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RGC responses in absence of visual input. We found evidence that the optogenetic activation of these cells can lead to a differential activation of ON versus OFF retinal ganglion cells, hence restoring this ON-OFF opponency. Additionally, we reported that the complexity (in terms of variance) of the responses in the optogenetically driven retina is comparable with that of normal photoreceptor responses. Our results hold true also in models of retinal degeneration.

Our work thus shows how identifying retinal computations and the underlying circuit can generate novel strategies to restore vision.

Deconstructing and restoring retinal computations with optogenetics: new roles of the rod bipolar pathway

Summary:

The retina is the first processing step of our visual system. Many computations such as detection of motion, detection of contrast, or direction selectivity already happen at this level. Retinal ganglion cells constitute the output of this system. At present, around 40 types of ganglion cells have been identified: each processes the visual input through nonlinear spatio-temporal integration of the photoreceptor signal, and encodes different features of the visual scene.

However, several questions remain unclear. First, we do not know what is the best way to recognize and classify these different cell types. Secondly, we still ignore for the most part how the computations performed by these types are implemented by the retinal circuit. Answering these questions is crucial not only to understand better how the retina processes visual information, but also to restore these functions in blind patients with partially degenerated retinas.

In the first part, we compared two methods to classify ganglion cells in different types: one based on receptive fields and one based on responses to characteristic stimuli. We tested the two approaches on a dataset of ~500 ganglion cells, and found that the method relying on the characteristic stimulus outperformed the receptive field based one. To investigate more on the nature of the limitation of receptive field based approaches, we captured the nonlinearities of the ganglion cells composing our dataset with a linear-nonlinear model. We compared such nonlinearities in the ganglion cell types identified by the two methods, and found that receptive field based methods are not able to distinguish cells with similar receptive fields but different nonlinearities, while response based methods can.

A typical example of non-linear processing in ganglion cells is antagonistic surround modulation: stimuli outside the receptive field center might evoke responses in ganglion cells. The mechanisms behind this are unclear. Recent studies have suggested that a specific circuit, the rod bipolar cell pathway, might contribute to it. This circuit is thought to be active mainly at scotopic and mesopic regimes, and it supports night vision by dispatching the rod signal into the cone pathways. We aimed at understanding if it has also a role in surround modulation: to this end, we used optogenetic stimulation to isolate and model the contribution to the retinal output of the interneurons composing this pathway. We expressed the excitatory opsin CoChr in rod behind this are unclear. Recent studies have suggested that a specific circuit, the rod bipolar cell pathway, might contribute to it. This circuit is thought to be active mainly at scotopic and mesopic regimes, and it supports night vision by dispatching the rod signal into the cone pathways. We aimed at understanding if it has also a role in surround modulation: to this end, we used optogenetic stimulation to isolate and model the contribution to the retinal output of the interneurons composing this pathway. We expressed the excitatory opsin CoChr in rod bipolar cells, and observed that their selective activation can produce responses in ganglion cells even when these rod bipolar cells are located outside the receptive field center of the ganglion cells. We show that these contributions can be well described by a linear-nonlinear model. This shows that stimulating this pathway is sufficient to evoke responses similar to the ones evoked by surround stimulation.

We then tested whether this circuit plays a role in the formation of the antagonistic surround responses of retinal ganglion cells. To this end, we expressed an inhibitory opsin, gtACR, in AII amacrine cells, and recorded surround responses of ganglion cells to visual stimuli while inhibiting the AIIs. In the perturbed condition we observed a significant decrease of response in OFF retinal ganglion cells, confirming our hypothesis that the rod bipolar cell pathway contributes to the antagonistic surround of OFF retinal ganglion cells.

The characterization of the rod bipolar cell circuit and the optogenetic techniques mentioned above to stimulate its composing interneurons both have impactful implications from a medical perspective. Degenerative diseases such as retinitis pigmentosa are among the main causes of blindness worldwide. Retinitis pigmentosa destroys the external layers of the retina, starting from the photoreceptors. Nevertheless, cells in the internal layers are often left intact by the illness, and they can be exploited to restore vision. Optogenetic therapy is a promising tool to restore vision in blind patients, as it can be used to stimulate the interneurons left intact by the disease and bring back visual perception. This strategy requires to stimulate the most appropriate targets in the intermediate layers.

We thus tested whether the optogenetic stimulation of AII amacrine cells can achieve differential activation of the ON and OFF ganglion cells. The ON-OFF opponency is vital to important retinal computations such as contrast detection. AII amacrine cells are the ideal optogenetic target for the restoration of this feature, as they form both excitatory and inhibitory connections with respectively the ON and OFF cone pathways. We expressed an excitatory opsin, ReaChr, selectively in AII cells, and tested whether its optogenetic activation could restore ON and OFF RGC responses in absence of visual input. We found evidence that the optogenetic activation of these cells can lead to a differential activation of ON versus OFF retinal ganglion cells, hence restoring this ON-OFF opponency. Additionally, we reported that the complexity (in terms of variance) of the responses in the optogenetically driven retina is comparable with that of normal photoreceptor responses. Our results hold true also in models of retinal degeneration.
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v Chapter 1

Introduction To The Retina 1.1 Overview

The retina is a thin, convex piece of neural tissue laying in the back of the eye.

It represents both the input and the first processing step of our visual sensory system. The optics of the eye project a focused image of the visual scene onto the retina. The light travels across the whole retinal tissue and hits its outermost layer, composed of photosensitive cells: the photoreceptors. Photoreceptors convert the visual information into a graded electrical signal, which propagates backwards towards the inner part of the retina. This signal undergoes several processing steps, and is eventually conveyed to the innermost layer, composed of retinal ganglion cells. Ganglion cells gather all the visual information elaborated by the retina, and relay it to the brain through the optic nerve in the form of sequences of electrical spikes.

Structure of the retina

The elementary blocks composing the mammalian retina are five distinct classes of neurons: the photoreceptors, the bipolar cells, the horizontal cells, the amacrine cells and the retinal ganglion cells (fig. 1.1.A). Each of these cell classes can be further subdivided in several types, for an estimated total of around 100 different 1 Fig. 1.1 The anatomy of the retina A. Outline of the anatomy of the mammalian retina by Ramon y Cajal [Ramón y Cajal, 1893]. The five classes of neurons in the mammalian retina are the photoreceptors (rods, A, and cones, B), the bipolar cells (C), the horizontal cells (D), the amacrine cells (E) and the ganglion cells (F). The retina is structured in layers: the outer and inner segments (OS/IS), the outer nuclear layer (ONL), the outer plexiform layer (OPL), the inner nuclear layer (INL), the inner plexiform layer (IPL) and the ganglion cell layer (GCL). B. The layers of the mouse retina. Reprinted from [Masland, 2012]. C. Tiling of the cat retina by ganglion cell dendritic fields of ON alpha cells. Their cell bodies are regularly arrayed and their dendrites cover the area homogeneously without living gaps. Reprinted from [Wässle, 2004].

types of cells [START_REF] Vlasits | Function first: classifying cell types and circuits of the retina[END_REF]. A cell type is defined as a population of cells with similar molecular, anatomical, and physiological properties [START_REF] Seung | Neuronal cell types and connectivity: Lessons from the retina[END_REF]. Typically, cell types are evenly distributed through the retinal surface (fig.

1.1.C), in a way that each cell type surveys the visual scene efficiently [START_REF] Boycott | Morphological Classification of Bipolar Cells of the Primate Retina[END_REF], Masland, 2012, Devries and Baylor, 2017]. A major distinction among types is between ON and OFF: cells across all the retina are organized in these two macro groups. ON cells produce a response when stimulated with lights of increasing intensity, while OFF cells respond to decreases of light.

The retina is structured in layers. Each layer hosts one or more classes of retinal cells, with an alternation of layers containing cell bodies and layers containing synaptic connections (fig. 1.1.B). The superficial layer is formed by photoreceptors. Two types of photoreceptors exist: the cones, active at daylight, and rods, active during night vision. Photoreceptors form connections with both horizontal cells and bipolar cells in the outer plexiform layer. Horizontal cells modulate the signal coming from the photoreceptors, while bipolar cells relay it to a deeper area of the retina, called the inner plexiform layer. Here a broad variety of different connections occur among bipolar, amacrine and ganglion cells, giving rise to many forms of computations.

Amacrine cells mostly modulate the activity of bipolar cells or contribute to the implementation of very specific functional tasks, while ganglion cells integrate all these contributions and forward the information to the brain.

The retina is a well optimized and versatile system, designed to implement vision under a broad range of light intensities, for an overall sensitivity spanning from less than 10 -2 photons µm -2 sec -1 to greater than 10 +8 photons µm -2 sec -1 . In bright light conditions (photopic regime), vision relies principally on cones: it features color discrimination and a maximal spatio-temporal acuity. In dim light conditions (scotopic regime) only the rods are active, and a poorer spatio-temporal resolution and the loss of color information are compensated by a substantial increase in sensitivity that can reach the physical limit of single photon detection. In the zone of transition between photopic and scotopic vision, called mesopic regime, both cones and rods are active and contribute to the formation of the visual signal.

Scientific relevance of the retina

The retina has been the object of studies for at least one century, notably starting with Ramón y Cajal's work in 1893 [Ramón y Cajal, 1893]. Although for decades it was considered to be just a relay of the visual information to the brain, today we know that the retina constitutes the first step of visual processing, implementing several computations such as color opponency, detection of contrast, detection of movement, direction and orientation selectivity [START_REF] Vaney | Direction selectivity in the retina: symmetry and asymmetry in structure and function[END_REF], Masland, 2012, Deny et al., 2017, Oesch and Diamond, 2019].

From a scientific perspective, a few factors contribute to making the retina an unique and fundamental tool in the study of sensory systems, and more generally of neural circuitry. First, the retina is a relatively isolated and self contained system with a precise function: the encoding of visual information. All the visual information accessible to the brain is necessarily passing through the retina. At the same time no image-forming feedback from the rest of the brain has been discovered so far. From a computational point of view, the retina can then be considered as a stand alone system, with an input, a processing block, and an output. Secondly, it features a fairly simple organization. Essentially, the retina can be regarded as a feed-forward network, organized in vertical layers, with signal flowing downstream from the photoreceptor to the optical nerve. Finally, recording from and interacting with the retina is very easy due to its physiology. It has a flat shape and its output cells, the retinal ganglion cells (RGC), lie on the external layer of the tissue, both ideal conditions for multi-electrode array recording. Additionally, its transparency makes it suitable for both microscope imaging and visual stimulation.

Cell types 1.4.1 Photoreceptors

Photoreceptors tile the outermost layer of the retina. They are aligned with the photosensitive portion of the cell, called the outer segment, facing the surface of the tissue, and the axons stratifying in a deeper region called the outer plexiform layer. They produce responses to light through the release of glutamate. When the light hits the outer segment, the cell hyperpolarizes, modulating the release of its neurotransmitter in the axon.

Rods are extremely sensitive: they can detect even single photon stimulation [START_REF] Rieke | Single-photon detection by rod cells of the retina[END_REF]], and their responses saturate when exposed to bright light. Rod vision does not allow for color discrimination: as it relies on a single detector type (the rod), it cannot differentiate between spectral modulations [Wässle, 2004].

Cones are active at higher luminance regimes. They reach half saturation for light intensities around 2 × 10 5 photons µm -2 s -1 [START_REF] Nikonov | Physiological features of the S-and M-cone photoreceptors of wild-type mice from single-cell recordings[END_REF]. Mammals have two types of cones: the S-cones and the M-cones, respectively sensitive to short-wavelength (~360 nm) and medium-wavelength (~500 nm) lights [START_REF] Nikonov | Physiological features of the S-and M-cone photoreceptors of wild-type mice from single-cell recordings[END_REF]. In primates (and humans) a third type exists: the L-cone, sensitive to long-wavelength light (~550 nm) [START_REF] Stockman | Human cone spectral sensitivities: A progress report[END_REF]]. Rods and cones are found in different distributions depending on the animal. Mammals are generally rods dominated: in mice cones account for only 3% of the total photoreceptor population [START_REF] Carter-Dawson | Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy[END_REF]. In humans the proportions are similar, with an average of 6 million cones and 120 million rods. Neighbouring photoreceptors are interconnected through electrical synapses (gap junctions) to add redundancy to the population signal and average out the noise [START_REF] Devries | Electrical coupling between mammalian cones[END_REF].

Horizontal Cells

Horizontal cells modulate the activity of photoreceptors. As suggested by their name, these cells have a wide, diffuse morphology, and do not cross any of the retinal strata: their synaptic connections are confined to the outer plexiform layer (OPL), where they receive inputs from photoreceptors, and provide an antagonistic feedback to both rods and cones [Wässle, 2004, Thoreson andMangel, 2012]. There are typically two types of horizontal cell: The A-type has an axon, and the B-type does not [START_REF] Demb | Functional Circuitry of the Retina[END_REF]. Neighbouring horizontal cells are strongly electrically coupled through gap junction: consequently, they respond best to light when they are stimulated with large spots [START_REF] Kamermans | The feedback pathway from horizontal cells to cones. A mini review with a look ahead[END_REF].

Horizontal cells implement linear lateral inhibition in the first synaptic layer of the retina [START_REF] Thoreson | Lateral interactions in the outer retina[END_REF]: they measures the average level of illumination projected on the overlying retinal surface, and subtract a proportionate value from the output of the photoreceptors [START_REF] Masland | The fundamental plan of the retina Richard[END_REF]. This mechanism is thought to enhance global light adaptation, spatio-temporal tuning and color constancy at the retinal output level [Wässle, 2004, Chaya et al., 2017, Drinnenberg et al., 2018].

Bipolar Cells

Bipolar cells gather the signal of photoreceptors through glutamate receptors and relay it to the inner plexiform layer (IPL), also in the form of glutamate release through their axons (fig. 1.2.A). Bipolar cells are not simple relays. They decompose the photoreceptors signal into its spatial, temporal and chromatic components.

Bipolar Cells types implement this defactorization: different types of bipolar cells carry a different type of information [Masland, 2012].

A typical mammalian retina contains from 9 to 12 different types of cone-driven bipolar cells (Cone Bipolar Cells), plus one type (Rod Bipolar Cells) dedicated to rods [START_REF] Ghosh | Types of Bipolar Cells in the Mouse Retina[END_REF], Wässle et al., 2009, Masland, 2012, Euler et al., 2014].

A first distinction is made between bipolar cell types that respond to increases of light (ON Bipolar Cells) and those that respond to decreases of light (OFF Bipolar Cells). ON and OFF bipolar cells express respectively metabotropic and ionotropic glutamate receptors. Some Bipolar Cell types (like Diffuse Bipolar Cells in primate) have diffuse morphology and are characterized by fast, transient responses. Others (Midget Bipolar Cells in primate) feature small dendritic fields and mediate slow, high-acuity vision [Grünert, 2000, Euler et al., 2014]. Some specific types also encode color: both in primates and mice, specific bipolar cell types have been identified that selectively connect only to S-cones [Wässle, 2004, Haverkamp et al., 2005]. It has also been observed that different bipolar cell types encode different temporal tuning of the photoreceptor signal, acting as low and band pass filters each tuned on different ranges of the temporal spectrum [START_REF] Burkhardt | Retinal bipolar cells: Temporal filtering of signals from cone photoreceptors[END_REF], Baden et al., 2013, Ichinose et al., 2014] 

(fig. 1.2.B).
The stratification of the IPL, where bipolar cells convey their signal, reflects this defactorized organization of the signal. Each IPL stratum receives unique and substantively different excitatory and inhibitory neural inputs [START_REF] Roska | Vertical interactions across ten parallel, stacked representations in the mammalian retina[END_REF]. OFF bipolar cells axons all stratify in the higher layers of the IPL, while ON bipolar cells deliver their signal to the lower strata. The organization of sustained and transient signals is orthogonal to that of ON and OFF: transient and sustained bipolar cells stratify respectively in the intermediate and in the outermost IPL sublamina [START_REF] Wu | Functional architecture of synapses in the inner Retina: Segregation of visual signals by stratification of bipolar cell axon terminals[END_REF], Euler et al., 2014] 

(fig. 1.2.A).

Amacrine Cells

Amacrine cells stratify in the inner plexiform layer, and form connections with bipolar cells, Retinal Ganglion Cells and other amacrine Cells [Masland, 2012]. Functional characterization of bipolar cell types. Bipolar cells can be grouped into ON and OFF depending on the polarity of their response. Some bipolar cells relay signal from rods. Bipolar cells are labelled as chromatic or achromatic according to the cone type they contact. Bipolar cell types can also be differentiated on the basis of the transience of their signal. Reprinted from [START_REF] Euler | Retinal bipolar cells: Elementary building blocks of vision[END_REF]. Amacrine cells are difficult to characterize. Similarly to Horizontal Cells, they provide lateral inhibition to the bipolar cells signal, creating contextual effects for the responses of retinal ganglion cells [START_REF] Gollisch | Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina[END_REF]. Nevertheless, the broad variety of amacrine cell types and the diversity of their morphology and connectivity suggested they fulfill a vast range of more specific computations.

At present, approximately 30 types of amacrine cells have been identified [Zhang andMcCall, 2012, Masland, 2012]. These types can be broadly classified as either narrow or wide field on the basis of the diameters of their dendritic trees [START_REF] Demb | Functional Circuitry of the Retina[END_REF]. Narrow-field amacrine cells have dendrites that ramify close to their somas, arborizing in both the ON and OFF sublamina of IPL [START_REF] Zhang | Receptor targets of amacrine cells[END_REF]. They seem to fine-tune local outputs of bipolar cells, playing a role in crossover inhibition, a feedback inhibitory loop between the ON and OFF signals [START_REF] Demb | Functional Circuitry of the Retina[END_REF]. Wide-field cells have wider and diffuse arborizations that extend for hundreds of millimeters across the retina within specific sublamina. They are thought to mediate inhibition in the ON or OFF pathway [START_REF] Zhang | Receptor targets of amacrine cells[END_REF].

More generally, most amacrine cells are believed to implement narrowly specific tasks [Masland, 2012]. A few of these functions have been extensively studied and characterized: it is known for example that starburst cells implement direction selectivity in the retinal output [START_REF] Vaney | Direction selectivity in the retina: symmetry and asymmetry in structure and function[END_REF], or that AII amacrine cells relay the rod signal into the cone pathways [START_REF] Demb | Intrinsic properties and functional circuitry of the AII amacrine cell[END_REF]. Nevertheless, there is still a significant number of amacrine cell types for which the structure and function of their circuits have not been identified yet.

Ganglion Cells

Ganglion cells populate the innermost layer of the retina. They constitute the retinal output, as they are the only retinal neurons that project to the brain through the optic nerve.

Bipolar Cells represent the main excitatory input of ganglion cells. ganglion cells arborize in the Inner Plexiform Layer, and form selective connections with specific Bipolar Cell types in the ON or OFF sublamina, inheriting their polarity [START_REF] Roska | Vertical interactions across ten parallel, stacked representations in the mammalian retina[END_REF]. Similarly, transient and sustained bipolar cells provide, respectively, the predominant input to transient and sustained ganglion cells [START_REF] Awatramani | Origin of Transient and Sustained Responses in Ganglion Cells of the Retina[END_REF]. Ganglion cell responses are also modulated both directly and indirectly by amacrine cells, and indirectly by lateral inhibitions of horizontal cells. This architecture gives rise to the characteristic antagonistic organization of the receptive fields of ganglion cells, called center-surround: the receptive field center is mediated by the bipolar cell input, while the surround is mediated by the inhibitory interneurons [KUFFLER, 1953].

Several categorizations of ganglion cell types have been proposed for mammals, with numbers varying between 15 and 40 identified types and continuously increasing [START_REF] Farrow | Physiological clustering of visual channels in the mouse retina[END_REF], Baden et al., 2016, Zeng and Sanes, 2017]. Each type of ganglion cell is believed to implement a specific computation, and provide a distinct visual feature to the brain [START_REF] Gollisch | Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina[END_REF]. To provide a general example, transient types encode changes in light intensity around a mean, whereas sustained types encode the mean light level [START_REF] Demb | Functional Circuitry of the Retina[END_REF]. In primates, the two most common types are parasol and midget cells (homologous cells, respectively alpha and beta cells, have also been described in other animals, [Wässle, 2004]).

Parasol ganglion cells feature large receptive fields, with fast biphasic responses.

Midget ganglion cells instead have narrower receptive fields and with slower and monophasic responses. These differences in spatio-temporal acuity translate in the encoding of two distinct, complementary aspects of the visual environment (Soto 2020).

Ganglion Cells axons are bundled in the optic nerve, and project to many different regions in the brain, including principally the lateral geniculate nucleus in the thalamus, the superior colliculus, the pretectal area and the hypothalamus [START_REF] Martersteck | Diverse Central Projection Patterns of Retinal Ganglion Cells[END_REF].

Chapter 2

The Rod Pathways

Overview

In the previous chapter we described how the retinal network is organized in parallel vertical pathways: more than 10 different types of bipolar cells form selective connections to ganglion cells, and relay the photoreceptor signal encoding different spatio-temporal features of the visual scene. This composition concerns mainly the cones signal and is active at scotopic regime (daylight vision).

