table, whenever we list a product of groups, the individual factors can also be gauged
separately even though they are not listed as such. Whenever there are abelian factors in
Ggauge, the U(1)r can also be gauged diagonally with some combination of these factors.

nvrt Giso Ggauge nr
SL(2,R) x R? —~

5 SU(2)r x SL(3,R) SL(2,R) x U(1)x 9
8 | SU(2)r x SL(3,C) | SU3) x U(1)g, SU((2,1)x U(l)g | —
SU3, 1) .

W SU@R>SUTO) | qya) Uy, SUG) x U | 6

Table 3. Maximal reductive and compact gauge groups in the special cases of purely vector/tensor
multiplet truncations. The first column gives the total number of vectors and tensor multiplets,
the second the global isometry group, the third the allowed gaugings and the last one the number
of vectors that are dualised to tensors in each case.

4.2 Truncations with only hypermultiplets

Let us now analyse which consistent truncations are possible with only hypermultiplets
and no vector multiplets.

Truncations of this kind are associated to a generalised structures Gg that is defined
by a single generalised vector K in the 27" of Eg(g), defining a V-structure, and a set of
adjoint tensors J4, A =1,...,dim(Gpy), satisfying

Ja-K=0. (4.103)

Since the stabiliser of the V-structure is Fy(4) C Eg(g),

we must have Gg C Fyy). Finally, by construction, the scalar manifold must be
symmetric (see Section 3)

Gu
My = , 4104
"7 SU@)& - Cusp(e)(Gs) ( )

where G = Cp, g, (Gg) is the group generated by the singlets J4.

The above considerations already restrict the possible scalar manifolds for the hyper-
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multiplets to the following list [40, 41]

__ P
M= sue U T
800(47]7)
My =i npu=p, p<5,
4
SO(4) x SO(p) (4105)
My = C22) nyg = 2
SO(4) ’
SU(2,1
My = (2,1) ng=1,

S(U2) x U(L))

where SOq(4,p) denotes the connected component of the SO(4, p).

However the first two manifolds do not arise from truly A/ = 2 truncations. This is
because they correspond to generalised structure groups that lead to extra singlets in the
decomposition of the 6 of USp(6). For My = %, the structure group is trivial,
Ggs = 1, since it is given by the commutant in Fyy) of the isometry group. Thus this
truncation always comes from a sub-truncation of five-dimensional maximal supergravity.

Similarly, for the My = %%, with p <5, the structure group has to be

Gg = Spin(b — p), (4.106)

with Spin(0) = Spin(1) = Zz. The decomposition of the 6 of USp(6) under Gg always
contains two extra singlets, so that these cases are sub-truncations of half-maximal gauged
supergravity. Indeed, from the commutant of Gs in the full Egg and USp(8) groups,

Clg () (SPin(5 — p)) = Spin(5,p) x R*,  Cugys) (Spin(5 — p)) = USp(4) x Spin(p),
(4.107)
one can easily check that Gg = Spin(5 — p) actually allows for a half-maximal truncation
with p vector multiplets and scalar manifold

__ Sein(5,p) o
USp(4) x Spin(p)

This leaves only the two last manifolds in (4.105) as truly A/ = 2 truncations.

(4.108)

e The case with ng = 2 hypermultiplets corresponds to a Gg = SO(3) that is obtained
from (Br.2). The structure group embeds as

F4(4) D SU(Q) X G2(2) ,

(4.109)
USp(6) O SU(2) x SU(2).

Decomposing the 78 of Eg in representations of Gs = SU(2) gives 6 compact and
8 non-compact singlets. Altogether they correspond to the generators of Gy (s, while
the compact ones give its SO(4) maximal compact subgroup. Then (4.104) gives the
expected scalar manifold

Gaz)
SO(4)

It is also easy to check that there are no vector/tensor multiplets in the truncation,

M= My = (4.110)

since there are no singlets in the 26 of I'y(4) under the branching (4.109).
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e The case with ng = 1 tensor multiplet corresponds to the generalised structure Gg =
SU(3) (Br.3). This is embedded as

F4(4) D) SU(?)) X SU(2, 1),

(4.111)
USp(6) > SU(3) x U(1).

In the decomposition of the 78 of SU(3) one finds 4 compact and 4 non-compact
singlets, which generate SU(2,1). The compact ones give the compact subgroup
SU(2) x U(1) so that we recover the hyperscalar manifold

SU(2,1)
S(U(2) x U(1)) -

M= My = (4.112)

As, again, there are no singlets in the 26 of I'4(4) under the branching to G5 = SU(3),
there are no vector multiplets.

The study of the intrinsic torsions and the gauging for the truncations with only
hypermultiplets is very simple. As the only vector in the theory is the graviphoton in the
universal multiplet, only abelian gaugings are possible. Moreover, in all cases, the intrinsic
torsion only contains the adjoint representation of the isometry group

Wine = adGu 3 785, (4.113)
with A, B =1,...dim Gy so that the map T : V — giso 18
T = o978y, A=1,...,dimGy. (4.114)
The generalised Lie derivative on the adjoint singlets is
Ly Ja = [Jxy, Ja] = =T(Ko) - Ja = poa®J5, (4.115)
with the component of the embedding tensor
poa® =1, (4.116)
and the graviphoton can gauge any one-dimensional subgroup of Gy.

4.3 Truncations with vector/tensor and hypermultiplets

The last class of truncations that can arise consists of truncations with both vector /tensor
and hypermultiplets. One way to study this class is to start from the truncations with only
hypermultiplets discussed in the previous section and look for a subgroup of the structure
group Gg that allows for extra singlet vectors but no extra singlets in the branching of the 6
under USp(6) D Gg. This last condition is necessary to have a truly N' = 2 truncation and
leaves only two possible cases: ny = 2 with Gg = SU(2) (Br.2) or ng = 1 and Gg = SU(3)
(Br.3).
The case with ng = 2 hypermultiplets and hyperscalar manifold
_ Gy

My = 50’ (4.117)
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is immediately ruled out since any further reduction of the Gg = SU(2) structure group
necessarily gives rise to a singlet in the 6 of USp(6). This can be easily see from (4.11) by
breaking the second SU(2) factor. Therefore consistent truncations with hypermultiplets
forming the scalar manifold (4.117) and vector/tensor multiplets necessarily arise from
subtruncations of N' > 2 gauged supergravity.

We are left with the case with ny = 1 hypermultiplet and hyperscalar manifold

SU(2,1)
S(U(2) x U(1))

My = (4.118)
The structure group is SU(3) and we can consider two non-trivial subgroups Gg = SU(2) x
U(1) (Br.4) and Gg = U(1) (Br.5). As we will discuss below, they allow for nyr = 1 and
nyT = 4 vector multiplets, respectively. Cases with nyp = 2,3 can only be obtained as
sub-truncations of the nyT = 4 case and therefore we will not discuss them here.

Recall that the scalar manifold of the vector/tensor multiplets in the truncation can
now be computed from the commutant of Gg within the stabiliser groups Gy; and Hy,
in Eg) and USp(8)/Zy respectively, of the space U of J4 that define the hypermultiplet
moduli. One finds

Gy = SL(3, C) C Eﬁ(ﬁ) s (4.119)

with compact subgroup
Hy =SU(3) c USp(8)/Zs. (4.120)

The scalar manifold of the vector/tensor multiplets is then

Ce,(Gs)  Csiee)(Gs)
M = u = ’ . 4.121
VT Cy(Gs) — Csus)(Gs) ( )

We thus find the two following possible truncations.

nyt = 1,ng = 1:  Consider first the structure group Gg = SU(2) x U(1).
The 27* of Eg(g) contains two Gg singlets so that V is two-dimensional and nyt = 1.
Thus, the scalar manifold is

SU(2,1)
S(U@R) x U(1))

Myt =R",  Mpy= (4.122)

The decomposition of the adjoint of Eg(g) gives four compact and five non-compact Gg
singlets that are the generators of the isometry group

Giso = RT x SU(2,1). (4.123)
Under this group the vectors decompose as
V=1,31_45 (" v"). (4.124)

where the subscripts denote the RT charges.
To determine the possible gaugings we find that the intrinsic torsion has components

Wit =8_2®8, &1 3 (155, 75,71, (4.125)

— 44 —



which give the adjoint action

T(v)AB = U0T643 + vle‘B , (4.126)

1 A

and T'(v)y = v'71 = 0 by the Leibniz condition. Furthermore (3.53) implies 74’5 and e
commute. Thus, the two vectors can gauge a one- or two-dimensional abelian subgroup of

SU(2,1), while the RT symmetry cannot be gauged.

nyt = 4,ng = 1:  Keeping only Gg = U(1) C SU(2) x U(1) as structure group the 27*
contains five Gg singlets so that V is five-dimensional and nyt = 4. The commutators of
Gs = U(1) in SL(3,C) and SU(3)

Csrs0)(U(1) = SL(2,C) x U(1) x R*,

(4.127)
Csu(s)(U(1)) = SU(2) x U(1).
and hence, from (4.121), the scalar manifold is
SO(3,1) SU(2,1)
Mvr =5y *R Mu = 55y < v (4.128)

The adjoint of Eg(g) contains seven compact and seven non-compact Gg singlet elements
corresponding to the isometry group

Giso = SO(3,1) x Rt x SU(2,1). (4.129)

The intrinsic torsion components arrange themselves in representations of the isometry

group Giso

Wing = (4,8)_1 ®(1,8)2@ (6,1)_2®2-(4,1); > (TZAB,T(;‘B,T&,Q,T[”M) , (4.130)

where A,B = 1,2,3 and i = 1,...,4 are SU(2,1) and SO(3,1) indices and the subscript
denotes the R* charges. The T map is defined as:

T(v)4p = "1y +virsy
4 : 4 (4.131)
T(v)'; = UOTéj + vaij ,

where again 7; = 0 because of the Leibniz condition (4.37).