The organization of the rod pathways is very different from the architecture described above. Interestingly, only one type of bipolar cell (rod bipolar cell) is devoted to rod signal, and it does not form any connection with retinal ganglion cells. Its signal is conveyed instead to a particular type of amacrine cells (AII), that in turn dispatch it to both cone bipolar cells and ganglion cells [START_REF] Wässle | The rod bipolar cell of the mammalian retina[END_REF]. Another rod pathway relies on gap-junctions that rods form with cones [START_REF] Tsukamoto | Microcircuits for night vision in mouse retina[END_REF].

Finally, it has been observed that rods also form connections with some types of OFF cone bipolar cell [START_REF] Behrens | Connectivity map of bipolar cells and photoreceptors in the mouse retina[END_REF]. These three alternative pathways can be summarized with the following scheme (fig. Overall, the rod circuits heavily rely on the infrastructure devoted to cones, injecting the rod signal into the cone pathway at different levels. From an evolutionary perspective, this organization corroborates the hypothesis that rods have emerged later with respect to cones, and that the circuits processing the rod signal have evolved to make use of the preexisting structure devoted to cones [START_REF] Okano | Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments[END_REF], Lamb, 2009].

The Rod Bipolar Cell Circuit

Rod bipolar cells (RBCs) are the only type of bipolar cell receiving predominant input from rods. RBC somas are located in the inner nuclear layer. Their dendritic arbors, dense and narrow, stratify in the outer plexiform layer, where they connect with the synaptic terminal of rods, called spherules, through invaginating synaptic ribbons. Rods have one single ribbon, and form connections with one to three RBCs [START_REF] Tsukamoto | Microcircuits for night vision in mouse retina[END_REF], Behrens et al., 2016], while RBCs contact on average 25 rod spherules [Tsukamoto andOmi, 2013, Wässle, 2004].

RBCs are ON cells, meaning they depolarize in response to light increments. Their dendritic terminals express the sign inverting glutamate receptor mGluR6: light stimuli suppress the glutamate release from rods and allows the mGluR6 channels to open, depolarizing the RBC [Euler andMasland, 2000, Taylor andSmith, 2004].

RBCs responses are biphasic: a study from Oesch and Diamond shows that a faster, transient component encodes local weber contrast, while a slower, sustained component encodes absolute luminance [START_REF] Oesch | Ribbon synapses compute temporal contrast and encode luminance in retinal rod bipolar cells[END_REF]. Inhibitory feedbacks from a specific type of amacrine cells (A17) are thought to play a role in shaping the sensitivity of RBCs to contrast.

RBC axon terminals project into the sublamina of the inner plexiform layer closest to the ganglion cell layer, and express around 40 ribbon synapses. They make no Fig. 2.1 The rod pathways in the mammalian retina Left: ON pathways. Rod bipolar cells receive input from rods and make excitatory synapses onto AII amacrine cells, which in turn make gap junctions onto ON cone bipolar cells. Rods also make gap junctions onto other rods and onto cones, and the cones then carry rod signals to ON cone bipolar cells. Cone bipolar cells finally relay the rod signal to the ganglion cells. Right: OFF pathways. Rod bipolar cells make excitatory synapses onto AII amacrine cells, which make inhibitory synapses onto OFF cone bipolar cells. Rods also make gap-junctional contacts onto cones, which carry rod signals directly to cone bipolar cells. Finally, some OFF cone bipolar cells receive input directly from rods. Cone bipolar cells convey the signal to ganglion cells. The gray horizontal bands indicate the different retinal layers. From top to bottom: outer segment of photoreceptors (OS), outer nuclear layer (ONL), outer plexiform layer (OPL), inner nuclear layer (INL), inner plexiform layer (IPL) and gangclion cell layer (GCL). Reprinted from [START_REF] Fain | Rod and cone interactions in the retina[END_REF].

direct output onto ganglion cells [START_REF] Strettoi | Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina[END_REF], and form contacts with two types of amacrine cells: the All and the A17. Each RBC contacts several A17s and between two and four AIIs, although it has been shown that their output is predominantly directed to one preferred AII [START_REF] Tsukamoto | Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina[END_REF]. RBC axon terminals also express both gabaergic and glycinergic receptors, and receive inhibitory feedbacks from different amacrine cells (including A17) that shape the final output of their glutamate release.

A17s are wide-field gabaergic amacrine cells. They feature a sparsely branched dendritic arbor that ramifies in the inner sublamina of the IPL [START_REF] Menger | Morphological and physiological properties of the A17 amacrine cell of the rat retina[END_REF], forming connections with more than one hundred RBCs. A17 dendrites have a varicose structure. Each varicosity receives an excitatory glutamatergic input from an individual RBC, and provides the same RBC with a reciprocal gabaergic inhibitory feedback [START_REF] Grimes | Retinal Parallel Processors: More than 100 Independent Microcircuits Operate within a Single Interneuron[END_REF].

Despite their diffuse structure, A17 amacrine cells seem to perform only local computations, with each neurite acting as an independent inhibitory microcircuit.

In [START_REF] Grimes | Complex inhibitory microcircuitry regulates retinal signaling near visual threshold[END_REF] Grimes and colleagues suggest that these microcircuits play a role in optimizing the sensitivity and gain of the RBC output under very dim lighting conditions. Another work from Oesch and Diamond shows that the A17 reciprocal inhibition onto RBC synaptic terminals extends the luminance range over which RBC synapses compute temporal contrast [START_REF] Oesch | Synaptic inhibition tunes contrast computation in the retina[END_REF].

AIIs are narrow-field glycinergic amacrine cells. Their structure is complex, with dendrites stratifying across all five inner plexiform layer sublamina. AIIs express glutamate receptors and receive excitatory input from RBCs. Each AII forms connections with an average of 11 RBCs [START_REF] Tsukamoto | Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina[END_REF]. AIIs constitute the last element of the poly-synaptic circuit devoted to rods: they gather the roddriven signal coming from RBCs and distribute it to the parallel channels of the cone bipolar cell (CBC) pathways. AIIs form sign-preserving connections to ON CBCs through electrical synapses, and sign-inverting connections to several OFF CBC types through inhibitory chemical synapses. They feature a particularly strong connectivity with a specific cone bipolar cell type, CBC2. AII-CBC2 connections are functionally asymmetric, with signals being larger in the A2 to CBC2 direction [START_REF] Lieberman | Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina[END_REF]. AIIs also form direct connections with some OFF ganglion cell types, although their main form of interaction with ganglion cells seem to be through inhibition of cone bipolar cell axon terminals. Additionally, AIIs are also mutually interconnected through gap junctions [START_REF] Tsukamoto | Classification of mouse retinal bipolar cells: Type-specific connectivity with special reference to rod-driven AII amacrine pathways[END_REF]: the strength of these connections is modulated by the release of dopamine by dopaminergic amacrine cells, which are themselves modulated by light level [Witkovsky, 2004].

Overall the RBC circuit is a well optimized system capable of distributing the rod signal to the retinal output with extreme sensitivity and reliability [START_REF] Demb | Intrinsic properties and functional circuitry of the AII amacrine cell[END_REF]. The convergence of the circuit has been calculated in the cat retina by Kolb and Nelson. Around 1500 rods contribute to the response of a single small-field ONbeta ganglion cell, mediated by an average of 100 RBCs and 5 AIIs. For large-field OFF-alpha ganglion cells, these numbers increase to 75.000 rods, 5000 RBCs and 250 AIIs [Kolb andNelson, 1993, Kolb, 2009]. In terms of divergence, a single rod relays its signal through direct connection to 2 RBCs, which in turn gets conveyed to 5 AIIs, 8 cone bipolar cells and is pooled by an average of 2 ON-beta cells [START_REF] Sterling | Architecture of rod and cone circuits to the on-beta ganglion cell[END_REF], Kolb, 2009]. This combination of divergence and convergence, together with fine tuning provided by amacrine cell inhibitory microcircuits, allows for a robust replication and amplification of the rod signal, and results in an enhanced sensitivity at dim light conditions and even in the ability to detect single photons [Tsukamoto andOmi, 2013, Lieberman et al., 2018].

The Complementary Roles Of The Three Rod

Pathways

Rod signals are also transmitted by alternative routes. A secondary pathway is through gap junctions between rod spherules and cone pedicles. Each rod forms electrical connections with one or two cones, and each cone is reached by an average of ~30 rods [START_REF] Tsukamoto | Microcircuits for night vision in mouse retina[END_REF].

The existence of a third rod pathway, where rods form direct connections with OFF CBCs, was first suggested by Soucy and colleagues [START_REF] Soucy | A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina[END_REF], and it has now extensively been proved in different mammals, including rats, cats, rabbits and monkeys [START_REF] Hack | An alternative pathway for rod signals in the rodent retina: Rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors[END_REF], Tsukamoto et al., 2014, Behrens et al., 2016]. In the mouse, rods connect to several OFF CBCs, including 3A, 3B and 4, with each CBC pooling signal from 5 to 10 different rods [START_REF] Behrens | Connectivity map of bipolar cells and photoreceptors in the mouse retina[END_REF].

Why three distinct rod pathways are needed, and how they complement each other is not fully understood. In [START_REF] Behrens | Connectivity map of bipolar cells and photoreceptors in the mouse retina[END_REF] Behrens and collaborators suggest the third pathway (OFF-CBC mediated) might represent an OFF counterpart complementing the scotopic ON channel via RBCs. As each pathway features a different number of synaptic steps, it is possible that they provide different trade-offs between speed and sensitivity of the response. The first pathway (AII mediated) would then encode a slower, sensitive component, and the second (gap-junction mediated) a faster, less sensitive one. Another distinction might rely on the different light regimes at which these circuits are active. The first pathway is certainly the most sensitive, and it might work alone at low scotopic levels, while the other two might progressively activate at higher light intensities [START_REF] Tsukamoto | Some OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas[END_REF].

Chapter 3

Models of Retinal Ganglion Cells

Overview

As mentioned in the previous sections, the retinal output is organized in arrays of several parallel pathways, each performing specific computations on the visual scene and carrying a particular type of information, or feature. Much effort has been done to understand the specific functions of these pathways and characterize them. To this end, computational modeling provides a fundamental tool. Broadly speaking, retinal models (and models in general) can be grouped in three major categories based on the type of question they address [START_REF] Dayan | Theoretical neuroscience: computational and mathematical modeling of neural systems[END_REF]. Descriptive (or phenomenological) models aim at answering the "what" question. They try to provide the most effective and compact way to describe and reproduce the retinal activity without particular assumptions on the underlying mechanism or on the scope of the circuit. A classic example is the linear-nonlinear model [Rodieck, 1965], described in the following. Mechanistic models address the "how" question. They make use of known facts about the physiology and biophysical constraints of the modeled cell/circuit to reproduce its activity. A classical example of a mechanistic model is the Hodgkin-Huxley model [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. Interpretative models focus on the "why" question. They build from a postulated theory, embed it in the model, and see if such a theory reproduces the observed phenomena. Efficient coding is an example [Barlow et al., 1961], where constraints on the information entropy are used to explain the organization of retinal signals. In the following we give a brief overview of the descriptive models used in visual neuroscience, focusing on their applications, limitations and biological insights.

Linear Models

Linear models describe the responses of a neuron as a weighted sum of the elementary spatio-temporal units composing the stimulus. The matrix (or function in the continuous domain) of linear weights is called the filter of the model, and its spatial component can provide an approximation of the cell's receptive field. Linear models can be compactly described with a convolution:

λ(t) = λ 0 + (f ⊛ s)(t) (3.1)
where λ(t) is the cell firing rate, λ 0 its average spontaneous activity, f (t) is the linear filter and s(t) the stimulus. Linear models have been historically used to describe the retinal output. Early works from Barlow showed that ganglion cell responses mediated by their receptive field center can be approximated with a linear summation of the stimulus [Barlow, 1953]. In [Rodieck, 1965] Rodieck proposed a linear model to describe how center and surround contribute to the activity of retinal ganglion cells in the cat. In this model, the spatial filter was composed of two gaussians, a positive one representing the receptive field center, and a wider, negative one representing the surround (fig. 3.1).

Linear models provide an effective first order approximation of ganglion cell responses.

Unfortunately, it has been observed that the linear assumption does not hold true for all retinal ganglion cells [Barlow, 1953, Hochstein andShapley, 1976], and that visual neurons tend to respond more nonlinearly to higher levels of contrast [START_REF] Benardete | The receptive field of the primate P retinal ganglion cell, I: Lineardynamics[END_REF].

Fig. 3.1 The classical linear model of receptive fields

The receptive field of retinal ganglion cells can be described with a linear model consisting of the sum of two gaussian functions. Reprinted from [Rodieck, 1965].

Linear-Nonlinear Models

Linear-nonlinear models (LN) address the issues discussed above by applying a point-process nonlinearity nl to the output of the linear filter:

λ(t) = λ 0 + nl( (f ⊛ s)(t) ) (3.2)
Typical nonlinear functions include exponentials, logistic functions and rectified linear units. Fitting LN models is quite easy. It has been shown that for spherically symmetric stimuli (for example, white noise), spike-triggered averages provide optimal solutions to the linear filters [Chichilnisky, 2001]. For more general stimuli, parameters can be inferred maximizing their likelihood [Paninski, 2004].

LN models have been used extensively to describe the responses of neurons in several areas of the visual system, including the retinal output [Victor, 1987] and the visual cortex [Heeger, 1991, Carandini et al., 1997]. Several extensions of the LN models have been proposed. Linear Nonlinear Poisson models (LNP) use stochastic processes to discretize the model output into individual spyking events with no assumption on the statistical structure of the input [START_REF] Simoncelli | Characterization of Neural Responses with Stochastic Stimuli[END_REF] (fig.

3.2.A).

In this framework the spiking activity of the cell is assumed to follow a poissonian distribution. The number of spikes produced by a cell at a given time bin is then obtained by sampling from the poissonian distribution:

p(spikes = n) = e -δλ(t) • (δλ(t)) n n! (3.3)
Where n is the number of spikes emitted, δ is the duration of the time interval considered and λ(t) is the cell firing rate computed as in 3.2. Other extensions like generalized linear models (GLM) or generalized integrate and fire models (GIF)

provide more accurate representation of cell electrophysiological mechanisms, with feedback filters feeding the model output to its input and to its nonlinearity to model respectively the refractory period and the variation of the resting potential of the cell [START_REF] Pillow | Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model[END_REF], Pozzorini et al., 2015, Mensi et al., 2016]. These models have proved to be a good solution to capture key features of cells like adaptation [START_REF] Pozzorini | Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models[END_REF]. Nonlinear models have also been used to describe populations of interconnected neurons. Here connections between cells are also represented with post-spike linear filters that feed the output of the presynaptic neurons into the nonlinearity of the postsynaptic ones [START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF] (fig. 3.2.B).

Linear-Nonlinear Cascades

From a circuitry perspective, LN models describe the whole poly-synaptic pathways going from the photoreceptor to ganglion cells with a simple linear filter. Although this representation might often be satisfying in terms of compactness and accuracy, it provides no information about the individual contributions of the interneurons composing the circuit. Linear-Nonlinear cascade models (or LNLNs) accomplish this task by modeling the interneurons explicitly as nonlinear subunits [START_REF] Dunn | The spatial structure of a nonlinear receptive field[END_REF], Baccus et al., 2008]. In short terms, linear-nonlinear cascades are layered models where each interneuron is described as an individual LN block, and their outputs are pooled into another LN element, representing the ganglion cell itself. As a drawback, cascade models are significantly more difficult to fit, and the interpretation of their parameters can be challenging, as they are more prone to redundancy. Additionally, the number of interneurons composing a circuit and their connectivity is usually unknown: this poses the additional problem of guessing the most appropriate architecture for the interneuron layer [START_REF] Freeman | Mapping nonlinear receptive field structure in primate retina at single cone resolution[END_REF], Liu et al., 2017, Maheswaranathan et al., 2018]. As for LN models, also the LNLN framework can be extended with additional computational blocks to enrich the dynamics of the system and its composing subunits. Among the others, adaptive cascade models (ACMs) apply a gain control at the output of each subunit: this mechanism enhances history dependence and allows accurate prediction of the timevarying firing rate observed in RGC responses to different types of motions [START_REF] Chen | Alert response to motion onset in the retina[END_REF].

Convolutional Networks

A new frontier of computational modeling is represented by deep network and convolutional neural networks (CNN). CNNs originally emerged in computer vision and robotics, where they achieved gold standard performance in object classification and image recognition [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF], Liu et al., 2016]. Their architecture takes inspiration from the organization of the visual cortex. CNNs are composed of several computational layers. Each layer is formed by a stack of different filters, each encoding a different visual feature (just as the parallel pathways in the retina or in the cortex). Connections among layers are sparse and convolutional, mimicking the Reprinted from [START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF]. C. A schematic of a convolutional neural network modeling a population of RGCs. This network is composed of two convolutional layers, each formed by several spatiotemporal filters, a dense layer and a final nonlinearity.

Reprinted from [START_REF] Mcintosh | Deep learning models of the retinal response to natural scenes[END_REF].

receptive field organization of the neurons in the visual system [Lindsay, 2021] (fig.

3.2.C).

CNNs can accurately model the retinal output to complex stimuli and capture several key features of retinal responses such as temporal precision of firing events and adaptive responses to changing stimulus statistics. The emerging structures in the CNN filters can also provide an insight of which type of features are encoded by the retinal circuits [McIntosh et al., 2016, Zenke andGanguli, 2018]. Aside from the study of circuit functions, cell typing has several other practical applications. First, a common categorization allows researchers to speak the same language, making it easier to compare and combine contributions of different laboratories. Cell classification can also enable genetic access to specific cell types so that they can be marked or manipulated [Josh Huang and Zeng, 2013]. Another application is the study of neurodegenerative diseases. Some brain diseases primarily affect specific cell types: being able to recognize these types would result in a better comprehension of such disorders [START_REF] Seung | Neuronal cell types and connectivity: Lessons from the retina[END_REF].

The identification of cell types has a long story that dates back to more than one 23 century ago. At the end of the nineteenth century Ramon y Cajal was already using Golgi's staining methods to image individual neurons in the retina and group them according to their anatomical properties [Ramón y Cajal, 1893]. Since then much progress has been made and the inventory of ganglion cell types has been continuously extended and refined over the years. Early studies in the seventies categorized retinal ganglion cells in mammals (cat, mouse) in just three main types (alpha, beta and gamma) according to their anatomy and physiology [Kelly andGilbert, 1975, Fukuda, 1977]. At the beginning of the current century, proposed classifications across different mammal species accounted for 10 to 15 ganglion cell types [START_REF] Sun | Large-scale morophological survey of rat retinal ganglion cells[END_REF][START_REF] Kong | Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits[END_REF], Farrow and Masland, 2011]. At present, technological advancements in histology and electrophysiology allow for the collection of very large amounts of data compared to the past. This brought to a much more detailed and complete mapping, with more than 40 retinal ganglion cell types identified, with an estimated coverage of more than 95% of the existing types [START_REF] Sanes | The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification[END_REF].

Definition Of Cell Type

The first fundamental question to be addressed in cell typing is what defines a type.

According to the classical view from Ramon y Cajal, types are groups of neurons with similar morphological or anatomical properties. Today, a more comprehensive definition of type is used, accounting for at least three different criteria [START_REF] Sanes | The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification[END_REF]:

Anatomy: cells of the same type should present similar anatomy. This includes for example dendritic and axonal shapes, branching patterns or soma size Physiology: cells of the same type should feature uniform physiological properties, and exhibit similar responses when exposed to the same stimulus.

Molecular: cells of the same type should have similar molecular properties and gene expression.

Connectivity also defines cell types. Ganglion cells of the same type project to the same brain areas and form connections to the same types of presynaptic and postsynaptic neurons. Although equally relevant, connectivity is harder to assess with respect to the other criteria, and is therefore less often used [START_REF] Seung | Neuronal cell types and connectivity: Lessons from the retina[END_REF]. In the retina also spacing could be used as additional criteria, as retinal cell types are known to be uniformly spaced across the visual field. Unfortunately this property alone is not informative enough to effectively identify types, so spacing is often used as a validation method to corroborate classifications based on the other criteria [START_REF] Zeng | Neuronal cell-type classification: Challenges, opportunities and the path forward[END_REF].

In an ideal world, the individual application of the criteria listed above should provide the same classification results, meaning that each given cell type should be unambiguously recognized regardless of the typing approach. In the retina this is mostly true for bipolar cells, as anatomical, physiological and molecular classifications all converge on the same set of 14 types [START_REF] Zeng | Neuronal cell-type classification: Challenges, opportunities and the path forward[END_REF]. For retinal ganglion cells, unfortunately, this correspondence among criteria is difficult to achieve. An explanation for this inconsistency might lie in the fact that many of the properties listed above vary continuously even inside individual cell types. In absence of clear discontinuities, drawing a separation line between two cell types with similar properties becomes difficult and prone to mistakes [START_REF] Vlasits | Function first: classifying cell types and circuits of the retina[END_REF].

Which criteria should be prioritized in situations of discrepancy is still an open debate [Vlasits et al., 2019, Josh Huang andZeng, 2013]. 

Classification Methods

The classification of neurons requires large amounts of data so that rare cell types can be found, and variation within individual cell types can be distinguished from differences across different types [START_REF] Zeng | Neuronal cell-type classification: Challenges, opportunities and the path forward[END_REF]. To this end, much progress has been done in the last ten years, due to the technological advancements that now allow for high-throughput acquisition of physiological, anatomical and molecular data from large numbers of neurons.

Classification methods can be broadly divided in three main categories, each reflecting one of the typing criteria described above. Morphological classification neurons rely on structural properties of the neurons such as dendritic arbor density and stratification location. These properties are typically measured with imaging techniques such as light or electron microscopy. Light microscopy constitutes the oldest and more traditional approach. It requires sparse labeling of the neural tissue, so it does not allow for a dense mapping of the full population of neurons [START_REF] Sun | Large-scale morophological survey of rat retinal ganglion cells[END_REF][START_REF] Kong | Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits[END_REF], Coombs et al., 2006]. Another drawback of this technique is its limited resolution, although recent advances in histology and new computational techniques have brought significant improvements [START_REF] Sümbül | A genetic and computational approach to structurally classify neuronal types[END_REF]. Electron microscopy generally provides much higher resolution and is compatible with dense staining, giving access to a detailed scan of each cell populating the imaged volume [Briggman andBock, 2012, Helmstaedter et al., 2013]. The main limitation of this technique is that the reconstruction of large tissue volumes is highly time-consuming.

Physiological methods measure and compare the electrophysiological properties of the cells. For retinal ganglion cells, this is typically achieved by analyzing the responses of a population of cells to characteristic visual or electrical stimuli and grouping them into uniform functional groups. Multi-electrode techniques are particularly convenient, as the retina can be easily flat mounted on the array with the ganglion layer facing the electrodes, allowing for simultaneous recording of hundreds of ganglion cells from a single tissue [START_REF] Segev | Functional Organization of Ganglion Cells in the Salamander Retina[END_REF], Zeck and Masland, 2007, Jouty et al., 2018]. One limitation of this approach is that it only accounts for the electrical activity of the cells, providing no information about their morphology of molecular structure. A possible solution lies in electrical images:

with dense electrode arrays it is possible to recreate the electrical signature of a cell by averaging the patterns of voltage deflections introduced by a spike across the electrodes. Analyzing this signature it is possible to infer anatomical features of the cell, such as some size, axon position and dendrite morphology [START_REF] Li | Anatomical identification of extracellularly recorded cells in large-scale multielectrode recordings[END_REF].

Alternative physiological approaches are optical calcium or voltage imaging. Voltage and calcium indicators convert changes in membrane potential or calcium concentration into optical signals. These modulators can be used as proxy for a measure of action potentials at single cell level. Optical imaging allows for the simultaneous recording of hundreds (or even thousand) of cells, with the advantage of providing both physiological and morphological information. A downside of calcium imaging in particular is that calcium signals only provide a slow, low pass filtered surrogate of the cell firing rate, with no direct information about the individual spike events [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF].

Genetic approaches identify cell types according to their molecular properties such as genome or transcriptome. At present, single-cell profiling techniques such as RNA sequencing allow for a high-throughput characterization of cells, and types are identified as sets of cells featuring similar gene expression [START_REF] Rheaume | Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes[END_REF]. Other genetic tools such as transgenic mice or immunostaining allow selective labeling of cells with specific molecular features, and can then be used in combination with the imaging techniques described above to identify and manipulate specific cell types [Haverkamp andWässle, 2000, Siegert et al., 2009].

As we mentioned earlier, a satisfactory classification requires the alignment of morphological, physiological and molecular categories. In this sense studies that combine more measurement types are particularly synergistic, as they not only provide more diversified data, but also offer a tool to map morphological, physiological or molecular cell types to their respective counterparts [START_REF] Kim | Molecular identification of a retinal cell type that responds to upward motion[END_REF], Rivlin-Etzion et al., 2011, Kay et al., 2011, Sümbül et al., 2014].

Data Interpretation

A common issue to each of the approaches described in the previous paragraph is the interpretation of the data, meaning how to divide the cell population into uniform groups according to the properties measured. Categorization of data samples into an unknown number of clusters is a problem extensively studied in machine learning, and it is addressed with a whole branch of algorithms called unsupervised learning.

An example of a very basic but widely used clustering algorithm is K-means. In K-means data points are iteratively assigned to clusters according to their distance from the cluster's centroids: as cluster centroids are recomputed at each iteration, the algorithm eventually converges to a stable configuration. Some classes of algorithms form clusters according to the density distribution of data points. Other probabilistic algorithms use expectation maximization routines to fit probabilistic functions (for instance gaussian mixture models) to the data and generate the corresponding clusters [START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF].

Another interesting problem in cell typing is how to validate or compare results.

As mentioned earlier, for ganglion cells a good validation criterion is spacing: cells belonging to the same type are expected to uniformly tile the visual space, and consequently to be regularly spaced [Segev et al., 2005, Devries andBaylor, 2017].

Other solutions rely on the use of transgenic mice where genetically-defined types are marked and can be used as a ground truth to assess the clustering performance [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF].

Chapter 5

Vision Restoration

Degenerative Retinal Diseases

Retinal degeneration is a medical condition consisting in the progressive deterioration of the retinal tissues and the consequent death of its cells. Degenerative retinal diseases are among the main causes of blindness: age-related macular degeneration alone accounts for 4.38% of moderate to severe vision impairment and 5.93% of blindness worldwide [START_REF] Flaxman | Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[END_REF]. In industrialized countries inherited retinal disorders, including degenerative diseases such as retinitis pigmentosa and stargardt disease, account for 20% of blindness cases and are estimated to be the main cause of severe vision impairment [START_REF] Liew | A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010[END_REF].

Age-related macular degeneration is a multifactorial disease that affects the macular region of the retina. It represents the fourth most frequent cause of severe vision impairment, affecting predominantly patients of age above 60 years [START_REF] Flaxman | Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[END_REF], Nowak, 2006]. The macula is the pigmented area of the retina responsible for the central and high-acuity vision, as it hosts the highest density of cone cells.

The degeneration of the macula and the consequent death of its cones causes the Reprinted from [START_REF] Hartong | Retinitis pigmentosa Prevalence and inheritance patterns[END_REF]. C. Post-operative fundus of a patient with retinitis pigmentosa after the application of an electrode array prosthesis on the macula. Reprinted from [START_REF] Finn | Argus II retinal prosthesis system: A review of patient selection criteria, surgical considerations, and post-operative outcomes[END_REF].

neovascularization and results in bleeding and fluid leakage in the subretinal macular region [Nowak, 2006].

Retinitis pigmentosa is the most common cause of inherited photoreceptor degeneration, with a worldwide prevalence of about 1 in 4000 and a total of more than one million affected individuals [START_REF] Hartong | Retinitis pigmentosa Prevalence and inheritance patterns[END_REF]. The term retinitis pigmentosa refers to a heterogeneous group of degenerative diseases that cause the progressive loss of rod photoreceptors, and eventually cone photoreceptors, due to gene mutations (fig. 5.1.B). At present more than 150 different gene mutations are known to cause retinitis pigmentosa. The extent of this heterogeneity concerns the type of genes involved, the types of mutations affecting a particular gene, and the variations of clinical implications across patients [START_REF] Daiger | Genes and mutations causing retinitis pigmentosa[END_REF], Wright et al., 2010]. These mutations produce an alteration of functions in the photoreceptors or in the retinal pigment epithelium, including phototransduction, cell trafficking and rhodopsin recycling [START_REF] Newton | Mechanisms of photoreceptor death in retinitis pigmentosa[END_REF]. Each of these factors cause the progressive degeneration and death of rod photoreceptor, which impairs the nocturnal and peripheral vision. The loss of photoreceptors progressively results in an oxidative distress of the outer retina, which in turn provokes the death of cone cells and the consequent loss of vision [START_REF] Campochiaro | The mechanism of cone cell death in Retinitis Pigmentosa[END_REF].

Treatments

At present, there is no cure for degenerative retinal diseases. Exudative age-related macular degeneration can be treated with drugs suppressing vascular endothelial growth, although it has been observed that these therapies are not suitable for patients with cardiovascular risk factors [START_REF] Hamilton | New treatments for age-related macular degeneration[END_REF]. Gene therapy seems to offer a promising perspective in limiting and preventing the progression of degenerative diseases. In replacement therapies functional copies of the mutated genes are introduced into the degenerating cells to restore their correct functioning. Replacement genes are typically delivered with viral vectors, either through intravitreal or subretinal injections [START_REF] Takahashi | Gene therapy in inherited retinal degenerative diseases, a review[END_REF]. A recent study on transgenic mice showed that a specific rhodopsin mutation (P23H) causing retinitis pigmentosa can be addressed with gene replacement, as it produces an elevation in rhodopsin synthesis sufficient to preserve photoreceptors and maintain their function [START_REF] Mao | AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa[END_REF]. Clinical trials are currently underway for gene therapies targeting several diseases, including retinitis pigmentosa, leber congenital amaurosis and Stargardt disease [START_REF] Takahashi | Gene therapy in inherited retinal degenerative diseases, a review[END_REF].

Prosthetic Approaches

Retinal degeneration lead to permanent vision impairment. Once the disease reaches its advanced stage there is no cure or possible treatment to recover the photoreceptor loss. In this situation the only possible approach to restore visual perception consists in bypassing the damaged cells and stimulating directly the retinal layers that are still intact (or only partially damaged). A study on age-related macular disease reveals that the nonexudative form does not affect the ganglion cell layers significantly [START_REF] Medeiros | Preservation of ganglion cell layer neurons in age-related macular degeneration[END_REF]]. In the exudative form, ganglion cells are partially interested by the degeneration, with an average ganglion cell loss close to 50% of the total population [START_REF] Medeiros | Preservation of ganglion cell layer neurons in age-related macular degeneration[END_REF]. Another study shows that in Retinitis Pigmentosa an average of 30% of retinal ganglion cells are left intact by the diseases, as well as an average of 78% of inner nuclear layer cells [START_REF] Santos | Preservation of the Inner Retina in Retinitis Pigmentosa[END_REF]. These of the retina for interneuron stimulation, or even other regions of the visual system such as the optic nerve or the visual cortex [START_REF] Lewis | Restoration of vision in blind individuals using bionic devices: A review with a focus on cortical visual prostheses[END_REF]. Retinal implants have been reported to have a positive impact on the quality of life of patients, allowing them to perform basic visual tasks such as locating a bright object in a dark background or even identifying a bright letter displayed on a computer monitor in a dark room [Da Cruz et al., 2013, Finn et al., 2018]. However, a drawback of this approach is that the spatial resolution of the delivered electrical input is bound to the density and size of the electrode array, with the consequent result of a very limited visual acuity.

Optogenetic Gene Therapy

The other approach to visual restoration consists in delivering light sensitive proteins, called opsins, into the remaining cells of the retina. Opsins function as lightresponsive ion pumps or sensory receptors that make cells responsive to light [START_REF] Bi | Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration[END_REF], Duebel et al., 2015]. They are typically delivered through adenoassociated virus (AAVs), and can be injected both intravitreally or subvitreally.

Opsins traditionally used in research belong to the microbial type, which is found in nature in unicellular organisms and algae. Among these, channelrhodopsin, a depolarizing cation channel, or halorhodopsin, a hyperpolarizing chloride pump, have been extensively tested in mice and rats [START_REF] Fine | Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy[END_REF].

An important advantage of the optogenetic gene therapy is that, unlike the replacement gene therapy, it does not require correcting the mutated genes, and it is thereby applicable also to patients with unknown genotypes. Another strength of this method is that it overcomes the resolution constraints of the implant approaches:

opsins can be virtually expressed in a whole retinal population, for example in the ganglion cell layer, transforming each ganglion cell in a photoreceptor [START_REF] Mcgregor | Optogenetic restoration of retinal ganglion cell activity in the living primate[END_REF]. The upper bound on the spatial resolution would then only depend on the actual number of cells in the layer expressing the opsin (see also [START_REF] Ferrari | Towards optogenetic vision restoration with high resolution[END_REF]). In practice, expressing the same opsin into a whole layer would destroy all the parallel organization of the retina, turning each cell into the same type. A solution would be to selectively deliver different types of opsins to different ganglion cell types (or group of types, for example ON and OFF), thereby preserving some of the distinct retinal channels. At present this strategy is still not practicable.

Although some work has been done to selectively target specific cell types, such as (dormant) cones or bipolar cells [START_REF] Macé | Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores on and off visual responses in blind mice[END_REF], Gaub et al., 2015], type-specific promoters are still lacking for a large fraction of retinal cell types [START_REF] Duebel | Optogenetics[END_REF].

A further limitation is that neurons expressing traditional opsins (like channelrhodopsin) have very low light sensitivity compared to normal photoreceptors, and their activation threshold is way too high with respect to the power spectrum found in natural light [START_REF] Mcgregor | Optogenetic restoration of retinal ganglion cell activity in the living primate[END_REF]. As a result, patients treated with optogenetic gene therapy need to wear special hardware that records the visual scene through a camera and relay the information to the retina by projecting corresponding light pulses [START_REF] Sahel | Partial recovery of visual function in a blind patient after optogenetic therapy[END_REF]. This problem might be addressed in the future with the introduction of new, more sensitive activators. In [START_REF] Ganjawala | Improved CoChR Variants Restore Visual Acuity and Contrast Sensitivity in a Mouse Model of Blindness under Ambient Light Conditions[END_REF] Overall, gene-based optogenetic therapy offers a promising approach to restore vision in patients affected by neurodegenerative diseases. Exciting results from [START_REF] Sahel | Partial recovery of visual function in a blind patient after optogenetic therapy[END_REF] show that these techniques allow patients to recover some visual perception and be able to locate and count different objects.

Chapter 6 Nonlinear Processing Is Necessary

To Determine Ganglion Cell Functional Types

Introduction

A striking feature of biological systems is their diversity. To make sense of this diversity, a necessary step is to cluster them in types with uniform properties. Even in the retina, ganglion cells can be classified in several types, according to their genetics, anatomy, or physiology. The most recent studies have shown that there are probably 30 to 40 different types of ganglion cells in the mouse retina [START_REF] Seung | Neuronal cell types and connectivity: Lessons from the retina[END_REF], Sanes and Masland, 2015, Baden et al., 2016, Vlasits et al., 2019].

A commonly used approach is to define cell types based on their function, i.e. on how ganglion cells respond to stimuli. These methods are especially relevant when the driving purpose is to understand which is the specific computation that each type carries out [START_REF] Vlasits | Function first: classifying cell types and circuits of the retina[END_REF]. The first studies that tried to define ganglion cell types based on their physiology relied on receptive fields: cells with similar receptive field properties were clustered together and considered part of the same functional groups [START_REF] Roska | Vertical interactions across ten parallel, stacked representations in the mammalian retina[END_REF], Segev et al., 2005, Farrow and Masland, 2011, Ravi et al., 2018].
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More recent attempts aiming at performing large-scale classifications of ganglion cell types relied directly on their responses to a variety of standard stimuli [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF], Deny et al., 2017, Drinnenberg et al., 2018]. One would assume that using responses to dynamical stimuli allows to extract more interesting features than just measuring receptive fields, and should therefore allow a more precise classification.

However, these methods have not been compared directly.

Here we compared two methods for typing. The first one, hereafter called chirp-based method, used the receptive field of retinal ganglion cells and their response to a standard stimulus, the so-called 'chirp' stimulus, to group them in types. In one of the most recent attempts to classify all ganglion cell types based on their function, [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF] used, among other features, the responses to this chirp stimulus to divide cells in different types (see chapter 4, fig. 4.1). The second method, called RF-based method, used only the ganglion cell receptive fields. We asked if the first method allows splitting further the ganglion cell population into types that would have been missed by the second method.

We show that the first, chirp-based method manages to divide more the population into some cell types, and find some that would have been missed (or not distinguished) by the second, RF-based method. We then asked why this chirp-based method was able to identify more types. We found that the chirp stimulus evoked nonlinear responses in ganglion cells, and that this nonlinear component was necessary to single out some specific types. A functional classification of ganglion cells will thus need to explore thoroughly their non-linear behaviour. 

Results

Comparison Of Two Methods For Functional Classification Of RGCs

Our first purpose was to use the chirp-based approach to cluster a large ensemble of ganglion cells into several groups corresponding to putative types. We recorded ~500 ganglion cells for 6 different experiments. We displayed a checkerboard to map receptive fields, and a chirp stimulus with varying temporal frequencies and contrasts (fig. 6.1). This chirp stimulus has already been used previously in several studies to divide populations of ganglion cells in different cell types based on their responses. However, in these studies, ganglion cell activity was recorded with 2 photon imaging [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF], Franke et al., 2017] while in the present study, we will record the activity of the ganglion cell extracellular recordings and high density Multi-Electrode Arrays (MEA).

We first selected ganglion cells that had a detectable receptive field, and responded reliably to the chirp stimulus. We characterize each cell with its response to the chirp, the diameter of its receptive field, and the temporal profile of its receptive field. This corresponds to a vector with 520 coordinates for each ganglion cell.

We first projected the ensemble of vectors onto a subspace of reduced dimension with principal component analysis (PCA, see methods), and then clustered it into different groups following a method similar to [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF]. We obtained 24 clusters (fig. 6.1), where responses and receptive fields inside each cluster were homogeneous (see methods). To test if these clusters corresponded to real types, we relied on an established validation criterion [Segev et al., 2005, Ravi et Table 6.1 Results of the chirp-based method Summary of the cell types found with the chirp-based method, and validated with the mosaic test. In columns it is reported, from left to right: the identifier of the type, the size of its cell population, its polarity, the consistency index for its chirp responses, the consistency index for its temporal RFs, and the number of elements in its mosaic.

measuring the normalized distance between each pair of nearest neighbours, plotting the distribution of these distances for a single cluster, and testing if there was a significant peak entailing uniform spacing (see methods). We found 15 mosaics, each corresponding to a different cluster, and all composed of 5 or more cells, (fig. 6.2, see table 6.1).

Note that this is a lower estimate of the number of well-isolated types that can be recorded with MEAs, since some clusters did not have enough cells to form good mosaics. This is expected since the MEA covers an area of 0.25mm 2 . In this area, some types will appear only a few times. For example, if the cells of a given type have a diameter of 300µm, assuming little overlap between the different cells, there should not be more than 4 cells of that type in one recording.

We then compared this method with another clustering approach based solely on the RF. We characterized each ganglion cell with the temporal profile and the diameter of its receptive field as previously, but not including the responses to the chirp this time. We applied the same procedure of dimensionality reduction and clustering mentioned above. The two methods compared here are in fact effectively equal in every aspect other than the choice of the physiological properties considered. They also share the same validation criteria, with the only exception that for chirp-based clusters we also assessed the homogeneity of responses to the chirp (see methods).

The RF-based method produced 15 clusters, and 6 of them could be validated as well-defined types, with mosaics tiling the visual space (table 6.2).

It is worth noting that the chirp methods could not identify more than one mosaic for each type, despite our dataset included cells from 6 different retinae. The RF-based method found two distinct mosaics for a given type only in one case. This is probably due to experimental variability: cells of the same type respond differently across experiments because of external and not reproducible conditions: as a consequence, the clustering algorithms were unable to group these cells together. Although this is an undesirable effect and it should be addressed, it does not affect our results, as all of our analyses were conducted on individual mosaics, and hence it only compared groups of cells belonging to the same retina.

We asked ourselves how to compare the results obtained with these two approaches. To make a quantified comparison we relied on the Matthews correlation coefficients (MCC), a measure commonly used to estimate how similar two clusters are, taking into account both false positives and false negatives.

For both methods we looked at the validated mosaics, and used the MCC to identify matching counterparts among the clusters generated by the competitor approach.

We first considered the 7 mosaics identified by the RF-based method, and for each of them we could find a similar cluster generated by the chirp-based method (average MCC = 0.82 ± 0.13 std, worst match had MCC = 0.66). This indicates that all the types identified with the RF-based method can also be found by the chirp-based method. In particular, 5 (71%) of the chirp-based counterparts were also validated as types in the chirp-based method, while the others 2 (29%) were discarded due to size or poor homogeneity in the responses to the chirp.

We then followed the same procedure for the 15 types identified by the chirp-based method. In this case, it was not always possible to find well matching counterparts among the RF-based clusters (average MCC = 0.74 ± 0.16 std, worst match had MCC = 0.46, see table 6.3). Of these 15 mosaics, 5 (33%) were also identified and validated by the RF based approach (fig. At the bottom, we report the average MCC across all mosaics. Best matches with labels starting by 'X' correspond to types that were not validated.