The analysis of the gauging of the vector/tensor multiplet isometries is the same as for
the nyT = 4 generic case without hypermultiplets, so that the possible gauge groups are
SO(2,1), SO(3), ISO(2), when there are no tensor multiplets, and SO(2) or SO(1,1) with
tensor multiplets.

The gauging of SU(2)r or U(1)g subgroups of SU(2, 1) global symmetry group of My
are also given by the analysis of the case with only nyT = 4 vector multiplets.

To see whether other subgroups of the SU(2, 1) are possible one has to analyse condition

(3.53), which now implies
j A A __B A B A __C A __C k. A
TOi]TjBZOa 70 BT, ¢ —T; BTo ¢ =0, T CT; B~ T;CT; B=Tij Tg B- (4.132)

We again consider two cases, to solve the constraints (4.37):
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o 7;;; = 0 and 79 # # 0. In this case we only have abelian gaugings and the rank of
7o) determines the number of tensor multiplets. If it has rank 4, then A5 =0
and the only possibility is that v° gauges a one-dimensional subgroup of SU(2, 1) via
7'54 B. If 79;7 has rank 0 or 2, any two linearly independent combinations of v° and
v’ can gauge a 1- or 2-dimensional abelian subgroup of SU(2, 1), with the embedding
determined by 7¢'p and 7/15.

e Tijr # 0, 7o/ = 0. In this case the first equation of (4.132) is trivially verified. The
gauge groups are the same as for the generic case. Indeed in the generic case the
gauge groups are given by how the tensor 7;;, decomposes. Here this tensor gives
in the third equation of (4.132) directly the structure constant of the gauging inside
SU(2,1). So we obtain the same possible gaugings as for the generic case but with
two different embedding. We could either gauge a subgroup of SO(3,1) or a diagonal
subgroup of SO(3, 1) subgroup and SU(2,1) subgroup.

In Table 4 we give the list of possible gauging for truncations with vector/tensor and
hypermultiplets. For simplicity we give a list of product groups, but the individual factors
can also be gauged separately. Gext, the U(1)p can also be gauged diagonally with some
combination of these factors.

nyrt | N"H Giso Ggauge nrt

1 | 1 | SU(2,1)%x8S0(1,1) x RF U(1)g x RT -

SO(2,1) x Rt x U(1)g, SO(3) x RT x U(1)pg,
ISO(2) x RT x U(1)g, SU(2)g x RT
SO(2) x U(1)g x RT, SO(1,1) x U(1)g x RT
SO(1,1)

4 1 | SU(2,1) x SO(3,1) x RT

Table 4. Summary of the gauge groups in the mixed cases. The first column gives the total number
of vectors and tensor multiplets, the second the global isometry group, the third the allowed gaugings
and the last one the number of vectors that are dualised to tensors in each case.

5 Conclusions

In this paper, we used exceptional generalised geometry to classify which five-dimensional
N = 2 gauged supergravities can arise as consistent truncations of 10-/11-dimensional
supergravity. From the higher-dimensional point of view any truncation is associated to
a generalised Gs C Eg) structure on the compactification manifold M, with constant
intrinsic torsion. The field content of the truncated theory is determined by the nowhere
vanishing generalised tensors on M that define the Gg structure, while the embedding
tensor is given by the constant singlet intrinsic torsion.

Requiring that the Gg structure has constant, singlet intrinsic torsion imposes differ-
ential conditions on the structure on M that we do not analyse in this paper. Instead we
assume that such conditions are satisfied, and we show that already the algebraic analysis
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of the allowed Gg structures and possible singlet intrinsic torsion severely restricts which
five-dimensional A = 2 gauged supergravities can be obtained by a consistent truncation.

In particular, we find that the scalar manifolds must necessarily be symmetric spaces
and that there is a very limited number of possible truncations. If there are just vec-
tor/tensor multiplets, we can only have

SO(TlVT —1 1)
=Rt x —"~ <6
Myt X SO(myr —1) nyr <6,
SL(3,R
Myt = SLB.R) ; nyr =5,
SO(3) (5.1)
Mo — SL(3,C) o — & ’
SU%(6)
= =14
T USp(6) ’ nyT )
while if there are just hypermultiplets, the only possibilities are
Ga)
= = 2
SU(2,1 :

S(U2) x U(L))

Finally, for vector/tensor and hypermultiplets, the only theories with higher-dimensional
origin are of the form

_su@e) -
M= 5@ < v = -
SO(nyt — 1,1) '
Rt x =221V =/ <
My =RT X SO(Mmyr —1) nyt < 4,

Any other five-dimensional N/ = 2 gauged supergravity cannot be uplifted via a consistent
truncation to 10-/11-dimensional supergravity'®.