Characterization Of Nonlinearities Enhances Discrimination Of RGC Types

Why can a method based on the responses to the chirp stimulus have more separating power than one based on the receptive field? Previous works have shown that the responses to full-field stimuli like the chirp can be well predicted by a linear-nonlinear model [START_REF] Berry | Refractoriness and neural precision[END_REF], Keat et al., 2001, Pillow et al., 2005]. This compact model is made of two components: a linear filter, which corresponds to the receptive field, and a static nonlinearity, which converts the convolution of the stimulus with the filter into a firing rate prediction (fig. 6.4). We estimated the parameter of the LN model for each ganglion cell. For the linear filter, we took the receptive field The linear-nonlinear model we used to characterize the nonlinearities of our cells. The stimulus vector s(t) is convoluted with a linear filter, producing the generator signal g(t). This signal goes through a point-process non-linear function, which outputs the spiking probability P(spike|s) estimated from the checkerboard stimulus, averaged over space to only keep the temporal dimension. We then estimated the non-linearity by relating the output of the filter to the firing rate (see methods). We found that this LN model predicted well the responses to the full-field chirp for the large majority of the cells composing our mosaics (mean pearson coefficient ρ = 0.69 ± 0.21 std).

Our results show that, for some groups of cells, clustering solely based on the receptive field, i.e. the first component of the model, did not allow distinguishing different subtypes. Since the LN model is a compact descriptor of how ganglion cells will respond to the chirp, we thus hypothesized that these subtypes could be distinguished thanks to the other component of the model, i.e. the non-linearity. We focused on the 4 chirp-based mosaics for which the RF-based method provided the poorest matches (MCC < 0.6). Each of these chirp-based clusters was included in a RF-based cluster that also contained other cells. These RF-based ensembles were much larger than the chirp-based clusters (average sizes respectively equal to 18.00 and 5.75) suggesting that they should have been further subdivided. We estimated the non-linearity for all the cells in these ensembles. We then split each ensemble obtained from the RF based method in two groups: the cells who also belonged to the corresponding mosaic from the chirp-based method, and the cells who did not.

In most cases the nonlinearity was significantly different between these two groups (fig. 6.5.A, see methods for quantification). This supports our hypothesis that the nonlinearity is a component that allows further division in different subtypes. To evaluate the performance of this classifier, we compare its loss with the loss of other classifiers built to distinguish random permutations of the two sets. The colored histograms represent the loss distribution for the classification of the surrogate sets.

Discussion

We have compared two methods that have been used to separate ganglion cells in different cell types. The first one, based on their receptive field, allows to separate some types, but failed at separating others. In comparison, a method based on the responses to a standard 'chirp' stimulus could distinguish more cell types. To investigate the reasons for this better performance, we trained a LN model to predict the responses to the chirp stimulus. We found that some ganglion cells could have similar receptive fields, but different static nonlinearities, and as a consequence, distinguishable responses to the chirp. Methods that will take into account the non-linear responses of ganglion cells are thus more likely to distinguish different cell types.

Previous theoretical works have suggested that some ganglion cells with similar RFs may have different nonlinearities, and could thus correspond to different types [START_REF] Kastner | Critical and maximally informative encoding between neural populations in the retina[END_REF]. However, direct evidence that nonlinearities could help dividing into further sub-types was lacking. Our study confirms this hypothesis and shows that ganglion cells can have similar receptive fields and different static nonlinearities, and therefore belong to different types.

Compared to the method of [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF], here we only used the chirp to classify ganglion cells, while they used the responses to a larger ensemble of stimuli (flashes at different colors, moving bars, etc). Including the responses to a larger ensemble of stimuli would certainly help further distinguishing different cell types.

Here we stuck to the chirp stimulus because it was possible to relate the responses to the chirp stimulus to the receptive field easily: the only missing component was the static nonlinearity.

Characterization of non-linearity is thus necessary to define types on a functional basis. Including further characterization of the non-linear processing should help to do further division in cases where the chirp based stimulus was not able to distinguish different cell types. Two studies classified cell types based on their responses to a sequence of moving black and white stripes [START_REF] Deny | Multiplexed computations in retinal ganglion cells of a single type[END_REF], Drinnenberg et al., 2018]. However, there was no direct comparison with the method of [START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF]. A recent work by [START_REF] Goetz | Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression[END_REF]] did a full characterization using, among others, the responses to discs of various sizes. Since different cell types show a large diversity of suppressive surrounds [START_REF] Farrow | Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold[END_REF], this additional characterization of nonlinearities in ganglion cell responses should probably help distinguish cell types.

Methods

Multi-Electrode Array

MEA recordings were obtained from 6 ex-vivo isolated flat mounted retinae of wild type mice. Mice were sacrificed by quick cervical dislocation, and eyeballs were removed and placed in Ames medium (Sigma-Aldrich, St Louis, MO; A1420) bubbled with 95% O2 and 5% CO2 at room temperature. Isolated retinas were placed on a cellulose membrane and gently pressed against a MEA (MEA256 30 iR-ITO; Multi-Channel Systems, Reutlingen, Germany), with the RGCs facing the electrodes. Recordings were processed with Spyking Circus [START_REF] Yger | A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo[END_REF] to identify RGCs and sort their responses.

Light Stimulation

In all the experiments we played a white noise stimulus (3hz) to estimate the receptive fields of the ganglion cells. Each frame of this stimulus consists of a checkerboard of 38 by 51 checks, with each check of size 50µ. The luminance intensity of each check varies randomly at every frame according to a normal distribution.

To characterize the responses of our cells, we used a full field chirp stimulus (40hz).

This stimulus is composed of a first part in which a 1 second flash of white light is interleaved with 1 second of dim background light. During the second part of the stimulus the luminance oscillates from dark to bright, before with constant contrast and increasing frequency, then with constant frequency and increasing contrast (see fig. 6.1).

Receptive Fields

To estimate the receptive field centers of the ganglion cells, we computed the spiketriggered averages (STA) of their responses to the checkerboard stimulus over an interval of 700ms (21 frames antecedent the spike). For each cell, this gives us a 3-dimensional (2 spatial and 1 temporal) matrix representing the average check luminances of all the frames preceding a spike. We extracted the spatial component of the STA by computing its standard deviation of the mean across time. As a result, we obtained a 2-dimensional heat map that describes which checks evoke a response into the RGC. We fitted a 2-dimensional gaussian distribution onto this spatial component, and modelled the receptive field center as the ellipse delimited by one standard deviation of the distribution. Cells for which a good fit of the gaussian distribution could not be obtained were excluded from our dataset. To compute the temporal component of the receptive fields, we considered the spike-triggered averages for all the checks that lie inside the receptive field center estimated above, and averaged across space.

Cell Type Classification

We applied two clustering algorithms, one chirp-based and one RF-based, to the same dataset of 497 RGCs from 6 different experiments. Each clustering algorithm was composed by the following steps:

Feature extraction

For each retinal ganglion cell we computed the peri-stimulus time histogram (PSTH)

of the responses to the chirp stimulus, normalized by dividing by its maximum (time bin = 50ms). We also computed the temporal component of the RF and the diameter of its receptive field center as described above. We then built the feature matrix of the cell population, which is composed of a feature vector for each ganglion cell. In the RF-based method, the feature vectors were obtained by concatenating the temporal RF vector and the diameter of the receptive field center.

In the chirp-based method, we concatenated temporal RF, diameter of the receptive field center and PSTH to the chirp responses. We then reduced the dimensionality of the feature matrix through principal component analysis. We observed that the first 15 principal components were enough to describe more than 99% of the variance of the matrix. We hence generate a reduced feature matrix by pooling the coefficients of the 15 first principal components of each feature vector.

Clustering

We then proceeded to the clustering of our data using a recursive unsupervised algorithm. We used expectation-maximization to fit a multivariate gaussian distribution to the data points constituted by the feature vectors of our cells. The number of gaussian components K was chosen maximizing the Akaike information criterion. At the end of this step, we assigned each cell to the gaussian component describing its feature vector best, obtaining K clusters of ganglion cells. We repeated this procedure recursively, subdividing each cluster into more subclusters until a termination condition was met. The termination conditions we considered are three:

condition 1: The cluster is too small to be further subdivided. This condition is met if the cluster size is smaller than the threshold sizemin.

condition 2: The cluster is consistent enough and it does not require to be further subdivided. Consistency of the cluster was assessed based on the homogeneity of the PSTHs and temporal RFs of its members. To quantify this consistency we built the matrices P ST H cluster and RF cluster by pooling respectively the PSTHs and temporal RFs of all the cells composing the cluster. We then compute the consistency index for both these matrices as follows:

CI(X) = std time (mean cells (X)) mean cells (std time (X)) (6.1)
For the chirp-based approach, the condition is met if:

CI(P ST H cluster ) > C1 psth & CI(RF cluster ) > C1 RF (6.2)
For the RF-based approach, only the consistency of the temporal RFs was assessed, and hence the condition is met if: CI(RF cluster ) > C1 RF (6.3) condition 3: Further subdivision of the cluster produces bad results. We subdivide the cluster and check the consistency of the subgroups. For the chirp-based method the condition is met if, for every subcluster, its size is smaller than sizemin or if:

CI(P ST H subcluster ) < C2 psth ∥ CI(RF subcluster ) < C2 RF . (6.4)
For the RF-based method the condition is met if, for every subcluster, its size is smaller than sizemin or if:

CI(RF subcluster ) < C2 RF (6.5)
At the end of the process, all clusters with size smaller than sizemin, or RF consistency below C1 RF were discarded. For the chirp-based method, we also discarded all clusters with PSTH consistency below C2 psth . The results presented in this paper are obtained for sizemin = 6, C1 psth = 0.825, C1 RF = 0.950, C2 psth = 0.575, C1 RF = 0.900. With the chirp-based method, we obtained a total number of 24 different cell clusters. With the RF-based method, we obtained 15 clusters.

Validation

Retinal ganglion cells of the same type are spatially arranged in mosaics to maximize the coverage of the field of view and minimize intersections of their receptive field centers. We used this knowledge to validate our clusters. As mentioned above, our total ganglion cell population included cells from 6 different retinas. For each cell cluster then, we grouped together cells belonging to the same retina. For each of these groups, we overlapped the receptive field centers of its members, generating the corresponding mosaics (fig. 6.2.A).

We considered a cell cluster as valid if it featured at least one valid mosaic. Validity of mosaics was assessed as follows: a valid mosaic should have an uniform spacing of receptive fields of its composing elements. This means the distance between receptive fields centers of closest neighbours should be approximately the same for every member of the mosaic. For each mosaic member we calculated the normalized distance to its closest neighbour using the following formula:

dist(c 1 , c 2 , r 1 , r 2 ) = 2 ||c 1 -c 2 || r 1 + r 2 (6.6)
Where c i and r i represent respectively the center coordinates and the radius of the receptive field of a cell i.

We then built the histogram of closest neighbour distances to estimate the probability distribution of these distances for each mosaic. Good mosaic should feature unimodal distributions with a sharp peak around 2, entailing maximum coverage of the visual space and low intersection between receptive field centers. We used a Kolmogorov-Smirov (KS) statistical test to establish whether these distributions differ significantly from the ones computed on groups of cells sampled randomly. For each mosaic to validate, we generated 1000 surrogate mosaics of equal size by randomly sampling cells from the same retina population. We computed the distance histogram of the surrogate mosaics, and averaged them to obtain an estimate of the closest neighbour distance distribution for randomly sampled mosaics. We ran the one-sided Kolmogorov-Smirov test to check whether the cumulative distribution of distances in the real mosaic is smaller than the cumulative distribution for random mosaics.

We considered as valid all the mosaics for which the KS test gave a p-value < 0.05.

Following this procedure we validated 15 cell types identified with the chirp method, and 7 types for the RF-based method (see tables 6.1 and 6.2).

Methods Comparison

To assess the performance of a method A with respect to a method B, we used the Matthews Correlation Coefficient (MCC), an index that assesses the similarity of two sets in terms of precision and recall. First, we looked at all the validated mosaics obtained with method B, which constitute our ground truth against which we must compare the clusters from method A. For each mosaic obtained with B, we identified the best matching cluster found by method A. To find the best match of a mosaic M B i , we look at every cluster C A j from method A, and define the corresponding ensemble E A j as the subset of C A j formed by only cells coming from the same retina as M B i . We then compute the MCC between M B i and all the ensembles E A j , and select the best matching cluster as the one for which MCC is maximized.

best match (M B i ) = C A j , with j = arg max j M CC(M B i , E A j ) (6.7)
The overall performance of method A with respect to method B is then computed as the average MCC between all the mosaics in B and their best matches. An average MCC close to 1 indicates that most of the mosaics in B are accurately represented by clusters in A. Conversely, an average MCC close to 0 means that the mosaics in B are not well identified by A. The performance of the chirp-based method with respect to the RF-based method was 0.82, while the performance of the latter with respect to the former was 0.74. This means that the chirp-based method could identify the types validated by its competitor better than the RF-based method, indicating that the chirp-based method performs overall better.

Modeling Of Nonlinearities

To analyze the non-linear component of the cell responses to the chirp stimulus we used a linear-nonlinear model. This model is composed of a linear filter which convolutes the stimulus, producing a generator signal g, and a point-process nonlinearity that turns the generator signal into the spiking probability p(spike|g) (see fig. 6.4). As the chirp stimulus is full-field, it can be just represented with a one-dimensional vector of luminance over time. As a result, also the linear filter is one-dimensional, and it can be well approximated by the temporal component of the RF. To estimate the empirical nonlinearity of the model p(spike|g) we made use of the bayes theorem:

p(spike|g) = p(g|spike) • p(spike) p(g) (6.8)
To estimate the prior probability p(g), we convoluted the linear filter with the chirp stimulus vector (normalized between zero and one) to obtain a snippet of generator signal. We calculated p(g) as the histogram built on this generator signal. To estimate the marginal probability p(spike), we looked at the responses of the cell to each repetition of the chirp stimulus. We computed this probability as the number of chirp frames producing (at least) a spike, divided by the total number of frames.

To estimate the posterior probability p(g|spike), we computed the generator signal for the chirp stimulus as above. Then, we looked at the responses of the cell to each repetition of the chirp stimulus. For each chirp frame for which at least one spike was produced, we stored the corresponding value of the generator signal. We then calculated p(g|spike) as the histogram built on these generator signal values.

To get a simpler representation of the spiking probabilities p(g|spike), we fit the empirical nonlinearities obtained above with the sigmoid function shown below:

sigm(x) = p 3 + y(1 -p 3 -p 4 ) with y = 1 1 + e -p 2 (x-p 1 ) (6.9)

Where p 1 , p 2 , p 3 , p 4 represent respectively the offset, the slope, the lower bound and the upper bound of the curve (fig. 6.6.A).

Non-Linearity Comparison

To test the hypothesis that RF-based method failures are due to its inability to discriminate cell nonlinearities, we considered the four cell types (H, I, K, O) for which the mosaic comparison of chirp and sta methods gave poor results (MCC smaller than 0.6). Given the pair < M chirp i , E RF i >, representing respectively a mosaic obtained with the chirp-based method and its best match obtained with the RF method, we built the set of cells belonging to both sets S both and the set of cells belonging only to the RF-based match S RF . For each of these cells, we considered the parameter vector P composed by the four parameters of the fitted non-linearity in the corresponding model. We then built a simple classifier that models the two sets with gaussian distributions (assuming mutual independence of the parameters, fig. 6.6.B).

This naive classifier was already good enough to distinguish the two groups of cells, suggesting these two groups of cells featured different nonlinearities. To make sure this result was reliable, we ran the same analysis on shuffled data. We built 1000 surrogate sets < S RF , S both > by randomly permuting the members of the original sets < S RF , S both >, and fit the gaussian classifier on each of them. We then compared the true loss obtained for the discrimination of the true sets with the loss distribution obtained on the surrogate sets.

For 2 of the 4 cell types we looked at (H and K), the true loss lied outside of the Visualization of the nonlinearities of the cells composing the cluster H in the sigmoid parameter space. In red, the cells that are included in the cluster by both RF and chirp method. In black, the cells that are included in the mosaic by only the RF method. The concentric ellipses represent the gaussian distributions that model these two sets.

boundaries of the control loss distribution (fig 6.5.C), corroborating our hypothesis that the cells included in this cluster by the chirp method have a different nonlinearity with respect to the ones included by the RF method. For one cell type (O), a significant portion of surrogate pairs featured zero loss: this is due to the fact that the data points available for this type are too few with respect to the dimensionality of our parameter space, and hence no conclusions can be drawn from this analysis in this case. For the fourth cell type (I), this analysis gave bad results (the true loss lies inside the boundaries of the surrogate loss distribution). It is worth noting, though, that a significant number of cells in this group did not respond to the chirp stimulus. This affected the computation of the empirical nonlinearities, which in fact appears as a flat horizontal line for 6 cells out of 20. In this case, this analysis obviously does not constitute a proper tool to discriminate nonlinearities of the cell group.

Chapter 7

The Rod Bipolar Cell Pathway Contributes To Surround Responses In OFF Retinal Ganglion Cells

Introduction

A classical phenomenon described in the retina and beyond is surround modulation:

stimuli presented beyond the receptive field center can also modulate the response.

Many ganglion cell types show a significant surround modulation. Classically, two types of surround modulation have been described: in surround suppression, the surround is stimulated with the same ON/OFF polarity as the center, and this results in suppressing the response to the center stimulus [Barlow, 1953, Thoreson and Mangel, 2012, Farrow et al., 2013]. A different type of surround modulation is when the surround is stimulated with the polarity that is opposite to the preferred polarity of the center and evokes a response, or increases it (e.g. ON stimulation in the surround for OFF ganglion cells). This type of modulation is often termed antagonistic response [Kamermans andSpekreijse, 1999, Bloomfield andXin, 2000].

The mechanisms behind surround modulation are unclear, and it is also not clear if surround suppression and antagonistic modulation share the same mechanisms. Is it usually assumed that horizontal cells play a role in surround suppression [Werblin, 61 1972, Mangel, 1991, McMahon et al., 2004, Davenport et al., 2008], although this is controversial [START_REF] Drinnenberg | How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse[END_REF]. However, several studies have shown that amacrine cells also play a role in surround suppression [Jensen, 1991, Cook and McReynolds, 1998, Farrow et al., 2013, Franke et al., 2017]. Recently, several works have suggested that rods could contribute to surround. Several studies have shown that they can be active over a broader range than initially thought [START_REF] Pang | Light-evoked excitatory and inhibitory synaptic inputs to on and off α ganglion cells in the mouse retina[END_REF], Tikidji-Hamburyan et al., 2015, Grimes et al., 2018]. The main pathway by which rods are supposed to contribute is through horizontal cells, then cones, then bipolar cells in the center.

However, the rod bipolar cell-AII pathway could also play a role. They are also active at mesopic light level [START_REF] Franke | Inhibition decorrelates visual feature representations in the inner retina[END_REF], Ke et al., 2014]. Anatomical studies have shown that there is a possible disinhibitory pathway going through rod bipolar cells, AII, OFF cone bipolar cells, wide GABAergic amacrine cells and OFF bipolar cells [START_REF] Lauritzen | Rod-cone crossover connectome of mammalian bipolar cells[END_REF]. In some OFF ganglion cells, it has been reported that strychnine can block responses to ON stimulation in the surround, suggesting that a glycinergic dependent pathway mediates these antagonistic responses [START_REF] Deny | Multiplexed computations in retinal ganglion cells of a single type[END_REF], Franke et al., 2017]. However, these tools were not specific enough to determine if the RBC-AII pathway contributes to these antagonistic responses: strychnine will block other pathways, and rod stimulation will also activate other circuits, for example the horizontal cells as mentioned above.

To address this issue we have taken advantage of a novel technique, digital holography.

Combined with optogenetics, it enables us to stimulate cells of a specific type with a high spatial precision. We asked if the RBC-AII pathway could contribute to the antagonistic surround modulation of OFF ganglion cells. We first used this tool to ask if activating the RBC-AII pathway could be sufficient to evoke responses in distant OFF ganglion cells, mimicking the antagonistic responses to ON stimuli in their surround. We then show that hyperpolarizing AII amacrine cells decrease the responses to ON surround stimulation in OFF ganglion cells. These results show that the RBC-AII pathway contributes to antagonistic surround modulation in OFF ganglion cells.

Results

RBCs Activate OFF Ganglion Cells Beyond Their

Receptive Field Center

We first tested if stimulating the RBC-AII pathway is sufficient to induce responses in distant OFF ganglion cells. For this, we needed to stimulate rod bipolar cells with a high spatial precision while recording ganglion cells. For this purpose, we mounted a rig combining holographic stimulation [START_REF] Spampinato | All-optical interrogation of a direction selective retinal circuit by holographic wave front shaping[END_REF] with multi-electrode array (MEA) recordings [START_REF] Yger | A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo[END_REF]. The spatial precision of this system was high: we could generate holographic spots of 10 um diameter in the x-y plane, which is the diameter of rod bipolar cells. The resolution along the z-axis was 22µm, i.e. slightly lower but much smaller than the size of rod bipolar cell along this axis, from dendrite to axon terminal.

To make rod bipolar cells light sensitive, we expressed an optogenetic protein specifically in rod bipolar cells. For this we injected an AAV [START_REF] Dalkara | In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous[END_REF] expressing the CoChR protein fused with GFP, under the control of a promoter [START_REF] Lu | Aav-mediated transduction and targeting of retinal bipolar cells with improved mglur6 promoters in rodents and primates[END_REF] and obtained an expression restricted to rod bipolar cells (similar to [START_REF] Spampinato | All-optical interrogation of a direction selective retinal circuit by holographic wave front shaping[END_REF]). We then performed the following experiment: Firstly, we first recorded ganglion cell activity during classical stimulation. Secondly, we stimulated the retina with a checkerboard to determine the receptive field (RF) of each ganglion cell. Thirdly, we then blocked the transmission from photoreceptors to bipolar cells using a pharmacological cocktail (15µl L-AP4; 10µl ACET). We imaged the retina with a epifluorescence microscope to locate the rod bipolar cells where CoChR-GFP was expressed. We then stimulated rod bipolar cells with digital holography while recording ganglion cells (fig 7.1.A), one holographic spot lasting 500 ms at a time. While this spot has the size of one rod bipolar cell, since rod bipolar cells expressing GFP are sometimes contiguous, it is possible that a single spot activates more than one cell. However, the activation will always be limited to a couple of cells, and restricted to a small spatial area.

We observed that rod bipolar cell stimulation evoked responses in ganglion cells (fig.

7.1.B, C), including when the targeted rod bipolar cell was outside the measured receptive field center of the cell. These responses cannot be due to spurious stimulation of photoreceptors (see below). We took all the pairs of RBC -ganglion cells and detected for which one there was a significant response (defined as a z-score above threshold and a firing rate above a minimal level, see methods). We found that RBC stimulation could evoke responses in both ON and OFF ganglion cells. To determine over which extent RBC could evoke a response, we plotted the probability of response for ON and OFF ganglion cells against the distance between the stimulated RBC and the center of the RF of the recorded ganglion cell, normalized by the radius of the RF. This normalized distance is such that 1 corresponds to the limit of the RF center. For ON cells, the probability of observing a significant response decreased quickly once the stimulated spot was beyond the receptive field center, i.e. beyond a normalized distance of 1 (fig. 

RGC Responses Cannot Be Explained By Ineffective

Blocking Of Photoreceptor Transmission

OFF ganglion cells can thus be stimulated by RBC that are beyond their receptive field center. To control that these responses were truly evoked by RBC stimulation, and not by spurious stimulation of photoreceptors that would be transmitted despite the pharmacological cocktail, we performed control experiments where we repeated the same experiment in mice that were not injected with AAV and did not express CoChR. In this case, we did not see any increase of firing rate in ganglion cells following holographic stimulation of the retina (fig. 7.2, see methods).

However, we found in some cases a decrease of firing rate during the holographic stimulation. Could it be due to an imperfect blockade of photoreceptor transmission?

To answer this question, we measured responses of ganglion cells to photoreceptor stimulation without any pharmacological blocker. In that case, we found a strong correlation between holographic stimulation and classical visual stimulation: when stimulating with an holographic spot close the Receptive Field center, ON ganglion cells responded with an increase of firing rate, while OFF ganglion cells responded with a decrease of firing rate (fig. 7.3). Holographic stimulation of photoreceptors is thus consistent with visual stimulation. This result suggests a possible interpretation for the suppression of activity observed during holographic stimulation in the presence of blockers.

We observed that this suppression of activity could happen both for ON and OFF cells, with no difference in the sign of the modulation. If this suppression was due to an ineffective blocking of the transmission from photoreceptors to bipolar cells, from our results without the blockers, we would expect that this would modulate ON and OFF cells with opposite signs. Since this is not the case, our results suggest that this suppression is not due to photoreceptor stimulation, but may have another source: previous works [START_REF] Owen | Thermal constraints on in vivo optogenetic manipulations[END_REF], Picot et al., 2018] have shown that 2 photon stimulation can increase locally the temperature, activating some potassium channels and hyperpolarizing neurons. Our effects are consistent with this and are thus probably due to a heating of ganglion cells by the holographic stimulation.

The fact that the suppression seems constant over time is also consistent with this hypothesis. 

Ganglion Cells Integrate Signals From Several

RBCs

So far we have shown that the stimulation with a single holographic spot can evoke a response in ganglion cells. However, during visual stimulation, stimuli could evoke responses in many RBCs simultaneously. In particular, responses to disc stimuli in the surround of OFF ganglion cells were observed when the disc was large enough, i.e. several hundreds of micrometers. Such a large disc would probably activate a large number of RBCs. To understand how ganglion cells would respond to the activation of many RBCs, we asked how they integrate the responses of several RBCs stimulated simultaneously.

For this we stimulated RBCs with several holographic spots simultaneously while recording ganglion cells with MEA as described above (fig. 7.4.A). We stimulated RBCs with both single and combinations of multiple spots. We used this data to train a LN model that takes holographic spots as an input and the responses of a ganglion cell as the output. We then used the model to predict the responses to 

Hyperpolarizing The RBC-AII Pathway Affects Responses Of OFF Ganglion Cells To Surround Stimulation

Our results show that rod bipolar cell stimulation can evoke responses in distant OFF ganglion cells. Many OFF ganglion cells respond to ON stimulations in their surround. Our results suggest that, in response to this ON surround stimulation, rod bipolar cells will be activated, and that this activation will result in an activation of distant OFF ganglion cells, participating in the response to ON surround. Surround stimulation should thus evoke responses in RBC that will contribute to antagonistic responses.

To further confirm this scenario, we would like to modulate the RBC-AII pathway during visual stimulation. Furthermore, these results were obtained while the transmission from photoreceptors to bipolar cells was blocked. This might change the adaptation state of the retina. It is unclear if the pathway is active in normal, low photopic conditions. To better understand their effect we aimed at inactivating this pathway while providing visual stimulation in the surround, doing visual and holographic stimulation at the same time (fig 7.6.A).

For this purpose, we expressed the optogenetic protein gtACR in AII amacrine cells. gtACR is a protein that will hyperpolarize neurons upon light stimulation [Govorunova et al., 2015a]. We did this by injecting an AAV construct expressing gtACR under the control of a promoter restricting the expression to AII amacrine cells (see chapter 8 for the promoter). We then aimed at performing an ON visual stimulation in the surround of OFF ganglion cells, and then display the same stimulus while performing holographic stimulation of AII to hyperpolarize some of AII amacrine cells. If our hypothesis is correct, AIIs transmit the signal from the RBCs activated by the ON surround stimulation to ganglion cells through a polysynaptic pathway. Hyperpolarizing some AIIs should partially impair this transmission and decrease the responses of OFF ganglion cells to the ON visual stimulation of their surround.

We put together a system to stimulate simultaneously with visual and holographic stimuli. The visual stimulation was a bright disc on a gray background located in the surround of the recorded OFF ganglion cells. For the holographic stimulation, we stimulated with one of several holographic spots located inside this disc (fig.

7.6.B).

A technical difficulty is that holographic stimulation evokes a response due to photoreceptor stimulation. However, we have shown above that the sign of this response is predictable from its receptive field. For OFF ganglion cells stimulated in the surround, we thus expect an ON response due to holographic stimulation of photoreceptors. To mitigate this effect and better tease apart the impact of holographic and visual stimulation, we introduced a delay between holographic and visual stimulation. We first start the holographic stimulation of one spot that lasts 500 ms. After 175 ms, the visual stimulation was displayed, and lasted for 325 ms.

AIIs targeted by the holographic stimulation would thus still be hyperpolarized during visual stimulation. We also did control conditions where either only the holographic stimulation was performed, or only the visual one. By introducing this delay, we observed frequently a transient response that can be attributed to the holographic stimulation of photoreceptors, followed by the response to the visual disc.

In control mice where no optogenetic protein was expressed, this second response was almost not affected by the holographic stimulation (fig. 7.7), because it was similar to the response to the visual stimulation alone.

To measure the impact of holographic stimulation of AII amacrine cells on the visual stimulation, we thus compared the responses to the visual stimulation alone to the responses of the same ganglion cell to the holographic+visual stimulation.

We observed several cases where the responses to the disc were decreased by the holographic stimulation, compared to the visual stimulation alone (fig. 7.6.C, F).

Over the population of recorded OFF cells, we observed that 23% of cells with a clear response to the ON surround stimulation showed a significant decrease of this response upon holographic stimulation, for at least one holographic spot (fig 7.6.D,

E, see methods).

A possible explanation for this decrease of the response could be that the holographic stimulation, which appears first, desensitizes the photoreceptors and makes them less responsive to the visual stimulation starting 175 ms after, compared to the case where the visual stimulation is presented alone. To test this hypothesis we run control experiments with the same protocol, except gtACR was not expressed in AII amacrine cells. In that case, we did not observe any difference between the response to the disc alone vs holographic+visual stimulation (fig 7 .7). 

Discussion

Previous works [START_REF] Szatko | Neural circuits in the mouse retina support color vision in the upper visual field[END_REF], Szikra et al., 2014, Joesch and Meister, 2016] have shown that rods contribute to surround modulation, and in particular surround suppression, with rods inhibiting cone output laterally through horizontal cells. Here we show that the pathway formed by rod bipolar cell and AII amacrine cells also contribute to antagonistic surround responses in OFF ganglion cells: when an ON stimulus is presented in the surround of an OFF ganglion cell, it will evoke response in rod bipolar cell, which will activate AII amacrine cell. How can this activation drive distant OFF ganglion cell responses? A possible pathway, highlighted by [START_REF] Lauritzen | Rod-cone crossover connectome of mammalian bipolar cells[END_REF], suggests that AII could inhibit OFF cone bipolar cell, which would reduce their excitatory input to OFF GABAergic wide field amacrine cell.

This could result in a disinhibition of distant OFF cone bipolar cells, which could thus excite OFF ganglion cells. This hypothesis is further supported by previous results showing that ON responses of distant OFF ganglion cells can be suppressed both by blocking glycinergic or GABAergic transmission [START_REF] Deny | Multiplexed computations in retinal ganglion cells of a single type[END_REF].

The pathway formed by rod bipolar cell and AII amacrine cell is a key component to propagate rod signals in dim light. More recently, several works [START_REF] Ke | Adaptation to background light enables contrast coding at rod bipolar cell synapses[END_REF], Pang et al., 2010, Szikra et al., 2014] have shown that it is also active at mesopic light levels. This can be due to two reasons. First, there is a broad range of light levels where rods are not saturated yet, and thus transmit signals to the retinal network.

Second, several works [START_REF] Behrens | Connectivity map of bipolar cells and photoreceptors in the mouse retina[END_REF], Pang et al., 2018] have shown that cones can connect to rod bipolar cells. Our results suggest that this pathway is thus used in that case to contribute to distant surround modulation.

An intriguing result is that the relation between RBC stimulation and ganglion cells could be modeled by a LN model. How the RBC output is integrated over space and multiple cells has not been directly described before, and holographic stimulation was necessary for this. However, previous works studying the nonlinear transmission from RBC to cone bipolar cell through AII using paired patch clamp recordings [START_REF] Lieberman | Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina[END_REF] showed the relation from RBC to ON CBC seems linear.

However, to predict a linear relation from RBC to ON ganglion cell, this would additionally require the relation from ON bipolar cells to ON ganglion cells to also be linear, which is not always the case: many studies have shown that this relation is better described with a LNLN model, at least for some ganglion cell types. In the same study, the relation from RBC to OFF CBC was non-linear [START_REF] Lieberman | Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina[END_REF]. It is unclear why we did not need a LNLN model in that case. A possible explanation is that our model is imperfect, and that a LNLN model would outperform the LN model for this. However, our experiments did not allow collecting enough data to learn accurately a LNLN model that would outperform clearly the LN model presented here. More accurate experiments designed to tease apart these two models might allow a deeper understanding of the spatial integration of the RBC signal by ganglion cells.

Our previous work (see chapter 8) showed that our promoter targeting AII could lead to expression of gtACR in ganglion cells. However, we think this would not affect the interpretation of our results: holographic stimulation was performed at large distances from the recorded ganglion cells. It could thus modulate ganglion cells near the holographic spot, but not the recorded ganglion cells that we focused on, that were located several hundreds of micrometers from the stimulation spot.

Another possible criticism of our AII inactivation experiment is that it will not just block the output of RBC, but more generally all the inputs to the AII amacrine cells.

More definitive evidence in favor of a specific role of RBC could be to inactivate directly RBC with gtACR and holographic stimulation. However, there is a range of background light levels over which RBC are a major input of AII amacrine cells [START_REF] Ke | Adaptation to background light enables contrast coding at rod bipolar cell synapses[END_REF]. Over this range of light level, our results suggest there is a significant contribution of the RBC-AII pathway to surround modulation.

It is nevertheless possible that AII amacrine cells, by inhibiting the OFF pathway upon light stimulation, have a more general role in creating a disinhibitory loop that will allow OFF ganglion cells to respond to a ON stimulus presented in their surround, through the anatomical pathway described above. AII amacrine cells could thus be involved in transmitting rod signals at mesopic light levels for antagonistic surround modulation, and in transmitting faster cone signals through gap junctions at higher light levels.

Finally, our results demonstrated that the RBC-AII pathway contributes to antagonistic surround modulation, but it is probably not the only pathway involved in these responses. Lateral transmission through horizontal cells might play a role too, and other networks of amacrine cells could also play a role. The respective contributions of these pathways remain to be determined, but they may have complementary roles depending on the context (background luminance and shape of the stimulus).

Previous works had shown that, beyond its role in relaying rod signals to the rest of the retina, AII amacrine cells can play other roles and contribute to substantially reshaping the responses of some types of ganglion cells [START_REF] Münch | Approach sensitivity in the retina processed by a multifunctional neural circuit[END_REF]. Our study shows that they play also a role in generating antagonistic surround responses in OFF cells, thanks to their ability to respond to ON stimuli and inhibit OFF cells.

Methods

AAV Productions

Recombinant AAVs were produced by the plasmid cotransfection method, and the resulting lysates were purified via iodixanol gradient ultracentrifugation as previously described [START_REF] Dalkara | In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous[END_REF]. Briefly, 40% iodixanol fraction was concentrated and buffer exchanged using Amicon Ultra-15 Centrifugal Filter Units (Millipore, Molsheim, France). Vector stocks were then tittered for DNase-resistant vector genomes by real-time PCR relative to a standard.

Animals And Intravitreal Injections

All experiments were done in accordance with Directive 2010/63/EU of the European Parliament. The protocol was approved by the Local Animal Ethics Committee of Paris 5 (CEEA 34). All mice used in this study were wild type mice from Janvier Laboratories (Le Genest Saint Isle, France). For injections, mice were anesthetized with isoflurane (5% induction, 2% during the procedure). Pupils were dilated, and an ultrafine 30-gauge disposable needle was passed through the sclera, at the equator and next to the limbus, into the vitreous cavity. Injection of 1.5µl stock containing 3.04 × 10e12 particles of AAV was made with direct observation of the needle in the center of the vitreous cavity.

Multi-Electrode Array

All recordings were performed with a multi-electrode array of size 450µm by 450µm 

Light Stimulation

All light stimulation was delivered through a Digital Micromirror Device (DMD). To estimate RGC receptive fields we used a white noise stimulus (checkerboard). Each frame consisted of a grid of gray checks of size 50µm each, arranged in an array of size 38 by 51. The light intensity of each check changed randomly at each frame according to a normal distribution. This stimulus was played at 30hz rate, for a total time of 35 to 45 minutes, depending on the experiment.

Holographic Stimulation

One-photon fluorescence imaging was used to scan the Bipolar Cell Layer and identify the RBCs expressing the opsin. We chose a subset of RBCs and measured their position to deliver the optogenetic stimulus. For optogenetic stimulation we relied on two-photon digital holography. This technology shapes the light coming from an infrared laser to perform a patterned two-photon stimulation of selected cells with individual cell resolution.

For the single activation experiment (fig. 7.1), we could identify 36 expressing RBCs.

We targeted these cells one by one at maximum intensity for time intervals of 500ms, interleaved with 1s of pause. We collected 20 trials for each RBC activation, for a total protocol time of around 20 minutes.

For the multiple activation experiment (fig. 7.4 and 7.5), we selected 100 RBCs.

We generated more than 2500 different patterns, consisting of distinct combinations of 1 to 5 RBCs. Each patterned stimulus was delivered for 500ms, interleaved with pauses of 500ms, for a total time of around 110 minutes. The intensity of the stimulation delivered to each RBC by a given pattern was equal to the maximum available intensity, divided by the number of targets. For modeling reasons, we selected a subset of 50 patterns as our testing set (see modeling section below).

Patterns belonging to the testing set were repeated several times, collecting 15 or more trials per each.

For the control protocol (fig. 7.2 and 7.3), the locations of the holographic patterns were chosen arbitrarily. We generated a grid of 49 holographic locations (7 by 7)

equally spaced across the whole multi-electrode array. These locations were targeted one by one for a time interval of 500ms, interleaved with 1s pauses. For each pattern we collected 20 trials, for a total time of around 25 minutes.

Composite Light And Holographic Stimulation

For the AII inhibition protocol we combined a visual stimulus with the holographic activation described above. The visual stimulus consisted of a white light disc of diameter 250µm, displayed on one side of the multi-electrode array. Inside the perimeter of the disc, we selected 15 holographic locations, equally distanced with a spacing of around 45µm (fig. 7.6). We chose the location of the holographic patterns arbitrarily, rather than using one-photon imaging to find the position of expressing cells. As AII amacrine cells feature wide and dense dendritic arbors, their fluorescence halos often saturate the one-photon scans, making it difficult to locate their somas. At the same time, the extent of their dendrites and their spatial arrangement makes them easy to target even without knowing their exact position.

The holographic stimuli were delivered for a time interval of 500ms each, interleaved with pauses of 3.5s. For each pattern we collected 20 or more trials. During the holographic stimulation we displayed the white disc, after 175ms from the onset of the holography, for a time interval of 325ms. This delay between the start of visual and holographic stimuli was needed to avoid confounding between the responses of RGCs due to optogenetic activation by holography and the ones due to visual activation by the disc. We interleaved the composite stimulation with presentations of the visual stimulus alone, for a total time of 45 minutes. We applied the same protocol for the control experiment (fig. 7.7), with a reduced number of holographic patterns (5), for a total time of around 15 minutes.

Receptive Fields

To estimate the RGC receptive fields, we first calculated the spike-triggered averages (STAs) of the responses to the checkerboard stimulus. The averages were computed on the 21 checkerboard frames preceding a stimulus, for a total time span of 700ms.

These averages can then be described with a three-dimensional matrix, where each value represents the average light intensity of a given check for a given frame antecedent the stimulus.

The STAs were then defactorized into spatial and temporal components. The spatial component is obtained by computing the standard deviation of the mean of the STA across frames. This produces a two-dimensional heat map matrix, where each value is an index representing how much the corresponding check produces a response into the RGC. The corresponding receptive fields were obtained fitting a two-dimensional gaussian distribution to the spatial STAs. We generated the ellipse corresponding to the region for which the gaussian distribution had standard deviation equal to one, and estimated the receptive field center of the RGC as the surface delimited by this ellipse. The temporal component was then calculated by considering only the checks lying inside the receptive field centers, and averaging their STA values across the two spatial dimensions. All the cells for which it was not possible to estimate a receptive field center were excluded from the study.

Activation Score

To detect and quantify the RGC responses produced by RBC activation we defined an activation index A and an activation score S. We first computed an activation threshold thresh up as follows: for a given stimulus s and RGC c, we considered a control window of 300ms antecedent to stimulus onset, and computed the average mean spontaneous firing rate f r c,s control and its standard deviation σ c,s control across all trials. We defined the activation threshold as:

thresh c,s up = f r c,s control + max(5σ c,s control , h) withh = 10hz (7.1) 
Then, we looked at a response window of 400ms after the presentation of the optogenetic stimulus (excluding respectively the first and last 50ms of stimulation), and computed the peri-stimulus time histogram psth c,s (time bin equal to 50ms).

We assigned an activation index A c,s equal to 1 if the RGC mean response psth c,s exceeded its activation threshold thresh c,s up for at least one time bin, or a score equal to 0 otherwise. We then defined the activation score S as:

S c,s = ( max(psth c,s ) -thresh c,s up ) * A c,s (7.2)
For the control experiment, we were also interested in assessing the inhibitory effects of the holographic stimulation caused by photoreceptor activation or heating. We defined a second activation threshold thresh c,s down to detect these inhibitory effects as:

thresh c,s down = f r c,s control -min(5σ c,s control , h)) (7.3)
We then extended our previous definitions of activation index and activation score as follows:

if max(psth c,s ) > thresh c,s up A c,s 2sided = 1 S c,s 2sided = max(psth c,s ) -thresh c,s up else, if min(psth c,s ) < thresh c,s down A c,s 2sided = -1 S c,s 2sided = min(psth c,s ) -thresh c,s down else A c,s 2sided = 0 S c,s 2sided = 0 (7.4)
Positive activation index and scores correspond to a detected RGC activation.

Negative index and scores correspond to an RGC inhibition. Null index and scores entail no response was detected.