For each of the above cases, we give the corresponding Gg structure and study what
gaugings can arise. Algebraically, these are encoded in the singlets of the intrinsic torsion
subject to the Leibniz condition. The results are summarised in Tables 2, 3 and 4. For
gauged supergravities with only vector/tensor multiplets, we recover many of the results of
[32], where the allowed gaugings are discussed from a purely five-dimensional point of view.

However, we can also exclude certain of the five-dimensional gaugings that appear in [32].
Rt x SO(nyr—1,1)

SO(nyr—1)
are charged under a vector transforming non-trivially under SO(nyt — 1,1) cannot arise

For example in the case of Myt = , we find that gaugings where the tensors
from consistent truncations. For truncations with only hypermultiplets the gaugings are
trivial since they reduce to gauging the U(1) gz symmetry. What is probably more surprising
is the very limited number of truncations with both vector- and hypermultiplets.

19The theories with hyperscalar manifolds My = m, or My = %ﬁ’g{p), as well as with

Ga(2)
S0(4)

hyperscalar manifolds My = and some vector multiplets are necessarily subtruncations of N' > 2

supergravities.
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Our findings are particularly important for the study of gauged supergravities con-
taining AdS vacua. Since no AdS vacuum is believed to admit scale separation [2], those
gauged supergravities that cannot be uplifted by a consistent truncation cannot have a
higher-dimensional string theory origin. Therefore, they should belong to the swampland
of lower-dimensional theories.

An important issue that we do not address here is whether we can actually solve the
differential conditions imposed by the intrinsic torsion, that are required for the consistent
truncation to exist. This would involve constructing explicit examples of background that
admit the Gg structure listed in this paper and checking that the intrinsic torsion has
only singlet constant components. We leave this analysis for future work. It would also be
interesting to see whether the approach of [22-24] can be extended to non-maximally super-
symmetric truncations and to use the the five-dimensional embedding tensor to determine
what the uplifted geometry should be. In any case, we expect that imposing the differential
conditions from the intrinsic torsion will further restrict which consistent truncations exist.

It is also worth stressing that we scanned all possible generalised structures where Gg
is a Lie group. It is possible that looking at discrete structure groups might increase the
number of possible truncations. We leave this as a problem for the future.

Another direction of future research is to extend our analysis to other dimensions
and amounts of supersymmetry. For example, it would be interesting to classify which
four-dimensional N/ = 2 gauged supergravities can be uplifted by consistent truncations
to 10-/11-dimensional supergravity. More ambitious would be to extend our method to
three dimensions, where A" = 1 and N = 2 gauged supergravities admit deformations cor-
responding to real/holomorphic superpotentials that are not induced by gaugings [52]. It
would be interesting to explore which of these can arise from consistent truncations. The
appropriate framework would be Egg) Exceptional Field Theory [53], where the generalised
Lie derivative does not close without the addition of shift symmetries, leading to technical
challenges. Similar questions can be asked in two dimensions, where subgroups of affine
global symmetry groups, such as Egg) for maximal supersymmetry, can be gauged and
scalar and vector fields transform in infinite-dimensional representations of the affine sym-
metry. This question can in principle be addressed with Egg) Exceptional Field Theory
[54-56], which however requires infinitely-large generalised tangent bundles.
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A Ege) generalised geometry for M-theory

This section is a brief recall of the main features of the generalised geometry of M-theory
compactifications on a six-dimensional manifold M. For a more detailed discussion we refer
to [57] and [49, App. EJ.

For M-theory on a six-dimensional manifold we use Eg) X RT generalised geometry.
The generalised tangent bundle F and the dual bundle E* are

E ~ TM & N*T*M & A°T*M

% . % 2 5 (Al)
E* ~ T*M & A2TM & ASTM |

where we decompose the various bundles in representations of GL 6, the geometric subgroup
of Eg). The sections of £/ and E*, the generalised vectors and its dual, transform in the
27* and the 27 of Eg) and can be written as

V=v+w+o,
(A.2)
Z=0+w+7,

0

where v is an ordinary vector field, w is a two-form, ¢ is a five-form?°, ¥ is one-form, & is

a two-vector and & is a five-vector. Generalised vectors and dual generalised vectors have
a natural pairing given by

(Z,V) = 0™ + L™, 4+ & 6P G (A7)

We will also need the bundle N ~ det T*M ® E*. In terms of
GL6 tensors, N decomposes as

N ~T*M @A T*M & (T*M @ A°T* M), (A.8)

20The generalised tangent bundle E has a non-trivial structure that takes into account the non-trivial
gauge potentials of M-theory. To be more precise the sections of E are defined as

V =My, (A.3)

where A+ A is an element of the adjoint bundle, V = v+w-+0o, with v € ['(T M) are vectors, w € T'(A*T* M)
and o € T(A°T*M), and - defines the adjoint action defined in (A.22). The patching condition on the
overlaps U, N Up is i

Viay = e*rentdbas .y, (A.4)

where A,y and A(a ) are a two- and five-form, respectively. This corresponds to the gauge-transformation
of the three- and six-form potentials in (A.3) as

Ata) = Ap) + dA(ap)
Ay = Ay +dAap) — %dA(aﬂ) A A - (A.5)
The respective gauge-invariant field-strengths reproduce the supergravity ones:

F =dA,

F:d[l—%A/\F. (A.6)
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and correspondingly its sections Z, decompose as
Zb:)\+,0-|—7'. (A9)

The bundle N is obtained from the symmetric product of two generalised vectors via the
map ®y : F® F — N with

A=vaw +v ow,
p=vi0 +v 0 —wAuW, (A.10)
T =jwAd +ju Ao,

Wedges and contractions among tensors on M are defined with the following conventions:

Y|
(U A u)a1...ap+p/ _ (p—:_l,)') v[al...apuap+1...ap+p/]’
b-p:
(¢+q)!
(AA p)al...aq+q/ = W [a1...agPagt1..ag, ]

]. b b .
(U —')‘)a1...aq_p = IT!U b pAbl--.bpaL..aqu 5 if p <g,

1
(’U J)\)al...ap_q — _Ual...ap_qbl...bq)\blmbq ’ if D > q,

q
(JuajN)% = 1 Pt )
] ] b — (p _ 1), bcl...cp_la
, d!
(]/\ A p)a7 ar..ag (q — 1)'(d +1— C])' /\a[al...aq_lpaq...ad} . (A.ll)
The Eg(g) cubic invariant is defined on E and E*as?!
c(V,V,V)==6l,who—wAwAw,
NZ,2,2) = —6L30NG—ONANOAD. (A.12)
The adjoint bundle is defined as
adF ~ R® (TM & T*M) & A*T*M & AST*M & APTM & ASTM , (A.13)
with sections
R=Il+r+a+a+a+a, (A.14)

where locally | € R, r € End(TM), a € A3T*M, etc. In order to obtain the eq(d) Sub-
algebra we need to fix the factor [ in terms of the trace of r as [ = %trr. This choice fixes
the weight of the generalised tensors under the R™ factor. In particular it implies that a
scalar of weight k is a section of (det T*M)*/3: 1, € T'((det T*M)*/3).

It is also useful to introduce the weighted adjoint bundle

(detT*M)®@adF D> R®AT*M & (TM @ ASTM), (A.15)

21This is 6 times the cubic invariant given in [49]. Because of this, we introduced a compensating factor
of 6 in the formulae (3.11) and (3.13).
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whose sections are locally given by the sum
Ry=o¢+0¢+1, (A.16)
where ¢, ¢ and v are obtained from the adjoint elements r € TM ® T*M, o € A3TM,
a € N3TM as
é = avolg ¢ = aavolg Y =1 -volg, (A.17)
where volg is a reference volume form. We denote by - the gl(6) action on tensors: given

a frame {é,} for TM and a co-frame {e,} for T*M, a = 1,...,6, the action, for instance,
on a vector and a two-form is

(r-v) = r%? (r-w)ap = —1raWep — pac - (A.18)
The action of an adjoint element R on another adjoint element R’ is given by the

commutator, R” = [R, R']. In components, R” reads

2

1" %(@JGI—O/JG)+—(O~/J(~I—0~6Ja/),

3
"o / . .y A 1 / /
" =[r,r|+jasjad —jo’ Lja— g(asad —a sa)l,
S~ s i~ g ~7 o~ ~  ~f
+ ja _nja—jouja—%(a Ja—aaa)l,
n / / / ~ ~/
a =r-a—r-a+a sa—-—asa, (A.19)
~/ ~/ !/~ /
=r-a—r-a—alha,
14 /
o =r-o —r-o+oi1a—aia,
~// ~/ / ~ /
o =r-oa—r-a—alhaoa,

where - denotes the gl(6) action defined in (A.18).
The ¢g6) Killing form on two elements of the adjoint bundle is given by

tr(R,R') = 5 (3 tr(r)tr(r’) + tr(rr’) + and' + o sa—asd —d sa) . (A.20)

An element R of the adjoint bundle can act on a generalised vector V € I'(E) and on
a dual generalised vector Z as

V' =R-V, Z'=R-Z, (A.21)
where the components of V' are

V=lw+r-v+taiw—alo,
W =lw+r-wtviat+alo, (A.22)

o =lo+r-c+viataliw,

and those of Z’ are

N ~ N ~ N ~
v ==lo+r-v—wia+adaa,

~/ ~ ~ N ~
W=—lwo+r-w—aiv—7daa, (A.23)
¢ =—l6+r-6—aidb—alw
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In this formalism, diffeomorphisms and gauge transformations by the three-form and
six-form potentials combines to define the generalised diffeomorphisms. The action of an
infinitesimal generalised diffeomorphism is generated by the generalised Lie (or Dorfman)
derivative along a generalised vector. The generalised Lie derivative is defined in an anal-
ogous way as the Lie derivative between two ordinary vectors v and v’ on T'M, written in
components as a gl(6) action