Comparative Activation Score

To quantify the AII modulation of RGC visual responses, we defined a comparative activation score. This score measures how much, in terms of firing rate, the AIIs inhibited by holographic stimulation contribute to the RGC response. First, we looked at the RGC responses to the pure visual stimulus. We considered a response window of 350ms, starting 75ms after stimulus onset, and computed the mean across trials. We followed the same procedure for the response to the composite visual and holographic stimulation. The comparative activation score is then defined as the maximum of the visual response minus the maximum of the visual and holographic response (fig. 7.6.E and 7.7.C).

Normalized Distances

Normalized distances between pairs of RBC and RGCs were computed as the euclidean distance on the imaging frame divided by the RGC receptive field radius:

N ormalized distance RBC, RGC = ||C RBC , C RGC || r RGC (7.5)
Where C RBC is the position of the RBC on the imaging frame, C RGC is the center of the RGC receptive field center projected on the imaging frame, and r RGC is the longest radius of the RGC receptive field center. The same formula was used for normalized distances between RGC and holographic patterns.

Latency Of Activation

To estimate the latency of the RGC responses to optogenetic stimulation, we computed the mean responses as described above. When then defined the latency as the time bin at which the mean response had its peak value (supp. fig. 7.7).

Effects Of RBC Stimulation: Population Analysis

To quantify the effect of RBC stimulation on RGC responses at different distances, we first computed the activation score of each RGC for every RBC stimulation (for a total population of 121 RGC for the optogenetics experiment and 85 RGCs for the control). For each RBC-RGC pair, we calculated their normalized distance.

Then we binned all the pairs according to their distances, considering a range of 0 to 5 normalized distances (bin size 0.33). For each distance bin, we computed the probability of observing an RGC response to RBC stimulation as the number of pairs with activation scores different from zero, divided by the total number of pairs in the bin (fig. For both ON and OFF RGCs, the estimated probability of observing a response when stimulating an RBC in their receptive field center was ~7%. For ON cells, this probability quickly drops to zero as the distance between the RGC and targeted RBC increases, with almost no responses detected for RBC lying in the RGC surround (probability < 1% for all the distances bins considered that are above the RF radius, fig. 7.1.D). For OFF RGCs instead, we still have a moderate probability of response also to RBCs located in the close surround (~5% for normalized distances between 1.00 and 1.33, ~3% for normalized distances between 1.33 and 1.66, fig. 7.1.E). A statistical test (T-Test) assessed that the ON and OFF probability distributions are significantly different in the range of 1.00 -1.66 normalized distances (p values equal to 0.0017 and 0.0008 respectively for the normalized distance intervals <1.00, 1.33> and <1.33, 1.66>).

We ran the same analysis on a control experiment with no opsin expressed to test the effectiveness of our blockers. In this case, no activations were observed for either ON or OFF RGCs (probability distribution equal to 0% for all the distance bins in OFF RGCs, and < 0.05% for all the distance bins in ON RGCs, data not shown).

Finally, we used the same analysis to assess the responses to holographic stimulation mediated by photoreceptors in absence of blockers and opsin expression. In this case we used the extended version of our activity index to compute our probability distributions (see section above), as we wanted to assess both inhibitory and exci-tatory effects of the stimulation. As expected, the holographic stimulation had an excitatory effect on ON RGCs, and an inhibitory effect on OFF RGCs. These effects were stronger and more frequently observed for holographic spots located inside the RGC receptive field centers, and got progressively weaker for spots located further away (fig. 7.3.B, C, D, E).

Responses To AII Inhibition: Population Analysis

To estimate the contribution of AIIs to the responses of OFF RGCs, we computed the activation score of each RGC to the pure white disc stimulus as described above, and selected all the RGCs with a non-zero activation score. For each of these RGCs (35 for the optogenetics experiment and 25 for the control), we computed the relative distances to all the holographic locations. We binned all the RGC-holographic pattern pairs according to their relative distance considering a range of 0 to 10 normalized distances (bin size 0.66). For each distance bin, we calculated the average comparative activation scores (fig. 7.6.E and 7.7.C).

To quantify the extent of AII modulation of OFF RGC surround responses, we selected only the RGCs for which the disc lies outside of their receptive field center (34 RGC for the optogenetics experiment and 22 for the control). We considered all pairs of these RGCs and holographic patterns, and performed the same distance binning explained above. Then, we computed the probability of observing a surround modulation as follows: for each distance bin we counted the number of RGC-holographic spot pairs with a comparative activation index above 10hz, and divided by the total number of pairs (fig. 7.6.D).

We found that the inhibition of AIIs produced strong variations in the surround responses of OFF RGCs, even for AIIs very distant from the RGC receptive field center. We observed that the inhibition of an AII cell located 5 RF radii away from a RGC could produce a decrement of firing rate in surround responses between 20hz and 40hz. On average, more than 20% of the AIIs located at a distance of 5 RF radii from the RGC contribute to its surround. We applied the same analysis to the control experiment with no opsin expressed, to make sure the observed surround modulations are indeed due to the optogenetic activation of AIIs. In this case, for no RGC we observed variations of firing rate above 10hz between responses to pure visual stimulus and responses to visual plus holographic stimulus.

Linear Summation Of Responses

In fig. 7.4.C, we compare the response of a representative RGC to the simultaneous stimulation of two RBCs, with the linear summation of the responses to the individual RBC stimulations. This linear summation is computed as to the sum of the mean responses to the two individual stimuli, minus the mean spontaneous firing rate computed on a control window of 300ms antecedent the stimulus.

Modeling Of The Rod Bipolar Cell Contribution

To characterize the mechanisms underlying the RGC responses to the optogenetic stimulation of RBCs, we relied on Linear-Nonlinear models (fig. 7.4.A). The input of our model consisted of an array representing the stimulation pattern, with size equal to the total number of RBCs stimulated during the experiment. The value of each array element was equal to the intensity of the holographic stimulus delivered to the corresponding RBC (zero for the cells not targeted). This input signal underwent a first linear step representing the pathways that connect each RBC to the RGC.

In this layer, a linear weight was assigned to each RBC, and the linear summation of their contributions produces a generator signal. The last step of the model consisted of a point-process nonlinearity that converted this generator signal into the average RGC firing rate observed during the stimulation time interval (500ms). As nonlinearity we choose an the exponential of the form exp(a * g(t) + b) with the two free parameters a and b. We modeled all the RGCs for which at least one activation to the multiple RBC stimulations was observed, for a total of 18 cells.

All models were fitted with the library TensorFlow. We splitted our set of holographic patterns into two sets, one for training (more than 2500 patterns) and one for testing This opens the possibility to stimulate the remaining retinal ganglion or amacrine cells directly to restore visual function. Retinal prostheses are a promising solution and have been found to restore some useful perception in blind patients. However, the acuity of the existing devices remains very low, below the level of legal blindness [START_REF] Lorach | Artificial retina: The multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device[END_REF][START_REF] Da | Five-year safety and performance results from the argus ii retinal prosthesis system clinical trial[END_REF]. Patients also report that percepts evoked by electrical stimulation of retinal neurons are not easily interpretable as visual stimuli [START_REF] Beyeler | A model of ganglion axon pathways accounts for percepts elicited by retinal implants[END_REF] and therefore are often not sufficient to identify objects or to navigate in complex environments. Optogenetic therapies provide a possible alternative to restore vision with a higher resolution and specificity that can better 97 mimic the natural output of the retina. In this strategy, a light sensitive protein is expressed in targeted neural populations remaining in a blind retina. Expressing light sensitive proteins in retinal ganglion cells could be an efficient way to restore vision through the stimulation of these newly light-sensitive cells with patterned light to evoke visual perception [START_REF] Bi | Ectopic Expression of a Microbial-Type Rhodopsin Restores Visual Responses in Mice with Photoreceptor Degeneration[END_REF], Caporale et al., 2011, Sengupta et al., 2016, Chaffiol et al., 2017, Berry et al., 2019], although the first results show that the acuity is still low with this strategy [START_REF] Sahel | Partial recovery of visual function in a blind patient after optogenetic therapy[END_REF]. It is still unclear how to optimize visual acuity and perceptual performance when restoring vision using optogenetics.

In a healthy retina, the ganglion cell population can be divided into about 20 to 40 cell types that each performs a different computation on the visual scene [Sanes andMasland, 2015, Baden et al., 2016]. Each cell type is classically assumed to be selective to a specific feature of the visual scene and therefore conveys a corresponding feature map to the brain [START_REF] Deny | Multiplexed computations in retinal ganglion cells of a single type[END_REF]. Altering specifically one of these cell type populations can lead to specific impairments in visual perception and motor output, including specific defects in perceiving moving objects and eye movement control [START_REF] Merigan | Primate Motion Perception[END_REF], Yonehara et al., 2016, Hillier et al., 2017]. In particular ganglion cells usually respond either to light increase (ON ganglion cells) or light decrease (OFF ganglion cells). Inactivating ON ganglion cells leads to a reduced ability to detect increase of luminance at the perceptual level while ability to detect decrease of luminance is not affected [START_REF] Schiller | Functions of the ON and OFF channels of the visual system[END_REF]. Optogenetic strategies targeting ganglion cells will not restore the computations performed in the normal retina. In particular, making ganglion cells light-sensitive will result in a retina where all ganglion cells become de facto ON cells (only responding to light increase).

It is unclear how this synthetic visual signal will affect the physiological processing performed by downstream areas in the brain and what will be the resulting restored perception, but this loss of retinal computations could severely impair perceptual performance.

To restore some of the response diversity found in normal retinas with optogenetic therapy, other cells such as "dormant" photoreceptors, or ON bipolar cells, have been targeted specifically [START_REF] Busskamp | Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[END_REF], Macé et al., 2015, Gaub et al., 2015]. However in many patients these cells are not a viable target, as they are also affected by retinal degeneration. An alternative strategy to restore richer functional selectivity is to target cell types in the intermediate layers of the retina that are not damaged.

Here we expressed an optogenetic protein in AII amacrine cells of the mouse to restore vision. AII amacrine cells are an ideal target because they target both ON and OFF bipolar cells with different types of synapses. They form gap junctions with most ON bipolar cell types [START_REF] Tsukamoto | Classification of mouse retinal bipolar cells: Type-specific connectivity with special reference to rod-driven AII amacrine pathways[END_REF], and can therefore excite them when they are activated. At the same time, they form glycinergic inhibitory synapses with most OFF bipolar cell types [START_REF] Tsukamoto | Classification of mouse retinal bipolar cells: Type-specific connectivity with special reference to rod-driven AII amacrine pathways[END_REF].

We first introduce a new promoter allowing to target specifically AII amacrine cells, enabling expression of an optogenetic protein following an AAV injection, a viable method for translational purposes. We then show that this strategy allows to reactivate retinal computations, and in particular ON-OFF selectivity, in a similar way to what is found in the normal retina. We demonstrate this both in normal retinas where photoreceptor transmission is blocked and in models of retinal degeneration. Our data shows that targeting AII amacrine cells is a promising strategy for vision restoration with optogenetics.

Results

A New Promoter To Target AII Amacrine Cells

To identify a promoter that can drive expression specifically in AII amacrine cells, we screened several promoters that are supposed to drive expression in specific cell types in the retina and incidentally found a sequence driving specific expression in AII amacrine cells, termed HKamac in the following. We cloned this fragment upstream of green fluorescent protein (GFP) in an adeno-associated virus (AAV) backbone. We used 7m8, a genetic variant of AAV2, to deliver GFP in amacrine cells, under the control of our HKamac promoter. 5 mouse eyes of C57BL/6J wild-type were injected intraocularly at 4 weeks of age. 6 weeks after injection, eye fundus showed high expression levels. Retinas were then harvested, fixed, and embedded in optical coherence tomography for histology and confocal microscopy 120-140 days postinjection.

Flat-mounts showed that a homogeneous population of cells with large somas expressed GFP (fig. 8.1.A). In cross-sections the labeled cells showed dendritic stratification in both On and Off layers, a pattern reminiscent of AII morphology [START_REF] Helmstaedter | Connectomic reconstruction of the inner plexiform layer in the mouse retina[END_REF]. To determine precisely the sub-type of amacrine cell, we first showed that they did not colocalize with GABAergic or with cholinergic 

Ganglion Cell ON And OFF Responses Can Be Evoked

By AII Stimulation

To further determine if the observed responses were mostly due to AII activation and not off-target expression in ganglion cells, we performed additional experiments.

We reasoned that if we use an inhibitory opsin, which will hyperpolarize the cells upon light stimulation, it will inactivate ganglion cells. As a consequence, offtarget expression will not allow any spiking response. On the contrary, if AII are hyperpolarized upon light stimulation, they should still evoke responses, except that they should be inverted: ON ganglion cells should respond at light offset, and OFF ganglion cells at light offset. We injected the same construct but replaced ReachR with gtACR1 [START_REF] Govorunova | Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics[END_REF] (see methods). We performed the same protocols (2 retinas,36 ON and 125 OFF RGCs) and found that most ganglion cells for which a response was detected showed the predicted inversion (fig. 8.4.A).

Observed responses are thus due to AII modulation, and not to off-target expression.

This inversion also confirms that the observed responses are not due to a failure of the pharmacological block of the photoreceptor to bipolar cell transmission. Overall, this shows that AII stimulation can be used to modulate both ON and OFF ganglion cells. As a further estimation of the diversity of the responses, we calculated the dimensionality of the space of possible responses. For this performed a PCA on the ensemble of all the ganglion cell average responses to the chirp stimulus. If all the cells responded the same way to the stimulus, the first principle component would explain all the variance in these responses. On the contrary, if all the responses are very different, it will take a lot of components to explain most of the variance. We found that, for both normal and reactivated retinas, we needed more than 6 components to explain more than 95% of the total variance in the response (fig. 8.5.D). This shows that our strategy is able to restore a large part of the diversity in the visual responses. 

Discussion

We have reported a broadly applicable strategy that could potentially be used to Restoring this diversity of responses could be important for restoring visual perception. Previous studies on the primate [START_REF] Schiller | Functions of the ON and OFF channels of the visual system[END_REF], Merigan et al., 1991] have shown that a selective impairment of retinal computations leads to specific deficits in visual perception. Inactivating On-cells in the macaque retina in vivo using pharmacology [START_REF] Schiller | Functions of the ON and OFF channels of the visual system[END_REF] affected the ability of the macaque to detect light increase but did not affect its ability to detect light decrease. Recent work [START_REF] Smeds | Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision[END_REF] looking at responses of mouse RGCs and behavior at scotopic light levels, suggests that the mouse relies on the responses of On-RGCs to detect light increase, and on Off-RGCs to detect light decrease. A striking finding by [START_REF] Smeds | Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision[END_REF] was that mice engaged in a task where they had to detect light increase in darkness would not use the information available from Off-RGCs, even when they are more sensitive than On-RGCs. This means that there were cases where a small light increase could be detected by decoding a decrease in the firing rate of Off-RGCs, while no firing rate increase could be detected in On-RGCs, but the mouse could not report the light increase, and was ignoring the change in Off-RGC activity. This strongly suggests that On-RGCs are used to detect light increase and Off-RGCs to detect light decrease, at least in scotopic conditions.

These previous results suggest that restoring retinal computations might be necessary for a blind patient to perform complex visual tasks. To test this hypothesis, it would be interesting to see if rd1 mice where our AII-targeting strategy had been applied could perform complex visual tasks, and if they would perform better than rd1 mice where a strategy targeting RGCs had been used instead. Doing complex behavioral experiments is beyond the scope of this paper, but it would be interesting for future work to estimate how visual perception is influenced by On and Off pathways.

Previous studies have proposed alternative strategies targeting either "dormant" cones [START_REF] Busskamp | Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa[END_REF] or bipolar cells [START_REF] Macé | Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores on and off visual responses in blind mice[END_REF], Gaub et al., 2015].

In many retinal dystrophies, photoreceptors are not present anymore, and bipolar cells can be partially degenerated [START_REF] Francis | Proceedings of the First International Optogenetic Therapies for Vision Symposium[END_REF]. AII amacrine cells are robust to retinal degeneration for a longer time [START_REF] Strettoi | Morphological and functional abnormalities in the inner retina of the rd/rd mouse[END_REF], and could therefore be used at more advanced stages of degeneration. Another advantage of the AII stimulation compared to these previous strategies is that it reactivates both the ON and OFF pathways at once, opposite to strategies where only ON bipolar cells were activated.

However, ultimately, these advantages will have to be evaluated in primate models.

It remains to be seen if the same level of expression and specificity found here can be achieved in primate models. We demonstrated specificity and expression in the mouse eye, but this does guarantee that the same promoter will give the same result in the macaque eye, or the human retina, as promoter efficiency can be strongly dependent on the species [START_REF] Jüttner | Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans[END_REF]. Nevertheless, our results

show that targeting AII for optogenetic stimulation is a promising strategy for vision restoration.

Methods

AAV Productions

Recombinant AAVs were produced by the plasmid cotransfection method, and the resulting lysates were purified via iodixanol gradient ultracentrifugation as previously described [START_REF] Dalkara | In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous[END_REF]. Briefly, 40% iodixanol fraction was concentrated and buffer exchanged using Amicon Ultra-15 Centrifugal Filter Units (Millipore, Molsheim, France). Vector stocks were then tittered for DNase-resistant vector genomes by real-time PCR relative to a standard. For injections, mice were anesthetized with isoflurane (5% induction, 2% during the procedure). Pupils were dilated, and an ultrafine 30-gauge disposable needle was passed through the sclera, at the equator and next to the limbus, into the vitreous cavity. Injection of 1.5 µl stock containing 3.04 × 10e12 particles of AAV was made with direct observation of the needle in the center of the vitreous cavity.

Animals And Intravitreal Injections

Immunohistochemistry

Mice were sacrificed in accordance with all animal facility protocols at the Institut de la Vision by CO2 inhalation and cervical dislocation. Eyes were removed and fixed 2-3 hrs in 4% formalin solution at RT. Eyes for sectioning were cryopreserved in 30% sucrose prior to embedding in Neg50 (Thermofisher, Waltham MA) and cut into 12µm sections. Slides were warmed 10min, blocked 6-8hrs for GFP-tissue or 1hr for ReaChR-tissue in 6% NDS/1% BSA/0.5% triton/PBS at 4C, and incubated O/N in 50% block solution with anti-Prox1 1:500 (Biolegend, San Diego, CA; Rb), anti-ChAT 1:1K (Chemicon, Gt), washed 3x5 min PBS, incubated in secondary and DAPI 1:2K for 1-2hrs at RT, washed 3x5 min, and coverslipped in Permafluor (Thermofisher). The same procedure was used for flat-mounts but primary incubation was for 3 days and secondary incubation for 1 day using anti-GFP 1:500 (Abcam, Cambridge, UK; Chk). 

Multi-Electrode Array

Light Stimulation

To quantify the effect of optogenetic activation we used a flickering stimulus (referred to as flicker in the following) consisting of a series of white flashes of one second duration, interleaved with one second intervals of darkness. Flashes were played both at low (~0.1 µW cm -2 ) and high (~2.8 µW cm -2 ) light intensities. To study the diversity of the cell responses, we used a chirp stimulus. This is a full field stimulus, lasting 25 seconds, designed to test the reaction of ganglion cells to changes in light intensity at different regimes of contrast and frequency. During the first part of the stimulus the light intensity varies at contrast speed and increasing contrast; during the second half, it oscillates with constant contrast and increasing frequency.

Activation Index

To quantify the effect of a stimulus s on our population of retinal ganglion cells, we defined a binary cell activation index. We computed this score as follows. First, we considered a control window of 300 ms right before the stimulus onset. For a given cell c, we calculated the average firing rate f r c,s control and standard deviation σ c,s control across stimulus repetitions in this time interval. We defined an activation threshold thres c,s as:

thres c,s = f r c,s control + max(5σ c,s control , h) with h = 10hz. (8.1)
Then, we looked at a response window of 300ms after the presentation of the stimulus (specifically, right after the stimulus onset for ON cells, and after the stimulus offset for OFF cells), and computed the peri-stimulus time histogram psth s,c of these responses (time bin equal to 50ms). We assigned an activation index A c,s equal to 1 to cell c if its response psth s,c exceeded its activation threshold thres c,s for at least one time bin, or a score equal to 0 otherwise.

ON And OFF Retinal Ganglion Cells Classification

We used the activation index described above to classify ON and OFF retinal ganglion cells. We labeled as ON (OFF) all the cells with a positive activation index on the onset (offset) of the white flashes, and a zero activation index on the offset (onset). Cells activated at both onset and offset (ON-OFF) and cells that were not activated at all were not labelled, and were not considered in the population analysis presented in this paper. For the Reachr experiments, we pooled data from three different retinae, obtaining a total population of 173 ON and 65 OFF ganglion cells.

For the control experiments, we recorded from two different retinae, and identified a total of 113 ON and 94 OFF ganglion cells. For the gtACR1 experiment, we collected data from a single retina, and we found 36 ON and 125 OFF ganglion cells.