(L,0")™ = 0" 00" ™ — (0 x v)" '™, (A.24)
the symbol x is the projection onto the adjoint bundle of the product of the fundamental
and dual representation of GL6 . We introduce the operators d); = 0,, as sections of the
dual tangent bundle and we define the generalised Lie derivative as

(Ly VM = VNN V™M — (9 xoq VIM NVV | (A.25)

where VM M = 1,...,27, are the components of V in a standard coordinate basis, and
X ad is the projection onto the adjoint bundle,

Xad | E* @ E — adF, (A.26)

whose explicit expression can be found in [57, Eq. (C.13)]. In terms of
GL6 tensors, (A.25) becomes

Ly V' =L, + (va’ — Lv/dw) + (Evol — tydo — W' A dw) . (A.27)
The action of the generalised Lie derivative on a section of the adjoint bundle (A.14) is

LyR = (Lyr + joosjdw — $ laodw — jajdo + 21audo) + (Lya+ - dw — a do)
+ (Lya+r-do+dwAa)+ (Lya—asdw)+ Lya. (A.28)

Given a section Z, = A+ p+ 7 of N, its Lie derivative along the generalised vector V is
LyZ, = LA+ (Lyp — ANdw) + (Ly7 — jp Adw + jAAdo). (A.29)
Since Z, = V' @ V", this is obtained by applying the Leibniz rule for Ly .
Ly(Zy) =LyV' @y V" + V' @y LyV". (A.30)
It is also straightforward to verify that
dZ, = LyV' + Ly/V , (A.31)

for any element Z, =V @5 V' € N.
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B Intrinsic torsion for G = SU(2) x Spin(6 — nyr) structures

The intrinsic torsion of a given Gg structure plays an important role in the derivation of
the truncated theory as it determines the embedding tensors and the possible gaugings.
As discussed in Section 3.1.2, the generalised intrinsic torsion of a Gg structure is given

by quotient

vats = W/WGS ) (B.l)
where W is the bundle of the generalised torsion, which in our case is in the 351 of Egg),
and Wg, is the image of the map 7 : Kgg — W from the space Kg, = E* ® adGs of Gg
compatible connections to W. Moreover, since in all our cases the Gg C USp(8), one can
define a generalised metric G and use the norm defined by G to decompose the bundles W
and Kq, as [15]

W = WGS @ Wint )

(B.2)
KGS = WGS D UGS .

In this appendix we show how to compute Wi, for two of the examples discussed in
Section 4.1.1. These two cases allow to illustrate all the subtleties one might encounter in
this kind of computation.

We consider first the truncation to nyt = 6 vector multiplets. The structure group is
Gs = SU(2) x Zy and the isometry group is Giso = SU(2)g x SO(5,1) x RT. We use (B.2)
to compute the intrinsic torsion W;,; of the Gg structure.

We first decompose the generalised torsion under Gg x Gis, and keep only the Gg
singlets

Wi, =(3,1)—2®(3,6): ®(1,n); & (1,15)_» & (1,10); ¢ (1,10)1, (B.3)

where the first entries are SU(2)g representations and the second ones SO(5, 1) represen-
tations and the subscripts are the R™ charges.
Then we look for the Gg singlets in the space of Gg connections, Kg,. The intrinsic

torsion will be given by the terms in (B.3) that are not contained in K. Since the 27 does

not contain terms in the adjoint of Gg, the product??

Ko =1(1,1,1) 2@ (1,6,1); © (1,4,2) 10D (2,4,1) 15 ® (2,1,2)_15] ® [(1,1, 3)q]

can never contain Gg singlets. This means that the intrinsic torsion of the Gg structure is
entirely given by W/,

Wint = (3,1)_2® (3,6)1 & (1,n); & (1,15) o ¢ (1,10); & (1,10),, (B.4)
and we do not have to bother about possible kernels of the map 7: Kgg — W.

Consider now the case with nyt = 4 vector multiplets, which has structure group
Gs = SU(2) x U(1) and isometry group is Giso = SU(2)g X SO(3,1) x RT. The Gg singlets
in the generalised torsion are

W’s = (3, 1)_2 (&) (3,4)1 ®2- (1,4)1 (&) (1, 6)_2 &) (1,4)_1 D (1, 1)_2 , (B5)

22Tn this expression the last entries denote the representations of the structure group.
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where again the first entries are SU(2)r representations and the second ones SO(3,1)
representations, while the subscripts are the R™ charges. The G g singlets in the generalised
connection are

Kag = [(1,2,2)_1/91 ® (1,2,2)_1)51 @ (1,4,1)1
®(1,1, 1)1,2 @ (1,1, 1)1,_2 @ (1,1, 1)_2’0
D(2,2,1) 121 ©(2,2,1) 1721 ®(2,1,2)10] @[(1,1,3)0,0 @ (1,1, 1)0,0]
= [(1,4,1)10 @ (1,1,1)20] . (B.6)

Again from (B.2) the intrinsic torsion is given by the elements of W], that are not contained
in (B.6)
Wing 2 (3,1)-26(3,4)1 ®(1,4)1 & (1,6)2 & (1,4)1 . (B.7)

In this case, one should make sure that the map 7 has no kernel so that the relation above
is an equality. The explicit definition of the map 7 : Kg — W is via the generalised Lie
derivative. Given a Gg compatible connection

DMWN = OMWN + QMNPWP , (B.8)
the intrinsic torsion can be defined as

TV)M Ny = (LEW)M — (Lyw)M
=vP (QPMN — QNMP + OéCMSQCRNQ QSRP)WN = VPTPMNWN ,
(B.9)
where V' and W are generalised vectors and, in the second line, we plugged (B.8) and we

used the explicit expression for the Ege) adjoint action in the generalised Lie derivative

(A.25)
(Ly W)™ = VNoNyWM — WNoy VM + o MPepnodpVEWY . (B.10)

The second line in (B.9) defines the map 7 as
T(Q)p N =Tr" x . (B.11)

By computing (B.11) one can check the that there is indeed no kernel, as can also be
seen in terms of representations

T (%)%, — (3,1)€1,®(3,1)_2,

T(0%); < (lL,ad)o € 12®(3,1)1,

T(w')"%  «— (3,1)p€en1®(3,1), (B.12)
T(vi)(o) +—— (l,ad)p€n_; ®(1,n),

T,  +— (Lad)en®(1,X);.

We have not directly checked that there are no singlet intrinsic torsion kernels for the
other G g structures that appear in paper, although our expectation is that there are not.
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C The truncation ansatz

In this section we discuss the truncation ansatz for ruductions of eleven-dimensional su-
pergravity to five dimensions. The ansatz gives the explicit relation between the eleven-
dimensional fields and those of the reduced theory. The discussion for type IIB reduction
follows the same lines.

We consider eleven-dimensional supergravity on a background X x M, where X is a
non-compact five-dimensional space-time and M is a six-dimensional compact space. We
focus on the bosonic sector of eleven-dimensional supergravity, which consists of the metric

§, a three-form potentia A and a six-form potential A. We use the conventions of [57].

The first step of the truncation consists in decomposing the eleven-dimensional fields
according to GL(6,R) x Eg(g), where GL(6,R), the structure group of X, determines the
tensorial structure of the fields in the five-dimensional theory

g = 28 G dzt'da” + grn D2 D2"
A= %AmnpDzm”p + %A“m"dxu A D2+ %Aulﬂndxw A Dz™ + % A;wp dzHvP |
;1 = éfiml me D20 éfiuml,,,de:c“/\Dzml"'m5
+ ﬁf:l,wml...m4dx“"ADzm1"'m4 + .., (C.1)

with ¥, p=0,...,4,and y™, m = 1,...,6, the coordinates on X and M, respectively, and
Dy™ = dy™ — h,dz*. All the components in (C.1) may depend both on z# and y™, the
only exception being the external metric, which only depends on the external coordinates

only, Juv = g;w(x)'

Then we arrange the fields in (C.1) according to Eg ) representations.??

The field with all components on the internal manifold M arrange into the inverse
generalised metric
GMN <—> {Au gmny Amnpa Aml...ms} . (CQ)

The explicit embedding is given by

(G = *Rgmm,
(G nimy = 29" Appiny
(G n1ms = 29" (Appning Angnans) + Apny.ns) »
(G_l)mlmz ning — GQA(gm1m2,7’l1TL2 + gquPWIWQAQTllTu])?
(G imimantoms = €2 (Gmyma (1o Angnans] + 9 (Apmims (Aginins Angnans) + Agni..ns)]

(G_l)ml...ms ni..ng = QQAgpq(Ap[mlmzAm3m4m5] + ‘lemlmms)(Aq[nlnzAn3n4n5] + Aqm...ns)

+ e g, s nrems (C.3)

23Note that, in order to reproduce the gauge transformation of the reduced theory, the barred components
of three- and six-form potentials must be redefined, Appendix C of [27]. The expressions for the redefined
fields, which we denote by unbarred A and A are not relevant for this work.
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where Imima,ning = 9mi[n1Y|ma|na]s and similarly for 9Im;y..ms,n1...n5-
The tensors with one external leg arrange into a generalised vector 4, on M, with
components
AM(2,y) = {h™, Ay Aymyoms } €T M @ E), (C.4)

while those with two external anti-symmetric indices define a weighted dual vector in the
bundle N
B/J,VM - {A/u/ma A/u/ml...m47 g;wml...mg,n} S F(AQT*M ® N)a (05)

The last term in (C.5) is related to the dual graviton and is not necessary in the truncation.
Finally, the tensors with three antisymmetrised external indices arrange into the generalised
tensor

CHVP& = {AMV/“ AMVPmleLQM:w gMVPml---msnn} € F(Cl) ’ (0'6)
where C" is a sub-bundle of the weighted adjoint bundle det T* M ®ad F', whose components
are labeled by & = 1,...,78. See e.g. [58, 59] for more details on this tensor hierarchy.