Optogenetic Activation: Population Analysis

To assess the effect of the optogenetic stimulation on our population of retinal ganglion cells, we displayed the flicker stimulus described earlier at low (~0.1 µW cm - 

Off-Target Expression Of Retinal Ganglion Cells

To identify retinal ganglion cells that were directly expressing Reachr due to the off-target expression, we looked at the ganglion cell responses to the flicker stimulus after application of CNQX and CPP. We computed the activation indices on these responses, and classified as leaked all those cells with a positive activation index at the onset and/or offset of the stimulus. We did not consider leaked RGCs for the sustained-transient analysis nor for the complexity analysis described below.

Sustained-Transient Index

We defined a sustained-transient index to assess which component is prevailing 

Sustained-Transient Analysis

Our goal here was to assess how responses of retinal ganglion cells to optogenetic activation of AIIs differed from their normal photoreceptor responses. In order to do so, for this analysis, we only considered the subset of the cell population with a positive activation index to the chirp stimulus for both the photoreceptor and optogenetic responses. We also excluded all the cells for which optogenetic responses showed a different polarity with respect to the photoreceptor responses, and all those cells classified as expression leaked, leaving us with a total of 48 good cells.

We then calculated the sustained-transient index described above of these cells for both optogenetic and photoreceptor responses, and compared the distribution of the index under the two conditions using the Wilcoxon rank sum test. We found that, for the population of ON ganglion cells, these two distributions are significantly different (the test rejects the null hypothesis that they have equal medians with p-value < 1e05). For the population of OFF cells, we did not observe a significant difference among the two distributions (fig 8.5.B).

To consolidate this result at single cell level, we defined a relative sustained-transient 

Analysis Of Complexity Of The Responses

Here we wanted to quantify how the complexity of Retinal Ganglion cells responses changed between normal photoreceptor stimulation to the optogenetic AII stimulation. We addressed this problem by computing the principal component analysis In particular, we show that RF-based methods lack the ability to discriminate cells with similar receptive field structure but different nonlinear behaviours.

It should be noted that none of the methods tested in our study was meant to provide a complete classification of ganglion cell types. As our main focus was the understanding of how different methods deal with the nonlinear behaviour of RGCs, we did not include in our protocols all the stimuli typically used to assess other properties of ganglion cells, such as moving bars or colored flashes for respectively direction or color sensitivity. This limitation did not allow us to make a proper comparison of the types identified by our algorithms with respect to the types found by other studies in the literature. In the future, we will consider expanding this work by using a more diversified set of stimuli. This will allow us to characterize more precisely the ganglion cell types and to assess exactly which types are not well discriminated by receptive field based approaches.
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It is also worth noting that the choice of which and how many visual stimuli are needed to exhaustively characterize and discriminate all ganglion cell types is a problem common to all functional approaches to cell classification. In particular, the stimuli typically used in these methods are usually designed by scientists to address specific questions (for example: is there a group of cells responding selectively to objects moving at different speeds?), but might lack the ability to tell apart more complex computations performed by different types when exposed to the naturali stimuli encountered in the real world. In short, the choice of stimuli in functional methods can introduce biases both in the resulting classification and, more importantly, in the interpretation of the functional purpose of a specific type. A solution is to couple physiological methods with the measurement of other anatomical and molecular properties that provide additional and less biased insights on the organization of retinal ganglion cell types.

An additional bias is introduced by the extracellular recording with multi-electrode arrays: specific cell types, due to their anatomical and biophysical properties, are more easily detected by the electrodes than others. This causes both an underestimation of the presence of specific types and the inability to reconstruct their mosaics, impairing our validating criteria based on tiling. It would be interesting to examine this bias more in depth, and to identify which cell types in particular can be undersampled by the MEA.

Another limitation of the methods tested in our study is that they were both unable to consistently find the same type across multiple retinae. This problem has already been reported in other studies [START_REF] Jouty | Non-parametric physiological classification of retinal ganglion cells in the mouse retina[END_REF], Gonschorek et al., 2021], and it has to do with the experimental variability: cells of the same type can respond differently across different retinae and experiments due to unreproducible incidental conditions. Although this issue does not affect the results discussed in this work, it should be addressed to improve the reliability of our typing methods. A possible solution might be to tune our stimuli in a way that cell responses are less affected by this experimental variability, or to preprocess our data to keep only the components of the responses that are invariant to these changes [START_REF] Shah | Individual variability of neural computations in the primate retina[END_REF], Gonschorek et al., 2021].

Finally, concerning the inability of receptive field based methods to identify particular types of ganglion cells, it would be interesting to carry out additional studies to understand better where this limitation arises from. We reported that the linear assumption of receptive fields models does not allow for discrimination of particular set of cells. It is possible, though, that the white noise stimulus we used to estimate these receptive fields is also not informative enough for an effective characterization of the cell behaviour. Recently, new typing methods based on convolutional networks (CNNs) have been proposed: in these methods the responses of a population of ganglion cells are captured by the kernels of a convolutional network. These kernels can be used as a proxy of the functional properties of the RGCs for physiological classification [START_REF] Klindt | Neural system identification for large populations separating what and where[END_REF]. An idea could be to train such a model on the ganglion cell responses to white noise, and compare its performance with the two methods tested in our work. If the CNN based method outperforms the receptive field based method, this would imply that the limitations of the receptive field based model are mostly due to its linear assumption. Conversely, if the performance of the CNN and RF based methods are comparable, this would suggest that the limitation arises from the stimulus itself, and not only from the receptive field model.

The Rod Bipolar Cell Pathway Contributes To

Surround Responses Of OFF RGCs

In chapter 7 we reported evidence that the rod bipolar cell pathway contributes to the antagonistic surround of OFF ganglion cells. In this study we used digital holography to selectively activate rod bipolar cells expressing CoChR and to inhibit AII amacrine cells expressing gtACR. We showed that retinal ganglion cells respond to the optogenetic activation of rod bipolar cells even when the latter are outside the receptive field center of the former. We found that the contribution of rod bipolar cells to retinal ganglion cell responses could be well described with a linear-nonlinear model for a significant portion of ganglion cells. Nevertheless, previous studies highlighted how some of the synaptic connections forming the modeled pathway are nonlinear [START_REF] Lieberman | Synaptic Transfer between Rod and Cone Pathways Mediated by AII Amacrine Cells in the Mouse Retina[END_REF], Graydon et al., 2018]. Rod bipolar cells provide excitatory input to AII amacrine in cells, which in turn connect to ON cone bipolar cells through gap-junctions and to OFF cone bipolar cells through inhibitory chemical synapses. This former connection in particular has been observed to be nonlinear [START_REF] Graydon | Synaptic transfer between rod and cone pathways mediated by aii amacrine cells in the mouse retina[END_REF]. This might suggest that an LNLN model could outperform our LN model. The data we collected so far did not allow us to carry out an accurate comparison of the performances of these two models. Further work will be needed to clarify if LNLNs can provide a better representation of this circuit and, more generally, to assess the computational role played by the several interneurons composing it.

Finally, we have shown that the inhibition of AII amacrine cells can produce a decrease in the surround responses of OFF retinal ganglion cell at distances up to 5 times the radius of the ganglion cell receptive field. Although we could consistently observe and reproduce this phenomenon, the data we collected was not enough to model it in detail. In particular, it would be interesting to characterize the spatial extent of this relationship, and to understand how contributions from multiple AIIs are integrated by OFF RGCs.

Optogentic Stimulation Of AII Amacrine Cells:

Perspectives For Vision Restoration

In chapter 8 we showed that a new promoter can be used to selectively target AII amacrine cells with optogenetic stimulation, leading to a differential activation of respectively ON and OFF retinal ganglion cells. We carried out an analysis of the diversity of the optogenetic responses: we showed that the amount of information (defined as the number of principal components needed to explain a certain percentage of the response variance) provided by optogenetic responses and normal photoreceptor responses are comparable. Nevertheless, we also reported that optogenetic responses are generally slower and, in particular in ON RGCs, seem to lose their transient components.

A limitation of this analysis is that the application of pharmacology, and the consequent lack of photoreceptor input, likely leads the retina to an altered functional state. Ganglion cells are hyperpolarized by the absence of visual input and this might incidentally affect the responses to optogenetic stimulation. This effect should be taken into account in particular when assessing the reduction of transience observed in optogenetic responses with respect to the normal photoreceptor responses. To this end, further analysis would be needed to assess whether these variations are intrinsically dependent on the AII circuit we stimulate, or if they are also due to the altered state of the retina.

As reported in chapter 8, we also tried to understand to which extent the functional organization of ganglion cell types was preserved in the restored retina. In order to do that, we analyzed the response correlations of several ganglion cell pairs for both photoreceptor and optogenetic stimulation. We found that most of the correlations found in the former condition were preserved in the latter, although in minor form.

Although this result suggests that the type organization is (at least partially) still present in the optogenetically driven retina, it would be interesting to complement this study with a classification of the ganglion cell types we record from. This could help us understand specifically which pathways are reactivated by the optogenetic stimulation, and whether these pathways preserve their functional identity.

Overall, we believe that the results we presented here are encouraging and suggest that AII amacrine cells constitute an ideal target for optogenetic gene therapies.

Future work should also expand the stimuli towards more naturalistic ones, in order to assess to what degree a restored retina driven by the optogenetic activation of AIIs is capable of encoding salient features of the visual scene.
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 12 Fig. 1.2 The bipolar cell types in the mouse retina A. Schematic of anatomy of the 14 types of bipolar cells in the mouse and their stratification in the IPL. B.Functional characterization of bipolar cell types. Bipolar cells can be grouped into ON and OFF depending on the polarity of their response. Some bipolar cells relay signal from rods. Bipolar cells are labelled as chromatic or achromatic according to the cone type they contact. Bipolar cell types can also be differentiated on the basis of the transience of their signal. Reprinted from[START_REF] Euler | Retinal bipolar cells: Elementary building blocks of vision[END_REF].
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 32 Fig. 3.2 Computational models of retinal ganglion cells A.A schematic of the linear-nonlinear poisson model. Reprinted from[START_REF] Pillow | Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model[END_REF]. B. A schematic of two coupled generalized linear models. Each model has a stimulus filter, a post-spike filter and coupling filters. Summed filter output passes through an exponential nonlinearity to produce the instantaneous spike rate. Reprinted from[START_REF] Pillow | Spatio-temporal correlations and visual signalling in a complete neuronal population[END_REF]. C. A schematic of a convolutional neural network modeling a population of RGCs. This network is composed of two convolutional layers, each formed by several spatiotemporal filters, a dense layer and a final nonlinearity. Reprinted from[START_REF] Mcintosh | Deep learning models of the retinal response to natural scenes[END_REF].

  types is an important goal of neuroscience. The identification of the elementary blocks composing a circuit constitute a necessary step towards the comprehension of its function. This is particularly true for ganglion cells in the retina. The retina is structured in parallel pathways each performing a specific computation on the visual scene. Ganglion cells represent the end points of these pathways, and each ganglion cell type encodes a different type of visual feature. A complete mapping of cell types in the retinal output would then give us an estimate of how many and what kind of different computations take place in the retina.

Fig. 4 . 1

 41 Fig. 4.1 The functional types of retinal ganglion cellsSummary of the retinal ganglion cell types identified by[START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF]. Each line corresponds to a different ganglion cell type. A. cluster dendogram of the types found. B. cluster-mean calcium responses to four different stimuli: a full-field chirp, a set of moving bars, binary dense noise and alternating blue and green flashes C. cluster distribution of four selected properties: soma size, receptive field diameter, direction selectivity and orientation selectivity. Reprinted from[START_REF] Baden | The functional diversity of retinal ganglion cells in the mouse[END_REF].

31 Fig. 5 . 1

 3151 Fig. 5.1 Retinal degenerative diseases A. Fundus of a patient with age-related macular disease. Reprinted from [Mitchell et al., 2018]. B. Fundus of a patient with retinitis pigmentosa.Reprinted from[START_REF] Hartong | Retinitis pigmentosa Prevalence and inheritance patterns[END_REF]. C. Post-operative fundus of a patient with retinitis pigmentosa after the application of an electrode array prosthesis on the macula. Reprinted from[START_REF] Finn | Argus II retinal prosthesis system: A review of patient selection criteria, surgical considerations, and post-operative outcomes[END_REF].

  results suggest that the prosthetic activation of retinal ganglion cells or other retinal interneurons constitutes a viable way to bring back visual sensation. Currently prosthetic solutions rely on two alternative technologies to deliver signals to retinal ganglion cells, which are respectively electric and optogenetic stimulation. Electrical stimulation of ganglion cells is achieved with electronic implants, consisting of arrays of electrodes delivering patterned electric pulses to the retinal tissue. Electronic implants are typically placed on the inner side of the retina, in direct contact with the ganglion cell layer (fig. 5.1.C). Alternative possible locations are the outer side

  the authors report the development of a new channelrhodopsin variant with enhanced light sensitivity compatible with ambient light conditions. Other possible substitutes are light-sensitive glutamate receptors and mammalian opsins, that are more sensitive than microbial opsins and have recently become available alternatives [McGregor et al., 2020].
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 61 Fig. 6.1 Results of the chirp-based method On the top, in black: the full-field chirp stimulus. Normalized contrast over time. A-O: the 15 cell types identified by the chirp-based method, labelled with letters going from A to O: we found 7 ON types (A to G) and 8 OFF types (H to O). For each type, we show the mean response to the chirp (on the left), and the mean temporal profile of the receptive field (on the right) across all cells belonging to the type.
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 62 Fig. 6.2 Validation of the chirp-based method A. Examples of receptive field mosaics of four cell types identified with the chirp-based stimulus: 2 ON types, B and G on top, and 2 OFF types, J and M on the bottom. For each type we show the relative positions of the receptive field centers of the cells composing the mosaic. B. Normalized Nearest-Neighbor Distance distributions for the mosaics shown in panel A. In each subpanel, we show the estimated distribution of nearest neighbor distances for the true mosaic (colored) and the same distribution for surrogate ensembles, generated by randomly sampling cells from different clusters (in gray).
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 63 Fig. 6.3 Comparison of chirp-based and RF-based methods A. Comparison of two representative mosaics obtained with the chirpbased method, and the respective best matches obtained with the RF-based method. The chirp-based mosaics are represented with black ellipses. The RF-based counterparts are represented with filled colored ellipses. For each pair, the corresponding Matthews Correlation Coefficient (MCC) is reported. B. Same as A for the four mosaics for which the RF-based method provided the poorest matches (MCC < 0.5). To note that the best RF-based match for both mosaics H and I was in fact the same cluster. C. mean responses to the chirp stimulus across all cells composing the mosaics shown in A and B. B, J , I, K, O are the mean responses of the chirp-based mosaics, B', J' , I', K', O' of the respective RF-based matches.
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 64 Fig. 6.4 The linear-nonlinear modelThe linear-nonlinear model we used to characterize the nonlinearities of our cells. The stimulus vector s(t) is convoluted with a linear filter, producing the generator signal g(t). This signal goes through a point-process non-linear function, which outputs the spiking probability P(spike|s)
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 65 Fig. 6.5 Comparison of RGC nonlinearities A. Comparison of the nonlinearities of the cells included in a given cluster by the chirp-based and the RF-based methods. Each subpanel shows this comparison for a different cluster (same clusters shown in fig. 6.3.B).In black, the nonlinear profile for cells only included in the cluster by the RF-based method. In color, the nonlinearities of cells included by both methods. The bold line represents the average profile; the shaded area, its standard deviation. B. Performance of a classifier built to distinguish these two sets (cells only in the RF-based cluster versus cells in both RF-based and chirp-based clusters) based on their nonlinearities. Each subpanel shows the results for the corresponding sets in A. The black vertical lines represent the classification loss. To evaluate the performance of this classifier, we compare its loss with the loss of other classifiers built to distinguish random permutations of the two sets. The colored histograms represent the loss distribution for the classification of the surrogate sets.
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 66 Fig. 6.6 Clustering of RGC nonlinearities A. three representative RGC nonlinearities fitted with a sigmoid function. In blue, the empirical non-linearity, computed using Bayes theorem; in magenta, its sigmoid fit. Dashed lines indicate the values of the four parameters of the sigmoid function: upper bound, lower bound, slope and offset. B.Visualization of the nonlinearities of the cells composing the cluster H in the sigmoid parameter space. In red, the cells that are included in the cluster by both RF and chirp method. In black, the cells that are included in the mosaic by only the RF method. The concentric ellipses represent the gaussian distributions that model these two sets.

  7.1.D). On the contrary, OFF ganglion cells could be stimulated by RBC as further distance (fig. 7.1.E). In both cases, the evoked firing rate was large and showed little dependence on distance. While we observed a broad range of latencies in the responses to RBC stimulation, we could not find a systematic relation between distance and latency (supp. fig. 7.7).
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 71 Fig. 7.1 Optogenetic stimulation of RBCs generate RGC responses A. a schematic of the experimental protocol. Rod Bipolar Cells (RBCs) are targeted with optogenetic stimulation. The produced activation travels through the rod bipolar cell circuit, consisting of a polysynaptic pathway including AII amacrine cells and Cone Bipolar Cells. Retinal Ganglion Cells (RGCs) integrate this signal and generate a response, which is recorded by Multi-Electrode Arrays. B. a picture of the bipolar cell layer imaged during the experiment. RBCs are identifiable due to their fluorescence halo. In yellow: a representative RBC targeted with optogenetic stimulation. Overimposed in red and green: the receptive fields of two representative RGC recorded during the protocol, respectively one ON and one OFF. C. responses of the ON (red) and OFF (green) RGCs shown in B to the activation of the RBC also shown in B. On the left: the spiking activity of the cells across different trials. On the right: the mean responses of the two cells. The time interval of the stimulation is depicted by the gray regions. D.probability of observing an ON RGC response to RBC stimulation against relative distance between RGC and RBC. Distances (on the x axis) are normalized dividing by the radius of the RGC receptive field center. E. same as D for the OFF RGCs. F. increment in firing rate of ON RGCs activated by the RBC stimulation. On the X axis: distance (normalized dividing by the radius of the RGC receptive field center) between the targeted RBC and the RGC receptive field center. ON the Y axis: the produced increment in firing rate with respect to the cell's spontaneous activity. Each point shows the increment for a different RBC -RGC pair. The continuous line represents the mean increment across distances. The shaded areas show the standard deviations of the mean. G. same as F for the OFF RGCs activated by the RBC stimulation.
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 72 Fig. 7.2 Pharmacological blockers prevent all RGC visual responses to the holographic stimulation A. responses of a representative ON RGC to the holographic stimulation in absence of blockers and with no opsin expressed. On the left: the spiking activity of the cell across different trials. On the right: the mean response. The time interval of the stimulation is depicted by the grey regions. B. responses of the same ON RGC shown in A after the application of blockers C. left: Responses of the representative ON RGC shown in A and B to all the holographic patterns in absence of blockers and with no opsin expressed. The background images represent the spatial STAs. The black ellipse indicates the spatial extent of the receptive field center. The colored dots show all the locations targeted with the holographic stimulation. The colors of the dots represent the peak firing rates of the corresponding induced responses (legend on bottom). The holographic spot shown in A and B is marked with a yellow circle. Right: same as left after the application of blockers. D. same as C for a representative OFF RGC.
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 7 Fig. 7.3 RGC responses to the holographic stimulation (in absence of blockers and opsins) are consistent with their visual responses A. responses of four representative RGCs (two ONs and two OFFs) to holographic stimulation in absence of blockers and with no opsin expressed.Same plots as in Figure2C. B. probability of observing an ON RGC response to holographic stimulation against relative distance between RGC and holographic spot. Distances (on the x axis) are normalized dividing by the radius of the RGC receptive field center. C. probability of observing a suppression of activity in OFF RGCs due to holographic stimulation against relative distance between RGC and holographic spot. Distances (on the x axis) are normalized dividing by the radius of the RGC receptive field center. D. increment in firing rate due to holographic stimulation (in absence of opsin) for the ON RGCs population. On the X axis: distance (normalized dividing by the radius of the RGC receptive field center) between the RGC receptive field center and the holographic spot. On the Y axis: the increment of firing rate with respect to the cell's spontaneous activity. Each point shows the increment for a different combination of RGC and holographic location. The continuous line depicts the mean increment across distances. The shaded areas show the standard deviations of the mean. E. decrement in firing rate due to holographic stimulation (in absence of opsin) for the OFF RGCs population. Same as D for OFF RGCs.

Fig. 7 . 4

 74 fig 7.4.D, E, F). This suggests that ganglion cells sum the contribution of different RBC signals, leading to a significant contribution of this pathway to ganglion cells responses. By looking at the weights that the model assigns to each RBC, we can unveil how RGCs spatially integrate the RBC signals (fig. 7.5). Interestingly, these integration patterns seem consistent with the receptive field organization of the cells: RBCs close to the receptive field center are assigned strong (positive or negative) weights. As distance increases from the receptive field center, RBC weights progressively increase (or decrease), and eventually flip sign. This might suggest that RBCs are actually involved in the formation of the surround responses of RGCs, although further studies would be required to precisely determine this contribution.