The truncation ansatz for the bosonic sector of eleven-dimensional supergravity is
obtained by expanding the generalised tensors define above into singlets of the G g structure.

The scalars of the truncated theory are determined by the generalised metric. To
obtain the ansatz for the scalars one first needs to construct a family of HV structures in
terms of the Gg singlets as described in Section 3.1.1

K(z,y) = W (2)K;(y)
Ja(2,y) = L(x)ja(y) L(x) ",

where L is the representative of the coset My and h parameterise MyT. Then plugging

(C.7)

K and J, in the expression (3.15) gives the generalised metric, which now depends on the
H and V structure moduli. These are identified with the hyperscalar and vector multiplet
scalar fields of the truncated theory. Comparing the generalised metric obtained this way
with its general form (C.3), we obtain the truncation ansatz for A, gmn, Amnp, flml___mﬁ (if
needed).

The gauge potential of the five-dimensional theory are given by expanding the gener-
alised vector (C.4) on the Gg invariant vectors K

Au(z,y) = AL (2) Ki(y). (C.8)

As for the metric, identifying the components on the two sides of the equation above
gives the truncation ansatz for hj', Apmn and Aﬂml---mS’

Similarly the two-form fields and the ansatz for the field with two antisymmetrised
external indices are obtained from

Bu(x,y) = B, i(x) K (y). (C.9)

where be are the Gg singlet weighted dual basis vectors, which are defined by be (K;5) =

3251 j-We can also give the ansatx for the three-forms of the reduced theory
Cuvp = CquA(l') Jﬁlv (C.10)

where JZ = k2J4 are the Gg singlets in the weighted adjoint bundle.
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Sujet : Structure de compactification de la théorie des cordes

Résumé : La cohérence interne de la théorie des cordes implique que I’espace-temps soit de onze
dimensions. Pour expliquer pourquoi nous n’observons que quatre dimensions d’espace-temps,
nous supposons que ’espace-temps est le produit de I'espace-temps que nous observons et d’un
espace interne, compact, de taille si petite qu’on ne peut I'observer. Un probleme centrale de la
théorie des cordes est donc de déduire des actions effective qui reproduisent le modele standard et
la relativité générale a partir de ces réductions dimensionnelles. Ma these porte sur une des méth-
odes que nous avons de construire de telles actions effectives en basses dimensions: les troncatures
cohérentes. L’idée est d’utiliser les symétrie étendues qui caractérisent la théorie des cordes pour
sélectionner, parmi le nombre infinis d’états de la théorie, un nombre fini qui contribuent a la
théorie effective. Dans ma these je montrerais comment le formalisme de la géométrie généralisée,
une extension de la géométrie différentielle qui permet d’unifier transformation de coordonnés
de l'espace-temps et transformations de jauge des potentiels de la théorie de cordes dans des
difféomorphismes généralisés, permet d’obtenir des troncatures cohérente de facon systématique
et ainsi d’établir une classification des théories effectives qui peuvent étre obtenue en théories des
cordes. Cette méthode permet d’obtenir des théories effectives en différentes dimensions, dans
cette these je me concentrerais sur le cas des réductions a cinq dimensions en vue d’applications
a la dualité holographique entre théories de jauge et théorie de cordes.

Mots clés : Théorie des cordes, compactification, théorie effective, troncature cohérente

Subject : The structure of string theory compactification

Abstract: The internal consistency of string theory implies that the space time is eleven
dimensional. In order to explain why we only observe four dimensions of space time we will make
the assumption that the space time is a product of the space time that we observe with an internal
compact space that is so small that we cannot observe it. A central problem of string theory
is then to obtain effective theories that reproduce the standard model and general relativity. In
my thesis I will focus on a technique to obtain such lower dimensional effective theories namely
consistent truncations. The idea is to use the extended symmetries of string theory in order to
select a finite set of modes involved in the effective theory inside the infinte set of reduced fields.
In my thesis I will show how the formalism of generalised geometry, an extension of differential
geometry that unifies space time coordinates transformation and gauge transformation of string
theory potentials in generalised diffeomorphism, allow to obtain in a systematic way consistent
truncations and thus classify effective theories that can be obtained from string theory. This
method is general for any dimensions but in order to apply it to holographic duality between
gauge theories and sting theory I will at some point specify to five dimensions reductions.

Keywords : String theory, compactification, effective theory, consistent truncation
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