Fig. 7 . 5

 75 Fig. 7.5 Reconstruction of RGC spatial integration of the RBC signal through LN models A. The linear weights of the LN models reflect the cell's spatial integration of the RBC signal. The background image represents the spatial component of the spike-triggered average (STA) of the modelled RGC. The black ellipse shows its estimated receptive field center. The colored dots indicate the positions of all the RBCs activated during the experiment: their colors represent the corresponding linear weights assigned by the model (legend on the right). B. The estimated point-process non linearity for the RGC model shown in A. C. same plot as A for other four representative RGC models.

Fig. 7 . 6

 76 Fig. 7.6 AII Amacrine cells contribute to the surround responses of OFF RGCs A. schematic of the experimental protocol: a disc of white light is flashed above the retinal tissue. Simultaneously, a holographic spot located inside the perimeter of the disc inhibits the underlying AII amacrine cells. The responses produced by the RGCs are recorded with a multi-electrode array. B. relative positions of the disc (in white), a representative holographic spot (in yellow), the receptive field center of an OFF RGC (in red), and the multi-electrode array (image in the background). C. surround responses of the representative OFF RGC shown in B to the purely visual white disc stimulus (bottom) and to the combined visual and holographic stimulus (top). On the left: the spiking activity of the RGC across different trials. On the right: the mean responses. The time interval of the holographic stimulus is represented by the grey shaded area. The two red dashed lines show the onset and offset of the visual stimulus. D. probability of observing a decrement (of 10Hz or more) in OFF RGC surround responses when AIIs are inhibited, against relative distance between the RGC and the location targeted by the inhibitory stimulus. Distances were normalized dividing by the radius of the RGC receptive field center. E. quantification of the AII contributions to the visual responses of OFF RGCs, computed as firing rate difference. On the X axis: distance (normalized dividing by the RGC receptive field radius) between the RGC receptive field center and the holographic spots. On the y axis: the AII contribution to the RGC responses, computed as the peak difference between the responses to the purely visual stimulus and the composite visual and holographic stimulus. Each point shows the firing rate difference for a distinct combination of RGCs and holographic spots. Black points correspond to center responses (respect to the disc), colored points correspond to surround responses. The continuous line shows the mean increment across distances. The shaded area shows the standard deviations of the mean. F. examples of responses of the OFF RGC shown in B for three different holographic spots. In black: response to the composite visual and holographic stimulus. In red: response to pure visual stimulus. Black and red dashed lines show onset and offset respectively of the holographic and visual stimuli. The shaded regions indicate the portion of the responses considered in the text for the comparison of the responses.

Fig. 7 . 7

 77 Fig. 7.7 Holographic stimulation (in absence of opsin) does not produce significant modulations on OFF RGC surround responses A. same as Figure 6B for a control experiment with no opsin expressed. B. same as Figure 6C for a control experiment with no opsin expressed. C. same as Figure 6E for a control experiment with no opsin expressed. D. same as Figure 6F for a control experiment with no opsin expressed.

(

  16 by 16 electrodes with 30µm spacing). The platform recorded at a sampling rate of 20kHz. The data was sorted to reconstruct the spiking activity of each RGC using the software Spyking Circus. Data shown for the RBC experiments (fig. 1, 4, 5) were gathered from 2 wild type retinae, for a total of 138 and 166 RGCs recorded for respectively the single and multiple RBC activation protocols. For the AII experiments (fig. 6) we recorded from another wild type retina, for a total of 36 RGCs recorded. For the control experiments we recorded from two wild type retinae, with a total of 110 and 46 RGCs for respectively RBC and AII activation protocols.

  7.1.D, E, and 7.3.B, C). Then we looked at the magnitude of these responses with respect to the relative distance between the stimulated RBC and the responding RGCs: for each distance bin, we considered only the pairs with activation scores different from zero, and computed their average activation scores (fig.7.1.F, G, and 7.3.D, E).

(

  50 patterns). Testing patterns were not used for training, and featured a higher number of trials (15 or more). Models were trained for 1000 epochs in batches of 100 samples with the stochastic gradient descent algorithm, using mean-squared error as loss function and L2 regularization to keep the weights small. At the end of training, we assessed the performance of our models on the testing set using the Pearson correlation coefficient as an accuracy index (fig 7.4.D) and mean-squared error (fig 7.4.E). The LN proved to be an acceptable approximation for 50% of our RGC population, with 9 cells out of 18 being modeled with an accuracy above 0.6 (mean ρ = 0.54 ± 0.32 std).

Fig. 7 . 8

 78 Fig. 7.8 Latency of RGC responses to the activation of RBCs follows a bimodal distribution

  amacrine cell markers (fig. 8.1.B) but did with a glycinergic cell marker. To further confirm that they were AII amacrine cells, we co-labeled with Prox1, an antibody labeling both bipolar cells and AII amacrine cells, and found clear co-localization with the AII amacrine cells (fig. 8.1.C, E, G). We then subcloned the promoter upstream of ReachR by replacing GFP in an AAV backbone and delivered ReachR using the same AAV2.7m8 variant. ReachR was successfully expressed in AII amacrine cells, although it was detected in some RGCs as well (fig. 8.1.D, F, H).

Fig. 8

 8 Fig. 8.1 A new promoter targets AII amacrine cells A. Whole-mount view showing GFP expression (green) in the plane of AII somas. B. Side-view showing GFP expression (green) and labeling of starburst amacrine cells with a ChAT antibody (white). C,E,G. colocalization of GFP expressed under the control of our promoter (C), Prox1 antibody (E) and DAPI (G). DAPI labels all nuclei. Prox1 labels bipolar and AII amacrine cells. D,F,H. colocalization of ReachR expressed under the control of our promoter (D), Prox1 antibody (F), and DAPI (H).

Fig. 8 . 4

 84 Fig. 8.4 The diversity of RGC responses is really due to AII activation, and not to photoreceptor transmission or off-target expression A. Examples of photoreceptor responses for a representative ON (left column, red) and OFF (right column, blue) retinal ganglion cells. Top: raster plot of RGC responses across trials. Bottom: mean responses. The time intervals of the stimulus are indicated by the gray areas. B. same as A for the optogenetic responses. C. Quantification of the activation of the ON and OFF retinal ganglion cell populations with gtACR. The graph shows the percentages of ON (top panel) and OFF (bottom panel) retinal ganglion cells activated respectively at the onset and at the offset of the flashes for different luminance levels.
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 85 Fig. 8.5 AII activation generates responses with a lot of diversity, because it reactivates many of the same pathways that are activated in a normal retina A. Examples of responses of four representative retinal ganglion cells to the optogenetic activation of AII cells with the chirp stimulus. On top in black: the luminance of the chirp stimulus across time. Left: mean photoreceptor responses to the chirp. Each color represents a different ganglion cell. Right: same plot for the optogenetic responses. B. Comparison of the Sustained-Transient Index for photoreceptor and optogenetic responses for 48 selected RGCs. Each dot represents the sustainedtransient index of a ganglion cell computed on photoreceptor responses (X axis) against its same index computed on optogenetic responses (Y axis). Values close to one mean the response is predominantly sustained; values close to zero mean the response is predominantly transient. C. Distribution of the relative sustained-transient index for the ON (left) and OFF (right) ganglion cell populations (same 48 RGCs shown in B). An index close to 1 means that the cell responds more transiently when activated optogenetically with respect to its normal photoreceptor responses. Conversely, an index close to -1 means that the optogenetic responses are more sustained than the normal photoreceptor responses. D. Principal Component Analysis on average responses to the chirp stimulus for a selected population of 40 RGCs. We show the number of principal components needed (X axis) to explain a given percentage of Variance in the ganglion cell responses (Y axis). We show the curves for both photoreceptor responses (blue) and optogenetic responses (red). Light curves represent analysis conducted on the individual experiments. Dark, dashed lines represent the average across all experiments. E. Response correlations across retinal ganglion cell pairs for both photoreceptor and optogenetic stimulations (same 40 RGCs shown in D). Pearson correlation coefficient computed on the responses of pairs of retinal ganglion cells for photoreceptor stimulation (X axis) versus optogenetic stimulation (Y axis). Red dots represent ON to ON response correlations: blue dots represent OFF to OFF response correlations. ON to OFF correlations are not shown.

  restore visual function in patients suffering from photoreceptor degeneration. AII amacrine cells were targeted thanks to a novel promoter and expressed an optogenetic protein that makes them light sensitive. This strategy has the advantage of being mutation-independent, and can potentially be used for different genotypes of retinal dystrophies. Compared to ganglion cell targeting, which is currently in clinical trials, here we have shown that we could restore a significant part of the retinal computations performed by a normal retina. In particular, we have shown that this strategy allows restoring both ON and OFF ganglion cell responses. We also observed diverse responses (e.g. sustained and transient), presumably corresponding to the activation of several different cell types and pathways in the retinal circuit, similar to what happens in the normal retina.

2 )

 2 and high (~2.8 µW cm -2 ) light intensities. Then, for each luminance level, we looked at the responses of retinal ganglion cells, and computed their activation indexes both at the onset and offset of the flashes. Finally, we calculated the percentage of ON and OFF cells activated at the different light levels to assess the impact of the stimulation. We ran the same analysis to test both the opsins Reachr and gtACR1 (fig. 8.2.D, 8.3.C, 8.4.C), and for all the control protocols with LAP4 ACET and CNQX and CPP (fig. 8.2.E, 8.3.D). For the control experiments on rd1 mice, since the photoreceptor responses are not available, we could not classify the ganglion cells as ON or OFF. As a consequence, we show the percentage of population activation at the onset and offset of the stimulus, without any subdivision of the retinal ganglion cell population (fig 8.6.B).

(

  transient or sustained) in the responses of a given ganglion cell c to a certain stimulus s. We considered two response windows subsequent to the presentation of the stimulus: a first one capturing transient responses (from 0ms to 300ms after stimulus onset for ON cells, and after stimulus offset for OFF cells) and a second one for sustained responses (from 300ms to 600ms after onset for ON cells and after offset for OFF cells). We computed the peri-stimulus time histogram of the responses (time bin equal to 50ms) on both windows: psth s,c transient representing the transient component, and psth s,c sustained representing the sustained component. We then computed the sustained-transient index ST s,c as the ratioST s,c = max(psth s,c sustained ) max(psth s,c sustained ) + max(psth s,c transient ) (8.2)An index ST s,c close to 1 entails that the cell c produces a sustained response to the stimulus s. Conversely, an index close to 0 means the response is predominantly transient.

  photoreceptor responses are similar, value close to 1 if the cell has an optogenetic response more transient with respect to its normal photoreceptor responses, and value close to -1 if its optogenetic responses are more sustained. We looked at the distribution of this index for both ON and OFF ganglion cells (fig 8.5.C), and observed that the vast majority of ON retinal ganglion cells (31 cells out of 34) has a negative relative index, indicating that ON ganglion cells tend to lose their transient component when activated optogenetically through the AII pathway.

  of the ganglion cell responses to the chirp stimulus, for both photoreceptor and optogenetic stimulation, and comparing the number of components needed to explain different percentages of variance. In order to do so, we considered the selection8.4 Methods123criteria used for the sustained-transient analysis described above: we only kept cells consistently responding to both photoreceptor and optogenetic stimulation, and excluded all the leaked cells, for a total of 40 good cells. As we did not want to account for experimental variation in the principal component analysis, we ran the analysis independently for all three experiments available. To make the analysis results comparable, we wanted to keep the population size constant across the different experiments. As a consequence, we decided to run the principal component analysis on each experiment on a sampled subpopulation of fixed size (20 elements).We repeated this procedure 100 times, and for each experiment we computed the average curve showing the variance explained by each number of principal components (shown in figure 8.5.D) under both normal and optogenetic conditions. We then obtained the final results by averaging the curves across all three experiments (opaque lines in figure 8.5.D). assessed and compared the performances of two methods to classify retinal ganglion cells in functional types: one is based on a linear model of the receptive field, while the other relies on the RGC responses to well characterized stimuli. Our results indicate that the former approach is outperformed by the latter.

  

  

  

  

  

Table 6 . 2

 62 Results of the RF-based methodSame as table 1 for cell types found and validated with the RF-based method.

	Label Cluster Size Type CI RF	p-value Ks	Mosaic Size
	P	12	OFF 0.997	2.43e-04	11
	Q	8	ON	0.994	5.77e-03	7
	R	41	ON	0.965	2.06e-02	5
	S	92	OFF 0.935	1.30e-02	5
	T	14	OFF 0.992	7.98e-05	14
	U	36	ON	0.989 7.90e-03, 7.23e-05	9, 11

Table 6

 6 

	Label	Type Mosaic Size Best Match (BM) Size BM	MCC BM
	A	ON	8	X0	15	0.725
	B	ON	10	U (mosaic 1)	9	0.948
	C	ON	13	U (mosaic 2)	11	0.918
	D	ON	10	X1	9	0.733
	E	ON	5	X2	8	0.788
	F	ON	6	X3	13	0.675
	G	ON	9	Q	7	0.880
	H	OFF	7	X4	20	0.584
	I	OFF	6	X4	20	0.540
	J	OFF	12	P	11	0.956
	K	OFF	5	X5	23	0.458
	L	OFF	7	X6	8	0.934
	M	OFF	9	T	14	0.798
	N	OFF	12	X5	23	0.628
	O	OFF	5	X7	9	0.591
	Mean MCC					0.741 ± 0.16

6.3.A)

. For the remaining 10 (66%), the RF-based best matching clusters seemed overpopulated and did not feature any mosaic organization (fig.

6.3.B)

. We also found 2 cases where ganglion cells from a single retina were pooled in an unique cluster by the RF-based method, while they were further split in two distinct validated types by the chirp-based method (fig.

6

.3.B, see table

6.3)

. This shows that the chirp-based method can succeed in isolating ganglion cell types in cases where the RF-based method would fail. .

3 Comparison of chirp-based and RF-based methods

For each mosaic found with the chirp-based method, we report size and corresponding Matthews Correlation Coefficient for the best RF-based match.

8.2.2 Optogenetic Inhibition Of AIIs Produces On And Off Responses

  We observed bothON and OFF responses (fig. 8.2.B). We then blocked the synaptic transmission from photoreceptors to the ON and OFF bipolar cells using pharmacology (LAP-4 to block the transmission from photoreceptors to ON bipolar cells, and ACET to block transmission from photoreceptors to OFF bipolar cells, see methods). At the same light intensity, responses disappeared. This is expected since the impact of photoreceptor activation on the rest of the retinal circuit has been blocked, and the light intensity is too low to activate ReachR. We then increased light intensity to reach the activation of ReachR (see methods) and observed both ON and OFF responses to light stimulation (fig. 8.2.B, C) for a large fraction of ganglion cells. This activation (termed optogenetic stimulation in the following) is due to the stimulation of AII since stimulation at similar intensity in control retinas with the same concentration blockers, but no AAV injection, did not show any response (fig. 8.2.D). Activation of AII with optogenetic stimulation is thus able to evoke both ON and OFF responses in the retina. As a result, they should be able to excite OFF ganglion cells at the offset of the AII stimulation. If this hypothesis is correct, ON ganglion cells should be activated at the onset of AII stimulation, and OFF ganglion cells at the offset. AII amacrine cells connect to the ON pathway (in red) through gap junctions, and to the OFF pathway (in blue) through glycinergic inhibitory connections. Stimulation of AIIs hence produces responses of opposite polarity on ON and OFF retinal ganglion cells. We target AIIs through optogenetic stimulation consisting of a series of full field flashes, and record the responses of the retinal ganglion cells with a multielectrode array. B. Responses of representative ON (left column, red) and OFF (right column, blue) retinal ganglion cells to photoreceptor stimulation with full-field flashes. Top: spiking activity across different trials. Bottom: mean response. The time intervals of the flashes are shown in gray. C. Same as B for optogenetic stimulation. D. Number of retinal ganglion cells activated by optogenetic stimulation of AII cells. Left: percentage of ON retinal ganglion cells activated at light onset, offset, or not activated at all by the stimulation, at different luminance levels. Right: same analysis for the OFF retinal ganglion cells. E. Same analysis as in C, conducted on retinal ganglion cells from wild type mice retina with no opsin expressed.

	Fig. 8.2 There are ON and OFF responses when targeting AII amacrine cells activate ReachR. To understand if our strategy allows reactivating the same computations performed We identified a total population of 173 pure ON and 65 pure OFF ganglion cells across three different experiments. The large majority of ON cells responded to the onset of AII stimulation (74% of the ON population) while their responses to the offset were almost not present (only 0.5%), which is consistent with our hypothesis. A significant portion of OFF cells showed OFF responses to optogenetic stimulation of AII (25% of the OFF population). However, we also observed that a fraction of cells classified as OFF based on response to photoreceptor stimulation, turned ON for optogenetic stimulation (36%). We hypothesized that this could be due to off-target expression of the ReachR protein, observed in our histology experiments. To demonstrate that the responses observed were truly due to optogenetic stimulation, we repeated the same protocol on retinas from wild type mice with no opsin expressed (fig. 8.2.E), blocking the photoreceptor pathways by applying ACET and LAP4. A. 8.2.
	in the normal retina, we categorized the cells as ON or OFF depending on their We collected data from two different experiments, for a total of 113 pure ON and 94
	responses to photoreceptor stimulation. ON ganglion cells were defined as responding pure OFF ganglion cells. With this protocol, we observed almost no responses for
	to the onset of the photoreceptor stimulation, and OFF cells as responding to the either ON and OFF ganglion cell populations (for high luminance level, 1% of the
	offset (see methods). We then asked if ON cells also responded to the onset of ON population and none of the OFF population responded), confirming that the
	AII amacrine cells excite ON bipolar cells through gap junction, and inhibit OFF the optogenetic stimulation, and to the offset for OFF cells. If the responses were results described above are predominantly produced by the optogenetic activation
	bipolar cells through glycinergic, inhibitory synapses. We tested if stimulation of consistent for photoreceptor and optogenetic stimulation, this would suggest that of AII cells.
	AII amacrine cells with optogenetics could evoke ON and OFF responses in retinal AII stimulation is able to reactivate some of the circuits that are active during
	ganglion cells (RGCs). For this we recorded RGC spiking activity from wild-type photoreceptor stimulation. For example, ON ganglion cells receive their inputs
	retinas expressing ReachR under the HKamac promoter on a multielectrode array from ON bipolar cells. At the onset of AII stimulation, ON bipolar cells should
	(fig. 8.2.A). To test if AII stimulation could activate similar circuits to photoreceptor be activated, and should therefore stimulate ON ganglion cells. Conversely, OFF
	stimulation, we first measured the responses of ganglion cells to stimuli at low light bipolar cells, which provide the main excitatory input to OFF ganglion cells, should
	intensity, which only activated photoreceptors, and were not sufficiently strong to be inhibited during AII stimulation, and disinhibited at the offset of AII stimulation.

3 Off-target Expression Explains Changes In ON-OFF Selectivity

  

	that these onset responses in OFF cells are due to off-target expression in ganglion Fig. 8.3 Off
	cells.
	If the observed responses at the onset for OFF cells are due to direct expression
	of ReachR in ganglion cells, these responses should still be present when fully
	blocking glutamatergic synaptic transmission. To test if this was the case, we
	performed additional tests on the same cell populations where we fully blocked this
	transmission using a pharmacological cocktail composed of LAP4, CNQX and CPP
	(see methods). The responses at the stimulation onset in OFF ganglion cells were
	still present after the application of this cocktail (fig. 8.3.B, C): 41% of the OFF cell
	population responded to the stimulus onset at bright luminance, while responses to
	the stimulus offset completely disappeared. In control retinas with no optogenetic
	protein expressed, instead, light responses were almost completely abolished (99%
	or the OFF population didn't respond to the stimulus; fig. 8.3.D). This confirms

RGC Responses of inverted polarity are due to off-target opsin expression A.

  Control protocol showing direct ganglion cell activation due to off-target expression of ReaChr: the application of CNQX and CPP disrupts all the excitatory synaptic connections. Responses induced by visual stimulations under this condition are only due to direct activation of the retinal ganglion cells expressing the opsin. B. Example of retinal ganglion cell responses to a series of flashes before application of acet and lap4, after application of acet and lap4, and after application of CNQX and CPP. Mean responses for three different ganglion cells: one ON (left column) and two OFF central and right column). First row: responses to photoreceptor stimulation. Second row: responses to optogenetic after blocking the photoreceptor transmission. Third row: responses after blocking all the excitatory synaptic connections.In this last case responses can be explained by a leak of expression in the ganglion cell layer, and direct optogenetic activation of these cells. C. Quantification of the responses induced by direct optogenetic stimulation of retinal ganglion cells due to the expression leak. Left: percentage of ON retinal ganglion cells activated respectively at light onset and offset (or not activated) of the stimulus for different luminance levels. Right: same analysis for OFF retinal ganglion cells. D. Same analysis as in C performed on a control retina of wild type mice with no opsin expressed.

  All experiments were done in accordance with Directive 2010/63/EU of the European Parliament. The protocol was approved by the Local Animal Ethics Committee ofParis 5 (CEEA 34). All mice used in this study were C3H/HeN (rd1 mice) or C57Bl6J mice (wild type) from Janvier Laboratories (Le Genest Saint Isle, France).